<%BANNER%>

Analysis of a putative cleavage motif in rice receptor-like kinases

University of Florida Institutional Repository

PAGE 1

ANALYSIS OF A PUTATIVE CLEAVAGE MOTIF IN RICE RECEPTOR-LIKE KINASES By GINA MARIE CORY A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLOR IDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2006

PAGE 2

Copyright 2006 By GINA MARIE CORY

PAGE 3

iii This thesis is dedicated to all those who have left footpr ints in my life.

PAGE 4

iv ACKNOWLEDGMENTS I must first thank my high school AP Biology and Independent Science teacher, Anthony Arico. He introduced me to the joys of science and is a true diamond in the rough. I also thank Dr. William Zettler, who reeled me as he did many others into the field of plant pathology with his enthusiasm and hi s ability to make a student feel like a student and not a social securi ty number. Also at the Plan t Pathology Department of UF, I thank Dr. Gail Wisler and all the facu lty and staff who guided me along the way. I thank the members of my advisory committee, Dr. Alice Harmon and Dr. Jeff Rollins, for their assistance and patience. I give special thanks to my advisory chair, Dr. Wen-Yuan Song, for giving me a chance as an undergraduate and then as a graduate student. He never stopped raising the bar of accomplishment. Next, I must thank all the members of th e Song lab, past and present: Dr. Guozhen Liu, Dr. Pranjib Chakrabarty, Anita Snyder-Pin eda, Dr. Porntip Tinjuanjun, Dr. Weihui Xu, Dr. Yongsheng Wang, Dr. Xiuhua Chen, Dr. Yan Zhang, Dr. Xiadong Ding, Yingnan Jiang, and especially Lisa Nodzon and Terry Davoli. I also thank Chris Dardick of the University of California at Davis. All of these people gr aciously provided support and necessary laughter. I thank all of my family, in particular my parents, whose generosity and caring never cease. Finally, I thank my husband, Dr. Juan Jose Suarez. I am so happy to enter the real world with him at my side.

PAGE 5

v TABLE OF CONTENTS page ACKNOWLEDGMENTS.................................................................................................iv LIST OF TABLES............................................................................................................vii LIST OF FIGURES.........................................................................................................viii ABSTRACT...................................................................................................................... ...x CHAPTERS 1 LITERATURE REVIEW................................................................................................1 Receptor Kinases........................................................................................................1 Plant RLKs ............................................................................................................2 RLK Structure .........................................................................................2 Comparisons of Animal Receptors and Plant RLKs........................................4 RLKs in Growth and Development............................................................................6 RLKs in Disease Resistance.......................................................................................9 Phosphorylation and Protein Stability in XA21.......................................................15 Receptor Shedding...................................................................................................17 2 SEQUENCE ANALYSIS OF RICE RECEPTOR-LIKE KINASES............................21 Introduction ..........................................................................................................21 Materials and Methods.............................................................................................22 Identifying Putative Proteolytic Cleavage Motifs in the JM Domain of Rice RLKs.............................................................................22 Average Length of JM Domains of Rice RLKs.............................................23 Creating Rice Chromosome Maps Depi cting the Locations of Rice RLK Genes.............................................................................23 Results and Discussion.............................................................................................24 A Significant Number of Rice RLKs C ontain the Putative Cleavage Motif.24 A Significant Number of Select Plant Proteins Contain the Putative Cleavage Motif..............................................................................24 Average Length of JM Domains of Rice RLKs..26 Rice Chromosome Maps Depicting the Locations of Rice RLKs..................26 3 MOLECULAR CHARACTERIZATION OF THE XA21T923A/S925/T926A MUTANT...72

PAGE 6

vi Introduction..72 Materials and Methods.............................................................................................72 Mutant Rice Plants..72 XA21 Detection..73 XA21 Transcript Levels...........................................................................................74 Results and Discussion.............................................................................................74 4 DIRECT MUTATION OF THE PU TATIVE CLEAVAGE MOTIF IN THE JUXTAMEMBRANE DOMAIN OF XA21..............................................................78 Introduction ..........................................................................................................78 Materials and Methods.............................................................................................78 Results and Discussion.............................................................................................80 5 CLONING OF SELEC TED ARABIDOPSIS RLKS....................................................82 Introduction ..........................................................................................................82 Materials and Methods.............................................................................................83 Amplification of the At5g01890, At1g48480, At2g36570 and At3g28040 ORFs.............................................................................83 Molecular Cloning of the PCR Products........................................................84 Results and Discussion.............................................................................................85 LIST OF REFERENCES...................................................................................................87 BIOGRAPHICAL SKETCH.............................................................................................95

PAGE 7

vii LIST OF TABLES Table page 2-1. Distribution of the P/GX5-7P/G motif in the JM domains of plant RLKs................25 2-2. The P/GX5-7P/G motif in the JM domains of predicted rice RLKs...........................27 4-1. Primers used in site-directed mutagenesis.................................................................79 5-1. Sequence alignment of XA21 and selected Arabidopsis proteins of the DE group..83

PAGE 8

viii LIST OF FIGURES Figure page 1-1. Generalized structure of a receptor-like kinase protein with major domains labeled.4 1-2. Proposed model of evolution of the receptor kinase family........................................6 1-3. Model of XA21 mediated resi stance through binding proteins.................................10 1-4. Components of signaling pa thways of innate immunity in Drosophila mammals, and Arabidopsis ........................................................................................................13 1-5. A c-Myc-tagged version of XA21.16 1-6. Intracellular juxtamembrane domain of XA21..........................................................17 1-7. A conserved motif in the juxtam embrane domain of the EGFR family.....................20 2-3. Rice RLKs selected for study mapped on the twelve rice chromosomes..................61 2-4. Motif-positive rice RLKs mapped on the twelve rice chromosomes........................62 2-5. Motif-like rice RLKs mapped on the twelve rice chromosomes...............................63 2-6. Motif-negative rice RLKs mapp ed on the twelve rice chromosomes.......................64 2-7. Rice RLKs in subfamily CrRLK1L-1 sele cted for study mapped on the twelve rice chromosomes............................................................................................................65 2-8. Rice RLKs in subfamily DUF26lc se lected for study mapped on the twelve rice chromosomes............................................................................................................66 2-9. Rice RLKs in subfamily L-LEC select ed for study mapped on the twelve rice chromosomes............................................................................................................67 2-10. Rice RLKs in subfamily SD-2a se lected for study mapped on the twelve rice chromosomes............................................................................................................68 2-11. Rice RLKs in subfamily WAK select ed for study mapped on the twelve rice chromosomes............................................................................................................69

PAGE 9

ix 2-12. Rice RLKs in subfamily LRR-1a sel ected for study mapped on the twelve rice chromosomes............................................................................................................70 2-13. Rice RLKs in subfamily SD-2b sele cted for study mapped on the twelve rice chromosomes............................................................................................................71 3-1. Analyses of XA21T923A/S925A/T926A mutant.................................................................76 3-2. Schematic representati on of XA21 indicating putative cleavage motifs (A and B)..77 3-3. Amino acid sequence of the intracellular domain of XA21......................................77 4-1. The intracellular domain of XA21.............................................................................80 5-1. Sequence alignment of XA21 and selected Arabidopsis proteins of the DE group..83 5-2. Identification of recombinan ts carrying the ORFs of At5g01890, At1g48480, At2g36570 and At3g28040......................................................................................86

PAGE 10

x Abstract of Thesis Presen ted to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Master of Science ANALYSIS OF A PUTATIVE CLEAVAGE MOTIF IN RICE RECEPTOR-LIKE KINASES By Gina Marie Cory May 2006 Chair: Wen-Yuan Song Major Department: Plant Pathology Plant receptor-like kinases (RLKs) are a large group of proteins found in many different species. XA21 is a rice RLK conferring resistance to bacter ial blight disease. Previous findings demonstr ate that phosphorylated residue s in XA21s juxtamembrane domain assist in the stabilization of XA21. These residue s exist within a motif identical to the proteolytic cleavage motif, P/GX5-7P/G, originally identified in the animal EGFR protein family. Here, it is shown that appr oximately 47% of 800 rice kinases contain this motif within their juxtamembrane domains. Additionally, a second putative cleavage motif in XA21, P922TDSTFRP, was identified within its intracellular kinase domain. Similar to previous findings, mutation of th e phosphorylated residues within this second putative motif leads to degradation of XA21.

PAGE 11

1 CHAPTER 1 LITERATURE REVIEW Receptor Kinases Perception of signal at the surface in an imal cell is known to be regulated by receptor tyrosine kinases (RTKs) and recepto r serine/threonine kina ses (RSKs) (Hubbard and Till, 2000). Many receptor kinases have a signal-receiving extracellular domain, a transmembrane region, and an intracellula r kinase domain. Based on their greatly different extracellular domains, the animal receptor kinases can be placed into 20 subgroups (Robinson et al., 2000). Recognition of ligands, mostly soluble though some are membrane-associated, often leads to dime rization of the receptors and results in phosphorylation of either tyrosine or serine and threonine resi dues of the kinase (Hubbard and Till, 2000). While one function of this phosphorylation is activ ation of the kinase, the other is to provide a binding surface for in teracting proteins (Burgess et al., 2003; ten Dijke and Hill, 2004; Johnson and Ingram, 2005). Receptor kinases function in numerous impor tant processes in the cell, such as embryonic development, metabolism, and im mune system function (Hubbard and Till, 2000). For instance, effects of insulin on th e body are regulated by the insulin receptor, an RTK (White, 1998). Once insulin is bound to the receptor, phosphorylation of the receptor and recruitment of downstream prot eins occurs. Those recruited downstream signaling proteins are the IRS adaptor prot eins, which are phosphorylated on several

PAGE 12

2 tyrosine residues by the receptor. IRS prot eins then bind and activate PI-3k, which is involved in the movement of glucose transpor ters to the cell membrane (Cheatham et al., 1994; Okada et al., 1994). Nonreceptor tyrosine kinases (NRTKs), l acking extracellular and transmembrane domains, are components within the signal transduction pathways triggered by receptor kinases (Hubbard and Till, 2000). Most NRTK s are located in the cytoplasm, though some are actually bound to the membrane. Th e largest subfamily of the NRTKs is the Src family, whose mutation can cause human cancers (Biscardi et al., 1999). Plant RLKs Plants contain a large number of pred icted proteins called RLKS (receptor-like kinases) with structures similar to anim al receptor kinases. Over 600 and 1000 RLKs have been reported in the model plant Arabidopsis thaliana and rice ( Oryza sativa ), respectively (Shiu and Bleecker, 2001a; Shiu et al., 2004). Much knowledge about the exact function of these kinases is lacking, w ith relatively few bei ng described (Shiu and Bleecker, 2001a). It is clear however that RL Ks are involved in a variety of processes, including disease resistance, self-incompatib ility, hormone percepti on and development. RLK Structure Like animal receptor kinases, many plant RLKs are composed of an extracellular domain, a transmembrane domain, and an intr acellular kinase that contains twelve subdomains with fifteen invariant residues (Figure 1-1) (Walker, 1994; Hanks et al., 1988). Some of the invariant residues, such as the lysine residue corresponding to Lys736 of XA21, are important for catalysis. The extracellular domain is thought to perceive signals (also known as ligands ) through binding. The transmembrane domain anchors the protein on the cells membrane, while the kinase domain juts into the

PAGE 13

3 cytoplasm of the cell. It is important to note the juxtamembrane (JM) domain, which is located just after the transm embrane domain. A correspond ing extracellular region is termed the extracellular JM domain. Phosphoryl ation of residues in the JM domain often acts as binding sites for other signaling proteins in animal systems. In plants, such phosphorylation has also been observed in XA21 in vitro and BRI1 in vivo (discussed in more detail below). Plant RLKs can be classified into 45 subgroups based on their extracellular structures (Shiu and Bleecker 2001a). Some major subgroups are described below. The leucine-rich repeat (LRR) s ubgroup contains proteins with a core tandem sequence of Leu-x-x-Leu-x-Leu-x-x-Asn-xLeu. LRRs have been imp licated in protein-protein interactions. The S-domain RLKs, the first clas s of RLKs to be described in plants, share similarities with the S-locus glycopro teins involved in incompatibility of Brassica One distinct characteristic of the S-domain RLKs thought to be important for folding of the extracellular domain is a group of ten cystei ne residues found next to the transmembrane region. Another subgroup is the lectin receptor kinases, which was defined by the Arabidopsis kinase Ath.lecRK1 which has an ex tracellular domain homologous to the legume lectin family (Herv et al., 1996). Lectin receptor kinases may interact with oligosaccharides or cell wall fragments (B uchanan et al., 2000). Epidermal growth factor-like RLKs share repeat s in the extracellular domain with their animal protein namesake, and may perceive signals at the cell wall-plasma membrane interface (Braun and Walker, 1996; Buchanan et al., 2000). There are several ot her groups of RLKs including thaumatins and WAKs (summarized in Shiu and Bleecker, 2001b).

PAGE 14

4 In a phylogenetic study of RLKs, a group of RLKs lacking extracellular and transmembrane domains existed within th e same monophyletic group as other RLKs (Shiu and Bleecker, 2001a). These were so te rmed the receptor-like cytoplasmic kinases (RLCKs). PBS1 is a representative of this class (Swiderski and Innes, 2001). This Arabidopsis serine/threonine kinase along with another prot ein RPS5, recognizes the avirulence gene ( avrPphB ) product from Pseudomonas syringae More recently, PBS1 was shown to be cleaved by a bacterial type II I effector molecule, and that this cleavage was necessary for the induction of defense agai nst the pathogen (Shao et al., 2003). It is thought the PBS1 cleavage product binds w ith RPS5 and subsequently activates resistance pathways. Animal NRTKs and pl ant RLCKs can be considered corresponding soluble forms of their respective groups, as some members of both have been shown to form complexes with receptors and help in the transduction of signals downstream. Figure 1-1. Generalized struct ure of a receptor-like kinase protein with major domains labeled. Comparisons of Animal Receptor Kinases and Plant RLKs Despite similarities between RLKs and animal receptors, major differences can be seen (Johnson and Ingram, 2005) It could be possible that plant and animal receptors

PAGE 15

5 evolved independently, and their similar struct ure organization being due to their inherent suitability to the processes they regulate. To date, most plant RLKs appear to be serine/threonine kinases, while animal receptors, except the mammalian TGFreceptors, are tyrosine kinases. And while both RLKs a nd animal receptors show a great variety of extracellular domains, the sequence and st ructure of the extracellular domains vary greatly between them. Thirdly, increasing evidence shows that downstream interacting proteins of plant RLKs differ from those of animal receptor kinases. Shiu and Bleecker (2001a) phylogenetically analyzed Arabidopsis RLKs in relation to animal receptor kinases using the conserve d kinase domains. This analysis included more than 900 candidate RLKs and relate d kinases from plants. Among the animal receptors, which included representatives from 16 subfamilies, data supported a strong monophyletic origin for the RTKs. Raf kinases, a family of kinases which can elicit or arrest the cell cycle in mouse fibroblasts (W oods et al., 1997), were more closely related to the animal RTKs; the plant RLKs formed a separate monophyletic group within the eukaryotic protein kinase superfamily (previ ously, RLKs were placed into a separate family based on their serine/threonine specifici ty). This indicates that RLKs have a distinct origin from Raf kinases and RTKs. In contrast, plant RLKs were found to be related to the Drosophila and Caenorhabditis Pelle kinases, and to three human IRAKs. Based on these results, a sepa rate group was defined as the RLK/Pelle kinases gene family. Shiu and Bleecker then proposed a model for the evolution of receptor kinases (Figure 1-2) chronologically beginning with (1) divergence of RLK/Pelle from RTK/Raf. Next (2) the divergence of RT K from Raf occurs followed by (3) the divergence of plant

PAGE 16

6 and animal lineages. The split of Raf and RTK from RLK/Pelle is attributed to an early gene duplication event which probably occurred before the divergence of plants and animals. The fact that only five RLK ho mologs were found in animals supports this notion. Figure 1-2. Proposed model of evolution of the receptor kinase family. (1) Divergence of RLK/Pelle from RTK/Raf. (2) Di vergence of RTK from Raf. (3) Divergence of plant and animals. Repr inted with permission. Shiu, SH and Bleecker A (2001a). Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. PNAS 98:10763-10768. RLKs in Growth and Development A number of RLKs have been implicated in plant growth and development. Several examples are br iefly highlighted here. CLAVATA1 (CLV1) is an Arabidopsis RLK with twenty-one LRRs in its extracellular domain (Clark et al., 19 97). CLV1 mutants show a surplus of undifferentiated cells (Clark et al., 1993). Cell prolifer ation and differentiation is regulated within the shoot apical meristem of plants. Consequently, CLV1 mutant plants have enlarged floral meristems, as well as inflorescence and vegetative meristems. Also, mutant plants show an increase in the number of floral orga ns and additional whorls in

PAGE 17

7 their flowers. In the CLV1 pathway, a dditional components, CLV2 and CLV3, have been identified (Jeong et al. 1999; Fletcher et al., 1999). CL V2 is a receptor-like protein with LRRs, whereas CLV3 appears to be a sm all protein that is hypothesized to function as a ligand for the CLV1 receptor. HAESA, previously known as RLK5, is an LRR-RLK from Arabidopsis (Horne and Walker, 1994; Jinn et al., 2000). Antis ense strategy produced HAESA mutants which exhibit delayed floral organ abscission. Jinn et al. (2000) also demonstrate that the intensity of this phenotype is directly related to the level of HAESA within a particular plant; that is, the less amount of HAESA, the greater delay in floral organ abscission. Therefore, HAESA may be involved in floral organ abscission in Arabidopsis The gene Crinkly4 ( cr4 ) encodes an RLK whose ex tracellular domain has a cysteine-rich region quite similar to mammalian tumor necrosis factor receptors ligand binding domains (Becraft et al. 1996). Maize mu tants of this gene show affected leaf epidermis, which in turn compromises t hose cells functioning. It has also been implicated in the differentiation of internal ti ssues as well as the epidermal tissues (Jin et al. 2000). It is suggested in the same study that cr4 is also involved in regulatory pathways of cell prolifera tion, fate, and pattern. The Arabidopsis CRINKLY4 is a involved in the development of sepals and ovuoles (Gifford et al. 2003). The SRK ( S R eceptor K inase) gene is located at the S locus of Brassica oleracea (Stein et al., 1991). This locus controls self-recognition of pollen and stigma in Brassica oleracea Pollen germination is halted if both pol len and stigma come from plants having identical S-locus genotypes, preventing se lf-fertilization. SRK is capable of in vitro autophosphorylation (Stein and Nasrallah, 1993). Confirmati on of SRKs involvement in

PAGE 18

8 self-incompatibility was shown through studying self-compatible plants. These plants were determined to have mutated SRK genes (Goring et al., 1993) Later, an SRK-related protein SFR2, an S-locus family member, wa s shown to be rapidly induced by wounding and bacterial infection of Xanthomonas campestris pv. campestris ( Xcc ) (Pastuglia et al., 1997). SFR2 mRNA accumulates af ter bacterial infection by Xcc and Escherichia coli This evidence points towards a role in plant defense. BRI1 is an Arabidopsis LRR-RLK and is involved in the perception of brassinosteroid, a growth-promoting hor mone (Li and Chory, 1997). Dwarf Arabidopsis mutants, unresponsive to exogenous brassino steroid treatments, mapped to the same region as a previously-described brassinostero id mutant (Clouse et al., 1996). BRI1 is autophosphorylated, which has uniquely been shown in vivo in response to brassinosteroid; six phosphoryl ation sites of BRI1 are located in the JM domain (Wang et al., 2001; Wang et al., 2005). Also, BRI1 is one of few RLKs with a known ligand (Kinoshita et al., 2005). Recently it has b een shown that BRI1 exists as a homodimer even in the absence of applied steroids; this state of the protein is thought to autoregulate the activity of the protein (Wang et al., 2005). The proposed model of BRI1 activation begins with this homodimer going through a conformational change upon ligand binding. The subsequent transphophorylation of the kinase domain separates the homodimer, leading to activation of BRI1 through furt her phosphorylation. Afterwards, BRI1 likely then forms a complex with BAK1 (BRI1-associ ated receptor kinase 1) and transduces the brassinolide signal (Nam and Li, 2002; Li et al., 2002). The tomato BRI1, also known as SR160, was shown to bind systemin in tr ansformed tobacco (M ontoya et al., 2002; Scheer and Ryan, 2002). Systemin is a mo lecule which triggers defense responses

PAGE 19

9 against insects after wounding. Additionally, a mutant tomato line with non-functional BRI1 showed reduced production of proteas e inhibitor in response to systemin. RLKs in Disease Resistance Plant RLKs also function in disease re sistance. Flor (1971) first described the gene-for-gene theory of disease resistance. This states that two corresponding genes are required for the onset of disease resistance re sponses in the plant: one avrirulence gene ( avr gene) from the pathogen and one disease resistance gene ( R gene) from the plant. If either of those genes is absent in a partic ular host-pathogen intera ction, disease resistance does not occur. Instead, dis ease of the plant begins. R gene products, a number of which are RLKs, recognize directly or indirectly Avr gene products (Jones and Dangl, 2001). Reviewed below are RLKs to date implicat ed in pathogen or insect resistance. The rice gene Xa21 confers resistance to the bacterial pathogen Xanthomonas oryzae pv. oryzae ( Xoo ) and is a member of a small gene family (Ronald, 1992; Song et al., 1995; Song et al. 1997). The protein XA 21 is a serine/threonine transmembrane kinase with an extracellular domain of twen ty-three LRRs (Figure 1-3). The cloning and characterization of this gene was a milestone in the understanding plant disease resistance genes ( R genes) because at the time of its di scovery, it represented a new class of R genes as well as a possible evolution betwee n previously described classes of R genes. The LRRs of the extracellular domai n of XA21 is similar to tomatos CF-9, while its kinase domain is reminiscent of another serine/thre onine tomato kinase, PTO (Song et al., 1995). XA21 is thought to bind a polypeptide signal from Xoo activating the kinase through autophosphorylation (R onald, 1997). It is hypothe sized that XA21 forms a homodimer which activates the intramolecu lar phosphorylation upon pathogen infection, after which it binds with several other prot eins (Figure 1-3) (Liu et al., 2002). The

PAGE 20

10 resulting protein interactions are believed to be the beginni ng of possibly several defense responses. Figure 1-3. Model of XA21 mediated resist ance through binding prot eins (courtesy of Dr. Wen-Yuan Song, University of Florida). Upon ligand binding, it is believed XA21 forms a homodimer. Subsequent phosphorylation recruits binding proteins (blue spheres, purple s quares, and green ov als). This then may activate several pathways lead ing to resistance responses. P: autophosphorylated residues. XA21 binds with several prot eins in the yeast-two hybr id system (Wang et al., unpublished). One XA21 binding protein, XB3, has been studied in depth to date. XB3, whose interaction with XA21 has been confirmed through co-immunoprecipitation assays, contains a RING finger domain capable of autoubiquitination. Downregulation of XB3 in vivo yields greater susceptibility to Xoo as well as lower steady states of XA21.

PAGE 21

11 ERECTA is an LRR-RLK which was orig inally implicated in developmental control of aerial organs (Torii et al., 1996). Plants carrying a mutated ERECTA gene show compact flowers, shorter internodes, and shorter floral organs. More recently, ERECTA has been implicated in resistan ce against bacterial wilt disease caused by Ralstonia solanacearum (Godiard et al., 2003). Arabidopsis thaliana Landsberg, an accession susceptible to bacter ial wilt, transformed with ERECTA exhibited an increased resistance to R. solanacaearum ERECTA, more specifically its LRR and kinase domains, is also implicated the defense against the fungal pathogen Plectosphaerella cucumerina (Llorente et al., 2005). The Xa26(t) gene confers resistance to Chinese Xoo strain JL691 (Yang et al., 2003). This gene was cloned by using a map-based strategy. Xa26(t) encodes an LRRRLK and shares the most homology with XA 21 out of reported LRR-RLKs (Sun et al., 2004). Their different resistance spectra are suggested to be a ttributed to their different structure and variations in the LRR region. Interestingly, Xa26 confers resistance to Xoo from seedling to adult stag es, which differs from the Xa21 -controlled resistance that is only present in adult plants (Xu et al., 2006). Resistance to Puccinia graminis f. sp. tritici causing stem rust of barley, is conferred by RPG1 (Brueggeman et al., 2002). The Rpg1 gene was cloned using a mapbased cloning strategy and subse quent characterization identifi ed it as an RLK. RPG1 has two predicted tandem intrace llular kinase domains, repres enting a novel structure of disease resistance genes. One of these tande m kinase domains does not contain all of the highly conserved residues seen in most kinase s, suggesting it may not be functional. The membrane-targeting sequence of RPG1 is not clear and a ligand binding sequence is not

PAGE 22

12 identifiable. Additionally, Thre204 of PTO, wh ich has been implicated in the interaction of PTO and AvrPto, is conserved in both predic ted kinase domains of RPG1 (Frederick et al., 1998). FLS2 is an LRR-RLK which is involved in the perception of bacterial flagellin. Flagellin is a surface protein on numerous bact erial propellants, also known as flagella (Moens and Vanderleyden, 1996), has been impli cated in the pathogenicity of bacteria (Tans-Kersten et al. 2001). The FLS2 gene was identified by screening flagellininsensitive Arabidopsis thaliana ecotype Ws-0 plants (Gmez-G mez and Boller, 2000). The Ws-0 plants did not respond to the inje ction of flg22, a synthetic peptide mimicking the conserved N-terminus of flagellin. The ability of the plant to perceive flagellin was further illuminated by Zipfel et al. (2004). In their study, fls2 mutant plants not only showed susceptibility to the infiltrated bacterial pathogen Pseudomonas syringae pv. tomato but showed a greater susceptibility when the bacteria was just sprayed on the leaves, which bypasses natural infection suppor ted by flagella functioning. Flagellin perception then could possibly inhibit bacterial infiltration of the plant. FLS2 signaling is often compared to i nnate immunity of animals and insects (Figure 1-4) (Gomez-Gomez and Boller, 2002). In animal and insect innate immunity systems, the perception of a pa thogen leads to rapid responses describing a first line of disease defense. In Drosophila the Toll receptor, an LRR transmembrane protein with an intracellular domain of high similarity to the interleukin-1 receptor, mediates innate immune responses (Hoffmann and Reichhart, 2002); in animals, innate immunity is mediated by the Toll-like Receptors (TLRs) of which TLR5 recognizes flagellin.

PAGE 23

13 Figure 1-4. Components of signaling pathways of innate immunity in Drosophila mammals, and Arabidopsis Reprinted with permission. Gomez-Gomez, L and T Boller (2002). Flagellin percepti on:a paradigm for innate immunity. TRENDS in Plant Science 7(6):251-256. The perception of pathogens in innate i mmunity is dependent upon the recognition of pathogen-associated molecular patterns (PAMPs). PAMPs are highly conserved, general elicitor molecules including chitin, lipopolysaccharide, glycoproteins, as well as flagellin (Lamaitre et al., 1997; McDermott et al., 2000). After pathogen perception in Toll and Toll-like systems, receptor dimers then form and signaling proceeds through adapter molecules (dMyD88 and Tube in Drosophila and MyD88 in animals) (Gomez-

PAGE 24

14 Gomez and Boller, 2002). This leads to th e activation of downstr eam kinases Pelle in Drosophila and IRAK in animals. Eventually, the pathway results in the degradation of Cactus in Drosophila and I B (inhibitor of nuclear factor B (NFB)) in animals, which in turn leads to the release of Di f (dorsal-related immunity factor) in Drosophila and NFB in animals. The released molecules ar e transported to the nucleus, where gene expression results. The mitogen-activated-pro tein kinase (MAPK) pathway is activated in animals also. There is no direct evidence in plants fo r a pathway like Toll and Toll-like systems, but many parallels can be seen. It is known that the MAPK cas cade is activated in plants in response to elicitors as well as gene-for-gene interac tions (Ligterink and Hert, 2001; Romeis, 2001). This supports the notion of a common system for the recognition of and response to elicitors. Additionally, Toll from Drosophila now implicated in innate immunity, was originally implicated in dorsove ntral development. This is much like the duality of plant RLKs ERECTA, BRI1, and SRK described earlier. A proposed model for FLS2 signaling in Arab idopsis begins with the recognition of flagellin, or degraded form s of flagellin (like the fl g22 synthetic peptide), by the extracellular domain of FLS2. The activati on of the FLS2 kinase possibly occurs via dimerization and autophosphorylation. Subse quently, an unknown pathway proceeds to the activation of ion channe ls and the NADPH oxidase complex, while simultaneously the activation of AtMEKK1, which activat es AtMAKK4/5, which then activates MAPK3/6. This activation may in turn activate the WRKY type transcription factors involved in expression of defense genes.

PAGE 25

15 Molecular cloning of plant disease resi stance genes and thorough understanding of the molecular mechanisms of plant defense can have global impacts. Historically, plant pathogens have greatly affected humans, espe cially with reference to our food sources. The late blight of potato cause d by the oomycete fungal pathogen Phytophthora infestans led to the Irish potato famine of 1845 (Ristai no et al., 2001). Identi fication of molecular components involved in plant disease defense would allows us to manipulate them and create transgenic plants with broad spectru m and durable resistance, thereby reducing the usage of pesticides, fungicides, and the like. Phosphorylation and Protein Stability in XA21 Protein stability has emerged as a common regulatory step of plant R gene products. As known in Arabidopsis the disease resistance pr otrein RPM1 (recognizing Psuedomonas syringae pv. tomato carrying avrRPM1 or avrB ) requires the presence of RIN4 and HSP90 to accumulate (Mackey et al, 2002; Hubert et al., 2003). RPM1 interacts with both RIN4 and HSP90. Add itionally, RAR1 regulates the accumulation of MLA1 and MLA6, which provides resistance to powdery mildew, a lthough their direct interactions with RAR1 have not ye t been shown (Bieri et al., 2004). In addition to the proteins that directly or indirectly interact with resistance gene products, protein phosphorylation has also been implicated in the st abilization of plant resistance proteins (Xu et al., 2006). An XA21 dead kinase mutant, XA21K736E, is unstable in rice extracts. In XA21K736E, glutamic acid was substituted for Lys736, which corresponds to a highly cons erved lysine required for the kinase activity XA21. Additionally, the simultaneous mutation of the phosphorylated Ser686, Thr688, and Ser689 to alanine implicates these resi dues in the stability of XA21. Both XA21S686A/T688A/S689A and XA21K736E transgenic plants exhibit lower steady-state protein

PAGE 26

16 levels than plants containi ng wild-type XA21. Because wild -type XA21 is stable for at least six hours in plant extr act, this suggests phosphoryla tion is a key factor in the stability of this protein. Western blot analysis illustr ates that the 140 kD XA21 pr otein can be cleaved to a 100 kD product in the microsomal fraction. Because XA21 is tagged at its N-terminus with c-Myc for convenience of antibody detec tion and the calculat ed weight of the extracellular domain of XA21 is approximate ly 100 kD, this dete cted 100 kD cleavage product should represent the extracellula r domain and transmembrane domains. Subsequently, it is hypothesized that the mi ssing 40 kD corresponds w ith the intracellular portion of the kinase, which wa s calculated at approximate ly 36.6 kD (Figure 1-5). Western blot analysis showed a significan tly increases accumulation of the 100 kD cleavage product for both XA21S686A/T688A/S689A and XA21K736E, further supporting that autophosphorylation of these three residues pl ays a role in the st abilization of XA21. Figure 1-5. A c-Myc tagged version of XA21. A blue triangle marks the N-terminal tag c-Myc used for immunodetection of XA 21. At the top of the figure, bars indicate the portion of th e protein of the corresponding kD weight: the full-

PAGE 27

17 length protein is predicted to weigh 1 40 kD, and the intrac ellular portion is 40 kD. Further investigation illustrates that XA21 stability is developmentally controlled, with younger plants containing hi gher steady states of the prot ein. This suggests that an unknown proteolytic activity incr eases with the age of the pl ants. Finally, inoculation with Xoo demonstrated that XA21S686A/T688A/S689A and XA21K736E mutations lead to decreased disease resistance in rice, indicati ng that accumulation of XA21 is required for resistance against Xoo Ser686, Thr688, and Ser689 are located in the JM domain of XA21, more specifically within a region id entical to a cleavage motif identified in the epidermal growth factor receptor (EGF R) family of animal receptor kinases (Figure 1-6). Figure 1-6. Intracellular juxtamembrane dom ain of XA21. The putative cleavage motif is underlined, and the autophosphoryl ated residues are shown in red. Receptor Shedding Many receptors in animal systemscan be cleaved in the extracellular JM or transmembrane domain. This phenomenon is kn own as receptor shedding or ectodomain shedding (Hooper et al, 1997; Dello Sbarba and Rovida, 2002). Shedding of the

PAGE 28

18 ectodomain is often regulated by a protease, also known as a sheddase, acting upon a regulatory protein(s) at the surface (Dello Sbarba and Rovida, 2002). These proteases are usually metalloproteinases belonging to the groups known as MMPs (matrix metalloproteinases) or ADAMs (a disinteg rin and metalloproteinase domain). One example is the regulation of Met, a hepatocyte growth factor receptor, which is involved in cell growth amongst other processes (Nath et al., 2001). Shedding of Met by a metalloproteinase is activa ted through EGF (epidermal growth factor) and LPA (lysophosphatidic acid) bi nding to their receptors. Possible biological purposes of receptor shedding include cessation of signaling after the initial signal transduction resulting from a ligand-receptor interaction (Dello Sbarba and Rovida, 2002). Overexpression of re ceptors has been shown to be deleterious to the organism. Another significance of receptor shedding is that the resulting transmembrane-cytoplasmic domains of the pr otein may act differently in signaling than their full-length precursors, and are not c ontrolled by ligand-bindi ng (Dello Sbarba and Rovida, 2002). Much is still unknown about the regulation of receptor shedding. In the case of Her-2 however, a particular cleavage site wa s identified and implicated in its receptor shedding (Yuan et al. 2003). Her-2 is a receptor tyrosine kinase of great sequence homol ogy to the EGFR family of proteins (Coussens et al., 1985). The cleav age product of Her-2 has been suggested to be involved in the aggressiveness, metastasis and morbidity of breast tumors and it is suggested that the ectodomain released duri ng shedding of Her-2 may act as a decoy for

PAGE 29

19 treatments (Christianson et al., 1998). Recen t advances have led to the use of EGFR inhibitors as treatments (Shelton et al. 2005). Yuan et al. (2003) identified a cleavage site in the ex tracellular JM domain of Her2 at which the receptor portion of the protei n is released. The cleaved extracellular domain of Her-2 was detected in supernatan ts of the cell cultur e through Western blot analysis. The Her-2 extracellular domain was then immuno-purified from soluble fraction of a conditioned cell cu lture. Identification of the cleavage site was performed via C-terminal sequencing and MALD I-TOF mass spectroscopy. Sequence analysis of the JM domains of eight other EGFR family members led to the hypothesis that this cleavage site rests within a particular motif, P/GX5-7P/G (Figure 1-7) (Yuan et al., 2003). Prot eases may recognize this short, unstructured motif flanked by proline and glycine. The P/GX5-7P/G motif is seen in EGFR family members originating from very different species s uggesting the motif is highly conserved. In contrast, Her-4, which does not carry a comp lete motif, is not cleavable. Proline and glycine are commonly associated with proteolyitc in cleavage sites because they can locally disrupt the secondary structure of the protein, possibly leaving that portion exposed to cleavage (Hooper et al., 1997). Therefore, it cannot be assumed that protease(s) recognizing P/GX5-7P/G in EGFRs are identical to the suggested protease(s) recognizing P/GX5-7P/G in XA21.

PAGE 30

20 Figure 1-7. A conserved motif in the juxt amembrane domain of the EGFR family. Several EGFR family members from di fferent organisms are represented. Reprinted with permission. Yuan CX, Lasut AL, Wynn R, Neff NT, Hollis GF, Ramaker ML, Rupar MJ, Liu P, and Meade R (2003). Purification of Her-2 extracellular domain and iden tification of its cleavage site. Protein Expr Purif 29(2):217-22.

PAGE 31

21 CHAPTER 2 SEQUENCE ANALYSIS OF RICE RECEPTOR-LIKE KINASES Introduction Bioinformatics studies have become crucial in modern molecular biology, particularly when the genomes of a nu mber of organisms, including rice and Arabidopsis have been sequenced. Through analyzing the rice genomes sequences, 1429 protein kinases have been predicted (Rice Kinase Database, http ://rkd.ucdavis.edu). Genomewide comparative analysis suggests that ri ce has significantly mo re numbers of RLKs that are involved in resistance and defense than Arabidopsis (Shiu et al., 2004). To support this hypothesis, three qualitative resistance genes, whose protein products are RLKs, have been identified in rice (Song et al ., 1995; Sun et al., 2005; Chen et al., 2006). Therefore, rice appears to be an excellent model system to study RLK-mediated defense signaling. As describe din Chapter 1, a putative prot eolytic cleavage motif (P/GX5-7P/G) was identified in the juxtamembrane (JM) domain of XA21 (Xu et al., 2006 ). This motif was originally described in the extracellular JM re gion of animal epidermal growth factor receptors (EGFRs) (Yuan et al., 2003) and has r ecently been implicated in the stability of XA21 (Xu et al., 2006). In this study, rice RLKs are se arched for this motif. Chromosome maps depicting locations of the RLKs are then created to investigate the distributions of rice RLKs carrying this motif.

PAGE 32

22 Materials and Methods Identifying Putative Proteolytic Cleavage Motifs in the JM Domain of Rice RLKs Raw protein sequences files were downloaded from the University of California at Davis Rice Kinase Database, which includ ed a total of 1429 recep tor kinases (January 1, 2006, http://rkd.ucdavis.edu). The Rice Kina se Database incorporates and shares genomic and proteomic data resulting from a collaborative rice proteomics study, and enables the user to easily view this data. The database creators have additionally made a phylogenetic tree of these kinases using the nearest neighbor method. To quickly determine if each kinase qualified for this study, its ID was entered into the PlantsP website (http://plantsp.genomics.purdue.edu/ ) to obtain detailed motif and domain structure information. Because the JM dom ain is loosely defined as being located between the transmembrane domain and the P-lo op of the kinase, proteins which did not clearly carry both of these we re simply eliminated and the resulting number of rice RLKs totaled 796. Each proteins JM domain was then searched by eye (u sing Microsoft Word and Excel) for the putative cleavage motif, as well as additional proline and glycine residues which may also contribute to the expos ure of the cleavage motif to proteases. All proteins were subsequently placed into one of three categories: motif-positive, motif-like, and motif-negative. Motif-positiv e proteins are those c ontaining at least one perfect motif, while motif-negative protei ns contain none. The motif-like category contains proteins having a cleavage motif(s ) with +/one amino acid outside of the normal range in the variable region of the mo tif. That is, these cleavage motifs may be P/GX4P/G or P/GX8P/G. This allows for the investigation of a group of proteins which may be recognized by less specific interactions and can also allow for some sequencing errors.

PAGE 33

23 Additionally, 27 previously de scribed plant RLKs are investigated in the same manner as described above. These included RLKs functioning in both growth and development and defense responses origina ting from various plant species. These published data provide an opportunity to quick ly examine the putativ e cleavage motif in species other than rice without examin ing whole kinomesmany of which are unavailable. Average Length of JM Domains of Rice RLKs Upon the collection of the rice RLKs sequences and identification of the JM domains, a marked difference in the lengt h of the JM domain was noticed between the motif-positive RLKs and the motif-negativ e RLKs. Each motif category was then analyzed separately for an average JM dom ain length. All JM domains of proteins making up a group were compiled, with carefu l elimination any ch aracter except those representing an amino acid, and counted usi ng Microsoft Words character count. The total was then divided by the number of proteins belonging to the category. Creating Rice Chromosome Maps Depicting the Locations of Rice RLK Genes To view the distribution of the rice RLK genes in this study with respect to their motif categories across the rice genome, rice chromosome maps are created. To further analyze this relationship, seven different s ubfamilies of rice RLK genes are also mapped with respect to their motif category. All chromosome maps of rice RLK genes were created using the freely availabl e Genome Pixelizer software (http://www.atgc.org/GenomePixelizer/Genom ePixelizer_Welcome.html ). Genome Pixelizer was created to he lp visualize relationships between genes and following footprints of evolution. Using data provided by the pr ogram user, Genome Pixelizer rapidly creates a chromosomal map, indicating the location of each gene with a colored

PAGE 34

24 square. Each square is interactive, provi ding all input informati on when clickedthough this feature is only available when using th e program. The maps shown in this chapter are snapshots only and are not interactive. Fo r the RLKs studied here, protein IDs, their subfamilies, 5 end positions of genes, and other necessary information were obtained from http://rkd.ucdavis.edu. Technical assistance was generously provided by Chris Dardick of the Ronald lab at Univ ersity of California at Davis. Results and Discussion A Significant Number of Rice RLKs Co ntain the Putative Cleavage Motif Of 796 rice RLKs analyzed, 47.1% were cat egorized as motif-positive. This represents a significant portion of the tota l proteins analyzed. Motif-like proteins comprised a group of only 5.9% of the total proteins analyzed, while motif-negative proteins represent 46.9%. Table 2-2 shows all rice RLKs involved in this study and their JM domains. Residues involved in putative cleavage motifs have been highlighted in red, while proline and glycine residu es flanking the putative cleavage motif are highlighted in blue. As discussed in Chapter 1, these flanking proline and glycine residues may contribute to exposure of the site by di srupting the local secondary structure. A Significant Number of Select Plant Prot eins Contain the Putative Cleavage Motif Table 2-1 shows the previously described pl ant proteins implicated in development and disease defense chosen for examination in this study. Putative cleavage motifs have been highlighted in red, while flanking pro line or glycine which may contribute to exposure of the site are highlighted in blue ; ellipses indicate amino acids which have been left out for convenience of space in the figure and have no bearing on the immediate study. The majority of defense -related RLKs contain the P/GX5-7P/G motif although some RLKs that function in developm ental processes also carry the motif.

PAGE 35

25 Table 2-1. Distribution of th e P/GX5-7P/G motif in the JM domains of plant RLKs. Perfect motifs are highlighted in red, wh ile motif-like sequences are in blue. Proline and glycine residues which ma y contribute to the disruption of secondary structures are al so highlighted in blue. Protein Function Reference Juxtamembrane Domain BAK1 development Li et al. (2002) RRKK PQDHFFDVP AEED PEVHLG QLKRFSLRELQVASDN EXS development Canales et al. (2002) RRWAMTKEESRLKGFVDQNLYFLS GSRSREP LSINIAMFEQ PLLKVRL G ... HAESA development Jinn et al. (2000) RKITRSKNIGYVWILLTIFLLA GLVFVVG IVMFIAK...LAASKWRSFHKLH NORK development Endre et al. (2002) RKTKRADKGDSTETKKKGLVAYSAVR GGHLLDEGVAYFISLP VLEEAT DN PRK2 RRNKNL G GSSLTSSSP TSQDQKLIP GQSSAASTPDRACNDGGKRA EVAG QKL SERK3 development Hecht et al. (2001) RRKK PQDHFFDVP AEED PEVHLG QLKRFSLRELQVASDN SYMRK development Stracke et al.(2002) RYRQKLI PWEGFAG KKYPMETNIIFSLPSKDDFFIKSVSIQA CLAVATA1 development Clark et al. (1997) RQMNKKKNQKSLAWKLTAFQKLD HAR1 development Krusell et al. (2002) RKRRLHRAQAWKLTA ERECTA Devel.,defense Torii et al. (1996) RPHNPPPFLDGSLDK PVTYSTP KLVILHMNMALHVYEDIMRMTEN BRI1 Devel.,defense Li and Chory (1997) REMRKYAE GHGNSG DRTANN...NLAAFEKPLRKLTFADLLQATNG XA21 defense Song et al. (1995) HKRTKK G A PSRTSMKG H P LVSYSQLVKATDG XA21/A1 defense Song et al. (1997) EV PATTSMQG H P MITYKQLVKATDG Pi-2(t) defense Jiang and Wang (2002) KRKRH PPPSQDDAGSSEDD GFLQTISG A P VRFTYRELQDATSN RKL1 defense Ohtake et al. (2000) CRKKSNKRSEI P GDKEAVDNG NVYSVSAAAAAAMTGN GKASEGNG P ATKKLV RKS1 defense Ohtake et al. (2000) RERRSIEVF GKLRPVP FDFDESFRFEQDKARNRELPLFDLNTIVAATNN SFR1 defense Pastuglia et al. (1997) RFWKRLSGDMKTEDLELPLMDFEAIATATHNFSSTNKL GQGGFG IVY K SIRK defense Robatzek and Somssich (2002) RRFKKKQQR GTLGERNGP LKTAKRYFKYSEVVNITNN WAK1 defense He et al. (1997) RMKHLKDTKLREQFFEQN GG GMLTQRLSG A GP SNVDVKIFTED GMKK ATNG WAK2 defense He et al. (1997) KIKHRKNTELRQKFFEQN GG GMLIQRVSG A GP SNVDVKIFTEK GMKEA TNG WAK4 defense He et al. (1997) EHKMKNTKDTELRQQFFEQN GG GMLMQRLSG A GP SNVDVKIFTEE GM KEATDG LRK10 defense Feuillet et al. (1997) RTRYNEEIHLKVEMFLKTYGTSKPTRYTFSEVKKIARR PBS1 defense Swiderski and Innes (2001) HTFAFRELAAATMN RKC1 defense Ohtake et al. (2000) KRRKQKQEIELPTESVQFDLKTIEAATGN SFR2 defense Pastuglia et al. (1997) WKRKQKRSILIETPIVDISSRRHISRENNTDDLELPLMEFEEVAMATNN XA26 defense Sun et al. (2004) RKKANHQNTSAGKADLISHQLLSYHELLRATDD

PAGE 36

26 Average Length of JM Domains of Rice RLKs The average length of the motif-positive RLKs JM domains was 75 amino acids, while motif-like and motif-negative categories were 41 and 40, respectively. This is interesting to note and suggests some correl ation between length of the JM domain and containing cleavage sites. Rice Chromosome Maps Depicting the Locations of Rice RLKs Analysis of the chromosome maps show s that the rice RLK genes are welldistributed within the genome (Figure 2-3,) even when separated into their respective motif categories (Figures 2-4, 2-5, and 2-7.) Many of the genes exist within clusters, which may have originated from duplication events. To address what types of motif categories of RLKs any one subfamily contai ns, chromosome maps were created showing seven large subfamilies of rice RLKs (Figures 2-7, 28, 2-9, 2-10, 2-11, 2-12, 2-13). Generally, many proteins within a subfamily are clustered. However, for subfamily LLEC and LRR-1a the clusters c ontain proteins of the same motif category. This further supports similarity and evolution within a subfamily. Subfamily CrRLK1L-1 and WAK, though not having significant clusters, is com posed of proteins of a particular motif category. Subfamily DUF26lc contains one majo r cluster which is interspersed with both motif-positive and motifnegative proteins. Subfamily SD-2b though, appears to have no clear significant clus tering or motif category preference. These findings are crude and the significance of the phenomena noted within separate subfamilies is better determined through further examination of each subfamily.

PAGE 37

27 Table 2-2. The P/GX5-7P/G motif in the JM domains of predicted rice RLKs. Proline and glycine residues within a motif are show n in red, while pr oline and glycine residues possibly contributing to the di sruption of local secondary structure are shown in blue. Protein ID Category Juxtamembrane Domain 9629.m00042 motif-positive RRSKRRRRSREGSSTSATALV PPLWKVFTSEELRSITKNFS E G NRL PG NAKT GG TYSGIL P D G SRVAIKRLKRSSLQRKKD FYSEI G RVAKLYH P NLVAVK G CCYDH G DRFIVYEFVAN G P LDVWLHHV P R GG RCLDW P MRMRVATTLAQGIAFLHDKV KPQVVHRDIRASNVLLDEE 9629.m00043 motif-positive RRSKRRRRSREGSSTSATALV PPLWKVFTSEELRSITKNFS EGNRL PG NAKT GG TYSGIL P DGSRVAIKRLKRSSLQRKKD FYSEI G RVAKLYH P NLVAVK G CCYDH G DRFIVYEFVANGP LDVWLHHVPR GG RCLDW P MRMRVATTLAQGIAFLHDKV KPQVVHRDIRASNVLLDEE 9629.m00111 motif-positive WYKKKRRRAT G YHA G FVM P S P ASS P QVL G YS G KTNYSA G S P DYKETMSEFSMGNCRFFTYEELHQITNG 9629.m00112 motif-positive WYKKKRRRAT G YHA G FVM P S P ASS P QVL G YS G KTNYSA G S P DYKETMSEFSMGNCRFFTYEELHQITNG 9629.m00153 motif-positive P SVEDIE P SC G YLAMT P I GGG WNSVNL P EYTSYAEVVKSM R GG FAVKF P T P WLNWF G LIKKCLNKSVSHRTMSTNGGLE HLDSLFAANSLL P I PP TS PP FA G TRRTSSAVQL P RDLLCL G Q SYMA G LVVRR G QG P SAAWRR G EG PP LVA GGGG DVDRA G DD GGG E G D G QATKSTMDGVRRLRMAKVCVRTVGRDD 9629.m00167 motif-positive KWIADDPYCYILVLDCLAFYPQVSCTLAAFTNEICSGPTKS NSRYRYFTLGMTGIVRSNDRKQFGAVKYRYLEV G GGGG A P LVVMTFLAHKCWKKRITIDAV 9629.m00191 motif-positive KDKDFFSAC P AKQC G KVEIRY P FRFEPSNTSSSCGLPCMKL TCSDRQETILDIKNYLGRPYKVTAIDYKRATLTIV P LADDS SL PP TPGC P L P NLISE G ALDHRCEPYAMWLLKSINIEFPFRR AVHVSESLQTRYNEEIHLKVEMFLKTYGTSKPTRYSFSEIK KIARR 9629.m00341 motif-positive PRLSGRRSARRLRE G EKIVYSSS P YGAT G VVTAA GG TFER G KMVFLEDVSS GGG KRFELDDLL 9629.m00363 motif-positive RRKRKRSASFE G LIH GG T P L P SLTKEFSLAGLAYTHIFTYEE LDEATDG 9629.m00513 motif-positive RRRK P VHRKK G QSLT P VVEEQFERVSYQELSNGTKG 9629.m00554 motif-positive RRKEEKEELRTPTTSQ P STAWM P LL G RISFRSA PP SAV G SR S P SFTIDTNANT PGGGA T PG MAAAASSS P SYRF P FAALQDA T G N 9629.m00555 motif-positive RRKEEKEELRT P TTSQ P STAWM P LL G RISFRSA PP SAV G SR S P SFTIDTNANT P GGG AT P GMAAAASSS P SYRF P FAALQDA T G N 9629.m00688 motif-positive RRRQ P LF G R G STS P AD G D G KDADML PP WDVTLYQKLEIS VGDVARSL

PAGE 38

28 Table 2-2. Continued Protein ID Category Juxtamembrane Domain 9629.m00937 motif-positive RFR G SD G LAQRF P HSAL P KFSRSS G T G QTLLA G RYSS P S GP S G SL G SSIATYA G QAKTFKFAEIEKATNS 9629.m01024 motif-positive QDKD G EDEFAEL P G M P TRFSFQMLKLATKD 9629.m01041 motif-positive MARM G ISK GG S G KEAKK PP LLL G R 9629.m01044 motif-positive RKR G RAAI G P WKT G LS GP LQKAFVT G V P KLNR P ELEAACE 9629.m01045 motif-positive RKR G RAAI GP WKT G LS GP LQKAFVT G V P KLNR P ELEAA 9629.m01193 motif-positive KLFATR P LDARS G LMVFSYAQVKNAT 9629.m01202 motif-positive CNRS GGGG DEEVSRVVS G KS G EKK G RES P ESKAVI G KA G D G NRIVFFE GP ALAFDLEDLL 9629.m01205 motif-positive RYRRDLF G SSKFVVE G SLVVYSYAQIKKAT 9629.m01240 motif-positive FKKKKRHHHHH PPPPP P PHLLHYY G H PPPPPPPPPP FK G DH Y GG VYQNWQQN GPPPP P DHVLKKV P SH P S PPPPP A P LNVH S GG S G SNYS GG DNSQ P LVS PG AAL G FSRCTFTYEDLSAAT DG 9629.m01429 motif-positive KKWARKKRIIENSLTGGKMVMFRSAAMQSLS P KSFLTMI M G 9629.m01474 a motif-positive KLRK G KRKV P P VET P KQRT P DAVSAVDSLPRPTSTRFLAY DELKEATNN 9629.m01474 b motif-positive SNKRSKKL GGGG ADSHTSAWL P LYHSHTS G KSS G HITANI A G MCRHFSFAEIKAATKN 9629.m02103 motif-positive RSRKRVRRASANI P ITQI P AISKEIKEVRVEQV P TSDFAAHD G VLMTIQDKSSEKESDKVMVHL G VSKSKR G DESHS G SFR YMDKDL G FQSADE GG S G TFRHNSAHAITA P SPLV G L P EFS YL G W G HWFTLRDLEVATSR 9629.m03098 motif-positive WRAVSSKEK G N GG AA G SK G SRC G KDC G CFSRDESATPSE HTEQYDLVPLDQQVRFDLDELLKASA 9629.m03450 motif-positive DS P GGSLASL P EWQPM P CKSVSVN P LCSSYLYVT P EGRNL SKVASDFSGNASLFQRITRLS G SEDLLVNV P CVCEAINATM TGLFHDTNYRVKDGDM G DIINSKTFS G LALNVGD G QILHK EEKLIIHL P CGCSSTA P E G VLSYAVQD G DTLGNIASLFRSS WKDILDLN P RVAN P DFIK PG WILFI P M G VA GP SNKKID P FQ TER P VIFSLRAIEDATSN 9629.m03772 motif-positive RWRKQRVVA G S P AAV GG RCSTDAA G KDSFRKSASSTLVS LEYSN G WD P LAD G R GG I G FSQEVAQSFRFNMEDVESATQ Y 9629.m03992 motif-positive RKR G NRF G DTAE P EI P DITKEIAVDEARNRVAAENVQRQE SYTLSLKERQTNKGSRKMLAHFLSCKSS G SHNLV G CSSMY QNDKAQCSYSSDEGTSGHNEREYSQYATMSTS P QI G L P EF SHL G W G YWFTLRDLEDATNG 9629.m04252 motif-positive RRKTKRTMDNLRQTQI P IFSKEI P VDRV G G RSLAQTMHER EQPSFP P QDKHTNRE P GKTL G HMALSKSSE P DNMSQ G SSV CNVDRA G SVHS G ED G ST G H G RK P YS P AAFVSAS P LV G L P E FSHL G WGHWFTLRDLELATNR

PAGE 39

29 Table 2-2. Continued Protein ID Category Juxtamembrane Domain 9629.m04552 motif-positive MRRKKKTAVGFD G RSHMEI P IVSKDINVDRVDAQSLHDS GTPIMPVQDKYEQMKGVSHLAESRSVDVDAFSQCSSVYNI EKAGSSYSEDYSSSGP G RKGSSSY G YASAS P LVGL P ELSHL G WGHWFTLRDLEYATNR 9629.m04594 motif-positive FLFKMHNI P KSMEK G YKMITSQFRRFTYRELVEATGK 9629.m04595 motif-positive KKHNI P KSMED G YKMITNQFRRFTYRELKEATGK 9629.m04597 motif-positive SKHNI P MSMEA G YRMVTSQFRMFTYRELREAT 9629.m04603 motif-positive SSKQSI P SSLQA G YKMVMTSQFRRFTYRELKGAT 9629.m04613 motif-positive SSKQSI P SSLEA G YRRVMTSQFRRFTYRELKDVT 9629.m04615 motif-positive LRSKQNI P KSVMD G YELMTEHFRKFSYRELKEAT 9629.m04657 motif-positive CRNKSVATI GP WKTGLS G QLQKAFVT G VPKLQRSELEGA C 9629.m04784 motif-positive RKRKHKKVNSSSKLLKYSGS GG TPRSM GG DMES G SVKDL QTHLFSYEELEEATDS 9629.m04795 motif-positive P ENID P ITCSFI G LI G PSYVL P KDQVP PG NWSQFCKTFEVPV VKYQQMDPK G DAWRK GG Y G QVLRQ G FLLSVNDSRRPPN CTQCEESK G RVFKLK G ENETFLKKYRHRRISKGTPRIESFL QRNGTLHPKRYTYTEVKRMTKS 9629.m04796 motif-positive CHKKHHGQQP P VQELTT PP KAEPSQKKQRAQHLKRYSYS EVERMT 9629.m04824 motif-positive KFCT G KKLK G L P ITMSLESNNNHRAISYYELVRATNN 9629.m04969 motif-positive FKIRNRNHLTEES P M PP K P A GPG SAVV G SRL G SR P ISAS P SF SSSIVTYKGTAKTFSLIEMERATQR 9629.m05220 motif-positive KKKRRRIE P P ASL P TQQ P A PPPPP NYF P SS GG SSLTSDAFFIS PG YH P VRLFSA G SH G Y P YS P ADSAI G YSRMLFT P ENLAEFT N G 9629.m05240 motif-positive KLSQYN P QA P NNQ G KS P DQSISHKFQLLKS G SFCY G S G RY LCCQF G NVKQSRTD G SDHHMNT P K G VVVDVFDREKPIVF TYQEILASTDS 9629.m05252 motif-positiv e RDIRRRRKRV AQREDWKIT P FQTDL G FSEAAILR G 9629.m05253 motif-positiv e RDIRRRRKRV AQREDWKIT P FQTDL G FSEAAILR G 9629.m05335 motif-positive SKRRRRRQH PPPP HHP G Y PP F P AEFYDPHR PP SQQQSHALS P SPSST PP LLLQ P HSFVSS GG ASEAASAV PG IAMM GG AF G Y DELAAAADG 9629.m05510 motif-positive KRRSRV G KDT G MSD G HS G WL P LSLY G NSHSS G SAKSHTT G SYASSL P SNLCRHFSFAEIKAATNN 9629.m05592 motif-positive FVSQWRKA G ELAD G DIDEEM G YDELADEEFFVESGPRRF RYSDLAAATKN 9629.m05634 motif-positive FWRNRVRTRRNETAAAAA GGG DDVL P FRVRNQQH P ASS VKRDQRLDVKRECDEKDLDLPLLDLKAIVAATDD 9629.m05637 motif-positive RNKARRKQHTEMEKSSDADDL P FRVRKS P ALSPARDQWF DENR G AEDDLDL P LFDLEMIFNATDR

PAGE 40

30 Table 2-2. Continued Protein ID Category Juxtamembrane Domain 9629.m05640 motif-positive TRKKKRARKT G SSKWS GG SRST G RRYE G SSHHDDDLEL P I FDL G TIAAATD G 9629.m05897 motif-positive RQKKIAKEAVERTTN P FASW G Q GG KDN G DV P QLK G ARYF AFEELKRCTNN 9629.m05964 motif-positive RRARATTSRSAPATALSDDYLSQS P ENDASS G KLVMF G K G S P EFSA GG HAL 9629.m06449 motif-positive RRRMVK G TTQVE G SLISFTYRDLKSMTKN 9629.m06547 motif-positive WRRRQDSIRSKSRRLS G ERRLSR P RPNV G SVLFSL G ELAKA TC G 9629.m06610 motif-positive G RRRTI G INRDD G KLITFKYNELQFLTRN 9629.m06844 motif-positive RRKLVRSRPLAFE SASKAKATVE P TSTDELL G KKSRE P LSI NLATFEHALLRVTADDILKATEN 9629.m06926 motif-positive G A G EVQLAA P Q P EKIAAVQKDES G W P LWLSSAA G DALA G WA P RSADAFHKLEKR 9629.m06939 motif-positive RVAILHAKYA P AIVR GP VSFT P QIS P KNLHSA 9629.m06940 motif-positive RVAILHAKYA P AIVR GP VSFT P QISPKNLHSA 9629.m06957 motif-positive RHRRRASDSSESSSSS P AQ P ELQ G ARCMTLEELSSATRN 9629.m07015 motif-positive RVARRSRRNSDT G SSET P P TLVEW G RC G RTLSA P EYQGAR QFSLEELAHATKN 9629.m07193 motif-positive RRRA G D GG TTT P EKELESIVSSSTKSSKLAT G KMVTF GPG NSLRSEDFV GG ADAL 9629.m07395 motif-positive RKQLQ G ASA GG NSKSKSIVVSAEQKKKAT P VA GGG GG EI DNMMAAMAAR GP LEFEVRELEEATS 9630.m00072 motif-positive RHCLSGLRRRHRAAAAADVDAEAAE GG A G ARQLM PP CS PPP QQEL P LLR P AAKLV P STKEE G E P WKLTWREVEALT GG 9630.m00103 motif-positive RRKDALSPHSHAYSFDKYTSWSSRSNLVSHRSS P L P Q P K P K P RISVLKEFLCSCN P IC G NE GGP L PG VIVRFSYSELEQATG K 9630.m00104 motif-positive RRKDALSPHSHAYSFDKYTSWSSRSNLVSHRSS P L P Q P K P K P RISVLKEFLCSCN P IC G NE GGP L PG VIVRFSYSELEQATG K 9630.m00105 motif-positive RRKDALSPHSHAYSFDKYTSWSSRSNLVSHRSS P L P Q P K P K P RISVLKEFLCSCN P IC G NE GGP L PG VIVRFSYSELEQATG K 9630.m00115 motif-positive YAYRRWYVD G A G CCDDENL GG ES G AW P WRLTAFQRLGF TCAEVLAC 9630.m00168 motif-positive DDGVY P E G QILEA P NLRTFTFIELRTATKN 9630.m00356 motif-positive KRRRETSLH GG FLR G VEMST P DWS G K P S G QSAVVKVDKE QSTVAEEKDTKGSISSYQKNVQESLQNHPLQFKFTIFTVAS LQQYTNSFSEQNLMRQTL 9630.m00518 motif-positive LTLLRSTSFLSKNRRYSND G TEA P SSNLNSEQ P LVMV P Q G K G EQTKLTFTDLLKATKN 9630.m00525 motif-positive SLRDAIPKIENKSNTS G NLEA G SFTSD P EHLLVMI P R G S G EA NKLTFTDLMEATDN

PAGE 41

31 Table 2-2. Continued Protein ID Category Juxtamembrane Domain 9630.m00733 motif-positive KR GG RRDEH G RLVFVQESRKRFEIEDLL 9630.m00752 motif-positive LSKYQERQSRRDYTTSQV G RVHQRVEE P KVKQASVQSRN DAKK G STEV P ERRQMYKITIQLLAAALEKPPEKRKEHQYT NS 9630.m00890 motif-positive RNAQKRKDDTSSNSKDFVGPLSVNIERASNREIPEQSPENT SVATMKISPAEKMT P ERIY G KT G SMRKTKVPITATPYTVA SLQVATNS 9630.m00912 motif-positive RRRR G V G EESVRP G KVV G DVSSSAEY G ALAS G KQTTTAT SMSSLSAARSLMASEVREALESLTVYK 9630.m01346 motif-positive RRRKRGKKAAAAWEDDEVAV G AVKVAATA P VVLVER P L MELTLADLAAATSGFG 9630.m01660 motif-positive RRKLAKK G KEII P G DFVSIWNFDAKVAFQDALYATEN 9630.m02590 motif-positive RN RSSLKRRQSSCSEEVEDIKSVLLD P SVIRSAT G N 9630.m02923 motif-positive K G KFKTRKEL P A P SSVI GG INNHILVSYHEIVRATHN 9630.m03277 motif-positive RRRRRRR GP NTS P VQQL P VSA PP KN P QKVKA P KDIQEV P A QATAAAAAKT P LAQVLQM P A PPPPPPP MAAAA PPP ETVQI AT G KEHRITY P E PP HRS G SSSH G SGEA P SV P EVSHL G W G H WYTLKELEAATEM 9630.m03316 motif-positive KRKKY G EQSEN G V G DAKVFSVWNFEGGEACRQIFETTKY 9630.m04006 motif-positive KSSFRRQDYIVKAVADTTEALELAPASLVLLFQNKDD G KA MTI G DILKSTNN 9630.m04684 motif-positive RWRKRNAVRRAQIESLR P LSNSDL P LMDLSSMYDATNQ 9630.m04997 motif-positive KQYEHLE PG NQLHSL P S P SE G NESIEKSADEFWDKQNFEID HGQDNTLDQEKDSAEVRQDAERTSDKSSGTESAKSEITLD DVAEFEIQWEE 9630.m04998 motif-positive KQYEHLE PG NQLHSL P S P SE G NESIEKSADEFWDKQNFEID HGQDNTLDQEKDSAEVRQDAERTSDKSSGTESAKSEITLD DVAEFEIQWEEI 9630.m05216 motif-positive RKQERRAGRRASRSRDVQLRRHRSPASDSAHLVY G NDDD G NDIVI PG L P TRFTHEEIEDMTNS 9630.m05315 motif-positive P HWAQV P KDVSLCK P DIHAL P SSNV PP KLVILHMNMAFLV YEDIMRMTEN 9630.m05589 motif-positive KRKLIRTKQRFFEQNGGVLLQQQMSSY GG TS GG A GG FKIF SKEELEKATNS 9630.m05597 motif-positive QKRKLIRTRQKFFEQNGGIFLQQQMRSY GG A GGG V GG FKI FSTEELKNATNN 9630.m05673 motif-positive KWYKLRQLQEAVSPATT P AVNRRY GG RSTLSVSRVSSAS ASMLSTVATCTTSVKTFSLSQLEKATDG 9630.m05830 motif-positive RR G RNKRVA G DVDK G AM P EEEEEQQQQQPQAQPREEINA SASASASVASERR GG REFSWERE G I G KLVFC GG VAEMYSL EELL 9630.m05880 motif-positive KSCTYSPKSTANNAKS PP ANVEKV P KANEVLYSWNSLMNDCEA SSSDVIKPERAMKTKVWAKTSKNFLTAKQFQAVDILAATRN

PAGE 42

32 Table 2-2. Continued Protein ID Category Juxtamembrane Domain 9631.m00239 motif-positive RRRRQA P T P A P EEKESTQL P WSQHTQD G SSWVDMSNAS G AGMT G G LHRMSMQLNISLADITAATEN 9631.m00251 motif-positive SRRRRRRDDLASNLYPADTKIL KQHLQQPTPPKDIQEIVRR QQRQQQT P TPT P P Q PPPP AAQH G VQLAKAET PPPP QRTQ PP VL P A G STRSTAAS G MSATTS GG SERD G AT P RSTAS G SA GP EVSHL G W G HWFTLRELEEATDG 9631.m00268 motif-positive AMNIKAYMRRSKEEQEGKEEDEVLESEST P MLAS P G RQ G S NAII G KLVLFSKSL P SRYEDWEA G TKA 9631.m00800 motif-positive RRRKRRAALEEHFEQHQ P FTSF P SNEVKDMK P IEESTTIDV ESL P S P ASFSLK PPP KIERHKSFDDDDLSNK P VLKKTNVA P I KATVYSVADLQMATES 9631.m01136 motif-positive RMRRRR G KVTAVQ G SLLLLDYHAVKTATRD 9631.m01146 motif-positive RKKSSSST P ATAVEK G RDLQMA P MDME P K G QN G SAA G N G AHV G AAAAA P AAATSAAVAAAAAAAKT GG AT G G SKK LIFF G PMAAA PP FDLEDLL 9631.m01182 motif-positive CCSKKKKR P P HMHM P YYTDEN G KVYYANSM P RWQNSV DQ GGG WHAQYS P G QA PP SSEMS G SH G A G P L PPP S PG MAL G FSKSSFSYDELALATGG 9631.m01193 motif-positive CARRRRGAKHLSMSRVE HAPSSGSLRQASSSSA P KEKDHA EA G A G T G T G TSSSDVASSSAAASYLES P VRRK P ERISCAAA MDMGWGRWYDLEELEAATGG 9631.m01412 motif-positive RR G RKRGA G A GGG AAARM G V G V G V G ARTQ P A P ALRRLS CQQLRRATGG 9631.m01555 motif-positive KNF G KKDIH G FRVELC GG SSIVMFH G DL P YSTKEILKKLET 9631.m01585 motif-positive RRCRRQRRRRRQAQ P F P L PPP IYN P N P YYK G DL PP Q P FVAQ Q PP SDHYFIQHQH P T PP QTS G TFSDA G SER P HSIDILTELPT GGSLSYDQLAAATDG 9631.m01698 motif-positive RMLRRKKKPVKQ P SNTWV P FSASAL G ARSRTSF G RSSIVN VVTL G QN G A G A G A G YRF P FAALQEAT GG 9631.m02117 motif-positive RRRAQKAREEL GGP FASWKRSEER GG A P RLK G ARWFSYE ELKRSTNN 9631.m02118 motif-positive RRRAQKAREEL GGP FASWKRSEER GG A P RLK G ARWFSYE ELKRSTNN 9631.m02148 motif-positive SKRKEKKDD G LDNN G K G TDNARIEKRKEQVSSGVQMAE KNKLVFLDGCSYNFDLEDLL 9631.m02151 motif-positive CKRRQRAGKDSGMSDGHSGWL P LSLY G NSHTSSSAKSHT T G SHASSL P SNLCRHFSFVEIKAATNN 9631.m02173 motif-positive RVRT PG SHSAAELELSD G YLSQS P TTDVNS G KLVMF GGG N P EFSASTHAL 9631.m02769 motif-positive KRKSTRHQH GG D P EKNE P LTLR P IASGKFNQLRTISIIS P TA KE G LQKTVSMNLKPPSKIDLHKSFDENDLTNKPVLAKNV DLSSIRATAYTVADLQMATES

PAGE 43

33 Table 2-2. Continued Protein ID Category Juxtamembrane Domain 9631.m03402 motif-positive KAKKNRKAI P SALNN G QVT P F G QRNHTASALNNWEITPF WQRNHVAASNDAQDNNSMR P A G Q G NHQDLDL P SFVIETI LYATNN 9631.m03557 motif-positive KNRWKRRRRPAQVMNLARRRTLVV P ERVAS P EVYQ P SN G PTAS P S G TSSYEFS G TTSWFTYDELAAVTGG 9631.m03714 motif-positive RRWRRRRRRQQAQ P L P L PPP MLYN P N P YYK G DQ PP L P FVF MQQHHHH P TA P QTS GG TFSDA G SER P HSISID GG SLSYDQL AAATGG 9631.m04965 motif-positive KRKQK P F G RVQS P HAMVVH P RHS G SD P DMVKITVA G G N VN G G AAASETYSQASS G P RDIHVVET G NMVISIQVLRNVT NN 9631.m05382 motif-positive RRRHRPGWQKTNSFQSWFLPLNS TQSSFMSTCSRLSSRNR F G STRTKS G FSSIFASSAYGLGRYFTFVEIQKATKN 9631.m05526 motif-positive SRKTA P RRKRKKK P HNPVTHFDADTS G SK GGGG RDTS GP K PPPPPP WLAE P RAAPSTSDAAGMSKGTFTYEQLAAATGG 9631.m05779 motif-positive RRYR G R GP A P AA G PTNAAARAAAFLRRN G LHQHR P SFTY EQLRAATAG 9632.m00032 motif-positive WRNRFKWC G V P LHRSQ GG S G IIAFRYSDLDHATKN 9632.m00033 motif-positive RNRFEWC G A P LHD G EDSS G IKAFRYNDLVHATKN 9632.m00260 motif-positive KWR G T G R G FDK G TR G VRRFKYHQLVSATNQ 9632.m00342 motif-positive RAR G M G IV GG K G GH GGG SSDSES GG DLAW P WQFT P FQK LSFSVEQVVRNLV 9632.m00847 motif-positive RKS G KFQLRII G KNSN P KENIEELLDNYGSLAPKRYKYSQL KDMTGS 9632.m01083 motif-positive RRKTTKTMI P P DNT G NEEDNDYVDPPTLNLTVLRAATRN 9632.m01131 motif-positive RKKTQLSQL P SNSGL P SKIFTYRELEKATGG 9632.m01135 motif-positive RKDVQ P LQ P SRD PG L P LKAFSYAELEKATDG 9632.m01392 motif-positive KRRMISFSWFNYGHRQCTDVLRQFS G MLNMLCSSN P KRR EV P TT P INNETLKKVSYGDILKATNW 9632.m02040 motif-positive RRARKRRRRDDGVSYDDS IDDDDEEDMES G T GP RRI P YA HLAAATGG 9632.m02719 motif-positive R G NKFKCC G A P FHDNE G R GG IIAFRYTDLAHATKN 9632.m02858 motif-positive RHKQKIKRQALLRQTDEFFQQHGGQILLEMMKAD G ND G F TLYKR G EIETATNN 9632.m02868 motif-positive KYKQRIKRQDIMRKR G EYFHLH GG QLLTDMMNIENNISFK LYDRDDIELATKG 9632.m02875 motif-positive KYKQRIKRHDLMRKR G EYFNLH GG QLLTDMMNIENNISF KLYDRDEIELATKG 9632.m02879 motif-positive RHRQNTKKQALLRQTDEFFQQHGGQLLLEMMKVEGNV G FTLYER G QIETATNN 9632.m03307 motif-positive WRIK G KWIIAH P LEKSEDSI G IIAFRHIDLRRATKN

PAGE 44

34 Table 2-2. Continued Protein ID Category Juxtamembrane Domain 9632.m03373 motif-positive SRRRRRRR G VAVAT P VLHLATAVA P PKHPGK PP KDIQEV P SRAAAAAAAPKAQ P AQVIQA PP PQPP P SESIQIETGKEHRIT FREQQHQPPQPP P YHQRS GGP SSR GG S G ESRGG GGGGGGG G AE P GV P EVSHL G WGHWYTLKELEDATAM 9632.m03459 motif-positive RRHR G SSSPVS G RIHAEPT G TAPRVERRLSALLSKG P NTTV EQF P LVALRAATDC 9632.m03631 motif-positive WWRRRKPEEHFFDV P AEED P EVHL G QLKRFSLRELQVAT DN 9632.m03678 motif-positive QRKPRPHHSRDVAAELALHSKEAMSPSVYT P RVSDAR PPP P PAAVV P AIQ P AVAANVA G KKKLFFF G RVPRPYDLEDLL 9632.m03707 motif-positive SCHLRRRAHNLKRSKKDIEVTAVSVEYEEVTCKQMCTKEI YDATEN 9632.m03789 motif-positive KKSKKIDP P KQSYST GG LPLKSFTYEELHEATGG 9632.m03791 motif-positive KKTDL P KQSSST GG LPLKSFTYEELHEATGG 9632.m03956 motif-positive GSGKVQQTTDVDVKVKLDNGSYHGVAYMHNSFDLYSQL YD GG SWSMQ GP D P ATDSA G KIVGSQVKSNLKSKRKTIIEK SRVSSDEVNVAK G LLPDNA G QKNIMKHDVIRETVPSLHV VAEETENDSKTVSTSNRENTSGTPERSFSSVHQLEDSDLSD EDWNDEDSGS G SGFSNT P SFDMFDDASRNKKKDLILVHLL RLACASKDSLSASLPAISSELCNIGILSEWAKDLISKS P AVF G ETF G HFF GP QMTSSECSLFWRADNSSSRPNSRYLND 9632.m04082 motif-positive HMRK P LETVA P LQDKQIFSAGSNMQVSTKDAYTFQELVS ATNN 9632.m04117 motif-positive WKYK G FEKSR G TGRVSNSSATRKTGMRSSFSSMTSSTASF VSTIATCPPTVKTFSISELEKATENFS 9632.m04727 motif-positive RWRRRFIEKRD G VKKRRRS P GRGSGSS G TSTDSVSQPKLI MFNSRITYADTVEATRQ 9632.m04923 motif-positive SR G RENQW PP LEGNSQLTTTKNLSCDEV P YPF G LK G KSAP G FRVTCRKNDSAAMLRIGHQKFRIDQVSSQE G FVVIFA GP I YRLCYDRN G R P VVGST G I G PTNLTDTPFFFSKRNTLVATG CYSNFTATFTSSLHHHGWSTN G SCTTN G RVNSD G LCP G TA CCDAY G M P LDDAQEVTFEFNKTSASVAGTCSAAFILYQKE QIFKVSGNSKPMHLHQEEHIFRA G GGDSK P VHLEDVLV P L GERRMVLDWVIGRATCEQARNNSFKTQYRCNNESSCMD RFMGE G YVCRCKA G YDQHN G N P YEA GG CQAYSVITL P ED ILALA P IIRLVMAT G Q G Q G ALT P I G HLA P L P TTNRKKRKVE RNRAELFRKNGGLLLQQRFSMMTSQGEDSSAKIFSAEELK DAT 9632.m05098 motif-positive WRQNRRKRKLSLEQQELYSIVGR P NVISY G ELRSATEN 9632.m05100 motif-positive WMQKRRKLSLEQQELYCIVGR P NVFSY G QLRSATENFN 9632.m05101 motif-positive WRKKRRKLSLEQQELYSIVGR P NIFSY G ELRSATEN 9632.m05116 motif-positive RRYRRKRRAADIAGDS P EAAVVV P ELRRFSY G QLAAATN S

PAGE 45

35 Table 2-2. Continued Protein ID Category Juxtamembrane Domain 9632.m05247 motif-positive KCRVLSGKRHQNKVVQKRGIL G YLSASNEL G DENLEL P FV SFGEIAAATNN 9632.m05252 motif-positive RKCRGKRQNKVVQKRML G YLSALNEL G DENLEL P FVSFG DIAAATNN 9632.m05258 motif-positive RRRQRPRVSDDDAGV PAATAAVHAR P NPALAA P SINLSSV KEATGN 9632.m05263 motif-positive NYTGVVERLVWVASSRAWQRFFQGPRD P CDSYARC G PFG LCDADAAATSFCGCVD G FTAAS P SAWALRNTSGGCRR G V ALDCA GGGGG SRTTDKFKVVRGVKLPDTRNASVDMGAT AAECERRCLGNCSCVAYAAADINGGGCVIWTDDIVDLRY VDRGQDLYLRLAKSEFDVI P DNPSM G VASVNLATIKSITEN 9632.m05264 motif-positive RRIQA P RLITKEA G PPADEAIFRSDSVKSAVLSSPLVEFSTIY SATNN 9632.m05414 motif-positive MKRGKKRRR P SSAAY P SPKKSAAMSEVSRDNTDL G YVEC V P DEETAAMMMPEEKARRLERS G CLTFCA G EGASYSLEQ LM 9632.m05461 motif-positive RADSVAA G RVGDE G YSLVFSHFRRFTYDELSDATCG 9632.m05466 motif-positive KCAKIAIKMWYSSSRDHHT P IANGG G SSSSR GG IGGADAD VVEM G SMSHFIE G LQNERPVRFSARQLRA 9632.m05467 motif-positive MRCVEAKHAERARRREEEAV P VSPPAS G TYSSVDVRVEM GSVDRFLDDILREKPARFTPENLREFTG 9632.m05492 motif-positive WKFLR P DIMRRLMR P KRAPSEV P EYFSGNMS G NLRTITYF DYATLKKATRD 9632.m05758 motif-positive RKKRGSVP P NAASVVVH P RENSD P DNLVKIVMVNND G NS SSTQ G NTLSGSSSRASDVHMIDTGNFVIAVQVLRGATKN 9633.m00004 motif-positive TTKKKKKQRRRDN G YRAGFMS P TS P LSSHH P SSGS G ASAN V G SSLDPSFKTNYSAGSPKLKACMSDISMGNSRFFTYQEL YQITDA 9633.m00288 motif-positive FGFCSHKKVHNSVQ P NIASNNN G GG GGG AAAAV G SGA P S P YGS P N G SLGRLRRQLSRVMTRQRS GP SSFKD P AEEFTFA QLAAATKD 9633.m00622 motif-positive RRKKKMKK P QT P LTSR P SSSWT P LSLNALSFLSTGTRTTSR TTYTSGTNSDTSYRIPFVVLQEATNH 9633.m00690 motif-positive HRR G GG AR GG EDKD G EMS PP WDVTLYQKLEIGVSDVARS 9633.m00702 motif-positive APAAPPDVLSS P AAAAGE G EAEALLAVKAALHDTANVLA DWNAGSGGVVVAGGGGGGGPCNWSMVTCSKTGHVSVL DLAHRNLSGTLSPAIGKLRRLRLLFLQHNAISGPIPDTIGRL KVLQTLDLAYNHFTGTIPSILGHSKGIFLMDLSFNNLSGPA PVFSANSVLFSALTSVQKVILRG SETFVSRYSGHIFPYQRPE IYLGHLKQFMIKEIKEATNN 9633.m01041 motif-positive TRKVSRRLHSLDLPKHHRRSSSSS P PPMP PP L PPPPP SANA P TL G KES P SSNSASD G AAAAVVV GG ERGAVQVFSYRQLHA ATGG 9633.m01042 motif-positive TRKVSRRLHSLDLPKHHRRSSSSS PPP M PPP L PPPPP SANA P TL G KES P SSNSASDGAAAAVVVGGERGAVQVFSYRQLHA ATGG

PAGE 46

36 Table 2-2. Continued Protein ID Category Juxtamembrane Domain 9633.m01043 motif-positive TRKVSRRLHSLDLPKHHRRSSSSS PPP M PPP L PPPPP SANAP TL G KES P SSNSASDGAAAAVVVGGERGAVQVFSYRQLHA ATGG 9633.m01831 motif-positive QSKKRKVLNNSASHSS G WL P VY GG NSHTSTSKSS G G RSA ALIN P NITAMCRHFSFGEIKSATKN 9633.m02137 motif-positive RQKKRAQKLVSIND P FASW G SM G QDI G EA P KIKSARCFTL EDLKLSTND 9633.m02285 motif-positive RRQQRIRLAKEKLAKEREEILNANNSS G RTAKNFS G RELR RATAN 9633.m02291 motif-positive RRKKKVAKDT G KSDEGRWT P LTDFTKSQSATS G KTTNT G SHSML P ANLCRHFSFAEIQAATNN 9633.m02806 motif-positive P FYFFL P SLFCLQ GP WWLT G HDLEGS G CVWEWGLHPWLP KSKLEGGKAFLAVGTSSVAAEFVINGTSLGLGEEREVQQL SRLEYLVDHGSVPSGMVAPNTRSFSLDKSKSQGGLDSRKD AFIPRDANGQPIAAHTFTFRELAAATKN 9633.m03039 motif-positive TRRWKP G TVD G A GG ASCN G DK PGG A P ASSC G SSVRGYN NSRYYAAAAA G CIY GG RL G FSVQ P RNRGAQVFTYRELES ATDG 9633.m03361 motif-positive RRRKPAAKRASSAAAAAAA P GGAAV P LSPATI PP VSKEIQ EVAVHVGSLRHYLEAGATFLKEGGGVGGAVVDGDSLGG STVYGSQRVHIEAGKGRRMVAYADGEVGPVASDLAASA QAAVGVGVGPEVSHLGWGHWYTLRELEEATAA 9633.m03735 motif-positive RRVRSAASHSAVPTALSDDYDSQS P ENEAN PG KLVMF G R G S P DFSA GG HALLN 9633.m03811 motif-positive RQKRRAKELKERAD P FASWAA G QKDSG G A P QLKGARFFS FDELKICTNN 9633.m03812 motif-positive RQKRRAKELKERAD P FASWAA G QKDSG G A P QLK G ARFFS FDELKICTNN 9633.m03875 motif-positive KRNRK P HKHMMI G SVDL G DEDEMR G SESLLYDLSTLRAA TAN 9633.m04105 motif-positive RRRRRRRRRQ P TS PG DFL GP L P VTSRHHQQSQFIK P TVTYP P QLNAHS P LQSSSNSD PP S P LLQ P S PPPP AAS GG TVSY G DL VAATN G 9633.m04180 motif-positive KRRKRLARTE P AWKMT P FQPLDFSEASLVRG 9633.m04201 motif-positive KKKQ G SMNTSIK P QNEANYV P TNDSD G H G SSMQLENRRF TYKDLEKITNN 9633.m04202 motif-positive RKKKQ G SMNTSVK P QNETASYV P TNGSH G H G SSMQLENR RFTYNDLEKITNN 9633.m04204 motif-positive RKKKNKSK G AVK P QIL G N G VQSHSQN G SGGSLLELHNRQ FTYKDLAVITNN 9633.m04448 motif-positive KKFWH G LLSSM G KSKEA P NIESFLQKHEAQHPKRYSYSEV KTMTKS 9633.m04450 motif-positive RKRRQYKMTSSSRLLKYTTS G RTPRSK G SSDKFVESGSFH YLQTHHFAYEELEEATDG

PAGE 47

37 Table 2-2. Continued Protein ID Category Juxtamembrane Domain 9634.m00267 motif-positive KWYKRPQDWERRNSFSSWLLPIHT G QSFTTSK G GSSKS G Y TFSSTL G LGRFFSFAEIQAATKN 9634.m00625 motif-positive RKWETR P EITDE G YAIISSQFRRFSY KELQKATNC 9634.m00626 motif-positive KWGRR P EIRDE G CTIISSQFRRFSYKELEKATGF 9634.m00628 motif-positive KWGRR P EIQDE G YTIISSQFRRFNYKELEKATDC 9634.m00665 motif-positive KKKYFQQHG G MLLLQEI G LKQGQSTAFTIFTEAELIEATN K 9634.m00812 motif-positive KKLTTTSVS P HLSSG G VMDERNSEHPRISHRELVDATGG 9634.m00813 motif-positive RRDARRSMLLA GG AGDE PG ERDH P RISHRELAEATGG 9634.m00996 motif-positive RPHSPPVFKDVSVSK P VSNVP P KLVILHMNLSLLVYEDIMT MTEN 9634.m01240 motif-positive NKQYEYLE PG CQLLSL P SSS G ANELI P K G RHDFWDNQLEI DHGQTSVPEKEKDLVEVPQEAERVSDKSVGTESSRSDIAL DGVAE 9634.m01323 motif-positive RCVKKNGL P AVNINTN P TAAAAMYAVVPDSQIRDATVER FLKEIAGEKPIRFTAQQLAGFTNN 9634.m01742 motif-positive RRRRASASVAAPARSPESSTETLR ANGSLNSSVSLSVASD WDHHPPPAKRAAAFWAWR G G ANN G SHS PPP VSVS G I P KY HYKDLQKATNN 9634.m01764 motif-positive SIRKLIELTSRKNA G FLPELVK G PRKFSYKELSAATRG 9634.m02243 motif-positive RKKKTLEKQHSKTWM P FSIN G LTSLST G SRTSY G TTLTS G L N G SY G YRFAFSVLQEATNN 9634.m02283 motif-positive PRKWLRNRKPKKL G SFIKKSH P LVSYEELNQVTSS 9634.m02784 motif-positive RRKKKMD G LVYHYD G NNYFVPSSQF GG SSRNHH P P P SAI MLNS GG ASAD GGG YYNS G TFS GG E G T G P A G SKSRFSYEE LTGITSN 9634.m02811 motif-positive RRRRRQAERYY PG FAVPSYT P QHMS G EA P FLR PP SAS G SM NFSA G QSQ G VS P MMSS G QAY G QSTSY G QQQRLTSANYST G SQGG G AARSVAAS G ELSV G NTKAFTFDELYDITAG 9634.m02861 motif-positive KRKRH PPP SQDDA G SSEDD G FLQTIS G APVRFTYRELQDA TSN 9634.m03396 motif-positive RMRTRRERVD G ENIEHL P GMPRKFSFEELKVVTGD 9634.m03685 motif-positive RSRKRVPQNSRKSMQQE P HLRLFN G DMEKITYQDIVKAT NG 9634.m03690 motif-positive RIY G MKEMQAN P HCQQINDHVKNITYQDIVKATDR 9634.m03723 motif-positive RSRTLAGKKAMSMSVA GG DDFSH P WTFTPFQKLNFCVDN ILECL 9634.m03838 motif-positive RME G RQLT G VW P AES G YEMITSHFRRYTYKELQRATRK 9634.m04131 motif-positive RKSKDGGISESKDVASTFAVNIDRASNREIWDHTQQDA P V SSSVL PP MGKMT P ERVYSTNSSMSKKMKVSVTANPYTVA SLQVATNS 9634.m04643 motif-positive RRTSSVHQNKSSNNGDIEAASLSSVSEHLHDMIK G TILVM V P QGKGGSNNLKFKDILKATNN 9634.m04648 motif-positive RKVMSN G AVRDG G K G VEVSLFDSMSELYGDCSKDTILFM SEAAGEAAKRLTFVDILKATNN

PAGE 48

38 Table 2-2. Continued Protein ID Category Juxtamembrane Domain 9634.m04650 motif-positive RRVMSN G AVHDG G R G VGASLFDSMSSELYNDNDSSKDTI FFMSEVAGEAAKAVTFVDVLKATNN 9634.m04652 motif-positive RKLMSNAAVRDGGKGVDVSLFDSMSELYGDCSKDTILFM SEAAGETAKSLTFLDILKATNN 9634.m04653 motif-positive RRVVSN G AVRDG G KCVESTLFDSMSEMYGDSSKDTILFM SEAA G EAAS G VTFVDILKATNN 9635.m00383 motif-positive RRRSATQRWQNHHAAAFGY QGNTTAYYYHHTGGAR P Q WAATKT G APSTP P NMMMH P TNMTG P HVVVRPPLVPPPPP PVPAGLDENAFGYDELAAATGG 9635.m00413 motif-positive RCVKKNGL P AVNINTN P TAAAAMYAVVPDSQIRDATVER FLKEIAGEKPIRFTAQQLAGFTNN 9635.m00473 motif-positive RWKKKTSANKTKDNPP G WR P LVLH G ATT P AANSRS P TLR AA G TFGSNRM G RQFTVAEIREATMN 9635.m00841 motif-positive NKSKWC G VPLY G SQ G ND GG IIAFRYTGLVRATKC 9635.m01226 motif-positive RRRRRSTTTAGDVSDDESVASL P PLPRE G LYIFTKSELKQA TNG 9635.m02031 motif-positive RKARRCKKVRVLDET G DFITGC P TYPFEIIRAATNG 9635.m02803 motif-positive KYCRQFVIRFLKPFMRDEKLMD P RGKSE G TSKRRKARKK DGLINSTQIFSASDKEGNGTGGSTEAQSNKAHDSTNVELP N G LNGRQI G KL 9635.m03088 motif-positive RRRRSGEVNCTAFSSSL GGG GNNTN G RQLVVK G SARREF RWEAIMEATAN 9635.m03453 motif-positive KQLPFCSNANTITHMPEGTYKTNLLQLAKNLITNVNQTQL HSAN G TAGAAG P DTVYGAVLCRGDSSAESCATRLQRVLD TASINGTSGDDSGYFQNQKNVTLYDHDFQALLSFSDKDFI SSFSNAPECTVSAYLNPPPDADRAQFSQLFSELMEKIAAAV VSRRPVNYLTGRGWFDLKSQTVYALAQCTDGMPPENCRS CLDGIIDEGKKMVGGGLTGGAVLGMRCSLWYQTDVKFF AGDPEVSLHMPTQQARFELRLLSMAVQNVINLWRIEEGNS GFSLYDFSQIKEATQN 9635.m03481 motif-positive KRKTERARK P SIADPTD P ADIESIDSLILSISTLRVATNN 9635.m03483 motif-positive KAWHFC G SSGDVFA P RSTYQSNLALLSAGLAKNASASPA LFAAGGVGDPPDTVYGLALCRGDTTNATACGACVAAAF QDGQQLCAYAREATVFYDPCYLRFSGRNFLAADGDNFAA YFSKVRNVTAPAEVFDAAVVALLNATADHAAASSPRRFA TGVEAFRGWGVRDIYALVQCTPDMSPAGCRSCLAGIISWV NDPDYFSGSPTGRVLGVRCNYWYDVHPFFPGSPLLRLDAP AFDVSPPAPSPAPVAADTTPPA DRAVDRDLKFFSYTFSVSQ CSVFICLKRRKASKNQNTPIIPAPNKIKRGNCAIFDLPTLQI ATDN

PAGE 49

39 Table 2-2. Continued Protein ID Category Juxtamembrane Domain 9635.m03495 motif-positive YPWGLCNDTAGEFPARRSSYLASINLIAATL PG NASAS P DL FATAEGVGAPPDQVSALALCRGDANASTCLACLTQAFLD LPNACAYHKVAAIFYDSCLLAYSNATIAAGDFSSEKIPIYG FYSNANATTEQARFNRLV AALVNATADYAARNSTRRRYA SGEADFNAEFPKVYSWAQCTPDLTPASCRSCLAQIIGTYIG FFENRVGGFVRAVWCSFQYSTTPFLDGPMLVRLQGTSGAS PAPSPAAVVPAVNQTPPAATPTLEGDANYSTEAEDIENLDS MLIDISILRSATGD 9635.m03516 motif-positive Q P WEIC G ENGNYTANSTYQANLKQLAAALHKNVSSGTGG GRLFAS G AVGAV P DAVYALALCRGDINASACADCVGTIF QDAQQLCPYRKEVSIVYDSCYLRFSNLDFLSSADNSGVVD LYNTGTVSGDVGRYDRAVTGLLNATARYAAGNTNASSRL FATGVMVGFDAQFPKIYAMAQCSPDLSPAQCGLCLGAMV ARWWQTFEPNTQGARSVGARCNMRVELYSFYNVPSMLQ LQAEAVAPSPSPAPAPAGKPPAVPGTTGAASRSEDFESIES LFLDLSTLRIATDN 9635.m03524 motif-positive RRRT P ARKAS P V P YSTN P DDIQSIDSLLLDLSTLRAATDN 9635.m03526 motif-positive RRKRT P ANKASSL P FSTN P DDIQSIDSLLLDLSTLRAATDN 9635.m03530 motif-positive DAQPMPWHRCNTSSGNYTANSTYQSNIQYLATSL P AYASS S P SLFAS G SSGAP P DAIYALALCRGDTTNASSCATCVAAAI QAAQKHCALVKTVAIYDDPCIVRFSNLVFPVSPPYNKGMF VAWDDNNVSAAAAAAFDAAFARLANATAEHAAADSVR RFATGEEAALAVAGEVYPKIYSLAQCTPDMSADACRSCLE DILVRMVPTYLAGRKGGRVLGVRCNFRFETYPFFFGQPLL QLPGSPASSSAPVNGVPTESSTDDMQSIGSLILDLSTLRVAT DD 9635.m03531 motif-positive RKKRRR G KAEHFT GP DAAEDFESVKSTLLSLASLQVATDN 9635.m03539 motif-positive CGTS G GNYTA G STYESNLLRLASTLRANASASPTLFASGV RGVGPDAVYGLLLCRGDMNPSDCFDCGTNVWRDAGPTC NRTKDAILVYNQCYAQFSDRGDFLAATNNSGEVSLLISGT NITSTDVAGYDRAVTELLNATVRYAVENSTKLFATGQRV GNDTGFSNIYSMAQCSPDLSPAQCRSCLDGLVGQWWKTF PLNGKGARVAGPRCYLRSELGPFYTGNPMVRLPVKADEL TQRRLAKAERHPGTDTNEDFESVKSTLLSLASLQVATDN 9635.m03613 motif-positive DKLFRNKVAN P VRFQS P QRFTSFDSSIPLNQVQDRKMEDE TRHSNELNVTLFDFNTIAFSTDN 9635.m03616 motif-positive KCRRRIKEKL G IGRKKAQL P LLRPARDAKQDFSGPAQSEH EKSEE G KNCEL P LFAFETLATATDN 9635.m03618 motif-positive KRGRNIKDVMHKSWRSMHTSTRSQQNS G MLDISQSI P FED DTED G KSHELKVYSFDRIKAATCN 9635.m04060 motif-positive RARFPVDQDPD P ESLSCEN P KCGGGGGGGGKCGAFHMSA TSSPPSGCSSSCVTGCSSSSEGVKVFRLDKTAFTYRDIVAA TSG 9635.m04226 motif-positive KKKS GG KKVR P R GGGGGG LRRLSFTDLTGAADQDLSVSL VGSNLHVFTVAELRDATRG

PAGE 50

40 Table 2-2. Continued Protein ID Category Juxtamembrane Domain 9635.m04270 motif-positive KKKYWSLPR GG D P EQKE P LS P IVS G FKDSLKQMKSIKIISTI GKEELQKTVSMNLKPPTRIDLHKSIDENDVTSKSFTRKISFS SIRTPAYTVADLQVATGS 9636.m00204 motif-positive RRRHQRKKMREAEEANDDDDDTEGD P IMEIEN G MGPRRF AYHVLVNATKS 9636.m00205 motif-positive RRRHQRKKMREAEEANDDDDDTEGD P IMEIEN G TGPRRF AYHVLVNATKS 9636.m00208 motif-positive RRRQRKKMREEEEDDSEGD P IVEIEM G TGPRRF P YHILVN ATKS 9636.m00210 motif-positive RRRRIKNRKEAEDEQD ISSDSEDNDGE P IVEIEM G TAPRRL P YYELVEATKN 9636.m00214 motif-positive RRRRSKKRREVEEAEEARHVGLARDDDDDDDGE P IVEIE M G MGPRQIPYQDLIEATNS 9636.m00216 motif-positive RRRRIKNRKEAEDEQD ISSDSLDDDGE P IVEIEM G TGPRRF P YYELVEATKS 9636.m00218 motif-positive RRRQSKKRREAQDGSWH G SDDDDD G ELIMEIEM G TGPRR F P YHKLVDATKS 9636.m00223 motif-positive RRRQSKKRREAEDGGWH G SDDDDD G E P IVEIEM G MGPRR F P YHELVDATKS 9636.m00224 motif-positive RRRQSKKRREAEDGGWH G SDDDDD G E P IVEIEM G MGPRR F P YHELVDATKS 9636.m00225 motif-positive RRRQRKKMREEEEDDSEGD P IVEIEM G TGPRRF P YHILVN ATKS 9636.m00229 motif-positive RRRRIKKRREAEDEENASTDSDNGE P ITEIEV G TGPRRL P Y YELVEATKN 9636.m00233 motif-positive RRRRSKKRREAEEAEEARHVGLA G DDDDDDD G E P IVEIE M G MGPRQI P YHELVEATKS 9636.m00365 motif-positive RYRRSQAQIRSSSSRRASTIPIRANGVNACTILSNSTTGQES P REVEDR G ASMWLE GP GRKSVISASGIPKYAYKELQKATS N 9636.m00457 motif-positive RWLQWRGGDDTAAADAL G PGGARH P DLVVG P WRMTAF QRLSFTADDVARCV 9636.m00764 motif-positive RGKQR G DEIYG G LMLGDISTSRELSDRKVDFPIFSFREIASA TNN 9636.m00975 motif-positiv e TQKRKRLEVEMEELLSIVGT P NVFSY G EIKSATDN 9636.m00986 motif-positive RQKRKKMEAEM G ELLSVV G R P DVFSY G EIKSATNN

PAGE 51

41 Table 2-2. Continued Protein ID Category Juxtamembrane Domain 9636.m00990 motif-positive RNCKISDNLRTVNFSKLGR LTLLDLSFNNITGEVPQSILNLN NL G YLFL G NNSLTGSL P DAKSSSLTNLDFSYNQLTGSFPSW VTNNNLQLNLVANKFNIRENNNSILPSGLNCLQQDTPCLL GSPEYYSFAVDC G SNKSMK G SDNTIYEVDAANLGVASYY VTRNTRWGVSNVGIFNDASSRNYVINSSQQFQNTLDSELF QTARMSPSSLRYYGLGLENGNYSVKLQFAEFAYPDSKTW ESTGRRIFDIYVQGVLKEKNFDIRKAVGGKSFTAVNKIYNT IVSKNFLEIHLFWAGKGTCCIPTQGYYGPMISALSVTPNFT PTVRNGEPKKKSKAELYNLAGRPNVFSNAELKLATEN 9636.m00993a motif-positive KKRRRLAQQQ G ELYNLV G RPDVFSNAELKLATNN 9636.m01372 motif-positive KRR P FLRYTRA P QHHETEFDEESIGIRPYSFHDLELSTDG 9636.m01496 motif-positive KTRMK P NIVDNEN P FLYETNERISYAELQAATES 9636.m01743 motif-positive RSRRARRRS P TLPFS PPP APAR P LRRYSRRALRRATGG 9636.m01856 motif-positive KKTRQALDSKDKKLSSTTK G HMLLPMF G KLNSMKTSKKE VVAMMDFSVLDSATGK 9636.m02427 motif-positive KKHKCLL P WQRSTTA P RLHSLLRSQLKSYTYSEVRKMTKS 9636.m02489 motif-positive KFHKNKTKEIQA G CSESL PG SSKSSWKLSGIGEPLSINMAIF ENPLRKLTFSDLHQATNG 9636.m03449 motif-positive RRRRRHRCLLS G PSSVL G ILEK G RDVED GGGG EVMARL G NVRQF G LRELHAATDG 9636.m03477 motif-positive K P KINSDL G ILFQGSSSKLNEAVEVTEN 9636.m03886 motif-positive RSRRSDSS G AIHGA G EAWEVTLYQKLDFSVDEVV 9636.m04075 motif-positive KRRRKVS G GDDGS G IT G TMIRSLA G GPREFEYRELRKATN N 9636.m04332 motif-positive TEAAGDGCSAGCDLALASFYVTPNQNVTNMADLFGIGAA NYRSLA P YNPNI P NLDFINVGGRVNVYFTCGCRSLPGSPGA TYLAGAFPFQMSRGQIYTSVAANYNNLTTAEWLQATNSY PANNIPDTAVINATVNCSCGDASISPDYGLFLTYPLRAEDT LASVAATYGLSSQLDVVRRYNPGMESATGSGIVYIPVKDP NGSYLPLKSPGRRKAKQATLLQSSEDSTQLGTISMDKVTP STIVGPSPVAGITVDKSVEFSYEELSNATQG 9637.m00068 motif-positive RKKRQREEAAKQRM G VVFKK P E P DES P D G IGRSLSCCLRK KAGDESDSTEEVTDTSASKEGVVAAKAKT 9637.m00536 motif-positive KKW G S G FKK G L G AKAAV G K P RQYTYQHLFSATKG 9637.m00673 motif-positive RRKTK G SANNTIN P HNE P TSHSH G S G SYGH G SMQFENRRF TYKDLQMITNN 9637.m00942 motif-positive KLRMNQKTEEVRT G YVESL P TS G TSSWKLS G VREPLSINV ATFEKPLRKLTFAHLLEATNG 9637.m01166 motif-positive RRWRRRRRRQQAQ P LPLP PP MLYNPNPYYKGDQPPLPFVF MQQQHHHPTAPQTSGGTFSDAGSERPHSISIDGGSLSYDQL AAATGG 9637.m01453 motif-positive KCRRKRMALSTKHQ HIKAAATHESEP NELRDAEAGALE P VASSA GP NHGKEY GG D P AAAAG P RQYEY G ERVVSDGPR HGAAYNELVAAGPRLYEYGELAAATRD

PAGE 52

42 Table 2-2. Continued Protein ID Category Juxtamembrane Domain 9637.m01534 motif-positive PFVSSVNLRTL G SGVYH P VLAANQSMCLFDRRNMGSNVSI LRYPDDPYDRYWWKMRSDPTWKNLSTASTIEQNDNFVVP LPVMQTAIEASNNDTIIKVTRKDKTAHKCMIFAYLADFQN SQLRQFNITLSDTKPLLYSPPYLSAGIVDISDWDMPNNGM YTITLEPTSASKLPPMLNAFEIYTLIPSDNPMTFPRDSWDGV KCSNPSDNTSRIISLDLSNSNLHGPISNNFTLFTALEHLNLA GNQLNGPIPDSLCRKNNTGTFLLSFDSDRDTCNKSIPGINPS PPKSKLVFVGIVSADVPHSEPELEIAPASRKYHEDGLQRVE NRRFTYKELEKITNK 9637.m01540 motif-positive RQKRKPKILSYNLYFLE P VSTDD PP RE P ELDIA P ASRNNH G G TLLKVENRQFTYKELEKFTNN 9637.m01545 motif-positive RAKRKLNTSSTDLAMV P ELMGA PG HITNHWDHLQKPENR RFTYQELEKFTEN 9637.m01547 motif-positive RIVHDNPTTFSQDFDAIMAIKYEY G IKKNWM G DPCF P HEY VWD G VKCSDAVIFPTANCMGRY P ILSHCLL P SSTSSSTDLA MV P ELRGA PG HITNHWDHLQEPENRRFTYQELEKFTDN 9637.m01568 motif-positive GTPFVNTVELRQLDSMLHFRKIMGNSSIYLYERRNM GP SS RDN P IIRYPNDTYDRFWYPWGSEDDPTYSNLSAPSTLIIPPS PSYAVPSPVLETAVVPADNNKSVLSIIQTNDKEIHEYLVLV HYADFQSTLQRQFQAYSNGDPIQGTGGPYVADYTGQTVG TIDWISAETSGKYNITLAATDSSQLPPIVNAFEVYGRIPLDN PSTFPTDYTCKIISLAYNKLNRWIKELRLIKVPHKVDAIMTI KFEYGIKKNWMNDPCFPSNLVWNGVRCSTGSDNTMRIISL DLSNSNLHGSISNNFTLLTALEYLNLSGNQLSGTIPSSLCEN NAGSFVFRFSYLFNVDIGDNFVHLDSTYGPEFLNAPGSTK NHWDHMQKTENRRFTYEELEKYTDN 9637.m01571 motif-positive RAKRKHNND PP TVLELT G APGHKTNHWDRLQKPENRRFT FEELQKFTDN 9637.m01581 motif-positive RAKGKHNVSTFD P PRVPD P KKAPGSTTDHWSHLPINGSRQ FTYEELKNFTLN 9637.m01604 motif-positive KKQAIVKSRGQEQY G DHIHI P ENREFTYEELVKITNN 9637.m01629 motif-positive RVKRKSNIFAYN P PRVPE P TNASRNEKYHWDHLQENENR QFTYKELEKITDN 9637.m01633 motif-positive RAK G KSNISI PG SEKYHWDRLQKNENRHFTYDELKKLTDN 9637.m01645 motif-positive KAKRK P NTSAYN PP RVPE P MNAPVSEKYHWDHLEKNENR QFTYEELEKFTNN 9637.m02208 motif-positive RKIRERLAAVREEFRR G RRR GGGG SS P VMKYKF P RITYRE LVEATEE 9637.m02488 motif-positive RNKMSKN G RKKK G KSSTMKVYL G RQKS P SRDT G YNADA DDD G G G DDDDIVI P GMPARFSYQEITTMTSN

PAGE 53

43 Table 2-2. Continued Protein ID Category Juxtamembrane Domain 9637.m02629 motif-positive CQTRCGDVDI P FPFGI G DHCAIHE G FRLECDNATKGTSNQK PFWGDFEVIKISMEDGKVWVKAYMSRQCYDQSTGGMSY SDASANLSGSSFWLSDTDNKITVIGCKTLAYMTTDSYVIG CSSACDNKVNKLTPKNGSCSGAGCCQANVPKSIQYYQGY FNEGYNTTKIWMSSPCSYMAVMETAAFNFSTSYLTSSVFY DTYKGGVPVVYDWAITSKTCTESRRNKTSYACISNNSQCI DNLTNAQGYRCKCSNGYEGNPYIKDGCKDIDECLNNATY PCKGICTNTLGNFTCSCSPGSYMMNGDCMPKKKLRFDSVP VVVELQEATNR 9637.m02693 motif-positive RMRR G GGAGG GG RVVH G E G AWEVTLYQKLDISMDDVL RGLTSAN 9637.m02882 motif-positive AI P YPLPL P RGGGDTYDAVAANYADLTTAAWLEATNAYP PGRIPGGDGRVNVTINCSCGDERVSPRYGLFLTYPLWDGE TLESVAAQYGFSSPAEMELIRRYNPGMGGVSGKGIVFIPV KDPNGSYHPLKSGVGIVLLF CELLCIYAKVAKVQEGHIASI SRRNQPPCCYYLCDDASQAEGIKVERSIEFSYEEIFNATQG 9637.m02917 motif-positive FVSLVHQVAVDTEHDDSI G VTDES G W P CIELDRRMRRMN GRNPEKNIKMEHENDSSLAWVFHAPYREHENEFPDIPEEK EGNGFAPKSDDPTKAPPPIEVPELSFDELKEKTDN 9637.m03043 motif-positive EKIMTGKLTDFTSAYAYKCRLFFIRILSAWPAGSIDCCEEM INRCFCCVT G GDSDPE P AATSSRRRTNPARASKNRTSVDY PWETYTLKELLQATGNFSESN 9637.m03212 motif-positive PKFKEEMIVKHDGKNNKKRALRVLSVSDEFGKEI P AQDLD F P FVEYNEIATATENFSDAAMN 9637.m03219a motif-positive KIKGKKRNREKHRKLIFD G ANTSEEI G QGN P VQDLEL P FV RFEDIALATHN 9637.m03220 motif-positive KIKGRYIQCSFIYLDAYGKKRKREKHRKLFLDGACTSEEIE DGS P IQDLEL P YVRFEEIALATHN 9637.m03224 motif-positive KACKKRNREKHRKQILFGMSAAEEVGEGN P VQDLEF P FV TFEDIALATNN 9637.m03295 motif-positive RRNHSSPVSSHYYTDESGRRNSSAVNMKSLEHS P SMGCKT PP AVPRKSMSDNEFENKLNHSRRSTDPISLMNHSSSDLQA ATGN 9638.m00012 motif-positive RKYSQYREMARTL G LEYLPA GG PRRFSYAELKAATKE 9638.m00059 motif-positive KITKKKKRPPPPNM P FFTDEK G NVYYATGGLPPMWQQHG SSNYSIPPPPPPGWHMSSSAG GFSGEMGMGYSSGPYGPAL PPPSPNVALGFSKSSFSYEELAAATSG 9638.m00828 motif-positive KQHLKLKKFYEQN G GPVLK G VRNIKIYTKKELKQITSN 9638.m01519 motif-positive RKLQAKQCSPLAATAQQLIVKQAASKQIKQQSTYKSKQA MLAVAD G DGAAL G EDVGEV G VLDECAVAVVEGEAVVA ALSVARGPGDDVGTRSALVLRHLMVAPRKSSATASWSST ARAMRPPPRPTAASPSHRLGPAAASPDRRHLTPADTADQD VEAGSLLFDLATLRKATAN 9638.m01657 motif-positive RKQKWFSR G VENAQE G IGIRAFRYTDLQCATKN 9638.m01661 motif-positive RRK G KLFAR G AENDQ G SIGITAFRYIDLQRATKN 9638.m01937 motif-positive RKKLR P SSMRTTVA P LPDGMY P RVSYYELFQSTNGFNVN N

PAGE 54

44 Table 2-2. Continued Protein ID Category Juxtamembrane Domain 9638.m02114 motif-positive KRKRKGTRQEHVEQRQPFNSY P SNEVKDVK P IPESTKIEVE PLPS P VAVSLK P PPKIERNQSFDDDDDDFSNKPVAKKSNSA SVKATVYSVADLQMATDS 9638.m03092 motif-positive HHSKKSRVVRLGGGDIKDKAAEQA G KKVSS G SGNGSRST TESGKGAADQLQFFRPEKATFSLDELF 9638.m03136 motif-positive RRKPKKSFDKIPVSQIPDVSKEIAVDEVREHAVVENFRVQE SHAISVQEKHYEKDSGKMLAHLVRSKSSDADNLSQCSSV YQCDRAGSSYS G DEGSS G NARRHFSQYATVSASPLVGLPE FSHLGWGHWFTLRDLEHATNR 9638.m03492 motif-positive KAYKNKRRREQQQHDDEEEILVSDSAAIVS PG STAIT G KL VLFRKNSSASRYEDWEAGTKAVLDRN 9638.m03505 motif-positive RRCRRRRCSRLA P APPHH G RSNRSLKQQQSMVSDKDIEEA ARWPPPPSFQPPIEVIKAEQTAPLIMVEAARTSGETATSSGG STRGWSTESGGSDAAEPEASRRGWGRRYTRRELEEATNR 9638.m03516 motif-positive RRRQRRATLPVPEEEEKESV G TPWSPFT P DGEGSFGSAVV TPRRMNMKLHIPLAEIMVATGD 9639.m00075 motif-positive KRSRRTFKEIPITQIPSASKDIKEVRAVDEFLPNDFVVHDGL LLAIQNEPVEPVDKDVNQFAQEDKTIQ G EENSPV P LHYVD NYDVIQSVSTCEQSSSHAPVDSVLLPGLPEFSYLGWGHWF TLRDLELATNC 9639.m00613 motif-positive RHRHRHRVVVK P RCRCLQ P LSSAATL P VTAPSSRSCECVS SWSFYGGGGDAGDRSLKMLSLDDLAGATGG 9639.m00642 motif-positive REKQKRKSVSL P SFDSSF P KVSYHDLARATDG 9639.m00647 motif-positive RGKQKKKCTSLT P FDSKF P KVSYNDLAKATEG 9639.m00648 motif-positive RGKRKRESLSL P SFGTNF P NFSYNNLFKATEG 9639.m00651 motif-positive RAKLKRESVSL P FFGSNF P RISYNALFKATEG 9639.m00653 motif-positive GRGKRKKKSISF P SLGRKF P KVSFNDLSNATDR 9639.m00659 motif-positive RGKQK G HSISL P LSDTDF P KVSYNDLARATER 9639.m00662 motif-positive ANNLRGEV P SNLGNSL P NLQYLILSDNFFHGHFPSSLINSSK LNLIDMAENNFTGVIPSSIGKLAKLNVLSLQLNQFQAGTK KEWEFMDSLANCTELEVFSVARNHLQGQSFPPISYFGDIPN TLSNCESLEDIRLDRNAFTGIIPTSLGNIRSLKVLNLSHNKL TGSIPVSLGNLQLLEQLDLSFNHLKGKVPTNGVFMNETAI QIDGKSWALWRRKHEGNSTSLPSFGRKFPKVPYNELAEAT EG 9639.m00663 motif-positive KGKQRTNSISL P SFGREF P KVSYKDLARATNG 9639.m00664 motif-positive NRKQNRQSISS P SFGRKF P KVSYSDLVRATEG 9639.m00665 motif-positive KRKHKRQSISS P SFGRKF P KVSYHDLVRATEG 9639.m00844 motif-positive GGAVGLEERSDAAEDSLVSVLAVYDGFCNLKQINLELKV CGGSSIRKTLVKEAASY G AAHLIL G VAKNSLSFSRSSSISV AKYCAKRVPTGCSVLAVNNGKILFHKDAVQQEPYHSAST MTETPRRSYRKLLTSVIGEKLRDECEQDNRSIFRAVTMPPS SPAPTREVSLALVPMKVHRRESPEVATGWSFLRKKFLPDR KPASHDRSKMSVVQWAMRLPSRYSSASPVCSEYRTTTPD GITSASRILRDRVAVPSRSNSGKSSVVIEELDNSSDKEIPEEL IALREKFPSVYSTFSHSELAKITSD

PAGE 55

45 Table 2-2. Continued Protein ID Category Juxtamembrane Domain 9639.m00968 motif-positive RIKFNCCGV P LHHNQ G NSGIIAFKYTDLSHATKN 9639.m00970 motif-positive QNKLKCCGM P LHHTQ G NSGIVAFRYTDLSHATKI 9639.m00973 motif-positive EKKHKKAKAY G DMADVI GP QLLTYHDLVLATEN 9639.m01092 motif-positive RRRRRRGRGGQADQAAAMSLML P RHGSSK GP GSVVEHF ALEALQAATDG 9639.m01134 motif-positive LYSDMDIDLASYFKITGSPFDTFSSSKIKMHVTTILKSGEFS RQNNKSEIKSQLTSK P TLQSS QG ITDNF P SEQDFEHGAFKG PYVGFSDFGQSEMKGESSTQNKAGNKSQYPITIPKNPTLDS LKVITDN 9639.m01209 motif-positive RARSCR G GGGPD GGG AWRFTAFHKVDFGIAEVIESMKDG N 9639.m01301 motif-positive RRNKR P KLQPQ P RSPSYASWDIKSTSISTPHLQGARVFTFD ELKKITNS 9639.m01600 motif-positive D G SSSVAN G VTISSEMT P SGESFNSSYNSSTTPVDISLAAIE ACTDG 9639.m01817 motif-positive KLRDRR G DGCGGD G DDDEERKRGLFPFPCMRADDSSDDG SDAGDDVKRNNTTTTTTASGGGG GGEEGQLVAIDKGFKM ELDELLR 9639.m02341 motif-positive HHRKKKNVEKFR P VSTKTS P AESEMMKIQVVGANGISNGS SAFPTELYSHVSAANSSNISELFESHGMQLSVEVLLKATNN 9639.m02342 motif-positive RYMSKKSKADETIDSTRSSQDNKVH G EVINRWS G LYKFSK G EIEKAIN 9639.m02532 motif-positive TRQSKK P LKPRR G DIL G ATELQ GP TSFYYKDLKVATNN 9639.m03250 motif-positive RKNIKTNI P STTSME G HPLISHSQLVRATDN 9639.m03256 motif-positive HKKIQTEI P STTSMR G HPLVSYSQLVKATDE 9639.m03257 motif-positive HKRRKKEV P AMTSIQGH P MITYKQLVKATDG 9639.m03259 motif-positive HKRTKKGA P SRTSMK G HPLVSYSQLVKATDG 9639.m03260 motif-positive KLLARYKKIKSKI P STTCME G HPLISYSQLARATDS 9639.m03261 motif-positive RKPMSKL P SATSMQ G YPLISYQQIVRATDD 9639.m03532 motif-positive RRYKK G EVSLQ G DMNMQTDEEALAWGREACSSEFTSFKL SQVLDATNN 9639.m03591 motif-positive QRMRHR P EIYVDV PG QHDHNLEFGQIKRFSLRELQIATNN 9639.m03592 motif-positive QRMRHR P EIYVDV PG QHDHNLEFGQIKRFSLRELQIATNN 9639.m04143 motif-positive DVITLVKVIKSRVETVRQNKEDCELLAERADMILDLLRRV QASKVIED P DMWKPTE G LKSTLCRAGAIVKSCQEEWSYA YRFCKGGRIARELRKVLKDLKFYILHLIGMITIINHDQNTR YYYIPETDVVKPQDATASNAGKPVALEETGLKKFTLSELE VATDN 9639.m04147 motif-positive DVASLVKEIKERVQTVSQNKEDCELLAERAELILDLLGRL QKSKVIEDPDMWKPTERLRSTLRRACEVIEFCRERSCTYRF CKSDHTAKELRKQTPDVVQLQDGVQVPALGLPAQHFKYN DRNDR G ETLGIS G KAQLVTEPSSVNEPGLKRFAFSQLEVA TDN

PAGE 56

46 Table 2-2. Continued Protein ID Category Juxtamembrane Domain 9639.m04236 motif-positive ICGSSKYTANSIYQSNLDSLLSSSFLVVSGDSSS G ALFAK G S RGAA P DTVYAVALCRGDANASACSGCVDAAYAAATARL CPLSKDAAVFYDECALRFSDEDILNMDAFGRVNTSAAVG VAPLVLMNITSEPMLSGWNTNIQGTKNFTQFFIKTMNYIV AQALSTTKHYAAIRVDMDDADASNTVTLPRRLFCLAQCA PDLVEDICYNCLQNFSDLATANFAGRQGGRILALRCNLRY DTDKFFAGKTNADEDEALIWGLQGRSSEFTIYDFSQVLEA TDN 9639.m04368 motif-positive KWRRRWFFDNN GG RLLE G M G ITIFTEKELDS 9639.m04369 motif-positive GNESFRLPSLWFFSIDANNFTGPIPQGFAACQQLQVFSLIQN LFE G ALPSWL G KLTNLVKLNLGENHFDGGSIPDALSNITM LASLELSTCNLTGTIPADIGKLGKLSDLLIARNQLRGPIPAS LGNLSALSRLDLSTNLLDGSVPSTVGSMNSLTYFVIFENSL QGDLKFLSALSNCRKLSVLEIDSNYFTGNLPDYVGNLSSTL QAFIARRNNISGVLPSTVWNLTSLKYLDLSDNQLHSTISESI MDLEILQWLDLSENSLFGPIPSNIGVLKNVQRLFLGTNQFS SSISMGISNMTKLVKLDLSHNFLSGALPADIGYLKQMNIM DLSSNHFTGILPDSIAQLQMIAYLNLSVNSFQNSIPDSFRVL TSLETLDLSHNNISGTIPEYLANFTVLSSLNLSFNNLHGQIP ETVGAVACCLHVILKKKVKHQKMSVGMVDMASHQLLSY HELARATND 9639.m04384 motif-positive RMEYEKRKLRDHFNKN GG QLLKNI G IKIFTKEEVGKITNN 9639.m04387 motif-positive RKKWKLK G CYDRN GG QMLEKTSVKIFTKQELDKITNN 9639.m04402 motif-positive KKMKN P DITASF G IADAICHRLVSYQEIVRATEN 9640.m00074 motif-positive KRSRRTFKEIPITQIPSASKDIKEVRAVEEFL P NDFVVHD G L LLAIQNEPVEPVDKDVNQFAQEDKTIQGEDNSSSVPLHYV DNYDGIQSVSTCEQSSSHAPADSVPLPGLPEFSYLGWGHW FTLRDLELATNC 9640.m00282 motif-positive DDLYIYVHLVFFRLAEQMPTADAETVTSESTAVIQQDSTM VNVDAA G LHEQDEL P HWMSQLFEKLDLEVDEDVVDEDIC SIGNMTHEEEEADLERGIHSILKNHPIMKKLNKGIHPVVLA LHVLLEEEEEEEVVQEEDMAKGLAELDEYLSRHTYHTIEE ATAS 9640.m00283 motif-positive G CWLFSSK G LFRHSRVYAIDQEGYKLITSHFQRYTYADIK KATAN 9640.m01285 motif-positive KVKDRKKQ G RSSTVAA G DENESRHGLCRCIWGHRGVDS DTDTDDSSASENGGGGGKYG EGELVAIDRGFRVELDELLR SS 9640.m01512 motif-positive KRKPRE GG IRRSVS PG ITSIDRVTLQNATEN 9640.m03313 motif-positive NQSIGKTVVWTADRDVPVNGR G SRIELRD G NMVLLDFNS RLVWSTGTTSGQVRSAKLLDTGNLVLLGHDGSRIWQSFD SPTDTLLPTQPIAANLKLVSGKYMLSVDNNGSLALTYDTP EGHSKYWPRNINATPFSGDQPQGLDMLGCISAGNHIRKFT LKELVAATAK 9640.m03756 motif-positive HRYKNRDVVE P WELDY GP HRYSYAELRRATRG 9640.m03953 motif-positive RCRRS G GGGGRS G FDRLAAKRLLSEAASSSGVPVYSYHEV ARATNS

PAGE 57

47 Table 2-2. Continued Protein ID Category Juxtamembrane Domain 9640.m04040 motif-positive HRRRRDSKIRPVKLPSSSRDESVE P DLEHG GGP RRFSYGEL AAATND 9640.m04064 motif-positive RRRRKRAGEARELEMDEGD FFDDEADDFEKGTG P KRFHY G ELAIATDD 9640.m04066 motif-positive RFVLRRRRKHAGLTKEQEMEEG GIFDDETAMEDDFEKGT GP KRFRF G ELAIATDD 9640.m04068 motif-positive HRRRKHAGLTMEQEMDE G DFFDDEA G DFEKGT GP KRFR YGELAIATDD 9640.m04069 motif-positive RRRQWRRNNAKLTVKMARKH LPKDARFFRGKPIEDELEL EAA GP RRFHY G ELAAATAN 9640.m04089 motif-positive EQRSALCLFHATSQSCNQLKSIPVGHLLVDSHIFRDSGQRA IHTLSSSFSSSPRVLCWVLAVLGYSYRLQASSLSA G ELTDL Q G KFFMETFFRKDTPIIRNVKIYSSKELRKATKN 9640.m04300 motif-positive KKRRRAEAEAEEAA G GKVFGKK G SWDLKSFRVLAFDEHE VIDGVRDEN 9640.m04302 motif-positive RRWVLRARQD G EHDGL P TSPASSSSYDVTSFHKLSFDQHE IVEALIDKN 9640.m04368 motif-positive KSRQASNKKKKKKQGGSRSWFKLPMLSSQQASYASEEQQ G EEDDGD G DEVLI PG LPARFTYAELEEATEG 9629.m05927 motif-positive FKRKKSTEPTTASSSK G KTVA GG R G EN P KEEYSS G VQEAE RNKLVFFEGCSYNFDLEDLL 9634.m03594 motif-positive KQLR G VWPAEA G YEMIANHFRRYTYRELVLAT 9629.m00145 motif-like KRRIRRHQEMQEEEQEFEEL P LQGM P RRFTFQQLQEATDQ 9629.m00370 motif-like HRRKQTL G FIIHHKYT G NESNTEEELKRYQSLSPKRYRYSD LKKITKC 9629.m00524 motif-like HRKLK G RQNSQEIS P VIEEQYQRISYYALSRGSNE 9629.m00695 motif-like RHRRNQQIFFDVNDQYD P EVCL G HLKRYAFKELRAATNN 9629.m06510 motif-like RYENYKLEQFHSK G DIES G DDSDSKWVLESFHPPELDPEEI CN 9629.m07224 motif-like RRRSRYSSKRRSAKRI P MKID G VKDFSFQELSHGTND 9630.m01244 motif-like RHQKRQQDLA G WKMT P FRTLHFSECDVLGN 9630.m01729 motif-like KGRRKSHLREVFVDVA G EDDRRIAF G QLKRFAWRELQIA TDN 9630.m01864 motif-like RKRYNHGELREDWEVEF GP HRI P YKDLRRATER 9630.m05595 motif-like QKRKLIRTKQRFFEQNGGVILQQQMHS GGG T GG FKIFSTE ELKKATNN 9630.m05599 motif-like KRKLIRTKQRFFEQNGGVILQQQMHS GGG A GG FKIFSTEE LEKATNN 9630.m05621 motif-like QKRKLIRTKQKFFEHNGGVILRQQMHS GGG TH G FRIFSTE ELKRATHN 9631.m00434 motif-like KQLYHRWYVHGGCCDDAAVEEE G SGSW P WRLTAFQRLS FTSAEVLAC 9631.m04841 motif-like NGRRKSHLREVFVDVS G EDDRRIAF G QLKRFAWRELQLA TDS

PAGE 58

48 Table 2-2. Continued Protein ID Category Juxtamembrane Domain 9632.m00264 motif-like QKRVRNTF G KGTG G ARRFEYDDLAIATGN 9632.m00511 motif-like KRIRHTF G KGTG G TRRFEYDDLAIATDN 9632.m01387 motif-like RKSRGNQ P SKKVQSKY P FQHMNDSNEVGSENVELSSVDL DSVLTATNN 9632.m02841 motif-like RHKRSIKRQALLRQNDEFFQQHGGQLLLEMMKVEGNA G F TLY G RQEIETATNN 9632.m03289 motif-like RRHRKKLHCQALNSIYA G TGVI P FRYSDLQRATKN 9632.m03297 motif-like KWRNKTKLSGGTRKDYQFCN G IIPF G YIDLQRATNN 9632.m03298 motif-like KIPRNKSWLL G HRRKNFHS G SGVIAFRYADLQHATKN 9632.m03302 motif-like WRRKGKWFTRTLQK P EGGI G VVAFRYINLQRATKA 9632.m03306 motif-like WRRKGKWFTLTLEK P EVGV G IIAFRYIDLQRATKN 9632.m04086 motif-like RRNKRNCSSV G RIIC G TVAFRYKDLQHATKN 9632.m05124 motif-like RRKRKADEKEA P PGWH P LVLHEAMKSTTDARAAGKSPLT RNSSSIGHRMGRRFSISEIRAATKN 9632.m05259 motif-like WCRRKHKISE G IPHN P ATTV P SVDLQKVKAATGN 9632.m05801 motif-like RRKNRELKNADLHAQNPENAFCQSQSWRC P EGQS P MFQR YSYKETMKATNN 9633.m01394 motif-like RRRKTN P DVLPEAD P YKSRRFKYKELQVITN 9633.m02300 motif-like TLWRRSRRSTGGKVTRSSDAAK G IKLV P ILSRFNSVKMSR KRLV G MFEY P SLEAATEK 9633.m04198 motif-like RRKKQGSMNNSVKRQNETMRY G PTNN G SGHNSSLRLEN RWFTYNELEKITNK 9634.m01190 motiflike RRKPHDQFFDLLEEET P EVHL G QLRRFTLRELQVATDN 9634.m03596 motif-like RRE G KLAR G ISEV G YEMVTNHFRRYTYRELMIATRK 9634.m03679 motif-like RSRK G MKLK P QLLPFNQHLEQITYEDIVKATKS 9636.m00717 motif-like RRRK P QEHFFDV P AEED P EVHL G QLKRFSLRELQVATDT 9636.m04116 motif-like RKKR P ADVT G ATNPFENRRFKYKELKLIADS 9637.m01434 motif-like RQRKRRRKNSPPPA NNDSDQYSSD G QRQH G TADLERAVT GGGPRRYQFHELAAATRD 9637.m01597 motif-like HKKRKQQMTL G LVHQYSVQ P TGISNSVSHVDIKGHVLMS DDHEFTYEELVKITNN 9637.m02621 motif-like ERNKLHSIKQKYFRQHG G RLLFEEMK G TAFKIFTEEELQK ATNN 9638.m00203 motif-like HNKRK P QESTTAK G RDMFSVWNFDGRLAFEDIVRATED 9638.m00382 motif-like RWSRRFRKDRVRLREKRSRRFR G DELICEME G EISEFSVFE FREVIKATDN 9639.m00021 motif-like KRKKKSSDETVVIAA P AKKL G SFFSEVATESAHRFALSEIE DATDK 9639.m00293 motif-like NKGVFR P SQVSVLEE G YRIVTSHFRAYRYSKLERGTKK 9639.m00297 motif-like G CWLFSSK G LFRHSRVYAIDQEGYKLITTHFQRFTYVDIK KATAN 9639.m02693 motif-like RKKPKAQSKKTI G FQLIDDKY P RVSYAELVQGTNG 9639.m03758 motif-like KKRS G PERI G INHSFRRLDKISYSDLYKATYG

PAGE 59

49 Table 2-2. Continued Protein ID Category Juxtamembrane Domain 9640.m00020 motif-like KRKKKSSDETVVIAA P AKKL G SFFSEVATESAHRFALSEIE DATDK 9640.m00279 motif-like KGVFR P SQVSVLEE G YRIVTSHFRAYRYSELERGTKK 9632.m05428 motif-negative KITNKIKQRRAKKLRRKFFKKNHGLLLQQLISSNKDIAER MKIFSLEELDQATNK 9629.m00140 motif-negative KTKNDDEIQLKVEMFLKTYGTSKPTRYTFSEVKRITRR 9629.m00141 motif-negative KYRKTRISIDAVEKFLRMQQAHGPKRYAYTEITAITGH 9629.m00142 motif-nega tive KRRTRRRREIREEEQELEEIT LQGMPRRFTFQQLQEATDQ 9629.m00143 motif-negative WKTRITIDAVEKFLRMQLMLGPTRYTYTDIIAMTSH 9629.m00144 motif-negative KVEMFLRTYGTSKPTRYTFSEVKKIARC 9629.m00147 motif-negative KYWKTRIKIDAVEKFLQMQLMLGPTRYAYTDIIAMTSH 9629.m00148 motif-negative KQRYNEEVHLKVEMFLRTYGTSKPTRYTFSQVKKITRR 9629.m00151 motif-negative RNKITIDAVEKFLQMQLTLGPTRYAYTDLTAITGH 9629.m00152 motif-negative KSRYNEEIHLKVEMFLKTYGTSKPTRYTFSEVKKIARR 9629.m00154 motif-negative SLKSRYDEEVHLKVEMFLRTYGTSKPTRYSFSDVKKITRR 9629.m00155 motif-negative KYWKARITIDAVEKFLRMQEMLSPMRYGYTDIIAITSH 9629.m00156 motif-negative KTRYNE EIHLKVEMFLKTYGTSKPTRYSFSEVKKITRR 9629.m00168 motif-negative SLKSRYNKEIHLKVEMFLKTYGTSKPMRYTFSDVKKITRR 9629.m00169 motif-negative AHKYWKTRLAIDAVEKFLQMQQVLGPTRYAYTDLTAVTS H 9629.m00170 motif-negative KIRITTDAVEKFLRMQLMNGPTRYAYTDLIAITGH 9629.m00171 motif-negative WKTRVTIDAVEKFLRMQQMLGPTRYAYTDITAITGH 9629.m00172 motif-negative KSRYNEEIHLKVEMFLKTYGTSKPTRYTFSEVKKIARR 9629.m00173 motif-negative EKFLRMQQMLGPTRYAYTDIIAITGH 9629.m00180 motif-negative KTRIAIDAVEKFLRMQDMLGPKRYAYTDIIAITSH 9629.m00181 motif-negative YISLKSRYDEEVHLKVEMFLRTYGTSKPTRYNFSDVKKIA RR 9629.m00185 motif-negative DTYGYHSICHRYHQALFWLMLAPLVVFIFLAHKYWKTRIT IDAVEKFLQMQQMIGPMRYAYTDIIAITSH 9629.m00187 motif-negative KTRYNEEIHMKVEMFLKTYGTSKPTRYTFSEVKKIARR 9629.m00188 motif-negative KYWKTRITIDAVEKFLRMQQMIGPMRFAYTDIIAITSH 9629.m00189 motif-negative LSLRTRYN EEIHLKVEMFLKTYGTSKPTRYTFSEVKKIASR 9629.m00190 motif-negative KYWKTRIAIDAVEKFLRMQEMLGPKRYAYTDIIAITSH 9629.m00192 motif-negative KYWKTRITIDAVEKFLRMQQMIGPTRFAYTDIIAITSH 9629.m00193 motif-negative LSLKTRYN EEIHLKVEMFLKTYGTSKPTRYTFSEVKKIARR 9629.m00195 motif-negative KTRITIDAVEKFLRMQQMIGPTRFAYTDIIAITSH 9629.m00196 motif-negative LSLKTKYN EEIHLKVEMFLKTYGTSKPTRYTFSEVKKISRR 9629.m00252 motif-negative RRKKQGPMNNSLEQQNEMSTSTSHVLINSGYGDNVSLRL ENRRFTYKELEKITNK 9629.m00358 motif-negative HKRKKRKQTRDLKDLMHSSSSMQSYSKDLELGGSPHIFTY EELEEATAG 9629.m00364 motif-negative RQRQKFRSAICGVYSGNTKNEEEMLKKCESLALKRYKYS ELKKITKS

PAGE 60

50 Table 2-2. Continued Protein ID Category Juxtamembrane Domain 9629.m00366 motif-negative TCRQKEKGSLLTLQKYVANESKIEEALKEYDSLAPKRYNY SELKKITRS 9629.m00367 motif-negative HRKGQILCYLLCNKTRSRNESNIQKLIVSYGSLAPKRYKYS EVAKITS 9629.m00375 motif-negative HGKGKQLRYFLYTKTSSTSERNIEALIISYGSIAPTRYKYSE VTKITS 9629.m00376 motif-negative KCRRRMQNRFSFLNAMDGASRTDTAKVEKLLQSYGSLAP RRFRYSELKKITKS 9629.m00490 motif-negative HQRKFKQRQNRQATSLVIEEQYQRVSYYALSRGSNE 9629.m00520 motif-negative HNRKLKRRQNRQATSLVIEEQYQRVSYYALSRGSND 9629.m00522 motif-negative RKLKRRQNSRATIPGTDEHYHRVSYYALARGSNE 9629.m00550 motif-negative ILMFIIRRNKDKNRSENYGSLVAFRYKDLRSATKN 9629.m01025 motif-negative RKRCNRQRADESDFADLPGTITRFTFKMLKAATND 9629.m01192 motif-negative WRGKRKLFTEKPVNSDSRLMIFSNSQLKNATKG 9629.m01203 motif-negative LIYKKRSSCVASQAKMEGFLAVYSYAQVKKAT 9629.m01204 motif-negative MYKRSSCVARQTKMEGFLAVYSYAQVKKAT 9629.m01206 motif-negative CRYRRDLFASSKFEVEGSLIVYTYAQIRKAT 9629.m01247 motif-negative MIRRKSKNKKEDSSHTPGDDMNHLIVTYHELARATDK 9629.m01357 motif-negative WFYWRY RSFNNSKLSADRSKWSLTSFHKLSFSEYEILDC 9629.m01868 motif-negative RRKKYKIHDAGDLQQENMFSVLNFDGGNAYEQIIEATEN 9629.m01991 motif-negative EGVAIGALIQLHTKGFLWAGNHLLLSNSSAGLRMDCQEN NLKSFLQTNGHVVLQRVDNNYSLRYFTKNEVWHITNG 9629.m02541 motif-negative RRKLTDVKKKYIQEHGGLLLFEK MKSDQGLA FKVFTQAE LEQATNK 9629.m02553 motif-negative RLMFERRKLTDVKKKYFQQHGGLILFDKMKSDQGLAFKV FTQAELEHATNK 9629.m02555 motif-negative RRWKRGIQKKIRRAYFRKNKGLVLERLISSDESVAHSTKIF SLEELERAPDH 9629.m02564 motif-negative RRGRKGEVNMQNNIAAVNRLEEDALVWRLEERSSEFSLF EFSELLEATDN 9629.m02756 motif-negative RRRRRRAAAAALAKAAADSRSKRSQAMESISASTTLVQFT YDEIKAATGG 9629.m03184 motif-negative KGRKQTDRKNATSDLMLNEKYPRVSYHELFEATDG 9629.m03474 motif-negative WKKKIFRNKKRSKSFIDIYGDGVPVRIAQSSLNFKYEELRK ATNY 9629.m03865 motif-negative RSRRA KALRRLEDSSSFLTVFTYRDLQLVTNN 9629.m04349 motif-negative RKRNLSEANKVEGSLVVFRYRFLQHVTKN 9629.m04404 motif-negative KPYQALLSCIERRLRRKAAAAATAAEPLPPEKKEDAGRPL VQAERLRAAFRIDGLLREYSHGEIQAMT 9629.m04617 motif-negative SIRNDIQNSAEGGYMMIRNQFRGFTYQELKEAT 9629.m04791 motif-negative KKSRYRRISKGTPRIESFLQRNGTLHPKRYTYTEVKRMT 9629.m04980 motif-negative KNKKPE RPRASSRTSSMAREETVRFDGCCVEFDVCTLM

PAGE 61

51 Table 2-2. Continued Protein ID Category Juxtamembrane Domain 9629.m05047 motif-negative KRRRLKNEEASTSRDIYIDSR SHSATMNSDWRQNLSGTNL LSINLAAFEKPLQNLTLADLVEATNG 9629.m05632 motif-negative WRQKSKAKGVDTDSAIKLWESEETGSHFTSFCFSEIADAT CK 9629.m05849 motif-negative CKGKPKEHDDYDMYEEENPLHSDTRRFTYTELRTIT 9629.m05851 motif-negative KGKSRKSEEEDYDMYEEETPLHIDIRRFTYAELKLIT 9629.m05922 motif-negative MRRRSKRRTTSRRSLLSRYSV KVDGVRCFTFDEMAAATN D 9629.m06444 motif-negative FRRRMVKETTRVEGSLIAFTYRDLKSVTKN 9629.m06446 motif-negative RRRMVKATTRVEGSLISFTYRDLKSVTKN 9629.m06570 motif-negative TARSRPAT SEQWAAEEGYRVVTDHFRRFTYGELRKATKN 9629.m06607 motif-negative RRSRRLKALRRVEGSLTAFTYRDLQVATKS 9629.m06614 motif-negative G RRRISSMNHTDGSLITF KYSDLQILTKN 9629.m07414 motif-negative KIKMRVDEVEKFLQLQQMLTPTRYSYTDIIAIT 9630.m00079 motif-negative RRKQKPCLQQSSVNMRKISYEDIAKATDG 9630.m00113 motif-negative KRKLMKEKERFFQQNGGMLLYEQIRSKQVDTVRIFTKEEL ENATDN 9630.m00153 motif-negative TWRAWSRWQEDNARVAADDESGSLESAARSTLVLLFAN DDDNGNGDDGERTMTLDDVLKATGN 9630.m00498 motif-negative RRMLKAK DKRRAAGPTYESALLENREFSYRELKHITNN 9630.m00519 motif-negative RGKNFVTENRRCRNDGTEETLSNIKSEQTLVMLSQGKGEQ TKLTFTDLKATKN 9630.m00520 motif-negative ATVKGTDCITNNRSSENADVDATSHKSDSEQSLVIVSQNK GGKNKLTFADIVKATNN 9630.m00522 motif-negative SISGMSFRTKNRCSNDYTEALSSNISSEHLLVMLQQGKEAE DKITFTGIMEATNN 9630.m00523 motif-negative ERSKRFITKNSSDNDGDLEAASFNSDSEHSLIMITRGKGEEI NLTFADIVKATNN 9630.m00524 motif-negative RATKLMRKGELANNRNEETASFNPNSDHSLMVMPQGKG DNNKLTFADIMKTTNN 9630.m00544 motif-negative RRWKKDFDQLAKSMQSLPGVPVKISFADIRKATNN 9630.m00812 motif-negative RHSHRAHDSKNIRSSSDTARVALVPMLNKFNSMKTNKKG LVAMMEYNTLETATGK 9630.m00926 motif-negative RRRRKMLRRRQFVLV PAGDNAMADHETTLSNNLLGRRR MKKREPPSINLATFEHAPVRVTVDEIMRATGN 9630.m01077 motif-negative KRREEKPILTDISMDTKIISYKDIVQATKG 9630.m01086 motif-negative MKRRKEEPNLQHSSVNLRKISYEDIAKATDG 9630.m01088 motif-negative MKRRKEEPNQQHSSVNLRKISYEDIAKATDG 9630.m01126 motif-negative HKRAKKTNANRQTSLIKEQHMRVSYTELAEATKG 9630.m01128 motif-negative RNKKAKPNPQISLISEQYTRVSYAELVNATNG 9630.m01130 motif-negative RLRTKLRRANPKIPLSDKQHMRVSYAQLSKATNS 9630.m01131 motif-negative RNKTQAKSDLALINDSHLRVSYVELVNATNV 9630.m01182 motif-negative RRKKHLQDHLSWKLTPFHVLHFTANDILSG 9630.m01185 motif-negative RRKKLQDHLSWKLTPFHILHFTTTNILSGL

PAGE 62

52 Table 2-2. Continued Protein ID Category Juxtamembrane Domain 9630.m01236 motif-negative RRKKGPQDVTSWKMTQFRTIDFTEHDIVSN 9630.m01273 motif-negative KRKGKSNEHIDHSYMELKKLTYSDVSKATNN 9630.m01310 motif-negative KYCRWRLPFASADQDLEIELGHLKHFSFHELQSATDN 9630.m01866 motif-negative KRKF QRYVELREDWELEFGAHRLSYKDLLQATER 9630.m01874 motif-negative KRKF QRYVELREDWELEFGAHRLSYKDLLQATER 9630.m02460 motif-negative RSVRRKNQEHAVASEDMGEATLSMEVARAATKG 9630.m03311 motif-negative RRKMKSVEQSENGAGNTKVFSVWNFDGGDVCKQSFEAT EN 9630.m03878 motif-negative KKTPRRTYLSLLSFGKQFPRVSYKDIAQATGN 9630.m03880 motif-negative KRTSRRTDLLLLSFGKQFPRVSYKDLAQATGK 9630.m03884 motif-negative KMKPREKYISSQSFGENFLKVSYNDLAQATRN 9630.m03885 motif-negative KMKPREKYISSQSFGENFLKVSYNDLAQATRN 9630.m03886 motif-negative KMKPREKYISSQSFGENFLKVSYNDLAQATRN 9630.m03961 motif-negative KRRLAKIKREHFRQHGGLLLFEEMKSRQGLSFALFTQEEL EQATNR 9630.m03963 motif-negative KRRLATVKRRYFNQHGGLLLFEEMKSNQGLSFTVFTKDE LEEATNK 9630.m04029 motif-negative KWKRGIQRRIRRAYFKKNQGLLLEQLIIDENTKDKTRIFSL EELEKATYN 9630.m04033 motif-negative KWRKGIQKRIRRAYFKKNQGLLLEQLISNESATNKTKIFSL EELEEATNN 9630.m04037 motif-negative KWKKSIQKRIRRAYFKKNQGLLLEQLISDESATNKTRIFSL EELEEATNN 9630.m04056 motif-negative W YKNRLTKSPSTMSMRAHQLVSYQQLVHATDG 9630.m04102 motif-negative RRRRRYAELKEEWEVA FGPHRFSYKDL 9630.m04231 motif-negative LRPRLRGLRLDRLTSRLPACLRRSRTANTMLPYFAPIADRL GALQPYLAPIADRL 9630.m04698 motif-negative RKRRRRSGGDPSSAFNAAIDF RKIPGLPKEFDYMELRRGT NN 9630.m04699 motif-negative RKRRKRIGDDPSSVFNTTIDFRSIPGVPREFDYRELRRGTN N 9630.m04857 motif-negative RHRRNHQILFDVDEQHTENVNLGNVKRFQFRELQVATEN 9630.m05594 motif-negative RKIKNRRANMLRQMFFKQNRGHLLQQLVSQNTDIAERMII PLAELEKATNK 9630.m05879 motif-negative KRRKQKPSLQQSSVNMRKISYEDIANATDG 9631.m01172 motif-negative RRRSAALRSQKSTKRLLSEASCTVPFYTYREIDRATNG 9631.m01199 motif-negative KARSLKRSAEARAWRLTAFQRLDFAVDDVLDC 9631.m01470 motif-negative KRWFRHAELREDWKVEFGPQRFSYKDL 9631.m04208 motif-negative RYKLRHCQCSKNELRLAKNTTYSFRKDNMKIQPDVEDLKI RRAQEFSYEELEQATGG 9631.m04253 motif-negative RRKHIQEKQQYFKQNGGLRLFDEMVSRQVDTVRVLTEDE LKKATNN 9631.m04258 motif-negative RRKHTIEKQEYFRRNGGLRLYDEMVSRQVDTVRVLTVDE LKKATDN

PAGE 63

53 Table 2-2. Continued Protein ID Category Juxtamembrane Domain 9631.m05490 motif-negative RRRLKY AELREDWEVEFGPH RFTYKDLFRATEG 9631.m05492 motif-negative FRRQRRA IYVELVEDWEVEFGPHRFAYKDLHKATKG 9631.m05502 motif-negative KARSLKKASEARVWKLTAFQRLDFTCDDVLDCL 9631.m05991 motif-negative RSRRYAEEEEEWEIEYGPHRISYKDLHGATKG 9631.m06141 motif-negative WVFCRHSPKYGAASAQYALLEYASGAPVQFSYRELQRST KG 9631.m06166 motif-negative FKRWKRSTRKKIRRAYFRKNKGLLLEQLISSSNNVTPNTRI FSLEDLEKATNN 9631.m06406 motif-negative SRWDLDALEIQAVEQGYKVMASNFRRYNYKELAKATRK 9632.m00228 motif-negative KSKYLRIDATKVGTAVDDSILKRKLYPLISYEELYHATEN 9632.m00291 motif-negative RRWRRHMQRKIRREYFQKNKGLLLEQLMSSDENVAHDP KIFSLEELEKATDN 9632.m00377 motif-negative KWKRVLNFFHKGTAGARRFEYRDLATATKN 9632.m00403 motif-negative KVFHKGTASARRFEYHELATATEN 9632.m00458 motif-negative QKRIRNVFDKGTGGARRFEYRNLAAATDH 9632.m00467 motif-negative WKWRKTNREFDKGTRGACRFNYHRLAAATNH 9632.m01129 motif-negative KKNIPLSQASSKSQLPLKTFTYKELEKATAG 9632.m01308 motif-negative RKKRKLRAYFNRNGGQLLKSIKIDIYTKEKLDQITKNYST 9632.m01335 motif-negative MRKKAKQQDRIISPDMEDVLNNRLISYHDIVRATDN 9632.m01893 motif-negative KYKRRLVRQDLMNKRDAYFRQHGGQLLLDMMKLENQV SFKLYDREEIELATNN 9632.m02006 motif-negative RRWKRDIQRQLRRNYFRKNQGLLLEQLISSDENASDKTKI FSLEELEKATNN 9632.m02009 motif-negative RRWKRDIQRQLRRNYFRKNQGLLLEQLISSDENASDKTKI FSLEELEKATNN 9632.m02077 motif-negative KKRRALAYQKEELYYLVGQPDVFNYAELKLATDN 9632.m02192 motif-negative QKRRKYRERDEELDFDIMPGMPTRFSFQKLRKSTED 9632.m02196 motif-negative RRRRKYQETDEELDFDILPGMPLRLSLEKLRECTED 9632.m02204 motif-negative RRRRKY QKLDEELDFDILPGMPMRFSFEKLRERTED 9632.m02208 motif-negative QRRK YQEIDEEIDFEPLPGMPVRFSYEKLRECTKD 9632.m02260 motif-negative HRWKKDIQKQLRRKHFQKNQGLLLEQLISSDENASENTKI FSLDELEKATNN 9632.m02267 motif-negative RRWKNDIQKQLRRKHFRKNQG LLLEQLISSDENASDKTKI FSLDELEKATNN 9632.m02268 motif-negative RRWKRDIQKQLRRKHFQKNQGLLLEQLILSDQNATDKTKI FSLEELEKATNN 9632.m02809 motif-negative RKRKNDIQKQLRKKYFRKNQGLLLEQLISSDECATDSTKIF TLEELKEATNN 9632.m02818 motif-negative HRRSIKRQRLIRQRDEYFQQHGGQLLSDMMKIDCNLEFTL YRQEDIEVATND 9632.m02835 motif-negative KYKQRIKKQALLRQADEFFQQHGGQLLLEMMKVEGNAG FTLYERERIKIATNN 9632.m02838 motif-negative RHKRSIKKQALLRQTHEFFLQHGGQLLLEMMKVEGNVGF TLYERGEIETATSN

PAGE 64

54 Table 2-2. Continued Protein ID Category Juxtamembrane Domain 9632.m02843 motif-negative QHKRSIKRQALQRQTDMYFQQHGGQILLELMKVESSAEFT LYDREKIEVATNN 9632.m02866 motif-negative RHKRSIRKQALLRQTDEFFQQHGGQLLLEMMKAEGNIGFT LYKRVEIETATKN 9632.m03079 motif-negative RGRGNATVKKELSALKDANGNVISAQTFTFRQLAAATRN FREEC 9632.m03291 motif-negative RKGKRYNLTMDNVQGGMGIIAFRYVDLQHATKN 9632.m03294 motif-negative RRSKTKFSGDRLKDSQFCNGIISFEYIDLQRATTN 9632.m03301 motif-negative WKSKGKWFACTQEKPEDGIGITAFRYTDLQRATKN 9632.m03304 motif-negative WWNKSKRYNCTSNNVEGESGIVAFRYIDLQHATKN 9632.m03761 motif-negative CRRLHAAAKLVLFYPIKITADELLAAL 9632.m04193 motif-negative QRRKLTKIKKEYFRQHGGMILFESMKSKKGLAFTVFTEAE LIHATNN 9632.m04316 motif-negative MRRRRM FSELKEEWEVTFGPH RFSYKDLFHATDG 9632.m04317 motif-negative RRRVR YAEVREDWEVEFGPH RFSYKELYQATKG 9632.m04800 motif-negative WRRSTRKRRLAYRNLEKMIDAHGPVKFKLKELRRATAN 9632.m04925 motif-negative WTMKKRKVARKRAELFRKNGGLLLQQRFLMITSQGEESS AKIFSAEELKNAT 9632.m04926 motif-negative KKRRLAKQKQRYFLQNGGLLLQQQIFTHQAPARIFTTSEL EDATNN 9632.m04927 motif-negative KKRKLAKIRQRYFMQNGGMLLKQKMFSQGAPLRIFTSSEL EKATNS 9632.m05095 motif-negative WRQ KKRKILLELEELYNIVGRPNVFSYNELRSATEN 9632.m05097 motif-negative WRQK RRKLTLEQQELYSIVGRPNVFSYSELRSATEN 9632.m05099 motif-negative MWRQK RRKLSLEQQELYSIVGRPNVFSYSELRSATEN 9632.m05246 motif-negative RKWQSKASVLLGKRRNNKNQNRMLLGNLRSQELIEQNLE FSHVNFEYVVAATNN 9632.m05253 motif-negative KWISKGEKRNNENQNRAMLGNFRASHEVYEQNQEFPCIN FEDVVTATNN 9632.m05257 motif-negative RKWQTKGKQRNDENKKRTVLGNFTTSHELFEQKVEFPNI NFEEVATATNN 9632.m05462 motif-negative RVRDDGYSLVFSHFRRFTYDELSDATCG 9632.m05627 motif-negative RIIHSRMQEHNPKAVANADDCSESPNSSLVLLFQNNKDLGI EDILKSTNN 9632.m05838 motif-negative RRRRKYQ ELDEELEFDILPGMPTRFSFEKLRECTED 9633.m00270 motif-negative RRARARRRGTTALA AVADKRDSLASAA ALARSPREFTYK ELSAATRG 9633.m00320 motif-negative KMRNRRNDHHDDMDGSSEIIRTIAASQLSFKYEELCKATD D 9633.m00373 motif-negative KWKRGVQKRIRRAHFKKNQGLLLEQLILDEKAQDKTKIFS LEELEKATNY 9633.m00657 motif-negative RKKLRFCGAQLHDSQCSGGIVAFRYNDLCHATKN 9633.m01194 motif-negative RK KAGPQEDWEMKCRPPSFIYKDLYNATSG

PAGE 65

55 Table 2-2. Continued Protein ID Category Juxtamembrane Domain 9633.m01241 motif-negative MRKRARFNHHRLNRKTEILIEMPMEEEVHNTRRFSYAHLL AATEN 9633.m01466 motif-negative KKRRTMAQQKEELYNLIGRPDVFSNTELRLATDN 9633.m01467 motif-negative KKRRTMAQQKEELYNLIGRPDVFSNTELRLATDN 9633.m01492 motif-negative KKRRTMAKQKEELYNLVGRPDVFSNSELKLATDN 9633.m01499 motif-negative KKRRAMAQQKEELYNLVGRPDVFSNVELKLATDN 9633.m01517 motif-negative KKRRT IAEQQEELYNLAGQPDVFSNTELKLATDN 9633.m01570 motif-negative KKRRALAQQKEELYNLVGRPDVFSYAELKLATDN 9633.m01571 motif-negative KKRRALAQQKEELYNLVGRPDVFSYAELKLATDN 9633.m01572 motif-negative KKRRALAQQKEELYNLVGRPDVFSYAELKLATDN 9633.m01594 motif-negative KKRRALAQQKEELYNLVGRPDVFSYAELKLATDN 9633.m02281 motif-negative RRKKVAKHSGKTDKKCLTYQTELYKSPSNLCRNFTFHEM QIATSS 9633.m02283 motif-negative KKVAKHSFMTDKKCMTYRTEFYHSPSNLCRNFTFDEIQV ATRN 9633.m02289 motif-negative RKKRVDHGNTNKELLLATLLS KKSNLCHQFTFLQIQEATS N 9633.m04197 motif-negative RRKKQAMSNSVKPQNETVSNVSSNGGYGHSSSLQLKNRR FTYNELEKITNN 9634.m00350 motif-negative RRQKQKIGSSLEVSDSRLSTD HYQQKEVCRRSASPLISVEY SN 9634.m00424 motif-negative RMKLEKEKQRFYDQNGGHILY QKIISGQVNTVEIFTEEVL KNATNN 9634.m00426 motif-negative AGERRRAARMARRLPSMEDERIRVEYSYFRKVAGLPRKL TLESLAAATDG 9634.m00815 motif-negative RSMAAARAKRQSVRLVDVEDYQAAAEREHPRISYRELAE ATGG 9634.m01052 motif-negative RRRAALADTLEEWELEHPQRIPYKELYKATKG 9634.m01423 motif-negative WRRRRRR HAEVREDWEVEFGPHRFAYKDLVRATRG 9634.m01613 motif-negative RKKVKHQNISSGMLDMISHQLLSYHELVRATDN 9634.m01642 motif-nega tive RHRRNRQILFDVDEQQIE NVNLGNVKRFSFRELQAATEG 9634.m01788 motif-negative RMALNCVRGGYRSKSDTVIFIPKLIKSKEHLAFLEKDQDG 9634.m02185 motif-negative KKRRRRVGDDPESLSSTAAFKFN KSSINLRSLAGTPKEFEY TELRKGTED 9634.m02894 motif-negative RWRKRN AVRRAQMERLRPMSSSDLPLMDLASIHAATDS 9634.m03394 motif-negative RRKRD EPLEDEYFIDQLPGLPTRFSFVDLKSATGD 9634.m03445 motif-negative KVLPRRQNENTTTPRWKLTAFHNINFNYQDIICGLADNN 9634.m03602 motif-negative QREDKQ LRELAEVGYEMITNHFRRYTYRELVTATRR 9634.m03654 motif-negative KRKKAKNPTDPSYKKLEKLTYADLVKVTNN 9634.m03671 motif-negative KKHKSSSGPTSTRAVRNQLPRVSYTELSMGTNG 9634.m03687 motif-negative RRKEMQANPHCQLISEHMKNITYQDIVKATDR 9634.m03694 motif-negative WRKRMQVTPKLPQCNEHVFKNITYENIAKATNK 9634.m03697 motif-negative RKRIQVKPNLPQCNEHKLKNITYEDIAKATNM 9634.m03700 motif-negative TKRMQAEPHVQQLNEHRNITYEDVLKATNR

PAGE 66

56 Table 2-2. Continued Protein ID Category Juxtamembrane Domain 9634.m03716 motif-negative KRMQAEPHVQQLNEHRNITYEDVLKATNR 9634.m03999 motif-negative RRINNNDHDIVRHFTKKELHRATNG 9634.m04004 motif-negative RRIRRRSSSDHDMVMRLFTRKELYDATNG 9634.m04433 motif-negative RWRRKIRSSRTGNAAARSVLNGNYYPRVTYAELAKATDD 9634.m04788 motif-negative RQRRALADVKRKYFERHGGLLLYDELSTRPGNTFTIYMEE QLEQATNG 9634.m04798 motif-negative QRRALADIKRSYFKRHGG LLLYEELNARKSNAFTIYTEEQ LEQATNG 9634.m04920 motif-negative RKGCSA WRSAARRRSGAWKMTAF QKLEFSAEDVVECVK 9635.m00073 motif-negative SKREVSIIDDEEINGSCHDSYDYWKPVLFFQDSAKELTVSD LIKSTNN 9635.m00209 motif-negative RKKMFRKQLPLLPSSDQFAIVSFKDLAQATEN 9635.m00303 motif-negative RRRLKYT EIQEDWEVEFGPHR FSYKVLYDATEG 9635.m00304 motif-negative RRRM RYTELREDWEIDFGPH RFAYKDLFHATEG 9635.m00306 motif-negative RRRSR YAELREDWEVEFGPHRFSYKELFRATDG 9635.m00307 motif-negative RRRKRY TELREDWEVEFGPHR FPYKDLHHATQG 9635.m00308 motif-negative RRRQ RYAELREDWEDEFGPHRFAYKDLLHATDG 9635.m00309 motif-negative RRRM RYTELREDWEVEFGPHRFSYKDLFRATDG 9635.m00310 motif-negative RRK LTYTELREDWETEFGPNRFSYKDLFLATEG 9635.m00311 motif-negative RRNLRYAELREDWEVEYGPRRFCYKDLFDATEG 9635.m00312 motif-negative RRQQRYAELREDWEVEFGPHRFSYKDLFNATEG 9635.m00313 motif-negative RRRLR YVELKEDWEIEFGPHRFSYKDLFHATHG 9635.m00314 motif-negative RRRLR YAEIREDWEVEFGPHRFSYKDLFCATEG 9635.m00315 motif-negative RRHLRYKEVREDWEVEYGPHRFAYKDLFDATKG 9635.m00317 motif-negative RRRLR YAELREDWEIEFGPHRFSFKDLYLATEG 9635.m00318 motif-negative RRKRY AELYEDWEVEFGPYRFSYKYLFDATEG 9635.m00320 motif-negative RRQLVYKEVREDWEVEYGPRRFAYQDLFRATRG 9635.m00322 motif-negative RRRLR YAELREDWEIQFGPH RFSFKDLYFATEG 9635.m00324 motif-negative RKKNAKQREVIMDSAMMVDAVSHKIISYYDIVRATDN 9635.m00325 motif-negative RRWFKYAELREDWEIDFGPHRFSFKNLYFATEG 9635.m00326 motif-negative RRRQMR YAELREDWEVEFGPH RFSYKDLFHATEG 9635.m00329 motif-negative RRCRRYQE LHEDWEVEFGPHR FSFKELFKATNGFV 9635.m00339 motif-negative RWCWKKNARSRENWEAELGPRRFAYRDLRRATDG 9635.m00347 motif-negative KARSLKKASEARAWKLTAFQRLEFTCDDVLDS 9635.m00512 motif-negative KSKIPD LVSNEERKTGFSGPHYFLKERITFQELMKVTDS 9635.m01265 motif-negative KQERKREARFKLRLISMAIQNVINLWRIEEGNSGFSLYNFS QIKEATQD 9635.m01838 motif-negative RRRLRY MELQEDWEVDFGPHRFSFKDMYHATEG 9635.m01839 motif-negative RRHMRYTELREDWEVEFGPHRFSYKDLYHATEG 9635.m02971 motif-negative RRLRNHKSMLRKKDTMAREEVLKLWRLEESDSEFMLFDF SQIEDATSN 9635.m02984 motif-negative RRLRNHKSMLRKKDTMAREEVLKLWRLEESDSEFMLFDF SQIEDATSN

PAGE 67

57 Table 2-2. Continued Protein ID Category Juxtamembrane Domain 9635.m03469 motif-negative KKLRKGDGRKSNRQLEAHSRNSSKTEEALKLWRTEESST DFTLYDFGDLAAATDN 9635.m03484 motif-negative RRRKRSRSKQQHSYSMQMGE DIESVDSLFIDLSTLRAATG N 9635.m03485 motif-negative RWRKRSRSKQQSSYSIQMAEDIESTDSLFIDLSTLRAATGN 9635.m03488 motif-negative KRKKAAKKDNLLKKMARGKCTIFDLATLKEATEN 9635.m03489 motif-negative RRRSKVTET DHQLRKITRAQCLIFDLPALQEATDNFSDNN 9635.m03490 motif-negative RRRSKVTET DHQLRKITRAQCLIFDLPALQEATDNFSDNN 9635.m03493 motif-negative RRKRPVITKAKQTNANYYAEADDVDSVDSMLMDISTLRA ATGD 9635.m03494 motif-negative RFRRRTKVT DAVHPLKKITRAQCMI FDLSALQEATEN 9635.m03497 motif-negative RFRRRTK AAETDHPLKKITRAQCMIFDLPTLQEATEN 9635.m03511 motif-negative RFKRRTKAVEADHPLKKITRAQCMIFDLPTLQEATEN 9635.m03523 motif-negative RRRRP EEQTFLPYDIQSIDSLLLDLSTLRAATDD 9635.m03527 motif-negative KRIKKRRPEEQTFLSYSVSSDDIQSIDSLILDLPTIRVATDD 9635.m03528 motif-negative RRRRLARKT LRPKSSEDEMQSFASL VLDLQTLRTATDN 9635.m03532 motif-negative RRKRRSRKAEHFSELDASEDLESVKSTLITLASLQVATDN 9635.m03533 motif-negative RRKRRSRKAEHFSELDASEDLESVKSTLITLASLQVATDN 9635.m03537 motif-negative RKKSRATK AEHLSELDASEDLESVKSTLLTLGSLQVATDN 9635.m03639 motif-negative KCRRD RTLRISKTTGGALIAFRYSDLQHVTSN 9635.m03785 motif-negative FNKREKNPQKKDCSSTRNPVFEECSTHKATNSAVQQLSLK SIQNATCN 9635.m03803 motif-negative FRRIRRTTRSREKEKEKLDCD ESIDSEFEKGKGPRRFQYNE LVVATDN 9635.m03805 motif-negative RRRRISRRRTREEYEMGGSDDF DMNDEFEQGTGPRRFLYS QLATATND 9635.m03867 motif-negative RRWHRQFAEVREDWEVEFGPHRFTYKDLFHATQG 9635.m04367 motif-negative RRRTKATKL SLSYSSRSEDIQNIESLIMDLPTLRIATDN 9635.m04368 motif-negative RKKRLPTKTPLIENTEDLEDFESIFIDLSTLQSATSN 9635.m04760 motif-negative KRRRRRARVRSELRRLSMAVQ NVITLWRLEEGNSGFKLY DFSDIKDATNN 9635.m05024 motif-negative RRRRRF AEVREDWEDEFGPHRFAYKDLFRATDG 9636.m00991 motif-negative KKRRKAARQQEELYNLVGRPNIFSSAELKLATDN 9636.m00993b motif-negative KKRRRT SQRKEELYNMVGRRN VFSNAELKLATEN 9636.m01497 motif-negative KRKM KLNVVDNENLFLNETNERISYAELQAATNS 9636.m01501 motif-negative KTRMKPNIIDNENLFLYETNERISYAELQAATES 9636.m02876 motif-negative SRNTYFAERMIINLEELEKATNN 9636.m03313 motif-negative RRRATAPRSRSTAAAAAAHDVAEPITVTVARTDMDAAVK QSHSPPPP 9636.m03475 motif-negative KFYHPKTKNLESVSTLFEGSSSKLNEVIEATEN 9636.m03956 motif-negative KQRREKKLKEKFFKQNHGLLLQQLISRNTDFGERMIITLEE LQKATNN

PAGE 68

58 Table 2-2. Continued Protein ID Category Juxtamembrane Domain 9636.m03957 motif-negative KMKLRKMKRMKETFFRQNHGLLLGRLVSQNADIGQRMI MTLQELEKATDN 9636.m03960 motif-negative RKIKLRKMKKTKERFFKQNHGLLLQQLISQKVDIGERMIIT LSDLEKATNN 9636.m03961 motif-negative RRKFKSRRAKKLKEFFFKQNRGLLLHQLVDKDIAERMIFS LEELEKATNN 9636.m03963 motif-negative RKVKLQRVKKMRDKFFMQNHGLLLQQLISRNTDFAERMI ITLQELEIATNN 9636.m04074 motif-negative RMARARRSMERRRQERLEHTLT NLPGMPKEFAFEKLRKA TKN 9637.m00704 motif-negative RRKLLY AELREDWEIDFGPQRFSYKDLFHATQG 9637.m00705 motif-negative RRHLR YSEVREDWEVEFGPHRFSFRDLFHATEGFK 9637.m01303 motif-negative NKRAIEVDSENSEWVLTSFHKVEFNERDIVNSLTENN 9637.m01504 motif-negative KWRRKNSMHKDLRAFDLQTGSFTLRQIKVATRN 9637.m01544 motif-negative RQKRNSNYSTEDPTRDRSNQLENSLEKSQNHGDVLQIVEN RQFTYIELEKVTNK 9637.m01775 motif-negative RRKLQHIKNNYFQQHGGLILFE EMKSQQGHAFKIFSEEEL QQATKK 9637.m02620 motif-negative REKRKLQYVKRRYFRQHGGMLLFEEIKSQQGISFKIFSEEE LQQATNK 9637.m02623 motif-negative RERRKLQHIKQKYFKLHGGLLLFQEMNSNERKSFTIFSEAE LQHATNK 9637.m02625 motif-negative HERRKLQHIKQKYFKLHGGLLLFQEMNSNERKSFTIFSEAE LQHATNK 9637.m02627 motif-negative HDRRKLQHIKNQYFRRHGGLLLYEEMKSKQGLAFKIFSEE ELQQATNK 9637.m02724 motif-negative TNMIKARRAKKLRAVFFKQNRGLLLLQLVDKVIAERMVF TLEELEKATNR 9637.m02896 motif-negative KVAKVQEGHIASISRRNQPPCCYYLCDDASQAEGIKVERSI EFSYEEIFNATQG 9637.m03211 motif-negative PKIKEIIKKKYGENNKRRALRVLSISDDLGQEIPAKDLEFPF VEYDKILVATDN 9637.m03213 motif-negative RGKKRSVKEHKKSQVQGVLTATALELEEASTTHDHEFPFV KFDDIVAATNNFSKS 9637.m03219b motif-negative KSRENRRKRDSQKTLVPGSRNTSSELLEENPTQDLEFPSIRF SDIVAATDN 9637.m03225 motif-negative KIKGKRRNRQKHRELILDVMSTSDDVGKRNLVQDFEFLFV KFEDIALATHN 9637.m03306 motif-negative RRIKQRRARTLRQKFFKQNRGHLLQQLVSQKADIAERMIIP LAELEKATNN 9637.m03310 motif-negative RKIKQRRARTLRQKFFKQNRGHLLQQLVSQKADIAERMII PLAELEKATNN 9637.m03311 motif-negative KRKVKKQRARMLRQKFFKQNRGHLLQQLVSQKADIAER MIIPLSELEKATNN

PAGE 69

59 Table 2-2. Continued Protein ID Category Juxtamembrane Domain 9637.m03317 motif-negative RKQKRRRAKKIRQKYFKQNRGQ LLQQLVAQRADIAERMII PLGELKKATNN 9638.m00128 motif-negative KRKMNKYFKKNGGSVLQKVDNIMIFSKDEVKKILKNN 9638.m00133 motif-negative RRKMNEYFKKNGGSILQNVDNIVIFSKDEMKKIL 9638.m00154 motif-negative RARRREVRSAMMLSSLQDGTRT ATTWKLGKAEKEALSIN VATFQRQLRKLTFTQLIEATNG 9638.m00177 motif-negative RKEKQKMREFFIRNGGPILENAKSIKIFRKEELKRITK 9638.m00383 motif-negative RRGHRKGIMGLQARRTDNLQGEEELVWDLEGKNPEFSVF EFDQVLEATSN 9638.m00436 motif-negative SCQQFKLRPSSIYLKQERSYCIIMDLSESKHKEYIERAQWIE ENISNIKPFTEEDIKRITSDYN 9638.m00516 motif-negative HKKRKMNEYFKKNGGSVLQKVDNIKIFTKDELKKITKNN 9638.m00522 motif-negative QKRKINEYFKKNGGSILQKVDNIMIFSKDDLKKITKNN 9638.m00529 motif-negative HQKRKMNEYFKKNGGSVLQKVDNVKIFSKDELKKITKNN 9638.m00590 motif-negative KRSQRL SANRVSMRNLDSTEELPEDLTYEDILRATDN 9638.m00592 motif-negative KRSQ RLSTNRVSVRNMDSTEELPEELTYEDILRGTDN 9638.m00835 motif-negative HREKRKMREFFEKNGGPILEKVNNIKIFKKEELKPILKASN 9638.m00843 motif-negative KLLFDERRKTKEFFIKNGGPVLEKVDNIKIFKKEELKPIIQS CN 9638.m00886 motif-negative RRWKRHAQKRLQTKYFRKNQG LLLEQLISSDENASEKTKI FSLEELKKATNN 9638.m00929 motif-negative RHRAIKKVALAGPRSYSYEELYTATNG 9638.m01234 motif-negative RKKVKHQKISTGMVDTVSHQLLSYHELVRATDN 9638.m01485 motif-negative RQKRRMNEYFRKNGGSVLQKVENIKIFTKDELKKITKNN 9638.m01489 motif-negative KKLQAKQYAADKNVDSGSLLFDLAIIRKATAN 9638.m01490 motif-negative RKLQAKQYTDENDIYSGSLLFDLATLRKATAS 9638.m01591 motif-negative KDQRTIPKDIDHEEHITSLLIKKYPRISYVELYAATDSLSSE N 9638.m01608 motif-negative KRLREKSSKVNQDQGSKFIDEMYQRISYNELNVATGS 9638.m01814 motif-negative KRKWKSNEHMDHTYMELKTLTYSDVSKATNN 9638.m01940 motif-negative KKRLRPLSSKVEIVASSFMNQMYPRVSYSDLAKATNGFTS NN 9638.m02622 motif-negative RRLRYAELREDWEVEFGPHRFAYKDLFVATAG 9638.m02623 motif-negative RQRLRYAELREDWEVEFGPHRFSFKDLYDATGG 9638.m02876 motif-negative SRKARRAAVVVEKAETSASGGGGSSTAAAVQASIWSKDT TFSFGDILAATEH 9638.m02881 motif-negative RRRPREKKE VESNTNYSYESTIWEK EGKFTFFDIVNATDN 9638.m03509 motif-negative RRRAALADTLEEWELDHPHRLPYRELYMATKG 9639.m00291 motif-negative RKEMRS SQVWIAEEGYRVMTSHFRMYSHRELVKATER 9639.m00654 motif-negative NRKQKRKSVDLPSFGRKFVRVSYNDLAKATEG 9639.m01200 motif-negative RSFKLEELKKRDMEQGGGCGAEWKLESFHPPELDADEICA VG 9639.m03230 motif-negative RRIKHRRKIKLRQKFFILNRGQLLKQLVSQRADIAERMIITL DELEKATNN

PAGE 70

60 Table 2-2. Continued Protein ID Category Juxtamembrane Domain 9639.m03255 motif-negative KYLNRRKKNNTKNSSETSMQAHRSISFSQLAKATEG 9639.m03742 motif-negative KKRNNLGKQIDQSCKEWKFTYAEIAKATNE 9639.m04370 motif-negative RMKVKKHQKISSSMVDMISNRLLSYQELVRATDN 9639.m04371 motif-negative RKKVKHQENPADMVDTINHQLLSYNELAHATND 9639.m04373 motif-negative RATDD 9639.m04376 motif-negative QMTR KKIKRKLDITTPTSYRLVSYQEIVRATES 9639.m04388 motif-negative KRRKRRMFANNNGGRLLKDMNIVLITEKDLNKMTKN 9639.m04389 motif-negative KYKVKHQKMSVGMVDMARHQLLSYHELARATND 9639.m04398 motif-negative RK KIKRKLDTTTPTSYRLVSYQEIVRATES 9639.m04401 motif-negative RKKANHQNTSAGKPDLISHQLLSYHELRATDD 9639.m04403 motif-negative RMTRKKIERKPDIAGATHYRLVSYHEIVRATEN 9640.m00278 motif-negative RKEMW SSEVWAAEEGYRVMTSHFRMYSYRELVKATER 9640.m00281 motif-negative KGVFRRCQ VSALDEGYRMVTNHFRAYSYVELRNGTRN 9640.m00711 motif-negative KTHSARSAIWAAEEGYRVVTDHFRRFTYKELRRATRN 9640.m01015 motif-negative RRKRSPKQTEDRSQSYVSWDIKSTSTSTAPQVRGARMFSF DELKKVTNN 9640.m01616 motif-negative REIKHRRAKRVKQKFFKQNRGHLLEQLISQRADIAERMILP LVELEKATNN 9640.m02587 motif-negative RRCNDHR RRVQQKELELLGIMGPSRFQLQDLVAATGN 9640.m03046 motif-negative RQTR NSRKGEHALLLISDQHVRVSYTELVTSTNG 9640.m03691 motif-negative HRRRNKQDTWITNNARLISPHERSNVFENRQFTYRELKLM TSN 9640.m04130 motif-negative KLQRRKYRKEKEEYFKQNGGLRLFDEMRSRQVDTILILTE KEIKKATENYSDD 9640.m04131 motif-negative RRRHKKEKIEYFKQNGGLRLYDEMISRQVDTIRILTEREIK RATENYN 9640.m04132 motif-negative RKRHKKDKDEYFKQNGGLKLY DEMRSRKVDTIRILTEKDI KKATDNYSED 9640.m04177 motif-negative KPMKQVMQSNETSPRPLLMEQHWKLSYAELHRATDG 9640.m04345 motif-negative SRKKSIGGSYVKMDKQTIPDGAKLVTYQWNLPYSSGEIIR RLELLDEED 9639.m04391 motif-negative RMKVKKHQMISSGMVDMISNRLLSYHELVRATDN 9639.m04405 motif-negative KKMKNPDITASFDTADAICHRLVSYQEIVRATEN

PAGE 71

61 Figure 2-3. Rice RLKs selected for study mapped on the twelve rice chromosomes. Numbers along the top represent length ofchromosome in megabases.

PAGE 72

62 Figure 2-4. Motif-positive rice RLKs ma pped on the twelve rice chromosomes. Numbers along the top represent length of chromosome in megabases.

PAGE 73

63 Figure 2-5. Motif-like rice RLKs mapped on the twelve rice chromosomes. Numbers along the top represent length of chromosome in megabases.

PAGE 74

64 Figure 2-6. Motif-negative rice RLKs ma pped on the twelve rice chromosomes. Numbers along the top represent length of chromosome in megabases.

PAGE 75

65 Figure 2-7. Rice RLKs in subfamily CrRL K1L-1 selected for study mapped on the twelve rice chromosomes. Number s along the top repr esent length of chromosome in megabases.

PAGE 76

66 Figure 2-8. Rice RLKs in subfamily DUF26lc selected for study mapped on the twelve rice chromosomes. Numbers along the t op represent length of chromosome in megabases.

PAGE 77

67 Figure 2-9. Rice RLKs in subfamily L-LEC se lected for study mapped on the twelve rice chromosomes. Numbers along the top represent length of chromosome in megabases.

PAGE 78

68 Figure 2-10. Rice RLKs in subfamily SD-2 a selected for study mapped on the twelve rice chromosomes. Numbers along the t op represent length of chromosome in megabases.

PAGE 79

69 Figure 2-11. Rice RLKs in subfamily WAK sele cted for study mapped on the twelve rice chromosomes. Numbers along the top represent length of chromosome in megabases.

PAGE 80

70 Figure 2-12. Rice RLKs in subfamily LRR1a selected for study mapped on the twelve rice chromosomes. Numbers along the t op represent length of chromosome in megabases.

PAGE 81

71 Figure 2-13. Rice RLKs in subfamily SD2b selected for study mapped on the twelve rice chromosomes. Numbers along the t op represent length of chromosome in megabases.

PAGE 82

72 CHAPTER 3 MOLECULAR CHARACTERIZATION OF THE XA21T923A/S925/T926A MUTANT Introduction The rice disease resistance protein XA21, a receptor-like kinase (RLK), contains a putative proteolytic cleavage motif (P685SRTSMKG) in the juxtamembrane (JM) domain (Xu et al., 2006). Previous studies have suggested that autophosphorylation of three serine and threonine residues within this motif play a ro le in the stabilization XA21. Sequence analysis led to the identification of a se cond putative cl eavage motif (P922TDSTFRP) located in the intr acellular kinase domain of XA 21. Similar to the first, the second motif carries three serine a nd threonine residues (Thr923, Ser925, and Thr926) that can be potentially phosphorylat ed. Therefore, it is hypothesized that autophosphorylation of these three residues also contribute to the stability of XA21. Here, transgenic rice plants with these th ree phosphorylable residue s mutated to alanine are analyzed for the steady-state stability of XA21. Consistent with previous studies, the XA21T923A/S925A/T926A mutant accumulated to lower leve ls than wild-type. This work provides additional evidence supporting that autophosphorylation of XA21 plays a role in the stabilization of XA21. Materials and Methods Mutant Rice Plants Transgenic lines expressing a c-Myc-tagged XA21T923A/S925A/T926A were provided by Dr. Xuihua Chen of the Song lab at the University of Florida.

PAGE 83

73 XA21 Detection Protein isolation. Rice plants approximately three months old were used for this study. Total protein isolation was performe d by first grinding leaf tissue in liquid nitrogen. Ground tissue was tran sferred into a 1.5 ml Eppendorf microcentrifuge tube to a volume of approximately 700 uL. An equa l volume of extraction buffer (50 mM TrisHCl, pH 7.5; 150 mM NaCl; 1 mM EDTA; 0.1% TritonX-100; 1 mM 4-(2-aminoethyl)benzenesulfonyl fluoride (Sigma); 2 ug/ml leupe ptin; 2 ug/ml antipain ; 2 ug/ml aprotinin; 5% v/v -mercaptoethanol) was added and the tube was vortexed. The tubes were incubated on ice for five minutes. To pellet cell debris, tubes were centrifuged at 4C, 12,000 x g, for ten minutes. The supernatant wa s saved for application in western blot analysis. Protein concentrations in the extr acts were measured using the Bio-Rad protein assay (Hercules, CA). Western blot analyses. Each protein sample prepar ed above were subjected to SDS-PAGE and subsequently electrotrans ferred to a PVDF membrane (Millipore Corporation, Bedford, MA) for one hour at a constant 265 milliamps. The membrane was incubated at room temperature for three hours in Blotto [5% non-fat dried milk in TTBS (100 mM Tris-HCl, pH 7.9; 150 mM NaC l; 0.1% Tween 20)]. The membrane was washed in approximately 150 ml of TTBS thr ee times for 8 minutes each. Blots were incubated with primary anti body (anti-c-Myc, 1:700) in 3% bovine serum albumin in TTBS or in Blotto at 4C. The membrane was then washed as previously described. Secondary antibody (anti-mouse IgG, Amersham Biosciences) incubation was performed in Blotto at room temperature for one hour. The membrane was then once again washed as previously described. The blot wa s developed using Amersham Biosciences ECL+Plus kit.

PAGE 84

74 XA21 Transcript Levels To address the issues that lower protein leve ls may be due to lower transcripts, realtime PCR was carried out as in Wang et al. (in press). Primers used in this experiment recognize the LRR region of Xa21 and have been scrutinized for specificity. Template RNA was isolated from each mutant plant using the Qiagen RNeasy mini kit. Analysis of raw data, with the assistance of Dr. Li-Ya Pi of the University of Florida, was carried out to obtain values representing re lative amounts of transcripts. Results and Discussion All XA21T923A/S925A/T926A mutant rice plants surveyed exhibit lower levels of XA21 compared to wild-type levels (Figure 3-1). In contrast, Xa21 relative transcript levels in the mutants are comparable to those of wild -type XA21 or higher, confirming that lower steady states of XA21T923A/S925A/T926A is not due to lower transcripts. Ponceau staining of the membrane used in the Western blot ensu res approximately equal amounts of proteins were loaded into the gel. Together, thes e indicate that Thr923, Ser925, and Thr926 are involved in the stability of XA21. It must be noted howev er, that this Western blot analysis only indicates decrea sed level of protein and that degradation product cannot be seen. For future studies, it would be inte resting to purify the membrane fraction of XA21T923A/S925A/T926A mutant rice extract as in Xu et al. (2006) to allow detection of a cleavage product. If the putative cleavage motif examined he re and the one described by Xu et al. (2006) are true cleavage site s acting independently, three cleavage products of XA21 would result: 100 kD, 25 kD, and 15 kD (Fi gure 3-2). However, because of the Nterminus location c-Myc-tag, only full-le ngth XA21 and the 100 kD cleavage product

PAGE 85

75 could be detected on a Western blot. It is possible however that both putative cleavage motifs may act in conjunction when the protein is folded. Instability of XA21T923A/S925A/T926A mutant examined here is possibly due to a lack of autophosphorylation of XA21 on these residu es. Alternatively, au tophosphorylation of these three residues may function as docking sites for downstream proteins. Yeast-twohybrid analysis has led to the identification of 27 proteins that associate with XA21. A complex of proteins could protect XA21 fr om a protease(s) by limiting access to the recognition site. Residues mutated in D1 plan ts are contained within a motif of perfect identity to the proteolytic cleavage motif P/GX5-7P/G found in the animal EGFRs (Figure 3-3). Glycine flanking the putative cleavage mo tif may contribute to the exposure of this motif by disrupting its secondary structure. These findings ar e consistent with previous studies by Xu et al. (2006) and support that autophosphoryla tion of XA21 plays a role in the stabilization of XA21.

PAGE 86

76 Figure 3-1. Analyses of XA21T923A/S925A/T926A mutant. Relative transcripts are illustrated by the bar graph. The Western blot film at center shows amount of full length XA21 in wild-type (WT) plants and in seven XA21T923A/S925A/T926A mutant plants (numbers represent the plant line). Ponceau staining of the membrane was performed to ensure equal loading.

PAGE 87

77 Figure 3-2. Schematic representation of XA21 indicating putative cleavage motifs (A and B). Triangles mark the approxima te location of putative cleavage motifs and the N-terminal c-Myc tag. Bars a bove indicate approximate weights in kD of various portions of the protein befo re and after cleavage at the indicated sites. The transmembrane and JM domains are indicated. Figure 3-3. Amino acid sequence of the in tracellular domain of XA21. The putative cleavage motif characteri zed in the study is under lined and the mutated residues of D1 mutant s are shown in red.

PAGE 88

78 CHAPTER 4 DIRECT MUTATION OF THE PUTA TIVE CLEAVAGE MOTIF IN THE JUXTAMEMBRANE DOMAIN OF XA21 Introduction Previous findings suggest that auto phosphorylation of XA21 in the juxtamembrane (JM) domain plays a role in the protection of XA 21 against proteolytic degradation (Xu et al., 2006). The phosphor ylated residues Ser686, Thr688, and Ser689 exist within a putative cleavage motif flanke d by conserved residues of proline (Pro685) and glycine (Gly692). Herman and Chernaj ovsky (1998) demonstrat ed that Proline211 of the human p75 TNF receptor is required fo r its shedding. Pro211 is located in the juxtamembrane region of this protein. It w ould be interesting to investigate whether the conserved Pro685 and Gly692 of XA21 are important for the instability of this RLK. In this chapter, Pro685 and Gly692 are mutated to alanine. The constructs will eventually be used to confirm the role of the predicte d cleavage motif in XA21 stability. Residues within the putative cleavage motif in the juxtamembrane domain of XA21K, a nonfunctional kinase mutant, are mutated for future research. Materials and Methods The codons encoding proline and glycine residues flanking the putative cleavage motif located within the juxtamembrane dom ain of XA21K were mutated to encode alanine via site-directed mutagenesis (Figur e 4-1). The resulting mutants were named P9A and G16A, respectively. The constr uct used as the template, GST-XA21K, containing the putative intracellular domain of XA21 (XA21K), was used as template for

PAGE 89

79 site-directed mutatgenesis. The primers used are listed in Table 4-1. Each reaction contains 25 ng template DNA, Pfu buffer (Invitrogen), 200 uM of each dNTP, forward primer, reverse primer, and water to total 50 ul. Reactions were placed in MJ Research PTC-2000 Thermocycler and allowed to complete one denaturation cycle for ten minutes at 99C. The cycler was then paused to allow the addition of 2.5U of the DNA polymerase Pfu (Invitrogen) to each reacti on tube. Next, PCR conditions were run continuously: 5 cycles of 94C 1 min, 50C 1 min, 68C 16 min; 16 cycles of 94C 1 min, 56C 1 min, 68C 16 min; 1 cycle of 72C 10 min. The reactions were then subjected to restriction enzyme digestion by Dpn I, at 37C overnight to remove template. Each reaction was checked by agarose gel electrophor esis. Next, 1 ul of each reaction was mixed with 19 ul of ER2566 competent cells (New England Biolabs,) electroporated at 400 mV, and allowed to recover in 1 ml of Luria Broth (LB). Cells were then plated on solid LB supplemented with 50 ug/mL ampicillin and incuated at 37C overnight. Single colonies were picked, cultured, and subjected to DNA isolation by Qiagen miniprep kit. DNA was sequenced by the University of Flor ida DNA Sequencing Core at Fifield Hall. Table 4-1. Primers used in site-directed muta genesis. F and R indicate forward and reverse, respectively. Mutation Primers (5' to 3') P9A F-AGAACTAAAAAGGGAGCCGCTTCAAGAACTTCCATG R-CATGGAAGTTCTTGAAG CGGCTCCCTTTTTAGTTCT G16A F-TCAAGAACTTCCAT GAAAGCCCACCCATTGGTCTCT R-AGAGACCCATGGGTGGGC TTTCATCATGGAAGTTCTTGA

PAGE 90

80 Figure 4-1. The intracellular domain of XA 21. Mutated residues Pro685 and Gly692 are larger and highlighted in red. The putative cleavage motif is underlined. Results and Discussion To confirm that the sequence PSRTSMKG in the JM domain is a true cleavage motif, the conserved Pro685 and Gly692 were individually mutated to alanine. The P685A and G692A mutations will be eventually incorporated into the full-length Xa21 gene inder the control of the native pr omoter. It has been established that XA21S686A/T688A/S689A mutant is unstable (Xu et al., 2006), so we will test whether the XA21P685A/S686A/T688A/S689A or XA21SG692A/S686A/T688A/S689A mutant protein in the transgenic lines becomes more stable than XA21S686A/T688A/S689A. These experiments can provide verification of the putative cleavage motif in the JM domai n of XA21. If the residues indeed provide a protease recognition site, accumulation studies would show higher levels of protein than the phosphorylation mutant described by Xu et al. (2006). Additionally, an XA21P685A/S686A/T688A/S689A/G692A mutant could be crea ted to investigate if both residues are required for instability. Fo r further analysis, similar mutants could be made to the putative cleavage motif exam ined in Chapter 3. Also, simultaneous mutations of the conserved residues of the c onserved proline and glyc ine residues at both

PAGE 91

81 locations of XA21 could be fascinating to ex amine. Higher levels of XA21 may be seen as a result of these combined mutations.

PAGE 92

82 CHAPTER 5 CLONING OF SELECTED ARABIDOPSIS RLKS Introduction Arabidopsis thaliana is the model system of plant rese arch today. It is ideal for the laboratory as it is small, manageable, in expensively cultivated, while producing numerous progeny within only approximately one month (Arabidopsis Genome Initiative 2000). Consequently, Arabidopsis genes and proteins related to those studied in other less manageable plants are frequently investig ated first or in para llel with genes and proteins in those other plants. Also, because Arabidopsis has the smallest genome known of plants, research of these related genes can also help determine conservation of these genes through evolution. Previous investigation of about 600 Arabidopsis RLKs by Dr. Guozhen Liu of the Song Lab at the University of Florida ( unpublished) included alignments of their juxtamembrane domains. It was quickly noted that the RLKs fell into five separate categories based on a single amino acid in th e JM domain corresponding with Thr705 of XA21; at the specific site there is a threonine (T), aspartic acid (D) or glutamic acid (E), histidine (H), serine (S), or other amino acids (O.) Aspa rtic acid and glutamic acid are grouped because of their similar st ructures and similar behavior. In this chapter, four Arabidopsis open reading frames (ORFs) encoding DE group RLKs (Figure 5-1) were randomly selected, amplified from a library, and cloned into a vector.

PAGE 93

83 Figure 5-1. Sequence alignment of XA21 and selected Arabidopsis proteins of the DE group. Threonine705 of XA21 is red and underlined as well as the corresponding residues in Arabidopsis proteins. Materials and Methods Amplification of the At5g01890, At1g48480, At2g36570 and At3g28040 ORFs Four Arabidopsis ORFs encoding DE RLKs were randomly selected and primers were designed for each of them (Tab le 5-1), including the addition of a BamH 1 site for cloning. The ORFs were amplified from a TriplEx2 Arabidopsis total seedling library (Clontech, Mountain View, CA) provided by Dr. R obert Ferls lab at the University of Florida, by PCR using the RoboCycler (Stratagene). Table 5-1. List of primers used in the amplification of the selected Arabidopsis RLKs. F and R indicate forward and reverse, respectively. Gene Group Prim ers (5' to 3') At5g01890 DE F-CGGGATCCCACGCCCGATCTAGTGTTTCACG At5g01890 R-CGGGATCCT CACTCTAAGTCATGAGAGGGACA At3g28040 DE F-CGGGATCCAACGCGTCTGTTAGAAGACGGCTTG At3g28040 R-CGGGATCCTTAGAAACTATCCATGATACGGTGGG At2g36570 DE F-CGGGATCCCGTAACGGCGAAAGATCAAAATCCGG At2g36570 R-CGGGATCCCAGAAACCAAACTTAGCCGTCGGTGG At1g48480 DE F-CGGGATCCCGGAAAAAGAGTAATAAGAGATCAAGA At1g48480 R-CGGGATCC TTAATCAGCTTCGTTCACTTGGTCTG

PAGE 94

84 The PCR reaction used to amplify At5g01890, At2g36570 and At1g48480 contained 2 units of Taq DNA polymerase, 1x PCR buffer (Invitrogen), 200 uM each dNTP, 0.2 uM each appropriate primer, appr oximately 25 ng of template DNA. They were successfully amplified unde r 1 cycle of 99C for 10 minut es (after which the cycler was paused in order to add the enzyme); 35 cy cles of 94C for 1 minute, 50C for 1 min 30 sec, 72C for 1 min 30 sec; 1 cycle of 72C for 10 minutes. At3g28040 was amplified under the following conditions: 1 cycle of 99C for 10 minutes (after which the cycler was paused in order to add the enzyme ); 5 cycles of 94C for 1 minute, 45C for 1 mi n 30 sec, 72C for 1 min 30 s ec; 25 cycles of 94C for 1 minute, 50C for 1 min 30 sec, 72C for 1 min 30 sec; 1 cycle of 72C for 10 minutes. Amplification of gene At3g28040 was successful. Molecular Cloning of the PCR Products Following amplification, the PCR products sizes were checked by agarose gel electrophoresis. Approximately 60 ng of each product was then applied in separate ligation reactions into vector pGEM-T (Promega) according to manufacturer instructions. One microliter of the resulting ligation was a dded to 19 uL of XL1-Blue competent cells (Stratagene) and electroporated at 400 mV. Ce lls were then transfer red to 1 mL of Luria Broth (LB) and incubated at 37C at 100 rpm for one hour. Cells were then spread onto solid LB medium containing 50 ug/mL Ampicillin, isopropyl-D-thiogalactopyranoside (IPTG) and X-galactose, and inc ubated at 37C overnight. Single colonies were chosen, inoculated into 3 mL of liquid LB, and inc ubated at 37C overnight with shaking. DNA from these cultures was purified using the Qiag en miniprep kit. DNA was then digested overnight at 37C with Bam HI to check for the insert.

PAGE 95

85 Results and Discussion The ORFs of At5g01890, At1g48480, At2g36570, and At3g28040 were PCRamplified from an Arabidopsis cDNA library and cloned into the pGEM-T vector. Figure 5-2 shows Bam HI-digested recombinant DNA. Exp ected inserts of At5g01890 (Figure52A), At1g48480 (Figure5-2D), At2g36570 (Fig ure5-2B), and At3g28040 (Figure5-2C) are 1008, 1095, 1100, and 1050 base pairs (bp), re spectively. The size of the pGEM-T vector is 3000 bp. The inserts shown do not ex actly equal the expected sizes of clones of At5g01890 and At1g48480. These clones were se quenced at the DNA Sequencing Core of the University of Florida at Fifield Hall to confirm accuracy. Because the majority of plant RLKs contain a threonine residue at the position co rresponding to Thr705 of XA21 and this conserved residue is essential fo r autophosphorylation ac tivity of many RLKs, molecular cloning of members belonging to th e DE group of RLKs will provide a basis to test whether these kinases are ca pable of autophosphorylation.

PAGE 96

86 Figure 5-2. Identification of recombin ants carrying the ORFs of At5g01890, At1g48480, At2g36570 and At3g28040. The DNA was digested with BamH1. A: pGEMT-At5g01890, all lanes represent corr ect clones. B: pGEM-T-At2g36570, correct clones indicated y triangl es. C: pGEM-T-At3g28040, all lanes represent correct clones. D: pGEM -T-At1g48480, all lanes represent correct clones.

PAGE 97

87 LIST OF REFERENCES Arabidopsis Genome Initiative (2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature London. 408 :796-815. Becraft PW, Stinard PS and McCarty DR (1996). CRINKLY4: A TNFR-like receptor kinase involved in maize epidermal differentiation. Science 273 :1406-1409. Bieri S, Mauch S, Shen QH, Peart J, Devoto A, Casais C, Ceron F, Schulze S, Steinbiss HH, Shirasu K, and Schulze-Lefert P (2004). RAR1 positively controls steady state levels of barley MLA resist ance proteins and enables sufficient MLA6 accumulation for effective resistance. Plant Cell 12 :3480-95 Biscardi JS, Tice DA, and Parsons SJ (1999). c-Src, receptor tyrosine kinases, and human cancer. Adv Cancer Res 76 :61-119. Braun DM and Walker JC (1996). Plant transmembrane receptors: new pieces in the signaling puzzle. Trends Biochem Sci Feb;21( 2 ):70-3. Brueggeman R, Rostoks N, Kudrna D, Kilian A, Han F, Chen J, Druka A, Steffenson B, and Kleinhofs A (2002). The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proc Natl Acad Sci U S A Jul 9;99( 14 ):9328-33. Burgess AW, Cho HS, Eigenbrot C, Ferguson KM, Garrett TP, Leahy DJ, Lemmon MA, Sliwkowski MX, Ward CW, and Yokoyama S (2003). An open-and-shut case? Recent insights into the activ ation of EGF/ErbB receptors. Mol Cell 3 :541-52. Buchanan B, Gruissem W, and Jones R (2000). Biochemistry & Molecular Biology of Plants American Society of Plant P hysiologists. Rockville, Maryland. Canales C, Bhatt AM, Scott R, and Dickinson H (2002). EXS, a putative LRR receptor kinase, regulates male germline cell number and tapetal identity and promotes seed development in Arabidopsis. Curr Biol 12 (20):1718-27. Cheatham B, Vlahos CJ, Cheatham L, Wang L, Blenis J, Kahn CR (1994). Phosphatidylinositol 3-kinase activation is required for insulin stimulation of pp70 S6 kinase, DNA synthesis, and glucos e transporter translocation. Mol Cell Biol 7 :4902-11. Chen Y, Long L, Lin X, Guo W, and Liu B (2006). Isolation and characterization of a set of disease resistance-gene analogs (RGAs) fr om wild rice, Zizania latifolia Griseb. I. Introgression, copy number labi lity, sequence change, and DNA methylation alteration in several rice–Zizania introgression lines. Genome Feb;49( 2 ):150-158.

PAGE 98

88 Christianson TA, Doherty JK, Lin YJ, Ramsey EE, Holmes R, Keenan EJ, and Clinton GM (1998). NH2-terminally truncated HE R-2/neu protein: relationship with shedding of the extracellular domain and w ith prognostic factors in breast cancer. Cancer Res 58 (22):5123-9. Clark SE Running MP and Meyerowitz EM (1993). CLAVATA1, a regulator of meristem and flower development in Arabidopsis. Development 119 (2):397-418. Clark, SE, RW Williams, and EM Meyerowitz (1997). The CLAVATA1 gene encodes a putative receptor kinase that c ontrols shoot and floral meristem size in Arabidopsis. Cell 89 :575-585. Clouse SD Langford M and McMorris TC (1996). A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits mu ltiple defects in growth and development. Plant Physiology 111 (3):671-8. Coussens L, Yang-Feng TL, Liao YC, Ch en E, Gray A, McGrath J, Seeburg PH, Libermann TA, Schlessinger J, Franck e U, Levinson A, and Ullrich A (1985). Tyrosine kinase receptor with extensive hom ology to EGF receptor shares chromosomal location with neu oncogene. Science 230 (4730):1132-9. Dangl JL and Jones JD (2001). Plant pathogens and inte grated defense responses to infection. Nature 411 (6839):826-33. Dello Sbarba P and Rovida E (2002). Transmodulation of cell surface regulatory molecules via ectodomain shedding. Biol Chem 383 (1):69-83. Endre G, Kereszt A, Kevei Z, Mihacea S, Kalo P, and Kiss GB (2002). A receptor kinase gene regulating symbiotic nodule development. Nature 417 (6892):962-6. Feuillet C, Schachermayr G, and Keller B (1997). Molecular cloning of a new receptor-like kinase gene encoded at the Lr10 disease resistance locus of wheat. Plant J 11 (1):45-52. Fletcher JC, Brand U, Running MP, Simon R, and Meyerowitz EM (1999). Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283 (5409):1911-4. Flor, HH (1971). Current status of the gene-for-gene concept. Annu Rev Phytopathology 9 275-296. Frederick RD, Thilmony RL, Sessa G, and Martin GB (1998). Mol Cell 2 : 241-245.

PAGE 99

89 Fritz-Laylin, Lillian K, Nandini Krishnamurthy, Mahmut Tr, Kimmen V Sjlander, and Jonathan DG Jones (2005). Phylogenic Analysis of the Receptor-Like Proteins of Rice and Arabidopsis. Plant Physiology 138 :611-623. Gifford, ML, S Dean, and GC Ingram (2003). The Arabidopsis ACR4 gene plays a role in cell layer organisation during ovule in tegument and sepal margin development. Development 130 (18):4249-58. Godiard L, Sauviac L, Torii KU, Grenon O, Mangin B, Grimsley NH, and Marco Y (2003). ERECTA, an LRR receptor-like ki nase protein controlling development pleiotropically affects resist ance to bacterial wilt. Plant J 36 (3):353-65. Gomez-Gomez, L and T Boller (2000). FLS2: an LRR receptor-like kinase involved in the perception of the bacterial el icitor flagellin in Arabidopsis. Molecular Cell 5 :10031011. Gomez-Gomez, L and T Boller (2002). Flagellin perceptio n:a paradigm for innate immunity. TRENDS in Plant Science 7 (6):251-256. Goring DR, Glavin TL, Schafer U, and Rothstein SJ (1993). An S receptor kinase gene in self-compatible Brassica napus has a 1-bp deletion. Plant Cell 5 (5):531-9. Hanks SK, Quinn AM, and Hunter T (1998). The protein ki nase family: conserved features and deduced phylogeny of the catalytic domains. Science 241 (4861):42-52. He ZH, Cheeseman I, He D, and Kohorn BD (1999). A cluster of five cell wallassociated receptor kinase genes, Wak15, are expressed in specific organs of Arabidopsis. Plant Mol Biol 39 (6):1189-96. Hecht V, Vielle-Calzada JP, Hartog MV, Schmidt ED, Boutilier K, Grossniklaus U, and de Vries SC (2001). The Arabidopsis SOMA TIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in devel oping ovules and embryos and enhances embryogenic competence in culture. Plant Physiol 127 (3):803-16. Herman C and Chernajovsky Y (1998). Mutation of proline 211 reduces shedding of the human p75 TNF receptor. Journal of Immunology 160 (5):2478-87. Herv C Dabos P Galaud JP Rouge P, and Lescure B (1996). Characterization of an Arabidopsis thaliana gene that defines a new class of putative plant receptor kinases with an extracellular lectin-like domain. J Mol Biol 258 (5):778-88. Hoffmann JA and Reichhart JM (2002). Drosophila innate immunity: an evolutionary perspective. Nat Immunol Feb;3( 2 ):121-6. Hooper NM, Karran EH, and Turner AJ (1997). Membrane protein secretases. Biochem J 321 :265-279.

PAGE 100

90 Horn MA and Walker JC (1994). Biochemical propertie s of the autophosphorylation of RLK5, a receptor-like protein kina se from Arabidopsis thaliana. Biochim Biophys Acta 1208 (1):65-74. Hubbard SR and Till JH (2000). Protein tyrosine kina se structure and function. Annu Rev Biochem 69 :373-98. Hubert DA, Tornero P, Belkhadir Y, Krishna P, Takahashi A, Shirasu K, and Dangl JL (2003). Cytosolic HSP90 associates with and modulates the Arabidopsis RPM1 disease resistance prot ein. EMBO J. 22(21):5679-89. International Rice Genome Sequencing Project (2005). The map-based sequence of the rice genome. Nature 436 (7052):793-800. Jeong S, Trotochaud AE, and Clark SE (1999). The Arabidopsis CLAVATA2 gene encodes a receptor-like protein required for the stability of the CLAVATA1 receptor-like kinase. Plant Cell 11 (10):1925-34. Jiang J and Wang S (2002). Identification of a 118kb DNA fragment containing the locus of blast resistance gene Pi-2(t) in rice. Mol Genet Genomics 268 (2):249-52. Jin P, Guo T, and Becraft PW (2000). The maize CR4 receptor-like kinase mediates a growth factor-like diffe rentiation response. Genesis 27 (3):104-16. Jinn TL, Stone JM and Walker JC (2000). HAESA, an Arabidopsis leucine-rich repeat receptor kinase, contro ls floral organ abscission. Genes Dev 14 :108-117. Johnson KL and Ingram GC (2005). Sending the right signals: regulating receptor kinase activity. Curr Opin in Plant Biol 8 :1-9. Kinoshita T, Cano-Delgado A, Seto H, Hiranuma S, Fujioka S, Yoshida S, and Chory J (2005). Binding of brassino steroids to the extracellular domain of plant receptor kinase BRI1. Nature 433 (7022):167-71. Krusell L, Madsen LH, Sato S, Aubert G, Genua A, Szczyglowski K, Duc G, Kaneko T, Tabata S, de Bruijn F, Pajuelo E, Sandal N, and Stougaard J (2002). Shoot control of root development and nodu lation is mediated by a receptor-like kinase. Nature 420 (6914):422-6. Li J and Chory J (1997). A putative leucine-rich re peat receptor kinase involved in brassinosteroid signal transduction. Cell 90 :929-938. Li J, Wen J, Lease KA, Doke JT, Tax FE, and Walker JC (2002). BAK1, an Arabidopsis LRR receptor-like protein kina se, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110 (2):213-22.

PAGE 101

91 Ligertink W and Hirt H (2001). Mitogen-acti vated protein (MAP) kinase pathways in plants: versatile signaling tools. Int Rev Cytol 201 :209-275. Liu GZ, Pi LY, Walker JC, Ronald PC, and Song WY (2002). Biochemical Characterization of the Kinasae Domain of the Rice Disease Resistance Receptor-Like Kinase XA21. J Biol Chem 277 :20264-20269. Llorente F, Alonso-Blanco C, Sanchez-Rodriguez C, Jorda L, and Molina A (2005). ERECTA receptor-like kinase and hetero trimeric G protein from Arabidopsis are required for resistance to the necrotro phic fungus Plectosphaerella cucumerina. Plant J 43 (2):165-80. Mackey D, Holt BF 3rd, Wiig A, and Dangl JL (2002). RIN4 interacts with Pseudomonas syringae type III effector molecu les and is required for RPM1-mediated resistance in Arabidopsis. Cell 108 (6):743-54. McCarty DR and Chory J (2000). Conservation and i nnovation in plant signaling pathways. Cell 103 :201-209. McDermott PF, Ciacci-Woolwine F, Snipes JA, and Mizel SB (2000). High-affinity interaction between gram-negative flagellin and a cell surface pol ypeptide results in human monocyte activation. Infect Immun 68 (10):5525-9. Moens, S and Vanderleyden J (1996). Functions of bacterial flagella. Crit Rev. Microbiol 22 :67-100. Montoya T, Nomura T, Farrar K, Kaneta T, Yokota T, and Bishop GJ (2002). Cloning the tomato curl3 gene highlights the pu tative dual role of the leucine-rich repeat receptor kinase tBRI1/SR160 in plant steroid hormone and peptide hormone signaling. Plant Cell 14 (12):3163-76. Nam KH and Li J (2002). BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell 110 (2):203-12. Nath D, Williamson NJ, Jarvis R, and Murphy G (2001). Shedding of c-Met is regulated by crosstalk between a G-protein couple receptor and the EGF receptor and is mediated by a TIMP-3 sensitive metalloproteinase. J Cell Science 114 (Pt 6):1213-1220. Ohtake Y, Takahashi T, and Komeda Y (2000). Salicylic acid induces the expression of a number of receptor-like kinase genes in Arabidopsis thaliana. Plant Cell Physiol 41 (9):1038-44.

PAGE 102

92 Okada T, Kawano Y, Sakakiba ra T, Hazeki O, and Ui M (1994). Essential role of phosphatidylinositol 3-kinase in insulin-induced glucose trans port and antilipolysis in rat adipocytes. Studies with a se lective inhibitor wortmannin. J Biol Chem 269 (5):356873. Pastuglia M Roby D Dumas C, and Cock JM (1997). Rapid induction by wounding and bacterial infection of an S gene family r eceptor-like kinase gene in Brassica oleracea. Plant Cell 9 (1):49-60. Rice Kinase Database (University of California at Davis). January 1, 2006. http://rkd.ucdavis.edu/ Ristaino JB Groves CT, and Parra GR (2001). PCR amplification of the Irish potato famine pathogen from historic specimens. Nature 411 (6838):695-7. Robatzek S and Somssich IE (2002). Targets of AtWR KY6 regulation during plant senescence and pathogen defense. Genes Dev 16 (9):1139-49. Robertson SC, Tynan JA, and Donoghue DJ (2000). RTK mutations and human syndromeswhen good receptors turn bad. Trends Genet 16 :265-271. Romeis T (2001). Protein kinases in the plant defense response. Curr Opin Plant Biol 4 :407-414. Ronald PC, Salmeron JM, Carland FM, and Staskawicz BJ (1992). The cloned avirulence gene avrPto induces disease resist ance in tomato cultivars containing the Pto resistance gene. Journal of Bacteriology 174 (5):1604-11. Ronald PC (1997). The molecular basis of disease resistance in rice. Plant Mol Biol 35 :179-186. Scheer JM and Ryan CA Jr (2002). The systemin receptor SR160 from Lycopersicon peruvianum is a member of the LRR receptor kinase family. Proc Natl Acad Sci USA 99 (14):9585-90. Shao F, Golstein C, Ade J, Stoutemyer M, Dixon JE, and Innes RW (2003). Cleavage of Arabidopsis PBS1 by a bacterial type III effector. Science 301 (5637):12303. Shelton JG, Steelman LS, Abrams SL, Bertrand FE, Franklin RA, McMahon M, and McCubrey JA (2005). The epidermal grow th factor receptor gene family as a target for therapeutic intervention in numerous cancers: wh at's genetics got to do with it? Expert Opin Ther Targets 9 (5):1009-30. Shiu, SH and Bleecker A (2001a). Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. PNAS 98 :10763-10768.

PAGE 103

93 Shiu, SH and Bleecker A (2001b). Plant Recptor-Like Kinase Gene Family: Diversity, Function, and Signaling. Sciences STKE 1-13. Shiu SH, Karlowski WM, Pan R, Tz eng YH, Mayer KFX, and Li WH (2004). Comparative Analysis of the Receptor-Like Kinase Family in Arabdiopsis and Rice. Plant Cell 16 :1220-1234. Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, Gardner J, Wang B, Zhai WX, Zhu LH, Fauquet C, and Ronald P (1995). A Receptor Kinase-Like Protein Encoded by the Rice Disease Resistance Gene, Xa21 Science 270 :1804-1806. Song WY, Pi LY, Wang GL, Gardner J, Holsten T, and Ronald PC (1997). Evolution of the Rice Xa21 Disease Resistance Gene Family. Plant Cell 9 :1279-1287. Stein JC, Howlett B, Boyes DC, Nasrallah ME, and Nasrallah JB (1991). Molecular cloning of a putative receptor prot ein kinase gene en coded at the selfincompatibility locus of Brassica oleracea. Proc Nat. Acad Sci USA 88 :8816-8820. Stein JC and Nasrallah JB (1993). A plant receptor-like gene, the S-locus receptor kinase of Brassica oleracea L., encodes a functional serine/threonine kinase. Plant Physiology 101 (3):1103-6. Stracke S, Kistner C, Yoshida S, Mulder L, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J, Szczyglowski K, and Parniske M (2002). A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature 417 (6892):959-62. Sun X, Cao Y, Yang Z, Xu C, Li X, Wang S, and Zhang Q (2004). Xa26, a gene conferring resistance to Xanthom onas oryzae pv. oryzae in ri ce, encodes an LRR receptor kinase-like protein. Plant J 37 (4):517-27. Swiderski MR and Innes RW (2001). The Arabidopsis PBS1 resistance gene encodes a member of a novel protein kinase subfamily. Plant J 26 (1):101-12. Torii KU, Mitsukawa N, Oosumi T, Ma tsuura Y, Yokoyama R, Whittier RF, and Komeda Y (1996). The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats. Plant Cell 8 (4):735-46. Tans-Kersten J, Huang H, and Allen C (2001). Ralstonia solanacearum needs motility for invasive virulence on tomato. J Bacteriol 183 (12):3597-605. ten Dijke P and Hill CS (2004). New insights into TGF-beta-Smad signalling. Trends Biochem Sci 29 (5):265-73. Walker JC (1994). Structure and function of the receptor-like protein kinases of higher plants. Plant Mol Biol 26 (5):1599-609.

PAGE 104

94 Wang ZY, Seto H, Fujioka S, Yoshida S, and Chory J (2001). BRI1 is a critical component of a plasma-membrane receptor for plant steroids. Nature 410 (6826):380-3. Wang X, Li X, Meisenhelder J, Hunter T, Yoshida S, Asami T, and Chory J ( 2005). Autoregulation and homodimerizatio n are involved in the activ ation of the plant steroid receptor BRI1. Dev Cell 8 (6):855-65. Wang ZY, Seto H, Fujioka S, Yoshida S, and Chory J (2001). BRI1 is a critical component of a plasma-membrane receptor for plant steroids. Nature 410 (6826):380-3. White MF (1998). The IRS-signalling system: a network of docking proteins that mediate insulin action. Mol Cell Biochem 182 (1-2):3-11. Woods D, Parry D, Cherwinski H, Bosch E, Lees E, and McMahon M (1997). Rafinduced proliferation or cell cy cle arrest is determined by the level of Raf activity with arrest mediated by p21Cip1. Mol Cell Biol 17 (9):5598-611. Xu WH, Wang YS, Liu GZ, Chen X, Tinjuangjun P, Pi LY, and Song WY (2006). The autophosphorylated Ser686, Thr688, and Ser689 residues in the intracellular juxtamembrane domain of XA21 are implicated in stability control of rice receptor-like kinase. Plant J 45 (5):740-51. Yang Z, Sun X, Wang S, and Zhang Q (2003). Genetic and physical mapping of a new gene for bacterial blight resistance in rice. Theor Appl Genet 106 (8):1467-72. Yuan CX, Lasut AL, Wynn R, Neff NT, Ho llis GF, Ramaker ML, Rupar MJ, Liu P, and Meade R (2003). Purification of Her-2 extracellu lar domain and iden tification of its cleavage site. Protein Expr Purif 29 (2):217-22. Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JD, Felix G, and Boller T (2004). Bacterial disease re sistance in Arabidopsis th rough flagellin perception. Nature 428 (6984):764-7.

PAGE 105

95 BIOGRAPHICAL SKETCH Gina Marie Cory was born in Ft. Lauder dale, Florida, to Maureen and Samuel Cory. She graduated from Piper High School in Sunrise, Florida, in 1998. She began her undergraduate studies at the University of Fl orida in the fall of 1998, and graduated with a bachelors degree in plant science specializing in plant pathology in the spring of 2002. Gina began her graduate studies in plant pathology with Dr. Wen-Yuan Song the same fall.


xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID E20110218_AAAADO INGEST_TIME 2011-02-18T21:15:56Z PACKAGE UFE0013416_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES
FILE SIZE 8423998 DFID F20110218_AACHUH ORIGIN DEPOSITOR PATH cory_g_Page_070.tif GLOBAL false PRESERVATION BIT MESSAGE_DIGEST ALGORITHM MD5
61928a11ffd21036c99daead16c116c5
SHA-1
6fa824d18d27ca3fa9d460430b28428cad856b5b
1042152 F20110218_AACHTT cory_g_Page_084.jp2
ad4b4bbd27a930a60fc3800df2d4e418
86cf801e09724835e7ce2bb081d2bc71523c7625
29868 F20110218_AACIAC cory_g_Page_079.jpg
75d6f14911ab968d30e78e0b5ad2988f
448fc8bd4f7a2ac083be06be9eab2d32d7aed076
29351 F20110218_AACHUI cory_g_Page_076.jpg
ba24192d49290dc0359c7179ca7e391a
75cab21c90446feeef9c79618aeedd38e3438d6b
8614 F20110218_AACHTU cory_g_Page_090thm.jpg
330325b15ab07ef4d69565022eb0371f
79c8c179bf537be18fa3b41b678693aee1176c29
59616 F20110218_AACIAD cory_g_Page_047.pro
ddf420e681375b9469a079a046911c22
bcf9608dd3bafd784b48b58b872d458d5d331695
51474 F20110218_AACHUJ cory_g_Page_025.pro
bf36e851069a4ff4f8bf781131ada298
0026523756315e2a17e2fcd1f105f86f285ec1c4
859566 F20110218_AACHTV cory_g_Page_031.jp2
0fe14a1af8470baaa88cd8297966a1e6
30bbaaa4f65471b6e3c09e4f0a2f544db3228d7b
1898 F20110218_AACIAE cory_g_Page_084.txt
cd6de55d2693a6eac932347a2d9b7cbd
841b924ca49cd50f2c82b3417db892ffac162534
1051912 F20110218_AACHUK cory_g_Page_058.jp2
85f9a36654d1fb78bbe1691193602cd4
65fafcdff7f532c9164582ea4d8e52934ae38554
F20110218_AACHTW cory_g_Page_062.tif
8d56e03998bed4f0c9e147ef265bc274
c1e42ce5bab4c1cdf3eee1df31288fa988cfcf2e
F20110218_AACIAF cory_g_Page_050.tif
a3a0a9900ae82ade54b6664117d5041e
1b5c5bbc42ba60f2028c5e0b74321ac5ed7893c6
54608 F20110218_AACHUL cory_g_Page_101.pro
bf157e1c6ab854c89bcf9cab88751349
459a59d9defdc927928abde2ae3964ef75ddeaa3
37290 F20110218_AACHTX cory_g_Page_099.QC.jpg
2e4ab7810611aa81dcd3c638e4cae41a
c415812e3a982cc87f0107f45d9fd5bbc6f39c08
416 F20110218_AACIAG cory_g_Page_078.txt
2b751616d3cbaf2590c9a01cb9c82854
dc98ab0c5debcdc1d133dda6b2fd68aa2ab3e4c6
2312 F20110218_AACHVA cory_g_Page_100.txt
b60859ab1def0d7301bfcce89ef23b6c
b496d1b0ae36482642dd2f5222f7fd3df872383d
487 F20110218_AACHUM cory_g_Page_074.txt
cb5b3003d477a2913e9ae4a2b92b5100
6eeb849febbcf9063dbf0630bf6f1a962d8451c6
8578 F20110218_AACHTY cory_g_Page_047thm.jpg
9c047093ed5c611562169d5c3ff90b9b
ffc2fd6ea1cc5c8fcfc1e687cd73d6c14f2093ad
31534 F20110218_AACIAH cory_g_Page_077.jpg
6f90f8db6e1af7ede506e624ab05f068
e47a8a7342a2c9dd2197b2b4f2c4e65cc0554a85
7101 F20110218_AACHVB cory_g_Page_004thm.jpg
4fa810392eabed8976a28381a98f1873
07fd7a2f8bdaffcebb9897765342af9aec200b85
80270 F20110218_AACHUN cory_g_Page_016.jpg
16e3d5b2e7875680022420b142971bb4
0852ef8ed3fbd60265452d7d3f26e2c57bd41d6f
115832 F20110218_AACHTZ cory_g_Page_101.jpg
fdcd1a7473747e8f260204072920290e
b18ee744e2c061769a981dd8f859deb9d57da92b
55627 F20110218_AACHVC cory_g_Page_064.pro
fb2a0e527acde77b17ad23be3ab92dcc
8de376a8556028975c3a47d5584b534ae98e9f65
F20110218_AACHUO cory_g_Page_057.tif
edb6a66f16facce51fe581d326469dec
998e7a832a287a5fec202cf1257fa81a320f31cd
22104 F20110218_AACIAI cory_g_Page_030.pro
6d874cd912f8a8f274e7c1220ddfc0e1
99ba608791671d6d01a9854c6c855d66947d0763
26706 F20110218_AACHVD cory_g_Page_073.jpg
8c0aa8fa07e1f9a1b21dca9b19702cbd
67cdaddad98aa962f0e71b01097bfa87300af5bb
2655 F20110218_AACHUP cory_g_Page_046.txt
e166640c3b1c259864719e5240c5d274
8126174fdadbb3356db0fbaa4e0968a1f437f75d
231004 F20110218_AACIAJ cory_g_Page_076.jp2
40325d59968ff88a4ff19246bd42e5f8
40a2e3a9ceeb04b8c18e9eb001e806276d5b91e8
134934 F20110218_AACHVE cory_g_Page_043.jpg
cb2d0174cae39f99a317f06b58ac5196
12a1bc32ab4acba5b6bda76dabb233adaeabb41f
3704 F20110218_AACHUQ cory_g_Page_081thm.jpg
cf0f53ce348a88cd4605a87e7df58740
3652297555a3b6470942d9eb0560780d5434f810
1051970 F20110218_AACIAK cory_g_Page_056.jp2
685c682deed601d53ff28a1e0e28c639
bd63040c570070d335d987f9d35850f558082273
8232 F20110218_AACHVF cory_g_Page_094thm.jpg
358f6755a5359e0b8e9ae32919d0ef58
f992ce45d36e4412999558536c1d1c50fe3e2193
F20110218_AACHUR cory_g_Page_044.tif
0edff86d77845289706bd98a334da8f1
7407f493ea477c02f9a61a6b552dde3d9102a82d
5145 F20110218_AACIBA cory_g_Page_002.jpg
77313a26ffae9db0499b678e316826f6
9a32129849ea1ebc1677e138f323cf3f42c4e9d6
32921 F20110218_AACIAL cory_g_Page_021.QC.jpg
51900312fd19c69ecda9842ec621e473
9eba4672fc5d4c02613faccd68f7a717410dcf56
F20110218_AACHVG cory_g_Page_052.jp2
bfe5b443a06d9c1e79279774e861269b
6bcc03f00f2630cca19ad0a1e0bca31b22eaf181
F20110218_AACHUS cory_g_Page_072.tif
47a1302c425535dee49f2059f5ff226c
5243bcf79eff9cfc0261c5e7b34a10b06579f48f
31185 F20110218_AACIBB cory_g_Page_024.QC.jpg
7133e7f371fa669fbee9cb2de7574720
1eb65f94087811b9b15c70993f10fafe088a7875
4715 F20110218_AACIAM cory_g_Page_085thm.jpg
97b622296c9d27ef46ab547887383299
427e6c4d4d9312e8c389cc8dab2e19ec325b1d9a
55616 F20110218_AACHVH cory_g_Page_044.pro
65932ba7532fa7995120257ae91a6eaf
b33efa8b86ccaa4a7ec75f0fac09005ad62b822b
7812 F20110218_AACHUT cory_g_Page_056thm.jpg
e873f77e105d2f6c941bd3174bd8c6a1
792353b0bcbd99f2330f26a05fff6c09d03135a8
8206 F20110218_AACIBC cory_g_Page_101thm.jpg
f4863dee89f99cc0af10ff2bc372c359
107b538c8bb97b98fc4ac7950cd7e0f956f774d6
3283 F20110218_AACIAN cory_g_Page_009thm.jpg
a4f70f4ad25b303762c24c7aebc5dfb7
51aaef2b04caa0d74995eceec6cff77d2550c597
4686 F20110218_AACHVI cory_g_Page_074thm.jpg
3672e5fbd7cef9dfc30141cee374df88
192c2549f213084ad1199283c0995eb452271d94
9034 F20110218_AACHUU cory_g_Page_079.pro
7c2947ae3bc3b55afad015931e533911
fa92c1ca813cd7613682b5f3be3b5e3cbd16520d
2496 F20110218_AACIBD cory_g_Page_062.txt
1d93eaddae2e1daf3f7ebe8fe500774d
5766c85039dbc4722212be7a8ccf8127a5d87811
59200 F20110218_AACIAO cory_g_Page_063.pro
b10c721ef400ed76532cde5b542234b9
4557d2cfb3d7d0d611c3b7e218c770195c4bb731
37440 F20110218_AACHVJ cory_g_Page_042.QC.jpg
6b47d8ec9eadc982cdde63e91f0f0eb6
5b2d928d3c05ce0ad4e7ff947d98f779af503c24
7976 F20110218_AACHUV cory_g_Page_055thm.jpg
eeb3836c4c320fb2493d56d5d8a1e0e1
70e8a74e97d2b104859beb9f93e0ff89a9692e50
F20110218_AACIBE cory_g_Page_008.tif
af4ce8278fadf0bcbd71e58efbacdd2c
01a6d635af34123a64258e5d654ad1a4cc8b2f62
8650 F20110218_AACIAP cory_g_Page_068thm.jpg
3baf9d79cfd2c488dc940079e2d4dde5
eb96f0cc04d9fe2deedd795fe224cb0b3d95071d
1956 F20110218_AACHVK cory_g_Page_015.txt
879a7494fe6e9b9e3c810fc5033a91f5
891064853b3c2c7fa7d08d00b02a97a1ebc60850
53022 F20110218_AACHUW cory_g_Page_057.pro
015876558d54de2c878202144519c540
008fd5cade1e10d9d63ede6533f702b687ebd441
33006 F20110218_AACIBF cory_g_Page_083.QC.jpg
29bb406483ab3dce189dcdf81bef3a46
093bdadac45d485975414ae9277767aeb1cdd313
2066 F20110218_AACIAQ cory_g_Page_034.txt
4e9c4def94bdaa057f5fb26ddea7d874
5e23532445bd67d84a3a8092aaca7236977081c8
369018 F20110218_AACHVL cory_g_Page_086.jp2
97be452143255ea4b4155caa0f0945f4
961813dce50b19efa16746d25afa65b620b1b86a
2518 F20110218_AACHUX cory_g_Page_058.txt
fc632ff4ec9fea7bf1910d06067788af
4171b39bf137101e356cec93ebed9d92e6827ab1
6801 F20110218_AACIBG cory_g_Page_088thm.jpg
f71fe5056f992881bdba1c5b5fed4f4b
b84bfca28bdf945588e9873a7dcc60a6adecaae2
F20110218_AACIAR cory_g_Page_026.tif
fa3e08a5bd59b904eeaa3ac8d5cde3ab
fff085570c5725a36de57262433b8d896adb8d0a
F20110218_AACHVM cory_g_Page_078.tif
fea7cf868b8024593ac9329570a911b8
fdef5ce385be2025ee30f21054363460e067cd00
11039 F20110218_AACHUY cory_g_Page_075.QC.jpg
56f23f0c4375b308704edae9e8eb3cf6
f1b7edd30c7832de789fb54a91e25d349f77f07a
41409 F20110218_AACIBH cory_g_Page_060.QC.jpg
c3084da11e8488b23a991a4ddc9f775d
4ac9807dfac8643953091c5ef85e8b14c91a0f70
1051980 F20110218_AACHWA cory_g_Page_037.jp2
c67339de246f6ae2c8ae3c71aef6835c
1a2856a2d63490ab9aa9cf0e666cd239d2b5a747
38565 F20110218_AACIAS cory_g_Page_043.QC.jpg
9567a6de289876e7aaf59e0272d24495
c79a42026fd4dbd79da78063e22b899c948d5b03
27058 F20110218_AACHVN cory_g_Page_095.pro
217bfc7f92ad14514e3f6b75b331bad2
19c6d729aada813af1dee88c6be889eaf6dec846
286011 F20110218_AACHUZ cory_g_Page_105.jp2
1937ac88977aa9a596d9548e06d3e2e3
11773a93c7bc4c9adccb5eab7b04c96be23fef0b
F20110218_AACIBI cory_g_Page_073.tif
9181792a5db3f5e96f92a034004a58ac
e46596be15207bf1181e52f4a309acb881926709
1913 F20110218_AACHWB cory_g_Page_094.txt
8bdbc4b9f23c0743e5096e67ce124951
767dba93a110bba32356ba4715cfd906aa099cc3
F20110218_AACIAT cory_g_Page_038.tif
904449462861ddd51c147c60472913b4
e9c4523fdc9eaafce6a43704df18e675c5a117dc
9097 F20110218_AACHVO cory_g_Page_102thm.jpg
b7914a98254dab0896ae3ed3009bf23c
215270db4993b84b16d657acfedfc3c5c97475ab
F20110218_AACHWC cory_g_Page_060.tif
365159647de3bc891f3600206af15850
9ddbeb6014da47c1619dc2afacfcbe9a9c10225f
1051965 F20110218_AACIAU cory_g_Page_046.jp2
0c27d6c8e28edebba4aa6949290ede1c
40cc0c5acc29480588bc3aaaf64c73171628b055
81789 F20110218_AACHVP cory_g_Page_029.jpg
426c364003d77adb98601435538fe71f
f6b7fc3424621a585bd21fa633778512da110c97
62404 F20110218_AACIBJ cory_g_Page_097.pro
53eb5619343d73f6df16f0330f8845f4
43d98cd8de041ca7a4b6e92db583445f890e1474
10541 F20110218_AACHWD cory_g_Page_072.pro
65b0a72c9a7e5e380ffd48c7eba79fe6
6385ed37368c3ee6de66cc911c391a1283818aac
8085 F20110218_AACIAV cory_g_Page_022thm.jpg
962173676066c858b7d0751577f4fbce
f5d62a0839f128a36abe6359038db528f274ee6c
2377 F20110218_AACHVQ cory_g_Page_068.txt
c0695a09d9f470bdd945169f9e9cd584
10b766917cc745423e76578a7e78a51c40eeb96e
50244 F20110218_AACIBK cory_g_Page_017.pro
47abeba0ec33f355cc71458ccd4acd68
5ddf6acf30d9d823f132c63f82cb2eaeac59628a
35521 F20110218_AACHWE cory_g_Page_056.QC.jpg
2d57b2f8648e13445164aaaded02cda6
2df8dafdd5bacfcf9be35d4b343aec852926afcd
68892 F20110218_AACIAW cory_g_Page_020.jpg
014e62c7ae98e1faa505891fed2de779
a31ef886a19ff3b16b03425226128050a79b41b6
F20110218_AACHVR cory_g_Page_003.tif
ecf7a2c9c487ba20275eb647d9d9ccfb
d7ee7984fba707b872ff093b43f4771b17d63bf1
1984 F20110218_AACICA cory_g_Page_017.txt
ce4d8d5e989de2f621cba8bcd306acb7
8b03384360d1b7fc4347d88355a864079e8152ea
1437 F20110218_AACIBL cory_g_Page_087.txt
934b86c98c927b3c2b08b9287f41ec32
4e10eda021cae9bd3152af61898a0ea36dc974df
1744 F20110218_AACHWF cory_g_Page_088.txt
111325ed5fb00a7de35674562e84a52e
74d761ec8beef84b1708275cfe622457e423b881
25820 F20110218_AACIAX cory_g_Page_023.QC.jpg
8956dff62701cf760ceeeaa4d189b97d
c53dbac3a0962e5ea14e43962cd85b9e8060996b
97849 F20110218_AACICB cory_g_Page_104.jpg
43270fc0eab0ee9d3461dd423a219f77
18bbc17bc635cdf42bf7694724c2da2487ddacc2
24437 F20110218_AACIBM cory_g_Page_008.QC.jpg
cf7b6c79929478e14ebfd512fa8063a6
abbf316890273c33c80e39596420035e0e0d49f2
1017918 F20110218_AACHWG cory_g_Page_093.jp2
2b6a16c67d815151b357931a35ac251c
d795e0d36969a2b0d480b4e159b86ec43b2392fa
1051955 F20110218_AACIAY cory_g_Page_022.jp2
36bc057af16df9a650972c9daa321ee4
03bc273bb62f1bf81e1bc618332983f9cbd4ca6b
8615 F20110218_AACHVS cory_g_Page_064thm.jpg
923d620a05d9b3f722238037fa475dc1
7c90d2444983299a3e1d91680af3e0d3868f64b9
101861 F20110218_AACICC cory_g_Page_033.jpg
23a90fa3c4dec6226ed62e8ae427ee3c
7f27cd4ea3fa1c96fdeb87183f3dcdee54489542
F20110218_AACIBN cory_g_Page_088.tif
9a59bda4276dd6482beda8f2d6d7bb4b
16531725058cc2fc3d076c1df3b1cca05ae46af2
10509 F20110218_AACHWH cory_g_Page_078.QC.jpg
8ce9015422985c4d8bb52017dd320df2
8c75aee89dc4bb763f34f48e5fc22a36bd3017e2
1051943 F20110218_AACIAZ cory_g_Page_094.jp2
b7a82afac75299b241f6cc4cb6d436d7
d622f82fb8ecee33b1f340d49e3bf276adcd5ad8
88141 F20110218_AACHVT cory_g_Page_088.jpg
8eb34afc5529aef57af0d8e99427ed5a
a5ededab1d2613a5b44ff70ad9de2e8ab6cd2afa
1051971 F20110218_AACICD cory_g_Page_098.jp2
02526d2f7dd7e0bea467af4ee62c8139
c53effb999c19b38d83a8f7b1bdd77700546f290
35483 F20110218_AACIBO cory_g_Page_026.pro
b3761e9117183c16591a6bb233f1b2f1
d8a4dd2a9899c8fdb046ace992635247bf25c416
47606 F20110218_AACHWI cory_g_Page_090.pro
a6ad06b036be11d40e3f1979e5f7f98f
a3116780efdd7c31980adb0483f70408f60ed4d9
F20110218_AACHVU cory_g_Page_083.tif
c1bda1f3f466851d804a9afe78a45e80
93b6dea37d8c75d3f2f943feaa78de8cb9a3f9ca
6425 F20110218_AACICE cory_g_Page_031thm.jpg
7a75140325cde53a423095fc64b6e3d2
3d179de2f2542f07b003bba6d47b17806596c024
47398 F20110218_AACIBP cory_g_Page_013.pro
4ed6cde70add05470e4031c9ec98209e
b851d7715b18aaf3633f2df0b5181603ecc29f83
38026 F20110218_AACHWJ cory_g_Page_045.QC.jpg
aba40a7e82a4faaeb4c2f569cb2ca9f4
251bdde59dbd6d5ef3ff217a771082d54b1dd070
7866 F20110218_AACHVV cory_g_Page_027thm.jpg
2371fd9177263d2fcd22143806082e10
9f15f739417f6697d4f70fba1bc4072cc35f75a0
F20110218_AACICF cory_g_Page_029.tif
911dd9529979036561efd247a9276b65
ef90b00d6d3d84064fed80f09219d0659eaebc12
31950 F20110218_AACIBQ cory_g_Page_075.jpg
dda0f4f59f61a8bfed0cd03a8b9e2374
5ca72b76e5c4e8c0064dc6b5b79368470daadbba
7474 F20110218_AACHWK cory_g_Page_049thm.jpg
2911c86ce2d40186480096a1917e1aae
acc53b4d7fbff7ef3d584684ccd54693ba2ed8a1
11016 F20110218_AACHVW cory_g_Page_075.pro
8db5e775a31a1973ab00fc28d73b3f62
fb4e8ee7b49e4f51005b9cf469c5c5368be290a8
7313 F20110218_AACICG cory_g_Page_073.pro
b0431396577d7e4d711bccfa531ac1b8
8f2d615fc2b395b0e200a82c927f1d71387d432b
1051967 F20110218_AACIBR cory_g_Page_054.jp2
f2b4e8ebca79deb62b14510969827845
f79a1283b5ac2e4549c7422e3dc496ca8a8890b3
8017 F20110218_AACHWL cory_g_Page_037thm.jpg
b308b5cd3ed384c3954937a58192e8c0
d64f8175d84db58ca3200297ae09e10d7807d5ed
281975 F20110218_AACHVX cory_g_Page_072.jp2
833a69b816537f2387ff018f680986b6
14acef0bd19ad722ac95222930bb954cd20c2177
42438 F20110218_AACICH cory_g_Page_009.jpg
8e67f6e5dc432d678a31c262fa4371ae
4b4349472aafd76667ebb9a87129c893fffed862
35857 F20110218_AACHXA cory_g_Page_019.QC.jpg
c7c08fee94ab39f97a9e8747d0f438a2
b917df7a3fb086c6dd86233700fb86044234414d
F20110218_AACIBS cory_g_Page_014.tif
519389b74710c169abb9adc8a8affc40
ff77d8137ce2df3044f4af9ee7e32012978a4072
2832 F20110218_AACHWM cory_g_Page_044.txt
3cf0d658cca17a34ce7723779ad5e287
a73bd39dfadc6c9afc3274a7250160c7d2023790
33639 F20110218_AACHVY cory_g_Page_070.QC.jpg
1ec02f51a14299c2b065f49caff57188
e503240d77fd6c21864e3e6572e5819d953433de
58414 F20110218_AACICI cory_g_Page_060.pro
97a250a9df487dae2f47ff7dcb3bdb98
1129110130cf78d4230627c9848b770e1a364440
62023 F20110218_AACHXB cory_g_Page_035.pro
9bbc2a5e9859c9c9d9ddd2941ddffb1f
cfd84365a1c2c89229a0cdeb96ad95f9b26b4260
50669 F20110218_AACIBT cory_g_Page_018.pro
b680e8ee53e316661a9d38c04caaf38f
92a7a9b75541bd90c13d5f753252063de2cebf05
F20110218_AACHWN cory_g_Page_068.tif
658255e2f3417a3fed9c209f5c60e029
12dbd263dbec58128cfa0d5f1c0d4395f66ffb82
1051963 F20110218_AACHVZ cory_g_Page_039.jp2
b9040c33b5ab6845906b297770445fc3
fafa0c6b5e89a3ea48fbdf1e97a4f9f624d05f46
F20110218_AACICJ cory_g_Page_040.tif
a5198c3468232f2617ca239039a61d55
eb586d4d3e2bc442637db689cb46284edbd4409f
864650 F20110218_AACHXC cory_g_Page_082.jp2
21d4f9e1c4578bdbf23322becdf87f98
dd1c0943282171f8b15ac457149c2755f19f1eff
627354 F20110218_AACIBU cory_g_Page_085.jp2
4c0e2f7e68461a7e0607dd2417e03e58
be1b7f116a50d2d8f77960e8968abb7d49e39794
F20110218_AACHWO cory_g_Page_075.tif
74fdbab06999986c942ec53466e64d4f
0e56eff81da88ebfed9dbd69ffcb8f81fb1d186a
37908 F20110218_AACHXD cory_g_Page_053.QC.jpg
f8c3f5387952d984841972c46825da74
60fe12d21a0107d3f63e752c7770f751a4805ef6
1051983 F20110218_AACIBV cory_g_Page_099.jp2
833323a72dca66ed90b6e51372cdaa59
8f02a8f56d7eb7b0f513ce1d2d338eaee59b2aff
105429 F20110218_AACHWP cory_g_Page_018.jpg
d1bf964cac6938407e3557d3acf18f32
7eca8ce57c947da7df95b2c1bf697165719a4ac6
F20110218_AACICK cory_g_Page_037.tif
6b2b59f1e6b6b00d37fd3b8c1e3d962d
fb90d0062a7cd4eabcacc5452c83feee0c874fd0
F20110218_AACHXE cory_g_Page_096.tif
feb0f8ee3a39e85cba23242258c3ccec
615bdd5466ed7592cc1c11f746f570bbba23b522
2476 F20110218_AACIBW cory_g_Page_064.txt
51454ca831a5b3012639cb61fdea4595
4d6efdd48670c1426b676e7ab85a6603d7b8099c
F20110218_AACHWQ cory_g_Page_012.tif
c41a25e935a9f4f2f95ea1fa11271c61
3f81ea9596598c3dff191c7f81885d44ac23955c
1110 F20110218_AACICL cory_g_Page_095.txt
7324b9eb3c42c65da9e6831ea1c2cdea
1b4c512a75483843ea87e7836db97e6229eaa0cc
7182 F20110218_AACHXF cory_g_Page_023thm.jpg
6b0220e98f60f7d17ed7988463700a71
c2a78a0d25fc2b8cb6fc6462f88efa2272243fa3
40750 F20110218_AACIBX cory_g_Page_067.QC.jpg
246be8203b187b1aac9261c14d5a3636
30b4ebd0fd59342f433a8fdb5aaff0ce973ec35c
1051972 F20110218_AACHWR cory_g_Page_032.jp2
615485a37e9fc05a463c116e96e97f34
95da5b8b5507dcb6229fb68b4160dee2bc31fd1d
36697 F20110218_AACIDA cory_g_Page_006.pro
5eb3fe28084463e492c602fe5a36e11b
8035e8897567fd1d8784ac67e5033bb16aec8802
1878 F20110218_AACICM cory_g_Page_083.txt
4ded01bba804c42fa957ae4df677f596
273637e77c2bc62c6887879d30ae078651aec787
2406 F20110218_AACHXG cory_g_Page_097.txt
d6a520c5b0b2535a305cb9ea8c2b2c58
9261a7b9120e7975bbf0182028907f13c04aca89
1043575 F20110218_AACIBY cory_g_Page_024.jp2
4666b53dc916c26b74345be9a43dc78f
d8dd01772e17742365478ed537939769414df636
F20110218_AACHWS cory_g_Page_054.tif
91e7662af4e011e7ea75fc733f466e64
1d27de9206a94d447719bcb808f5ed5db11cb6b3
1051937 F20110218_AACIDB cory_g_Page_017.jp2
285980fb3191e30d20c8690e0123c82a
33be2f0017b19292c0aaea9b3e78ccf23f046b4f
55358 F20110218_AACICN cory_g_Page_038.pro
27954df78ea0b45b83c519f2e9877ecc
afd9733a124b4eca317f01cee6e5ece4f1155445
33781 F20110218_AACHXH cory_g_Page_033.QC.jpg
d0b248ce16291c08510f1f1e1b0f4e1e
db5071c6165186cf1a40e7a826065e3182c6c198
52172 F20110218_AACIBZ cory_g_Page_046.pro
b1d74fdc792cc0696219c4f1f3362110
08f511be9af7330260f5dc07dc71bfd49fbef89b
F20110218_AACHWT cory_g_Page_019.tif
d483bd496a95e3de353e5d1b3f9e5edc
478f9fcc413752d6b03cd3695f6978abbffa41f6
125512 F20110218_AACIDC cory_g_Page_097.jpg
a75ef2fa1834681b2a3a02de9b8ff836
15c9d165c4119dfd30b205a077e90846a5d3351e
57411 F20110218_AACICO cory_g_Page_062.pro
bd681cc4cef39c78389d48b0b9d9b2dd
e086ec84556b4f14b3060b2a3b94537d6dbacdaf
F20110218_AACHXI cory_g_Page_013.tif
b9d7453e8cd507dfdb050a1a6c2d328e
051c580f69d6d620fc7740df97d5067fcb985aab
8649 F20110218_AACHWU cory_g_Page_059thm.jpg
192cc7b7e14ac234e79c2e6e2859f5c2
b7a803ec32f445397d5812c155905e3ffad2a994
F20110218_AACIDD cory_g_Page_036.tif
eb16e9c496826a57e0dab3f1c181b260
006600735384e35d3157b6f02f3552dff77d787a
239499 F20110218_AACHXJ cory_g_Page_079.jp2
2a0cd1a1cdec0412d32e12fcb86a9fad
2ef781c69d53b82ca5c08bdcc013caf3b2a9da25
F20110218_AACHWV cory_g_Page_058.tif
1fcf4203d06516d457855f240aa07f48
e93baa2d9f9a57349be5d515f494c17391b9e052
2633 F20110218_AACIDE cory_g_Page_042.txt
c2aed5b0f8a3169f50ed20f0d5df71c2
3009eeca8428eb4666038b5784f1d39f4303c5ce
37338 F20110218_AACICP cory_g_Page_103.QC.jpg
bc637bdc03691df3a469d2c82c33aa05
9693879e2e0306e0a989a71f5037b6b25a1de888
35318 F20110218_AACHXK cory_g_Page_102.QC.jpg
1883a01febbc3e44d0ff5f2ff7335942
091cf6f82d7bba418ba9e4bb10124933de2b3f2d
F20110218_AACHWW cory_g_Page_071.tif
cfa01c9d5b7462bb0a6e5c93e0940a88
acc3003a5a2e79b2a5abe0a096c71fc8f908f745
1634 F20110218_AACIDF cory_g_Page_006.txt
a3e0cc7543b9478a02cff2d6ec68f516
9d1c3a8fc479cb44d7ef840b2ba2e266cd19ea0a
40139 F20110218_AACICQ cory_g_Page_047.QC.jpg
88254595a2d14b23fd5c14783eb85d87
7229b0563da26d516dbb681e87ab585c1cab6f16
F20110218_AACHXL cory_g_Page_076.tif
35c0644c2aaff79a4e9663a9411f2262
f1cb2fb32654680f69897eb663be3387b4449c45
F20110218_AACHWX cory_g_Page_043.tif
a3ff8f09969d0d4ea4b436fdd5bdde38
98757928e9dca3591859971a1b6f11bf6d06bc98
F20110218_AACIDG cory_g_Page_079.tif
cdd6391353e2e2d3dddba3871c01fe3a
f42f5d525c4f2acc9ea0be161167ff41d14e658f
3383 F20110218_AACHYA cory_g_Page_080thm.jpg
e6f59274dc4e485fc65c054a769c6235
75147073b3e9bb3eff87ab2899cc736427a32899
2440 F20110218_AACICR cory_g_Page_099.txt
ae62f3ce72cc7e1e08cce93bc1592888
84d0d527c0d0dadaa82df90d68c1ca0346e9bcf1
2644 F20110218_AACHXM cory_g_Page_066.txt
f2adc3f51872803b0b2d331e186d60f3
d94a0b7bcfe50b46cd6dd384613d3ba7aa264e9a
42421 F20110218_AACHWY cory_g_Page_069.QC.jpg
6dce7262bab6db98f3c4811c0fc9c4cc
88652a766373f6449ee8662b5531e093528467a4
37334 F20110218_AACIDH cory_g_Page_051.QC.jpg
eee2d7f1988e4ba78b3ddddc481c11f3
9fb6f5b4cc761dba73423db5e347cf258e4d095c
30321 F20110218_AACICS cory_g_Page_087.pro
5ba34f06cafd0c60590919ba9dc6dcc1
148edcce17c37ca758b58cb78087d1bd09601144
1051984 F20110218_AACHXN cory_g_Page_038.jp2
675fda6871f9c374af770cd5ed651c9f
574ad088528b815a6e6ae76cd9b673aa87b95fed
F20110218_AACHWZ cory_g_Page_034.jp2
573d98c9d495a49df5f4c0cf71ec50f2
62d4d0c4c6fcbe74258690d91e84c6d19f1d1e71
F20110218_AACIDI cory_g_Page_098.tif
c05cd2aaff01c2dd144149f0a02c0d32
bc19a6b1ad7a33692d4b90515eb2bcf76bf6d0ba
8493 F20110218_AACHYB cory_g_Page_017thm.jpg
03117fe9c08b16b34871bc38e5061763
5f2a42d884ccafbcd935f64fc7754cc9505943e5
8353 F20110218_AACICT cory_g_Page_045thm.jpg
030cd5cde4e213f699d191d20c2aa7ec
6b1f350662185c0c694becb0fde7ae4510a143c5
33855 F20110218_AACHXO cory_g_Page_017.QC.jpg
54626d7a5f60605c3d0ddd5e27c82515
8bdf692ff8d8417f4f2abc57e1c7455cf61cadce
F20110218_AACIDJ cory_g_Page_087.tif
f3dce89c1eac4b0a8c6f2cd57970c3b4
ca5930dfddca18c321e96f463ee6ad5f7e876ab6
2749 F20110218_AACHYC cory_g_Page_105thm.jpg
dd77742ff88ff4730b535ead30ad9e00
a637af57c4565f16a2493ac2547e27ef14244460
7267 F20110218_AACICU cory_g_Page_026thm.jpg
982c42e4b1ff3360c7a081676f0c4e18
b5b5a502c35fcc3bee718ca77192028fb10ebbab
46080 F20110218_AACHXP cory_g_Page_070.pro
ee12fe0545452280b68a6cacdc280610
e51a83c25ecd3889932643fccedfde2d5bbdd7e7
13124 F20110218_AACIDK cory_g_Page_096.QC.jpg
e56d55b16c3c48940853397a767c9937
2b9a39028bd5fa1944e652ebef149d171a84b225
135066 F20110218_AACHYD cory_g_Page_068.jpg
d54a5a9bb256d03eebd8c5806ffda9cc
11235d902bd052cab961765f9c4f7b9a53bb41cd
52150 F20110218_AACICV cory_g_Page_008.pro
a99bbaaec15eabfd59939696112bc763
d35afe84a71bb17843b52040a79ab6a8425eaf00
151168 F20110218_AACHXQ cory_g_Page_063.jpg
6758bd2c27adf3f2c491b26584f2224a
eee0e867d445c4c5845f02ff11b3543678a3c7ad
24889 F20110218_AACHYE cory_g_Page_016.QC.jpg
ad387fc85520f46022b24c4ce399206d
fbb67f341ba816fa821eb1e018dc5140c738e59d
F20110218_AACICW cory_g_Page_020.tif
9e83697d77ceba2c349431c5bbb6e48e
cb0a1c66cbadce2c4fde052c95cd6b1861d28a9f
1884 F20110218_AACHXR cory_g_Page_022.txt
f0b6abf4465f829d6a7eaf19a1458c19
212258c962641ba492c96997cd91dc6be2d093cd
26721 F20110218_AACIEA cory_g_Page_029.QC.jpg
d73e2dd25b9a287c5da1ad8e7f760832
0f67f360ff7fd143d816565b3b336a04c14ea1b8
F20110218_AACIDL cory_g_Page_064.tif
3e3ed4ef090fe079c683246675746814
c1e27961dd40dca14b2d3750ded5595ddb3984cf
80361 F20110218_AACHYF cory_g_Page_031.jpg
8d654447d43053aad64bfe313f6dea85
8687325014d9afe7a7133ae2e166ef4213ebf90b
F20110218_AACICX cory_g_Page_023.tif
d97756908f1ce20372104eeb97577776
bea2536a9f92484032fff040dc5f59e03f18b80d
F20110218_AACHXS cory_g_Page_018.tif
c5c2d89f44f94e98fc860f4227d3f9ff
e8aff6de46d704fee80d767ca6de7179aad5fb83
6949 F20110218_AACIEB cory_g_Page_016thm.jpg
3111f9339c255296e78c0bb46d4489d8
72a4c9fd9a19d3cdb4bd7cdc565917dc69bd4600
8381 F20110218_AACIDM cory_g_Page_032thm.jpg
820a56196d58b13cff0b8d51ab8d0e72
d612639669d6762fec15f6519bf39bb7ebf25b3a
7399 F20110218_AACHYG cory_g_Page_014thm.jpg
d962a532387aa1e7406d1864cda66490
dd1c2975c98f16f222210c5f782670838bc9e09a
82903 F20110218_AACICY cory_g_Page_011.jpg
467197831dba9406d5649029234bb3e9
28b19f7cc7aad18ab591d261aa8a5433d48a6a81
8507 F20110218_AACHXT cory_g_Page_046thm.jpg
b9fc69e1bb6a52762782991f04509023
eff13b8c01cabcadf3160d360033c449036618cb
2708 F20110218_AACIEC cory_g_Page_035.txt
cba657dd19142a0ce445985d2cb2798c
2149a6e1980db0f14a9fea387a433879fa3f09b2
430646 F20110218_AACIDN cory_g_Page_009.jp2
d43dad46f20717b27de6d507fb56839f
01e538f0ed85ae20259381beb2cc4840f7c72428
7103 F20110218_AACHYH cory_g_Page_104thm.jpg
8da99b301aa5a3d11e6bcd3d666fa6eb
8b82b5551ff130a41d26de48b830ac422048ef45
33272 F20110218_AACICZ cory_g_Page_094.QC.jpg
1f69390f4cf27961ebe19a4cdc4385c7
24143e5156e1e6c3ee7f8904c0524626cc738fd2
29706 F20110218_AACHXU cory_g_Page_093.QC.jpg
ea2b3be8fc02083e88333f8abf0f8863
8b3c6350ce2b5318ee2c12da0312e5dd21918cd7
152204 F20110218_AACIED cory_g_Page_067.jpg
7428c293edc6a4c78c708ecb3ee90db5
6cb21b673074192cc1300cf602c2ba10c129a641
1051841 F20110218_AACIDO cory_g_Page_060.jp2
6313b29ec870611fd86578b935795cc2
211e6116b26260b26f0295457986fd261a9c79e9
2506 F20110218_AACHYI cory_g_Page_043.txt
9360b662ca24a00722a61e796ea69e51
c2f421f728a4202ea31066c4f0c74d9c343fb91b
36553 F20110218_AACHXV cory_g_Page_100.QC.jpg
c53b2774a1997d97f0cb484056b40a57
3ea34d3821be0abed37ab0a6f1f6721d4df18113
98641 F20110218_AACIEE cory_g_Page_093.jpg
8d97aa5f1679f15636f2d729cc19effc
64ff0ec77542154d92201466d4cf6bc541b18096
35237 F20110218_AACIDP cory_g_Page_025.QC.jpg
7fdb182c4bd7482d74159c125d63ab35
ec7ad81f8cbe3a993f8b235e53cd380c91d3204f
1051919 F20110218_AACHYJ cory_g_Page_053.jp2
ba250f169857304ae87d172e8ef1faa0
070048989e0653c291a1f9e57d906ffd7f7288cc
10913 F20110218_AACHXW cory_g_Page_073.QC.jpg
29bbe27f54c244f39a2dd1bf00f07d04
5ee9c720b48e48f8f6f1307cfa9c0801fef4023c
264686 F20110218_AACIEF cory_g_Page_080.jp2
3a17f86627d78d38805c0321276e4865
ad135d13e09a3eac57945198202c9f54e317be26
1166 F20110218_AACIDQ cory_g_Page_020.txt
0c3de16e834039f990b64ff876df0fc7
d8d9441af6d44af58c42fefba81956deb33e5291
27691 F20110218_AACHYK cory_g_Page_085.pro
f8c01b774a75e079a0f9d25b988c9098
032e3a4160c9839e46df910284203955b320a1d2
35868 F20110218_AACHXX cory_g_Page_044.QC.jpg
e4daf796abdc8fbcc90db9d9d8a669ab
f8feea2a214b9e19a60f017a8ead2f3eac350b1d
62027 F20110218_AACIEG cory_g_Page_067.pro
0ab8625d049ea437b334e37ec0735d27
d200958dd9372f44170150de4f764e5aff4abba1
1702 F20110218_AACHZA cory_g_Page_036.txt
54a3981ea411dbeae2aa9e555d7139fe
30481ef3df0310567cab05610256e655b552d543
3053 F20110218_AACIDR cory_g_Page_056.txt
c3e8fc23126139b40257ef33403fc1ce
24f8f90275ade551b32ef72e046d80214986b303
23767 F20110218_AACHYL cory_g_Page_001.jpg
08bd74df8f8dd69a844831256f4019eb
8b5a5eba88a2718a701ec9013ccc0ace4b05025c
33402 F20110218_AACHXY cory_g_Page_098.QC.jpg
ca44d3ca0588ef9cdd4ab3aeba5569b5
9afc185ea18e9666b077c3143ae4527bcd240511
2595 F20110218_AACIEH cory_g_Page_067.txt
b4b42b27f412396065aca0f1e5e01d37
b1042f0b6db186a9347b1a6ea4b66810d078941f
F20110218_AACHZB cory_g_Page_013.jp2
15bf569977fcdd7770720fe76bbd4142
5f2b678dab29583e60b0d74db7f4b03531ce2ccd
59377 F20110218_AACIDS cory_g_Page_053.pro
e6b001a2c9e5e596ea517dbbbf03c6ce
3fc5031c3754c1496f4ffc9b65edc3fa50ad36d0
712639 F20110218_AACHYM cory_g_Page_087.jp2
3d30bc42328d0272ce0ca3c3ad79882d
aa02afa7edc134335c8217ace27c3532eb555a33
5977 F20110218_AACHXZ cory_g_Page_003.jpg
a8d74ce253b5c2ad1e8f04146599ad7d
e91d3e5847bc452d67685648de5760f4819869a8
1689 F20110218_AACIEI cory_g_Page_089.txt
6e3675a7007136f8d7c72fbd3edac54b
4f8374fa057f294972332ba6ffb71ebc32756a75
37251 F20110218_AACIDT cory_g_Page_055.QC.jpg
7b411e3080906083ab57bf6900f3a220
4edb060b29d977cc1dd0966e8b3f2faea37cce3f
9153 F20110218_AACHYN cory_g_Page_103thm.jpg
e74a434b4744b0f59526053a185d4f27
8567d45bf311dccefe39a857507f0f0d7d9ff1af
133130 F20110218_AACIEJ cory_g_Page_042.jpg
230cba19fcb0a78cb1ae5f2c0a76b1d9
1407d43a18efbd3f6c4c998d399ec7fb7cb8ff70
25838 F20110218_AACHZC cory_g_Page_082.QC.jpg
e92f3bb99b1bccb3e72d31db0f6f8f36
d9319c9f9b85c9e9d45a69e9d9589236817179df
F20110218_AACIDU cory_g_Page_021.tif
f20a24375d3d5768d57cf3b42c05b68b
394a4d036cc6b773a7c47afb63fa77752e26da88
81700 F20110218_AACHYO cory_g_Page_092.jpg
2d254da7a8a5e6259880df491a86510f
020299a5fed1e8e09b9718ada780e0be4710b191
36978 F20110218_AACIEK cory_g_Page_037.QC.jpg
9554b20a1690050cb5eedd3f3ef4a902
94c318f1f8694df332df1a6ec13f4175260fa47e
531 F20110218_AACHZD cory_g_Page_007.txt
7bae254f0e6858b990c65f6f202fd66b
dcef572fbb3bbcd8ad3e7690b7c55da47c7bdbc3
908917 F20110218_AACIDV cory_g_Page_014.jp2
0886970fa82b52550717b7b43e4bd30c
9818beaeb6146cd0631a22cdbf792570862b33f1
8242 F20110218_AACHYP cory_g_Page_054thm.jpg
12544918ab8dac30ffdc8a3a47867f34
cdcd032d946d637eb4359c1b58d55599de073000
F20110218_AACIEL cory_g_Page_015.tif
bdecacc22575ef738bbdcd484b846df2
ccd8e895c61a3dc7f6f316a3101578027dbee7a4
1051938 F20110218_AACHZE cory_g_Page_025.jp2
27bec58b3fb3f10a5f0e55f0a3ed6272
e1d53f1990a03a12b55232334c62312ed899e990
F20110218_AACIDW cory_g_Page_049.tif
553a4a2795937277dce5137027fb51d8
905c296a7247729389e68231ff79b728c28a91a2
102609 F20110218_AACHYQ cory_g_Page_017.jpg
63767271cd1317918323f40cd5d1a39c
1a2993ff1fc736af953db0b84d73d1f584f6b937
1989 F20110218_AACHZF cory_g_Page_018.txt
e938fad3c7c47fb4a8c1a5e9eaedb2a8
d4d27b818c6d48400d20b85a235dae045f8d253a
7377 F20110218_AACIDX cory_g_Page_048thm.jpg
4b3ddcfcc7f0a8809763822459d28b87
289a420ac0281f3a24a08a5fd0cbcbdf53d163ef
1051802 F20110218_AACHYR cory_g_Page_100.jp2
395e846581fc7229c3f8fa2dfbfef41e
8a6ef82ace0dfd65a5d78e9285dc76ee929977f1
F20110218_AACIFA cory_g_Page_028.tif
3925ba2cc1859bc1a13d151f21049bc4
1dbcee1acf6ca64babe632d9d04b6b48a1d3c12c
35225 F20110218_AACIEM cory_g_Page_049.QC.jpg
c8cd5fc0b941e86e61cd57efebd4e85c
f50cb0d627987e00eef83037b9cb71db0b1d35d2
145953 F20110218_AACHZG cory_g_Page_058.jpg
03458ae195c295e39ba420577c20819b
0ccad290eaf7c96ea7628460367c1db6e9f8651c
1947 F20110218_AACIDY cory_g_Page_012.txt
3445c733348661688c2a2096431ef127
d5346bb4682e3e6c3858ba2d3fc8aed2944f413d
1051985 F20110218_AACHYS cory_g_Page_061.jp2
0de3abe51d441a2abe88fd76da53a1d8
02eb424b5e777c596ddacd10245b175169d426e4
2895 F20110218_AACIFB cory_g_Page_045.txt
5ccb8008b86e6b5c397c98a5d1dfe92e
180c19f875c8be2cf506cab123b423cd598bace6
F20110218_AACIEN cory_g_Page_005.tif
c167bb5fa6ce29753190cb9da2752dc8
c88ce5c92cefe0b51e7d5b2e8cb553a65a9b364a
10719 F20110218_AACHZH cory_g_Page_071.pro
2311a86c9349dd9b91c2a45e140a1cad
5192b469d7f8795f94c4df77b6194ff5b1c6302e
1407 F20110218_AACIDZ cory_g_Page_010.txt
848df759b4fe97bfa969900a58293097
7d00e421f530ea5e96734aa66ae2c85287aa3558
1026534 F20110218_AACHYT cory_g_Page_028.jp2
9ad3c920a7a4e8fc181436da64907ff0
b43576b8e084204e915073a779f71756620d853c
57944 F20110218_AACIFC cory_g_Page_056.pro
479ea1dc6dda56bcc053d129cf15358d
d8ed36de2a6385cbbfa75079c1825d0d45584cba
F20110218_AACIEO cory_g_Page_035.tif
625ba0ddb7f07c2f2c9be5cdcbd7fb91
4b2f1f9f9763b02eabcda02a973b022dec083a9d
9156 F20110218_AACHZI cory_g_Page_080.pro
1903e2c97da09a289700a29f1e7295f5
d8d01ee10bfdcce3d8a24419969ee71e9559a1e0
56287 F20110218_AACHYU cory_g_Page_039.pro
6d4a0014bf58b2a107e8a872c2e4a0f5
3d6b3c2aad33c1c572ac6d537df053b295c0303d
F20110218_AACIFD cory_g_Page_045.tif
54eca22be93630a98fc2fd624e5d8ca4
d09c5ee9bde804e5c353dfee0d52e99616be31c1
1831 F20110218_AACIEP cory_g_Page_024.txt
7f1d60e3906f31323e5d28a2dad22713
c539733b620b4767ed01481610d32bdbb61afc0d
433 F20110218_AACHZJ cory_g_Page_079.txt
3e83aa4fef53093ecc8795c2e7f7de62
3cb0da4025a1944e7d2936c4fe49f27ff5b666b7
846152 F20110218_AACHYV cory_g_Page_026.jp2
c77285b1f5e6f0bfc943a6e724d99515
0d27f3e4f97f09883d00b5c449908f684f207836
138443 F20110218_AACIFE cory_g_Page_057.jpg
9c10240b47b1e3362381345195b47adb
9c5481727bb47aa4f0014c4e7e68b8d89b29df40
9207 F20110218_AACIEQ cory_g_Page_078.pro
49593eed6922e0c6f5a160d9e840f3da
708c835ecb30e3edfb5ae7f27b333c72c23d327f
2722 F20110218_AACHZK cory_g_Page_059.txt
277186f40d7b49e45dba9a7010b42c7b
885362aec5baf38147781546f06951ff14873707
1051981 F20110218_AACHYW cory_g_Page_083.jp2
1b95c5966ed28f14b7ac5b852d7c413c
d1ff20fa1fc36ca675378e93f0779e1b1e6eec4d
7800 F20110218_AACIFF cory_g_Page_044thm.jpg
f9174dd845cda1b3a3e607df3fa0146b
3c057a13e7cb1083fd3c96fe0370e0ad9971d2d8
81620 F20110218_AACIER cory_g_Page_026.jpg
faa5f485e9dee4afc061795f0d950271
21855f2f2d0f01f9df4e0b18dad555d8cdf2c3ad
3385 F20110218_AACHZL cory_g_Page_078thm.jpg
15ccae774f12e2238897c2f3df9236f8
395a84b8d84a6b65517a37c2fd8de3c98fef67b3
29726 F20110218_AACHYX cory_g_Page_089.QC.jpg
fe0301a891499ab06701a9e62ee32e48
cd83869d7a6cabc1cbbe825d1b983f30d9fe7e86
48695 F20110218_AACIFG cory_g_Page_033.pro
ab287064361b70711bed87c435420573
d4c533983c27e2d4ca306ebdaa1a72d7d3967c69
152897 F20110218_AACIES cory_g_Page_061.jpg
65a47d607e18714e9d6c0cb116c85ae8
4dca2d48b92de519508f2b3109d0043137d5145d
47852 F20110218_AACHZM cory_g_Page_003.jp2
243724d7c58a064392d90ad0b59d8aaf
7a4d462dc52bf3194d44f919d535d64de9945033
7004 F20110218_AACHYY cory_g_Page_070thm.jpg
00039c36b207f3913b4cdeea13dba478
e4d9ad2573617e3be7d018f86a912f0067e5a8ae
8647 F20110218_AACIFH cory_g_Page_061thm.jpg
1b2d1bcee52f62f7c55f4202c9968c5a
3674a6bd209fd8ee8a0eca041ae4edfade5c1527
62618 F20110218_AACIET cory_g_Page_069.pro
5a6784a3c88293988ffc7878f14ec7f5
d43149caa5ff4650b20d811deeafe4349e824014
4321 F20110218_AACHZN cory_g_Page_096thm.jpg
9c1decec53205424ed035db255592f8c
b0ac2c332c111c5ed272b0e68cf45ef235bece20
12176 F20110218_AACHYZ cory_g_Page_105.pro
de15e7a407c70282fdc3ee8d07ed9288
278fe3a92bbdee6ba134b63eeb03350496033d0d
10147 F20110218_AACIFI cory_g_Page_091.jpg
560edbec2e7fa585e985f183cdcf5786
bdccc32d488b3059758742a2c406f73bb976dd04
F20110218_AACIEU cory_g_Page_099.tif
1f494c555377ffc660f7dc5e7e0965b8
0ee61ba2a05ffa989dd6b542a6f667efd18bffea
7722 F20110218_AACHZO cory_g_Page_024thm.jpg
c5ce5d70bc33714f6aa2d2b117b5632c
17bf524649a6e8957112f9459a20e3f08696741e
20714 F20110218_AACIFJ cory_g_Page_010.QC.jpg
e3c7c0d3a39903c80fd38a49f77e9d18
60c47afcff58d156ada6f31577db0a9c380d9df7
26308 F20110218_AACIEV cory_g_Page_020.pro
772ba7a08c938c4c1f828a12696990ab
138c2b96d9926ee56c6746fdf0df7f327841c4a4
F20110218_AACHZP cory_g_Page_017.tif
5d7fed9166a6731982efb6a7fa96f185
29e8f008dc38436351226f856abd8782692a2ce9
8442 F20110218_AACIFK cory_g_Page_067thm.jpg
77d1ebec60e51f516f46a608840ec90e
8a9d8b672d935f45b31eda7d2823152e6c82bed6
82585 F20110218_AACIEW cory_g_Page_091.jp2
313ff1923b03ddb595a1bff2cf37155c
8ab594407633811e3482f601f1dc1eed4106a6dc
862501 F20110218_AACHZQ cory_g_Page_005.jp2
8dc39c39d304bcce9a04854afc61c16f
47d1986fd015aa23c4161a58aeb63dbd01cc0e16
1972 F20110218_AACIFL cory_g_Page_070.txt
256d7cdd9c38923adbf97a89965bb636
e65f7489b8c2086108467fb96458580ab4a4e396
32493 F20110218_AACIEX cory_g_Page_023.pro
abaebc13d6cc828d538c74d3435f8cc5
54fc13deee72e25e1e6524e551b44f2e3eaff499
21091 F20110218_AACHZR cory_g_Page_005.QC.jpg
5f31014fb55edeb74dbd6b999007dc8b
bb3f7f4933a7d4fc053de1eb85d988658e43ac92
2727 F20110218_AACIGA cory_g_Page_038.txt
c9c2d63dac769e5d56348f502ff797a4
b79a6cec20a65214fbce38090ebe33356943ef9b
57985 F20110218_AACIFM cory_g_Page_005.pro
a587c12d6b1c38275242ad0f4d522cde
44ac2bdebc3370668f8d6683ce621927aa525d46
501 F20110218_AACIEY cory_g_Page_072.txt
f5fff8e81dbdab04f08989ee90f6f508
57622a6adeaaa03568d181b42a2df6fa5190f24c
37046 F20110218_AACHZS cory_g_Page_082.pro
925237eec0260b64d126d977e329fc33
ede7c06f481a3401ac1a25fc76439bced24f8277
F20110218_AACIGB cory_g_Page_050.jp2
7f8e8be9234ef22e94eff5d194186cd7
f6e0b19cf93804d2855b4b74b28300b131f139f5
12360 F20110218_AACIEZ cory_g_Page_086.pro
34b7c14306062c91e29ad209ca1fbe91
7e798ae17fa2fcf8854a2f92785abe19ce049a05
5648 F20110218_AACHZT cory_g_Page_020thm.jpg
0cfa5c87161d13856d2dbb37bd960c12
3114c186b1be01d2ce14ecafe462d50c9d43febc
1631 F20110218_AACIGC cory_g_Page_092.txt
7e46cdbc90903f48a47371c963836d73
28705d3cfe32958f64568adff19831db63242d6c
1534 F20110218_AACIFN cory_g_Page_014.txt
33dfca2d82efd51cb116a6a5d293d7c3
599df41119e719ddf4a5df813cd026a7e84dba4c
2348 F20110218_AACHZU cory_g_Page_048.txt
20e5029524cc6f43aac9faa13843fc24
8d43df0b30b3ea01076042ca0591b5bc13d67859
11279 F20110218_AACIGD cory_g_Page_007.pro
a4e3bab2690c3fe563f467d28dbfeb08
bd87d4e2eca06270249342a052fef0a43b00054e
2682 F20110218_AACIFO cory_g_Page_061.txt
4010ac39335874c58b094ccff2c7d48b
bfaa28795e74a3cd92ba0d66310deab36154d196
363352 F20110218_AACHZV cory_g_Page_096.jp2
7be350c5f71c3fcf3006f8d46787c425
e544c494486947ed7c302196167c71d16a1516c1
40766 F20110218_AACIGE cory_g_Page_088.pro
502de91a321760231d592ae61a0f366b
85857e691af9dee79fdaf4a0477dac7dd13b34fa
7978 F20110218_AACIFP cory_g_Page_051thm.jpg
f4345775245d147c57ef0801260f8eff
acd181a4fbbec59671e613b3680e6cd03ecb1a8f
F20110218_AACHZW cory_g_Page_031.tif
4e4a3d481ab4f28104e30db7422dc2eb
34924bc56ae397523ec1c70e2088bfb480ec5e2b
8106 F20110218_AACIGF cory_g_Page_038thm.jpg
fff46386854ecb03f16b9ea06526c671
a0c96a7d171ca662a603c01c10cb477ec6170b90
53259 F20110218_AACIFQ cory_g_Page_019.pro
d0922a2ea71e14b9d19ea664cde6078d
647e0efd9e053c56508f9513a771e29256825e4b
F20110218_AACHZX cory_g_Page_048.tif
5c01e5235b0fff3a49739afbdcc8e50f
3e38ba6e1937682dbd102e7381704d916bf4416e
F20110218_AACIGG cory_g_Page_002.tif
2be9e6acaf01497c3adcfd5b746a0139
0764e98b57eac76d8d6403129b738c73c70f0f04
8314 F20110218_AACIFR cory_g_Page_042thm.jpg
23d3725d32a113f681ed4ba3cf6efdd8
99eb3c256aae82cf8b07e3eff49f77d5aea6f8f3
8438 F20110218_AACHZY cory_g_Page_021thm.jpg
a9bef13241cafd2198c79e32732ace24
751d7270f72332a38574a5aeddd33e4a63691398
607 F20110218_AACIGH cory_g_Page_086.txt
7d46ea8d7cae98abee8bbbb58d6e83e9
7afa60652b7a6a25f956f09bbda2d444da0af2f9
37308 F20110218_AACIFS cory_g_Page_031.pro
0096b234d6a886a7bd9a78eae2875545
0572a9649330ec48a7b298c0fcb3136ac159f939
1573 F20110218_AACHZZ cory_g_Page_029.txt
86da9bfc3dd7ec7e12995b18c65300db
a1be4dc718a0762bb05e0115a0c4ecb85f08c12d
133926 F20110218_AACIGI cory_g_Page_040.jpg
6444c9e14ac6adffcd478bdd0502e3be
9fc3f1c3ed681c3ca9f74ca66551d2e87611726d
9817 F20110218_AACIFT cory_g_Page_076.pro
f5e4b73bcf96a5f23baee705134b6361
631688ebbd4104fb519f6cc1750c727acca789a2
2395 F20110218_AACIGJ cory_g_Page_103.txt
ff71aefec0455242d5b149160cc397fa
ba8a81e0b76be50039afdc5df5bece3017ef0e6f
133806 F20110218_AACIFU cory_g_Page_039.jpg
3abfb9260672a38b15f7125dd27e6575
a2db740f90064139a704bf0c36b265ee6119a36c
42412 F20110218_AACIGK cory_g_Page_086.jpg
00d3c68944bf7bff79a3e7c9cc609955
6ba9e2e4e9fa21c1c3b4d90293a7973cfd2a6f1f
272550 F20110218_AACIFV cory_g_Page_075.jp2
5e2d9dd15a53ddae54e2aca86abb016b
4c15d085b3b1e536fa1fc68e24b709560f3279a5
34020 F20110218_AACIGL cory_g_Page_018.QC.jpg
e758209354bd63b19b8b2df2eae4a51f
bd332559e18f09b209edae514e7137953326b91f
3058 F20110218_AACIFW cory_g_Page_053.txt
f328cdd5bcad01b7f4edf9024402bae5
03681690059dea2d50f1427e1baeec9f05fde4b8
31792 F20110218_AACIHA cory_g_Page_022.QC.jpg
62d14aa3ca89395bc6bbde37e7c75a01
4f0ca8853892047abc33bd8a006bb35d179a6ad3
1051853 F20110218_AACIGM cory_g_Page_064.jp2
3d08abf7b0625ad31318d07024278ded
c9f3fbe9b670f2cf81250e32fc632a1572ed0d02
F20110218_AACIFX cory_g_Page_067.tif
d11269f9a6162749b942aef73a47e0cf
72c02e774aa79bd726123081f0fd537617d13169
F20110218_AACIHB cory_g_Page_052.tif
0b2abafbe82a6f3356215cda41722afd
eaa50965d27ddf277ccfc698dc262a06b7ee0bac
384 F20110218_AACIGN cory_g_Page_080.txt
4fe2251b5cc14c1ae87d12fabc7d4488
c103f135087aa2299fa30b128766331953ce0de4
1784 F20110218_AACIFY cory_g_Page_104.txt
8c42f1e7c4218cefc349d1ed77a0221e
257bc49fb764a751fc79f921753d5e9ef7aca47e
758 F20110218_AACIHC cory_g_Page_003thm.jpg
087132fcf6d753905cdea75bc217c799
b36baecbd2399dbca53bb25be5f0aa39d73c1387
16612 F20110218_AACIFZ cory_g_Page_071.QC.jpg
eb478da72c2c1bee1f61e090968be706
0ace547e4428823f3f4ca0bdc94feb970a69cc15
28578 F20110218_AACIHD cory_g_Page_104.QC.jpg
c978267614bada79d8c0b7daa3f9674d
5219653aa6021fb3390500d02c3cde0a6ec1e660
7530 F20110218_AACIGO cory_g_Page_036thm.jpg
bb45465fbac91d7673e633a2891cc6ad
6f842b44678e2c2f10cb663e02b043e6fbf8a412
1051860 F20110218_AACIHE cory_g_Page_070.jp2
75a46a7a09a2545a81189daa43a39fb2
b4ba024d53d837185ea6f460d62a016227f316de
83990 F20110218_AACIGP cory_g_Page_008.jpg
b04d542aef400ca32dd367b8934e678a
390bfa9b123baef7cd8a1f83465543067efa7f76
54363 F20110218_AACIHF cory_g_Page_041.pro
6cc239ac5465f7c97950a63bef3ccefc
76b8f8d340c353233739368ac0fab871fe8e5a68
1625 F20110218_AACIGQ cory_g_Page_004.txt
2cef031c2a5e809849438e8132320837
c14f67530f5f6385eee15ce584a7190d202748a4
41281 F20110218_AACIHG cory_g_Page_064.QC.jpg
e3e2e727e53115badd138989b4d72b38
bb3608e76abc07eaa08f4b6889c2e7c82c3385d5
1022 F20110218_AACIGR cory_g_Page_030.txt
3a70ba3371b18b20f179344a79b06891
2685e1930ffe33d81d57f49c2748a1efba521bf3
F20110218_AACIHH cory_g_Page_006.tif
af7fa7a417767f2d2b18c71123cf18ad
81a672b0717bfd96c70f7960cb8a41c1de00fb7f
4366789 F20110218_AACIGS cory_g.pdf
806b6dc23839dc7c63c1ed4207ce99f2
f3575bbcd2a1743a52cc62a8b05f4396f681b433
6561 F20110218_AACIHI cory_g_Page_029thm.jpg
9edeb7b130d0847a16858024a290f58d
34e9dd07afbda8267d9c593d8a9628ddcef43627
36088 F20110218_AACIGT cory_g_Page_090.QC.jpg
e9c135f22b69687daa0d1aa8b65212e5
c196c5459e1f5422b7421e8a5a2112a953eb813f
1085 F20110218_AACIHJ cory_g_Page_091thm.jpg
3a5428a2693ef20d07ac1eb3a6625a9d
2fa3c05e638384c3a7fe0a334176c8dde71c9757
F20110218_AACIGU cory_g_Page_084.tif
fd83f4c115240ef2aa4de78c9020b1f9
3f2166d6888cbbdead0b0ec3da70b1b44ab6804b
42687 F20110218_AACIHK cory_g_Page_036.pro
b8df3eedb900cd01c607e432f819b136
b675129e569d14e45ea879809ca4daaa38082d1d
411 F20110218_AACIGV cory_g_Page_081.txt
1b1cd161aad4f1f6c7052a0ca5e330fe
60bbd0a00d468ea0ca4bc6e78f15dc9ae5a7531f
40149 F20110218_AACIHL cory_g_Page_058.QC.jpg
15fa962417cf7a8f6e4e2b36fc160127
8ee1cde8fe2f108effb8d1062ac3cd69a6755468
8492 F20110218_AACIGW cory_g_Page_018thm.jpg
7eb425414adb1f347bf8310ae0d76b0d
fa24ab778a61069e23e0447cf6784d57449b1bd9
535 F20110218_AACIHM cory_g_Page_105.txt
6ce0535c3f113a3795830a81270261f7
322f2043e0dd5b6d0c9a10e6350425e2f11f346d
102016 F20110218_AACIGX cory_g_Page_015.jpg
d63306490834ab31bfdc7e0b8cc9fd42
526e2a5bdebc45f11e1870eaec63161de90738ab
1051982 F20110218_AACIIA cory_g_Page_041.jp2
000cb4f42bce4a2e421c62b824a16208
872ead630e38d25e8e0627f3ca59f98bffc7e2f5
8600 F20110218_AACIGY cory_g_Page_098thm.jpg
e7b8c79c0a66c4ebf8b716a743a7e2c1
120b548e2a4198798f7d3e47a4c8a1e57bdf8e29
9393 F20110218_AACIIB cory_g_Page_100thm.jpg
21869b518ca283d4db9805ed8715f488
f85f5791752d21e99923b5d4ab10f4350ebbf4d1
F20110218_AACIHN cory_g_Page_022.tif
913dbafa725ca69df6010876f37e2a68
ef96cb712f5c24930ab31dba4689498e32ff0d84
1677 F20110218_AACIGZ cory_g_Page_023.txt
7c1972245e0fb45368826833a50f8690
1708756e7a01d7b9bcd36aab3194908d03cd092f
40039 F20110218_AACIIC cory_g_Page_068.QC.jpg
eab144d3b5cb750e91ed87db9fe2504f
37590c9b3a22d87d178472c36fd5d3e4a3b66d81
3993 F20110218_AACIHO cory_g_Page_077thm.jpg
ddfb33b319a0903264f3c73313384d14
9cf3021318817f35642a41fa94a8975643f069d5
1107 F20110218_AACIID cory_g_Page_085.txt
8269baf86aaac5b57e4cf337d60e3e88
f869e1ad63ae944b27eb46efd124422fe7bd3adb
45552 F20110218_AACIIE cory_g_Page_104.pro
77cd09ddcebf7b8a09b31dcfde9d6dbb
ae60450d692cfb4e7ebc4d55ec4bff8727da1106
49472 F20110218_AACIHP cory_g_Page_021.pro
57678f3b6ce00c18e2830be7081b0c2d
8946c058ae6783b8b45e35359965c43001e22a01
1658 F20110218_AACIIF cory_g_Page_011.txt
5b59bc373572aa287985aaf2f2ebb6f3
2ed9c4dea45f31cc72a85a46f7365d41e8b1c4c5
1051926 F20110218_AACIHQ cory_g_Page_035.jp2
955e4b38a39bfdb2a27919cc2938b8f6
4dcba8f92a97be23bb1752241d225266f6d1e847
39289 F20110218_AACIIG cory_g_Page_029.pro
b7afe76ba71ea9821cde434386f7daf6
38303f167ed97b330359ddd557e0ebd54f5898c7
6861 F20110218_AACIHR cory_g_Page_082thm.jpg
5ac93c7adf36517285ff551fef157cab
862a2fc6310612feb9fb8442a80e2a764ccfa29a
97051 F20110218_AACIIH cory_g_Page_024.jpg
8363f81d0f7b730982b789b1fd1c6e29
72aa73d368f7350f9ceaec65edf0ea0e52dec6ae
28704 F20110218_AACIHS cory_g_Page_027.QC.jpg
b2d12147ac9afb1834d2976e6792d25e
e9fd8aa597669444c6a2a756c15ae588d8f00075
F20110218_AACIII cory_g_Page_018.jp2
d581b571152340a503e8975dc553de5c
ac87515e793bcc9f6db0d69d1a844180459f879f
37787 F20110218_AACIHT cory_g_Page_040.QC.jpg
d17b909056865334d8bfcd5ce630875d
dd2daa05c49d5156b9ad9857941009b1f351d5a2
332392 F20110218_AACIIJ cory_g_Page_071.jp2
9dc0ee3f6aaab60657b8cdd29226022d
775a6f0fd2c23eb1a15403ae444a7f4a12439fbe
701417 F20110218_AACIHU cory_g_Page_010.jp2
a2e8d4aaa382e73fddd95b369d883aac
c0e29aecc86979782890b80bc75004a81dd20b6f
3480 F20110218_AACIIK cory_g_Page_079thm.jpg
46e376bb7ff240b57de7757c914ecf54
71a0c2fcc8b1c56292d67a6b9d7e623f8881742f
9209 F20110218_AACIHV cory_g_Page_099thm.jpg
bce732f3b4f4798a2ceb1a20c9141f1c
8313428e24c27107810de93d3e0fecadc2df223e
F20110218_AACIIL cory_g_Page_009.tif
f1a9aa7c03f9bc0b454479386028b178
91bf4298fe157d8e6daf4f30e6a53a5143c26d84
F20110218_AACIHW cory_g_Page_010.tif
a442a1e6062f3789bcdfabb388bf28e1
484cb5294bea626f0a6d82571d7c91b7331637fb
8595 F20110218_AACIJA cory_g_Page_019thm.jpg
8aee71687300892ddd04cf5dcc2fb019
4ac5383714e9a979c96a82900954397d5e7761c0
11210 F20110218_AACIIM cory_g_Page_079.QC.jpg
078cde2565dc2e69473a5a244c65141b
77604610631f59f62268ef69ae55431e5b724542
133513 F20110218_AACIHX cory_g_Page_056.jpg
f27ed2d3d4b60cb2c0eed726f66f0f1c
b8d44520277e245131fd6bc762c912640b1e7b7b
19226 F20110218_AACIJB cory_g_Page_085.QC.jpg
aa5250f5d0e19b655b9a0ee0e2f90353
01fd45b374146f971832400978c4663e61808448
F20110218_AACIIN cory_g_Page_090.tif
9e01df2006712fdd1a36002d049243a1
8d2451009fd45a6adea0a6c45789d17cd3ac67ee
50725 F20110218_AACIHY cory_g_Page_032.pro
b19baeb63a76bc25d7c084714e966c80
3f1475ba77c5f20fee92b1b0159fea6f71ebf5bd
7509 F20110218_AACIJC cory_g_Page_001.pro
e407535d92a8fdb085a97521d9393f21
41c1cb061582ad60faec34cec6fdb6f7a0a4d83c
331 F20110218_AACIIO cory_g_Page_073.txt
6e136ad77802fa75544de91b6b2f6f4c
4632d737bd14b9121dfc2ecebf7b7a4538b0bff4
F20110218_AACIHZ cory_g_Page_042.tif
f0e4bb13c9a42536bd492923c43a8e29
b86bc37657322b4e77aa1b633a78f939aaaa6de5
F20110218_AACIJD cory_g_Page_100.tif
5d45f6fc68f2b2025dbcffe8a2ffcdaf
fe2dc773f327c4d28d074b43f0a55004337e3c11
128043 F20110218_AACIIP cory_g_Page_038.jpg
3dc0203fb66bbb9a9fceb1f7ad33ba23
63107cacbe09ba3123de7474c98a14819890c2c8
1574 F20110218_AACIJE cory_g_Page_031.txt
f12ef24486652f62b80eabd0633b2df8
2a1eba7904d0db901d1883bf74c07c26cf74ee2d
201201 F20110218_AACIJF cory_g_Page_073.jp2
63cb0237cda414a29db935df57c929bd
e0db8be53b2c52d9223b42279c56b08e90b47235
F20110218_AACIIQ cory_g_Page_104.jp2
b7bc4da75896cce8ba67be68857113d3
fedccb4c6bfc25226c966635d80e7a307599e98f
42082 F20110218_AACIJG cory_g_Page_063.QC.jpg
ebfea3b5542621f16d9884aa825340b3
601fb7d160fa8700705d7a0ff9845e99119e855d
2920 F20110218_AACIIR cory_g_Page_037.txt
32e3c036174ff3693f58608e29a2d590
533d86b3738ec7276d1cd2d3ccd22b4d77038123
F20110218_AACIJH cory_g_Page_024.tif
9e20b5b8a7b72e38d5cdcee90cf6f689
dcedd61ae46a03fc19198f3ae764465e812810d6
46163 F20110218_AACIIS cory_g_Page_024.pro
75625c3fbb84704f20dea30dc0148fa0
2b055d4cf012ac9449d7db1dfdeba833d2554b13
4541 F20110218_AACIJI cory_g_Page_071thm.jpg
cd1c9d18793609c195c499e01b5951d8
b9cb2ba0523c9cd9b2a5468384f4e3aba8bb0ba1
3426 F20110218_AACIIT cory_g_Page_006thm.jpg
4954e2970fa3a7401ef0760346e6be0b
5fb6f56f245e27050a4a2c9a2864e40e0c9cb0e1
1051947 F20110218_AACIJJ cory_g_Page_090.jp2
b2d775a749e40e75e9cc6de533338c7b
be2f199cd72581a02c0351ae1fe9abf4569181d8
63016 F20110218_AACIIU cory_g_Page_099.pro
1cc4c8d139ef8e051f69575efedbc7e3
b5e353f9a0f60bed5afe7bf11bd494b6c37f51b4
F20110218_AACIJK cory_g_Page_089.tif
01cf93641c17248bf2a924a1ba611f95
5f77bb18ab354d575300c3e880fcb9e16fa0b9ac
30345 F20110218_AACIIV cory_g_Page_028.QC.jpg
6534ab40ea23373ffed1eef837983a35
7b5b67f30f79aec346b07567ed8490114cbb92bb
65704 F20110218_AACIJL cory_g_Page_059.pro
cefe73cf8dc53a975bb4191526d18d56
fa592cd3be514095564a48b237aa6d8e9c9d158d
1911 F20110218_AACIIW cory_g_Page_090.txt
c57ca434feb6d754932445909568f5c3
7cbd684205b7317f119a3443a0efc8f7a8dbb8cb
735621 F20110218_AACIJM cory_g_Page_020.jp2
99cb73eba0be81abb307dd9e163148f2
5345af9ae7fc3db269508ead291b57cc540c0465
980166 F20110218_AACIIX cory_g_Page_036.jp2
0fdb0643e9b4c5cadd24007b03f8d5d9
1cd5885562c2331185e5a61ef2359501f7096b64
2622 F20110218_AACIKA cory_g_Page_005.txt
edc6317f303edcdc940c4121c7e91d7a
2817502710c1185c72c8084e8d95136deb02644d
834614 F20110218_AACIJN cory_g_Page_023.jp2
5eb568f004fe75ea613eb3966b7ae744
b1c99f8933c87b990506837cff1095fae5795901
F20110218_AACIIY cory_g_Page_041.txt
9dbdf84e60b0a4d310424fe44658c128
8098a8defc0e604fee3fcaa166553ffde811c9e1
19168 F20110218_AACIKB cory_g_Page_095.QC.jpg
3beb447fa51e2dd4711083c4eedb6eec
cfc74f6ab7d5dba7621cce3fdc79600ea7318184
61873 F20110218_AACIJO cory_g_Page_061.pro
11e204287e743df3e8e28723aa11d893
502e570ca4270e974a4b897acfa4a2d4d7daa921
F20110218_AACIIZ cory_g_Page_032.tif
3cf003ce5efaaa35e2aeed91eb8e65e6
6f64fbc0537fae1cf70eef5049c9fe4c3d090f89
1051986 F20110218_AACIKC cory_g_Page_057.jp2
b7604c2a7a09fbe6a0c41216f2dcd0c0
3864e4b8416996a560c2f3371b88303c7de62f98
121570 F20110218_AACIJP cory_g_Page_052.jpg
e35cfef0bb8a84507175070250c14d24
42e9a848784e3551b304237793230a5576539686
3122 F20110218_AACIKD cory_g_Page_073thm.jpg
57c6126740c650281a401f1cbac71826
d4651ae3d0ad740c6942dfa920f13556b52ff0d0
42198 F20110218_AACIJQ cory_g_Page_066.QC.jpg
1df69fe4936fc0f24048c9ed213a4df5
c32af2896d737f00fc0d673962fa87f708520375
F20110218_AACIKE cory_g_Page_039.tif
b1d82fdd71f22128aa9b452d03487803
ead95d31dc8e08683c77d2bdea1a6e2365af7944
1051966 F20110218_AACIKF cory_g_Page_044.jp2
71f69a4f8cd66c5be3ec5888680a7f05
0a840d28bbc13e0070633e9ac56c50263be97a21
61839 F20110218_AACIJR cory_g_Page_103.pro
0781f394023eb845d3f751b863f8f7af
d802f9aaac316e1f83d22349935a0755b35e0230
9425 F20110218_AACIKG cory_g_Page_081.pro
79dd8a4a70a8ec2945c1d96c637a1593
63e925f80ecdd99931d44fd519ef80c208845d91
39766 F20110218_AACIJS cory_g_Page_096.jpg
0ea8f5135789120aa4ebf4f064dd7a23
2adfc254fc6d98657ce91574e2ad3958c0917afa
48384 F20110218_AACIKH cory_g_Page_012.pro
c87f9385d66c1b629d38c7d202e73766
413be7086f6b515f919af89b6a2c1593c2ef483f
137271 F20110218_AACIJT cory_g_Page_045.jpg
bc35727e629c7ec54e09dfe45ead36d3
83f0e78a42dff8b1100e2b98eda8c35c65db118b
F20110218_AACIKI cory_g_Page_063.tif
26cfa3f90b4cc576ad160dacbc181cee
daad0aeafba21689615f4372750903a90d131cee
F20110218_AACIJU cory_g_Page_053.tif
ac66f59167dc635245ef25fe8c5d9823
767d17b7dfeccb78854e3a09e78533d462bb4471
645 F20110218_AACIKJ cory_g_Page_077.txt
888a62107adfe3a3279815c086a408f5
5a7f6ee6160c72c569eb93e0bd700a56afae1fa4
222226 F20110218_AACIJV cory_g_Page_001.jp2
0371f8ea5a2c2c67729676e9534207de
9fd64c169c8ed183e22760bea80d5b3121e03cd4
541483 F20110218_AACIKK cory_g_Page_030.jp2
39fe337debbd969eef1e10035b3309f8
817f38b35feeaa8531f6b2d9254dd37aa0277eaf
108065 F20110218_AACIJW cory_g_Page_019.jpg
b0dbe09f361a715f417ff147cde4b149
6d2295196d1f553d1c08ed28f560ceb3d2d32776
4281 F20110218_AACIKL cory_g_Page_030thm.jpg
a07032f55c7e767a33ff7848fefae5ea
e73aa7923a53f194578a9f15a6c6321c67275a2c
F20110218_AACIJX cory_g_Page_103.tif
4925f051bc186abe0cfedb385a391420
db5604ea453a74a52ab552291fc2835e3eba1a2c
162167 F20110218_AACILA cory_g_Page_059.jpg
ab118c4871347c7b7889a8fbd6a6d784
a1142b860c750b2cd0fd9f95e03198d5fe325a58
26682 F20110218_AACIKM cory_g_Page_004.QC.jpg
512a2a51efeef59762932bc775064566
9e5ede348b6cccfec85cbb8d40ba0f68f3af1d52
1051969 F20110218_AACIJY cory_g_Page_068.jp2
520d68ae1f413188a896bdad0914be82
a318b8fc9ccc8bbf1aee878f61cc32b3bfd6206b
636596 F20110218_AACILB cory_g_Page_095.jp2
1ad7db7211636075feb1bb14b3d1f893
548d45f4cf818d3294e4cd61cd62e1d000702857
95762 F20110218_AACIKN cory_g_Page_084.jpg
92b701fd3fa134263ecda4114b404cc7
c91f3a5d5746054d138478545553b4060c0ca433
49096 F20110218_AACIJZ cory_g_Page_048.pro
cc368da93b16f7f1fb3fd7724864a2cc
e9dcc01635b0eab7bd4ad8ebc71507f039c3dbe5
37291 F20110218_AACILC cory_g_Page_072.jpg
aae5c65a16c1499ab9f46282d2583478
e0b348c1fcd904eb8a69d776014ad3c15105dd01
3930 F20110218_AACIKO cory_g_Page_086thm.jpg
52fcb1a86a5deeb4a18b384518174559
d52bc71cc004548cb424ca30720103d6a28bc15a
100032 F20110218_AACILD cory_g_Page_083.jpg
665f2c9471d472a5dfe350ba115e76e8
abb596f94581ef7e5c92e25d0cfa80df5ba176a5
14338 F20110218_AACIKP cory_g_Page_006.QC.jpg
0405625452593240015a3e3c47741019
1871914c0d3b28bb2c3c8e099436c4cf45897d4a
2097 F20110218_AACILE cory_g_Page_098.txt
95617732a206b980b58bbe6d67fd83cf
f62601cb49ba666aaae5ca17fd2919f579c566c2
1051978 F20110218_AACIKQ cory_g_Page_097.jp2
3de9f074cd6f28cf98752f45438de411
63fd4168fee9b37170a15fce905f5d4804a070ed
128116 F20110218_AACILF cory_g_Page_103.jpg
17f8a8f11b1dc688130503a353ad90c2
9dd960d92725658d7f5c46b2be7476d3a549241b
8245 F20110218_AACIKR cory_g_Page_053thm.jpg
3aa5e12ed2abbf3de2b635a05b8d6cb8
b25a238c1bf567ada8ef3aaf63c363b1b2fe296d
65036 F20110218_AACILG cory_g_Page_066.pro
0dce2e33467555975fe98d4d14bc4af5
5a3adbe2a2b09b1508027781535634cc884c8f3a
47656 F20110218_AACILH cory_g_Page_022.pro
6c2dfe8b9afedac8dfd5d70a536eddc7
f6bc6e6aea9bb9a714c092ce86ccbfe6c7472b67
122672 F20110218_AACIKS cory_g_Page_102.jpg
2c6d676cc35a17e6c7f2cc8f596683cb
1ef22123fd29678e446dc46721f285c19e27520e
42906 F20110218_AACILI cory_g_Page_059.QC.jpg
40ad7e51ca4022455e7b8bf283fb9f8c
0300b226714b0faf53405b565257a42c833cd677
F20110218_AACIKT cory_g_Page_025.tif
015073996bb441566509433787ee8570
9febb05750adcb88a373b0fdd55e0b46a5632def
107442 F20110218_AACILJ cory_g_Page_050.jpg
947de4fe772c11345da7ba071eb248f5
965a37e3bfe480ebdf3b81dd80a0815b4735a7e5
100024 F20110218_AACIKU cory_g_Page_012.jpg
97ca5afe0dd99fc809f10b3ea940b7ad
b976482fa60cf41a235d04c6b5a53e75e2ff00d5
10901 F20110218_AACILK cory_g_Page_080.QC.jpg
b9e435ed262259147b184851825c8358
9b12ca9d75b7a59dce3c1f6875f42da605a72822
49511 F20110218_AACIKV cory_g_Page_015.pro
1d53f6d9c53f0cc20f5a5eb39a466c09
070aeff2eed38c9ca1b02215323657c73fcf6129
122075 F20110218_AACILL cory_g_Page_070.jpg
affe81257e6f9bf8ad326371f8b01ee0
f8afa624529ef7babf41e17e5c5b920b3d4a0e9a
8357 F20110218_AACIKW cory_g_Page_012thm.jpg
38e8f7d342e8e51b33c89cd3092cd005
4f32f1f56d10c1554436b860638841caa64eb125
1543 F20110218_AACIMA cory_g_Page_016.txt
3ee74839d3dce58127fc935a0314ab42
4071ac90faac4f999845cf701937dc70e0ce437e
F20110218_AACILM cory_g_Page_055.tif
2843b8fb0791ef353d13cb5ee315def3
09dc85a807613fdb9d221c61804cc0946be802ea
3911 F20110218_AACIKX cory_g_Page_091.QC.jpg
735fc5b69ad1c1ca2c6fee2cdf9ff703
00fefe7f57db79ab4a144fd4fd5372a85410813d
31169 F20110218_AACIMB cory_g_Page_080.jpg
020b2da63d2fe27748f585e35af1bedd
74685dbb507d0b51a234155314647da10b3ee2d3
2965 F20110218_AACILN cory_g_Page_049.txt
4372a099ff67638b2cdcd1182fe900ce
50af93a97bdb1fb5e350fa506c50b12b650104c3
52917 F20110218_AACIKY cory_g_Page_043.pro
e5c6bb7e504351ab18a0217e7cc8d832
69fe4ad4e091f07237cd881c015fb2a2d406771f
2248 F20110218_AACIMC cory_g_Page_102.txt
cf2f04181192e98f326eabac68cd1e42
0c3b798e45461094fb80791f7d37e241983fd001
93557 F20110218_AACILO cory_g_Page_028.jpg
16b0f038e8deef839b6d8d8dd8518e19
93db8f6ad9880dc2effa66ffe32fd14cda505768
4422 F20110218_AACIKZ cory_g_Page_072thm.jpg
049286191fd566abbd06a24563ea0757
93ad4fc542ed8173db64c97c58c750d499a493db
43325 F20110218_AACIMD cory_g_Page_071.jpg
5c973f80a45f57d32f0d695f30f578a4
518e1b64e7a8aedeed53dbba7ab4e2bbe8742c72
45239 F20110218_AACILP cory_g_Page_028.pro
1dad757e03dabfd47c6c9d60b07e8764
23cb4f65a4f4a938dc652e441b7753664b9bdd6c
875995 F20110218_AACIME cory_g_Page_011.jp2
508c6254502227cae340e08cddd9dcbe
e4df06a03d3873d5bbb5d80f6d61e6100607a1a2
3343 F20110218_AACILQ cory_g_Page_075thm.jpg
bc8ae2f564d585baee2fd14ba2fea7bf
7db57e260221925fbaecde5370ed221f0bcc921e
F20110218_AACIMF cory_g_Page_048.jp2
abc41fbe30c7fc4a0bb86815a8b2f698
cf7535e325d987929c6cf31809c08012a82a4d97
5582 F20110218_AACILR cory_g_Page_087thm.jpg
afbd5fbee4c0e3fd8b78027512a91586
687fff06f0c8363f569a17dcaffa3bb355ca1556
12695 F20110218_AACIMG cory_g_Page_096.pro
5180a86e10296167ae8ac1f609c4029a
dc9fe04198f683ed073892881e2114735a383f6f
25720 F20110218_AACILS cory_g_Page_031.QC.jpg
ccd985911c5c53fe20fa718dc5e9188f
462e08c1cf57c7b5ab8b7daff370020ff2d58068
84928 F20110218_AACIMH cory_g_Page_027.jpg
76dc887eabdbd8a97703a2371ea14a81
1cfe0130021a7c8c80f54bed3d939e09b6828f64
1928 F20110218_AACIMI cory_g_Page_033.txt
b7ffca7754a027d41e020df4af9a010c
91264a5f22a3ea68b3c47ae8ab54009d0e83239b
239377 F20110218_AACILT cory_g_Page_081.jp2
4eaaa8a11da696188f031de6ca41d55e
cec8fb57010aac5fa8c8e6d7436ad87153107a08
104583 F20110218_AACIMJ cory_g_Page_032.jpg
2f55a158c44b0307493e243bf0db4f2b
5dffc0904a6b7823a9a464280456ee16d8af32be
12793 F20110218_AACILU cory_g_Page_009.QC.jpg
314789d97d34778853d6cec744fd3d04
09a4c0c96e1edd778f4c71f26c3e44dd855ad998
26421 F20110218_AACILV cory_g_Page_011.QC.jpg
22eda194ca2e2b3b103d8a35ac8deaaf
9bdbbd64a05eabd807f4229e91399456151067f1
F20110218_AACIMK cory_g_Page_051.tif
b3ae78ea6d4efb784aafbd0da62c759e
0b0c1a9bb942ec41b858723c39c6da3d1860d951
55894 F20110218_AACILW cory_g_Page_030.jpg
1c62183cb9e212a12613d5fea2d8f9a5
b8fd21719dccb2af69fec342785bea8042f4a43f
4796 F20110218_AACIML cory_g_Page_095thm.jpg
569ba10ebe0c824855434007bec54883
19ff4c0258c790aefec56bccd5cf547e1f09a29a
6045 F20110218_AACILX cory_g_Page_008thm.jpg
c8205bc668b30393e103a75302539bc3
f070afe5759850fe4c61df80b1967612f3976383
F20110218_AACINA cory_g_Page_041.tif
57a04e6ca98dd72216a42c0189951db6
df3014b6965f2d00455f2617649af749e2dc91e3
98522 F20110218_AACIMM cory_g_Page_035.jpg
054d1f3b369fa5828c0a1aefcc0c32ec
fbd97286b50aa37d00f6e547ea170e0677d18ec0
72375 F20110218_AACILY cory_g_Page_087.jpg
eca547cd8b9661b7bc1e7c4a679e83bf
3d1de1d1c2f4cff15ec2f6905164837de21383c3
47559 F20110218_AACINB cory_g_Page_083.pro
4818d59d58b77a79b18a837eeef0fc0c
70ea6a1a58b930bef0ba3d6a1e398cd30bb54d96
1051974 F20110218_AACIMN cory_g_Page_043.jp2
f43ec7a2e5d95b9d3f90dd3c0765f611
4990e818db3a122b14b05c60b624fbeebb9669d6
F20110218_AACILZ cory_g_Page_102.jp2
8b0a4540e659b6d21cb58a99337d0ea1
d63fab7fcefd6010c8776834daef0f17f0086814
1051882 F20110218_AACINC cory_g_Page_047.jp2
dbffe3b6a2a3dbde790eed71785b58bb
f280f2c7d311ad1da17fdcccddff5f5b8d8e2fc6
117 F20110218_AACIMO cory_g_Page_003.txt
88372507de37ba85d1d7e14105d52fd3
0888b639e3e3a63552beb07cc5a75c3431a3b464
123489 F20110218_AACIND UFE0013416_00001.mets FULL
32375e9d835ece742f3e4b3a2a34112d
1df14dc8c6a1fe43d80d708eca41ec4abc405a9f
F20110218_AACIMP cory_g_Page_033.jp2
ccc3cab7940d513cb7b28592a361157c
ac3bf798be7d22493f703c63c155637e28beb9ac
37005 F20110218_AACIMQ cory_g_Page_014.pro
f224653db8f01af5065f519da82188e8
d8bc1f38706faeb52392cc9e24af83872ba429c6
879763 F20110218_AACIMR cory_g_Page_092.jp2
3f745a8ad0af22fcbc3f2db578c645a7
5acf8f8f00da20661843f51dca44ea97dbc44327
F20110218_AACING cory_g_Page_001.tif
5c57e8fd2c68aa4685125a3cac9b70b0
755352498148638c79999a712c39623c5bdf06b6
32737 F20110218_AACIMS cory_g_Page_050.QC.jpg
03b2b1f176efb512dbdd795649b86c32
fa9fa58cd2965a0df3d1cd7fe4e2ee64612f7bd3
F20110218_AACINH cory_g_Page_004.tif
cf72ea1cf42189a2a47c71ac23f991fd
717f94bade3a4d2ca27936f5e0a85b7a8aeaafca
F20110218_AACIMT cory_g_Page_065.tif
ac637a779be750544a746207325d199c
527ab0c4d3eb19ff9e00bb57d9c859745b83b3c7
F20110218_AACINI cory_g_Page_007.tif
c5c017e4bdea41981f9165eb5fd40f6f
05dcadcbb86186e568f9ba413c31195eb43bf466
F20110218_AACINJ cory_g_Page_016.tif
bd33005dbc782a19574b7f8a1063b224
df7b6071f090b0b9bbff0981025447be7ee7654c
57683 F20110218_AACIMU cory_g_Page_006.jpg
b8d17313dc34b50d4912d27c0bb3d973
d5697d0de1b4e924e5fa89062b53826a7763c8af
F20110218_AACINK cory_g_Page_027.tif
076fd52d48fdba332feeaa5f15f63526
63391f8c4dd01d7e591eac350b6f289cbb5a4d65
188 F20110218_AACIMV cory_g_Page_091.txt
638db28611dc774ed653e36d40748077
62d74254df5b54df6aea247de679472fe7f70e3a
F20110218_AACINL cory_g_Page_030.tif
6b4f8c3a61930f313e9f0c2dd1187a53
0df0593ba50550e157c176ca94879dc94ed1f805
38631 F20110218_AACIMW cory_g_Page_057.QC.jpg
ae73fc7c2ced725891d52a9d4dc995af
10810ab01e24e3911ce50ac10194dac5f93895f5
F20110218_AACIOA cory_g_Page_095.tif
537a905e0be615f575731664438cc970
494d11f04423a0ab0d25d958d86ae73a5a7ce660
F20110218_AACINM cory_g_Page_034.tif
200f1de034bf90a0134bcfad80777390
3bab346f6cb38fcc930fade5ca8dbd657b462222
2643 F20110218_AACIMX cory_g_Page_040.txt
e3ef0a25a4373beeee69db46ab320aef
323afa42bc834331bbe57593a2b5af48c078036b
F20110218_AACIOB cory_g_Page_097.tif
073a070fce052812ae5a743070896c9d
02d8e92082dacc4ff887cb220fa30a5e9ec373e0
F20110218_AACINN cory_g_Page_046.tif
25d07e2cc65544c845ad6d0277ba36e8
1428ccb346b4f61134097d76a5251e547a993520
F20110218_AACIMY cory_g_Page_092.tif
8388e3d691ec1cde66166ec3748bc4a6
ff4cdfe3e03d1e0135200a8ca2964e70bcae8da2
F20110218_AACIOC cory_g_Page_101.tif
1bde65e084c5c7c28c33bb609bc0595d
c712b2254b30b121445a294b86765d68cad3cc0d
F20110218_AACINO cory_g_Page_047.tif
579ac45254f671509c7e6231252c9d93
ba6c0dc9807fe5d2e7df7c342b63b7f35e42aa47
2831 F20110218_AACIMZ cory_g_Page_047.txt
165dad7974a61bd9518cac3d2dbf918e
ad56918c4e9252624ec19c5e090173b4b786e6dd
F20110218_AACIOD cory_g_Page_102.tif
518d1523a6c05b8de76cbde9af7e3d62
c6bb9303a1809c2900e84b190c78ff4aea60ee64
F20110218_AACINP cory_g_Page_059.tif
9c996f8019ffee3f74ce933bacfb4684
008c8ffb27d5431bb7bfaec503e5839fc64c627e
F20110218_AACIOE cory_g_Page_104.tif
14ab232d855859085cf8acda6b10a0e6
1a2c9541768e27c7327430355d7c9e4328ad661b
F20110218_AACINQ cory_g_Page_066.tif
6a720285b252ecd72462822e1bff949f
056c903cf8b748acb7852d9df48e42134325374a
449 F20110218_AACIOF cory_g_Page_001.txt
d01fb9485729a843ec68ad0169cc96d0
d1a9dd74d46291555051cab178dff46e39f9ee09
F20110218_AACINR cory_g_Page_069.tif
649dbfff398985b9422b8909a33925d7
94f2054a9f7050ad41b128c7125da5eca98fbe95
1954 F20110218_AACIOG cory_g_Page_021.txt
faa7e4f5c3d239f75180e382017c8504
f10f033deb2e1fadc026d6f31c694169b6a55604
F20110218_AACINS cory_g_Page_077.tif
e9834fc07e927c6606e5ea75f2cff8d3
1205794192b483b1e792bd2d08be375cef770ada
1531 F20110218_AACIOH cory_g_Page_026.txt
0b0aa4be73251f33656f2752793528d2
6c1e9ecb7468454b61bd4984ef3b206bf2b1cca1
F20110218_AACINT cory_g_Page_080.tif
49032918cbe2f73afc091d5c1fa46fc4
978264ee29825024536137b9c54cd4b7bd624f2a
1532 F20110218_AACIOI cory_g_Page_027.txt
ded722e41f1dec78813d1ac4bf35012c
b41d84b11145d2b7b75e9d655b53cd1a2a985d94
F20110218_AACINU cory_g_Page_081.tif
01c372c75bf6eca0d366f22a03c10714
cc67628420ccc3c88dbc4d5a7681912c3063e04d
2033 F20110218_AACIOJ cory_g_Page_032.txt
01662f2518f8901380704a3f76a0187d
5f59ed36910d04a87e597fb227ab0e7e271d054d
2670 F20110218_AACIOK cory_g_Page_039.txt
e402c3a3deed0e9ee80308f5067834ae
7dc3b2202aaff73ada5f6bcdda9c7eb4cd9cc2df
F20110218_AACINV cory_g_Page_082.tif
5671548770b1d27523bac1e1dbb2e3e7
0c7dce8e8175bdf301c3d1dc8a08bd62cec7aadc
2816 F20110218_AACIOL cory_g_Page_051.txt
1265fe1d1aab04592985b06e33daba19
172a3108aeceec4ed12a8c5304b6c4b6a63e1af7
F20110218_AACINW cory_g_Page_086.tif
459a146f335fd4be208c678bdd37b5ef
02f47154dc0410516b87ba0a1fbcb0db90a2c9ad
2668 F20110218_AACIOM cory_g_Page_052.txt
4936ea0130b376a3af66a1bc3f105464
245436059cceddbdd57b6c34b602b7e77f2d33d8
F20110218_AACINX cory_g_Page_091.tif
c179489c740c0ffc2d5d02e961462e26
0445d8613088937b9e0cc35a8a5a4ec9b88da729
29980 F20110218_AACIPA cory_g_Page_010.pro
b13376b2e82620def2975a09b6c10f7b
b6b4d0de0a5fc909416e38ea48dcf1543ca81b7a
2571 F20110218_AACION cory_g_Page_055.txt
1a91114085ea10c245d0868e4f9100d6
939908ed9d323391f36f379e916867762232c002
F20110218_AACINY cory_g_Page_093.tif
eccef90f8387aac01413f4d3e96d5aee
d8c82e6fc76b0bcbe9d1744ffd4950975583aa64
39161 F20110218_AACIPB cory_g_Page_011.pro
77e59174d3fa2f7af89053ae16ff1c1e
9b083bbcb074263896896904247d721e3f23c89c
2552 F20110218_AACIOO cory_g_Page_060.txt
888f9e424974271d3500fcfb05e51644
64e57e51fa495a4bdf65cf42e3e1b9cfa2435e4c
F20110218_AACINZ cory_g_Page_094.tif
53b4869ad02f993b3fdbe4414718d337
c03dab5d50a11648c9e8eb8f608b7d282c8d6786
34666 F20110218_AACIPC cory_g_Page_016.pro
5b83a613a636917daf99b0b398574c8e
a928c93f659a483949380b673fedd2837f5e6bbe
F20110218_AACIOP cory_g_Page_065.txt
6be69b05067a74c86606b2b24ecb8d9c
0d74e7b6f62ab70b6ea4be5ae00784c6c28ae4f8
53558 F20110218_AACIPD cory_g_Page_042.pro
793dee2aeebeb05a58c47f13681a748d
bd925329c2db1a607386ba48dc843184fffa2796
2646 F20110218_AACIOQ cory_g_Page_069.txt
e95e799597a7358297d32befa9a80d94
ef3ee517074b3471e2762129f45bd078808e5289
57911 F20110218_AACIPE cory_g_Page_051.pro
e58bae1f796e0e5d9322b2e683ce35d6
5774187196799238311fb6f48f4406e12a84f4af
622 F20110218_AACIOR cory_g_Page_071.txt
723bfa1f063bfba732dba8c8ce145902
882d309ca5d8aa92aa7ec41f879534a7f492ae35
50777 F20110218_AACIPF cory_g_Page_052.pro
af48899c6275c7f0ef349525d1119f91
486ebfcb4ee5e71a80bcd23dd4d592dd93659209
554 F20110218_AACIOS cory_g_Page_075.txt
1b9c3e5c3e8bb52705a21d4731e382a7
ac46b12fd4736bd1cd404daab61f5f395f6f12f0
55807 F20110218_AACIPG cory_g_Page_055.pro
82cfc9ee49eb1fc1acfa2290114d55bc
e7f4775d2634fc54826034d5b30a926d45edbe5c
404 F20110218_AACIOT cory_g_Page_076.txt
157fb732d1bedeb40da87a9185f2df15
cd379d5b2929d906c83494e0eaf26f433fc1e347
57592 F20110218_AACIPH cory_g_Page_058.pro
17cd46a9a1c6e67d94cf72599d50db7e
20d2d56640f14e0bbb212456c373a141cc492533
1593 F20110218_AACIOU cory_g_Page_082.txt
38a071582c577167b666babd889a76af
d8b3d6507b8c6a2ae675bde272d34b67ea9efd5e
62144 F20110218_AACIPI cory_g_Page_065.pro
428ba2dda7111a70faacd0700062fdf0
58bc457b9c70903067ca2236d9dfd5ab80971742
1610 F20110218_AACIOV cory_g_Page_093.txt
445b7cd35abce26eb6c5573f9f384537
6ebf2e19ff6cd517817302c69bd7f171ff331f1f
50679 F20110218_AACIPJ cory_g_Page_068.pro
c814596c270f5cd9bbf728a952a9cf4b
a9346776b463931ad522f5ab8f03001f52353b4a
9900 F20110218_AACIPK cory_g_Page_074.pro
c1a54c0084d0a74fc22fc24d20ba6835
3b432a9fad2710caaa8c39eb0b0369027cb7a88c
2129 F20110218_AACIOW cory_g_Page_101.txt
1d39252a70b0bd2f3c6a9e684d038f3c
acc676de50f9ffa898b1b96513445a58e122fcd9
47076 F20110218_AACIPL cory_g_Page_084.pro
c099fb6a43b86df5ce87fa1f1a614e68
e31e54425cd16e7e753acdef660e069db74b4905
1170 F20110218_AACIOX cory_g_Page_002.pro
d85ab813fde6b00385c502be2c2c454a
9ae33362a8d300ef38ef9522cdf543774d397f5f
135013 F20110218_AACIQA cory_g_Page_041.jpg
b3cb70e3129b50fa76902dbbf84ceaec
02ae9bdab975e5d95c5beece72b7911ff64305b9
3632 F20110218_AACIPM cory_g_Page_091.pro
3753c3354bd12ffba7f0035f23a0044e
61d5ea65a19cedbfe8bb938f2eee49a8466a29fc
2206 F20110218_AACIOY cory_g_Page_003.pro
58b7f72cefff4068b7dbf33598e95d4e
bf015c99a416fdc6c9b59d9d5669ccb4fcbaaa09
134611 F20110218_AACIQB cory_g_Page_044.jpg
4636e156146da5bd26bb3f1aca9eae26
3b8cfa8728be58c3e2616a7f73cf9c50f9213cc9
38371 F20110218_AACIPN cory_g_Page_092.pro
e8b9c6349059ede5e2f9765c11a9271b
e7d35645796e53252022c5e80bdf5e1f74155d65
39432 F20110218_AACIOZ cory_g_Page_004.pro
13ee2945bf297ecacba611d5b11ea424
e7c6680bdc5c8f204efb00fab19fd65c091b767b
132505 F20110218_AACIQC cory_g_Page_046.jpg
462d830abee29ef6681000946c0dcad9
60e21af9c27c966236e14a0a3792a5098a994214
48285 F20110218_AACIPO cory_g_Page_094.pro
a6328601b2e0fde8be4429b7b042c376
356183589624856dc8ed1b967ebdc70ed9fbcb7d
141997 F20110218_AACIQD cory_g_Page_047.jpg
5d119958b8c446b02183777dd7ded696
e47394b68e1ba9b6c22292b94eaecb9de48d7fed
53717 F20110218_AACIPP cory_g_Page_098.pro
601efe3d49fd21bad64bb300a4d2d1cd
0d418d24a128b43721d25b4a821503352189701c
119550 F20110218_AACIQE cory_g_Page_048.jpg
8ce6dfba7ca8e2cb07eb7cb79cc73054
3a09a639bfbcb8c2b260732420df98c4514c0260
59614 F20110218_AACIPQ cory_g_Page_100.pro
ef8c152d50b8c85e4fcd70cab31e79b3
01e93534dd3d242599e50c70fe63595600fb8ae4
130976 F20110218_AACIQF cory_g_Page_049.jpg
bf4b8840ce77ae197e0e27b1d66dfad8
34a468eb6e2444011cb6840f71470fdfd828bf5a
82853 F20110218_AACIPR cory_g_Page_004.jpg
e1119036ce2c33ed2930734161ec389c
0ced36f0fb6a4ff361e139e8099393d4039a83eb
140159 F20110218_AACIQG cory_g_Page_051.jpg
75e24032c31d86360c459fab655c4e98
10265a66198da1624e3abe9a5ff0918845a645b4
83738 F20110218_AACIPS cory_g_Page_005.jpg
587e3cad07023ad25ccd9856ffe0b0f1
2858fcb655b8c000ae25a65a5759b6c0d969b56d
143407 F20110218_AACIQH cory_g_Page_054.jpg
7ee25a1b90c078f03868760b690c15c4
60659ba75650b1aae6ccccff5eca21bba9db3c11
66902 F20110218_AACIPT cory_g_Page_010.jpg
68e5f30514649db655f64f8485225179
ea089578b3f3da5e3807bf843a774d0738b8509f
149672 F20110218_AACIQI cory_g_Page_060.jpg
0b0324404d3db302c128f241ae492219
e08d0c20ff0a9735a8bc8a36de009ea455fc5153
98250 F20110218_AACIPU cory_g_Page_013.jpg
a10e69f5433e2618fc2f491c3e27fc39
1582f5f0501616847579c75e2d58f104635d5b7b
156106 F20110218_AACIQJ cory_g_Page_065.jpg
fc8180b8f62471f9b88d84a448d7a696
f1f57f03427dee0df9066e5c6a7e9bc65fff3205
87004 F20110218_AACIPV cory_g_Page_014.jpg
0d2cd3d026093908031fd4b3b37e7963
e0f7101c2ed35044ce0631f2cf7a7cb2c70b3a76
155253 F20110218_AACIQK cory_g_Page_069.jpg
2028064e593b210819dc6d858f91abf7
1f868064d76b43b7ed5b4ca930ce22778a7459d0
101356 F20110218_AACIPW cory_g_Page_021.jpg
9330ac9a74e2e626b32d9b454081634e
7e2d0fe0029a9fd0a1503a1a6509831b2476ea94
34985 F20110218_AACIQL cory_g_Page_074.jpg
d4f9a0c35e49c72a471fdb2a916eab1b
11b63929576c7d526c9cde24b9d0c139aea54839
F20110218_AACIRA cory_g_Page_019.jp2
55f305c371c88d75caa4bd028eae8fe2
633a3040c7ac0912203db68db0aa2ecfd9f8cec6
32984 F20110218_AACIQM cory_g_Page_081.jpg
c4e4835cbed435e907dcd972e4aadce4
8da3ecaec9d9204e796ed9dec869349f33de6a01
106454 F20110218_AACIPX cory_g_Page_025.jpg
0f66be48b29aa6fd4e244c0a22166138
696b3a9b6a9339d69518622f8d62f2fbf474130e
F20110218_AACIRB cory_g_Page_021.jp2
1fb74c70c02ea19f620d63c56b270f52
a29da2552cf65860729aaeb0929ac915f9d735c0
79929 F20110218_AACIQN cory_g_Page_082.jpg
9e145db5954fca8a2db7b3144af0202c
4f7a3c00842da891250c1fe8b8a78de22ad654ea
105834 F20110218_AACIPY cory_g_Page_034.jpg
3ecdcb3810eac6671830c00980974e7a
adbeecffd0148594f5383e9ab5867e6609647253
868633 F20110218_AACIRC cory_g_Page_027.jp2
cf90f94c28fd83df8198a605a059b83d
f7409c103216403daa78c5a0ab2876c542669492
93020 F20110218_AACIQO cory_g_Page_089.jpg
fe0a5dadc3d79e2b0e9dbce532c85096
7eb7d1f4d1872b382af212fa0938bc1334877d80
133097 F20110218_AACIPZ cory_g_Page_037.jpg
4402001f06a6d94c9fe3f1339712dc7d
8fef077df302a2128421585242015472755e150b
887554 F20110218_AACIRD cory_g_Page_029.jp2
66736174ad811930c142e003fd3d0093
9d6f091ecbcb46094ef11bc69c71b3f3abbe942f
116817 F20110218_AACIQP cory_g_Page_090.jpg
c31701c93225d33a68dee4035b6578f3
d12a2d2729d98a68c6acc3b5a4eb59948c9bafad
1051935 F20110218_AACIRE cory_g_Page_040.jp2
876b65a6ae56cd6d13e828c2728785f9
b3d7e3ffdf40c3270ed82d38b04011da55249cc3
101608 F20110218_AACIQQ cory_g_Page_094.jpg
d5e7b5b9c2819b4a618671e55c5d061b
2b40dac7c7a9e9c1bfff5809960e4a8fe6f33970
F20110218_AACIRF cory_g_Page_049.jp2
d9cd0401c2f414be15c6ffe418fd5db9
931364a9b0905f03d4e5737c0fdad09959101f41
115565 F20110218_AACIQR cory_g_Page_098.jpg
857cb72eec59543c212a423c8c048fb0
e60e632e90060877528850dc5a014bdcd5222d9d
1051899 F20110218_AACIRG cory_g_Page_051.jp2
77bfb862e0a9d3145139a87da46f9bdc
527567f77629b3f9bbd8857cba2ad9bc0074c55c
128894 F20110218_AACIQS cory_g_Page_099.jpg
8b77b93fe6ec224e4525f571c70f533d
b11bc16714eb9627b8402509e8cf3f3ca1e176b8
126682 F20110218_AACIQT cory_g_Page_100.jpg
ae24c8b64ba7b828204089a1b5c1f137
3b180692b9c10bf04a6f8aa762b7d4c6e75eeefe
1051968 F20110218_AACIRH cory_g_Page_059.jp2
662f5405a79670817e4d64e5d2fbc33e
0a61c03412357a26504727a2001e8e128a4c0aff
29647 F20110218_AACIQU cory_g_Page_105.jpg
f790fca053874a49fed8cf41ba1e159c
cf985325771ce26c417a681cb939bd28ca9c56eb
F20110218_AACIRI cory_g_Page_063.jp2
c628cd79dd738caa3ec122b9d84c2a0a
373f5b39ef6696caee14ca6088bfeb3f49ffab30
31494 F20110218_AACIQV cory_g_Page_002.jp2
4b6455b398e95da9e96c1c941d103a20
9ea39a8f1995756120f43c11f92faf3fa2fdd969
1051952 F20110218_AACIRJ cory_g_Page_065.jp2
8b9e336ce5d7515d27f59bd087e1ce52
629cc0f636c7c75f9ee9256c3654164b05ffe3c8
883828 F20110218_AACIQW cory_g_Page_004.jp2
90bb80a9e711d0ebe064d72377d6f8d2
56c0b51ae30045b2dfdd35df24ba447066fa9dd7
1051909 F20110218_AACIRK cory_g_Page_066.jp2
021312e254d2fd3e667a763119705373
571c1e44eeb6b25b45cbbe3c4964661b0d595177
554452 F20110218_AACIQX cory_g_Page_006.jp2
d47ebca7efaf0bfc0a780d2606ba7379
51d905a84fe91c1fad9cbcc395b0ee753ad0c152
285459 F20110218_AACIRL cory_g_Page_077.jp2
c76a820171da04897fde9170cbb6f52c
385d53fad13ad925a62ce40c0fd8a7718635a41a
37247 F20110218_AACISA cory_g_Page_039.QC.jpg
6ce5132c2271a3dea3d9682444c8e6bc
53ed79ae631a195d858880f9794efbcb5cda1bea
232270 F20110218_AACIRM cory_g_Page_078.jp2
ef141aa85c120bdee5d4c10b3e2b97e7
eba0def26cd8799df37cb3e60301be3a183e7d01
206002 F20110218_AACIQY cory_g_Page_007.jp2
4942d4dd01a822416292830441ad3441
a4decfc5485ccc03b9675b432ac76b2857e5345b
38229 F20110218_AACISB cory_g_Page_041.QC.jpg
35d3f0c4eda4fb51396802351d40e70d
b711033e8d35155f236415a7145290d11f86deb7
944905 F20110218_AACIRN cory_g_Page_088.jp2
7289fd8d98a29337353d2c26c49ca029
b884e1073d55c262886fcb46f9b6ab50dd92fcdc
F20110218_AACIQZ cory_g_Page_015.jp2
fc546c3933901d7fb5a82e4164ce82bd
1c94b0a4d9e10c4ad2f178fee681ff129eff33da
33116 F20110218_AACISC cory_g_Page_048.QC.jpg
2e51c94a763c19e72395b29c6554b1ef
ec59dbe8c2d7231f3e13d68db13256cac2a7e4db
992337 F20110218_AACIRO cory_g_Page_089.jp2
9f0941b21c4f5593bd8485e6cbe2c58e
7e137b35b167aee32555a769bbee4420f89de77c
33398 F20110218_AACISD cory_g_Page_052.QC.jpg
b2fd729561e6544f81b5b409e41d93be
b648b18ff294edb20cd78a98047027318a1d6fde
168622 F20110218_AACIRP UFE0013416_00001.xml
5332658de83f69128852d2db9eb8a07a
c6c2bedb54f2aa2256264f019f5c808e7d032755
38715 F20110218_AACISE cory_g_Page_054.QC.jpg
f41a6ee7e76f147c6d11c86a5a4f2cb3
f17d64a0b19af9816af76d4a8296d0235c3f2a7b
7388 F20110218_AACIRQ cory_g_Page_001.QC.jpg
c3ed66e8395643f524c003afd9bb91a6
18667a0e69b8dcd18e476be8b4b479634969d9a2
40496 F20110218_AACISF cory_g_Page_062.QC.jpg
fd3e41e2dac025ecb5f2689121f0d9a3
1579742b733af9d26ffc914ef5ce2764076d152e
2328 F20110218_AACIRR cory_g_Page_003.QC.jpg
5fb6106852e248503214f26ccfc3198e
f2307fe917dafc112554c046883176b74c9b1c71
14693 F20110218_AACISG cory_g_Page_072.QC.jpg
7ef597d53af8bc0faeecc3ae93d7756e
675fffc410069e69e143377ec6d3998300e90d04
6729 F20110218_AACIRS cory_g_Page_007.QC.jpg
996214d196cc872b30ed209f6013fa63
d4b95f28783e0a9dcfcdd57e2e6ef88586971fcb
13809 F20110218_AACISH cory_g_Page_074.QC.jpg
655ffd1db235966a1aacd517f9fcedef
390464a0d63351d264ce36f86d74ec7a14f16f4c
33458 F20110218_AACIRT cory_g_Page_012.QC.jpg
84d1fca975aae3b3403f73ac8452ff78
7acc25718766536e579552b2a2d0daae8abfe1a0
12005 F20110218_AACISI cory_g_Page_077.QC.jpg
355ed5a13c9aa836a2f85b108a87aed6
e484bf8981961ee460c4c2152cf5c679343f3ff6
31218 F20110218_AACIRU cory_g_Page_013.QC.jpg
53c2ba66d0b4f3a42a48705381456ef2
739dc9d109bc862fcca7d842dc744825cad3c5d3
11743 F20110218_AACISJ cory_g_Page_081.QC.jpg
50da54e3e34ceed962f135a9b0a53026
f6eff3052cfdd8fe5d4cd66d6cd45fbc83c9116d
21257 F20110218_AACIRV cory_g_Page_020.QC.jpg
75ecb08e9ec5fa6b618226fdbdaefe54
8c41bd15a30d036a23d9794709103303e57fe77c
31539 F20110218_AACISK cory_g_Page_084.QC.jpg
acc48d254f9ad09df1267fcbf5d6bd6c
86a9196d53a3627c9ffe36b97e0e3d0bb39b1840
26422 F20110218_AACIRW cory_g_Page_026.QC.jpg
ff699f6bfd1dc0ed3733c36cf8a86060
8eb182a024552d704ed6ee0f8f7e653773553787
13650 F20110218_AACISL cory_g_Page_086.QC.jpg
5b77496ab7a482f8d19663e444235c7e
61c428f43e08ceca4b7e84171714ee06e73e7afb
16440 F20110218_AACIRX cory_g_Page_030.QC.jpg
c8420b2502db76c5756acd2a628cb447
cf119aebcc73b752f36619f9c2428250088e2256
8599 F20110218_AACITA cory_g_Page_062thm.jpg
2c568f6e517d8af3dc4e15cc4ac3a40b
04c273c36ceb7fc8fa478487ad11c4266fee4fe4
20794 F20110218_AACISM cory_g_Page_087.QC.jpg
4a6e74ead0476ca85fe7f8cec58a5469
8b9de1701678abefd0ca8fe3a00957ec4871b3ee
34352 F20110218_AACIRY cory_g_Page_032.QC.jpg
273c3b0ad78c7c96b0f89e0663d05e70
325b595aa31e75398755ac0db7f962d13ce89940
8670 F20110218_AACITB cory_g_Page_065thm.jpg
b8c07d249bf26224fa65bc6359c70eec
42f2389dee8d3e42443862fe857186660e7cf20a
25763 F20110218_AACISN cory_g_Page_092.QC.jpg
c8250bc570186883cf8d358bea6d6ac9
d55175dd2cf68881e61a07f32c55b83e86303c7f
8545 F20110218_AACITC cory_g_Page_066thm.jpg
2338b67ec4b1fe610f74a2c9c747c710
2dc09ae2f1f2a4e23cc970e4e65a268d12ec224d
641 F20110218_AACISO cory_g_Page_002thm.jpg
dcbfa87335f39b89da875e15ea8cc76e
53e8316b8f8df649ee91253a5681653f281aa7b6
29504 F20110218_AACIRZ cory_g_Page_036.QC.jpg
c09e36f3a4959279da52845f5608acdc
d2126171a677f987d5a89d1def521bb2f6b8af07
8778 F20110218_AACITD cory_g_Page_069thm.jpg
141b2919fd3625e2ce6c5b4b61195abe
b44778e5191256504a405713048a1b59e3782c83
1931 F20110218_AACISP cory_g_Page_007thm.jpg
f5e690e827975ef7b4ee7dffbd2750cc
b39fbabfc20fcdfb7d6d7a50fccf4d469e8ebec1
7799 F20110218_AACITE cory_g_Page_084thm.jpg
563b96efa58fe1f77c6bf237d4c59cf4
d940bacb674fad4a8857983876b3fd74ef534ae8
5310 F20110218_AACISQ cory_g_Page_010thm.jpg
d6182432a62af89f8d6f566643745562
59e2307d1d7e3bce78cf2d325a67981af56d13f5
7307 F20110218_AACITF cory_g_Page_089thm.jpg
eb0229158ea4344361591bebd2f9bfbd
d2f960ef2284325188c1d2b0c601eec422d1033e
7865 F20110218_AACISR cory_g_Page_013thm.jpg
25f81d5d2c288dbb5086987c1dc3800c
e39f862780299f201c36f90bbe3df977b2da6232
7523 F20110218_AACITG cory_g_Page_093thm.jpg
6db812878a16e5050915a9fde5e0b39f
a5b2bfb9ecf6ffb2e9ffb01ec902001e04999c63
8080 F20110218_AACISS cory_g_Page_033thm.jpg
095e6e6e8a46c4af4298ccd5f7c6a8aa
7964afdd275d16591983ad707a2138bf3a009ba9
8737 F20110218_AACITH cory_g_Page_097thm.jpg
64ea659ffc116b1966ac7e9e233b3486
acf9501a403b84dae611481aede106786df96ca3
8277 F20110218_AACIST cory_g_Page_039thm.jpg
2b1e2ceb6ff0d2c554674678a0f02bcb
57d80badc62968138f12bf5e83ca2934f7d2a39a
8522 F20110218_AACISU cory_g_Page_040thm.jpg
de4ab1f6d10589872fc24cef962b03f3
b1786d501f8372b07c9854db3398462714543658
8400 F20110218_AACISV cory_g_Page_041thm.jpg
30b6b001ad041508c591d0c307d944ff
2aa8380865cf3da12c657cfaefcf96410e566f54
8502 F20110218_AACISW cory_g_Page_043thm.jpg
d2c90e1276eb4dbc0c07813d9dc55563
8ac80491ea13a7f88e2c0bf3a3f0801c86e22e7d
7223 F20110218_AACISX cory_g_Page_050thm.jpg
8af8fb82bcf9a71e8b354d02607a348c
a79a7831b16e7196a3d657730ecceab656dcfc79
8604 F20110218_AACISY cory_g_Page_057thm.jpg
5e7b79f4ed1ec0514a678ae00be65cdc
f8bb1c13ecc584c8b9f1550ac89b2f2cb7b9fe0a
8593 F20110218_AACISZ cory_g_Page_060thm.jpg
cf772b80c0659efe7a61162bffdc05f5
5eec325a04e55370858945437a6e82e239c68531
1051946 F20110218_AACHRA cory_g_Page_067.jp2
81d12e1622e1171f2d886c607c6bd0f4
ea40562e014d4bec9d9a43cf3bd51460eb2198b7
F20110218_AACHRB cory_g_Page_033.tif
f878cdc2c234e4f1b5b321a3b04cbe11
4d1efacd74964d92dbb3670e0bc11465dd324bc2
32506 F20110218_AACHRC cory_g_Page_015.QC.jpg
2a23565ef5090dc10ce5d427ae78fd50
7829bfcada7cb94ac3ba032f7322521566721835
41448 F20110218_AACHRD cory_g_Page_089.pro
bf5861fb1c8a3a26e372878942755aa7
0b96d3860228ea56205f905e0267552655937f49
F20110218_AACHRE cory_g_Page_045.jp2
1331990dbecc87ab77f8db12e4b4b07d
f7d01500abdf8512c216002898edad04ea9a604a
997 F20110218_AACHRF cory_g_Page_009.txt
82dc02b0c8d46c80716f7022852e4ee7
7134703b825fcb938beeed106101c8ec839a55ca
3271 F20110218_AACHRG cory_g_Page_076thm.jpg
ca7dd98943b5e834e3dedc161e69cf51
32965f6fa5abedfc504393594ab173accbc07ce7
6994 F20110218_AACHRH cory_g_Page_035thm.jpg
aadc3e86ceff80e22dc5a65f40e55cb7
07b8e4a5205c5938bb06cd1611fd08efde4470af
8739 F20110218_AACHRI cory_g_Page_063thm.jpg
a85d0bfc6db59df58ad13945c99df636
94538a00fde996457acb8fddb8b41714fd6270a2
61314 F20110218_AACHRJ cory_g_Page_054.pro
19e06d68c858be06ae9e02c3467f0daf
8cdad07ffd3803a40789e6a334937517522bf8de
147619 F20110218_AACHRK cory_g_Page_062.jpg
e60c0b8f7bed43667c281b23088e549a
f7150c603093d5a74b2bc66968a885c61fd0d988
34954 F20110218_AACHQW cory_g_Page_034.QC.jpg
449a2bec5c7c7fcbd519768d883b22eb
b47db15234124c938ed4d40fee9df15eea2548de
F20110218_AACHRL cory_g_Page_056.tif
09fb4caa74f06244ef63b8eae861616c
8e995e016c9b99bd325de7685c1c5d8cf26b9f37
11423 F20110218_AACHQX cory_g_Page_077.pro
edb5a3bbaff290c5784cafdff77f16b3
c5a5a6b179c2708758eb91a89b5337d3e1833cd1
2134 F20110218_AACHSA cory_g_Page_050.txt
db093ec9258b2491c9d39d4c93f7c1ed
fdf68b0270525486ba90a5bf9df7adef4605b65b
6973 F20110218_AACHRM cory_g_Page_092thm.jpg
48d1036de876561b348acdadd5d7681e
51bc83e4b026428838b4ceceecd2e3a5ec7369bf
56741 F20110218_AACHQY cory_g_Page_045.pro
69ee5fc0c385bc843eca42f603a1c6d0
a772ba4bd97648d142a06e47de4f3abca56112fc
F20110218_AACHSB cory_g_Page_062.jp2
bfa7c168940876786a90204da73f0586
4f097a43e279dd8fee31608cd32a3a8b04d0964b
6625 F20110218_AACHRN cory_g_Page_011thm.jpg
787a8f4dfc2c1623b8199a8175710ae1
3236a752b9b1146170c5bc4740b4bfd5076cae1e
8229 F20110218_AACHSC cory_g_Page_015thm.jpg
4dcbaa12d9e144030bd7828c722af828
3b48d74f507b6203d84174bff41dfbba16148b3f
98686 F20110218_AACHRO cory_g_Page_022.jpg
04130259c843ad1e76a2470938b430e3
eb683b5aafabdb3fbb33fbad3b86cfb1f0941a98
56544 F20110218_AACHQZ cory_g_Page_049.pro
cc51674c120353b6432b61aa11075e2c
b51a9547e62ae3f8711975da65ed29286b94f94b
7710 F20110218_AACHSD cory_g_Page_028thm.jpg
aac5967c572aea3013fdb4925390f793
07a9006047012e7b17808fcdbf21a0414fa6c999
28863 F20110218_AACHRP cory_g_Page_035.QC.jpg
0ce6aec0853c56c358f999291288478d
99a532e0dc71bf0e49e7d74bf6f1bb423a87c167
58098 F20110218_AACHSE cory_g_Page_102.pro
0995f1ccba63c6dcfa09afebadc0cf16
82c07e59e5099ea98a26d58c6020f09a8e919089
36518 F20110218_AACHRQ cory_g_Page_038.QC.jpg
598ceae1c604dd9f359b6783954968c9
a84a704128b9927db1cebe88b025aa45139273aa
F20110218_AACHSF cory_g_Page_055.jp2
7f293bbe5942d85f011347ab177f878d
022702df1a472b15b7328eee5bdd85a1df5f6479
870627 F20110218_AACHRR cory_g_Page_008.jp2
5a755bf75831e2c47477af11941d8a6b
60abb0b84d439f283598dc397d11ab54e96ad580
F20110218_AACHSG cory_g_Page_001thm.jpg
081420a21a0b225a0f0d7564e5ee255f
2f5687a500022b5b7c458cc2c44c5d83dcc60b5d
29215 F20110218_AACHRS cory_g_Page_014.QC.jpg
a57442f2cc07e6e3a2de7edaf61e7aa3
ed402cbe95c59d055f0d692179966e1579318802
855377 F20110218_AACHSH cory_g_Page_016.jp2
5dfd605b36f44b9736c794db55bccfa5
bf3d7a12548d3e57abe485034f9da69b42e34412
32677 F20110218_AACHRT cory_g_Page_101.QC.jpg
3575ebda95b1eac4ddee49620c087c55
96962fc63760d68956cc08e41ed8134226267671
10661 F20110218_AACHSI cory_g_Page_076.QC.jpg
6ecf899284e8be72a1668db5bb6788e2
9ca617e28a42f03b8318d53119898b10e412b347
55021 F20110218_AACHRU cory_g_Page_040.pro
c53fb59a57c76e2678679922fd177e76
84eb1ee1d9510f43656c3064f66cdebf610c924f
1051979 F20110218_AACHSJ cory_g_Page_103.jp2
d1723049f333567dc939464571f0a4bd
2a99642841e9632c509720b70475ac8b42778b43
F20110218_AACHRV cory_g_Page_105.tif
74a31ebef97a8a303c992af991dee716
5513d39245cef0b82d7f6854deb45868921a0ade
140958 F20110218_AACHSK cory_g_Page_053.jpg
1abaa95c5b19a5428e156e9f0b40c356
d1afcd0a51919aff968e3f49ce1e4e78023e0b97
2865 F20110218_AACHRW cory_g_Page_054.txt
bc086ddbe4f68d185fbdf68e217beab1
db48dbe40e2a5da7fd671b2f8156631f4696ec99
83344 F20110218_AACHSL cory_g_Page_023.jpg
7cf3e09892f5239aa76aeb498e031e7b
630ff1634581d7969d20e58be573e2cafa91e800
2051 F20110218_AACHRX cory_g_Page_025.txt
e9d07f87d520dc9529f73033c2224d17
6e2575bca99e61312100d1272acd9ab2ee28703a
23728 F20110218_AACHSM cory_g_Page_009.pro
e1591db68c9ee067e3d22110e33e531e
be81b3b543bce5823cd4d76043d9e1163c154a5a
141935 F20110218_AACHRY cory_g_Page_064.jpg
c2d1ef70323d3c4ce104b87cad146cc0
7e692ecf4defe0c47d34da71f6fe887e216e821f
F20110218_AACHTA cory_g_Page_061.tif
65202366f493eac904667bd50c5314a0
eaefdf9986d3a0100824663ad32ec3a57c0c5b1a
136728 F20110218_AACHSN cory_g_Page_055.jpg
59b65da5071cac1b68290d7ab5f67313
35fd037084412aabef19694b7fd63275eb3a1324
2130 F20110218_AACHRZ cory_g_Page_019.txt
2bb9c2f9b8f0d2161dea075115313f71
64435876817ac877676eec16e848daa84cc9c086
5138 F20110218_AACHTB cory_g_Page_005thm.jpg
dd20371194ec540f5e7f645f2da2cf91
680f322fbe85e39bea2e5aac82da7709bfebe0cd
90020 F20110218_AACHSO cory_g_Page_036.jpg
bb5487b42523402e0be019f029a3f161
192187035f492e05dc804109c233e556cb8ce7e7
1793 F20110218_AACHTC cory_g_Page_028.txt
89a01b6ede75a91a10974bb322dc090c
75fe2cecd2dece66470b1bfc7c9afaed3e0cdb5c
55845 F20110218_AACHSP cory_g_Page_037.pro
8a8e82a10ead3504c203a35634463f39
c058397b534eb7dd79663f5de09310205e7dd18c
F20110218_AACHTD cory_g_Page_011.tif
ce4d26d05ef9d05372ec7efe8ae07c8e
8ddf0d3cf3e3e58093432d1eac9956a8070405aa
F20110218_AACHSQ cory_g_Page_042.jp2
a2420d24359ac6591c2c2ff38ef9daec
280b07f3dd6280b7cd406e20f27539bcee4316a0
42432 F20110218_AACHTE cory_g_Page_061.QC.jpg
6bc05a66be36a65e937b5b0c1ccc537b
7997ac5ab9c933bfafa420db6cd278926c21117b
58911 F20110218_AACHSR cory_g_Page_085.jpg
47c83ee91bc3d69c2495789507bddbdd
ad04cadf9fd683255be093120ed921b5093e35c5
1051960 F20110218_AACHTF cory_g_Page_069.jp2
05781d7de59160987fe4f1cc8195edee
eaf2866c05f250ffb2b7e044cb4e0c774dfd64e6
38199 F20110218_AACHSS cory_g_Page_093.pro
d9e12c72f158908526f0e469f9c86a0e
e6b678ad124dbb8690b9b051cdab9a7639765e79
2548 F20110218_AACHTG cory_g_Page_063.txt
a8a72f7d9f8f39bcffd9bd2b49401c06
14c4c979878c8ebbca84efdcf993bc558b52e703
9874 F20110218_AACHST cory_g_Page_105.QC.jpg
3e55a81f4677d7bfebcbd6aff4b92e57
2f3a4c1d026a6f56848e3f44c1e082aae58f80e4
112 F20110218_AACHTH cory_g_Page_002.txt
f1932fca2520cd94af1cc4cc52b56f2d
a62628d7b58a6cae48bf0f7e56f0cf5435fa2b0a
41852 F20110218_AACHSU cory_g_Page_050.pro
58222e91e60c349b7f5778476cd7466a
aeda7f27c0832256fc73d45940acf5314a588782
2480 F20110218_AACHTI cory_g_Page_057.txt
2d66567bfbae60b73f5305d6f5409705
da111dbbc4a6f9f3e466713095b3afbeec22d28a
F20110218_AACHSV cory_g_Page_085.tif
770992c8753127e4203f5ea6df038992
70219f09b052cd579b924ef3cc95d0f94e350f02
F20110218_AACHTJ cory_g_Page_074.tif
3a350eff48ba301032cb5e9d08ecd99d
4cc9e6326691cd46771531144026b0b42556e346
34856 F20110218_AACHSW cory_g_Page_027.pro
25ac3cdd8f2f3f66a4af5dd32f0772aa
9deadc9a1698534e0b58ca13ba9f1cc3ea2a385f
42689 F20110218_AACHTK cory_g_Page_065.QC.jpg
3f4d192e4defa8dde4724c94fc9d4daa
5f32ff6ec43ae1de035311f833d84a4ef234ee5b
630 F20110218_AACHSX cory_g_Page_096.txt
548bcdde0b2e035717ee4f2e3557ce57
b76e9c61e9fe6c2ee57d9cef6282beace7cd9953
7329 F20110218_AACHTL cory_g_Page_052thm.jpg
fa317ed16bf370a14826d63597204957
0d817c7d0a11ba74062a49991a29e282be94897b
161758 F20110218_AACHSY cory_g_Page_066.jpg
04868b022d8189d54e94033538c711ce
90833486d7a0eb352fcf40c2eeae453a87a35e61
8453 F20110218_AACHUA cory_g_Page_025thm.jpg
e8f691e68b227d12b37ab341e7fee3d2
2e63db29d491f1b4700b0351480c862a6060ab62
322772 F20110218_AACHTM cory_g_Page_074.jp2
08e6596d0f7c3ca749760d53437fd5b9
e6b2e9c6880bc7841b62bd3872ebddb513fc4696
27759 F20110218_AACHSZ cory_g_Page_088.QC.jpg
e5a851036e856e4f0eb953cc381aca02
7054c9ff646171d9fe95b5d739335f2b58232f77
1051975 F20110218_AACHUB cory_g_Page_012.jp2
2a8a63ffb6f576b2f7e42f64bc805e55
14f3efbe69ee2611ba44019f96b4c7d4ef9c3b65
37815 F20110218_AACHTN cory_g_Page_046.QC.jpg
e42909bfdf6604acd8ebe1c9eaf2d745
fbbeacb0421742aca5148a95066eff55e22fd0a6
1871 F20110218_AACHUC cory_g_Page_013.txt
f74554d6b513fde38ec285d0bf7a2cbe
1eb2cdb119aa506b4a0f15ca17911229d8e8b659
F20110218_AACHTO cory_g_Page_101.jp2
ba81b1b656f0614df55b01cf454d8d02
03a3d3aa24d210ee4eed6d9e58cc5604a142d65b
35811 F20110218_AACHUD cory_g_Page_097.QC.jpg
3a5548f1bb9b23aab91b2e4a164329fd
7b4e3b8e2c5947904b42a2655081eae9399021af
8039 F20110218_AACHTP cory_g_Page_083thm.jpg
317fb06a3bc11f94aaecf76ceb237c92
3d0d352470cb0dac14bc3297468063750f81d7f7
21966 F20110218_AACHUE cory_g_Page_007.jpg
72435a36ad646aa519c83e48deb86a49
f5cca6bd21957685492e687b62ca272ce8fa7fa1
8641 F20110218_AACHTQ cory_g_Page_058thm.jpg
a2fc3bd54e119ea0b3ee8ba018938b84
6f5522e6ae67457cdae3eff3a5ac2afe46bea947
2170 F20110218_AACHUF cory_g_Page_008.txt
922707c640a046e43512117ee3650de5
7287dbdfa78892f288b6855ccaa5c3b24aa8d366
51661 F20110218_AACHTR cory_g_Page_034.pro
d119a4e454ebc1833d40e48ccbbc5380
6dc1d736b428f4406575891089eaa55f25c9a224
8496 F20110218_AACIAA cory_g_Page_034thm.jpg
0b353e68479e11f570b2cbc6af7ce25c
5209ec83255f355e8262deb2295a85d364cc9e7a
59896 F20110218_AACHUG cory_g_Page_095.jpg
3ea8fd8ec452af1c0c5b71237b95cd65
1c71c7c0781ab291d23801488d2ad1b96195dc24
1785 F20110218_AACHTS cory_g_Page_002.QC.jpg
9c82f1743537835c8e57eb010a48baba
3c1e3d55639689099d37518e63441591221d6d06
30681 F20110218_AACIAB cory_g_Page_078.jpg
7e7a3a872a65e46129969046360a19fd
f186792dddab708d5daf32bdc90e89fcd99a2f39


Permanent Link: http://ufdc.ufl.edu/UFE0013416/00001

Material Information

Title: Analysis of a putative cleavage motif in rice receptor-like kinases
Physical Description: Mixed Material
Language: English
Creator: Cory, Gina Marie ( Dissertant )
Song, Wen-Yuan ( Thesis advisor )
Harmon, Alice ( Reviewer )
Rollins, Jeff ( Reviewer )
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2006
Copyright Date: 2006

Subjects

Subjects / Keywords: Plant Pathology thesis, M.S
Dissertations, Academic -- UF -- Plant Pathology
Genre: bibliography   ( marcgt )
non-fiction   ( marcgt )
theses   ( marcgt )

Notes

Abstract: Plant receptor-like kinases (RLKs) are a large group of proteins found in many different species. XA21 is a rice RLK conferring resistance to bacterial blight disease. Previous findings demonstrate that phosphorylated residues in XA21s juxtamembrane domain assist in the stabilization of XA21. These residues exist within a motif identical to the proteolytic cleavage motif, P/GX₅-₇P/G, originally identified in the animal EGFR protein family. Here, it is shown that approximately 47 percent of 800 rice kinases contain this motif within their juxtamembrane domains. Additionally, a second putative cleavage motif in XA21, P₉₂₂TDSTFRP, was identified within its intracellular kinase domain. Similar to previous findings, mutation of the phosphorylated residues within this second putative motif leads to degradation of XA21.
General Note: Title from title page of source document.
General Note: Document formatted into pages; contains 105 pages.
General Note: Includes vita.
Thesis: Thesis (M.S.)--University of Florida, 2006.
Bibliography: Includes bibliographical references.
General Note: Text (Electronic thesis) in PDF format.

Record Information

Source Institution: University of Florida
Holding Location: University of Florida
Rights Management: All rights reserved by the source institution and holding location.
Resource Identifier: aleph - 003589313
System ID: UFE0013416:00001

Permanent Link: http://ufdc.ufl.edu/UFE0013416/00001

Material Information

Title: Analysis of a putative cleavage motif in rice receptor-like kinases
Physical Description: Mixed Material
Language: English
Creator: Cory, Gina Marie ( Dissertant )
Song, Wen-Yuan ( Thesis advisor )
Harmon, Alice ( Reviewer )
Rollins, Jeff ( Reviewer )
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2006
Copyright Date: 2006

Subjects

Subjects / Keywords: Plant Pathology thesis, M.S
Dissertations, Academic -- UF -- Plant Pathology
Genre: bibliography   ( marcgt )
non-fiction   ( marcgt )
theses   ( marcgt )

Notes

Abstract: Plant receptor-like kinases (RLKs) are a large group of proteins found in many different species. XA21 is a rice RLK conferring resistance to bacterial blight disease. Previous findings demonstrate that phosphorylated residues in XA21s juxtamembrane domain assist in the stabilization of XA21. These residues exist within a motif identical to the proteolytic cleavage motif, P/GX₅-₇P/G, originally identified in the animal EGFR protein family. Here, it is shown that approximately 47 percent of 800 rice kinases contain this motif within their juxtamembrane domains. Additionally, a second putative cleavage motif in XA21, P₉₂₂TDSTFRP, was identified within its intracellular kinase domain. Similar to previous findings, mutation of the phosphorylated residues within this second putative motif leads to degradation of XA21.
General Note: Title from title page of source document.
General Note: Document formatted into pages; contains 105 pages.
General Note: Includes vita.
Thesis: Thesis (M.S.)--University of Florida, 2006.
Bibliography: Includes bibliographical references.
General Note: Text (Electronic thesis) in PDF format.

Record Information

Source Institution: University of Florida
Holding Location: University of Florida
Rights Management: All rights reserved by the source institution and holding location.
Resource Identifier: aleph - 003589313
System ID: UFE0013416:00001


This item has the following downloads:


Full Text











ANALYSIS OF A PUTATIVE CLEAVAGE MOTIF IN RICE RECEPTOR-LIKE
KINASES














By

GINA MARIE CORY


A THESIS PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

UNIVERSITY OF FLORIDA


2006
































Copyright 2006

By

GINA MARIE CORY






















This thesis is dedicated to all those who have left footprints in my life.












ACKNOWLEDGMENTS

I must first thank my high school AP Biology and Independent Science teacher,

Anthony Arico. He introduced me to the joys of science and is a true diamond in the

rough.

I also thank Dr. William Zettler, who reeled me as he did many others into the field

of plant pathology with his enthusiasm and his ability to make a student feel like a

student and not a social security number. Also at the Plant Pathology Department of UF,

I thank Dr. Gail Wisler and all the faculty and staff who guided me along the way.

I thank the members of my advisory committee, Dr. Alice Harmon and Dr. Jeff

Rollins, for their assistance and patience. I give special thanks to my advisory chair, Dr.

Wen-Yuan Song, for giving me a chance as an undergraduate and then as a graduate

student. He never stopped raising the bar of accomplishment.

Next, I must thank all the members of the Song lab, past and present: Dr. Guozhen

Liu, Dr. Pranjib Chakrabarty, Anita Snyder-Pineda, Dr. Porntip Tinjuanjun, Dr. Weihui

Xu, Dr. Yongsheng Wang, Dr. Xiuhua Chen, Dr. Yan Zhang, Dr. Xiadong Ding,

Yingnan Jiang, and especially Lisa Nodzon and Terry Davoli. I also thank Chris Dardick

of the University of California at Davis. All of these people graciously provided support

and necessary laughter.

I thank all of my family, in particular my parents, whose generosity and caring

never cease.

Finally, I thank my husband, Dr. Juan Jose Suarez. I am so happy to enter the real

world with him at my side.




















TABLE OF CONTENTS


IM Le

ACKNOWLEDGMENT S .............. .................... iv

LI ST OF T ABLE S ................. ................. vii........ ....


LIST OF FIGURES ................. ..............viii...............


AB S TRAC T ................. ...............x........ .....


CHAPTERS

1 LITERATURE REVIEW .............. ...............1.....


Receptor Kinases ..........._...__........ ...............1.......
Plant RLKs ......... ...............2.......
RLK Structure ..... ... ........... ........ ...............2
Comparisons of Animal Receptors and Plant RLKs ............ .. ........._ ....4
RLKs in Growth and Development............... ...............
RLKs in Disease Resistance .............. .........___ ...............9...
Phosphorylation and Protein Stability in XA21 ......___ ............. ..............15
Receptor Shedding .............. ...............17....

2 SEQUENCE ANALYSIS OF RICE RECEPTOR-LIKE KINASES ................... .........21

Introduction ........... ...............21......
Materials and Methods ................... .. ......._. .......... ..... .................2
Identifying Putative Proteolytic Cleavage Motifs in the JM Domain of Rice
RLK s ................. ........ .............2
Average Length of JM Domains of Rice RLKs .............. ...... .._.._..........23
Creating Rice Chromosome Maps Depicting the Locations of Rice RLK
Genes............... ...............23.
Results and Discussion................. ......... ...... ... ..... .. .........2
A Significant Number of Rice RLK's Contain the Putative Cleavage Motif.24
A Significant Number of Select Plant Proteins Contain the Putative Cleavage
M otif. ................._ ............. ...............24.......
Average Length of JM Domains of Rice RLKs ........._.. .... ........._...26
Rice Chromosome Maps Depicting the Locations of Rice RLKs ........._.......26

3 MOLECULAR CHARACTERIZATION OF THE XA21T923A/S925/T926A MUTANT ...72














Introducti on ............ ............72......... ......
Materials and Methods ................. ...............72........... ....
Mutant Rice Plants ............... ............72.. .......... ....
XA2 1 Detecti on ............... ............73.. ..............
X A2 1 Tran script Level s............... ...............74
Results and Discussion............... ...............7


4 DIRECT MUTATION OF THE PUTATIVE CLEAVAGE MOTIF IN THE
JUXTAMEMBRANE DOMAIN OF XA21 ................ .............. ......... .....78


Introduction ........... ...............78......
Materials and Methods ................. ...............78........... ....
Results and Discussion............... ...............8


5 CLONING OF SELECTED ARABIDOPSIS RLKS .................. ................8


Introduction ........... ...............82......
M materials and M ethods............._ ....... ........._._.............._._.......... .. .......8

Amplification of the At~g0 1890, Atlg48480, At2g36570 and At3g28040
ORFs ................... ...............83..
Molecular Cloning of the PCR Products ............ ..... ._ ................84
Results and Discussion............... ...............8


LIST OF REFERENCE S ............. ...... ._ ...............87..


BIOGRAPHICAL SKETCH .............. ...............95....

















LIST OF TABLES

Table pg

2-1. Distribution of the P/GX5-7P/G motif in the JM domains of plant RLKs............... .25

2-2. The P/GX5.,P/G motif in the JM domains of predicted rice RLKs............._.._.. ........27

4-1. Primers used in site-directed mutagenesis............... ..............7

5-1. Sequence alignment of XA21 and selected Arabidopsis proteins of the DE group..83


















LIST OF FIGURES


figure pg

1-1. Generalized structure of a receptor-like kinase protein with major domains labeled.4

1-2. Proposed model of evolution of the receptor kinase family ................. ................. .6

1-3. Model of XA21 mediated resistance through binding proteins ................ .. .............10

1-4. Components of signaling pathways of innate immunity in Drosophila, mammals,
and Arabidopsis ................. ...............13.__._.......

1-5. A c-Myc-tagged version of XA21 ............... ............... ....___..16

1-6. Intracellular juxtamembrane domain of XA21 ................ ................ ......... .17

1-7. A conserved motif in the juxtamembrane domain of the EGFR family....................20

2-3. Rice RLKs selected for study mapped on the twelve rice chromosomes. ........._......61

2-4. Motif-positive rice RLKs mapped on the twelve rice chromosomes. .......................62

2-5. Motif-like rice RLKs mapped on the twelve rice chromosomes. .........._... .............63

2-6. Motif-negative rice RLKs mapped on the twelve rice chromosomes. ......................64

2-7. Rice RLKs in subfamily CrRLKIL-1 selected for study mapped on the twelve rice
chromosomes. ........._.._.. ...._... ...............65....

2-8. Rice RLKs in subfamily DUF261c selected for study mapped on the twelve rice
chromosomes. ................. ...............66....... ......

2-9. Rice RLKs in subfamily L-LEC selected for study mapped on the twelve rice
chromosomes. ........._.._.. ...._... ...............67....

2-10. Rice RLKs in subfamily SD-2a selected for study mapped on the twelve rice
chromosomes. ........._.._.. ...._... ...............68....

2-11. Rice RLKs in subfamily WAK selected for study mapped on the twelve rice
chromosomes. ........._.__...... ._ __ ...............69....











2-12. Rice RLKs in subfamily LRR-la selected for study mapped on the twelve rice
chromosomes .........____...... .____ ...............70.....

2-13. Rice RLKs in subfamily SD-2b selected for study mapped on the twelve rice
chromosomes ........... ..... ._.._ ...............71.....

3-1. Analyses of XA2 1T923A/S925A/T926A mutant .................... ............... 7

3-2. Schematic representation of XA21 indicating putative cleavage motifs (A and B)..77

3-3. Amino acid sequence of the intracellular domain of XA21 ........._._. ..........._......77

4-1. The intracellular domain of XA21 .........____.....__ .......___ .........8

5-1. Sequence alignment of XA21 and selected Arabidopsis proteins of the DE group..83

5-2. Identification of recombinants carrying the ORFs of At~g0 1890, Atlg48480,
At2g36570 and At3 g28040 .............. ...............86....
















Abstract of Thesis Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Master of Science

ANALYSIS OF A PUTATIVE CLEAVAGE MOTIF IN RICE RECEPTOR-LIKE
KINASES

By

Gina Marie Cory

May 2006

Chair: Wen-Yuan Song
Major Department: Plant Pathology

Plant receptor-like kinases (RLKs) are a large group of proteins found in many

different species. XA21 is a rice RLK conferring resistance to bacterial blight disease.

Previous findings demonstrate that phosphorylated residues in XA21s juxtamembrane

domain assist in the stabilization of XA21. These residues exist within a motif identical

to the proteolytic cleavage motif, P/GX5.,P/G, originally identified in the animal EGFR

protein family. Here, it is shown that approximately 47% of 800 rice kinases contain this

motif within their juxtamembrane domains. Additionally, a second putative cleavage

motif in XA21, P922TDSTFRP, was identified within its intracellular kinase domain.

Similar to previous findings, mutation of the phosphorylated residues within this second

putative motif leads to degradation of XA21.


















CHAPTER 1
LITERATURE REVIEW

Receptor Kinases

Perception of signal at the surface in animal cell is known to be regulated by

receptor tyrosine kinases (RTKs) and receptor serine/threonine kinases (RSKs) (Hubbard

and Till, 2000). Many receptor kinases have a signal-receiving extracellular domain, a

transmembrane region, and an intracellular kinase domain. Based on their greatly

different extracellular domains, the animal receptor kinases can be placed into 20

subgroups (Robinson et al., 2000). Recognition of ligands, mostly soluble though some

are membrane-associated, often leads to dimerization of the receptors and results in

phosphorylation of either tyrosine or serine and threonine residues of the kinase (Hubbard

and Till, 2000). While one function of this phosphorylation is activation of the kinase,

the other is to provide a binding surface for interacting proteins (Burgess et al., 2003; ten

Dijke and Hill, 2004; Johnson and Ingram, 2005).

Receptor kinases function in numerous important processes in the cell, such as

embryonic development, metabolism, and immune system function (Hubbard and Till,

2000). For instance, effects of insulin on the body are regulated by the insulin receptor,

an RTK (White, 1998). Once insulin is bound to the receptor, phosphorylation of the

receptor and recruitment of downstream proteins occurs. Those recruited downstream

signaling proteins are the IRS adaptor proteins, which are phosphorylated on several










tyrosine residues by the receptor. IRS proteins then bind and activate PI-3k, which is

involved in the movement of glucose transporters to the cell membrane (Cheatham et al.,

1994; Okada et al., 1994).

Nonreceptor tyrosine kinases (NRTKs), lacking extracellular and transmembrane

domains, are components within the signal transduction pathways triggered by receptor

kinases (Hubbard and Till, 2000). Most NRTKs are located in the cytoplasm, though

some are actually bound to the membrane. The largest subfamily of the NRTKs is the

Src family, whose mutation can cause human cancers (Biscardi et al., 1999).

Plant RL~Ks

Plants contain a large number of predicted proteins called RLKS (receptor-like

kinases) with structures similar to animal receptor kinases. Over 600 and 1000 RLKs

have been reported in the model plant Arabidopsis thaliana and rice (Oryza sativa),

respectively (Shiu and Bleecker, 2001a; Shiu et al., 2004). Much knowledge about the

exact function of these kinases is lacking, with relatively few being described (Shiu and

Bleecker, 2001a). It is clear however that RLKs are involved in a variety of processes,

including disease resistance, self-incompatibility, hormone perception and development.

RL~K Structure

Like animal receptor kinases, many plant RLKs are composed of an extracellular

domain, a transmembrane domain, and an intracellular kinase that contains twelve

subdomains with fifteen invariant residues (Figure 1-1) (Walker, 1994; Hanks et al.,

1988). Some of the invariant residues, such as the lysine residue corresponding to

Lys736 of XA21, are important for catalysis. The extracellular domain is thought to

perceive signals (also known as ligands) through binding. The transmembrane domain

anchors the protein on the cell's membrane, while the kinase domain juts into the










cytoplasm of the cell. It is important to note the juxtamembrane (JM) domain, which is

located just after the transmembrane domain. A corresponding extracellular region is

termed the extracellular JM domain. Phosphorylation of residues in the JM domain often

acts as binding sites for other signaling proteins in animal systems. In plants, such

phosphorylation has also been observed in XA21 in vitro and BRI1 in vivo (discussed in

more detail below).

Plant RLKs can be classified into 45 subgroups based on their extracellular

structures (Shiu and Bleecker, 2001a). Some major subgroups are described below. The

leucine-rich repeat (LRR) subgroup contains proteins with a core tandem sequence of

Leu-x-x-Leu-x-Leu-x-x-Asn-x-Leu. LRRs have been implicated in protein-protein

interactions. The S-domain RLKs, the first class ofRLKs to be described in plants, share

similarities with the S-locus glycoproteins involved in incompatibility of Brassica. One

distinct characteristic of the S-domain RLKs thought to be important for folding of the

extracellular domain is a group of ten cysteine residues found next to the transmembrane

region. Another subgroup is the lectin receptor kinases, which was defined by the

Arabidopsis kinase Ath.lecRK1 which has an extracellular domain homologous to the

legume lectin family (Herve et al., 1996). Lectin receptor kinases may interact with

oligosaccharides or cell wall fragments (Buchanan et al., 2000). Epidermal growth

factor-like RLKs share repeats in the extracellular domain with their animal protein

namesake, and may perceive signals at the cell wall-plasma membrane interface (Braun

and Walker, 1996; Buchanan et al., 2000). There are several other groups of RLKs

including thaumatins and WAKs (summarized in Shiu and Bleecker, 2001b).









In a phylogenetic study of RLKs, a group of RLKs lacking extracellular and

transmembrane domains existed within the same monophyletic group as other RLKs

(Shiu and Bleecker, 2001a). These were so termed the receptor-like cytoplasmic kinases

(RLCKs). PBS 1 is a representative of this class (Swiderski and Innes, 2001). This

Arabidopsis serine/threonine kinase, along with another protein RPS5, recognizes the

avirulence gene (avrPphB) product from Pseudomona~s syringe. More recently, PBS1

was shown to be cleaved by a bacterial type III effector molecule, and that this cleavage

was necessary for the induction of defense against the pathogen (Shao et al., 2003). It is

thought the PBS1 cleavage product binds with RPS5 and subsequently activates

resistance pathways. Animal NRTKs and plant RLCKs can be considered corresponding

soluble forms of their respective groups, as some members of both have been shown to

form complexes with receptors and help in the transduction of signals downstream.



Signal Extracellular





N-terrninuse C-terrninus



Tra nsmembra ne


Figure 1-1. Generalized structure of a receptor-like kinase protein with major domains
labeled.

Comparisons of Animal Receptor Kinases and Plant RL~Ks

Despite similarities between RLKs and animal receptors, maj or differences can be

seen (Johnson and Ingram, 2005). It could be possible that plant and animal receptors









evolved independently, and their similar structure organization being due to their inherent

suitability to the processes they regulate. To date, most plant RLKs appear to be

serine/threonine kinases, while animal receptors, except the mammalian TGF-P receptors,

are tyrosine kinases. And while both RLKs and animal receptors show a great variety of

extracellular domains, the sequence and structure of the extracellular domains vary

greatly between them. Thirdly, increasing evidence shows that downstream interacting

proteins of plant RLKs differ from those of animal receptor kinases.

Shiu and Bleecker (2001a) phylogenetically analyzed Arabidopsis RLKs in relation

to animal receptor kinases using the conserved kinase domains. This analysis included

more than 900 candidate RLKs and related kinases from plants. Among the animal

receptors, which included representatives from 16 subfamilies, data supported a strong

monophyletic origin for the RTKs. Raf kinases, a family of kinases which can elicit or

arrest the cell cycle in mouse fibroblasts (Woods et al., 1997), were more closely related

to the animal RTKs; the plant RLKs formed a separate monophyletic group within the

eukaryotic protein kinase superfamily (previously, RLKs were placed into a separate

family based on their serine/threonine specificity). This indicates that RLKs have a

distinct origin from Raf kinases and RTKs. In contrast, plant RLKs were found to be

related to the Drosophila and Caenorhabditis Pelle kinases, and to three human IRAKs.

Based on these results, a separate group was defined as the RLK/Pelle kinases gene

family.

Shiu and Bleecker then proposed a model for the evolution of receptor kinases

(Figure 1-2) chronologically beginning with (1) divergence of RLK/Pelle from RTK/Raf.

Next (2) the divergence of RTK from Raf occurs followed by (3) the divergence of plant









and animal lineages. The split of Raf and RTK from RLK/Pelle is attributed to an early

gene duplication event which probably occurred before the divergence of plants and

animals. The fact that only five RLK homologs were found in animals supports this

notion.








Raf Pleat




RLK



Figure 1-2. Proposed model of evolution of the receptor kinase family. (1) Divergence
of RLK/Pelle from RTK/Raf. (2) Divergence of RTK from Raf. (3)
Divergence of plant and animals. Reprinted with permission. Shiu, SH and
Bleecker A (2001a). Receptor-like kinases from Arabidopsis form a
monophyletic gene family related to animal receptor kinases. PNAS.
98:10763-10768.

RL~Ks in Growth and Development

A number of RLKs have been implicated in plant growth and development.

Several examples are briefly highlighted here.

CLAVATAl (CLV1) is an Arabidopsis RLK with twenty-one LRRs in its

extracellular domain (Clark et al., 1997). CLV1 mutants show a surplus of

undifferentiated cells (Clark et al., 1993). Cell proliferation and differentiation is

regulated within the shoot apical meristem of plants. Consequently, CLV1 mutant plants

have enlarged floral meristems, as well as inflorescence and vegetative meristems. Also,

mutant plants show an increase in the number of floral organs and additional whorls in









their flowers. In the CLV1 pathway, additional components, CLV2 and CLV3, have

been identified (Jeong et al. 1999; Fletcher et al., 1999). CLV2 is a receptor-like protein

with LRRs, whereas CLV3 appears to be a small protein that is hypothesized to function

as a ligand for the CLV1 receptor.

HAESA, previously known as RLK5, is an LRR-RLK from Arabidopsis (Horne

and Walker, 1994; Jinn et al., 2000). Antisense strategy produced HAESA mutants

which exhibit delayed floral organ abscission. Jinn et al. (2000) also demonstrate that the

intensity of this phenotype is directly related to the level of HAESA within a particular

plant; that is, the less amount of HAESA, the greater delay in floral organ abscission.

Therefore, HAESA may be involved in floral organ abscission in Arabidopsis.

The gene Crinkly4 (cr4) encodes an RLK whose extracellular domain has a

cysteine-rich region quite similar to mammalian tumor necrosis factor receptors' ligand

binding domains (Becraft et al. 1996). Maize mutants of this gene show affected leaf

epidermis, which in turn compromises those cells' functioning. It has also been

implicated in the differentiation of internal tissues as well as the epidermal tissues (Jin et

al. 2000). It is suggested in the same study that cr4 is also involved in regulatory

pathways of cell proliferation, fate, and pattern. The Arabidopsis CRINKLY4 is a

involved in the development of sepals and ovuoles (Gifford et al. 2003).

The SRK (S Receptor Kinase) gene is located at the S locus of Bra~ssica oleracea

(Stein et al., 1991). This locus controls self-recognition of pollen and stigma in Bra~ssica

oleracea. Pollen germination is halted if both pollen and stigma come from plants having

identical S-locus genotypes, preventing self-fertilization. SRK is capable of in vitro

autophosphorylation (Stein and Nasrallah, 1993). Confirmation of SRKs involvement in









self-incompatibility was shown through studying self-compatible plants. These plants

were determined to have mutated SRK genes (Goring et al., 1993). Later, an SRK-related

protein SFR2, an S-locus family member, was shown to be rapidly induced by wounding

and bacterial infection ofXanthomona~s campestris py. campestris (Xcc) (Pastuglia et al.,

1997). SFR2 mRNA accumulates after bacterial infection by Xcc and Escherichia coli.

This evidence points towards a role in plant defense.

BRI1 is an Arabidopsis LRR-RLK and is involved in the perception of

brassinosteroid, a growth-promoting hormone (Li and Chory, 1997). DwarfArabidopsis

mutants, unresponsive to exogenous brassinosteroid treatments, mapped to the same

region as a previously-described brassinosteroid mutant (Clouse et al., 1996). BRI1 is

autophosphorylated, which has uniquely been shown in vivo, in response to

brassinosteroid; six phosphorylation sites of BRI1 are located in the JM domain (Wang et

al., 2001; Wang et al., 2005). Also, BRI1 is one of few RLKs with a known ligand

(Kinoshita et al., 2005). Recently it has been shown that BRI1 exists as a homodimer

even in the absence of applied steroids; this state of the protein is thought to autoregulate

the activity of the protein (Wang et al., 2005). The proposed model of BRI1 activation

begins with this homodimer going through a conformational change upon ligand binding.

The subsequent transphophorylation of the kinase domain separates the homodimer,

leading to activation of BRI1 through further phosphorylation. Afterwards, BRI1 likely

then forms a complex with BAK1 (BRI1-associated receptor kinase 1) and transduces the

brassinolide signal (Nam and Li, 2002; Li et al., 2002). The tomato BRI1, also known as

SR160, was shown to bind systemin in transformed tobacco (Montoya et al., 2002;

Scheer and Ryan, 2002). Systemin is a molecule which triggers defense responses










against insects after wounding. Additionally, a mutant tomato line with non-functional

BRI1 showed reduced production of protease inhibitor in response to systemin.

RL~Ks in Disease Resistance

Plant RLKs also function in disease resistance. Flor (1971) first described the

gene-for-gene theory of disease resistance. This states that two corresponding genes are

required for the onset of disease resistance responses in the plant: one avrirulence gene

(avr gene) from the pathogen and one disease resistance gene (R gene) from the plant. If

either of those genes is absent in a particular host-pathogen interaction, disease resistance

does not occur. Instead, disease of the plant begins. R gene products, a number of which

are RLKs, recognize directly or indirectly Avr gene products (Jones and Dangl, 2001).

Reviewed below are RLKs to date implicated in pathogen or insect resistance.

The rice gene Xa21 confers resistance to the bacterial pathogen Xanthomona~s

oryzae py. oryzae (Xoo) and is a member of a small gene family (Ronald, 1992; Song et

al., 1995; Song et al. 1997). The protein XA21 is a serine/threonine transmembrane

kinase with an extracellular domain of twenty-three LRRs (Figure 1-3). The cloning and

characterization of this gene was a milestone in the understanding plant disease resistance

genes (R genes) because at the time of its discovery, it represented a new class ofR genes

as well as a possible evolution between previously described classes of R genes. The

LRRs of the extracellular domain of XA21 is similar to tomato' s CF-9, while its kinase

domain is reminiscent of another serine/threonine tomato kinase, PTO (Song et al., 1995).

XA21 is thought to bind a polypeptide signal from Xoo, activating the kinase

through autophosphorylation (Ronald, 1997). It is hypothesized that XA21 forms a

homodimer which activates the intramolecular phosphorylation upon pathogen infection,

after which it binds with several other proteins (Figure 1-3) (Liu et al., 2002). The










resulting protein interactions are believed to be the beginning of possibly several defense

responses.







mocipathogen ~ 0
produced

















Resistance Response

Figure 1-3. Model of XA21 mediated resistance through binding proteins (courtesy of
Dr. Wen-Yuan Song, University of Florida). Upon ligand binding, it is
believed XA21 forms a homodimer. Subsequent phosphorylation recruits
binding proteins (blue spheres, purple squares, and green ovals). This then
may activate several pathways leading to resistance responses. P:
autophosphorylated residues.



XA21 binds with several proteins in the yeast-two hybrid system (Wang et al.,

unpublished). One XA21 binding protein, XB3, has been studied in depth to date. XB3,

whose interaction with XA21 has been confirmed through co-immunoprecipitati on

assays, contains a RING finger domain capable of autoubiquitination. Downregulation of

XB3 in vivo yields greater susceptibility to Xoo as well as lower steady states of XA21.









ERECTA is an LRR-RLK which was originally implicated in developmental

control of aerial organs (Torii et al., 1996). Plants carrying a mutated ERECTA gene

show compact flowers, shorter internodes, and shorter floral organs. More recently,

ERECTA has been implicated in resistance against bacterial wilt disease caused by

Ralstonia solan2acearum (Godiard et al., 2003). Arabidopsis thaliana Landsberg, an

accession susceptible to bacterial wilt, transformed with ERECTA exhibited an increased

resistance to R. solan2acaearum. ERECTA, more specifically its LRR and kinase

domains, is also implicated the defense against the fungal pathogen Plectosphaerella

cucumerina (Llorente et al., 2005).

The Xa26(t) gene confers resistance to Chinese Xoo strain JL691 (Yang et al.,

2003). This gene was cloned by using a map-based strategy. Xa26(t) encodes an LRR-

RLK and shares the most homology with XA21 out of reported LRR-RLKs (Sun et al.,

2004). Their different resistance spectra are suggested to be attributed to their different

structure and variations in the LRR region. Interestingly, Xa26 confers resistance to Xoo

from seedling to adult stages, which differs from the Xa21-controlled resistance that is

only present in adult plants (Xu et al., 2006).

Resistance to Puccinia gramninis f. sp. tritici, causing stem rust of barley, is

conferred by RPG1 (Brueggeman et al., 2002). The Rpgl gene was cloned using a map-

based cloning strategy and subsequent characterization identified it as an RLK. RPG1

has two predicted tandem intracellular kinase domains, representing a novel structure of

disease resistance genes. One of these tandem kinase domains does not contain all of the

highly conserved residues seen in most kinases, suggesting it may not be functional. The

membrane-targeting sequence of RPG1 is not clear and a ligand binding sequence is not









identifiable. Additionally, Thre204 ofPTO, which has been implicated in the interaction

of PTO and AvrPto, is conserved in both predicted kinase domains of RPG1 (Frederick et

al., 1998).

FLS2 is an LRR-RLK which is involved in the perception of bacterial flagellin.

Flagellin is a surface protein on numerous bacterial propellants, also known as flagella

(Moens and Vanderleyden, 1996), has been implicated in the pathogenicity of bacteria

(Tans-Kersten et al. 2001). The FLS2 gene was identified by screening flagellin-

insensitive Arabidopsis thaliana ecotype Ws-0 plants (G6mez-G6mez and Boller, 2000).

The Ws-0 plants did not respond to the inj section of fig22, a synthetic peptide mimicking

the conserved N-terminus of flagellin. The ability of the plant to perceive flagellin was

further illuminated by Zipfel et al. (2004). In their study, fis2 mutant plants not only

showed susceptibility to the infiltrated bacterial pathogen Pseudoomonas syringae py.

tomato, but showed a greater susceptibility when the bacteria was just sprayed on the

leaves, which bypasses natural infection supported by flagella functioning. Flagellin

perception then could possibly inhibit bacterial infiltration of the plant.

FLS2 signaling is often compared to innate immunity of animals and insects

(Figure 1-4) (Gomez-Gomez and Boller, 2002). In animal and insect innate immunity

systems, the perception of a pathogen leads to rapid responses, describing a first line of

disease defense. In Drosophila, the Toll receptor, an LRR transmembrane protein with

an intracellular domain of high similarity to the interleukin-1 receptor, mediates innate

immune responses (Hoffmann and Reichhart, 2002); in animals, innate immunity is

mediated by the Toll-like Receptors (TLRs), of which TLR5 recognizes flagellin.



















Plasma membrane


Drosophila



TOLL TLR5


Tu My8 P LS2 kinase
dMyD88 Cytop


TRAF2 TRAF6
AtMEKK1

DmlKK ~ IKK L' AtMKK4/5
kinases kinasesAtK3

C Degraded
Degraded -B~ IrB
Cactus-



~mPL~~a~J ~~ 'jNu(
Gene expression



Development: Innate Development?
dorsoventral pattern immunity
TRENJDS in Phant


lasm


cleus


Science


Figure 1-4. Components of signaling pathways of innate immunity in Drosophila,
mammals, and Arabidopsis. Reprinted with permission. Gomez-Gomez, L
and T Boller (2002). Flagellin perception:a paradigm for innate immunity.
7RENDS in Planzt Science. 7(6):251-256.

The perception of pathogens in innate immunity is dependent upon the recognition

of pathogen-associated molecular patterns (PAMPs). PAMPs are highly conserved,

general elicitor molecules including chitin, lipopolysaccharide, glycoproteins, as well as

flagellin (Lamaitre et al., 1997; McDermott et al., 2000). After pathogen perception in

Toll and Toll-like systems, receptor dimers then form and signaling proceeds through

adapter molecules (dMyD88 and Tube in Drosophila, and MyD88 in animals) (Gomez-


Mammals A



FLS2


,rabidopsis



Apoplast









Gomez and Boller, 2002). This leads to the activation of downstream kinases Pelle in

Drosophila and IRAK in animals. Eventually, the pathway results in the degradation of

Cactus in Drosophila and IKB (inhibitor of nuclear factor xB (NF-KB)) in animals, which

in turn leads to the release of Dif (dorsal-related immunity factor) in Drosophila and NF-

xB in animals. The released molecules are transported to the nucleus, where gene

expression results. The mitogen- activated-p rotei n ki na se (MAPK) p athway i s activated

in animals also.

There is no direct evidence in plants for a pathway like Toll and Toll-like systems,

but many parallels can be seen. It is known that the MAPK cascade is activated in plants

in response to elicitors as well as gene-for-gene interactions (Ligterink and Hert, 2001;

Romeis, 2001). This supports the notion of a common system for the recognition of and

response to elicitors. Additionally, Toll from Drosophila, now implicated in innate

immunity, was originally implicated in dorsoventral development. This is much like the

duality of plant RLKs ERECTA, BRI1, and SRK described earlier.

A proposed model for FLS2 signaling in Arabidopsis begins with the recognition of

flagellin, or degraded forms of flagellin (like the fig22 synthetic peptide), by the

extracellular domain of FLS2. The activation of the FLS2 kinase possibly occurs via

dimerization and autophosphorylation. Subsequently, an unknown pathway proceeds to

the activation of ion channels and the NADPH oxidase complex, while simultaneously

the activation of AtMEKKl1, which activates AtMAKK4/5, which then activates

MAPK3/6. This activation may in turn activate the WRKY type transcription factors

involved in expression of defense genes.









Molecular cloning of plant disease resistance genes and thorough understanding of

the molecular mechanisms of plant defense can have global impacts. Historically, plant

pathogens have greatly affected humans, especially with reference to our food sources.

The late blight of potato caused by the oomycete fungal pathogen Phytophthora infestans

led to the Irish potato famine of 1845 (Ristaino et al., 2001). Identification of molecular

components involved in plant disease defense would allows us to manipulate them and

create transgenic plants with broad spectrum and durable resistance, thereby reducing the

usage of pesticides, fungicides, and the like.

Phosphorylation and Protein Stability in XA21

Protein stability has emerged as a common regulatory step of plant R gene

products. As known in Arabidopsis, the disease resistance protein RPM1 (recognizing

Psuedoomonas syringae py. tomato carrying avrRPM1 or avrB) requires the presence of

RIN4 and HSP90 to accumulate (Mackey et al, 2002; Hubert et al., 2003). RPM1

interacts with both RIN4 and HSP90. Additionally, RAR1 regulates the accumulation of

MLAl and MLA6, which provides resistance to powdery mildew, although their direct

interactions with RAR1 have not yet been shown (Bieri et al., 2004).

In addition to the proteins that directly or indirectly interact with resistance gene

products, protein phosphorylation has also been implicated in the stabilization of plant

resistance proteins (Xu et al., 2006). An XA21 dead kinase mutant, XA21K736E, iS

unstable in rice extracts. In XA21K736E, glutamic acid was substituted for Lys736, which

corresponds to a highly conserved lysine required for the kinase activity XA21.

Additionally, the simultaneous mutation of the phosphorylated Ser686, Thr688, and

Ser689 to alanine implicates these residues in the stability of XA21. Both

XA21S686A/T688A/S689A and XA21K736E transgenic plants exhibit lower steady-state protein









levels than plants containing wild-type XA21. Because wild-type XA21 is stable for at

least six hours in plant extract, this suggests phosphorylation is a key factor in the

stability of this protein.

Western blot analysis illustrates that the 140 kD XA21 protein can be cleaved to a

100 kD product in the microsomal fraction. Because XA21 is tagged at its N-terminus

with c-Myc for convenience of antibody detection and the calculated weight of the

extracellular domain of XA21 is approximately 100 kD, this detected 100 kD cleavage

product should represent the extracellular domain and transmembrane domains.

Subsequently, it is hypothesized that the missing 40 kD corresponds with the intracellular

portion of the kinase, which was calculated at approximately 36.6 kD (Figure 1-5).

Western blot analysis showed a significantly increases accumulation of the 100 kD

cleavage product for both XA21 S686A/T688A/S689A and XA21K736E, further supporting that

autophosphorylation of these three residues plays a role in the stabilization of XA21.

40 kD
140 kD






N-terminus C-terminus




Transmemb~rane



Figure 1-5. A c-Myc tagged version of XA21. A blue triangle marks the N-terminal tag
c-Myc used for immunodetection of XA21. At the top of the figure, bars
indicate the portion of the protein of the corresponding kD weight: the full-









length protein is predicted to weigh 140 kD, and the intracellular portion is 40
kD.

Further investigation illustrates that XA21 stability is developmentally controlled,

with younger plants containing higher steady states of the protein. This suggests that an

unknown proteolytic activity increases with the age of the plants. Finally, inoculation

with Xoo demonstrated that XA21 S686A/T688A/S689A and XA21K736E mutations lead to

decreased disease resistance in rice, indicating that accumulation of XA21 is required for

resistance against Xoo.

Ser686, Thr688, and Ser689 are located in the JM domain of XA21, more

specifically within a region identical to a cleavage motif identified in the epidermal

growth factor receptor (EGFR) family of animal receptor kinases (Figure 1-6).


XA21 Juxtamembrane Domain

677HKRTKKGAPS RT SMKGHPLVSYSQZLVKATDG





|Cleavage motif found in the EGFR family
P/GX,,P/G



Figure 1-6. Intracellular juxtamembrane domain of XA21. The putative cleavage motif
is underlined, and the autophosphorylated residues are shown in red.

Receptor Shedding

Many receptors in animal systemscan be cleaved in the extracellular JM or

transmembrane domain. This phenomenon is known as receptor shedding or ectodomain

shedding (Hooper et al, 1997; Dello Sbarba and Rovida, 2002). Shedding of the









ectodomain is often regulated by a protease, also known as a sheddase, acting upon a

regulatory protein(s) at the surface (Dello Sbarba and Rovida, 2002). These proteases are

usually metalloproteinases belonging to the groups known as MMPs (matrix

metalloproteinases) or ADAMs (a disintegrin and metalloproteinase domain). One

example is the regulation of Met, a hepatocyte growth factor receptor, which is involved

in cell growth amongst other processes (Nath et al., 2001). Shedding of Met by a

metalloproteinase is activated through EGF (epidermal growth factor) and LPA

(lysophosphatidic acid) binding to their receptors.

Possible biological purposes of receptor shedding include cessation of signaling

after the initial signal transduction resulting from a ligand-receptor interaction (Dello

Sbarba and Rovida, 2002). Overexpression of receptors has been shown to be deleterious

to the organism. Another significance of receptor shedding is that the resulting

transmembrane-cytoplasmic domains of the protein may act differently in signaling than

their full-length precursors, and are not controlled by ligand-binding (Dello Sbarba and

Rovida, 2002).

Much is still unknown about the regulation of receptor shedding. In the case of

Her-2 however, a particular cleavage site was identified and implicated in its receptor

shedding (Yuan et al. 2003).

Her-2 is a receptor tyrosine kinase of great sequence homology to the EGFR family of

proteins (Coussens et al., 1985). The cleavage product of Her-2 has been suggested to

be involved in the aggressiveness, metastasis, and morbidity of breast tumors and it is

suggested that the ectodomain released during shedding of Her-2 may act as a decoy for









treatments (Christianson et al., 1998). Recent advances have led to the use of EGFR

inhibitors as treatments (Shelton et al. 2005).

Yuan et al. (2003) identified a cleavage site in the extracellular JM domain of Her-

2 at which the receptor portion of the protein is released. The cleaved extracellular

domain of Her-2 was detected in supernatants of the cell culture through Western blot

analysis. The Her-2 extracellular domain was then immuno-purified from soluble

fraction of a conditioned cell culture. Identification of the cleavage site was performed

via C-terminal sequencing and MALDI-TOF mass spectroscopy.

Sequence analysis of the JM domains of eight other EGFR family members led to

the hypothesis that this cleavage site rests within a particular motif, P/GX5.7P/G (Figure

1-7) (Yuan et al., 2003). Proteases may recognize this short, unstructured motif flanked

by proline and glycine. The P/GX5.7P/G motif is seen in EGFR family members

originating from very different species suggesting the motif is highly conserved. In

contrast, Her-4, which does not carry a complete motif, is not cleavable. Proline and

glycine are commonly associated with proteolyitc in cleavage sites because they can

locally disrupt the secondary structure of the protein, possibly leaving that portion

exposed to cleavage (Hooper et al., 1997). Therefore, it cannot be assumed that

protease(s) recognizing P/GX5.7P/G in EGFRs are identical to the suggested protease(s)

recognizing P/GX5.7P/G in XA21.











N530 q5


PDLsYMPIWKF~PDeEGACOPCOPTNCT;IWISML 9 S TSIIVSAVQO2YVLYV922KRQKIRYTRRLQT
Nos Cys-rich JM TM

Humana Her-2: CPA 1EQR3ASPLTS
nat fner-2: cPA EQR ALSPVTs Cleavable
IHuman Her-4 (JM-a) : CITYYPwwanswtonans
numan ser-4 an-b)1) :ClGLM6DRT NOncleavable
BuIhanP Her-3 r CLOQTLrVLI~Kxano
Ruman Her-1: CPTNGPKIPs
Mouse Her-1: asvwPSGIPKIPs
Rat Brer-1: QCOOPEPKIPS
Chick HETr-1: CPRGi~SKTPS
Motif : P/Gx s-7 PIG


Figure 1-7. A conserved motif in the juxtamembrane domain of the EGFR family.
Several EGFR family members from different organisms are represented.
Reprinted with permission. Yuan CX, Lasut AL, Wynn R, Neff NT, Hollis
GF, Ramaker ML, Rupar MJ, Liu P, and Meade R (2003). Purification of
Her-2 extracellular domain and identification of its cleavage site. Protein
Expr Purif: 29(2):217-22.
















CHAPTER 2

SEQUENCE ANALYSIS OF RICE RECEPTOR-LIKE KINASES

Introduction

Bioinformatics studies have become crucial in modern molecular biology,

particularly when the genomes of a number of organisms, including rice and Arabidopsis,

have been sequenced. Through analyzing the rice genomes sequences, 1429 protein

kinases have been predicted (Rice Kinase Database, http:.//rkd.ucdavis.edu). Genome-

wide comparative analysis suggests that rice has significantly more numbers of RLKs

that are involved in resistance and defense than Arabidopsis (Shiu et al., 2004). To

support this hypothesis, three qualitative resistance genes, whose protein products are

RLKs, have been identified in rice (Song et al., 1995; Sun et al., 2005; Chen et al., 2006).

Therefore, rice appears to be an excellent model system to study RLK-mediated defense

signaling.

As describe din Chapter 1, a putative proteolytic cleavage motif (P/GX5-7P/G) was

identified in the juxtamembrane (JM) domain of XA21 (Xu et al., 2006). This motif was

originally described in the extracellular JM region of animal epidermal growth factor

receptors (EGFRs) (Yuan et al., 2003) and has recently been implicated in the stability of

XA21 (Xu et al., 2006). In this study, rice RLKs are searched for this motif.

Chromosome maps depicting locations of the RLKs are then created to investigate the

distributions of rice RLKs carrying this motif.









Materials and Methods

Identifying Putative Proteolytic Cleavage Motifs in the JM Domain of Rice RL~Ks

Raw protein sequences files were downloaded from the University of California

at Davis' Rice Kinase Database, which included a total of 1429 receptor kinases (January

1, 2006, http://rkd.ucdavis. edu). The Rice Kinase Database incorporates and shares

genomic and proteomic data resulting from a collaborative rice proteomics study, and

enables the user to easily view this data. The database creators have additionally made a

phylogenetic tree of these kinases using the nearest neighbor method. To quickly

determine if each kinase qualified for this study, its ID was entered into the PlantsP

web site (http://plantsp. genomics.purdue. edu/) to obtain detailed motif and domain

structure information. Because the JM domain is loosely defined as being located

between the transmembrane domain and the P-loop of the kinase, proteins which did not

clearly carry both of these were simply eliminated and the resulting number of rice RLKs

totaled 796. Each protein's JM domain was then searched by eye (using Microsoft Word

and Excel) for the putative cleavage motif, as well as additional proline and glycine

residues which may also contribute to the exposure of the cleavage motif to proteases.

All proteins were subsequently placed into one of three categories: motif-positive,

motif-like, and motif-negative. Motif-positive proteins are those containing at least one

perfect motif, while motif-negative proteins contain none. The motif-like category

contains proteins having a cleavage motif(s) with +/- one amino acid outside of the

normal range in the variable region of the motif. That is, these cleavage motifs may be

P/GX4P/G or P/GXsP/G. This allows for the investigation of a group of proteins which

may be recognized by less specific interactions and can also allow for some sequencing

errors.









Additionally, 27 previously described plant RLKs are investigated in the same

manner as described above. These included RLKs functioning in both growth and

development and defense responses originating from various plant species. These

published data provide an opportunity to quickly examine the putative cleavage motif in

species other than rice without examining whole kinomes--many of which are

unavailable.

Average Length of JM Domains of Rice RLKs

Upon the collection of the rice RLKs sequences and identification of the JM

domains, a marked difference in the length of the JM domain was noticed between the

motif-positive RLKs and the motif-negative RLKs. Each motif category was then

analyzed separately for an average JM domain length. All JM domains of proteins

making up a group were compiled, with careful elimination any character except those

representing an amino acid, and counted using Microsoft Word's character count. The

total was then divided by the number of proteins belonging to the category.

Creating Rice Chromosome Maps Depicting the Locations of Rice RLK Genes

To view the distribution of the rice RLK genes in this study with respect to their

motif categories across the rice genome, rice chromosome maps are created. To further

analyze this relationship, seven different subfamilies of rice RLK genes are also mapped

with respect to their motif category. All chromosome maps of rice RLK genes were

created using the freely available Genome Pixelizer software

(http://www. atgc. org/GenomePixelizer/GenomePixelizerWel come. html ). Genome

Pixelizer was created to help visualize relationships between genes and following

"footprints" of evolution. Using data provided by the program user, Genome Pixelizer

rapidly creates a chromosomal map, indicating the location of each gene with a colored










square. Each square is interactive, providing all input information when clicked--though

this feature is only available when using the program. The maps shown in this chapter

are snapshots only and are not interactive. For the RLKs studied here, protein IDs, their

subfamilies, 5' end positions of genes, and other necessary information were obtained

from http://rkd.ucdavis. edu. Technical assistance was generously provided by Chris

Dardick of the Ronald lab at University of California at Davis.

Results and Discussion

A Significant Number of Rice RL~K's Contain the Putative Cleavage Motif

Of 796 rice RLKs analyzed, 47. 1% were categorized as motif-positive. This

represents a significant portion of the total proteins analyzed. Motif-like proteins

comprised a group of only 5.9% of the total proteins analyzed, while motif-negative

proteins represent 46.9%. Table 2-2 shows all rice RLKs involved in this study and their

JM domains. Residues involved in putative cleavage motifs have been highlighted in red,

while proline and glycine residues flanking the putative cleavage motif are highlighted in

blue. As discussed in Chapter 1, these flanking proline and glycine residues may

contribute to exposure of the site by disrupting the local secondary structure.

A Significant Number of Select Plant Proteins Contain the Putative Cleavage Motif

Table 2-1 shows the previously described plant proteins implicated in development

and disease defense chosen for examination in this study. Putative cleavage motifs have

been highlighted in red, while flanking proline or glycine which may contribute to

exposure of the site are highlighted in blue; ellipses indicate amino acids which have

been left out for convenience of space in the figure and have no bearing on the immediate

study. The maj ority of defense-related RLKs contain the P/GX5.7P/G motif although

some RLKs that function in developmental processes also carry the motif.













Table 2-1. Distribution of the P/GX5-7P/G motif in the JM domains of plant RLKs.
Perfect motifs are highlighted in red, while motif-like sequences are in blue.
Proline and glycine residues which may contribute to the disruption of
secondary structures are also highlighted in blue.


Protein
BAK1

EXS

HAESA

NORK

PRK2

SERK3

SYMRK

CLAVATA1

HAR1

ERECTA

BRI1

XA21

XA21/A1

Pi-2(t)

RKL1

RKS1

SFR1


SIRK

WAK1

WAK2

WAK4

LRK10

PBS1

RKC1

SFR2

XA26


Function
development

development

development

development



development

development

development

development

Devel.,defense

Devel.,defense

defense

defense

defense

defense

defense

defense


defense

defense

defense

defense

defense

defense

defense

defense

defense


Reference
Li et al. (2002)
Canales et al.
(2002)
Jinn et al.
(2000)
Endre et al.
(2002)


Hecht et al.
(2001)
Stracke et
al.(2002)
Clark et al.
(1997)
Krusell et al.
(2002)
Torii et al.
(1996)
Li and Chory
(1997)
Song et al.
(1995)
Song et al.
(1997)
Jiang and Wang
(2002)
Ohtake et al.
(2000)
Ohtake et al.
(2000)
Pastuglia et al.
(1997)
Robatzek and
Somssich
(2002)

He et al. (1997)

He et al. (1997)

He et al. (1997)
Feuillet et al.
(1997)
Swiderski and
Innes (2001)
Ohtake et al.
(2000)
Pastuglia et al.
(1997)
Sun et al.
(2004)


Juxtamembrane Domain
RRKKPQDHFFDVPAEEDPEVHLGQLKRFSLRELQVASDN
RRWAMTK... EESRLKGFVDQNLYFLSGSRSREPLSINIAMFEQPLLKVRL
G...

RKITRSKNIGYVWILLTIFLLAGLVFVVGIVMFIAK. .. LAASKWRSFHKLH
RKTKRADKGDSTETKKKGLVAYSAVRGGHLLDEGVAYFISLVEA
DN
RRNKN... LGGSSLTSSSPTSQDQKLIP ... GQSSAASTPDRACNDGGKRA
EVAGQKL

RRKKPQDHFFDVPAEEDPEVHLGQLKRFSLRELQVASDN

RYRQKLIPWEGFAGKKYPMETNIIFSLPSKDDFFIKSVSIQ

RQMNKKKNQKSLAWKLTAFQKLD

RKRRLHRAQAWKLTA

RPHNPPPFLDGS LDKPVTYSTPKLVILHMNMALHVYEDIMRMTEN

REMRK... YAEGHGNSGDRTANN.. .NLAAFEKPLRKLTFADLLQATNG

HKRTKKGAPSRTSMKGHPLVSYSQLVKATDG

EVPATTSMQGHPMITYKQLVKATDG

KRKRHPPPSQDDAGSSEDDGFLQTISGAPVRFTYRELQDATS
CRKKSNKRS.. .EIPGDKEAVDNGNVYSVSAAAAAAMTGNGKASEGNGP
ATKKLV

RERRSIEVFGKLRPVPFDFDESFRFEQDKARNRELPLFDLNTVAN
RFWKR... LSGDMKTEDLELPLMDFEAIATATHNF SS TNKLGQGGFGIVY



RRFKKKQQRGTLGERNGPLKTAKRYFKYSEVVNITNN
RMKHLKDTKLREQFFEQNGGGMLTQRLSGAGPSNVDVKIFTEGK
ATNG
KIKHRKNTELRQKFFEQNGGGMLIQRVSGAGPSNVDVKIFTKME
TNG
EHKMKNTKDTELRQQFFEQNGGGMLMQRL SGAGP SNVDVKIFTEEGM
KEATDG

RTRYNEEIHLKVEMFLKTYGTS KPTRYTF SEVKKIARR

HTFAFRELAAATMN

KRRKQKQEIELPTESVQFDLKTIEAATGN

WKRKQKRSILIETPIVD...ISSRRHISRENNTDDLELPLMFEATN

RKKANHQNTSAGKADLISHQLLSYHELLRATDD









Average Length of JM Domains of Rice RLKs

The average length of the motif-positive RLKs JM domains was 75 amino acids,

while motif-like and motif-negative categories' were 41 and 40, respectively. This is

interesting to note and suggests some correlation between length of the JM domain and

containing cleavage sites.

Rice Chromosome Maps Depicting the Locations of Rice RLKs

Analysis of the chromosome maps shows that the rice RLK genes are well-

distributed within the genome (Figure 2-3,) even when separated into their respective

motif categories (Figures 2-4, 2-5, and 2-7.) Many of the genes exist within clusters,

which may have originated from duplication events. To address what types of motif

categories of RLKs any one subfamily contains, chromosome maps were created showing

seven large subfamilies of rice RLKs (Figures 2-7, 2-8, 2-9, 2-10, 2-11i, 2-12, 2-13).

Generally, many proteins within a subfamily are clustered. However, for subfamily L-

LEC and LRR-la the clusters contain proteins of the same motif category. This further

supports similarity and evolution within a subfamily. Subfamily CrRLKIL-1 and WAK,

though not having significant clusters, is composed of proteins of a particular motif

category. Subfamily DUF261c contains one maj or cluster which is interspersed with both

motif-positive and motif-negative proteins. Subfamily SD-2b though, appears to have no

clear significant clustering or motif category preference. These findings are crude and

the significance of the phenomena noted within separate subfamilies is better determined

through further examination of each subfamily.










Table 2-2. The P/GX5.7P/G motif in the JM domains of predicted rice RLKs. Proline and
glycine residues within a motif are shown in red, while proline and glycine
residues possibly contributing to the disruption of local secondary structure
are sl own in blue.

Protein ID Category Juxtamembrane Domain

RRSKRRRRSREGS ST SATALVPPLWKVFT SEELRS ITKNF S
EGNRLPGNAKTGGTYSGILPDGSRVAIKRLKRSSLQRKKD
FYSEIGRVAKLYHPNLVAVKGCCYDHGDRFIVYEFVANGP
LDVWLHHVPRGGRCLDWPMRMRVATTLAQGIAFLHDKV
9629.m00042 motif-positive KPQVVHRDIRASNVLLDEE

RRSKRRRRSREGS ST SATALVPPLWKVFT SEELRS ITKNF S
EGNRLP GNAKTGGTYS GLPD GSRVAIKRLKRS SLQRKKD
FYSEIGRVAKLYHPNLVAVKGCCYDHGDRFIVYEFVANGP
LDVWLHHVPRGGRCLDWPMRMRVATTLAQGIAFLHDKV
9629.m00043 motif-positive KPQVVHRDIRASNVLLDEE
WYKKKRRRATGYHAGFVMPSPASSPQVLGYSGKTNYSA
9629.m00111 motif-positive GSPDYKETMSEFSMGNCRFFTYEELHQITNG
WYKKKRRRATGYHAGFVMPSPASSPQVLGYSGKTNYSA
9629.m00112 motif-positive GSPDYKETMSEFSMGNCRFFTYEELHQITNG

P SVEDIEP SCGYLAMTPIGGGWNSVNLPEYTSYAEVVKSM
RGGFAVKFPTPWLNWFGLIKKCLNKSVSHRTMSTNGGLE
HLD SLFAANSLLPIPPTSPPFAGTRRTS SAVQLPRDLLCLGQ
SYMAGLVVRRGQGPSAAWRRGEGPPLVAGGGGDVDRAG
9629.mO001 53 motif-positive DD GGGEGD GQATK STMD GVRRLRMAKVCVRTVGRDD
KWIADDPYCYILVLD CLAFYPQVS CTLAAFTNEIC SGPTKS
NSRYRYFTL GMTGIVRSNDRKQFGAVKYRYLEVGGGGGA
9629.m00167 motif-positive PLVVMTFLAHKCWKKRITIDAV
KDKDFF SACPAKQCGKVEIRYPFRFEP SNTS S SCGLPCMKL
TC SDRQETILDIKNYLGRPYKVTAIDYKRATLTIVPLADD S
SLPPTPGCPLPNLISEGALDHRCEPYAMWLLKSINIEFPFR
AVHVSE SLQTRYNEEIHLKVEMFLKTYGT SKPTRYSF SEIK
9629.m00191 motif-positive KIARR
PRLSGRRSARRLREGEKIVYSSSPYGATGVVTAAGGTFER
9629.m00341 motif-positive GKMVFLEDVSSGGGKRFELDDLL
RRKRKRSASFEGLIHGGTPLP SLTKEF SLAGLAYTHIFTYEE
9629.m00363 motif-positive LDEATDG
9629.m005 13 motif-positive RRRKPVHRKKGQSLTPVVEEQFERVSYQEL SNGTKG
RRKEEKEELRTPTTSQP STAWMPLLGRI SFRS APP SAVGSR
SPSFTIDTNANTPGGGATPGMAAAASSSPSYRFPFAALQDA
9629.m00554 motif-positive TGN
RRKEEKEELRTPTTSQP STAWMPLLGRI SFRS APP SAVGSR
SPSFTIDTNANTPGGGATPGMAAAASSSPSYRFPFAALQDA
9629.m00555 motif-positive TGN


RRRQPLFGRGST SPAD GD GKDADMLPPWDVTLYQKLEI S
VGDVARSL


9629.m00688


motif-positive












Table 2-2. Con inued

Protein ID Category Juxtamembrane Domain
RFRG SD GLAQRFPH SALPKF SRS SGTGQTLLAGRYS SP SGP
9629.m00937 motif-positive SGSLGS SIATYAGQAKTFKFAEIEKATNS
9629.m01024 motif-positive QDKD GEDEFAELPGMPTRF SFQMLKLATKD
9629.m01041 motif-positive MARMGISKGGS GKEAKKPPLLLGR
9629.m01044 motif-positive RKRGRAAIGPWKTGLSGPLQKAFVTGVPKLNRPELEAACE
9629.m01045 motif-positive RKRGRAAIGPWKTGLSGPLQKAFVTGVPKLNRPELEAA
9629.m01193 motif-positive KLFATRPLDARS GLMVF SYAQVKNAT
CNRS GGGGDEEVSRVVSGKS GEKKGRE SPE SKAVIGKAG
9629.m01202 motif-positive D GNRIVFFEGPALAFDLEDLL
9629.m01205 motif-positive RYRRDLFGSSKFVVEGSLVVYSYAQIKKAT
FKKKKRHHHHHPPPPPPPHLLHYYGHPPPPPPPPPPFKGDH
YGGVYQNWQQNGPPPPPDHVLKKVP SHP SPPPPPAPLNVH
SGGSGSNYSGGDNSQPLVSPGAALGFSRCTFTYEDLSAAT
9629.m01240 motif-positive DG
KKWARKKRIIENSLTGGKMVMFRSAAMQ SL SPKSFLTMI
9629.m01429 motif-positive MG
KLRKGKRKVPPVETPKQRTPDAVSAVDSLPRPTSTRFLAY
9629.m01474 a motif-positive DELKEATNN
SNKRSKKL GGGGAD SHT SAWLPLYHSHTS GK S SGHITANI
9629.m01474 b motif-positive AGMCRHF SFAEIKAATKN

RSRKRVRRASANIPITQIPAI SKEIKEVRVEQVPTSDFAAHD
GVLMTIQDKSSEKESDKVMVHLGVSKSKRGDESHSGSFR
YMDKDL GFQ SADEGG SGTFRHN SAHAITAP SPLVGLPEF S
9629.m02103 motif-positive YLGWGHWFTLRDLEVATSR
WRAVS SKEKGNGGAAGSKGSRCGKD CGCF SRDESATP SE
9629.m03098 motif-positive HTEQYDLVPLDQQVRFDLDELLKASA

DSPGGSLASLPEWQPMPCKSVSVNPLCSSYLYVTPEGRNL
SKVASDFSGNASLFQRITRLSGSEDLLVNVPCVCEAINATM
TGLFHDTNYRVKD GDMGDIINSKTF SGLALNVGD GQILHK
EEKLIIHLPCGC SSTAPEGVL SYAVQD GDTLGNIASLFRS S
WKDILDLNPRVANPDFIKPGWILFIPMGVAGP SNKKIDPFQ
9629.m03450 motif-positive TERPVIFSLRAIEDATSN
RWRKQRVVAGSPAAVGGRCSTDAAGKD SFRKSAS STLVS
LEYSNGWDPLAD GRGGIGF SQEVAQ SFRFNMED VESATQ
9629.m03772 motif-positive Y

RKRGNRFGDTAEPEIPDITKEIAVDEARNRVAAENVQRQE
SYTL SLKERQTNKGSRKMLAHFL SCKS SGSHNLVGC SSMY
QNDKAQC SYS SDEGT SGHNEREYSQYATMSTSPQIGLPEF
9629.m03992 motif-positive SHLGWGYWFTLRDLEDATNG


RRKTKRTMDNLRQTQIPIFSKEIPVDRVGGRSLAQTMHER
EQP SFPPQDKHTNREPGKTLGHMAL SKS SEPDNMSQ GS SV
CNVDRAGSVHSGEDGSTGHGRKPYSPAAFVSASPLVGLPE
F SHL GWGHWFTLRDLELATNR


9629.m04252


motif-positive











Table 2-2. Con inued

Protein ID Category Juxtamembrane Domain

MRRKKKTAVGFDGRSHMEIPIVSKDINVDRVDAQ SLHD S
GTPIMPVQDKYEQMKGVSHLAE SRSVDVDAF SQC SSVYNI
EKAGS SYSEDYS SSGPGRKGS SSYGYASASPLVGLPEL SHL
9629.m04552 motif-positive GWGHWFTLRDLEYATNR
9629.m04594 motif-positive FLFKMHNIPKSMEKGYKMITSQFRRFTYRELVEATGK
9629.m04595 motif-positive KKHNIPKSMED GYKMITNQFRRFTYRELKEATGK
9629.m04597 motif-positive SKHNIPMSMEAGYRMVTSQFRMFTYRELREAT
9629.m04603 motif-positive SSKQSIPSSLQAGYKMVMTSQFRRFTYRELKGAT
9629.m04613 motif-positive SSKQSIPSSLEAGYRRVMLTSQFRRFTYRELKDVT
9629.m046 15 motif-positive LRSKQNIPKSVMD GYELMTEHFRKF SYRELKEAT
CRNK SVATIGPWKTGL SGQLQKAFVTGVPKLQRSELEGA
9629.m04657 motif-positive C
RKRKHKKVNS SSKLLKYS GSGGTPRSMGGDME SGSVKDL
9629.m04784 motif-positive QTHLFSYEELEEATDS

PENIDPITC SFIGLIGP SYVLPKD QVPPGNW SQFCKTFEVPV
VKYQQMDPKGDAWRKGGYGQVLRQGFLLSVND SRRPPN
CTQCEE SKGRVFKLKGENETFLKKYRHRRI SKGTPRIESFL
9629.m04795 motif-positive QRNGTLHPKRYTYTEVKRMTKS
CHKKHHGQQPPVQELTTPPKAEP SQKKQRAQHLKRY SYS
9629.m04796 motif-positive EVERMT
9629.m04824 motif-positive KFCTGKKLKGLPITMSLE SNNNHRAI SYYELVRATNN
FKIRNRNHLTEE SPMPPKPAGPGSAVVGSRLGSRPI SASP SF
9629.m04969 motif-positive S SSIVTYKGTAKTF SLIEMERATQR
KKKRRRIEPPASLPTQQPAPPPPPNYFP S SGGS SLTSDAFFIS
PGYHPVRLFSAGSHGYPYSPADSAIGYSRMLFTPENLAEFT
9629.m05220 motif-positive NG

KLSQYINPQAPNNQGKSPDQSISHKFQLLKSGSFCYGSGR
LCCQFGNVKQSRTDGSDHHMNTPKGVVVDVFDREKPIVF
9629.m05240 motif-positive TYQEILASTDS
9629.m05252 motif-positive RD IRRRRKRVAQREDWKITPFQTDLGF SEAAILRG
9629.m05253 motif-positive RD IRRRRKRVAQREDWKITPFQTDLGF SEAAILRG
SKRRRRRQHPPPPHHPGYPPFPAEFYDPHRPPSQQQSHALS
P SP SSTPPLLLQPH SFVS SGGASEAASAVPGIAMMGGAFGY
9629.m05335 motif-positive DELAAAADG
KRRSRVGKD TGMSD GHS GWLPL SLYGNSH S SGSAKSHTT
9629.m05510 motif-positive GSYAS SLP SNL CRHF SFAEIKAATNN
FVSQWRKAGELAD GDIDEEMGYDELADEEFFVE SGPRRF
9629.m05592 motif-positive RYSDLAAATKN
FWRNRVRTRRNETAAAAAGGGDDVLPFRVRNQQHPASS
9629.m05634 motif-positive VKRD QRLDVKRECDEKDLDLPLLDLKAIVAATDD


RNKARRKQHTEMEK SSDADDLPFRVRKSPAL SPARD QWF
DENRGAEDDLDLPLFDLEMIFNATDR


motif-positive


9629.m05637












Table 2-2. Con inued

Protein ID Cateor Juxtamembrane Domain
TRKKKRARKTG SSKWS GG SRSTGRRYEG SSHHDDDLELPI
9629.m05640 motif-ostive FDLGTIAAATDG
RQKKIAKEAVERTTNrPFASWGQGGKDNGDVPQLKGARYF
9629.m05897 motif-poitive AFEELKRCTNN
RRARATTSRSAPATAL SDDYL S SPEND AS SGKLVMFGKG
9629.m05964 motif-poitive SPEFSAGGHAL
9629.m06449 motif-positive RRRMVKGTTQVEGSLISFTYRDLKSMTKN
WRRRQD SIRSKSRRL SGERRL SRPRPNVGSVLF SL GELAKA
9629.m06547 motif-poitive TCG
9629.m066 10 motif-ostive GRRRTIGINRDD GKLITFKYNELQFLTRN
RRKLVRSRPLAFESASKAKATVEPTSTDELLGKKSREPLSI
9629.m06844 motif-ostive NLATFEHALLRVTADDILKATEN
GAGEVQLAAPQPEKIAAVQKDES GWPLWL SSAAGDALAG
9629.m06926 motif-poitive WAPRSADAFHKLEKR
9629.m06939 motif-postiv RVAILHAKYAPAIVRGPVSFTPQI SPKNLH SA
9629.m06940 motif-ostive RVAILHAKYAPAIVRGPVSFTPQI SPKNLH SA
9629.m06957 motif-ostive RHRRRASDSSESSSSSPAQPELQGARCMTLEELSSATRN
RVARRSRRNSDTGSSETPPTLVEWGRCGRTLSAPEYQGAR
9629.m07015 motif-ostive QFSLEELAHATKN
RRRAGD GGTTTPEKELESIVS SSTKS SKLATGKMVTFGPG
9629.m07193 motif-poitive NSLRSEDFVGGADAL
RKQLQGASAGGNSKSKSIVVSAEQKKKATPVAGGGGGEI
9629.m07395 motif-ostive DNMMAAMAARGPLEFEVRELEEATS
RHCL SGLRRRHRAAAAADVDAEAAEGGAGARQLMPPCS
9630.m00072 motif-ostive PPPQQELPLLRPAAKLVPSTKEEGEPWKLTWREVEALTGG
RRKDAL SPH SHAYSFDKYTSW SSRSNLVSHRS SPLPQPKP
KPRIS VLKEFLC SCNPICGNEGGPLPGVIVRF SYSELEQATG
9630.m00103 motif-ostive K
RRKDAL SPH SHAYSFDKYTSW SSRSNLVSHRS SPLPQPKP
KPRIS VLKEFLC SCNPICGNEGGPLPGVIVRF SYSELEQATG
9630.m00104 motif-ostive K
RRKDAL SPH SHAYSFDKYTSW SSRSNLVSHRS SPLPQPKP
KPRIS VLKEFLC SCNPICGNEGGPLPGVIVRF SYSELEQATG
9630.m00105 motif-ostive K
YAYRRWYVDGAGCCDDENLGGESGAWPWRLTAFQRLGF
9630.m00115 motif-ostive TCAEVLAC
9630.m00168 motif-postiv DD GVYPEGQILEAPNLRTFTFIELRTATKN
KRRRET SLH GGFLRGVEMSTPDWS GKP SGQ SAVVKVDKE
Q STVAEEKDTKGS IS SYQKNVQE SLQNHPLQFKFTIFTVAS
9630.m00356 motif-poitive LQQYTNSF SEQNLMRQTL
LTLLRSTSFLSKNRRYSNDGTEAPSSNLNSEQPLVMVPQG
9630.m00518 motif-ostive KGEQTKLTFTDLLKATKN


SLRDAIPKIENKSNTSGNLEAGSFTSDPEHLLVMIPRGSGE
NKLTFTDLMEATDN


9630.m00525


motif-positive











Table 2-2. Con inued

Protein ID Cateor Juxtamembrane Domain

9630.m00733 motif-postiv KRGGRRDEHGRLVFVQESRKRFEIEDLL
LSKYQERQSRRDYTTSQVGRVrHQRVEEPKVKQASVQSRN
DAKKGSTEVPERRQMYKITIQLLAAALEKPPEKRKEHQYT
9630.m00752 motif-poitive NS

RNAQKRKDD TS SNSKDFVGPL SVNIERASNREIPEQ SPENT
SVATMKISPAEKMTPERIYGKTGSMRKTKVPITATPYTVA
9630.m00890 motif-poitive SLQVATNS
RRRRGVGEESVRPGKVVGDVSSSAEYGALASGKQTTTAT
9630.m00912 motif-ostive SMSSLSAARSLMASEVREALESLTVYK
RRRKRGKKAAAAWEDDEVAVGAVKVAATAPVVLVERPL
9630.m01346 motif-poitive MELTLADLAAATSGFG
9630.m01660 motif-postiv RRKLAKKGKEIIPGDFVSIWNFD AKVAFQDALYATEN
9630.m02590 motif-poitive RNRS SLKRRQS S CSEEVEDIK SVLLDP SVIRSATGN
9630.m02923 motif-ostive KGKFKTRKELPAPSSVIGGINNHILVSYHEIVRATHN

RRRRRRRGPNT SPVQQLPVSAPPKNPQKVKAPKDIQEVPA
QATAAAAAKTPLAQVLQMPAPPPPPPPMAAAAPPPETVQI
ATGKEHRITYPEPPHRSGSSSHGSGEAPSVPEVSHLGWGH
9630.m03277 motif-poitive WYTLKELEAATEM
9630.m03316 motif-postiv KRKKYGEQSENGVGDAKVFSVWNFEGGEACRQIFETTKY
KS SFRRQDYIVKAVADTTEALELAPA SLVLLFQNKDD GKA
9630.m04006 motif-ostive MTIGDILKSTNN
9630.m04684 motif-ostive RWRKRNAVRRAQIE SLRPL SNSDLPLMDL SSMYD ATNQ

KQYEHLEPGNQLH SLP SP SEGNE SIEKSADEFWDKQNFEID
HGQDNTLDQEKD SAEVRQDAERT SDKS SGTE SAKSEITLD
9630.m04997 motif-poitive DVAEFEIQWEE

KQYEHLEPGNQLH SLP SP SEGNE SIEKSADEFWDKQNFEID
HGQDNTLDQEKD SAEVRQDAERT SDKS SGTE SAKSEITLD
9630.m04998 motif-ostive DVAEFEIQWEEI
RKQERRAGRRASRSRDVQLRRHRSPASDSAHLVYGNDDD
9630.m05216 motif-ostive GNDIVIPGLPTRFTHEEIEDMTN S
PHWAQVPKDVSLCKPDIHALP SSNVPPKLVILHMNMAFLV
9630.m05315 motif-positie YEDIMRMTEN
KRKLIRTKQRFFEQNGGVLLQQQMSSYGGTSGGAGGFKIF
9630.m05589 motif-poitive SKEELEKATNS
QKRKLIRTRQKFFEQNGGIFLQQQMRSYGGAGGGVGGFKI
9630.m05597 motif-ostive FSTEELKNATNN
KWYKLRQLQEAVSPATTPAVNRRYGGRSTLSVSRVSSAS
9630.m05673 motif-ostive ASMLSTVATCTTSVKTFSL SQLEKATDG
RRGRNKRVAGDVDKGAMPEEEEEQQQQQPQAQPREEINA
SASASASVASERRGGREFSWEREGIGKLVFCGGVAEMYSL
9630.m05830 motif-ostive EELL


KSCTYSPKSTANNAKSPPANVEKVPKANEVLYSWNSL1VNDCE
SSSDVIKPERA1VKTKVWAKTSKNFLTAKQFQAVDILAATRN


9630.m05880


motif-positive











Table 2-2. Con inued

Protein ID Category Juxtamembrane Domain
RRRRQAPTPAPEEKESTQLPWSQHTQDGSSWVDMSNASG
9631.m00239 motif-positive AGMTGGLHRMSMQLNI SLADITAATEN

SRRRRRRDDLASNLYPADTKILKQHLQQPTPPKDIQEIVRR
QQRQQQTPTPTPPQPPPPAAQHGVQLAKAETPPPPQRTQPP
VLPAGSTRSTAAS GMSATTS GGSERD GATPRSTAS GSAGP
963 1.m0025 1 motif-positive EVSHL GWGHWFTLRELEEATD G
AMNIKAYMRRSKEEQEGKEEDEVLE SE STPMLASPGRQG S
963 1.m00268 motif-positive NAIIGKLVLF SKSLP SRYEDWEAGTKA
RRRKRRAALEEHFEQHQPFT SFP SNEVKDMKPIEE STTIDV
ESLPSPASFSLKPPPKIERHKSFDDDDLSNKPVLKKTNVAP
9631.m00800 motif-positive KATVYSVADLQMATES
9631.m01136 motif-positive RMRRRRGKVTAVQGSLLLLDYHAVKTATRD
RKKSSSSTPATAVEKGRDLQMAPMDMEPKGQNGSAAGN
GAHVGAAAAAPAAATSAAVAAAAAAAKTGGATGGSKK
9631.m01146 motif-positive LIFFGPMAAAPPFDLEDLL
CCSKKKKRPPHMHMPYYTDENGKVYYANSMPRWQNSV
DQGGGWHAQYSPGQAPP SSEMS GSHGAGPLPPP SPGMAL
9631.m01182 motif-positive GFSKSSFSYDELALATGG
CARRRRGAKHLSMSRVEHAPSSGSLRQASSSSAPKEKDHA
EAGAGTGTGTS SSDVAS SSAAASYLESPVRRKPERIS CAAA
9631.m01193 motif-positive MDMGWGRWYDLEELEAATGG
RRGRKRGAGAGGGAAARMGVGVGVGARTQPAPALRRLS
9631.m01412 motif-positive CQQLRRATGG
963 1.m01555 motif-positive KNFGKKDIHGFRVEL CGGS SIVMFHGDLPYSTKEILKKLET
RRCRRQRRRRRQAQPFPLPPPIYN\PNPYYKGDLPPQPFVA
QPP SDHYFIQHQHPTPPQT SGTF SD AGSERPH SIDILTELPT
9631.m01585 motif-positive GGSLSYDQLAAATDG
RMLRRKKKPVKQPSNTWVPFSASALGARSRTSFGRS SIVN
963 1.m0 1698 motif-positive VVTL GQNGAGAGAGYRFPFAALQEATGG
RRRAQKAREELGGPFASWKRSEERGGAPRLKGARWF SYE
9631.m02117 motif-positive ELKRSTNN
RRRAQKAREELGGPFASWKRSEERGGAPRLKGARWF SYE
9631.m02118 motif-positive ELKRSTNN
SKRKEKKDD GLDNNGKGTDNARIEKRKEQVS SGVQMAE
963 1.m02 148 motif-positive KNKLVFLD GC SYNFDLEDLL
CKRRQRAGKD SGMSD GH SGWLPL SLYGNSHTS SSAKSHT
963 1.m02 15 1 motif-positive TGSHA SSLP SNLCRHF SFVEIKAATNN
RVRTPGSH SAAELEL SDGYL SQ SPTTDVNS GKLVMFGGGN
9631.m02173 motif-positive PEFSASTHAL


KRKSTRHQHGGDPEKNEPLTLRPIA SGKFNQLRTI SII SPTA
KEGLQKTVSMNLKPP SKIDLHK SFDENDLTNKPVLAKNV
DLSSIRATAYTVADLQMATES


9631.m02769


motif-positive











Table 2-2. Con inued

Protein ID Cateor Juxtamembrane Domain
KAKKNRKAIPSALNNGQVTPFGQRNHTASALNNWEITPF
WQRNHVAASND AQDNNSMRPAGQGNHQDLDLP SFVIETI
9631.m03402 motif-poitive LYATNN
KNRWKRRRRPAQVMNLARRRTLVVPERVASPEVYQPSN
963 1.m03 557 motif-ostive GPTASP SGTS SYEF SGTT SWFTYDELAAVTGG
RRWRRRRRRQQAQPLPLPPPMLYNPNPYYKGDQPPLPFVF
MQQHHHHPTAPQT SGGTF SDAGSERPH SI SID GGSL SYDQL
9631.m03714 motif-ostive AAATGG
KRKQKPFGRVQ SPHAMVVHPRH SGSDPDMVKITVAGGN
VNGGAAASETYS QAS SGPRDIHVVETGNMVI SIQVLRNVT
9631.m04965 motif-positive NN
RRRHRPGWQKTNSFQ SWFLPLN STQ SSFMSTC SRL SSRNR
963 1.m05382 motif-ostive FGSTRTKSGFSSIFASSAYGLGRYFTFVEIQKATKN
SRKTAPRRKRKKKPHNPVTHFDADTSGSKGGGGRDTSGP
9631.m05526 motif-poitive KPPPPPPWLAEPRAAPSTSDAAGMSKGTFTYEQLAAATGG
RRYRGRGPAPAAGPTNAAARAAAFLRRNGLHQHRP SFTY
9631.m05779 motif-poitive EQLRAATAG
9632.m00032 motif-ostive WRNRFKWCGVPLHRSQGGSGIIAFRYSDLDHATKN
9632.m00033 motif-ostive RNRFEWCGAPLHD GED S SGIKAFRYNDLVHATKN
9632.m00260 motif-ostive KWRGTGRGFDKGTRGVRRFKYHQLVSATNQ
RARGMGIVGGKGGHGGGS SD SES GGDLAWPWQFTPFQK
9632.m00342 motif-poitive LSFSVEQVVRNLV
RK SGKFQLRIIGKNSNPKENIEELLDNYGSLAPKRYKYSQL
9632.m00847 motif-poitive KDMTGS
9632.m01083 motif-ostive RRKTTKTMIPPDNTGNEEDNDYVDPPTLNLTVLRAATRN
9632.m01131 motif-ostive RKKTQL SQLP SNS GLP SKIFTYRELEKATGG
9632.m01135 motif-ostive RKDVQPLQP SRDPGLPLKAF SYAELEKATD G
KRRMI SF SWFNYGHRQCTDVLRQF SGMLNML C SSNPKRR
9632.m01392 motif-poitive EVPTTPINNETLKKVSYGDILKATNW
RRARKRRRRDD GVSYDD SIDDDDEEDMES GTGPRRIPYA
9632.m02040 motif-ostive HLAAATGG
9632.m02719 motif-ostive RGNKFKCCGAPFHDNEGRGGIIAFRYTDLAHATKN
RHKQKIKRQALLRQTDEFFQQHGGQILLEMMKADGNDGF
9632.m02858 motif-ostive TLYKRGEIETATNN
KYKQRIKRQDIMRKRGEYFHLH GGQLLTDMMNIENNI SFK
9632.m02868 motif-poitive LYDRDDIELATKG

KYKQRIKRHDLMRKRGEYFNLHGGQLLTDMMNIENNI SF
9632.m02875 motif-poitive KLYDRDEIELATKG

RHRQNTKKQALLRQTDEFFQQHGGQLLLEMMKVEGNVG
9632.m02879 motif-ostive FTLYERGQIETATNN


9632.m03307


motif-positive


WRIKGKWIIAHPLEKSEDSIGIIAFRHIDLRRATKN











Table 2-2. Con inued


Protein ID Category Juxtamembrane Domain

SRRRRRRRGVAVATPVLHLATAVAPPKHPGKPPKDIQEVP
SRAAAAAAAPKAQPAQVIQAPPPQPPP SE SIQIETGKEHRIT
FREQQHQpPPQPPPYHQRSGGPSSRGGSGESRGGGGGGGG
9632.m03373 motif-positive GAEPGVPEVSHLGWGHWYTLKELEDATAM
RRHRGS SSPVS GRIHAEPTGTAPRVERRL SMALL SKGPNTTV
9632.m03459 motif-positive EQFPLVALRAATDC
WWRRRKPEEHFFDVPAEEDPEVHLGQLKRFSLRELQVAT
9632.m03631 motif-positive DN
QRKPRPHH SRDVAAELALH SKEAMSP SVYTPRVSDARPPP
9632.m03678 motif-positive PPAAVVPAIQPAVAANVAGKKKLFFF GRVPRPYDLEDLL
S CHLRRRAHNLKRSKKDIEVTAVSVEYEEVTCKQMCTKEI
9632.m03707 motif-positive YDATEN
9632.m03789 motif-positive KKSKKIDPPKQSYSTGGLPLKSFTYEELHEATGG
9632.m03791 motif-positive KKTDLPKQ S SSTGGLPLKSFTYEELHEATGG

GSGKVQQTTDVDVKVKLDNGSYHGVAYMHNSFDLYSQL
YD GGSW SMQ GPDPATD SAGKIVG SQVKSNLKSKRKTIIEK
SRVS SDEVNVAKGLLPDNAGQKNIMKHDVIRETVP SLHV
VAEETEND SKTVS TSNRENTS GTPERSF SSVHQLED SDL SD
EDWNDED SGS GS GFSNTP SFDMFDDASRNKKKDLILVHLL
RLACASKD SL SASLPAIS SEL CNIGIL SEWAKDLI SKSPAVF
9632.m03956 motif-positive GETFGHFFGPQMTS SEC SLFWRADNS SSRPN SRYLND
HMRKPLETVAPLQDKQIF SAG SNMQVSTKDAYTFQELVS
9632.m04082 motif-positive ATNN
WKYKGFEKSRGTGRVSNS SATRKTGMRS SFS SMTS STASF
9632.m04 117 motif-positive VSTIATCPPTVKTF SI SELEKATENF S
RWRRRFIEKRD GVKKRRRSP GRGSG S SGT STD SVSQPKLI
9632.m04727 motif-positive MFNSRITYADTVEATRQ

SRGRENQWPPLEGNSQLTTTKNLSCDEVPYPFGLKGKSAP
GFRVTCRKND SAAMLRIGHQKFRIDQVS SQEGFVVIFAGPI
YRL CYDRNGRPVVGS TGIGPTNLTD TPFFF SKRNTLVATG
CY SNFTATFTS SLHHHGW STNGS CTTNGRVNSD GLCP GTA
CCDAYGMPLDD AQEVTFEFNKTSA SVAGTCSAAFILYQKE
QIFKVSGNSKPMHLHQEEHIFRAGGGD SKPVHLEDVLVPL
GERRMVLDWVIGRATCEQARNNSFKTQYRCNNES SCMD
RFMGEGYVCRCKAGYDQHNGNPYEAGGCQAYSVITLPED
ILALAPIIRLVMATGQ GQGALTPIGHLAPLPTTNRKKRKVE
RNRAELFRKNGGLLLQQRF SMMT SQGED SSAKIF SAEELK
9632.m04923 motif-positive DAT
9632.m05098 motif-positive WRQNRRKRKL SLEQQELYSIVGRPNVI SYGELRSATEN
9632.m05 100 motif-positive WMQKRRKL SLEQQELYCIVGRPNVF SYGQLRSATENFN
9632.m05 101 motif-positive WRKKRRKL SLEQQELYSIVGRPNIF SYGELRSATEN
RRYRRKRRAADIAGD SPEAAVVVPELRRF SYGQLAAATN


9632.m05116


motif-positive












Table 2-2. Con inued

Protein ID Category Juxtamembrane Domain
KCRVL SGKRHQNKVVQKRGIL GYL SASNELGDENLELPFV
9632.m05247 motif-positive SFGEIAAATNN
RKCRGKRQNKVVQKRML GYL SALNEL GDENLELPFVSFG
9632.m05252 motif-positive DIAAATNN
RRRQRPRVSDDDAGVPAATAAVHARPNPALAAPSINLSSV
9632.m05258 motif-positive KEATGN

NYTGVVERLVWVAS SRAWQRFFQGPRDPCD SYARCGPFG
LCDADAAATSFCGCVDGFTAASPSAWALRNTSGGCRRGV
ALD CAGGGGG SRTTDKFKVVRGVKLPDTRNAS VDMGAT
AAECERRCLGNCSCVAYAAADINGGGCVIWTDDIVDLRY
9632.m05263 motif-positive VDRGQDLYLRLAKSEFDVIPDNP SMGVASVNLATIKS ITEN
RRIQAPRLITKEAGPPADEAIFRSDSVKSAVLSSPLVEFSTI
9632.m05264 motif-positive SATNN
MKRGKKRRRP S SAAYP SPKK SAAMSEVSRDNTDL GYVEC
VPDEETAAMMMPEEKARRLERS GCLTFCAGEGASYSLEQ
9632.m05414 motif-positive LM
9632.m05461 motif-positive RAD SVAAGRVGDEGYSLVFSHFRRFTYDEL SDATCG
KCAKIAIKMWYS SSRDHHTPIANGGGS S SSRGGIGGADAD
9632.m05466 motif-positive VVEMG SMSHFIEGLQNERPVRF SARQLRA
MRCVEAKHAERARRREEEAVPVSPPASGTYSSVDVRVEM
9632.m05467 motif-positive GSVDRFLDDILREKPARFTPENLREFTG
WKFLRPDIMRRLMRPKRAP SEVPEYF SGNMS GNLRTITYF
9632.m05492 motif-positive DYATLKKATRD
RKKRGSVPPNAASVVVHPRENSDPDNLVKIVMVNNDGNS
9632.m05758 motif-positive S STQ GNTL SGS SSRA SDVHMIDTGNFVIAVQVLRGATKN
TTKKKKKQRRRDNGYRAGFMSPTSPLS SHHPS SGSGASAN
VGSSLDPSFKTNYSAGSPKLKACMSDISMGNSRFFTYQEL
9633.m00004 motif-positive YQITDA
FGFCSHKKVHNSVQPNIASNNNGGGGGGAAAAVGSGAPS
PYGSPNGSLGRLRRQLSRVMTRQRSGPSSFKDPAEEFTFA
9633.m00288 motif-positive QLAAATKD
RRKKKMKKPQTPLT SRP S SSWTPL SLNAL SFL STGTRTTSR
9633.m00622 motif-positive TTYTSGTNSDTSYRIPFVVLQEATNH
9633.m00690 motif-positive HRRGGGARGGEDKD GEMSPPWDVTLYQKLEIGVSDVARS
APAAPPDVLSSPAAAAGEGEAEALLAVKAALHDTANVLA
DWNAGSGGVVVAGGGGGGGPCNWSMVTCSKTGHVSVL
DLAHRNL SGTL SPAIGKLRRLRLLFLQHNAI SGPIPDTIGRL
KVLQTLDLAYNHFTGTIP SIL GH SKGIFLMDL SFNNL SGPA
PVFSANSVLFSALTSVQKVILRGSETFVSRYSGHIFPYQRP
9633.m00702 motif-positive PIYLGHLKQFMIKEIKEATNN
TRKVSRRLHSLDLPKHHRRSSSSSPPPMPPPLPPPPPSANA
TLGKESPSSNSASDGAAAAVVVGGERGAVQVFSYRQLHA
9633.m01041 motif-positive ATGG


TRKVSRRLHSLDLPKHHRRSSSSSPPPMPPPLPPPPPSANA
TLGKESPSSNSASDGAAAAVVVGGERGAVQVFSYRQLHA
ATGG


9633.m01042


motif-positive











Table 2-2. Con inued

Protein ID Category Juxtamembrane Domain
TRKVSRRLHSLDLPKHHRRSSSSSPPPMPPPLPPPPPSANA
TLGKESPSSNSASDGAAAAVVVGGERGAVQVFSYRQLHA
9633.m01043 motif-positive ATGG
QSKKRKVLNNSASHSSGWLPVYGGNSHTSTSKSSGGRSA
9633.m01831 motif-positive ALINPNITAMCRHF SFGEIKSATKN
RQKKRAQKLVSINDPFASWGSMGQDIGEAPKIKSARCFTL
9633.m02137 motif-positive EDLKLSTND
RRQQRIRLAKEKLAKEREEILNANNS SGRTAKNF SGRELR
9633.m02285 motif-positive RATAN
RRKKKVAKD TGKSDEGRWTPLTDFTKSQ SAT SGKTTNTG
9633.m02291 motif-positive SH SMLPANLCRHF SFAEIQAATNN

PFYFFLP SLFCLQGPWWLTGHDLEGS GCVWEWGLHPWLP
KSKLEGGKAFLAVGTSSVAAEFVINGTSLGLGEEREVQQL
SRLEYLVDHG SVP SGMVAPNTRSF SLDKSKSQGGLD SRKD
9633.m02806 motif-positive AFIPRDANGQPIAAHTFTFRELAAATKN
TRRWKPGTVD GAGGAS CNGDKPGGAPAS SCGS SVRGYN
NSRYYAAAAAGCIYGGRL GF SVQPRNRGAQVFTYRELES
9633.m03039 motif-positive ATDG

RRRKPAAKRAS SAAAAAAAP GGAAVPL SPATIPPVSKEIQ
EVAVHVGSLRHYLEAGATFLKEGGGVGGAVVDGD SLGG
STVYGSQRVHIEAGKGRRMVAYAD GEVGPVASDLAASA
9633.m03361 motif-positive QAAVGVGVGPEVSHL GWGHWYTLRELEEATAA
RRVRSAASH SAVPTAL SDDYD S QSPENEANPGKLVMFGR
9633.m03735 motif-positive GSPDFSAGGHALLN
RQKRRAKELKERADPFASWAAGQKD SGGAPQLKGARFF S
9633.m03811 motif-positive FDELKICTNN
RQKRRAKELKERADPFASWAAGQKD SGGAPQLKGARFF S
9633.m03812 motif-positive FDELKICTNN
KRNRKPHKHMMIGSVDL GDEDEMRGSE SLLYDL STLRAA
9633.m03875 motif-positive TAN
RRRRRRRRRQPT SPGDFLGPLPVT SRHHQQ SQFIKPTVTYP
PQLNAH SPLQ S SSNSDPP SPLLQP SPPPPAAS GGTVSYGDL
9633.m04105 motif-positive VAATNG
9633.m04180 motif-positive KRRKRLARTEPAWKMTPFQPLDFSEASLVRG
KKKQGSMNT SIKPQNEANYVPTND SD GHG SSMQLENRRF
9633.m04201 motif-positive TYKDLEKITNN
RKKKQGSMNTSVKPQNETASYVPTNGSHGHGSSMQLENR
9633.m04202 motif-positive RFTYNDLEKITNN
RKKKNKSKGAVKPQILGNGVQ SH SQNGS GGSLLELHNRQ
9633.m04204 motif-positive FTYKDLAVITNN
KKFWHGLLSSMGKSKEAPNIESFLQKHEAQHPKRYSYSEV
9633.m04448 motif-positive KTMTKS
RKRRQYKMT S SSRLLKYTTS GRTPRSKGS SDKFVES GSFH
9633.m04450 motif-positive YLQTHHFAYEELEEATDG












Table 2-2. Con inued

Protein ID Category Juxtamembrane Domain
KWYKRPQDWERRNSF SSWLLPIHTGQ SFTTSKGGS SKS GY
9634.m00267 motif-positive TF S STL GLGRFF SFAEIQAATKN
9634.m00625 motif-positive RKWETRPEITDEGYAIIS SQFRRF SYKELQKATNC
9634.m00626 motif-positive KWGRRPEIRDEGCTIIS SQFRRFSYKELEKATGF
9634.m00628 motif-positive KWGRRPEIQDEGYTIIS SQFRRFNYKELEKATD C
KKKYFQQHGGMLLLQEIGLKQGQSTAFTIFTEAELIEATN
9634.m00665 motif-positive K
9634.m00812 motif-positive KKLTTTSVSPHL SSGGVMDERNSEHPRISHRELVDATGG
9634.m00813 motif-positive RRDARRSMLLAGGAGDEPGERDHPRISHRELAEATGG
RPH SPPVFKD VSVSKPVSNVPPKLVILHMNL SLLVYEDIMT
9634.m00996 motif-positive MTEN
NKQYEYLEPGCQLL SLPS S SGANELIPKGRHDFWDNQLEI
DHGQTSVPEKEKDLVEVPQEAERVSDKSVGTESSRSDIAL
9634.m01240 motif-positive DGVAE
RCVKKNGLPAVNINTNPTAAAAMYAVVPDSQIRDATVER
9634.m01323 motif-positive FLKEIAGEKPIRFTAQQLAGFTNN
RRRRASASVAAPARSPES STETLRANG SLNS SVSL SVASD
WDHHPPPAKRAAAFWAWRGGANNGSHSPPPVSVSGIPKY
9634.m01742 motif-positive HYKDLQKATNN
9634.m01764 motif-positive SIRKLIELTSRKNAGFLPELVKGPRKF SYKEL SAATRG
RKKKTLEKQH SKTWMPF SINGLTSL STGSRT SYGTTLT SGL
9634.m02243 motif-positive NGSYGYRFAFSVLQEATNN
9634.m02283 motif-positive PRKWLRNRKPKKLGSFIKKSHPLVSYEELNQVTSS
RRKKKMD GLVYHYD GNNYFVP SSQFGGS SRNHHPPP SAI
MLNS GGASAD GGGYYNS GTF SGGEGTGPAGSK SRF SYEE
9634.m02784 motif-positive LTGITSN

RRRRRQAERYYPGFAVP SYTPQHMS GEAPFLRPP SAS GSM
NFSAGQSQGVSPMMSSGQAYGQSTSYGQQQRLTSANYST
9634.m02811 motif-positive GSQGGGAARSVAASGELSVGNTKAFTFDELYDITAG
KRKRHPPP SQDDAGS SEDD GFLQTI SGAPVRFTYRELQDA
9634.m02861 motif-positive TSN
9634.m03396 motif-positive RMRTRRERVD GENIEHLP GMPRKF SFEELKVVTGD
RSRKRVPQNSRKSMQQEPHLRLFNGDMEKITYQDIVKAT
9634.m03685 motif-positive NG
9634.m03690 motif-positive RIYGMKEMQANPHCQQINDHVKNITYQDIVKATDR
RSRTLAGKKAMSMSVAGGDDF SHPWTFTPFQKLNFCVDN
9634.m03723 motif-positive ILECL
9634.m03838 motif-positive RMEGRQLTGVWPAESGYEMITSHFRRYTYKELQRATRK
RK SKD GGI SE SKDVASTFAVNIDRASNREIWDHTQQDAPV
SSSVLPPMGKMTPERVYSTNSSMSKKMKVSVTANPYTVA
9634.m04131 motif-positive SLQVATNS
RRT SSVHQNK SSNNGDIEAA SL SSVSEHLHDMIKGTILVM
9634.m04643 motif-positive VPQGKGGSNNLKFKD ILKATNN
RKVMSNGAVRD GGKGVEVSLFD SMSELYGD CSKDTILFM
9634.m04648 motif-positive SEAAGEAAKRLTFVDILKATNN











Table 2-2. Con inued

Protein ID Cateor Juxtamembrane Domain
RRVMSNGAVHD GGRGVGASLFD SMS SELYNDND SSKDTI
9634.m04650 motif-ostive FFMSEVAGEAAKAVTFVDVLKATNN
RKLMSNAAVRD GGKGVDVSLFD SMSELYGD CSKDTILFM
9634.m04652 motif-poitive SEAAGETAKSLTFLDILKATNN
RRVVSNGAVRD GGKCVESTLFD SMSEMYGD SSKDTILFM
9634.m04653 motif-postiv SEAAGEAASGVTFVDILKATNN
RRRSATQRWQNHHAAAF GYQGNTTAYYYHHTGGARPQ
WAATKTGAPSTPPNMMMHPTNMTGPHVVVRPPLVPPPPP
9635.m00383 motif-ostive PVPAGLDENAFGYDELAAATGG
RCVKKNGLPAVNINTNPTAAAAMYAVVPDSQIRDATVER
9635.m00413 motif-poitive FLKEIAGEKPIRFTAQQLAGFTNN
RWKKKTS ANKTKDNPP GWRPLVLHGATTPAANSRSPTLR
9635.m00473 motif-poitive AAGTFGSNRMGRQFTVAEIREATMN
9635.m00841 motif-positive NKSKWCGVPLYGSQ GND GGIIAFRYTGLVRATKC
RRRRRS TTTAGDVSDDESVA SLPPLPREGLYIFTK SELKQA
9635.m01226 motif-poitive TNG
9635.m02031 motif-ostive RKARRCKKVRVLDETGDFITGCPTYPFEIIRAATNG

KYCRQFVIRFLKPFMRDEKLMDPRGKSEGTSKRRKARKK
D GLINSTQIF SASDKEGNGTGGSTEAQ SNKAHD STNVELP
9635.m02803 motif-poitive NGLNGRQIGKL
RRRRS GEVNCTAF S SSLGGGGNNTNGRQLVVKGSARREF
9635.m03088 motif-poitive RWEAIMEATAN
KQLPFCSNANTITHMPEGTYKTNLLQLAKNLITNVNQTQL
HSANGTAGAAGPDTVYGAVLCRGDSSAESCATRLQRVLD
TASINGT SGDD SGYFQNQKNVTLYDHDFQALL SF SDKDFI
SSFSNAPECTVSAYLNPPPDADRAQFSQLFSELMEKIAAAV
VSRRPVNYLTGRGWFDLKSQTVYALAQCTDGMPPENCRS
CLD GIIDEGKKMVGGGLTGGAVLGMRCSLWYQTDVKFF
AGDPEVSLHMPTQQARFELRLL SMAVQNVINLWRIEEGNS
9635.m03453 motif-poitive GFSLYDFSQIKEATQN
9635.m03481 motif-postiv KRKTERARKPSIADPTDPADIESIDSLILSISTLRVATNN


KAWHFCGSSGDVFAPRSTYQSNLALLSAGLAKNASASPA
LFAAGGVGDPPDTVYGLALCRGDTTNATACGACVAAAF
QDGQQLCAYAREATVFYDPCYLRFSGRNFLAADGDNFAA
YF SKVRNVTAPAEVFDAAVVALLNATADHAAAS SPRRFA
TGVEAFRGWGVRDIYALVQCTPDMSPAGCRS CLAGII SWV
NDPDYF SGSPTGRVL GVRCNYWYDVHPFFPG SPLLRLDAP
AFDVSPPAP SPAPVAADTTPPADRAVDRDLKFF SYTF SVS Q
CSVFICLKRRKASKNQNTPIIPAPNKIKRGNCAIFDLPTLQ
ATDN


9635.m03483


motif-positive











Table 2-2. Con inued

Protein ID Category Juxtamembrane Domain
YPWGLCNDTAGEFPARRS SYLASINLIAATLPGNASASPDL
FATAEGVGAPPDQVSALALCRGDANASTCLACLTQAFLD
LPNACAYHKVAAIFYD SCLLAY SNATIAAGDF SSEKIPIYG
FYSNANATTEQARFNRLVAALVNATADYAARNSTRRRYA
S GEADFNAEFPKVYSWAQ CTPDLTPAS CRS CLAQIIGTYIG
FFENRVGGFVRAVWC SFQYSTTPFLD GPMLVRLQGT SGAS
PAP SPAAVVPAVNQTPPAATPTLEGDANYS TEAEDIENLD S
9635.m03495 motif-positive MLIDISILRSATGD
QPWEICGENGNYTANSTYQANLKQLAAALHKNVSSGTGG
GRLFAS GAVGAVPDAVYALAL CRGDINAS ACAD CVGTIF
QDAQQL CPYRKEVSIVYD SCYLRF SNLDFL SSADNS GVVD
LYNTGTVSGDVGRYDRAVTGLLNATARYAAGNTNASSRL
FATGVMVGFDAQFPKIYAMAQCSPDLSPAQCGLCLGAMV
ARWWQTFEPNTQGARSVGARCNMRVELYSFYNVP SMLQ
LQAEAVAP SP SPAPAPAGKPPAVPGTTGAASRSEDFES IES
9635.m03516 motif-positive LFLDLSTLRIATDN
9635.m03524 motif-positive RRRTPARKASPVPYSTNPDDIQSIDSLLLDLSTLRAATDN
9635.m03526 motif-positive RRKRTPANKAS SLPF STNPDDIQ SID SLLLDL STLRAATDN
DAQPMPWHRCNTSSGNYTANSTYQSNIQYLATSLPAYASS
SP SLFAS GS SGAPPDAIYALAL CRGDTTNAS SCATCVAAAI
QAAQKHCALVKTVAIYDDP CIVRF SNLVFPVSPPYNKGMF
VAWDDNNVSAAAAAAFD AAFARLANATAEHAAAD SVR
RFATGEEAALAVAGEVYPKIYSLAQCTPDMSADACRSCLE
DILVRMVPTYLAGRKGGRVLGVRCNFRFETYPFFFGQPLL
QLPGSPASSSAPVNGVPTESSTDDMQSIGSLILDLSTLRVA
9635.m03530 motif-positive DD
9635.m03531 motif-positive RKKRRRGKAEHFTGPDAAEDFESVK STILL SLASLQVATDN

CGTSGGNYTAGSTYESNLLRLASTLRANASASPTLFASGV
RGVGPDAVYGLLLCRGDMNPSDCFDCGTNVWRDAGPTC
NRTKDAILVYNQCYAQF SDRGDFLAATNNS GEVSLLIS GT
NITSTDVAGYDRAVTELLNATVRYAVENSTKLFATGQRV
GNDTGF SNPIYSMAQC SPDL SPAQCRS CLD GLVGQWWKTF
PLNGKGARVAGPRCYLRSELGPFYTGNPMVRLPVKADEL
9635.m03539 motif-positive TQRRLAKAERHPGTDTNEDFES VKSTLL SLASLQVATDN
DKLFRNKVANPVRFQ SPQRFT SFD SSIPLNQVQDRKMEDE
9635.m03613 motif-positive TRH SNELNVTLFDFNTIAF STDN
KCRRRIKEKL GIGRKKAQLPLLRPARDAKQDF SGPAQ SEH
9635.m03616 motif-positive EKSEEGKNCELPLFAFETLATATDN
KRGRNIKDVMHKSWRSMHT STRSQQNS GMLD ISQ SIPFED
9635.m03618 motif-positive DTED GKSHELKVY SFDRIKAATCN
RARFPVDQDPDPESL SCENPKCGGGGGGGGKCGAFHMSA
TSSPPSGCSSSCVTGCSSSSEGVKVFRLDKTAFTYRDIVAA
9635.m04060 motif-positive TSG


KKKS GGKKVRPRGGGGGGLRRL SFTDLTGAADQDL SVSL
VGSNLHVFTVAELRDATRG


9635.m04226


motif-positive











Table 2-2. Con inued

Protein ID Categor Juxtamembrane Domain

KKKYWSLPRGGDPEQKEPL SPIVS GFKD SLKQMKSIKII STI
GKEELQKTVSMNLKPPTRIDLHKSIDEND VTSKSFTRKISF S
9635.m04270 motif-ostive SIRTPAYTVADLQVATGS
RRRHQRKKMREAEEANDDDDDTEGDPIMEIENGMGPRRF
9636.m00204 motif-poitive AYHVLVNATKS
RRRHQRKKMREAEEANDDDDDTEGDPIMEIENGTGPRRF
9636.m00205 motif-positive AYHVLVNATKS
RRRQRKKMREEEEDD SEGDPIVEIEMGTGPRRFPYHILVN
9636.m00208 motif-poitive ATKS
RRRRIKNRKEAEDEQDIS SD SEDND GEPIVEIEMGTAPRRL
9636.m00210 motif-ostive PYYELVEATKN
RRRRSKKRREVEEAEEARHVGLARDDDDDDD GEPIVEIE
9636.m00214 motif-poitive MGMGPRQIPYQDLIEATN S
RRRRIKNRKEAEDEQDIS SD SLDDD GEPIVEIEMGTGPRRF
9636.m00216 motif-poitive PYYELVEATKS
RRRQ SKKRREAQD GSWH GSDDDDD GELIMEIEMGTGPRR
9636.m00218 motif-ostive FPYHKLVDATKS
RRRQ SKKRREAED GGWHGSDDDDD GEPIVEIEMGMGPRR
9636.m00223 motif-ostive FPYHELVDATKS
RRRQ SKKRREAED GGWHGSDDDDD GEPIVEIEMGMGPRR
9636.m00224 motif-poitive FPYHELVDATKS
RRRQRKKMREEEEDD SEGDPIVEIEMGTGPRRFPYHILVN
9636.m00225 motif-poitive ATKS
RRRRIKKRREAEDEENASTDSDNGEPITEIEVGTGPRRLPY
9636.m00229 motif-poitive YELVEATKN
RRRRSKKRREAEEAEEARHVGLAGDDDDDDD GEPIVEIE
9636.m00233 motif-ostive MGMGPRQIPYHELVEATKS
RYRRSQAQIRS S SSRRASTIPIRANGVNACTIL SNSTTGQES
PREVEDRGASMWLEGPGRKSVI SAS GIPKYAYKELQKATS
9636.m00365 motif-ostive N
RWLQWRGGDDTAAADALGPGGARHPDLVVGPWRMTAF
9636.m00457 motif-ostive QRLSFTADDVARCV
RGKQRGDEIYGGLMLGD ISTSREL SDRKVDFPIF SFREIASA
9636.m00764 motif-positie TNN
9636.m00975 motif-postiv TQKRKRLEVEMEELL SIVGTPNVF SYGEIKSATDN


9636.m00986


motif-positive


RQKRKKMEAEMGELLSVVGRPDVF SYGEIKSATNN











Table 2-2. Con inued

Protein ID Categor Juxtamembrane Domain
RNCKISDNLRTVNF SKLGRLTLLDL SFNNITGEVPQ SILNLN
NLGYLFL GNN SLTGSLPDAKS SSLTNLDF SYNQLTGSFP SW
VTN\NNLQLNLVANKFNIRENNNSILP SGLNCLQQDTPCLL
GSPEYYSFAVD CGSNKSMKGSDNTIYEVDAANLGVASYY
VTRNTRWGVSNVGIFNDAS SRNYVINS SQQFQNTLD SELF
QTARMSPSSLRYYGLGLENGNYSVKLQFAEFAYPDSKTW
ESTGRRIFDIYVQGVLKEKNFDIRKAVGGKSFTAVNKIYNT
IVSKNFLEIHLFWAGKGTCCIPTQGYYGPMISALSVTPNFT
9636.m00990 motif-ostive PTVRNGEPKKKSKAELYNLAGRPNVF SNAELKLATEN
9636.m00993a motif-ostive KKRRRLAQQQGELYNLVGRPDVF SNAELKLATNN
9636.m01372 motif-ostive KRRPFLRYTRAPQHHETEFDEESIGIRPYSFHDLELSTDG
9636.m01496 motif-postiv KTRMKPNIVDNENPFLYETNERI SYAELQAATE S
9636.m01743 motif-postiv RSRRARRRSPTLPF SPPPAPARPLRRY SRRALRRATGG
KKTRQALD SKDKKL SSTTKGHMLLPMF GKLNSMKTSKKE
9636.m01856 motif-ostive VVAMMDFSVLDSATGK
9636.m02427 motif-ostive KKHKCLLPWQRSTTAPRLH SLLRSQLKSYTYSEVRKMTKS
KFHKNKTKEIQAGCSE SLPGS SKS SWKL SGIGEPL SINMAIF
9636.m02489 motif-poitive ENPLRKLTFSDLHQATNG
RRRRRHRCLL SGPS SVLGILEKGRDVED GGGGEVMARL G
9636.m03449 motif-poitive NVRQFGLRELHAATDG
9636.m03477 motif-positive KPKINSDL GILFQGS SSKLNEAVEVTEN
9636.m03886 motif-ostive RSRRSD S SGAIHGAGEAWEVTLYQKLDF SVDEVV
KRRRKVS GGDD GS GITGTMIRSLAGGPREFEYRELRKATN
9636.m04075 motif-ostive N
TEAAGD GCS AGCDLALASFYVTPNQNVTNMADLFGIGAA
NYRSLAPYNPNIPNLDFINVGGRVNVYFTCGCRSLPGSPGA
TYLAGAFPFQMSRGQIYTSVAANYNNLTTAEWLQATNSY
PANNIPDTAVINATVNC SCGDASI SPDYGLFLTYPLRAEDT
LASVAATYGL SSQLDVVRRYNPGME SATGS GIVYIPVKDP
NGSYLPLKSPGRRKAKQATLLQ SSED STQLGTI SMDKVTP
9636.m04332 motif-ostive STIVGP SPVAGITVDK SVEF SYEEL SNATQG
RKKRQREEAAKQRMGVVFKKPEPDESPD GIGRSL SCCLRK
9637.m00068 motif-poitive KAGDESD STEEVTDTSASKEGVVAAKAKT
9637.m00536 motif-postiv KKWGSGFKKGLGAKAAVGKPRQYTYQHLFSATKG
RRKTKGSANNTINPHNEPTSHSHGSGSYGHGSMQFENRRF
9637.m00673 motif-ostive TYKDLQMITNN
KLRMNQKTEEVRTGYVESLPTSGTSSWKLSGVREPLSINV
9637.m00942 motif-ostive ATFEKPLRKLTFAHLLEATNG
RRWRRRRRRQQAQPLPLPPPMLYNPNPYYKGDQPPLPFVF
MQQQHHHPTAPQT SGGTF SDAGSERPH SI SID GGSL SYDQL
9637.m01166 motif-ostive AAATGG


KCRRKRMAL STKHQHIKAAATHE SEPNELRDAEAGALEP
VAS SAGPNHGKEYGGDPAAAAGPRQYEYGERVVSD GPR
HGAAYNELVAAGPRLYEYGELAAATRD


9637.m01453


motif-positive











Table 2-2. Con inued

Protein ID Category Juxtamembrane Domain
PFVS SVNLRTL GS GVYHPVLAANQ SMCLFDRRNMG SNVSI
LRYPDDPYDRYWWKMRSDPTWKNLSTASTIEQNDNFVVP
LPVMQTAIEASNNDTIIKVTRKDKTAHKCMIFAYLADFQN
SQLRQFNITL SDTKPLLYSPPYL SAGIVDI SDWDMPNNGM
YTITLEPTSASKLPPMLNAFEIYTLIP SDNPMTFPRD SWD GV
KC SNP SDNTSRIISLDL SNSNLH GPI SNNFTLFTALEHLNLA
GNQLNGPIPD SLCRKNNTGTFLL SFD SDRDTCNKS IP GINP S
PPKSKLVFVGIVSADVPH SEPELEIAPASRKYHED GLQRVE
9637.m01534 motif-positive NRRFTYKELEKITNK
RQKRKPKIL SYNLYFLEPVS TDDPPREPELDIAPASRNNHG
9637.m01540 motif-positive GTLLKVENRQFTYKELEKFTNN
RAKRKLNT S STDLAMVPELMGAPGHITNHWDHLQKPENR
9637.m01545 motif-positive RFTYQELEKFTEN
RIVHDNPTTFSQDFDAIMAIKYEYGIKKNWMGDPCFPHEY
VWD GVKCSD AVIFPTANCMGRYPIL SHCLLP SST S SSTDLA
9637.m01547 motif-positive MVPELRGAPGHITNHWDHLQEPENRRFTYQELEKFTDN
GTPFVNTVELRQLD SMLHFRKIMGNSSPIYLYERRNMGPS S
RDNPIIRYPND TYDRFWYPWGSEDDPTY SNL SAP STLIIPP S
P SYAVP SPVLETAVVPADNNK SVL SIIQTNDKEIHEYLVLV
HYADFQSTLQRQFQAYSNGDPIQGTGGPYVADYTGQTVG
TIDWI SAETS GKYNITLAATD SSQLPPIVNAFEVYGRIPLDN
PSTFPTDYTCKII SLAYNKLNRWIKELRLIKVPHKVDAIMTI
KFEYGIKKNWMNDP CFP SNLVWNGVRCSTGSDNTMRII SL
DL SNSNLHGSI SNNFTLLTALEYLNL SGNQL SGTIP SSL CEN
NAGSFVFRFSYLFNVDIGDNFVHLDSTYGPEFLNAPGSTK
9637.m01568 motif-positive NHWDHMQKTENRRFTYEELEKYTDN
RAKRKHNNDPPTVLELTGAPGHKTNHWDRLQKPENRRFT
9637.m01571 motif-positive FEELQKFTDN
RAKGKHNVSTFDPPRVPDPKKAPGSTTDHW SHLPINGSRQ
9637.m01581 motif-positive FTYEELKNFTLN
9637.m01604 motif-positive KKQAIVKSRGQEQYGDHIHIPENREFTYEELVKITNN
RVKRK SNIFAYNPPRVPEPTNASRNEKYHWDHLQENENR
9637.m01629 motif-positive QFTYKELEKITDN
9637.m01633 motif-positive RAKGKSNISIPGSEKYHWDRLQKNENRHFTYDELKKLTDN
KAKRKPNTSAYNPPRVPEPMNAPVSEKYHWDHLEKNENR
9637.m01645 motif-positive QFTYEELEKFTNN
RKIRERLAAVREEFRRGRRRGGGGS SPVMKYKFPRITYRE
9637.m02208 motif-positive LVEATEE


RNKMSKNGRKKKGKS STMKVYL GRQKSP SRD TGYNADA
DDD GGGDDDDIVIPGMPARF SYQEITTMLT SN


9637.m02488


motif-positive











Table 2-2. Con inued

Protein ID Category Juxtamembrane Domain
CQTRCGDVDIPFPFGI GDHCAIHEGFRLECDNATKGTSNQK
PFWGDFEVIKI SMED GKVWVKAYMSRQCYDQ STGGMSY
SDASANL SGS SFWL SD TDNKITVIGCKTLAYMTTD SYVIG
CS SACDNKVNKLTPKNGS C SGAGCCQANVPKSIQYYQGY
FNEGYNTTKIWMSSPCSYMAVMETAAFNFSTSYLTSSVFY
DTYKGGVPVVYDWAITSKTCTESRRNKTSYACI SNNSQCI
DNLTNAQGYRCKC SNGYEGNPYIKD GCKDIDECLNNATY
PCKGICTNTL GNFTCS CSP GSYMMNGD CMPKKKLRFD SVP
9637.m02629 motif-positive VVVELQEATNR
RMRRGGGAGGGGRVVHGEGAWEVTLYQKLDISMDDVL
9637.m02693 motif-positive RGLTSAN
AIPYPLPLPRGGGDTYDAVAANYADLTTAAWLEATNAYP
PGRIPGGD GRVNVTINCS CGDERVSPRYGLFLTYPLWD GE
TLESVAAQYGF SSPAEMELIRRYNPGMGGVS GKGIVFIPV
KDPNGSYHPLKSGVGIVLLFCELLCIYAKVAKVQEGHIASI
9637.m02882 motif-positive SRRNQPPCCYYLCDDASQAEGIKVERSIEF SYEEIFNATQG
FVSLVHQVAVDTEHDDSIGVTDESGWPCIELDRRMRRMN
GRNPEKNIKMEHEND SSLAWVFHAPYREHENEFPDIPEEK
9637.m02917 motif-positive EGNGFAPKSDDPTKAPPPIEVPEL SFDELKEKTDN
EKIMTGKLTDFTSAYAYKCRLFFIRILSAWPAGSIDCCEEM
INRCFCCVTGGD SDPEPAATS SRRRTNPARASKNRTSVDY
9637.m03043 motif-positive PWETYTLKELLQATGNF SESN
PKFKEEMIVKHD GKNNKKRALRVL SVSDEFGKEIPAQDLD
9637.m03212 motif-positive FPFVEYNEIATATENF SDAAMN
KIKGKKRNREKHRKLIFD GANT SEEIGQGNPVQDLELPFV
9637.m03219a motif-positive RFEDIALATHN
KIKGRYIQ CSFPIYLDAYGKKRKREKHRKLFLD GACTSEEIE
9637.m03220 motif-positive DGSPIQDLELPYVRFEEIALATHN
KACKKRNREKHRKQILFGMSAAEEVGEGNPVQDLEFPFV
9637.m03224 motif-positive TFEDIALATNN
RRNH SSPVS SHYYTDES GRRNS SAVNMKSLEH SP SMGCKT
PPAVPRKSMSDNEFENKLNH SRRSTDPI SLMNH S SSDLQA
9637.m03295 motif-positive ATGN
9638.m00012 motif-positive RKYS QYREMARTL GLEYLPAGGPRRF SYAELKAATKE
KITKKKKRPPPPNMPFFTDEKGNVYYATGGLPPMWQQHG
S SNYSIPPPPPPGWHMS SSAGGFS GEMGMGYS SGPYGPAL
9638.m00059 motif-positive PPPSPNVALGF SKS SFSYEELAAATSG
9638.m00828 motif-positive KQHLKLKKFYEQNGGPVLKGVRNIKIYTKKELKQIT SN
RKLQAKQCSPLAATAQQLIVKQAASKQIKQQSTYKSKQA
MLAVAD GDGAALGEDVGEVGVLDECAVAVVEGEAVVA
ALSVARGPGDDVGTRSALVLRHLMVAPRKSSATASWSST
ARAMRPPPRPTAA SP SHRLGPAAASPDRRHLTPADTADQD
9638.m01519 motif-positive VEAGSLLFDLATLRKATAN
9638.m01657 motif-positive RKQKWF SRGVENAQEGIGIRAFRYTDLQCATKN
9638.m01661 motif-positive RRKGKLFARGAENDQGSIGITAFRYIDLQRATKN


RKKLRP SSMRTTVAPLPD GMYPRVSYYELFQ STNGFNVN
N


motif-positive


9638.m01937











Table 2-2. Con inued

Protein ID Categor Juxtamembrane Domain

KRKRKGTRQEHVEQRQPFNSYP SNEVKDVKPIPE STKIEVE
PLP SPVAVSLKPPPKIERNQ SFDDDDDDF SNKPVAKKSNSA
9638.m02114 motif-ostive SVKATVYSVADLQMATDS
HHSKKSRVVRLGGGDIKDKAAEQAGKKVSSGSGNGSRST
9638.m03092 motif-poitive TES GKGAADQLQFFRPEKATF SLDELF

RRKPKKSFDKIPVSQIPD VSKEIAVDEVREHAVVENFRVQE
SHAISVQEKHYEKDSGKMLAHLVRSKSSDADNLSQCSSV
YQCDRAGSSYSGDEGSSGNARRHFSQYATVSASPLVGLPE
9638.m03136 motif-ostive FSHLGWGHWFTLRDLEHATNR
KAYKNKRRREQQQHDDEEEILVSDSAAIVSPGSTAITGKL
9638.m03492 motif-poitive VLFRKNSSASRYEDWEAGTKAVLDRN
RRCRRRRC SRLAPAPPHHGRSNRSLKQQQ SMVSDKD IEEA
ARWPPPP SFQPPIEVIKAEQTAPLIMVEAARTS GETAT S SGG
9638.m03505 motif-poitive STRGW STES GGSDAAEPEA SRRGWGRRYTRRELEEATNR
RRRQRRATLPVPEEEEKES VGTPW SPFTPD GEG SFGSAVV
9638.m03516 motif-ostive TPRRMNMKLHIPLAEIMVATGD
KRSRRTFKEIPITQIP SASKDIKEVRAVDEFLPNDFVVHD GL
LLAIQNEPVEPVDKDVrNQFAQEDKTIQGEENSPVPLHYVD
NYDVIQ SVS TCEQ S SSHAPVD SVLLPGLPEF SYLGWGHWF
9639.m00075 motif-ostive TLRDLELATNC
RHRHRHRVVVKPRCRCLQPL SSAATLPVTAP SSRS CECVS
9639.m00613 motif-poitive SW SFYGGGGDAGDRSLKML SLDDLAGATGG
9639.m00642 motif-postiv REKQKRKSVSLP SFD SSFPKVSYHDLARATD G
9639.m00647 motif-postiv RGKQKKKCTSLTPFD SKFPKVSYNDLAKATEG
9639.m00648 motif-ostive RGKRKRE SL SLP SFGTNFPNF SYNNLFKATEG
9639.m00651 motif-ostive RAKLKRESVSLPFFGSNFPRI SYNALFKATEG
9639.m00653 motif-ostive GRGKRKKK SI SFP SL GRKFPKVSFNDL SNATDR
9639.m00659 motif-postiv RGKQKGHSISLPLSDTDFPKVSYNDLARATER
ANNLRGEVP SNLGNSLPNLQYLIL SDNFFHGHFP SSLINS SK
LNLIDMAENNFTGVIP S SIGKLAKLNVL SLQLNQFQAGTK
KEWEFMD SLANCTELEVF SVARNHLQGQ SFPPI SYFGDIPN
TL SNCESLEDIRLDRNAFTGIIPTSLGNIRSLKVLNL SHNKL
TGSIPVSLGNLQLLEQLDL SFNHLKGKVPTNGVFMNETAI
QID GKSWALWRRKHEGNST SLP SFGRKFPKVPYNELAEAT
9639.m00662 motif-ostive EG
9639.m00663 motif-ostive KGKQRTNSISLP SFGREFPKVSYKDLARATNG
9639.m00664 motif-postiv NRKQNRQ SISSPSFGRKFPKVSYSDLVRATEG
9639.m00665 motif-postiv KRKHKRQ SISSPSFGRKFPKVSYHDLVRATEG


GGAVGLEERSDAAEDSLVSVLAVYDGFCNLKQINLELKV
CGGS SIRKTLVKEAASYGAAHLIL GVAKNSL SF SRS SSI SV
AKYCAKRVPTGCSVLAVNNGKILFHKDAVQQEPYHSAST
MTETPRRSYRKLLT SVIGEKLRDECEQDNRSIFRAVTMPP S
SPAPTREVSLALVPMKVHRRE SPEVATGW SFLRKKFLPDR
KPASHDRSKMSVVQWAMRLP SRYS SASPVC SEYRTTTPD
GITSASRILRDRVAVPSRSNSGKSSVVIEELDNSSDKEIPEE
IALREKFPSVYSTFSHSELAKITSD


9639.m00844


motif-positive










Table 2-2. Con inued

Protein ID Categor Juxtamembrane Domain
9639.m00968 motif-ostive RIKFNCCGVPLHHNQGNSGIIAFKYTDL SHATKN
9639.m00970 motif-ostive QNKLKCCGMPLHHTQ GNS GIVAFRYTDL SHATKI
9639.m00973 motif-postiv EKKHKKAKAYGDMADVIGPQLLTYHDLVLATEN
RRRRRRGRGGQAD QAAAMSLMLPRHGS SKGPGSVVEHF
9639.m01092 motif-poitive ALEALQAATDG
LYSDMDIDLASYFKITGSPFDTFSSSKIKMHVTTILKSGEF
RQNNKSEIKSQLT SKPTLQ SSQGITDNFP SEQDFEHGAFKG
PYVGF SDF GQ SEMKGES STQNKAGNKSQYPITIPKNPTLD S
9639.m01134 motif-positie LKVITDN
RARS CRGGGGPD GGGAWRFTAFHKVDF GIAEVIE SMKD G
9639.m01209 motif-positie IN
RRNKRPKLQPQPRSP SYASWDIKS TSI STPHLQGARVFTFD
9639.m01301 motif-poitive ELKKITNS
D GS SSVANGVTIS SEMTP SGESFNS SYNS STTPVD ISLAAIE
9639.m01600 motif-ostive ACTDG
KLRDRRGD GCGGD GDDDEERKRGLFPFP CMRADD SSDD G
SDAGDDVKRNNTTTTTTASGGGGGGEEGQLVAIDKGFKM
9639.m01817 motif-ostive ELDELLR
HHRKKKNVEKFRPVSTKT SPAESEMMKIQVVGANGI SNGS
9639.m02341 motif-ostive SAFPTELYSHVSAANS SNI SELFESH GMQL SVEVLLKATNN
RYMSKKSKADETID STRS SQDNKVHGEVINRWS GLYKF SK
9639.m02342 motif-poitive GEIEKAIN
9639.m02532 motif-postiv TRQ SKKPLKPRRGDILGATELQGPTSFYYKDLKVATNN
9639.m03250 motif-ostive RKNIKTNIPSTTSMEGHPLISHSQLVRATDN
9639.m03256 motif-ostive HKKIQTEIP STT SMRGHPLVSYSQLVKATDE
9639.m03257 motif-ostive HKRRKKEVPAMT SIQGHPMITYKQLVKATD G
9639.m03259 motif-postiv HKRTKKGAP SRT SMKGHPLVSYSQLVKATDG
9639.m03260 motif-postiv KLLARYKKIKSKIP STTCMEGHPLISYSQLARATD S
9639.m03261 motif-postiv RKPMSKLP SATSMQ GYPLI SYQQIVRATDD
RRYKKGEVSLQGDMNMQTDEEALAWGREAC SSEFTSFKL
9639.m03532 motif-ostive SQVLDATNN
9639.m03591 motif-ostive QRMRHRPEIYVDVPGQHDHNLEFGQIKRF SLRELQIATNN
9639.m03592 motif-postiv QRMRHRPEIYVDVPGQHDHNLEFGQIKRF SLRELQIATNN
DVITLVKVIKSRVETVRQNKEDCELLAERADMILDLLRRV
QASKVIEDPDMWKPTEGLKSTL CRAGAIVKS CQEEW SYA
YRF CKGGRIARELRKVLKDLKFYILHLIGMITIINHDQNTR
YYYIPETDVVKPQDATASNAGKPVALEETGLKKFTL SELE
963 9.m04143 motif-ostive VATDN


DVASLVKEIKERVQTVSQNKED CELLAERAELILDLL GRL
QKSKVIEDPDMWKPTERLRSTLRRACEVIEFCRERSCTYRF
CKSDHTAKELRKQTPDVVQLQD GVQVPALGLPAQHFKYN
DRNDRGETLGI SGKAQLVTEP SSVNEPGLKRFAF SQLEVA
TDN


9639.m04147


motif-positive











Table 2-2. Con inued

Protein ID Category Juxtamembrane Domain
ICGSSKYTANSIYQSNLDSLLSSSFLVVSGDSSSGALFAKGS
RGAAPDTVYAVALCRGDANASACSGCVDAAYAAATARL
CPL SKDAAVFYDECALRF SDEDILNMDAF GRVNTSAAVG
VAPLVLMNITSEPML SGWNTNIQ GTKNFTQFFIKTMNYIV
AQALSTTKHYAAIRVDMDDADASNTVTLPRRLFCLAQCA
PDLVEDICYNCLQNFSDLATANFAGRQGGRILALRCNLRY
DTDKFFAGKTNADEDEALIWGLQGRSSEFTIYDFSQVLEA
9639.m04236 motif-positive TDN
9639.m04368 motif-positive KWRRRWFFDNNGGRLLEGMGITIFTEKELD S
GNESFRLP SLWFF SIDANNFTGPIPQGFAACQQLQVF SLIQN
LFEGALP SWLGKLTNLVKLNLGENHFD GGSIPDAL SNITM
LASLEL STCNLTGTIPADIGKL GKL SDLLIARNQLRGPIPAS
LGNLSALSRLDLSTNLLDGSVPSTVGSMNSLTYFVIFENSL
QGDLKFL SAL SNCRKL SVLEID SNYFTGNLPDYVGNL SSTL
QAFIARRNNI SGVLP STVWNLT SLKYLDL SDNQLH STI SESI
MDLEILQWLDL SENSLFGPIP SNIGVLKNVQRLFLGTNQF S
S SI SMGI SNMLTKLVKLDL SHNFL SGALPADIGYLKQMNIM
DLS SNHFTGILPD SIAQLQMIAYLNL SVNSFQNSIPD SFRVL
TSLETLDL SHNNI SGTIPEYLANFTVL SSLNL SFNNLHGQIP
ETVGAVACCLHVILKKKVKHQKMSVGMVDMASHQLL SY
9639.m04369 motif-positive HELARATND
9639.m04384 motif-positive RMEYEKRKLRDHFNKNGGQLLKNIGIKIFTKEEVGKITNN
9639.m04387 motif-positive RKKWKLKGCYDRNGGQMLEKTSVKIFTKQELDKITNN
9639.m04402 motif-positive KKMKNPDITASFGIADAICHRLVSYQEIVRATEN

KRSRRTFKEIPITQIP SASKDIKEVRAVEEFLPNDFVVHD GL
LLAIQNEPVEPVDKDVrNQFAQEDKTIQGEDNSSSVPLHYV
DNYD GIQ SVSTCEQ S SSHAPAD SVPLPGLPEF SYLGWGHW
9640.m00074 motif-positive FTLRDLELATNC
DDLYIYVrHLVFFRLAEQMPTADAETVTSESTAVIQQDSTM
VNVDAAGLHEQDELPHWMSQLFEKLDLEVDEDVVDEDIC
SIGNMTHEEEEADLERGIH S LKNHPIMKKLNKGIHPVVLA
LHVLLEEEEEEEVVQEEDMAKGLAELDEYL SRHTYHTIEE
9640.m00282 motif-positive ATAS
GCWLF SSKGLFRH SRVYAIDQEGYKLITSHFQRYTYADIK
9640.m00283 motif-positive KATAN
KVKDRKKQGRS STVAAGDENESRHGL CRCIWGHRGVD S
DTDTDDSSASENGGGGGKYGEGELVAIDRGFRVELDELLR
9640.m01285 motif-positive SS
9640.m01512 motif-positive KRKPREGGIRRSVSPGITSIDRVTLQNATEN
NQ SIGKTVVWTADRDVPVNGRGSRIELRD GNMVLLDFNS
RLVWS TGTTS GQVRSAKLLDTGNLVLLGHD GSRIWQ SFD
SPTD TLLPTQPIAANLKLVS GKYML SVDNNG SLALTYDTP
EGH SKYWPRNINATPF SGDQPQGLDML GCI SAGNHIRKFT
9640.m03313 motif-positive LKELVAATAK
9640.m03756 motif-positive HRYKNRDVVEPWELDYGPHRYSYAELRRATRG


RCRRSGGGGGRSGFDRLAAKRLLSEAASSSGVPVYSYHEV
ARATNS


9640.m03953


motif-positive











Table 2-2. Con inued

Protein ID Categor Juxtamembrane Domain
HRRRRD SKIRPVKLP S SSRDE SVEPDLEHGGGPRRF SYGEL
9640.m04040 motif-ostive AAATND
RRRRKRAGEARELEMDEGDFFDDEADDFEKGTGPKRFHY
9640.m04064 motif-poitive GELAIATDD
RFVLRRRRKHAGLTKEQEMEEGGIFDDETAMEDDFEKGT
9640.m04066 motif-ostive GPKRFRFGELAIATDD
HRRRKHAGLTMEQEMDEGDFFDDEAGDFEKGTGPKRFR
9640.m04068 motif-ostive YGELAIATDD
RRRQWRRNNAKLTVKMARKHLPKDARFFRGKPIEDELEL
9640.m04069 motif-poitive EAAGPRRFHYGELAAATAN

EQRSAL CLFHATSQ SCNQLKSIPVGHLLVD SHIFRD SGQRA
IHTLS SSFSSSPRVLCWVLAVLGYSYRLQASSLSAGELTDL
9640.m04089 motif-ostive QGKFFMETFFRKDTPIIRNVKIYSSKELRKATKN
KKRRRAEAEAEEAAGGKVFGKKG SWDLKSFRVLAFDEHE
9640.m04300 motif-ostive VIDGVRDEN
RRWVLRARQD GEHDGLPT SPAS S SSYDVT SFHKL SFD QHE
9640.m04302 motif-poitive IVEALIDKN
KSRQASNKKKKKKQGGSRSWFKLPMLSSQQASYASEEQQ
9640.m04368 motif-poitive GEEDD GD GDEVLIPGLPARFTYAELEEATEG
FKRKKSTEPTTAS SSKGKTVAGGRGENPKEEYS SGVQEAE
9629.m05927 motif-ostive RNKLVFFEGC SYNFDLEDLL
9634.m03594 motif-ostive KQLRGVWPAEAGYEMIANHFRRYTYRELVLAT
9629.m00 145 motif-like KRRIRRHQEMQEEEQEFEELPLQ GMPRRFTFQQLQEATDQ
HRRKQTLGFIIHHKYTGNE SNTEEELKRYQ SL SPKRYRYSD
9629.m00370 motif-like LKKITKC
9629.m00524 motif-like HRKLKGRQNSQEI SPVIEEQYQRISYYALSRGSNE
9629.m00695 motif-like RHRRNQQIFFDVrNDQYDPEVCLGHLKRYAFKELRAATNN
RYENYKLEQFH SKGDIES GDD SD SKWVLE SFHPPELDPEEI
9629.m06510 motif-like CN
9629.m07224 motif-like RRRSRYS SKRRSAKRIPMKID GVKDF SFQEL SHGTND
9630.m01244 motif-like RHQKRQQDLAGWKMTPFRTLHF SECDVL GN
KGRRKSHLREVFVDVAGEDDRRIAFGQLKRFAWRELQIA
9630.m01729 motif-like TDN
9630.m01864 motif-like RKRYNHGELREDWEVEFGPHRIPYKDLRRATER
QKRKLIRTKQRFFEQNGGVILQQQMH SGGGTGGFKIF STE
9630.m05595 motif-like ELKKATNN
KRKLIRTKQRFFEQNGGVILQQQMH SGGGAGGFKIF STEE
9630.m05599 motif-like LEKATNN
QKRKLIRTKQKFFEHNGGVILRQQMH SGGGTHGFRIF STE
9630.m05621 motif-like ELKRATHN
KQLYHRWYVHGGCCDDAAVEEEGSGSWPWRLTAFQRLS
9631.m00434 motif-like FTSAEVLAC


9631.m04841


motif-like


NGRRKSHLREVFVDVS GEDDRRIAF GQLKRFAWRELQLA
TDS











Table 2-2. Con inued

Protein ID Cateor Juxtamembrane Domain
9632.m00264 motif-like QKRVRNTFGKGTGGARRFEYDDLAIATGN
9632.m00511 motif-like KRIRHTFGKGTGGTRRFEYDDLAIATDN
RK SRGNQP SKKVQ SKYPFQHMND SNEVGSENVEL SSVDL
9632.m01387 motif-like DSVLTATNN
RHKRSIKRQALLRQNDEFFQQHGGQLLLEMMKVEGNAGF
9632.m02841 motif-like TLYGRQEIETATNN
9632.m03289 motif-like RRHRKKLHCQALNSIYAGTGVIPFRYSDLQRATKN
9632.m03297 motif-like KWRNKTKL SGGTRKDYQFCNGIIPFGYIDLQRATNN
9632.m03298 motif-like KIPRNKSWLL GHRRKNFH SGS GVIAFRYADLQHATKN
9632.m03302 motif-like WRRKGKWFTRTLQKPEGGIGVVAFRYINLQRATKA
9632.m03306 motif-like WRRKGKWFTLTLEKPEVGVGIIAFRYIDLQRATKN
9632.m04086 motif-like RRNKRNCS SVGRIICGTVAFRYKDLQHATKN
RRKRKADEKEAPPGWHPLVLHEAMKS TTDARAAGK SPLT
9632.m05124 motif-like RNSSSIGHRMGRRFSISEIRAATKN
9632.m05259 motif-like WCRRKHKI SEGIPHNPATTVP SVDLQKVKAATGN
RRKNRELKNADLHAQNPENAFCQSQSWRCPEGQSPMFQR
9632.m05801 motif-like YSYKETMKATNN
9633.m01394 motif-like RRRKTNPDVLPEADPYKSRRFKYKELQVITN
TLWRRSRRSTGGKVTRS SDAAKGIKLVPILSRFNSVKMSR
9633.m02300 motif-like KRLVGMFEYPSLEAATEK
RRKKQGSMNNSVKRQNETMRYGPTNNGSGHNSSLRLEN
9633.m04198 motif-like RWFTYNELEKITNK
9634.m01190 motif-like RRKPHDQFFDLLEEETPEVrHLGQLRRFTLRELQVATDN
9634.m03596 motif-like RREGKLARGI SEVGYEMVTNHFRRYTYRELMIATRK
9634.m03679 motif-like RSRKGMKLKPQLLPFNQHLEQITYEDIVKATKS
9636.m00717 motif-like RRRKPQEHFFDVPAEEDPEVrHL GQLKRF SLRELQVATDT
9636.m04 116 motif-like RKKRPAD VTGATNPFENRRFKYKELKLIAD S
RQRKRRRKNSPPPANND SDQYS SD GQRQHGTADLERAVT
9637.m01434 motif-like GGGPRRYQFHELAAATRD
HKKRKQQMTL GLVHQY SVQPTGI SNSVSHVD IKGHVLMS
9637.m01597 motif-like DDHEFTYEELVKITNN
ERNKLHSIKQKYFRQHGGRLLFEEMKGTAFKIFTEEELQK
9637.m02621 motif-like ATNN
9638.m00203 motif-like HNKRKPQESTTAKGRDMFSVWNFDGRLAFEDIVRATED
RW SRRFRKDRVRLREKRSRRFRGDELICEMEGEI SEF SVFE
9638.m00382 motif-like FREVIKATDN
KRKKKS SDETVVIAAPAKKLGSFF SEVATESAHRFAL SEIE
9639.m00021 motif-like DATDK
9639.m00293 motif-like NKGVFRP SQVSVLEEGYRIVT SHFRAYRY SKLERGTKK
GCWLF SSKGLFRH SRVYAIDQEGYKLITTHFQRFTYVDIK
9639.m00297 motif-like KATAN
9639.m02693 motif-like RKKPKAQ SKKTIGFQLIDDKYPRVSYAELVQGTNG


9639.m03758


motif-like


KKRS GPERIGINH SFRRLDKI SYSDLYKATYG











Table 2-2. Con inued

Protein ID Categor Juxtamembrane Domain
KRKKKS SDETVVIAAPAKKLGSFF SEVATESAHRFAL SEIE
9640.m00020 motif-like DATDK
9640.m00279 motif-like KGVFRP SQVSVLEEGYRIVT SHFRAYRY SELERGTKK
KITN\KIKQRRAKKLRRKFFKKNHGLLLQQLI SSNKDIAER
9632.m05428 motif-negtive MKIFSLEELDQATNK
9629.m00 140 motif-egtve KTKNDDEIQLKVEMFLKTYGTSKPTRYTF SEVKRITRR
9629.mO00141 moti-natv KYRKTRISIDAVEKFLRMQQAHGPKRYAYTEITAITGH
9629.m00142 moti-natv KRRTRRRREIREEEQELEEITLQGMPRRFTFQQLQEATDQ
9629.m00 143 motif-negtive WKTRITIDAVEKFLRMQLML GPTRYTYTDIIAMTSH
9629.m00 144 motif-neatv KVEMFLRTYGTSKPTRYTF SEVKKIARC
9629.m00 147 motif-negtive KYWKTRIKID AVEKFLQMQLMLGPTRYAYTDIIAMTSH
9629.m00148 motif-egtve KQRYNEEVHLKVEMFLRTYGTSKPTRYTFSQVKKITRR
9629.m00151 motif-egtve RNKITIDAVEKFLQMQLTLGPTRYAYTDLTAITGH
9629.m00 152 motif-egtve KSRYNEEIHLKVEMFLKTYGTSKPTRYTF SEVKKIARR
9629.m00 154 motif-neaie SLKSRYDEEVHLKVEMFLRTYGTSKPTRY SF SDVKKITRR
9629.mO001 55 motif-negtive KYWKARITIDAVEKFLRMQEML SPMRYGYTDIIAIT SH
9629.m00 156 motif-negtive KTRYNEEIHLKVEMFLKTYGT SKPTRY SF SEVKKITRR
9629.m00 168 motif-egtve SLKSRYNKEIHLKVEMFLKTYGTSKPMRYTF SDVKKITRR
AHKYWKTRLAIDAVEKFLQMQQVL GPTRYAYTDLTAVT S
9629.m00169 motif-negative H
9629.m00170 motif-egtve KIRITTDAVEKFLRMQLMNGPTRYAYTDLIAITGH
9629.m00171 motif-neaie WKTRVTIDAVEKFLRMQQMLGPTRYAYTDITAITGH
9629.m00 172 motif-negtive KSRYNEEIHLKVEMFLKTYGTSKPTRYTF SEVKKIARR
9629.m00173 motif-negtive EKFLRMQQMLGPTRYAYTDIIAITGH
9629.m00180 motif-neaie KTRIAIDAVEKFLRMQDMLGPKRYAYTDIIAITSH
YI SLKSRYDEEVHLKVEMFLRTYGTSKPTRYNF SDVKKIA
9629.m00181 motif-negtive RR
DTYGYHSICHRYHQALFWLMLAPLVVFIFLAHKYWKTRIT
9629.m00185 motif-egtve IDAVEKFLQMQQMIGPMRYAYTDIIAITSH
9629.m00 187 motif-egtve KTRYNEEIHMKVEMFLKTYGT SKPTRYTF SEVKKIARR
9629.m00188 moti-natv KYWKTRITIDAVEKFLRMQQMIGPMRFAYTDIIAIT SH
9629.m00 189 motif-negtive L SLRTRYNEEIHLKVEMFLKTYGT SKPTRYTF SEVKKIASR
9629.m00 190 motif-negtive KYWKTRIAID AVEKFLRMQEMLGPKRYAYTDIIAIT SH
9629.m00192 motif-negtive KYWKTRITIDAVEKFLRMQQMIGPTRFAYTDIIAITSH
9629.m00 193 motif-neaie L SLKTRYNEEIHLKVEMFLKTYGT SKPTRYTF SEVKKIARR
9629.m00195 motif-egtve KTRITIDAVEKFLRMQQMIGPTRFAYTDIIAITSH
9629.m00 196 motif-neaie L SLKTKYNEEIHLKVEMFLKTYGTSKPTRYTF SEVKKI SRR
RRKKQ GPMNNSLEQQNEMSTST SHVLIN SGYGDNVSLRL
9629.m00252 motif-negtive ENRRFTYKELEKITNK
HKRKKRKQTRDLKDLMHS S SSMQ SYSKDLELGGSPHIFTY
9629.m00358 motif-egtve EELEEATAG


RQRQKFRSAICGVYSGNTKNEEEMLKKCE SLALKRYKYS
ELKKITKS


9629.m00364


motif-negative











Table 2-2. Con inued

Protein ID Categor Juxtamembrane Domain
TCRQKEKGSLLTLQKYVANESKIEEALKEYD SLAPKRYNY
9629.m00366 motif-egtve SELKKITRS
HRKGQILCYLLCNKTRSRNESNIQKLIVSYGSLAPKRYKYS
9629.m00367 motif-negtive EVAKITS
HGKGKQLRYFLYTKTS ST SERNIEALII SYG SIAPTRYKYSE
9629.m00375 motif-egtve VTKITS
KCRRRMQNRF SFLNAMD GASRTDTAKVEKLLQ SYG SLAP
9629.m00376 motif-egtve RRFRYSELKKITKS
9629.m00490 moti-ngtv HQRKFKQRQNRQ ATSLVIEEQYQRVSYYALSRGSNE
9629.m00520 motif-negtive HNRKLKRRQNRQAT SLVIEEQYQRVSYYAL SRGSND
9629.m00522 motif-negtive RKLKRRQNSRATIPGTDEHYHRVSYYALARG SNE
9629.m00550 motif-negative ILMFIIRRNKDKNRSENYGSLVAFRYKDLRSATKN
9629.m01025 motif-egtve RKRCNRQRADE SDFADLPGTITRFTFKMLKAATND
9629.m01192 motif-egtve WRGKRKLFTEKPVNSD SRLMIF SNSQLKNATKG
9629.m01203 motif-egtve LIYKKRS SCVASQAKMEGFLAVY SYAQVKKAT
9629.m01204 motif-neaie MYKRSS CVARQTKMEGFLAVYSYAQVKKAT
9629.m01206 motif-neatv CRYRRDLFASSKFEVEGSLIVYTYAQIRKAT
9629.m01247 motif-negative MIRRK SKNKKED SSHTPGDDMNHLIVTYHELARATDK
9629.m01357 motif-egtve WFYWRYRSFNNSKL SADRSKW SLT SFHKL SF SEYELD C
9629.m01868 motif-egtve RRKKYKIHDAGDLQQENMF SVLNFD GGNAYEQIIEATEN
EGVAIGALIQLHTKGFLWAGNHLLL SNS SAGLRMD CQEN
9629.m01991 motif-negtive NLKSFLQTNGHVVLQRVDNNY SLRYFTKNEVWHITNG
RRKLTDVKKKYIQEHGGLLLFEKMK SDQGLAFKVFTQAE
9629.m02541 motif-negtive LEQATNK
RLMFERRKLTDVKKKYFQQHGGLILFDKMKSDQGLAFKV
9629.m02553 motif-egtve FTQAELEHATNK
RRWKRGIQKKIRRAYFRKNKGLVLERLI SSDESVAH STKIF
9629.m02555 motif-egtve SLEELERAPDH
RRGRKGEVNMQNNIAAVNRLEEDALVWRLEERS SEF SLF
9629.m02564 motif-negtive EFSELLEATDN
RRRRRRAAAAALAKAAAD SRSKRSQAME SI SASTTLVQFT
9629.m02756 motif-egtve YDEIKAATGG
9629.m03 184 motif-egtve KGRKQTDRKNAT SDLMLNEKYPRVSYHELFEATD G
WKKKIFRNKKRSKSFIDIYGD GVPVRIAQ SSLNFKYEELRK
9629.m03474 motif-negtive ATNY
9629.m03865 motif-negtive RSRRAKALRRLED S SSFLTVFTYRDLQLVTNN
9629.m04349 motif-negtive RKRNL SEANKVEG SLVVFRYRFLQHVTKN
KPYQALL SCIERRLRRKAAAAATAAEPLPPEKKEDAGRPL
9629.m04404 motif-egtve VQAERLRAAFRID GLLREYSH GEIQAMT
9629.m04617 motif-neaie SIRNDIQNSAEGGYMMIRNQFRGFTYQELKEAT
9629.m04791 motif-egtve KKSRYRRISKGTPRIESFLQRNGTLHPKRYTYTEVKRMT


9629.m04980


motif-negative


KNKKPERPRASSRTSSMAREETVRFDGCCVEFDVCTLM











Table 2-2. Con inued

Protein ID Categor Juxtamembrane Domain
KRRRLKNEEASTSRDIYID SRSH SATMNSDWRQNL SGTNL
9629.m05047 motif-egtve LSINLAAFEKPLQNLTLADLVEATNG
WRQKSKAKGVDTD SAIKLWESEETGSHFTSFCF SEIADAT
9629.m05632 motif-egtve CK
9629.m05849 motif-negtive CKGKPKEHDDYDMYEEENPLH SDTRRFTYTELRTIT
9629.m05851 motif-negtive KGKSRKSEEEDYDMYEEETPLHIDIRRFTYAELKIT
MRRRSKRRTT SRRSLL SRYS VKVD GVRCFTFDEMAAATN
9629.m05922 motif-negtive D
9629.m06444 motif-neatv FRRRMVKETTRVEGSLIAFTYRDLKSVTKN
9629.m06446 moti-natv RRRMVKATTRVEGSLISFTYRDLKSVTKN
9629.m06570 motif-neatv TARSRPAT SEQWAAEEGYRVVTDHFRRFTYGELRKATKN
9629.m06607 motif-neaie RRSRRLKALRRVEGSLTAFTYRDLQVATKS
9629.m06614 motif-negtive GRRRIS SMNHTD GSLITFKYSDLQILTKN
9629.m07414 motif-negtive KIKMRVDEVEKFLQLQQMLTPTRYSYTDIIAIT
9630.m00079 motif-negtive RRKQKPCLQQ SSVNMRKI SYEDIAKATD G
KRKLMKEKERFFQQNGGMLLYEQIRSKQVDTVRIFTKEEL
9630.m00113 motif-egtve ENATDN
TWRAW SRWQEDNARVAADDE SGSLE SAARSTLVLLFAN
9630.m00153 motif-egtve DDDNGNGDD GERTMTLDDVLKATGN
9630.m00498 motif-neaie RRMLKAKDKRRAAGPTYE SALLENREF SYRELKHITNN
RGKNFVTENRRCRND GTEETL SNIKSEQTLVML SQGKGEQ
9630.m00519 motif-negtive TKLTFTDLKATKN
ATVKGTDCITNNRSSENADVDATSHKSDSEQSLVIVSQNK
9630.m00520 motif-egtve GGKNKLTFADIVKATNN
SI SGMSFRTKNRC SNDYTEAL SSNIS SEHLLVMLQQGKEAE
9630.m00522 motif-egtve DKITFTGIMEATNN
ERSKRFITKNS SDND GDLEAASFN SD SEH SLIMITRGKGEEI
9630.m00523 motif-negtive NLTFADIVKATNN
RATKLMRKGELANNRNEETASFNPNSDH SLMVMPQ GKG
9630.m00524 motif-egtve DNNKLTFADIMKTTNN
9630.m00544 motif-egtve RRWKKDFDQLAKSMQSLPGVPVKISFADIRKATNN
RH SHRAHD SKNIRS SSDTARVALVPMLNKFNSMKTNKKG
9630.m00812 motif-negtive LVAMMEYNTLETATGK
RRRRKMLRRRQFVLVPAGDNAMADHETTL SNNLL GRRR
9630.m00926 motif-negtive MKKREPPSINLATFEHAPVRVTVDEIMRATGN
9630.m01077 motif-negative KRREEKPILTDISMDTKIISYKDIVQATKG
9630.m01086 motif-egtve MKRRKEEPNLQH SSVNLRKI SYED IAKATD G
9630.m01088 motif-egtve MKRRKEEPNQQH SSVNLRKI SYEDIAKATD G
9630.m01126 motif-egtve HKRAKKTNANRQT SLIKEQHMRVSYTELAEATKG
9630.m01128 motif-negtive RNKKAKPNPQISLI SEQYTRVSYAELVNATNG
9630.m01130 motif-negtive RLRTKLRRANPKIPL SDKQHMRVSYAQL SKATNS
9630.m01131 motif-negative RNKTQAKSDLALND SHLRVSYVELVNATNV
9630.m01182 motif-negatve RRKKHLQDHLSWKLTPFHVLHFTANDILSG


9630.m01185


motif-negative


RRKKLQDHLSWKLTPFHILHFTTTNESGGL










Table 2-2. Con inued

Protein ID Categor Juxtamembrane Domain
9630.m01236 motif-negatve RRKKGPQDVTSWKMTQFRTIDFTEHDIVSN
9630.m01273 motif-egtve KRKGKSNEHIDHSYMELKKLTYSDVSKATNN
9630.m01310 motif-negtive KYCRWRLPFA SADQDLEIEL GHLKHF SFHELQ SATDN
9630.m01866 motif-negtive KRKFQRYVELREDWELEFGAHRL SYKDLLQATER
9630.m01874 motif-negtive KRKFQRYVELREDWELEFGAHRL SYKDLLQATER
9630.m02460 motif-egtve RSVRRKNQEHAVASEDMGEATLSMEVARAATKG
RRKMKSVEQ SENGAGNTKVF SVWNFD GGDVCKQ SFEAT
9630.m03311 motif-negative EN
9630.m03878 motif-egtve KKTPRRTYL SLL SFGKQFPRVSYKDIAQATGN
9630.m03880 moti-natv KRTSRRTDLLLLSFGKQFPRVSYKDLAQATGK
9630.m03884 motif-egtve KMKPREKYIS SQ SFGENFLKVSYNDLAQATRN
9630.m03885 motif-negtive KMKPREKYISSQSFGENFLKVSYNDLAQATRN
9630.m03886 motif-negtive KMKPREKYISSQSFGENFLKVSYNDLAQATRN
KRRLAKIKREHFRQHGGLLLFEEMKSRQGL SFALFTQEEL
9630.m03961 motif-egtve EQATNR
KRRLATVKRRYFNQHGGLLLFEEMKSNQGL SFTVFTKDE
9630.m03963 motif-egtve LEEATNK
KWKRGIQRRIRRAYFKKNQGLLLEQLIIDENTKDKTRIF SL
9630.m04029 motif-negtive EELEKATYN
KWRKGIQKRIRRAYFKKNQGLLLEQLI SNE SATNKTKIF SL
9630.m04033 motif-negative EELEEATNN
KWKKSIQKRIRRAYFKKNQGLLLEQLI SDE SATNKTRIF SL
9630.m04037 motif-egtve EELEEATNN
9630.m04056 moti-natv WYKNRLTKSP STMSMRAHQLVSYQQLVHATD G
9630.m04102 motif-negtive RRRRRYAELKEEWEVAFGPHRF SYKDL
LRPRLRGLRLDRLTSRLPACLRRSRTANTMLPYFAPIADRL
9630.m04231 motif-negtive GALQPYLAPIADRL
RKRRRRS GGDP SSAFNAAIDFRKIP GLPKEFDYMELRRGT
9630.m04698 motif-negtive NN
RKRRKRIGDDP S SVFNTTIDFRSIPGVPREFDYRELRRGTN
9630.m04699 motif-negtive N
9630.m04857 motif-negative RHRRNHQILFDVDEQHTENVNLGNVKRFQFRELQVATEN
RKIKNRRANMLRQMFFKQNRGHLLQQLVSQNTDIAERMII
9630.m05594 motif-egtve PLAELEKATNK
9630.m05879 moti-natv KRRKQKP SLQQ SSVNMRKI SYEDIANATD G
9631l.m01 172 motif-neaie RRRSAALRSQKSTKRLL SEAS CTVPFYTYREIDRATNG
9631.m01199 motif-neaie KARSLKRSAEARAWRLTAFQRLDFAVDDVLDC
9631.m01470 motif-neatv KRWFRHAELREDWKVEFGPQRF SYKDL
RYKLRHCQCSKNELRLAKNTTYSFRKDNMKIQPDVEDLKI
9631.m04208 motif-egtve RRAQEFSYEELEQATGG
RRKHIQEKQQYFKQNGGLRLFDEMVSRQVD TVRVLTEDE
9631.m04253 motif-negtive LKKATNN


RRKHTIEKQEYFRRNGGLRLYDEMVSRQVDTVRVLTVDE
LKKATDN


9631.m04258


motif-negative










Table 2-2. Con inued

Protein ID Categor Juxtamembrane Domain
9631.m05490 motif-egtve RRRLKYAELREDWEVEFGPHRFTYKDLFRATEG
9631.m05492 motif-neaie FRRQRRAIYVELVEDWEVEFGPHRFAYKDLHKATKG
963 1.m05502 motif-negtive KARSLKKASEARVWKLTAFQRLDFTCDDVLD CL
963 1.m0599 1 motif-negtive RSRRYAEEEEEWEIEYGPHRI SYKDLHGATKG
WVFCRH SPKYGAA SAQYALLEYAS GAPVQF SYRELQRST
9631.m06141 motif-negtive KG
FKRWKRSTRKKIRRAYFRKNKGLLLEQLI SS SNNVTPNTRI
9631.m06166 motif-negtive FSLEDLEKATNN
9631.m06406 moti-natv SRWDLDALEIQAVEQGYKV MASNFRRYNYKELAKATRK
9632.m00228 moti-natv KSKYLRIDATKVGTAVDDSILKRKLYPLISYEELYHATEN
RRWRRHMQRKIRREYFQKNKGLLLEQLMS SDENVAHDP
9632.m00291 motif-negtive KIFSLEELEKATDN
9632.m00377 motif-neaie KWKRVLNFFHKGTAGARRFEYRDLATATKN
9632.m00403 motif-negtive KVFHKGTASARRFEYHELATATEN
9632.m00458 motif-egtve QKRIRNVFDKGTGGARRFEYRNLAAATDH
9632.m00467 motif-egtve WKWRKTNREFDKGTRGACRFNYHRLAAATNH
9632.m01129 motif-egtve KKNIPLSQAS SKSQLPLKTFTYKELEKATAG
9632.m01308 motif-negtive RKKRKLRAYFNRNGGQLLKSIKID IYTKEKLDQITKNY ST
9632.m01335 motif-negtive MRKKAKQQDRII SPDMEDVLNNRLI SYHDIVRATDN
KYKRRLVRQDLMNKRDAYFRQHGGQLLLDMMKLENQV
9632.m01893 motif-egtve SFKLYDREEIELATNN
RRWKRD IQRQLRRNYFRKNQGLLLEQLI SSDENASDKTKI
9632.m02006 motif-egtve FSLEELEKATNN
RRWKRD IQRQLRRNYFRKNQGLLLEQLI SSDENASDKTKI
9632.m02009 motif-negtive FSLEELEKATNN
9632.m02077 motif-negtive KKRRALAYQKEELYYLVGQPDVFNYAELKLATDN
9632.m02192 motif-negtive QKRRKYRERDEELDFDIMPGMPTRF SFQKLRKSTED
9632.m02 196 motif-egtve RRRRKYQETDEELDFDILPGMPLRL SLEKLRECTED
9632.m02204 motif-egtve RRRRKYQKLDEELDFDILPGMPMRF SFEKLRERTED
9632.m02208 motif-negatve QRRKYQEIDEEIDFEPLPGMPVRF SYEKLRECTKD
HRWKKDIQKQLRRKHFQKNQGLLLEQLI SSDENASENTKI
9632.m02260 motif-negtive FSLDELEKATNN
RRWKNDIQKQLRRKHFRKNQGLLLEQLISSDENASDKTKI
9632.m02267 motif-egtve FSLDELEKATNN
RRWKRDIQKQLRRKHFQKNQGLLLEQLILSDQNATDKTKI
9632.m02268 motif-egtve FSLEELEKATNN
RKRKNDIQKQLRKKYFRKNQGLLLEQLI SSDECATD STKIF
9632.m02809 motif-negtive TLEELKEATNN
HRRS IKRQRLIRQRDEYFQQHGGQLL SDMMKID CNLEFTL
9632.m02818 motif-negtive YRQEDIEVATND
KYKQRIKKQALLRQADEFFQQHGGQLLLEMMKVEGNAG
9632.m02835 motif-egtve FTLYERERIKIATNN


RHKRS IKKQALLRQTHEFFLQHGGQLLLEMMKVEGNVGF
TLYERGEIETATSN


motif-negative


9632.m02838











Table 2-2. Con inued

Protein ID Categor Juxtamembrane Domain
QHKRSIKRQALQRQTDMYFQQHGGQILLELMKVESSAEFT
9632.m02843 motif-egtve LYDREKIEVATNN
RHKRS IRKQALLRQTDEFFQQHGGQLLLEMMKAEGNIGFT
9632.m02866 motif-negtive LYKRVEIETATKN
RGRGNATVKKELSALKDANGNVISAQTFTFRQLAAATRN
9632.m03079 motif-negtive FREEC
9632.m03291 motif-negative RKGKRYNLTMDNVQ GGMGIIAFRYVDLQHATKN
9632.m03294 motif-egtve RRSKTKFS GDRLKD SQFCNGII SFEYIDLQRATTN
9632.m03301 motif-negatve WKSKGKWFACTQEKPED GIGITAFRYTDLQRATKN
9632.m03304 motif-neatv WWNKSKRYNCTSNNVEGESGIVAFRYIDLQHATKN
9632.m03761 motif-negtive CRRLHAAAKLVLFYPIKITADELLAAL
QRRKLTKIKKEYFRQHGGMILFESMKSKKGLAFTVFTEAE
9632.m04193 motif-negtive LIHATNN
9632.m043 16 motif-egtve MRRRRMF SELKEEWEVTFGPHRF SYKDLFHATD G
9632.m043 17 motif-egtve RRRVRYAEVREDWEVEFGPHRF SYKELYQATKG
9632.m04800 motif-egtve WRRSTRKRRLAYRNLEKMIDAHGPVKFKLKELRRATAN
WTMKKRKVARKRAELFRKNGGLLLQQRFLMITSQGEESS
9632.m04925 motif-negtive AKIFSAEELKNAT
KKRRLAKQKQRYFLQNGGLLLQQQIFTHQAPARIFTTSEL
9632.m04926 motif-negtive EDATNN
KKRKLAKIRQRYFMQNGGMLLKQKMF SQGAPLRIFT SSEL
9632.m04927 motif-egtve EKATNS
9632.m05095 motif-egtve WRQKKRKILLELEELYNIVGRPNVF SYNELRSATEN
9632.m05097 motif-negtive WRQKRRKLTLEQQELYSIVGRPNVF SYSELRSATEN
9632.m05099 motif-negtive MWRQKRRKL SLEQQELY SIVGRPNVF SYSELRSATEN
RKWQ SKASVLLGKRRNNKNQNRMLL GNLRSQELIEQNLE
9632.m05246 motif-egtve FSHVNFEYVVAATNN
KWI SKGEKRNNENQNRAMLGNFRASHEVYEQNQEFPCIN
9632.m05253 motif-egtve FEDVVTATNN
RKWQTKGKQRNDENKKRTVLGNFTT SHELFEQKVEFPNI
9632.m05257 motif-negtive NFEEVATATNN
9632.m05462 motif-negtive RVRDD GY SLVF SHFRRFTYDEL SD ATCG
RIIHSRMQEHNPKAVANADDCSESPNSSLVLLFQNNKDLGI
9632.m05627 motif-egtve EDILKSTNN
9632.m05838 motif-egtve RRRRKYQELDEELEFDILPGMPTRF SFEKLRECTED
RRARARRRGTTALAAVADKRD SLASAAALARSPREFTYK
9633.m00270 motif-negtive ELSAATRG
KMRNRRNDHHDDMD GS SEIIRTIAASQL SFKYEEL CKATD
9633.m00320 motif-egtve D
KWKRGVQKRIRRAHFKKNQGLLLEQLILDEKAQDKTKIF S
9633.m00373 motif-negtive LEELEKATNY
9633.m00657 motif-neaie RKKLRFCGAQLHD SQCS GGIVAFRYNDLCHATKN


9633.m01194


motif-negative


RKKAGPQEDWEMKCRPPSFIYKDLYNATSG











Table 2-2. Con inued

Protein ID Categor Juxtamembrane Domain
MRKRARFNHHRLNRKTEILIEMPMEEEVHNTRRF SYAHLL
9633.m01241 motif-egtve AATEN
9633.m01466 motif-negtive KKRRTMAQQKEELYNLIGRPDVFSNTELRLATDN
9633.m01467 motif-negtive KKRRTMAQQKEELYNLIGRPDVFSNTELRLATDN
9633.m01492 motif-negative KKRRTMAKQKEELYNLVGRPDVFSNSELKLATDN
9633.m01499 motif-egtve KKRRAMAQQKEELYNLVGRPDVF SNVELKLATDN
9633.m01517 motif-negatve KKRRTIAEQQEELYNLAGQPDVF SNTELKLATDN
9633.m01570 moti-ngtv KKRRALAQQKEELYINLVGRPDVF SYAELKLATDN
9633.m01571 motif-negtive KKRRALAQQKEELYNLVGRPDVF SYAELKLATDN
9633.m01572 motif-negtive KKRRALAQQKEELYNLVGRPDVF SYAELKLATDN
9633.m01594 motif-negative KKRRALAQQKEELYNLVGRPDVF SYAELKLATDN
RRKKVAKH SGKTDKKCLTYQTELYKSP SNLCRNFTFHEM
9633.m02281 motif-egtve QIATSS
KKVAKH SFMTDKKCMTYRTEFYH SPSNL CRNFTFDEIQV
9633.m02283 motif-egtve ATRN
RKKRVDHGNTN~KELLLATLL SKKSNLCHQFTFLQIQEATS
9633.m02289 motif-egtve N
RRKKQAMSNSVKPQNETVSNVS SNGGYGH S SSLQLKNRR
9633.m04197 motif-egtve FTYNELEKITNN
RRQKQKIGS SLEVSD SRL STDHYQQKEVCRRS ASPLI SVEY
9634.m00350 motif-egtve SN
RMKLEKEKQRFYDQNGGHILYQKII SGQVNTVEIFTEEVL
9634.m00424 motif-negtive KNATNN
AGERRRAARMARRLPSMEDERIRVEYSYFRKVAGLPRKL
9634.m00426 motif-egtve TLESLAAATDG
RSMAAARAKRQ SVRLVDVEDYQAAAEREHPRI SYRELAE
9634.m00815 motif-negative ATGG
9634.m01052 motif-egtve RRRAALADTLEEWELEHPQRIPYKELYKATKG
9634.m01423 motif-egtve WRRRRRRHAEVREDWEVEFGPHRFAYKDLVRATRG
9634.m01613 moti-ngtv RKKVKHQNIS SGMLDMI SHQLL SYHELVRATDN
9634.m01642 motif-neaie RHRRNRQILFDVDEQQIENVrNLGNVKRF SFRELQAATEG
9634.m01788 motif-negtive RMALNCVRGGYRSKSD TVIFIPKLIKSKEHLAFLEKDQD G
KKRRRRVGDDPE SL SSTAAFKFNKS SINLRSLAGTPKEFEY
9634.m02185 motif-egtve TELRKGTED
9634.m02894 motif-negatve RWRKRNAVRRAQMERLRPMS SSDLPLMDLASIHAATD S
9634.m03394 motif-egtve RRKRDEPLEDEYFIDQLPGLPTRF SFVDLKSATGD
9634.m03445 motif-negtive KVLPRRQNENTTTPRWKLTAFHNINFNYQDIICGLADNN
9634.m03602 motif-neaie QREDKQLRELAEVGY EMITNHFRRYTYRELVTATRR
9634.m03654 motif-negtive KRKKAKNPTDP SYKKLEKLTYADLVKVTNN
9634.m03671 motif-egtve KKHKS S SGPT STRAVRNQLPRVSYTEL SMGTNG
9634.m03687 motif-neatv RRKEMQANPHCQLI SEHMKNITYQD IVKATDR
9634.m03694 motif-egtve WRKRMQVTPKLPQ CNEHVFKNITYENIAKATNK
9634.m03697 motif-negtive RKRIQVKPNLPQ CNEHKLKNITYEDIAKATNM


9634.m03700


motif-negative


TKRMQAEPHVQQLNEHRNITYEDVLKATNR










Table 2-2. Con inued

Protein ID Categor Juxtamembrane Domain
9634.m03716 motif-egtve KRMQAEPHVQQLNEHRNITYED VLKATNR
9634.m03999 motif-negatve RRINNNDHDIVRHFTKKELHRATNG
9634.m04004 motif-negtive RRIRRRSSSDHDMVMRLFTRKELYDATNG
9634.m04433 motif-negtive RWRRKIRSSRTGNAAARSVLNGNYYPRVTYAELAKATDD
RQRRALADVKRKYFERHGGLLLYDELSTRPGNTFTIYMEE
9634.m04788 motif-negative QLEQATNG
QRRALADIKRSYFKRHGGLLLYEELNARKSNAFTIYTEEQ
9634.m04798 motif-egtve LEQATNG
9634.m04920 motif-egtve RKGC SAWRSAARRRS GAWKMTAFQKLEF SAEDVVECVK
SKREVSIIDDEEINGS CHD SYDYWKPVLFFQD SAKELTVSD
9635.m00073 motif-negtive LIKSTNN
9635.m00209 motif-negtive RKKMFRKQLPLLP SSDQFAIVSFKDLAQATEN
9635.m00303 motif-neaie RRRLKYTEIQEDWEVEF GPHRF SYKVLYDATEG
9635.m00304 motif-egtve RRRMRYTELRED WEIDF GPHRFAYKDLFHATEG
9635.m00306 motif-egtve RRRSRYAELREDWEVEFGPHRF SYKELFRATD G
9635.m00307 motif-negtive RRRKRYTELREDWEVEFGPHRFPYKDLHHATQG
9635.m00308 motif-negtive RRRQRYAELREDWEDEFGPHRFAYKDLLHATDG
9635.m00309 motif-negtive RRRMRYTELRED WEVEFGPHRF SYKDLFRATD G
9635.m003 10 motif-egtve RRKLTYTELREDWETEFGPNRF SYKDLFLATEG
9635.m00311 motif-neaie RRNLRYAELREDWEVEYGPRRFCYKDLFDATEG
9635.m003 12 motif-egtve RRQQRYAELREDWEVEFGPHRF SYKDLFNATEG
963 5.m003 13 motif-negtive RRRLRYVELKEDWEIEFGPHRF SYKDLFHATH G
9635.m00314 motif-negtive RRRLRYAEIREDWEVEFGPHRF SYKDLFCATEG
9635.m00315 motif-neatv RRHLRYKEVREDWEVEYGPHRFAYKDLFDATKG
9635.m003 17 motif-egtve RRRLRYAELRED WEIEFGPHRF SFKDLYLATEG
9635.m00318 motif-egtve RRKRYAELYEDWEVEFGPYRF SYKYLFDATEG
9635.m00320 motif-negatve RRQLVYKEVREDWEVEYGPRRFAYQDLFRATRG
9635.m00322 motif-negtive RRRLRYAELRED WEIQF GPHRF SFKDLYFATEG
9635.m00324 motif-negtive RKKNAKQREVIMD SAMMVDAVSHKII SYYDIVRATDN
9635.m00325 motif-negtive RRWFKYAELREDWEIDFGPHRF SFKNLYFATEG
9635.m00326 motif-egtve RRRQMRYAELREDWEVEF GPHRF SYKDLFHATEG
9635.m00329 motif-neaie RRCRRYQELHEDWEVEFGPHRF SFKELFKATNGFV
9635.m00339 motif-neaie RWCWKKNARSRENWEAELGPRRFAYRDLRRATD G
9635.m00347 motif-negtive KARSLKKASEARAWKLTAFQRLEFTCDDVLDS
963 5.m005 12 motif-negtive KSKIPDLVSNEERKTGF SGPHYFLKERITFQELMKVTD S
KQERKREARFKLRLI SMAIQNVINLWRIEEGNS GF SLYNF S
9635.m01265 motif-egtve QIKEATQD
9635.m01838 motif-egtve RRRLRYMELQEDWEVDFGPHRF SFKDMYHATEG
9635.m01839 motif-egtve RRHMRYTELREDWEVEFGPHRF SYKDLYHATEG
RRLRNHKSMLRKKDTMAREEVLKLWRLEESD SEFMLFDF
9635.m02971 motif-negtive SIEDATSN


RRLRNHKSMLRKKDTMAREEVLKLWRLEESD SEFMLFDF
SQIEDATSN


9635.m02984


motif-negative











Table 2-2. Con inued

Protein ID Categor Juxtamembrane Domain
KKLRKGD GRKSNRQLEAH SRNS SKTEEALKLWRTEE SST
9635.m03469 motif-egtve DFTLYDFGDLAAATDN
RRRKRSRSKQQH SYSMQMGEDIE SVD SLFIDL STLRAATG
9635.m03484 motif-egtve N
9635.m03485 motif-negtive RWRKRSRSKQQS SYSIQMAEDIESTD SLFIDLSTLRAATGN
9635.m03488 motif-negtive KRKKAAKKDNLLKKMARGKCTIFDLATLKEATEN
9635.m03489 motif-negtive RRRSKVTETDHQLRKITRAQCLIFDLPALQEATDNF SDNN
9635.m03490 motif-egtve RRRSKVTETDHQLRKITRAQCLIFDLPALQEATDNF SDNN
RRKRPVITKAKQTNANYYAEADDVDSVDSMLMDISTLRA
9635.m03493 motif-egtve ATGD
9635.m03494 motif-neaie RFRRRTKVTDAVHPLKKITRAQCMIFDLSALQEATEN
9635.m03497 motif-egtve RFRRRTKAAETDHPLKKITRAQCMIFDLPTLQEATEN
9635.m03511 motif-neaie RFKRRTKAVEADHPLKKITRAQCMIFDLPTLQEATEN
9635.m03523 motif-negtive RRRRPEEQTFLPYDIQ SID SLLLDL STLRAATDD
9635.m03527 motif-negtive KRIKKRRPEEQTFL SYSVS SDDIQ SID SLILDLPTIRVATDD
9635.m03528 motif-neaie RRRRLARKTLRPKS SEDEMQ SFASLVLDLQTLRTATDN
9635.m03532 motif-egtve RRKRRSRKAEHF SELDASEDLESVKS TLITLASLQVATDN
9635.m03533 motif-egtve RRKRRSRKAEHF SELDASEDLESVKS TLITLASLQVATDN
9635.m03537 motif-negtive RKKSRATKAEHL SELDASEDLES VKSTLLTLGSLQVATDN
9635.m03639 motif-negtive KCRRDRTLRI SKTTGGALIAFRY SDLQHVTSN
FNKREKNPQKKDCSSTRNPVFEECSTHKATNSAVQQLSLK
9635.m03785 motif-egtve SIQNATCN
FRRIRRTTRSREKEKEKLD CDESID SEFEKGKGPRRFQYNE
9635.m03803 moti-egtve LVVATDN
RRRRI SRRRTREEYEMGGSDDFDMNDEFEQGTGPRRFLYS
9635.m03805 motif-negtive QLATATND
9635.m03867 motif-negtive RRWHRQFAEVREDWEVEFGPHRFTYKDLFHATQG
9635.m04367 motif-neaie RRRTKATKLSLSYS SRSEDIQNIESLIMDLPTLRIATDN
9635.m04368 motif-egtve RKKRLPTKTPLIENTEDLEDFESIFIDLSTLQSATSN
KRRRRRARVRSELRRL SMAVQNVITLWRLEEGNS GFKLY
9635.m04760 motif-egtve DFSDIKDATNN
9635.m05024 motif-negtive RRRRRFAEVRED WEDEFGPHRFAYKDLFRATD G
9636.m00991 motif-negtive KKRRKAARQQEELYNLVGRPNIF SSAELKLATDN
9636.m00993b motif-negtive KKRRRT SQRKEELYNMVGRRNVF SNAELKLATEN
9636.m01497 motif-egtve KRKMKLNVVDNENLFLNETNERI SYAELQAATNS
9636.m01501 motif-egtve KTRMKPNIIDNENLFLYETNERI SYAELQAATE S
9636.m02876 motif-egtve SRNTYFAERMIINLEELEKATNN
RRRATAPRSRSTAAAAAAHDVAEPITVTVARTDMDAAVK
9636.m03313 motif-negtive QSHSPPPP
9636.m03475 motif-negtive KFYHPKTKNLESVSTLFEGS SSKLNEVIEATEN


KQRREKKLKEKFFKQNHGLLLQQLI SRNTDFGERMIITLEE
LQKATNN


9636.m03956


motif-negative











Table 2-2. Con inued

Protein ID Categor Juxtamembrane Domain
KMKLRKMKRMKETFFRQNHGLLL GRLVSQNAD IGQRMI
9636.m03957 motif-egtve MTLQELEKATDN
RKIKLRKMKKTKERFFKQNHGLLLQQLISQKVDIGERMIIT
9636.m03960 motif-negtive LSDLEKATNN
RRKFKSRRAKKLKEFFFKQNRGLLLHQLVDKDIAERMIF S
9636.m03961 motif-egtve LEELEKATNN
RKVKLQRVKKMRDKFFMQNHGLLLQQLI SRNTDFAERMI
9636.m03963 motif-egtve ITLQELEIATNN
RMARARRSMERRRQERLEHTLTNLPGMPKEFAFEKLRKA
9636.m04074 motif-egtve TKN
9637.m00704 motif-neaie RRKLLYAELREDWEIDFGPQRF SYKDLFHATQG
9637.m00705 motif-negtive RRHLRYSEVREDWEVEFGPHRF SFRDLFHATEGFK
9637.m01303 motif-negtive NKRAIEVD SENSEWVLT SFHKVEFNERDIVNSLTENN
9637.m01504 motif-negative KWRRKNSMHKDLRAFDLQTGSFTLRQIKVATRN
RQKRNSNYSTEDPTRDRSNQLENSLEKSQNHGDVLQIVEN
9637.m01544 motif-egtve RQFTYIELEKVTNK
RRKLQHIKNNYFQQH GGLILFEEMKSQQGHAFKIF SEEEL
9637.m01775 motif-negtive QQATKK
REKRKLQYVKRRYFRQHGGMLLFEEIKSQQGI SFKIF SEEE
9637.m02620 motif-negtive LQQATNK
RERRKLQHIKQKYFKLHGGLLLFQEMNSNERKSFTIF SEAE
9637.m02623 motif-egtve LQHATNK
HERRKLQHIKQKYFKLHGGLLLFQEMNSNERKSFTIFSEAE
9637.m02625 motif-egtve LQHATNK
HDRRKLQHIKNQYFRRHGGLLLYEEMKSKQGLAFKIF SEE
9637.m02627 motif-negtive ELQQATNK
TN~MIKARRAKKLRAVFFKQNRGLLLLQLVDKVIAERMV
9637.m02724 motif-egtve TLEELEKATNR
KVAKVQEGHIASISRRNQPPCCYYLCDDASQAEGIKVERSI
9637.m02896 motif-egtve EFSYEEIFNATQG
PKIKEIIKKKYGENNKRRALRVL SISDDLGQEIPAKDLEFPF
9637.m03211 motif-negtive VEYDKILVATDN
RGKKRSVKEHKKSQVQGVLTATALELEEASTTHDHEFPFV
9637.m03213 motif-negtive KFDDIVAATNNFSKS
KSRENRRKRDSQKTLVPGSRNTSSELLEENPTQDLEFPSIR
9637.m03219b motif-egtve SDIVAATDN
KIKGKRRNRQKHRELILDVMSTSDDVGKRNLVQDFEFLFV
9637.m03225 motif-egtve KFEDIALATHN
RRIKQRRARTLRQKFFKQNRGHLLQQLVSQKAD IAERMIIP
9637.m03306 motif-negtive LAELEKATNN
RKIKQRRARTLRQKFFKQNRGHLLQQLVSQKADIAERMII
9637.m03310 motif-egtve PLAELEKATNN


9637.m03311


motif-negative


KRKVKKQRARMLRQKFFKQNRGHLLQQLVSQKADIAER
MIIPLSELEKATNN











Table 2-2. Con inued

Protein ID Categor Juxtamembrane Domain
RKQKRRRAKKIRQKYFKQNRGQLLQQLVAQRAD IAERMII
9637.m03317 motif-egtve PLGELKKATNN
963 8.m00128 motif-negtive KRKMNKYFKKNGGSVLQKVDNIMIF SKDEVKKILKNN
9638.m00133 motif-neatv RRKMNEYFKKNGGSILQNVDNIVIFSKDEMKKLL
RARRREVRSAMML SSLQD GTRTATTWKL GKAEKEAL SIN
9638.m00154 motif-egtve VATFQRQLRKLTFTQLIEATNG
963 8.m00177 motif-egtve RKEKQKMREFFIRNGGPILENAKSIKIFRKEELKRITK
RRGHRKGIMGLQARRTDNLQGEEELVWDLEGKNPEFSVF
9638.m00383 motif-negtive EFDQVLEATSN
S CQQFKLRP SSIYLKQERSYCIIMDL SE SKHKEYIERAQWIE
9638.m00436 motif-negtive ENI SNIKPFTEEDIKRITSDYN
9638.m00516 motif-egtve HKKRKMNEYFKKNGGSVLQKVDNIKIFTKDELKKITKNN
9638.m00522 motif-negatve QKRKINEYFKKNGGSILQKVDNIMIF SKDDLKKITKNN
9638.m00529 motif-negatve HQKRKMNEYFKKNGGSVLQKVDNVKIF SKDELKKITKNN
9638.m00590 motif-negtive KRS QRL SANRVSMRNLD STEELPEDLTYED ILRATDN
9638.m00592 motif-negtive KRSQRLSTNRVSVRNMDSTEELPEELTYEDILRGTDN
9638.m00835 motif-negtive HREKRKMREFFEKNGGPILEKVNNIKIFKKEELKPILKASN
KLLFDERRKTKEFFIKNGGPVLEKVDNIKIFKKEELKPIIQS
9638.m00843 motif-negtive CN
RRWKRHAQKRLQTKYFRKNQGLLLEQLI SSDENASEKTKI
9638.m00886 motif-egtve FSLEELKKATNN
9638.m00929 moti-natv RHRAIKKVALAGPRSYSYEELYTATNG
9638.m01234 motif-egtve RKKVKHQKI STGMVDTVSHQLL SYHELVRATDN
9638.m01485 motif-negtive RQKRRMNEYFRKNGGSVLQKVENIKIFTKDELKKITKNN
9638.m01489 motif-negative KKLQAKQYAADKNVD SG SLLFDLAIIRKATAN
9638.m01490 motif-negtive RKLQAKQYTDENDIYSGSLLFDLATLRKATAS
KDQRTIPKDIDHEEHIT SLLIKKYPRI SYVELYAATD SL SSE
9638.m01591 motif-negtive N
9638.m01608 motif-neaie KRLREKS SKVNQDQGSKFIDEMYQRI SYNELNVATG S
9638.m01814 motif-negatve KRKWKSNEHMDHTYMELKTLTYSDVSKATNN
KKRLRPL SSKVEIVAS SFMNQMYPRVSYSDLAKATNGFTS
9638.m01940 motif-egtve NN
9638.m02622 motif-negatve RRLRYAELREDWEVEFGPHRFAYKDLFVATAG
9638.m02623 motif-negtive RQRLRYAELREDWEVEFGPHRF SFKDLYDATGG
SRKARRAAVVVEKAETSASGGGGSSTAAAVQASIWSKDT
9638.m02876 motif-negtive TFSFGDILAATEH
9638.m02881 motif-negative RRRPREKKEVE SNTNYSYESTIWEKEGKFTFFD IVNATDN
9638.m03509 motif-egtve RRRAALADTLEEWELDHPHRLPYRELYMATKG
9639.m00291 motif-negatve RKEMRSSQVWIAEEGYRVMTSHFRMYSHRELVKATER
9639.m00654 moti-ngtv NRKQKRKSVDLP SFGRKFVRVSYNDLAKATEG
RSFKLEELKKRDMEQGGGCGAEWKLESFHPPELDADEICA
9639.m01200 motif-egtve VG


RRIKHRRKIKLRQKFFILNRGQLLKQLVSQRADIAERMIIT
DELEKATNN


9639.m03230


motif-negative










Table 2-2. Con inued

Protein ID Categor Juxtamembrane Domain
9639.m03255 motif-egtve KYLNRRKKNNTKNSSETSMQAHRSISFSQLAKATEG
9639.m03742 motif-negatve KKRNNLGKQIDQS CKEWKFTYAEIAKATNE
9639.m04370 motif-neaie RMKVKKHQKISSSMVDMISNRLLSYQELVRATDN
9639.m04371 motif-negtive RKKVKHQENPADMVDTINHQLL SYNELAHATND
9639.m04373 motif-negtive RATDD
9639.m04376 motif-negatve QMTRKKIKRKLDITTPTSYRLVSYQEIVRATES
9639.m04388 motif-egtve KRRKRRMFANNNGGRLLKDMNIVLITEKDLNKMTKN
9639.m04389 motif-negatve KYKVKHQKMSVGMVDMARHQLL SYHELARATND
9639.m04398 motif-negtive RKKIKRKLDTTTPTSYRLVSYQEIVRATES
9639.m04401 motif-negtive RKKANHQNT SAGKPDLI SHQLL SYHELRATDD
9639.m04403 motif-negtive RMTRKKIERKPDIAGATHYRLVSYHEIVRATEN
9640.m00278 motif-neaie RKEMWS SEVWAAEEGYRVMTSHFRMY SYRELVKATER
9640.m00281 motif-egtve KGVFRRCQVSALDEGYRMVTNHFRAYSYVELRNGTRN
9640.m00711 motif-neaie KTHSARSAIWAAEEGYRVVTDHFRRFTYKELRRATRN
RRKRSPKQTEDRSQ SYVSWDIKS TST STAPQVRGARMF SF
9640.m01015 motif-negtive DELKKVTNN
REIKHRRAKRVKQKFFKQNRGHLLEQLISQRADIAERMILP
9640.m01616 motif-negtive LVELEKATNN
9640.m02587 moti-natv RRCNDHRRRVQQKELELLGIMGP SRFQLQDLVAATGN
9640.m03046 motif-neaie RQTRNSRKGEHALLLI SDQHVRVSYTELVTSTNG
HRRRNKQDTWITNNARLISPHERSNVFENRQFTYRELKLM
9640.m03691 motif-egtve TSN
KLQRRKYRKEKEEYFKQNGGLRLFDEMRSRQVD TILILTE
9640.m04130 motif-negtive KEIKKATENYSDD
RRRHKKEKIEYFKQNGGLRLYDEMI SRQVDTIRILTEREIK
9640.m04131 motif-negtive RATENYN
RKRHKKDKDEYFKQNGGLKLYDEMRSRKVDTIRILTEKDI
9640.m04132 motif-egtve KKATDNYSED
9640.m04 177 motif-neaie KPMKQVMQ SNETSPRPLLMEQHWKL SYAELHRATD G
SRKKSIGG SYVKMDKQTIPD GAKLVTYQWNLPYS SGEIIR
9640.m04345 motif-negtive RLELLDEED
9639.m04391 motif-neaie RMKVKKHQMISSGMVDMISNRLLSYHELVRATDN
9639.m04405 motif-negtive KKMKNPDITASFDTADAICHRLVSYQEIVRATEN






































a .dp


b


m6 pas Am off a m







D g

amaP D ma~ n 8


Secric ~s4 ind ce~go&C1 teor[SnlabUI


aP n ~ a~ can ad a W










.. d. .. ]Mtfpsiv


.b a. Y s Motif-like

., Motif-negative


DeatedwinGenoneroetr


Figure 2-3. Rice RLKs selected for study mapped on the twelve rice chromosomes.
Numbers along the top represent length ofchromosome in megabases.


-chromosome
















00 B.B 1X~ r7.6 PO 26~~ 30~8 35~7 16 Up
~P~e ~%C~8~~~ ~ ~m ~W ~~

Cb~ora a P ~P O~~

Og _B s sss s _eos

P ~P ~ PPPP~


a DR@a a A oP ca a a


~ .B a


Ftau;iceUo~ariJDavmprpaetrstiv pLenghhUF)


Cleased*Mr~enomaPheabe


Figure 2-4. Motif-positive rice RLKs mapped on the twelve rice chromosomes.
Numbers along the top represent length of chromosome in megabases.


[]I Motif-positive

-chromosome








63


m mI





-

. .


Rm aRLK s JMD Caegayow MoPoe (Song ab UF)


Deated Wh GenmePbotr


Figure 2-5. Motif-like rice RLKs mapped on the twelve rice chromosomes. Numbers
along the top represent length of chromosome in megabases.


SMotif-like

-chromosome








64


C ~r~r~Y r IC r Ir

_r _r _r -5-r

~I I rl


.3 .


a ..... ... .


Ir,


I -~ rl


Ftc SUC a ndMD Category Mainlepanv (Sorg ieb uIF


Cleeledd wh enmae~uero


Figure 2-6. Motif-negative rice RLKs mapped on the twelve rice chromosomes.
Numbers along the top represent length of chromosome in megabases.


M Motif-negative
- chromosome




























3_

Ei


I


.


aD ~ C8 117 rZ6 pp aAl 18 15~2 31~ uO
I





_~o -9


I


[]I Motif-positive

E Motif-like

M Mtif-negative

-- chromosome


Reenua AF s61a4 cna CR;L Cked aadnordn toMD Cadega 5rqp (Sngb UFI


Created wh Senae~instr


Figure 2-7. Rice RLKs in subfamily CrRLKIL-1 selected for study mapped on the
twelve rice chromosomes. Numbers along the top represent length of
chromosome in megabases.





R.*e MLKI Slbian DUF26b: oh~e~d~eornngtoD tsategr (SngbbUF)


go


112 lf.6 fLO aA~


18 HZ


GentetdhbraamPbhir


Figure 2-8. Rice RLKs in subfamily DUF261c selected for study mapped on the twelve
rice chromosomes. Numbers along the top represent length of chromosome in
megabases.


[]I Motif-positive
i Motif-like

SMotif-negative
-chromosome








67





go _B$ _Its r2o _*4 _me _.396 _uo
-r

I Ir __t -r_

r r

p~a ..r.


I~ I

II *

, ,


[]I Motif-positive

M Motif-like

SMotif-negative

-chromosome


o B


Stra AL~r hrarb LAI Carta~nealac~mbs IMd lgyp (EmO lb LIP)


taeshi wmatah Gndka


Figure 2-9. Rice RLKs in subfamily L-LEC selected for study mapped on the twelve rice
chromosomes. Numbers along the top represent length of chromosome in
megabases.







68


m

a H


O I


HiseRLK' s~agerrsD2b edAccagsledMD Co~eley ISerghb UF


Figure 2-10. Rice RLKs in subfamily SD-2a selected for study mapped on the twelve
rice chromosomes. Numbers along the top represent length of chromosome in
megabases.


[]I Motif-positive

SMotif-like

SMotif-negative
-chro moso me



C~rosseah~nonp uber







69


D



r _r..





AiceSLK S~kledyW ColoadAccordngtoJMD Cele [Songlob UF]


CmatdwhGenowPuere


Figure 2-11. Rice RLKs in subfamily WAK selected for study mapped on the twelve rice
chromosomes. Numbers along the top represent length of chromosome in
megabases.


[]I Motif-positive

M Motif-like

SMotif-negative
-chromosome







70


* *


_P


fREO RtL~ 5ub~emtLRRI tdgmdured u $lMD CL~gy Sag Idb FI


Crocomhiarthewnc


Figure 2-12. Rice RLKs in subfamily LRR-la selected for study mapped on the twelve
rice chromosomes. Numbers along the top represent length of chromosome in
megabases.


[]I Motif-positive
E Motif-like
SMotif-negative
-chromosome







71


[]I Motif-positive

E Motif-like

SMotif-negative

-chromosome


I I


I


I


Ree FLEN S~gItadP~b~pledaJM D toJM aley (Ser ab lJF


Created wth Gernarda hir


Figure 2-13. Rice RLKs in subfamily SD-2b selected for study mapped on the twelve
rice chromosomes. Numbers along the top represent length of chromosome in
megabases.
















CHAPTER 3
MOLECULAR CHARACTERIZATION OF THE XA21T2AS5/96 MUTANT

Introduction

The rice disease resistance protein XA21, a receptor-like kinase (RLK), contains a

putative proteolytic cleavage motif (P685SRTSMKG) in the juxtamembrane (JM) domain

(Xu et al., 2006). Previous studies have suggested that autophosphorylation of three

serine and threonine residues within this motif play a role in the stabilization XA21.

Sequence analysis led to the identification of a second putative cleavage motif

(P922TDSTFRP) located in the intracellular kinase domain of XA21. Similar to the first,

the second motif carries three serine and threonine residues (Thr923, Ser925, and

Thr926) that can be potentially phosphorylated. Therefore, it is hypothesized that

autophosphorylation of these three residues also contribute to the stability of XA21.

Here, transgenic rice plants with these three phosphorylable residues mutated to alanine

are analyzed for the steady-state stability of XA21. Consistent with previous studies, the

XA21T923A/S925A/T926A mutant accumulated to lower levels than wild-type. This work

provides additional evidence supporting that autophosphorylation of XA21 plays a role in

the stabilization of XA21.

Materials and Methods

Mutant Rice Plants

Transgenic lines expressing a c-Myc-tagged XA21 T2AS5/96 were provided

by Dr. Xuihua Chen of the Song lab at the University of Florida.









XA21 Detection

Protein isolation. Rice plants approximately three months old were used for this

study. Total protein isolation was performed by first grinding leaf tissue in liquid

nitrogen. Ground tissue was transferred into a 1.5 ml Eppendorf microcentrifuge tube to

a volume of approximately 700 uL. An equal volume of extraction buffer (50 mM Tris-

HC1, pH 7.5; 150 mM NaCl; 1 mM EDTA; 0.1% TritonX-100; 1 mM 4-(2-aminoethyl)-

benzenesulfonyl fluoride (Sigma); 2 ug/ml leupeptin; 2 ug/ml antipain; 2 ug/ml aprotinin;

5% v/v P-mercaptoethanol) was added and the tube was vortexed. The tubes were

incubated on ice for five minutes. To pellet cell debris, tubes were centrifuged at 4oC,

12,000 x g, for ten minutes. The supernatant was saved for application in western blot

analysis. Protein concentrations in the extracts were measured using the Bio-Rad protein

assay (Hercules, CA).

Western blot analyses. Each protein sample prepared above were subjected to

SDS-PAGE and subsequently electrotransferred to a PVDF membrane (Millipore

Corporation, Bedford, MA) for one hour at a constant 265 milliamps. The membrane

was incubated at room temperature for three hours in Blotto [5% non-fat dried milk in

TTBS (100 mM Tris-HC1, pH 7.9; 150 mM NaCl; 0.1% Tween 20)]. The membrane was

washed in approximately 150 ml of TTBS three times for 8 minutes each. Blots were

incubated with primary antibody (anti-c-Myc, 1:700) in 3% bovine serum albumin in

TTBS or in Blotto at 4oC. The membrane was then washed as previously described.

Secondary antibody (anti-mouse IgG, Amersham Biosciences) incubation was performed

in Blotto at room temperature for one hour. The membrane was then once again washed

as previously described. The blot was developed using Amersham Bioscience's

ECL+Plus kit.









XA21 Transcript Levels

To address the issues that lower protein levels may be due to lower transcripts, real-

time PCR was carried out as in Wang et al. (in press). Primers used in this experiment

recognize the LRR region ofXa21 and have been scrutinized for specificity. Template

RNA was isolated from each mutant plant using the Qiagen RNeasy mini kit. Analysis of

raw data, with the assistance of Dr. Li-Ya Pi of the University of Florida, was carried out

to obtain values representing relative amounts of transcripts.

Results and Discussion

All XA21 T923A/S925A/T926A mutant rice plants surveyed exhibit lower levels of XA21

compared to wild-type levels (Figure 3-1). In contrast, Xa21 relative transcript levels in

the mutants are comparable to those of wild-type XA21 or higher, confirming that lower

steady states of XA2 1T923A/S925A/T926A iS not due to lower transcripts. Ponceau staining of

the membrane used in the Western blot ensures approximately equal amounts of proteins

were loaded into the gel. Together, these indicate that Thr923, Ser925, and Thr926 are

involved in the stability of XA21. It must be noted however, that this Western blot

analysis only indicates decreased level of protein and that degradation product cannot be

seen. For future studies, it would be interesting to purify the membrane fraction of

XA2 1T923A/S925A/T926A mutant rice extract as in Xu et al. (2006) to allow detection of a

cleavage product.

If the putative cleavage motif examined here and the one described by Xu et al.

(2006) are true cleavage sites acting independently, three cleavage products of XA21

would result: 100 kD, 25 kD, and 15 kD (Figure 3-2). However, because of the N-

terminus location c-Myc-tag, only full-length XA21 and the 100 kD cleavage product









could be detected on a Western blot. It is possible however that both putative cleavage

motifs may act in conjunction when the protein is folded.

Instability of XA21 T923A/S925A/T926A mutant examined here is possibly due to a lack

of autophosphorylation of XA21 on these residues. Alternatively, autophosphorylation of

these three residues may function as docking sites for downstream proteins. Yeast-two-

hybrid analysis has led to the identification of 27 proteins that associate with XA21. A

complex of proteins could protect XA21 from a protease(s) by limiting access to the

recognition site. Residues mutated in D1 plants are contained within a motif of perfect

identity to the proteolytic cleavage motif P/GX5.7P/G found in the animal EGFRs (Figure

3-3). Glycine flanking the putative cleavage motif may contribute to the exposure of this

motifby disrupting its secondary structure. These findings are consistent with previous

studies by Xu et al. (2006) and support that autophosphorylation of XA21 plays a role in

the stabilization of XA21.




















I III


WT 9 11 2 19 24 35 36
D1 Mutants















Figure 3-1. Analyses of XA21T923N/S925N/T926A mutant. Relative transcripts are illustrated
by the bar graph. The Western blot film at center shows amount of full length
XA21 in wild-type (WT) plants and in seven XA21 T923A/S925A/T926A
mutant plants (numbers represent the plant line). Ponceau staining of the
membrane was performed to ensure equal loading.


I I


I I


I I


Ponceau


n,













15 kD
40 kD
140 kD


c-Myc7 A


N-terminus C-terminus


Transmembrane
Juxta mem bra ne


A: putative cleavage motif (ZSy et al. 2006)

B: putative cleavage motif studied here


Figure 3-2. Schematic representation of XA21 indicating putative cleavage motifs (A
and B). Triangles mark the approximate location of putative cleavage motifs
and the N-terminal c-Myc tag. Bars above indicate approximate weights in
kD of various portions of the protein before and after cleavage at the indicated
sites. The transmembrane and JM domains are indicated.


XA21 Intracellular Domain
677HKRTKKGAPSRTSMKGHPLVSYSQLVKATDGFAPTN LL GSG
VYKGKLNIQDHVAVKVLKLE N PALS FTAEC EALRNMRHRNLVKIV
TICSSIDNRGNDFKAIVYDFMPNGSLEDWIHPETNDQADQRHNH
RVTILLDV~ACALDYLHRHGPE PVVHCDIKS SNVLLDSDMVAHVGDFG
LARILVDGT SLIQQCST SSMGFIGTIGYAAPEYGVGLIASTHGDIYSY
GILVLE IVTGKRP922TDSTFRPDLGLRQYVELGLHGRVTDVVDT
KLILDSENWLNSTNNSPCRRITECIVWLLRLGLSCSQELPSSTT
DIIDELNAIKQNLSGLFPVCEGGSLEF






Figure 3-3. Amino acid sequence of the intracellular domain of XA21. The putative
cleavage motif characterized in the study is underlined and the mutated
residues of Dl mutants are shown in red.
















CHAPTER 4
DIRECT MUTATION OF THE PUTATIVE CLEAVAGE MOTIF INT THE
JUXTAMEMBRANE DOMAINT OF XA21

Introduction

Previous findings suggest that auto phosphorylation of XA21 in the

juxtamembrane (JM) domain plays a role in the protection of XA21 against proteolytic

degradation (Xu et al., 2006). The phosphorylated residues Ser686, Thr688, and Ser689

exist within a putative cleavage motif flanked by conserved residues of proline (Pro685)

and glycine (Gly692). Herman and Chernajoysky (1998) demonstrated that Proline211

of the human p75 TNF receptor is required for its shedding. Pro211 is located in the

juxtamembrane region of this protein. It would be interesting to investigate whether the

conserved Pro685 and Gly692 of XA21 are important for the instability of this RLK. In

this chapter, Pro685 and Gly692 are mutated to alanine. The constructs will eventually

be used to confirm the role of the predicted cleavage motif in XA21 stability. Residues

within the putative cleavage motif in the juxtamembrane domain of XA21K, a non-

functional kinase mutant, are mutated for future research.

Materials and Methods

The codons encoding proline and glycine residues flanking the putative cleavage

motif located within the juxtamembrane domain of XA21K were mutated to encode

alanine via site-directed mutagenesis (Figure 4-1). The resulting mutants were named

P9A and Gl6A, respectively. The construct used as the template, GST-XA21K,

containing the putative intracellular domain of XA21 (XA21K), was used as template for









site-directed mutatgenesis. The primers used are listed in Table 4-1. Each reaction

contains 25 ng template DNA, Pfu buffer (Invitrogen), 200 uM of each dNTP, forward

primer, reverse primer, and water to total 50 ul. Reactions were placed in MJ Research

PTC-2000 Thermocycler and allowed to complete one denaturation cycle for ten minutes

at 990C. The cycler was then paused to allow the addition of 2.5U of the DNA

polymerase Pfu (Invitrogen) to each reaction tube. Next, PCR conditions were run

continuously: 5 cycles of 94oC 1 min, 50oC 1 min, 680C 16 min; 16 cycles of 94oC 1 min,

56oC 1 min, 680C 16 min; 1 cycle of 72oC 10 min. The reactions were then subj ected to

restriction enzyme digestion by DpnI, at 37oC overnight to remove template. Each

reaction was checked by agarose gel electrophoresis. Next, 1 ul of each reaction was

mixed with 19 ul of ER2566 competent cells (New England Biolabs,) electroporated at

400 mV, and allowed to recover in 1 ml of Luria Broth (LB). Cells were then plated on

solid LB supplemented with 50 ug/mL ampicillin and incuated at 37oC overnight. Single

colonies were picked, cultured, and subj ected to DNA isolation by Qiagen miniprep kit.

DNA was sequenced by the University of Florida DNA Sequencing Core at Fifield Hall.


Table 4-1. Primers used in site-directed mutagenesis. "F" and "R" indicate forward and
reverse, respectively
Mutation Primers (5' to 3')
P9A F-AGAACTAAAAAGGGAGCCGCTTCAAGAACTTCCATG
R-CATGGAAGTTCTTGAAGCGGCTCCCTTTTTAGTTCT
G16A F-TCAAGAACTTCCATGAAAGCCCACCCATTGGTCTCT
R-AGAGACCCATGGGTGGGCTTTCATCATGGAAGTTCTTGA










XA21 Intracellular Domain

HKRTKKGA PSRT SMRHP LVSY SQLVKAT DGFAPTNLLGS G SFGSV
YKGKLN IaD HVAVKVLKLEN PKALK SFTAE CEALRNMRHRNLVK IVT
ICSSIDNRGNDFKAIVYDFMPNGSLEDWIHPETNDQADQRHLLR
VT ILLDVACALDYLHRHGPE PVVHC D IKS SNVLLD SDMVAHVGDFGL
ARI LVD GT S LI QQS TSSMGF IGT IGYAAPEYGVGL IASTHGD IYSYG
I LVLE IVT GKRPTD STFRPD LGLRZYVE LGL HGRVTDVVD TKL ILD S
ENWLNSTNNSPCRRITECIVWLLRLGLSCSQELPSSRTPTGDIE
NAI KQNLS GLFPVCEGGSLEF


Figure 4-1. The intracellular domain of XA21. Mutated residues Pro685 and Gly692 are
larger and highlighted in red. The putative cleavage motif is underlined.

Results and Discussion

To confirm that the sequence PSRTSMKG in the JM domain is a true cleavage

motif, the conserved Pro685 and Gly692 were individually mutated to alanine. The

P685A and G692A mutations will be eventually incorporated into the full-length Xa21

gene inder the control of the native promoter. It has been established that

XA21 S686A/T688A/S689A mutant is unstable (Xu et al., 2006), so we will test whether the

X2P685A/S686A/T688A/S689A OrX2SG692A/S686A/T688A/S689A mutant protein in the transgenic

lines becomes more stable than XA21S686A/T688A/S689A. These experiments can provide

verification of the putative cleavage motif in the JM domain of XA21. If the residues

indeed provide a protease recognition site, accumulation studies would show higher

levels of protein than the phosphorylation mutant described by Xu et al. (2006).

Additionally, an XA21 P685A/S686A/T688A/S689A/G692A mutant could be created to investigate if

both residues are required for instability. For further analysis, similar mutants could be

made to the putative cleavage motif examined in Chapter 3. Also, simultaneous

mutations of the conserved residues of the conserved proline and glycine residues at both







81


locations of XA21 could be fascinating to examine. Higher levels of XA21 may be seen

as a result of these combined mutations.
















CHAPTER 5
CLONING OF SELECTED ARABIDOPSIS RLKS

Introduction

Arabidopsis thaliana is the model system of plant research today. It is ideal for the

laboratory as it is small, manageable, inexpensively cultivated, while producing

numerous progeny within only approximately one month (Arabidopsis Genome Initiative

2000). Consequently, Arabidopsis genes and proteins related to those studied in other

less manageable plants are frequently investigated first or in parallel with genes and

proteins in those other plants. Also, because Arabidopsis has the smallest genome known

of plants, research of these related genes can also help determine conservation of these

genes through evolution.

Previous investigation of about 600 Arabidopsis RLKs by Dr. Guozhen Liu of the

Song Lab at the University of Florida (unpublished) included alignments of their

juxtamembrane domains. It was quickly noted that the RLK's fell into five separate

categories based on a single amino acid in the JM domain corresponding with Thr705 of

XA21; at the specific site there is a threonine (T), aspartic acid (D) or glutamic acid (E),

histidine (H), serine (S), or other amino acids (0.) Aspartic acid and glutamic acid are

grouped because of their similar structures and similar behavior.

In this chapter, four Arabidopsis open reading frames (ORFs) encoding DE group

RLKs (Figure 5-1) were randomly selected, amplified from a library, and cloned into a

vector.












XA21 ... KGHPLVSYSQLVKA 70sDG

At1 948480 ... KLVF FG NAT KVF DLEDL L

At2 936570 ... SRLVF FE RRKQFE LDDL L

At3g28040 ... TSRSSSSSQEFERNP SL
At5 g01~890 .. .VMFSGEVDVFDTTGADAL


Figure 5-1. Sequence alignment of XA21 and selected Arabidopsis proteins of the DE
group. Threonine705 of XA21 is red and underlined as well as the
corresponding residues in Arabidopsis proteins.

Materials and Methods

Amplification of the At5g01890, Atlg48480, At2g36570 and At3g28040 ORFs

Four Arabidopsis ORFs encoding DE RLKs were randomly selected and primers

were designed for each of them (Table 5-1), including the addition of a BBBBBBBBBBBBBBBBBamH1 site for

cloning. The ORFs were amplified from a hTriplEx2 Arabidopsis total seedling library

(Clontech, Mountain View, CA) provided by Dr. Robert Ferl's lab at the University of

Florida, by PCR using the RoboCycler (Stratagene).


Table 5-1. List of primers used in the amplification of the selected Arabidopsis RLK' s.
"F" and "R" indicate forward and reverse, respectively
Gene Group Primers (5' to 3')
At5g01890 DE F-CGGGATCCCACGCCCGATCTAGTGTTTCACG
At5g01890 R-CGGGATCCTCACTCTAAGTCATGAGAGGGACA
At3284 DE F-CGGGATCCAACGCGTCTGTTAGAAGACGGCTTG
At3g28040 R-CGGGATCCTTAGAAACTATCCATGATACGGTGGG
At2g36570 DE F-CGGGATCCCGTAACGGCGAAAGATCAAAATCCGG
At2g36570 R-CGGGATCCCAGAAACCAAACTTAGCCGTCGGTGG
At1g48480 DE F-CGGGATCCCGGAAAAAGAGTAATAAGAGATCAAGA
At1g48480 R-CGGGATCCTTAATCAGCTTCGTTCACTTGGTCTG









The PCR reaction used to amplify At5g01890, At2g36570 and Atlg48480

contained 2 units of Taq DNA polymerase, lx PCR buffer (Invitrogen), 200 uM each

dNTP, 0.2 uM each appropriate primer, approximately 25 ng of template DNA. They

were successfully amplified under 1 cycle of 990C for 10 minutes (after which the cycler

was paused in order to add the enzyme); 35 cycles of 94oC for 1 minute, 50oC for 1 min

30 sec, 72oC for 1 min 30 sec; 1 cycle of 72oC for 10 minutes.

At3g28040 was amplified under the following conditions: 1 cycle of 990C for 10

minutes (after which the cycler was paused in order to add the enzyme); 5 cycles of 94oC

for 1 minute, 45oC for 1 min 30 sec, 72oC for 1 min 30 sec; 25 cycles of 94oC for 1

minute, 50oC for 1 min 30 sec, 72oC for 1 min 30 sec; 1 cycle of 72oC for 10 minutes.

Amplification of gene At3g28040 was successful.

Molecular Cloning of the PCR Products

Following amplification, the PCR products sizes were checked by agarose gel

electrophoresis. Approximately 60 ng of each product was then applied in separate

ligation reactions into vector pGEM-T (Promega) according to manufacturer instructions.

One microliter of the resulting ligation was added to 19 uL of XL1i-Blue competent cells

(Stratagene) and electroporated at 400 mV. Cells were then transferred to 1 mL of Luria

Broth (LB) and incubated at 37oC at 100 rpm for one hour. Cells were then spread onto

solid LB medium containing 50 ug/mL Ampicillin, isopropyl-P-D-thiogalactopyranoside

(IPTG) and X-galactose, and incubated at 37oC overnight. Single colonies were chosen,

inoculated into 3 mL of liquid LB, and incubated at 37oC overnight with shaking. DNA

from these cultures was purified using the Qiagen miniprep kit. DNA was then digested

overnight at 37oC with BamBBBBBBBB~~~~~~~~~HI to check for the insert.









Results and Discussion

The ORFs of At~g0 1890, Atlg48480, At2g36570, and At3g28040 were PCR-

amplified from an Arabidopsis cDNA library and cloned into the pGEM-T vector. Figure

5-2 shows BamBBBBBBBB~~~~~~~~~HI-dgse recombinant DNA. Expected inserts of At~g0 1890 (FigureS-

2A), Atlg48480 (Figure5-2D), At2g36570 (Figure5-2B), and At3g28040 (Figure5-2C)

are 1008, 1095, 1100, and 1050 base pairs (bp), respectively. The size of the pGEM-T

vector is 3000 bp. The inserts shown do not exactly equal the expected sizes of clones of

At5g01890 and Atlg48480. These clones were sequenced at the DNA Sequencing Core

of the University of Florida at Fifield Hall to confirm accuracy. Because the maj ority of

plant RLKs contain a threonine residue at the position corresponding to Thr705 of XA21

and this conserved residue is essential for autophosphorylation activity of many RLKs,

molecular cloning of members belonging to the DE group of RLKs will provide a basis to

test whether these kinases are capable of autophosphorylation.
















































Figure 5-2. Identification of recombinants carrying the ORFs of At~g0 1890, Atlg48480,
At2g36570 and At3g28040. The DNA was digested with BamH1. A: pGEM-
T-At5g01890, all lanes represent correct clones. B: pGEM-T-At2g36570,
correct clones indicated y triangles. C: pGEM-T-At3g28040, all lanes
represent correct clones. D: pGEM-T-Atlg48480, all lanes represent correct
clones.


3kbl


I I


~I


3kb I)


e
e


1 .6kb
1kb






3kb


1kb


C D














LIST OF REFERENCES


Arabidopsis Genome Initiative (2000). Analysis of the genome sequence of the
flowering plant Arabidopsis thaliana. Nature, London. 408:796-815.

Becraft PW, Stinard PS and McCarty DR (1996). CRINKLY4: A TNFR-like receptor
kinase involved in maize epidermal differentiation. Science. 273:1406-1409.

Bieri S, Mauch S, Shen QH, Peart J, Devoto A, Casais C, Ceron F, Schulze S,
Steinbiss HH, Shirasu K, and Schulze-Lefert P (2004). RAR1 positively controls
steady state levels of barley MLA resistance proteins and enables sufficient MLA6
accumulation for effective resistance. Plant Cell. 12:3480-95

Biscardi JS, Tice DA, and Parsons SJ (1999). c-Src, receptor tyrosine kinases, and
human cancer. Adv Cancer Res. 76:61-119.

Braun DM and Walker JC (1996). Plant transmembrane receptors: new pieces in the
signaling puzzle. Trends Biochem Sci. Feb;21(2):70-3.

Brueggeman R, Rostoks N, Kudrna D, Kilian A, Han F, Chen J, Druka A,
Steffenson B, and Kleinhofs A (2002). The barley stem rust-resistance gene Rpgl is a
novel disease-resistance gene with homology to receptor kinases. Proc Natl Acad Sci U
SA. Jul 9;99(14):9328-33.

Burgess AW, Cho HS, Eigenbrot C, Ferguson KM, Garrett TP, Leahy DJ, Lemmon
MA, Sliwkowski MX, Ward CW, and Yokoyama S (2003). An open-and-shut case?
Recent insights into the activation of EGF/ErbB receptors. Mol1 Cell. 3:541-52.

Buchanan B, Gruissem W, and Jones R (2000). Biochemistry & M~olecular Biology of
Plants. American Society of Plant Physiologists. Rockville, Maryland.

Canales C, Bhatt AM, Scott R, and Dickinson H (2002). EXS, a putative LRR
receptor kinase, regulates male germline cell number and tapetal identity and promotes
seed development in Arabidopsis. Curr Biol. 12(20):1718-27.

Cheatham B, Vlahos CJ, Cheatham L, Wang L, Blenis J, Kahn CR (1994).
Phosphatidylinositol 3-kinase activation is required for insulin stimulation of pp70 S6
kinase, DNA synthesis, and glucose transporter translocation. Mol1 Cell Biol. 7:4902-11.

Chen Y, Long L, Lin X, Guo W, and Liu B (2006). Isolation and characterization of a
set of disease resistance-gene analogs (RGAs) from wild rice, Zizania latifolia Griseb. I.
Introgression, copy number liability, sequence change, and DNA methylation alteration in
several rice–Zizania introgression lines. Genome. Feb;49(2):150-158.











Christianson TA, Doherty JK, Lin YJ, Ramsey EE, Holmes R, Keenan EJ, and
Clinton GM (1998). NH2-terminally truncated HER-2/neu protein: relationship with
shedding of the extracellular domain and with prognostic factors in breast cancer.
Cancer Res. 58(22):5123-9.

Clark SE, Running MP, and Meyerowitz EM (1993). CLAVATA1, a regulator of
meristem and flower development in Arabidopsis. Development. 119(2):397-418.

Clark, SE, RW Williams, and EM Meyerowitz (1997). The CLAVATAl gene
encodes a putative receptor kinase that controls shoot and floral meristem size in
Arabidopsis. Cell. 89:575-585.

Clouse SD, Langford M, and McMorris TC (1996). A brassinosteroid-insensitive
mutant in Arabidopsis thaliana exhibits multiple defects in growth and development.
Plan2tPhysiology. 111(3):671-8.

Coussens L, Yang-Feng TL, Liao YC, Chen E, Gray A, McGrath J, Seeburg PH,
Libermann TA, Schlessinger J, Francke U, Levinson A, and Ullrich A (1985).
Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal
location with neu oncogene. Science. 230(4730):1132-9.

Dangl JL and Jones JD (2001). Plant pathogens and integrated defense responses to
infection. Nature. 411(6839):826-33.

Dello Sbarba P and Rovida E (2002). Transmodulation of cell surface regulatory
molecules via ectodomain shedding. Biol Chem. 383(1):69-83.

Endre G, Kereszt A, Kevei Z, Mihacea S, Kalo P, and Kiss GB (2002). A receptor
kinase gene regulating symbiotic nodule development. Nature. 417(6892):962-6.

Feuillet C, Schachermayr G, and Keller B (1997). Molecular cloning of a new
receptor-like kinase gene encoded at the Lrl0 disease resistance locus of wheat. Plant J.
11(1):45-52.

Fletcher JC, Brand U, Running MP, Simon R, and Meyerowitz EM (1999).
Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems.
Science. 283(5409):1911-4.

Flor, HH (1971). Current status of the gene-for-gene concept. Annu Rev
Phytopathology. 9, 275-296.

Frederick RD, Thilmony RL~, Sessa G, and Martin GB (1998). Mol1 Cell. 2: 241-245.









Fritz-Laylin, Lillian K, Nandini Krishnamurthy, Mahmut T~r, Kimmen V
Sjilander, and Jonathan DG Jones (2005). Phylogenic Analysis of the Receptor-Like
Proteins of Rice and Arabidopsis. Plan2tPhysiology. 138:61 1-623.

Gifford, ML, S Dean, and GC Ingram (2003). The Arabidopsis ACR4 gene plays a
role in cell layer organisation during ovule integument and sepal margin development.
Development. 130(18):4249-58.

Godiard L, Sauviac L, Torii KU, Grenon O, Mangin B, Grimsley NH, and Marco Y
(2003). ERECTA, an LRR receptor-like kinase protein controlling development
pleiotropically affects resistance to bacterial wilt. PlanztJ. 36(3):353-65.

Gomez-Gomez, L and T Boller (2000). FLS2: an LRR receptor-like kinase involved in
the perception of the bacterial elicitor flagellin in Arabidopsis. Molecular Cell. 5: 1003 -
1011.

Gomez-Gomez, L and T Boller (2002). Flagellin perception:a paradigm for innate
immunity. 7RENDS in Plan2tScience. 7(6):251-256.

Goring DR, Glavin TL, Schafer U, and Rothstein SJ (1993). An S receptor kinase
gene in self-compatible Brassica napus has a 1-bp deletion. Plant Cell. 5(5):531-9.

Hanks SK, Quinn AM, and Hunter T (1998). The protein kinase family: conserved
features and deduced phylogeny of the catalytic domains. Science. 241(4861):42-52.

He ZH, Cheeseman I, He D, and Kohorn BD (1999). A cluster of five cell wall-
associated receptor kinase genes, Wakl-5, are expressed in specific organs of
Arabidopsis. Plan2t2olBiol. 39(6):1189-96.

Hecht V, Vielle-Calzada JP, Hartog MV, Schmidt ED, Boutilier K, Grossniklaus U,
and de Vries SC (2001). The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR
KINASE 1 gene is expressed in developing ovules and embryos and enhances
embryogenic competence in culture. Plant Physiol. 127(3):803-16.

Herman C and Chernajoysky Y (1998). Mutation of proline 211 reduces shedding of
the human p75 TNF receptor. Journal oflnanunology. 160(5):2478-87.

HervC C, Dabos P, Galaud JP, Rouge P, and Lescure B (1996). Characterization of an
Arabidopsis thaliana gene that defines a new class of putative plant receptor kinases with
an extracellular lectin-like domain. J2~olBiol. 258(5):778-88.

Hoffmann JA and Reichhart JM (2002). Drosophila innate immunity: an evolutionary
perspective. Nat Inanunol. Feb;3(2): 121-6.

Hooper NM, Karran EH, and Turner AJ (1997). Membrane protein secretases.
Biochent J. 321:265-279.











Horn MA and Walker JC (1994). Biochemical properties of the autophosphorylation
of RLK5, a receptor-like protein kinase from Arabidopsis thaliana. Biochim Biophys
Acta. 1208(1):65-74.

Hubbard SR and Till JH (2000). Protein tyrosine kinase structure and function. Annu
Rev Biochem. 69:373-98.

Hubert DA, Tornero P, Belkhadir Y, Krishna P, Takahashi A, Shirasu K, and
Dangl JL (2003). Cytosolic HSP90 associates with and modulates the Arabidopsis
RPM1 disease resistance protein. EMBO J. 22(21):5679-89.

International Rice Genome Sequencing Project (2005). The map-based sequence of
the rice genome. Nature. 436(7052):793-800.

Jeong S, Trotochaud AE, and Clark SE (1999). The Arabidopsis CLAVATA2 gene
encodes a receptor-like protein required for the stability of the CLAVATAl receptor-like
kinase. Plant Cell. 11(10):1925-34.

Jiang J and Wang S (2002). Identification of a 1 18-kb DNA fragment containing the
locus of blast resistance gene Pi-2(t) in rice. Mol1 Genet Genomics. 268(2):249-52.

Jin P, Guo T, and Becraft PW (2000). The maize CR4 receptor-like kinase mediates a
growth factor-like differentiation response. Genesis. 27(3):104-16.

Jinn TL, Stone JM and Walker JC (2000). HAESA, an Arabidopsis leucine-rich
repeat receptor kinase, controls floral organ abscission. Genes Dev. 14: 108-117.

Johnson KL and Ingram GC (2005). Sending the right signals: regulating receptor
kinase activity. Curr Opin in Planzt Biol. 8: 1-9.

Kinoshita T, Cano-Delgado A, Seto H, Hiranuma S, Fujioka S, Yoshida S, and
Chory J (2005). Binding of brassinosteroids to the extracellular domain of plant receptor
kinase BRI1. Nature. 433(7022):167-71.

Krusell L, Madsen LH, Sato S, Aubert G, Genua A, Szczyglowski K, Due G, Kaneko
T, Tabata S, de Bruijn F, Pajuelo E, Sandal N, and Stougaard J (2002). Shoot
control of root development and nodulation is mediated by a receptor-like
kinase. Nature. 420(6914):422-6.

Li J and Chory J (1997). A putative leucine-rich repeat receptor kinase involved in
brassinosteroid signal transduction. Cell. 90:929-938.

Li J, Wen J, Lease KA, Doke JT, Tax FE, and Walker JC (2002). BAKl, an
Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates
brassinosteroid signaling. Cell. 110(2):213-22.