<%BANNER%>

Statistical Mechanics and Linear Response for a Granular Fluid


PAGE 4

Firstandforemost,Iwouldliketothankmyadvisor,mentorandfriendJimDuftywithoutwhoseguidanceandencouragementthisworkwouldnothavebeenpossible.IwouldalsoliketoacknowledgethemanystimulatingconversationswithProfessorJavierBreyofUniversidaddeSevillathatplayedanimportantpartingivingshapetothiswork.Further,IwouldliketothankmycommitteemembersProfessorHirschfeld,ProfessorLadd,ProfessorMuttalibandProfessorReitzefortheirsupport.Finally,thanksgotoKarthikforbeingmysternestcriticandPradeepforhisuncriticalsupport.ThisworkwasmadepossiblebyaMcGintyDissertationFellowshipawardfromtheCollegeofLiberalArtsandSciences,UniversityofFlorida,andwassupportedbygrantsfromNSFandDOE. iv

PAGE 5

page ACKNOWLEDGMENTS ............................. iv LISTOFTABLES ................................. vii ABSTRACT .................................... viii CHAPTER 1INTRODUCTION .............................. 1 1.1GranularMaterialsasObjectsofTheoreticalStudy ......... 1 1.2GranularFluids ............................. 3 1.3TheoreticalDevelopmentsintheStudyofGranularFluids ..... 5 1.4ObjectiveofthisWork ......................... 8 1.5StructureofthePresentation ..................... 10 2STATISTICALMECHANICSOFAGRANULARFLUID ........ 12 2.1MicroscopicModelsforGranularFluids ................ 13 2.2GeneratorsofDynamicsforInelasticHardSpheres ......... 15 2.3IsolatedHomogeneousSystem ..................... 20 2.4StationaryRepresentationandTimeCorrelationFunctions ..... 23 2.5FluctuationandResponseinaGranularFluid:SomeObservations 28 3PHENOMENOLOGICALHYDRODYNAMICS .............. 34 3.1NonlinearNavier-StokesHydrodynamicEquations .......... 35 3.2LinearizedHydrodynamics ....................... 40 3.3HydrodynamicModesandStability .................. 43 4LINEARRESPONSE ............................ 48 4.1GeneralProcedureofLinearResponse ................ 49 4.2SpecialInitialPreparation ....................... 54 4.2.1SpecialHomogeneousSolutiontotheLiouvilleEquation ... 54 4.2.2LocalHomogeneousCoolingStatePreparation ........ 56 4.2.3SimplifyingPropertiesoftheLHCSPreparation ....... 57 4.3k-ExpansionoftheTransportMatrix ................. 60 4.3.1KFatEulerOrder ....................... 65 4.3.2KFatNavier-StokesOrder ................... 66 4.3.3KSatEulerOrder ........................ 70 v

PAGE 6

................... 71 4.4SummaryofResults .......................... 72 5TRANSPORTCOEFFICIENTS ...................... 74 5.1HomogeneousOrder:TheCoolingRateh 75 5.2EulerOrderTerms ........................... 76 5.2.1Pressure ............................. 77 5.2.2EulerTransportCoecientU 80 5.3Navier-StokesTransportCoecients ................. 83 5.3.1ShearViscosity ......................... 84 5.3.2BulkViscosity .......................... 86 5.3.3ThermalConductivity ..................... 87 5.3.4TheCoecient ........................ 90 6KINETICTHEORYOFTIMECORRELATIONFUNCTIONS ..... 95 6.1GeneralFormalism ........................... 96 6.2Illustration:EnskogKineticTheoryforElasticHardSpheres .... 101 6.3DerivingtheKineticTheoryforInelasticHardSpheres ....... 106 6.4StructureoftheTransportCoecients ................ 112 6.5ComparisonwithChapman-EnskogResults:ShearViscosity .... 115 7DISCUSSIONANDOUTLOOK ...................... 122 7.1SummaryofPrimaryResults ..................... 122 7.2ContextandScopeofthisWork .................... 124 APPENDIX AGENERATORSOFDYNAMICSFORINELASTICHARDSPHERES 128 BSTATIONARYREPRESENTATIONOFTHEDYNAMICS ....... 136 CMICROSCOPICCONSERVATIONLAWS ................. 144 DSPECIALSOLUTIONTOTHELIOUVILLEEQUATION ........ 152 ECONSERVATIONLAWSINTHESTATIONARYREPRESENTATION 155 FDETAILSINTHEkEXPANSIONOFK(k;s) .............. 159 GDERIVATIONOFTHEFORMSOFTRANSPORTCOEFFICIENTS 168 HELASTICHARDSPHERES:SOMEDETAILS .............. 179 IENSKOGKINETICTHEORY ....................... 185 REFERENCES ................................... 207 BIOGRAPHICALSKETCH ............................ 211 vi

PAGE 7

Table page A{1HardSphereCollisionOperators ...................... 135 C{1MicroscopicBalanceEquations ....................... 150 C{2FormsoftheForwardFluxesandSource .................. 151 C{3FormsoftheBackwardFluxesandSource ................. 151 vii

PAGE 8

Theobjectiveofthisstudyistoexploretheapplicationofmethodsfromnon-equilibriumstatisticalmechanicstothestudyofgranularuids.Thisexplorationiscarriedoutinthespeciccontextofobtainingahydrodynamicdescriptionfortheseuidsthatisbasedunambiguouslyonanunderlyingmicroscopictheory.Aparticularmodelofagranularuidamenablefortheoreticalstudy,namelyinelastichardspheres,isconsidered.Theisolatedhomogeneoussystemisstudiedandtheassociatedensemblecharacterized.Then,smallperturbationsawayfromthisreferenceensembleareconsideredwiththeaimofisolatingthehydrodynamicresponseofthesystemandhenceobtainingmicroscopicexpressionsforthevarioushydrodynamictransportcoecients.TheprimaryoutcomesofthisprojectareexactGreen-KuboandHelfandformsforallthehydrodynamictransportcoecients.Theseexpressionsarearstoftheirkindinthattheydonothaveanyapriorilimitationsonthedomainoftheirvalidity,unlikethoseobtainedfromkinetictheorythatexistintheliteraturesofar.Theseexactformsareawelldenedstartingpointforfurtheranalyticandnumericalanalysisinordertoobtainusefulinsightintothenatureoftransportinthis viii

PAGE 9

ix

PAGE 10

1 2 ],ithasbeenestimatedthat40%ofthepotentialcapacityofindustrialplantsiswastedduetodicultiesinhandlingandtransportinggranularmaterials.Thesematerialshavebeenwidelystudiedintheengineeringcommunityforalongtime[ 3 4 ]andareofactiveinteresteventodayasanyimprovementintheunderstandingofthedynamicsofthesesystemstranslatesintocostreductionintheseindustries. Granularmaterialsarestudiedindierentregimes.Someoftheinterestingphenomenaexhibitedbythesesystemsaremediatedbytheinterstitialuidpresentinthem,eitherthroughmediatingcohesionbetweengrainsorthroughaStokesiancouplingofthegrainstotheirow.Thesesystemsarecalledwetgranularmedia.Granularsystemsinwhichtheinterstitialuiddoesnotplayanimportantroleinthephenomenologyofthematerialarecalleddrygranularmedia.Thelatteristheclassofsystemsofinteresthere.Theyareinterestingfromthepointofviewofatheoreticalphysicistforanumberofreasons.Drygranularmaterialsexhibitawidevarietyofphenomena.Apileofsandislikeasolidinthesensethatitcanwithstandapplicationofnormalstress(i.e.,ifyoupoursandandletitcometo 1

PAGE 11

rest,itsitsinaheap,bearingitsownweight).Butitisunlikeasolidinthatitsstressresponseishighlyinhomogeneouswithafewparticlescarryingthebulkoftheload[ 5 ].Whenactivated,itowslikeauid,forexample,inanhourglassoragrainhopper.Buttheowischaracterizedbydierentphenomenathaninthecaseofanormaluid,suchasjamming,novelinstabilitiesandpatternformation[ 6 7 ].Further,modelsystemswithsimpleprescriptionsforinter-graininteractionsexhibitallofthephenomenologydescribedabove.InelastichardspheresordissipativeHertziancontactforcestogetherwithsimplerealizationsoftangentialfrictionconstituteveryaccuratemodelsforcapturingthephysicsofthissystem[ 11 ].Also,thenumericaltoolofMolecularDynamics(MD)simulationcanbebroughttobearonthissystemtosupplementandelaborateexperimentalobservations,andtoverifypredictionsandstimulatetheformulationoftheoreticalanalysis(forexamplesee[ 12 13 ]forMDstudiesofvariousaspectsofthephysicsofthissystem).Hence,therichphenomenologyassociatedwiththisclassofsystemscanbestudiedinatheoreticallytractablesetting. Theoreticalinterestinthesesystemsisalsomotivatedbythefollowingconsiderations.Agranularmaterialcanbetreatedasaprototypicalnon-equilibriumsysteminthefollowingsense.Firstly,noticethatmost\microscopic"modelsusedtodescribegranularmaterialshavetheconstituentgrainsastheirsmallestentities.But,thesegrainsthemselvesarelargeparticlesandhencethethermalenergykBT(kBbeingtheBoltzmannconstant)isverysmallcomparedtothegravitationalpotentialenergymghofthegrainsatroomtemperatureandunderterrestrialconditions.Soconventionalthermodynamicsplaysnoroleindescribingthephenomenaexhibitedbygranularsystems.Theseareexplainedbasedonpurelydynamicalconsiderations.Forexample,amixtureoftwogranularmaterialsofdierentgrainsizessegregateswhenactivatedbyvibrationorrotation[ 8 9 10 ].Butfortheaboveobservationabouttheirrelevanceofthethermodynamic

PAGE 12

temperatureinthedynamicsofthissystem,theabovephenomenawouldappeartobeaviolationofthesecondlawofthermodynamics.Secondly,thespectrumoftheoreticaltoolsthatcanbefruitfullyappliedtostudygranularmaterialsinvariousregimesisverywide.Forexample,thewellknownphenomenaofcompactionofgranularmaterialsundertappingcanbemodelledtheoreticallybyintroducingapseudothermodynamicswheretheroleofenergyinconventionalthermodynamicsistakenbythefreevolumeinthesystemandtheentropyisnowgivenacongurationalinterpretation[ 14 15 ].Thebroadlyappliedtheoryofselforganizedcriticality,usedtoexplaintheubiquitousoccurrenceof\1=fnoise"indisorderednon-equilibriumsystemswasrstformulatedinthecontextofavalanchesinasandpileattheangleofmaximumstability[ 16 ].Agranularsysteminthejammedstatecanbedescribedusingthetheoreticallanguageapplicabletodescribeglassydynamics[ 17 18 ].Asuciently\uidized"granularmaterialcanbestudiedusingthetoolsapplicabletonormaluidsinnon-equilibriumstates.Thusdrygranularmaterialsprovidetheopportunityforthedevelopmentandapplicationsofawidevarietyofmethodsusedinthestudyofnon-equilibriumphenomena.

PAGE 13

thisuctuatingvelocityofthegrainandexpectthatastatisticaldescriptionintermsofacoursegrainednumberdensityeld,owvelocityeldandtemperatureeldwillberelevantinunderstandingthedynamicsofthesystem.Hencetheactivationmustbeinawaysoastoinduceacollisionalowinthemedium.Suchanactivatedgranularmaterialiscalleda\granularuid".Mostgranularowsofinterest(forexamplevibrationinducedphenomena,gravitationallyinducedowdownabumpyincline,rapidshearinducedows)fallunderthisregime.Underthesecircumstances,thestandardtoolsusedinthedescriptionofnormaluidscanbeappliedtostudythegranularsystem. 19 ].Theenergylosttotheseinternaldegreesoffreedomdoesnotcontributetotransportintheuid.So,inmosttheoreticalmodelsofagranularuidthegrainistakentobethemicroscopicentityinthesystem,withtheinternaldegreesoffreedomofthegrainsactingasa\blackbox"sinktothekineticenergyofthegrains.Therefore,thetotalenergyofthesystemisnolongeraconservedquantityinthetheoreticalmodelsandthisservesasatechnicalcomplicationintheanalysisofthedynamicsofthesystem.Butmoreimportantly,therateatwhichkineticenergyofthegrainsislosttotheinternalmodesgivesrisetoaninternaltimescaletotheuidapartfromthetimebetweencollisionsandthisplaysanimportantroleinthephysicsoftheseuids.

PAGE 14

[ 20 ].ThisiscalledBagnoldscalingintheliterature.Sincetheresponseofthesystemunderashearstrainisratedependent,theuidissaidtoberheologicaloracomplexuid.Granularuidsexhibitrheologicalbehaviorwhenevertheexternaldrivingoftheuidissuchthatitprobestheintrinsictimescaleintheuid,namelythetimescalesetbytherateoflossofkineticenergyduetotheinelasticcollisionsbetweengrainsmentionedabove.Thisbehaviormanifestsitselfinshearowsandisanimportantpropertytofoldintothetheoreticaldescriptionofagranularuidundershear.But,whentheactivationofthegranularmaterialisinsuchawaythattheexternaldrivingiswellremovedfromthisinternaltimescale,forexampleinthecaseofactivationthroughvibrationattheboundary,thegranularuidbehaveslikeaNewtonianuid.Thislatterregimewillbetheoneforwhichtheresultsobtainedinthisworkcanbeapplieddirectly. AtheoreticalmodelwidelyusedasanidealizedrepresentationofagranularmaterialinitsuidizedstateisthatofNsmoothhardspheresthatcollidepair-wiseinelasticallysothatthecollisionsconservemomentumbutthereisafractionallossinthekineticenergyofthepair.Theenergylossischaracterizedby

PAGE 15

asingleparameter,thecoecientofrestitution,with=1correspondingtotheelasticlimitofnoenergyloss.ThisisthegeneralizedversionoftheHardSpheremodelfornormaluidsthathasbeenextensivelyusedinthetheoreticalstudyofequilibriumuids. Thetheoreticaldevelopmentinthecontextofthismodelgranularuidhasfollowedinthesamespiritasthatofnormaluidsahundredyearsago.Inthediluteregime,thedynamicsofthisgranularuidcanbeconsideredtobegovernedbyaBoltzmannkineticequation[ 21 22 ].Inthisregimethegranularmaterialisreferredtoasagranulargas.Extensivestudieshavebeencarriedoutonthekinetictheoryofthissystem[ 23 ].Theseinclude,butarebynomeanslimitedtocharacterizationoftheisolatedhomogeneousstateassociatedwiththisequation[ 24 ]andcarryingoutasystematicsmallgradientsexpansionusingtheChapman-Enskogprocedure,therebydeterminingthehydrodynamictransportcoecientssuchastheviscosityandthermalconductivityfromtheunderlyingkinetictheory(forexamplesee[ 25 26 ]).Alsotheeectofdierentdrivingforcesonthenatureoftheresultingreferencesteadystates[ 27 28 ]hasbeenstudied.Further,numericaltoolssuchasMolecularDynamicssimulations[ 29 ]andDirectSimulationMonteCarlomethod[ 30 ]forsolvingtheBoltzmannequationhavebeenusedtostudystatesthatarefarfromhomogeneity,suchastheUniformShearFlowstate,whichistheprototypeshearstateforthissystemthatmanifestsitsrheologicalproperties[ 31 32 ].Thesenumericaltoolshavealsobeenusedtoevaluatethedierenttransportcoecientsobtainedfromkinetictheory.Intheprocess,potentialstumblingblocksforcarryingoutnumericalsimulationsofthesesystems,suchasinelasticcollapsewereidentiedandcharacterized[ 33 ].Thelowdensityhydrodynamicsthatresultsfromtheaboveanalysishasbeenextensivelystudiedanalyticallyandnumericallywithspecicapplicationstomanyexperimentalscenarios[ 26 34 35 ].Theinstabilitiesintheseequations

PAGE 16

havebeenanalyzedtofruitfullypredictpatternformationsthatoccurundersomeexperimentalconditions[ 36 ]. ThenextsystematicstepforwardinunderstandingthehydrodynamicdescriptionwastakenintheformoftryingtoestablishthatthehydrodynamicmodesareindeedpresentinthespectrumoftheBoltzmanncollisionoperatorandthattheyaretheslowestmodes.AsimilaranalysiscarriedoutfornormaluidsintermsoftheelastichardsphereBoltzmanncollisionoperatorgaveapositiveresult,establishingthattherealwaysexistsalengthandtimescalesuchthatthehydrodynamicdescriptionoftheuidiscomplete[ 37 ].Forthecaseofgranularuids,itwasestablishedthatthehydrodynamicmodesareindeedpartofthespectrumofthecollisionoperator[ 38 ].Buttheissueoftimescaleseparationbetweenthesemodesandthefaster\microscopic"modeswasleftunresolvedduetothecomplicatednatureoftheinelastichardsphereBoltzmanncollisionoperator.Furtherprogressinthisdirectionwasmadepossiblebytheuseofkineticmodelsforthecollisionoperatorthatretainedtheessentialfeaturesofthetruekineticequation,butwereanalyticallytractableenoughtocarryoutexactcalculations(forexamplesee[ 39 ]). Alloftheaboveanalysisisvalidonlyinthelimitofarbitrarilysmalldensities.But,mostexperimentalrealizationsdonotfallintothisdomain.TherststepinthedirectionofincorporatingdensityeectsinthehydrodynamictransporttheoryforagranularuidwastakenintheformofstudyingaRevisedEnskogTheoryforinelastichardparticles.ThisisaBoltzmann-likekineticequationthatincorporatesdensityeectsphenomenologicallyintwoways.1)Ittakesintoaccountthenitesizeofthehardparticle(whichistreatedasapointparticleintheBoltzmanntheory).2)Thecollisionfrequencyisnowweightedbythepaircorrelationfunctionatcontactthatamountstoincorporatingthreeparticleeectsinameaneldlikeapproximation,whichfurtheremphasizesthedensityeects.Thiskinetic

PAGE 17

equationwasanalyzedforstatesclosetohomogeneityandhydrodynamictransportcoecientsidentiedusingaChapmanEnskogprocedure[ 40 ].Inthecaseofnormaluids,thesetransportcoecientsarefoundtobeaccurateuptorelativelyhighdensities.Asimilardomainofvaliditywasexpectedforthesecoecientsingranularuidsaswell.Further,thehydrodynamicequationsthusobtainedweresolvedforaparticularboundarydrivenscenarioandtheresultinghydrodynamicproleswerecomparedwiththoseobtaineddirectlyfromexperimentandverygoodagreementwasfound[ 41 ]. Alloftheabovementionedtheoreticaldevelopmentshavetheirbasisinkinetictheoryandhencehavelimitationsonthedomainindensityinwhichtheycanbeexpectedtoberelevant.Inthecaseofnormaluids,furtherdevelopmentofthetheoryoftransportwasstimulatedbytheapplicationoftheexactmethodsofnon-equilibriumstatisticalmechanics,namely,linearresponseandthetimecorrelationfunctionmethod.Thismethodyieldsexactexpressionsforthetransportcoecientsthathavenoapriorilimitationsontheirdomainofvalidity.Thesystematicstudyofgranularuidtransportisatexactlythispoint.Thegeneralnon-equilibriumstatisticalmechanicsformalismisinplace[ 42 ].Firststepsinitsapplicationhavebeentakeninthecontextoftheprototypicaltransportprocessinauid,namelydiusion[ 43 44 ].Theworkhereaimstoapplythismethodextensivelytoenergyandmomentumtransportprocessesinthegranularuidaselaboratedbelow.

PAGE 18

systemconsistingofsmoothsphericalhardparticlesisconsideredandalinearresponseanalysisisformulatedandcarriedouttogiveexactexpressionsforthehydrodynamictransportcoecientsofthisuid.TheyhavetheformofHelfandandGreen-Kuboexpressionsthataretimecorrelationfunctionsoverthereferencehomogeneousensemble.Theseresultsarecomparedwiththeanalogousresultsfornormaluidsandtheroleplayedbythenon-conservationofenergyinthetransportprocessesofthissystemisexplicated.Further,anapproximateevaluationoftheseexactexpressionsiscarriedoutandcomparedtoknownresultsobtainedfromkinetictheory. Forthepurposesofclarication,consideranormaluidthatconsistsofatomsthatinteractthroughacontinuouspotential.Then,alinearresponseanalysisgivestheexactexpressionfortheshearviscosityofthisuidintheform whereHxyisthevolumeintegratedmicroscopicmomentumuxandhieqdenotestheequilibriumensembleaverageoverthecanonicalensemble.Inotherwords,theshearviscosityofanormaluidisthetimeintegralofthemomentumux-momentumuxautocorrelationfunctioncalculatedovertheequilibriumensemble.Thisworkpresentsaderivationoftheanalogousresultforagranularuidfortheshearviscosityandalltheotherhydrodynamictransportcoecients. Theimportantconsequencesofthisworkcanbesummarizedasfollows. 1.Thisistherstsystematicandextensiveapplicationofthemethodsofnon-equilibriumstatisticalmechanicstogranularuids(exceptfortheprototypeprocessofdiusion[ 44 ]andpreliminaryconsiderationsofGreen-Kuboformulafortheshearviscosity[ 45 ]). 2.Thetransportcoecientswhoseexpressionsareobtainedherearethesameonesstudiedusingkinetictheory(see[ 26 ]andotherscitedabove)andusedinthehydrodynamicequationstoexplainandinterpretexperimentalresults.Buttheexpressionsavailableintheliteratureuptothistimearelimitedby

PAGE 19

thefactthattheyarevalidonlyatlowormoderatedensities.Theexpressionsobtainedhereareapplicableforalldensitiesandinelasticities. 3.Intheprocessofobtainingtheaboveexpressions,notionssuchastheOnsagerregressionhypothesisandtheFluctuation-Dissipationtheoremarerevisitedandareinterpretationprovidedinthecontextofthisinherentlynon-equilibriumsystem. 4.Fornormaluids,fruitfulinsightintothenatureofenergyandmomentumtransportintheuidwereobtainedbynumericalevaluationsusingMolecularDynamicssimulations[ 46 47 ]andapproximateanalyticalevaluationsusingextensivelydevelopedmethodssuchasmodecoupling[ 48 ].Thisworksetsthestageforasimilarexplorationintotransportprocessesingranularuids. 5.Experimentalevidenceindicatesthatahydrodynamicdescriptionforthedynamicsofagranularuidworkswellinthevibro-uidizedregimeinaconsiderableregionoftheparameterspaceofdensityandcoecientofrestitution.Inthedomainthatitfails,itisunclearifthehydrodynamictheoryfailsortheestimatedvaluesforthetransportcoecientsarenolongervalid.Numericalevaluationofthetransportcoecientsobtainedherecanshedlightonthisproblem,astheexpressionsarevalidforallvaluesofdensityandcoecientofrestitution. 1.InChapter2,theingredientsnecessarytodostatisticalmechanicsforagranularuidofNinelasticsmoothhardspheres,namely,thegeneratorsofthedynamics,thecharacteristicreferenceensembleandtheformulationoftimecorrelationfunctionsoverthisensemblearegiven. 2.InChapter3,startingfromthemacroscopicbalanceequationsforthehydrodynamicvariables,usingtheuidsymmetryandtheassumptionthatthegradientsinthehydrodynamiceldsaresmall,asetofnonlinearhydrodynamicequationsdescribingagranularuidareobtainedphenomenologically.Then,thesearelinearizedaboutthehomogeneousstateandthelinearizedequationsareanalyzedtoidentifythehydrodynamicmodesandtheassociatedeigenfunctionsforthisgranularuid.Thelinearequationsobtainedhereareparameterizedbyunknowncoecientssuchasthepressureandviscosity.Thus,thisservesasanidenticationoftheprecisetargetsofthemicroscopicanalysisthatfollows. 3.InChapter4,theproblemoflinearresponseanditsuseinidentifyingthehydrodynamicdescriptionoftheuidisformulatedandsolvedtogiveaformalexpressionforthehydrodynamictransportmatrixasamatrixoftime

PAGE 20

correlationfunctionsoverthehomogeneousreferencestate.Thesearetheprimaryresultsofthiswork. 4.InChapter5,thedetailsofthistransportmatrixareunfoldedandthevariousquantitiesthatenterthehydrodynamicequationsareidentiedexplicitly.Theseincludeexpressionsforthecoolingrate,hydrostaticpressure,theshearandbulkviscosities,thethermalconductivityandthecoecient.Detailedcommentsonthetechnicalandphysicalcontentoftheseexpressionsaremade. 5.InChapter6,theformalaspectsofakinetictheoryforinelastichardspheretimecorrelationfunctionsaredeveloped.Then,thisisusedtocarryoutanapproximateevaluationofsomeofthetransportcoecientsusinganEnskog-likeapproximation.Theresultsthusobtainedarecomparedtothosethatexistintheliterature. 6.Chapter7isdevotedtoadiscussionoftheresultsobtainedinthisworkandtheoutlookforthefuturedirectionstobeexplored.

PAGE 21

Thefocusofthischapterofthepresentationisthesettingupofthestatisticalmechanicsofagranularuid.Statisticalmechanicsistheframeworkthatallowstheextractionofthemacroscopicobservablesofasystemasstatisticalaveragesovertheassociatedsetofmicroscopicstatesthatcharacterizethesystem.Inparticular,non-equilibriumstatisticalmechanicsisamanybodytoolthatallowstheidenticationofthemicroscopicbasisoftransportphenomenainasystem.Also,aswillbeseenintherestofthiswork,timecorrelationfunctionsplaythesameroleintransportphenomenaasensembleaveragesdointhermodynamics.Thesetimecorrelationfunctionsforagranularuidaredenedandcharacterizedinthischapter. Thelayoutofthischapterisasfollows.Theprimaryingredientinthemicroscopicprescriptionofthesystemaretheinteractionsbetweenitsconstituentparticles.ThisspecicationallowsthecalculationoftheNparticletrajectoryforagiveninitialconditionthatspeciesthevalueofthepositionandvelocitiesofallthegrains.Someofthemodelsforgrain-graininteractionarerstdiscussed.Next,thedynamicsofthesystemischaracterizedinthecasewhentheinitialstateisamacrostatebyidentifyingthegeneratorsassociatedwiththetrajectoriesandphasespacedistributions.Then,thecharacteristicensembleassociatedwithahomogeneousisolatedgranularuidisidentiedandcharacterized.Further,theessentialmachineryforstudyingperturbationsandresponseinnon-equilibriumstatisticalmechanics,namelytimecorrelationfunctions,arecharacterized. 12

PAGE 22

Finally,somecommentsaremadeonthenatureofuctuationandresponseinthisinherentlynon-equilibriumsystembyconsideringsomeillustrativeexamples. whereqijistherelativecoordinateqiqj,gij=vivjistherelativevelocityofthetwoparticles,bqijistheunitnormalvectoranddijisthemagnitudeofnormalcompressiondenedthrough whichturnsouttobethecorrectchoiceforthesphericalgeometryofthegrains[ 49 ],andthisbecomestheHertziancontactforcemodelforsmoothspheresordisks.TheNbodytrajectorytracedbythissystemofparticlescanbeobtained

PAGE 23

byusingtheseforcerulestogetherwiththeadditionalassumptionofpairwiseadditivityoftheseforces. Asimplermodelmoreamenabletotheoreticalmanybodyanalysiscanbeobtainedfromthesoftspheremodelsaboveinthelimitthatthespringsgoverningthecontactforcebecomeinnitelystiwhilethecollisiontimefortheeventgoestozero[ 49 ].Inthislimit,instantaneousmomentumtransferoccursandthemodelbecomesoneofinelastichardparticles.Inthiscase,therelativevelocityafterthecollisionisrelatedtoitspre-collisionvaluethroughacollisionruleoftheform wheretheparameteriscalledthecoecientofrestitutionandcharacterizestheenergylossduringthecollision.Noticethatthecoecientofrestitutionisingeneralafunctionoftheimpactvelocity.Thiscanbeunderstoodfromthefactthattheprocessesthatleadtodissipationintheseinteractions(forexamplemicro-deformationonthesurfaceofthegrain)haveacharacteristicthresholdenergyassociatedwiththemandhencecannotoccurwhenparticlescollidearbitrarilyslowly.Areasonablemodelsystemwouldbeoneinwhichthecoecientisaconstantindependentoftheimpactvelocityuptosomethresholdvalueg0,belowwhichitdecreasesmonotonicallytoone,whichistheelasticlimit[ 19 ].Hence,forasucientlyactivateduidthecollisionsdonotsamplethedomainoftheimpactvelocitydependenceofanditmaybetreatedasaconstantparameter.Thissimpliedinelastichardspheremodelwillbetheintergraininteractionconsideredintherestofthispresentation.TherestofthechapterfocussesoncharacterizingtheNbodytrajectoriesthatresultfromthisinteractionandthestatisticalmechanicsassociatedwiththem.

PAGE 24

Herebisaunitvectordirectedfromthecenterofparticlejtothecenterofparticleithroughthepointofcontact.Theparameter(thecoecientofnormalrestitution)ischosenaprioriintherange0<1andremainsxedforagivensystem.Asnotedabove,thevalue=1correspondstoelastic,energyconservingcollisions,while<1describesaninelasticcollisionwithancorrespondingenergylossforthepairgivenby Thecenterofmassvelocity(vi+vj)=2isunchangedsothatthetotalmassandmomentumofthepairsareconservedforallvaluesof.Subsequenttothechangeinrelativevelocityforthepairi;jthefreestreamingofallparticles

PAGE 25

continuesuntilanotherpairisatcontact,andthecorrespondinginstantaneouschangeintheirrelativevelocitiesisperformed.Thesequenceoffreestreamingandbinarycollisionsdeterminesauniquetrajectoryinphasespace,t,forgiveninitialconditions.Thecollisionruleisinvertiblesothetrajectorycanbereversed,althoughwiththeinvertedcollisionrule(\restituting"collisions). Thestatisticalmechanicsforthissystem[ 42 ]iscomprisedofthedynamicsjustdescribed,amacrostatespeciedintermsofaprobabilitydensity(),andasetofobservables(measurables)denotedbyfA()g.Theexpectationvalueforanobservableattimet>0forastate()givenatt=0isdenedby FortheoreticalanalysisthedynamicsdescribedabovecanberepresentedintermsofageneratorLdenedby SuchageneratorforthedynamicsisidentiedinAppendixA,withonlytheresultsquotedhere.TherearetwocomponentstothegeneratorL,correspondingtothetwostepsoffreestreamingandvelocitychangesatcontact, 2NXi=1NXj6=iT(i;j):(2{9) wherethebinarycollisionoperatorisgivenby Hereqijistherelativepositionvectorofthetwoparticles,istheHeavisidestepfunction,andbijisasubstitutionoperator

PAGE 26

whichchangestherelativevelocitygijintoitsscatteredvalueg0ij,givenbyEq.( 2{5 ).Thethetafunctionanddeltafunctionin( 2{10 )assurethatacollisiontakesplace,i.e.thepairisatcontactanddirectedtowardeachother. ThedynamicscanbetransferredfromtheobservableA()tothestate()bydeninganadjointgenerator L()A():(2{12) Theformgeneratedby 2{12 )sinceallacceptableprobabilitydensities()mustexcludethedomainofanypairoverlapping.However,therightsideof( 2{12 )doesnothavethatrestrictiononthedomainofintegrationandconsequentlythegeneratorforLiouvilledynamicsisnotthesameasthatforobservables(asinthecaseofcontinuouspotentials).Instead,directanalysisof( 2{12 )leadstotheresult(seeAppendixA) 2NXi=1NXj6=i withthenewbinarycollisionoperator Hereb1ijistheinverseoftheoperatorbijin( 2{11 ) (bgij)b:(2{15) Insummary,thedynamicsofphasefunctionsisgivenby (@tL)A(;t)=0;(2{16)

PAGE 27

andtheLiouvilleequationassociatedwithdistributionfunctionsis Asanaside,notethattheformofthegeneratorLandcorrespondingbinarycollisionoperatorT(i;j)doesnotdependonthedetailsofthecollisionrulegivenbytheoperatorbij,andthereforeappliesmoregenerallytoaclassofhardcollisions[ 51 ].Inparticular,itisformallythesameforbothelasticandinelasticcollisions.Incontrast,thegeneratorforLiouvilledynamicsisobtainedbyachangeofvariablesthatintroducestheJacobianofthetransformationbetweenthevariablesgijandbijgij.Henceitdependsexplicitlyontherestitutioncoecient. NotethatfromtheLiouvilleEquationin( 2{17 ),asetofequationsanalogoustotheBBGKYhierarchycanbeobtainedthatwouldcharacterizethedynamicsofthereduceddistributionfunctionsintheform wherethereduceddistributionfunctionisdenedas and (@t+v1rq1)f(1)(q1;p1;t)=Zdq2dp2 Inthisformitiseasytoseethattheconnectiontokinetictheoryofagranularuidistobemadebyexploringpossiblefunctionalrelationshipsofthetwoparticledistributionf(2)totheoneparticledistributionf(1).Ifsomesuchfunctionalrelationshipisidentiedorpostulated,theaboveequationbecomesaclosedequationforthedynamicsoftheoneparticledistributionfunctionandhence

PAGE 28

becomesakineticequationassociatedwiththegranularuidatlowdensities.Also,theBBGKYhierarchyisusefultoreducesomeNparticleexpressionstotwoandthreeparticleexpressionsexactly,renderingthemmoretractabletoapproximationsandevaluations.Theseideasareelaboratedfurtherinsubsequentchapters. Thiscompletesthecharacterizationofthedynamicsofphasefunctionsanddistributionfunctions.Apauseiswarrantedatthispoint,tonoteafewthingsaboutthedynamicsofthesystemasformulatedabove.Firstofallitisobservedthatthebinarycollisionsusedheretodescribetheevolutionofthesystemisatthetrajectorylevelandisdistinctfromthe\uncorrelatedbinarycollisionassumption"thatgoesintoakinetictheoryofsuchasystem.Itistheanalogueofpairwiseadditiveforcesinthecaseofparticlesthatinteractthroughcontinuouspotentialsandhencedoesnotimplytheneglectofcorrelationsofanykind. Next,therearetwopointstobenotedaboutthegeneratorofdynamicsinvolvingbinarycollisions.SupposetheinitialmacrostateconsideredaboveischaracterizedbysomeniteaverageenergyE,thenitisalwayspossiblethatitcontainspointswhichinvolvemorethantwoparticlesatcontactandhencethegeneratoroftrajectoriesisilldenedonsuchcongurations.Thisisaproblemwithelastichardspheresaswell.ButtheresolutionliesinthefactthatthesestateshavezeromeasureinthespaceofallsuchactivatedstatesforsystemswithlargenumberNofparticles.HenceitisvalidtoneglecttrajectoriesoriginatingfromsuchinitialpointswhencalculatingthemacroscopicvalueofanobservableAasinEq.( 2{12 )above.ThatispreciselywhatisdoneimplicitlywhenuseismadeofthehardspheregeneratorsoftheformEq.( 2{9 ).Thesecondproblemisonethatarisesdynamicallyandisexclusivelyassociatedwiththedissipativenatureofthecollisionsforthesesystems.Asstatedearlier,forsucientlyactivated(i.e.,niteinitialtemperature)systems,congurationswiththreeormoreparticlesincontacthavezeromeasure.Forasystemofelastichardspheres,thisissucient

PAGE 29

toguaranteethatalltrajectoriesinvolvingthreeparticleinteractionswillalsohavezeromeasure.But,forinelastichardspheres,thereisanadditionaldynamicaleectcalled\collapse"[ 33 ].Itispossibleforagroupofparticlestoundergoinnitelymanybinarycollisionsamongthemselvesinanitetime,soastoloosealltheirkineticenergyandcometorest.Whensuchcollapsehappens,thenthereexistsapossibilityofathreebodyinteractionoccurringsubsequently.Thestatisticalweightassociatedwithsuchevents,thatis,completionofcollapsethatleavestwoormoreoftheparticlesinvolvedatrelativerestandincontact,isunknown.Forthepurposesathand,itisassumedthatsucheventshavezeroweightinthesensethatacollapsingpairisbrokenupbeforethecompletionofthecollapseandthatbinarycollisionsalonearesucienttogenerateawelldenedtrajectoryforalllatertimesandthisissuewillnotbeconsideredfurtherinthiswork. 2mv2iofthesystem.Thedynamicalequationgoverningthetimeevolutionofitsensembleaverageis @tDbEE=Zd()@ @tbE(t)=m

PAGE 30

wheretherighthandsideismanifestlynegative.Deneagranulartemperaturethroughtheequation 3N*NXi=11 2mv2i(t)+:(2{22) Usingtheequationabove,thetemperatureisfoundtobemonotonicallydecreasingwith where(t)>0isthe\cooling"rateduetoinelasticcollisionsgivenby Thisshowsthatthereisno\approachtoequilibrium"foragranularuidsincethereisnosuchstationaryequilibriumstate.Howeverthereexistsevidenceontheoretical(atthelevelofkinetictheory,foranillustrationinthecontextofakineticmodelsee[ 52 ])andnumericalgrounds[ 53 ]thatawideclassofinitialhomogeneousstatesrapidlyapproachauniversalstatethatisspatiallyhomogeneous(translationallyinvariant)andallofitstimedependenceoccursthroughtheaveragespeedT(t):ThisisknownastheHomogeneousCoolingSolution(HCS).TheequationgoverningitsdynamicscanbeobtainedbyeliminatingthetimederivativeintheLiouvilleequationEq.( 2{17 )usingthetimeevolutionequationofthetemperatureEq.( 2{23 )abovetogive withthedenition 2h(t)T(t)@X @T(t)+ Sincethesystemathandishardspheres,theonlyenergyscaleintheproblemisthekineticenergyoftheparticles.Hence,theonlywaythistemperaturedependencecanoccuristhroughascalingofthevelocities.Thisallowsthe

PAGE 31

homogeneouscoolingstatetobewrittenasascalingstateintheform wherevh(t)isthethermalvelocityand`isamicroscopiclengthscale(forexamplethemeanfreepath)chosentonon-dimensionalizethedistancesintheproblem. Firstofall,usingthescalingformoftheHCSinthedeningequationforthecoolingrate( 2{24 )abovegivesdirectly wherehisnowadimensionlessconstantthatdependsontheparametersofthemodelandthereduceddensityofthehomogeneousuid.Next,usingthisresultinthetemperatureequation( 2{23 )above,gives 2`ht2!2m`2 Alsogivenisthelimitingbehavioratlongtimes,showingthatthetemperaturebecomesindependentoftheinitialconditions.ThisformisknownastheHa'slawforafreelycoolinggranularuid[ 54 ]andisthesignatureofaHCSthatisreadilyrecognizedinnumericalsimulations.Also,withthisscalingformthe 2h(t)NXi=1rvi((viu)X)+ Thisequationmustbesolvedself-consistentlywith( 2{24 )forh(t)=h(tjh)whichisalinearfunctionalofh.Itiseasilyseenbydirectcalculationthatnoneoftheequilibriumensemblesfornormaluidsaresolutionstothisequation,evenwithageneralizationtothescalingform( 2{25 ). OneimmediateconsequenceofthescalingnatureoftheHCSensembleisdescribedbelow.Letf(P)beanarbitrarydierentiablefunctionofthe

PAGE 32

momentum.Bymomentumconservation 0=Zdh(t)Lf(P)=Zd 2h(t)ZdNXi=1rvi((viu)h(t))f(P): Integrationbypartsthengivesnally Sincef(P)isarbitrarythisimpliesthattheHCSdistributionissharpwithrespecttothetotalmomentum Insummary,thecharacteristicensembleofanisolatedhomogeneousgranularuidistheHCSensemble.Itisatimedependentnon-equilibriumensemblethathasitsentiretimedependencethroughthecoolingtemperature.Thecharacteristictimescaleassociatedwithitisthecoolingrateh:Also,thisensembleissharpwithrespecttothetotalmomentum,i.e.,eachtrajectoryinthisensembleoriginatesfrominitialpointsthatallhavethesamemomentumP.Thiscompletesthecharacterizationofthehomogeneousreferencestateofthissystem.ThisHCSisgoingtoplaythesameroleinthestatisticalmechanicsofthegranularuidthattheequilibriumGibbsstatedoesforanormaluid,aswillbeseeninthesubsequentchapters.

PAGE 33

newtimescaleinsuchawaythatthehomogeneouscoolingstateisthestationarystateofthisdynamics.Toseethis,deneasetofdimensionlessvariables And,foranydistribution,deneanassociateddimensionlessformas IntermsofthesevariablesthedimensionlessLiouvilleequationbecomes withthenewgeneratorforLiouvilledynamics 2hNXi=1rVi(Vi); L=` vh(t) Itisreadilyveriedthat 2{29 )and( 2{34 )tobe 2`ht;vh(t)=e1 2hsvh(0):(2{38) ThisdimensionlessformfortheLiouvilleequation,( 2{36 ),supportstheHCSasastationarysolution Consequently,inthefollowingitisreferredtohereasthestationaryrepresentationoftheLiouvilleequation.Thisrepresentationessentiallyinvolvespartitioningthedynamicsofanydistributionintotwoparts,oneduetothecoolingTh(t)andtheotheriseverythingelse.ThehomogeneouscoolingofthetemperatureisgeneratedbythescalingoperatorS=1 2hPNi=1rVi(Vi).Since,inthe

PAGE 34

HCSthisistheonlydynamics,itisthestationarystateofthedynamicsinthisrepresentation.TheusefulnessofthisstationaryrepresentationliesinthedenitionoftimecorrelationfunctionsovertheHCSensemble,whichisconsideredbelow. ForobservablesAandBandamacrostate,thetwo-timecorrelationfunctionisoftheform Rewritingtheaboveexpressionintermsofthegeneratorsidentiedearliergives, orequivalently,usingtheadjointrepresentationofthedynamics L(()B()):(2{42) Moregenerally,correlationfunctionsatthreetimescanbedenedbuttherepresentationintermsofgeneratorscanbeambiguous.Forexample,itiseasilyseenthatL(AB)6=(LA)B+A(LB)andconsequently Inthecaseofelasticsystems,whentimecorrelationfunctionsovertheequilibriumstateareconsidered,timetranslationinvarianceandthestationarityoftheGibbsstateareusedtomapthethree-timeproblemontooneofcalculatingatwotimecorrelationfunctionas ItturnsoutthatthestationaryrepresentationforthedynamicsdescribedaboveallowsthesamemanipulationstobecarriedoutinthecaseoftimecorrelationfunctionsovertheHCSensemble.TheresultsarestatedhereandthedetailsofobtainingtheseresultsaregiveninAppendixB.

PAGE 35

Firstconsidertwo-timecorrelationfunctionsovertheHCS.Thesecanbewrittenas L(h()B())=cB(v(0))ZdA(f`qi;v(t)vig)es (2{45) InthelastequalityachangeofvariablestothedimensionlessformhasbeenmadeandcA;BaretheappropriatefunctionsofthescalingvariablesthatarerequiredtomaketheobservablesAandBdimensionless.Asidefromapossibleexplicitdependenceontimethroughv(t);dependingonthespecicchoiceoffunctionA,thetimedependenceisnowgivenbytheLiouvilledynamicsinthestationaryrepresentation.Here,sisunderstoodtobes(t;0).Forhomogeneousfunctionsofvelocityaswillbeconsideredintherestofthepresentation, forsomeaandbandhence 2asva+b(0);(2{47) whichamountstoanadditionalsimpletimedependenceassociatedwiththecooling.Also,thereexistsanequivalentrepresentationforthestationarystatecorrelationfunctiongiveninEq.( 2{45 )aboveas where 2hNXi=1VirVi(2{49)

PAGE 36

Further,threetimecorrelationfunctionscanbewrittenas wherethesisnowunderstoodtobes(t;t0):ThederivationoftheseresultsisgiveninAppendixB.Itcanbeinferredfromtheresultsabovethatitissucienttoconsideraclassofdimensionlesscorrelationfunctionsoftheform (2{51) =ZdA()es Finally,aspecialpropertyofhardspheredistributionscanbeusedtotoextractthe\backwarddynamics"generatorforphasefunctions.ItisshowninAppendixAthatforanyhardspheredistribution(i.e.,onewithanexcludedvolumefactormultiplyingit),thereexistsanoperatorLsuchthat,foranyphasefunctionB; L(B)=( wherethenewoperatorLisfortheform 2NXi=1NXj6=iT(i;j)(2{54) InthedimensionlessvariablesEq.( 2{53 )becomes where 2hNXi=1virvi;L=` vh(t)L:(2{57)

PAGE 37

Inparticular,whenthedistributionistheHCSh,therstterminEq.( 2{56 )vanishes.Usingthisfactinthestationaryrepresentationfortimecorrelationfunctionsgives Thisrepresentationwillproveusefulwhencomparisonwithresultsobtainedforelastichardspheresissoughtinthesubsequentsections. Insummary,inthissection,anewrepresentationforthedynamicsofthesystemhasbeenidentiedsuchthatthereferencehomogeneousensemble,namelytheHCSisstationaryinthisrepresentation.Further,thishasbeenextendedtotimecorrelationfunctionsovertheHCSsothattheybecomestationarystatetimecorrelationfunctions.Thisisatechnicalsimplicationthatallowsatimedependentnon-equilibriumproblemtobemappedontoastationarystateproblem.Thismappingallowsforseveralformalmanipulationsofthetimecorrelationfunctionsthatwouldotherwisebecomplicatedandalsofacilitatescomparisonwithknownresultsfornormaluids.Thisconcludesthesettingupofthemachineryrequiredtodonon-equilibriumstatisticalmechanicsforagranularuid. 55 ]anditsmanifestationintheformofuctuationdissipationrelationshipsbetweentimecorrelationfunctionsandresponsefunctions.Therehasbeenconsiderableattentiongiventosuchuctuationdissipationrelationsinthecontextofgranularuidsintherecentliterature[ 56 57 58 59 60 ].Buttheconventionalresultsassociatedwiththeuctuationdissipationtheoremareinherentlytiedtothespecialpropertiesassociatedwith

PAGE 38

thereferencestate,namelytheequilibriumGibbsstate.Asestablishedinthediscussionearlier,granularuidsareinherentlynon-equilibrium.Evenwhenthereisadrivingforcethatgivesrisetoasteadystate,thisstateisverydierentfromtheGibbsstateandhencetheuctuationdissipationrelationshipstakedierentforms.Theseconsiderationsareelaboratedinwhatfollows. FirstconsidertheOnsagerregressionhypothesis.Brieystated,thiscanbeformulatedasfollows.Supposeasmallinitialmacroscopicperturbationofthereferenceequilibriumstateisconsidered,thenthehypothesisstatesthatregressionofthisperturbationmustbethesameasthatofaspontaneousuctuationinthesystemandtherefore,theresponseofthesystemtothisperturbationischaracterizedbyatimecorrelationfunctionovertheunperturbedreferencestate.Secondly,theresponsefunctioncharacterizingthelinearresponseofthesystemtoanexternaleldisfoundtoberelatedsimplytoatime-correlationfunction.Thisfacthasbeenusedtoderivevariousuctuationdissipationrelationsbetweenequilibriumtimecorrelationfunctionsandresponsefunctions. InordertoseehowtheabovestatementstranslatetoacontextwherethereferencestateisnottheequilibriumGibbsstate,consideragranularuidinanon-equilibriumhomogeneousstablesteadystate0thatisthesolutiontoaLiouvilleequationoftheform wheretheoperator

PAGE 39

thatcouplesintothemicroscopicdensityfunction,forexampleagravitationalforce. Theinitialpreparationmentionedabovegivesamacrostateoftheform where^y(r)isanasyetunspeciedphasefunctionandthedenotesitsdeviationfromitsaveragevalueinthe0statewhichguaranteesthat i.e.,theinitialpreparationisproperlynormalizedand whichensuresthat i.e.,theinitialpreparationindeedhastheprescribednumberdensityeld. TheexternalforceentersasacorrectiontotheLiouvilleoperatorintheform where with^n(r)=Pi(rqi)andf;gbeingthePoissonbracket @qi@B @pi@A @pi@B @qi:(2{66)

PAGE 40

TheperturbingpartoftheLiouvilleoperatorcanberewrittenas @pi!=ZdrF(r)Xi@ @pi(rqi) (2{67) SolvingtheLiouvilleequation torstorderinperturbationintheexternalforce,withtheinitialconditiongivenbyEq.( 2{60 )above,resultsin wherethestationarityofthe0statewithrespecttotheunperturbedLiouvilleoperatorhasbeenused.Nowconsidertheaverageofthenumberdensityinthisstate, (2{70) where

PAGE 41

isthecorrelationfunctionthatcharacterizestherelaxationofthesystemduetoaninitialperturbationand istheresponsefunctionthatcharacterizestheresponseofthesystemtoanexternalforce.Thisisthemostgeneralformthatcanbeobtainedforageneralhomogeneousstationarystate. NoticethattherstpartoftheOnsagerregressionhypothesiscomesoutnaturallyfromthelinearresponseprocedureifrestatedastherelaxationfromaninitialperturbationrelaxesinthesamewayasaspontaneousuctuationinthereferencestate,fortheresponsetosuchaperturbationisgivenbyatimecorrelationfunctioninthereferencestate.But,therelationshipbetweencorrelationfunctionsandresponsefunctionisnotsostraightforward.Inordertoseethis,rstconsidertheabovetwoexpressionswhenthereferencestateistheequilibriumstate.Firstnoticethatifthephasefunction^yischosentobe^nthenusingtheconservationlawforthenumberdensity,then,g1justbecomestheinverseofstaticstructurefactorSinthereferencestate0(seeAppendixH)andtheresponseinthedensitytakestheform (2{73) Or,equivalently,thiscanbegivenaFourierrepresentationas Further,when0=eqthen,

PAGE 42

andonecanidentifythesecondtermintheresponsefunctionas where^|n(r;t)isthenumberuxinthecontinuityequation Hencetheuctuationdissipationrelationshipisrecoveredinthefamiliarform ThepointoftheabovedemonstrationisthatthefamiliarformoftheuctuationdissipationrelationshiphingesonthefactthattheGibbsstateisoftheformeHwhereHisthegeneratorofthedynamicsofthesystem.Andhencethisparticularformoftherelationshipdoesnotingeneralapplyforotherstationarystatesofasystem.Further,otherformsoftheuctuationdissipationrelationshipknowntoholdforequilibriumsystems,likethatrelatingthediusioncoecienttothemobilitycoecientareknowntotakedierentformsforgranularuids[ 61 ].Hence,eventhoughalargebodyofthemethodsdevelopedforthestudyofnormaluidscanbeextendedandfruitfullyappliedtogranularuids,resultsobtainedfromthesetoolscannotbeborrowedandusedwithoutcriticalexaminationofthederivationassociatedwiththem. Inwhatfollows,attentionisrestrictedtotheuseofthesetoolsestablishedaboveforthespecicproblemofderivingaclosedhydrodynamicdescriptionforagranularuidandhenceobtainingexpressionsforthetransportcoecientsassociatedwithsuchadescriptionintermsoftimecorrelationfunctions.TheseexpressionsareexactandstillhavetheNbodyprobleminthem,butatthesametimeareamenabletocontrolledanalyticapproximationsandspecicnumericalevaluations.

PAGE 43

Intheprecedingchapter,thetoolsnecessarytousenon-equilibriumstatisticalmechanicsinthestudyofgranularuidswereestablished.Theroleofstatisticalmechanicsistoprovideabridgethatlinksthemacroscopicphenomenainasystemtoitsmicroscopicroots.Themacroscopicdescriptionthatistheobjectiveofthisanalysisisahydrodynamicdescriptionofagranularuid.Inthischapter,suchahydrodynamicdescriptionisobtainedonphenomenologicalgroundsinordertoidentifythetargetquantitiesforthemicroscopicanalysisthatfollowsinsubsequentchapters. Hydrodynamicsinthemostgeneralcontextcanbedenedasacloseddescriptionofthedynamicsofasystemintermsofits\slowvariables"[ 62 ].Itistypicallyapplicableonlengthscaleslongcomparedtothecharacteristicmicroscopiclengthandtimescaleslongcomparedtothecharacteristicmicroscopictime(whichinthecaseofuidscorrespondrespectivelytothemeanfreepathandthemeantimebetweencollisions).Onthisscale,theslowvariablesareconventionallytheconservedquantitiesandthebrokensymmetryvariables.Thiscanbeseenbynotingthatthedynamicalequationassociatedwithaconservedvariablexisa\continuityequation"oftheform i.e.,thetimederivativeisproportionaltoagradient.Assumingthatthesystemapproachesanequilibriumhomogeneousstate,itfollowsthatthetimescaleassociatedwiththerelaxationofthisvariabledivergesasthesystemapproaches 34

PAGE 44

homogeneityandhencethedynamicspersistsaftertimeslongcomparedtothemeanfreetime,whichcharacterizesthedecaytimeoftheothervariablesinthesystem.Aphenomenologicalroutetoobtainahydrodynamicdescriptionofasystemis1)identifytheconservedquantitiesofthedynamics,2)writedowntheconservationlawsforthesevariables,3)proposeaclosurecriterionthatallowstheunknownuxesintheaboveconservationlawstobeexpressedintermsoftheconserveddensities,calledtheconstitutiverelationsforthesystem.Forexample,foranormaluid,thelocallyconservedquantitiesarethenumberdensity,theowvelocityandtheenergydensityorthetemperatureandtheconstitutiverelationsaretheNewton'sviscositylawandFourier'slawforheattransport.ThisgivestheNavier-Stokesorderhydrodynamicequationsforanormaluid. Ananalogousphenomenologicalderivationofthehydrodynamicequationsassociatedwithagranularuidisgiveninthischapter.Thecontextofhydrodynamicsforagranularuidhastoberevisitedcarefullybecausethisisaninherentlynon-equilibriumsystemwithnonotionofapproachtoequilibriumassociatedwithit.Aswillbeseeninthefollowing,the\slow"variablesinthissystemarenotallconservedquantities.Hence,caremustbeexercisedtoidentifytheprecisesenseinwhichthesehydrodynamicequationsarecompleteinthelongtimelimit.Theroutetakentoaddresstheseproblemsisthefollowing.First,asetofhydrodynamicequationsarederivedwiththeassumptionsthatgointothederivationstatedclearlyalongtheway.Oncetheresultingdescriptionhasbeenwrittendown,itisanalyzedtogivethecontextanddomainofvalidityfortheassumptionsusedtoobtainthedescriptionitself.

PAGE 45

thersttwoeldsarelocallyconservedquantities,buttheenergydensityisnot.Thestartingpointforderivingsuchadescriptionarethemacroscopicbalanceequationsassociatedwiththeseeldsgivenby (3{2) (3{3) (3{4) wherehijisthemomentumux,sistheenergyuxandw(r;t)isthefunctioncharacterizingthelocallossinenergyduetothedissipativenatureofthecollisionbetweenthegranularparticles.Fromapurelymacroscopicpointofview,theseequationsaretakentodenetheuxesandthesourceterm.Hencethespecicationoftheuxesisarbitraryuptotermsofzerogradientandtheseparationintosourceanduxintheenergyequationisnotunique.ButiftheseequationsareviewedwithinthecontextofstatisticalmechanicsasensembleaveragesofthecorrespondingmicroscopicconservationlawsgiveninTableC-1inAppendixC,thentheuxesandthesourceareunambiguouslydened.Thiswillbetheviewpointtakenhere. AsfornormaluidsitisusualtoreplacethemomentumdensitybytheowvelocityU(r;t)denedthroughtherelation IfalocalrestframeisdenedfortheuidateachpointrthroughaGalileantransformationr!rU(r;t)t,then,atemperatureT(r;t)isdenedusingtheenergydensityoftheuidinthelocalrestframethroughthedenition 2mn(r;t)U2(r;t)e0(n(r;t);T(r;t))(3{6)

PAGE 46

Heree0(n;T)issomespeciedfunctionofnandT.Thetwomostcommonchoicesaree0(n;T)=3nT=2,ore0(n;T)=ee(n;T)thethermodynamicfunctionforthecorrespondingequilibriumuid.Theformeriscommoninapplicationsofcomputersimulations,whilethelatteristhehistoricalchoiceinmostformulationsofhydrodynamics.Forbothnormalandgranularuids,thechoicemadeconstitutesadenitionoftemperaturefornon-equilibriumstatesandhasnoapriorithermodynamicimplications.Withthesedenitions,theabovebalanceequationscanberecastintheform whereDt=@t+Uristhematerialderivativethatisthetimederivativeinthelocalrestframe,Pijisthemomentumuxinthisreferenceframe,calledthepressuretensor andqisthecorrespondingheatux,identiedas 2nmU2UiPijUj:(3{11) Further,intherestofthepresentation,thechoicee0(r;t)3 2n(r;t)T(r;t)ismade.Thisgivesthetemperatureequationintheform (Dt+)T+2 3n(Pij@jUi+rq)=0;(3{12) withthecoolingratedenedthroughtherelation 3n(r;t)w(r;t):(3{13)

PAGE 47

Theseequationshavethesameformasthoseforanormaluid,exceptforthecoolingratethatrepresentsthedissipativenatureoftheinteractionbetweentheparticlesofthisuid. Hydrodynamicsisacloseddescriptionintermsofthehydrodynamicelds.Butinspectionofthemicroscopicanaloguesoftheseuxestellsusthattheselocalrestframeuxesareingeneralcomplicatedfunctions.Theclosureoftheabovebalanceequationswithrespecttothehydrodynamiceldsismadebyassumingthattheuxesbecomenormalfunctionalsofthehydrodynamiceldsafterashortagingtime,i.e.,thepressuretensorPtakestheform anditdependsonspaceandtimeonlythroughthehydrodynamicelds.Similarformsarepostulatedfortheheatuxandthecoolingrateaswell.ThisclosureassumptioneectivelyconvertsthebalanceequationEqs.( 3{7 )-( 3{8 )intohydrodynamicequationsfortheveeldschosentobethehydrodynamicvariablesofinterest.Thisassumptionisthephenomenologyinvolvedinthisderivationofhydrodynamics. Onecangiveaphysicalinterpretationforthebasisofthisassumptionasfollows.Considerthegranularuidinaninhomogeneousstate.Visualizethesystemasbeingpartitionedintocellssuchthateachcellhasenoughparticlessothatmultiplecollisionscanoccurintimesshortcomparedtothetimetakenbyatypicalparticletotraversethesizeofthecell,butthesizeofthecellissmallcomparedtothewholesystem.Now,noticethatthehydrodynamicvariablesherearethecoursegrainedversionsofpreciselythosemicroscopicquantitiesthatprescribethecollisionrulebetweengrains.Henceastatisticalaverageofthesequantitiesoveronlytheparticleswithinthecellwillnotchangeexceptthroughboundaryeectsthatincludecollisionswithparticlesacrossthedeningwallsof

PAGE 48

thecell.Withthispicture,itiseasytoseethat,attimestsuchthattislargeenoughthatseveralcollisionshavetakenplacewithintheparticlesofthecell,butsmallenoughsothatonlyasmallnumberofcollisionshaveoccurredacrossthewalls,theonlyquantitiesineachcellthatwouldnothaverelaxedyetwouldbethehydrodynamicvariablesandanyotherobservablewillacquireitsspaceandtimedependencethroughtheseeldsonly.Thisistheregimeofnormaldynamicsinwhichtheclosureassumptionaboveisareasonableoneandthehydrodynamicequationsareexpectedtobetherelevantdynamicalequationsofthesystem. Further,whenthegradientsinthesystemaresmall,thefunctionalformoftheuxescanbeexpandedinpowersofthegradientsofthehydrodynamicelds.TheNavier-Stokeshydrodynamicsentailsretainingtermsupthroughsecondorderinthegradientstogivetheconstitutiverelationsfortheuxesas (3{17) Notethatthecoolingrateisrequiredtosecondorderinthegradients,whilethepressuretensorandheatuxarerequiredonlytorstorder.ThepressuretensorhasthesameformasNewton'sviscositylawforanormaluid,whiletheexpressionfortheheatuxisageneralizationofFourier'slaw.Theseexpressionsincludetheunspeciedfunctionsp(n;T)and0(n;T),aswellasunknowntransportcoecientsU(n;T),T(n;T),n(n;T)andsoon,theshearviscosity(n;T),thebulkviscosity(n;T),thethermalconductivity(n;T),andthenewcoecientassociatedwithheattransportinagranularuid,(n;T).

PAGE 49

Allofthesemustbeprovidedbyexperimentorthetheoreticaljusticationoftheabovephenomenology. Thiscompletesthephenomenologicalidenticationofasetofhydrodynamicequationsforagranularuid.Therestofthechapterwillfocusonthelinearhydrodynamicsaboutahomogeneousstate.But,inclosingthissection,someremarksaremade.AlthoughtheNavier-Stokesequationsarebasedonthesmallgradientformsfortheconstitutiveequations,itdoesnotmeanthattheyarelimitedtosystemsclosetoahomogeneousstate.Theyareapplicablelocallyoverdomainslargerthanthemeanfreepathevenwhenthehydrodynamiceldsstillvarysignicantlythroughoutthesystem.Consequently,awiderangeofexperimentalandsimulationconditionsforgranularuidshavebeenwell-describedbytheNavier-Stokesequations(forexamplesee[ 63 ]).Therefore,gettingreliableestimatesofthesehydrodynamictransportcoecientsprovidesatractabletheoreticalhandleonalargebodyofexperimentsdoneonuidizedgranularmaterials. 3{7 )-( 3{9 )above.Theseareoftheform, thatis,thehomogeneousstatehasaconstantdensity,aconstantowvelocityandahomogeneoustemperaturethatiscoolingwithtimewithacharacteristiccooling

PAGE 50

rate0.Considerthecoolingequationinparticular.Noticethattheunderlyinguidisoneofhardspheres.Thisisasystemwithnocharacteristicinternalenergyscale.So,theonlyenergyscaleintheproblemisthetemperature.This,togetherwiththefactthatthecoolingrateisanormalfunctionsoftime,leadstothefactthat,ondimensionalgrounds, Eq.( 3{19 )isthemacroscopicanalogueofEq.( 2{28 )inthepreviouschapter.HencethesolutiontoEq.( 3{18 )aboveisindeedtheHomogeneousCoolingSolutionconsideredinthepreviouschapterinthecontextofstatisticalmechanics.ThishomogeneousdynamicsofthetemperatureisthesameasidentiedinEq.( 2{29 )inthepreviouschapter 2`ht2:(3{20) Thusthehomogeneouscoolingstateisthesolutiontothehomogeneoushydrodynamicequations.Thisistherstdistinctionfromthehydrodynamicsofnormaluidsinthatthehomogeneousreferencestatethatemergesisinherentlytimedependent. Next,theequations( 3{7 )through( 3{9 )arelinearizedaboutthishomogeneousstate.Withoutlossofgenerality,picktheconstanthomogeneousowvelocityUhabovetobezero.Forthispurpose,introducedimensionlessvariablesoftheform ThedimensionlessspaceandtimescalesarethesameasthoseintroducedinthepreviouschapterthroughEq.( 2{34 ), InthisformthecoecientsinthelinearizedNavier-Stokesequationsareconstants,independentofspaceandtime.Thesubsequentanalysisismostconvenientlydone

PAGE 51

intermsofaFourierrepresentationwithrespecttospace wherethesetfygarechosentobe Herebe1andbe2areunitvectorsorthogonaltoeachotherandtobk,deningthetransverseoweldcomponents.ThelinearizedNavier-Stokesequationsarethenidentiedas wherethetransportmatrixKhydisfoundtobeblockdiagonalwitha\longitudinal"partcorrespondingto;=1;2;3;givenby 3p+Uik1 2p@lnph 2pikh 3+k21CCCCA:(3{26) The\transverse"componentsdecouplefromthelongitudinaldegreesoffreedomintheaboveequationandaregivenby Thedimensionlesstransportcoecientsaredenedby vhh;U=U;T=Th ThiscompletesthederivationofthelinearizedNavier-Stokesequationsforsmalldeviationsfromthehomogeneousstate.Noticethatthetransportcoecients

PAGE 52

Forthepurposeofunderstandingthechoiceofthesevariables,considerthelinearhydrodynamicequationsabove.Thetransportmatrixatk=0is Recallthatthehomogeneousreferencestateaboutwhichtheseequationsarelinearizedistimedependentandcooling.Thistimedependencewasaccountedforbymakinganonlinearchangeofvariableintimesothatthecoolingisincorporatedinthischoiceoftimescaleandthehomogeneousstateisstationary.TheKhyd(0)

PAGE 53

identiedaboveisthedynamicsassociatedwithhomogeneousperturbationsofthereferencestate.Thisisatrivialdynamicsinthesensethatitisjustthecoolingofthenewhomogeneousstateasdescribedinthevariablesinwhichtheoriginalreferencehomogeneousstateisstationary.Furthernoticethatinthecaseofthehardspheregranularuidconsideredhere,theanalogueoftheproperty@t/rrthatcharacterizesthehydrodynamicvariablesfornormaluidsis@sI+Khyd(0)/rr,i.e.,thehydrodynamicvariablesherearethosewhosecharacteristictimeofapproachtothisresidualdynamicsdivergesinthelongwavelengthlimit.Itisinthissensethatthetemperaturecanbetreatedonthesamefootingastheowvelocityandthenumberdensity. Next,furtherunderstandingofthecontentofthehydrodynamicdescriptionandthefactthatthehydrodynamicresponseofagranularuidisverydierentfromthatofanelasticuidcanbeobtainedbyconsideringthehydrodynamicmodesforthissystem.Theeigenvaluesandeigenvectorsofthegeneratorforthisdynamics,Khyd,denestheveNavier-Stokesorderhydrodynamicmodes TheeigenvaluesofthematrixKhydaredeterminedbythecubicequation324 3+k2+(T)k22h 3+k21 2p2 3p+Uk21 2p@lnp @lnn+k2ph1 2@lnh 4@lnp @lnn=0 (3{32) andthedecoupledshearmodesaresolutionstotheequation

PAGE 54

Ifthelimit!1istakenforthisequation,then,itssolutiontoorderk2givethefamiliarhydrodynamicmodesassociatedwithnormaluids,namelythetwopropagatingsoundmodes,theheatmodeandthetwotransverseshearmode[ 37 ].But,whenthesolutiontotheaboveequationisconsideredfor6=1,toorderk2theyare @lnnhlnph 2hT+p 2hp @lnnhk2 +4 3+k2; (4;5)(k)=1 2h+1 2k2(3{37) Noticethatalltheeigenvaluesarerealandhencetherearenopropagatingmodesinthesystem,andthe!1limitofthesemodesdonotcorrespondtothefamiliarhydrodynamicmodesofanormaluid.Thedrasticdierenceinthenatureofthehydrodynamicmodesobtainedastheelasticlimitoftheaboveeigenvaluesisduetothenon-analyticityoftheeigenvaluesandeigenvectorsaboutthepoint=1andk=0.Closetotheelasticlimit,hwhichgoesas(12)(seeEq.( 2{24 )inthepreviouschapter)andkaresmallparametersandthetypeofmodesobtaineddependsonhowtheseparametersapproachzero[ 26 ].Thisisanindicationofthefactthattheinelasticity,evenwhensmall,givesrisetodrasticallydierenttransportintheuid.But,forthepurposesathand,attentionisrestrictedtothe6=1formsofthesemodes. NextobservethatthereexistsacriticalwavelengthkcSdenedby

PAGE 55

suchthatfork
PAGE 56

perturbationatconstanttemperatureanddensity.Thelasttwoaretheresponsetoatransversevelocityperturbation,againatconstanttemperatureanddensity. Thisconcludesouranalysisoftheresponseofthehomogeneousstatetosmallspatialperturbations.Recallthattheunknownquantitiesinthehydrodynamicequationsabovearethepressurep,thecoolingrate,thetransportcoecientsshearviscosity,thebulkviscosity,thethermalconductivity,thecoecient,andthesourcetransportcoecientsU,Tandn.Thesubsequentchaptersfocusonidentifyingthesetransportcoecientsexactlyfromtheunderlyingmicro-dynamicsintheformoftimecorrelationfunctionsovertheHCSensemble.Further,notethatalthoughthisisdoneinthecontextoflinearhydrodynamics,thesetransportcoecientsarethesamefunctionsofthedensityandtemperatureinthenonlinearequationsandhencetheresultscanbeusedinthenonlinearequationsaswell.

PAGE 57

Hydrodynamictransportcoecientsarethosequantitiesthatcharacterizetheresponseoftheuidtogradientsinthehydrodynamiceldsinternaltotheuid.Fornormaluids,themethodoflinearresponsehasbeensuccessfullyusedtogetexactexpressionsforthesetransportcoecientsstartingfromthemicroscopictheory[ 37 ]intheformoftimecorrelationfunctionsoverthehomogeneousreferencestate.Thus,non-equilibriumstatisticalmechanicsallowstheidenticationoftransportcoecientsintermsofthetimedependenceofuctuationsintheequilibriumensemblejustasequilibriumstatisticalmechanicsallowstheidenticationofthermodynamicquantitiessuchasthespecicheatintermsofthe\amplitude"ofstaticuctuationsintheequilibriumensemble.Forexample,theviscosityofauidisdeterminedbythetimeintegraloftheautocorrelationfunctionofthemomentumuxatatimetwiththemomentumuxatthetimet=0(seeEq.( 1{1 )earlier):ThekeyideathatmakessuchidenticationspossibleisOnsager'shypothesisthatperturbationsrelaxinthesamewayasaspontaneousuctuationinthesystem. AswasshowninChapter2earlier,theOnsagerregressionhypothesis,whensuitablyreformulated,worksforgranularuidsaswell.Hence,itisexpectedthatthereexistrepresentationsforthehydrodynamictransportcoecientsofagranularuidintermsoftimecorrelationfunctionsofuxesoverthereferencestate.Identifyingthegeneralmethodforobtainingsuchanexpressionforthetransportcoecientsistheobjectiveofthischapter. 48

PAGE 58

Thestructureofthepresentationisasfollows.First,theformalprocedureofusinglinearresponsetoextractthehydrodynamicresponseofauidandhenceobtainamicroscopicrepresentationforthetransportcoecientsisoutlined.Then,sometechnicalsimplicationsthatrenderthisformalprocedureanalyticallytractablearepointedout,intheformofidentifyingaspecialinitialpreparationthatexcitesonlythehydrodynamicmodesinthelongwavelengthlimit.Finally,aformalexpressionforthehydrodynamictransportmatrixthatwasidentiedonphenomenologicalgroundsinthepreviouschapterisgivenintheformofamatrixoftimecorrelationfunctions.Furtherunfoldingofthismatrixtoidentifythedetailedformsofeachofthetransportcoecientsisreserveduntilalaterchapterinthepresentation. 2`ht2:(4{1) ThisistheHomogeneousCoolingState.TheNparticlestatisticalensemblethatcorrespondstothismacrostateistheHCSensembleidentiedandcharacterizedinChapter2inEqs.( 2{25 )-( 2{33 ).Next,notethatthelinearizedhydrodynamicequationsgivenbyEq.( 3{25 )characterizetheresponseoftheuidtoweakinhomogeneitiesinthehydrodynamiceldswithrespecttotheHCS.Thisresponsecanbecapturedatthelevelofstatisticalmechanicsbythefollowingprocedure.Lettheinitialensemblebeaweaklyinhomogeneousensemble,withits

PAGE 59

inhomogeneitiesparameterizedbythehydrodynamicelds,thatis with where isthedeviationofquantityxfromitsvalueintheHCS.Thusthey'sarepreciselythevariableswhosedynamicswasgiveninEq.( 3{25 ).Further,thefunctionsb'saresuchthattheinitialdistributionisnormalizedanddoesindeedhavetheprescribedhydrodynamicelds.Thatis, Therstconditionabovemakesproperlynormalized.Inthesecondconditionabove,thea'saregivenby where 2mp2i+1 2Pj6=iu(qij)pi1CCCCA(rqi);(4{7) arerespectivelythemicroscopicnumberdensity,momentumdensityandenergydensity,and withe0beingthechosenfunctionthatdenesthetemperatureforthesystem(seeEq.( 3{6 )inChapter3earlier).Thesearepreciselythephasefunctionswhose

PAGE 60

ensembleaveragearethelinearizedhydrodynamiceldsy's,thatis, SothesecondconditioninEq.( 4{5 )guaranteestherequirementthattheinitialensembledoesindeedhavetheprescribedvaluesforthehydrodynamicelds.Further,aswiththehydrodynamicequationsearlier,thechoicee0=3 2nTismadetogive 3nhbe(;r)3 2Thbn(;r);1 Thespecicchoiceforfb(r)gisleftarbitraryatthispoint. AtalatertimettheensembleisobtainedasaformalsolutiontotheLiouvilleequationEq.( 2{17 ),intheform Nowtakingaverageswiththesetoffunctionsfagovertheaboveensemble,aresponseequationisobtainedintheform withtheresponsefunctionCbeinggivenby TheresponsefunctionisatimecorrelationfunctionovertheHCSensemble,liketheonesdenedandcharacterizedinChapter2. Beforefurtheranalysis,itisusefulrewritetheaboveequationinthestationaryrepresentationintroducedearlierinEq.( 2{34 )bytransformingtothedimensionlessvariables

PAGE 61

Thehydrodynamiceldsarenon-dimensionalizedwiththeirvaluesintheHCSensemble Thephasefunctionsfa(r)gthataretheobservablesofinterestinthedimensionlessformare 3be3 2bn;bg;(4{16) wherethesuperscriptdenotesthenon-dimensionalquantitywith (bn;be;bg)=1 Also,itisusefultotakeadvantageofthetranslationalinvarianceinheritedfromthehomogeneityoftheHCStointroduceaFourierrepresentationthroughthedenition Usingthese,Eq.( 4{12 )abovecanberewrittenas with Lseb(k):(4{20) whereexplicitusehasbeenmadeofthefactthatthetimecorrelationfunctionCisonlybeafunctionofrr0;duetothehomogeneityoftheHCS.Thisdimensionlessresponseequation( 4{19 )willbethefocusofstudyintherestofthischapter. Toidentifythemacroscopichydrodynamicequationsfromthisexpression,itisusefulrsttorewritetheresponseequation( 4{19 )intheformofatransport

PAGE 62

equationsimilarto( 3{25 )inthepreviouschapter, (@s+K(k;s))ey(k;s)=0;;=1:::5:(4{21) AformalexpressionforK(k;s)isreadilyidentiedfrom( 4{19 )as Asarguedinthepreviouschapter,oneexpectsthatthehydrodynamicdescriptionidentiedinEq.( 3{25 )isthecompletedescriptionofthedynamicsofthesysteminthelimitofwavelengthslongcomparedtothemeanfreepathandattimeslongcomparedtothemeanfreetimeoftheparticlesintheuid.Hence,thehydrodynamicmatrixgiveninEqs.( 3{26 )and( 3{27 ),whenitexists,followsfromthisformalresultforsmallk(longwavelengths)andlongtimes, (4{23) =lims!1K(0;s)+ikbkrkK(k;s)k=0+::: Comparisonofthisexpressionwiththeforms( 3{26 )and( 3{27 )notonlyprovidesa\derivation"ofthelinearhydrodynamicequations,butalsogivesthecoecientsofthoseequationsintermsoftheresponsefunctions. Thatcompletestheformalprescriptionofextractingthelinearhydrodynamictransportmatrixfromthefullmicroscopicdynamics.Notethattheabovederivationofhydrodynamicshasbeenaccomplishedwithoutanyconstraintsonthefunctionsbthatcharacterizetheperturbationchosenintheinitialstate,beyondnormalizationandthemomentconditionsassociatedwiththehydrodynamicvariables.ItturnsoutthatthetractabilitytoanalyticalandnumericalanalysisoftheresultsobtainedinEq.( 4{24 )aboverestsonusingthedegreeoffreedomaordedbytheexibilityinthechoiceofbtosimplifytheprocessofthelongwavelengthexpansiondescribedearlier.Inthefollowingsection,aspecialchoice

PAGE 63

ofb'sismadeandthesimplifyingpropertiesofthischoiceintheanalysisofthetransportmatrixpointedout. 37 ].Thissectionidentiestheanalogoussimplifyinginitialpreparationforagranularuid.Thisisdoneinthefollowingway.First,aspecialhomogeneoussolutiontotheLiouvilleequationisidentiedthatisrelatedtotheHCSinasimplemanner.Then,thishomogeneoussolutionisgeneralizedforweakinhomogeneitiesandthespecialinitialpreparationrequiredforthelinearresponseproceduretobeappliedtoagranularuidisidentied.Also,theparticularsimplifyingfeaturesofsuchachoiceareelucidated. where 2hrvmvm+ ThisequationisusedinAppendixDtoidentifyasetoffunctions()suchthattheyhavetheproperty whereKhydT(0)isthetransposeofthegeneratorofthehydrodynamicequationsinthehomogeneouslimitidentiedinEq.( 3{30 )and'sarethefunctions (;s)=(`vh(t))3Nyh(t)@h(;t)

PAGE 64

thatis,theyarederivativesoftheHCSensemblewithrespecttoitsparameters,whicharethehomogeneoushydrodynamicelds. NowsupposeaninitialhomogeneousperturbationtotheHCSensembleoftheform isconsidered,withtheperturbinghydrodynamiceldsyareunderstoodtobehomogeneous.Then,thisensembleatalatertime,indimensionlessformis whereusehasbeenmadeofthepropertyofthe'sgiveninEq.( 4{27 )above.Calculatingtheensembleaverageofthevolumeintegratedformsofthefunctionsa'sgiveninEq.( 4{16 ),thatis, givestheresult whichispreciselythesolutiontothehomogeneoushydrodynamicequations.Ingettingtheaboveresult,usehasbeenmadeofthereadilyveriablefactthat ThisimpliesthataperturbationoftheformgiveninEq.( 4{29 )givesrisetoadynamicsthatisthemicroscopicprecursortothemacroscopichydrodynamicsoftheuid.Inotherwords,suchaperturbationgivesrisetoapurelyhydrodynamicresponseintheuidatalltimes.

PAGE 65

4{2 )ischosensothatinthehomogeneouslimit,itreducestothespecialsolutiontotheLiouvilleequationcharacterizedinEq.( 4{30 )above.Then,thesimplifyingpropertiesofsuchachoiceareenumerated.Forthispurpose,rstdeneaninitiallocalHCSdistribution.ThisdistributionissimilartothelocalequilibriumdistributionforelasticcollisionsandrepresentsasystemthathastheHCSformlocallybutwithapointwisevaryingtemperature,density,andowvelocityelds.Formally,thelocalHCSisobtainedfromtheHCSofEq.( 2{27 )inChapter2bythetransformation (`vh)3N!NYi=1(`vh(qi))3;viU so wherethedependenceonaninhomogeneousdensityeldn(qi;0)hasnowbeenmadeexplicit.Clearly,theinitialHCSisrecoveredforspatiallyhomogeneoustemperature,density,andowelds.Then,ifthechoicefortheb'sinEq.( 4{2 )ismadesothat then,inthehomogeneouslimitthiswillcorrespondtothechoicethatgivesthespecialsolutiontotheLiouvilleequationcharacterizedabove,thatis Supposethischoiceismade,thenthetransportmatrixdenedinEq.( 4{22 )abovebecomes,

PAGE 66

with Lse(k):(4{39) Thisistheformofthetransportmatrixandresponsefunctionsthatwillbeconsideredintherestofthepresentation. 4{30 )andEq.( 4{37 )abovethatatk=0thetransportmatrixinEq.( 4{38 )reducesto thatis,thetransportmatrixispurelyhydrodynamicatalltimesinthehomogeneouslimit. Nextobservethat,inordertogofromthefulltransportmatrixtothehydrodynamictransportmatrix,twolimitshavetobecarriedout,onethatoflongwavelengths(i.e.,k!0)andthatoflongtimes(i.e.,s!1)asstatedinEq.( 4{23 )earlier.Thespecialinitialpreparationissuchthatthetimederivativeofboththefunctionsea(k)ande(k)haveanintrinsickorderingthatcanbeusedtokorderthetransportmatrixsothatthelongtimelimitcanbetakeninasimplemanner.Thiscanbeseenasfollows.First,itisshowninAppendixDthatthephasefunctionsea(k)obeyadynamicalequationoftheform with 3s^g;h;(4{42)

PAGE 67

where^gisthemomentumdensityandhencethenumberux,sistheheatux,histhemicroscopicmomentumuxandlisgivenby 3ew(k;s)+3 2h2 3bee(k;s)ben(k;s)+h@lnh Intheaboveequation,ewisthedimensionlessformofthesourceintheenergybalanceequationgiveninTableC-2inAppendixC.AsshowninAppendixD,thehomogeneouspartofthesourcetermhastheproperty 3ew(0):(4{44) TheoperatorPintheaboveequationisaprojectionontothesetoffunctionsneo'sgivenby (4{45) Thus,thesourcetermisorthogonaltothehomogeneouspartoftheinitialpreparation.So,ifthisbalanceequationisusedtoobtainadynamicalequationforthecorrelationfunctioneCthen, with and

PAGE 68

Asaconsequenceoftheorthogonalprojectionidentiedinthehomogeneouslimitofel,itisclearthateS(0;s)=0andthereforeEq.( 4{46 )implies Therefore,thespecialinitialpreparationallowsthetimederivativetobeusedtoexposetheintrinsickorderingofthecorrelationfunction. Similarly,itisshowninAppendixDthattheadjointfunctionseobeyadynamicalequationoftheform withthedenition Thus,thefactthattheinitialpreparationgivesapurelyhydrodynamicresponseinthehomogeneouslimittranslatesintothefactthedynamicalequationsassociatedwiththedirectandadjointfunctionscanbeusedtokorderthetransportmatrixformallybeforethelongwavelengthorlongtimelimitistaken.Inwhatfollows,Eq.( 4{41 )willbereferredtoasthedirectconservationlawandEq.( 4{50 )willbereferredtoastheadjointconservationlaw. Lastly,itisclaimedthattheinitialpreparationguaranteesthatallthetimedependentquantitiesinthekexpandedtransportmatrixareorthogonaltotheinvariantsofthegeneratorofthedynamicsandhencethelongtimelimitturnsouttobepatentlywelldened.Thispropertyiselaborateduponinlatersectionsofthischapter. Summarizing,aspecialinitialpreparationhasbeencharacterizedabovesuchthatitsatisestheproperties1)inthelongwavelengthlimit,thetransportmatrixKispurelyhydrodynamicatalltimes,2)theoperator@sI+Khyd(0)acting

PAGE 69

onboththedirectandadjointfunctionsturnsouttobeproportionaltoikandhencecanbeusedtoexposethenaturalkorderingpresentinthetransportmatrixpriortothehydrodynamiclimitbeingtakenand3)thisinitialpreparationmakesthelongtimelimitofthekexpandedtransportmatrixpatentlywelldenedforallthetimedependentquantitiesturnouttobeorthogonaltothegeneratorofthedynamics.Thissectionisconcludedbyremarkingthatthesearepreciselythepropertiesthatareassociatedwiththelocalequilibriumpreparationofnormaluidsthatlendsthetransportmatrixinthehydrodynamiclimittobeexpressedinatractableform. 4{38 )above.Here,threerepresentationsforthevarioushydrodynamicparametersaregiven.Eachrepresentationisformallyequivalenttotheothertwo.Eachinturnissuitableforeitherinterpretationofstructureandcontent,developingdierentanalyticalapproximationschemesornumericalevaluationschemes.Inordertosimplifythenotationandexposetherelevantstructurewithoutdistractions,alltheGreekindicesassociatedwiththedierenthydrodynamiceldsaresuppressedinthefollowing. Asarststep,themostdirectmethodofcarryingoutthekexpansionisgiven.Forthispurpose,dene

PAGE 70

and whereeC(1),K(1),andsoondependontheunitvectorinthelongitudinaldirection^k,butthisdependenceisleftimplicithereinordertosimplifythenotation.AshasbeenestablishedaboveK(0)=Khyd(0)atalltimes.Thenthetransportmatrix,toEulerandNavier-Stokesorderturnsouttobe,respectively, whereexplicitusehasbeenmadeoftheorderk=0results.ThematrixelementsinEq.( 4{54 )containtheexpressionforthehydrodynamicparametersthatincludethepressurepandthetransportcoecientatEulerorder,namelyU.ThematrixelementsinEq.( 4{55 )containtheexpressionsfortheshearviscosity,bulkviscosity,andthetransportcoecientsassociatedwithheattransport,namely,,nandT.Theseareformalexpressionsdenedinturnthroughtermsinthekexpansionoftheelementsinthebi-orthogonalsetthatconsistsofthefunctionsfag'sandfg'sdenedearlier.TheaboverouteisthemostdirectwaytoobtainexplicitformsfortheelementsofthetransportmatrixupthroughtheNavier-StokesorderandresultinHelfandformsforthevarioustransportcoecientsinaformmostsuitablefornumericalevaluation.But,theseexpressionsarenottransparentwithrespecttotheformalstructureoftheresult.Inordertoillustratethecontentoftheseexpressionsandinterpretthestructure,analternateroutethatmakesexplicituseoftheconservationlawsandbalanceequationsassociatedwiththesevariablesisdescribedbelow. Thekeyideaincarryingoutakexpansionofthetransportmatrixinsuchawaythattheresultsareamenabletointerpretationandtheoreticalanalysisintermsofapproximateevaluationsisthefollowingrecognition.Thehydrodynamic

PAGE 71

variablesinthesystemarethosewhichhavethepropertythat@sI+Khyd(0)/ik.Themicroscopicprecursorsofthehydrodynamicelds,namelythephasefunctionsfag'sandtheadjointfunctionsneo'salsohavethispropertywithinthecorrelationfunctionsassociatedwiththespecialinitialpreparationdetailedabove.NoticethattheexpressionforthetransportmatrixinEq.( 4{38 )hasonetimederivative.Hence,theprocedureusedtokorderthetransportmatrixwouldbetointroduceasecondtimederivativeusinganidentityoftheform onthetimedependentquantitiesinK,andeliminateeachofthetimederivativesinfavorofagradientusingthespecialpropertiesassociatedwiththebi-orthogonalsetfag'sandfg'sthatoccurintheresponsefunctioneC.Detailsofcarryingoutthisprescriptionareoutlinedbelow. Asarststep,onecanuseEq.( 4{46 )abovetorewritethetransportmatrixinEq.( 4{38 )intheform whichessentiallyinvolvesusingthedirectconservationlawstoevaluatethersttimederivative.Notethatthek=0formofthetransportmatrixhasbeenextracted.Beforeproceedingfurther,itturnsouttobeusefultointroduceanintegratingfactorexpKhydT(0)sintheadjointconservationequationthatabsorbsthek=0dynamicsofe,thatis,dene Then,Eq.( 4{50 )abovebecomes

PAGE 72

with Next,Eq.( 4{39 )aboveisreexpressedintermsofcorrelationfunctionsinvolving where Lse(k)eKhyd(0)s=1 Similarly, and Further,usingformoftheadjointconservationlawsinEq.( 4{59 )aboveforthedynamicsof where

PAGE 73

NowconsiderthetransportmatrixasgiveninEq.( 4{61 ).UseanidentityoftheforminEq.( 4{56 )towrite andsimilarlyfor 4{65 )-( 4{67 )toeliminatethesetimederivativestoobtainthetransportmatrixas Thiscompletestheformalimplementationoftheprescriptiondescribedearlierwhichexposestheinherentkorderpresentinthefulltransportmatrix.Noticethatanyperturbativeexpansionisyettobedone,andallthemanipulationsdonesofarareexact.ThisintrinsickorderingispresentinKduetothespecialnatureofthedynamicsofthebi-orthogonalsetfag'sandfg'sasmanifestedbythedirectandadjointconservationlawsinEq.( 4{41 )andEq.( 4{59 )above. Intheremainderofthischapter,theexpression( 4{72 )isconsideredexplicitlyatEulerorderandatNavier-Stokesordertoidentifythevariousparametersinthehydrodynamicmatrixandtoelucidatethestructureoftheresult.Also,intheprocesstwonewformsforthehydrodynamicparametersareidentiedthatareequivalenttotheformsinEq.( 4{54 )andEq.( 4{55 )earlier. Inordertosimplifythepresentationoftheresultsthatfollow,introducethenotation

PAGE 74

wherethesuperscriptFdenotesthetermscomingfromtheuxesinthedirectconservationlawsandhencecorrespondtotheparametersintheconstitutiverelationsfortheuxesgiveninEqs.( 3{15 )and( 3{16 )inChapter3,namelythepressure,theshearandbulkviscosity,thethermalconductivityandthecoecientintheheatuxterm.ThesuperscriptSdenotesthetermscomingfromthesourceinthedirectconservationequations( 4{41 )andhencecorrespondtotheparametersintheconstitutiverelationinEq.( 3{17 ),namelythetransportcoecientsU,nandT.Eachoftheabovepartsofthetransportmatrixareconsideredinturn,rstatEulerorderandthenatNavier-Stokesorder,andthestructureoftheresultsobtainedisdiscussed. 4{72 ),itcanberecognizedthattheuxpartofthetransportmatrixKFatEulerorderis (4{74) Inordertobetterinterpretthecontentoftheaboveexpression,itisusefultorewritetheexpressioninlaboratoryvariables.ThedetailsofdoingthisaregiveninAppendixG.Butforthepurposeshere,itissucienttorecognizethatithastheform wheredisapre-factordeterminedbythedimensionsofthequantitiesefand,dependingontimethroughthetemperature.Thetemperaturedependenceof

PAGE 75

hasbeenmadeexplicitinthisnotation.Also,recallthat ThisallowsEq.( 4{75 )toberewrittenas @yh(t)Dbkef(0);tEh(4{77) Thus,theEulerordertermsintheconstitutiverelations( 3{15 )and( 3{16 )arederivativeswithrespecttothehomogeneoushydrodynamiceldsoftheensembleaveragesofthevolumeintegratedmicroscopicuxesovertheHCSensembleatatimet.Forthecaseofnormaluids,thesetermsaredeterminedbythederivativesoftheensembleaverageoftheuxesovertheequilibriumstate[ 37 ].Hencethesamestructureisretainedhere,withtheHCSstatetakingtheplaceoftheequilibriumstate.Theonlytimedependenceisthatofnormaltimedependencethroughthecoolinghomogeneoustemperature,whichispreciselyaswasfoundinthecaseofthelinearizedhydrodynamicequations.Notethatthisistrueforalls,thatisnolongtimelimitneededtobetakentomakethisEulertermpurelyhydrodynamic.Explicitphasefunctionsinvolvedandfurtherinterpretationoftheseresultsforspecictermssuchasthepressurearegiveninthenextchapter.

PAGE 76

Thecontentofthisexpressionsisasfollows.PuttinginthevariouscorrelationfunctionsdenedabovethroughEqs.( 4{63 )-( 4{70 )givestheresult(seeAppendixFfordetails) (4{79) where 4{45 ),givenas andthegeneratoroftimedependenceoftheadjointux 4{79 ),resultsinthefollowingidentity(SeeAppendixFforthedetails), Hencethetimegeneratore Summarizing,thetransportcoecientsinEqs.( 3{15 )and( 3{16 )areidentiedthroughtherelation

PAGE 77

wherethelimabovedenotesthethermodynamiclimit,namelyV!1andN!1suchthatn=N=Visaconstantandthelongtimelimitofs!1:Thus,theexpressionforthetransportcoecientsthatoccurintheconstitutiverelationsassociatedwiththehydrodynamicequationsconsistsofaux-uxcorrelationfunction.NoticethatthepropertyinEq.( 4{81 allowstheintroductionofaprojectionoperatorthatsubtractsoutthecomponentsoftheuxalongtheinvariantsofthedynamics,ensuringthatalongtimelimitexists.ThisisknownastheGreen-Kuboformofthetransportcoecients. Thetimeindependentrsttermintheaboveexpressionremainstobeinterpreted.Forthispurpose,observethatthedynamicalequationassociatedwith 4{59 )yieldstheidentity (1)j(0;s) Hence,Eq.( 4{79 )canbewritteninthealternateform (1)j(0;s0) Thisformallowstherecognitionofthersttermasthevalueoftheintegralinthesecondtermatthelowerlimit.Inthecaseofnormaluidswheretheparticlesinteractthroughcontinuouspotentials,thistermiszeroandtheGreen-Kuboexpressionforthetransportcoecientreducestojusttheux-uxtimecorrelationfunctioncharacterizedearlier.Thereasonthatsuchatermispresenthereistechnical.Itisassociatedwiththefactthattheformofthecorrelationfunctionsfors0+ands0aredierent.Therearetwocausesforthisdierence.Oneisthatthesystemconsistsofhardparticlesandthedynamicsisdiscontinuousabouts=0becauseofinstantaneousmomentumtransferpresentinthecollisionmodel.Ananalogoustermexistsforelastichardspheretransportcoecientsaswell.The

PAGE 78

secondcauseisagainadiscontinuityinthedynamicsofthesystemabouts=0,butthistimeduetothefactthatthecollisionsdissipateenergyandhencethedirectionoftimeinthereferencestateisnolongerarbitrary.ThisimpliesthatsuchaninstantaneouspieceisalwayspresentinGreen-Kuboexpressionsforgranularuids,evenwhentheunderlyingcollisionmodelinvolvesacontinuouspotential(likethesoftspheremodelsdenedinEq.( 2{1 )). Finally,asshowninAppendixF andhence,withoutlossofgeneralityEq.( 4{84 )canbewrittenas (1)j(0;s0) ThislatterexpressionisalsocalledtheHelfandformforthetransportcoecients.ThisequivalentformturnsouttobethemoreconvenientquantityfornumericalevaluationofthesetransportcoecientsusingMolecularDynamicssimulationsandfordevelopingapproximateanalyticevaluationschemesusingkinetictheory(seeChapter6laterinthispresentation). Insummary,ithasbeenshownherethattheGreen-KuboformfortheNavier-Stokesordertransportcoecientsassociatedwiththeuxtermshasthepropertiesthat1)ithasapartthatisadirectuxadjointuxtimecorrelationfunction,2)thegeneratorofdynamicsinthiscorrelationfunctionactsonaquantityorthogonaltoitsinvariantsandhencehasawelldenedlongtimelimitand3)ithasaninstantaneouspartthatpartlyarisesduetotheinstantaneous

PAGE 79

momentumtransferassociatedwithhardspheremodelsandpartlyduetotheinelasticityofthegraincollisions.Finally,aHelfandformofthetransportcoecientshasbeenidentiedinEq.( 4{86 )above. 4{72 ),groupingtermsthatariseduetothesourceinthedirectconservationlaws,upthroughEulerorder,onegets Substitutingfortheformsofthesecorrelationfunctionsgives(AppendixFhassomeintermediatedetails) Recallthatthetermel(0)hasthepropertythat 3ew(0)(4{89) Hence,theaboveexpressioncanbewrittenintheequivalentform 3ew(0)1P> 3ew(0)1P> ComparisonofEq.( 4{90 )withEq.( 4{82 )showsthatthelongtimelimitofthiscorrelationfunctioniswelldenedasthetimedependentquantityisorthogonaltotheinvariantsofthegeneratorofthisdynamics.Further,asshowninAppendixG,sphericalsymmetryoftheHCSgivesthattheonlynonzeroentryofthetypeaboveisfor=3.ExaminingthephenomenologicaltransportmatrixinEq.( 3{26 )inthe

PAGE 80

previouschapter,itcanbeconcludedthat 3ew(0)1P> 3ew(0)1P> ThisistheGreenKuboexpressionforthetransportcoecientoccurringatEulerorder,againthelimitbeingtakenasdescribedearlier. Further,asearlier,thetimeintegralcanbecarriedouttoget 3ew(0)1P> ThisistheHelfandformforthistransportcoecient.Notethatinthiscasealongtimelimithastobetakeninordertoobtainthehydrodynamicform,unliketheEulertermsthatcomefromtheuxpartofthetransportmatrix.Inthecaseofnormaluids,theEulerlevelhydrodynamicsisentirelynon-dissipative,thatis,involvesnoentropyproducingprocesses.ThecollisionallossinenergyinthecaseofgranularuidsgivesrisetothistransportprocessatEulerorder. 4{72 )thispartofthetransportmatrixcanbeidentiedas

PAGE 81

Whentheformsofthedierentcorrelationfunctionsintheexpressionsabove,whichareunfoldedinAppendixF,thetransportmatrixisidentiedasKS(2)2=bkibkjZs0ds01 ThestructureoftheGreen-KuboformsforBurnetttransportcoecientsisnotwellunderstoodevenfornormaluids.HencethesourcepartoftheNavier-Stokestransportmatrixwillnotbeconsideredfurtherinthepresentwork.

PAGE 82

correlationfunctionsovertheHCSensemblehasbeencarriedout.Thesearetheprimaryresultsofthiswork.Thereforethischapterisconcludedbyenumeratingthekeyresultsinit.Thegeneralmethodtoextracthydrodynamicresponseofauidfromthesolutiontoanappropriateinitialvalueproblemwasdescribed. 1.AspecialhomogeneoussolutiontotheLiouvilleequationwasidentiedandcharacterized.Thissolutionhasthepropertythatitsdynamicsiscompletelygivenbythelinearizedhydrodynamicequationsinthehomogeneouslimit.Equivalently,itcanbestatedthatthedynamicsofthisstateiscompletelyspeciedbythehydrodynamicmodesoftheuid. 2.Aspecialinitialstatewaschosensuchthat,inthehomogeneouslimit,itreducedtothespecialsolutionabove.Thiswasthelocalhomogeneouscoolingstate.Then,thepropertiesofthisinitialstatethatresultinthesimplicationofthesubsequentlinearresponseprocedureandtheprocessofformallyidentifyingthehydrodynamiclimitofthetransportmatrixwereidentied. 3.TheformalresultforthehydrodynamictransportmatrixwasderivedattheEulerandNavier-Stokesorderanditwasshownthatthehydrodynamiclimitiswelldenedineachcase,thatis,thelongtimelimitexisted. Inthenextchapterofthepresentation,thespecicphasefunctionsthatenterintotheformalresultsaboveforeachofthetransportcoecientsisidentiedandtheresultingexpressioncomparedwiththeknownresultsfornormaluidstoshedlightontheirphysicalcontentandhencetheimplicationstotransportinthesesystems.Also,inChapter6,akinetictheoryoftimecorrelationfunctionsisdevelopedthatmakescontactwiththevariousexpressionsforthesetransportcoecientsthathavebeenobtainedfromBoltzmannandEnskogkinetictheoriesintheliterature.

PAGE 83

Inthepreviouschapter,theprimaryresultsofthisworkwerederived.TheyareexactexpressionsforalltheparametersinthephenomenologicalhydrodynamicequationsthatweregiveninChapter3.Forthetransportcoecients,theseexactexpressionsareoftheHelfandandGreen-Kuboforms,timecorrelationfunctionsovertheHCSensemble.Thetechnicalcontentoftheseexpressionswerepartiallydiscussedandthegeneralstructureoftheresultwaselucidated. Inthischapter,furtherunfoldingoftheseexactresultsisgivenbymakingexplicitthedierentphasefunctionsinvolvedandbycomparingtheresultswiththeircorrespondinganalogsintheelasticlimit,whereapplicable.RecallthatthelinearhydrodynamictransportmatrixwasidentiedinEq.( 3{26 )inChapter3andhadtheform 3p+Uik1 2p@lnph 2pikh 3+k21CCCCA;(5{1) forthelongitudinaldegreesoffreedomcorrespondingto;=1;2;3,andthedecoupledtransversepartwas Theunknownparametersinthisequationarethecoolingrateh,thepressurep;theEulerordertransportcoecientU,theshearandbulkviscosityand,thethermalconductivityanddiusivityand,andthetwotransportcoecients 74

PAGE 84

fromthesourceatNavier-Stokesorder,nandT.EachofthesequantitiesisidentiedfromthecorrespondingformalexpressioninthepreviousChapteranddiscussedinturn. 2{24 )as Inparticular,whentheensembleinquestionistheHCS,thiscanberewritteninthestationaryrepresentationdenedinEq.( 2{34 )as vh(t)h(t)=(12)N Further,sincethecoolingrateisdeterminedbyonlyatwoparticlefunction,usecanbemadeofthehierarchyofdistributionfunctionsassociatedwiththeHCSensemble,asgiventhroughEq.( 2{18 )earlierandwrittenas 6(12)nh`32Zd12(g12bq12)3(g12bq12)(q12)f(2)h(q12;v1;v2)(5{5) where andthenotationgivingf(2)asafunctionofq12makesuseofthefactthattheHCSmustbeinvariantundertranslations.Lastlytheintegraloverthetwoparticlephasespacecanberecastintointegralsovertherelativeandcenterofmasscoordinates.Usingthe-functionintheaboveexpressionthatputsthetwo

PAGE 85

particlesatcontacttodopartoftherelativecoordinateintegral,oneobtains 6(12)nh`322Zdbdg12(g12b)3(g12b)ZdP12f(2)h(;v1;v2)(5{7) Noticethatthecoolingrateisgeneratedbyafunctionofonlytherelativevelocityofpairsatcontactandisobtainedasanaverageoverthetwobodydistributionfunctionatcontact.Inparticular,itistheaverageofthethirdmomentofthenormalcomponentoftherelativevelocityofcollidingpairs.Thisisthemicroscopicexpressionassociatedwiththeparametercharacterizingthehomogeneouscoolingdynamicsoftheunperturbedandhomogeneouslyperturbedhydrodynamicstatesofthissystem. 3{15 )and( 3{16 )usedtoobtainthehydrodynamicequationswerewrittendowntakingintoaccounttheunderlyingsymmetriesoftheuid,namelyhomogeneityandisotropy.Thesesamesymmetrypropertiescharacterizethehomogeneousreferenceensembleaswell.ThesesymmetrypropertiescanbeusedtoconcludethatthevarioustermsatEulerorderthatarezero(likethe21matrixelementwhichwouldcorrespondtoatermproportionaltothedensitygradientinthedynamicalequationofthetemperatureelds)areindeedvanishingwhencalculatedfromthestatisticalmechanicalprescriptionaswell.Asanillustrationconsiderthe21matrixelementatEulerorderarisingfromtheuxpartofthetransportmatrix.ThishasbeenidentiedinEq.( 4{74 )as where

PAGE 86

Aswasstatedearlier,itisusefultoconsiderthesecorrelationfunctionsinthelaboratoryvariables.Puttingintheformoftheuxefi2(0)andrestoringthedimensionstotheaboveequationgives @nhZd2 3esiv2h(t) 2egih(t):(5{10) Nownoticethehomogeneouscoolingstateistakentohavezeroowvelocitywhenthedensityderivativeisbeingcarriedout.Hencetheensembleaverageintheaboveexpressionisthatofavectoroverahomogeneousandisotropicdistribution.Therefore,thisintegralmustvanish.SimilarargumentsshowthateachofthezerotermsatEulerorderfollowfromthestatisticalmechanicalderivationaswell,includingthevanishingofEulerordertermsinthetransversecomponentsandthedecouplingofthetransversemodesfromthelongitudinalmodes.ThedetailsoftheseargumentsaregiveninAppendixG. 5{8 )above.Theonlynonzeroterminthisrowinthe 3esi(0)begi(0) (5{11) Asstatedinthepreviouschapter,aphysicallyinterpretableformofthisresultisaccessibleifitistransformedbacktotherealvariables.Restoringthedimensions

PAGE 87

tothevariousquantitiesgives @UjZd2 3esiv2h(t) 2egh(t):(5{12) Now,thehomogeneouscoolingstateintheaboveequationisonewithaniteowvelocityU.Itisrecognizedthattheowvelocityentersintothehomogeneouscoolingstatethroughthevelocityoftheparticles,i.e., Hence,onecanchangevariablesintheintegrationasvl!vlU,andusethetransformationpropertiesoftheheatuxandthemomentumunderGalileantransformationstoget 31 3Zdehii(0)h(Th(t))(5{14) ThedetailsofthistransformationcanbefoundinAppendixG.ComparisonwiththehydrodynamicmatrixinEq.( 5{1 )abovegivestheidentication 3Zdehii(0)h(Th(t)):(5{15) ThisgivesusthedenitionofthehydrostaticpressureastheaverageofthetraceofthevolumeintegratedmicroscopicstresstensorovertheHCSensembleatatimet.Further,aswasdoneforthecoolingrateabove,puttingintheformoftheuxehgiveninTableC-1,transformingtheexpressiontothestationaryrepresentationandcarryingouttheintegralstomapthisontoanaverageoverreduceddistributionfunctionsovertheHCSgivestheresultthatthepressureisthesumoftwotermsintheform

PAGE 88

where 3Zdv1f(1)h(v1)v1v1;(5{17) and 4(1+)Zdq1dv1dq2dv2ff(2)h(q12;v1;v2)(q12)(q12g12)(bq12g12)2g: ThersttermaboveinEq.( 5{17 )isthekineticpartofthepressurethatarisespurelyfromthetransportofmomentumassociatedwiththefreestreamingoftheparticles.ItcaneasilybeseenthatthekineticpartofthepressurepKgives andhence whichisthefullpressureinthelimitoflowdensitieswhenthecollisionsbecomeinfrequentandisindeedthefullresultforidealgases.Next,thesecondtermabove,determinedbythetwoparticledistributionfunctionatcontact,isthe\potential"partofthepressurethatarisesduetotheinteractionbetweentheparticles,whichinthecaseofhardspheresisgeneratedcollisionally.NowfocusonthecollisionalpartofthepressurepC.Asearlier,thiscanberewrittenbytransformingtorelativeandcenterofmassvariablestogive 4(1+)3Zdbdg12(bg12)(bg12)2ZdP12f(2)h(;v1;v2) (5{21) whichidentiesthecollisionalpartofthepressureasgeneratedbytheaverageofthesecondpowerofthenormalcomponentoftherelativevelocityofcollidingpairsoverthetwoparticledistributionfunction.Alsonoticethatthecenterof

PAGE 89

massvelocityofthepairP12playsnoroleinthecollisionalpartofthepressure,asshouldbeexpected. Asanillustrationforthestructureofthisquantity,letusconsideritsevaluationintheelasticlimit.When!1, whereg()isthepairdistributionfunctionatcontactanditdependsonlyonthemagnitudeof.EvaluatingEq.( 5{21 )above,inthislimitgives Hence,thecollisionalpartofthepressureisproportionaltothedensity,andathighdensities,dominatesoverthekineticpartofthepressure.Further,itisreasonabletoexpectthatpCfortheinelasticsystemhasasimilarbehavioraswell,inthesensethatthepaircorrelationfunctionatcontactwouldstillbeisotropic,beingalargelygeometricquantity.Thecoecientsofthedensitywillbemodiedbytheinelasticity,throughthecoecientofrestitution,andthevelocitycorrelationsthatwillbepresentinthetwobodydistributionfunction. Thiscompletesthecharacterizationofthemicroscopicdenitionofpressureobtainedfromthisanalysis.Also,itfollowseasilythatthetermsinthematrixelementsassociatedwiththelongitudinalowvelocityeld,namelythe31andthe32element,whicharethedensityandtemperaturederivativeofthepressure,comeoutconsistentwiththeabovedenitionofthepressure.ThedetailsofthisaregiveninAppendixG.

PAGE 90

startingfromtheformalexpressiongiveninEq.( 4{91 )earliertobe 3Zs0ds0ZdW()e( 3ZdWMiig where 3ew(0)+3 2h2 3EN+h@lnh with 4(12)XlXm6=l(qlmglm)(glmbqlm)3(qlm)(5{26) beingthesourceintheenergybalanceequationgiveninTableC-1andEisthetotalenergyofthesystemgivenby andalso Also,theadjointdensityintheaboveexpressionis aspacemomentofthevelocityderivativeoftheHCS.ThisistheGreen-KuboformoftheEulerordertransportcoecientassociatedwithgranularuids. Asarststepinunfoldingthecontentofthisexpression,itisobservedthatthephasefunctionWwasobtainedbyunfoldingtheactionof(1P)ontheenergysourceew.Andrecallthat

PAGE 91

i.e.,1Pprojectsoutthehomogeneousdynamics.ThisallowsthefunctionWtobeinterpretedasthefunctioncharacterizingthatpartoftherateofchangeofenergythatisnotduetothehomogeneousdynamicsoftheunderlyingstate,i.e.,notduetothecoolingreferencehomogeneoustemperature.ThisiswhatwouldbeexpectedgiventhatUcharacterizestherelaxationofspatialperturbationstothishomogeneousdynamicalstate.Next,inordertocharacterizetheadjointfunction,considerMintheelasticlimit,i.e.,whenthecoecientofrestitutiongoesto1.Inthislimit,thehomogeneouscoolingstategoesovertotheequilibriumensemble,whichgivestheresult whichisaspacemomentofthemomentumdensity.ItfollowsthattheuxbecomesthelongitudinalpartofthemomentumuxhgiveninTableC-3intheappendixtimestheequilibriumdistributionfunction.Now,inthecaseofinelasticsystems,itwillbeadierentfunction,reectingthenonequilibriumnatureofthereferenceensemble.Butnotethatitmuststillbeameasureofmomentumtransport,albeitinthenonequilibriumensemble,becausethistransportcoecientisthemeasureofthecontributionofadivergenceintheowvelocitytotherateofchangeoftemperatureatapointr. Also,asafurtherillustrationofthecontentoftheexpressioninEq.( 5{24 ),theinstantaneouspartissimpliedtogive 31 31 4(12)nh`33Zdbdg12(bg12)(bg12)2ZdP12f(2)h(;v1;v2) (5{32)

PAGE 92

ComparethisresultwiththatobtainedforthecollisionalpartofthepressureintheuidinEq.( 5{21 )abovetoseethat Hence,itcanbesaidthatUisthecontributionofthesourcetowhatwouldphysicallyconstitutethehydrostaticpressureoftheuid.Ifasmallvolumeelementoftheuidisconsidered,thentheamountofpressurethattheuidelementcanexertonitsboundariesisdecreasedbytheenergylostlocallyduetocollisions.Partoftheeectofthistransportcoecientistodecreasetheeectivepressureinthesystem,ascanalsobeseenfromthefactthatthetransportcoeciententersthehydrodynamicequationsintheform2 3p+U.Attheleveloflinearhydrodynamics,thetwocoecientsareindistinguishableintheirphysicalconsequence. Further,thetimeintegralinEq.( 5{24 )canbecarriedoutintheaboveexpressionandhencecanberewrittenas 3ZdW()e( ThiswouldbetheHelfandformofthistransportcoecient.Aswillbeshowninthesubsequentchapter,thisformofthetransportcoecientismostconvenienttomakeconnectionwithresultsobtainedfromkinetictheory.ThiscompletestheanalysisassoiciatedwithU.

PAGE 93

4{78 )as where 4(1+)XlXm(qlm)(qlmglm)(bqlmglm)2bqilmbqjlm andMijisthesamefunctiondenedinEq.( 5{29 )above.ThisistheGreen-Kuboformoftheshearviscosity.Further,usingthefactthatbkbe1=0,Eq.( 5{35 )canbewrittenas 101 whereMtrijdenotesthetracelesspartofthetensorMijgiveninEq.( 5{29 ).Asnotedabove,intheelasticlimit andhence thebackwardmomentumuxintheelasticlimit,whichhasthesameformasthehinTableC-3,with=1.Thus,theaboveexpressionreducestoatimecorrelationfunctionovertheequilibriumensembleofthevolumeintegratedforward

PAGE 94

momentumuxehijwiththebackwardmomentumuxehijtogetherwithaninstantaneouspart[ 67 ].ThedierentuxesintheforwardandbackwardtimedirectionandtheinstantaneouspartareartifactsofthehardspherenatureoftheinteractionoftheparticlesasexplainedinAppendixC.Inthecaseofinelasticparticles,theadjointuxcontainsexplicitinformationaboutthenatureofthenon-equilibriumstateandisameasureofmomentumtransportinthisstate. Further,thetimeintegralinEq.( 5{35 )canbecarriedouttogive 101 whichistheHelfandformfortheshearviscosityofagranularuid.Lastly,theinstantaneouspartoftheGreen-Kuboformiswrittenintermsofreduceddistributionfunctionsinordertoillustratethestructureoftheformalresult.Thereductioniscarriedoutinthesamewayasforthepressureearlier,withtheresult 101 60(1+)`3nh4Zdbdg12((bg12)(bg12))ZdP12f(2)h(;v1;v2) (5{41) i.e.,itistheaverageofthenormalcomponentofthevelocityofcollidingpairsaveragedoverthetwobodyreducedHCSdistribution.Noticethattheinstantaneouspartispurelycollisional,reectingthefactthatitcomesaboutbecauseoftheboundaryconditionassociatedwithhardspheredynamicsaboutthepointofcontact.Further,usingtherstequationoftheBBGKYhierarchyassociatedwiththeHCS,theaboveexpressioncanberewrittenas 60(1+)`3nh2av(5{42) whereavistheaveragecollisionfrequencyasdeterminedbythelosspartoftherighthandsideofthehierarchy(seeforexample[ 37 ]).

PAGE 95

4{78 )inthepreviouschapter,itisshowninAppendixGthattheGreen-Kuboexpressionforthebulkviscositycanbeidentiedas 9f1 whereehijandMijarethesamefunctionsidentiedinEq.( 5{36 )andEq.( 5{29 )respectively.Thequantityeh(S)iiisthe\subtracted"momentumuxdenedas 2p@lnph 2p2 3EN: Theseadditionaltermsarenecessaryfortheexistenceofthelongtimelimitofthecorrelationfunction,asestablishedinthepreviouschapter.Withoutlossofgenerality,thesubtractedpiecescanbeaddedtotheinstantaneousterminEq.( 5{43 )aswell,astheygivezerocontributionundertheensembleaverage.Further,iftheinstantaneouspartoftheGreen-KuboexpressioninEq.( 5{43 )aboveisevaluated,itisfoundtobethesameasthatfortheshearviscosity,butforanoverallnumericalfactorreectingthedierenttensorcontractionsinvolvedineachcase. 3inst:(5{45) Finally,thetimeintegralcanbecarriedouttogive 91 ThisistheHelfandformforthebulkviscosityofagranularuid.

PAGE 96

Thusthephysicalcontentoftheexpressionsforthebulkviscosityarethesameasthoseforthatoftheshearviscosity,exceptthatthetensorcontractionsheremeasuretheisotropicpartofthemomentumtransport. 4{78 ),thedimensionlessthermalconductivityisidentiedinAppendixGas where 3ZdS(i)Ni;(5{48) and 31 Intheabove,Siistwothirdsofthevolumeintegratedheatux, 31 2XlXm(qlm)(1+)(qlmglm)(glmbqlm)2(Plmbqlm)bqilmg andS(S)iisthe\subtractedheatux"withtheinvarianttotalmomentumPsubtractedfromit, 3p+1Pi:(5{51) Lastly 2Xlrvl(vlh())ql#(5{52) isafunctiongeneratedbythenonequilibriumreferencestateassociatedwiththissystem.Eq.( 5{47 )istheGreen-Kuboexpressionforthethermalconductivityofagranularuid.Itisatimecorrelationfunctionofthesubtractedheatuxwithauxthatcharacterizesheattransportinthisnonequilibriumreferencestate.

PAGE 97

Inordertoillustratethenatureoftheadjointux,considertheelasticlimitofNiabove, 22 3bee(1)(0)ben(1)(0)eq=3 2ea(1)2eq andhence 5{47 ),whichisameasureofthispersistenceaveragedoveralltrajectorieswillbelargeandhencethesystemwillhavealargethermalconductivity.Butinthecaseathand,thereferenceensembleisanonequilibriumensemblethatisacomplicatedfunctionofitsconstrainingvariablesasthecollectionoftrajectoriesinthismacrostateismoreseverelyconstrainedthanintheequilibriumcase.Hencetheextentofheattransportinthissystemdependsstronglyonthecollectionoftrajectoriespresentinthemacrostateasreectedbythefactthattheadjointuxinthecorrelationfunctionforthethermalconductivityisnotsimplytheheatuxbutisgeneratedbythenonequilibriummacrostateitself.

PAGE 98

AsalaststepinillustratingthecontentoftheGreen-Kuboexpressionabove,theinstantaneouspartofthethermalconductivityisexpressedintermsofreduceddistributionfunctioninthehierarchyassociatedwiththeHCStogive 18`3nh4(1+)Zdbdg12dP12f2(g12b)(P12b)2+1 2(g12b)3g(bg12)f(2)h(;v1;v2): Noticethataswiththeearliertransportcoecients,theinstantaneouspartofthetransportcoecientispurelycollisionalreectingitsoriginwhichisthediscontinuityintimeforcollidingcongurationsatcontact.Also,thisisthersttransportcoecientwherethecenterofmassmomentumofthepairispartofthephasefunctionbeingaveraged,reectingthefactthatthisisthersttermsofarthatisassociatedwithheattransport,unlikealltheprevioustermsthatwereessentiallyassociatedwithmomentumtransport. Finally,asdemonstratedinEq.( 4{86 )inChapter4,thesubtractedpartoftheheatuxcanbeintroducedintheinstantaneoustermwithoutlossofgeneralityandthetimeintegralinEq.( 5{47 )canbecarriedouttogive 3ZdS(S)ie( ThisistheHelfandformforthethermalconductivityofagranularuid,withS(S)iandNiareasdenedinEq.( 5{51 )andEq.( 5{52 )respectively.Thiscompletesthecharacterizationoftheexactexpressionforthethermalconductivity.

PAGE 99

3ZdSiRiZs0ds01 3ZdS(S)ie Ls0 whereSi,S(S)i,andNiareasdenedinEqs.( 5{50 ),( 5{51 )and( 5{52 )respectively.Also, and TheexpressioninEq.( 5{56 )istheGreen-Kuboexpressionforthecoecientwhichisanewtransportcoecientassociatedwiththetransportofheatinthissystemthatisnotpresentfornormaluids.FirstnoticethatthesecondtimecorrelationfunctionisthesameasthatoccurringintheexpressionforthethermalconductivitygiveninEq.( 5{47 )above.Also,unlikethecasesofe2,...,e5,theadjointdensitye1isgivenimplicitlyintermsofthelocalHCSstate.Thisisbecause,thereferencestateashasbeencharacterizedinthisworkisahomogeneousstate.Theformalismasdevelopedheredoesnotmakeexplicitthedensitydependenceofthisstateandhenceisunknownuptothispoint.Aformalwaytoextractthedensitydependencewouldbetointroduceanexternalpotentialthatcouplesintothedensity,intheLiouvilleoperatorgoverningthedynamicsofthissystemandsolvingtheinhomogeneousproblem.Thenaformalprocedureofinversioncanbeusedtoeliminatetheexternalpotentialinfavorofthedensity.

PAGE 100

Amorephysicalwaytogetdensitydependenceofthemacrostatewouldbetogeneralizethestatetoopensystems,i.e.,denea\grandcanonical"homogeneousCoolingState.Thistreatmentwillbepartoffutureanalysisofthisproblem. Forthemoment,theresultisconsideredattheformallevelaboveandthecontentoftheexpressionelucidatedbelow.Asarststep,itisestablishedthatthistransportcoecientisuniquelyrelatedtothedissipativenatureoftheinteractionsinthesystembyshowingthatintheelasticlimit,thiscoecientvanishes.ItisapparentfromtheformofEq.( 5{56 )thatthisunfoldedexpressiondoesnothaveatransparentelasticlimit.Hence,forthemoment,themoreformalresultinEq.( 4{86 )fromwhichtheaboveexplicitexpressionwasobtained,isconsidered. 3ZdSiRi1 3Zs0ds01 First,observethat,intheelasticlimit whereec(k)istheFouriertransformoftheequilibriumdirectcorrelationfunctionoftheuid.ThedetailsofobtainingthisformaregiveninAppendixF.Itfollowsfromtheabovethat for,normalizationanduidsymmetryimplythatec(0)=1andec(1)(0)=0.Therefore, atimeindependentquantity.ThisidentiesallthequantitiesinEq.( 5{59 )intheelasticlimit.Firstnoticethattheinstantaneouspartofthecorrelationfunction

PAGE 101

deningvanishesintheelasticlimitduetothetranslationinvarianceofthereferencestate,for whichisthecenterofmassvariable.Nextnoticethat Thecontentoftheaboveresultisthefollowing.Theadjointdensitye1inthecaseoftheequilibriumensembleisthenumberdensityben.Thenumberdensityhasthepropertythatitsux,namelythemomentumdensityisaconservedquantityofthesystemaswell.SincetheprojectionoperatorinEq.( 5{59 )projectsorthogonaltotheinvariantsofthedynamics,thistermbecomeszero. Next,observethatcoecientisameasureofthecontributiontoaheatuxduetoadensitygradient.Thephysicalreasonthatallowsadensitygradienttogenerateaheatuxisbecause,ingranularuids,densityandtemperatureareintimatelycoupledthroughthecoolingrate.Alocaldensityvariationgivesrisetoavariationintheamountofenergylostlocallyandhencecangiverisetoaheatux.AreectionoftheroleplayedbycoolinginthistransportprocessisfoundintheformoftheadjointfunctionoccurringintheGreen-KuboexpressionforinEq.( 5{56 )above.RecallthatQiRi2@lnh

PAGE 102

Restoringthedimensionstotheaboveequationandworkinginlaboratoryvariables,thiscanbewrittenas Thus,Qiisameasureofthevariationinthemacrostateathandwithrespecttothedensitywhenthecoolingrateinsteadofthetemperatureisheldxed.Theonlywaythatthecoolingratecanbeheldconstantwhenthedensitychangesisforthetemperaturetochange.Andhencethisparticularformexactlycorrespondstothechangeintemperaturethatcanbeinducedduetoavariationindensity.Sotheresultobtainedconformstothephysicalexpectationsformedfromthehydrodynamicpictureabove. Also,asafurtherinterpretationoftheresultgiveninEq.( 5{56 )above,notethatusingtheresultobtainedforthethermalconductivityintheprevioussubsection,theresultforcanberewrittenintheform 3ZdSiQiZs0ds01 3ZdS(S)ie Ls0 ItcanbeseenfromthedenitionofthehydrodynamiceigenfunctioninEq.( 3{39 )inChapter3thatthisparticularlinearcombinationcorrespondstoaresponsetoagradientinnwherethevariationthethedensityiscarriedoutinsuchawaythatthecoolingrateisheldconstant. Lastly,aswasprovedinChapter4Eq.( 4{86 )earlier,the1P>operatorcanbeintroducedintotheinstantaneouspartoftheexpressioninEq.( 5{59 ).Then,thetimeintegralcanbecarriedouttoobtain 3ZdS(S)i

PAGE 103

ThisistheHelfandformoftheexpressionforthecoecient. Insummary,itisobservedthatintheabovechapter,explicitexpressionsforthetransportcoecientsandotherhydrodynamicparametershavebeengiven,togetherwithdetailsofthespecicphasefunctionsinvolved.Further,theinstantaneouspartsofthetransportcoecientshavebeengivenasaveragesoverthetwoparticlereduceddistributionfunctionassociatedwiththeHCSensemble.ThesecanbereadilycomputedbymeasuringthetwoparticledistributioninaMolecularDynamicssimulation.AswillbeseeninthenextChapter,theinstantaneouspartsofthesetransportcoecientsarethehighdensitylimitoftheanalogousresultsobtainedfromEnskogkinetictheoryandhencetheycanserveasreasonableestimatesforthefulltransportcoecientathighenoughdensities.Intherestofthispresentation,thekinetictheoryofinelastichardspherecorrelationfunctionsisdevelopedthatallowstheresultsobtainedinthisworktoberelatedtopreviousworkdoneatthelevelofkinetictheory.

PAGE 104

Asnotedintheintroduction,thehydrodynamictransportcoecientsofagranularuidhavebeenextensivelystudiedatthelevelofkinetictheory,analytically,numericallyandinconjunctionwithexperiments.TheaimofthischapteristomaketheconnectionoftheresultsreportedinthisworkatthelevelofNparticleswiththeextensivebodyofworkthatexistsatthelevelofkinetictheory,thatis,theoneparticlelevel.EventhoughtheresultsinthepresentformaretimecorrelationfunctionsoveranNparticledistribution,itispossibletoformallyndanequivalentexpressionthatwouldinvolvethetwoparticlereduceddistributionfunctions.Thisreducedrepresentationservesasatractablestartingpointtondakinetictheorytodescribethedynamicsofthecorrelationfunctions. ThestructureoftheChapterisasfollows.First,startingfromtheHelfandformforthevarioustransportcoecientsidentiedinthepreviouschapter,thegeneralstructurethisclassoftimecorrelationfunctionsisexposed.ThenthisstructureisutilizedtosetupaformallyexactschemethatmapstheseNparticlecorrelationfunctionsontointegralsoverareducedoneparticledistributionfunction.Next,thisformalschemeisconsideredintheelasticlimit,andtheEnskogtheoryfornormaluidsisidentied.Inthecaseofnormaluids,aswillbeshownbelow,theEnskogtheoryissuchthatitisexactatshorttimes.AMarkovianapproximationtothedynamicsallowstheextensionofthisexactshorttimeresulttonitetimesandmakestheconnectionbetweentheresultsobtainedfromthetimecorrelationfunctionmethodtothoseobtainedfromkinetictheory.Itisshownherethatforthecaseofgranularuidsthisconnectionto 95

PAGE 105

kinetictheoryisnotapparentbecauseoftheinherentvelocitycorrelationspresentinthenon-equilibriumhomogeneouscoolingstateatalltimes.Further,theapproximationsthatneedtobemadeinordertoobtainthekinetictheoryforthisuidthathasbeenwidelystudiedusingbothanalyticandnumericaltechniquesisidentied.Thisservestoplacecontextonthedomaininwhichkinetictheorymayberelevantforgranularuids.Finally,theapproximateEnskogliketheoryforgranularuidsisusedtoevaluatethedierenttransportcoecientsandtocomparetheresultstothosealreadygivenintheliterature[ 68 ]. Ls()C1(s)(6{1) wherej()isasubtracteduxthatisoneoftheuxesorthesourcefromthedirectconservationlawswiththeinvariantsofthedynamicsprojectedoutasshownforexampleinEq.( 4{86 )inChapter4.But,fortheconsiderationshere,itsucestonotethatthej()havetheform withXldenotingthephasepointassociatedwithparticlel,i.e.,

PAGE 106

andj1andj2aresomeoneandtwoparticlefunctionsofthephasepointrespectively.Also,theadjointfunctions()aregenericallyoftheform (;s)=yh(t)(`vh(t))3NZdrbkre whereyisoneofthehydrodynamiceldsthatparameterizestheinitiallocalHCS.FurthertheC1(s)inEq.( 6{1 )istheadditionalhomogeneousdynamicstimedependencethatoccurswiththegenerator Now,thefactthatj()isasumofoneandtwoparticlefunctionsallowsEq.( 6{1 )toberewritteninaforminvolvingreduceddistributionsofoneandtwoparticlefunctionstogive withthereducedfunctions(m)'sdenedas ThesefunctionsobeyahierarchyofequationsanalogoustotheBBGKYhierarchydenedinEq.( 2{18 )inChapter2oftheform where 2{14 )earlier.NotethatEq.( 6{5 )aboveformallymapsthefullNbodycorrelationfunctiontoonethatinvolvesatwoparticledistribution.Thisisthestartingpointfromwhichtoformulateakinetictheoryfortheevaluationofthesecorrelationfunctions.Formally,akinetictheoryrepresents

PAGE 107

aclosureoftheBBGKYhierarchyattheleveloftherstequationofthehierarchythroughanidenticationofarepresentationforthetwobodydistributionfunctionintermsofafunctionaloftheonebodydistributionfunction.Inordertoformulatesuchaclosureruleforthehierarchyofthe's,supposeitispostulatedthatthereexistsaclosureruleforthetwobodyreduceddistributionfunctionassociatedwiththeinitiallocalhomogeneouscoolingstateintermsoftheonebodydistributionfunctionintheform then,fromthedenitionofinEq.( 6{4 )above,(2)cannowbeexpressedasafunctionalof(1)throughtheequation (2)(X1;X2;s)=ZdX0K(X1;X2;s:X)(1)X0;s(6{9) where ThelinearkernelKisafunctionalderivativeofthetwobodydistributionfunctionwithrespecttotheonebodydistribution,evaluatedinthehomogeneouslimit.Thepre-factorsintheaboveexpressionjustallowtheexpressiontobetransformedtothedimensionlessvariablesasinEq.( 6{4 )above.Substitutethisformforthetwobodydistributionfunctionintherstequationofthehierarchytoget Thiscanbewrittenasakineticequationgoverningthedynamicsof(1),

PAGE 108

wherethegeneratorofthedynamicsnowincludesageneralizedcollisionoperatorI(s)formallydenedas with Eq.( 6{12 )canbeformallyintegrateduptogive (1)(X1;s)=U(s)(1)(X1)(6{15) whereU(s)issuchthatitisthesolutiontotheequation togetherwiththeboundaryconditionthat Finally,theclosureequation( 6{9 )canbeusedintheexpressionforthetransportcoecienttorewritethesecondtermgiveninEq.( 6{5 )toeliminatethetwobodydistributionfunction(2)through andrelabeltheintegrationvariablessuitablytogive

PAGE 109

where Thus,Eq.( 6{19 )isaformalmappingoftheNbodycorrelationfunctiondeningthetransportcoecienttothatofaonebodycorrelationfunction.ThisformalmappingisvalidwhenevertheclosurehypothesisinEq.( 6{8 )exists.Furtherprogressforarbitraryclosuresoftheformconsideredaboveiscomplicated.But,foraspecialclassofclosuresthatareMarkovian,inthatthekernelKgiveninEq.( 6{10 )abovebecomesindependentofs,Eq.( 6{19 )canberecastintoareducedGreen-Kuboformbyintegratingbypartswithrespecttotimetogive (6{21) NoticethatthereducedGreen-KuboexpressionhasthesameformastheoneattheNbodylevel,inthatithasaninstantaneouspartandatimecorrelationpart.Thetimecorrelationpartisstilloftheformofadirectuxadjointuxcorrelationfunction,butnowreducedtotheoneparticlelevel.Thedirectuxisnowg(X)denedinEq.( 6{20 )above,andtheadjointuxis whereKhydTisunderstoodtobetheappropriateelementsofthehydrodynamicmatrix,dependingontheparticulartransportcoecientunderconsideration. Asanillustrationofthecontentoftheaboveformaltreatment,considerthesimplestpossiblecircumstancewhereanadhocclosurecriterionisproposedintheform

PAGE 110

i.e.,thetwobodydistributionfunctionassociatedwiththeinitiallocalhomogeneouscoolingstateissimplyaproductoftheonebodydistributions.Thisassumptionentailstheneglectofallcorrelationsinthesystemandmaybethoughtofasrepresentingthedynamicsatverylowdensitieswheretheinteractionbetweenparticlesisverysmall.Inthiscase,thevariousstepsintheformalanalysisabovecanbecarriedout.First,Eq.( 6{10 )becomes wheref(1)histhereducedoneparticledistributionfunctionassociatedwiththetruehomogeneouscoolingstateh.ItthenfollowsthatthekineticoperatorI(s)inEq.( 6{12 )becomes, whichispreciselytheBoltzmann-Bogoliubovcollisionoperatorassociatedwithinelastichardspheres,linearizedaboutthehomogeneouscoolingstate.Theaboveexampleillustratesthat,forthesimpleclosureimposedthroughEq.( 6{24 ),theformalprocedureabovereproducesafamiliarresult.Inwhatfollows,moresystematicapproachestotheclosurecriterionarediscussed.

PAGE 111

Intheelasticlimit,theensemblewithrespecttowhichtheclosurecriterionmustbeformulatedisthelocalequilibriumensembledenedinAppendixH.Thelocalequilibriumensemblehastheform whereW()istheexcludedvolumefactordenedas thatcharacterizesthehardspherenatureoftheparticlesinthesystem,and 2mU2;=1 Inthisformitisapparentthatthemomentumpartofthisdistributionfunctionisaproductofoneparticledistributionfunctions.Also,thetwobodyreduceddistributionfunctionisdenedas Notethatattimet=0,thisrelationshipgivesanidenticationofthetwobodydistributionas

PAGE 112

wherethelocalpaircorrelationfunctionisdenedas withexp(Q1)beingthenormalizationconstantfortheoneparticlelocalequilibriumdistribution.Thus,attheinitialtime,Eq.( 6{31 )givesanexactidenticationofthetwobodylocalequilibriumdistributionasafunctionaloftheoneparticledistribution. Now,supposeitisassumedthatthisfunctionalrelationshippersiststonitetimes,i.e., whichamountstoaMarkovianapproximationtothedynamicsofthesystem.ThenusingthisforminEq.( 6{10 ),thekernelthatrelates(2)totheoneparticlefunction(1)canbeidentiedas Inorderthatthiskernelbedeterminedentirelybyoneandtwoparticlefunctionsgeneratedfromthelocalequilibriumensemble,thefunctionalderivativeofthepaircorrelationfunctionhastobesimplied.ItturnsoutthattheformofthelocalequilibriumdistributioninthedenitionofglgiveninEq.( 6{32 )canbeusedto

PAGE 113

obtaintherelationship[ 70 ](seeAppendixIforthedetails) (6{35) wherec(r)isthedirectcorrelationfunctionwhichisrelatedtotheequilibriumpairdistributionfunctiongthroughtheOrnstein-Zernickeequation andg(3)isthethreeparticledistributionfunctionrelatedtothethreebodyreduceddistributionintheequilibriumhierarchythrough SubstitutingtheformofthefunctionalderivativeinEq.( 6{35 )intheexpressionforKandusingthedenitionEq.( 6{13 )forthecollisionoperatorgivestheresult Inwhatfollowsconsiderthelasttermintheaboveequation.SubstitutetheformofthefunctionalderivativegiveninEq.( 6{35 )aboveandnotethatusingthesecondequationofthehierarchyassociatedwiththeequilibriumstate,itiseasyto

PAGE 114

derivethefollowingidentitynZdX2 withthenotation ThisidentityexpressesthethreeparticlefunctioninEq.( 6{38 )aboveintermsofthepaircorrelationfunction.PuttinginthisrelationshipintothelastterminEq.( 6{38 )andusingtheresultingexpressionthecollisionoperatorbecomes wherethe'sonthevariousdimensionlessquantitieshavebeensuppressedforcompactnessofnotation.Observethatthepartofthecollisionoperatorthatcomesfromthefunctionalderivativeofthepaircorrelationfunctionisameaneldoperatorgeneratedbythedirectcorrelationfunctionofthehardsphereuid.TheIgivenaboveisthegeneralizedEnskogcollisionoperator,linearizedaboutthehomogeneousequilibriumstate,extensivelystudiedinthecontextofnormaluids[ 48 69 ]. TheEnskogkinetictheoryisknowntoworkwellfornormaluidsuptomoderatelyhighdensities.TheBoltzmannkineticequationcanbethoughtofasthezerodensityanalogoftheEnskogequation.TheaboveanalysisshowsthattheEnskogtheoryisexactintheshorttimelimitandhenceprovidesthe

PAGE 115

linkbetweentheresultsobtainedfromkinetictheorytothoseobtainedfromthetimecorrelationfunctionmethod.Furthernotethatthekeystepsthatmadethederivationoftheabovekinetictheorypossibleare1)theexactfunctionalrelationshipbetweenthetwoparticledistributionfunctionassociatedwiththeinitiallocalequilibriumensembletotheoneparticledistribution,2)theexplicitformofthelocalequilibriumensemblethatallowedtheidenticationofg nintermsofthedirectcorrelationfunctionandthethreebodycorrelationfunctiong(3),and3)therelationshipofg(3)tothepairdistributionfunctiongthroughthesecondequationoftheequilibriumhierarchy.Eachofthesestepshastobeconsideredcarefullyinthecontextofgranularuidsduetothenon-equilibriumnatureofthereferencestatefortheseuids.Thisistheobjectoffocusinthenextsectionofthischapter. 6{31 )above.Now,letusconsiderthesamequestioninthecontextofgranularuids.InthiscasethemacrostateofinterestisthelocalHomogeneousCoolingStateensemble.Attheinitialtime,thisisidentiedthroughthedenition Sincehisanon-equilibriumstate,itdoesnotpossessthepropertythatthemomentumpartofthisdistributionfunctionfactorsintoaproductofoneparticlefunctionsashappensforthecaseofequilibriumdistributions.Hencetheidenticationofanexactfunctionalrelationshipbetweenthetwoparticledistributionandtheoneparticledistributionevenatinitialtimeisnolongerpossible.Thisimpliesthattheroutetoobtainakinetictheoryforgranularuidsis

PAGE 116

notasdirectasthecaseofanormalelasticuidthathastheequilibriumstateasitshomogeneousreferencestate. Beforeconsideringanyclosurecriterionforthedistributionfunction,letuslookattherstequationofthehierarchyassociatedwiththelocalHCSdistributionrewritteninthefollowingform, 2hrv1v1+v1rq1f(1)(X1;s)=ZdX2(q12)(g12^q12)1 (6{42) wherethe NoticethatthisboundaryconditionisthetwobodyanalogofthecollisionalboundaryconditionsforhardspheredistributionsgiveninAppendixAinEq.( A{24 ).Aswillbeseeninthefollowingthisistruefortheconsiderationsassociatedwithtimecorrelationfunctionsalso.Thereforeinallthatfollows,theclosurecriterionisappliedonlyontheprecollisionhemisphere. Inwhatfollows,akinetictheoryofgranularuidsthatistheanalogoftheEnskogtheoryfornormaluidsisderivedbymakingtheadhocassumptionthat,

PAGE 117

inthepre-collisionhemisphereofphasespace Beforeproceedingfurther,apauseiswarrantedtocommentonthecontextofsuchananalysis.Sincethisassumptionismadewithoutmakinganyconnectiontotheexacttheory,thedomainofvalidityoftheassumptionandhencetheapplicabilityoftheconsequenttheorycannotbedenedapriori.Thewaytoestablishthedomainofvaliditywouldbetocalculatephysicalquantitiesusingtheassumptionandcompareitwiththoseobtainedfromtheexactresult,throughaMolecularDynamicssimulationandestablishtheparameterspaceinwhichtheassumptionthatthetwoparticlevelocitydistributionfactorscanbethoughtofasreasonable.Furthertheparameterspacewhereitfailscanbeusedtoidentifythephysicalmechanismsthatleadtheunderlyingmacrostatetopossessvelocitycorrelationsatthetwoparticlelevel.Lastly,thecontentoftheassumptionEq.( 6{44 )dependsonthedenitionofthefunctionalgl.Supposeglisdenedas thenthecontentoftheaboveapproximationwouldbethatvelocitycorrelationsintheinitialreferencestatehavebeenneglectedinthepre-collisionhemisphere.Thephysicalcontentofthisapproximationistheassumptionthatthevelocitiesofapairofparticlesabouttocollideareuncorrelated,butthedensityofthesystemishighenoughsothatthereexistscorrelationsinthepositionofthetwoparticles.AlsonoticethatthevelocitycorrelationsareneglectedonlyintheprecollisionhemispherewhichamountstothephysicalpropertythatthetwoparticleshavenotinteractedwitheachotherintherecentpastoftheNparticletrajectory. Also,inthecaseofelastichardspheres,theEnskogkinetictheorymaybeobtainedonphenomenologicalgroundsasgivenin,forexample[ 72 ].This

PAGE 118

derivationinvolvestakingintoaccountthenitesizeoftheparticlesindeterminingthecollisionfrequencyaswasdoneinthecaseofthepressureofaVanderWaal'sgasforinstance.Thepresenceofathirdparticleinthevicinityofthecollidingpairistakenintoaccountthroughaneectivescreeningofthecollisioncenterfromtheincomingparticle.Thus,theEnskogkineticequationcapturesthegeometriceectsduetootherhardparticlesintheneighborhoodofthecollidingpairtovarygoodaccuracyandhenceworksverywellforelastichardspheresinawiderangeofdensitiesoftheuid.Thisgeometricscreeningshouldbethesameforinelastichardspheresaswell.Hence,anotherapproximationcanbeformulatedwherethegistakentobetheequilibriumpaircorrelationfunctiontogetanEnskogliketheoryforinelastichardspherecorrelationfunctions.So,thefailureofEnskogtheorycanbetakentoindicatethatsomeotherdynamicaleectoverwhelmsthispurelygeometricapproximation. ProceedingfurtherwiththechoiceofglinEq.( 6{45 ),thekernelthatrelates(2)to(1)isfoundtobe (6{46) whichhasthesamestructureasthecorrespondingresultfornormaluidsgiveninEq.( 6{34 )earlier.Inthecaseofnormaluids,theanalogofthethreeparticlefunctiongl(q1;q2)

PAGE 119

sucienttoknowthepaircorrelationfunctionatcontactinthetruehomogeneousstate.Sincethesystemathandisoneofhardparticles,thepaircorrelationfunctionatcontactisalargelygeometricfactorandhencetheanalogousquantityforelastichardspherescanbeusedtogoodapproximation.Sincetheaimhereistoidentifythekinetictheoryataformallevel,nofurtherdiscussionofthenatureofthepaircorrelationfunctionisgiven. NowmaketheapproximationEq.( 6{44 ),anduseitinEq.( 6{10 )andEq.( 6{13 )intheformalanalysisabovetogetthecollisionoperatorIintheform wherethedenition hasbeenusedand whichistheanalogofthemeaneldtermunfoldedexplicitlyinthecaseofelastichardspheresearlier.Noticethatforthisclosurerule,thedynamicsisMarkovianinthesensethatthecollisionoperatordoesnotdependonthescaledtimes,aswasthecaseintheprevioussection.ThisisthelinearizedformoftheEnskogoperatorstudiedin[ 68 ]. Summarizing,thekernelKthatgivestheformalmappingofthetwoparticlefunction(2)ontotheoneparticlefunction(1)fortheclosurecriterionunderconsiderationhasbeenidentiedinEq.( 6{46 )above.Usingthiskernel,thecollision

PAGE 120

operatorthatgeneratesthelinearkinetictheoryfortimecorrelationfunctionsunderconsiderationhasbeenidentiedinEq.( 6{47 ).Thus,theseresultstogetherwiththeobservationthatthegeneratorIisindependentofs,leadstothereducedrepresentationfortheHelfandformofatransportcoecientas 2hrvvvrq+IE+KhydTs(1)X0(6{50) whereg(X0)isasdenedinEq.( 6{20 )aboveandtheinitialcondition(1)(X0)isobtainedfromEq.( 6{6 )bytakingthes=0limitatxed,explicitformsofwhicharegiveninthefollowingsection.Further,theaboveexpressioncanbeintegratedbypartswithrespecttotimetoobtainareducedGreen-Kuboformforthetransportcoecientas 2hrvvvrq+IE+KhydTs0(1)X0 where 2hrv0v0+v0rq0IEKhydT(1)X0:(6{52) ThiscompletesthederivationoftheEnskoglikekinetictheoryofthetimecorrelationfunctionsthatdeterminethehydrodynamictransportcoecients.Inthefollowingsections,thedetailsoftheuxesinvolvedintheseexpressionsaregivenandtheexistenceofthelongtimelimitdemonstrated.Then,asanillustration,thedetailedformoftheaboveexpressionforthecaseoftheshearviscosityderived.TheformsoftheothertransportcoecientsaregiveninAppendixI.

PAGE 121

6{50 )andEq.( 6{51 )areconsideredanditisshownthatthelongtimelimitofthesetimecorrelationfunctionsthatneedstobetakeninordertogetthehydrodynamictransportcoecientsiswelldened.Asarststep,notethattheinitialconditionforthekineticequation,namely(1)X0isdenedthroughtheequation wherethehydrodynamiceldsareasearlier AsobservedattheNparticlelevel,thelocalhomogeneouscoolingstatedependsontheoweldUandthetemperatureTthroughthevelocitiesoftheparticles.Andhence,itreadilyfollowsthat(1)2(X)=bkq1 2rv(vh);(1)3=1 2bkqbkrvh(1)4;5=1 2bkqbe1;2rvh: Further,usingtheform onecanobtain (1)1(X)=bkqh(v):(6{57) Thisidentiestheinitialconditionsinthereducedrepresentationforthetimecorrelationfunctionsdeterminingthetransportcoecientsintheprevioussection.

PAGE 122

Next,notethattheNparticleuxj()fromwhichthedirectreduceduxg(X)isgeneratedisoftheform where 3s^g;hij;(6{59) andPistheprojectionoperatordenedinEq.( 4{45 )inChapter4earlierthatprojectsontotheinvariantsoftheNparticleLiouvilleoperator.Thisstructureisinheritedbythereducedrepresentationalso,inthatEq.( 6{51 )indetailtakestheform(seeAppendixIforthederivation) LE+KhydTis0(1)(X); withthedenitions 2hrvv+vrqIE;(6{61) and wherej1isthekineticpartoftheuxfandj2isitscollisionalpart.Further,thereducedprojectionoperatorintheaboveexpressionis

PAGE 123

with 3v213 2;v1;'(v)!h;1 2rv(vh);rvh:(6{64) Also,itisshowninAppendixIthatthefunctions'(v)satisfythepropertythat 2hrvv+vrqIE'(v)=KhydT'(v);(6{65) i.e.,'(v)arepreciselytheinvariantsofthegeneratorofthedynamicsinthereducedtimecorrelationfunctions.ThustheprojectionoperatorP(1)projectsorthogonaltotheinvariantsofthisgenerator.Further,aswasdoneintheNparticlelevel,anadjointoperatorP(1)>as andrewritetheexpressioninEq.( 6{60 )as LE+KhydTis0(1)(X): ItisshowninAppendixIthat,aswasfoundinthecaseoftheNparticledynamics,thefollowingidentityholds Inthisformitisevidentthatthegeneratorofthedynamicsactsonaquantitythatisorthogonaltoitsinvariants.UsingthispropertythereducedGreen-Kubo

PAGE 124

expressionforanytransportcoecienttakestheform LE+KhydTis01P(1)>(1)(X): Thus,thereducedGreen-KuboexpressionhasthesameformalstructureasattheNparticlelevel,inthatitconsistsofadirectuxadjointuxtimecorrelationfunctionwiththeprojectionoperatorsmakingthelongtimelimitofthisexpressionwellbehaved,andaninstantaneoustermthatgivespartofthecontributionfromcollisionaltransfertothevaluesofthetransportcoecients.ThisGreen-KuboformturnsouttobetheonemostconvenientforformalcomparisonwiththeresultsobtainedusingtheChapman-EnskogprocedurefromtheEnskogkineticequationin[ 68 ]. 6{69 )aboveareunfoldedfortheparticularcasewhenthetransportcoecientunderconsiderationistheshearviscosityforthepurposeofcomparisonwiththeanalogousresultobtainedusingtheChapman-EnskogmethodfromtheRevisedEnskogTheoryforinelastichardspheresgivenin[ 68 ].TheunfoldingofothertransportcoecientsisdoneintheAppendix. Beforegivingthedetailedformofexpression( 6{69 )fortheshearviscosity,rsttheresultsobtainedfromtheChapman-Enskogmethodaresummarized.Inthismethod,anormalsolutionwhosetimeandspacedependenceoccursonlythroughthehydrodynamiceldsisassumedtoexistforthekineticequationathand.Then,thisnormalsolutionisconstructedselfconsistentlyinpowersofthegradientsofthehydrodynamiceldsusingthekineticequationandthemacroscopicbalanceequationsassociatedwiththehydrodynamicelds.Carrying

PAGE 125

outsuchaproceduregivestheshearviscosityintheform 45I(): Thersttermiscalledthekineticpartoftheshearviscosityandisgivenby 10ZdvDij(v)Cij(v)(6{71) where 3ijv2(6{72) andCijisdeterminedasasolutiontoanintegralequationoftheform 2hrvvg()IB+h withIBbeingthelinearizedBoltzmanncollisionoperatoridentiedinEq.( 6{25 )aboveand Lastly,thesecondtermintheexpressionfortheshearviscosityinEq.( 6{70 )iscalledthecollisionaltransferpartoftheviscosityandthecollisionintegralIinthisexpressionisfoundtobe Thisistheresultgivenin[ 68 ]. Next,thevariousphasefunctionsinEq.( 6{69 )areidentiedtogettheexplicitformoftheshearviscosityinthisclosureapproximationfromtheexactexpression

PAGE 126

obtainedfromlinearresponse.Asarststep,notethattheshearviscositycorrespondstothechoice=4and=4inEq.( 6{69 ).AsstatedinEq.( 5{35 ),thedirectuxofinteresthereis 4(1+)XlXm(qlm)(qlmglm)(bqlmglm)2bqilmbqjlm: Thereforeinthiscase, 4(1+)(q12)(q12g12)(bq12g12)2bqi12bqj12:(6{79) UsingthekernelKidentiedinEq.( 6{46 )earlier,thereduceduxdenedinEq.( 6{62 )takestheform 4(1+)@g() Carryingouttheangularintegrationsovertherelativecoordinateintheaboveexpressionsyieldstheresult Now,usingthefactthattheoneparticlehomogeneouscoolingstatemustbesphericallysymmetric,theaboveexpressionreducesto 2(1+)3n`3g()4

PAGE 127

Thisidentiesthereducedrepresentationofthedirectux. Similarly,thereducedrepresentationfortheadjointuxisobtainedfromitsdenitioninEq.( I{34 )abovewith (1)4(X)=qkrvlh(v):(6{83) ThedetailsofthisaregiveninAppendixIwiththeresult where Observethattheexpressionfortheuxin( 6{84 )isthesameasthequantityCijdenedinEq.( 6{74 )above.Alsonoticethat,asinthecaseofthefullGreen-Kuboexpression,theactionoftheprojectionoperatoronboththedirectandadjointuxesvanishesbecauseoftheorthogonalityofbkandbe.Lastly,thereducedexpressionfortheinstantaneouspartoftheviscositywasobtainedinEq.( 5{41 )inChapter5.Inthisexpression,iftheEnskogclosureissubstitutedandtheangularintegrationsarecarriedout,itresultsin 45Zdv1dv2g12h(v1)h(v2):(6{86) Puttingalltheseresultstogether,theshearviscosityinthisEnskogapproximationisfoundtobe 2(1+)n`3g()4 LEs0h

PAGE 128

Nowconsiderthetimecorrelationfunctionpartofthiscoecientinthefollowing.Thetimedependentpartofthiscorrelationfunctionis LEs0h InordertoshowtheequivalenceofthisexpressionwiththatobtainedfromtheChapman-EnskogproceduregiveninEq.( 6{70 )above,consider LEs0h 2hrvv+vrqIE+h NotethatfromitsdenitioninEq.( 6{74 )above,Cklisahomogeneousfunction.Therefore,actionofthefreestreamingtermintheaboveexpressionvanishes.Further,theformofthelinearizedEnskogoperatorsimpliestotheformgiveninAppendixIinEq.( I{35 ),togive LEs0h 2hrvvg()IB@g() 2hrv(vh)Zdv0b(v;v0)+h (6{90) whereb(v;v0)isasubstitutionoperatorsuchthat ItfollowsfromthesphericalsymmetryofthehomogeneouscoolingstatethattheaverageoverthevelocitiesofCklmustbeproportionaltokl.Andhencethetermproportionalto@g() 6{90 )reducesto LEs0h 2hrvvg()IB+h

PAGE 129

Itiseasytoseethat,bymakingtheaboveargumentstoeachorderinwthat LEs0h 2hrvvg()IB+h ThereforeEq.( 6{88 )abovebecomes 2hs0rvv+g()IBs0h i.e.,theadjointpartofthecorrelationfunctioninEq.( 6{87 )aboveisasolutiontoanintegralequationoftheform 2hrvvg()IB+h ComparingthiswithEq.( 6{73 )aboveleadstotheconclusionthat Lastly,carryingouttheexternaltensorcontractionswithrespecttobkandbegives, 2(1+)n`3g()4 10ZdXDij(v)Cij(v): Thus,theinstantaneouspartofthisreducedGreen-KuboexpressiongivesthecollisionaltransferpartofthetransportcoecientinEq.( 6{70 ),whilethetimecorrelationfunctionpartcanbewritteninaformequivalenttotheintegralequationthatneedstobesolvedtoidentifythekineticpartofthetransportcoecientinEq.( 6{70 ).Theseobservationsaregenericinthattheyapplytotheothertransportcoecientsaswell(seeAppendixI).Thiscompletesthetaskathand,namelytoshowthattheresultobtainedfromtheChapman-Enskogmethodin[ 68 ]andthatobtainedhereasresultofanapproximateevaluationoftheexactresultobtainedfromthelinearresponsemethod.

PAGE 130

Inclosing,thekeypointsintheChapterabovearesummarized.IntherstpartoftheChapter,thegeneralproceduretogofromtherepresentationofthetransportcoecientintermsofanNparticletimecorrelationfunctiontoareducedrepresentationinvolvingoneparticlefunctions,forarbitraryclosuresoftherstequationofthelocalHCSensemblehierarchyisdetailed.Next,thecaseofelastichardspheresisconsideredandtheEnskogkinetictheoryforthesetimecorrelationfunctionsisderived,withspecialnotetakenoftheroleplayedbytheequilibriumreferenceensembleintheprocess.Then,thecorrespondingproblemforgranularuidsisconsideredanditispointedoutthattheanalysisiscomplicatedbecauseofthenon-equilibriumreferencestate.AclosurecriterionisproposedthatentailstheneglectofvelocitycorrelationsinthetwoparticledistributionfunctionintheprecollisionhemisphereandanEnskoglikekinetictheoryforasystemofinelastichardspheres.ThisisusedtoderivereducedGreen-Kuboexpressionsforallthetransportcoecientsconsideredinthiswork.Also,theexistenceofthelongtimelimitisestablishedbystudyingtheinvariantsofthereduceddynamics.Finally,theshearviscosityisconsideredasanillustrativeexampletocomparetheresultsobtainedfromthelinearresponseproceduretothoseobtainedbyusingtheChapman-EnskogmethodtosolvetheRevisedEnskogTheoryforinelastichardspheres. TheworkinthischapterservesasanillustrationinthatitisanexampleofanapproximateevaluationoftheHelfandandGreen-Kuboformsofthetransportcoecients.Also,theresultsinthischapterprovidetheconnectionbetweenthisworkandthevastbodyofliteraturethatexistsassociatedwiththestudyofhydrodynamicsusingthekinetictheoryofinelastichardparticles.

PAGE 131

Granularuidsbelongtothecategoryofphysicalsystemsthatareofpracticalrelevancetoindustriesandatthesametimearereasonablyrepresentedbymodelsthatareamenabletotheoreticalinvestigations.AwidelystudiedmodelsystemisoneconsistingofNhardparticlesthatcollideinelasticallysoastoloseafractionoftheirkineticenergyduringeachcollision.Theoreticalstudiesuptothispointintimehavefocussedonthekinetictheoryofthismodelsystem.Thisworkisarststepinthedirectionofusingthetoolsofnon-equilibriumstatisticalmechanicstostudythedynamicsofthissystem.InthisChapter,theprimaryresultsinthispresentationaresummarized.Then,theimmediateconsequencesofthisworkinthecontextofunderstandingthehydrodynamicdescriptionofagranularuidaregiven.Finally,theavenuesavailableforfuturetheoreticalexplorationsarediscussed. 122

PAGE 132

timedependentstate.Itwasnotedthatthehydrodynamicinitialpreparationisonethatexclusivelyexcitesthehydrodynamicmodesofthesysteminthelongwavelengthlimit.SuchapreparationwasidentiedinthespeciccontextofgranularuidswherethereferencestateistheHomogeneousCoolingStateensemble. Next,thesystematicsofthelinearresponseprocedurewerecarriedouttogiveexactexpressionsforallthehydrodynamictransportcoecientsastimecorrelationfunctionsovertheHCSensemble.ThesearetheanaloguesoftheHelfandandGreen-Kuboformsfortransportcoecientsobtainedfornormaluids.ItwasfoundthattheGreenKuboformswereux-uxcorrelationfunctionsasinthecaseofelasticsystems.Oneoftheuxeswasthefamiliarmicroscopicuxassociatedwiththehydrodynamiceldwhosetransportischaracterizedbythegivencoecient.Buttheotheruxturnsouttobegeneratedbythenon-equilibriumreferencestateaboutwhichthatresponseisstudied.Thecoecientsobtainedhereareinprincipleapplicableforallvaluesofdensityofthesystemandallvaluesofinelasticity,measuredthroughthecoecientofrestitution.Theseexpressionsforthetransportcoecientsaretheprimaryresultsofthisanalysis. Further,usingthefactthatthedirectuxesaresumsoftwoparticlefunctions,theaboveexpressions,thatwerecorrelationfunctionsovertheNparticleHCS,wereexpressedintermsofcorrelationsoverthetwoparticlereduceddistributionfunctionassociatedwiththeHCSensemble.Then,aformalkinetictheoryforthisclassofinelastichardspheretimecorrelationfunctionswasdevelopedandusedtoidentifytherelationshipoftheresultsobtainedinthisworktothosereportedintheliteratureassociatedwiththewelldevelopedkinetictheoryforgranularsystems.Thesearetheprimaryresultsofthiswork. Onadierentnote,intheprocessofobtainingtheaboveresults,severalimportanttechnicaldetailsassociatedwiththedynamicsofaninelastichardsphere

PAGE 133

granularuid,whoserelevancetranscendstheparticularquestionsaddressedinthiswork,werecatalogued.Theseincludethethreegeneratorsofdynamicsassociatedwiththissystem(theforwarddynamicsgenerator,thegeneratorfordistributionsandthebackwarddynamicsgenerator)andthedetailedformsoftheforwardandbackwarduxesandthesourceassociatedwiththemicroscopicdensitieswhoseensembleaveragesarehydrodynamicvariables.Also,theformalkinetictheorydevelopedherecanbeusedformoregeneralanalysisofthereduceddynamicsofthissystem,beyondthesimplecasesconsideredinthiswork. Further,experimentalandnumericalinvestigationshaveshownthat,forvibro-uidizedgranularmaterials,aNavier-Stokeslikehydrodynamicdescription

PAGE 134

quantitativelycapturesthephysicsofthesystem.Inthecaseofnormaluids,theonlylimitsontheapplicabilityofhydrodynamicsaretheparametersandtransportcoecientsusedintheseequations.Ifthetransportcoecientsusedarethoseobtainedfromkinetictheory,thentheresultinghydrodynamicdescriptionisapplicableonlyinthelowtomoderatedensityregimes.Amoresophisticatedevaluationofthesetransportcoecients,forexamplethroughthenumericalevaluationoftheexactformsobtainedfromthetimecorrelationfunctionmethod,extendsthedomainofapplicabilityintodenseregimesaswell.Inthecaseofgranularuids,thedomainofapplicabilityofahydrodynamicdescriptionisnotonlysetbythequalityofthetransportcoecientsbutalsobytheneedtoidentifyclearlytheconditionsunderwhichthegranularmaterialissucientlyuidizedforthedescriptiontoberelevant.Thisworkpotentiallygivesaccesstohydrodynamicequationswhoseparametersarenotlimitedtolowdensitiesorweakinelasiticitiesfortheirapplicability.Hence,oncetheseparametersareavailable,itispossibletoestablishthedomainsofapplicabilityofthehydrodynamicdescriptiontoagranularuidwithouttheproblemofdistinguishingwhenthetransportcoecientsbecomeinvalidratherthanthehydrodynamicdescriptionitself. Insummary,notethattheusefulnessoftheresultsobtainedinthisworkrestsontheirnumericalevaluationandontheirservingastractablestartingpointsforanalyticalapproximationschemes.First,letusconsiderthequestionofnumericalevaluation.Thestartingpointforthenumericalanalysisoftheseexpressionsistheidenticationofthereferencestateoverwhichthecomputationsarecarriedout.Theexplicitformofthisreferencestateisunknownatthistimeexceptforitsspecicationasthe\normal"homogeneoussolutiontotheLiouvilleequation.ButnoticethattheonlycharacteristicpropertyofthisstateusedinthisanalysisistheHa'slawcoolingexhibitedbythetemperatureinthisstate.Hence,in

PAGE 135

asimulation,acollectionoftrajectorieswhoseaveragekineticenergygivesthissignaturecoolingshouldserveastheHCSstate. Thekeyproblemstobesolvedforimplementingthenumericalanalysisoftheseexpressionsarethefollowing.Firstly,theunderlyinglongwavelengthinstabilityoftheHCSstatewillforcethesimulationsystemsizetobesmallenoughsothattheinstabilityiscuto.Butthiscomesatthecostthatsmallsystemsizeleadstolargeuctuationsinthesystemandhenceitishardtogetreliableconvergenceofthenumericalresultforlongtimes.Secondly,theHelfandformoftheexpressionsobtainedherediersfromthoseofequilibriumsystemsinthattheadjointphasefunctionisnolongerasumofsingleparticlefunctions,butratherisgeneratedbythefullNparticlestate.Inthisform,newtechniquesneedtobedevelopedtomeasuresuchaquantityinthesimulation(techniquesavailableatthepresenttimeallowthemeasurementofatmostthetwoparticledistributionassociatedwiththecollectionoftrajectoriesbeingsimulated).Thislatterpointmaynotbealimitingfactor,fortherearesomeformalmanipulationsthatcanbecarriedoutontheseexpressionsthatmightallowfortheeliminationofthisproblem.Suchmanipulationswillbeexploredinthefuture. Onthetheoreticalfront,itisnotedthatthereexistwelldevelopedapproximateevaluationmethodsfortimecorrelationfunctions,suchasshorttimeexpansionsandmodecouplingtheories,inthecontextofnormaluids.Thesemethodscannowbemodiedtothecaseofgranularuidsandusedtoobtainanalyticalevaluationoftheexpressionsforthevarioustransportcoecientsgivenherethatwillbevalidunderdierentphysicalcircumstances.Inthetheoreticaldevelopmentsoutlinedabove,thelinearinstabilityoftheHCSmustbetakenintoaccountandhencethetechniquesshouldbeformulatedwithcare. Inwhatfollows,theavenuesoftheoreticaldevelopmentthataretobeexploredintheimmediatefutureareoutlined.Firstly,itturnsoutthatthelinearresponse

PAGE 136

analysisforthehydrodynamicsdevelopedinthisworkinthecontextoftheinelastichardspheremodelcaneasilybegeneralizedtoawideclassofmicroscopicmodelsusedinthestudyofgranularuids.Thedetailsofsuchageneralizationhavelargelybeenworkedoutandwillbereportedin[ 74 ].Next,asnotedabove,theinstabilityoftheunderlyingHCSensembleisatechnicalcomplicationinthetheoreticalstudyoftheresultsobtainedinthiswork.Anaturalnextstepthatwilleliminatetheproblemoftheinstabilitywouldbetoderivethefullnonlinearhydrodynamicequationsusingthetimecorrelationfunctionmethod.Inthiscasethereferencestatewouldbethelocalhomogeneouscoolingstateandtheinitialpreparationwouldbeoneofsmallspatialgradientsaboutthislocalstate.ThisprocedurewouldbetheanalogueoftheChapmanEnskogprocedureatthelevelofkinetictheoryasoutlinedin[ 73 ].Thislastpointwillbethetargetoffurtherdevelopmentintheimmediatefuture. Inconclusion,itisobservedthatthereisavastbodyofwelldevelopedtoolsfortheuseofnon-equilibriumstatisticalmechanicsinthestudyofnormalNewtonianuids.Thesetoolscanbefruitfullyextendedtoapplytoothercomplexnon-equilibriumuidsandcanbeusedtoobtainarmbasisforthemacroscopicdescriptionoftheseuidsonthemicroscopictrajectorydynamicsofthesystem.Granularuidsarethesimplestuidsinthislatterclassfromthepointofviewoftheoreticalstudy.Thisworktakestherststepsinthedirectionofasystematicstudyofagranularuidusingthetoolsofnon-equilibriumstatisticalmechanics.

PAGE 137

Inthisappendix,thegeneratorsofdynamicsfortrajectoriesanddistributionfunctionsforasystemofinelastichardspheresarederived.Notethathardspheredynamicsischaracterizedbypiecewiseconstantvelocitiesthatchangeinstantaneously(anddiscontinuously)atthetimeofcollision.Thisfactallowsthegeneratoroftrajectoriestobederivedusinggeometricarguments[ 71 ].Thisderivationiscarriedoutbelow. Forthispurpose,letusbeginbyconsideringasystemoftwoinelastichardspheresthatcollidesothatthecenterofmassvelocityP12=(v1+v2)=2isunchangedandtherelativevelocityg12=v1v2changesinstantaneouslyaccordingtotherule whereisthehardspherediameter,bistheunitvectorgoingfromthecenterofparticle2tothecenterofparticle1,isthecoecientofrestitution,andthe0onanyquantitydenotesitspost-collisionvalue.Then,thetrajectoryofthissystemisgoingtobeoftheform(t)=fqi+vit;vigi=1;2,i.e.,freestreaminguntilacollisionoccurs.Supposetheparticlescollideatatime,thenthepostcollisiontrajectoryisoftheform0(t)=fqi+vi+v0i(t);v0igi=1;2,whereacollisionhasoccurredatatime()2[0;t]obtainedasasolutiontotheequation (q12+g12)22=0,(A{2) andv0iisgivenbythecollisionruleinEq.( A{1 )above.ThereforethetimeevolutionofanyphasefunctionA()canbegivencompactlybyanequation 128

PAGE 138

oftheform with(t)and0(t)ascharacterizedabove. Dierentiationoftheaboveequationwithtimegives (A{4) whereusehasbeenmadeofEq.( A{3 ).Since, theEq.( A{4 )abovebecomes whereb12isasubstitutionoperatoroftheform Next,toeliminatetheinitialconditionoccurringthrough(),Eq.( A{2 )isused.Therearetworootstothisequation,thatcorrespondtothetimeatwhichthetwoparticlesarerstincontact,andthetimeatwhichtheywerelastincontactiftheywereallowedtostreamthrougheachother.Clearlytherstcorrespondstothephysicalcollisiontime.Thisispickedoutbyrecognizingthatatthephysical,

PAGE 139

AndhenceEq.( A{6 )takestheform (A{9) Finally,usingthefactthatthegeneratoroftrajectoriesisdenedas thegeneratorLcanbeidentiedas @qi+(q12)(q12g12)jbq12g12j[b121] (A{11) =2Xi=1vi@ @qi+T(12) (A{12) Thisgivestheidenticationofthegeneratorforthetwobodyproblem. TogofromheretothegeneratoroftrajectoriesforasystemofNparticlesrequirestheadditionalassumptionthatonlybinarycollisionsoccurbetweenparticles(thebasisofwhichisdiscussedinthemaintext).Thisgivesthegeneratoras 2Xi;jT(i;j);(A{13) whichistheresultquotedinthetextinEq.( 2{9 ). Next,considertheLiouvillegeneratorassociatedwiththedistributionfunctionsoverphasespace.RecallthattheadjointLiouvilleoperatorisdened

PAGE 140

throughtheequation Inparticular, Itturnsoutthat,forhardparticlesingeneral,theLiouvilleoperatorsassociatedwithphasefunctionsandwithdistributionfunctionsaredierentbecauseoftheexcludedvolumeassociatedwithanydistributionofsuchparticles.Hardparticlescannotoverlap.Hence,anyvaliddistributionofhardparticlescanbewrittenas where, istheexcludedvolumefactorthatguaranteesthenonoverlapoftheparticles.IntherepresentationgivenontheleftsideofEq.( A{15 ),theexcludedvolumefactorensuresthattheintegrationoverspaceisonlyoveracceptablecongurations.Butontherightside,theintegrationisunconstrainedandhencethegeneratorissuitablymodiedtoensurethecorrectresult.Inwhatfollows,theformoftheadjointgeneratorisidentiedbychangingvariablesintheintegrationasdescribedbelow.

PAGE 141

StartwiththelefthandsideoftheEq.( A{15 ).PuttingintheformofLobtainedabove,thisbecomes 2Xi;jZd()(qij)(qijgij)jbqijgijj[bij1]A()=NXi=1Zd(virqi())A()+NXi=1ZSdbqiZdvidj6=i(vi()A())+1 2Xi;jZd1 2Xi;jZd()(qij)(qijgij)jbqijgijjA() (A{18) where,inthecollisionalterm,achangeofvariablestothepostcollisionvelocitiesv0iandv0jhascarriedoutandusehasbeenmadeofthefactthattheJacobianassociatedwiththistransformationis Theoperatorb1ijisdenedthroughtheidentity andcanbedirectlysolvedfor,whichyields (bgij)b:(A{21)

PAGE 142

Then,fortheclassoffunctionsforwhichthesurfaceintegralinEq.( A{18 )vanishes,theadjointLiouvilleoperatorcanbeidentiedtobe 2NXi=1NXj6=i where,thenewbinarycollisionoperatoris T(i;j)=(qij)jgij^qijj(^gij^qij)2b1ij(^gij^qij):(A{23) Thiscompletesthederivationofthegeneratoroftheadjointdynamics. Lastly,theoperatorLdenedinthetextinEq.( 2{54 )isderived.Inordertoderivesuchanoperator,useismadeofaspecialcollisionalboundaryconditionthatischaracteristicofhardspheredistributions.Theboundaryconditionforanypairatcontactis[ 53 ] Thisboundaryconditioncanbederivedasfollows.Sincethecollisiontimeforhardparticlesiszero,itiscorrecttosaythatatagiventime,theuxofparticleswithrelativevelocitygwithrespecttoanychosenparticleinitspre-collisionhemisphereshouldbeequaltotheuxofparticlesinthepost-collisionhemispherewithrelativevelocityg0generatedfromgusingthecollisionrulegiveninEq.( A{1 ).Henceforagivenparticlej, where0ijdenotesthephasespacemeasureafterparticlesiandjhavecollided,allotherphasepointsstayingthesame.SinceEq.( A{25 )isasumoverfunctions,theequalitymustholdpairwise.Moreover,notethatfromEq.( A{19 )above,itfollows

PAGE 143

that and PuttingallofthesetogetherinEq.( A{25 )aboveandrenaming0asgives whichistheboundaryconditionstatedearlier. Now,inordertoidentifythecollisionoperatorassociatedwiththebackwardgenerator,usetheidentityabovetorewritethe T(i;j)(A)=(qij)jgij^qijj(gij^qij)2b1ij(gij^qij)(A)=(qij)(gij^qij)jgij^qijjb1ij1A+A(qij)jgij^qijj(gij^qij)2b1ij(gij^qij)T(i;j)A+AT(i;j) Hence,itfollowsthat L(A)=AL+LA(A{30) with 2NXi=1NXj6=iT(i;j)(A{31) and whichistheresultquotedinthetext. Thatconcludesthederivationofthegeneratorsassociatedwiththeinelastichardspheredynamics.Theprimaryresultsinthisappendixaresummarizedinatablebelow.

PAGE 144

TableA{1. HardSphereCollisionOperators TrajectoriesT(i;j)(qij)jgijbqijj(bgijbqij)(bij1)DistributionfunctionsT(i;j)(qij)jgij^qijj(bgij^qij)2b1ij(bgij^qij)BackwarddynamicsT(i;j)(qij)jgij^qijj(bgij^qij)b1ij1

PAGE 145

Inthisappendix,thegeneratorsofthedynamicsinthestationaryrepresentationoftheHomogeneousCoolingStateensemblearederived.FirstconsidertheLiouvilleequation TherepresentationforthedynamicsthatisderivedhereaccordsaspecialstatustothatpartofthedynamicsassociatedwiththecoolingofthehomogeneoustemperatureTh(t).Hence,thetimederivativeintheaboveequationispartitionedas @t=@ @tjTh(t)+@Th(t) @Th(t):(B{2) Also,recallthat ThistransformstheLiouvilleequationabovetotheform @tjTh(t)h(Th(t))Th(t)@ @Th(t)+ Next,deneadimensionlessdistributionfunctionthroughtheidentication where 136

PAGE 146

ands(t)isanasyetunspeciedfunctionoft.Then,itfollowsthat 2h(Th(t))(`vh(t))3N(;s)1 2h(Th(t))(`vh(t))3NXivirvi(;s); whereusehasbeenmadeofthefactthatforhardspheres,thereisnointernalenergyscaleandhencetheonlywaythetemperaturecanenterthedistributionisthroughthescalingofthevelocitiesrepresentedthroughthevariables.SubstitutingthisforminEq.( B{4 )abovegives vh(t)@s @t@ @sj+1 2hXirvivi+ where vh(t)h(t); vh(t) with vh(t)@s @t1(B{10) Thisidentiessas orequivalentlyusingEq.( 2{29 )andintegratinguptheaboveform, 2`ht(B{12) Summarizing,thedynamicsofanydistributionfunction(;t)takestheform

PAGE 147

withthenewgeneratorforLiouvilledynamics 2hNXi=1rVi(Vi); L=` vh(t) whichistheresultstatedinEq.( 2{37 )inChapter2. Next,theadjointdynamicsofphasefunctionsinthisstationaryrepresentationisconsidered.RecallthattheensembleaverageofaphasefunctionAhasthetwoequivalentrepresentations (B{15) Thesecondrepresentationabovecanberewrittenas Ls()A(f`qi;vh(t)vig)(B{16) andhence L()A(f`qi;vh(t)vig):(B{17) BycarryingoutanintegrationbypartsinthespaceandgoingtoprecollisionvariablesasinthepreviousappendixEqs.( A{18 )-( A{21 ),theaboveexpressioncanberewrittenas L()A(f`qi;vh(t)vig)=Zd()(LA(f`qi;vh(t)vig))(B{18) where 2hNXi=1virvi;L=` vh(t)L:(B{19) ThisidentiesthegeneratorassociatedwithphasefunctionsinthestationaryrepresentationoftheHCS.

PAGE 148

NextthestationaryrepresentationoftimecorrelationfunctionsovertheHCSensembleisconsidered.Forthispurpose,notethatthemostgeneraltimecorrelationfunctionisathreetimecorrelationfunctionoftheform Changingvariablesintheintegrationoverphasespacesuchthat!t0theaboveequationcanbewrittenas (B{21) =Zdh(;t0)heL(tt0)A()iB() (B{22) Next,achangeofvariablesfromto=nqi AlsorecognizethatforanyfunctionF(fvig)thefollowingidentityholds. 2hs(t;t0)PivirviF(fvig)=Fne1 2hs(t;t0)vio=Fvh(t) Thisallowsthecorrelationfunctionabovetoberewrittenas where 2hs(t;t0)Pivirvi:(B{26) Noticethat @s=S(t;t0)"vh(t0) 2hs(t;t0)L+1 2hXivirvi# =S(t;t0)L

PAGE 149

SinceLisindependentofs,thiscanbeintegrateduptoget Allthephasefunctionsofinterestinthispresentationarehomogeneousfunctionsofthevelocityandhenceonecanwrite (B{30) Usingthis,thetimecorrelationfunctionabovecanbewrittenas where Thisistheclassofdimensionlesscorrelationfunctionsthatisconsideredinthetextinthecontextoflinearresponse. Further,usingthepropertyEq.( A{30 )inthepreviousappendix,anoperatorLcanbeidentiedsuchthat with 2hNXi=1virviandL=` vh(t)L:(B{35)

PAGE 150

andLbeingtheoperatoridentiedinEq.( A{31 )earlier.Hence,thetimecorrelationfunctionabovecanbewritteninthreeequivalentformsas Lsh()B()iA()=Zdh()eLsB()A() (B{36) whichistheresultstatedinthetext. 2{34 )isbasedonscalingrelativetovh(t).Thiswasdonesoastobeabletoposetheoreticalquestionsofinterestinanelegantselfconsistentform.However,thisisinconvenientinpracticesincethecoolingrateisgivenimplicitlyintermsofthestationaryHCS.Instead,thesameanalysiscanbeperformedbyscalingwithaknownfunction!(t)insteadofvh(t);togetaLiouvilleequationintheform whereasearlier`isaconstantcharacteristiclengthinthesystemand ~=(`!(t))3N(;t):(B{38) Deneanewtimevariableby andchoose!(t)tomakethecoecientsofthisequationindependentofs!(t) dt!1(t)1 2~! `

PAGE 151

where~!isanarbitraryconstantthatcanbepickedforconvenience.Thisgives 2~! `t;d~s=2` 2~!NXi=1r~Vi(~Vi~)+e Thisisformallythesameas( B{13 )exceptherethecoolingratehasbeenreplacedbythearbitraryconstant~!,whichmaybechosenforconvenience(e.g.,~!=1). Thereisastationarysolutionto( B{41 )givenby 2~!NXi=1r~Vi(~Vi~)+e Clearly~~!isthesameashwithonlytheunknownvaluehreplacedby~!.However,itispossibletodeterminehfromthechosenvalueof~!andthemeasuredvalueofthesteadystatetemperaturefrom( B{42 ) Thisrelationshipmaybederivedasfollows.Dene ~T(~s)=T(t) i.e.,thetemperature~Tistherealtemperatureexpressedinthearbitraryscalingvariables.Nowconsiderthedynamicalequationassociatedwiththisscaledtemperature, @~s~T(~s)=T(t)@ @~s1 @~sT(t)

PAGE 152

UsingEq.( 2{23 )inthetexttosimplifythesecondtermandEq.( B{40 )abovetosimplifytherstterm,thiscanbewrittenas @~s~!~T(~s)=` !(t)(t)~T(~s):(B{45) Inparticular,usingthescalingformoftheHCSthisbecomes @~s~!~T(~s)=p Integratingtheaboveequationdirectlygives ~T(s)=~!2 hq whichinthelongtimelimitgoestoEq.( B{43 )above.Therefore,inpractice,oneimaginesmeasuring~T(1)ratherthansolvingforhself-consistentlyintheHCSstate.Also,thedierentgeneratorsdenedearlierandthestationaryrepresentationoftwo-timecorrelationfunctionsovertheHCSensemblecanbetranslatedintothislanguageofarbitraryscaling.

PAGE 153

Inthisappendixthemicroscopicbalanceequationsassociatedwiththephasefunctionsfea(k;t)garederivedandtheexplicitformsofthevariousuxesinvolvedareidentied.Therearetwodistinctcasestobeconsidered.Oneisthebalanceequationsassociatedwithdynamicsatt>0,i.e.,forwarddynamics,wherethegeneratoristheLoperatordenedinEq.( A{13 )inAppendixA.Theotheristhebackwarddynamicsfortimet<0thatisgeneratedbytheLoperatordenedinEq.( A{31 )inAppendixA.Bothformsoftheuxeswillprovenecessaryforcomparisonofresultstothoseobtainedintheelasticlimit,wherethetransportcoecientsturnouttobeforwardux-backwarduxtimecorrelationfunctions(seeChapter5inthemaintext).Tobeginwith,thedynamicsfort>0isconsidered. Inthiscasethedynamicsofthephasefunctionsisgivenbyanequationoftheform with 2Xi;jT(i;j)(C{2) where Inwhatfollows,theactionoftheLoperatoronthephasefunctionsofinterestisevaluatedinordertoextractabalanceequationfromtheaboveLiouvilleequation. 144

PAGE 154

Firstconsiderthenumberdensity, TheassociatedLiouvilleequationgoverningitsforwardintimedynamicsis ClearlytheactionoftheToperatoronthisdensityvanishes.Hence, withtheidenticationthat Next,considerthemomentumdensitybg(r)andrecognizethat

PAGE 155

and Nowusethefactthat (bij1)vj=(bij1)vi(C{11) torewritethisas Also, @(rqi+qij)=Z10drr(rqi+qij)qij; andhence Further, (bij1)vj=1 2(1+)(bgij)^:(C{15)

PAGE 156

SubstitutingtheseresultsintoEq.( C{12 )aboveyields 2(1+)(bqijgij)bqijbqijZ10d(rqi+qij)g Puttingallofthistogether,theconservationlawforthemomentumtakestheform with 4(1+)XiXj(qij)(qijgij)jbqijgijj(bqijgij)bqijbqijZ10d(rqi+qij)g wherethersttermisthekineticpartofthemomentumuxandthesecondtermisthecollisionaltransferpart. Finally,considertheenergydensitybe(r)=Pi1 2mv2i(rqi).Inthiscase,theactionofLconsistsof 2mv2j(rqj)=rrXi1 2mv2ivi(rqi)(C{19) andT(i;j)NXk=11 2mv2k(rqk)=(qij)(qijgij)jbqijgijj[bij1]NXk=11 2mv2k(rqk)=(qij)(qijgij)jbqijgijj[bij1]1 2mv2i(rqi)+1 2mv2j(rqj):

PAGE 157

Further, (bij1)v2j=(1+)2 4(gijbqij)2+(gijbqij)(vjbqij) (C{20) and (bij1)v2i= 4(gijbqij)2(gijbqij)(vibqij): ReorderingthedummyindicesinthesumovertheToperatorsandusingtheidentityEq.( C{11 )above,gives 1 2Xi;jT(i;j)Xk1 2mv2k(rqk)=rrm (C{22) wheretheresultingexpressionhasbeensuggestivelyregroupedtodisplaythepartofthecollisionaltermthatcanbewrittenasagradientandanotherpartthatisinherently\local".Thersttermisthepartthatgivestheconventionalheatuxintheelasticlimit.Thesecondtermisthesourcethatgeneratesthelocalcoolingrate.Hence,thebalanceequationassociatedwiththeenergydensitycanbewrittenintheform

PAGE 158

withtheidentication 2mv2ivi(rqi)m and Thatcompletestheidenticationoftheuxesandsourceinthemicroscopicbalanceequationsfortheforwarddynamics. Asimilaranalysiscanbedoneforthebalanceequationsassociatedwiththebackwarddynamicsofthephasefunctions.Thebackwarddynamicsofaphasefunctiona(r)isdenedthroughtheidentity Then,aswasdoneearlier,theformoftheuxeshavetobeidentiedfromthedynamicalequation Theformoftheconservationlawitselfisthesameasearlier,theonlydierencebeingthatthecollisionaltransferpartoftheuxeswillbegeneratedbytheT(i;j)operatorgiveninTable1earlier.Suchananalysisyieldstheformoftheuxesas

PAGE 159

withthesuperscriptonthesequantitiesisusedtodenotethefactthattheyareassociatedwiththebackwarddynamicsequations.Noticethatthesourcetermisnowpositiveaccountingforthefactthatthebackwardtrajectoryofasystemofinelastichardsphereswillbesuchthattheenergyofthesystemincreaseswithtime. Thiscompletestheidenticationofthemicroscopicuxesassociatedwiththephasefunctionswhoseensembleaveragegivesthehydrodynamicvariablesofinterest.Inwhatfollowstheprimaryresultsofthisappendixaretabulated. TableC{1. MicroscopicBalanceEquations DensityBalanceEquation numberdensity@bn(r;t)

PAGE 160

TableC{2. FormsoftheForwardFluxesandSource FluxForwardintimeform momentumuxh(r)Pimvivi(rqi)m1 4(1+)PiPj(qij)(qijgij)(bqijgij)2bqijbqijR10d(rqi+qij) energyuxs(r)Pi1 2mv2ivi(rqi)m energysourcew(r)m TableC{3. FormsoftheBackwardFluxesandSource FluxBackwardintimeform momentumuxh(r)mPivivi(rqi)+m energyuxs(r)m energysourcew(r)m

PAGE 161

Inthisappendix,thespecialfunctions'sthatarethe\microscopicprecursors"tohydrodynamics,i.e.,thosefunctionswhichhavethesamedynamicsasthelinearizedhydrodynamicequationsgiveninthetextinEq.( 4{28 )areidentied.Thestartingpointforthisanalysisisthedeningequationofthehomogeneousreferencestate,namely 2h(t)NXi=1rvi((viu))+ Usingthesamemethodusedin[ 38 ]toderivetheeigenfunctionsassociatedwiththehydrodynamicmodesattheleveloftheBoltzmannequation,thederivativeoftheaboveequationwithrespecttotheparametersofthisensemble,namelythedensity,temperatureandowvelocityareconsidered.First,thederivativewithrespecttothetemperatureTatxeddensity,owvelocity,phasepointandtimetisconsidered. @T Usingtheformof 2@h(t) Next,itisnotedthatthescalingpropertyoftheHCSgivestheproperties 2NXi=1rvi((viu)h)=T@h 152

PAGE 162

Useofthesein( D{3 )givestheidentity 2h(t)@h Inananalogousway,dierentiatingEq.( D{1 )withrespecttothedensitygives 2@h(t) where( D{4 )hasbeenusedinthelastequality.Finally,threemorerelationshipsfollowfromdierentiatingEq.( D{1 )withrespecttothethreecomponentsoftheowvelocity @uh=1 2h@ @uh:(D{7) Itcanbereadilyinferredfromtheabovethat whereKhydT(0)isthetransposeofthegeneratorofthehydrodynamicequationsinthehomogeneouslimitidentiedinEq.( 3{30 )and'sarethefunctions (;s)=(`vh(t))3Nyh(t)@h(;t) wherethedimensionlessformsoftheabovefunctionsaredenedinananalogouswaytothatusedfordistributionfunctionsinEq.( B{5 )inAppendixB.Thisistheresultquotedinthetext. Further,theexpressioninEq.( D{6 )canberearrangedas

PAGE 163

Thus,anequivalentexpressiontoEq.( D{8 )canbeobtainedas where=()(k=0)arethehydrodynamicmodesatk=0giveninEqs.( 3{34 )-( 3{37 )inthetext, 2h;1 2h;1 2h;1 2h;(D{12) and 1=@h 2=@h 3;4;5=vhcs@h withtheirdimensionlessformsdenedthrough (;s)=(`vh(t))3N(;t):(D{16) Therefore,anequivalentcharacterizationofthesespecialfunctionsisthattheyareeigenfunctionsofthescaledLiouvilleoperatorwiththesameeigenfunctionsasthehydrodynamicmodes.

PAGE 164

Inthisappendix,themicroscopicbalanceequationsassociatedwiththenumberdensity,momentumdensityandowvelocityarerewritteninthedimensionlessvariablesgiveninEq.( 2{34 ).Also,thespecialhomogeneousfunctionscharacterizedareusedtogetasetof\adjoint"conservationlawsassociatedwiththefunctions'sdenedinEq.( 4{36 ),thatconstitutethespecialinitialpreparationconsideredinthetext. First,recallthatthemicroscopicbalanceequationsassociatedwiththedensitiesfbn(r);be(r);bg(r)gwerederivedinAppendixCabove.InorderthattheensembleaverageoftheseequationsinthedimensionlessformgoovertothedimensionlesshydrodynamicequationsgiveninEq.( 3{25 )inChapter3earlier,theyarenon-dimensionalizedwithrespecttothehydrodynamiceldsinthehomogeneousstate,i.e., ^n(r)^n(r) (E{1) (E{2) (E{3) Withthischoice,thebalanceequationsinthedimensionlessformbecome (E{4) @s^g1 2h^g+rrh=0 (E{5) 155

PAGE 165

with (E{7) (E{8) Further,thebalanceequationsofinterestarethosethatcorrespondtothelinearcombination 3be3 2bn;bg;(E{10) Considertheparticularlinearcombinationthatcorrespondstoa2.Inthiscase,oneobtains@ @s2 3bebnh2 3be+rr2 3s^g=2 3w E{10 )abovetowrite@a2(r;s) 3s(r;s)^g(r;s)=l(r;s); 3w(r;s)+3 2h2 3be(r;s)bn(r;s)+h@lnh hasbeenintroduced.Or,equivalentlyintheFourierrepresentation, 3esbeg=el(k;s)(E{12) Next,thehomogeneouslimitofthesourcetermel(k;s)ischaracterized.Forthispurpose,rstnotethatfromthedenitionofthecoolingrate,itmustbetruethat 2n(r;t)T(r;t)(r;t):(E{13)

PAGE 166

ConsiderthesecondterminEq.( E{11 )inthehomogeneouslimit.ItfollowsfromthedenitioninEq.( E{13 )that 3 2h2 3bee(0;s)ben(0;s)+h@lnh 2hea2(0)+h@lnh 3w(0)e(0) whereusehasbeenmadeofthefactthath= 3ew(0)(E{15) withthenotation and Hence,ingeneralel(k;s)hasthepropertythat 3ew(0;s);(E{18) i.e.,itisorthogonaltotheinitialpreparationinthelongwavelengthlimit.Thisisjustarestatementofthefactthatinthelongwavelengthlimit,thisinitialpreparationexcitesonlythehydrodynamicmodes,ascanbeinferredbyconsideringtheensembleaverageofEq.( E{12 )above. Insummary,theconservationlawsassociatedwiththechosenphasefunctionsfagindimensionlessvariablestaketheform

PAGE 167

with 3s^g;h(E{20) Next,considertheadjointfunctions(r)denedinEq.( 4{36 )inChapter4as Thedynamicalequationassociatedwiththesefunctionsis Notethatinthehomogeneouslimit, UsingthepropertyinEq.( D{8 )inthepreviousappendix,theabovedynamicalequationcanbewrittenintheform withthedenition for,asestablishedbyEq.( E{23 )above,theabovetermiszeroatk=0andhenceisofleadingorderink. Thiscompletestheidenticationofthedirectandadjointconservationlawsinthestationaryrepresentation.

PAGE 168

Inthisappendix,thedetailsofobtainingtheresultsgiveninChapter4associatedwiththeperturbativeexpansionofthetransportmatrixK(k;s)aregiven. 1.HomogeneousLimit UsingthepropertiesofthefunctionsinAppendixDearlier,itfollowsthat Further,when=1followsfromtheeigenvalueequationthat andhence 159

PAGE 169

Thisequationcanbeintegrateduptogive Also and Hence,thetransportmatrixinthehomogeneouslimitbecomes

PAGE 170

whichispreciselythehydrodynamictransportmatrixidentiedinChapter3.Furthernotethatbyexplicitcalculation,itcanbeconcludedthat ThesepropertiesturnouttobeusefulintheexplicitevaluationofthetransportcoecientsinChapter4andChapter5. 4{72 )inChapter4afteritsintrinsickorderingwasexposedusingthedirectandadjointconservationlawswas (F{10) + (F{11) 3ew(0)

PAGE 171

Theabovefollowsfromthefactthat(1P)projectsorthogonaltothe F{9 )earlierandthedenitionof 4{62 )as that theidentitymatrix.So,asdenedinEq.( 4{53 )inChapter4,calling andidentifyingthecorrespondingtermsfromEq.( F{11 )abovegives (F{18) + 4{73 ) onecanrecognizethat

PAGE 172

(F{23) 4{78 ),Eq.( 4{87 )andEq.( 4{93 )respectively. Next,theexplicitformsofthevariouskexpandedcorrelationfunctionsaboveareconsideredandthenonzerotermsidentied.Firstconsider 4{63 ),itfollowsthat Itisprovedinthefollowingthatthersttermintheaboveequationiszero.Forthispurpose,noticefromtheexpressionsoff(r;s)giveninTable2inAppendixCthattheyaregenericallyoftheform withhbeinganevenparityfunctionwithrespecttointerchangeofindicesiandj.Thus,Fouriertransformingthisequationgives (F{26) =Xij(vi)eikqi+Xi;jhgij;Pij;qijeik(qi+qj) kqij=2:

PAGE 173

NotethatintherstterminEq.( F{24 ),ef(1)isaveragedoverthehomogeneousfunction 1 Hence, asclaimedinthetext. Nowconsiderthecorrelationfunction 4{64 ),itfollowsthat Againasearlierthegenericformoflcanberecognizedtobeoftheform ThereforeduetothesameargumentsasweremadeinthecaseofEq.( F{25 )above,itcanbeconcludedthat 1 andhence asclaimedinthetext.

PAGE 174

Next,considerthecorrelationmatrix 4{64 )thisisrecognizedas (F{33) Thersttermintheaboveequationiszero.Inordertoprovethisconsidertheformofel(k). 3ew(k)+3 2h2 3bee(k)ben(k)+h@lnh Itcanbeseeneasilythattheaboveexpressioncanberewrittenintheequivalentform 3ew(k)ea(k)Zd2 3ew(0) ConsiderZdel(k) 3ew(k)Zd 3ew(0) 3ew(0)k;0Zd2 3ew(0) Hencethisfunctioniszerotoaallordersink.Inparticular 1 Finally,considertheform 4{70 ),itfollowsthat whichistheformgiveninthetext.

PAGE 175

and Theseareprovedbelow. InordertoseethattherelationshipinEq.( F{38 )istrue,notethat andthefunctionseaand ExpandingthesecondequationorderbyorderinkandusingthesphericalsymmetryoftheHCSgivesthedesiredresult. Next,toprovethesecondidentity,expandtherighthandsideoftheaboveequationtogete

PAGE 176

Therefore1P>e ThesearetheresultsusedinthetextinChapter4.

PAGE 177

Inthissection,thedetailsofthederivationofvariousresultsquotedinthetextinChapter5arederived.EachmatrixelementinthetransportmatrixKisconsideredateachorderinktoidentifythetermsidentiedonphenomenologicalgroundsinthehydrodynamictransportmatrixKhydgiveninEq.( 3{25 )inChapter3.BeforetheperturbativeexpansionofKisconsidered,someresultscanbeprovedtobetrueatallorders.First,itisshownthatthecontinuityequationassociatedwiththenumberdensityisshowntocomeoutofthefullKmatrix,toallordersink.Then,itisshownthatthetransversedegreesoffreedomdecouplefromthelongitudinaldegreesoffreedomforallk. Inordertoshowtherstresult,namelythecontinuityequation,considerthepartofthetransportmatrixwhentheobservableisthenumberdensity,namelythe1matrixelements where Carryingoutthetimederivativeandusingtheconservationlawassociatedwitha1resultsin (G{3) 168

PAGE 178

whereusehasbeenmadeofthefactthattheuxassociatedwiththenumberdensityisthemomentumdensity,whichisoneofthehydrodynamicvariablesunderconsideration.Hence whichgivesthecontinuityequationtoallordersink. Next,considerthetransportmatrixelementsassociatedwiththetransversedegreesoffreedom.Forthiscasethecorrelationfunctionofinterestis Whenisoneofthelongitudinaldegreesoffreedomtheonlyothervectorsintheproblemwillbebk's.Therefore,theorthogonalityconditionsbe1bk=0togetherwiththesphericalsymmetryoftheunderlyinghomogeneousstateguaranteesthatallsuchmatrixelementsarezero.Further,sincebe1be2=0also,theaboveequationreducesto Asimilarresultfollowsfortheothertransversedegreeoffreedomaswell.Thus,thetransversedegreesoffreedomdecouplefromthelongitudinalonesandarediagonaltoallordersink.Thiscompletesourgeneralconsiderations.IntherestoftheappendixattentionisfocussedonthekexpandedformsofthetransportmatrixgiveninEqs.( F{20 )-( F{23 )inthepreviousappendix. F{20 )inthepreviousappendixisconsideredtermbytermandthevarioustermsrelatedtothepressureoftheuidareidentied.

PAGE 179

Firstconsiderthe21matrixelement,thisisgivenby Noticethat (G{8) Noticethat Next,considerthe23matrixelementgivenby Asarststeprewritetheabovematrixelementinthelaboratoryvariablestogive 3esi(0)1 @UjZdf2 3esiv2h(t) 2begigh(fqi;viUgi;t) (G{10)

PAGE 180

Next,makeachangeofvariablesintheintegrationsuchthatvi!viUandnotethattheheatuxsandthemomentumdensitygtransformunderaGalileantransformas 3esi+1 2mU2begi+Ujhij+beeUi toobtain 3(hij+^eij)v2hcs andhence 31 3Zdhiih(G{14) ThisistheresultquotedinthetextinEq.( 5{14 ). Nowlookatthe31matixelement, Again,restoringthedimensionstotheaboveequation,thiscanbewrittenas FollowingtheidenticationofthepressureasthetraceofthemicroscopicstresstensoraveragedovertheHCS,itiseasytothatthiscorrespondstotheresultgiveninthephenomenologicallinearhydrodynamicequationsgiveninEq.( 5{1 ),namelythedensityderivativeofthehydrostaticpressure.Similarly,the32matixelementcanbesimpliedtoidentifythatitisthetemperaturederivativeofthepressure.

PAGE 181

G{7 )and( G{8 )thattheonlynonvanishingentryinthispartofthetransportmatixisthe23element.TheformalexpressionofthismatrixelementwasderivedinEq.( 4{91 )earliertobe 3ew(0)1P> 3ew(0)1P> Therststepistoidentifyexplicitlythefunction Further,asobservedinEq.( 4{35 )earlier,thelocalhomogeneouscoolingstateisdenedthrough Hence, Now,inordertoidentifytheinitialconditionthatoccursinEq.( G{17 )intermsofthescaledvariables,notethat and (G{22) =Xlbkrvih()(rqi) (G{23)

PAGE 182

Therefore astheintegratingfactorin ThisistheresultquotedinthetextinEq.( 5{31 ).Further,fromthedenitionoftheadjointuxinEq.( 4{60 ),itfollowsthat ThiscompletestheidenticationoftheadjointdensitiesanduxesassociatedwiththisEulertransportcoecient. Next,notethatitwasshowninAppendixDEq.( E{11 )that (1P)2 3ew(0)=2 3ew(0)+3 2h2 3bee(0)ben(0)+h@lnh where ThusfornotationalsimplicitydeneaquantityWas 3ew(0)=2 3ew(0)+3 2h2 3EN+h@lnh SubstitutingtheseidenticationsinEq.( G{17 )abovegivestheresultinthetextinEq.( 5{24 ).

PAGE 183

4{78 ). Firstnoticethat,asshowninEq.( G{6 )above,therearenoEulertermsinthetransversemodes.Hencethesecondtermunderthetimecorrelationfunctiondropsout.Substitutingtheexplicitformsofthesecorrelationfunctionsgives Toidentifyallthedierentquantitiesintheaboveexpression,rstnotethatthebalanceequation( E{19 )givestheidentication 4(1+)XlXm(qlm) (G{32) G{18 )-( G{24 ),itcanbeshownthat HenceitfollowsfromthedenitionoftheadjointuxEq.( 4{60 )that SubstitutingalltheseidenticationsinEq.( G{31 )abovegives

PAGE 184

Theorthogonalityofbkandbe'sgives=1 10VZdehijMij+Zs0ds01 10VZdehije( 301 30VZdehiie( 4{78 ). 4 3+=bkibkjf Notingthat 4 3+=bkibkjf1 2p@lnph 2p1 Thephasefunction G{25 )aboveinthecontextoftheEulertransportcoecient.SimilarlytheuxisgivenbyEq.( G{26 )earlier.Puttingintheformofthemomentumuxgives 4 3+=bkibkjbki0bkj0f1 with 2p@lnph 2pea2(0)(G{39)

PAGE 185

AppropriatetensorcontractionsoftheaboveexpressionsgivetheresultinthetextinEq.( 5{43 ). 4{78 )andsubstitutingtheformsofthevariouscorrelationfunctionsgives 3p1 (G{40) First,thevarioustermsintheaboveexpressionarerecognizedas 3esibegi=2 31 2XlXm(qlm)(1+)(qlmglm)(glmbqlm)2(Plmbqlm)bqilmgPi:Si Also,recallthat2isdenedinEq.( 4{36 )as This,togetherwiththeformofthelocalhomogeneouscoolingstategiveninEq.( 4{35 )itiseasytoseethat 2Xlrvi(vih(;t))(rqi):(G{43) TransformingthistothedimensionlessvariablesandFouriertransformingwithrespecttorgives 2Xlrvl(vlh())eikql:(G{44)

PAGE 186

Therefore 2Xlrvl(vlh())qil(G{45) and 2Xlrvl(vlh())ql# Forcompactnessofnotation,dene 2Xlrvl(vlh())ql(G{47) SubstitutingtheseresultsintheexpressioninEq.( G{40 )gives 31 3VZdS(S)ie( with 3pPi(G{49) ThisistheresultquotedinEq.( 5{47 )inthetext. =bkibkjf1 3p1

PAGE 187

Thedirectuxefi2isthesameasthatidentiedforthethermalconductivityinEq.( G{41 )earlier.Now,fortheadjointfunctions,rstrecallthat,bydenition Unlikeinthecaseoftemperatureandtheowvelocity,thedensitydependenceofthelocalHCSisnotmadeexplicit.Hence,atthisstagetheidenticationofe(1)j1(0)canonlybeformal.Proceedingasintheearliercases,itiseasytoseethat wherethenewnotationhasbeenintroducedforcompactness.Next,tocalculatethequantities and Finally, Le2(k;s)h@lnh Observingthat2=h G{50 )givesEq.( 5{56 )inthetext.

PAGE 188

Inthisappendix,thederivationoftheGreen-Kuboexpressionforelastichardspheresisoutlined.However,whatisdonehereisnotstrictlyspeakingthe!1limitofthederivedGreen-KuboexpressionsforthetransportcoecientsgiveninChapter5ofthiswork.ThisisbecausetheHCSensembleintheelasticlimitgoesovertoaxedmomentummicrocanonicalensemble.Thelinearresponseprocedureasoutlinedinthisworkistechnicallycomplicatedforaclosedensembleofthisform.SincetheelasticlimitexpressionsforthevarioustransportcoecientsareusedasaguidetothephysicalcontentoftheGreen-Kuborelationsfor6=1,advantageistakenofthefactthatphysicalobservablescalculatedusinganyoftheequilibriumensemblesgivesthesameresultinthethermodynamiclimitandtheGrandCanonicalEnsembleisusedtoderivethedesiredresults. Recallthatthelocalgrandcanonicalensembleisoftheform[ 37 ], wheretheparametersoftheensemblearedenedas 2mU2;=1 179

PAGE 189

Also,W()istheexcludedvolumefactordenedinEq.( A{17 )inAppendixA.Further,theensemblecanbewritteninanequivalentformas wherethedensitiesbn(r),be(r)andbg(r)areasdenedinEq.( 4{6 )andthenormalizationconstantQLisdeterminedasearlier. Startingfromthislocalstate,thevariousquantitiesthatdeterminetheadjointfunctionsandtheirassociateduxesarerstcalculated.Recallthattheadjointfunctionsaredenedthrough where Butthenaturalindependentvariablesforthegrandcanonicalensembleare Firstconsiderthecase=1.Thehydrodynamiceldhereisthedensity.Inthiscase (r0)jeq;T (r0) (r0) whereusehasbeenmadeofthefactthat (r0)jeq;T=hbn(r)bn(r0)ieqgnn(rr0):(H{8)

PAGE 190

Next,consider=2.Inthiscase, whereusehasbeenmadeoftheidentitythat togetherwiththerecognitionthat andtheanalogousrelationinEq.( H{8 )above.But,usingtheexplicitformofthegrandcanonicalensembleinEq.( H{1 )above,itiseasytoseethat 2n(r)T(r)(H{12) Andhencethecorrelationfunctionsabovecanbecalculateddirectlytogive 2Tbn(r)G:C(H{13) Finallyconsiderthederivativeswithrespecttotheowvelocity.Inthiscasetheresultis

PAGE 191

Insummarytheadjointfunctionsare 2Tbn(r)G:C wherevh=q m,asinthecaseoftheinelasticparticles. Itiseasytoseethatthesefunctionsarebi-orthogonaltothesetofphasefunctionsa(r)denedearlierinEq.( 4{6 ).Further,forthepurposeofevaluatingthetransportcoecientstheFouriertransformedformsofthese'sarerequired.Forthecaseof1itfollowsfromEq.( H{15 )that Inordertorecognizethekdependentprefactor,notethat wheregontherighthandsidedenotestheequilibriumpaircorrelationfunction.Dene

PAGE 192

Then,itfollowsthat Therefore TheotherfunctionsintheFourierrepresentationbecome 2Tben(k)G:C Further,forthepurposesofevaluationofthetransportcoecients,itissucienttoknowthesefunctionsupthroughlinearorderinkintheirFourierrepresentation.Theseturnouttobe =S11 whereithasbeenrecognizedthatthepre-factorintheaboveequationispreciselytheinverseofthestaticstructurefactorfortheuidinthehomogeneouslimit[ 72 ].Also, 2Tben(0)G:C=Xip2i 2 wherePisthetotalmomentuminthesystem.Further,makinguseofthefactthattheuidissphericallysymmetric,theabovefunctionstolinearorderinkare 2(H{30)

PAGE 193

and ThesearetheresultsusedinthetextinChapter5.

PAGE 194

Inthisappendix,someofthedetailsassociatedwiththekinetictheoryoftimecorrelationfunctionsdescribedinChapter6aregiven. 6{35 )inChapter6isproved.FromthedenitionofthepaircorrelationfunctiongiveninEq.( 6{32 ),itcanbeseenthatthefunctionalderivativeofthisfunctionwithrespecttothedensitygives (I{1) wherethethreeparticlecorrelationfunctionisdenedas (I{2) Allthefunctionalderivativesintheaboveexpressionsareunderstoodtobeevaluatedatthetruehomogeneousequilibriumstate.Therefore,oneneedstoidentify(q1) 185

PAGE 195

this,considerrstthedenitionofdensityinthelocalgrandcanonicalensemble, (N1)!ZdX2:::dXNW()expQL+Xi>1"(qi)(qi)(qi)(pimU(qi))2 CarryingoutthefunctionalderivativewithrespecttothechemicalpotentialandcomparingtheresultingexpressionwiththedenitionofthepaircorrelationfunctioninEq.( 6{32 )givestheresult (I{4) wherethepaircorrelationfunctionisnowthatofthetrueequilibriumstateandhenceistranslationallyinvariant.Next,notethattheOrnstein-Zernickeequationrelatesthepaircorrelationfunctiontothedirectcorrelationfunctionc(r)as whereh(r)=g(r)1,thepaircorrelationfunctionwithitsasymptoticvaluesubtractedout.Usingthis,itcanbeinferredfromEq.( I{4 )that Now,substitutethisidenticationinEq.( I{1 )abovetoconcludethat (I{7) whichistheresultquotedinthetextinEq.( 6{35 ).

PAGE 196

6{61 ),thegeneratorofdynamics 2hrvv+vrqIE(I{8) withIEbeingtheoperatorgiveninEq.( 6{47 )inthetext.Forthepurposeofidentifyingtheinvariantsofthisoperator,notethattheoneparticlehomogeneouscoolingstatef(1)hisdeterminedbytheEnskogkineticequationoftheform 1 2hrv1v1f(1)h(v1)=JEhf(1)h;f(1)hi(I{9) where Theoneparticlestateisparameterizedbyhomogeneoushydrodynamiceldsn;TandUthrough 2h;f(1)h=nv3hhvU AswasdoneinthecaseoftheeigenvalueproblemfortheNparticleLiouvilleoperator,dierentiatingEq.( I{9 )withrespecttotemperature,owvelocityanddensity,andusingEq.( I{11 )togetherwiththerecognitionthat 2rv1v1f(1)h;(I{12)

PAGE 197

andthattheactionofthelinearizedEnskogoperatorinEq.( I{8 )onspatiallyhomogeneousstatesis @n1 2hrv1(v1h(v1))Zdv0'(v0): givestheresult 2hrvvIE1 2rv1v1h=1 2h1 2rv1v1h;(I{15) 2hrvvIE(rvh)=1 2h(rvh)(I{16) and 2hrvvIEh=1+@lng() 2hrv(vh)=h@lnh 2rv1v1h Insummary,theresultis 2hrvv+vrqIE'(v)=KhydT'(v);(I{18) where 2rv(vh);rvh:(I{19) ThisistheresultquotesinthetextinEq.( 6{65 ). 6{60 )inthetextisgiven.AsstatedinChapter4,theHelfandexpressionsofallthetransport

PAGE 198

coecientsareoftheform Ls()C(s)(I{20) where withthephasefunctionsea(0)beingsumsofsingleparticlefunctionsoftheformea(0)=Xia1(v1);a1=1;2 3v213 2;v1 Hence,thetransportcoecientconsistsoftwotimecorrelationfunctionoftheform with Ls()C(s)(I{24) and Ls()C(s)1 ThereducedformofFisasobtainedinEq.( 6{50 )inthetext.Also,usingthepropertythatea(0)isasumofsingleparticlefunctions,itfollowsthat Ls()C(s)=limn`3ZdX0fa1(v) (I{26) LE+KhydTis(1)X0g

PAGE 199

Nowconsider wheretheformoftheuxfhasbeenusedtoexpressthecorrelationfunctionintermsofaveragesovertheoneandtwoparticlefunctionsintheBBGKYhierarchyassociatedwiththefunctiongiveninEq.( I{22 ).Inparticular (I{28) and Observethatthecollisionalpartoftheuxf2isgeneratedbytheactionofaToperatoronafunctionofthephasepointassociatedwithoneparticle.Therefore,itissucienttospecifyf(2)lhontheprecollisionhemisphere.ThenthekernelKaboveisthesameastheoneidentiedinEq.( 6{46 )fortheadjointfunctions(2):Usingtheidenticationof(1)'sinthecontextoftheeigenvalueprobleminthe

PAGE 200

previoussection,Eq.( I{27 )becomes whereg(X1)isthefunctionidentiedinEq.( 6{20 )inthetext.Therefore, LE+KhydTis(1)X0=ZdX1P(1)g(X1)exph LE+KhydTis(1)X0 Andnally LE+KhydTis(1)X0 whichistheresultquotedinthetext. (1)(X)=bkkbe1lqkrvlh(v)(I{33) Theaimhereistoevaluatetheoneparticleuxoccurringinthistransportcoecient,namely 2hrvv+vrqIEKhydT(1)(X):(I{34) Notethatthistransportcoecientisdeterminedbythe44matrixelementassociatedwiththetransportmatrixK,andhenceKhydT=h=2.First,evaluate

PAGE 201

theactionofthelinearizedEnskogoperatoronthefunction(1): Allthevariablesontherighthandsideoftheaboveequationareunderstoodtobeindimensionlessform.The*'shavebeensuppressedforcompactnessofnotation.Therstsimplicationistheobservationthatthemeaneldterminthelastlineoftheaboveequationdropsout.Further,thecollisionoperatortermscanberegroupedandwrittenas where Therefore,theadjointuxbecomes 2hrv0v0IE+h=2'4(v0)+bkkbe1lv0krv0lh(v0)+Qkrv0lh(v0) TheeigenvaluepropertyestablishedinEq.( I{18 )aboveshowsthatthersttermintheaboveexpressionvanishes.Hence,theresultgiveninthetextinEq.( 6{84 )isobtained.

PAGE 202

Next,toidentifythereducesformofthetimecorrelationpartofthetransportcoecient.Notethatthedirectuxjinvolvedinthistransportcoecientis 31 4(12)XlXm6=l(qlmglm)(glmbqlm)3(qlm);(I{40) thesourceinthemicroscopicenergybalanceequationgiveninTableC-2.Therefore,usingtheformofthekernelKinEq.( 6{46 )thecorrespondingreduceduxbecomes 3n`3ZdX1dX21 4(12)(q12)(q12g12)(g12bq12)3fh(X1X0)g(q12)f(1)h(X2)+(X2X0)g(q12)f(1)h(X1)i+g(q1;q2) 31 4 (I{41) Alsoobservethattheadjointuxisthesameasthatidentiedinthecontextofshearviscosityearlierandinthiscase,iscontractedto 3vkrvkh(v)+Qkrvkh(v)(I{42)

PAGE 203

whereQkhasbeendenedearlierinEq.( I{37 ).Inwhatfollows,the'sonthedimensionlessphasepointsissuppressedfornotationalcompactness. 31 4 LE+h 3v0krv0kh(v0)+Qkrv0kh(v0) ThisidentiesthespecicfunctionsthatgointothegeneralreducedGreen-KuboexpressiongiveninEq.( 6{69 )forthisparticulartransportcoecient. Firstnoticethatthepresenceoftheprojectionoperatorensuresthattheconstantpartofthedirectuxdoesnotcontribute.Nexttheactionoftheprojectionoperatorontheadjointuxisevaluated.Inthiscase,itiseasytoverifythat Therefore,onlythecollisionalpartcontributes.Theactionoftheprojectionoperatoronthispartcanbeevaluatedasfollows.Firstnoticethat (I{45) Henceonlythetermintheprojectionoperatorthatisalongtheenergycontributes.Furtherusingthefactthat 4(1+)2(bg)2(1+)(bg)bv1;(I{46)

PAGE 204

thiscanbeevaluatedas 3Qkrv0kh(v0)=1 2rv0(v0h)n`3g()22 31 12Zdv2Zdv1Zd^h(v1)h(v2)(1+)[13](bg)2(g12b) (I{47) ComparingthiswiththedenitionofthecollisionalpartofthepressuregiveninChapter5,itfollowsthat 3Qkrv0kh(v0)=pC13 SubstitutingtheaboveresultsinEq.( I{43 )aboveyields 31 4 (I{49) with LE+h 3v0krv0kh(v0)+Qkrv0kh(v0) Puttingintheevaluatedformsofthesubtractedadjointuxandusingargumentsalongthelinesdetailedinthecaseoftheshearviscositytorecognizethatthefreestreamingandthemeaneldtermsinthecollisionoperatorgeneratingthedynamicsdropout,thefollowingresultcanbeobtained, 2hrvv+g()IB+h where 3Qkrv0kh(v0)pC13

PAGE 205

Further,Eq.( I{51 )canberecastasanintegralequationsuchthatthefunctionDisasolutiontotheequation 2hrvvg()IBh ThiscompletestheformalanalysisofthistransportcoecientatthelevelofEnskogkinetictheory.Inordertocomparethisexpressiontotheoneobtainedin[ 68 ],theactionoftheprojectionoperatorneedstobeunfolded.Forthispurposerstnotethatitcanbeveriedbydirectevaluationthat 2hrvvh Next,observethat 3v23 2IBD(v)=g()2n`31 2Zdv12 3v213 2Zdv2Zd^(g12b)(g12b)f2b112[(1)h(v1)D(v2)+(1)h(v2)D(v1)]h(1)h(v1)D(v2)+(1)h(v2)D(v1)ig=g()21 612n`3Zdv1Zdv2Zd^(g12b)(g12b)3(1)h(v1)D(v2)=n2g()2 (I{55) Usingthisfact,theprojectionoperatorcanbeevaluatedandEq.( I{53 )canberewrittenas 2hrvvg()IBh 2rv(vh)=D(v)(I{56)

PAGE 206

wherethenotationTCU(D)denotesthetimecorrelationpartofthetransportcoecientinEq.( I{51 )above.ThiscompletesthecharacterizationofthetransportcoecientU: 2(1+)3n`3g()4 3Trvivj=1+1 2(1+)3n`3g()4 Clearlytheactionoftheprojectionoperator(1P)onthistermvanishes.Hencetherearenokineticcontributionstothebulkviscosity.Asfortheinstantaneouspart,thatisthecollisionaltransfercontribution,ithasbeenshowninChapter5that 3inst:(I{58) ThereforethecollisionaltransferpartcanbeidentiedusingEq.( 6{86 )earlier.ThiscompletestheanalysisoftheEnskogevaluationofthebulkviscosity. 5{54 )as 18`3nh4(1+)Zdbdg12dP12f2(g12b)(P12b)2+1 2(g12b)3g(bg12)f(2)h(;v1;v2):

PAGE 207

SubstitutingtheEnskogclosureforthetwoparticledistributionfunctionandevaluatingtheangularintegralsgives 2bgbP+1 4g3 Thisisthecollisionaltransferpartofthethermalconductivity. Next,letusconsiderthetimecorrelationpartofthistransportcoecient.ThedirectuxinthereducedrepresentationofthetimecorrelationfunctioncanbeidentiedusingthekernelKgiveninEq.( 6{46 )tobe 3v21vi12 3(1+)g()`3nhZdX2(q12)(q12g12)(g12bq12)2(P12bq12)bqi12(v2)=2 3v21vi11+ Also,bydirectevaluation,itiseasytoseethat 3vi1v215 21+ Further,asnotedinChapter6,theadjointdensityofinteresthereis (1)(X)=qk1 2rv(vh(v))(I{63) Theadjointuxoccurringinthetimecorrelationfunctionisrelatedtothedensityby 2hrvv+vrqIEKhydT(1)(X):(I{64) Proceedingexactlyasinthecaseoftheshearviscosityearlier,itiseasytoseethat 2rv(vh(v))+1 2Qk[rv(vh(v))]+q1 2hrvvIEh=2'2(v) (I{65)

PAGE 208

ThesecondtermvanishesbytheeigenvaluepropertyoftheEnskoggeneratorestablishedinEq.( I{18 )earlierinthisappendix.Therefore 2rv(vh(v))+1 2Qk[rv(vh(v))](I{66) Next,theactionoftheprojectionoperatoronthisuxisevaluated.Forthispurposenotethat 2Qk[rv(vh(v))]=(rv)g()31 6Zdv1Zdv2Zdb(g12b)(g12b)(v1b)1 (I{67) Usethefactthat 2(1+)(g12b)(I{68) toget 2Qk[rv(vh(v))]=(rv)g()31 12(1+)Zdv1Zdv2Zdb(g12b)(g12b)2h(v1)rv2(v2h(v2)) (I{69) Integratebypartsandsymmetrizewithrespecttothedummyindices1and2toget 2Qk[rv(vh(v))]=(rv)g()31 12(1+)Zdv1Zdv2Zdb(g12b)(g12b)2h(v1)h(v2) (I{70) ComparingthiswiththedenitionofthecollisionalpartofthepressuregiveninChapter5leadstotheidentication 2Qk[rv(vh(v))]=(rvh)pC(I{71)

PAGE 209

Also 2rv(vh(v0))=(rvi)1 2Zdvvivkrv(vh(v))=rvihpk Therefore 2rv(vh(v))+1 2Qk[rv(vh(v))]prvkh(I{73) PuttingalloftheaboveresultstogethergivesthethermalconductivityintheEnskogapproximationas 3Zdv1vi1v215 2Ai(v)(I{74) whereinstisasidentiedearlierinEq.( I{60 )andA(v)isasolutiontoanintegralequationoftheform 2hrvvg()IBh 2rv(vh(v))+1 2Qk[rv(vh(v))]prvkh Inobtainingtheaboveresults,argumentsalongthelinesdetailedinChapter6inthecontextofshearviscositytoconverttheIEinthegeneratorofdynamicstotheg()IBoccuringintheaboveequation.Thiscompletestheformalanalysisofthethermalconductivity.

PAGE 210

thereducedonebodyuxis 3v21vi12 3(1+)g()`3nhZdX2(q12)(q12g12)(g12bq12)2(P12bq12)bqi12(v2) Next,notethattheadjointdensityofinteresthereis (1)(X)=qh(v)(I{76) Thustheinstantaneouspartofthistransportcoecientis 3v21vi1qi1h(v1)2 3(1+)g()`3nhZdX1ZdX2(q12)(q12g12)(g12bq12)2(P12bq12)bqi12(v2)1P(1)>qi1h(v1) (I{77) ClearlybothtermsvanishbecauseofthesphericalsymmetryoftheHCSdistribution(bothtermshaveanunaccompaniedpositioncoordinateintegratedoverallspace).Therefore Nextconsiderthetimecorrelationpartofthetransportcoecient.Inthiscase,aswasnotedinChapter5,therearetwotimecorrelationfunctions.Butisifthelinearcombination2@lnh (1)(X)=qh(v)2@lnh 2rv(vh(v)):(I{79) Sincetheaimhereistoobtaintheadjointuxasasolutiontoanintegralequation,itturnsouttobemoredirecttoconsiderthislinearcombination.Thedirectpartisthesameasdeterminedinthecaseofthermalconductivity.Hence,

PAGE 211

inwhatfollowsattentionisfocussedontheadjointpartofthetimecorrelationfunction.Firstnotethat 2hrvv+vrqIEqh(v)=q1 2hrv(vh(v))+vh(v)IE(qh(v))(I{80) Considerthelastterm.Itcanbeunfoldedas where (I{82) and Notethat @n

PAGE 212

Nowfocusontherstterm.ExpressthecoordinatesofthetwoparticlesintermsofthecenterofmassandtherelativevariablestogetZdq0(q0q1)F(q1+q0;q0q2)=Zdq0q0R+r @n ButfromthepreviousargumentitmustfollowthatFisanevenfunctionofbqbr.Thereforethistermmustbezero.Usingtheaboveresults,themeaneldterminEq.( I{81 )becomesZdq0

PAGE 213

CarryingouttheangularintegrationsintheaboveexpressionandsubstitutingtheresultinEq.( I{81 )abovegives 2hrvv+vrqIEqh(v)=qk1 2hrv(vh(v))+vh(v)qkg()IBh(v)qk@lng() 2@lng() (I{86) Fromtheanalysisdoneintheprevioussection,itfollowsthat 2hrvv+vrqIEq1 2rv(vh(v))=q1 2hrvvIE1 2rv(vh(v))+v1 2rv(vh(v))+1 2Qk[rv(vh(v))] (I{87) Therefore 2hrvv+vrqIEqh(v)2@lnh 2rv(vh(v))=vkh(v)+1+@lng() 2@lng() (I{88) Thisistheadjointuxinthetimecorrelationfunction.Further,theactionoftheprojectionoperatoronthisuxcanbeevaluatedexactlyasinthecaseofthethermalconductivitytogive 2@lng()

PAGE 214

Puttingalloftheaboveresultstogether,oneobtains 3Zdv1vk1v215 2Bk(v) (I{90) whereinstisasidentiedintheprevioussectionofthisappendixandBisasolutiontoanintegralequationoftheform 2hrvvIEBk(v)=vkh(v)+1+@lng() 2@lng() 2@lng() ThiscompletestheformalanalysisoftheEnskoglimitofthecoecient. Notethat,forallofthetransportcoecientsabove,inordertocarryoutatermbytermcomparisonoftheintegralwiththeresultsgivenin[ 68 ],anadditionalstepisnecessary.Theintegralequationsinthatworkaresolvedinasubspacethatisorthogonaltotheonedenedbyaprojectionoperatoroftheform wheretheA'sareasdenedinEq.( 6{64 )earlierandN'sareappropriatenormalizationconstants.Butnoticethatthisorthogonalprojectioncanbeintroducedwithoutlossofgeneralityintheintegralequationsaboveusingthereadilyveriableidentity (1Pk)1P(1)=1P(1):(I{93)

PAGE 215

ThatconcludesthedetailsoftheEnskogevaluationofthedierenttransportcoecients.

PAGE 216

[1] EnnisB.J.,J.GreenandR.Davis,ParticleTechnology90,32(1994). [2] KnowltonT.M.,J.W.Carson,G.E.Klinzing,andW.C.Yang,ParticleTechnology90,44(1994). [3] M.H.Cooke,D.J.StephensandJ.Bridgwater,PowderTechnology15,1(1976) [4] R.L.BrownandJ.C.Richards,Principlesofpowdermechanics,Pergamon,Oxford(1966). [5] J.Geng,E.Longhi,P.P.BehringerandE.W.Howell,Phys.Rev.E,64,60301(2001) [6] J.F.DavidsonandR.M.Nedderman,Trans.Inst.Chem.Eng.51,29(1973) [7] G.W.Baxter,R.LeoneandR.P.Behringer,Europhys.Lett.21,569(1993) [8] J.Duran,J.RajchenbachandE.Clement,Phys.Rev.Lett.70,2431(1993) [9] O.Zik,D.Levine,S.G.Lipson,S.ShtrikmanandJ.Stavans,Phys.Rev.Lett.73,644(1994) [10] G.Metcalfe,T.Shinbrot,M.M.McCarthyandJ.M.Ottino,Nature374,39(1995) [11] O.R.WaltonandR.L.Brown,J.Rheol.30,949(1986) [12] C.Liu,S.R.Nagel,Phys.Rev.B,48,15646(1993). [13] C.S.O'Hern,S.A.Langer,A.J.Liu,S.R.Nagel,Phys.Rev.Lett.86,111(2001). [14] S.F.EdwardsinGranularMatter-AnInterdisciplinaryapproach,A.Mehtaed.Springer,NewYork(1994). [15] S.F.Edwards,C.C.Mouneld,PhysicaA,226,25(1996). [16] P.Bak,C.TangandK.Wiesenfeld,Phys.Rev.Lett.59,381(1987). [17] A.J.LiuandS.R.Nagel,Nature396,21(1998). [18] M.E.Cates,J.P.Wittmer,J.P.BouchaudandP.Claudin,Phys.Rev.Lett.81,1841(1998). 207

PAGE 217

[19] HKing,RWhite,IMaxwell,NMenon,cond-matt/0209490. [20] L.E.Silbert,D.Ertas,G.S.Grest,T.C.Halsey,DLevineandS.J.Plimpton,Phys.RevE.64,051302(2001). [21] C.S.Campbell,AnnualReviewofFluidMechanics,22,57(1990). [22] I.Goldhirsch,AnnualReviewofFluidMechanics,35,267(2003). [23] [24] J.J.Brey,D.Cubero,Phys.Rev.E.,54,3664(1996). [25] J.T.JenkinsandM.W.Richman,Phys.Fluids28,3485(1985). [26] J.J.Brey,J.W.Dufty,C.S.Kim,A.Santos,Phys.Rev.E.,58,4638(1998). [27] T.P.C.vanNoije,M.H.Ernst,GranularMatter,1,57(1998). [28] M.H.ErnstandR.Brito,J.Stat.Phys.,109,407(2002). [29] M.P.AllenandD.J.Tildesley,Computersimulationofliquids,OxfordUniversityPress,USA(1988). [30] G.A.Bird,MolecularGasDynamicsandtheDirectSimulationofGasFlows,OxfordUniversityPress,USA(1994). [31] J.J.Brey,M.J.Ruiz-Montero,andF.Moreno,Phys.Rev.E55,2846(1997). [32] P.A.ThompsonandG.S.Grest,Phys.Rev.Lett.67,1751(1991) [33] S.McNamara,W.R.Young,Phys.Fluids.A,4,3(1998). [34] J.J.Brey,M.J.Ruiz-Montero,andF.Moreno,Phys.Rev.E.,63,061305(2001). [35] S.A.HillandG.F.Mazenko,Phys.Rev.E67,061302(2003) [36] C.Bizon,M.D.Shattuck,J.B.Swift,W.D.McCormick,andH.L.Swinney,Phys.Rev.Lett,80,57(1998). [37] J.A.McLennan,IntroductiontoNonequilibriumStatisticalMechanics,(Prentice-Hall,NewJersey,1989). [38] J.J.BreyandJ.W.Dufty,Phys.Rev.E72,011303(2005). [39] A.BaskaranandJ.DuftyinModellingandNumericsofKineticDissipativeSystemseditorsL.Pareschi,G.Russo,andG.Toscani,(NovaScience,NewYork,2005). [40] V.GarzoandJ.W.Dufty,Phys.Rev.E59,5895(1999).

PAGE 218

[41] C.Huan,X.Yang,D.Candela,R.W.Mair,andR.L.Walsworth,Phys.Rev.E69,041302(2004). [42] J.J.Brey,J.W.Dufty,andA.Santos,J.Stat.Phys.87,1051(1997). [43] J.Dufty,J.J.BreyandJ.Lutsko,Phys.Rev.E65,051303(2002). [44] J.Lutsko,J.Dufty,andJ.J.Brey,Phys.Rev.E65,051305(2002). [45] I.Goldhirsch,T.P.C.vanNoije,Phys.Rev.E61,32413244(2000). [46] B.J.Alder,D.M.Gass,andT.E.Wainwright,J.Chem.Phys.,53,3813(1970). [47] B.J.AlderandT.E.Wainwright,Phys.Rev.A1,18(1970). [48] J.P.BoonandS.Yip,MolecularHydrodynamics,McGraw-Hill,NewYork(1980). [49] T.PoschelandN.V.Brilliantov,Kinetictheoryofgranulargases,Oxford(2005). [50] T.P.C.vanNoijeandM.H.Ernst,inGranularGases,eds.T.PoschelandS.Luding(Springer,NY,2001). [51] J.Lutsko,J.Chem.Phys.120,6325(2004). [52] JamesW.Dufty,AparnaBaskaran,LorenaZogaib,Phys.Rev.E,69,051301(2004). [53] J.F.Lutsko,Phys.Rev.E63,061211(2001). [54] P.K.Ha,JournalofFluidMech.,134,401(1983). [55] L.Onsager,Phys.Rev.,37,405(1931). [56] C.Josserand,A.V.Tkachenko,D.M.Mueth,andH.M.Jaeger,Phys.Rev.Lett.,85,3632(2000). [57] APuglisi,ABaldassarri,VLoreto,Phys.Rev.E66,061305(2002). [58] G.D'Anna,P.Mayor,A.Barrat,V.LoretoandF.Nori,Nature,424,909(2003). [59] A.Baldassarri,A.Barrat,G.DAnna,V.Loreto,P.MayorandA.Puglisi,cond-matt/0501488. [60] N.Xu,C.S.O'Hern,Phys.Rev.Lett,94,055701(2005). [61] J.W.DuftyandV.Garzo,J.Stat.Phys.,105,723(2001).

PAGE 219

[62] P.M.Chaikin,T.C.Lubensky,PrinciplesofCondensedMatterPhysics,Cambridge(1995). [63] E.C.Rericha,C.Bizon,M.D.Shattuck,andH.L.Swinney,Phys.Rev.Lett.88,014302(2002). [64] S.McnamaraandW.R.Young,Phys.Rev.E,50,R28(1994). [65] I.Goldhirsch,G.Zanetti,Phys.Rev.Lett.,70,1619(1993). [66] J.J.Brey,M.J.Ruiz-Montero,Phys.Rev.E,69,011305(2004). [67] J.W.Dufty,MolecularPhysics,100,2331(2002). [68] V.Garzo,J.W.Dufty,Phys.Rev.E59,5895(1999). [69] J.H.FerzigerandH.G.Kaper,Mathematicaltheoryoftransportprocessessingases,Elsevier,NewYork(1972). [70] L.Groome,K.GubbinsandJ.W.Dufty,Phys.Rev.A,13,437(1976). [71] J.F.Lutsko,J.Chem.Phys,120,6325(2004) [72] P.ResiboisandM.DeLeener,ClassicalKineticTheoryofFluids,WileyInterscience,NewYork(1977). [73] J.W.DuftyandJ.J.Brey,inModellingandNumericsofKineticDissipativeSystemseditorsL.Pareschi,G.Russo,andG.Toscani,(NovaScience,NewYork,2005). [74] J.W.Dufty,A.BaskaranandJ.J.Brey(inpreparation,tobesubmittedforpublicationinPhys.Rev.E).

PAGE 220

AparnaBaskaranwasbornonthe12thofMay1979inChennai,India.ShedidherschoolinginNewDelhi,ChennaiandCoimbatore.ShethenwenttoPondicherryUniversity,fromwhereshegraduatedinApril2001withaMasterofScienceinPhysics.AparnacametotheUniversityofFloridainthefallof2001.ShehasbeenworkingwithProfessorDuftyfromthesummerof2002.SheexpectstocompleteherPh.DinMay2006. 211


xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID E20110218_AAAACQ INGEST_TIME 2011-02-18T16:26:58Z PACKAGE UFE0013684_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES
FILE SIZE 8423998 DFID F20110218_AABQQA ORIGIN DEPOSITOR PATH baskaran_a_Page_206.tif GLOBAL false PRESERVATION BIT MESSAGE_DIGEST ALGORITHM MD5
df89a0df288516d36d05e1c88687a9f4
SHA-1
28aff385d8e3391a34637f5005c32596b99d1fe0
F20110218_AABQQB baskaran_a_Page_208.tif
02c2bd0723866eaa73b8e69159df5309
5810939da3582f48fd0542db8d37c15f2bb7ef2d
F20110218_AABQQC baskaran_a_Page_210.tif
9e8defe01580d7a482b16a56ffa64ef3
bf9c2298f4b72793a695aeb8831f7d942137bec0
F20110218_AABQQD baskaran_a_Page_211.tif
5a4ead2535a6398f70cd2ee3d870d036
cc240bab81a1afd2c88006328c81659ae83a2edf
F20110218_AABQQE baskaran_a_Page_212.tif
914580339cdcdc686401ac5774dd7625
4f8d108a00ddfd6c470330aa778ca458a83e6633
F20110218_AABQQF baskaran_a_Page_213.tif
9e1eb47ebd9d8d693470ddad1df46e63
4a1af0f7981b39ac85c88d55fcbee855bf11e005
F20110218_AABQQG baskaran_a_Page_214.tif
e543e7d6e855c330a55c054140a6be5b
ffe82ab6cb0d02ee896a2da234b21c23e0aec2f3
F20110218_AABQQH baskaran_a_Page_218.tif
9b567aa93e0e5746ea9bbd0ba40c6046
ab6439a43082a07f4e220a995ba2f6f0f3291753
13899 F20110218_AABRNA baskaran_a_Page_160.QC.jpg
2aaca68e6444751615464baf38ca1689
3af46937ed0b2be57d4425980c2598b576c3aaa9
F20110218_AABQQI baskaran_a_Page_219.tif
2c8b31d7cc35a30a168fbf9826b5bbb5
3a30655ccc02fb08ca4f4e33aa07a48362137814
54438 F20110218_AABRNB baskaran_a_Page_161.jpg
df21970debd0e52b749b07c778c30632
9673f950aa447075424cf8cac733561f06fe8e6d
110 F20110218_AABQQJ baskaran_a_Page_002.txt
417eff67f3f782392fecc08c4342ef47
4bfe01b156404f3cf390f26868e85ce071076778
48595 F20110218_AABRNC baskaran_a_Page_162.jpg
0d12471ed98b3f07a292c8ad7269d2ec
87afd17a0e99f8380696b535eca0a75b5ee8cf80
84 F20110218_AABQQK baskaran_a_Page_003.txt
142fc2bfe94c3f4aeff032dd11e57219
3d22619d647576b25f23692bfbf8288530d68f2c
14999 F20110218_AABRND baskaran_a_Page_162.QC.jpg
e25ecbe73fa0916d9fc6502856dc5237
1dfaa421bc76acc267018557c47ebd0e8d6b57a7
885 F20110218_AABQQL baskaran_a_Page_004.txt
018f628538ff7cfd8e185ce1e3129c3c
729eb250949f44f6eb21ec7466972c31284eb754
31790 F20110218_AABRNE baskaran_a_Page_163.jpg
93e79b2f77bc8838b9e3e712852923fb
f89f443202e346a5275e3e7bad9aa811230085ab
20129 F20110218_AABQDA baskaran_a_Page_086.QC.jpg
e5af8d175b16acc77de52afeb6636e57
9efe468bef2f942c842671491854cb2b4b3240f5
2369 F20110218_AABQQM baskaran_a_Page_005.txt
a84842044b21269569df1d45a9c0c487
af53e0c945bbc2a6ca91f48d900058d5f62d7d23
9747 F20110218_AABRNF baskaran_a_Page_163.QC.jpg
aa70328cf33c8148e1160da8a8fec9e0
8001da340c29054b74a328fca3e01fc2e73669df
17765 F20110218_AABQDB baskaran_a_Page_096.QC.jpg
a908a2cb891a08fa9ead405cc86648c8
f067d907d7cdf3efaaa6766544c14fa74ba5c7c6
434 F20110218_AABQQN baskaran_a_Page_007.txt
33e10992315353a1de5ff97f6f5ec2c5
0e0072dc57425d4a052019dcdf346c56d2044d47
56426 F20110218_AABRNG baskaran_a_Page_164.jpg
802eb94029e95248b0856aecf6ba66e3
59da2d67394155dc20b0227f1cf88f92cea91a84
1853 F20110218_AABQQO baskaran_a_Page_008.txt
1e5b607f703454556b234e1f62dd0d23
1bf9c03b50f1cbf7222d0e98895de10b1f05d809
16969 F20110218_AABRNH baskaran_a_Page_164.QC.jpg
3738ab10676f9b62f63afb304e1700de
28b1841d8f57ce36b33e87223286a3bf9028b662
55267 F20110218_AABQDC baskaran_a_Page_033.jpg
63adfec4b86c67142d55d866a4913d53
8361832e1e4d2394887a3ba15e87b76bafd90753
49730 F20110218_AABRNI baskaran_a_Page_165.jpg
01fb46e3d3c8b1dee14d796a38a8b84c
37c03b334829ba55b59c83cb44be7556de791228
F20110218_AABQDD baskaran_a_Page_203.tif
75d0a26901c634b5f543d4a6e61c973f
3b9116d44b861727be3e30cbe63ad6fe732508b6
2266 F20110218_AABQQP baskaran_a_Page_011.txt
e3dff640d3309b92258d4ada4bc0096d
15a69aef081d9ea5c0aa7c40930aaa04a6101ba0
15158 F20110218_AABRNJ baskaran_a_Page_165.QC.jpg
97f368460e384b90d65846aeab26959b
abb9ee3833657f95de9bb53f1fe26756ddeccd89
61613 F20110218_AABQDE baskaran_a_Page_215.jp2
a78d9b06a8ed974d3c6963b2989e593c
645d46e78aab4768bc5c2d2bfa3ba5178d61371c
2076 F20110218_AABQQQ baskaran_a_Page_012.txt
7c1d891dc5d42caeaf1edd356e5eddd1
d66c64c2626af1fd402353093c149fb98b36881a
48843 F20110218_AABRNK baskaran_a_Page_166.jpg
ab8f22c6d5b5302c6949d6f48b8b3796
c89afa8536be35d9b60e5b4e7b400fec2259a97e
19910 F20110218_AABQDF baskaran_a_Page_008.QC.jpg
35d804173151bf2ced6d3904afcc6b31
61e036290c73d104e6c251b5bcca658761159760
2276 F20110218_AABQQR baskaran_a_Page_013.txt
3e77f388a0378ed97116ab1f5bf13f19
af1c8d6063850762a89949212bb75292daa4a995
723856 F20110218_AABQDG baskaran_a_Page_183.jp2
0698523a0b7ddb144b10613172e24e26
be1e524d0e3f2e57131797ec1e68a515d62ceff4
2301 F20110218_AABQQS baskaran_a_Page_014.txt
26cfda86692b4f50bd135b1adf0cbad3
8b1d3833cdb2809a4deaec588e9c99da433475bc
15289 F20110218_AABRNL baskaran_a_Page_166.QC.jpg
a62e30afbca4a461a854e62371fe1147
b66d350a1d6dd4e4bbb67086f64c35d449813214
1788 F20110218_AABQDH baskaran_a_Page_063.txt
59dbab00cc6ff0f640893760b888023a
ef6d8ea5adbf99fa8a67390fd27664d9f37da82c
47589 F20110218_AABRAA baskaran_a_Page_110.pro
6d6c6483a547bc865f7b591f8c413534
c13ebec0c54bfc28afbd0fcbd22869d685cfbae8
2209 F20110218_AABQQT baskaran_a_Page_015.txt
87133456a1338c739e7b92a060d33260
a7f0070c6fe7605c07c641e2e711cafece4c4c49
35963 F20110218_AABRNM baskaran_a_Page_167.jpg
373625e8a7358a511bb4b5d34243ac6b
a17652b047cabdca0a77254364a4dedff9f34e16
5536 F20110218_AABQDI baskaran_a_Page_135thm.jpg
25aaad2a363c40f6a7a0623b0713e393
13f39b0c0018abd7bcb1b8e2953b55a3300943b5
34434 F20110218_AABRAB baskaran_a_Page_111.pro
ed1dacb12a158e60a429320e33b23d3d
aa4a426d8fa8e3c02951fc57d4e61ebd89767702
2203 F20110218_AABQQU baskaran_a_Page_016.txt
1ea794dab6a63c53b90a2abc183b7171
115ab0dcce4ff96772c1d52a7ac446b228c2ff2c
11072 F20110218_AABRNN baskaran_a_Page_167.QC.jpg
b0487f7f1c3c7123098e31dd3e239aee
4bfc8b3fd4471c2d1b7e80ce76d05fe370d8b66a
F20110218_AABQDJ baskaran_a_Page_020.tif
d2a9403b2fb06d19c06d35a0c0350355
2b13b9ec84952985c624124132e0898fdb6e4323
35736 F20110218_AABRAC baskaran_a_Page_112.pro
8c67e44cad44913eb6e58897adfc3cfc
31e5ec33786c3a3e948a76fc497eb0f09d3fa802
2326 F20110218_AABQQV baskaran_a_Page_018.txt
5f489c562945da190e86ef16c913a001
249419d7cace0d0916550af34e12e45d32fdc8f8
33128 F20110218_AABRNO baskaran_a_Page_168.jpg
a457f5fcbf858f78eae9c4fd2a523929
906c4fcb1adf7dd81383c83cb075337f56bc3c6d
1989 F20110218_AABQDK baskaran_a_Page_010.txt
c21c4465e27b6b9e1512878e7aa6c076
790e3da32668e9a28555bae747cb4ab7ede26374
36387 F20110218_AABRAD baskaran_a_Page_113.pro
7901aea81ba39417b4a48230f9cefbf6
f4502d30223b484055faad8f6e6b679ce6d6d93b
29218 F20110218_AABRNP baskaran_a_Page_169.jpg
9feafe786ca65425d4feb77b35014cb9
3cbcec3efea053cdce971ba614dad5176a47dd1c
22594 F20110218_AABQDL baskaran_a_Page_081.QC.jpg
e4d87f1da04eb45f282e78e551e12664
56542019324d814f80e4277a8632b54cd1eb7040
52397 F20110218_AABRAE baskaran_a_Page_115.pro
5fa9e5132f54bde4115a8b4e9de9478a
f3d74380b18ad27f56d265d77c96339ad5fbbe65
2935 F20110218_AABQQW baskaran_a_Page_019.txt
66ecb8023ed2203c440fa4470471505e
eac57a3a6617ed7f2d4a3ffea961482d7525aa52
50468 F20110218_AABRNQ baskaran_a_Page_170.jpg
24d1b84ce39c9d21bfa411cddde8f1a7
c660f6e2ad1762534a1afa50a0ac995d8f438fdb
F20110218_AABQDM baskaran_a_Page_178.tif
0e7a1f2a21c9fc59d7f9e9f7109b3d23
17f730e2bf4957d667421b4b6a570abc03bb057f
46801 F20110218_AABRAF baskaran_a_Page_116.pro
4feff826ea0836f7fa47d05902fb786d
82a0800655be0e036bbd1c29fbc72af60b5692b9
1073 F20110218_AABQQX baskaran_a_Page_020.txt
c2ef2e4ceb8a1ad8356e2d7e5c29c40e
17ede53235c82165a0245375fd187bb3de2ac7bd
15866 F20110218_AABRNR baskaran_a_Page_170.QC.jpg
617975d4afc2971060536748886df53c
c2bb797db05096819bab1499002e9814f44c12d4
54097 F20110218_AABQDN baskaran_a_Page_051.jpg
801b9220a8a9cc07161d54304a5d8eaf
7123ee56310ac9e09a0a55dc26ab5027ee3dcd6d
51844 F20110218_AABRAG baskaran_a_Page_117.pro
7970cb58bc54c5443ea4ad53199182ed
7ba6c73e3bdc8a8e4ca04cb1236519e977c5fa01
1847 F20110218_AABQQY baskaran_a_Page_021.txt
25bca775810924a510b6606718caca31
b43ea37dbf3399e83081c23852a6a5e81d258250
48650 F20110218_AABRNS baskaran_a_Page_171.jpg
abc1b7824f2d21ca86f755a7a56b8b04
c9b091e30f828da7b841858ce8b0b721b9dd75bb
20163 F20110218_AABQDO baskaran_a_Page_065.QC.jpg
fc767d29bdd89ef7f12921f775c1018c
3227a7266420a8942499fa7cc77d4e8d73e9e3fa
50996 F20110218_AABRAH baskaran_a_Page_118.pro
882e4f725bf670434448bea674850b76
4018305669fa68c096b1715528be2da64381b03c
1924 F20110218_AABQQZ baskaran_a_Page_022.txt
b28666983c601e008f3353caab90f84b
d2be39186592d83cbceb71b1c030a3e8ae87979f
14601 F20110218_AABRNT baskaran_a_Page_171.QC.jpg
9a842052b798c213111306fce7803410
8878ba0978ef16e66dbe103778b81c3041a26fd5
753961 F20110218_AABQDP baskaran_a_Page_206.jp2
2b7811be1af7b08abd7bab30243510fa
4e643e0ac8683b96be2d4e40d2042030fbdd0421
43305 F20110218_AABRAI baskaran_a_Page_119.pro
8c2d06ff0ea7ba8f582fb58439020043
a06a34bd20d197ed37aed82cf0e93a37b818f7b9
64424 F20110218_AABRNU baskaran_a_Page_172.jpg
5ec6414d9fecbd9c2c1b1a3e069c225b
06bd15a6eb605ba5df322967b7c8e1b9fe3c9198
55590 F20110218_AABPZA baskaran_a_Page_133.pro
d67fa7294e8ac8090b9458c0fcb5a63d
94ab3906c90f9168a818ba46810839e1d8bc2fdc
4483 F20110218_AABQDQ baskaran_a_Page_121thm.jpg
98af91e4dd7b3bc1464184552c8ace0c
159f45ba54d56cb7bdd8fcb00f1eedd32d0570e6
38818 F20110218_AABRAJ baskaran_a_Page_120.pro
94cc8ecf3a98c424df5559c1ae25e024
bd2466972b999325f0bd86646e5a2320a05f6d32
19576 F20110218_AABRNV baskaran_a_Page_172.QC.jpg
55ba6a3a21069e8ba85b5832a8ddfa17
5c3c23c7dddc3ada39039121bb9a7cb2fe1bf0fc
18426 F20110218_AABPZB baskaran_a_Page_005.QC.jpg
257e73a44bc07cd7abaa315af271060f
51f2715b53c3253f4469d9ff486f90ed1c06020d
F20110218_AABQDR baskaran_a_Page_159.tif
37094eda2c963b3a9f847b5b0cf1ce6b
d19678ed8dbc21751e9b69ba2b0aa2fcc098c422
34418 F20110218_AABRAK baskaran_a_Page_121.pro
0f53d4dd527f4a33ea0bbbf38f1581b4
c32579bfead575f9892bb70a060fd83d58fc3e44
12794 F20110218_AABRNW baskaran_a_Page_173.QC.jpg
f2037164f21d5b10c1080c31919b5ffb
1f59bc009b32d93021a5edeb1314a9e2cd9b3e29
21643 F20110218_AABPZC baskaran_a_Page_001.jpg
901c758c40f1c777b4139321e0631735
838f13c827610bd906d8505a53913a18eb861ba1
4803 F20110218_AABQDS baskaran_a_Page_102thm.jpg
49f9437ec58c058f2333d746004987fe
5c36854bbaa3268f47294413a923ed6f23f5ec52
25467 F20110218_AABRAL baskaran_a_Page_122.pro
38538230b30926db63e4e4963d8d1bde
2e2ee47d017097acf6a0ef19d12e4ea316384734
49824 F20110218_AABRNX baskaran_a_Page_174.jpg
e39ceaf1ad07167436d963891b24ed2a
88dcf582e85bd70d09434a416b516bd1f20f5dd0
4731 F20110218_AABPZD baskaran_a_Page_063thm.jpg
3b2a23a0598d044e166c13c9c3da8cb3
be9edfa7b23d9c9a29d2ce6bbe2e6e7aea041c56
21524 F20110218_AABQDT baskaran_a_Page_160.pro
d8cf5c431917be34065f35e552d148c4
8fb5b245215ca50c6f2ddb6b6a1176daf067a5c4
49045 F20110218_AABRAM baskaran_a_Page_124.pro
fca524de4ce8dc8034d570ee0a1ce840
ada0e52bcbace48ddd8defbea4704ffb7f0989dd
15167 F20110218_AABRNY baskaran_a_Page_174.QC.jpg
eb142c64ef42763897973e4aa1b5680c
854cd21eed6a9b523494192cbece6f75600e4fa1
2306 F20110218_AABPZE baskaran_a_Page_028.txt
23d0e8724afe61d724ab1e5dc11339b5
7f2842a51ae6a20c195e5de7bb5a53d6c7de2410
2882 F20110218_AABQDU baskaran_a_Page_193.pro
0072944366d3d1a48fcfb8b11e594a4d
5a2a079ca3e34ba47b36e2547349d6efe4c59a26
30287 F20110218_AABRAN baskaran_a_Page_125.pro
08771a0f9408cda75c8351f2fbd5f945
75c22b1d4cc158e45e329831437ae0ffba0b6851
40709 F20110218_AABRNZ baskaran_a_Page_175.jpg
5e001d66f639dcbe772134eb84d47fbe
140dae1281a6d290f59051146e74b3687fb01b59
F20110218_AABPZF baskaran_a_Page_017.tif
fc8f1e38dfeb417690cdc8db340e1dbf
8cee4c32c8b0a9b4ab7808da7ceda137198f532f
70356 F20110218_AABQDV baskaran_a_Page_089.jpg
8e0e87bcdb99c9960348079a9f5dd1e7
d700810e3854d75d6e1830e2176e5c6023e3af49
33711 F20110218_AABRAO baskaran_a_Page_127.pro
1a33b755b7699ab33dcfc5442df3575d
90a1d9140ed921c194c58b22f7156d51ac461396
F20110218_AABPZG baskaran_a_Page_030.tif
f2e4f1148fe0eccacb7338508912218b
0a439a7db749abd818f9ce90d257c96365666c06
456798 F20110218_AABQDW baskaran_a_Page_152.jp2
46fa8fe8a7f0eec6d366387bbc8528e2
66629e3021b981d7e9d58b62cad7cbb98f3daf01
36553 F20110218_AABRAP baskaran_a_Page_128.pro
a36d2691c16676b40503b65facbd5c3d
bb07e9e5a997e2e72edc14579e2a1a2fee832fb4
4188 F20110218_AABPZH baskaran_a_Page_164thm.jpg
219efc67b420815b8df441d55f35df7b
f92d20839fcd29ae1e129867ef790145d87fefbb
61769 F20110218_AABQDX baskaran_a_Page_076.jpg
064691ebcb3b809384b29293d918d02a
6e69b4266bffa046a1328844b1cc8a68b342ff08
1408 F20110218_AABQWA baskaran_a_Page_197.txt
45f4208efeed01a24dbeafb5faf740f3
826b0371413ded3b2a0454dc1ec04458fc7ece04
50159 F20110218_AABRAQ baskaran_a_Page_130.pro
cc533e1c6be4e9929111cd1a21c82231
889081b4ed836cc20c0d2ce08c5595bd6bf338b8
F20110218_AABPZI baskaran_a_Page_035.tif
d8ef75e33ad5c6c694413c9daa818be7
2e0562aee78df00b7be35aef646c708ac125b7d1
F20110218_AABQDY baskaran_a_Page_205.tif
59ff99bd115adc6a7fed61b21722a082
cebc9079e8de3bd6cfbc00bd584a8d5be4bf7780
1682 F20110218_AABQWB baskaran_a_Page_199.txt
ba628b707558a785de296f0681de4751
6d89aefc23e4079c634dffe31843e3f672bf3c39
45895 F20110218_AABRAR baskaran_a_Page_131.pro
513cb9ca3a0e8152cd2d13f3b908f757
f1c90fb27e662cf47129f312a954f8848df89824
679419 F20110218_AABPZJ baskaran_a_Page_219.jp2
5588b829f7e8af64b58c809ac49724b3
14f137ae26c42aea408fa5cf6263a8b66a6278c8
4492 F20110218_AABQDZ baskaran_a_Page_179thm.jpg
3f72c2a7bf5ffba4afc3a10a6a0d3f38
e10ea38ce49aeb1137adc7c920656887750d9ef9
1178 F20110218_AABQWC baskaran_a_Page_200.txt
9449a6822d311dda12de396281298ae1
4be210143d82d004204ecadd52ad7f7253ac142e
55571 F20110218_AABRAS baskaran_a_Page_132.pro
30c85d572029d66763913b81ae2f8908
d5576d32361e93b09d06f645447d3c74095595dc
21363 F20110218_AABPZK baskaran_a_Page_167.pro
4acdfa2741925c2e7de0f2ed2aa6d10d
225d0c84de6af27fee6ef86decd0705eff7c6ef2
1227 F20110218_AABQWD baskaran_a_Page_201.txt
6067a934387c7f2a0bf6fa2bb4d1cf0e
05139c5ce9d18d857e690d747087deac1e45da17
56476 F20110218_AABRAT baskaran_a_Page_135.pro
878f704e1252d8bc5c03691fd71e3bcf
ef3f5d86ebc83cf2dc98eeb1af5d30f92d5b3d33
2129 F20110218_AABPZL baskaran_a_Page_017.txt
9f03c17778db3cc5977c1bf87ad8e54f
26ac57a13234b19353f7c41e948d5aa4555f96c3
1498 F20110218_AABQWE baskaran_a_Page_202.txt
ab4c0548d1ca9301ba118a2afe4d8e5a
30c1107fcf53460777b8d90c9949f84e43f69ea5
44113 F20110218_AABRAU baskaran_a_Page_136.pro
55944f285b55aef4bf746801c89dd017
c41e08efbdbb4f0801a7ba822311f861525df548
F20110218_AABPZM baskaran_a_Page_059.tif
5082b1b4a76a5ac1adfa9ff6b67841d2
f7b816f211134ebabb1c29ace4754e9846db4b40
1199 F20110218_AABQWF baskaran_a_Page_204.txt
3533f8dd912d5adcb44b76658b8de47d
1c19d801f2a8b613661ab7262a57f33a20eb1afc
28330 F20110218_AABRAV baskaran_a_Page_138.pro
398c5f7766211d70e99d9e45a4c1f680
da13f90e1859b2c41d519cb497b549b869e8340a
11023 F20110218_AABPZN baskaran_a_Page_169.QC.jpg
37c47056c8614b7d29fa81316ed78817
d9a53a669ff650d40806b551bfe5e8a2aabecb09
1126 F20110218_AABQWG baskaran_a_Page_205.txt
8d6bc1efa61ae590390d957cf35f4513
a688bc2937ccde0787619f2c9d23ddcf17e6e4ee
34058 F20110218_AABRAW baskaran_a_Page_139.pro
8af67fb852135cbf7cadb0f95513b29d
923f888fa3e35cc1ff0b36127cca10c1e9cb0b9d
528579 F20110218_AABRTA baskaran_a_Page_072.jp2
b97343102f25490beaeeab0f238d25fe
63f6b8fa6de8b19db8f9f1dfa29742dc0aad68cb
27150 F20110218_AABPZO baskaran_a_Page_205.pro
99b6aa89c1e2b690ac17054aa219026e
63276b44d99edb039a9f697977e59578990fd33a
1714 F20110218_AABQWH baskaran_a_Page_206.txt
ae587f813c577a43ac0474fa8762e14e
4ff154a8ead384dfbb18e7caf3373a35c0922203
28642 F20110218_AABRAX baskaran_a_Page_140.pro
8b14b166f4ffd3f83441c3b8fbfd8686
9811ef9d67fd36d2e86e415a1cb08d1a5c71f8d7
865873 F20110218_AABRTB baskaran_a_Page_073.jp2
f1599946fa02020c781627a3d24288dd
771760d19dacbd85fa9de2b0230bfd8695fcbd01
12026 F20110218_AABPZP baskaran_a_Page_149.QC.jpg
e73467f0fd9186b6256e27f63d923e1f
fbf274d533b6f94e48a8f74aac2591341d678902
1653 F20110218_AABQWI baskaran_a_Page_207.txt
ac1d9be6c184c52e6862eb788fa03628
8c351cf22144e67e826882affddab6169087d262
23588 F20110218_AABRAY baskaran_a_Page_141.pro
cb38e1ca5a9ec56e07a44134f78063a0
d3c14d8c42978d7cec7dc5f683df8802d50eaafb
920388 F20110218_AABRTC baskaran_a_Page_074.jp2
37dfe6d351781827a3e49646989fc1d7
a4781e0a1fa63bf643ce5c67cee7b8019cd1a5d0
F20110218_AABPZQ baskaran_a_Page_190.tif
798a87a8d57411e60cfe5818c84e7fee
8c6a77c7f8513f97b6839413ca7874ebee377c03
1214 F20110218_AABQWJ baskaran_a_Page_208.txt
0d718c2d2a7461f1a07d7a7cfbaefffb
e03c9472794902fb738dcd8cfd943bfcca8e2f66
43400 F20110218_AABRAZ baskaran_a_Page_142.pro
a5a6be36d6b09aee1d4921b3624abfb8
17e99fe443714ae28ac7cae074e74cc3dd7131e3
896192 F20110218_AABRTD baskaran_a_Page_075.jp2
1349667822d28df638963231e1b0195f
40735d040e158826b28e760559f826a0ebe0898a
873290 F20110218_AABPZR baskaran_a_Page_045.jp2
f6cb53666aabe7447acc5d39c43da7d2
f24ba3b3a7043a44e4a67e58fa4b1b68a6b9eb03
1574 F20110218_AABQWK baskaran_a_Page_210.txt
4883dfc18f0d0dca1b09b609599be008
085d0bff9360a969d70148453c3f46f04160c514
964157 F20110218_AABRTE baskaran_a_Page_078.jp2
589c391ba661171115b06aee54f1ebcc
3db8ebbdfd70b6ae5e7b1cf2c016677f24ad710f
18493 F20110218_AABQJA baskaran_a_Page_168.pro
6dd089dad5ce8f707d19132345cdfd9f
d38afe9166f559853ce92b7a599f56ffdbe88393
1025280 F20110218_AABPZS baskaran_a_Page_024.jp2
9e54e898adf17abe72c12f15635ec80a
4d4514b8c27a6a9214389021c5806a2f784d6b07
942 F20110218_AABQWL baskaran_a_Page_211.txt
56d68705cd393c868b932504ad0f73df
21d343bc5e1f5b58884745684d0cfa0318a9dfe5
740243 F20110218_AABRTF baskaran_a_Page_080.jp2
ed46719526b4ac6514497b4fad4e9e33
52cd5dc9670aba07017264413606daaf9e02fe09
42379 F20110218_AABQJB baskaran_a_Page_054.pro
6c62441e12b51bb613d14dfac3dc5c92
acb6258fbd5ef605158b30f5c253f50bb415dd36
5268 F20110218_AABPZT baskaran_a_Page_024thm.jpg
f9487419ad5742b2fe7980328cd1c7d8
feac6f91e09cac3bab97850941c8401f62a2a09f
1969 F20110218_AABQWM baskaran_a_Page_214.txt
797391d3c801e0099535e2b8b45223bd
ac6683bdc1af0e5d4b40170d72a63b2650d2e745
988763 F20110218_AABRTG baskaran_a_Page_081.jp2
38a2d002beb139c954bc66f4e159f0e6
df72bf53e4cd3647d54e7ef2f0abf41ce9316bcb
1771 F20110218_AABQJC baskaran_a_Page_105.txt
45fb020adf58a0f37329609e0a90c71b
1f49824d6a5551e0a2c4f0b732dad417fc963609
626467 F20110218_AABPZU baskaran_a_Page_204.jp2
849a295221241265988fa6d038ac7f19
476aa02dedcc4e4723e13f859c389c1d728f7fc7
F20110218_AABQWN baskaran_a_Page_216.txt
dbad2154dfbdeabad445c70ba06b0f8f
572d6a6c772b887ace3cbe69602695706551702d
1051952 F20110218_AABRTH baskaran_a_Page_082.jp2
d8ff81332204e909b57c63d238caf712
ad74718096705a1b0a95013b6fe08fc790123757
43362 F20110218_AABQJD baskaran_a_Page_045.pro
6ba27e7a27102890dab7156fb33197b3
b16d1ab834a4bf58b00cd3791c1e536b84f0f7dc
3602 F20110218_AABPZV baskaran_a_Page_005thm.jpg
4373dc0fab4703f8fdbe46e991c35070
6f281ba76690cf0b78138736c556d96783359213
1967 F20110218_AABQWO baskaran_a_Page_217.txt
59447a8ea0e65a9d8a858ee04a56295d
beb99ab18fc473613d9a567a5c633853e7af1a12
830210 F20110218_AABRTI baskaran_a_Page_083.jp2
c442ecd39bfdbb36e69ff5b1a8798acb
70b782963e3b7224921dd00743bd06e015d567ed
F20110218_AABQJE baskaran_a_Page_129.tif
be73c620e8036744b5da1ea724fdc479
7086c9c79594ebc10fc3ba101ea7311e7d4eaa65
F20110218_AABPZW baskaran_a_Page_109.tif
213e2997a33d14d6189554be4a12f9c2
74016dab2108dbf4a02694b299548370c6f91376
1733 F20110218_AABQWP baskaran_a_Page_218.txt
0ce19540cc338cebadf2f4508db22e4c
509422421a82b80d5562f3759532949b0ed0494b
861502 F20110218_AABRTJ baskaran_a_Page_084.jp2
c82031db2a8335138c5b83fdbc428f52
6047984736206fd97044955fd761c26e8c23a7a9
958 F20110218_AABQJF baskaran_a_Page_003.QC.jpg
7ddc5b09ed4b2f3f79afc92075b8fa59
4b277527d08ef337ead05fbdc9d4efeed8029385
42238 F20110218_AABPZX baskaran_a_Page_091.pro
28028492a1b82105f3b2fdf2bedbb2dc
84fd1465cf8c1ff95e13d06de84a8169bf6cfe29
1232 F20110218_AABQWQ baskaran_a_Page_219.txt
ef89bcc83b675dfe47fd790806454fbc
fd0cfdba126a8184dabe47090f721904ef3712d3
1006287 F20110218_AABRTK baskaran_a_Page_085.jp2
01d0b0287634726e61defb5480a54321
a98cd5824fddab568d109560074e8c44f67e0262
1051979 F20110218_AABQJG baskaran_a_Page_069.jp2
e72bdc77a4276fd967b7c1c6122b39cd
f85232090db95e8aaba5de4367a8946e97031086
33209 F20110218_AABPZY baskaran_a_Page_177.pro
8b954f754fa80e8d99d27e74bf2e1e7b
44acbe13b136fdd8fcc305b6b1312b7d8377f8f6
521 F20110218_AABQWR baskaran_a_Page_220.txt
598b50b9dde3dec7426f748af84a8f3b
953733607bb0eda989c43b6d40da5566ea05732c
903461 F20110218_AABRTL baskaran_a_Page_086.jp2
94359e3436afebcc3247b3a0376f16d9
e061e3a6d9d3e877168a97a4fbd21c7b0c427951
50965 F20110218_AABQJH baskaran_a_Page_139.jpg
9ab9a0e39268f1a7ee0ba4c802262110
983c8cc379f74afb7b6f770bb3359f53dee7ca28
61000 F20110218_AABRGA baskaran_a_Page_045.jpg
9113578df2610acb35fb3d4f6bf80366
dd9ec699a90a1d973a78c990d62f30b43631a5b3
7851 F20110218_AABQWS baskaran_a_Page_001.pro
86a3f2962f991bab782cf28a04052f76
7b63e70fd08b1dde2795aaa204ddb65510943652
804795 F20110218_AABRTM baskaran_a_Page_087.jp2
c2188affc781921f372bed6578d54ea7
14131a72c79abb77cd4c2a1f294ed19ba5697e2e
54735 F20110218_AABPZZ baskaran_a_Page_128.jpg
68f4c739667921c969a804cd9f67e59f
1828e110afd65ad02fa45025022e65730ea410af
18775 F20110218_AABRGB baskaran_a_Page_045.QC.jpg
e8a7ed17b7bc6cd2d210718446c1dfd3
622bb1e41fea3262dca9b7a077d3d92e52f69f02
1176 F20110218_AABQWT baskaran_a_Page_002.pro
aa3c88a2ecacf402de2a10531f06b414
0bf7bb21d57075994e1326a9e43d73d69cd46c3c
787484 F20110218_AABRTN baskaran_a_Page_088.jp2
437e9c86d72c5181897d5f74b85a31fa
f87ee1a3e940d3610497af2dc6f510955498511a
1490 F20110218_AABQJI baskaran_a_Page_166.txt
c755919503101b48f2ce1115fa10363c
7f60d243040793b8e7086f897aaa096769179d33
56103 F20110218_AABRGC baskaran_a_Page_046.jpg
350dbd76ee74a835996917278c8f3fb2
e08927d41e68363c845e51843cfddc42e3cd52e2
54369 F20110218_AABQWU baskaran_a_Page_005.pro
948017d5b985a90968f0edd778dbd5c2
31b4be730f7507ce63d87ad2203b2cb8d6bf8b3f
998677 F20110218_AABRTO baskaran_a_Page_089.jp2
aebe6cb75ca8bc733bd1b0d5125168ab
d1bf705da473fa8369a3fba17b2de77e6079bbd5
30398 F20110218_AABQJJ baskaran_a_Page_151.pro
8ff4d54f7f3d919ee35919febfb7eec3
bc5f483746a2d1de68a82f42c59f5485e601c0f3
78323 F20110218_AABRGD baskaran_a_Page_047.jpg
a6f62dafb8cb870fa26b9e0323eac5a1
20b093fc48f53075ad78db89ed0516f0abaf8fd1
599666 F20110218_AABRTP baskaran_a_Page_090.jp2
5c83bd8fe49a601b0b7ecb12e21c89c8
8c7fc91d99c44cd720aa3a296508e7aa78554899
50434 F20110218_AABQJK baskaran_a_Page_125.jpg
3555ca99e2b138afe2052a07538a74a6
68d0d047f10a1906cc1475df81e4b5cdc3c73d78
42382 F20110218_AABQWV baskaran_a_Page_008.pro
83e9399757f6127e4ac5029d66a27119
1b13b9a5a68369737fd66db3c55be21f1845200e
906725 F20110218_AABRTQ baskaran_a_Page_091.jp2
035d97f748a44878ae2ea2a763fd6573
5222c3badd6fced66f9bf69a694e717ed5f2e911
F20110218_AABQJL baskaran_a_Page_216.tif
7bc720c68b82e38c1a092e5319515a40
7b89ba02e596a19fd21a7d3a01ea6ab13bd508e0
23116 F20110218_AABRGE baskaran_a_Page_047.QC.jpg
95fdccf8e837d2121eec420f422da964
b4dae99b63f5788a038057abae70dbaabf33cae7
48512 F20110218_AABQWW baskaran_a_Page_010.pro
487a178a6e3f79e199a8aa948a6e1503
f2c160ef5755df0d83c2013d8fec14d2e93cfa35
76357 F20110218_AABQJM baskaran_a_Page_058.jpg
308b3590117417e5fb307d4c2e17de78
448ab0bf7e80128ae3e2d84c0ba0b0d00dfcbbdb
78078 F20110218_AABRGF baskaran_a_Page_048.jpg
0ffe415248eb6192696fd3f839a7ecea
f96722581ad3fc2b5f30f78e54197084aa06c64b
57788 F20110218_AABQWX baskaran_a_Page_011.pro
931e6f274cf4f30e3b7e87d6354a92d1
c0e449d9234b590f7896540ff39aee3151681033
658022 F20110218_AABRTR baskaran_a_Page_093.jp2
87ff32aba4ea0244abc5bdfb823ffef6
5f17ba2c2d4c33f397b14e9ee3c7b1e5814e91ad
23890 F20110218_AABQJN baskaran_a_Page_190.pro
d12649eaf60624da3cf271bcde5ef2fa
3012152c6b102d14d175881ab0fac37d8d442db8
23564 F20110218_AABRGG baskaran_a_Page_048.QC.jpg
3f4ee79add4247e15849016c16783240
183bf263e80a9fb516550bfca8eaba382769902c
52055 F20110218_AABQWY baskaran_a_Page_012.pro
b66874cf875164c3fd1a8f5cef9572f9
994e8982216a651aa634d66e6c77319fc01dfb90
973058 F20110218_AABRTS baskaran_a_Page_094.jp2
8ffe476934613aef97b1f1b6e05cb2b6
add30db5d0db32bf90f1a8d84bb75998d7383ee2
832 F20110218_AABQJO baskaran_a_Page_154.txt
79faeddecd6ed59ac3622be38fe4f768
43ab22ec01e365d6e59a258bb38ea28febee4d52
77437 F20110218_AABRGH baskaran_a_Page_049.jpg
9dcec0ef4fe8e2d590b7d252200017d6
ccfb040960255086fe379a5aef08f868360301a0
57995 F20110218_AABQWZ baskaran_a_Page_013.pro
7448a85363be3a23e647e76aaeda1f08
38b5c4ba158425283be7ffc09c912c1baecd2c74
4278 F20110218_AABSDA baskaran_a_Page_174thm.jpg
c9bcd0577c7910a4ddd6e0567fd20e24
35cc31fee8adadeaabb3dc6a2ce1d67596dbe3e8
759505 F20110218_AABRTT baskaran_a_Page_095.jp2
2c2ca868dbc2ced48b15a8459308cd9c
dfea1845aa2a38efbeea31eb01095974089b2706
58532 F20110218_AABQJP baskaran_a_Page_112.jpg
024632a88a22e77d85da478b8d9d6194
943fac06d0bdfc45a2c8403f5e9e64e6f891b4cb
22840 F20110218_AABRGI baskaran_a_Page_049.QC.jpg
8c3686c497eecb94b3974312a9320623
02661c0ba039e2fc61ffcae8393f1067b3428ab4
3636 F20110218_AABSDB baskaran_a_Page_175thm.jpg
14b3d455b1ba8e345c4c479cf3ff173e
4ba058e2e4b272459c5989805f5192f93392536e
1051916 F20110218_AABRTU baskaran_a_Page_097.jp2
514ed1af6728c51f92168b6bc0395d56
e29676914ebff821bd75dace849b1b7f20f746ce
9985 F20110218_AABQJQ baskaran_a_Page_168.QC.jpg
d906f3a5ffcffe7b13d5cdcced055421
7077b645979899f1ec82623bd0146cbef843d941
68885 F20110218_AABRGJ baskaran_a_Page_050.jpg
58040c8ad3f3aa214f3389768c16027e
17aaab6dbb42ba8995564f90ec99b7d871183c8a
1983 F20110218_AABSDC baskaran_a_Page_176thm.jpg
a0b33c5da8e777d5a54f2ba46650bdd5
e8d94c74715c26c54b9651f00a13bdd4f0110318
816402 F20110218_AABRTV baskaran_a_Page_098.jp2
50acd53b81c5f93a38e9b9a8b4af0913
2a6a1635a5f2866019f033f50c123797c8ab1373
1720 F20110218_AABQJR baskaran_a_Page_165.txt
a3c0fa665257507935a6ed7b80f762cf
9e7ef72580252552901c769685e9c0de960afbcc
20702 F20110218_AABRGK baskaran_a_Page_050.QC.jpg
9bd7842fb12054a168a08bc41249fe44
70153963b57ef9d29f9b07be592234357154dd9c
4216 F20110218_AABSDD baskaran_a_Page_177thm.jpg
27535084a3d336ff07da722ad0c06fc1
b87df9d91f92a372e26da91c99bd83a243521f7b
888266 F20110218_AABRTW baskaran_a_Page_099.jp2
886c787385a7bac2e4e41e614f83ae44
741b57968e9af2e534be62fed94529a9b697f390
19754 F20110218_AABQJS baskaran_a_Page_034.QC.jpg
051d14579ababb8e50f67c6d8baa4061
34ab5e10d7fd6f039f40eaf0a16f8c8509f7a23d
17041 F20110218_AABRGL baskaran_a_Page_051.QC.jpg
1940702e7a3a5c03c8fc1b7d34029211
05ad04e6023f23e4244b327696be8fe96cb01270
4645 F20110218_AABSDE baskaran_a_Page_178thm.jpg
2c1f5b9b5a7d020ceb7ad136d83cf229
24fbfae3b37771dcb5fb1b5c65b7b6229b6e1f67
863136 F20110218_AABRTX baskaran_a_Page_100.jp2
c95962875a95b2a77b1ce44af56a0fa1
d7fcec19059b01d5524d6e531126511ff2d8d7f1
1957 F20110218_AABQJT baskaran_a_Page_124.txt
a9ec3c3c74a0a3defe10e3ca3ffbf2c8
0903642dc5d1abdbe36695eaf0dfdb9e2f233699
73051 F20110218_AABRGM baskaran_a_Page_052.jpg
570246f5c6018b6ac2796d2bd3698ccc
c228ee9507e892ea743fd66c8912ead6923306cc
3942 F20110218_AABSDF baskaran_a_Page_181thm.jpg
c784c935b89b199f82dec20d5a1618b5
c81d399b0a0d594d898c8234bbcf3b8ebe1591da
356735 F20110218_AABQJU UFE0013684_00001.xml FULL
a3ff2cba76bb63e5f77ed0e26921aa0b
c7546ab1932129b2c3dbf358c27bcfe91acd4116
22007 F20110218_AABRGN baskaran_a_Page_052.QC.jpg
89cc9fa63dbeea06cc1793916f941c5a
123aa62c387482cbe821caac797570a956078803
3939 F20110218_AABSDG baskaran_a_Page_182thm.jpg
57ef76a61cc7c4c9038078e82520a5a2
38e5881794359b76ece424a728beb4357ba849cb
922891 F20110218_AABRTY baskaran_a_Page_102.jp2
c6e32fe126fd24745c1cf969d166bf71
3dda5c23bf68e1322f558cee5925cde1ee392708
65459 F20110218_AABRGO baskaran_a_Page_053.jpg
8b979890e65fed71ab49ffdbe6d2be03
4d353050c146bad1c850c604035179eb4d4e9689
4563 F20110218_AABSDH baskaran_a_Page_183thm.jpg
0ea0afcb248854a7bdd3269c67a68b35
e0b9f6eb370d8cb66e8cef50e2d123dc6da35469
627201 F20110218_AABRTZ baskaran_a_Page_103.jp2
675f1099a12df6e38278acc1a7390330
0e5c8c1e3e2fddb8773e9ef1026746cbfd86f070
19722 F20110218_AABRGP baskaran_a_Page_053.QC.jpg
ad426ce00392532192a6ceacabc7291d
55de7ac616dd5003835b738b9c724107d572d34f
4204 F20110218_AABSDI baskaran_a_Page_184thm.jpg
8dca6c12aee2d9e8a00a544d130c9ea7
7dc851d15df3f9d08d33a1a0e2875183f793ee21
F20110218_AABQJX baskaran_a_Page_001.tif
6f88f672fa9d62e3441feec40ddf69a2
b4842c3b5adde42414eb084c39aaba2612e595ab
75555 F20110218_AABRGQ baskaran_a_Page_055.jpg
e30e9ba91deef04d203351a20b614372
b9ac25a65856deacb5b5481e56bd13a5544eb915
4054 F20110218_AABSDJ baskaran_a_Page_185thm.jpg
0264b928ecfb4fd7438a1c008ab7d560
33f9123493d3ba3d904854173ce51e09516797b3
F20110218_AABQJY baskaran_a_Page_003.tif
2a3fd3c6edfa6d37b28bbda99cfae5a6
fd508f8c7580325ab52eb154cefc1a9157241372
22628 F20110218_AABRGR baskaran_a_Page_055.QC.jpg
38fd99d8b74a224027e5002b1a081502
dcbba827971dbba78fb77939d68fc5de56e1d401
3564 F20110218_AABSDK baskaran_a_Page_186thm.jpg
de0365d4a0b443f7ffd5531d8b1c70d0
54b92a44c8dbb6e5d65abb28364bc03cde285913
F20110218_AABQJZ baskaran_a_Page_004.tif
118b34bbe4bbb4243c5361f5a0d895b6
3f7de17c317d0fb498d5243e0cb4709358bba407
12676 F20110218_AABRGS baskaran_a_Page_056.QC.jpg
48e7fd5b69e934c17890f59085fdf1df
03d3e7860e352c81c1348730930b55520006a776
4428 F20110218_AABSDL baskaran_a_Page_188thm.jpg
b48f9bb785215ddee70eb491d4912837
f6dd53973a65895c04b7f7f2a05b285c1bfaf855
70173 F20110218_AABRGT baskaran_a_Page_057.jpg
b85d60d3bcda261bd5a4d2b091b21422
050a63633919ac9a466e78ccbeb2a7561a522723
4242 F20110218_AABSDM baskaran_a_Page_189thm.jpg
54d3d429d7b28e5730ff85affb20137f
28a339d03cd27c8b0465469d24c7a7382a1e4810
20165 F20110218_AABRGU baskaran_a_Page_057.QC.jpg
615ecf0948db207b487decaea06eb66b
71dc9ff47d0f1ec9b646871d027be1ea5de79626
3475 F20110218_AABSDN baskaran_a_Page_190thm.jpg
f327b9b01ddd72cded5f1362640ed606
f989f08c8b8b168c7d8442f9d355083273297365
51517 F20110218_AABRGV baskaran_a_Page_059.jpg
c422d7109e55bfed28dc7694f41cdf40
b6058a5782e1971f207e5173e6f458dbde71c35d
4154 F20110218_AABSDO baskaran_a_Page_192thm.jpg
97495d20cb1e3dce510d47ff0dbc0fa3
d6d65e7376d8fe4d4a89d28f0c09ef48b43b6ede
15854 F20110218_AABRGW baskaran_a_Page_059.QC.jpg
a4b9dde056dbfcac399fefec76a33454
823bfaeb5326f7bf7840f6323097b5315874a515
F20110218_AABSDP baskaran_a_Page_194thm.jpg
c37f370d5ce89011888b96f2fac3d765
9b329ebc8e30dc4b7998705fd2e7603a83b1f585
56709 F20110218_AABRGX baskaran_a_Page_060.jpg
18727fd466222b148ca9ba827f232a28
6f1436b204a08c86b3fdb33de97948ed211eedf0
5271 F20110218_AABRZA baskaran_a_Page_047thm.jpg
775e784bb0488ff9c41a0c6468fa6798
c906aae8c22d7b9131489ba7ba3bf452668ac49b
4468 F20110218_AABSDQ baskaran_a_Page_195thm.jpg
1f372151860e377cba026e90be4c0d96
53c6cd7d6d38cec9b0afec379c1586c58792fcfc
16653 F20110218_AABRGY baskaran_a_Page_060.QC.jpg
26f04589901326c9eecb21558e008a31
597a17c446f8d2c1e009e21c30d66ea76898bc3f
4660 F20110218_AABRZB baskaran_a_Page_051thm.jpg
7e0bebe528ff76cd12d6759b027300a7
a7e35f0515681133a73f18e2eda62780bfc1e81e
4203 F20110218_AABSDR baskaran_a_Page_197thm.jpg
044e18cb5ad13f4010c18d7534aa1fde
d328dbffd329991c595850385f7a7c174ebe2be6
16888 F20110218_AABRGZ baskaran_a_Page_061.QC.jpg
9c69b8c4901632fd5055a2ee7d732573
6aa8cc0addcf3a6749ad7fa9c01ad78e2e06f3bb
4696 F20110218_AABRZC baskaran_a_Page_053thm.jpg
aec06ed09b9e77b4f37656bcc67beb10
d500946e27328d1e97701245082cc8a984ac9726
3507 F20110218_AABSDS baskaran_a_Page_198thm.jpg
84317f593f9a825f928b823f833cba53
fadb66d177f11514501507aa2aab2d2a17afa564
4746 F20110218_AABRZD baskaran_a_Page_054thm.jpg
b8e52aebe253b9051687c919303e9ab2
1c1b85c095aa1400f60404afb02af34ede072485
4227 F20110218_AABSDT baskaran_a_Page_199thm.jpg
da1650f3d9e335822e9e8f4b315e9484
d47f70fac1e900bb19dc1f1c986f634f3de9f0a2
F20110218_AABQPA baskaran_a_Page_171.tif
6bb6070c1d549b72549063838d95fbca
fecf58b56048fc2bf3e016d4235fcbc1608ef60c
5244 F20110218_AABRZE baskaran_a_Page_055thm.jpg
0e185bf2ef620c6495b035cc3cf7b442
a667841eb523fe0c4d26061f3738eed2ed5edf05
3891 F20110218_AABSDU baskaran_a_Page_200thm.jpg
707577798a580ab8f33e17de2d0104a7
af00d15591586814467d13ab066c62f72213e10e
F20110218_AABQPB baskaran_a_Page_173.tif
a083cf8997c61b177f3b0a78ffb9034b
6e856fddd97d93e565ab650feaa38250c37932b5
2835 F20110218_AABRZF baskaran_a_Page_056thm.jpg
6ee675d92b8e765d4d4c08cbf247c691
9d4c9dff1191832ed1aa36f061ac25f0cdb388c1
4185 F20110218_AABSDV baskaran_a_Page_201thm.jpg
5acebc44b278f9ec85970c5ee13a8781
f41ed72c951c4c2bf24be7ba6da9419c1025dd28
F20110218_AABQPC baskaran_a_Page_174.tif
c112a9a65e6c4d6a9f26224916ae3e4d
56ab20e315d4fe5ca06f675a6609e6fc484e9207
4361 F20110218_AABRZG baskaran_a_Page_057thm.jpg
25485bf0dbbba6fe831f4c3715f0c936
b579905e800182b63e35b3b1ee15f0357540781a
4051 F20110218_AABSDW baskaran_a_Page_202thm.jpg
438f2df95f992cc2edb87af1f9383ba4
f634378c92b587c24893a84a87eedc90ee6ff608
F20110218_AABQPD baskaran_a_Page_175.tif
531277680f50bfb725fc80fb156b232f
28fa1533becfe1e41060ceb6958fe518f4a391b3
5105 F20110218_AABRZH baskaran_a_Page_058thm.jpg
047710837769879a97b3c5615132dd31
0c23471423bb016e1699fcd6d78e63eb32f095d9
4631 F20110218_AABSDX baskaran_a_Page_203thm.jpg
73edccb646d8589baa9f73fb7584eebe
5f07389b1149b28ff2245c9f0de2ea9d1e7b0d7c
F20110218_AABQPE baskaran_a_Page_177.tif
c476677b3afe7899ebca460c1734169b
6118246a1984b17c216280dd347839e9c28ccebf
4312 F20110218_AABRZI baskaran_a_Page_059thm.jpg
8a41babcf1223ada1a7f529dffad7f55
50c23a1851dc8cf9a257219ba83520482bc683c8
3892 F20110218_AABSDY baskaran_a_Page_204thm.jpg
d0a9244594af618416eb4a42ef37470f
8e3bc58d1c7ae40a56641ec425fc13b2565fa496
F20110218_AABQPF baskaran_a_Page_179.tif
d90611f0b1e05dcbe3ae7a007a56cf3e
5b06037256df7bb952e911bfad9a7cec5f723bca
4478 F20110218_AABRZJ baskaran_a_Page_060thm.jpg
e03c4fe51a1a6f250b3350fd419cf1ba
f3a2fd25388d69a8934344ac17e30b68f43ae19d
4241 F20110218_AABSDZ baskaran_a_Page_206thm.jpg
ebedb2a8c40add29cd2cd6b0a9787273
96f76bdb64ba4ee67cd95180fa4ff120fd7ffa20
F20110218_AABQPG baskaran_a_Page_180.tif
73577121952effad826e51ed242ccc42
f1349356c9226b25c1f64075c22e645d18915177
4511 F20110218_AABRZK baskaran_a_Page_061thm.jpg
f020a89ce94f7437b48832663ce5ea32
e45546a017c92faf4460aee33e5510632f9d3475
F20110218_AABQPH baskaran_a_Page_183.tif
ade681b5598c41ceaaf0a394c25b8c74
2d8772314dbd13e250f57b7d230994894a6a04dd
49982 F20110218_AABRMA baskaran_a_Page_146.jpg
7d61186179a6bc7c28df547bd9813af5
c9abbf5f2af542017c91ba14cc2184d670b8ef20
4230 F20110218_AABRZL baskaran_a_Page_064thm.jpg
5531c2831fbf700c5386fc11a6e123be
4412ac14809c4b7baa0332b066c0a99fa6f141f7
F20110218_AABQPI baskaran_a_Page_184.tif
cc81b871407c830854d1b6839c192e95
41268259aeda7652179126634b586269f764a6bd
15248 F20110218_AABRMB baskaran_a_Page_146.QC.jpg
63415e10a09bc29d9278473018d9bc61
b48fe5e3c0ac020f8ddc21f9f3488b08735fe3b1
5010 F20110218_AABRZM baskaran_a_Page_065thm.jpg
57888788ddaf66c2d4f0fc5cdda3ddbe
2a6dd04dea4d2fe21d4933dde02a066f72199403
F20110218_AABQPJ baskaran_a_Page_185.tif
388308e042ecc2079f705f6a0040fa93
ba26237563bdc784e8cc7f83d6eef7e24ff0eb7d
48918 F20110218_AABRMC baskaran_a_Page_147.jpg
bd5160c2f0eb2c802961bfe93cda04c1
51ddc2def94c745b3bc31bd995800ff31840ce63
4516 F20110218_AABRZN baskaran_a_Page_066thm.jpg
1bdb2f57728a3104cb65c187417153b9
41f5dfdf3c3fd10cf3099981bdd63d4ea16cc51f
F20110218_AABQPK baskaran_a_Page_186.tif
561800a8ff2845b9b617f4431561c74c
773d8d701d1fa8c9a5669c24fe2f7292676a04cf
49001 F20110218_AABRMD baskaran_a_Page_148.jpg
d1a3a0093f6250e0a493007519dce4ac
62733677df10db7199c87a42583718525222af1b
3971 F20110218_AABRZO baskaran_a_Page_067thm.jpg
fab4e538455f3c10648696a1914a6348
489b4afc4e0533caa53de0abcc4a8925c7aa7c56
F20110218_AABQPL baskaran_a_Page_187.tif
db6494d19c47d1128dfa154b236b712f
6174a081b539753b57dcab5c55632473df87e23d
14920 F20110218_AABRME baskaran_a_Page_148.QC.jpg
cd0301579608d585477e33fffa31d38f
75b578f2892eb02f30b4b0bcd8d89a6602d9a391
4121 F20110218_AABQCA baskaran_a_Page_180thm.jpg
fe785444bc4659d64129a091d3d18798
72ab1585737ea3023187b9e4ccb6eb3ed23751ef
4864 F20110218_AABRZP baskaran_a_Page_068thm.jpg
152a53dee00b6facca10359aad5ec4c4
fc53c33b5c2e5b26f503a0b11112d2e68fae88c2
F20110218_AABQPM baskaran_a_Page_188.tif
2bd4a4eca8da25d88452883c3f77431d
b475d733d82c1ab22ae16cfea1077bd06b18336e
38710 F20110218_AABRMF baskaran_a_Page_149.jpg
54a5bc254a660a3eb558ab510f3abda6
09ca53231924d6a6bcb0951e4d606cf2a4959dbd
4943 F20110218_AABRZQ baskaran_a_Page_069thm.jpg
20309971b9e11dbd853ec98db0f9e8d7
ceca5c3c8755e613867d79339d232e21b427bf2b
F20110218_AABQPN baskaran_a_Page_189.tif
bb1db31a466ed93de714480fffda2adb
ce37b6f80ea2820e534347643aa8b207cacc1c5d
16473 F20110218_AABRMG baskaran_a_Page_150.QC.jpg
e44e43f8cea9195dc0197e1a119ec56e
dfa5001276cb20f7c404b6b8f7aa16c8f5ef44c0
4532 F20110218_AABQCB baskaran_a_Page_075thm.jpg
4213002b086c2a62ad19c331e5c0b485
2ec20a2e441f8150f3c004803a47dfa7d5956936
5331 F20110218_AABRZR baskaran_a_Page_070thm.jpg
c2801dbe2251a151862470d7088703c2
4133e58400e49c4bc054695017f15a767cec28e5
48083 F20110218_AABRMH baskaran_a_Page_151.jpg
9a15941e983bf518c0ff2dd51706a2b3
22d916d0d88d16c93d71f3caf678a08448f061e7
639618 F20110218_AABQCC baskaran_a_Page_171.jp2
29da918c63fa7af1356f1d1e1d25e4d6
1d5aae690a6928f8cb13189c4f6b16b349ddbe63
4930 F20110218_AABRZS baskaran_a_Page_071thm.jpg
71e7cc960130b0bfcd1b22449151d2eb
c5f0f0517dbc474a1ebc498ea1900937c9be9075
F20110218_AABQPO baskaran_a_Page_191.tif
7490cd4f7ec4fde498c04b72d8deba21
029b3379a336697a49d7fc42c8af58852734bccc
14874 F20110218_AABRMI baskaran_a_Page_151.QC.jpg
863589842021b4fcb6b22edbf444afb2
91af422327f06a101fb6a7067a1d6f52ce97a0f9
53511 F20110218_AABQCD baskaran_a_Page_061.jpg
07311a60c54cb8f738fb0c59c16bee4f
e428dd03f9f1f646eb2a6a56b9b97a5beacc0d87
3551 F20110218_AABRZT baskaran_a_Page_072thm.jpg
b1dfd553aafd332d20a53ef56efe6287
8bf948afd9f32348e960d5ae31b68ce39c48c150
F20110218_AABQPP baskaran_a_Page_192.tif
ab43513362d2294f670edf97338fe877
0d79161201729b919140749f4b50dfa4d85110b2
35020 F20110218_AABRMJ baskaran_a_Page_152.jpg
55e937120b369f425c7b946ec61f19d5
4ecbded2e6d649e1dae353db2d624141e1b6d0f2
F20110218_AABQCE baskaran_a_Page_078.tif
3a2724477744c2fe75de48dc03f92368
a2b0a8b4ddcd5dfc6062c78c623b75a156834e35
4675 F20110218_AABRZU baskaran_a_Page_073thm.jpg
bb93a7d207663f856d739485ec815c70
a7ce05f85dd4dea25d0d1a78854779b4b0281975
F20110218_AABQPQ baskaran_a_Page_193.tif
df916d98327fe70aef59a1be3a434afb
f6b2b4912645d38191d983afdc098d81500ea9c1
19971 F20110218_AABQCF baskaran_a_Page_106.QC.jpg
e0f028a121ea6ab0411bf01f7ea8b1e8
b375edebcba339686ab0176fb3b010d3b10cdb45
4899 F20110218_AABRZV baskaran_a_Page_074thm.jpg
24b95829510bbe15f49273665a914326
005139741fe37b7a492c713fb7997160eacbfbff
F20110218_AABQPR baskaran_a_Page_194.tif
9c3ee3c11ece8052b0e86a4a9f806811
20815f64c49143c14d7e73a1377c5541fa99d8fc
10732 F20110218_AABRMK baskaran_a_Page_152.QC.jpg
0bd3ab618186c15faf8647c28242af2d
08144b76ed5fcc5c84e1e2a8b0609edffa0a984b
907234 F20110218_AABQCG baskaran_a_Page_053.jp2
ced5863ad6c60a63fa75e5e5237e88fe
4d3117926869b248bd837cfc8ba9d6f6886fe959
4814 F20110218_AABRZW baskaran_a_Page_076thm.jpg
1fe2656267ccf6115e498596c2a55c27
e2c7c9f5a2797e8c544a03c45edeea1d906458ab
F20110218_AABQPS baskaran_a_Page_195.tif
94ed39201fb2a2d680574913c6bcbf86
0bd2f5836ff0a3cdaeac526c2b220a228f2286f5
56169 F20110218_AABRML baskaran_a_Page_153.jpg
e654856632bf51f6b8b76937a5ceeeb3
2f742335af23c2a497310060b93e985c5c5d4723
21527 F20110218_AABQCH baskaran_a_Page_218.QC.jpg
f12ffca74be0ec74957d40307079bb3e
651ec7e227283a21a431eddf9a0c01e4296052eb
F20110218_AABQPT baskaran_a_Page_196.tif
c2663adabb90f7abc08d87851dc3b9fb
573c765500ab8922581efb519b902f6645d69ed4
16823 F20110218_AABRMM baskaran_a_Page_153.QC.jpg
68d75c1e68c9bb178ccfe7d92250ab45
6a4cd852c36245d5548bebeeb5c5897c9419c195
1221 F20110218_AABQCI baskaran_a_Page_198.txt
d39e6876178a1a9144babb00cfcfaa2c
0c8c97600f289dede2658a78012c71f55ac2d4b0
5259 F20110218_AABRZX baskaran_a_Page_077thm.jpg
553dbe7efeb176db272e7491336457f6
218bfe1876d0c4fa6b5d469b487725bac423f1a0
F20110218_AABQPU baskaran_a_Page_197.tif
a20ebd4802fc89c8a92dcc4b2a1121b6
f3f1ca2fe1329e908ee04463ae97c7a38c15a5d6
33009 F20110218_AABRMN baskaran_a_Page_154.jpg
2229f0cf2acb160619418d6444e14f35
24ac087c8e805a20f00435abd853e4b745bac6ac
1511 F20110218_AABQCJ baskaran_a_Page_126.txt
7e60b3443c06f2a59ee9406d51e06899
79da7518f3b564b858c2bf427c22077615ad54bf
F20110218_AABRZY baskaran_a_Page_078thm.jpg
41b9871572e82ce66e02eaa22a7ee85a
ad6f3dd2483d322ea8eb9f2cc6f43611dfd3e675
F20110218_AABQPV baskaran_a_Page_199.tif
72af37a30cd7f7a1a4169d04a7f0eea0
082469ed4c86b25de445de6272dacd855c391a90
10088 F20110218_AABRMO baskaran_a_Page_154.QC.jpg
952e6ffb566f83966987cece56352f07
0619a9c20676fc633bc3747eebf29be194f133e7
F20110218_AABQCK baskaran_a_Page_047.tif
d5ea6f92b7d9af14c6517e88778724d5
4895ed4f9be64a70440a678b973f35a6216c9766
4062 F20110218_AABRZZ baskaran_a_Page_080thm.jpg
98f11729c6311f567444e7560410dc46
dfafac67a816b2862f296d4213ee58fcbc04ba35
F20110218_AABQPW baskaran_a_Page_200.tif
1cad3e309429eb880e16486b98d4cb1b
874f201b24aa4e0110478023aebdfedefa9d56a9
31192 F20110218_AABRMP baskaran_a_Page_155.jpg
a73abcdab8e68974afa36f354c8dc31d
c780cc7a8336e937462e09f803c8bbc447274736
21109 F20110218_AABQCL baskaran_a_Page_004.pro
81e5530cb94a5e2d3bb814302d0f770e
ce1b82590952e76edafd9962613f425806b8f94b
F20110218_AABQPX baskaran_a_Page_201.tif
e48c4cceaf9f6f0ad1f7ed7821c2e66d
a4d8dc5109ffefba26910609f9cea64c37478d42
9872 F20110218_AABRMQ baskaran_a_Page_155.QC.jpg
ca2b2e2c0b9b6484f784b045bdf27d89
0dd529fe2c4b99b9faa8fd146a53a09388432110
36128 F20110218_AABQCM baskaran_a_Page_033.pro
8aedb2699e937f943a1ec857aaaf74b3
38ed031eb74553121c47ff0ac304802b8053e542
F20110218_AABQPY baskaran_a_Page_202.tif
58ee3dfee7b406e151d1f8099065ab24
2d0abc1c17ac6089a1b13832c3b297cfa58fed7a
44251 F20110218_AABRMR baskaran_a_Page_156.jpg
730208628b6ac35292c443302380b0ab
7bf8a7c793d96b2e139f5832c9772dce7a9f5535
834947 F20110218_AABQCN baskaran_a_Page_079.jp2
8cb3ff1f71f95a40730272cbf110d569
e8bcde188a7696c2fe2eae49594a02e37d315f37
F20110218_AABQPZ baskaran_a_Page_204.tif
a7c3e94709efaba76ee249b055d5017b
ea52e14f22153b6428afaecda1f73b3d7181eda1
14939 F20110218_AABRMS baskaran_a_Page_156.QC.jpg
b0f5216cf0b23f1cd2d27db6e833f417
d1778bc50d5084b76ec158cc5dec92d29ec9f3ab
4941 F20110218_AABQCO baskaran_a_Page_104thm.jpg
6a29783be2b8b5f426966e07ac45bffb
fbb3e45662546106bed4e3213a99567876368d94
50952 F20110218_AABRMT baskaran_a_Page_157.jpg
1809e7eada9d00d6e2ef5d2784c78315
b0f60e95e3e426f5e65cc9c3ca71d12ddbc96d74
24985 F20110218_AABQCP baskaran_a_Page_016.QC.jpg
d5e3e6a23628d0ccdbd5cd500cf55ac2
08fc6a8e4f6e787068065c0fda09da6f2c7a3ce0
15023 F20110218_AABRMU baskaran_a_Page_157.QC.jpg
8c2263da2144c173feb19a5ed2fce5d8
935d9ac7304db62c736eb0140d403afb653d9772
1048 F20110218_AABPYA baskaran_a_Page_149.txt
77b4828b941e9d20b7d75ff602607e57
fbe98cd8c8893af48509649d221acac644353c0a
1501 F20110218_AABQCQ baskaran_a_Page_182.txt
ceaa5c3de847f067e1d0d288c232e7ff
29dfeae5d0ff148a2e4dca763968d4fe63977296
51418 F20110218_AABRMV baskaran_a_Page_158.jpg
456e57f55bdbc81cb3ce7863c82c9f1b
5a0b65cabc8494eb631d463a1e1f43827850bcf2
33976 F20110218_AABPYB baskaran_a_Page_183.pro
2a3a017c14ac6d546f6f17bbc12c4b30
b3476fbbaeee666b4f736e664854ffc89346c184
F20110218_AABQCR baskaran_a_Page_110.tif
ef28228e884281f7f73aded7b56be577
b6f21f6e379e838eba83933858d9e804bc77493c
15979 F20110218_AABRMW baskaran_a_Page_158.QC.jpg
877fadc1de9e42d3a541fbbef53d969b
adb6a7f3f456f15d2af20479877d40acef9791e5
16949 F20110218_AABPYC baskaran_a_Page_207.QC.jpg
d0a85787063082756734566c34c6de9c
68b98f9d5e4ef73ba2a0b7e89f2569f454787d8f
14858 F20110218_AABQCS baskaran_a_Page_147.QC.jpg
d256fe81cdf5e4f804cf39de950cb309
b5fee828aea414a2281d3733caed1f842f275b37
47388 F20110218_AABRMX baskaran_a_Page_159.jpg
0c03fc29fb7b248b40e40d2e59dde845
11ff07d7a651c76365ea2bded7966e0c9e8fec7c
43620 F20110218_AABPYD baskaran_a_Page_068.pro
b6df871836f3dec11f8513654b449350
f306cdf0bd317b3f4cdec40ab50a0dd8cbb9b9a0
F20110218_AABQCT baskaran_a_Page_207.tif
e3775ccaf004d38fef357be169b09dc2
de2a1ff5f12576ee1862d3a31421512fe73648b9
14409 F20110218_AABRMY baskaran_a_Page_159.QC.jpg
9393a74abb2dda6bfcebf7a77a9f954b
7f9016e9cf1c57f5721c3216136e940762ee2958
F20110218_AABPYE baskaran_a_Page_052.tif
d8a9c0362b29785796a2b2cab2bfc62f
0189067e221344d037d94a2836bff4969953cec2
4663 F20110218_AABQCU baskaran_a_Page_091thm.jpg
dc4691193b79e4022919f81f644d58fa
752366aa06a2faa01fba61271a39712c785987c6
46536 F20110218_AABRMZ baskaran_a_Page_160.jpg
d4b10a057f4f4445fed4912d5687880e
1cfe6114947eeedaca1aaebcf91adce68d6c4f79
41298 F20110218_AABPYF baskaran_a_Page_109.pro
f834780f319275cd84494d086a5c1e58
e9499bdb5421fb0bde310f8cc0b930edac9bfef0
1051985 F20110218_AABQCV baskaran_a_Page_070.jp2
611a94be7c49897b44ffd382e50c9135
6d03332d33ddbed8ec6378911a5b0512c4726bf2
5196 F20110218_AABPYG baskaran_a_Page_116thm.jpg
3f2f01ef4040def61e95f7b11c5d60de
f86faf54d252c5daff46ac4e5b40d5d6fe4dd42b
3325 F20110218_AABQCW baskaran_a_Page_140thm.jpg
29779d487b261387999aa51b5a53d87d
0a5281729ce7f159dfa876d011df3ee030865b7d
1037570 F20110218_AABPYH baskaran_a_Page_077.jp2
424cbd753be4c8bcadacb710e3d56f36
3f86650ef63b55fc395f4f9e7b824b45a8183b5d
15967 F20110218_AABQCX baskaran_a_Page_194.QC.jpg
914bc55a07e9a939052089c4abb79954
65b1574d0550e062858a17799db2250c8d2261a2
913 F20110218_AABQVA baskaran_a_Page_160.txt
ccadf783638f8e5135316cede31e4919
5f86b6d5b8a12fbd10565b4fe3f30d8493eee390
1856 F20110218_AABPYI baskaran_a_Page_043.txt
7ca0b4a3dca4cfc120e138885f5052c6
fbdf2577d7233cda6cb862c46a0cfd131d4e94c4
1478 F20110218_AABQCY baskaran_a_Page_171.txt
87d4cde51d61205501b15be017c92cc8
f4a8404888e59ae3593b9b6380911e3a9dd75ac6
1754 F20110218_AABQVB baskaran_a_Page_161.txt
f2e89a2008b5196f9d6942428cda6847
79606691345d3ba06fe072aa85a093270c93c473
81941 F20110218_AABPYJ baskaran_a_Page_117.jpg
ed8650b3f081809dee0cf99babf0f5a3
514e3be9cb1c2d4453c93fcb99ec782c1dfe2e92
8979 F20110218_AABQCZ baskaran_a_Page_007.pro
331ce1d9b43e7808749ea8f60217a404
bef6267f70a4f50344edb4edc61b3f9a62d8a11f
2010 F20110218_AABQVC baskaran_a_Page_162.txt
5891cebc1106b2bba8e2b959a9583fef
36711de883219b07bb9adcadf93b2d5c85190d2d
16292 F20110218_AABPYK baskaran_a_Page_202.QC.jpg
2f25831b9eeb1bbdf5303a43cf3e789d
df66db841a8a893dedaa14b038159bd8efa06468
1253 F20110218_AABQVD baskaran_a_Page_163.txt
d92700baa2390566ecc7bc9d5174a6e0
8b58456ebaf2b31a0ab1c740c7294852f089c5b2
29741 F20110218_AABPYL baskaran_a_Page_126.pro
98a44e5c82b3b51da1613e9ee8b37cff
d6023d6a89ab800fd1ae8b1fc13ad8858b7b7b98
1119 F20110218_AABQVE baskaran_a_Page_167.txt
3bdd6fca32b18452dd50c869c8602909
697fbc6fbfe42a8e55895e938db0fdc6ee9e77a6
5097 F20110218_AABPYM baskaran_a_Page_052thm.jpg
025d567293a5b75fcf715468d2ee3f2b
edb8adcae0883105b0f68b464312d3669f49847f
873 F20110218_AABQVF baskaran_a_Page_168.txt
779dc5f52b95c5121a74a92f8dceee74
16b5a01e0c4b94207d14975041256ed24f3d1d3c
F20110218_AABPYN baskaran_a_Page_167.tif
38659e00a164b1e2e3ad0c1d43c6ed05
53eb10dd3de9e59d14d3cedeef41b070b309dcf1
1141 F20110218_AABQVG baskaran_a_Page_169.txt
6efafb2b1e335747db23940aac605cbc
6a6ca4a0c07ef00ec550dbfc40041f3a57085067
753369 F20110218_AABRSA baskaran_a_Page_035.jp2
e97ba7706b9b53ad45a127dc4eb210d1
2c21c40f15d2d255d65a4f90f82851282306e067
1313 F20110218_AABPYO baskaran_a_Page_173.txt
3af775482ef93b42af288497095af348
5bc03957bf4c57b774e2501b4cd10b1314490fa1
1560 F20110218_AABQVH baskaran_a_Page_170.txt
5223e8dbe902147a88809db425b748c0
c18896f37b7c47816526f83f02aab247874b7fea
686347 F20110218_AABRSB baskaran_a_Page_036.jp2
f30a5b36169854d81f9358de853264f2
f9ad4941b3ebb9efdcea993830eca1a37063592f
53147 F20110218_AABPYP baskaran_a_Page_097.pro
06dd3b50094cede00b7232f3f358489b
9f36063e32b4e151fb0c1f8d6a159370580851e4
1834 F20110218_AABQVI baskaran_a_Page_172.txt
6ef7d88515e152b679f2fe48891b19fe
53be48f150a652a41408159958782b2f7f0837b3
1051980 F20110218_AABRSC baskaran_a_Page_038.jp2
7311a27b20c493068d49c942318d9b88
209c062447f1aae11a974525854eb0399523e10e
79941 F20110218_AABPYQ baskaran_a_Page_115.jpg
496c1ac6f9ce872203324732b41bfd48
667fdf27de53a6ea7e8dbe5dd9747783acb345f5
1342 F20110218_AABQVJ baskaran_a_Page_175.txt
9d62fffd137d8e6605c219e8696754dd
8f3f2039efafe202482c6650d2cd3f7acc52cb4b
536354 F20110218_AABRSD baskaran_a_Page_039.jp2
3e353051a6d960b96493ac419e4c12ad
0c8390fa07aaa8258244bf3269c39b0c23a1897a
F20110218_AABPYR baskaran_a_Page_062.tif
67b9364dde5310bc278d74185374ade6
ab058c5e130e4d8e7a073de76100b5b805be2459
670 F20110218_AABQVK baskaran_a_Page_176.txt
ae6efdc823bccf7e87bbd59ad1bb8055
855e15ec718df53f47e23ec5638c5bae634fa01a
503790 F20110218_AABRSE baskaran_a_Page_040.jp2
70890703a7a30c3677faecd7aa6300a7
af7bb55e0278270a01505e3cd70b719d24c5237a
26666 F20110218_AABQIA baskaran_a_Page_159.pro
7f3218913add8f360605dde6af74634b
167dbe6bb6306d7ed7deecf42af5b6517b8476c8
F20110218_AABPYS baskaran_a_Page_137.tif
38884c2889a2d726d708c1b0394635d7
72e8ab9a5be70042b2357c567d9dbfd8eb092d41
1773 F20110218_AABQVL baskaran_a_Page_178.txt
3f0e01ca4fff913f0569c962b6076965
454dbc79a843caed77e0ac06465d935b3ff1d01f
862662 F20110218_AABRSF baskaran_a_Page_041.jp2
7c91644a980ccc7f5ce2b505e7a668a8
003c314e5a42783c200d95cf4053e1d4c2d2631b
1713 F20110218_AABQIB baskaran_a_Page_220thm.jpg
15b0ff84ff6806b623297fc0aa4d1750
7ced365668bd330c6c116c6dda5680020e58087f
F20110218_AABPYT baskaran_a_Page_032.tif
b47ae66213f58fed782b687f88446f39
d30282011ac349da20eff2a160b5db7ed0d3672a
2006 F20110218_AABQVM baskaran_a_Page_179.txt
2895b8280906e635aa22aa976e589853
37984a3d08d3412eca1d15e4666e4c48c1323e79
928556 F20110218_AABRSG baskaran_a_Page_043.jp2
f490840ad2e853a2a576d90be367bf94
def37beedaddb86be80f82bc30a64efd6fea6797
46865 F20110218_AABQIC baskaran_a_Page_103.jpg
84d2b461306a5ef64cbe865b351523c8
75de46a8401fe4179e37a483d2199568c7743fc6
1728 F20110218_AABPYU baskaran_a_Page_088.txt
6d2958e716aabb47832f12064d99e85d
57e3dcad14e7bbf84b3073ac22e943bd49fef0f0
1759 F20110218_AABQVN baskaran_a_Page_180.txt
bc1038e5eca15c8ec96e8cc95ee5502c
d8c82163b10fd2984a418603ff7854f3c3672468
1051973 F20110218_AABRSH baskaran_a_Page_044.jp2
b19b7627cc44ccc5455ec2cdf9c78195
e4faadad098af79fcd2e14fa72a8f04a24beeb2c
591254 F20110218_AABQID baskaran_a_Page_200.jp2
1224b256ac3c1fa69023c00ab8472e09
cdde9610b5f34f5a6c636b0dd30e78dc80506556
1852 F20110218_AABPYV baskaran_a_Page_146.txt
e9737370d46d548a86cbd2882a6b8e6a
b64fa1476439ae5e3b6b87c002e333d511bf7fbf
1800 F20110218_AABQVO baskaran_a_Page_183.txt
e56c213ecd31be6bd3b64da247339030
db2829b225190a2ef9679a2024b6daf7deb34aec
747740 F20110218_AABRSI baskaran_a_Page_046.jp2
784d63e0d6e46a029ae2ebd2ed7fde52
adc93bf19f683b9d811abcd234b260e71d4c3e85
79222 F20110218_AABQIE baskaran_a_Page_070.jpg
1a088ddcbb5d739170a870a5cda86aaf
005db3227cf5ac1818bee9af584e9641ba089117
F20110218_AABPYW baskaran_a_Page_075.tif
f6c74b79232c2b4f8e082266c2819078
e85aa4f1c0c7076d4d79e96181b9f5435fa824a8
1545 F20110218_AABQVP baskaran_a_Page_185.txt
05a651365210bdffb145d4422626d5f3
6b2d4b34450647b8394e0a11fd35560ea56a1f2d
970293 F20110218_AABRSJ baskaran_a_Page_050.jp2
37120de7a0a46399c340e7cb863c2a6c
4b8f9736fd8375602808a0b28fa2ac75a795e25f
14383 F20110218_AABQIF baskaran_a_Page_143.QC.jpg
f344574bc283a3a45ed511bda6082a83
307fa54e4a613d395e1e6473a212990de65557bb
1990 F20110218_AABPYX baskaran_a_Page_130.txt
f7a744000a74c3b3edd72e94421e73dd
920e8d5ca2c52cd1bcdc1a745270ee4a4ba10d37
1188 F20110218_AABQVQ baskaran_a_Page_186.txt
5359f30a758657f4afad5ed9c4eb7285
6ca89cf8435b0af58e0d08a21a49cff400ebaf6f
722245 F20110218_AABRSK baskaran_a_Page_051.jp2
80d4ebcecc52ef861ce6638830e1ef4b
ea2b083f3b3ee7f12ef1cf9b3a3a31cfca9567c0
19128 F20110218_AABQIG baskaran_a_Page_076.QC.jpg
2ec51097f616c529313260d788a2a489
8b9082b1d7c1b86dfa0fceaa7777cfd80dcd63c0
1622 F20110218_AABQVR baskaran_a_Page_187.txt
6cae71be6934dadd19e13488ed462a5e
d7ee9fc8daa0385b4b2c43cfb157fe9f84c5cdae
1026620 F20110218_AABRSL baskaran_a_Page_052.jp2
b49500a361ed7602fe20398b2c27b016
c2f6d2faf2f67f55c1105d443b24336c2f15c75c
5032 F20110218_AABPYY baskaran_a_Page_031thm.jpg
3e9296ae2c35117195d58745536babe9
b83079eaa85e8b2e49221d1935b645f0c4332660
64622 F20110218_AABRFA baskaran_a_Page_030.jpg
45a9198f829b8de0c0acaee30cbb56e9
40816c643f94107a3b3ea4008d50e1d4d0b728ca
1632 F20110218_AABQVS baskaran_a_Page_188.txt
8a2767592515471a7a4e8cf0b1b63582
991e2ef34d4c49aeaca434f4c8c0df1bf65074c3
890920 F20110218_AABRSM baskaran_a_Page_054.jp2
4ea9cfd5f0e6689895f3eca2435c5492
31964c150dfb79c1ebccb4f16c04feacfda3bdc0
1968 F20110218_AABQIH baskaran_a_Page_049.txt
e7ef78c125d2cef22d00620e634856e9
aefba186f7150f5a27d55ba2695bab30d30db3eb
43942 F20110218_AABPYZ baskaran_a_Page_057.pro
cdfe8493314001d8e7a2d43ab32e82d7
282815bdc600a99be5560aedb8e7651851de73d8
19471 F20110218_AABRFB baskaran_a_Page_030.QC.jpg
1cfb1db9c6ff627b1a8cfca0b94559a9
995bd578236d5b235f5d3cffdd6a5b9076956839
1678 F20110218_AABQVT baskaran_a_Page_189.txt
caa4d44b30ff1b5db5f0d984ab278139
1cf4c2a6799166762b16f62d3005f905878694b5
1036829 F20110218_AABRSN baskaran_a_Page_055.jp2
bc61df3764478de9b520d108007a90af
793f0f01bf39c57fbe799ff1f65fd48f8bad61fb
2676 F20110218_AABQII baskaran_a_Page_168thm.jpg
4bb2131a2801beb627d8664db514e8b3
d22f9a9ea6df4705ac713c547f4b49d3f285a7ac
67121 F20110218_AABRFC baskaran_a_Page_031.jpg
2a9fe41ed5db2c55341fae0fff2fc0c7
864b9e8662fc75fbb7936c46da37648be6b9cfc2
567050 F20110218_AABRSO baskaran_a_Page_056.jp2
23545e25af4bca991c8bc89a497479b4
a5491484e5b180d47f019b25cf337b8344e32c91
573720 F20110218_AABQIJ baskaran_a_Page_122.jp2
5c46d9d316f3cfab96031ffb44a6ea62
04eeac37c25040548267cccae9e23b969a9f60cc
1049 F20110218_AABQVU baskaran_a_Page_190.txt
780d5e0ebbbea52a40b107a8dc2cc3fa
830c7daec0050def288950be5c26477df795e32a
943905 F20110218_AABRSP baskaran_a_Page_057.jp2
29e798ef555fc90374118be38b8645b5
c5c6a3015cfa9b5abfa85d7d0ad35a48dd74fa48
825199 F20110218_AABQIK baskaran_a_Page_092.jp2
16a8873a5933c1b96df5c68aa96a8393
62d8e104478f6f0ccd7fad7cd4e26c10f41c19d2
67563 F20110218_AABRFD baskaran_a_Page_032.jpg
6cf0130d3ad805bc0d01512b3996b4d6
ea51a0055a26edacf2e164dd6a5abff6b8503cec
1601 F20110218_AABQVV baskaran_a_Page_191.txt
68980227dee772f8042d96f7179d616c
3b13965b438e64217c57e1a094fff378cccb9985
155 F20110218_AABQIL baskaran_a_Page_215.txt
51c052e15e09e5245a338abdd82ada57
118c9c5d00a0fc65e3135523df9788677b75f986
20098 F20110218_AABRFE baskaran_a_Page_032.QC.jpg
5a5084faa9c60b70f93df711feae9cf0
1d19d05cd7bac73db66ef93581c2268ef48a45f3
1693 F20110218_AABQVW baskaran_a_Page_192.txt
233f3bca03ec2f26b5faab72e6f30d5d
2d8f60fa033b79eb4cd44a8d1995f5cbcc745696
1051986 F20110218_AABRSQ baskaran_a_Page_058.jp2
897e1e7c07092c6d5d3a064c73a0f182
ad0e4fbda7ed1fe4954e4a9ac8ab8ff38149348d
16841 F20110218_AABQIM baskaran_a_Page_046.QC.jpg
e2654bcb8d04bc05e001441654d16791
e2d39ba7246955a34943c937c64536d4d7f4f81d
16919 F20110218_AABRFF baskaran_a_Page_033.QC.jpg
8c9a4527e35861181b13755689f1a524
08ce2b1a263d2522617eb1dfcc0dcb8cc65005ac
1609 F20110218_AABQVX baskaran_a_Page_194.txt
2c534ad4a5e9ff7f8d3d60a796598b0b
7f8652869b62579ff43864e337808fc7f53b5d5d
661326 F20110218_AABRSR baskaran_a_Page_059.jp2
ff757f058f03d985e604e6da298d1d38
ac1075a1af526167f065749062b5da88ef08e2b0
1294 F20110218_AABQIN baskaran_a_Page_174.txt
974ea3fcd1222c70bce55fa3ade6606a
f32a6cd18c07873df5bbd7da9955ef57f701c88d
64991 F20110218_AABRFG baskaran_a_Page_034.jpg
c6e366564d52853631df9dadb69593ec
ce27be2b965f79bdd9f3660e78410c3428f02361
1859 F20110218_AABQVY baskaran_a_Page_195.txt
5a6d6994d66f67804e8be830c7c747b0
5e0ff5fbd404b5eca9320e68bcda32032c1c3c47
733225 F20110218_AABRSS baskaran_a_Page_061.jp2
8f24e8226de865096e99cd490b98058e
baa9b0fc78e3c455c0149cf88f37e0dc06397efc
1469 F20110218_AABQIO baskaran_a_Page_181.txt
80c19c19cacba187c804f7b2130e1035
36606d1d58867923a445b3c5ffd4e80c6c37b276
55253 F20110218_AABRFH baskaran_a_Page_035.jpg
0ff2728137763a193cee3a9f212ae5c6
a5353263b4ec6c733e394ce6187b9e0ffc058cfd
1590 F20110218_AABQVZ baskaran_a_Page_196.txt
5e8cfd50b64b2e1248a6ca8183def7cf
55ad83be30ba21608954cd722c68c9d0da295a55
1481 F20110218_AABSCA baskaran_a_Page_144thm.jpg
e92d99138b89e256eb65479dc269e7d0
f46b3cee2f6c6d7d39142eaea186c339391a66d1
1013776 F20110218_AABRST baskaran_a_Page_062.jp2
4d1b71e405c8a3f171b4540eb88e41e7
2597c82b340a5d7ccf80396d2a6241b84fcc2df7
F20110218_AABQIP baskaran_a_Page_048.tif
7fc1a619da135eaae9f05c2be6a256e6
8ed77f7d1c92c7422d4c6ddc4ef60bc874c47afd
17380 F20110218_AABRFI baskaran_a_Page_035.QC.jpg
53569b35bc8c5e3d12af81e7f0f6cf04
941d76ba4c44b05da31b319af11b67751a2f282e
3467 F20110218_AABSCB baskaran_a_Page_145thm.jpg
91520c88b899196084ce0dbdc0657dab
c6ccf9bdb2108f66631e2bae1747cc4ada20ffc2
872513 F20110218_AABRSU baskaran_a_Page_063.jp2
3bbf7b3025da6a92bec8a9e139efc43d
df94363709c94ea9fd74c2ab65f57f3a1f478740
F20110218_AABQIQ baskaran_a_Page_217.tif
7ae2557c55eed88612faaddb100073c0
940cfe04c20a01dc14a02f9da3bcc6485d0ab2f3
52502 F20110218_AABRFJ baskaran_a_Page_036.jpg
98565c350602dc0cbad9a5b9f65fdb76
13554ab67961024e77528fa0e971ea9c40b4c340
4046 F20110218_AABSCC baskaran_a_Page_146thm.jpg
a876dc8ca318c8147fc964c2c8eceb16
a0b8df957f883cf61a5e55bd68219eac0111022a
727636 F20110218_AABRSV baskaran_a_Page_064.jp2
87761ef88bac119829f3262c7850e511
a638c70b1425c46aa343546614274fb85ce40ce9
2118 F20110218_AABQIR baskaran_a_Page_029.txt
bb91607d1f1970bd5e68a2bdc5627ed4
b3cf826ec70710d207870a176e3d68142e986914
15894 F20110218_AABRFK baskaran_a_Page_036.QC.jpg
f1520a25c8b717857964dde5af4c507a
c6701646461a37b4db545bf574efa93165f00abb
4124 F20110218_AABSCD baskaran_a_Page_147thm.jpg
600b8b9ad819491ae5d58130638692d2
c5857a4d750133143f73e52ff38db895d52c4656
892656 F20110218_AABRSW baskaran_a_Page_065.jp2
2810c12b0a41ef721c952c1298889598
5723fa33229e86da3bc3e87a8026da5bcf7ae2b2
204 F20110218_AABQIS baskaran_a_Page_193.txt
3097879efde5164743cc2887ca1d06ba
a2557b9a2c18a2738f8cafcd5c20ae99e478b5b6
74030 F20110218_AABRFL baskaran_a_Page_037.jpg
6df58c5901a33ca6da66bb2bc7ab0bff
f078db329157dbb64cccfe24f842d1cabad7364c
4385 F20110218_AABSCE baskaran_a_Page_148thm.jpg
b270e153fbe9c1771454b93041fd2300
284a3a7d4700aae9137a2b32b33f34153ab610db
830137 F20110218_AABRSX baskaran_a_Page_066.jp2
1a761eab1a1f0a451164361911accda1
a876ad3c6a9d739aa9c491709aa4218949daa8a3
37927 F20110218_AABQIT baskaran_a_Page_079.pro
74f02f757fb9fea5c4e320ae234278c1
4ed8dda4e9fdc5f6cb5de1e41a4f70c9cc35bc97
22452 F20110218_AABRFM baskaran_a_Page_037.QC.jpg
80900bf21eea3fcbe8fdd0a6eba91c76
aa614a8b99ac6e01dc98fd29fa4772acce2b25f0
3433 F20110218_AABSCF baskaran_a_Page_149thm.jpg
b932e8f46272688de7ac85f43851d857
fee26b0bca789cdc30f8fedbe5b3da827a0db14d
627282 F20110218_AABRSY baskaran_a_Page_067.jp2
992e55394bdaa208c757353c553903d7
6a4e15385414861b1cbc370ac31557b9efb61fd7
4547 F20110218_AABQIU baskaran_a_Page_079thm.jpg
6839ae6dad9d184be6575491ee0bba62
af113e16d1d0e409ed7606d7c416507c051745e1
83298 F20110218_AABRFN baskaran_a_Page_038.jpg
38b1b5785e55230ec8110c4f2d73608a
57a3972481ad7f4905d7f7fb59cfca4fa71f524b
4142 F20110218_AABSCG baskaran_a_Page_150thm.jpg
d2d78518f1e60ff2cb2b889fd03380eb
5d408a6a7720c534237d7e68f1e02bb9b042b353
899400 F20110218_AABRSZ baskaran_a_Page_071.jp2
49f09d836429a55e8c3056de19648d04
468696aec3c9c03c352f53c43348ab5360c48bcf
44736 F20110218_AABQIV baskaran_a_Page_122.jpg
d88204e7af9d6807405a416553bf07c1
88eeef9763c8d9099d82dd6192ba885fa8f85931
24231 F20110218_AABRFO baskaran_a_Page_038.QC.jpg
3d7aa11b3120f98f879cc0dd19db4f47
353a8b4af847acccca5826fde092e0cea9e4d21f
3912 F20110218_AABSCH baskaran_a_Page_151thm.jpg
d57f3ab951b4110bd010698ae359637a
8460af6486d3761ff8d71a4da369172cddf86247
88373 F20110218_AABQIW baskaran_a_Page_028.jpg
6f28ad2a2237dda870eddd91a20a8596
cf3790e519af860d01e72f9c9c005e7439346b9c
40102 F20110218_AABRFP baskaran_a_Page_039.jpg
11c3ee0045a52dc9eca918bfc0e754d3
c4cc079077c5016f1c6d87ceda97b6963dcebd1c
2715 F20110218_AABSCI baskaran_a_Page_152thm.jpg
6e8e8cfd926fe9409706307a4205110e
b8f99182b96512d41fbd3983b212128e30983ac1
F20110218_AABQIX baskaran_a_Page_181.tif
74fb1809faddada5ccf01d85b612b058
af3ec255d564e03b14a4b548bf1c6be9bd700a61
12988 F20110218_AABRFQ baskaran_a_Page_039.QC.jpg
58d9e4c9196b1936190d7e4cc1321c26
1f49179884a327fcd174c65fe62708442269360e
4009 F20110218_AABSCJ baskaran_a_Page_153thm.jpg
7db575e920b5fc3aaa23878872855d63
7cd1370881bec47ed2f48397b1b0428a0a6cebd6
73120 F20110218_AABQIY baskaran_a_Page_021.jpg
5bb8e4effb9f77816822bd184a1baaf7
d213d12dd105773eb103552e87cc00f22c278c38
12140 F20110218_AABRFR baskaran_a_Page_040.QC.jpg
14a369c04221960ebd99b967824c954a
d35102a9452600b4de3fcd040da469915e2f5a1c
2883 F20110218_AABSCK baskaran_a_Page_155thm.jpg
e7f32a80d4b81afa61b414c1f4a37488
30c4bcf2cc9388abb2d6f83fde1b1eb9bb92d1f4
75619 F20110218_AABQIZ baskaran_a_Page_069.jpg
e2f1fa624265fb1e95b43db44fa82468
0de6ce5729159e0452f47480912c76915e6a84b3
63209 F20110218_AABRFS baskaran_a_Page_041.jpg
dbfa59c239d5094f6d928ad4edd2eaab
ecc09d5b09dfe592842d56580fe7916b5b0593e2
3975 F20110218_AABSCL baskaran_a_Page_156thm.jpg
92942c126708310c12b40d8363177cfb
96eeafa4e5f14b932619b7d528762316774f17a4
19336 F20110218_AABRFT baskaran_a_Page_041.QC.jpg
ab3d73c25cb0aba7f8d5f99ef55655bf
cd267c22e935a377278d372dba5140c27034fe4a
3855 F20110218_AABSCM baskaran_a_Page_157thm.jpg
2d2ecd8165ad1a838b79737c35fee8cb
cafc69f4c4eea65637ceca81773ec43a7638686a
68145 F20110218_AABRFU baskaran_a_Page_042.jpg
b9871279738216edffce7b2e5db1f8cb
dccabdc9e7c994363855895e56104e53a29fe429
3916 F20110218_AABSCN baskaran_a_Page_158thm.jpg
db25b95922bf17629e3c9c6a839419e6
f30f58dde322ac2a5f4fcba52db2246565dc25f3
20589 F20110218_AABRFV baskaran_a_Page_042.QC.jpg
e9ee871ba9678cac430110f32c641e95
1d2a0b13ec8261e5a8fe5cbc58a4c2666a411d90
3646 F20110218_AABSCO baskaran_a_Page_159thm.jpg
f542d3aac81459b7a78f0bf53ff0a677
8d31a84221723b98196e5e9a2c0fb726b4610816
68431 F20110218_AABRFW baskaran_a_Page_043.jpg
6154819b86b369d0571bfc2d025926c4
c67c26df6a69bc42330cf1cf8a85de3acdf101c4
3947 F20110218_AABSCP baskaran_a_Page_160thm.jpg
744e17c2421f6be0c043b47c2ec87554
0437888bd3b6c83460bcad6a8dc5620b289c84e6
20007 F20110218_AABRFX baskaran_a_Page_043.QC.jpg
326783c3525d39a705576f907bfb6774
c3524995af41a39328c72061dd879900b151d8e2
5408 F20110218_AABRYA baskaran_a_Page_015thm.jpg
6121d80f00ce7588c54e20e17e4fa9c2
dfcd23b08a93c4576b9ffbe87eecdba3ff91e581
4069 F20110218_AABSCQ baskaran_a_Page_161thm.jpg
ce31ae75b938debc435e14d924633a95
08e761ac4540f74714877045549678e0223af6c2
85896 F20110218_AABRFY baskaran_a_Page_044.jpg
a18c0a3762dd2d0acaa0b4d5135d9fc8
a9e809ab6261759168b4d43921c82332104d009b
5546 F20110218_AABRYB baskaran_a_Page_016thm.jpg
5421bee2d81914188a467b1105332f63
f09768855474168fd2b63bab3d0eab54a69d3cf9
3911 F20110218_AABSCR baskaran_a_Page_162thm.jpg
888b909a34e1912d411da75ffbacfd93
72263874eb62d133ae083e43eb680ff4c3697567
25390 F20110218_AABRFZ baskaran_a_Page_044.QC.jpg
82c7636b9fa774ea63119f9ab8c7cb4e
06a7ddec38bb1d528456ee75d765a724a2105a0f
5389 F20110218_AABRYC baskaran_a_Page_017thm.jpg
d64f666fcb8b2931258ea5d79938a162
1ace2fd8c5008e977bfae0a20aee372daeaaa27b
2585 F20110218_AABSCS baskaran_a_Page_163thm.jpg
9e9459d2913849732820f6ced963e673
e9f863e55567ee01d72b5dbed9f6e5a86ee68ab5
5243 F20110218_AABRYD baskaran_a_Page_018thm.jpg
a08af9820a2bd0f23406c15917aaccce
86da39fc5618f3723daadf6d2c2a9b19414bd757
4366 F20110218_AABSCT baskaran_a_Page_165thm.jpg
cfeacccbe0788dab6840b9ec2839d1b1
44333567960f9d86427282c08e62c81cd011e1a0
F20110218_AABQOA baskaran_a_Page_139.tif
7b3dd5059df4cb9b404cc9efad2c1e00
d8dfc5c3d97031662edc41688177d11bf2e865a1
5583 F20110218_AABRYE baskaran_a_Page_019thm.jpg
b69249c5e7077ec288777dbf2c12aaa9
dcda2ff5fe3e9e59c1f6aedf3672c341303c68b3
4024 F20110218_AABSCU baskaran_a_Page_166thm.jpg
2c6e47750ba4e0dcbb0a33c36ba3c721
3755f277876057b8bc78e51d6d04344b9ab8bbad
F20110218_AABQOB baskaran_a_Page_140.tif
b0cb3e7e11c990d3c369a7c1036dd126
1e6701ce28878e8be5f9b003e07741fbf95f039e
5058 F20110218_AABRYF baskaran_a_Page_022thm.jpg
481aad2ce7e69550b353b9eca21b6916
fe9146bd3917581ada244b74ac6165d10b494fa1
3411 F20110218_AABSCV baskaran_a_Page_169thm.jpg
014073b91da678b033f7240cf95710c1
87b7fa0f01323ad486b4f8409cb04dd7023a786a
F20110218_AABQOC baskaran_a_Page_141.tif
38e03a7985e36e8ecd32821075520623
322d98da59cee92c8b549d64d9b8e74820f5660c
5054 F20110218_AABRYG baskaran_a_Page_023thm.jpg
8851f52da1db336831550f238cffa7c4
ed3dafda980b6377be05dddb42efbd2b0efc8ba9
4162 F20110218_AABSCW baskaran_a_Page_170thm.jpg
0be9f63825ad0fb2605d9a74cda73fb0
86ea94f85e70b138750dc9ab39ad548660897dfc
F20110218_AABQOD baskaran_a_Page_142.tif
a5c376f1cf65c7be45e040eae02eeea1
8982d8576bd679337e34a716b0bf4c8ecc961086
4688 F20110218_AABRYH baskaran_a_Page_025thm.jpg
4f67525f855a59357157f787f5333f38
d286f2ab7492d8e0b1a1a3334694a53b539b5296
4263 F20110218_AABSCX baskaran_a_Page_171thm.jpg
42a46fe53442248cba8e1040f1a4b4bf
891014cc07428d692007547f6f61c7426014584a
F20110218_AABQOE baskaran_a_Page_143.tif
e9857db01f53d957e15dd9278204d2f3
fb15303ae17d21277e5f6796137fb67f761ae870
4615 F20110218_AABRYI baskaran_a_Page_026thm.jpg
e671b5f8cf0c5da9e9c2e458f7bc4d16
196b303d588c90627e375af3ff38d1f01fd09bbe
5378 F20110218_AABSCY baskaran_a_Page_172thm.jpg
851411c572c44b1a1ecd0925a8e19c45
ef42d29ad3fa452721ed0476ec220110e09128d6
F20110218_AABQOF baskaran_a_Page_145.tif
62842669cf0a5057663051275d538616
c5d49089689480ba2ac987c6b6a0aa30a14ed3bc
5367 F20110218_AABRYJ baskaran_a_Page_027thm.jpg
e9611c274ae4be88d8b04694d11d1788
7f6e9d8779c1031d4cbcb95709ecee9edf8290ea
3816 F20110218_AABSCZ baskaran_a_Page_173thm.jpg
27299575ea74e5b93bbeff04f1bf4bb6
017560c10fc4f0cf40e3ef5062e776e9f9cbfcca
F20110218_AABQOG baskaran_a_Page_146.tif
f8c0464279ce7ada5ceb18b9e6ea9adc
f363cf7f8991ec3a09d57e06cd63fbc8e2462b5d
5586 F20110218_AABRYK baskaran_a_Page_028thm.jpg
275670b4b1e557a03d25749fe00d22f4
6d33bde472443e7acd5add8eb56086c1e0191522
F20110218_AABQOH baskaran_a_Page_147.tif
b50fc38d5fbd2595aaee776485c2511b
185538786098e9f818fb15db243c6d8e5713783e
73046 F20110218_AABRLA baskaran_a_Page_131.jpg
08f457e2617e48f1d2fa6135f3d6cf9d
2782ce25b7b98cc8dbb5fabe0d831480adaeba20
5120 F20110218_AABRYL baskaran_a_Page_029thm.jpg
9f3a6b05be0f8f14d7914e7933a1d81f
2dd63996475ce3534d46ebd257676793ad8ab125
F20110218_AABQOI baskaran_a_Page_148.tif
1500c7cdfc6572afeb9999642ddb6889
182c40c7a476bcd0f4b779a9857b8fa54182be52
21150 F20110218_AABRLB baskaran_a_Page_131.QC.jpg
e6375677e98837480ba48db98a5c565e
1344755d6d6cb3664ab3b46cf8a6df1995592fe0
F20110218_AABRYM baskaran_a_Page_030thm.jpg
23e3366eb71df2ddf8b0dbd487715a00
fa2aeaaddcd3f555b24334a925c3feb0b759d67e
F20110218_AABQOJ baskaran_a_Page_149.tif
9644b058cb8a0822e750272cd8f62fd9
88f0314f648b6c004ff0f474f8d2f3adbc13e2e6
84579 F20110218_AABRLC baskaran_a_Page_132.jpg
488419c21bae660fb432b5fb7b76ce5f
b947137c4404c626b1204b1ddf8295c53b8c8873
4718 F20110218_AABRYN baskaran_a_Page_034thm.jpg
a6711b826194b4d9e604cbc8f325afff
0564c7150fda3f359b07c19efffa407fae2ecc47
F20110218_AABQOK baskaran_a_Page_150.tif
ccbae0ddefd3073292a815078e5a92e2
6db6b94b398ba9af94dd0bcbde19427d11092b3c
25220 F20110218_AABRLD baskaran_a_Page_132.QC.jpg
10bae994e098c320008b7e4e5ec801d9
d8879b431575930e9118d987a83100c0e1a59a23
4146 F20110218_AABRYO baskaran_a_Page_035thm.jpg
6174683fca9d3840f7ba3ecec5e31d3b
e6453c98f494b6f600922c9989b24a77e87775e2
F20110218_AABQOL baskaran_a_Page_151.tif
691e9086e0d8b711020495ebeddf0e57
67dc21eb4205b6959ccbf038d5251d8e68fd82d9
25154 F20110218_AABRLE baskaran_a_Page_133.QC.jpg
f6ca306e53919d0fb35e63b7f46018f0
1356d016139df4378676560a6ad7ad67f26fd7b7
4404 F20110218_AABRYP baskaran_a_Page_036thm.jpg
8038c87211ed58aee5fee8acae773d2c
956ef429a6833f9c54c019c53ea197e5468bbdb6
F20110218_AABQOM baskaran_a_Page_153.tif
51e5eb7212b933053340bb22ef620646
19b51e38d8eae3b76624b1ea4c44e5407380bf6c
86469 F20110218_AABRLF baskaran_a_Page_134.jpg
44e422dab8f88462dbcabcc38495e6f7
b678c9ca7efdb537aaafeaa5957232a0ce625ae5
F20110218_AABQBA baskaran_a_Page_157.tif
4ea369569b06c9293caa1f6a419682cf
7b3ab36123474779767b607859e07be47c369b14
5174 F20110218_AABRYQ baskaran_a_Page_037thm.jpg
336acd72f3d559854a06d6b2ea3f319e
8416e3a61bb58791e68a24387db3ab96b74fd674
25114 F20110218_AABRLG baskaran_a_Page_134.QC.jpg
77c611c029cf8fb1fffb5561671921c7
135ad3448c615e64e3d6fb8a76c4b89e9804ada0
76072 F20110218_AABQBB baskaran_a_Page_110.jpg
7beba8f383fe04fe8188a80e42b824a6
25122a62b79e0a77b8c7a111c45ca758ca1ebc29
5283 F20110218_AABRYR baskaran_a_Page_038thm.jpg
aee959b2a3edf9dc4553a3f3c7bebe58
e2b9ac81ae575d4133e6294bed472c1269341069
F20110218_AABQON baskaran_a_Page_154.tif
2794063adfbc548f098580a747492801
11a8c720510102a716ef79133b00394fa3b386f8
86192 F20110218_AABRLH baskaran_a_Page_135.jpg
04134f442c97d6d69ed41a2c7a48e298
6de405c341bb2e2d5220d1477188bc6332d8662c
2979 F20110218_AABQBC baskaran_a_Page_154thm.jpg
ac18e3deeba2015a15a7b457e2bd917a
2dc69f1511ca9b9bfe3f6c687dd37477fec8f4c2
3546 F20110218_AABRYS baskaran_a_Page_039thm.jpg
50596f49921abab5e4ea820708256548
7df6ce0b66c835f818066ad9129de0a75680c886
F20110218_AABQOO baskaran_a_Page_155.tif
e34dab88f0ecd10e00010aeb4a3aaf04
c812e22e7b3b46a7e412f649561b55014963c50e
25336 F20110218_AABRLI baskaran_a_Page_135.QC.jpg
4dffb317c824c42bb9684cf222cbabdb
bd3aaf41454d635d6b60ce5f04e18c758c7b68e0
1531 F20110218_AABQBD baskaran_a_Page_213.txt
d04de5578e39e656cce3a2a85e474c28
97d76d4269f349625395fbf90022081bcf6b3d6a
3558 F20110218_AABRYT baskaran_a_Page_040thm.jpg
0e446411f0843e43e4ba60703cc2e1ce
66f9771cd79c17569d5f22edd5f934154300c2da
F20110218_AABQOP baskaran_a_Page_156.tif
52f5a1a1ce22f562cf8fcc0925c29d10
770123c2e5d532bf21a0b87891fbb6aea21c32c9
F20110218_AABQBE baskaran_a_Page_220.tif
d1b0ab505ea77a14b2556ea7ea946368
ad89ed448aaaf4b1b36dcb529c93570a984646d1
4843 F20110218_AABRYU baskaran_a_Page_041thm.jpg
d9fc6567f22f34b7f115fa995a20cd28
9ecd04adad094cf9ac9bc69326f25d4169ca1b30
F20110218_AABQOQ baskaran_a_Page_158.tif
7c84d64b6892f619012be6e0f3d19e1e
3542c7a3065feb66fa429715ca70192875607fbc
69191 F20110218_AABRLJ baskaran_a_Page_136.jpg
a252ca86b6ea72ba36b89a6ef5c7127c
6b37c6222f0b2466eb28d75215178eb13bcac281
593400 F20110218_AABQBF baskaran_a_Page_159.jp2
32e63c9a1fc0d76956980966f3c0b951
447ce59042663d24d3a38dce0d5b1a8140b4c673
4743 F20110218_AABRYV baskaran_a_Page_042thm.jpg
550ac011efc2ef276016d9ab422251ea
541aeac23ed4d562ac22a8c12ac4250263569cbf
F20110218_AABQOR baskaran_a_Page_161.tif
f85491b7a9c918296af1cd57d9c3b440
25efac0d99e25b10c8a7226eb56f38cd09da927b
20781 F20110218_AABRLK baskaran_a_Page_136.QC.jpg
f8dddf32db95a1db0a921777ac587704
a8e44f206c6d4c2b156a2d229e967752afd1dd11
1051935 F20110218_AABQBG baskaran_a_Page_049.jp2
05bff3fae314ef4fa1b4453560aabaaa
21e2bc7a51bc292f955b402c6895615b48e1456f
F20110218_AABQOS baskaran_a_Page_162.tif
bde551979bb7e288ef00619811ba3552
25c8fe3909c6834133a90f688631f765fcb69163
66079 F20110218_AABRLL baskaran_a_Page_137.jpg
94bbc54ee3b383b906e8f963b43a5018
9918f53f46517693292a4abea0219fd2f3e76b52
55352 F20110218_AABQBH baskaran_a_Page_209.jpg
1cebd7d4d50d4006073eab9d532ab8f6
ad7e6c9fcfdb5a59f957839b2969e7cab555adb9
4553 F20110218_AABRYW baskaran_a_Page_043thm.jpg
77b0e75147dad6062d792444d3237a69
6803d6dd1cae79ae6c9861dd44362ef9d3511dd9
F20110218_AABQOT baskaran_a_Page_163.tif
de8778fe1f9ec74716b78603f1fadb14
500ce7c90ec6c00d56e400a347552faa2e18e80c
19548 F20110218_AABRLM baskaran_a_Page_137.QC.jpg
71ec258a05663caebbf0e4d8658f7334
d4c5e93d75855bae282f3ac040c37fc58e855f8a
1586 F20110218_AABQBI baskaran_a_Page_127.txt
08c967b26986e2faa540feb0886a8065
5eb160817a4e7e2fc572f9ab7ec2c1089ea42054
5516 F20110218_AABRYX baskaran_a_Page_044thm.jpg
6fd4cb4b4fdbe4a8eba02fd30839dd96
666aef806d122ab3296b6537490284710527dcd3
F20110218_AABQOU baskaran_a_Page_164.tif
6bde4b701441bc880aa1fd74ad985e24
b0a249c17fcf8bb3ad8333da179196e9d8945a44
48949 F20110218_AABRLN baskaran_a_Page_138.jpg
d6801ca831f9b5eff70f037bf29c447b
e79b652d5e1baaf9f5787b4eab1428386d078cc4
23753 F20110218_AABQBJ baskaran_a_Page_117.QC.jpg
ba55f6be6053e3cef23f38a512bda345
87daf4cdb1f69be53d3cf0fdc2b246f3d3934c21
4524 F20110218_AABRYY baskaran_a_Page_045thm.jpg
386e47dd5e9b6885052ef110b0cd59b6
e7de1b29e292ae285bba69c5b9a0da71d7193b98
F20110218_AABQOV baskaran_a_Page_165.tif
b55dca2c1c5579237246612303a66b9d
74b7d45e9cb762ba1285abe66a5a13066e6b1870
F20110218_AABRLO baskaran_a_Page_138.QC.jpg
0d962ec0c6b1d2232256337c2a82cd76
be6cd6a54e2465b0e0e552e55d9295423443f9dd
F20110218_AABQBK baskaran_a_Page_215.tif
0101c9d47774510896bc400fa9f9c6b4
ccac4f7c9474e2e5b306cf3a6ab5d61e29e2e558
4414 F20110218_AABRYZ baskaran_a_Page_046thm.jpg
887dea3ba347e76699dc005c536cccc6
ad1af28834447586b6ef721a220764ada81bdd86
F20110218_AABQOW baskaran_a_Page_166.tif
d27763e06ad2b11b5facdc549d7496c4
3ffd82d557665a37941dc1eb02ea546d75f44690
16503 F20110218_AABRLP baskaran_a_Page_139.QC.jpg
64b1763996c7b0ec1b8ec13e25f58962
fb669be64be6642ef0082be2e3186302d4306d70
854973 F20110218_AABQBL baskaran_a_Page_076.jp2
57bc89e4043e70e21632eb18a42bf3df
b098bdc98331d0f5c281f8e1d0d2146b2ca8fd1f
F20110218_AABQOX baskaran_a_Page_168.tif
6f4ddafb262723eecdd784a161e83fd2
c70589d385fc5ae4b9b15bcd7242918af38e66f5
46571 F20110218_AABRLQ baskaran_a_Page_140.jpg
02ad192ca5349e2f9d4b3eca3341e36c
9e258611f29a7fdd8582c0acb8bf4bfb06059c8d
5179 F20110218_AABQBM baskaran_a_Page_049thm.jpg
3583451ff515019141a03953fd92b9c4
2ff996aa34da81586375f66b0e0f9173ec537686
F20110218_AABQOY baskaran_a_Page_169.tif
82971ce6a6545353d6aba57daac59abb
ac069995a12b3afdefd2000414ff7c21ca3e6048
13999 F20110218_AABRLR baskaran_a_Page_140.QC.jpg
8ba40bbb75c6738d178d0a3aab7a48de
f9fff2d50ababb590efd9fd43666600a8822e6e9
1628 F20110218_AABQBN baskaran_a_Page_209.txt
3f3d68e317d6648eb5879c10f86920d0
c24cfa4eac95756b44d9230b7600719126b38f5c
F20110218_AABQOZ baskaran_a_Page_170.tif
b045f050182600dc3e17f656e9cf2efd
534edd40f148a4ee62b09cb0b6795eb709fbac13
41203 F20110218_AABRLS baskaran_a_Page_141.jpg
3b56e50c5fac7948dabcdcb2789b53bc
68e6a7fa2bb9f5005e61df879ebf649858cc1815
58740 F20110218_AABQBO baskaran_a_Page_028.pro
23893cacfe840d5e88af7adc5f931802
abbc6cf0cb3e83ad670322d88f3f5656414e8b80
13550 F20110218_AABRLT baskaran_a_Page_141.QC.jpg
bba65f44ed60847129c1865477d24e93
3ca2fa6cb2e2d6228f1fc31cd14ce5606aa0760a
41367 F20110218_AABQBP baskaran_a_Page_105.pro
3f22e332010d9262f3b2d3203bd5c751
4cd74f8fc4544045b79d399071426bff6a1b7e6d
63873 F20110218_AABRLU baskaran_a_Page_142.jpg
b19fa336cc99aa1410ef3454ba1d8bfd
e7cc34927b9678146a0c1e23d242e96121b62dea
64126 F20110218_AABQBQ baskaran_a_Page_054.jpg
0c0b895cc8b455af9d2d86ae4ee6d7ca
251febcb366cdce6e0a34c0be011acd161bf3bde
19953 F20110218_AABRLV baskaran_a_Page_142.QC.jpg
2dbe3dd1b18227f3bdd3198260aaf8d4
4093bc716168d4450b49d29d9e3fc959917b776c
960 F20110218_AABQBR baskaran_a_Page_212.txt
c1bb63543d7f0e884c99bbeab068a61d
d2d64782193ad20ff5f925ae36128b9f85f84376
47227 F20110218_AABRLW baskaran_a_Page_143.jpg
413625271984846e1c766e8bf66c77a9
c4f17e3295ae6ddaf59e39178d5ae3c5afdc2ee7
1579 F20110218_AABPXC baskaran_a_Page_111.txt
2e49ebf23fbbafaa56ca66db8e595ee3
54475bf5990f6ac5fa1f391faec1c91c4f5b13c4
56475 F20110218_AABQBS baskaran_a_Page_134.pro
ffdee8d2947ba30a6e217e42294f8e3f
a0b4548b773802ae54bba55d6563645110e66f95
16266 F20110218_AABRLX baskaran_a_Page_144.jpg
9c147081b9b01d81fd1c011434a8563a
fe7f31d48d9d1462a611bad1cf19c7a363022a48
77455 F20110218_AABPXD baskaran_a_Page_104.jpg
488824f50bd61470315e17f8ae9697f1
bbf7626136e5bfd9770d5213943dd128b3219798
27768 F20110218_AABQBT baskaran_a_Page_157.pro
d010239b17e8e7c35735e67ddfc2854f
b18930913269b0deeedd1438222df546b49160ca
4509 F20110218_AABRLY baskaran_a_Page_144.QC.jpg
a0c5ddf4b7ce70d020b5cf3d1787d341
ba8d5145003475613d8d8a516091466fdc5f01b4
937575 F20110218_AABPXE baskaran_a_Page_068.jp2
0e8cbbaac37415d17a8864e6fe713726
231dccfad90a445de6102e81d6afe5567a8014b2
1672 F20110218_AABQBU baskaran_a_Page_098.txt
a63c454af1d97e33c7031ebadabb8b77
4a5397668a62d777cf14e0cab7e21b3b25590b13
12763 F20110218_AABRLZ baskaran_a_Page_145.QC.jpg
6de26aba5ff7935ce8eaba4821ed63d2
6675f618c56f4843d719267d730c46d837347f80
48990 F20110218_AABPXF baskaran_a_Page_029.pro
aa7827a9eb719baaa17892a3eeaab9de
33d336a6acab2773530df3910870721329b847cb
62678 F20110218_AABQBV baskaran_a_Page_079.jpg
6dab4841319f6ab680750bf6325cd2e4
6456284e1f10f3ff258fa7743ae0df43addf8a07
296 F20110218_AABPXG baskaran_a_Page_009.txt
56c1d3c7eeae07e1e37f9f25d99238f9
f226d50ee7ba8fe50865e5ea350219a744f0d01f
84849 F20110218_AABQBW baskaran_a_Page_133.jpg
1d9f0264f68cbdcac807ec07cc6394a1
7d91295168419e3251b72d27282e009a1006976b
64521 F20110218_AABPXH baskaran_a_Page_074.jpg
6a067665c4096d3a69fdca38f58e60a3
e67a584242dcd9370203919a68df720aa160a60d
4047 F20110218_AABQBX baskaran_a_Page_205thm.jpg
3af3807ff5047fbeadd4db92e4e45fba
b4557bbdfcf74d5b6d7f6910d5dcb2018e694624
F20110218_AABQUA baskaran_a_Page_128.txt
fc3a572895592fbe4b15c08ab3159e3a
0aa9d1093c60f89861c8c7c0159c8c9c845ac2f2
61781 F20110218_AABPXI baskaran_a_Page_025.jpg
87af0f469d7e8bfce38a79e752627fe1
21a15aeadd1efd08b9f96b7a216d839b524c0327
336502 F20110218_AABQBY baskaran_a_Page_169.jp2
ec375d794e709398fdbf885e1d93cfea
bf979081cd3f784120d8d78f1ac23d947a1db08d
1811 F20110218_AABQUB baskaran_a_Page_129.txt
2d25ce8190fc95a99b58ee9db9385384
be03da26b9887b5b620a0e8f7185b831074b81ae
2030 F20110218_AABPXJ baskaran_a_Page_050.txt
a918a3df9b9811fe98d4fc937bbbecc1
9e50ef4717598174df940ab797e19e614cc744e9
16685 F20110218_AABQBZ baskaran_a_Page_126.QC.jpg
a75db39efdcf9f89fa41e600fef15f24
fe33eb170a2da5b47741cdac0ae2ae28a0612f36
1896 F20110218_AABQUC baskaran_a_Page_131.txt
975ea3629a5e5d0f21e7d4d801d8043a
a43c5d3af8ead44af913e455945932a4a96c9d5f
F20110218_AABPXK baskaran_a_Page_071.tif
81ada585e2a85db8f26cf2c07f096d5f
b6de29115127698b19d54ac450ef0733d95925c9
2189 F20110218_AABQUD baskaran_a_Page_132.txt
337051ab72a2b6ed6d20a36a8c2d300a
c85d0981351e7d0321a9410657797cbbeab07af1
546016 F20110218_AABPXL baskaran_a_Page_020.jp2
ef9d9708ef586b56317787239cec2978
b0d9c6b8333383b1035f9c151175f546ae2627b6
2206 F20110218_AABQUE baskaran_a_Page_133.txt
dad24f223d1f76f3a5911a45bb4baa75
94de57697a9c72e7b0c21f19789f12552620d8eb
730 F20110218_AABPXM baskaran_a_Page_003.pro
42b1676917eeefc6d1129c68750e0ac4
87b3fe7eb757f08d6373fa13b5af8094f1966814
2218 F20110218_AABQUF baskaran_a_Page_134.txt
2cd9d7654ac02051d1a175ad3a6fdfef
90472cdbc9aed1414d1762344762979e916b9be4
4629 F20110218_AABPXN baskaran_a_Page_021thm.jpg
05e81fe611dedab34bc9f984b4e8912f
fb4941bde49c636b0ef277d5816084bd1f852ee5
2226 F20110218_AABQUG baskaran_a_Page_135.txt
335b6ac561edea671bda3ad4335ae1b8
f67b72e85b11ca335e072c8e6c611861f5999d7f
485291 F20110218_AABRRA baskaran_a_Page_004.jp2
a2e2003befbd045580d642ba70d81328
cc5627ecd43065deddd55b6a82272e87fa045243
4177 F20110218_AABPXO baskaran_a_Page_196thm.jpg
55b3583d4d0643c6247dc897263ffb98
91b5312abb3650392c0659e186ab6861b30d8e40
1755 F20110218_AABQUH baskaran_a_Page_136.txt
6cca65c9828b52303e38260bedb2a167
0cb210b344ddb16fe6c5128f8fc5cf9c8d86a6e6
831015 F20110218_AABRRB baskaran_a_Page_005.jp2
161df0eaba71429167ca3fe4ecb8565d
fa74f741a0a118c7c91dafc6d5bcef4a8868a6a7
23082 F20110218_AABPXP baskaran_a_Page_212.pro
d6528840b498437885af881d756e064c
c8adb6ff4f7c2e51b62c1cec3c76e745581237f9
1787 F20110218_AABQUI baskaran_a_Page_137.txt
6cf10dfaefc596e47e215aff06af1054
1dc15c7e4d29cc187c6588c6ff43e2e592881505
952557 F20110218_AABRRC baskaran_a_Page_006.jp2
4b36ec096435b6a8e43402eb17599966
117d63a83c09335cf005fb1d056e4aea666bbf74
960029 F20110218_AABPXQ baskaran_a_Page_042.jp2
b044882ec094c5feda4add23d97bd060
792a8718794386db976089438d29b11fbf0c6848
1517 F20110218_AABQUJ baskaran_a_Page_138.txt
de3672854d18d937f9f3c07eb884e9ca
52982f0466aa44046af384be9b92b440081a08fa
146249 F20110218_AABRRD baskaran_a_Page_007.jp2
6bc7bbe0a7c87b504bae3194eda8ec01
cf035e86d9537a58eecd06ed4826b8edbb201b3b
3904 F20110218_AABPXR baskaran_a_Page_187thm.jpg
d7f1211f84187d6fa6c166ded841cfc7
5bba0afeba2ec67633247e2973cb66b09c9e5815
1816 F20110218_AABQUK baskaran_a_Page_139.txt
006b4909f21060b94a1b5a8186f43025
f4d92d8eb5ba6138807be1e3961fbe63b2b7d818
160380 F20110218_AABRRE baskaran_a_Page_009.jp2
4e97976627ff5cf433875ff7bf1b951d
bc44fad046fe0eda7c41afd992e3255cdbdaab81
5811 F20110218_AABQHA baskaran_a_Page_001.QC.jpg
f2d4ec60038b54a50b92c09ee08620a3
248fac757fe7d37542514426037e0d8514dedb77
663226 F20110218_AABPXS baskaran_a_Page_170.jp2
801f0b2c7ae90d0bbb45187b684948f7
02b07d192012a7c00d82db5d4b3b5cdac59e7772
1283 F20110218_AABQUL baskaran_a_Page_140.txt
b7620b8f90d8acd308e596106084958e
faf81413895f6654102dbe56d6c6028dd02cafd0
1034744 F20110218_AABRRF baskaran_a_Page_010.jp2
149315ad098fd3918b4e223d57401d62
570ed1178dcf0a902f5e837571216da0b587fcd0
1668 F20110218_AABQHB baskaran_a_Page_095.txt
b36067eb19e38503ee60ac6897e928ef
978761a50e2ecd03c5a970654e8adddee889ba89
14650 F20110218_AABPXT baskaran_a_Page_213.QC.jpg
d2cdfd1f20b18fb1c4c0b4de06d203b5
022bdc5b5845e9fd0774db42773656193adbe47d
1068 F20110218_AABQUM baskaran_a_Page_141.txt
301c4ff2371cd23247612decdb0f2126
31e22bf89f69237d143cb294c3bab874bb29fe86
1051983 F20110218_AABRRG baskaran_a_Page_011.jp2
3e7bdad59a643b4b0e6d262b73212d51
34f2c56a77f3cf16d2c86895b27e2606ca237011
74069 F20110218_AABQHC baskaran_a_Page_082.jpg
d85b6113491afcb06f95be80da0d2f33
45057eb4bf9870abcc3dd825ebbfc0658d6b7a33
54448 F20110218_AABPXU baskaran_a_Page_150.jpg
ea6423a5b3d411ecf781d20e590d78d1
3ee3e4d95497eb2a384b22a7cba77aadee2cf4a9
F20110218_AABQUN baskaran_a_Page_142.txt
438c0b06370a3b2dbcd7cc770e26b050
e40edb93e88940a6c6dca956291b9005193323a0
1051977 F20110218_AABRRH baskaran_a_Page_012.jp2
a6cbc246a1a30c181a60adfe5a93dbd1
d3d050e042d733f50a442ad43599aa678b76e086
F20110218_AABQHD baskaran_a_Page_093.tif
ec5819ce1c7efb618fbd6cb0d8895f00
66fa934d2151348b106bb16d87ab4c555d7a45e2
F20110218_AABPXV baskaran_a_Page_203.txt
fbf69a2c45110bce32b1497ea6209354
a91938f6cbbf659ad514a84284d33f9a8f3ecb78
1238 F20110218_AABQUO baskaran_a_Page_143.txt
07cb4f11175e8b0d61f9c6f9f99b299d
ea48b8afdc77e508be47f19714264cbdc5c09727
1051978 F20110218_AABRRI baskaran_a_Page_013.jp2
afbb0b91876d17bda9ad0e73c46b9dd3
1a75f2cc5941144cd17e380461b60331dd5bee98
18838 F20110218_AABQHE baskaran_a_Page_114.QC.jpg
9a921e7ae8bdcf33b5998d6bfdd7c9df
18c2e77db8cd1854e2998c1e5c2bfab24656a334
55236 F20110218_AABPXW baskaran_a_Page_080.jpg
92a6de9fb97c2317bce5bd7b54e12505
559cd8da4ddfd02001e574497464ebb7b713c407
342 F20110218_AABQUP baskaran_a_Page_144.txt
9cd57bd7ac0a63b0482b628964c543a7
f5d17008820fb6e8857f6b7ee3b11cb801c65afd
1051969 F20110218_AABRRJ baskaran_a_Page_014.jp2
a8c41a16f4ef96d6e5ed5308b06ef83e
a88751d45faeef71e9e9d0cb44bb688eddb76beb
F20110218_AABQHF baskaran_a_Page_031.tif
49e68035fd918368313c7e0001bb4e8f
aa77751dbbb19adb2738e64149d014850d86a7e2
1448 F20110218_AABQUQ baskaran_a_Page_145.txt
e60db511f0542ead61a46f794fd6edfc
f3cfc6e99f7cc0384b2be568a6aac77012733125
1051982 F20110218_AABRRK baskaran_a_Page_015.jp2
210b81f10f542465f8c7dbafaa1002d9
78716a8c0efc9cb609527d8da723f9f58ce33341
F20110218_AABPXX baskaran_a_Page_047.jp2
72b3a2955aec0a45277cb076fe3f8b52
184be3271f1467cdde93bedce957294ab7c067d2
1482 F20110218_AABQUR baskaran_a_Page_147.txt
e597c191116fec15d745193848fc3349
3c5f2b06ada0db1ce8ad979517668e0a0d9e0476
1051971 F20110218_AABRRL baskaran_a_Page_016.jp2
5ba2cd2f25f72739852004cf101b4f35
c40fae34fd27efc4a4c387592e4124ce0e748cf0
14700 F20110218_AABQHG baskaran_a_Page_208.QC.jpg
234f9c307291c2a1a81e9230086a98ca
c1d01d358535bd47875efb38beb531d47d88c8dc
32375 F20110218_AABPXY baskaran_a_Page_161.pro
0da3318bacd1170c77227e72c612c2b0
8633c89c53e93df11f6718058a6814541bb055a1
88312 F20110218_AABREA baskaran_a_Page_014.jpg
b3e5454d73f51f44fc1ce35d13435e52
47992e2103c05b2fe133a0c23c83c62288801a1b
1659 F20110218_AABQUS baskaran_a_Page_148.txt
5336588bb51a43931b14da300595f9a9
b7b7ad34533fbf99f7061f546b5271bf000524e8
1051954 F20110218_AABRRM baskaran_a_Page_017.jp2
be818553e4939df445ad44580240f3d9
c19cf0e6a56b997741a7d946f431a1bbde40d5a0
14639 F20110218_AABQHH baskaran_a_Page_182.QC.jpg
68edf276636c75784f722ff17e9d1c47
e961300002685960a24c934a1211a49d34b8a6cc
34497 F20110218_AABPXZ baskaran_a_Page_153.pro
9078fb9d0a18593b4a2bf1b15c4171ec
7a76a76e34c6a4fd33516af5f03cce6e7c9f8a18
25994 F20110218_AABREB baskaran_a_Page_014.QC.jpg
fa7f82078f5766902d0f7cd27fcda9a0
fae580c695426bce53955c2c655ccf2b8c39ff4a
1051963 F20110218_AABRRN baskaran_a_Page_018.jp2
71d644277bddc512bb137fb0d81dce0c
8ac18a65e27d64e22deca172a3dda69ed92ef365
1879 F20110218_AABQHI baskaran_a_Page_110.txt
cbc5d77fd52c2fdc37bd57bbe0229e9a
29cdab48adff85896da24f17a1bbda977a310b3e
1651 F20110218_AABQUT baskaran_a_Page_150.txt
0d57e4e129dae343c4a5a0cc1107da73
e65dacc6c10866f220ba4b91714006f4f9e0b8dc
1051948 F20110218_AABRRO baskaran_a_Page_019.jp2
308c455a6ed68e80de1742e8f9b96291
f20e23be65025d65abd2190c1fc13474b2890b85
1044413 F20110218_AABQHJ baskaran_a_Page_104.jp2
11fe1ca53710b3379581708ad3afcb62
2a58be3188133e8324d6b71b47d3bf1adbf45e37
85652 F20110218_AABREC baskaran_a_Page_015.jpg
1e752180e146adfb4b4d5153ee4e53ed
24a1b93203abd47618bc161dc6a5b77a33c5d5bb
1702 F20110218_AABQUU baskaran_a_Page_151.txt
9b025e0e0d1dda531ecab9b8352968fd
49668e46779ce53177730d64d24099c143a18aba
F20110218_AABQHK baskaran_a_Page_038.tif
03bbf1e3c54ee0536d5b3a679646d23e
0fa413660c2b3386ae2713436f690a68cb0c33d9
24980 F20110218_AABRED baskaran_a_Page_015.QC.jpg
b34919b25224982a3047a2efbdfbaa13
78a21382b3394a71e9694b169c0da193442d5656
1011 F20110218_AABQUV baskaran_a_Page_152.txt
390a599e70a2bd46736ef080d90b7193
f8d185fdc434505755d41221a474586f2c60a78d
984452 F20110218_AABRRP baskaran_a_Page_021.jp2
b0c09ab7f92b750ad2d61c9f7e00aa38
a6577dc27778a87347bc9ea13c1808a1a058124b
1680 F20110218_AABQHL baskaran_a_Page_066.txt
b94811a459f3c9193a21b2f9d1efa7be
619d4631cfcd75b3eadbfc2f6458789b04770516
85222 F20110218_AABREE baskaran_a_Page_016.jpg
fafefd64e6b0aad5f67792bdf1d678d7
c9c96971c670cc2e801b4ea6f54c93bf02748ed6
866 F20110218_AABQUW baskaran_a_Page_155.txt
cfd55c0c223f9e2b7be120716fa5b1bd
13bc8ff9eec91e4b124d7f5399c281c686ea8b20
957838 F20110218_AABRRQ baskaran_a_Page_022.jp2
1f4151bb3f526de674d7a3d883c0cf80
231901548f35eb8788832fabce42229492149957
16480 F20110218_AABQHM baskaran_a_Page_184.QC.jpg
af9c686ce1085946d6235827e27d5799
cd7ad075ef0688ca921a99548296e8c1604ef3d5
80721 F20110218_AABREF baskaran_a_Page_017.jpg
ad6e3746dd4cf3dc1474b55847edbff2
5f7777777dd5b4f50d1c6baa58a286c9b497134a
1792 F20110218_AABQUX baskaran_a_Page_156.txt
4f4a6c28ca0b289542fa7d4002f029ed
19113188121ada38959ceb2806ac284d3e86a08c
858626 F20110218_AABRRR baskaran_a_Page_025.jp2
746905a426e8b0b718262673df4152ca
cb607aa80fcdcbb7f87c11aa2f9cb05d6e8fe9af
40012 F20110218_AABQHN baskaran_a_Page_040.jpg
4c841d67dfb8bc45d1af6870633c570b
25228a1c68199f198e1c0b04c8f2521177e8e63f
23814 F20110218_AABREG baskaran_a_Page_017.QC.jpg
c8db1201628d1cdb2ec5f919650ad35f
b9fca72421e757a026115ae7180fcc9dcdcfc3a6
1282 F20110218_AABQUY baskaran_a_Page_157.txt
f03ba7c4486bb4c31319554a3a3f374a
4f5ba758b9a36c98a52fbd3e14f93afa8e88aa23
990384 F20110218_AABRRS baskaran_a_Page_027.jp2
c30d02c344e1eb6f01263d9a4a95ffc0
192045eb5bd6b5ec7814640fcc07ebfab288f6dc
63553 F20110218_AABQHO baskaran_a_Page_083.jpg
e5b04ef57e6cae1d213163670bfe1b9d
33578be77ff8f68f38134e14ca58b6cad36ceb03
84025 F20110218_AABREH baskaran_a_Page_018.jpg
180ddf656465f7d8bb61d5463f0e7596
80933fa2387d0079ac6e77605be954c52684f68b
1463 F20110218_AABQUZ baskaran_a_Page_159.txt
0c1ecbfd4aedd37ecd6a9e9a255de7dd
f9fd9f4f05aab4cc34c90365c17720efbe4ad823
4763 F20110218_AABSBA baskaran_a_Page_111thm.jpg
5485400dd4d1bc41c115c28795aadb8e
6ac057e8314b7b9048d475bd677f10b543abfb7b
1051984 F20110218_AABRRT baskaran_a_Page_028.jp2
2971bd2f1b2974ac09a34fcf7c721b0c
197faff49d3811c28074803f230794fd69dffd72
3954 F20110218_AABQHP baskaran_a_Page_138thm.jpg
7bd63478faf62fe2e616bf9a5e6c1d09
08c35ee5922db8ff2e39894b1d5ab95d9922e4f7
24307 F20110218_AABREI baskaran_a_Page_018.QC.jpg
25d34867e68971920e73208dec745327
35bd9567f9d1794f28387c5cd29c110c5628ef29
4369 F20110218_AABSBB baskaran_a_Page_112thm.jpg
8ee45b78096d2a0763367440d92c0cc8
c8a3d2bf79ad90fd5cd5388827b1a04fd5d0be84
1051951 F20110218_AABRRU baskaran_a_Page_029.jp2
8c53883ea08fd8bb716166c8b02e1b22
6e62b4a8e70af8886649c4e88f3630068a932d1f
1521 F20110218_AABQHQ baskaran_a_Page_177.txt
9cc12c768f99a01221941c4be7143e98
5f11d76855e9a22941c345367ac1a4903f4c4e5f
106147 F20110218_AABREJ baskaran_a_Page_019.jpg
22957878ecd87e7e4be2f4c8e71379c7
de3e0b135a6fdfd2486d696c4d36dd3aedd3e12a
4436 F20110218_AABSBC baskaran_a_Page_113thm.jpg
61bc93976c68db479b2e6dbabdf007ac
05e5392d68b443ad9116b223edb8dd913e699a3b
886985 F20110218_AABRRV baskaran_a_Page_030.jp2
58af0525b27ee9e2f4183930d9cbe2e5
c5401c8f76a6094b0e97b20a51fdd81c82dfc6d4
36751 F20110218_AABQHR baskaran_a_Page_188.pro
c1b72bb119c0d55851296289f2b6ac2d
dcf79cbf6243f573f95adb88f9dc92ad5976e873
40749 F20110218_AABREK baskaran_a_Page_020.jpg
032a383469cbd15053b40a188912834d
45e556f76c6654da3821cd49e35dce74bf1bbe17
4378 F20110218_AABSBD baskaran_a_Page_114thm.jpg
df3798df244f77bf9987684e4fe9bf9c
e5f4452d84380d8eb8a139c4911214709a7e8b05
932444 F20110218_AABRRW baskaran_a_Page_031.jp2
f4fcfd3af5def4347279d707f87c436d
b8eae58503bd96f7179aa89773724a96cadf9605
1777 F20110218_AABQHS baskaran_a_Page_032.txt
5d62778457936fafa675108ae9efc82f
fcee35a8958ef25f7d47cb1015573aa9d45d0e82
10566 F20110218_AABREL baskaran_a_Page_020.QC.jpg
3480b6e636af641335dd673e5088f96f
0b3ea574ad14953b6dbe4db6a1f3801a8e2299de
F20110218_AABSBE baskaran_a_Page_115thm.jpg
5be5420016cd47c1f2e51436d4519de7
3cbb45f279a45b4a0e2909fe72e9787c1f66ab42
914154 F20110218_AABRRX baskaran_a_Page_032.jp2
94d93191201cf3e6c1f724e90459627d
2d74e8a6b7b040935491c96977e35d02936b18a3
17002 F20110218_AABQHT baskaran_a_Page_095.QC.jpg
5a6291b1dac145ae0588f1c5eee517ca
16942b8596015e59fccb2cc70489b654110b010d
20805 F20110218_AABREM baskaran_a_Page_021.QC.jpg
9649e0b8514fe6a8d82e34af449defc2
ee61b3afda64c2639ed2cc388638e5689bc8f400
5415 F20110218_AABSBF baskaran_a_Page_117thm.jpg
f76c4ae6b79181e1f54f3ef0968cc714
486a1d3a31483b515ebd638e4db4c7186334aa42
779878 F20110218_AABRRY baskaran_a_Page_033.jp2
de4b4946f6a99ad245916a48fedb15bd
7e8ff741266d70ca39938fb3834b285168d264e3
879719 F20110218_AABQHU baskaran_a_Page_137.jp2
28907a1a1affa030ec6892db85f2b5ea
27f25f3cbb515179813b49a86c7135279f40f6e7
68628 F20110218_AABREN baskaran_a_Page_022.jpg
adbd544883b71a5b06176434f54e47c3
d526801ca5a860e5ab365fb3b40bcbb1bb170c5b
5247 F20110218_AABSBG baskaran_a_Page_118thm.jpg
456573231ae16ce27dab6d5ac0dd9403
f9006e65defa5e478919aa512cdb1ed13b1e42d8
893416 F20110218_AABRRZ baskaran_a_Page_034.jp2
71b08a7841b30d5928a208635107348f
fe0c1c6d022e71a8877e00db29538e550911f213
F20110218_AABQHV baskaran_a_Page_014.tif
b39c9f6f724b7bdb11b65351c2ec9c2d
bc658c74744986471498bf199edce9aab845efab
21119 F20110218_AABREO baskaran_a_Page_022.QC.jpg
db8915e54351044fd656dcf6f3987c6d
40638089f5de0a278f60d426478bee4cb7aa6572
5236 F20110218_AABSBH baskaran_a_Page_119thm.jpg
54234f29339e3986bee9847295efbf09
964ac34330a8d2fc2c3268a54beb2df9f9288d22
1689 F20110218_AABQHW baskaran_a_Page_113.txt
be53ab8df1f5f54a84ecebdd09b1bc48
5fae45deb8360b9ef73d425e73cf8d9b5ba090d9
74613 F20110218_AABREP baskaran_a_Page_023.jpg
55f9a05dcfa5765e66f6905fd53ba92b
6a37cdb187e096a27d827495c38083172f2f3d33
4656 F20110218_AABSBI baskaran_a_Page_120thm.jpg
bd9c13d11124725d533a93fbb251bf4b
fde6ae3664b5e13156561d1a3c8c49c3cf5f5ab3
1032222 F20110218_AABQHX baskaran_a_Page_023.jp2
4e86eb62037d1ea7efb45d4c9a3103cb
31648d053908b9306c95ebb19dfd30ca6c305c93
22060 F20110218_AABREQ baskaran_a_Page_023.QC.jpg
0609a5de94b02b059db523f75d3657d1
d96583ac5b971b3365ce27a44cbfedad72c2b30a
3599 F20110218_AABSBJ baskaran_a_Page_122thm.jpg
2dd56aad127d3e083f698fead33050c5
5d3ff8f8198dc3db51bd0c39543cd0343fd74bc4
272291 F20110218_AABQHY baskaran_a_Page_176.jp2
4d45b9bd96fe8412f5e5142a0bf0554f
35b2713ab77c205ecc88191a99cfd7a7390a603b
74684 F20110218_AABRER baskaran_a_Page_024.jpg
8c37698f1f30fb3e8276f0069b52a176
b3e972d57930a17d33f6bf0889a809518e114609
4277 F20110218_AABSBK baskaran_a_Page_125thm.jpg
dbb80a93ba6cc55ce45c74b4453dac6c
381c82fd6e79801a300f5fd3f93cc4dd35afd760
F20110218_AABQHZ baskaran_a_Page_172.tif
c8c8f7016dbc1a40d6e9dac8dcab0720
c2eb7cca899d83511debca63b302240f75b47a7e
18913 F20110218_AABRES baskaran_a_Page_025.QC.jpg
ccedb9bd56258eafbbc3474ab4248176
8ef62cc916c975b1ed1c87ed893c31066753ee7d
4472 F20110218_AABSBL baskaran_a_Page_126thm.jpg
1b3aa2790d38c4900a1a7e3587fdeedc
346283ed0fe2447e8c4dbb30f6ac817fe99a7a98
59346 F20110218_AABRET baskaran_a_Page_026.jpg
687110dd063d2d0ec5fa9ed9501795df
7395cfccd311aac7f6e54a2deb858fef4f88fd85
4535 F20110218_AABSBM baskaran_a_Page_127thm.jpg
c279eac60f5c2f1ad9b7c46a145a18f1
2a1659a9a0524eb7d3722a5bfd3bceff0b2bb91f
17910 F20110218_AABREU baskaran_a_Page_026.QC.jpg
eff78104b6a753b65cb1fca885f02465
19187ac04128fecdd2ca3d0dd1ed35fd0c8a1e6b
F20110218_AABSBN baskaran_a_Page_128thm.jpg
b91676b6378c568e6448a7edf17af841
15d0a45efc2fb8862c416d2b7e50818e8f858507
74357 F20110218_AABREV baskaran_a_Page_027.jpg
816d2206acd329e9ae15adf5d203b2fd
a731e0bb730247275c36578670c93532d0d903b0
4878 F20110218_AABSBO baskaran_a_Page_129thm.jpg
8d8197beb1dbc6eda547b58edd137a6e
0153b0b87d7159d2259f7c0551482db1d65f2e16
21864 F20110218_AABREW baskaran_a_Page_027.QC.jpg
0771d59e3abd61e20908eef633c327bd
eb1d9435afc9b3aef21a42ac5b95435da5706ebe
4917 F20110218_AABSBP baskaran_a_Page_130thm.jpg
ae17c1e67375bb3c60b3671aa29a4b86
56698ff6b167f2eb302a9be1f20f5a66d5903ec0
25945 F20110218_AABREX baskaran_a_Page_028.QC.jpg
284ba5aa890d6c75b7131a12167b37c4
ac46388f162403c72f41742a46bb194ffcadf50f
702811 F20110218_AABRXA baskaran_a_Page_201.jp2
101a94b2443c094d070ddb56a062fcbc
d143b565fa8aa6c30afbd92d3f3525a96eec05c3
4723 F20110218_AABSBQ baskaran_a_Page_131thm.jpg
a3a70bc7342e348c000fc63a34931a70
0ae059880f9bb118a9ed2fb514e8ec480b12c43d
78117 F20110218_AABREY baskaran_a_Page_029.jpg
f5dc5a60cbf96fad0fe29bba84a4fc5b
c351664f64a1582d83821074607b21fe53f11b48
677068 F20110218_AABRXB baskaran_a_Page_202.jp2
245429aea1c24a98ed1ebc2e3de7a07c
13983b08b972913926a53db34c5cc1c97e5a57ee
5379 F20110218_AABSBR baskaran_a_Page_132thm.jpg
15917ef382831757bbdb20f637431fd4
51264e44fcc9d1a78b77acc1a8a937c8f05b230c
22876 F20110218_AABREZ baskaran_a_Page_029.QC.jpg
73fcbcdd0625dade955413bf24cea490
0f9d3ce413e4c908fd48be08e5af0df44fa49598
787265 F20110218_AABRXC baskaran_a_Page_203.jp2
1ca778fc0bcc9a398a74b82cd127656b
218c408b18bec19729a32ea8b9812ac229742be6
5513 F20110218_AABSBS baskaran_a_Page_133thm.jpg
3da7dbe138e221322f1b49fa788d13f9
8b605c13e287c0bb974d0f8c8162ee3f5523be78
648370 F20110218_AABRXD baskaran_a_Page_205.jp2
ff8a6da93a851a16f789725e17ee1248
6c8e6cea713c7a94c376b0b014ddd1a70a3bb007
5405 F20110218_AABSBT baskaran_a_Page_134thm.jpg
4e0ac29b7624d7b226fc2a2eb626f23f
248858ca11adb425eecf0c7d8cc26f9a6c2af675
F20110218_AABQNA baskaran_a_Page_108.tif
09a7bc151c0ac63f9d142dd32706323a
838565f9dc97c39ad1861bcda03d0748e08ca044
606216 F20110218_AABRXE baskaran_a_Page_208.jp2
9cdd71c53360702c4f1eded85f3b7493
59fb0887a1af558bf80cec0abbe904dd68870764
4526 F20110218_AABSBU baskaran_a_Page_136thm.jpg
4f278bc678751a5a78aab1b16e437ffb
baeedfc57139199272c99afc0bfd4025be9b3905
F20110218_AABQNB baskaran_a_Page_111.tif
336b62da15b984086440ad14f2fa6ca5
9406d25dce7e45f858de40126b6627740dff48d1
751014 F20110218_AABRXF baskaran_a_Page_209.jp2
0844bf168004d8a2b0b56e7710d96974
6ab1d94f2496fd449e88e0e008f0a3b4c2c49050
4672 F20110218_AABSBV baskaran_a_Page_137thm.jpg
cf82670d00fc1e6fde1097fd54edec9e
7353f609c5895e756241f5995078f188b64ab6e3
F20110218_AABQNC baskaran_a_Page_112.tif
4ede6fc1b91b9892277c300965fa8c66
6363c87576e620554f688ee32d718f0addb72e17
753954 F20110218_AABRXG baskaran_a_Page_210.jp2
bc99bae5498eec1cc44b4cdce13611ff
533556dfdeaa772d45904464db67303285e42080
4314 F20110218_AABSBW baskaran_a_Page_139thm.jpg
21529fc3aab40d60394c8cbd0641c5e2
1fe34d069ddfc7382634b46b543ecac62fda6f25
F20110218_AABQND baskaran_a_Page_113.tif
710d5302981d41036d9c131d52ed7adc
0e5e1cf8b1a920b93599430ea762adfc8d49b4af
553866 F20110218_AABRXH baskaran_a_Page_212.jp2
25cf71458cc8c37f2d7c93c4d73658ee
191abdc8107c11306375c7f3ea2472a920d85be2
3587 F20110218_AABSBX baskaran_a_Page_141thm.jpg
aae99b0f12f1cdd33e4dd95d06201ca2
414a588aefb99056d05c7404e3aa9476cc868e6a
F20110218_AABQNE baskaran_a_Page_114.tif
31886fdf4dade8ec5e13920ba62fcd72
738e333e44633b931a685b6a531eed13fcc207a9
607367 F20110218_AABRXI baskaran_a_Page_213.jp2
eba47d5a541a39541fe96279a312fd56
2482fd9d7c4667e36a27c27bbf8ee0f3b2226501
4797 F20110218_AABSBY baskaran_a_Page_142thm.jpg
8b62b5dbc34b35f213a2227551cc2691
4c8f073d8b88496dfd068b7d7ff17097596fcc81
F20110218_AABQNF baskaran_a_Page_115.tif
eac9849a95073b55efc84158ffe64a0a
08f58ff30543f7e929d7869a16edbe39f72e2924
751238 F20110218_AABRXJ baskaran_a_Page_214.jp2
5ca94c53698f05f503c0e4a55c939311
481e9e5814c4710bdbcf3fc7e05100b642afc546
F20110218_AABSBZ baskaran_a_Page_143thm.jpg
87e1ba3d63d526af6a7055eed373ec88
ba368e1849dd2a8fe47aad17d605ae3e491240e1
F20110218_AABQNG baskaran_a_Page_116.tif
33a39ad9ec44d1812190bee3f794cb4f
1011444b7c942a2585f24ab0947e486cd7198bf7
867471 F20110218_AABRXK baskaran_a_Page_216.jp2
f1c63108924a86ecbcda337b88cf95cd
0475c9ccce42ef9750a21e8eb415d1b76040e0d9
F20110218_AABQNH baskaran_a_Page_117.tif
a3030e0f59d3ba3ae6db79409b828ebd
ee9c5bb5141a5507937dd225555b5b0c9639ef0d
18366 F20110218_AABRKA baskaran_a_Page_113.QC.jpg
9c542c57e5fffcedd810b9e6de8a740b
3dfe83649b7026498f75daa4bd7974715fa26ca3
935001 F20110218_AABRXL baskaran_a_Page_218.jp2
60855fdfabd86785759bf811a22d2055
f0b6720ef1c27ee6b0a9bde947d8ec156684585e
F20110218_AABQNI baskaran_a_Page_118.tif
86943525bd3be3621e7e7d46626f09fb
5bb277a48eb64840d43cee2b0e9c06f163babe69
23843 F20110218_AABRKB baskaran_a_Page_115.QC.jpg
bc1f9ace755c8b1cb965128aa5156e7e
7d3e1d8d30ec1150a099191db221005f6c1a1833
276329 F20110218_AABRXM baskaran_a_Page_220.jp2
b58edd6ebef2a7ee89d665801c5f4006
caefa2a8e2e7875208671e15043571862f7cf7c7
F20110218_AABQNJ baskaran_a_Page_119.tif
59157c37aeecdd02ede1c36aee30313a
9d32815d592d368b10580270c3cecb9fe9051992
74422 F20110218_AABRKC baskaran_a_Page_116.jpg
2db07a17901b9953ab212d8e26078fb7
7eef873b6a13b190fe3bea7c3b0e1a98fbf859b5
1547 F20110218_AABRXN baskaran_a_Page_001thm.jpg
0eb7d3d374931d5ac9f07cc5cc8d11e2
fa3c86ba31929fc908c09ee7f3f8153f26a5fbec
F20110218_AABQNK baskaran_a_Page_120.tif
aba3ae86e9a605f9addeadd9d52cabe7
2d0d662b4ef0b637ecc180edfb4fec0ebe0b469b
21800 F20110218_AABRKD baskaran_a_Page_116.QC.jpg
17794f13e4c2f0e9d6da7d3998745126
9b67ddd02af72cb86cb5a7a99c608985d4e6c7c7
500 F20110218_AABRXO baskaran_a_Page_002thm.jpg
7da0cf5e83a134df57c6be08f8c67c81
d7b65c111a0ef6da7902dc2cb4ede2430eae786c
F20110218_AABQNL baskaran_a_Page_121.tif
583f1ea4d6ad8d99c5d464af5ba1b885
711b14a2ca721cc56eae373a6d1a9e741fa72abb
76920 F20110218_AABRKE baskaran_a_Page_118.jpg
d4601b47de24f85bb24857766a662ecf
1a82f3fd5243fa5ad0f14bc7f261628a94303a23
426 F20110218_AABRXP baskaran_a_Page_003thm.jpg
ec8ae54d3bd7c3e75c0bcc21499fc5a0
b165af51d483654a15b2aeb1576fb038f7b6442b
23368 F20110218_AABRKF baskaran_a_Page_118.QC.jpg
0ff77f6b8b1b14c685f1306c60768327
49057d985e92f5aa370b65e6db8b6171a3124647
660073 F20110218_AABQAA baskaran_a_Page_146.jp2
91528c145094f2e5711dbbd49fff312b
ccafc2c5e011216ea47b05bd49bb26ab7c662b4a
2507 F20110218_AABRXQ baskaran_a_Page_004thm.jpg
fd8d5b2c07964434c321adafbf812755
11b413073b8eda0fcd9bb0cfb77d12ff60cf13a5
F20110218_AABQNM baskaran_a_Page_122.tif
dfff57328bab11f33907e82b8c526fc4
71fae85f1458cafbacae41655ae3eae35ff8db68
68594 F20110218_AABRKG baskaran_a_Page_119.jpg
644685ab164c1d9a0c15a4f8d3188a7e
5fe456700822fd477c4b6bcf9adae9c74f0e90a7
F20110218_AABQAB baskaran_a_Page_198.tif
3c6bb3bbadd8f60b9c4be2d296bc9192
66299ea1815d68e15960d31d847b133e6e43faed
4300 F20110218_AABRXR baskaran_a_Page_006thm.jpg
4c65a4b0c850a5e6e833b81623f94d3b
dcdcc8de385cc07b71ea507d0b26f5dfd1275ebd
F20110218_AABQNN baskaran_a_Page_123.tif
082b23d2678ae20317f909d4e8ed0bab
1a6476007d66ab646523c93460a195696f99656d
20162 F20110218_AABRKH baskaran_a_Page_119.QC.jpg
6d5bf8c69f21752f406fca6d4352e1ee
47aa40bd6371b315ae786e7c0d8e4757f4fac0a6
2122 F20110218_AABQAC baskaran_a_Page_077.txt
3488c73fddc6c5f9d26c8b37c318562a
750e92bb0a391a1ca986208c522aae63bd5e4168
1142 F20110218_AABRXS baskaran_a_Page_007thm.jpg
8e004d3c7629330a03a031c09ecfa397
f422214e73b96040b1ba4152d6ba67468023902a
F20110218_AABQNO baskaran_a_Page_124.tif
feac20979556e50d012d066b8db9b98f
5cc8a10cd09e3cadae7f449f7b30064d8aed1b36
11948 F20110218_AABQAD baskaran_a_Page_220.pro
a78598d5b44aa95bcdf004f75ae51826
60639797e42dc97a14c3a88b6fb52c76aea4000b
F20110218_AABRXT baskaran_a_Page_008thm.jpg
15ec987ec4c0882745fcc20776e0aba5
6a0ba9bcf2d489cfbb8ad1729cdfd5bd6fa398dc
F20110218_AABQNP baskaran_a_Page_125.tif
f40432d80deffb443e1af111cac3a79f
0201b30dc79601b742acad98f055c8a6cf83eb79
59087 F20110218_AABRKI baskaran_a_Page_120.jpg
245bf8eb4dd56ef08b47136d055694c8
59d05b834159a6b2f12dfcebcf8188bad704a066
4527 F20110218_AABQAE baskaran_a_Page_105thm.jpg
1dc7845e2b0a8138ec859b9cb2a29cc0
9f9e894e92c63c04a01c87125728c82920506725
1113 F20110218_AABRXU baskaran_a_Page_009thm.jpg
aed62615d71e409b3cad90098e2710b3
dbbad1f04e168bb074f87c170980e9b76695db53
F20110218_AABQNQ baskaran_a_Page_126.tif
b1c2fa4e406237224ad79f1af5e26c9b
eec7ea6d14965cea97df082b9b3d3c0b08f61a7e
18866 F20110218_AABRKJ baskaran_a_Page_120.QC.jpg
f5c5bc052b99e1d4d83227fc9da91983
8ae6f7135cdb40c0acebd97d5c7eed5020f574a2
62999 F20110218_AABQAF baskaran_a_Page_114.jpg
36c1c85141c579e2c3ee54edc6923b13
1bc929b8889c7eb5ab4b78ba3a8ad23c70b17c59
F20110218_AABQNR baskaran_a_Page_127.tif
2f68eaaf0fe548bba7bd3c61725675e6
5f63ab73638439e71fe145c5755523ab51f171db
59044 F20110218_AABRKK baskaran_a_Page_121.jpg
b27a11318311c8f9c590903591956a1e
468ee84551a7bcd212d38c3f59cbe9a2fd5e8fc6
30061 F20110218_AABQAG baskaran_a_Page_123.pro
0cf84c84684609bc204735316944607f
6f25f8b713b6758a96fb9eb9dddba430a9c7e813
4849 F20110218_AABRXV baskaran_a_Page_010thm.jpg
890c295ab0969001d7179758adcbb54d
7b8bcdce73244eee5b660f45e0737379f2620587
F20110218_AABQNS baskaran_a_Page_128.tif
ddf0b13ac31bcf898108b5b1f042495f
c48a1b841f9c1fcb542ceb3a7591e944db74cfa2
17651 F20110218_AABRKL baskaran_a_Page_121.QC.jpg
b0e240220d02eae92c66e7946e52d24d
2e56c4fd0886ca05b968f2d5d188df6b8a7d222e
17199 F20110218_AABQAH baskaran_a_Page_183.QC.jpg
3038a056766ea43e0acb566c2de0b968
5a33fbad359b58d2ea27ba61bd6c2711ed99105e
5528 F20110218_AABRXW baskaran_a_Page_011thm.jpg
4afbb15745f42bb9feffc3bd0525c5f2
a1892e0a4ead41896dbcc9e3d24164817e490d13
F20110218_AABQNT baskaran_a_Page_131.tif
ca2ed9f6d7d114935efdcd6488f65c40
f496f5ceb3536c2175628b84db2a9a5a47eff318
14580 F20110218_AABRKM baskaran_a_Page_122.QC.jpg
9a2f98c08cd15a293489a5f86678323c
e2ad38c8513dc0853094d54d805a5f640f9b2a4f
1823 F20110218_AABQAI baskaran_a_Page_051.txt
e78cceff30059d6e4c9166aa25b6acb6
8ffb8f43cc990852ba331dfc926e09e4aa30f021
5362 F20110218_AABRXX baskaran_a_Page_012thm.jpg
2fde7880101ec4e26d99ec99b3d35203
3ed8be5ff5086a6a45b321a74f5b58463a04efd0
F20110218_AABQNU baskaran_a_Page_132.tif
4b71d15d10c65650f4300b7618755178
8a705f397796763afc970efb18fe34aa5674d43d
49444 F20110218_AABRKN baskaran_a_Page_123.jpg
8dab6e14c034d4ea86a13514c4f6bfba
cab88ea5a40388f1127e1a917775164f0b20868a
44639 F20110218_AABQAJ baskaran_a_Page_145.jpg
3d43c016356e88eb7f9e5ac6f4c966f9
4975721bcc7d31fd03e0766b112d003ded95a147
5765 F20110218_AABRXY baskaran_a_Page_013thm.jpg
470de13121429aa218a49c8bf7acabee
3a5f894e10e13442bc00b818c6805730c12bdccc
F20110218_AABQNV baskaran_a_Page_133.tif
6d1635ffb26eb5018a2fea2a1fa01a39
c7e0ae028585aece27567abcc55108c3a87bb9b5
15777 F20110218_AABRKO baskaran_a_Page_123.QC.jpg
66c137e947f6662ed1958ac11487ad11
89970b1c668255e410cf5bc067c7c65a2638ae09
40699 F20110218_AABQAK baskaran_a_Page_173.jpg
c1e097683d8a9fb141c44137cf74fb16
727d18e21029169f908110820df89cfb907fa950
5549 F20110218_AABRXZ baskaran_a_Page_014thm.jpg
c6d4b74e82b269154a3bd5ad54810dcd
a52b3cb5bec5874a32e408639c3981653087344a
F20110218_AABQNW baskaran_a_Page_134.tif
0514bfa81d897ccfa8ef20f380c56566
62616664e9432bb687d7499263200d2ff3c0bf00
75961 F20110218_AABRKP baskaran_a_Page_124.jpg
a434934580375605662d54b90e683ea4
4dc020aaa5bf3f293a8327d13964f9ad43231545
4670 F20110218_AABQAL baskaran_a_Page_033thm.jpg
3b3b43f9f3024a7f2e43a1757efab824
e5a765b73cac878e622b17508ab3837f5cd274bb
F20110218_AABQNX baskaran_a_Page_135.tif
9367bc0a1dc8d595e0d08fb2fdbe7e4d
d4bdcc258c5ecc6cbd8a980261ce299260723716
22991 F20110218_AABRKQ baskaran_a_Page_124.QC.jpg
88fe6acad84f29d7476fdab914a36fbb
18be0352c8901f7c9e347e086b6e1262650e8230
1975 F20110218_AABQAM baskaran_a_Page_027.txt
189a4367de0bd95e404fb5de3d3111a7
6e9366eb5a4a7fb757cf6e247a137b9649251e1a
F20110218_AABQNY baskaran_a_Page_136.tif
8606e042d3e272cd409ab90bef4098d8
3cc9426e9b02779607d976fea486633874db63b7
15820 F20110218_AABRKR baskaran_a_Page_125.QC.jpg
0b753b79080e5a687874ea18bd306991
1650a20a964c10732e743be29156ac5ac670cab6
7353 F20110218_AABQAN baskaran_a_Page_009.pro
1e8628be68b84b5f2ad766a29e5e3fd0
29d448028681ec08a96d9a5222c32f6a7c179256
F20110218_AABQNZ baskaran_a_Page_138.tif
9e7b2a5f482ec12dc7217abcc06cd7ed
8310b4b6be99b78b53ba83ca8d66207ee1393a0d
52766 F20110218_AABRKS baskaran_a_Page_126.jpg
aa01924e4250dd015418ffa917d7cf18
3c26fac1139ce630c79ffd089515632a8fc0c3ff
15992 F20110218_AABQAO baskaran_a_Page_161.QC.jpg
ae1acbd678494c3f7cd4970eb0a0b934
a260e90c620c8185b6ca4bcedc440a5d65f0daa1
56978 F20110218_AABRKT baskaran_a_Page_127.jpg
1ff94fe87966c3f3c8ce4609f70b593f
f1c93349c8473d9b9055fb48c5680a9a76c98389
737856 F20110218_AABQAP baskaran_a_Page_177.jp2
3b82f25305f54c6405ee4b68cf68026b
3a8913f1fc084b547cf8e63be7affdedf1e0f70f
17315 F20110218_AABRKU baskaran_a_Page_127.QC.jpg
521c9ea9f5d0818768fe11e217c9a015
646bca34f1587c7477deb60be4eafea9ac98a911
3251 F20110218_AABQAQ baskaran_a_Page_167thm.jpg
5d68a4f99e5d50e9a9f07d1ca4d3d48e
eddfff6cfeadda79d1edffaaf1596b0db7470f76
17490 F20110218_AABRKV baskaran_a_Page_128.QC.jpg
191996253f5d08f6d079428532417178
46ecfa6a7ca97f34a99bd930843ae646751ef3bf
25840 F20110218_AABQAR baskaran_a_Page_011.QC.jpg
65828fd880d298f1aff303a83f62983a
f586eeaec69c94c3db2bf875dd370eaa713bbc33
64020 F20110218_AABRKW baskaran_a_Page_129.jpg
9169914d8a3d97bdba32e42711b43035
5a94d3e0ac93ec097816c117e3a9f6893888e071
F20110218_AABQAS baskaran_a_Page_144.tif
6f5cc994d71a1cbb64fd8487e8d5f0dc
ada5d3abf192351df32c7657055ce7c5e4c25db7
19393 F20110218_AABRKX baskaran_a_Page_129.QC.jpg
31b30275ff0140e3731a881535d85186
47744cc95145decc0c5a3d706ce6cd8d27b8b77a
38876 F20110218_AABQAT baskaran_a_Page_129.pro
dfe945f046ebb57e40126161a6ac1770
d4b98144fa3e54776869e8ff41fc1d32411dd89a
77641 F20110218_AABRKY baskaran_a_Page_130.jpg
7ed943f70e8c9788921c22ba1aecc4a3
9028c8f83715a2720a7ea4b4b62236d895113cb7
757753 F20110218_AABQAU baskaran_a_Page_096.jp2
acb4bc3a1568fb8371f5a04fea0b60c0
4ea96679db1e3b528a93c7938e90a9586c7dc5aa
22641 F20110218_AABRKZ baskaran_a_Page_130.QC.jpg
63363a3a8445ada4c2ea945c1ec13147
0868aaef7a402b9dcd43296ff249865b9cce7c2b
1807 F20110218_AABQAV baskaran_a_Page_076.txt
2e6ad94594b7a5d3bbe154734b841226
cfd3b69aa1c6525833a7c58daf49099983359cb2
2057 F20110218_AABQAW baskaran_a_Page_048.txt
606bfa3ada14f00d59ff05d9a51f3008
f1dacfad6da2aac18d764b47c28fe4c298a66fb9
515531 F20110218_AABQAX baskaran_a_Page_198.jp2
e526c3551d287ad2c773493ec3f10286
4cc49262fd1f4a56a2c1436f4de092989bd0f890
1674 F20110218_AABQTA baskaran_a_Page_092.txt
f5564c43dcc0ff5ca5ded89a2238b019
1fc10e27b3a3429f930fe0a364621dfb252be518
934558 F20110218_AABQAY baskaran_a_Page_008.jp2
a30d057a54642cd3c21cba696dc55196
9dcdcc3e48db33c3f3333d745223d1fc04706382
2050 F20110218_AABQTB baskaran_a_Page_094.txt
9bdaf4eeb23dab152808fc2bad86d28d
e590b656f6f8cf0e837ae904aaea7825d59d54d5
F20110218_AABQAZ baskaran_a_Page_021.tif
3eb27bffbf4df8e335f49c7bab356e17
8ef24c1334214af34e6d810ff47872d1c8aa468c
1650 F20110218_AABQTC baskaran_a_Page_096.txt
da584664d1e95459484a8af9241c757a
2d91f749fc3bbee45303fd5a250763b814d26c43
2235 F20110218_AABQTD baskaran_a_Page_097.txt
928ae48dd7bf2fb9408759f62a2be5a0
8d2a6b55e745ef8f65c8799b25b3f584d44f8b60
2029 F20110218_AABQTE baskaran_a_Page_099.txt
6b4cabf16c7b3e63fe8e6aa287c8e155
f3ff9adc43a1989586c3178800b113261ba52267
1806 F20110218_AABQTF baskaran_a_Page_100.txt
0a37766177363906b8cad9bb6205ca8c
d35bfbcc27a437d570fd4b165fd95122c1d418df
1926 F20110218_AABQTG baskaran_a_Page_101.txt
4ad44021e73eaed4ad7d6a372436ae43
0de24f700ec4086ba04f0aae82c8eb7048478810
55034 F20110218_AABRQA baskaran_a_Page_206.jpg
2773c3966a0af0da3165d51185831a72
47535952df71b14dabf60d963a78cf2e43ddf5b4
2026 F20110218_AABQTH baskaran_a_Page_102.txt
c15395b43a30a61ab009c163c6a8cdfd
e407424330a4294f350e994a56e2dc39ca2cd2e5
16923 F20110218_AABRQB baskaran_a_Page_206.QC.jpg
151c8aa1c7c477d7ce9ec26da079da5c
2de4998ade3d1dbbdb877c7b3126eef3176db624
1153 F20110218_AABQTI baskaran_a_Page_103.txt
0805ec673990eccd7d088a4a1f2ad7f4
1db28f212e55d324e09410825834dde123f3d1e9
56077 F20110218_AABRQC baskaran_a_Page_207.jpg
d2b364f1546d479998ebbde8d5980f24
40f38431da405e46048d17f27364373a4b59296c
1986 F20110218_AABQTJ baskaran_a_Page_104.txt
84b331691569422cf2ad52b843acee41
6044c490b7aab33a6e15a9780d7df0159f46a58f
46385 F20110218_AABRQD baskaran_a_Page_208.jpg
5f43d02961cf8d43665580c2b7ecf67c
f3845e3a4940748e605daa14380c93b073de44d4
1912 F20110218_AABQTK baskaran_a_Page_106.txt
2fcbeaebb5e6654b9467cf4f1b5b2a13
d0313d2bb48d43fd6d2e8b6acd27fb27c18d8fb6
17082 F20110218_AABRQE baskaran_a_Page_209.QC.jpg
0739e90f23126bd2fa115acb59147b9d
221f0ef95918d87bcb07266686243af702c62b3a
F20110218_AABQGA baskaran_a_Page_026.tif
d03da81a94d65776c944c3b756ccae59
919b9f0fdf0ecfda8ef154d9543515d11130c47c
1815 F20110218_AABQTL baskaran_a_Page_107.txt
91037b94a0071f8d3f49f5649524ab40
eb36799774a19a581b07d0e44288bf5c7b3f0a44
56516 F20110218_AABRQF baskaran_a_Page_210.jpg
a902945b9c8fad007b41f1ab2d3b3399
c7f3016cfc94785228b26802cf599bc6ab2c8e35
12648 F20110218_AABQGB baskaran_a_Page_186.QC.jpg
869cbecca4e1c6c0e1362538d65ce6fa
f554d803f2b6b433c703c5ebcff516be858201ed
1055 F20110218_AABQTM baskaran_a_Page_108.txt
55e4cb075149d63bae660a82c7b699f4
9bc116d1acecb974a9a7733542cd702c1cbde8e1
16939 F20110218_AABRQG baskaran_a_Page_210.QC.jpg
9cd9db4239fc7d2b8682a8d3014fc9cd
b23cf08269076ec41cd2954ba1e3969ca5021cc4
F20110218_AABQGC baskaran_a_Page_080.tif
23d12ea274c9945754710b8c079260c5
8bc385118dd3f009d595473a8210b15bf9ffc423
F20110218_AABQTN baskaran_a_Page_109.txt
3ee97a53e3fea4324d253f0dd1d424dc
a07d3875f40ac091a8f068df113046b8b8141dcc
10491 F20110218_AABRQH baskaran_a_Page_211.QC.jpg
cbdff01670821d7055719b4e762c48c0
c7cb1e3718db6a2d0bee21bdf17fbd259b112ffe
729748 F20110218_AABQGD baskaran_a_Page_207.jp2
958f4baed9a0750d412c58aa0598973f
db93e3d4b23a311b91ecb53e79e97d0c86b2e4af
1737 F20110218_AABQTO baskaran_a_Page_112.txt
e0d2f2187c45a8685635ae0e4f0ffb8d
47723ad3e8e30db110d97b9b56bf26164a83ba76
43798 F20110218_AABRQI baskaran_a_Page_212.jpg
79bebdabc281b80a31b3d75d4177ee4b
4251880cc20020e3b7dfe8436e23b1f54e4358a9
5440 F20110218_AABQGE baskaran_a_Page_217thm.jpg
85b285029596692857e57b4d1b78dad0
dbffb4ee3d41498bea31ceaae57feaf9b5738d01
1722 F20110218_AABQTP baskaran_a_Page_114.txt
9557929d8cd885157bc8d2da0a9df9d0
7d68a76014782d2c0a9ec293a9e65c741e75db95
14029 F20110218_AABRQJ baskaran_a_Page_212.QC.jpg
a03ab32c91e68e9ef1b8d2314b5874d1
68d96c476da77c11e6be6f58db81085922a45bd0
2093 F20110218_AABQTQ baskaran_a_Page_115.txt
3421b412f7b4b44cac93a4408dba5f3f
fbef56589500594771e21994826b663437badd01
45704 F20110218_AABRQK baskaran_a_Page_213.jpg
c4b9a0d9f5d93b316c6a22c969861ed3
2a214177a40ad70ab80d7b038bce5e81db17e100
42770 F20110218_AABQGF baskaran_a_Page_056.jpg
d0a9b3c2e3fca4c9e23874d566c65cac
b3ce0fedcc7ce23867e33e44084bdc11fdf498c9
1981 F20110218_AABQTR baskaran_a_Page_116.txt
ca127d453cb62fad2081f9033cc2ce9c
92318fe841b66b83d6c299a73b769dbe298682f2
55885 F20110218_AABRQL baskaran_a_Page_214.jpg
0bf908d873317a740db0b871a03d5ffc
82e40ec9d821bd40c762901e26e6599c1af594f8
762251 F20110218_AABQGG baskaran_a_Page_121.jp2
b7f50426751f980421f43e73e7c10187
f0c972eabe6945b780b6c5e4e029e766ee559eb0
25037 F20110218_AABRDA baskaran_a_Page_213.pro
9184c30d84ab573cfc0996c2eba05aac
d0d40cb5d97f2addd69fc99ab137eb8d06770457
17142 F20110218_AABRQM baskaran_a_Page_214.QC.jpg
27b8e9654ebcb297019135c368086f8b
de05cc998aec510310e33816fb10538d6e47ed18
F20110218_AABQGH baskaran_a_Page_011.tif
58485486b8f4a657d1138a212b9be7da
0d38edd28228f17d823831763409dd34de030d79
2069 F20110218_AABQTS baskaran_a_Page_117.txt
664d7f9ea468fd7496d57421ce84a78b
6b96cd29d9a823fea53cb41c57678a66ddca75cf
5944 F20110218_AABRQN baskaran_a_Page_215.jpg
6f96260ab021aa781170c5d53d98538d
e398d47359a935b8862b721cde3667749c047e21
41993 F20110218_AABQGI baskaran_a_Page_030.pro
3789725794f342db9c455bc3dd69ffb8
066baccff5ddcd2ffc861bf33511dfab282b1534
34950 F20110218_AABRDB baskaran_a_Page_214.pro
e1a3977ad49e64632aebade4fc8faa1d
7f8c5c6f954f53867f2e4d482515f10927189840
2159 F20110218_AABQTT baskaran_a_Page_118.txt
320736528f5f2b31752f741a896831b6
f45a58533291683afd5f0f96e0b3d818e568cc22
82979 F20110218_AABQGJ baskaran_a_Page_217.jpg
84cfba1d12839846cc74cae84451509e
fb7e301da32613afd473fe4682d437332f6689ff
2805 F20110218_AABRDC baskaran_a_Page_215.pro
a0644911b85fbd79c906081ac6b36450
f310d06665b88a3fc314c0e0fd099d3dec757a36
1945 F20110218_AABQTU baskaran_a_Page_119.txt
eb7069743b5c2c9f669777c04c563a3c
21bc4193e18431ddc0a41021579f3f358320a8b2
F20110218_AABRQO baskaran_a_Page_215.QC.jpg
3ea87a8b9421a2cd2878be40d762ea6c
58f87c9606da3b9cc03eb45b526aec21b8d5c3fa
F20110218_AABQGK baskaran_a_Page_060.tif
fecf0f142cc03c98523dac9cedfae067
f41d2338c88577f078dbc240d090ad6cad5b9eb2
40044 F20110218_AABRDD baskaran_a_Page_216.pro
ce1352b09eb8ee60cf00830d6794afcc
a3ca301d62c4b55138040491cef0e2ff72c383b6
1635 F20110218_AABQTV baskaran_a_Page_120.txt
f5621a03b281a6ada363d0933fb202d1
01152a8d10c70416fa0a393c1f72d206f731b380
64841 F20110218_AABRQP baskaran_a_Page_216.jpg
2ae0bb45a3ce7c618224b49ce76e434b
010e20f90f1de4ebf35f6aac829a133f592ccd38
F20110218_AABQGL baskaran_a_Page_152.tif
a65d5d2331f53b5a48746eac047b5d9d
df32cd0cc1f9ff56875633fdc590779b640a303b
49406 F20110218_AABRDE baskaran_a_Page_217.pro
d85a046eac739100f8a2910a39609b19
950a274d24fd4f667fe3a5590da7aad880a05e92
1464 F20110218_AABQTW baskaran_a_Page_121.txt
64b7e5a5ea2a929e3a558d45e46f4c4e
099d177326d0153d3f30c0b56fa79d306c6fabd7
20061 F20110218_AABRQQ baskaran_a_Page_216.QC.jpg
778ed2189e57b86c26a2c5274656eb64
0fabd0381ef98f28d4eb2cc3e3f8950ba6378cd4
6524 F20110218_AABQGM baskaran_a_Page_176.QC.jpg
fd6ca6c142513fb47143918cbd9692f4
6912d545f189a9e944f63b2436ac6f0c77feb2dc
43283 F20110218_AABRDF baskaran_a_Page_218.pro
56c8d370d04b45f1cc78a1bfe0928530
06b21c8bd6e8794ffa60f18d1f580ff91ae55f95
1262 F20110218_AABQTX baskaran_a_Page_122.txt
8ae20e30099a834acb485c486fa43bea
1cc93cba53bd5c554e7162ea4028c57d02cb31fa
24314 F20110218_AABRQR baskaran_a_Page_217.QC.jpg
4f20a381c59a285baf5909f5b9c9b551
5cd4f6117b715b421ece0a5f90718f3a24a5dcd2
F20110218_AABQGN baskaran_a_Page_209.tif
d3765b6c2f7fd1da463d384ad0c82d77
cbeb16357fdb04522f35b2a47ead01a9ebcee37f
30310 F20110218_AABRDG baskaran_a_Page_219.pro
74d408a6d7379d30d9a06d5f210a2b5e
cec1a9524049f5416ef849df2c40ab60e61f0bc9
1429 F20110218_AABQTY baskaran_a_Page_123.txt
f4d298b1d6e80da8db24712387d44d94
72e9674c4762716098f6649d1d57de7de2cd8ee7
5239 F20110218_AABSAA baskaran_a_Page_081thm.jpg
5b75937ae1d5da1d6ee1ddd3997c7cd2
062f3abf7efd4ce8433a6181d1b9a4f33c4070a9
68990 F20110218_AABRQS baskaran_a_Page_218.jpg
1c936b90429b507ae271c7061c4b7231
28aeb186aef12f08dae8281dd79dec28ead7c365
20164 F20110218_AABQGO baskaran_a_Page_054.QC.jpg
cf7077cc67c88260edd3daee8862ab88
087819750563602ee6ee582bed8d870a032ab192
4148 F20110218_AABRDH baskaran_a_Page_002.jpg
6d322f402d3e3da66eef0c1ff9cfde79
79febb215160348cf40288c23c1949173e2a1e04
1556 F20110218_AABQTZ baskaran_a_Page_125.txt
c5e65fef5f19ea8eca9d3ab882784a19
8b9aa95f6759ff0618b57900b6edf995d9582ba3
4402 F20110218_AABSAB baskaran_a_Page_082thm.jpg
43eca3c1f8c604d6bde5833aaca5f8a4
4bd5bba7a60629edd1ccaf34bfa335e612ca39af
49326 F20110218_AABRQT baskaran_a_Page_219.jpg
f2d3c805094283b0839aa24403f72283
392035c891500dea05e7b244cb971235c2100907
39795 F20110218_AABQGP baskaran_a_Page_186.jpg
79b0bc25cb85ba6a5d763d00967d5d92
1c1d520323ab35cac8131dc49596c3447dee288e
1160 F20110218_AABRDI baskaran_a_Page_002.QC.jpg
018f64ac6a450a2914cabda7f26412ec
59c0a0ffd56c95cac50e82b7a0ec7a57b31161f4
4498 F20110218_AABSAC baskaran_a_Page_083thm.jpg
dc28c93f6421c95833d1bb62926b93c7
75f49a9df8cb84b207a565eeb23f1eb6a1de00bd
15136 F20110218_AABRQU baskaran_a_Page_219.QC.jpg
6a91d0d97d1e7f4ddd11eee21abb0b1f
9a27bbc1cf080ba3a71b4984409756619c7dff41
417395 F20110218_AABQGQ baskaran_a_Page_168.jp2
3136163e23a9c9e590ec5f6e2f51c066
29be5ae775a12eec2009810b3358236c01347d38
3181 F20110218_AABRDJ baskaran_a_Page_003.jpg
f6a0fffd526bcf3244aca6025b66a77f
dc905f6636b73170b98923e1cf8277143c66cec5
4889 F20110218_AABSAD baskaran_a_Page_084thm.jpg
ade4e272a841a7656dafb136781b065d
9554ca62e223963f9b07c72f0608966922a92979
21370 F20110218_AABRQV baskaran_a_Page_220.jpg
d4dbbb838bda8c0755637648773f4aee
f3d6efd5303531388b58c81a047ba996c857d0bb
1660 F20110218_AABQGR baskaran_a_Page_164.txt
f30958bf2b8c67073c62f409f9c6a46c
723de9e742e2105516e116b6d5994d5efc29cde8
36613 F20110218_AABRDK baskaran_a_Page_004.jpg
cd56a737f6d5d626ea30b8d4d1b5c826
b8d4624ed114e7a9540dc7530e22d17ed2d6c1ec
5004 F20110218_AABSAE baskaran_a_Page_085thm.jpg
62a74fb0f917a585ee602bcd7b49a373
3f8ddee150c4f0cb94cc129049e4bf35ad2e5d78
6771 F20110218_AABRQW baskaran_a_Page_220.QC.jpg
98ec570be22c99a099759b94f73a67e5
5e83185ca547fa5be51986222fb683fd5d8e372a
46367 F20110218_AABQGS baskaran_a_Page_050.pro
c93bc733d9769f57b34c534eae4e69fc
cdc85b35f0d3b9e3d5699887543ba108821cc386
11010 F20110218_AABRDL baskaran_a_Page_004.QC.jpg
c71092b29dc52b0c340c06973948875e
c116a3df6642b07f1fa27863b48b2f942855f34e
4793 F20110218_AABSAF baskaran_a_Page_086thm.jpg
67975c3c5e60b24397e2e716ffbca601
9d8f5d61bb0f1dad3f120895f4692b856816217c
234065 F20110218_AABRQX baskaran_a_Page_001.jp2
c56b201265c09dfb8c8133a5acf7fb5e
1adcc0b2a9e1d2f3e970afce2f715223a6f8f721
22697 F20110218_AABQGT baskaran_a_Page_024.QC.jpg
5be6a48c80150bf48f802e25f98424bc
e81146f00c0d8ab5ad1cc420c6533282e4fab21d
78939 F20110218_AABRDM baskaran_a_Page_006.jpg
c5bb37aed7462bfce85e6c4b04cd767e
142c8b29930b507fa3edc7edca66b443e9ee1ee3
4417 F20110218_AABSAG baskaran_a_Page_087thm.jpg
4a71fe447a18de54176d59ca641eeebd
0d1c57c4ab4eb0037a97a8b6cb4f8e15b54a181e
28007 F20110218_AABRQY baskaran_a_Page_002.jp2
d42fb82d2eb43f17795105b9eadb2c71
335b656229c492a6e504acc093c59e4fc12ada47
5245 F20110218_AABQGU baskaran_a_Page_048thm.jpg
ba2dc1c9912e84e5731d7ab6ce7c8034
250b6d4f9d82647667c53099d83aea6a251cd360
22346 F20110218_AABRDN baskaran_a_Page_006.QC.jpg
f27b6a523d8d04c9467494211228a8b8
fdb489d1d69718840bb5e4f3b26719e4dde9886c
F20110218_AABRQZ baskaran_a_Page_003.jp2
aa59c9f62a08459ad939001357ce8b2e
c674645b41f0c939a3202ef6b4ea9e63e48f6ad8
830167 F20110218_AABQGV baskaran_a_Page_026.jp2
9e68bb60a309ee08a2191c61ea25d08e
4462a909814bc3516a5a0245da54c3db79200b23
14819 F20110218_AABRDO baskaran_a_Page_007.jpg
343c94a589f60ae5951782cf09e2d63e
75ba9eff4cb2c4640efd0691b1b4f87c5bf450aa
4368 F20110218_AABSAH baskaran_a_Page_088thm.jpg
c4b1644ce799e08e652dbb50f2b1e1c4
a13ea875d5eeaa73e541fdc6d4400a4521fe6729
30609 F20110218_AABQGW baskaran_a_Page_093.pro
076f49b8f300c90595417f1d54c80656
75799808c5f0c8628b504d1b68113df823c0f42d
4415 F20110218_AABRDP baskaran_a_Page_007.QC.jpg
cdae2c50871d5126bbcc11e54fe4170a
71b1db0ee5ca6534d8cff4c0cecb4b4d0a7a66da
F20110218_AABSAI baskaran_a_Page_089thm.jpg
72ab92b424cb58b17b5457ac38512918
ec2c67928ed1daed0ae2b35324e932f856b1e40d
39526 F20110218_AABQGX baskaran_a_Page_114.pro
c22c5c87646da0d0aeaa385bd1ae0fa9
20040869d89ef81c8f0112e4b26f5689170b3789
38368 F20110218_AABQZA baskaran_a_Page_076.pro
82a3cdbdbbd9ce256a64cd122c997207
2a208891dec5e0c031a6a2afa4ba3cfa3199b9e1
69082 F20110218_AABRDQ baskaran_a_Page_008.jpg
0454fdafd417a8aedad8c863dee40ba7
7d2e0fd36da63a8199d8626832170a04dd4cb769
3938 F20110218_AABSAJ baskaran_a_Page_090thm.jpg
e7c9b07f4de76edbfd2821a073acfc04
0252e19767ee24175448f5dc65e77b9ba9dde4bf
20122 F20110218_AABQGY baskaran_a_Page_031.QC.jpg
9cea8f6ced317b3827f82ecdfc107f1e
1efbc03d9beb1c593433989693d6134900b25b25
49647 F20110218_AABQZB baskaran_a_Page_077.pro
2875eb4dd2c2bd959c77c9268fd8fce7
2c24421168861471add2f92bb99c64acfe991088
12335 F20110218_AABRDR baskaran_a_Page_009.jpg
b17adc348b5d7fff93ed700c1406f323
240afc7f6287263bef2c6dda50c79c0cf4b55ed0
4519 F20110218_AABSAK baskaran_a_Page_092thm.jpg
2e33269f02bb083d86c5a4e8bc83c805
d91231f91147857698e57219ecad8a639342e9c2
F20110218_AABQGZ baskaran_a_Page_130.tif
af05c0aa37fdad855df4b66a64f13988
68346fb6c1f61a9111b0d1e43562d3db6a730394
45447 F20110218_AABQZC baskaran_a_Page_078.pro
ee0bfd78a0e8688fe8d73c017397635d
e525072add84f1c756d47ce4a2ea120ab6290c9f
4179 F20110218_AABRDS baskaran_a_Page_009.QC.jpg
07570f1c793da68ccd748cf2bd626ce1
4be4fcf94bac555cec62cbb70ae954ef98578480
4352 F20110218_AABSAL baskaran_a_Page_093thm.jpg
e2faf7d8b2959ddc5cbb5c001bdab2c9
0999601fd53fa2c6e39c04ac7dcc932b3715d2d9
34064 F20110218_AABQZD baskaran_a_Page_080.pro
c11913288611294846ad9a54aa8cd043
8aea8836d54ffafba56785605d6001f6e0c8df02
75365 F20110218_AABRDT baskaran_a_Page_010.jpg
61145113510fef9fcaf9d84740650a3a
705c0fe8a5dcbe621f931f76343a970135298dbf
5108 F20110218_AABSAM baskaran_a_Page_094thm.jpg
b8c83b6e77559b8d6613381ec56abe47
70ab62824588c818940deae2f90d4996404f2071
42702 F20110218_AABQZE baskaran_a_Page_081.pro
93d1d19541218d67e31b19ab68a95ccc
fe2b737db07d6e0fc5abd4eec38f418defbcff72
22033 F20110218_AABRDU baskaran_a_Page_010.QC.jpg
14ba41e6acbd9bf092fa3fe5af724ca5
e13a00d32b3b8a84cb6ae7a72cc541def80ca532
4474 F20110218_AABSAN baskaran_a_Page_095thm.jpg
4f817864f0b8ae830a54976856a3aa5b
762d11bb8a59f56e610c80ca025bc84a5ac35884
39704 F20110218_AABQZF baskaran_a_Page_083.pro
a01dbfce9bed5e5e456c51add07ec39e
3ebc7e0cb442bac1c81a5cc83f618ce687fb02bd
88195 F20110218_AABRDV baskaran_a_Page_011.jpg
7ba5ba56516427acf550a65926193d4f
64224fd2a07f1d692177eeb542a8b14c487eb4f2
4632 F20110218_AABSAO baskaran_a_Page_096thm.jpg
ae804d23a0af31bfb95a5b87c6face27
43834f14db0900f1dd28944a5b972eed1c28ddba
38784 F20110218_AABQZG baskaran_a_Page_084.pro
79c1273887974ef297bf434e99ddb803
fbc6d2416f0b56e7165a006185f094c9423cb6d3
79488 F20110218_AABRDW baskaran_a_Page_012.jpg
6a19acf1811160fe9909781d0957b8c3
0a5be9e92eeb1b7d468d72a4859547b9506229e7
5152 F20110218_AABSAP baskaran_a_Page_097thm.jpg
c09ff388fcca9ca1c9ee9dde10cabba3
da7e6052e26a621daedcd47178867cae07cc6572
45690 F20110218_AABQZH baskaran_a_Page_085.pro
44d4a82ce68d56098c62b7d285834af0
97ee273ab02a0037fe4c72a9e831e41ebcd6b07c
23399 F20110218_AABRDX baskaran_a_Page_012.QC.jpg
4ee2f2373ead0eeb5feac6f7365b7533
6568d6811f5a6cebf0a32f4858565a23a6770519
664156 F20110218_AABRWA baskaran_a_Page_166.jp2
d56b16afa9a3e260239db7337457748b
a0c608d1884209320b50cd77b66c70288bf8cad7
4237 F20110218_AABSAQ baskaran_a_Page_098thm.jpg
f4126eff4197c7cbe1d93ffdc79f91d5
8f7aea645e3327313cdffaf3a6501845eb286e92
41068 F20110218_AABQZI baskaran_a_Page_086.pro
cf0858c52200aef16e9c901f3db37041
70381586ae3f69f5694469a1533255f40124e9cb
88258 F20110218_AABRDY baskaran_a_Page_013.jpg
08c7bc583098117a4a28340f6b83d7ef
18caa17bfc163a85ddf1cfcc5f1159d4c81982c1
478664 F20110218_AABRWB baskaran_a_Page_167.jp2
1850aa6efa273fae45c6ba5d54d3e628
17b446842a7f977ac2881e92800cfda76ec496e2
4699 F20110218_AABSAR baskaran_a_Page_099thm.jpg
f1adb037069f82eb121343c5dabab5f8
1078e2251ec73d5b76024e691762d1fae24c4fcd
37781 F20110218_AABQZJ baskaran_a_Page_087.pro
1ceac9cf8d814e1993556cdb574e9e8a
46f7fea19165caabeabb7ae429e3dfba7ad5628b
26451 F20110218_AABRDZ baskaran_a_Page_013.QC.jpg
c80d5a69da8844ac113a678d197ecd64
23e7a732ad7e58e026d455b64ca27c880d55b109
867174 F20110218_AABRWC baskaran_a_Page_172.jp2
ed95b663a5666b2046c9097b475bd92d
0b5592d0be3a518dda917d72bae3d2839a5fcb20
4698 F20110218_AABSAS baskaran_a_Page_100thm.jpg
4edcdabcea1c938381466cd75b1bbf86
8f59281a1bea151c4aad93d319e44822e54174f8
37325 F20110218_AABQZK baskaran_a_Page_088.pro
754ac6fda785ae04020ce85998b168ad
03de1625cb567683695006f9dcf74fe9b9c7c43e
544190 F20110218_AABRWD baskaran_a_Page_173.jp2
b7f31c19695e241f3711e8241f274094
55d240dbfefe840c2024356e873a6022a5912925
4625 F20110218_AABSAT baskaran_a_Page_101thm.jpg
d16652cd00617f5475c9ce4e31ff7a65
4ff9b1749a809ee99807cbc5ee53d5ea61c7cb15
F20110218_AABQMA baskaran_a_Page_079.tif
c498912c95b48feca376cc19db82140b
1e22fa0b918aafa6af28fa5d9b21c5055335c1ff
48099 F20110218_AABQZL baskaran_a_Page_089.pro
63c2187c804a0ffe80c21783af2ee70d
84076c086ebc7e70d26aae6a43e048a4e658349f
650504 F20110218_AABRWE baskaran_a_Page_174.jp2
bf7c453addfe05c3949cf88b3c756fd8
261bebce4d5021956c7bdf1279688cebe40f952d
3151 F20110218_AABSAU baskaran_a_Page_103thm.jpg
6de9962dadfa843b865ed56685bb5421
327d4988bcc39ba326dd7dd40490d0fad3fdffb6
F20110218_AABQMB baskaran_a_Page_081.tif
78a90b58dd20f4df8a41510a1f017091
9854b060c5c4229b9032636acf1b44d7175165b5
28874 F20110218_AABQZM baskaran_a_Page_090.pro
d78fc3103f1642caa3492fc9efe18a9d
26ba6fe2a241097e8fceafa35b64bd32bea45f33
541166 F20110218_AABRWF baskaran_a_Page_175.jp2
ddcaa9f9f15bfb3fd8a673f1ea98b48a
afeac628a9da37ddadcb0b71a5ae49ecd08d64c2
5063 F20110218_AABSAV baskaran_a_Page_106thm.jpg
939edac13eba33e3db0ce6b592c323a0
4b81be22811f916e6d16e53971d0203fa071ebe3
F20110218_AABQMC baskaran_a_Page_082.tif
0e20579189bd6ab106b5a7bf917ace7b
50a9c19f0bb82ec04707d7c0e48dee9017b5d77e
38879 F20110218_AABQZN baskaran_a_Page_092.pro
88c29989e0ed207f058c5b82eb12cef8
2a5e65f0c547a4b3d5ac231532dcf212b1a18517
857802 F20110218_AABRWG baskaran_a_Page_178.jp2
d8593d478a2e9f33091dcd6198e12b71
0306ee06e71db35e1f09a618c5df4eb56bcce8a0
4908 F20110218_AABSAW baskaran_a_Page_107thm.jpg
f91ab1df79933e0329dcf28adb52170e
595b291340e90faa82259cc5b47b605abeddb4d0
F20110218_AABQMD baskaran_a_Page_083.tif
320e8e01d17326120ce81417d95c75b4
237f652bfbc18f1d884e3697ed9da69e40c19361
33421 F20110218_AABQZO baskaran_a_Page_095.pro
29cfd02568e59a81bb07083f92c6d1ac
e2fa751090d0aac0d5865a6fb52033c74e82c498
819570 F20110218_AABRWH baskaran_a_Page_179.jp2
835220cc11dce406fccbe71017de9733
cb72e6dea349046d6afb64dd8332ebf37d3e906c
3631 F20110218_AABSAX baskaran_a_Page_108thm.jpg
6ca64105008d9a9d3659dea6e4cc93ff
1f941ea6b251665cf54e3a23bcd25f197cb83c3f
F20110218_AABQME baskaran_a_Page_084.tif
5cd49ca8b54bf96aad29d6bf7a4cebcf
3f959f13d92475221b8a30daeff8f1d78cf4858c
34895 F20110218_AABQZP baskaran_a_Page_096.pro
f08d4627ac6047c133bb5d5901b078d2
dd0ed9344e0ee40b518d782d06089a20fc2b6978
650655 F20110218_AABRWI baskaran_a_Page_180.jp2
62ab31b5f6591d53c04505fe06549973
ccb3ccb4c7b64cb77b14d266bfbbeff908317780
4954 F20110218_AABSAY baskaran_a_Page_109thm.jpg
dd8a6af2fc0c8697a852c064d0df3bcd
4f68ec79e77a608a99e9da1dbd780f195df1714e
F20110218_AABQMF baskaran_a_Page_085.tif
3b2ccc9958b6322bb4e10b4057032eab
8cbdb0c0b3477f313ba1d760656deb8fee0e42a1
38404 F20110218_AABQZQ baskaran_a_Page_098.pro
253eea3277b5bafce6008c221c13d332
4c755feac812124ea9471ad10b0d61274fe1959c
632969 F20110218_AABRWJ baskaran_a_Page_181.jp2
8cd6b8dec5c95c42b5eca4c2e35af0aa
73061d153c2236c2cc4e48cadc6761b42afbfaa7
5343 F20110218_AABSAZ baskaran_a_Page_110thm.jpg
e98070b5b2105b71644f33d7c99db829
fb283a2a2cf6ddec585b57089be81901c7af6880
F20110218_AABQMG baskaran_a_Page_086.tif
3045a2b28fb0ff3d01ca7eb699b7bea5
03f68655819c2d2ddeacf814aa8587ace0a762fb
41958 F20110218_AABQZR baskaran_a_Page_099.pro
460247ff04c8e029188555d8d3444ba4
e67fce327c3a6722d059455a21ace95ef5dac8d8
617848 F20110218_AABRWK baskaran_a_Page_182.jp2
5b313e977cbfdb2ed38cdc3859868a91
632dae3df787f4811948b230d54a043aa2f5f91d
F20110218_AABQMH baskaran_a_Page_087.tif
496fe56b7e04c19cd838b99e4c6f2f8b
21f54a53f38bd38ac81076e9571622471464b821
80531 F20110218_AABRJA baskaran_a_Page_097.jpg
effd671b39ecbe33552ccf38a9f98bf3
02f2f05cb3babf0bd99fa2a4124bc57caa1a2c75
41031 F20110218_AABQZS baskaran_a_Page_100.pro
232919c0bfe57b74699c68a8470b670a
2b0a928d95b9c5346c2cb8c154c67a92a2a0c11b
697803 F20110218_AABRWL baskaran_a_Page_184.jp2
e343a3920e361102d2e71960aa9aa066
6260d3a6deee1d1fd34752f4549270fbdf09fc2f
F20110218_AABQMI baskaran_a_Page_088.tif
a819984750004074678af8787d0ca2a3
b6d754e950b6d8f649c67fb5ad59122d73356558
23689 F20110218_AABRJB baskaran_a_Page_097.QC.jpg
28c42cd7dabd0e03d386631b8b229676
5dc834b7162927ba666f31284ac88cdb1297961f
38622 F20110218_AABQZT baskaran_a_Page_101.pro
8ffa66800211488b1b989cec8208ed61
94891d672745d1bf72c24fa97964755a41eed0da
650654 F20110218_AABRWM baskaran_a_Page_185.jp2
dfcd77b0e9aeb1c2afd69aaa3b2287a7
cecd1250b39ae42b31fca56de3cc67964ae2b959
F20110218_AABQMJ baskaran_a_Page_089.tif
794031d1f999c109369d2a67ab2a8f9c
c314b8c043c9363b17eecf8d18290e85b90ca77d
59272 F20110218_AABRJC baskaran_a_Page_098.jpg
ed83e8d66f4d0771929f5ec7797d3a7b
af689b8fdb049e434df7acf7f7af4b2f2b70cfe9
44069 F20110218_AABQZU baskaran_a_Page_102.pro
ad7ec04ba1780dc186cf8d0103c0c6a7
ab37c7a9ce6aed47f2419c497618e58aebd28593
505206 F20110218_AABRWN baskaran_a_Page_186.jp2
8936acb901242d700e70d6446034cb47
e673490d6319636b8c16b0899c0824016f6a9e94
F20110218_AABQMK baskaran_a_Page_090.tif
7bcf0a20f4c3c4b84203cf278feda71b
6ca3117b4760c8fbb63da2fdaefef29ab11fbfcb
17489 F20110218_AABRJD baskaran_a_Page_098.QC.jpg
7c356a981e69f602e210e43424c7c6d7
5072ead989fc08ad009450125043e6384084d2a5
28876 F20110218_AABQZV baskaran_a_Page_103.pro
e57c5a513a28129896685a6a3ee23087
02685b78699f3fddf655cdaf564899493a93752d
660438 F20110218_AABRWO baskaran_a_Page_187.jp2
f1c4fd19dd7b5458622eccde2cd405d7
366640ec6f002effeb14a23f861ec052429fef4c
64307 F20110218_AABRJE baskaran_a_Page_099.jpg
62bc4630a91789a2b88f3f83afc051ea
88edfc4dcaaebb95229c7b2129d4a3c4dfb82938
49169 F20110218_AABQZW baskaran_a_Page_104.pro
ee93dd0b70ba4d3982c96709f32f2881
6f32242423bde6e26790ca79d6fa9fc048851858
812777 F20110218_AABRWP baskaran_a_Page_188.jp2
654683faafd28463b10d029278cf6e49
fc4a95feda7088cbd204732334021648e768490c
F20110218_AABQML baskaran_a_Page_091.tif
06dccfece37a8b62a639717da7a354c8
e9e3dacff284730a469c91bd135a021de428ce8f
19568 F20110218_AABRJF baskaran_a_Page_099.QC.jpg
a1bdd759397430e0751df99e8c31e3c8
4b9aa9d49fc7fc246cbd326c7f296e50ef9d0ea2
41271 F20110218_AABQZX baskaran_a_Page_106.pro
d55f1c1b2753c91299fa117150f29400
b835924756adf9df130238467e8676286bd91073
729496 F20110218_AABRWQ baskaran_a_Page_189.jp2
33acc2eb38c9989bb7e7f4d5bd3e143d
45c50e0b6ab03c105ddb85c1ee4aab041e5d5a72
F20110218_AABQMM baskaran_a_Page_092.tif
e0471c1c5fe84f7029527b6b507d97e1
3ada1c56361dad92a6a4daaf7e53de3e0be7a181
64118 F20110218_AABRJG baskaran_a_Page_100.jpg
190c016d40d08f5d2f24d3d5f029b65e
debb04f27db83d6ccb5bf2e1c909b7aad6595d0c
532700 F20110218_AABRWR baskaran_a_Page_190.jp2
9072ae9502e2c11f04c11034258c3387
28be95a3f69877bc078f250a7888d33b6a621491
F20110218_AABQMN baskaran_a_Page_094.tif
101260b21d336af1f51a32d242987eab
0196dc2e6289531d2be909e992b93e0b683b05db
40221 F20110218_AABQZY baskaran_a_Page_107.pro
c39449733842efd81bd6aa2d26102dc9
4629e4709f9a987df0363eb500b8430fea0a7674
599648 F20110218_AABRWS baskaran_a_Page_191.jp2
9c86ebb36d973bed6338f2ca6aa00c68
d9c31037624aebdf92dbec1911ecdcf2e2e0f1d8
F20110218_AABQMO baskaran_a_Page_095.tif
fbf6fb6a40c71024c8929b9bd79f8067
05b164222e33cde7e97a5eeb0a28da5163dbe366
18930 F20110218_AABRJH baskaran_a_Page_100.QC.jpg
cc43dd30a72200303a6cd1389e7b7c31
89aadef6c85798b2b028eefeea0df34a077eabf2
25059 F20110218_AABQZZ baskaran_a_Page_108.pro
36a7109c48a6c6b0190fdfc8d0118d41
35581223f2a5a40f8fc6759335b89febc39e43b4
645520 F20110218_AABRWT baskaran_a_Page_192.jp2
0823d80475a1ff8bb07014a743cf0823
250692394f7a9662e4f8353725567962443d4153
F20110218_AABQMP baskaran_a_Page_096.tif
59be6623617fd48b31427c4949d60a3d
d83564015278b2157f9c8cb77b1e1ba4f8ba9e36
61946 F20110218_AABRJI baskaran_a_Page_101.jpg
c07acd34170c4645057feb03ceb113f1
bcac6ba7ff2e3c929d612f143f45f2cc99f9f8eb
F20110218_AABQMQ baskaran_a_Page_097.tif
f55daa1a3201619bb70fb86bca252209
85af5ae6f24b7cfbf03b5c383333e5292c427157
18304 F20110218_AABRJJ baskaran_a_Page_101.QC.jpg
70314d105f65bb843c6bc210dd7d0965
64f613f8c4d4fca0b98dee6abe207c5ec0a52dbd
60094 F20110218_AABRWU baskaran_a_Page_193.jp2
7cbe464ded2781c9a78fccb23252d219
1953b2d94bdfc72f15c62596a61f37526551b4c7
F20110218_AABQMR baskaran_a_Page_098.tif
6223bd86092ae136a011c53f90481415
507bfd02a3272474de9581b73d77c1953c8eaa3e
69190 F20110218_AABRJK baskaran_a_Page_102.jpg
602972265bc80827d60f4e0b922b93d1
36b4e2d6abe8457b76564ba4cbd6272a0c0a31bd
687534 F20110218_AABRWV baskaran_a_Page_194.jp2
1a8d8df8f41c4aef34f1ff10c412202c
591b6c070bd97f31532c0773346ca6df67cd1f30
F20110218_AABQMS baskaran_a_Page_099.tif
8245275ac606aa586b65956cb1b87096
d4c35f8e69bf8b1d5a1f2bb789d500b1666dfd46
20554 F20110218_AABRJL baskaran_a_Page_102.QC.jpg
13f58ff2310dbcef3c8c404c49539d8c
3e6b4e2f3d24e005f2b7303609d769e9b05dd498
748237 F20110218_AABRWW baskaran_a_Page_195.jp2
679bde28c6ceaf67dbb3a0ff3b53d78b
1f577112bc06ce5ad1f190398a812cf2e4317547
F20110218_AABQMT baskaran_a_Page_100.tif
11c0e13b0a1dc5767b3fa85a3c09f2b6
06d0219df2284c1cd7f1680057cacc93458e13e5
13804 F20110218_AABRJM baskaran_a_Page_103.QC.jpg
df466337aa5ada075ec662a8c687077c
f2c5271f36bd3aee4bc55232eec01aaf17e9e9f6
691752 F20110218_AABRWX baskaran_a_Page_196.jp2
5697578d0707f1180661a513b6029bd2
cb8d3a0b4cab7ac7f64e46a9fd91dc31c0f4ebe5
F20110218_AABQMU baskaran_a_Page_101.tif
f9233003d5a4ed74b48842924402ba78
694ab7a2c4253123d839b007cb757be901ce3239
22451 F20110218_AABRJN baskaran_a_Page_104.QC.jpg
78a8126adab87cbd310444109a2756b7
0ea9156bb13278710a53fd819e801bc100e11ba8
602677 F20110218_AABRWY baskaran_a_Page_197.jp2
69c5b50bf58b8813cbd7c82fb43d3767
22d5c8e59361bd0946839aab787f514518fcc12a
F20110218_AABQMV baskaran_a_Page_102.tif
1552537626ed76cdcab0fc7a4ffba49e
7c1373fe5b5827bd647d959676b2b598f06bec26
64204 F20110218_AABRJO baskaran_a_Page_105.jpg
66c7429ab2e51c439289993db4930bd8
461d84df90a37da696537461b240452511251564
747844 F20110218_AABRWZ baskaran_a_Page_199.jp2
abd61a51f46e0a06af86d795151d857e
3bca8ca64e3791591aa165aae6d6dc6ff77e8ac6
F20110218_AABQMW baskaran_a_Page_103.tif
4a68a96bdcc5d3c874a98d812a5c26f0
bce38219d85cb7043c04d7f5f64f0ad80f041f81
19567 F20110218_AABRJP baskaran_a_Page_105.QC.jpg
16812c8bc1efdc5bb1d325eceadd3a23
43c6bf7d1d7f0929651a33b397b8d3fe24c71f0a
F20110218_AABQMX baskaran_a_Page_104.tif
b2f88eab84178548eb8003436f2df462
99f6fdb4c48b21fdee40b91ff7298ecfd1be62bc
67627 F20110218_AABRJQ baskaran_a_Page_106.jpg
63bd789714d7f37bac52c11fd884e910
d1df3c554cfe734ed8ce89c4db42c90db8dfe69e
F20110218_AABQMY baskaran_a_Page_105.tif
31a6b5c6e50983fb5ae428c222636108
1ec2bf2a2f7bcce8b1524bf1e8e8185dcef8906e
19352 F20110218_AABRJR baskaran_a_Page_107.QC.jpg
fa7c07905675fc120b7c9aee9c5cc3cd
ffd81ab84947cffaab810ca3a768aec08e0aa608
F20110218_AABQMZ baskaran_a_Page_106.tif
f3072438249e4e0320701eda91796500
0975cddc97251169f51163bb13107d82427e87e8
40049 F20110218_AABRJS baskaran_a_Page_108.jpg
a922bb6ca1f39d4ae29b4d00b9838177
3ec33f8ef69aa5477a90ab7256bb953f04b46cdb
13376 F20110218_AABRJT baskaran_a_Page_108.QC.jpg
a97f50a822d5ab4617d509d1f24dee4d
6d849f2f49001d0e969c52707636db2c6b640474
20272 F20110218_AABRJU baskaran_a_Page_109.QC.jpg
5827ad2a50dfb0f6f0f26f0e76c7efd0
62ebb1b61f52d16f17d82c947e5f7954aeddae5c
23393 F20110218_AABRJV baskaran_a_Page_110.QC.jpg
3c5e9b9881fc70aa7f50c95eb50a2c55
d16a098cf55413011cb5c9d3c9c0e287ae06784a
54629 F20110218_AABRJW baskaran_a_Page_111.jpg
6387cce37907b4ef680a77a8d946b58f
5123be80d267d9069b09b13cd3dd00c63b70bc3d
17834 F20110218_AABRJX baskaran_a_Page_111.QC.jpg
74122aa48766815eb3d6f44998d55798
5697e915e785c9581ea56df713ac77dfbf719765
17830 F20110218_AABRJY baskaran_a_Page_112.QC.jpg
8ad5c6d1d2ab7a0b529e5dd37cb00176
3aba91743d5230d9a70c6a82e448e210d8bad0b4
58826 F20110218_AABRJZ baskaran_a_Page_113.jpg
e111c087dd16cb459a5903c824309074
486ed5ac24438d0059e9c5a003dac1013edf6cd6
1654 F20110218_AABQSA baskaran_a_Page_059.txt
c9c174d0a3645da1fe630af70bb008e6
4da23cfbf3741689632441138dcfa40c2a5d275a
1524 F20110218_AABQSB baskaran_a_Page_060.txt
62b9f9d179faad81bf1bac734eb5a866
3ef47cbd7baf77f620ac402adb1de47efaae5299
1698 F20110218_AABQSC baskaran_a_Page_061.txt
a971681b072ea0d01a4f2c3cb14c05ed
e41e7e3b55e6170d5bdf23372e6df80673498826
F20110218_AABQSD baskaran_a_Page_062.txt
edd48daa1be3582e77c0a3ce6774ce32
be17bce449567e18ba9639d9c1671db0ed1f5141
1491 F20110218_AABQSE baskaran_a_Page_064.txt
6aff3159772b651b8d1def7888bdd80e
9ab76c1c2ee0474b240ed88b2678822c698657b6
2021 F20110218_AABQSF baskaran_a_Page_065.txt
b032940c6f081e5d5a19a9c8a659f1b6
6c7d65d35001febe48dcef303dde9f2cef7b309b
1439 F20110218_AABQSG baskaran_a_Page_067.txt
9d15b451f7746f56d18ecb19381d5613
b92bae4e2c8e042035ff15862366d80c010a1323
14551 F20110218_AABRPA baskaran_a_Page_191.QC.jpg
0e397c96702eed6795b0ad2e322e66fa
3b2d7ccc362a2d903c0f4f580c302b79717800f2
1809 F20110218_AABQSH baskaran_a_Page_068.txt
66b5a887969e077a23b7144bb21f0dfc
f88a833d5f9b4daeb8172bdfe16c952791185143
47430 F20110218_AABRPB baskaran_a_Page_192.jpg
7d0d1c46c63cdee3e61cb4883cb3bfba
8bc841a72ce3db364b30fc1cdae3da065da4230b
1944 F20110218_AABQSI baskaran_a_Page_069.txt
aa5084b4988c1aec0dd2fafd6cd3e792
2a516ea82f95e30b1ffebef6d5f8b491c47cdbe2
15317 F20110218_AABRPC baskaran_a_Page_192.QC.jpg
05be3d8f745ac022a5ba3f699aafabc1
20c881f7cd4eeda7994b03737fa5ff08c97a2ef7
2100 F20110218_AABQSJ baskaran_a_Page_070.txt
1b5c92dd6d95017797a92c6798f706f4
bde933c14b4f1cfe3d17e206567a9d8493c94b13
6338 F20110218_AABRPD baskaran_a_Page_193.jpg
c65f0c5161e9023b1b6a8b871be178b6
cb394f390b0ea55f39b0c0e6a3e5785f9168e1e9
1735 F20110218_AABQSK baskaran_a_Page_071.txt
57aba4cef61a3b5358e4211916664139
88a836e4e706ec918e286b6628570aaf02e70f86
52879 F20110218_AABRPE baskaran_a_Page_194.jpg
7f86fab3c3aef4a3a74f3aa1a1112a87
7a27ab0e8bc969a42e2ee4f39d50c8ff8f989a5f
41784 F20110218_AABQFA baskaran_a_Page_137.pro
acc448479b86dc2dbcec911729049276
e2c840bee6f18912af7f15fc82f5998cb69b8b1f
1248 F20110218_AABQSL baskaran_a_Page_072.txt
720a736be667b7b6beb9be6e0ef0ce6a
4243b88ff8ce2e505502d10aaea5a6387cf56407
55346 F20110218_AABRPF baskaran_a_Page_195.jpg
7ce7ab39ef1b51ef507c3f86e86b7a14
e46d8a82929e546a38a7053edf2ae203758c15dc
1557 F20110218_AABQFB baskaran_a_Page_184.txt
9f1d0ef62cb96876ff8bf1a34975d65b
584d05d5591c14a26033cb2a858a86efa4de30af
1684 F20110218_AABQSM baskaran_a_Page_073.txt
c9d4ea433195ecc1a005d58137d3d878
32caae9261a0c3a02267dd4de2c4203b45618378
17128 F20110218_AABRPG baskaran_a_Page_195.QC.jpg
b512ab171c7ef358871004c9c9741335
cda280468f5b4920a6961b44a241537f99e7beb4
1043 F20110218_AABQFC baskaran_a_Page_056.txt
53d68a8777e4fed8b423e5d154845c11
03479ea69db088bd2c54734ccb7249c898166b93
1880 F20110218_AABQSN baskaran_a_Page_075.txt
fb554d8fcc30c0aa7258fd2c2bba24e2
88bcefea8652f3cf56555ca13aac7cd7970a6197
52286 F20110218_AABRPH baskaran_a_Page_196.jpg
b9c92c552580bbe3157290f7df29082d
be952af6fd869b417980d65e0dd73847acc52ba1
403059 F20110218_AABQFD baskaran_a_Page_211.jp2
aa177c16b6d06f83a242e252e0438d04
b6cc3809cf982eb277cc5c26190e5a1b7225268f
1964 F20110218_AABQSO baskaran_a_Page_078.txt
6ab1dd13f2032b5eb2ee87436671ca7e
9dff4611f5e2eb25fec9501e870bd93184ebaa04
15726 F20110218_AABRPI baskaran_a_Page_196.QC.jpg
07e1911ffa741e4563b17f6aec084ccf
bf0513efc7ab9b41841c8c10fd069df2250a2c05
1483 F20110218_AABQSP baskaran_a_Page_080.txt
6b3bf3b15335b453695577f058fbe3b1
fd58e46b23648337f8e2025a15b66859a0959428
48343 F20110218_AABRPJ baskaran_a_Page_197.jpg
9a0a23c78ec036afce360612c5293f9a
5e196131bd829989d9ce8b04ab6b90c299f0f381
750645 F20110218_AABQFE baskaran_a_Page_060.jp2
6065fc6f2f7a924256601664b712878b
121a5e5a127379db55aad83ef59eed52ae34b542
1824 F20110218_AABQSQ baskaran_a_Page_081.txt
748962f34f66ce87637c7d494a2c9e28
9caa95a4d0032c85c0a63f9943c08dcd46a84a73
15213 F20110218_AABRPK baskaran_a_Page_197.QC.jpg
3bebbde614c9e053eb3707623c5120eb
e8172be0dc54d93f223452bd23b60d6937dfd152
F20110218_AABQFF baskaran_a_Page_028.tif
c5dd3643812191101e4a2a38bc089a49
d0a942ab219ceb82a0cfa6d3e1a077155d2577a4
41713 F20110218_AABRPL baskaran_a_Page_198.jpg
5d290464a8077c826459f88ff7a1e020
b9caa0db7a7fea84409b205808d90639c640df43
5138 F20110218_AABQFG baskaran_a_Page_062thm.jpg
6dbfc2edd9826dc9854eebca3e0a52d4
5f65a75ebe94e1ea84460411342a270b3dc6a8a9
F20110218_AABQSR baskaran_a_Page_082.txt
40133da247a2587c3a42bf7107db786d
d63520b90ae3923efcb23928a8d3ee1d08b0124d
12336 F20110218_AABRPM baskaran_a_Page_198.QC.jpg
77cbf99cb7acc9a0b69cbf789bbca693
cbcf59be5bb76118247c313cdd05e221cbc14a45
4190 F20110218_AABQFH baskaran_a_Page_123thm.jpg
75d91d802d50a78c28b426ac6fb5e270
a155b9b7da6086706d21514da9549b7af95cab2c
38594 F20110218_AABRCA baskaran_a_Page_179.pro
4f0eb1bd98f686db6ba05b9eaa1697d4
4e6e028b09d12f4a3f75215b26bf3f563e9d90f0
1875 F20110218_AABQSS baskaran_a_Page_083.txt
c250c157044957fe7e5feba267bd1ac4
e03afbb0baa9cce63cb2310abadec17cd5780b25
18134 F20110218_AABQFI baskaran_a_Page_066.QC.jpg
c0be0339595640785948c103fe76ee1e
39aa6bf728548c50786bceefb0e4303169c858c6
32957 F20110218_AABRCB baskaran_a_Page_180.pro
cd1fa279167f106086f92e4a6a2b52aa
7c0f996aab3d8e36d93a14cd11403dae3d08ad1b
1627 F20110218_AABQST baskaran_a_Page_084.txt
90d8ca5ab1af5a6316c77b65afa1e239
bfc276de54aecdc171b521c473342b7e62f4e598
56049 F20110218_AABRPN baskaran_a_Page_199.jpg
34bad4c2b2b7cb5697ecfd515883af4a
c6bbc15d948b11c9cdc9d0057ad107a3e18099dc
F20110218_AABQFJ baskaran_a_Page_006.tif
e1775fd0d9ae58539862c58d5cbe0940
11d6a5cf757b3adde2544658e2977f919642345a
27778 F20110218_AABRCC baskaran_a_Page_181.pro
d149800f20f3459eaa0fcfa1aa608683
11e3c7d7a12ed7da569ad31c58bb00129918d36c
1949 F20110218_AABQSU baskaran_a_Page_085.txt
8d0843d86361d4bd1f0ff583dfb39fde
e424ba072b6d3460edc0754068c03a421645a515
16835 F20110218_AABRPO baskaran_a_Page_199.QC.jpg
df03b5942d20a78e610343ba9b709149
44f1a8d9df610b3856dc3af21f8e745caed7d850
2456 F20110218_AABQFK baskaran_a_Page_020thm.jpg
e92605a263564f6f04a06f1833d526c7
15f627960d0f5d05c5d85c9a0acd418d06a7ce8b
28530 F20110218_AABRCD baskaran_a_Page_182.pro
84b4160d7c5573a73ca6c069805c27bf
79c648b0377f615858754106261649a5c0c756dd
F20110218_AABQSV baskaran_a_Page_086.txt
b8599b21f140b7dd357938528c7d44c7
74fc7ced1885ff111810bce7c084e2ddff3d1630
45596 F20110218_AABRPP baskaran_a_Page_200.jpg
3849a79566133009c1f9c7098d284eb6
4e2f81d726e490b3f2044a7713e5ec4b5056c474
31961 F20110218_AABQFL baskaran_a_Page_148.pro
2fe9739a214c93e803e8036961f5feed
a23d243149d540bb2bf7f0b3201f2bf0e97c9704
30510 F20110218_AABRCE baskaran_a_Page_184.pro
bd617ddf928ffd776af32fd90fef93c6
155575133c5dd3e664ad8889cf7bf1cfb21032e6
1775 F20110218_AABQSW baskaran_a_Page_087.txt
2339fde70ec44228cc51f11528e605fe
a8327c19c333107cd6ab2039dba7a6d25d4d354c
14697 F20110218_AABRPQ baskaran_a_Page_200.QC.jpg
239dd47a14202c9fdc1fe87031f11063
5332d24456b98aca68e44fc85accac49edb4bd4c
3949 F20110218_AABQFM baskaran_a_Page_191thm.jpg
085285447ae659ad3484a2afe063d5eb
c2b08497e3c7c6e496f50b9fe14a0e52f548b5eb
29595 F20110218_AABRCF baskaran_a_Page_185.pro
dc3e35b9c01fe8c93cc57647cee7fe7e
cfca6f08324474c57d93769d2802ad6bdb9dbf29
2052 F20110218_AABQSX baskaran_a_Page_089.txt
18d1ca3c3f7fd315bb58441c5bdfdab3
9cb1b79e64a39ad239f579c6b5c1dfa5f77c6925
49974 F20110218_AABRPR baskaran_a_Page_201.jpg
8ff5eae1673b449dce4c0a51b8ddda48
60a6805e222bfc800492d42749c3242dc7cda667
68103 F20110218_AABQFN baskaran_a_Page_109.jpg
71b0812d3392c3f2961060803de36f19
0ed30bec65974170cbd2d2ea99792063ad3f706e
22209 F20110218_AABRCG baskaran_a_Page_186.pro
33c3e77c8dc9da61214c1d4e8c280bbc
3bd2fd243b5291f5bfdb741e05cb9c05deffe9a4
1626 F20110218_AABQSY baskaran_a_Page_090.txt
d9fb101a2b135f432cd8a4c46d2d4b81
41d2ebdd6e2813e5a03ccf98ae719d5f1147bd74
16166 F20110218_AABRPS baskaran_a_Page_201.QC.jpg
db0133d1a248739b0819b43471d272f6
1ddeee1635d4a4bda71abb935443836e8f79c76b
31746 F20110218_AABQFO baskaran_a_Page_196.pro
8508eb84f2dc6a29d1d7667aacbad38b
6454e145873b808f82fff49613562724485e8255
30883 F20110218_AABRCH baskaran_a_Page_187.pro
70e8ffa54c87a2707b5c6212ab95a416
5501dcee646c842d2a10e104f56afef2feed206d
1810 F20110218_AABQSZ baskaran_a_Page_091.txt
404e74558f907326c5cc8987865c2bc6
d0f0eb8a001f1e5629feb1ae9d443010911cdaf1
48945 F20110218_AABRPT baskaran_a_Page_202.jpg
88c11faa2e358c17fa93a69b5aa05d25
d208e8fcf3a9446dc29aae4469a11d5869281097
396 F20110218_AABQFP baskaran_a_Page_001.txt
104825547496583af11e7bfc2a30723c
c340328d08bab057dd433581654c7b15ec8b2a49
34172 F20110218_AABRCI baskaran_a_Page_189.pro
2c63ecdadd1c167f792746b8d669d118
d18405996d4a8bcc73195dc64952d2fbf8ce2d41
60876 F20110218_AABRPU baskaran_a_Page_203.jpg
7dd704278005ac62f1ef04ca23fc7d98
1065924181cb454720955fc2782cded3a305be89
22551 F20110218_AABQFQ baskaran_a_Page_058.QC.jpg
bedb42182890f145c5ef2bf5c5acb48b
b8a26f149a8e44b01eaeb232b7572bd7b42344c8
27428 F20110218_AABRCJ baskaran_a_Page_191.pro
7a056adc5fdd2e47b87c4dcfa65b72f7
0106fd276b7fdccf8ff758c3c79e2f8b5c5c12bb
18487 F20110218_AABRPV baskaran_a_Page_203.QC.jpg
2142ac2ef04ba6198fa2fb8457a903ae
f605726dbba0273fa9f628d2e99d621278dcb27f
F20110218_AABQFR baskaran_a_Page_160.tif
b1500dc61ab6b46d4e2434036a5d7112
2ba0ab56c28f7b79239d555b7325ab4dd4d0cc45
30967 F20110218_AABRCK baskaran_a_Page_194.pro
2cad1b935588df79b1d4d1be6222b8a2
2e93329203ccc58a10deac4618e1a65c78560125
48540 F20110218_AABRPW baskaran_a_Page_204.jpg
e0139d6f9604b25925955c76d2b9ab1d
572442c6972da2f5a9dcfa7174a9be3448011946
747 F20110218_AABQFS baskaran_a_Page_193thm.jpg
073864fed1efdd563a16f5b91d31c2a8
8bcbf7d45d4825792a767bbfc2c4228a213319a1
36333 F20110218_AABRCL baskaran_a_Page_195.pro
871714840b24a2193af307b36272fe3a
329a672e91a66373127a219c6ec6ea2cdddf23b2
14582 F20110218_AABRPX baskaran_a_Page_204.QC.jpg
4681bb4a698624e38f83c8ff6b9b115a
d65c307c482d5ce478ac0c357636d325cb2fc7a2
4851 F20110218_AABQFT baskaran_a_Page_050thm.jpg
06227faa720f560ccfe5d6a19a433fbf
d75b96a4e088c7e36400468ad2778ae8907dcecf
27058 F20110218_AABRCM baskaran_a_Page_197.pro
156463a3a9c89c7fe9dc086008af4df9
d208e486c1e09f550c75b113462bc700e92dc340
49997 F20110218_AABRPY baskaran_a_Page_205.jpg
e49574c8bb0916b3aaa04692ab744c22
608970944eaa77127336a6820be454a1f9ac4dc8
5136 F20110218_AABQFU baskaran_a_Page_124thm.jpg
5bbb7c1b47c377366da9fb8895d2f839
d16006a3e27889206bbda2698f18731377ff51e3
22367 F20110218_AABRCN baskaran_a_Page_198.pro
ba9c8c9a2f620b102a1ea778ca459b67
6ad0f76bac77175b297c2ee19fb83353d5fce094
15672 F20110218_AABRPZ baskaran_a_Page_205.QC.jpg
523b296db54a77d0fc0ee4f671fc3a49
214f14bb875ef720595a46b894dc904aaacc382c
F20110218_AABQFV baskaran_a_Page_074.txt
68361337ddfe22bdeaadcb63e2a43a8d
f531d59321110da23a3045025b765fe9eb80cc03
32520 F20110218_AABRCO baskaran_a_Page_199.pro
a48d8634d01a3175c41ee86ae0a172eb
a5678bb836699dd6edcfdc38edd41de2e28de78b
1051922 F20110218_AABQFW baskaran_a_Page_217.jp2
2a202570e8c4ab07fd2d21bbd015ddea
c2d32712ed7f1751127f02bb6d1934df244a61ab
26753 F20110218_AABRCP baskaran_a_Page_200.pro
62ad19626c3bff528cce7d137a863340
4be0c46de7cd149a3fe46a0a4d1eb4796e8e5d44
F20110218_AABQFX baskaran_a_Page_037.jp2
fc72c50afc55a7d7649231cee0ba7e2a
e24c216df384b285e580b130cd78f3fc97fb4610
36680 F20110218_AABQYA baskaran_a_Page_046.pro
5a37abc0d9f3ae4bd23cce4c73fc2238
3bca565155b307d6f151702183d1fc44ca76ab9c
30530 F20110218_AABRCQ baskaran_a_Page_201.pro
eb0779de2a47e0233bd8fd5213dcb668
f16d65bd15187d61625f1467d627fd4794f2a667
F20110218_AABQFY baskaran_a_Page_107.tif
0331f019b0faf9b5a7f5bbbb148461f9
7de32c32405f38a2186af7a56c4e7b594a7c47f5
51491 F20110218_AABQYB baskaran_a_Page_047.pro
a83bc5502d1b6dad3f10dbfd59e6724b
66b9513e2532be4f73ad0f765c9214ab58c2bc1f
30790 F20110218_AABRCR baskaran_a_Page_202.pro
8d5a45053a2ab7b466a935e1cb55d988
644970b22b3cf1d2727a78052791d94798812326
1723 F20110218_AABQFZ baskaran_a_Page_158.txt
a002e699e434056f44b98862bc366b20
186a17369b279c5a8f0109ab0bbd47ccdbd9ae88
49845 F20110218_AABQYC baskaran_a_Page_048.pro
c57965d47612f998c157d04764600bbf
71e7365c9d95c041598ab4dc531bd2519c8bc568
36573 F20110218_AABRCS baskaran_a_Page_203.pro
117e09db9013bae486d81478c9e70739
b23e04b13514675f8a2ea309eeff4c5d23d276e3
48639 F20110218_AABQYD baskaran_a_Page_049.pro
0f1c7c5380af83c81fcabdcefbbed88c
8fba41104e7c6641f39395f2f8e926caf902dd6f
27598 F20110218_AABRCT baskaran_a_Page_204.pro
8b2f2c329ad86f149393a0dc93943ba1
2011ca018674cf1155f68f2acd666bee3805234f
34051 F20110218_AABQYE baskaran_a_Page_051.pro
f02ca315e7f26d41bc473392dbb6ba6c
30b7ac626a8f40bcc0eae80f0a6571221f86146f
35459 F20110218_AABRCU baskaran_a_Page_206.pro
110d1793b5a90725e7c0ef4d21e2c08f
654b84379a1bc7f21ec3911c2c9e832c08100b47
47922 F20110218_AABQYF baskaran_a_Page_052.pro
b08c6d42f983400e4a154c3642b0ccf6
702b71a4dd671985cec0f1d0c3bcbd01c5115ce7
33860 F20110218_AABRCV baskaran_a_Page_207.pro
0999f373206085bf9b3824a0febc352b
0d10c425b20508097a3cfdd195d604762b244374
43270 F20110218_AABQYG baskaran_a_Page_053.pro
d1d6b7c3b1c1053bd6b0520fe54f4574
d3d93a1f54e95b09c6648e3c5084776ff39e26f3
26839 F20110218_AABRCW baskaran_a_Page_208.pro
79840a88c30cf5a29113cd5a14908ff6
c051a92ba62c5685637d2bc3fb3bc8bd42ad787a
1051976 F20110218_AABRVA baskaran_a_Page_134.jp2
6690dbd01c7ab895007277bcae1f7ad7
6b53bf0753099bf807b85c25ad49222c0c073d33
46561 F20110218_AABQYH baskaran_a_Page_055.pro
743ebb3f9a756f359db5192556b96aa0
bd920858532fbccc372f890b4f1e3a22e1511815
34942 F20110218_AABRCX baskaran_a_Page_209.pro
3f44ea26c63b6e6035553035c64a279b
91ee19ef8e93bfddc9a0f093cad8b122d1422590
26105 F20110218_AABQYI baskaran_a_Page_056.pro
f792c305462403585427679a0ed51fa4
956c9ecce24783943c544826b27c1352e57243e0
34911 F20110218_AABRCY baskaran_a_Page_210.pro
001d733c26e272d54aa4cb55fdf63deb
02ac92fe75ea8e32bdfd0e006b5a74a637da791a
1051939 F20110218_AABRVB baskaran_a_Page_135.jp2
e5f1b471b1f9e067bc52eba13b9e7261
2ba309ab351f36d06aa0355aa28827b241a1f468
48390 F20110218_AABQYJ baskaran_a_Page_058.pro
aec5342cf2d090049bebb8e2a9666417
54d36a7160d143753f54268dbac38c3b964ef803
18800 F20110218_AABRCZ baskaran_a_Page_211.pro
bbd77cbafe43cc2a0c5dc73147c782be
e040ff1d9afecaa3e5cf88fd66f11e9053e74042
655054 F20110218_AABRVC baskaran_a_Page_138.jp2
c461a0541c0e3b63039f3eac2c466bd3
1341d26f16fa43c5de443b29b8b3ee87b0091d1a
32125 F20110218_AABQYK baskaran_a_Page_059.pro
4c5a5bea27531c350eb78c2ae35f4e79
8a854a846b982ac47ee77ee99011256e1501134d
692390 F20110218_AABRVD baskaran_a_Page_139.jp2
f5e19ea80eb1efac949dbb8719c3fd3c
99c223581b099b9f7c837eb4c54365ca6ae4dabd
F20110218_AABQLA baskaran_a_Page_044.tif
b1bcf32fb2cfff892b7a0705079093d5
eb7de932bbc53244c1b84ec47ffb789e0f80ad88
34877 F20110218_AABQYL baskaran_a_Page_060.pro
f92807758baf4bec6b83c5ce4747d6a0
f457e0b61844efd3cf9036e4da3f9121806fea58
617378 F20110218_AABRVE baskaran_a_Page_140.jp2
cf349d03f1afb5ff88b62f4befd8941d
ef25b371df70110509a9ec9f259fd77549adce0a
F20110218_AABQLB baskaran_a_Page_045.tif
645f3ad50683a68585c1b75b1178f945
2e906d39c11fa6c1be467cb6f650868e5e3cd0b6
35025 F20110218_AABQYM baskaran_a_Page_061.pro
fbe17a43d918968817d501baffd167ff
ab2fcdb6a9b6c527f41aaf7c32da37615a916eb6
526846 F20110218_AABRVF baskaran_a_Page_141.jp2
42d697a3e7655a2c69e1859c93ce09ff
18323063b5ff994fce2aa25d5a32c0c1cab83c07
F20110218_AABQLC baskaran_a_Page_046.tif
d48c0fd5fb4bec006711827629623036
fcd0d0b425a08cbab2601b4895ae5faf98d29b4e
48146 F20110218_AABQYN baskaran_a_Page_062.pro
eef12abe7872346cc708d7c49abcb479
472e4b2d44add67eb41199f334ee8d2223a816c6
881124 F20110218_AABRVG baskaran_a_Page_142.jp2
acd00fc489724ca6eabfc61f6845e911
2df6301d552e3e73054dd3d14f28200043383bdb
F20110218_AABQLD baskaran_a_Page_049.tif
b2a1cd8899169630ebc857cbcb2ffff6
c8cde64e4e7831afb0d06be890887c2bf2c21123
39469 F20110218_AABQYO baskaran_a_Page_063.pro
2a402e761f681a2b7ea43107a3a0a962
902c7ce369d93f8598293739a8791a134b6f176c
172812 F20110218_AABRVH baskaran_a_Page_144.jp2
ac4ac6192ff640e04f5c05e18d178226
3997439b915f6a13e45969868bcbfc686854e4eb
F20110218_AABQLE baskaran_a_Page_050.tif
9b73bd9d09da272e28c34cc306e53c13
4c9f0a8d31baea046ff4d21a99781a25482eeefb
33449 F20110218_AABQYP baskaran_a_Page_064.pro
1397b0a5edabeee43e73d4fbab160081
1accfc0063fd683118a86741915aeed9195afd44
569327 F20110218_AABRVI baskaran_a_Page_145.jp2
fc798a99170e0420eb7f54eed1cefa19
f4512d8725be969703ae7d8d7210e9044b5e1c26
F20110218_AABQLF baskaran_a_Page_051.tif
4c8fbcfbcf0cc3e4f9fbbaeed871847d
bb3ab69da4161c44f5e990e6694fd20873d9cd0c
42466 F20110218_AABQYQ baskaran_a_Page_065.pro
86956cba46e17de74920db270c57b6a7
3906ef0a8ae35f3d3fa71b0cadeba232b72119ed
636574 F20110218_AABRVJ baskaran_a_Page_147.jp2
4ce6f7af8b70ed0adf44dab2f88384d3
c351a1d99aeb3d96de1cbcc9f249bf4de0c8bc94
F20110218_AABQLG baskaran_a_Page_053.tif
d42ab0a041c81278660de61a1afca793
31a0820eb431a5c220fbeb71b71b7cad20d5da7b
38231 F20110218_AABQYR baskaran_a_Page_066.pro
45716e8dc817214d2da538104ab1f8ce
ad3216da7c15f8a5e2bb235f66d3393579b31ada
668026 F20110218_AABRVK baskaran_a_Page_148.jp2
cf0d0cd004664b666187a2c6dea95380
c1b4b2e14c49d370237bd5813009a9abdb8e6e92
F20110218_AABQLH baskaran_a_Page_054.tif
b4398aaab5a8d031859a2482bc0b7440
ae18991c34013b8d0de40e343afd6b696850f546
21032 F20110218_AABRIA baskaran_a_Page_078.QC.jpg
7f336e4999a5346cbae31878f8637bd9
6b5bfdd1770ef764de1747337e21e091e885a2a3
27940 F20110218_AABQYS baskaran_a_Page_067.pro
5ecb8690d9d1f7afa6eddb647f54b825
bbe4c2bcf2f75cf69ebea8f77598bdd352fc2e16
506365 F20110218_AABRVL baskaran_a_Page_149.jp2
0771890ec9f89e8196cd7dd4b94c4d0f
ca1f1850221c3c6d8f6a40e3075fce7f922cd706
F20110218_AABQLI baskaran_a_Page_055.tif
18bbf2f0f626c81fbccf7ae3b3f1fc6c
93ea58fb45ccce4903ca3bef733f551015161785
18462 F20110218_AABRIB baskaran_a_Page_079.QC.jpg
693b93ef869ae61af192e53be533ecb8
9dfaeb3fab81304017f1ffd895a0938f103109b1
48509 F20110218_AABQYT baskaran_a_Page_069.pro
5b3a4365d5170480a3d22e7bcf57f8c9
83a26204bc3174014326b32bd4d4638ebaf30061
714051 F20110218_AABRVM baskaran_a_Page_150.jp2
9a5a28c5c59fa55851c350a93da7deca
e4d4f53fb64ecd68fd45dc2a386dde7d8adc5a9a
F20110218_AABQLJ baskaran_a_Page_056.tif
232f4806d811bcaf4a06fb2e4b304dc6
6506e43bd5e700f145b6543e2288fe7d31bfcebb
73262 F20110218_AABRIC baskaran_a_Page_081.jpg
3883477bb5935b7f33727d86f0328eac
536ceaa80d7e65f60fcfda02fff5256f673b0ab0
51851 F20110218_AABQYU baskaran_a_Page_070.pro
637b5a3e6517270f035f5e953f3f2465
4c159e518f6d45b446c939f54f6ae4d9f193d7e6
652561 F20110218_AABRVN baskaran_a_Page_151.jp2
a51bf578a80dbc1afecfcb9f77561f66
ebea33f23653eaa43b18fe4b25c1f627ab93fa93
20629 F20110218_AABRID baskaran_a_Page_082.QC.jpg
7ee9fbc34e393cf5e6069648c52d7f31
c69cc51a5109342a4bfba51755ee176e47f00b0c
41292 F20110218_AABQYV baskaran_a_Page_071.pro
134d267bb73eac529d3eb8e61fcecd75
5c56241dba5c640887dbe5bb27e82f8a20616386
734895 F20110218_AABRVO baskaran_a_Page_153.jp2
0e0e24c65412d69e15ea6f1fad7b6548
7388809dab1cc258d16e218483819d5e660fc236
F20110218_AABQLK baskaran_a_Page_057.tif
56ab799a8c17bb7753b05c5f30a26962
d2a0a3f11db65efd7ec530deb0f170b59ece4749
18927 F20110218_AABRIE baskaran_a_Page_083.QC.jpg
ec3cbe634154a984d6bb8690918a28cb
67de930d6f3deeaa1b0180676eb0aec1f74536fe
23156 F20110218_AABQYW baskaran_a_Page_072.pro
d54a02e863d0a55fe5895187891f74eb
de3e8bc6a1be8c9737f7f48e6e53ea17845709cd
399430 F20110218_AABRVP baskaran_a_Page_154.jp2
ff36e1b4f612fdcb951190a2b7a3b004
d13501f6a648d685b17d0f6ff3c8fff48ca4645a
F20110218_AABQLL baskaran_a_Page_058.tif
3e86808e3c2cd262ca94e10affcae2e0
9761cde2cdec3611785b538a5ef4f115594c8b68
61886 F20110218_AABRIF baskaran_a_Page_084.jpg
4bcb647ebcb8aee0ed2b39b6d63709fb
470c754400b602bb12feb4cd6fc59d5ab387a541
380364 F20110218_AABRVQ baskaran_a_Page_155.jp2
a50b08e2240fa44c481bc066fdaae985
7acc19b1b10ee51091786de8fe0273c0a421542a
F20110218_AABQLM baskaran_a_Page_061.tif
d0057d3ca42a2f7c22728c6ed415060a
cd39a03fbdec8a6ac46474bd066b5636a2a58fd3
39740 F20110218_AABQYX baskaran_a_Page_073.pro
d0848cf2681f89a3c013e8d78f859cdb
5f13cc7d4f2d28ac960fca47ddcc287770828d18
567074 F20110218_AABRVR baskaran_a_Page_156.jp2
2e03eaa7da33c4a2e616344587c4b0a9
9849f55de746ba7485ef38226ad8bbeac084b09a
F20110218_AABQLN baskaran_a_Page_063.tif
0de08f81a2200e61a67d91520ff7392d
a7e9af514965bc07354782367cc30fc7c5485712
19178 F20110218_AABRIG baskaran_a_Page_084.QC.jpg
5a19f757d817aa46e51078809449345e
76c1c40a2992d932514f3ca41b852609bdc06897
42807 F20110218_AABQYY baskaran_a_Page_074.pro
9dbd4c82a66cbef81616c5a6a7c1dc4c
87a7aa72e2a24a7f282ff6ea52f01b278f17087e
634123 F20110218_AABRVS baskaran_a_Page_157.jp2
65f5f3732d03995c1c21ed14e9bf2017
dba4c8c440c81af3f0622ae46329dee433ef2ace
F20110218_AABQLO baskaran_a_Page_064.tif
71830c72854fdef0f49f38f3ff827d6d
99936ae1e756af99e248e93a1e2011a597f36d8b
74132 F20110218_AABRIH baskaran_a_Page_085.jpg
513b857da3948ce18aa67b982e1e8d5c
826a5c336aba7729af3d8a7462c20eaf576b8816
41663 F20110218_AABQYZ baskaran_a_Page_075.pro
9a9feae3f17ac1618db3aa56ead6deb5
2d23bd4eb7e2801a9e93cbb7a6d8829004d8e186
F20110218_AABQLP baskaran_a_Page_065.tif
44b2da42151ba78aaa0867b5836c63e7
8c2dbf0a1ecb1084caaec081f7b97d5bf893e1e2
67469 F20110218_AABRII baskaran_a_Page_086.jpg
191ab7c076901b8fefe2f7fe4d5b32dc
dfcf8337b8c2a4e09389ca55ddb974e03594ccf9
665114 F20110218_AABRVT baskaran_a_Page_158.jp2
aa32c00846c6f8e04e85b555ff42be54
938468ff6b7e2d4cfc208e09430cd39943be1a4e
F20110218_AABQLQ baskaran_a_Page_066.tif
5af813b96fcb904d08ded318009131b6
d4e3ea9b8c64b1e42c64d0d46d034961e2b8829f
57174 F20110218_AABRIJ baskaran_a_Page_087.jpg
b185bc8417f326be61718eb6f469f7d0
f946f5489490d4fb38124c454b12f1bfafe965e1
552560 F20110218_AABRVU baskaran_a_Page_160.jp2
12bf7ec8b28b62943cb96524fcf2ea39
e5cf09b893076e1af528dd8728949c0dc1a0c050
F20110218_AABQLR baskaran_a_Page_067.tif
56458b225c9e23a64415a16d3079f727
f49e40c7f96081843e186327ae56cfaaf0b801b4
17954 F20110218_AABRIK baskaran_a_Page_087.QC.jpg
f4f8f80fbee27fb37631dde22edebe22
396e155dd71f789c554612d6a6be7fb85383cbe1
693075 F20110218_AABRVV baskaran_a_Page_161.jp2
4c041d2e29ffd2fb76265c41e3c0ee3f
267b62bdcea572f70bec9f53bc1fcdb72761037f
F20110218_AABQLS baskaran_a_Page_068.tif
f01fce1ed663bdd453b5363ab093799d
2c2ac2634fd82c8f49cf16da469a5c177356e68f
58720 F20110218_AABRIL baskaran_a_Page_088.jpg
4af1b2e86d18b4d702254a27dc397ea9
d2986551c8211b06c9213d74903f960bec67b234
657994 F20110218_AABRVW baskaran_a_Page_162.jp2
7cb43e72a3d71a0da420cf226a3e2dd3
9fcac42fc53cb7aeb44739a6ec58e67bea80ec27
F20110218_AABQLT baskaran_a_Page_069.tif
bd5ed38274480728ce52fe3b9e60c361
5445b848eb948fa6a43ae129b5f5142a042b769f
18302 F20110218_AABRIM baskaran_a_Page_088.QC.jpg
62e4896c09e51480c65713f7a758137c
0aa8da8358ea238a25de10d17e5e07944f57b7f5
400719 F20110218_AABRVX baskaran_a_Page_163.jp2
591c85319330abfbdaf73a196472262b
379d235a16479822c1689673eafea07c2f76d356
F20110218_AABQLU baskaran_a_Page_070.tif
259c9a1152ae36b59ee6d7037eadd482
252889160d0d34be1988e8645a727268eb095ec4
21349 F20110218_AABRIN baskaran_a_Page_089.QC.jpg
3fc72a94a6345a4ea6d0b35a7d5691be
da3aaacb9aba3cbfc6ccdf76d1796d31735b0cad
741749 F20110218_AABRVY baskaran_a_Page_164.jp2
e3d74d20c1540631a7e4df6b6b08b8d3
b38b5b6061c8e6e0a6fe424de56d97c21eaa3b34
F20110218_AABQLV baskaran_a_Page_072.tif
226cd5bfa0670294e9a90eedf2d8d663
736d09cc9d68c8b7d504ae425a32f7ae0828a48f
46432 F20110218_AABRIO baskaran_a_Page_090.jpg
03698ee77998f083cb8f86c28f047e6c
71250e79c68b55077167e99dfe8b6fd13b9142a1
681066 F20110218_AABRVZ baskaran_a_Page_165.jp2
611a08fff40d68e3f917d0a9a58763d8
f05176b877b1f8f8d9a7d132b8ffaae6e3b4767e
F20110218_AABQLW baskaran_a_Page_073.tif
cb1731aec593e59f4d435aede40b296a
690ea8647aeb27ad5a43dcb292a7eb642e56bc6d
14628 F20110218_AABRIP baskaran_a_Page_090.QC.jpg
62bb6bdf84b60e336dea4a8daf7ab2d1
71f0268c9b0f16be997c3f3e98a08c13ca4794f0
F20110218_AABQLX baskaran_a_Page_074.tif
05ae74abf9d24de0fcedbc6da81f3bc1
2be2e9ef452498c0f0186b0ccbd6cf3c66e66764
65555 F20110218_AABRIQ baskaran_a_Page_091.jpg
77affdf3fcab5936b646a23c38d84319
c2182213dfd0d95822a731ccb0c7c9cb031e83ec
F20110218_AABQLY baskaran_a_Page_076.tif
58363913d70c3704fa5b3ad7deb7e2a7
23313b61c75c2f9b5746765a0ba5a3e844fdfe6f
20202 F20110218_AABRIR baskaran_a_Page_091.QC.jpg
508c473b78a7065ebc6a230b6b486633
13bfb8723bb3c2d2bd10f5120fa5a9417abfa82d
F20110218_AABQLZ baskaran_a_Page_077.tif
eb7a7e52caf25ed24ab7becf0cda7b3c
e91157d90ebd1d8cb8ea94184bb79e5662bba10d
62874 F20110218_AABRIS baskaran_a_Page_092.jpg
0248af8ce516ccbf1c43ed2b182872dc
544895418677643b38720ca49fb91d6738e22394
18306 F20110218_AABRIT baskaran_a_Page_092.QC.jpg
4c4aa0b17e4d61f4f8306c86084ed9ea
98698600b3ce2c7842e955fae1eef09ae8ab6b2c
48262 F20110218_AABRIU baskaran_a_Page_093.jpg
84aa499793c2232170c33f83e66e09bd
69ecff236b44848854b9dcb31be1c5be3d9468a3
15515 F20110218_AABRIV baskaran_a_Page_093.QC.jpg
698c7e75109bbb0bfc164ec6959ae104
b26862c5f3053477c70e821a7f904532777ed89d
69430 F20110218_AABRIW baskaran_a_Page_094.jpg
31616729a1077dc7987fe3adac8c810f
ef6199d0df00ac8f1b2bc8dab6505caa07933ca1
21338 F20110218_AABRIX baskaran_a_Page_094.QC.jpg
97c25fc344c2b1134e7d8fbefaebe493
551b09cc56590a9007b54375dbc23020374f1c74
53255 F20110218_AABRIY baskaran_a_Page_095.jpg
236c32a75b48825f0e41725d7ac4716d
644d0e87884182b583648b3683e3dab3ad2d82c1
57744 F20110218_AABRIZ baskaran_a_Page_096.jpg
2b39ce9bd8105a5bc50cf11ae3239307
f4f9891de5b8a157397bca1d72721eef4e8f6263
1956 F20110218_AABQRA baskaran_a_Page_023.txt
723fbc437e33fedf8580aa19481e32ad
58999709efae7cdf165efc7164e7e210a21e2d0b
2016 F20110218_AABQRB baskaran_a_Page_024.txt
5588c6c088b61e44e3842ab119ad6e34
b953948aec8962e9f610aa9cb2aed34d027d9fcd
1804 F20110218_AABQRC baskaran_a_Page_025.txt
2275fd9a4ef61bbfec62334f397dfafb
152bd4127d9b48a0bbfad92a7af1ec00d36e6342
1791 F20110218_AABQRD baskaran_a_Page_026.txt
f7496f320ffd18f55432c47c3819efb7
8ad1eb030f9c47b7737b7a50e2341499704a0b87
1961 F20110218_AABQRE baskaran_a_Page_030.txt
d90da3c9cbd62d8805d347ab2f25bd27
5460504798f351adfab8326711b976cd7b23fab8
1992 F20110218_AABQRF baskaran_a_Page_031.txt
d26eb7c7ba49d4d2af59c26bb2581d23
e9698b15266c7677c3d51bb39085bacf3bae35da
F20110218_AABQRG baskaran_a_Page_033.txt
3df484761b017ef836e08a74cd8a7c54
fccf6a6cbd77c3ba1a31bb67274f31de2fc83407
F20110218_AABQRH baskaran_a_Page_034.txt
ba928f8b286a8f400a2acf72b2bb5098
a172ca03381dcc267f2bb5a297b2194c927cd730
13238 F20110218_AABROA baskaran_a_Page_175.QC.jpg
2ce90ffc0664d90a875fbfd6e5685e9d
4c8f5797defc8f4c1aeb34683b7dd462c9974d0c
1648 F20110218_AABQRI baskaran_a_Page_035.txt
356e30e9b09a66cb4cccaa17f7015215
2d297ff242ef1ee9de751829147cd3ebf43397d4
22686 F20110218_AABROB baskaran_a_Page_176.jpg
91fb9e39c89b07f621ff4f33c8d19b31
18c076081453f60cb9d70bca92901227a9aef1e6
1649 F20110218_AABQRJ baskaran_a_Page_036.txt
c00eb6fa35288628959e1978b7794a5e
935b9b61adabe166a3c1a432f29ec6fa94da7ed4
55069 F20110218_AABROC baskaran_a_Page_177.jpg
28000ea6ce5fccbd532890a454c05bf9
97570fc6c6c9e71366ea3cf6dc43f9e6c6885d62
2046 F20110218_AABQRK baskaran_a_Page_037.txt
11561d1c3ab54c6292e0b72522707c1f
5c01f53ff23ff27a1a62b6be7f24e0f619fb6a39
16410 F20110218_AABROD baskaran_a_Page_177.QC.jpg
99f9be4a89262a29c0e8dafd03148c1a
6495de33634321ef275b6cb785f357012593b6d9
61513 F20110218_AABROE baskaran_a_Page_178.jpg
4d5c8385666e116ee415c9502f3c1a1e
fb279930a88935f0f08e50342acb0dc36a68f3f8
838848 F20110218_AABQEA baskaran_a_Page_101.jp2
5ed43496a80e7cbdb6d8dd608f4bea12
8c2137200ca81eba43c8973e1fe79843d36fc4a1
2212 F20110218_AABQRL baskaran_a_Page_038.txt
9d32f0f52ceec162cc014a2bd7ecd418
a3f32db97a1e4c15b2c0fdc19ff74017d278d4d8
18910 F20110218_AABROF baskaran_a_Page_178.QC.jpg
32c72a5be1fd7836198f42a6695a8b8b
ae5293b33620f7d226352e1e9ee52da17d3a71aa
4861 F20110218_AABQEB baskaran_a_Page_032thm.jpg
dcd43f262e7e7dac17074dd5414c405d
661477790f511bafd8a64253223111e5d222d4d3
1289 F20110218_AABQRM baskaran_a_Page_039.txt
5505756b6becf0b7198ea39281de89e6
bcfa0b904292d336b3527d440a35e88edd891e4c
60736 F20110218_AABROG baskaran_a_Page_179.jpg
4f62f978d090dddf63f003e3f4c320c7
e4a09a87a3754e1fcfe6a92804ab8ec9157c9575
32719 F20110218_AABQEC baskaran_a_Page_211.jpg
3c898766c871a88c4b460fc4436f56b1
ea0de9d3055f7f87b91c42380a4318fe12823fc8
1310 F20110218_AABQRN baskaran_a_Page_040.txt
af4d67b95c3e3b9d8a0b25323f9124d7
9a6d5535c5a3938c36ef9500989baa75591a8b29
18193 F20110218_AABROH baskaran_a_Page_179.QC.jpg
77aced408cc19b6cbe941485528a2c4d
d4bddc3d411653ba8963960279bc9dc59d826a90
1786 F20110218_AABQRO baskaran_a_Page_041.txt
310061942ca54eb8ec794daf9b56319f
709b2d95da3d38755a276f62f9c0c2754a44a438
47846 F20110218_AABROI baskaran_a_Page_180.jpg
cacf632aba1644ba8f10878574852458
ae9aac44822405ad49319cb66bdafe67e2999b52
63836 F20110218_AABQED baskaran_a_Page_107.jpg
6ba5d9d014e6fafbae4fe05a46f1c227
661b5be7eee37a9bb38eaf9f1bf8c0c2362267ff
1914 F20110218_AABQRP baskaran_a_Page_042.txt
53061dcf2a7cc8d63fd6ff93f75ed5cf
76e53a6659eba9148af86301dcb955db2ceeaaa8
15076 F20110218_AABROJ baskaran_a_Page_180.QC.jpg
affac943b1f067d569becc86b0b5900e
10942a8ed29cd8fe4d0282215f883fc25f367fd5
945657 F20110218_AABQEE baskaran_a_Page_136.jp2
194653de46c4756bbceeb3fd1bdd11b4
3f131201955df262ecd05cf464687605e36c554e
48711 F20110218_AABROK baskaran_a_Page_181.jpg
7188a30c121083861d853f67d0c2abcf
47383d539902d193169d3d30223fd56b91928870
55517 F20110218_AABQEF baskaran_a_Page_006.pro
89f9b4b77936ca88edc40e747cdcf0e7
05b34700cbef84d6f1b620d679f63d1ff965fe88
2213 F20110218_AABQRQ baskaran_a_Page_044.txt
e080c459dbf17d23c1daca83083f586e
54b3dc1101a99b972a87d180f1dc78c704f70a1b
15811 F20110218_AABROL baskaran_a_Page_181.QC.jpg
0926ddf42a5753800d15bf4c3231666a
44744cea2ca0e2daa2996cda16ed9ec7b5c82fff
16452 F20110218_AABQEG baskaran_a_Page_080.QC.jpg
e032412b81d2d9f1f87c57c5ad39abe2
b52e8d6dc1a3e97e18cf8cbe4c80b2d746f84f7d
2075 F20110218_AABQRR baskaran_a_Page_045.txt
69910693621f86f1dc5f6a9f7cf32bd4
434dbb037a79c74618c6544c0950b56fa3c4a0b5
49509 F20110218_AABQEH baskaran_a_Page_082.pro
b863105525458f4bf66c5fb640a9d0c7
2804affcde5d3cc1652279792e152763e95530d3
29196 F20110218_AABRBA baskaran_a_Page_143.pro
7ea7e3b6e19f1166d5af7092436e2231
9c782ea61af30611536e237139095fd520f6e20b
1831 F20110218_AABQRS baskaran_a_Page_046.txt
4483605e7a685d95acc28a2f9770674d
c8096ca810407d5eaa211843575737be60216bc0
49159 F20110218_AABROM baskaran_a_Page_182.jpg
fa7ed3e2fa11f2e7c236e5f42cb1f5ea
3d7ab10f3f1a3232d81079ebea2d28091dca7176
F20110218_AABQEI baskaran_a_Page_002.tif
a7a3bc5bba057dc3897a2ee84352ae6c
3d4160a5e8df3cdde6b93e9cc353c7fd4d295cb1
6966 F20110218_AABRBB baskaran_a_Page_144.pro
1689b802445e1bd4d60e776fc578cef3
e5115b3f0ac9afde4426e1b0ea0c70f4f99a08c5
2051 F20110218_AABQRT baskaran_a_Page_047.txt
b2531a8e62a84d62b0c3e88b57f0f4d5
e9b214db42c5cc402b11737e52d563e96174e4c7
55784 F20110218_AABRON baskaran_a_Page_183.jpg
3af844aeb3fe0f29d5f9cb871ad187f6
d2f799098f46d4fec4540b9e8300e74f5cf18166
F20110218_AABQEJ baskaran_a_Page_182.tif
44dea088a515aa664a22583b98bdc620
324cdb1c2acb892c0059909c1cb2a59e2b76e58a
26781 F20110218_AABRBC baskaran_a_Page_145.pro
0d4c65d4ef06b3dfd06c27c9c0afc01a
6f5f0dc948029be25308f8318bbc09e7fa10c992
2221 F20110218_AABQRU baskaran_a_Page_052.txt
9f047481990bc947235514ddb7e34339
9787e90ea5c0ddb9a7d0b435b42d64234765a47c
53775 F20110218_AABROO baskaran_a_Page_184.jpg
57998387f9a5712e4e790576ba990223
c5e5f93c65967e73b0e6e806f41a62c935f2dcff
21805 F20110218_AABQEK baskaran_a_Page_085.QC.jpg
0ec1277d0599628514ca04f0959e9074
16fb5065c20fbd855ae2cec0da49c0174eabc37a
31082 F20110218_AABRBD baskaran_a_Page_146.pro
409c67140a7de1eb423886a60e19ec57
847eac1daa841b68b41d43bf071834cd76075184
1988 F20110218_AABQRV baskaran_a_Page_053.txt
c9354e107084db3e3eec8468ea9ce5fc
5a03911998fdf6ff09c57fac9c2b62a7e4249706
50296 F20110218_AABROP baskaran_a_Page_185.jpg
9077a94c1b40b28665e31eeb148887d0
ab1092e768bfe6a8eaf7e0df43317d94e42af487
25194 F20110218_AABQEL baskaran_a_Page_039.pro
1d8131cfcb0d6fcfe295be95835b581a
ea249f1c8a341f01fc9428b800646c6d1f86bed4
27726 F20110218_AABRBE baskaran_a_Page_147.pro
4e1b784f7df0183f38ac18a2512b638a
93b2524e8fe3fd1e4255a14587a89e6f8647cba4
2045 F20110218_AABQRW baskaran_a_Page_054.txt
375e69ffeee0c033cbcbf50109750c4f
2fa803a2851accbfce9c39247cdf8c425f7c320a
15759 F20110218_AABROQ baskaran_a_Page_185.QC.jpg
7d8d8db9b7dfeaf41a51607ccb9d2eca
871911c72673bb7500d93026144de5b86242f04e
68404 F20110218_AABQEM baskaran_a_Page_005.jpg
f7ececde5137504144d973a6bec73941
72343e9812749b2d5c6fe362982494df88efe873
22842 F20110218_AABRBF baskaran_a_Page_149.pro
517d02e8595ed7783095c42a6f220653
b9e8b725095b776466187667e7c0978d63a4f09d
1894 F20110218_AABQRX baskaran_a_Page_055.txt
e4d96009e6e971f5edfb9779e63ea5f1
e1a38b3ddeec22c0d9a98fe9b17b12d4218409c9
50589 F20110218_AABROR baskaran_a_Page_187.jpg
e89246d412738ca6d6301e03bb7cc599
6f9941751fd98735bc97178d4948bcdd7683d239
1629 F20110218_AABQEN baskaran_a_Page_153.txt
1604d8256d5ac4e0b105a2c78d7a5066
9c861cda45be77746ccdaf401b3a2a268c9a4a27
32755 F20110218_AABRBG baskaran_a_Page_150.pro
035dd1f73bbf846159d7ae3fc77c126f
a8f292aadb29a15eae3aceb62b22c5420c72caad
F20110218_AABQRY baskaran_a_Page_057.txt
e4defc7366ab16387d4edb2ef0902067
cce2b868d6f5003bad81060d4dc6e818bfc15df1
14875 F20110218_AABROS baskaran_a_Page_187.QC.jpg
da9783d87c2ab712a21bb145b0de3ac9
878bc3a0b7336a611f8787f95cd2905e3df55dd4
F20110218_AABQEO baskaran_a_Page_176.tif
0148c70e5575b2de1413f0fa0f69a409
60a1d771943fa568dc4df3b21660b5366c2f3616
20141 F20110218_AABRBH baskaran_a_Page_152.pro
b29cc074423e37e90a0d4bc3df4dae4e
6d4b09c50a90a423679542be9a00441b9ad2d0f1
F20110218_AABQRZ baskaran_a_Page_058.txt
98d888f84fef1e14b56c8d2e03bdacc4
732f417af606431cadfde82f53bf0fbed4c084f0
61377 F20110218_AABROT baskaran_a_Page_188.jpg
9f0ae1098df0c987ad941b212af4ec0f
87eaa5ca3f36165d5572fdd8d0ea8110e3856dac
677638 F20110218_AABQEP baskaran_a_Page_125.jp2
0b150edce6f3809a9a15a01db51ddc63
333bf72c6ff4f3234f809d2296bd5332bb57b50c
18453 F20110218_AABRBI baskaran_a_Page_154.pro
cb4f63807c25812b95fbb45967f77270
d91078f3970ff8c1476ec1733cb508d6f1196392
18312 F20110218_AABROU baskaran_a_Page_188.QC.jpg
9137348c51eeb054d2058ce3ef54f5f8
f761314fa7354cd35a393032945c31cdbd8a17db
1708 F20110218_AABQEQ baskaran_a_Page_093.txt
7e3cae7f762108985a6f49f73a44482c
dc9b52670f1ac855c8983e9f3faeae4226264be9
18855 F20110218_AABRBJ baskaran_a_Page_155.pro
707118b70d9a16e135cb8be5412089fb
a06b5f2094529501f12365f453384bda9026ef7c
53652 F20110218_AABROV baskaran_a_Page_189.jpg
71f0481d7af1c105c50c6da66bf2ecbb
2a8e8fe31bc88c5884e3c19b9f30f79b603ea444
2003 F20110218_AABQER baskaran_a_Page_193.QC.jpg
7a74cd59c00b3f6e6abeccaf7b46753e
baf00ab99e7af6228cced6e9a80f23b152457a4c
28264 F20110218_AABRBK baskaran_a_Page_156.pro
5ac703104d9f1bf7e9b86c195b03d100
9a850ddc51dca260ed443fc37500eaf51fbeeb70
16488 F20110218_AABROW baskaran_a_Page_189.QC.jpg
f7d103c1ce7d8c12ac6dea7d6da4983e
a866a12cf5711d5e0b1f3a4b5ec03745d6b8937f
30752 F20110218_AABQES baskaran_a_Page_192.pro
a869c38e75ff4a4a9223b764b77e8a4f
94d0da3d7c46935c3d0eaaf4900b46ad10a3180b
32014 F20110218_AABRBL baskaran_a_Page_158.pro
06a081b37a2a4efcba2b4670fe6023f3
c5789e0a5efe9bbafad32772518788253cdcc0b7
40880 F20110218_AABROX baskaran_a_Page_190.jpg
0e33a6b92db460c66e22a7987f79291f
652ae7e42599a549640a28e4c6db3b9d8f708625
45526 F20110218_AABQET baskaran_a_Page_094.pro
06c3856acf906eab1ec7f1e9a9508aa7
f3ae2fd8656ed511b53edba9499c7546a992de91
34672 F20110218_AABRBM baskaran_a_Page_162.pro
e38bc63f7fee4f072c1ec735c3cd921e
9e56655c375a455b36b3e0a8b6700b734874edf2
12788 F20110218_AABROY baskaran_a_Page_190.QC.jpg
b3ddebfa59359945595acfe8a4ea402f
06f1fa1abd0f331b8c4742b9a747ccfaf6b7eb50
617596 F20110218_AABQEU baskaran_a_Page_143.jp2
4b646cb7f885f41303a07ba9354cd187
60258a042af629840508b07c13e0277126a15dcb
20365 F20110218_AABRBN baskaran_a_Page_163.pro
4f3d5a87875063af7ee68d37b608d0dd
1ba3e9b68231ce6680962aca671fb0b7690bd962
45578 F20110218_AABROZ baskaran_a_Page_191.jpg
005e0c61109a57d5616b258d3d2e3b2a
45f1919ee879f17817300bed1713eb6f9ed1e3d6
26830 F20110218_AABQEV baskaran_a_Page_019.QC.jpg
5828c4e1170c260880dbf12456bf8291
6ad41703ed1e741e381e65c67aca8c1199cf6c7d
30173 F20110218_AABRBO baskaran_a_Page_164.pro
3a22b516468402188278b8b67e7534fc
266bfc90a919be4e3e2d3cd2e295a4313e48a412
F20110218_AABQEW baskaran_a_Page_048.jp2
487e74bd5b501243c6c656bc31eb29fd
5db5d1361a3cefc26be4f838ed262f32a3b8697c
30452 F20110218_AABRBP baskaran_a_Page_165.pro
88d58f9b3a3a4902e40154400134ca3b
2d5a88bc193db3595ea51ed8e6292477eca2f3ea
2258 F20110218_AABQEX baskaran_a_Page_006.txt
43253f4a4f1ce505fa2f58bea3a6da3e
d41f730f20a382610dce27b92b4bbbb7b2aa38a0
57438 F20110218_AABQXA baskaran_a_Page_014.pro
91ae98867129315c90c3a0ab5266e947
247499c4c87545efd1342b255fb4b6d82974950e
29464 F20110218_AABRBQ baskaran_a_Page_166.pro
bdfc554590cd9aceec4c570d7d61b297
05a1ad1d795ff17b9f6dfbea3160d93a4bdad281
4182 F20110218_AABQEY baskaran_a_Page_208thm.jpg
ae0af7ada093e577724eeabd85fd3f57
b94defd5052cc57a0d03d75ac7614c599866b475
56328 F20110218_AABQXB baskaran_a_Page_015.pro
cd5623e679c1035d8370c7825c200013
92b9b9d2c8434e03f34c62a6f21a185ace780630
17443 F20110218_AABRBR baskaran_a_Page_169.pro
fb26dee678922df47b0c1a109dab3820
cf993fbc71337ad368336d04bfd25437045b8b6e
1604 F20110218_AABQEZ baskaran_a_Page_079.txt
06380eb7e391c5f6066cfb2f786c8cc5
33d77816d87769d38aef0c6190c27da6ff1f0803
56092 F20110218_AABQXC baskaran_a_Page_016.pro
bbe5e36f3ece6df21888f5d09b7633a6
a9267d6654863a1e67795ec9ee176607ee785c64
30103 F20110218_AABRBS baskaran_a_Page_170.pro
9b241b21741e44b9be840bc3e02ffcf1
925ad5156babecf1a86a7489bac02e3d630d1ea0
53483 F20110218_AABQXD baskaran_a_Page_017.pro
779a8b93001ed35a556a40b17077f4f7
14014bc471327cfd47076d32fe14faa506f39ffa
29881 F20110218_AABRBT baskaran_a_Page_171.pro
1d7fa255c537c496580a621798409688
6f809ff1c4bcf9b7a8b62c947000490f3abfda5a
56543 F20110218_AABQXE baskaran_a_Page_018.pro
dfb6434668cbcbd9ea87de98d7d2e14d
82ce41da7fd6978cacf9bdf9cef600fc481bce23
38080 F20110218_AABRBU baskaran_a_Page_172.pro
de321b9ec5b8894ed2e51ab43ab37b5c
5dad93af754f1d5b1ddd9715ace163f70fb05d8c
71682 F20110218_AABQXF baskaran_a_Page_019.pro
bd071c5885d7f0e12cbb4d11985ace43
76d8d143f7676e4eb22a92a40c7046fff1febc90
25497 F20110218_AABRBV baskaran_a_Page_173.pro
abfcc1423353d1f4cf14ec3d556a2aea
1c93c3dae9678bf8d5b7c53a6b94f9083bfd0e02
25968 F20110218_AABQXG baskaran_a_Page_020.pro
3d9552d6342f71adff65d5312ced26e2
b6d709e5f9d3df8d99b56caa574987d70939a605
28852 F20110218_AABRBW baskaran_a_Page_174.pro
dad9c77c283a0e4876711e7d3750b3d8
3214643850e32ab218e462478007e2c36b626cc8
877779 F20110218_AABRUA baskaran_a_Page_105.jp2
e65e9212cbf6fdc1db65cb54fcfb5a4a
3d95528d008759197451fd2ce55482e0663d4c74
45402 F20110218_AABQXH baskaran_a_Page_021.pro
1b0029701abb28899c5db54f08126a94
8e4fd4d548518f6e51eebb72c1a8654479b7a02c
23884 F20110218_AABRBX baskaran_a_Page_175.pro
1f2f640097253dcb762848bc1cb7bb7f
38f1f8d711657124d7ad84fc2d27fc777fd9eca7
916919 F20110218_AABRUB baskaran_a_Page_106.jp2
574d8c4731c65abc74b9b940038f28fd
cfd26292bf460e3d0635b09648a5a67835ab39f0
45522 F20110218_AABQXI baskaran_a_Page_022.pro
9d352ab6b98a16c921f1be995e9283ec
af9ffd105e720c88db35ad4cdb92fcd13360552c
12003 F20110218_AABRBY baskaran_a_Page_176.pro
e5ce47ea71725a85f09c832370ff2e61
522df989772c744b56460be577d1f6fe612f09b1
855302 F20110218_AABRUC baskaran_a_Page_107.jp2
1a2357f719f8ac47f56e22cfb46ae23b
93f2af1b878eb896e9b680b376786248392a169e
48571 F20110218_AABQXJ baskaran_a_Page_023.pro
8bb3a687e98b99da0f94b3f7d5c199dc
68c54b381e5960d1cdbc4b9754e3285f1222ac28
40205 F20110218_AABRBZ baskaran_a_Page_178.pro
b695e6d8f829e98e49e8b1f1eee2d029
d44fd201a445982e5f5733b8996f76361ccc020a
547601 F20110218_AABRUD baskaran_a_Page_108.jp2
8d34feeec00506adcc3e743c499f92cd
75ca74889a033cf1088be72f492b6459be19f464
48687 F20110218_AABQXK baskaran_a_Page_024.pro
6867dc000967244280e11d74bd9c77cb
b564ec40657d585f98d4f449dbe543ee16c3f4e3
909025 F20110218_AABRUE baskaran_a_Page_109.jp2
d667ec2721c8b5370849f24eb95e2278
24f53dde579714b4835edf361bbcd4d33f6aef0f
F20110218_AABQKA baskaran_a_Page_005.tif
d831cbf1c6f5cd0ce07cdfb05e13e5aa
84e25f0aa91a029100563daab4c12d1df133cba0
41030 F20110218_AABQXL baskaran_a_Page_025.pro
53947e38c92a7f29abdd97c6fa352121
e18a707c7509cdc2c8e22ab18e48877a83043d9a
1051430 F20110218_AABRUF baskaran_a_Page_110.jp2
a396cbe6811458655511079e378246d7
9c2ef1b46ee563b20c294e0cec17c08a8e4ab554
F20110218_AABQKB baskaran_a_Page_007.tif
21d1c5ce5566a5b399b59a4ebc077202
512a0a26bb2702b51eb587ac5b9ac37e516cee36
38921 F20110218_AABQXM baskaran_a_Page_026.pro
9a70612bd912c84b056c1ac6e32c6ba7
3a1086b615b436e8fce299e6b6aefa9563c20fad
769004 F20110218_AABRUG baskaran_a_Page_111.jp2
e08a3f0170083a98c6e8ef91bb423d9a
4acc8b576921397b8fde4d2e5af49027d784a385
F20110218_AABQKC baskaran_a_Page_008.tif
3994c09be1ec94fac1951c3420f847cb
98bffbc1bca7d11221ce466247cba82f42c2b2bb
46831 F20110218_AABQXN baskaran_a_Page_027.pro
48f74869cf5c8d3526dae73e704808a5
007373db405ff052d2ce1b8b0af2c5c1c5c38bf5
785158 F20110218_AABRUH baskaran_a_Page_112.jp2
afe626ffe3ea80ffb4fa6dce8a8d1b26
1dcd950d6f0599bdb22b6c96b95f0ad324be2d6e
F20110218_AABQKD baskaran_a_Page_009.tif
72293b100ca70c009e2f4368522536e9
3302e7edee3bc03df3d442360b7b9982975c41c9
43656 F20110218_AABQXO baskaran_a_Page_031.pro
763ba45fa158c1787fadc911a54df8c5
2ca47a92a8a061337c89d3ac6cee8440d071ca71
772866 F20110218_AABRUI baskaran_a_Page_113.jp2
97b62b1707f310756bac60c3bd7bd975
0778d2f0e721893a28eec98692a16a41276bc6de
F20110218_AABQKE baskaran_a_Page_010.tif
b931b21ecec8faf4380fa38faec81b03
1ee706b14a46f656d8aedd58b5df4f74899f6e35
41390 F20110218_AABQXP baskaran_a_Page_032.pro
5f13592ac437ad8b50e28ce214e33a12
4e24ed2d73946521374cfb42f0db404059a021cb
849197 F20110218_AABRUJ baskaran_a_Page_114.jp2
007825da70c54058d108c455f71fe21f
f2f6b53d013b0d3d1b25bc4602bbf887cae4ae85
F20110218_AABQKF baskaran_a_Page_012.tif
f762b1884e91556c53e36a9faf322c9d
78cc5d523595dbcd42683fc9d7a3729310716a45
41579 F20110218_AABQXQ baskaran_a_Page_034.pro
a72cb32f5b96276f72eac434c2ac834d
afc17a7170128771fc73a9293a61f2fb5c4dc62f
1051917 F20110218_AABRUK baskaran_a_Page_115.jp2
da08b624e93fab14413743794d710d9c
1438e081444eb2aa2df07db12df9ddd77ad70aee
F20110218_AABQKG baskaran_a_Page_013.tif
1e19329da5234b9f3b18efec171345b1
2f01cf19aa3cdc1dd021cd100b43718797564130
34469 F20110218_AABQXR baskaran_a_Page_035.pro
a3b9b287555c39e12e9bf7e80beb7beb
86144d83b06d9904e935a8addf594c75516fe738
1017276 F20110218_AABRUL baskaran_a_Page_116.jp2
4b330c7adc2cb3c785cef673c3bfb7f5
9ff5c58248a3e7714f6aa25db3705520c829268a
F20110218_AABQKH baskaran_a_Page_015.tif
050eef93d11015b634c1c37b57415942
03c78f71ea02a86496e30a8bff971570fc450a0d
73641 F20110218_AABRHA baskaran_a_Page_062.jpg
4e67508e3ac3057c924d5b45c87787d3
4e9d671e7ff5966a6611bf8bd1be2386e0519d52
32278 F20110218_AABQXS baskaran_a_Page_036.pro
2e97a2b6d6764f913610157082260ef0
fe5b3b9b10fb5633c6a68002e57b7e33ed699bfa
1051909 F20110218_AABRUM baskaran_a_Page_117.jp2
24325a3cd30f46053c7ef3ee61a6ea9b
edeab6abfc90b671a5fb148a020c61972991374b
F20110218_AABQKI baskaran_a_Page_016.tif
807912aa58d6213700ebcf01cc393915
5315c2b7a9e6ff55aba297778dd801c3757e029d
21535 F20110218_AABRHB baskaran_a_Page_062.QC.jpg
0139f8e0ff52c0fecd09da4044f5925c
8a3d318b5b33b5860e009319be6667e0886c11ec
49624 F20110218_AABQXT baskaran_a_Page_037.pro
96ccf544ed2eea074e2cc8d368c93d41
dd001873da2134d5af244123ff6d3ec8cbbd0ae4
65239 F20110218_AABRHC baskaran_a_Page_063.jpg
c002c282adf1e1b7726b2c83df59e179
7758865f1f5817a970f203181558e76e07b0a78d
54936 F20110218_AABQXU baskaran_a_Page_038.pro
fc3d83bf26a0e811852c987341911554
720e23c1e406eb695456c5273a10e87cf4192c98
1051944 F20110218_AABRUN baskaran_a_Page_118.jp2
d27ade2b66a64cd0f98fb3f6894b9142
84b339a52ded8326651a44fa67b290a98782bc79
F20110218_AABQKJ baskaran_a_Page_018.tif
3d037b7e3833e9ad366537c2940c5349
ced73f7aca8d9381e182bd9ffa5a3a354c0c9ca2
20182 F20110218_AABRHD baskaran_a_Page_063.QC.jpg
e48375c4169f2d40220736144370a024
2732c3cb28c94006b824f137cf37a965f24069b5
24040 F20110218_AABQXV baskaran_a_Page_040.pro
0dd93d16f58452b9a9b4bccf1179d68a
e9cf8ffd2b6aedd59a0a3b18296b449012f6385d
927107 F20110218_AABRUO baskaran_a_Page_119.jp2
83646b40815fa62a2e8e7f20f30abaeb
9064c8a7be9ea4840cffa08cb11b9b00ac4d1159
F20110218_AABQKK baskaran_a_Page_019.tif
5c4362ec42ace0cab9d1fe96bd3c085b
2c77494ff47f94391b0923d49fa1737b896b8a62
53754 F20110218_AABRHE baskaran_a_Page_064.jpg
49bc9af0cd83b2760de82577f4fe8521
580c587b6fe8392efdd7495df2acae9a48898fe1
859608 F20110218_AABRUP baskaran_a_Page_120.jp2
1f770a419eb969e0c89d18b80a878101
06f4dbfea6574c734cce72e8e39645d75d3b2b83
F20110218_AABQKL baskaran_a_Page_022.tif
bb84ab51d6363ceb8f6034d1cfbbc468
140d962593502f668076e1f90bf0284b811f0203
40730 F20110218_AABQXW baskaran_a_Page_041.pro
ae80219344a848b20bc34cf7fbca1353
1dcee947953519b94a16a86a9dcba98189b618a8
672548 F20110218_AABRUQ baskaran_a_Page_123.jp2
78667922257c513ed39472ec8f52358a
370ec680d2d749ab5d5378e085a958fa46eb64d0
F20110218_AABQKM baskaran_a_Page_023.tif
233729507924ce939a1109a5fc3e6b1f
81341556f5a99957cc02050408c89f0050394338
16227 F20110218_AABRHF baskaran_a_Page_064.QC.jpg
8ead8932030f3886003cc7743757c764
6ce8206f91319101387afa096449e56d9d203348
45501 F20110218_AABQXX baskaran_a_Page_042.pro
5b00c885b0d850468cb2500b39c00420
31b56fa79aa9376c1be2e7a401c334946a61afec
1051958 F20110218_AABRUR baskaran_a_Page_124.jp2
f4869b9956a33105987ec0d481421ab7
732ea51b931b8a28d2a1df363888869a6869ba5d
F20110218_AABQKN baskaran_a_Page_024.tif
9c242a8fea08e1d265906aa0208595ab
b6301ddfe45894b803af4f62a732400c11d9b157
65445 F20110218_AABRHG baskaran_a_Page_065.jpg
318a8ddea6d815e9f65b3c01e116783a
0c9bfacc49710f3d916400abbc48aba0fad3a4ba
42909 F20110218_AABQXY baskaran_a_Page_043.pro
e92fe7431797edbfb56a8147cf64db79
ac5eff435d477e69e3aefc1a7a967793d293f74c
4405 F20110218_AABSEA baskaran_a_Page_207thm.jpg
d13402ef8e555d18b77828cd41a8ef1d
e3e654e98d1ea9f9bb8ae50b5bf18c76e5d392a9
F20110218_AABQKO baskaran_a_Page_025.tif
76192db7b294908f239911bc87442b9f
63099d7c578b7d8983f44962a5738d1856f96a82
60960 F20110218_AABRHH baskaran_a_Page_066.jpg
3547aff88fee0edf6ec15fea77f6b3b1
b254a8470f8cf929eed8b2e914c4bca9b4c22725
55934 F20110218_AABQXZ baskaran_a_Page_044.pro
05193e712a22b9578498ef55191fcf1d
2d31116ac496a6cc4e0666ab03a6a9eefc0d337b
724790 F20110218_AABRUS baskaran_a_Page_126.jp2
f0b6fbb27cd11b06300d5b20c7214dc1
f509e9a71a564367afd2a17a47430e550b114834
F20110218_AABQKP baskaran_a_Page_027.tif
dccbe1485714ac3d84b7aec4bdea9342
68f5d612e47abdcab063246d043d6ca43b2db0f3
46617 F20110218_AABRHI baskaran_a_Page_067.jpg
a284d0f9d5b7aeb0cef451e575402b42
13d3df7d78ae8142f1cf4df52d1ac173ba7a049e
4273 F20110218_AABSEB baskaran_a_Page_209thm.jpg
81a7319682fe86ef588fd27955d69406
2f2b0e19abf73ac7a27f6b1a002ff996c6dddf13
763985 F20110218_AABRUT baskaran_a_Page_127.jp2
a8d3fb17bbc8e488811c95f233f9fe26
4b8fc68f5db9a80291fb9b0d95f9aa65a2a90c88
F20110218_AABQKQ baskaran_a_Page_029.tif
62de6836d189fe949dcdb76b8333823e
701deab2b2518463324971b857afe0a9c3041f73
14353 F20110218_AABRHJ baskaran_a_Page_067.QC.jpg
acd0f6beaf2315876393a21b939e537e
7c7916450b3065d010226172d636648b4f5a20b5
4432 F20110218_AABSEC baskaran_a_Page_210thm.jpg
17b789b8b62c3f45f6c1cbe09a89a648
5932a54233984e2da4c90f3ffd8858acfce77760
756412 F20110218_AABRUU baskaran_a_Page_128.jp2
0a314dda41644c8c399f6ba086d7497b
930be6efd1e390b13d686c24d518c8ba0a5e897b
F20110218_AABQKR baskaran_a_Page_033.tif
ee46f8499c25ef1c9626dae23a0941cd
ee1dfc3d766660e957955a07e97d0b44df041440
67824 F20110218_AABRHK baskaran_a_Page_068.jpg
d69ed86d6c2812c2258eec0b8187dda4
af431305f5dbdefa45fb5a6c9991dea7f360ffd4
3244 F20110218_AABSED baskaran_a_Page_211thm.jpg
95883f79d78ec37b2941a64c12322222
49f6488fe1901c52642667d1b5a9e89a6d206260
849174 F20110218_AABRUV baskaran_a_Page_129.jp2
2cae02f94d5b07f0094195cc767b3a01
ff47bc6e46a6f5b5c1d06d0506a48a2e61a6f6f1
F20110218_AABQKS baskaran_a_Page_034.tif
eb30bc427299ae343a27dde1670c9dd7
d7168f360813b519fc4b29f978d191e9bfde45ad
20196 F20110218_AABRHL baskaran_a_Page_068.QC.jpg
2c2b0c89992052737f1a63ef5f6d902a
935fa89a46dea81b699502c65ffa22fb822edb83
3679 F20110218_AABSEE baskaran_a_Page_212thm.jpg
188b7578ccff23f67a953e385d2db144
fbd7200ddce118387478610331655824326914dc
F20110218_AABRUW baskaran_a_Page_130.jp2
bd8386979f47d2b9102948e437d03027
a921432de9abb66173fbe418d962725793d580a7
F20110218_AABQKT baskaran_a_Page_036.tif
6ef0c3d2bf83ce9d2fc7e5d765cdf45c
b7e7319f9813dd8567ef94804cb0d7f31a88ef7a
22912 F20110218_AABRHM baskaran_a_Page_069.QC.jpg
c8cbb858e52b33f892add57b14a460db
332095024196c674d911bb30d55dc3756d1c1afe
3908 F20110218_AABSEF baskaran_a_Page_213thm.jpg
2ae47013949176222e792ba162107d2f
20384c3d016eead6483b124d07c639519488a308
994107 F20110218_AABRUX baskaran_a_Page_131.jp2
9e87954b5f9cf17ca698763dee91c4ee
1bb2773b6a83b7d1777057b6d3800dd4ffc90d6e
F20110218_AABQKU baskaran_a_Page_037.tif
86414f50576bccd31471242310d6e8a7
033bc510239328f71a78d91f4b1cccd861d977ac
23782 F20110218_AABRHN baskaran_a_Page_070.QC.jpg
47412eeff1a45aa39b8a2a578fb669b5
e11da518d1a216eb6e2da8eb484940db904d7d5e
4290 F20110218_AABSEG baskaran_a_Page_214thm.jpg
72a72b2a5a40576c95cb4b4e688e6aa0
e37ac4dfbe7702119ccfc04694ee22897a85c24f
F20110218_AABRUY baskaran_a_Page_132.jp2
d1101ddcb4aad2230ee127836fb2257a
caadd1a58ccbdffd67112a5fd8474614b5f47f74
F20110218_AABQKV baskaran_a_Page_039.tif
147ff387d8e3dd61cc7d4e5b17d32885
c3a79234e237c22096e69934a63054e00b3f4e5d
66274 F20110218_AABRHO baskaran_a_Page_071.jpg
5f52ecafb26b896517a4c7e3d4c9bacc
e6435b2217ab004a0b61f5acfebb317e092a1c74
637 F20110218_AABSEH baskaran_a_Page_215thm.jpg
a1fcbfe56414a96a023dba604d40def8
a72dcf0443721ca58f599fcf6a437552ac9fd785
1051981 F20110218_AABRUZ baskaran_a_Page_133.jp2
f64de2978481ad7f931e9191b7184bc2
25ad1bd11e3a8be43e811076fab2ad2131058b9d
F20110218_AABQKW baskaran_a_Page_040.tif
27ae93019f01700162150e96028ea3f3
ff57fef8edafa3932a1a6532ed262599d257c37d
19845 F20110218_AABRHP baskaran_a_Page_071.QC.jpg
a77cce4716c2281038e1d0c1fca3a49a
0eac1950bc6b8367cca69a164489de001b0e355d
4857 F20110218_AABSEI baskaran_a_Page_216thm.jpg
fcd3da0c7ae87a36cb5ec40ae98ba343
100f219fdefc45b36c7c76e061739855bac50d1a
F20110218_AABQKX baskaran_a_Page_041.tif
3dc780a6b62d921c374195271739f3dc
97f18167b1f41712303f0b1be3ad9a5aa4cb8e06
41451 F20110218_AABRHQ baskaran_a_Page_072.jpg
ecf4af388fd51232bcc2a70bfaf9738b
34f5c764040dbc3fc0add794dbdef9b8526d967f
5278 F20110218_AABSEJ baskaran_a_Page_218thm.jpg
77406838574210f93db41715d868b324
fac35bd22c91c1dc9b6f33387aa35b4cc13c991f
F20110218_AABQKY baskaran_a_Page_042.tif
4d5487e07b70eb3837aca88c1fd8c3e8
eb7279c7035bfb02390428e0cd6726d038b32279
12908 F20110218_AABRHR baskaran_a_Page_072.QC.jpg
b57a2473e6b76be0e54ac8ce8e6023d8
547b276de9100287eb01fc4e2e677ac4763763df
3627 F20110218_AABSEK baskaran_a_Page_219thm.jpg
58125068e64052a0bb5890d2318a5b84
844941b0cb1ada194080e6bbfeb5bc28ed952b97
F20110218_AABQKZ baskaran_a_Page_043.tif
902463e793dd679c50fc6c1041de0d1c
5b0fd2bdb238ec51e2ceb92c6584b3de53eb30d1
65225 F20110218_AABRHS baskaran_a_Page_073.jpg
ccaacacad1c55b65838b15d264c1208d
3718da56965cf9f381f024df0fee3110b31e2daa
965994 F20110218_AABSEL baskaran_a.pdf
aced542accc3f81d4666634fd14d4b24
2cacf23a1cb548e700fd31e3c9d5770e70f25288
19044 F20110218_AABRHT baskaran_a_Page_073.QC.jpg
ee94978e49eb07b482d51193eb7f5267
b88ff0f4706561b3023542845b06eb3f01411348
259367 F20110218_AABSEM UFE0013684_00001.mets
150a16929b7968cd5ec6195ab66193f0
0c76786504948cd9435bb942baa24b81abbca0cb
20119 F20110218_AABRHU baskaran_a_Page_074.QC.jpg
daf06767a077e0c8ded24da965a952ef
6d82343a5e884ad626c91a25af4eb96f21367686
66338 F20110218_AABRHV baskaran_a_Page_075.jpg
f675c3ef031bba170765fd695cf98e53
aee8ead475a378444b4e66443d46a11ad7203cc2
19781 F20110218_AABRHW baskaran_a_Page_075.QC.jpg
7eee9bc0f080f7b60b712e3036099d93
f3661e318e9f4add7f54854b4453060cf5923e86
75882 F20110218_AABRHX baskaran_a_Page_077.jpg
3aef9fc1cfd4359ae574362f6d12c103
82846febb7b53edf346c2f873841633a6000198b
22745 F20110218_AABRHY baskaran_a_Page_077.QC.jpg
9c733311f1777dadbcff63c16458d70d
de412769e954919e021158711b91d3b69538f137
68822 F20110218_AABRHZ baskaran_a_Page_078.jpg
49bc5ef1eeedaaa7890d91f48a01f6d1
0114a3df29a73e6ed87051e38cf88e9cc2304574


Permanent Link: http://ufdc.ufl.edu/UFE0013684/00001

Material Information

Title: Statistical Mechanics and Linear Response for a Granular Fluid
Physical Description: Mixed Material
Copyright Date: 2008

Record Information

Source Institution: University of Florida
Holding Location: University of Florida
Rights Management: All rights reserved by the source institution and holding location.
System ID: UFE0013684:00001

Permanent Link: http://ufdc.ufl.edu/UFE0013684/00001

Material Information

Title: Statistical Mechanics and Linear Response for a Granular Fluid
Physical Description: Mixed Material
Copyright Date: 2008

Record Information

Source Institution: University of Florida
Holding Location: University of Florida
Rights Management: All rights reserved by the source institution and holding location.
System ID: UFE0013684:00001


This item has the following downloads:


Full Text











STATISTICAL MECHANICS AND


LINEAR RESPONSE FOR A GRANULAR
FLUID


APARNA BASKARAN
















A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA


2006

































Copyright 2006

by

Aparna Baskaran


































To Amma and Appa.















ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor, mentor and friend Jim

Dufty without whose guidance and encouragement this work would not have been

possible. I would also like to acknowledge the many stimulating conversations with

Professor Javier Brey of Universidad de Sevilla that pl i, d an important part in

giving shape to this work. Further, I would like to thank my committee members

Professor Hirschfeld, Professor Ladd, Professor Muttalib and Professor Reitze

for their support. Finally, thanks go to Karthik for being my sternest critic and

Pradeep for his uncritical support. This work was made possible by a McGinty

Dissertation Fellowship award from the College of Liberal Arts and Sciences,

University of Florida, and was supported by grants from NSF and DOE.















TABLE OF CONTENTS
page

ACKNOWLEDGMENTS ................... ...... iv

LIST OF TABLES ...................... ......... vii

ABSTRACT . . . . . . . . viii

CHAPTER

1 INTRODUCTION .................... ....... 1

1.1 Granular Materials as Objects of Theoretical Study ......... 1
1.2 Granular Fluids ............................. 3
1.3 Theoretical Developments in the Study of Granular Fluids . 5
1.4 Objective of this W ork .................. .... 8
1.5 Structure of the Presentation ................ .. .. 10

2 STATISTICAL MECHANICS OF A GRANULAR FLUID . ... 12

2.1 Microscopic Models for Granular Fluids . . 13
2.2 Generators of Dynamics for Inelastic Hard Spheres . ... 15
2.3 Isolated Homogeneous System ...... . . . 20
2.4 Stationary Representation and Time Correlation Functions . 23
2.5 Fluctuation and Response in a Granular Fluid: Some Observations 28

3 PHENOMENOLOGICAL HYDRODYNAMICS . . ..... 34

3.1 Nonlinear Navier-Stokes Hydrodynamic Equations . ... 35
3.2 Linearized Hydrodynamics .................. .. 40
3.3 Hydrodynamic Modes and Stability ................ 43

4 LINEAR RESPONSE .................. ......... .. 48

4.1 General Procedure of Linear Response ............... .. 49
4.2 Special Initial Preparation ....... . . .... 54
4.2.1 Special Homogeneous Solution to the Liouville Equation 54
4.2.2 Local Homogeneous Cooling State Preparation . ... 56
4.2.3 Simplifying Properties of the LHCS Preparation ...... ..57
4.3 k-Expansion of the Transport Matrix ................ .. 60
4.3.1 KCF at Euler Order .................. .. 65
4.3.2 KCF at Navier-Stokes Order .................. .. 66
4.3.3 KIC at Euler Order .................. ..... .. 70









4.3.4 ICS at Navier-Stokes Order .................. .. 71
4.4 Summary of Results .................. ....... .. 72

5 TRANSPORT COEFFICIENTS .................. ..... 74

5.1 Homogeneous Order: The Cooling Rate ( . . 75
5.2 Euler Order Terms .................. ........ .. 76
5.2.1 Pressure .. .. ... .. .. .. . . .. .... 77
5.2.2 Euler Transport Coefficient (u ................ .. 80
5.3 N 1,'.i i-Stokes Transport Coefficients ................ 83
5.3.1 Shear Viscosity .................. ..... .. 84
5.3.2 Bulk Viscosity .................. ....... .. 86
5.3.3 Thermal Conductivity ................. .. .. 87
5.3.4 The p Coefficient .................. ... .. 90

6 KINETIC THEORY OF TIME CORRELATION FUNCTIONS ..... 95

6.1 General Formalism ....... . . ....... 96
6.2 Illustration: Enskog Kinetic Theory for Elastic Hard Spheres . 101
6.3 Deriving the Kinetic Theory for Inelastic Hard Spheres ....... 106
6.4 Structure of the Transport Coefficients . . . 112
6.5 Comparison with Ch('!i ip, -Enskog Results: Shear Viscosity .115

7 DISCUSSION AND OUTLOOK ................... .. 122

7.1 Summary of Primary Results ............... . 122
7.2 Context and Scope of this Work .............. .. 124

APPENDIX

A GENERATORS OF DYNAMICS FOR INELASTIC HARD SPHERES 128

B STATIONARY REPRESENTATION OF THE DYNAMICS ....... 136

C MICROSCOPIC CONSERVATION LAWS . . ..... 144

D SPECIAL SOLUTION TO THE LIOUVILLE EQUATION . ... 152

E CONSERVATION LAWS IN THE STATIONARY REPRESENTATION 155

F DETAILS IN THE k EXPANSION OF /C (k, s) . . .... 159

G DERIVATION OF THE FORMS OF TRANSPORT COEFFICIENTS .168

H ELASTIC HARD SPHERES: SOME DETAILS . . ..... 179

I ENSKOG KINETIC THEORY ................ .... 185

REFERENCES .................. ................ .. 207

BIOGRAPHICAL SKETCH .................. ......... .. 211















LIST OF TABLES
Table page

A-1 Hard Sphere Collision Operators ................... . 135

C 1 Microscopic Balance Equations ................ ... 150

C-2 Forms of the Forward Fluxes and Source ............. .. 151

C-3 Forms of the Backward Fluxes and Source ................ .. 151















Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

STATISTICAL MECHANICS AND LINEAR RESPONSE FOR A GRANULAR
FLUID

By

Aparna Baskaran

1i ,v 2006

C'!I ,i: James W. Dufty
Major Department: Physics

The objective of this study is to explore the application of methods from

non-equilibrium statistical mechanics to the study of granular fluids. This

exploration is carried out in the specific context of obtaining a hydrodynamic

description for these fluids that is based unambiguously on an underlying

microscopic theory. A particular model of a granular fluid amenable for theoretical

study, namely inelastic hard spheres, is considered. The isolated homogeneous

system is studied and the associated ensemble characterized. Then, small

perturbations away from this reference ensemble are considered with the aim of

isolating the hydrodynamic response of the system and hence obtaining microscopic

expressions for the various hydrodynamic transport coefficients. The primary

outcomes of this project are exact Green-Kubo and Helfand forms for all the

hydrodynamic transport coefficients. These expressions are a first of their kind

in that they do not have any a priori limitations on the domain of their validity,

unlike those obtained from kinetic theory that exist in the literature so far. These

exact forms are a well defined starting point for further analytic and numerical

analysis in order to obtain useful insight into the nature of transport in this









fluid. First steps in this direction are taken by comparing the exact forms to

their counterparts for normal fluids and by developing the kinetic theory of time

correlation functions that relate the results in the present work with those already

given in the literature.















CHAPTER 1
INTRODUCTION


1.1 Granular Materials as Objects of Theoretical Study

Granular materials are ubiquitous in both nature and industry. Naturally

occurring granular substances are the regoliths of planets (that is, the outer most

part of the planetary crust) and .,-I i. ,1 ,!--ical objects such as the rings of planets.

The regolith on earth for example ranges from fine dry sand to marshy and lumpy

clay. Industrially, most agricultural and pharmaceutical products are in granular

form in some stage of their production and transport. In several studies [1, 2], it

has been estimated that !i' of the potential capacity of industrial plants is wasted

due to difficulties in handling and transporting granular materials. These materials

have been widely studied in the engineering community for a long time [3, 4] and

are of active interest even todwi as any improvement in the understanding of the

dynamics of these systems translates into cost reduction in these industries.

Granular materials are studied in different regimes. Some of the interesting

phenomena exhibited by these systems are mediated by the interstitial fluid present

in them, either through mediating cohesion between grains or through a Stokesian

coupling of the grains to their flow. These systems are called wet granular media.

Granular systems in which the interstitial fluid does not p1 li an important role

in the phenomenology of the material are called dry granular media. The latter is

the class of systems of interest here. They are interesting from the point of view

of a theoretical physicist for a number of reasons. Dry granular materials exhibit

a wide v ,i i I ji of phenomena. A pile of sand is like a solid in the sense that it can

withstand application of normal stress (i.e., if you pour sand and let it come to









rest, it sits in a heap, bearing its own weight). But it is unlike a solid in that its

stress response is highly inhomogeneous with a few particles carrying the bulk of

the load [5]. When activated, it flows like a fluid, for example, in an hour glass or a

grain hopper. But the flow is characterized by different phenomena than in the case

of a normal fluid, such as j -,,,,ii,'.- novel instabilities and pattern formation [6, 7].

Further, model systems with simple prescriptions for inter-grain interactions exhibit

all of the phenomenology described above. Inelastic hard spheres or dissipative

Hertzian contact forces together with simple realizations of tangential friction

constitute very accurate models for capturing the physics of this system [11]. Also,

the numerical tool of Molecular Dynamics (M!1)) simulation can be brought to bear

on this system to supplement and elaborate experimental observations, and to

verify predictions and stimulate the formulation of theoretical analysis (for example

see [12, 13] for MD studies of various aspects of the physics of this system). Hence,

the rich phenomenology associated with this class of systems can be studied in a

theoretically tractable setting.

Theoretical interest in these systems is also motivated by the following

considerations. A granular material can be treated as a prototypical non-equilibrium

system in the following sense. Firstly, notice that most i,,i' r... 16pi models used

to describe granular materials have the constituent grains as their smallest entities.

But, these grains themselves are large particles and hence the thermal energy kBT

(kB being the Boltzmann constant) is very small compared to the gravitational

potential energy mgh of the grains at room temperature and under terrestrial

conditions. So conventional thermodynamics pl ,i,- no role in describing the

phenomena exhibited by granular systems. These are explained based on purely

dynamical considerations. For example, a mixture of two granular materials of

different grain sizes segregates when activated by vibration or rotation [8, 9, 10].

But for the above observation about the irrelevance of the thermodynamic









temperature in the dynamics of this system, the above phenomena would appear

to be a violation of the second law of thermodynamics. Secondly, the spectrum

of theoretical tools that can be fruitfully applied to study granular materials

in various regimes is very wide. For example, the well known phenomena of

compaction of granular materials under tapping can be modelled theoretically by

introducing a pseudo thermodynamics where the role of energy in conventional

thermodynamics is taken by the free volume in the system and the entropy is

now given a configurational interpretation [14, 15]. The broadly applied theory

of self organized criticality, used to explain the ubiquitous occurrence of "1/f

i. .-. in disordered non-equilibrium systems was first formulated in the context of

avalanches in a sand pile at the angle of maximum stability [16]. A granular system

in the jammed state can be described using the theoretical language applicable to

describe glassy dynamics [17, 18]. A sufficiently "fluidized" granular material can

be studied using the tools applicable to normal fluids in non-equilibrium states.

Thus dry granular materials provide the opportunity for the development and

applications of a wide variety of methods used in the study of non-equilibrium

phenomena.

1.2 Granular Fluids

The focus of this work will be on the fluidized regime. In order to better

characterize the regime considered here theoretically, the following points are

clarified.

When does a granular material behave like a fluid? A granular

material can be studied as a fluid when it is activated sufficiently in a certain way.

As stated earlier, the thermodynamic temperature pi'l ,l no role in these systems.

The only velocity that these grains possess comes from activation or induced

flow. If the activation is in such a way that this induced velocity on the scale of

grains fluctuates, then one can define a "granular temp. II ii associated with









this fluctuating velocity of the grain and expect that a statistical description in

terms of a course grained number density field, flow velocity field and temperature

field will be relevant in understanding the dynamics of the system. Hence the

activation must be in a way so as to induce a collisional flow in the medium. Such

an activated granular material is called a 5,i 1im1 ir fluid". Most granular flows of

interest ( for example vibration induced phenomena, gravitationally induced flow

down a bumpy incline, rapid shear induced flows) fall under this regime. Under

these circumstances, the standard tools used in the description of normal fluids can

be applied to study the granular system.

Internal degrees of freedom serve as a sink for the kinetic energy

of grains. Notice that even when the grains are assumed to be frictionless, the

collision between them is inelastic. These grains are macroscopic objects with

many internal degrees of freedom. A collision results in the loss of a fraction of the

kinetic energy of the grains to micro deformations on the surface of the grains and

to the excitation of other internal modes in the grain [19]. The energy lost to these

internal degrees of freedom does not contribute to transport in the fluid. So, in

most theoretical models of a granular fluid the grain is taken to be the microscopic

entity in the system, with the internal degrees of freedom of the grains acting as

a "black box" sink to the kinetic energy of the grains. Therefore, the total energy

of the system is no longer a conserved quantity in the theoretical models and this

serves as a technical complication in the analysis of the dynamics of the system.

But more importantly, the rate at which kinetic energy of the grains is lost to the

internal modes gives rise to an internal time scale to the fluid apart from the time

between collisions and this p1 i' an important role in the physics of these fluids.

A granular fluid exhibits two regimes of fluid like behavior. A well

known phenomenon in steady flows of granular fluids down inclined planes is that,

in such a state, the shear stress in the system goes as the square of the shear rate






5


[20]. This is called Bagnold scaling in the literature. Since the response of the

system under a shear strain is rate dependent, the fluid is said to be theological

or a complex fluid. Granular fluids exhibit theological behavior whenever the

external driving of the fluid is such that it probes the intrinsic time scale in the

fluid, namely the time scale set by the rate of loss of kinetic energy due to the

inelastic collisions between grains mentioned above. This behavior manifests itself

in shear flows and is an important property to fold into the theoretical description

of a granular fluid under shear. But, when the activation of the granular material

is in such a way that the external driving is well removed from this internal time

scale, for example in the case of activation through vibration at the boundary, the

granular fluid behaves like a Newtonian fluid. This latter regime will be the one for

which the results obtained in this work can be applied directly.

1.3 Theoretical Developments in the Study of Granular Fluids

Dry fluidized granular materials have been the focus of extensive study using

theoretical and numerical tools for the past twenty years in the statistical physics

community. A complete survey of avenues explored and results catalogued is

beyond the scope of the considerations at hand. A summary of results is presented

here, restricting attention to a particular context as follows. A one component

granular fluid is considered. Attention is focused on studies contributing to the

understanding of hydrodynamic transport processes in general and those giving

analytic expressions for the various hydrodynamic transport coefficients based on a

microscopic theory in particular. This summary paves the way to place context and

scope on the work presented here as part of this dissertation.

A theoretical model widely used as an idealized representation of a granular

material in its fluidized state is that of N smooth hard spheres that collide

pair-wise inelastically so that the collisions conserve momentum but there is a

fractional loss in the kinetic energy of the pair. The energy loss is characterized by









a single parameter a, the coefficient of restitution, with a = 1 corresponding to the

elastic limit of no energy loss. This is the generalized version of the Hard Sphere

model for normal fluids that has been extensively used in the theoretical study of

equilibrium fluids.

The theoretical development in the context of this model granular fluid

has followed in the same spirit as that of normal fluids a hundred years ago. In

the dilute regime, the dynamics of this granular fluid can be considered to be

governed by a Boltzmann kinetic equation [21, 22]. In this regime the granular

material is referred to as a granular gas. Extensive studies have been carried out

on the kinetic theory of this system [23]. These include, but are by no means

limited to characterization of the isolated homogeneous state associated with this

equation [24] and carrying out a systematic small gradients expansion using the

C'!i 'I'pi ,i-Enskog procedure, thereby determining the hydrodynamic transport

coefficients such as the viscosity and thermal conductivity from the underlying

kinetic theory (for example see [25, 26]). Also the effect of different driving forces

on the nature of the resulting reference steady states [27, 28] has been studied.

Further, numerical tools such as Molecular Dynamics simulations [29] and Direct

Simulation Monte Carlo method [30] for solving the Boltzmann equation have

been used to study states that are far from homogeneity, such as the Uniform

Shear Flow state, which is the prototype shear state for this system that manifests

its theological properties [31, 32]. These numerical tools have also been used to

evaluate the different transport coefficients obtained from kinetic theory. In the

process, potential stumbling blocks for carrying out numerical simulations of

these systems, such as inelastic collapse were identified and characterized [33].

The low density hydrodynamics that results from the above analysis has been

extensively studied analytically and numerically with specific applications to

many experimental scenarios [26, 34, 35]. The instabilities in these equations









have been ain i1v.. 1 Ito fruitfully predict pattern formations that occur under some

experimental conditions [36].

The next systematic step forward in understanding the hydrodynamic

description was taken in the form of trying to establish that the hydrodynamic

modes are indeed present in the spectrum of the Boltzmann collision operator and

that they are the slowest modes. A similar analysis carried out for normal fluids

in terms of the elastic hard sphere Boltzmann collision operator gave a positive

result, establishing that there alv-bi-, exists a length and time scale such that the

hydrodynamic description of the fluid is complete [37]. For the case of granular

fluids, it was established that the hydrodynamic modes are indeed part of the

spectrum of the collision operator [38]. But the issue of time scale separation

between these modes and the faster i11' n..- 'pi' modes was left unresolved due to

the complicated nature of the inelastic hard sphere Boltzmann collision operator.

Further progress in this direction was made possible by the use of kinetic models

for the collision operator that retained the essential features of the true kinetic

equation, but were analytically tractable enough to carry out exact calculations (for

example see [39]).

All of the above analysis is valid only in the limit of arbitrarily small densities.

But, most experimental realizations do not fall into this domain. The first step in

the direction of incorporating density effects in the hydrodynamic transport theory

for a granular fluid was taken in the form of studying a Revised Enskog Theory for

inelastic hard particles. This is a Boltzmann-like kinetic equation that incorporates

density effects phenomenologically in two v--i -. 1) It takes into account the finite

size of the hard particle (which is treated as a point particle in the Boltzmann

theory). 2) The collision frequency is now weighted by the pair correlation function

at contact that amounts to incorporating three particle effects in a mean field

like approximation, which further emphasizes the density effects. This kinetic









equation was analyzed for states close to homogeneity and hydrodynamic transport

coefficients identified using a C'! hni, ii Enskog procedure [40]. In the case of

normal fluids, these transport coefficients are found to be accurate up to relatively

high densities. A similar domain of validity was expected for these coefficients in

granular fluids as well. Further, the hydrodynamic equations thus obtained were

solved for a particular boundary driven scenario and the resulting hydrodynamic

profiles were compared with those obtained directly from experiment and very good

agreement was found [41].

All of the above mentioned theoretical developments have their basis in kinetic

theory and hence have limitations on the domain in density in which they can

be expected to be relevant. In the case of normal fluids, further development of

the theory of transport was stimulated by the application of the exact methods

of non-equilibrium statistical mechanics, namely, linear response and the time

correlation function method. This method yields exact expressions for the

transport coefficients that have no a priori limitations on their domain of validity.

The systematic study of granular fluid transport is at exactly this point. The

general non-equilibrium statistical mechanics formalism is in place [42]. First steps

in its application have been taken in the context of the prototypical transport

process in a fluid, namely diffusion [43, 44]. The work here aims to apply this

method extensively to energy and momentum transport processes in the granular

fluid as elaborated below.

1.4 Objective of this Work

The aim of this work can be stated in the broadest context as obtaining a

hydrodynamic description of a model granular fluid that has its basis unambiguously

tied to the microscopic dynamics of the system at the level of the grains that

constitute the fluid. This is done by using the methods of non-equilibrium

statistical mechanics in general and linear response in particular. A model









system consisting of smooth spherical hard particles is considered and a linear

response analysis is formulated and carried out to give exact expressions for the

hydrodynamic transport coefficients of this fluid. They have the form of Helfand

and Green-Kubo expressions that are time correlation functions over the reference

homogeneous ensemble. These results are compared with the analogous results

for normal fluids and the role pl i, d by the non-conservation of energy in the

transport processes of this system is explicated. Further, an approximate evaluation

of these exact expressions is carried out and compared to known results obtained

from kinetic theory.

For the purposes of clarification, consider a normal fluid that consists of atoms

that interact through a continuous potential. Then, a linear response analysis gives

the exact expression for the shear viscosity of this fluid in the form

1 ft
I = lim dt (HY (t) HY (0)),q (1-1)
too,yvoo VkBT Jo

where Hy, is the volume integrated microscopic momentum flux and ()qg denotes

the equilibrium ensemble average over the canonical ensemble. In other words,

the shear viscosity of a normal fluid is the time integral of the momentum flux -

momentum flux autocorrelation function calculated over the equilibrium ensemble.

This work presents a derivation of the analogous result for a granular fluid for the

shear viscosity and all the other hydrodynamic transport coefficients.

The important consequences of this work can be summarized as follows.

1. This is the first systematic and extensive application of the methods
of non-equilibrium statistical mechanics to granular fluids (except for
the prototype process of diffusion [44] and preliminary considerations of
Green-Kubo formula for the shear viscosity [45]).

2. The transport coefficients whose expressions are obtained here are the same
ones studied using kinetic theory (see [26] and others cited above) and used
in the hydrodynamic equations to explain and interpret experimental results.
But the expressions available in the literature up to this time are limited by









the fact that they are valid only at low or moderate densities. The expressions
obtained here are applicable for all densities and inelasticities.

3. In the process of obtaining the above expressions, notions such as the
Onsager regression hypothesis and the Fluctuation-Dissipation theorem
are revisited and a reinterpretation provided in the context of this inherently
non-equilibrium system.

4. For normal fluids, fruitful insight into the nature of energy and momentum
transport in the fluid were obtained by numerical evaluations using Molecular
Dynamics simulations [46, 47] and approximate analytical evaluations using
extensively developed methods such as mode coupling [48]. This work sets the
stage for a similar exploration into transport processes in granular fluids.

5. Experimental evidence indicates that a hydrodynamic description for the
dynamics of a granular fluid works well in the vibro-fluidized regime in
a considerable region of the parameter space of density and coefficient of
restitution. In the domain that it fails, it is unclear if the hydrodynamic
theory fails or the estimated values for the transport coefficients are no longer
valid. Numerical evaluation of the transport coefficients obtained here can
shed light on this problem, as the expressions are valid for all values of density
and coefficient of restitution.

1.5 Structure of the Presentation
The contents of this presentation are structured as follows.

1. In ('!i Ilter 2, the ingredients necessary to do statistical mechanics for a
granular fluid of N inelastic smooth hard spheres, namely, the generators of
the dynamics, the characteristic reference ensemble and the formulation of
time correlation functions over this ensemble are given.

2. In C'!i Ilter 3, starting from the macroscopic balance equations for the
hydrodynamic variables, using the fluid symmetry and the assumption
that the gradients in the hydrodynamic fields are small, a set of nonlinear
hydrodynamic equations describing a granular fluid are obtained phenomenologically.
Then, these are linearized about the homogeneous state and the linearized
equations are a' i1v. .1 to identify the hydrodynamic modes and the associated
eigenfunctions for this granular fluid. The linear equations obtained here are
parameterized by unknown coefficients such as the pressure and viscosity.
Thus, this serves as an identification of the precise targets of the microscopic
analysis that follows.

3. In C'!i ilter 4, the problem of linear response and its use in identifying the
hydrodynamic description of the fluid is formulated and solved to give a
formal expression for the hydrodynamic transport matrix as a matrix of time









correlation functions over the homogeneous reference state. These are the
primary results of this work.

4. In C'!h Ilpter 5, the details of this transport matrix are unfolded and the various
quantities that enter the hydrodynamic equations are identified explicitly.
These include expressions for the cooling rate, hydrostatic pressure, the shear
and bulk viscosities, the thermal conductivity and the p coefficient. Detailed
comments on the technical and physical content of these expressions are made.

5. In C'!i lpter 6, the formal aspects of a kinetic theory for inelastic hard sphere
time correlation functions are developed. Then, this is used to carry out
an approximate evaluation of some of the transport coefficients using an
Enskog-like approximation. The results thus obtained are compared to those
that exist in the literature.

6. C'!i lpter 7 is devoted to a discussion of the results obtained in this work and
the outlook for the future directions to be explored.















CHAPTER 2
STATISTICAL MECHANICS OF A GRANULAR FLUID


The focus of this chapter of the presentation is the setting up of the statistical

mechanics of a granular fluid. Statistical mechanics is the frame work that allows

the extraction of the macroscopic observables of a system as statistical averages

over the associated set of microscopic states that characterize the system. In

particular, non-equilibrium statistical mechanics is a many body tool that allows

the identification of the microscopic basis of transport phenomena in a system.

Also, as will be seen in the rest of this work, time correlation functions p1 i- the

same role in transport phenomena as ensemble averages do in thermodynamics.

These time correlation functions for a granular fluid are defined and characterized

in this chapter.

The layout of this chapter is as follows. The primary ingredient in the

microscopic prescription of the system are the interactions between its constituent

particles. This specification allows the calculation of the N particle trajectory for

a given initial condition that specifies the value of the position and velocities of

all the grains. Some of the models for grain-grain interaction are first discussed.

Next, the dynamics of the system is characterized in the case when the initial state

is a macrostate by identifying the generators associated with the trajectories and

phase space distributions. Then, the characteristic ensemble associated with a

homogeneous isolated granular fluid is identified and characterized. Further, the

essential machinery for studying perturbations and response in non-equilibrium

statistical mechanics, namely time correlation functions, are characterized.









Finally, some comments are made on the nature of fluctuation and response in

this inherently non-equilibrium system by considering some illustrative examples.

2.1 Microscopic Models for Granular Fluids

Most theoretical models for granular fluids consist of spherical particles that

interact upon contact, so as to lose a fraction of their kinetic energy as a result

of the interaction. In the present work, all particles are taken to be smooth (i.e.,

no tangential friction or rolling) and spherical. Then, one such realization for the

inter-grain interaction is the dissipative soft sphere model that gives the force

between a pair of particles i and j as


Fi (gij, qij) = f (dij) (kdijqij 7 (gij qj)Qj) (2-1)

where qi is the relative coordinate qi qj gi = vi vy is the relative velocity of

the two particles, qij is the unit normal vector and diy is the magnitude of normal

compression defined through

dij qij (2-2)

a being the diameter of the undeformed particles and k and 7 being determined by

the material properties of the particles. Notice that the force F consists of a spring

like conservative part parameterized by f and k, and a drag like dissipative part

parameterized by a friction constant 7. When f is chosen to be independent of dij,

the conservative part of the above interaction is precisely a linear spring of spring

constant k. Typically f is chosen to be of the form


f (d=) O(-(a- q) d (2 3)


which turns out to be the correct choice for the spherical geometry of the grains

[49], and this becomes the Hertzian contact force model for smooth spheres or

disks. The N body trajectory traced by this system of particles can be obtained









by using these force rules together with the additional assumption of pairwise

additivity of these forces.

A simpler model more amenable to theoretical many body analysis can be

obtained from the soft sphere models above in the limit that the springs governing

the contact force become infinitely stiff while the collision time for the event goes

to zero [49]. In this limit, instantaneous momentum transfer occurs and the model

becomes one of inelastic hard particles. In this case, the relative velocity after the

collision is related to its pre-collision value through a collision rule of the form


gj = (1 + a (g) (a gi) a. (2-4)

where the parameter a is called the coefficient of restitution and characterizes

the energy loss during the collision. Notice that the coefficient of restitution is

in general a function of the impact velocity. This can be understood from the

fact that the processes that lead to dissipation in these interactions (for example

micro-deformation on the surface of the grain) have a characteristic threshold

energy associated with them and hence cannot occur when particles collide

arbitrarily slowly. A reasonable model system would be one in which the coefficient

a is a constant independent of the impact velocity up to some threshold value

go, below which it decreases monotonically to one, which is the elastic limit [19].

Hence, for a sufficiently activated fluid the collisions do not sample the domain

of the impact velocity dependence of a and it may be treated as a constant

parameter. This simplified inelastic hard sphere model will be the inter grain

interaction considered in the rest of this presentation. The rest of the chapter

focuses on characterizing the N body trajectories that result from this interaction

and the statistical mechanics associated with them.









2.2 Generators of Dynamics for Inelastic Hard Spheres

Consider a system of N mono disperse smooth hard spheres of mass m

and diameter a. The system is assumed to have periodic boundary conditions,

that mimic an unbounded infinite system. Also, the system is initially in an

activated state with some finite energy E. A complete specification of the

initial state of the system involves knowing a point in 6N-dimensional phase

space F {qi, vi; i = 1,... N}, that gives the positions and velocities of

all the particles in the system. The state of the system at a later time t is

completely characterized by the positions and velocities of all particles at that

time Ft = {ql(t),... qN(t), VI(t),... VN(t)} The dynamics consists of free

streaming (straight line motion along the direction of the velocity) until contact

and at contact, binary collisions that leave the center of mass velocity of the pair

unchanged but instantaneously change the relative velocity gj = vi vj of the pair

at contact to its post collision value g'j given by a collision rule


g = g- (1 + a) ( g) (2-5)

Here & is a unit vector directed from the center of particle j to the center of

particle i through the point of contact. The parameter a (the coefficient of normal

restitution) is chosen a priori in the range 0 < < < 1 and remains fixed for a given

system. As noted above, the value a = 1 corresponds to elastic, energy conserving

collisions, while a < 1 describes an inelastic collision with an corresponding energy

loss for the pair given by

E, -( -a2) 2. (2-6)


The center of mass velocity (vi + vj) /2 is unchanged so that the total mass

and momentum of the pairs are conserved for all values of a. Subsequent to

the change in relative velocity for the pair i,j the free streaming of all particles









continues until another pair is at contact, and the corresponding instantaneous

change in their relative velocities is performed. The sequence of free streaming

and binary collisions determines a unique trajectory in phase space, Ft, for given

initial conditions. The collision rule is invertible so the trajectory can be reversed,

although with the inverted collision rule ( i. -I I i I 'g" collisions).

The statistical mechanics for this system [42] is comprised of the dynamics

just described, a macrostate specified in terms of a probability density p(F), and a

set of observables (measurables) denoted by {A(F)}. The expectation value for an

observable at time t > 0 for a state p(F) given at t = 0 is defined by


(A(t); 0) J dFp(P)A(FP), -- {qi(t),..., qN(t), vi(t),... N(t)} (2-7)

For theoretical analysis the dynamics described above can be represented in terms

of a generator L defined by


(A(t); 0)- dFp(P)etLA(P). (2-8)

Such a generator for the dynamics is identified in Appendix A, with only the

results quoted here. There are two components to the generator L, corresponding

to the two steps of free streaming and velocity changes at contact,
N 1 N N
L v- Vq, + iT(i ) (2-9)
i= 1 i= 1 ji

where the binary collision operator is given by


T(i, j) = 0(-gij, q ,)|gg qj 16(q oa)(b,- 1). (2-10)

Here qij is the relative position vector of the two particles, is the Heaviside step

function, and bij is a substitution operator


(2-11)


bijA(gij) = A(', .gj) = A(g'j),









which changes the relative velocity gij into its scattered value g'j, given by Eq.

(2-5). The theta function and delta function in (2-10) assure that a collision takes

place, i.e. the pair is at contact and directed toward each other.

The dynamics can be transferred from the observable A(F) to the state p(F)

by defining an adjoint generator L

dF p(F)etLA(F) dF (e-tLp(F)) A(F). (2 12)

The form generated by L is referred to as Liouville dynamics. Implicit in the

discussion above for the direct dynamics of A(Ft) for hard particles is the

restriction of the phase space to non-overlapping configurations. This is assured

when the generator L is used in the left side of (2-12) since all acceptable

probability densities p(F) must exclude the domain of any pair overlapping.

However, the right side of (2-12) does not have that restriction on the domain of

integration and consequently the generator for Liouville dynamics is not the same

as that for observables (as in the case of continuous potentials). Instead, direct

analysis of (2-12) leads to the result (see Appendix A)
N N N
vi qi-(i,), (2-13)
i= i=1 j(i

with the new binary collision operator


T(i, j) = 6(qij a) gij .ij |(O(gij q ij)a -2b (-g, ij qij)). (2-14)

Here bN is the inverse of the operator bij in (2 11)

1+a
b7lgi = gS- (a gij) -. (2-15)

In summary, the dynamics of phase functions is given by


(216)


(9t L) A(F, t) = 0,









and the Liouville equation associated with distribution functions is

(a + L) p(, t) 0. (2-17)

As an aside, note that the form of the generator L and corresponding binary
collision operator T(i,j) does not depend on the details of the collision rule given
by the operator bij, and therefore applies more generally to a class of hard collisions
[51]. In particular, it is formally the same for both elastic and inelastic collisions.
In contrast, the generator for Liouville dynamics is obtained by a change of
variables that introduces the Jacobian of the transformation between the variables

gij and 71 Hence it depends explicitly on the restitution coefficient a.
Note that from the Liouville Equation in (2-17), a set of equations analogous
to the BBGKY hierarchy can be obtained that would characterize the dynamics of
the reduced distribution functions in the form

(at + )f(1) (qi, pl, ...qi, p, t) dqi+ldpl+lT (k, + l) f (+) (qi, Pl,...-q+l, P+l, t)
k= 1
(2-18)

where the reduced distribution function is defined as

(l)(qp, ...qpt)- NN -)..(N -1) fdqi+ldp+l...dqNdPNp (, t) (2-19)

and L is the same Liouville operator as earlier, but now for a system of I particles.
In particular, the first equation of the above hierarchy is

(a + v V7q) f(1) (q, pi, t) dq2dp2T (1, 2) f (2)(qi, P, q2, P2, t) (2-20)

In this form it is easy to see that the connection to kinetic theory of a granular
fluid is to be made by exploring possible functional relationships of the two particle
distribution f(2) to the one particle distribution f(). If some such functional
relationship is identified or postulated, the above equation becomes a closed
equation for the dynamics of the one particle distribution function and hence









becomes a kinetic equation associated with the granular fluid at low densities. Also,

the BBGKY hierarchy is useful to reduce some N particle expressions to two and

three particle expressions exactly, rendering them more tractable to approximations

and evaluations. These ideas are elaborated further in subsequent chapters.

This completes the characterization of the dynamics of phase functions and

distribution functions. A pause is warranted at this point, to note a few things

about the dynamics of the system as formulated above. First of all it is observed

that the binary collisions used here to describe the evolution of the system is at the

trajectory level and is distinct from the "uncorrelated binary collision assumption"

that goes into a kinetic theory of such a system. It is the analogue of pair wise

additive forces in the case of particles that interact through continuous potentials

and hence does not imply the neglect of correlations of any kind.

Next, there are two points to be noted about the generator of dynamics

involving binary collisions. Suppose the initial macrostate p considered above is

characterized by some finite average energy E, then it is alv--, possible that it

contains F points which involve more than two particles at contact and hence the

generator of trajectories is ill defined on such configurations. This is a problem

with elastic hard spheres as well. But the resolution lies in the fact that these

states have zero measure in the space of all such activated states for systems with

large number N of particles. Hence it is valid to neglect trajectories originating

from such initial F points when calculating the macroscopic value of an observable

A as in Eq.(2-12) above. That is precisely what is done implicitly when use is

made of the hard sphere generators of the form Eq.(2-9). The second problem is

one that arises dynamically and is exclusively associated with the dissipative nature

of the collisions for these systems. As stated earlier, for sufficiently activated (i.e.,

finite initial temperature) systems, configurations with three or more particles in

contact have zero measure. For a system of elastic hard spheres, this is sufficient









to guarantee that all trajectories involving three particle interactions will also have

zero measure. But, for inelastic hard spheres, there is an additional dynamical

effect called "( !! '1-" [33]. It is possible for a group of particles to undergo

infinitely many binary collisions among themselves in a finite time, so as to loose

all their kinetic energy and come to rest. When such collapse happens, then

there exists a possibility of a three body interaction occurring subsequently. The

statistical weight associated with such events, that is, completion of collapse

that leaves two or more of the particles involved at relative rest and in contact,

is unknown. For the purposes at hand, it is assumed that such events have zero

weight in the sense that a collapsing pair is broken up before the completion of the

collapse and that binary collisions alone are sufficient to generate a well defined

trajectory for all later times and this issue will not be considered further in this

work.

2.3 Isolated Homogeneous System

In the previous section, the N body trajectory associated with this system of

inelastic hard spheres was characterized through its generator and the language

of general macrostate dynamics was defined. The next step in setting up the

statistical mechanics is to identify the "prototype" ensemble or macrostate p that

should be studied and to characterize this state. In order to do this, consider

an isolated homogeneous system. First, observe that this system is inherently

non-equilibrium. This can be seen by considering the phase function associated

with the total energy E = i 1mv of the system. The dynamical equation

governing the time evolution of its ensemble average is


a dp (F) a ( ()
at at
= m'n/drp(F}Y Y 6(qij-a}(l-a2)
i j4i
xO (qij gij) (gij qij)3, (2 21)









where the right hand side is manifestly negative. Define a granular temperature

through the equation

T(t) mt v(t) (2-22)
3 Ni= 2
Using the equation above, the temperature is found to be monotonically decreasing
with

a~ InT(t) -((t), (2-23)

where ((t) > 0 is the "cooling rate due to inelastic collisions given by

mN [
((t) = (1 ) 12T(t) dF( 12 3(g 12 2)(q q a)p(F,t). (2-24)

This shows that there is no i''1. .II to equilibrium" for a granular fluid since

there is no such stationary equilibrium state. However there exists evidence

on theoretical (at the level of kinetic theory, for an illustration in the context

of a kinetic model see [52]) and numerical grounds [53] that a wide class of

initial homogeneous states rapidly approach a universal state that is spatially

homogeneous (translationally invariant) and all of its time dependence occurs

through the average speed T(t). This is known as the Homogeneous Cooling

Solution (HCS). The equation governing its dynamics can be obtained by

eliminating the time derivative in the Liouville equation Eq.(2-17) using the

time evolution equation of the temperature Eq.(2-23) above to give

L (t) Ph (, T (t)) 0 (2-25)

with the definition
1 OX -
L(t) X= --(h (t) T (t) + LX (2-26)
2 OT (t)
Since the system at hand is hard spheres, the only energy scale in the problem

is the kinetic energy of the particles. Hence, the only way this temperature

dependence can occur is through a scaling of the velocities. This allows the









homogeneous cooling state to be written as a scaling state in the form


Ph (T (t)) ( t,. (t))-3Np, 3N*() V, (t) V2Th(t (2-27)

where ', (t) is the thermal velocity and is a microscopic length scale (for example

the mean free path) chosen to non-dimensionalize the distances in the problem.

First of all, using the scaling form of the HCS in the defining equation for the

cooling rate (2-24) above gives directly


h (tI) (2-28)

where (* is now a dimensionless constant that depends on the parameters of the

model and the reduced density of the homogeneous fluid. Next, using this result in

the temperature equation (2-23) above, gives
t + (0) -2 2m)2
Th (t) Th(0) ( f+ (0h) 22> (2-29)
%h} (A2 t2(

Also given is the limiting behavior at long times, showing that the temperature

becomes independent of the initial conditions. This form is known as the Haff's law

for a freely cooling granular fluid [54] and is the signature of a HCS that is readily

recognized in numerical simulations. Also, with this scaling form the L operator

defined above now takes the form

-1 N
(t)X (h() Vv, ((v, u) X) + LX (2-30)
i=
This equation must be solved self-consistently with (2-24) for (h (t) = (h (t ph)

which is a linear functional of ph. It is easily seen by direct calculation that none

of the equilibrium ensembles for normal fluids are solutions to this equation, even

with a generalization to the scaling form (2-25).

One immediate consequence of the scaling nature of the HCS ensemble

is described below. Let f(P) be an arbitrary differentiable function of the









momentum. By momentum conservation

0 J dFp (t) Lf (P) J dF (Lp, (t)) f (P)


S(/) dF Vv, ((v u) Ph (t)) f(P). (2-31)
i 1
Integration by parts then gives finally

SdFph (t) (P mNu) Vpf(P) 0. (2-32)

Since f(P) is arbitrary this implies that the HCS distribution is sharp with respect
to the total momentum
(P mNu (7qij vi-u
h (t) (t) ( (t) t) (233)

In summary, the characteristic ensemble of an isolated homogeneous granular
fluid is the HCS ensemble. It is a time dependent non-equilibrium ensemble that
has its entire time dependence through the cooling temperature. The characteristic
time scale associated with it is the cooling rate (h. Also, this ensemble is sharp with
respect to the total momentum, i.e., each trajectory in this ensemble originates
from initial F points that all have the same momentum P. This completes the
characterization of the homogeneous reference state of this system. This HCS
is going to pl i, the same role in the statistical mechanics of the granular fluid
that the equilibrium Gibbs state does for a normal fluid, as will be seen in the
subsequent chapters.
2.4 Stationary Representation and Time Correlation Functions
In this section, some technical simplifications that are a consequence of the
choice of microscopic collision model made above are unfolded. Since the HCS state
of this hard sphere system is a scaling state, a simple change of variables can be
made in order to absorb the homogeneous cooling dynamics in the definition of the









new time scale in such a way that the homogeneous cooling state is the stationary

state of this dynamics. To see this, define a set of dimensionless variables


q V u (t)
qi -, V ds = dt, (2-34)

And, for any distribution p, define an associated dimensionless form as


p* ({q*, V*}, s)= (' (t))3Np(, t). (2-35)

In terms of these variables the dimensionless Liouville equation becomes


8sp* + p* = 0, (2-36)


with the new generator for Liouville dynamics

,* 1 N
i 1

It is readily verified that L* is time independent (see Appendix B). The dimensionless

time scale is a measure of the average number of collisions in a time t and is

obtained using (2-29) and (2-34) to be

2 1, 0
s= In (t + (-)t ) (t) e- (0). (2-38)


This dimensionless form for the Liouville equation, (2-36), supports the HCS

as a stationary solution

hp = 0. (2-39)

Consequently, in the following it is referred to here as the stationary representation

of the Liouville equation. This representation essentially involves partitioning

the dynamics of any distribution into two parts, one due to the cooling Th (t)

and the other is everything else. The homogeneous cooling of the temperature is

generated by the scaling operator Sp* -= A >i V* (Vhp*). Since, in the









HCS this is the only dynamics, it is the stationary state of the dynamics in this

representation. The usefulness of this stationary representation lies in the definition

of time correlation functions over the HCS ensemble, which is considered below.

For observables A and B and a macrostate p, the two-time correlation function
is of the form

CAB(t) (A(t)B; 0) = dFp(r)6A(rF)B(F). (2-40)

Rewriting the above expression in terms of the generators identified earlier gives,


CAB(t) = Jdp(C) (etLA(C)) B(F), (2-41)

or equivalently, using the adjoint representation of the dynamics


CAB(t) = d A(P)e-L (p(F)B(f)). (2-42)

More generally, correlation functions at three times can be defined but the

representation in terms of generators can be ambiguous. For example, it is easily

seen that L(AB) / (LA)B + A(LB) and consequently

A(Ft)B(Ft) = eL"(AB) / (eLtA) (eLtB) (2-43)

In the case of elastic systems, when time correlation functions over the equilibrium

state are considered, time translation invariance and the stationarity of the Gibbs

state are used to map the three time problem onto one of calculating a two time
correlation function as

(A(t)B (t') ; 0)e, (A(t t')B (0) ; t')e, (A(t t')B (0); 0)e, (2-44)

It turns out that the stationary representation for the dynamics described above

allows the same manipulations to be carried out in the case of time correlation
functions over the HCS ensemble. The results are stated here and the details of

obtaining these results are given in Appendix B.









First consider two-time correlation functions over the HCS. These can be
written as

(A(t)B)h-s J dfpr (, 0)Ar(F)B = dFA()e -tL (ph()B(P))

B (v (0)) /dF*A({q*, v(t)v })e-"S (p*(F*)B*(F*))

S B (v (0)) CA (v (t)) d*A*({q~, v })

xe-_8 (p*(F*)B*(F*)) (2-45)

In the last equality a change of variables to the dimensionless form has been made

and CA,B are the appropriate functions of the scaling variables that are required

to make the observables A and B dimensionless. Aside from a possible explicit

dependence on time through v(t), depending on the specific choice of function

A, the time dependence is now given by the Liouville dynamics in the stationary

representation. Here, s is understood to be s (t, 0). For homogeneous functions of

velocity as will be considered in the rest of the presentation,


CB (V (0))~ Vb (0) ; CA (V (t)) V' (t) (2-46)

for some a and b and hence

CB (v (0)) CA (v (t)) ~ eC-a(*sV+b (0) (2-47)

which amounts to an additional simple time dependence associated with the

cooling. Also, there exists an equivalent representation for the stationary state

correlation function given in Eq.(2-45) above as

(A(t)B)h = CB (v (0)) cA (v (t)) dF* (es*A*(F*)) p*(F*)B*(F*) (2-48)

where
N
*= L*- + ( Vvt (2-49)
i=i









Further, three time correlation functions can be written as


(A (t) B ('); 0) C (v (t')) CA (v (t)) / dr* (c A*(r*)) p;(r*)B*(F*) (2-50)

where the s is now understood to be s (t, t') The derivation of these results is given

in Appendix B. It can be inferred from the results above that it is sufficient to

consider a class of dimensionless correlation functions of the form




CAB(s) (A*(s)B*(0)), J drPf*p(P*) {e"*A* (F*)}B*(F*) (2-51)

I dF*A*(F*)e-* (pP(F*)B*(P*)). (2-52)


Finally, a special property of hard sphere distributions can be used to to

extract the "backward dyir iir, generator for phase functions. It is shown in

Appendix A that for any hard sphere distribution p (i.e., one with an excluded

volume factor multiplying it), there exists an operator L_ such that, for any phase

function B,

L(pB) = (Lp)B + p(L_B), (2-53)

where the new operator L_ is for the form
N N N
L_ = vi V, T_(i,j) (2-54)
i= 1 i 1 ji

T_(i,j) 6(q, a)O(gj, q- ,) |g, qj (b1 1) (2 55)

In the dimensionless variables Eq.(2-53) becomes


Z (p*B*) = (Zp*)B* + p*(C B*), (2-56)

where
1 N
C = L* + 2 vZY v Y;L L_. (2-57)
i=1









In particular, when the distribution is the HCS p*, the first term in Eq.(2-56)

vanishes. Using this fact in the stationary representation for time correlation

functions gives


(A*(s)B*(O)) d A(*)e (p*(*)B*(*))

dP*A*(F*)p (F*)e-s B*(P*)

S (A*(O)B*(-s))c, (2-58)


This representation will prove useful when comparison with results obtained for

elastic hard spheres is sought in the subsequent sections.

In summary, in this section, a new representation for the dynamics of the

system has been identified such that the reference homogeneous ensemble, namely

the HCS is stationary in this representation. Further, this has been extended to

time correlation functions over the HCS so that they become stationary state

time correlation functions. This is a technical simplification that allows a time

dependent non-equilibrium problem to be mapped onto a stationary state problem.

This mapping allows for several formal manipulations of the time correlation

functions that would otherwise be complicated and also facilitates comparison with

known results for normal fluids. This concludes the setting up of the machinery

required to do non-equilibrium statistical mechanics for a granular fluid.

2.5 Fluctuation and Response in a Granular Fluid: Some Observations

A central idea in the theory of of non-equilibrium statistical mechanics

is the Onsager regression hypothesis [55] and its manifestation in the form of

fluctuation dissipation relationships between time correlation functions and

response functions. There has been considerable attention given to such fluctuation

dissipation relations in the context of granular fluids in the recent literature

[56, 57, 58, 59, 60]. But the conventional results associated with the fluctuation

dissipation theorem are inherently tied to the special properties associated with









the reference state, namely the equilibrium Gibbs state. As established in the

discussion earlier, granular fluids are inherently non-equilibrium. Even when there

is a driving force that gives rise to a steady state, this state is very different from

the Gibbs state and hence the fluctuation dissipation relationships take different

forms. These considerations are elaborated in what follows.

First consider the Onsager regression hypothesis. Briefly stated, this can be

formulated as follows. Suppose a small initial macroscopic perturbation of the

reference equilibrium state is considered, then the hypothesis states that regression

of this perturbation must be the same as that of a spontaneous fluctuation in

the system and therefore, the response of the system to this perturbation is

characterized by a time correlation function over the unperturbed reference state.

Secondly, the response function characterizing the linear response of the system

to an external field is found to be related simply to a time-correlation function.

This fact has been used to derive various fluctuation dissipation relations between

equilibrium time correlation functions and response functions.

In order to see how the above statements translate to a context where the

reference state is not the equilibrium Gibbs state, consider a granular fluid in

a non-equilibrium homogeneous stable steady state po that is the solution to a

Liouville equation of the form

Lpo = 0 (2-59)

where the operator L is now considered to include the boundary condition or the

external driving force that gives the steady state for the dissipative granular fluid.

The particular details of such driving are not important for the consideration

at hand and hence are not specified explicitly here. In order to understand the

response of the system to external perturbations, suppose at time t = 0 an initial

perturbation is set up through two sources, 1) an initial preparation of a given

weakly inhomogeneous density field and 2) a conservative one body external force








that couples into the microscopic density function, for example a gravitational
force.
The initial preparation mentioned above gives a macrostate of the form

p (F, 0) po (F) + dr J dr'g (r r') 6y (r') 6n (r, 0)] (2-60)

where y (r) is an as yet unspecified phase function and the 6 denotes its deviation
from its average value in the po state which guarantees that

SdFp(F, 0) =-1 (2-61)

i.e., the initial preparation is properly normalized and

gy (r r') dFpo (F) 6y (r') n (r) (2-62)

which ensures that
SdFn (r") [p (F, 0) po] 6n (r", 0) (2-63)

i.e., the initial preparation indeed has the prescribed number density field.
The external force enters as a correction to the Liouville operator in the form

Lpert L + L1, (2-64)

where
Lip JdrV(r) I{(r) ,p} (2-65)

with n (r) -= 6 (r qj) and {, } being the Poisson bracket

{AB A B A ). (266)
9qi Opi Opi Oqj








The perturbing part of the Liouville operator can be rewritten as

Lip = drV (r) a(r) B -p

J- drF(r). 6 (r qi) (2-67)
j ^ pi
Solving the Liouville equation

( + Lpt)p (F, t) 0, (2-68)

to first order in perturbation in the external force, with the initial condition given
by Eq.(2-60) above, results in

p (F, t) e-Ltp (, 0) + dt'e-L(t-t') (-Lpo (F, t'))

= po (F) + dr J dr'g971 (r r') (e-Lty (r') po (F)) 6n (r, 0)

+ dt'e-L(t-t') (-Lipo (F)) (2-69)

where the stationarity of the po state with respect to the unperturbed Liouville
operator has been used. Now consider the average of the number density in this
state,

6n (r", t) = dr (r") [p (F, t) po ()]



07
= dr J dr'g- (r r') C (r' r", t) 6n (r, 0)

+ dt' drF (r) R (r- r", t t') (2-70)

where
C (r r', t) = dF (r') (e-Ety (r) po (F) (2 71)
C (r- r',7









is the correlation function that characterizes the relaxation of the system due to an

initial perturbation and


R (r r', t) = dn (r') e (6 (r qi) (2-72)


is the response function that characterizes the response of the system to an

external force. This is the most general form that can be obtained for a general

homogeneous stationary state.

Notice that the first part of the Onsager regression hypothesis comes out

naturally from the linear response procedure if restated as the relaxation from

an initial perturbation relaxes in the same way as a spontaneous fluctuation in

the reference state, for the response to such a perturbation is given by a time

correlation function in the reference state. But, the relationship between correlation

functions and response function is not so straight forward. In order to see this,

first consider the above two expressions when the reference state is the equilibrium

state. First notice that if the phase function y is chosen to be n then using the

conservation law for the number density, then, g-1 just becomes the inverse

of static structure factor S in the reference state po (see Appendix H) and the

response in the density takes the form


6n (r", t) = dr dr'S- (r -r') C (r' -r", t) 6n (r, 0)

+ dt' drF (r) R (r r", t t') (2-73)

Or, equivalently, this can be given a Fourier representation as

sn (k, t)= -1 (k) C(k, t) 6n (k, 0) + dt'F (k) R (k, t t') (2-74)


Further, when po = peq then,

-peq q (), (2-75)
opi m









and one can identify the second term in the response function as


-3 6 (r qi) Peq (F) -= (r, t), (2-76)


where j, (r, t) is the number flux in the continuity equation


aOt + V j = 0. (2-77)


Hence the fluctuation dissipation relationship is recovered in the familiar form


tC (r r',t) = Vr, R (r r',t) (2-78)


The point of the above demonstration is that the familiar form of the

fluctuation dissipation relationship hinges on the fact that the Gibbs state is of

the form e-3H where H is the generator of the dynamics of the system. And

hence this particular form of the relationship does not in general apply for other

stationary states of a system. Further, other forms of the fluctuation dissipation

relationship known to hold for equilibrium systems, like that relating the diffusion

coefficient to the mobility coefficient are known to take different forms for granular

fluids [61]. Hence, even though a large body of the methods developed for the

study of normal fluids can be extended and fruitfully applied to granular fluids,

results obtained from these tools cannot be borrowed and used without critical

examination of the derivation associated with them.

In what follows, attention is restricted to the use of these tools established

above for the specific problem of deriving a closed hydrodynamic description for

a granular fluid and hence obtaining expressions for the transport coefficients

associated with such a description in terms of time correlation functions. These

expressions are exact and still have the N body problem in them, but at the same

time are amenable to controlled analytic approximations and specific numerical

evaluations.















CHAPTER 3
PHENOMENOLOGICAL HYDRODYNAMICS


In the preceding chapter, the tools necessary to use non-equilibrium statistical

mechanics in the study of granular fluids were established. The role of statistical

mechanics is to provide a bridge that links the macroscopic phenomena in a system

to its microscopic roots. The macroscopic description that is the objective of this

analysis is a hydrodynamic description of a granular fluid. In this chapter, such

a hydrodynamic description is obtained on phenomenological grounds in order to

identify the target quantities for the microscopic analysis that follows in subsequent

chapters.

Hydrodynamics in the most general context can be defined as a closed

description of the dynamics of a system in terms of its -! .v- vo ii ,i [62].

It is typically applicable on length scales long compared to the characteristic

microscopic length and time scales long compared to the characteristic microscopic

time (which in the case of fluids correspond respectively to the mean free path

and the mean time between collisions). On this scale, the slow variables are

conventionally the conserved quantities and the broken symmetry variables. This

can be seen by noting that the dynamical equation associated with a conserved

variable x is a "continuity equation" of the form

8x (r, t)
( + V f (r,t) 0, (3-1)
at

i.e., the time derivative is proportional to a gradient. Assuming that the system

approaches an equilibrium homogeneous state, it follows that the time scale

associated with the relaxation of this variable diverges as the system approaches









homogeneity and hence the dynamics persists after times long compared to the

mean free time, which characterizes the decay time of the other variables in the

system. A phenomenological route to obtain a hydrodynamic description of a

system is 1) identify the conserved quantities of the dynamics, 2) write down the

conservation laws for these variables, 3) propose a closure criterion that allows

the unknown fluxes in the above conservation laws to be expressed in terms of the

conserved densities, called the constitutive relations for the system. For example,

for a normal fluid, the locally conserved quantities are the number density, the flow

velocity and the energy density or the temperature and the constitutive relations

are the Newton's viscosity law and Fourier's law for heat transport. This gives the

Navier-Stokes order hydrodynamic equations for a normal fluid.

An analogous phenomenological derivation of the hydrodynamic equations

associated with a granular fluid is given in this chapter. The context of hydrodynamics

for a granular fluid has to be revisited carefully because this is an inherently

non-equilibrium system with no notion of approach to equilibrium associated with

it. As will be seen in the following, the -! v.--" variables in this system are not all

conserved quantities. Hence, care must be exercised to identify the precise sense

in which these hydrodynamic equations are complete in the long time limit. The

route taken to address these problems is the following. First, a set of hydrodynamic

equations are derived with the assumptions that go into the derivation stated

clearly along the way. Once the resulting description has been written down, it is

analyzed to give the context and domain of validity for the assumptions used to

obtain the description itself.

3.1 Nonlinear Navier-Stokes Hydrodynamic Equations

The macroscopic variables with respect to which a closed description for the

dynamics of a granular fluid is sought are a prior chosen to be the number density

n (r, t), the momentum density g (r, t) and the energy density e (r, t). Notice that









the first two fields are locally conserved quantities, but the energy density is not.

The starting point for deriving such a description are the macroscopic balance

equations associated with these fields given by

On(r, t) g(r,t)
+ Vr o (3-2)
at m
agi(r,t)
t +Vrhj(r,t) 0 (3-3)
Be(r, t)
e(r + V7r s(r,t) = w(r,t) (3-4)
at

where hij is the momentum flux, s is the energy flux and w (r, t) is the function

characterizing the local loss in energy due to the dissipative nature of the

collision between the granular particles. From a purely macroscopic point of

view, these equations are taken to define the fluxes and the source term. Hence

the specification of the fluxes is arbitrary up to terms of zero gradient and the

separation into source and flux in the energy equation is not unique. But if these

equations are viewed within the context of statistical mechanics as ensemble

averages of the corresponding microscopic conservation laws given in Table C-l in

Appendix C, then the fluxes and the source are unambiguously defined. This will

be the view point taken here.

As for normal fluids it is usual to replace the momentum density by the flow

velocity U (r, t) defined through the relation


g (r,t) mn (r,t) U (r,t). (3-5)

If a local rest frame is defined for the fluid at each point r through a Galilean

transformation r r U (r, t) t, then, a temperature T (r, t) is defined using the

energy density of the fluid in the local rest frame through the definition

1
e (r, t) -mn (r, t) U2 (r, t) e o (n (r, t) T (r, t)) (3-6)
2









Here eo (n, T) is some specified function of n and T. The two most common

choices are eo (n, T) = 3nT/2, or eo (n, T) = e, (n, T) the thermodynamic

function for the corresponding equilibrium fluid. The former is common in

applications of computer simulations, while the latter is the historical choice in

most formulations of hydrodynamics. For both normal and granular fluids, the

choice made constitutes a 1/. I,.:l/.: of temperature for non-equilibrium states and

has no a priori thermodynamic implications. With these definitions, the above

balance equations can be recast in the form


Dtn + nV U 0, (3-7)

DtUi + (mnn)- jPij = 0, (3-8)

o l(D+()T+ co- IT V -U+P j U + V.q 0, (3-9)
OT On
where Dt = Ot + U V is the material derivative that is the time derivative in

the local rest frame, Pij is the momentum flux in this reference frame, called the

pressure tensor

Pij = hij nUiUj, (3-10)

and q is the corresponding heat flux, identified as


qi si ( + o 2nmU )U PijU,. (3 11)

Further, in the rest of the presentation, the choice eo (r, t) = n (r, t) T (r, t) is

made. This gives the temperature equation in the form


(D + () T + (Pij j U + 7V q) = 0, (3-12)
3n

with the cooling rate defined through the relation

2
S(r, t) T (r, t) (r, t) (313)
3n (r, t)









These equations have the same form as those for a normal fluid, except for the

cooling rate that represents the dissipative nature of the interaction between the

particles of this fluid.

Hydrodynamics is a closed description in terms of the hydrodynamic fields.

But inspection of the microscopic analogues of these fluxes tells us that these local

rest frame fluxes are in general complicated functions. The closure of the above

balance equations with respect to the hydrodynamic fields is made by i-ii:

that the fluxes become normal functionals of the hydrodynamic fields after a short

aging time, i.e., the pressure tensor P takes the form


Pij (r, t) Pi [n (r, t) T (r, t) ,U (r, t) (3-14)


and it depends on space and time only through the hydrodynamic fields. Similar

forms are postulated for the heat flux and the cooling rate as well. This closure

assumption effectively converts the balance equation Eqs.(3-7)-(3-8) into

hydrodynamic equations for the five fields chosen to be the hydrodynamic variables

of interest. This assumption is the phenomenology involved in this derivation of

hydrodynamics.

One can give a physical interpretation for the basis of this assumption as

follows. Consider the granular fluid in an inhomogeneous state. Visualize the

system as being partitioned into cells such that each cell has enough particles so

that multiple collisions can occur in times short compared to the time taken by

a typical particle to traverse the size of the cell, but the size of the cell is small

compared to the whole system. Now, notice that the hydrodynamic variables

here are the course grained versions of precisely those microscopic quantities that

prescribe the collision rule between grains. Hence a statistical average of these

quantities over only the particles within the cell will not change except through

boundary effects that include collisions with particles across the defining walls of









the cell. With this picture, it is easy to see that, at times t such that t is large

enough that several collisions have taken place within the particles of the cell, but

small enough so that only a small number of collisions have occurred across the

walls, the only quantities in each cell that would not have relaxed yet would be

the hydrodynamic variables and any other observable will acquire its space and

time dependence through these fields only. This is the regime of normal dynamics

in which the closure assumption above is a reasonable one and the hydrodynamic

equations are expected to be the relevant dynamical equations of the system.

Further, when the gradients in the system are small, the functional form of the

fluxes can be expanded in powers of the gradients of the hydrodynamic fields. The

Navier-Stokes hydrodynamics entails retaining terms up through second order in

the gradients to give the constitutive relations for the fluxes as

Pi p(n, T)6 I(n, T) + + OU d u 1(nT)6jV. u (3-15)

q- -A(n, T)VT-p(n, T)V (3 16)


S- 0 (n, T) + ((n, T)V U+T(n, T)V2T

+("(n, T)V2n + (1 (VT)2 + (2 (wn)2 + 3 (VT) (Vn)

+4 (ViUj) (ViUj) + (5 (ViU) (VjU) (3 17)

Note that the cooling rate is required to second order in the gradients, while

the pressure tensor and heat flux are required only to first order. The pressure

tensor has the same form as Newton's viscosity law for a normal fluid, while

the expression for the heat flux is a generalization of Fourier's law. These

expressions include the unspecified functions p(n, T) and (o (n, T), as well as

unknown transport coefficients (U(n, T), (T(n, T), ("(n, T) and so on, the shear

viscosity qr(n, T), the bulk viscosity K(n, T) the thermal conductivity A(n, T),

and the new coefficient associated with heat transport in a granular fluid, p(n, T).









All of these must be provided by experiment or the theoretical justification of the

above phenomenology.

This completes the phenomenological identification of a set of hydrodynamic

equations for a granular fluid. The rest of the chapter will focus on the linear

hydrodynamics about a homogeneous state. But, in closing this section, some

remarks are made. Although the Navier-Stokes equations are based on the small

gradient forms for the constitutive equations, it does not mean that they are

limited to systems close to a homogeneous state. They are applicable locally

over domains larger than the mean free path even when the hydrodynamic fields

still vary significantly throughout the system. Consequently, a wide range of

experimental and simulation conditions for granular fluids have been well-described

by the Navier-Stokes equations (for example see [63]). Therefore, getting reliable

estimates of these hydrodynamic transport coefficients provides a tractable

theoretical handle on a large body of experiments done on fluidized granular

materials.

3.2 Linearized Hydrodynamics

In this section, the hydrodynamic equations above are considered in the

context of weak spatial inhomogeneities. As a first step, the homogeneous state

associated with these hydrodynamic equations is characterized. Then, the linear

hydrodynamics about this homogeneous state is derived and comments are made

about the nature of response predicted by these equations and the stability of

the homogeneous state. As a first step, consider the homogeneous limit of the

Eqs.(3-7)-(3-9) above. These are of the form,


aOnh 0, atUh 0, (O + Co (n, Th (t))) Th(t) 0, (3-18)


that is, the homogeneous state has a constant density, a constant flow velocity and

a homogeneous temperature that is cooling with time with a characteristic cooling









rate (o. Consider the cooling equation in particular. Notice that the underlying

fluid is one of hard spheres. This is a system with no characteristic internal energy

scale. So, the only energy scale in the problem is the temperature. This, together

with the fact that the cooling rate is a normal functions of time, leads to the fact

that, on dimensional grounds,


S(o nT(t)) =(( h) T/2 (t) (3-19)

Eq.(3-19) is the macroscopic analogue of Eq.(2-28) in the previous chapter. Hence

the solution to Eq.(3-18) above is indeed the Homogeneous Cooling Solution

considered in the previous chapter in the context of statistical mechanics. This

homogeneous dynamics of the temperature is the same as identified in Eq.(2-29) in

the previous chapter

Th (t) T(0) ( ( (3-20)

Thus the homogeneous cooling state is the solution to the homogeneous hydrodynamic

equations. This is the first distinction from the hydrodynamics of normal fluids in

that the homogeneous reference state that emerges is inherently time dependent.

Next, the equations (3-7) through (3-9) are linearized about this homogeneous

state. Without loss of generality, pick the constant homogeneous flow velocity Uh

above to be zero. For this purpose, introduce dimensionless variables of the form

n nh T Th (t) U (321)
6n* 6= T* = rU* = (3-21)
nhTh (t) I ,(t

The dimensionless space and time scales are the same as those introduced in the

previous chapter through Eq.(2-34),

r* =- ds ) dt. (3-22)


In this form the coefficients in the linearized N ,',i. r-Stokes equations are constants,

independent of space and time. The subsequent analysis is most conveniently done









in terms of a Fourier representation with respect to space


(k, s) J dr*eikr* y*(r*, s) (3-23)

where the set {yI} are chosen to be

y (Sn*, T*, k-* U*, 6 U*, e2 6 (3-24)

Here 81 and e2 are unit vectors orthogonal to each other and to k, defining the

transverse flow field components. The linearized N ,1.-. i-Stokes equations are then

identified as

(63a + /)3 (k, s) 0, (3-25)

where the transport matrix Chyd is found to be block diagonal with a "longitudinal"

part corresponding to a, f = 1, 2, 3, given by

0 0 -1k


-hp* di k -ikV lik* + (4 +n*) k*2
alnnh l_ 2 ] *
(3-26)
The I1 in-., -," components decouple from the longitudinal degrees of freedom in

the above equation and are given by

h + T*k*2 0
Sd(k*) l=2 a, ,= 4, 5 (3-27)
0 + r*k*2

The dimensionless transport coefficients are defined by


h = h, C =(u, T= b n (3-28)

2 2 1 1
A* = A, p* = 2* = K* = PK. (3-29)
dvhnhf dvhTh/ r,,I,, (I mnhj,
This completes the derivation of the linearized N ,. i.. -Stokes equations for small

deviations from the homogeneous state. Notice that the transport coefficients









(1 through (5 have dropped out in the linearized equations. These equations

contain the information about the response of a homogeneous granular fluid to long

wavelength perturbations. The unknown parameters in these equations will be the

target of the microscopic linear response cin iiJ-; that is carried out in subsequent

chapters. In the last section of this chapter, the above equations are analyzed with

the purpose of establishing the notions associated with approach to hydrodynamics

for a granular fluid. Also, the stability of the underlying homogeneous state

scrutinized.

3.3 Hydrodynamic Modes and Stability

The hydrodynamic equations given above were derived from the macroscopic

balance equations for the variables number density, flow velocity and temperature.

As noted earlier, in the case of normal fluids, such a description is expected to be

"complete" on long time scales, for these were locally conserved variables and hence

the time scale for relaxation of long wavelength perturbations in these variables

was divergent. This rationale has to be modified in the context of granular fluids

because the energy density is no longer a locally conserved variable.

For the purpose of understanding the choice of these variables, consider the

linear hydrodynamic equations above. The transport matrix at k = 0 is

0 0 0 0 0
s aIn (h (-* 0 0 0
9nnh 2
Kchyd (0) 0 0 0 0 (3-30)
2

0 0 0 ;h 0
2
0 0 0 0 -

Recall that the homogeneous reference state about which these equations are

linearized is time dependent and cooling. This time dependence was accounted for

by making a nonlinear change of variable in time so that the cooling is incorporated

in this choice of time scale and the homogeneous state is stationary. The /Chyd (0)








identified above is the dynamics associated with homogeneous perturbations
of the reference state. This is a trivial dynamics in the sense that it is just the
cooling of the new homogeneous state as described in the variables in which
the original reference homogeneous state is stationary. Further notice that in
the case of the hard sphere granular fluid considered here, the analogue of the
property Ot oc Vr that characterizes the hydrodynamic variables for normal fluids
is (981 + /Chy (0)) oc Vr, i.e., the hydrodynamic variables here are those whose
characteristic time of approach to this residual dynamics diverges in the long
wavelength limit. It is in this sense that the temperature can be treated on the
same footing as the flow velocity and the number density.
Next, further understanding of the content of the hydrodynamic description
and the fact that the hydrodynamic response of a granular fluid is very different
from that of an elastic fluid can be obtained by considering the hydrodynamic
modes for this system. The eigenvalues and eigenvectors of the generator for this
dynamics, /Chy, defines the five Navier-Stokes order hydrodynamic modes

/Chyd (k);() 7 (k)( (k), i = 1..5. (3-31)

The eigenvalues of the matrix /Chd are determined by the cubic equation

73 72 ( + ) k2 + (A* (*) k2

( 422 2 1 (2,* 2 1 9,lnp]
( + -* + K) k + ( k p
S2 2 3 2 3 U 2 alnnj
1 ln (h 1 l1np]
+kp (h nnh + = 0 (3 32)
k'P 2 8 Innh 49Inn

and the decoupled shear modes are solutions to the equation

+ *k*2 0 (3-33)
27









If the limit a -- 1 is taken for this equation, then, its solution to order k2 give

the familiar hydrodynamic modes associated with normal fluids, namely the two

propagating sound modes, the heat mode and the two transverse shear mode [37].
But, when the solution to the above equation is considered for a / 1, to order k2
they are

A1) (k) (- In h p k2, (3 34)
h(i*OIn nh u
A (2)* 2p* 8* In (h 2, p
A(k) ( A*-(-2 nh ))kk (335)


A 3(k) + 2 h + ( 2 k2 (336)
2( 2(Q 3 AInnh In nA

+ + k2,

1 1
X(2')(k) --(h 2 (3 37)
2 2
Notice that all the eigenvalues are real and hence there are no propagating modes

in the system, and the a -- 1 limit of these modes do not correspond to the

familiar hydrodynamic modes of a normal fluid. The drastic difference in the

nature of the hydrodynamic modes obtained as the elastic limit of the above

eigenvalues is due to the non-analyticity of the eigenvalues and eigenvectors about

the point a = 1 and k = 0. Close to the elastic limit, (* which goes as (1 a2)

(see Eq.(2-24) in the previous chapter) and k are small parameters and the type
of modes obtained depends on how these parameters approach zero [26]. This
is an indication of the fact that the inelasticity, even when small, gives rise to

drastically different transport in the fluid. But, for the purposes at hand, attention

is restricted to the a / 1 forms of these modes.

Next observe that there exists a critical wavelength k' defined by

k, (3-38)









such that for k < k'g the shear mode becomes unstable. Similarly there exist

threshold wavelengths associated with some of the other modes such that

these modes become unstable as well. This implies that the homogeneous state

characterized by these hydrodynamic equations is unstable to sufficiently long

wavelength perturbations that excite these modes. This instability of the HCS to

these long wavelength modes has been well established in the literature [64, 65].

The above statement is the mathematical content of the linearized hydrodynamic

equations. What this implies physically is that the response due to the unstable

modes grows until such time as the linear theory breaks down and further analysis

of the dynamics has to be carried out using the full nonlinear theory in the

previous section [66].

Finally, further insight into the nature of the hydrodynamic response of this

fluid can be obtained by looking at the eigenvectors of the transport matrix /ICh

that excite the above hydrodynamic modes. To lowest order in k these are found to

be

W6T + 2 J% I2inh < k U*, *e2 e- J* (3-39)

The first of these modes is excited when the condition


0 In nh

This can be interpreted as follows. The cooling rate (h(Th, nh) has the form

(h(Th, nh) = T 2(h( fh). It then follows that this condition for exciting the first
mode corresponds to variations in the temperature and density that leave the

cooling rate constant. This is the first manifestation in this presentation of the

novel coupling between the density and temperature fields in the granular fluid

through the cooling rate. The second mode in Eq.(3-39) is due to a temperature

perturbation at constant density, while the third is due to a longitudinal velocity









perturbation at constant temperature and density. The last two are the response to

a transverse velocity perturbation, again at constant temperature and density.

This concludes our analysis of the response of the homogeneous state to small

spatial perturbations. Recall that the unknown quantities in the hydrodynamic

equations above are the pressure p, the cooling rate (, the transport coefficients

shear viscosity r1, the bulk viscosity K, the thermal conductivity A, the p coefficient,

and the source transport coefficients (u, (T and (,. The subsequent chapters

focus on identifying these transport coefficients exactly from the underlying

micro-dynamics in the form of time correlation functions over the HCS ensemble.

Further, note that although this is done in the context of linear hydrodynamics,

these transport coefficients are the same functions of the density and temperature

in the nonlinear equations and hence the results can be used in the non linear

equations as well.















CHAPTER 4
LINEAR RESPONSE


Hydrodynamic transport coefficients are those quantities that characterize

the response of the fluid to gradients in the hydrodynamic fields internal to the

fluid. For normal fluids, the method of linear response has been successfully

used to get exact expressions for these transport coefficients starting from

the microscopic theory [37] in the form of time correlation functions over the

homogeneous reference state. Thus, non-equilibrium statistical mechanics allows

the identification of transport coefficients in terms of the time dependence of

fluctuations in the equilibrium ensemble just as equilibrium statistical mechanics

allows the identification of thermodynamic quantities such as the specific heat

in terms of the ionp!Ilude" of static fluctuations in the equilibrium ensemble.

For example, the viscosity of a fluid is determined by the time integral of the

autocorrelation function of the momentum flux at a time t with the momentum

flux at the time t = 0 (see Eq.(1 1) earlier). The key idea that makes such

identifications possible is Onsager's hypothesis that perturbations relax in the same

way as a spontaneous fluctuation in the system.

As was shown in C'! lpter 2 earlier, the Onsager regression hypothesis, when

suitably reformulated, works for granular fluids as well. Hence, it is expected that

there exist representations for the hydrodynamic transport coefficients of a granular

fluid in terms of time correlation functions of fluxes over the reference state.

Identifying the general method for obtaining such an expression for the transport

coefficients is the objective of this chapter.









The structure of the presentation is as follows. First, the formal procedure of

using linear response to extract the hydrodynamic response of a fluid and hence

obtain a microscopic representation for the transport coefficients is outlined.

Then, some technical simplifications that render this formal procedure analytically

tractable are pointed out, in the form of identifying a special initial preparation

that excites only the hydrodynamic modes in the long wavelength limit. Finally,

a formal expression for the hydrodynamic transport matrix that was identified on

phenomenological grounds in the previous chapter is given in the form of a matrix

of time correlation functions. Further unfolding of this matrix to identify the

detailed forms of each of the transport coefficients is reserved until a later chapter

in the presentation.

4.1 General Procedure of Linear Response

In this section, the basic procedure of the linear response analysis associated

with the response of the fluid to internal gradients is formulated. For this purpose

notice that, as identified in the previous chapter, the homogeneous hydrodynamic

state is the one with a constant density and flow velocity, and a temperature that

cools such that

Th (t) Th(0) (i ) (41)

This is the Homogeneous Cooling State. The N particle statistical ensemble that

corresponds to this macrostate is the HCS ensemble identified and characterized

in C'! Ipter 2 in Eqs.(2-25)-(2-33). Next, note that the linearized hydrodynamic

equations given by Eq.(3-25) characterize the response of the fluid to weak

inhomogeneities in the hydrodynamic fields with respect to the HCS. This

response can be captured at the level of statistical mechanics by the following

procedure. Let the initial ensemble be a weakly inhomogeneous ensemble, with its









inhomogeneities parameterized by the hydrodynamic fields, that is


P =Ph + drb,(F; r)6y, (r), (4-2)

with

y, (r) {6n (r) T (r) 6U (r)} (4-3)

where

6x = x Xh (4-4)

is the deviation of quantity x from its value in the HCS. Thus the y,'s are

precisely the variables whose dynamics was given in Eq.(3-25). Further, the
functions b,'s are such that the initial distribution p is normalized and does indeed

have the prescribed hydrodynamic fields. That is,

SdFb(F; r) 0 ; J dFa (F; T, r') b(F; r) 6 (r r') 6, (4-5)

The first condition above makes p properly normalized. In the second condition
above, the a,'s are given by

a, (F; T, r) h ((; r), (F; r) eo,n (F; r)) g (F; r) (4-6)
eO,T mnh

where
S(F; r) ( 1

(F; r) =pj + E (qij) 6 (r -q), (4-7)
i= 1
g (; r) Pi
are respectively the microscopic number density, momentum density and energy

density, and
0eo aeo
eo,n = IT, eO,T = n (4-8)
On OT
with eo being the chosen function that defines the temperature for the system

(see Eq.(3-6) in C'i plter 3 earlier). These are precisely the phase functions whose









ensemble average are the linearized hydrodynamic fields 6y,'s, that is,


6y, (r) dFa, (F; T, r) 6p (F) ; 6p (F) p (F) (F). (4-9)

So the second condition in Eq.(4-5) guarantees the requirement that the initial
ensemble p does indeed have the prescribed values for the hydrodynamic fields.

Further, as with the hydrodynamic equations earlier, the choice eo = nT is made

to give

a, (F; T, r) h (F; r), (F; r) 3T (F; r) (; r) (4-10)
31, 2 mMnh

The specific choice for {b,(r)} is left arbitrary at this point.
At a later time t the ensemble is obtained as a formal solution to the Liouville

equation Eq.(2-17), in the form

p (F, t) h (F, t) + dr e-b(F;r)) ya (r). (4 11)

Now taking averages with the set of functions {a,} over the above ensemble a

response equation is obtained in the form


6ya (r, t) = dr'C,3 (r, t; r', 0) y3 (r', 0) (4-12)

with the response function C being given by

Ca (r, t; r', 0) J- dFa (r') (e-tb (r')). (4 13)

The response function is a time correlation function over the HCS ensemble, like
the ones defined and characterized in C'i lpter 2.

Before further analysis, it is useful rewrite the above equation in the stationary

representation introduced earlier in Eq.(2-34) by transforming to the dimensionless
variables










q i v U ,(t)t
qs = V ds dt. (4-14)

The hydrodynamic fields are non-dimensionalized with their values in the HCS
ensemble

n*, =7T* = 5U* (4-15)
n n T Th(t) U ,, (415)


The phase functions {ao(r)} that are the observables of interest in the dimensionless
form are
az (n(* jn ),g*) (4-16)

where the superscript denotes the non-dimensional quantity with

( i*,,g*) -= e(r) ,-- g ). (4-17)
(nh nhTh nhmvh

Also, it is useful to take advantage of the translational invariance inherited from
the homogeneity of the HCS to introduce a Fourier representation through the
definition
(k, s) dreikx(r*,s). (4 18)

Using these, Eq.(4-12) above can be rewritten as

5y (k, s) C p (k; s) 5by (k, 0), (4-19)

with

C~p (k; s) = dF*a (k) (e _(-k)) (4-20)

where explicit use has been made of the fact that the time correlation function C is
only be a function of r r', due to the homogeneity of the HCS. This dimensionless
response equation (4-19) will be the focus of study in the rest of this chapter.
To identify the macroscopic hydrodynamic equations from this expression, it
is useful first to rewrite the response equation (4-19) in the form of a transport









equation similar to (3-25) in the previous chapter,


(69,3 + KCt (k, s)) y (k, s) = 0, a,= 1...5. (4-21)

A formal expression for ICa (k, s) is readily identified from (4-19) as


K, (k, s) = 0,C0, (k; s)) C' (k; s). (4-22)

As argued in the previous chapter, one expects that the hydrodynamic description

identified in Eq.(3-25) is the complete description of the dynamics of the system

in the limit of wavelengths long compared to the mean free path and at times

long compared to the mean free time of the particles in the fluid. Hence, the

hydrodynamic matrix given in Eqs.(3-26) and (3-27), when it exists, follows from

this formal result for small k (long wavelengths) and long times,

hId (k) lim kp (k, s) (4-23)
s->oo,k<<1
lim (c/3 (0, s) + ik (k.VkK/C (k, s)) +..)). (4-24)
s 00 \ \ \ / k=0 / /

Comparison of this expression with the forms (3-26) and (3-27) not only provides a

"derivation" of the linear hydrodynamic equations, but also gives the coefficients of

those equations in terms of the response functions.

That completes the formal prescription of extracting the linear hydrodynamic

transport matrix from the full microscopic dynamics. Note that the above

derivation of hydrodynamics has been accomplished without any constraints on the

functions ba that characterize the perturbation chosen in the initial state, beyond

normalization and the moment conditions associated with the hydrodynamic

variables. It turns out that the tractability to analytical and numerical analysis

of the results obtained in Eq.(4-24) above rests on using the degree of freedom

afforded by the flexibility in the choice of ba to simplify the process of the long

wavelength expansion described earlier. In the following section, a special choice









of bay's is made and the simplifying properties of this choice in the analysis of the

transport matrix pointed out.

4.2 Special Initial Preparation

When the linear response analysis is carried out for normal fluids, it is found

that analytically tractable expressions are obtained for the different transport

coefficients when the initial preparation is chosen to be the linearized local

equilibrium ensemble [37]. This section identifies the analogous simplifying initial

preparation for a granular fluid. This is done in the following way. First, a special

homogeneous solution to the Liouville equation is identified that is related to the

HCS in a simple manner. Then, this homogeneous solution is generalized for weak

inhomogeneities and the special initial preparation required for the linear response

procedure to be applied to a granular fluid is identified. Also, the particular

simplifying features of such a choice are elucidated.

4.2.1 Special Homogeneous Solution to the Liouville Equation

Recall that the HCS ensemble is a solution to an equation of the form

S*p (f*) 0. (4-25)


where

Sh 2 (Vv V +L (4-26)

This equation is used in Appendix D to identify a set of functions T, (F) such that

they have the property

: IC-h (0) q (4 27)

where K T (0) is the transpose of the generator of the hydrodynamic equations in

the homogeneous limit identified in Eq.(3-30) and 'T's are the functions


ayah (t) (4 28)









that is, they are derivatives of the HCS ensemble with respect to its parameters,

which are the homogeneous hydrodynamic fields.

Now suppose an initial homogeneous perturbation to the HCS ensemble of the

form

p (F, 0) Ph (F, 0) + T, (F) 6y, (4-29)

is considered, with the perturbing hydrodynamic fields 6ya are understood to be

homogeneous. Then, this ensemble at a later time, in dimensionless form is

p* (F*, s) p* (F*) + (e-ihydT (o0) (*, 0) y. (4-30)


where use has been made of the property of the ''s given in Eq.(4-27) above.

Calculating the ensemble average of the volume integrated forms of the functions

aa's given in Eq.(4-16), that is,

aa J drt*a (F*; r*), (4-31)

gives the result

6y* (s) 6(e (O)s (e- hyd(o0)s) J:. (4-32)

which is precisely the solution to the homogeneous hydrodynamic equations. In

getting the above result, use has been made of the readily verifiable fact that

SdF*a*= (P*)= 6. (4-33)

This implies that a perturbation of the form given in Eq.(4-29) gives rise to a

dynamics that is the microscopic precursor to the macroscopic hydrodynamics of

the fluid. In other words, such a perturbation gives rise to a purely hydrodynamic

response in the fluid at all times.








4.2.2 Local Homogeneous Cooling State Preparation
In this subsection, the form of the initial preparation in Eq.(4-2) is chosen so
that in the homogeneous limit, it reduces to the special solution to the Liouville
equation characterized in Eq.(4-30) above. Then, the simplifying properties of
such a choice are enumerated. For this purpose, first define an initial local HCS
distribution. This distribution is similar to the local equilibrium distribution for
elastic collisions and represents a system that has the HCS form locally but with a
point wise varying temperature, density, and flow velocity fields. Formally, the local
HCS is obtained from the HCS of Eq.(2-27) in C!i lpter 2 by the transformation

( -3N V -)U vi U ) 2Th(qi)
i,1 (qD) m
(4-34)
so
S(0) ( (q 0)) 3 P ( U (q, 0) } ( 0) (4-35)
I h 0(q,, 0)
where the dependence on an inhomogeneous density field n (qi, 0) has now been
made explicit. Clearly, the initial HCS is recovered for spatially homogeneous
temperature, density, and flow fields. Then, if the choice for the b,'s in Eq.(4-2) is
made so that
Jplh (f, 0)
b, (F; r) Ph (F, 0) (; r) (436)
6y, (r, 0)r) (4 36)
then, in the homogeneous limit this will correspond to the choice that gives the
special solution to the Liouville equation characterized above, that is

S1' (r) T, (F). (4-37)

Suppose this choice is made, then the transport matrix defined in Eq.(4-22) above
becomes,
ICa (k, s) = (8,C (k; s)) C (k; s) (4-38)









with

Co, (k; s)= V* d*a (k) e- (-k). (4-39)

This is the form of the transport matrix and response functions that will be

considered in the rest of the presentation.

4.2.3 Simplifying Properties of the LHCS Preparation

In this subsection the particular properties of the above choice of initial

preparation that simplify the analysis of the transport matrix are identified. As a

first step notice that it follows from Eq.(4-30) and Eq.(4-37) above that at k = 0

the transport matrix in Eq.(4-38) reduces to


IC, (0, s)=- ( (0; s)) C- (0; s) = K/C (0), (4-40)

that is, the transport matrix is purely hydrodynamic at all times in the homogeneous

limit.

Next observe that, in order to go from the full transport matrix to the

hydrodynamic transport matrix, two limits have to be carried out, one that of

long wavelengths (i.e., k -i 0) and that of long times (i.e., s -- oc) as stated in

Eq.(4-23) earlier. The special initial preparation is such that the time derivative

of both the functions ?7 (k) and ,, (-k) have an intrinsic k ordering that can be

used to k order the transport matrix so that the long time limit can be taken in a

simple manner. This can be seen as follows. First, it is shown in Appendix D that

the phase functions 2,7 (k) obey a dynamical equation of the form

atd (ks)
S + (0) a* (k, s) ik f (k,s) 6p* (k, s), (4-41)

with

ff (r, s)- {*,( s* *) h (4-42)
3 \ /








where g is the momentum density and hence the number flux, s is the heat flux ,
hg is the microscopic momentum flux and I is given by

~2 3 2* ( 2 9In6 (h
(k, s) (k, s) + -e (k, s) n (k,s) + (h 1 n (k,s)
(4-43)
In the above equation, w* is the dimensionless form of the source in the energy
balance equation given in Table C-2 in Appendix C. As shown in Appendix D, the
homogeneous part of the source term has the property

1(O, s) (1 P) 2 (0). (4-44)
3

The operator P in the above equation is a projection onto the set of functions

{(4's given by

PX (F*) = (0) f d*X (r*) ( (0)

(0) dF*X (F*) T3 (F*) (4-45)

Thus, the source term is orthogonal to the homogeneous part of the initial
preparation. So, if this balance equation is used to obtain a dynamical equation for
the correlation function C then,

9,C, (k; s) + Cay (0) C, (k; s) ikiD, (k; s) = S (k; s) (4-46)

with

Dn (k;s) 1=V dF*f (k, s) (k) (447)

and

So (k; s) = JdF*T (k, s) (k). (4-48)
San~ ~ (kJ)6a-*7









As a consequence of the orthogonal projection identified in the homogeneous limit

of *, it is clear that S,0 (0; s) = 0 and therefore Eq.(4-46) implies


(a896, cy (0)) C, (k; s) oc ik (4-49)

Therefore, the special initial preparation allows the time derivative to be used to

expose the intrinsic k ordering of the correlation function.

Similarly, it is shown in Appendix D that the adjoint functions ', obey a

dynamical equation of the form

'(k, s) + K (0) (k, s) + ik 7 (k, s) 0 (4-50)

with the definition

ik 73 (k, s)= (Z6 ChyT (0) (k, s) (4-51)

Thus, the fact that the initial preparation gives a purely hydrodynamic response in

the homogeneous limit translates into the fact the dynamical equations associated

with the direct and adjoint functions can be used to k order the transport matrix

formally before the long wavelength or long time limit is taken. In what follows,

Eq.(4-41) will be referred to as the direct conservation law and Eq.(4-50) will be

referred to as the adjoint conservation law.

Lastly, it is claimed that the initial preparation guarantees that all the time

dependent quantities in the k expanded transport matrix are orthogonal to the

invariants of the generator of the dynamics and hence the long time limit turns out

to be patently well defined. This property is elaborated upon in later sections of

this chapter.

Summarizing, a special initial preparation has been characterized above such

that it satisfies the properties 1) in the long wavelength limit, the transport matrix

KC is purely hydrodynamic at all times, 2) the operator (a8I + /CKh (0)) acting









on both the direct and adjoint functions turns out to be proportional to ik and

hence can be used to expose the natural k ordering present in the transport matrix

prior to the hydrodynamic limit being taken and 3) this initial preparation makes

the long time limit of the k expanded transport matrix patently well defined for

all the time dependent quantities turn out to be orthogonal to the generator of

the dynamics. This section is concluded by remarking that these are precisely the

properties that are associated with the local equilibrium preparation of normal

fluids that lends the transport matrix in the hydrodynamic limit to be expressed in

a tractable form.

4.3 k-Expansion of the Transport Matrix

In the preceding section, the correct initial preparation needed to extract

the hydrodynamic response was identified and a formal expression for the full

transport matrix in terms of the response function was given. Further, several

simplifying properties associated with this choice of initial conditions were noted.

In this section, advantage is taken of the above mentioned properties to carry out

a long wavelength expansion of Eq.(4-38) above. Here, three representations for

the various hydrodynamic parameters are given. Each representation is formally

equivalent to the other two. Each in turn is suitable for either interpretation of

structure and content, developing different analytical approximation schemes or

numerical evaluation schemes. In order to simplify the notation and expose the

relevant structure without distractions, all the Greek indices associated with the

different hydrodynamic fields are suppressed in the following.

As a first step, the most direct method of carrying out the k expansion is

given. For this purpose, define


C(k, s) = () (s) + ik]C1) (s) + (ik)2C(2)(s) + ..


(4-52)









and

/C(k, s) = C() + ikC(1) + (ik)2C(2) +.. (4-53)

where C 1), K1) and so on depend on the unit vector in the longitudinal direction

k, but this dependence is left implicit here in order to simplify the notation. As has
been established above /C() Chyd (0) at all times. Then the transport matrix, to

Euler and Navier-Stokes order turns out to be, respectively,

K (s) lim [-( ((, + hd (0))C(1) (s)) ekhyd(O)s (454)

K,(2) (s) lim (-(a + K" (0))C (2) (_) (1s) C (1s)) Chd()s (455)
s>>O(

where explicit use has been made of the order k = 0 results. The matrix elements

in Eq.(4-54) contain the expression for the hydrodynamic parameters that include

the pressure p and the transport coefficient at Euler order, namely (u. The

matrix elements in Eq.(4-55) contain the expressions for the shear viscosity Tr,

bulk viscosity K, and the transport coefficients associated with heat transport,

namely A, p, (, and (T. These are formal expressions defined in turn through terms

in the k expansion of the elements in the bi-orthogonal set that consists of the

functions {aa}'s and {' }'s defined earlier. The above route is the most direct

way to obtain explicit forms for the elements of the transport matrix up through

the Navier-Stokes order and result in Helfand forms for the various transport

coefficients in a form most suitable for numerical evaluation. But, these expressions

are not transparent with respect to the formal structure of the result. In order to

illustrate the content of these expressions and interpret the structure, an alternate

route that makes explicit use of the conservation laws and balance equations

associated with these variables is described below.

The key idea in carrying out a k expansion of the transport matrix in such

a way that the results are amenable to interpretation and theoretical analysis in

terms of approximate evaluations is the following recognition. The hydrodynamic









variables in the system are those which have the property that (89, + K/Ch (0)) oc
ik. The microscopic precursors of the hydrodynamic fields, namely the phase
functions {aa}'s and the adjoint functions ( s also have this property within
the correlation functions associated with the special initial preparation detailed
above. Notice that the expression for the transport matrix in Eq.(4-38) has one
time derivative. Hence, the procedure used to k order the transport matrix would
be to introduce a second time derivative using an identity of the form

X (s)= ds'sX (s') + X (0) (4-56)
Jo

on the time dependent quantities in IC, and eliminate each of the time derivatives
in favor of a gradient using the special properties associated with the bi-orthogonal
set {a3}'s and {,' }'s that occur in the response function C. Details of carrying out
this prescription are outlined below.
As a first step, one can use Eq.(4-46) above to rewrite the transport matrix in
Eq.(4-38) in the form

KC (k, s) ""C (0) i (k; s) + () k; s)] (k; s) (4-57)

which essentially involves using the direct conservation laws to evaluate the first
time derivative. Note that the k = 0 form of the transport matrix has been
extracted. Before proceeding further, it turns out to be useful to introduce an
integrating factor exp (Kh""dT (0)) in the adjoint conservation equation that
absorbs the k = 0 dynamics of that is, define


i (k, s) = exp (Chyd (0) s) (k, s) (4-58)

Then, Eq.(4-50) above becomes


9.' (k, s) + ik. (k, s) 0


(4-59)








with


k 73 (k, s) e exp (J (0) s) ( b* (C" (0)) (k, s) (4-60)

Next, Eq.(4-39) above is re expressed in terms of correlation functions involving
I's to give

C (k, s) /d (0) [ikD (k; s) + S (k; s)] 1 (k; s) (4-61)

where

C3(k) d (k)e(k; ) (khyd()s)

V* dF*; (k) ; (k,s). (4-62)

Similarly,
V ) 1 f -
Dn, (k; dF (k) (s) ) d (k) ( k (4-63)

and
-S (k; s) =62 V* dFr* (k) (-k, s). (4-64)

Further, using form of the adjoint conservation laws in Eq.(4-59) above for the
dynamics of /, the following equations for the response functions above can be
obtained.
a,C3 (k; s) ikiE, (k; s)= 0 (4-65)

,D3 (k; s) ikFj (k; s)= 0 (4-66)

s9,q (k; s) kikN (k; s) 0 (4-67)

where
a, (k; s) = dF*a (k) 7 (-k, s) (4-68)

F (k; s) f dF* (k) 7* (-k, s) (4-69)









(k; s) = -62 d*l (k) r* (-k, s) (4-70)

Now consider the transport matrix as given in Eq.(4-61). Use an identity of
the form in Eq.(4-56) to write

D (k; s) j ds',,D (k; s') + D1 (k; 0) (4-71)

and similarly for S (k; s) and C (k; s). Then use Eqs.(4-65)-(4-67) to eliminate
these time derivatives to obtain the transport matrix as

/C (k, s) /hYd (0) {kkiD (k; 0) k2kjk ds'T (k; s')

+S (k; 0) + ik ds'N (k; s')}

x I iki ( ds' (k; s')) -1 (k; s) (4-72)

This completes the formal implementation of the prescription described earlier
which exposes the inherent k order present in the full transport matrix. Notice that
any perturbative expansion is yet to be done, and all the manipulations done so far
are exact. This intrinsic k ordering is present in KC due to the special nature of the
dynamics of the bi-orthogonal set {ap}'s and {(~p}'s as manifested by the direct
and adjoint conservation laws in Eq.(4-41) and Eq.(4-59) above.
In the remainder of this chapter, the expression (4-72) is considered explicitly
at Euler order and at N ',i. r-Stokes order to identify the various parameters in
the hydrodynamic matrix and to elucidate the structure of the result. Also, in the
process two new forms for the hydrodynamic parameters are identified that are
equivalent to the forms in Eq.(4-54) and Eq.(4-55) earlier.
In order to simplify the presentation of the results that follow, introduce the
notation


/C (k, s) = F (k, s) + Cs (k, s)


(4-73)









where the superscript F denotes the terms coming from the fluxes in the direct

conservation laws and hence correspond to the parameters in the constitutive

relations for the fluxes given in Eqs.(3-15) and (3-16) in C'! plter 3, namely

the pressure, the shear and bulk viscosity, the thermal conductivity and the p

coefficient in the heat flux term. The superscript S denotes the terms coming from

the source in the direct conservation equations (4-41) and hence correspond to

the parameters in the constitutive relation in Eq.(3-17), namely the transport

coefficients (u, (, and (T. Each of the above parts of the transport matrix are

considered in turn, first at Euler order and then at N .',1 i-Stokes order, and the

structure of the results obtained is discussed.

4.3.1 CF at Euler Order

This is the part of the transport matrix that contains the hydrostatic pressure

and the density and temperature derivatives of the pressure. By direct examination

of Eq.(4-72), it can be recognized that the flux part of the transport matrix /CF at

Euler order is


1CF(1) A
1i) D-kD, (0; 0)

V* dF*fa* (0) (-0, 0) (4-74)


In order to better interpret the content of the above expression, it is useful to

rewrite the expression in laboratory variables. The details of doing this are given in

Appendix G. But for the purposes here, it is sufficient to recognize that it has the

form

K(1) -da, (Tb (t)) Vk, dF (0) )' (0; T: (t)) (4-75)

where da, is a pre-factor determined by the dimensions of the quantities fo and ,

depending on time through the temperature. The temperature dependence of' ,









has been made explicit in this notation. Also, recall that

h (Th (t)) (476)
(4-7b)
0h, (t)

This allows Eq.(4-75) to be rewritten as

S 1) = -d (Th (t)) k f (0); t (4-77)

Thus, the Euler order terms in the constitutive relations (3-15) and (3-16) are
derivatives with respect to the homogeneous hydrodynamic fields of the ensemble

averages of the volume integrated microscopic fluxes over the HCS ensemble
at a time t. For the case of normal fluids, these terms are determined by the

derivatives of the ensemble average of the fluxes over the equilibrium state [37].

Hence the same structure is retained here, with the HCS state taking the place of
the equilibrium state. The only time dependence is that of normal time dependence

through the cooling homogeneous temperature, which is precisely as was found in
the case of the linearized hydrodynamic equations. Note that this is true for all

s, that is no long time limit needed to be taken to make this Euler term purely

hydrodynamic. Explicit phase functions involved and further interpretation of these
results for specific terms such as the pressure are given in the next chapter.
4.3.2 /IC at Navier-Stokes Order

This part of the transport matrix contains the transport coefficients shear
viscosity, bulk viscosity, thermal conductivity and the p coefficient. Terms at order
k2 that arise from the correlation functions associated with the direct fluxes are

grouped together to get

F(2) k1) (0; 0)

+ ds' {1 (0; s') VD (0; 0) (0; s')}} (4 78)
Jo /S








The content of this expressions is as follows. Putting in the various correlation
functions defined above through Eqs.(4-63)-(4-70) gives the result (see Appendix F
for details)
1 i f d- ,i ,(1)
F(2) V* df (0) (0)

-kik ds' J dPf*f* (0) (1 PT)

x e_ h 7*d (0) (4-79)

where 1) is the first order term in a k expansion of (k) and pT is adjoint of
the projection operator defined in Eq.(4-45), given as

PTX -) (0) dF *f (0) (*), (4-80)

and the generator of time dependence of the adjoint flux 7 has been made explicit.
Notice that & (0) are the invariants of the dynamics generated by ( I lChT)
and the (1 pT) operator projects orthogonal to these invariants. Next, attention
is drawn to two features of the above expression. First, the (1 PT) in the second
line Eq.(4-79), results in the following identity (See Appendix F for the details),

(1- pT) e_*-khydT )r 7* (0)= (1 eT) *f1hyd' )} (1- pT) 7* (0)
(4-81)
Hence the time generator (e *IhdT) ) acts on a quantity that is orthogonal to
its invariants and hence the time dependent quantity in the correlation function can
have a well defined long time limit as claimed at the end of the previous section.
Summarizing, the transport coefficients in Eqs.(3-15) and (3-16) are identified
through the relation
1-" {- ~ W- (
S liml{ V ikj df*fP* (0)F() (0)

-kik, f ds' { drF** (0) ( T) (0s')}} (4-82)









where the lim above denotes the thermodynamic limit, namely V -- 00 and

N -- oo such that n = N/V is a constant and the long time limit of s -- oo.

Thus, the expression for the transport coefficients that occur in the constitutive

relations associated with the hydrodynamic equations consists of a flux-flux

correlation function. Notice that the property in Eq.(4-81 allows the introduction

of a projection operator that subtracts out the components of the flux along the

invariants of the dynamics, ensuring that a long time limit exists. This is known as

the Green-Kubo form of the transport coefficients.

The time independent first term in the above expression remains to be

interpreted For this purpose, observe that the dynamical equation associated with

* (k) Eq.(4-59) yields the identity

8 *Wlj(0, s)
O~ ) (0, s) (4-83)
as

Hence, Eq.(4-79) can be written in the alternate form

1 -t ~ )
CF(2) V kikj d*f* (0) () 0)


+kk ds' JdPf* (0) (1 pT) 8 (0 (4-84)

This form allows the recognition of the first term as the value of the integral in

the second term at the lower limit. In the case of normal fluids where the particles

interact through continuous potentials, this term is zero and the Green-Kubo

expression for the transport coefficient reduces to just the flux-flux time correlation

function characterized earlier. The reason that such a term is present here is

technical. It is associated with the fact that the form of the correlation functions

for s ~ 0+ and s ~ 0- are different. There are two causes for this difference. One is

that the system consists of hard particles and the dynamics is discontinuous about

s = 0 because of instantaneous momentum transfer present in the collision model.

An analogous term exists for elastic hard sphere transport coefficients as well. The









second cause is again a discontinuity in the dynamics of the system about s = 0,

but this time due to the fact that the collisions dissipate energy and hence the

direction of time in the reference state is no longer arbitrary. This implies that such

an instantaneous piece is alv--x present in Green-Kubo expressions for granular

fluids, even when the underlying collision model involves a continuous potential

(like the soft sphere models defined in Eq.(2-1)).

Finally, as shown in Appendix F

PT*( (0) = 0, (4-85)

and hence, without loss of generality Eq.(4-84) can be written as

/CF(2) lkk df **(o)( p (0) PT)_l) (0)

fs t (0, s')
+kik, ds' df ** (0) (1 T) as'

And therefore the time integral can be carried out to obtain

K/C''"" lim -kiik, 1 dPf* (0) (1 pT) J) (0, s). (4-86)
V* J

This latter expression is also called the Helfand form for the transport coefficients.

This equivalent form turns out to be the more convenient quantity for numerical

evaluation of these transport coefficients using Molecular Dynamics simulations and

for developing approximate analytic evaluation schemes using kinetic theory (see

C'! lpter 6 later in this presentation).

In summary, it has been shown here that the Green-Kubo form for the

Navier-Stokes order transport coefficients associated with the flux terms has the

properties that 1) it has a part that is a direct flux adjoint flux time correlation

function, 2) the generator of dynamics in this correlation function acts on a

quantity orthogonal to its invariants and hence has a well defined long time limit

and 3) it has an instantaneous part that partly arises due to the instantaneous








momentum transfer associated with hard sphere models and partly due to
the inelasticity of the grain collisions. Finally, a Helfand form of the transport
coefficients has been identified in Eq.(4-86) above.
4.3.3 ICs at Euler Order
This is the part of the transport matrix that contains the source transport
coefficient that occurs at Euler order. From the expression in Eq.(4-72), grouping
terms that arise due to the source in the direct conservation laws, up through Euler
order, one gets
S-k ds'Ni (0; s') + S (0; 0) (4 87)

Substituting for the forms of these correlation functions gives (Appendix F has
some intermediate details)

4/C ki- ds ds f d ) (-0, s') + df T (0) ^1' (0) (4-88)
v j Jo J J74

Recall that the term 1(0) has the property that

S(0) = (1 -) W* (0) (4-89)

Hence, the above expression can be written in the equivalent form

K^(1) 1 ds dF (0) (t1 pT) 7 (0, s')

+ (0) ( PT) )i* (0)} (4-90)

Comparison of Eq.(4-90) with Eq.(4-82) shows that the long time limit of this
correlation function is well defined as the time dependent quantity is orthogonal to
the invariants of the generator of this dynamics. Further, as shown in Appendix G,
spherical symmetry of the HCS gives that the only nonzero entry of the type above
is for l = 3. Examining the phenomenological transport matrix in Eq.(3-26) in the









previous chapter, it can be concluded that


S= lim{- kt ds' dF* w* (0) (1 pT) (-0, ')
V Jo J o
d+k- (0) (1 T) (T) (0)} (4-91)


This is the Green Kubo expression for the transport coefficient occurring at Euler

order, again the limit being taken as described earlier.
Further, as earlier, the time integral can be carried out to get

5 limk3- dP*~* (0) (1 p) 3 (0,s) (4-92)

This is the Helfand form for this transport coefficient. Note that in this case a long

time limit has to be taken in order to obtain the hydrodynamic form, unlike the
Euler terms that come from the flux part of the transport matrix. In the case of

normal fluids, the Euler level hydrodynamics is entirely non-dissipative, that is,

involves no entropy producing processes. The collisional loss in energy in the case
of granular fluids gives rise to this transport process at Euler order.
4.3.4 /Cs at Navier-Stokes Order

This is the part of the transport matrix that contains the representations of
the transport coefficients (, and (T in terms of time correlation functions. Again,

starting from Eq.(4-72) this part of the transport matrix can be identified as

,/CS(2) k i { (1) (0; s') Kl () (s) (0; s') + (2) 0). (4-93)
-0 l 1








When the forms of the different correlation functions in the expressions above,
which are unfolded in Appendix F, the transport matrix is identified as

K/2)C kikj ds' dF*l) (0)* (-0, s') + d *i)i (0) (0

+k kj sds'- dFi(0) 7 ) (-o, s') + dF* (0) (2)ij (0)




As there are several terms here, it turns out that the structure of the result is
easier to see when the time integrals are carried out to get the Helfand form of this
part of the transport matrix. This gives

S(2) ksk { d *l (l) o (l(0, s) + dF* (0) (2)i (0,
-( (0, s) +s)}
( / j
-k-ky (* J dF*F (0) 1 (0, s) dF*3 (0) ((0, s)


The terms in the first line above the the direct part of the transport coefficients
while the terms in the second line above is the subtracted part. Notice that th th
subtracted part of the transport coefficient now is a product of two time correlation
functions. This kind of structure occurs for normal fluids for transport coefficients
at Burnett order in the k-expansion. In the case of granular fluids, this occurs at
Navier-Stokes order because of the transport coefficient that is present at Euler
order in the k-expansion.
The structure of the Green-Kubo forms for Burnett transport coefficients
is not well understood even for normal fluids. Hence the source part of the
Navier-Stokes transport matrix will not be considered further in the present
work.
4.4 Summary of Results
In this chapter the formal identification of the elements in the hydrodynamic
transport matrix in the form of Green-Kubo and Helfand expressions that are time









correlation functions over the HCS ensemble has been carried out. These are the

primary results of this work. Therefore this chapter is concluded by enumerating

the key results in it. The general method to extract hydrodynamic response of a

fluid from the solution to an appropriate initial value problem was described.

1. A special homogeneous solution to the Liouville equation was identified and
characterized. This solution has the property that its dynamics is completely
given by the linearized hydrodynamic equations in the homogeneous limit.
Equivalently, it can be stated that the dynamics of this state is completely
specified by the hydrodynamic modes of the fluid.

2. A special initial state was chosen such that, in the homogeneous limit, it
reduced to the special solution above. This was the local homogeneous cooling
state. Then, the properties of this initial state that result in the simplification
of the subsequent linear response procedure and the process of formally
identifying the hydrodynamic limit of the transport matrix were identified.

3. The formal result for the hydrodynamic transport matrix was derived at the
Euler and Navier-Stokes order and it was shown that the hydrodynamic limit
is well defined in each case, that is, the long time limit existed.

In the next chapter of the presentation, the specific phase functions that enter

into the formal results above for each of the transport coefficients is identified

and the resulting expression compared with the known results for normal fluids

to shed light on their physical content and hence the implications to transport in

these systems. Also, in ('! Ilpter 6, a kinetic theory of time correlation functions

is developed that makes contact with the various expressions for these transport

coefficients that have been obtained from Boltzmann and Enskog kinetic theories in

the literature.















CHAPTER 5
TRANSPORT COEFFICIENTS


In the previous chapter, the primary results of this work were derived. They

are exact expressions for all the parameters in the phenomenological hydrodynamic

equations that were given in C(i lpter 3. For the transport coefficients, these exact

expressions are of the Helfand and Green-Kubo forms, time correlation functions

over the HCS ensemble. The technical content of these expressions were partially

discussed and the general structure of the result was elucidated.

In this chapter, further unfolding of these exact results is given by making

explicit the different phase functions involved and by comparing the results with

their corresponding analogs in the elastic limit, where applicable. Recall that the

linear hydrodynamic transport matrix was identified in Eq.(3-26) in C'!i Ipter 3 and

had the form

0 0 -ik
(k*) ln ((p* (*) -*2 + (A* (*) *2 (p*
Qha 4 +nnh++
I,*l V *i* + (4T]* + v*) k*2
aP In nh 2
(5-1)
for the longitudinal degrees of freedom corresponding to a, = 1, 2, 3, and the

decoupled transverse part was


Chyd (k*) (


+ + rl*k*2

0


0
S+ T*k*2
2


The unknown parameters in this equation are the cooling rate (h, the pressure p,

the Euler order transport coefficient (u, the shear and bulk viscosity rl and K, the

thermal conductivity and diffusivity A and p, and the two transport coefficients


a, = 4,5


(5-2)









from the source at Navier-Stokes order, (, and (T. Each of these quantities is

identified from the corresponding formal expression in the previous C'! ipter and

discussed in turn.

5.1 Homogeneous Order: The Cooling Rate (h

The homogeneous dynamics of this fluid is parameterized by the cooling rate

in the Homogeneous Cooling State. As a first step note that the cooling rate in any

macrostate p was first identified in Eq.(2-24) as


((t) (1 a212T(t) dP(g1 12 )3(g12 2)(q12 )p(F,t). (5-3)
12T(t)

In particular, when the ensemble in question is the HCS, this can be rewritten in

the stationary representation defined in Eq.(2-34) as


S- c (t) (1 a 22) d (gq)3gT q a2)( 2 o*)p*(F*) (5-4)
h- (t) ( 6 dr* *9A, ( ),

Further, since the cooling rate is determined by only a two particle function, use

can be made of the hierarchy of distribution functions associated with the HCS

ensemble, as given through Eq.(2-18) earlier and written as

h = (l-a2) (nh3)2 d12(g29122)3 (g12*q2)(2-j2 )f' (q2 2,v v) (5-5)

where


(nh (2 ) 2, v, v) N (N 1) dqdv ...dq* dv p() (5-6)

and the notation giving f(2) as a function of q,2 makes use of the fact that the

HCS must be invariant under translations. Lastly the integral over the two particle

phase space can be recast into integrals over the relative and center of mass

coordinates. Using the 6 function in the above expression that puts the two









particles at contact to do part of the relative coordinate integral, one obtains


(h 1 d( ) dg ,e12(g2.- )T3 (g,2-*) dP,12 f2) (-*, v, v) (5-7)

Notice that the cooling rate is generated by a function of only the relative

velocity of pairs at contact and is obtained as an average over the two body

distribution function at contact. In particular, it is the average of the third

moment of the normal component of the relative velocity of colliding pairs. This

is the microscopic expression associated with the parameter characterizing the

homogeneous cooling dynamics of the unperturbed and homogeneously perturbed

hydrodynamic states of this system.

5.2 Euler Order Terms

In this section, the transport matrix at Euler order is examined to identify

the parameters to this order in the hydrodynamic equations. First, recall that

the constitutive equations (3-15) and (3-16) used to obtain the hydrodynamic

equations were written down taking into account the underlying symmetries of

the fluid, namely homogeneity and isotropy. These same symmetry properties

characterize the homogeneous reference ensemble as well. These symmetry

properties can be used to conclude that the various terms at Euler order that

are zero (like the 21 matrix element which would correspond to a term proportional

to the density gradient in the dynamical equation of the temperature fields) are

indeed vanishing when calculated from the statistical mechanical prescription as

well. As an illustration consider the 21 matrix element at Euler order arising from

the flux part of the transport matrix. This has been identified in Eq.(4-74) as

C21 -ki21 (0; 0) (5-8)

where

D21 (0; 0) (j- df ** (0) T (0). (5-9)









As was stated earlier, it is useful to consider these correlation functions in the
laboratory variables. Putting in the form of the flux f7* (0) and restoring the
dimensions to the above equation gives

1 / 1 a2 (
j721 (0; 0) = 1 dF s g Ph (t). (5 10)

Now notice the homogeneous cooling state is taken to have zero flow velocity when
the density derivative is being carried out. Hence the ensemble average in the
above expression is that of a vector over a homogeneous and isotropic distribution.
Therefore, this integral must vanish. Similar arguments show that each of the
zero terms at Euler order follow from the statistical mechanical derivation as well,
including the vanishing of Euler order terms in the transverse components and the
decoupling of the transverse modes from the longitudinal modes. The details of
these arguments are given in Appendix G.
5.2.1 Pressure

In what follows attention is restricted to the case of the non vanishing elements
only. Notice that for the flux part of the transport matrix, they are all related
to the pressure of the fluid. Consider first the case when the observable is the
temperature, namely / = 2 in Eq.(5-8) above. The only non zero term in this row
in the D matrix at this order is the 23 matrix element.

D23 (0; 0) V* dP*f* (0) 4 (0)

V* 3 (o) (0) ( ) (511)

As stated in the previous chapter, a physically interpretable form of this result is
accessible if it is transformed back to the real variables. Restoring the dimensions









to the various quantities gives

(1) i VT71 (t fd( ( (t)N
K3F(1) -k D3 (0; 0) kk (t ) nh gUj g p (t) 3
(5-12)

Now, the homogeneous cooling state in the above equation is one with a finite flow

velocity U. It is recognized that the flow velocity enters into the homogeneous

cooling state through the velocity of the particles, i.e.,


Ph (U) h ({v U})) (5 13)

Hence, one can change variables in the F integration as vl vl U, and use

the transformation properties of the heat flux and the momentum under Galilean

transformations to get

(1) 21 1 1
K23(1) 3 V T (t) h df (0) h (T (t))(5-14)
3 3 V Th (t) nh 3

The details of this transformation can be found in Appendix G. Comparison with

the hydrodynamic matrix in Eq.(5 1) above gives the identification


nTh (t) p* p j= / dfhi (0) ph (Th (t)). (5-15)
V 3

This gives us the definition of the hydrostatic pressure as the average of the trace

of the volume integrated microscopic stress tensor over the HCS ensemble at

a time t. Further, as was done for the cooling rate above, putting in the form

of the flux h given in Table C-l, transforming the expression to the stationary

representation and carrying out the F integrals to map this onto an average over

reduced distribution functions over the HCS gives the result that the pressure is the

sum of two terms in the form


p* =p + p,


(5-16)









where

P (h 3 f dv* (vI) v (5-17)

and

1 (nh,)2 1 (2)
PV -3 4- (1 a) ldqdvtdqidv{f 2) (q12, V, v )

x5 (q42 a*) 0 (-q 2 g2) (q2" g12)2}. (5-18)

The first term above in Eq.(5-17) is the kinetic part of the pressure that arises

purely from the transport of momentum associated with the free streaming of the

particles. It can easily be seen that the kinetic part of the pressure pK gives


PK = 1 (5-19)

and hence

pK = nhTh (t) (5-20)

which is the full pressure in the limit of low densities when the collisions become

infrequent and is indeed the full result for ideal gases. Next, the second term above,

determined by the two particle distribution function at contact, is the "potential"

part of the pressure that arises due to the interaction between the particles, which

in the case of hard spheres is generated collisionally. Now focus on the collisional

part of the pressure pc. As earlier, this can be rewritten by transforming to relative

and center of mass variables to give

(nh f3)2 1 + a) 3 2 g2)(a 2
PC' 3 4 dg2(9 91)R-9*




which identifies the collisional part of the pressure as generated by the average

of the second power of the normal component of the relative velocity of colliding

pairs over the two particle distribution function. Also notice that the center of









mass velocity of the pair P12 l' 1 no role in the collisional part of the pressure, as

should be expected.

As an illustration for the structure of this quantity, let us consider its

evaluation in the elastic limit. When a -- 1,

f (2) f (2)*
2) -,V,) V (a,, V ,V ) g (a )r-3 -1/2(v2+v2)) (5 -22)


where g (a) is the pair distribution function at contact and it depends only on the

magnitude of a. Evaluating Eq.(5-21) above, in this limit gives

(rh 3)2 *3
PC =--i a 3g (a) 327 (5-23)
3

Hence, the collisional part of the pressure is proportional to the density, and

at high densities, dominates over the kinetic part of the pressure. Further, it

is reasonable to expect that pc for the inelastic system has a similar behavior

as well, in the sense that the pair correlation function at contact would still be

isotropic, being a largely geometric quantity. The coefficients of the density will

be modified by the inelasticity, through the coefficient of restitution a, and the

velocity correlations that will be present in the two body distribution function.

This completes the characterization of the microscopic definition of pressure

obtained from this analysis. Also, it follows easily that the terms in the matrix

elements associated with the longitudinal flow velocity field, namely the 31 and

the 32 element, which are the density and temperature derivative of the pressure,

come out consistent with the above definition of the pressure. The details of this

are given in Appendix G.

5.2.2 Euler Transport Coefficient (u

The last parameter in the hydrodynamic equations at Euler order that remains

to be characterized is the transport coefficient (u that occurs in the dynamical

equation of the temperature field. This coefficient is identified in Appendix G









starting from the formal expression given in Eq.(4-91) earlier to be


(* = lim{ ds' J dF*W* (*) e(se- (* A3 Mii
11
1 JdF*W*A/Mi} (5-24)
V* 3

where

W* (*) (0) + ( E* N* + (, + 1 N* (5-25)
3 2 3 n nn

with

1 1(1_ a2) Y-- 9-(5 -26)
(0) n- (1 a2) (q~ (* g (g .q)3 (q o*) (5-26)
1 m4l

being the source in the energy balance equation given in Table C-l and E is the
total energy of the system given by

E* v2,' (5-27)

and also
N
N* (5-28)

Also, the adjoint density in the above expression is

MA -E q;* (V7*p), (5-29)

a space moment of the velocity derivative of the HCS. This is the Green-Kubo form
of the Euler order transport coefficient associated with granular fluids.

As a first step in unfolding the content of this expression, it is observed that
the phase function W was obtained by unfolding the action of (1 P) on the

energy source w. And recall that

PX (F*) (0) f *X (*) i (0), (5-30)
7) X









i.e., 1 P projects out the homogeneous dynamics. This allows the function W

to be interpreted as the function characterizing that part of the rate of change of

energy that is not due to the homogeneous dynamics of the underlying state, i.e.,

not due to the cooling reference homogeneous temperature. This is what would be

expected given that (u characterizes the relaxation of spatial perturbations to this

homogeneous dynamical state. Next, in order to characterize the adjoint function,

consider M in the elastic limit, i.e., when the coefficient of restitution a goes to 1.

In this limit, the homogeneous cooling state goes over to the equilibrium ensemble,

which gives the result

Mil a qliv P:q (5-31)

which is a space moment of the momentum density. It follows that the flux 7

becomes the longitudinal part of the momentum flux h given in Table C 3 in the

appendix times the equilibrium distribution function. Now, in the case of inelastic

systems, it will be a different function, reflecting the non equilibrium nature of
the reference ensemble. But note that it must still be a measure of momentum

transport, albeit in the non equilibrium ensemble, because this transport coefficient

is the measure of the contribution of a divergence in the flow velocity to the rate of

change of temperature at a point r.

Also, as a further illustration of the content of the expression in Eq.(5-24), the

instantaneous part is simplified to give

(* nst 1 d*W*Mi
S3 V* d*W*M

x V* dP2 2* (-,) d (( v g(5g32)
x [dPe12 f' (,7, v*, v*) (5-32)
J1









Compare this result with that obtained for the collisional part of the pressure in

the fluid in Eq.(5-21) above to see that


(1- a) p (5-33)

Hence, it can be said that (u is the contribution of the source to what would

physically constitute the hydrostatic pressure of the fluid. If a small volume

element of the fluid is considered, then the amount of pressure that the fluid

element can exert on its boundaries is decreased by the energy lost locally due to

collisions. Part of the effect of this transport coefficient is to decrease the effective

pressure in the system, as can also be seen from the fact that the transport

coefficient enters the hydrodynamic equations in the form p* + (*. At the level

of linear hydrodynamics, the two coefficients are indistinguishable in their physical

consequence.

Further, the time integral in Eq.(5-24) can be carried out in the above

expression and hence can be rewritten as


(* = lim{- dF*W (*) e-(*-3)M (5-34)
V V*3

This would be the Helfand form of this transport coefficient. As will be shown in

the subsequent chapter, this form of the transport coefficient is most convenient

to make connection with results obtained from kinetic theory. This completes the

analysis associated with (u.

5.3 Navier-Stokes Transport Coefficients

In this section, the transport coefficients occurring at Navier-Stokes order are

analyzed along the same lines as done in the previous section.









5.3.1 Shear Viscosity

The shear viscosity is represented by the 44 and 55 matrix elements of IC. This

element is identified in Appendix G starting from the expression in Eq.(4-78) as


T]* = lim kikjeiieij { dF*h*,Mj

0 V*
ds'- Jfd ,(e-4- ([* -\) M4 j'} (5-35)


where


1
= Y, IvI
~3nh{I

( t + a) o*6 (q *i a*)
Im
x (-qm g,7) (qLm 2 P qLLj (536)


and AMij is the same function defined in Eq.(5-29) above. This is the Green-Kubo

form of the shear viscosity. Further, using the fact that k = 0, Eq.(5-35) can be

written as


lim dF*r M, fds'- dF*he-(Z*- (* 4)
7 1 l r 1 0* -- A 4 h
o V* J Jo V* J
(5-37)

where AM/ denotes the traceless part of the tensor AM/ given in Eq.(5-29). As

noted above, in the elastic limit


M a-1 q- I Vipeq (5-38)

and hence

S-A4) ij a-,l ij Peq (5-39)

the backward momentum flux in the elastic limit, which has the same form as

the h- in Table C-3, with a 1= Thus, the above expression reduces to a time

correlation function over the equilibrium ensemble of the volume integrated forward









momentum flux hij with the backward momentum flux h, together with an

instantaneous part [67]. The different fluxes in the forward and backward time

direction and the instantaneous part are artifacts of the hard sphere nature of the

interaction of the particles as explained in Appendix C. In the case of inelastic

particles, the adjoint flux contains explicit information about the nature of the non

- equilibrium state and is a measure of momentum transport in this state.

Further, the time integral in Eq.(5-35) can be carried out to give

1* lim 1 T dF* e- 4)S, (5-40)


which is the Helfand form for the shear viscosity of a granular fluid. Lastly,

the instantaneous part of the Green-Kubo form is written in terms of reduced

distribution functions in order to illustrate the structure of the formal result. The

reduction is carried out in the same way as for the pressure earlier, with the result

*Inst 1 1 *
io V* 7a 1 7"v

(1 + a) (3nh) / dad 12 ( (- g) ( g))
60
x JdP12f h 2) v*, v*) (5-41)

i.e., it is the average of the normal component of the velocity of colliding

pairs averaged over the two body reduced HCS distribution. Notice that the

instantaneous part is purely collisional, reflecting the fact that it comes about

because of the boundary condition associated with hard sphere dynamics about

the point of contact. Further, using the first equation of the BBGKY hierarchy

associated with the HCS, the above expression can be rewritten as

1
*Inst (1 + a) (f, ) a 20 (5 42)
60

where Va, is the average collision frequency as determined by the loss part of the

right hand side of the hierarchy (see for example [37]).









5.3.2 Bulk Viscosity

Starting from the formal expression Eq.(4-78) in the previous chapter, it is

shown in Appendix G that the Green-Kubo expression for the bulk viscosity can be

identified as


9 V* j Jo Vit*
(5-43)
where hkj and Mai are the same functions identified in Eq.(5-36) and Eq.(5-29)

respectively. The quantity hS) is the -,l,1i i 11 l" momentum flux defined as


s2) (1 P)a

SOlnPh N p* E* N) (5-44)
2 8 In ln 2 3

These additional terms are necessary for the existence of the long time limit of

the correlation function, as established in the previous chapter. Without loss

of generality, the subtracted pieces can be added to the instantaneous term in

Eq.(5-43) as well, as they give zero contribution under the ensemble average.

Further, if the instantaneous part of the Green-Kubo expression in Eq.(5-43) above

is evaluated, it is found to be the same as that for the shear viscosity, but for an

over all numerical factor reflecting the different tensor contractions involved in each

case.

*Inst *inst. (5-45)
3
Finally, the time integral can be carried out to give


lim dF*le(f )e-(-)4 s4 (5-46)
9 V* J 1


This is the Helfand form for the bulk viscosity of a granular fluid.









Thus the physical content of the expressions for the bulk viscosity are the same

as those for that of the shear viscosity, except that the tensor contractions here

measure the isotropic part of the momentum transport.

5.3.3 Thermal Conductivity

As with the earlier Navier-Stokes coefficients considered above, starting from

the expression in Eq.(4-78), the dimensionless thermal conductivity A* is identified

in Appendix G as
A* lim AIst + ds'GTerm (') (5-47)

where

AInst -1 dF*S(Af, (5-48)
V* 3
and

GThem (s') = dF*S(s)-(-)' (* A) /i. (5-49)

In the above, S' is two thirds of the volume integrated heat flux,

Si 2 1 { 2v* *( -*)(l + a)
3n I
x (-q g ) (g qL)2 (PL*m ql) qL } (5-50)

and S(s)i* is the -dl'i I i heat flux" with the invariant total momentum P

subtracted from it,
S(S)i* S- + 1 Pi. (5 51)

Lastly

a =c -i AV* (v~p* (F*)) q] (5-52)

is a function generated by the non equilibrium reference state associated with this

system. Eq.(5-47) is the Green-Kubo expression for the thermal conductivity of a

granular fluid. It is a time correlation function of the subtracted heat flux with a

flux that characterizes heat transport in this non equilibrium reference state.









In order to illustrate the nature of the adjoint flux, consider the elastic limit of

Mi above,

13 [2 (1) (1) ] *
|l- = 2 3e I (0) (0) pe
S-1)*, (5-53)
2 a2 Peq


and hence A2) M in the elastic limit becomes the equilibrium distribution

function times the backward heat flux given in Table C-3 and the Green-Kubo

expression becomes correlation function of the forward heat flux with the backward

heat flux. As noted earlier, the fact that the forms of the two fluxes are different

is an artifact of the hard sphere nature of the interactions. Now notice that the

equilibrium ensemble is the information entropy ensemble in the sense that it

consists of all the accessible states given the constraints on the system. Hence it

is physically intuitive to think that the amount of heat transport in the system

for a given temperature gradient will be proportional to how correlated the heat

flux stays with itself over time. In other words, if a heat flux is set up at a time

t = 0, the extent to which it persists in the same direction at a later time t

would be a measure of heat transport in the system. If a significant fraction of the

trajectories in the macrostate allow this persistence, then the correlation function

in Eq.(5-47), which is a measure of this persistence averaged over all trajectories

will be large and hence the system will have a large thermal conductivity. But in

the case at hand, the reference ensemble is a non equilibrium ensemble that is a

complicated function of its constraining variables as the collection of trajectories in

this macrostate is more severely constrained than in the equilibrium case. Hence

the extent of heat transport in this system depends strongly on the collection of

trajectories present in the macrostate as reflected by the fact that the adjoint flux

in the correlation function for the thermal conductivity is not simply the heat flux

but is generated by the non equilibrium macrostate itself.









As a last step in illustrating the content of the Green-Kubo expression above,

the instantaneous part of the thermal conductivity is expressed in terms of reduced

distribution function in the hierarchy associated with the HCS to give

A*Inst 18 ) 4(1 + a) ddg AdP 2{2(g2 ) 2 (P .a)2
t s t th (2)it e p
+.(g 2 )32(, g 2),* (*,,v v ). (5-54)

Notice that as with the earlier transport coefficients, the instantaneous part of

the transport coefficient is purely collisional reflecting its origin which is the

discontinuity in time for colliding configurations at contact. Also, this is the first

transport coefficient where the center of mass momentum of the pair is part of

the phase function being averaged, reflecting the fact that this is the first term so

far that is associated with heat transport, unlike all the previous terms that were

essentially associated with momentum transport.

Finally, as demonstrated in Eq.(4-86) in C'!i pter 4, the subtracted part of the

heat flux can be introduced in the instantaneous term without loss of generality

and the time integral in Eq.(5-47) can be carried out to give

A* lim 1 dF *S(S)i*- ( 2- g (5-55)
V* 3

This is the Helfand form for the thermal conductivity of a granular fluid, with

S(s)'* and ,, are as defined in Eq.(5-51) and Eq.(5-52) respectively. This

completes the characterization of the exact expression for the thermal conductivity.









5.3.4 The p Coefficient

This transport coefficient is identified starting from the formal expression given
in the previous chapter to be

11
8* = li1m{ Jd dF*S'*Ri
V* 3


(2 In h ds 1 d*S(s)
2= ds'-- dP*se- s)T
SIn nh V*
xe A2)' (* -A2) A} (5-56)

where S'*, S(s)i*, and ,, are as defined in Eqs.(5-50), (5-51) and (5-52) respectively.
Also,
i t -r n (r, 0)'
K ^, ((t))3Ne Ldrk.rfl (5-57)

and
8 In (h
Q R 2 0n(M. (5-58)
8 In nh
The expression in Eq.(5-56) is the Green-Kubo expression for the p coefficient
which is a new transport coefficient associated with the transport of heat in
this system that is not present for normal fluids. First notice that the second
time correlation function is the same as that occurring in the expression for
the thermal conductivity given in Eq.(5-47) above. Also, unlike the cases of

2. the adjoint density 1i is given implicitly in terms of the local HCS state.
This is because, the reference state as has been characterized in this work is a
homogeneous state. The formalism as developed here does not make explicit the
density dependence of this state and hence is unknown up to this point. A formal
way to extract the density dependence would be to introduce an external potential
that couples into the density, in the Liouville operator governing the dynamics of
this system and solving the inhomogeneous problem. Then a formal procedure of
inversion can be used to eliminate the external potential in favor of the density.









A more physical way to get density dependence of the macrostate would be to

generalize the state to open systems, i.e., define a "grand canonical" homogeneous

Cooling State. This treatment will be part of future analysis of this problem.

For the moment, the result is considered at the formal level above and the

content of the expression elucidated below. As a first step, it is established that

this transport coefficient is uniquely related to the dissipative nature of the

interactions in the system by showing that in the elastic limit, this coefficient

vanishes. It is apparent from the form of Eq.(5-56) that this unfolded expression

does not have a transparent elastic limit. Hence, for the moment, the more formal

result in Eq.(4-86) from which the above explicit expression was obtained, is

considered.


P = kk{Vj dF*S'*

ds' dF*S(s) 1 (O,)}. (5-59)
3 0 V*

First, observe that, in the elastic limit

b* (k) |, ~* (k) ? (k) p (5-60)

where t* (k) is the Fourier transform of the equilibrium direct correlation function

of the fluid. The details of obtaining this form are given in Appendix F. It follows

from the above that

*(1)i (0) a1 i (0) p/,, (5-61)

for, normalization and fluid symmetry imply that ?* (0) = 1 and *(1) (0) = 0.

Therefore,

7i (0, s) = = e-L (Pi*peq) PL*peq, (5-62)

a time independent quantity. This identifies all the quantities in Eq.(5-59) in the

elastic limit. First notice that the instantaneous part of the correlation function