<%BANNER%>

Biogeochemical Survey of Wetlands in Southwestern Indiana

xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID E20110318_AAAAKK INGEST_TIME 2011-03-18T16:22:39Z PACKAGE UFE0012782_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES
FILE SIZE 464543 DFID F20110318_AABJHC ORIGIN DEPOSITOR PATH stuckey_d_Page_142.jp2 GLOBAL false PRESERVATION BIT MESSAGE_DIGEST ALGORITHM MD5
27867b2afd96c0e7402e7a04578f2fa9
SHA-1
02b18306f1fba54e0e35c0958ea8d8cbe2eae30f
439817 F20110318_AABJGN stuckey_d_Page_125.jp2
62b3783d5110cb4667b04fc0c7d807e1
c7898881431c4a35b93c90f8145dfb55ab34dd68
514467 F20110318_AABJFZ stuckey_d_Page_111.jp2
a1df4d11ffad190025b4fab3e4d9960e
941a9960637b6db7c114db73f13adc61aa07189f
2619 F20110318_AABIDL stuckey_d_Page_089.txt
b03e40dd3f97918907ba7eb578c0d85f
8f07ba2df240e90adcadfc3ad3bd7bc48f7a7d9c
25271604 F20110318_AABHYF stuckey_d_Page_143.tif
3bf1bbac295ad5251be1c968bd3c092d
b1bbb8eda89c0b6389312cf8966fea515db29c3f
1872 F20110318_AABICX stuckey_d_Page_075.txt
643d2ef724e403ac8e06f2c38de67e57
2c064635a3908e25c95ed4eeb91b202ad63827b1
8423998 F20110318_AABHXR stuckey_d_Page_128.tif
4c511883b822747d9649f7ee0aae5b87
7b4211034b4d8069cfa3af742492c89c92a0278c
2528 F20110318_AABIEA stuckey_d_Page_106.txt
005ef1fcc26288a43c8daf5e0507843c
150194039a7b51b6e24ef661f48296387141a1fa
1051944 F20110318_AABJHD stuckey_d_Page_143.jp2
e93123fa7e6d5d86f821335c54db090e
94d453d5bf41a444b1de4726c01fdd14be573818
465973 F20110318_AABJGO stuckey_d_Page_126.jp2
2806da1d704f8f151cc1a26e1923ef32
4e6903f096e9498d481ee9a5444f4d84b2ea6fb7
2261 F20110318_AABIDM stuckey_d_Page_091.txt
b0e35b39d2512bc5ede615023962a973
8bbfbc9dff4523279ae0d4a95376b09cd3103774
F20110318_AABHYG stuckey_d_Page_144.tif
0f963f321d89582b0d7dfad78d46dab8
e90fc989d02ca538c72bf3bf7819a0464f595f45
1850 F20110318_AABICY stuckey_d_Page_076.txt
664fea3b192f353ad8d4b4258cc438c3
541a77d970eb5124394990a244766ef0e9e3cc2a
F20110318_AABHXS stuckey_d_Page_129.tif
c1318a374ed80efafef67fcdee47046b
0b675c722cdd1d3c953575b648d764cb56735989
1963 F20110318_AABIEB stuckey_d_Page_107.txt
54ae2bc1e4a87b58baafe92766ed558e
d698b7ff1a7f7fe8b4960181d34a7c05e3a22bd4
621590 F20110318_AABJHE stuckey_d_Page_144.jp2
cfcad9df2b040b3b89895d3eb103111a
1cc6319f5ca23f14601c442bf3d5bd81ac8857bd
477896 F20110318_AABJGP stuckey_d_Page_127.jp2
2147abe586c56fb93bf52ed5f5f53c11
f99f05d7bc5a8a5d87272ca7618ac232ee68b488
1783 F20110318_AABIDN stuckey_d_Page_092.txt
b9c003eb6548aa1b02594179393e8876
67ace16a2dd16c44d0a2b2044cae4e7c7142b749
F20110318_AABHYH stuckey_d_Page_145.tif
7087a9f40cf071fee45b725ade3ffcb3
388f8a247e00e02a1dbbabe4117bf6d1307b458d
1071 F20110318_AABICZ stuckey_d_Page_077.txt
b97cce4e2abba1a3062f47d6c5423272
1f909bf700630a467e0512072ec755facf3da33d
F20110318_AABHXT stuckey_d_Page_130.tif
43107b99507d36b72c67bcf4b70a3981
c68d165b5467551ab71b6ae9250a2559f25be5c2
3062 F20110318_AABIEC stuckey_d_Page_108.txt
8e91f5c5b361b1aa147989d12d14c286
943336ebcf6c10effb69f436e4466a09be8fbd6f
238656 F20110318_AABJHF stuckey_d_Page_145.jp2
2f116fa1735d75991c2f519058be5b8f
d39955ca53e31e0888f35c0a0f2525c73dc9b662
482380 F20110318_AABJGQ stuckey_d_Page_128.jp2
061e7dcc8bff5fec5bd3e587fec9ce28
13fd21a2498c9b485fab3e8294ffe8ecd6161eac
2111 F20110318_AABIDO stuckey_d_Page_093.txt
18483bbff8cfccf3d3011ee55501f024
8bd447ddaf709bbff11a5d7bf5284660b41625e6
F20110318_AABHYI stuckey_d_Page_146.tif
859887f5fcc2d3d74150fa1f8203ef31
3a60991529e040235087796339a2245905a6f941
F20110318_AABHXU stuckey_d_Page_131.tif
d8e84b15788584573c340a70e4731b66
ca9336008edbf98f543d3fbf73cefd242f93289c
2006 F20110318_AABIED stuckey_d_Page_109.txt
c2c2173dfb9034f272d46e4a8f5a4c4b
9c8830535b484c132e77971c8d8d82158989cc60
830520 F20110318_AABJHG stuckey_d_Page_146.jp2
598c778a774aa09e3858a65b1945f7e5
d19c8d22c48e763132a51f75e93a964ab5391c7e
487839 F20110318_AABJGR stuckey_d_Page_129.jp2
76d17d0639cd310f66c4742e44c3201c
1509e3762ff47c4c03b685147cc121827cffa4dc
1595 F20110318_AABIDP stuckey_d_Page_094.txt
3e30be0c761ecd2dc647151d6403d62e
c5eb3311e0d21496343ef10d609060a2d63b670a
F20110318_AABHYJ stuckey_d_Page_147.tif
feb46725c04e63ad7d9e2923d02ab298
62aa7e119123ef86d2e5d8e5e1f2f97a2f8c46f8
F20110318_AABHXV stuckey_d_Page_132.tif
fb1bef710f97d80840b1d6bd87894dcc
5bbaa4b0c301b1e3ce2173cdb44bc0b92db3bbf5
2009 F20110318_AABIEE stuckey_d_Page_110.txt
5a5746024dde36095bf730cc82b811e7
a307d3e28627ed88a36633eb96655dff5a8e6742
881587 F20110318_AABJHH stuckey_d_Page_147.jp2
c4f81cab525b6eefb26dfe41693a1d0e
9c29ba8921402a2af18777673613a96b8f6656fd
483986 F20110318_AABJGS stuckey_d_Page_131.jp2
9a43a7efd4506a051551ace11edaf98c
c81ed180f9d42c0d5325a669f75ef66d55ded5ce
2466 F20110318_AABIDQ stuckey_d_Page_095.txt
3200be57bd1b0b8a2422f18d7346c4b6
857f164ec4203410e35a0dd7fc34f8cf77ce78b9
F20110318_AABHYK stuckey_d_Page_148.tif
9a55ab310a9cdfc6ac24b2b396f3861a
a8fe5ba3e6eb17b4f58b4f15546df9872b38c1bf
F20110318_AABHXW stuckey_d_Page_133.tif
c887b8f87c6a9e67a9deda42fb7452bc
ba8cfd46a958b9a434bc88bf8919b54337095a65
1676 F20110318_AABIEF stuckey_d_Page_111.txt
0a4ba978ab2089e8650259edf227f269
69240a71631bcd4c0d8020aa4eae3a67d8a84598
366569 F20110318_AABJHI stuckey_d_Page_148.jp2
37487563370565ab4e94e0345bb2ca21
3700daf110f098af0ee8c0ed5250eb9aee29b7d1
431127 F20110318_AABJGT stuckey_d_Page_133.jp2
7a8b9c366a0afe4e1175041c085f65a8
3c2101c10c99539323cbd2afee5d9bdb780543af
F20110318_AABHZA stuckey_d_Page_165.tif
951c006ef9b0c930f456fe61a7bc1596
d93f4a299de444111d99882471527f3f2670ebe9
2332 F20110318_AABIDR stuckey_d_Page_096.txt
200e6147f2d5cd2eab1442aa6f8042d9
31819935e1dc8700b657c467b0db533d89a2b0df
F20110318_AABHYL stuckey_d_Page_149.tif
1799897a3e2631da7954dae8be27a110
7668eb790a7e17046bc6f161f4790f697a03a804
F20110318_AABHXX stuckey_d_Page_134.tif
404fce1418716f17a94a174b051bff13
ac50eab723cc6c4341188a76ffbac0faff5f1cc1
1638 F20110318_AABIEG stuckey_d_Page_112.txt
75c1660d19c96f7de19161466bcdafa7
90c10e6f87e3bdbe3d85daa531c17a09774f7bf7
1027038 F20110318_AABJHJ stuckey_d_Page_149.jp2
504bbdecfa6493f039ed2246e64dd2c7
f7ed2d56a42de2c0df13bb0fcbf868b5473b2e16
463753 F20110318_AABJGU stuckey_d_Page_134.jp2
106e64bcdcc7f0ccd57edfd29fc2651f
875f67d02555b2b8fb9d431c67f8015bbb86f318
F20110318_AABHZB stuckey_d_Page_166.tif
06e832fbcaa3ed765a86b6b2264de984
b075d2c649fa81c7fbb51b3fdf493cf6a1173de1
1025 F20110318_AABIDS stuckey_d_Page_097.txt
cc05eddd88fcff08ccd3030d6941f88a
f470a5206363a5c6b1409617037392264536e341
F20110318_AABHYM stuckey_d_Page_150.tif
8d9253bc3c9872de6b703be0d9a77379
4cc8dcd277f734f39963231e81d9b17375f8d5da
F20110318_AABHXY stuckey_d_Page_136.tif
83cc6c45d8fb0a0bcc3d5aff1dcd314a
05a96f2828de47dc3cbd5aaf054ab8119cad2370
1728 F20110318_AABIEH stuckey_d_Page_113.txt
2291f1ac049c276564cb415ccc9ce1d5
be922f50e0590864085b7c8c347a4a74dd1709f1
465005 F20110318_AABJHK stuckey_d_Page_150.jp2
c3a384de3bcd7f83d5baf3bcc1758caf
75123c2b425f0bb89793f3f6157509f2ed2a6fed
510164 F20110318_AABJGV stuckey_d_Page_135.jp2
15dca68564de09e02b6077df6d804222
08bbf752caccd71f1cc4c2c233bef6199b07b4dc
1821 F20110318_AABIDT stuckey_d_Page_099.txt
7c74cd84150dd65ad9bd7af403476884
f33e9c6cb9cad3814f874db985d8e5c2c8f2e762
F20110318_AABHYN stuckey_d_Page_151.tif
d10357e0e44fc476a4c1f155b1c870a0
0d2c4a1bab28241b7e48d4099e867971178cf226
F20110318_AABHXZ stuckey_d_Page_137.tif
145fc714b9f803667f0dc1d1fa457580
ae62534766b1b2a110f65f1478ce540a6e122778
2348 F20110318_AABIEI stuckey_d_Page_114.txt
5e36763dbacceb08e349fa8d38336bde
0afd5cf3e19bbbb348d5162f4ee4a6abdb3b200f
1051825 F20110318_AABJHL stuckey_d_Page_151.jp2
4c9bdf4ff6ac8df91e9878681a1e0c47
d2a010ebc89ad5573024db6f672214dd016ac0fb
483016 F20110318_AABJGW stuckey_d_Page_136.jp2
63597d281f80dda634c562fe2c67c899
5d1af1dab5ede5e5566a2ee6de0ae2c4d34c1416
F20110318_AABHZC stuckey_d_Page_167.tif
7adcb2bb720bc1c31597ed981ee87968
1e4c98e0c3a72d2b5482e2d11fc0a00f9ab7ac48
2949 F20110318_AABIDU stuckey_d_Page_100.txt
009c9d6c0b76b30c268906321d4afed6
e8296415eaeb3c59c90641adda745781db431b98
F20110318_AABHYO stuckey_d_Page_152.tif
fd6dbee3311a3da4aedb4fda5bf58150
747d80bed93194aeaa8d04bffa5c14cb2c6a22bb
1323 F20110318_AABIEJ stuckey_d_Page_115.txt
135aae22bc76bf1fed638dbe975b0bd7
8198de2690d5c306a1a039d8aa529cd78c3029e2
425127 F20110318_AABJIA stuckey_d_Page_166.jp2
48eb5ee5bb46b46cbf98dc10b3a33a6b
43807aa7ccf942e12590aa923ccf5164c95ebce4
1051749 F20110318_AABJHM stuckey_d_Page_152.jp2
f36c589ae8eeef9f002b093cf20f934d
2c2f8d950512d236cf0d28c0fa0b1c51e9188e16
162292 F20110318_AABJGX stuckey_d_Page_137.jp2
92084c11452aa769abf0cdaf8e9dfcc5
77832ca2140c770395e8d75d9c82c2d5b10fb3aa
F20110318_AABHZD stuckey_d_Page_168.tif
f4981a105d1c8f69ee82f7f993a21474
2417ae8ddba47a821b9b5a8fd0e6f96df75892b3
2076 F20110318_AABIDV stuckey_d_Page_101.txt
37b168ac1b410146f0a1de7fc1329785
1e042b5276d33ff284b7acee5595b64d5a0e3ab5
F20110318_AABHYP stuckey_d_Page_153.tif
a9f18d4fd0116efc1bf80ced53781a56
3b58fdc255d3cd7ae6d598f96f8c0d2a02ed021e
1415 F20110318_AABIEK stuckey_d_Page_116.txt
c8da271d299a03dde92c2cebaafbcef8
c852c9bdee9da62ef2178e46e36aae96be4c1851
527620 F20110318_AABJIB stuckey_d_Page_167.jp2
202c1107ec099ed0deb0d830e371931b
5e38c3125eaa24991b6e6a401d3919b9e95095a5
506443 F20110318_AABJHN stuckey_d_Page_153.jp2
e1c6f1c440007106eaf41878795696cb
ba693df004b30f34172e00f450da7258fadb862c
1051916 F20110318_AABJGY stuckey_d_Page_138.jp2
b3869e4e29fa90c4846003bf5a40ba50
db2ae7fd1c00b1bdba0bef08771695587bd1e73c
F20110318_AABHZE stuckey_d_Page_169.tif
5934821063a19f5ae7a1af8a7ba41059
a95798d747c2105df7c4cded77c4b8d32f424c2c
1607 F20110318_AABIDW stuckey_d_Page_102.txt
e818828d05353bb913955584399ac252
db1d6f6c0983d3ce80f7ad32f7ce1a3d8f66d10e
F20110318_AABHYQ stuckey_d_Page_154.tif
257af0fdfeea4ef55b2e1765929a5ff8
ddbbfb1647bc429f39afd90979349b5491786d8b
2288 F20110318_AABIEL stuckey_d_Page_117.txt
bdf45b652715d6b432b77113a162354d
4016ef0ce5603afac5e30005b96951ba972ac707
349412 F20110318_AABJIC stuckey_d_Page_168.jp2
1a27e7137af31f346f6073cf17dc4a27
5660a513d21f66750660ca4f1db22891b05c9658
879055 F20110318_AABJGZ stuckey_d_Page_139.jp2
47ee834ed7b8e0567decdd5bc7df8999
cf6b806cdbc0bb2fce78a010ae16fc3a65481c96
F20110318_AABHZF stuckey_d_Page_170.tif
30b9f0e1aceb6da9f234e32ea94475ec
812827917acd603a612826ff07f43c016ec15669
1544 F20110318_AABIDX stuckey_d_Page_103.txt
c06c9ea47ecaf029a732a94d8e30d9b3
319897433f99b3090017f7cfc9427f0c0c0739b7
F20110318_AABHYR stuckey_d_Page_155.tif
02eee94e6a1d0306c2713b2f7ac3a49a
76476e1c2f0792a3ad11d6eadece0118ba5c8cc4
2675 F20110318_AABIFA stuckey_d_Page_132.txt
7c4691536f30caedfb86ef84cf90e242
87e526c9ada5f7f28367d98f426a16c8e3c7eb85
943444 F20110318_AABJID stuckey_d_Page_169.jp2
687e2092a9a78d3a754f0f249b334e9f
907ff47cbd5fa5522bce539934832d6bb3c68298
1051936 F20110318_AABJHO stuckey_d_Page_154.jp2
d275d1a6a41cfb71f6478ccd6743e529
48c1cee3199b7adcc6fbb80018c1ca4d509ea3eb
F20110318_AABHZG stuckey_d_Page_171.tif
fa6e27162edfccca289b70411b67a270
fced50253c63f428b576db6e279bef9722fcd640
1430 F20110318_AABIDY stuckey_d_Page_104.txt
d06a0ead0f35faab59712f5e7279f5c8
4877a2df2f8f8dde239a9609901433d59788b52b
F20110318_AABHYS stuckey_d_Page_156.tif
ed0a002785cb3895a79830a5ae6018d5
bcc43bfb7a4d86472d653754680fde72890add83
1860 F20110318_AABIFB stuckey_d_Page_133.txt
498029170d785b7a239f04ea714d8188
1a1ae3caf7b217bf07b434212630178f1e374c6e
1862 F20110318_AABIEM stuckey_d_Page_118.txt
0d3885b109a5c0d5500d40ad544f845a
d7c7cdda351f925e9bbec137a2c6cf4836366214
1051983 F20110318_AABJIE stuckey_d_Page_171.jp2
63473877e15c59251ed7e7035f701ee0
1dec6e215cdb457be5740b9abfb74865a2730280
902633 F20110318_AABJHP stuckey_d_Page_155.jp2
378e058c8f81ac9fb34864be9041ccf5
eadbdf18b33978989af58912ec1630c3ae2db30d
F20110318_AABHZH stuckey_d_Page_173.tif
4af10ade04a766d4a05874a4558164d0
aea5f36730b4339ceebbbb404ddef863314baff3
2149 F20110318_AABIDZ stuckey_d_Page_105.txt
bb809217b3e9149e5178fd1ec871c4c1
f44cdc8ff2af9a3ec7c793ac85e2e62ec69cd093
F20110318_AABHYT stuckey_d_Page_157.tif
f1a2f4e0e94ed8d8ecd21a213bdabbea
8a47d7508d4de6211fddc5cc8ba369111169ff7f
1811 F20110318_AABIFC stuckey_d_Page_134.txt
0fc268fa836c03d4c7f7ed7324485b59
b6a72554c49cc55c47cb3d33396394d97dbb0a5d
2028 F20110318_AABIEN stuckey_d_Page_119.txt
8d528e9c826b5a49a52b5bd5bb9777ba
a9ec695b7bcc0979e88bbbfcca4c3328bca0b676
1051959 F20110318_AABJIF stuckey_d_Page_172.jp2
d221f6e56a7f9738b06f1626e7b2629e
a1a64dae05ea30907dc01280a9db0243d1cf4335
400530 F20110318_AABJHQ stuckey_d_Page_156.jp2
1c75ff43a9fefa665df202d3de8457b3
845bef71b67ccfcf490cd79c1ef6823390c923bf
F20110318_AABHZI stuckey_d_Page_174.tif
7bf1ccf21149971960cdce5413a03fef
14f3bc67e469214bb1cc99376cac769f09855d6e
F20110318_AABHYU stuckey_d_Page_158.tif
7f469110cd024baea036e53f8e854322
667bc386416c0f1178aae3fb948cf8fb4a831c89
3411 F20110318_AABIFD stuckey_d_Page_135.txt
e436189c9d243510f363f53e37d3c92b
e7af0b1b44a362279a8ceae324eed4e5e17035a4
1663 F20110318_AABIEO stuckey_d_Page_120.txt
686345e4ee82cb4f68455552076cc5c8
fea80976659c5a806bb044862dd1c70856a39835
1051911 F20110318_AABJIG stuckey_d_Page_173.jp2
2ddb993638f2153cf926b11e3bc4fcf7
b73bae06309b64311f52cd18191565a6376620ee
474761 F20110318_AABJHR stuckey_d_Page_157.jp2
27f56656d7dcc89dbdd800d29493fe0c
8a4d601b20bfc36a652cd8b832198d11eb79aaf4
F20110318_AABHZJ stuckey_d_Page_175.tif
f233822a61d37bb8b06cc8833e59d150
4636eb5c6cbc698715b33181e24360d4129d75bb
F20110318_AABHYV stuckey_d_Page_159.tif
fbe00bd9116c412c94e18516efe6d3e4
828b15fbd08476aede79dcf703095d2c3798d905
1127 F20110318_AABIFE stuckey_d_Page_136.txt
7f0cbae1eaba73879bba1d8c64905676
ae5c49eeea845e2615a49db2e6cb4cab42256fa7
1264 F20110318_AABIEP stuckey_d_Page_121.txt
1f7bcc5da3f5c3cea8988ea824b61753
f9637bc780d20c24f75b334f1be5412025bbf9b9
1051888 F20110318_AABJIH stuckey_d_Page_174.jp2
fec096dd73beb0d13e3967f1e7faed40
de2a8c22e0905c40771b4f642da4b6402a3e2fb5
932752 F20110318_AABJHS stuckey_d_Page_158.jp2
2b24b91a88b7c5506973c6a70d08b02f
7a7fac69f8f64e52e5f71e1df2afca6fe3bb753b
F20110318_AABHZK stuckey_d_Page_176.tif
a725819b0604259c2f250ba48b2ca9e9
13f85a967bffcbbce77f878bb2162a8ac7e84033
F20110318_AABHYW stuckey_d_Page_160.tif
d5549569d219cf3ddadc8d65d0518873
1ecce8da8e22ac9b1d1aaa77c3b387d98b4bfb67
918 F20110318_AABIFF stuckey_d_Page_137.txt
623383d60635ba9cfa71e0a3ede47597
0f53a322e0a334998ea780e00bc68a4821e3c2c5
3665 F20110318_AABIEQ stuckey_d_Page_122.txt
d3fc61da601f5411d3cda76c1901277f
d4db940275731db34c9f6642f086f6b5e8095929
1051899 F20110318_AABJII stuckey_d_Page_175.jp2
a1e93e2b2df91e9d39facb0993a19565
1f85570d444a122974a844ce14cb3a56aae48e56
353993 F20110318_AABJHT stuckey_d_Page_159.jp2
bdd2e3f716f3783e8b01bc8fa5eecbf5
4f10d02e07c232d3e2fda7e3f55ae9529f152622
F20110318_AABHZL stuckey_d_Page_177.tif
d0c29f00f24c3882fdacea31d5333f2a
2b3bc3e825a5c5f8d44d7dd368b1672f2dd0b3ce
F20110318_AABHYX stuckey_d_Page_162.tif
e2a6fa8b03b97b252ff3843dc88d7c75
4a7735dfe605fd3b09f62da4ef5268d4a64b0bba
4893 F20110318_AABIFG stuckey_d_Page_138.txt
8723befe9f7ae31b5bb9ec4a61f34ae5
06d2b08b6d4378bcaa317d6e4ef811c73e2e8e70
1231 F20110318_AABIER stuckey_d_Page_123.txt
b978e6fc5b4817bb1881601860597026
c33153db9b8d6f1bc40dbdc3e0bdd17e67c4082a
1051975 F20110318_AABJIJ stuckey_d_Page_176.jp2
d734ce1a27691ea9f03065cef60c0dbd
44a8c2a1691f1fffa8505276872152acf5d92c12
1051954 F20110318_AABJHU stuckey_d_Page_160.jp2
415e94ddf0437f8dd1664b7835266045
c3413be2097049ed355c548b9f5ece907b4a6856
F20110318_AABHZM stuckey_d_Page_178.tif
d6f897419b87332ee4e865e3027b2277
15cfb4c53de9ad6223533a92a68fd127b7443a3e
F20110318_AABHYY stuckey_d_Page_163.tif
fa3407e5ea9208e2a70bb9c0b25f4b44
63605491535b766e9ebe430acf7f7b0965188460
456 F20110318_AABIFH stuckey_d_Page_139.txt
0f2880e8c5931bf689e39cd98e67de9c
ef50e28b8e777f20ab42fe4fdd553186350b37e4
1167 F20110318_AABIES stuckey_d_Page_124.txt
7540ea3459a1f8e265f9dd7f99cd0dbd
812c8160999a5c1abdf8d2aaeeec0bb7eded7997
1051880 F20110318_AABJIK stuckey_d_Page_178.jp2
b6568fd5977f00f6b0ccbaa868ed3d96
c7794eb7d3dc1c9a783700e7e4856dccd995694b
547945 F20110318_AABJHV stuckey_d_Page_161.jp2
72e9ca78be5c4fb9e5df1a41c197f806
79f3cb8b118a2a99186ffd3cf64a1aa6e3691485
F20110318_AABHYZ stuckey_d_Page_164.tif
a8e95a891c49bc27a75c0a78a697f4c1
1a4c80ea47b9596f49958e60bacea8a378386b78
1027 F20110318_AABIFI stuckey_d_Page_140.txt
ddc9b2d089ce695737a27153b2c66e01
83715ee7871d835cd487e1828e1bd5668a3e7912
2316 F20110318_AABIET stuckey_d_Page_125.txt
836bb48187e36a15151dc26a230b29fd
3a2d8df2f1a9c97461b480742bd8976b3ffdb69c
F20110318_AABHZN stuckey_d_Page_179.tif
1c240884bde63248da67a4894d9c3d03
b18476660866e5a9d4021008f8bf69cbd7debd65
1051867 F20110318_AABJIL stuckey_d_Page_179.jp2
a1c4e2f4b15bd961795b244ab1293f9e
c119a2b3cba9c10e8f44d4d5f66a6eaef8bd223d
896351 F20110318_AABJHW stuckey_d_Page_162.jp2
741eb782c015c37fba06ce8db11b2c13
713836dcb828f29659de33eb84cf16eaab372864
234 F20110318_AABIFJ stuckey_d_Page_141.txt
51b04e62e37d689551a3722f5ca7c318
62187bb8637dd2b9b5f7108173e1955b287c5ca2
1282 F20110318_AABIEU stuckey_d_Page_126.txt
223526d1c04f2db3bf867062c137e25e
cc9211748d51c8edd2f58b65075347b81bfe993c
F20110318_AABHZO stuckey_d_Page_180.tif
cd20d308cbc90408f44e6ccf8a72331a
fa5775cf29227d4c2a3adc8887f1e351b13cf4ef
49930 F20110318_AABJJA stuckey_d_Page_196.jp2
c40ad4f8453dfb2976142e8f56239fb1
9a0fc76eee3a3fef01fc476bb40b178a8954a2a2
1051973 F20110318_AABJIM stuckey_d_Page_180.jp2
0224e76b8e5bd1c93463a96fa72e4b4d
4eb95a51e6305f222f451393657fae451fb47313
463480 F20110318_AABJHX stuckey_d_Page_163.jp2
bd0971bcef2ecde36462325e05fa21d6
db030c8b6866e1e7092cbbcd3597d4786d411afc
207 F20110318_AABIFK stuckey_d_Page_143.txt
1ba8ea36535a531099d4a50ea0c3d1d6
ff60d7d66648cdab3ee6f4f71d0ee0836f827c3e
2637 F20110318_AABIEV stuckey_d_Page_127.txt
fd79573412fac73e8fd5fdc602fb1928
45c2c68cfac89f5999acec4df4cb42f082b0ecf4
F20110318_AABHZP stuckey_d_Page_181.tif
161fd1b821606947638280f350184e4b
3d3adb04e59f1584a3e38b519b000e04e4ce9382
2029 F20110318_AABJJB stuckey_d_Page_001thm.jpg
1a1061a7a8d9fe1ba575c0469edf35ac
3ae51d510cb20fde42c9b058299f6ac884a3153b
1051986 F20110318_AABJIN stuckey_d_Page_181.jp2
60b864e7617e80200e5e7c140a2073e8
2be088719180c956e21a9a1685e7f4fb3fb9f4aa
871051 F20110318_AABJHY stuckey_d_Page_164.jp2
648a434723dba0bff30f8e66ab458328
98cf7118ed47b089e7c38a3392fd6e4578a2070f
519 F20110318_AABIFL stuckey_d_Page_144.txt
ccdf06e9c3532cc79f0ee74031ac2f5d
6e790bedfcaa7392fa0351fdd758c43ca815c15e
1964 F20110318_AABIEW stuckey_d_Page_128.txt
90fc819423262789534149ae82c87736
4cc53a9ad8cc02eb622e142cef403f9c3013d9e2
F20110318_AABHZQ stuckey_d_Page_182.tif
4774520013796b2198b5123780d32f11
6d68f84ffe91c59e32200c2d18749c9926318145
617 F20110318_AABJJC stuckey_d_Page_002thm.jpg
bb31e6e2e8e1c0ffaedaaeda266b038a
2775f3b3b8b59c01cc91cf612ba51b58115b9f76
1051885 F20110318_AABJIO stuckey_d_Page_182.jp2
ce346d42f2ca06df377e1ec7e6c5f1be
f64741edf3e9e524f433fcd97a327b25c6057ec5
444088 F20110318_AABJHZ stuckey_d_Page_165.jp2
e6793116486a70a5f731fd690ce8ba43
bd1dd148331955978ee7b49f9580658b92442d2f
199 F20110318_AABIGA stuckey_d_Page_162.txt
316d519edf2d0074ffd6e8df751e87b5
a86de888e4d82431a2295d513b7246862b222e6d
102 F20110318_AABIFM stuckey_d_Page_145.txt
93f9f46433f9524e1d1ef7e843a82e65
68e347123d51dae581d6ffa70a7c1fb49a4b7af7
1775 F20110318_AABIEX stuckey_d_Page_129.txt
6d639a973025c1e1062c0314cf56ba4a
706865fd4fa02ae29bc4357e4ab3fc5f1dcfb549
F20110318_AABHZR stuckey_d_Page_183.tif
128b20bce0c5ea9008d4dce8e3665961
5829310a0a64e39f5d7468a40c0b255564aebe3b
1227 F20110318_AABJJD stuckey_d_Page_003thm.jpg
dfc0b82ca798fbb06bc77374f50654f9
f7cac752b42f875d85be08a1fc1a1118d0f86242
1083 F20110318_AABIGB stuckey_d_Page_163.txt
b3ae10f00a70bc2a526159d43d40af15
14fd12a59cb626aea2a80e4571a8caa9c538e911
3001 F20110318_AABIEY stuckey_d_Page_130.txt
b98f3e04e5adea917f08b65cddc5c6cf
30ecd91a574970e0e2a7038c8a3f28a8a6f84710
F20110318_AABHZS stuckey_d_Page_184.tif
2f55de4306b96b2f6deab349dfb26326
1a835fb1cda0117c72c7584d0388fa8407e573db
6198 F20110318_AABJJE stuckey_d_Page_004thm.jpg
65016bf34f9dcfc39915674cb3b7305d
2d4ddecff859718468c184bad8e9ec3b63b8a880
1051971 F20110318_AABJIP stuckey_d_Page_183.jp2
136256345225ab212e109add114b59db
c4dc104129ce35fd7f0bd43d9114db47e65c5a98
462 F20110318_AABIGC stuckey_d_Page_164.txt
c07a102a38574c9f02964461c64668b2
662a87d5109982c19b45acd6a2ed4e44a2bbdb0f
447 F20110318_AABIFN stuckey_d_Page_146.txt
6e1c51ba399db0ef7397aaeefdb098b1
37fc229aafaa6f4d7a4aed1712b152a2c7f21495
1456 F20110318_AABIEZ stuckey_d_Page_131.txt
668bdb864dd544eb66ab7e5f3bf0202a
4f2f64ffbbabbeccecf715b6510ee6ec77e35d41
F20110318_AABHZT stuckey_d_Page_185.tif
dc895888ceca8a73db988bf69e7f852f
2257b7ba22e1991afa1cd7ce1e341ffe72f34baa
4806 F20110318_AABJJF stuckey_d_Page_005thm.jpg
d381932fe143af1ca57263ec6208f234
73ed62968003deb86360ae170a021f6c298104b1
1051950 F20110318_AABJIQ stuckey_d_Page_184.jp2
1888dc81e0b681767456a187aedef35e
268104ef5c31b7654ab67dabcf0cce0c8e2c5f4b
161 F20110318_AABIGD stuckey_d_Page_165.txt
9be403e79a0ffa7eb3a0fcc387073ab6
0e6a3118c6c49423807deed8aa65610ec696d285
857 F20110318_AABIFO stuckey_d_Page_147.txt
527b96f962aea0a8624c82e1cc48f941
ce57bd5f408ebf72a1e602093a1711cd85006a9a
F20110318_AABHZU stuckey_d_Page_186.tif
217c2e331bd8b72d4c38cf4b907e9428
eb0c7ec20f2d9654158a817043d3b5e1dd5fc9be
2608 F20110318_AABJJG stuckey_d_Page_006thm.jpg
1ab0d4de446d9aa48004cbcfa3a3757d
9e6a591d08c6993899e679d3c934a18b3dfe13f0
1051963 F20110318_AABJIR stuckey_d_Page_185.jp2
b1782cbd76952c338c2d6985ee780aa2
21af90d0e443190c67d3532a9585fe6e335a2a31
163 F20110318_AABIGE stuckey_d_Page_166.txt
bb46aa5e22e0dc5a028a613ecf4f9284
272a799f0dab636fd6cde81c3246107188ce5bba
148 F20110318_AABIFP stuckey_d_Page_148.txt
7e68c0fd264724dec0a986716b2e7ab6
e21ec34eed4b96b38f119a8093a362d7b7ddf876
F20110318_AABHZV stuckey_d_Page_187.tif
d38d64c9c300bde11baa953048f69cad
b29dc70b9b34a4d21f9e9ecf6a198a6a55b95578
8788 F20110318_AABJJH stuckey_d_Page_007thm.jpg
d1cda6d63d35d04814efea2d2e87f1ed
f0d91859f541e50e6b6a535ebbeb4fcb2ef5ef46
1051985 F20110318_AABJIS stuckey_d_Page_186.jp2
71a6dce6263e82f3063f23cb063f8fd3
f078a658e00e08d48733f01b92359934112f30ed
1149 F20110318_AABIGF stuckey_d_Page_167.txt
5d0f085bb2579282daddadf14abae6b8
9f6515e00c0c29f7474d76d16c0c24d0c6533c6c
907 F20110318_AABIFQ stuckey_d_Page_149.txt
75aeaa7bbfaca2d20ff29d447c74c2c9
7fbf3cfefde9402ed04e3270ecbbd6066355c75c
F20110318_AABHZW stuckey_d_Page_188.tif
922f08be72e15058971df3f34c9acac9
e05556bbfc3e38680879116df4212f272551f82e
3499 F20110318_AABJJI stuckey_d_Page_008thm.jpg
87a161ef8f904e4dc2db6a9ca2415627
ac06da069ca67d2a1b03715b768e41dac4abd225
F20110318_AABJIT stuckey_d_Page_187.jp2
68af96431d33d9bba4c2f1d14328ffd6
53a2245d141df256cc93f153ac94a2628937a4bf
147 F20110318_AABIGG stuckey_d_Page_168.txt
2d893ac2d394f6f5c4a87d19330c4fa9
0041f43ab9663fe690e7cb271d7de58139dfbf1b
889 F20110318_AABIFR stuckey_d_Page_150.txt
9c0e163e084327f075481fa5527b68c8
de372660b351e8631bb4e11148e9c508a8ea4949
F20110318_AABHZX stuckey_d_Page_189.tif
a1b26de593a1c6d03ef4352d6ed3098f
5112bc38c6ef46662d159609798d48e1acf18a4d
8781 F20110318_AABJJJ stuckey_d_Page_010thm.jpg
f3ba7afd9d6f6469eb730f9f5e3c9413
28751f50bc787a0c80cf3ea036eda2b808ae55c0
1051894 F20110318_AABJIU stuckey_d_Page_188.jp2
d289d579b70f06655ae0688abb26b814
19012db5c83d0bee6a8bbd4b62d7ce71103728db
104 F20110318_AABIGH stuckey_d_Page_169.txt
427b5c7b437a3aca1233db23a9e9015a
c116ef52c9c1f859e07d7b4c5baf14c9db368f19
411 F20110318_AABIFS stuckey_d_Page_151.txt
7aa3fa994e10e679612c743d0fa16fbd
c7113b911021601cbad147315d00325d57c7c9d3
1053954 F20110318_AABHZY stuckey_d_Page_190.tif
24bab262be8d5f0eda7d78f4f92a4df5
d30a10f4dbe44908771be46b3e88b8cf6efe95a6
6434 F20110318_AABJJK stuckey_d_Page_011thm.jpg
f960512e062de37325b7d73ac7c7d5b7
845e2e19bc3f9b76fd57ea68aeb74bf8050d1fd1
1051937 F20110318_AABJIV stuckey_d_Page_189.jp2
46a39aff960f9e2eddb8e99c976bacd7
ce6d6bec962b11f750960d0dc0b5ef4e27e569af
100 F20110318_AABIGI stuckey_d_Page_170.txt
d994f307ca692ac0ba6d17b2e616843b
9d23ac48fa9d160b327117ed41edacb9a03ba8f7
942 F20110318_AABIFT stuckey_d_Page_152.txt
f749024866830ec9fed4dac2bf648619
4cec0fe71026b76771bbb9deeb7526b23bdfacfb
F20110318_AABHZZ stuckey_d_Page_191.tif
d9bf870a79158aac3b93979f68be479e
ca59122d51b00a9ad9bfcc5b18508473b6f97c7d
5351 F20110318_AABJJL stuckey_d_Page_012thm.jpg
55568bed14dc018e6b54ca9b4f04641a
eb4fe1d7444311b4be89a6c1e09cb7204ceb88b2
93526 F20110318_AABJIW stuckey_d_Page_190.jp2
c0f446e56f008c7d1118e53c0bc6fbf9
e0cf9edbf669bd7b9581d13d7aea18d6ab3b9003
140 F20110318_AABIGJ stuckey_d_Page_171.txt
20a24b4eaf66485348d2e4a870940293
76baf3ca74167fe99ef82d65b40a74620f576263
814 F20110318_AABIFU stuckey_d_Page_153.txt
8b7b0302eb06daa63642f841963127c7
c72a36a6d41026162ce8016fee6b282ab8184b64
5834 F20110318_AABJKA stuckey_d_Page_029thm.jpg
40951376fc30442074a1906239da696c
f2c7390032604e5023886fab59a3ba0e92fac89b
6832 F20110318_AABJJM stuckey_d_Page_013thm.jpg
248805ad346dbc87340b40816eb87ba0
ba9401394d6fae9e3ac661897c44d502ce20f8dc
58565 F20110318_AABJIX stuckey_d_Page_191.jp2
e86604874dc5c1535367a276067da1e5
e9f20cfcb4248fc59ba219abdd6872dabc5d1152
143 F20110318_AABIGK stuckey_d_Page_172.txt
0c9b58f1c11aca89cebda7d4b60f63e2
3c3f099f0d3540be4d5b76a1019a647fd6a657cb
446 F20110318_AABIFV stuckey_d_Page_154.txt
e9d0f3c2651244d3faa043cebf4f3e86
b76dce5e23ff4b1d7e12171d9d4ced850a0554da
6319 F20110318_AABJKB stuckey_d_Page_030thm.jpg
a8f825005d3eda40fbefff433419d91d
57f31e31049212ad11b71b10c8879e95d26f761d
7232 F20110318_AABJJN stuckey_d_Page_014thm.jpg
7772f29b3043cfec5892b1215a392cce
e3b7c39aaab437783e3ef5a8cc2ed987b633608a
65454 F20110318_AABJIY stuckey_d_Page_192.jp2
9caf7d95398d219c32a7a03f2d8c8450
665c236bd878b5a23a90becbae9bdb45041d46f3
964 F20110318_AABIFW stuckey_d_Page_155.txt
47fe4dbea64b44aaa8a0f43bb5f2a607
79ee6157ea3f7d45c6ebc6edba45e7e7da743333
133 F20110318_AABIGL stuckey_d_Page_173.txt
a220dd86c6921909b3c2b2d003399e4e
fb958a096f34334df7891dd8915dc45881b2903b
8499 F20110318_AABJKC stuckey_d_Page_031thm.jpg
8a4bf715fb12d49f3f02cfc3d278e714
5fc591fd3e7570e36eb15dcc60e77c83a584a1ed
7779 F20110318_AABJJO stuckey_d_Page_015thm.jpg
8333f08cd778aebbca0fa717d2b45a0c
389e092e32097b025685aaa49413fcc63c3b055b
43711 F20110318_AABJIZ stuckey_d_Page_195.jp2
bb33687f9bc051e76a010d9a32661898
c5c99fe5479ed0533929ac501f05891557e89c09
1101 F20110318_AABIFX stuckey_d_Page_157.txt
d304e37a29422b2e0e1a90a1df3c8cd4
091c26a9e6e51e2276c333ac1070d1db6c68cf68
152 F20110318_AABIHA stuckey_d_Page_189.txt
0bb5377895fa76803b208b041ccde024
a27f7dcfa9888fe1e3118dae1a2f64fb0c6a72b1
137 F20110318_AABIGM stuckey_d_Page_174.txt
c1e947c2410d29bd786e7b5c7b04dd7a
848a1232de7174ef1515ea19023ab0cf14e643f5
5891 F20110318_AABJKD stuckey_d_Page_032thm.jpg
cfbddce8926ea67cd9bb40452d9e660f
513d5af112a69dab860f9bd05f2806fe698af16c
F20110318_AABJJP stuckey_d_Page_017thm.jpg
1d325a75dfa1c3223fc4a0cdb2ceb399
9ffe76548d73e2d3059330a7ab86cca4c4e11f44
817 F20110318_AABIFY stuckey_d_Page_159.txt
79ba88f29ea92350a2ca781962037a01
03ea65edaeca59ce7291170952607e1e5deee2ac
3715 F20110318_AABIHB stuckey_d_Page_190.txt
46bc08febcb17d1b6f5bf3624f0cbaad
905e20b11755bf65199f87fef8047c7ed65b751c
145 F20110318_AABIGN stuckey_d_Page_175.txt
61b47523ad49c7a4e8ed1788e8ef3fb2
eabea0b3620af8ac822cec99f8e0052dc21082c0
F20110318_AABJKE stuckey_d_Page_033thm.jpg
97529f5daff3573eb58fd30a7ae2f76f
c04739fe585add6c8d4fed007b7c60f85fa24c4a
1251 F20110318_AABIFZ stuckey_d_Page_161.txt
40d3378b3a63f51aee7fb1c8c9905a6c
68e690b06f546d39e8d20ea26ea7d029f97a2281
2204 F20110318_AABIHC stuckey_d_Page_193.txt
7165da0d2f2b674c395a8a8087213d9e
1adb160543fa2d060ec385244baea289e5d529bf
6464 F20110318_AABJKF stuckey_d_Page_034thm.jpg
6f3d342d8c5bdc6de37f04323b99ad02
eaa035c9ebb7f0463147e2efb616d11f73da7544
8062 F20110318_AABJJQ stuckey_d_Page_018thm.jpg
981d5f05416a2889a8e4a60492ed9686
200377150eb89c8aeac616ba3b444be6f2bd4e59
2404 F20110318_AABIHD stuckey_d_Page_194.txt
5af9259f9d3cb21f55b36402fb8a6c6f
ee2a1dff1fb768b410dcf8ad83da344b08c4bd45
149 F20110318_AABIGO stuckey_d_Page_176.txt
b874c0491ae9f41ca438bb1a0e14b518
fe99f875e5036edcbdb4a12b136a83ae893ac03a
7821 F20110318_AABJKG stuckey_d_Page_035thm.jpg
cf97b3b6142e3bd42f737aafa2c0187f
d65bc9556fbefae2713384be928e99a962f29298
8158 F20110318_AABJJR stuckey_d_Page_019thm.jpg
eaa9440ed64cf45e5a6788fc87dde3a3
adaf74b708b400841347b3522f7a7c4dc9762a59
893 F20110318_AABIHE stuckey_d_Page_196.txt
9a211e596fd0a27ffc6f9f66bf7ec664
803a39cb8f3da1064a8f0b490bd8aa27dc441b2b
154 F20110318_AABIGP stuckey_d_Page_177.txt
5fb78ea81820f848582c199f2361d72d
c90323b4fb3a5381de2d6fd43d15f85a483e5837
7858 F20110318_AABJKH stuckey_d_Page_036thm.jpg
7397be6e3f0803d9c822ffaa0833dd1e
0fd122d5740341498ceecfe3cfebf08ce9707632
8009 F20110318_AABJJS stuckey_d_Page_020thm.jpg
93897857271e2ed4adb3a8c7dd7ff2eb
0bd2590d739cc4c2efb875a3b741f1ff104f019a
7194 F20110318_AABIHF stuckey_d_Page_001.pro
af8d0cf8b2d66ff93d94037208b20c4f
47a3097e8d0df9c5aca66362ed1f14b7e748fb29
F20110318_AABIGQ stuckey_d_Page_178.txt
0e9a788a0aa2dc9c0db646b1bdb4b882
1bbdce5e4030fbd612f25720e6e02745eead60d2
4084 F20110318_AABJKI stuckey_d_Page_037thm.jpg
2ec26498f53c81cfca76f73a603159df
873230e072eea25d98e576e1b58c2ec02ac98780
7231 F20110318_AABJJT stuckey_d_Page_021thm.jpg
afe31fa116a0686ef58dea07aa2aba38
6f3afb41c871edb53ad8c330198126b09e31aef8
1201 F20110318_AABIHG stuckey_d_Page_002.pro
eea38bd92a206f41a38f8c52efd619ec
d7fd1905b6d6c1fbce88b739474e0958a7dd2eba
222 F20110318_AABIGR stuckey_d_Page_179.txt
92ef29ad36b3854bc3e5d51116bf0616
b4e7bb127881b5b674e83378bb8a0daa2940df0f
6640 F20110318_AABJKJ stuckey_d_Page_038thm.jpg
96726034764e467af5f1c3800266e6b8
1d0dfa61ba203636218f38105c51909b97d58e72
8623 F20110318_AABJJU stuckey_d_Page_022thm.jpg
ed3f7331f3261d4bf5c71ad6d6ead030
c4baaad6fc35581937857761982b0e8ba19ffb30
33822 F20110318_AABIHH stuckey_d_Page_004.pro
e9fd4f7e1e49cabf01bc823dffb355bb
9fffca22b7b9942e87e30efa6dc0c96dbfe6b885
F20110318_AABIGS stuckey_d_Page_180.txt
8f19a84dfde4187b91387f2826e473f5
185effda385601b14249b63c7e64454317021468
8066 F20110318_AABJKK stuckey_d_Page_039thm.jpg
3f9f6b3c369862ec71ad3d583ce4f7bb
a9752e2a19e028bf6e59d3922c5c53038da35f20
8177 F20110318_AABJJV stuckey_d_Page_023thm.jpg
63c693b9f278d2033ef287f914aa1b52
ae9cb2d6e0d48765af6f2903bdba975fee9eebfa
68712 F20110318_AABIHI stuckey_d_Page_005.pro
8e5fd3f0e2a0742273463183d6bdf43a
c0e287673cd901d44020f6fe6a960446f37443c4
F20110318_AABIGT stuckey_d_Page_181.txt
7d259d174f022f4f9ea40543753f8c33
1ec47426f48ae047816cdc97afa25ec532709372
7485 F20110318_AABJKL stuckey_d_Page_040thm.jpg
e2e45a7a410e08432f6dfed5267a9e2c
d9d19a5d0a9b981b46718465b244ee795228e7ab
7920 F20110318_AABJJW stuckey_d_Page_024thm.jpg
32f3d5e51170f26f0fb2d84692af3713
7839ba94908e1a6c540176488be60cb4caa35a27
71365 F20110318_AABIHJ stuckey_d_Page_007.pro
91985345c73320e63091c3d4ff0faab5
5c7027e35022eea0053f310264ce9ecb63d5d96b
F20110318_AABIGU stuckey_d_Page_182.txt
7fe0325065930b71d8b6536efe071fad
43e9a9ff1a00352d153d7643fd3190e0d0740e6f
4374 F20110318_AABJLA stuckey_d_Page_056thm.jpg
7400ac9a2eeb998008f53727975235ee
d57138027edb9f918f490205020fabcac858a471
7987 F20110318_AABJKM stuckey_d_Page_041thm.jpg
66f1fa95160699b7995673d94be7dc9a
da7ffaa2bd9de4e4946592f582fa5b5897b7fc91
6624 F20110318_AABJJX stuckey_d_Page_025thm.jpg
5999c581e2a0a4c26d9c9b6a5afb8f81
70e5be2fc01a694cadba60d6825aab1750c817f0
23455 F20110318_AABIHK stuckey_d_Page_008.pro
89c915aeeb1665b582c121813a47c12f
5eadd6285016ea68cbb68e6c04a847ec778e50a2
153 F20110318_AABIGV stuckey_d_Page_183.txt
f27d2ca20df46db194017a3838c34356
e2b0a426da9702b1c5f4103a889d91be759f751e
4230 F20110318_AABJLB stuckey_d_Page_057thm.jpg
7852f942c902cbc94a3f263897742739
9ed88c2547a732790694adef851dfa2599808858
7822 F20110318_AABJKN stuckey_d_Page_042thm.jpg
4905da395d087a826fac56bb9bfd4eff
3c2d637f5065ae1b26f4370a5a2d9b6a3dae290e
2066 F20110318_AABJJY stuckey_d_Page_026thm.jpg
7ce947f9dfba15af1cc50ae9a418c388
c28fc538824d037071ec8e2b273c3a7eebcbb1e7
61426 F20110318_AABIHL stuckey_d_Page_009.pro
1f1190d66aa748ac08c2d0933eaccbc6
d5e117301133255faab60ca7339bb8d30fc22409
F20110318_AABIGW stuckey_d_Page_184.txt
f9589df45cba5b454fcc3aca818bfd51
f9c90fe93b6d5fbe26635729ba1f8b2df5c5edcd
6354 F20110318_AABJLC stuckey_d_Page_058thm.jpg
043eff14d929a673d6fa03fe202d8a60
72aebe7ed02bc2165e42b1cca0333159a1aadf8d
7798 F20110318_AABJKO stuckey_d_Page_043thm.jpg
d8a60f0c16f1846bc296dcf6d1f31e5a
e5da86911edf14a4dcd61ef5d980379c251f5f91
7694 F20110318_AABJJZ stuckey_d_Page_028thm.jpg
3084cccf20fd249b3e8c3672d7de64d3
e6575b6d60ebc3db6a491251fd86a8ff2463982f
42921 F20110318_AABIIA stuckey_d_Page_025.pro
4315528d70caf42695c445075e5a7986
ae56b98831710b804ace87120cee27a6b39ae337
70452 F20110318_AABIHM stuckey_d_Page_010.pro
64504cbb6caa1cfdc141b5bb23273bcf
ab40396b442a047b2df5fa74f29dc8e68d241efe
F20110318_AABIGX stuckey_d_Page_185.txt
55e31faf50f4e56b6dfacf92eaf1ff60
9a4ee15ebdb377273c7fecfd99cbe0a1464c20b3
5690 F20110318_AABJLD stuckey_d_Page_059thm.jpg
ea593dc97078c746bf86ba870b3dcbad
41dbd02f04a951bfcc7ff06daf4372b024515dc7
8449 F20110318_AABJKP stuckey_d_Page_044thm.jpg
a8e298d794381ffc58db87cb9a34f6e2
56435824592f53d9b0662148b594654f7154425e
12876 F20110318_AABIIB stuckey_d_Page_026.pro
6f66027920c447b37af8b0a51ade32bf
d51a053a56dff5bbce446535380faf3142aee8ba
38345 F20110318_AABIHN stuckey_d_Page_011.pro
c5bd4e8794b67c50fe5f37811d3b835a
1f527af310c70f6bae5b366e4260b063b86c2cc5
F20110318_AABIGY stuckey_d_Page_186.txt
9402f55b793593d790dfd15fef5a4352
8a8aa872569f5c69ccef6b27ec53826789871c87
4200 F20110318_AABJLE stuckey_d_Page_060thm.jpg
65a9ca1bee8fb2bba14c533e8849f398
8a4d732bf43aa0bb244de11d1bff1e8a26e02f9e
8690 F20110318_AABJKQ stuckey_d_Page_046thm.jpg
9f4724020469f614a1534a841bd93b70
9574c919bc01d2aca5bd07ac46f4107cad9d6855
37281 F20110318_AABIIC stuckey_d_Page_027.pro
83c959a2457bab440ad497f10922d932
68c8afc4a5e0100afa752174e43d517f767c1c0a
30996 F20110318_AABIHO stuckey_d_Page_012.pro
3edc90d90f6bf1f3c632ff52771c27f6
b47d439dd241a505dd0b5ef1c36fddbe6f52764b
F20110318_AABIGZ stuckey_d_Page_188.txt
17d96ba7bf292ce41fc7aba054eab8e6
3d96cf4cb58edb36df3820df0b1bb7c66f257089
5831 F20110318_AABJLF stuckey_d_Page_061thm.jpg
1d9a8bcb0a4afab60f283f049f3c8dde
52d31442919321382e67ee88b3687c3e34a2853f
45090 F20110318_AABIID stuckey_d_Page_028.pro
c2a652c493c36264ea411b7efdd2fc33
8ffcc6dcce1474eee8f0365c61a2fdaf69d6f49a
8026 F20110318_AABJLG stuckey_d_Page_062thm.jpg
5d013da40411c56a162e0625a083075e
ad4b0537c7bde80e7b5bfeb437771b868e0be32b
8455 F20110318_AABJKR stuckey_d_Page_047thm.jpg
5427eae3dcc326d8a8ff9a951a86f7a4
f100aa17729c97e90be12eb7a10e17f6dcd4ab20
33747 F20110318_AABIIE stuckey_d_Page_029.pro
09b1c6329694cf3daa2bae8200ef675c
3634c0d710bd7d1706480e2d8b636c5f1c111510
38957 F20110318_AABIHP stuckey_d_Page_013.pro
9493ca04d823c83987cb7dcd018693ed
d374dd0ff109324de957f86a0a1c0e4860561638
7402 F20110318_AABJLH stuckey_d_Page_063thm.jpg
63d05c035384d55bcdb12c024d4c9f5b
f5a18171394c5c39288f70004373d1931fecc3cd
7778 F20110318_AABJKS stuckey_d_Page_048thm.jpg
617524d325fbc33a46e10a60175cbd82
75cb0a4e97798d841cf2499916cfe61137abb4dc
17404 F20110318_AABIIF stuckey_d_Page_030.pro
f57f1314084609902a09d1b79637a505
560d7827f346d55dce0853318c5a230a3bf1955e
45718 F20110318_AABIHQ stuckey_d_Page_014.pro
37053fc86f586bce96834e952b1a986e
b15c9dbe48140281ca0e5ba261ca6f069e416c02
7045 F20110318_AABJLI stuckey_d_Page_064thm.jpg
32df7784d04598bbe54108520bd2ab8b
f0e43fc06715f307655acf8d5e835ff0ca1a34aa
8275 F20110318_AABJKT stuckey_d_Page_049thm.jpg
b11d1579e3605539a26124b1eae4d049
2c7f0aebd558f3c89c72d99aeff57670f040e7a8
64357 F20110318_AABIIG stuckey_d_Page_031.pro
75df04463aa095a515b412d847f9fbf7
05c57f8737ae57c51d047b413da414187b0d14d9
45766 F20110318_AABIHR stuckey_d_Page_015.pro
fa585b3b4134b0fddabe4c9395d5a17c
319c4ca35639b5423c38ae0e01da0db66da7a167
7615 F20110318_AABJLJ stuckey_d_Page_065thm.jpg
f9e9a7a567158e193128cb79978097c2
2a9047b1bd695d2840787bd90ca1712702eec230
5192 F20110318_AABJKU stuckey_d_Page_050thm.jpg
87e29692ddf6c9bb8e85edea987694ce
f19abea7763a8bc5c2a4c6d636daebc41d623766
32020 F20110318_AABIIH stuckey_d_Page_032.pro
0c09bc1d2abd2ba29ad4598c6f0f39d4
d7cb2b3fb5d82eb70f616bd85954c1876d000bea
45310 F20110318_AABIHS stuckey_d_Page_016.pro
a9582f892bb9ab85550b761afba9455d
cad0953eb54eafefcc0cf98b658c0c22881438ca
7372 F20110318_AABJLK stuckey_d_Page_066thm.jpg
41e0ca804462e398df27009179424a1c
454de492e17082d7d8db33769ed2bcf6b9c7b0ba
3979 F20110318_AABJKV stuckey_d_Page_051thm.jpg
0abe1004cf35693989ca8ffbdfdf852c
e307614736938a5149a08f0f5a6ca308fca96663
19759 F20110318_AABIII stuckey_d_Page_033.pro
795f9636b69602427618eae5e84ca2ba
3ee05f76a487378b07892a9bb33e36bb469fb706
48011 F20110318_AABIHT stuckey_d_Page_017.pro
975cc80440fff1448bda4dfa7d1f9d96
f51f8ac0cd6d796f47b2202ad7d586c0d66e135e
7172 F20110318_AABJLL stuckey_d_Page_067thm.jpg
0ae76a0e96a1582ae4eda79abba07bc9
ad27fccc99345b9032d9c57f1263a45ab437e8b6
4349 F20110318_AABJKW stuckey_d_Page_052thm.jpg
0d49b7e1d23dc1d183273254db850c5f
27cdccf0c62597b013412b75b367c9afb7c235b8
34996 F20110318_AABIIJ stuckey_d_Page_034.pro
a4f34a66e8eb7b89103c654286c27435
50ff5f96d7ff3ce77e7c5a28b36027a7afae0405
48128 F20110318_AABIHU stuckey_d_Page_018.pro
19edc994491de175a52d723340a331a2
dfb681bd26aec28e687c782b9ea8ddeabbd5d7b8
5940 F20110318_AABJMA stuckey_d_Page_084thm.jpg
e9aec90df3667c81c75bd51078ea8656
b06c85485fe9d48050ee4162ed9286f51496d1af
7112 F20110318_AABJLM stuckey_d_Page_068thm.jpg
ffb7ee7c01e3d8f87f7dda6434db44d1
b767946808104a7f86c54d26cd291916cb9ad8d7
4179 F20110318_AABJKX stuckey_d_Page_053thm.jpg
a42117015ace8e6abf985b6ff01fa02d
a3a9ba9f17dd9a8d378aadecf7119705bd0886f1
46771 F20110318_AABIIK stuckey_d_Page_036.pro
75c29ff881b24888b7ab8d2d6136e68e
22242ec903c3bd06ca87a68bbb11452627d3dae7
50329 F20110318_AABIHV stuckey_d_Page_019.pro
2a3fda345f80dce8374ca0a60a2490e0
719548dcbfb5852c97cad47898d9f0907fc2d72b
5336 F20110318_AABJMB stuckey_d_Page_085thm.jpg
8a0e2960e76724eca8f57678032d0eaa
a4a5729724e09083926964bb9615a9441057fd96
8235 F20110318_AABJLN stuckey_d_Page_069thm.jpg
1261c569a3fe878094b3785cb188b1ee
162a5660410792317188ee54c8303b00768c43bd
4240 F20110318_AABJKY stuckey_d_Page_054thm.jpg
0690a6f9d9487271272b1b5bea08984d
529c4a0dd36768b546a414574a6e6ad44574cc6b
20276 F20110318_AABIIL stuckey_d_Page_037.pro
151fcee0868d08af8c1bff5f88878218
a7cec23af02249c68e7cb8b3cabbc96d87bebde3
48414 F20110318_AABIHW stuckey_d_Page_020.pro
035c5fc99ba727cca210067541470adc
f22515dedaf022850df0c330444792c16fcf694d
6221 F20110318_AABJMC stuckey_d_Page_086thm.jpg
3dbaac2d9cbc90d09091b0a4ae0b5235
04102dc4f223fc2788c2637d94a3ef84f6abd094
6576 F20110318_AABJLO stuckey_d_Page_070thm.jpg
ed5176f16acb63b165435c2246f06779
4cc8500161b4fe1cb0308713f455f70792c3697f
4139 F20110318_AABJKZ stuckey_d_Page_055thm.jpg
08b12023384b7c900921867ecf5ed423
c3f45d28e04708fa3fcf9d911cb982c05493a9c2
39420 F20110318_AABIIM stuckey_d_Page_038.pro
2fafe4f418690f6e3f7140efa65d9b72
0b352d030d6a1f41d577a3dab0789599980437da
44803 F20110318_AABIHX stuckey_d_Page_021.pro
6ad7d6f05f94fa0b9c4768d3e48e8445
9480ca1b081035ffa250f95d26b3f2ee0e067dbb
15625 F20110318_AABIJA stuckey_d_Page_052.pro
8c5e65125ecc4652f4f7c3901cc7d1ee
016039c3d42c4ba6cc460585ed534cf7e411ae96
5422 F20110318_AABJMD stuckey_d_Page_087thm.jpg
9e488e7b443c8dbee490f51343a8c7fd
1b9565dec4301776761cfbb0a605211c04391f39
8181 F20110318_AABJLP stuckey_d_Page_071thm.jpg
14571308aed745e10153e25edc191143
f403a427169567410b40ddb91c0d3dd716085b7a
49543 F20110318_AABIIN stuckey_d_Page_039.pro
5c2e265fdc085bed865690ebc0f3d0d0
74616ddff001aa75e365d8f93c7c871808169ebf
49137 F20110318_AABIHY stuckey_d_Page_023.pro
0a11588fd43fd68096622bee097a468b
33d046e6275042515deb3d8783b3d404c95fcc82
14735 F20110318_AABIJB stuckey_d_Page_053.pro
0bc89e85fdc10ca118205e8c5c68590b
e15d88ecacfdfacf216020ead295dca14db1205b
5560 F20110318_AABJME stuckey_d_Page_088thm.jpg
ac1c596113b267d9ba6f5637540ae5df
f26205cc5a3f7148ffe8f21d2b4676b7c2d90bbb
7983 F20110318_AABJLQ stuckey_d_Page_072thm.jpg
ab81ca8738c305c632ec2878b38d752d
481f6389096ea20e6f43c807575a79997593ba3b
48939 F20110318_AABIIO stuckey_d_Page_040.pro
80fb6c0ab0f820f08a68ee3ca57688fd
aa977b3b0f140e83c51cac0d5ad079262f26f893
47072 F20110318_AABIHZ stuckey_d_Page_024.pro
4440220af1c189d69b7e417005944819
7a77bdb8c2ec6dbe3c4b6a7718901f14cf8ebea5
12610 F20110318_AABIJC stuckey_d_Page_054.pro
d038f736e2a7f72f9dfac078ece9e4e9
96d22256b5989373d5ec3f1da21002bff85989e5
6670 F20110318_AABJMF stuckey_d_Page_089thm.jpg
ed35b649d485debdd3781dbdaa2ace24
9022bc04effe45be0866b38790399074a79026e9
7589 F20110318_AABJLR stuckey_d_Page_073thm.jpg
77dc7f2661f43bfeef287e2f7ba1d418
8ab911b364bd4ed6eb291d0fe02c9ce905e76217
47382 F20110318_AABIIP stuckey_d_Page_041.pro
1b3363dd60fc594cdb57805db8aafc46
610a3ce06e97ddf9e1563ae806f9b06a330ee840
13500 F20110318_AABIJD stuckey_d_Page_055.pro
2e68782789ba590ee7c88aee3e79f583
b85c7d2d50591259dcbbe21c75d31e81a7c1ebfc
5318 F20110318_AABJMG stuckey_d_Page_090thm.jpg
ae154142e7205c340570cfe5c15e93bf
5492cdeff4fa77b8024a729ca9b4e8959680c7a6
12222 F20110318_AABIJE stuckey_d_Page_056.pro
2cf12e30ceab6a2d651be1d490871efd
c2c3864c0831bbb90a1a552e2106ec55f3e07edf
6306 F20110318_AABJMH stuckey_d_Page_091thm.jpg
c6d147cbacc3fde6e178767e362fc60c
fb3579cc99fa182ed9182655e742ce036a4cdc21
8216 F20110318_AABJLS stuckey_d_Page_074thm.jpg
31804fe1e4e9bc75401b5a4021b86a8e
a1e63ef44889583428830760cc3b17b96a3c535c
47753 F20110318_AABIIQ stuckey_d_Page_042.pro
3d0b596e22aef23358b782a205647eda
609b2e3be3085fad27424b23fa9516b47863be8e
12119 F20110318_AABIJF stuckey_d_Page_057.pro
26fcbffc963ec3bd4539a0e541ab4282
0abeb1a1365d7c1cdc9b58c9c5fb0dec64c8237f
5629 F20110318_AABJMI stuckey_d_Page_092thm.jpg
b138f6fbe3948ea9001243930c3c7be2
abb916a22c2ce79683f71061e64f9ecde3081902
7950 F20110318_AABJLT stuckey_d_Page_075thm.jpg
9d3778a639dac942783c60bdf5d505a8
37df5d8bff04a25c5069eddca26301e37a119124
47633 F20110318_AABIIR stuckey_d_Page_043.pro
2bfe37dd3cd50c8344b2657821c52208
b792b0bdda133e579d450b17ba8c2fe68c67ad2e
28129 F20110318_AABIJG stuckey_d_Page_058.pro
da9b600e10e2231934e9995921f3f34a
d66d9efc69891c25027ea4e1b4464ede3bf656c5
5595 F20110318_AABJMJ stuckey_d_Page_093thm.jpg
e5e49d5f226e28d8ed8b1c923d3eb39d
b2af0bec3ae1d0fa47a0a8c4492554d257fae543
5137 F20110318_AABJLU stuckey_d_Page_077thm.jpg
dac6fd551ac0e8c83082fbe45f083f39
2fd4761807a1ad458a3bbd7466539ed35520a5ed
51620 F20110318_AABIIS stuckey_d_Page_044.pro
e89882562db3674047e87e1ba51c260c
886737eaced07b36c116ea1966aa5f5ce75c9626
21187 F20110318_AABIJH stuckey_d_Page_059.pro
50fe351c61ca3f18c7bd624b549babe2
7c0ab45f528d8705326642850c57bc90967985ac
6218 F20110318_AABJMK stuckey_d_Page_094thm.jpg
e11cb7e90b274c3d999555fc90224c50
d98206a7638eaeb0d9a939b732ee07cbb270a986
6128 F20110318_AABJLV stuckey_d_Page_078thm.jpg
1eed4b13ca623f7dd25b1e4522ff0f89
b52deecd958f4a09c73974c31c174cc44a5da340
40627 F20110318_AABIIT stuckey_d_Page_045.pro
35fe3c48596c10143a1701fc584b4f42
0df7e003f2447ae18bc9eec03a8c51bf073d368d
15080 F20110318_AABIJI stuckey_d_Page_060.pro
bbed219e0e131a0e9e31ef3f2a248139
354143e35579e3be5f0b3592d9eb59fdbaa2f2d9
5890 F20110318_AABJML stuckey_d_Page_095thm.jpg
558c35008cd36b0427ad5612bddb2754
713d909a54ebc0f7a0fedeeacbc9002115137a2a
6400 F20110318_AABJLW stuckey_d_Page_079thm.jpg
a3f399535736e62684811a7c76d4b122
a751aed20c730eea25fd68643eeeade5ad36440a
54894 F20110318_AABIIU stuckey_d_Page_046.pro
8c95ab45aa25cb81af4cf6a0e7b5c591
244cd39f36601e1b33ac19e5f01b031675a63822
19587 F20110318_AABIJJ stuckey_d_Page_061.pro
d92cf4c88bfc179065c604db0b1c53e5
7a34f5873c8c40006189ab536af7e22baaaa9c47
5854 F20110318_AABJNA stuckey_d_Page_110thm.jpg
a6affa73b1ecf166b3edda1b79007c0a
5cea54e3f752b8b394be9780051e1cbb3168c91d
6192 F20110318_AABJMM stuckey_d_Page_096thm.jpg
3fdc4900b35d803d1d4231b60c16714c
18da54c504c2797a7597ba736970e13582242f42
5883 F20110318_AABJLX stuckey_d_Page_080thm.jpg
ae5e55ea93dbfaa773195d7ccdfb9cf0
e1854520e9d554482a5f900696427b6b634373a2
51630 F20110318_AABIIV stuckey_d_Page_047.pro
7d4b9f771e2c25d366411e165124a74d
24256b62061aedc206d3a951f4f0c3cea53db542
41055 F20110318_AABIJK stuckey_d_Page_062.pro
3d847c938fc2ca03d957212819422ce7
947840e844b156b30e920ed5ee72bd9f3b8f309d
6352 F20110318_AABJNB stuckey_d_Page_111thm.jpg
5a3b86b25c6b4c97c9b3a7da3a0915bf
4db59d319d6730b2bce1619efe03207dca4c3375
6165 F20110318_AABJMN stuckey_d_Page_097thm.jpg
b9f02894f315606f01ce79dc34dad464
f845b3205712e47ca7aa4a51c4beca8d8bf2de70
6883 F20110318_AABJLY stuckey_d_Page_081thm.jpg
057601a24357b203b0cbde756929601f
91f373a88a5d535cd22c0c9c037457adc070bc37
51157 F20110318_AABIIW stuckey_d_Page_048.pro
660de08de4b6bca3d3f0e07fc8620e85
54c799fc3f1644bdf96b804b3fe66163b02b73ca
41402 F20110318_AABIJL stuckey_d_Page_063.pro
9113a78b1b72ad9deed57271f1c83ebe
2dde33dccb42fb235d2e1627b5d1749ae1930830
4225 F20110318_AABJNC stuckey_d_Page_112thm.jpg
f327b1e055b3f5afeed3699702eb4768
fa8cda4383ad5a6960d87783360036714861aed0
5485 F20110318_AABJMO stuckey_d_Page_098thm.jpg
50b37bdb7c774ffb166d5c3ca5765157
662d00b2ebc2234af82903c9c1aa21369c6f1f36
6203 F20110318_AABJLZ stuckey_d_Page_083thm.jpg
7cfe0ef8b18520e423e9041850e12600
480b0439b7d7f9e8d70ae40f72d0ffbe7cf1cc2d
47190 F20110318_AABIIX stuckey_d_Page_049.pro
34cee2eda84aa212a1a762baef6980f8
7ce9287cd8ae0df34ad0901a1ca726c293b63fca
26895 F20110318_AABIKA stuckey_d_Page_079.pro
5081a898d3a2656debc49eb3c5b7b533
7fd8ec171b77786137d8ec0d870b8d17a1b5dca7
30201 F20110318_AABIJM stuckey_d_Page_064.pro
f2869f8030ca767a209d8b3b6946b2d7
a6b5a210f183207dac91a5f733ee51acc7e5a61c
6143 F20110318_AABJND stuckey_d_Page_113thm.jpg
384fe8564e9d458d14255e2db8f2c973
b44a58987db9faefa1676395769c6713a10e9e43
5811 F20110318_AABJMP stuckey_d_Page_099thm.jpg
4309a43a45a3bb1b5a47fe7abdfef778
9d5e914bda10376c7340f59fd1c663fef2a643aa
28497 F20110318_AABIIY stuckey_d_Page_050.pro
1a7e2e49abb9f6258f5a01b3c333ac4a
7c84ab2137c968b37fbdf0a54986369bbc7e01fb
32683 F20110318_AABIKB stuckey_d_Page_080.pro
d6849360c09745111b6a434a6802ecc4
17667079e6e44657e9adc47a134850956c1d78ce
41911 F20110318_AABIJN stuckey_d_Page_065.pro
906b6ddbc3897c0733bb5ceb0e14cd26
b96029e19d7d59df96fd648ad931f83b41441336
F20110318_AABJNE stuckey_d_Page_114thm.jpg
50ad077a4e47bdfddb99d40367613203
f68f8c71204179bf5d66aa639ef08425144d3936
5976 F20110318_AABJMQ stuckey_d_Page_100thm.jpg
e6e1c76d8ff6d80f3520e16b2002802d
53ef7d14fbb222dbf69ee573da578b56dff845e2
13644 F20110318_AABIIZ stuckey_d_Page_051.pro
a8bd903f92f3a470e8a3034337317846
2538af3cdf0a0958b111e2b68bc79e4154655253
33303 F20110318_AABIKC stuckey_d_Page_081.pro
cce10f1c645b1775944a2be6a6f23e67
181de0e7f92be5e353c4c76bdb3bafae44248223
37507 F20110318_AABIJO stuckey_d_Page_066.pro
6b44a406776edbe4885c0d266c8eadc1
1480d6832850284dcf9b68d2eafaf259877660a5
5340 F20110318_AABJNF stuckey_d_Page_115thm.jpg
5624da93e6490e59f4550c720ae0f7e7
31bc33d59afa547f769068c0c2daf704c248c3c8
5381 F20110318_AABJMR stuckey_d_Page_101thm.jpg
3085c7425c8a8b3c75b7df103cb73a09
777203143122afe6ba9e474552b71a4b78c48626
23946 F20110318_AABIKD stuckey_d_Page_082.pro
cbedfa297e8bbf33242aceba6f83ebae
02c2e6455af4f9f3945daaa3a1fa46b4c2467ed2
31719 F20110318_AABIJP stuckey_d_Page_067.pro
747574a412df59b2254288f40284cfcf
e840080e67e431058e7c1b304a978b4c00ad8d98
6625 F20110318_AABJNG stuckey_d_Page_116thm.jpg
a0e3872dd09c7e1d52e45ea70aa41f27
ad0bf8968882178868aa269f723e3ecff9456a90
5718 F20110318_AABJMS stuckey_d_Page_102thm.jpg
6fab0ab0314f6190883b4619ea35a46c
e63b0e4da1d6f01f0701d2306327955284ac99c9
38927 F20110318_AABIKE stuckey_d_Page_083.pro
dde00a649df491ea94a1d3ea788db6d8
b8e723de294fd870e8746b092a86f627c5cf6efa
30540 F20110318_AABIJQ stuckey_d_Page_068.pro
c3cc7f68c6ebaa17aaa0110ee90b62e9
4b6b1efacd49bdd9da8dd5da6b513f1f1d4779c8
5817 F20110318_AABJNH stuckey_d_Page_117thm.jpg
3c668372d935313c0cd21f4ba3fe525f
88ab0406db8754d971bbbe94f5c7c2d9b6b4b06e
22066 F20110318_AABIKF stuckey_d_Page_085.pro
54ad7c47cea113f43f3acd25e6df0a15
d1909507cf75acb334b5c2dced00f35889ce5667
5907 F20110318_AABJNI stuckey_d_Page_119thm.jpg
2fb4a5a833ccd15a7e15bcbe60361ee8
57424a945027a950b00ab85860872b3fd699ba6b
6282 F20110318_AABJMT stuckey_d_Page_103thm.jpg
678aa1f713a9b9b0aebdfb12c11781af
68fd901e4bfd82701f7ebf9e36cfa323ebb96714
34106 F20110318_AABIKG stuckey_d_Page_086.pro
f07963327f791c75b1cf82dae26a7919
406059831810969739ea3ff801f159da4a639d89
43117 F20110318_AABIJR stuckey_d_Page_069.pro
0afa312f1cbc28871e1f9b038e45e4c0
44d09a870fced7a2ad4c5183bcae60529085e379
4860 F20110318_AABJNJ stuckey_d_Page_120thm.jpg
d50970e5b30912ef19ecbf033df7f60b
312088c4172751428b827810654f3c1ed0cac7eb
5372 F20110318_AABJMU stuckey_d_Page_104thm.jpg
01afbe0df670d8abb6683484432278fe
91f00e567b8b7f6403ef7368d6ba79afa5219f54
21276 F20110318_AABIKH stuckey_d_Page_087.pro
c6669d044ea7c4579ff4877e0d57f10d
abf99e902a2b7c7b737351da48d2f932ad7615fd
49195 F20110318_AABIJS stuckey_d_Page_071.pro
aea353b2a32e4a65ee30e5e23dabcd6a
0d174ddbbdfe70a71430b61e7807e35d159e292a
5502 F20110318_AABJNK stuckey_d_Page_121thm.jpg
86d66199cf445677629ce337cab24bbc
9d1db63068bcb079b74acb91fb6aca454d3752f7
5724 F20110318_AABJMV stuckey_d_Page_105thm.jpg
953348588080347c2676350471457c05
b2f07599dc5284144a77f338763155ac007c2b53
30698 F20110318_AABIKI stuckey_d_Page_088.pro
a58c910d4bea961bf33f6a17852243cd
f517b25b5df028ca196473815fdb1ee62aaaadd6
47288 F20110318_AABIJT stuckey_d_Page_072.pro
09ce56e06f301ae9bbc4008a36ab436c
6dc6ec32ae5748f714c8ec30a87d9c0b28a5c6ab
6077 F20110318_AABJNL stuckey_d_Page_122thm.jpg
af07c6740ad67111fa24f29475ae2fa6
1881d136d66fd33571a6a078f7c7fa1265f59cfe
5481 F20110318_AABJMW stuckey_d_Page_106thm.jpg
3192ecfd541d8895dae7e4f77835f19c
a09873880913b1ff65827bdb4b91df6f7d5491e8
37099 F20110318_AABIKJ stuckey_d_Page_089.pro
da47401699ba3cc25714f80502e0ded7
caf9bfd730e7e3469241a2a9f760390cbb3020f4
48323 F20110318_AABIJU stuckey_d_Page_073.pro
385386b5e097d77ab81b5712e52daa9b
6e71f5d8f285d4fcad3d83e7c11a2f40d4961c61
2320 F20110318_AABJOA stuckey_d_Page_137thm.jpg
e1f4e34816b18964072dd412be294506
fb5c4492f1f8f5d55c2f8fe6ce9451096cd0186d
5322 F20110318_AABJNM stuckey_d_Page_123thm.jpg
7ba9ffb745b43e3af92349754aa5176b
e66ebf8f7b37c2e9b9023a18fc1154477eca385c
6089 F20110318_AABJMX stuckey_d_Page_107thm.jpg
027ccb2ae41f38a2c7cbfe4fd067369a
d18e23153c407012925164fc57ea4aa71ebf3112
29414 F20110318_AABIKK stuckey_d_Page_090.pro
246429615ed1f0f7cef5a10d589b63b7
e9ecb22e4b974b001d450383ab6d98258812e215
51018 F20110318_AABIJV stuckey_d_Page_074.pro
7527a65753f7a6550229dad3be4760da
0029124f65ab6f37c4f04a1e960637766911e809
7171 F20110318_AABJOB stuckey_d_Page_138thm.jpg
9180be0042d49c9210305ef1698e451b
0ceef13f92fe569d514bc015f456e27b144065a7
5525 F20110318_AABJNN stuckey_d_Page_124thm.jpg
672c175fbd8c4eee1471320be9c229d5
ebbe99c5c935c8b5966cc65fcda30ff15d676936
5663 F20110318_AABJMY stuckey_d_Page_108thm.jpg
46007e0a42b270b4d5c27a6180101310
b5531f50aa7762822b5180087c86ab16d402db5f
33649 F20110318_AABIKL stuckey_d_Page_091.pro
39206c99558f052ab76d303da2d26b3c
32ce1690b9009626e6f2486d11b8d0bca5c5bc30
47059 F20110318_AABIJW stuckey_d_Page_075.pro
e41168d67d998666074a9f471a475eb1
efe34d775c0daf74d2d646ab820ccf9178b84a6a
4681 F20110318_AABJOC stuckey_d_Page_139thm.jpg
b7210282115fb4680b65c9d6d075e4ad
24aef21b8cda982479d0906828b36aa60cf5adcb
5261 F20110318_AABJNO stuckey_d_Page_125thm.jpg
55f1e49c6eba380ef1545b03a5f7e3f9
a3853b8e5a844f8ce33ac8b7ea054c3eb237a788
5302 F20110318_AABJMZ stuckey_d_Page_109thm.jpg
df01436d2afdc58dd33282d99380ca72
3467cd072370db0044993ac0a52ad200126768dd
36444 F20110318_AABILA stuckey_d_Page_108.pro
190dd58a1d1ce956be4ce905a68ab36a
4443788d8b4e51387b23e94ba45cad68c65b6313
22214 F20110318_AABIKM stuckey_d_Page_092.pro
a47020163c984089f3d4097561ad1de6
43f834e7d317ec93f4d8e2bfe143a205ac9b3a16
45467 F20110318_AABIJX stuckey_d_Page_076.pro
7d3216f8694c9f798ada713d62c219c9
ccb05a9a1abd3b31556141e2b51fc25c4076b465
3954 F20110318_AABJOD stuckey_d_Page_140thm.jpg
2accb59d05ed12dcca2a6be1e99f4896
d69db6c72cc51f7bd18214385902ca05088f4a09
5480 F20110318_AABJNP stuckey_d_Page_126thm.jpg
363522d92c08f880ace0fdf19585d9c3
ea6c02364fb433ffff0dd00aa52a3ec50aa90b94
26396 F20110318_AABILB stuckey_d_Page_109.pro
7ba1ce6f4d3fcc4e2f0504b2698b2fd8
2c750e1ca0ec02d4e24fc06f58ecaf4add001b2a
30332 F20110318_AABIKN stuckey_d_Page_093.pro
beac6db70371eec55be3d6e9258d3e24
acbbbded983cd98b94d890b6cc184432f2f9f407
17977 F20110318_AABIJY stuckey_d_Page_077.pro
5620d6cce0e223d91c4dbbaa137ae445
9ec5ba3c33e7a00957dc9fb3e55e18b1c13834d2
4637 F20110318_AABJOE stuckey_d_Page_141thm.jpg
6f4770e3d27d0c5f42d29c767e1c9679
42fcbf9acb9812e127c880c08109c916e59711c2
6005 F20110318_AABJNQ stuckey_d_Page_127thm.jpg
5a9c3350c996cb186f31098869b4e81f
3c181397c314ca81b73cc0156100bec937c23424
31023 F20110318_AABILC stuckey_d_Page_110.pro
058afcee1b45969d9d6662cd69a721d9
45d5cba650753a2fe4158c9cbe46afc1a452192f
24519 F20110318_AABIKO stuckey_d_Page_094.pro
932bf63962fb31a8cc55c9782dd34f32
62da9bd836994e20985f4482e8ac0a7860a5fef7
36713 F20110318_AABIJZ stuckey_d_Page_078.pro
a06d1f7b812dc0afc38ef1e7d05bf313
1f077e598f5fa37099cb8c2fb6e341d1e6ac342e
4017 F20110318_AABJOF stuckey_d_Page_142thm.jpg
e0a3c1086c2e4f124122535d3e9e33fd
39b9af31237eacdbd4d1af298a586efc03b07853
5353 F20110318_AABJNR stuckey_d_Page_128thm.jpg
8185d3cfb231266705b5e0d40ef8b114
aef4b78defcbd8118c198959c4914583d36fee45
24356 F20110318_AABILD stuckey_d_Page_111.pro
be76bb65d6618fc581eeea14daef043a
9107199c99c9461dd4a0dde2107c1843f946b309
37035 F20110318_AABIKP stuckey_d_Page_096.pro
3c6c0a779cde549c98ad2166f9add980
9c4cb42eef6ae8aa9e102eb5dfdf76ef9b22649b
4712 F20110318_AABJOG stuckey_d_Page_143thm.jpg
3d3543e69a08832447e334cbd5c28914
bf98d229186c7e1e267a785d89abeb59c1024f1a
5607 F20110318_AABJNS stuckey_d_Page_129thm.jpg
8a715fd80eaaff409e10f4949b49f23b
9293061accb6baf3bb1c5eaa20f5e98af9733f10
22068 F20110318_AABILE stuckey_d_Page_112.pro
0f3398e920dcee014c24d14d074e89c2
4de3a2fa2783da6af860c02a16f1f119b4ca256a
17048 F20110318_AABIKQ stuckey_d_Page_097.pro
16370525f4d3ef6135f72b35775b9ef0
e78cd00c9d91d54c31fd570571c09117b0248b6f
4386 F20110318_AABJOH stuckey_d_Page_144thm.jpg
14a197891e148ec2cecb13ad4fcb8f94
622ead99e0a4c6f0c7aa3ba5108d613d34ba4459
5530 F20110318_AABJNT stuckey_d_Page_130thm.jpg
1f659b07efdebb1bfdfa042afe01c142
1a04bf8f7a82f1dc4bd143f009aeb807ee22c817
27376 F20110318_AABILF stuckey_d_Page_113.pro
c58d1931c53b36f6549c486cf28f39fb
b77cdf63baecb2e1d882eecf19d6d024838ad64a
33181 F20110318_AABIKR stuckey_d_Page_098.pro
8da9e59fbc1e6b45e5f199ef9cc2a6ba
35475a628e906d550ae5297bebc851a6f188367c
2371 F20110318_AABJOI stuckey_d_Page_145thm.jpg
dc3a087d6dbf401382ce6cdd0a4edeb1
d5add51c6c5a70b3ebfeabd699dd13d6799f7c45
29770 F20110318_AABILG stuckey_d_Page_114.pro
3c38788e5e2091e6e557fa4aa1a7402e
4d4768d61a8ae1b25837b7a06d210047571b240b
4334 F20110318_AABJOJ stuckey_d_Page_146thm.jpg
7cb55974b4fa09609f1d0c4db1d2afc1
6ad7fc27afc28da8de911cfe1d6596d35dda73ad
F20110318_AABJNU stuckey_d_Page_131thm.jpg
b2ceca86d3563a03c869ef441b235311
ca7869c2ae68d65b13770c356482580a7dd3d6d2
21577 F20110318_AABILH stuckey_d_Page_115.pro
ec9bf464d7050132dc8f1b00a2ad1dd6
e1632a4542690d32ebec6c362a71b0188a687ea4
25858 F20110318_AABIKS stuckey_d_Page_099.pro
5578329b9061b073531a7128c8a571b0
6e3e3e4ffa1c1efe058b637a7fb02c163aff2706
4187 F20110318_AABJOK stuckey_d_Page_147thm.jpg
c9d89987a10f15dc11aa6d7c784c29a2
c9d7df0752dabd7e17ffae5c00f3774e864d43d2
5662 F20110318_AABJNV stuckey_d_Page_132thm.jpg
bfa92488e233d3daa81196dc4dcda7c2
6e821b213237278bdb38ac9d004f06e2045ee456
36076 F20110318_AABIKT stuckey_d_Page_100.pro
bf2f48ee45e3d2f5cb92b51184a2a096
00511d90668cfa31a0c28e8492cb1d71a43c96d2
30876 F20110318_AABILI stuckey_d_Page_117.pro
d4227484a2c83642c015d7ae703a9004
6eac009fede9a485cebff62046aca5365d073d52
3597 F20110318_AABJOL stuckey_d_Page_148thm.jpg
0741915fd8df9bcce58abafbc36e8654
50e4a43456088c69189f7fd59459b800442970b7
4850 F20110318_AABJNW stuckey_d_Page_133thm.jpg
3118470c4750a8bb8deff129973d2b8c
cd33ea0e96af55a0c11985654f6384e2bff02052
28646 F20110318_AABIKU stuckey_d_Page_101.pro
8a5f2a32ee09b8ecc99a5bad3abd9e0a
4856a7c68da4a76ec02e362894286107cf9b7cca
25161 F20110318_AABILJ stuckey_d_Page_118.pro
35d6434c34fa0d8b2e49b48b9ba4debb
d7f674ad17a5bdbf960b2676591d8c3260f7f24e
3831 F20110318_AABJPA stuckey_d_Page_165thm.jpg
6f05c02275a00215c94ad91023210da7
4ad46d823d088a6109f00a8c7a71ad5e3a5e83cd
4692 F20110318_AABJOM stuckey_d_Page_149thm.jpg
2b3a31644ffb74ee8a1919bc9655f602
6133128645323d6600af5ccb1ceb942a217d46dc
5513 F20110318_AABJNX stuckey_d_Page_134thm.jpg
1e90c0f8072f1a01fbe84cb6473adcf5
576e8191af95a8d1d14918dcec43407a6ed27640
23785 F20110318_AABIKV stuckey_d_Page_102.pro
19fcbf5469f8f386cb1771e727d472b9
4f44cfdd10be0cd358a2ca1d808bc0364d42e7e7
30120 F20110318_AABILK stuckey_d_Page_119.pro
2a93bc1222fecb0ab744414ca4cde5b6
ee0f23da6b619ac6af234b9479f8310ed6ad92f5
3898 F20110318_AABJPB stuckey_d_Page_166thm.jpg
7ee33ad3f101ebb22635e31aeb7bfadd
7be82edd1a884cad3314f6ba0d94b66e339405ad
4931 F20110318_AABJON stuckey_d_Page_150thm.jpg
7b48084b0c73d6738006f05a27b99275
b50b9dc97512bdbbb3dd3a757824c82003c7e19a
6106 F20110318_AABJNY stuckey_d_Page_135thm.jpg
88a06cca8e73d0796556ab65f6312dcf
8550ddc24f8b3e5ecde2dc033f229d00c1d3c6e4
25406 F20110318_AABIKW stuckey_d_Page_103.pro
5f9be79d0ed0b6bcc7de103548809c3b
32c42e9e5d372607d4fdd9f4074ecd2edc3225f7
21092 F20110318_AABILL stuckey_d_Page_120.pro
9a3641c898ee699626f325420f3e3109
47cf48ada3b764f80c9031c469689f50f9aa2edb
4673 F20110318_AABJPC stuckey_d_Page_167thm.jpg
d67b15e9cfd271dde1d7fe100a38ccdd
fdb19b4b54587de741d4412a1668e1e50fbefcc4
5017 F20110318_AABJOO stuckey_d_Page_151thm.jpg
348c8049495a9e7eaf156242558e2c79
9a2a0e22bc6f9fe38ecc834de0ed1ef55650c016
5397 F20110318_AABJNZ stuckey_d_Page_136thm.jpg
b8cf14eb4ed9bfd5113e419218b28093
2e9b0951deb232b30036d59ca310c80bfe12d708
24145 F20110318_AABIKX stuckey_d_Page_104.pro
aeca2825ace1e6c4792e211129fc47d2
39201ab2c683ee5108429f3cab8d82b288e7dce5
18926 F20110318_AABIMA stuckey_d_Page_136.pro
846f6dfa9c2dea0b7bf643046be21a58
c6871577209a72e440ba68275912defc8f31c511
16031 F20110318_AABILM stuckey_d_Page_121.pro
7a49b7384a566829d653c3d5f867d77e
fdf1ec2c3fb24ef510340d5ee93d0234723747a9
3591 F20110318_AABJPD stuckey_d_Page_168thm.jpg
a23aa4e459f0903f6f05e1914f559349
a6368c78ff0daea63052a48b45e2f65eb849681e
5465 F20110318_AABJOP stuckey_d_Page_152thm.jpg
3ecd884271288a69f362bff1c0f4b298
2c5a1ac2a2ba1cc5adc236b9b1b9f1051581125c
31853 F20110318_AABIKY stuckey_d_Page_106.pro
4848675ccfa3167bb1fb4bd3344e7a09
9992c3a0f911d874c92397c4e16f21294e4b9903
10292 F20110318_AABIMB stuckey_d_Page_137.pro
a357ff0e97ca430b78208adfd45880f3
558008e99b9ddba22232b50180602e00cdcd47ec
36202 F20110318_AABILN stuckey_d_Page_122.pro
b8523ccb9655798794832e443d7a8d14
2b960ebfb0afe899511f0b3ed80f32b2a7ce0135
4870 F20110318_AABJPE stuckey_d_Page_169thm.jpg
a49299bdf0cb09b4794388d74dc94581
b4c080ba557cd49297f4b1ef23942f2982f17913
4606 F20110318_AABJOQ stuckey_d_Page_153thm.jpg
f16f4e447f6a7979496a6174cd8e45c5
72789110fe9ae7a64524adc13c8f12e22ee4da98
28559 F20110318_AABIKZ stuckey_d_Page_107.pro
99f5e721ace90d8a75f872beba673b68
62a399d5c8bf1474fb73267f0a3d380ee7fc849c
88286 F20110318_AABIMC stuckey_d_Page_138.pro
85031f0a1d645872845f0774a4f1f8fe
1f54ef1ae47f97289c0282f6a9773115d8e16659
20084 F20110318_AABILO stuckey_d_Page_123.pro
bd744ffcfe221904f4b956b5d5de720b
75abf46e9be9516229efd02e27f59b13a2c91837
9855 F20110318_AABJPF stuckey_d_Page_170thm.jpg
e5a1af1d4c7901c73eb2bb8ca6fff996
bd20b758e2ac0a47f112c640a2371a58ac937c7d
4656 F20110318_AABJOR stuckey_d_Page_155thm.jpg
9ccafba7c8904f33ab9a7019df56efc8
d30241905b0eb30a35181be9b3d6f34c42d8aad0
10255 F20110318_AABIMD stuckey_d_Page_139.pro
339d855cb036ce3126febefe44115b76
a7980611609c29e4079181ad5a065aa121deb579
17609 F20110318_AABILP stuckey_d_Page_124.pro
066bf61058510942ee17155112df3214
e0ace3b286f677c0153ce877ea443ac41218068e
8397 F20110318_AABJPG stuckey_d_Page_171thm.jpg
6e2e8efd7149262706b36ebc07433e99
58695763eed2ee7fdf618533d09b4963707e59df
3199 F20110318_AABJOS stuckey_d_Page_156thm.jpg
0c0de5306561913b6b17a03c55d93ac2
27487ca7dbca2f6214ab8c462dbbbcf073182de8
22545 F20110318_AABIME stuckey_d_Page_140.pro
84d11b7aaa833eae44e2be6e85f87f7b
ac2c21d44c457c5f2dc45a651d48b8b22273571d
19618 F20110318_AABILQ stuckey_d_Page_126.pro
0a633e4662be54afdcc4ca0b7ba8cd17
328705006e1b95b42b7417f599c0215f2bea4bce
10694 F20110318_AABJPH stuckey_d_Page_172thm.jpg
166ac1595ddddcefa96916d01287ee90
8fa31808546de6b31bae4b4bc1546b9c6f80d8a2
4401 F20110318_AABJOT stuckey_d_Page_157thm.jpg
f07bd3d89d1acc6e4d100bfc98aa0ca2
a927213960f46b74f778668e7e7ef11319614d0d
4523 F20110318_AABIMF stuckey_d_Page_141.pro
54f84a3d9ef78773e6ef128eb3a91651
091b532699a97b78d7bd25db2c43943115f4b68c
29127 F20110318_AABILR stuckey_d_Page_127.pro
d3d265a61e0a76d862a006e88f5bbaad
313bfddfc09b520631885fa41a599f1056e5ee3a
10388 F20110318_AABJPI stuckey_d_Page_173thm.jpg
e598fcf1a8743987613a471787cc8547
3fe654d064233958d68a1f6117f1d49acabb388a
4789 F20110318_AABJOU stuckey_d_Page_158thm.jpg
eb738932d18f0186241457359ac4cbe7
0ef8cebb63be3d82ec23a95eb7ba9f8bcf137d32
24313 F20110318_AABIMG stuckey_d_Page_142.pro
7683d0053a9bccb2c09dc0c5fab2f524
e13aaa628e940d65311563b956a91b5f04e95e6d
25784 F20110318_AABILS stuckey_d_Page_128.pro
0ded074db0d6bf14445d049b2033afec
c42cfc0fa942ecf9da21008842921ddf5f1b66f4
7839 F20110318_AABJPJ stuckey_d_Page_174thm.jpg
462909778f61234227c9332521db2b15
92f89eab29923d8fa31442dc176e0005506d59d2
4393 F20110318_AABIMH stuckey_d_Page_143.pro
65793b51c3cc43e28b5ea18bb6742329
5359234fc314af7591801405dcefb66e48e4ee11
9853 F20110318_AABJPK stuckey_d_Page_176thm.jpg
94241945f4127a5047244294904e1382
97c09187d22a4394e9fffeb1105783fe781e2cbd
4440 F20110318_AABJOV stuckey_d_Page_160thm.jpg
6e119cf99860207c0c8889fbb0d8001f
66985edc91f127ed1e71013c797866fe08b60d69
11023 F20110318_AABIMI stuckey_d_Page_144.pro
c7c39c25188f79294a488ce0e43fee6a
640d2e9fc4788416a3c58de68e53d55f3994bda1
18451 F20110318_AABILT stuckey_d_Page_129.pro
542551acd8e8210b531c199b20336c10
438cd3cb26d57ea70aff11f8fccba6a6f1dbdb52
8940 F20110318_AABJPL stuckey_d_Page_177thm.jpg
b088eecc6e4256929c913b2becbaca1c
1311d073ea6c8ef5d7d0dfd345dac46202594116
4950 F20110318_AABJOW stuckey_d_Page_161thm.jpg
f942857735fd6362935fa735591977f9
11794d3032ca967f5043493d61a2b9a5b010d1ef
1561 F20110318_AABIMJ stuckey_d_Page_145.pro
960a66f62345c77714e6d502871668e2
951d96aa2f0d4cabc3d434629c5f5422e5a77a45
32015 F20110318_AABILU stuckey_d_Page_130.pro
9499d98dc82abc0711157ceeb2ad7666
211d5ca6d02f77c58c8b96a6ae2033e5d3cabab4
2875 F20110318_AABJQA stuckey_d_Page_195thm.jpg
4913235089e067a7d0f48b7c9177040f
bce9b69c12b12357e6b6ee1bf06f953bd6358ff0
9472 F20110318_AABJPM stuckey_d_Page_178thm.jpg
6d5176d7e55e81684a279a59041e1bf0
1ab461f20fdf4316d4ffa76c3bce9b8cc7b469e1
3878 F20110318_AABJOX stuckey_d_Page_162thm.jpg
b461b89352f122a226d1def17544eaa1
08ebca947eef96bcfb70da9c4b9de857269e86e5
10444 F20110318_AABIMK stuckey_d_Page_146.pro
59edfa884d823808e25d8b47e12449ad
d40ca09b39c12475527ed180a6d14c209ae0fa4d
23219 F20110318_AABILV stuckey_d_Page_131.pro
3f651875481012f27f23d5c8eaa0adf7
1cabe72db640444df66cf821b1d1915d1d79304c
3871 F20110318_AABJQB stuckey_d_Page_196thm.jpg
603b71564b52819bc7a8bc64446b914c
c9768903e3b1038e59bb4d19121328cd1bbfed4f
9125 F20110318_AABJPN stuckey_d_Page_180thm.jpg
921cd7eb370a19fd6454bc54eb798682
990e1352ae9fd5016f3aa9ba910f0475bd1eaab9
4312 F20110318_AABJOY stuckey_d_Page_163thm.jpg
828871224cf389ebe2da2026811b8c76
3564202dc691e849fc892fcf71fbae13cd3c7ad5
19554 F20110318_AABIML stuckey_d_Page_147.pro
4e7838d48a8e0556bbec82ecc62c32af
ad2525739869af67ba0c789cceae5ee7d721f99e
31157 F20110318_AABILW stuckey_d_Page_132.pro
5965659bed29a41ed4c34cb3dafcc0af
9c61849af7f9a0c9f76c09c99d60b6be77129f07
10146162 F20110318_AABJQC stuckey_d.pdf
3633b69be69ab8b4a0b685dea172a7c9
fa960f5a6dcd1f2d12b30a68fc560b695aa9072b
8346 F20110318_AABJPO stuckey_d_Page_181thm.jpg
75dc1e1f668e77121f1d1b3116105af2
7d2874e78b9ae67af97206324a3c9621812ac39f
4492 F20110318_AABJOZ stuckey_d_Page_164thm.jpg
f7b2551a865d5b242412d0ac1e3e8559
3a6df159557458b365ed9a7af489d75e24afffd9
26266 F20110318_AABINA stuckey_d_Page_167.pro
d1ca794f8692b060ff6aee6f0ebdb40b
6e48dc60d138ceaf84ba391f210a35ac29b36005
2809 F20110318_AABIMM stuckey_d_Page_148.pro
013412bd69967b5864e7b74d1ab315d0
25c8f8c83c002749d0b60e91a9a9a87b884a3e1c
24288 F20110318_AABILX stuckey_d_Page_133.pro
3fe03a951791d06173005a01cdd2986c
e450a7ba4905b6465c0276a92c1a66c6b5721d90
229838 F20110318_AABJQD UFE0012782_00001.mets FULL
54a00892c8ce441e082ee99a4e090731
9cf8bfcfe0364b2a2c141b95ada3780a30844914
9227 F20110318_AABJPP stuckey_d_Page_182thm.jpg
75c7dc99095537894e68fc108e6c4fc0
b0ee99ccea9eb560f42342fdf2091c4c1679430a
2991 F20110318_AABINB stuckey_d_Page_168.pro
f36c79275328d8bfa2be7f72f3262cee
b68981d925413049a61c983636560f68daf5f599
20548 F20110318_AABIMN stuckey_d_Page_149.pro
e002caacfb7c32b9f03d4d3b71aa67be
d9118ff11e5c91f215f131476ad3b334076ac3cc
19108 F20110318_AABILY stuckey_d_Page_134.pro
4bcd184a1e1223a6a07d2012792c01c3
a610fc093f1b9e7c1d36bc5aab6cae1cc27883b0
10982 F20110318_AABJPQ stuckey_d_Page_183thm.jpg
71a649cce1e0236438890955aa3e767d
8a3ee494497f766098b0c3945688d7cc4a117059
1784 F20110318_AABINC stuckey_d_Page_169.pro
f47c8ac6e9d337aa4bfb43641b2b27bb
771cc98b36410bb0bf0753e25578fdac6209a449
19284 F20110318_AABIMO stuckey_d_Page_150.pro
493a3c592bf6b67e493e7bbabbd6240e
c389295479a2c70eb9eecd5ae0d3b9a7723658a2
35438 F20110318_AABILZ stuckey_d_Page_135.pro
72045a6fbd430e0082034ce555d67491
d44cff66088f05cbbc44e80a58d9cafac1b25608
10186 F20110318_AABJPR stuckey_d_Page_184thm.jpg
9c0eca29a75aa0d3b03c189cf91180a8
49513aa2c5466eca9b3c1707c7066a4b796bcc88
2341 F20110318_AABIND stuckey_d_Page_170.pro
1debdde293ef931dc2e8266f96082126
9a64a7c100c7ae04c445f3df2d8380eb2a4717dd
6108 F20110318_AABIMP stuckey_d_Page_151.pro
52df7a3965dbf07d0be38d413fe90352
6b7b57e315fdff5508393a29909ae13add9ac315
8671 F20110318_AABJPS stuckey_d_Page_185thm.jpg
8a2380b5a4d1492cd19c6ee500db6bdb
3d6404b5c2104529639eece6450ed5b42a34f736
3459 F20110318_AABINE stuckey_d_Page_171.pro
89a8c7598ca8959b4b2e09b3015a044b
83396b98497502a9110540401a35d4c879ac9f18
20979 F20110318_AABIMQ stuckey_d_Page_152.pro
c0473a69ca23518d82e3eff391162c97
fe49fed70fe48e488c9d15c3593ec82d52ad9762
7884 F20110318_AABJPT stuckey_d_Page_187thm.jpg
2fea9625cbf3a19e59a55887a5f345a4
f512333a5dcecbf0a0f35c8f4454aa05c4cc4b40
2289 F20110318_AABINF stuckey_d_Page_172.pro
9a6b45c9542d4389df5e514caf2508ca
dcfb795b628a625af8dfbb944fd56184870ac461
17427 F20110318_AABIMR stuckey_d_Page_153.pro
bdacfdfddbdd46d8575ec7aab686a47b
e287a3b55fa494043f23bcfd24d2266d719eee0f
8359 F20110318_AABJPU stuckey_d_Page_189thm.jpg
6e06d59646d686d4abe87f78a71c7d56
ed75ce628a43f858a5e5b4ab4c326e74d457e41f
1977 F20110318_AABING stuckey_d_Page_173.pro
9fbb159e19a897087135122f2bf1ddff
eea0adbf052e5ff52868e8ddec681a299e7a9077
10378 F20110318_AABIMS stuckey_d_Page_154.pro
dce384d52c52c147ddb90ec5724ac46c
6f24bdb1f6ef287c46cf35bd9ec622f3a00219a4
5296 F20110318_AABJPV stuckey_d_Page_190thm.jpg
4788ff1d4c263ed901b92a473893c6b5
69e94e107aa5f6f48bc5fac7a5163ce136bc2972
2083 F20110318_AABINH stuckey_d_Page_174.pro
248a6dd844137a504f2d1806c965f5be
262b6595343a118b4dfd550b6a6f571e78212adc
19767 F20110318_AABIMT stuckey_d_Page_155.pro
337146b299b72a8740ed5f7d1faeea69
8509079fbbed4509af439e5cee2d21087c716f73
2447 F20110318_AABINI stuckey_d_Page_175.pro
6fe48787336bcd48d563f62138446a7e
91be6247bb21009d0d9c786cc89ea79862088a44
5248 F20110318_AABJPW stuckey_d_Page_191thm.jpg
5cdee76a05d74a12f4493779b30dd1d8
74a3886051c477308d8c78f2a66aab5075983fff
1243 F20110318_AABINJ stuckey_d_Page_176.pro
7862693feb03d109e8cb0d7f191198f8
67270a2152f2583106afb0890863363a9a19083b
2133 F20110318_AABIMU stuckey_d_Page_156.pro
f7da032d02fc905fd2f9dff3af40e07c
65fa1c98a204280e63231aee35fff57a195919f1
5612 F20110318_AABJPX stuckey_d_Page_192thm.jpg
f836392b340114cc93585dbf8a8846c6
c3cac2ad05002b5861d0bcd1d1ccef0ebc746d5b
2535 F20110318_AABINK stuckey_d_Page_177.pro
cfe2ea6584fee7190d93234d59fcdbdf
1ce6429e9594c8364c78fcd7d4d471d493cebdf4
23670 F20110318_AABIMV stuckey_d_Page_157.pro
8fa17f8633af15d5367d972256002cbb
2dc7cd86136d0555eb6d6e699c459cb9f6cea773
7859 F20110318_AABJPY stuckey_d_Page_193thm.jpg
4533a8482efeeaaad458d998181402f6
f5254bb5ed0fc46714c75d1254965d0da2c56810
2189 F20110318_AABINL stuckey_d_Page_178.pro
2bc62ba56713f10ecf04e331f58f3ef9
42f800263ea031d0977536cd3bdadc3560c908ff
18094 F20110318_AABIMW stuckey_d_Page_159.pro
fc943f553bfdbcc95d379ea8d52912c0
8a2b3ee12b8699b7d9f5957644136163f39f3510
8411 F20110318_AABJPZ stuckey_d_Page_194thm.jpg
edf88f6e9c6b51daa0e31fdc648c80cd
fdf0478bfeb19432eb03057b8a10c022062996ab
1679 F20110318_AABINM stuckey_d_Page_179.pro
46223605c61d8efdde52e1a86cfdfdad
4f0d887ded5808f0eb3d0643803d8217038c978a
6610 F20110318_AABIMX stuckey_d_Page_160.pro
5c4977725e1e46a87fa51c5e60afd457
aefeac8ed5e72b72b2903ae3c1f57280039b7c37
17927 F20110318_AABIOA stuckey_d_Page_195.pro
39efdc201547473906b2af60821dbe1d
eb2dcde38b009fa1616d22e3739922b7dd5e333a
2527 F20110318_AABINN stuckey_d_Page_180.pro
96cecc509cf67b34b28dd5068bc8fe35
a4c6d06486ccf3c35045598d82b941d26cd6f5d0
3095 F20110318_AABIMY stuckey_d_Page_165.pro
b042664101b8309ec242f2624c40b96b
9710092510ddb65895655f1fd4811ed87396869b
21394 F20110318_AABIOB stuckey_d_Page_196.pro
f873f777d2f04c16dff646979037edfd
3d843558dc55563a6eb681002e66eab18e631056
F20110318_AABINO stuckey_d_Page_181.pro
534fe8c4a3684d852abd623cbff37bc8
7928d0a5e117fdd0cec2fab8d6838c63286487b8
F20110318_AABIMZ stuckey_d_Page_166.pro
16c7f9dbdde00337038e8663db104d03
92c7d51828058036e066145d4852a7c8dc5bbe3e
23482 F20110318_AABIOC stuckey_d_Page_001.jpg
68f3dc752078549c6b7af1d1f34c9f66
be00ca53a7fe22c8c097f55cf8e5b398ea928720
2524 F20110318_AABINP stuckey_d_Page_182.pro
4933c78b6e8229c3176f9d482c219f00
4df1c312772642ab5fce5eceb36ed4b2295bd45c
7548 F20110318_AABIOD stuckey_d_Page_001.QC.jpg
d4ff37ce76100693e79c8ad288cc1049
145df75bdd0192f49e93baac47c43a904daefbde
2553 F20110318_AABINQ stuckey_d_Page_183.pro
11d331220af46271df0b5e1380671ca8
c214840f2172dd014653d2b9b0297989ee239e9e
4744 F20110318_AABIOE stuckey_d_Page_002.jpg
e0d65ca715075c9793c18fc5b6c3b537
087ca84a912cd413060a8e32c1fabd944b756447
F20110318_AABINR stuckey_d_Page_184.pro
3992098f7abe6c9092760e8ced600944
e5dd4fb5d9da7f78e860128362cff14a9fb39bf4
13410 F20110318_AABIOF stuckey_d_Page_003.jpg
cbfbf7332a7ec35c7c919f424b380b3a
870c75c2a94551e684dc879361e14afa049d76d0
F20110318_AABINS stuckey_d_Page_185.pro
a687a84532609be509a3ec45dbabe034
cee7b6552597616dde382af40682389080e3b36b
3306 F20110318_AABIOG stuckey_d_Page_003.QC.jpg
e870a5cd42f52ca8c66882fef318b0ed
969f2c0484d331d652ed03ee3237ed073ff5e9f6
F20110318_AABINT stuckey_d_Page_187.pro
e1a754ba19d58effd219d6c6ad30fe2a
a2b6ef81a51501613f82d43eb448fc0cf4bc3a24
71143 F20110318_AABIOH stuckey_d_Page_004.jpg
81333340e80306845528114efc75d919
5902759f3ef94b1d71f33d9f1f50e3f4531ce83d
F20110318_AABINU stuckey_d_Page_188.pro
12af5e4dbabad7e4a763087107f5743f
28aa5be95d0d29ef9c42568d6e2d2b0d40eb0425
22686 F20110318_AABIOI stuckey_d_Page_004.QC.jpg
1742e93be3cbef7c17ba9d6c227027c5
c641ad9d391b032dd38a9f74810707d62c73c4d7
86266 F20110318_AABIOJ stuckey_d_Page_005.jpg
4bddc457e7faa6fd168e2871f00ca3e4
18bd91f441edb325aece9a17662ebd47369aecb1
F20110318_AABINV stuckey_d_Page_189.pro
b82af004dd19460b410bb0474ac202c9
3927ab13a0796439d28a03f17a009e6d66d72b71
19892 F20110318_AABIOK stuckey_d_Page_005.QC.jpg
e3e21b173f7d222fd99cc7f8e3f9c513
037730bb8698970c6b2d5503b4f59939b04b850d
76257 F20110318_AABINW stuckey_d_Page_190.pro
78ebfbb23d3d7b12a1f785c372a52518
7979e76d1cb54272767fc2b0de7d2793abbf826e
10080 F20110318_AABIOL stuckey_d_Page_006.QC.jpg
b95dc6a0aa6eb02dfa1012fbfd98e55e
10ef34847bb42a9369dbed233d8a32c3367d11c3
44174 F20110318_AABINX stuckey_d_Page_192.pro
f8617005a5050596f3b3426048331a09
10156b04a799f25e9b69a0e888acc8bce1e80ac1
88842 F20110318_AABIPA stuckey_d_Page_014.jpg
d8cd434406e2a8da4bee56f768e52892
a8c1a15db0f8c66d070af0206414099a0496cd06
145625 F20110318_AABIOM stuckey_d_Page_007.jpg
5f91f30f1c59338f041c7ce7019b97c3
c3423bdf475fe168616b22b08ff2271086f35d5d
54262 F20110318_AABINY stuckey_d_Page_193.pro
8ec632dc837f77bc648bcec62de1620e
16757aa9ea604c2367b93d6944eb92d2bddc547a
27525 F20110318_AABIPB stuckey_d_Page_014.QC.jpg
912377e1df2da8decf76a4a38d5d22f3
4334421691f2bd81299f2b5e90c8ef1a07e45af2
37037 F20110318_AABION stuckey_d_Page_007.QC.jpg
6e8b1db309d0e02d0015d091479b1a99
1fb39bf1657aa4447a86b314cb460aa54bd48857
59424 F20110318_AABINZ stuckey_d_Page_194.pro
e039d4c97e7f45f72e61d04f6ddf7b48
e88e4be105de9962168a349d8f5d4583ad5c5c56
94554 F20110318_AABIPC stuckey_d_Page_015.jpg
7b67d1df88370782aa7ce5ab3bf084bf
25ad56e28efe4a70846341bc214cb90ef0f578f5
50300 F20110318_AABIOO stuckey_d_Page_008.jpg
8c7803c5cb6721df923a98703b8e4c48
5207f624f8831d72d9a1060a4132aad0ae4bd30c
31243 F20110318_AABIPD stuckey_d_Page_015.QC.jpg
d73b7ec1510ea16c4911f9659add15a0
8ee40d045a349d278ae242b63492f84ccfd200b3
13801 F20110318_AABIOP stuckey_d_Page_008.QC.jpg
f1a23a2ace7c07f34ef0770a76266009
504fa4fb591f3549c3703e19392f3b39fc5a439c
92813 F20110318_AABIPE stuckey_d_Page_016.jpg
c07a24c98ef6eb128b2183ee11e233e8
671c6d376a6fadcf835a750fe0d5d651d3d0da1e
126692 F20110318_AABIOQ stuckey_d_Page_009.jpg
19e6b6cbb4a088c8c308b439879cc450
d4de485565277f223220e426370b03a7ffd7a551
30774 F20110318_AABIPF stuckey_d_Page_016.QC.jpg
a853185919ca0cce54ff820c75baf82d
74f9903a97cd138febc1e483571966ed741912df
32962 F20110318_AABIOR stuckey_d_Page_009.QC.jpg
c17da0e657b13ecb9e5ffe6380f59b4b
072fb6ec1a7dd1b93cc5efcd000846e8acd63c78
96550 F20110318_AABIPG stuckey_d_Page_017.jpg
b701840110b38048a93c0451f5071174
8d36c8f8249a7c75d5eec4bcc39a383643412a7c
135123 F20110318_AABIOS stuckey_d_Page_010.jpg
9da49dcfcb704435fbbe05e0bad738c7
aded4386f05644c850e98f2c2d593dd63729e5ec
31623 F20110318_AABIPH stuckey_d_Page_017.QC.jpg
93a1ab82661fe6be98413208109030a2
bcb568eaafc65ebeb788bd753604352c5401c905
35860 F20110318_AABIOT stuckey_d_Page_010.QC.jpg
74213a1afc42b627553305e794960156
bd5942324e3a14d81325a3c5f68c8ca58b151028
97195 F20110318_AABIPI stuckey_d_Page_018.jpg
70e9823d5d5c8c32db4f1fdc0a82d201
852ade459034a34d7254757b05d75121199b5d2e
80093 F20110318_AABIOU stuckey_d_Page_011.jpg
48c174ca47e47fa7eff1d77e096077f2
2bd7f1c1df4b9960e0219252d83a27f8756bef81
31781 F20110318_AABIPJ stuckey_d_Page_018.QC.jpg
c15348f55811658ec3db04c3b61cf90c
ad2f264520d92df75aff347896129e45accae7e8
F20110318_AABIOV stuckey_d_Page_011.QC.jpg
f83e7ad7a727b63bdb4c796abec9a2f2
14913d8348cfaaa15c4b802a0a5464dfbeb25273
101838 F20110318_AABIPK stuckey_d_Page_019.jpg
ab9b2a8935e7171957ca5578d2085684
0466a1e61736b7116ebd58b5426f2d5f6ff9d505
32789 F20110318_AABIPL stuckey_d_Page_019.QC.jpg
7c127e7d8ebece28b4e64b09b4f6ab5f
88079a88d4d42e2e82e335a697087ab0681e4e60
64560 F20110318_AABIOW stuckey_d_Page_012.jpg
97e080e994328e4024ed7ecf35ab3a25
ae42ad4b911730df0b368570de8093594b2df785
26065 F20110318_AABIQA stuckey_d_Page_027.QC.jpg
4556e720cc18aa02464ab8bb007a7f98
1b82782fff0d72fdc5a26d1e8402710887f47f50
97650 F20110318_AABIPM stuckey_d_Page_020.jpg
da69de8d1f9ac12723ca0aa255b2ac2a
baf88acecb6bacadad0f84f9d67f470c43a4dd12
21018 F20110318_AABIOX stuckey_d_Page_012.QC.jpg
5e3f4d7f591dcd8fa1ab40d5261f723d
605bfde997282c1185df1d0643cf796a91a4d050
92530 F20110318_AABIQB stuckey_d_Page_028.jpg
565f8bbe6a32ee7172d25b1d74bf7649
c091b69940d1d776aae24e56bffcac7fbbeac3a7
30966 F20110318_AABIPN stuckey_d_Page_020.QC.jpg
b25e21bcc69bbb4833b700ac89cb66f9
ec146aa01a8b87622aed1b69c26d40abdd14e4e0
79125 F20110318_AABIOY stuckey_d_Page_013.jpg
be565928778e3bf9f62b32c37fe0a3c7
fab5695edb0706e4a43622c7c0e1fa4ad798ac0a
30296 F20110318_AABIQC stuckey_d_Page_028.QC.jpg
033a15ce9b7f4629a84a31e56a6369e4
f78a62d08e0bda2c484e8f50b7ccb955f03431bb
89739 F20110318_AABIPO stuckey_d_Page_021.jpg
5fa08e81d3e1e26684aca61ce72b4e48
3f87d578e9f480049c2a9478cf713335af06e8a9
25475 F20110318_AABIOZ stuckey_d_Page_013.QC.jpg
9b91f8c84412fa70bde580c320508f61
7c45a461248fca21578ee8fb172cd31a1716aa16
74055 F20110318_AABIQD stuckey_d_Page_029.jpg
5e2a6cee1ceb521b452292fad783540f
d0eaa136ddba36a91bd18f72f0e5972d2c1237b3
29505 F20110318_AABIPP stuckey_d_Page_021.QC.jpg
f05ffedaf6fc9401c692db51a7478762
81396dbd85a02f9620d6ba5b24c7fdf964e0b00c
23908 F20110318_AABIQE stuckey_d_Page_029.QC.jpg
4236fa5e7fbeb3c3cef55a2777676295
d9d0d7bf9c23f3eb9a8aeed555067d8ce100f92f
124848 F20110318_AABIPQ stuckey_d_Page_022.jpg
5263aea8b37bf6e62dd8a266d345633a
276ac1e1d9ba44c40d75bb2930dc9f11d356fd98
35141 F20110318_AABIPR stuckey_d_Page_022.QC.jpg
507776271efa15254758e188f6826131
4255b2a8c5b559a0c7015d850074d43a7e74a690
83610 F20110318_AABIQF stuckey_d_Page_030.jpg
259099df8230d17c7046058202584248
a5440ce407992c28d0aa15042f2423e92514afbe
99576 F20110318_AABIPS stuckey_d_Page_023.jpg
c9c17d546eb1558fe426d1d7442c69e6
60ac763a5cb2e1b4a23f36a3963a1d88cbf34828
23811 F20110318_AABIQG stuckey_d_Page_030.QC.jpg
c6da9e45081f49dfbdad7dc1e17d8435
f1b384faaac2307f0a758f9985ac23c50e73c95d
32017 F20110318_AABIPT stuckey_d_Page_023.QC.jpg
37fb128e09672a19449681e3ebf61df4
98aa9f9682353ade487af025142bf83b89db96e5
126059 F20110318_AABIQH stuckey_d_Page_031.jpg
564d385ac2429d3f45a9c9322fc64eb8
786e9bc07ae8c9609534b34c42c6296306912adf
96042 F20110318_AABIPU stuckey_d_Page_024.jpg
fbb81a43c1395ab9c1a5da13098d1b40
ec5b6d1785b73f7a4cf95fc26d85c9272648b4f1
35479 F20110318_AABIQI stuckey_d_Page_031.QC.jpg
24bcff42dd50dfba90db648fe4af247d
32a4a9a53542f9f6c80458dd98165b0febfe1166
31303 F20110318_AABIPV stuckey_d_Page_024.QC.jpg
59aa3ce7cef8692327493d35069bfddf
d0de21f9753273b47c0860d69835e4b915a585e4
66985 F20110318_AABIQJ stuckey_d_Page_032.jpg
7b6eaf81dfb5b8e15f863e7069118fd1
00ffebf0ff49058ec1d2e8e6efbc8eccf4fc441e
86213 F20110318_AABIPW stuckey_d_Page_025.jpg
8ab84c522ae539149d8875693707a864
188ab8b1a52965c7ed057dde913f2a1d1932c7d4
21904 F20110318_AABIQK stuckey_d_Page_032.QC.jpg
e3c14f98da769eb6a90401d3e477366a
2e62754c5853df9a7017a38e56f39084c8bb7c43
74301 F20110318_AABIQL stuckey_d_Page_033.jpg
47bad515878ccf44a3006f87c55635a0
8e40c34f4f574edb88a7a3a135a0a892068a81bd
25686 F20110318_AABIPX stuckey_d_Page_025.QC.jpg
fe48cdd722846d2fa484946870950b78
78c5a54b19adbeb1d7e2b0f2abe2f3201354537a
34826 F20110318_AABIRA stuckey_d_Page_041.QC.jpg
c5d0ef9a88071b9fc93ee28a5ca0ed4a
18d6a0f2dbe54dc140c5dddecc3859f08602fb68
24498 F20110318_AABIQM stuckey_d_Page_033.QC.jpg
8a243c2bd1c82c987c0aa5a6b1301041
c6ee8cfba33826e5efba4e4178fc28392d65c4d3
7801 F20110318_AABIPY stuckey_d_Page_026.QC.jpg
042ea510a1add821fe5b7b970ec9f516
8c2ec2810e426f2c2be195de16bad9ef12dd0f88
105717 F20110318_AABIRB stuckey_d_Page_042.jpg
67f1187f3436683c99bcf766174a73f6
de94c219a65423bb5cd1af16e87b8c4ceb642602
76015 F20110318_AABIQN stuckey_d_Page_034.jpg
2155b6311a603141b57116d9b3d52083
a98b35cbdfded15e357feae9391f0beb1a847e79
80731 F20110318_AABIPZ stuckey_d_Page_027.jpg
011dd7c38be5fc60a2448a8edfc56965
cd64293bdc1f304e1444f6cfba30d4baf3894614
31495 F20110318_AABIRC stuckey_d_Page_042.QC.jpg
8bbed463c4e1b0f5e302ddfbd2d9535b
68a6ec48f9633d5b4329bcbe5991031387ac12ff
24922 F20110318_AABIQO stuckey_d_Page_034.QC.jpg
e63c21883e5be7e6a5325c500bbb7bf3
c0897bd018e5d56e9b058b8fcba79e274dfb8eb9
100507 F20110318_AABIRD stuckey_d_Page_043.jpg
e82e4ee6626a60f7c6d75faa59a13973
6ed5cdbf5ac7e70e2ee53b8ae817893386cc90d3
96715 F20110318_AABIQP stuckey_d_Page_035.jpg
e40a4f39c5f94fbbb4a368f423032229
0d1131a5169b42a6ec13439f50f88ac68d1dae97
32109 F20110318_AABIRE stuckey_d_Page_043.QC.jpg
34ae9dd516d5adab9521dce085506502
5fa227d7a4f0a510816adad2a7f74f5f481bec40
31558 F20110318_AABIQQ stuckey_d_Page_035.QC.jpg
6545fdec17b40a56529f87c3a398e107
ba9f8a5d9c7f9a42b472dc06c243b2d2207e9f85
120925 F20110318_AABIRF stuckey_d_Page_044.jpg
c8114fceb681bf85ab2f38d7174dde00
97f1663b02e7b3c5fa303d67702026198f578e0f
31309 F20110318_AABIQR stuckey_d_Page_036.QC.jpg
f506cca9094919bf3ebde5dc7d7c6a5c
d3d25e6cbbfbf987c668f357228ead08910d1110
37493 F20110318_AABIRG stuckey_d_Page_044.QC.jpg
1218c4044095b612140d8c8d50f2669a
63ca5feb8e45250546d37ebc65e43670f99b910a
45848 F20110318_AABIQS stuckey_d_Page_037.jpg
ddeba54bcb37f6217700e02620165ac5
e6b18b77753d23ad14c84d659e8dde884ef1c2f3
91056 F20110318_AABIRH stuckey_d_Page_045.jpg
d83ffad8bc20fb287af8b2a63a9eb65e
2e971f235c9d3f3887354fbac622bc797cc61654
15528 F20110318_AABIQT stuckey_d_Page_037.QC.jpg
655d751551e684d8bbdc560fd8a26376
3710eec010cb081dc98b17badd3b7f42f4845f3a
29112 F20110318_AABIRI stuckey_d_Page_045.QC.jpg
ed33686f9d690de9f615bcbe6953d9ec
55e0df5060b731ed36e5471066ddfc46b15ddbf8
81414 F20110318_AABIQU stuckey_d_Page_038.jpg
605a7906cacf61f01d0d23b8384437b3
7330ddad53540def631f76956db96c4f34b104a3
117466 F20110318_AABIRJ stuckey_d_Page_046.jpg
9db7dd941eda5022aa34a942992ee235
4af8e0fb0cefe6345df5fef379ddef78f42d824d
25657 F20110318_AABIQV stuckey_d_Page_038.QC.jpg
d84a34591548af051f1655c0cada85a4
2780675405deaa432f75547eed74d2f3c15e295d
35768 F20110318_AABIRK stuckey_d_Page_046.QC.jpg
71e5291f8977c767bb002a73a18a7746
fbfc2d699024da961e8ad0836853be7b2abaad12
110502 F20110318_AABIQW stuckey_d_Page_039.jpg
07fce5d3d01d8dff7bc16e41c0e46a3c
f891b64bef1669c09b6df0807161b7850b85ff1d
F20110318_AABIRL stuckey_d_Page_047.jpg
5c4b97ad3d16367c55ac2979f1ceb98a
f795e19b0f72ed419ce3d01288accc80801b883c
34243 F20110318_AABIQX stuckey_d_Page_039.QC.jpg
4e0f52c9bedebef67e26fffc8d4b003e
e199c8b0982aa9591574f6b4f171e7527b01e9cf
39728 F20110318_AABISA stuckey_d_Page_055.jpg
ea5bcf7296e974260db5bb3421912c68
337e203e452889febbccdaffd33ef5f0c7deeae7
36038 F20110318_AABIRM stuckey_d_Page_047.QC.jpg
450156e32e5658db0dc4084d69ccbb74
cfc8ca4164f825292b87b1038cca632bb5863de4
13742 F20110318_AABISB stuckey_d_Page_055.QC.jpg
b0228b3ec1a9e05e7ab279a6a89c2a0a
5632a7d3d44c89ff98a0b0330df619b059cdfa66
112120 F20110318_AABIRN stuckey_d_Page_048.jpg
a792acc095965bfbe6dc830121e4b0ed
9c60e23a44f086ddb047ded1cb8c64f160e81ba4
104586 F20110318_AABIQY stuckey_d_Page_040.jpg
c2b441767529d0be7385a47838a34dce
7329c2b20ddbd4181b572894377eb8b82815adf5
12918 F20110318_AABISC stuckey_d_Page_056.QC.jpg
d7ea7e8161133ee7d7800fb2286fd907
f062578ae10c3ee6b29f6544efed4005f21658b2
33112 F20110318_AABIRO stuckey_d_Page_048.QC.jpg
44a38511d2b7bfd6f96c79a205a88fc5
5623763633627ad51cd1f9d44ea08b125ed96ec3
114374 F20110318_AABIQZ stuckey_d_Page_041.jpg
910d19cab236384f58fdccc8ce19303a
be4b6d325c97817ea8cae67e4c8545ac07de8bba
37760 F20110318_AABISD stuckey_d_Page_057.jpg
c4a42914288af905bf33b914611aab93
cb3528c259be2ef920c20c751d436f3dcfeff1d2
105337 F20110318_AABIRP stuckey_d_Page_049.jpg
f77df31beb7dbd48d1fed1b03d7a8d2b
b4206714b9d12003dee786f78033300ad9517474
13038 F20110318_AABISE stuckey_d_Page_057.QC.jpg
721ac2882723a0659e4dcc62a6127298
8f506856215a6c12553e4581b50eb221ca9e297b
32366 F20110318_AABIRQ stuckey_d_Page_049.QC.jpg
3c7328dc10d718f0fc37449962936529
84b79c55f9662d8992ddb697359063d566e4d25d
64002 F20110318_AABISF stuckey_d_Page_058.jpg
5c6b31d23d9acb6eb79263dad55b029a
b59c661f6342b37341b1c7e8e844f2c4cd7f6353
61505 F20110318_AABIRR stuckey_d_Page_050.jpg
ae097f8886c7311dd6604fa7f47b1b9a
014fe4afd8f8a762a571c0623272a57cf1784671
21433 F20110318_AABISG stuckey_d_Page_058.QC.jpg
81811711c5de50cef98ee7188c00f0d6
76c3e644fc82cb8489966b7967337a7ddf9de0e6
21026 F20110318_AABIRS stuckey_d_Page_050.QC.jpg
7c5208b7705609f808f4203aa9dca1d1
400415c9afd3f6eee37731919349dfbe78de9f22
F20110318_AABHPF stuckey_d_Page_113.tif
1d58b6dbfbf75fea31e407e2f7dd4798
35645c3ecee30c5cfc9fa6f2bcb987506aa431e1
60886 F20110318_AABISH stuckey_d_Page_059.jpg
614b857d9be2d9f255a3bc58f9156f8f
ecf37173737712b7b946e4c1c22a1ea48b38f77a
36567 F20110318_AABIRT stuckey_d_Page_051.jpg
4acc9c9088a2bbaad6fbc5586d1f8e9f
a9a8d9b95ad910c8c32094740f918ee13684df7c
F20110318_AABHPG stuckey_d_Page_025.tif
f69b7d165c6192a16eccf68cd612f115
2c8932e9d227913b3e42f6386cb12d6d775b6ee0
19781 F20110318_AABISI stuckey_d_Page_059.QC.jpg
3719843e27b2e339ec219a043883a2e4
aee8364abb11aee990d8e5b4a1d7527c9091d387
12278 F20110318_AABIRU stuckey_d_Page_051.QC.jpg
920417a7a116b9af892e77ec915d55e4
710a34ccc96bff9b1834119b0797e856c54fda82
7571 F20110318_AABHPH stuckey_d_Page_016thm.jpg
41d9ed1a64b3a6dc1f45964fef98d5f2
3e9d5f2b8c46948310c8f626b7d61daed2243c15
43303 F20110318_AABISJ stuckey_d_Page_060.jpg
98c2aa113b44b37cfc8db915d2a47e99
c04fb4539462e537b7d9938690319e3b12d066c3
13968 F20110318_AABIRV stuckey_d_Page_052.QC.jpg
9ba2470bb4a1d56c631b0841394d6f81
c53aba31bdb2f14ab48056f4f3793c7ac8c04bc0
F20110318_AABHPI stuckey_d_Page_087.tif
1778ff70bb0705c309aaf9cd71b44093
04fa0ad885bbf2ba5d26cd692fe8454f5e7f7f27
15230 F20110318_AABISK stuckey_d_Page_060.QC.jpg
83ca40d80d4c099f48e56e450e515f03
f7e8e20fadc0026bc5215cccac2b101e2642746a
38303 F20110318_AABIRW stuckey_d_Page_053.jpg
8a30d9b9331290ea12151a0424fa0208
515898f2bbf78f796412336ef642f2a246f32a7c
7467 F20110318_AABHPJ stuckey_d_Page_186thm.jpg
e0f49fde56cbe574418f690a63e96e5c
6b6429589dcb6cdccd70407b29e150efe6b55fb8
62291 F20110318_AABISL stuckey_d_Page_061.jpg
078ec5e173973a9c7d1bef104487dad9
3ee2844d75eed9ffae77aa9f3c15a458968bbb9b
13002 F20110318_AABIRX stuckey_d_Page_053.QC.jpg
748d53a4105a46fc424bb343a1f35d9c
69f2c830348425a17a35f001dd6a928a610918aa
31548 F20110318_AABHPK stuckey_d_Page_040.QC.jpg
8dbac900b938f398d9750c4070121351
9857eb2fd4984cf4bb4ef6296f1bedca985be7b3
20379 F20110318_AABISM stuckey_d_Page_061.QC.jpg
7916c42a48ae9580b91b3785c8658e60
820acb75768515d05f1d86710d7d313488d25c66
40224 F20110318_AABIRY stuckey_d_Page_054.jpg
c2c32ded23b79e244ddbef7baf19c28d
2845767105b275bc3813da55e86a016bcb80bc7f
98077 F20110318_AABITA stuckey_d_Page_069.jpg
86630502570de527a20939099dec24d4
352da71e2aa5717e037a97d56ca7d60b3e8492e2
48094 F20110318_AABHPL stuckey_d_Page_149.jpg
01323aeac4fbf498246d727a83a55e5c
d3f5f30b81ca77e64d41184e25e5c33f06483da2
92510 F20110318_AABISN stuckey_d_Page_062.jpg
b838d27dfbeea84d77900e79e4927517
36e54c664361a7d87fc31f5a8f3a85f5a1c547c0
31079 F20110318_AABITB stuckey_d_Page_069.QC.jpg
c4626ef7186c158248b01c90168bb36e
6717a5c706d42cff14025032125a502c9dc1950f
F20110318_AABHPM stuckey_d_Page_017.tif
e189eeb5435ffda30df9cafe1178d99a
4e383a3d7a3ddf2d0fad4e3fcaede6d40b736116
29551 F20110318_AABISO stuckey_d_Page_062.QC.jpg
38f974c99c45f2f5e61c5fa83fc568b5
0df31aa9664259fe773fea288a18f96e9333e1b6
13135 F20110318_AABIRZ stuckey_d_Page_054.QC.jpg
2f928ff0daf836959cb70742cfcae16e
533236242a2f64999b4dbfdecf4d3c5a9e08cd9e
24513 F20110318_AABHQA stuckey_d_Page_084.pro
54cee928c19b304729bedff338f9804e
198ac33ef1e7347ef28d07b057617bebaa64c11c
81834 F20110318_AABITC stuckey_d_Page_070.jpg
c3b77a715fb7931b0e8b3cd3f74b5f63
6096efd4ce8ff39c28cffe58fdfe6bb7bd801abd
2966 F20110318_AABHPN stuckey_d_Page_098.txt
ba60396bc3ce74cea20852c94e219845
181e11f6e36eb16991a514d8bd54f90c7d0df9d0
85041 F20110318_AABISP stuckey_d_Page_063.jpg
5524d9606ddc286471500ae2ff5ca4b5
b23228ef0f740d19b0c2081c55dce851e04704c4
1895 F20110318_AABHQB stuckey_d_Page_065.txt
608ee30b2f23e9c2aa95178b65ee5045
af7e9842b67d60513a84346b43f1e980545548da
99755 F20110318_AABITD stuckey_d_Page_071.jpg
62596af1ecd9f3b87496eefafee0c3ca
8ee631b4026e6e76753fbaa1dbc47e9013dd1e36
F20110318_AABHPO stuckey_d_Page_043.tif
1dcb6c0c54774f78b25b7a261f6c1117
b52e4ceec221df31026bcf232853f3268e4090de
28240 F20110318_AABISQ stuckey_d_Page_063.QC.jpg
9b3fb675c187f2a9a37f4b10c65f4337
8f1e054658083c5877b70b907a1dcbd856481276
38576 F20110318_AABHQC stuckey_d_Page_191.pro
208ce26445bd96fbfa1fdf2c11f3ae8d
ff0488c588fa20ea6017275c3bb5309ec39e549c
31867 F20110318_AABITE stuckey_d_Page_071.QC.jpg
e69c983247b4826ebcbc5b138564543f
0c83280b030daf52d33e50372461ae458429ded6
F20110318_AABHPP stuckey_d_Page_186.pro
b1b4e6d6d31d45c040867b815d4d5905
1a7743fc91bfc64122b625c3ec3e34fb6adf93b9
75358 F20110318_AABISR stuckey_d_Page_064.jpg
1105974c742539ea073a76d882b99cc2
c43f7eb52b7885e484f36d1f8f4b747459408805
39380 F20110318_AABHQD stuckey_d_Page_070.pro
9812acaf2f8ca9d770ba1a3aa5e3a195
48745ad1c8c91435903cd4d1a7cf202b38a719d9
96487 F20110318_AABITF stuckey_d_Page_072.jpg
d6530115f3723c39624b3abc60653c23
0469e34a72824ee440cb4af04ab97f04fd68a3e9
F20110318_AABHPQ stuckey_d_Page_003.pro
ba3efc2a43a20569034ec0ca07e52adb
f292855e3f434864247d50fa002a057445d85c5e
25762 F20110318_AABISS stuckey_d_Page_064.QC.jpg
ecffc0e944d3cd767fb0662ee5f20ee9
f658f39e77ba8ec04b7ced23bb03f412f7f18fce
14592 F20110318_AABHQE stuckey_d_Page_160.QC.jpg
7f25c58eca32c04df235032f726151a4
c094dc5e1b3c811220b48b113c032a8bf3778012
31890 F20110318_AABITG stuckey_d_Page_072.QC.jpg
6e12b5848389c6c17ff72619b01f56ac
d03732613a1f2c88485d4fbd82c70ce452e56fc5
16716 F20110318_AABHPR stuckey_d_Page_123.QC.jpg
bf67faf3634ca72ee4f36dcc7220d2e3
19c8428bb85dadb5558a9fc79a295cbbb20eecd6
92152 F20110318_AABIST stuckey_d_Page_065.jpg
687a8cbf9547b6e5be9bf745ef0d1535
d0e30f7ff5c52d7067ef5e3900132e28d7f038f4
6803 F20110318_AABHQF stuckey_d_Page_027thm.jpg
9892835b6e747c43fb70067e1fd34d97
13604058cec18916d92d323d3dfd2971e70ec08f
97925 F20110318_AABITH stuckey_d_Page_073.jpg
af699aaaf10cc3f0986fd4bf2123ba4b
d095cb121c7739136d0380337c077755abd519f8
20895 F20110318_AABHPS stuckey_d_Page_116.pro
a70d724a50fd894c230406ad58acf269
ebee582444376de6cd98a052700de8789cda20f2
29478 F20110318_AABISU stuckey_d_Page_065.QC.jpg
0b4f3b7d8f43d8f84d28601b0e8873e3
337c0477a0e84cf9c577a109a98b76bd029c218c
97365 F20110318_AABHQG stuckey_d_Page_036.jpg
70081e74674785efc9971272a0949ce0
9785a27ed71df5a939b4f19affc23c44eba64425
28688 F20110318_AABITI stuckey_d_Page_073.QC.jpg
cf5cb3fe771ca663afbaa1a870c58ddb
fd21cb177a444ca192c5d3bec2169f730658be69
82849 F20110318_AABISV stuckey_d_Page_066.jpg
2a3b75b90d5b573e39efe31aeb5d5f74
430a3d0623de5bf6bf4921aac9364b816de6227d
F20110318_AABHQH stuckey_d_Page_059.tif
a44d08134649c71baffc43964fe0c078
6abc83ac4fa809e4ecb9a44957a3f3e663646691
103107 F20110318_AABITJ stuckey_d_Page_074.jpg
79d1212649bf38e649e13d6aa61f9ecc
2c8d733b7fd05ec188340c0ccebcabf8af66968c
203 F20110318_AABHPT stuckey_d_Page_158.txt
f3ef5ad45239cfa787a5b17bbf130566
4cff313f3278d2e6d5e67fa65ebd50f8050a4a37
28833 F20110318_AABISW stuckey_d_Page_066.QC.jpg
e39aee57f772c0dc4dbb7856a54056a8
ce97d052fe2601f586a2d6d7a30c77d831c60c99
24069 F20110318_AABHQI stuckey_d_Page_163.pro
003f4f8573dc4e551114d8fed36f7c61
de48b069c7c3899c9422b792c8f12813f364f65b
33725 F20110318_AABITK stuckey_d_Page_074.QC.jpg
64b45f7b11541519aa2f7ad656522250
3cf7644a1cc533b141d8ba210c55f783cb6b81e1
113297 F20110318_AABHPU stuckey_d_Page_193.jpg
d6b8b4a12d5c299bc8fd9596acb6ab49
bf911fd138d0263a92d7b6f42c5c42725034aed2
94919 F20110318_AABITL stuckey_d_Page_075.jpg
c7ee52245b617622c0d0332f6aa3bf3a
1f094885c3876ebdc4a4b7faf35bbd97a9999267
74793 F20110318_AABISX stuckey_d_Page_067.jpg
27d841ad9a479d3229dabe69b6e8b748
bb3d0310fd3e08573cbc382004ed846effec65c5
39609 F20110318_AABHQJ stuckey_d_Page_056.jpg
3d7cc08205d9c3ef3a9026686acd7ed5
e8dc569254f0ca037835ae3cf278a84065058b9d
F20110318_AABHPV stuckey_d_Page_030.tif
6c0fc2ade622c2d50c25f94be6e6decf
c0136323a07850d644f5bb8584bb1fa5831721eb
18669 F20110318_AABIUA stuckey_d_Page_083.QC.jpg
7c0ac55dcde1521104aa0efa3663af7f
a66e9516d897b74c5dc98e8caa62afb2b6ea4451
30785 F20110318_AABITM stuckey_d_Page_075.QC.jpg
f9c5df547e0d4009b8f7e580a47075f7
fc84d06ea016beccaade97fc47b417739f4a77a3
70879 F20110318_AABISY stuckey_d_Page_068.jpg
3cec4a37f50c360e0870a2f418d597a9
adc163ae0b90f135dbe6fa2b9694034fd7d848c8
46777 F20110318_AABHQK stuckey_d_Page_035.pro
c851014b1e8e795c95da6515410b8928
ac2e9f2c17650b6199996a0d65b96fa38658829d
15915 F20110318_AABHPW stuckey_d_Page_093.QC.jpg
267e272f5ab3b6b1e33eaeffa9bff87e
52b49707d50ab5dfcc1612982dd309f11330da4c
43133 F20110318_AABIUB stuckey_d_Page_084.jpg
22f5a3212ae91ce345f6d519bf246d70
c2b0092ed4105b5513f22fdf60afb5ecf2fb2b86
92853 F20110318_AABITN stuckey_d_Page_076.jpg
65a6c1b38aaa0306ebf1af61973351b0
c73a6562b98320dfa82b365c79685c2a9dfc6f64
24561 F20110318_AABISZ stuckey_d_Page_068.QC.jpg
77d13e058e5e749e95005f58d03322e6
ac578373d68c63b7ca445b2409978263d670c0b2
15313 F20110318_AABHQL stuckey_d_Page_006.pro
e5f9fa4ecfe15b3fa2f4376356ecbee7
9dc6ca213ad85f8eca8755afafddbb41c5365621
F20110318_AABHPX stuckey_d_Page_187.txt
1a1734f944a32180d055b15be3be30d8
050098de5d9bf40d803620d5889520615fd195c8
16908 F20110318_AABIUC stuckey_d_Page_084.QC.jpg
eb33e67eee1756e3c015d73ec1fd741a
54edeb47158aa3ff6b538c87f56968d91f64e9c7
29132 F20110318_AABITO stuckey_d_Page_076.QC.jpg
536fdf03eff9da918d25dcb2c6194fc1
ba88b90a27744ff9fba1ee53648005ca29c5825d
28997 F20110318_AABHRA stuckey_d_Page_026.jpg
b9f87c2c6a1bb12bd4171792c73d14cc
60dfdb97b71b104807a606cf95a01678fe17a915
F20110318_AABHQM stuckey_d_Page_106.tif
2b18ecaed833e3cc763003cc63b02c62
005f75c570954f5b6a28d7ff7cd62d296ca120a8
41049 F20110318_AABIUD stuckey_d_Page_085.jpg
c32af35d04c9cdc1e1c7acea9e28680d
7fab0216ea9989b439246a9fee999a50136ba51d
14861 F20110318_AABITP stuckey_d_Page_077.QC.jpg
ba8dab55adb23b64142e765ca3bf698a
2420f6d08d6bf3e8ae003812532d3de27e90fb80
F20110318_AABHRB stuckey_d_Page_078.tif
b0edfbcd9fe52a078d7af254fd9c55ab
c1ca1a2cd512885ae268bdc580406dd037b1bba8
34047 F20110318_AABHQN stuckey_d_Page_006.jpg
ccb2d4279f83faff7887e2031728708e
c8d0d27b53ec462676fe783c2797fd64559aeb3a
10505 F20110318_AABHPY stuckey_d_Page_175thm.jpg
93808c02215b84a18bba2d6cdd100a74
c9cf6fdb7e0d2d204ec3328dc9d1d854e9e801cc
15629 F20110318_AABIUE stuckey_d_Page_085.QC.jpg
97f15377c8456a871ba44e7ac6c9f118
2b5a9a8fed3eb8a5604dc32d90364e9cfab1bf36
50185 F20110318_AABITQ stuckey_d_Page_078.jpg
282df820d364b9ede148090afd8b28e0
fc9d9c90a98ba7c7d134b897246e4277b467a031
411737 F20110318_AABHRC stuckey_d_Page_090.jp2
ed5c1d107308f7fb04486f78c920282f
4e3f8f4ce15cfce11e4aa211a6fda5a5ae39da68
26172 F20110318_AABHQO stuckey_d_Page_067.QC.jpg
0d6b7739235c081aea5276a4b1ccb502
b04aefa2af49b36c41959ed9d0596608b635afcb
134964 F20110318_AABHPZ stuckey_d_Page_194.jp2
8b3c99f93d3f1306d06b6aff9275f6e7
95c44de82b31b131db71e5ae81c4ec3b0306f57a
10286 F20110318_AABJAA stuckey_d_Page_168.QC.jpg
fbe59841d28993695e453714b5e85c67
cf11dc8d24a0fc501bf04c9d0247d296d7abe6c9
55038 F20110318_AABIUF stuckey_d_Page_086.jpg
02a5127941b802a0de7eb71216d5f7ca
00da26855adbb2dff4bb588b6afc7f100b56c71d
18627 F20110318_AABITR stuckey_d_Page_078.QC.jpg
f7386d27c113c9e3a7bb7926fc4c408d
ee919866d0ce4573fcdd8507bc9b57d89df8b977
24466 F20110318_AABHRD stuckey_d_Page_105.pro
2a58f9aa6129d8609a2f5d3766b5ad71
5e1997510d36bfe50e0d14c20b2cadbfe5ea65d3
F20110318_AABHQP stuckey_d_Page_102.tif
32f667ed1aac3a4d6dc7abe357cfb40d
39c5086aae7118f035db154a750297b627cce510
62337 F20110318_AABJAB stuckey_d_Page_169.jpg
89b4c6027fe65ea929d2127e355158cf
34e6b162681b7f0493980efaf45f8fb7ef89b6a6
19270 F20110318_AABIUG stuckey_d_Page_086.QC.jpg
af6fd7ab0cfeb6024649bb8abfd80a60
9e2e500621b7e8ba78dba581b9f059d97d02a498
54946 F20110318_AABITS stuckey_d_Page_079.jpg
4cb35cb497feec76de2abcd426410cec
0ebd1dec637f6f63af369a8d124f659dd7df2e24
1421 F20110318_AABHRE stuckey_d_Page_034.txt
ffe762ec0259100b6d9ba34ba884853c
6c663033572a1bae349c245e2dd80128a0a31f9f
7105 F20110318_AABHQQ stuckey_d_Page_045thm.jpg
c9b5620b77da7b919223a35be22fef2b
3cbf7475d27d97cdf63b57ec53cfd79cc6622078
18365 F20110318_AABJAC stuckey_d_Page_169.QC.jpg
b9d8404d2ca5d65345fc19d19aad254f
6f8b7c6e649a86efe92ccddc3ad3c23f22714a47
15870 F20110318_AABIUH stuckey_d_Page_087.QC.jpg
a599bc55b9d2a8e25c7eacfc5341dcbe
20ac945ec1e466f7bd1af28d1ee125abd272d9bd
19818 F20110318_AABITT stuckey_d_Page_079.QC.jpg
0a86bfdd77db1dcbedf11420b712f131
03feb4814b2b117770841942cbd0680e24ab1052
480869 F20110318_AABHRF stuckey_d_Page_104.jp2
287c3701d7858302f871ec501ec73b08
50ca3511fdeb4aab67f62b61959f181c5b66bef8
45242 F20110318_AABHQR stuckey_d_Page_129.jpg
1c6802014c4caed9b485dfc086548b76
6fa84d97fdbabc57eb5ce13745c6a8b9e45c1d03
120296 F20110318_AABJAD stuckey_d_Page_170.jpg
ddf946bbf4d3d9e23b56ccf1c1ef3b2c
9b9b342824f36ceb4dfbc3a7c3ff80d50df609ab
42342 F20110318_AABIUI stuckey_d_Page_088.jpg
e257648855df2ff80e8e3cba92f27af6
8b6d223068654ce97d8d61c941d7b5c577c0aa3e
46211 F20110318_AABITU stuckey_d_Page_080.jpg
96ee32d9b833c93148d444fd6cc0b77d
78eb076a557e0d1108169a46d152615ac6f8d3c6
54119 F20110318_AABHRG stuckey_d_Page_161.jpg
23b6b624cc6db09abac6991b92e4f709
518259e1d75fb9785c542a56a67df871b02d0d28
40457 F20110318_AABHQS stuckey_d_Page_165.jpg
8ed1fad1ec68d8b38cf504116c2311aa
aaf903f4dce826e9ca3ef5180962dbd2697a86c8
36342 F20110318_AABJAE stuckey_d_Page_170.QC.jpg
1f68d90353c2911983edf77fca34fc3e
f3fd19d663a6bc28802652a92ae4e2a06c6731c2
16400 F20110318_AABIUJ stuckey_d_Page_088.QC.jpg
124a716048cd3d3f374d65d51752768d
1d640bb4589fe89201a329228c09bec4d279aaae
17851 F20110318_AABITV stuckey_d_Page_080.QC.jpg
b3ec921b05c07a971face3aa552aed71
3e72a9b46399211b8076959de8b0f0f1d884ad03
1141 F20110318_AABHRH stuckey_d_Page_142.txt
35bec315ef97a6f47ca20c8bd4970e73
6e80f89e9ea1e62b9f9693386a811ec9a61d0ced
24925 F20110318_AABHQT stuckey_d_Page_095.pro
a1296e0d33d1908f1c73742b799aa0ac
a3078a8f29a7951bab8b960f147a0c76243aca57
114482 F20110318_AABJAF stuckey_d_Page_171.jpg
b00fbea458df381e0c58bb4f3169cfc1
282da6656b6e6fcfe3a9e64a05e9a5317f32b216
57234 F20110318_AABIUK stuckey_d_Page_089.jpg
f4feddf0dadc72a8235966e0dd0bcce1
1290a8342c01fd6c15f48ba0d1e24d5c59ac0d84
64059 F20110318_AABITW stuckey_d_Page_081.jpg
93d36069255212ec20d98700a3419c45
2d443754547df54f01589975d105df9fff6f0224
129978 F20110318_AABHRI stuckey_d_Page_176.jpg
e4a9cf95acc3894d0df7968ccaf8d4e1
4c78e5b94881567f56923743d4f70487b45e713b
F20110318_AABHQU stuckey_d_Page_161.tif
916ced24382c9110df8f1d255f28f172
7c51dcbf1ae765edf5bfd2df04b759d282ce2e92
32269 F20110318_AABJAG stuckey_d_Page_171.QC.jpg
ce48efa1fd81e3b960d084caeb8f185a
f52bebc986d9ba043ee98e95ef388f74fbcaad14
19943 F20110318_AABIUL stuckey_d_Page_089.QC.jpg
92a814f339395a4cd7361593a7d81abe
b41c91d01b4779c859281fb42729dec47c812b7b
44713 F20110318_AABITX stuckey_d_Page_082.jpg
c24b68b68b7eebf4faedf3aadbd5abe0
fd0786248c3c4b21ab6b2fde73291777416c7abc
109793 F20110318_AABHRJ stuckey_d_Page_074.jp2
270aedcabec2801bdae8796c267c69c2
efb164f41d54fd54b7c5ebca4f2663411bb910c0
774 F20110318_AABHQV stuckey_d_Page_195.txt
1efabb669491c890597c743e82dceb46
9cb383fc7be701cbfb3c5b26a4b9d2accf35c0c9
16665 F20110318_AABIVA stuckey_d_Page_097.QC.jpg
39ffaccef9be7327ef59786cef60617d
ec756f438edab2536e500577ed6f2eee66543009
38386 F20110318_AABIUM stuckey_d_Page_090.jpg
8bfaf8d43a47472098b6fb981b227915
71bbc228e4a41789d865c8af66f5fc46886deda1
17325 F20110318_AABITY stuckey_d_Page_082.QC.jpg
b6d51095a94da51220037faee4cf59fe
761b71bae10bb5e23ae3aee0331575243233cfd3
420920 F20110318_AABHRK stuckey_d_Page_132.jp2
dea74adc7b784316ece063b6d170c950
b6055abc9ba5a1181952edd95cc8753ed29b0796
26059 F20110318_AABHQW stuckey_d_Page_070.QC.jpg
9328c31812637ffa11d4bc264175a04b
a650535d240bac2a63dc0aa37862ee7d2efbd2a5
133377 F20110318_AABJAH stuckey_d_Page_172.jpg
3f804c8ca16c2f1f2e12abc05a2c72db
6e248e14de60eca69dbb1309436df8bcfa41508b
42768 F20110318_AABIVB stuckey_d_Page_098.jpg
9985ff84d3d8257bdd19094a18f82777
4dfcd3d5d6b9944398ff4b5808d19dd4cd493a74
14931 F20110318_AABIUN stuckey_d_Page_090.QC.jpg
92b17d424ebb9976739e5b62621518a5
2c9427c3ef7dabe1baf5160d6c7664ee8393c5b6
54317 F20110318_AABITZ stuckey_d_Page_083.jpg
4045ccaa53e9bc43728c0fbc122952f7
ae9133088b5409a06fc3ce56e726ddfc8b00c938
1051970 F20110318_AABHRL stuckey_d_Page_177.jp2
019739eec812c149d8476bf29bb75221
d0fd763a007e9b5f550f67539db1f5a086294807
2011 F20110318_AABHQX stuckey_d_Page_191.txt
0f8e6f409a8088b71bcc2a5e953ed35d
e92592b9a11436dac02720ad085a7f6d1c878f59
41202 F20110318_AABJAI stuckey_d_Page_172.QC.jpg
c927d9df61ef8c6b312e835e6bcc270e
3d92686445b933944658c64ec8db0880464d3764
15673 F20110318_AABIVC stuckey_d_Page_098.QC.jpg
f1c3e6887473218c1dd88053d3c4ef35
1feea7a0d3b68564984f917fdf1f78c5f9b9a135
56672 F20110318_AABIUO stuckey_d_Page_091.jpg
601acb85270dbe152a0ed108136ea2a2
07a52b230adcd5d4b9d777f84e3613b6c066a026
49279 F20110318_AABHRM stuckey_d_Page_022.pro
5686c54eb561dc007896ea0d98125ca7
5a82eb91c1acf9d9c3b0af9bc921248301c361bb
F20110318_AABHQY stuckey_d_Page_036.tif
3736a6b1707dd8cd47d38ba77b851fb5
031cd8410e5000271eca1a3cbdbb9c90167871a7
43794 F20110318_AABHSA stuckey_d_Page_160.jpg
d0c14d15ba93252beeb4119982920a80
ca98b457f5f8f9a6927d7a9af35031bd00c02287
139041 F20110318_AABJAJ stuckey_d_Page_173.jpg
d7f8ca027a8dba7e6ebf724ee80fa8e8
80a297e1e337f8f5929baef25e601716ebda1016
46632 F20110318_AABIVD stuckey_d_Page_099.jpg
74e00ba9bada21ce05c45cc52c9c2767
3a0bd7bd7d5ca4794c22d90313f3d24f2f0b4280
19052 F20110318_AABIUP stuckey_d_Page_091.QC.jpg
0440109f0b06080036ea7fed20f8a727
c425e95798af92642c31aaa8996478f09040b5f4
39592 F20110318_AABHRN stuckey_d_Page_052.jpg
aa65f574b94dd7aa2e2448a9575ee8d1
52a26623b7b44d66288563e638b5b517f4846c1f
F20110318_AABHSB stuckey_d_Page_117.tif
dcd36912acf68fca0640bada270e3add
12ced938e53d5e8fccbd9d160a569c7e53c71243
41420 F20110318_AABJAK stuckey_d_Page_173.QC.jpg
2c6ff0a313d2f696b2c69b6a1cf08481
4a7fbb3b8b94106bdc89d70beaccb17180e6ed16
16988 F20110318_AABIVE stuckey_d_Page_099.QC.jpg
df73452c9107054772919af0c366ac73
ffe06da264928e57ce917be09abd2da4df4be4d4
40756 F20110318_AABIUQ stuckey_d_Page_092.jpg
e3ba6a50bf8e05b0cd1d369aefe5ec38
4ceab50202d163400e66aa7e6817fe1f4f4026e5
F20110318_AABHRO stuckey_d_Page_051.tif
824448ff28c3429d77be7c7d178ba8df
fede0daf6fe8fb54d4e41904012ee6cde65af757
443687 F20110318_AABHQZ stuckey_d_Page_060.jp2
af7527003985d69f56339c62bd4069c7
22232590db90f57e6d7ef8548ecb49b80b20ec20
6914 F20110318_AABHSC stuckey_d_Page_188thm.jpg
3ef87b62d7ad16586997853823a65a91
7eb79f1c5a65825e57dd616519d77a4956f80afd
126483 F20110318_AABJBA stuckey_d_Page_182.jpg
bd8a1431aeac02ad70b2066175b77f17
a7a5062df4f0e981d553c93a1ceb9226998890c7
112935 F20110318_AABJAL stuckey_d_Page_174.jpg
bf0e19c8c0480369a11c94f005db95b5
593c735bdc06345c6d38e77bf1dc386c3cbaca89
41397 F20110318_AABIVF stuckey_d_Page_100.jpg
d7d5a47cbb0455512c9047f519180aec
d39539ec68fd9a77da5dee95e763a8b9b63dd401
15851 F20110318_AABIUR stuckey_d_Page_092.QC.jpg
bb6f1e7b33e53f6e4627cea9a7ebe4db
95a3c15e0c74e020c6c2bce5c91332d4b21446d0
91297 F20110318_AABHRP stuckey_d_Page_045.jp2
783e9f49e52811c5bfa2309194680f04
88baa977bb70e15139709bf3c63c23aeaef76e09
440383 F20110318_AABHSD stuckey_d_Page_085.jp2
7816bbcdbb6a616c98ec4f8dfc46231f
eaf582919449c5c991e645b23a6323c783413e3a
36577 F20110318_AABJBB stuckey_d_Page_182.QC.jpg
a85562765f4933fa9e78a605140c0e4f
e49b40fae591d4f2244d5d320f56be08bf039295
31481 F20110318_AABJAM stuckey_d_Page_174.QC.jpg
cab4075bbfe2400070a35ebf0b914bab
c79f1115567081b892de81d827c4918108052bdf
15690 F20110318_AABIVG stuckey_d_Page_100.QC.jpg
b454c438b4e4f137fa792e6e6fa04348
c3d03eaf095e8da4689664ccabfd5e10ecfed97c
42148 F20110318_AABIUS stuckey_d_Page_093.jpg
a4610fcd6d6ee4ec0bdf1ea549ec16e8
4128eeed97ed070aba96143a01a5aeefa3cb79c3
3505 F20110318_AABHRQ stuckey_d_Page_159thm.jpg
b8166c02be1e2febc0bcbd2889e58e66
d1b501d4c53833b7d5da022817faebce0058cb02
48376 F20110318_AABHSE stuckey_d_Page_102.jpg
6c3929924e07bad28bb359a0f7217505
1f220ad2099a2bc98948f405f41a364afae54010
139426 F20110318_AABJBC stuckey_d_Page_183.jpg
2c9229aaa3987095b2c0e68287a3dcda
5bafb3252af8c290fc63f77b0a90f19a5552a4c6
148379 F20110318_AABJAN stuckey_d_Page_175.jpg
2349bd207ed0f68a27977aba8b26c09c
151f18bf52a631211082f52f0deb0ffb1fc35875
15948 F20110318_AABIVH stuckey_d_Page_101.QC.jpg
c5966b734598c703e7650eb1224b88ac
22048017150cd7866feff7e90cdc340411797e29
53618 F20110318_AABIUT stuckey_d_Page_094.jpg
76cff15cca051ad6b72685b36b04ce0e
752b09f22c230c5e3baee02431995514894503ed
F20110318_AABHRR stuckey_d_Page_045.tif
392f470e84208b280bb1eb35095f8e94
3a04c792d4ca48440108af55de5f65bcd16c927b
10123 F20110318_AABHSF stuckey_d_Page_179thm.jpg
b3db84f6f9f79018993ee77d3eb7655e
621478ac0ae9b7c95ccb646624f2e21f152f3624
42773 F20110318_AABJBD stuckey_d_Page_183.QC.jpg
52c876562972de26944b4759f2e0b41f
be1dc953379d95ad960ec9e96a5a13bf989bc18d
42639 F20110318_AABJAO stuckey_d_Page_175.QC.jpg
5242c7e254f5d630c8a3d6adb9d30914
bfe41c0caff78070cee18c2497ce29a0841981d3
17113 F20110318_AABIVI stuckey_d_Page_102.QC.jpg
0b82fbd942617b2c9ddd0bfe631bb56f
9d95fd6b8327983bfe164a0d0aabdafd95ff6f09
18664 F20110318_AABIUU stuckey_d_Page_094.QC.jpg
a7170c1b7163a786e7ae90af58e991d5
8f6d2e71518f6b1499f8519752897e5798325e3c
111461 F20110318_AABHRS stuckey_d_Page_048.jp2
64ec27368973675fb11cb93022b1edc9
1186ac0afa64b1aa9f65c1b4b4047e6b97e519de
F20110318_AABHSG stuckey_d_Page_193.tif
64fddfad26b143e27d5d789433deb236
ebdde80bae28974b87dbc2de4820f30886478e85
133888 F20110318_AABJBE stuckey_d_Page_184.jpg
37ee405618b97e5dda41b89746ea8827
731f213f2fe2a21ecd1c4e731ee058fc55a79ccc
39196 F20110318_AABJAP stuckey_d_Page_176.QC.jpg
934cc50b0b489786ba2c2bdb855270a0
b49062de710ec3c0e18ea5a8d6a73c06fdc01200
48730 F20110318_AABIVJ stuckey_d_Page_103.jpg
f7b8daa2a7f4adc7da86ffe03cdf5b0e
10cf5d95553d080c6d157bfb8fb3d3f9a794a6aa
43598 F20110318_AABIUV stuckey_d_Page_095.jpg
c57a0cc6e0e50826dedf37ae7706106c
21512110418393a764d2666d9dee939978302356
F20110318_AABHRT stuckey_d_Page_082thm.jpg
dd28ffc0a5fb319d4edb2e63e94adf24
5f0ed0c899a6507c40d8e4d20c5daa25eb0bb542
93719 F20110318_AABHSH stuckey_d_Page_188.jpg
a62a3414f08345715202d6883b3c887f
0c3f64b81614efa6f5a71baf2cd7881b759abfc2
40094 F20110318_AABJBF stuckey_d_Page_184.QC.jpg
fd2a9700b41468a4fa805dc8d074cf6e
e63d7f11feebe49a58fb378d7e3f67012b723966
111433 F20110318_AABJAQ stuckey_d_Page_177.jpg
860d7bc02edcfac748beab5ad0ad494b
93b90b92f85c500bcf9efae1a487391d8a3c5b12
18896 F20110318_AABIVK stuckey_d_Page_103.QC.jpg
b3a0ac4ef7b058eebf3f885cbb20139c
272ff1517159c7b972aacf6995eed2cf56726e33
16372 F20110318_AABIUW stuckey_d_Page_095.QC.jpg
63ed29da048b3b03b2d76d2b6f5f8b7e
d4718b3226f64d38ea059ebb7edc2905b75f09d1
16336 F20110318_AABHRU stuckey_d_Page_125.QC.jpg
7e90d0bf0c0643b2c0e9fcab1d4914af
a84ff3fca261952e5b8d6a91ed4367ed2f00be2c
43545 F20110318_AABHSI stuckey_d_Page_115.jpg
18ef29a86aa10d988ff5926737ff3884
bfd5271298527b39ae89c1070f942638908e1da1
117071 F20110318_AABJBG stuckey_d_Page_185.jpg
e745e0eb631ad53718996d336943a2c3
ac52c30e12fd49e6010d9f4ab607a5afdddec4a5
33090 F20110318_AABJAR stuckey_d_Page_177.QC.jpg
0a357fa48b8e090749f2b7258457908d
f2d47abb5fd05088b2709dedc9fe206ffde3e4a7
44577 F20110318_AABIVL stuckey_d_Page_104.jpg
2fc6f58687fd708d1807969cedca4d4f
a748fdb4e24043f64391640244da9885338274a6
53289 F20110318_AABIUX stuckey_d_Page_096.jpg
1451361f931465ee0a383761f2d23ee8
91cdd6c2632ae3bcb82a311342a6f16e8d814536
2303 F20110318_AABHRV stuckey_d_Page_192.txt
7f69c923d4e1d34abc43f41e97e2d436
612431d2cfb80fd7603aa5b1448557871643f9b7
44259 F20110318_AABHSJ stuckey_d_Page_101.jpg
c76aefdeac356cc4281ab8cc6ed71c1e
cd0c35276b26f4f1410a90b9783d39fdeec75559
33218 F20110318_AABJBH stuckey_d_Page_185.QC.jpg
5a479c976234dd9f13378af297f6c521
6576c414bb6059f47548cca8a6913e594260985b
108411 F20110318_AABJAS stuckey_d_Page_178.jpg
17ed31cc58574871047115c5810eba98
9c1049e92bf1f235b820f046c8938b9637391307
18033 F20110318_AABIWA stuckey_d_Page_111.QC.jpg
fbf3cb1e04cb47933151caba4db179d1
e7ffe16218b5ba80398c161041586334868df550
15758 F20110318_AABIVM stuckey_d_Page_104.QC.jpg
1efc1c5214f2e4550505694b6c46b0fb
26867262f0ed7af2525a14647323caa78602de70
18678 F20110318_AABIUY stuckey_d_Page_096.QC.jpg
7c302769aad1c13ef9d4150c37d863e8
a66c1a8de50b229ebd195a2ee0008105e684c01c
27900 F20110318_AABHRW stuckey_d_Page_161.pro
24a8918be754769c8b531f6610f75d51
cd7b77fbcd588d8fe9517e22db27afc08dd56cec
22526 F20110318_AABHSK stuckey_d_Page_081.QC.jpg
2a6f59e4a8f16cce448f8fe75e3b67fd
3db9063bbf9438e59b0cdba7a9e1a147a41c56e0
34040 F20110318_AABJAT stuckey_d_Page_178.QC.jpg
11a592c3a98c6f7a3d6860296c3b23ce
956d03d6f67e5195ea2209de083fbed78c42f701
31826 F20110318_AABIWB stuckey_d_Page_112.jpg
d6eb8d9c81b6989ff24c257ecfad5d29
ac0140d067241992ea1da06f1a3c96cea6579e4a
46815 F20110318_AABIVN stuckey_d_Page_105.jpg
228f11b737732374ae70ee00ca4f8b7a
374f20315b1be89bf70f3c551b6f21348bc64c9b
41922 F20110318_AABIUZ stuckey_d_Page_097.jpg
87fabb4a7e5c67b533c2372477c3fc32
9fb2ea8cd34259880251110411a4df98f70a0a89
4395 F20110318_AABHRX stuckey_d_Page_162.pro
a7497fdb5ed8c194a2442c3b9dff734b
53fcf7446b97ff502155700ccce13a1c8f2ea0df
1689 F20110318_AABHSL stuckey_d_Page_011.txt
20bb7f3321166efe23d7139ba5611ed8
51e59af66c5997337457d6c1ec9dc03a419a4de6
82463 F20110318_AABJBI stuckey_d_Page_186.jpg
fa0b230dc008e0850d0c338c6ea1440c
bfe50b33a7e9a8640e84f4bce0ce0ee4eed0f8dc
122887 F20110318_AABJAU stuckey_d_Page_179.jpg
445a8201d7c1179b93fce3dd4c3bf905
237cdb43451da178536257186ad89c609d665153
12040 F20110318_AABIWC stuckey_d_Page_112.QC.jpg
8c7ad85facca74137bfa4db94200959a
c47b38ed6706613b1b98b7085987f6ecbf9af074
16834 F20110318_AABIVO stuckey_d_Page_105.QC.jpg
f993621b71a5b996013491ae3fe9051e
66130bcb448108a69ddade949fe6239eef868307
7369 F20110318_AABHRY stuckey_d_Page_076thm.jpg
26dd75240219b8157250250c8573a5b7
ad95798d22b2895c048f200ee4379409ef6376b9
F20110318_AABHTA stuckey_d_Page_072.tif
e5823dacd197696abff45f748c16d8b4
3c9e58e60c5762d864a13afffe603ff22a9ad54d
4856 F20110318_AABHSM stuckey_d_Page_154thm.jpg
0c0b0d74dabea55d6f5d6d9590c746fa
beadcf44b8f668eb3d0af063a315b2e9095213f2
25725 F20110318_AABJBJ stuckey_d_Page_186.QC.jpg
54b2ae4aafc53e1acd1b773e2cfc7257
798f389e8ee9120d629f743ef3118d0c42c3ab9a
37963 F20110318_AABJAV stuckey_d_Page_179.QC.jpg
8afa97dc79a5373bc314a353b66f8571
3b42a7ce304953cdabaec4f3e1b96ff93e635eae
51265 F20110318_AABIWD stuckey_d_Page_113.jpg
8ac833e1a2425cc3a461db2398353ed9
4751fbc61c541436be6edde687cb9a1ede820019
43403 F20110318_AABIVP stuckey_d_Page_106.jpg
60c3167a3421b92fab2c7c1178cc47c0
0663a41c80bdb7584033e97ec378ce29cc813f1e
40733 F20110318_AABHRZ stuckey_d_Page_087.jpg
8255805a3ac7ef2bbbc000e8af33b236
d2c1334328ad838b97506c952b0e628320920054
121841 F20110318_AABHTB stuckey_d_Page_193.jp2
c9bd68fa3d8e6cb17815a25b8a9dbf2b
781b58d8f8e87c1b54a72a6cc53af86f3e955b9b
42957 F20110318_AABHSN stuckey_d_Page_077.jpg
034cdec31b82122c0c43e322bf3f0fe3
652b8b7f017d1d1b34df2d99e4e97e6e05754e37
108944 F20110318_AABJBK stuckey_d_Page_187.jpg
a64b193506d13d96c2e5339b8699807e
5115fdbd51e84b3bf03192e2f60f618c6c30c398
131375 F20110318_AABJAW stuckey_d_Page_180.jpg
e5f3d9e72b196e44cb51f5b5a07104da
aabac51ea9048ec879d284a15e04e369a55f471f
17991 F20110318_AABIWE stuckey_d_Page_113.QC.jpg
c21d979f29772b3c791e0b842b737ca2
5000da94c8f9cc8eaf1afebfa5743ce1673fa9bf
16317 F20110318_AABIVQ stuckey_d_Page_106.QC.jpg
ef897dd096f5adef096996bc8fcaa32d
a966a9d0b5e5a284897237d8cc4a8099e0aeff81
28350 F20110318_AABHTC stuckey_d_Page_125.pro
39aac70f41b338b6c17be3ad5500e28e
c083e6221294f248149f41177172b993c5e4ce32
F20110318_AABHSO stuckey_d_Page_170.jp2
4eb495be2d19cd5ca5226de25c91a7d7
6c9267518060920f403f9a045df4f7db0d28c19d
47766 F20110318_AABJCA stuckey_d_Page_196.jpg
628b1da389e2495ae27619de4e7a1f6b
aa42277caac004dd3a0be0fcded47f9ca70ea02f
30812 F20110318_AABJBL stuckey_d_Page_187.QC.jpg
37e3a1d02756a69101664610c7e5b5c9
1c69cf89e2bc67749bf424c1953f47acc679f95f
37578 F20110318_AABJAX stuckey_d_Page_180.QC.jpg
cc0862586767ca12804e6593b383d714
314ae2f8cefcfa8b0aebd2df936bb0b5718619b3
40460 F20110318_AABIWF stuckey_d_Page_114.jpg
d4940f8a3c12b082543e620ef0652acf
ad27fb34661ea4510375ab7874df44bef3014f5d
48437 F20110318_AABIVR stuckey_d_Page_107.jpg
2d1ff4689d1a3c26b4f0cf03d6499e7a
c957210c09674f129d10895b411b78034101e6f9
114 F20110318_AABHTD stuckey_d_Page_156.txt
5a62c1a267cb53e40e2ee78fa587624a
838dc3d88627efe46cbc4fd11059eec38840b44b
7928 F20110318_AABHSP stuckey_d_Page_009thm.jpg
5155c7dad00b2d5e07117ed616598c1f
337ad312bd5c42aa0e6b20d76da56102a3b2c542
15719 F20110318_AABJCB stuckey_d_Page_196.QC.jpg
2bfbe6f2f9e5001364f7412cecb7b1fb
00f89230232e6be22530e283868e18b3eb14d33e
26267 F20110318_AABJBM stuckey_d_Page_188.QC.jpg
4d7a35f2d91a3bc216ea26571616c026
28d6a295050b8fbf5b5c210429a263fdf0a6eedc
109458 F20110318_AABJAY stuckey_d_Page_181.jpg
6f354a0e6756ab75baee5cd767420471
15825cb849bdfcd5374282b683ceb16a57f4d07b
15163 F20110318_AABIWG stuckey_d_Page_114.QC.jpg
5a96c4f5825beb241aa5ccef6206f61a
247795b828d22f60f6cc9a67969bb93ebaadf4aa
17301 F20110318_AABIVS stuckey_d_Page_107.QC.jpg
607a3104d502a77604ef2c0965b7ae80
420126aca9a7547af9bc053344af34e8f6135733
2426 F20110318_AABHTE stuckey_d_Page_090.txt
1c9265a9e7d613e71d8de0d1205812af
9dd2857f2cfd10965f7dd1bccbe8655a5ed4dfba
F20110318_AABHSQ stuckey_d_Page_070.tif
db778d9653633f4e7ffc2cc5e941cb1d
e2eb35c59c2a1715f41d5ada20fc80b8deecbb78
22575 F20110318_AABJCC stuckey_d_Page_001.jp2
ac9286428142a09a263eab7bf4aeae10
b300d8a994725e3ebc71dd5fc00eea6484152f4c
114348 F20110318_AABJBN stuckey_d_Page_189.jpg
d92437d43b07fa51ad3f7fd1a75d5482
f10389c441e0c8cc8e074a89e44ec213917b2cf9
32215 F20110318_AABJAZ stuckey_d_Page_181.QC.jpg
405170d4085e9bf3ad8b1a6826381084
d19eefdcade05b3394b867bcedb33e77264c124f
15239 F20110318_AABIWH stuckey_d_Page_115.QC.jpg
13d5bf945bdce8bb5364777b7eb31d45
576654404a8ca8b08432e9e5bfd423a71f0c6417
41443 F20110318_AABIVT stuckey_d_Page_108.jpg
5d2376b46ef128f4503117a3f387b923
910124a202fa682f1b17dddbde85b7b6b1103c6d
7135 F20110318_AABHTF stuckey_d_Page_164.pro
4259ed569c1a18f43082b64f89b19b04
67519bc5291b3ab1b485968298858c3cba8ad52c
309 F20110318_AABHSR stuckey_d_Page_160.txt
1222eafb8b4adb3f08a5e08a6cbf4127
3ee69166c1af17a095b1e8c4425bff4ae86ce451
F20110318_AABJCD stuckey_d_Page_002.jp2
05c6b2a87dd2482a482e7a60f24c55c0
0b144a15fe1243f4aeda89061dfc34e8d882a521
32473 F20110318_AABJBO stuckey_d_Page_189.QC.jpg
c3490b0b1bede762c89c85bf7c187b4c
07fd729b0ca7c1551c154366515d395d50fef793
49809 F20110318_AABIWI stuckey_d_Page_116.jpg
8101ccb77a23ab774f1819c2fdb2e5d4
848260094ae4e8c07b1883a29196ae7d62a87f46
15614 F20110318_AABIVU stuckey_d_Page_108.QC.jpg
e77f23956eb3f907d46403f11514fb3c
02281321b526016e046276ef14f6642170b78a96
5783 F20110318_AABHTG stuckey_d_Page_118thm.jpg
1ae721213b38fd15ac1224e9f30ac165
8b651af7b8aef7912b13c9a0f9ad57bcbe3561c4
F20110318_AABHSS stuckey_d_Page_172.tif
a546530bbb213b018d8a6b19d2ddf142
1592cc20f69183066c523a792a96e4cb6648702a
13451 F20110318_AABJCE stuckey_d_Page_003.jp2
0314a3b1a4a9e80474de0ca34f94e138
88c81067969665d8b6a7d39b2382a5659f7df41c
74007 F20110318_AABJBP stuckey_d_Page_190.jpg
264e513cb140a5f24512348e400aa5b6
a3e5dfca2b456ad69ea835ffca3e135d8fa942af
17530 F20110318_AABIWJ stuckey_d_Page_116.QC.jpg
9f59a550786f569308b57289d1478cb6
ce3f24e7563a06d6d947fbeb32ff765e049f91f9
39836 F20110318_AABIVV stuckey_d_Page_109.jpg
cafbe128a8fd3c7445a95952188e5e4f
2d321774d670931696fb625d91739533fed330db
316686 F20110318_AABHTH UFE0012782_00001.xml
3d157fd035919d50de97640ff25bcb0f
f938083c8d72d4627323e37a2cca8d0142ffa57f
4499 F20110318_AABHST stuckey_d_Page_158.pro
0ad290f850d7adccf03d9e5b4cfcc5f7
d2ebf3dd12a8e2dbad04400918718816f4f98849
76407 F20110318_AABJCF stuckey_d_Page_004.jp2
2b26921e18fb8231069b2d76912115c0
691b193e0d6e3aa8887f3ab9be61c6ee99801137
20383 F20110318_AABJBQ stuckey_d_Page_190.QC.jpg
29f8c71941330f454bcbf99f9bd12705
f43fd001db4194b9dd63dfa4f3640cfa9be421a6
42590 F20110318_AABIWK stuckey_d_Page_117.jpg
437ac5d6bace760b8eb7d1c34739819f
e4775aa05d8e37b39b30d9d1a2434d00f70ff8bf
14807 F20110318_AABIVW stuckey_d_Page_109.QC.jpg
854b912fca293768c878a07462a30819
a362b79dd42e2fe2b6654a3d2556032505735647
103378 F20110318_AABHSU stuckey_d_Page_036.jp2
a62e4abfb6805738f0e254c65a17dcfb
63a8c4f0e340830f030917b416602e67ba160a92
F20110318_AABJCG stuckey_d_Page_005.jp2
2b6595556c75b096e31b7024778837cd
be4fee6ab17969d133b478c058ec8500001b9a0f
60437 F20110318_AABJBR stuckey_d_Page_191.jpg
3b7a67777d2a12835253cb9345820fc3
2d4c901da9223fa2c3664f24ed90ce76279641f7
16119 F20110318_AABIWL stuckey_d_Page_117.QC.jpg
410d0f78f75ab0874247681d9324a8d1
5d3005b6d2467d18c41e7235f5ed444e884f880e
50494 F20110318_AABIVX stuckey_d_Page_110.jpg
f3ea19c57e015ee04e0a373cece8edd4
386b23eab7cfb3cabd8353a2702f5cc08726ece5
1600 F20110318_AABHSV stuckey_d_Page_002.QC.jpg
9dfea5db7ff79051b429fd6b29265d18
42c17d3657ce86e42125736ba60bbd966691da03
1051932 F20110318_AABJCH stuckey_d_Page_007.jp2
bd4ef85a2a7b1fe86e73cce18f700e03
646506f6cb9554c763ef3f3dda9ff23248e473ed
19585 F20110318_AABJBS stuckey_d_Page_191.QC.jpg
3a6f74507c8987294f4a17f99b9e4019
14b0294307b0d21c3a07ecd8d89119c79a5b3103
43447 F20110318_AABIXA stuckey_d_Page_126.jpg
b089b16eb68f7ae2c4252706cc7c62f2
7230f90f12d28260623ea55e96131d10c2b5b504
47508 F20110318_AABIWM stuckey_d_Page_118.jpg
9a97434641bcafe45a2f7c9ca64490ff
7ec0c54bbb5fb5da5d849870c86e5f0d7e7d2a12
17648 F20110318_AABIVY stuckey_d_Page_110.QC.jpg
a6ff9e007a35e585dc1b5a3a4df7885d
d1e6cf3f4849798b47c064eabfe84ec2a69cb279
F20110318_AABHTK stuckey_d_Page_001.tif
95467522ccbe9861911d9ce5affaeae2
b03e8c35d034fde2f39a0d3b65d4e7c9daba59c6
F20110318_AABHSW stuckey_d_Page_135.tif
7bc46f9d3ed7ff3b3d424a9aabd9d87d
32c5d0360c13e1be2feb8574e651d3966613d678
1004825 F20110318_AABJCI stuckey_d_Page_008.jp2
970cbcb5f3f464ff55f0a5137a6670cf
4f365cdba4935fbb143e39aea548b8e675b4be27
65970 F20110318_AABJBT stuckey_d_Page_192.jpg
d627fdd12dbb33be0a79897af157f92a
3ee4a7c55f03b80c6587b241724e3b62fccca9d2
15771 F20110318_AABIXB stuckey_d_Page_126.QC.jpg
045e4efa2687e4f41abc843e86e5326b
d64cfc21a2446b82cd8d8647c05d83a368defd5f
16611 F20110318_AABIWN stuckey_d_Page_118.QC.jpg
ced83a900deed50a83faa644feb0e658
502ebd74cea0ec96e280c84f2b545cb1e9385e42
47835 F20110318_AABIVZ stuckey_d_Page_111.jpg
107cbb5fca62db87dc901d51587e3d01
e0bf50d21b0ea9bf8c15ba62bd9a12be415bcbde
F20110318_AABHTL stuckey_d_Page_002.tif
46444cad247431beaab6fd683967e564
9e89b17ea6edf88a7e69c5b81419b2391f89acb7
23619 F20110318_AABHSX stuckey_d_Page_145.jpg
f1f52fa89314892dcb2597af9aaa3608
02c03edcc1513a3866ae1f9571cf03a7d99b74b8
21360 F20110318_AABJBU stuckey_d_Page_192.QC.jpg
b4cccad784d6acc2490be4e3243e7b64
e3ed36abc3453c4e0a701dc0e549742030567a18
44829 F20110318_AABIXC stuckey_d_Page_127.jpg
244f72d4bd2dd8d0e41ecbf1e1becd26
9641bd38dfecb29614a14d29bd8cf9ed4a178b8a
41418 F20110318_AABIWO stuckey_d_Page_119.jpg
5bed59275eab3b84c547380b2c81b662
a07be4105aa5274d2d3d43354599858eef572a8e
F20110318_AABHUA stuckey_d_Page_018.tif
f423cfb2465af41188749b3624a03b87
e67643c6923667bbe32c3518c3325d915ceb0222
F20110318_AABHTM stuckey_d_Page_003.tif
e4ef0f0455041afc941ac13ac5c1ed62
207ad5a548e6d84301a0fd3c4db3cb9ff97c5112
557196 F20110318_AABHSY stuckey_d_Page_006.jp2
038c4ac49542fa3f82046e9bdcdc4956
4efd3be79a005eccd1999faab2116b5c7112cd1d
1051904 F20110318_AABJCJ stuckey_d_Page_009.jp2
03bbd3deaa191abba2f0caaed3ffdc5a
68fe8be60b3b31866f1598ce216731f8e84878c3
31568 F20110318_AABJBV stuckey_d_Page_193.QC.jpg
485cc91ac89f4c0664ebda7df6b5d1f4
2c4da8f0f7e8a6c79df92f6b920406a35f009071
17610 F20110318_AABIXD stuckey_d_Page_127.QC.jpg
b9bc3bec9272dcc079bae5c5c4574bca
42a9ae7b3921530f18141ae2691d9a1b1d3ebffb
16423 F20110318_AABIWP stuckey_d_Page_119.QC.jpg
d431f9c1f94bdb3a19c1e1a2a57a7b17
391e9b6572e52018a6f2804a2d87d2bd6814fd8e
F20110318_AABHUB stuckey_d_Page_019.tif
97ac7b5edf656a9ce8bfe23050e5ab5b
65db33a0c12abad96d428cdf9a384953450538b3
F20110318_AABHTN stuckey_d_Page_004.tif
e50e7768b0546f94ebe94940c9f7d81d
d5aa2e8b75fa52ee3f9532df00285a188be5b916
440623 F20110318_AABHSZ stuckey_d_Page_130.jp2
192fb4f8e5db822e77dfb9b385b6e1fc
020d4255daef5fd65bc3aa0addf5040ba0f2537e
1051984 F20110318_AABJCK stuckey_d_Page_010.jp2
c7648803286e23f8ccfab6d951670a50
bacbe7f3da9064d37a1bd37f0254ef9273482545
120785 F20110318_AABJBW stuckey_d_Page_194.jpg
11808c9c23c537049c8f76ad06109c43
bf8e0301f1452e8801e83e3946d4e9f4dda7bb88
44459 F20110318_AABIXE stuckey_d_Page_128.jpg
c5c441210aa3220ddaaec3c8291942dc
004031bf919bfdf5329bfdecedece60b7a3eb761
40834 F20110318_AABIWQ stuckey_d_Page_120.jpg
a49e639d71b96c072255ba3beba7c530
e088d8dad6b41728fe0cc868c98680dccecf4c40
F20110318_AABHUC stuckey_d_Page_020.tif
6a52623b56287a94389e76ffe4510c3c
e10418b91c205c64146e7788a853a6ef8da652a8
F20110318_AABHTO stuckey_d_Page_005.tif
c6d50bf6e08e658420c0c20cea37d5e8
acd7064630ee46ba62c29683ac42831df5f2e107
29362 F20110318_AABJDA stuckey_d_Page_026.jp2
47dda2310c05783eb6291af087dad074
9bb6af5737bfc06963919fbd8135555bbb567cb6
85688 F20110318_AABJCL stuckey_d_Page_011.jp2
0961e320d8175c7dc057738cdf420374
21801391ae468cde1007d1d7cf44fcb7c4722c65
34389 F20110318_AABJBX stuckey_d_Page_194.QC.jpg
e971ee615101e00855b34786cf0e5099
c1605d0229929a0f6093f8954f126cbc2f426980
16862 F20110318_AABIXF stuckey_d_Page_128.QC.jpg
558ebc24555dcecf95a1b5c96f63c473
7ac61b256466450940f2c59045f571fac6fee9b9
14904 F20110318_AABIWR stuckey_d_Page_120.QC.jpg
4aafe435c9609973c5c57f3d4c4b8540
c2232b41a36ff9f1129d3b34ceefe7ae2e1f9656
F20110318_AABHUD stuckey_d_Page_021.tif
62cad7da39dc823743aa4dcd69dbbfbf
8ff5d42223ae5ceefe89b780a8b1b808456db6ee
F20110318_AABHTP stuckey_d_Page_006.tif
32aa4ea5c34317f1bcf8132a49486afb
d6fbfcb4b73d2d5f218f9d3a87b01b92b2ef1ad3
84866 F20110318_AABJDB stuckey_d_Page_027.jp2
546f57180ccb435b19b7b93f1ded41ce
8d97a65659502e26a06df54c5bfd9eae3aadb6cb
69757 F20110318_AABJCM stuckey_d_Page_012.jp2
faca5de18a6629e854e133e9be77f4da
9303fa942671b7209ae52cc05f3111374f823ff0
39358 F20110318_AABJBY stuckey_d_Page_195.jpg
aceff01ba96d7f03429e0e3c8154a6c8
9c3b9ba07f41475b885874e021e4e4d02c3757d1
16124 F20110318_AABIXG stuckey_d_Page_129.QC.jpg
4bfe350488823c42c9dc9c6b4d81d9e3
866b83612025e2ce7c5869287184c51120bb3749
43940 F20110318_AABIWS stuckey_d_Page_121.jpg
259cdadccb4875dc421b7a56874183f7
01041a9dcbeac50be8c73dedb6b0c078e346ef52
F20110318_AABHUE stuckey_d_Page_022.tif
5284494cb9924393339daebcfcea4bb0
b379347ebffc9163433da0e46f156ffbe3d9e4ec
F20110318_AABHTQ stuckey_d_Page_007.tif
adc7a3b9bca75be7dd36a2132ebc0bed
d19bda7b958b3905a9e350cc3b1bdb7951b84a1f
101741 F20110318_AABJDC stuckey_d_Page_028.jp2
018838e955206d58118ce812f7437fe3
632ba96c2192b916bdd875f6d07c9cab0654e3bc
85707 F20110318_AABJCN stuckey_d_Page_013.jp2
aacca5986c891221877e90bd4f24e6a0
c5651c3f3a4f1539dcbee276458f3accedee2da5
11314 F20110318_AABJBZ stuckey_d_Page_195.QC.jpg
d94478bff8912bb00c7411fc6c0ffd6c
2b28a28e470ebfe9c74195c2280b0a331603cd55
39767 F20110318_AABIXH stuckey_d_Page_130.jpg
f6878c38334c2651a68f9bdc1f1dab10
adf1c584ced8b0a3b769feafa438b90ad6c9589f
15502 F20110318_AABIWT stuckey_d_Page_121.QC.jpg
03486687df26133341a3651ae1d7d449
e1a7fa4b9f9579152ee3af9410df125bfafd5511
F20110318_AABHUF stuckey_d_Page_023.tif
5fa53ca02baeddd56f0ede252afc45ad
f25539e3730eea1d024755cd3ca56b12c1992365
F20110318_AABHTR stuckey_d_Page_008.tif
0251938f886169bf84d2b6e8c0f4d56e
404dd0695561ac103fe8adac3127c91ba04dd9c7
F20110318_AABIAA stuckey_d_Page_192.tif
c10b019ace679a33abaf3aaff709f2fa
417052d5f90fba1e6d0522ebdb7f0c10364be0dc
73421 F20110318_AABJDD stuckey_d_Page_029.jp2
e2657382cddc7645829d80a1eb21a3fa
03ee2a76675bba683388b0d544d19c79dbcc3632
1040852 F20110318_AABJCO stuckey_d_Page_014.jp2
8ec5a3e7ea4089bd2f31fcdfcfc05149
cdc6f6bd89896fc401750f3e426347c404238427
15729 F20110318_AABIXI stuckey_d_Page_130.QC.jpg
299d771d1edcb838c598317b68de63e7
46f357c903f6982b97fb301199891e87cc49845f
46135 F20110318_AABIWU stuckey_d_Page_122.jpg
cd4ee21bc777e02eebdba190e837c214
372443b95ba81a0119bd4f2d72a3326bcc9270ce
F20110318_AABHUG stuckey_d_Page_024.tif
261032bda9acd74c3ffdc05474f7b887
ab77e7ba62ff6e26ef7ec41a078e3fbb9d5d28d8
F20110318_AABHTS stuckey_d_Page_009.tif
6d2a97151449af7957e7b64bb8d2b357
7026b2eb1e52f92465d0f735746352876951d19b
F20110318_AABIAB stuckey_d_Page_194.tif
1f42c8ccd34fb7ecdd1218dc4e0f145c
3fd1e19a9ba027744f63180ac34978e6abd3493d
1051869 F20110318_AABJDE stuckey_d_Page_030.jp2
5cb0acd77e4f5d23b79b6932cb30f9e2
2fff2cfd55a80f1a4bd5dbc32c5603bd85c7c22c
101467 F20110318_AABJCP stuckey_d_Page_015.jp2
64d775d2d6b458bdac12d73bf524bebc
3f60a21736e2bab45ef75aaa4246d011ce23680d
46062 F20110318_AABIXJ stuckey_d_Page_131.jpg
88be86768dbfd7c750679eb8947eeda7
264b1c8a5f33d07c6d8ba7f693f56d86a8bc9797
17936 F20110318_AABIWV stuckey_d_Page_122.QC.jpg
ce36a922bd6c85c96853f9f41a363c4e
e44d3a94d6891d7d3dfcad91acf428ecbdab0ec1
F20110318_AABHUH stuckey_d_Page_026.tif
fc59bf701fbbc27a6404ff4dfd3a2e7e
e1d59292a8dfa0e3cf103246a927755330acc008
F20110318_AABHTT stuckey_d_Page_010.tif
b1a60299ee259a622d1ecd0024664805
39e5d5ea49b49d0981be6ab79c9ed69d5f2f55a9
F20110318_AABIAC stuckey_d_Page_195.tif
4a16a442590b665acaf5b8681490bbda
d03276dd777f2b9e4429fea8fb10ed847b6194a0
1051960 F20110318_AABJDF stuckey_d_Page_031.jp2
a20580156c30c84249067f4bfcb9ad37
24d8457b3b02a37bd2db2b8a93c41523e5546d5c
101100 F20110318_AABJCQ stuckey_d_Page_016.jp2
99debc50272af1b1edbd47bd016af391
af4fe3c4167387878dd5ce7db8a2273d544695c9
16149 F20110318_AABIXK stuckey_d_Page_131.QC.jpg
27244821048275ad06f21ddb6ba5a0d9
e834a155120a267fa0830403f230ca4127daaf57
45764 F20110318_AABIWW stuckey_d_Page_123.jpg
8ae9cc9a62dab7ee5539775424618348
189beeee8bd7c75b96635530ef193b7d25c80b24
F20110318_AABHUI stuckey_d_Page_027.tif
aeeb6c8f6dfd44d12168c22d43fede20
5c0d7c19dba9fe4556d3d054f5eb9389528b61d8
F20110318_AABHTU stuckey_d_Page_011.tif
b90a46473a3249cd33fe5a7193234782
300992865a2d71714cd24e475cf60e5bf137faad
F20110318_AABIAD stuckey_d_Page_196.tif
8a9f0e9346395d0c7099b07cdf301333
4d08d2b1655be8da464b5effba583e41ed0932f9
703652 F20110318_AABJDG stuckey_d_Page_032.jp2
1127c834c823a74ca926714c034cfa9d
433410ede268268a9887a60d3dfcd025ee5c55a8
104068 F20110318_AABJCR stuckey_d_Page_017.jp2
971c442f77a88441a637a8ca4da88f33
0e698c891d9ccf0ffca336f09df5f13395144cce
39936 F20110318_AABIXL stuckey_d_Page_132.jpg
f9e2a752a6d4e8ed0126b50885c2bdcc
7eac6da03bd560f641b539160e36e843f395c053
40488 F20110318_AABIWX stuckey_d_Page_124.jpg
4bc31e1ec50239802215f14bfd0eeb4b
f75802df0dd8951342abfdba75e9eac3f48b8e94
F20110318_AABHUJ stuckey_d_Page_028.tif
4419524a2c5cbfa50b146c88ba569084
42f4288ac58630d7345021dfd56480c2f8aae293
F20110318_AABHTV stuckey_d_Page_012.tif
6745181fac8a8dcf96f116092fafac28
76782b5a4d5c5b15a3ee5072f8279bee916e0e21
406 F20110318_AABIAE stuckey_d_Page_001.txt
9fe32e381a3a9c24dbca278bb09c6ea1
03ae5ef22e7cbf0f3c1e1998ab2b7c2f817432a3
927427 F20110318_AABJDH stuckey_d_Page_033.jp2
5327cfec172ef88d0b7be876ba8d0df6
91581a058c347153b0217e2bee3eb79104610344
105493 F20110318_AABJCS stuckey_d_Page_018.jp2
80bc17be97e39cf049acd2eb637c6c82
c74d5efa7c8b3bbd2f303118e744dec8042aa464
14739 F20110318_AABIYA stuckey_d_Page_139.QC.jpg
2742fbbfca555c105e92fec95f9de6f0
80a0c6d552f0790af560d43ab092b4cacf0beafb
15793 F20110318_AABIXM stuckey_d_Page_132.QC.jpg
58517ed746c9fc98390ebeea4a2e7ab1
0df8b466f16e07d34455908c179b1f8af1519d23
14870 F20110318_AABIWY stuckey_d_Page_124.QC.jpg
416cbc4e87c532ea03f522c1e62417df
8555c8b258319c6385bc572fab80dad1aefb7334
F20110318_AABHUK stuckey_d_Page_029.tif
a951012bd02662b536e7c6629f3bd4fe
29df1b2ec979ccd328347eb4396a0f562791e242
F20110318_AABHTW stuckey_d_Page_013.tif
b0d45d128bc688ec0bb96d0e54f1878f
d31465e0d76c7f26447128f494b0775ceb1b5f31
112 F20110318_AABIAF stuckey_d_Page_002.txt
bb5345581b52a68d6261685e182e3e49
6017879d97853a9b9277d4c64362949fb0c30449
79065 F20110318_AABJDI stuckey_d_Page_034.jp2
b1df1077b899aed5b14f024a39133ab6
768ce882da2757abf8c085c51b50cb5b40cddd43
109045 F20110318_AABJCT stuckey_d_Page_019.jp2
622ea5cb21dd2703162ba6fd3316df61
17b242f4f3d853da2bc1fbbf5fe2d64b3e46afe0
42778 F20110318_AABIYB stuckey_d_Page_140.jpg
32ffaf2342b06689d5ff187bfa8f6467
97d16def4d51b9bf514321eb2292672148d0099c
39558 F20110318_AABIXN stuckey_d_Page_133.jpg
a0c527084a1b438c52b84c8152ee08fb
04a70e167b83baeee4c7a023aec93d2818a35c37
40856 F20110318_AABIWZ stuckey_d_Page_125.jpg
9b9c8568e1933958454ff97b3ab61949
8dc03a9051e69512eb4d6aada983010849dcaa2e
F20110318_AABHUL stuckey_d_Page_031.tif
b7d4b37a095e2e5a0cad6229624281e6
6ac3893f329555f8b67c88fb9f5cf45ca7f12cf6
F20110318_AABHTX stuckey_d_Page_014.tif
9ebd2e690a9b34f5f5d5313861ed6cb3
caf22e338d3b97f447ac901dd6b0ebdf13ee3688
280 F20110318_AABIAG stuckey_d_Page_003.txt
6b8ff1f04e46f7233ffd57d6d579f9a8
ea56a2bae4cd1af182dab0f5bf532ef43330672b
102677 F20110318_AABJDJ stuckey_d_Page_035.jp2
33064de13de3cd8cb1593ae8f9848745
d0a58363bcb94a6c35cf96419e493b72627090e2
105482 F20110318_AABJCU stuckey_d_Page_020.jp2
e5f20a1091ec46c82584658779e27db2
6d7005679c414a061802824c2358b773768015cd
13590 F20110318_AABIYC stuckey_d_Page_140.QC.jpg
72e78049efe94f558e518b523eeb9bed
44c399daa02a38ebd86aac673d31812c9734022d
14321 F20110318_AABIXO stuckey_d_Page_133.QC.jpg
80a1bf160b90c1bfaed20157f8a0893c
069d6b5d774efe628eb12c900ed0fe5674e5c882
F20110318_AABHUM stuckey_d_Page_032.tif
5eefca7aeb3c76a0eff8570caad45960
73cf9d1e8919dc4be3e35f4afd27b7f761543237
F20110318_AABHTY stuckey_d_Page_015.tif
3bc904032b213a9b460e312b541e8467
b022f6b9699f27fac867bd0234e2b530d3cda1fa
1406 F20110318_AABIAH stuckey_d_Page_004.txt
724d9c39fe05fb952b8bbb63fd52c55c
db63dd48ecd1026a753d84c6d75f034032bda9fc
F20110318_AABHVA stuckey_d_Page_049.tif
4a0baab3d24ad1ab2d43b247ef599203
3368903bdd19053d54a22e26a3b3126a6283c8ad
97979 F20110318_AABJCV stuckey_d_Page_021.jp2
e5fdc795031a3de50e31f72dc14247bd
218d68620719ac3781b6cc7e94dc1ef0e5201874
46107 F20110318_AABIYD stuckey_d_Page_141.jpg
47ac4298d8f37d9c6a31e9e06458b5bc
648cc091073f6fdcd6d2cad6bb2ccca6a0140787
43171 F20110318_AABIXP stuckey_d_Page_134.jpg
e01e8d0ee8f294384c58eb631626c370
270dc3f8fd6b6b3a08c4b3ee068c6152fbc4265d
F20110318_AABHUN stuckey_d_Page_033.tif
ba64f5737c82ce52b453e4cef0cecaa0
4098116038da2ab482a72ce0e315e69c4797135e
F20110318_AABHTZ stuckey_d_Page_016.tif
a364a3e7330706b89d40cb2d735bed8a
eee17f9cdd540d1620ca24b60bce06afa6f4e165
F20110318_AABHVB stuckey_d_Page_050.tif
4fb33a460fb2686ab7b84195b0635dad
9b322238e03474aaad5c19ce98acf40efca92d7e
48458 F20110318_AABJDK stuckey_d_Page_037.jp2
ce90a45dfb280edc501b033ceb996995
be3914c1387d7ec1839fd59b7b2fcb858840fbe5
F20110318_AABJCW stuckey_d_Page_022.jp2
00e1e7460218046a3bc19dfda4704e8e
13b03630aa470b6d65804be76d7bd662164a4239
F20110318_AABIYE stuckey_d_Page_141.QC.jpg
ffb16f20d4836f1cf32db4cc6f878c97
0a69e7b4e86c35273d46b6a38fff346e4fa7a160
15404 F20110318_AABIXQ stuckey_d_Page_134.QC.jpg
f9079b81f76335b0b702de29b91b5365
140ba2e2cf0221920328fbfe4991da47b30dd0c6
F20110318_AABHUO stuckey_d_Page_034.tif
c66afa1c21f7f189300f45ba9c280fb2
59a16c83fb5bb2279f6d42058f5b3131016281fd
2784 F20110318_AABIAI stuckey_d_Page_005.txt
7b607eb29ff24043fdfdca59665c779c
28838e0e80b97f7fe038bf4082f9840b41e3eb69
F20110318_AABHVC stuckey_d_Page_052.tif
87eca9aa16d5d498f2dd7e0a64ef595b
f59fb41e432671aa2c4a5cb20387d4a29457cfcd
402482 F20110318_AABJEA stuckey_d_Page_055.jp2
ddd2ceb9bf2926a15527f4101ee58ad6
ea761286864ca436eeeb4017cafa6ee3f1f30ede
87132 F20110318_AABJDL stuckey_d_Page_038.jp2
06b35e03d96855bd65d05af894a55487
a8eff49f59257dd477b7a157e724b482b4b9067c
108077 F20110318_AABJCX stuckey_d_Page_023.jp2
453979d5035198ec083494956230c223
c00cf46e047080182cf9cb7e6fdec219f77ba0ae
45960 F20110318_AABIYF stuckey_d_Page_142.jpg
29d87edc45ca246449f801f592e2b0e7
4ac3a3beda1c97f654c8b9c7a0cad5920e2fdb2b
47406 F20110318_AABIXR stuckey_d_Page_135.jpg
cb4e167d824c16a5699f05d71d5a09b6
8884e8271c3ccd89cb84ac99686f0079ae147a11
F20110318_AABHUP stuckey_d_Page_035.tif
d8ff10c732dcca1e499be1fd65fd54f2
d148b59b467318fc2856c73317a3efc775b7e9a5
F20110318_AABIAJ stuckey_d_Page_006.txt
c9f42b1ce5e5c79ee0119c5b32556cb9
b4652d840a39367335f8d70ea781dc53635b1a8e
F20110318_AABHVD stuckey_d_Page_053.tif
48fdf1e12f71f45bc97d0e288e6577b5
6568e27c49722e161a6e2fa561810db77efe2d3b
371069 F20110318_AABJEB stuckey_d_Page_056.jp2
bc03631aa8fff9f41ddd72c230c0ef60
327ab2af85c18439fcb41d18d3a62f841ab33644
108716 F20110318_AABJDM stuckey_d_Page_039.jp2
5fd2f4d98cf0c366abcace46b27526b1
289453579bdeaf8d904ae75065f8183a0569be95
102803 F20110318_AABJCY stuckey_d_Page_024.jp2
615ca1e1e861fc22cf3eb012c5100c67
c4d12cef790c32d8aca056f6dabbff8f6c8a2cdf
14434 F20110318_AABIYG stuckey_d_Page_142.QC.jpg
f4ff273aa3a6a4b091e845fb1ca02ffb
d31cf0ed1e6af93444d10bb38eed6b3dcb7c2dc7
17655 F20110318_AABIXS stuckey_d_Page_135.QC.jpg
e29b831a26b0fbde7fa9d49e75102dc5
0d59732880eebb6c180e62319592e0b4be560bb4
2925 F20110318_AABIAK stuckey_d_Page_007.txt
5403c516c87092764e8fcf450be97145
b1fa872b2a83737039cd06b3291f2a13d086d67a
F20110318_AABHVE stuckey_d_Page_054.tif
d46be4a3b4fd8edeec2d5e0fd78bde09
ee6b67a490f82ef346a29d49f59286266351830d
F20110318_AABHUQ stuckey_d_Page_037.tif
4945da5e99725cf8b2cebba65dffb4cf
ea1ae4fde58f803c4d00d44f95c531f2d3f7cf6a
357764 F20110318_AABJEC stuckey_d_Page_057.jp2
9493ea2049033d4e01c4b11afd791214
18fc739b8c1d6987d8347a6d76533b51c80d3b37
104831 F20110318_AABJDN stuckey_d_Page_040.jp2
b77665689a15c54dcccc45190f6b0b7f
e327861dc1864617e317fb2925d9a1004b0030a0
93399 F20110318_AABJCZ stuckey_d_Page_025.jp2
813cc2530bc9eb738e605b52f3d855c6
974992954d5a94e9240bd9b1d94fbd8d3ad40cb9
46976 F20110318_AABIYH stuckey_d_Page_143.jpg
cc1c3f192874b9c577b3853a4cbec2b9
2819389f838a121ab55cb0410cf2e649462f7a2c
44739 F20110318_AABIXT stuckey_d_Page_136.jpg
9d12789e3500b0e959c49c3bdf367be9
705fd81d77a0fa9c2ac2208fa07a3b0d118c799a
1867 F20110318_AABIBA stuckey_d_Page_024.txt
f4832caafd017a8549148ab242c40c03
22139eb2f727e3eb945d32e699d3cb965ae5c8ab
952 F20110318_AABIAL stuckey_d_Page_008.txt
0e7603630ab36a35987bf790052293a2
eacaee398fc7bdd1b271ec891bdcd208a7762737
F20110318_AABHVF stuckey_d_Page_055.tif
52970c459601ce01e6e6fb24676dd507
fd31d5e0f8b58e66f0b256257d296720a2426feb
F20110318_AABHUR stuckey_d_Page_038.tif
df4738f8142587aff6f02b9189d96bb5
c5fa7f723fbd990826779a64f78874c6f7da37db
661679 F20110318_AABJED stuckey_d_Page_058.jp2
6c00424bf0fec48d41f2ebd4debf1b51
146d21eb54bfff93867223ef82421213ef63f609
102874 F20110318_AABJDO stuckey_d_Page_041.jp2
4573cdc8b6634be606043f3097c5bc2c
55da852571d034b90f7b8895a13461a7e25e6838
F20110318_AABIYI stuckey_d_Page_143.QC.jpg
51dfa2f528a6f0bb014151209772d0ce
bdf8f981c1c17720c37457e682a9072ecafb749f
16312 F20110318_AABIXU stuckey_d_Page_136.QC.jpg
5aff05b4da241ca21aa599985724f841
0c87365d7ca7aea1d1768b5366bad6701c79c42a
1799 F20110318_AABIBB stuckey_d_Page_025.txt
33bc0693597ac62f3999ee3ce1b06467
2a4f90f78e49784bd081aadcc81ddf3294d533a4
2498 F20110318_AABIAM stuckey_d_Page_009.txt
e07fd20a5289b5b8b9d8bc60cec4704a
e8f8dfc9f3d2d08e5fbb6714eea0fb496f47c293
F20110318_AABHVG stuckey_d_Page_056.tif
5972ef4212a2e436c3d27800cbfaae31
01b43a0e5343a8429d94e0a49f913ac35ef0bc34
F20110318_AABHUS stuckey_d_Page_039.tif
2a2b0e88d61b51c518117f8bf019b241
27d38c36b5b4d8ea3205a748ddd78b060d3934ca
608078 F20110318_AABJEE stuckey_d_Page_059.jp2
69d4943ce22292734882e904f00fa2db
4876ecae31830236affbed5a17c145a0199a3fd4
103534 F20110318_AABJDP stuckey_d_Page_042.jp2
c6aec9a5a8990e379756bf6e6d424c3c
38147b0e95261f66e6ad1836cb79c2dc2f02e732
36697 F20110318_AABIYJ stuckey_d_Page_144.jpg
c76f6c52ee87e79398f193cc679b7acf
9ab73f101059fec4ce9f4152e23c53dc89eeafeb
17912 F20110318_AABIXV stuckey_d_Page_137.jpg
a18920577be6ad5c57133f7ff843fbc8
c61ec8e271ec40cfd5e5fea74ac2a936c013e8f1
557 F20110318_AABIBC stuckey_d_Page_026.txt
eeaeee85a2de6f0e23985487f4d20e76
5b70a460e381833b648bbfe580382be9b1bf20e7
2823 F20110318_AABIAN stuckey_d_Page_010.txt
3298a2415c5ec6e08a573c6917c54dab
5134371224fa7ba5a54d585fbf7f6252671fa819
F20110318_AABHVH stuckey_d_Page_057.tif
dc4f2b5cc49f56e32c194db0bad987f2
aa23b597089e294245d3655927cba72337ab7329
F20110318_AABHUT stuckey_d_Page_040.tif
a7d457ada58bc4d8bdb0660e76744726
0667603d354b74ed86b31fb1300c688694080572
608586 F20110318_AABJEF stuckey_d_Page_061.jp2
80ea8c30cd716e6e6b0697c12ed2fc5a
b07bfd5f1110ddd6b9804a9799eea3eb8fba9597
109187 F20110318_AABJDQ stuckey_d_Page_043.jp2
15c2d1c8a40de1a65a22a1daa6498a03
2faafa65cc5761dc3d084274edda17658230b339
12841 F20110318_AABIYK stuckey_d_Page_144.QC.jpg
4d8767a9048d19945a0688e283478b61
d596bf2d9183148319495df5577997a2eb7d96c4
6676 F20110318_AABIXW stuckey_d_Page_137.QC.jpg
e97e9ffaf483b9991bbc97cd38b15611
4549e331ef30c1b2447459c59578340915303aed
1605 F20110318_AABIBD stuckey_d_Page_027.txt
6d81fbaad467123a09f2196680981299
f4ba28c4fdf7ac63b7fb05f31f50689452db258b
1250 F20110318_AABIAO stuckey_d_Page_012.txt
11a1854108adda226877cbd8a3805ed8
220e2ff9cacbde75c4e008d4d2c8052b5bb30385
F20110318_AABHVI stuckey_d_Page_058.tif
dfedc06ba1f8b7592e8cfb94a058f0f8
f49febd9025fe6b936912869cbd2bbac7e2957ed
F20110318_AABHUU stuckey_d_Page_041.tif
7496dd25022597bab42b91ef8ebad17f
83a90722a40c5f4a8d5d32abec210253788cda45
927795 F20110318_AABJEG stuckey_d_Page_062.jp2
9a136b0d84c2b06a66d2a7ee03aa4817
54795e12f2dec9cf34697afadad96ebdc094ea76
106118 F20110318_AABJDR stuckey_d_Page_044.jp2
0d885ca15e4b1b1df059502b43c86633
d8cc149dff049affac0ed5902ffee168054fa048
15838 F20110318_AABIZA stuckey_d_Page_153.QC.jpg
c116f4a3b83e6657546135aee6724c85
74a3cfe6e16010a7d210fba4640848cbb3454711
8052 F20110318_AABIYL stuckey_d_Page_145.QC.jpg
3eedd213aabac81b7c6d3cf0aa52b058
52aa1f5b64c926b25bfe89352e8c804b7683aace
107121 F20110318_AABIXX stuckey_d_Page_138.jpg
88e32462326d6f49a9fee046f06b134a
4b5de565b732b6f4141d4533721e38c984ea0fb5
1796 F20110318_AABIBE stuckey_d_Page_028.txt
2977ba92877c5456d8b21c819dcf84da
cdb1c17765b3fee897ea4fbf98e21308d914033c
1649 F20110318_AABIAP stuckey_d_Page_013.txt
4cf87d625df0053f9d9bddf3387fdeb2
e3f5e61e9936067607b77cff1816c4d74c3c3e09
F20110318_AABHVJ stuckey_d_Page_060.tif
7e7e1b86a87acf0911f0c6428cde1db7
6aece512fbb6ff7fbedc99ff17440d8f6df6ea07
F20110318_AABHUV stuckey_d_Page_042.tif
1b0ca766a6b067c6f285399ef6b00ff4
8f113b4d67dfbced73fa4f0566d614d199564a73
900146 F20110318_AABJEH stuckey_d_Page_063.jp2
5f3b64d22e0dff8324f2a7f3a277df39
71b83057a43fca93c7df96c2d26207ce5a0b8046
118517 F20110318_AABJDS stuckey_d_Page_046.jp2
68650bd086e0d8096da76e68b51109c1
dae2a892e8b33f855727be73464e99d6cc64e5b3
44065 F20110318_AABIYM stuckey_d_Page_146.jpg
1db423de5b8bb59d1cdc74df39a632bc
70300987f9ac5b4c9833d7bc9968c2dd70253c6e
31579 F20110318_AABIXY stuckey_d_Page_138.QC.jpg
809c93354be9a867d7a8dea02a631c32
deb85424cb16b247a78c19e9f78ffb8983b16ad5
1559 F20110318_AABIBF stuckey_d_Page_029.txt
cef126d96597226f6a4cb033f53bea76
fc46acfb8c94179ca163b608dd1d062a445e67fc
F20110318_AABIAQ stuckey_d_Page_014.txt
9b5fe3a14503e16e96e728d51d3837c4
e94615cf8eca8c8aaa242ad13ed18747e3531261
F20110318_AABHVK stuckey_d_Page_061.tif
4b8cb631d500116c2197cbeac4c38207
755edf95f9d944add8f8d7b3d3b2cfceb0da9b9a
F20110318_AABHUW stuckey_d_Page_044.tif
63cb6fc87f97dff33cdc92262c04a2dd
474b8098f03d23e807d34d53b08d8010341af4a6
711925 F20110318_AABJEI stuckey_d_Page_064.jp2
dbb2bf67b0fd300865af8719d5295321
ee1eea59b4bfd73e1fa2e1904640d07c49780aad
111314 F20110318_AABJDT stuckey_d_Page_047.jp2
f8508440ed27c81ddfdd984f793b3ea9
06b04a041bad23aa1ae102b96686368823629adc
49835 F20110318_AABIZB stuckey_d_Page_154.jpg
11fb9b37493f8f09a2c16847204e3b94
e77db5ce5904f3dcb3a288cb46fff56a502786d2
13624 F20110318_AABIYN stuckey_d_Page_146.QC.jpg
d4ffe7ea73f210d83753af192fcf7fe4
882ac1ab06322cbb0e6409edf4cfb9299e573798
46385 F20110318_AABIXZ stuckey_d_Page_139.jpg
ef2dac02c5aee1a475a69b41dbb7e9c3
494d84d7516d7bc1259cb6087bbe1b9a23a02ba3
834 F20110318_AABIBG stuckey_d_Page_030.txt
986c73dca83ca94436e8c0ff36642de9
3e52050d5ad42f6889af9dc9b9fdd44eb673d723
1889 F20110318_AABIAR stuckey_d_Page_015.txt
626fbe5c6f108d196c6074ea155ddc4f
2a703abc76d75dbaf190943efa84a2ec4f434ab9
F20110318_AABHVL stuckey_d_Page_062.tif
a84eb9784991830b2cc4ace055a5473c
5921aa31fa428cb739bbdcec2a7d7b3b48cdfa8c
F20110318_AABHUX stuckey_d_Page_046.tif
d450b516277c9e4dbf2eb1b537a6986a
77701b1feb056a832c44608588e4a89c276453d0
909189 F20110318_AABJEJ stuckey_d_Page_065.jp2
ff5d5e465614c1d5ce1e96125fed8c0d
d3edfcde26eedcab68573f94c4b4c96657b8925c
95975 F20110318_AABJDU stuckey_d_Page_049.jp2
1b5da5b900181de7ba140cf16afad426
cfad4dc32131848a695663c3f0010d715371b644
16188 F20110318_AABIZC stuckey_d_Page_154.QC.jpg
c294c524a5b324a6a3c5048f5ac57b74
a21e7c4925ce0288e28d73d04953cfc32ba1840f
46056 F20110318_AABIYO stuckey_d_Page_147.jpg
8b0c646ef27ecb03f0eb8cf471b5e47d
13fc400e590cd6bb44355a7cce357a12311c49ab
3187 F20110318_AABIBH stuckey_d_Page_031.txt
e6f0351ff3a38288b75980d6d6507d80
b95eb7101ad41bc9211b34cfb17cdd1f95d10e83
F20110318_AABHWA stuckey_d_Page_080.tif
d541049a9447c0d72b8961bf0ad0f844
77be38c5fcf0504c065136dccb350306c842eae4
1835 F20110318_AABIAS stuckey_d_Page_016.txt
5662bcd26de9c3c98f0fd2a18c45941c
72bfbb9d2d51023d077b7d2167d6bc50b1258c20
F20110318_AABHVM stuckey_d_Page_063.tif
213e87348cb222e492005986b8ba52b0
ea8d79c677ee1a073e951fd5656505e39bcf87d3
F20110318_AABHUY stuckey_d_Page_047.tif
2ec208aa3697669f282932ae21d05892
589bd8731f46529b837f29e795ccb3bef99f518c
828471 F20110318_AABJEK stuckey_d_Page_066.jp2
a426942b423ee777aebfd18fe62ec992
e16a299f0389d18e55a4bdc7e1df0241564b29dc
67451 F20110318_AABJDV stuckey_d_Page_050.jp2
446486fd0175cc9ed1af17baec425ecc
5de794e332a30a54daaa2ff5a76e4a75f75108fa
47358 F20110318_AABIZD stuckey_d_Page_155.jpg
2b3549f2905c6aa1607f8d27cf61f7f2
5a1f0461992fe59e750bf6c37199e41644683128
14121 F20110318_AABIYP stuckey_d_Page_147.QC.jpg
15859d2d103387e6b53351590a999adb
116723f5534acb8178b62dbe42137fa96022d58d
1793 F20110318_AABIBI stuckey_d_Page_032.txt
0d8ae5cf12bdd73425fbe0244825abd2
7204c491543aae0c68293e283e5704d1b9a60990
F20110318_AABHWB stuckey_d_Page_081.tif
3d2bc980bbb03ed0d956d09bbfd159b4
b5a4d54fc90305d0279b079b787767ed1ebe95b9
1901 F20110318_AABIAT stuckey_d_Page_017.txt
a001dafd8d9ccf9537bd50442b02097b
5e346c8c3d4d82369e611397f090da44a0dd8195
F20110318_AABHVN stuckey_d_Page_064.tif
f472d40246d783fe29780dee5939e356
b76c5ecb7b30a72711a9314ccc22df10b259a935
F20110318_AABHUZ stuckey_d_Page_048.tif
2b1562f131a297c1e5f35c4fa3a56cfb
5c9636ca2dc37a258331e930572247284f441674
344408 F20110318_AABJDW stuckey_d_Page_051.jp2
330b551efd6699355bc7a5d05d6b2807
75f0499c682c9b51bf4740301b3ad6dd9ec1a4ce
14758 F20110318_AABIZE stuckey_d_Page_155.QC.jpg
0a2374847fd563d26d73649b532afa7e
54a55038a7539238c24f2b2b8590996425afdcd0
32297 F20110318_AABIYQ stuckey_d_Page_148.jpg
b84c876130589eec6970de007004ca10
530b5e8cd4b913d4577303a1b90e87d9c343873d
F20110318_AABHWC stuckey_d_Page_082.tif
9166801b8d0c74702989724de0c9485e
a9f6ad1cc37a72c82b498314dd5775bc21bf4b8d
1909 F20110318_AABIAU stuckey_d_Page_018.txt
a77e2b185d1540e363886a015afd94cc
a5ca8d469c4ce446e86fb928b67e4fbbce07e51e
F20110318_AABHVO stuckey_d_Page_065.tif
3cab72d1d36e044275cfbff187917538
8e06d29fbe33bf44c33247fec0bb96f84b76da39
601265 F20110318_AABJFA stuckey_d_Page_083.jp2
ed9d6fa7866c93c580210db63133f95e
8f4c11ee23f994cde6a7ee3a6dc27054dac33a17
736844 F20110318_AABJEL stuckey_d_Page_067.jp2
0a3f6d3a6eb8ca712153358feb0f84a6
60877320ee7656b785107b3bcb25ed1c3b3cfe51
397441 F20110318_AABJDX stuckey_d_Page_052.jp2
c854587978e493fd4076c6cecfdaffd0
dcfb1ab4e0c4552b283692440762cc67f4f054a5
31490 F20110318_AABIZF stuckey_d_Page_156.jpg
276275018ba378162a720169abf7a785
54d54579b0b6efd5183716db377e267ce986ceec
11368 F20110318_AABIYR stuckey_d_Page_148.QC.jpg
3c2a0a284e50d3beddf4e795ba624c57
124473b47d32d76301d2dbeba1e7f9408504af6e
F20110318_AABIBJ stuckey_d_Page_033.txt
209cbac6c3427a27955d2a767896289f
89ca9fdf34e7535869e4d694e360c7df45b53b29
F20110318_AABHWD stuckey_d_Page_083.tif
b357b8fe371048ffa179ca400ef7e4df
2c4edeff63c87affcdd5310abb28321d736ea542
1982 F20110318_AABIAV stuckey_d_Page_019.txt
a29822614feb11e7107d567dfac637b0
bf6e3331cda31c4ccd8204e981472536729af3c5
F20110318_AABHVP stuckey_d_Page_066.tif
75fb312b0ee67b5cf8a6dcbf66ee4d49
64348c0d6336bc53b2d29927ba96ed535a75cd4d
468215 F20110318_AABJFB stuckey_d_Page_084.jp2
f11b15ecfcc83ed5534c5aab49580225
6f1f73db0fb1d055998a6c3fa550d33d227ff372
679165 F20110318_AABJEM stuckey_d_Page_068.jp2
48e8db798b8c3039f7c41b1bf58bea9d
57e645eaf5ed33579f13c78a309f954f37dd2429
377542 F20110318_AABJDY stuckey_d_Page_053.jp2
f6c8a9b3defbb311b7f473ec73c09f1b
7824a8fb392ae7da4b405d3fc8e04c8da887e017
10435 F20110318_AABIZG stuckey_d_Page_156.QC.jpg
f73933ba1a737327ce216198529df551
20a72169481b51a902a928a4816cf871ff142bf9
14789 F20110318_AABIYS stuckey_d_Page_149.QC.jpg
21907d1d44decf81e8785dc92b50f092
b67007fc83a46816083ded5df95a6360b172fdab
1856 F20110318_AABIBK stuckey_d_Page_035.txt
dff5c389a850a0a2e62ceb430feeda8a
6dff713f939e7e9f12039189f4f100ed23786f43
F20110318_AABHWE stuckey_d_Page_084.tif
9d5045345c23c2f82070d93c652b991f
21f571d15347623d715e57082ec0b9b55c51dd8c
1936 F20110318_AABIAW stuckey_d_Page_020.txt
8a706ddab5b270b064ff95bf9ef7b99f
c1f35e44c43cedf5c05bd04d8bbf049a14775b6b
F20110318_AABHVQ stuckey_d_Page_067.tif
47d87964e76b502a54bf8225d6a0af88
1ca9d832e1d5139d5b472e2fde793cc28e66e509
605064 F20110318_AABJFC stuckey_d_Page_086.jp2
763a5b32f4d56ce7513902a7210d8e6e
0956f8b6ec0317f884c3011b3c7f30b7f90ed387
937106 F20110318_AABJEN stuckey_d_Page_069.jp2
aaf03d664beb1191378614920afd9537
8bf914e1e72518a4512381546e0bde191daeda2d
401541 F20110318_AABJDZ stuckey_d_Page_054.jp2
d98fae3ca562f4ba66ed76ac0488d93e
8bce333c414e21929c2f4e633912bb873858e6ba
46941 F20110318_AABIZH stuckey_d_Page_157.jpg
1ddeacf062508c90c0519c3c646f08a1
b085a21766f1397359bdcc6d621a9ee864fac30e
47597 F20110318_AABIYT stuckey_d_Page_150.jpg
073c5a8b40e9353033f8fcad4c0ea734
9b4746de6278ed7c803a3a3fd9dc68fa45d89198
1861 F20110318_AABIBL stuckey_d_Page_036.txt
f1b99899c4d0b2df4785d91e5468d4aa
b522d6633ea5beb26fb649ce49eea9355e58cab4
F20110318_AABHWF stuckey_d_Page_085.tif
0dfc37de59a6c9fcb4895ac80645aaab
ac086611fd604d3ab2e06d398046b150228f20d4
F20110318_AABIAX stuckey_d_Page_021.txt
b99772269f058746d27397deb1e321dd
8861a88f44db6c5defeb0467a76fd7b589922fae
F20110318_AABHVR stuckey_d_Page_068.tif
ec078a5538c45ed8a2bb139833862472
e60f0303201b28a65d525318d0e8e6e85d867a67
750 F20110318_AABICA stuckey_d_Page_051.txt
c79e5ca0dda726db5765bf84d029f3f0
c1d7a92fb15238908b1be15aecd70ba71beda9a4
444844 F20110318_AABJFD stuckey_d_Page_087.jp2
bde2a88b46c200c2a3e6755ec18df8d3
6feff8178de3dad7df30775d86fd43cf1baafc2a
88032 F20110318_AABJEO stuckey_d_Page_070.jp2
b10f28f558d806b871cb1b2b39a23750
0ee104fcc45a4e8ecb8742413fc7ea6de70fcbe4
F20110318_AABIZI stuckey_d_Page_157.QC.jpg
30cb27b476ece8b7424299f6d4b0216e
7c45dd8d418d40473b1ee9d421feb0347b117035
15957 F20110318_AABIYU stuckey_d_Page_150.QC.jpg
ea3f8048c5582fd0d38c7c665dd8a6c8
a6192ea2c72841a55126330165d3e0ceb759dc80
850 F20110318_AABIBM stuckey_d_Page_037.txt
95f85a975b9749a8c396c293b6be65b5
46288eab52e9ee6df1d519d30efca7d887520bb4
F20110318_AABHWG stuckey_d_Page_086.tif
4fed6c00197cf6f3bc10dd8da4eea517
070cb7fa9316464a79b63015e5df080b8276b421
2108 F20110318_AABIAY stuckey_d_Page_022.txt
c0268ae23babbd8869a9c7bea4b2150f
857f963c9d8e681a4f66bda47fdefbca45801164
F20110318_AABHVS stuckey_d_Page_069.tif
ce458d2043c5ed0603cc1127172c39b2
92313660dbceded66be5a109318871e35cbd35e7
870 F20110318_AABICB stuckey_d_Page_052.txt
edd2262a774304c61906e13c439896ba
4cef19087aa3bba08bb4222fde22fcc87c344cae
446499 F20110318_AABJFE stuckey_d_Page_088.jp2
6c1cdbc06bd8c79d588c52954ad988c0
11f0e49b9db1511a386eb81cbe70c63d8136ad35
107856 F20110318_AABJEP stuckey_d_Page_071.jp2
599503768a78a75c590cb882592dec79
4152a72b2ceb4aaee3e9b1833c2d1e1acd44d017
47241 F20110318_AABIZJ stuckey_d_Page_158.jpg
9e0918a34eea21a9151d363e1053a97c
1ac13d1b66e14f6b2a26feb7b84e93fa23d10585
51426 F20110318_AABIYV stuckey_d_Page_151.jpg
9ed3d01e61cd6f8073a73826511722d4
858809aebe5409bdb3e7a9c59fe435e17c511079
F20110318_AABHWH stuckey_d_Page_088.tif
14d3f3669ebcdc4a44f0bea1281c859b
e9796dfdca6c49dbd8be409cfcbea60657ba7606
1949 F20110318_AABIAZ stuckey_d_Page_023.txt
41bbb0e923a927e6de88805313f972e7
360917175cbc41ec2367e5b2f5e7b3de7cd4e71a
F20110318_AABHVT stuckey_d_Page_071.tif
7c28c16a7a4fd38950363c9b54833883
44473687ca0682b0807160a731645932b245f1c2
F20110318_AABICC stuckey_d_Page_053.txt
cbaf6d1e18e802cf90d5b3f8423ef023
672ca38d7876eee4258d22ef8e5af49665aaf3f1
1700 F20110318_AABIBN stuckey_d_Page_038.txt
b57d1a5c7fae85a52ff0154535cbf620
069635e8f1eea6e907bf5a902633abe1689e34e7
629676 F20110318_AABJFF stuckey_d_Page_089.jp2
9dac373e2816f8c991e9191d1a2aafe1
bd6139ebbcdbdc9008b643f87296140ebbadc70d
104302 F20110318_AABJEQ stuckey_d_Page_072.jp2
cb19541bfec5ee042739dbe52aeb2c86
c43f588c4ff2f76800bc51394255b4e682e0b66c
15630 F20110318_AABIZK stuckey_d_Page_158.QC.jpg
3de7896c8f0c1c4c810097b744cd94cd
8411190b5f65e98773812a0d3a977197010fdc60
17076 F20110318_AABIYW stuckey_d_Page_151.QC.jpg
edc966d0a241c4f250e6f5d3b48e14f1
05fc219255b6b98c02b9149e6824d1a1cd1f2dbb
F20110318_AABHWI stuckey_d_Page_089.tif
623be27e93cbd433051a51db46e1efdc
558ce847a520072ba60c89aa76302b1563985633
F20110318_AABHVU stuckey_d_Page_073.tif
d10f0fd3d9fd5ac69fb25f402a302d54
e478c3a4adbd5d8cc5691f9c8bdaf0ab9bc0b378
691 F20110318_AABICD stuckey_d_Page_054.txt
3738397a9259cefe86c9df8ff29ba278
41e14eec0201e0b68a9b1f56fbb2529aeeb1c9ab
2242 F20110318_AABIBO stuckey_d_Page_039.txt
b0e8606550e32f4170c83f5932f4ec67
0a796f7ef04d1bdce916ad80ba54242e56f0fae2
616455 F20110318_AABJFG stuckey_d_Page_091.jp2
997054c93f90eb51c4a002e818042dc9
e84ab77582897d8058275579c2c657f12893ab3f
105076 F20110318_AABJER stuckey_d_Page_073.jp2
052461d6eee494529399d2f5b72fb694
df451fc79d10a471b52474b405f97e568873a4b5
35886 F20110318_AABIZL stuckey_d_Page_159.jpg
35149ed6eece66bbce838d3da2545d0d
b1429fb3e30a17a9a8e74443d3781708765e7399
53065 F20110318_AABIYX stuckey_d_Page_152.jpg
d882c9976e204bd0f2aec94e93b73f19
eeb6604d5d70125a8a2046f681635f314e02dd7d
F20110318_AABHWJ stuckey_d_Page_090.tif
4c397da8b6fe1de6be8f8ed48c88088a
63dd401c7e97500eb12302e1d5418e1f8da30c32
F20110318_AABHVV stuckey_d_Page_074.tif
c8eea121ca47c84a386979a3bb1ec15c
2dca9695d36bcb360f61f350bf70ca19dd19bbbd
709 F20110318_AABICE stuckey_d_Page_055.txt
6574803ff04facfe58228aa817a523ed
3d20a74ac047c321b1cceb81539d998540f257fb
2128 F20110318_AABIBP stuckey_d_Page_040.txt
d5b290a107a253fb85dbfe23ac9f5f96
a3295d498607c7d7be6db6de1fd38374fb0d3612
439458 F20110318_AABJFH stuckey_d_Page_092.jp2
ad4306b21a1e3365f1055b8945c23951
0a8066fd3609be05b1d2ef80f24fbe5b040e45b5
102056 F20110318_AABJES stuckey_d_Page_075.jp2
0bcf236ec43ffaa4eb9d5123f127d7c1
8fe9be8c9f788af7893be0630c5211fbe90be68a
11214 F20110318_AABIZM stuckey_d_Page_159.QC.jpg
8bf2e1a6efc473a7887b1e47ad8cd0cb
16b412e142eb5822b444bbf9a0e836ea46007f44
16652 F20110318_AABIYY stuckey_d_Page_152.QC.jpg
3c2d4803bb6be67eedec2d32acd5c516
2bfe28ef2366408d86151dd472ca9fc13ef8165b
F20110318_AABHWK stuckey_d_Page_091.tif
5ccfe8c939a8a1e7c7b3a89b9ae79ea4
6de6ed4822173247a88ae47a81ba664ac43470c9
F20110318_AABHVW stuckey_d_Page_075.tif
46600af6fe85281614dd0890dd63f34a
98e9e3c77f5e5be87ad61a040e8cd984466a3b10
708 F20110318_AABICF stuckey_d_Page_056.txt
72be5dd68d9a33e1808a49980732bda9
a29332be032b74e6d08da757858b4884b44c0d54
2347 F20110318_AABIBQ stuckey_d_Page_041.txt
8d724326dcf1961b0ce141cec62e47cd
eace4164c7b026cad99a2c1ad4ac8e3fee53c23e
447168 F20110318_AABJFI stuckey_d_Page_093.jp2
36808f11a176a3e3dd4eb3a9e4f6c938
4d9be2bdf3c5f17505422651f3ef5848cfafe31e
98517 F20110318_AABJET stuckey_d_Page_076.jp2
7f11fc51cb4c4fd543491f71d3964e93
848ef514d97196a0a94cc36f94f77b5d096a3fef
16439 F20110318_AABIZN stuckey_d_Page_161.QC.jpg
14c37396708bc6e5c08c3f2cbae262de
b045d54e12e03d096b4aff715759c1a3e3b41799
47625 F20110318_AABIYZ stuckey_d_Page_153.jpg
f6a44e1e58a13dc4e3db62107738d92d
e5d1a2bdbb09236bf896002bd1d3de23b836aac8
F20110318_AABHWL stuckey_d_Page_092.tif
900cba991830d317cc105e10b71556a1
5e6e32be3ba49c147965b97937b7cda0871e9845
F20110318_AABHVX stuckey_d_Page_076.tif
604fc7f9aa05d11764d8ac2dda7d25a0
d6666c3eebcc8717d8c3dc8d348abaca1cafcde2
693 F20110318_AABICG stuckey_d_Page_057.txt
728e093a28bb4bd6c4453afd202622e2
aa9837370432b432d6120b0f6cc4268c86b31fe4
2144 F20110318_AABIBR stuckey_d_Page_042.txt
06115646254d5fd1a2a1b1387e0f41b7
21818f9de24bbfb53d1977891318fbe5e2b1df7e
585950 F20110318_AABJFJ stuckey_d_Page_094.jp2
8da4c6dcb8e8832ea01c373021d43d07
87e32deca46293b0d0b1283fe455aff3cd32baeb
441913 F20110318_AABJEU stuckey_d_Page_077.jp2
8f9f9093056000340ce735a65d94f734
e65292a16a2e343f18883193c35fd158a9af620b
38929 F20110318_AABIZO stuckey_d_Page_162.jpg
e7641fcec23983c89fa145d052062db4
969344323fd619254f0e17bfb09874f96ca3ea09
F20110318_AABHWM stuckey_d_Page_093.tif
8b4498853feacf7cdfcf14d3bb635f1d
0e6a119fa1685383ffb53aa849b2cb6f88e76049
F20110318_AABHVY stuckey_d_Page_077.tif
290c3d9563873255b8fccbecec91c0cf
7f3bf68e4715e72443fed0a6deb5e070244c7616
1329 F20110318_AABICH stuckey_d_Page_058.txt
d4f093da0fb1480d885153f25c34b069
436f5654d5e048a6ad644a97df7c51a6cbbc9829
F20110318_AABHXA stuckey_d_Page_109.tif
945611cddebb7b1786fa5c1ee258b657
05ffb51d0900d4e47c66653a4995f9d3ff6774f5
1897 F20110318_AABIBS stuckey_d_Page_043.txt
7ceb0a98a6c23a24c9b1e8b8db9ac620
ea0f96d45ca3ac6f99caba7e0f3e4359e137547f
468921 F20110318_AABJFK stuckey_d_Page_095.jp2
b45ba0691cf2383329d23e40f37e7a38
8025b7b688719ab38a733d81a2297b3f7857bd40
552809 F20110318_AABJEV stuckey_d_Page_078.jp2
fa73639eca7c53f6aa18b73978405ad1
ecd6b3af938aec2b8c2ab09aa97bd8696085d45e
13084 F20110318_AABIZP stuckey_d_Page_162.QC.jpg
bd8ad28bff17ccc9c648c54b934d31b9
e8630f8875140f00d9ceaca9d4af9e735cbebb8b
F20110318_AABHWN stuckey_d_Page_094.tif
71ba18cbd7f878423d9c5139aff60af5
40bc69e1689aa9bf8ce2881dd5b8c6435e0f6fbc
F20110318_AABHVZ stuckey_d_Page_079.tif
d8bc03e49bca665be3b6884b7d0b87ff
f59ce99252bea61b522fc0ac00bfd633bbae418e
915 F20110318_AABICI stuckey_d_Page_059.txt
952b7a3838a52f956836b1a8a0a75a48
be4a1db66faef6d07fc8c232978214fed545890e
F20110318_AABHXB stuckey_d_Page_110.tif
7ff5ae737f760f32721f1c4a0e9d5703
4e640ca5116e24a5cb8a73b777a5b6c09a3362d1
2564 F20110318_AABIBT stuckey_d_Page_044.txt
d2dd7ca392bbddaa9bed5b484207230a
1376b6f848cd7a109d10320be57b5c6e68ec01f7
585255 F20110318_AABJFL stuckey_d_Page_096.jp2
a437e4255c7d10602bf00fadc3533e1b
8df03366a58f6655f9c9de010807253a2e5b0c96
581067 F20110318_AABJEW stuckey_d_Page_079.jp2
ced7334115bae9feaff2f1e85fd2c628
d1fee643651fce443b41d3f6b80a67338c3222e3
45598 F20110318_AABIZQ stuckey_d_Page_163.jpg
13e87d00168bacea4584d1a7cfc700a1
df095d8054aecf8c8b9f9eb0413288be02423d08
F20110318_AABHWO stuckey_d_Page_095.tif
223fd39ee970b3af4e40ad7dea0db1ac
eab5b042906bfd33cc8b8909ad3efeda657da750
808 F20110318_AABICJ stuckey_d_Page_060.txt
5ddcaedc38fdcb5c1cfa1bc282e48ede
bdd7d8810b53682842cdb5cb671909870a261d14
F20110318_AABHXC stuckey_d_Page_111.tif
c9e61d8aa81492530d3647d6735d7918
4830cd1145301e0d2af772bbba6954a01a2a4207
1802 F20110318_AABIBU stuckey_d_Page_045.txt
bb8e6dc694583b9994565da3e447176e
d4d1abc8a76289f60d1b62edfc59ba92d94f29e3
345521 F20110318_AABJGA stuckey_d_Page_112.jp2
87fca6da4142931f22c27edea08e8f75
f460c892a284fd4dd3cf7a5434ac78b897a2245e
512698 F20110318_AABJEX stuckey_d_Page_080.jp2
da12fbbcb77d31023bfb759058bd5ceb
4790c6c6b93ae7590aea1e92c96289cd745f2847
14301 F20110318_AABIZR stuckey_d_Page_163.QC.jpg
b63c8d4a0c66ce5465af362b52755ab1
32cde1337f4960627204fa0b7f43f5ea3351fcbe
F20110318_AABHWP stuckey_d_Page_096.tif
7b46d55542582752ccddaf9d1aa59b5e
9f9792181da724c9bfa988a16c775ad97dddcdf4
F20110318_AABHXD stuckey_d_Page_112.tif
dd63497f209c3733eb6034f041d236b1
49b89270126547dad6d91c17917fb8ec8fc04e7a
2419 F20110318_AABIBV stuckey_d_Page_046.txt
8e044b7400cc9bf94dde1cb2b2b78575
13ec395f251756ce9c10ac10c83f245596a96733
573160 F20110318_AABJGB stuckey_d_Page_113.jp2
f618d620ad626da2d9a640f22e789384
4d34be19ecf1f6ec7bb1cb30e2a30e6871c1036b
439430 F20110318_AABJFM stuckey_d_Page_097.jp2
3ab05013c85a69e0f512a4b91501362d
65e3b3367e4e8d0a35c50b2f29c3209edd1078eb
699490 F20110318_AABJEY stuckey_d_Page_081.jp2
9a5f260ed5b0786040774b2eaaa461a5
93bb009c73dc35f4707be6abf7b0964f02742834
43707 F20110318_AABIZS stuckey_d_Page_164.jpg
2a105fbc15276a920f1136c658ac3cb4
05102dc124976af244a9cb7b5b57a3d05f7e392a
F20110318_AABHWQ stuckey_d_Page_097.tif
ce694f30737f36f7c48d790fc9435e24
038def046584af7d00ec388c15238708f5b8d6f7
1020 F20110318_AABICK stuckey_d_Page_061.txt
8b1ded7dca4eeb345c3291aa4e6116ad
f2db32d99aa94489590aba1eeb84fcbc8711f244
F20110318_AABHXE stuckey_d_Page_114.tif
afd74f1caddef3b14ebc4155dfeb4a40
eb78e2502b8be974ea928e1f4ff40587a1624871
2407 F20110318_AABIBW stuckey_d_Page_047.txt
3bedc06e99c69991b4efb7507f4eb97a
81a4ae150634a9851395e46647378be02a019df9
423365 F20110318_AABJGC stuckey_d_Page_114.jp2
94a471c52efee63c3e59b30e76a74c1a
2b9fa6f23b585298a457d64194de7138aa22bdc9
449356 F20110318_AABJFN stuckey_d_Page_098.jp2
a45e6229a6be0a4657c6d5de8f0fba75
6a1ed4b75bbd05b351cbe3d6c830552bc817ee6b
472329 F20110318_AABJEZ stuckey_d_Page_082.jp2
a9dd3d8af84ed2db7997ce428ac93d74
8775bcbebe15e045a4b730c7750ccc5522a71228
F20110318_AABIZT stuckey_d_Page_164.QC.jpg
05f1312dc145f5df02f56ca7db559422
5844edcb8890c58a30290c67967dcfc7ac48d995
F20110318_AABHWR stuckey_d_Page_098.tif
be59bdd5bb88cc88cab6e7e2dcd00bd0
747f7bb3cc94f139808e6090737fd89e3f599e34
2469 F20110318_AABIDA stuckey_d_Page_078.txt
7ba16b762173aa64fe2ca89d0d37c751
9f9ae77e63e174aa4abaf79cd763e9f7ded4e754
F20110318_AABICL stuckey_d_Page_062.txt
c9df505f50ec8ce80b81f6d9a39b5435
5ae900d53d11273c568cafc90f9cd267796d5170
F20110318_AABHXF stuckey_d_Page_115.tif
91a10e1644e7929da6c702f8e5809ba9
9e5aa7917f0efd0d93f6730b7d18fa258daf5b12
F20110318_AABIBX stuckey_d_Page_048.txt
9e2336bbe723e9976422a3e2584789eb
1aacbffcf44e7ed0782e4937641171dde287cbef
457977 F20110318_AABJGD stuckey_d_Page_115.jp2
39f6134b1fbc5a964fa5c1d49ebd6d79
6944145a2ad2f305d35c9b5cd81cf5b36fd29a91
504333 F20110318_AABJFO stuckey_d_Page_099.jp2
41f8ecf24ec78cfb8fea589474cf6c1a
0ca50930fa813bffb8116362cda78988b3d5d669
13156 F20110318_AABIZU stuckey_d_Page_165.QC.jpg
b57927f3fb8a14adf645594225875180
b44c72dd89a5f1a5cfdb61ce294beacc3b2aac1e
F20110318_AABHWS stuckey_d_Page_099.tif
7adacd1b579d96c005bf3787bcda635b
100a4cae2b86187bcf43c71eb701129563363767
1749 F20110318_AABIDB stuckey_d_Page_079.txt
fb4ff220984b6322bd32d6b59e7ea22f
e5493f789c8bd1db811ac1634671819999e6936a
1818 F20110318_AABICM stuckey_d_Page_063.txt
b803469561e53eef4041b4e5fafb69c8
6fd1597b01e788f97bb6f06420d9faa57ab3b127
F20110318_AABHXG stuckey_d_Page_116.tif
a1eb297f938e63880cd807ff6002f13b
db0c66bfd55d124a2416f2344570a85de98826b8
F20110318_AABIBY stuckey_d_Page_049.txt
2fb681ccbb39e49c5128fa18707a7f3e
65336e21c2c9caffca102c1881242c7c84467cbb
551258 F20110318_AABJGE stuckey_d_Page_116.jp2
dde38ea9bbdc1ec785c3e938b0771ce8
d4f840e1ed633736a8d489f2037e080d282576c4
441872 F20110318_AABJFP stuckey_d_Page_100.jp2
25adb388d6b3e467bd79cdfaa1b0c6b5
fd47625bb96fbbefd4ca3f2734a0511ec6e490c1
40688 F20110318_AABIZV stuckey_d_Page_166.jpg
33f8be2ae2ae00ab0898fc4f1c6e4cf1
1a8676d6803158e37eb4b266b7d02fdfebc067ac
F20110318_AABHWT stuckey_d_Page_100.tif
792ebe3fba432b708cc5fd8d7a55ba22
bcfd5def8aaac0e8e861110b09be1fcd134a9229
2302 F20110318_AABIDC stuckey_d_Page_080.txt
87ae579599034a1ab19564ea5808cdf2
50f143458c8cd4547250dad8321e61575c061fa3
1435 F20110318_AABICN stuckey_d_Page_064.txt
322148e8dcb413bfebf99b5bc773a3fb
4c1f1d05f57c139896f8f4acf18b550f0dbbe90f
F20110318_AABHXH stuckey_d_Page_118.tif
08202d8b3996e4d9a22371ff5801ce6e
fe215211f04fa02cfe181bfdae5c2b84892454af
1148 F20110318_AABIBZ stuckey_d_Page_050.txt
2292c938f583ca6d854f99dedcb9c7ca
f9315f43a502308900d0ecea16f13896990065f6
468404 F20110318_AABJGF stuckey_d_Page_117.jp2
710ac5bf12e4efb26ee16ce49e89592e
a5c6b3f95bfb30fa0f2392547a88ddbbc5654f14
492476 F20110318_AABJFQ stuckey_d_Page_101.jp2
18d8eee393a097a06f3e851766df8a56
923ba2060fb95add289e29c998f62ed7e78537ce
13230 F20110318_AABIZW stuckey_d_Page_166.QC.jpg
122a7d93dde8aaced160085138de150c
e1073becfb652ee1708f4f8b4b18d46ebe419cde
F20110318_AABHWU stuckey_d_Page_101.tif
cf81751546da284c05d6a8f233bb850f
fb5c50239f781ed90206dbe20da7c8726630304b
2233 F20110318_AABIDD stuckey_d_Page_081.txt
d6258dfa29be6d2e186ff7a163825a19
5be006e58cfcbfc586e1267e002a928170e98c73
1801 F20110318_AABICO stuckey_d_Page_066.txt
646eda1b6b32949bba232990f8d8708a
2a4381b1d4072f066c8d5dba6b7864b44e742993
F20110318_AABHXI stuckey_d_Page_119.tif
9f27a92cd4a50a9d98b69f1e97a04282
bcc4649ead70e592d1c240942c9f0d0d1bb174ab
518411 F20110318_AABJGG stuckey_d_Page_118.jp2
fa8d61d72337a0dca220f787da2ba21c
8d160d464161fa5f39a78430006917dc0c76b6e6
517466 F20110318_AABJFR stuckey_d_Page_102.jp2
035fb12ba37da2be51501ddf820a8d8c
6c6890e46be85cb0b022784e26084218851e4ae2
49754 F20110318_AABIZX stuckey_d_Page_167.jpg
8d230fb50a69a1c5a9e8abafb7803d1f
86630fb96b5e4c5c9ed2b178c4b1b84de07eb010
F20110318_AABHWV stuckey_d_Page_103.tif
ec59661a86ff73e7108f9399a2507900
fdf81b7cacd42400626a83eed505fef92db26d1c
2025 F20110318_AABIDE stuckey_d_Page_082.txt
67c9e82a82889565f579b23c22dff8c0
bc4ae998339cf60d831bf931b78fb4ba68506af9
1431 F20110318_AABICP stuckey_d_Page_067.txt
9502dcfac97a5f3d05dfb66768e0194e
31fb2d7c8e0698927ec2d76a9351decbbf59bb3b
F20110318_AABHXJ stuckey_d_Page_120.tif
42f26d17efc78af08b7fff450edbef91
9a56903c03101fbcea24764508ccd76af9b2ff1a
452942 F20110318_AABJGH stuckey_d_Page_119.jp2
ad729ba0f9c517cbba158d6bd51d959e
9f0c2d6824aa86184d92e6ec2e2909c7e7a7be3a
545565 F20110318_AABJFS stuckey_d_Page_103.jp2
6ab11daeae01361a444ae8c6dcc6b6f6
ca1be851fcd8c4bfe4174d36d6bebc5a4669d8e3
15421 F20110318_AABIZY stuckey_d_Page_167.QC.jpg
f4afecb9425dac94ec39af3675295798
714fe2ce3cee92b84f91dc1e9d7aa16275798437
F20110318_AABHWW stuckey_d_Page_104.tif
f66e06e62ed471426e4f13e7b636a244
84a42b8b3987bb192678c34bf8f9873f3699e740
2450 F20110318_AABIDF stuckey_d_Page_083.txt
9df855f4134a9c1bb03086d28a032625
58efcb706d6c0d824f9ff3e6219c6673874b885a
1441 F20110318_AABICQ stuckey_d_Page_068.txt
2ce9356c477063d6fa5acf2e25a7129b
edf41bed3cbf72e30690855a5993661067c750ab
F20110318_AABHXK stuckey_d_Page_121.tif
a0fede7cebdb6e2e911ce221ede73909
846d629f98e9f1ee5b13ed9510f65ace6c31c75f
441996 F20110318_AABJGI stuckey_d_Page_120.jp2
6ad1ce8be85c476696484d341b3028ec
79327f0446fb82c244a3775c2ab583dd8aaf3f25
495261 F20110318_AABJFT stuckey_d_Page_105.jp2
5486cc3b6d3136f42673b465a6113433
d8d0f9421ddac268df68b73bc4a509d2af8d4c53
30813 F20110318_AABIZZ stuckey_d_Page_168.jpg
c1fbc7c41249a02778a0f6dc8ae4f06e
e5096daa4465e58ce5f4a7946708c6460ead568e
F20110318_AABHWX stuckey_d_Page_105.tif
dd937f78e11a709ab7d98703b0ad8868
fe06c067a3746ae89d35166732b41ded75c44bcf
1606 F20110318_AABIDG stuckey_d_Page_084.txt
a1b2409bf8d16dda72cb1b2f65973823
f3c221b31badc83f80586091b73de450cc111e3a
F20110318_AABHYA stuckey_d_Page_138.tif
75e62f8aec98b73072f73121f1f9959d
6a4c29aced8294c88754c86e13eafc41578c44b7
2207 F20110318_AABICR stuckey_d_Page_069.txt
69c88827167ccbd86bfe5ff98ab3c8b2
13e99551eac9fca9a14e1a8c08c214e568306b16
F20110318_AABHXL stuckey_d_Page_122.tif
e07d1a80e3e269a9002e590b0b0efbfc
e3e57f68d9bd643b82d5491c4ac2ee7235f4f6b5
467590 F20110318_AABJGJ stuckey_d_Page_121.jp2
d6d8954822b77e707ca3bf863f124c68
c1d937128bc2559e0e5fdbe94cc41c31c3b9df54
477681 F20110318_AABJFU stuckey_d_Page_106.jp2
ca755870723775366cbeea9fea8f953e
7f2d0202d0226a89c81e1bb42a3cb4b46dceeb8f
F20110318_AABHWY stuckey_d_Page_107.tif
0f838e85bc6a682eb02b48eba37b4f69
36589fedd0ae7b8f31fe7ac149fe2a741c786377
1604 F20110318_AABIDH stuckey_d_Page_085.txt
fc687ea41f50d0a925b7192caa5bacc7
297b92f07e1fdc1c034e25f399ab2726afbea12c
1666 F20110318_AABICS stuckey_d_Page_070.txt
5af21caf368041b73a21ad118dd61b52
32ca8b3010c474228305ac4ca858610fb464882d
F20110318_AABHXM stuckey_d_Page_123.tif
aec17982622933991f69b99d975c3686
20c8c4021cee699e8c1755c73ddf858df6783731
506004 F20110318_AABJGK stuckey_d_Page_122.jp2
60922e07b3ff5bd9bc7f0971d7fa33e5
687ba7533474cb5ad520d05da0a75c42e3fe33c5
526117 F20110318_AABJFV stuckey_d_Page_107.jp2
5fb24495c9b2b029fc735333b9f4725a
01d8191e0bcd26565967e094f0995664b75b8ce4
F20110318_AABHWZ stuckey_d_Page_108.tif
0a932789495263bed0af5a7e73ed355e
d28ea8283b9971e84de23709a27295097f035e67
2176 F20110318_AABIDI stuckey_d_Page_086.txt
628a45b3477e046adc45610292421c9c
4582b3246009b98104b730d0914967577ac3d9a1
F20110318_AABHYB stuckey_d_Page_139.tif
0de1005ddcddf09bd0d9e448abbd7e88
102245a34c4db680a6b6756aa8f6d6c574ff74ac
1943 F20110318_AABICT stuckey_d_Page_071.txt
7257e75681ce16ee801c4bac53beef68
ae64de7306c8c96a9b17ef855c317f57b0329ae0
F20110318_AABHXN stuckey_d_Page_124.tif
cf510b23f893fd5e6d88ffe9ae1cc3ee
ec907c0db13999ae38fbf56361dbd8f6c90040f5
495272 F20110318_AABJGL stuckey_d_Page_123.jp2
b984c29f0f387485ccd03e2ed3a0220a
85353a642fe97fce89f0eba5d8fff91f84309c35
434236 F20110318_AABJFW stuckey_d_Page_108.jp2
9dcc7725ad294721b5482e1554898ef7
b20222ab489cd12a485050dcbd2028bfb6df84df
1410 F20110318_AABIDJ stuckey_d_Page_087.txt
7eab4e326cf74c353afd9d1d34897b2a
466130aede5dab177c0944a4555e57236e5c6007
F20110318_AABHYC stuckey_d_Page_140.tif
cf4ddc08c4b85658883236ba45b7181d
804ed317b2b2efce809d013997659467d40d2c4a
1944 F20110318_AABICU stuckey_d_Page_072.txt
5ee2d8a537864dc6a55b3c5729cdd78e
258f51dc54ccb42754dfe6af95fbc781ef449bf8
F20110318_AABHXO stuckey_d_Page_125.tif
c58b9420e82b522d8e532ff9f9a08077
4ce162a7ebba84ea7d2b1704fb92d98475658e0a
433056 F20110318_AABJHA stuckey_d_Page_140.jp2
5812aceeec8011afe371e3079e4ba846
b15dbb1103d18b77cb291c8979da877e5bad66f5
426299 F20110318_AABJGM stuckey_d_Page_124.jp2
71957a4e70f3a7c05c686c65f221a66b
d8e97b9d4da1b252532513d891c46e48584bfab4
431133 F20110318_AABJFX stuckey_d_Page_109.jp2
9ec63e036e73c6a505be75f88105b6d1
ee2995230d52db2a18ec642c9870523f7e350661
F20110318_AABIDK stuckey_d_Page_088.txt
99c66effc2c2f46aa85c448b9b64a041
1d54a446152b15bc149ee18a22de53fc37e3777e
F20110318_AABHYD stuckey_d_Page_141.tif
27163b61d70acd2aecb8cf1ad2af56f1
2f818e6517a7fd4b28a691a4f1a2ca59ede06575
2045 F20110318_AABICV stuckey_d_Page_073.txt
b911b9b26e9f5591bd56ffa9181af2ab
cae2a87b1ff30ecc84c7f04915aeb389322f4baf
F20110318_AABHXP stuckey_d_Page_126.tif
238a834baffba5b37bba7b145a81fc5f
03ea4fa3bfb98aae5852a50ec71ceb90e93edaf1
1051934 F20110318_AABJHB stuckey_d_Page_141.jp2
f1ec86c238cfec7958acc04251a288eb
2b512ff394cafe2ac00dae1fc17e3892b1c25bc4
549593 F20110318_AABJFY stuckey_d_Page_110.jp2
28b14580ee366d40c23cd161bfb45a8c
2b5eb9840fff8aab64adbc73d16ac8aa12380e3d
F20110318_AABHYE stuckey_d_Page_142.tif
fc7d77781e98bfb76375b5050c28239e
0517630cd2e054551b49e233c21a2d5374ad1822
2051 F20110318_AABICW stuckey_d_Page_074.txt
c717469776de4c7f045e6dcb60152975
2dbe8ec5720bd76047e8190e5ccec25a1af74613
F20110318_AABHXQ stuckey_d_Page_127.tif
adc59c8080a79ef6c049aa6897af20a6
00e3be11c2333d1ce7db0ec11546f8b0b9f0669e



PAGE 1

BIOGEOCHEMICAL SURVEY OF WETLAN DS IN SOUTHWESTERN INDIANA By DAVID A. STUCKEY A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLOR IDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2006

PAGE 2

Copyright 2005 by David A. Stuckey

PAGE 3

This document is dedicated to my parents, Robert and Jean Stuckey, my loving wife, Sandra, and our two fine sons, Samuel and Dean, source of constant encouragement and support.

PAGE 4

iv ACKNOWLEDGMENTS I thank my parents, Robert and Jean St uckey, for introducing me to the world of natural science at an early age, and for their continuous support and encouragement throughout my lifetime. My wife, Sandra, and sons, Samuel and Dea n, sacrificed their time and assisted in the field work throughout this project. They provided the inspiration for continuing my education in this field, a nd I am forever indebted. I thank Dr. Mark W. Clark, my academic advi sor at the University of Florida, for his enabling character that made my participatio n in this research po ssible. His balanced perspective of science, edu cation and common sense was inva luable. My gratitude is likewise extended to the other distinguished members of my graduate committee, Dr. K. Ramesh Reddy, Chairman, and Dr. Matthew J. Cohen, for their ongoing support and assistance. I am indebted to my colleagues at the Un iversity of Florida, Ms. Stacie Greco and Mr. Jeremy Paris. As a subset of their re search project, they both provided much time and assistance as contacts and facilitators of sampling activities a nd data collection. I wish to acknowledge the analysts at th e UF Wetland Biogeochemistry Laboratory for their hard work in generating the anal ytical data from the project sampling.

PAGE 5

v TABLE OF CONTENTS page ACKNOWLEDGMENTS.................................................................................................iv LIST OF TABLES............................................................................................................vii LIST OF FIGURES...........................................................................................................ix ABSTRACT....................................................................................................................... xi CHAPTER 1 INTRODUCTION........................................................................................................1 Wetland Perspective and Trend....................................................................................1 Wetland Benefits..........................................................................................................3 Regulatory Authority....................................................................................................3 Water Quality Standards...............................................................................................4 Evaluation of Wetland Condition.................................................................................8 Research Objectives....................................................................................................13 Hypothesis..................................................................................................................13 2 METHODS.................................................................................................................15 Sampling Site Selection..............................................................................................15 Sampling and Analytical Methods..............................................................................18 Data Analysis..............................................................................................................25 3 RESULTS...................................................................................................................26 Spatial Study Results..................................................................................................27 Temporal Study Results..............................................................................................46 4 DISCUSSION AND CONCLUSIONS......................................................................58 Objective One (Results)..............................................................................................58 Objective Two (Results).............................................................................................60 Objective Three (Results)...........................................................................................60 Objective Four (Results).............................................................................................62 Conclusion..................................................................................................................64

PAGE 6

vi APPENDIX A PROFILES OF SAMPLED WETLANDS.................................................................65 B SURVEYED WETLANDS DESC RIPTION AND LOCATION............................126 C PHOTOGRAPHS OF WETLANDS SURVEYED IN SW INDIANA...................157 D WETLAND CHARACTERIZATION FORM.........................................................178 LIST OF REFERENCES.................................................................................................181 BIOGRAPHICAL SKETCH...........................................................................................184

PAGE 7

vii LIST OF TABLES Table page 2-1 Number of wetlands surveyed in So uthwestern Indiana from each wetland community type and nutrient condition...................................................................17 2-2 Number of wetlands surveyed within each community type. Sites were all located in the southeastern part of Eco-region IX....................................................17 2-3 Southwestern Indiana wetland re search location, sampling dates and characterization. All wetlands incl uded in the survey are listed.............................18 2-4 Southwestern Indiana wetland re search location, sampling dates and characterization for Turkey Hill Graywood Marsh, wetland community type: Non-Riparian marsh with Leas t-Impacted wetland condition.................................19 3-1 General descriptive statistics summar y of water column total phosphorus and total nitrogen concentrations for wetlands surveyed in Indiana. Wetlands were aggregated using several differe nt classification criteria.........................................27 3-2 Statistical comparison of water colu mn total phosphorus and total nitrogen concentrations for wetlands surveyed in Indiana, aggregated using several different classifica tion criteria….…………........………………………………….28 3-3 General descriptive statistics summar y of leaf litter total phosphorus, total nitrogen and total carbon concentrations for wetlands surveyed in Indiana. Wetlands were aggregated using severa l different classification criteria................29 3-4 Statistical comparison summary of leaf litter total phosphorus, total nitrogen and total carbon concentrations fo r wetlands surveyed in Indiana, aggregated using several different classi fication criteria. ..................................................................30 3-5 General descriptive statistics summ ary of soil pH, organic matter, total phosphorus, total nitrogen and total carbon concentrations for wetlands surveyed in Indiana. Wetlands were aggregated using several different classification criteria....................................................................................................................... 32 3-6 Statistical comparison summary of so il pH, organic matter, total phosphorus, total nitrogen and total carbon concentrati ons for wetlands surveyed in Indiana, aggregated using several differe nt classification criteria…………..……….......…34 3-7 General descriptive statistics summar y of vegetation total phosphorus, total nitrogen and total carbon concentrations for wetlands surveyed in Indiana. Wetlands were aggregated using severa l different classification criteria................35

PAGE 8

viii 3-8 Statistical comparison summary of vegetation tissue total phosphorus, total nitrogen and total carbon concentrations for wetlands surveyed in Indiana, aggregated using several different classification criteria. ......................................36 3-9 Summary table of nutri ent indicator strata. ............................................................37 3-10 Summary statistics (mean, standard deviation, variance and 95% confidence interval) of water column samples collected during the temporal study..................50 3-11 Summary statistics (mean, standard deviation, variance and 95% confidence interval) of litter samp les collected during the temporal study. .............................53 3-12 Summary statistics (mean, standard de viation, variance and confidence interval) of soil sampled during the temporal study...............................................................57

PAGE 9

ix LIST OF FIGURES Figure page 1-1 Percentage of Wetlands Lo st in the United States.....................................................2 1-2 Draft Aggregations of Eco-regions fo r the National Nutrient Strategy (Source US EPA http://www.epa.gov/waterscience /criteria/nutrient/ecomap.html).............10 2-1 Photographs representing the three pr incipal wetland commun ity classifications surveyed in Southwestern Indiana, (A) Riparian Swamp, (B) Non-Riparian Swamp, and (C) Non-Riparian Marsh......................................................................18 3-1 Water Column Total Phosphorus Comparison between Least-Impacted Wetlands Surveyed in Southwestern Indi ana and Eco-Region IX Least-Impacted Wetlands...................................................................................................................39 3-2 Water Column Total Nitrogen Compar ison between Least-Impacted Wetlands Surveyed in Southwestern Indiana and Eco-Region IX Least-Impacted Wetlands...................................................................................................................40 3-3 Litter Total Phosphorus Comparis on between Least-Impacted Wetlands Surveyed in Southwestern Indiana and Eco-Region IX Least-Impacted Wetlands...................................................................................................................41 3-4 Litter Total Nitrogen Comparison betw een Least-Impacted Wetlands Surveyed in Southwestern Indiana and Eco-Re gion IX Least-Impacted Wetlands.................42 3-5 Vegetation Tissue Total Phosphorus Comparison between Least-Impacted Wetlands Surveyed in Southwestern Indi ana and Eco-Region IX Least-Impacted Wetlands...................................................................................................................43 3-6 Vegetation Tissue Total Nitrogen Comparison between Least-Impacted Wetlands Surveyed in Southwestern Indi ana and Eco-Region IX Least-Impacted Wetlands...................................................................................................................44 3-7 Soil Total Phosphorus Comparison betw een Least-Impacted Wetlands Surveyed in Southwestern Indiana and Eco-Re gion IX Least-Impacted Wetlands.................45 3-8 Soil Total Nitrogen Comparison between Least-Impacted Wetlands Surveyed in Southwestern Indiana and Eco-Regi on IX Least-Impacted Wetlands.....................46

PAGE 10

x 3-9 Water Column Depth in Inches. Wetland zones sampled included the Inner Core (A) and Outer Edge (B). Mean a nd Standard Deviation of both zones are presented...................................................................................................................47 3-10 Water Column Field pH. Wetland zone s sampled included the Inner Core (A) and Outer Edge (B). Mean and Standard Deviation of both zones are presented...48 3-11 Water Column Dissolved Oxygen, %. Wetland zones sampled included the Inner Core (A) and Outer Edge (B). Mean and Standard Deviation of both zones are presented...................................................................................................49 3-12 Water Column Total Phosphorus, mg/L. Wetland zones sampled included the Inner Core (A) and Outer Edge (B)..........................................................................49 3-13 Water Column Total Nitrogen, mg/L. Wetland zones sampled included the Inner Core (A) and Outer Edge (B)..........................................................................50 3-14 Litter Total Phosphorus mg/kg. Wetland zones sampled included the Inner Core (A) and Outer Edge (B)...................................................................................52 3-15 Litter Total Nitrogen, g/kg. Wetland z ones sampled included the Inner Core (A) and Outer Edge (B)..................................................................................................52 3-16 Litter Total Carbon, g/kg. Wetland zone s sampled included the Inner Core (A) and Outer Edge (B)..................................................................................................53 3-17 Soil Bulk Density, grams cm-3. Wetland zones sampled included the Inner Core (A) and Outer Edge (B)............................................................................................54 3-18 Soil Loss on Ignition, %. Wetland zones sampled in cluded the Inner Core (A) and Outer Edge (B)..................................................................................................55 3-19 Soil Total Phosphorus, mg/kg. Wetland zones sampled included the Inner Core (A) and Outer Edge (B)............................................................................................55 3-20 Soil Total Nitrogen, g/kg Wetland zones sampled included the Inner Core (A) and Outer Edge (B)..................................................................................................56 3-21 Soil Total Carbon, g/kg. Wetland zones sampled included the Inner Core (A) and Outer Edge (B)..................................................................................................56 3-22 Soil pH. Wetland zones sampled include d the Inner Core (A) and Outer Edge (B)............................................................................................................................ .57

PAGE 11

xi Abstract of Thesis Presen ted to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Master of Science BIOGEOCHEMICAL SURVEY OF WETLAN DS IN SOUTHWESTERN INDIANA By David A. Stuckey May 2006 Chair: Mark W. Clark Major Department: Soil and Water Science Nutrient concentrations play a critical role in the integrity and functionality of wetlands. To fully assess the status and condition of wetland ecosystems, knowledge of nutrient flow and cycling is required. A lthough water quality nutrien t data are readily available, there is limited information regard ing nutrient concentrations within the soil, litter and vegetation at wetland sites. While it is recogni zed that an assessment of wetland ecosystems can be enhanced by ex amination of nutrient criteria, such biogeochemical indicators have not been standardized and ther e is a lack of spatial data within the National Wetland Biogeochemical Database. To address this need for consistency a nd comparability in the reporting data, a Biogeochemical Survey of Wetlands of Sout hwestern Indiana was conducted. Sixteen wetland sites were surveyed for twenty bioge ochemical indicators including vegetation, litter, soil and water column nutrient parame ters. One wetland site was selected for additional study for a period of one year to provide background information on temporal and seasonal variability within the wetland.

PAGE 12

xii Based on the study results, there does not a ppear to be a need to sub-classify wetlands by vegetative community type to properly assess nutrient conditions in Southwestern Indiana’s wetlands. Howeve r, hydrologic connectiv ity of the wetland should be considered in the assignment of appropriate numeric nutrient criteria. Comparison of water column, litter, soil, and vegetation nutrient indicators between impacted and least-impacted wetlands s uggests that total phosphor us concentrations measured in the water column, litter, and vegetation do not indicate nutrient enrichment. The most responsive indicator stratum for nutrient enrichment between impacted and least-impacted wetlands appears to be soil total phosphorus and total nitrogen. Comparison of nutrient concentrations in Southwestern Indiana wetlands to Southeastern U.S. Eco-region IX wetlands s howed significantly higher total phosphorus concentrations in the water column, litter a nd soil from Southwestern Indiana Wetlands. The findings suggest that the establishment of numeric nutri ent criteria for Southwestern Indiana wetlands, based on reference wetla nds from Eco-region IX, could be overly protective.

PAGE 13

1 CHAPTER 1 INTRODUCTION Wetland Perspective and Trend Throughout history, man’s regard for wetla nds has ranged from ambivalence and disdain of inundated areas as wastelands, to great respect as a precious resource that enables a way of life. At the first extreme, legislation such as the Federal Swamp Lands Acts of 1849, 1850, and 1860 encouraged the drainage or reclamation of wetlands, to more productive, beneficial uses to society. The ot her extreme could be represented by human cultures evolved within, and dependent upon wetland environments, such as the Cajuns of Louisiana, and the Sokaogon Ch ippewa of Wisconsin (Mitsch and Gosselink 2000). This polarity of values continues today as development interests compete with environmental conservationists for the righ t to develop, versus the preservation, of wetland areas. Within the last twenty y ears, as wetland values have been further recognized and promoted, legislation has b een enacted to help protect diminishing wetland resources not just from direct infill or drainage, but also from indirect degradation and impacts to wetland functions and quality. At the heels of this legislation are challe nges to the rules and laws promulgated to protect wetlands. A climate of judicial challenge and litig ation reinforce the need for clarity in delineation, scope and application of the wetland subject areas. The more that is understood about wetlands, the be tter their chances for protection.

PAGE 14

2 Figure 1-1 illustrates the pe rcentage of wetland acreage in the United States that were lost over the 200 year period between the 1780’s and the 1980’s. The State of Indiana lost 87% of its wetla nds during this period. Acco rding to estimates based on hydric soils assessments by the USDA Soil Conservation Service, approximately 5,600,000 acres of wetlands were present in I ndiana in the 1780’s, comprising 24.1% of the total land area. The existing 813,000 acres of wetlands now cover only 3.5% of the land area in the state. Among the 50 states, Indiana ranks 4th in proportion of wetlands lost (Dahl 1990). Clearly, this negative trend needs to be reversed if the plant and animal communities and the physical landscape are to receive future benefits provided by wetland ecosystems. Indiana’s wetlands are impacted today by ag ricultural activities, commercial and residential development, road constructi on, water development projects, groundwater withdrawal, loss of instream flows, water pollu tion and vegetation removal (IDNR 1996). Figure 1-1. Percentage of Wetla nds Lost in the United States.

PAGE 15

3 Wetland Benefits Wetlands have been described as the kidneys of the landscape for their abilities to absorb, filter, stabilize and buffer nutrients, pollutants, groundwater, floodwater and other upstream native and anthropogenic inputs. Wetlands function as sources, sinks and transformers of chemical and biologi cal materials. Among the most productive ecosystems worldwide, wetlands support br oad biodiversity ranging from microbial organisms to mammals. Wetlands play a key role in atmospheri c air quality through carbon sequestration. Conversely, drainage and de struction of wetlands can release carbon dioxide, a greenhouse gas (Klein et al. 2005). The ability of wetlands to perform the valuable functions of source, sink and transformer is dependent upon their conditi on. Limited monitoring information is available to assess wetland ambient and seas onal conditions, or the affects of ecosystem stressors that may degrade wetland conditi on. As of 1998, only 4% of the nation’s wetlands had been surveyed. Of those wetla nds surveyed, the majority of data was generated through dredge and fill permit requirements (USEPA 2002b). Regulatory Authority In 1972, Congress enacted the Clean Water Act (CWA) to “restore and maintain the chemical, physical, and biological integrity of the Nation’s waters.” While the term “wetland” is absent from the entire stat ute, Section 404 of th e CWA is the primary regulatory authority gover ning wetland protection. Section 402 of the Clean Wate r Act prohibits the discha rge of pollutants from a point source, into waters of the United States, unless a perm it has been issued. Section 404 authorizes the U.S. Army Corps of Engin eers to issue permits for the discharge of

PAGE 16

4 dredged or fill material into navigable wa ters. The application and jurisdiction of navigable waters has been the source of c onsiderable litigation throughout the history and development of water law in the United St ates. The recent proximity requirement of navigable waterways in the designation of regulated wetla nds has had the affect of excluding many isolated and often critical wetland areas from regulatory protection (Klein et al. 2005). Since the implementation of the Clean Water Act in 1970, the focus of water quality protection has been aimed primarily toward lakes, rivers and streams, while wetland protection efforts concentrated on prev enting the conversion of existing wetlands to uplands. Although the rate of wetland loss has decreased, significant opportunities exist to assess and ultimately protect wetland quality condition. Water Quality Standards Under Section 303(c) of the Clean Water Act (CWA), states are assigned primary responsibility for enacting water quality standards that are pr otective of designated uses. Section 304(a) of the CWA provides assist ance to states through the Environmental Protection Agency’s development of water quality criteria. The EPA provides this guidance as a starting point for states in the development of water quality criteria and standards. Water quality standards consist of three major elements: (1) designated uses, (2) narrative and numeric wa ter quality criteria for supporti ng each designate d use, and (3) an antidegradation statement (USEPA 2002a). Designated Uses Environmental goals are defined or cla ssified as designated uses for water resources by states. Examples of typical water body designated uses include: public

PAGE 17

5 water supply, primary contact recreation, aquati c life support, wildlife habitat, and fish consumption. The unique functions and values of wetlands may require the establishment of designated uses much diffe rent from typical water bodies. In the absence of a state specifie d designated use for a water body, including wetlands, the default designated use assigned by EPA is aquati c life support. In most instances states have not actively designated uses for wetla nds and therefore, for regulatory purposes, support of aquatic life dict ates selection of narrative and numeric criteria. Water Quality Criteria In 1998, The Clean Water Action Plan was introduced by the U.S. EPA and the Department of Agriculture as a blueprint to protect and restore the nation’s water resources. An element of the Plan was to define nutrient reducti on goals by establishing numeric criteria for nutrients (i.e. phosphorus and nitrogen) that reflect the different types of water bodies and different eco-regions of the country to assist stat es and tribes in the adoption of numeric water quality standards based on these criteria (EPA and USDA). Water quality criteria are narrative or numeric descriptions of the chemical, physical or biological conditions found in mi nimally-impacted, reference sites. Using appropriate criteria, states can compare the c ondition of a wetland to th e reference criteria to determine if the wetland is supporting its designated uses. Narrative Criteria Narrative water quality criteria are statements to protect and support the antidegradation of water resour ces and their designated uses They define conditions necessary to sustain designated uses. For example, a general narrative statement would be: “maintain natural hydrologic conditi ons, including hydroperiod, hydrodynamics and

PAGE 18

6 natural water temperature variations nece ssary to support vegetation which would be present naturally” (USEPA 2002a). Antidegradation Policy An antidegradation policy established by a state would include provisions for full protection of existing uses, maintenance of water quality of high-quality waters, and a prohibition against lowering wa ter quality in outstanding re source waters. The policy would also address fill activities in wetland s to ensure that no significant degradation occurs as a result of the fill activity (USEPA 2002a) Numeric Criteria Numeric water quality criteria define th e specific numeric limits for physical, chemical and biological parameters established by states to protect designated uses of water resources. Because current assessmen t methods do not describe many biological and physical impacts to wetlands, and nume ric parameters are not yet established, narrative criteria are primarily used for wetlands For wetlands, states have historically relied upon designated uses and criteria prev iously developed for lakes and streams, although the ecological conditions of wetla nds differ from lakes and streams. In addition, the physical and chemical cr iteria were based on sampling from the ambient water column. Since the presence of a water column in a wetland can be highly variable, inference of water column paramete rs alone in determining the condition of a wetland can be inconclusive. Since wetland ch aracteristics can be quite different from typical water bodies, numeric criteria for physical and chem ical parameters of other strata, specific to wetlands are needed (USEPA 2002a). Other strata that serve as response indicators to causal variables such as nutrient loading in wetlands include: vegetation, leaf litter and soil. Wetland vegetation responds

PAGE 19

7 to nutrient additions by increasing the storag e of nitrogen and phosphor us in plant tissue, and increasing net primary production (NPP), and decomposition (Craft and Richardson 1998). The ratio of carbon to nitrogen (C: N) present in leaves or aboveground biomass can be used as an indicator of nutrient enrich ment. Plants assimilate more nitrogen under conditions of nitrogen enrichment, increasing le af nitrogen and decrea sing the C: N ratio (Shaver and Melillo 1984, Shaver et al. 1998) Phosphorus-enriched environments result in increased leaf tissue p hosphorus and decreased carbon to phosphorus ratios (C: P) (Craft et al. 1995). To determine these a ffects on the C: N and C: P ratios require knowledge of the baseline nutrient con centrations prior to enrichment. Leaf litter is another stratum that can be used as an indicator of nutrient loading, especially in forested wetla nds with little or no herbace ous vegetation. Since woody plants grow slower and have a longer life cycl e than herbaceous vege tation, litterfall is a slower response variable to measure nut rient use efficiency through net primary productivity (Chapman 1986). Wetland soils provide both the me dium where many wetland chemical transformations take place, as well as the primary storage location for available chemicals for most wetland plants. Bioge ochemical cycling, the tran sport and transformation of chemicals in ecosystems, involves a number of interrelated proce sses highly influenced by system hydrology. These chemical, physical and biological processes result in changes to chemical forms and spatial movement of materials within wetlands. The exchange of nutrients at the water-sediment interface, plant uptake, and nutrient inputs and exports, determine overall wetland pr oductivity. Relativel y large amounts of nutrients are tied up in wetland sediments as compared to terrestrial and deepwater

PAGE 20

8 aquatic systems (Mitsch and Gosselink 2000). The use of soil sampling as an indicator of nutrient enrichment in wetland s can provide information on the status of a wetland’s function as a sink, source, or transformer of nutrients. The relative permanence of this stratum in the wetland as compared to water column, vegetation and litter, contribute to its favorability as an indicator. Evaluation of Wetland Condition The physical and chemical characteristics of a watershed’s landscape topography, underlying geology and hydrology, cont ribute to the plant and animal community species that can survive in a location. The collective interaction of these communities with their physical and chemical environments can form wetlands, and provide valuable functions from both economic and ecological perspectiv es. Wetlands can support high levels of primary production, provide habitat for numerous species of wildlife, and mediate a range of biochemical transformations that contribut e to improved water quality (Findlay et al. 2002). The complex biological community’s presence in a wetland demonstrates its resilience to normal variation in the environment (Karr and Chu 1999). The severity, frequency and duration of hu man activities or disturbances within a wetland, or its watershed can result in c onditions where change s in the biological community occur. A challenge to wetland scie ntists is the need to develop practical measurements of wetland condition to assist resource managers in their decisions and actions to minimize wetland loss in acreage and function (USEPA 2002a). In spite of heightened awareness of wetlands functions a nd values, the ability to protect, manage and restore these systems remains fairly poor due to a lack of tools to rapidly yet plausibly assess their value (Fi ndlay et al. 2002).

PAGE 21

9 The EPA’s Office of Water has establis hed a strategy to implement the Clean Water Action Plan, by the development of re gional nutrient criteria for each aquatic resource type. Using comparisons to local reference or background conditions, nutrient criteria can be developed within designated spatial areas, yielding a regionalization of nutrient criteria. Reference data sets allow more objective and realis tic selection of goals for wetland maintenance or rest oration (Findlay et al. 2002). Numeric Nutrient Criteria Nearly half the surface wate rs surveyed in the United States do not meet water quality standards because of excessive levels of nutrients. Nutrient enrichment affects both structural and functional attr ibutes of wetlands. Structur al affects can include shifts in plant species composition with replacement of nutrient-tolerant species with species more adaptive to high nutrient conditions. Wetland functional cha nges include increased nitrogen and phosphorus uptake, net primary productivity, decomposition, and eutophication (USEPA 2002c). States consistently cite excessive nutrie nts as a major obstacle to water quality attainment, and EPA expects to develop numer ic nutrient criteria that cover the four major types of water bodies – lakes and rese rvoirs, rivers and streams, estuarine and coastal areas, and wetlands. The criteria will first be recommended by EPA across the fourteen major eco-regions of the United Stat es illustrated in Figure 1-2, below. These recommended criteria must either be a dopted by state and tribal governments or scientifically-based a lternative criteria must be proposed that is mutually agreed upon by the local government and EPA.

PAGE 22

10 Figure 1-2. Draft Aggregations of Eco-regions for the National Nutrient Strategy (Source US EPA http://www.epa.gov/waterscien ce/criteria/nutrient/ecomap.html) To support and enable the development of numeric nutrient criteria by States and authorized Tribes, a series of Technical Gu idance Manuals has been developed by EPA. To provide flexibility in adopting nutrient cr iteria into their water quality standards, the following approaches, in order of preference, are recommended: 1) Whenever possible, develop nutrient cr iteria that fully reflect localized conditions and protect specific designat ed uses using the process described in EPA’s Technical Guidance Manuals for nutrient criteria development. Such criteria may be expre ssed either as numeric criter ia or as procedures to translate a State or Tribal narrative criterion into a quantified endpoint in State or Tribal water quality standards. 2) Adopt EPA’s section 304(a) water qual ity criteria for nutri ents, either as numeric criteria or as procedures to translate a State or Tribal narrative nutrient criterion into a quantified endpoint. 3) Develop nutrient criteria protective of designated uses using other scientifically defensible methods a nd appropriate water quality data (EPA 2000c).

PAGE 23

11 Developing Numeric Nutrient Criteria EPA plans to recommend numeric criteri a for wetlands based on eco-regions, but unlike other surface water bodies, limited in formation exists. Heterogeneity among wetlands and within eco-regions is uncerta in and therefore needs to be assessed. Baseline conditions for least-impacted wetlands need to be determined, or in areas where few impacted sites exist, an asse ssment of background conditions is required. Data from this study could be used to increase the overall data set that is available to EPA to set numeric criteria using their 25% or 75% method adopted when using whole population or least impacted wetlands, respectively. Temporal Variability Ecosystem influences are affected by temporal variabilit y, and include the chemical, physical, biotic, hydrologic, ener gy and habitat factors that combine to determine the biogeochemical integrity of a wetland system. Spatial and temporal variability in hydrology and soils in an isol ated basin marsh in New Hampshire found that vegetation fell into five wetland zone s, and hydrologic vari ability resulted in temporal and spatial variability of vegetati ve communities as greater plant diversity and increased plant seedlings resulted from dry years (Owen Koning 2004). Studies of temporal and spatial patterns of root nitrog en concentration and r oot decomposition have shown that root nitrogen decr eased through the growing season in live roots but increased in dead roots. Live root n itrogen concentrations were found to be the highest in the most mesic landscape positions while dead root ni trogen concentrations were highest in relatively xeric landscap e positions (Dress 2004). Water depth was confirmed as the main predictor of species distribution, and reduced trophic status was f ound to increase species richness in submerged macrophytes.

PAGE 24

12 Mineralogical variations in sediment com position represented allogenic and autogenic sediment sources, and their distribution corre sponded with predicted species richness and distribution (Schmieder 2004). Nu trient bioavailability in wetlands has been shown to be largely independent of the acidity-alkalinity gradient, and the dist ribution of vascular plants was influenced primarily by nutrien t availability (Bragazza and Gerdol 2001). Temporal variation of nitrogen and phosphor us uptake in two New Zealand streams showed that range and variation of nutrient uptake in some stre ams can be quite large. It was recommended that within-stream variation be considered in comparing other streams and to help in the understanding of factors that drive nutrient uptake (Simon et al. 2004). Although this specific research focused on stream flow, the implication of similar affects within the wetland water column is reas onable, especially among riparian wetland systems. Nutrient concentrations of biomass have b een shown to be more constant spatially and temporally than indicators such as bi omass production, due to variability among sites and across years. Nutrient cycling proce sses in vegetation are established quickly following wetland restoration. Therefore, nutrient characteristic s of vegetation in wetlands could be a useful metric in th e evaluation of wetland restoration success (Whigham et al. 2002). While nutrient characteristics of vegeta tion could be indicative of wetland condition, the seasonal availability of vege tation for sampling limits its value as a universal metric for year-round monitoring. Th e temperate climate of the survey area of this study precluded sampling of wetland plants due to their absence from late fall through early spring.

PAGE 25

13 Temporal variability reflected in the literat ure suggests the need for an indicator of wetland status that is relativ ely independent of seasonal a nd hydrological changes. The validity of a stratum to indicat e differences between impacted and least-impacted sites is important in establishing its potential value as an assessmen t tool for the evaluation and monitoring of wetland condition. Research Objectives There were four principal objectives of this study: Objective One To gather information on wetlands located in Southwestern Indiana to assess the heterogeneity among wetland community types a nd secondarily to determine appropriate aggregation classes of wetland based on biogeochemical characteristics. Objective Two To determine which sampling strata: water, litter, soil, or vegetation, are most responsive to nutrient enrichment. Objective Three To contrast Southwestern Indiana le ast-impacted (reference) wetlands to Southeastern US Wetlands in Eco-region IX and to determine the validity of a single numeric criterion for this eco-region. Objective Four To investigate temporal variability of bi ogeochemical parameters within the water column, litter, soil and vegetation within one wetland over a one year period. Hypothesis In response to these objectives, several hypotheses were proposed. (H1) There will be no difference in strata biogeochemistry among various wetland community types sampled in Indiana. It is suggested that the influence of hydrology would outweigh the characteristics and func tions of wetland community types in the overall assimilation and cycling of nutrients.

PAGE 26

14 (H2) Southwestern Indiana wetlands will have higher phosphorus and nitrogen concentrations than wetlands within the same eco-region in the Southeastern United States. These differences will occur among so il, water, litter and vegetation strata. (H3) There will be differences in seasona l variability among water column, litter, soil or vegetative biogeochemical parameters surveyed. The seasonal variability will be lower for the soil and higher for the water column parameters.

PAGE 27

15 CHAPTER 3 METHODS Sixteen wetland sites in Southwestern Indi ana were surveyed and samples collected between August 8 and September 27, 2003 to determine background concentrations of nutrients Total Phosphorus and Total Nitroge n. Samples were analyzed for twenty biogeochemical indicators in four different st rata including plant, litter, soil and water column nutrient parameters. During the period from October 18, 2003 to July 5, 2004, eight additional monthly surveys were conducted at the Turkey Hill Graywood Marsh to examine temporal variability within a single wetland (Wetland ID Numbers IN15 and IN17 through IN23). The same protocol used in the spatial samp ling was followed for the temporal survey. Both of these sampling methods ar e described in this chapter. Sampling Site Selection Wetland sampling sites were identified afte r review of topographical maps, aerial photographs and wetland data from the United States Fish & Wildlife Service’ National Wetlands Inventory Database and the I ndiana Geological Survey’s GIS Atlas. In addition, natural re source professionals from the U.S. Fish & Wildlife Service, the Indiana Department of Natural Resources, and the Indiana Chapter of the Nature Conservancy were consulted to help identify and procure permission to sample wetlands surveyed. Both wetland community type and wetland condition were factors in site selection (USEPA 2002d).

PAGE 28

16 Identification of Minimally Impaired Wetland Sites Impairment status of wetlands in the surv ey area was difficult to determine due to the prevalence of agricultural, coal mini ng, and floodplain impacts present throughout the geographic area. The wetlands selected were classified as either impacted or leastimpacted, based upon a 10% development criterion. Consistent with the approach of the Southeastern Wetlands Study, if 10% or more of the landscape su rrounding the wetland were significantly altered, it was considered impacted. Of the si xteen wetlands, eleven were identified as least-impacted, and five identified as impacted. Identification of Wetland Community Types Wetland sampling sites were classified by hydr ologic and vegetative criteria. Sites were first assessed using the United States Fish & Wildlife Service’(USFWS) National Wetlands Inventory (NWI) Database, ba sed on the USFWS Wetland and Deepwater Habitat Classification System (Cowardin et al 1979) and later ve rified during sampling. Hydrologic Classification For this study two hydrologic classifi cations for wetlands were recognized, Riparian and Non-riparian. Ri parian wetlands were identifie d as those located within 40 meters of a river or stream. Field classification of sites show ed five Riparian and eleven Non-Riparian wetlands were selected for the surveyed. Vegetative Classification Wetland sites were separated into two ve getative classes, Swamps and Marshes. Designation between Swamps and Marshes were based on structure of dominant vegetative species. If a woody canopy was present and intact, then the area was designated a swamp. If there was no woody canopy or if the canopy consisted of less

PAGE 29

17 than 10% cover, the area was designated a ma rsh. Using this criterion, four sites were considered marshes and twelve sites considered swamps. Combining the hydrologic and vegetative cl assification for each of the wetland sites sampled three of the four possible community type clas sifications were represented in the survey in both impacted and least impacted nutrient co nditions (Table 2-1). Table 2-2 indicates the community type and imp act status of wetlands surveyed in the Southeastern United States that were used for comparative purposes in this research (Greco 2004; Paris 2005). Table 2-1. Number of wetlands surveyed in Southwestern Indiana from each wetland community type and nutrient condition. Impacted Least-Impacted Riparian Swamp 3 2 Riparian Marsh 0 0 Non-Riparian Swamp 1 6 Non-Riparian Marsh 1 3 Table 2-2. Number of wetlands surveyed with in each community type. Sites were all located in the southeastern part of Eco-region IX. Eco-region IX Riparian Swamp 40 Riparian Marsh 4 Non-Riparian Swamp 14 Non-Riparian Marsh 3 Photographs of typical wetla nds surveyed in the Sout hwestern Indiana study are illustrated in Figure 2-1.

PAGE 30

18 Figure 2-1 Photographs representing th e three principal wetland community classifications surveyed in Southweste rn Indiana, (A) Riparian Swamp, (B) Non-Riparian Swamp, and (C) Non-Riparian Marsh. Sampling and Analytical Methods Field sampling and laboratory methodology are described below, beginning with Table 2-3, which provides a numerical lis ting, sampling date, characterization and location coordinates for all wetlands surveyed. Table 2-3. Southwestern Indiana wetla nd research location, sampling dates and characterization. All wetlands in cluded in the su rvey are listed. (A) Riparian Swamp (B) Non-Riparian Swamp(C) Non-Riparian Marsh

PAGE 31

19 Table 2-4 below provides a numerical listi ng, sampling dates, ch aracterization and location coordinates for the temporal portion of the survey that was conducted in the Patoka River National Wildlife Refuge Turkey Hill Graywood Marsh. Table 2-4. Southwestern Indiana wetla nd research location, sampling dates and characterization for Turkey Hill Graywood Marsh, wetland community type: Non-Riparian marsh with Leas t-Impacted wetland condition. ID Date Sampled Wetland Community Type Wetland Condition Location Coordinates IN1 08/08/2003 Riparian Swamp Impacted MillersburgWabash and Erie Canal/Pigeon Creek N 38 05.842' W 87 23.653' IN2 08/09/2003 Non-Riparian Swamp LeastImpacted IDNR* Lost Hill Wetland Conservation Area North N 38 11.220' W 87 25.094' IN3 08/09/2003 Non-Riparian Swamp LeastImpacted IDNR* Lost Hill Wetland Conservation Area South N 38 11.136' W 87 25.114' IN4 08/10/2003 Non-Riparian Swamp Impacted East Mount Carmel N 38 22.697' W 87 43.780' IN5 08/10/2003 Riparian Swamp Impacted Elberfeld-Wabash and Erie Canal/Pigeon Creek N 38 09.692' W 87 24.854' IN6 08/16/2003 Riparian Swamp LeastImpacted Pike State Forest – Patoka River N 38 21.415' W 87 08.973' IN7 08/16/2003 Riparian Swamp Impacted Schlensker Ditch N 38 22.485' W 87 16.722' IN8 08/17/2003 Non-Riparian Marsh LeastImpacted PRNWR* Buck's Marsh N 38 20.812' W 87 19.395' IN9 08/26/2003 Non-Riparian Swamp LeastImpacted IDNR* Big Cypress Slough N 37 49.116' W 88 00.273' IN10 08/30/2003 Non-Riparian Marsh LeastImpacted PRNWR* Snaky Point N 38 21.113' W 87 19.161' IN11 08/31/2003 Non-Riparian Marsh Impacted Snake Lake N 38 22.087' W 87 19.551' IN12 09/07/2003 Riparian Swamp LeastImpacted PRNWR* Hwy 57 @ Patoka River N 38 23.090' W 87 19.888' IN13 09/14/2003 Non-Riparian Swamp LeastImpacted PRNWR* Oxbow-Patoka River South Fork N 38 22.669' W 87 21.405' IN14 09/21/2003 Non-Riparian Swamp LeastImpacted PRNWR* North Meridian Oxbow N 38 23.325' W 87 16.700' IN15 09/21/2003 Non-Riparian Marsh LeastImpacted PRNWR* Turkey Hill Graywood Marsh N 38 22.476' W 87 16.691' IN16 09/27/2003 Non-Riparian Swamp LeastImpacted TNC* Goose Pond Cypress Slough N 37 54.316' W 87 50.089' *IDNR Indiana Department of Natural Resources *PRNWR Patoka River National Wildlife Refuge *TNC The Nature Conservancy

PAGE 32

20 Sample Locations A targeted, stratified sampling approach was used to encompass spatial variation of the wetlands’ inundation patterns. For all wetlands surv eyed, a baseline transect was established from the edge of the wetland to ward the geographical center of the wetland. Three zones were then identified along each tr ansect for survey and sampling: the core wetland (A), edge wetland (B) and the adjacent upland (U). Within each of these zones, perpendicular transects, parallel to the upland/wetland boundary, were used to locate three sub-sample sites for each zone. Smalle r non-riparian wetlands were sampled with an outer ring (B) transect a nd an inner ring (A) sites at th e center of the wetland. Each sub-sampling location was approximately 30 meters apart. (Figure 2-3). ID Date Sampled Coordinates IN15 09/27/2003 N 38 22.476' W 87 16.691' IN17 10/18/2003 N 38 22.482' W 87 16.715' IN18 11/29/2003 N 38 22.481' W 87 16.715' IN19 12/30/2003 N 38 22.481' W 87 16.715' IN20 02/29/2004 N 38 22.481' W 87 16.715' IN21 04/30/2004 N 38 22.480' W 87 16.713' IN22 06/01/2004 N 38 22.477' W 87 16.693' IN23 07/05/2004 N 38 22.485' W 87 16.721'

PAGE 33

21 Figure 2-2. Wetland sub-sample locations of (a ) Riparian (b) small Non-Riparian and (c) large, Non-Riparian Systems. Wetla nd zones sampled included the Inner Core (A), Outer Edge (B) and Adjacent Upland (U). A Wetland Characterization Form (Appendix D) was used to guide and document the field survey and sampling tasks. Detailed land-use and descriptive assessments of the wetland and adjacent upland were recorded. In addition, this form included documentation of vegetative speci es characterization at each of the wetland sub-samples wetland zones. Information compiled from the Wetland Characterization Forms can be referenced in Appendix A. A1A2A3B1B3B2Upland Edge Center (a) A B 1 Upland River Center Edge Ecotone(Not sampled) Upland Center b) Small Non-Riparian c) Large Non-Riparian A ) Riparian B 2 B 3 A 1A 2 A 3 A1A2A3B3B2B1Edge A1A2A3B1B3B2Edge Center (a) A B 1 River Center Edge Ecotone(Not sampled) Upland Center a) Riparian B 2 B 3 A 1A 2 A 3 A1A2A3B3B2B1Edge

PAGE 34

22 Water Column Physical Parameters When water was present at the sub-sa mple locations, field conditions were analyzed using a Yellow Springs Instruments YSI-556 MPS portable meter, calibrated prior to use and at the conc lusion of the day’s sampling for the following parameters: Temperature pH Dissolved Oxygen Conductivity Oxidation-Reduction Potential Water Sample Collection Where present, water samples were colle cted at each sub-sample location. The three sub samples within a zone were composited into a 125 ml, acid-washed, HDPE bottle. Before sample collection, bottles we re triple-rinsed with site water. Water samples were stored on ice for transpor t, frozen, then shipped to the Wetland Biogeochemistry Laboratory at the University of Florida. Upon rece ipt of the samples by the laboratory, sub-samples of the water composites were filtered through 0.45m filter paper and analyzed for nitrate and nitrite wi th a Rapid Flow Analyzer (RFA). A 10 ml non-filtered sub-sample was digested and an alyzed for Total Kjeldal Nitrogen (TKN). The nitrate-nitrite and the TKN results were summed to determine total nitrogen concentrations. Total phosphorus was dete rmined using colorimetric analysis on a Technicon AA II after sulfuric acid and pot assium persulfate digestion (EPA method 365.1-1993).

PAGE 35

23 Soil Soil samples were collected at the sub-samp le locations of each transect. A clean 7.3 cm diameter tenite butyrate sampling tube attached to a sharp coring head was driven into the soil a minimum depth of 10 cm. After corer insertio n, a rubber stopper was placed inside the sampling tube at the base of the soil sample. The sample was then extruded by pushing the rubber stopper against a piston rod, forcing the soil sample out of the top of the sampling tube into a 10 cm tenite butyrate collar. Any leaf litter at the top surface of the core was carefully removed, and the upper 10 cm of soil was sliced with a stainless steel pocketknife, and placed in a zip lock bag. The three sub-samples from each transect we re combined, yielding composite samples of the wetland core, wetland edge and the adjace nt upland transects. Samples were stored on ice for transport to the Wetland Biogeoche mistry Laboratory at the University of Florida. Upon receipt by the laboratory, the wet weight of the composite sample was recorded for bulk density calculation. A s ub-sample of the homogenized composite was placed in a 250 ml shallow dish, weighed, a nd dried at 70 C for 48 hours. The dried sample weight was used to calculate the percent moisture in the sample. Dried samples were ground with mortar and pestle, followed by mechanical grinding using a ball mill for eight minutes. These samples were passed through a 1 mm sieve and placed into scintillation vials. Or ganic Matter Content was determined by Loss on Ignition (LOI), and Total Phosphorus (T P) was analyzed usi ng the Ignition Method (Anderson 1976). Total Nitrogen (TN) and To tal Carbon (TC) were determined using a Carlo Erba NA 1500 CNS Analyzer (Haak Bu chler Instruments, Saddlebrook, NJ).

PAGE 36

24 Leaf Litter Leaf litter samples were also collected at the sub-sample locations of each transect. A 40 cm diameter PVC ring was placed on the so il surface and all loose debris within the ring was collected until reaching a layer of fi ne, well-decomposed particles. Due to the varying sources of litter and decomposition ra tes, it was sometimes necessary to collect additional litter samples at the sub-sample locations to ensure adequate sample for analysis. As with the water and soil samples, the th ree leaf litter sub-samples were combined to yield a composite sample for each of the wetland core and wetland edge transects. The samples were placed in a Ziploc bag, sealed and stored on ice for transport to the Wetland Biogeochemistry Laboratory at the University of Florida. Upon receipt by the laborator y, the litter samples were pl aced in a paper bag and dried for 72 hours at 60C. The dried sample s were initially ground in a Wiley mill to pass through a 1 mm sieve. Samples were then ground a second time to pass through a 40m sieve. Total Phosphorus was determ ined by the Ignition Method (Anderson 1976). Total Nitrogen (TN) and Total Carbon (TC) were analyzed using a Carlo Erba NA 1500 CNS Analyzer (Haak Buchler In struments, Saddlebrook, NJ). Vegetation Vegetation was collected on a selected sp ecies basis, sampling only from mature leaves not subject to herbivory or senes cence. Vegetation was sampled by removing the leaf at the point where the node was attached to the stem. Leaves from multiple plants of the same species throughout the wetland were composited. Vegetation samples were dried for seven da ys at 60C, then ground to passing a 40 m sieve prior to analysis. Total Carbon (TC) and Total Nitrogen (TN) analysis were

PAGE 37

25 conducted on 0.5 – 2.0 mg vegetation samples using a Carlo Erba Model 1500 NA. Total Phosphorus (TP) content was determined by the Ignition Method (Anderson 1976) using a Technicon II Colorimetric Auto-Analyzer (EPA Method 365-1). Data Analysis All statements of statistical significan ce are based on a significance threshold of = 0.05. Paired comparisons used a standard “T” test for evaluation of significant differences. For comparison among community types, ANOVA with the Tukey-Kramer Honestly Significant Difference (HSD) multip le comparison test was used. Most variables required log transf ormation prior to statistica l analysis. JMP version 4.04 statistical software and Micros oft Excel version 2003 were used in statistical analysis and data summaries.

PAGE 38

26 CHAPTER 3 RESULTS Samples collected during the field su rveys were analyzed for twenty biogeochemical parameters among four different strata: plant, litter, soil, and the water column. Because of their relative impact on wetland and water quality, the analysis of the nutrient parameters total phosphorus and to tal nitrogen was the primary focus of this report. The analytical results of all parameters are provided for informational purposes in the interest of future study. In Tables 3-1 through 3-8, general descri ptive statistic s and paired comparison ttests using p-values ( =0.05) calculated by the Tukey-Kr amer Honestly Significant Difference (HSD) test are presented for all we tland strata parameters, as aggregated by the following classification criteria: 1. All Wetlands (Combined) 2. Hydrologic Connectivity (Rip arian and Non-Riparian) 3. Vegetative Character (Swamp or Marsh) 4. Community Type (Riparian Swamp, Riparian Marsh, Non-Riparian Swamp, Non-Riparian Marsh) 5. Wetland Condition (Least-Impacted and Impacted) Table 3-9 summarizes the statistical data comparing all strata nutrient indicators between least-impacted and impacted wetlands that were surveyed. Figures 3-1 through 3-8 provide a graphical representa tion with box plots showing the 10th, 25th, median, 75th and 90th percentiles comparing nutrient in dicators from sampling conducted in Southwestern Indiana relative to the collabora tive survey results in the Southeastern United States.

PAGE 39

27 Spatial Study Results Water Where present in the wetland, water sample s were collected to determine nutrient concentrations in the water column. Survey ed wetlands showed little difference in total phosphorus when aggregated by hydrologic cla ss, but Swamps had almost 75% higher water column phosphorus concentration than Marshes (Table 3-1). Non-Riparian Swamps had the highest tota l phosphorus concentration a nd Non-Riparian marshes the lowest of wetland community type. Total Nitrog en concentration did not appear to vary significantly regardless of class aggregation. Table 3-1. General descriptiv e statistics summary of water column total phosphorus and total nitrogen concentrations for wetla nds surveyed in Indiana. Wetlands were aggregated using several di fferent classification criteria. Total Phosphorus Total Nitrogen Mean + 1SD Mediann Mean + 1SD Mediann Wetlands Classification mg/l mg/l All Wetlands 0.295 + 0.169 0.237 22 2.69 + 1.52 2.31 22 Hydrologic Riparian 0.284 + 0.191 0.245 5 2.56 + 1.40 2.33 5 Non-Riparian 0.298 + 0.168 0.228 17 2.72 + 1.59 2.3 17 Vegetative Swamp 0.327 + 0.180 0.305 17 2.77 + 1.68 2.33 17 Marsh 0.186 + 0.039 0.166 5 2.39 + 0.84 2.29 5 Community Type Riparian Swamp 0.284 + 0.191 0.245 5 2.56 + 1.40 2.33 5 Non-Riparian Swamp 0.345 + 0.180 0.356 12 2.86 + 1.83 2.36 12 Non-Riparian Marsh 0.186 + 0.390 0.166 5 2.39 + 0.85 2.29 5 Condition Least-Impacted 0.318 + 0.170 0.251 15 2.89 + 1.63 2.42 15 Impacted 0.222 + 0.167 0.179 8 2.11 + 1.24 1.95 8 Pair-wise comparison of tota l phosphorus and total nitr ogen in the water column showed no significant differences when aggreg ated by hydrologic class, vegetative class, community type, or wetland condition (Tab le 3-2). ANOVA of the three community

PAGE 40

28 types surveyed showed no significant diffe rences among the aggregation for total phosphorus or total nitrogen. Table 3-2. Statistical comparison of water column total phosphorus and total nitrogen concentrations for wetlands surveyed in Indiana, aggregated using several different classification crit eria. A standard T-test for significant difference was used in paired comparisons with probability ‘P’values ( =0.05) presented with bold font indicating values of significant difference. For comparison among community types, ANOVA was us ed (Tukey-Kramer HSD). Lower case letters denote statistically similar values. Wetlands Classification Total Phosphorus Total Nitrogen Hydrologic Riparian vs. Non-Riparian 0.871 0.839 Vegetative Swamp vs. Marsh 0.104 0.633 Community Type 0.216 0.840 Riparian Swamp a A Non-Riparian Swamp a A Non-Riparian Marsh a A Condition Impacted vs. Least-Impacted 0.350 0.378 Leaf Litter Leaf litter was collected at all sub-sample locations al ong the survey transects to determine nutrient concentrati ons in this stratum. To tal phosphorus concentrations showed little difference as aggregated by hydrologic class or wetland condition, but similar to water column results, Swamps ha d 70% higher phosphorus concentration in the litter than Marshes (Table 3-3). Non-Ripari an Swamps had the highest concentration of total phosphorus, and Non-Riparian Marshes, the lowest of wetland community type. Surveyed wetlands showed little differen ce in total nitrogen concentration as aggregated by hydrologic cla ss, but Non-Riparian Mars hes had approximately 40% higher nitrogen concentration than Swamps. Total nitrogen concentrations in LeastImpacted wetlands were 35% hi gher than Impacted Wetlands.

PAGE 41

29 There was little difference noted in total carbon concentration from litter samples as aggregated by hydrologic and ve getative classes, or commun ity type. Least-Impacted sites showed nearly 30% hi gher total carbon concentrations than Impacted wetlands. Table 3-3. General descriptive statistics summ ary of leaf litter to tal phosphorus, total nitrogen and total carbon concentrations for wetlands surveyed in Indiana. Wetlands were aggregated using severa l different classification criteria. Total Phosphorus Total Nitrogen Mean + 1SD Mediann Mean + 1SD Mediann Wetlands Classification mg/kg g/kg All Wetlands 2661 + 763.8 2851 17 14.4 + 5.25 13.4 24 Hydrologic Riparian 2875 + 831.7 2825 8 12.8 + 4.4 12.7 7 Non-Riparian 2471 + 689.2 2851 9 15.1 + 5.54 13.6 17 Vegetative Swamp 2870 + 660.0 2936 14 13.1 + 3.40 13.1 18 Marsh 1685 + 318.4 1712 3 18.5 + 7.79 16.4 6 Community Type Riparian Swamp 2875 + 831.7 2825 8 12.8 + 4.42 12.7 7 Non-Riparian Swamp 2863 + 405.1 2945 6 13.3 + 2.83 13.6 11 Non-Riparian Marsh 1685 + 318.4 1712 3 18.5 + 7.79 16.4 6 Condition Least-Impacted 2464 + 706.1 2715 9 15.6 + 5.55 14.3 17 Impacted 2882 + 810.9 2951 8 11.6 + 3.25 11.8 7 Total Carbon Mean + 1SD Mediann Wetlands Classification g/kg All Wetlands 295 + 85.06 318 24 Hydrologic Total Carbon Mean + 1SD Mediann Wetlands Classification g/kg Riparian 262 + 86.1 277 7 Non-Riparian 308.5 + 83.4 329. 17 Vegetative Swamp 293.3 + 91.8 310 18 Marsh 300 + 67.9 331 6 Community Type Riparian Swamp 262.2 + 86.1 277 7 Non-Riparian Swamp 313.1 + 93.6 317 11 Non-Riparian Marsh 300.1+ 67.9 331 6

PAGE 42

30 Table 3-3. Continued Condition Least-Impacted 316.0 + 78.0 332 17 Impacted 244.1 + 85.2 248 7 Paired comparisons of total phosphorus and to tal nitrogen in litter samples showed no significant differences when aggregated by hydrologic class or wetland condition (Table 3-4). Significant diffe rences were noted in total phosphorus when aggregated by vegetative class and community type, and in total nitrogen when wetlands were aggregated by vegetative class. ANOVA of th e three community types surveyed showed significant differences in total phosphorus c oncentration between Non-Riparian Marshes and both Non-Riparian Swamps and Riparian Swamps. Significant di fferences were also noted for total carbon concen tration between Riparian Sw amps and both Non-Riparian Swamps and Non-Riparian Marshes. Table 3-4. Statistical compar ison summary of leaf litter to tal phosphorus, total nitrogen and total carbon concentrations for wetla nds surveyed in Indiana, aggregated using several different cla ssification criteria. A sta ndard T-test for significant difference was used in paired comp arisons, with probability ‘P’values ( =0.05) presented with bold font indicati ng values of significant difference. For comparison among community types, ANOVA was used (Tukey-Kramer HSD). Lower case letters denote statistically similar values. Wetlands Classification Total Phosphorus Total Nitrogen Total Carbon Hydrologic Riparian vs. NonRiparian 0.2904 0.3358 0.2334 Vegetative Swamp vs. Marsh 0.009 0.024 0.8701 Community Type 0.039 0.082 0.4782 Riparian Swamp a a B NonRiparian Swamp a a A NonRiparian Marsh b a A Condition Impacted vs. Least-Impacted 0.273 0.095 0.0578

PAGE 43

31 Soil Soil samples were collected at each sub-sample location of the wetland survey transects to determine nutrient concentrations in this stratum. Soil pH mean values generally ranged from 5.5 to 6.1 (Table 3-5) When aggregated by vegetative class, Marshes were 0.5 pH units high er than Swamps. Similarly, Impacted wetlands were 0.5 pH units higher than Least-Impacted sites. When aggregated by hydrologic class, or ganic matter content in Non-Riparian wetlands was 75% higher than Riparian wetla nds. Vegetative cl ass aggregation found Marshes contained 50% more organic matte r than Swamps. Among community types, Non-Riparian Marshes contained twice as mu ch organic matter as Riparian Swamps. Least-Impacted wetlands were 30% higher in organic matter content th an Impacted sites. Total Phosphorus concentration in surv eyed wetlands showed little difference among the various aggregations with the ex ception of wetland condition, where Impacted wetlands contained 40% more total phosphorus than Least-Impacted sites. Total nitrogen as aggregated by hydrol ogic class showed concentrations 88% higher in Non-Riparian compared to Riparian wetlands. Lit tle difference was noted when aggregated by vegetative class. Consistent with results from the hydrologic class aggregation, Non-Riparian Swamp and Marsh community types were over 90% higher in total nitrogen than Riparian Swamps. LeastImpacted wetlands were over 50% in total nitrogen than Impacted sites. Total carbon concentrations were sign ificantly different when aggregated by hydrologic, vegetative, and community type classifications. N on-Riparian wetlands contained twice as much total carbon as Riparian wetlands. Ma rshes contained 70% more total carbon than Swamps, and Non-Ripa rian Marshes well over twice as much total

PAGE 44

32 carbon as Riparian Swamps. While Least-Imp acted wetlands showed higher total carbon than Impacted sites, the difference was not significant. Table 3-5. General descriptive statistics summary of soil pH, organic matter, total phosphorus, total nitrogen and total ca rbon concentrations for wetlands surveyed in Indiana. Wetlands were aggregated using several different classification criteria. pH Organic Matter Mean + 1SD Mediann Mean + 1SD Mediann Wetlands Classification Standard Units % All Wetlands 5.7 + 0.9 5.9 32 13.3 + 5.70 12.3 31 Hydrologic Riparian 5.6 + 0.9 5.9 10 8.81 + 2.38 8.8 10 Non-Riparian 5.7 + 1.0 5.9 22 15.4 + 5.62 15.3 21 Vegetative Swamp 5.5 + 1.0 5.5 24 11.7 + 5.43 9.5 23 Marsh 6.1 + 0.8 6.2 8 17.73 + 3.96 17.7 8 Community Type Riparian Swamp 5.6 + 0.9 5.9 10 8.81+ 2.38 8.8 10 Non-Riparian Swamp 5.5 + 1.0 5.4 14 13.9 + 6.13 13.6 13 Non-Riparian Marsh 6.1 + 0.8 6.2 8 17.7 + 3.96 17.7 8 Condition Least-Impacted 5.5 + 0.9 5.5 22 14.3 + 5.11 13.6 21 Impacted 6.1 + 0.9 6.2 10 11.1 + 6.50 8.8 10 Total Phosphorus Total Nitrogen Mean + 1SD Mediann Mean + 1SD Mediann Wetlands Classification mg/kg g/kg All Wetlands 778 + 219 754 31 3.8 + 1.6 3.6 21 Hydrologic Riparian 700 + 160 688 10 2.4 + 0.86 2.6 7 Non-Riparian 815 + 237 796 21 4.5 + 1.44 4.4 14 Vegetative Swamp 800 + 246 803 23 3.6 + 1.61 3.3 16 Marsh 716 + 101 723 8 4.7 + 1.4 4.1 5 Community Type Riparian Swamp 700 + 160 688 10 2.4 + 0.86 2.6 7 Non-Riparian Swamp 876 + 277 930 13 4.4 + 1.55 4.39 9 Non-Riparian Marsh 716 + 101 723 8 4.7 + 1.36 4.1 5 Condition Least-Impacted 600 + 121 591 10 4.2 + 1.6 4.2 16 Impacted 863 + 206 830 21 2.7 + 0.77 2.9 5

PAGE 45

33 Table 3-5. Continued Total Carbon Mean + 1SD Median n Wetlands Classification g/kg All Wetlands 57.1 + 28.4 54.3 21 Hydrologic Riparian 32.8 + 13.1 34.4 7 Non-Riparian 69.3 + 26.3 69.7 14 Vegetative Swamp 48.7 + 26.5 47.1 16 Marsh 84.0 + 14.8 83.7 5 Community Type Riparian Swamp 32.8 + 13.1 34.4 7 Non-Riparian Swamp 61.1 + 28.3 55.2 9 Non-Riparian Marsh 84.1 + 14.8 83.7 5 Condition Least-Impacted 59.8 + 27.6 57.7 16 Impacted 48.6 + 32.9 46.9 5 Paired comparisons of soil pH values showed no significant differences when aggregated by hydrologic class, vegetative class, community type, or wetland condition (Table 3-6). ANOVA of the three community types surveyed also showed no significant differences in soil pH. Significant differences in organic matter content were shown for aggregations by hydrologic class, vegetati ve class and community type, but not for wetland condition. ANOVA of the three community types surveyed showed significant differences in organic matter between Ripari an Swamps and both Non-Riparian Swamps and Marshes. There were no significant di fferences in total phosphorus noted by pairwise comparison of hydrologic class, vegetative class, or community type aggregations. However, significant differences in total phos phorus were noted between Impacted and Least-Impacted wetlands. ANOVA of the th ree community types surveyed showed no significant differences in to tal phosphorus concentration.

PAGE 46

34 Paired comparisons by both hydrologic class and community type showed significant differences in tota l nitrogen between Riparian a nd Non-Riparian wetlands. As aggregated by vegetative class and wetla nd condition, there were no significant differences between Swamps and Marshes, or Impacted and Least-Impacted sites, respectively. ANOVA of the three commun ity types surveyed showed significant differences in total nitrogen between Ripa rian Swamps and both Non-Riparian Swamps and Marshes. Significant differences in tota l carbon content were s hown for aggregations by hydrologic class, vegetative class and co mmunity type, but not for wetland condition. ANOVA of the three community types surveyed showed significant differences in total carbon between Riparian Swamps and both Non-Riparian Swamps and Marshes. Table 3-6. Statistical compar ison summary of soil pH, organic matter, total phosphorus, total nitrogen and total carbon concen trations for wetlands surveyed in Indiana, aggregated using several differ ent classification criteria. A standard T-test for significant difference was used in paired comparisons, with probability ‘P’values ( =0.05) presented with bold font indicating values of significant difference. For comparison among community types, ANOVA was used (Tukey-Kramer HSD). Lowe r case letters denote statistically similar values. Wetlands Classification pH Organic Matter Total Phosphorus Total Nitrogen Total Carbon Hydrologic Riparian vs. NonRiparian 0.756 0.001 0.166 0.003 0.003 Vegetative Swamp vs. Marsh 0.095 0.005 0.394 0.177 0.011 Community Type 0.234 0.001 0.101 0.011 0.002 Riparian Swamp a a a a a NonRiparian Swamp a b a b b NonRiparian Marsh a b a b b Condition Impacted vs. Least-Impacted 0.139 0.118 0.001 0.060 0.157 Vegetation Vegetation samples were collected in th e wetland survey areas to determine nutrient concentrations in the common vegeta tion. No significant differences were noted

PAGE 47

35 when aggregated by hydrologic class, commun ity type, or wetland c ondition (Table 3-7). Vegetative aggregation of the surveyed wetlands, however, indicated tissue total phosphorus concentrations in Marshes were over 50% higher than Swamps. Tissue total nitrogen concentration s howed no significant differences when wetlands were aggregated by hydrologic class, community type, or wetland condition. Aggregation of the wetlands by vegetativ e class showed tissue total nitrogen concentrations in Marshes were over 40% higher than Swamps. Comparison of tissue total carbon show ed no significant differences when aggregated by hydrologic class, vegetative class, community type, or wetland condition. Table 3-7. General descriptiv e statistics summary of vege tation total phosphorus, total nitrogen and total carbon concentrations for wetlands surveyed in Indiana. Wetlands were aggregated using severa l different classification criteria. Tissue Total Phosphorus Tissue Total Nitrogen Mean + 1SD Mediann Mean + 1SD Mediann Wetlands Classification % % All Wetlands 0.22 + 0.14 0.18 34 2.56 + 0.98 2.09 21 Hydrologic Riparian 0.17 + 0.08 0.19 5 2.12 + 0.46 1.99 4 Non-Riparian 0.23 + 0.15 0.18 28 2.66 + 1.05 2.09 17 Vegetative Swamp 0.18 + 0.11 0.16 21 2.11 + 0.69 2.03 11 Marsh 0.28 + 0.18 0.18 13 3.05 + 1.05 3.2 10 Community Type Riparian Swamp 0.17 + 0.08 0.19 6 2.12 + 0.46 1.99 4 Non-Riparian Swamp 0.18 + 0.12 0.15 15 2.11 + 0.83 2.03 7 Non-Riparian Marsh 0.28 + 0.18 0.18 13 3.05 + 1.05 3.2 10 Condition Least-Impacted 0.23 + 0.16 0.18 27 2.70 + 1.11 2..09 15 Impacted 0.19 + 0.09 0.22 7 2.2 + 0.43 2.1 6 Tissue Total Carbon Mean + 1SD Mediann Wetlands Classification % All Wetlands 45.33 + 2.97 46.72 21 Hydrologic Riparian 45.48 + 2.08 46.35 4 Non-Riparian 45.30 + 3.20 47.3 17

PAGE 48

36 Table 3-7. Continued Tissue Total Carbon Mean + 1SD Mediann Wetlands Classification % Vegetative Swamp 44.54 + 3.24 45.97 11 Marsh 46.2 + 2.53 47.37 10 Community Type Riparian Swamp 45.48 + 2.08 46.35 4 Non-Riparian Swamp 44.01 + 3.79 43.89 7 Non-Riparian Marsh 46.20 + 2.53 47.37 10 Condition Least-Impacted 45.50 + 3.37 47.37 15 Impacted 44.92 + 1.83 44.93 6 Pair-wise comparison of ti ssue total phosphorus showed no significant differences when aggregated by hydrologic class, commun ity type, or wetland c ondition (Table 3-8). Significant differences were not ed when aggregated by vege tative class. Tissue total nitrogen concentrations aggregated by hydrologic class, community type, or wetland condition showed no significant differences, wh ile significant differe nces were noted in vegetative class. Paired comparisons of wetland aggregations by hydrologic class, vegetative class, community type, or wetla nd condition showed no significant differences in total carbon concentration. ANOVA of the three community types surveyed showed no significant differences among the aggrega tion for total phosphorus, total nitrogen, or total carbon. Table 3-8. Statistical comp arison summary of vegetation tissue total phosphorus, total nitrogen and total carbon concentrations for wetlands surveyed in Indiana, aggregated using several diffe rent classification criteria A standard T-test for significant difference was used in paired comparisons, with probability ‘P’values ( =0.05) presented with bold font indicating values of significant difference. For comparison among community types, ANOVA was used (Tukey-Kramer HSD). Lower case letters denote statistically similar values. Wetlands Classification Tissue Total Phosphorus Tissue Total Nitrogen Tissue Total Carbon Hydrologic Riparian vs. NonRiparian 0.3568 0.3327 0.9194

PAGE 49

37 Table 3-8. Continued Wetlands Classification Tissue Total Phosphorus Tissue Total Nitrogen Tissue Total Carbon Vegetative Swamp vs. Marsh 0.038 0.025 0.2098 Community Type 0.119 0.087 0.3426 Riparian Swamp a a A NonRiparian Swamp a a A NonRiparian Marsh a a A Condition Impacted vs. Least-Impacted 0.569 0.301 0.6995 Summarized Nutrient Indicator Strata Table 3-9 below summarizes the statistical data comparing all strata nutrient indicators between least-impacted and imp acted wetlands surveyed. Soil was the only stratum that demonstrated significant differe nces between Impacted and Least-Impacted wetlands was soil. Total phosphorus concentrat ions were higher in Impacted wetlands and total nitrogen was higher in Least-Impacted wetlands. Table 3-9. Summary table of nutrient indicator strata. Pa ired comparison standard Ttests with probability ‘P’values ( =0.05) in bold font denoting values of significant difference in nutrient indicator strata concentrations between Least-Impacted and Impacted wetlands surveyed in Southwestern Indiana. Nutrient Indicator Strata Nutrient Wetland Nutrient Condition P-Values Wetland Nutrient Condition Least Impacted Impacted Water P, mg/l 0.32 + 0.17 0.350 0.22 + 0.17 N, mg/l 2.89 + 1.63 0.378 2.11 + 1.24 Litter P mg/kg 2460 + 710 0.273 2880 + 810 N g/kg 15.6 + 5.55 0.095 11.6 + 3.3 Soil P mg/kg 600 + 120 0.001 860 + 210 N g/kg 4.2 + 1.6 0.060 2.7 + 0.7 Vegetation P % 0.23 + 0.16 0.569 0.19 + 0.09 N % 2.70 + 1.11 0.301 2.20 + 0.43

PAGE 50

38 Comparison of SW Indiana Wetlands and SE US Wetlands in Eco-region IX Figures 3-1 through 3-8 below illustrate th e comparison of nutrien t indicators in the water column, litter, soil, and vegetati ve tissue from sampling conducted in the Southwestern Indiana Wetland Biogeochemical Survey and the collaborative Eco-region IX studies of the Southeastern United States: So utheastern Wetland Biogeochemical Survey: Determination and Establishmen t of Numeric Nutrient Criteria (Paris 2005) and A Biogeochemical Survey of Wetlands in the Southeastern United States (Greco 2004). Box plots showing the 10th, 25th, median, 75th and 90th percentiles comparing nutrient indicators from sampling conducted in Southwes tern Indiana relative to the collaborative survey results in the Southeastern United St ates are presented below. All data are samples collected from Least-Impacted wetlands. Water Column Water column total phosphorus concentrations from surveyed wetlands in Indiana were significantly different from wetlands surv eyed in the other stat es of Eco-Region IX (Figure 3-1).

PAGE 51

39 Figure 3-1. Water Column Total Phosphor us Comparison between Least-Impacted Wetlands Surveyed in Southwestern Indiana and Eco-Region IX LeastImpacted Wetlands. Water column total nitrogen concentrati ons from wetlands surveyed in Indiana were not significantly different from those wetlands surveyed in other states in EcoRegion IX (Figure 3-2). Total Phosphorus, mg/l 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 8 Indiana Alabama Florida GeorgiaStateb a a a

PAGE 52

40 Figure 3-2. Water Column Total Nitroge n Comparison between Least-Impacted Wetlands Surveyed in Southwestern Indiana and Eco-Region IX LeastImpacted Wetlands. Litter Litter total phosphorus concentrations fr om the Indiana wetland samples were significantly different from wetlands surveyed in Florida and Geor gia (Figure 3-3). Wetlands in Alabama and South Carolina had si milar total phosphorus concentrations to the Indiana wetlands. Total Nitrogen, mg/l 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Indiana Alabama Florida GeorgiaStatea a aa

PAGE 53

41 Figure 3-3. Litter Total Phosphorus Compar ison between Least-Impacted Wetlands Surveyed in Southwestern Indiana and Eco-Region IX Least-Impacted Wetlands. Litter total nitrogen concentrations from the Indiana wetland samples were similar to Eco-Region IX wetlands in Alabama, Sout h Carolina, and Georgi a, but significantly different from those in Florida (Figure 3-4). T o t a l Ph osp h orus % 0 1 2 3 4 5 6 Indiana Alabama Florida Georgia South CarolinaStatea ab bc c c

PAGE 54

42 Figure 3-4. Litter Total Nitrogen Compar ison between Least-Impacted Wetlands Surveyed in Southwestern Indiana and Eco-Region IX Least-Impacted Wetlands. Vegetation Vegetation tissue total phosphor us concentrations in wetlands surveyed in Indiana were similar to Eco-Region IX wetlands in Alabama, Georgia and South Carolina, but were significantly different from wetlands surveyed in Florida (Figure 3-5). Nitrogen, % 0 0.5 1 1.5 2 2.5 3 Indiana Alabama Florida Georgia South CarolinaStatea b b b ab

PAGE 55

43 Figure 3-5. Vegetation Tissu e Total Phosphorus Comparison between Least-Impacted Wetlands Surveyed in Southwestern Indiana and Eco-Region IX LeastImpacted Wetlands. Vegetation tissue total nitrogen concentr ations from Indiana wetlands surveyed were similar to those in Eco-Region IX wetlands in Alabama, Georgia, and South Carolina, but significantly different from su rveyed wetlands in Florida (Figure 3-6). Phosphorus, % 0 0.1 0.2 0.3 0.4 0.5 Indiana Alabama Florida Georgia South CarolinaStatea b b ab ab

PAGE 56

44 Figure 3-6. Vegetation Tissue Total Nitr ogen Comparison between Least-Impacted Wetlands Surveyed in Southwestern Indiana and Eco-Region IX LeastImpacted Wetlands. Soil Soil total phosphorus concen trations from surveyed wetlands in Indiana were significantly different among all wetlands in the other Eco-Region IX states surveyed (Figure 3-7). Nit rogen, % 0.5 1 1.5 2 2.5 3 3.5 4 4 5 Indiana Alabama Florida Georgia South CarolinaStatea ab ab b b

PAGE 57

45 Figure 3-7. Soil Total Phosphorus Compar ison between Least-Impacted Wetlands Surveyed in Southwestern Indiana and Eco-Region IX Least-Impacted Wetlands. Soil total nitrogen concentrations from th e wetlands surveyed in Indiana were not significantly different from the wetlands surv eyed in other states of Eco-Region IX (Figure 3-8). S o il TP % 0 0.1 Indiana Alabama Florida Georgia South CarolinaStatea a b c b

PAGE 58

46 Figure 3-8. Soil Total Nitrogen Comparison between Least-Impacted Wetlands Surveyed in Southwestern Indiana and EcoRegion IX Least-Impacted Wetlands. Temporal Study Results The sampling results of the temporal study conducted in the Turkey Hill Graywood Marsh are presented below by strata (water co lumn, litter and soil), with XY plots of the analytical data plotted along a temporal gr adient for the sampling period September 31, 2003 to July 5, 2004. Tables summarizing th e Mean, Standard De viation, Variance and Confidence Level of the paramete rs for all strata are presente d at the end of each section. Water Water Column field parameters: pH, Dissolved Oxygen, and Depth, and nutrient concentrations for Total Phosphorus and Tota l Nitrogen are presented below in Figures 39 through 3-13, to illustrate the seasonal vari ability observed during the temporal survey. S oil TN 0 0.5 1 1.5 2 2 5 Indiana Alabama Florida Georgia South CarolinaState a b ab ab ab

PAGE 59

47 Water depth recorded in the wetland zones A and B illustrates the seasonal hydroperiod in Figure 3-9. 0 5 10 15 20 25 30 35 40 Aug-03Oct-03Nov-03Jan-04Mar-04Apr-04Jun-04Aug-04 TimeDepth, inches A B Figure 3-9. Water Column Depth in Inches Wetland zones sampled included the Inner Core (A) and Outer Edge (B). Mean and Standard Deviation of both zones are presented. Water column field pH measurements (Figure 3-10) generally showed little difference between the Inner Core (A) and Ou ter Edge (B) zones of the wetland, probably due to the relative homogeneity of the water column. Thos e readings where differences were noted may be due to very shallow sa mpling areas in the Outer Edge zone which could have higher temperatures and magnifi ed affects from the soil/water column interface.

PAGE 60

48 5 5.5 6 6.5 7 7.5 Aug-03Oct-03Nov-03Jan-04Mar-04Apr-04Jun-04Aug-04 TimepH A B Figure 3-10. Water Column Field pH. Wetla nd zones sampled included the Inner Core (A) and Outer Edge (B). Mean and Standard Deviation of both zones are presented. Water column dissolved oxygen concentratio ns over the temporal gradient show a general increase through the fall and spring (Figure 3-11). This could be partially due to decreasing seasonal temperature and increase d emergent and floating vegetation (Lemna) noted in the wetland in the spring.

PAGE 61

49 -20 0 20 40 60 80 100 120 140 160 180 200 Aug-03Oct-03Nov-03Jan-04Mar-04Apr-04Jun-04Aug-04 TimeDissolved oxygen, mg/L A B DO Figure 3-11. Water Column Dissolved Oxyge n, %. Wetland zones sampled included the Inner Core (A) and Outer Edge (B). Mean and Standard Deviation of both zones are presented. Water column total phosphorus concen tration shown in Figure 3-12 reflects variability of the seasonal hydroperiod. Outer Edge (B) to tal phosphorus concentrations were well above the corresponding Inner Core (A) samples collected during the peak of the summer season. 0 0.2 0.4 0.6 0.8 1 Aug-03Oct-03Nov-03Jan-04Mar-04Apr-04Jun-04Aug-04Water Column TP, mg/l A B Figure 3-12. Water Column Total Phosphorus mg/L. Wetland zones sampled included the Inner Core (A) and Outer Edge (B).

PAGE 62

50 Water column total nitrogen in Figure 313 reflects variability of the seasonal hydroperiod. Total nitrogen concentrations in the Outer Edge (B) samples were higher than Inner Core (A) in almost every sampling event, with significant increased separation between the zones during the peak of the summer season. 0 0.5 1 1.5 2 2.5 3 3.5 Aug-03Oct-03Nov-03Jan-04Mar-04Apr-04Jun-04Aug-04Water Column TN, mg/l A B Figure 3-13. Water Column Total Nitrogen, mg/L. Wetland zones sampled included the Inner Core (A) and Outer Edge (B). Table 3-10 below lists the summary statistics of Water Column sample analysis for Total Phosphorus and Total Nitrogen samples fr om the inner core (A) and outer edge (B) of the wetland locations. The mean, standard deviation, variance, and 95% confidence interval are presented. Water Column to tal phosphorus concentration was over 60 % higher in the Outer Edge (B) samples. Total nitrogen concentrations in the Outer Edge (B) were 20% higher than the Inner Core (A) wetland zone samples. Table 3-10. Summary statistics (mean, standa rd deviation, variance and 95% confidence interval) of water column samples collected during the temporal study. Wetland zones sampled included the Inne r Core (A) and Outer Edge (B). Water Column TP (mg/l) A Water Column TN (mg/l) A Mean 0.27 2.20 Standard Deviation 0.10 0.39 Sample Variance 0.01 0.16 Confidence Interval (95.0%) + 0.119 + 0.41

PAGE 63

51 Table 3-10. Continued Water Column TP (mg/l) B Water Column TN (mg/l) B Mean 0.44 2.71 Standard Deviation 0.28 0.71 Sample Variance 0.08 0.50 Confidence Interval (95.0%) + 0.29 + 0.74 As noted earlier, watershed hydrology exer ts the most significant effect on the availability, distribution and cycl ing of nutrients in the wetland landscape. In spite of this influence as a regulator, becau se of seasonal flooding, drought, variable watershed inputs, and its general, transient nature, water monito ring would not likely serve as a reliable, more permanent indicator of wetland condition throughout the year. Vegetation The temperate climate of the survey ar ea of this study precluded sampling of wetland plants due to their absence from late fall through early spring. Litter Nutrient conservation in vegetation affects litter decomposition rates and soil nutrient availability (Diehl et al. 2002). If C: N ratios in vegetative tissue are higher than optimal, and water column nitroge n is available, litter can also integrate nitrogen from the water column. Nutrient removal efficien cy studied over a one year period in a wastewater treatment wetland i ndicated that water temperatur e was a principle regulator to this process (Anderson et al. 2003). The following Figures 3-14, 3-15 and 3-16, illu strate the trends of total phosphorus, total nitrogen, and total carbon fr om litter samples collected at both the inner core and outer edge of the wetland ove r the temporal study period.

PAGE 64

52 Litter total phosphorus concentrations fr om the Inner Core (A) samples were consistently higher than those collected from the Outer Edge (B) of the wetland throughout the temporal period (Figure 3-14). Concentrations from both zones (A) and (B) were constant and s howed little variation th roughout the sampling period. 0 1000 2000 3000 4000 5000 6000 7000 8000 Jun-03Oct-03Jan-04Apr-04Aug-04Litter TP, % A B Figure 3-14. Litter Total Phosphorus, mg/kg. Wetland zones sampled included the Inner Core (A) and Outer Edge (B). Litter total nitrogen concentrations from samples collected in the Inner Core (A) were consistently higher than Outer Edge (B) zone samples (Figure 3-15). The seasonal variability of total nitr ogen in litter appears to be great er as compared to total phosphorus in litter over the same time period. 0 5 10 15 20 25 30 Aug-03Oct-03Nov-03Jan-04Mar-04Apr-04Jun-04Aug-04Litter TN, g/kg A B Figure 3-15. Litter Total Nitrogen, g/kg. Wetland zones sampled included the Inner Core (A) and Outer Edge (B).

PAGE 65

53 Litter total carbon concentra tions in Inner Core (A) samples were consistently higher than samples collected from the Ou ter Edge (B) of the wetland throughout the temporal study period (3-16). 0 50 100 150 200 250 300 350 400 Aug-03Oct-03Nov-03Jan-04Mar-04Apr-04Jun-04Aug-04Litter TC, g/kg A B Figure 3-16. Litter Total Carbon, g/kg. Wetla nd zones sampled included the Inner Core (A) and Outer Edge (B). The summary statistics for litter nutrien t indicators from samples collected in wetland zones A and B during the temporal stud y are presented in Table 3-11. The mean, standard deviation, variance, and 95% confiden ce interval for litte r total phosphorus, total nitrogen and total carbon ar e shown. The lowest variance occurred in litter total phosphorus in the Inner Core (A) samples, followed by total phosphorus in the Outer Edge (B) wetland samples over the time pe riod of sampling. Total nitrogen also exhibited little variability during the temporal period. Table 3-11. Summary statistics (mean, standa rd deviation, variance and 95% confidence interval) of litter sample s collected during the temporal study. Wetland zones sampled included the Inner Core (A) and Outer Edge (B). Inner Core of Wetland (A) Litter TP (mg/kg) A Litter N (g/kg) A Litter C (g/kg) A Mean 180 20.6 306 Standard Deviation 8 3.6 23.3 Sample Variance 0.0672 1.3 54.3 Confidence Interval (95.0%) + 8 + 3.8 + 24.5

PAGE 66

54 Table 3-11. Continued Outer Edge of Wetland (B) Litter TP (mg/kg) B Litter N (g/kg) B Litter C (g/kg) B Mean 230 19.6 296 Standard Error 87 1.2 10.1 Standard Deviation 230 3.2 26.6 Sample Variance 53 1.0 70.9 Confidence Interval (95.0%) + 21 + 2.9 + 24.6 Soil The soil, being the most permanent of the strata measured in this study, would be expected to provide consis tency for evaluation of wetland condition throughout the year. It is reasonable that longer-ter m response to anthropogenic inputs to the wetland would be indicated in the soil. The following figures illustrate the trends of those parameters measured: Bulk Density, Loss on Ignition, Total Phosphorus, Total Nitrogen, Total Carbon and pH. The inner core (A), outer edge (B), and adjacent upland (c) of the wetland locatio ns were surveyed and sampled. Soil bulk density values between the Inner Core (A) and Outer Edge (B) wetland zones reversed from the fall, when Zone A showed higher bulk density than Zone B (Figure 3-17). In late spring and summer, bulk density in Zone B was higher than Zone A. 0 0.2 0.4 0.6 0.8 1 Jun-03Oct-03Jan-04Apr-04Aug-04Soil Bulk Density, g cm-3 A B Figure 3-17. Soil Bulk Density, grams cm-3. Wetland zones sampled included the Inner Core (A) and Outer Edge (B).

PAGE 67

55 A reversal in the loss on ignition (LOI) pa rameter was also noted between the Inner Core (A) and the Outer Edge (B) wetland zones sampled (Figure 3-18). In the fall, Zone B showed high LOI values than Zone A, while in late spring and early summer, Zone A had higher LOI than Zone B. 0 20 40 60 80 Jun-03Oct-03Jan-04Apr-04Aug-04Soil Loss on Ignition, % A B Figure 3-18. Soil Loss on Ignition, %. We tland zones sampled included the Inner Core (A) and Outer Edge (B). Soil total phosphorus concentr ations in the Inner Core (A) of the wetland were higher than the Outer Edge (B) in the fall, late spring, and summer (Figure 3-19). During the winter, however, samples from the Outer Edge (B) had higher conc entrations of total phosphorus in the soil. 0 200 400 600 800 1000 1200 Jun-03Oct-03Jan-04Apr-04Aug-04Soil TP, mg/kg A B Figure 3-19. Soil Total Phosphorus, mg/kg. Wetland zones sampled included the Inner Core (A) and Outer Edge (B). The soil total nitrogen tempor al results between the Inner Core (A) and Outer Edge (B) of the wetland were sim ilar to those for total phosphor us (Figure 3-20). Total

PAGE 68

56 nitrogen in the soil during fall, late spring, and summer were higher in Zone A than Zone B. In the winter, Zone B showed higher total nitrogen values than Zone A. 0 2 4 6 8 10 12 14 Jun-03Oct-03Jan-04Apr-04Aug-04Soil TN, g/kg A B Figure 3-20. Soil Total Nitr ogen, g/kg. Wetland zones sampled included the Inner Core (A) and Outer Edge (B). Soil total carbon concentration from the Inner Core (A) and the Oute r Edge (B) appeared to follow the same seasonal pattern as both total phosphorus and total nitrogen (Figure 321). Total carbon concentrations were higher in Zone B than in Zone A during the winter and higher in Zone A than in Zone B in the summer. 0 100 200 300 400 500 Jun-03Oct-03Jan-04Apr-04Aug-04Soil TC, g/kg A B Figure 3-21. Soil Total Car bon, g/kg. Wetland zones sample d included the Inner Core (A) and Outer Edge (B). Seasonal trends in soil pH (Figure 3-22) we re similar to the water column pH trend (Figure 3-9), with fall and winter, pH values higher in the Inner Core (A) than the Outer

PAGE 69

57 Edge (B) wetland zones. In the spring and summer, pH values were higher in Zone B than Zone A. 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 Jun-03Oct-03Jan-04Apr-04Aug-04Soil pH A B Figure 3-22. Soil pH. Wetland zones sample d included the Inner Core (A) and Outer Edge (B). A summary of the following statistics: mean, standard deviation, variance and confidence level, was compiled from the soil sample analyses to provide an overall comparison of the data. The result s are shown in Table 3-12 below. Table 3-12. Summary statistics (mean, sta ndard deviation, variance and confidence interval) of soil sampled during the te mporal study. Wetland zones sampled included the Inner Core (A) and Outer Edge (B). Inner Core of Wetland (A) Soil Ph A Soil Bulk Density (g cm-3) A Soil LOI (%) A Soil TP (mg/kg) A Soil TN (g/kg) A Soil TC (g/kg) A Mean 6.07 0.59 19.18 80 7.0 79.9 Standard Deviation 0.57 0.03 1.47 10 0.97 9.8 Sample Variance 0.32 0.001 2.15 0.091 0.09 9.5 Confidence Interval (95.0%) + 0.52 + 0.03 + 1.54 + 10 + 1.2 + 15.5 Outer Edge of Wetland (B) Soil pH B Soil Bulk Density (g cm-3) B Soil LOI (%) B Soil TP (mg/kg) B Soil TN (g/kg) B Soil TC (g/kg) B Mean 5.62 0.55 25.97 60 6.6 74.8 Standard Deviation 1.26 0.29 22.77 30 4.3 52.6 Sample Variance 1.58 0.08 518.53 0.80 1.9 276 Confidence Interval (95.0%) + 1.16 + 0.30 + 23.90 + 0.29 + 4.5 + 65.3

PAGE 70

58 CHAPTER 4 DISCUSSION AND CONCLUSIONS Objective One (Results) The first objective was to gather informa tion on wetlands located in Southwestern Indiana to assess the heterogeneity among wetland community types to determine an appropriate aggregation of wetland comm unities for numeric nutrient criteria development (and monitoring) purposes. It was hypothesized that there would be no difference in strata biogeochemistry among various wetland community types sampled in Indiana. It was suggested that the influence of hydrology would outweigh the characteristics and functions of wetland comm unity types in the overall assimilation and cycling of nutrients. Based on the results for water column nutrients, there were no significant differences noted between Total Phosphor us concentrations or Total Nitrogen concentrations among the wetlands community cl assifications. Therefore, separation by community type does not appear to be required for assessment within this region. It is important to note that the sample size for certain community types was smaller, which can contribute to increased Type II error rate in these conclusions. Where it is stated that there are no significant differences in commun ity parameters, there could be differences that are not detectable due to small sample size. Similar results were noted for vegetative nutrient indicators, finding no significant differences in the vegetative tissue concen trations of Total Phosphorus, Total Nitrogen,

PAGE 71

59 or Total Carbon. Separation by wetland commun ity type for vegetativ e indicators does not appear to be required for assessment. Leaf litter nutrient content showed si gnificant differences in leaf litter Total Phosphorus concentrations between ripari an and non-riparian wetlands. Seasonal flooding and scouring effects of riparian syst ems would be expected to influence the amount, types; transport and location of litte r present in the wetland, and may account for some differences in Total Phosphorus concentrations. When aggregated by hydrologic class, or ganic matter content in Non-Riparian wetland soils were 75% higher than Riparian wetlands. Ve getative class aggregation found Marshes contained 50% more organic matte r in the soil than Swamps. In addition, Non-Riparian wetland soils contained twice as much total carbon as Riparian wetlands. Marsh soils contained 70% more total car bon than Swamps, and Non-Riparian Marsh concentrations of total carbon were twice as much as Riparian Swamps. This would support the point that hydrologi c influences in the ripari an systems could increase mineral soil fractions while reducing organic matter in the wetlands. Results from a study of sediment and nutrient accumulati on in floodplain and depressional wetlands showed that phosphorus accumulation was 1.5 to 3 times higher in the floodplain wetlands than in depressional we tlands (Craft and Casey 2000). Considering the use of litter Total Phosphorus as an indicator of nutrient status, an aggregation of community type should be c onsidered between ripa rian and non-riparian wetlands. Based on soil nutrient condition, re sults indicate significant differences in Total Nitrogen concentrations between ripa rian and non-riparian wetlands. Separation by hydrologic connectivity appears to be required for assessment of soil nutrient indicators.

PAGE 72

60 Objective Two (Results) The second objective was to determine which sampling strata: water, litter, soil or vegetation is most responsive to nutrient enrichment. Findings suggest that Total Phosphorus concentrations measured in the water column, litter, and vegetation were not able to distinguish between impacted and leastimpacted wetlands. However, soil Total Phosphorus concentrations were able to distinguish between impacted and least-impacted wetlands A related study of Ecoregion IX wetlands also s howed significant differen ces between total phosphorus concentrations in least-impacted and impacted wetlands (Paris 2004). In a study of sediment and nutrient ac cumulation in floodplain and depressional wetlands, it was suggested that the degree of anthropogenic disturbance within the surrounding watershed regulates wetland sedi ment, organic carbon and accumulation of nitrogen. Riparian wetlands are ‘open’ sy stems, subject to watershed influxes of sediment and phosphorus. Non-riparian ‘close d’ systems are influenced much less from such influxes. Greater accumulation of phosphorus is found in fl oodplain wetlands that have large catchments containing fine-textu red sediments that ar e co-deposited with phosphorus (Craft and Casey 2000). In aquatic environments, the majority of phosphorus is bound to organic and inorganic particles, with a relatively small fr action available in the water-soluble form. Due to this conservative nature, it is understa ndable that a portion of the phosphorus from watershed inputs to a wetland w ould remain there (Paris 2004). Objective Three (Results) The third objective was to contrast Southw estern Indiana least-impacted (reference) wetlands to Southeastern US Wetlands in Ec o-region IX to determ ine the validity of

PAGE 73

61 single numeric criteria. Sout hwestern Indiana wetland nutrient indicators were compared with sampling results from the collaborative studies: So utheastern Wetland Biogeochemical Survey: Determination and Est ablishment of Numeric Nutrient Criteria (Paris 2005), and A Biogeochemical Survey of Wetlands in the Southeastern United States (Greco 2004). It was hypothesized that Southwestern Indiana wetlands would have higher phosphorus and nitrogen concentra tions than wetlands within the same eco-region in the Southeastern United States. These differences would occur among soil, water, litter and vegetation strata. Results : Total Phosphorus concentrations in the water column, litter, and soil samples from the Southwestern Indian a wetlands were significantly higher than the samples from wetlands in ot her states located within Eco-region IX. Total Nitrogen concentrations in the water column and soil were not significantly different between the Sout hwestern Indiana wetlands sampled and the wetlands surveyed in othe r states within Eco-region IX. Total Nitrogen concentrations in the litter were not significantly different from other states within Eco-region IX, with the exception of Florida. Total Phosphorus and Total Nitrogen c oncentrations in the vegetation were not significantly different from the ot her states within Eco-region IX, with the exception of Florida. Significant differences in Total Phosphorus c oncentrations in the water column, litter, and soil were noted between Least-Impacted Southwestern Indiana wetlands and LeastImpacted Southeastern U.S. wetlands within Eco-region IX. Based on median values, total phosphorus concentrations in the water column were approximately five times higher in the Southwestern I ndiana wetlands sampled than th e collaborative study results

PAGE 74

62 from other states in Eco-region IX. Soil to tal phosphorus concentra tions in the Indiana wetlands were twice as high as the wetlands su rveyed in other Eco-region IX states. The results suggest that a single numeric crit eria established for al l wetlands within Ecoregion IX could be overly protective of Southwestern Indiana wetlands. The EPA Office of Water’s strategy to de velop regional nutrie nt criteria uses comparisons to local reference or backgr ound conditions to deve lop nutrient criteria within designated spatial areas, to yield a re gionalization of nutrient criteria. Reference data sets allow more objective and realistic selection of goals for wetland maintenance or restoration (Findlay et al. 2002). EPA has recommended that nutrien t criteria be based on the 25th percentile of the nutrient concentrations measured from all wetlands in a region, or on the 75th percentile concentration of least-impact ed wetlands within a given eco-region. If the wetland criteria are established on too broad a groupi ng or classification of wetlands, the natural heterogeneity within the grouping could resu lt in the overprotecti on of some wetlands, while others in the same grouping coul d be under-protected (Paris 2004). If the numeric criteria were established based on the 75th percentile phosphorus concentration for all wetlands within Ec o-region IX, the higher background phosphorus concentrations from the Indiana sampling woul d be overly protective as compared to the lower concentrations measured in the wetlands in other Eco-region IX states. Objective Four (Results) The objective of the temporal study was to determine the seasonal variability among the strata parameters. Those parameters exhibiting the least va riability, while also demonstrating responsiveness to system i nputs, would be expected as favorable candidates for monitoring the wetland stat us throughout the year. It was hypothesized

PAGE 75

63 that there would be differences in seasonal variability among water co lumn, litter, soil or vegetative biogeochemical parameters surveye d. The seasonal variability would be lower for the soil and higher for the water column parameters due to the more permanent nature of the sampled media. Based on the study results, the trend data in dicate that litter To tal Phosphorus and Total Nitrogen exhibit low variability among the strata parameters measured throughout the monitoring period. Litter To tal Phosphorus should be a re liable indicator, easily sampled, that could be monitored, regardless of sampling season. Soil Total Phosphorus and Total Nitrogen al so exhibited low variability throughout the temporal period and are li kewise representative of e ffective monitoring parameters for wetland condition. Advantages of soil indicators over litt er may include soil’s more permanent nature, and resistance to flooding imp acts, especially in riparian wetlands. A disadvantage is the additional co llection equipment, weight, and effort required for soil sampling in the field. Another consideration, based on the results from Objective Two above, would be that soil Total Phosphorus and Total Nitrogen may be more responsive than litter as an indicator of nutrient impact s. The information derived from this temporal study, however, was based upon sampling within a si ngle wetland. Additional sampling over a range of separate wetlands would be requi red to validate the responsiveness over a temporal period. Litter collection is a rela tively non-intrusive method, more protective of wetland integrity. In addition, the sample product is lightweight, occupying considerably less space in the field gear, allowing for the coll ection of multiple samples during a survey.

PAGE 76

64 Conclusion The study results indicate that the hydr ologic connectivity of a wetland system should be considered in the assignment of appropriate numeric nutrient criteria. The most responsive indicator stratum for nutri ent enrichment between impacted and leastimpacted wetlands appears to be so il total phosphorus and total nitrogen. The establishment of numeric nutrient cr iteria for Southweste rn Indiana wetlands, based on reference wetlands from Eco-region IX, could be overly protective. Study results indicate soil total phosphorus and to tal nitrogen concentra tions exhibited the lowest variability during the temporal st udy, while demonstrating responsiveness to nutrient enrichment between impacted and least-impacted wetlands. Therefore soils likely provide the best overall choice as an indicator of wetland nutrient conditions and therefore should be consid ered when developing nu meric nutrient criteria. Implications for EPA in Establishment of Numeric Nutrient Criteria In summary, based on the survey results, ther e does not appear to be a need to subclassify wetlands by vegetative community t ype to properly assess nutrient conditions in Southwestern Indiana’s wetlands. Howeve r, hydrologic connectiv ity of the wetland should be considered in the assignment of a ppropriate numeric nutrient criteria. Soils appear to provide the most sensitive indi cator of nutrient impacts to wetlands as compared to water, vegetation or leaf litter. The results further indicate that a single numeric criteria established for Eco-region IX could either be overly protective or unde r protective of ecologi cal integrity based on background nutrient conditions in the wetla nds sampled in Southwestern Indiana.

PAGE 77

65 APPENDIX A PROFILES OF SAMPLED WETLANDS GENERAL INFORMATION WETLAND ID Date Location GPS Coordinates IN1 8/8/2003 Millersburg –Wabash and Erie Canal/Pigeon Creek N38 5.84’ W87 23.6 Wetland ID Condition Characterizat ion of Wetland Adjacent Water Body Adjacent Upland 1 % Adjacent Upland 2 % Fire Indicator Trash IN1 Impacted Forested Wetland Riparian Forested 75.00 Unimproved Pasture 25.00 No Evidence of Fire Yes Algae Present Evidence of Sedimentatio n Floating Vegetation Hydrolog ic Disturban ces Vegetative Disturbances Nutrient Loading Size of Wetland Shape of Wetland HGM Classification Litter Covered with Mud None Present Canals and Piped Inflows None Noticed None 3 Linear FIELD DATA Wetland Id Wetland ID Plus Sub Water Source Temp. C Ph DO% Conductivity ORP Water Depth Distinct Lichen Lines Present IN1a Core Composite (A) Stream Yes IN1a Core Composite (A) Stream Yes IN1a Core Composite (A) Stream 27.51 7.59 93.2 475.3 Yes IN1b Edge Composite (B) Stream No IN1b Edge Composite (B) Stream No IN1b Edge Composite (B) Stream No Distance of Lichen Lines (Inches) Algal Mats Aquatic Plants Present Aquatic Species Morphologic al Adaptations Character Total % of Overstory Overstory Vegetation 1 % Overstory 1 Overstory Vegetation 2 39 No No No data None Forested 85 Quercus michauxii 40 Quercus spp. 40 No No No data Hummocks Forested 75 Ulmus Americana 40 Quercus spp.

PAGE 78

66 35 No No No data None Fo rested 70 Acer rubrum 5 Cornus spp. No No No data None Forested 70 Acer rubrum 10 Hickory No No No data None Fo rested 80 Acer rubrum 40 Quercus spp. No No No data Buttressed Roots Forested 75 Acer rubrum 20 Quercus spp. % Overstory 2 Overstory Vegetation 3 % Overstory 3 Overstory Vegetatio n 4 % Overstory 4 Overstory Vegetatio n 5 % Overstory 5 Total % of Understory Understory Vegetation 1 % Understory 1 20 Liquidambar styraciflua 20 Carpinus carolinian a 5 35 Carpinus caroliniana 5 15 Poison Ivy 5 Carpinus carolinian a 15 80 Grass 40 5 Carpinus caroliniana 10 Hickory 10 Acer saccharin um 40 50 Unknown 10 50 Birch 10 10 Saururus cernuus 10 25 Platanus occidentalis 15 20 Grass 20 30 Hickory 15 Platanus occidenta lis 10 50 Fraxinus Profunda 10 Understory Vegetation 2 % Understory 2 Understory vegetation 3 % Understor y 3 Understory Vegetation 4 % Understor y 4 Understory Vegetation 5 % Understory 5 Comments Poison Ivy 10 Fraxinus Profunda 5 Boehmeria cylindrica 10 Smilax spp. 5 Fraxinus Profunda 10 Vine 15 Carpinus caroliniana 15 Grass 20 Sedge 10 Poison Ivy 10 Grass 15 Sedge 25 WATER QUALITY DATA Wetland ID Wetland ID Plus Sub Sample Location Condition Media Water columnT P (mg/l) Water column TKN mg/l Water Column NO3+NO2 (mg/l) IN1 IN1blank Blank Impacted Water 0.004 0.489 0.032 IN1s Stream Impacted Water 0.07 1.047 0.011 SOIL DATA Media Wetland ID Plus Sub Sub Sample Location Condition Soil Organic/Min eral Soil pH Soil Moisture Content Soil Bulk Density (g/cm3) Soil LOI (%) Soil TP (mg/kg) Soil IN1a A Impacted 0.266 7.2 667.4 IN1b B Impacted 0.286 9.4 802.7 IN1u U Impacted 0.139 6.8 455.3 Media Wetland ID Plus Sub Sub Sample Location Soil TP (%) Soil TN (%) Soil TC (%) Soil Mehlic 1 P (mg/kg) Soil Mehlich 1 K (mg/kg) Soil Mehlich 1 Ca (mg/kg) Soil Mehlich 1 Mg (mg/kg) Soil IN1a A 0.066 0.149 1.881 25.68 165.72 1438.8 494.8 IN1b B 0.08 37.52 194.16 1378.8 514.4

PAGE 79

67 IN1u U 0.045 0.16 1.827 21.68 207.2 1954 264 Media Wetland ID Plus Sub Sub Sample Location Soil Mehlich 1 Fe (mg/kg) Soil Mehlich 1 Al (mg/kg) Soil KCl ext NH4 (mg/kg) Soil KCl ext NO3+NO2 (mg/kg) Soil Mehlich 3 P (mg/kg) Soil Mehlich 3 K (mg/kg) Soil Mehlich Ca (mg/kg) Soil IN1a A 112.2 193.64 37.24 101 747.6 IN1b B 181.96 255.6 48.44 111.64 631.6 IN1u U Media Wetland ID Plus Sub Soil P Sorption % Soil Oxylate Al (mg/kg) Soil Oxylate Fe (mg/kg) Soil Oxylate P (mg/kg) Soil Water Ext P (mg/kg) Soil Mehlich 3 Al (mg/kg) Soil Mehlich Fe (mg/kg) Soil Mehlich Mg (mg/kg) Soil IN1a 47.762 1188.024 9916.168 413.573 0.88 395.2 211.6 276.8 IN1b 1529.825 9309.942 545.419 1.11 460.4 239.6 252.4 IN1u VEGETATION Wetland ID Sample Location Media Species Condition Tissue TP (mg/kg) Tissue N (%) Tissue C (%) IN1 Site Composite (ALL) Vegetation Acer rubrum Impacted 0.2174 LITTER Wetland ID Wetland ID plus sub Sub sample Location Condition Litter TP (mg/kg) Litter N (%) Litter C (%) IN1 IN1a Core Composite (A) Impacted 2934 IN1 IN1b Edge Composite (B) Impacted 3212 GENERAL INFORMATION WETLAND ID Date Location GPS Coordinates IN2 8/9/2003 N 38 11.220' W 87 25.094' Wetland ID Condition Characterizat ion of Wetland Adjacent Water Body Adjacent Upland 1 % Adjacent Upland 2 % Adjacent Upland 3 Percentage 3 IN2 LeastImpacted Forested Wetland NonRiparian Rural 25.00 Forested 50.00 Row crops 25.00 Trash Algae Present Evidence of Sedimentatio n Floating Vegetati on Hydrologic Disturbances Vegetativ e Disturban ces Nutrient Loading Size of Wetland Shape of Wetland HGM Classification None Noticed None Noticed Lemna Canals None noticed None 3 Oval FIELD DATA Wetland Id Wetland ID Plus Sub Water Source Temp. C pH DO% Conductivity ORP Water Depth Distinct Lichen Lines Present IN2a Core Composite (A) Wetland 20.93 6.48 6.1 106 -52.3 1 Yes IN2a Core Composite (A) Wetland 21.44 6.38 3.6 101 -30.7 1.5 No IN2a Core Composite (A) Wetland 21.4 6.32 8.7 98 -7 2 Yes

PAGE 80

68 IN2b Edge Composite (B) Wetland IN2b Edge Composite (B) Wetland IN2b Edge Composite (B) Wetland Distance of Lichen Lines (Inches) Algal Mats Aquatic Plants Present Aquatic Species Morphologica l Adaptations Character Total % of Overstory Overstory Vegetation 1 % Overstory 1 Overstory Vegetation 2 34 No Yes Lemna Buttressed roots Forested 95 Acer rubrum 60 Liquidambar styraciflua No Yes Lemna None Forested 95 Acer rubrum 70 Liquidambar styraciflua 27 No Yes Lemna None Forested 80 Acer rubrum 50 Fraxinus Profunda No No No data None Forested 70 Acer rubrum 10 Hickory No No No data None Fo rested 80 Acer rubrum 40 Quercus spp. No No No data Buttressed Roots Forested 75 Acer rubrum 20 Quercus spp. % Overstory 2 Overstory Vegetation 3 % Overstory 3 Overstor y Vegetati on 4 % Overstory 4 Overstory Vegetatio n 5 % Overstory 5 Total % of Understory Understory Vegetation 1 % Understory 1 35 Liquidambar styraciflua 20 Carpinus carolinia na 5 35 Carpinus caroliniana 5 25 Poison Ivy 5 Carpinus carolinia na 15 80 Grass 5 30 Carpinus caroliniana 10 Hickory 10 Acer saccharin um 40 50 Unknown 25 50 Birch 10 10 Saururus cernuus 30 25 Platanus occidentalis 15 20 Grass 60 30 Hickory 15 Platanus occident alis 10 50 Fraxinus Profunda 70 Understory Vegetation 2 % Understory 2 Understory vegetation 3 % Understo ry 3 Understory Vegetation 4 % Understor y 4 Understory Vegetation 5 % Understory 5 Comments Acer rubrum 2 Lemna spp. 1 Lemna spp. 1 Fraxinus Profunda 5 Acer rubrum 5 Saururus cernuus 10 Lemna spp. 0.1 Acer rubrum 10 Boehmeria cylindrica 10 Cornus spp. 20 hackberry 10 Vine 20 Boehmeria cylindrica 5 Fraxinus Profunda 15 Grass 20 WATER QUALITY DATA Wetland ID Wetland ID Plus Sub Sample Location Conditio n Media Water columnT P (mg/l) Water column TKN mg/l Water Column NO3+NO2 (mg/l)

PAGE 81

69 IN2 IN1blank Blank Impacted Water 0.005 0.675 0.054 IN1s Stream Impacted Water 0.469 2.411 0.005 SOIL DATA Media Wetland ID Plus Sub Sub Sample Location Conditio n Soil Organic/Mine ral Soil pH Soil Moisture Content Soil Bulk Density (g/cm3) Soil LOI (%) Soil TP (mg/kg) Soil IN2a A Impacted 0.344 8.6 625.3 IN2b B Impacted 0.269 7.2 512.3 IN2u U Impacted 0.16 5.9 462.4 Media Wetland ID Plus Sub Sub Sample Location Soil TP (%) Soil TN (%) Soil TC (%) Soil Mehlic 1 P (mg/kg) Soil Mehlich 1 K (mg/kg) Soil Mehlich 1 Ca (mg/kg) Soil Mehlich 1 Mg (mg/kg) Soil IN2a A 0.062 0.172 2.49 66 111.52 1186.8 347.2 IN2b B 0.051 36.92 135.92 1686.4 419.2 IN2u U 0.046 0.161 2.74 25.88 96.16 1106.8 292.8 Media Wetland ID Plus Sub Sub Sample Location Soil Mehlich 1 Fe (mg/kg) Soil Mehlich 1 Al (mg/kg) Soil KCl ext NH4 (mg/kg) Soil KCl ext NO3+NO2 (mg/kg) Soil Mehlich 3 P (mg/kg) Soil Mehlich 3 K (mg/kg) Soil Mehlich Ca (mg/kg) Soil IN2a A 594.4 195 49.28 53.04 479.6 IN2b B 243.2 225.2 41.8 63.68 663.2 IN2u U 106.52 162.68 30.8 39.72 436 Wetland ID Plus Sub Soil Mehlich Mg (mg/kg) Soil Mehlich Fe (mg/kg) Soil Mehlich 3 Al (mg/kg) Soil Water Ext P (mg/kg) Soil Water Ext P (mg/kg) Soil Oxylate P (mg/kg) Soil Oxylate Fe (mg/kg) Soil Oxylate Al (mg/kg) Soil P Sorption % IN2a 150.96 342 338.4 410 0.61 410 9952 1084.8 58.636 IN2b 185.92 262 338.8 341.406 0.852 341.406 7921.875 1008.984 46.867 IN2u 116.84 192.4 265.6 247.843 0.908 247.843 5721.569 834.51 VEGETATION Wetland ID Sample Location Media Species Condition Tissue TP (mg/kg) Tissue N (%) Tissue C (%) IN2 Site Composite (ALL) Vegetation Acer rubrum Impacted 0.1674 LITTER Wetland ID Wetland ID plus sub Sub sample Location Conditio n Litter TP (mg/kg) Litter N (%) Litter C (%) IN2 IN2a Core Composite (A) Impacted 2851 IN2 IN2b Edge Composite (B) Impacted 2118 GENERAL INFORMATION WETLAND ID Date Location GPS Coordinates IN3 8/9/2003 N 38 11.136' W 87 25.114' Wetland ID Condition Characterizat ion of Wetland Adjacent Water Body Adjacent Upland 1 % Adjacent Upland 2 % Adjacent Upland 3 % IN3 LeastImpacted Emergent Wetland NonRiparian Rural 25.00 Forested 50.00 Row crops 25.00 Trash Algae Present Evidence of Sedimentatio n Floating Vegetati on Hydrologic Disturbances Vegetativ e Disturban ces Nutrient Loading Size of Wetland Shape of Wetland HGM Classification none present Algae None Noticed Lemna Canals None noticed None 10 oval

PAGE 82

70 FIELD DATA Wetland Id Wetland ID Plus Sub Water Source Temp. C pH DO% Conductivity ORP Water Depth Distinct Lichen Lines Present IN3a Core Composite (A) Wetland 21.88 6.11 1.7 132 -35.2 13 Yes IN3a Core Composite (A) Wetland 22.05 6.15 4.2 129 -38.2 7 Yes IN3a Core Composite (A) Wetland 20.93 6.02 2.3 120 -51.6 10 Yes IN3b Edge Composite (B) Wetland 21.09 6 2.4 175 -83.9 5 Yes IN3b Edge Composite (B) Wetland 21.5 6.02 2.3 182 -59.2 No IN3b Edge Composite (B) Wetland 20.6 5.95 2.4 253 -77.3 16 Yes Distance of Lichen Lines (Inches) Algal Mats Aquatic Plants Present Aquatic Species Morphologica l Adaptations Character Total % of Overstory Overstory Vegetation 1 % Overstory 1 Overstory Vegetation 2 No Yes Lemna None Emergent macrophy tes 5 River Birch 5 15 No Yes No data None Emergent macrophy tes 10 Salix caroliniana 10 20 Yes Yes Lemna None Emergent macrophy tes 10 Salix caroliniana 10 22 No Yes Lemna Adventitious roots Emergent macrophy tes 30 Acer rubrum 30 Yes Yes Lemna None Emergent macrophy tes 5 Acer rubrum 2 Salix caroliniana 25 Yes Yes Lemna None Emergent macrophy tes 0 % Overstory 2 Overstory Vegetation 3 % Overstory 3 Overstor y Vegetati on 4 % Overstory 4 Overstory Vegetatio n 5 % Overstory 5 Total % of Understory Understory Vegetation 1 % Understory 1 95 Hydrocotyl spp. 30 80 Typha latifolia 40 95 Typha latifolia 40 90 Saururus cernuus 22 3 95 Typha latifolia 40 95 Typha latifolia 40 Understory Vegetation 2 % Understory 2 Understory vegetation 3 % Understo ry 3 Understory Vegetation 4 % Understor y 4 Understory Vegetation 5 % Understory 5 Understory Vegetation 6 % Understory 6

PAGE 83

71 Lemna spp. 15 Typha latifolia 30 Alternanthera philoxeroides 10 Acer rubrum 10 Cephalanthus Occidentalis 20 Hydrocotyl spp. 10 Alternanthera philoxeroides 5 Grass 5 Cephalanthus Occidentalis 30 Alternanthera philoxeroides 5 Lemna spp. 10 Acer rubrum 10 Cephalanthus Occidentalis 23 Typha latifolia 22 Lemna spp. 23 Cephalanthus Occidentalis 10 Lemna spp. 5 Pontedaria cordata 10 Saururus cernuus 30 Cephalanthus Occidentalis 30 Lemna spp. 5 Nuphar luteum 10 Acer rubrum 10 WATER QUALITY DATA Wetland ID Wetland ID Plus Sub Sample Location Conditio n Media Water columnT P (mg/l) Water column TKN mg/l Water Column NO3+NO2 (mg/l) IN3 IN3a Core Composite (A) Impacted Water 0.708 4.829 0.005 IN3b Edge Composite (B) Impacted Water 0.524 3.465 0.005 SOIL DATA Media Wetland ID Plus Sub Sub Sample Location Conditio n Soil Organic/Mine ral Soil pH Soil Moisture Content Soil Bulk Density (g/cm3) Soil LOI (%) Soil TP (mg/kg) Soil IN2a A Impacted 0.662 21.8 900.3 IN2b B Impacted 0.573 14.2 828.5 IN2u U Impacted 0.164 7.7 512.9 Media Wetland ID Plus Sub Sub Sample Location Soil TP (%) Soil TN (%) Soil TC (%) Soil Mehlic 1 P (mg/kg) Soil Mehlich 1 K (mg/kg) Soil Mehlich 1 Ca (mg/kg) Soil Mehlich 1 Mg (mg/kg) Soil IN2a A 0.09 0.656 8.792 75.28 181.76 1826.4 550.4 IN2b B 0.082 0.432 5.524 85.44 125.36 1317.6 402.8 IN2u U 0.051 0.184 2.773 24.88 113.08 1335.2 333.6 Media Wetland ID Plus Sub Sub Sample Location Soil Mehlich 1 Fe (mg/kg) Soil Mehlich 1 Al (mg/kg) Soil KCl ext NH4 (mg/kg) Soil KCl ext NO3+NO2 (mg/kg) Soil Mehlich 3 P (mg/kg) Soil Mehlich 3 K (mg/kg) Soil Mehlich Ca (mg/kg) Soil IN2a A 730.8 295.2 42.44 93.24 706.4 IN2b B 782.4 294.8 51.88 55 458.8 IN2u U 85.6 163.32 33.56 53 549.6 Wetland ID Plus Sub Soil Mehlich Mg (mg/kg) Soil Mehlich Fe (mg/kg) Soil Mehlich 3 Al (mg/kg) Soil Water Ext P (mg/kg) Soil Oxylate P (mg/kg) Soil Oxylate Fe (mg/kg) Soil Oxylate Al (mg/kg) Soil P Sorption % IN3a 240.8 322.8 458 0.614 582.677 12019.685 2141.732 89.849 IN3b 147.68 367.2 424.4 0.455 571.82 10727.984 1945.205 90.89 IN3u 147 198.96 277.2 1.468 269.261 5381.323 871.984 VEGETATION

PAGE 84

72 Wetland ID Sample Location Media Species Condition Tissue TP (mg/kg) Tissue N (%) Tissue C (%) IN3 Site Composite (ALL) Vegetation Cephala nthus occident alis Impacted 0.1485 IN3 Site Composite (ALL) Vegetation Pontedar ia cordata Impacted 0.0931 1.42 38.62 IN3 Site Composite (ALL) Vegetation Acer rubrum Impacted 0.0833 IN3 Site Composite (ALL) Vegetation Typha spp. Impacted 0.2579 IN3 Site Composite (ALL) Vegetation Salix carolinia na Impacted 0.1757 1.92 47.37 LITTER Wetland ID Wetland ID plus sub Sub sample Location Conditio n Litter TP (mg/kg) Litter N (%) Litter C (%) IN3 IN3a Core Composite (A) Impacted 2951 IN3 IN3b Edge Composite (B) Impacted 2938 GENERAL INFORMATION WETLAND ID Date Location GPS Coordinates IN4 8/10/2003 East Mount Carmel N 38 22.697' W 87 43.780' Wetland ID Condition Characterizat ion of Wetland Adjacent Water Body Adjacent Upland 1 % Adjacent Upland 2 % Adjacent Upland 3 % IN4 Impacted Scrub-Scrub wetland NonRiparian Forested 75.00 Row crops 25.00 Trash Algae Present Evidence of Sedimentatio n Floating Vegetati on Hydrologic Disturbances Vegetativ e Disturban ces Nutrient Loading Size of Wetland Shape of Wetland HGM Classification None Present None Noticed None Present Levee Adjacent to Wetland None Noticed None 2 Oval FIELD DATA Wetland Id Wetland ID Plus Sub Water Source Temp. C pH DO% Conductivity ORP Water Depth Distinct Lichen Lines Present IN4a Core Composite (A) Wetland 25.69 7.17 51.8 500 1.4 22 No IN4a Core Composite (A) Wetland 26.96 7.17 70.6 510 12.3 26 No

PAGE 85

73 IN4a Core Composite (A) Wetland 26.39 7.16 60.2 505 -17.9 26 No IN4b Edge Composite (B) Wetland 27.24 6.97 53 514 -34.5 3 No IN4b Edge Composite (B) Wetland 26.92 7.11 53.6 513 -28.3 7 No IN4b Edge Composite (B) Wetland 26.18 7.01 58.4 506 -22.3 9 No Distance of Lichen Lines (Inches) Algal Mats Aquatic Plants Present Aquatic Species Morphologica l Adaptations Character Total % of Overstory Overstory Vegetation 1 % Overstory 1 Overstory Vegetation 2 No No No data None Emergent macrophy tes 10 Salix caroliniana 10 No No No data None Emergent macrophy tes 10 Salix caroliniana 10 No No No data None Emergent macrophy tes 30 Salix caroliniana 30 No No No data None Emergent macrophy tes 30 Salix caroliniana 10 Liquidambar styraciflua No No No data None Emergent macrophy tes 30 Salix caroliniana 10 Liquidambar styraciflua No No No data None Emergent macrophy tes 50 Salix caroliniana 20 Liquidambar styraciflua % Overstory 2 Overstory Vegetation 3 % Overstory 3 Overstor y Vegetati on 4 % Overstory 4 Overstory Vegetatio n 5 % Overstory 5 Total % of Understory Understory Vegetation 1 % Understory 1 10 10 10 10 Platanus occidentalis (American Sycamore) 10 40 5 Acer rubrum 10 Platanus occident alis (Americ an Sycamor e) 5 40 10 Acer rubrum 20 60 Understory Vegetation 2 % Understory 2 Understory vegetation 3 % Understo ry 3 Understory Vegetation 4 % Understor y 4 Understory Vegetation 5 % Understory 5 Understory Vegetation 6 % Understory 6 Liquidambar styraciflua 10 Platanus occidentalis (American Sycamore) 10

PAGE 86

74 Liquidambar styraciflua 5 Acer rubrum 10 Platanus occidentalis (American Sycamore) 5 Liquidambar styraciflua 10 Acer rubrum 20 WATER QUALITY DATA Wetland ID Wetland ID Plus Sub Sample Location Conditio n Media Water columnT P (mg/l) Water column TKN mg/l Water Column NO3+NO2 (mg/l) IN4 IN4blank Blank Impacted water 0.017 0.861 0.011 IN4 IN4a Core Composite (A) Impacted water 0.228 1.605 0.005 IN4 IN4b Edge Composite (B) Impacted water 0.192 1.357 0.005 IN4 IN4blank Blank Impacted water -0.003 0.489 0.005 SOIL DATA Media Wetland ID Plus Sub Sub Sample Location Conditio n Soil Organic/Mine ral Soil pH Soil Moisture Content Soil Bulk Density (g/cm3) Soil LOI (%) Soil TP (mg/kg) Soil IN4a A Impacted 0.269 5.9 506.2 IN4b B Impacted 0.289 6.8 511.8 IN4u U Impacted 0.195 9 745.1 Media Wetland ID Plus Sub Sub Sample Location Soil TP (%) Soil TN (%) Soil TC (%) Soil Mehlic 1 P (mg/kg) Soil Mehlich 1 K (mg/kg) Soil Mehlich 1 Ca (mg/kg) Soil Mehlich 1 Mg (mg/kg) Soil IN4a A 0.05 21.64 170.32 1692.8 460.8 IN4b B 0.051 0.841 123.76 5068 571.2 IN4u U 0.074 0.199 2.757 12.804 274.4 4536 608 Media Wetland ID Plus Sub Sub Sample Location Soil Mehlich 1 Fe (mg/kg) Soil Mehlich 1 Al (mg/kg) Soil KCl ext NH4 (mg/kg) Soil KCl ext NO3+NO2 (mg/kg) Soil Mehlich 3 P (mg/kg) Soil Mehlich 3 K (mg/kg) Soil Mehlich Ca (mg/kg) Soil IN4a A 111.68 163.72 29.48 79.6 668.4 IN4b B 0 18.128 25.96 87.08 2088 IN4u U 0.583 109.64 31.92 151.52 1584.8 Wetland ID Plus Sub Soil Mehlich Mg (mg/kg) Soil Mehlich Fe (mg/kg) Soil Mehlich 3 Al (mg/kg) Soil Water Ext P (mg/kg) Soil Oxylate P (mg/kg) Soil Oxylate Fe (mg/kg) Soil Oxylate Al (mg/kg) Soil P Sorption % IN4a 193.52 189.24 308.4 0.215 247.505 7772.455 1026.747 46.483 IN4b 225.2 157.68 242.8 0.282 244.008 7650.295 1126.523 50.96 IN4u 203.6 125.44 301.2 2 369.412 6984.314 1560 VEGETATION Wetland ID Sample Location Media Species Condition Tissue TP (mg/kg) Tissue N (%) Tissue C (%) IN4 Site Composite (ALL) vegetation Salix carolinia na Impacted 0.2865 2.69 43.76 IN4 Site Composite (ALL) vegetation Acer rubrum Impacted 0.2582 2.03 43.88 LITTER

PAGE 87

75 Wetland ID Wetland ID plus sub Sub sample Location Conditio n Litter TP (mg/kg) Litter N (%) Litter C (%) IN4 IN4a Core Composite (A) Impacted 2934 IN4b Edge Composite (B) Impacted 3212 GENERAL INFORMATION WETLAND ID Date Location GPS Coordinates IN5 8/10/2003 Elberfeld N 38 09.692' W 87 24.854' Wetland ID Condition Characterizat ion of Wetland Adjacent Water Body Adjacent Upland 1 % Adjacent Upland 2 % Adjacent Upland 3 % IN5 Impacted Forested Wetland Riparian Forested 100.00 Trash Algae Present Evidence of Sedimentatio n Floating Vegetati on Hydrologic Disturbances Vegetativ e Disturban ces Nutrient Loading Size of Wetland Shape of Wetland HGM Classification Cans or Bottles None Noticed None Present Canals, Piped Inflows None Noticed None 10 Linear FIELD DATA Wetland Id Wetland ID Plus Sub Water Source Temp. C pH DO% Conductivity ORP Water Depth Distinct Lichen Lines Present IN5 IN5a Core Composite (A) Yes IN5 IN5a Core Composite (A) Yes IN5 IN5a Core Composite (A) 23.34 6.92 36.2 143.6 -31 2 Yes IN5 IN5b Edge Composite (B) Yes IN5 IN5b Edge Composite (B) Yes IN5 IN5b Edge Composite (B) No Distance of Lichen Lines (Inches) Algal Mats Aquatic Plants Present Aquatic Species Morphologica l Adaptations Character Total % of Overstory Overstory Vegetation 1 % Overstory 1 Overstory Vegetation 2 26 No No No data Buttressed roots Forested 60 Acer rubrum 40 Salix caroliniana 31 No No No data Buttressed roots Forested 75 Fraxinus Profunda 75

PAGE 88

76 22 No No No data Buttressed roots Forested 85 Acer rubrum 35 Eastern Cottonwood 16 No No No data None Forested 70 Acer rubrum 30 Hickory 30 No No No data None Fore sted 70 Acer rubrum 35 Acer negunda No No No data None Forested 85 Acer rubrum 50 Salix caroliniana % Overstory 2 Overstory Vegetation 3 % Overstory 3 Overstor y Vegetati on 4 % Overstory 4 Overstory Vegetatio n 5 % Overstory 5 Total % of Understory Understory Vegetation 1 % Understory 1 20 95 Grass 35 95 Grass 75 10 Salix caroliniana 20 Fraxinus Profunda 20 50 Fraxinus Profunda 40 10 Eastern Cottonwood 15 Fraxinus Profunda 15 95 Grass 5 35 95 Ulmus Americana 30 35 10 Acer rubrum 5 Understory Vegetation 2 % Understory 2 Understory vegetation 3 % Understo ry 3 Understory Vegetation 4 % Understor y 4 Understory Vegetation 5 % Understory 5 Understory Vegetation 6 % Understory 6 Saururus cernuus 20 Grass 20 Cephalanthus Occidentalis 20 Fraxinus Profunda 20 Grass 10 Boehmeria cylindrica 30 Grass 30 Vine 30 Grass 30 Vine 35 Grass 3 Fraxinus Profunda 2 WATER QUALITY DATA Wetland ID Wetland ID Plus Sub Sample Location Conditio n Media Water columnT P (mg/l) Water column TKN mg/l Water Column NO3+NO2 (mg/l) IN5 IN5a Core Composite (A) Impacted water 0.365 2.225 0.103 SOIL DATA Media Wetland ID Plus Sub Sub Sample Location Conditio n Soil Organic/Mine ral Soil pH Soil Moisture Content Soil Bulk Density (g/cm3) Soil LOI (%) Soil TP (mg/kg) Soil IN5a A Impacted 0.379 13.1 567.5 IN5b B Impacted 0.287 9 614.3 IN5u U Impacted 0.202 30.3 557.9

PAGE 89

77 Media Wetland ID Plus Sub Sub Sample Location Soil TP (%) Soil TN (%) Soil TC (%) Soil Mehlic 1 P (mg/kg) Soil Mehlich 1 K (mg/kg) Soil Mehlich 1 Ca (mg/kg) Soil Mehlich 1 Mg (mg/kg) Soil IN5a A 0.056 0.292 4.736 15.964 200.4 3020 914.8 IN5b B 0.061 0.231 2.698 20.72 142.56 1978.8 844.4 IN5u U 0.055 0.443 16.614 15.944 199.36 2148 585.6 Media Wetland ID Plus Sub Sub Sample Location Soil Mehlich 1 Fe (mg/kg) Soil Mehlich 1 Al (mg/kg) Soil KCl ext NH4 (mg/kg) Soil KCl ext NO3+NO2 (mg/kg) Soil Mehlich 3 P (mg/kg) Soil Mehlich 3 K (mg/kg) Soil Mehlich Ca (mg/kg) Soil IN5a A 50.88 163.76 34.36 58.84 124.2 IN5b B 55.16 168.12 35.76 80 828.8 IN5u U 35.88 218.4 29.24 75 741.2 Wetland ID Plus Sub Soil Mehlich Mg (mg/kg) Soil Mehlich Fe (mg/kg) Soil Mehlich 3 Al (mg/kg) Soil Water Ext P (mg/kg) Soil Oxylate P (mg/kg) Soil Oxylate Fe (mg/kg) Soil Oxylate Al (mg/kg) Soil P Sorption % IN5a 48.6 153.2 809.2 0.388 262 6512 892.4 45.204 IN5b 327.6 236.4 270 0.587 339.37 9397.638 1061.811 41.366 IN5u 365.6 185.76 297.2 2.579 230.891 5192.079 1109.703 VEGETATION Wetland ID Sample Location Media Species Condition Tissue TP (mg/kg) Tissue N (%) Tissue C (%) IN5 Site Composite (ALL) vegetation Salix carolinia na Impacted 0.2272 2.16 42.4 IN5 Site Composite (ALL) vegetation Acer rubrum Impacted 0.028 1.82 46.72 IN5 Site Composite (ALL) vegetation Cephala nthus occident alis Impacted 0.1574 2.75 46.81 LITTER Wetland ID Wetland ID plus sub Sub sample Location Conditio n Litter TP (mg/kg) Litter N (%) Litter C (%) IN5 IN5a Core Composite (A) Impacted 2934 IN5b Edge Composite (B) Impacted 3212 GENERAL INFORMATION WETLAND ID Date Location GPS Coordinates IN6 8/16/2003 N 38 21.415' W 87 08.973' Wetland ID Condition Characterizat ion of Wetland Adjacent Water Body Adjacent Upland 1 % Adjacent Upland 2 % Adjacent Upland 3 % IN6 LeastImpacted Forested Wetland Riparian Forested 100.00 Trash Algae Present Evidence of Sedimentatio n Floating Vegetati on Hydrologic Disturbances Vegetativ e Disturban ces Nutrient Loading Size of Wetland Shape of Wetland HGM Classification none present None Noticed None Present None None Noticed None 5 Oxbow FIELD DATA

PAGE 90

78 Wetland Id Wetland ID Plus Sub Water Source Temp. C pH DO% Conductivity ORP Water Depth Distinct Lichen Lines Present IN6 IN6a Core Composite (A) No IN6 IN6a Core Composite (A) No IN6 IN6a Core Composite (A) 25.74 7.05 76 294 55.8 48 No IN6 IN6b Edge Composite (B) Yes IN6 IN6b Edge Composite (B) No IN6 IN6b Edge Composite (B) Yes Distance of Lichen Lines (Inches) Algal Mats Aquatic Plants Present Aquatic Species Morphologica l Adaptations Character Total % of Overstory Overstory Vegetation 1 % Overstory 1 Overstory Vegetation 2 No No No data None Fo rested 20 Quercus spp. 5 Acer rubrum No No No data None Fo rested 20 Quercus spp. 5 Acer rubrum No No No data None Fo rested 20 Quercus spp. 5 Acer rubrum 38 No No No data None Forested 80 Carpinus caroliniana 40 Platanus occidentalis (American Sycamore) No No No data None Fo rested 80 Acer rubrum 40 Quercus spp. 32 No No No data None Forested 80 Platanus occidentalis (American Sycamore) 30 Acer rubrum % Overstory 2 Overstory Vegetation 3 % Overstory 3 Overstor y Vegetati on 4 % Overstory 4 Overstory Vegetatio n 5 % Overstory 5 Total % of Understory Understory Vegetation 1 % Understory 1 20 95 10 Carpinus caroliniana 95 10 Carpinus caroliniana 10 Salix caroliniana 20 Fraxinus Profunda 20 50 10 Carpinus caroliniana 10 Eastern Cottonwood 15 Fraxinus Profunda 15 95 30 Hickory 35 95 20 Carpinus caroliniana 35 10 50

PAGE 91

79 Understory Vegetation 2 % Understory 2 Understory vegetation 3 % Understo ry 3 Understory Vegetation 4 % Understor y 4 Understory Vegetation 5 % Understory 5 Understory Vegetation 6 % Understory 6 5 10 5 10 5 10 10 50 20 70 70 WATER QUALITY DATA Wetland ID Wetland ID Plus Sub Sample Location Conditio n Media Water columnT P (mg/l) Water column TKN mg/l Water Column NO3+NO2 (mg/l) IN6 IN6blank Blank Impacted water -0.001 0.489 0.005 IN6 IN6blank Blank Impacted water -0.001 0.613 0.011 IN6 IN6a Core Composite (A) Impacted water 0.204 1.481 1.028 SOIL DATA Media Wetland ID Plus Sub Sub Sample Location Conditio n Soil Organic/Mine ral Soil pH Soil Moisture Content Soil Bulk Density (g/cm3) Soil LOI (%) Soil TP (mg/kg) Soil IN6a A Impacted 0.242 5.9 697.7 IN6b B Impacted 0.217 8.1 677.7 IN6u U Impacted 0.141 7.2 836.3 Media Wetland ID Plus Sub Sub Sample Location Soil TP (%) Soil TN (%) Soil TC (%) Soil Mehlic 1 P (mg/kg) Soil Mehlich 1 K (mg/kg) Soil Mehlich 1 Ca (mg/kg) Soil Mehlich 1 Mg (mg/kg) Soil IN6a A 0.069 0.115 1.463 49.6 101.68 1238 277.6 IN6b B 0.067 30.56 132.48 1505.6 292 IN6u U 0.083 23.28 115.12 75.72 237.2 Media Wetland ID Plus Sub Sub Sample Location Soil Mehlich 1 Fe (mg/kg) Soil Mehlich 1 Al (mg/kg) Soil KCl ext NH4 (mg/kg) Soil KCl ext NO3+NO2 (mg/kg) Soil Mehlich 3 P (mg/kg) Soil Mehlich 3 K (mg/kg) Soil Mehlich Ca (mg/kg) Soil IN6a A 248.8 190.16 30.8 88.76 781.6 IN6b B 115.12 208.4 54.04 46.2 510.4 IN6u U 71.52 299.2 27.08 49.28 378.8 Wetland ID Plus Sub Soil Mehlich Mg (mg/kg) Soil Mehlich Fe (mg/kg) Soil Mehlich 3 Al (mg/kg) Soil Water Ext P (mg/kg) Soil Oxylate P (mg/kg) Soil Oxylate Fe (mg/kg) Soil Oxylate Al (mg/kg) Soil P Sorption % IN6a 248.8 185.68 320 1.309 500 7700.787 910.63 47.499 IN6b 120 272 297.6 1.257 421.912 7601.594 1168.924 49.395 IN6u 95.04 158.52 419.2 0.391 390.495 8871.287 1502.178 VEGETATION Wetland ID Sample Location Media Species Condition Tissue TP (mg/kg) Tissue N (%) Tissue C (%) IN6 Site Composite (ALL) vegetation Acer rubrum Impacted 0.2232 LITTER Wetland ID Wetland ID plus sub Sub sample Location Conditio n Litter TP (mg/kg) Litter N (%) Litter C (%)

PAGE 92

80 IN6 IN6a Core Composite (A) Impacted 3546 IN6 IN6b Edge Composite (B) Impacted 2715 GENERAL INFORMATION WETLAND ID Date Location GPS Coordinates IN7 8/16/2003 Schlensk er Ditch N 38 21.412' W 87 08.974' Wetland ID Condition Characterizat ion of Wetland Adjacent Water Body Adjacent Upland 1 % Adjacent Upland 2 % Adjacent Upland 3 % IN7 Impacted Forested Wetland Riparian Rural 30.00 Forested 40.00 Row crops 30.00 Trash Algae Present Evidence of Sedimentatio n Floating Vegetati on Hydrologic Disturbances Vegetativ e Disturban ces Nutrient Loading Size of Wetland Shape of Wetland HGM Classification tires None Noticed None Present None Large % of Dead Trees None 5 Oval FIELD DATA Wetland Id Wetland ID Plus Sub Water Source Temp. C pH DO% Conductivity ORP Water Depth Distinct Lichen Lines Present IN7 IN7a Core Composite (A) No IN7 IN7a Core Composite (A) No IN7 IN7a Core Composite (A) 26.38 7.68 76.5 398 12 3 No IN7 IN7b Edge Composite (B) No IN7 IN7b Edge Composite (B) Yes IN7 IN7b Edge Composite (B) 23.17 6.63 16 170 -104.6 12 Yes Distance of Lichen Lines (Inches) Algal Mats Aquatic Plants Present Aquatic Species Morphologica l Adaptations Character Total % of Overstory Overstory Vegetation 1 % Overstory 1 Overstory Vegetation 2 No No No data None Forested 75 Quercus spp. 25 Fraxinus Profunda No No No data None Forested 80 Fraxinus Profunda 20 Acer rubrum No No No data None Forested 80 Sassafras 20 Acer rubrum

PAGE 93

81 No No No data None Forested 60 Ulmus Americana 10 Acer rubrum 4 No No No data None Forested 80 Ulmus Americana 20 Wild Cherry 17 No No No data N one Forested 80 Acer rubrum 20 Ulmus Americana % Overstory 2 Overstory Vegetation 3 % Overstory 3 Overstor y Vegetati on 4 % Overstory 4 Overstory Vegetatio n 5 % Overstory 5 Total % of Understory Understory Vegetation 1 % Understory 1 25 Cottonwood 25 5 20 Hackberry 10 Cottonw ood 20 Quercus spp. 10 10 20 Quercus spp. 20 Wild Cherry 20 5 30 Platanus occidentalis (American Sycamore) 10 Hackberr y 10 10 20 Platanus occidentalis (American Sycamore) 20 Hackberr y 20 10 20 River Birch 20 Liquida mbar styracifl ua 20 20 Understory Vegetation 2 % Understory 2 Understory vegetation 3 % Understo ry 3 Understory Vegetation 4 % Understor y 4 Understory Vegetation 5 % Understory 5 Understory Vegetation 6 % Understory 6 Grass 5 vines 5 Grass 5 Grass 5 Poison Ivy 10 Poison Ivy 5 Honey Suckle 5 Poison Ivy 20 WATER QUALITY DATA Wetland ID Wetland ID Plus Sub Sample Location Conditio n Media Water columnT P (mg/l) Water column TKN mg/l Water Column NO3+NO2 (mg/l) IN7 IN7a Core Composite (A) Impacted water 0.046 0.985 0.027 IN7 IN7b Edge Composite (B) Impacted water 0.558 4.829 0.011 SOIL DATA Media Wetland ID Plus Sub Sub Sample Location Conditio n Soil Organic/Mine ral Soil pH Soil Moisture Content Soil Bulk Density (g/cm3) Soil LOI (%) Soil TP (mg/kg) Soil IN7a A Impacted 0.235 5.5 753.7 IN7b B Impacted 0.277 8.6 399.8 IN7u U Impacted 0.128 7.7 402.9

PAGE 94

82 Media Wetland ID Plus Sub Sub Sample Location Soil TP (%) Soil TN (%) Soil TC (%) Soil Mehlic 1 P (mg/kg) Soil Mehlich 1 K (mg/kg) Soil Mehlich 1 Ca (mg/kg) Soil Mehlich 1 Mg (mg/kg) Soil IN7a A 0.075 33.24 114.84 1966.4 505.2 IN7b B 0.039 0.309 4.686 57.2 108.76 1080 165.48 IN7u U 0.04 0.199 2.699 25.16 81.76 730.8 186.48 Media Wetland ID Plus Sub Sub Sample Location Soil Mehlich 1 Fe (mg/kg) Soil Mehlich 1 Al (mg/kg) Soil KCl ext NH4 (mg/kg) Soil KCl ext NO3+NO2 (mg/kg) Soil Mehlich 3 P (mg/kg) Soil Mehlich 3 K (mg/kg) Soil Mehlich Ca (mg/kg) Soil IN7a A 55.16 166.4 20.32 77.16 160.2 IN7b B 358.4 262 52.88 43.52 390.8 IN7u U 112.84 296.8 34.36 39.36 333.2 Wetland ID Plus Sub Soil Mehlich Mg (mg/kg) Soil Mehlich Fe (mg/kg) Soil Mehlich 3 Al (mg/kg) Soil Water Ext P (mg/kg) Soil Oxylate P (mg/kg) Soil Oxylate Fe (mg/kg) Soil Oxylate Al (mg/kg) Soil P Sorption % IN7a 257.6 142.72 242 0.275 261.233 8512.922 904.97 44.338 IN7b 59.04 289.2 349.6 0.923 227.2 3504 884.4 34.225 IN7u 82.44 198.68 384 1.344 194.083 3865.878 891.124 VEGETATION Wetland ID Sample Location Media Species Condition Tissue TP (mg/kg) Tissue N (%) Tissue C (%) IN7 Site Composite (ALL) vegetation Acer rubrum Impacted 0.1552 1.75 45.97 LITTER Wetland ID Wetland ID plus sub Sub sample Location Conditio n Litter TP (mg/kg) Litter N (%) Litter C (%) IN7 IN7a Core Composite (A) Impacted 1908 IN7 IN7b Edge Composite (B) Impacted 1774 GENERAL INFORMATION WETLAND ID Date Location GPS Coordinates IN8 8/17/2003 Buck's Marsh N 38 20.812' W 87 19.395' Wetland ID Condition Characterizat ion of Wetland Adjacent Water Body Adjacent Upland 1 % Adjacent Upland 2 % Adjacent Upland 3 % IN8 LeastImpacted Emergent Wetland NonRiparian Forested 100.00 Trash Algae Present Evidence of Sedimentatio n Floating Vegetati on Hydrologic Disturbances Vegetativ e Disturban ces Nutrient Loading Size of Wetland Shape of Wetland HGM Classification none present None Noticed Lemna None None Noticed None 200 Oval FIELD DATA

PAGE 95

83 Wetland Id Wetland ID Plus Sub Water Source Temp. C pH DO% Conductivity ORP Water Depth Distinct Lichen Lines Present IN8 IN8a Core Composite (A) 24.51 6.55 10.2 601 -124.9 26 Yes IN8 IN8a Core Composite (A) 24.4 6.76 3.6 592 -156.8 24 Yes IN8 IN8a Core Composite (A) 24.23 6.86 24.3 593 -140.8 16 No IN8 IN8b Edge Composite (B) 24.19 6.91 58 581 -150.8 16 Yes IN8 IN8b Edge Composite (B) 24.35 6.97 14.4 589 -134.2 9 No IN8 IN8b Edge Composite (B) No Distance of Lichen Lines (Inches) Algal Mats Aquatic Plants Present Aquatic Species Morphologica l Adaptations Character Total % of Overstory Overstory Vegetation 1 % Overstory 1 Overstory Vegetation 2 26 Yes Yes Lemna Buttressed roots Emergent macrophy tes 10 Fraxinus Profunda 5 Salix caroliniana 28 Yes Yes Lemna Buttressed roots Emergent macrophy tes 10 Acer rubrum 10 Yes Yes Lemna Buttressed roots Emergent macrophy tes 15 Fraxinus Profunda 10 Cephalanthus Occidentalis 30 Yes Yes Lemna None Emergent macrophy tes 10 Acer rubrum 5 Cephalanthus Occidentalis Yes Yes Lemna None Emergent macrophy tes 5 Fraxinus Profunda 5 No No No data None Grasses/s edges 30 Salix caroliniana 20 Ulmus Americana % Overstory 2 Overstory Vegetation 3 % Overstory 3 Overstor y Vegetati on 4 % Overstory 4 Overstory Vegetatio n 5 % Overstory 5 Total % of Understory Understory Vegetation 1 % Understory 1 5 95 95 5 90 5 95 80 10 100 Understory Vegetation 2 % Understory 2 Understory vegetation 3 % Understo ry 3 Understory Vegetation 4 % Understor y 4 Understory Vegetation 5 % Understory 5 Understory Vegetation 6 % Understory 6 Lemna spp. 55 Moneywort 40

PAGE 96

84 Lemna spp. 50 Moneywort 30 Cephalanthus Occidentalis 10 Yellow Pond lilly 5 Lemna spp. 50 Moneywort 30 Sedge 7 Yellow Pond lilly 3 Lemna spp. 40 Sedge 30 Moneywort 20 Cephalanthus Occidentalis 5 Cephalanthus Occidentalis 10 Sedge 60 Yellow Pond Lilly 5 Lemna spp. 5 Sedge 60 Typha latifolia 20 Cephalanthus Occidentalis 20 WATER QUALITY DATA Wetland ID Wetland ID Plus Sub Sample Location Conditio n Media Water columnT P (mg/l) Water column TKN mg/l Water Column NO3+NO2 (mg/l) IN8 IN8blank Blank Impacted water 0.003 0.737 0.075 IN8 IN8blank Blank Impacted water 0 0.551 0.005 IN8 IN8a Core Composite (A) Impacted water 0.251 3.713 0.005 IN8 IN8b Edge Composite (B) Impacted water 0.194 1.357 0.005 SOIL DATA Media Wetland ID Plus Sub Sub Sample Location Conditio n Soil Organic/Mine ral Soil pH Soil Moisture Content Soil Bulk Density (g/cm3) Soil LOI (%) Soil TP (mg/kg) Soil IN8a A Impacted 0.609 17.7 667.3 IN8b B Impacted 0.593 13.2 796.2 IN8u U Impacted 0.157 9.5 490.1 Media Wetland ID Plus Sub Sub Sample Location Soil TP (%) Soil TN (%) Soil TC (%) Soil Mehlic 1 P (mg/kg) Soil Mehlich 1 K (mg/kg) Soil Mehlich 1 Ca (mg/kg) Soil Mehlich 1 Mg (mg/kg) Soil IN8a A 0.066 0.41 8.372 10.516 110.68 5400 607.2 IN8b B 0.079 0.361 9.443 40.16 127.2 2396 391.6 IN8u U 0.049 2.26 155.44 5992 222.8 Media Wetland ID Plus Sub Sub Sample Location Soil Mehlich 1 Fe (mg/kg) Soil Mehlich 1 Al (mg/kg) Soil KCl ext NH4 (mg/kg) Soil KCl ext NO3+NO2 (mg/kg) Soil Mehlich 3 P (mg/kg) Soil Mehlich 3 K (mg/kg) Soil Mehlich Ca (mg/kg) Soil IN8a A 81.6 37.08 39.56 53.08 2032 IN8b B 313.2 936 30.28 94.32 1420 IN8u U 0 0 36.36 72 1876.4 Wetland ID Plus Sub Soil Mehlich Mg (mg/kg) Soil Mehlich Fe (mg/kg) Soil Mehlich 3 Al (mg/kg) Soil Water Ext P (mg/kg) Soil Oxylate P (mg/kg) Soil Oxylate Fe (mg/kg) Soil Oxylate Al (mg/kg) Soil P Sorption % IN8a 228.4 268.4 366.8 0.219 400 13924.752 1885.941 80.382 IN8b 223.6 253.2 790.4 -0.016 476.117 19250.485 6306.796 94.905 IN8u 83.96 198.4 118.84 1.617 226.64 4612.326 626.64

PAGE 97

85 VEGETATION Wetland ID Sample Location Media Species Condition Tissue TP (mg/kg) Tissue N (%) Tissue C (%) IN8 Site Composite (ALL) vegetation Acer rubrum Impacted 0.1552 1.75 45.97 LITTER Wetland ID Wetland ID plus sub Sub sample Location Conditio n Litter TP (mg/kg) Litter N (%) Litter C (%) IN8 IN8a Core Composite (A) Impacted 1354 IN8 IN8b Edge Composite (B) Impacted 1989 GENERAL INFORMATION WETLAND ID Date Location GPS Coordinates IN9 8/26/2003 Big Cypress Slough N 37 49.116' W 88 00.273' Wetland ID Condition Characterizat ion of Wetland Adjacent Water Body Adjacent Upland 1 % Adjacent Upland 2 % Adjacent Upland 3 % IN9 LeastImpacted Emergent Wetland NonRiparian Rural 5.00 Unimproved pasture 10.00 Forested 75.00 Trash Algae Present Evidence of Sedimentatio n Floating Vegetati on Hydrologic Disturbances Vegetativ e Disturban ces Nutrient Loading Size of Wetland Shape of Wetland HGM Classification none present No data Lemna N one No data None 100 Oval FIELD DATA Wetland Id Wetland ID Plus Sub Water Source Temp. C pH DO% Conductivity ORP Water Depth Distinct Lichen Lines Present IN9 IN9a Core Composite (A) 23.65 6.64 1.89 408 -149.7 18 No IN9 IN9a Core Composite (A) 25.06 6.73 2.77 386 -121 16 No IN9 IN9a Core Composite (A) 24.74 6.72 3.296 390 -128.4 14 No IN9 IN9b Edge Composite (B) 27.33 6.82 6 386 -64.8 5 No IN9 IN9b Edge Composite (B) 25.64 6.78 5.3 375 -128.1 4 No

PAGE 98

86 IN9 IN9b Edge Composite (B) 26.27 6.79 3.17 380 -162.9 4 No Distance of Lichen Lines (Inches) Algal Mats Aquatic Plants Present Aquatic Species Morphologica l Adaptations Character Total % of Overstory Overstory Vegetation 1 % Overstory 1 Overstory Vegetation 2 No Yes Lemna Buttressed roots Emergent macrophy tes 30 Cephalanthus Occidentalis 20 Taxodium spp. No Yes Lemna Buttressed Roots, Hummocks Emergent macrophy tes 30 Salix caroliniana 10 Taxodium spp. No Yes Lemna Buttressed roots, Hummocks Emergent macrophy tes 20 Taxodium spp. 10 Cephalanthus Occidentalis No Yes Lemna Buttressed roots Forested 60 Pecan 15 Walnut No Yes Lemna Buttressed roots, Hummocks Floating Aquatics 70 Acer rubrum 50 Platanus occidentalis (American Sycamore) No Yes Lemna Buttressed roots Forested 80 Acer rubrum 60 Pecan % Overstory 2 Overstory Vegetation 3 % Overstory 3 Overstor y Vegetati on 4 % Overstory 4 Overstory Vegetatio n 5 % Overstory 5 Total % of Understory Understory Vegetation 1 % Understory 1 10 90 Cephalanthus Occidentalis 40 10 Cephalanthus Occidentalis 10 90 Cephalanthus Occidentalis 40 10 90 Cephalanthus Occidentalis 40 15 Platanus occidentalis (American Sycamore) 410 Cephala nthus Occident alis 10 Acer rubrum 10 80 Cephalanthus Occidentalis 20 10 Pecan 10 80 Cephalanthus Occidentalis 30 20 70 Acer rubrum 20 Understory Vegetation 2 % Understory 2 Understory vegetation 3 % Understo ry 3 Understory Vegetation 4 % Understor y 4 Understory Vegetation 5 % Understory 5 Understory Vegetation 6 % Understory 6 Lemna spp. 50 Lemna spp. 50 Lemna spp. 50

PAGE 99

87 Lemna spp. 30 Poison Ivy 30 Lemna spp. 40 Poison Ivy 10 Lemna spp. 30 Cephalanthus Occidentalis 10 Poison Ivy 10 WATER QUALITY DATA Wetland ID Wetland ID Plus Sub Sample Location Conditio n Media Water columnT P (mg/l) Water column TKN mg/l Water Column NO3+NO2 (mg/l) IN9 IN9blank Blank LeastImpacted water 0 0.613 0.005 IN9 IN9a Core Composite (A) LeastImpacted water 0.406 1.605 0.011 IN9 IN9b Edge Composite (B) LeastImpacted water 0.439 2.597 0.086 SOIL DATA Media Wetland ID Plus Sub Sub Sample Location Conditio n Soil Organic/Mine ral Soil pH Soil Moisture Content Soil Bulk Density (g/cm3) Soil LOI (%) Soil TP (mg/kg) Soil IN9a A LeastImpacted 0.681 22.2 937.3 IN9b B LeastImpacted 0.591 20.4 997.9 IN9u U LeastImpacted 0.219 18.2 1266.9 Media Wetland ID Plus Sub Sub Sample Location Soil TP (%) Soil TN (%) Soil TC (%) Soil Mehlic 1 P (mg/kg) Soil Mehlich 1 K (mg/kg) Soil Mehlich 1 Ca (mg/kg) Soil Mehlich 1 Mg (mg/kg) Soil IN9a A 0.093 0.526 8.061 IN9b B 0.099 0.466 6.016 IN9u U 0.126 0.504 6.095 Media Wetland ID Plus Sub Sub Sample Location Soil Mehlich 1 Fe (mg/kg) Soil Mehlich 1 Al (mg/kg) Soil KCl ext NH4 (mg/kg) Soil KCl ext NO3+NO2 (mg/kg) Soil Mehlich 3 P (mg/kg) Soil Mehlich 3 K (mg/kg) Soil Mehlich Ca (mg/kg) Soil IN9a A IN9b B IN9u U Wetland ID Plus Sub Soil Mehlich Mg (mg/kg) Soil Mehlich Fe (mg/kg) Soil Mehlich 3 Al (mg/kg) Soil Water Ext P (mg/kg) Soil Oxylate P (mg/kg) Soil Oxylate Fe (mg/kg) Soil Oxylate Al (mg/kg) Soil P Sorption % IN9a 0.54 685.602 12362.919 2122.288 91.113 IN9b 0.63 674.851 12431.683 2146.535 93.009 IN9u 2.705 687.6 9792 1970 VEGETATION Wetland ID Sample Location Media Species Condition Tissue TP (mg/kg) Tissue N (%) Tissue C (%)

PAGE 100

88 IN9 Site Composite (ALL) vegetation Salix carolinia na LeastImpacted IN9 Site Composite (ALL) vegetation Taxodiu m spp. LeastImpacted LITTER Wetland ID Wetland ID plus sub Sub sample Location Conditio n Litter TP (mg/kg) Litter N (%) Litter C (%) IN9 IN9a Core Composite (A) Least Impacted IN9 IN9b Edge Composite (B) Least Impacted GENERAL INFORMATION WETLAND ID Date Location GPS Coordinates IN10 8/30/2003 Snakey Point N 38 21.113' W 87 19.161' Wetland ID Condition Characterizat ion of Wetland Adjacent Water Body Adjacent Upland 1 % Adjacent Upland 2 % Adjacent Upland 3 % IN10 LeastImpacted Emergent Wetland NonRiparian Rural 10.00 Unimproved pasture 10.00 Forested 70.00 Trash Algae Present Evidence of Sedimentatio n Floating Vegetati on Hydrologic Disturbances Vegetativ e Disturban ces Nutrient Loading Size of Wetland Shape of Wetland HGM Classification none present None Noticed Lemna None None Noticed None 200 Round FIELD DATA Wetland Id Wetland ID Plus Sub Water Source Temp. C pH DO% Conductivity ORP Water Depth Distinct Lichen Lines Present IN10 IN10a Core Composite (A) 26.53 7.29 41.4 831 -154.4 15 No IN10 IN10a Core Composite (A) 26.82 7.09 17.4 855 -224.8 21 No IN10 IN10a Core Composite (A) 27.07 7.25 44.8 849 -160 18 No IN10 IN10b Edge Composite (B) 26.5 7.01 3.2 842 -182.2 10 No IN10 IN10b Edge Composite (B) 26.5 7.12 8.1 854 -168.1 15 No IN10 IN10b Edge Composite (B) 26.63 7.21 13.8 836 -97.4 10 No

PAGE 101

89 Distance of Lichen Lines (Inches) Algal Mats Aquatic Plants Present Aquatic Species Morphologica l Adaptations Character Total % of Overstory Overstory Vegetation 1 % Overstory 1 Overstory Vegetation 2 Yes Yes Lemna None Emergent macrophy tes 0 Yes Yes Lemna None Emergent macrophy tes 0 No Yes Lemna Hummocks Emergent macrophy tes 0 No Yes Lemna Hummocks Emergent macrophy tes 0 No Yes Lemna Hummocks Emergent macrophy tes 0 No Yes Lemna None Emergent macrophy tes 0 % Overstory 2 Overstory Vegetation 3 % Overstory 3 Overstor y Vegetati on 4 % Overstory 4 Overstory Vegetatio n 5 % Overstory 5 Total % of Understory Understory Vegetation 1 % Understory 1 50 Lemna spp. 5 60 Lemna spp. 5 80 Lemna spp. 50 90 Lemna spp. 60 90 Lemna spp. 30 70 Lemna spp. 20 Understory Vegetation 2 % Understory 2 Understory vegetation 3 % Understo ry 3 Understory Vegetation 4 % Understor y 4 Understory Vegetation 5 % Understory 5 Understory Vegetation 6 % Understory 6 Nelumbo lutea 30 Lysimachia ciliata 15 Nelumbo lutea 40 Lysimachia ciliata 5 Typha latifolia 5 Nuphar spp. 5 Nelumbo lutea 20 Polygonum amphibium 10 Decodon verticillatus 5 Polygonum amphibium 5 Nelumbo lutea 20 Nelumbo lutea 30 lysimachia cilliata 30 hydrocotyle americana 20 Nelumbo lutea 10 Nymphae mexicana 5 Lysimachia cilliata 5 Typha latifolia 5 WATER QUALITY DATA Wetland ID Wetland ID Plus Sub Sample Location Conditio n Media Water columnT P (mg/l) Water column TKN mg/l Water Column NO3+NO2 (mg/l) IN10 IN10blank Blank Impacted Water 0 0.489 0.005 IN10 IN10blank Blank Impacted Water -0.002 0.737 0.005 IN10 IN10a Core Composite (A) Impacted Water 0.166 2.225 0.005 IN10 IN10b Edge Composite (B) Impacted Water 0.434 4.209 0.005

PAGE 102

90 IN10 IN10b Edge Composite (B) Impacted Water 0.262 2.969 0 SOIL DATA Media Wetland ID Plus Sub Sub Sample Location Conditio n Soil Organic/Mine ral Soil pH Soil Moisture Content Soil Bulk Density (g/cm3) Soil LOI (%) Soil TP (mg/kg) Soil IN10a A Impacted 0.812 12.3 763.9 IN10b B Impacted 0.697 19.5 734.3 IN10b B Impacted 0.707 17.5 807.3 IN10u U Impacted 0.152 11.9 778.8 Media Wetland ID Plus Sub Sub Sample Location Soil TP (%) Soil TN (%) Soil TC (%) Soil Mehlic 1 P (mg/kg) Soil Mehlich 1 K (mg/kg) Soil Mehlich 1 Ca (mg/kg) Soil Mehlich 1 Mg (mg/kg) Soil IN10a A 0.076 IN10b B 0.073 IN10b B 0.08 IN10u U 0.077 0.277 4.29 Media Wetland ID Plus Sub Sub Sample Location Soil Mehlich 1 Fe (mg/kg) Soil Mehlich 1 Al (mg/kg) Soil KCl ext NH4 (mg/kg) Soil KCl ext NO3+NO2 (mg/kg) Soil Mehlich 3 P (mg/kg) Soil Mehlich 3 K (mg/kg) Soil Mehlich Ca (mg/kg) Soil IN10a A IN10b B IN10b B IN10u U Wetland ID Plus Sub Soil Mehlich Mg (mg/kg) Soil Mehlich Fe (mg/kg) Soil Mehlich 3 Al (mg/kg) Soil Water Ext P (mg/kg) Soil Oxylate P (mg/kg) Soil Oxylate Fe (mg/kg) Soil Oxylate Al (mg/kg) Soil P Sorption % IN9a IN10a A 2.318 372.603 5115.46 826.223 83.528 IN9b IN10b B 0.38 413.255 10752.437 1401.559 86.688 IN9u IN10b B 0.27 440.4 13308 1327.6 IN10u U 1.479 375.294 5015.686 814.902 VEGETATION Wetland ID Sample Location Media Species Condition Tissue TP (mg/kg) Tissue N (%) Tissue C (%) IN10 Site Composite (ALL) Vegetation Polygon um spp. Impacted IN10 Site Composite (ALL) Vegetation Typha spp. Impacted LITTER Wetland ID Wetland ID plus sub Sub sample Location Conditio n Litter TP (mg/kg) Litter N (%) Litter C (%) IN10 IN10a Core Composite (A) litter IN10 IN10b Edge Composite (B) litter IN10 IN10b Edge Composite (B) litter GENERAL INFORMATION

PAGE 103

91 WETLAND ID Date Location GPS Coordinates IN11 8/31/2003 Snake Lake N 38 22.087' W 87 19.551' Wetland ID Condition Characterizat ion of Wetland Adjacent Water Body Adjacent Upland 1 % Adjacent Upland 2 % Adjacent Upland 3 % IN11 Impacted Emergent Wetland NonRiparian Rural 10.00 Forested 80.00 Row crops 10.00 Trash Algae Present Evidence of Sedimentatio n Floating Vegetati on Hydrologic Disturbances Vegetativ e Disturban ces Nutrient Loading Size of Wetland Shape of Wetland HGM Classification Tires, Bottles, Cans Algae None Noticed Nuphar Lutea None None Noticed None 100 Oval FIELD DATA Wetland Id Wetland ID Plus Sub Water Source Temp. C pH DO% Conductivity ORP Water Depth Distinct Lichen Lines Present IN11 IN11a Core Composite (A) 29.67 8.15 134.4 904 -13.6 26 No IN11 IN11a Core Composite (A) 29.74 8.15 114.9 907 -46.8 23 No IN11 IN11a Core Composite (A) 29.47 8.23 123 898 -32.1 24 No IN11 IN11b Edge Composite (B) 30.4 7.97 95.5 921 -2.1 10 No IN11 IN11b Edge Composite (B) 30.04 7.85 76.8 913 -25.9 12 No Distance of Lichen Lines (Inches) Algal Mats Aquatic Plants Present Aquatic Species Morphologica l Adaptations Character Total % of Overstory Overstory Vegetation 1 % Overstory 1 Overstory Vegetation 2 No Yes Nuphar lutea Hummoks Emergent macrophy tes 0 No Yes nuphar variegatu m None Emergent macrophy tes 0 No Yes nuphar variegatu m None Emergent macrophy tes 0 Yes Yes nuphar variegatu m Adventitious roots, Hummocks Emergent macrophy tes 10 quercus rubra 5 Liquidambar styraciflua No Yes nuphar variegatu m Adventitious roots, Hummocks Emergent macrophy tes 20 Salix caroliniana 10 Acer rubrum No Yes Lemna Adventitious roots, Hummocks Emergent macrophy tes 0 % Overstory 2 Overstory Vegetation 3 % Overstory 3 Overstor y Vegetati on 4 % Overstory 4 Overstory Vegetatio n 5 % Overstory 5 Total % of Understory Understory Vegetation 1 % Understory 1

PAGE 104

92 20 Nuphar variegatum 20 50 Nuphar variegatum 50 30 nuphar variegatum 30 5 50 Cephalanthus Occidentalis 30 5 Cephalanthus Occidentalis 5 90 Cephalanthus Occidentalis 50 100 Lemna spp. 50 Understory Vegetation 2 % Understory 2 Understory vegetation 3 % Understo ry 3 Understory Vegetation 4 % Understor y 4 Understory Vegetation 5 % Understory 5 Understory Vegetation 6 % Understory 6 Dichromea colorata 10 Nuphar variegatum 10 Nuphar varieegatum 40 Hydrocotyle americana 50 WATER QUALITY DATA Wetland ID Wetland ID Plus Sub Sample Location Conditio n Media Water columnT P (mg/l) Water column TKN mg/l Water Column NO3+NO2 (mg/l) IN11 IN11blank Blank Impacted water 0.099 1.915 0.005 IN11 IN11blank Blank Impacted water 0.613 0 IN11 IN11a Core Composite (A) Impacted water 0.166 2.287 0.005 IN11 IN11b Edge Composite (B) Impacted water 0.155 2.349 0.011 SOIL DATA Media Wetland ID Plus Sub Sub Sample Location Conditio n Soil Organic/Mine ral Soil pH Soil Moisture Content Soil Bulk Density (g/cm3) Soil LOI (%) Soil TP (mg/kg) Soil IN11a A Impacted 0.546 20.5 635.5 0.063 IN11b B Impacted 0.526 24.6 543.9 0.054 IN11u U Impacted 0.169 10.9 662.2 0.066 Media Wetland ID Plus Sub Sub Sample Location Soil TP (%) Soil TN (%) Soil TC (%) Soil Mehlic 1 P (mg/kg) Soil Mehlich 1 K (mg/kg) Soil Mehlich 1 Ca (mg/kg) Soil Mehlich 1 Mg (mg/kg) Soil IN11a A IN11b B 0.346 10.301 IN11u U 0.223 3.753 Media Wetland ID Plus Sub Sub Sample Location Soil Mehlich 1 Fe (mg/kg) Soil Mehlich 1 Al (mg/kg) Soil KCl ext NH4 (mg/kg) Soil KCl ext NO3+NO2 (mg/kg) Soil Mehlich 3 P (mg/kg) Soil Mehlich 3 K (mg/kg) Soil Mehlich Ca (mg/kg) Soil IN11a A IN11b B

PAGE 105

93 IN11u U Wetland ID Plus Sub Soil Mehlich Mg (mg/kg) Soil Mehlich Fe (mg/kg) Soil Mehlich 3 Al (mg/kg) Soil Water Ext P (mg/kg) Soil Oxylate P (mg/kg) Soil Oxylate Fe (mg/kg) Soil Oxylate Al (mg/kg) Soil P Sorption % IN9a IN11a A 0.153 381.423 10988.142 1671.542 IN9b IN11b B 0.039 287.302 12158.73 1216.27 97.434 IN9u IN11u U 0.556 251.362 6762.646 1174.708 VEGETATION Wetland ID Sample Location Media Species Condition Tissue TP (mg/kg) Tissue N (%) Tissue C (%) IN11 Site Composite (ALL) Vegetation Acer rubrum Impacted IN11 Site Composite (ALL) Vegetation Cephala nthus occident alis Impacted IN11 Site Composite (ALL) Vegetation Salix carolinia na Impacted IN11 Site Composite (ALL) Vegetation Saururus cernus Impacted LITTER Wetland ID Wetland ID plus sub Sub sample Location Conditio n Litter TP (mg/kg) Litter N (%) Litter C (%) IN11 IN11a Core Composite (A) litter IN11 IN11b Edge Composite (B) litter GENERAL INFORMATION WETLAND ID Date Location GPS Coordinates IN12 9/7/2003 Patoka River National Wildlife Refuge Hwy 57/Patok a R. N 38 23.090' W 87 19.888' Wetland ID Condition Characterizat ion of Wetland Adjacent Water Body Adjacent Upland 1 % Adjacent Upland 2 % Adjacent Upland 3 % IN12 LeastImpacted Emergent Wetland Riparian Rural 5.00 Forested 95.00 Trash Algae Present Evidence of Sedimentatio n Floating Vegetati on Hydrologic Disturbances Vegetativ e Disturban ces Nutrient Loading Size of Wetland Shape of Wetland HGM Classification None Present None Noticed None Present None None Noticed None 40 Oval FIELD DATA Wetland Id Wetland ID Plus Sub Water Source Temp. C pH DO% Conductivity ORP Water Depth Distinct Lichen Lines Present

PAGE 106

94 IN12 IN12a Core Composite (A) 21.49 6.39 12 360 -39.5 10 No IN12 IN12a Core Composite (A) 19.64 6.1 5.9 310 -35.8 10 No IN12 IN12a Core Composite (A) No IN12 IN12b Edge Composite (B) No IN12 IN12b Edge Composite (B) 22.33 6.17 106.9 1225 -168 2 No IN12 IN12b Edge Composite (B) No Distance of Lichen Lines (Inches) Algal Mats Aquatic Plants Present Aquatic Species Morphologica l Adaptations Character Total % of Overstory Overstory Vegetation 1 % Overstory 1 Overstory Vegetation 2 No Yes Lemna Adventitious roots Emergent macrophy tes 0 No Yes Lemna Adventitious roots Emergent macrophy tes 0 No Yes Lemna Adventitious roots Emergent macrophy tes 0 No No No data No data no data 30 carya laciniosa 10 Acer rubrum No Yes Lemna Adventitious roots Emergent macrophy tes 30 Quercus coccinea 5 Carya laciniosa No No No data None Emergent macrophy tes 30 Quercus cocinea 5 Carya laciniosa % Overstory 2 Overstory Vegetation 3 % Overstory 3 Overstor y Vegetati on 4 % Overstory 4 Overstory Vegetatio n 5 % Overstory 5 Total % of Understory Understory Vegetation 1 % Understory 1 100 Lemna spp. 50 100 Lemna spp. 50 100 Lemna spp. 50 10 Cephalanthus Occidentalis 10 50 Lemna spp. 10 5 Acer rubrum 10 Cercis canadens is 10 50 Lemna spp. 10 5 Acer rubrum 5 Cephala nthus Occident alis 10 Celtis laevigata 5 100 Zizia aurea 50 Understory Vegetation 2 % Understory 2 Understory vegetation 3 % Understo ry 3 Understory Vegetation 4 % Understor y 4 Understory Vegetation 5 % Understory 5 Understory Vegetation 6 % Understory 6 Hydrocotyle americana 50 hydrocotyle americana 50 Hydrocotyle americana 50 Cephalanthus Occidentalis 10 Hydrocotyle americana 20 Saururus cernuus 10

PAGE 107

95 Cephalanthus Occidentalis 20 Hydrocotyle americana 10 Echinochloa pungens 10 Sagitaria latifolia 40 Cephalanthus Occidentalis 10 WATER QUALITY DATA Wetland ID Wetland ID Plus Sub Sample Location Conditio n Media Water columnT P (mg/l) Water column TKN mg/l Water Column NO3+NO2 (mg/l) IN12 IN12blank Blank LeastImpacted water 0.009 0.443 0.012 IN12 IN12blank Blank LeastImpacted water 0.007 0.214 0.012 IN12 IN12b Core Composite (A) LeastImpacted water 0.245 2.104 0.012 SOIL DATA Media Wetland ID Plus Sub Sub Sample Location Conditio n Soil Organic/Mine ral Soil pH Soil Moisture Content Soil Bulk Density (g/cm3) Soil LOI (%) Soil TP (mg/kg) Soil IN12u U LeastImpacted 0.595 12.9 884.8 IN12a A LeastImpacted 0.155 9.5 829.8 IN12b B LeastImpacted 0.487 11.8 987.2 Media Wetland ID Plus Sub Sub Sample Location Soil TP (%) Soil TN (%) Soil TC (%) Soil Mehlic 1 P (mg/kg) Soil Mehlich 1 K (mg/kg) Soil Mehlich 1 Ca (mg/kg) Soil Mehlich 1 Mg (mg/kg) Soil IN12u U 0.088 0.287 4.14 IN12a A 0.082 0.26 3.44 IN12b B 0.098 0.353 4.065 Media Wetland ID Plus Sub Sub Sample Location Soil Mehlich 1 Fe (mg/kg) Soil Mehlich 1 Al (mg/kg) Soil KCl ext NH4 (mg/kg) Soil KCl ext NO3+NO2 (mg/kg) Soil Mehlich 3 P (mg/kg) Soil Mehlich 3 K (mg/kg) Soil Mehlich Ca (mg/kg) Soil IN12u U IN12a A IN12b B Wetland ID Plus Sub Soil Mehlich Mg (mg/kg) Soil Mehlich Fe (mg/kg) Soil Mehlich 3 Al (mg/kg) Soil Water Ext P (mg/kg) Soil Oxylate P (mg/kg) Soil Oxylate Fe (mg/kg) Soil Oxylate Al (mg/kg) Soil P Sorption % IN12u 1.822 358.4 11480 1500.4 IN12a 0.251 630.648 13705.305 1546.955 98.066 IN12b 0.101 779.01 18756.436 1761.188 VEGETATION Wetland ID Sample Location Media Species Condition Tissue TP (mg/kg) Tissue N (%) Tissue C (%) IN12 Site Composite (ALL) vegetation Sagittari a latifolia LeastImpacted

PAGE 108

96 IN12 Site Composite (ALL) vegetation Saururus cernus LeastImpacted IN12 Site Composite (ALL) vegetation Acer rubrum LeastImpacted IN12 Site Composite (ALL) vegetation Cephala nthus occident alis LeastImpacted LITTER Wetland ID Wetland ID plus sub Sub sample Location Conditio n Litter TP (mg/kg) Litter N (%) Litter C (%) IN12 IN12a Core Composite (A) LeastImpacted IN12 IN12b Edge Composite (B) LeastImpacted GENERAL INFORMATION WETLAND ID Date Location GPS Coordinates IN13 9/14/2003 OxbowPatoka River S. Fork N 38 22.669' W 87 21.405' Wetland ID Condition Characterizat ion of Wetland Adjacent Water Body Adjacent Upland 1 % Adjacent Upland 2 % Adjacent Upland 3 % IN13 LeastImpacted Emergent Wetland Riparian Rural 5.00 Forested 70.00 Unimpoved pasture 20.00 Trash Algae Present Evidence of Sedimentatio n Floating Vegetati on Hydrologic Disturbances Vegetativ e Disturban ces Nutrient Loading Size of Wetland Shape of Wetland HGM Classification none present None Noticed None Present None None Noticed None 5 Oxbow FIELD DATA Wetland Id Wetland ID Plus Sub Water Source Temp. C pH DO% Conductivity ORP Water Depth Distinct Lichen Lines Present IN13 IN13a Core Composite (A) 27.24 6.71 6.6 380 -149.6 4 Yes IN13 IN13a Core Composite (A) 26.61 6.61 5 396 -160.8 10 No IN13 IN13a Core Composite (A) 26.86 6.59 6.5 357 -105.2 8 No IN13 IN13b Edge Composite (B) Yes IN13 IN13b Edge Composite (B) Yes

PAGE 109

97 IN13 IN13b Edge Composite (B) No Distance of Lichen Lines (Inches) Algal Mats Aquatic Plants Present Aquatic Species Morphologica l Adaptations Character Total % of Overstory Overstory Vegetation 1 % Overstory 1 Overstory Vegetation 2 40 No Yes Lemna Adventitious Roots, Hummocks Emergent macrophy tes 0 No Yes Lemna Adventitious Roots, Hummocks Emergent macrophy tes 10 Cephalanthus Occidentalis 10 No Yes Lemna Adventitious Roots, Hummocks Emergent macrophy tes 5 Cephalanthus Occidentalis 5 72 No No No data Hummocks Emergent macrophy tes 60 Acer rubrum 20 Cephalanthus Occidentalis 66 No No No data No data Emergent macrophy tes 60 Quercus spp. 10 Acer rubrum No No No data No data Emergent macrophy tes 30 Betula nigra 20 Acer rubrum % Overstory 2 Overstory Vegetation 3 % Overstory 3 Overstor y Vegetati on 4 % Overstory 4 Overstory Vegetatio n 5 % Overstory 5 Total % of Understory Understory Vegetation 1 % Understory 1 40 Lemna spp. 20 50 nuphar vareigatum 30 40 Cephalanthus Occidentalis 10 5 Quercus michauxii 20 Ulmus America na 15 30 Cephalanthus Occidentalis 20 20 Quercus coccinea 30 30 Saururus cernuus 20 10 30 Nuphar variegatum 10 Understory Vegetation 2 % Understory 2 Understory vegetation 3 % Understo ry 3 Understory Vegetation 4 % Understor y 4 Understory Vegetation 5 % Understory 5 Understory Vegetation 6 % Understory 6 Cephalanthus Occidentalis 10 Nuphar variegatum 10 Lemna spp. 15 Cephalanthus Occidentalis 5 Lemna spp. 10 Nuphar Variegatum 20 Saururus cernuus 10

PAGE 110

98 Cephalanthus Occidentalis 10 Cephalanthus Occidentalis 20 WATER QUALITY DATA Wetland ID Wetland ID Plus Sub Sample Location Conditio n Media Water columnT P (mg/l) Water column TKN mg/l Water Column NO3+NO2 (mg/l) IN13 IN13blank Blank Impacted water 0.041 0.558 0.018 IN13 IN13blank Blank Impacted water 0.009 0.443 0.007 IN13 IN13a Core Composite (A) Impacted water 0.421 7.774 0.028 SOIL DATA Media Wetland ID Plus Sub Sub Sample Location Conditio n Soil Organic/Mine ral Soil pH Soil Moisture Content Soil Bulk Density (g/cm3) Soil LOI (%) Soil TP (mg/kg) Soil IN13u U Impacted 0.197 14.9 993 IN13a A Impacted 0.61 15.3 1414.2 IN13b B Impacted 0.62 22.4 1205.4 Media Wetland ID Plus Sub Sub Sample Location Soil TP (%) Soil TN (%) Soil TC (%) Soil Mehlic 1 P (mg/kg) Soil Mehlich 1 K (mg/kg) Soil Mehlich 1 Ca (mg/kg) Soil Mehlich 1 Mg (mg/kg) Soil IN13u U 0.099 0.351 4.982 IN13a A 0.141 0.439 5.433 IN13b B 0.12 0.62 11.076 Media Wetland ID Plus Sub Sub Sample Location Soil Mehlich 1 Fe (mg/kg) Soil Mehlich 1 Al (mg/kg) Soil KCl ext NH4 (mg/kg) Soil KCl ext NO3+NO2 (mg/kg) Soil Mehlich 3 P (mg/kg) Soil Mehlich 3 K (mg/kg) Soil Mehlich Ca (mg/kg) Soil IN13u U IN13a A IN13b B Wetland ID Plus Sub Soil Mehlich Mg (mg/kg) Soil Mehlich Fe (mg/kg) Soil Mehlich 3 Al (mg/kg) Soil Water Ext P (mg/kg) Soil Oxylate P (mg/kg) Soil Oxylate Fe (mg/kg) Soil Oxylate Al (mg/kg) Soil P Sorption % IN13u 0.116 563.353 16249.513 4619.883 IN13a 0.088 1186.328 19515.625 2882.813 80.999 IN13b 0.392 942.8 16964 3296 87.952 VEGETATION Wetland ID Sample Location Media Species Condition Tissue TP (mg/kg) Tissue N (%) Tissue C (%) IN13 Site Composite (ALL) Vegetation Acer rubrum Impacted IN13 Site Composite (ALL) Vegetation Salix carolinia na Impacted IN13 Site Composite (ALL) Vegetation Cephala nthus occident alis Impacted IN13 Site Composite (ALL) Vegetation Saururus cernus Impacted LITTER

PAGE 111

99 Wetland ID Wetland ID plus sub Sub sample Location Conditio n Litter TP (mg/kg) Litter N (%) Litter C (%) IN13 IN13a Core Composite (A) Impacted IN13 IN13b Edge Composite (B) Impacted GENERAL INFORMATION WETLAND ID Date Location GPS Coordinates IN14 9/21/2003 N. Meridian Oxbow N 38 23.325' W 87 16.700' Wetland ID Condition Characterizat ion of Wetland Adjacent Water Body Adjacent Upland 1 % Adjacent Upland 2 % Adjacent Upland 3 % IN14 LeastImpacted Emergent Wetland NonRiparian Unimproved Pasture 20.00 Forested 80.00 Trash Algae Present Evidence of Sedimentatio n Floating Vegetati on Hydrologic Disturbances Vegetativ e Disturban ces Nutrient Loading Size of Wetland Shape of Wetland HGM Classification None Present None Noticed None Present Ditch/Piped Inflows Large % of Dead Trees None 40 Oxbow FIELD DATA Wetland Id Wetland ID Plus Sub Water Source Temp. C pH DO% Conductivity ORP Water Depth Distinct Lichen Lines Present IN14 IN14a Core Composite (A) 15.22 7.05 5.1 642 -210.1 10 Yes IN14 IN14a Core Composite (A) 15.22 7.05 5.1 642 -210.1 3 Yes IN14 IN14a Core Composite (A) 14.24 7.1 30.4 561 -107.7 6 Yes IN14 IN14b Edge Composite (B) 13 7.02 33.8 702 79.8 10 Yes IN14 IN14b Edge Composite (B) 14.86 6.95 13.5 670 -123.6 14 Yes IN14 IN14b Edge Composite (B) 13.69 6.94 16.3 573 -141.4 8 Yes Distance of Lichen Lines (Inches) Algal Mats Aquatic Plants Present Aquatic Species Morphologica l Adaptations Character Total % of Overstory Overstory Vegetation 1 % Overstory 1 Overstory Vegetation 2 32 Yes Yes No data Adventitious Roots, Hummocks Emergent macrophy tes 10 Cephalanthus Occidentalis 10 30 Yes Yes No data Adventitious Roots, Hummocks Emergent macrophy tes 20 Cephalanthus Occidentalis 20

PAGE 112

100 26 Yes Yes No data Adventitious Roots, Hummocks Emergent macrophy tes 5 Cephalanthus Occidentalis 5 34 No Yes Lemna Adventitious Roots, Hummocks Emergent macrophy tes 10 Cephalanthus Occidentalis 10 30 Yes Yes Lemna Adventitious Roots, Hummocks Emergent macrophy tes 5 Cephalanthus Occidentalis 5 30 No Yes Lemna Adventitious roots Emergent macrophy tes 5 Cephalanthus Occidentalis 5 % Overstory 2 Overstory Vegetation 3 % Overstory 3 Overstor y Vegetati on 4 % Overstory 4 Overstory Vegetatio n 5 % Overstory 5 Total % of Understory Understory Vegetation 1 % Understory 1 60 Cephalanthus Occidentalis 40 80 Cephalanthus Occidentalis 60 60 Cephalanthus Occidentalis 50 50 Lemna spp. 10 50 Lemna spp. 5 75 Cephalanthus Occidentalis 40 Understory Vegetation 2 % Understory 2 Understory vegetation 3 % Understo ry 3 Understory Vegetation 4 % Understor y 4 Understory Vegetation 5 % Understory 5 Understory Vegetation 6 % Understory 6 algae 20 algae 10 Pontedaria cordata 10 algae 10 Cephalanthus Occidentalis 20 Hydrocotyle americana 15 Pontedaria cordata 5 Cephalanthus Occidentalis 30 Hydrocotyle americana 15 Lemna spp. 5 Hydrocotyle americana 30 WATER QUALITY DATA

PAGE 113

101 Wetland ID Wetland ID Plus Sub Sample Location Conditio n Media Water columnT P (mg/l) Water column TKN mg/l Water Column NO3+NO2 (mg/l) IN14 IN14blank Blank Impacted water 0.011 0.386 0.007 IN14 IN14blank Blank Impacted water 0.011 0.271 0.007 IN14 IN14a Core Composite (A) Impacted water 0.149 2.562 0.013 IN14 IN14b Edge Composite (B) Impacted water 0.097 1.989 0.013 SOIL DATA Media Wetland ID Plus Sub Sub Sample Location Conditio n Soil Organic/Mine ral Soil pH Soil Moisture Content Soil Bulk Density (g/cm3) Soil LOI (%) Soil TP (mg/kg) Soil IN14a A Impacted 0.667 IN14b B Impacted 0.668 13.6 1001 IN14u U Impacted 0.135 10.8 679.4 Media Wetland ID Plus Sub Sub Sample Location Soil TP (%) Soil TN (%) Soil TC (%) Soil Mehlic 1 P (mg/kg) Soil Mehlich 1 K (mg/kg) Soil Mehlich 1 Ca (mg/kg) Soil Mehlich 1 Mg (mg/kg) Soil IN14a A IN14b B 0.1 0.403 5.114 IN14u U 0.067 0.258 5.276 Media Wetland ID Plus Sub Sub Sample Location Soil Mehlich 1 Fe (mg/kg) Soil Mehlich 1 Al (mg/kg) Soil KCl ext NH4 (mg/kg) Soil KCl ext NO3+NO2 (mg/kg) Soil Mehlich 3 P (mg/kg) Soil Mehlich 3 K (mg/kg) Soil Mehlich Ca (mg/kg) Soil IN14a A IN14b B IN14u U Wetland ID Plus Sub Soil Mehlich Mg (mg/kg) Soil Mehlich Fe (mg/kg) Soil Mehlich 3 Al (mg/kg) Soil Water Ext P (mg/kg) Soil Oxylate P (mg/kg) Soil Oxylate Fe (mg/kg) Soil Oxylate Al (mg/kg) Soil P Sorption % IN14a 0.421 1048.343 25302.144 1559.844 96.802 IN14b 0.404 762.476 21895.551 1736.17 86.056 IN14u 2.301 384.884 7453.488 1012.403 VEGETATION Wetland ID Sample Location Media Species Condition Tissue TP (mg/kg) Tissue N (%) Tissue C (%) IN14 Site Composite (ALL) vegetation Cephala nthus occident alis Impacted 0.182 2.03 47.47 IN14 Site Composite (ALL) vegetation Pontedar ia cordata Impacted 0.122 LITTER Wetland ID Wetland ID plus sub Sub sample Location Conditio n Litter TP (mg/kg) Litter N (%) Litter C (%) IN14 IN14a Core Composite (A) Impacted IN14 IN14b Edge Composite (B) Impacted GENERAL INFORMATION

PAGE 114

102 WETLAND ID Date Location GPS Coordinates IN15 9/21/2003 Turkey Hill Graywoo d Marsh N 38 22.476' W 87 16.691' Wetland ID Condition Characterizat ion of Wetland Adjacent Water Body Adjacent Upland 1 % Adjacent Upland 2 % Adjacent Upland 3 % IN15 LeastImpacted Emergent Wetland NonRiparian Unimproved pasture 20.00 Forested 80.00 Trash Algae Present Evidence of Sedimentatio n Floating Vegetati on Hydrologic Disturbances Vegetativ e Disturban ces Nutrient Loading Size of Wetland Shape of Wetland HGM Classification none present None Noticed Lemna None Large % of Dead Trees None 500 Oval FIELD DATA Wetland Id Wetland ID Plus Sub Water Source Temp. C pH DO% Conductivity ORP Water Depth Distinct Lichen Lines Present IN15 IN15a Core Composite (A) 23.63 6.73 7 703 -46.9 1 No IN15 IN15a Core Composite (A) 24.3 7.01 45.1 653 -81.7 2 No IN15 IN15a Core Composite (A) No IN15 IN15b Edge Composite (B) No IN15 IN15b Edge Composite (B) No IN15 IN15b Edge Composite (B) No Distance of Lichen Lines (Inches) Algal Mats Aquatic Plants Present Aquatic Species Morphologica l Adaptations Character Total % of Overstory Overstory Vegetation 1 % Overstory 1 Overstory Vegetation 2 No Yes Lemna Adventitious Roots, Hummocks Emergent macrophy tes 0 Yes Yes Lemna Adventitious roots Emergent macrophy tes 0 No Yes Lemna Adventitious roots Emergent macrophy tes 0 No Yes No data None Emergent macrophy tes 0

PAGE 115

103 No Yes No data None Emergent macrophy tes 0 No Yes No data None Emergent macrophy tes 0 % Overstory 2 Overstory Vegetation 3 % Overstory 3 Overstor y Vegetati on 4 % Overstory 4 Overstory Vegetatio n 5 % Overstory 5 Total % of Understory Understory Vegetation 1 % Understory 1 100 Lemna spp. 40 100 Lemna spp. 40 100 Lemna spp. 60 100 Hydrocotyle americana 80 100 Hydrocotyle americana 80 100 Hydrocotyle americana 60 Understory Vegetation 2 % Understory 2 Understory vegetation 3 % Understo ry 3 Understory Vegetation 4 % Understor y 4 Understory Vegetation 5 % Understory 5 Understory Vegetation 6 % Understory 6 Hydrocotyle americana 60 Hydrocotyle americana 50 Bidens cernua 10 Hydrocotyle americana 30 Bidens cernua 10 Bidens cernua 20 Bidens cernua 20 Bidens cernua 30 Pontidaria cordata 10 WATER QUALITY DATA Wetland ID Wetland ID Plus Sub Sample Location Conditio n Media Water columnT P (mg/l) Water column TKN mg/l Water Column NO3+NO2 (mg/l) IN15 IN15a Core Composite (A) Impacted water 0.386 0.007 SOIL DATA Media Wetland ID Plus Sub Sub Sample Location Conditio n Soil Organic/Mine ral Soil pH Soil Moisture Content Soil Bulk Density (g/cm3) Soil LOI (%) Soil TP (mg/kg) Soil IN15a A Impacted 0.714 17.6 872.5 IN15b B Impacted 0.626 16.4 712 IN15u U Impacted 0.088 8.1 376.2 Media Wetland ID Plus Sub Sub Sample Location Soil TP (%) Soil TN (%) Soil TC (%) Soil Mehlic 1 P (mg/kg) Soil Mehlich 1 K (mg/kg) Soil Mehlich 1 Ca (mg/kg) Soil Mehlich 1 Mg (mg/kg) Soil IN15a A 0.087 0.655 7.004 IN15b B 0.071 0.566 6.927 IN15u U 0.037 0.165 2.881

PAGE 116

104 Media Wetland ID Plus Sub Sub Sample Location Soil Mehlich 1 Fe (mg/kg) Soil Mehlich 1 Al (mg/kg) Soil KCl ext NH4 (mg/kg) Soil KCl ext NO3+NO2 (mg/kg) Soil Mehlich 3 P (mg/kg) Soil Mehlich 3 K (mg/kg) Soil Mehlich Ca (mg/kg) Soil IN15a A IN15b B IN15u U Wetland ID Plus Sub Soil Mehlich Mg (mg/kg) Soil Mehlich Fe (mg/kg) Soil Mehlich 3 Al (mg/kg) Soil Water Ext P (mg/kg) Soil Oxylate P (mg/kg) Soil Oxylate Fe (mg/kg) Soil Oxylate Al (mg/kg) Soil P Sorption % IN15a 0.854 532.157 8364.706 1596.863 86.688 IN15b 0.302 423.2 12108 1076.8 96.17 IN15u 1.065 142.126 3488.189 962.992 VEGETATION Wetland ID Sample Location Media Species Condition Tissue TP (mg/kg) Tissue N (%) Tissue C (%) IN15 Site Composite (ALL) Vegetation Pontedar ia cordata Impacted 0.179 1.8 47.69 LITTER Wetland ID Wetland ID plus sub Sub sample Location Conditio n Litter TP (mg/kg) Litter N (%) Litter C (%) IN15 IN15a Core Composite (A) Impacted IN15 IN15b Edge Composite (B) Impacted GENERAL INFORMATION WETLAND ID Date Location GPS Coordinates IN16 9/23/2003 Goose Pond Cypress Slough N 37 54.316' W 87 50.089' Wetland ID Condition Characterizat ion of Wetland Adjacent Water Body Adjacent Upland 1 % Adjacent Upland 2 % Adjacent Upland 3 % IN16 LeastImpacted Emergent Wetland NonRiparian Rural 10.00 Unimproved pasture 20.00 Forested 20.00 Trash Algae Present Evidence of Sedimentatio n Floating Vegetati on Hydrologic Disturbances Vegetativ e Disturban ces Nutrient Loading Size of Wetland Shape of Wetland HGM Classification none present None Noticed Lemna Piped Inflows None Noticed None 60 Oxbow FIELD DATA Wetland Id Wetland ID Plus Sub Water Source Temp. C pH DO% Conductivity ORP Water Depth Distinct Lichen Lines Present IN16 IN16a Core Composite (A) 19.25 6.64 28.4 289 -31.4 20 Yes IN16 IN16a Core Composite (A) 19.66 6.54 20.1 304 -104.8 18 Yes

PAGE 117

105 IN16 IN16a Core Composite (A) 20.05 6.58 13.9 294 -35.3 11 No IN16 IN16b Edge Composite (B) 19.53 6.34 43.7 301 111.7 7 Yes IN16 IN16b Edge Composite (B) 19.62 6.68 32.8 295 35.3 8 No IN16 IN16b Edge Composite (B) 20.03 6.65 25.8 293 -50.8 6 Yes Distance of Lichen Lines (Inches) Algal Mats Aquatic Plants Present Aquatic Species Morphologica l Adaptations Character Total % of Overstory Overstory Vegetation 1 % Overstory 1 Overstory Vegetation 2 24 No Yes Lemna Buttressed roots Forested 80 Taxodium spp. 60 Acer rubrum 28 No Yes Lemna Buttressed roots Emergent macrophy tes 60 Taxodium spp. 60 No Yes Lemna Buttressed roots Emergent macrophy tes 40 Taxodium spp. 20 Cephalanthus Occidentalis 22 No Yes Lemna Buttressed roots Forested 50 Taxodium spp. 25 Acer rubrum No Yes Lemna Buttressed roots Forested 50 Taxodium spp. 40 Ulmus Americana 24 No Yes Lemna Buttressed roots Forested 100 Taxodium spp. 60 Cephalanthus Occidentalis % Overstory 2 Overstory Vegetation 3 % Overstory 3 Overstor y Vegetati on 4 % Overstory 4 Overstory Vegetatio n 5 % Overstory 5 Total % of Understory Understory Vegetation 1 % Understory 1 10 Cephalanthus Occidentalis 10 30 Lemna spp. 10 90 Lemna spp. 80 20 90 Lemna spp. 60 25 50 Nuphar variegatum 25 10 90 Lemna spp. 80 20 Salix caroliniana 10 Acer rubrum 10 100 Lemna spp. 80 Understory Vegetation 2 % Understory 2 Understory vegetation 3 % Understo ry 3 Understory Vegetation 4 % Understor y 4 Understory Vegetation 5 % Understory 5 Understory Vegetation 6 % Understory 6 Nuphar variegathum 10 Cephalanthus Occidentalis 10 nuphar variegathum 10 Nuphar variegathum 30

PAGE 118

106 Taxodium spp. 5 Lemna spp. 20 Nuphar variegatum 10 Nuphar variegatum 10 Cephalanthus Occidentalis 10 WATER QUALITY DATA Wetland ID Wetland ID Plus Sub Sample Location Conditio n Media Water columnT P (mg/l) Water column TKN mg/l Water Column NO3+NO2 (mg/l) IN16 IN16blank Blank LeastImpacted water 0.013 0.386 0.013 IN16 IN16blank Blank LeastImpacted water 0.018 0.844 0.013 IN16 IN16a Core Composite (A) LeastImpacted water 0.305 2.276 0.023 IN16 IN16b Edge Composite (B) LeastImpacted water 0.198 1.646 0.029 SOIL DATA Media Wetland ID Plus Sub Sub Sample Location Conditio n Soil Organic/Mine ral Soil pH Soil Moisture Content Soil Bulk Density (g/cm3) Soil LOI (%) Soil TP (mg/kg) Soil IN16a A LeastImpacted 0.547 10.4 1022.1 IN16b B LeastImpacted 0.558 12.3 930.3 IN16u U LeastImpacted 0.196 5.9 962.6 Media Wetland ID Plus Sub Sub Sample Location Soil TP (%) Soil TN (%) Soil TC (%) Soil Mehlic 1 P (mg/kg) Soil Mehlich 1 K (mg/kg) Soil Mehlich 1 Ca (mg/kg) Soil Mehlich 1 Mg (mg/kg) Soil IN16a A 0.102 IN16b B 0.093 0.259 2.455 IN16u U 0.096 0.123 1.818 Media Wetland ID Plus Sub Sub Sample Location Soil Mehlich 1 Fe (mg/kg) Soil Mehlich 1 Al (mg/kg) Soil KCl ext NH4 (mg/kg) Soil KCl ext NO3+NO2 (mg/kg) Soil Mehlich 3 P (mg/kg) Soil Mehlich 3 K (mg/kg) Soil Mehlich Ca (mg/kg) Soil IN16a A IN16b B IN16u U Wetland ID Plus Sub Soil Mehlich Mg (mg/kg) Soil Mehlich Fe (mg/kg) Soil Mehlich 3 Al (mg/kg) Soil Water Ext P (mg/kg) Soil Oxylate P (mg/kg) Soil Oxylate Fe (mg/kg) Soil Oxylate Al (mg/kg) Soil P Sorption % IN16a 0.331 810 13788 1653.2 IN16b 0.386 683.946 13841.393 1715.667 73.414 IN16u 4.313 570.809 6729.783 852.465 VEGETATION Wetland ID Sample Location Media Species Condition Tissue TP (mg/kg) Tissue N (%) Tissue C (%)

PAGE 119

107 IN16 Site Composite (ALL) vegetation Acer rubrum LeastImpacted IN16 Site Composite (ALL) vegetation Taxodiu m spp. LeastImpacted 0.147 IN16 Site Composite (ALL) vegetation Cephala nthus occident alis LeastImpacted 0.087 IN16 Site Composite (ALL) vegetation Salix carolinia na LeastImpacted 0.068 1.08 47.58 LITTER Wetland ID Wetland ID plus sub Sub sample Location Conditio n Litter TP (mg/kg) Litter N (%) Litter C (%) IN16 IN16a Core Composite (A) LeastImpacted IN16 IN16b Edge Composite (B) LeastImpacted GENERAL INFORMATION WETLAND ID Date Location GPS Coordinates IN17 10/18/2003 Turkey Hill Graywoo d Marsh N 38 22.482' W 87 16.715' Wetland ID Condition Characterizat ion of Wetland Adjacent Water Body Adjacent Upland 1 % Adjacent Upland 2 % Adjacent Upland 3 % IN17 LeastImpacted Emergent Wetland NonRiparian Unimproved pasture 20.00 Forested 80.00 Trash Algae Present Evidence of Sedimentatio n Floating Vegetati on Hydrologic Disturbances Vegetativ e Disturban ces Nutrient Loading Size of Wetland Shape of Wetland HGM Classification none present None Noticed Lemna None Large % of Dead Trees None 500 Oval FIELD DATA Wetland Id Wetland ID Plus Sub Water Source Temp. C pH DO% Conductivity ORP Water Depth Distinct Lichen Lines Present IN17 IN17a Core Composite (A) 16.34 6.2 8.3 595 -122.7 8 No IN17 IN17a Core Composite (A) 14.47 6.32 55 612 -62.8 8 No IN17 IN17a Core Composite (A) 12.33 5.98 34.2 624 -29.7 10 No IN17 IN17b Edge Composite (B) 15.11 5.63 23.2 2112 -32.3 5 No

PAGE 120

108 IN17 IN17b Edge Composite (B) 13.31 5.85 34 1227 47.2 3 No IN17 IN17b Edge Composite (B) 12.52 5.16 39.8 1664 61.7 5 No Distance of Lichen Lines (Inches) Algal Mats Aquatic Plants Present Aquatic Species Morphologica l Adaptations Character Total % of Overstory Overstory Vegetation 1 % Overstory 1 Overstory Vegetation 2 No Yes Lemna Adventitious roots Emergent macrophy tes 0 No Yes Lemna Adventitious roots Emergent macrophy tes 0 No Yes Lemna Adventitious roots Emergent macrophy tes 0 No Yes No data None Emergent macrophy tes 0 No Yes No data None Emergent macrophy tes 0 No Yes No data None Emergent macrophy tes 0 % Overstory 2 Overstory Vegetation 3 % Overstory 3 Overstor y Vegetati on 4 % Overstory 4 Overstory Vegetatio n 5 % Overstory 5 Total % of Understory Understory Vegetation 1 % Understory 1 100 Lemna spp. 40 100 Lemna spp. 40 100 Lemna spp. 60 100 Hydrocotyle americana 80 100 Hydrocotyle americana 80 Hydrocotyle americana 60 Understory Vegetation 2 % Understory 2 Understory vegetation 3 % Understo ry 3 Understory Vegetation 4 % Understor y 4 Understory Vegetation 5 % Understory 5 Understory Vegetation 6 % Understory 6 Hydrocotyle americana 60 Hydrocotyle americana 50 Bidens cernua 10 Hydrocotyle americana 30 Bidens cernua 10 Bidnes cernua 20 Bidens cernua 20 Bidens cernua 30 Pontedaria cordata 10 WATER QUALITY DATA Wetland ID Wetland ID Plus Sub Sample Location Conditio n Media Water columnT P (mg/l) Water column TKN mg/l Water Column NO3+NO2 (mg/l) IN17 Impacted Water 0.017

PAGE 121

109 IN17 Impacted Water 0.023 IN17 Impacted Water 0.028 IN17 Impacted Water 0.051 SOIL DATA Media Wetland ID Plus Sub Sub Sample Location Conditio n Soil Organic/Mine ral Soil pH Soil Moisture Content Soil Bulk Density (g/cm3) Soil LOI (%) Soil TP (mg/kg) Soil IN17a A Impacted IN17b B Impacted IN17u U Impacted Media Wetland ID Plus Sub Sub Sample Location Soil TP (%) Soil TN (%) Soil TC (%) Soil Mehlic 1 P (mg/kg) Soil Mehlich 1 K (mg/kg) Soil Mehlich 1 Ca (mg/kg) Soil Mehlich 1 Mg (mg/kg) Soil IN17a A IN17b B IN17u U Media Wetland ID Plus Sub Sub Sample Location Soil Mehlich 1 Fe (mg/kg) Soil Mehlich 1 Al (mg/kg) Soil KCl ext NH4 (mg/kg) Soil KCl ext NO3+NO2 (mg/kg) Soil Mehlich 3 P (mg/kg) Soil Mehlich 3 K (mg/kg) Soil Mehlich Ca (mg/kg) Soil IN17a A IN17b B IN17u U Wetland ID Plus Sub Soil Mehlich Mg (mg/kg) Soil Mehlich Fe (mg/kg) Soil Mehlich 3 Al (mg/kg) Soil Water Ext P (mg/kg) Soil Oxylate P (mg/kg) Soil Oxylate Fe (mg/kg) Soil Oxylate Al (mg/kg) Soil P Sorption % IN17a IN17b IN17u VEGETATION Wetland ID Sample Location Media Species Condition Tissue TP (mg/kg) Tissue N (%) Tissue C (%) IN17 Site Composite (ALL) Vegetation Impacted IN17 Site Composite (ALL) Vegetation Impacted IN17 Site Composite (ALL) Vegetation Impacted IN17 Site Composite (ALL) Vegetation Impacted LITTER Wetland ID Wetland ID plus sub Sub sample Location Conditio n Litter TP (mg/kg) Litter N (%) Litter C (%) IN17 IN17a Core Composite (A) Impacted IN17 IN17b Edge Composite (B) Impacted GENERAL INFORMATION WETLAND ID Date Location GPS Coordinates

PAGE 122

110 IN18 11/29/2003 Turkey Hill Graywoo d Marsh N 38 22.481' W 87 16.715' Wetland ID Condition Characterizat ion of Wetland Adjacent Water Body Adjacent Upland 1 % Adjacent Upland 2 % Adjacent Upland 3 % IN18 LeastImpacted Emergent Wetland NonRiparian Unimproved pasture 20.00 Forested 80.00 Trash Algae Present Evidence of Sedimentatio n Floating Vegetati on Hydrologic Disturbances Vegetativ e Disturban ces Nutrient Loading Size of Wetland Shape of Wetland HGM Classification none present None Noticed Lemna None Large % of Dead Trees None 500 Oval FIELD DATA Wetland Id Wetland ID Plus Sub Water Source Temp. C pH DO% Conductivity ORP Water Depth Distinct Lichen Lines Present IN18 IN18a Core Composite (A) 4.97 5.92 10.6 767 17.6 10 No IN18 IN18a Core Composite (A) 4.47 6.05 42.1 764 63.6 9 No IN18 IN18a Core Composite (A) 5.09 6.14 10.7 825 16 11 No IN18 IN18b Edge Composite (B) 4.21 6.5 33.2 1213 -5.2 4 No IN18 IN18b Edge Composite (B) 4.43 5.98 63.2 912 77.8 4 No IN18 IN18b Edge Composite (B) 6.21 5.99 48.6 1013 93.5 6 No Distance of Lichen Lines (Inches) Algal Mats Aquatic Plants Present Aquatic Species Morphologica l Adaptations Character Total % of Overstory Overstory Vegetation 1 % Overstory 1 Overstory Vegetation 2 Yes Yes Lemna Adventitious roots Emergent macrophy tes 0 No Yes Lemna Adventitious roots Emergent macrophy tes 0 No Yes Lemna Adventitious roots Emergent macrophy tes 0 No Yes No data None Emergent macrophy tes 0 No Yes Lemna None Emergent macrophy tes 0 No Yes Lemna None Emergent macrophy tes 0 % Overstory 2 Overstory Vegetatio n 3 % Overstory 3 Overstor y Vegetati on 4 % Overstory 4 Overstory Vegetatio n 5 % Overstory 5 Total % of Understory Understory Vegetation 1 % Understory 1

PAGE 123

111 100 Lemna spp. 10 100 Lemna spp. 10 100 Lemna spp. 15 40 Hydrocotyle americana 30 100 Hydrocotyle americana 30 100 Hydrocotyle americana 50 Understory Vegetation 2 % Understor y 2 Understory vegetation 3 % Understo ry 3 Understory Vegetation 4 % Understor y 4 Understory Vegetation 5 % Understory 5 Understory Vegetation 6 % Understory 6 Hydrocotyle americana 80 Cephalanthus Occidentalis 10 Hydrocotyle americana 90 Hydrocotyle americana 80 Bidens cernua 5 Bidens cernua 10 Bidens cernua 50 Lemna spp. 20 Bidens cernua 40 Lemna spp. 10 WATER QUALITY DATA Wetland ID Wetland ID Plus Sub Sample Location Conditio n Media Water columnT P (mg/l) Water column TKN mg/l Water Column NO3+NO2 (mg/l) IN18 Impacted Water 0.023 IN18 Impacted Water 0.023 IN18 Impacted Water 0.028 IN18 Impacted Water 0.294 SOIL DATA Media Wetland ID Plus Sub Sub Sample Location Conditio n Soil Organic/Mine ral Soil pH Soil Moisture Content Soil Bulk Density (g/cm3) Soil LOI (%) Soil TP (mg/kg) Soil IN18a A Impacted IN18b B Impacted IN18u U Impacted Media Wetland ID Plus Sub Sub Sample Location Soil TP (%) Soil TN (%) Soil TC (%) Soil Mehlic 1 P (mg/kg) Soil Mehlich 1 K (mg/kg) Soil Mehlich 1 Ca (mg/kg) Soil Mehlich 1 Mg (mg/kg) Soil IN18a A IN18b B IN18u U Media Wetland ID Plus Sub Sub Sample Location Soil Mehlich 1 Fe (mg/kg) Soil Mehlich 1 Al (mg/kg) Soil KCl ext NH4 (mg/kg) Soil KCl ext NO3+NO2 (mg/kg) Soil Mehlich 3 P (mg/kg) Soil Mehlich 3 K (mg/kg) Soil Mehlich Ca (mg/kg) Soil IN18a A IN18b B IN18u U Wetland ID Plus Sub Soil Mehlich Mg (mg/kg) Soil Mehlich Fe (mg/kg) Soil Mehlich 3 Al (mg/kg) Soil Water Ext P (mg/kg) Soil Oxylate P (mg/kg) Soil Oxylate Fe (mg/kg) Soil Oxylate Al (mg/kg) Soil P Sorption %

PAGE 124

112 IN18a IN18b IN18u VEGETATION Wetland ID Sample Location Media Species Condition Tissue TP (mg/kg) Tissue N (%) Tissue C (%) IN18 Site Composit e (ALL) Vegetation Impacted IN18 Site Composit e (ALL) Vegetation Impacted IN18 Site Composit e (ALL) Vegetation Impacted IN18 Site Composit e (ALL) Vegetation Impacted LITTER Wetland ID Wetland ID plus sub Sub sample Location Conditio n Litter TP (mg/kg) Litter N (%) Litter C (%) IN18 IN18a Core Composite (A) Impacted IN18 IN18b Edge Composite (B) Impacted GENERAL IMFORMATION WETLAND ID Date Location GPS Coordinates IN19 12/30/2003 Turkey Hill Graywoo d Marsh N 38 22.481' W 87 16.715' Wetland ID Condition Characterizat ion of Wetland Adjacent Water Body Adjacent Upland 1 % Adjacent Upland 2 % Adjacent Upland 3 % IN19 LeastImpacted Emergent Wetland NonRiparian Unimproved pasture 20.00 Forested 80.00 Trash Algae Present Evidence of Sedimentatio n Floating Vegetati on Hydrologic Disturbances Vegetativ e Disturban ces Nutrient Loading Size of Wetland Shape of Wetland HGM Classification none present None Noticed Lemna None Large % of Dead Trees None 500 Oval FIELD DATA Wetland Id Wetland ID Plus Sub Water Source Temp. C pH DO% Conductivity ORP Water Depth Distinct Lichen Lines Present IN19 IN19a Core Composite (A) 5.74 5.51 24.6 760 -19.9 No IN19 IN19a Core Composite (A) 6.35 5.86 17 561 -54.9 20 No

PAGE 125

113 IN19 IN19a Core Composite (A) 5.89 5.8 9.6 931 -104.2 20 No IN19 IN19b Edge Composite (B) 3.67 6.45 34 883 -33 10 No IN19 IN19b Edge Composite (B) 3.15 6.34 27.6 769 -13 10 No IN19 IN19b Edge Composite (B) 4.97 5.75 98.9 846 85.3 11 No Distance of Lichen Lines (Inches) Algal Mats Aquatic Plants Present Aquatic Species Morphologica l Adaptations Character Total % of Overstory Overstory Vegetation 1 % Overstory 1 Overstory Vegetation 2 No Yes Lemna Adventitious roots Emergent macrophy tes 0 No Yes Lemna Adventitious roots Emergent macrophy tes 0 No Yes Lemna Adventitious roots Emergent macrophy tes 0 No Yes Lemna None Emergent macrophy tes 10 Acer rubrum 10 No Yes No data None Emergent macrophy tes 10 Acer rubrum 10 No Yes Lemna None Emergent macrophy tes 0 % Overstory 2 Overstory Vegetatio n 3 % Overstory 3 Overstor y Vegetati on 4 % Overstory 4 Overstory Vegetatio n 5 % Overstory 5 Total % of Understory Understory Vegetation 1 % Understory 1 80 Nodding Bud Marigold 20 80 Nodding Bud Marigold 10 80 Nodding Bur marigold 10 60 Nodding Bur marigold 40 70 nodding bur marigold 50 70 Nodding Bur marigold 40 Understory Vegetation 2 % Understor y 2 Understory vegetation 3 % Understo ry 3 Understory Vegetation 4 % Understor y 4 Understory Vegetation 5 % Understory 5 Understory Vegetation 6 % Understory 6 Cephalanthus Occidentalis 20 Lemna spp. 10 Water Pennywort 30 Cephalanthus Occidentalis 30 Lemna spp. 10 Water Pennywort 30 Cephalanthus Occidentalis 10 Lemna spp. 10 Water Pennywort 50

PAGE 126

114 Lemna spp. 10 Water pennywort 10 Lemna spp. 10 Water pennywort Lemna spp. 10 Water Pennywort 20 WATER QUALITY DATA Wetland ID Wetland ID Plus Sub Sample Location Conditio n Media Water columnT P (mg/l) Water column TKN mg/l Water Column NO3+NO2 (mg/l) IN19 Impacted Water 0.023 IN19 Impacted Water 0.023 IN19 Impacted Water 0.023 SOIL DATA Media Wetland ID Plus Sub Sub Sample Location Conditio n Soil Organic/Mine ral Soil pH Soil Moisture Content Soil Bulk Density (g/cm3) Soil LOI (%) Soil TP (mg/kg) Soil IN19a A Impacted IN19b B Impacted IN19u U Impacted Media Wetland ID Plus Sub Sub Sample Location Soil TP (%) Soil TN (%) Soil TC (%) Soil Mehlic 1 P (mg/kg) Soil Mehlich 1 K (mg/kg) Soil Mehlich 1 Ca (mg/kg) Soil Mehlich 1 Mg (mg/kg) Soil IN19a A IN19b B IN19u U Media Wetland ID Plus Sub Sub Sample Location Soil Mehlich 1 Fe (mg/kg) Soil Mehlich 1 Al (mg/kg) Soil KCl ext NH4 (mg/kg) Soil KCl ext NO3+NO2 (mg/kg) Soil Mehlich 3 P (mg/kg) Soil Mehlich 3 K (mg/kg) Soil Mehlich Ca (mg/kg) Soil IN19a A IN19b B IN19u U Wetland ID Plus Sub Soil Mehlich Mg (mg/kg) Soil Mehlich Fe (mg/kg) Soil Mehlich 3 Al (mg/kg) Soil Water Ext P (mg/kg) Soil Oxylate P (mg/kg) Soil Oxylate Fe (mg/kg) Soil Oxylate Al (mg/kg) Soil P Sorption % IN19a IN19b IN19u VEGETATION Wetland ID Sample Location Media Species Condition Tissue TP (mg/kg) Tissue N (%) Tissue C (%) IN19 Site Composit e (ALL) Vegetation Impacted IN19 Site Composit e (ALL) Vegetation Impacted IN19 Site Composit e (ALL) Vegetation Impacted IN19 Site Composit e (ALL) Vegetation Impacted

PAGE 127

115 LITTER Wetland ID Wetland ID plus sub Sub sample Location Conditio n Litter TP (mg/kg) Litter N (%) Litter C (%) IN19 IN19a Core Composite (A) Impacted IN19 IN19b Edge Composite (B) Impacted GENERAL INFORMATION WETLAND ID Date Location GPS Coordinates IN20 2/29/2004 Turkey Hill Graywoo d Marsh N 38 22.481' W 87 16.715' Wetland ID Condition Characterizat ion of Wetland Adjacent Water Body Adjacent Upland 1 % Adjacent Upland 2 % Adjacent Upland 3 % IN20 LeastImpacted Emergent Wetland NonRiparian Unimproved pasture 20.00 Forested 80.00 Trash Algae Present Evidence of Sedimentatio n Floating Vegetati on Hydrologic Disturbances Vegetativ e Disturban ces Nutrient Loading Size of Wetland Shape of Wetland HGM Classification none present None Noticed Lemna None Large % of Dead Trees None 500 Oval FIELD DATA Wetland Id Wetland ID Plus Sub Water Source Temp. C pH DO% Conductivity ORP Water Depth Distinct Lichen Lines Present IN20 IN20a Core Composite (A) 16.34 6.2 67.8 856 -154.8 9 No IN20 IN20a Core Composite (A) 14.47 6.63 76.5 880 -135.8 9 No IN20 IN20a Core Composite (A) 12.33 6.57 69.4 885 -142.9 7 No IN20 IN20b Edge Composite (B) 15.11 7.07 143.6 842 30.3 5 No IN20 IN20b Edge Composite (B) 13.31 6.77 140.9 828 -18.1 3 No IN20 IN20b Edge Composite (B) 12.52 5.98 76.5 827 -76.9 4 No Distance of Lichen Lines (Inches) Algal Mats Aquatic Plants Present Aquatic Species Morphologica l Adaptations Character Total % of Overstory Overstory Vegetation 1 % Overstory 1 Overstory Vegetation 2 No Yes Lemna Adventitious roots Emergent macrophy tes 0

PAGE 128

116 No Yes Lemna Adventitious roots Emergent macrophy tes 0 No Yes Lemna Adventitious roots Emergent macrophy tes 0 No Yes No data None Emergent macrophy tes 0 No Yes No data None Emergent macrophy tes 0 No Yes No data None Emergent macrophy tes 0 % Overstory 2 Overstory Vegetatio n 3 % Overstory 3 Overstor y Vegetati on 4 % Overstory 4 Overstory Vegetatio n 5 % Overstory 5 Total % of Understory Understory Vegetation 1 % Understory 1 100 100 100 100 100 100 Understory Vegetation 2 % Understor y 2 Understory vegetation 3 % Understo ry 3 Understory Vegetation 4 % Understor y 4 Understory Vegetation 5 % Understory 5 Understory Vegetation 6 % Understory 6 Lemna spp. 40 Hydrocotyle americana 60 Lemna spp. 40 Hydrocotyle americana 50 Bidens cernua 10 Lemna spp. 60 Hydrocotyle americana 30 Bidens cernua 10 Hydrocotyle americana 80 Bidnes cernua 20 Hydrocotyle americana 80 Bidens cernua 20 Hydrocotyle americana 60 Bidens cernua 30 Pontedaria cordata 10 WATER QUALITY DATA Wetland ID Wetland ID Plus Sub Sample Location Conditio n Media Water columnT P (mg/l) Water column TKN mg/l Water Column NO3+NO2 (mg/l) IN20 Impacted Water 0.017 IN20 Impacted Water 0.023 IN20 Impacted Water 0.028 IN20 Impacted Water 0.051 SOIL DATA Media Wetland ID Plus Sub Sub Sample Location Conditio n Soil Organic/Mine ral Soil pH Soil Moisture Content Soil Bulk Density (g/cm3) Soil LOI (%) Soil TP (mg/kg) Soil IN20a A Impacted IN20b B Impacted IN20u U Impacted Media Wetland ID Plus Sub Sub Sample Location Soil TP (%) Soil TN (%) Soil TC (%) Soil Mehlic 1 P (mg/kg) Soil Mehlich 1 K (mg/kg) Soil Mehlich 1 Ca (mg/kg) Soil Mehlich 1 Mg (mg/kg) Soil IN20a A

PAGE 129

117 IN20b B IN20u U Media Wetland ID Plus Sub Sub Sample Location Soil Mehlich 1 Fe (mg/kg) Soil Mehlich 1 Al (mg/kg) Soil KCl ext NH4 (mg/kg) Soil KCl ext NO3+NO2 (mg/kg) Soil Mehlich 3 P (mg/kg) Soil Mehlich 3 K (mg/kg) Soil Mehlich Ca (mg/kg) Soil IN20a A IN20b B IN20u U Wetland ID Plus Sub Soil Mehlich Mg (mg/kg) Soil Mehlich Fe (mg/kg) Soil Mehlich 3 Al (mg/kg) Soil Water Ext P (mg/kg) Soil Oxylate P (mg/kg) Soil Oxylate Fe (mg/kg) Soil Oxylate Al (mg/kg) Soil P Sorption % IN20a IN20b IN20u VEGETATION Wetland ID Sample Location Media Species Condition Tissue TP (mg/kg) Tissue N (%) Tissue C (%) IN20 Site Composit e (ALL) Vegetation Impacted IN20 Site Composit e (ALL) Vegetation Impacted IN20 Site Composit e (ALL) Vegetation Impacted IN20 Site Composit e (ALL) Vegetation Impacted LITTER Wetland ID Wetland ID plus sub Sub sample Location Conditio n Litter TP (mg/kg) Litter N (%) Litter C (%) IN20 IN20a Core Composite (A) Impacted IN20 IN20b Edge Composite (B) Impacted GENERAL INFORMATION WETLAND ID Date Location GPS Coordinates IN21 4/30/2004 Turkey Hill Graywoo d Marsh N 38 22.480' W 87 16.713' Wetland ID Condition Characterizat ion of Wetland Adjacent Water Body Adjacent Upland 1 % Adjacent Upland 2 % Adjacent Upland 3 % IN21 LeastImpacted Emergent Wetland NonRiparian Unimproved pasture 20.00 Forested 80.00 Trash Algae Present Evidence of Sedimentatio n Floating Vegetati on Hydrologic Disturbances Vegetativ e Disturban ces Nutrient Loading Size of Wetland Shape of Wetland HGM Classification none present None Noticed Lemna None Large % of Dead Trees None 500 Oval FIELD DATA

PAGE 130

118 Wetland Id Wetland ID Plus Sub Water Source Temp. C pH DO% Conductivity ORP Water Depth Distinct Lichen Lines Present IN21 IN21a Core Composite (A) 16.34 7.07 6.8 602 38.2 12 No IN21 IN21a Core Composite (A) 14.47 7.16 67.7 632 -131.8 9 No IN21 IN21a Core Composite (A) 12.33 7.24 86.8 643 -115.8 10 No IN21 IN21b Edge Composite (B) 15.11 5.79 57.7 598 -16.2 5 No IN21 IN21b Edge Composite (B) 13.31 6.29 25.1 496 -16.8 3 No IN21 IN21b Edge Composite (B) 12.52 6.86 130.7 433 -28.3 6 No Distance of Lichen Lines (Inches) Algal Mats Aquatic Plants Present Aquatic Species Morphologica l Adaptations Character Total % of Overstory Overstory Vegetation 1 % Overstory 1 Overstory Vegetation 2 No Yes Lemna Adventitious roots Emergent macrophy tes 0 No Yes Lemna Adventitious roots Emergent macrophy tes 0 No Yes Lemna Adventitious roots Emergent macrophy tes 0 No Yes No data None Emergent macrophy tes 0 No Yes No data None Emergent macrophy tes 0 No Yes No data None Emergent macrophy tes 0 % Overstory 2 Overstory Vegetatio n 3 % Overstory 3 Overstor y Vegetati on 4 % Overstory 4 Overstory Vegetatio n 5 % Overstory 5 Total % of Understory Understory Vegetation 1 % Understory 1 100 100 100 100 100 100 Understory Vegetation 2 % Understor y 2 Understory vegetation 3 % Understo ry 3 Understory Vegetation 4 % Understor y 4 Understory Vegetation 5 % Understory 5 Understory Vegetation 6 % Understory 6 Lemna spp. 40 Hydrocotyle americana 60 Lemna spp. 40 Hydrocotyle americana 50 Bidens cernua 10

PAGE 131

119 Lemna spp. 60 Hydrocotyle americana 30 Bidens cernua 10 Hydrocotyle americana 80 Bidnes cernua 20 Hydrocotyle americana 80 Bidens cernua 20 Hydrocotyle americana 60 Bidens cernua 30 Pontedaria cordata 10 WATER QUALITY DATA Wetland ID Wetland ID Plus Sub Sample Location Conditio n Media Water columnT P (mg/l) Water column TKN mg/l Water Column NO3+NO2 (mg/l) IN21 Impacted Water 0.017 IN21 Impacted Water 0.023 IN21 Impacted Water 0.028 IN21 Impacted Water 0.051 SOIL DATA Media Wetland ID Plus Sub Sub Sample Location Conditio n Soil Organic/Mine ral Soil pH Soil Moisture Content Soil Bulk Density (g/cm3) Soil LOI (%) Soil TP (mg/kg) Soil IN21a A Impacted IN21b B Impacted IN21u U Impacted Media Wetland ID Plus Sub Sub Sample Location Soil TP (%) Soil TN (%) Soil TC (%) Soil Mehlic 1 P (mg/kg) Soil Mehlich 1 K (mg/kg) Soil Mehlich 1 Ca (mg/kg) Soil Mehlich 1 Mg (mg/kg) Soil IN21a A IN21b B IN21u U Media Wetland ID Plus Sub Sub Sample Location Soil Mehlich 1 Fe (mg/kg) Soil Mehlich 1 Al (mg/kg) Soil KCl ext NH4 (mg/kg) Soil KCl ext NO3+NO2 (mg/kg) Soil Mehlich 3 P (mg/kg) Soil Mehlich 3 K (mg/kg) Soil Mehlich Ca (mg/kg) Soil IN21a A IN21b B IN21u U Wetland ID Plus Sub Soil Mehlich Mg (mg/kg) Soil Mehlich Fe (mg/kg) Soil Mehlich 3 Al (mg/kg) Soil Water Ext P (mg/kg) Soil Oxylate P (mg/kg) Soil Oxylate Fe (mg/kg) Soil Oxylate Al (mg/kg) Soil P Sorption % IN21 IN21 IN21 VEGETATION Wetland ID Sample Location Media Species Condition Tissue TP (mg/kg) Tissue N (%) Tissue C (%) IN21 Site Composit e (ALL) Vegetation Impacted IN21 Site Composit e (ALL) Vegetation Impacted IN21 Site Composit e (ALL) Vegetation Impacted

PAGE 132

120 IN21 Site Composit e (ALL) Vegetation Impacted LITTER Wetland ID Wetland ID plus sub Sub sample Location Conditio n Litter TP (mg/kg) Litter N (%) Litter C (%) IN21 IN21a Core Composite (A) Impacted IN21 IN21b Edge Composite (B) Impacted GENERAL INFORMATION WETLAND ID Date Location GPS Coordinates IN22 5/31/2004 Turkey Hill Graywoo d Marsh N 38 22.477' W 87 16.693' Wetland ID Condition Characterizat ion of Wetland Adjacent Water Body Adjacent Upland 1 % Adjacent Upland 2 % Adjacent Upland 3 % IN22 LeastImpacted Emergent Wetland NonRiparian Unimproved pasture 20.00 Forested 80.00 Trash Algae Present Evidence of Sedimentatio n Floating Vegetati on Hydrologic Disturbances Vegetativ e Disturban ces Nutrient Loading Size of Wetland Shape of Wetland HGM Classification none present None Noticed Lemna None Large % of Dead Trees None 500 Oval FIELD DATA Wetland Id Wetland ID Plus Sub Water Source Temp. C pH DO% Conductivity ORP Water Depth Distinct Lichen Lines Present IN22 IN22a Core Composite (A) 16.34 6.4 5.7 350 -224.2 25 No IN22 IN22a Core Composite (A) 14.47 6.41 12.6 349 -240.2 36 No IN22 IN22a Core Composite (A) 12.33 6.4 5 321 -108.7 35 No IN22 IN22b Edge Composite (B) 15.11 6.01 14.5 343 15.4 8 No IN22 IN22b Edge Composite (B) 13.31 6.33 26.8 346 -186.6 10 No IN22 IN22b Edge Composite (B) 12.52 6.35 9.9 352 -181.6 12 No

PAGE 133

121 Distance of Lichen Lines (Inches) Algal Mats Aquatic Plants Present Aquatic Species Morphologica l Adaptations Character Total % of Overstory Overstory Vegetation 1 % Overstory 1 Overstory Vegetation 2 No Yes Lemna Adventitious roots Emergent macrophy tes 0 No Yes Lemna Adventitious roots Emergent macrophy tes 0 No Yes Lemna Adventitious roots Emergent macrophy tes 0 No Yes No data None Emergent macrophy tes 0 No Yes No data None Emergent macrophy tes 0 No Yes No data None Emergent macrophy tes 0 % Overstory 2 Overstory Vegetatio n 3 % Overstory 3 Overstor y Vegetati on 4 % Overstory 4 Overstory Vegetatio n 5 % Overstory 5 Total % of Understory Understory Vegetation 1 % Understory 1 100 100 100 100 100 Understory Vegetation 2 % Understor y 2 Understory Vegetation 3 % Understo ry 3 Understory Vegetation 4 % Understor y 4 Understory Vegetation 5 % Understory 5 Understory Vegetation 6 % Understory 6 Lemna spp. 40 Hydrocotyle americana 60 Lemna spp. 40 Hydrocotyle americana 50 Bidens cernua 10 Lemna spp. 60 Hydrocotyle americana 30 Bidens cernua 10 Hydrocotyle americana 80 Bidnes cernua 20 Hydrocotyle americana 80 Bidens cernua 20 Hydrocotyle americana 60 Bidens cernua 30 Pontedaria cordata 10 WATER QUALITY DATA Wetland ID Wetland ID Plus Sub Sample Location Conditio n Media Water columnT P (mg/l) Water column TKN mg/l Water Column NO3+NO2 (mg/l) IN22 Impacted Water 0.017 IN22 Impacted Water 0.023 IN22 Impacted Water 0.028 IN22 Impacted Water 0.051 SOIL DATA

PAGE 134

122 Media Wetland ID Plus Sub Sub Sample Location Conditio n Soil Organic/Mine ral Soil pH Soil Moisture Content Soil Bulk Density (g/cm3) Soil LOI (%) Soil TP (mg/kg) Soil IN22a A Impacted IN22b B Impacted IN22u U Impacted Media Wetland ID Plus Sub Sub Sample Location Soil TP (%) Soil TN (%) Soil TC (%) Soil Mehlic 1 P (mg/kg) Soil Mehlich 1 K (mg/kg) Soil Mehlich 1 Ca (mg/kg) Soil Mehlich 1 Mg (mg/kg) Soil IN22a A IN22b B IN22u U Media Wetland ID Plus Sub Sub Sample Location Soil Mehlich 1 Fe (mg/kg) Soil Mehlich 1 Al (mg/kg) Soil KCl ext NH4 (mg/kg) Soil KCl ext NO3+NO2 (mg/kg) Soil Mehlich 3 P (mg/kg) Soil Mehlich 3 K (mg/kg) Soil Mehlich Ca (mg/kg) Soil IN22a A IN22b B IN22u U Wetland ID Plus Sub Soil Mehlich Mg (mg/kg) Soil Mehlich Fe (mg/kg) Soil Mehlich 3 Al (mg/kg) Soil Water Ext P (mg/kg) Soil Oxylate P (mg/kg) Soil Oxylate Fe (mg/kg) Soil Oxylate Al (mg/kg) Soil P Sorption % IN22a IN22b IN22u VEGETATION Wetland ID Sample Location Media Species Condition Tissue TP (mg/kg) Tissue N (%) Tissue C (%) IN22 Site Composit e (ALL) Vegetation Impacted IN22 Site Composit e (ALL) Vegetation Impacted IN22 Site Composit e (ALL) Vegetation Impacted IN22 Site Composit e (ALL) Vegetation Impacted LITTER Wetland ID Wetland ID plus sub Sub sample Location Conditio n Litter TP (mg/kg) Litter N (%) Litter C (%) IN22 IN22a Core Composite (A) Impacted IN22 IN22b Edge Composite (B) Impacted GENERAL INFORMATION WETLAND ID Date Location GPS Coordinates IN23 7/5/2004 Turkey Hill Graywoo d Marsh N 38 22.485' W 87 16.721'

PAGE 135

123 Wetland ID Condition Characterizat ion of Wetland Adjacent Water Body Adjacent Upland 1 % Adjacent Upland 2 % Adjacent Upland 3 % IN23 LeastImpacted Emergent Wetland NonRiparian Unimproved pasture 20.00 Forested 80.00 Trash Algae Present Evidence of Sedimentatio n Floating Vegetati on Hydrologic Disturbances Vegetativ e Disturban ces Nutrient Loading Size of Wetland Shape of Wetland HGM Classification none present None Noticed Lemna None Large % of Dead Trees None 500 Oval FIELD DATA Wetland Id Wetland ID Plus Sub Water Source Temp. C pH DO% Conductivity ORP Water Depth Distinct Lichen Lines Present IN23 IN23a Core Composite (A) 16.34 6.66 3.9 315 -249.5 12 No IN23 IN23a Core Composite (A) 14.47 6.48 6.3 542 -232.9 14 No IN23 IN23a Core Composite (A) 12.33 6.48 6.3 394 -230.5 14 No IN23 IN23b Edge Composite (B) 15.11 6.49 16.2 332 -127.2 4 No IN23 IN23b Edge Composite (B) 13.31 6.37 10.9 278 -179.2 4 No IN23 IN23b Edge Composite (B) 12.52 6.42 7.2 286 -234.9 6 No Distance of Lichen Lines (Inches) Algal Mats Aquatic Plants Present Aquatic Species Morphologica l Adaptations Character Total % of Overstory Overstory Vegetation 1 % Overstory 1 Overstory Vegetation 2 No Yes Lemna Adventitious roots Emergent macrophy tes 0 No Yes Lemna Adventitious roots Emergent macrophy tes 0 No Yes Lemna Adventitious roots Emergent macrophy tes 0 No Yes No data None Emergent macrophy tes 0 No Yes No data None Emergent macrophy tes 0 No Yes No data None Emergent macrophy tes 0 % Overstory 2 Overstory Vegetatio n 3 % Overstory 3 Overstor y Vegetati on 4 % Overstory 4 Overstory Vegetatio n 5 % Overstory 5 Total % of Understory Understory Vegetation 1 % Understory 1 100 Lemna spp. 40 100 Lemna spp. 40 100 Lemna spp. 60

PAGE 136

124 100 Hydrocotyle americana 80 100 Hydrocotyle americana 80 100 Hydrocotyle americana 60 Understory Vegetation 2 % Understor y 2 Understory vegetation 3 % Understo ry 3 Understory Vegetation 4 % Understor y 4 Understory Vegetation 5 % Understory 5 Understory Vegetation 6 % Understory 6 Hydrocotyle americana 60 Hydrocotyle americana 50 Bidens cernua 10 Hydrocotyle americana 30 Bidens cernua 10 Bidens cernua 20 Bidens cernua 20 Bidens cernua 30 Pontedaria cordata 10 WATER QUALITY DATA Wetland ID Wetland ID Plus Sub Sample Location Conditio n Media Water columnT P (mg/l) Water column TKN mg/l Water Column NO3+NO2 (mg/l) IN23 Impacted Water 0.017 IN23 Impacted Water 0.023 IN23 Impacted Water 0.028 IN23 Impacted Water 0.051 SOIL DATA Media Wetland ID Plus Sub Sub Sample Location Conditio n Soil Organic/Mine ral Soil pH Soil Moisture Content Soil Bulk Density (g/cm3) Soil LOI (%) Soil TP (mg/kg) Soil IN23a A Impacted IN23b B Impacted IN23u U Impacted Media Wetland ID Plus Sub Sub Sample Location Soil TP (%) Soil TN (%) Soil TC (%) Soil Mehlic 1 P (mg/kg) Soil Mehlich 1 K (mg/kg) Soil Mehlich 1 Ca (mg/kg) Soil Mehlich 1 Mg (mg/kg) Soil IN23a A IN23b B IN23u U Media Wetland ID Plus Sub Sub Sample Location Soil Mehlich 1 Fe (mg/kg) Soil Mehlich 1 Al (mg/kg) Soil KCl ext NH4 (mg/kg) Soil KCl ext NO3+NO2 (mg/kg) Soil Mehlich 3 P (mg/kg) Soil Mehlich 3 K (mg/kg) Soil Mehlich Ca (mg/kg) Soil IN23a A IN23b B IN23u U Wetland ID Plus Sub Soil Mehlich Mg (mg/kg) Soil Mehlich Fe (mg/kg) Soil Mehlich 3 Al (mg/kg) Soil Water Ext P (mg/kg) Soil Oxylate P (mg/kg) Soil Oxylate Fe (mg/kg) Soil Oxylate Al (mg/kg) Soil P Sorption % IN23a IN23b

PAGE 137

125 IN23u VEGETATION Wetland ID Sample Location Media Species Condition Tissue TP (mg/kg) Tissue N (%) Tissue C (%) IN23 Site Composit e (ALL) Vegetation Impacted IN23 Site Composit e (ALL) Vegetation Impacted IN23 Site Composit e (ALL) Vegetation Impacted IN23 Site Composit e (ALL) Vegetation Impacted LITTER Wetland ID Wetland ID plus sub Sub sample Location Conditio n Litter TP (mg/kg) Litter N (%) Litter C (%) IN23 IN23a Core Composite (A) Impacted IN23 IN23b Edge Composite (B) Impacted

PAGE 138

126 APPENDIX B SURVEYED WETLANDS DESC RIPTION AND LOCATION Table B-1. Wetland Research Lo cations and Characterization Wetland Research Location and Characterization ID Wetland Community Type Impacted/Least Impacted Location GPS Coordinates IN1 Riparian Swamp Impacted MillersburgWabash and Erie Canal/Pigeon Ck N 38 05.842' W 87 23.653' IN2 Non-Riparian Swamp Least-Impacted IDNR Lost Hill Wetland Conservation Area North N 38 11.220' W 87 25.094' IN3 Non-Riparian Swamp Least-Impacted IDNR Lost Hill Wetland Conservation Area South N 38 11.136' W 87 25.114' IN4 Non-Riparian Swamp Impacted East Mount Carmel N 38 22.697' W 87 43.780' IN5 Riparian Swamp Impacted Elberfeld-Wabash and Erie Canal/Pigeon Ck N 38 09.692' W 87 24.854' IN6 Riparian Swamp Least-Impacted Pike State Forest – Patoka River N 38 21.415' W 87 08.973' IN7 Riparian Swamp Impacted Schlensker Ditch N 38 22.485' W 87 16.722' IN8 Non-Riparian Marsh Least-Impacted PRNWR Buck's Marsh N 38 20.812' W 87 19.395' IN9 Non-Riparian Swamp Least-Impacted IDNR Big Cypress Slough N 37 49.116' W 88 00.273' IN10 Non-Riparian Marsh Least-Impacted PRNWR Snaky Point N 38 21.113' W 87 19.161' IN11 Non-Riparian Marsh Impacted Snake Lake N 38 22.087' W 87 19.551' IN12 Riparian Swamp Least-Impacted PRNWR Hwy 57 @ Patoka River N 38 23.090' W 87 19.888' IN13 Non-Riparian Swamp Least-Impacted PRNWR Oxbow-Patoka River South Fork N 38 22.669' W 87 21.405' IN14 Non-Riparian Swamp Least-Impacted PRNWR North Meridian Oxbow N 38 23.325' W 87 16.700' IN15 Non-Riparian Marsh Least-Impacted PRNWR Turkey Hill Graywood Marsh N 38 22.476' W 87 16.691' IN16 Non-Riparian Swamp Least-Impacted TNC Goose Pond Cypress Slough N 37 54.316' W 87 50.089' IN17 Non-Riparian Marsh Least-Impacted PRNWR Turkey Hill Graywood Marsh N 38 22.482' W 87 16.715' IN18 Non-Riparian Marsh Least-Impacted PRNWR Turkey Hill Graywood Marsh N 38 22.481' W 87 16.715' IN19 Non-Riparian Marsh Least-Impacted PRNWR Turkey Hill Graywood Marsh N 38 22.481' W 87 16.715' IN20 Non-Riparian Marsh Least-Impacted PRNWR Turkey Hill Graywood Marsh N 38 22.481' W 87 16.715' IN21 Non-Riparian Marsh Least-Impacted PRNWR Turkey Hill Graywood Marsh N 38 22.480' W 87 16.713' IN22 Non-Riparian Marsh Least-Impacted PRNWR Turkey Hill Graywood Marsh N 38 22.477' W 87 16.693' IN23 Non-Riparian Marsh Least-Impacted PRNWR Turkey Hill Graywood Marsh N 38 22.485' W 87 16.721' IDNR Indiana Department of Natural Resources PRNWR Patoka River National Wildlife Refuge TNC The Nature Conservancy

PAGE 139

127 IN1 Millersburg Wetland Polygons Wetland Code: PEM/SS1F DECODE: Wetlands Code Interpreter WETLAND_TYPE: Freshwater Emergent Wetland ACRES: 5.86404514 Coordinate Position Geographic: 87 23' 48" W 38 5' 51" N Figure B-1. IN1 Wetland Description and Location Figure B-2. IN1 Wetland Description and Location Figure B-3. IN1 Wetland Description and Location

PAGE 140

128 IN2 Lost Hill Wetland Conservation Area North Coordinate Position Geographic: 87 25' 8.9" W 38 11' 20.2" N Wetland Polygons Wetland Code: PFO1F DECODE: Wetlands Code Interpreter WETLAND_TYPE: Freshwater Forested/Shrub Wetland ACRES: 74.31670436 IN2 Lost Hill Wetland Conservation Area South Coordinate Position Geographic: 87 24' 55.2" W 38 11' 4.0" N Wetland Polygons Wetland Code: PEM/ABG DECODE: Wetlands Code Interpreter WETLAND_TYPE: Freshwater Emergent Wetland ACRES: 89.19683743 IN2 Lost Hill Wetland Conservation Area Surrounding Wetland Coordinate Position Geographic: 87 25' 24.8" W 38 11' 18.3" N Wetland Polygons Wetland Code: PFO1A DECODE: Wetlands Code Interpreter WETLAND_TYPE: Freshwater Forested/Shrub Wetland ACRES: 253.36546294 Figure B-4. IN2 Wetland Description and Location

PAGE 141

129 Figure B-5. IN2 Wetland Description and Location Figure B-6. IN2 Wetland Description and Location Figure B-7. IN2 Wetland Description and Location

PAGE 142

130 IN3 Lost Hill Wetland Conservation Area South Coordinate Position Geographic: 87 25' 22.6" W 38 11' 15.8" N Wetland Polygons Wetland Code: PFO1A DECODE: Wetlands Code Interpreter WETLAND_TYPE: Freshwater Forested/Shrub Wetland ACRES: 253.36546294 Coordinate Position Geographic: 87 25' 15.8" W 38 11' 24.9" N Wetland Polygons Wetland Code: PFO1C DECODE: Wetlands Code Interpreter WETLAND_TYPE: Freshwater Forested/Shrub Wetland ACRES: 41.62164811 Coordinate Position Geographic: 87 25' 9.2" W 38 11' 20.2" N Wetland Polygons Wetland Code: PFO1F DECODE: Wetlands Code Interpreter WETLAND_TYPE: Freshwater Forested/Shrub Wetland ACRES: 74.31670436 Coordinate Position Geographic: 87 24' 54.7" W 38 11' 4.3" N Wetland Polygons Wetland Code: PEM/ABG DECODE: Wetlands Code Interpreter WETLAND_TYPE: Freshwater Emergent Wetland ACRES: 89.19683743 Figure B-8. IN3 Wetland Description and Location

PAGE 143

131 Figure B-9. IN3 Wetland Description and Location Figure B-10. IN3 Wetland Description and Location Figure B-11. IN4 Wetland Description and Location

PAGE 144

132 IN4 East Mount Carmel Coordinate Position Geographic: 87 43' 49.0" W 38 22' 42.6" N Wetland Polygons Wetland Code: PEMA DECODE: Wetlands Code Interpreter WETLAND_TYPE: Freshwater Emergent Wetland ACRES: 8.40141245 Figure B-12. IN4 Wetland Description and Location Figure B-13. IN4 Wetland Description and Location Figure B-14. IN4 Wetland Description and Location

PAGE 145

133 Figure B-15. IN4 Wetland Description and Location

PAGE 146

134 IN5 Elberfeld Coordinate Position Geographic: 87 25' 8.8" W 38 9' 35.1" N Wetland Polygons Wetland Code: PFO1A DECODE: Wetlands Code Interpreter WETLAND_TYPE: Freshwater Forested/Shrub Wetland ACRES: 1139.26131553 Figure B-16. IN5 Wetland Description and Location Figure B-17. IN5 Wetland Description and Location Figure B-18. IN5 Wetland Description and Location

PAGE 147

135 IN6 Pike State ForestPatoka River Coordinate Position Geographic: 87 8' 52.6" W 38 21' 20.7" N Wetland Polygons Wetland Code: R2UBH DECODE: Wetlands Code Interpreter WETLAND_TYPE: Riverine ACRES: 504.57364068 Coordinate Position Geographic: 87 8' 53.3" W 38 21' 43.3" N Wetland Polygons Wetland Code: PFO1C DECODE: Wetlands Code Interpreter WETLAND_TYPE: Freshwater Forested/Shrub Wetland ACRES: 46.6274102 Coordinate Position Geographic: 87 8' 36.8" W 38 21' 22.2" N Wetland Polygons Wetland Code: PFO1A DECODE: Wetlands Code Interpreter WETLAND_TYPE: Freshwater Forested/Shrub Wetland ACRES: 238.10542267 Figure B-19. IN6 Wetland Description and Location Figure B-20. IN6 Wetland Description and Location

PAGE 148

136 Figure B-21. IN6 Wetland Description and Location Figure B-22. IN6 Wetland Description and Location

PAGE 149

137 IN7 Schlensker Ditch Coordinate Position Geographic: 87 16' 48.0" W 38 22' 40.9" N Wetland Polygons Wetland Code: PFO1C DECODE: Wetlands Code Interpreter WETLAND_TYPE: Freshwater Forested/Shrub Wetland ACRES: 10.24162563 Coordinate Position Geographic: 87 16' 39.7" W 38 22' 42.5" N Wetland Polygons Wetland Code: PFO1A DECODE: Wetlands Code Interpreter WETLAND_TYPE: Freshwater Forested/Shrub Wetland ACRES: 373.48608004 Coordinate Position Geographic: 87 17' 1.1" W 38 22' 27.6" N Wetland Polygons Wetland Code: PSS1/EMF DECODE: Wetlands Code Interpreter WETLAND_TYPE: Freshwater Forested/Shrub Wetland ACRES: 144.55351232 Figure B-23. IN7 Wetland Description and Location Figure B-24. IN7 Wetland Description and Location

PAGE 150

138 Figure B-25. IN7 Wetland Description and Location IN8 Buck’s Marsh Coordinate Position Geographic: 87 19' 21.7" W 38 20' 46.4" N Wetland Polygons Wetland Code: PFO1C DECODE: Wetlands Code Interpreter WETLAND_TYPE: Freshwater Forested/Shrub Wetland ACRES: 38.69832684 Coordinate Position Geographic: 87 18' 54.7" W 38 20' 39.5" N Wetland Polygons Wetland Code: PFO1A DECODE: Wetlands Code Interpreter WETLAND_TYPE: Freshwater Forested/Shrub Wetland ACRES: 55.98581671 Coordinate Position Geographic: 87 19' 7.8" W 38 20' 55.7" N Wetland Polygons Wetland Code: PEM/ABG DECODE: Wetlands Code Interpreter WETLAND_TYPE: Freshwater Emergent Wetland ACRES: 8.75234996 Figure B-26. IN8 Wetland Description and Location

PAGE 151

139 Figure B-27. IN8 Wetland Description and Location Figure B-28. IN8 Wetland Description and Location Figure B-29. IN8 Wetland Description and Location

PAGE 152

140 IN9 Big Cypress Slough Coordinate Position Geographic: 88 0' 25.6" W 37 49' 7.1" N Wetland Polygons Wetland Code: PFO2G DECODE: Wetlands Code Interpreter WETLAND_TYPE: Freshwater Forested/Shrub Wetland ACRES: 25.09548107 Coordinate Position Geographic: 88 0' 22.2" W 37 49' 22.2" N Wetland Polygons Wetland Code: PFO6F DECODE: Wetlands Code Interpreter WETLAND_TYPE: Freshwater Forested/Shrub Wetland ACRES: 130.5580781 Coordinate Position Geographic: 88 0' 36.1" W 37 49' 22.4" N Wetland Polygons Wetland Code: PFO1A DECODE: Wetlands Code Interpreter WETLAND_TYPE: Freshwater Forested/Shrub Wetland ACRES: 1071.021612 Figure B-30. IN9 Wetland Description and Location

PAGE 153

141 Figure B-31. IN9 Wetland Description and Location IN10 Snaky Point Coordinate Position Geographic: 87 19' 16.9" W 38 21' 13.5" N Wetland Polygons Wetland Code: PEMF DECODE: Wetlands Code Interpreter WETLAND_TYPE: Freshwater Emergent Wetland ACRES: 82.70053046 Coordinate Position Geographic: 87 19' 3.5" W 38 21' 20.7" N Wetland Polygons Wetland Code: L2EM2/UBG DECODE: Wetlands Code Interpreter WETLAND_TYPE: Lake ACRES: 147.44379044 Coordinate Position Geographic: 87 19' 25.9" W 38 21' 15.4" N Wetland Polygons Wetland Code: PFO1A DECODE: Wetlands Code Interpreter WETLAND_TYPE: Freshwater Forested/Shrub Wetland ACRES: 55.9858167

PAGE 154

142 Figure B-32. IN10 Wetland Description and Location Figure B-33. IN10 Wetland Description and Location Figure B-34. IN10 Wetland Description and Location

PAGE 155

143 IN11 Snake Lake Coordinate Position Geographic: 87 19' 34.8" W 38 21' 50.9" N Wetland Polygons Wetland Code: PEMF DECODE: Wetlands Code Interpreter WETLAND_TYPE: Freshwater Emergent Wetland ACRES: 82.70053046 Coordinate Position Geographic: 87 19' 31.8" W 38 22' 26.7" N Wetland Polygons Wetland Code: PSS1C DECODE: Wetlands Code Interpreter WETLAND_TYPE: Freshwater Forested/Shrub Wetland ACRES: 13.93175728 Coordinate Position Geographic: 87 19' 40.5" W 38 21' 53.2" N Wetland Polygons Wetland Code: PFO1C DECODE: Wetlands Code Interpreter WETLAND_TYPE: Freshwater Forested/Shrub Wetland ACRES: 36.92703418 Figure B-35. IN11 Wetland Description and Location Figure B-36. IN11 Wetland Description and Location

PAGE 156

144 Figure B-37. IN11 Wetland Description and Location Figure B-38. IN11 Wetland Description and Location

PAGE 157

145 IN12 Patoka River National Wildlife Refuge HWY 57/ Patoka River Coordinate Position Geographic: 87 19' 50.9" W 38 23' 5.9" N Wetland Polygons Wetland Code: PABF DECODE: Wetlands Code Interpreter WETLAND_TYPE: Freshwater Pond ACRES: 9.76520015 Coordinate Position Geographic: 87 19' 35.4" W 38 22' 58.0" N Wetland Polygons Wetland Code: PEMF DECODE: Wetlands Code Interpreter WETLAND_TYPE: Freshwater Emergent Wetland ACRES: 0.51790691 Coordinate Position Geographic: 87 19' 51.1" W 38 22' 57.0" N Wetland Polygons Wetland Code: R2UBHX DECODE: Wetlands Code Interpreter WETLAND_TYPE: Riverine ACRES: 131.69077157 Coordinate Position Geographic: 87 19' 41.9" W 38 22' 47.9" N Wetland Polygons Wetland Code: PFO1C DECODE: Wetlands Code Interpreter WETLAND_TYPE: Freshwater Forested/Shrub Wetland ACRES: 77.79705398 Figure B-39. IN12 Wetland Description and Location

PAGE 158

146 Figure B-40. IN12 Wetland Description and Location Figure B-41. IN12 Wetland Description and Location Figure B-42. IN12 Wetland Description and Location

PAGE 159

147 IN13 Oxbow-Patoka River South Fork Coordinate Position Geographic: 87 21' 18.9" W 38 22' 36.5" N Wetland Polygons Wetland Code: PUBG DECODE: Wetlands Code Interpreter WETLAND_TYPE: Freshwater Pond ACRES: 12.24738941 Coordinate Position Geographic: 87 21' 18.5" W 38 22' 41.3" N Wetland Polygons Wetland Code: PSS1C DECODE: Wetlands Code Interpreter WETLAND_TYPE: Freshwater Forested/Shrub Wetland ACRES: 1.13526779 Coordinate Position Geographic: 87 21' 29.1" W 38 22' 35.9" N Wetland Polygons Wetland Code: PEMC DECODE: Wetlands Code Interpreter WETLAND_TYPE: Freshwater Emergent Wetland ACRES: 4.61070284 Figure B-43. IN13 Wetland Description and Location

PAGE 160

148 Figure B-44. IN13 Wetland Description and Location Figure B-45. IN13 Wetland Description and Location Figure B-46. IN13 Wetland Description and Location

PAGE 161

149 IN14 North Meridian Oxbow Coordinate Position Geographic: 87 17' 0.0" W 38 23' 7.7" N Wetland Polygons Wetland Code: PEMF DECODE: Wetlands Code Interpreter WETLAND_TYPE: Freshwater Emergent Wetland ACRES: 4.28347963 Coordinate Position Geographic: 87 16' 55.8" W 38 23' 17.7" N Wetland Polygons Wetland Code: PABF DECODE: Wetlands Code Interpreter WETLAND_TYPE: Freshwater Pond ACRES: 12.38482379 Coordinate Position Geographic: 87 16' 37.7" W 38 23' 19.1" N Wetland Polygons Wetland Code: PFO1C DECODE: Wetlands Code Interpreter WETLAND_TYPE: Freshwater Forested/Shrub Wetland ACRES: 67.91341197 Coordinate Position Geographic: 87 16' 46.5" W 38 23' 31.0" N Wetland Polygons Wetland Code: PFO1A DECODE: Wetlands Code Interpreter WETLAND_TYPE: Freshwater Forested/Shrub Wetland ACRES: 95.44016176 Coordinate Position Geographic: 87 16' 45.8" W 38 22' 59.0" N Wetland Polygons Wetland Code: R2UBHX DECODE: Wetlands Code Interpreter WETLAND_TYPE: Riverine ACRES: 131.69077157 Figure B-47. IN14 Wetland Description and Location

PAGE 162

150 Figure B-48. IN14 Wetland Description and Location Figure B-49. IN14 Wetland Description and Location Figure B-50. IN14 Wetland Description and Location

PAGE 163

151 IN15 Turkey Hill Graywood Marsh Coordinate Position Geographic: 87 16' 38.7" W 38 22' 42.3" N Wetland Polygons Wetland Code: PFO1A DECODE: Wetlands Code Interpreter WETLAND_TYPE: Freshwater Forested/Shrub Wetland ACRES: 373.48608004 Coordinate Position Geographic: 87 16' 47.8" W 38 22' 41.0" N Wetland Polygons Wetland Code: PFO1C DECODE: Wetlands Code Interpreter WETLAND_TYPE: Freshwater Forested/Shrub Wetland ACRES: 10.24162563 Coordinate Position Geographic: 87 16' 59.9" W 38 22' 28.4" N Wetland Polygons Wetland Code: PSS1/EMF DECODE: Wetlands Code Interpreter WETLAND_TYPE: Freshwater Forested/Shrub Wetland ACRES: 144.55351232 Coordinate Position Geographic: 87 17' 9.3" W 38 22' 45.1" N Wetland Polygons Wetland Code: PEM/SS1F DECODE: Wetlands Code Interpreter WETLAND_TYPE: Freshwater Emergent Wetland ACRES: 32.65264599 Figure B-51. IN15 Wetland Description and Location

PAGE 164

152 Figure B-52. IN15 Wetland De scription and Location Figure B-53. IN15 Wetland Description and Location Figure B-54. IN15SE Wetland Description and Location

PAGE 165

153 Figure B-55. IN15SE Wetland Description and Location Figure B-56. IN15SW Wetland Description and Location

PAGE 166

154 Figure B-57. IN15NW Wetland Description and Location Figure B-58. IN15NE Wetland Description and Location

PAGE 167

155 IN16 Goose Pond Cypress Slough Coordinate Position Geographic: 87 50' 11" W 37 54' 16" N Wetland Polygons Wetland Code: PFO1A DECODE: Wetlands Code Interpreter WETLAND_TYPE: Freshwater Forested/Shrub Wetland ACRES: 475.39628525 Wetland Code: PEMF DECODE: Wetlands Code Interpreter WETLAND_TYPE: Freshwater Emergent Wetland ACRES: 8.05027556 Coordinate Position Geographic: 87 49' 55" W 37 54' 12" N Wetland Polygons Wetland Code: PFO2G DECODE: Wetlands Code Interpreter WETLAND_TYPE: Freshwater Forested/Shrub Wetland ACRES: 4.24608692 Coordinate Position Geographic: 87 49' 56" W 37 54' 12" N Wetland Polygons Wetland Code: PFO2F DECODE: Wetlands Code Interpreter WETLAND_TYPE: Freshwater Forested/Shrub Wetland ACRES: 9.75417443 Coordinate Position Geographic: 87 50' 4" W 37 54' 22" N Wetland Polygons Wetland Code: PFO1C DECODE: Wetlands Code Interpreter WETLAND_TYPE: Freshwater Forested/Shrub Wetland ACRES: 7.84728322 Figure B-59. IN16 Wetland Description and Location

PAGE 168

156 Figure B-60. IN16 Wetland Description and Location Figure B-61. IN16 Wetland Description and Location

PAGE 169

157 APPENDIX C PHOTOGRAPHS OF WETLANDS SURVEYED IN SW INDIANA

PAGE 170

158 Figure C-1. Photograph of Wetland IN1 Figure C-2. Photograph of Wetland IN1

PAGE 171

159 Figure C-3. Photograph of Wetland IN1 Figure C-4. Photograph of Wetland IN2 Figure C-5. Photograph of Wetland IN2

PAGE 172

160 Figure C-6. Photograph of Wetland IN3 Figure C-7. Photograph of Wetland IN3

PAGE 173

161 Figure C-8. Photograph of Wetland IN4 Figure C-9. Photograph of Wetland IN4

PAGE 174

162 Figure C-10. Photograph of Wetland IN5 Figure C-11. Photograph of Wetland IN7

PAGE 175

163 Figure C-12. Photograph of Wetland IN8 Figure C-13. Photograph of Wetland IN9

PAGE 176

164 Figure C-14. Photograph of Wetland IN9 Figure C-15. Photograph of Wetland

PAGE 177

165 I Figure C-16. Photograph of Wetland IN9 Figure C-17. Photograph of Wetland IN10

PAGE 178

166 Figure C-18. Photograph of Wetland IN10 Figure C-19. Photograph of Wetland IN11

PAGE 179

167 Figure C-20. Photograph of Wetland IN11 Figure C-21. Photograph of Wetland IN11

PAGE 180

168 Figure C-22. Photograph of Wetland IN12 Figure C-23. Photograph of Wetland IN12

PAGE 181

169 Figure C-24. Photograph of Wetland IN12 Figure C-25. Photograph of Wetland IN13

PAGE 182

170 Figure C-25. Photograph of Wetland IN14 Figure C-27. Photograph of Wetland IN14

PAGE 183

171 Figure C-28. Photograph of Wetland IN15 Figure C-29. Photograph of Wetland IN16

PAGE 184

172 Figure C-30. Photograph of Wetland IN16 Figure C-31. Photograph of Wetland IN16

PAGE 185

173 Figure C-32. Photograph of Wetland IN15 Figure C-33. Photograph of Wetland IN15

PAGE 186

174 Figure C-34. Photograph of Wetland IN15 Figure C-35. Photograph of Wetland IN15

PAGE 187

175 Figure C-36. Photograph of Wetland IN15 Figure C-37. Photograph of Wetland IN15

PAGE 188

176 Figure C-38. Photograph of Wetland IN15 Figure C-39. Photograph of Wetland IN15

PAGE 189

177 Figure C-40. Photograph of Wetland IN15 Figure C-41. Photograph of Wetland IN15

PAGE 190

178 178 APPENDIX D WETLAND CHARACTERIZATION FORM Wetland ID: Date: Start Time: Finish Time: Observer Name: Picture ID: Weather Condition: Is the wetland adjacent to a body of wa ter? Circle the appropriate choice: River Stream Lake Estuary Ocean None Characterization for the Entire Wetland (Please circle one of the vegetation classes) 1) Is the vegetation composed predominantly non-vascular (mosses and lichens) ...… Moss-Lichen 2) Is the vegetation herbaceous? i) Is the vegetation dominated by rooted emergent vegetation?..................... Emergent Wetland ii) Is the vegetation predominately submergent, floating-leaved, or free-floating?.... Aquatic Bed 3) Is the vegetation mostly trees and/or shrubs? i) Is it dominated by vegetation less than 6 meters tall? ……………… Scrub-Shrub Wetland ii) Are the dominants 6 meters or greater? …………………………………. Forested Wetland Land-Use Characterization 1) Circle the following land-uses that best characterizes the adjacent upland and estimate the percentage of the area that is represented by the circled land uses: a) Commercial ______ g) Rural (scattered homes) ______ b) Industrial ______ h) Unimproved pasture______ c) Golf course ______ i) Forested or wetland ______ d)High density residential (>20 units/ acre) ______ j) Pine plantations ______ e) Low density residential ______ k) Row crops ______ f) Feed lots or Dairy operations ______ l) Other ______ 2) Please circle the following fire indicator s present within the vegetation zone: a) Charred ground surface e)Burnt dead trees b) Burnt trees with new shoots f) Burnt crowns of trees c) Burn marks on trees and shrubs g) Burned ground with no understory d) No evidence of fire 3) Is trash present in the wetland?: Yes or No (describe) 4) Is there green algae present in the we tland?: Yes or No (describe) 5) Is there evidence of sedimentation in th e wetland? Yes or No (describe) 6) Is there floating vegetation?: Yes or No (describe) 7) Circle any visible indicators of hydrologic disturbances: a) Ditch e) Dam b) Nearby road impeding flow f) Dike c) Canals g)Piped inflows d) None noticed h) Other (describe) 8) Circle any visible indicators of vegetative disturbances: a) Large stand of vines e) Cutting or grazing in wetland b) Cutting or grazing in adjacent upland f) Insect damage c) Large stand of exotic species g) Large % of dead trees d) None noticed h) Other (describe) 9) Circle any direct indicators of nutrient loading to the wetland a) Presence of cattle in wetland d) Yard waste dumping in/near wetland b) Fertilizer or manure applicati on in watershed e) None noticed c) Other (describe) 10) What is the approximate size of the wetland: _______ _________ Shape: _____________ (please sketch on back) 11) HGM classification (from key): _____________________________________

PAGE 191

179 Vegetation Community Characterization Form Sub-sample A (Deep Center) Wetland ID: Observer Name: Date: Photo ID: Sub-sample A1 Sub-sample A2 Sub-sample A3 Comments Temp C pH DO % Conductivity ORP Water Depth (inches) Depth of Organic layer (inches) Distance from ground to lichen lines (inches) Algal mats (circle one) Present Not present Present Not present Present Not present Aquatic plants (circle one) Present Not present Present Not present Present Not present Morphological adaptations (circle any that apply) Buttressed roots Adventitious roots Hummocks None Present Buttressed roots Adventitious roots Hummocks None Present Buttressed roots Adventitious roots Hummocks None Present Circle the ONE Characterization that best describes the zone being sampled Emerg. Macrophytes Grasses/sedges Floating aquatics Forested Scrub-Shrub Other: Emerg. Macrophytes Grasses/sedges Floating aquatics Forested Scrub-Shrub Other: Emerg. Macrophytes Grasses/sedges Floating aquatics Forested Scrub-Shrub Other: % cover of overstory List the dominant overstory vegetation within a 10-ft radius of sampling and the % cover they represent % cover of understory List the dominant understory story vegetation within a 10-ft radius of sampling and the % cove r they represent

PAGE 192

180 Vegetation Community Characterization Form Sub-sample B (Outer Ring) Wetland ID: Observer Name: Date: Photo ID: Sub-sample B1 Sub-sample B2 Sub-sample B3 Sub-sample B4 Temp pH DO % Conductivity ORP Water Depth (inches) Depth of Organic layer (inches) Distance from ground to lichen lines (inches) Algal mats (circle one) Present Not present Present Not present Present Not present Present Not present Aquatic plants (circle one) Present Not present Present Not present Present Not present Present Not present Morphological adaptations (circle any that apply) Buttressed roots Adventitious roots Hummocks None Present Buttressed roots Adventitious roots Hummocks None Present Buttressed roots Adventitious roots Hummocks None Present Buttressed roots Adventitious roots Hummocks None Present Circle the ONE Characterization that best describes the zone being sampled Emerg. Macros Grasses/sedges Floating aquatics Forested Scrub-Shrub Other: Emerg. Macros Grasses/sedges Floating aquatics Forested Scrub-Shrub Other: Emerg. Macros Grasses/sedges Floating aquatics Forested Scrub-Shrub Other: Emerg. Macros Grasses/sedges Floating aquatics Forested Scrub-Shrub Other: % cover of overstory List the dominant overstory vegetation within a 10-ft radius of sampling and the % cover they represent % cover of understory List the dominant understory story vegetation within a 10-ft radius of sampling and the % cove r they represent

PAGE 193

181 LIST OF REFERENCES Anderson, D.C., J.J. Sartoris, J.S. Thullen, and P.G. Reusch. 2003. The Effects of Bird Use on Nutrient Removal in a Constr ucted Wastewater Treatment Wetland. Wetlands: Vol. 23, No.2, pp. 423-435. Bragazza, L. and R. Gerdol. 2001. Are Nutrient Availabili ty and Acidity-Alkalinity Gradients Related in Sphagnum -Dominated Peatlands? Journal of Vegetation Science: Vol. 13, No. 4, pp. 473-482. Chapman S.B. 1986. Production Ecology and Nutrient Budgets. In: P.D. Moore, S.B. Chapman (eds). Methods in Plant Ecology Boston: Blackwell Scientific Publications, pp. 1-60. Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of Wetlands and Deepwater Habitats of the United States. U.S. Fish and Wildlife Service, Office of Biological Servic es, Washington, DC, USA. FWS/OBS-79/31. Craft, C.B., J. Vymazal, C.J. Richardson. 1995. Response of Everglades Plant Communities to Nitrogen and Phosphorus Additions. Wetlands: Vol. 15: 258-271. Craft, C.B. and C.J. Richardson. 1998. Recent and Long-Term Organic Soil Accretion and Nutrient Accumulation in the Everglades. Soil Science Society of America Journal: Vol. 62: 834-843. Craft, C.B. and W.P. Casey. 2000. Sediment and Nutrient Accumulation in Floodplain and Depressional Freshwater Wetlands of Georgia, USA. Wetlands: Vol. 20, No. 2, pp. 323-332. Dahl, T.E. 1990. Wetland Losses in the United States, 1780’s to 1980’s. U.S. Department of the Interior, Fish and Wildlife Service. Washington, D.C. 13 pp. Dress, W.J. and R.E.J. Boerner. 2002. Temporal and Spatial Pattern s in Root Nitrogen Concentration and Root Decomposition in Relation to Prescribed Fire. The American Midland Naturalist: Vol. 149, No.2, pp.245-247. Findlay, S.E.G., E. Kiviat, W.C.Ni eder and E.A. Blair. 2002. Functional Assessment of a Reference Wetland Set as a Tool for Science, Management and Restoration. Aquatic Sciences: Vol. 64. pp. 107-117. Greco, S. 2004. A Biogeochemical Survey of Wetlands in the Southeastern United States University of Florida. Gainesville.

PAGE 194

182 Indiana Department of Natural Resources (IDNR). 1996. Indiana Wetlands Conservation Plan. Indianapolis. Karr, J.R. and E.W. Chu. 1999. Restoring Life in Running Waters: Better Biological Monitoring. Washington, D.C: Island Press. Klein, C.A F. Cheever, and B.C. Birdsong 2005 Natural Resources Law A PlaceBased Book of Problems and Cases Aspen Publishers, Inc. Mitsch, W.J. and J.G. Gosselink. 2000. Wetlands. John Wiley and Sons, Inc., New York, NY, USA. Owen Koning, C. 2005. Vegetation Patterns Resulting from Spatial and Temporal Variability in Hydrology, Soils, and Tram pling in an Isolated Basin Marsh, New Hampshire, USA. Wetlands: Vol. 25, No. 2, pp. 239–251. Paris, J.M. 2005. So utheastern Wetland Biogeochemi cal Survey: Determination and Establishment of Numeric Nutrient Criteria University of Florida. Gainesville. Schmieder, K. and A. Lehmann, 2004. A Spatio-Temporal Framework of Efficient Inventories of Natural Resources: A Case Study With Submersed Macrophytes. Journal of Vegetation Science: Vol. 15, No. 6, pp. 807–816. Shaver, G.R. and J.M. Melillo, 1984. Nutrient Budgets of Marsh Plants: Efficiency Concepts and Relation to Availability. Ecology 65: 1491-1510. Shaver, G.R., L.C. Johnson, D.H. Cades, G. Murray, J.A. Laundre, E.B. Rastetter, K.J. Nadelhoffer and A.E. Giblin, 1998. Biomass and CO2 Flux in Wet Sedge Tundras: Responses to Nutrients, Temperature and Light. Ecology Monograph 68: 75-97. Simon, K. S., C. R. Townsend, B. J. F. Biggs and W. B. Bowden. 2004. Temporal Variation of N and P Uptake in 2 New Zealand Streams Journal of the North American Benthological Society: Vol. 24, No. 1, pp. 1–18. U.S. Environmental Protection Agency (US EP A) and U.S. Department of Agriculture (USDA). 1998. Clean Water Action Plan: Restoring and Protecting America’s Waters. U.S. Environmental Protection Agency. 2002a. Methods for Evaluating Wetland Condition: Introduction to Wetland Biological Assessment. Office of Water, U.S. Environmental Protection Agency, Washington, DC. EPA-822-R-02-014. U.S. Environmental Protection Agency. 2002b. Methods for Evaluating Wetland Condition: Study Design for Monitoring Wetlands. Office of Water, U.S. Environmental Protection Agency, Washington, DC. EPA-822-R-02-015.

PAGE 195

183 U.S. Environmental Protection Agency. 2002c. Methods for Evaluating Wetland Condition: Vegetation-Based Indicato rs of Wetland Nutrient Enrichment. Office of Water, U.S. Environmental Protec tion Agency, Washingt on, DC. EPA-822-R02-024. U.S. Environmental Protection Agency. Methods for Evaluating Wetland Condition: Developing Metrics and Indexes of Biological Integrity. Office of Water, U.S. Environmental Protection Agency, Washington, DC. EPA-822-R-02-016. Whigham, D., M. Pittek, K.H. Hofmockel, T. Jordan, and A.L. Pepin. 2002. Biomass and Nutrient Dynamics in Restored Wetl ands on the Outer Coastal Plain of Maryland, USA. Wetlands: Vol. 22, No. 3, pp. 562-574.

PAGE 196

184 BIOGRAPHICAL SKETCH David A. Stuckey has been a lifelong student of natural history and the environment, a sportsman and conservationist. In 1992, he graduated from the University of Evansville, receiving a B.S. Degree in na tural resources. In 2006, he will complete the requirements for an M.S. degree in environmenta l science from the University of Florida. His working career has included over 25 y ears in the fields of environmental engineering and quality control in gove rnment, coal mining and the pharmaceutical industry. He is currently Manager of Envir onmental Health and Safety for Bristol-Myers Squibb Company’s Corporate Quality Envir onment, Health and Safety Group, working toward a balanced approach to sustainabl e development, polluti on prevention, and the conservation of natural resources.


Permanent Link: http://ufdc.ufl.edu/UFE0012782/00001

Material Information

Title: Biogeochemical Survey of Wetlands in Southwestern Indiana
Physical Description: Mixed Material
Copyright Date: 2008

Record Information

Source Institution: University of Florida
Holding Location: University of Florida
Rights Management: All rights reserved by the source institution and holding location.
System ID: UFE0012782:00001

Permanent Link: http://ufdc.ufl.edu/UFE0012782/00001

Material Information

Title: Biogeochemical Survey of Wetlands in Southwestern Indiana
Physical Description: Mixed Material
Copyright Date: 2008

Record Information

Source Institution: University of Florida
Holding Location: University of Florida
Rights Management: All rights reserved by the source institution and holding location.
System ID: UFE0012782:00001


This item has the following downloads:


Full Text












BIOGEOCHEMICAL SURVEY OF WETLANDS IN SOUTHWESTERN INDIANA


By

DAVID A. STUCKEY













A THESIS PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

UNIVERSITY OF FLORIDA


2006

































Copyright 2005

by

David A. Stuckey


































This document is dedicated to my parents, Robert and Jean Stuckey, my loving wife,
Sandra, and our two fine sons, Samuel and Dean, source of constant encouragement and
support.















ACKNOWLEDGMENTS

I thank my parents, Robert and Jean Stuckey, for introducing me to the world of

natural science at an early age, and for their continuous support and encouragement

throughout my lifetime.

My wife, Sandra, and sons, Samuel and Dean, sacrificed their time and assisted in

the field work throughout this project. They provided the inspiration for continuing my

education in this field, and I am forever indebted.

I thank Dr. Mark W. Clark, my academic advisor at the University of Florida, for

his enabling character that made my participation in this research possible. His balanced

perspective of science, education and common sense was invaluable. My gratitude is

likewise extended to the other distinguished members of my graduate committee, Dr. K.

Ramesh Reddy, Chairman, and Dr. Matthew J. Cohen, for their ongoing support and

assistance.

I am indebted to my colleagues at the University of Florida, Ms. Stacie Greco and

Mr. Jeremy Paris. As a subset of their research project, they both provided much time

and assistance as contacts and facilitators of sampling activities and data collection. I

wish to acknowledge the analysts at the UF Wetland Biogeochemistry Laboratory for

their hard work in generating the analytical data from the project sampling.















TABLE OF CONTENTS




A C K N O W L E D G M E N T S ................................................................................................. iv

L IST O F TA B LE S ..................................................... .. .... .. .... .............. .. vii

LIST OF FIGURES ......... ......................... ...... ........ ............ ix

ABSTRACT .............. .......................................... xi

CHAPTER

1 IN TR OD U CTION ............................................... .. ......................... ..

W etland Perspective and Trend ................................................... ....... ...............
W etland B benefits ....................................................... 3
R regulatory A authority .................. .......................................... ........ .. 3
W ater Q quality Standards.................................................................. ......... ...........4
Evaluation of W etland Condition ....................................................... .... ........... 8
R research O bjectives.......... .................................................................. ....... ....... 13
H y p o th e sis ................................................................13

2 M E T H O D S .......................................................................................................1 5

Sam pling Site Selection.............................................. 15
Sam pling and Analytical M ethods................................. .................. 18
D ata A nalysis................................................... 25

3 R E S U L T S .............................................................................2 6

Spatial Study R results .............................................................27
Tem poral Study Results................................................. 46

4 DISCUSSION AND CONCLUSIONS ........................... ..... ...............58

O bjectiv e O n e (R esu lts) ........................................................................................ 58
Objective Tw o (Results) ......................................... .................. ............... 60
Objective Three (Results) ................................. .......................... .. ....... 60
Objective Four (Results) ................................. .......................... .........62
C conclusion .................. ................................ .................... .. ....... .... 64



v









APPENDIX

A PROFILES OF SAM PLED W ETLANDS ........................................ .....................65

B SURVEYED WETLANDS DESCRIPTION AND LOCATION............................126

C PHOTOGRAPHS OF WETLANDS SURVEYED IN SW INDIANA ..................157

D WETLAND CHARACTERIZATION FORM ................................................. 178

L IST O F R E F E R E N C E S ...................................................................... ..................... 18 1

BIOGRAPHICAL SKETCH ................................. .................. ................ 184









LIST OF TABLES


Table p

2-1 Number of wetlands surveyed in Southwestern Indiana from each wetland
community type and nutrient condition. ...................................... ............... 17

2-2 Number of wetlands surveyed within each community type. Sites were all
located in the southeastern part of Eco-region IX............................................17

2-3 Southwestern Indiana wetland research location, sampling dates and
characterization. All wetlands included in the survey are listed...........................18

2-4 Southwestern Indiana wetland research location, sampling dates and
characterization for Turkey Hill Graywood Marsh, wetland community type:
Non-Riparian marsh with Least-Impacted wetland condition. .............................19

3-1 General descriptive statistics summary of water column total phosphorus and
total nitrogen concentrations for wetlands surveyed in Indiana. Wetlands were
aggregated using several different classification criteria. ......................................27

3-2 Statistical comparison of water column total phosphorus and total nitrogen
concentrations for wetlands surveyed in Indiana, aggregated using several
different classification criteria ............ ... ............................................. 28

3-3 General descriptive statistics summary of leaf litter total phosphorus, total
nitrogen and total carbon concentrations for wetlands surveyed in Indiana.
Wetlands were aggregated using several different classification criteria ...............29

3-4 Statistical comparison summary of leaf litter total phosphorus, total nitrogen and
total carbon concentrations for wetlands surveyed in Indiana, aggregated using
several different classification criteria. .............................................. ............... 30

3-5 General descriptive statistics summary of soil pH, organic matter, total
phosphorus, total nitrogen and total carbon concentrations for wetlands surveyed
in Indiana. Wetlands were aggregated using several different classification
c rite ria ........................................................................ 3 2

3-6 Statistical comparison summary of soil pH, organic matter, total phosphorus,
total nitrogen and total carbon concentrations for wetlands surveyed in Indiana,
aggregated using several different classification criteria...............................34

3-7 General descriptive statistics summary of vegetation total phosphorus, total
nitrogen and total carbon concentrations for wetlands surveyed in Indiana.
Wetlands were aggregated using several different classification criteria ...............35









3-8 Statistical comparison summary of vegetation tissue total phosphorus, total
nitrogen and total carbon concentrations for wetlands surveyed in Indiana,
aggregated using several different classification criteria. .....................................36

3-9 Summary table of nutrient indicator strata. ................................. .................37

3-10 Summary statistics (mean, standard deviation, variance and 95% confidence
interval) of water column samples collected during the temporal study..................50

3-11 Summary statistics (mean, standard deviation, variance and 95% confidence
interval) of litter samples collected during the temporal study. ..........................53

3-12 Summary statistics (mean, standard deviation, variance and confidence interval)
of soil sampled during the temporal study .................................... ............... 57















LIST OF FIGURES


Figure page

1-1 Percentage of W wetlands Lost in the United States. ............ ....................... 2

1-2 Draft Aggregations of Eco-regions for the National Nutrient Strategy (Source
US EPA http://www.epa.gov/waterscience/criteria/nutrient/ecomap.html)............. 10

2-1 Photographs representing the three principal wetland community classifications
surveyed in Southwestern Indiana, (A) Riparian Swamp, (B) Non-Riparian
Swam p, and (C) N on-Riparian M arsh .............................. ..................... 18

3-1 Water Column Total Phosphorus Comparison between Least-Impacted
Wetlands Surveyed in Southwestern Indiana and Eco-Region IX Least-Impacted
W etlands............................................................................................. .39

3-2 Water Column Total Nitrogen Comparison between Least-Impacted Wetlands
Surveyed in Southwestern Indiana and Eco-Region IX Least-Impacted
W etlands..................................... .................. ............... ........... 40

3-3 Litter Total Phosphorus Comparison between Least-Impacted Wetlands
Surveyed in Southwestern Indiana and Eco-Region IX Least-Impacted
W etlands..................................... .................. ............... ........... 41

3-4 Litter Total Nitrogen Comparison between Least-Impacted Wetlands Surveyed
in Southwestern Indiana and Eco-Region IX Least-Impacted Wetlands ...............42

3-5 Vegetation Tissue Total Phosphorus Comparison between Least-Impacted
Wetlands Surveyed in Southwestern Indiana and Eco-Region IX Least-Impacted
W etlands..................................... .................. ............... ........... 43

3-6 Vegetation Tissue Total Nitrogen Comparison between Least-Impacted
Wetlands Surveyed in Southwestern Indiana and Eco-Region IX Least-Impacted
W etlan d s ...................................... ................................................. 4 4

3-7 Soil Total Phosphorus Comparison between Least-Impacted Wetlands Surveyed
in Southwestern Indiana and Eco-Region IX Least-Impacted Wetlands ...............45

3-8 Soil Total Nitrogen Comparison between Least-Impacted Wetlands Surveyed in
Southwestern Indiana and Eco-Region IX Least-Impacted Wetlands ...................46









3-9 Water Column Depth in Inches. Wetland zones sampled included the Inner
Core (A) and Outer Edge (B). Mean and Standard Deviation of both zones are
p re se n te d ...................................................... ................ 4 7

3-10 Water Column Field pH. Wetland zones sampled included the Inner Core (A)
and Outer Edge (B). Mean and Standard Deviation of both zones are presented...48

3-11 Water Column Dissolved Oxygen, %. Wetland zones sampled included the
Inner Core (A) and Outer Edge (B). Mean and Standard Deviation of both
zones are presented..................... ....... .. ....... ... ........ ....... 49

3-12 Water Column Total Phosphorus, mg/L. Wetland zones sampled included the
Inner Core (A ) and Outer Edge (B)............................................... ............... 49

3-13 Water Column Total Nitrogen, mg/L. Wetland zones sampled included the
Inner Core (A) and Outer Edge (B).......................................................... .......... 50

3-14 Litter Total Phosphorus, mg/kg. Wetland zones sampled included the Inner
Core (A) and Outer Edge (B). ............................................................................52

3-15 Litter Total Nitrogen, g/kg. Wetland zones sampled included the Inner Core (A)
and O uter E dge (B ). ......................................... ........................... 52

3-16 Litter Total Carbon, g/kg. Wetland zones sampled included the Inner Core (A)
and O uter E dge (B ). ......................................... ........................... 53

3-17 Soil Bulk Density, grams cm-3. Wetland zones sampled included the Inner Core
(A ) an d O uter E dg e (B ) ........................................ ..............................................54

3-18 Soil Loss on Ignition, %. Wetland zones sampled included the Inner Core (A)
and O uter E dge (B ). ......................................... ........................... 55

3-19 Soil Total Phosphorus, mg/kg. Wetland zones sampled included the Inner Core
(A ) an d O uter E dg e (B ) ........................................ ..............................................55

3-20 Soil Total Nitrogen, g/kg. Wetland zones sampled included the Inner Core (A)
and O uter E dge (B ). ......................................... ........................... 56

3-21 Soil Total Carbon, g/kg. Wetland zones sampled included the Inner Core (A)
and O uter E dge (B ). ......................................... ........................... 56

3-22 Soil pH. Wetland zones sampled included the Inner Core (A) and Outer Edge
(B ).......... ............................... ................................................5 7















Abstract of Thesis Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Master of Science

BIOGEOCHEMICAL SURVEY OF WETLANDS IN SOUTHWESTERN INDIANA

By

David A. Stuckey

May 2006

Chair: Mark W. Clark
Major Department: Soil and Water Science

Nutrient concentrations play a critical role in the integrity and functionality of

wetlands. To fully assess the status and condition of wetland ecosystems, knowledge of

nutrient flow and cycling is required. Although water quality nutrient data are readily

available, there is limited information regarding nutrient concentrations within the soil,

litter and vegetation at wetland sites. While it is recognized that an assessment of

wetland ecosystems can be enhanced by examination of nutrient criteria, such

biogeochemical indicators have not been standardized and there is a lack of spatial data

within the National Wetland Biogeochemical Database.

To address this need for consistency and comparability in the reporting data, a

Biogeochemical Survey of Wetlands of Southwestern Indiana was conducted. Sixteen

wetland sites were surveyed for twenty biogeochemical indicators including vegetation,

litter, soil and water column nutrient parameters. One wetland site was selected for

additional study for a period of one year to provide background information on temporal

and seasonal variability within the wetland.









Based on the study results, there does not appear to be a need to sub-classify

wetlands by vegetative community type to properly assess nutrient conditions in

Southwestern Indiana's wetlands. However, hydrologic connectivity of the wetland

should be considered in the assignment of appropriate numeric nutrient criteria.

Comparison of water column, litter, soil, and vegetation nutrient indicators between

impacted and least-impacted wetlands suggests that total phosphorus concentrations

measured in the water column, litter, and vegetation do not indicate nutrient enrichment.

The most responsive indicator stratum for nutrient enrichment between impacted and

least-impacted wetlands appears to be soil total phosphorus and total nitrogen.

Comparison of nutrient concentrations in Southwestern Indiana wetlands to

Southeastern U.S. Eco-region IX wetlands showed significantly higher total phosphorus

concentrations in the water column, litter and soil from Southwestern Indiana Wetlands.

The findings suggest that the establishment of numeric nutrient criteria for Southwestern

Indiana wetlands, based on reference wetlands from Eco-region IX, could be overly

protective.














CHAPTER 1
INTRODUCTION


Wetland Perspective and Trend

Throughout history, man's regard for wetlands has ranged from ambivalence and

disdain of inundated areas as wastelands, to great respect as a precious resource that

enables a way of life. At the first extreme, legislation such as the Federal Swamp Lands

Acts of 1849, 1850, and 1860 encouraged the drainage or reclamation of wetlands, to

more productive, beneficial uses to society. The other extreme could be represented by

human cultures evolved within, and dependent upon wetland environments, such as the

Cajuns of Louisiana, and the Sokaogon Chippewa of Wisconsin (Mitsch and Gosselink

2000).

This polarity of values continues today as development interests compete with

environmental conservationists for the right to develop, versus the preservation, of

wetland areas. Within the last twenty years, as wetland values have been further

recognized and promoted, legislation has been enacted to help protect diminishing

wetland resources not just from direct infill or drainage, but also from indirect

degradation and impacts to wetland functions and quality.

At the heels of this legislation are challenges to the rules and laws promulgated to

protect wetlands. A climate of judicial challenge and litigation reinforce the need for

clarity in delineation, scope and application of the wetland subject areas. The more that

is understood about wetlands, the better their chances for protection.










Figure 1-1 illustrates the percentage of wetland acreage in the United States that

were lost over the 200 year period between the 1780's and the 1980's. The State of

Indiana lost 87% of its wetlands during this period. According to estimates based on

hydric soils assessments by the USDA Soil Conservation Service, approximately

5,600,000 acres of wetlands were present in Indiana in the 1780's, comprising 24.1% of

the total land area. The existing 813,000 acres of wetlands now cover only 3.5% of the

land area in the state. Among the 50 states, Indiana ranks 4th in proportion of wetlands

lost (Dahl 1990). Clearly, this negative trend needs to be reversed if the plant and animal

communities and the physical landscape are to receive future benefits provided by

wetland ecosystems.

Indiana's wetlands are impacted today by agricultural activities, commercial and

residential development, road construction, water development projects, groundwater

withdrawal, loss of instream flows, water pollution and vegetation removal (IDNR 1996).



V 1 V2 '"j -4
2 .38 \ ... (-- ... 35 '- -' :.* .-- "



"a .A .8-5 24 i 9 -
38 L.-49- -
1 ( :r52 f "-T- l,-5^, *5 Y .. 1-Z--3



-16



Twenty-two states have lost at least 50 percent of their onginal wetlands.
Seven states- -ndara ;lAnos Missoun. Kentucky, iowa. Caliornma a7d
Ohio-have lost over 80 percent of their original wetlands. Since the 19 70's,
the most xtensive Iosses of wetlands have been in Lousiana,
Mississippi. Arkansas. Florida, South Carolina, and North Carolina.
Source: Mitch and Gosselink. Wetlands. 2nd Edition, Van Nostrand Reinhold, 1993


Figure 1-1. Percentage of Wetlands Lost in the United States.









Wetland Benefits

Wetlands have been described as the kidneys of the landscape for their abilities to

absorb, filter, stabilize and buffer nutrients, pollutants, groundwater, floodwater and other

upstream native and anthropogenic inputs. Wetlands function as sources, sinks and

transformers of chemical and biological materials. Among the most productive

ecosystems worldwide, wetlands support broad biodiversity ranging from microbial

organisms to mammals.

Wetlands play a key role in atmospheric air quality through carbon sequestration.

Conversely, drainage and destruction of wetlands can release carbon dioxide, a

greenhouse gas (Klein et al. 2005).

The ability of wetlands to perform the valuable functions of source, sink and

transformer is dependent upon their condition. Limited monitoring information is

available to assess wetland ambient and seasonal conditions, or the affects of ecosystem

stressors that may degrade wetland condition. As of 1998, only 4% of the nation's

wetlands had been surveyed. Of those wetlands surveyed, the majority of data was

generated through dredge and fill permit requirements (USEPA 2002b).

Regulatory Authority

In 1972, Congress enacted the Clean Water Act (CWA) to "restore and maintain

the chemical, physical, and biological integrity of the Nation's waters." While the term

"wetland" is absent from the entire statute, Section 404 of the CWA is the primary

regulatory authority governing wetland protection.

Section 402 of the Clean Water Act prohibits the discharge of pollutants from a

point source, into waters of the United States, unless a permit has been issued. Section

404 authorizes the U.S. Army Corps of Engineers to issue permits for the discharge of









dredged or fill material into navigable waters. The application and jurisdiction of

navigable waters has been the source of considerable litigation throughout the history and

development of water law in the United States. The recent proximity requirement of

navigable waterways in the designation of regulated wetlands has had the affect of

excluding many isolated and often critical wetland areas from regulatory protection

(Klein et al. 2005).

Since the implementation of the Clean Water Act in 1970, the focus of water

quality protection has been aimed primarily toward lakes, rivers and streams, while

wetland protection efforts concentrated on preventing the conversion of existing wetlands

to uplands. Although the rate of wetland loss has decreased, significant opportunities

exist to assess and ultimately protect wetland quality condition.

Water Quality Standards

Under Section 303(c) of the Clean Water Act (CWA), states are assigned primary

responsibility for enacting water quality standards that are protective of designated uses.

Section 304(a) of the CWA provides assistance to states through the Environmental

Protection Agency's development of water quality criteria. The EPA provides this

guidance as a starting point for states in the development of water quality criteria and

standards.

Water quality standards consist of three major elements: (1) designated uses, (2)

narrative and numeric water quality criteria for supporting each designated use, and (3)

an antidegradation statement (USEPA 2002a).

Designated Uses

Environmental goals are defined or classified as designated uses for water

resources by states. Examples of typical water body designated uses include: public









water supply, primary contact recreation, aquatic life support, wildlife habitat, and fish

consumption. The unique functions and values of wetlands may require the

establishment of designated uses much different from typical water bodies. In the

absence of a state specified designated use for a water body, including wetlands, the

default designated use assigned by EPA is aquatic life support. In most instances states

have not actively designated uses for wetlands and therefore, for regulatory purposes,

support of aquatic life dictates selection of narrative and numeric criteria.

Water Quality Criteria

In 1998, The Clean Water Action Plan was introduced by the U.S. EPA and the

Department of Agriculture as a blueprint to protect and restore the nation's water

resources. An element of the Plan was to define nutrient reduction goals by establishing

numeric criteria for nutrients (i.e. phosphorus and nitrogen) that reflect the different types

of water bodies and different eco-regions of the country to assist states and tribes in the

adoption of numeric water quality standards based on these criteria (EPA and USDA).

Water quality criteria are narrative or numeric descriptions of the chemical,

physical or biological conditions found in minimally-impacted, reference sites. Using

appropriate criteria, states can compare the condition of a wetland to the reference criteria

to determine if the wetland is supporting its designated uses.

Narrative Criteria

Narrative water quality criteria are statements to protect and support the

antidegradation of water resources and their designated uses. They define conditions

necessary to sustain designated uses. For example, a general narrative statement would

be: "maintain natural hydrologic conditions, including hydroperiod, hydrodynamics and









natural water temperature variations necessary to support vegetation which would be

present naturally" (USEPA 2002a).

Antidegradation Policy

An antidegradation policy established by a state would include provisions for full

protection of existing uses, maintenance of water quality of high-quality waters, and a

prohibition against lowering water quality in outstanding resource waters. The policy

would also address fill activities in wetlands to ensure that no significant degradation

occurs as a result of the fill activity (USEPA 2002a)

Numeric Criteria

Numeric water quality criteria define the specific numeric limits for physical,

chemical and biological parameters established by states to protect designated uses of

water resources. Because current assessment methods do not describe many biological

and physical impacts to wetlands, and numeric parameters are not yet established,

narrative criteria are primarily used for wetlands. For wetlands, states have historically

relied upon designated uses and criteria previously developed for lakes and streams,

although the ecological conditions of wetlands differ from lakes and streams.

In addition, the physical and chemical criteria were based on sampling from the

ambient water column. Since the presence of a water column in a wetland can be highly

variable, inference of water column parameters alone in determining the condition of a

wetland can be inconclusive. Since wetland characteristics can be quite different from

typical water bodies, numeric criteria for physical and chemical parameters of other

strata, specific to wetlands are needed (USEPA 2002a).

Other strata that serve as response indicators to causal variables such as nutrient

loading in wetlands include: vegetation, leaf litter and soil. Wetland vegetation responds









to nutrient additions by increasing the storage of nitrogen and phosphorus in plant tissue,

and increasing net primary production (NPP), and decomposition (Craft and Richardson

1998). The ratio of carbon to nitrogen (C: N) present in leaves or aboveground biomass

can be used as an indicator of nutrient enrichment. Plants assimilate more nitrogen under

conditions of nitrogen enrichment, increasing leaf nitrogen and decreasing the C: N ratio

(Shaver and Melillo 1984, Shaver et al. 1998). Phosphorus-enriched environments result

in increased leaf tissue phosphorus and decreased carbon to phosphorus ratios (C: P)

(Craft et al. 1995). To determine these affects on the C: N and C: P ratios require

knowledge of the baseline nutrient concentrations prior to enrichment.

Leaf litter is another stratum that can be used as an indicator of nutrient loading,

especially in forested wetlands with little or no herbaceous vegetation. Since woody

plants grow slower and have a longer life cycle than herbaceous vegetation, litterfall is a

slower response variable to measure nutrient use efficiency through net primary

productivity (Chapman 1986).

Wetland soils provide both the medium where many wetland chemical

transformations take place, as well as the primary storage location for available chemicals

for most wetland plants. Biogeochemical cycling, the transport and transformation of

chemicals in ecosystems, involves a number of interrelated processes highly influenced

by system hydrology. These chemical, physical and biological processes result in

changes to chemical forms and spatial movement of materials within wetlands. The

exchange of nutrients at the water-sediment interface, plant uptake, and nutrient inputs

and exports, determine overall wetland productivity. Relatively large amounts of

nutrients are tied up in wetland sediments as compared to terrestrial and deepwater









aquatic systems (Mitsch and Gosselink 2000). The use of soil sampling as an indicator of

nutrient enrichment in wetlands can provide information on the status of a wetland's

function as a sink, source, or transformer of nutrients. The relative permanence of this

stratum in the wetland as compared to water column, vegetation and litter, contribute to

its favorability as an indicator.

Evaluation of Wetland Condition

The physical and chemical characteristics of a watershed's landscape topography,

underlying geology and hydrology, contribute to the plant and animal community species

that can survive in a location. The collective interaction of these communities with their

physical and chemical environments can form wetlands, and provide valuable functions

from both economic and ecological perspectives. Wetlands can support high levels of

primary production, provide habitat for numerous species of wildlife, and mediate a range

of biochemical transformations that contribute to improved water quality (Findlay et al.

2002). The complex biological community's presence in a wetland demonstrates its

resilience to normal variation in the environment (Karr and Chu 1999).

The severity, frequency and duration of human activities or disturbances within a

wetland, or its watershed can result in conditions where changes in the biological

community occur. A challenge to wetland scientists is the need to develop practical

measurements of wetland condition to assist resource managers in their decisions and

actions to minimize wetland loss in acreage and function (USEPA 2002a). In spite of

heightened awareness of wetlands functions and values, the ability to protect, manage and

restore these systems remains fairly poor due to a lack of tools to rapidly yet plausibly

assess their value (Findlay et al. 2002).









The EPA's Office of Water has established a strategy to implement the Clean

Water Action Plan, by the development of regional nutrient criteria for each aquatic

resource type. Using comparisons to local reference or background conditions, nutrient

criteria can be developed within designated spatial areas, yielding a regionalization of

nutrient criteria. Reference data sets allow more objective and realistic selection of goals

for wetland maintenance or restoration (Findlay et al. 2002).

Numeric Nutrient Criteria

Nearly half the surface waters surveyed in the United States do not meet water

quality standards because of excessive levels of nutrients. Nutrient enrichment affects

both structural and functional attributes of wetlands. Structural affects can include shifts

in plant species composition with replacement of nutrient-tolerant species with species

more adaptive to high nutrient conditions. Wetland functional changes include increased

nitrogen and phosphorus uptake, net primary productivity, decomposition, and

eutophication (USEPA 2002c).

States consistently cite excessive nutrients as a major obstacle to water quality

attainment, and EPA expects to develop numeric nutrient criteria that cover the four

major types of water bodies lakes and reservoirs, rivers and streams, estuarine and

coastal areas, and wetlands. The criteria will first be recommended by EPA across the

fourteen major eco-regions of the United States illustrated in Figure 1-2, below. These

recommended criteria must either be adopted by state and tribal governments or

scientifically-based alternative criteria must be proposed that is mutually agreed upon by

the local government and EPA.











Dra f ApggregaR uian of Level III Ecoirgion..
bor rhe N\tional Xutrentl Straraegy


Il .. .j r .'.
k AAenr \ yy
I k. ;rrvrr Phljim tfrasmnnd' ShlruaJfi -
V. N,uih rnwr r u.'ut1laird ra Plir 0la s
W. rn f V71 J. PrrntI~ Lnr; 4Fg r fairdl( piKr fidwril nud -4rhnras
JI. MnultA^Fr r,^ Teap~~~vr I'df'. ,lajn aand Iulp
.X. Texss- Ljau jn C y.ii il J .'n ,i, j IJJiu,. .'Il tin.
MI .V (4-irjf niJ ifn-f rri'1n t e'r j- ( '*/n I.
X1.I Sju thern FY.in, faI-iaft Plin
XIV. EanErrn t-Aj Ph'iarn


Figure 1-2. Draft Aggregations of Eco-regions for the National Nutrient Strategy (Source
US EPA http://www.epa.gov/waterscience/criteria/nutrient/ecomap.html)

To support and enable the development of numeric nutrient criteria by States and

authorized Tribes, a series of Technical Guidance Manuals has been developed by EPA.

To provide flexibility in adopting nutrient criteria into their water quality standards, the

following approaches, in order of preference, are recommended:

1) Whenever possible, develop nutrient criteria that fully reflect localized
conditions and protect specific designated uses using the process described
in EPA's Technical Guidance Manuals for nutrient criteria development.
Such criteria may be expressed either as numeric criteria or as procedures to
translate a State or Tribal narrative criterion into a quantified endpoint in
State or Tribal water quality standards.
2) Adopt EPA's section 304(a) water quality criteria for nutrients, either as
numeric criteria or as procedures to translate a State or Tribal narrative
nutrient criterion into a quantified endpoint.
3) Develop nutrient criteria protective of designated uses using other
scientifically defensible methods and appropriate water quality data (EPA
2000c).









Developing Numeric Nutrient Criteria

EPA plans to recommend numeric criteria for wetlands based on eco-regions, but

unlike other surface water bodies, limited information exists. Heterogeneity among

wetlands and within eco-regions is uncertain and therefore needs to be assessed.

Baseline conditions for least-impacted wetlands need to be determined, or in areas

where few impacted sites exist, an assessment of background conditions is required.

Data from this study could be used to increase the overall data set that is available to EPA

to set numeric criteria using their 25% or 75% method adopted when using whole

population or least impacted wetlands, respectively.

Temporal Variability

Ecosystem influences are affected by temporal variability, and include the

chemical, physical, biotic, hydrologic, energy and habitat factors that combine to

determine the biogeochemical integrity of a wetland system. Spatial and temporal

variability in hydrology and soils in an isolated basin marsh in New Hampshire found

that vegetation fell into five wetland zones, and hydrologic variability resulted in

temporal and spatial variability of vegetative communities as greater plant diversity and

increased plant seedlings resulted from dry years (Owen Koning 2004). Studies of

temporal and spatial patterns of root nitrogen concentration and root decomposition have

shown that root nitrogen decreased through the growing season in live roots but increased

in dead roots. Live root nitrogen concentrations were found to be the highest in the most

mesic landscape positions while dead root nitrogen concentrations were highest in

relatively xeric landscape positions (Dress 2004).

Water depth was confirmed as the main predictor of species distribution, and

reduced trophic status was found to increase species richness in submerged macrophytes.









Mineralogical variations in sediment composition represented allogenic and autogenic

sediment sources, and their distribution corresponded with predicted species richness and

distribution (Schmieder 2004). Nutrient bioavailability in wetlands has been shown to be

largely independent of the acidity-alkalinity gradient, and the distribution of vascular

plants was influenced primarily by nutrient availability (Bragazza and Gerdol 2001).

Temporal variation of nitrogen and phosphorus uptake in two New Zealand streams

showed that range and variation of nutrient uptake in some streams can be quite large. It

was recommended that within-stream variation be considered in comparing other streams

and to help in the understanding of factors that drive nutrient uptake (Simon et al. 2004).

Although this specific research focused on stream flow, the implication of similar affects

within the wetland water column is reasonable, especially among riparian wetland

systems.

Nutrient concentrations of biomass have been shown to be more constant spatially

and temporally than indicators such as biomass production, due to variability among sites

and across years. Nutrient cycling processes in vegetation are established quickly

following wetland restoration. Therefore, nutrient characteristics of vegetation in

wetlands could be a useful metric in the evaluation of wetland restoration success

(Whigham et al. 2002).

While nutrient characteristics of vegetation could be indicative of wetland

condition, the seasonal availability of vegetation for sampling limits its value as a

universal metric for year-round monitoring. The temperate climate of the survey area of

this study precluded sampling of wetland plants due to their absence from late fall

through early spring.









Temporal variability reflected in the literature suggests the need for an indicator of

wetland status that is relatively independent of seasonal and hydrological changes. The

validity of a stratum to indicate differences between impacted and least-impacted sites is

important in establishing its potential value as an assessment tool for the evaluation and

monitoring of wetland condition.

Research Objectives

There were four principal objectives of this study:

Objective One

To gather information on wetlands located in Southwestern Indiana to assess the
heterogeneity among wetland community types and secondarily to determine appropriate
aggregation classes of wetland based on biogeochemical characteristics.

Objective Two

To determine which sampling strata: water, litter, soil, or vegetation, are most
responsive to nutrient enrichment.

Objective Three

To contrast Southwestern Indiana least-impacted (reference) wetlands to
Southeastern US Wetlands in Eco-region IX and to determine the validity of a single
numeric criterion for this eco-region.

Objective Four

To investigate temporal variability of biogeochemical parameters within the water
column, litter, soil and vegetation within one wetland over a one year period.

Hypothesis

In response to these objectives, several hypotheses were proposed.

(H1) There will be no difference in strata biogeochemistry among various wetland
community types sampled in Indiana. It is suggested that the influence of hydrology
would outweigh the characteristics and functions of wetland community types in the
overall assimilation and cycling of nutrients.






14


(H2) Southwestern Indiana wetlands will have higher phosphorus and nitrogen
concentrations than wetlands within the same eco-region in the Southeastern United
States. These differences will occur among soil, water, litter and vegetation strata.

(H3) There will be differences in seasonal variability among water column, litter,
soil or vegetative biogeochemical parameters surveyed. The seasonal variability will be
lower for the soil and higher for the water column parameters.














CHAPTER 3
METHODS

Sixteen wetland sites in Southwestern Indiana were surveyed and samples collected

between August 8 and September 27, 2003 to determine background concentrations of

nutrients Total Phosphorus and Total Nitrogen. Samples were analyzed for twenty

biogeochemical indicators in four different strata including plant, litter, soil and water

column nutrient parameters.

During the period from October 18, 2003 to July 5, 2004, eight additional monthly

surveys were conducted at the Turkey Hill Graywood Marsh to examine temporal

variability within a single wetland (Wetland ID Numbers IN15 and IN17 through IN23).

The same protocol used in the spatial sampling was followed for the temporal survey.

Both of these sampling methods are described in this chapter.

Sampling Site Selection

Wetland sampling sites were identified after review of topographical maps, aerial

photographs and wetland data from the United States Fish & Wildlife Service' National

Wetlands Inventory Database and the Indiana Geological Survey's GIS Atlas.

In addition, natural resource professionals from the U.S. Fish & Wildlife Service,

the Indiana Department of Natural Resources, and the Indiana Chapter of the Nature

Conservancy were consulted to help identify and procure permission to sample wetlands

surveyed. Both wetland community type and wetland condition were factors in site

selection (USEPA 2002d).









Identification of Minimally Impaired Wetland Sites

Impairment status of wetlands in the survey area was difficult to determine due to

the prevalence of agricultural, coal mining, and floodplain impacts present throughout the

geographic area. The wetlands selected were classified as either impacted or least-

impacted, based upon a 10% development criterion. Consistent with the approach of the

Southeastern Wetlands Study, if 10% or more of the landscape surrounding the wetland

were significantly altered, it was considered impacted. Of the sixteen wetlands, eleven

were identified as least-impacted, and five identified as impacted.

Identification of Wetland Community Types

Wetland sampling sites were classified by hydrologic and vegetative criteria. Sites

were first assessed using the United States Fish & Wildlife Service'(USFWS) National

Wetlands Inventory (NWI) Database, based on the USFWS Wetland and Deepwater

Habitat Classification System (Cowardin et al. 1979) and later verified during sampling.

Hydrologic Classification

For this study two hydrologic classifications for wetlands were recognized,

Riparian and Non-riparian. Riparian wetlands were identified as those located within 40

meters of a river or stream. Field classification of sites showed five Riparian and eleven

Non-Riparian wetlands were selected for the surveyed.

Vegetative Classification

Wetland sites were separated into two vegetative classes, Swamps and Marshes.

Designation between Swamps and Marshes were based on structure of dominant

vegetative species. If a woody canopy was present and intact, then the area was

designated a swamp. If there was no woody canopy or if the canopy consisted of less









than 10% cover, the area was designated a marsh. Using this criterion, four sites were

considered marshes and twelve sites considered swamps.

Combining the hydrologic and vegetative classification for each of the wetland

sites sampled three of the four possible community type classifications were represented

in the survey in both impacted and least impacted nutrient conditions (Table 2-1). Table

2-2 indicates the community type and impact status of wetlands surveyed in the

Southeastern United States that were used for comparative purposes in this research

(Greco 2004; Paris 2005).

Table 2-1. Number of wetlands surveyed in Southwestern Indiana from each wetland
community type and nutrient condition.
Impacted Least-Impacted
Riparian Swamp 3 2
Riparian Marsh 0 0
Non-Riparian Swamp 1 6
Non-Riparian Marsh 1 3

Table 2-2. Number of wetlands surveyed within each community type. Sites were all
located in the southeastern part of Eco-region IX.
Eco-region IX
Riparian Swamp 40
Riparian Marsh 4
Non-Riparian Swamp 14
Non-Riparian Marsh 3


Photographs of typical wetlands surveyed in the Southwestern Indiana study are

illustrated in Figure 2-1.









(A) Riparian Swamp










(B) Non-Riparian Swamp (C) Non-Riparian Marsh












Figure 2-1 Photographs representing the three principal wetland community
classifications surveyed in Southwestern Indiana, (A) Riparian Swamp, (B)
Non-Riparian Swamp, and (C) Non-Riparian Marsh.

Sampling and Analytical Methods

Field sampling and laboratory methodology are described below, beginning with

Table 2-3, which provides a numerical listing, sampling date, characterization and

location coordinates for all wetlands surveyed.

Table 2-3. Southwestern Indiana wetland research location, sampling dates and
characterization. All wetlands included in the survey are listed.













rwlpamlap
Swamp


Non-Riparian


Impacted


Least-


IVmieneruiug- w auasnl ali
Erie Canal/Pigeon Creek


TNC* Goose Pond Cypress


IN )J U3J.Ot-
W 870 23.653'


N 370 54.316'
117 Q70 CIA fQ00


Table 2-4 below provides a numerical listing, sampling dates, characterization and

location coordinates for the temporal portion of the survey that was conducted in the

Patoka River National Wildlife Refuge Turkey Hill Graywood Marsh.

Table 2-4. Southwestern Indiana wetland research location, sampling dates and
characterization for Turkey Hill Graywood Marsh, wetland community type:
Non-Riparian marsh with Least-Impacted wetland condition.


08/08/2003


Non-Riparian Least- IDNR* Lost Hill Wetland N 380 11.220'
IN2 08/09/2003 Swamp Impacted Conservation Area North W 870 25.094'
Non-Riparian Least- IDNR* Lost Hill Wetland N 380 11.136'
IN3 08/09/2003 Swamp Impacted Conservation Area South W 870 25.114'
Non-Riparian N 380 22.697'
IN4 08/10/2003 Swamp Impacted East Mount Carmel W 870 43.780'
Riparian Elberfeld-Wabash and Erie N 380 09.692'
IN5 08/10/2003 Swamp Impacted Canal/Pigeon Creek W 870 24.854'
Riparian Least- Pike State Forest Patoka N 380 21.415'
IN6 08/16/2003 Swamp Impacted River W 870 08.973'
Riparian N 380 22.485'
IN7 08/16/2003 Swamp Impacted Schlensker Ditch W 870 16.722'
Non-Riparian Least- N 380 20.812'
IN8 08/17/2003 Marsh Impacted PRNWR* Buck's Marsh W 870 19.395'
Non-Riparian Least- N 370 49.116'
IN9 08/26/2003 Swamp Impacted IDNR* Big Cypress Slough W 880 00.273'
Non-Riparian Least- N 380 21.113'
IN10 08/30/2003 Marsh Impacted PRNWR* Snaky Point W 870 19.161'
Non-Riparian N 380 22.087'
IN11 08/31/2003 Marsh Impacted Snake Lake W 870 19.551'
Riparian Least- PRNWR* Hwy 57 @ N 380 23.090'
IN12 09/07/2003 Swamp Impacted Patoka River W 870 19.888'
Non-Riparian Least- PRNWR* Oxbow-Patoka N 380 22.669'
IN13 09/14/2003 Swamp Impacted River South Fork W 870 21.405'
Non-Riparian Least- PRNWR* North Meridian N 380 23.325'
IN14 09/21/2003 Swamp Impacted Oxbow W 870 16.700'
Non-Riparian Least- PRNWR* Turkey Hill N 380 22.476'
IN15 09/21/2003 Marsh Impacted Graywood Marsh W 870 16.691'












IN15


09/27/2003


IN ZZ.-t/0
W 870 16.691'


N 380 22.482'
IN17 10/18/2003 W 870 16.715'
N 380 22.481'
IN18 11/29/2003 W 870 16.715'
N 380 22.481'
IN19 12/30/2003 W 870 16.715'
N 380 22.481'
IN20 02/29/2004 W 870 16.715'
N 380 22.480'
IN21 04/30/2004 W 870 16.713'
N 380 22.477'
IN22 06/01/2004 W 870 16.693'
N 380 22.485'
IN23 07/05/2004 W 870 16.721'
Sample Locations

A targeted, stratified sampling approach was used to encompass spatial variation of

the wetlands' inundation patterns. For all wetlands surveyed, a baseline transect was

established from the edge of the wetland toward the geographical center of the wetland.

Three zones were then identified along each transect for survey and sampling: the core

wetland (A), edge wetland (B) and the adjacent upland (U). Within each of these zones,

perpendicular transects, parallel to the upland/wetland boundary, were used to locate

three sub-sample sites for each zone. Smaller non-riparian wetlands were sampled with

an outer ring (B) transect and an inner ring (A) sites at the center of the wetland. Each

sub-sampling location was approximately 30 meters apart. (Figure 2-3).









b) Small Non-Riparian


/ I \
EdgeCenter River


c) Large Non-Riparian


Figure 2-2. Wetland sub-sample locations of (a) Riparian (b) small Non-Riparian and (c)
large, Non-Riparian Systems. Wetland zones sampled included the Inner
Core (A), Outer Edge (B) and Adjacent Upland (U).

A Wetland Characterization Form (Appendix D) was used to guide and document

the field survey and sampling tasks. Detailed land-use and descriptive assessments of the

wetland and adjacent upland were recorded. In addition, this form included

documentation of vegetative species characterization at each of the wetland sub-samples

wetland zones. Information compiled from the Wetland Characterization Forms can be

referenced in Appendix A.


a) Riparian









Water Column Physical Parameters

When water was present at the sub-sample locations, field conditions were

analyzed using a Yellow Springs Instruments YSI-556 MPS portable meter, calibrated

prior to use and at the conclusion of the day's sampling for the following parameters:

Temperature

pH

Dissolved Oxygen

Conductivity

Oxidation-Reduction Potential

Water Sample Collection

Where present, water samples were collected at each sub-sample location. The

three sub samples within a zone were composite into a 125 ml, acid-washed, HDPE

bottle. Before sample collection, bottles were triple-rinsed with site water. Water

samples were stored on ice for transport, frozen, then shipped to the Wetland

Biogeochemistry Laboratory at the University of Florida. Upon receipt of the samples by

the laboratory, sub-samples of the water composites were filtered through 0.45 [m filter

paper and analyzed for nitrate and nitrite with a Rapid Flow Analyzer (RFA). A 10 ml

non-filtered sub-sample was digested and analyzed for Total Kjeldal Nitrogen (TKN).

The nitrate-nitrite and the TKN results were summed to determine total nitrogen

concentrations. Total phosphorus was determined using colorimetric analysis on a

Technicon AA II after sulfuric acid and potassium persulfate digestion (EPA method

365.1-1993).









Soil

Soil samples were collected at the sub-sample locations of each transect. A clean

7.3 cm diameter tenite butyrate sampling tube attached to a sharp coring head was driven

into the soil a minimum depth of 10 cm. After corer insertion, a rubber stopper was

placed inside the sampling tube at the base of the soil sample. The sample was then

extruded by pushing the rubber stopper against a piston rod, forcing the soil sample out of

the top of the sampling tube into a 10 cm tenite butyrate collar.

Any leaf litter at the top surface of the core was carefully removed, and the upper

10 cm of soil was sliced with a stainless steel pocketknife, and placed in a zip lock bag.

The three sub-samples from each transect were combined, yielding composite samples of

the wetland core, wetland edge and the adjacent upland transects. Samples were stored

on ice for transport to the Wetland Biogeochemistry Laboratory at the University of

Florida.

Upon receipt by the laboratory, the wet weight of the composite sample was

recorded for bulk density calculation. A sub-sample of the homogenized composite was

placed in a 250 ml shallow dish, weighed, and dried at 700 C for 48 hours. The dried

sample weight was used to calculate the percent moisture in the sample.

Dried samples were ground with mortar and pestle, followed by mechanical

grinding using a ball mill for eight minutes. These samples were passed through a 1 mm

sieve and placed into scintillation vials. Organic Matter Content was determined by Loss

on Ignition (LOI), and Total Phosphorus (TP) was analyzed using the Ignition Method

(Anderson 1976). Total Nitrogen (TN) and Total Carbon (TC) were determined using a

Carlo Erba NA 1500 CNS Analyzer (Haak Buchler Instruments, Saddlebrook, NJ).









Leaf Litter

Leaf litter samples were also collected at the sub-sample locations of each transect.

A 40 cm diameter PVC ring was placed on the soil surface and all loose debris within the

ring was collected until reaching a layer of fine, well-decomposed particles. Due to the

varying sources of litter and decomposition rates, it was sometimes necessary to collect

additional litter samples at the sub-sample locations to ensure adequate sample for

analysis.

As with the water and soil samples, the three leaf litter sub-samples were combined

to yield a composite sample for each of the wetland core and wetland edge transects. The

samples were placed in a Ziploc bag, sealed and stored on ice for transport to the Wetland

Biogeochemistry Laboratory at the University of Florida.

Upon receipt by the laboratory, the litter samples were placed in a paper bag and

dried for 72 hours at 600C. The dried samples were initially ground in a Wiley mill to

pass through a 1 mm sieve. Samples were then ground a second time to pass through a

40tm sieve. Total Phosphorus was determined by the Ignition Method (Anderson 1976).

Total Nitrogen (TN) and Total Carbon (TC) were analyzed using a Carlo Erba NA 1500

CNS Analyzer (Haak Buchler Instruments, Saddlebrook, NJ).

Vegetation

Vegetation was collected on a selected species basis, sampling only from mature

leaves not subject to herbivory or senescence. Vegetation was sampled by removing the

leaf at the point where the node was attached to the stem. Leaves from multiple plants of

the same species throughout the wetland were composite.

Vegetation samples were dried for seven days at 600C, then ground to passing a 40

[lm sieve prior to analysis. Total Carbon (TC) and Total Nitrogen (TN) analysis were









conducted on 0.5 2.0 mg vegetation samples using a Carlo Erba Model 1500 NA. Total

Phosphorus (TP) content was determined by the Ignition Method (Anderson 1976) using

a Technicon II Colorimetric Auto-Analyzer (EPA Method 365-1).

Data Analysis

All statements of statistical significance are based on a significance threshold of a

= 0.05. Paired comparisons used a standard "T" test for evaluation of significant

differences. For comparison among community types, ANOVA with the Tukey-Kramer

Honestly Significant Difference (HSD) multiple comparison test was used. Most

variables required log transformation prior to statistical analysis. JMP version 4.04

statistical software and Microsoft Excel version 2003 were used in statistical analysis and

data summaries.














CHAPTER 3
RESULTS

Samples collected during the field surveys were analyzed for twenty

biogeochemical parameters among four different strata: plant, litter, soil, and the water

column. Because of their relative impact on wetland and water quality, the analysis of

the nutrient parameters total phosphorus and total nitrogen was the primary focus of this

report. The analytical results of all parameters are provided for informational purposes in

the interest of future study.

In Tables 3-1 through 3-8, general descriptive statistics and paired comparison t-

tests using p-values (a=0.05) calculated by the Tukey-Kramer Honestly Significant

Difference (HSD) test are presented for all wetland strata parameters, as aggregated by

the following classification criteria:

1. All Wetlands (Combined)
2. Hydrologic Connectivity (Riparian and Non-Riparian)
3. Vegetative Character (Swamp or Marsh)
4. Community Type (Riparian Swamp, Riparian Marsh, Non-Riparian
Swamp, Non-Riparian Marsh)
5. Wetland Condition (Least-Impacted and Impacted)


Table 3-9 summarizes the statistical data comparing all strata nutrient indicators

between least-impacted and impacted wetlands that were surveyed. Figures 3-1 through

3-8 provide a graphical representation with box plots showing the 10th, 25t, median, 75th

and 90th percentiles comparing nutrient indicators from sampling conducted in

Southwestern Indiana relative to the collaborative survey results in the Southeastern

United States.









Spatial Study Results

Water

Where present in the wetland, water samples were collected to determine nutrient

concentrations in the water column. Surveyed wetlands showed little difference in total

phosphorus when aggregated by hydrologic class, but Swamps had almost 75% higher

water column phosphorus concentration than Marshes (Table 3-1). Non-Riparian

Swamps had the highest total phosphorus concentration and Non-Riparian marshes the

lowest of wetland community type. Total Nitrogen concentration did not appear to vary

significantly regardless of class aggregation.

Table 3-1. General descriptive statistics summary of water column total phosphorus and
total nitrogen concentrations for wetlands surveyed in Indiana. Wetlands
were aggregated using several different classification criteria.
Total Phosphorus Total Nitrogen
Mean + 1SD Median n Mean + 1SD Median n
Wetlands Classification mg/l mg/1
All Wetlands 0.295 + 0.169 0.237 22 2.69 + 1.52 2.31 22
Hydrologic
Riparian 0.284 + 0.191 0.245 5 2.56 + 1.40 2.33 5
Non-Riparian 0.298 + 0.168 0.228 17 2.72+ 1.59 2.3 17
Vegetative
Swamp 0.327 + 0.180 0.305 17 2.77+ 1.68 2.33 17
Marsh 0.186 + 0.039 0.166 5 2.39 +0.84 2.29 5
Community Type
Riparian Swamp 0.284 + 0.191 0.245 5 2.56 + 1.40 2.33 5
Non-Riparian Swamp 0.345 + 0.180 0.356 12 2.86 + 1.83 2.36 12
Non-Riparian Marsh 0.186 + 0.390 0.166 5 2.39 + 0.85 2.29 5
Condition
Least-Impacted 0.318 + 0.170 0.251 15 2.89 + 1.63 2.42 15
Impacted 0.222 + 0.167 0.179 8 2.11+ 1.24 1.95 8

Pair-wise comparison of total phosphorus and total nitrogen in the water column

showed no significant differences when aggregated by hydrologic class, vegetative class,

community type, or wetland condition (Table 3-2). ANOVA of the three community









types surveyed showed no significant differences among the aggregation for total

phosphorus or total nitrogen.

Table 3-2. Statistical comparison of water column total phosphorus and total nitrogen
concentrations for wetlands surveyed in Indiana, aggregated using several
different classification criteria. A standard T-test for significant difference
was used in paired comparisons, with probability 'P'values (a=0.05) presented
with bold font indicating values of significant difference. For comparison
among community types, ANOVA was used (Tukey-Kramer HSD). Lower
case letters denote statistically similar values.
Wetlands Classification Total Phosphorus Total Nitrogen
Hydrologic
Riparian vs. Non-Riparian 0.871 0.839
Vegetative
Swamp vs. Marsh 0.104 0.633
Community Type 0.216 0.840
Riparian Swamp a A
Non-Riparian Swamp a A
Non-Riparian Marsh a A
Condition
Impacted vs. Least-Impacted 0.350 0.378

Leaf Litter

Leaf litter was collected at all sub-sample locations along the survey transects to

determine nutrient concentrations in this stratum. Total phosphorus concentrations

showed little difference as aggregated by hydrologic class or wetland condition, but

similar to water column results, Swamps had 70% higher phosphorus concentration in the

litter than Marshes (Table 3-3). Non-Riparian Swamps had the highest concentration of

total phosphorus, and Non-Riparian Marshes, the lowest of wetland community type.

Surveyed wetlands showed little difference in total nitrogen concentration as

aggregated by hydrologic class, but Non-Riparian Marshes had approximately 40%

higher nitrogen concentration than Swamps. Total nitrogen concentrations in Least-

Impacted wetlands were 35% higher than Impacted Wetlands.









There was little difference noted in total carbon concentration from litter samples as

aggregated by hydrologic and vegetative classes, or community type. Least-Impacted

sites showed nearly 30% higher total carbon concentrations than Impacted wetlands.

Table 3-3. General descriptive statistics summary of leaf litter total phosphorus, total
nitrogen and total carbon concentrations for wetlands surveyed in Indiana.
Wetlands were aggregated using several different classification criteria.
Total Phosphorus Total Nitrogen
Mean + 1SD Median n Mean + 1SD Median n
Wetlands Classification mg/kg g/kg
All Wetlands 2661 + 763.8 2851 17 14.4 + 5.25 13.4 24
Hydrologic
Riparian 2875 + 831.7 2825 8 12.8 +4.4 12.7 7
Non-Riparian 2471 + 689.2 2851 9 15.1 +5.54 13.6 17
Vegetative
Swamp 2870 + 660.0 2936 14 13.1 + 3.40 13.1 18
Marsh 1685 + 318.4 1712 3 18.5 + 7.79 16.4 6
Community Type
Riparian Swamp 2875 + 831.7 2825 8 12.8 + 4.42 12.7 7
Non-Riparian Swamp 2863 +405.1 2945 6 13.3 +2.83 13.6 11
Non-Riparian Marsh 1685 + 318.4 1712 3 18.5 +7.79 16.4 6
Condition
Least-Impacted 2464 + 706.1 2715 9 15.6 + 5.55 14.3 17
Impacted 2882 + 810.9 2951 8 11.6 +3.25 11.8 7


Total Carbon
Mean + 1SD Median n
Wetlands Classification g/kg
All Wetlands 295 +85.06 318 24
Hydrologic
Total Carbon
Mean + 1SD Median n
Wetlands Classification g/kg
Riparian 262 + 86.1 277 7
Non-Riparian 308.5 +83.4 329. 17

Vegetative
Swamp 293.3 + 91.8 310 18
Marsh 300 + 67.9 331 6
Community Type
Riparian Swamp 262.2 + 86.1 277 7
Non-Riparian Swamp 313.1 +93.6 317 11
Non-Riparian Marsh 300.1+67.9 331 6









Table 3-3. Continued
Condition
Least-Impacted 316.0 + 78.0 332 17
Impacted 244.1 + 85.2 248 7


Paired comparisons of total phosphorus and total nitrogen in litter samples showed

no significant differences when aggregated by hydrologic class or wetland condition

(Table 3-4). Significant differences were noted in total phosphorus when aggregated by

vegetative class and community type, and in total nitrogen when wetlands were

aggregated by vegetative class. ANOVA of the three community types surveyed showed

significant differences in total phosphorus concentration between Non-Riparian Marshes

and both Non-Riparian Swamps and Riparian Swamps. Significant differences were also

noted for total carbon concentration between Riparian Swamps and both Non-Riparian

Swamps and Non-Riparian Marshes.

Table 3-4. Statistical comparison summary of leaf litter total phosphorus, total nitrogen
and total carbon concentrations for wetlands surveyed in Indiana, aggregated
using several different classification criteria. A standard T-test for significant
difference was used in paired comparisons, with probability 'P'values
(a=0.05) presented with bold font indicating values of significant difference.
For comparison among community types, ANOVA was used (Tukey-Kramer
HSD). Lower case letters denote statistically similar values.
Total
Wetlands Classification Phosphorus Total Nitrogen Total Carbon
Hydrologic
Riparian vs. Non- Riparian 0.2904 0.3358 0.2334
Vegetative
Swamp vs. Marsh 0.009 0.024 0.8701
Community Type 0.039 0.082 0.4782
Riparian Swamp a a B
Non- Riparian Swamp a a A
Non- Riparian Marsh b a A
Condition
Impacted vs. Least-Impacted 0.273 0.095 0.0578









Soil

Soil samples were collected at each sub-sample location of the wetland survey

transects to determine nutrient concentrations in this stratum. Soil pH mean values

generally ranged from 5.5 to 6.1 (Table 3-5). When aggregated by vegetative class,

Marshes were 0.5 pH units higher than Swamps. Similarly, Impacted wetlands were 0.5

pH units higher than Least-Impacted sites.

When aggregated by hydrologic class, organic matter content in Non-Riparian

wetlands was 75% higher than Riparian wetlands. Vegetative class aggregation found

Marshes contained 50% more organic matter than Swamps. Among community types,

Non-Riparian Marshes contained twice as much organic matter as Riparian Swamps.

Least-Impacted wetlands were 30% higher in organic matter content than Impacted sites.

Total Phosphorus concentration in surveyed wetlands showed little difference

among the various aggregations with the exception of wetland condition, where Impacted

wetlands contained 40% more total phosphorus than Least-Impacted sites.

Total nitrogen as aggregated by hydrologic class showed concentrations 88%

higher in Non-Riparian compared to Riparian wetlands. Little difference was noted when

aggregated by vegetative class. Consistent with results from the hydrologic class

aggregation, Non-Riparian Swamp and Marsh community types were over 90% higher in

total nitrogen than Riparian Swamps. Least-Impacted wetlands were over 50% in total

nitrogen than Impacted sites.

Total carbon concentrations were significantly different when aggregated by

hydrologic, vegetative, and community type classifications. Non-Riparian wetlands

contained twice as much total carbon as Riparian wetlands. Marshes contained 70%

more total carbon than Swamps, and Non-Riparian Marshes well over twice as much total









carbon as Riparian Swamps. While Least-Impacted wetlands showed higher total carbon

than Impacted sites, the difference was not significant.

Table 3-5. General descriptive statistics summary of soil pH, organic matter, total
phosphorus, total nitrogen and total carbon concentrations for wetlands
surveyed in Indiana. Wetlands were aggregated using several different
classification criteria.
pH Organic Matter
Mean + 1SD Median n Mean + 1SD Median n
Wetlands Classification Standard Units %
All Wetlands 5.7 + 0.9 5.9 32 13.3 +5.70 12.3 31
Hydrologic
Riparian 5.6 + 0.9 5.9 10 8.81 + 2.38 8.8 10
Non-Riparian 5.7 + 1.0 5.9 22 15.4 + 5.62 15.3 21
Vegetative
Swamp 5.5+ 1.0 5.5 24 11.7 + 5.43 9.5 23
Marsh 6.1 + 0.8 6.2 8 17.73 + 3.96 17.7 8
Community Type
Riparian Swamp 5.6 +0.9 5.9 10 8.81+2.38 8.8 10
Non-Riparian Swamp 5.5+ 1.0 5.4 14 13.9 + 6.13 13.6 13
Non-Riparian Marsh 6.1 +0.8 6.2 8 17.7 +3.96 17.7 8
Condition
Least-Impacted 5.5 + 0.9 5.5 22 14.3 + 5.11 13.6 21
Impacted 6.1 +0.9 6.2 10 11.1 +6.50 8.8 10

Total Phosphorus Total Nitrogen
Mean + 1SD Median n Mean + 1SD Median n
Wetlands Classification mg/kg g/kg
All Wetlands 778+219 754 31 3.8+1.6 3.6 21
Hydrologic
Riparian 700 + 160 688 10 2.4 + 0.86 2.6 7
Non-Riparian 815 + 237 796 21 4.5+ 1.44 4.4 14
Vegetative
Swamp 800 + 246 803 23 3.6 + 1.61 3.3 16
Marsh 716 + 101 723 8 4.7 + 1.4 4.1 5
Community Type
Riparian Swamp 700 + 160 688 10 2.4 + 0.86 2.6 7
Non-Riparian Swamp 876 + 277 930 13 4.4+ 1.55 4.39 9
Non-Riparian Marsh 716 + 101 723 8 4.7 + 1.36 4.1 5
Condition
Least-Impacted 600 + 121 591 10 4.2 + 1.6 4.2 16
Impacted 863 + 206 830 21 2.7 + 0.77 2.9 5









Table 3-5. Continued
Total Carbon
Mean + Median n
1SD
Wetlands Classification g/kg
All Wetlands 57.1 + 28.4 54.3 21
Hydrologic
Riparian 32.8 + 13.1 34.4 7
Non-Riparian 69.3 +26.3 69.7 14
Vegetative
Swamp 48.7 + 26.5 47.1 16
Marsh 84.0 + 14.8 83.7 5
Community Type
Riparian Swamp 32.8 + 13.1 34.4 7
Non-Riparian Swamp 61.1 + 28.3 55.2 9
Non-Riparian Marsh 84.1 + 14.8 83.7 5
Condition
Least-Impacted 59.8 + 27.6 57.7 16
Impacted 48.6 + 32.9 46.9 5

Paired comparisons of soil pH values showed no significant differences when

aggregated by hydrologic class, vegetative class, community type, or wetland condition

(Table 3-6). ANOVA of the three community types surveyed also showed no significant

differences in soil pH. Significant differences in organic matter content were shown for

aggregations by hydrologic class, vegetative class and community type, but not for

wetland condition. ANOVA of the three community types surveyed showed significant

differences in organic matter between Riparian Swamps and both Non-Riparian Swamps

and Marshes. There were no significant differences in total phosphorus noted by pair-

wise comparison of hydrologic class, vegetative class, or community type aggregations.

However, significant differences in total phosphorus were noted between Impacted and

Least-Impacted wetlands. ANOVA of the three community types surveyed showed no

significant differences in total phosphorus concentration.









Paired comparisons by both hydrologic class and community type showed

significant differences in total nitrogen between Riparian and Non-Riparian wetlands. As

aggregated by vegetative class and wetland condition, there were no significant

differences between Swamps and Marshes, or Impacted and Least-Impacted sites,

respectively. ANOVA of the three community types surveyed showed significant

differences in total nitrogen between Riparian Swamps and both Non-Riparian Swamps

and Marshes. Significant differences in total carbon content were shown for aggregations

by hydrologic class, vegetative class and community type, but not for wetland condition.

ANOVA of the three community types surveyed showed significant differences in total

carbon between Riparian Swamps and both Non-Riparian Swamps and Marshes.

Table 3-6. Statistical comparison summary of soil pH, organic matter, total phosphorus,
total nitrogen and total carbon concentrations for wetlands surveyed in
Indiana, aggregated using several different classification criteria. A standard
T-test for significant difference was used in paired comparisons, with
probability 'P'values (a=0.05) presented with bold font indicating values of
significant difference. For comparison among community types, ANOVA
was used (Tukey-Kramer HSD). Lower case letters denote statistically
similar values.
Organic Total Total Total
Wetlands Classification pH Matter Phosphorus Nitrogen Carbon
Hydrologic
Riparian vs. Non- Riparian 0.756 0.001 0.166 0.003 0.003
Vegetative
Swamp vs. Marsh 0.095 0.005 0.394 0.177 0.011
Community Type 0.234 0.001 0.101 0.011 0.002
Riparian Swamp a a a a a
Non- Riparian Swamp a b a b b
Non- Riparian Marsh a b a b b
Condition
Impacted vs. Least-Impacted 0.139 0.118 0.001 0.060 0.157

Vegetation

Vegetation samples were collected in the wetland survey areas to determine

nutrient concentrations in the common vegetation. No significant differences were noted









when aggregated by hydrologic class, community type, or wetland condition (Table 3-7).

Vegetative aggregation of the surveyed wetlands, however, indicated tissue total

phosphorus concentrations in Marshes were over 50% higher than Swamps.

Tissue total nitrogen concentration showed no significant differences when

wetlands were aggregated by hydrologic class, community type, or wetland condition.

Aggregation of the wetlands by vegetative class showed tissue total nitrogen

concentrations in Marshes were over 40% higher than Swamps.

Comparison of tissue total carbon showed no significant differences when

aggregated by hydrologic class, vegetative class, community type, or wetland condition.

Table 3-7. General descriptive statistics summary of vegetation total phosphorus, total
nitrogen and total carbon concentrations for wetlands surveyed in Indiana.
Wetlands were aggregated using several different classification criteria.
Tissue Total Phosphorus Tissue Total Nitrogen
Mean + 1SD Median n Mean + 1SD Median n
Wetlands Classification % %
All Wetlands 0.22 + 0.14 0.18 34 2.56 + 0.98 2.09 21
Hydrologic
Riparian 0.17+ 0.08 0.19 5 2.12 +0.46 1.99 4
Non-Riparian 0.23 +0.15 0.18 28 2.66+ 1.05 2.09 17
Vegetative
Swamp 0.18+0.11 0.16 21 2.11 + 0.69 2.03 11
Marsh 0.28 + 0.18 0.18 13 3.05+ 1.05 3.2 10
Community Type
Riparian Swamp 0.17 + 0.08 0.19 6 2.12 + 0.46 1.99 4
Non-Riparian Swamp 0.18 +0.12 0.15 15 2.11 +0.83 2.03 7
Non-Ri arian Marsh 0.28 + 0.18 0.18 13 3.05+ 1.05 3.2 10
Condition
Least-Impacted 0.23 + 0.16 0.18 27 2.70 + 1.11 2..09 15
Impacted 0.19 +0.09 0.22 7 2.2 + 0.43 2.1 6


Tissue Total Carbon
Mean + 1SD Median n
Wetlands Classification %
All Wetlands 45.33 +2.97 46.72 21
Hydrologic
Riparian 45.48 + 2.08 46.35 4
Non-Riparian 45.30 + 3.20 47.3 17









Table 3-7. Continued
Tissue Total Carbon
Mean + 1SD Median n
Wetlands Classification %
Vegetative
Swamp 44.54+ 3.24 45.97 11
Marsh 46.2 + 2.53 47.37 10
Community Type
Riparian Swamp 45.48 + 2.08 46.35 4
Non-Riparian Swamp 44.01 + 3.79 43.89 7
Non-Riparian Marsh 46.20 +2.53 47.37 10
Condition
Least-Impacted 45.50 +3.37 47.37 15
Impacted 44.92 + 1.83 44.93 6

Pair-wise comparison of tissue total phosphorus showed no significant differences

when aggregated by hydrologic class, community type, or wetland condition (Table 3-8).

Significant differences were noted when aggregated by vegetative class. Tissue total

nitrogen concentrations aggregated by hydrologic class, community type, or wetland

condition showed no significant differences, while significant differences were noted in

vegetative class. Paired comparisons of wetland aggregations by hydrologic class,

vegetative class, community type, or wetland condition showed no significant differences

in total carbon concentration. ANOVA of the three community types surveyed showed

no significant differences among the aggregation for total phosphorus, total nitrogen, or

total carbon.

Table 3-8. Statistical comparison summary of vegetation tissue total phosphorus, total
nitrogen and total carbon concentrations for wetlands surveyed in Indiana,
aggregated using several different classification criteria. A standard T-test for
significant difference was used in paired comparisons, with probability
'P'values (a=0.05) presented with bold font indicating values of significant
difference. For comparison among community types, ANOVA was used
(Tukey-Kramer HSD). Lower case letters denote statistically similar values.
Tissue Total Tissue Total Tissue Total
Wetlands Classification Phosphorus Nitrogen Carbon
Hydrologic
Riparian vs. Non- Riparian 0.3568 0.3327 0.9194









Table 3-8. Continued
Wetlands Classification Tissue Total Tissue Total Tissue Total
Phosphorus Nitrogen Carbon
Vegetative
Swamp vs. Marsh 0.038 0.025 0.2098
Community Type 0.119 0.087 0.3426
Riparian Swamp a a A
Non- Riparian Swamp a a A
Non- Riparian Marsh a a A
Condition
Impacted vs. Least-Impacted 0.569 0.301 0.6995

Summarized Nutrient Indicator Strata

Table 3-9 below summarizes the statistical data comparing all strata nutrient

indicators between least-impacted and impacted wetlands surveyed. Soil was the only

stratum that demonstrated significant differences between Impacted and Least-Impacted

wetlands was soil. Total phosphorus concentrations were higher in Impacted wetlands

and total nitrogen was higher in Least-Impacted wetlands.

Table 3-9. Summary table of nutrient indicator strata. Paired comparison standard T-
tests with probability 'P'values (a=0.05) in bold font denoting values of
significant difference in nutrient indicator strata concentrations between
Least-Impacted and Impacted wetlands surveyed in Southwestern Indiana.
Nutrient Nutrient Wetland P-Values Wetland
Indicator Nutrient Nutrient
Strata Condition Condition

Least Impacted Impacted
Water P, mg/1 0.32 + 0.17 0.350 0.22 + 0.17
N, mg/1 2.89 + 1.63 0.378 2.11 + 1.24

Litter P mg/kg 2460 + 710 0.273 2880 + 810
N /kg15.6 + 5.55 0.095 11.6 + 3.3

Soil P mg/kg 600 + 120 0.001 860 + 210
N /kg4.2 + 1.6 0.060 2.7 + 0.7

Vegetation P% 0.23 + 0.16 0.569 0.19 + 0.09
N% 2.70+ 1.11 0.301 2.20 + 0.43









Comparison of SW Indiana Wetlands and SE US Wetlands in Eco-region IX

Figures 3-1 through 3-8 below illustrate the comparison of nutrient indicators in the

water column, litter, soil, and vegetative tissue from sampling conducted in the

Southwestern Indiana Wetland Biogeochemical Survey and the collaborative Eco-region

IX studies of the Southeastern United States: Southeastern WetlandBiogeochemical

Survey: Determination and Establishment of Numeric Nutrient Criteria (Paris 2005) and

A Biogeochemical Survey of Wetlands in the .Sw,i/wt'lei II/ United States (Greco 2004).

Box plots showing the 10th, 25th, median, 75th and 90th percentiles comparing nutrient

indicators from sampling conducted in Southwestern Indiana relative to the collaborative

survey results in the Southeastern United States are presented below. All data are

samples collected from Least-Impacted wetlands.

Water Column

Water column total phosphorus concentrations from surveyed wetlands in Indiana

were significantly different from wetlands surveyed in the other states of Eco-Region IX

(Figure 3-1).
























0 i
IE-
C 04- a
0

03- a
1--- r ^

02-


0 1-



Indiana Alabama Florida Georgia

State
Figure 3-1. Water Column Total Phosphorus Comparison between Least-Impacted
Wetlands Surveyed in Southwestern Indiana and Eco-Region IX Least-
Impacted Wetlands.


Water column total nitrogen concentrations from wetlands surveyed in Indiana


were not significantly different from those wetlands surveyed in other states in Eco-


Region IX (Figure 3-2).







40



13-

12-

11-

10-

E
aa a
0 7
2-



1-
0-

4 a a


I-I




Indiana Alabama Florida Georgia

State

Figure 3-2. Water Column Total Nitrogen Comparison between Least-Impacted
Wetlands Surveyed in Southwestern Indiana and Eco-Region IX Least-
Impacted Wetlands.

Litter

Litter total phosphorus concentrations from the Indiana wetland samples were

significantly different from wetlands surveyed in Florida and Georgia (Figure 3-3).

Wetlands in Alabama and South Carolina had similar total phosphorus concentrations to

the Indiana wetlands.



















U) c
C

Q

C ab

o *




a1-
0-




Indiana Alabama Florida Georgia South Carolina

State
Figure 3-3. Litter Total Phosphorus Comparison between Least-Impacted Wetlands
Surveyed in Southwestern Indiana and Eco-Region IX Least-Impacted
Wetlands.

Litter total nitrogen concentrations from the Indiana wetland samples were similar

to Eco-Region IX wetlands in Alabama, South Carolina, and Georgia, but significantly

different from those in Florida (Figure 3-4).







42



3-*



25 --



2 b b ab


0)














State
Figure 3-4. Litter Total Nitrogen Comparison between Least-Impacted Wetlands
Surveyed in Southwestern Indiana and Eco-Region IX Least-Impacted
Wetlands.

Vegetation

Vegetation tissue total phosphorus concentrations in wetlands surveyed in Indiana

were similar to Eco-Region IX wetlands in Alabama, Georgia and South Carolina, but

were significantly different from wetlands surveyed in Florida (Figure 3-5).























0 b
0-


13- aI





Indiana Alabama Florida Georgia South Carolina

State
Figure 3-5. Vegetation Tissue Total Phosphorus Comparison between Least-Impacted
Wetlands Surveyed in Southwestern Indiana and Eco-Region IX Least-
Impacted Wetlands.

Vegetation tissue total nitrogen concentrations from Indiana wetlands surveyed

were similar to those in Eco-Region IX wetlands in Alabama, Georgia, and South

Carolina, but significantly different from surveyed wetlands in Florida (Figure 3-6).



















b
cab ab



1-
0 .











Indiana Alabama Florida Georgia South Carolina

State
Figure 3-6. Vegetation Tissue Total Nitrogen Comparison between Least-Impacted
Wetlands Surveyed in Southwestern Indiana and Eco-Region IX Least-
Impacted Wetlands.

Soil

Soil total phosphorus concentrations from surveyed wetlands in Indiana were

significantly different among all wetlands in the other Eco-Region IX states surveyed

(Figure 3-7).




















S*b b








0--
i- i



Indiana Alabama Florida Georgia South Carolina

State
Figure 3-7. Soil Total Phosphorus Comparison between Least-Impacted Wetlands
Surveyed in Southwestern Indiana and Eco-Region IX Least-Impacted
Wetlands.

Soil total nitrogen concentrations from the wetlands surveyed in Indiana were not

significantly different from the wetlands surveyed in other states of Eco-Region IX

(Figure 3-8).





















0
I-




ab ab ab
s,,, b"a


0 a


Indiana Alabama Florida Georgia South Carolina

State
Figure 3-8. Soil Total Nitrogen Comparison between Least-Impacted Wetlands Surveyed
in Southwestern Indiana and Eco-Region IX Least-Impacted Wetlands.

Temporal Study Results

The sampling results of the temporal study conducted in the Turkey Hill Graywood

Marsh are presented below by strata (water column, litter and soil), with XY plots of the

analytical data plotted along a temporal gradient for the sampling period September 31,

2003 to July 5, 2004. Tables summarizing the Mean, Standard Deviation, Variance and

Confidence Level of the parameters for all strata are presented at the end of each section.

Water

Water Column field parameters: pH, Dissolved Oxygen, and Depth, and nutrient

concentrations for Total Phosphorus and Total Nitrogen are presented below in Figures 3-

9 through 3-13, to illustrate the seasonal variability observed during the temporal survey.







47


Water depth recorded in the wetland zones A and B illustrates the seasonal

hydroperiod in Figure 3-9.


- A
--B


Aug-03 Oct-03 Nov-03


Jan-04 Mar-04 Apr-04
Time


Jun-04 Aug-04


Figure 3-9. Water Column Depth in Inches. Wetland zones sampled included the Inner
Core (A) and Outer Edge (B). Mean and Standard Deviation of both zones
are presented.

Water column field pH measurements (Figure 3-10) generally showed little

difference between the Inner Core (A) and Outer Edge (B) zones of the wetland, probably

due to the relative homogeneity of the water column. Those readings where differences

were noted may be due to very shallow sampling areas in the Outer Edge zone which

could have higher temperatures and magnified affects from the soil/water column

interface.







48










6:







5 : -




Aug-03 Oct-03 Nov-03 Jan-04 Mar-04 Apr-04 Jun-04 Aug-04
Time


Figure 3-10. Water Column Field pH. Wetland zones sampled included the Inner Core
(A) and Outer Edge (B). Mean and Standard Deviation of both zones are
presented.

Water column dissolved oxygen concentrations over the temporal gradient show a

general increase through the fall and spring (Figure 3-11). This could be partially due to

decreasing seasonal temperature and increased emergent and floating vegetation (Lemna)

noted in the wetland in the spring.







49


















.o -i 0,





Time


Figure 3-11. Water Column Dissolved Oxygen, %. Wetland zones sampled included the
Inner Core (A) and Outer Edge (B). Mean and Standard Deviation of both
zones are presented.

Water column total phosphorus concentration shown in Figure 3-12 reflects


variability of the seasonal hydroperiod. Outer Edge (B) total phosphorus concentrations


were well above the corresponding Inner Core (A) samples collected during the peak of

the summer season.





-)
0.8 *
a-
h 0.6
0.4 MB
$0.2 -
0
Aug-03 Oct-03 Nov-03 Jan-04 Mar-04 Apr-04 Jun-04 Aug-04

Figure 3-12. Water Column Total Phosphorus, mg/L. Wetland zones sampled included
the Inner Core (A) and Outer Edge (B).









Water column total nitrogen in Figure 3-13 reflects variability of the seasonal

hydroperiod. Total nitrogen concentrations in the Outer Edge (B) samples were higher

than Inner Core (A) in almost every sampling event, with significant increased separation

between the zones during the peak of the summer season.


3.5
U 3 *


1 2 9 uA
1.5 MB



0
Aug-03 Oct-03 Nov-03 Jan-04 Mar-04 Apr-04 Jun-04 Aug-04

Figure 3-13. Water Column Total Nitrogen, mg/L. Wetland zones sampled included the
Inner Core (A) and Outer Edge (B).

Table 3-10 below lists the summary statistics of Water Column sample analysis for

Total Phosphorus and Total Nitrogen samples from the inner core (A) and outer edge (B)

of the wetland locations. The mean, standard deviation, variance, and 95% confidence

interval are presented. Water Column total phosphorus concentration was over 60 %

higher in the Outer Edge (B) samples. Total nitrogen concentrations in the Outer Edge

(B) were 20% higher than the Inner Core (A) wetland zone samples.

Table 3-10. Summary statistics (mean, standard deviation, variance and 95% confidence
interval) of water column samples collected during the temporal study.
Wetland zones sampled included the Inner Core (A) and Outer Edge (B).
Water Column TP Water Column TN
(mg/1) A (mg/1) A
Mean 0.27 2.20
Standard Deviation 0.10 0.39
Sample Variance 0.01 0.16
Confidence Interval (95.0%) +0.119 +0.41










Water Column TP Water Column TN
(mg/1) B (mg/1) B
Mean 0.44 2.71
Standard Deviation 0.28 0.71
Sample Variance 0.08 0.50
Confidence Interval (95.0%) +0.29 +0.74

As noted earlier, watershed hydrology exerts the most significant effect on the

availability, distribution and cycling of nutrients in the wetland landscape. In spite of this

influence as a regulator, because of seasonal flooding, drought, variable watershed inputs,

and its general, transient nature, water monitoring would not likely serve as a reliable,

more permanent indicator of wetland condition throughout the year.

Vegetation

The temperate climate of the survey area of this study precluded sampling of

wetland plants due to their absence from late fall through early spring.

Litter

Nutrient conservation in vegetation affects litter decomposition rates and soil

nutrient availability (Diehl et al. 2002). If C: N ratios in vegetative tissue are higher than

optimal, and water column nitrogen is available, litter can also integrate nitrogen from the

water column. Nutrient removal efficiency studied over a one year period in a

wastewater treatment wetland indicated that water temperature was a principle regulator

to this process (Anderson et al. 2003).

The following Figures 3-14, 3-15 and 3-16, illustrate the trends of total phosphorus,

total nitrogen, and total carbon from litter samples collected at both the inner core and

outer edge of the wetland over the temporal study period.










Litter total phosphorus concentrations from the Inner Core (A) samples were

consistently higher than those collected from the Outer Edge (B) of the wetland

throughout the temporal period (Figure 3-14). Concentrations from both zones (A) and

(B) were constant and showed little variation throughout the sampling period.


8000
7000
6000
S5000
S4000
0 MB
3000
2000 i i
1000
0
Jun-03 Oct-03 Jan-04 Apr-04 Aug-04

Figure 3-14. Litter Total Phosphorus, mg/kg. Wetland zones sampled included the Inner
Core (A) and Outer Edge (B).

Litter total nitrogen concentrations from samples collected in the Inner Core (A)

were consistently higher than Outer Edge (B) zone samples (Figure 3-15). The seasonal

variability of total nitrogen in litter appears to be greater as compared to total phosphorus

in litter over the same time period.




30
25 -
20 U -
*A
15 B
10
5 -
5
0
Aug-03 Oct-03 Nov-03 Jan-04 Mar-04 Apr-04 Jun-04 Aug-04

Figure 3-15. Litter Total Nitrogen, g/kg. Wetland zones sampled included the Inner
Core (A) and Outer Edge (B).









Litter total carbon concentrations in Inner Core (A) samples were consistently

higher than samples collected from the Outer Edge (B) of the wetland throughout the

temporal study period (3-16).




400
350- *
o) 300 I 2 = 2 i
S250 IA
d 200- EB
S150
S100
50 -
0
Aug-03 Oct-03 Nov-03 Jan-04 Mar-04 Apr-04 Jun-04 Aug-04

Figure 3-16. Litter Total Carbon, g/kg. Wetland zones sampled included the Inner Core
(A) and Outer Edge (B).

The summary statistics for litter nutrient indicators from samples collected in

wetland zones A and B during the temporal study are presented in Table 3-11. The mean,

standard deviation, variance, and 95% confidence interval for litter total phosphorus, total

nitrogen and total carbon are shown. The lowest variance occurred in litter total

phosphorus in the Inner Core (A) samples, followed by total phosphorus in the Outer

Edge (B) wetland samples over the time period of sampling. Total nitrogen also

exhibited little variability during the temporal period.

Table 3-11. Summary statistics (mean, standard deviation, variance and 95% confidence
interval) of litter samples collected during the temporal study. Wetland zones
sampled included the Inner Core (A) and Outer Edge (B).
Litter TP (mg/kg) Litter N (g/kg) Litter C (g/kg)
Inner Core of \\Wetdlind (A) A A A
Mean 180 20.6 306
Standard Deviation 8 3.6 23.3
Sample Variance 0.0672 1.3 54.3
Confidence Interval (95.0%) +8 +3.8 +24.5









Table 3-11. Continued
Litter TP (mg/kg) Litter N (g/kg) Litter C (g/kg)
Outer Elde of Wetland (B) B B B
Mean 230 19.6 296
Standard Error 87 1.2 10.1
Standard Deviation 230 3.2 26.6
Sample Variance 53 1.0 70.9
Confidence Interval (95.0%) +21 +2.9 +24.6

Soil

The soil, being the most permanent of the strata measured in this study,

would be expected to provide consistency for evaluation of wetland condition

throughout the year. It is reasonable that longer-term response to anthropogenic

inputs to the wetland would be indicated in the soil. The following figures

illustrate the trends of those parameters measured: Bulk Density, Loss on Ignition,

Total Phosphorus, Total Nitrogen, Total Carbon and pH. The inner core (A),

outer edge (B), and adjacent upland (c) of the wetland locations were surveyed

and sampled.

Soil bulk density values between the Inner Core (A) and Outer Edge (B)

wetland zones reversed from the fall, when Zone A showed higher bulk density

than Zone B (Figure 3-17). In late spring and summer, bulk density in Zone B

was higher than Zone A.



S0.8
0.6 A
2 0.4 MB
m
00.2
0
Jun-03 Oct-03 Jan-04 Apr-04 Aug-04

Figure 3-17. Soil Bulk Density, grams cm-3. Wetland zones sampled included the Inner
Core (A) and Outer Edge (B).










A reversal in the loss on ignition (LOI) parameter was also noted between the Inner

Core (A) and the Outer Edge (B) wetland zones sampled (Figure 3-18). In the fall, Zone

B showed high LOI values than Zone A, while in late spring and early summer, Zone A

had higher LOI than Zone B.




80
-
o
5 60
S I *A
40
o B
S20 *- .
o 0
Jun-03 Oct-03 Jan-04 Apr-04 Aug-04

Figure 3-18. Soil Loss on Ignition, %. Wetland zones sampled included the Inner Core
(A) and Outer Edge (B).

Soil total phosphorus concentrations in the Inner Core (A) of the wetland were

higher than the Outer Edge (B) in the fall, late spring, and summer (Figure 3-19). During

the winter, however, samples from the Outer Edge (B) had higher concentrations of total

phosphorus in the soil.




1200
o 1000
S800
E
600
400
o 200
0
Jun-03 Oct-03 Jan-04 Apr-04 Aug-04

Figure 3-19. Soil Total Phosphorus, mg/kg. Wetland zones sampled included the Inner
Core (A) and Outer Edge (B).

The soil total nitrogen temporal results between the Inner Core (A) and Outer Edge

(B) of the wetland were similar to those for total phosphorus (Figure 3-20). Total










nitrogen in the soil during fall, late spring, and summer were higher in Zone A than Zone

B. In the winter, Zone B showed higher total nitrogen values than Zone A.


14
12
10
S8- *A

S4
2-
0 ,
Jun-03 Oct-03 Jan-04 Apr-04 Aug-04

Figure 3-20. Soil Total Nitrogen, g/kg. Wetland zones sampled included the Inner Core
(A) and Outer Edge (B).

Soil total carbon concentration from the Inner Core (A) and the Outer Edge (B) appeared

to follow the same seasonal pattern as both total phosphorus and total nitrogen (Figure 3-

21). Total carbon concentrations were higher in Zone B than in Zone A during the winter

and higher in Zone A than in Zone B in the summer.


500
5
400 -

0 300 A
L U
200 B

100

0
Jun-03 Oct-03 Jan-04 Apr-04 Aug-04



Figure 3-21. Soil Total Carbon, g/kg. Wetland zones sampled included the Inner Core
(A) and Outer Edge (B).

Seasonal trends in soil pH (Figure 3-22) were similar to the water column pH trend

(Figure 3-9), with fall and winter, pH values higher in the Inner Core (A) than the Outer










Edge (B) wetland zones. In the spring and summer, pH values were higher in Zone B

than Zone A.


7.5
7
6.5 .1
6 *
5.5 A
0 5 EB
4.5
4 -
3.5
3
Jun-03 Oct-03 Jan-04 Apr-04 Aug-04

Figure 3-22. Soil pH. Wetland zones sampled included the Inner Core (A) and Outer
Edge (B).

A summary of the following statistics: mean, standard deviation, variance and

confidence level, was compiled from the soil sample analyses to provide an overall

comparison of the data. The results are shown in Table 3-12 below.

Table 3-12. Summary statistics (mean, standard deviation, variance and confidence
interval) of soil sampled during the temporal study. Wetland zones sampled
included the Inner Core (A) and Outer Edge (B).
Soil Soil Bulk Soil Soil Soil Soil
Ph Density\ LOI TP TN TC
Inner Core of u cm )) (mu ku,) (, ku,) (u ku)
Wetlandid (A) _____ _____ ____ ___
Mean 6.07 0.59 19.18 80 7.0 79.9
Standard
Deviation 0.57 0.03 1.47 10 0.97 9.8
Sample Variance 0.32 0.001 2.15 0.091 0.09 9.5
Confidence
Interval (95.0%) +0.52 +0.03 +1.54 +10 +1.2 +15.5
Soil Bulk Soil
Soil Densit\ LOI Soil TP Soil TN Soil TC
Outer Eidue of pH U, cm ) I) mu ku,) ( ku,) ( ku)
Wetland iB) B B B B B B
Mean 5.62 0.55 25.97 60 6.6 74.8
Standard
Deviation 1.26 0.29 22.77 30 4.3 52.6
Sample Variance 1.58 0.08 518.53 0.80 1.9 276
Confidence
Interval (95.0%) +1.16 +0.30 +23.90 +0.29 +4.5 +65.3














CHAPTER 4
DISCUSSION AND CONCLUSIONS

Objective One (Results)

The first objective was to gather information on wetlands located in Southwestern

Indiana to assess the heterogeneity among wetland community types to determine an

appropriate aggregation of wetland communities for numeric nutrient criteria

development (and monitoring) purposes. It was hypothesized that there would be no

difference in strata biogeochemistry among various wetland community types sampled in

Indiana. It was suggested that the influence of hydrology would outweigh the

characteristics and functions of wetland community types in the overall assimilation and

cycling of nutrients.

Based on the results for water column nutrients, there were no significant

differences noted between Total Phosphorus concentrations or Total Nitrogen

concentrations among the wetlands community classifications. Therefore, separation by

community type does not appear to be required for assessment within this region. It is

important to note that the sample size for certain community types was smaller, which

can contribute to increased Type II error rate in these conclusions. Where it is stated that

there are no significant differences in community parameters, there could be differences

that are not detectable due to small sample size.

Similar results were noted for vegetative nutrient indicators, finding no significant

differences in the vegetative tissue concentrations of Total Phosphorus, Total Nitrogen,









or Total Carbon. Separation by wetland community type for vegetative indicators does

not appear to be required for assessment.

Leaf litter nutrient content showed significant differences in leaf litter Total

Phosphorus concentrations between riparian and non-riparian wetlands. Seasonal

flooding and scouring effects of riparian systems would be expected to influence the

amount, types; transport and location of litter present in the wetland, and may account for

some differences in Total Phosphorus concentrations.

When aggregated by hydrologic class, organic matter content in Non-Riparian

wetland soils were 75% higher than Riparian wetlands. Vegetative class aggregation

found Marshes contained 50% more organic matter in the soil than Swamps. In addition,

Non-Riparian wetland soils contained twice as much total carbon as Riparian wetlands.

Marsh soils contained 70% more total carbon than Swamps, and Non-Riparian Marsh

concentrations of total carbon were twice as much as Riparian Swamps. This would

support the point that hydrologic influences in the riparian systems could increase

mineral soil fractions while reducing organic matter in the wetlands. Results from a

study of sediment and nutrient accumulation in floodplain and depressional wetlands

showed that phosphorus accumulation was 1.5 to 3 times higher in the floodplain

wetlands than in depressional wetlands (Craft and Casey 2000).

Considering the use of litter Total Phosphorus as an indicator of nutrient status, an

aggregation of community type should be considered between riparian and non-riparian

wetlands. Based on soil nutrient condition, results indicate significant differences in

Total Nitrogen concentrations between riparian and non-riparian wetlands. Separation by

hydrologic connectivity appears to be required for assessment of soil nutrient indicators.









Objective Two (Results)

The second objective was to determine which sampling strata: water, litter, soil or

vegetation is most responsive to nutrient enrichment.

Findings suggest that Total Phosphorus concentrations measured in the water

column, litter, and vegetation were not able to distinguish between impacted and least-

impacted wetlands. However, soil Total Phosphorus concentrations were able to

distinguish between impacted and least-impacted wetlands. A related study of Eco-

region IX wetlands also showed significant differences between total phosphorus

concentrations in least-impacted and impacted wetlands (Paris 2004).

In a study of sediment and nutrient accumulation in floodplain and depressional

wetlands, it was suggested that the degree of anthropogenic disturbance within the

surrounding watershed regulates wetland sediment, organic carbon and accumulation of

nitrogen. Riparian wetlands are 'open' systems, subject to watershed influxes of

sediment and phosphorus. Non-riparian 'closed' systems are influenced much less from

such influxes. Greater accumulation of phosphorus is found in floodplain wetlands that

have large catchments containing fine-textured sediments that are co-deposited with

phosphorus (Craft and Casey 2000).

In aquatic environments, the majority of phosphorus is bound to organic and

inorganic particles, with a relatively small fraction available in the water-soluble form.

Due to this conservative nature, it is understandable that a portion of the phosphorus from

watershed inputs to a wetland would remain there (Paris 2004).

Objective Three (Results)

The third objective was to contrast Southwestern Indiana least-impacted (reference)

wetlands to Southeastern US Wetlands in Eco-region IX to determine the validity of









single numeric criteria. Southwestern Indiana wetland nutrient indicators were compared

with sampling results from the collaborative studies: Southeastern Wetland

Biogeochemical Survey: Determination and Establishment of Numeric Nutrient Criteria

(Paris 2005), and A Biogeochemical Survey of Wetlands in the SNiniduielt il United States

(Greco 2004).

It was hypothesized that Southwestern Indiana wetlands would have higher

phosphorus and nitrogen concentrations than wetlands within the same eco-region in the

Southeastern United States. These differences would occur among soil, water, litter and

vegetation strata.

Results:

Total Phosphorus concentrations in the water column, litter, and soil
samples from the Southwestern Indiana wetlands were significantly higher
than the samples from wetlands in other states located within Eco-region
IX.
Total Nitrogen concentrations in the water column and soil were not
significantly different between the Southwestern Indiana wetlands sampled
and the wetlands surveyed in other states within Eco-region IX.
Total Nitrogen concentrations in the litter were not significantly different
from other states within Eco-region IX, with the exception of Florida.
Total Phosphorus and Total Nitrogen concentrations in the vegetation were
not significantly different from the other states within Eco-region IX, with
the exception of Florida.


Significant differences in Total Phosphorus concentrations in the water column, litter,

and soil were noted between Least-Impacted Southwestern Indiana wetlands and Least-

Impacted Southeastern U.S. wetlands within Eco-region IX. Based on median values,

total phosphorus concentrations in the water column were approximately five times

higher in the Southwestern Indiana wetlands sampled than the collaborative study results









from other states in Eco-region IX. Soil total phosphorus concentrations in the Indiana

wetlands were twice as high as the wetlands surveyed in other Eco-region IX states.

The results suggest that a single numeric criteria established for all wetlands within Eco-

region IX could be overly protective of Southwestern Indiana wetlands.

The EPA Office of Water's strategy to develop regional nutrient criteria uses

comparisons to local reference or background conditions to develop nutrient criteria

within designated spatial areas, to yield a regionalization of nutrient criteria. Reference

data sets allow more objective and realistic selection of goals for wetland maintenance or

restoration (Findlay et al. 2002).

EPA has recommended that nutrient criteria be based on the 25th percentile of the

nutrient concentrations measured from all wetlands in a region, or on the 75th percentile

concentration of least-impacted wetlands within a given eco-region. If the wetland

criteria are established on too broad a grouping or classification of wetlands, the natural

heterogeneity within the grouping could result in the overprotection of some wetlands,

while others in the same grouping could be under-protected (Paris 2004).

If the numeric criteria were established based on the 75th percentile phosphorus

concentration for all wetlands within Eco-region IX, the higher background phosphorus

concentrations from the Indiana sampling would be overly protective as compared to the

lower concentrations measured in the wetlands in other Eco-region IX states.

Objective Four (Results)

The objective of the temporal study was to determine the seasonal variability

among the strata parameters. Those parameters exhibiting the least variability, while also

demonstrating responsiveness to system inputs, would be expected as favorable

candidates for monitoring the wetland status throughout the year. It was hypothesized









that there would be differences in seasonal variability among water column, litter, soil or

vegetative biogeochemical parameters surveyed. The seasonal variability would be lower

for the soil and higher for the water column parameters due to the more permanent nature

of the sampled media.

Based on the study results, the trend data indicate that litter Total Phosphorus and

Total Nitrogen exhibit low variability among the strata parameters measured throughout

the monitoring period. Litter Total Phosphorus should be a reliable indicator, easily

sampled, that could be monitored, regardless of sampling season.

Soil Total Phosphorus and Total Nitrogen also exhibited low variability throughout

the temporal period and are likewise representative of effective monitoring parameters

for wetland condition. Advantages of soil indicators over litter may include soil's more

permanent nature, and resistance to flooding impacts, especially in riparian wetlands. A

disadvantage is the additional collection equipment, weight, and effort required for soil

sampling in the field.

Another consideration, based on the results from Objective Two above, would be

that soil Total Phosphorus and Total Nitrogen may be more responsive than litter as an

indicator of nutrient impacts. The information derived from this temporal study,

however, was based upon sampling within a single wetland. Additional sampling over a

range of separate wetlands would be required to validate the responsiveness over a

temporal period.

Litter collection is a relatively non-intrusive method, more protective of wetland

integrity. In addition, the sample product is lightweight, occupying considerably less

space in the field gear, allowing for the collection of multiple samples during a survey.









Conclusion

The study results indicate that the hydrologic connectivity of a wetland system

should be considered in the assignment of appropriate numeric nutrient criteria. The

most responsive indicator stratum for nutrient enrichment between impacted and least-

impacted wetlands appears to be soil total phosphorus and total nitrogen.

The establishment of numeric nutrient criteria for Southwestern Indiana wetlands,

based on reference wetlands from Eco-region IX, could be overly protective. Study

results indicate soil total phosphorus and total nitrogen concentrations exhibited the

lowest variability during the temporal study, while demonstrating responsiveness to

nutrient enrichment between impacted and least-impacted wetlands. Therefore soils

likely provide the best overall choice as an indicator of wetland nutrient conditions and

therefore should be considered when developing numeric nutrient criteria.

Implications for EPA in Establishment of Numeric Nutrient Criteria

In summary, based on the survey results, there does not appear to be a need to sub-

classify wetlands by vegetative community type to properly assess nutrient conditions in

Southwestern Indiana's wetlands. However, hydrologic connectivity of the wetland

should be considered in the assignment of appropriate numeric nutrient criteria. Soils

appear to provide the most sensitive indicator of nutrient impacts to wetlands as

compared to water, vegetation or leaf litter.

The results further indicate that a single numeric criteria established for Eco-region

IX could either be overly protective or under protective of ecological integrity based on

background nutrient conditions in the wetlands sampled in Southwestern Indiana.























APPENDIX A

PROFILES OF SAMPLED WETLANDS


GENERAL INFORMATION


Millersbure -Wabash and Ene


Forested


Unimproved


Litter Canals
Covered with and Piped
Mud None Present Inflows None Noticed None 3 Linear


Core
Composite
(A)

Core
Composite
(A)

Core
Composite
(A)

Edge
Composite
(B)

Edge
Composite
(B)

Edge
Composite


2751 759 932 4753


Quercus
39 No No No data None Forested 85 michauxi 40 Quercus spp

Ulmus
40 No No No data Hummocks Forested 75 Amencana 40 Quercus spp


No Evidence


ERAL INFORM ION__7


I IhT1 P/Q


!


















No data None Forested



No data None Forested



No data None Forested

Buttressed


70 Acer mbnim



70 Acer rubmm



80 Acer rubmm


5 Cornus spp



10 Hickory



40 Quercus spp


Carpinus
Liquidambar caroliman Carpinus
20 styraciflua 20 a 5 35 carohmnana 5
Carpinus
caroliman
15 Poison Ivy 5 a 15 80 Grass 40


Carpinus
carolimana



Birch

Platanus
occidentalis


Acer
sacchann
Hickory 10 urn


40 50



10



20


Platanus
occidenta


Unknown

Saurunus
cemuus



Grass

Fraxnus


Fraxinus
Poison Ivy 10 Profunda

Fraximus
Profunda 10 Vine

Grass 20 Sedge


Grass


WATER
QUALITY


IN1


RnTT r /


15 Sedge


Boehmena
5 cylmdnca 10 Smnlax spp

Carpinus
15 carolimana 15

10 Poison Ivy 10




25


INlblank Blank Impacted Water 0004 0489 0032

INIs Stream Impacted Water 007 1 047 0011


Soil INla A Impacted 0266 72 667 4

INlb B Impacted 0286 94 8027


Soil


INla A 0066 0149 1881 2568 16572

INlb B 008 3752 19416


1438 8 494 8

13788 5144
























Soil INla A 1122 19364 37 24 101 747 6

INlb B 18196 2556 4844 11164 6316


Soil INla 47 762 1188024 9916 168 413573 088 3952 2116 2768

INlb 1529 825 9309 942 545 419 1 11 4604 2396 2524

INlu


Site
Composite Acer
IN1 (ALL) Vegetation rubrum Impacted 02174


Core
Composite
IN1 INla (A)


IN1
GENERAL
INFORMATION


Edge
Composite
INIb (B)


Impacted 2934




Impacted 3212


Least- Forested Non-


None
None Noticed Lemna Canals noticed None 3 Oval


Core
Composite
IN2a (A) Wetland 20 93 648 6 1 106 -52 3 1 Yes


Core
Composite
IN2a (A)


Core
Composite
IN2a (A)


Wetland 21 44


638 36 101 -307 15 No


Wetland 21 4 632 87 98


None Noticed
FTET.) DATA


















Edge
Composite
IN2b (B)


Edge
Composite
IN2b (B)


Pino


34 No



No



27 No

No



No


Buttressed
Yes Lemna roots Forested



Yes Lemna None Forested



Yes Lemna None Forested

No No data None Forested



No No data None Forested

Buttressed


95 Acer rublru



95 Acer nibnim



80 Acer nibnim

70 Acer rubrum



80 Acer rubnim


Liquidambar
60 styraciflua

Liquidambar
70 styraciflua

Fraxinus
50 Profunda

10 Hickory



40 Quercus spp


Liquidambar
35 styraciflua



25 Poison Ivy

Carpmus
30 carolimana



50 Birch

Platanus
25 occidentalis


2 Lemna spp 1



Saunurus
5 Acer uibnum 5 cemuus 10

10



10 Comus spp 20 hackberry 10

Boehmena Fraxmius
20 cynldrica 5 Profunda 15


Lemna spp


Grass 20


Wetland




Wetland


Carpinus
carolima
20 na
Carpmus
carolima
5 na



10 Hickory


10



15
Platanus
accident


Acer
sacchann
umr


35



80



40 50



10



20


Carpmnus
carohmana



Grass



Unknown

Saurunus
cemuus



Grass

Fraxinus


Acer rubrum

Lemna spp

Fraxmius
Profunda

Acer rubrum

Boehmena
cylndnca


Vine


WATER
QUALITY
















INIblank Blank Impacted Water

INIs Stream Impacted Water


0005 0 675 0054

0469 2411 0005


Soil IN2a A Impacted 0 344 86 625 3

IN2b B Impacted 0269 72 5123


Soil IN2a A 0062 0 172 249 66 11152 11868

IN2b B 0051 3692 13592 16864
TIT-n T T n" n 191 11A I -.9 9 1 -


347 2

4192


Soil IN2a A 594 4 195 49 28 53 04 479 6

IN2b B 2432 2252 41 8 6368 6632


IN2a

IN2b

IN2u

VEGETATE








IN2


342 3384 410 061 410 9952 10848 58636

262 3388 341 406 0852 341 406 7921 875 1008 984 46867

1924 2656 247843 0908 247843 5721 569 83451


Site
Composite Acer
(ALL) Vegetation rubrum Impacted 0 1674


Core
Composite
IN2 IN2a (A) Impacted 2851


Edge
Composite
IN2 IN2b (B) Impacted 2118
GENERAL
INFORMATION


Least- Emergent Non-


None
none present Algae None Noticed Lemna Canals noticed None


10 oval


IN2




RnfTT Rn





























Wetland 2188




Wetland 22 05




Wetland 20 93




Wetland 2109




Wetland 21 5


6 15 42




602 23




6 24




602 23


13 Yes




7 Yes




10 Yes




5 Yes




No


No


15 No


20 Yes


22 No


Yes


Emergent
macrophy
Yes Lemna None tes
Emergent
macrophy
Yes No data None tes
Emergent
macrophy
Yes Lemna None tes
Emergent
Adventitious macrophy
Yes Lemna roots tes
Emergent
macrophy
Yes Lemna None tes
Emergent
macrophy


5 River Birch

Salix
10 carolimana

Salix
10 carolimana


30 Acer rubrum


5 Acerrubrim


Hydrocotyl
95 spp

Typha
80 latifoha

Typha
95 latifoha

Saururus
90 cemuus

Typha
95 latifoha

Typha


Core
Composite
(A)


Core
Composite
(A)


Core
Composite
(A)


Edge
Composite
(B)


Edge
Composite
(B)


Edge
Composite


Salix
carolimana





















Typha Altemanthera
15 latifolia 30 philoxeroides





Hydrocotyl Altemanthera
20 spp 10 philoxeroides





Alternanthera
30 philoxeroides 5 Lemna spp

Typha
23 latifolia 22 Lemna spp


Lemna spp





Cephalanthus
Occidentalis





Cephalanthus
Occidentalis

Cephalanthus
Occidentalis

Cephalanthus
Occidentalis

Cephalanthus
Occidentalis


Pontedana
5 cordata

Nuphar
5 luteum


10 Acer mbmm 10






5 Grass


10 Acer mubrmm 10


23


Saurums
10 cemuus


10 Acer mbmm 10


Core
Composite
IN3 IN3a (A) Impacted Water


Edge
Composite
IN3b (B) Impacted Water


0 708 4829 0005




0524 3465 0005


Soil IN2a A Impacted

IN2b B Impacted
TIT I T T T--- -,-A


Soil


218 9003

142 8285


IN2a A 009 0656 8792 7528 181 76

IN2b B 0082 0432 5524 8544 12536


550 4

402 8


Soil IN2a A 7308 2952 4244

IN2b B 7824 2948 5188


IN3a 240 8

IN3b 14768

IN3u 147
VEGETATION


9324 7064

55 4588

53 5496


3228 458 0614 582677 12019685 2141 732 89849

367 2 4244 0455 571 82 10727 984 1945205 9089

19896 2772 1 468 269261 5381323 871 984


10 Lemna spp


30 Lemna spp


WATER
QUALITY


I ___~~~~~_




















Cephala
Site nthus
Composite accident
(ALL) Vegetation alls Impacted 0 1485


Site Pontedar
Composite la
(ALL) Vegetation cordata Impacted 0 0931


Site
Composite Acer
(ALL) Vegetation rubumm Impacted 0 0833


Site
Composite Typha
(ALL) Vegetation spp Impacted 0 2579


Site Salix
Composite carolima
(ALL) Vegetation na Impacted 0 1757


1 42 3862
















1 92 4737


Core
Composite
(A) Impacted 2951


Edge
Composite
(B) Impacted 2938


Scrub-Scrub Non-


Levee
None Adjacent to None
None Present None Noticed Present Wetland Noticed None 2 Oval
TUTT n AT A


Core
Composite
IN4a (A)


Core
Composite
IN4a (A)


Wetland 25 69




Wetland 26 96


IN3




IN3



GENERAL
INFORMATION


717 51 8




7 17 706


















Core
Composite
(A)


Edge
Composite
(B)


Edge
Composite
(B)


Edge
Composite


Wetland 26 39




Wetland 27 24




Wetland 26 92


No No data None



No No data None



No No data None




No No data None




No No data None


Platanus
occidentalis
(Amencan
10 Sycamore) 10
Platanus
accident
alls
(Americ
an
Sycamor
5 Acer rublum 10 e)


Platanus
occidentalis
Liquidambar (Amencan
styraciflua 10 Sycamore) 10


26 No




3 No




7 No


-gilegei..
macrophy
tes
Emergent
macrophy
tes
Emergent
macrophy
tes


Emergent
macrophy
tes


Emergent
macrophy
tes


Emergent
macrophy


Salix
carohlmana

Salix
carolimana

Salix
carolimana



Salix
carolimana



Salix
carolimana



Salix


Liquidambar
styraciflua



Liqudambar
styraciflua



Liqudambar


















Platanus
occidentalis
(Amencan
5 Acer rubunm 10 Sycamore)


10 Acer rubrum 20


IN4 IN4blank Blank Impacted water


Core
Composite
IN4 IN4a (A) Impacted water


Edge
Composite
IN4 IN4b (B) Impacted water

IN4 IN4blank Blank Impacted water


0017 0861 0011




0228 1 605 0005




0192 1357 0005

-0 003 0489 0005


IN4a A Impacted 0 269

IN4b B Impacted 0289


Soil IN4a A 005 2164 17032 16928

IN4b B 0051 0841 12376 5068


11168 16372

0 18128


19352 18924 3084 0215 247 505 7772455 1026 747 46483

2252 157 68 2428 0282 244008 7650295 1126523 5096

2036 12544 3012 2 369412 6984314 1560


Site Salix
Composite carolma
IN4 (ALL) vegetation na


Impacted 0 2865


Site
Composite Acer
(ALL) vegetation rublum Impacted 0 2582


269 43 76




203 4388


Liquidambar
styraciflua

Liquidambar
styraciflua


WATER
QUALITY


Soil


5062

5118


Soil


4608

5712


IN4a

IN4b

IN4u
VPFCITTAT


IN4

T.TTER























IN4 IN4a




IN4b


Core
Composite
(A) Impacted 2934


Edge
Composite
(B) Impacted 3212


GENERAL
INFORMATION


None Canals, Piped None
Cans or Bottles None Noticed Present Inflows Noticed None 10 Linear


IN5 IN5a




IN5 IN5a




IN5 IN5a




IN5 IN5b




IN5 IN5b


Core
Composite
(A)


Core
Composite
(A)


Core
Composite
(A)


Edge
Composite
(B)


Edge
Composite
(B)


Edge
Composite


2334 692 362 1436 -31


Buttressed Salix
26 No No No data roots Forested 60 Acer rubrum 40 carolimana

Buttressed Fraxinus
31 No No No data roots Forested 75 Proffnda 75


---Atai



















Buttressed
No No data roots Forested



No No data None Forested


No No data None Forested


85 Acer rubrum



70 Acer rubrum


70 Acer rubnm


Eastern
35 Cottonwood



30 Hickory



35 Acer negunda

Salix


20 95 Grass 35

95 Grass 75

Salix Fraxmus Fraxmus
10 carolimana 20 Profunda 20 50 Profunda 40


Eastern Fraxmus
Cottonwood 15 Profunda 15


Grass

Ulmus
Amencana


Saururus cernuus 20

Fraxmus
Profunda 20

Grass 10

Boehmena
cylmdnca 30

Grass 30



Grass 3


WATER
QUALITY


Cephalanthus
Grass 20 Occidentahs 20


Grass

Vine

Fraxmus
Profunda


Vine 30


Core
Composite
IN5a (A) Impacted water


IN5


0365 2225 0103


Soil IN5a A Impacted 0379 13 1 567 5

IN5b B Impacted 0287 9 6143

IN5u U Impacted 0 202 303 557 9










77










Soil IN5a A 0056 0292 4736 15 964 2004 3020

IN5b B 0061 0231 2698 2072 14256 19788

IN5u U 0055 0443 16614 15944 19936 2148






Soil IN5a A 50 88 163 76 34 36 58 84

IN5b B 55 16 168 12 35 76 80

IN5u U 3588 2184 2924 75






IN5a 486 1532 8092 0388 262 6512 8924 45204

IN5b 327 6 236 4 270 0587 339 37 9397 638 1061 811 41 366

IN5u 3656 18576 2972 2579 230891 5192079 1109703

VEGETATION






Site Salix
Composite carolima
IN5 (ALL) vegetation na Impacted 02272 2 16 424


Site
Composite Acer
IN5 (ALL) vegetation rublum Impacted 0 028 1 82 46 72

Cephala
Site nthus
Composite accident
IN5 (ALL) vegetation alls Impacted 0 1574 2 75 46 81

LITTER






Core
Composite
IN5 IN5a (A) Impacted 2934


Edge
Composite
IN5b (B) Impacted 3212



GENERAL
INFORMATION


T .ast- Forested


None None
none present None Noticed Present None Noticed None
FIELD DATA


Oxbow


9148

8444


1242

8288

741 2

























Core
Composite
IN6 IN6a (A)


Core
Composite
IN6 IN6a (A)


Core
Composite
IN6 IN6a (A)


Edge
Composite
IN6 IN6b (B)


Edge
Composite
IN6 IN6b (B)


25 74 705


294 558 48 No


No No No data None Forested 20 Quercus spp



No No No data None Forested 20 Quercus spp



No No No data None Forested 20 Quercus spp


No data None Forested



No data None Forested


Carpmus
carolimana



Acer rubrum



Platanus
occidentalis
(Amencan


5 Acer rubrum



5 Acer rubrum



5 Acer rubrum



Platanus
occidentalis
(Amencan
40 Sycamore)



40 Quercus spp


Carpmus
20 95 10 carolimana

Carpmus
95 10 carolimana

Salix Fraximus Carpnus
10 carolimana 20 Profunda 20 50 10 carolimana


Eastern Fraxmius
Cottonwood 15 Profunda 15


Hickory

Carpnus
carolimana






















5 10

5 10

5 10

10 50

20 70

70


WATER
QUALITY


IN6 IN6blank Blank Impacted water -0001 0489 0005

IN6 IN6blank Blank Impacted water -0001 0613 0011


Core
Composite
IN6 IN6a (A) Impacted water 0204 1 481 1028


Soil IN6a A Impacted 0 242

IN6b B Impacted 0217
TI T- T T T-- -..... 1 1 I


59 6977

81 6777


Soil IN6a A 0069 0115 1463 496 101 68 1238

IN6b B 0067 3056 13248 15056


Soil IN6a A 2488 190 16

IN6b B 11512 2084


18568 320 1309 500 7700 787 91063 47 499

272 2976 1257 421912 7601594 1168924 49395

15852 4192 0391 390495 8871 287 1502 178


Site
Composite Acer
(ALL) vegetation rublum Impacted 0 2232


2776

292


IN6a

IN6b

IN6u

VEGETATE








1N6










80






Core
Composite
IN6 IN6a (A) Impacted 3546


Edge
Composite
IN6 IN6b (B) Impacted 2715



GENERAL
INFORMATION



Schlensk


Forested
TN7 Tmnatedl Wetltanld Rnnn Rural o0 00 Forested 40 00 Row cronn 30 00


Large %
None of Dead
tires None Noticed Present None Trees None 5 Oval


Core
Composite
IN7a (A)


Core
Composite
IN7a (A)


Core
Composite
IN7a (A)


Edge
Composite
IN7b (B)


Edge
Composite
IN7b (B)


Edge
Composite


2638


768 765 398 12


No No data None Forested


No No data None Forested


No No data None Forested


Quercus spp

Fraxinus
Profunda


Sassafras


Fraxinus
25 Profunda


20 Acer rublrm


20 Acer rublnim


















No No data None Forested



No No data None Forested


25 Cottonwood



20 Hackberry



20 Quercus spp



Platanus
occidentalis
(Amencan
30 Sycamore)



Platanus
occidentalis
(Amencan
20 Sycamore)


Ulmus
Americana

Ulmus
Amencana


10 Acer rubmm



20 Wild Cherry

T Tmli,,


25 5

Cottonw Quercus
10 ood 20 spp 10 10

Wild
20 Cherry 20 5


Hackberr
10 y





Hackberr
20 y

Liquida
mbar
styracifl


Grass 5

vines 5 Grass

Grass 5

Poison Ivy 10

Honey
Poison Ivy 5 Suckle

Poison Ivy 20


WATER
QUALITY


Core
Composite
IN7a (A) Impacted water


Edge
Composite
IN7b (B) Impacted water


0046 0985 0027




0558 4829 0011


Soil IN7a A Impacted 0 235 55 753 7

IN7b B Impacted 0277 86 3998

IN7u U Impacted 0 128 77 4029


IN7




IN7






















Soil IN7a A 0075 3324 11484 19664 5052

IN7b B 0039 0309 4686 572 10876 1080 16548


Soil IN7a A 55 16 1664 2032

IN7b B 3584 262 5288


IN7a

INTo

IN7u

VEGETATE








IN7


2576 14272 242 0275 261233 8512922 90497 44338

5904 2892 3496 0923 2272 3504 8844 34225

8244 19868 384 1344 194083 3865 878 891 124


Site
Composite Acer
(ALL) vegetation rublum Impacted 0 1552


1 75 45 9,


Core
Composite
IN7a (A) Impacted 1908


Edge
Composite
IN7b (B) Impacted 1774


GENERAL
INFORMATION



Buck's


Least- Emergent Non
mna-tedl XVetlandl Rlnan


None
none present None Noticed Lemna None Noticed None 200 Oval


FIELD DATA

























Core
Composite
(A)


Core
Composite
(A)


Core
Composite
(A)


Edge
Composite
(B)


Edge
Composite
(B)


Edge
Composite


Emergent
Buttressed macrophy
Yes Yes Lemna roots tes
Emergent
Buttressed macrophy
Yes Yes Lemna roots tes




Emergent
Buttressed macrophy
Yes Yes Lemna roots tes




Emergent
macrophy
Yes Yes Lemna None tes
Emergent
macrophy
Yes Yes Lemna None tes

Grasses/s


Fraxmus
10 Profunda


10 Acerrubrum





Fraxmus
15 Profunda






10 Acerrubrum

Fraxmus
5 Profunda

Salix


Salix
caroliiUana


10





Cephalanthus
10 Occidentalis





Cephalanthus
5 Occidentalis


5

Ulmus


5 95

95

5 90

5 95

80


55 Moneywort 40


I Lemna spp




















Cephalanthus
50 Moneywort 30 Occidentalis 10


50 Moneywort 30


40 Sedge


10 Sedge


Cephalanthus
30 Moneywort 20 Occidentalis

Yellow Pond
60 Lilly 5 Lemna spp


Typha Cephalanthus
60 latifoha 20 Occidentahs 20


IN8 IN8blank Blank Impacted water 0 003 0 737 0 075

IN8 IN8blank Blank Impacted water 0 0551 0005


Core
Composite
IN8 IN8a (A) Impacted water


Edge
Composite
IN8 IN8b (B) Impacted water


0251 3713 0005




0194 1357 0005


Soil IN8a A Impacted 0 609

IN8b B Impacted 0593


IN8a A 0066 041 8372 10516 11068

IN8b B 0079 0361 9443 4016 127 2


5400 607 2

2396 391 6


IN8a A 816 3708 3956 5308

IN8b B 3132 936 3028 9432


IN8a 2284 2684 3668 0219 400 13924752 1885941 80382

IN8b 2236 2532 7904 -0016 476 117 19250485 6306796 94905

IN8u 8396 1984 11884 1617 22664 4612326 62664


Lemna spp


Lemna spp


Yellow Pond
hlly

Yellow Pond
hlly


Lemna spp

Cephalanthus
Occidentalis






Sedge




WATER
QUALITY


Soil


667 3

7962


Soil























Site
Composite Acer
IN8 (ALL) vegetation rubrum Impacted 0 1552 1 75 45 9,


Core
Composite
(A) Impacted 1354


Edge
Composite
(B) Impacted 1989


Big
Cvnress


Least- Emergent Non-


Unimproved


none present


No data Lemna None No data None 100 Oval


IN9 IN9a




IN9 IN9a




IN9 IN9a




IN9 IN9b




IN9 TN9b


1 89 408




277 386




3296 390




6 386




53 375


IN8




IN8



GENERAL
INFORMATION


Core
Composite
(A)


Core
Composite
(A)


Core
Composite
(A)


Edge
Composite
(B)


Edge
Composite
(B)

































Emergent
Buttressed macrophy Cephalanthus
No Yes Lemna roots tes 30 Occidentalis


Buttressed Emergent
Roots, macrophy
No Yes Lemna Hummocks tes




Buttressed Emergent
roots, macrophy
No Yes Lemna Hummocks tes

Buttressed
No Yes Lemna roots Forested




Buttressed
roots, Floating
No Yes Lemna Hummocks Aquatics

Buttressed


Salix
30 carolimana





Taxodium
20 spp


60 Pecan


Taxodium
20 spp



Taxodium
10 spp





Cephalanthus
10 Occidentalis



15 Walnut


Platanus
occidentalis
(Amencan
Acer rubrum 50 Sycamore)


Cephalanthus
10 90 Occidentalis


Cephalanthus
10 Occidentahs


Cephalanthus
10 90 Occidentalis


Cephalanthus
10 90 Occidentalis


Platanus
occidentalis
(Amencan
15 Sycamore)


Cephala
nthus
Occident
410 alls


Acer
10 ubnuim


Cephalanthus
10 80 Occidentalis


Cephalanthus
80 Occidentalis


10 Pecan 10


Lemna spp 50

Lemna spp 50

Lemna son 50


Edge
Conmooste
















30 Poison Ivy 30

40 Poison Ivy 10





Cephalanthus
30 Occidentalis 10 Poison Ivy 10


Least-
IN9 IN9blank Blank Impacted water 0 0613 0005


Core
Composite Least-
IN9 IN9a (A) Impacted water


Edge
Composite Least-
IN9 IN9b (B) Impacted water


0406 1605 0011




0439 2597 0086


Least-
Soil IN9a A Impacted 0681 222 937 3

Least-
IN9b B Impacted 0591 204 997 9

Least-
NTQ9n TT Tmnatatd il 71 18 17A66


Soil IN9a A 0093 0526 8061

IN9b B 0099 0466 6016


IN9a A

IN9b B


054 685602 12362919 2122288 91 113

063 674 851 12431 683 2146535 93009

2705 6876 9792 1970


Lemna spp

Lemna spp






Lemna spp




WATER
QUALITY


Soil


IN9a

IN9b

IN9u










88






Site Salix
Composite carolima Least-
IN9 (ALL) vegetation na Impacted


Site
Composite Taxodiu Least-
IN9 (ALL) vegetation m spp Impacted


LITTER






Core
Composite Least
IN9 IN9a (A) Impacted


Edge
Composite Least
IN9 IN9b (B) Impacted
GENERAL
INFORMATION



Snakey
IN10 8/30/2003 Point N 38 21 113' W 870 19 161'










Least- Emergent Non- Umnmproved
IN10 Impacted Wetland Riparian Rural 1000 pasture 1000 Forested 70 00







None
none present None Noticed Lemna None Noticed None 200 Round


FIELD DATA









Core
Composite
IN10 INlOa (A) 2653 729 414 831 -1544 15 No


Core
Composite
IN10 INlOa (A) 2682 709 174 855 -2248 21 No


Core
Composite
IN10 INlOa (A) 2707 725 448 849 -160 18 No


Edge
Composite
IN10 INlOb (B) 265 701 32 842 -1822 10 No


Edge
Composite
IN10 INlOb (B) 265 712 8 1 854 -1681 15 No


Edge
Composite
IN10 INlOb (B) 2663 721 138 836 -97 4 10 No


I