<%BANNER%>

Acoustic Application of Pressure-Sensitive Paint

xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID E20110330_AAAALR INGEST_TIME 2011-03-30T15:08:27Z PACKAGE UFE0012905_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES
FILE SIZE 41835 DFID F20110330_AABHHO ORIGIN DEPOSITOR PATH virgin_c_Page_056.pro GLOBAL false PRESERVATION BIT MESSAGE_DIGEST ALGORITHM MD5
0e09a1045e349d4777b14382b233f1f7
SHA-1
2efdce225b87f12328fefc63d52f37145a64b67b
81895 F20110330_AABHID virgin_c_Page_050.jpg
25ee593edeb599c05233bd79407f53e5
68b9309c6c63cf88b94c200ddd47ef1e83de6b6c
706719 F20110330_AABHHP virgin_c_Page_029.jp2
86a57dce5079974bdf542ac09d8d7573
106e64d983f19cd6245ac0bad3ea0e5746d1445e
5310 F20110330_AABHIE virgin_c_Page_009thm.jpg
4bef6c98137400049f3e250f3ce06401
3ef7d698cfabf4f9d3bd072af57f90053d47dd88
2545 F20110330_AABHHQ virgin_c_Page_098.txt
09ca4972edecfe60ad5303ca53ca8e17
781f9d36ea3cc2cbf2f791a2d68271e8d192fc16
2560 F20110330_AABHIF virgin_c_Page_080thm.jpg
29bad3cf085b259a5994bcd49d127ec5
b2ea1f26a5f9d02743838887d413916ca060bbb6
54714 F20110330_AABHHR virgin_c_Page_081.jpg
c6284483a509897c5a314296342ad60d
1839a6636a4cc312b4853418d2debe82a7169395
49246 F20110330_AABHIG virgin_c_Page_038.pro
16f6fc95d6a004dd341fb8f3d0b6de74
7f4726ab623a3ae7052ef79dc93437bb15dc5ccb
25271604 F20110330_AABHHS virgin_c_Page_015.tif
e3b79c253b86e680cc3d40f91a78d32e
16bf2f5757818737d1a3aee3bf921f53053d17b4
95786 F20110330_AABHHT virgin_c_Page_054.jpg
1e1a6dcce8130c6f308f53090582631a
e74f370134a229bbe9bd2999037245c44be98934
22230 F20110330_AABHIH virgin_c_Page_009.QC.jpg
e5ceccf177995fe100ab98666f4251ce
2d589bbb67eb2efd0a45e389f41b67cc22179291
5814 F20110330_AABHHU virgin_c_Page_084thm.jpg
75ba4042626eb92ab350ab85d3e8eba4
99e1ae8883e05f4bf8456e1435aa49dd916c1869
2123 F20110330_AABHII virgin_c_Page_047.txt
c65f0a3a85dbd04aa90b942f0ede7d3d
82daa32227316efb3bceb2c413c3307f4771e048
35454 F20110330_AABHHV virgin_c_Page_070.pro
af3fa393fd96cd9181a15f59dbd98274
4c4268f4568c5e865f911ef65a5177bfae21ba3f
42218 F20110330_AABHIJ virgin_c_Page_031.pro
6245086ff4e8d3453aadbc9dce7755bd
fe6f677aed61c22252949eb37ec712b301bb81fd
84477 F20110330_AABHHW virgin_c_Page_013.jpg
d2d4a61ed63c1627cd9a045a39f13cc3
7e2c94eca4813472622201110db18415c150b02a
6837 F20110330_AABHIK virgin_c_Page_024thm.jpg
8cbfe0fd2c3caece90d5467221ade39c
9ae4e1c998163e1b720bb479e5ec523d3f851792
F20110330_AABHHX virgin_c_Page_039.tif
856661f545a15e113be32464e905803e
4e335870ab7a81df92676cdbdf51fde71c3d24a7
F20110330_AABHJA virgin_c_Page_057.tif
86b5975d1172a4c3ed6fdfa497ee328c
48166b45978cd7230ac8c9fd55baabf38d7d6e6c
106906 F20110330_AABHIL virgin_c_Page_086.jp2
d5bb78883209fe409fe1f73373d9e380
94eb85fc9e6d702c341ead421ce86cc76b00904f
1053954 F20110330_AABHHY virgin_c_Page_087.tif
34269c858df0881db3db1f1ce54edc3d
bdb9ca53f683492c38adef19e5ee23213d9a9c07
4640 F20110330_AABHJB virgin_c_Page_096thm.jpg
b5ffacf8d82ec807e25df9af20fbd35e
4defdaa1c4f149e9417307162852a1847e4b14b8
38863 F20110330_AABHIM virgin_c_Page_079.jpg
c30f4b513617a4e64c246a75b5c4bed7
d1218f7bb4c59bfcc37d7a76ef6ff5fac26fbfae
48590 F20110330_AABHHZ virgin_c_Page_076.jp2
1fa8e8e3aa505c1173c8dc4964ad25b9
dd9f635ce2764ab0616476edb34af47f0bda4c21
1051952 F20110330_AABHJC virgin_c_Page_097.jp2
192411f316ec01fc82c48939f3bbe998
1463637212e4dfec02f8e6e5d3e54f377119b84e
1916 F20110330_AABHIN virgin_c_Page_043.txt
867805ef1ecca9af8120b4b5f7642611
03874e770cbf6a1dd3ae32e1cec0b4bff3324ae7
1119 F20110330_AABHJD virgin_c_Page_081.txt
50b66feb22083d55986c3efe0a1bd4e2
6e07a11132840c2c6f029cfe403bb65f3ea61a1a
36318 F20110330_AABHIO virgin_c_Page_088.pro
0ea0a2f05d58c52e0a5d758bab0039d9
b0724040c4c7bc13d63085898e9c9fbb0d5b70ff
F20110330_AABHJE virgin_c_Page_036.tif
08552d6442b754ff6f18e78d3850018d
a95ab8e0bece2957b393f54064346591b3b815b1
71076 F20110330_AABHIP virgin_c_Page_088.jpg
cd964950d9558260e276ae3d99c7469c
382897c27a6e41cd576db2148c6cf579a2fef41b
82977 F20110330_AABHJF virgin_c_Page_031.jpg
61aae1ea7b3a1c46a9d5c46aefba1255
009df22b4e955fecb3c9b950b835e57e7b7ec4fa
49818 F20110330_AABHIQ virgin_c_Page_040.pro
dccab89b11a0520517b5959cd826f875
2f73c1cfa5c781f660b08fff1d46211e80dc24a2
48348 F20110330_AABHJG virgin_c_Page_084.pro
bf8b364c1b054329163a8a49c4b95eaa
5edd208ccae7f2f131a2cf6f1ee519b65f790f16
89827 F20110330_AABHIR virgin_c_Page_044.jpg
5b04ff2b6b28a72ef0d7b39f355241e0
6e0c04ece1d174acd8a0e2e5de4fda5c08833de4
46748 F20110330_AABHJH virgin_c_Page_095.jpg
91b2100e72bf6771320d282edb910d02
6e6b7a38c20c70ae4f350f93c97078a6aca62357
F20110330_AABHIS virgin_c_Page_059.tif
84f4d904d9e859b690586b7a3d859ea0
7ff45a299c0cf26faab8ddbb3918abbf1a8bff2c
19076 F20110330_AABHIT virgin_c_Page_069.QC.jpg
aa69c0047758b2bfb71caa8fb8088cf0
7f4032e9933bf9468c8c0f8f25647b122fbd005f
1020 F20110330_AABHJI virgin_c_Page_072.txt
ce8274bfc9b62b537c7482f8d3497d7f
5125347d10ce85c828a02c8cabb550f04704b388
26423 F20110330_AABHIU virgin_c_Page_068.QC.jpg
12cfa4fc3478b1cbad4baa9037efc548
95aa858aba4b1083fdbc13a49b6a1b9ed750c282
20353 F20110330_AABHJJ virgin_c_Page_025.QC.jpg
c0e6f6e1e13bd1229f50aa9b093522e9
02300e2e9684ab5b10619c0d7c1b08fa968ba334
1725 F20110330_AABHIV virgin_c_Page_065.txt
9302c07efe2685a9f80e619d5fd11c55
a95ec5ad2c9e5a85d0351fa821aa05d660765af5
F20110330_AABHJK virgin_c_Page_041.tif
2e9f61171b7810546e0f18f6abb8d08b
561e2f95707d715513b741cd11f808060c681a10
6116 F20110330_AABHIW virgin_c_Page_045thm.jpg
14c6d0c8a1c1c9c7b0dd46464ca0ee95
144cd9035f1552a8ca2fb74494bf024131e754ed
F20110330_AABHKA virgin_c_Page_051.tif
544e85865ff279247d384ac09e0b505e
1438b29927eb128c67666f8bf09fb96e1883637d
63098 F20110330_AABHJL virgin_c_Page_064.jpg
75d415a147dcf576e53c624a81e245d8
a0a3fc88e34062cd80e114408f86d4a891b14fdd
881 F20110330_AABHIX virgin_c_Page_051.txt
e8a83c76409a23596277876c05e670f8
61efe82a2a80236c1e9d66f070c27effb827cdb4
98655 F20110330_AABHKB virgin_c_Page_026.jpg
ffa2a938e5a2239304d7ea4bf7bca5d9
507ef4b4e20b444941f2bc60ab925c77102f23a5
62140 F20110330_AABHJM virgin_c_Page_025.jpg
27c9de9e0c95e0769001d53306bf5b18
3faa4ce16559b36cdd5f1cfce32b546b707da9d2
32833 F20110330_AABHIY virgin_c_Page_054.pro
3ecb89f05a7d31e9ab0f6cd7c4dcf754
e0342bcacd3db63abb0c0a3c600f0d21627d3129
47824 F20110330_AABHKC virgin_c_Page_091.jpg
1da97106fba0b2fece62a49df37d1750
2bc13283b034f1d1b0d5e0d0d100f68525ae3e91
17745 F20110330_AABHJN virgin_c_Page_063.QC.jpg
5bc857efe1961000c4e7bc0d998f7c03
89a445dd4c5f48b40bf0238660c62ae14244ef56
F20110330_AABHIZ virgin_c_Page_060.tif
fd1e3ae24e3f3e984144b1395416aa5c
8e8111a8fb5df9cd7706c9ef60469a77fd4d7cbb
6213 F20110330_AABHJO virgin_c_Page_065thm.jpg
585fb1ead222ba29973986fceb33a14f
063f83b3940ed7c351441016cae4340d1d8ca61c
6930 F20110330_AABHKD virgin_c_Page_059thm.jpg
4199ee781b986d9d47bd98af6fc2018d
3eb32d1b7a3d51f127576f32627482e406846573
470080 F20110330_AABHJP virgin_c_Page_072.jp2
ca1e32537264e14a55619c69cdd3f5e6
bd08c25c92ba1501f9ad325329583bfab8f6bcfd
128389 F20110330_AABHKE virgin_c_Page_098.jpg
328a97e575936cc0376f31eb59e0f80b
4af50b258948127f7afc6babe071bb5a6dd63c1b
17438 F20110330_AABHJQ virgin_c_Page_062.QC.jpg
ae2a0bfa385496d97dbd83ba72cb7423
8591c1c6eb6d9c059ddabfe68c76b676f89a9da9
1039 F20110330_AABHKF virgin_c_Page_058.txt
ae72f7b81b0d7a0581952e7587f1529a
221aef6c96682fe4055e181f32cfc88958cc4914
1573 F20110330_AABHJR virgin_c_Page_087.txt
19b104646ae701e95af3064830647fb8
c912a88a960dafe99692c5d84c185f17f1f7ca7a
89884 F20110330_AABHKG virgin_c_Page_048.jpg
9e2fc48ffc28d1b56f2e230749391080
ebf54d6e2ed2c0e839c4dbc390b9273ad8e96958
565497 F20110330_AABHJS virgin_c_Page_062.jp2
3b1e1eadae90f25149567c9c2a67ad4d
221bf7491bd2c2a45dfcf0ffce1b3fed30fb3732
88267 F20110330_AABHKH virgin_c_Page_084.jpg
6ea3b9149569a31700d29f5d145a658f
8c8e94266727c546eeb98a3a101e902ea87c722f
14617 F20110330_AABHJT virgin_c_Page_023.QC.jpg
491050f36ae3101a9cb19ac2e8685f57
8e7a4fcfeceafffced2b62900942eeaab8401368
F20110330_AABHKI virgin_c_Page_021.tif
4d0f6b15607c34db7e82d94c659763f4
a3f598b1e36fe2fca7eaf9e754371ad950b2b065
29037 F20110330_AABHJU virgin_c_Page_042.QC.jpg
e4772cdd2980f37b1f28269d35e51d5c
d2ce55bd06a8fe177c9220bb7b710f04353498de
2318 F20110330_AABHJV virgin_c_Page_084.txt
7222fcc7edb893399bd14a1d23269ae2
fec97013df5003a5cf8a1bf00b86464afb50f9c1
F20110330_AABHKJ virgin_c_Page_071.tif
55010c525c283a42fcd2419f6dd34bcc
df675d5495e43bdb153e95d1d8508750fafeaf13
50015 F20110330_AABHJW virgin_c_Page_019.pro
be1546288aa4f46c66d9311dec5705a4
096c1b15f8573e9325f709040f072161eadb817d
47212 F20110330_AABHKK virgin_c_Page_083.pro
f90d6990f9c9eebe1c4063762fc8395f
89f6d156032bb5e7e2844a29a986bcb8d9fab2b2
2012 F20110330_AABHJX virgin_c_Page_008.txt
afbf037a9dc9f116e70f1233dc85d989
148be72a20a30f08187d3d20a81aedcc4218e6c0
9478 F20110330_AABHLA virgin_c_Page_003.QC.jpg
ccb8967db5a6626d44f2fa8e7e7d4746
c8929e1fdbb3a9b9b1b5256e7fab52c1dd048324
870566 F20110330_AABHKL virgin_c_Page_073.jp2
5ab68f66d60e73f56d5963ed35c892bb
7e80c2c96cdd97d249624d111ec0ba6ca522d3e0
508068 F20110330_AABHJY virgin_c_Page_023.jp2
90eb764d49a1041d1587a79ca0da2ef4
eff692711d8f4c465e2bea03fd385aec33647189
770 F20110330_AABHLB virgin_c_Page_060.txt
65541975e9c801a625f3dfd50c6130b6
163debfbacfa763fb3e94db6e4dfa1e00bae38f0
F20110330_AABHKM virgin_c_Page_083.tif
12eaa9614ca84e0fd33aba258eb1647e
e162cc4525a53cddcde4dcb86fa6a7c2749fd282
28980 F20110330_AABHJZ virgin_c_Page_027.QC.jpg
526191f7cafe344a05c51deccef82a26
be7261f785f93c545430f43063a5aa82b4523af0
1398 F20110330_AABHLC virgin_c_Page_027.txt
a912d71ce0074cb7d73509fc4ee9277f
18e9feb785f8dd81c66d2fb311c5229ddee8e195
925027 F20110330_AABHKN virgin_c_Page_068.jp2
a758b11cba6be5a38fc78fd73161df35
e48bfd89e58930a0ef7f50b8f6bd72a60feba53d
2001 F20110330_AABHLD virgin_c_Page_068.txt
2d15a88f3d2e4546aff54f322cb5735a
4c20f9161a0425ee24a114f2125e1a3769bce983
9574 F20110330_AABHKO virgin_c_Page_080.QC.jpg
f31837b3a620d4e741fc1a9f99ab5f18
654d30bed2ad4a261184eaf0a19383b3bfef9ec0
25095 F20110330_AABHLE virgin_c_Page_084.QC.jpg
edfe2430190b423dd5f7b2a140f5cde9
8596b814fd249428e2e285387051de58bdbc033b
3041 F20110330_AABHKP virgin_c_Page_007.QC.jpg
a9d3dfd3fdb13199d9486e246043578b
d2296f8e2b4a4d499531b160dabf209f863babe7
22233 F20110330_AABHLF virgin_c_Page_045.QC.jpg
4294e4fc170b3c5694749e052c274597
e38a5a5c37e4cd6431fa018ee4366b598e453d68
742784 F20110330_AABHKQ virgin_c_Page_045.jp2
7123a97515887a6589807e77aaab3cad
3ad943ddd93e4d0d5e8a42b6067ce0b5fed3136b
32758 F20110330_AABHLG virgin_c_Page_099.pro
5a602c7bf47069002edfaed19a548597
302f23032d3e7349fa3bb27e6b3aa8f15e57b58f
15075 F20110330_AABHKR virgin_c_Page_072.QC.jpg
667e5d43cfd301d2b129cd45328d3285
623027671a9cbde030047c5027d3d04421736a7c
27013 F20110330_AABHLH virgin_c_Page_074.QC.jpg
4d0131eadf15c20102c2e497adaad62e
a29f05eafae3c5a7caebab73edbe0d8a63968e3a
21856 F20110330_AABHKS virgin_c_Page_075.QC.jpg
beffc9c7fc4d141e0842786a51161dbc
2dac44b62c9e9875540f3a712f7244eac8251753
863337 F20110330_AABHLI virgin_c_Page_055.jp2
1fea98f217032fe97ebb5931072e4ca5
cfb2796cbbdf536762744c6d90ad392c222def2a
4241 F20110330_AABHKT virgin_c_Page_010thm.jpg
85b5e844c7f7dd1856011f4c46bb4e80
a6ab13ef27e97a3f406317a989289501176dbcb1
6323 F20110330_AABHLJ virgin_c_Page_020thm.jpg
2ab141e880377525c14c82e3d3da4d71
55fb0b29e630ba7ae185ddd3951d1fb556cbb840
6026 F20110330_AABHKU virgin_c_Page_021thm.jpg
490f543cbb836b9c6dab4766004ef433
d15d164aeaa0ca66e107e34e448e81e5dd313648
44135 F20110330_AABHKV virgin_c_Page_072.jpg
6cb1936220db8126591b7eff78520edb
ae1e671b15b885cfe8b62e2b41fdcbf8d511021a
30378 F20110330_AABHLK virgin_c_Page_046.pro
efee849fcea7e1da42da64f9ab1e40bb
442ce9f6721f314a29e0f4f9e1b536824ec4bd9f
1139 F20110330_AABHKW virgin_c_Page_011.txt
8f97fce27f6260f40c7ed701c58dae48
0fd23f55a96173c41a64bb9e1b29061a5361fafb
2041 F20110330_AABHMA virgin_c_Page_018.txt
875c4381d9082ae9200c6dfb1ccc6357
5342213b0045a36fab3c3acf62c52636d1d04763
86793 F20110330_AABHLL virgin_c_Page_056.jpg
dcf0df7e61a539f512da334bd62c9b54
a47dfe1c71a48a083b0732bdfb84c7a7f2910552
469160 F20110330_AABHKX virgin_c_Page_094.jp2
679c4e887d5646fd61d94870c84b95fd
f02b9a7b6c95bab5a5553d7f29b13e5a7b2c31ed
1051901 F20110330_AABHMB virgin_c_Page_019.jp2
b3a37ed44a9a30e1517cfb92630ebd3b
5a4db032265698221d4ff526d593f2fe7b2c0879
6525 F20110330_AABHLM virgin_c_Page_034thm.jpg
a0b21652f12b11fd7e0604bae1c66d8a
7f407e14244dce833eaf4c0020b7b1c15a1f6dc2
F20110330_AABHKY virgin_c_Page_100.tif
ecd6ab21ff277a230d8118e16bd1d3a2
8c3762506f4e590eace5112efc851799b54a1cff
56919 F20110330_AABHMC virgin_c_Page_063.jpg
e499372d5a30ae54ef4aa3f85cd20fa7
870e928fdea0cc7251cc7b09a4287590ddcdace9
1251 F20110330_AABHLN virgin_c_Page_066.txt
24bf137ef28c796ebb68d49ebeea0d9b
12e08d8dd123d27e4d245f06b6f89c707acf48ca
43035 F20110330_AABHKZ virgin_c_Page_042.pro
c2be614bd397e994676cf826825acdcc
f9bc089fb90424f57711bd02f13ede3f81a08888
24023 F20110330_AABHMD virgin_c_Page_067.QC.jpg
f5574e97ca243fd6f86d0c8d72795fba
f7ec11e4878526e2f7ea2c3b8aacb3f098de8972
2046 F20110330_AABHLO virgin_c_Page_055.txt
277f421056b3257e287b102cb2060e9a
5d0bd94a1673d00e0c2804546e813a046d80e17c
F20110330_AABHME virgin_c_Page_056.tif
97410ea958c09de944aa1cca51917c15
4d6822e6b370d1702add9eb31b9e1468e0164c54
1424 F20110330_AABHLP virgin_c_Page_029.txt
7690e36ef102c82100ff8ece6b426f56
e8fcefc75fe022a3d0f95a6d46938961c8c12b77
70797 F20110330_AABHMF virgin_c_Page_065.jpg
6d5a70465b6a53ba4f8a2a967b8a2fbc
fd617eaa2ea094df30d2553836f859afb091f6a4
4237 F20110330_AABHLQ virgin_c_Page_058thm.jpg
01d721dc61604d8dc8f73e27c827b550
317966a53a0024957afa140cac5615188405923a
6773 F20110330_AABHMG virgin_c_Page_057thm.jpg
657f3d071da2c5eb6222a48f3a7cb36c
af41e4befd7dccade60d029ecb7ba8b1eac7a1ed
7051 F20110330_AABHLR virgin_c_Page_031thm.jpg
3814ec79f5cf7b2f230299478b29f051
638b2112cf462e48c71f905038674071c4300e8f
882 F20110330_AABHMH virgin_c_Page_023.txt
8ead9e80e428b49842d57455ed65286f
1a4ffc1107de4805a762133951d29c5828970baa
F20110330_AABHLS virgin_c_Page_016.tif
ace89a184c925d7f68dc211e925673ad
e80486937c6be60e534415d679fb2d2a0fc482ec
31320 F20110330_AABHMI virgin_c_Page_038.QC.jpg
b675a74ecde7e4aa8d6c9792b8f41b97
8ba9277c2307a0720ca6ca4464fd81f2d57f4a62
F20110330_AABHLT virgin_c_Page_095.tif
4bd387a72ffd09c6ec67b4355fe7a698
cf47b48e28dd7c1337a16856dc2465fec0edc88f
22281 F20110330_AABHMJ virgin_c_Page_076.pro
c25c36f60e93eda17faa9eaf9b056062
a64c18e6abcf09ae35b09aae42a7bb48edcc751f
2776 F20110330_AABHLU virgin_c_Page_060thm.jpg
4b50abd84012d3aeae2dadf60262f95a
21b3687624f0294381be1494564943d37a46e92e
113559 F20110330_AABHMK virgin_c_Page_097.jpg
717413e5fdc8355a652cdaa3aa9b19f8
79016403c6c6f08e7669b12444b8d62cb0713be9
28908 F20110330_AABHLV virgin_c_Page_017.QC.jpg
351feb13aca09e19cc74342f0e717526
dc9bddc32590332e082faeb07132f131e73977ca
454634 F20110330_AABHLW virgin_c_Page_079.jp2
2c7ecf730be0de6b2655b9edd82dffdc
48f63284e5baeccafd5849acd8ef8535addc9c7c
F20110330_AABHML virgin_c_Page_013.tif
f84ec98b2f259ab86ff4567c86d20af0
6bd89ad01b35af2445abc2ec415720807b4e3899
7658 F20110330_AABHLX virgin_c_Page_041thm.jpg
b5b3ad8a9b158713380b4c7b5dcd8460
9be238e845e3387785abde22dae7896050d527e5
7541 F20110330_AABHNA virgin_c_Page_018thm.jpg
87e9d8a06d6081a837bcca8bbedf32a3
020472afa9426979029c85b04cddc978b44c48d2
26852 F20110330_AABHMM virgin_c_Page_081.pro
918dab0d011375a4a181f27be0416b77
f5ef36880ae2cb79a65fe0f2cac7cc488b10f99c
103123 F20110330_AABHLY virgin_c_Page_059.jp2
c4196d46afa6b2069885474ce9a3bbfc
51e9ad800270641da6111526534f2a9a36aa498e
1744 F20110330_AABHNB virgin_c_Page_037.txt
9e6f997bf0576a43c9c31c5e76f916a5
76a91801200c51cb5e29302b15a1c58fcdf6fec1
46848 F20110330_AABHMN virgin_c_Page_023.jpg
1b9edb32a682758cc2a6a73f8bb4953b
abdbddaec9393d5562812b0e35b81273b6439d9d
2959 F20110330_AABHLZ virgin_c_Page_002.jpg
00a81dc00eeb0270fc93fd22b1fa6544
1391ab8141be2b0bc1e32a907009d29ba2e638c9
33277 F20110330_AABHNC virgin_c_Page_075.pro
f14a877c3b51e2be5726fbb46d911d5b
3f6abf555c5d2579ec07d89d9865ae24d0e31531
1376 F20110330_AABHMO virgin_c_Page_036.txt
df3b85f3114c4b7e05c3dd99e28e5d3a
4a8c58f8f3a9d611b8b18517c9799d2faff26fbb
24596 F20110330_AABHND virgin_c_Page_053.QC.jpg
7ced61b688c6f74e9379f8341e7b9617
3597b2fa24be7eea1d1314e0606ea5d101ac360e
1307 F20110330_AABHMP virgin_c_Page_099.txt
56a705d70a68d1221d46374656a58b4b
7926d9efdf1a09b68dda83aaf59b5a114760ce24
2031 F20110330_AABHNE virgin_c_Page_031.txt
9702caeebc1a22443239f9fa8a597fcb
763fff93a07bdd476ddf845285036704b3e22d4a
5822 F20110330_AABHMQ virgin_c_Page_025thm.jpg
31eb406c73bbc4cfe6a2d96c609628ee
944729940d23d742cfefd6acf66d1b0ba72391b7
3999 F20110330_AABHNF virgin_c_Page_076thm.jpg
8ba1813b75d5ef1cb1e04d20b9492ed8
2f8a05f53187153deb761624f75c59cfe06184b8
7690 F20110330_AABHMR virgin_c_Page_028thm.jpg
f65a275e54bb7a22247049561e756f15
915559c0036aa7ee4f2120c383cd259d7516403a
1051965 F20110330_AABHNG virgin_c_Page_040.jp2
aca61d53c35af04dc11e26c66fe9742e
8e954c735b4dd3ead05b7e8f3966acaf589d90c4
73000 F20110330_AABHMS virgin_c_Page_087.jpg
935f0797ec393b507d708940edd84a84
190a94344a216f6928632e94c4227a1eab498494
978993 F20110330_AABHNH virgin_c_Page_044.jp2
ade78d32df6fefcda630103fa403a305
db1c4114b32ca378f739cd96352d6fbee56015a2
44590 F20110330_AABHMT virgin_c_Page_024.pro
5e67d028a5f1f3d587762cde444ce97f
32368122115a237f769e43fedf3356901d2a33ad
52064 F20110330_AABHNI virgin_c_Page_062.jpg
83c53051a32720ac5911485f4306e3d8
b0d3ea04e0a765efdbd1f8bd36a1fefe2a7755bd
6113 F20110330_AABHMU virgin_c_Page_046thm.jpg
33426b8f7094bf8d364e218dfa919c52
b4f777565a993a599fc2627ec6a607eafb203307
31907 F20110330_AABHNJ virgin_c_Page_003.jp2
155cdc48f8f12a1edb994f99415e6acc
4edf92c34bab953cd3faf63b122b223b0c04e62f
33628 F20110330_AABHMV virgin_c_Page_036.pro
52978a21a33c2172718eddb04471afb6
9a5f408d1a6703448f5e517ee4c47d9f97de81f4
971 F20110330_AABHNK virgin_c_Page_007thm.jpg
5556bf2fd7930c5ce8e9f6d277d14e6a
96b991cf68bd5ff43249bebe7e644b6d9d86791d
26267 F20110330_AABHMW virgin_c_Page_043.QC.jpg
f7a15603f717aefdf23eb17d14b1f3a8
6f1c09093d183dd5645eb91cae5e2ead9f2661c9
107104 F20110330_AABHNL virgin_c_Page_082.jp2
ba811483bc7743e9c30cf8eda314fb3a
4b9e97930a8cd1687d7d4f4c16710cb93328628c
5834 F20110330_AABHMX virgin_c_Page_083thm.jpg
537c3aa5a397e6114f22797a8fa13b0d
2ef27d963e98b5feb2cb8cc535bd2c1101b12c11
F20110330_AABHOA virgin_c_Page_034.tif
1addb0598cacfd39b9d509247d417a9b
d52a3b507c7e08c612a0ef6089e05502d4dc52b0
F20110330_AABHMY virgin_c_Page_068.tif
ed5e3babccc77b4309445868e4e25273
8fc6c3d6d34e26736b191422606ef05ea4240594
1693 F20110330_AABHOB virgin_c_Page_006.txt
5f1bac6a90a35efdf68572d16410ef49
a8be6e4acc68768f18940cbbbda7558944b6b883
1696 F20110330_AABHNM virgin_c_Page_039.txt
9a82b51e303a78c56852bc7f8d8bc02a
e9f81c220bfb52f60b6d0d025bf69f49948709a0
43882 F20110330_AABHMZ virgin_c_Page_044.pro
e106d1b0aaaccbb262f5c12223c6ddfc
d265549083172bd2711f8e973963b273c55bd98f
870806 F20110330_AABHOC virgin_c_Page_050.jp2
71b3fe0e0a260312724f06e010702454
e88821e9a3773270d5dd2b7c98abb1ef9150618d
32267 F20110330_AABHNN virgin_c_Page_021.pro
3a180cd42c72322e70c9b3c44ea5c3b4
2fcf03ba7e8455b4bdb0286dfaefdced0a53a0a3
8612 F20110330_AABHOD virgin_c_Page_091.pro
e1bc4650dadaf981f4f5c7b2f1e5640e
93d81f5698eb1426c9984f897abebed4d055e607
548499 F20110330_AABHNO virgin_c_Page_066.jp2
1a13879d02031376f2d67829417a8443
7f579dc006051c6dd70fed26d0fa9d1e47960000
3569 F20110330_AABHOE virgin_c_Page_023thm.jpg
505d62629745a2a6194a2786da6d510e
30810d579e98c1239ae24acc1ab7e6b9430b5c1d
569 F20110330_AABHNP virgin_c_Page_003.txt
4eed8f8ea4e0833096d599e05a105dd8
829abfdac3aef8a8148c4550666106089cc19f54
933265 F20110330_AABHOF virgin_c_Page_021.jp2
c51110300fa7e74e9acac3a0333eedcf
eb92a46f0c5137bdcf1f77f27592ac1b6c37ed62
2217 F20110330_AABHNQ virgin_c_Page_083.txt
c2171719d17008baf7471e2628880f1a
e2b6b4d4ba8e702ce57a99b31ac0b03eda034f7d
84850 F20110330_AABHOG virgin_c_Page_057.jpg
ba79abc1db57ba9846ffd3023e1e93b4
84340d9c8bb247f5817994d73e8ee4271d3cfa5e
43621 F20110330_AABHNR virgin_c_Page_096.jpg
44429270fde4fc60149e26a0bd9b319a
673eab69712c99f6bf0a0c5a1c6536fc6652a146
32391 F20110330_AABHOH virgin_c_Page_018.QC.jpg
51cedac4090e7127d34b9e3177640c72
6caa9157f5c5a01600eaa9146ab7205990eeafe1
471988 F20110330_AABHNS virgin_c_Page_095.jp2
b7a2e81aa5ac070f522d91446bbb3209
464e1fbf6b130223862f0b64c484a6e38c4c8a55
29674 F20110330_AABHOI virgin_c_Page_059.QC.jpg
621246ca349ad4706e5f65cc9d11cfba
75c084aa55161c8d51b478047b2ea86fe8e46f14
F20110330_AABHNT virgin_c_Page_079.tif
35659bd6fe5ed07532110f0d20ec6828
468ee3794886e8d16dc97a8d64e5fdcc70c55df9
1523 F20110330_AABHOJ virgin_c_Page_075.txt
30dc6baf6dd3c2ca2e409b0eb6d0576f
a06ddb2d106f02e5d32eb1655adf2e41f3c16fc2
24224 F20110330_AABHNU virgin_c_Page_071.QC.jpg
235d123b295a2a219eabb94e85329daf
350bfe5196ec4d7a4fc99a084e4023c6cf4637bc
62628 F20110330_AABHOK virgin_c_Page_051.jpg
ffa4190b7600b82e9388a072c9d01166
42a7d59884379e8c785dd533a9dfc87f29d6371f
61750 F20110330_AABHNV virgin_c_Page_061.jpg
941b7bcf2292cfca3017e87e4cfde529
0164ab6551fd37fd60bc6216080f8306892bb911
6436 F20110330_AABHOL virgin_c_Page_073thm.jpg
27bf83385d0031ee31bd3973674fefc2
71559e5e634ae42b853aa1400e80640e79e76d83
F20110330_AABHNW virgin_c_Page_002.tif
5e6ed9da9e10552b6c90e9946a86ee15
3b0b233e1c1b12314fce23f0c36a3aa5bbf4adaf
46713 F20110330_AABHOM virgin_c_Page_086.pro
227d428f854fb38e8abe569b38d0a3e2
22e50b50dcf53b319f33a44a2b3477447c65c2a4
7083 F20110330_AABHNX virgin_c_Page_017thm.jpg
136b8011c5086653b9fbbeddf7cd0ccd
350834517fdf697ca30ec6d1dadd755acef51b44
23383 F20110330_AABHPA virgin_c_Page_100.pro
f08fee056076b0844e0260fc96561027
3dd8165d15adbaf592c6e7d7a7bbdc604fe1bd41
4604 F20110330_AABHNY virgin_c_Page_072thm.jpg
87a140861799dfe5aa7a4ff6e704902e
f3fa97959675976634c5386512488b8f6df30f4e
F20110330_AABHPB virgin_c_Page_040.tif
c13dfff3252c0049e6978ea55a6d200d
97ee1c4534d5b084d403bbbba33368bb079bd7cc
15211 F20110330_AABHON virgin_c_Page_096.QC.jpg
4e29bd3c04ab4e028bb7caa09ea17878
4e5b52d2928e902e9ada3cb95a2de3d4c6da0c0a
6676 F20110330_AABHNZ virgin_c_Page_043thm.jpg
0b9b4c50650a4f643f0a5e45f1f75273
0b1a18f817b62e6793b5774ed9f4a3c78b7d4b3f
82201 F20110330_AABHPC virgin_c_Page_030.jpg
13eeb75aa7d7707eef486ff174dd67e7
5a79596892784de62ca59327e1ef9214ad6e8e9d
18804 F20110330_AABHOO virgin_c_Page_099.QC.jpg
98960836662b91698d0a65f8b6a33fd1
3d306246021c6451c21e260f7749ef3b49a8b47f
7475 F20110330_AABHPD virgin_c_Page_001.pro
5fee8d3d4f10565c6bf38670fb0dba31
0497a71ef2c537bebfbf1ff13ebb5504349b9ec9
50749 F20110330_AABHOP virgin_c_Page_018.pro
6de24024ffc90d3b392e784ba2d426c2
cedd873a6340a42d8fa8bbb9ce141398b0b648c0
63948 F20110330_AABHPE virgin_c_Page_078.jpg
ce3bcc1f33dbf51cd7a8b26864a4098f
137330a96147fb851bee27f716be70d7c4af4711
34384 F20110330_AABHOQ virgin_c_Page_020.pro
25c6364fdada99f8a36ce48a78d9930b
ecb10243e4a7edeb0f465756e2cc74e40429c6e0
394237 F20110330_AABHPF virgin_c_Page_077.jp2
6e972b290bdf1065b59a6e9f2ac47d96
5d3a32cbf69a8006de892ac19045ffd712214a71
67053 F20110330_AABHOR virgin_c_Page_089.jpg
695a13f8c9545d32001894e75a089e8e
08f31f3ac479a435209b274a59069354ce404136
16388 F20110330_AABHPG virgin_c_Page_089.QC.jpg
60710531efeed8dc21bc5c516cf77cbc
1c52d1dbf60e8a8331f4587d7a14e91cc30eb7fa
F20110330_AABHOS virgin_c_Page_064.tif
1c00832aa96a46bcbd66158ad7d708de
851f4f917b8de549879689e7fadc3d2dde67f62a
6134 F20110330_AABHPH virgin_c_Page_071thm.jpg
5491f5fefe540ef0be1f7499b2ada28a
5ee04830eb60a663ba1fca4404b64688bb00972d
983 F20110330_AABHOT virgin_c_Page_014.txt
9395f7f632a961279b5d76802642ddb2
e0a7965ea089b41cc155d8e5fc5572deebf12b88
1268 F20110330_AABHPI virgin_c_Page_048.txt
f1ed2bd112476f175b94bd248a836a0c
3e6eb8242a70572ff5219a87ca4232249f73f477
1539 F20110330_AABHOU virgin_c_Page_046.txt
73712c8bf6901cb0f40373b857dc5d8d
e067a6e7f8e10d407029e7738203f922d9d8a866
48855 F20110330_AABHPJ virgin_c_Page_059.pro
a26b3488bafca86121c8a8b8b805ae56
062bb33108e289fca2846cf8d1d0e1acab99055e
1899 F20110330_AABHOV virgin_c_Page_067.txt
6d808dfa5d66fbc8aea8f447f333929b
7ea563e06440dd763fa48686b40196ce0d00ea67
14254 F20110330_AABHPK virgin_c_Page_078.pro
d29ae253c818972e3dcc47e74500798a
6d3330b0cd3c91684ca2be3cec1b410e70192b20
F20110330_AABHOW virgin_c_Page_025.tif
f1c6f0f7300266d35a6ae1fcc2700532
ba5ebb6789d60fc7806ecdb6183eaf1187f1a389
1051979 F20110330_AABHPL virgin_c_Page_008.jp2
06a08a49cf36f4d725a311d32a70f2b3
6ece1160ddbb3fb35b3ca5c44fdc1ccec280b6b8
F20110330_AABHOX virgin_c_Page_007.tif
6c9f7be4a512765fb2245979a81185e8
cfd66d7e175ad1a933c140b864fa28a874e6ff4e
7038 F20110330_AABHQA virgin_c_Page_068thm.jpg
428483389179329e973be4ffea7a5932
677cf26338072455262b3a7f8b6869047825c410
7508 F20110330_AABHPM virgin_c_Page_019thm.jpg
dbd018f29c37f17ee442d14fd03cfd5b
76270691e3810e45c5431ca23c285ea5264f0737
86663 F20110330_AABHOY virgin_c_Page_027.jpg
d43aaa5591ad26fa2cd7a080f138dbb7
44647da2382f1b8751bdf4c6ea7a3e88f37599c6
44129 F20110330_AABHQB virgin_c_Page_013.pro
582a9eef35948a71686819e0cb4aa572
785158044daed5bcfbdd9d92659d7e2b51a52297
F20110330_AABHPN virgin_c_Page_033.tif
a6e0fce52c8b9e6285a36e168b02d1e0
da1a7976923cd220b0ae6690cfd64db0fd3775ca
1972 F20110330_AABHOZ virgin_c_Page_024.txt
19fbee5eb561faf8fb51bf32da1f238e
29e6d5071019524479400899b2b5e8035335e176
26720 F20110330_AABHQC virgin_c_Page_013.QC.jpg
3912f71c810f415455c8723e9ee4cda2
c7ab2b15eadd65800fe47d713cb469c451d3f4f5
2316 F20110330_AABHQD virgin_c_Page_012thm.jpg
f6217c3e666524da8037815eeb6f436c
1c5f67f9aeb412b9141d9580f39d54c66d320934
49079 F20110330_AABHPO virgin_c_Page_026.pro
a762ef8e067ccabaf3f9ca82d867e54f
2f03cbb35f036291e4af9f930e1db5ffe1e660c6
99261 F20110330_AABHQE virgin_c_Page_038.jpg
bceeb2a6e80dae3a20d88ac9eb1a5ad9
45647598adc4a250f5b1255c982befcade411b65
2021 F20110330_AABHPP virgin_c_Page_017.txt
13d8deb8abaaf9ae856c90b2703a3aaf
46e0a83d0069bc0703bc7ba7d5627c5aed72745c
108833 F20110330_AABHQF virgin_c_Page_083.jp2
74a609939d24daf1bfbe9e2fdad3cee9
f04fdb66dc3f38cb40b07df92dbba536dc3c88d4
2005 F20110330_AABHPQ virgin_c_Page_040.txt
2a59cfd9df574d1dcc798ecf1eb29ec5
83e9c2facb974226f6f9352e8bf6724ee848caa2
950284 F20110330_AABHQG virgin_c.pdf
9b8f6fa77b57515b8959c2fbfd6ab5b9
ba8319859b1f70d28d3973c70896a54a4aa3c0de
104315 F20110330_AABHPR virgin_c_Page_018.jpg
c53b6332b5691d3f586bcf095994fed8
0acaee9bb1896bb83f8af92a291bf4439de71995
12070 F20110330_AABHQH virgin_c_Page_060.QC.jpg
06091808959bcb543bf9220b58b7d5fb
40b5eb532f00f8e7388669b427587789c0b433fb
93906 F20110330_AABHPS virgin_c_Page_017.jpg
802d82c0aafc674bf5fb29105b0c249a
7bf72dc0c5ddd2ceffce813dd8e0b7184398ef61
893 F20110330_AABHQI virgin_c_Page_025.txt
ed86591c0a285e4ffeb1ff2b8aac936b
2e3e0a2470efc065d9ad7b8db1cd9a271d04da42
F20110330_AABHPT virgin_c_Page_080.tif
11ee23909dad9a55f3a6ff05084c6dfc
0e522f77b4625d597f77e9e5ba0498c631e9f069
1431 F20110330_AABHQJ virgin_c_Page_005.txt
132f5e946b7e8fb306ac3633ae8c02da
1b3582166181e50164b305b85021c9687004353f
944763 F20110330_AABHPU virgin_c_Page_052.jp2
f8a5837adc846fefc0ccbdda0b95f9f9
d99e36495463a1219a7c48cfa961b1a49edc42ec
734709 F20110330_AABHQK virgin_c_Page_075.jp2
371941c7af35da33cee839593906817d
3cf76eac87971402d4b77f3a1d0fa56542d2d698
87293 F20110330_AABHPV virgin_c_Page_052.jpg
e60aed946783fdd5373eb457c575882d
2cd0a390d17dbbba1a8e764f95f62a40f3e37cc1
54063 F20110330_AABHQL virgin_c_Page_014.jp2
2720f245d35e344fccf73da44b5323e5
074a78e659b4f050cdea36ea05588976db43dca8
F20110330_AABHPW virgin_c_Page_017.tif
46eb8c3fccb13365e3a421b8174cd932
fc8c132db0bdd94db58fc878df3465c0687a7ce7
1497 F20110330_AABHRA virgin_c_Page_054.txt
1a103aa5854c409314da317311835886
7e099bfc4ae3cf94837b750b3249ae531626032c
6364 F20110330_AABHQM virgin_c_Page_070thm.jpg
672112ae1bcb0b37424a1adb6458fe51
2342407d7820488a7d6c39672cc7c2a9ba26fbda
31653 F20110330_AABHPX virgin_c_Page_026.QC.jpg
db1d99b5ca6a2b1d6aae869a529d4eb2
234588c35176b75e12cb9c0d112fb1937203f6c0
F20110330_AABHRB virgin_c_Page_027.tif
86f3da54426dfc04e9be6e2c0fe60f41
bf4e4b87a66eb93a76f14720dc678a034b90a4a7
81046 F20110330_AABHQN virgin_c_Page_036.jpg
af99a5355d5a229832eeaf21f36bfad0
2f285c49f32c30be8ec5c13bcb3627a382d6a6b2
268 F20110330_AABHPY virgin_c_Page_094.txt
94a12de45a23f3dc51ed41f46f139893
064e0df6f7d105f79af936e8e494968e0a5c188b
380 F20110330_AABHRC virgin_c_Page_002thm.jpg
d1d547a34d72164bf1bd60bb86d2fc1b
92df22618d4c978e322ab03f6f19313dd163c1ee
7881 F20110330_AABHQO virgin_c_Page_022thm.jpg
859cb78723e990372e88a08a2d8e636b
48b3a22c5e0b78185d6d316f093fd97d635ebbf3
476278 F20110330_AABHPZ virgin_c_Page_093.jp2
8b3e8201763f763b67de1fbb163f351d
c92582296bd544e9dc6da21079c2a2a3cf5b177d
F20110330_AABHRD virgin_c_Page_011.tif
34e26b4eb119e3c8f68dde0be329c0f9
c1fd2402cc310a5a8a1ce6dcc46ee2d36b730968
598 F20110330_AABHRE virgin_c_Page_093.txt
2d5ffa1b464ebe6584c9348e0cbb4d45
2790466767adca5e5ef42bab5c76fb19a5b03996
109133 F20110330_AABHQP virgin_c_Page_085.jp2
9a6e6f05c8e3a3f06321da0ee487082a
407171de6a082a894aec4e56e699f8eb841d67a4
2034 F20110330_AABHRF virgin_c_Page_070.txt
b09b28a20515d1c09bfdda366bd5852b
bedb1fe28bfcec79f9db211a011ced22547dbca5
F20110330_AABHQQ virgin_c_Page_030.tif
074b342fe90e6a3f774bbd784c9b67e7
5ef27f09f24b65fc2165425a789b3e89d7ec70fa
6433 F20110330_AABHRG virgin_c_Page_006thm.jpg
9963abbcf84f910522997290511a7eb0
acef8d9d53a656de025a72aa6db033753e0b3ad9
94895 F20110330_AABHQR virgin_c_Page_008.jpg
ef5e06c5ea3de85fa25a3a237dfe3e7f
948de1ac531a94d09395dbcfed3585fd98eeffb2
1501 F20110330_AABHRH virgin_c_Page_021.txt
9255d84785cb3f6b50fe2e3666d945bc
8c4cc0f4dd00aaa5aea3db20510dd12b17083b8f
55862 F20110330_AABHQS virgin_c_Page_041.pro
ba30ff6a8980305f1aecf211041831f2
7c2fd220dbc190b541594048bde84cb84d482ab4
25314 F20110330_AABHRI virgin_c_Page_045.pro
58576b25382ef1b28cb136f603406142
aa8c3d69b90c33105f425e1300aa81d5245e5580
615 F20110330_AABHQT virgin_c_Page_080.txt
94ed27b46cf455e4fc6e0c9e532a0cef
bf87c23475d7273cdb850a6443d1573ecb384618
4386 F20110330_AABHRJ virgin_c_Page_005thm.jpg
e649db389e2beba0f05f6729ebc9987e
41aca4fe742bdfaf74c3059a39424d382ab60457
6914 F20110330_AABHQU virgin_c_Page_013thm.jpg
f9e845d605cc07be6e1fee1cd2d387ab
1256c216fa73714a3ae734a13c67d9ee3be52128
6455 F20110330_AABHRK virgin_c_Page_008thm.jpg
6c34e1f81c15790fe75bcd5f4709276d
b7278f194dd0d267e60d8914fc0d65f0293b1a85
F20110330_AABHQV virgin_c_Page_054.tif
0c86a2664dc30f0ba2d8c896e142f5d2
68f6582a41e247ab36a1e98b55901720cc851489
14246 F20110330_AABHRL virgin_c_Page_080.pro
965918c71b401907f4057f150deffb43
674f6d8881e69670a403e2c074c2d30b3419270a
24834 F20110330_AABHQW virgin_c_Page_055.QC.jpg
71ac0bd91e09c3e12286fc99fc99e2fb
cd4bd0d8d6517b6f28b4e3f5be897f9dc9fdeb49
6604 F20110330_AABHRM virgin_c_Page_053thm.jpg
1cbbf4946980e7679b9ef943c7270cc0
61db54c99b8f6aa0877b69c4da69d9357b192d57
46506 F20110330_AABHQX virgin_c_Page_017.pro
9a9d200d49d98325d4fb138af682d349
3edb5454298907f3688156b934ac048402155628
107665 F20110330_AABHSA virgin_c_Page_047.jpg
03378042757efe23b6459f62d8acef30
04e4d501e1cd5e60124f16015a266114d4cd2fb8
22872 F20110330_AABHRN virgin_c_Page_065.QC.jpg
b9607114aa47111959a1c0eac2a8e77f
33c4d0716a4d8297d3654764b82f9aef5111264c
82069 F20110330_AABHQY virgin_c_Page_068.jpg
a96b7431d9b94a0c6a2c7894e3a6d53e
6bd2f3af574bff77dc4b0371a46a7d5eebe42830
36964 F20110330_AABHSB virgin_c_Page_080.jp2
75d1ad76279d8cf579e98745177721e9
b5cfd0fc47e3a614344caaa6e2e4663fa184be35
974 F20110330_AABHRO virgin_c_Page_100.txt
ff5efedeeaa2266cbd6e35e31df74f2a
ebf9206e818ead226c932648f45c4d42e106d4da
2003 F20110330_AABHQZ virgin_c_Page_059.txt
1c8357815103c7a542c0ce0b861dc7cd
0cd0ac7dcba57aad252ff6bf4b8967966de54c2c
42024 F20110330_AABHSC virgin_c_Page_074.pro
734d7694fe3703d6bbdc44e633cb08f4
d9b48685d71546a0910102aa5e2eab80a3b47f85
51411 F20110330_AABHRP virgin_c_Page_014.jpg
8fc70a27b6929aa3d521134b1f716525
c2c6a0eb76844bfcf5df3f96cfd9ee3a1468fd99
1264 F20110330_AABHSD virgin_c_Page_069.txt
323deb942d545ddc3d27a38417590276
812cc1594e75b85af1f6c106ff3ea1df5d8dec66
46 F20110330_AABHSE virgin_c_Page_002.txt
8f08e9a9212e4395637f575f91609dd2
919e64176e89bb92cc282c94b90b1ea97a1f0d7d
F20110330_AABHRQ virgin_c_Page_009.tif
680a1e314cffc9907f9255251be8b47c
46c8d8a5ddb8d9ba25d09380da373bc66e415e26
31590 F20110330_AABHSF virgin_c_Page_097.QC.jpg
d09c82112017428ac7268d6cecb3309f
a557ffb0fa1c69bb9aeb1a93a83ace946f4bbbd8
6375 F20110330_AABHRR virgin_c_Page_074thm.jpg
73f88576d0df7417fa84813cde77cee1
00e4de390e53b9cbf8d9bb3d1d048564a05e0253
405886 F20110330_AABHSG virgin_c_Page_096.jp2
13dbb399930c79a410529286a8ddc330
f215593d5813ce4287803ce1b87081e25dee97d3
20060 F20110330_AABHRS virgin_c_Page_005.QC.jpg
022da047e0a04cd55393c07bbb05b32e
afc368a40b4a5a001dfd067c4b3225d3998b5718
2398 F20110330_AABHSH virgin_c_Page_003thm.jpg
c73a19bc35022be3e7aa3ba66d180b88
027c5ca7375263256c7d015b2116338489a6c212
29481 F20110330_AABHRT virgin_c_Page_029.pro
ae825ca5c4b976d88098a2eb1b4ee31c
4ffb6b8a2e95c0eb5f907a388003416343431409
5183 F20110330_AABHSI virgin_c_Page_066thm.jpg
593a2d804fd4f06ea56000fdd43e4d96
efd91269da456fe8b8cadd5f7411df2f6c21b0a7
5456 F20110330_AABHRU virgin_c_Page_069thm.jpg
1d89dccf6bf4d813f466b556130d0260
cf1b53e7e1ec1cb5e9b55165e5813eabb24bc3a8
959238 F20110330_AABHSJ virgin_c_Page_074.jp2
869bfe3e65b4bebfe625abe1072b5af3
089e986ccded1e06a78f6538ef4dd37f4b5b8703
25593 F20110330_AABHRV virgin_c_Page_021.QC.jpg
a0c579baad00f988932183a587d59554
465f8af76fbe44205c70e460abb037f4ed93881c
5625 F20110330_AABHSK virgin_c_Page_061thm.jpg
0c1995e61804e41da673288ac3f9e47a
bb86577cb15ec16c04b8c172175adc9c3adf468a
16016 F20110330_AABHRW virgin_c_Page_091.QC.jpg
f749dd52414bb58b5edb7da1d9940e39
5ab34640135fd615e45ad872e7dfe551a7391a18
4580 F20110330_AABHSL virgin_c_Page_092thm.jpg
6bed4b8751bf594b121e148efd6a2a88
4cbcac94d2fab071e7bdc7148c9b02a0f0e63d19
2158 F20110330_AABHRX virgin_c_Page_033.txt
bc4621d0aa97dca2c7198e9a05bec930
29e9cda99a395b7e6461557ab5c65d48dd7fc538
1396 F20110330_AABHTA virgin_c_Page_053.txt
33ce12331e2d16a6af732c8d94758446
45d0aae419e8fe88d7e22cc101501804effa1ead
30519 F20110330_AABHSM virgin_c_Page_016.QC.jpg
8dd3d968f1ae11346b9ad7052c007e3c
7828e1ddd8449917f068913ad4d3bb3cbc038b99
37577 F20110330_AABHTB virgin_c_Page_016.pro
794890a106e266b7ac8562e42ec281fe
3f00e16b000886d7720fb1d70c58ee9baad767b6
41224 F20110330_AABHSN virgin_c_Page_060.jp2
b3fe6f0174f4f37bbdf04f7ab4c3d983
35d80f06d7620c084e1b275119aec5939e713473
4873 F20110330_AABHRY virgin_c_Page_088thm.jpg
142a3d0cc3337eed5e98b07dfeca31db
9bd9a446993d9486e2240e2252a1e062c5d3fe1f
F20110330_AABHTC virgin_c_Page_099.tif
e0c0f61af04568f5f84da824c5481f75
c00fe938e1e0f4957ed619e971dc65179a6564e8
15719 F20110330_AABHSO virgin_c_Page_100.QC.jpg
8cef7321db294beb5f67bc812fbf479e
7a2223f7c4121ecdd81749be8f0d3aa6e668c916
31904 F20110330_AABHRZ virgin_c_Page_049.pro
38b6173e2115518f674b310a5276ff17
637404e7d77ff355c6370dee1885780ddd4b85d7
1348 F20110330_AABHTD virgin_c_Page_076.txt
2111f8231c449774f24be5a376822689
5f9980f44480f885bfc9b1112d686d11c618efc9
2154 F20110330_AABHSP virgin_c_Page_019.txt
b4c6f283953db4f5ff9d5e293295a0d4
64648650a48a558846e3aee09117356cb113893e
28700 F20110330_AABHTE virgin_c_Page_012.jpg
47967dd6aaf2bf72a14754a99f628fc1
1d5e3bacfff6271fe76d6d58f737252bd0f4b99a
7504 F20110330_AABHSQ virgin_c_Page_042thm.jpg
292ed1b10a1a0c2004d3345405aa772c
c65992d10b55ca82fdc76442fe8b65e13e35cbd1
5131 F20110330_AABHTF virgin_c_Page_062thm.jpg
cc567d97b38eb6039cf121bc0e809812
ddf640afb017a5043d23934a73e9be043841603c
516 F20110330_AABHTG virgin_c_Page_012.txt
07694f8c3a033fccafa8a9cc063b42ed
98f4c388e1c6b88fa4163f5d2add9759ca9e5193
721771 F20110330_AABHSR virgin_c_Page_070.jp2
266b41457dd9ebb5a765b2868c39f361
e9f459b05903a42a2f95f4f2bf26f903b75074e6
F20110330_AABHTH virgin_c_Page_012.tif
21cf469c49a7885e71d83d8c7f8c9d0a
05b38c3d82b8c8893ca7de467d27cfa159dc3e7d
89351 F20110330_AABHSS virgin_c_Page_049.jpg
0bf1ebf52a9ecaa7ecae3a11765e3586
32ec4c035281744c5e8831f444eca56108112420
5832 F20110330_AABHTI virgin_c_Page_085thm.jpg
7c8f96f36df9560766b5d0a90cca5ce1
228d49b4c0628274521ce4a15ea2b609446cd95a
F20110330_AABHST virgin_c_Page_010.tif
ff3a12176c555550b6899c624f22cdc9
e692f19f1e4cba99bdb6ce254a006b9419f8a7e6
66584 F20110330_AABHTJ virgin_c_Page_099.jpg
c0961526c0972bfde634e7adebcd369d
924abaa579af78657098c7e475ae7e597e3a7558
487 F20110330_AABHSU virgin_c_Page_077.txt
17f2985813ad724f02e1a7d6335ddf87
7078075abd3b99a1d6dbfbe7e2a2d91235712b23
25377 F20110330_AABHTK virgin_c_Page_039.QC.jpg
950b463b3b08c3e0bfb2668cde013729
31aa74090357a78305757134f4f542314ff58f73
F20110330_AABHSV virgin_c_Page_092.tif
d0d1f07128376f9ca281fec76b1de4ba
568d26e8fc746d68bc326b066d78e3072ff965ec
39703 F20110330_AABHTL virgin_c_Page_055.pro
1fb9c54f8c3c377b160de56d8c250a50
937f3ae494de047b6c35fba9ac66a0b9a2194296
27111 F20110330_AABHSW virgin_c_Page_057.QC.jpg
7d883a9fd47fee431f0f7bf2899ad9b4
23e4a88665f58e110741753bf8bf12ecb592d80c
7764 F20110330_AABHTM virgin_c_Page_047thm.jpg
8996986030f9f500a8008405acaeded2
9b84cb722923ad3a47d3b13a27ca05750af30e60
20968 F20110330_AABHSX virgin_c_Page_088.QC.jpg
cf1fd40a1008c63e16d27f808fc25479
1d600ff14a9a5c2bfe59438217ae53c664b6a352
33247 F20110330_AABHUA virgin_c_Page_050.pro
8bea487ebdf36830df7bf261acbbe324
42b06c334a23c971ea0afbf9dd6c05c47bb71854
111670 F20110330_AABHTN virgin_c_Page_041.jpg
06ec4eeaeffcbe1a0ce2373c012dece5
4197bf42c8033ac44de2c718c5f248c180c10eef
927114 F20110330_AABHSY virgin_c_Page_043.jp2
a09b0acacec1ca2161a450876d37131b
5499d588556b386b71d6b14d0ebd0b0d8aa9acfe
46879 F20110330_AABHUB virgin_c_Page_008.pro
9f4ff96ad899fb2d756266274b655025
ba4404362e4e83d850b9e236ce09dfc59dae08b2
22538 F20110330_AABHTO virgin_c_Page_070.QC.jpg
cc35473cbf9b0871ffd3411ed9d5db7b
437c91f1fea0a6e6aec9b58cfa00d55dc844c188
116834 F20110330_AABHSZ virgin_c_Page_041.jp2
ab761a10d59d4e029906975ad434a513
e39370fc29af1982690adfb0c03eae1fead4d12c
96316 F20110330_AABHUC virgin_c_Page_015.jpg
9fd674aceb801201f3dda21572d8c674
64a313c13ced94cd1063d3140adcdd0f19f03e13
88495 F20110330_AABHTP virgin_c_Page_013.jp2
2e1cb7dc6b99c0542ce762456fca988a
18e246068ca3610a53feed1c28305b0926f9aadf
43825 F20110330_AABHUD virgin_c_Page_037.pro
e957bdfd5d46c80015c3b7c48d3c34b2
e9d36715785ea620b334686d7b636c4ee34ae94b
3404 F20110330_AABHTQ virgin_c_Page_077thm.jpg
8d9ad287c803e9594bc3f091a31401bc
ea70e1ab25c2843e2975db552213ea6a2167ea49
90581 F20110330_AABHUE virgin_c_Page_037.jpg
0bc198846220b5dae225e9c452306699
35a2b7e74f87f2dc271748dc6fc909075fb1d707
F20110330_AABHTR virgin_c_Page_065.tif
2bced74ad8a5257b97714c6c1a4b46df
46ba5bbb1564c28a8e6e0c0b28fb8dd147691e52
F20110330_AABHUF virgin_c_Page_024.tif
5d5b82cdc7cb6297f36fdea79e89795b
e32adfcb9913f0a65c9677faad441765087847a9
510805 F20110330_AABHUG virgin_c_Page_092.jp2
1ca6d7acb9be1a9e2dd5cec49a311603
b2fdfdfabd377e9b864f55c97391d983d7bbcb55
25012 F20110330_AABHTS virgin_c_Page_085.QC.jpg
82ae470eb0f1a4094df9db09b89e2e5c
5c0e0e60cb09d050ef216d83ef2c52802109cf5f
1528 F20110330_AABHUH virgin_c_Page_061.txt
20c509bf880c5fbf30da251c71d5fba2
bfddf0443868477ba691d01719381b57c389a275
86824 F20110330_AABHTT virgin_c_Page_082.jpg
15f828879ec3007fc52322b0f3a68610
99182fad69927d4f2de91365abe4483b4b127f15
811370 F20110330_AABHUI virgin_c_Page_053.jp2
ce8427e92db92d6148afdf495dc7b2cf
67d72eca5cb9b2db500c4aebdd757ed98356d8df
53285 F20110330_AABHTU virgin_c_Page_097.pro
9baa78978908aa093c349331b64bac5a
2eb846f639dac92a14032284197ba9099a4d5f3f
79693 F20110330_AABHUJ virgin_c_Page_020.jpg
fc962748a0d1b055c94cea196f4b4332
f097a98bf2087e8c50076a4675d1b5436adf5148
7758 F20110330_AABHTV virgin_c_Page_026thm.jpg
2bc45b8dc6804e932c3c8b033a9915fe
1ecc4ba59c956f78a1fa6fa802411224a72f225e
956363 F20110330_AABHUK virgin_c_Page_049.jp2
512fde6d39a94f1c5854dc98f07304d3
34fb740b19de144fb5e8546f669a8a74169da97d
F20110330_AABHTW virgin_c_Page_038.tif
cdf9ad25c1f0ed4691b842dc726031ee
b4e2f128af8578d5570f304e8894669b1543d3a3
F20110330_AABHUL virgin_c_Page_049.tif
76adfad99d292ba20544e397e3358ced
dedacd34a977c0489ae3d88121a28d6b84bfd53c
F20110330_AABHTX virgin_c_Page_075.tif
bae237ec79159d7f8d92c789e35400f9
8d04440b0adfd6e4078195aef826b11bbf8a1373
F20110330_AABHVA virgin_c_Page_037.tif
6d6ac8ffa4305e41a8c8d063aeb0da73
5539da98dc2f2f8081196d39429f8a5088f7636f
91013 F20110330_AABHUM virgin_c_Page_024.jpg
d1a7b9c75ef613add4320aa233c70ab8
e018cff814aeaaa7430089a348b196863726b25e
74828 F20110330_AABHTY virgin_c_Page_071.jpg
8d6d037250338bd40d377319d6b3b265
f26c83ea79dc05222b21c970a28d15b276679739
F20110330_AABHVB virgin_c_Page_055.tif
b011e0f665c5f11a9a2e228c30a9d23c
c26417dca403491d391987a2db932d797ddac1b7
787987 F20110330_AABHUN virgin_c_Page_067.jp2
50468868c58fd1f46775fd675fb37100
1f6394b25b2e20a460dd435d240bd300b337d0b0
15697 F20110330_AABHTZ virgin_c_Page_095.QC.jpg
83e78b98e8d944fe272fa14d38d6366f
9a67ba838c18e22c1d9f9f7f788ecbd25b69594b
34453 F20110330_AABHVC virgin_c_Page_065.pro
54ed8ce666d178bdf218ada672e9f7a2
3e25481fbe05714c51b1019bc46d9d9093268243
15748 F20110330_AABHUO virgin_c_Page_010.QC.jpg
7e64796f0cd46f2e2a83493ab871ef75
6eea71d52c9109c01c694309304bea07efc6a031
824947 F20110330_AABHVD virgin_c_Page_071.jp2
e09abe512edd258e9461b1bc0a9c5688
70de99a84e1f2efc89c83e4fe74ba3bd1291c383
1789 F20110330_AABHUP virgin_c_Page_071.txt
d6317e43c38f78bd6053183a44f5238d
88030709d569bd401307d18516aa493adeafc0e0
F20110330_AABHVE virgin_c_Page_004.tif
88caf5c8d53f8f89c05dc43e6d6e51b9
445598d0dcedd850b0b19a5401602b66c32edfa4
F20110330_AABHUQ virgin_c_Page_019.tif
13b26c905325c79619a26f1d4f1bf490
d253b9d6a9623d214575c6fd8dbfd5737897c1ae
36724 F20110330_AABHVF virgin_c_Page_006.pro
812eae2a7320165e8cf5dfd7b6f7ce16
3c800235d7f4331d9ec5771bd71fbc85c5fa5331
43859 F20110330_AABHUR virgin_c_Page_052.pro
b767cc0e25286cfbed8a17ebb6daf1ba
0d97b7f967b84a59c8780c813b4b7b17667d96ef
64531 F20110330_AABHVG virgin_c_Page_098.pro
0955335e74b20cc84e22087938a66cb8
ac0b8d32422b71ab90e6143de28fba9627618c9e
58634 F20110330_AABHUS virgin_c_Page_090.jpg
c17213073418c5da1f6bd94999f1559c
b03e59f66818e889c02e5dcf3d786898a823bda1
F20110330_AABHVH virgin_c_Page_022.tif
c5662fc8d9cb307e888688eba7b70596
9611045bd11c5df7461a7cf24625e16da86a71d6
27220 F20110330_AABHVI virgin_c_Page_004.QC.jpg
9170ba9e4ccd92f2c838beeaa700cb33
695d4044cd868eaa837db373d126bc06100ee438
13168 F20110330_AABHUT virgin_c_Page_003.pro
e1b4d198786c60788e36502147393463
94a2a133ef53b9e59e4d2422c95b6cb67a433139
15553 F20110330_AABHVJ virgin_c_Page_090.QC.jpg
21d77b5ccc9b77914b46cbfe4f80b69d
cb8a97f6d1db1376a85f2f0d21405d7da465cb38
25711 F20110330_AABHUU virgin_c_Page_030.QC.jpg
6976b941ece74fc6abd0012e0823b60d
38312d348cf1c4d1ee9b73effddf0ebf7c60d39d
F20110330_AABHVK virgin_c_Page_045.tif
002633fc36c320282b3811cce4b3b525
348789760665b510e21cf79bd4ef23b3eb05aadd
50152 F20110330_AABHUV virgin_c_Page_066.jpg
77896a073d836e01f1f3178a37f1a6d0
1bb5d8d391b004036638025c39070a8accd76588
94519 F20110330_AABHVL virgin_c_Page_059.jpg
702a297235a74a500770f51f86e9bdb0
7a0e9f80a8ef9dab4dc8062728d21eed9858445d
4514 F20110330_AABHUW virgin_c_Page_093thm.jpg
0a0228c33c62f933638814a08db9fb15
f8f3ce0c37d4b87e89ef86f96120bb68601b2299
11985 F20110330_AABHWA virgin_c_Page_012.pro
2929a62135108c24fa3dc2df3b63fbf0
04ee87fc24dabfd53b3c9a5f2ddbe025c5c22342
631317 F20110330_AABHVM virgin_c_Page_069.jp2
a805201a8c173b142a3ebd9f309c3089
6bc32b69f6ce7c30aa28054d344f3e240532b7de
1942 F20110330_AABHUX virgin_c_Page_050.txt
51dd45fe522bfa4d5fc3d5c8b10564f3
722ae526e16e7654396b20e99b6021816309d184
586 F20110330_AABHWB virgin_c_Page_079.txt
1e25227b6a459dde1a5acd0be0b191bb
c8eb39b076e7d38b3929c434bcd5dfe6f381f681
1051948 F20110330_AABHVN virgin_c_Page_054.jp2
0635fa7f89b66f41317f3a11150e3077
1e8d3eee981c8902941eb1b783113c3423978ac3
36033 F20110330_AABHUY virgin_c_Page_077.jpg
2429ae9fbc3e47f0e8b93de4ce09e3dd
96f635fae012a9fb392bb63e47a2b576c62ad305
1051959 F20110330_AABHWC virgin_c_Page_047.jp2
9a03c418e754cb83c4d4ed27a767ed9d
d469038c1323ae03ef5e95fad4dc1c168c96fe96
F20110330_AABHVO virgin_c_Page_085.tif
90f0b73a27020b2cac5428f4c4f447a9
4133add301f3092b23250da38c7462f201610f16
8142 F20110330_AABHUZ virgin_c_Page_093.pro
92c5dda027b72735779464481fa97188
22b2a25cdd1376d6207e9e335288c021bf9b0323
6851 F20110330_AABHWD virgin_c_Page_056thm.jpg
6e08965260d00404fd1be9eedb241237
0d707549947dc09a73ef3b46d0609f6ae46f570d
6079 F20110330_AABHVP virgin_c_Page_078thm.jpg
2806ee1d84bacf1949e325dced8ab0b1
b769563e966fe51a00a2d1bbdfaf65391fce539a
2239 F20110330_AABHWE virgin_c_Page_085.txt
9f587de8ce0b564fbf01038628dad0cc
3919ad9a6005056a29cb565be036bab08682b049
18173 F20110330_AABHVQ virgin_c_Page_060.pro
e6ee5ad64eefa0b1a7be0e3b92345c6f
2b571b97d0188e1cc5f5d6317017a4435261c776
1136 F20110330_AABHWF virgin_c_Page_009.txt
73c564cae015341193f427c607a868ab
30cb0c0d89f32811059c66c0b8cadffdc87b5f7d
8584 F20110330_AABHVR virgin_c_Page_098thm.jpg
bc4c29354d6b9ec0e8a2667fe8737631
ea383557a51461eb7619fff26a2407fe62aef132
30891 F20110330_AABHWG virgin_c_Page_033.QC.jpg
1b93e1ebcf392a686c80aa4ab2281e4d
9b6a0cd44abcdef0ef220eb7ed9dbee6298a2d3f
104274 F20110330_AABHVS virgin_c_Page_028.jpg
6a2662e2ea33a94b961f9ebf863c823b
f6429d484036bb48f956077ecf04eba6f0b8c06b
6371 F20110330_AABHWH virgin_c_Page_055thm.jpg
2351f165f1b02e4f4f24b7f1f2aacb20
b4bdb5aba07a1534c59709989643054177fbb5fe
20130 F20110330_AABHVT virgin_c_Page_051.pro
31bbfa2741fbe450890c4722d70a2ecf
85fcbbdc9efdfeec1e1b8fdb4cfdf8c72840707c
747266 F20110330_AABHWI virgin_c_Page_032.jp2
39fc6f830bd0cba6f57689a5bf470d6e
ce79c51edd64fee11b0bb530159ae4b35c902381
991 F20110330_AABHWJ virgin_c_Page_010.txt
f183c5602f74722627e212ff667137ca
9a58d0d176b1c272267c0bbc2dc43bd54e63f838
59275 F20110330_AABHVU virgin_c_Page_011.jp2
6ccab867413f225ba705083bf5b79817
b6112cf6bbb5ed2cf682d774758a9b7bae547837
F20110330_AABHWK virgin_c_Page_020.tif
f66f3340fd8aecc38a9aa348e28a4566
2d34e92f6c95834bab63d949abab488f6bd24e78
3649 F20110330_AABHVV virgin_c_Page_100thm.jpg
f0bcea36c3b3d9404b088724e147fe0b
7713deecf9e9c374325470154770af0a60243b2d
617 F20110330_AABHWL virgin_c_Page_096.txt
62b6e99b57deae9dd387fdb748573024
06f26e2996bfaa6c0d09b23fb57f3f012dfde948
4651 F20110330_AABHVW virgin_c_Page_091thm.jpg
eee95b130da9d44ccb1c8f40dde04411
8479d703d180a1534bbf358c06431315b90bf42e
7124 F20110330_AABHWM virgin_c_Page_015thm.jpg
018d043211b3e08c9d5609a1f4c5be74
2ec24edecd0c46fd633f6180d0237a0222f78427
1051942 F20110330_AABHVX virgin_c_Page_027.jp2
91ff6c4d1bc9655fcf6019e9342d0428
2898521c1fa2d9aac27df8a3e28c25ec18102745
827585 F20110330_AABHXA virgin_c_Page_046.jp2
5356e9cc6a2318281742b7db8ba95269
2f3b4dac29369bc86c6daefe81a28a94bcc9816a
759296 F20110330_AABHWN virgin_c_Page_065.jp2
6d9733763d19bfc19d8f4b1dfb39a8ed
cdeb26f14e0b30e8f75389d07e7c54dad5d5f99e
92329 F20110330_AABHVY virgin_c_Page_016.jpg
10a0103a70f6ac09f31b3704411c7da4
e0809efbe4cbd9db669f00d9db11737c0fd2067f
9558 F20110330_AABHXB virgin_c_Page_077.pro
44ab5c54edf0e5341ab965d6f9eb9069
d1e9934f59234345e1acdfb29b852820a2c1ee96
75073 F20110330_AABHWO virgin_c_Page_053.jpg
9ade9b8ba176aa64ee7270f045be7fcb
3a20b4666935d989af6a24b325c3604fa532a0d6
F20110330_AABHVZ virgin_c_Page_074.tif
a8cdcb45f0618e8d062b964ee99f4afa
229db63031639c76f1b7df07860baaedb7d04f32
F20110330_AABHXC virgin_c_Page_005.tif
4b1c117a3321fe134d95fe4fecd2edf7
9792b0243cf8a623252470b8dd61104389322655
F20110330_AABHWP virgin_c_Page_086.tif
afd45f22e8dc9969182498dce254ea67
f44b3541b68552ce2a9321721db89e7dd7cee50c
15816 F20110330_AABHXD virgin_c_Page_014.QC.jpg
ee54e8903f0716671a67eb75dfc8b9ce
368928f775dcf313a5676bc80c3b98577e5d58bf
19730 F20110330_AABHWQ virgin_c_Page_061.QC.jpg
575f83b7447dad605ecd56904896c2d8
f5f0d3e955868cda6cb0cab353b6a0b4a08244e8
118094 F20110330_AABHXE UFE0012905_00001.mets FULL
968d158719aa5b85f4d2fcf714643cf2
0c91347327d3051634da04d54418ede69b816f70
BROKEN_LINK
virgin_c_Page_001.tif
36869 F20110330_AABHWR virgin_c_Page_071.pro
42415dc3654bdcc4f64f1c563d152b8f
01d8e4d6e6f44b54a68be4a89ff80e3a15c5c0b6
4841 F20110330_AABHWS virgin_c_Page_087thm.jpg
a30980f4bf004291e9f9550a80842fd9
bd76a2f1f8ee1ff3250f5629278e5323bfbf1b24
90282 F20110330_AABHWT virgin_c_Page_087.jp2
2d12a08526540daeb696e608fdb0da87
73aaedfa38eea31057966e50374aab129277d69f
F20110330_AABHXH virgin_c_Page_026.tif
ed17ae346fe94592f72a490d617c2d3f
45eaba4fe5602c68a47d25ff83698f71af272984
6524 F20110330_AABHWU virgin_c_Page_050thm.jpg
05e89e24597ac90ea87983d171d8abd7
6fccd6d112af87fd80d168015fdf4b2875c85879
6586 F20110330_AABHAA virgin_c_Page_037thm.jpg
d1ef0fb6d363983d2dc69bc88e946226
37ca5934b72df2fbe36aae52bbdfe8dc90912acf
F20110330_AABHXI virgin_c_Page_029.tif
9d629f5800fb8c4dca2922d0872e06f7
c027d4e7a4574683e9c4ca61a2746e7e8c4d1486
30790 F20110330_AABHAB virgin_c_Page_054.QC.jpg
49936d2911ae63d139b436d25ec501cf
9755acaf9c3d931a0c6016ec4f81efe01673ce3b
F20110330_AABHXJ virgin_c_Page_032.tif
cb22f4f645417d9b8801713285b28ec7
3bd2a9e128ad932c552f5b9a073616ccb0362d14
86543 F20110330_AABHAC virgin_c_Page_086.jpg
882c08ffa7a5a14decd40d3d9aae0498
586d7287882c0ef8c1e74a1b715cf54ac04974c7
F20110330_AABHXK virgin_c_Page_050.tif
fe61a06a937f9d48f1d306df9186c271
9af3f07c04dd88a33d8ea719159853f59abb690d
F20110330_AABHWV virgin_c_Page_067.tif
9f146355b004b44f3a0b281db7b8c461
da42a936900cecff0e64f27f986eb6f6854517cc
87999 F20110330_AABHAD virgin_c_Page_083.jpg
93b2a0559c1bbae8ab88026d2211a35a
b46d624ba5b18ddcb629b4bb58898f9857613450
F20110330_AABHXL virgin_c_Page_052.tif
8aaee11177bb8893f9534234996c3076
970c74b52cf7444a29539e899a98665e5abe79a9
3704 F20110330_AABHWW virgin_c_Page_079thm.jpg
321cc1e09d97a74d9f0e59d3027fc48c
d7dcbea6122360ad9ea87d7528a60e2da39e1c15
6786 F20110330_AABHAE virgin_c_Page_044thm.jpg
1c672a2f3280cda17157825670ab1ded
702ad37f4ef3683aea77a9a258434d00126afd7b
51651 F20110330_AABHYA virgin_c_Page_022.pro
8835770ee56cc4032d697f115b6af64d
494db384b7d68718ca02edcb10276337db18bfa5
F20110330_AABHXM virgin_c_Page_063.tif
59f0b6bf4c178efbbda2482b07890b13
7cc19729e7c76c552df25ec8a21845df079b802b
67867 F20110330_AABHWX virgin_c_Page_032.jpg
0eff642919aea807610bc3585128305c
a547f05f6206cf93ee8920af42205a9108a9b75c
29417 F20110330_AABHAF virgin_c_Page_006.QC.jpg
d4811664e05dd0086ca97daae4715a7d
63dbb70a6c2d523b6512ec435262f04c2b362f3a
21159 F20110330_AABHYB virgin_c_Page_023.pro
635dba4bcdfd0b9a8cbff3a9ee3e3663
0d27adc479a5bc7911970eb8718f5688ec67cb71
F20110330_AABHXN virgin_c_Page_070.tif
eb9e8697f287fd8a304e2f05ab3f5e9a
b28ea7cd66526d8715fe3612876c07333f0c629a
F20110330_AABHWY virgin_c_Page_072.tif
ddb17e8b17baf2b5511db3c5aea0fad8
6081c2c279fcdd2e8cfbfd9d74c829b30d76becf
4071 F20110330_AABHAG virgin_c_Page_002.jp2
858cb9f5d717210bbf07be575e261d66
ff5399c3335bd919f1b5b72ddc88f35347c30fb3
35521 F20110330_AABHYC virgin_c_Page_032.pro
9a89ccf11c7654b72cc2f7202da1d558
984350beb8f9304920f6a5747a71fe63c8ce514e
F20110330_AABHXO virgin_c_Page_089.tif
6b6e72cd5113ac0bb38e2c0b6a0dda1e
4d15cc38bf599ba3d002dfa0eccaf3e8f474f7bf
F20110330_AABHWZ virgin_c_Page_017.jp2
178aba473462f4b16c3fe26019fdae66
c672b0e8e2547fb228554e575a18cd8a49f2b4ea
F20110330_AABHAH virgin_c_Page_006.jp2
dfa448bc7146ead7e82726d83692c152
27283fdb1a1a5aa7e94d3e8d682e450e5f6e2963
32395 F20110330_AABHYD virgin_c_Page_034.pro
68e9209da90bea4e3ba138a875b895c1
b604f54ad745e21a9dc33128db95ed53e2e3d4a6
F20110330_AABHXP virgin_c_Page_098.tif
c85850f7338203555af53870dcfbe0c5
6788780f22d385f01c31a3284e219b13ff5ad109
30510 F20110330_AABHYE virgin_c_Page_053.pro
8d4afe139aa925845095b099f6473dae
00b6ad588e3904a038c769fd5459b69eb021e303
414 F20110330_AABHXQ virgin_c_Page_001.txt
113ecf6a2ed1ce913f5c5e5f63ec0754
a56415abded2a523ce4528d3fed123577addc95e
71225 F20110330_AABHAI virgin_c_Page_005.jpg
a8d72e6954bcb3bff60241fa4f117e58
63c716f2a982505b1e92c449817ad4ea8d2fab60
35959 F20110330_AABHYF virgin_c_Page_067.pro
09ef48d7e065d05533a072c76346777c
2e68f0bcab4cc7377fe4000a5fe6eb1df8e9e379
F20110330_AABHXR virgin_c_Page_016.txt
3e10cb2aaa15c59247cfe6f3a6a7dd3d
eecd1995821b114cfa53e163456d5eba5b47dc6f
8520 F20110330_AABHAJ virgin_c_Page_096.pro
591d85c720bec663e58f2007d721bea0
8da080aa414042ee287939847731bb7f8295a5a4
42140 F20110330_AABHYG virgin_c_Page_068.pro
444f6db38576906e32e4fd5615d4e738
cd104c7e29ee61d07fa9a175c10a91658604798d
1485 F20110330_AABHXS virgin_c_Page_034.txt
8ac4d0eb2e71151e96e181dc803f6f24
3623c2fc27cbda90b045360e596ffff8b40247fd
31344 F20110330_AABHAK virgin_c_Page_027.pro
17be4fbbddd824291a2c845e8f6b2638
fcf0957f9932a1677d3ea5fa31406bc5d7bc415f
25787 F20110330_AABHYH virgin_c_Page_069.pro
116e3faf15a9a1d401a7ee4c67167e0d
9ff6d4bed5eab03dcc83735fc9894cd07716a9e1
1547 F20110330_AABHXT virgin_c_Page_062.txt
959a5792ff3954c60025890bec21ab5b
4ea599f8a572e3a8c73a676547bac9ab30cebffb
25178 F20110330_AABHAL virgin_c_Page_083.QC.jpg
875c7830c431c3fa2fc6050f4eb3c204
08cad4233a08817259176346cd0743d16b18674a
45925 F20110330_AABHYI virgin_c_Page_085.pro
097d1ff47b00b886cea6871c536377b0
963b559d5eb4a8d043726be0e864eda964205d08
1966 F20110330_AABHXU virgin_c_Page_073.txt
114590a498c8a29a1f49a76eb056db89
157f1045e2e42d17b47ab3c9e364fdc1fef0d109
2040 F20110330_AABHBA virgin_c_Page_022.txt
de1e5a4d118b7f4e007baac5f31ea6f3
7fd61569f0f233aa315b4bb1a937ac6e39060857
30308 F20110330_AABHAM virgin_c_Page_015.QC.jpg
a1650668868450f466e709633428d386
dc49c73af4d8d77e7dc36a1d089eb28f86485972
23828 F20110330_AABHYJ virgin_c_Page_089.pro
17dfe2488282a5e8071bccd15d0833a2
a9cc56f2ec42f01ee9a03bcc5ccf0f165a161189
2305 F20110330_AABHXV virgin_c_Page_086.txt
4203250c0affa6a5cd4e5c4b99d82ed1
1ca4c1297cd854b2b00dfd6c4ec798e9ed6dfb92
F20110330_AABHBB virgin_c_Page_058.tif
6a0c25b7d200e3f21d3617e634f684ed
71fd2aca6704d3220edc8325ddeb3e596c2d6fe5
F20110330_AABHAN virgin_c_Page_093.tif
4d2c179eca715b90360cf391ef7dccfc
a8fd39525cd4aa8c22f6788e31debcb763c94401
7035 F20110330_AABHYK virgin_c_Page_092.pro
7003a4b208dfb7144c4f32fc52406c63
49890effbdd2f5d92b07cc3d89b606432556fda9
646557 F20110330_AABHBC virgin_c_Page_051.jp2
7b832a62f02188380b27f28e75f6d03f
900b7d9bfd9a0c751bfffe776c2d96f4a3cdb242
32439 F20110330_AABHAO virgin_c_Page_080.jpg
45a7fb1f96fb7fa819fccfadec307a8e
02832cebb0130f37e89f4a6f483e4045a5b41418
28574 F20110330_AABHYL virgin_c_Page_003.jpg
f307753ab910cb41d5e24fd149b987de
0cb1f312d6f5cd48d90b1512998c987dcc8d70a4
559 F20110330_AABHXW virgin_c_Page_092.txt
631d45ef0fdcde3e60a6f6d363e168bf
97500e67f57351fc7d641753c514f8ea16e38f46
845780 F20110330_AABHBD virgin_c_Page_039.jp2
36eac4a8c7a8736329473016b4600cdc
e64ff4c569db28a4d2b8034dac61c395f0b4be0e
34694 F20110330_AABHAP virgin_c_Page_041.QC.jpg
ad14de3a2573962f497b529cde198c67
124d59b6773aebce4fe97fc7cb93a9ed4bd83586
90396 F20110330_AABHYM virgin_c_Page_004.jpg
acfa83108435a41fd6e29ac8c60cb4a6
d651e70d18cca59878db6264519364c97e9b0785
44174 F20110330_AABHXX virgin_c_Page_004.pro
86c5049324c9d2a62aae81b20cece277
82b2e3a1cfd653aad5589df7a522e3ef4b3efa47
F20110330_AABHBE virgin_c_Page_035.tif
66370ea843519b656e5a294a61f72e81
adc2de76ba10cf19fabbc0a6ad940ed33b83d8c4
27793 F20110330_AABHAQ virgin_c_Page_008.QC.jpg
1bb10d7bfdad4805b60f78ec9ebaa39a
285030735b7d8485f7b844024e9fc39537baeaa3
53313 F20110330_AABHZA virgin_c_Page_010.jp2
4702a753c3412a45720fc29361c74ea9
4d7b535aeee0920ebba1d9792f92151f211419c5
8783 F20110330_AABHYN virgin_c_Page_007.jpg
f95d8b805c6415d3f8f9230cd8f7be69
ced1602c049f78365f8c6d80c2ae58c0487a44f4
23045 F20110330_AABHXY virgin_c_Page_010.pro
529a134b2cce1d2b6abf973640c367f0
b6b8b7f944deeae1c303ad79de0ceac8fff556a3
48357 F20110330_AABHBF virgin_c_Page_015.pro
85a9a882be40f27ffd5f02c2b8a6cd95
0f957b62f54d14f1d85a6ce8fe28d6de6dbeb47b
77909 F20110330_AABHAR virgin_c_Page_046.jpg
ccec99fa64cecef5c81ef20c2f886ea3
82c9db1674422bac18645c35ecceeb9d36d65132
1051955 F20110330_AABHZB virgin_c_Page_015.jp2
aa270e384f75e880d72aa46b12000c5d
d499fefe53ad4cccdf5c810d1b69b0062b5d2acf
75226 F20110330_AABHYO virgin_c_Page_009.jpg
4f963cfd299c53b6f91c8b847909faef
2b6c1a46bafe1dce5272e7ffc80b9fd5a5d2b4cd
24606 F20110330_AABHXZ virgin_c_Page_014.pro
4ee583a6fba720b58ba1b37e72783954
f3576daf20763dc6698872bb2e70bff630fc64ab
7942 F20110330_AABHBG virgin_c_Page_027thm.jpg
086dcc006938ad2a8e32f4f8b3a0d4d8
e49e5400e92024e522ac17e2380bc2ca39cc26f3
F20110330_AABHAS virgin_c_Page_006.tif
bf8fa8049ee41c9204b261f4f5375a9c
9fecb5fc5d3c992e6ad840654e3c3f8117eaab6d
1051945 F20110330_AABHZC virgin_c_Page_018.jp2
e9c2145e3ad8fee2c46602c8f30a1c76
b34bfbec125d609f5186f9c95ce84621d5d7b0ec
55953 F20110330_AABHYP virgin_c_Page_011.jpg
280084f4d2b75869afa8ebadb38566d5
cc4688c302b618524d81cf39a32b4ca10acd4499
7537 F20110330_AABHBH virgin_c_Page_040thm.jpg
a2b19039d99cf127ad69878146b6c14a
afb5199275b752ac7dd6490e7ebc2e5a09b87ea5
101320 F20110330_AABHAT virgin_c_Page_019.jpg
55a80729f9ef908d56448254967ed1ab
9e01d1b3f39ca6fae1ae824d6eb18ef5cb3fd81c
649552 F20110330_AABHZD virgin_c_Page_061.jp2
f267c67ca7b32e710c906686ad52aa75
d4da696570888ffae07a93578238ea93fa2ed6db
78124 F20110330_AABHYQ virgin_c_Page_035.jpg
4435d3820c8502dd537cc7718d3255e3
4a069a2c3315528852317ffdc50146a1c9692b2b
28210 F20110330_AABHBI virgin_c_Page_037.QC.jpg
f1b5c349446d4ee0c1b4757be42d4957
d8b8aa8384ede2a0bb4557ea7be7292a61d77bb8
7345 F20110330_AABHAU virgin_c_Page_038thm.jpg
9177ee918580e0046b3f869342bb4108
24892dfc68fceb81bb2e3f1892f4c782c97e6a27
804804 F20110330_AABHZE virgin_c_Page_078.jp2
8d9d2e7877838627556c8202979d21ee
1b633ccd4f3dd28aac7f574f37e378be5cdead6b
79633 F20110330_AABHYR virgin_c_Page_039.jpg
014c918aa1d88ef3ef4db31b5432bf2e
e46afa5e764580ae79ec3bfda7119ccc451e389f
48317 F20110330_AABHBJ virgin_c_Page_033.pro
e3ad2b50df3e60bda6e98532854c071a
2e731dcc427efe614ae3559d25610a048d6dd567
28731 F20110330_AABHAV virgin_c_Page_024.QC.jpg
d61416efa66fdf0736461381d1eca5c0
474981317e372e41bf56ea450ba133a30dfe7131
684089 F20110330_AABHZF virgin_c_Page_089.jp2
0eb0c845977a45db0d6852f9284e9c88
4fe8fc7892ccde0be9668500e95d6c7597603fe5
100627 F20110330_AABHYS virgin_c_Page_040.jpg
68cca083de2931ea54a985a0935db0be
afdf621d0fce898b771d9479b756feca4fd6fa97
2096 F20110330_AABHBK virgin_c_Page_052.txt
8e61d9c4f1c3007aa3332d3170f0e4ea
f907015d3ce14593459d4c0a60613c3c46b47487
22124 F20110330_AABHAW virgin_c_Page_090.pro
b8a42f81ba353577e467720cd2dbbe70
59f2b41cccff0dc689f6496751d932c4d33cc209
1051960 F20110330_AABHZG virgin_c_Page_098.jp2
be38d2b8473018ee34c116e4363f7dc0
aae41284d3a5bb6236511abb2330963d6d6a462c
90177 F20110330_AABHYT virgin_c_Page_042.jpg
2de0f036edc8f609545edb7293ef2ea0
6bc9a817001eaab26f01e626b578da23d23325be
7164 F20110330_AABHCA virgin_c_Page_095.pro
f2e567170a1c315ed1972b18417b40e2
ec0bc8158fad4a34e7249f1cc72f83015e2a8a2e
8092 F20110330_AABHBL virgin_c_Page_016thm.jpg
7b38d914350708b4c18abcc3c2df2f48
664321db31b6b55353a2c156ee98a9cece7f6dfc
7118 F20110330_AABHAX virgin_c_Page_001.QC.jpg
1188fd09cebb8905a35359501a713540
7753c036541325a061b74eb517be43df531bf082
32998 F20110330_AABHZH virgin_c_Page_028.QC.jpg
a8493b32234e90c80a2b8135bccf92dd
79dc6c08ae42b7647d233896d0b100be40911731
71328 F20110330_AABHYU virgin_c_Page_067.jpg
7c7dce8dcff589f511e2684edb9ece15
6ce63edbcc66d8ad6a7d6af9d3e27183912e54fb
F20110330_AABHBM virgin_c_Page_035.txt
ce0c9eb65e23091031908026adbff6ed
63d2fc977ba023c00fe522b0ec01029d239daca5
5950 F20110330_AABHAY virgin_c_Page_029thm.jpg
c568238a1be3ea17136059226a28e243
43496bb3f913c2d4d5e0a65bae28c8e26ac5b312
15546 F20110330_AABHZI virgin_c_Page_081.QC.jpg
734d0ee3884d5a1584d0b05ea4466877
5da3e0f2a869b9b2a0c4ce8b6592dd719b2d8892
70256 F20110330_AABHYV virgin_c_Page_070.jpg
973ac7c5e07b8f996b95f15f050a12e0
7fd5dac82e4723d5ee96f12058080d1249cec1f2
936194 F20110330_AABHCB virgin_c_Page_056.jp2
4f18bb664491b907ff42f528f6d6b08d
fd07575c1035361574a7b289fc22bb12a7968d48
F20110330_AABHBN virgin_c_Page_094.tif
e3be79369571557f8084bb1c14a7e0f3
b88020d87d58d1493c2456c5cef4260b21691710
F20110330_AABHAZ virgin_c_Page_046.tif
870eab7894e1a9f814104a51dba68ef3
d79288e603442debe0c49f43ed77b8bca4d174db
26739 F20110330_AABHZJ virgin_c_Page_056.QC.jpg
f3c311c5eba791703c9ec915a3b00730
d1d3a72e9cb9a0595dbe4fe723aec0f3c60261d4
46591 F20110330_AABHYW virgin_c_Page_076.jpg
0eec9675a09f09bb4c42efb2b6c99d41
722490dd24e94a4a4877e045dcd6261809788cb8
2020 F20110330_AABHCC virgin_c_Page_038.txt
f929ceafc1caa6d6e11d6e18c7414116
02b5e7c764680472b53b797a4ec4d26ad9bbc811
35506 F20110330_AABHBO virgin_c_Page_087.pro
f8c141e67d89dfe78f9074c3ce9dc622
edea14048ceb3e903111df3aa50086a32e2b889f
4818 F20110330_AABHZK virgin_c_Page_051thm.jpg
e47d3588c89cba0a32f246567f4d5d99
240c337515b4d2ac4fa2cd7655cd55aee04bdc98
22716 F20110330_AABHCD virgin_c_Page_001.jpg
91388553a30f25668574347e71a2db07
a51e6be2b14dfc5348bd29fdeef05dd7910286e5
2030 F20110330_AABHBP virgin_c_Page_044.txt
1ba035fa7e9e0dad248657937e9bc3f2
f94d272e598206bea137fcd87c43ab39e91ac22e
8304 F20110330_AABHZL virgin_c_Page_054thm.jpg
e7a5794f75db9bc6f99b1d473a955c84
b0defb3345f74f166f19ad23482f8b9c2f6d33af
46459 F20110330_AABHYX virgin_c_Page_093.jpg
1c43974c3a08d6672db9750666e13768
a17806b38018526a8bd4137d69644f9afe0c651a
15798 F20110330_AABHCE virgin_c_Page_094.QC.jpg
fa1d8e5ef9683b48c8e22d764d9c979b
f9fee01cf8c16cb4a2bc5a064d35bbb3b1ba50ac
F20110330_AABHBQ virgin_c_Page_014.tif
1227ce240c5280a6e59beaa0f3c04862
490cf49b4b9ba4606dae9fa6a34a61d96f7805ef
3579 F20110330_AABHZM virgin_c_Page_090thm.jpg
8d45cd31bd2381848e685bfe2976e78f
45102d6966ca238fc9e1da83a8c22515cd83f038
22307 F20110330_AABHYY virgin_c_Page_001.jp2
0ec6ae733e6084cdde2038433c553353
126f02646a06af0cc7a8d08830b949f95509d2dd
18150 F20110330_AABHCF virgin_c_Page_011.QC.jpg
a5c6ca649b76cf46ff87d140d0378aab
3bb629ea7fa092941adb2b21c7c1c3a127977de9
F20110330_AABHBR virgin_c_Page_003.tif
007f8cf114833d7b467c2708cf5b838c
e2a4d751381f13466b92553790742c8acd77f5d0
16485 F20110330_AABHZN virgin_c_Page_092.QC.jpg
043fcc5ffe8d95d7a55b5af38bc072e8
aeb79e4a5c5afa622244b090044bb5a6b2356d5c
1051950 F20110330_AABHYZ virgin_c_Page_004.jp2
4c5ed30c82462ef9368058bb83f06582
e3281d0e6274b61b48cd67eafcad1f0b0a53f4e9
2054 F20110330_AABHCG virgin_c_Page_028.txt
8bd2d4950a8d668e7f8f9ce1919bffcd
c2e0a696d4448eadb84d551176ecd8c455b9ef6e
30805 F20110330_AABHBS virgin_c_Page_064.pro
41388d0706e082b9206ddbe88b2ffe4c
1161604c7ae6e3dbdba354b915ebef4cc466af0a
6184 F20110330_AABHZO virgin_c_Page_032thm.jpg
1954cc4e64fce71ba06f1a52068773b7
cc6fa2a8e5d77a3f8a1369409b4558739c7d2a77
22657 F20110330_AABHCH virgin_c_Page_032.QC.jpg
d58f37feedb9715a2e1a014dda225255
fc3ea11f99601fdb0dfd789005023defd3799d2f
46344 F20110330_AABHBT virgin_c_Page_094.jpg
a311b31ab2eb4a48b4e855c8a5fe3b7c
ee01e9310d059dea527f54166883e1e00af6c789
6401 F20110330_AABHZP virgin_c_Page_036thm.jpg
5d9daea7f213985172db5749ff75113e
5487cdfd9fc24b8938ba5834e546dc0532beaaf9
49593 F20110330_AABHCI virgin_c_Page_092.jpg
d3315e32c5f333708817f3cc43c8016a
f097b6115523fb422d45deb62b1988e3dae10a23
116154 F20110330_AABHBU virgin_c_Page_007.jp2
a22e741d24d8821f52ef50472bc25d41
9b4ad02a0664f91f979cb7f75591f06a96b14fcf
6849 F20110330_AABHZQ virgin_c_Page_049thm.jpg
eba55158e7ad69a30def963b8605e4f7
59a80ce0d6c49c0e00adc00d734cf137812e0c3c
22085 F20110330_AABHCJ virgin_c_Page_066.pro
82485f958c21a9e54f073a143dab06ee
7d3c4af15c3dda31680c6743b946cea42005f469
25422 F20110330_AABHBV virgin_c_Page_073.QC.jpg
376d111b22b0650c4d26077ce6385553
780161518d76d776d95458bfff3c5446cf18a79c
6642 F20110330_AABHZR virgin_c_Page_067thm.jpg
94b9938695b3eef8a640eb8cf30984cb
816a03492224cf889b109e19850f39e9e2c4cbea
54069 F20110330_AABHCK virgin_c_Page_058.jpg
e9ccf4eb20cdfde5f8421dd83b10d265
0793aa42a29ed632e8d9a65fcad8c1daf611619a
624 F20110330_AABHBW virgin_c_Page_002.pro
9ef81515482f4f5d2e8f583d0989a1a4
69537a5588cf2ef392deebddaafa03eaa8e59bcd
5448 F20110330_AABHZS virgin_c_Page_063thm.jpg
54b8b624f04cbfc9aea33c7e830cdfbe
94f5018c5a2d077ae411aa0ec41002d2defef0b2
82081 F20110330_AABHCL virgin_c_Page_043.jpg
5834088901c916880a1790af0b19aae3
64a22ae33e99c453c00ebb11dacf0c236b98c190
11719 F20110330_AABHBX virgin_c_Page_077.QC.jpg
10bc33b0dffcd63822f2ee51d86506f6
e3928b13fbf1cd59005207260651ff3841d958e6
6639 F20110330_AABHZT virgin_c_Page_039thm.jpg
fd7a3bc2fd1f97fbac98b8777e3de142
cbf81e88305ac4df89cbf1e70f1c9ce3252bce09
9190 F20110330_AABHDA virgin_c_Page_012.QC.jpg
7b8f3c9c22dff594faeaa209742b3383
ea28659b67d30ee4697d5901e82d47431a4325c9
96305 F20110330_AABHCM virgin_c_Page_034.jpg
4a212423b36d3e62d5a687f63ea6e5f1
8e51dbcef05124da6970524e1f3ecc0a8cc6919b
F20110330_AABHBY virgin_c_Page_069.tif
56a8281de3a5fe008f2afb588d2dbd22
0a03b42779e6a2b363a79e0c2ca72ff10f05934f
162002 F20110330_AABHZU UFE0012905_00001.xml
42d209b9db3405eddfd5e0d23803b8fb
1a4a4da1c4a8850e79a3bcb087d6558a8f3a2647
virgin_c_Page_001.tif
25256 F20110330_AABHDB virgin_c_Page_050.QC.jpg
1dc4e548bbda1165b80d842e7099e026
22b2c58c9583ba1248dc03ddef8031dba5df4b37
741 F20110330_AABHCN virgin_c_Page_078.txt
b7057935249613cb7ba3f2bd8d872a8e
67a50c2e37284b6ccb99e50a3b61e8fd991146aa
5416 F20110330_AABHBZ virgin_c_Page_004thm.jpg
16c63511422604b57d4f47f298239828
4e6a0d01d8847349f63d11a739c7fcb300cafa5d
24836 F20110330_AABHZV virgin_c_Page_082.QC.jpg
c744b62213bece8b6287dd5f95135adf
61e7939b9ef4901f8f69192ec794a3648fea3f01
F20110330_AABHCO virgin_c_Page_061.tif
8ba83000354eaeffec52e99ea0a90a61
12e5f345f4a61608801b54d9c78d8b673c268b2f
67015 F20110330_AABHDC virgin_c_Page_075.jpg
b38d95b805e0a07b941dd37647ef35f0
f5bcbba0981f9e13523376c21d18d87a00ddc23e
73569 F20110330_AABHCP virgin_c_Page_045.jpg
b5b4d926677810300bf50d534f24e881
4f0b44cfb2ed1a71d59071f9bb4e9425840643bf
23573 F20110330_AABHDD virgin_c_Page_058.pro
0819c4e34091f252b9234634dfbd62f6
82097bc4c88d6cb66e783b42b6331b5c4dbcb33c
F20110330_AABHCQ virgin_c_Page_031.tif
41b0b5e53866677598bc0569bef27303
ba2aacb792618860844876ddb7e9ea4480d81a14
24541 F20110330_AABHDE virgin_c_Page_046.QC.jpg
e852d497950fbe1ac611c73b5a14f046
4fe2b3483f6f277f15082ecb7583bc366ff29614
26823 F20110330_AABHCR virgin_c_Page_034.QC.jpg
d4c34886f614ce9ab755ca6f562dff63
8f475cf873aea8b44357107ae8deb64201b1d815
27201 F20110330_AABHDF virgin_c_Page_044.QC.jpg
12b38ae822d2e5cc7bdfa84587b32451
121fdddcd38b53c325f5ae8c6899842cab58662d
F20110330_AABHCS virgin_c_Page_043.tif
db8dd2110278c4a7981aefdc8ac3e389
a7bbe4eead15093a867d8e69ef81cf28bcbae26f
1370 F20110330_AABHDG virgin_c_Page_045.txt
cbb276b07ea5ecbf63ffe78767f98587
5eb116359d8a28bb7f7bbe1a4905015cb83c5928
F20110330_AABHCT virgin_c_Page_028.jp2
fbf589ea95470467bcdd68d532e96210
6358d0642e5c14b705bfdeca6c1bfc7d0690ad75
4484 F20110330_AABHDH virgin_c_Page_095thm.jpg
721d90dcccf6df988d102f392765417d
de9920386e3a49fb3ca4671f4a22d92178fad192
29098 F20110330_AABHCU virgin_c_Page_061.pro
acd20287d35ae952f2906769d9139b45
8f3329213da228e98af0f8c22b8aa77ebf044467
882850 F20110330_AABHDI virgin_c_Page_031.jp2
356b4055b9d38097e0d4e2cdfb9e2e54
a0c26fb766f75c8dbb9bb2a8d6f40711949e8c6d
10598 F20110330_AABHCV virgin_c_Page_079.pro
e911fba333de60fa22cca8cfce25bdd8
7fd35c807556fa6a7c2607ff27861b52ef83d4a3
2146 F20110330_AABHDJ virgin_c_Page_007.pro
bff40b1bb0ad82d2d2fec8fee64851dc
c7a0b194ae10b9850b63661c1083b2c788318551
14634 F20110330_AABHCW virgin_c_Page_076.QC.jpg
c81bf49a269ec25fbc062743dcad07ab
63137241a7b8c95326a07d1ad35aaff0717d3cfc
33374 F20110330_AABHDK virgin_c_Page_035.pro
9423de39e8ec85a655295b9ec6b43f8c
3e3f1cb56116e1dd5b3a6be97b8257f8a9ffc9cf
80537 F20110330_AABHCX virgin_c_Page_073.jpg
a5c1058836bb61dabad69aded46e0b92
a79e8160154123b353ccce8a88d2cbbc509df57b
25111 F20110330_AABHEA virgin_c_Page_031.QC.jpg
bdf1fef74db98a763ce4908220efb2f2
6049c29a4897ff3fa6591a8cb7eac96f8ab126ba
F20110330_AABHDL virgin_c_Page_097.tif
04da8eebda65e1d6ac1a7eefc8cb406e
65f5a9dde32a67e027785c10908a1493f414d4f4
105476 F20110330_AABHCY virgin_c_Page_022.jpg
d559e0884eaa290dd212016c80898eb4
8db4295a12aa090118c9253eb9b520d43e65e7f4
F20110330_AABHEB virgin_c_Page_015.txt
b06b835d1dc2292dc6642b6ba93f36c4
793585707f771a6dc3caaf1d7578054d7851293c
F20110330_AABHDM virgin_c_Page_082.tif
ec18122d50414e1f3a6b916e0b64a28c
f8cc090f249bd3b68e4d82812129aca5afc3061a
66471 F20110330_AABHCZ virgin_c_Page_081.jp2
a2e57ac1a0ecafc2adaa8c5c92afb0ae
442b5c28f798a0a966c3b89db26c3dca54bd7877
27315 F20110330_AABHEC virgin_c_Page_049.QC.jpg
4d2caeaad3d53f6b20c4d99d421b2688
dd1b68d761b3d9eec97e1f674908776b2fee189c
28791 F20110330_AABHDN virgin_c_Page_063.pro
e2e35f1b7dee1015d878d8db9e10debb
d5aff8be97d831ec223fa2b7dbb92e2258700b26
64984 F20110330_AABHDO virgin_c_Page_029.jpg
a48965f0b6748657b66745c9778a59be
538a852ca91acec4269478a057e3284dc9bcff99
1051968 F20110330_AABHED virgin_c_Page_009.jp2
98500b624ecc16d101e98ad61f8da5f4
6e38c7d304f76666871ffb703eca1e585096d9cd
F20110330_AABHDP virgin_c_Page_076.tif
4fb7ca6028371531c2b3bb4ab26ed84c
528806f70a38b1068a94aad5f577d5a86ed97886
3901 F20110330_AABHEE virgin_c_Page_081thm.jpg
a52150803c4b8bf33178e87934327c02
a1256ade7e7da4bbb249ca1e71a8a363220af5d8
5552 F20110330_AABHDQ virgin_c_Page_094.pro
f8a559887999756ebcd4b52a6af3d40c
1b0c481d4d26274553021112522a4f2764ba0070
31945 F20110330_AABHEF virgin_c_Page_040.QC.jpg
23d5e7ec165f7f15bbc30946e8636ac3
d65cec446cbb0714341e223f4f7e5fef37a0fef2
41712 F20110330_AABHDR virgin_c_Page_057.pro
23cd95d2f4fc9c117711d054e4e0c191
4463b43c579845690ff8f678e3ae79a37c82fe2f
1809 F20110330_AABHEG virgin_c_Page_057.txt
5c30a8c43fa23b0f406ed655d7d79522
353ac7be5cbb8d6a48f6cf3daf66710fdd87c625
F20110330_AABGZA virgin_c_Page_096.tif
f55e760b9ddbc3d5bc4d1a3d61d02070
6278e8f043462b9094baa39fbea8df0100f8a7f2
F20110330_AABHDS virgin_c_Page_090.tif
f3a20432f6edf8365f40097e90b81634
ab6a1101854447b22c0644273a9c99811af356d3
1830 F20110330_AABHEH virgin_c_Page_074.txt
b54468a797d896d654066296261be0aa
a88efd773e7f4e5d651ab671c19a4b77a4e9b022
7466 F20110330_AABGZB virgin_c_Page_033thm.jpg
5fee090038b92e84153b8166e3fc2f58
91dbd0f98313606d1404c4a0b0d8d3a611496640
F20110330_AABHDT virgin_c_Page_077.tif
2bd24de749d2deeb167c5a8fd0c985e7
571a39a0ef3573ee53311797253fbf9855f6306d
1016318 F20110330_AABHEI virgin_c_Page_037.jp2
ff3e8b83c158f9cb2dc2aff7660db657
f51bc2f8991ed397147fdc86aed79d7088efc983
F20110330_AABGZC virgin_c_Page_023.tif
619b20b6c3f87dd17cd6ff0c69e52b50
4e1fb73621959f9ff664b6db140ad73716de7f3a
57246 F20110330_AABHDU virgin_c_Page_069.jpg
dfc34e501e6d166f8375ec5c33df9dcd
892f1c7937752bbbf11d21b56b62d4e8f9b5ef27
21189 F20110330_AABHEJ virgin_c_Page_029.QC.jpg
e1ac8fc45e92aeff1b90dcebe5d7bfde
c72da9302e98906e25994b32d880f67bf2886db7
F20110330_AABGZD virgin_c_Page_053.tif
f8194b89d90c678cb01da4976bd6bbeb
09a0ccc368b53c2baa19de93ee92acc5c63e9664
676366 F20110330_AABHDV virgin_c_Page_064.jp2
d857fe4cb1b1a9c3e8a37f4280c54e0a
4acc7fae76d0e3674877221154bea7f7f92a01e8
592138 F20110330_AABHEK virgin_c_Page_058.jp2
dd403dffcc52f7ae484a811163d848ee
0ce74babef752ffc88babd020ab3a1d7bcf9420e
20696 F20110330_AABGZE virgin_c_Page_087.QC.jpg
5c1e1fe2e1705a36fee2e6ef937d6f0d
6e3410d09633f2af753f222dc062607bc0d3ed87
4203 F20110330_AABHDW virgin_c_Page_089thm.jpg
11efb4dc9d9357677faf685ae91456db
85a5f6bb43bc75d318439993fdafdf0a3f06da56
F20110330_AABHFA virgin_c_Page_091.tif
338cd5dc301bccfa7b107786aacbdac5
64901d5370458e28e21fe891fa9bd20bb1c7d2fc
1113 F20110330_AABHEL virgin_c_Page_089.txt
b699ff7a6527e192291862a44ad24460
f137a702306c76b47cb4a50fcba1f5cd3e816d4e
F20110330_AABGZF virgin_c_Page_047.tif
d161a5bc5eee9d92d31532f563942462
5f95dcec8423893164fbfbd85bbe3c466715867f
F20110330_AABHDX virgin_c_Page_018.tif
1105bc98e66302981e3e54c41e17988b
08307a5f271c75d792eb67c1fb3629c4ea549dfa
41435 F20110330_AABHFB virgin_c_Page_043.pro
c6857beccd93addc9b12d775a199dde7
77c02ee3072589e55ae463d0f3ea44363b94f19c
F20110330_AABHEM virgin_c_Page_042.tif
13c7a4b137d696ed2b48b6640730dd4c
821848d3bb6578214a58b330f2d4b95328eb3cce
F20110330_AABGZG virgin_c_Page_044.tif
ad98488ee3cc681788fd8663daa69d14
af7a8a2522685310a52e4b906ee47ba623e28b80
48160 F20110330_AABHDY virgin_c_Page_082.pro
ffe38acbe69c0a8f59939a3c8747159e
08246960e48334b8519268da0d041159505da40c
2011 F20110330_AABHFC virgin_c_Page_042.txt
a3eb4c756959fd19d9d93f86ec0e9a44
2dc0d26b6e1b5da769188276d6fec8bd80619ac6
4740 F20110330_AABHEN virgin_c_Page_011thm.jpg
5daeefb9fd9acb9fea7b6465a32ea1a3
98d8f4bc426618a04f8bc450af7ad79ca4f1582a
2323 F20110330_AABGZH virgin_c_Page_082.txt
8f82e8156a61a6adbb1e1f5538faa432
629f44f7096aea1a09a3d6d299a20d1ec9880b17
80080 F20110330_AABHDZ virgin_c_Page_021.jpg
65b5f0a280ebe2f8647c1f6a0288a43a
3b15787dd03970ab8bf3bd49c60148634a8abbad
F20110330_AABHFD virgin_c_Page_028.tif
b550e9558e3fa68a323988fda292efbf
d410a3ff388eae48eb48c5f134580669fbeb7a0d
1714 F20110330_AABHEO virgin_c_Page_088.txt
5bec22358b38e7ae8d0fe4d42e8d6195
3e58a437bf51554d3ef3aca8e823d21f2cffaaa5
1081 F20110330_AABGZI virgin_c_Page_090.txt
cc0b7ea23a46d7cfff834ca6be9baa8d
a919af5913955af1d747ecc2d48199aa19d3273e
5788 F20110330_AABGYU virgin_c_Page_082thm.jpg
a49db8a6a35cd8ec30dac116d90cd65c
8a34c998fc5074bdeb1702a1df4cda0eb0d47912
980232 F20110330_AABHEP virgin_c_Page_057.jp2
bd0d8e5515fda3be8189a1bf4f26fe66
407b39de25bb38882298a06c395e8b955a47be35
5878 F20110330_AABGZJ virgin_c_Page_064thm.jpg
5bf3b98db8a3f71cb1ba46b357ed16b5
fcfa5bd07dd8d3355f060056ddf9be82b7bc9a11
16994 F20110330_AABGYV virgin_c_Page_066.QC.jpg
f21377bdfad72ab79b6d23aa4f46a3f9
a0821dbab96530980594e772488d12571501c22e
7867 F20110330_AABHFE virgin_c_Page_048thm.jpg
7181e330bb3481c4badb08544aaaf190
bc9af6ac003b1de570cb6348dd75b7a100288c43
15658 F20110330_AABHEQ virgin_c_Page_093.QC.jpg
dd5c7d9133315831250533d37b4d31cc
4b1b043d0f8397f45b9d3ab9203569e25c9f7a3f
6491 F20110330_AABGZK virgin_c_Page_035thm.jpg
228d3b4ee171b549bd45453773a4b630
89bd9e25f052e90aa90ade95e2a1f6ddc672cd37
73310 F20110330_AABGYW virgin_c_Page_099.jp2
570148eb798bd6b9048b6849dff63468
6f3ed916d3ad0dfedb8462ceeed5c5fd373cc8df
1672 F20110330_AABHER virgin_c_Page_030.txt
ecf58f1982e8dc3b177e6f9fc569e991
1db5e944b4f54866e9c08385ea9029dfe64d3aa6
88 F20110330_AABGZL virgin_c_Page_007.txt
e3b9b2a3ac61a71b8e4ce6c5156345bf
5fc2bf9329bb6a591f0970f292365cf8312adb21
50318 F20110330_AABGYX virgin_c_Page_100.jpg
01e508a50a5d8871494776bf6d2041d6
8ab360aba97725dda13d726f3e090768c04b29ec
27471 F20110330_AABHFF virgin_c_Page_011.pro
bb94df6526f9c63b91add6865e9523cc
e5d9e71be9899ad523161f3e98e8b7842a81d60c
25652 F20110330_AABHES virgin_c_Page_035.QC.jpg
ec55d061eb19804f42fad8803df6e356
eca6fdfb6e521da0bca1754c74caa19e2065bb46
1051969 F20110330_AABGZM virgin_c_Page_005.jp2
25fcce264881f64ccd813d8f5424eb3f
89314939994f28b139ae217be889a377cb414612
18428 F20110330_AABHFG virgin_c_Page_051.QC.jpg
524db33806efeaea15100a4f78b772c6
ff2b6e5111a287452d3b90f337b94c510cab243e
541647 F20110330_AABHET virgin_c_Page_090.jp2
1419febff33395ee3eab145fa637122b
6bd2654221f406cccd485833d50e7094bd6e8803
25196 F20110330_AABGZN virgin_c_Page_020.QC.jpg
acf1cc19bdb09bc63ebba054256f6ee6
0488c5443661ed59caea27018ae589cae479fe95
F20110330_AABGYY virgin_c_Page_008.tif
443566c9b1099caa11970a15792f8597
8e9ac09e4706da4e06719722c229b8a74c4190d9
1001901 F20110330_AABHFH virgin_c_Page_024.jp2
b5f8aa499cefe76c714cf5489be683b5
f7fc79b2333f755bc411dc55ffbae1996b9f2d55
85831 F20110330_AABHEU virgin_c_Page_030.jp2
c9c2396966bd1812b8be764c94bbcd54
10f25e793c799da368119edf929e3bea1e02c993
40622 F20110330_AABGZO virgin_c_Page_073.pro
2fdcbe4584897b4a43abcc44a24a9275
a84b51442d283307f7cdb5545504db5054cb2002
93942 F20110330_AABGYZ virgin_c_Page_006.jpg
5add68144525d0219419e840498f69a8
15c7ee6cacc1ec5764e975b581be3aebc846a8aa
1046983 F20110330_AABHFI virgin_c_Page_048.jp2
c4772dde88b6e35dc87b21c609977207
446e3fca495e6b673c404b1f81bd1cd00f1b6915
27101 F20110330_AABHEV virgin_c_Page_052.QC.jpg
58343cd0ada5c14a13ce74ca26d44927
cde291d9bbfc793fc010d4100655d030787b55df
1871 F20110330_AABGZP virgin_c_Page_056.txt
ee4c8d9375a3392c8dc56b175705004c
911e478045f976387f2a7c6e25689edfe7d47d6a
857737 F20110330_AABHFJ virgin_c_Page_036.jp2
e51aa1ebf56f2deba52837320191d6a2
8f8970af569d1266233a543f7a4b7d934472218b
1920 F20110330_AABHEW virgin_c_Page_013.txt
bb6f0fa40c05857533ac5a7838f410e6
fc078cd6f57b69f2c6186a117f9f289a4b16544d
1051970 F20110330_AABGZQ virgin_c_Page_026.jp2
7da9a04a2b080a336301824f5adc902d
b40318db429373b24aa93daf87acaf54ac8b755c
F20110330_AABHFK virgin_c_Page_062.tif
70396bfaaa9c5578aa98204527f5e477
7d79ab0fa35e4b168f5f0e687668016e60b0d544
4488 F20110330_AABHEX virgin_c_Page_094thm.jpg
81d3a70cc18932ce77af985d008c28e8
266a4585d3c8e17f57f5eceb8471f4b359345619
F20110330_AABGZR virgin_c_Page_088.tif
69e2400e2cb5d0c5b636865195596200
f364142436d83652b10d04fcf4db6d127da0f0e2
F20110330_AABHGA virgin_c_Page_073.tif
019e4b621d1127196a61aa4a9dd4ef59
064797bcbce08fde2aacc7cf9050246b32e89cf5
F20110330_AABHFL virgin_c_Page_048.tif
2af767e44e0e3fcb5e059dcfac4c6c6f
a70762b2f22a09c1190384cdf1a48f49ac5a4622
25823 F20110330_AABHEY virgin_c_Page_036.QC.jpg
5ef3a2d07c30392713eefaf59e0a992e
d182e236db565ad4e4b213351e51ce89ae3847c0
48656 F20110330_AABGZS virgin_c_Page_010.jpg
896850ed75c20b6935e6a090bd6a1045
5027e943d77eec22a0115e75c997c0b6678d8b3b
24831 F20110330_AABHGB virgin_c_Page_086.QC.jpg
5a1df5e5b4d814b8f02c47a1bb0ce29e
d5f21750aee94d35a8af990276d435d26fe72203
1558 F20110330_AABHFM virgin_c_Page_020.txt
b320b82bce63186335e324d12ad5007b
12cfea30bb5be7062df108cad818324cc577234d
2242 F20110330_AABHEZ virgin_c_Page_041.txt
f5b2e932b58f993e987c25184e1b1ee3
9709031c3f3f91e3b081358d13d70d213ae86f61
87808 F20110330_AABGZT virgin_c_Page_088.jp2
711ff05945abbaa3c308e3973a8657be
98956758c4d9f1eeac9a2ea114f3fae199e6800f
5755 F20110330_AABHGC virgin_c_Page_086thm.jpg
7d9cc53fa586200e87f28085dfc72a70
d2e93019dc8ce4da4cbe145d402794ba14c963e0
F20110330_AABHFN virgin_c_Page_081.tif
e9331035401d26aa617fb2a4bac9b5c6
18fabb08d5fcfa1dc48332e14b49638222375afe
984 F20110330_AABGZU virgin_c_Page_002.QC.jpg
b98a3f74009348e0ff114fc809b36ffa
cbc7f3fb660a11818706268b0bfa3178273f4f83
51465 F20110330_AABHGD virgin_c_Page_028.pro
add3ea9f4e651f941a2e8ac1ffbeb6f6
08cdf5ae71f1818b60ae8119d31228677c9d69f4
535 F20110330_AABHFO virgin_c_Page_091.txt
545bc72043ba19a1f54c6d0f10762322
2a1715f58d8d7abab29f22f32da5abb50f73f813
34259 F20110330_AABGZV virgin_c_Page_039.pro
b101ea386dea04501ab11d41d8a9a919
a9a9dbf0464666368ed8c2f44321230d49989e2d
79963 F20110330_AABHGE virgin_c_Page_055.jpg
451ce6546fc0ff0de87ce149fac893ba
0cc30c1e069b37748aca45a0f3c4bac18c499178
87214 F20110330_AABHFP virgin_c_Page_085.jpg
0c3c4aa368d0bdab9517f4e10c38c56c
e17906510354dfdd4fd42c28753296b7c6a0dcaa
405 F20110330_AABGZW virgin_c_Page_095.txt
f3f221c0ad272a1864ebe694a08b1bf3
bbd53e2f2db9f259997ad3dcdae6485ee6b9e3c6
5912 F20110330_AABHFQ virgin_c_Page_075thm.jpg
b346cc6549996944f6712ae3d84c7373
6a13948324cb1eab37b04405bef20258bc7b2b68
1051978 F20110330_AABGZX virgin_c_Page_038.jp2
52329de86355f2ef7d4bed047d07e032
4fd23d8301928eadd2cf0ec90c704066a4eba5d2
98424 F20110330_AABHGF virgin_c_Page_033.jpg
efe160b0da5535833242aba1b90cccd8
16bfaffd5f7ba90f6b63630dd236b3bdd08ec0a9
1666 F20110330_AABHFR virgin_c_Page_049.txt
a5344961c1ebc4df805c4da70de92105
9678a787f825326b9e655c4caa89c2632080f267
1032739 F20110330_AABGZY virgin_c_Page_042.jp2
87bc8982037e399396f6f130c5b08bbe
812153c49a733966a05c6a22181e38c4981fe3d4
6339 F20110330_AABHGG virgin_c_Page_030thm.jpg
9d61b3b27e1693147b0b449abecb84b5
261e6dc0fd8e57cbe45e51ab59607de4a6af84b2
30914 F20110330_AABHFS virgin_c_Page_019.QC.jpg
9f72fb74f3c42d3399624ae4f1f42796
3649b90dffead0e03d06f43ecc1734dbdae0d62e
32983 F20110330_AABHGH virgin_c_Page_022.QC.jpg
bb94d0a3c062ae977e184c94906dad25
76c031f070f80f77245157a4f5a37cec44230342
19613 F20110330_AABHFT virgin_c_Page_078.QC.jpg
01484b84d0a7e5f7bc559e439ff120e1
d34b0de36e84f664ddefb454487973d8e4171187
53276 F20110330_AABGZZ virgin_c_Page_100.jp2
0908f1bf3008b9e54cba65a4fccecea4
d3fc3cee367fc89cfbb63489f1d0cbf45fcb51cf
654488 F20110330_AABHGI virgin_c_Page_025.jp2
8d805b3d21ab68aebb7298317be1e08d
44d613e13321022dbb7271525eaf330647d01f50
26202 F20110330_AABHFU virgin_c_Page_009.pro
1fdf81657fcd808320ed8a032b8e2309
bcbf6e38330864c41528bed847a2b3a66686dac4
F20110330_AABHGJ virgin_c_Page_016.jp2
8415ddce69b10b037982079085de311f
d6ace8fd6f9645ebac7280327607d614086e0d60
F20110330_AABHFV virgin_c_Page_084.tif
ba69c56e2795577c9c732659717ea46a
eef3676738ba845ce601849f61e8ac1f161f6759
41283 F20110330_AABHGK virgin_c_Page_030.pro
acae2f14f0cb4c089259d9fb270bc3c1
9548c40ce39bd4012564085274f581b5cbef21a5
33492 F20110330_AABHFW virgin_c_Page_047.QC.jpg
9e24f18a4e7562668ef7722ec75137b7
5f9c7ca28480c0f99ace9c1068a967d60bf07b04
1915 F20110330_AABHHA virgin_c_Page_004.txt
cc5f9246920ede6abecd79e0813cc4ff
85c087c43c7f13e1766f8b2110c836811a38fbb6
1678 F20110330_AABHGL virgin_c_Page_064.txt
5c31e499914d156ea35a42f2c485741d
595fe3e9400e76ab81c2427e25564914c945a8a1
1587 F20110330_AABHFX virgin_c_Page_063.txt
648ca513c78b7cbb2676e1512e5a10b4
2f0512ce74c745d7473c2f68f0557d7a89024269
29307 F20110330_AABHHB virgin_c_Page_048.pro
3e90e19e557be59adfe00f4b1c914f4d
56e611937f82a9f101c1fff0daddceee19688472
606188 F20110330_AABHGM virgin_c_Page_063.jp2
5e0f0d569c2e5ac16930b4a3b95d8fd9
55cdfa357a7e398eb9b6a6eb9bdaa24e73150dcf
F20110330_AABHFY virgin_c_Page_033.jp2
e367ee75d48b19401eebf56e3f050f72
77464f5f066923db9be9e3868e28aaf2847ae52d
30682 F20110330_AABHHC virgin_c_Page_012.jp2
88f5831a2fad4efa82536f2f209eaa9f
56e33058511e993a314c3726dbd4bec920bf6f80
480886 F20110330_AABHGN virgin_c_Page_091.jp2
44c7583e1990309033e586e735b39986
4de97da35ec681ce8fecc123ffd74651513ec626
4763 F20110330_AABHFZ virgin_c_Page_099thm.jpg
a04a15a8cb59581a5c9114c8fb22cd04
a14dc86f4c4bd91f7a975e01c5954513edc89af2
27533 F20110330_AABHHD virgin_c_Page_062.pro
44d95633d4c9d498c0f8441448324d6d
49d3802f7f9bfa9aa783724145ebca3eaec38d91
7515 F20110330_AABHGO virgin_c_Page_097thm.jpg
f208ae797312fb122b8a4304e7be9e5a
e4fbd3115bcec434a42173add68b0e44b5e2b3b1
1051981 F20110330_AABHHE virgin_c_Page_022.jp2
9c79c712d0cf800cc539881cff970923
558194c6371bfee569e8d99721d8eb60b9e81884
28228 F20110330_AABHGP virgin_c_Page_048.QC.jpg
eeb5d9a284f019cdbd33ee5bd4a97872
7880735b1da44c416501fd518fb99c92013ba817
F20110330_AABHHF virgin_c_Page_078.tif
ca52954a93cd33372bf5f0654efa19ee
b240a689f4b91b986f36940f37fce57b6f85c979
1985 F20110330_AABHGQ virgin_c_Page_001thm.jpg
43212a22b6ceee08a32babb6f1d84966
3fd69d3a0522948ae6589daee8207f7781ea85a4
6446 F20110330_AABHGR virgin_c_Page_052thm.jpg
201d918b681fef04337b192a105dc7e9
e30bd7d728e8d700d01a78481c2be570ff8cd6eb
109985 F20110330_AABHHG virgin_c_Page_084.jp2
83cc8f57871dec710c7e1de8664a911f
8d75afe70f3c97915fa87c48c195c825d0485d53
21332 F20110330_AABHGS virgin_c_Page_072.pro
ce1411a4355fa9d48a97d1dece01aa3b
e1daf336dd5e86b221f85a35584c8b31a0b9b74e
877954 F20110330_AABHHH virgin_c_Page_020.jp2
6ab988a32092f7727ad42d0fa6791e9c
ec09f0b8f2e4a327b93f7d2a4439e3ad0a959496
35533 F20110330_AABHGT virgin_c_Page_098.QC.jpg
0c986c0a3a8ccc3994b62a5a1494a1f7
2775195af8a0d569bd4b338a767cb5a05f606ac9
33938 F20110330_AABHHI virgin_c_Page_005.pro
d9899c51af07833f901a3f0ac76b6dfb
d382f3a4a7b8b91da7d7ee12ea90dc0a3090afb9
20883 F20110330_AABHGU virgin_c_Page_064.QC.jpg
9bbfacac9dfe749b53ba429b18835d1b
4f4fc2f3c4348457f5f03dde0d25ae948092fc09
1866 F20110330_AABHHJ virgin_c_Page_032.txt
0979cdc0cb3f755ad8a8557cccaaebce
7bf45bb3bb37d20fc372c5e55a74c73a2e1613f1
F20110330_AABHGV virgin_c_Page_066.tif
8c4d69905c79a22936efebc5a703b2f4
065e99f0c70b67b5a5e872c4a76e9ea38a03dcd3
833793 F20110330_AABHHK virgin_c_Page_035.jp2
6d0d882c52bfd48dd9131d85829865f9
468d12744af6ee3335143fd6f04a60e8b04af05c
3713 F20110330_AABHGW virgin_c_Page_014thm.jpg
e1d86a820bbaa3db8ba3e1a24eb51aa3
23f3f63d5502e8d45744db98d7aba185111cb9e9
53176 F20110330_AABHHL virgin_c_Page_047.pro
128cc1e5d12bbfcabd23c15d79f52ce9
70a585a6c22f23606a54f029db429a2a43a47af6
17052 F20110330_AABHGX virgin_c_Page_058.QC.jpg
536f688ba0a7a130ad95da1d8bdd8e19
e3d93cc145872b464b01da2c97668080ed9bae37
84582 F20110330_AABHIA virgin_c_Page_074.jpg
58a2c1f3d9cb2444443e9ac6ce4ea4b6
003c0006bf1251e741682aef92a6b2a9bcac9994
975557 F20110330_AABHHM virgin_c_Page_034.jp2
253b5e9df6ebadfd16d83cd21c329341
da312b4ac4fc4f9573e461b85a25c0f12dd0ea7c
12398 F20110330_AABHGY virgin_c_Page_079.QC.jpg
7df9272a822b1a3041b78da37ff41985
6d1f1e7e86c7392130a2e4e4ee72616efda271eb
2103 F20110330_AABHIB virgin_c_Page_026.txt
3f7c787b91b07389cf0d886f838730bd
14e27ab8880cdf12a62db324447212fa8bd0f7cc
2109 F20110330_AABHHN virgin_c_Page_097.txt
f01b771a976e9edbd17781de819474e2
d38641e5c9bb4f2c972a7c111d74dc0bfb1c49f5
37954 F20110330_AABHGZ virgin_c_Page_060.jpg
9efde5d9f6910449a85f6a78711021c3
4d6e27c4f8b9dac84ac9edfa6eca0143e7ebf07a
21349 F20110330_AABHIC virgin_c_Page_025.pro
c055e9943bd7c60bd03fc7032085bd76
d5872881c993eb60c506714a3c678e3edbd6f336



PAGE 1

ACOUSTIC APPLICATION OF PRESSURE-SENSITIVE PAINT By CHRISTOPHER ALLEN VIRGIN A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLOR IDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2005

PAGE 3

Theauthorwouldliketothankthesupervisorycommitteechairman,Dr.BruceF.Carroll,forhiscontinuedguidance,support,andencouragement.GratitudeisalsoaddressedtoDr.LouisCattafestaforhisadviceandguidance.Theauthorwouldliketothanktheothersupervisorycommitteemembers,Dr.MarkSheplak,Dr.KirkSchanze,andDr.MartinMorris,fortheirsupport.Theauthorwouldalsoliketoacknowledgeallfamilyandfriendswhohavehelpedmakethispossible. iii

PAGE 4

page ACKNOWLEDGMENTS ............................. iii LISTOFTABLES ................................. vi LISTOFFIGURES ................................ viii LISTOFSYMBOLSANDABBREVIATIONS ................. x ABSTRACT .................................... xiii CHAPTER 1INTRODUCTION .............................. 1 PSPPhysics .................................. 1 PreviousWork ................................ 4 Motivation ................................... 9 2EXPERIMENTALAPPARATUS ...................... 10 PlaneWaveTube ............................... 10 TemperatureEectsofAcousticWaves ................... 12 PhotodetectorDescription .......................... 12 PSPAppliedtoDetector ........................... 14 3EXPERIMENTALSETUPANDPROCEDURE ............. 24 StandingWaveRatioTest .......................... 24 PSPStaticCalibration ............................ 26 PhotomultiplierFrequencyResponse .................... 27 AcousticTesting ............................... 27 4EXPERIMENTALRESULTS ........................ 29 StandingWaveRatioResults ........................ 29 PSPCalibration ............................... 29 PhotodetectorFrequencyResponse ..................... 30 NoiseinExperimentalSetup ......................... 33 PSPBehavior ................................. 34 PSPLinearity ................................. 36 ThermalResponse .............................. 38 TimeResolutionofOpticalSignal ...................... 39 iv

PAGE 5

............................. 41 PSPStaticCalibrationUncertainty .................. 41 FrequencyResponseErrors ....................... 42 5CONCLUSIONS ............................... 45 APPENDIX ADERIVATIONSOFACOUSTICRELATIONS .............. 47 TemperatureChangeofaSmallIsentropicCompression .......... 47 DerivationoftheOne-DimensionalWaveEquation ............ 48 DerivationoftheCutoFrequency ..................... 50 DerivationoftheWaveguideEquations ................... 52 DerivationoftheRectangularWaveguideEquation ......... 52 DerivationoftheCylindricalWaveguideEquation .......... 55 NormalIncidenceSoundReectionandTransmission ........... 57 BSTANDINGWAVERATIOMETHOD ................... 60 StandingWaveRatioCalculations ..................... 60 StandingWaveRatioFigures ........................ 63 CTABULATEDEXPERIMENTALRESULTS ................ 66 DEXPERIMENTALRESULTSFIGURES .................. 75 LISTOFREFERENCES ............................. 83 BIOGRAPHICALSKETCH ............................ 86 v

PAGE 6

Table page 3{1SWRDataCollectionSettings ...................... 25 4{1SWRResults ................................ 29 4{2PSPStaticCalibrationSettings ..................... 30 4{3PMTFRFAcquisitionSettings ...................... 31 4{4PMTFRFAcquisitionSettings ...................... 37 4{5LinearityDataAcquisitionSettings ................... 38 4{6SingleTimeSeriesDataAcquisitionSettings .............. 41 C{1PSPStaticCalibrationResults ...................... 66 C{2PMTFrequencyResponseResults .................... 67 C{3PSPLinearityResults ........................... 67 C{4115dBSPLFrequencyResponseData .................. 68 C{5115dBSPLFrequencyResponseNormalizedErrorEstimates ..... 68 C{6119dBSPLFrequencyResponseData .................. 69 C{7119dBSPLFrequencyResponseNormalizedErrorEstimates ..... 69 C{8122dBSPLFrequencyResponseData .................. 70 C{9122dBSPLFrequencyResponseNormalizedErrorEstimates ..... 70 C{10128dBSPLFrequencyResponseData .................. 71 C{11128dBSPLFrequencyResponseNormalizedErrorEstimates ..... 71 C{12134dBSPLFrequencyResponseData .................. 72 C{13134dBSPLFrequencyResponseNormalizedErrorEstimates ..... 72 C{14140dBSPLFrequencyResponseData .................. 73 C{15140dBSPLFrequencyResponseNormalizedErrorEstimates ..... 73 C{16140dBSPLFrequencyResponseinN2Data .............. 74 vi

PAGE 7

. 74 vii

PAGE 8

Figure page 1{1SchematicofaTypicalPSPLayer .................... 2 1{2ComparisonoftheAmplitudeResponseofWinslow'sModeland1/2,1st,and2ndOrderSystems ....................... 6 1{3ComparisonofthePhaseResponseofWinslow'sModeland1/2,1st,and2ndOrderSystems ......................... 7 2{1SchematicofaCylindricalWaveguideModes .............. 11 2{2SchematicofaSide-OnPMT ...................... 13 2{3EquivalentCircuitRepresentationofaPhotodetector ......... 15 2{4DesirableChemicalPropertiesofaPSPCoating ............ 20 2{5MinimumDetectableRadiantFluxofDetectors ............ 21 2{6MinimumDetectableSPLofDetectors ................. 22 3{1SchematicofExperimentalSetupforStandingWaveRatioTesting .. 25 3{2SchematicofExperimentalSetupforAcousticTesting ......... 28 4{1PSPStaticCalibrationResults ...................... 31 4{2PMTFrequencyResponse ........................ 32 4{3ExperimentalNoiseComparison ..................... 34 4{4PSPCoatingRelativeFrequencyResponse ............... 35 4{5PSPCoatingPhaseResponse ...................... 36 4{6LinearityofOpticalSystem ....................... 37 4{7CoatingResponseinAirandNitrogen ................. 39 4{8ComparisonofUnlteredPMTOutput,FilteredPMTOutput,andMicrophoneOutput .......................... 40 A{1SchematicofaSquareDuct ....................... 52 A{2SchematicofaCylindricalDuct ..................... 55 viii

PAGE 9

.. 58 B{1MicrophoneVoltagevs.xcorfor600HzExcitation ........... 63 B{2MicrophoneVoltagevs.xcorfor1000HzExcitation .......... 64 B{3MicrophoneVoltagevs.xcorfor1400HzExcitation .......... 64 B{4MicrophoneVoltagevs.xcorfor1800HzExcitation .......... 65 D{1PMTPowerasaFunctionofSPL .................... 75 D{2Mic-PMTCoherenceasaFunctionofSPL ............... 76 D{3Response,RelativeResponse,andPhaseResponseofOpticalSystemat115dBSPL ............................. 77 D{4Response,RelativeResponse,andPhaseResponseofOpticalSystemat119dBSPL ............................. 78 D{5Response,RelativeResponse,andPhaseResponseofOpticalSystemat122dBSPL ............................. 79 D{6Response,RelativeResponse,andPhaseResponseofOpticalSystemat128dBSPL ............................. 80 D{7Response,RelativeResponse,andPhaseResponseofOpticalSystemat134dBSPL ............................. 81 D{8Response,RelativeResponse,andPhaseResponseofOpticalSystemat140dBSPL ............................. 82 ix

PAGE 10

a Width/DiameterofWaveguide[m] e Chargeofanelectron[1:60E19C] (ispl)min k Boltzmann'sConstant[1:38E23J=K] t Time[sec] x Distance[m] A AreaofPSPCoating[m2] B SystemBandwidth[Hz] C Capacitance[Farad] F DeviceNoiseFigure[] x

PAGE 11

Gain I PhotodetectorCurrent[A] L RadiantFluxofDye[W] L N TotalNoisePresentatAnode[A] P Pressure[Pa] R Resistance[Ohms] S Henry'sLawSorptionCoecient T Temperature[K] PressureReectionCoecientMagnitude xi

PAGE 12

n() CathodeQuantumEciency APD AvalanchePhotodiode CE AnodeCollectionEciency NEP NoiseEquivalentPower PMT PhotomultiplierTube SPL SoundPressureLevel[dB] SWR StandingWaveRatio PSP Pressure-SensitivePaint xii

PAGE 13

xiii Abstract of Thesis Presen ted to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Master of Science ACOUSTIC APPLICATION OF PRESSURE-SENSITIVE PAINT By Christopher Allen Virgin December 2005 Chair: Bruce F. Carroll Major Department: Mechanic al and Aerospace Engineering This thesis describes the effort to experiment ally verify the response of "traditional" Pressure-Sensitive Paint (PSP) to low amplitude pressure fluctuations such as those common in acoustic measurements. Pressure-sensitive pain t utilizes molecular quenching of fluorescent compounds in the presence of oxygen to discern the pressure field at a given point on a surface. A 0.1 meter diameter by 1.0 meter long plane wave tube is utilized to create a planar acoustic field at the surface of a PSP sample. The response of the paint is measured using a Photomultiplier Tube (PMT). The plane wave tube is driven through a function generator and an audio amplifier. Frequency response, linearity, and temperatur e effects of the coating are evaluated. Frequency response measurements show the paint to behave similar to a "1/2"-order system, i.e., a -45 phase and -10 dB/decade attenuation. This is in agreement with previous research conducted at the University of Florida. Using a numerical model, the optical system (coating and detector) is estimated to have a noise floor of 115 dB SPL. This is quite high for an acoustic detection scheme and is the result of the PSP and PMT fundamental characte ristics. Experimental results show the noise floor to be in the region of 119 to 115 dB SPL. The optical system

PAGE 14

Theinterestsofthisresearchlieinapplyingunsteadypressuremeasurementtoolstohigh-speedhydrodynamicpressureuctuationssuchasthoseseenintur-bulentboundarylayers.PSPiscurrentlybeingevaluatedinseveralformsinhopesofattainingsucientsensitivitytobeapplicableinthisregime.Theabilityofob-tainingreal-timemeasurementsofcomparativelysmallpressureuctuationsalsohaspotentialimpactinmedicalandenvironmentalelds. xiv

PAGE 15

Thischapterpresentssomebackgroundinformationonpressure-sensitivepaint,commonlyreferredtoasPSP.ReviewsofrecentstudiesinthedynamicresponseofPSParealsopresented.ItisshownthatthedynamicresponseofseveraldierenttypesofPSParecurrentlybeinginvestigated.RecentstudiesfocusonthedynamicresponseofnewertypesofPSPduetotheirfasterresponsetimes.Thisstudyin-vestigatesthedynamicbehaviorofaPSPandprimerlayerapplieddirectlytoanaluminumsubstrate.PSPPhysics 1{1 .ShownisaPSPlayerapplieddirectlytoasubstrate.TheprocessbeginswithExcitationoftheluminophoremolecules.ThisisaccomplishedwithalightsourcehavingstrongintensityinthebluetoUVportionofthespectrum(=300-500nm).Lasers,halogenlamps,LED'sandstrobelightsareoftenemployedinthistask.Luminophoremoleculesabsorbenergyfromthesourceandtransitiontoahighervibrationalenergylevel[ Kose 2005 ].Onceatitshigherenergylevel,theluminophorehasthreeroutestothegroundstate.Onepossiblemodeofdecayisfortheluminophoretoreleaseitsenergytothesurroundingpolymermatrixintheformofthermalenergy[ Schanzeetal. 1997 Winslow 2001 ].ThisprocessisnotfavoredinmostPSPformulations.Thesecondrouteofdecayisknownas\radiative"decayorluminescence.Thisrouteencompassesbothuorescenceandphosphorescence.Fluo-rescenceistheprocessofabsorbingaphotonandemittingaphotonoflowerenergy.Phosphorescenceisaquantumprocessinvolvingthechangeinthespinmultiplicity 1

PAGE 16

Figure1{1: SchematicofaTypicalPSPLayer ofamolecule.Ruthenium-basedPSP'sexhibituorescence,whileplatinum-basedpaintsdisplayphosphorescence[ Winslow 2001 ].Bothprocessesresultintheemis-sionofaphotonoflowerenergy(i.e.,longerwavelength)thantheabsorbedphoton.Theemittedphotonisintheredtoorangecolorofthespectrum(=550-650nm). ThethirdanddistinctivefeatureofPSPisthataluminophoremayreleaseitsenergytoanoxygenmoleculethathaspermeatedthepolymerbinder.Thisprocessisknownas\oxygenquenching"[ Schanzeetal. 1997 Winslowetal. 2001 ].LuminescenceandoxygenquenchingaretheprimaryroutesofdecayforaPSP.Thepartialpressureofoxygeninthebinderlayerisdirectlydependantonthepartialpressureofoxygendirectlyabovethelayerandthemassdiusivityofthepolymer(s)usedinthebinder.Theluminophoresinthebinderexhibitthebehaviorofeitheremittingared-shiftedphotonorinteractingwithoxygen.Inthismanner,itcanbeshownthattheobservedintensityoftheemissionofthePSPisinverselyproportionaltotheoxygenconcentrationsurroundingtheluminophores.Thisbehaviorisgoverned

PAGE 17

bytheStern-Volmerrelation[ Winslowetal. 2001 ] Vac TheStern-VolmerEquationrelatestheemissionintensity(radiantux)ofthePSPintheabsenceofoxygen,Lvac,totheemission,L,atanabsolutepressure,P.Inaero-dynamicapplications,itisoftennotfeasibletomeasuretheintensityintheabsenceofoxygen,soEqn( 1.1 )isoftenrelatedtotheintensityatsomereferencepressure(typicallyPatm)[ Virginetal. 2005 ].Thisyieldsthemorefamiliar\aerodynamictesting"formoftheStern-Volmerrelation[ Liuetal. 1997 ] p0=C0(T)+C1(T)L0 ThisformiscommonlyusedinapplicationsofPSPasitallowsonetouseanyreferenceconditiontoinferthepressureatsomeotherconditionofinterest.Asindicated,theconstantsC0andC1varywithtemperature.MoreexactdescriptionsofPSPbehaviorareprovidedby Winslow [ 2001 ]and Kose [ 2005 ]. ManyvariablesinuencethespecicbehaviorofaPSPlayer.Theprocedureofapplicationinuencestheuniformityoftheluminescenceofthelayer.Onemayincreasetheobservedluminescenceofalayerbyrstapplyingawhiteprimerlayertothesubstrate,howeverthismayadverselyimpacttheresponsetimeofthelayerduetooxygendegassingbetweenthepaintandprimer[ Liuetal. 1997 ].Thickerpaintlayersresultinincreasedluminescenceduetoalargerpopulationofluminophores.However,thickerlayersalsoresultinslowerresponsetimeduetotheincreasedlengthwhichoxygenmustdiuseintothebinder.Therealsoexistsalimit,abovewhichtheluminophoreswillbeginto\self-quench"[ Chanetal. 1999 ],whichgreatlydegradesthemeasurableresponse.

PAGE 18

Belletal. ( 2001 ), Liuetal. ( 1997 ),and Luetal. ( 2000 )provideadequatereviewsoftheliterature.Thevariousoweldswhichhavebeeninvestigatedincludebothsubsonicandsupersonicloadsonaircraftmodels,turbomachinerysuchasfansandcompressorsandautomobilewindtunneltesting. CoxandDunn [ 1986 ]werethersttoapplyPSPtoanunsteadyoweld.Theyinvestigatedoxygentransportwithinapoly(dimethylsiloxane)(PDMS)layerdopedwith9,10-diphenylanthracene(9,10-D)asaFunctionoftimeusingastaticcalibration.Theydevelopedananalyticalmodelforoxygenconcentrationwithinthelayerderivedfromthe1-Ddiusionequation.However,thelayerwasviewedfromthesideinthisapplicationsotheintensitywastheintegratedintensityoftheentirelayer. MillsandChang [ 1992 ]werethersttolookatthedynamicresponseofopticallmsensors,nowknownasPSP.TheinverseofthePSPemissionintensitywascom-paredtothepressureasitwasquicklychangedfromanearvacuumtoatmosphericpressure.Amodelwasdevelopedwhichtreatedthepaintasarst-orderdynamicsystem.Thetimeconstantsandtermweightsweredeterminedusingnonlinearleastsquarescurvets.Themodeldevelopedbythismethodwasfoundtostronglyagreewithexperimentalresults. Both Engler [ 1995 ]and Carrolletal. [ 1995 ]introducedconcurrentstudiesontheresponseofPSPtoperiodicpressureelds. Engler subjectedthePSPtofrequenciesovertherangeof0.1to50Hz.Themaingoalwastocharacterizethepressurereso-lutionanddynamicrangeofthecoating.Nodynamiccompensationorexplorationofthedynamicsofthesystemwereattempted. Carrolletal. presentedexperimentsofsimilarcharacter.Muchoftheanalysiswasperformedinthefrequencydomain.

PAGE 19

ItwasshownthatthePSPdisplayedanamplituderesponseofarst-orderdynamicsystemalthoughthephaseresponsedidnotagreewithexpectedresults. Winslowetal. [ 1996 ]developedalinearizeddynamicmodelforPSPgiveninEqn.( 1.3 ).Thismodelhasfrequencyresponsecharacteristicsofa\1=2-order"system:anamplituderesponseof10dB/decadebeyondthecutofrequency,andaphaseshiftof45. Winslowetal. thendevelopedadynamiccompensatorbyperforminganinverseFouriertransformontheinverseofthefrequencydomainresponse.ThecompensatorwasofthesameformasasixtermFIRlter.ApplyingthiscompensatortothePSPresponsefora1HzsawtoothwaveyieldedacorrectedsignalconsiderablymoreaccuratethanthePSPmeasurementalone.ThiswastherstapplicationofadynamiccompensatortoPSPdata. 1+0:8115e0:0943(1.3) where Thismodeldemonstratedbehaviorsimilartothatofa\1/2"ordersystemasshowninFigure 1{2 andFigure 1{3 Winslowetal. alsoshowedthatthefrequencyresponseofthepaintwasinvarianttothepressureeld.Itwasshownthatcoatingthicknesseectsthefrequencyresponse.Thisisduetothenecessarymassdiusionthroughthepolymerbinder.ItwasconcludedthatthedevelopedmodeldidnotfullyexplainthePSPbehaviorduetointeractionswiththeprimerlayer.However,thebreakpointsandvaluesofmassdiusivityagreewithresultsofastudyconductedby Carrolletal. concerningtheresponseofPSPtoasteppressurechange. Winslowetal. [ 2001 ]developedthreedynamicmodelsforPSP.Therstmodel,anempiricalmodelintheformofatransferFunctionwasappliedtothesignalfromahigh-frequencypressure

PAGE 20

Figure1{2: ComparisonoftheAmplitudeResponseofWinslow'sModeland1/2,1st,and2ndOrderSystems transducertomodeltheoutputpressure.Thismodelshowedreasonableagreementwithdata,butthecoecientsdevelopedweredependantonthethicknessofthePSPlayerandthusthemodelwasonlywellsuitedtosinglesampleusage.Diusion-basedmodelswithalinearandastern-volmercalibrationwerebothproposedandshowntoconformquitewelltoexperimentalobservations. Schairer [ 2002 ]Performedanumericalstudyontheinuenceofcoatingthick-nessonthefrequencyresponseofaPSPlayer.Usingtheone-dimensionaldiusionequationandasmallsinusoidallyvaryingpressuresignal,itwasshownthattheop-timumcoatingthicknessforunsteadymeasurementsisthatwhichresultsina-1.25dBattenuationoftheunsteadypressuresignali.e.Pspl=Ppsp=0:866.Thiscoat-ingthicknesscorrespondstoamaximuminthesignal-to-noiseratio.Theoptimum

PAGE 21

Figure1{3: ComparisonofthePhaseResponseofWinslow'sModeland1/2,1st,and2ndOrderSystems thicknesswasshowntodecreasewithincreasingfrequency.Abovefrequenciesof10Hz,thegreatestfactorindeterminingtheoptimumthicknessisthemassdiusivity. Inrecentyears,severalnewtypesofPSPhavebeendevelopedforbetterdynamicresponse.PSPhasbeenappliedtoanodizedaluminum,TLC(thin-layerchromatog-raphy)platesandhardceramicparticleshavebeenaddedtothepolymerbinder( Gregoryetal. ( 2002 ); Gregory ( 2004 )).Theporoussurfacesservetoincreasethedynamicresponsetimebyenablingfasteroxygendiusionintothepolymerbinder. Baronetal. [ 1993 ]rstdemonstratedthatsubmillisecondresponsetimesmaybeachievedusingcommercialTLCplates. Sakamuraetal. [ 2005 ]showedthattime-resolvedmeasurementsofapressuredistributionarepossibleusingPSPonaTLC

PAGE 22

substrateinatwo-dimensionalLavalnozzle.TLCplatesareeasytoprepareandpro-ducebrightemission,howevertheyarelimitedtouseonatplatesandarerelativelyfragile. SeveralstudieshavebeenperformedonanodizedaluminumPSP[ SakaueandSullivan 2000 2001 Kamedaetal. 2004 ].Thisismadebyanodizingthesurfaceofanaluminumbodyanddippingthisbodyinaluminophoresolution.TheanodizedsurfaceisveryporousandservestogreatlyenhancetheoxygendiusionandthusthedynamicresponseofthePSP.TheexactbehaviorofthistypeofPSPisstillasubjectofinvestigation. ThesuitabilityofPSPfordetectinglargepressureuctuationshasbeendemon-strated.Currently,thereisaninterestinthesmallestdynamicpressurewhichmaybedetectedusingPSP.Thisisfacilitatedbyaninterestinhydrodynamicturbulentpressureuctuationsofairbornebodies.Demonstrationofnon-invasive,directde-tectionofturbulentnoiseonbodieswouldgreatlydecreasedesigncycletimeofnewairframes. McGrawetal. [ 2003 ]presentedaproofofconceptexperimentforacousticPSPmeasurements.AsinglepointmeasurementinaplanewavetubewasperformedusingaPMTandatraditionalPSPformulationonaTLCsubstrate. McGrawetal. reportedtheabilitytocollectvalidsignalsforsoundpressurelevels(SPL)from110(4P=6Pa)to137dB(re20Pa)atameanpressureof101.5kPaandfrequenciesupto3500Hz.Signicantdampingofthesignalwaspresentatfrequenciesabove1000Hz.Intheirwork,signalaveragingoftheperiodicsinusoidaloutputwasusedtoimprovesignal-to-noiseratio.Timeaccuratedirectdetectionwasnotdemonstratedinthisworkandfulleldmeasurementswerenotattempted.OptimizationofthePSPformulationfortheacousticcasewasnotattempted.Animportantresultofthisworkwasthedeterminationthattemperatureuctuationsduetotheacoustic

PAGE 23

pressurevariationsdidnotadverselyimpacttheaccuracyofthemeasurementduetothelargethermalmassofthesubstrate.Motivation Carrolletal. 1995 1996 Winslowetal. 1996 2001 ].ThisstudyinvestigatesthesuitabilityoftraditionalPSPtodetectingpressureuctuationsontheorderoftypicalacousticsignals.DiusionlimitingfactorsarereducedbyrestrictingthePSPtoathincoating.TraditionalPSPpossesstheadvantagesoflesscost,durability,andwellstudiedbehaviorascomparedtothenewvariantsnowunderscrutiny.

PAGE 24

Thischapterintroducestheequipmentusedinthisstudy.Thebehaviorandlimitationsoftheplanewavetubeusedinthisstudyareexplored.Theperformanceofthetubedriverislimitedbythecutofrequencyofthetubetoretainaplanarsoundeld.Thephotodetector,aHamamatsuH9306-02PMTmodule,isalsointroducedanddiscussed.TheperformanceofthedetectorandPSPweremodelledinordertopredictaminimumpressuredetectionooroftheopticalsystem,i.e.,consideringthePSPandphotodetectorsetupasacompletesystem.Theexperimentalsetupanddatacollectionsystemsareexplained.PlaneWaveTube A.53 )).(SeeAppendix A ) Thecutofrequencyisthelowerlimitatwhichhigher-ordermodesmaypropagatedownthewaveguide.Therstmodestopropagatearethe(1,0)and(2,0)modes,followedbythe(0,1)mode[ MorseandIngard 1987 ].Themodenotationis(r,),wherethenumberindicatesthenumberof1=2wavelengthspresentineachdirection.Thebehavioroftherst2modesineachdirectionisillustratedinFigure 2{1 .Belowtheirrespectivecutofrequencieseachhigher-ordermodeisevanescent,whichmeans 10

PAGE 25

Figure2{1: SchematicofaCylindricalWaveguideModes itdecaysexponentiallywithdistancefromthesource.Ifthewaveguideisoperatedbelowtherstcutofrequency,whichiscalculatedas2016Hz,thentheacousticeldwillbecompletelyplanar,i.e.,thepressureatanystationofthewaveguideisonlyaFunctionoftime. Byoperatingthewaveguidebelowthecutofrequency,thePSPsampleisen-suredtoreceiveauniformpressuresignaloveritsentiresurface.Abovethecuto,thepressurewouldvarywithrandoverthesurfaceofthesample.Sincethepho-todetectorusedhasnoinnatespatialresolution,thiswoulddegradethedetectableopticalsignal.

PAGE 26

Swift [ 1988 ]andisderivedinAppendix A tobe P0(2.2) whereTrefistheambienttemperature(298K),=1:4andP0istheambientpressure(101kPa). Fora140dBacousticwave,Eqn.( 2.2 )predictsacorrespondingtemperaturechangeof0.1669K.ThePSPformulationusedinthisexperimenthasafractionalchangeinintensityof0:53%=K.[ Kose 2005 ]IfthetemperaturechangepermeatesthePSPlayer,thiswouldinducea0:088%changeinthePSPemission.Thus,thetemperatureeectsoftheacousticwavesseemtobenegligible.Thisresultwasalsoconrmedexperimentallyby McGrawetal. [ 2003 ].PhotodetectorDescription

PAGE 27

Thephotoelectronsaresteeredtotherstdynodestagewheretheycausemorephotoelectronstobecreatedbymeansofsecondaryelectronemission.Thisprocesscontinuesalongsuccessivedynodestages(PMTscanhave10ormoredynodestages).Ateachsuccessivedynode,theincomingphotoelectronsaremultipliedagainandsenttowardsthenextdynode.Attheendofthetube,theanodecollectsallofthephotoelectrons[ Corp. September,2005 ].Thisprocessisshownintheschematicofaside-onPMTbelowinFigure 2{2 .PMTsareabletoobtainsuchlargeinternalgain Figure2{2: SchematicofaSide-OnPMT throughtheuseofalargeinputvoltage,typicallyontheorderof1000Voltsorlarger.Thisvoltageissuccessivelysteppedupfromperhaps1Voltattherstdynode,to1000Voltsormoreatthenaldynode,resultinginmoresecondaryphotoelectronemissionateachsucceedingdynode.DuetothelargeinputvoltagerequiredbyPMTsithasbecomecommonpracticeforPMTstobeoeredascompletePMTmodules,inwhichamorereasonableinputvoltage,suchas10Volts,issteppedupbyinternal

PAGE 28

circuitrywithinthemoduleandthensuppliedtothePMtubetominimizethehazardstopeopleandequipment,andtoeliminatetheneedforhighvoltageexternalpowersupplies.Theanodecurrentisconvertedtoavoltagebyaconversionfactor(typicallyofthesameorderasthePMTgain)andthissignal,plusnoise,istheoutputofthePMT. OnedrawbackofphotomultipliertubesistheirrelativelylowQuantumEciency(QE).TheQEisthelikelihoodthatanincomingphotonwillbeconvertedtoaphotoelectronandbedetectedbythedevice.TherearetypicallytwopropertiesthatdeterminetheoverallQEofaPMT.ThecathodeQE,oftennotedasn(),whereisthewavelengthoftheincidentlight,isthelikelihoodthatanincomingphotonwillgenerateaphotoelectronatthecathode.TheanodeCollectionEciency(CE)isthepercentageofphotoelectronsthatarecollectedbytheanode.TheproductofthesestwotermsgivestheoverallQEofaPMT.Thevalueofn()canrangefrom0:0140%,whiletheCEcanbeashighas8090%.However,theoverallQEofaPMTistypically30%orless[ Corp. September,2005 ].ThislowQEresultsindecreasedsensitivityofthePMTandmorenoiseresultingfromtheundetectedphotons.PSPAppliedtoDetector

PAGE 29

Figure2{3: EquivalentCircuitRepresentationofaPhotodetector ofthedetectoristhenevaluatedas 2RC(2.3) Ingeneralthebandwidthofthedetectormaybereducedbytheadditionofalowpass(orbandpass)ltertotheoutputofthedetector.Aswewillnd,reducingthebandwidthhasapositiveimpactonthesystemnoise. Thegainofthephotodetectorisdenedastheratioofthecurrentpresentafteramplicationtothatpriortoamplication.ForaPMTthisistheanodecurrentdividedbythephotocathodecurrent. WewillnowaddresstheseveralsourcesofnoisepresentinaPMT.OneofthemorepredictablenoisesourcesofaPMTisthermalorJohnsonnoise.InordertomaintainthehighsensitivityofPMTs,thematerialsusedinthephotocathodesanddynodeshavehighworkFunctions,whichmeansittakesverylittleenergytoforthemtoreleaseanelectronintoavacuum.Thisresultsinthematerialsemittingthermalelectronsduetobeingatroomtemperature.[ Corp. September,2005 ]

PAGE 30

TheJohnsonnoiseappearsasanACcurrentattheanode. R(2.5) TheJohnsonnoisedependsonlyonthetemperatureandinternalfeaturesofthePMT,soitisnotdirectlysubjecttothegain. TheothermajorsourceofnoiseinthePMToutputisshotnoise.Shotnoisearisesfromthestatisticaluctuationsoftheinteractionsbetweenphotonsandpho-toelectronsinsidethePMT.Othersourcesofnoiseincludecurrentleakageofthecircuitry,noisecausedbytheelectriceldsofthedynodeswhenthePMTisoper-atedathighgain,externalnoise,andimpedancemismatchesintheexperimentalwiring.Thesenoisesourceswillbeaccountedforbyspecifyingadarkcurrentforthedevice.ThedarkcurrentisthecurrentpresentattheanodewhenthePMTisinadarkenedenvironment,itthusimpliesanindependenceofthelightsignal.Thedarkcurrenthowever,issubjecttogainbecauseoftheactionofthedynodesandcathodeinitscreation.Thereisalsoanoisecontributionofthebackgroundlight,thiswillbeconsideredintheshotnoiseofthedevice. Thedarkcurrent,denotedasId,iscomposedoftwoseparatecurrents.

PAGE 31

Comparingtheacousticandatmosphericpressures,itisseenthattheacousticpres-sureisverysmallcomparedtoPatm.Foranacousticwaveof140dB,thepressurechangeis200Pa.Eventhisunusuallylargeacousticpressureisonly0:2%ofPatm,whichis101,000Pa.Thus,theuctuatingsignal,isplisasmallaccurrentsuper-imposedonameanbackgroundcurrent,Ibg.Thetotalshotnoiseofthedetectorisgivenby ThetotalnoisepresentattheanodeisthesumoftheJohnsonandshotnoises R(2.7) Thesignalofinterestistheanodeistheuctuatingsignalispl.Thissignalistheproductofthecathoderadiantsensitivityandtheincidentlightux.Mathematicallythisisstatedasispl=Sp(spl)AG.Thisenablesustostateafundamentalsignal-to-noiseratiointermsoftheanodecurrent N=ispl G2+4kTB RG2(2.8) TheminimumdetectablesignalistheconditionofS/N=1.Weshallstatethiscon-ditionas(ispl)min. (ispl)min=r G2+4kTB RG2(2.9) Oneshouldnotethat(ispl)min(Ibg+Idg)andthatispl=Sp(spl)AG.WemaysubstitutetheserelationsintoEq.( 2.9 )above.ThiswillyieldtheminimumdetectablelightuxfromthePSP.ThisistermedtheNoiseEquivalentPower,orNEP. R

PAGE 32

WearenowleftwiththeNEPintermsoftheirradiantuxofthePSPlayer.WeshallinvoketheStern-Volmerrelations(Eqns( 1.1 ),( 1.2 ))tocorrelatethephotodetectorandPSPbehaviors.TheStern-VolmerEquationisrestatedforconvenience. The\aerodynamictesting"formoftheStern-Volmerequation(Eqn.( 1.2 ))iscreatedbyapplyingEqn.( 2.11 )attwopressures,PandP0.Theratioofthesetwostatesyieldsthe\aerodynamictesting"formoftheequation. p0=C0(T)+C1(T)L0 where L=(Ibg+ispl)=Sp=Radiantintensityattheacousticpressurep WemaynowstateEqn.( 2.12 )intermsoftheacousticpressureandradiantuxofthePSP.DierentiatingEqn.( 2.12 )withrespecttoradiantux(L)andassumingthereferencestateP0isPatmgives (p)min dL=C1p0L01 ApplyingthisrelationtoEqn.( 2.10 )allowsustostatetheminimumdetectablepres-sure Ppmin=C1p0SpAG Ibgq R

PAGE 33

ForthecaseofinterestwherebackgroundlightnoisedominatesoverdarkcurrentandJohnsonnoise,Eqn.( 2.15 )reducesto pmin=C1p0 SpA(2.16) Onemaystatethisastheminimumdetectablesoundpressurelevel(SPL)as (SPL)min=20log10(p)min Thersttermontheright-handsideofEqn.( 2.16 ),C1p0=p 2.11 )appliedatareferencestate,P0,andtheexpressionforC1inEqn.( 2.13 )yields astheparameterthatmustbeminimizedinthePSPformulation.LoweringKSo2isdesirableintermsofminimizingthedetectablepressurelevel.ThisisduetothenatureofC1,theslopeofthelinearPSPcalibration,asdenedinEqn.( 2.13 ).AsKqSo2goestozero,thisforcesC1to1.C1p0=p 2{4 .AminimumofC1p0=p

PAGE 34

Figure2{4: DesirableChemicalPropertiesofaPSPCoating anS3884APDforcomparison.TheanalysiswasappliedassumingthatthePSPlu-minescentoutputwasatawavelengthmatchedtothepeaksensitivitywavelengthofeachphotodetector,450nmand800nmforthePMTandAPD,respectively.Arbi-traryradiantuxlevelsuptothepointofmaximumlightinputlevelwereconsidered,1:67E6wattsand6:0E6wattsforthePMTandAPD,respectively. Figure 2{5 showstheminimumdetectableradiantuxfora0.1mdiametersur-faceforthetwophotodetectors.ThecurvesforboththeAPDandPMThaveanoiseoorwherethethermalnoisedominates.ThePMThasaninherentlylowernoiseoormakingitbetterforverylowlightleveldetection.Aslightlevelsincrease,theshotnoisebecomesadominatenoisesourcewiththeshotnoiseincreasingaslightlevelsincrease.Atthehigherlightlevels,theAPDisseentohaveslightlybetterperformancethanthePMT,i.e.,itcandetectalowerlightlevelatgivenbackground

PAGE 35

illuminationlevel.TheminimumdetectableSPLisshowninFigure 2{6 .Thegoalis Figure2{5: MinimumDetectableRadiantFluxofDetectors tominimizetheminimumdetectableSPL.Weobservethatasbackgroundlightlevel(PSPbackgroundemission)increases,theminimumdetectablepressuredecreases.Soundpressurelevelsaslowas115dBarepossiblewiththePMTand106dBwiththeAPD.AsshowninEqn.( 2.16 ),fortwophotodetectorswithidenticalbandwidthandbackgroundilluminationlevels,theminimumdetectablepressureisproportionaltop 2.16 )isthatfortwophotodetectorswithequivalentF=Sp,oneshouldse-lectthedetectorwiththehighermaximumallowablelightinput.Alowergainmaybeusedtoavoidsaturatingthedevice.

PAGE 36

AsshowninFigure 2{5 andFigure 2{6 ,thePMTdisplayshighersensitivityatlowerlightlevelsduetothehighdevicegain.Thereexistsalimitnear109WattswheretheshotnoiseofthePMTbecomesalimitingfactor.Athigherlightlevels,theAPDisseentoperformbetterduetoitsgreaterquantumeciencyandhigherradiantsensitivity.APSPcoatingwithmaximumpressuresensitivity,C1,andmaximumtotalemission,L0shallproducealowerdetectableSPL.Ifpossible,itisalsodesirabletooperateatlowermeanpressure(P0)asthisincreasesthebackgroundemission,howeverthiswouldalsoeecttheSPLoftheincidentacousticwave.Althoughnotexplicitlyconsidered,acoatingwithhighdynamicresponseisalsodesired.There Figure2{6: MinimumDetectableSPLofDetectors areafewassumptionsinthisanalysisthatshouldbenoted.Thepresentednoisecharacteristicsofthephotodetectorassumethatthereisnonoisepresentinthedataacquisitionsystem.Also,thedetectorperformancehasbeenassumedatthepeak

PAGE 37

sensitivitywavelength(=420nm),whileinrealitymeasurementswillbeconductedat=650nm.Measurementsnotatthepeaksensitivitywavelengthsuerfrompronounceddegradationofthequantumeciency(QE)andtheradiantsensitivityofthedetector.[ Corp. August,2005 J ]ThereductionofbothSpandQEmayhavealargeeectontheactualminimumdetectablesignal.ThecathoderadiantsensitivityisgiveninthePMTdatasheet, Corp. [ August,2005 ],howeverthereisnoreadilyapparentdataonthebehavioroftheanoderadiantsensitivity,Sp,asaFunctionofincidentlightwavelength.Asaresult,Spisassumedtobewavelengthindependentwithrespecttowavelength,yieldingaminimumdetectablesignalof115dB. Finally,thedynamiccharacteristicsofthePSPhavebeenignored.TheresponseofthePSPsystemisinherentlylimitedbythediusionofoxygenwithinthePSPcoating.ReducingthecoatingthicknessorincreasingthemassdiusivityofthecoatingcanimprovethePSPfrequencyresponsebuttypicallywillsimultaneouslyreducethesignalradiantintensity.TheassumptionhasbeenmadeinthisanalysisthatsucientPSPilluminationlevelsandcoatingthicknessesarepresenttosupplytherequiredbackgroundilluminationlevels(Ibg=SpL0).IntermsofPSPchemistry,itwouldbedesirabletocustomizetheformulationtomatchthepeakluminescentwavelengthtothephotodetectorpeaksensitivitywavelength.ItmayalsobepossibletodesignPSPformulationswithincreasedsensitivity(dP=dP0)nearatmosphericpressurelevels.ThismayresultinreducedbackgroundemissionP0andincreasedsignalemissionL.

PAGE 38

Thischapterexplainstheexperimentalsetupsandproceduresusedindatacol-lection.Thesamegeneralsetupisusedforallexperimentshoweveraprobeconnectedtoamicrophonemustbeinstalledintheplanewavetubeforthestandingwavera-tiotests.PSPstaticcalibrationisaccomplishedwiththeuseofavacuumchamberandpressuretransducer.Twoseparatedatacollectionsystemsareutilizedintheexperiment.AnAgilentVXIsystemisutilizedforstaticcalibrationandnoiseoormeasurements,whileaStanfordResearchSystemsSR785dynamicsignalanalyzerisusedforfrequencyresponsemeasurements.StandingWaveRatioTest 3{1 thisspeciallydesignedcapisttedwithaprobecapableoftranslatingalongalimiteddistance(0.25m).ABruel&Kjrtype4138condensermicrophone,notedas\Microphone1"inFigure 3{1 ,isattachedtotheprobeviaexibletubing.Thisapparatusallowsfordirectmeasurementoftheacousticsignalatvariouslocationsinsidethetube.A2ndBruel&Kjrtype4138microphoneisplacedatthefaceofthealuminumpistonattheendofthetube,thisisdenotedas\Microphone2"inFigure 3{1 .Comparisonsoftheoutputofmicrophones1and2allowsforthecalculationoftheSWR,pressurereectioncoecient()andotherpropertiesofthesample.TheplanewavetubeisexcitedusingaJBLPro2490Hdriver.Thisdriverisoperatedbyawaveformgenerator(HP/AgilentE1441A)passedthroughaCrownInternationalK1amplier.DatacollectionisaccomplishedwiththeuseofanHP/AgilentVXIdataaquisition 24

PAGE 39

Figure3{1: SchematicofExperimentalSetupforStandingWaveRatioTesting system(E1432A).ThedatacollectionparametersareoutlinedbelowinTable 3{1 .ToperformtheSWRtest,thewaveformgeneratorissetatthespeciedfrequency Table3{1: SWRDataCollectionSettings ValueParameter 10240SamplingFrequency(fs)[Hz]20DataBlocks4096Samples/blockACChannelCoupling100ChannelCouplingFrequency[Hz]UniformWindow0:1ChannelRange[V] andanoutputlevelof300mVPP.Theamplierattenuationissettozero,thissettingcorrespondsto126.9dBSPLat1000Hz.Theprobeisadvancedasclosetothesamplefaceaspossible.Thesignalsofbothmicrophonesarerecorded.Theprobeisretracted5mmfromthesamplefaceandthemicrophonesignalisagainrecorded.Thisprocedureisrepeatedforfourfrequencies,600Hz,1000Hz,1400Hz,and1800Hz.ThemicrophoneoutputsarethenanalyzedasoutlinedinAppendix B .TheStandingWaveRatio(SWR)issimplyaratioofthemaximumandminimummicrophonevoltagenearthefaceofthesample.Themagnitudeofthisratiocanbeanalyzedtodecipheracousticpropertiesofthespecimen.

PAGE 40

Whenanalyzingthedata,acorrectionfactormustbeappliedtothemicrophonelocationbecausethegeometricandacousticcentersarenottypicallycoincident.ThiscorrectionfactorisaFunctionofthewavelengthofthesoundbeingtestedandothervariablesasoutlinedinAppendix B .PSPStaticCalibration ThePMTsignalisacquiredandtheaveragermsvalueiscomputedandrecorded.ThePMTsignalisrstacquiredatPatm,thiswillserveasthereferencepressureforsubsequentmeasurements.Thepressureischangedandthesystemislefttoequilibrate.MeasurementsareconductedoverasmallrangeaboutPatm,asthisistheanticipatedpressureenvironmentoftheplanewavetube.Afterallexperimentsareconducted,thepressurechamberisagainbroughttoPatmandlefttosettle.ThePMToutputiscomparedtotheinitialmeasurementinordertoensurenothinghaschangedinthesetup. Inanalyzingthecalibrationdata,thedarkcurrentisrstsubtractedfromallpressuremeasurements.EachpressureandPMToutputisthencomparedtothereferencestateinordertoyieldacalibrationofthesameformasEqn.( 1.2 ).

PAGE 42

opticallensarray.Thelensarrayallowsforthefullsamplesurfacetobefocusedontheviewingwindowofthedetector.TheexperimentalsetupisshownschematicallyinFigure 3{2 .Thetestedfrequencyrangevariesfrom500-2100Hzandislimitedbytheperformanceenvelopeofthedriver(2490H,JBLProfessional)usedtoexcitethetubeandthecutofrequencyofthetube.TwoseparatedataacquisitionsysFigure3{2: SchematicofExperimentalSetupforAcousticTesting temsareutilized.Atwo-channeldynamicsignalanalyzer(SR785,StanfordResearchSystems)isutilizedforfrequencyresponsemeasurementsandmeasurementsovertheentireacousticspectrum.Theanalyzercontainsbothasourceandtwoacquisitionchannels,whichenablesthemoduletocontrolthecompleteexperimentalsetup.Theanalyzersourcesignalispassedthroughanamplier(K1,CrownInternational)andthenroutedtotheJBLdriver.Fordetectorlinearitymeasurements,thesystemisex-citedthroughtheuseofawaveformgenerator(E1441A,HP/Agilent)whichispassedthroughtheamplier,whichisinturnconnectedtothedriver.Datacollectioninthiscaseisaccomplishedthroughtheuseofanotherdataacquisitionsystem(E1432A,HP/Agilent).Bothsetupsallowsoundpressurelevels(SPL)ofupto164dBtobeappliedtothePSPsample.

PAGE 43

4{1 .TheresultsoftheSWRtestsshowthatthePSPsample/substratemaybetreated Table4{1: SWRResults Property1800Hz1400Hz1000Hz600Hz 0.99790.99590.98780.995714.2210.86-1.732.524:19E37:98E32:43E28:64E3z=c0.675+j7.9630.2238+j10.5223.13-j56.824/45+j45.07SWR(0)959.9498.8162.7461.1SWR(0)[dB]59.6453.9644.2353.28 asasound-hardsurfaceduetothelargepressurereectioncoecient,(alsoknownasR),andstandingwaveratioatthesampleface,SWR(0).(forexplanationseeAppendix A .) Theseresultsareasexpectedbecausethesubstrateisanaluminumpiston,whichshouldactasasoundhardsurfacewhencomparedtoair.Sincethesubstrateissoundhard,thismeansthatthereisapressuredoublingatthefaceofthePSPsample,sothatthesoundpressureexperiencedbythePSPisnearlytwicethesoundpressureatanyotherlocationinthetube.ThispressuredoublingallowsforthehighSPLatthefaceofthesample.Thissigniesthattheacousticenergyisconcentratedatthesamplefaceandnotallowedtopropagatethroughthesubstratemediumandoutofthesystem.PSPCalibration 4{1 andTable C{1 .DataisacquiredwithsettingsspeciedinTable 4{2 .Theseresultsshowthe 29

PAGE 44

PSPbehavesaspredictedbyEqn.( 1.2 ).Alinearregressionwasperformedtotarelationshiptothedatapoints.TheresultingrelationshipisshownasaredlineinFigure 4{1 andisgivenbytheequation P0+0:13108(4.1) Thelinearrelationhasacorrelationcoecient(r2)valueof0.9989andastandarderrorof5:04E4.ThisshowsthatthePtTFPPrespondslinearlytosmallchangesinpressure,andisexpectedtoretainthisbehaviorwhenexposedtouctuatingpressureswithintheplanewavetube.Figure 4{1 showserrorbarswhicharedepictedasthe95%condenceinterval. Table4{2: PSPStaticCalibrationSettings ValueParameter 8192SamplingFrequency(fs)[Hz]50DataBlocks8192Samples/blockACChannelCoupling100ChannelCouplingFrequency[Hz]UniformWindow10PMTChannelRange[V] 4{2 andTable C{2 .(note:theSR785iscapableofauto-rangingtheacquisitionchannels,eliminatingtheneedtosetavoltagerange)Resultsshowthatthephotodetectorresponsemaybeconsideredtobeatovertherangeof100to2200Hz,andthusitdoesnotimpactthemeasuredresponseofthePSPcoating. DataacquisitionwasaccomplishedwiththeSR785dynamicanalyzer.PertinentdataacquisitionsettingsarelistedinTable 4{3 .ThemagnitudeandphaseresponsesareshowninFigure 4{2 .Themagnituderesponseofthedetectoriserraticalthoughthereisnovisiblecutofrequencyandthemagnituderemainswithin0:1dBofthe

PAGE 45

Figure4{1: PSPStaticCalibrationResults referenceat500Hz,showingthatthePMThasnegligibleinuenceonthefrequencyresponsemeasurementofthePSPcoating.ThenoiseinthemeasurementisduetothelowgainsettingofthePMT.Duetothehighintensityoftheberopticlightsource,thePMTgainsignalwassetat0.23Vdc.Theusablerangeforthegainsignalis0to1.25Vdc.Atsuchalowgainsetting,thethermalnoisehasalargerinuenceonthedeviceoutputsignal.Thereferencesignaloutputoftheopticalchopperwas Table4{3: PMTFRFAcquisitionSettings ValueParameter 3.2kHzSpan1.6kHzCenterFreq.16HzFFTLineWidth1000VectorAveragesUniformWindow usedasthereferencesignalforthefrequencyresponsemeasurements.Thissignalis

PAGE 46

aconstantamplitudesquarewaveofthesamefrequencyasthemotorwhichdrivesthechoppingdisc.Knowingthemotorfrequencyandthenumberofbladesonthediscyieldsthechoppingfrequency. Thephaseresponseisatatapproximately1.ThisplotofphaseresponsecanbeusedforqualitativeresultsonlybecausethephasedierenceofthePMTandopticalchopperisunknown.AsshowninAppendix C ,thephasedelayisapprox.9.ThisosethasbeenremovedinFigure 4{2 asthisisaconstantphasedierenceinthechoppingmotorandthereferenceoutputsignal.Fortheshownresults,thediscwasmountedtothechoppingmotorandallexperimentswereconductedwithoutmovingthedisc.Thus,thephaserelationshipbetweenthediscandmotorisunknownbutconstant,enablingonetodiscernanyphaserolloofthePMToverthetestedrange. Figure4{2: PMTFrequencyResponse

PAGE 47

4{3 .Thisgureisacomparisonofthedarknoise,backgroundnoise,andtheVXIDAQsystemnoise.DatawascollectedusingsettingsspeciedinTable 4{5 .TheDAQsystemnoiseisthenoisepresentincollectingdatawithnodeviceconnectedtotheDAQboard.ThisisaFunctionoftheinuenceofexternalnoisesources.Oneseesthatthisnoiseislargelydominatedby60Hzlinenoise,howeverconnectingadevicetotheDAQchannelreducesthisnoisesource. ThedarknoiseisthePMToutputwiththespeakerandExcitationlightsturnedo.Thisisanindicationoftheexternallightwhichleaksintotheenclosurewhichsurroundstheexperimentalsetup.Thedarknoiseisseentoberoughly2ordersofmagnitudebelowthebackgroundnoise,showingthataminimumofexternallightisenteringtheenclosureandthatthedarknoiseofthePMThasminimalinuenceonthedeviceoutputonceitissubjectedtoareasonablelightsignal.Thiscurveshowsaspikeat120Hz,howeverthisinuencemaybeeliminatedbypropergroundingofthedetector.Thedarknoisecanbeseentobewhitenoiseacrosstheentirespan.OneshouldnotethatanestimateofthetruedarknoiseofthePMTwouldbeameasurementofthedeviceoutputwiththeviewingwindowcovered.Thedarknoisementionedhereisameasureoftheinuenceofexternallightsourcesandthedarknoiseofthedetectorontheoutputsignal.Itwasassumedthatduetothecomparativelyhighlightlevels,thedarknoiseofthedetectorwouldbesomewhatnegligiblewhencomparedtotheshotnoisepresent. ThebackgroundnoiseisduetothePSPluminescenceatPatm,i.e.,Excitationsourceon,butnoacousticinputsignal.Thisisalsoseentobewhitenoise.SincethereisnotemporalpressuresignalthePSPemissionisconstantandthereisnodominantfrequencycomponentpresent.Boththebackgroundanddarknoisesare

PAGE 48

dominatedbytheshotnoiseofthedetector.AnyacousticsignalsuppliedtothePSPwillshowupasaspikeamongthebackgroundnoise. Figure4{3: ExperimentalNoiseComparison 4{4 .Thefrequencyresponseoftheopticalsystemismeasuredat140,134,128,122,119,and115dBSPL.Inallcasestheopticalsystemisshowntobehaveasa\1/2"-ordersystem(-10dB/decadeattenuation,45phasedelay)whichisinagreementwithpreviouslyreportedresults.[ Winslowetal. 1996 ]Thebehaviorofa\1/2"-ordersystemisshownbydashedlinesinFigure 4{4 andFigure 4{5 .ThebehavioratallSPLisconsistent,howeverthehigherSPLarebetterbehavedduetothedecreasednoisecontentofthesignal.

PAGE 49

Figure4{4: PSPCoatingRelativeFrequencyResponse Thereisseentobemeasurableresponseofthecoatingat122and119dBSPL.ThisindicatesthatthewavelengthdependanceoftheanoderadiantsensitivityofthePMT,SP,maynotbeproportionaltothecathoderadiantsensitivityasdiscussedinChapter 2 .TherelativeandphaseresponseoftheopticalsystemareshowninFigure 4{4 andFigure 4{5 (note:uncertaintieshavebeenomittedforclarity).TabulateddatawithuncertaintiesarelocatedinAppendix C andplotsoftheresponsemagnitude,relativemagnitude,phase,andcoherenceforeachSPLarelocatedinAppendix D LocatedinAppendix D areplotsofthecoherenceandPMTpowervsfrequencyforthevariousSPL.Theseguresillustratethatthedelityoftheopticalsystemisproportionaltothemagnitudeofthepressureuctuation,asthecoherenceandPMTpowerareseentoscalesomewhatlinearlywithSPL.Thenoiseoorisseen

PAGE 50

Figure4{5: PSPCoatingPhaseResponse graphicallyinguresFigure D{1 andFigure D{2 forthecurvesof122,119,and115dBSPL.Above122dBSPLthecoherenceandpowerseemtoscalelinearlywithSPL.Below122dBthereisadecreasedrelationshipwithSPL,thisindicatestheincreasedinuenceofnoiseonthemeasurement. AsseeninFigure 4{4 at119dBSPL,theopticalsystemisstillcapableofdetectingtheacousticsignal,however115dBSPLseemstobeatorbelowthenoiseoorofthesystem.Thisagreeswellwiththepreviouslypredictednoiseoorof115dBSPL.(refChapter 2 )PSPLinearity 4{5 .Thesquarerootoftheamplitude

PAGE 51

Table4{4: PMTFRFAcquisitionSettings ValueParameter 1.6kHzSpan1.3kHzCenterFreq.16HzFFTLineWidth1000VectorAveragesUniformWindow0.44VdcPMTGainControl5.3E4V/PaCalibratedMic.Sensitivity ofthePMTpowerspectrumattheExcitationfrequencyof540HzforeachSPLwasrecordedandisdisplayedinFigure 4{6 andinTable C{3 inAppendix C ,whichshowsalinearrelationshipbetweentheacousticpressureandtheresponseoftheactivelayer,aspredictedbyEqns.( 1.2 ),( 4.1 ).Thelinearequationttothedataisgivenbelow. Figure4{6: LinearityofOpticalSystem

PAGE 52

Table4{5: LinearityDataAcquisitionSettings ValueParameter 8192Hzfs8192DataPoints/Block50DataBlocks100HzCouplingFreq.UniformWindow0.1VPMTChannelRange0.44VdcPMTGainControl5.3E4V/PaCalibratedMic.Sensitivity 2 thereisatemperaturechangeassociatedwithanacousticwave.DuetothepropertiesofthePSPformulation,thiseectwasestimatedtohaveaminimaleectontheresponseofthecoating.Toverifythisassumption,theoxygenmustberemovedfromtheinterioroftheplanewavetubeinordertoisolatetheinuenceofthetemperatureoscillationonthePSPemission.Twoholesaredrilledintotheendcapoftheplanewavetube,onefortheadditionofindustrial-gradenitrogenandoneforventing.ThePSPsampleisremovedfromtheendofthetubeandthetubewashedwithnitrogenfor20minutes.Thesampleisthenre-insertedintotheplanewavetubeandthetubeiswashedwithnitrogenforanadditional5minutes.Thenitrogenhoseisremovedandthettingsintheendcapofthetubearereplacedwithplugs.CareshouldbeexercisedastonotoverpressurethetubewithrespecttoPatmasthepressuredierentialacrossthespeakerdiaphragmmaydamageit.Thedriveristhenoperatedat140dBSPLandfrequencyresponsemeasurementsaretaken.Acomparisonofthecoatingresponseinairandnitrogen

PAGE 53

isshownbelowinFigure 4{7 .TheresultsaretabulatedinAppendix C withthefrequencyresponsedataofothersoundpressurelevels.Theresultsshowthatthe Figure4{7: CoatingResponseinAirandNitrogen responseofthecoatingtothetemperatureuctuationarenegligiblecomparedtotheresponseinthepresenceofoxygen.TimeResolutionofOpticalSignal 4{8 ,providedtheSPLishighenough.UsingtheHP/AgilentwaveformgeneratorandDAQsystem,theJBLdriverwasexcitedat540Hzand160dBSPL.DatawascollectedusingtheparametersinTable 4{6 .TheresultingdataisdisplayedinFigure 4{8 .Inparta)ofFigure 4{8 thePMTsignaldisplaysafaintsimilaritytothemicrophone,howeverthesignalissignicantly

PAGE 54

Figure4{8: ComparisonofUnlteredPMTOutput,FilteredPMTOutput,andMicrophoneOutput corruptedbynoise.ThisnoiseisaresultoftheseveralnoisesourcespresentinthePMT(thermal,background,dark,shot).Thethermal,background,anddarknoisearemanifestedasbroadbandnoiseinthePMToutputwhichdegradesthesignal-to-noiseratioandhampersdatacollection.Onemayreducetheimpactofthisbackgroundnoisebyreducingthebandwidthofthemeasurement.Thismaybeaccomplishedbyreducingthesamplingrateorbyapplyingabandpassltertothesignal.Reducingthesamplingrateisstraightforward;howeverthisresultsinalossofdataqualityduetothereducednumberofdatapointsavailabletodescribethephotodetectoroutput.Applyingalter,eitheranalogordigital,tothedetectoroutputallowssamplingatahigherfrequencyandthusretentionofmoresignaldetail,whilealsoallowingtheabilitytochooselterparameterstosuitthesituationathand.

PAGE 55

Toimprovetheresolutionofthetimeseriesdata,adigitallterwasappliedusing Table4{6: SingleTimeSeriesDataAcquisitionSettings ValueParameter 6.4kHzSpan8192DataPoints/Block1DataBlocks100HzCouplingFreq.UniformWindow0.1VRange0.44VdcPMTGainControl5.3E4V/PaCalibratedMic.Sensitivity 4{8 .Inthiscase,muchofthenoisepresentintheunlteredsignalhasbeenremovedandthelteredsignalhasclearlyresolvedtheacousticsignalasreferencedbythelteredmicrophoneoutputinplotc).Theamplitudemodulationapparentinpartb)ofFigure 4{8 isduetonoisewhichhaspassedthroughthelterandcharacteristicsofthelter.UncertaintyAnalysis PSPStaticCalibrationUncertainty 4.1 ),restatedhereforconvenience. P0+0:13108(4.3) SolvingtheaboveEquationforVyields Weshallcomputetheuncertaintyasthesquarerootofthesumofthesquares.Wemustrstsolvefortheuncertaintiesofthemeasuredvoltageandpressure.Thisis

PAGE 56

summarizedas whereBiandPiarethebiasandprecisionerrorsrespectivelyofeachmeasurementandtv;95isthestudent'st-distributionfor95%condence(v=numberofsamples). Forgreaterthan30samples,thestandardcondenceinterval,i.e.,tv;95is2.Forthereferencecondition,v0weshallusethestandarddeviationofthemean,2 C{1 .Forthepressureuncertainty,wewillusetheaveragestandarddeviationofthepressurereading,5E4.Thepressureandvoltageuncertaintiesaresubstitutedinto( 4.6 )forthetotaluncertaintyoftheoutputvoltagegivenbelow.TheresultingPMToutputlevelisthemeanvoltageduetothePSPresponsetoasteadypressure.Thus,theuncertaintyofinterestisthestandarddeviationofthemean,2 C{1 asuv,andshownaserrorbarsinFigure 4{1 @V @V0UV02+@V @PUP2+@V @P0UP02(4.6) TheresultinguncertaintyforeachpressureislistedinTable C{1 andshowngraphi-callyinFigure 4{1 .FrequencyResponseErrors

PAGE 57

frequencyresponsemeasurementsaresubjecttobothbiasandprecisionerrors.Weshalldenoteabiaserrorasb[x]andaprecisionerroras[x],wherexisthequantitybeingexamined.Weshalldenotetheestimatedquantitiesas^x.Thequantitiesmeasuredareinfactestimatesofthetruevalues,hence,theyaresubjecttoerrors.Ifthetruevalueswereknownthennoerroranalysiswouldbenecessary. Weshallrstlookatthecoherenceofthefrequencyresponse.Thecoherencebetweensignalsxandyisdenotedas^2xyandisdenedas[ BendatandPiersol 2000 ] ^2xy(f)=jGxy(f)j2 ThecoherenceFunctionisamethodtodescribethecorrelatinbetweentheoutput,y,andinputsignal,x.Thecoherencecanvaryfrom0to1,with1beingperfectcorrelationbetweenthetwosignals.Highcoherencevaluesleadtolesserrorsinspectralmeasurements.Thenormalizedbiasandprecisioncoherenceerrorsaregivenas[ BendatandPiersol 2000 ] wherendishowmanytimesthedataisaveraged(numberofdatablocks). Forthefrequencyresponseitself,thebiasofthemagnitudeisproportionaltotheamountofnoiseinthemeasurement.ThemeasurementsignalistypicallyspeciedasGxx=Gnn+GuuwhereGnnisthenoisemagnitudeandGuuisthesignalmagnitude.IntablesinAppendix C ,GxxisthemagnitudeofthesignalatthespeciedfrequencyandGnnistheobservedaveragemagnitudeofthenoiseinthesignal(responseatotherfrequencies).Thenormalizedbiasandprecisionerrorsofthefrequencyresponse

PAGE 58

aregivenas[ BendatandPiersol 2000 ] Thenthetotaluncertaintyforeachmeasuredquantity(magnitude,phase,coherence)isthengivenbyEqn.( 4.5 ).Foralargenumberofsamples,thestandard95%con-denceintervalis2U.ThisisusedtogeneratethecondenceintervalshowninguresforeachSPLinAppendix D ErrorsforeachSPLtestedaretabulatedinAppendix C .OneseesthatforthelowerSPLtheerrorsinthefrequencyresponsebecomeconsiderable.Thisisduetotheverylowcoherenceofthemicrophone-PSPsignal.Atlevelsof128dBSPLandhigherthetypicalmagnitudeerrorsbecome10%orless.Tofurtherdecreasetheerrors,onemustincreasethenumberofaverages(datablocks)gatheredastheerrorsscaleas1 C alsocontainsmagnitudeandphaseplotswitherrorbarsoftheresponseoftheopticalsystemateachSPL.

PAGE 59

TheresearchdescribedinthisthesissuccessfullyinvestigatedtheresponseofPtTFPPinpoly(tBS-co-TFEM)(30%)toacousticpressureuctuations.Theresearchshowedthatthecoatingrespondsinthemannerofa\1/2"-ordersystem.Thecoatingwasshowntohaveanoiseoorsimilartothepredictedvalueof115dBSPL. Frequencyresponsemeasurementsshowedtheopticaldetectortohavenegligible(at)responseovertheapplicablefrequencyrange.Itwasalsoshownthattheopticalcoatingresponsescaleslinearlywiththeappliedacousticpressuretothelowerlimitofthenoiseoorofthesystem.Thenoiseoorwasnumericallyestimatedtobe115dBSPL.Subsequentexperimentaldatarevealedtheactualnoiseoortobewithin5%ofthisvalue.Thetemperaturedependanceofthecoatingduetotheacousticwaveswasassumedandveriedtobenegligiblecomparedtothepressureresponse.TheopticalsystemwasalsoshowntohavetheabilityofdirecttemporalresolutionofthePSPemission.AdequatelteringofthePMTsignalremovesthesignicantnoisecomponentandrevealsaclearcorrelationofthePSPemissiontoamicrophonelocatedatthecoatingsurface. Althoughtheresearchconductedinthisthesisiscomplete,thereisfutureworktobeconducted.Theapplicationofotherphotodetectorstothisexperimentalmethodmayallowresolutionoflowersoundpressurelevels.Avalanchephotodiodesandhigh-speedCCDcamerasaretwodetectorswhichmayproveusefulinthisareaofstudy.Withtheuseofhigh-speedphaselockedCCDcameras,itmayprovepossibletodirectlyimagethesurfaceofaPSPsampleinauctuatingpressureeld,therebygaininganopticalrecordoftheexactpressuredistribution,similartoresultsachievedusingPSPinwindtunnels. 45

PAGE 60

Theupperfrequencyappliedtothecoatinginthisresearchwaslimitedbythecutofrequencyoftheplanewavetube.Futureworkshouldutilizeapparatuswithhighercutofrequenciesinordertobettercharacterizetheresponseofthecoating(s). ThechemistryofaPSPformulationdenesitspropertiesandwasultimatelythelimitingfactorintermsofnoiseoorinthisresearch.NewPSPformulationsarethesubjectofcontinualresearch.Discoveryofnewbinder-luminophoreformulationswhichpromoteincreasedoxygendiusionandgreatersensitivitynearatmosphericpressurelevelswillenablefurtherreductionofthenoiseoorindynamicpressureapplications.

PAGE 61

dPSeP0+dT dSePT0+O"2(A.1) whereO(2)arehigherordertermsthatmaybeneglectedforthetimebeing. Sincewehaveassumedthecompressionprocesstobeisentropic,wemaymakeuseoftheisentropicrelationsforpressureandtemperature. P0= 0T T0=P P01 where=Cp=Cv. SubstitutingtheserelationsintoEq.( A.1 ),weareleftwith dPSeP0=T01 P(A.3) Which,aftersomemanipulationyields T0P0 WemaynowsetTandPtobeanyarbitrarytemperatureandpressure.Weshallchoosethequiescentvalues,T0andP0.Thisgivesusthenalformofthetemperaturechangeofanisentropiccompression. 47

PAGE 62

WewillassumethatanydisturbancestothismediumaresmallcomparedtothevalueofthestaticpropertiesP0and0.Thisisknownasthesmallsignalapproximation.Thus,wehavethepropertiesofasmalldisturbanceinitiatedinthemediumatrest: Wewillusetheabovequantitiestolinearizetheconservationequations.Werstexaminethe1-DContinuityequation: Wewilldenejj=0asthechangeindensityfromtheequilibriumstatetothedisturbedstate.ItissomewhatstraightforwardtosubstitutethisrelationfordensityintoEq.( A.8 ) Seeingthat0isconstantleavesuswith

PAGE 63

The2ndand4thtermsareofsecondorderandthuscanbeneglected.Removingthesetermsleavesuswiththelinearizedcontinuityequationforahomogeneousmedium Wewillnowapproachthemomentumequationinthesamemanner.Wewillstartwiththe1-Dmomentumequation Makingthesameassumptionofthechangeindensityasaboveleaves (+0)(ut+uux)+Px=0ut+uux+0ut+0uux+Px=0O("2)+O("3)+O(")+O("2)+O(")(A.13) Neglectinghigher-ordertermsleavesuswiththelinearizedmomentumequation UsingtheTaylorexpansionoftheidealgaslaw,P=c20,andcontinuityandmo-mentum,Eqs.( A.11 ),( A.14 )wemaydeducethelinearwaveequation.Firstwewilleliminatedensity c20;P c20t+0ux=0(A.15) WemayremovethepressuretermsfromEqs( A.14 )and( A.15 ) dt(0ut+Px=0)d dxP c20t+0ux=00utt+Pxt=0Ptx

PAGE 64

Thisleavesuswiththelinearized1-Dwaveequation IfonechoosestoeliminateuratherthanPinEq.( A.16 ),theresultisthewaveequationintermsofpressure In3-D/vectornotation,weareleftwiththemorefamiliarformofthewaveequation Blackstock [ 2000 ] where isknownasthewavenumber.

PAGE 65

WemaydierentiateEqn.( A.20 ) wherek0nisthewavenumberforthenthmode.InEqn A.22 weseethatforconstantphaseoneisleftwith dt'=! k0n(A.23) Thisexpressionisdenotedcn,andisknownasthephasevelocity.Wemaynowsubstitutethefrequencyfromthenthmodefromthederivationofthewaveguideequation,=ny=a,whichgivesus k0n=c0 c02ny a2=c0 ThisrelationshowsthatwaveguidesaredispersivebecausethephasespeedisaFunctionoffrequency.BygraphingEqn. A.24 ,onewillseethatthephasevelocitywillincreasewithfrequencyuntilapointwhere Atwhichpointcn!1.Thispointisknownasthecutofrequency.Wemayrephrasethephasespeedintermsofthecutofrequencyas Belowthecutofrequency,thewavenumberisimaginary.Thismeansthattheacousticwavesareevanescentanddecayexponentiallywithdistance.Abovethecutofrequency,theacousticwavesarerealandpropagatedownthetube.Onewillalwayshaveacousticwaveshowever,ask0=0correspondstoplanewaves.Anyvalueofngreaterthanzeroisindicativeofhigherordermodes.

PAGE 66

Thisisasolutiontothe3-DWaveEquation( A.19 ) WewillconsiderarigidwalledductasshowninFigure A{1 .Byinspection,onemaydeducetheboundaryconditionsofnoowintothewallsoftheduct.Mathematicallystated,theboundaryconditionsare FigureA{1: SchematicofaSquareDuct

PAGE 67

directionofthetubeandnoinformationisgivenconcerningthesource.Thismaynotbenecessaryanditwillbeaddressedasneeded. WeseethatEq.( A.19 ),thethree-dimensionalwaveequation,isaf(x,y,z,t)asshowninFigure A{1 .Thisequationcanbesolvedthroughtheuseofseparationofvariablesbyassumingasolutionoftheform MorseandIngard [ 1987 ] wheref,g,hareFunctionsofonlyx,y,zrespectively.SeparatingEq.( A.30 )andsolvingforf,g,hyields SubstitutingtheserelationsintotheWaveEquation(Eq.( A.18 ))yields c20ghf00fhg00fgh00ej!t whichmayberewrittenas ThisshowsusthataFunctionofxequalsaFunctionofyandz.Thisistrueonlyifbothsidesareequaltoaconstant.Wemaynowseperateandsolvetheequationforeachdirection,startingwithf(x). Thishomogenous,2ndorderODEhasrootsofj,thusthesolutionhastheformf=A1cos(1x)+B1sin(1x).Invokingtheboundaryconditionofnoownormaltothewallgivesus dxx=0;a=0)B1=0;1=m a(A.35)

PAGE 68

Thus,f=A1cos(mx=a).Repeatingtheaboveprocedureforg(y)yieldsasolutionofthesameform,g=A2cos(ny=a). Wearenowleftwiththebehaviorofthepropagationdirection(z).Tosolveforthisbehavior,weshallsubstitutethesolutionsforf(x)andg(y)intoEq.( A.33 )andsolveforh(z). a a=m22 a a=n22 SubstitutionintoEq.( A.33 )givesus Thecoecientofhismadeupofconstantvalues.Thisquantitywillbedenotedask2andisknownastheDispersionEquation.OnenowseesthatEq.( A.38 )isofthesameformasEq.( A.34 ).ForEq.( A.34 )thegeometricformwaschosentoemphasizetheshapeoftheFunction.Inthiscasewewillusetheexponentialformofthesolutionsincethisequationdescribesthepropagationofawave: Theconstantkhasbeenwrittenaskmntoremindusofitsdependenceonthevaluesofmandn.WenowhaveassembledsolutionsforallcomponentsofP'(x,y,z,t)thatwereassumedinEq.( A.30 )andwemayassemblethenalsolution,whichissimplyamatterofsuperposition. acosny aC1ekmnz+C2ekmnzej!tP0(x;y;z;t)=cosmx acosny aAmnej(!tkmnz)+Bmnej(!t+kmnz)(A.40) whereAmnandBmnareconstantsdeterminedbysourceconditionswhichcanbestatedasP(x;y;0;t)=F(x;y)ej!t.[ Blackstock 2000 ]

PAGE 69

The2indices,mandn,arethemodenumbers.Physicallythesenumbersrepresentthenumberof1=2wavelengthspresentinthexandydirections,with(m=0,n=0)representingtheplanewavemodewhichhasuniformpressureinbothxandy.[ Schultz 2004 ]DerivationoftheCylindricalWaveguideEquation A{2 .Again,webeginwiththewave FigureA{2: SchematicofaCylindricalDuct equation, Incylindricalcoordinates,theLaplacianoperator(r2)hastheform 1 Wehavethesameboundaryconditionasbefore, Wewillassumeaseparablesolutionofthesameformasabove,

PAGE 70

SubstitutionintoEq( A.19 )andsimplifyingleaves Wewilllet!2=c20=k2.ThisbearssomeresemblancetoEq.( A.33 )howeverther'sapparentinthiscasemustbedealtwith.WemayrstaddresstheZterm.Wewillequatethistoaconstantandsolve. Theformofthisequationshouldbefamiliartothereader.Wemayassumeasolutionoftheformasabove ReturningtoEq.( A.45 ),weareleftwith Wewilldeneaconstant,kr,suchthatk2=k2r+k2z.Thisleaves Multiplyingbyr2enablesustoremovethecomponent. 00 Thisformhasasolutionof()=Acos(m)+Bsin(m)wheremisaninteger.WearenowleftwithonlyFunctionsofr.MultiplyingtheremainingquantityofEq.( A.45 )byRgives ThisisaBesselEquationoforderm.Thus,thesolutionisR(r)=ArJm(krr)+BrNm(krr).However,theNeumannFunction(alsoknownasBesselFunctionof2ndkind)(Nm(krr))isunboundedasr!0soitisnotphysicallyrealizablefora

PAGE 71

cylindricalwaveguide.However,thistermshouldberetainedwhendealingwithanannularwaveguide.Combiningther,z,andsolutionsyieldsus Asintherectangularwaveguidethemandnindicesgiveanindicationofthenumberof1=2wavelengthspresent,althoughinthiscasetheyrepresenttheranddirections.Therstmodestopropagatearethe(1,0)and(2,0)modes,followedbythe(0,1)mode[ MorseandIngard 1987 ].Foracylindricalwaveguide,thecutofrequencyhastheform wheremnisthenthzeroofJ0m.Thecutofrequencyofamodeistheminimumfrequencyatwhichthatmodecanpropagatedownthewaveguide.Forthewaveguideusedinthisstudy,the2lowestcutofrequenciesare2016Hzand3344Hz.Below2016Hztheacousticeldwithinthewaveguideisplanar.NormalIncidenceSoundReectionandTransmission A{3 ,whereindicatedpressuresaregivenbyWewill IncidentWavep+=p+(tx=c1)ReectedWavep=p(t+x=c1)TransmittedWaveptr=ptr(tx=c2) nowdeneareectioncoecient, =p Wewillalsodeneatransmissioncoecient,

PAGE 72

FigureA{3: SoundReectionandTransmissionataNormalIncidenceSurface Weshallassumetheinterfaceisstationary,whichleadsto dividingbyp+andmanipulationshowsusthat 1+R=T(A.57) Inadditiontopressure,velocitymustbecontinuousacrosstheinterface.Usingthesamenotationaspressure,itisstraightforwardtodeducethatu++u=utr.WewouldliketoknowtheboundaryconditionintermsofandT.Todothiswewillusethecharacteristicimpedanceofeachmedium(Z=c)sincetheacousticwavesineachmediaarebydenitiontravellingattheacousticspeed,oru=c.Substitutionleavesuswith

PAGE 73

MultiplicationbyZ1=p+yields 1R=Z1 SolvingEqn.( A.59 )and( A.57 )givesthefollowingrelations Wewillnowexaminethreeconditionsofanormalincidencesurface.First,letusconsideraninterfaceatwhichZ2Z1.Inthiscase,Eqn.( A.60 )R=Z1=Z1=1,whichmeansthereisperfectreection180outofphase.Then,ptr=0sothatp+=p,sothatthepressureattheinterfacetendstozerowhilethevelocitydoubles,fromEqn.( A.57 ).Thissituationisknownasasoundsoftboundaryandoccursattheendofatubeorforanacousticwavetravellingfromwaterintoair. Next,considerwhathappensifZ2Z1.Inthiscase,R=1,orp+=p.Thistellsusthatptr=0.Attheinterface,sincep+andparereectedinphase,theyareadditive,pinterface=p++p=2p.Also,sincethepressuresignalcannotpenetrateintomedium2,neitherdoesthevelocitysignal,utr=0,oru+=u.Sothereisapressuredoublinginmedium1attheinterfaceandzerovelocityattheinterface.Thisisknownasasoundhardboundaryandoccursforawavetravellingfromairintowater,orfromairintoanothersuitablemediumwithamuchgreaterimpedance,suchasablockofaluminum. Thirdly,whatifthemediaareidentical,oratleasthaveidenticalimpedance.InthiscaseZ1=Z2,sothatR=0.Thereisperfecttransmissionacrosstheinterface,whichisintuitivelysatisfying.[ Blackstock 2000 ]

PAGE 74

Aplanewavetravellingdownawaveguideimpingesontheendofthetubeandisreectedbackintheoppositedirection.Inthisprocess,astandingwavepatternisproducedwhichcanbemeasuredusingamicrophone.Usingthestandingwaveratio(SWR)atthefaceofatestspecimenplacedattheendofthetube,thenormalincidencesoundabsorptioncoecient,n,pressurereectioncoecient,,andotherpropertiescanbecalculated.ThemethodprescribedbelowisthatoftheASTMC384-98Standard[ ofTestingand ASTM ]andisvalidonlyforplanarsoundelds,i.e.,itisonlyvalidbelowthecutofrequencyofawaveguide.TheStandingWaveRatioisdenedas whereV(x)istheoutputvoltageofthemicrophoneatstationxofthewaveguide. Todiscernthestandingwavepatternwithinthetube,theexactlocationofthemicrophonewithrespecttothesamplefacemustbeknown.Thisisaccomplishedbytheuseofamillimeterscaleattachedtothebottomofthewaveguide.Thisenablesthedistancefromthespecimentothemicrophonetobeknownatalltimes.Acorrectionfactormustbeappliedtothelocationofthemicrophonebecausetheacousticandgeometriccentersoftheprobearenotnecessarilycoincident.Thecorrectionfactor 60

PAGE 75

isdenedas where Whenmakingmeasurements,scalereadingsateachfrequencyshouldbecorrectedasfollows: where x=Truedistancefromspecimen[mm] Ifpossible,itisdesiredtoadjustthescalesuchthatxsf=0 Followingdatacollection,themicrophonesignalcanbegraphedasshownbelowinFigure B{1 ,Figure B{2 ,Figure B{3 ,andFigure B{4 toyieldthevoltageasaFunctionofxcor.Thisdataisthenusedtodeterminethepropertiesofthesample.Datareductionisperformeddierentlyaccordingtothenatureoftheavailabledata. Iftwoormoreminimaarepresent,themaximumvoltagenearestthesamplefaceistakentobeVmax(0).Vmin(0)isthenfoundbyusingthefollowingformula Ifoneminimaandonemaximaarepresent,oneusestheavailablemaximaasVmax(0),andthetubeattenuation,,mustbecalledupontodiscernVmin(0).maybe

PAGE 76

estimatedas where f=DriverFrequency[Hz] a=Tuberadius UsingonemaycalculateVmin(0)using OnemaynowcalculatethePressureReectionCoecient,.Foraninnitelyrigidsurface=1whichmeansthattheentiretyoftheacousticenergyisreectedbackintothemedium.Obviously,aninnitelyrigidsurfacedoesnotexist,butitispossibletogenerate'swhichareverynearly1.isacomplexquantityandhasbothamagnitudeandphase wherex1isthedistancefromthespecimentotherstminimum. OnemayalsocalculatetheNormalIncidenceSoundAbsorptionCoecient,n,andtheimpedanceratio,z=c n=1jj2z c=1+ 1(B.8)

PAGE 77

MicrophoneVoltagevs.xcorfor600HzExcitation

PAGE 78

FigureB{2: MicrophoneVoltagevs.xcorfor1000HzExcitation FigureB{3: MicrophoneVoltagevs.xcorfor1400HzExcitation

PAGE 79

FigureB{4: MicrophoneVoltagevs.xcorfor1800HzExcitation

PAGE 80

TableC{1: PSPStaticCalibrationResults P[psia]P=P0 66

PAGE 81

TableC{2: PMTFrequencyResponseResults Freq.[Hz]Mag.[]Mag.[dB]Phase() 1061.1641.319-9.852041.1671.341-9.923041.1641.319-9.934001.1661.334-10.144961.1651.327-9.926081.1671.341-10.087041.1611.297-9.828001.1611.297-10.048961.1631.312-10.0310081.1581.274-10.0211041.1601.289-10.112001.1631.312-9.9512961.1641.319-10.1314081.1651.327-9.9615041.1631.312-10.1316001.1671.341-10.0816961.1661.334-9.8118081.1641.319-9.919041.1601.289-10.1420001.1591.282-10.2120961.1581.274-10.0722081.1631.312-10.18 TableC{3: PSPLinearityResults Pressure[Pa]SPL[dB]PMTPower[V2]p 356.23145.016.022.45497.55147.9212.083.48631.89149.9917.974.24762.64151.6326.205.12888.68152.9533.835.821011.51154.0844.706.691129.06155.0355.357.441245.66155.8964.808.051357.55156.6379.588.921469.62157.3293.199.65

PAGE 82

TableC{4: 115dBSPLFrequencyResponseData Freq.GxxGnnResp.Rel.MagPhase2xySPL 5004.5460.155.5710.000-30.3319.60115.6365962.3240.154.195-2.464-56.639.70115.1857002.3040.153.975-2.932-47.309.31115.6148042.4080.154.213-2.427-48.3510.27115.3019241.4240.153.235-4.721-19.825.65115.31910042.5360.154.193-2.468-56.1310.40115.5711002.3010.154.085-2.695-37.869.098115.37212041.5910.153.329-4.472-33.966.682115.54813003.0500.154.559-1.741-63.9112.63115.64413961.1850.152.920-5.611-41.244.632115.40814921.1870.152.913-5.632-65.064.652115.43715960.7300.152.390-7.351-62.362.951115.04817000.5790.151.944-9.145-42.942.330115.83117961.0030.152.710-6.259-48.974.174115.33319080.7790.152.390-7.351-56.733.148115.32820201.0720.152.821-5.911-49.254.377115.273 [Hz][nV2rms][nV2rms][V=Pa][dB][deg.][103][dBre20Pa] TableC{5: 115dBSPLFrequencyResponseNormalizedErrorEstimates Mag.BiasMag.RandomPhaseRandom2xyBias2xyRandom -0.0320.1580.1580.0010.313-0.0610.2260.2260.0010.450-0.0610.2310.2310.0010.459-0.0590.2200.2200.0010.437-0.0960.2970.2970.0010.592-0.0560.2180.2180.0010.434-0.0610.2330.2330.0010.465-0.0860.2730.2730.0010.543-0.0470.1980.1980.0010.393-0.1130.3280.3280.0010.654-0.1120.3270.3270.0010.653-0.1710.4110.4110.0010.821-0.2060.4630.4630.0010.924-0.1300.3450.3450.0010.689-0.1620.3980.3980.0010.795-0.1230.3370.3370.0010.673

PAGE 83

TableC{6: 119dBSPLFrequencyResponseData Freq.GxxGnnResp.Rel.MagPhase2xySPL 5005.9660.154.0980.000-36.430.238119.4825965.7970.153.961-0.295-34.0222.360119.6557003.9950.153.462-1.465-42.4616.330119.2118044.5640.153.564-1.213-37.2518.760119.5329322.3750.152.897-3.012-28.489.199119.44410203.4760.153.238-2.046-47.3613.280119.18711002.9120.152.953-2.846-55.8411.090119.21612045.1600.152.739-3.500-47.5519.280119.65113002.2660.152.512-4.251-26.048.193119.53113962.3590.152.492-4.320-35.2815.370119.20214923.1380.152.522-4.217-41.5416.000119.21216202.8360.152.517-4.234-39.605.280119.51117002.8270.152.516-4.237-36.879.683119.44718282.9470.152.527-4.199-41.0113.350119.40618921.9220.152.389-4.687-36.863.662119.25520201.8720.152.227-5.297-54.074.843119.738 [Hz][nV2rms][nV2rms][V=Pa][dB][deg.][103][dBre20Pa] TableC{7: 119dBSPLFrequencyResponseNormalizedErrorEstimates Mag.BiasMag.RandomPhaseRandom2xyBias2xyRandom -0.0251.4501.4500.0012.899-0.0250.1480.1480.0010.292-0.0360.1740.1740.0010.344-0.0320.1620.1620.0010.320-0.0590.2320.2320.0010.462-0.0410.1930.1930.0010.383-0.0490.2110.2110.0010.420-0.0280.1590.1590.0010.316-0.0620.2460.2460.0010.490-0.0600.1790.1790.0010.355-0.0460.1750.1750.0010.348-0.0500.3070.3070.0010.612-0.0500.2260.2260.0010.450-0.0480.1920.1920.0010.382-0.0720.3690.3690.0010.736-0.0740.3210.3210.0010.640

PAGE 84

TableC{8: 122dBSPLFrequencyResponseData Freq.GxxGnnResp.Rel.MagPhase2xySPL 50015.5300.154.6660.000-44.0928.820122.51559613.0900.154.343-0.623-46.9224.990122.39270012.2400.154.17-0.976-38.8222.370122.4528049.9200.153.996-1.346-49.9142.380122.34893211.6100.153.976-1.390-39.0222.430122.63910288.8540.153.678-2.067-48.9915.360122.13711086.8390.153.462-2.592-36.4716.799122.41212046.8940.153.294-3.024-48.3412.840122.55413006.6340.153.149-3.415-36.3512.630122.23213966.4360.153.085-3.594-45.7512.310122.71114926.2770.153.003-3.828-45.0911.730122.40216205.9760.152.812-4.399-45.0911.480122.53917004.4030.152.527-5.327-41.349.151122.36718285.9530.152.417-5.713-39.728.853122.29119085.5980.152.332-6.024-48.6310.720122.32220206.5490.152.213-6.479-41.6211.630122.399 [Hz][nV2rms][nV2rms][V=Pa][dB][deg.][103][dBre20Pa] TableC{9: 122dBSPLFrequencyResponseNormalizedErrorEstimates Mag.BiasMag.RandomPhaseRandom2xyBias2xyRandom -0.0100.1300.1300.0010.256-0.0110.1400.1400.0010.276-0.0120.1480.1480.0010.292-0.0150.1060.1060.0010.208-0.0130.1480.1480.0010.292-0.0170.1790.1790.0010.355-0.0210.1710.1710.0010.339-0.0210.1960.1960.0010.390-0.0220.1980.1980.0010.393-0.0230.2000.2000.0010.398-0.0230.2050.2050.0010.408-0.0240.2070.2070.0010.413-0.0330.2330.2330.0010.463-0.0250.2370.2370.0010.471-0.0260.2150.2150.0010.427-0.0220.2060.2060.0010.410

PAGE 85

TableC{10: 128dBSPLFrequencyResponseData Freq.GxxGnnResp.Rel.MagPhase2xySPL 51660.580.164.4890.000-35.17100.70128.75359666.820.164.339-0.295-32.3103.40128.53570850.530.164.241-0.494-33.2681.49128.46480449.530.164.203-0.572-46.4879.60128.25193230.960.164.159-0.663-46.0151.14128.357101232.670.164.055-0.883-54.3153.18128.184112441.190.163.932-1.151-40.7968.44128.311120438.620.163.732-1.604-40.6663.11128.408130037.480.163.579-1.968-50.4052.62128.254139630.830.163.395-2.426-41.4550.58128.274149228.910.163.078-3.278-46.1048.90128.824162022.930.162.853-3.937-46.6737.71128.642170021.150.162.689-4.451-48.0136.09128.476182819.900.162.552-4.905-51.5432.70128.231190815.120.162.473-5.179-33.4926.50128.200202014.450.162.387-5.486-45.1128.64128.597 [Hz][nV2rms][nV2rms][V=Pa][dB][deg.][103][dBre20Pa] TableC{11: 128dBSPLFrequencyResponseNormalizedErrorEstimates Mag.BiasMag.RandomPhaseRandom2xyBias2xyRandom -0.0030.0670.0670.0010.127-0.0020.0660.0660.0010.125-0.0030.0750.0750.0010.144-0.0030.0760.0760.0010.146-0.0050.0960.0960.0010.188-0.0050.0940.0940.0010.184-0.0040.0820.0820.0010.159-0.0040.0860.0860.0010.167-0.0050.0970.0970.0010.185-0.0040.0950.0950.0010.189-0.0060.0990.0990.0010.192-0.0070.1130.1130.0010.222-0.0080.1160.1160.0010.227-0.0080.1220.1220.0010.239-0.0100.1360.1360.0010.267-0.0110.1300.1300.0010.257

PAGE 86

TableC{12: 134dBSPLFrequencyResponseData Freq.GxxGnnResp.Rel.MagPhase2xySPL 516247.80.174.8080.000-36.83311.2134.283596181.60.174.194-1.187-37.10248.3134.118708165.90.173.970-1.663-35.34239.3134.203804152.20.173.787-2.073-40.30211.4134.239932136.10.173.603-2.506-38.47197.8134.1861012117.30.173.369-3.089-48.79175.9134.1221108133.50.173.465-2.845-41.43195.2134.1681204121.80.173.347-3.146-42.15177.1134.3431300120.00.173.310-3.243-43.55179.5134.3761396109.90.173.219-3.485-43.47162.2134.2341492112.90.173.199-3.539-41.39163.5134.408162096.50.172.973-4.175-44.05157.7134.360170090.80.172.887-4.430-50.35141.8134.350179685.50.172.757-4.831-43.46124.3134.271190888.20.172.694-5.031-45.38136.5133.923202093.50.172.604-5.326-42.63127.0134.445 [Hz][nV2rms][nV2rms][V=Pa][dB][deg.][103][dBre20Pa] TableC{13: 134dBSPLFrequencyResponseNormalizedErrorEstimates Mag.BiasMag.RandomPhaseRandom2xyBias2xyRandom -0.0010.0330.0330.0000.055-0.0010.0390.0390.0010.067-0.0010.0400.0400.0010.070-0.0010.0430.0430.0010.077-0.0010.0450.0450.0010.081-0.0010.0480.0480.0010.088-0.0010.0450.0450.0010.081-0.0010.0480.0480.0010.087-0.0010.0480.0480.0010.087-0.0020.0510.0510.0010.093-0.0020.0510.0510.0010.093-0.0020.0520.0520.0010.095-0.0020.0550.0550.0010.102-0.0020.0590.0590.0010.111-0.0020.0560.0560.0010.105-0.0020.0590.0590.0010.110

PAGE 87

TableC{14: 140dBSPLFrequencyResponseData Freq.GxxGnnResp.Rel.MagPhase2xySPL 516982.00.1554.7440.000-37.86649.80140.38596928.90.1554.648-0.178-38.80636.10140.316708783.60.1554.263-0.929-38.49610.90140.324804607.30.1554.174-1.112-43.60494.30138.994948690.70.1553.961-1.567-43.25567.20140.4151108550.60.1553.495-2.654-41.42503.50140.5191204515.90.1553.409-2.870-41.20499.70140.2031300509.80.1553.335-3.061-47.83477.00140.5951396487.20.1553.331-3.071-43.56465.50140.4071492473.30.1553.282-3.200-44.03476.70140.411620380.30.1553.069-3.783-42.79404.50140.0431700380.50.1553.018-3.929-43.65410.70140.189 [Hz][nV2rms][nV2rms][V=Pa][dB][deg.][103][dBre20Pa] TableC{15: 140dBSPLFrequencyResponseNormalizedErrorEstimates Mag.BiasMag.RandomPhaseRandom2xyBias2xyRandom 0.0000.0160.0160.0000.0190.0000.0170.0170.0000.0200.0000.0180.0180.0000.0220.0000.0230.0230.0000.0320.0000.0200.0200.0000.0260.0000.0220.0220.0000.0310.0000.0220.0220.0000.0320.0000.0230.0230.0000.0340.0000.0240.0240.0000.0350.0000.0230.0230.0000.0340.0000.0270.0270.0000.0420.0000.0270.0270.0000.041

PAGE 88

TableC{16: 140dBSPLFrequencyResponseinN2Data Freq.GxxGnnResp.Rel.MagPhase2xySPL 51692.070.2023.910.000-77.14296140.67259695.060.2020.37-1.39299.37220140.45870885.400.2018.59-2.18698.25165.5140.26780463.800.205.674-12.49455.36176.4140.1294873.700.2011.14-6.634-165.8629140.392110888.400.2016.08-3.446-43.21111.3140.211204103.200.2031.492.392113.6322.6140.363130086.400.2014.42-4.392-83.1978.96140.294139665.360.207.21-10.41356.8625.66140.7681492104.730.2033.062.814107.1457.9140.324162092.920.2023.6-0.113-82.73822.8140.373170082.370.2013.01-5.28668.9173.07140.041 [Hz][pV2rms][pV2rms][nV=Pa][dB][deg.][103][dBre20Pa] TableC{17: 140dBSPLFrequencyResponseinN2NormalizedErrorEstimates Mag.BiasMag.RandomPhaseRandom2xy2xyRandom -0.0021.2991.2990.0012.599-0.0021.5071.5070.0013.014-0.0021.7381.7380.0013.476-0.0031.6831.6830.0013.367-0.0030.8910.8910.0011.782-0.0022.1192.1190.0014.239-0.0021.2451.2450.0012.489-0.0022.5162.5160.0015.032-0.0034.4144.4140.0018.828-0.0021.0451.0450.0012.089-0.0020.7790.7790.0011.558-0.0022.6162.6160.0015.231

PAGE 89

FigureD{1: PMTPowerasaFunctionofSPL 75

PAGE 90

FigureD{2: Mic-PMTCoherenceasaFunctionofSPL

PAGE 91

FigureD{3: Response,RelativeResponse,andPhaseResponseofOpticalSystemat115dBSPL

PAGE 92

FigureD{4: Response,RelativeResponse,andPhaseResponseofOpticalSystemat119dBSPL

PAGE 93

FigureD{5: Response,RelativeResponse,andPhaseResponseofOpticalSystemat122dBSPL

PAGE 94

FigureD{6: Response,RelativeResponse,andPhaseResponseofOpticalSystemat128dBSPL

PAGE 95

FigureD{7: Response,RelativeResponse,andPhaseResponseofOpticalSystemat134dBSPL

PAGE 96

FigureD{8: Response,RelativeResponse,andPhaseResponseofOpticalSystemat140dBSPL

PAGE 97

A.E.Baron,J.D.S.Danielson,M.Gouterman,J.R.Wan,andJ.B.Callis.Sub-millisecondresponsetimesofoxygen-quenchedluminescentcoatings.ReviewofScienticInstruments,64(12):3394{3402,1993. J.H.Bell,E.T.Schairer,L.A.Hand,andR.D.Mehta.Surfacepressuremeasurementsusingluminescentcoatings.AnnualReviewofFluidMechanics,33:155{206,2001. J.S.BendatandA.G.Piersol.RandomData:AnalysisandMeasurementProcedures.WileyInterscience,NewYork,NY,3rdedition,2000. D.T.Blackstock.FundamentalsofPhysicalAcoustics.JohnWileyandSons,NewYork,NY,2000. B.F.Carroll,A.Winslow,J.Abbitt,K.Schanze,andM.Morris.Pressuresensitivepaint:Applicationtoasinusoidalpressureuctuation.Proceedingsofthe16thICIASF,pages35.1{35.6,1995. B.F.Carroll,J.D.Abbitt,E.W.Lukas,andM.J.Morris.Stepresponseofpressure-sensitivepaints.AIAAJournal,34(3):521{526,1996. C.-M.Chan,M.-Y.Chan,M.Zhang,W.Lo,andK.-Y.Wong.Theperformanceofoxygensensinglmswithruthenium-absorbedfumedsilicadispersedinsiliconerubber.TheAnalyst,124:691{694,1999. HamamatsuCorp.S3884datasheet.OntheWWW, S/S2381 etc.pdf HamamatsuCorp.R6352datasheet.OntheWWW, R/R6352.pdf HamamatsuCorp.Photoncountingusingphotomultipliertubes.OntheWWW, photoncounting.pdf M.E.CoxandB.I.Dunn.Oxygendiusioninpoly(dimethylsiloxane)usinguo-rescencequenching.i.measurementtechniqueandanalysis.JournalofPolymerScience,PartA:PolymerChemistry,24(4):621{636,1986. R.H.Engler.Furtherdevelopmentsofpressuresensitivepaint(opms)fornon-atmodelsinsteadytransonicowandunsteadyconditions.16thICIASFRecord,16:33.1{33.8,1995. 83

PAGE 98

J.W.Gregory.Porouspressure-sensitivepaintsformeasurementofunsteadypres-sureinturbomachinery.AIAA-2004-294,Presentedatthe42ndAerospaceSciencesMeetingandExhibit,Reno,NV,2004. J.W.Gregory,H.Sakaue,andJ.P.Sullivan.Unsteadypressuremeasurementsinturbomachineryusingporouspressuresensitivepaint.AIAA-2002-84,Presentedatthe40thAerospaceSciencesMeetingandExhibit,Reno,NV,2002. M.Kameda,N.Tezuka,T.Hangai,K.Asai,K.Nakakita,andY.Amao.Adsorptivepressure-sensitivecoatingsonporousanodizedaluminum.MeasurementScienceandTechnology,15:489{500,2004. M.E.Kose.Multi-LuminophoreCoatingsforPressureSensitivePaintApplications.Phddissertation,UniversityofFlorida,Gainesville,FL,May2005. T.C.Liu,B.T.Campbell,S.P.Burns,andJ.P.Sullivan.Temperature-andpressure-sensitiveluminescentpaintsinaerodynamics.AppliedMechanicsReviews,50:227{246,1997. X.Lu,M.A.Winnik,editedbyV.Ramamurthy,andK.S.Schanze.LuminescentQuenchingbyOxygeninPolymerFilms,Organic,PhysicalandMaterialsPhoto-chemistry.Marcel-Dekker,NewYork,NY,2000. C.McGraw,H.Shrof,G.Khalil,andJ.Callis.Thephosphorescencemicrophone:Adevicefortestingoxygensensorsandlms.ReviewofScienticInstruments,74(12):5260{5266,2003. A.MillsandQ.Chang.Modelleddiusion-controlledresponseandrecoverybe-haviourofanakedopticallmsensorwithahyperbolic-typeresponsetoanalyteconcentration.Analyst,117(9):1461{1466,1992. P.M.MorseandK.U.Ingard.TheoreticalAcoustics.PrincetonUniversityPress,NewYork,NY,1987. AmericanSocietyofTestingandMaterials(ASTM).C384-98standardtestmethodforimpendanceandabsorptiontestingofacousticalmaterialsbytheim-pedancetubemethod.OntheWWW, Y.Sakamura,M.Matsumoto,andT.Suzuki.Highframe-rateimagingofsurfacepressuredistributionusingaporouspressure-sensitivepaint.MeasurementScienceandTechnology,16:759{765,2005. H.SakaueandJ.PSullivan.Fastresponsetimecharacteristicsofaondizedaluminumpressuresensitivepaint.38thAerospaceSciencesMeetingandExhibit,Reno,NV,2000. H.SakaueandJ.P.Sullivan.Timeresponseofanodizedaluminumpressure-sensitivepaint.AIAAJournal,39(10):1944{1949,2001.

PAGE 99

EdwardT.Schairer.Optimumthicknessofpressure-sensitivepaintforunsteadymeasurements.AIAAJournal,40(11):2312{2318,November2002. K.S.Schanze,B.F.Carroll,S.Korotkevitch,andM.J.Morris.Temperaturedepen-danceofpressuresensitivepaints.AIAAJournal,35(2):306{310,February1997. T.Schultz.Acousticimpedancetestingforaeroacousticapplications.EGM6905-IndependantStudyinAcoustics.UniversityofFlorida,Gainesville,FL,US,2004. G.W.Swift.Thermoacousticengines.JournaloftheAcousticalSocietyofAmerica,84(12):1145{5266,1988. C.A.Virgin,B.F.Carroll,L.N.Cattafesta,K.S.Schanze,andM.E.Kose.Pressure-sensitivepaintforacousticpressureuctuations.Proceedingsofthe2005ASMEIMECE,2005. N.A.Winslow.DynamicModelingandCompensationSchemesforPressureSensitivePaintsinUnsteadyFlows.Phddissertation,UniversityofFlorida,Gainesville,FL,2001. N.A.Winslow,B.F.Carroll,andF.M.Setzer.Frequencyresponseofpressuresensitivepaints.27thFluidDynamicsConference,NewOrleans,LA,34(3),1996. N.A.Winslow,B.F.Carroll,andA.J.Kurdila.Modeldevelopmentandanalysisofthedynamicsofpressure-sensitivepaints.AIAAJournal,39(4):660{666,2001.

PAGE 100

ChristopherAllenVirginwasbornonFebruary23,1981,inKankakee,IL.UpongraduatingfromBradley-BourbonnaisCommunityHighSchoolin1999,Chrisat-tendedBradleyUniversitywherehewasawardedabachelorofsciencedegreeinmechanicalengineeringin2003.DuringhisnalyearatBradleyUniversity,ChrisconsideredpursuingacareerasadevelopmentalengineerwiththeUnitedStatesAirForce.InAprilof2003,Chrisdecidedtoattendgraduateschooltochangehiscareerfocustoaerospaceengineering.ChrissoughtemploymentwithButlerInterna-tionalworkingattheCaterpillarMossvilleEngineAssemblyCenterwhileapplyingtograduateschools.Afterevaluatinghisoptions,ChrismovedtoGainesville,FL,toattendtheUniversityofFloridawherehereceivedaMasterofEngineeringdegreeinaerospaceengineeringin2005. 86


Permanent Link: http://ufdc.ufl.edu/UFE0012905/00001

Material Information

Title: Acoustic Application of Pressure-Sensitive Paint
Physical Description: Mixed Material
Copyright Date: 2008

Record Information

Source Institution: University of Florida
Holding Location: University of Florida
Rights Management: All rights reserved by the source institution and holding location.
System ID: UFE0012905:00001

Permanent Link: http://ufdc.ufl.edu/UFE0012905/00001

Material Information

Title: Acoustic Application of Pressure-Sensitive Paint
Physical Description: Mixed Material
Copyright Date: 2008

Record Information

Source Institution: University of Florida
Holding Location: University of Florida
Rights Management: All rights reserved by the source institution and holding location.
System ID: UFE0012905:00001


This item has the following downloads:


Full Text












ACOUSTIC APPLICATION OF PRESSURE-SENSITIVE PAINT


By

CHRISTOPHER ALLEN VIRGIN


















A THESIS PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

UNIVERSITY OF FLORIDA


2005

















To my family.















ACKNOWLEDGMENTS

The author would like to thank the supervisory committee chairman, Dr. Bruce

F. Carroll, for his continued guidance, support, and encouragement. Gratitude is also

addressed to Dr. Louis Cattafesta for his advice and guidance. The author would

like to thank the other supervisory committee members, Dr. Mark Sheplak, Dr. Kirk

Schanze, and Dr. Martin Morris, for their support. The author would also like to

acknowledge all family and friends who have helped make this possible.















TABLE OF CONTENTS
page

ACKNOWLEDGMENTS ................... ...... iii

LIST OF TABLES ...................... ......... vi

LIST OF FIGURES ................... ......... viii

LIST OF SYMBOLS AND ABBREVIATIONS ................. x

ABSTRACT . . . . . . . . xiii

CHAPTER

1 INTRODUCTION ......... .......... ......... 1

PSP Physics ............................ .... 1
Previous W ork .. .. ... .. .. .. .. ... .. .. .. ... .. .. 4
Motivation ................... .............. 9

2 EXPERIMENTAL APPARATUS ................ .... 10

Plane Wave Tube ............................... 10
Temperature Effects of Acoustic Waves ............... 12
Photodetector Description ......... .......... .... 12
PSP Applied to Detector ......... .................. 14

3 EXPERIMENTAL SETUP AND PROCEDURE . . .24

Standing Wave Ratio Test ............... ....... ..24
PSP Static Calibration ............... ......... ..26
Photomultiplier Frequency Response ........ ............ 27
Acoustic Testing ..... ...................... 27

4 EXPERIMENTAL RESULTS ........................ 29

Standing Wave Ratio Results ..... ........... .... 29
PSP Calibration ..... ...................... 29
Photodetector Frequency Response ................ .... 30
Noise in Experimental Setup ................ ... ... .. 33
PSP Behavior ............... .............. ..34
PSP Linearity ............... .............. ..36
Thermal Response ............... ........... ..38
Time Resolution of Optical Signal ................ ...... 39









Uncertainty Analysis ............. . . .... 41
PSP Static Calibration Uncertainty ................. .. 41
Frequency Response Errors .................. .. 42

5 CONCLUSIONS ............... ........... .. 45

APPENDIX

A DERIVATIONS OF ACOUSTIC RELATIONS . 47

Temperature C!( ,ii,i. of a Small Isentropic Compression . ... 47
Derivation of the One-Dimensional Wave Equation . . 48
Derivation of the Cutoff Frequency .................. ... 50
Derivation of the Waveguide Equations .................. .. 52
Derivation of the Rectangular Waveguide Equation . ... 52
Derivation of the Cylindrical Waveguide Equation . ... 55
Normal Incidence Sound Reflection and Transmission . .... 57

B STANDING WAVE RATIO METHOD ........ . . 60

Standing Wave Ratio Calculations .................. .. 60
Standing Wave Ratio Figures .................. .... .. 63

C TABULATED EXPERIMENTAL RESULTS . . ..... 66

D EXPERIMENTAL RESULTS FIGURES ................. .. 75

LIST OF REFERENCES ........... . ......... .. 83

BIOGRAPHICAL SKETCH .............. . .. 86















LIST OF TABLES


SWR Data Collection Settings . .....

SW R Results . ..............

PSP Static Calibration Settings . ....

PMT FRF Acquisition Settings . ....

PMT FRF Acquisition Settings . ....

Linearity Data Acquisition Settings . ..

Single Time Series Data Acquisition Settings .

PSP Static Calibration Results . ....

PMT Frequency Response Results . ...

PSP Linearity Results . .........


C-4 115 dB SPL Frequency Response Data


5 115 dB

6 119 dB

7 119 dB

8 122 dB

9 122 dB

10128 dB

11128 dB

12134 dB

13134 dB

14140 dB

15140 dB

16140 dB


SPL Frequency Response Normalized Error

SPL Frequency Response Data . .

SPL Frequency Response Normalized Error

SPL Frequency Response Data . .

SPL Frequency Response Normalized Error

SPL Frequency Response Data . .

SPL Frequency Response Normalized Error

SPL Frequency Response Data . .

SPL Frequency Response Normalized Error

SPL Frequency Response Data . .

SPL Frequency Response Normalized Error

SPL Frequency Response in N2 Data .


Estimates .



Estimates .



Estimates .



Estimates .



Estimates .



Estimates .


Table

31

41

42

43

44

45

46

C-

C-1

C-


page

25

29

30

31

37

38

41

66

67

67

68

68

69

69

70

70

71

71

72

72

73

73

74









C-17140 dB SPL Frequency Response in N2 Normalized Error Estimates 74















LIST OF FIGURES
Figure page

1-1 Schematic of a Typical PSP Layer .... . .... 2

1-2 Comparison of the Amplitude Response of Winslow's Model and 1/2,
1st, and 2"d Order Systems ............. . 6

1-3 Comparison of the Phase Response of Winslow's Model and 1/2, 1st,
and 2"d Order Systems... ............ ........ 7

2-1 Schematic of a Cylindrical Waveguide Modes ............. .11

2-2 Schematic of a Side-On PMT .................. ..... 13

2-3 Equivalent Circuit Representation of a Photodetector . ... 15

2-4 Desirable C'!. im .I Properties of a PSP Coating . ..... 20

2-5 Minimum Detectable Radiant Flux of Detectors ........... .21

2-6 Minimum Detectable SPL of Detectors ................ 22

3-1 Schematic of Experimental Setup for Standing Wave Ratio Testing .25

3-2 Schematic of Experimental Setup for Acoustic Testing . ... 28

4-1 PSP Static Calibration Results ................ ...... 31

4-2 PMT Frequency Response ............... .... 32

4-3 Experimental Noise Comparison ................ .... 34

4-4 PSP Coating Relative Frequency Response . . 35

4-5 PSP Coating Phase Response ................ . .36

4-6 Linearity of Optical System ................ .... 37

4-7 Coating Response in Air and Nitrogen ............... .. 39

4-8 Comparison of Unfiltered PMT Output, Filtered PMT Output, and
Microphone Output ... ............ ..... .. 40

A-1 Schematic of a Square Duct ................ .... 52

A-2 Schematic of a Cylindrical Duct .................. .. 55









A-3 Sound Reflection and Transmission at a Normal Incidence Surface

B-1 Microphone Voltage vs. Xcor for 600 Hz Excitation .........


B-2 Microphone Voltage vs. Xcor for 1000 Hz Excitation

B-3 Microphone Voltage vs. X ,, for 1400 Hz Excitation

B-4 Microphone Voltage vs. X ,, for 1800 Hz Excitation

D-1 PMT Power as a Function of SPL .. ........

D-2 Mic-PMT Coherence as a Function of SPL .....

D-3 Response, Relative Response, and Phase Response o


at 115 dB SPL .. .......

D-4 Response, Relative Response, and
at 119 dB SPL .. .......

D-5 Response, Relative Response, and
at 122 dB SPL .. .......

D-6 Response, Relative Response, and
at 128 dB SPL .. .......

D-7 Response, Relative Response, and
at 134 dB SPL .. .......

D-8 Response, Relative Response, and
at 140 dB SPL .. .......


Phase Response o


Phase Response o


Phase Response o


Phase Response o


Phase Response o


f Optical System


f Optical System


f Optical System


f Optical System


f Optical System


f Optical System














LIST OF SYMBOLS AND ABBREVIATIONS

a Width/Diameter of Waveguide [m]

co Speed of Sound [m/s]

e C'i irge of an electron [1.60E-19C

f, Cutoff Frequency of mode (m,n)[Hz]

1ishot Shot Noise [A]

itpl Anode current due to the illumination from the acoustic signal [A]

(ispi),,,, Minimum Detectable Anode Current due to Acoustic Signal [A]

k Boltzmann's Constant [1.38E-23J/K]

k' Wavenumber

uf Velocity

t Time [sec]

x Distance [m]

S1/4 Scale Reading with microphone at 1st minimum [mm]

xor Correction Factor [mm]

x.2m Scale reading with microphone touching face of specimen [mm]

Xobs Observed scale reading [mm]

xjf Observed scale reading with probe touching specimen [mm]

z/pc Impedance Ratio

A Area of PSP Coating [m2]

B System Bandwidth [Hz]

C Capacitance [Farad]

GC, C1 Temperature dependant constants

F Device Noise Figure []









G Gain

1 Photodetector Current [A]

lby Anode current due to the mean background illumination [A]

Id Dark Current = Id, + GId [A]
I,9 Dark current subject to gain (from photocathode) [A]

Ids Dark current not subject to gain (from anode) [A]

Iph Total anode current due to incident light = isp + Iby [A]
In Johnson (Thermal) Noise [A]

J, Derivative of Bessel Function of order m

Kq Rate Constant for Oxygen Quenching

L Radiant Flux of Dye [W]

AL Fluctuating emission level from PSP [W]

L,,,, PSP emission in the absence of oxygen [m]

N Total Noise Present at Anode [A]

P Pressure [Pa]

R Resistance [Ohms]

S Henry's Law Sorption Coefficient

Se Entropy

Sp, Cathode Radiant Sensitivity [A/W]
T Temperature [K]

a nth zero of J

a, Normal Incidence Sound Absorption Coefficient

7 Ratio of Specific heats
I Pressure Reflection Coefficient Magnitude

Tr Irradiance of the PSP Coating [W/m22] (r = L/A)
C( Tube Attenuation Constant

0 Pressure Reflection Coefficient Phase [degrees]









A Wavelength [m]

n(A) Cathode Quantum Efficiency

p Density

o phase [radians]

S Quantum Yield of dye at Pressure P

S PSP quantum yield in the absence of oxygen

Yo2 Mole Fraction of Oxygen (in the medium)
1w Radian Frequency [radians/sec]

APD Avalanche Photodiode

CE Anode Collection Efficiency

NEP Noise Equivalent Power

PMT Photomultiplier Tube

SPL Sound Pressure Level [dB]

S WR Standing Wave Ratio

PSP Pressure-Sensitive Paint
















Abstract of Thesis Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Master of Science

ACOUSTIC APPLICATION OF PRESSURE-SENSITIVE PAINT

By

Christopher Allen Virgin

December 2005

Chair: Bruce F. Carroll
Major Department: Mechanical and Aerospace Engineering

This thesis describes the effort to experimentally verify the response of "traditional"

Pressure-Sensitive Paint (PSP) to low amplitude pressure fluctuations such as those common in

acoustic measurements. Pressure-sensitive paint utilizes molecular quenching of fluorescent

compounds in the presence of oxygen to discern the pressure field at a given point on a surface.

A 0.1 meter diameter by 1.0 meter long plane wave tube is utilized to create a planar acoustic

field at the surface of a PSP sample. The response of the paint is measured using a

Photomultiplier Tube (PMT). The plane wave tube is driven through a function generator and an

audio amplifier.

Frequency response, linearity, and temperature effects of the coating are evaluated.

Frequency response measurements show the paint to behave similar to a "1/2"-order system, i.e.,

a -45 phase and -10 dB/decade attenuation. This is in agreement with previous research

conducted at the University of Florida. Using a numerical model, the optical system (coating and

detector) is estimated to have a noise floor of 115 dB SPL. This is quite high for an acoustic

detection scheme and is the result of the PSP and PMT fundamental characteristics. Experimental

results show the noise floor to be in the region of 119 to 115 dB SPL. The optical system









is shown to be linearly related to the sound pressure at the face of the specimen

through both frequency response and direct tests of the coating response versus ap-

plied acoustic pressure. The response of PSP can vary strongly with temperature

depending upon the specific paint formulation. In this instance, the temperature

fluctuations associated with the acoustic waves are experimentally shown to have

negligible impact on the response of the coating.

The interests of this research lie in applying unsteady pressure measurement

tools to high-speed hydrodynamic pressure fluctuations such as those seen in tur-

bulent boundary l -Vr-. PSP is currently being evaluated in several forms in hopes

of attaining sufficient sensitivity to be applicable in this regime. The ability of ob-

taining real-time measurements of comparatively small pressure fluctuations also has

potential impact in medical and environmental fields.















CHAPTER 1
INTRODUCTION

This chapter presents some background information on pressure-sensitive paint,

commonly referred to as PSP. Reviews of recent studies in the dynamic response of

PSP are also presented. It is shown that the dynamic response of several different

types of PSP are currently being investigated. Recent studies focus on the dynamic

response of newer types of PSP due to their faster response times. This study in-

vestigates the dynamic behavior of a PSP and primer l -1--r applied directly to an

aluminum substrate.

PSP Physics

Pressure-Sensitive Paint is a measurement technique based on the oxygen quench-

ing of fluorescent molecules in a polymer binder. A schematic of a typical PSP 1I-vr

is shown in Figure 1-1. Shown is a PSP l-1-,-r applied directly to a substrate. The

process begins with Excitation of the luminophore molecules. This is accomplished

with a light source having strong intensity in the blue to UV portion of the spectrum

(A = 300-500 nm). Lasers, halogen lamps, LED's and strobe lights are often employ,

in this task. Luminophore molecules absorb energy from the source and transition

to a higher vibrational energy level [Kose, 2005]. Once at its higher energy level, the

luminophore has three routes to the ground state. One possible mode of decay is for

the luminophore to release its energy to the surrounding polymer matrix in the form

of thermal energy [Schanze et al., 1997, Winslow, 2001]. This process is not favored in

most PSP formulations. The second route of decay is known as i i ,. decay or

luminescence. This route encompasses both fluorescence and phosphorescence. Fluo-

rescence is the process of absorbing a photon and emitting a photon of lower energy.

Phosphorescence is a quantum process involving the change in the spin multiplicity











Excitation Light




*


Luminescence


Oxygen Molecule



Polymer Binder %I i


Substrate / ygen uenchi
/ Luminophore / yg

Figure 1-1: Schematic of a Typical PSP L v.-r

of a molecule. Ruthenium-based PSP's exhibit fluorescence, while platinum-based
paints display phosphorescence [Winslow, 2001]. Both processes result in the emis-
sion of a photon of lower energy (i.e., longer wavelength) than the absorbed photon.
The emitted photon is in the red to orange color of the spectrum (A = 550-650 nm).
The third and distinctive feature of PSP is that a luminophore may release
its energy to an oxygen molecule that has permeated the polymer binder. This
process is known as ..::i.- -: qi, ii, n!p,11 [Schanze et al., 1997, Winslow et al., 2001].
Luminescence and oxygen quenching are the primary routes of decay for a PSP. The
partial pressure of oxygen in the binder 1-v.-r is directly dependant on the partial
pressure of oxygen directly above the 1livr and the mass diffusivity of the polymer(s)
used in the binder. The luminophores in the binder exhibit the behavior of either
emitting a red-shifted photon or interacting with oxygen. In this manner, it can be
shown that the observed intensity of the emission of the PSP is inversely proportional
to the oxygen concentration surrounding the luminophores. This behavior is governed









by the Stern-Volmer relation [Winslow et al., 2001]

1Vac Lvac
1 = + KqSxoP (1.1)
) L

The Stern-Volmer Equation relates the emission intensity (radiant flux) of the PSP

in the absence of oxygen, Lac, to the emission, L, at an absolute pressure, P. In aero-

dynamic applications, it is often not feasible to measure the intensity in the absence

of oxygen, so Eqn(1.1) is often related to the intensity at some reference pressure

(typically Patm) [Virgin et al., 2005]. This yields the more familiar rodynamic

testing; form of the Stern-Volmer relation [Liu et al., 1997]


= Co (T) + C1 (T) L- (1.2)
Po L

This form is commonly used in applications of PSP as it allows one to use any reference

condition to infer the pressure at some other condition of interest. As indicated, the

constants Co and C1 vary with temperature. More exact descriptions of PSP behavior

are provided by Winslow [2001] and Kose [2005].

Many variables influence the specific behavior of a PSP 1I- r. The procedure

of application influences the uniformity of the luminescence of the 1-ri v. One may

increase the observed luminescence of a li- -r by first applying a white primer l1-,-r to

the substrate, however this may adversely impact the response time of the l-1-, r due

to oxygen degassing between the paint and primer [Liu et al., 1997]. Thicker paint

l-i. r~s result in increased luminescence due to a larger population of luminophores.

However, thicker lI. rs also result in slower response time due to the increased length

which oxygen must diffuse into the binder. There also exists a limit, above which the

luminophores will begin to "self-quench" [C'!ii i et al., 1999], which greatly degrades

the measurable response.









Previous Work

Many studies have been performed using PSP in steady pressure fields. Bell

et al.(2001),Liu et al.(1997), and Lu et al.(2000) provide adequate reviews of the

literature. The various flow fields which have been investigated include both subsonic

and supersonic loads on aircraft models, turbomachinery such as fans and compressors

and automobile wind tunnel testing.

Cox and Dunn [1986] were the first to apply PSP to an unsteady flow field.

They investigated oxygen transport within a poly(dimethyl siloxane) (PDMS) l-i~v-r

doped with 9,10-diphenyl anthracene (9,10-D) as a Function of time using a static

calibration. They developed an analytical model for oxygen concentration within the

li. r derived from the 1-D diffusion equation. However, the li--r was viewed from

the side in this application so the intensity was the integrated intensity of the entire

I-,--i -r.

Mills and Chang [1992] were the first to look at the dynamic response of optical

film sensors, now known as PSP. The inverse of the PSP emission intensity was com-

pared to the pressure as it was quickly changed from a near vacuum to atmospheric

pressure. A model was developed which treated the paint as a first-order dynamic

system. The time constants and term weights were determined using nonlinear least

squares curve fits. The model developed by this method was found to strongly agree

with experimental results.

Both Engler [1995] and Carroll et al. [1995] introduced concurrent studies on the

response of PSP to periodic pressure fields. Engler subjected the PSP to frequencies

over the range of 0.1 to 50 Hz. The main goal was to characterize the pressure reso-

lution and dynamic range of the coating. No dynamic compensation or exploration

of the dynamics of the system were attempted. Carroll et al. presented experiments

of similar character. Much of the analysis was performed in the frequency domain.








It was shown that the PSP di-p1 II an amplitude response of a first-order dynamic
system although the phase response did not agree with expected results.
Winslow et al. [1996] developed a linearized dynamic model for PSP given in
Eqn.(1.3). This model has frequency response characteristics of a "1/2-order" system:
an amplitude response of -10 dB/decade beyond the cutoff frequency, and a phase
shift of -45. Winslow et al. then developed a dynamic compensator by performing
an inverse Fourier transform on the inverse of the frequency domain response. The
compensator was of the same form as a six term FIR filter. Applying this compensator
to the PSP response for a 1 Hz sawtooth wave yielded a corrected signal considerably
more accurate than the PSP measurement alone. This was the first application of a
dynamic compensator to PSP data.

A (, 0.1551 + 0.8449
( T[ + /1f( ) +
(1.3)

S(w) = -1/2 tan-1 (wr) 1+0.811 .94

where

1.423 2 (1.4)
S_ (log( )2)2 (t. 4)

This model demonstrated behavior similar to that of a "1/2" order system as shown
in Figure 1-2 and Figure 1-3. Winslow et al. also showed that the frequency response
of the paint was invariant to the pressure field. It was shown that coating thickness
effects the frequency response. This is due to the necessary mass diffusion through the
polymer binder. It was concluded that the developed model did not fully explain the
PSP behavior due to interactions with the primer l1 -r. However, the break points
and values of mass diffusivity agree with results of a study conducted by Carroll et al.
concerning the response of PSP to a step pressure change. Winslow et al. [2001]
developed three dynamic models for PSP. The first model, an empirical model in the
form of a transfer Function was applied to the signal from a high-frequency pressure














-20 -- -"... "
-20


S-40
0
o \

S-60

E
< -80-

1/2 Order System
-100 ....... 1st Order System
2nd Order System
Model System
1 2 0 ***** * ** *
10-2 10-1 100 101 102 103
Frequency [rad/sec]

Figure 1-2: Comparison of the Amplitude Response of Winslow's Model and 1/2,
1st, and 2nd Order Systems


transducer to model the output pressure. This model showed reasonable agreement

with data, but the coefficients developed were dependant on the thickness of the PSP

-1v-r and thus the model was only well suited to single sample usage. Diffusion-based

models with a linear and a stern-volmer calibration were both proposed and shown

to conform quite well to experimental observations.

Schairer [2002] Performed a numerical study on the influence of coating thick-

ness on the frequency response of a PSP 1iv, r. Using the one-dimensional diffusion

equation and a small sinusoidally varying pressure signal, it was shown that the op-

timum coating thickness for unsteady measurements is that which results in a -1.25

dB attenuation of the unsteady pressure signal i.e. PspI/Pp, = 0.866. This coat-

ing thickness corresponds to a maximum in the signal-to-noise ratio. The optimum












0

-20

-40 .

S-60
_0
-80 -
o \
0\
w -100

2 -120
-- \
-140- 1/2 Order System
.... 1st Order System \
-160 2nd Order System
Model System
-180 ........ .....
10-2 10-1 100 101 102 103
Frequency [radians/sec]

Figure 1-3: Comparison of the Phase Response of Winslow's Model and 1/2, 1st, and
2nd Order Systems


thickness was shown to decrease with increasing frequency. Above frequencies of 10

Hz, the greatest factor in determining the optimum thickness is the mass diff' I-i llii.

In recent years, several new types of PSP have been developed for better dynamic

response. PSP has been applied to anodized aluminum, TLC (thin-l-i- r chromatog-

raphy) plates and hard ceramic particles have been added to the polymer binder

(Gregory et al.(2002); Gregory(2004)). The porous surfaces serve to increase the

dynamic response time by enabling faster oxygen diffusion into the polymer binder.

Baron et al. [1993] first demonstrated that submillisecond response times may

be achieved using commercial TLC plates. Sakamura et al. [2005] showed that time-

resolved measurements of a pressure distribution are possible using PSP on a TLC









substrate in a two-dimensional Laval nozzle. TLC plates are easy to prepare and pro-

duce bright emission, however they are limited to use on flat plates and are relatively

fragile.

Several studies have been performed on anodized aluminum PSP [Sakaue and

Sullivan, 2000, 2001, Kameda et al., 2004]. This is made by anodizing the surface of

an aluminum body and dipping this body in a luminophore solution. The anodized

surface is very porous and serves to greatly enhance the oxygen diffusion and thus

the dynamic response of the PSP. The exact behavior of this type of PSP is still a

subject of investigation.

The suitability of PSP for detecting large pressure fluctuations has been demon-

strated. Currently, there is an interest in the smallest dynamic pressure which may

be detected using PSP. This is facilitated by an interest in hydrodynamic turbulent

pressure fluctuations of airborne bodies. Demonstration of non-invasive, direct de-

tection of turbulent noise on bodies would greatly decrease design cycle time of new

airframes.

McGraw et al. [2003] presented a proof of concept experiment for acoustic PSP

measurements. A single point measurement in a plane wave tube was performed

using a PMT and a traditional PSP formulation on a TLC substrate. McGraw et al.

reported the ability to collect valid signals for sound pressure levels (SPL) from 110

(AP = 6 Pa) to 137 dB (re 20/Pa) at a mean pressure of 101.5 kPa and frequencies

up to 3500 Hz. Significant damping of the signal was present at frequencies above

1000 Hz. In their work, signal averaging of the periodic sinusoidal output was used to

improve signal-to-noise ratio. Time accurate direct detection was not demonstrated

in this work and full field measurements were not attempted. Optimization of the

PSP formulation for the acoustic case was not attempted. An important result of

this work was the determination that temperature fluctuations due to the acoustic









pressure variations did not adversely impact the accuracy of the measurement due to

the large thermal mass of the substrate.

Motivation

Previous work has studied the dynamic response of newer types of PSP. Tra-

ditional PSP (i.e. an active and primer 1I- -r applied directly to a substrate) has

been shown to be able to detect large pressure fluctuations on the order of 0.1 atm.

[Carroll et al., 1995, 1996, Winslow et al., 1996, 2001]. This study investigates the

suitability of traditional PSP to detecting pressure fluctuations on the order of typical

acoustic signals. Diffusion limiting factors are reduced by restricting the PSP to a

thin coating. Traditional PSP possess the advantages of less cost, durability, and well

studied behavior as compared to the new variants now under scrutiny.















CHAPTER 2
EXPERIMENTAL APPARATUS

This chapter introduces the equipment used in this study. The behavior and

limitations of the plane wave tube used in this study are explored. The performance

of the tube driver is limited by the cutoff frequency of the tube to retain a planar sound

field. The photodetector, a Hamamatsu H9306-02 PMT module, is also introduced

and discussed. The performance of the detector and PSP were modelled in order to

predict a minimum pressure detection floor of the optical system, i.e., considering

the PSP and photodetector setup as a complete system. The experimental setup and

data collection systems are explained.

Plane Wave Tube

The plane wave tube used in this study is a cylinder of clear lexan and has a

diameter of 0.1 meters and length of 1.0 meter. The tube is actually a composite

structure of a lexan tube and an aluminum chamber to which a driver is mounted.

However, for the purposes of this study, the waveguide can be treated as a simple

cylinder. In this instance, the performance of the waveguide is limited by the cutoff

frequency (Eqn.(A.53)).(See Appendix A)

fc iamnCO
,n. 27a (2.1)
27ra

The cutoff frequency is the lower limit at which higher-order modes may propagate

down the waveguide. The first modes to propagate are the (1,0) and (2,0) modes,

followed by the (0,1) mode il\!,,ie and Ingard, 1987]. The mode notation is (r,O),

where the number indicates the number of 1/2 wavelengths present in each direction.

The behavior of the first 2 modes in each direction is illustrated in Figure 2-1. Below

their respective cutoff frequencies each higher-order mode is evanescent, which means









R0 Spinning) Modes


(1.0) Mode (0,1) Mode


(2,0) Mode (0,2) Mode

Figure 2-1: Schematic of a Cylindrical Waveguide Modes

it decays exponentially with distance from the source. If the waveguide is operated

below the first cutoff frequency, which is calculated as 2016 Hz, then the acoustic

field will be completely planar, i.e., the pressure at any station of the waveguide is

only a Function of time.

By operating the waveguide below the cutoff frequency, the PSP sample is en-

sured to receive a uniform pressure signal over its entire surface. Above the cutoff,

the pressure would vary with r and 0 over the surface of the sample. Since the pho-

todetector used has no innate spatial resolution, this would degrade the detectable

optical signal.


Radial Modes









Temperature Effects of Acoustic Waves

The acoustic waves manifest themselves as oscillatory isentropic compressions

of the medium. In addition to an increase in pressure (and density), there is also a

temperature perturbation. This temperature effect is relevant because temperature

can p1 i,- a substantial role in the behavior of PSP. The temperature perturbation of

an ideal gas due to a small amplitude acoustic wave is given by Swift [1988] and is

derived in Appendix A to be

7- ldP
dT Tf-,, P (2.2)
7 Po

where T,,f is the ambient temperature (298 K), 7 = 1.4 and Po is the ambient pressure

(101 kPa).

For a 140 dB acoustic wave, Eqn.(2.2) predicts a corresponding temperature

change of 0.1669 K. The PSP formulation used in this experiment has a fractional

change in intensity of -0.53'/K. [Kose, 2005] If the temperature change permeates

the PSP liv-r, this would induce a 0.08870 change in the PSP emission. Thus, the

temperature effects of the acoustic waves seem to be negligible. This result was also

confirmed experimentally by McGraw et al. [2003].

Photodetector Description

A Photomultiplier Tube (PMT) is an extremely sensitive photodetector. PMTs

have been commercially available for nearly 40 years and have become commonly

used in chemical, medical, and astronomical equipment. The extreme sensitivity

of PMTs is due to a large internal gain, typically ranging from 104 to 107. There

are two 1i i, ri" types of PMTs, side-on and head-on. In head-on PMTs the viewing

window and cathode are located at the head (end) of the tube whereas side-on PMTs

have the cathode and viewing window placed on the side of the tube. Both types

work on the same basic principles: Light enters the PMT through a viewing window.

The photons interact with the cathode material, releasing photoelectrons (electrons).









The photoelectrons are steered to the first dynode stage where they cause more

photoelectrons to be created by means of secondary electron emission. This process

continues along successive dynode stages (PMTs can have 10 or more dynode stages).

At each successive dynode, the incoming photoelectrons are multiplied again and

sent towards the next dynode. At the end of the tube, the anode collects all of the

photoelectrons [Corp., September, 2005]. This process is shown in the schematic of a

side-on PMT below in Figure 2-2. PMTs are able to obtain such large internal gain

Incoming Photon
















Meter




Power Supply

Figure 2-2: Schematic of a Side-On PMT


through the use of a large input voltage, typically on the order of 1000 Volts or larger.

This voltage is successively stepped up from perhaps 1 Volt at the first dynode, to

1000 Volts or more at the final dynode, resulting in more secondary photoelectron

emission at each succeeding dynode. Due to the large input voltage required by PMTs

it has become common practice for PMTs to be offered as complete PMT modules,

in which a more reasonable input voltage, such as 10 Volts, is stepped up by internal









circuitry within the module and then supplied to the PM tube to minimize the hazards

to people and equipment, and to eliminate the need for high voltage external power

supplies. The anode current is converted to a voltage by a conversion factor (typically

of the same order as the PMT gain) and this signal, plus noise, is the output of the

PMT.

One drawback of photomultiplier tubes is their relatively low Quantum Efficiency

(QE). The QE is the likelihood that an incoming photon will be converted to a

photoelectron and be detected by the device. There are typically two properties that

determine the overall QE of a PMT. The cathode QE, often noted as n(A), where

A is the wavelength of the incident light, is the likelihood that an incoming photon

will generate a photoelectron at the cathode. The anode Collection Efficiency (CE)

is the percentage of photoelectrons that are collected by the anode. The product

of theses two terms gives the overall QE of a PMT. The value of n(A) can range

from 0.01 4070, while the CE can be as high as 80 9070. However, the overall

QE of a PMT is typically 3070 or less [Corp., September, 2005]. This low QE results

in decreased sensitivity of the PMT and more noise resulting from the undetected

photons.

PSP Applied to Detector

We now turn to estimating the expected response of the optical system. This

may be accomplished by approximating the behavior of the PMT module and the

calibrated behavior of the PSP sample. In this instance, the signal of interest is

a fluctuating light signal (PSP reaction to an acoustic wave) superimposed onto a

large background signal (PSP emission due to Patm). Obviously, this shall serve to

complicate detection of the PSP response and yields pertinent criteria for evaluating

photodetectors for future experiments. One may pose a photodetector as an electrical

circuit. The detector then acts as a current source, where I = SpLG. The bandwidth



















+





Figure 2-3: Equivalent Circuit Representation of a Photodetector

of the detector is then evaluated as

1
B = (2.3)
2rRC

In general the bandwidth of the detector may be reduced by the addition of a low

pass (or bandpass) filter to the output of the detector. As we will find, reducing the

bandwidth has a positive impact on the system noise.

The gain of the photodetector is defined as the ratio of the current present after

amplification to that prior to amplification. For a PMT this is the anode current

divided by the photocathode current.

G = ot (2.4)
iin

We will now address the several sources of noise present in a PMT. One of the more

predictable noise sources of a PMT is thermal or Johnson noise. In order to maintain

the high sensitivity of PMTs, the materials used in the photocathodes and dynodes

have high work Functions, which means it takes very little energy to for them to

release an electron into a vacuum. This results in the materials emitting thermal

electrons due to being at room temperature. [Corp., September, 2005]









The Johnson noise appears as an AC current at the anode.


4kTB
-R R


(2.5)


The Johnson noise depends only on the temperature and internal features of the

PMT, so it is not directly subject to the gain.

The other 1i ii ,i source of noise in the PMT output is shot noise. Shot noise

arises from the statistical fluctuations of the interactions between photons and pho-

toelectrons inside the PMT. Other sources of noise include current leakage of the

circuitry, noise caused by the electric fields of the dynodes when the PMT is oper-

ated at high gain, external noise, and impedance mismatches in the experimental

wiring. These noise sources will be accounted for by specifying a dark current for the

device. The dark current is the current present at the anode when the PMT is in a

darkened environment, it thus implies an independence of the light signal. The dark

current however, is subject to gain because of the action of the dynodes and cathode

in its creation. There is also a noise contribution of the background light, this will

be considered in the shot noise of the device.


The dark current, denoted as Id, is composed of two separate currents.

Id Dark current subject to gain (from photocathode)

Ids Dark current not subject to gain (from anode)

Id Total Dark Current = Id + GIld

The signal current at the anode also has 2 contributions

Ib Anode current due to the mean background illumination

ispl -Anode current due to the illumination from the acoustic signal

ph Total anode current due to incident light = ipl + Iby









Comparing the acoustic and atmospheric pressures, it is seen that the acoustic pres-

sure is very small compared to Patm. For an acoustic wave of 140 dB, the pressure

change is 200 Pa. Even this unusually large acoustic pressure is only 0.2%7 of Patm,

which is 101,000 Pa. Thus, the fluctuating signal, isp is a small ac current super-

imposed on a mean background current, Iby. The total shot noise of the detector is

given by

i hot 2e (isp + + Idb ) BG2F + 2elIdB (2.6)

The total noise present at the anode is the sum of the Johnson and shot noises

N = /Ip+ sho
(2.7)
= 2e(i~pl + by + Idg)BG2F + 2elIdB + kTB

The signal of interest is the anode is the fluctuating signal isp. This signal is the

product of the cathode radiant sensitivity and the incident light flux. Mathematically

this is stated as ispi = Sp(rpl)AG. This enables us to state a fundamental signal-to-

noise ratio in terms of the anode current

S ispl (2.8)
/\ 2e~ddB 4kTB
N 2e (ispl + Ibgy I dg) BF+ + RG

The minimum detectable signal is the condition of S/N=1. We shall state this con-

dition as (ispl)min.

/ 2eladB 4kTB
(ip n 2 ((ispi)min + Iby + d) BF + 2 (2.9)

One should note that (ispi)min < (Ibg + Idg) and that isp = Sp(lspl)AG. We may

substitute these relations into Eq.(2.9) above. This will yield the minimum detectable

light flux from the PSP. This is termed the Noise Equivalent Power, or NEP.

/2 ((ispl)mln + bg + Idg) BFG2 + 2eIdB + 4k
NEP = (Tspl)nin SA (2.10)
m~n S, AG









We are now left with the NEP in terms of the irradiant flux of the PSP 1I, r. We shall

invoke the Stern-Volmer relations (Eqns(1.1),(1.2)) to correlate the photodetector and

PSP behaviors. The Stern-Volmer Equation is restated for convenience.

wVac Lvac
Vac- Lu = 1 + KqSXo2P (2.11)
L

The rodynamic testing form of the Stern-Volmer equation (Eqn.(1.2)) is created

by applying Eqn.(2.11) at two pressures, P and Po. The ratio of these two states

yields the rodynamic testing" form of the equation.

SCo (T) + C1 (T) L- (2.12)
po L

where

L (Ib + isp)/Sp = Radiant intensity at the acoustic pressure p

Lo = Ib/Sp = Radiant intensity at the background pressure po



The coefficients, Co(T) and CI(T) are given by

Co (T) 1
KSXo2po (2.13)
C, (T) = +KSXo2PO
c1() KSXo2p0

We may now state Eqn.(2.12) in terms of the acoustic pressure and radiant flux of

the PSP. Differentiating Eqn.(2.12) with respect to radiant flux (L) and assuming the

reference state Po is Patm gives

(A)min dp ClpoLo 1 -CC P (2.14)
(AL) in dL L2 Lo

Applying this relation to Eqn.(2.10) allows us to state the minimum detectable pres-

sure

POSpAG /2 ((isp)in + by + Id) BFG2 + 2eIB + kTB
APpmin = -Ci S G (2.15)
Ibgq SpAG









For the case of interest where background light noise dominates over dark current

and Johnson noise, Eqn.(2.15) reduces to

-Cipo -2eBF
Pmin (2.16)
V'b9 S A

One may state this as the minimum detectable sound pressure level (SPL) as


(SPL)min 20logl, (A2 ) (2.17)
2E-5 [Pa]

The first term on the right-hand side of Eqn.(2.16), CJpo/0Tib, is related to the chem-

ical composition of the luminescent sensor (PSP) and the mean operating pressure,

while the second term, /2eBF/SA, is related to the characteristics of the photode-

tector. With a goal of minimizing the minimum detectable signal we see that we

must use minimal bandwidth, B, minimize the excess noise factor, F, and maximize

the radiant sensitivity at the cathode, S,. In terms of PSP parameters, we seek to

minimize the parameter Cipo/ o. Using Eqn.(2.11) applied at a reference state, Po,

and the expression for C1 in Eqn.(2.13) yields

Cip0 (1 + KSXoPo) /2 (2.8)
Vo K SXo

as the parameter that must be minimized in the PSP formulation. Lowering KSXo,

is desirable in terms of minimizing the detectable pressure level. This is due to the

nature of C1, the slope of the linear PSP calibration, as defined in Eqn.(2.13). As

KqSXo2 goes to zero, this forces C1 to oo. Clpo//-qo (for a O.lm dia. circle) is plotted
versus KqSXo, for an atmospheric reference pressure (Po=lOlkPa) in Figure 2-4. A

minimum of Cipo/ To appears at KqSXo= 2/Po = 2E-5 Pa-'. This corresponds to

a minima of C1 and is thus a desirable value for KqSXo2 to achieve maximum coat-

ing sensitivity for an atmospheric mean pressure. The analysis was applied to two

photodetectors, a Hamamatsu H9306-02 PMT module, which utilizes a R6352 PMT

and a Hamamatsu C5460-01 Avalanche Photodiode (APD) Module, which utilizes










x 105
12





91 : : : : : : : : : : : : : ': -
10

9-

-0 8-

7

0 6-

5-

4-

3-

2 -I
10-6 10-5 10-4 10-3
KSX02

Figure 2-4: Desirable C('! im Id Properties of a PSP Coating


an S3884 APD for comparison. The analysis was applied assuming that the PSP lu-

minescent output was at a wavelength matched to the peak sensitivity wavelength of

each photodetector, 450 nm and 800 nm for the PMT and APD, respectively. Arbi-

trary radiant flux levels up to the point of maximum light input level were considered,

1.67E-6 watts and 6.OE-6 watts for the PMT and APD, respectively.

Figure 2-5 shows the minimum detectable radiant flux for a 0.lm diameter sur-

face for the two photodetectors. The curves for both the APD and PMT have a noise

floor where the thermal noise dominates. The PMT has an inherently lower noise

floor making it better for very low light level detection. As light levels increase, the

shot noise becomes a dominate noise source with the shot noise increasing as light

levels increase. At the higher light levels, the APD is seen to have slightly better

performance than the PMT, i.e., it can detect a lower light level at given background










illumination level. The minimum detectable SPL is shown in Figure 2-6. The goal is


- e APD C5460-01
: E-- PMT H9306-02









- -o- -e e -


10-11



10-12


10-13


in-141


10-15 10 10-5
Incident Light Power [W]

Figure 2-5: Minimum Detectable Radiant Flux of Detectors


to minimize the minimum detectable SPL. We observe that as background light level

(PSP background emission) increases, the minimum detectable pressure decreases.

Sound pressure levels as low as 115 dB are possible with the PMT and 106 dB with

the APD. As shown in Eqn. (2.16), for two photodetectors with identical bandwidth

and background illumination levels, the minimum detectable pressure is proportional

to F/Sp which has values of 21.67 and 7.96 for the PMT and APD, respectively.

The typical APD has significantly better radiant sensitivity (Sp) than the typical

PMT with only moderately higher excess noise factor (F). Another implication of

Equation(2.16) is that for two photodetectors with equivalent F/S,, one should se-

lect the detector with the higher maximum allowable light input. A lower gain may

be used to avoid saturating the device.


Typical PMT Application


Typical APD Application










As shown in Figure 2-5 and Figure 2-6, the PMT di-l, '1' higher sensitivity at

lower light levels due to the high device gain. There exists a limit near ~ 10-9 Watts

where the shot noise of the PMT becomes a limiting factor. At higher light levels, the

APD is seen to perform better due to its greater quantum efficiency and higher radiant

sensitivity. A PSP coating with maximum pressure sensitivity, C1, and maximum

total emission, Lo shall produce a lower detectable SPL. If possible, it is also desirable

to operate at lower mean pressure (Po) as this increases the background emission,

however this would also effect the SPL of the incident acoustic wave. Although not

explicitly considered, a coating with high dynamic response is also desired. There


250




co
0.
R 200


0.
U)



S150
C,


100
10-15


10-10
Incident Light Power [W]


Figure 2-6: Minimum Detectable SPL of Detectors


are a few assumptions in this analysis that should be noted. The presented noise

characteristics of the photodetector assume that there is no noise present in the data

acquisition system. Also, the detector performance has been assumed at the peak


\ e APD C5460-01
S PMT H9306-02


Typical APD Application


Typical PMT Application









sensitivity wavelength (A = 420nm), while in reality measurements will be conducted

at A = 650nm. Measurements not at the peak sensitivity wavelength suffer from

pronounced degradation of the quantum efficiency (QE) and the radiant sensitivity

of the detector. [Corp., August, 2005,J] The reduction of both S, and QE may have a

large effect on the actual minimum detectable signal. The cathode radiant sensitivity

is given in the PMT datasheet, Corp. [August, 2005], however there is no readily

apparent data on the behavior of the anode radiant sensitivity, Sp, as a Function of

incident light wavelength. As a result, S, is assumed to be wavelength independent

with respect to wavelength, yielding a minimum detectable signal of 115 dB.

Finally, the dynamic characteristics of the PSP have been ignored. The response

of the PSP system is inherently limited by the diffusion of oxygen within the PSP

coating. Reducing the coating thickness or increasing the mass diffusivity of the

coating can improve the PSP frequency response but typically will simultaneously

reduce the signal radiant intensity. The assumption has been made in this analysis

that sufficient PSP illumination levels and coating thicknesses are present to supply

the required background illumination levels (Ib = SpLo). In terms of PSP chemistry,

it would be desirable to customize the formulation to match the peak luminescent

wavelength to the photodetector peak sensitivity wavelength. It may also be possible

to design PSP formulations with increased sensitivity (dP/dPo) near atmospheric

pressure levels. This may result in reduced background emission Po and increased

signal emission AL.















CHAPTER 3
EXPERIMENTAL SETUP AND PROCEDURE

This chapter explains the experimental setups and procedures used in data col-

lection. The same general setup is used for all experiments however a probe connected

to a microphone must be installed in the plane wave tube for the standing wave ra-

tio tests. PSP static calibration is accomplished with the use of a vacuum chamber

and pressure transducer. Two separate data collection systems are utilized in the

experiment. An Agilent VXI system is utilized for static calibration and noise floor

measurements, while a Stanford Research Systems SR785 dynamic signal analyzer is

used for frequency response measurements.

Standing Wave Ratio Test

For testing of the Standing Wave Ratio (SWR), also known as the 2 Microphone

Method, the end cap of a 0.1m diameter, 1.0 m long lexan plane wave tube is replaced

with a specially designed cap. As shown in Figure 3-1 this specially designed cap is

fitted with a probe capable of translating along a limited distance (0.25 m). A Briiel

& Kjaer type 4138 condenser microphone, noted as \ !i rophone 1" in Figure 3

1, is attached to the probe via flexible tubing. This apparatus allows for direct

measurement of the acoustic signal at various locations inside the tube. A 2nd Briiel

& Kjaer type 4138 microphone is placed at the face of the aluminum piston at the

end of the tube, this is denoted as \ !, rophone 2" in Figure 3-1. Comparisons of

the output of microphones 1 and 2 allows for the calculation of the SWR, pressure

reflection coefficient (F) and other properties of the sample. The plane wave tube

is excited using a JBLPro 2490H driver. This driver is operated by a waveform

generator (HP/Agilent E1441A) passed through a Crown International K1 amplifier.

Data collection is accomplished with the use of an HP/Agilent VXI data acquisition









Driver

Probe

Microphone 2





PSP ample Plane Wave Tube
Microphone 1

Figure 3-1: Schematic of Experimental Setup for Standing Wave Ratio Testing


system (E1432A). The data collection parameters are outlined below in Table 3-1.

To perform the SWR test, the waveform generator is set at the specified frequency

Table 3-1: SWR Data Collection Settings

Value Parameter
10240 Sampling Frequency (f,) [Hz]
20 Data Blocks
4096 Samples/block
AC C(! .i,,,, I Coupling
100 C('i! i,, I Coupling Frequency [Hz]
Uniform Window
0.1 C('i inn. I Range [V]


and an output level of 300 mVPP. The amplifier attenuation is set to zero, this

setting corresponds to 126.9 dB SPL at 1000 Hz. The probe is advanced as close

to the sample face as possible. The signals of both microphones are recorded. The

probe is retracted 5mm from the sample face and the microphone signal is again

recorded. This procedure is repeated for four frequencies, 600 Hz, 1000 Hz, 1400 Hz,

and 1800 Hz. The microphone outputs are then analyzed as outlined in Appendix B.

The Standing Wave Ratio (SWR) is simply a ratio of the maximum and minimum

microphone voltage near the face of the sample. The magnitude of this ratio can be

analyzed to decipher acoustic properties of the specimen.









When analyzing the data, a correction factor must be applied to the microphone

location because the geometric and acoustic centers are not typically coincident. This

correction factor is a Function of the wavelength of the sound being tested and other

variables as outlined in Appendix B.

PSP Static Calibration

The PSP coating is statically calibrated using a pressure chamber and an H9306-

02 PMT module. The PSP sample is inserted into the chamber and aligned with

the photodetector. The sample is focused onto the PMT by an optical lens. The

sample is illuminated using two tungsten-halogen lamps fitted with 400/80 nm filters

(03FIB002, Melles Griot). The gain of the PMT is set such that the device is operating

at 9i1'. maximum output signal. This is to ensure proper detection of the PSP

intensity. The lamps are then turned off and the setup is left in the dark for 30

minutes in order to stabilize the PMT dark current. After 30 minutes, the dark

output signal is recorded (this will be subtracted from all subsequent measurements).

The PMT signal is acquired and the average rms value is computed and recorded.

The PMT signal is first acquired at P,,t,, this will serve as the reference pressure

for subsequent measurements. The pressure is changed and the system is left to

equilibrate. Measurements are conducted over a small range about Pt,, as this is

the anticipated pressure environment of the plane wave tube. After all experiments

are conducted, the pressure chamber is again brought to Pat, and left to settle. The

PMT output is compared to the initial measurement in order to ensure nothing has

changed in the setup.

In analyzing the calibration data, the dark current is first subtracted from all

pressure measurements. Each pressure and PMT output is then compared to the

reference state in order to yield a calibration of the same form as Eqn.(1.2).









Photomultiplier Frequency Response

To test the frequency response of the PMT an optical chopper and fiber optic

light source are utilized. The PMT is equipped with a 650/40 optical filter (\ !!.-

Griot 03FIV048). A fiber optic light source (Fiber-Lite series 180 High-Intensity

Illuminator, Dolan-Jenner Industries) is positioned in front of the detector and far

enough away as to not saturate the device. An optical chopper (300 CD Miniature

Optical C('! i.' II, Scitec Instruments Ltd.) is positioned in front of the light source to

create a fluctuating signal. The chopper used is available with several discs which al-

low for different chopping frequency ranges. The chopper is equipped with a 5 bladed

chopping disc. This disc allows for for chopping frequencies of dc to approximately

2700 Hz to be applied to the optical detector.

Acoustic Testing

The face of an aluminum piston is painted with a primer li,-.r made by dissolving

90 mg of poly(tBS-co-TFEM)(3: I'.) [poly-(tert-Butylstyrene-co-trifluoroethyl-

methacrylate)] and 100 mg of CR-800 titanium dioxide pigment (CR-800, Kerr-

McGee Corporation) in 4 mL of dichloromethane. This primer is applied to increase

the detectable response of the active l- r, which is composed of 0.75 mg of Plat-

inum meso-Tetra(pentafluorophenyl) porphrine [PtTFPP] and 30 mg of poly(tBS-co-

TFEM)(3: ') dissolved in 3 mL of dichloromethane. Both l-vr -i are applied to the

4" diameter piston, which is then installed into the plane wave tube. The PSP sample

is excited using two tungsten-halogen lamps fitted with 400/80 nm filters (03FIB002,

Melles Griot). The tube is made of clear lexan allowing optical Excitation through

the tube side walls. A microphone is co-located with the PSP sample (type 4138,

Briiel & Kjaer), enabling validation of the sound pressure field present at the PSP

surface and to test the frequency response of the PSP formulation. A photodetector

is mounted outside of the plane wave tube and focused on the PSP sample. Optical

detection is accomplished via a 650/40 optical filter ('\. II. Griot 03FIV048), and an










optical lens array. The lens array allows for the full sample surface to be focused on

the viewing window of the detector. The experimental setup is shown schematically

in Figure 3-2. The tested frequency range varies from 500-2100 Hz and is limited

by the performance envelope of the driver (2490H, JBL Professional) used to excite

the tube and the cutoff frequency of the tube. Two separate data acquisition sys-

Halogen Lamp


Photodetector
Driver (Harmamatsu
450 nm Excitaton (JBL 2490H) H9306-02)




650 nm
Luminwsne s


SPSP Sample m
Microphone \ Optical
B&K type 4138) Plane Wave Tube Lenses

Figure 3-2: Schematic of Experimental Setup for Acoustic Testing


teams are utilized. A two-channel dynamic signal analyzer (SR785, Stanford Research

Systems) is utilized for frequency response measurements and measurements over the

entire acoustic spectrum. The analyzer contains both a source and two acquisition

channels, which enables the module to control the complete experimental setup. The

analyzer source signal is passed through an amplifier (K1, Crown International) and

then routed to the JBL driver. For detector linearity measurements, the system is ex-

cited through the use of a waveform generator (E1441A, HP/Agilent) which is passed

through the amplifier, which is in turn connected to the driver. Data collection in this

case is accomplished through the use of another data acquisition system (E1432A,

HP/Agilent). Both setups allow sound pressure levels (SPL) of up to 164 dB to be

applied to the PSP sample.















CHAPTER 4
EXPERIMENTAL RESULTS

Standing Wave Ratio Results

The results of the Standing Wave Ratio testing are tabulated below in Table 4-1.

The results of the SWR tests show that the PSP sample/substrate may be treated

Table 4-1: SWR Results
Property 1800 Hz 1400 Hz 1000 Hz 600 Hz
F 0.9979 0.9959 0.9878 0.9957
0 14.22 10.86 -1.73 2.52
a 4.19E-3 7.98E-3 2.43E-2 8.64E-3
z/pc 0.675+j7.963 0.2238+j10.52 23.13-j56.82 4/45+j45.07
SWR(0) 959.9 498.8 162.7 461.1
SWR(0) [dB] 59.64 53.96 44.23 53.28


as a sound-hard surface due to the large pressure reflection coefficient, F (also known

as R), and standing wave ratio at the sample face, SWR(0). (for explanation see

Appendix A.)

These results are as expected because the substrate is an aluminum piston, which

should act as a sound hard surface when compared to air. Since the substrate is sound

hard, this means that there is a pressure doubling at the face of the PSP sample, so

that the sound pressure experienced by the PSP is nearly twice the sound pressure

at any other location in the tube. This pressure doubling allows for the high SPL at

the face of the sample. This signifies that the acoustic energy is concentrated at the

sample face and not allowed to propagate through the substrate medium and out of

the system.

PSP Calibration

The PSP static calibration results are shown below in Figure 4-1 and Table C

1. Data is acquired with settings specified in Table 4-2. These results show the









PSP behaves as predicted by Eqn.(1.2). A linear regression was performed to fit a

relationship to the data points. The resulting relationship is shown as a red line in

Figure 4-1 and is given by the equation

Vo 0.8687 P\
v 0.8687 1 + 0.13108 (4.1)
V (Po/

The linear relation has a correlation coefficient (r2) value of 0.9989 and a standard

error of 5.04E-4. This shows that the PtTFPP responds linearly to small changes in

pressure, and is expected to retain this behavior when exposed to fluctuating pressures

within the plane wave tube. Figure 4-1 shows error bars which are depicted as the

95% confidence interval.

Table 4-2: PSP Static Calibration Settings

Value Parameter
8192 Sampling Frequency (f,) [Hz]
50 Data Blocks
8192 Samples/block
AC C(! .i,,,, I Coupling
100 C('i! i,, I Coupling Frequency [Hz]
Uniform Window
10 PMT C('! i,, I Range [V]


Photodetector Frequency Response

The PMT frequency response results are shown in Figure 4-2 and Table C-2.

(note: the SR785 is capable of auto-ranging the acquisition channels, eliminating the

need to set a voltage range) Results show that the photodetector response may be

considered to be flat over the range of 100 to 2200 Hz, and thus it does not impact

the measured response of the PSP coating.

Data acquisition was accomplished with the SR785 dynamic ,i ,iv. r. Pertinent

data acquisition settings are listed in Table 4-3. The magnitude and phase responses

are shown in Figure 4-2. The magnitude response of the detector is erratic although

there is no visible cutoff frequency and the magnitude remains within 0.1 dB of the







31



1.025

1.02-

1.015-

1.01 -

0 1.005 -

1

0.995-

0.99-

0.985

0.98 '
0.98 0.985 0.99 0.995 1 1.005 1.01 1.015 1.02 1.025
P/P,


Figure 4-1: PSP Static Calibration Results


reference at 500 Hz, showing that the PMT has negligible influence on the frequency

response measurement of the PSP coating. The noise in the measurement is due to

the low gain setting of the PMT. Due to the high intensity of the fiber optic light

source, the PMT gain signal was set at 0.23 Vdc. The usable range for the gain signal

is 0 to 1.25 Vdc. At such a low gain setting, the thermal noise has a larger influence

on the device output signal. The reference signal output of the optical chopper was

Table 4-3: PMT FRF Acquisition Settings

Value Parameter
3.2 kHz Span
1.6 kHz Center Freq.
16 Hz FFT Line Width
1000 Vector Averages
Uniform Window


used as the reference signal for the frequency response measurements. This signal is








32

a constant amplitude square wave of the same frequency as the motor which drives

the chopping disc. Knowing the motor frequency and the number of blades on the

disc yields the chopping frequency.

The phase response is flat at approximately -10. This plot of phase response

can be used for qualitative results only because the phase difference of the PMT and

optical chopper is unknown. As shown in Appendix C, the phase delay is approx.

-9. This offset has been removed in Figure 4-2 as this is a constant phase difference

in the chopping motor and the reference output signal. For the shown results, the

disc was mounted to the chopping motor and all experiments were conducted without

moving the disc. Thus, the phase relationship between the disc and motor is unknown

but constant, enabling one to discern any phase roll off of the PMT over the tested

range.


1.25
1

-0.6

- -0.8

a -1
C,
S-1.2

-1.4
1


0 0 0 0 00
S O0
0 000 0
S: : : :0 0 0

S: : : :

02 103




0 0 : 0
S: : : : : 00

000



02 103
Frequency [Hz]


Figure 4-2: PMT Frequency Response









Noise in Experimental Setup

The noise present in the experimental setup is shown in Figure 4-3. This figure

is a comparison of the dark noise, background noise, and the VXI DAQ system noise.

Data was collected using settings specified in Table 4-5. The DAQ system noise is

the noise present in collecting data with no device connected to the DAQ board.

This is a Function of the influence of external noise sources. One sees that this noise

is largely dominated by 60 Hz line noise, however connecting a device to the DAQ

channel reduces this noise source.

The dark noise is the PMT output with the speaker and Excitation lights turned

off. This is an indication of the external light which leaks into the enclosure which

surrounds the experimental setup. The dark noise is seen to be roughly 2 orders of

magnitude below the background noise, showing that a minimum of external light is

entering the enclosure and that the dark noise of the PMT has minimal influence on

the device output once it is subjected to a reasonable light signal. This curve shows

a spike at 120 Hz, however this influence may be eliminated by proper grounding

of the detector. The dark noise can be seen to be white noise across the entire

span. One should note that an estimate of the true dark noise of the PMT would

be a measurement of the device output with the viewing window covered. The dark

noise mentioned here is a measure of the influence of external light sources and the

dark noise of the detector on the output signal. It was assumed that due to the

comparatively high light levels, the dark noise of the detector would be somewhat

negligible when compared to the shot noise present.

The background noise is due to the PSP luminescence at Patm, i.e., Excitation

source on, but no acoustic input signal. This is also seen to be white noise. Since

there is no temporal pressure signal the PSP emission is constant and there is no

dominant frequency component present. Both the background and dark noises are









dominated by the shot noise of the detector. Any acoustic signal supplied to the PSP

will show up as a spike among the background noise.


10-6


10-8

10-10


9 10-12


0 10-14

10-16


10-18


500 1000 1500 2000 2500 3000
Frequency [Hz]


3500 4000 4500


Figure 4-3: Experimental Noise Comparison


PSP Behavior

The dynamic behavior of the PSP is now addressed. The frequency response

is measured using the SR785 dynamic analyzer. Data acquisition parameters are

outlined in Table 4-4. The frequency response of the optical system is measured at

140, 134, 128, 122, 119, and 115 dB SPL. In all cases the optical system is shown to

behave as a "l/2"-order system (-10dB/decade attenuation, 450 phase delay) which

is in agreement with previously reported results. [Winslow et al., 1996] The behavior

of a "1/2"-order system is shown by dashed lines in Figure 4-4 and Figure 4-5. The

behavior at all SPL is consistent, however the higher SPL are better behaved due to

the decreased noise content of the signal.


1 jjj jj.... jA_L.i.hhp.wLhIJ&s.J.~.L.D.L,k.-d&.J..


10-20 L
0













S 0O 0 o O 140dBSPL
S-1 .O 0 134dBSPL
o O O 128 dB SPL
O -2- : x 122dBSPL
U D O x 119 dB SPL
S-3- x 115 dBSPL
o x no
-4- x x


o ..
-5-

-6 .
N

-8 -













There is seen to be measurable response of the coating at 122 and 119 dB SPL.

This indicates that the wavelength dependance of the anode radiant sensitivity of the

PMT, Sp, may not be proportional to the cathode radiant sensitivity as discussed

in Ch pter 2. The relative and phase response of the optical system are shown

in Figure 4-4 and Figure 4-5 (note: uncertainties have been omitted for clarity).

Tabulated data with uncertainties are located in Appendix C and plots of the response

magnitude, relative magnitude, phase, and coherence for each SPL are located in

Appendix D.







PMT power are seen to scale somewhat linearly with SPL. The noise floor is seen
-10 I---------------------































PMT power are seen to scale somewhat linearly with SPL. The noise floor is seen












-ILJ
O 140 dB SPL
S134 dB SPL
O 128 dB SPL
-20 -
122 dB SPL
x 119 dB SPL
S x 115 dB SPL
-30 -
0)

Sxx


0 Q: g O 0-----
a 0 :0 0 0
L7.1 x 0 .:
U-50 -
0
: : x x -




-60 -



-70 x0
-70 ..-----'--------------
103
Frequency [Hz]


Figure 4-5: PSP Coating Phase Response


graphically in figures Figure D 1 and Figure D-2 for the curves of 122, 119, and 115

dB SPL. Above 122 dB SPL the coherence and power seem to scale linearly with SPL.

Below 122 dB there is a decreased relationship with SPL, this indicates the increased

influence of noise on the measurement.

As seen in Figure 4-4 at 119 dB SPL, the optical system is still capable of

detecting the acoustic signal, however 115 dB SPL seems to be at or below the noise

floor of the system. This agrees well with the previously predicted noise floor of 115

dB SPL. (ref C'! plter 2)

PSP Linearity

To test for linearity of the system the HP/Agilent E1441A waveform generator

and E1432A DAQ system are utilized. SPL was varied from 145 to 157 dB at 540 Hz.

Data Acquisition settings are defined in Table 4-5. The square root of the amplitude







37

Table 4-4: PMT FRF Acquisition Settings

Value Parameter
1.6 kHz Span
1.3 kHz Center Freq.
16 Hz FFT Line Width
1000 Vector Averages
Uniform Window
0.44 Vdc PMT Gain Control
5.3 E-4 V/Pa Calibrated Mic. Sensitivity


of the PMT power spectrum at the Excitation frequency of 540 Hz for each SPL

was recorded and is di- i'. '1 in Figure 4-6 and in Table C-3 in Appendix C, which

shows a linear relationship between the acoustic pressure and the response of the

active l-I-1r, as predicted by Eqns.(1.2),(4.1). The linear equation fit to the data is

given below.


11

10-

9-

8

7

6

5

4

3-

2-

1
200


400 600 800 1000 1200 1400 1600
Acoustic Pressure [Pa]


Figure 4-6: Linearity of Optical System







38

Table 4-5: Linearity Data Acquisition Settings

Value Parameter
8192 Hz fs
8192 Data Points/Block
50 Data Blocks
100 Hz Coupling Freq.
Uniform Window
0.1 V PMT C'I .111,, I Range
0.44 Vd PMT Gain Control
5.3 E-4 V/Pa Calibrated Mic. Sensitivity


V = 6( :':.V-6 (Pa) + 2.1627E-4

r2 = 0.999 (4.2)

Std.Error = 6.511E-5

Thermal Response

The temperature influence on the response of the PSP l-v. r is investigated. As

discussed in C'! lpter 2 there is a temperature change associated with an acoustic

wave. Due to the properties of the PSP formulation, this effect was estimated to

have a minimal effect on the response of the coating. To verify this assumption,

the oxygen must be removed from the interior of the plane wave tube in order to

isolate the influence of the temperature oscillation on the PSP emission. Two holes

are drilled into the end cap of the plane wave tube, one for the addition of industrial-

grade nitrogen and one for venting. The PSP sample is removed from the end of

the tube and the tube washed with nitrogen for 20 minutes. The sample is then

re-inserted into the plane wave tube and the tube is washed with nitrogen for an

additional 5 minutes. The nitrogen hose is removed and the fittings in the end cap of

the tube are replaced with plugs. Care should be exercised as to not overpressure the

tube with respect to Patm as the pressure differential across the speaker diaphragm

may damage it. The driver is then operated at 140 dB SPL and frequency response

measurements are taken. A comparison of the coating response in air and nitrogen







39

is shown below in Figure 4-7. The results are tabulated in Appendix C with the

frequency response data of other sound pressure levels. The results show that the


SO 0 140 dB SPL-Air
0 140 dBSPL-N2
4


3-


2-


1


0mr [Q w E M o [0 m] m M

0-1r--------- --o---:------0-----U-n 9-

-1e e I
103
Frequency [Hz]


Figure 4-7: Coating Response in Air and Nitrogen


response of the coating to the temperature fluctuation are negligible compared to the

response in the presence of oxygen.

Time Resolution of Optical Signal

In addition to measurements in the frequency domain, the optical system has

shown the ability to resolve the time series data of the PSP response without the use

of data averaging as shown in Figure 4-8, provided the SPL is high enough. Using

the HP/Agilent waveform generator and DAQ system, the JBL driver was excited

at 540 Hz and 160 dB SPL. Data was collected using the parameters in Table 4-6.

The resulting data is di-pi'l 1 in Figure 4-8. In part a) of Figure 4-8 the PMT

signal di- 1 pl, a faint similarity to the microphone, however the signal is significantly







40



S 1 a)

0 0
I-

-1
0.18 0.185 0.19 0.195 0.2 0.205



1
0



0.18 0.185 0.19 0.195 0.2 0.205



0-


-1
0.18 0.185 0.19 0.195 0.2 0.205
Time [sec]


Figure 4-8: Comparison of Unfiltered PMT Output, Filtered PMT Output, and
Microphone Output


corrupted by noise. This noise is a result of the several noise sources present in

the PMT (thermal, background, dark, shot). The thermal, background, and dark

noise are manifested as broadband noise in the PMT output which degrades the

signal-to-noise ratio and hampers data collection. One may reduce the impact of

this background noise by reducing the bandwidth of the measurement. This may

be accomplished by reducing the sampling rate or by applying a bandpass filter to

the signal. Reducing the sampling rate is straightforward; however this results in a

loss of data quality due to the reduced number of data points available to describe

the photodetector output. Applying a filter, either analog or digital, to the detector

output allows sampling at a higher frequency and thus retention of more signal detail,

while also allowing the ability to choose filter parameters to suit the situation at hand.









To improve the resolution of the time series data, a digital filter was applied using

Table 4-6: Single Time Series Data Acquisition Settings

Value Parameter
6.4 kHz Span
8192 Data Points/Block
1 Data Blocks
100 Hz Coupling Freq.
Uniform Window
0.1 V Range
0.44 Vdc PMT Gain Control
5.3 E-4 V/Pa Calibrated Mic. Sensitivity


Matlab. A 6th order Butterworth bandpass filter centered at 540 Hz with cutoff

frequencies of +/- 50 Hz was applied to both the microphone and PMT data, the

filtered PMT signal is di-,i'l 1 in part b) of Figure 4-8. In this case, much of the

noise present in the unfiltered signal has been removed and the filtered signal has

clearly resolved the acoustic signal as referenced by the filtered microphone output in

plot c). The amplitude modulation apparent in part b) of Figure 4-8 is due to noise

which has passed through the filter and characteristics of the filter.

Uncertainty Analysis

PSP Static Calibration Uncertainty

We will now compute the uncertainty of the static calibration test. The static

calibration of the coating was found to follow Eqn. (4.1), restated here for convenience.

Vo P\
V- 0.8687 +0.13108 (4.3)
V Po

Solving the above Equation for V yields

7.63VoPo
V (4.4)
Po + 6.627P

We shall compute the uncertainty as the square root of the sum of the squares. We

must first solve for the uncertainties of the measured voltage and pressure. This is









summarized as
U = B2 + (,


B = B (4.5)
i-i


P

where Bi and Pi are the bias and precision errors respectively of each measurement

and t,95 is the student's t-distribution for 95'7 confidence (v number of samples).

For greater than 30 samples, the standard confidence interval, i.e., t,,95 is 2. For

the reference condition, ,, we shall use the standard deviation of the mean, 2 The

uncertainty in the measured voltage is taken to be the standard deviation, denoted as

a, given in Table C 1. For the pressure uncertainty, we will use the average standard

deviation of the pressure 1 i11,i- 5E-4. The pressure and voltage uncertainties are

substituted into (4.6) for the total uncertainty of the output voltage given below.

The resulting PMT output level is the mean voltage due to the PSP response to a

steady pressure. Thus, the uncertainty of interest is the standard deviation of the

mean, 2 The resulting uncertainties are listed in Table C 1 as ui, and shown as

error bars in Figure 4-1.


U, 1( UVo + ( U p2 + UP)2 (4.6)
,V9 OP 9Po

The resulting uncertainty for each pressure is listed in Table C 1 and shown graphi-

cally in Figure 4-1.

Frequency Response Errors

The frequency response errors are self-contained measurements performed by the

SR785 analyzer. As such, it is subject to errors and uncertainties which are based on

the spectral measurements used to calculate the frequency response. It is now useful

to introduce notation typically used in dealing with random, periodic signals. The









frequency response measurements are subject to both bias and precision errors. We

shall denote a bias error as b[x] and a precision error as c[x], where x is the quantity

being examined. We shall denote the estimated quantities as x. The quantities

measured are in fact estimates of the true values, hence, they are subject to errors.

If the true values were known then no error analysis would be necessary.

We shall first look at the coherence of the frequency response. The coherence

between signals x and y is denoted as ? and is defined as [Bendat and Piersol, 2000]


(f) W G(4.7)
xx yy

The coherence Function is a method to describe the correlation between the output,

y, and input signal, x. The coherence can vary from 0 to 1, with 1 being perfect

correlation between the two signals. High coherence values lead to less errors in

spectral measurements. The normalized bias and precision coherence errors are given

as [Bendat and Piersol, 2000]


b[2] 1 (i 2(4.8)

[r^29] V 2 *1-- )1-

where nd is how many times the data is averaged (number of data blocks).

For the frequency response itself, the bias of the magnitude is proportional to the

amount of noise in the measurement. The measurement signal is typically specified as

Gxx = G, + G,, where Gn is the noise magnitude and G,, is the signal magnitude.

In tables in Appendix C, Gix is the magnitude of the signal at the specified frequency

and GT is the observed average magnitude of the noise in the signal (response at

other frequencies). The normalized bias and precision errors of the frequency response









are given as [Bendat and Piersol, 2000]


b "J] [Guu+Gnn


L(4.9)




Then the total uncertainty for each measured quantity (magnitude, phase, coherence)

is then given by Eqn.(4.5). For a large number of samples, the standard 9570 con-

fidence interval is 2U. This is used to generate the confidence interval shown in

figures for each SPL in Appendix D.

Errors for each SPL tested are tabulated in Appendix C. One sees that for the

lower SPL the errors in the frequency response become considerable. This is due

to the very low coherence of the microphone-PSP signal. At levels of 128 dB SPL

and higher the typical magnitude errors become 10%0 or less. To further decrease the

errors, one must increase the number of averages (data blocks) gathered as the errors

scale as 1. Appendix C also contains magnitude and phase plots with error bars

of the response of the optical system at each SPL.















CHAPTER 5
CONCLUSIONS

The research described in this thesis successfully investigated the response of

PtTFPP in poly(tBS-co-TFEM)(3:i I.) to acoustic pressure fluctuations. The research

showed that the coating responds in the manner of a "1/2"-order system. The coating

was shown to have a noise floor similar to the predicted value of 115 dB SPL.

Frequency response measurements showed the optical detector to have negligible

(flat) response over the applicable frequency range. It was also shown that the optical

coating response scales linearly with the applied acoustic pressure to the lower limit

of the noise floor of the system. The noise floor was numerically estimated to be 115

dB SPL. Subsequent experimental data revealed the actual noise floor to be within

5% of this value. The temperature dependance of the coating due to the acoustic

waves was assumed and verified to be negligible compared to the pressure response.

The optical system was also shown to have the ability of direct temporal resolution

of the PSP emission. Adequate filtering of the PMT signal removes the significant

noise component and reveals a clear correlation of the PSP emission to a microphone

located at the coating surface.

Although the research conducted in this thesis is complete, there is future work to

be conducted. The application of other photodetectors to this experimental method

may allow resolution of lower sound pressure levels. Avalanche photodiodes and high-

speed CCD cameras are two detectors which may prove useful in this area of study.

With the use of high-speed phase locked CCD cameras, it may prove possible to

directly image the surface of a PSP sample in a fluctuating pressure field, thereby

gaining an optical record of the exact pressure distribution, similar to results achieved

using PSP in wind tunnels.







46

The upper frequency applied to the coating in this research was limited by the

cutoff frequency of the plane wave tube. Future work should utilize apparatus with

higher cutoff frequencies in order to better characterize the response of the coating(s).

The chemistry of a PSP formulation defines its properties and was ultimately

the limiting factor in terms of noise floor in this research. New PSP formulations are

the subject of continual research. Discovery of new binder-luminophore formulations

which promote increased oxygen diffusion and greater sensitivity near atmospheric

pressure levels will enable further reduction of the noise floor in dynamic pressure

applications.














APPENDIX A
DERIVATIONS OF ACOUSTIC RELATIONS

Temperature Change of a Small Isentropic Compression

First, we assume that temperature is a Function of pressure and entropy. An

acoustic wave (or any small, isentropic compression) can be treated as a perturbation

about a mean.
dT dT
To + t' -To P' + T'+ 0 (2) (A.1)

where 0(e2) are higher order terms that may be neglected for the time being.

Since we have assumed the compression process to be isentropic, we may make

use of the isentropic relations for pressure and temperature.


p 1 (A.2)
To Po(

where 7 = C,/C,.

Substituting these relations into Eq.(A.1), we are left with

dP TP '- 1P P
T' = P' To (-P' (A.3)


Which, after some manipulation yields


T' To (A.4)


We may now set T and P to be any arbitrary temperature and pressure. We shall

choose the quiescent values, To and Po. This gives us the final form of the temperature

change of an isentropic compression.


T' To 1) To 1) P2 (A.5)
S7 PO 7 Poco









Derivation of the One-Dimensional Wave Equation

We shall begin by examining a homogenous medium at rest.

P Po

p = po (A.6)
= 0

We will assume that any disturbances to this medium are small compared to the value

of the static properties Po and po. This is known as the small signal approximation.

Thus, we have the properties of a small disturbance initiated in the medium at rest:

16pI < po
\6PI < Po = poce (A.7)

IUl < Co

We will use the above quantities to linearize the conservation equations. We first

examine the 1-D Continuity equation:


Pt + (pu), 0 (A.8)

We will define 16p| = P- po as the change in density from the equilibrium state to the

disturbed state. It is somewhat straightforward to substitute this relation for density

into Eq.(A.8)

S p+po (A.9)

Pt +, '", + Px = (6p + po)t + (6p + po) u + (6p + po) u = 0

Seeing that po is constant leaves us with

6pt + 6, ',,, + pou, + 6pfu = 0
(A.10)
0o (E) + O (E2) + O (E) + O (E2)= 0








The 2nd and 4th terms are of second order and thus can be neglected. Removing these
terms leaves us with the linearized conr lii,, i equation for a homogeneous medium

6pt + pox = 0 (A.11)

We will now approach the momentum equation in the same manner. We will start
with the 1-D momentum equation

p (ut + uuX) + PX = 0 (A.12)

Making the same assumption of the change in density as above leaves

(6p + po) (ut + uuX) + P 0
6,n, + 6,,,.,, + pout + ,,,,.", + P= 0 (A.13)
o (2) + O (E3) + (E)+O (2) + ()

Neglecting higher-order terms leaves us with the linearized momentum equation

pout + P 0 (A.14)

Using the Taylor expansion of the ideal gas law,P = 6pc, and continuity and mo-
mentum, Eqs.(A.11),(A.14) we may deduce the linear wave equation. First we will
eliminate density
6p= ,
co (A.15)
(.O)t+,.,,,,, -0
We may remove the pressure terms from Eqs(A.14) and (A.15)

(pout + p- 0) d +,-. =
t !-(( t 0)
Poutt =0 + .. =0
Co (A.16)
PXt = utt = C0Uzz = PtX = 0









This leaves us with the linearized 1-D wave equation

1
Uxx -utt 0 (A.17)
CO

If one chooses to eliminate u rather than P in Eq.(A.16), the result is the wave

equation in terms of pressure
1
Pxx P=0 (A. 18)
Co
In 3-D/vector notation, we are left with the more familiar form of the wave equation

Blackstock [2000]

V2P Ptt 0 (A.19)
Co

Derivation of the Cutoff Frequency

Let us first define what is meant by Group V l.. Hil and Phase V l1.. IH,:

Group Velocity

The group velocity is the progress of the "center of ,ii ,ii- of a group of waves of

different frequencies. This may be thought of as the average speed of a group of

vehicles on a highway.

Phase Velocity

Phase velocity, CO, is the velocity at which the phase angle, w(t x/c6), of harmonic

waves of the same frequency propagates down the waveguide. This can be likened to

the speed of a school bus full of children (harmonic waves) travelling down a highway.

How We Get Phase Velocity

We begin with the phase of a harmonic acoustic wave


; = (wt k'x) (A.20)


where

k /o) 2 (A.21)


is known as the wave number.









We may differentiate Eqn.(A.20)

d( = wdt kdx (A.22)


where k' is the wave number for the nth mode. In Eqn A.22 we see that for constant

phase one is left with

(d) (A.23)

This expression is denoted c%, and is known as the phase velocity. We may now

substitute the frequency from the nth mode from the derivation of the waveguide

equation, 7 = nry/a, which gives us


c=P c (A.24)
k _22)
kln (nw)2 1i


This relation shows that waveguides are dispersive because the phase speed is a

Function of frequency. By graphing Eqn. A.24, one will see that the phase velocity

will increase with frequency until a point where


f = o f (A.25)
2a

At which point c oo. This point is known as the cutoff frequency. We may

rephrase the phase speed in terms of the cutoff frequency as


S co (A.26)
c2


Below the cutoff frequency, the wave number is imaginary. This means that the

acoustic waves are evanescent and decay exponentially with distance. Above the

cutoff frequency, the acoustic waves are real and propagate down the tube. One will

alv--i- have acoustic waves however, as ko = 0 corresponds to plane waves. Any value

of n greater than zero is indicative of higher order modes.









Derivation of the Waveguide Equations

In this section We will derive the equations governing the behavior of both rec-

tangular and cylindrical waveguides.

Derivation of the Rectangular Waveguide Equation

If A > a then sound will propagate down a waveguide as a plane wave. The

acoustic signal can be described as


P'(x, t) f(x ct) + g(x + ct) (A.27)


This is a solution to the 3-D Wave Equation(A.19)


V2P Ptt = 0 (A.28)


We will consider a rigid walled duct as shown in Figure A-1. By inspection, one may

deduce the boundary conditions of no flow into the walls of the duct. Mathematically

stated, the boundary conditions are

i = 0 at x = 0, a
(A.29)
y = 0 at y = a

There are no evident boundary conditions in the z-direction as this is the propagation

y










a
z


Figure A-1: Schematic of a Square Duct









direction of the tube and no information is given concerning the source. This may

not be necessary and it will be addressed as needed.

We see that Eq.(A.19), the three-dimensional wave equation, is a f(x,y,z,t) as

shown in Figure A-1. This equation can be solved through the use of separation of

variables by assuming a solution of the form Morse and Ingard [1987]

P'(x,y, z, t) f(x)g(y)h(z)ejwt (A.30)

where f,g,h are Functions of only x,y,z respectively. Separating Eq. (A.30) and solving

for f,g,h yields

at2 g ,9J a2 J Jt)
(A.31)
a fr' fg" hew a fgh"eJtC

Substituting these relations into the Wave Equation (Eq.(A.18)) yields

-W2f h ghf" f hg" f gh" jw 2 f/ g" h"
O = 0 (A.32)
fghejit c f g h

which may be rewritten as
f g" h" w2
f h -(A.33)
f g h C2
This shows us that a Function of x equals a Function of y and z. This is true only if

both sides are equal to a constant. We may now separate and solve the equation for

each direction, starting with f(x).

f -a or f"+a f 0 (A.34)
f I

This homogenous, 2nd order ODE has roots of ja, thus the solution has the form

f = Alcos(aix) + Bisin(aix). Invoking the boundary condition of no flow normal
to the wall gives us

df 0 =- B1 0,aO1 (A.35)
dx z=O,a a









Thus, f = Alcos(mwx/a). Repeating the above procedure for g(y) yields a solution
of the same form, g = A2cos(nO y/a).

We are now left with the behavior of the propagation direction (z). To solve for

this behavior, we shall substitute the solutions for f(x) and g(y) into Eq.(A.33) and

solve for h(z).
f" _-Al C -OS x 2 T2
S A2 cos ( (A.36)
f Acos(m7x) a2
-A2 (nS ) _2 _2
g a22 cos (A.37)
g A2cos( ) aa2 )
Substitution into Eq.(A.33) gives us

h" + n- (m2 )2) h= 0 (A.38)

The coefficient of h is made up of constant values. This quantity will be denoted as k2

and is known as the Dispersion Equation. One now sees that Eq.(A.38) is of the same

form as Eq.(A.34). For Eq.(A.34) the geometric form was chosen to emphasize the

shape of the Function. In this case we will use the exponential form of the solution

since this equation describes the propagation of a wave:

h = Ce-kmz + '_, (A.39)

The constant k has been written as kmn to remind us of its dependence on the values
of m and n. We now have assembled solutions for all components of P'(x,y,z,t) that

were assumed in Eq.(A.30) and we may assemble the final solution, which is simply

a matter of superposition.

P'(x, y, z, t)= f Ji, '* = (cos (m ) cos ( ) (Cle-kmnZ +C, )) e
a a (A.40)
P'(x, y, z, t) cos (mx) cos (w t) (Aej (wt-kmn) + B pnej(wt+kmnz)

where Am, and Bmn are constants determined by source conditions which can be

stated as P(x, y, 0, t) = F(x, y ',. <[Blackstock, 2000]









The 2 indices, m and n, are the mode numbers. Physically these numbers

represent the number of 1/2 wavelengths present in the x and y directions, with

(m 0,n 0) representing the plane wave mode which has uniform pressure in both x
and y. [Schultz, 2004]

Derivation of the Cylindrical Waveguide Equation

Having tackled the rectangular waveguide equation, we will now approach the

cylindrical waveguide in much the same manner. We will consider a cylindrical

waveguide of radius a as shown in Figure A-2. Again, we begin with the wave











Figure A-2: Schematic of a Cylindrical Duct


equation,

V2P tPU 0 (A.41)

In cylindrical coordinates, the Laplacian operator (V2) has the form

S() () 1 t 2 02
r + + z (A.42)
r Or Or ) r2 902 OZ2

We have the same boundary condition as before,


iUr a = 0 (A.43)

We will assume a separable solution of the same form as above,


P'(r, 0, z, t) = R(r)O(0)Z()ejWt


(A.44)









Substitution into Eq(A.19) and simplifying leaves

R" R' 0" Z" w2
+ + + (A.45)
R rR r26 Z c (A.45)

We will let w2/c = k2. This bears some resemblance to Eq.(A.33) however the r's

apparent in this case must be dealt with. We may first address the Z term. We will

equate this to a constant and solve.

Z/
-k (A.46)
Z

The form of this equation should be familiar to the reader. We may assume a solution

of the form as above

Z(z) = Aejkzz + Be-jkzz (A.47)

Returning to Eq.(A.45), we are left with

R" R' ("1
-+ + k2 k- k (A.48)
R rR r2( z

We will define a constant, k,, such that k2 = k2 + k2. This leaves

R" R' ("
+ -+ +k2 0 (A.49)
R rR r2( )

Multiplying by r2 enables us to remove the component.

O"
S-m2 (A.50)


This form has a solution of 0(0) = As cos(mO) + Bo sin(mO) where m is an integer.

We are now left with only Functions of r. Multiplying the remaining quantity of

Eq.(A.45) by R gives
1
R" + -R' + (r2k n2) R 0 (A.51)

This is a Bessel Equation of order m. Thus, the solution is R(r) = ArJ(krr) +

BrNm(krr). However, the Neumann Function (also known as Bessel Function of

2"d kind) (Nm(krr)) is unbounded as r 0 so it is not physically realizable for a









cylindrical waveguide. However, this term should be retained when dealing with an

annular waveguide. Combining the r, z, and O solutions yields us


P'(r, 0, z, t) = Jm(krr) (cos(m0) + sin(m0)) (Amnej(wt+kz) + Bemnne(w-k)) (A.52)


As in the rectangular waveguide the m and n indices give an indication of the number

of 1/2 wavelengths present, although in this case they represent the r and 0 directions.

The first modes to propagate are the (1,0) and (2,0) modes, followed by the (0,1) mode

[\!i e and Ingard, 1987]. For a cylindrical waveguide, the cutoff frequency has the

form
fc amnCO
Tfn 27a (A.53)

where amn is the nth zero of J,. The cutoff frequency of a mode is the minimum

frequency at which that mode can propagate down the waveguide. For the waveguide

used in this study, the 2 lowest cutoff frequencies are 2016 Hz and 3344 Hz. Below

2016 Hz the acoustic field within the waveguide is planar.

Normal Incidence Sound Reflection and Transmission

Let us examine the pressure field at a normal incidence surface between two ideal

fluids, shown below in Figure A-3, where indicated pressures are given by We will

Incident Wave p+= p+(t x/cl)
Reflected Wave p- = p-(t + x/c)
Transmitted Wave pt pt'(t x/c2)


now define a reflection coefficient, F


F = (A.54)


We will also define a transmission coefficient,


T (A.55)
p+









Medium 1
Zi--pIcl



p+ ------









p"


Medium 2
Z2=p2c2








Sptr


Figure A-3: Sound Reflection and Transmission at a Normal Incidence Surface

We shall assume the interface is stationary, which leads to


p+ + p- = pt


(A.56)


dividing by p+ and manipulation shows us that


1+R T


(A.57)


In addition to pressure, velocity must be continuous across the interface. Using the

same notation as pressure, it is straightforward to deduce that u+ + u- = ut. We

would like to know the boundary condition in terms of F and T. To do this we will

use the characteristic impedance of each medium (Z pc) since the acoustic waves in

each media are by definition travelling at the acoustic speed, or u=c. Substitution

leaves us with
O+ O- ptr
p p (A.58)
ZI Z1 Z2









Multiplication by Zi/p+ yields
Z1
1 R = -T (A.59)
Z2
Solving Eqn.(A.59) and (A.57) gives the following relations


R = 2 Z (A.60)
Z2 + ZI

2Z2
T 22 (A.61)
Z2 + ZI
We will now examine three conditions of a normal incidence surface. First, let us

consider an interface at which Z2 < Z1. In this case, Eqn.(A.60) R = -Z1/Z1 = -1,

which means there is perfect reflection 1800 out of phase. Then, pt 0 so that p+

-p-, so that the pressure at the interface tends to zero while the velocity doubles,

from Eqn.(A.57). This situation is known as a sound soft boundary and occurs at

the end of a tube or for an acoustic wave travelling from water into air.

Next, consider what happens if Z2 > Z1. In this case, R 1, or p+ = p. This

tells us that pt = 0. At the interface, since p+ and p- are reflected in phase, they are

additive, interface = p+ + p- = 2p. Also, since the pressure signal can not penetrate

into medium 2, neither does the velocity signal, ut = 0, or u+ = u-. So there is

a pressure doubling in medium 1 at the interface and zero velocity at the interface.

This is known as a sound hard boundary and occurs for a wave travelling from air

into water, or from air into another suitable medium with a much greater impedance,

such as a block of aluminum.

Thirdly, what if the media are identical, or at least have identical impedance. In

this case Z1 = Z2, so that R 0. There is perfect transmission across the interface,

which is intuitively satisfying. [Blackstock, 2000]















APPENDIX B
STANDING WAVE RATIO METHOD

Standing Wave Ratio Calculations

The Standing Wave Ratio/2 Microphone Method is a commonly used proce-

dure for determining the impedance ratios and normal incidence sound absorption

coefficients of acoustical materials.

A plane wave travelling down a waveguide impinges on the end of the tube and

is reflected back in the opposite direction. In this process, a standing wave pattern

is produced which can be measured using a microphone. Using the standing wave

ratio (SWR) at the face of a test specimen placed at the end of the tube, the normal

incidence sound absorption coefficient, a,, pressure reflection coefficient, F, and other

properties can be calculated. The method prescribed below is that of the AST\

C384-98 Standard [of Testing and ASTM] and is valid only for planar sound fields,

i.e., it is only valid below the cutoff frequency of a waveguide. The Standing Wave

Ratio is defined as

SWR(x)= () (B.1)
Vmin (X)
where V(x) is the output voltage of the microphone at station x of the waveguide.

To discern the standing wave pattern within the tube, the exact location of the

microphone with respect to the sample face must be known. This is accomplished by

the use of a millimeter scale attached to the bottom of the waveguide. This enables the

distance from the specimen to the microphone to be known at all times. A correction

factor must be applied to the location of the microphone because the acoustic and

geometric centers of the probe are not necessarily coincident. The correction factor









is defined as

cor m (B.2)

where

xcor = Correction Factor

X1/4 = Scale Reading with Microphone at 1st minimum

xmr = Scale reading with microphone touching face of specimen

When making measurements, scale readings at each frequency should be corrected as

follows:

S= (Xobs Xsf) Xcor (B.3)

where

x =True distance from specimen [mm]

Xobs = Observed scale reading [mm]

xsf = Observed scale reading with probe touching specimen [mm]

If possible, it is desired to adjust the scale such that xsf=0



Following data collection, the microphone signal can be graphed as shown below

in Figure B 1, Figure B-2, Figure B-3, and Figure B-4 to yield the voltage as a

Function of xcor. This data is then used to determine the properties of the sample.

Data reduction is performed differently according to the nature of the available data.

If two or more minima are present, the maximum voltage nearest the sample face

is taken to be Vmax(0). Vmi,(0) is then found by using the following formula


V..min(0) V (x) V (2)- V (X) (B.4)
X2 X1

If one minima and one maxima are present, one uses the available maxima as Vmax (0),

and the tube attenuation, (, must be called upon to discern Vmi,(O). ( may be









estimated as

( =0.02203- (B.5)
2aco

where

f = Driver Frequency [Hz]

a = Tube radius

co = Speed of Sound

Using ( one may calculate Vmin(O) using


Vmin (0) = V (xi) (XiVmax (0) (B.6)


One may now calculate the Pressure Reflection Coefficient, F. For an infinitely rigid

surface F = 1 which means that the entirety of the acoustic energy is reflected back

into the medium. Obviously, an infinitely rigid surface does not exist, but it is

possible to generate F's which are very nearly 1. F is a complex quantity and has

both a magnitude and phase

ipi SWR(0)-1
SSWR(0)+1 (B.7)
0 =720 () 180

where x, is the distance from the specimen to the first minimum.

One may also calculate the Normal Incidence Sound Absorption Coefficient, aO,

and the impedance ratio, z/pc


a, = 1 P|2
(B.8)
z l+r
pc 1-F








63


Standing Wave Ratio Figures


x 10-3 Microphone Voltage vs. Distance from Piston Face
61-----


01 1 I I-E ----I-I-I 1-1
-250 -200 -150 -100 -50 0 50
Corrected Distance from Piston Face (Xco) [mm]


Figure B-1: Microphone Voltage vs. xcor for 600 Hz Excitation


5

"(i
E
> 4

C-

S3
CL
"c
O. 3
O




1



















Cn


0


0
0
0 1
t-
t-
o
O


64



x 10-4 Microphone Voltage vs. Distance from Piston Face


01
-150 -100 -50 0 50 100 150
Corrected Distance from Piston Face (Xco) [mm]


Figure B-2: Microphone Voltage vs. Xcor for 1000 Hz Excitation


Microphone Voltage vs. Distance from Piston Face
0.012



0.01 -



0.008



0.006



0.004



0.002



0
-100 -50 0 50 100 150 200
Corrected Distance from Piston Face (Xco) [mm]


Figure B-3: Microphone Voltage vs. Xcor for 1400 Hz Excitation


























x 10-5 Microphone Voltage vs. Distance from Piston Face
7


6-








2-4
S4
0





-50 0 50 100 150 200 250





Corrected Distance from Piston Face (Xc) [mm]
Figure B4: Microphone Voltage vs. for 1800 Hz Excitation
F 2





0
-50 0 50 100 150 200 250
Corrected Distance from Piston Face (Xcor [mm]


Figure B-4: Microphone Voltage vs. x... for 1800 Hz Excitation















APPENDIX C
TABULATED EXPERIMENTAL RESULTS

Table C 1: PSP Static Calibration Results


P/PO
/o 1
0 -'-1I

1.000
1.0 10
1.020


Vr-rs
8.526
8.472
8.387
8.310
8.251
1.09E-2


a
0.066
0.C' .
0.074
0.0. I:.
0.067
2.40E


V V'dark
8.515
8.461
8.376
8.299
8.240


13/V
0 .-,17
0 *'*
1.000
1.01('
1.0165


(Note: In the following tables the Coherence (between the microphone and PMT)


is denoted by its common symbol, 7'2)


P Ipsial
14.346
14.457
14.617
14.766

dark


it,
7.21E-
7.18E-
7.10E
7.04E
6.98E











Table C-2:

Freq. [Hz]

106
204
,: I ;


608
704


10 ,-,
1104
1200
1 < t' ,
1 : I -,
1504
1600


1904
2000
2096
*-. '


PMT Frequency Response Results

Mag. [] Mag. [dB] Phase (o)


1.164
1.167
1.164
1.166
1.165
1.167
1.161
1.161
1.163
1.158
1.160
1.1, :;
1.1". I
1.165
1.163
1.167
1.166
1.164
1.160
1.159
1.158
1.163


1.319
1.341
1.319
1.334
1.327
1.341
1.297
1.297
1.312
1.274
1 '-: "

1.312
1.319
1.327
1.312
1.341
1.334
1.319


1.274
1.312


-9.85
-9.92
-9.93
-10.14
-9.92
-10.08
-9.82
-10.04
-10.03
-10.02
-10.1

-10.13
-9 *!I.
-10.13
-10.08
-9.81
-9.9
-10.14
-10.21
-10.07
-10.18


Table C-3: PSP Linearitv Results


Pressure [Pa]
356.23
497.55
631.89
762.64

1011.51
1129.06
1245.66
1357.55
1 i,-_-.62


SPL [dB]
145.01
147.92
149.99
15 i .
1 ,:2 -,
154.08
155.03
155.89
156.63
157.32


PMT Power [pV2]
6.02
12.08
17.97

33.83
44.70
55.35
64.80
79.58
? ..19


VP TPower [mV]
2.45
3.48
4.24
5.12
5.82
6.69
7.44
8.05
8.92
9.65













F_
5(

7(
8
9:
10
11
1:
13
1 .
14
15
17
17
1'
20
[1


115 dB SPL F..- ::-. -y i-.onse Data


- i Gxx GRe Resp. Rel. Mag Phase -72 SPL
00 4.546 0.15 5.571 0.000 -30.33 19.60 115.1. :1.
;. 2.324 0.15 4.195 -2.464 -56.63 9.70 115.185
00 2.304 0.15 3.975 -2.932 -47.30 9.31 115.614
04 2.41 0.15 4.213 -2.427 -48.35 10.27 115.301
24 1.424 0.15 -4.721 -19.82 5.65 115.319
04 -. 0.15 4.1 -2.468 -56.13 10.40 115.57
00 2.301 0.15 4.0-. -2 c..*5 -37.86 9.0'" 115.372
i 1 1.591 0.15 3.329 -4.472 -33 ";; 6 4, 115.548
00 3.050 0.15 4.559 -1.741 -. : )1 12.63 115.644
1.185 0.15 '" "' -5.611 -41.24 1 ,. 115.408
92 1.187 0.15 2.913 -5.632 -65.06 4.652 115.437
96 0.7 :, 0.15 :"' -7.351 -(. ::, 2.951 115.048
00 0.579 0.15 1.944 -9.145 -42.94 2.330 11 .1
1.003 0.15 2.710 -6.259 -48.97 4.174 115.333
0.779 0.15 _- '.,I -7.351 -56.73 3.148 115.328
20 1.072 0.15 2.821 -5.911 -49.25 4.377 115.273
[z] [n ,U [n Vj [, V/Pa] [dB] [deg. [*10-] [dB re -/. Pa]




Table C-5: 115 dB SPL Frequency Response Normalized Error Estimates


Mag. Random
0.158
( I ,
0.231
0.220
0.297
0.218
0.233
0.273
0.198
( *
0.327
0.411
0.463
0.345
0 :- .
0.337


Phase Random
0.158
0.226
0.231
0.220
0.297
0.218
0.233
0.273
0.1' .
( I .
0.327
0.411
0.463
0.345

0.337


Mag. Bias
-0.032
-0.061
-0.061
-0.059
-0 i
-0.056
-0.061
-I 1 1 1
-0.047
-0.113
-0. 112
-0.171
-( _-'I ,
-0.130
-0.162
-0.123


2 Bias
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
O.Oot


,2 Random
0.313
0.450
0.459
0.437
0(I _'
0.434
0.465
0.543

0.654
0.653
0.821
0 -4
0., '1
0.795
0.673


Table C-4:











a119 dB SPL F..I -. : ,.y R i.onse Data


500

700
804
932
1020
1100
1:01
1300
1 -., i.
1492
1620
1700
1828
1892
2020
[l[z]


CGxx
5.966
5.797
3.995
4. -.' I
2.375
3.476
2.912
5.160
- .. I

3.138
2. :1.
2.827
2.947
1.922
1.872
[o2-2 J


G0.15
0.15
0.15
0.15
0.15
0.15
0.15
0.15
0.15
0.15
0.15
0.15
0.15
0.15
0.15
0.15
0.[15
In V^s] I


Table C-7: 119 dB SPL Trequency Response Normalized Error Estimates


Mag. Random
1.450
0.148
0.174
0.162
0.232
0.1' .
0.211
0.159
0.246
0.179
0.175
0.307
0.226
0.192
0 :', ,
0.321


Phase Random
1.450
0.148
0.174
0.162
0.232
0.1' .
0.211
0.159
0.246
0.179
0.175
0.307
0 _. -
0.192
0.321
0.321


2 Bias
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
O.Oot


/2 Random

( "'2
0.344
0.320
0.462

0.420
0.316
0.4'!-
0.355
0.348
0.612
0.450
0 ..: '
0.736
0.640


Resp.
4 '- ,
: : ,
3 !,-.
3.564
2.897
3.238
2.953
2.739
2.512
2.492
2.522
2.517
2.516
2.527

2.227
[pV/Pa]


Rel. Mag
0.000
t -. ,
-1.465
-1.213
-3.012
-2.046
-2.846
-3.500
-4.251
-4.320
-4.217
-4.234
-4.237
-4.199
-4.' .
-5.297
[dB]


Phase
- .. 43
-34.02
-42.46
-37.25
_'- 48
-47. .,
-55.84
-47.55
-26.04

-41.54
- '.60
-I";, "7
-41.01
- ,. 1i6
-54.07
[deg.]


,.2
xy


16.330
18.7 ,,
9.199
13 '
11. (''i
19 '
8. ','
15.370
16.1 I,
;-. t
9.(.

3.662
4.843
[*W0-3]


SPL
119.482
119.655
119.211
119.532
119.444
119.187
119.216
119.651
119.531
119 ',
119.212
119.511
119.447
119., 1 4,.
119.255
119.7 : .
[dB re ',. Pa]


Mag. Bias
-0.025
-0.025
-0.0 :.
-0.032
-0.059
-0.041
-0.049
-0.028
-0.062
-0.060
-0.046
-0.050
-0.050
-0.048
-0.072
-0.074


Table C-6:













F_
5(

7(
8
9
10
11
1
13
1 *
14
16
17
18
1i
20
[H


122 dB SPL F..i-:,. iy R i..onse Data


S Gxx GR Resp. Rel. Mag Phase -2 SPL
00 15.530 0.15 4.666 0.000 -44.09 ) 122.515
,. 13.090 0.15 4.343 -0.623 -4(. '1 24 -1 i" :'' 2
00 12.240 0.15 4.17 -0.976 -3- 22.370 122.452
04 9.920 0.15 3';'; -1.346 -49.91 4 1 122.348
32 11.610 0.15 3.976 -1.390 -39.02 22..! : 1-'-' '
28 8.854 0.15 3.678 -2.'.i. -48.99 15 .,,' 122.137
08 6.8 0.15 3.462 -2.592 -,:,. 47 16.7'' 122.412
ii 6.894 0.15 3 i -3.024 -48.34 12.840 122.554
00 6.634 0.15 3.149 -3.415 -;: I '.' I. 122.232
6. :, 0.15 ".' -3.594 -45.75 12.310 122.711
92 6.277 0.15 3.003 -_, 11.730 122.li_2
20 5.976 0.15 2.812 -4.. -45.09 11..I: 122.539
00 4.403 0.15 2.527 -5.327 -41.34 9.151 122.367
28 5.953 0.15 2.417 -5.713 .72 -1 122.291
5.' 0.15 2.332 -6.024 -48.63 10.720 122.322
20 -. 0.15 2.213 -6.479 -41.62 11.630 122.399
z] [n [nV,,] [,pV/Pa] [dB] [deg.] [*10 [dB re -'. Pa]




Table C-9: 122 dB SPL frequency Response Normalized Error Estimates


Mag. Random
0.130
0.140
0.148
0.106
0.148
0.179
0.171
0. 1" C
0.198
0.200
0.205
0.207
0.233
0.237
0.215
0.206


Phase Random
0.130
0.140
0.148
0.106
0.148
0.179
0.171
O.1";";
0.1 "
0. 1 -

0.205
(' 117
0.233

0.215
I I 'I H,


Mag. Bias
-0.010
-0.011
-0.012
-0.015
-0.013
-0.017
-0.021
-0.021
-0.022
-0.023
-(* _' ;
-0.024
-0.033
-0.025
-0.026
-0.022


2 Bias
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
O.Oot


,2 Random
0.256
0.276
0.292

0 -" '
0.355
0.339
0.390

0 .' :!
0. i -.
0.413
0 .'! 1 :
0.471
0.427
0.410


Table C-8:











128 dB SPSL F .. ,. l ny Response Data


516

708
804
932
1012
1124
1 l i
1300
1 -., I .
1492
1620
1700
1828
l !I r
2020
[11z]


Gxx
4 > >8
66.82
50.53
49.53
30.96
32.67
41.19

37.48
'.i- 1 ;3
28.91
22.93
21.15
19.90
15.12
14.415
[o/-2 J


Gatt
0.16
0.16
0.16
0.16
0.16
0.16
0.16
0.16
0.16
0.16
0.16
0.16
0.16
0.16
0.16
0.16
[n V?,as


Resp.
4.489
4.339
4.241
4.203
4.159
4.055
3.932
3.732
;: .''

3.078
2.32

2.552
2.1.
2.387
[pV/Pa]


Rel. Mag
0.000

-0. iI 1
-0.572
-0.663
-( I
-1.151
-1.604
-1.'. 8
2.4 :,
-3.278
-3.937
-4.451
-4.905
-5.179
-5.,i -
[dB]


Phase
-35.17
-32.3
-33.26
-46.48
- i. '11
-54.31
-40.79
-40.66
-50.40
-41.45
-46.10
-46.67
-48.01
-51.54
-33.49
-45.11
[deg.]


Table C-11:

Mag. Bias
-0.003
-0.002
-0.003
-0.003
-0.005
-0.005
-0.004
-0.004
-0.005
-0.004
-0.006
-0.007
-0.008
-0.0 ,.
-0.010
-0.011


128 dB SPL Frequency Response Normalized Error Estimates


Mag. Random
0.067
0.066
0.075
0.076
0.C',.

0.082
0.086
0.097
0.095
0.099
0.113
0.116
0.122
0.136
0.130


Phase Random
0.067
0.0' .,.
0.075
0.(1, ,
0.096
0.094

0 0;
0.097
0.095
(I 1 *
0.113
0.116
0.122
0.1, .
0.130


-2
Sxy
100.70
103.40
81.49
79.60
51.14
53.18
68.44
63.11
52.62
50.58
48.90
37.71
36.09
32.70
26.50
28.64
[*10-3]


SPL
1 753
128.535
1 ,--. "
128.251
1 .
128.184
1_'- 11
128.408
128.254
: 74
128.824
1 : 42
128.476
12. ':1

128.597
[dB re 'v. Pa]


2 Bias
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
O.Oot


2 Random
0.127
0.125
0.144
0.146
0.188
0.184
0.159
0.167
0.185
0.189
0.192
0.222
0.227
0 :'
0.267
0.257


Table C-10:











134 dB SPTL F.. il. ,ny Response Data


FP. .
516

708
804
932
1012
1108
1t i1
1300
1 -., >.
1492
1620
1700
17'- .

2020
[l[z]


Table C-13:

Mag. Bias
-0.001
-0.001
-0.001
-0.001
-0.001
-0.001
-0.001
-0.001
-0.001
-0.002
-0.002
-0.002
-0.002
-0.002
-0.002
-0.002


134 dB SPL Frequency Response Normalized Error Estimates


Mag. Randomi
0.033
0.0 :
O.C 2.
0.043
0.045
0.048
0.045
0.048
0.048
0.051
0.051
0.052
0.055
0.059
0.056
0.059


Phase Random
0.033
0.0( ':
0.040
0.043
0.045
0.048
0.045
0.048
0.048
0.051
0.051
0.052
0.055
0.059
0.059 -,
0.059


Gxx
247.8
181.6
165.9
152.2
1.;:,, 1
117.3
133.5
121.8
120.0
109.9
112.9

90.8



. 2
[oL ,j,]


Gatt
0.17
0.17
0.17
0.17
0.17
0.17
0.17
0.17
0.17
0.17
0.17
0.17
0.17
0.17
0.17
0.17
[nV?, ,s


Resp.
4.808
4.194
3.970
3.787
3.603
3 .1-*
3.465
3.347
3.310
3.219
3. '
2.973
' -;7
2.757
_' V'a

[pV/Pa]


Rel. Mag
0.000
-1.187
-1.663
-2.073
-2.506
-3 0-"
-2.845
-3.146
-3.243
-3.485
:. :
-4.175
-4..i : I
-4.831
-5.031
-5.326
[dB]


Phase
- :'. ;3
-37.10
-35.34
-40.30
-38.47
-48.79
-41.43
-42.15
-43.55
-43.47
-41.39
-44.05
-50.35
-43.46
-45.38
-42.63
[deg.]


,f2
Ixy
311.2
248.3
: .3
211.4
197.8
175.9
195.2
177.1
179.5
162.2
l : ,
157.7
14 1.8
124.3
136.5
127.0
[*10-o]


SPL
134.283
134.118
134.203
134 .*
134.1;t
134.122
131. 122 -
134.1. -.
134.343
134.376
1311 ':
134.1 ,-;
13z1 :4.1
134.350
134.271
133.923
134.445
[dB re ,. Pa]


2 Bias
0.000
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001


S2 Random
0.055
0.067
0.070
0.077
0 0.1
I0 II


0 0.7
0 i0;7
0.

0.095
0.102
0.111
0.105
0.110


Table C-12:














1 il dB SPL FI .i::. ny F, onse Data


1-r ., ( (7 B. .i. IThi-f


516

708
804
948
1108
I _'_ i
1300

1 I i

1700
[Hz]


0
928.9


, : i.7

515.9
509.8
487.2
473.3
:- .3
[ni 5


0.155
0.155
0.155
0.155
0.155
0.155
0.155
0.155
0.155
0.155
0.155
0.155
0nW12


4.744
4.648
4.263
4.174

3. 1
3. I',

3.331

3.01' '
3.018
[pV/Pa]


0.000
-0.178
-0.929
-1.112
-1.567
-2.654
-2.870
-3.061
-3.071
-, '' "
-3.7;- .

[dB]


-37., !

-38.49
-43.60
-43.25
-41.42
-41.20
-47.83
-43.56
-44.03
-42.79
-43.65
[deg.]


649.80
636.10
610.90
494.30
567.20
503.50
499.70
477.00
465.50
476.70
404.50
410.70
[*10-3]


C'1 TT
140.38
140.316
140.324
1 -. )4
140.415
140.519
140.203
140.595
140. ,1,
140.41
140.043
140.189
[dB re -I; Pa]


Table C 15:


0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000


1 i1 dB SPL Fr.-ii-r..-- Response Normalized Error Estimates


0.016
0.017
0.018
0.O -
0.020
0.022
0.022
(I0 :
0.024
(I0 :
0.027
0.027


P 1 ... R .. ,. 1 .....
0.016
0.017
0.018
0.023
0 22
0.022
0.022

0.024
0 i :9
0.027
0.027


0.000
? r;. .-


0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000


0.019
0.020
0.022
0.032
0 0 _.1
0.031
0.032
0.034
0.0 .
0.034
0.042
0.041


Table C 14:














140 dB SPL Frequency Response in -'. Data


220
165.5
176.4
629
111.3
322.6

25.66
457.9
822.8
73.07
[*10-3]


140.672
140.458
140.267
140.12
140.392
140.21
140. :,, .
140.294
140.768
140.324
140.373
140.041
[dB re 20pPa]


Table C 17: 140 dB SPL Frequency Response in iV. Normalized Error Estimates


Mag. Random
1.299
1.507
1 .', 1 ,
1.683
0.891
2.119
1.245
2.516
4.414
1.045
0.779
2.616


Phase Random
1.299
1.507
1 .'. -,
1.683
0.891
2.119
1.245
2.516
4.414
1.045
0.779
2.616


0.00
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001


7~2 Random
2.599
3.014
3.476
3.367
1.782
/I 4 .' I
2. -i
5.032
8.828
2.089
1.558
5.231


F.. |
516
50^4
708

948
1108
1 -,
1300


1620
1700
[Hz]


92.07
95.06
,-.40
63 "
73.70
88.40
103.20
86.40
65.36
104.73
92.92
82.37
[plJms


0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
[0.20
[pV2


1. -i,.
23.91
20.37

5.674
11.14
16.08
31. 1'
14.42
7.21
33.06
23.6
13.01
[nV//Pa]


T 1. ,_
0.000
-1 -'2
-2.1;,.
-12.494
-6.634
-3.446
2.392
-4. 12
-10.413
2.814
-0.113
-5.286
[dB]


-77.14
99.37
98.25
5-- .-1
-165.8
-43.21
113.6
- 1. 19
56.86
107.1
-82.73
68.91
[deg.]


Mag. Bias
-0.002
-0.002
-0.002
-0.003
-0( IiII
-0.002
-0.002
-0.002
-0.003
-0.002
-0.002
-0.002


Table C 16:


















APPENDIX D
EXPERIMENTAL RESULTS FIGURES


! !. .i! . . . .
........................:: :: :: :0 0


. . . .


















rA : : :A ;
. . . .[ [.. :. .

. . . . . i ~i i


. . i


S.. . . . . .

; .: .. x . ..-. .
. . . .. . . .




............. .. X X x
.IORF

.......... ... ........ X. 1 d B S.. F. .
:;:::j:;............... : I o 140BS


103




102




E 10




100
a
|- 10o




10-1




10-2


Frequency [Hz]


0 134 dB SPL
O 128 dB SPL
122 dB SPL
x 119 dB SPL
* 115 dB SPL
S140 dB SPL-N


Figure D 1: PMT Power as a Function of SPL


AAA: AAAll^ ^ !
A..............::......
.... ........................


. . . . .


L
'I



































.. .. .. .

OO -


: : : : : : : : : :



n D


.. . . .. :. . .

K : : :: q : : : : : : : : : :



x
. .. .. .


0 140 dB SPL
0 134 dB SPL
0 128 dB SPL
122 dB SPL


.. .. ... ... .. ...... x 119 dB S P L
S! 115dB SPL



S0. 0 . . . . . . .
000
. :.0.. ...... 0 .0 -..



S. . X. .
:x x


x x
S : : : : : : : : : : : x : : : : : : : : : x: : :
. . ... . . . . . ..
.. . . . . . .
. .. .. .. .. .. .. ... .. .. .. .. .. .


103
Frequency [Hz]



Figure D-2: Mic-PMT Coherence as a Function of SPL


. . . . ..
X
. . . . .
. f . . . . ..


























10





101
10 3



-5- i []




S00-


103


1005 I I I


3.05 1--I-I


Frequency [Hz]


Figure D-3: Response, Relative Response, and Phase Response of Optical System at
115 dB SPL


co



0
V,
Co
Co
01
a
0)









-a


Q-


a)

C, 0
o


O-
0
0


i i : i :I ( i
































10





0-
103


: : :D O
-5-


-10
103
0


-50


.100
103

0.04 i

0.02

03I


Frequency [Hz]



Figure D-4: Response, Relative Response, and Phase Response of Optical System at
119 dB SPL


CO

Q.
0



0)
C,

Co
a


m
a

0)


co


Co
0)
C)
-a

o


o
Cu






-c

0
























10





0
103



-3 n ion,------------
o :: :

-5 -


-10-
103
0



-50s |


100 '
103
0.1





-0.1
103
Frequency [Hz]


Figure D-5: Response, Relative Response, and Phase Response of Optical System at
122 dB SPL


cu


C,
a
a
C,

m
-a
0)
Cu

c,
Cu


C,
-a


Co



a
0)
















1 m .. '- tI

0

-100


103
Frequency [Hz]


Figure D-6: Response, Relative Response, and Phase Response of Optical System at
128 dB SPL


II i~


" m m ,~ mmmmm m~~"~




















I6

S4

o 2
0
. 0
0)
CO
2 -5
S-10
10 -l


-20

-40

-60 0 3
103
0.4

0.2
f2- m i 1l


Frequency [Hz]


Figure D-7: Response, Relative Response, and Phase Response of Optical System at
134 dB SPL


I I I I I I I I


PPiPliiijiiy

























4-

3-

2
103

0 0E

2-
10


00
41 I OpD C






103
103
1, Frequency [Hz]


CO







-2
I,
Co
a
0














o -
o
co,






-2

(,
a



-6







0


Figure D-8: Response, Relative Response, and Phase Response of Optical System at
140 dB SPL


Mi ; D B D D



103
Frequency [Hz]


m m3


5















LIST OF REFERENCES


A.E. Baron, J.D.S. Danielson, M. Gouterman, J. R. Wan, and J.B. Callis. Sub-
millisecond response times of oxygen-quenched luminescent coatings. Review of
Scientific Instruments, 64(12):3394-3402, 1993.

J.H. Bell, E.T. Schairer, L.A. Hand, and R.D. Mehta. Surface pressure measurements
using luminescent coatings. Annual Review of Fluid Mechanics, 33:155-206, 2001.

J.S. Bendat and A.G. Piersol. Random Data: A,.,ili;-.: and Measurement Procedures.
Wiley Interscience, New York, NY, 3rd edition, 2000.

D. T. Blackstock. Fundamentals of Pi,;,I.:. il Acoustics. John Wiley and Sons, New
York, NY, 2000.

B.F. Carroll, A. Winslow, J. Abbitt, K. Schanze, and M. Morris. Pressure sensitive
paint: Application to a sinusoidal pressure fluctuation. Proceedings of the 16th
ICIASF, pages 35.1-35.6, 1995.

B.F. Carroll, J.D. Abbitt, E.W. Lukas, and M.J. Morris. Step response of pressure-
sensitive paints. AIAA Journal, 34(3):521-526, 1996.

C.-M. Chan, M.-Y. C'!h ii M. Z!i ii.- W. Lo, and K.-Y. Wong. The performance
of oxygen sensing films with ruthenium-absorbed fumed silica dispersed in silicone
rubber. The A,.d- 1, 124:691-694, 1999.

Hamamatsu Corp. S3884 data sheet. On the WWW, http://usa.hamamatsu.com/
assets/pdf/parts_S/S2381_etc.pdf Last Accessed, June, 2005.

Hamamatsu Corp. R6352 data sheet. On the WWW, http://usa.hamamatsu.com/
assets/pdf/parts_R/R6352.pdf Last Accessed, August, 2005.

Hamamatsu Corp. Photon counting using photomultiplier tubes. On the WWW,
http://usa.hamamatsu. com/assets/applications/ETD/PMTphotoncounting.
pdf Last Accessed, September, 2005.

M.E. Cox and B.I. Dunn. Oxygen diffusion in poly(dimethyl siloxane) using fluo-
rescence quenching. i. measurement technique and analysis. Journal of Polymer
Science, Part A: Polymer C'I i,..-Iry, 24(4):621-636, 1986.

R.H. Engler. Further developments of pressure sensitive paint (opms) for non-flat
models in steady transonic flow and unsteady conditions. 16th ICIASF Record, 16:
33.1-33.8, 1995.









J.W. Gregory. Porous pressure-sensitive paints for measurement of unsteady pres-
sure in turbomachinery. AIAA-2004-294, Presented at the 42nd Aerospace Sciences
Meeting and Exhibit, Reno, NV, 2004.

J.W. Gregory, H. Sakaue, and J.P. Sullivan. Unsteady pressure measurements in
turbomachinery using porous pressure sensitive paint. AIAA-2002-84, Presented
at the 40th Aerospace Sciences Meeting and Exhibit, Reno, NV, 2002.

M. Kameda, N. Tezuka, T. Hangai, K. Asai, K. Nakakita, and Y. Amao. Adsorptive
pressure-sensitive coatings on porous anodized aluminum. Measurement Science
and T -. L, .,;,/t, 15:489-500, 2004.

M.E. Kose. Multi-Luminophore Coatings for Pressure Sensitive Paint Applications.
Phd dissertation, University of Florida, Gainesville, FL, A li, 2005.

T.C. Liu, B.T. Campbell, S.P. Burns, and J.P. Sullivan. Temperature- and pressure-
sensitive luminescent paints in aerodynamics. Applied Mechanics Reviews, 50:227
246, 1997.

X. Lu, M.A. Winnik, edited by V. Ramamurthy, and K.S. Schanze. Luminescent
Quenching by 0,,1,1. in Polymer Films, Organic, PI;;-,.: ,l and Materials Photo-
chemistry. Marcel-Dekker, New York, NY, 2000.

C. McGraw, H. Shrof, G. Khalil, and J. Callis. The phosphorescence microphone: A
device for testing oxygen sensors and films. Review of Scientific Instruments, 74
(12):5260-5266, 2003.

A. Mills and Q. C('!i 1 Modelled diffusion-controlled response and recovery be-
haviour of a naked optical film sensor with a hyperbolic-type response to analyte
concentration. A,.,l;,--1 117(9):1461-1466, 1992.

P.M. Morse and K.U. Ingard. Theoretical Acoustics. Princeton University Press, New
York, NY, 1987.

American Society of Testing and Materials (AS\TM). C384-98 standard test
method for impendance and absorption testing of acoustical materials by the im-
pedance tube method. On the WWW, http://www.astm.org/DATABASE.CART/
HISTORICAL/C384-98.htm, Last Accessed August 2005.

Y. Sakamura, M. Matsumoto, and T. Suzuki. High frame-rate imaging of surface
pressure distribution using a porous pressure-sensitive paint. Measurement Science
and T L h,...1..,/;/ 16:759-765, 2005.

H. Sakaue and J.P Sullivan. Fast response time characteristics of aondized aluminum
pressure sensitive paint. 38th Aerospace Sciences Meeting and Exhibit, Reno, NV,
2000.

H. Sakaue and J.P. Sullivan. Time response of anodized aluminum pressure-sensitive
paint. AIAA Journal, 39(10):1944-1949, 2001.









Edward T. Schairer. Optimum thickness of pressure-sensitive paint for unsteady
measurements. AIAA Journal, 40(11):2312-2318, November 2002.

K.S. Schanze, B.F. Carroll, S. Korotkevitch, and M.J. Morris. Temperature depen-
dance of pressure sensitive paints. AIAA Journal, 35(2):306-310, February 1997.

T. Schultz. Acoustic impedance testing for aeroacoustic applications. EGM 6905 -
Independant Study in Acoustics. University of Florida, Gainesville, FL, US, 2004.

G.W. Swift. Thermoacoustic engines. Journal of the Acoustical S' .:. I;i of America,
84(12):1145-5266, 1988.

C.A. Virgin, B.F. Carroll, L.N. Cattafesta, K.S. Schanze, and M.E. Kose. Pressure-
sensitive paint for acoustic pressure fluctuations. Proceedings of the 2005 ASME
IMECE, 2005.

N.A. Winslow. DPii..i, Modeling and Compensation Schemes for Pressure Sensitive
Paints in Url-..I.r;i Flows. Phd dissertation, University of Florida, Gainesville, FL,
2001.

N.A. Winslow, B.F. Carroll, and F.M. Setzer. Frequency response of pressure sensitive
paints. 27th Fluid D; .,i,,. Conference, New Orleans, LA, 34(3), 1996.

N.A. Winslow, B.F. Carroll, and A.J. Kurdila. Model development and analysis of
the dynamics of pressure-sensitive paints. AIAA Journal, 39(4):660-666, 2001.















BIOGRAPHICAL SKETCH

('!i i-l1.! ih. r Allen Virgin was born on February 23, 1981, in Kankakee, IL. Upon

graduating from Bradley-Bourbonnais Community High School in 1999, ('!~!- at-

tended Bradley University where he was awarded a bachelor of science degree in

mechanical engineering in 2003. During his final year at Bradley University, C('lo:-

considered pursuing a career as a developmental engineer with the United States

Air Force. In April of 2003, ('!!i i decided to attend graduate school to change his

career focus to aerospace engineering. C('!ii sought employment with Butler Interna-

tional working at the Caterpillar Mossville Engine Assembly Center while applying

to graduate schools. After evaluating his options, ('C!ii moved to Gainesville, FL, to

attend the University of Florida where he received a Master of Engineering degree in

aerospace engineering in 2005.