<%BANNER%>

Evaluation of Cyclic Pore Pressure Induced Moisture Damage in Asphalt Pavement

xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID E20101119_AAAAEK INGEST_TIME 2010-11-20T00:20:05Z PACKAGE UFE0012162_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES
FILE SIZE 5247 DFID F20101119_AACWDQ ORIGIN DEPOSITOR PATH karlson_t_Page_120thm.jpg GLOBAL false PRESERVATION BIT MESSAGE_DIGEST ALGORITHM MD5
53591552c1497a317e64b60e3448dfb4
SHA-1
71f5b6d3b690a639a359aae9cba5e3be185ef0eb
1772 F20101119_AACVYK karlson_t_Page_079.txt
638fc049db8e344ff7b8f3012ee7aec4
d334680576e292549d0127a68081fae13bd7ddf3
74030 F20101119_AACVXV karlson_t_Page_078.jpg
3c3623b549aab869fae5e3a463c32100
6fa6166b1152e8827af4d2a0c29d0f929ddc9500
17966 F20101119_AACWEE karlson_t_Page_064.QC.jpg
cc4ab4e5c5c91c7a79ed6061fc6ed039
17984446a86d760158046fd68f6c09b369936944
62180 F20101119_AACWDR karlson_t_Page_102.jpg
9572c62f497c2b6b24501a914e09ea09
2eb216507b8e109c32be9ce299808d842c4e505b
106187 F20101119_AACVYL karlson_t_Page_087.jp2
819e0c815e601966feb414d4c71b7870
c6cc9b93be763b354556610c00572019009134f5
1647 F20101119_AACVXW karlson_t_Page_036.txt
11bf5fee16b6a8a81b1dc19fabba9fa1
9a8ac6e03f63cffc8c6ebe66af310596f071131c
1968 F20101119_AACWEF karlson_t_Page_050.txt
87191ad0161d48ead144dae5363272ec
5fb912efec8be809bcdee50bb27c6fa577597c44
24142 F20101119_AACVZA karlson_t_Page_037.QC.jpg
bb9e323a540337999fde9572c70f43b4
8918c1dd91affd5e8ca8f9835da535b938b3ef08
55354 F20101119_AACWDS karlson_t_Page_064.jpg
30d62b65e3e1720df7b3f69e3f0bbeec
33f9702a1a41c3c2dca6240fa8531dba73d09074
1905 F20101119_AACVYM karlson_t_Page_093.txt
9603f126ae5b7e24e8ec42de80056cb9
b80362b129462118f4ebbec778fc0ce76a1f3e3f
109027 F20101119_AACVXX karlson_t_Page_055.jp2
f3dcf984aa07874ddf7fc9023d633d9a
3c2059f26c944f0a3f2b4e3ad039ce57b99b114c
23359 F20101119_AACWEG karlson_t_Page_045.pro
708d3f4710b688803998fcbe6bc843ec
38f7f8e820513c8ddd7c72f27cae3c43757b7f09
791016 F20101119_AACVZB karlson_t_Page_074.jp2
2ebcfda1af29d20adc34cd2db6e165e5
6fbefc2399425324baf103176083bdd9f4291608
1051951 F20101119_AACWDT karlson_t_Page_030.jp2
5f97df47e8d8922663f6611df4aa1be2
530e52410011c6d0039b0a97ae28258082849897
11517 F20101119_AACVYN karlson_t_Page_003.jpg
5bd2745ab33aee042fe4dd39c89d0964
c00b86efeedd7bda5c29ecdb4d1eb0737495f0ec
20613 F20101119_AACVXY karlson_t_Page_100.QC.jpg
d545ef874c1da752faa7bb9587a0910a
5a56c887599c0ed18f71d0f402fb7db35458cbf1
22685 F20101119_AACWEH karlson_t_Page_116.QC.jpg
73f265dfbcdd59848b36577a2fa4066e
028174d46a26b6c2bc32754639410c46d27abaa2
22315 F20101119_AACVZC karlson_t_Page_110.QC.jpg
a76c47d76899904bc59ec4bc074a60f9
cd925c0acf6222bc93c9095019d87fd22b05da80
18581 F20101119_AACWDU karlson_t_Page_074.QC.jpg
a0d162888667c170cd67ccff9c295e7e
6c8adf9dd559e1d9064f86b7608c046261711c67
71240 F20101119_AACVYO karlson_t_Page_017.jpg
a0a3f3efd7a30e61facc0fa62fc3012e
35f0ecf110025dede1c9f827ee41941fac661d57
1053954 F20101119_AACVXZ karlson_t_Page_056.tif
0c43e2e41647723381d99e1c308ff9ca
54bcd4e4c78e1b5122aad5ea12b65f73f5bb43ee
1054428 F20101119_AACWEI karlson_t_Page_118.tif
a3e9564a7e62e209adf209e9a4663311
302d879bd0a539f8a6c1daa2d749ad9361749b30
25271604 F20101119_AACVZD karlson_t_Page_122.tif
dc6cc55b9ab070e9454a2e037d6fd660
4cd737a99f5c6938c91d2bc1c3b3be6b3572e507
F20101119_AACWDV karlson_t_Page_005.tif
7ea02538c1790710f423e6bf516fbb4e
d0bfdcd985325c637188f0c71b50047df2fa6fb5
F20101119_AACVYP karlson_t_Page_081.tif
4d6f04229ed8091e8c24dfd8726a2769
efffbc619bd212b6b62f30025887c76b2f61e4f2
66730 F20101119_AACWEJ karlson_t_Page_025.jpg
9bd7c8f35a0439b0969d1b3843632201
4f53fbbdfb06ff508bb4ec5a626c237e50d25488
17601 F20101119_AACVZE karlson_t_Page_105.QC.jpg
bd7b88b1bd7e2854206978dc3003002d
79090cdb5f2cf788ccfb4cca041e34d3668954d7
F20101119_AACWDW karlson_t_Page_127.tif
053183186b7b0b99e97defb6791b1791
32f755c5088f878ebfc0f583ee7583d40483327e
48938 F20101119_AACVYQ karlson_t_Page_117.pro
1b4daf46914b283ab1b4ef825ba5d9c0
f468a8ac99c11b26afb19906c15eec48c9f62859
6017 F20101119_AACWEK karlson_t_Page_031thm.jpg
d6a53df6f9d226026b5dda5031db5285
a48b168cbda168af713f4ea4207ea7c69239c861
1051966 F20101119_AACVZF karlson_t_Page_116.jp2
1e76c4ad222755890771d83b6147a1e2
2dd40c1f5da93e0cd3a626efc27f427f61fd33fe
2209 F20101119_AACWDX karlson_t_Page_116.txt
6733adee6fa413bb1158a1636b8b5ce8
085e16d89ba157624afe04ea39eb8117b8359246
31343 F20101119_AACWEL karlson_t_Page_044.QC.jpg
fd830af99f7ea39f985f8e425fb4cea9
9495d9263c9e2ad03976ac2e44e6121f03c0567f
33098 F20101119_AACVZG karlson_t_Page_100.pro
b6b7de0d3dc69c7c1e2113ebdb296190
7d39a58286e8e5c847d936a83a9cd6e05bdc87a3
21491 F20101119_AACWDY karlson_t_Page_036.QC.jpg
5de9c17168bb91ad11683cf32140ec9e
e37f6e007a4eea234810b8fc175dc0fca498a61e
6318 F20101119_AACVYR karlson_t_Page_111thm.jpg
e62db6d68c0ca311c836e8983b00e05c
22214cb4bf07f6d5de06bc7c8119a6bcefb2810b
2026 F20101119_AACWFA karlson_t_Page_023.txt
ca4f46fdde3e7739c1a93c1493637b92
c4cc72d0850e8992cb6467d74c3aa759fa40ad4d
20090 F20101119_AACWEM karlson_t_Page_010.QC.jpg
2c18ed8616d143dcaa1806fd89f0bbf7
073e5d31f6af6d3777f3fcd1263faf65128dae63
1995 F20101119_AACVZH karlson_t_Page_084.txt
234d61e2232010e36c64088c1333bc0e
b358f534f0efcb083bbc99fdd1d8bae0f8ab6f46
F20101119_AACWDZ karlson_t_Page_092.tif
b96d26d4a48f4a0cf8664ce798dec0f3
6f1264c52f47eb610fa65e371c581cd55b316db4
1044514 F20101119_AACVYS karlson_t_Page_008.jp2
40da0bd72e32d7b1258059557302a528
b9b8c5a94ece5fb891ddfaa58758d2b2ccee79db
1895 F20101119_AACWFB karlson_t_Page_110.txt
ac0c772708a53b2a6e3bcb68e7a118d0
fa57a9edc700a3b1b78c56de8ffb1dd1d22158af
51981 F20101119_AACWEN karlson_t_Page_059.pro
9bc94f1cf3faf76dda1322d3c4625622
4af65806372241688dbcb36d3ca0db961d5f3fa7
23978 F20101119_AACVZI karlson_t_Page_040.QC.jpg
534188fd5a4681c43b1c9451266d49f3
2a493647d32fe6840010c23bde1f5062d85f3728
103988 F20101119_AACVYT karlson_t_Page_110.jp2
31d316398528e26321ea26710deaf4c0
0614d88ba08756711e8007fa42d41eb0adac88a1
63322 F20101119_AACWFC karlson_t_Page_014.jpg
bdb99f028baf5626549c5b4ed1f94c3c
a6c956bb255fb84044e00cb58a327c8634e5e7db
1150 F20101119_AACWEO karlson_t_Page_064.txt
0ea4bd3976a5e20716cb07c06efe549d
f7b8318fcee4a31a1a3e8990e7e64618506c136e
1051967 F20101119_AACVZJ karlson_t_Page_083.jp2
e7ffc82a45e73f8d7fec687f63536966
e1004da586b474ab5f375cd938710eabcf3558c3
1761 F20101119_AACVYU karlson_t_Page_089.txt
c51479a601f5017939ac1d78f470a779
605f3d31f92e13f87df7ec797c8696a17d2193fa
4666 F20101119_AACWFD karlson_t_Page_086thm.jpg
f3137d1a45b8068c7737ffb551e4566f
904cb92a51c8bb24c7875441d70a521313f98ac5
5359 F20101119_AACWEP karlson_t_Page_092thm.jpg
d02812c318f8a618f2887db9cbaddba7
233eae4d5dbf93c80261a24705d50e89f80ed868
774330 F20101119_AACVZK karlson_t_Page_064.jp2
590474d351b965037ce260c94d19ed57
a25ae6f03615bd120c8c64a0ea43538bb7f0c373
F20101119_AACVYV karlson_t_Page_089.tif
79b484823a95e99dccb0f7c0478b8485
c0ca27b3c16bd506eb139cec877bdd4e480498cc
6623 F20101119_AACWFE karlson_t_Page_103thm.jpg
cbb173d9995aa68085ff01a8bb83f515
9826f250e48fb221d035ca8f431e9c77a4f3b78d
6901 F20101119_AACWEQ karlson_t_Page_129thm.jpg
95d2a8979410f34107a57ac215e66242
f2599c3df15ec93ad989410b75fdd103ff36601a
605187 F20101119_AACVZL karlson_t_Page_119.jp2
18d63d15748f65509338f8d11d7640e0
0de4a7f7463332fad19afbbe519e4bffba3ee8a7
1051931 F20101119_AACVYW karlson_t_Page_066.jp2
da8c76423d45e8cdfbc5583a562161ac
897953a0c44a3891a2fc0ecaed6dba5a48e62908
6746 F20101119_AACWFF karlson_t_Page_057thm.jpg
5d135e7499456c4bb77106766c5c7473
f6904016cc66cd11a8b036688cc3436e5f66aea4
F20101119_AACWER karlson_t_Page_075.tif
5f010f3780a79bc5ec5a4494a36f1425
ea433195f63d84f3ee7fcf777f5187f699e306c4
47924 F20101119_AACVZM karlson_t_Page_026.pro
fd8237960321585c74df633569c45100
b99b703012e1f7fa43462b40cf63886e7d33795e
2092 F20101119_AACVYX karlson_t_Page_078.txt
67960f6afaf59f1e9f671246f37ce529
a0f2b619035ef18c1e0571a8a1ac2aa03e9118c6
1927 F20101119_AACWFG karlson_t_Page_027.txt
afa0981d028c90af5401c0677d9b6c8d
aa3c72dd72e39621bfe28d72a3732ef1dd5cfeae
673 F20101119_AACWES karlson_t_Page_016.txt
0afe95207cc1e1b1263fa218e54d327b
51b0cc38b45e6d1c22965ccd0e775271b0fb4e66
1525 F20101119_AACVZN karlson_t_Page_105.txt
7f92a7b51fca40c8a0c1f5226e375794
4ddc4a03d5e649e7768a4eeb1fd40643fe9b9da6
6288 F20101119_AACVYY karlson_t_Page_036thm.jpg
e1cd38b181ef45d91391327aece6273b
5faf432e0d167185956a755ed71f21b2a8bcf426
79417 F20101119_AACWFH karlson_t_Page_084.jpg
555f33fbeed9591e6d49b3d37b08e546
5847cf9dc246c9a0934e6292c3ea5d6b59631ca4
790 F20101119_AACWET karlson_t_Page_120.txt
41c3a50cb3287486ccfbc5a8edea34a8
09c288ef4bd2eecedab983950b04fc68d2f160fc
23943 F20101119_AACVZO karlson_t_Page_077.QC.jpg
90413dfb5a489f5135035ab7aa648980
5dc8e1cabe604e7c36ad445234bb173ea551c9c2
15669 F20101119_AACVYZ karlson_t_Page_118.QC.jpg
baa7e0010145d0b56c5d65c199bffd9d
e006cff67ce712173540b29caafd76cc0ea3fd20
2580 F20101119_AACWFI karlson_t_Page_048.txt
0bcf72ad2a3efac9eacc8aae640060c9
c7cf774c8d1a62ace5ddcf5f9f4079b4d42d6ada
55418 F20101119_AACWEU karlson_t_Page_082.pro
ef9b8b2eb6bf53643ffb6aee8da702e6
a9192ad3a58e7983d13c635f268171727f517f9d
6600 F20101119_AACVZP karlson_t_Page_058thm.jpg
a8c2cad8f66f23ae14937a2f54333666
5a08f7ee89ae9594140f3cf0c775572ddb282fd0
73677 F20101119_AACWFJ karlson_t_Page_033.jpg
43db08adcae0375b6d4886695aa09244
455a857f8488e3ada68496ae9dcb5222102de07d
6145 F20101119_AACWEV karlson_t_Page_049thm.jpg
93cfa7163899b61928b10a4adf2094ec
cb837f9732c2aef6796fbbcf040a67e1721f48b4
49881 F20101119_AACVZQ karlson_t_Page_050.pro
42a8fe1b89e0315b37abdc0559010a76
9d82d1c22134dabf7949ecd222fefd6beecf294c
52238 F20101119_AACWFK karlson_t_Page_077.pro
fbcd9460a6a9bf1832ccdfc165c3a5c7
3b30d817e9e1402770907d77f7905d0565abefd1
F20101119_AACWEW karlson_t_Page_093.tif
56573b6bb24e372c7244df35c1fde1c4
99b4a4393fff527bc4400bd178bc922f3870b153
65872 F20101119_AACVZR karlson_t_Page_073.jpg
a1e5b028715a7a67101b912208542ee9
a36fabd5439d654ff6db59d46ea308daee953354
16758 F20101119_AACWFL karlson_t_Page_120.QC.jpg
75a964654bb4e4d96b285904dfffe813
29ce6cee25ebb1958d3d19cc992856688e39e6dc
14094 F20101119_AACWEX karlson_t_Page_106.pro
dde89052f1c5df8f9e09407cb3a9a183
4617c55f674b0cf90c9c38b24b10e578353183f6
7626 F20101119_AACWGA karlson_t_Page_044thm.jpg
b58f22271f1fe4f5e9256abdb87ec72e
975151d299bcacba9b0ea959f739b3d929069508
825410 F20101119_AACWFM karlson_t_Page_011.jp2
e9fb772403e9346bbc8923918829aaf0
5c38cee2f5e122a16296dde910ccc4cfabbd4554
24106 F20101119_AACWEY karlson_t_Page_038.QC.jpg
e71eee7dbf271e57ec9700353318d65e
592b7095b1323766da156cc1d7d88ba9241bc216
18010 F20101119_AACWGB karlson_t_Page_005.jp2
01f12792bc91df1e2c8df96f120c0991
075f1f5944748563a6adc73aa3952753b83aa184
F20101119_AACWFN karlson_t_Page_050.tif
57f9dcb0fb00591d75b0b73a26aa8df6
f9b4acba7b32bd49a51600eb4a097cf2b0a8974e
1051909 F20101119_AACWEZ karlson_t_Page_033.jp2
388382027b2ccc88f74bd59cfea4f376
ad9d9e2571ee4108f0e35a0ab799bb70485cf861
F20101119_AACVZS karlson_t_Page_053.tif
ea1e2c3a18f66e03eb6c6beb566a10c7
c4f2bef27d1739f170f096c9cd7da24bd61afd4b
40153 F20101119_AACWGC karlson_t_Page_107.pro
30e8507d191cd7d37220655fffe80e8c
21ba3b028da920b53156144f0160b8356d5fcc3b
2081 F20101119_AACWFO karlson_t_Page_003.pro
ede13014ed29cbbbfc897482d464f7bc
08ba905d29e3f07fc9c5baa443fe8f5a5c07ea32
F20101119_AACVZT karlson_t_Page_109.tif
f6fff6b248ca801fb6187da8596cc0d5
1dae30ecfcd2a6db50911570c3828d70ae8db5ef
37540 F20101119_AACWGD karlson_t_Page_062.pro
d96b372285e54ff6bd15cd2507b51048
2cc14d1e722f889bd8fc39c92facd41d1273e11f
F20101119_AACWFP karlson_t_Page_082.tif
de969a9b98b4906f77718d15a76f77f5
a6884f602fc48e7c44abcfcae47d1faf26780783
1051941 F20101119_AACVZU karlson_t_Page_034.jp2
aff41dac7f36733ebfa819b56d92ac3c
6b2475715a203e0367d6fe4f8ca527b36996a3fa
69168 F20101119_AACWGE karlson_t_Page_126.jpg
13f34b6e791284fec36f5fa3a7bbcc51
43715350b53cedf785997cfb69e98e7073012990
F20101119_AACWFQ karlson_t_Page_087.tif
f8c8faa1df2a19d4bcb904e6b7d02e78
6e53b65917b808102f9c26c9056a02da1763f409
356424 F20101119_AACVZV karlson_t_Page_106.jp2
310a3328104c438fb85b002e360c7aa8
d79bfaa64d33e1450908d8cebef41c621aa1f3bf
71701 F20101119_AACWGF karlson_t_Page_112.jpg
147cf30bad1d0121affda51039c3362c
1d0839b5ba141e2b4a969360838d4c976b749500
4959 F20101119_AACWFR karlson_t_Page_061thm.jpg
0954a8873d5cb94bd9b045163a3e45e5
cfe2fcc7ec413872777871619d61ed8006ab473e
58556 F20101119_AACVZW karlson_t_Page_107.jpg
bb968d46c60713226cf2789339325bd0
910a5c3ebf3f198afd2f42db730f1ced8b6a675e
3428 F20101119_AACWGG karlson_t_Page_048thm.jpg
9203d21ae79c584ce08425272e0f911d
e3a88de28d86b48944e439042ef2d0b9d94d4dde
79643 F20101119_AACWFS karlson_t_Page_052.jp2
30af6bdc8b98230a32eeb0fd858e7eed
d80eba10386fe17807fdab85d3745cdf0dde097f
6594 F20101119_AACVZX karlson_t_Page_077thm.jpg
3109d78d49f6cf2d06e3ab4c9285bdc0
e3dbacd8217bad29033dc55fef8f823d4ed68fc3
F20101119_AACWGH karlson_t_Page_032.tif
d88c5d9af4a61d70993dd383037171f8
7b279cdcfcc9b152f9b548051446a4b4934eb2d0
48268 F20101119_AACWFT karlson_t_Page_030.pro
a7b72430d9b3713bf2d1d286477a9e07
685c6e98752ff24fe6f886eba4bee03e2b625c46
46833 F20101119_AACVZY karlson_t_Page_048.jpg
530d57d8428c9f2af5c1d3d8e7b6d388
b29b77eae9ecd8acf92666cadc06854e35553dcf
5360 F20101119_AACWGI karlson_t_Page_121thm.jpg
754970ee5e271a89721d91b03c338fa8
861beac74674b2d419214f9b86aaaba26b4d81ce
21145 F20101119_AACWFU karlson_t_Page_075.QC.jpg
021b61623d21cf2fadc3c26cfeee7129
17146dc9a5c0e4b1bbe4ba2cc7a98771afce882b
10123 F20101119_AACVZZ karlson_t_Page_002.jpg
53cb2d28834aadf01d000a59ddac4f6d
f4f9ac10bc2d325540bcb0ff926a66a1dbe1ef34
69820 F20101119_AACWGJ karlson_t_Page_069.jpg
86fa9ae22b38e198dabd5797c83889b8
4b1629fd4ab2240d844b5a21fcf9685834143b50
77943 F20101119_AACWFV karlson_t_Page_066.jpg
30f6e8338b29431b006c58e2fd8340dc
02ca72ead447b358ebd12efd9a7696be80ad5c59
1894 F20101119_AACWGK karlson_t_Page_126.txt
9d6a37a4fea22c25f22f48e48a186120
8be199dd2303e239bbfd93827773267b0c5d8fa4
77622 F20101119_AACWFW karlson_t_Page_130.jpg
53fe19df871368fc90961c13fc8ab8da
57401a9e14211b1ebeec0d15609b11f0d32bd5e5
109655 F20101119_AACWGL karlson_t_Page_058.jp2
8b001a6e5c8654616f006464474f49b0
0a4ba7d45632084bbd7e952d98e678f2f83c4ebb
7086 F20101119_AACWFX karlson_t_Page_084thm.jpg
79839b5593b5fac32948a31049de50d1
36e2ddf36723319a1a165a80529c94b9d91d6d9f
6731 F20101119_AACWGM karlson_t_Page_085thm.jpg
59adede2a3e16aa7785d60eedbd71ca4
cb0a1b69d42a0b8202bf42b8a22797c3a8dacaf1
F20101119_AACWFY karlson_t_Page_022.tif
3eeb33eb513432ddc3ececd832188016
8b9afaa50f9b6696ca26a1862b68e1c77732a6d0
1997 F20101119_AACWHA karlson_t_Page_088.txt
94e22c22fa85733f3bca16085fb65bda
d452e56a2908e7b503a303bdc9170e21eb52c195
36753 F20101119_AACWGN karlson_t_Page_032.pro
1561901ec60cce636c80fa7e0b5f5e0a
04a48127134a729c5fb4400ee1fed2303c0260de
5630 F20101119_AACWFZ karlson_t_Page_122thm.jpg
00a3a43ee57ab75f4352e7e2ef5acf75
4d65cf51e94161debf0cae191013442d3701baf3
F20101119_AACWHB karlson_t_Page_062.tif
e95d026a6d670d1bf7acf59f5e42a8c0
0fc775d16f93abe2900377208066799a2bd8d07c
64352 F20101119_AACWGO karlson_t_Page_128.pro
d1ad0665b534475f0938a64fbe4ab7c0
4a3494dca1fc0b4e194d8aa67c9976cfc9c55aaa
26224 F20101119_AACWHC karlson_t_Page_041.QC.jpg
ad2dc261a801c96ce8eb10826e62b101
6757735a34cc144f7994a3c28e21723114001337
F20101119_AACWHD karlson_t_Page_095.tif
fb42a3d4d73362cf5b463fe6d33f007f
344d1aa11d1e7a273a31ab0ec8622dfee4c76bf3
67313 F20101119_AACWGP karlson_t_Page_099.jpg
0569c235b54e463e7ef699c4fe0d1f84
bb7f814171e3451468df67edd4b5636dbffe4795
778 F20101119_AACWHE karlson_t_Page_121.txt
6fb43c3543d8ce802cec819c03df82a3
cc067b07d2ab34c304029423ba1b1ab6a6c7154f
6762 F20101119_AACWGQ karlson_t_Page_047thm.jpg
4cf99d2fbe4703790464ded3d32ed903
4107151b94fdd0193ac87164fbea98b689750d60
F20101119_AACWHF karlson_t_Page_107.tif
37287b9cbafafd25f599c6bf7eb4765a
22a09787fb860bd390baed4a0bffe7d198968e48
961249 F20101119_AACWGR karlson_t_Page_036.jp2
29562f713009b1385cecc8af725848bb
47166ebc63fc4d1fa567022179158aa9d5a5ac15
57993 F20101119_AACWHG karlson_t_Page_092.jpg
7bc34b02c473dbd3ad9c517d5ef76fd1
3ee6e1b2f460b83214f28e523c73025b442a4de9
F20101119_AACWGS karlson_t_Page_049.tif
2a49e7c5f1af3ec63ec66ca7a62031a2
902cc2e3655aca6c833a68b57250ae0ea70f36be
81670 F20101119_AACWHH karlson_t_Page_006.pro
15532902240e46c959616354bf64fe98
d044f725552a9c9a3a45ca8db5bab047b70abc4f
1962 F20101119_AACWGT karlson_t_Page_091.txt
9568eb0f03b799f5ae4611b866cf8914
7438809cbb1a2c8379dc731e6a65f9722980461c
F20101119_AACWHI karlson_t_Page_036.tif
61950665d7823fce940013efff03f7d6
18efd3091108036f1aa7eac622a7a80330249e34
75519 F20101119_AACWGU karlson_t_Page_021.jpg
8eba121350c6ea9ef4658ec857b4738c
380e75370df809494027589d3a2c495ace54bcb9
50785 F20101119_AACWHJ karlson_t_Page_088.pro
4a9f2462d48ad7289d9553adc25c4895
38cf10e38174b9c514bd9d8b2912af42c39da387
52778 F20101119_AACWGV karlson_t_Page_120.jpg
60af1ab7b6ac7c566f61ea350d1c207c
ef3cf4bc8161896c9949b2321673acfde9a816b8
F20101119_AACWHK karlson_t_Page_103.tif
36832765b00b51e49b8adf1eee6409e5
acd30a7f2b61692b7264100c976bd3e2b2c625d9
35475 F20101119_AACWGW karlson_t_Page_131.jp2
a38a7734d462dd86382763f5214d4ec6
b798164080ed40a7a9fbdb75bed2b518b89802aa
6553 F20101119_AACWHL karlson_t_Page_022thm.jpg
8fb9bc0d3ab02e372467b2774672992a
b501b7586315b171ce2c50879d5fddee73abf069
14770 F20101119_AACWGX karlson_t_Page_131.pro
acceddac188b8bcf60cc8449babd2f80
58dca86d1039c0f22fdab208fbd1d30d203fef32
4028 F20101119_AACWIA karlson_t_Page_101.pro
879f0978f530aee31fdc87d8dc5a0e05
f02d5a58679d3de9f0f55ed4906ac5870a5399aa
F20101119_AACWHM karlson_t_Page_119.tif
babef804817e54988c967f6feaaaeb93
f410ad5a13b614157d40d1165f773bb0ec3d0b86
50907 F20101119_AACWGY karlson_t_Page_080.pro
a47461101ca7c0ac71bf8169a3c29ef4
dd4e07d62379579f732378bbbf1042a4088422c8
148715 F20101119_AACWIB karlson_t_Page_129.jp2
3d8a7c5b2ebbfd018ac985108ad02465
0c9afcd817a9f93a8f011968b68d2d53cf0fc537
20093 F20101119_AACWHN karlson_t_Page_114.QC.jpg
8ba47a5bd14d55ff296e9cb16c7e6fdd
edb383573a76e55579ebc2e6458933ced130d27d
36054 F20101119_AACWGZ karlson_t_Page_074.pro
50b19219f2198931b76f54ac35731d96
de6c2b103aedf6f4a9dcedde03f7d0543388cee6
874242 F20101119_AACWIC karlson_t_Page_048.jp2
d28c78eeeed3afff61acf0b4acadafdb
80928f4323a27105138426e4e92077776e59fd81
6271 F20101119_AACWHO karlson_t_Page_087thm.jpg
37771703411e7d628341879782350e04
75a799bb418ac9568ffb0143ba2e5affbf14bbc9
17636 F20101119_AACWID karlson_t_Page_052.QC.jpg
bffb508fed1f206a3d14c6ce2c9d2e39
98c830340a0ec49199ed348d0ee074543df42a78
F20101119_AACWHP karlson_t_Page_020.tif
74cd6f170074c89e6b00aae0123ce80f
73eae0841e6b4367fa42870b68f1aac3667be0c8
38524 F20101119_AACWIE karlson_t_Page_028.pro
ab5d9dff9daa6004a0839c982e115ac3
7ca4a40f17ce2b297f71e3d45e7066123c0f20fc
74484 F20101119_AACWHQ karlson_t_Page_056.jpg
5f38efc09ca0fdbf969a36eb3bc97c11
26d2d69ff6374defacfad077af52d0cb7b7217e1
2180 F20101119_AACWIF karlson_t_Page_115.txt
e871d6b9c74e9baa7685578fe1a65108
91855beb7a238f86e026e4699fcb085bef28665b
22466 F20101119_AACWHR karlson_t_Page_015.QC.jpg
cea6b46392bbfebf0ca37ccde28434b8
b8a19dfcdb47d61e5d1c322352f052a45c6dbac1
23569 F20101119_AACWIG karlson_t_Page_103.QC.jpg
0bcc836b541d1824a8da6b21a482a77b
08438393a8baf273e3d19b33ada865d96bd05871
48461 F20101119_AACWHS karlson_t_Page_116.pro
720130ee7cc7c3bdb9b6e652bf85c7f5
1f4622817de8a1eb0ebc9a89ca7468adc7eeef40
4192 F20101119_AACWIH karlson_t_Page_053thm.jpg
2a2f3d02afc3eb4f907b23c8247426f3
77f93068dda7b0fa17b6cb206bc08ac70bffda4c
3427 F20101119_AACWHT karlson_t_Page_003.QC.jpg
0545a519888ebd40ce95720cb604a58e
326dd5a5369fd2acb5aa5b3e18c9728b9af7cd8a
22763 F20101119_AACWII karlson_t_Page_115.QC.jpg
dbd4bfbe994b5faa6503af7899a6d8bf
c53a231ab13be7f68d50994ea524428634d43355
F20101119_AACWHU karlson_t_Page_019.tif
a900df88f367dccfe389565fbe6a4e0e
f36496ce5bb7f018e237e753c8d5e17e7e39e1f8
23175 F20101119_AACWIJ karlson_t_Page_055.QC.jpg
da73227fbdc0bbb07ecffc868c8c7387
f0891ce78c772c81972413429451ddfdd8c0a60b
1051964 F20101119_AACWHV karlson_t_Page_019.jp2
4689697df594dff226b656b4eb8fbfdb
c159b4fc6473565ddbe1a6fa9726a633a843936e
55894 F20101119_AACWIK karlson_t_Page_013.jp2
d9ec168f1521b918cfc1850e6123459e
fca20d5134d69d029cbf195e5766f2a610f6138a
1051952 F20101119_AACWHW karlson_t_Page_041.jp2
2170778ab805d025f1c6232ef7600851
93e7c17e6ff745c2e08d00b7ed267d54bfc17e6c
6087 F20101119_AACWIL karlson_t_Page_079thm.jpg
9257261a791fbde9990caa1887d34e10
ef5b8634a7dd470c65b957fed19b6f1124d7f3ee
F20101119_AACWHX karlson_t_Page_073.tif
957498394ef3739489c16fba867983da
9fecb1081202f2a3623410d80d08daa75e952ac4
100994 F20101119_AACWJA karlson_t_Page_075.jp2
884b4d05e7402686e4b98f7fb9307cc0
42b7f4d3de2695a1b856641d0b52b9c02e5076cb
1832 F20101119_AACWIM karlson_t_Page_025.txt
39c691bcc88fba2b266f50290911f7b0
0009d272194beb01f98bcbf239d69fdee08608c3
5536 F20101119_AACWHY karlson_t_Page_002.jp2
7b229ca9aa1d5f9c2300363b14f68be0
3492b35d77638e9c236d9847d0b0567616635405
6608 F20101119_AACWIN karlson_t_Page_081thm.jpg
d4b3b9e49ab0299f2e7bfded0ae18845
60f592f7e9cbe9562c87cdd8b741933e4034164d
44040 F20101119_AACWHZ karlson_t_Page_089.pro
450dbf4603868715b6c5f72d5bcb8d80
cebf5856c5998da030c8fab6eb733d35ffecc58f
1646 F20101119_AACWJB karlson_t_Page_008.txt
dd7c47132e6ecef7ea4f46b2bca0f394
a34ef0f42bf87cfb14d2302f50747b14a16ab7b9
6656 F20101119_AACWIO karlson_t_Page_078thm.jpg
71632ca2b01db4c76426987fad2ace98
4373d32dcdf828c668c599b19974d9aebfbc07da
51114 F20101119_AACWJC karlson_t_Page_055.pro
25a687e9d55db0341d739f2581b81902
ab2f448332dc74cdebd212aa5e03e603af089844
6717 F20101119_AACWIP karlson_t_Page_038thm.jpg
f35b829a07b7b5e39134381a0d77702a
68ec45672eb360616d628b28839a48aafc710083
F20101119_AACWJD karlson_t_Page_016.tif
19edcbafeb9d361a4fa404052db86195
f082a7487e87529e091b277a837703325cf19635
51562 F20101119_AACWIQ karlson_t_Page_124.pro
c99ee55c4ff711a2fa9a6835457ada70
71dba2cfa9d48f3e507fb1efd3f6ecc66123a3c0
105317 F20101119_AACWJE karlson_t_Page_094.jp2
f2f801f4b1d889e20f27c02d056bb5d0
e7175165dbdfe54f6a50755035d524cc0d8ff6af
24542 F20101119_AACWIR karlson_t_Page_086.pro
23b63998952f999985545c0eb7af7478
c829e9d654141d0946fbd53edaeef9c25c94341e
F20101119_AACWJF karlson_t_Page_046.tif
2c78dcd1ab12ff2a6fe500c9766454ed
ee8ae6427ba51494b996aab2bf671b5f00c59811
48620 F20101119_AACWIS karlson_t_Page_057.pro
b848d179dc7d01de31f680895ad0984f
3c7b8cb587f253c426283d448ab65de4c2eea449
73754 F20101119_AACWJG karlson_t_Page_067.jpg
de674da0a9fc86a6fdf92acdec66dc4a
57993ac3793f8212a074ba44a4bfc45b1a8e4ae9
6606 F20101119_AACWIT karlson_t_Page_040thm.jpg
673e1f6573da3d47b4216502f0554c13
94199913070469aa6c8304fc9a52bc611ae9119d
F20101119_AACWJH karlson_t_Page_040.tif
2c2ceb18dace4b0655b326b0cd5737ed
0080a9c253b04f97b46401081ea123d6ee6c9a64
5615 F20101119_AACWIU karlson_t_Page_119thm.jpg
9642dc06b9690280a4cfd0d473c12ce0
6ccbcfae2eae607974b9f18e270cdf211b4d2a0f
1925 F20101119_AACWJI karlson_t_Page_042.txt
815a0a333f3ef86442c5e38596f1051a
305754c660dad4b8013bd6e6ccfd03b4633a1c1d
9606 F20101119_AACWIV karlson_t_Page_009.QC.jpg
34228957a675e062d060b882bece7bb7
b1a63c5bff122388fe9db226422008bd1bef4ad8
883603 F20101119_AACWJJ karlson_t_Page_029.jp2
a4d0d92bfe2f9ba6850f977d23f33036
a6e08479c6de7eb1453b65612263a49918962bd1
66341 F20101119_AACWIW karlson_t_Page_029.jpg
85bb4178449071667ab88a3bb919946f
c89363c3a2d53c8dd827ffcb7f7e827862f4f6ad
19207 F20101119_AACWJK karlson_t_Page_107.QC.jpg
5deb6cdd2c4e41a064104db6b8dd9d97
4669d1345d341a57b5270bbdca56ffe1a3f8db44
F20101119_AACWIX karlson_t_Page_104.tif
dd116213c722679083156fb540f91e8c
d234dade7995172e7e2b64dc76a41ce73713f1fe
47899 F20101119_AACWKA karlson_t_Page_090.pro
a82ea95a4701b372e1436d8df5754893
88c7b459463e5e2cc0d8ddd4fdb838d1efcbf672
713202 F20101119_AACWJL karlson_t_Page_009.jp2
802834def89c68d2a9759596bb6f57e2
15033f3b26d644808b2d28e52925f22d3299f398
6698 F20101119_AACWIY karlson_t_Page_018thm.jpg
d30f9aeb8540f0dc128169b9230c6565
09a787a5792b49132e4ecce97f20072f08af5118
F20101119_AACWKB karlson_t_Page_055.tif
57a3ed71bd2d20e475c4c83a497eba0f
83945861a9a4aee28761fcfcc8230f01e2fb1bb1
43703 F20101119_AACWJM karlson_t_Page_017.pro
c8052f04e8048236f0bebf3e9c3ca377
d8e6e1a35f0a27d0c09632e6ba7c2759ae1e441a
1051907 F20101119_AACWIZ karlson_t_Page_084.jp2
c2b4ddea5eeee6776b04b2183a099e07
6505fa57f6a9e6aa2aa49e574bd6e02e3c7fb5f5
1051943 F20101119_AACWJN karlson_t_Page_038.jp2
02436d8fa265f2251072497a3c8836b8
e36b2820c5440efbb364404f4a102c70c0ce1a63
10636 F20101119_AACWKC karlson_t_Page_045.QC.jpg
bafd2b3618bfb61312af5e9671a73b71
7259d989872d5ec99c28e55f523dd70b0a2417aa
5436 F20101119_AACWJO karlson_t_Page_068thm.jpg
b98fbd728aa99dffa1631c9bc0ccfeb3
cc481e972b9238cc0014105b5ee4d114093bc9bc
898744 F20101119_AACWKD karlson_t_Page_028.jp2
3afa8afbae624f558542fb1c74894a8c
b8bb44fc1a6c39dd759c0fa60e091a5c02082905
1175 F20101119_AACWJP karlson_t_Page_002.pro
dfad325bd504155524426c5fc47b5d5d
f64404ac24fa74a1cad64982dffb826c22c6eb41
42946 F20101119_AACWKE karlson_t_Page_079.pro
d3838c16cf38f9943e417c361dbd5bd8
018f51451ce0e324fa6899d7742b5a437301fd21
6113 F20101119_AACWJQ karlson_t_Page_100thm.jpg
d2eb6ed2d2f2d4cc4b4bcbc80184583b
4eb053e67a02bb2e720d17252f1387cb176b7a59
18003 F20101119_AACWKF karlson_t_Page_004.QC.jpg
4fed2f0c7eb642ba3adba11143ca0e93
0b0a8d119ca633494e6704341b1c353e77ce5033
6744 F20101119_AACWJR karlson_t_Page_097thm.jpg
435fbfea709968ba457b7ffc311b7ad4
2308d205817c2a049227ad35608e6cf94afaec6d
66136 F20101119_AACWKG karlson_t_Page_123.jpg
e8ff882cc34c1d0180a72144e2f45cb8
f63df9de2bd8142e5e4587a1eb09f953d5356286
461 F20101119_AACWJS karlson_t_Page_001.txt
8082e8771d71403fe19cba3902051b86
51c464d5edebc9a53bcd6bcdd093391ea95cfc6d
76178 F20101119_AACWKH karlson_t_Page_038.jpg
ef88776eda0450897f626e83f78330b6
0c98bc47b21ea700dc8ee128fb0d2b2878e94295
19000 F20101119_AACWJT karlson_t_Page_125.jpg
406ec3c47d27ad9ca35621fe6556ccf2
10d4f095ae00e5d663a5d990dbbfb2e8b482e9a2
69495 F20101119_AACWKI karlson_t_Page_109.jp2
38550a14ecd71098fafd92aa06ecf13d
5bcc72c60a40f4a526de14ca0efbdab592b1f9b1
44812 F20101119_AACWJU karlson_t_Page_068.pro
350a005b23f5dbe3f8379f1d103ebbff
dc10444de775894696254139cf172383e9d46422
33478 F20101119_AACWKJ karlson_t_Page_011.jpg
95e03945644eea027a738c69ceca8954
e658e0f443181e316c761424214227d8a90c2c49
45504 F20101119_AACWJV karlson_t_Page_033.pro
a99d094abdf3fa025210c1a8a529b72b
e5d8f4ed8c1344541c24446ffcb7368534b20899
71095 F20101119_AACWKK karlson_t_Page_080.jpg
588236310c06c7a031ff9edcc5c44460
305c186caff56b1c07c3f31548ca6a4adee0f5fb
84803 F20101119_AACWJW karlson_t_Page_012.jp2
2b26fd131b02ef7877b8a4a4cc296260
51acdfcc083f9d314bd315508a4890e70beac2c7
68045 F20101119_AACWLA karlson_t_Page_129.pro
f020fec66c8eae32a26cda38ac9282ea
2cda2b36e6b4bfdef8373d3d465ec7927bc702b0
39492 F20101119_AACWKL karlson_t_Page_008.pro
f9c00f66a44de358179e49708a04402d
17d567b36e0efebe24068544f257307717c86885
F20101119_AACWJX karlson_t_Page_038.tif
43cb29038cfd764dee421896905d7f28
a3b81f01bb7b7347e000b04f7822d608d85046f1
F20101119_AACWLB karlson_t_Page_029.txt
a895b9e60596e86269c1743342d762de
0c95f1f0e7ec5a52d2c035bdb0da53357bd5c568
5686 F20101119_AACWKM karlson_t_Page_126thm.jpg
3164eb94236301ab9eb528ecf71dcdd6
0950300e44a277a4eb87088b42ea6e7108e33876
24303 F20101119_AACWJY karlson_t_Page_030.QC.jpg
76a3f03e0a881bae14fbdb5dfe615d35
f857796acaae887310f7edca35d71a6bb73dd08b
22725 F20101119_AACWLC karlson_t_Page_113.jpg
637df9be96696a375031ea003d2cacc4
97467ba2675051e7718d2e78458f01ce822e2431
F20101119_AACWKN karlson_t_Page_120.tif
3972912888ec343204ce233129c1884e
17a0b70962c952031da986c230d071d5605d22f9
52964 F20101119_AACWJZ karlson_t_Page_052.jpg
016c82439958ab62ec2d28e039f3008f
84f74f0f5db3c10c8c0f6ea77bdc3e0746264328
71158 F20101119_AACWKO karlson_t_Page_055.jpg
1e2f667008e5cf539b4c1f0b00685ab9
a7b12a1a63779d57213bc848daeda179663dcda5
76027 F20101119_AACWLD karlson_t_Page_030.jpg
844217388247cc8227e6df9680a0aa41
377cab295672603b574b56757239b2ec3834262b
22645 F20101119_AACWKP karlson_t_Page_130.QC.jpg
d36ec7dd27ab3efc7ff559b6adff0053
cf646265d0e1537dca151d5b1c05d2914d1470c4
47617 F20101119_AACWLE karlson_t_Page_099.pro
1bcc98f09f1fa3c58bd740413400db57
241fae0c4474348295a534af8d3959f15b681cca
1447 F20101119_AACWKQ karlson_t_Page_004.txt
11d3107c1a7840f1d2c17d2693de0c1d
a73d3cda18ee5d83222dc7d3e630239bcfdb9730
F20101119_AACWLF karlson_t_Page_130.tif
67709cff7766c7a8ee31964a95cbfec5
b792a2679b5a048a639615d4642379e6bb52ec08
F20101119_AACWKR karlson_t_Page_088.tif
9216e0ce9e129252579158c2d27e4430
a43ca0d5788ccfe5aac313da8f1f5919a2a79d9b
113602 F20101119_AACWLG karlson_t_Page_078.jp2
3843c1f261832e67c44cba7413c03dad
845f3ebd927942a6eb437950ca203dcff1e9e4cf
6300 F20101119_AACWKS karlson_t_Page_088thm.jpg
b7de38ce9cd8c67404cddb3c72806eea
36a44aae5f513da64d547e45977ef39ae5512e67
69427 F20101119_AACWLH karlson_t_Page_031.jpg
d3d9e2f4f795b0f685df3e4fb04af925
67a6bb36716b2114ed4ca23e8d6bdd8a0d6f88c5
1051979 F20101119_AACWKT karlson_t_Page_007.jp2
c36e661552d8d6bbf809850a972771ce
134de5ad40695f0f15313a9ca1d3508019494558
49693 F20101119_AACWLI karlson_t_Page_066.pro
2a6b4075a6fbbbbd7df3111fa8ce2010
1985d6cf3f5b4b44dab2c6586ac807a790a8a87f
F20101119_AACWKU karlson_t_Page_098.tif
57bf10c8cf8c215afdbb98e6e80df6af
82d1b4e4f6849e102997293e2c5bf91a1588bfd9
1907 F20101119_AACWLJ karlson_t_Page_037.txt
2d293f1f0efdeb7d514cbcbc50624394
10994c71a246f73fac4d46bd10df8a48d744e324
63417 F20101119_AACWKV karlson_t_Page_089.jpg
aa05cc989ed013259f31ae326c3ab64e
e688dc5ca324874999dfb5849de01a8c72acdb28
F20101119_AACWLK karlson_t_Page_027.tif
e5e2ea3fd23e9e911e72d8bf1c75dff6
e1e57a287cb4d8b7f4c760c0db5fdb8ecb63fa7a
59655 F20101119_AACWKW karlson_t_Page_012.jpg
2b32e60aa1b05fd81da551531d3d73ab
66f498a26edfe9124166f069f849485c9d6d8743
4310 F20101119_AACWLL karlson_t_Page_007.txt
ded88242a1f36393cd557ee971f413c1
87598c6ac63071c020bc347f21fef7565036bd4f
1865 F20101119_AACWKX karlson_t_Page_070.txt
89556884f2012dfed2932a1ef0ee6bd4
2d5884b879d38ce1cb00ed74162c67d79623de10
72533 F20101119_AACWMA karlson_t_Page_124.jpg
3b8de9e02355b89d30436a0dbea882e8
ce76b9513536921923e72e179836823db330f69e
1569 F20101119_AACWKY karlson_t_Page_032.txt
f24212e1ca7065f52117f270f82e96c9
c82c9a4480ecc294733576182db34bcd393b13b6
51603 F20101119_AACWMB karlson_t_Page_108.pro
3865581b76b7a41b11c74cdf054a10a4
1a252cabe2c98d71d180104784ae4d8d5344293d
F20101119_AACWLM karlson_t_Page_094.tif
1e1e44310827ee9c01733ea5df43d563
f55d1c43dcafbf35e058f8a424bd7a363930c2b8
F20101119_AACWKZ karlson_t_Page_017.tif
ed9b965b3be2de42262b1ae93950b37b
88aab08f04ffc60f9c1db687541594b706b8c0ec
69129 F20101119_AACWMC karlson_t_Page_063.jpg
c2f203f0657c178b66470ab4c749c9ea
a2b05b196231c281e23d6cd43abe7da5020d0582
1753 F20101119_AACWLN karlson_t_Page_102.txt
b31c60731c86f5fc0a34ba30103e852b
3f618bc7e366ca18f3bb9c18e3bd2c47c9153d23
36169 F20101119_AACWMD karlson_t_Page_098.pro
ffe1d6231deae7ffd20b270923207ee4
eb5ef3d54243c2cc9d499e59efada5d75612b2bb
F20101119_AACWLO karlson_t_Page_072.tif
3fea6a7ed0897533b16de5b4c5465d9d
00ff9869a1a7248a53e656f7f489df3cd353f8dd
40150 F20101119_AACWLP karlson_t_Page_031.pro
7368be4f24e7549be4e8cb5fb4fb8baf
1a515f418445764ac8169bb20fd49a5a7e2c1ff4
52203 F20101119_AACWME karlson_t_Page_109.jpg
c48d2714a13ade19b960c9846db00695
b43867dc17e6a8db3322bdc093b99476cbdc7484
1963 F20101119_AACWLQ karlson_t_Page_040.txt
5db2be5c0ab1a8fed6b381a9254ecdb9
7f4d5ed17a30507c4a3c0a6f2395625255841e31
1582 F20101119_AACWMF karlson_t_Page_052.txt
0890c424aed9bbcf89b8b37b36364fe8
c38c176118d4444affb4c53cca9f0615ccc9f29e
F20101119_AACWLR karlson_t_Page_007.tif
fb896e1225d8f78c37b221e189a8618e
d8a2c7c32d615a9c4c7c38b1e25adc577a98a8d6
18245 F20101119_AACWMG karlson_t_Page_012.QC.jpg
becdb5d6786571181c078b3f3b96e60e
ab6a317e8e510c2a30c4647b7cdb110df29b2140
73887 F20101119_AACWLS karlson_t_Page_097.jpg
1417e87d7889bb6e144e11370cf715d9
66422e741b5ee92d2d677fc021328e788bc4e4a6
F20101119_AACWMH karlson_t_Page_057.tif
ccaf6513751874db2ff30c405b3df049
7b2e72f6dff60866e7f42f1ed19364b3ec5c733c
22373 F20101119_AACWLT karlson_t_Page_063.QC.jpg
89cca99931bd41a906a57b3b58199fdb
bd3a1d4b98da366eca12d46633787c3795d1502e
2524 F20101119_AACWMI karlson_t_Page_082.txt
3ab2026fcc798b96da9285c1c40b774f
2267df037e90ff49b81885cb8888013f631ad39f
5401 F20101119_AACWLU karlson_t_Page_064thm.jpg
df352a9536462ce42a04696a5b08292e
ff5b37c1f841884f7190cde302531c95383de5e7
23927 F20101119_AACWMJ karlson_t_Page_059.QC.jpg
f4e7f786271a381226c50a4d81454c56
0bf1be376b8ff4e709ec1585c1d4517be4a95d2c
F20101119_AACWLV karlson_t_Page_078.tif
ea0c4aa11e52a1eef3fa42a932209dcc
4539799755486a7f0468d2eff43addefe295514f
110607 F20101119_AACWMK karlson_t_Page_108.jp2
374dcce5f8aca0c40b4610d13f2e342b
29b6de1e23eee61bed891e21d547831702606185
21633 F20101119_AACWLW karlson_t_Page_031.QC.jpg
ea67e386737bac54f4a979f33ec2edd3
1fd2e78958a37445cf71ddfc74ba2300f8f3df68
82251 F20101119_AACWNA karlson_t_Page_043.jpg
9f36b0e7a4b85b54c2e1c08281887b5f
942405a7762ca86fc5d348f5950cfa686a005e16
1768 F20101119_AACWML karlson_t_Page_049.txt
8f696dcd7d1ab0800b789dcddd1f10b2
835a809dc503aa803200037a784f238fe3b3dfef
1657 F20101119_AACWLX karlson_t_Page_074.txt
2423920f0004c124b47bad1494433f8a
1893d95c715ef31af75bbc2177253c54134ef881
1051984 F20101119_AACWNB karlson_t_Page_027.jp2
0a184f204d0712efe26afba9699441c5
54f098710693ad3e964fd64d582a7ca400203c8d
9461 F20101119_AACWMM karlson_t_Page_016.QC.jpg
da185a589099684e99c83500578a7e91
bad696fd5e766bf38bce912bcac7a226f58ced3c
1566 F20101119_AACWLY karlson_t_Page_098.txt
83d55979ae775c49ce6704158571df16
e6c51620f850528f01192c311ac10c83f701f10c
64158 F20101119_AACWNC karlson_t_Page_127.pro
76ea078659a09660ecf5451961b4809d
c39448fbfae23f3b475034729e675c87512f357c
6212 F20101119_AACWMN karlson_t_Page_025thm.jpg
e6b142bc0148cfbdb96fed8f588dcb27
839b5169a6ff6d75c655c1854f332fed6fbba914
7023 F20101119_AACWLZ karlson_t_Page_127thm.jpg
8d20e26714ef827a83c3327c5e63a03d
bc2875db9216428d152e44e26148e38ee902d5ad
6596 F20101119_AACWND karlson_t_Page_095thm.jpg
09714e5d2f45b967bf620ab26840d42d
4df7ad140243b03e5ac98a1004a8705cbfd8be02
817 F20101119_AACWMO karlson_t_Page_122.txt
63cba53331326a0460ac89226ac42f05
d999578ae51454e2c91974fdd8ee8e20883ee00a
45636 F20101119_AACWNE karlson_t_Page_123.pro
0a577ab29ca1f9cb0ac19971537d3ea2
14022821058f7eec84ee62b00becdc6ce09e66b5
103836 F20101119_AACWMP karlson_t_Page_096.jp2
4595036ccee8f86d03b4af5ce247a7c1
b3a1a59946f5fd65bea08517615b98e62986fbd4
2189 F20101119_AACWMQ karlson_t_Page_130.txt
5690d2fc35a05ba72f006916b22e2ed6
85f8e8a215dc742f7360f86e4c7ffb2b65f9e490
F20101119_AACWNF karlson_t_Page_074.tif
386e0ec8242e8fe808296d08e277248e
cf62d9f2cfe8606761c6b831f9f956ec6941fe0d
1924 F20101119_AACWMR karlson_t_Page_015.txt
47ea528247906fc68b9a7ac0e160d0b0
004a972e9229dee1379f41f2a2a54042be010edb
68686 F20101119_AACWNG karlson_t_Page_032.jpg
7bf73683536df0d914d5eedcf7f1d957
2a77106226c21e0a968ea45c53d06f680932906e
7146 F20101119_AACWMS karlson_t_Page_041thm.jpg
605ce1f439c001c5e23855ac05d0fd66
bac4dc900b558d6af02a8b0eb08a363aaa0478b1
48926 F20101119_AACWNH karlson_t_Page_042.pro
8deee830051e667a224a367fe8bd0ca5
c46fa7ecdfb429587fcbddbfe82fe88354153e7d
F20101119_AACWMT karlson_t_Page_131.tif
aa08eb9a8ff8ad803c7ece7ac962d1f0
cebb9fb768d392843cbfb6996dee2936e5d7794a
88654 F20101119_AACWNI karlson_t_Page_127.jpg
1ad6a333296ed8f9ce54fe456180ca32
78f988921f85fc0b5a3c879111d50fbbd2bc2fc6
1769 F20101119_AACWMU karlson_t_Page_114.txt
dfc2630bc3c11d48e844224202d2c174
080d6fa7b709bebd40ea433743dac4715acb034e
2009 F20101119_AACWNJ karlson_t_Page_024.txt
40f8a45e83107890a8c1732ba727e721
c6aab7293577849967246749eab24d1588640f52
6120 F20101119_AACWMV karlson_t_Page_089thm.jpg
0fcdbd331885c01de4a0cfa0f5af5bfb
38196228d4136339a80a52ef73af3ea56304d915
F20101119_AACWNK karlson_t_Page_077.tif
061d74867072319eade6cd70c38c6d0f
5d072fd83366cb7c8ea9d70ed5b417b647c8cccf
25602 F20101119_AACWMW karlson_t_Page_035.QC.jpg
9dfd1e4a38f6aadb935eed43bdbff506
ffba32fa513845c48daf046db85c38ff45f6657d
6092 F20101119_AACWNL karlson_t_Page_098thm.jpg
07fe76a382ecc2bcf3b5e97b415fb757
e6656d7c9cd628e15f583145eab2d2a7a5056531
88529 F20101119_AACWMX karlson_t_Page_091.jp2
32c6ae725c802980f470b4331bc3e1b7
bf566ffc9bb13b6c7bba8ad3587191388fc72ea5
115481 F20101119_AACWOA karlson_t_Page_044.jpg
d222ae0c3d909e429d7a301ad159f2bd
77bfff773ca423f19332c4efc44c475d553124eb
52776 F20101119_AACWNM karlson_t_Page_083.pro
58455acee08045fc3ba1e0d225292f9a
81744d271f9841d2894c5d6f5b46b94f662273a3
F20101119_AACWMY karlson_t_Page_070.QC.jpg
2f581daf7be54d17a65378bd4047e983
3c60c6bab291b4116ab5d918707fe803077024af
1703 F20101119_AACWOB karlson_t_Page_107.txt
5a596892b71dcda8532557da92a99347
5086b05a96c890513a56869641dc3421ca9be994
2424 F20101119_AACWNN karlson_t_Page_001thm.jpg
32c2583c07a765fb361e9992b61fd9d8
4b00fbf58101736f0d36b83ba44203c15a76b2d9
51122 F20101119_AACWMZ karlson_t_Page_034.pro
773cd0dea5b07c4b69bcb1c828118e90
4969e5bd83af624a05044d672c88b3cff76f8b3e
62035 F20101119_AACWOC karlson_t_Page_062.jpg
77381424ab401de014d8fbd2c28d31ab
0ddfe3416a44a41213d6a2f75458b1246552e1cc
F20101119_AACWNO karlson_t_Page_121.tif
06702fb0e584b7e4e7b21126e8d510de
2255542f0352794d2866f0a7c433f69192b82353
21557 F20101119_AACWOD karlson_t_Page_049.QC.jpg
d6c4514a0a81d498d8f6b6d0b1ce4b4e
953a1b9df97446639048613bc5b64683bfe97594
38363 F20101119_AACWNP karlson_t_Page_045.jpg
69d969bc7f4f5fe2b8d2f948e346d981
de54b93655672b9f6a73560020235b60c7ce9d03
F20101119_AACWOE karlson_t_Page_018.tif
334204481c3091c961fed48a5229c5a7
c29bb112e0264ceb3ffff8eee5dcbe8631d90f38
2602 F20101119_AACWNQ karlson_t_Page_128.txt
36a8ff44cf5fe596ba4351d0829cedf5
be2cc006f5a54fede3d958f4ffb1d207841ce52f
106072 F20101119_AACWOF karlson_t_Page_007.pro
c40df7744deb1e169f52f16c88c371b8
c1bf3b2aa28651e2a959660af7a21e2974bc4665
863424 F20101119_AACWNR karlson_t_Page_062.jp2
640cf1509a6a2b0ac199d8089a0b30ed
0c053197b1e8ee8fbc43f9885a66c9ce23da5322
13629 F20101119_AACWNS karlson_t_Page_101.jpg
15fd04a547af185c3b8d6a6d02c7fe26
762740e201dc350ae87417f3724acbc26d7690f5
39433 F20101119_AACWOG karlson_t_Page_046.pro
c50720ba1cdb3911d408af454c16b081
fbcfc7c49a73fd5b3cb990df629e6c1fcc06e220
F20101119_AACWNT karlson_t_Page_096.tif
369baaee0771d62ceaaba2e6c36366a9
375219bcbebca3b5fac5ece8d4f895e604e90236
52941 F20101119_AACWOH karlson_t_Page_105.jpg
cd1bb5f58f0c96f90ac715cd53443676
6682f97a6aaeac06ad2569f195c2bc6b0b613638
5813 F20101119_AACWNU karlson_t_Page_093thm.jpg
4fc413e0f321fcfa7f87806f2cb810df
244d56c930a56f29d720830ee00df4423320d6fc
24126 F20101119_AACWOI karlson_t_Page_067.QC.jpg
6f74ee7a8e840de6c1979393d1939f8d
4e86b9c0ef310a7a641d97d7b17801a2393cdd7d
70745 F20101119_AACWNV karlson_t_Page_088.jpg
6a7a27f3c60db8f763cc3cab6cce1764
034c7fa3bec77ec82d0c0a1136b0e9d73ab9c203
23555 F20101119_AACWOJ karlson_t_Page_057.QC.jpg
04f45115e0538608ab8f6144998f5a52
b81fca620a7a6cc40089873ef12a1367de984cdb
46566 F20101119_AACWNW karlson_t_Page_086.jpg
a75f46fcdc5e62c481832e93b6cb8ffd
7b5f5dc853d6eca1565b6f32bc5182a6628e0618
80377 F20101119_AACWOK karlson_t_Page_082.jpg
a195735192f6331375d28061bb0c4262
37ab8f1ab708604425013fea55e0023d4ff76b27
6201 F20101119_AACWNX karlson_t_Page_017thm.jpg
d55c193ca53ad4b3932b952ea99420e7
b9eed62b168072ee0d8d442e0428c2563435e1e1
1921 F20101119_AACWPA karlson_t_Page_057.txt
65bacb92da8ab856756beef14ea30e1f
a4258dd9a56d8dd46854faf85331e68f7e6ab22c
21430 F20101119_AACWOL karlson_t_Page_025.QC.jpg
436b3a24b06afdf7ba7a5c34c5ef3c12
3286b5eae365cae7b09936aef8d72d27543e78a8
1776 F20101119_AACWNY karlson_t_Page_014.txt
e688d17d54a25fbbfaa5e6ddae0ab1a3
6d92fdf11e70da8e4c23554f320f8af535d390a1
66437 F20101119_AACWPB karlson_t_Page_071.jpg
cd12cf101ec00d6593d5d3819ccf968a
0f207e674c82ec0507c67ecfbbc16519013a4a5e
5502 F20101119_AACWOM karlson_t_Page_051thm.jpg
da8649f6f6a3d401d8fd28de7c9d6031
0686309036e32b17573e201e82eb72376f453cc8
2426 F20101119_AACWNZ karlson_t_Page_068.txt
94351260e9e8445fe54b54fd37e06b95
a925ed904a52883c530eab826ba87d3907978bdf
F20101119_AACWPC karlson_t_Page_058.tif
d24c3f672e93ae96ead48610a5fd069f
af361bb3a40f6c5fcd0f3839124826d70abd65ee
6280 F20101119_AACWON karlson_t_Page_075thm.jpg
780d68b24205c1ba50d18f86767c706c
813e5024b7593365b5a201dc3c85c0152e231ac5
65848 F20101119_AACWPD karlson_t_Page_075.jpg
c76096d69d56bb87a99bd42bdee1a9b0
e5627d755f93179c39c864366f4525eca854f5bc
1782 F20101119_AACWOO karlson_t_Page_104.txt
c548e86b3aebcb5d00cd685c16691c42
461f16f57e87c840407297f0d4cf3893e738b9fa
F20101119_AACWPE karlson_t_Page_030.tif
029ec6ff42de215446a473f50831bf9d
d2948354a9c44c3bfb663d6ed508b0befcf9d3da
143087 F20101119_AACWOP karlson_t_Page_128.jp2
ca2a7a1a31552417342d4d27db72a686
4ef3f40e2c301b3bd2ae561dca14ca9fb2d23ded
F20101119_AACWPF karlson_t_Page_012.tif
14e54c8fde579d77dca895536d187e46
6b3b54bd81dc5b0da04cf1a4ddf4f16f25ded017
50886 F20101119_AACWOQ karlson_t_Page_076.pro
86c36d96958ca88dbdc5f30773d03f15
e7ab2f7a1ba020f89c46a60dea6ff53ca23bf16c
F20101119_AACWPG karlson_t_Page_043.tif
2b34409866098e33435243b90b92bb4f
7d644dd7ee6a5795760121378f599b8202cd6baf
23657 F20101119_AACWOR karlson_t_Page_108.QC.jpg
fd69d31a11b19c012814380455b22c2a
e2abddc60a59ac476d18d6e2bb6493f39a3de882
2011 F20101119_AACWOS karlson_t_Page_055.txt
41c1b413706f0756b4f34f27a1e286bb
79df3f5742cc4efb42ffed84ba0d0aeb210d683e
6550 F20101119_AACWPH karlson_t_Page_067thm.jpg
7fc8a4589762d3b658ed9303a13177cb
e6a61c58b9f3d74cf0f125b889d3d42302157eeb
44534 F20101119_AACWOT karlson_t_Page_073.pro
e077f7af75967a18110cc4a0f08abed1
f08f63e82620d9066f5680a407f95b6491bfbd84
3352 F20101119_AACWPI karlson_t_Page_008thm.jpg
ac85dc822d0b8ce9a9c725ea79e6e632
7c7755189cf58a3a647f01b1c3753f666c70215b
9269 F20101119_AACWOU karlson_t_Page_011.QC.jpg
73b8ec6218a14a971d94d9049b3777d4
28c166027ce75d118d5b55c8a71b170344379b7f
1879 F20101119_AACWPJ karlson_t_Page_071.txt
a801e7405633c6603a51999d47648dd4
fc5daa083858f7566528fae89bdc83c430a1c11a
1688 F20101119_AACWOV karlson_t_Page_061.txt
bc6fbb10119772fb6fcdfa843d9795c3
f8164d7262d7f48d3ef5e42302f357693e57291e
26014 F20101119_AACWPK karlson_t_Page_043.QC.jpg
bd91384cc5c5dd6e9b284b5fbb08a9a8
10e643c2f503c9d4d8e8a3e85a3a2ad2608d289e
142392 F20101119_AACWOW karlson_t_Page_127.jp2
5f3b6d285a2b4d18fb4400cdb1e1fbe5
ea2c5a298c26a25665e5ae1b2018ceac0f46df3f
56525 F20101119_AACWQA karlson_t_Page_074.jpg
96a7298671dfd73a32a974da4c05ea9e
e7ee399c27f334d4496389a38f55fb67b4e203f9
70925 F20101119_AACWPL karlson_t_Page_111.jpg
8b4a22d1373f25d6c4e7e3f12a5bc16b
d64f7b034ef05cd1f7206c9df8f61dbe4e0c6fcf
5769 F20101119_AACWOX karlson_t_Page_054thm.jpg
d4bddde35681ba7cda3b9c15d53ed51d
b2142ddc42e6835c017cd8170115214b60fbf9b0
F20101119_AACWQB karlson_t_Page_128.tif
f0e5bd3eac67ef4243733aa1f4104eae
8714d4731a5a35005a6177f8d0478c350117a948
F20101119_AACWPM karlson_t_Page_010.tif
3d8f18b5353c555b5c81f51e6de100f2
75dcf286f392380e1030e18049a9b4c34dda0c56
19980 F20101119_AACWOY karlson_t_Page_090.QC.jpg
b7ee5628af12537d52aa03be0a987f09
93ab07b0dc7f17c576fc351ae3f47cf195729f9a
1369 F20101119_AACWQC karlson_t_Page_092.txt
fa864369d8a2cccfa24ad3726cc6f48a
527a54930b0061cff74c0f7d8c7803eb9b2fd61a
F20101119_AACWPN karlson_t_Page_041.tif
5b1d0f61ff48b5f94940e1138c027b50
ac17b0cd662b8260abc5dae851cc5fddb100bf95
F20101119_AACWOZ karlson_t_Page_052.tif
954e09522757aaa19105b6cbe731c0e8
0982eba1fce9d99b4c9daceae4fb7ab09786c964
11373 F20101119_AACWQD karlson_t_Page_008.QC.jpg
761fd31c678ca2d1e8225f582aed965e
fbe01eb60bd9ef3dba87f7cc6a2f725369ded27c
637 F20101119_AACWPO karlson_t_Page_131.txt
d30cb79a1a7c5cfba1961f9415a86ea8
f5c6f35df14ea163f92d1516194d3cd63a84ff23
65750 F20101119_AACWQE karlson_t_Page_100.jpg
a5a1491180a8f3c8edc19f9cf7ed49c5
61e0ff4506259e9f1c1eb6712b0f4d2ee661dc69
22490 F20101119_AACWPP karlson_t_Page_096.QC.jpg
68c6d181711a0ecaeb5b7ebb7d963007
843230da6d244127b3c1a817c5c6929c2143da60
F20101119_AACWQF karlson_t_Page_029.tif
86d60f0809df354fb99eec356199b820
902bd6ed252a1a5032e5d227bbbe3c3337fa68d7
F20101119_AACWPQ karlson_t_Page_024.tif
5599162fdc196220c8231e2ff08517de
f5045962190007f8c3c0669a234be4af32a6a7ca
75153 F20101119_AACWQG karlson_t_Page_047.jpg
85b10cdcf5c9a72404896a309a4edcbc
ef20a43f6ef2108509133a3ca34fe919d376069b
47402 F20101119_AACWPR karlson_t_Page_071.pro
7431925c513e02cd12389f20b73e8a30
136eb5c63a041926e7ddee81de7b970310c3fb4e
50206 F20101119_AACWQH karlson_t_Page_061.jpg
b3fbe5f6a2c6dc50dd8861025fb6c38b
ff6a41f24224d4bddd3ad08a5fb4e3c148e775a6
61747 F20101119_AACWPS karlson_t_Page_086.jp2
184762b1adb261d37356ea3e637de69f
d88d0388ec50280b0708cc5895fe5a9599bb6f48
725060 F20101119_AACWPT karlson_t_Page_065.jp2
b2f1aca16c1ed89cba8882a4883544e1
666e05ff671f8ad72d740517bbbabdb4459e1fb4
F20101119_AACWQI karlson_t_Page_023.QC.jpg
e4e4fd0ae3d10430c0db2a45a323c9de
d921bc1de9e4c192a52c8c91823fd5d20b97550d
23827 F20101119_AACWPU karlson_t_Page_112.QC.jpg
eaf07d94165e29b65d5437d66bf08d9f
7b8475839560825925c57de2c1e61f982d6bc0b9
49502 F20101119_AACWPV karlson_t_Page_069.pro
317230150aa35cb32f4f154147e216d5
07ab67d6fdc4c80b6398e152ce00703a5650ac5a
1903 F20101119_AACWQJ karlson_t_Page_096.txt
8836ed63cd30e665eb91dbe80f3944df
fec9d2f05590b8d2ead9b478e25b12d727eb17a1
584 F20101119_AACWPW karlson_t_Page_106.txt
1c7c6729e0b8d9e22d81b24cec1d277d
291e4b2ca2cc0e6386bc4538e16986b242074561
24562 F20101119_AACWQK karlson_t_Page_018.QC.jpg
81e50a219ee7c558ba1086bb94789cd2
3f2eb12751570483f8565478510f00151511f150
F20101119_AACWPX karlson_t_Page_034.tif
449bc14887614dd7656633d790b8396d
ab87bfdb678d96de51462c8ed24c86897a644487
F20101119_AACWRA karlson_t_Page_100.tif
f17af53f44a5cac37cc6c2eb9eba281e
152283844953a8fae6bbe5566f25a44a6751be50
1803 F20101119_AACWQL karlson_t_Page_031.txt
b0a7df838cc83d658d8650cd5bac07a5
28dfc1324e590d0a3ef76ba2ff0898727f73f3b8
2800 F20101119_AACWPY karlson_t_Page_011thm.jpg
2b9d8e0b7d2d323357695e537ca000c8
7457787417e9858bd4fe0dca461cb1500d8f4dcb
692078 F20101119_AACWRB karlson_t_Page_105.jp2
71fd70ac65e962a74353fdc51f05614f
21fe7221d889b30cf006c9e041980018f7eec30f
903835 F20101119_AACWQM karlson_t_Page_098.jp2
1e7db12c2739257e0a5b0ca8de18d9bf
9e00cc6d20459f22ee432e4e058b4c3bf56776ee
61105 F20101119_AACWPZ karlson_t_Page_118.pro
ffe9d17efca107b7f8e7707f2bb6c156
e44f3c99e042ea90c3f3e2f2143a2823782a12e0
68379 F20101119_AACWRC karlson_t_Page_094.jpg
5068d0613f8648c391652349ef8cb8e6
b92861e4a5bff35e9b787fbf8f03854624827098
46145 F20101119_AACWQN karlson_t_Page_126.pro
91374ecd5a6dbe27836e310d6b5750bb
f29af600189ab5881c8305d65e79935a19aadbf2
62226 F20101119_AACWRD karlson_t_Page_114.jpg
60e7e029560248a110f660d4928c2c88
1ac1664087d62867c9c4699d05c2335ae8d6d2ba
70015 F20101119_AACWQO karlson_t_Page_117.jpg
1301681af40bcd9228fcf3319342ea68
36bbeb6032cb16de76b194109d15b97d3cb8e558
801546 F20101119_AACWRE karlson_t_Page_072.jp2
421dc73dc15c6788e2c7b1a43ea619d9
b53ac640d8915e0c319758aedcca7b911d1f9834
23509 F20101119_AACWQP karlson_t_Page_081.QC.jpg
d35af2e43b90f02096bb9d4b0b484a55
34f33d3bb07728239c771afefd5c2fdf2d326064
46951 F20101119_AACWRF karlson_t_Page_070.pro
44218cd1992c3585ee059b7001bf00cd
fd7233cf0bc1b9ed3e1ae6ee06f6013d00e193bf
100657 F20101119_AACWQQ karlson_t_Page_070.jp2
c7641c8227d24db06e18b34d027195dc
201c72306f7dff55c37150c152167d7eec35a4af
96207 F20101119_AACWRG karlson_t_Page_129.jpg
c9fdd4077967c33f17339802f9a39656
2ebd3289ef6e73e55c133d8ca06ee8278d02ce9f
64816 F20101119_AACWQR karlson_t_Page_098.jpg
40390f81e7fcd297a29e48ba109cd9b2
605bc8d9522ee522a876a4d3bc4dd15b7242b143
14639 F20101119_AACWRH karlson_t_Page_053.QC.jpg
173ec881ac83af2816cd80369a5f263a
f80c88561bf0ef59ae1918690b26b7d948dd05b9
64011 F20101119_AACWQS karlson_t_Page_054.jpg
55bdfc28a16989977f2e0ab3a2c864a4
8817c9b0f30cd3ce8678bce0c208a6264ae9a841
607388 F20101119_AACWRI karlson_t_Page_121.jp2
2370e3895ff84c9a1f3047f4e9d12e51
667a6fd3364ce99cdb31c59895bc4e3bc236c15c
6869 F20101119_AACWQT karlson_t_Page_056thm.jpg
236e1fc214fe090a795e469c2168391e
19aa375a1fc4f4232f8c67c9c3ed0dcedbb2387e
F20101119_AACWQU karlson_t_Page_028.tif
b5e7ede76b1d3fb62792189871303353
36deccfdfac44000b2aa78b7afd0dc71a812cfcb
F20101119_AACWRJ karlson_t_Page_042.tif
d94a9bfc708eaeb9ccb652731e143b55
8411422ea5b57fcf1d71e5a19698ef8562b0f428
68130 F20101119_AACWQV karlson_t_Page_110.jpg
66c39b6fbfed89649d1f5dfc5e4ea330
c01a79a4f1e64c67372485dffe445c48db1c7356
92209 F20101119_AACWRK karlson_t_Page_128.jpg
631b99b60e5dfa8c76bdbb5517e95105
cd254dbfd0526a6f75499c210170547f78f9f29b
75137 F20101119_AACWQW karlson_t_Page_019.jpg
f420ddbe68e5e7ef48b52f2da4f8e3e3
29e39fe8010c583f226c06f629fbbdad40eb9291
6461 F20101119_AACWSA karlson_t_Page_117thm.jpg
681655a59af65a257c3f6349ef6199df
ca1185bb59f73bef8bf359189cdc0405e5664e65
23770 F20101119_AACWRL karlson_t_Page_085.QC.jpg
e6cae3c071d183df58e8a0f821d82091
46abbb9b5554ed98dbdb4448d63e3a6a35dcd50e
109483 F20101119_AACWQX karlson_t_Page_050.jp2
ea49347570a55bcbf52e30aa039e48e7
7df03ace9f8fa9c6e4b86393a8b15df3bc3935bf
108292 F20101119_AACWSB karlson_t_Page_095.jp2
6ef3fbe1e2ea9667fa40529f06e9862a
5291cdfddb6d5920a5b1e249f810e3c46f827623
6272 F20101119_AACWRM karlson_t_Page_116thm.jpg
d296d914b289207bdd2880bf23bfc42b
3483c135f520d2ace80ad633e0b811853e9d9739
6370 F20101119_AACWQY karlson_t_Page_110thm.jpg
0940cf64e497b10235ce4ec74174e627
89a6c90861c5203ef99e79a8a0076613e01cf74a
6938 F20101119_AACWSC karlson_t_Page_128thm.jpg
01b8746df56ea3edb7903a327afb2af8
778cfc0503b35a49c1ae2ada819bbd199c47fb5c
28549 F20101119_AACWRN karlson_t_Page_053.pro
96f4484b0e92cae501a64892ff60b862
8a306108e39815ef0f1c618df5b0bbddc80902fd
2062 F20101119_AACWQZ karlson_t_Page_077.txt
625eb63f53ae7fd9e833a1e6cc216fc8
c5064cf2bbe15d5ce3868bd288d88abab568b4c0
1820 F20101119_AACWSD karlson_t_Page_022.txt
e07555114092772e878a242231ff1f98
88201db94b234d724239cd96fafb376233abe813
966094 F20101119_AACWRO karlson_t_Page_079.jp2
faf9d600d6dc7c27c6750c488a014bbf
581e9f3a2df496089bffd25a249b4b52c01a3006
57846 F20101119_AACWSE karlson_t_Page_010.pro
cf6359d2c43d129824b5e9055d843d84
05aa943f819b1727717b72d2260e6cccf5b45453
5152 F20101119_AACWRP karlson_t_Page_105thm.jpg
1158241e489165cf456a2b6521ad2b63
209aa518fa38cd000f395f9db73e697960bb48d0
105421 F20101119_AACWSF karlson_t_Page_126.jp2
2d108e9e1574ab6385c4fd1ee2c32e84
fabd885cb5e4916da568d6c1e06c4b99d5610ab0
107107 F20101119_AACWRQ karlson_t_Page_088.jp2
0f69e4dd7e751c29139808b89a703c5d
9cce5231b71dfa2ebe429216ca5fd576cd8599d6
79239 F20101119_AACWSG karlson_t_Page_004.jp2
bf8ca152b90b8411dc5e456995dc7448
357975de8a8fd4d64ac8cc161428b472c3311a14
1165 F20101119_AACWRR karlson_t_Page_086.txt
a7534bc5beda856151b526de5e8f4521
6c696a4e9ab6bb7f974dc0db08e0ca4d7fc8b1a3
23680 F20101119_AACWSH karlson_t_Page_047.QC.jpg
16df12597fed931600a922e11d4aec24
1ca6ba937a98aafae5319b8d3135b334415dd07f
1051982 F20101119_AACWRS karlson_t_Page_021.jp2
fee9e6471e31cac3d3fae14a2977ee12
c4aad60d667381de452164f08bca805dd89b34ff
2599 F20101119_AACWSI karlson_t_Page_127.txt
ecb24f3cc4c88d4d2c591ebf7fbf4cf5
296736d99acd50c617f984219d88cd6d0c25efd8
47208 F20101119_AACWRT karlson_t_Page_075.pro
04671f479870e9c1e4293dbe9d693d21
307017e1837eb312310437febcc64ddbb484a052
53314 F20101119_AACWSJ karlson_t_Page_130.pro
92048dbfe727aefd50c2334448d5ece2
33b4a0471ff3970fecbd33464270c29530162a6b
F20101119_AACWRU karlson_t_Page_106.tif
5ecc421db62bb33f0e7477b95566a5ff
49283589d8db21f1539508d425bdb4c5902f6e0f
2169 F20101119_AACWRV karlson_t_Page_125thm.jpg
82bd8d9bbacdafdf04e11e7e05f351dd
110eacaf57261c10062dc0106423140fe49fd97f
22599 F20101119_AACWSK karlson_t_Page_079.QC.jpg
68581cda275a74345d91ee85f6a0a008
4f524f29e13658d17e21bc820818b5134e7370ee
16927 F20101119_AACWRW karlson_t_Page_005.jpg
31ca4c536a8c7d4f2d2182fd3f6e679e
aef12c950fa0a65376717dc8451a386e370e4432
93594 F20101119_AACWSL karlson_t_Page_014.jp2
58a18514b2a3e6e682056e0586265ae9
ee9742bdc37ae4285735796132c53536e057e394
5989 F20101119_AACWRX karlson_t_Page_007thm.jpg
afdd6ab37cbde8a5989196307c9c65ca
58629aba98981c57f2d830886f3d847797ce1bf7
109347 F20101119_AACWTA karlson_t_Page_112.jp2
f49b344bcb17f83ff0833ae83d9532c2
79b38c30387f2416e80b93e829674736675225a7
31020 F20101119_AACWSM karlson_t_Page_020.pro
f62d0101f76e3e3dab92f4f1ec285586
c32a51898c8bffb851d33af969587788fb87df0c
6838 F20101119_AACWRY karlson_t_Page_034thm.jpg
586ad49ec6d446d7fd0cb5cf3c06a01b
3208824bdfabfa2da3730947fc3bc5446a4aa540
6676 F20101119_AACWTB karlson_t_Page_027thm.jpg
db8b738f881c219254d061ecb7d524a0
5e4e24e003d6858c7b8083f492e6c9e78f69e678
1970 F20101119_AACWSN karlson_t_Page_075.txt
49342d8d89d8699f5e18612e377ac35e
e7ad4f6497b588c99419e20b16359e2cd811b8d5
2398 F20101119_AACWRZ karlson_t_Page_113thm.jpg
c99ac27a349f6c08bd2747adf94a65cc
bcbb62b42d77f5a3bdb7fdbbe247c07a3592b5d5
17834 F20101119_AACWTC karlson_t_Page_072.QC.jpg
55e784bfd51ec93ae9559125a0cab7c1
be0322856718a067971b7ca0b2de3936251c0102
F20101119_AACWSO karlson_t_Page_091.tif
f0f091fd823389dc18bcd9e7df99e624
71b4faf95c8134ebb71cb77956a9207e8e79066c
2020 F20101119_AACWTD karlson_t_Page_005thm.jpg
16d8eedbafd3f1b1ea4a80d933251983
050cf4f953e44f93e99dce13586c8df262be6d46
80333 F20101119_AACWSP karlson_t_Page_042.jpg
51dc844ad7b11487e0acc32a2209620e
2a901f67724fdd12a1e19a8e1b7c8d7d6b4d15d8
18072 F20101119_AACWTE karlson_t_Page_068.QC.jpg
7bfa505f9c239525171d8361c061b6af
cb5f0de9de69167eee249dff9028e933b89ee715
6688 F20101119_AACWSQ karlson_t_Page_021thm.jpg
b6350843fbe7b0019a1053e5e8822686
a976e5d5f8e0152c2f2b5bef0ed6e185ff35541e
2003 F20101119_AACWTF karlson_t_Page_041.txt
d44b67004cfc1ef33e13f124ad9b1250
68050fb2272f6c196e5d74059e6f33196bf58af1
1660 F20101119_AACWSR karlson_t_Page_046.txt
ddcc7d1c9ed8d9bdf01fc8a0f5f20742
750d5ddc8869ea3431fe6279179a3f1356453d49
106589 F20101119_AACWTG karlson_t_Page_069.jp2
4e12070262e3899ebbd81b60ca2f0180
eb56427d2bfa0cd3900ebd7568e908a5a1c58aad
50533 F20101119_AACWSS karlson_t_Page_065.jpg
e0f62be507342225de04fe97d2721bd8
89928c2c30f886801a86d04f567902d900119774
19497 F20101119_AACWTH karlson_t_Page_028.QC.jpg
b2aa6b9c29eec761fed87d684b200d7b
e935918695d420402307e30997f439a9014a6f9d
15461 F20101119_AACWST karlson_t_Page_086.QC.jpg
b206e974cb13f4707495bba4695793f4
b210507d42d5d38ad9ebb4e07ac8af5c9ff87363
77308 F20101119_AACWTI karlson_t_Page_018.jpg
04a0e4d528ad4efab9a05d1a91ff04cc
de478e7d1b37d9c3dc0c84ce64ec748fdc1e7c7c
53266 F20101119_AACWSU karlson_t_Page_121.jpg
bd4c5a810efe8685e4af2d4ae3e76aa2
edb2fc80fa7569bc265839164fbfc903c34520e3
23561 F20101119_AACWTJ karlson_t_Page_124.QC.jpg
22bf8532dfba9177d1d5f18b55004043
c5a9459859a64afe34eaa3b5b809438022a3f9e8
19407 F20101119_AACWSV karlson_t_Page_122.pro
22a8abd4646d27db392c42af3b031287
9322f5cdc5d5915ba059ebb11a59c0431e5125b0
107080 F20101119_AACWTK karlson_t_Page_081.jp2
d346c3441d90d7acd16a591eb23a595f
10c1b171dc797b91628acfe9bed460a9ebae343e
F20101119_AACWSW karlson_t_Page_013.tif
788faa2a60299b1ba3b13797bf72c628
b0701da627d4130e7f27d20e1ff618024a037b71
80152 F20101119_AACWSX karlson_t_Page_024.jpg
4f1bd0bbed4006a183d9d68e9f884e99
e1807940c17e7d7c49a81556af2ad36478a1f4b1
113685 F20101119_AACWUA karlson_t_Page_082.jp2
2d5b609fccd1b9e5f12e42b64c800c7a
d0d2e003515053e603b03cb8e3783fec4ebb2b90
202 F20101119_AACWTL karlson_t_Page_101.txt
d2bad926c9099f15d7a0547d2f6f7f7a
bd62bf98e0d851c3b7642d6c21b9bd76e2abde1b
880180 F20101119_AACWSY karlson_t_Page_100.jp2
07c5455501627445f21409cf439877ad
f5ac0c26cac8c1b8f4a9618fe47f134ed7f38be5
114591 F20101119_AACWUB karlson_t_Page_056.jp2
abc2ecb48a353656a86a1658498c7a82
779365a95575a5ea32f4be223fbf45a2ca0d11da
102310 F20101119_AACWTM karlson_t_Page_099.jp2
d519fabb6db0cfaa856089d13df70c81
7722d24a6a1a82ddf8349c4268f8be1361f51bd0
2068 F20101119_AACWSZ karlson_t_Page_124.txt
8388f3b6beb0158e25518a58b8f5de37
58f0936fdb06594bc0fcf1ab69e5956c3f9bfa2d
F20101119_AACWUC karlson_t_Page_039.tif
136ab114e9838e4568f67b11cb53052a
495b0efae93769b9201651160040d2b332d9b745
1051970 F20101119_AACWTN karlson_t_Page_010.jp2
b48c4b3ea3c1e9d52a6c68f088696a1a
0764819162d1a9b6fe19b2eedffc2634aa0b21de
26085 F20101119_AACWUD karlson_t_Page_109.pro
7c6c3d86325537ffbae1313ae56d913c
c6fab482d63289eff906a91f054c09c2343adda4
42516 F20101119_AACWTO karlson_t_Page_014.pro
12e640b7419f1b2f6214ca9eb69a8f53
2fef2f95324cbdbc57da2a3ccfbe6eabd73b4192
104267 F20101119_AACWUE karlson_t_Page_015.jp2
4cb7b9c742627c4900d6d24455d98d56
632b78f40935a60bad43bd5c06d2b6f47e098d1f
99507 F20101119_AACWTP karlson_t_Page_007.jpg
85618e13d9a365938b304f3215ecdb08
e2f1c166ab0ee2f8fc98d10ed8d8c95ca0bae9e8
94353 F20101119_AACWUF karlson_t_Page_054.jp2
2083ef1afd95cf4a3db9b9f9be4b0f6f
19f9bc910714adeee740ddeed102890f8a7f0b33
20438 F20101119_AACWTQ karlson_t_Page_054.QC.jpg
e424f27f9005838bddcf074e223940c5
e971a14c94dd0587e3f41f21ed640273b014b58f
24191 F20101119_AACWUG karlson_t_Page_097.QC.jpg
50728f8086b82c769e75c271ba357e4b
dc6280aa1f284fd01ba4382164acbc7349aaa4d8
2036 F20101119_AACWTR karlson_t_Page_043.txt
5bf49dbd3f344fb0e778629ce481c738
537cc88dc2eddf7c9d95eaa662a664a9fa3d6fd6
35220 F20101119_AACXAA karlson_t_Page_004.pro
2e88673927bb01f615ce3ecada469005
03f384ae1a4248d69013e65b4892aefe3a8bb43e
22634 F20101119_AACWUH karlson_t_Page_017.QC.jpg
5a777dc1080f298740e73ef2374bcb54
18a3fcdca9a08c0d2c7ef4ed4335ccec8709eac5
16746 F20101119_AACWTS karlson_t_Page_016.pro
45d045cfa1a563c1618b81fcf95ed3e0
a3d060447c821d6400c0183fe6e42ec4748dd1c2
18678 F20101119_AACXAB karlson_t_Page_011.pro
dfaf480b4641eb2a0915c2385cb6d63a
b96f4cbedb5c8a11aa1dda2a33cb9f6348705ee6
23818 F20101119_AACWUI karlson_t_Page_019.QC.jpg
b40fe604931e647b43b3bb379cb09aec
28bf768e5f88d97fd7e2a0aa893fdff666d05d34
1382 F20101119_AACWTT karlson_t_Page_002thm.jpg
ad3969ec95ebbb6b521a944c4fa692fc
6ac4d787e3b4ee69c1ff813ce5c11c9c6511bf49
24272 F20101119_AACXAC karlson_t_Page_013.pro
6ec7646c519acfabeeb6dddb29762096
b0ca7eda50e242ac3d04a3ce428ecc4243cee745
50940 F20101119_AACWUJ karlson_t_Page_041.pro
6db90038ec4ff4a448c0d947812fb3cd
353eea7d6bb9636d65d02f9331ea07c8a00dd812
1051975 F20101119_AACWTU karlson_t_Page_060.jp2
6f5804da76dfb1128430f720ade9b474
847d6ee390fd96e8bf1ae11ce69ff21525d461a2
44997 F20101119_AACXAD karlson_t_Page_022.pro
8593eff9e4a2870b3b045a18a164c326
4450979c61f0fabf1704474595768fb3ce80af6e
104 F20101119_AACWUK karlson_t_Page_002.txt
f2b668163aa394edc504e54fff9b7fa6
55816ba2271084ad34284520400d08f3d21378de
1809 F20101119_AACWTV karlson_t_Page_054.txt
0a75d530be20f8923b3b94d5060f2019
8479b930db06b5f9285a34f983bf2a9391bab4c8
48202 F20101119_AACXAE karlson_t_Page_027.pro
a329d286591c1051367dba1cd0ca9a30
a2d88e80f6a79502ac799dfd4acf09b5e60af37c
9306 F20101119_AACWUL karlson_t_Page_131.QC.jpg
34da56d05e021afb9085fa6b785483ed
1f7c9a31fee375ccdcf3079e924b399130b87ac6
F20101119_AACWTW karlson_t_Page_015.tif
7c17fe0d2f6660554ec6881393b7a05d
97a4b9ca6904b3acea0de0d7aafaf2fb47487c19
36453 F20101119_AACXAF karlson_t_Page_029.pro
4baa3853aa360ef072bd88759bfbcb74
4993a1a632d865083caa8ea806e2e7251fe379e7
1902 F20101119_AACWVA karlson_t_Page_019.txt
c9a3b7e2b39dbc67f24a698f270291a5
1ad9966f0f879a2405db449bb6f3943cb9bb201e
6583 F20101119_AACWTX karlson_t_Page_033thm.jpg
c17a7a03fad869e7bbd45fc04df02440
27bb2186528a2c670da3136edc02b81763f24691
57153 F20101119_AACXAG karlson_t_Page_035.pro
6d817702710ebdca1f3227353243bc66
068953fd33f2a33ca333dcb13a4c55b0ec09144c
F20101119_AACWVB karlson_t_Page_026.txt
6dc1c8a0f76deb022f312df6b6d1b604
1a6e55ab33132a2bcd210beb098c54c7c183bb26
5867 F20101119_AACWUM karlson_t_Page_091thm.jpg
8402c5ca55a5c07c91951d88e3c94bcf
4c67db8d9e7473e674dd677196a2d9e4229d91b8
F20101119_AACWTY karlson_t_Page_064.tif
90ca6424601248879a0454f5e0a94833
c0175785c542081a73c3d0ee96adfdd1033a2866
48719 F20101119_AACXAH karlson_t_Page_040.pro
9ec10c3b18ab99eb1b541c0114ac9049
931549af49390b75b7e727fd081cbe83890d0818
2061 F20101119_AACWVC karlson_t_Page_108.txt
b9e67dccae4538a0d05bec90a6b6e08d
a12b84f0c04321d5dfec8457367d47f279d69643
13346 F20101119_AACWUN karlson_t_Page_048.QC.jpg
ede1524d69616df822105e940bc69609
37f45db9fd9fe2dcde336b0ca3847007550023f6
1051971 F20101119_AACWTZ karlson_t_Page_022.jp2
2fcfdf9042ee86589b6dcedbd786de56
823c197d902e77ed34d216a46ee98cc4a4eca4d9
51684 F20101119_AACXAI karlson_t_Page_043.pro
4a5eae5cea756386c93906e2fac62b31
4cc4bb02b7c02181c5f390bf9cc0d189f1d42ef1
F20101119_AACWVD karlson_t_Page_113.tif
63ffd9600a81cfb38aa3956400078bc1
79b9841aa39815df4fcfa350c2a00f4d08ee41df
F20101119_AACWUO karlson_t_Page_033.tif
ac0a2791e48d596a1fe6563c6e01837b
596773e1ea28037cbc2b87a290c93c456bb343a0
77832 F20101119_AACXAJ karlson_t_Page_044.pro
4a9dcb412539c2b9f7a0beb4e1146942
ee11a223d4c6425bd9ff06bea5af05221ccd98be
49364 F20101119_AACXAK karlson_t_Page_048.pro
2d358844216450741d9cd1ef223d52b4
8c68e821896dca5e2a43c3c2ee26561f10554c48
4536 F20101119_AACWVE karlson_t_Page_065thm.jpg
7522703486d6b656e5309c1c91cc8883
544a7aef648f447e92a3d42f5017ad3987afda1e
5439 F20101119_AACWUP karlson_t_Page_074thm.jpg
565980724303feb58cbe16e8d1c90ff9
aae09a59ab7fb9a5d7738fd6402fce623deca01a
43829 F20101119_AACXAL karlson_t_Page_049.pro
3775e52c76d5aebea04e40271542a621
32f0ddb08e08cc150931660ae6190d6f30737ab1
971 F20101119_AACWVF karlson_t_Page_045.txt
0ad0726e61d073696c2a633e333d8208
637d836ecd5cfc9609287d7c9408a8c226407740
23348 F20101119_AACWUQ karlson_t_Page_111.QC.jpg
a4fed277583bf03f6bf0afb08be4854a
a2c058567aa69c72f0c769cc70d57bf410a3d62d
41745 F20101119_AACXBA karlson_t_Page_102.pro
a291b6eb5f7b7c848e8baeec328ef940
4ab27ddbb82a6910a32b4cdce9a46b5fe9122b42
52147 F20101119_AACXAM karlson_t_Page_058.pro
01661bbc178f17785e0e75965bd5519f
d07929cd9b0c3b444e1deb7ccb459dd1e82ec61e
F20101119_AACWVG karlson_t_Page_025.tif
b72dce1c883f38106f91b100dbfd76dc
dc5edb1cb992d02176f9b2e4ff1aa66c97daa62b
50927 F20101119_AACWUR karlson_t_Page_024.pro
346bb965f9d4c98e67ddee2d15d41477
80d764d2c6148285442b8393a7e3e64dc4817fa4
46693 F20101119_AACXBB karlson_t_Page_103.pro
a81b21b8847d28649ea1b80470555d47
06259c0ba5d4c70d45f96ae113103de5749e09e4
48645 F20101119_AACXAN karlson_t_Page_060.pro
6f23df72b319876c1e6b3e4af3ef43cb
82d3563e799c8b7474acd6e699b918a0a20f2dbc
24058 F20101119_AACWUS karlson_t_Page_001.jp2
fbcfbbe027d79ba2d56d6bf52bcb180a
cbaa0dcaf3cb4f43b50c330b08530f701195ba3c
F20101119_AACWVH karlson_t_Page_086.tif
f9866e37b36e3b480556268d747a1b86
3cf98ed814f6b551283039e1edc77dce8017675b
41693 F20101119_AACXBC karlson_t_Page_114.pro
39dbfa7ad516795d863a4058f10ed875
26001c0f918abcc76de7e3f77af1eb89291d8b3b
23506 F20101119_AACXAO karlson_t_Page_065.pro
aebec943e54874abb43420d86008a2e0
42e20c55a224354db13e1c50624440e97346e1f3
1051905 F20101119_AACWUT karlson_t_Page_040.jp2
9a681d37056aab2fbd221e2a3a9e6fcd
916b838952efd0083075abbdb88daaa6d9c57eba
F20101119_AACWVI karlson_t_Page_085.tif
f0f1567b15b66afb77bfe6f509eb5477
026b8cce472ec2970daab12fbd99c5ed80588077
19205 F20101119_AACXBD karlson_t_Page_119.pro
8105d06e9b7932f22a23966d82ea6d80
67d29b47ff8c280879e069ffa602a145c8be653d
52878 F20101119_AACXAP karlson_t_Page_067.pro
b382af93272acc99214811452fd523e3
9e07d380818196d9bf057cab3bd607706d99b7a5
26741 F20101119_AACWUU karlson_t_Page_129.QC.jpg
73528dd8bd914b86c21c43b95fc99331
c66f17e6a0448dd2dfbdfbb6c6a5851480274549
35749 F20101119_AACWVJ karlson_t_Page_052.pro
0f1238d10a32101360e486a494f56e77
366853fa23037fa874885638a20bfcc9f65aff45
8346 F20101119_AACXBE karlson_t_Page_125.pro
195cdef11c3372c17c33e49af6136ca5
e225b17a914d38fae1c50c5e4efa7235ac6a3462
38770 F20101119_AACXAQ karlson_t_Page_072.pro
0b99001aed7059aa74d2fdb47516aad8
78c680867154b9921f6ceec80560707aca728120
1051956 F20101119_AACWUV karlson_t_Page_039.jp2
b34b9cb9b4d1b09b22bd3b6107c0b22d
90bb9452823881de4ca17c68e97a7f255fa9d2db
48794 F20101119_AACWVK karlson_t_Page_094.pro
fb7e0a60cf5fa36713d753c9e20743b8
04532ea9873a44961992c376c88da4ea01436e89
132 F20101119_AACXBF karlson_t_Page_003.txt
36f37ee115b30b813c09a199c0681be9
c775823e34e57e2c895e0be6bc8a3d6238e31f87
53150 F20101119_AACXAR karlson_t_Page_078.pro
e88fb8cbf9b23e6c2210c8b5f5231936
15c86819fcf561f3ff96753232d40cf4fa08243d
6533 F20101119_AACWUW karlson_t_Page_076thm.jpg
1d0badc7d4e631139cb2b32c82e7025b
2cce54fbedcf68e53b38112e5f845c7ae6ffea7a
16686 F20101119_AACWVL karlson_t_Page_109.QC.jpg
5d2557fc8eac61a8f78fa8e4372180d8
79eb0f2c067f80535620df8ff1b7d88b1eddcc8a
274 F20101119_AACXBG karlson_t_Page_005.txt
08a968eba04c6b34f34075b150f19c61
c4cce48936cb40e521c94b97ad311925a63c7a25
50653 F20101119_AACXAS karlson_t_Page_081.pro
5e096e1237aa7d41801e7d2df15b64c2
5fc04f5ecc20d1471de9c7d273c5767ed3020511
6937 F20101119_AACWUX karlson_t_Page_042thm.jpg
b6c33326b82452f1e20e1b4289633f07
71d33ba79f791ab76f156f2803e01a97aca6dfc8
2044 F20101119_AACWWA karlson_t_Page_059.txt
5847c25d7147e8c995ff7269fe2b73b6
c5158a8ca01b38d4acfa798adcdcc7409248e9fd
593771 F20101119_AACWVM karlson_t_Page_122.jp2
2b2fa943ee40c9f7a3390a87ebdd11be
c5a41851349b03d20b77ed9fc77b5d43f166ff4c
3341 F20101119_AACXBH karlson_t_Page_006.txt
19ca41aba65e66f2faadb0f9f75fc815
fe2fe1313534375975ed8554b2a55d5ca46b9461
50746 F20101119_AACXAT karlson_t_Page_084.pro
0952fffaa45ab155bfff2ea6cbed5adb
9a3b7dbd8dd108a8cd7e73b082f910b47e6726af
6713 F20101119_AACWUY karlson_t_Page_005.pro
8ed62bd1b9934ba036341d2e20f4e0cf
76b3d0afac4189a8fb1d866f5ba9c72574f791bb
106683 F20101119_AACWWB karlson_t_Page_111.jp2
bea80978e7f289c4f382843045ea1e4b
8bcfa1d589d953c47ad7e0614afd6289f17db4af
978 F20101119_AACXBI karlson_t_Page_013.txt
8303b31a736643214bad996057f8260c
83d32875bade42024bf413793f35a93e171c7d5a
47567 F20101119_AACXAU karlson_t_Page_091.pro
8029ba9793a24479280cbddba23626a1
4caf09f2f6a543801ac2d647f09960a7acb05402
47773 F20101119_AACWUZ karlson_t_Page_085.pro
22ded2d5b1b5747474deeb9caeb1d790
787e014486aa125f46533ac577e4e3aeb81fbe92
6840 F20101119_AACWWC karlson_t_Page_060thm.jpg
aa108cb39a1ffcb548d6a50ce14f7b9f
3a82399f2b5ff5358f6355b50de3bbcd639f6904
1685 F20101119_AACWVN karlson_t_Page_012.txt
1cc5bb17c856a6c1145afdbc1f4435a1
760c5912699085afe19dca2ff3212d68d1d880c1
1830 F20101119_AACXBJ karlson_t_Page_017.txt
7373ae9fe7c8a4331296882940fe3b67
ef087d2ec8b5e7ffe3f8fbec5387b3dc1b8decb8
31445 F20101119_AACXAV karlson_t_Page_092.pro
32f31693d58e9c0d86a8706180bec33c
d7f24ed097f1f555cc684b0498bf91ea1d3fa81f
925681 F20101119_AACWWD karlson_t_Page_031.jp2
2aff07ca858a45795700ba053b16c837
ccf81c2eeba2151cde93cd6a7925df12f8d75e35
3013 F20101119_AACWVO karlson_t_Page_009thm.jpg
eb5941aeb9094bf45d71129d8807a971
294978edb0971f98868045e3dc82d7f000913225
1433 F20101119_AACXBK karlson_t_Page_020.txt
6e9b17aa3270e0489ec1f050d5595e6c
fbf41eeeb74a10bf06803a757eed64339442d779
41629 F20101119_AACXAW karlson_t_Page_093.pro
d9eea5f2c6d0705f83d1a88cbb860799
b93ebc4ed8efdbbc21bc9298b94d6c6314dc13c9
802 F20101119_AACWWE karlson_t_Page_119.txt
9577cb8ccfef370ca3911c675bf8fec4
35519948e5a339e4d31488aa0fa5441a2ae1f364
76790 F20101119_AACWVP karlson_t_Page_026.jpg
f286ba87f1cf272fcabbb4b196f26599
9bcf615acc9e6b3b3809f8483754c731b000994d
1580 F20101119_AACXBL karlson_t_Page_028.txt
773bab4ac0e81734d849aade4fc88879
6f39dfac0778514ff07f3e74d96d1a796260364c
F20101119_AACWWF karlson_t_Page_047.tif
0ff39ca9ce7ab00b1e8c304bfe115d99
cd957d53a1379781d02c5c2352a18f6034d6d702
8038 F20101119_AACWVQ karlson_t_Page_001.pro
505a70fc3065fb11f0bbdde0c6851fe7
2ba57f240d45529c819c4fc7017ac526227a2b6d
1984 F20101119_AACXCA karlson_t_Page_090.txt
7d1bd6fb1af986f3233acd4fa4d19eff
b257eae247f10a93d39dd3898a2cc9ad66931934
1909 F20101119_AACXBM karlson_t_Page_030.txt
551129612839b3165142328c66e04f94
6b5795ff5bc086a5ba4122cfc9899ec9b13af786
51186 F20101119_AACXAX karlson_t_Page_095.pro
ebed78b3632d52e6bef86b88a4fb1b3c
06d0825e8b202d33353022b66add353b5b7ab631
F20101119_AACWWG karlson_t_Page_102.tif
59891d762113c40debc06f855b11519b
3cb8049c87a3f9a85c79a311fd4455ceaac9073f
57293 F20101119_AACWVR karlson_t_Page_020.jpg
8950d610bdbd5916953db969558e5d81
fb5be376c6313f57c674232207f1bcf24c15ba9d
1974 F20101119_AACXCB karlson_t_Page_103.txt
baec78724625c07c3e41f24203240388
02c98f2aff17e06742c885bb5aca6154d7c02162
2039 F20101119_AACXBN karlson_t_Page_034.txt
4f0667c54bc8b917e5343ae02f622e13
a7992a5311ed1110e9a3dcec73a94f4ee2251510
47763 F20101119_AACXAY karlson_t_Page_096.pro
a47975620da73df3118240d086c60d76
acff1a6a32a24a765a83ddeb1c6a618dede5c666
F20101119_AACWWH karlson_t_Page_011.tif
ced3f31ebf1d9ccddd469cfbafef52fe
1cb43630df764f605de2f1395ae0b6138b3b3920
F20101119_AACWVS karlson_t_Page_126.tif
9de2d1d9a0924b5f62f2220afa5d2491
da34273e2d4f0fe7bdf6130ccbc5a4b9d1e95203
1228 F20101119_AACXCC karlson_t_Page_109.txt
42d77abdcbf3679c2fceaa16c6d00868
f67f6add48bb2592e01c1dbaccf1970f391ae420
1939 F20101119_AACXBO karlson_t_Page_039.txt
a35761a64eae9e512d084b9948874061
ea4d7318f61d7529ea2a1e367ef50a6fed2ab0d8
52818 F20101119_AACXAZ karlson_t_Page_097.pro
bc83fb39f405f5766bcaac3201a940ff
77f07166fb4c5f2ce05d535c3b15bb72a9026706
41188 F20101119_AACWWI karlson_t_Page_036.pro
918428824b5df018554c72b2a0f8d2ff
66dcf8240bd9c0146d64da9d548ea168459191f3
47864 F20101119_AACWVT karlson_t_Page_019.pro
18d445366b35f4023bc27fd2be0057f6
dde3d8854dea25a954f936254346817630b4b231
1994 F20101119_AACXCD karlson_t_Page_112.txt
97217597d6d8a7296aad63004100c88a
9e9b061fa5a20873881ad6b8baefa1f1ff5145f5
3208 F20101119_AACXBP karlson_t_Page_044.txt
727d461d0ee342b98c64c3ca370af006
3923ab7a423ab48cfeebf16d89d1c7666ca3dfbf
7423 F20101119_AACWWJ karlson_t_Page_113.QC.jpg
a6bd52845cf52eb739157aec6331c6fc
1676fa8abb854e5f87a8a01748e6937cd5296e47
79372 F20101119_AACWVU karlson_t_Page_037.jpg
d2798ea0d89d78a0a52ee8259c3464f4
97d65364741ccab78c80a54dbd09ca7dd6a3a612
490 F20101119_AACXCE karlson_t_Page_113.txt
51a6d9bcf4251d5926a5517b9a3bb0d8
f66b17e80c91baf0e48ccce9ea1a709008693038
1629 F20101119_AACXBQ karlson_t_Page_051.txt
e6ab0f06d843880127b846f097003867
602d33325245072b917dce6f4203e98e1928fb30
67535 F20101119_AACWWK karlson_t_Page_036.jpg
3f565f8fa3c5db3abe197a7905323c13
d62b210a539bdcb5f92ac3f1c82d1a26ee0ba673
F20101119_AACWVV karlson_t_Page_083.tif
08d20dae99f5e991b425fe7b28c935c4
5e9170e85b37465222b212a0f1739e3434c99224
2008 F20101119_AACXCF karlson_t_Page_117.txt
1460040aa2656d00b2d79599bcab21ff
1116e8c8bf235b69ce706250504aac180b807b73
1143 F20101119_AACXBR karlson_t_Page_053.txt
767b897b3a89a1899e8335f2fc60f70d
12d985d639dc72f61c15ef256db655bbacc3cd5b
81591 F20101119_AACWWL karlson_t_Page_083.jpg
3a4fb810eb7489ee4f024a9268aedbf5
45bda6ad6be2d58721b8f62d73d93b977adf6fef
F20101119_AACWVW karlson_t_Page_014thm.jpg
3159374391eadbe9574b225f08368ec5
0873d0ff3638895ed37eb6a552df44cd7f9f704f
3034 F20101119_AACXCG karlson_t_Page_118.txt
e3281f4b150dbe2876428df034035f2d
8480c15eeedb676d47a64f18f08d74cddd314d82
2130 F20101119_AACXBS karlson_t_Page_056.txt
84f0a0fd26e6b788f2b9ecaacfea5ec3
9892a50ef3a50c5ba4bb6591afb9454c6c4cb229
2072 F20101119_AACWWM karlson_t_Page_058.txt
6406c7d5fc73d7c97de3ed86de934462
6a0943066a09a8ca9ad5550b3c728690072715e5
1450 F20101119_AACWVX karlson_t_Page_100.txt
07e0592c9c5cc5b84ec6b26df7072ed3
d43942f478435838fa12180554d0e33e420d413c
2753 F20101119_AACXCH karlson_t_Page_129.txt
bafd7661fde7686527e1f8e9b55ea37f
8c7f826c40d3149a11d52c1d5e5f9642bb097a9f
F20101119_AACXBT karlson_t_Page_060.txt
d9b6959c9e412f7f4169c86bb8acabea
870ab1e967cba55c78e566985d95815c4c311dc2
F20101119_AACWWN karlson_t_Page_076.tif
592d583e2233f2896a4b8d01cb3d0f5c
c0f74be2bf6b631738dfa49c5798470082bd049d
48916 F20101119_AACWVY karlson_t_Page_039.pro
a0e957cef44fc8fb4210f65a6b6e3d66
f303a36435c17f6f106ad1f4910d20e3c95cba62
1758829 F20101119_AACXCI karlson_t.pdf
093cec11eb6fcecf98031b72d6e84ab2
09265b40f63450cc474f5d8c2bf567588fc259f8
1109 F20101119_AACXBU karlson_t_Page_065.txt
bf8940f1b839d8d706a369126feaaced
622688b95edf43bb8426d9e8f1e3dd3050abe256
55358 F20101119_AACWXC karlson_t_Page_004.jpg
02ddb76d3d282be76f9fa3708337800a
4b72e14b5deba89a3531ee56f5cad839369b0614
58229 F20101119_AACWVZ karlson_t_Page_072.jpg
fcb5acebfa1c3d0f94b458ff627cd6c0
5f33bc7420a7f34baa1071a42a64bff0f553a902
23876 F20101119_AACXCJ karlson_t_Page_050.QC.jpg
fdeb03881c95a579ec44dc652c51c92c
d9bb4e3c838ef5bc1c2ee4b94b07394a62b4c30e
2082 F20101119_AACXBV karlson_t_Page_067.txt
945e3e4375a858813ab20f60e4eaa574
f9551a8d29586314ba376e34c39733a8d09287f5
31293 F20101119_AACWXD karlson_t_Page_009.jpg
4aeae84e818de7fa4f814ffea45ed3fa
23b2d014f66938e1e9b8870a3060f828d7ee0f3a
28495 F20101119_AACWWO karlson_t_Page_113.jp2
a3cc7b5a524e8eb4189c5a184ff50c61
31c4ef1615a20adb08fa500ebe5290277083e7c4
6538 F20101119_AACXCK karlson_t_Page_108thm.jpg
0a9839ec6281501035eef52d8e2ce212
0b085f3cf565533b714fe79ab563c02ef5723fcd
1958 F20101119_AACXBW karlson_t_Page_069.txt
8ab44e0dab0854e2342ceaa4b21d1ec8
17624f4a1343b663f4cefcc4166746bc1d9db59e
70234 F20101119_AACWXE karlson_t_Page_010.jpg
b6ccea56afebc964206fa543babfe746
d2d7391ff06bd8db95e07ee640bde56ecf357771
4117 F20101119_AACWWP karlson_t_Page_118thm.jpg
2b7a58399de0ff63dd1e25fda296280c
e35b9c3e938ba77de3af6c46cb1fbe2e503c40b9
20868 F20101119_AACXCL karlson_t_Page_046.QC.jpg
99b041c82e593016b2891f22f3568810
4452980e19f4337db0b5464d052bd36afc421dd9
2012 F20101119_AACXBX karlson_t_Page_080.txt
d10d889250af654d17dfc5a2bad92394
a786679fde6296cd942c3958e4df271b1cf9aeb6
68054 F20101119_AACWXF karlson_t_Page_015.jpg
21cb5d1416e322ead875888d481475f8
ad07312c0c4d1106bd5087b25da81cba5d68d4fc
53084 F20101119_AACWWQ karlson_t_Page_047.pro
66befc629dd763ced61175a64c2818cd
26cff8b4a118429c385f55da3381307d78caba23
21989 F20101119_AACXDA karlson_t_Page_104.QC.jpg
13011c461e91456caa175a4f2daba751
971bbc7801e81dc23e21a74a7a956a7032312a1c
5643 F20101119_AACXCM karlson_t_Page_107thm.jpg
29537787dac6eb7b65d8e0957ff9d51e
570d942346ae92f7165cb6f2d720538e41befc57
29105 F20101119_AACWXG karlson_t_Page_016.jpg
f2b8a240c1d1898c22a283c1cc2d994c
154d6cc802359e1531bec12d0588969ee04e3a89
F20101119_AACWWR karlson_t_Page_101.tif
8f425070f9d7592ffb2ae973ea390398
71f251c298456a8fff239f8c657894f72fd2de0f
23059 F20101119_AACXDB karlson_t_Page_087.QC.jpg
7d1cc9e9327fabf2f56fad3cbde140de
3bc4d76c7430f48ca708dc5c979741476d2867e3
6220 F20101119_AACXCN karlson_t_Page_099thm.jpg
f8420d6ff4beab2693714af71bbdd28c
deb027cd21f7000d256fbef189d4964973a3c31a
1890 F20101119_AACXBY karlson_t_Page_085.txt
a3c6492a3b4cded6a8b497fce96155dc
bb1ad672ebc08122a8b70142063932011371d9fe
73568 F20101119_AACWXH karlson_t_Page_022.jpg
fb975bc706ebc0dc2c52278ad1dd438d
1006622f22d47695937325d377fa69ff80abc5e4
F20101119_AACWWS karlson_t_Page_099.tif
310a45a482f2ba582aecedd6c72eb200
3b22464fbe7d645012e4d9ff41b0cbc8a8f225ce
F20101119_AACXDC karlson_t_Page_078.QC.jpg
0c8f7c0c6f52e322635164c417e4dc61
467fd3034786215dc837da28e1b9b846f50f0a00
19514 F20101119_AACXCO karlson_t_Page_093.QC.jpg
5349186c99b3cb5f45a648e29943e111
56010db3e641070e3266d89573f8f8b4bd618763
1972 F20101119_AACXBZ karlson_t_Page_087.txt
6f38034d88ca8917bf39504a5e0a3287
0fad48f3c718f0c6c9492d871a67ace1b6738dce
77011 F20101119_AACWXI karlson_t_Page_027.jpg
b458c1d64971f901c931e46c2e4dab0e
3f13589d464e37e591ff7ee6a96eba3486efb057
89069 F20101119_AACWWT karlson_t_Page_093.jp2
eb32bf3fef3ec1cc8aecebe3d7b8bac7
61b243cf43167983ca6af44681bf3d1398426c8b
47761 F20101119_AACWAA karlson_t_Page_110.pro
cd3c4632e8d4cc712dc6d20b3ce78a0d
96d8c8579394f547cecb2c6165493b9f04e1bf66
24226 F20101119_AACXDD karlson_t_Page_060.QC.jpg
9ddd4fa8861f5cdae22a049d5e7b4c00
6f261be231bb53f7a663e330fd2bab449190b265
24694 F20101119_AACXCP karlson_t_Page_039.QC.jpg
c053045f44387b3b4a6918460adb811b
88be885be65543e7ca47173c35a3e3ad319ecb96
90534 F20101119_AACWXJ karlson_t_Page_035.jpg
b8637934563161b53a2c05d23016457b
d2096f19da97cae9bd321232b050813405ad8051
25265604 F20101119_AACWWU karlson_t_Page_048.tif
ece37a2b8096be1fb70253b6a68d925e
4761151cb0598bb160bc0f290423d2d49b845c8a
48962 F20101119_AACWAB karlson_t_Page_018.pro
3d1fa2ce47f90bcb0befde5e8f1e316e
f325dbd183ed5ab2dd77f62207bf8d0d947eb1cd
5828 F20101119_AACXDE karlson_t_Page_046thm.jpg
e901019de572a77c003b33868c51935c
216fdcd85326ab4ee1ee1cd964fb22319b6ebffd
23301 F20101119_AACXCQ karlson_t_Page_069.QC.jpg
3d2dc36690533e7ad72a076783bb4953
054671a9949a03e645cd4596cdf23212be6921b9
78318 F20101119_AACWXK karlson_t_Page_039.jpg
7a4e9c42c0423af96ac2ab19421b0219
e54783345073315ba247747c612c6cb75729120e
F20101119_AACWWV karlson_t_Page_123.tif
6a993c6d61e46a31bb187102501b1f2b
aaab517352650f2c3765bd7a6ff6d31c1789f8a5
2313 F20101119_AACWAC karlson_t_Page_010.txt
76fa96246870f915faf4662fda83524c
686817e6c5cb340131b4a3073da478307fe4fe6c
20942 F20101119_AACXDF karlson_t_Page_089.QC.jpg
f49d3f3c65840a6f35e64a8691554a8c
160bbd44baf325dfc5b03c48ca001b13d712d96d
1712 F20101119_AACXCR karlson_t_Page_101thm.jpg
e759c4bcd19669691c991c50a9d7c260
ff75fdb9ff18b974cb8d01f1ace553bb3f828faa
78003 F20101119_AACWXL karlson_t_Page_040.jpg
e2fdab532a51015d81df989f26766af3
0f9b15ef0988ec16b166bba46f87dfe93829ce6f
13015 F20101119_AACWWW karlson_t_Page_013.QC.jpg
264836521c2b9d5de7031177bf8b4775
5320038018422654fd649a34f8516bad50172b01
F20101119_AACWAD karlson_t_Page_026.tif
b104b470f17567c8f595eb19bda24c75
9caceccd87c0e3949d221e76a3230ca3a59322ab
6161 F20101119_AACXDG karlson_t_Page_070thm.jpg
9e3231c0a6513cb192527538a3ded46b
09814e0fe1261e334ceffa65f70cf4bcf4ac9be8
25191 F20101119_AACXCS karlson_t_Page_024.QC.jpg
4705af0020df2eb4a6547f3869dc4b58
d1f9541b5b982f0512a731b27bbd7e6ed7dff533
81785 F20101119_AACWXM karlson_t_Page_041.jpg
3810de00d0843987a743a7efe6c806d5
a87adb1772c7a0fff26e510ca6f566498b4cf3ec
F20101119_AACWWX karlson_t_Page_009.tif
cf46920dad1001af742a577aa053908b
9853133c74f2044f0f85880991f2626f1a2e0382
49358 F20101119_AACWAE karlson_t_Page_115.pro
a5e6e2020192fbfd9beb845092582b17
3155d87706fd1d039d4d0eb4f425406fec746271
71395 F20101119_AACWYA karlson_t_Page_104.jpg
9fbc58541af64c0ae8a9b7bacd747742
25578ba6968e9381157cf6dacf3e12a0d4ca13ad
5878 F20101119_AACXDH karlson_t_Page_020thm.jpg
6f4ee23e5e234b2cf9ce58b04e1a650d
2720f5945800714b5bf44dca28a035e00b36cc89
5489 F20101119_AACXCT karlson_t_Page_010thm.jpg
bbaf61573937fc1c0df6001145b62689
abb4ec89780432bd01cc1934661e35ac07d54fda
44518 F20101119_AACWXN karlson_t_Page_053.jpg
7a0bf72e1968b0f4a1397dc4dd908527
80973b0f3db59ca1c3c495aca91360d2cdb27fd3
17422 F20101119_AACWWY karlson_t_Page_119.QC.jpg
75faa40a4c28c8bfa5b75eebfe94f530
52c7b1b97952c9ca7b5ea31edb5577f81ea3f5b9
F20101119_AACWAF karlson_t_Page_021.tif
7fd4b928f21da4990e4a1c1608f0f189
7ef2573c44a4f619a5c4cd0af2859bd2a04226b4
28948 F20101119_AACWYB karlson_t_Page_106.jpg
8c6a9b06df8b58d918a4e417897b5594
5227a1d543e5328272a850a4fee77c96e35c0d9c
19976 F20101119_AACXDI karlson_t_Page_102.QC.jpg
7c128b2a95b838873d4564c2720b9dd7
b5e6ed1285e94e7276951f36a6f6e3e5e5d18c02
6388 F20101119_AACXCU karlson_t_Page_069thm.jpg
d02af4f858d273cf365952162f817348
207a81fa2e05149ad77525cab1e1c105d7854039
73387 F20101119_AACWXO karlson_t_Page_058.jpg
73bd10d3a42fb1e8abf57cc8b97a3bd0
63671111a3118b0e4b1117abc599dad03cfe7c02
152281 F20101119_AACWWZ UFE0012162_00001.mets FULL
db5af37ca98c0d2b9fb6d557d0826268
fbc837e354cf41b497333f6773defb2b004bb17c
F20101119_AACWAG karlson_t_Page_063.txt
069d3695632b42b43638799d17b45a92
8a5342d7156e06a168a808634283db8c58d7891b
70489 F20101119_AACWYC karlson_t_Page_115.jpg
5bb021187de4c1b301a6f7bd6bee27d9
679762932618d15ff75bd115c169e1d0054c196f
25964 F20101119_AACXDJ karlson_t_Page_128.QC.jpg
6d838b08a3ef5b72e2875dd7281005aa
0e230ad957428bebca8567548734a7528bf66ed6
22516 F20101119_AACXCV karlson_t_Page_094.QC.jpg
233440fb6513fd13e86ec069bc82ac9e
ce50aef3895c0418db307ff95c5a53d4a303bc24
37818 F20101119_AACWAH karlson_t_Page_012.pro
303b24f380b1b33859399e0cf830e603
a56dda350b46ee13fbc52037909dad38594ab851
56041 F20101119_AACWYD karlson_t_Page_119.jpg
6cfb8fc96bd14b65d382670242e5ca24
9750ba0307e7f75b7a6169b58b682b5187fb3532
24063 F20101119_AACXDK karlson_t_Page_007.QC.jpg
3b7ee4e0483f3e3932f615dc668265b4
1644e0202d6f02035ee6dba83ef5778017ab7107
18710 F20101119_AACXCW karlson_t_Page_020.QC.jpg
dbc98e8a5c25b567e543f569ae15e41c
4b03fe253f2d4a9e0980e094ec67a20c86ca446a
73101 F20101119_AACWXP karlson_t_Page_059.jpg
9ca4eb95e15dae66be156dd4f26a8f05
47d23a6a32e1a7bea820ca78693e5be192827949
53640 F20101119_AACWAI karlson_t_Page_056.pro
9b5421be3aef36cc4606573b71f1dcd9
13be6392d741998f9fb8c23c2fbd38ec78cc1ea8
28112 F20101119_AACWYE karlson_t_Page_131.jpg
083c83d7ce0d456393dd99153ac2e892
0fc44ad5867b2d4ed92936a446b60fcba5e31c23
3012 F20101119_AACXDL karlson_t_Page_016thm.jpg
d5f7d905b4905f6a12f63e69a081a07f
e142358b5ee05bac1aac88d630022f686f286287
3120 F20101119_AACXCX karlson_t_Page_045thm.jpg
2824308d275826fea4fe1cc9dd03bde8
f861a2e1007e653e31cd1fb09c927223fa7bf72f
56548 F20101119_AACWXQ karlson_t_Page_068.jpg
a5c4eddb0544036ca6cecc59f4689687
6382830c207cc6054d41e37f14a3c37fab179553
53285 F20101119_AACWAJ karlson_t_Page_122.jpg
7e2a662657bef66060fec6d558f704be
e27ea4eed7585b069a4b27791a49cd502ab1819d
39635 F20101119_AACWYF karlson_t_Page_016.jp2
3ffbc0a0f3171511f601e837edb2ce7a
3c9560dfaad08b18d791107f749acba9d353f568
7035 F20101119_AACXEA karlson_t_Page_024thm.jpg
09f7a70add9b87e39b970b5f4794dc1f
58128b6bd596e0fdb6dd118ee8cbe19e7381973b
5986 F20101119_AACXDM karlson_t_Page_028thm.jpg
b25d869be98306b68b9bcde2216662f3
bae101d03977d5004aa159c013191cd763ec1558
6430 F20101119_AACXCY karlson_t_Page_071thm.jpg
08403e2eb8951be42940ee6f06a6b2d1
798524c547e4ef7ea324641809945c0cb672e743
73500 F20101119_AACWXR karlson_t_Page_077.jpg
84201b2d1b8b3485443789adcb47e376
62735ceba1ad932f09d188ec8d937f0268ec48c5
24560 F20101119_AACWAK karlson_t_Page_042.QC.jpg
7d931befcfcd60a96ed510d590cf63e9
53845510d8e09e5cc80045ae3f17fcdeeb1b7f3e
770550 F20101119_AACWYG karlson_t_Page_020.jp2
4f29c5a80eb79f0ab29aa35a30be2e48
e7d9c13f58208e220bab94a64fcbfbbd522684dc
18566 F20101119_AACXEB karlson_t_Page_051.QC.jpg
fadbe8b976cb809f9d691cbc4872c6f3
91fa52a7e9edc22593b0e1b1d01e9e13f741d11c
6759 F20101119_AACXDN karlson_t_Page_037thm.jpg
fb49980348fb97a776b71117f31be68a
1726d9bd014afbea6f0a97479043f87b60f3dc0e
76200 F20101119_AACWXS karlson_t_Page_085.jpg
95eec1ee2976a259d97a475725555bee
cb952810b311e17f8c5b356917572b0172ffb970
46853 F20101119_AACWAL karlson_t_Page_015.pro
f8c459488d9f0583eff0eb933a380dcc
aa9881ad3e2c9f684a7db2cc1671309170348a3b
1051981 F20101119_AACWYH karlson_t_Page_023.jp2
eac28104b7481dc49a24e6ce71d996d6
625e0be1027656d0ebc922a98010b6083f96f5b3
24038 F20101119_AACXEC karlson_t_Page_026.QC.jpg
18173093566e948e314b20b0306b4fd7
c45db4348c1d4087f129839c4592aef457861e3e
23834 F20101119_AACXDO karlson_t_Page_027.QC.jpg
28e6901ed4d784ccd4a352fdaee89738
70eeedaff6054f58dd3c65939e7a414e0ddc7c87
2832 F20101119_AACXCZ karlson_t_Page_131thm.jpg
22c9007750efe5a2466e46c6744fbbfc
8efa72bf8846f8cf973a532e8548296773abf340
70744 F20101119_AACWXT karlson_t_Page_087.jpg
8d7baa43584e35b8068b8791d45104c9
24bc55a3476b44d4c0a43dc05a4e75082de61424
1868 F20101119_AACWBA karlson_t_Page_021.txt
084a56bf69c10caf26d3bf1d8ab14de1
a0ef4338b662db6f3e182d387cb8aad22eb13ac2
1051920 F20101119_AACWAM karlson_t_Page_037.jp2
bf8bc389cc8d90c46cc9eb9a7b04cce2
638a9cc6246ed6850770b2b66596ee736de32a0a
1051977 F20101119_AACWYI karlson_t_Page_026.jp2
952a0adaf66df94a1207f77d40eb9c92
f80f74e7bff808d37722090141bcb58bd3c79556
F20101119_AACXED karlson_t_Page_094thm.jpg
dade7706e02eb12b22c218587afa3dce
1998d8200494c3dc793822d74ccd7ae7f1f11f38
3735 F20101119_AACXDP karlson_t_Page_013thm.jpg
25f2e70a21234d4fb9e43e739350ada4
539cb722811915594d727d3a95ac9e9ebb2a1342
62491 F20101119_AACWXU karlson_t_Page_090.jpg
5740295bab858afe75f4deab710730ff
2275c624c2a92116163fa9d7dcb0c9835ba97daa
18342 F20101119_AACWBB karlson_t_Page_121.pro
2b2d483db5fc46337ff9d5428543ce58
88cc6c97de40a404577c9b457f2efa419877c666
91981 F20101119_AACWAN karlson_t_Page_102.jp2
0ef0ba17311d2314e618e635c1a65f6d
4fd60346ca86effff9ac3212361bd1e08732da2c
973623 F20101119_AACWYJ karlson_t_Page_032.jp2
561feba072ba7b9c00f4f53953346f8d
8dcacb1531ca89a5755be65a83804ba567036a63
4991 F20101119_AACXEE karlson_t_Page_109thm.jpg
7c17a9356cf8cc623d55fc54cb586958
e6e2edd78e61c801e961a84740a97f99368e21bd
7054 F20101119_AACXDQ karlson_t_Page_026thm.jpg
f427256891d3a1d96a0b196a1ac5f3f2
192e63479406f387645c302507733efbae552de7
61187 F20101119_AACWXV karlson_t_Page_091.jpg
f0b904750c204f53ab8078fb3cee6578
6d9328c776818f6e0fa4a754ddf4f7c56335ff4b
757 F20101119_AACWBC karlson_t_Page_011.txt
781e2f574cca6ec676984d469ec1185e
7c3da10a9c214acf5043e3bebdab23231ef70f0d
49280 F20101119_AACWAO karlson_t_Page_111.pro
8498fc791ca8f1f2fc127f829637c5ed
adbf9adf1966982dfe6ac20f4221e701e287c045
1051962 F20101119_AACWYK karlson_t_Page_042.jp2
2e4f90e776bf9def8276b7054adebfaf
703cf420c5e02db86f51e5469d3399ea239af996
7230 F20101119_AACXEF karlson_t_Page_001.QC.jpg
9f77060d5a1fa3ec5d4ec3ffbf5366da
98755a734f1e207787145446acfe29ba56bdb4dc
6856 F20101119_AACXDR karlson_t_Page_030thm.jpg
14905b914b71e9a3f9f4a7fe060c5583
dc99e814ebfe0d1ac0c0b71c11ff7c77f2ddedc9
60030 F20101119_AACWXW karlson_t_Page_093.jpg
b05e80dac241e9a84102d11415ca7671
ff1137e2ae97161cfbaf068758112046d1d8949b
72644 F20101119_AACWBD karlson_t_Page_006.jpg
7a5166026707d605059a8db3810150dd
fa5f784277a2064ed7786edc6315aacca999f1fe
78801 F20101119_AACWAP karlson_t_Page_060.jpg
8fedd8dfb999507ce44f402acc6b2b85
441064d9a79c4dcbddbaa6a98ca9496e0fba875a
1051972 F20101119_AACWYL karlson_t_Page_043.jp2
07eb60fa74916877cd0f6afc329b3a0a
3d9a98f0d92fd3bd442557795afcfa1f93dd453f
6146 F20101119_AACXEG karlson_t_Page_029thm.jpg
2b91bc10b1d2b3f30c1dde2a68b54d2d
1579f8e112eae21dc4bba7d7d3671efc489ca6ab
6877 F20101119_AACXDS karlson_t_Page_019thm.jpg
a4fbcac7ad12acc35248188474e1a898
f4d4b1d8bb22c36617ffdc85c9f1242d752fc2df
72024 F20101119_AACWXX karlson_t_Page_095.jpg
c7f7433a2d6a8b40fdab62fc1e21de68
d88f199e333828e0aca5c09d2d326b654480f490
43229 F20101119_AACWBE karlson_t_Page_054.pro
3a73664a6883f179f2a711ad2ebfc62e
ac7dfcff748578968880288a82736cb577d01f55
F20101119_AACWAQ karlson_t_Page_110.tif
28e5eb94c932780b50b6438ac7966a16
3fe5c0c526517c9a8a25d344deb5a1177d245c24
92379 F20101119_AACWZA karlson_t_Page_114.jp2
dc15d55d062439c54c12d604b1715454
f698e99e0cad27f0c94fee8b2dfac78620db03ac
1051978 F20101119_AACWYM karlson_t_Page_044.jp2
9e60cdaaf2962ba60b5db69020ce90e0
c068f644395d7027e878dbbd08703a96203cbc27
20736 F20101119_AACXEH karlson_t_Page_098.QC.jpg
53e333963ef1427dd4d8d28670d93570
b985c6e2e2a6104fec4746b7b71b087478fd66a3
5570 F20101119_AACXDT karlson_t_Page_062thm.jpg
bf9eaabef4e10a5644611eae7566c8b9
86111ad6a0fb39a80e9f0279afb91f1e8fa1e9da
67534 F20101119_AACWXY karlson_t_Page_096.jpg
aea4ecef6d76562a1892ccd3f00d601f
c35b04481e6631e2e5fd18ea2ee85dded19d859d
25620 F20101119_AACWBF karlson_t_Page_127.QC.jpg
f10022342f598210c3692b68bab023e2
55fe879b8a06e77506a6c07fe5580922c3e8cdab
F20101119_AACWAR karlson_t_Page_035.jp2
67f97286de9a6d0a60b5e68adc5ad44a
e16f32c0a548c5cc4515741dbd6c9110a4de34b0
101230 F20101119_AACWZB karlson_t_Page_115.jp2
a054f0799ce1af1333d2dca1043b89a5
7979d19af197eb4500ffafb7b1934c87f953e74f
51745 F20101119_AACWYN karlson_t_Page_045.jp2
aa06f4c48c0ae721d38565311e2df615
417207c2adc529ee575f1c97ac5501700531285f
20617 F20101119_AACXEI karlson_t_Page_032.QC.jpg
3161b78f1f532ce9a096467e85b5c46a
adfc1a7ab530c538fd943228ab4910081e94da84
17978 F20101119_AACXDU karlson_t_Page_006.QC.jpg
21036180ffaf528c968b3bc4b4d8934b
999e018f764ca85bb6c00cf8df5b9a041e79d173
75223 F20101119_AACWXZ karlson_t_Page_103.jpg
36add9f9c0dc92f7d86c0777467b9066
c2105bb2da111dcb0f366a7147062fa43487f35d
3268 F20101119_AACWBG karlson_t_Page_002.QC.jpg
d4be2766e0f33c17a5a90920309a33fd
542ad0a90b23c364c780f299569fdcf3c6e5b21c
1943 F20101119_AACWAS karlson_t_Page_111.txt
972c4e18d94d3327331c8e52daad2f6d
f2502fb9e8de7d37704c36bb1c52e5532ce6707f
109811 F20101119_AACWZC karlson_t_Page_124.jp2
ea178b983c8931e76c29ef0b62b727e1
50bc537ee37131b48a54408d7175306087c97668
102500 F20101119_AACWYO karlson_t_Page_047.jp2
d5f45b7a7e644c0b42431eb7d238006c
e12c7edb9adcdb5b72d5f6d0a3c125722779ce61
25391 F20101119_AACXEJ karlson_t_Page_082.QC.jpg
bd8f60bdc74ba6cc1ae0501daefaec7b
f7797ca7cfe9edf44be450773b03b2155b0fce87
24599 F20101119_AACXDV karlson_t_Page_066.QC.jpg
b869a1b7c6885ed1f79f01260414238c
ba5728dc284e19ac6724280edf7eaf891650d0e7
50825 F20101119_AACWBH karlson_t_Page_112.pro
7b793baf9cb6433fd58a2a1656a1e409
8374f71a41a59918458a8d13f2c03f16cf1e91aa
2306 F20101119_AACWAT karlson_t_Page_073.txt
311e0d8bb34f7b564ddc38967cb0ba9b
f9dfcccb6f84c81b4be2a477be8698c652764365
21216 F20101119_AACWZD karlson_t_Page_125.jp2
369370799a2aa4b27a22a11c05b327c4
03c5a0112cc43e015b5fa4c097364c86f8815d01
97583 F20101119_AACWYP karlson_t_Page_049.jp2
032bbfcbb87845a52c8dd9b96f497d35
bef5e67dfa38fc3100637d4a9eb440a084602a36
6112 F20101119_AACXEK karlson_t_Page_115thm.jpg
d1a690b0925bc510e9a94874c3b2e16f
a0cf87e4ed342992e1f361b419cfd6318bd24aa9
23503 F20101119_AACXDW karlson_t_Page_033.QC.jpg
683277977ba2d332c113bd3bccbe6909
ed7fcae2af20a57e0effaf19e76679759171a76a
5854 F20101119_AACWBI karlson_t_Page_102thm.jpg
c616cc4b0e200bbe15622cc53ddd8b5b
188c4d2cbf03cf29c2e8b4d94809dda682ee3f0b
6267 F20101119_AACWAU karlson_t_Page_096thm.jpg
0d95ffd37924acb6781ba05df35c5ec4
f6d4f66ac4d4b0ec2a43c867e200acd1042926c5
121193 F20101119_AACWZE karlson_t_Page_130.jp2
e9843e1ef38dcfa76d30b9087fb0d440
f19d7e802388d1fcd752e6d7a7e82f5063ece1a1
6192 F20101119_AACXEL karlson_t_Page_130thm.jpg
f42681ea6e148fa1a02def4729f72e45
a7358133ebb9940b87ddd84e970d7b2a8dc84fa6
6011 F20101119_AACXDX karlson_t_Page_032thm.jpg
6f214be4e816f390de14f8a5f4a255d7
f80f09a73b9340f6c12a9ac43442812599bee254
2333 F20101119_AACWBJ karlson_t_Page_035.txt
804448495f458af17ff1d6a77c91d777
43f4074e87f5b40710714bb882cc9b51d577ca2d
6086 F20101119_AACWAV karlson_t_Page_123thm.jpg
6e870acf751ffa98edb56ab674aede69
72c3fabbced8e9695fbc4afb8e14e26e0f5f94f4
F20101119_AACWZF karlson_t_Page_001.tif
fe724311cfe6f2333b4cd648ba2c89b8
d454b009125e18869cd3642b984c7853f1993582
85138 F20101119_AACWYQ karlson_t_Page_051.jp2
a2daab9bcb7865c08474594d36623d70
85a7990f93e28bb0dcd011c9b88d97c202d27575
16196 F20101119_AACXFA karlson_t_Page_065.QC.jpg
a26204ad06c86186a7019e55c8bfb127
4481d0d12fe7775cee3a7f151a05b74620d170fb
197210 F20101119_AACXEM UFE0012162_00001.xml
1188d52c6e11085c27181df5887c1e38
99fad7600f9d1a04758bfed3161a8ae587baa717
21577 F20101119_AACXDY karlson_t_Page_123.QC.jpg
f354e79ced665aad2b0fd94629e9ee29
29d6c61ecddc15811c7ca0af50d13b9178de4444
47576 F20101119_AACWBK karlson_t_Page_037.pro
0623aca775bcf5004c6db964cd84bcc3
8e7aa731116287964c2bd72d4c53af66349d6084
1051953 F20101119_AACVWE karlson_t_Page_057.jp2
6523b3f0ca83fd8bfa26a39f81f42555
93e52d50f297ddae101ce45e5ee9731f914d076e
1823 F20101119_AACWAW karlson_t_Page_038.txt
cb57f91758caa9a638fd288940a2a239
4cb79b68c8522664929a7fe83a3c2dc9519a0837
F20101119_AACWZG karlson_t_Page_006.tif
cfe22cf7ec441f29327c39c3ce21881a
f48cde3f1429b9b81b80d5d7ddb382efd309860d
63340 F20101119_AACWYR karlson_t_Page_053.jp2
233ea5c3bc9df3a429d06d5f2a5d12e7
e1dc43744b048b3263572a82ad55ed66d55a0118
6954 F20101119_AACXFB karlson_t_Page_066thm.jpg
88abc1f57047ea29789a2fe95c775a29
65afdc3f9cb67acdbe2c318a9d10bbbee6f48826
5214 F20101119_AACXEN karlson_t_Page_004thm.jpg
42344123e90c9a1dd6722cbaae510376
92735fc5a51b7ff487c9e2db853bf2143d6a6209
6297 F20101119_AACXDZ karlson_t_Page_104thm.jpg
bb70c353d3fc9dae117c1ecc9f4d18ce
97a3ed3ea47507bcec376f86449eb366e429b9c7
46187 F20101119_AACWBL karlson_t_Page_025.pro
79186983d7edff0c88810f3ad56e0365
02a965b6e86c1b132bb178eda815eb68e4e244bd
605435 F20101119_AACVWF karlson_t_Page_120.jp2
c65739815993a83ba3942694a52b92b4
a920699e6c10bbb185a1d1b530d9cac68da692d2
101665 F20101119_AACWAX karlson_t_Page_025.jp2
6cb132030f100ebadefa969527036568
5e912fc33f8a3a965e480ad65ee6e373395c4bb7
F20101119_AACWZH karlson_t_Page_008.tif
db4f9f2112ea62e7aed78de9d4de4d27
1c0ffec9b78c24959283e45b009cdc686a6769d2
894502 F20101119_AACWYS karlson_t_Page_073.jp2
c5764d6c738072e432f5e21a57a5546d
b8b596757c7ccc492ecc1f239a0aaf844b89cf74
21897 F20101119_AACXFC karlson_t_Page_071.QC.jpg
13ec8efaac46d4f2fc54161454abdab3
1854959cba707c8581432ec50d247fcce6075a14
5794 F20101119_AACXEO karlson_t_Page_005.QC.jpg
e2cdb95bbd00157b6c09ecfe832e61e1
e9b04f69600c7dc2534748c22098b06d0471c369
1051968 F20101119_AACWBM karlson_t_Page_103.jp2
d839d4eb41b75ad19612362ecf6594d2
99ca6b2bd207aea75f5b62edcc98a28113229642
49914 F20101119_AACVWG karlson_t_Page_087.pro
4c36b0f993ec7955307bdeed64d17af7
768b814182bd59cb2bff30be1365beb9b7c43afd
F20101119_AACWZI karlson_t_Page_023.tif
0ffd7dcd025b178297ea42409bb6d1db
5f3001a459d31889cecf45b3e409b785c7f9af7b
111364 F20101119_AACWYT karlson_t_Page_077.jp2
2a3533c842ab02f21104487de725f5d2
d9124b455c4c9b6a4cc0a8a5d1e9c6e41fd0091e
2095 F20101119_AACWCA karlson_t_Page_097.txt
6d0652ed1b83a366c2b282ddb21ae312
843aeaa37786f399c9035710698d9c83c7d3764e
5701 F20101119_AACXFD karlson_t_Page_073thm.jpg
dad79c85a41c8485e91bc84bb2573f76
9cabd3472f29fa58f79ddb33156c5d452ebf649d
5196 F20101119_AACXEP karlson_t_Page_012thm.jpg
f4006311feb1b177a864c80c530f3ae0
002d8145a73dc823dd7b6c45b9ce6b046525b940
90929 F20101119_AACWBN karlson_t_Page_090.jp2
bcbba1171e0b6cca964a10d044b6a6de
0834f46ec98989adbb70cd0178e621d637561856
103362 F20101119_AACVWH karlson_t_Page_063.jp2
867f64bc00479aa5cade26476c357357
af7b07fb24591967d6426bb89bbfe24a1332a2ac
F20101119_AACWAY karlson_t_Page_112thm.jpg
85eed557769c93201195e06947143482
71683d6da266f72c5100d9ffbba55cde275a4bdc
F20101119_AACWZJ karlson_t_Page_037.tif
62a58f5f186c237a7c22cfc087f25973
47614eefb63c6e9c5926a61ef370d70ca718c371
106496 F20101119_AACWYU karlson_t_Page_080.jp2
c00392dc8cf42a9abfee3d88a3590dab
9a6f7d0eb7bfea1724c68dea822d5b77196d631e
30805 F20101119_AACWCB karlson_t_Page_105.pro
010d3e5bea50ccf1827bfa845e271f9c
ec1a3b9aaf1e70c5ed8892226a7816c83ed5c961
23496 F20101119_AACXFE karlson_t_Page_076.QC.jpg
e9c9f6da3b6314ce757f2825000eac2f
e7c5d3e539ee6669862af2ce423f3a3cc10585fd
24196 F20101119_AACXEQ karlson_t_Page_021.QC.jpg
73c00fe7a59a03bfed9ac1e764077145
703812e78ec06516e8eca03d2a945a1980f20726
4769 F20101119_AACWBO karlson_t_Page_006thm.jpg
90acf228bfc6544f324e71ef780e3b77
1f68128f25722e48fae37a07b3c2089f3762fcc2
80797 F20101119_AACVWI karlson_t_Page_034.jpg
19455e1e310487e70cabd45a3afd3cae
fc41d1f60ff85f9373aa422476f0526f03ddbe66
26163 F20101119_AACWAZ karlson_t_Page_083.QC.jpg
88b372e9184ac34039445df2b89285b2
db3a35659f6e9b42f9b9dea12f9a577518c4869e
F20101119_AACWZK karlson_t_Page_044.tif
bb9d77b3e73423a629975910449b9761
a450e66d05c73f0d5ced8a93ba47e3922fd30571
1051936 F20101119_AACWYV karlson_t_Page_085.jp2
18d41420cff6d2c4babd730cd95f0aab
a85a1ffe30dae4386539e3d298cca0743e2a6c9f
1456 F20101119_AACWCC karlson_t_Page_003thm.jpg
5f2de4f725f74a30134a8fa4bb7f2f23
3ceb5aca3ff39cf43ced6cd8bbdad276d0717372
6756 F20101119_AACXFF karlson_t_Page_082thm.jpg
670bfc8cbcc98759057b9d1e89f410a8
d3c49c48b91779f2733aa2d0ddbca36eac7b5c89
22545 F20101119_AACXER karlson_t_Page_022.QC.jpg
5c17f1a42efd3ced9e65bbd14a6a2317
e672d8f23c43442f9aaa250aaaffd5c07a7046d1
6548 F20101119_AACWBP karlson_t_Page_124thm.jpg
244a40bd695ffec333b86d7f16a7836b
ffd4ac2f5f4a3e85bfdbe0b3d1d5e60a929e9ff8
20659 F20101119_AACVWJ karlson_t_Page_073.QC.jpg
3681a9c789d86ec21d8e0db314cf54c1
7b8e620485af120824f1d7513674341289b80fc2
F20101119_AACWZL karlson_t_Page_051.tif
2085eaa0896c6680403500285517f1ad
6e1f80d08f524164f686a1a37b139ee202787af5
94359 F20101119_AACWYW karlson_t_Page_089.jp2
037c300a6562b8a91777ccef263458c2
a155f896f7aa4eefea40b6a23eba32810d057d7c
38220 F20101119_AACWCD karlson_t_Page_051.pro
4c1d9433920e0450f8a4826422febdf5
174285ccd12ee22a1eac07121b67f66e8b34cc86
7192 F20101119_AACXFG karlson_t_Page_083thm.jpg
a3a8f3e1b739c525e22271a11f2fa38a
5cd7f9787f4148a99827d723ff1ac5f682db9290
6913 F20101119_AACXES karlson_t_Page_023thm.jpg
b40de6943a1750316dbb7e5b7fa67930
f87a97cb7f62e9e1d8939d91cc2338b90cb22d9b
22158 F20101119_AACWBQ karlson_t_Page_099.QC.jpg
aea83bc647d8447f1bf2d41d7c8a650f
0c1d48aa671c7d5003b7ffddbe6ac68ec2d16118
71716 F20101119_AACVWK karlson_t_Page_081.jpg
4c4f6a1dd5bc2eab89aa9ea532df5098
bb4daf3f02ea3b6619158e562518e02ac20b350b
F20101119_AACWZM karlson_t_Page_054.tif
e4351cc30ea0923bcccffc334d06a9d0
637d9c11cafca881fcc18c10973db1c87665f88f
111270 F20101119_AACWYX karlson_t_Page_097.jp2
bfa68cdac7a3bf94875cbca4587d33cc
db22e0a47ba8a9d54965d7f3a165888b5db50007
5656 F20101119_AACWCE karlson_t_Page_114thm.jpg
a34da77500a20fdac93bcd4c5530faea
a13ea6788fcfa4eaedbc08525563f066495eb6b1
25610 F20101119_AACXFH karlson_t_Page_084.QC.jpg
9396768cf05c21f76bb0b64e21454e41
f62a8252869d5014d3a09ba6711f046d38492b7f
6904 F20101119_AACXET karlson_t_Page_039thm.jpg
7324b2acd03bc47528ee927cbf6052a6
3516f086077266ca5c779b5a9dca28bbfb6b6431
100695 F20101119_AACWBR karlson_t_Page_123.jp2
1444c6c1e72a06bb374522e4e3c478fa
0bfebcb82b50be37baa7c2052c7c4fb86451ded0
F20101119_AACVWL karlson_t_Page_014.tif
35c0a74aba7f2a55fdf2544acd97a33c
76db09670dded7fdbad479a66308d0b34a39bb75
F20101119_AACWZN karlson_t_Page_059.tif
17a07492072a47e5d1d65c5cdb1ec612
b7d6e73ae299f0419f546f0614338eb1ee5325e2
11991 F20101119_AACWYY karlson_t_Page_101.jp2
973388e9bab01fc252c6c10c8e2c269c
11fe633f4ca3ae86fd902222e1fdcf35efcd3b60
F20101119_AACWCF karlson_t_Page_060.tif
b2edf2f94c9561828bc4ef44238599fe
4186864d2f45baa9f954b86ed95535a414b63cee
F20101119_AACXFI karlson_t_Page_091.QC.jpg
90de3b4eebef4912c507b06e7bdf8e29
b58e5671882353c092a5bc7fe168365fcc8a4cf1
7104 F20101119_AACXEU karlson_t_Page_043thm.jpg
9c3d70661898a09bdca952b9d9919109
ad0f3108c9f6a7689776bba8854e0b88b9369de9
1931 F20101119_AACVWM karlson_t_Page_094.txt
b869dd2060d3b793e0e6fd90c78c4e33
db79de62142281ad861d8fe116195d286c978ddf
F20101119_AACWZO karlson_t_Page_063.tif
0494a030c9bfc7951f4a755c5a5e5414
e2b2488589f50f88e31f1fea1c7593beb797b892
1051973 F20101119_AACWYZ karlson_t_Page_104.jp2
5f3a4a0649a69b9e1ee3e09a2c41279b
cd4a71921acfd8e0fad1c1c64b57786c9bb1fc34
F20101119_AACWCG karlson_t_Page_068.tif
8942d7b128656d6a81ecbff04e8de0e0
27a82281b2ec5573947b54a6375f4cec9bd0c3ba
21813 F20101119_AACVXA karlson_t_Page_029.QC.jpg
e23707f82e35ad78cf95c3803846330f
8505e7f45237ba1db4fba3a45c46904862ee06a4
106022 F20101119_AACWBS karlson_t_Page_117.jp2
96f67ea4b63dc8febeb461c4109c9056
a51dea489e4ff496805dfb2631f336d9e2c8d90f
18441 F20101119_AACXFJ karlson_t_Page_092.QC.jpg
3f6630b0f189ee32561ffe26d20f3a1f
1e9d848f95d5c7c65e3c2ecc1de0210639987b2d
6508 F20101119_AACXEV karlson_t_Page_050thm.jpg
5f5c249dd8fadfeee0444e9f4b06ff7d
7465e445a93833b7b20011b10badf5bef0791b28
F20101119_AACVWN karlson_t_Page_006.jp2
384f53aa545adb8f277a1edd05bf4fdd
6dd58ec997f9bf3f4a62842f262aeea2674ff036
8423998 F20101119_AACWZP karlson_t_Page_065.tif
4fd555e17c826681fc2b03503da36059
aaa0a896221cb9f5a91f3490e9c84d280874a32d
24710 F20101119_AACWCH karlson_t_Page_034.QC.jpg
e0e7d2ed711a1dd8d97124e976557a00
77b2702aea67afe75b6c60a19f741605bc80a5ff
1912 F20101119_AACVXB karlson_t_Page_099.txt
0906ce8c183cf0ecdc8e3ce063dc2fa7
c52c1fa95a4850cf77abbc3727005ba487df876d
988473 F20101119_AACWBT karlson_t_Page_017.jp2
81ba3c5a4c3fa20357d5a66ba8fbb7d4
c19582c6a4a6c561e5bf1f03acb08bb8cdb6796b
23485 F20101119_AACXFK karlson_t_Page_095.QC.jpg
418b0da1c2deddd42f80e2e0eebd4a85
304a3648a296e63d863b03f5004442c117507611
5304 F20101119_AACXEW karlson_t_Page_052thm.jpg
aad02a3bd3da413a18d3ff6293489cd4
b24b9433442666c47eaec8a77b52c355abe27fed
373 F20101119_AACVWO karlson_t_Page_125.txt
d72e214d97c4a44ef05890d76cee2e41
739a7e69bdba9cccd909fdc49dbd80afa02b37d6
F20101119_AACWZQ karlson_t_Page_066.tif
0c17181af45476d2b2e7b741314f71ad
f519b458c45ea2c8dac672d6f5c1bd08d2c4d2a2
45979 F20101119_AACWCI karlson_t_Page_038.pro
bdb59c90bb99ec693c311d7a0098768b
d949b2d55f52bf48526023a8ae69805cea0db0e7
88144 F20101119_AACVXC karlson_t_Page_107.jp2
7a24d9ef55d709946e9129cc60dadeb6
32f19d1385d72fb4fd3953b1f77d956015611fee
47016 F20101119_AACWBU karlson_t_Page_021.pro
6fd6af555c1d05ec98733153f9c0a55f
7be71d7175618c115b2cee12e20aeda5104fe895
4584 F20101119_AACXFL karlson_t_Page_101.QC.jpg
ff93670503bcf6ed0290935675de7d84
de0d69ca88013d5570d860550a576a88542eaddc
23817 F20101119_AACXEX karlson_t_Page_058.QC.jpg
571277c4a54a1fffa70fcc68c869f96f
69b25017ab58fdf8563d3ccdc7adf011546b4050
63091 F20101119_AACWCJ karlson_t_Page_028.jpg
1dedae6834609291776debf9b7ee6525
f13396bad9d58a142d1e220e1de0a7b4f251ff6a
103320 F20101119_AACVXD karlson_t_Page_118.jp2
7786e1380f857b24d0ad33d40b9ef99f
3235c1db9b9ca5bab64a1c4b6593ac255a8674cd
23192 F20101119_AACWBV karlson_t_Page_088.QC.jpg
8dcb791f337ade72b0982c77dd31ab83
fe2e73f13d391cbea7da51b80199963816f59720
9275 F20101119_AACXFM karlson_t_Page_106.QC.jpg
30a24183c363d4e22d30322a3f6d43a2
dd5078c4cfcb01b6736b7f71effa358963858cb9
16867 F20101119_AACXEY karlson_t_Page_061.QC.jpg
292f3ca5786fd56caa741296645d1746
d80879df1a7dd880e37ff049a9a8d68860088581
6610 F20101119_AACVWP karlson_t_Page_059thm.jpg
43fbc973c2d6073fde394a321af3f52d
e53c9d5920b9a6b9668c057cf3cfedc189d6b15d
F20101119_AACWZR karlson_t_Page_067.tif
2d63ade00551f99ea15b9ce4f369cee0
5b6d2427d1e9d991a4cfaf103f1a03a1a3e50182
76253 F20101119_AACWCK karlson_t_Page_057.jpg
9beee3dda482bbeed4f4640805969dac
9e7bca677fdd1dce31bf45def6a78112e6b991cc
41936 F20101119_AACVXE karlson_t_Page_008.jpg
503750f28f3a149c8466884c6ad316f9
b662422467e210b53a3764a29465831c9f9c91b4
1051937 F20101119_AACWBW karlson_t_Page_024.jp2
c4e03225f224241ea353c86a65c9572f
3905dd2cda667a1e5aee6813969c2a3169ade184
17302 F20101119_AACXFN karlson_t_Page_122.QC.jpg
eeb9f5edacf38d5ecb662a9c8c528085
03cd2a3cfe1dec53261ee6f2a94e1664183463e8
19703 F20101119_AACXEZ karlson_t_Page_062.QC.jpg
bc841d20a7a6eae3b8b2ea7a34633148
02eff8380e496f422860a91aab3ecd400f58704e
43309 F20101119_AACVWQ karlson_t_Page_104.pro
d5f397b0f0f1b3ba0400abc015bb8397
549b42480bca4624cbe18d6a22b764635d4d68df
F20101119_AACWZS karlson_t_Page_069.tif
9868fff0c79f9cb162ddb9d965d7c086
8455b4247eeb254f5a15e44fd1d21113e4f71787
6490 F20101119_AACWCL karlson_t_Page_055thm.jpg
4a3fb6994f2f87d2fb389d235d3fd3a2
a5e7453be71582ea713585c9e9a1b07f3c52f52d
17073 F20101119_AACVXF karlson_t_Page_121.QC.jpg
c9d8416dc8a3aa9f55e07b99d4bc623f
a48b99c1831b658207543459d138d646e7dc3ebc
11351 F20101119_AACWBX karlson_t_Page_113.pro
e5f8a6a76f12d9bd2daf286b82c7e091
919a52fa8c0c68088c61144813f7372db90b919f
6225 F20101119_AACXFO karlson_t_Page_125.QC.jpg
aa01064188ba24048a4f973ebeac2bf5
c80bd068499f29adc37dd61846368105c8367636
2866 F20101119_AACVWR karlson_t_Page_106thm.jpg
b48f3ee13a290d926cb44404d7a37183
32ddadaf015877cbf73abe15b2ba7ba3f5c1400c
F20101119_AACWZT karlson_t_Page_080.tif
ed785bf93eb264a14f8e1e7e50e1cc4a
592a5debccea7afbf8f65c3005c5c7b07229ef0f
F20101119_AACWDA karlson_t_Page_045.tif
cdc05e0f759dbaea3df79116fb711317
cae5a1ad842a44ceeb44ea2a2a3e1207f03716e8
51207 F20101119_AACWCM karlson_t_Page_023.pro
22322bd69e1258a48f22e4e2d7f7d733
cbcbefab48ee5396ba56c7e0cc4b6ffe5f26d843
6030 F20101119_AACVXG karlson_t_Page_063thm.jpg
c541cfd6b26c0c7227696cf7ed459349
6fd845f003d6fd2dbde0ac3f2f1ed8d8e7223653
109557 F20101119_AACWBY karlson_t_Page_076.jp2
19de2ce1f06e78dd9c95dec458f86152
68a9cd59bad54187114c900a53e1fd7ac2aa8205
20358 F20101119_AACXFP karlson_t_Page_126.QC.jpg
0c70cdc383ae3d4315a62c257fe8e71b
9fb86e7c1f3a2a2315ac1ddc311e6f27ebf9d616
2065 F20101119_AACVWS karlson_t_Page_072.txt
d8ea1e44cbaf9c3a58919627730265eb
5fd622a1d60ec33683524f4e8ca06d2b37bb1f57
F20101119_AACWZU karlson_t_Page_097.tif
ae41ffe38302f651448b47a64186f2cd
b463dfbf961d9b1cde6595ed003d3e7d62c39cfc
F20101119_AACWDB karlson_t_Page_004.tif
27530f93689d403e5ff8b92b85d1b6cb
125afbbf4c91d6614b4c5dd9147ab3ec8f086668
56920 F20101119_AACWCN karlson_t_Page_051.jpg
647499dde0c73094b7eae059b4b836a4
97ac0d4447ae173b5f0ffd347f0bbdd2ba7bca7d
26971 F20101119_AACVXH karlson_t_Page_064.pro
9d50bfd66f1029dc0b04811736cce2f7
55cf15abf47a61eee0c74ba425cc93a9f2cc07c5
1998 F20101119_AACVWT karlson_t_Page_081.txt
02956b0dd4ace2a8bed4082222d7d0eb
17acbf7e246b23df13b120a7f24c3550f9b6445e
F20101119_AACWZV karlson_t_Page_115.tif
06f4b9e4b91d59c0526a8be0fe4b077b
5a1e508935c9ec659323154ec66b1725685ba2b1
F20101119_AACWDC karlson_t_Page_031.tif
559791d4b6ab487c37f189399c8edcd6
99006d48b3bb626f5e9e01ad85387d53d1d5e628
79740 F20101119_AACWCO karlson_t_Page_023.jpg
01c1fe335ad6666fc2b16e4ec9def3f3
f41e659a1ae8adfddf07da1076ec8966193e46db
F20101119_AACVXI karlson_t_Page_071.tif
a34d2cd683786573a3468014e4d0967e
afb2d5045f9c33e30926c4a6320b4ca48f8f4f13
1964 F20101119_AACWBZ karlson_t_Page_066.txt
8d09ab25a9a43553a3e5fbd9509faf0a
25c115d5b28f1278442aa9dca150dd1a8f5afe85
F20101119_AACVWU karlson_t_Page_112.tif
2870bae8413998dd5ebd9c4f054bac19
c352060b08951c8d3fb951154c8c2a31ad820183
F20101119_AACWZW karlson_t_Page_116.tif
890bc9f41f681527d71c656bcbd6328e
5d12a0f9b59f40e0d5e792dec850dfcefb6ca28f
7052 F20101119_AACWDD karlson_t_Page_035thm.jpg
6109be4063769de55eed1a4ad9e830c3
ce8c56b5957623131505b755e14923674e807343
111368 F20101119_AACWCP karlson_t_Page_059.jp2
2cc77e07c7c7f930982c359ea7e4f2bd
545dfe238d94e8db1f57a1b6b592732d36c29529
F20101119_AACVXJ karlson_t_Page_111.tif
9b4d17b6747c9349a37a2012af46a58b
e3f2b78b98ab223fe4f92ce1cf91ea20999d9e40
24933 F20101119_AACVWV karlson_t_Page_056.QC.jpg
69a805c296cfa1e559d7ce6074ec8f29
6765eaccdc0ebb5daa2cd90d386d47901e73dbab
F20101119_AACWZX karlson_t_Page_117.tif
c51e6072a21fea7c1d3aceea6119f2d1
24aefe755a14f2097aececa986f2210330883636
5565 F20101119_AACWDE karlson_t_Page_090thm.jpg
b0ba822533753948c1c524e566836db4
56f0009a10c93df8f0da61badfbc2b3ab973d623
F20101119_AACWCQ karlson_t_Page_079.tif
37fd99ce41a0bc31d457c6f9f93977ba
b3750ea6ae1d0de38b8f7498d6796f614e4b852c
5292 F20101119_AACVXK karlson_t_Page_072thm.jpg
1897debbe64598f75b72f77ca72633bd
dd3989260765d48a6bb046abbffa5f0ed8b5b17a
111637 F20101119_AACVWW karlson_t_Page_067.jp2
daaf7c2519102b813389c251567c2e44
56f5e7a7d884e0cf602c18a9d69fa5dfe351f3f0
F20101119_AACWZY karlson_t_Page_125.tif
dcfc49f46de7787e0b6a349a65b213ef
7ae4acdb968f0d0ada92ceb175dbd9c5ab7e0f70
67237 F20101119_AACWDF karlson_t_Page_070.jpg
c319a491ad604846267e45958eff1403
2c3051a48755cb343dbe3cf2655f87c2e801a073
23203 F20101119_AACWCR karlson_t_Page_117.QC.jpg
3083aa7a5ee50ec2c9eea8ee0ab8eed4
db19e171dd3b49bd2c2f2c046e3c807fdd48d35a
974987 F20101119_AACVXL karlson_t_Page_046.jp2
8dc97a9aca575fe41a757a80bc825baf
1bb5dbe0d8aaf19419186bd882e1afc72f7ddcca
2075 F20101119_AACVWX karlson_t_Page_083.txt
a3f60f92a92dc274aa8857c451e560ff
52895612d6368ead4545fddc73aadb80b2fb9825
F20101119_AACWZZ karlson_t_Page_129.tif
b0c83dc2153497b118249b2fc63eedde
8e3c986f3dba24c4a0ce0dc11c5ebc25b4d78622
74297 F20101119_AACWDG karlson_t_Page_116.jpg
55a70e56760b71b063661753384a497d
ee609a97fc0c1c81c391fdb14e73613211f9883f
58411 F20101119_AACVYA karlson_t_Page_118.jpg
d9e67d4d69cdae785edfa2fbfdb44dfa
023d5f24c247a2d5fb6cf937cb6c89eead64da99
F20101119_AACWCS karlson_t_Page_002.tif
45a07419625b518ac1ab8e7012fca752
77de42815f63b901f09ea8c0d818fbaf34d0dd40
798898 F20101119_AACVXM karlson_t_Page_092.jp2
2914256ff8789bc4157d0d9b65dabc8a
18f8ddcf5da5ab1f68aac18ecc87b96331343fc8
6485 F20101119_AACVWY karlson_t_Page_015thm.jpg
07181603ab0a58a98f57e47086988299
ba52ff3cc712363f9915d949bcd5122cd7495ec9
69590 F20101119_AACWDH karlson_t_Page_079.jpg
6ba274e883757326c4c07a5b06386c08
0442f745f1773d2f0f28840bca44796f93f77ab3
F20101119_AACVYB karlson_t_Page_070.tif
edf145285788b7f764c31bceb5c8f2a2
9179096bfc2accb55b9f0a50046ec0440bc26409
F20101119_AACWCT karlson_t_Page_003.tif
be099b1347b3216472bed0931fd70bd9
fcc4b36266010b5ca02bc11d66fce92414c1dbbc
F20101119_AACVXN karlson_t_Page_090.tif
3768237aaba8112c2ec5f2234881d56e
7a3f232022a38eea940e76e13bb28f98a468b6a6
7705 F20101119_AACVWZ karlson_t_Page_003.jp2
f19b488f8746ea041c4905a687623fb6
e6a753820d11eb0e4c853ce3f2dffd5b17743def
18735 F20101119_AACWDI karlson_t_Page_120.pro
24a0cb491ec73ed70d109554af4fe9f8
44e4a597b98c80231ef2eca9378a4bd203796205
2316 F20101119_AACVYC karlson_t_Page_047.txt
e288b9ad9d32f75c60b8b31549809131
25a9e65474b35da7c5e59ffadbfbb64708fc5cf7
F20101119_AACWCU karlson_t_Page_061.tif
9e64391a6d84223988fc7b1da2b72d17
dc123661db8fd5fb9cbf0f22f2390a9bfa94c3be
48748 F20101119_AACVXO karlson_t_Page_063.pro
a46256563ec7e5c7eb7966a0be63183c
403d5b6c5e52458a79ba8e86b4cfc63e60e593b8
1808 F20101119_AACWDJ karlson_t_Page_033.txt
9fa06d9c1f5e7a8ab1bba86c39d191ee
70010e5416bccba39d50d129d305b5e23ba86559
20336 F20101119_AACVYD karlson_t_Page_014.QC.jpg
ba13c228d159d4c6f887624256a57d44
4b15b94ddb176748a9b42ef1a02f2e6fe6ec16be
64027 F20101119_AACWCV karlson_t_Page_049.jpg
da59a655c6798b206393d25a6448239a
017acede92aaebaf2bd9776f531d31abf4b7dbf0
F20101119_AACVXP karlson_t_Page_035.tif
07bb49b7ef534b34e9c2acd9f4e9a473
da32d76cdf3512c3354bd8a75d8667085d5321df
861 F20101119_AACWDK karlson_t_Page_009.txt
ded1eb777dda3cfb687d60ea28092aa5
657cd55551bdb44c8d53179a55639fd4f433b808
71746 F20101119_AACVYE karlson_t_Page_050.jpg
c7d0b1757828c567ac950016c51b11c7
e80da5b335a5e4cdc9a5f28aea43f161820cb390
F20101119_AACWCW karlson_t_Page_114.tif
c7104378568d60d8cb1adac4b8a0dbf0
6dea9204aa5871cdb81b16ac16a3bc124a02eaba
67465 F20101119_AACWDL karlson_t_Page_046.jpg
59902c4ed3d4411827f98fa865702817
958597c76bd0de343b5d3c5ede8d230acd2c866b
39528 F20101119_AACVYF karlson_t_Page_013.jpg
661df88a42b32133534db5037ebe8bd4
ccadc68f11faf54c37d507d16b3de1fc9dfd3863
71827 F20101119_AACWCX karlson_t_Page_076.jpg
9cbcfe13075b68fb3f2c2d51ac708dd0
9c20c1e31b90f48fde4be1979b84af15630ffac1
22518 F20101119_AACVXQ karlson_t_Page_001.jpg
7d9d6690488d61d4e641dcd47341036f
da13237a626ff0011f2be9a1036f2eff26f20381
20648 F20101119_AACWDM karlson_t_Page_009.pro
58e1378d303bb9223cf29d747b35b944
c365f4d5b3aac755fa4261918227f1cb40eb384c
F20101119_AACVYG karlson_t_Page_018.jp2
80b429e216ab840b7ff38b3473d7e091
c2b98b5867dcfbcd55f0659b78d0fdc885c3d58c
72616 F20101119_AACWCY karlson_t_Page_108.jpg
902d61fa21e50b3cd4218d589b718e2d
d384ce2aa88b26166cf63d62cb2b77106a441fe1
F20101119_AACVXR karlson_t_Page_105.tif
b83fd064e32a0dc7c570b32cd26f782e
8e78ec9f6e0371bfc504e3f4c021f55e5a10eb42
1524 F20101119_AACWEA karlson_t_Page_062.txt
1b68a99251db1134200efc03b1afddea
e8562125a3d5379422667c66df30fea80555eaff
1846 F20101119_AACWDN karlson_t_Page_123.txt
cd31fd9b8bc4eaa1c19a1d51c03a797e
3d56520d1123d3d23a2a3b76d7482b486fbd99e5
2007 F20101119_AACVYH karlson_t_Page_095.txt
f4d39737cc0d3e2278b84b7987e2e155
b25a91df069c0e1f3828416cfd10a9e0a1ede5dd
23689 F20101119_AACWCZ karlson_t_Page_080.QC.jpg
4fd1439389e6fb22ece0d67d39430f3f
19f645ad06a29fae269639b56fd0505cb889d900
100283 F20101119_AACVXS karlson_t_Page_071.jp2
3564b7f46b5d6b7a9cce4ecf3141b85f
4ca481a066c84cb3fbcb5bc83cc7f311f206786d
29697 F20101119_AACWEB karlson_t_Page_061.pro
f1f9064c90944df2e56bb60f3f1bc5c3
2a30b23228763c7561fb103143884f7e4e5c1f26
F20101119_AACWDO karlson_t_Page_108.tif
e7e5ff771e6e64b46958e40bac775180
dde450a1d180a1a1a3c16bf5d4e627ad8f1dfb5a
F20101119_AACVYI karlson_t_Page_124.tif
442d59af919511f2de12c05914330ba7
47f0c1c955af2ab5978c4f5d739a4f8f3f84d1d2
65515 F20101119_AACVXT karlson_t_Page_061.jp2
942703112cad8e2f5259b8c578967679
8c78125b2160dca92b694ee3b6775ee2c22e9d5f
6473 F20101119_AACWEC karlson_t_Page_080thm.jpg
9a49c2b1272ccf4dd8c2c7f79ce90c20
e1404dd27ec712a2b053aba0e7e626a1144e9d39
2004 F20101119_AACWDP karlson_t_Page_076.txt
215a8574270c9301cb9f91107a6829c3
35a0639721dab265328ca2796096531cb1e358e3
F20101119_AACVYJ karlson_t_Page_084.tif
0712e5f82a24c6af701ec27c79d5d9e2
72003224c454b7ef91e6b1a5a98ba36710558d13
83282 F20101119_AACVXU karlson_t_Page_068.jp2
62dfd98ab4252cabd077b50ff8531184
11d9fb37033ba3b2ac39233d6809a8112ce1b39c
1938 F20101119_AACWED karlson_t_Page_018.txt
1fabd8453d0d8db65d9309b225232b55
94289fdbf9b19c261eda0222c5488dc05e1200e9



PAGE 1

nrn nn n n nrnn n n nr

PAGE 2

!"# $ % #%&'(

PAGE 3

" ')*+,-(# ')-) *%#-)#.%,-'%(/-&&0-( (--%()1 -()

PAGE 4

2 n3n /+&)& 4-##"%(4,%)2 '05( '' (01%&&1" '!+ )%(*-%() '+-2 (%'/-&&%'#"-#+( ##*(# (+,-)+*%# (/+&)%&'& 4-# #"%(4,*,, ##--0-(%&)6+-%()*# #3%'"$+(01#"# ,-0 4(/&-)!-0%() )-%'#"%##"-"%2-'!-(-+'& %''-)(#,-/+&)& 4-# #"%(4#"-& )%-%#,-(#1%('#%# (1 #''+#0#"-+'-1 #'-6+ ,-(#0 %()#"-"-&1 #'-(! (--'%()#-*"( %(' !-%#)-%&1!%# #+)-!-'#-!-/ "'--7-# '-4-##"&%$%#-%# (%& (' #-1+'!%)+%#-'#+) -(#'/+&)& 4-##"%(4& '6+ 2-& /")-/,%##-(# (##" '1 -&)1-(! (-(! -* %&#"%(4'!#.-11%(40 %4(%,%,%40.%!%((%#"%%#4+ 0 ("-0%( ))%,.%5& %)/"'--11#' %()1 -()'" ',%)#'' $&-1,-#*,&-#,-'-%*"%&'/ '"##"%(4 -2-(-$#"1,-&%()*+-(#& (#"-%#% &'+%##"-( 2-' #1& )% /"'-1 -()'" %()"-&,%)-,-7-(*-#"-',-#" (!/ &&%&/%'-,-,$-8 9"%(/++ 0&%+)&& -'0(!:.(! ,0+(!" ,0.%-'-+(! ,04%( 4 (!-(0(*"% %(!-#(!%,0%( -&%4+0 & ,0"#-%(%4,0%* n2%40&2-'#-' %,%"0 (" -#"%,0 *"%-& 3%!(-0'*%%* %0%() ./%((

PAGE 5

2 /+&)& 4-##"%(4,%-(#'/""%2-%&/%'! 2-(#"-'+#%()%-(#%& (+)!-(--)-) (%&&0/+&)& 4-##"%(4, $-%+# 1+&/ 1-0(#" %0/"'-&2-0 )-2# (0%()+('#3-();'4-#,-! (!#"+!" #"-&(!"+'1-'-%*"

PAGE 6

2 tftnn %!fnt3n 2bt 7btb 7f 7 f <)"-' (%()# (! ><--''+(# :# (!)) # 2-' <@>< 6+ ))) # 2-' > ,-)) # 2-' < '#+-+'*-# $ & #-'#'%()f() # ( (! '#-,'<+%& #%# 2-+$5-*# 2--'#' =<< & (!%#--'# =<#%# *:b,,-' (-'#Ct:
PAGE 7

2 +%(# #%# 2-#-(!#"-'#' > <##,%(-'# > +(( *& 11%()#-#") =) 1 -)##,%(-'#C:?=D >,,-' (:,-'' (-'#C:#"--2-&,-(#'1(#--'# = A(*&+' (' =< =nr == =<%#%&' == =<< ,-'#(== =<%( #=> =<= 6+ )'"%&# =A =-#")&! =A =<%,&--%%# ( =A =-#-, ( (! 1%%,&-''-%$&=B ==%,&--'# (! =@ >nnnr >< ><%*4!+() >< >-' !((' )-%# (' >= >=('#+*# (%()-' !( >? >=<*& *%) (!%()--''+-() # ( (! '#-,-' !(>@ >=<<-' !(%%,-#-')-#-, (%# ( >@ >=< '#(%''-,$&)-' !( = >=<=%()$%'-&%#-)-' !( A >=<>#+#)-' !( @ >=<()&%#-()-' !( A= >====<@-%&'-&-*# (%()&%*-,-(# A? >=<<('#+,-(#%# (#' B >=<<<,(-(##&-%(*-'-* 1 *%# ( B< >=&+ ) '# $+# ('#-, B= >==3%#--,-%#+-() # ( (!'#-,' BA >>%!-#-)-'# (! BB >-,-%#+-(#&'#-, B? ><-* ,-(-#:+1-,-%#+-%& $%# ( ? >-#")1& (!%()-%# (!%& $%# ( ?= >=& (!%& $%# (-'+&#' ?> >>-%# (!%& $%# (-'+&#' ?A

PAGE 8

2 E ?@ <-,-%$ & # ?@ #: 7'"%&#%*#+--*"%( *' @ Annnn @> A<*-)+-2-2 -/ @> A%,&-() # ( (! @ Bnnn << B<2-2 -/ << B2%&+%# (1*& *--''+-()+*-) #+-%,%!-' (!#"-(-! %# <> B=+,,% <> B>(*&+' (' << B-*,,-()%# (' <<< n <<= <
PAGE 9

7 %$&%!=:<%)%# ('1#",-'#(7#+-' => =:(2-' (1%(< ,-'#(7#%(<% ( #7= >:
PAGE 10

7 !+%!:<&&+'#%# (1#"-+1%*-(-!"-1 )"-' ( B :&&+'#%# (1# (!$-#%*",-(# &&+'#%# (1# (!$)%+& **+ ( <@ >:<*"-,%# *1#"-*& *%) (!%()--'' +-() # ( (!'#-, ,(-(#' >? >:+#:%/%1#"-%) (!%()() # ( (! %7 %&-&&F(# -/< >:=+#:%/%1#"-%) (!%()() # ( (! %7 %&-&&F#%#-)>G1,(# -/ >:>-#% &1#"'#(''-,$& >:-#% &1#"-((-*# (1#"-(1 ( (! (! ##"-&%#-@ >:A-#% &1#"-((-*# (1#"-#+###"&%#A >:B*"-,%# *1#"-&+ ) '# $+# ('#-, B= >:? %!%,1#"-3%#*+&%# ('#-,#"%# (#&'#"-%,&--,-%#+-B@ >:@%"1#",-2'-,-%#+(% *%& :<-* ,-(F" && (! 1,,-,-%#+-#:<%"1#",-2'-,-%#+(% *% &3:<-* ,-(F-%# (! 1,G ?B :<%""/ (!(-!"-'"&)'%()#"-11-*# '1%#-1--%(),:2%&+(%#-1%,%!@ A:< %!%,1#"--''+-'7-#-)(#"-"%((&'"+!"%%,&-/ #" (*-%'-)--''+@A

PAGE 11

7 B:/%"'*# (!(-!%# %&+-'1 7#+-'() # (-)%#*& --''+-'1:<' %()%-,-%#+-1>G <@

PAGE 12

7 $'#%*#1"-' '-'-(#-)##"-%)+%#-*"& 1#"-( 2-' #1& )% (%# %&+&1 &&,-(# 1#"-6+ -,-(#'1#"--!--1%'#-1* -(*nrn nn % #%&'( -*-,$"% 85( ''(*"% 8-(%&)6+-%5-%#,-(#8 2 &%()%'#%&(! (-(! '#+-)%,%!-0**+ (! ('-2-%&1,'0*%(*% +'-)-#%# (1%'"%&# %2-,-(#'&-%) (!#%'"#-(-)'-2 *-& 1-1#" -%2-,-(#,-1#"-'-1,' (*&+)-'# (!C%&''1%)"-' (1#"-%'"%& #$ ()-1,#"-%!!-!%#-D0")%+& '*+ (!C/"--1 (-'%-#%('#-)#"+!"#"-2 )' (#"-%2-,-(#/"-(%#%11 &%)*%+'-'' # 2-%()(-!%# 2---''+-'D0 %()%&''1*"-' ( (#"-%'"%&# $ ()-/"-(--# # 2-' # 2-%()(-!%# 2--''+-'$-%4#"-*((-*# (' $-#/--(#"-%!!-!%#-2-%&%##-,#'"%2-$--(,%)-#*-%#-%#-'# *-)+-#"%#/ &&%**+%#-& )-#-, (-#"-'+'*-# $ & #1%(%'"%&#%2-,-(# #, '#+-)%,%!-n(-"%2!% (-)/ )-%**-#%(*-)+-#&%*41--%#%$ & # 0*,& *%# (1#"-*-''0#"-(--) 1-7-(' 2--6+ ,-(#0&%*416+%(# #%# 2-'+&#'(-/**& *&%) (!%()-''+-*() # ( (!''#-,/%'+'-)#-2%&+%#-1 +) 11--(#**& -''+-H#-,-%#+-*() # ('"-'-*() # (' /--:<' %#G0:' %#

PAGE 13

7 G0:=' %#G0%():<' %#>G"+-%2-#-'#/%'+'-)# $#% (#"-#-(' &-'#-(!#"0-' & -(#,)+&+'01% *#+--(-!& #CD0) '' %#-)*-'#% (-(-!& #CD0%()*---# -'1 ,#"-*() # (-)%()+(*() # (-) '%,&-'"-'--# -'/--+'-)#)-#-, (-% 1%*#+-,-*"%( *':$%'-) -1,%(*-'-* 1 *%# (* #(0#-,-)#"-I( -!%# JCD0/" *",-%'+-'#"1%*#+--' '#%(*-1, 7#+-' "--'+&#''"/#"%#**& *--''+-*() # ( (!%#%(-&-2%#-)#-,-%#+1>G-'+&#' (, '#+-)%,%!-%##-('#"%#% -*(' '#-(#/ #"-7-*#-)$-"%2 ,-'#(-, 7#+-'/ #"2-(1 -&)-1,%(*-# %*4-*)''"/-)& ##&-( '#+-)%,%!-"--! %!%( #-, 7#+-'0/" *"%-4(/(#-7" $ #, '#+)%,%!-/ #"+##"--'-(*-1%(# :'# (!%!-(# '0'"/-)%-)+*-)%$ & ##-' '# 1%*#+-'%1#-*() # ( (!

PAGE 14

< < nn nrnrr '#+-"%'$--(' !"#-)%'%*%+'-1'-2-%&1 ,'1)%,%!("#:, 7%'"%&# CD%2-,-(#'"-'-1,' (*&+)-+## (!0%2& (!0%()*%*4 (!%()#"'-2--&%11-*##"--1,%(*-%()'-2 *-& 1-1 %2-,-(#' '#+-)%,%!( 7#+-'**+'/"-(/%#-*%(-(-#%#-#"-% 2-,-(#''#-," ')%,%!-*%( #"-(*%+'-'# (!C%&''1%)"-' (1#"-%' "%&#$ ()-1,#"-%!!-!%#-D0 ")%+& *'*+ (!C/"--1 (-%!!-!%#-%# *&-' %-#%('#-)#"+!"#"-2 )' ( #"-%2-,-(#/"-(%#%11 *&%)*%+'-'' # 2-%( )(-!%# 2---''+-'D0$% &''1*"-' ( (#"-%'"%&#$ ()-/"-(#"-' # 2---''+-'+'"#"-%!!-!%#%%# --() (!(,%#%&'0&%) (!0%()-(2 (,-(#0 #,%$-#"%#(-%&&1#",-*"%( ','1/%#-)%,%!-%--'-(#%()%-*(# $+# (%%2-,-(# (#"-1 -&) /-2-01%--2%&+%# (1%(! 2-(, 7#+ -%()#-'# (!*-)+-0 # (-*-''%# '&%#-%()6+%(# 1#"--11-*#'1-% *"1#"--), (%(#,-*"%( ',' *(# $+# (!#, '#+-)%,%!-(1%*#0#"-&%*4 1)-& (-%# ($-#/--(-/%#-11-*#'%()%*#+%&, '#+-)%,%!-,%&-%)#(-+'*(*&+' ('"-)%,%!*%+'-)$/%#(%2-,-(#',%$---'-(#-) $#/-7#-,-*() # ('0
PAGE 15

"-$&-,'1/%#-)%,%!(%'"%&#%2-,-(#"% 2-) -*#-)%##-(# (#/%)' #"-"-(,-((*%&&-)'# (! (-*-(#-%' -2-%&#-*"( 6+-'*%($-+'-)# -)+*-#"-'-(' # 2 #1, 7#+-'#'# (! 6+ )%(# :'# *"-, *%&'%*,,(&+'-)#"+!"+##"-( #-)#%#-'%'%(%) ) # 2-#%'"%&#*-,-(#& )% '+,,-)%'*%($-2-"%'"(%2-,-(#'% ()%'/ && (*&+)--7#-,-& !"%2-,-(##-,-%#+-'%()#"-(*&, ))%)/ (+'1&&/-)$"# %1#-(('"-'-*() # ('*+&)*(# $+#-## "-'# (!$&-,'#"%#& )%"%' 1%*-)'%-'+&#& )%"%''-* 1 -)#"-+'1%2-)%(# :'# (!%!-(#' (%&& 1 *# (*+'-%()-**&-), 7#+-' "--"%2-$--('-2-%&5-*#')-2-&-)#"+!" #"--%'#"%#"%2-&4-)%# #"-"-(,-((1/%#-)%,%!-'#1#"-'-'#+) -'"%2-+'-))-'#+*# $&-'#-(!#" #-'#'(+(*() # (-)%()#"-((*,%%$&-*() # (-)'%,&-'#)-#-, (-"/ ,+*"#"-'%,&-'/--%11-*#-)$#"-*() # ( (! "-'-*() # ( (!*-)+-' "%2(*&+)-)**& (!/%#(%()+#1#"--' %()**& (!#"--''+-' (#"--' 1#"-'-* ,-(' r ",%$5-*# 2-1#" ''#+)/%'#%**+%#&)-#-, (-#"--11-*#'1 **& (!--''+-' (+-1, (!'"% &#%2-,-(#C+-%2-D'%,&-' #"-+'-'1#" '-'-%*" (*&+)-)-2%&+%# (! #"-'' $&--11-*#'1%!!-!%#, 7#+-C*+'-%()1 (-:!%)-)D%()%!!-!%#-#C-! %!%( #-%()& # & ,-'#(-D(--''+-'%(), '#+-)%,%!-'+ '*-# $ & # rr (#" '5-*#0#"--,-%$ & #/%'1+()1' 7 !%( #-, 7#+-'+' (!#"& )%-%#,-(#1%('#%# (CD,-#") "--1#"-'-!%( #-, 7-'%()

PAGE 16

= #/& ,-'#(-, 7-'/--+'-) (%(-/&)-2-&-) *-&&#*() # (#"-,%()#-'#1 *"%(!-' (#")(%, *%()-' & -(#,)+& ( (#)+*# (#) 11--(#,-*"%( ','1, '#+)%,%!-%()-2 +'-'-%*" %--'-(#-) ("%#-"-,%#%&'%(),-#" )&! -'+'-)%-&*%#-) ("%#="%#->)-'* $-'#"--6+ ,-(#+'-))+ (!# '5-*#"%#-*(#% ('#"-,-%$ & #-'+&#'%'/-&&%'#"-"#:, 7%'"%&# 1%*#+-,-*"%( *') '*+'' (( "%#-A0#"-'-* ,-(*() # ( (!*-)+') '*+''-) (%&&0"%#-B'#%#-' #"--'+&#'1#"-5-*#%()-*,,-()%# ('1 1+#+--'-%*"

PAGE 17

> f bb3 ,%5$5-*# 2-/ #"#" '-'-%*"5-*# '# #")-(# 1)-2-&(-/ ,-#")'1-2%&+%# (!#"-#-(# %&, '#+-)% ,%!(, 7#+-'b()-# )-#-, (-# ,%&/%'#*() # (%()#-'#, 7#+ -'0 # ,#%(## (*&+)-#"-,'# & 4-&,-*"%( ',C'D#"%#*%+'-, '#+-)%,%!(# "-&)%()+'-#"%#,-*"%( ', *() # ( (! (#"-&%$%#b# '-6+%&&%' ,#%(##)-2-&%'#(! +()-'#%() (!1#"--, 7#+--# -'#"%#% -%11-*#-)$, '#+-)%,%!-0'#"%# #"--2%&+%# (%()+%(# 1 *%# (1#"--11-*#'1 '#+-)%,%!-*%($-$+'#%() -11-*# 2-b(#" '*"%#-0#"-*+-(#'#%#-1 (/&-)!-%$+#, '#+-)%,%!( 7#+-' '-2 -/-)b(%# *+&%0#"-1*+' (
PAGE 18

#"-'%',-*"%( *%& (#-&*4 (!0*"-, *%&-%*# (0%(),&-*+&% -(#%# ( '+%*--(-!f"-, *%& (#-%*# ('%-$-& -2-) #$-#"-$-'#-7&%(%# (1#"%)"-' 2-$()Cf+# '0 ('&-0%()'0<@@=%D +#"-,-0%&&#"-'%''+,-#"%# #"-$() (1&+-(*-)$ #"-*,' # (%()'+1% *-*"-, '# 1#"-%!!-!%#-' ) '*+'' (1#"-*"-, '#1#"-%'"%&#:%!!-! %#-$()0%'/-&&%'#"%!!-!%#--# -'#"%#,#-%)"-' (1&&/' b(%)) # (0',-#"-'1%*#'#"%# *(# $+#-%-*,,-(#-)+( tnf!"ftrbf#trft "-%'"%&#:%!!-!%#-$()% '-')+-##"--'-( *-1%* ) *%()$%' *,(-(#' (%(%'"%&#, 7#+-#"%#-%*#1, (! /%#-: ('&+$&-*,+()'"%)"-' (1%'"%&##%!!-!%#-,+'#**+%()$,% (#% (-)1%!)%2-,-(## -7 '# (2-'# !%#-%()*(#&'# (!$&,'0 # '(-*-''% #+()-'#%()#"*"-, '#1$#"#"-%'"%&#%()%!!-!%#-%##"%'"%&#:%!!-!%#(#-1%*-0%()#"-11-*#'1, '#+-(#" '$() (! '"%&# '*,'-)1%, 7#+-1")*%$('#" %#*(#% (',-&% 1+(*# (%& #0%'/-&&%'*('# #+-(#'#"%#*(#% ( ,-#%&''+*"%'( *4-&02%(%) +,0%() ("-%!!-!%#-2 )-'%'+1%*-#"%# '"-# -!-(-+'%()"%'%2% -#1' #-'1 ) 11--(#*,' # (%()&-2-&'1%*# 2 # "-' -%*# 2-' #-'%-1-6+-(#&*"%!-) *(#% (%# %&*"%!-'#"%#%##%*#%() -(##"&%*('# #+-(#'1%'"%&#f+# '0 ('&-0%()'C<@@=$D0 (%( (2-'# !%# (1# "-*"-, *%&%()" *%&*-''-' #"%#!2-(%)"-' ($-#/--(%!!-!%#-'%()%'"%&# 0'#%#-)#"%##"-&%1+(*# (%& # -' -'-(#%##"(#1*(#%*#$-#/--(#"-%'"%&# &,%()#"-%!!-!%#-'+1%*-%)"-##"-'+1%*-#"+!"-&-*#'#%# **-'0")! -($() (!0%()-%%&' (#-%*# ('

PAGE 19

A 3"-("#%'"%&#*%#'#"-%!!-!%#-'%# *&-'0 # #-()'#-(#-%( %2% &%$&-'"#:%(!-*"-, *%& (#-%*# (' (%'"%& #,&-*+&-'%-1-%' $&-$-*%+'-1 -&-*#'#%# (#-%*# ('#"%#**+$-#/--(#"-* "%!-)'+1%*-%()#"-,&-*+&-' %##%*#-)##"-'+1%*-)%,'(C<@BAD (#-) +##"%#&%,&-*+&-'/ &&' # ( #"-,'-&2-'%&(!%'+1%*-%**) (!##"-) 11-(*(*"%!-*"%!-)%!!-!%#'+%*-%##%*#'%(' #-&*"%!-)%# %&& *"%!-)'-* -'1+(*# (%&!+ *(#% (-) (#"-'-* -'"-%#1#"-%##%*#),&-*+&-#"%# '%2% &%$&-1 (#-%*# (/ #"#"-%'"%&#,&-*+&-'/+&)#"-( $-#"-*"%!-1#"-%!!-!%#-%() "-(*-/+&)"%2--&-*#'#%# (#-%*# (/ #"#" -' #-&*"%!-)%# %&& *"%!-)%'"%&#,&-*+&-' "(#+' (1/%#-, '#+-,%'+$'#%(# %&& %11-*##"-1#"-&*%& -(2 (,-(#**) (!#*##C<@B?D0*"%(!-' ( #"-1#"-, *'* */%#%**+,+&%# ('%##"-%!!-!%#-'+1%*-*%(%&#-#" -#-1&%!+'%)'$-)0%' /-&&%'#"'#%#-1 ( K%# (H) ''* %# (0&-% ) (!##"-$+ &):+1' (!0 (-!%# 2-&*"%!-)0-&-*# *%&)+$&-&%-'(#"%!!-!%#-%()%'"%&#'+1%*-'") 2-#-%*"-6+ & $ +,%##%*#',-/%#-%() &-%)'#"' *%&'-%%# (1#"%'"%&#,#"-%!!-!%#b('"#0#"-$()#"%#)-2-&'$-#/--(%'"%&#%( )%!!-!%#' ,% &)+-# -&%# 2-&/-%4) '-' (*-'#"%#*%+'-,&-*+ &% -(#%# (#**+%#,&-*+&-'0(#"-#"-"%()0%-" !"&&%%() #"+'%-%##%*#-)#%!!-!%#-'$ ,+*"'#(!-(#%# (*-' "--1-0 1%#"--:"%'(#-1%*-*(' '# (!1 %!!-!%#-0%'"%�%()/%#-7 '#'0/%#'$-##-#"%(%'"%&#-)+* (!# "---'+1%*--(-!1#"-''#-,#%

PAGE 20

B #"-,)(%, *%&& '#%$&-*() # (1, ( ,+,'+1% *--(-!C !+-:D0(*-#"-%'"% &, '$-%*"-) %()/%#--(#-'+()-#"-%'"%� '+%*-#-(' (',% 1*-#"-/%#-$-#/--(#"-,% ( (!%'"%&#:%!!-!%#(#-1%*-0 *%+' (!'# (! !+-:< b&&+'#%# (1#"-+1%*-(-!"1)"-' ( **) (!#"-&-(C<@?D0#"-'+1%*(#-1%* %&#-(' ('CLD$-#/--(#"-'"%'-'%-%7 ,%#-&%'&&/'8 L%$M (#-1%* %&#-(' ($-#/--(%!!-!%#-%()%'"%& #MBH "+'0+'+%&%'"%&#%()(,%&!%( *,%#%&'/ &&&+(#% &'-%)2-/%#1 &,'(%!!-!%#-0%()/ &&%&'#-()#$-'# -),#"-'-1 &,'$/%#-"-%#$$%$&% '&% ()& $$%$&% '&% ()&

PAGE 21

? %#/" *"#"-'-*-''-'**+()+$#)--()'', -/"%#(#"-,%!( #+)-1#"-1--(-!-2&2-)CD0$+# (%*# *-$%$& '* (#&&-)*" -1& $ #"-2 '*' #1#"%'"%&# trfttft % &+-1#"-$()*%(1% &%##"(#-1%*-0/ #" (#"-%'"%&#%'%*"-' 2-1% &+-0 / #" (#"-%!!-!%#-%'%'#+*#+%&1% &+-f +# '-#%&C<@@=$D'"/-)#"%##""' **"-, *%&'+1%*--# -'1, (-%&%!!!%#-%-,,#%(#1, '#+()+*-)'# (!*,%-)##"--# -'1%' "%&#*-,-(#$ ()"-'+%*-*"%!-1#"-%!!-!%#-)-#-, (-'0# ',-)-!--0#"--7#-(#1 %##%*# (%()%)'# (1#"-%'"%&#" ''+ 1%*-*"%!-*%($-6+%(# 1 -)$ ,-%'+ (!#"-'#-%, (!#-(# %&9-#%#-(# %& 1#"-%!!-!%#-f('-6+-(#&0#"%!!-!%#-'+1%*-*%($-,) 1 -)#-11-*#1%2%$ &-%##%*# ($-#/--(#"-%'"%&#%() %!!-!%#&-*#(#%('1-1,#"-%'"%&#%##"(#-1%*-& -'(#"-%$ & #1%!!-!%#-' #%**-#)(%#-#"-'--&-*#('*##C<@B?D $'-2-)#"%#2%&+-2% -' )--() (!(/"-#"-#"-%!!-!%#-'%-' & *-+' *%&*%-+' b(%)) # (0f+# '-#%& C<@@=$D*(*&+)-)01,'#+) -'1#"--&-*#()( %()-&-*#(%**-#-# -'1 1+%!!-!%#-'0%(! (!1,+%#K0#' & *%#-0 #*%&* #-:$%'-)0#"%#%!!-!%#-' *,'-)1+%#K-7" $ ##"-'#(!-'#%**-#* "%%*#-0/" &-' & *%#-,%#%&'%&-'''#(!"-*%$(%#-*4''"/%%(!-1) (:%**-#-# -' ,-, (-%&%!!-!%#-'%("--(#&-'+'*-# $&-#'# (!b(#-&*4 (! -# -'1#"-%!!-!%#-%# *&-'0/" *" (*&+) () 2 )+%&*'#%&%*-'0' #0 %(!+&% #0%$'# (0%()'+1%*-*%# (!%-%&' $-& -2-)# ,2-#"-$()'#-(!#"

PAGE 22

@ (%(%'"%&#, 7#+!!+()+%()$-#'C<@??D '#+&%#-)#"%##"-%$'-(*-1% '+() (#-&*4 (!(-#/41#"-'--# -', !" # ()+*-'# (! b# '1#-($'-2-)#"%#' & *-+'%!!-!%#-'"%2'& *40',#"%-%'0/" *",% 2'-#'# (!0/" &-+!"(-'',% "-&# ,#-$() (!-' )-'0',& ,-'#(-'%()& ,-:#-%#-)%!!-!%#-'#-()#1, '#(!-0,-$+'#0%())+%$&$()'/ #"%'"%&#"('-(' # 2 #1#"-'-$( )'##"-%*# (1/%#'$-& -2-)# *%+'-#" '"-$()'1,-) (#" '*%'-%-'# (!0 ('&+$&-$()'f+# '-#%& C<@@=%D$'-2-)01,-%*# 2 #,-%'+-,-(#'/ #" ,)-&*%$7 & *%* )'0#"%#-2-( / #" (& ,-'#(-'0#"%$ & ##1, ('&+$&'%&#'2% -''+$'#%(# %&&0)--() (!( #"-%2% &%$ & #1#"-'+1%*-*%&* +,#-(#( #$()1,%# ( ft rrft*rf +(( *& 11%()#C<@?>D-1,-)%'+2#'+ ,,% K-%()%(%& K -#"-+'1%(# :'# (!%)) # 2-' (%'"%&#, 7#+-' ( #"-( #-)#%#-'$'+$, ## (!% 6+-'# ((% -#,-,$-'1#"-,*%(''* %# (1#%#!"/% %() %('#%# (t11 %&'CtD+$*,, ##--( %#%&'0%!-(* -'0%'"%&# *-,-(#)+*-'0#%)-%''* %# ('0%()%(# :'# (!%)) # 2-)+*-'-'('-' 1,#"-6+-'# ((% ,&#"%##"-1%*#'*( # $+#-#'# (!0'+*"%'%'"%&# *-,-(#*"%%*#'# *'0%()*('#+*# (%*# *t(#"-#"-"%()0% &%()"'&%C<@?=D*(*&+) -)01,%*,-"-(' 2'+2-1#"-& #-%#+--!%) (!, '#+-)%,%!(%'"%&#%2-,-(#'0#"%#'# (! %*,&-7$&-,-&%#-)#%&%!-(+,$-1% %$&-'0 (*&+) (!%&'#"-#-%()+'1, 70-(2 (,-(#0%()#%11 *

PAGE 23

< %'-)(%(-2%&+%# (1#"-1%*#'-'(' $&-1 ()+* (!'# (!0%()"%& C<@@>D& '#-)%()) '*+''-)-7#-(%&1%*#'%()H (:&%*--# -'1%'"%&# %2-,-(#'0)-%& (!$%' *%&&/ #"#"-'%,-1%*#' '#%#-)$-1-4(/&-)!-1#"-'-1%*#' '-''-(# %& ( )-(# 1 (!%()'&2 (!#"'# (!$&-,) '*+'' (1#"-,'#1-6+(#&& '#-)1%*#' )-(# 1 -)$% & %()"'&%C<@?=D%()%()"%&C<@@>D1&&/' &!tr+t",b#"%'$--(+()#"%##"-#-%()+'-1%(%'"% &#, 7#+'-&%#-)##"& 4-& ")1#"-'# (!1#"-, 7"-,%5 #1%2-,-(#% &+-'*%+'-)$ '# (!**+ (-(:!%)-), 7-'0$%'-*+'-'0 %()'+1%*-#-%#,-(#'0%&&1/" *" %--&%# 2-&-,-%$&-#/%#-/"-(*,%-)/ # ")-('-:!%)-), 7-'+1%*#-%#,-(#'"%2-$--((#-)#$-%# *+&%&+&(%$&-#'# (!# (! ()-('-: !%)-)0"#:, 7%2 (!, 7#+-' '!-(-%&&(#* (' )--)%&%!-$&-,+(&-''#", 7#+-'-7" $ #-7*-'' 2-% )'0 ('+11 -(# $ #+,-(0 (%)-6+%#-*,%*# (0 %!!-!%#-/ #"%)'$-)*%# (!'"-%*# *-1 %)) (!%(# :'# (!%!-(#'##", 7#+-,%$,2 (!#"-&)-1,%(*-1# "-'-, 7#+-'"("--(# -' '#%(*-#'# (!-7" $ #-)$)-('-:!%)-)0 "#:, 7%2 (!, 7#+-',%$*%+'-)0 (%#0$#"-+'-1"#0)%!!-!%#(#"'-, 7#+-'/-2-0#"-'% (--)#-2%&+%#-%&&, 7#+-'#"'+'*-# $ & ##, '#+-)%,%!-b(%# *+&%0 (*-#"-+'-1%(# :'# (!%!-(#' '*,,( ( 7#+-'0 # ,#%(##-2%&+%#, 7#+-'#"%#*(#% (%(# :'# (!%!-(#' (%(% **+%#-%()$+'#,%(("-',%&&-*-(#%!-1(,%&&-'-(#% )' %()#"-*,,(-'-(*-1 %(# :'# (!%!-(#' (/-&&:*,%*#-)0)-('-:!%) -)"#, 7-' '$%$&&%!-& -'(' $&-#"-7*-&&-(#, '#+--' '#%(*$-*%+'-#"#+%&%$'-(*-1 )'

PAGE 24

<< -()-'#"-, 7-',+*"&-''-,-%$&-+&&:)-#" C)--'#-(!#"D%'"%&#%2-,-(#'0%' '-)$ "-'"%&#b('# #+#-0"%2-$--('"/( #2 )--7*-&&-(#-' '#%(*-# '# (!"-)-('-:!%)-)%'"%&#$%'-'1#-(+' -) (1+&&:)-#"%2-,-(#'%$'-2-)#%*#%'%2%$% -'#"%#& ##&(1--, '#+-%**+,+&%#-'$-(-%#" #"-%2-,-(#' rbf rrftf "--&%# ('" ,'#1#-(-1--(*-)$-#/--(#"*"%%*#'# *'1#"-%'"%&# ( %%2 (!, 7#+-%()#"-#-()-(* 1#"-, 7#'# -&%#-''# (!-' '#%(*-##"2 '*' #1#"-$ ()('-2 *()-'1" "2 '*' #"%2-$--($'-2-)#-' '# ) '&%*-,-(#$ /%#-,+*"$-##-#"%(#"'-1&/ 2 '*' #0%&#"+!"-2-(A: -(-#%# ($ #+,-("%'$--($'-2-)#'# ,,C<@B>D$'-2-)#"%#" !" 2 '*' #%'"%&#-' '#-)+&& (!%&(!%(% :/%# (#-1%*-%()#"%##"-+&& (!1#"%'"% &, (*-%'-)%'%'"% '*' #)-*-%' -) /2 '*' # 0"/-2-0 ')-' %$&-)+ (!, 7 (! -%# ('$-*%+'-%&/ 2 '*' #1&+ )"%',-/-## (!/-#"%((-1 !"2 '*' # t$'-2%# (',%)-$ *", )#%()%1 () *%#-#"%#,'#%'"%&#'%-% #$-"%2-' &%&/ #"-'-*## '#+-02 )-)#"%-1#"-'%,-2 '*' #O -0#"--11-*#1%'"%&#*,' # ( (-!& $&-b(*(#%'#0,,C<@B>D$'-2-)#"% ##"-%#-1-,+&' (1,%# ( (%( %'"%&#'+$,-!-) (/%#-)--()'(#"-(%#+-1 #"-%'"%&#%#"-#"%( #' '*' # *%&&0%(-,+&' 1 -)%'"%&#,%$-,-(#'# (!$'(#%(-+' -,+&' 1 *%# ( 1',-*(*-(#%# (1-,+&' 1 -,% (' (#"-$ ()-%1#-, 7 (! "--'-(*-1%%11 ( (%'"%&# '$-& -2-)# $-)-# ,-(#%&#'# (!-' '#%(*-2-0" !" '*' #%'"%&#*-,-(#'*%((#$+'-) (,%( ('#%(*-' $-*%+'-1#"-*(' )-%# (''+*"%'&/:#-,-% #+-*%*4 (! (*&)-! ('%()

PAGE 25

< #-(# %&-)+*# ( (1%# !+-& 1-1#"-'+1%**+'-'"-'%(--)#+()-'#%() #"-1+()%,-(#%&'1%!!-!%#-:%'"%&#%)"-' ('# "%##"-$&-,*%(, ( K-)$ #"-,-%('%#"-#"%( (*-%' (!#"-%'"%&#*-,(#2 '*' #0/" *" '(#-11-*# 2( %&&*%'-'%()/" *",%-'+&# (#"--1,%(*$&-,' '"%&# '*,'-)1'+*"%2% -#1*"-, *%&' -* -'#"%# #,'#& 4-&/ && %&'"%2-%*(# (++,1-&-*#()(%()%**-# $-"%2 0#"--7%*#%(!-1/" *" ')--()-(#( #'*"-, '#"-,%#*" (!1#"-&-*#()(%# (%()%**-# (! %$ & # -'1#"-%!!-!%#-'%()%'"%&#'0-'-*# 2 -&0,%&-%)# ,2-,-(#' (%) -1,%(*(-1%*#%11-*# (!#"-/-## (!1#"-%!!-!%#-' +1%*-$%'"%&#)--()'(#"(#-1%* %&#-(' (0,# (!/-## (!0%()1%* & # %# (!*&'-*(#%*#$-#/--(#"-%'"%&# %()#"-%!!-!%#-'+1%*-/-2-0#"--11-*# 2-( -''1%(%)) # 2-0%# *+&%&%(%(# : '# (!%!-(#02% -'/ #"#"-#-1#"-%)) # 2-0%'/-&&%'/ #"#"-%'"%&#%() %!!-!%#1#-#"-%'"%&#"%'/-##-)#"-%!!-!%#-'+1%*-0 ',-1 #'!%( **"-, *%& 1+(*# (%& # -'-(#(#$()1,%# (/ #"#"%!!-!%#-*('# #+-(#'-6+-(#&0 #"-'-1+(*# (%&!+'0'+*"%'*%$7& *%()"(& *%* )0*,$ (-/ #"%&4%& ,-#%&' -'-(#(#"-%!!-!%#-'+1%*-#1,/%#-: (' &+$&-'%&#'C-!0') +,'%&#'D ('-6+-(#&0#"-'-%'"%&#:%!!-!%#-$()'%( *$()'#"%#/-%4-('&+$ & K2-# ,-/ #"-7'+-#, '#+-"-$-*,-, '#+-'+'*-# $&-$-*%+'-1#"(%$ & ##/ #"'#%()'&+$ & K%# (%()) '$() ( !2-%(-7#-()-)%,+(#1# ,"+'0-2-(#"+!"#-(' &-'#-(!#"%# CD,-%' +-,-(#',%-7" $ #" !"2%&+-'0

PAGE 26

<= #"-'-%--1&-*# 2-1(&#"-" *%&'#-(!#" 1#"-$()'%())(#,-%'+-#"%$ & ##/ #"'#%()-7'+-/-%#"(! ffrft b(%)-6+%#-'+1%*-%()H'+$'+1%*-)% (%!-2 )-'/%#-, '#+-2%0 /" *" '#"-(-*-''% (!-) -(#1 ()+* (!'# (!b1-7*-'' 2-/%#-, '#+' -'-(# (#"-%2-,-(#''#-,#"-%2-,-(#*%( '# -,%#+-& %()"%&0 +$&)0%()$-#'C<@?@D"%2--#-)*%'-" '# -'/"--#"-'# (!/%'(#% !-(-%&"-(,-((**+ (!(#"--(# -5-*# $+#%#"-%&*%& K-)"-(,-(( ( %-%'1#"-5-*#'%#+%#-)/ #"/%#-%()H/% #-%)+-# (%)-6+%#-'+$'+1%*)% (%!-*() # (' 3%#-*%(-(#-#"-%2-,-(#&%-' () 11--( #/%'b#*%(-(#-%'+(:11 #"+!"#"-%)'+1%*-0 ,% &#"+!"'+1%**%*4'b#*%(-(#-,#"-' )-' %()$##,%''--%!-,) #*"-'%()" !"/%#-# %$&(#"-*+#%-%' "-,'#*,,(/%#-,2-,-(# '+/%)$*% &&% #+()-%%2-,-(# $2-#"-*% &&% (!-0/%#-,2-'%'%% %('+$$%'-''+$!%)-' (#"-7 '# (!" !"/%''#-,&%*4#"-)-' -)-,-%$ & #O#"--1-0%-'%#+%#-)/ #"#"*% &&%, '#+-"-*('#+*# (1,+&# &%(" !"/%'C/ )-( (!D#!-%#/ )#"'0!-(#&-'&-'%(), &)-*+2-' (%&& ( )'1#-% ("%'*,+()-)#"'+$'+1%*-)% (%!-$&-,+ #-1#-(0%+:& %(-" !"/% '-"%$ & #%#-)$%2 (! #"-,-) %(%()'"+&)-'/ #"-'+&# (! (%+ &&%2-)/ )#"1B:B?--#0/" *" '-6+ 2%&-(##%' 7:&%(-" !"/%/ #"+#%( (* -%'(#"-'+$'+1%*-)% (%!*%%$ & # )' (#"-%2-,-(#,%$-*,-'%#+%#-) / #"/%#--2-(,% *()-('%# ()+-#/%#(#"-'+$!%)-'+$$%' -#-,-%#+'-%1#-#" '

PAGE 27

<> '%#+%# (*%(*%+'--7%(' (1#"-/%#-#%-) (#"-, 7#+-2 )'-'+&# (! ( !( 1 *%(#2 )-''+-/"-(#"-2 )'%-'%#+% #-)"---''+-1,'#-''-' ()+*-)$ #%11 **%(%&'*%+'-#"-1% &+-1#" -$ ()-:%!!-!%#-$() b( # %&&0#"#%11 *'#-''-',% 1+#"-*,%*##"-, 7#+-%( )#%!-%#&-)+*-#"(#-(%& /%#-)% (%!-"--1-0#"(#-(%&-/%#' (1-6+-(#,# (C* *& *D%() *(' )-%$&---''+-,% $-$+ &#++()-#" -#%11 *%*# ( %()"%&C<@@>D)-'* $-)#-&&#%&-' !('1/%#-)% ,%!-#2-&% 'C*(*-#-%2-,-(#'D-$'-2-)/-#'#'(#"2-&%'+1%*-'*%##--) #"+!"+##"-5-*#'+%&&%##"-'-/-#'#' /%#-K-)+#)+ (!"#%1#-((' ,-1#"-/-#'#'*(#% (-) (-''+'-()-) ( #"-/%#-0/" *"/--) 2-((%() #+(-) (#%##%-%'C-'+&# (!,%'"%&#'# (!,#"-%!!-!%#-%(), !%# (! ##"-'+1%*-D" '1#-(-*-)-)#"-,%# ( 1#"&-' '+%&&'# (! (%+:&%(-" !"/%%* & # **+' '# (#"-'&/#%11 *&%($-*%+'#*% -',-%()"-%2 -#%11 **,%)##"-%'' (!&%(*%&&0$+# (#%&/%'0'# (!'#%#'%##"-$##,1& %-0%&%(#-1%*-0%() !-''-'+/%)' b# '-2 )-(#,#"--*-) (!) '*+'' (#"%# ( %)-6+%#-'+$'+1%*-)% (%!' (-1#",%1%*#' ()+* (!-,%#+-'# (! (%2-,-(#' t#"-*('#+*# (%*#'#"%#,%*%+'--("%(* -'# (! (*&+)-8 b(%)-6+%#-f,%*# (0 *-'' 2-+'#f%# (!(!!-!%#-0 '-1t-(:%)-)'"%&# *# (f+'-0 b(%)-6+%#(!1!!-!%#-'0 '-1-%4%() %$&-!!-!%#-0 &%*-,-(#1t2-&%'(-#%#-)f(*-#-%2,-(#'0 '-1%#-1-,$%(-'%()-%&f%#'

PAGE 28

< ,trn"f -' #-#"-1%*##"%#'-2-%&1%*#'"%2-$--(%'' %#-)/ #"'# (!0#"-'% *('-('+'#"%##" '"-(,-(( (* %&&*%+')$/%#-#" '#**+0 "/-2-0/%#-"%'#-(-#%#-#"-%'"% &, '*%(**++()-2% +'*() # (' %()$'-2-%&,-*"%( ',' "--,% $-%',%( %'1 2-) 11--(#,-*"%( ','$ /" *"'# (!1%'"%&# *-,-(#1,%(%!!-!%#-'+1%*-,% **+"'1 2-,-*"%( ',' (*&+)-C-! #+%#0<@@O%()"%&0<@@>O%()"%&%() *4%)'0
PAGE 29


PAGE 30

D0 (2-'# !%# (!"//%#--(-#%#-'%' "% &,'0$'-2-)#"%# '(#%(-+'-,+&' 1 *%# (**+'/"-(-2-%'"%&# 1 &,'/-,,-'-) (/%#-"%#-1-,+&' 1 *%# ()--()-)0"/-2-0(#"-(% #+-1#"-%'"%&#%()#"--'-(*-1 %)) # 2-'"-1%*##"%#'# (!"%'$--($'-2 -)#$--2-' $&-&-()''+###"'(#%(-+'-,+&' 1 *%# (,-*"%( ',$-*%+'--2% %# (1#"-/%#-1,#"-,+&' (-#+('#"-%'"%&## #' (%&*() # ( /ttt "--11-*#'1--''+-#%4-&%*-/"-(#"-% 2 )' (#"-%2-,-(# %--)+*-))+-#&%) (!%()#"-/%#(#"-2 )' '*,-''-)#*-%#--''+%!% ('##"-%'"% &,t(*-#"---''+(*-%'-'#%" !"&-2-&0#"-%'"% &, (#"-%!!-!%#-/ &&+#+-+()-#"--''+-%( )*-%#-%$-%4 (#"-1 &,/"-/%#-*%( (1 &#%#-##"-'+%*-1#"-%!!-!%# ---''+-+'+%&&%11-*#'(-/& &%*-)%2-,-(#'$-*%+'-#"-%2-,-(# '&%*-) %#%" !"-#"%()-' !(-)% 2 )*(#-(#/ #"#"-%''+,# (#"%##%11 *&%) (!'/ &&)-*-%'-#"-% 2 )*(#-(# -# ,-"-2 )'%(#-*((-*#-)%()%&&/ #"-/%#-#,-#"+!"#"%2-,-(#t(*-#"-%2-,-(#'#%#'#$-*,-)-('0#"(#-*((-*#-)2 )'*&'-%() #%'/%#(#"-2 )'+#"-)-(' 1 *%# (*% +'-'#"--'#*&&%'-%() (*-%'#"--''+-(#"-/%#--2-%&-%'('%-%## $+#-)##"(*-%'(--''+(*&+) (!#%11 *&%) (!'0#"-,%&-7%(' (01-K (!-7%(' (0%()#"-,%&'"*4 C##,%(0<@?$Dt(*-#"-%'"% &,+#+-'0 #"-(#"-) '&%*-,-(#,-*"%( ', -,2-'#"-%'"%&# &,

PAGE 31


PAGE 32

<@ $+##"-, ))&-1#"-&%-"%'&/-% 2 )'%() &-''-,-%$ & #C%'%)0 ''(0&:t,% 0%()f&-0D"-" !"-,-%$ & #%#'1#"*,%*#-)&% -%-,-& 4-&#*(#% (, '#+0#"+'-'+&# (! (-''+-')+-#2-" *&-&%) (!'%2-,-(#'/ #"I/-#1--#J0/"--#"-'% '+*-1, '#+-+()-(-%#"#"-%2-,-(#0'# (!1,#"-$##,,-,-%$&-%#1#"-%'"%&#&%'#"--1-, -& 4-& 2(!rb )%+& *'*+ (! '%,-*"%( ',1'# (!#"%# '%& *%$&-(& #'+%**+'-'# (!)+-#")%+& *'*+ (!-'+& #'1,#"-%*# (12-" *&-# -'(% '%#+%#-)%2-,-(#'+1%*-" '*%+'-'/%#-#$ --''-))/( (##"-%2-,-(# ( 1(#1#"-# -%() ,,-) %#-& '+*4-)%/% 1, #"-%2-,-(#$-" ()#"-# -C !+:>D" '*,-'' (:#-(' (**&-*%(,-'-) ,-(# (%()+#1#"-%2-,-(#0 *%+' (!'*+ (!" '$-& -2-)#*(# $+#-# #"-'# (!1#"-%'"% &,1, #"-%!!-!%#!+-:> b&&+'#%# (1# (!$ )%+& *+ (! /f#fft b# '*,,(%*# *-#+'-%(# :'# (!CD%) ) # 2-'#-2-(#'# (!%() ,-#"-%'"%&#%2-,-(#-1,%(*-+(( *& 11%()#C<@?>D)-1 (-)%(# : '# (!%)) # 2-'%''+$'#%(*-'#"%#*(2-##"%!!-!%#-'+1%*-#(-#"%# ','(%%) btnfb '&%

PAGE 33

-%' &/-##-)/ #"%'"%&##"%(/%#-#"& 6+ ) %()& ,-%)) # 2-'%-+'-)-11-*# 2-& #-' '#'# (! /)3ft '#1#"-& 6+ )%!-(#'%-'+1%*-:%*# 2-%!(#'0/" *"0/"-(, 7-)/ #" %'"%&#*-,-(#0-)+*-'+1%*-#-(' (%()0#"--1 -0,#(*-%'-)%)"-' (# %!!-!%#-"-*"-, *%&*,' # (1,'#*,,* %&&)+*-)%!-(#' -#% /-2-0#"-,%5 #1%!-(#'*+ -(#& (+'-%-*"-, *%& *,+()'#"%#*(#% (%, (-'C%()"%&0<@@%()+ (( *& 11%()#0<@?D"-'%!-(#',+'#$-I"-%#'#%$&-J"%# '0#"-'" +&)(#&'-#"-11-*# 2-(-''/"-( #"-,) 1 -)%'"%&#*-,-(# ''#-)%#" !"#-,%#+-'%&(!-))1# ,"-' ,&-'#%(),'#-*(, *%&/% '#, 7#"%!-(#/ #"#"-%'"%&# *-,-(# (%& 6+ )'#%##, 7 (!#"-%'"%& #*-,-(#/ #"#"-%!!-!%#-&#"+!" #" ',-#") ','#*,,(&+'-)0 # (-11 -( #$-*%+'-(&%# (1#"%!-(#-%*"-'#"-%!!-!%#-:%'"%&#*-,-(# (#-1%* -*#%& *%# (1#"-%!-(# ##"-%!!-!%#-'+1%*'+()+$#-)&#"-,'#-1 1 -(#/%#-('+-" !"+%& # $() (!$-#/--(#"-%'"%&#%()#"-%!!-!%#-/ -2-0#" '!-(-%&&(#%*# *%& $-*%+'-1*'#*(' )-%# (' (-('+ (!+&&*% # (!1%&&%!!-!%#-'0 (*&+) (!#")+'#*,(-(#n,%&&0(&',%&&%,+(#'1 %!-(#'C1-7%,&--*-(# $/!"#1%'"%&#*-,-(#D%-+'-) (#"-$ ()"-%,+(#1%!-(##$-+'-) ,#%(# & ##&-,%(#$--11-*# 2%()#,+*",%$-)-# ,-(#%&##"-, 7" -&(!:#-,-11-*# 2-(-''1& 6+ ) %!-(#')+ (!#"-'-2 *-& 1-1#"-%2-,(#'"%'(#$--(+&&-'#%$& '"-)

PAGE 34

< ,-%!-(* -',% (#% (%(%-)& '#1%!-(# '%()-6+ -#"-*(#%*#' #+'-%(%!-(# (%&&, 7-'/ #"+#*()+*# (!%( '#+-:'+'*-# $ & ##-'# C%()"%&0<@@>D /)ntft (& 4-& 6+ )%!-(#'0/" *"%-%))-)##"-%' "%&#*-,-(#0& ,'%))-)# #"-%!!-!%##, 7 (!/ #"%'"%&#*-,-(# %('#+) -' () *%#-#"%#& ,'% 2-11-*# 2-%(# :'# (!%!-(#C-! *4'0<@ @D/-2-0 #'%(# : '# (!,-*"%( ', '(#/-&&+()-'#)% + ',-*"%( ','"%2-$--('#+&%#-)0 C%D& ,(#-%*#'/ #"%* )' (#"-%'"%&#*-,-(# #"%#%--%) & %$'$-)(#"%!!-!%#-'+1%*-0C$D& ,-2 )-'*%&* +, ('/ *"*%(-&%*-" )!-(0') +,0 #%'' +,%()#"-*%# ('(#"-%!!-!%#-'+1%* -0%()C*D& ,--%*#'/ #",'# & *%#-%!!-!%#-'#1,%*%&* +,' & *%#-*+' #/" *""%'%'#(!$()##"%!!-!%#-%()"%''+11 -(#' ##%&&/-(#%# (1#"-%'"%&#*-,-(##1, %(#"-'#(!$() #"" )%#-)& ,-f%CtD%()6+ *4& ,-f%tC ('&+1,D%--11-*# 2-0 %&#"+!"#"-1,','#*,,(&+'-)&, # *& ,-'"%2-%&'$--(+'-)%' %(# :'# (!%)) # 2-'/-2-0%'%*%$(%#f%ft=0& ,'(#%'-11-*# 2-(-%&&0<#<
PAGE 35

*4+1& ,-$#"-!%''#-%, '-2-(#-)$ ) 1 *%# ('1#"-1& !"#'%() 2 ) (!'+ #%$&-$%11&-' (' )-#"-)+,C-((-) 0<@?>D,-%'"%&#:%2 (! #-*"(&! '#'$-& -2-#"%##"-+'-1) & ,'( #*(' '#-(#&-11-*# 2-0%&#"+!" ,%(%!-(* -' (*&+) (!-! %t-#'%# '1%* # -'+&#'/ #")& ,)%#-)& ,-'&+ 8" ',-#")-6+ -'%)) # (%&/%#-#$-%))-)##"%!!-!%#-'/" *"-'+&#' ( (*-%'-)1+-&*'#'%( )-)+*-))+*# ( %#-' )%#-)& ,-#/-#%!!-!%#-8b(#" ',-#") )" )%#-)& ,'%))-)# /-#%!!-!%#-0+'+%&& *(#% ( (!=:-*-(#/%#0%()#"-(, 7-) (%+!, && #+,$&-, 7-#$#% (%",!-(-+', 7 #C+ *4& ,-D'&+ 8"-+'-16+ *4& ,-Cf%tD '&+ "%'%#&-%'##/ %)2%(#%!-'0C%D #'*'# '-6+%&##"%#1" )%# -)& ,-0$+#/"-('&%4-)#"-&) '-*-(#!-%#-0%()C$D#"-"-%#1,'&%4 ( !-'+&#' (%(-&-2%#-) #-,-%#+-/" *""-&' (#"--2%%# (1#"-% ))-), '#+-/-2-0 6+ *4& ,-'"+&)$-"%()&-)/ #"*%+# ($-*%+'# *%(*%+'-'4 ($+(' "--&%# 2--11-*# 2-(-''1#"--*-) (!1+# -%#,-(#'$%'-)(*,%%# 2&%$%# %()1 -&)'#+) -'"%2-$--(!-(-%&& ( *(*&+' 2-%()0#"--1-0 (*-%'-) 1+-&%()-6+ ,-(#*'#'%())-*-%'-))+*# (%#-'%''* %#-)/ #"#"-/-# *-'',% (#$-5+'# 1 -)%##"--'-(## ,2,fttfbf!&tfr f !ftn *,$%#'# (!0-, 7#+-)-' !( '%$'& +#-&-''-(# %&O"/-2-0 # '' $&-1%-& )-' !(-), 7#'# (#" -1 -&) 1/%#--(#-' (##"&%-"--1-0-%*", 7#+-,+'#$--2%&+%#-)# )-#-, (1 # ''+'*-# $&-# '#+-)%,%!n+,-+'#-'#,-#")'"%2-$--('-)%()+'-) (#"-%'##-) *##", '#+-'+'*-# $ & #1, 7-'C&:/% &, %()--&0<@@Of&%(#K%() n-/*,$0<@??O *4'0<@@O##,%(0<@?%O#+%#0 <@?AO#+%#0<@@O--&%()&:/% &, 0<@@>O+ (( *& 11%()#0<@?>D/-2-0 (' (!&-#-'#"%'%/ )-%**-#%(*-0/ #"#"-'' $&--7*-# (1#"-) 1 -)##,%(

PAGE 36

= -'#Ct:?=0<@?AD0/" *" '(/%%#1# "-+-%2-, 7#+-)-' !( #*&" ')+-##"2-%&&-*!( K-) &/-& %$ & #%()&%*41'%# '1%*# -&%# ('" $-#/--(&%$%# %()1 -&)*() # ( 't(&'-&-*#-)#-'#,-#")'0/" *" %-*,,(& +'-)$ %!-(* -'0/ &&$-) '*+''-)$ -1& 24rbfrfttft&tf "--%-#/,% (#-'#'1#" '#-"-'-#-'#' %-' ,&-0#%4-& ##&-# ,-# *,&-#-0%()-6+ -2-& ##&--6+ ,-(#/-2 -0#")(#! 2-)-1 ( # 2-0 %(%& # *%&-'+&#' 2b'rft&tf b(#" '#-'#0&'-, 7 '%))-)#$ & (!/%# -=A'-* 1 -'% <:, (+#-$ & (!)"--*-(#%!-1#"-# #%&2 $&-%-%1#"-%!!-!%#-#"%# -#% (' #' (%&*%# (!%1#-$ & (! '-'# %#-)%'%$-$-&/@-*-(#" #-'#*%($-+'-)1 ( # %&'*--( (!1, 7#+ -',-%!-(* -'+'#16+%& # *(#&)+ (!)+*# (#)-#-, (-#"--'-(*1%(%(# :'# (!%!-(#" '#-'# ,-#"))-'(# (2&2-%('#-(!#"%(%& '&' 0)-#-, ( (!#"-'# (!11 (%!!-!%#'2) 11 *+&#" '#-'#,-#")!-(%&&1%2'& 6+ )%(# :'# (!%!-(#' -& ,2frf#5nnt&tf6(&:; '%,&-1, 7 ,,-'-) () '# &&-)/%#%#BBGCGfD
PAGE 37

> 24rffrftftf&tf "-1&&/ (!#-'#'*%(! 2-6+%(# #%# 2--'+&#' b(!-(-%&"/-2-0#""%2-(# !% (-)2/ )-%**-#%(*-" ',% (&)+-# #"&%*41-& %$ & #&'0#"*%(-6+ -&(!#-'## ,-'0*,&-7*-)+-'0 -7-(' 2--6+ ,-(# 2)ffnr&tf ##,%(C<@?%D)-2-&-)#" ',-#")n (-'-* -('> (*"-'C<,,D ( ) %,-#-%()P (*"-'CA>,,D" !"%-*,%*#-) #-7-*#-)1 -&)% 2 )*(#-(# -* ,-('%-) 2 )-) (#=!+'1='-* ,-(' -%*"+< '#-%#-)%'*(#& / #"+#%(*() # ( (!+'-* ,-('%-2% *++,'%#+%#-)CA (*"-'AA ,,!D/ #"/%#-1=, (+#-'+='-* ,-( '%-2%*++,'%#+%#-)& 4-+ %()#"-('+$5-*#-)#%1--K-CGQGAGf 1>"+'D* *&-&&@'-* ,-('%-#-'#-)1 -' & -(#,)+&+'CD%()H () -*# #-(' &-'#-(!#"CbD%#GC<=GfDB=GC=Gf D&%) (!%#-1A (*"H, (+#C -%'+=-1&-*#'1 -&)-1,%(*-1,># <-%'-#% (-)#-(' &-'#-(!#" CD '*%&*+&%#-)1+%()+='-* ,('%'1&&/'8 Mb1f() # ( (!'-* ,-('Hb1f(# &'-* ,-(' ( ,+,1B '-*,,-()-)$ ##,%(C<@ ?%D%()%+ (C<@?D /"-#-)2%&+-'$-#/--(B%()B) 11--(# %#-)$-#/--('# (!%()((: '# (!, 7#+-'b#"%'$--(%!+-)#"%##" -##,%(*-)+'#'-2-$-*%+'-#"-/%,/%#-'%41#"-2%*++,'%#+%#-) %()1K-('-* ,-(*%()-2-& (#-(%&/%#--''+-/-2-0#+%#C<@?AD%( )%4-%()"%% $-"C<@?BD !-(-%&&+()%!)*-&%# ($-#/--(#"-&%$ %#%() -&)-'+&#'t-!("%'

PAGE 38

'+**-''1+&& +'-)#" '#-'#/ #"%-' & -(#,)+&+ '%# (& -+1#-(' &-'#-(!#"%# CD 2&b""rf,tf ',-#")/%''-)$+(( *& 11%()#C<@ ?>D+()-nf5-*# B>"'-)' 7'-* ,-('#$-*,%*#-)# A:?-*-(#% 2 )*(#-(#%() ) 2 )-) (##/!+'1#"--'-* ,-('-%*" +< '#-%#-)%'*(#&/ #"+# %(*() # ( (!+'-* ,-('%-2%*++,'%# +%#-)C (*"-'?,,!1 %$+#, (+#-'D/ #"/%#-#%##% (%'%#+%# ( &-2-&1#?-*-(#-* ,-(' '%#+%#-),-#"%(?-*-(#%-) '*%)-)"'%#+%#-)'-* ,-('%-#"-('%4-) ( /%#-%#<>GCAGfD+' (!%&%) (!%#-1 (* "-'H, (+#-C<,,H, (+#-D ( ,+,1B#? '+'+%&&'-* 1 -)" -+'-1%1--K-:#"%/**&'(# ,%()%#-) (>?AB:??0/" *" '$%'-)(#" ', -#")"-1--K-:#"%/* *&' # (%&",% -,"%' '('%#+%# (1 #"-'-* ,-(0/" *"1%'"# )+%# (1%$+#>"+'"%'$--(-#-)#$('+11 -(## ()+*-, '#+-:-&%#-) )%,%!-Cf&%(#K%()n-/*,$0<@??D 2,"t)ffnr&tf6(&&#; ',-#")/%' ( # %&&%)#-)$ t (<@? Ct0<@?ADb# *,$ (-'#"-!)1-%#+-'1#"-##,%(-'#C# #,%(0<@?%D%()#"-+(( *& 11%() #-'#C+(( *& 11%()#0<@?>D 7'-* ,('%-*,%*#-)#A:?-*-(#% 2 )*(#-(#+<1#"--'-* ,-(' '+'-)% '%*(#&+'-* ,-('%2%*++,'%#+%#-)C#?-*-(#'%#+%# (D/ #" /%#-0%()#"-('+$5-*#-)#(1--K-:#"%/**&-%''-)$##,%(&&'-* ,-('%-#-'#-)b%#BBG CGfD+' (!%&%) (!%#-1 (*"-'H, (+#-C< ,,H, (+#-D0%()#"'

PAGE 39

A )-#-, (-), ( ,+,1B '+'+%&&'-* 1 -)" ',-#") '!% ( (! %**-#%(*-$ #"-'-* 1 (!%!-(* -' 2/5nnt# nt&tf6(&&#:2; 7'-* ,-('> (*"-'C<,,D () %,-#-%()> (*"-'C<,,D" !"%*,%*#-)/ #"%)+$&-&+(!-/ #"%-''+-1 =' CB%D1, (+#-'# %$+#A-*-(#% 2 )*(#-(#+<1#"-'-* ,-(' '#-%#-)%'*(#&+ '-* ,-('%-&%*-) (/%#-%#@GfD1 >)% '%#<>GCAGfD1<(&&'-* ,-('%-#-'#-)1+(*(1 (-)*,-'' 2'#-(!#"%#BBGCGfD+' (!% (*"H, (+#-C<,,H, (+#-D&%) (!%#-"--#% (-)*,-'' 2-'#-(!#" )-#-, (-)%( %!-(* -''-* 1 %#&-%'#B-* -(#-#% (-)'#-(!#"" '#-'#"%' )+*-)-#% (-)'#-(!#"'(-%<-*-(#-2-(/ "-('# (! '-2 )-(##+%# C<@?AD"%'%## $+#-)#" '##"(#-(%&-/%# --''+-%()#"('-(' # 2 #1#"*,-'' (#-'##,-%'+-#"-, '#+-: ()+*-))% ,%!--&%*41'%# '1%*# -* ("%'$--(%,%5$&-,/ #"#" '#-'# ftftf "-f%& 1( %t+'-#"-, '#+-:2%'+'*-# $ & #0'/-&&#-'#0%() &,: '# (!#-'#-#% (-)%'"%&&'#%$ & # '+') (+-# *%()',-#"-'#%#-' )-(#&0%/ )-% -#1#-'#,-#")'%-$(! +'-)$% +'%!-(* -' /-2-0(#-'#"%'2-(#$-I'+J%()*% (*-*#& )-(# 1%, '#+-: '+'*-# $&-, 7 (%&&*%'-'" ',-%('#"%#,%( 7-'0/" *", !"##"-/ '-1,'%# '1%*# (#"-&)0%-& 4-&#$-()--)+(%**-#%$&1#"-'-#-'#'%() #%%-+'-)&'0, 7#+-'#"%#,%%''#" -'-#-'#'0,%(#-1,/-&& (#"1 -&)"-&%*41$+'#-2%&+%# (%()#-'#''# -,'"%'' ,&-(*+%!-)#"(*-%'-) +'-1%(# :'# (!%!-(#' (,%('#%#-'

PAGE 40

B "--%-'# &&,%( *(*-('%()-6+ -,-(#'-&% #-)##"-#-'#,-#")'0/" *" (--)#$-%))-''-)8 & 1-%# (1#-'#*-)+-'%()* #% -)+* $ & #1,'##-'#,-#")' '(#'%# '1% *#-7%,&-0',%&& 2% %# (' (% 2 )*(#-(#1#"-'-* ,-('*%( !( 1 *%(#& %11-*##"-'+&#' (#"-t:?=#-'#Cf&%(#K%()n-/* ,$0<@??D n--)#*(' )-, ( ,+,/-#'#-(!#"C 1#"-)-' -)2%&+-*%($--'#%$& '"-)D1 #"-*() # (-)'-* ,-('%#"-#"%(-& (!'&-& (#"-2%&+-7%,&-0',-%)) # 2-' (*-%'-$#") %()/-#' #-(!#"'$+#, !"#"%2-%&/ 2%&+%*41'%# '1%*# *-&%# ($-#/--(&%$%# %()1 -&)-1,%(*/-2-0$%'-)(%'+2-1'#%#-'C%()"%&0<@@ D #%-%'#"%##"-) 1 -) ##,%(-'#Ct:?=D '#"-,'#/ )-&+'-) #-'#,-#")%2% &%$&-%##"-'-(## ,-#)-#-*#, '#+-)%,%!(, 7-' t:?="%'$--( (*&+)-) (+-%2-, 7)-' !(*-)+-', ( ,+,1B -*,,-()-)/"-(+' (!#" '#-'#,-#")" '* # ('"+&)$-%& -)##"-1 -&): )+*-)%#"-#"%(&%$%# :)+*-), 7-' **) (!#f"+$%(-0%!-0%()+''-&,%(CD0 #"-t:?= '-* 1 -)%(!-1, '#+-'%#+%# (,% (#$-% %#-$-*%+'-'1%'"%&# '%,&-''%#+%#-)##"-&/-& #1#"-%(!-, %$-' !( 1 *%(#&) 11--(##"%(#"''%#+%#-)##"-+-& #t(#"-#"-"%()0# '*-)+-'"/',-, '-) *# (!'# (!#-(# %& (#"-&%$%#/" -(#"-'%#+%# (&-2-& '%$2-@ -*-(#%()%--K-:#"%/**&'*(' )--), ) 1 -)t:?=*-)+' '-)0 (*&+) (!%%*++,'%#+%# (=, (+ #-'/ #"A<,,1,-*+0/" *" --'-(#'%&-2-&1'%#+%# ($-#/--(?#@ -*-(#0%()%--K-:#"%/**&-

PAGE 41

? 2,-ftt"nrt&tf"ft%rbrf ",ft.rnrt "-#%#-! !"/% -'-%*"!%,CD"%)# /-'-%*"*(#%*#' )-%& (!/ #", '#+-'+'*-# $ & #1, 7-' 5-*#:= I-1,%(*--&%#-)-'# (!%()-%'+ (!1'"% &#:!!-!%#-b(#-%*# ('%() 7#+-'J%##-,#-)#)-2-&%( ,-)#-'#,-# ")#-2%&+%#-, '#+'+'*-# $ & #5-*#:=I+()%,-(#%& -# -'1'"%&#:!!-!%#b(#-%*# ('b(*&+) (!)"-' (%())'# (J'#+ ) -)#"-1+()%,-(#%&%'-*#'1 %'"%&#:%!!-!%#-$()' "-n-#)'# (-'#CnD/%')-2-&-)+()-# "-:= )-' !(%# (%()*,&-#-)$#"-n%# (%&f-(#-1 '"%&#-*"(&!Cnf0 <@@ADb# '%-& (% '*--( (!#-'#1,%#* (!, (-%&%!!-!%#-'%()%'"%&# *-,-(#C-!%()"%&0<@@>D%() '$%'-)(#"(* &-'1%)'# (%())-'# ( '&+# (1%'"%&#*-,-(#%()#&+-(' (#)+ *-)%()* *+&%#-) (%-%*# ( *&+,(*(#% ( (!#"-%!!-!%#-'%,&-t(*-#"-' &+# (#-,-%#+-"%'$--( '#%$ & K-)0>,&1'&+# ( '-,2-)%()#"-%$' $%(*')-#-, (-)/ #"% '-*#"#,-#1#!%,'1, (+'n>C>B ,,D%!!-!%#'#"-(%))-)##"*&+,(0%()#"-'&+# ( '* *+&%#-)#"+!"#"%!!-!%#-$-)A"+''-*() >:,&'%,&-1#"-'&+# (#"-( '-,2-),#" -*&+,(%()#"-%$'$%(*'%!% ( )-#-, (-)"-) 11--(*(#"-%$'$%(*--%) (!' '+'-)#)-#-, (-#"-%,+(# 1%'"%&##"%#"%'$--(-,2-),#"-'&+# ( C%)'# (D$-*%+'-1#"-*"-, *%& %##%*# (1#"-%!!-!%#-#"-,&-*+&%*, (-(#'1#"-%'"%&#*-,-(# b,,-) %#-&%1#-#"-'-*()'&+# ('%,&'#%4 -(0B,,1/%#'%))-)##"*&+,("-'&+# ( '#"-(* *+&%#-)#"+!"#" -''#-,1%(#"-"+' (%&> ,&1'&+# ( '#%4-(,#"-*&+,(%##"--() 1#" '# ,-"(*-%'(#"-

PAGE 42

@ %)'# 2 # '%,-%'+-1#"-%,+(#1%'"%&# *-,-(##"%# ') '&%*-)$/%#,&-*+&-'C)-'# (D)) # (%&2%& )%# ()%#%% -(--)-)1#"-n "-(2 (,-(#%&f() # ( (! '#-,CfD/%')-2 -&-)+()5-*#:=I-1,%(*--&%#-)-'# (!%()-% '+ (!1'"%&#:!!-!%#b(#-%*# ('%() 7#+-'JC&:/% &, %()--&0 <@@O--&%()&:/% &, 0<@@>D0 %()+)%#-)$ -'-%*"-'%##"-( 2-' # 1-7 %'0&%'C&%,0-,+ 0%()(0 n%K% %(0%() *(-&&<@@?D" '''#-,/%')-' !(-)'-* 1 *%&&#-2%&+%#-#", '#+-'+'*-# $ & #1'-* ,-('$-' & (#,)+&+'#-'# (!'%#+%#-#"'-* ,-(0#"-(2 (,-(#%&f() # ( (!'#-,+''%%*++,:$%'-)*(#&%(-& #"%#)%/'/%#-#"+!"#"-'-* ,-(,%'#%! --'-2 ,+&#%(-+'&0 #-,-%#+-*() # (-)/%#-/%'**&-)%+()#"'-* ,-(#!-# ##%#-,-%#+-#-'# (!"-) '%)2%(#%!-/ #"#" '*(1 !+%# ( '#"%#$&/ (! %,$ -(##-,-%#+-/%#-#"+!"#"-'-* ,-(0%)6+%#-*()+*#%(*-/%'-2-(#-) $-#/--(#"--,-%(#%()#"-*(1 ( (!/%#-'% -'+�#"-%*#+%&#-,-%#+-1#"'-* ,-(/%'+(4(/()+ (!#-'# (!"-/-&&:4(/ ('-(' # 2 #1# #-,-%#+-,%4-'#" '%%*"#*(#&+-'# ( %$&-)) # (%&&0#"-*() # ( (! ''#-, (-11 -(#-& (!+(%*-* &0/ *"+('#"+!"%"-%#-)/%#-$%#" "--''+ K-)/%#-+(( (!#"+!"#"-* &-& -'+(*()+*#%(*-#"+!"#"*-#*() # ( #" '*(1 !+%# (-6+ )+#
PAGE 43

= -' #-#"-' !( 1 *%(#-'-%*"-11#)+ (!#"5-*#0#"-(2 (,-(#%& f() # ( (! '#-,"%'(-2--%*"-)%**-#%(*-$ '#%#-%!-(* -' 2/ft.ttbntf"5fttf %'-)(#"-%''+,# (#"%#--''+-'/--% ,%5*%+'-1, '#+)%,%!(, 7#+-'0. ,-(-KC<@B>D)-2-&-)%#-'# *-)+-%()%)-2 *-# )-#-, (-#"-'# (!'+'*-# $ & #1%'"%&# -* ,-('/--2%*++,:'%#+%#-) (% GfC, (+#-'$-1-$(!#'#-)1#"() -*##-(' &-'#-(!#" #"%#/%'*,%-)##"() -*##-(' &-'#-(!#" 1%(-6+ 2%&-(#+(*() # (-)'%,&. ,-(-KC<@B>D*(*&+)-)#"%##"-(-/*-)+-/%' ,&-%()--%#%$&-$+#(--)-) 1 -&):#-'# (!$-1#*+&)$,&-,-(#-) )%+& *'*+ (!0%'%-'+--%#-)!-(-%# (1-/%#--''+-0 *(' )--)#$-#",% *%+'-1, '#+-: ()+ *-))%,%!(%'"%&#%2 (! 7#+-' (%%-/ ##-($%&& *4-#%&C= D(-/*-''/%')-2-&-)1 #" '-'-%*"&'0b('#-40b(**-%#-)%(-/ -*-1-6+ ,-(# ()-#*% + # #" '*-)+-C%&& *4-#%&=D-* ,-('/ --&%*-) (%*"%,$-#"%#/%' # (-) (%/%#-$%#"( ,,-' ("-%#-,% (#% (-)#"-/%#-#-,-%#+-%# #"->AGf)--() (!(#"-'-* ,-(;'!+ f,-''-)% /%'*-) (# #"-*"%,$-'#"%##"-/%#'*-)+#1%() $-&/#"-'%,&-'+1%*-n-7#0% 2%*++,/%'%& -)#"%#+&&-)#"-/%#-$%*4 (# #"-*"%,$---() (!(#"'-* ,-(;'!+#" '*-)+-/%'**&-)00 =00>00A0# ,-'"-

PAGE 44

=< #-(' &-'#-(!#"1#"-*() # (-)'%,&-'/%'#"(*,%-)##"-+(*() # (-) '%,&-'#)-#-, (-#"--#% (-)'#-(!#"%&& 4-#%&C=D*(*&+)-)#"%##" *-)+-!%2-*,%%$&--'+&#'/ #"t?= $+#(--)-)1+#"--1 (-,-(# : b %'-)(#"-& #-%#+--2 -/0#"-1&&/ (!*(*& +' ('*%($--%*"-)8 t1#"-1 2-,%5#-(# %&,-*"%( ','1, '#+)%,%!--#-) (#"& #-%#+-0*((-*# (!#"--# *%&*(' )-%# ('# $'-2-)1 -&)$-"%2 "%' -)((-%#"-0#"-'-,-*"%( ','%-" #"-' K-)$%'-)(1 -&) $'-2%# (0%&(!/ #"& #-)$%' *&%$%# *" %%*#K%# ( "--%-*+-(#&(-1,%(*-:$%'-),-#")'1 -2%&+%# (!, '#+-)%,%!%2% &%$&-#"%#"%2-$--(/ )-&%**-#-)$ '#%#-% !-(* -' "-,-#")'+'-)#-2%&+%#-, '#+-'+'*-# $ & # 1, 7#+-'#-()#$-#"6+%& #%# 2((%#+-0& 4-#"-$ &#-'#0*+)6+%(# #%# 2-#-*"( 6+-'#"%#,% (#"(*&+)-#"-% %#-,-*"%( ',1, '#+ -)%,%!-(#"-% %#1%,-/41%(%& K (!#"--11-*#'1, '#+-)%, %!-(, 7#+-'"-'*+-(#&%$%# #-'# (!*-)+-'*+-(#& %2% &%$&-0 (*&+) (!#"-t :?=*-)+-0/-,% &)-2-&-)#)-#-, (-#"-)-!--1-' '#%(*-# '#+-)%,%!-$ %%# *+&%*,$ (%# (1%'" %&#%()%!!-!%#-0*,%, 7-'*,'-)1) 11--(##-'%()6+%(# # -'1 %!!-!%#-0#-2%&+%#-#"-11-*# 2-(-''1%(# :'# (!%!-(#'C&:/% &, %()--&0<@@Of+# '0#+: %) (-0%((%(0%().(-'0<@@O##,%(0<@?%O --&%()&:/% &, 0<@@>O +(( *& 11%()#0<@?>D"-'-, '#+-'+'*-# $ & ##-'#'%&&-2%&+%#-#"-11-*#'1/%#-)%,%!(#"-&%$%#$,-%'+ (!#"--&%# 2-*"%(!-1% (!&-%%,-#-$-1-%()%1#-*() # ( (!C 0-(' &-#-(!#"%# 0 -' & -(#)+&+'%# D"-'-%%,-#-')(# ) '# (!+ '"$-#/--(#") 11--(#,-*"%( ','-'-(# (%*() # (-), 7#+ -0 (*&+) (!#")-(# 1 *%# ( 1#"--11-*#'1-/%#--'+'%*#+%&, '#+)%,%!"-*+-(#+-%2-'-* 1 *%# (+'-'#"-t:?=, '#+'+'*-# $ & ##-'#)-#-, ( (!, '#+-'-(' # 2-, 7#+-''#'#%#-%!-(* -' +'-#"-t:?=#-'#0%&#"+!"#"--"%2-$--( +-'# ('$#"-*,,+( # %#&%!-%$+##"-%**+%*1#"-#-'#-6+-(# 1%&'-' # 2-'%()H(-!%# 2-' "%2-$--(-#-)0&-%) (!##"( # %# (1*+ -(#'#+) -'0 (*&+) (!%&%!(%# (%&'#+)'('-)$#"-n%# (%&f-%# 2 !"/%-'-%*"!%, CnfD%()-(# #&-)Inf5-*#@:=>8b,2-) f() # ( (!*-)+1-) *# (!#"'#+-+'*-# $ & #1 %2-,-(#'J --() (!(,%#%&'0&%) (!0%()-(2 (,-(#0 #,%$-#"%#(-%&&1#",-*"%( ','1/%#-)%,%!-%--'-(#%()), (%(# (%(%*#+%&%2-,-(# /-2-0%--2%&+%# (1%(! 2-(, 7#+ -%()#-'# (!*-)+-0 # '

PAGE 45

= (-*-''%# '&%#-%()6+%(# 1#"--11-*#'1-% *"1#"--), (%(# ,-*"%( ','*(# $+# (!#, '#+-)%,%!-3%#)%,%!--11-*#' ( %2-,-(#',%$-$%*4-#-)$#/-7#-,-*() # ( '0
PAGE 46

== f= bntttr ,rftrb "-, 7 (!1,+&%'1#"-%'"%&#*-,-(#+'-) ( #" '-'-%*"/--$#% (-) 1,-2 +'-'-%*"*()+*#-)%##"-( 2-' # 1& )%$ 5( ''( 7& ,-'#(-!%)%# ('/---%-)#"+!"-'%*"-1,-)$ n+4+(%C
PAGE 47

=> -2-' K-D%()#/!%)%# ('/--*-%#-)$%&#(!#"-1 (-# ('1#"-!%)%# ( *+2-"-' 7& ,-'#(-, 7#+-'#"%#/--1%'" (-)/--<00=0<00%() =H>"-=H>, 7#+-/%')2-)1,#"-1 (, 7#+-C' -2-' K-*,-'1,R?@ '#(-D" '/%')(-#, ( K--%()$-*%+' --%*"1#"-#-'1!%( #)+*-)&%!-%,+(#'1*-#% (' -2-' K-'$+#& ##&-%,+(#'1#"-#"-'( -7%,&-1#" '#"%#@<-*-(#1#"-R?@'#( '-#% (-)(#"-R>' -2"-*(2-' (*-'''#%#-)+#/ #")-#-, ( (! #"-'-* 1 *!%2 #1-%*" #-1%!!-!%#-" (1,%# (/%'+'-)#)#-, (-#"-2&+,-1-%*"' -2-' K-#% (-)1-%*"#-1& ,-'#(-#"%#*(# $+#)#%, 7n-7#0#"-'+,1#"-

PAGE 48

= #%& 3!"# <@A?>?=>= ?= A==@><=>> >?>@< B< %R?@ 3!"# ?> A?@ %( #1 &&-3# <@> (!& = @ =B<>AA <=< 3H & <=B<=B = >> 3" #-*4 1 &&-3# >A= ?= A==@><=>>B <@@ (!& =<<<@@>A@A@ 3H & @>B
B @<= = BB<<<>< 3H & <=BB=A=<>>?< =@B>A <% 3" #-*4 3!"# =<> == B=> < >>< 3" #-*4 *--(3# =>BB A@= ?=AA@=> %$&-=:(2-' (1%(< ,-'#(7#%( <%( #7 -2-' KBCR>D=ACR?D <BCR>D=ACR?D <
PAGE 49

=A 2&+,-1-%*"' -2-' K-/%'1+()%()*(2-#-) (#/!"#1!%( #-(--)-)%$&=:'"/'%(-7%,&-1*(2-# (!%>0:!%,< & ,-'#(-, 7)-' !(#%(< !%( #-, 7)-' !()3r "-# ,+,%,+(#1& 6+ )%'"%&#/%')-#-, (-) 1-%*", 7"-# ,+, %,+(#1%'"%#" '-'-%*"/%'#"--*-(# 1#"-'%,&-0$,%''0#"%##"%'"%&#$ ()-/+&)*(# $+#-C$D1#"-'%,&-#"%2->TNT% 2 )'C%D /"-(*,%*#-)##"-)-' !((+,$-1!%# ('Cn)-'DQ<@!%# ('1#" -'-%*"" '/%'1+()+' (!*%&*+&%# ('%1##"-#"--# *%&,%7 ,+,'-* 1 !%2 #C,,D1#"-%'"%&#*2--)%!!-!%#-%()#"-$+&4'* 1 *!%2 #C,$D1#"*,%*#-)'%,&-/--)-#-, (-)C'--'-*# (= D"-,%''1%'"%&#(--)-)1 -%*", 7#+-C)2-)1,#"-*%&*+&%#-)$1#"%#, 7#+-D/%'%))-)##"-, 7 )-' !(#*-%#-%$%#*"'"--#) 11--(#$%#*" '"--#/%',%)-1-%*"' K-C1+ (*"-' () %,-#-$' 7 (*"-' ("!"#%()' 7 (*"-' () %,-#-$' 7 (*"-' ( "!"#D1-%*", 7 ,! rnrr "-1&&/ (!*-)+-/%'+'-)#*-%#-*,%*#)'%,&-'1#" '-'-%*" %/%!!-!%#-/%'&%*-) (,-#%&%(' (%(2-(% #AGC@GD1#= "+'"-$%#*"/%'#"-(&%*-) (%, 7 (!,+&) "-*-*#,%''1& 6+ )%'"%&#

PAGE 50

=B /%'%))-)%**) (!##"-$%#*"'"--#"-& 6+ ) %'"%&#%()#"-%!!-!%#-/-#"+!"&, 7-) ()-#%''+-#"%#-2-* -1%!!-!%#-/%'*%#-) "-, 7-)'%,&-/%'&%*-) (%%(%()-"-%#-) (%(2-(%#BGC<=GD 1"+'%&(!/ #"#"-*,%*# (!#&'%(),+ &)"--2%*+-%2!%#*,%*#/%''-##"%2-%(%(!&-1 (*& (%# (1: (*") %,-#-A: (*") %,-#-'%,&-0%()#*, %*##%'-* 1 -)"!"#"'-* 1 *"!"#/%')-#-, (-)-, 7%()/%'*%&* +&%#-)#%*" -2-%)-(' # (#"'%,&-#"%#/+&)!-(-%#-%BNT1% 2 )'"-'%,&-/%'+-) (##",+&)%'%,+()C'#"%##"-) '# $+# (1#"-' K-'1#"-%!!-!%#-/+&)-,% (%' ) '$+'-)%''' $&-D/ #"% -*-11 &#-%$-&/%()%$2-#"-'%,&-"*,+#-!%,/%''#%#-)(*-%#&%#-(/%' 1 ##-) (#"-,+&)C%$2-#"-1 &#%-D%()#"-,+&)/%''-# (&%*(#"-!%# *,%*#"-'-* ,-(/%' -7#+)-)1,#"-,+&)(*#/%'*,%*#-)"1 &#-%-/%'-,2-)%()#"*,%*#-)'%,&-/%'&-1##*&#,#-,-%#+ .n"rrn5+r ''-*# (-7&% ('"/ #/%')-#-, (-) 1%* ,%*#-)'%,&-,-##"-* #% 1+'(#" '-'-%*"%() '*(' '#-(#/ #" *-)+-"+'%1##"%) $--(-%-)"-,%''1#"-) &&/%',-%'+ -)%()-*)-)%'#"-),%''CD "&&/%'#"-('+$,-!-) (%#%(41/%#-%() '+'-()-)1,%*%$&-%##%*"-)# #"-'*%&-"-,%''1#"-'%#+%#-)'%,&-/%'*)-)%1#-#"--, (+#-'"%)%''-)

PAGE 51

=? %()#"-'*%&-"%)'#%$ & K-)" '(+,$-/%'-* )-)%'#"-'+$,-!-),%''CD0 %&(!/ #"#"-#-,-%#+-1#"-/%#(#"-#%(4 "&&/%'#"-(-,2-)%()%)%,*&#"/%'+'-) #-& (%#-#"-/%#-1, #"-'+1%*-1#"-'%,&-"-,%''1#"-'%,&/%'%!% ((#-)" '# ,#/%' -*)-)%'#"-'%#+%#-)'+1%*-:)00,%'' CD (%&&0#"-$+&4'-* 1 *!%2 # 1#"-'%,&-/%'*%&*+&%#-)+' (!#"-1&&/ (!1 ,+&%8 ,$MHU:CV/DW /"--8,$M$+&4'-* 1 *!%2 # M),%''C!DM,%''C!DM,%''1'%,&(/%#-C!D/M*-*# (1%*#1#"-/%#-#-,-%#+-C -0/M<%#GD 3" &-#"-,$,+'#$-*%&*+&%#-)1-%*"'%,&-0#"-#"--# *% &,%7 ,+, '-* 1 *!%2 #C,,D/%''-* 1 *%()'#%()%)1-%*", 7"-,,1-%*", 7 /%')-#-, (-)$-1, (!#"*-#"--# *%&, %7 ,+,'-* 1 *!%2 ##-'#0/" *" /%'*(' '#-(#/ #"*-)+-@:@>0"-# *%&%7 ,+,-* 1 %2 #%()-(' #1 #+, (+'%2 (! 7#+-' &'-'%,&-1%'"%&#:*2--)%!!-!%#-/%'*%#-)1#"-, 71,+&%$(! #-'#-)"-'%,&-/%'1 '#,-%'+-)1 #') ,%''CD#/%'#"-(&%*-) (% $-%4-0*2--) (/%#-0%()&%*-)+()-%2%*++, #-,2-%&&#"-% 1,#"%!!-!%#-"-/!"#1#" ''+$,-!-)0'%#+%#-) '%,&-/%'#"-(-*)-)%'#"/!"#1#"-$-%4-1 &&-)/ #"#"-'%,&-%()/%# -%#GCD C6+%# (=:
PAGE 52

=@ "-'%,&-/%'-,2-)1,#"-$-%4-%()) -)# #"-*() # (",%5 #1#"-/%#-/%')% (-)%()#"-(#"--,% ( (!/%#-/%'%&&/-)# -2%%#-"-, '#'%,&-/%'/!"-)-2-<, (+#-'"-*() # (/%' ,-#/"-(#"-*"%(!(/!"#/%'&-''#"%(!% ,')+ (!(-<:, (+#-)%() #"+'-*)-)%'#"-,%''1#"-*() # (CD "-#"--# *%&,%7 ,+,'-* 1 !%2 #/%'*%&*+&%#-)$#"-1&&/ (!1,+&%8 ,,MHCXQD /"--8,,M#"--# *%&,%7 ,+,'-* 1 *!%2 # M),%''C!DM,%''C!DM,%''1#"-$-%4-1 &&-)/ #"/%#-%#GC! D M,%''1#"-$-%4-1 &&-)/ #"#"-'%,&-%()/ %#-%#GC!D "--*-(#%!-1% 2 )'C%D (%*,%*#-) &&*+&)#"-($-*%&*+&%#-)" /%'1+()$#"-1&&/ (!1,+&%8 %MC<:,$H,,D7< "-'%,&-/%'*(' )--)%**-#%$&-1#-'# (! ( #" '-'-%*"5-*# 1#"-% /%'BNTrn& "-'%,&-'/--#-'#-)1#"+'%$ & #C'--'*# (=D%()#"-(*+##% -' K-"-A: (*") %,-#-'%,&-'/--*+# #$-%"!"#1N,,C<@AN (D%()#"-(+'-) (%-,-%$ & ##-'#C'-"%#-D"->: (*") %,-#-'%,&-' /--*+##$-%"!"#1%7 ,%#-&<<,,C> = (D%()#"-(*() # (-)C'-"%#-AD C6+%# (=:DC6+%# (=:=D

PAGE 53

> 1#-%&&/ (!#"-,#)1=A"+'0#"-*() # (-)'%,&-'/--*+# (# #"--+*4'1-6+ 2%&-(#"!"#/ #"%/-#'%/ "-'-+*4'/-('-)#-,2-7*-''%# *&-'%()&-1##)(*-)01+% &+, (+,$+##('/--!&+-)##"' )-1#"-+*4 (#"-'"%-1%'6+%-/ #"#"*%)):*(-$+##('&*%#-)%( (*" %%#" '/%')((%**)%(*-/ #"#"-'-#+ 1'-* ,-('#"%#%-#$-#-'#-) ( #"() -*##-(' &-CD,%*" (-"-'%,&-'/-#"-(&%*-) (%)-"+, ) 1 *"%,$-1>?"+'#)#"-,1%(-,% ( (!, '#+-%()$ (!#"-,#%*('#%(# "+, ) #&-2-&"-'-* ,-('/--#"-(&%*-) (' )-#"--(2 (,-(#%&*"%,$-1#"+-%2-,%*" (-1!"#"+'" '/%'# ('+-# "%##"--(# -+*4/+&) %**& ,%#-##"-#-,-%#+(' )-1#"--(2 (, -(#%&*"%,$-"--(2 (,-(#%& *"%,$-/%''-##%#-,-%#+-1
PAGE 54

>< > nnnr "-1%,-/41#"-*(' '#-(#-2%&+%# (1, #+-)%,%!-"%'$--( -'#%$& '"-)0%()--''+-'"%2-$--( )-(# 1 )%'%& 4-&,%5,-*"%( ',1 -,%#+-, '#+-)%,%!(, 7#+-'/-2-0#" -''# &&%(--)#)-2-&% '#+-*() # ( (!''#-,#"%#,-*&'-&' ,+ &%#-'#",%,-*"%( ',1 '#+-)%,%!(#"-1 -&)0(%,-&**& *-''+-'(#" '*"%#-0%(-/**& &%) (!%()--''+-*() # ( (!''#-,0$%')(%,) 1 -)# %7 %&*"%,$-0 / &&$-)-2-&-)"-$%' )-%$-" ()#" '''# -, '#$-%$&-#$#"%&**& --''+-%()&%)'%##"-'%,-# ,-0 1(--)-) 1(&--''+-'%-)-' -)1 *() # ( (!1, 7#+-'0#"-*+-(#''#-,*+&) $-!-%#&' ,& 1 -) (#%'-&1: *(#% (-)#%$&-#''#-,#"%#/+&)(#-6+ -%( -7#-(%&&%) (!1%,(#"-1&&/ (!0#"-$%' '1#"-)-2-&,-(#1 #" '(-/''#-,/ &&$) '*+''-)01&&/-)$%) '*+'' ((#"-)-' !( 1#"-''#-,0%'/-&&%'$%' &+,$ (!%()-(2 (,-(#%&*(#&*(' )-%# (' /r "-**& *&%) (!%()--''+-*() # ( (!' '#-, '%,) 1 -)# %7 %& ''#-,)-' !(-)'-* 1 *%&&1#"-**& *-''+-*() # ( (!1%'"%&# '-* ,-('"-*(*-#1#"-**& *&%) (!%() --''+-*() # ( (!''#-,/%' ,#-)$#"-(--)#%(%&K-$-##-#"--11-*#' 1/%#-: ()+*-))%,%!-#%(%'"%&# 7#+-() # ( (!%'-* ,-( (#"-# %7 %&(2 (,-(#%&&/'1-* '%& *%# (1'#-'' (#"--) 11--(#) -*# (' 0 1(--)-)1%'-* ,-( '#"+!"#1%'

PAGE 55

> %*+$-0#"-'-) -*# ('*%($---'-(#-) (#"1%, & %7::K*) (%#-''#-,"&%$%#*-%#-)'-* ,-('%-*& () *%&&'"% -)0#"--$-)+* (!#"-*) (%#''#-,#%(%7 %&2-*#CD%()%'+,1%) %&2 -*#'C7D"-'-2-*#'0%*# (! (,%&##"-'+1%*-1#"-'-* ,-(0*%($(*%'-))-*-%'-) (%,+&# #+)-1 *,$ (%# ('%&&/ (!*(#&1%7 %&%()*(1 ( ( !'#-''-'(##"-'-* ,-( -%'0#"-# %7 %&*-&&"%'$--(+'-)$#"-! -#-*"( *%&-(! (-(! *,,+( ##%'' &%#(' #+'#-''-'(#"-'-* ,-(1 (#--'#%()#"-(0#"+!" )-2 %# (1#"-*(1 ( (!%()%7 %&'#-''-'06+%( # 1#"-,%#%&;'-%*# (#%( %(# %#-)&%)"-%)2%(#%!-1' &#-'# (! ( %*(#&&-)-(2 (,-(# '1 !( 1 *%(#2%&+-%()%&&/'#"--(! (--!-%#-* (#&#"%(*+&)$-%*6+ -) (#"1 -&)#-'-(#0#"--%-'-2-%&''#-,' () 11--(#'#%!-'1)-2-&,-(##"%# %##-,##' ,+&%#-1 -&)*() # ('/" &-0%##"'%,-# ,-0)+* (!%#-'# (!'-6+-(*#"%# '' ,&-%(),-%**+%#-#"%(''#-,'-' -(#&+'-)"-**& *&%) (!%() --''+-*() # ( (!''#-, '+( 6+-%,(!'# #"-''#-,'+'-)#)% (#"%##"''#-, ')-' !(-)#$-2-'%# &-%()*,-"-(' 2 -/ #"-'-*##'-* ,-(#-'# (! %()*() # ( (! '/ #"' &0%'"%&#*(*-#-'-* ,-('"%2-&(! $--(#-'#-) (%# %7 %&*-&& -'#''+*"%'")%+& **()+*# 2 #C-,-%$ & #D 0-' & -(#,)+&+'0*,&-7,)+&+'0 '"-%'#-(!#"0%()*--%-*,,( (%'"%&##-' #&%$%# -'+' (!%# %7 %&)-2 *) '# (*#& #%# (##"-# %7 %&*-&&'*('#+ *#-)#)%%'*,%-)/ #"#"-**& &%) (!%()--''+-*() # ( (!''#-, '#" -)-' !(1#"-1*-%& *%# ( '#(%()"/ ##%('1-''#-''(##"-'-* ,(%) # (%&&0#"-'-&%#-('%-( ,-#"%(%) '41 ),%#%&#"%#%*#'%'%, -) +,$-#/--(#"-1*-1,%'"%1#

PAGE 56

>= %()#"-'-* ,-( #'-&1"-& #%# (**+'/"('#-'' '%& -)##"* *+,1--(# %&'+1%*-%'**+'/"-(*(1 ( (!'# -'' '%& -)'#"-*(1 ( (! '#-'' (*-%'-'0'#)-'#"-%7 %&'#-''(# #"-'-* ,-(" '-&%# ('" & #' #"-'#-''*,$ (%# ('%()'#-''%#"'#"%#*%($ -%& -)(##"-'-* ,-("( # %&)-' !(1#"-**& *&%) (!%()--'' +-*() # ( (!''#-,%))-''-)#" $&-,$)-' !( (!%#&%#-(C '#(D-(*%'-) / #" (%'&--2-" '#(:'&--2)-' !(-& -2-'#"--'-%*"-1#"-& #%# (1 '#-''%#"'$%&&/ (!#"-%7 %&%() *(1 ( (!'#-''-'#$()--()-(#1(-%(#"0#"--$%&&/ (!1!-%#-*(#& %()1&-7 $ & #/ #"%& -)'#-''-'(%)) # ( 0#"-''#-, ')-' !(-)#%&&/1 (: &%*-*() # ( (!/ #"#"-'+#1%(-7#-(%& /%#-#-,-%#+-*() # (-%'/-&& %'#"-%$ & ##-1,$#"*('#%(#%()1%&& (! "-%)-,-%$ & ##-'# (!/ #"+# -,2 (!#"-'-* ,-(1,#"-#-'#*-&&"-'-%) )-)$-(-1 #'%&&/1%'-6+-(*-1 #-'# (!%()H*() # ( (!#$--1,-)/ #"+# #"'41)%,%!-##"-'-* ,-( )+ (!#%('#%# (1,(-#-'#'-#+#%(#"&'0#"-%)) # (%& (#-!%& *%%$ & # -'1#"-**& *&%) (!%()--''+ -*() # ( (!''#-,) ( '"#"-(--) 1%+7 & %-6+ ,-(#-6+ -)#-1,#-'# (! 1*() # (-)'-* ,-(' /. r ##"-*,,-(*-,-(#1#"-''#-,)-' !(0%1 +&&+()-'#%() (!1#"--() +'-1#"-''#-,(--)-)#$-)-1 (-)"-' '#-,(--)-)#$-*%%$&-1 -1, (!#-'#' (*,-'' (%()#-(' (0%'/-& &%'%& (!--''+-'$#" ()--()-(#%() (*(5+(*# (/ #"&%) (!'% -'+�#"-'#+*#+%&1%,-1#"-*-&& (--)-)#$-)-' !(-)#%&&/1#"-*-'() ( !1*-'"-#-'#'/+&)%&&$-1,-) (-11-*# 2-'#-'''#%#-*() # ('0#"-$*-%# (!#"-(--)#)-2-&% '%#+%# (*-)+-()&%'#&0#"-''#-,(--))#$-*%%$&-1!-## (!%'-* ,-(

PAGE 57

>> #%'#%$ & K-)#-,-%#+-% )& %(),% (#% (#" %##-,-%#+-#"+!"+##"-)+%# ( 1#"-#-'# %#+%# (1'-* ,-('0%# *+&%& #"'-*,')1' &0 (# %7 %&*-&&' # *%&& %*" -2-)$ +&& (!-,-%(##"+!"#"'-* ,-(;''#+*#+-+' (!2%*++, #-*"( 6+-'#"-)-' !(1#"-* *& *&%) (!% ()--''+-*() # ( (!' '#-,0 %&&/%(*-/%',%)-'#"%##"-''#-,/+&)$-*%% $&-1%& (!%2%*++,%'/-&&%' 1* (!#"--,-%(##"+!"#"-'-* ,-(1,#"(1&+-(#-() "-2% %# ( (#-'#)%#%0%'%-'+ (*(' #-(#'-* ,-(#-,-%#+-)+ (! #-'# (!0 '/-&&4(/(%()11-,'#*(*-(1 %#-'#-6+ (!%" !")-!--1 -* (#, 7%'"%&# '-7#-,-&#-,-%#+ -'+'*-# $&-C-!$-#'0%()%"&0 /(0--0%()-((-)0<@@AD--%#%$ & # 1# -'#''+*"%'-' & -(#,)+&+'CD )-#-, (%# ( '-+(& 4-& 1'-* ,-(!+'% -#-'#-)%#% (!#-,-%#+-' #" '-%'(0#"-*-%# (1%''#-,#"%#/+&)$*%%$&-1%*" -2 (!#%!-# #-,-%#+-% )&%()*(# (+-#,% (#% (#"%## -,-%#+-#"+!"+##-'# (!/%'% #()-' !( "-%*" -2-,-(#1"-%# (!%()*& (!1/%#-+') (-7 '# (!# %7 %&#-'# (! ''#-,'+'-)%##"-( 2-' #1& )%%() (,% (''#-,'%-#"+!" () -*# ,-#")'-%# (! '%*" -2-) %*()+*# (,# "-,$-'(##"-$%'-&%#"-$%'-&%#-/+&)0 (#+(0"-%##"-*(1 ( (!/ %#-"-,$-'%-*,,-* %&& %2% &%$&-%()-%#-,+*"& 4-#"-'+1%*-"-%# (! &(%(-&-*# *'#2-' -&-*# # '%''-)#"+!"#"-$-0-' '#%(*')-2-&-)#"%##%('1,'#"-&-*# *%&-(-!#"-%# *%&&0#/$-'0 %7 ,%#-&=B (*"-' () %,-#%()? (*"-'&(!0 # (##"-$%'-&%#-1#"-* -&& %',#"$ (!'#"%#+(%%&&-&#

PAGE 58

> (-%(#"-"-,% () '%)2%(#%!-1#" ')-' !( '#"%##"-*-&&%*#'%'%"-%#' (40 -6+ (!#"%# #$-"-%#-) ##"-*(1 ( (! /%#-"-'-* ,-( '#"-(-& %(#+( #"-*()+*# (1"-%#1,#"-*(1 ( (!/%#( )-#% 2-%##"-#-'##-,-%#+"-*,$ (-),%''1'#--&%()/%#--6+ -'%&% !-%,+(#1# ,-%()-(-!# % 2-%##"-#-'##-,-%#+-)) # (%&&0*& (!1#"-*(1 ( (!/%#'%*" -2-) 2 % () -*#,-#")'" &&-)/%#'* *+&%#-) #"+!"%*-* &#"%##%2-&'%+() #"--7#'+1%*-1#"-*(1 ( (!*& (), ( K-#"-%$'# (1#"-,%& -(-!1,#"-%#,'"--0#"-*-&&/%'/%-)/ #"%&%'# *:-(*%'-)'"--#1 1 $-!&%'' ('+&%# (&#"+!"#"('+&%# ( -)-'#"-%$'# (1+(/%(#-) #"-,%&-(-!0 # '(#*,&-#-&-11-*# 2-%() #"-%*" -2-,-(#1&/#-,-%#+-' (#'' $&-)+-##"(-11 -(*1#"-''#-, '/ #"#"-,-#")1"-%# (!0#" *(1 !+%# (,+'#*() # (#"-#-,-%#+-1#"*-&& ##"-*(1 ( (!/%#-0 #"--$*-%# (!%&-(!#"*() # ( (!) #/%'-*!( K-)-%& (#" '*-''#"%#%) *#,-#")1/%#-*() # ( (! /+&)(--)#$-)-2-&-)#"%#/+&)$-*%%$&-1 -%) (!%'-* ,-( (% -%'(%$&-%,+(#1# ,-%'#,%4-#"-''#-,+'1+& ()+*# (#-'# (!"-% ) %*" -2-,-(#1#-'##-,-%#+-/%'&%!-&$%'-)+ (#"--1%*#'8 "-'-&-*# (1-&' K-)*& (!%()"-%# (! )-2 *-' -)+*# (1#"-&-(!#"1#%(', '' (& (-' ( )-#, ( K-#"-,%&&''-' !% (' "-, ( K%# (1#"-2&+,-1*(1 ( (!/%#-' %*-/ #" (#"-*-&&#"--$ ( K (!#"-%,+(#1-(-!-6+ -)$#"-#-, -%#+-*() # (-#$#"--,2-)%))-)##"-/%#-"-2-%&&%-%%(*-1#"-*-&& '2-# *%& 1#"--7 '# (!# %7 %&*-&&' "-'#+*#+%&*-*(' '#'1#/+()&%#-''%%#-)$'#'/"%#%--1--)#

PAGE 59

>A (#" '-#%''#+#'"-'#+*#+%&*'(*%'-)/ #"%*& ()-%()#"--(# %*4%!''-%&-)/" *"*-%#-'%(-(*&'-)*%2 # *%%$&-1$(!-''+ K-)"2% %$&-1#"-*-&&;')-' !( '#"-# (%& # 1#"-'-*,(-(#'"-) ,-(' (' 1#"-#-'#'-* ,-() *#%#-),+*"1#"-'+$'-6+-( #)-' !(1*-&&*,(-(#'") %,-#-1'-* ,-('+'-)/ #"#" '*-&&/%')-* ) -)%'> (*"-'C<, && ,-#-'D '''#-,/%')-2-&-)%'%##-%() #/%' )--,-)+)-(##-('+#*+&) -%#--&$-1-)-' !( (!%*-&&*%%$&-1 #-'# (!&%!-'-* ,-('CA (*"-' <,,D)) # (%&&0%'#"-) %,-#-1#"-'-* ,-( (*-%'-'0#"-2-%&&' K-1#"*-&& (*-%'-' (%(-%# (%&,%((-"-1-0 (%(%##-,##$%&%(*-2-%&& K-%()*'##,%(+1%*#+-0#"-',%&&-'-* ,-( K-/%'*"'-( "-''#-,/%')-' !(-)%'%'-&1:*(#% (-)#-'# (! )-2 *-()-#%*" -2-% '%#+%#-)'-* ,-(0$%*4-''+-'%#+%# (#-*"( 6 +-'/+&)$--6+ -)"(#-!%# (1%2%*++,)-2 *-*%%$&-1-& -2 (! %#&-%'#(-%#,'"--1-''+-# %'' '#/ #"#"-& $-%# (1% #%-) (#"-' -* ,-(/%'-6+ -) &#"+!"%##-0#"-''#-,/%' (#-()-)1+ '()+*# (#-'# (!"*-''1'-* ,-( ('#%&&%# (/%'-7%, (-)%'# "-*-&&)-' !(!-''-)/ (!# #"-*,&-7 #1#"('#%&&%# (1 ('#+,-(#%# (+'-)#,( ##"-'-* ,-(0 +#!-(-%#-)'*"-,%# *'/--+'-)#-('+-#" %##"-'('#+,-(#'*+&)$('#%&&-) (*(5+(*# (/ #"#"-'-* ,-(%) # (%&# %7 %&#-'#'0#-'#'0%() ,&-7)+&+'#-'#'%&'-6+ -)#"%#%&%#-7,,$%(-$-&%*-)2-#"-'-* ,-( %()2-&%-)2-#"--()&%#-('" ''#' # *%&1-('+ (!#"'&%# (1#"'%#+%#-)'-* ,-(1,#"-*(1 ( (!/%#-"-1-0*(' )-%# (/%'! 2-(##"%&&/%(*-'-6+ -)#-(%$&-#"--%##'+**''1+&&' # (#" ',-,$%((%

PAGE 60

>B & #-)'%*()-#"%##"-2-%&&' K-1#"*-&&$-, ( K-)%'!-%#&%''' $&#" '0'-2-%&,*4+'/--,%)-#)-#-, (-/" *"*,$ (%# (1*(1 !+%# ( %()'%* (!2 )-)#"-# ,+,$%&%(*-1' K-%( )1+(*# ( 3" &-# (!#)-2-&%,) 1 -)(2 (,-(#%&f () # ( (! '#-,CfD%# #"-( 2-' #1-7%'0&%'C&%,-#%&<@@? D0(-1#"-$&-,'-7-(*-) /%'#"-&%*41 ) #/ #"#"-''#-,%'%/"&" '&%*41 ) #*+&)*(# $+##-(-+')%#%%'%-'+& (-%) '&%*-,-( #1#"-'-* ,-()+ (!)(%, #-'# (!' (*-#"-''#-,/ &&)-1,'& !"#&/"-( ()+*-)$" !":-''+-&%)' %2 )'+*"%$&-,/ #"#" '''#-,0*((-*# 2 # 1*,(-(#'1#"-*-&&/%' -7%, (-) ##"-*('#+*# ("--*,(-( #' (#-1%*-)/ #"%(: (! (*%#-)#%*#%'%'-%&0%&&/%(*-/%',%)-# -('+-#"%##"-!2(/" *"#": (!/%''-%#-)2 )-)-&+,-#*(#% ( #"-*,-''-)'-%&" '/+&) %&&/#"-,%# (!*,(-(#'#%*" -2-'+1%*-:#:' +1%*-*(#%*##"--$)+* (!% )*((-*# ("-*-(#--# *%&*-1#"*-&& '*(1 !+-)#%&&/%&&*-' 1,#"'#(#$-) -*#-)(,%&##"-$%'&%#-/ #"+##%# (,2-,-(# 1,%( (*&+' 2-*,(-(#"-$%'-&%#-(%() '#(-,&$#"-()$-% (!%() #"-%)$-% (!,%#"-%)-))%() '#('"%1# -'-*# 2-&" '*,& ,-(#1 *((-*# 2 #*-%#-'%(-7#-,-&'#%$&-+( (1* ,(-(#' (%&&0%!-%#-11#/%',%)-#)+*-%''#,#"%#(#(&/+&)$-' ,&#,%(+1%*#+-%()-%#-0$+#/+&)%&'$-%'* '#-11-*# 2-%'-6+ -,-(#'/+&) %&&/# & K (!%2% &%$&-%/,-#%&'"%-'%()' -* 1 (!-#&-%(*-'1 ,%*" ( (!*('#+*#-)%-&%# 2-& (-7-(' 2-*-&& f,(-(#'#"%#-6+ -)%" !"

PAGE 61

>? )-!--1,%*" ( (!-11#0'+*"%'#"-#%()$%' -&%#-(0/--'-* 1 -)(&%1#$(! (2-'# !%#-)1%&#-(%# 2-)-' !(%()(-*-' #1#"-)-' -)1+(*# (1#"-*-&& / r. "-**& *&%) (!%()--''+-*() # ( (!' '#-, '*,'-)1' 7'+$ ''#-,'8< ) 1 -)# %7 %&*-&& !":-''+-/%#-) '# $+# (''#-, = %#%%*6+ # (''#-,C%#%&-'# (!'#-,'C D)-&? )%+& *&%)1%,-C4 D /#-,-%#+-/%#-*() # (A !"#-,-%#+-/%#-*() # ('*"-,%# *1#"-''#-,*,(-(#' ''"/( ( !+->:<&#"+!"#"*() # ( (!1'%,&-'%##-,-%#+-'$-&/, #-,-%#+-/%'(#+'-))+ (!#"!" "" # $$"" % &'($ ) *"" ) + ) %,($ ) ($ -. &!" $ # /$0 # /$0 "" ( 0( *.$$(1" /2% !+->:<*"-,%# *1#"-*& *%) (!%() --''+-() # ( (!'#-, ,(-(#'

PAGE 62

>@ -'-%*"-1&-*#-) (#" '%-0#"-%$ & ##) #" '/%'%( (#-!%&%#1#"-)-' !(1 #"-* *& *&%) (!%()--''+-*() # ( (!' '#-, / !b)rrttt f !ftn.t "-)-' !(1#"-,) 1 -)# %7 %&*-&&/%'% %*"-) (#"-1&&/ (!)-8 < -#-, (%# (1%%,-#-'1#%!-#-)#-'# (!#"% #) *#%#-))-' !(-&-,-(#'1#"*-&&C-!' K-1'-* ,-('#$-#-'#-)0 ('#+, -(#%# (#$(#-!%#-)/ #"#"*-&&0%()' '#-,-''+-D '#(%''-,$&)-' !( = %()$%'-&%#-)-' !( > #+#)-' !(%()$-% (!*%%* #*%&*+&%# ( ()&%#-()-' !( A f(1 ( (!* & ()-'-&-*# ( B f(1 ( (! (!)-' !( ? -%&'-&-*# (%()&%*-,-(# @ f,(-(##&-%(*-'-* 1 *%# ( < %) %&"&)-)-' !( /.trrntfttftnrf "-)-' !('-* ,-("!"#/%'% 2-)%#%'%*, '-$-#/--(-*,,-()-) %'-*#%# '1#"-#/ ,% #-'#'1#"-' '# -,0")%+& **()+*# 2 # C-,-%$ & #D%()-' & -(#,)+&+'+ (!#"-& #-%#+--2 -/1-,-%$ & # #-'# (!0%(%'-*#%# -*,,-()%# (/%'1+()# $-1,# (*"-'C:< && ,-#-'D"--*,,-()-)%'-*#%# 1%' -* ,-(-' & -(#,)+&+'#-'# (! '<0/" *"#%('&%#-) (#%'-* ,-(A (*"-' C<, && ,-#-'D" !"

PAGE 63

*,, '-))-' !('-* ,-("!"#1 (*"-'C< =B, && ,-#-'D/%')-* )-)+( ()-#1%* & #%#-$#"1#"-'-#-'#' (#()-2 *"-*-&&/%'%&')-' !(-)1#"-)-2-&,-(#1% (-/#-'# (/" *"&%!*(1 ( (!-''+-'/+&)$-&%*-)(##"-'-* -(# ()+*-%1% &+(#-(' ( ',-%(##"%##"-*-&&/+&)$--7-*#-)#*(#% (&%!--''+-'#"%(#"'( # *%&# %7 %&*-&&'%'-)+(#"-,-*"%( *' 1#"-%(# %#-)1% &+-0#"-*-&&/%' )-' !(-)#*(#% (>' 11&+ )-''+##" (# (#"-)-' !(*-''0%'/ #"%&&(/-6+ ,-(#)-2-&,-(#0 -%'(%$&--(! (-(!5+)!,-(#(--)-)#$-%& )1*-#% (%%,-#-'(-1 #"-'-%%,-#-' '#"-&-(!#"1 '#('#4--6 + -)1#"-)-' -)#-'#'/ &&$) '*+''-)&%#-0#"-)-' !(1#"-#&%#-(%''-, $&-6+ -)#"%##"-,%7 ,+,'#4&-(!#"$-, ( K-)#,% (#% ('-%& (! (#-! # %'-)(-2 -/1-2 +' *,-'' (#1% &+-#-'# (!0#"-,%7 ,+,'#4&-(!#"/%'*(*&+)-)#$-B (*"-' (#"''+-1)-' !(/%'"/&%!-#"-*-&&(--) -)#$-,%)()-# ( K-'#+*#+%&'#-''-'%()1%* & #%#-'-* ,( ('#%&&%# (#"+!"-11#/%' ,%)-#& ##"-2-%&&' K-1#"-*-&&/ #"+# ,%4 (! #'*,%*#%'# (#-1--/ #" '-* ,-( ('#%&&%# (%()'+$'-6+-(#)%#%%*6+ # ( ('#+,-(#%# ('+*"%'& (-% 2% %$&-) '&%*-,-(##%(')+*-'C'D" '-1 1#/%',%)-+#1'#+*#+%& *(*-('/ #"-!%)'##"-' K (!1#"-'+# (!'#+#'C2-# *%&'+#,-,$-'D *,%-)##"--()%-%1#"-*-&&'#"(#) %,-#-1#"-*-&& (*-%'-)0'# ) )#"-) %,-#-1#"-1+'+# (!'#+#'-6+ -)#-'#% (#"--'+&# (!1*-( #"-#%()$##,&%#-'1#"-*-&&"-1+'# +#'#"%#,% (#% (#"-' # (1#"-

PAGE 64

< $%'-%()#&%#-'%-%(%&!+'##"-*&+,('1 %$+ &) (!/-2-0+(& 4*&+,('0#"-'#+#',+'#,% (#% (1*-' (#-(' ( (*-#"(#1#"-*-&& -''+ K-)"--1-0#"--'+&# (!#-(' (1* -'%*# (!(#"-'#+#'/ && (*-%'-%' #"--()%-%'1#"-*-&&C#%()$%'-&%#-'D (* -%'-(# K%# (1-()%-% 2-'+''#+#) %,-#-/%'-1,-)#)+*-%( (#*-&&*%2 ##"%#/%'%)-6+%#-& K-)# ('#%&& ('#+,-(#%# (0-#*,%*#-(+! "1-%'(%$&-'#+*#+%&*,(-(# K (!"-*-&& (#-()-)1>: (*"C<, && ,-#-D) %,-#-'-* ,-('/ #"%( %'-*#%# 1<:< )-2 -/'1#"-*-&& *,(-(#'%-'"/( ( !+-'>: 34+& +& 56&789: 5; <9+6&%76) 3/<=6 +6&%5/89%67 8 <9/66268 <9 :+#:%/%1#"-%) (!%()() # ( ( %7 %&-&&F(# -/

PAGE 65

%()>:=&&*,(-(#'%-1%$ *%#-)1=='#% (&-'''#--&/ #"#"--7*-# (1#"'#(0-()&%#-('0%()#"-*(1 ( (!*& ()-0/" *"/--,%)-1,AA<:A %&+, (+,#% (&-'''#--&/%'*"'-(11+-%' ('0D* (-' '#%(*-&+, (+,/%'#"&! *%&*" *-1*,(-(#''+*"%'#"-*(1 ( (! *& ()-/"--/!"#/%'%( ''+%()#"--()&%#-('%() '#(/"-(# *%#-)-' !()-#% &'-*&+)-)#"-+'-1 "%)-(-)'#--& 8 <9/6626 8 <9 /89%67 34+& 5; <9+6&%76) )& 67%8 785; 8<9 <9%;8 !+->:=+#:%/%1#"-%) (!%()() # ( ( %7 %&-&&F#%#-)>G1, (# -/

PAGE 66

= "+!"+##"-)-' !(*-''0*' (*(#&1 *,(-(#'/%'%1%*#1 ,%#%&'-&-*# (t/ (!##"-%!!-'' 2--(2 (,-(##"%##"-'-*,(-(#'-%#(0#"-#-(# %&1-%*# ($-#/--() '' &%, -#%&'/%'%( ''+-1)-' !( &+, (+,%()'#% (&-'''#--&%-*(' )--)I*,%# $&-J0%''"/( (!%&2%( *'-' *"%#'0/"-((-,%#%& '1 ( '"-)/ #"%#&-%'# (-*%#1%() K (! ,-C.+2 (%&&0 <@?=D3"--%&+, (+,/%'+'-)0#"-'-*,(-(#'/ --%() K-)#-#%)#"*' (*-''() K (!1%&+, (+,%&&' )+*-'%'#%$&-%&+, (+,7 )&, #"%#2 )-''+$'#%(# %&*' (-' '#%(*-C.+2 (%&&0<@?=D)) # (%&&0'-%%# ( $-#/--(%&+, (+,%()'#% (&-'''#--&*,(-(#'/%' 2 )-) %$+(%:n: (!'0 /" *"+#"-%'' '#-)/ #"#"-)%,-( (!1-&-*# *%&*+-(#&/#"+!"#") '' &%,-#%& (#-1%*3 #"#"-,%5)-' !(%%,-#-')-1 (-)0-11#'/ --) -*#-)##"-)-' !(1#"() 2 )+%&*,(-(#' /frtnb!t "'#(%''-,$&/%'%&! *%&&%*-#$-! (#" -)-' !(*-'' (#"%# # ) *#%#-),%(1#"-'+$'-6+-(#*,(-(#)-' !(' b#/%' ,-%# 2-#"%##"-' K (! %()+(*# (1#"'#(%''-,$&$-)-#-, (-) ##"-)-' !(%(),%(+1%*#+-1 #"--,% ( (!*-&&*,(-(#''/%'-2 +'&, -(# (-)0#"-,'#, (-(# ) '# (*# ($-#/--(#"-**& *&%) (!%()-''+-*() # ( (!''#-,%() #%) # (%&&,%(+1%*#+-)*-&&' '#"'#(:'&-2-%''-,$&"-*"%&&-(!-1#")-' !(/%'#*-%#-%(%''-,$&#"%#/+&) -&)& / *# (%&*(# $+# ('/" &' ,+&#%(-+'&2 ) (!%&-%4:1$% -$-#/-(#"(#-1%*-1#"-*-&&%()#"%#,'"--"( # %& '#(:'&--2-%''-,$&)-' !(*(' '#-)1%-&(Y$-% (! %'&--2-%()%*+'#,%$ *%#-)'#% (&-'''#--&* & ()-% '#(-&(Y$-% (!

PAGE 67

> '%*,,(&+'-)$-% (!*('#+*#-)1%"&&/0 %&+, (+,*& ()-#"%# '& (-)/ #" %'"--#1#"-&/:1 *# (,%#%&-&(Y"( (%##"-# ,-/%'#"%##"-&(Y$-% (!/+&)%*#%'%&/1 *# ('+1%*1#"-*& ()-#**&-(/" &-0%# #"-'%,-# ,-0-2-(# (!/%#-1,-, !%# (!1 ,#"-# %7 %&*-&& (#0%'##"-&(Y$-% (!0%()##"--7#1#"-*-&& "-1-,'#%)2%(#%!-##" ')-' !( /%'#",,-) %#-%2% &%$ & #1#"-$-% (!1, '-2-%&'+& -'/ #"$-) %,-#-' 1> (*"%()A (*"*,,(1#-*+ (!%$-% (!1%)-#-, (%# (1 '+ #%$ & #0'-2-%&/-%4(-''-'/--) '*2--) '#0#"-'"--#1-&(Y#"%#& (-'#"$'!&+-)##"(' )-1#"-%&+, (+,*& ()%()-'+&#' (%6+%& #'-%, /"--#"-#/-()'1#"-'"--#+( (1#-*(' )-%# (0 #/%')-* )-)#"%##" ''-%, /+&)(#$-*%%$&-1-'#% ( (!#"(*-%' (! /%#--''+-1,/ #" (#"-*-&& )+ (!%# *%&#-'# (!'-6+-(*--*()&0#"+()(-''1,#+-1#"(#1#"$-% (!C$-D2% -) (-7*-''1= (*"-' ( ) %,-#-#"%#/+&),%4-#"*,& ,-(#%,%# (!1% '#() 11 *+#*('+&# (!/ #"'-2-%&%-% ,%*" ( '#'0 #/%'*(*&+)-)#"%#-2-( 1%,%#*" ( '#(*+&)$-,%(+1%*#+-)0#"-* (-6+ -)$-#/--(#"'#(%()#"--& (Y$-% (!#%**,& '"#"%1-,-(# (-)!%&' '#" !"%()(#%*# *%& (*'#-11-*# 2-1#"-5-*# "-(-7#*(' )-%# (1% '#(%''-,$&/%', -#&-%(#1!-,-# ,-1-*# ('%()2-)-%' -%()&-''*'#&# 1%$ *%#-"'#(%''-,$& *,'-)1#/,% (*,(-(#'0% '#('&--2-%( )% '#("'#('&--2' %11 7-)##"-#&%#-1#"-*-&&%()%*#'%'% 1 7-),-,$-1#"'#(##%2-& / #" (' &&+'#%#-) ( !+->:>0#"'# ('&--2-/%'*('#+*#-)+' (!'#% (&-'' '#--&" ',%#%&/%''-&-*#-)1 #'%$ & # #$-,%*" (-)#2-" !"#&-%(*-'

PAGE 68

%()& '"-)1&/1 *# (%&*(# $+# ('1'%&' (*(#%*#/ #"#"(#'+1%*)) # (%&&0#" '*,(-(#-6+ -)/-&) (!%'% #1 #',%(+1%*#+-#"--$ ) ', '' (!%&+, (+,%'%2 %$&-*%() )%#-'*%( $-'--( ( !+->:>0#"'#( '&--2-*(#% ('%1&%(!-) (!%&&/ (!1#"-%' '%!-1$&#'#'-*+###"-# &%#-" '1&%(!-) (!/%'/-&)-)##"-#+$+&% # (1#"'#('&--2-0/" *" ,%)-1%$ *%# (*'#'&/-#"%( 1#"'#(/-#$-,%*" (-)1,%'& ) -*-1 ,%#%&"-+# & K%# (1%2% &%$&-!-,-# *' "%-'%()' K-'1,,%#%&'+& -' (#(&-7-) #-)#"-*('#+*# (*-''0$+#%& '% )-)/ #"#"-*-%# (1%*'#: -11-*# 2-*-&& /&9:6?#<;9 6%6/&/8:989: 56&789:@r8r%r@r/@76/<9/896%@#<;9 )<;7nr?;9?&!r/@ ?@5; <9+6&%&76) 4r+& n+<)9<78//; 7& 826 ;7<6<9/> <7)& 67 ;/>/896 98 78/6/8? >66&/ r8r%r@r:>-#% &1#"'#(''-,$& (2-'-&0#"'#( ',%*" (-)1,%$ &&-#1 %&+, (+,#2 )-#"'#-(!#"(-*-''%1*,-'' (:$%'-)#-'#'" '#(*(#% ('#/ ('* $-) !2-'%$+# #'* *+,1--(*-)-' !(-)#-*21&-7 $&-'-%&'&#"+!"(-'-%&

PAGE 69

A /+&)"%2-$--(%)-6+%#-1#" '%& *%# (0)+& #/%'*"'-(#1+#"-'#-%)#"'#( (' )-1#"-'&--2-%()%*#%'%$%*4+ 1 #",%'-%&/--#1% &+-##"* # *%&&-#"-'-'-%&'&% (#"-'+**-''1+& -%# (1#"-*-&&0#"-!2-'/-)-' !(-)#*,& ,-(##"-*,(-(#'-* 1 *%# (' 1#"-'-%&'"-'-'-%&'%-,%)1/-%:-' '#%(#( # &-& '-%&'%()-'-,$&-% 1&%-)IJ"-%('#%&&-) (##"!2-'1#"'#(*+-) (#"-)/(/%)) -*# (0/" *"1*-'%( (*-%'( /%#--''+-#%*#/ #" (%()+#/%)&#"+!" #"-'-%&" '*"%(!-1-''+(*-%'-'#"-I'6+--K-J1#"-'-%&(##"(#'+1%*-1#"'#('&--2-"-''-%&'%-% %#-1#" '%& *%# ( (#"%# %'#"-/-%%##"-*(#%*#'+1%*-0#")/(/%)*+)-' !(*,-('%#-'$%&&/ (!#"-'-% &#-(#%!-%#-)-!--0 #"--$%''+ (!%# !"#'-%&%!% ('##"'#('& --2-" '%## $+#-2 )-'%,+*" &(!-'-2 *-& 1-#"%(*+&)$--7-*#-)1,#" -'-%&'"%2 (!%,-',,-# *%&& '"%-)1 &--%&'/ #"%',,-# *%&1 &-' +*"%': (!'0%-&-''1! 2 (!1%( +(-2-(/-%%##-(%()%-(#% %#-#)(% *%& *%# (' '*(1 !+%# ("%'-1,-)-7#-,-&/-&& ( 1#-'# (!%()#"+!"+# '-2-%&)+*# (#-'#'0"%2 (!'+**-''1+&&-2(#-)%($%''1/%#-1,#"*-&&;' (##"-+'-1)-' !(0#"-'%&'%-*(' )--)#$-*('+,%$&*,(-(#'1#"-#-'#''#-,%()/ &&-2-(#+%&& -6+ --&%*-,-(#1#-,%( '-6+-(*-'1#-'# (!0#"-'-%&'"%2--1,-)+# #"-)-' !(!%&%() () *%#-( 2 $&-' !('1/-%/&rrr "-#" *4(-''1#"-$%'-%()#&%#'%1+(*# (1#"-$-% (!*%%* # -6+ -)1,#"-'#+#'(##"-&%#-%()/%'*%& *+&%#-)/ #"%1%*#1'%1-#1%#

PAGE 70

B #"-,%7 ,+,'%1--%# (!-''+-1?' # /%'%(# %#-)#"%##"-*-&&/+&) -%#(#"-%(!-1:>' 1#"-#-'1 #-'#'#"-''#-,/%'$(!)-' !(-)1 "-$%'-&%#--1,'#"--$%' *1+(*# (' '#0 #%*#'%'%'#%! (!&%#1, 1#"-*,(-(#'1#"-''#-,-*()&0 #* (#% ('#"-/%#-# !"#-(#%(*-'1 ('#+,-(#%# (*%$&-'-(#(!#"-*-&&0%()#" ) &0 # (*&+)-'#"-*()+ #'1 -''+ K-)/%#--(#$#"#"+!"%()%+()#"'-* ,-( "--%-1+#'C#"+"&-'D#"%#/--'-* 1 -)1+'-/ #"&+!: (#1 ## (!'%2% &%$&-1,-#-*"( *%&('+&# (!Z -'# (!'#-,'CD0-,-0 K(%"-'-1 ## (!'*(' '#1"&&/*-)0# "-%)-),%&-%()1-,%&-*-'#"%#0 /"-(# !"#-(-)#!-#"-0*,-''%*(1 (-): (! 0#"--$'-%& (!#"(#-1%*-"*%$&-'1 ('#+,-(#%# (+'-)1#"-''#-,*%( $-*"%'-)#"+!"#"-'-%''-,$& -'0 %&&/ (!1-%' ('#%&&%# (1%(*,$ (%# ( 1 ('#+,-(#' (##"-*-&&"-'*%$&-'-7 ##"-*-&&;' (#%()%-(-%#&*"%' -)2 %!2-' (#"-$##,1#"-&%###"-)%#%%*6+ # (''#-, "-#*&'1#-'# (!-6+ -#"%##"-''#-,$ -*%%$&-1* *+&%# (!/%#$#"#"+!"%()%+()#"-'-* ,-("-%$ & # ##%('#/%#-#"+!"#"'-* ,-( '-''-(# %&1%*" -2 (!'%#+%# (%() %&' '-''-(# %&1-,-%$ & # #-'# (!()-#%&1&+ )-''+-%+()# "-'-* ,-(%()*() # ( ###"#-'# (!#-,-%#+-0 #/%'-6+ -)#"%2-%(-(# %(*-11&+ )*, (!1,#"-/%#) '# $+# (%(-&3 #"#"-'--6+ -,-(#' (, ( )0#"-$%'-&%#-"%'#/
PAGE 71

? "-#" *4(-''1,%#%&*"'-(1#"-$%'-&%#/%')--()-(#+(#"-6+ -)$-% (!'+1%*-%-%1#"-#"-%)-)'#+# '#"%#1%'#-(-) (##"-&%#-( # K%# (/%'*()+*#-)#' K-#"-'#+#'2-'+ '#"-#" *4(-''1#"-&%#-C'--'#+# )-' !(11+#"-) '*+'' (D ",%1+(*# (1#"-#&%#'#%*#%' %&%#1,1#"'#(%''-,$& "-&%#'1%'#-(-)##"-1+'#+#'2 %'*4-# "-%)'*-/'#"%#%''#"+!"#"-&%###" (# (#"-)-' !(*-''0%$&*4'"-% #-11% &+-%$+##"-'*4-#"-%) '*-/"%)(#$--( (2-'# !%#-)" '%(%&' '/%' *()+*#-) (#"-1&&/ (! *,(-(#"%'-#"--1-0%##" (#0#"-#" *4 (-''1#"-&%#-/%'%''+,-)#$-< (*""'#(%''-,$& '1%'#-(-)##"-&/1%*-1#"-#&%#-/ #"1+C>D '#% (&-'''#--&$+##("-%)*%'*-/'<: (*" (' )-) %,-#-1&%(!-:,+(#-)'-&1: %& !( (!$-% (! '1%'#-(-)##"-+-1%*-1# "-&%#-#!+ )-#"-#%2-&1#"-) %##%*"-)##"'#(0'"/( ( !+->:>"(*%# (1%'-&1:%& !( (!$-% (! -& (%#-'#"-#-(# %&1)%,%!-##"'#(' &--2-1,%, '%& !(-) '#(#" #"'#(%''-,$&%()#"-'-&1:%& !( (!$-% (!% -*%%$&-1$(!%)5+'#-)%$+##"2-# *%&%7 '1#"-*-&&#-('+--%& !(,-( #1#"--()&%#-('(#"--()1#"'-* ,-( "-#&%#-*(#% ('#/: (*") %,-#-"&-' #"%#%&&/#"--7 # (!11&+ ) 1,/ #" (#"-*-&&(-"&'&*%#-)'+*"#"% # #1%&&'2-#"'#(" '"&%&&/'1#"-&%*-,-(#1*-#+$ (!1#"-# %('#1/%#-1,#"-#1#"'-* ,-("-'-*()"&'' # (-)+#' )-1 #"'#(%''-,$&1 &-2 ) (! %(+#&-#1#-,-%#+-:*() # (-)/%#-%( (&-#1-''+ K-)%

PAGE 72

@ // #" '# ,(#"-)-' !(*-''0#"-) %,-#-1 #"-'#+#'/%'%&-%) )-#-, (-))+ (!#"-# K%# (*-''/ #" (# "-$%'-&%#-)-' !('#%!-"*((-*# 2 #1#"-'#+#'##"-&%#-'/%')-#-, (-)$%'-)+(,-#")&!1 *('#+*# ('*%($-)2-)1,#"-*((-*# ()-#% &'"/( ( !+->:0#"'+**-''1%(%)-6+%#-'-%&%&(!%(: (! ')-()-(#+(#"-+( 1,*,-'' ( 1#"-'-'-%&'%&(!#"-&-(!#"1#"-: (! -('+-+( 1, #0#"-'-%%# ( $-#/--(#"-#%()$##,&%#-',+'#$-#&-%$&/ #" (%1%*# (1#"-: (!;' ) %,-#-101-7%,&-0#"-) '#%(*-1'-%%# (/--#1%+#1#&-%(*-0(# (1#"-: (!/+&)*(#%*#$-1-#"' (!' )-0*-%# (!%( (%)-6+%#-'-%& -' !( (!%'#+##"%#/+&)$-*%%$&-1%)5+'#,(#/%'#"--1-(-*-''%#-('++( 1, #1'-%&*,-'' ( <98989:>/89%67 r8r%r!r +=r!r/@&/;#89;# @+6%;/6 <98989:789::-#% &1#"-((-*# (1#"-(1 ( (! (!##"-&%#-

PAGE 73

A &&1+'#+#'%-# *%&%()%-%*,$ (%# ( 1-7#C,%&-D#"-%) (!(#"-()#"%# (#-1%*-'/ #"#"-$%'-&%#-0%() (#C1-,%&-D#"-%) (!(#"--() (#-1%* (!/ #"#"-#&%#-" '*,$ (%# (% &&/'1#"-'#+#'#$-%)5+'#-)1 -6+ ) '#%(#'-%%# ( ##"-#&%#-$(! ('#%&&-)+$'-6+-(#&0%''"/( ( !+->:A0#"-#&%#''-*+-)+' (!#"-" !" :'#-(!#"'*4-#"-%)$&#' "-)-' !(1#"-#"-%)-)-()'1#"-'#+#'"%)# $-'-* 1 -) (*-#"-'#+#' /--#$-)-' !(-)%'#-(' (,-,$-'0#"--()$-% (!*%%* #1#"-'#+#'/--(# *(' )--)%()#"-)-' !(%%*"#+(-)##"-$% (!%$ & #1#"-#"-%)'&#'C%' '#"-%'' &%# (1#"-,%&-'#+#-()D*%(1% & (#-(' ( (1+) 11--(#/%'0/89%67 r8r%r!r +=r!r/@&/;#89;# @+6%;/6 :A-#% &1#"-((-*# (1#"-#+## #"-&%#-

PAGE 74

A< 1' &%,%#%&0%()>D'"-% (!1#"-$&# 1 #"-%)$-% (!'#-(!#"'+%''-'#"$&#;'#-(' &-'#-(!#"C.+2 (%&&0<@?=Db(#"-* %'-1#"-$%'-&%#-*((-*# (0/"-#"-'#+#C$&#D%()#"-$%'-&%#-C(+#D%-1#" -'%,-,%#%&%()& #-)-(!%!-,-(# )-#"-*&+)-''"-% (!1#"-'#+#0% &+-,)=*(#&&-)#"-)-' !( %'-)+(#"-!-,-#1#"-*-&&0#"--''+-' # ')-' !(-)#*(#% (0%()%( %& -)%*#1'%1-#10#"--'+&# (!#-(' (*-%(# %#-)-%*"'#+#/%' *%&*+&%#-)%' f /"--8M$&##-(' &-&%)-6+ -)# -&)#"-(# -#"-%):'# (!% &+'+1%*-1#"-'#+#C4 'D #M##%&'+1%*-%-%1#"-%)'-' '# (!#-(' &1*-C (D M -&)'#-(!#"1'#+#CT11'-#DC4' D M,%5) %,-#-1#"-'#+#C (D "-$&##-(' &-&%)-6+ -)# -&)#"--(# #"-%):'# (!% &+-'+1%*-1 #"-$%'-&%#')-1 (-)%'8 t n t n r f ? B /"--8M$&##-(' &-&%)-6+ -)# -&)#"-(# -#"-%):'# (!% &+'+1%*-1#"-$%'-&%#-C4 'D )M,%5) %,-#-1#"-'#+#C (D #M)-#"1-(!%!-,-(# (##"-$%'-&%#-C (D M -&)'#-(!#"1'#+#CT11'-#DC4' D C+%# (>::D

PAGE 75

A 6+%# (!#"-1,-#/-7-'' ('1 -&)'$% &%(*-)#-(' &-%()#"-%): '# (!'#-(!#"'/"-(#"-)-#"1-(!%!-,-(# %7 ,%#-&8 >B "-*-''1*%&*+&%# (!#"-)-' !(1#"-'#+# #$%'-&%#-*((-*# (/%'%' 1&&/'8 %&*+&%#-)-#"1-(!%!-,-(#+' (!6+%# (>= $ #% &*"'-%#"-%))-' !(%# (%()0$+' (!#"-)-#"1-(!%!-,-(## '&2-)1 ('#-<0)-#-, (-#"-*-'() (!$ &##-(' &-&%)-6+ -)# -&) #"--(# -#"-%):'# (!1% &+-'+1%*-1#"$%'-&%#-00%')-1 (-) ( 6+%# (>< (# (+-/ #" #-%# ('1) 11(!#"-%))-' !( %# ('+(# &0%')-1 (-) ( 6+%# (>%7 ,%#-'#"-)-' !(-' '#%(*-1 *-1:A "-'*4-#"-%)$&#'%-* -#1 +#,# 2-(! (--'CD%)-0/ #" -&)'#(!#"001@4' %&&'-('%()+'-0#" '&-2-&1'#-(!#"1%-7*--)'#"-6+ -,-(#1#" '%& *%# ( /-2-0#"-*'#1#"-'-$&#'/%'-%'(%$&&/ %()#"-%))-)&-2-&1'#-(!#" '1 2%&+-/"-(*(' )(!#" '%))-)'#-(!#"-11-*# 2 -&-,2-'%1% &+-,)-1, $%$ & #"-%)) # (%&1% &+-,)-'#"%#(-)-)#$-*"-*4-)/--8 "-% (!%##"--)+*-):%-%*'''-*# ( "-% (!1#"-$&# &*41% &+-C+&&+#D1#"-#&%#-%$+##"'*4-#"-%)%()$&# (#-1%*3 #"#"-)-' !(1#"-'-*((-*# ('%**,& '"-)0 #"-'#+*#+%&*-1#"''#-,/%'*,&-#-"-1&&/ (!*,(-(#'/+& )$-)-' !(-)#*,& ,-(##" '#+*#+C6+%# (>:=D

PAGE 76

A= /2%r "-%%*"1#"-)-' !(1#"--()&%#-('$-!% (/ #"%-2 -/1(--)'1#" *,(-(#1,-%*"#-'#--() (!+(#"-#-'#0 #"-'-&%#-('(--)-)#-1, ) 11--(##%'4'-7%,&-0#-'#''+*"%'-' & -(#,)+&+'%())% (-)%()+()% (-) *,-'' (-6+ -)#"%##"-&%#-('-' '# ()+*)*,-'' 2-'#-''-')) # (%&&0 %(*(# $+#-()-11-*#'-'+&# (!1,1 *# ($-#/--(#"-&%#-('%()#"'-* ,-(;'-()'(--)-)#$-, ( K-)%',+*"%') -' !(/+&)%&&/#"-#-'#' '+*"%'*('#%(#%()1%&& (!"-%)")%+& **()+*# 2 #C-,-%$ & #D&%*-)%!-%#-,"%' '(#"-%$ & #1#"-&%#-('#*()+*#% ()) '# $+#-/%#-/ #"%, ( ,%& %,+(#1 (#-1--(*-# '#"( (1#" -'-%*"-#"%#-7 '# (!)-' !(')(# -11 -(#&%&&/#"-#%('#11&+ )#"+!"#" -'-* ,-($+#%#"-1*-#"-1&+ ) #"+!"'-* 1 *%()& #-)%#"'0#"--$ (#)+ (!(##"-#-'#" '$-*,-' -2 )-(#/"-(%( (2-(#1&''-')+-#*('# # ('0-7%(' ('0%()$-()'%&(!#"1&+ );'%#" ',%)-1#-*(' )-%# (1#"-6+ -,-(#' #/%'*(*&+)-)#"%# ) 11--(#&%#-('/+&)$--6+ -)1) 11--(## -'#' (& 4-,-*,,(&+'-)-()&%#-('0/" *") '# $+#-/%#-2 %(-"&-%() *()+*# (!!2-') ,&-'0#"'(#"-**& &%) (!%()--''+-*() # ( (! ''#-,*(#% (,%( 1 *-'%*'' #''+1%*" '%&&/-)/%#-#$-#%('#-) #"+!"#"-#-'#'-* ,-(+( 1,&%()/ #"+#*( *-(1 '&%#-) (!-7*-'' 2-''+-!%) -(#)-2-&,-(#)) # (%&&0#"-'&%#-('%-1%$ *%#-)/ #"*(*-(# !2-'#$-##-) '# $+#-#"-/%#-%*''#"-1 %*-1#"-'-* ,-(" '*(1 !+%# ( '%&'%)2%(#%!-+' (#"( # %&'-* ,-('%#+% # ("%'-' (*#%&&/'1%1(#1 1&+ )#%''#"+!"#"-'-* ,-(0/" *",--11*# 2-&& $-%#-'-(#%-)%

PAGE 77

A> $+$$&-'"--'-(*-1*()+*# (!*"%((-&'%*' '#"--(# -1 &-1#"-&%#-(' ) ( '"-'#"-& 4-& ")1-(#%-)% $+$$&-' $-#/--(#"-&%#-('%()#"-'-* ,-( "-*,&-7 #1#"-1 &-*+&-)/ #"#"--&% # 2-&',%&&*()+*# (! 1 *-' '-* 1 -)) ', ''-)'#% (&-'''#--&%'%,%#%&* %() )%#-&+, (+,/%'*"'-()+-# #'-&%# 2--%'-1,%*" ( (!%()%$ & ##"%)(#%&-2-&-6+ -)1+'-$ %() K (!#"-%##"#"-#%()#"-$##,& %#-("%2)-(# *%&1 &-'" ' &% #-('+-'*('-2%# (12&+,(%()+ #1#"-'-* ,-(%())-*-%'-' )+*# (*'#'' (*-(&(-1 &-"%)#$)-(# 1 -)1,%*" ( (! "-#&%#-( '$%' *%&&%&%#-#"%#*%'#"-()1#"'#(# '1%'#-(-)2 % %'*-/ (##"'#(/" *"/"-(# !"#-(-)0*, -''-'%(: (!&%*-)$-#/--(#"#/,%# (!%#'#"%#-2-(#'/%#-1,$(!*( )+*#-)#"+!"#"-,%#-)'-%,"$%'-&%#-( '%##%*"-)##"-$%'-&%#-2 %%#" -%)-)'#+)#"%#%&'%'' '#'/ #"#"-0*(*-(# *%& !(,-(#1#"-&%#-(%$+##" -*-&&*(*-(# *0"%&1:+() !2',%*" (-) (##"-,%# (!1%*-1#"-&%# -(1 ('#%&&%# (1%(: (!'-2 (! #"-'%,-+'-0%')-'#"-%1-,-(# (-): (! %*" (-) (##"-* *+,1--(*1#"-&%#-(%-#/"%&1:+()!2-'#"%#%-+ '-)#I'-%#J#"-: (!'#"%#"&)#"&%#-7,-,$%(-# #)) # (%&&0%< (*"" ""&&/ '-/%',%(+1%*#+-)#"%# *%($-&%*-)$-#/--(#"-$%'-&%#-%()&%#-( "-# (1+' (!% '-%&&/'% '-* ,-("!"#%(!-1:A (*"-'C, && ,-#-'D *,-'' (:$%'-)#-'# (! #/%'(-*-''%# #-*##"-1%*-'1#"-&%#-(' 1,,% (!%() (*-%'-))%,%!-)) # (%&&0# "-*(*-(# *!2 (! (#"-1%*-1 #"-&%#-(' (#)+*-)%(+(1%2%$&--()*('#% ( #1#"-'-* ,-(&-''-(#"-'-()-11-*#'0'-2-%&'-#'1&/1 *# (0" !":'# -(!#"+(Y&%#-('/--1%$ *%#-)#

PAGE 78

A 1 #$-#/--(#"-%&+, (+,&%#-('%()#"-'-* ,-( "-'-+(Y&%#-('%,-*"%( *%&&1%'#-(-)##"-%&+, (+,-()&%#-('# -2-(#%('" 1# (!)+ (!#-'# (! )) # (%&&0#"-*(#% (*(*-(# *%&&' # ()"&-'#"%#*,& ,-(##"-&*%# (1 #"-!2-'*(#% (-) (#"-%&+, (+,&%#-('0#"-$'# &&%&&/ (!%,-#")#'%#+%#%'-* ,-(%())-#-, (#'")%+& **()+*# 2 # #*,-'' 2-#-'# (! /: "! +-##"-&%!-) %,-#-1#"-*-&&0#"-%2% &%$ & #1*& () *%&&'"%-) ,%#%&/%'& #-)%& (#"-)-' !(*-''0 #/%'+()-'#)#"%##"-&%!-#"*-&&;') %,-#-$-*%,-0#"-&-''(+,$-1 (*-,-( #%&) %,-#-'1*(1 ( (!*& ()/+&)$-%2% &%$&-3 #"#" (, ()0#"-'-&-*# (1%'+ #%$&-,%#%&H) %,-#*,$ (%# (/%'-'-%*"-) (*-#"-*-&&/+&)$ --%# (!%#,+*"" !"--''+-' #"%(# *%&# %7 %&*-&&'0&%'# *'0'+*"%'#"*,,(&+'-),%#%&+* #-Y/ #"% ,%7 ,+,%&&/%$&-/%&&-''+-1<' 0/+&)( #$-%)-6+%#"-1 ( '"-)&-(!#"1#"-*(1 ( (!*& ()-0*(' )(!*+,+&%# 2-*,-'' ( 1: (!'0/%'*%&*+&%#-)%'<>A (*"-'/ #"% -6+ -)) %,-#-1%7 ,%#-&@ (*"-'&%!-#%**,,)%#-#"-'#+#'0'-* ,(0%() ('#+,-(#%# (/ #" (#"*& ()(*-#" '*,(-(#/+&)-6+ -*('# %(#-,2%&%()('#%&&%# (1 #-'# (!0#"-2-%&&/!"#/%'%*(*-(1#/ -%'('0
PAGE 79

AA (, (%&) %,-#-0'*"-)+&-> -/%'&*%#-)/" ""%' -&)'#-(!#"1>4' "%(# %#-),%7 ,+,"'#-''/%'*%&*+&%#-)%'C --%()."('#(0<@@D8tn r f bf bf /"--8M,%7 ,+,-%# (!-''+-C' D M (' )-%) +'1*& ()-C (D #M*& ()-/%&&#" *4(-''C (D 3 #"%1%*#1'%1-#10#"-"'#-''/%'* %&*+&%#-)%'<@?4' 01%$-&/ #"-%&&/%$&-'#-''1#"-,%#%&&#"+!"#" ((-/%&&-),%#%&/%'%2% &%$&-0 # /+&)(#"%2-$--(%)-6+%#-' (*-#" '(%/-) ,-(' (/+&)"%2-*-%#-) ) 11 *+&# -',%# (!/ #"#"-: (!'-%&'%##"--( )'1#"-*& ()-b# '12%&+-#(##"%# -1#" ') ,-(' (%(),%#%&#') 11 *+&##&*%#-" '#-%()' K'+'-) ('-* %& K-)%& *%# (''+*"%'-&-*# *!-(-%# (&%(#'%() ',%(+1%*#+-) (&-(!#"'-7*--) (!<1--#"-*+-,-(#1% < (*"&(! -*-1#"-'-'-!,-(#' -(#% &-)%'-* %&*+## (!1--"-*& ()-0/" & -$(!'#+*#+%&&%)-6+%#-0)-'% '%*(*-(/ #"' &%&)-' !(-)*-&&'#"%#,%$*('#+*#-) (#"-1+#+-t/ (!# #"-1%$ *%# (,-#")%()'+$'-6+-(#'#%!-1#" -,%#%&%##"-,%(+1%*#+-0#",%#%& ''& !"#&+#1+()/"-(+*"%'-) ') '## (,%4-'#"-,%# (!1#"*& ()-##"-: (!'*(#% (-) (#"-&/-%() +-# ('1#"-*-&&,-) 11 *+&# #"%( 1#"-*& ()-/--#+&+()b1%)) # ( %&*-&&'%-,%(+1%*#+-) (#"-1+#+-0 #" *4-/%&&-)*& ()-'%--*,,-()-)1&&/-)$ %*-(#-:&-''!+(),-#")1 ,%*" ( (!#*-%#-%*& ()-#"%# '#+&+() C6+%# (>:>D

PAGE 80

AB /< ""-*(1 ( (! (! '(-1#"-,'#* # *%&1% &&#"-*,(-(#'"(! *,-''-'#"-'-%&' (*(#%*#/ #"#"-*(1 ( (! *& ()-%()#"-'-%& ('-# (##"-7#1%*-1#"-#&%#-#"%#-2-(#'#"-, !%# (1-''+ K-)1&+ )1,#"(#1#"-*-&&"(! '%##%*"-)##"#&%#-2 %1+< (*"&(!'*4-#"-%) $&#'"-'-$&#'-' '##"-1*-%& -)##"(!#"+!"%!%$-#/--(#"-*(1 ( (! *& ()-%()#"-#&%#-"-1*-%!% ('##"(! '-&%# 2-&',%&&*,%-)# 1*-'-7-#-)(##"-*,(-(#'#" '-% '(0#"-(, (%&#" *4(-''1#"(! (*"-'"-'*4-#"-%)$&#'-,&1&%# /%'"-'$-#/--(#"-,%()#"-'+1%*1#"-*(1 ( (! (!# (*-%'-#"-*(#%*#%-% / #"#"(!"(!/%'%(%&K-)1 $&*4'"-%%$+##"-$&#'%'/-&&%''# (!# -1% &+-'1#"-$&###&%#*((-*# ( "-*(1 ( (! (!"%'%-*-''-)0*(*-(# *%&&& *%#-)*"%((-&,%*" (-) (##"1%*-#"%#*(#%*#'#"-*(1 ( (!*& ()-" '*" %((-&"-&'#%& !(#"-#1#"*(1 ( (!*& ()-/ #" (#"(!#"--$I&*4 (! J#"-#/*,(-(#'#!-#"-/ '-, *+&%!2-'%-&%*-) (##"-*"%((-&1 #"-&%*-,-(#1: (!'/"--#"*(1 ( (! (! (#-1%*-'/ #"#"-*(1 ( (!*& () -+#"+"&-'%-' # (-) (# #"(!%#&*%# ('#"%#*,&-,-(##"-$&#"-%) '#"%#*((-*##"-#&%#-##"'#+#'(%)) # (%&#"+"&'2 )-)/" *" 1 #'2-%6+ *4) '*((-*#1 ## (! ('#%&&-) (##"-#&%#-%&&/ (!1&+ )#$-* *&-)#"+!"#"-*-&&;' (#/7rr)=.&"-+'-1' '(-*-''%1#"-*,+#%# ( 1#"-2% %# (1#"-*'' '-*# (%&%-%1#"-'-* ,-()+ (!1% &+-#-'# (! (*,-'' ("-'-'%' # (-)'+*"#"%##"-%-(,%&##"-*& () *%&'+1%*-1#"-'-* ,-( (@G

PAGE 81

A? (*-,-(#'"&)-/%')-' !(-)#"%#%&&/'1 #"('#%&&%# (11+' (#" *(1 !+%# (%*" (-)1,%&+, (+,%()%() K-) 1*' (-' '#%(*-0#""&)-*(#% ('1+#"+"&-'#"%#%&&/#"-"&) -#$(#-!%#-)/ #"#"-'#+#'1#"*-&&& !"#&2-' K-)0#"-'-#"+"&-'-(%$&#"-"&)-##%2-&#%(' # (%&(! #"-&-(!#"1#"-'#+#'(*-' # (-)0#"-"& )'%11 7-)##"-'#+#'2 %!"# (&(:# -)0'#% (&-'''#--&'-#'*-/'"-(&( # -2-(#',% (!1#"-'#+#%() (#-()-)1%& *%# ('/"--#"-'-#'*-/ '*( # (++'&--(!%!-)"-'%&%*-) (##"-"&)-2 %#"+"&-'%()-'#% ()/ #"'#% (&-'''#--&'-#'*-/'" ' ,&-*(1 !+%# (%&&/'1% )' # ( (! 1#"-)-2 *-'%#%(' # (%&(!#"&-(!#"1#"-'-* ,-(/9rrrn3 #"#"--7*-# (1#"-:*+'-%&'+'-)1#"'#(0%&&#"-'-%&'/-%**,& '"-)/ #"$+(%:n: (!''+& -)$%4-%&'0(*+(%:nC( # &-D '% *,,(&+'-): (!,%#%&#"%# '%2% &%$&( %/ )-%(!-1) %,-#-'%()*'' '-*# (%&#" *4(-''%$&->:<& '#'#"-#-*"( *%& '-* 1 *%# ()-#% &'-&%#-)##"-: (!'" ',%#%& '-' '#%(##-#&-+,:$%' -)1&+ )'%(),% (#% (' #''"%-%() & %$ & #%1#-%" !"(+,$-1*,-'' (**&'"-*,$ (%# (1#"-'-1%*#' /%'(-*-''%1#"-%(# %#-)+'-1#"-'-: (!'"-)-' !(1%&&*,(-(#' -& (!(#"-'-'-%&'/%'-1,-)' ,+&#%(-+'& / #"#"-: (!'-&-*# (*-'' '*) (%# (-('+-)#"%#'-* %&&' K-): (!'/+&)(#"%2-#$,%(+1%*#+-) ''"/( ( !+-'>:%()>:A0#"-: (!'%-& %*-)'+*"#"%#%'#"-*-&& %''-,$&-)0#"--%& !(,-(#1#"-: (!'/ #" #"-*-'() (!*,(-(#*%($%*" -2-)-%' &"-*'''-*# (%&) %,-#-1# "-: (!'/%'*"'-('+*"#"%#%(

PAGE 82

A@ -6+ 2%&-(#)-!--1*,-'' (1%&&#"-: (!' '%**,& '"-)1&&/ (!#"# !"#-( (!1#"-*%"-%)$&#'%$+##"-*(1 ( ( (!"-*(' )-%# (1!+: )--()-(#*,-'' (1#"-: (!' '* # *%&# -('+-#"%#-%*" () 2 )+%&'-%& -&*,-''-)#,% (#% (#"-*(1 (-,-(#''+%$&->:n >n 30 r. <:=>< < (#-1%*-$-#/--(*(1 ( (!*& ()-%()$%'-&%#%'-&%#:?> -%&%(#1*%$&-'-7 # (!#"+$%'-&%#:B< (#-1%*-$-#/--(#&%#-%()*(1 ( (! (! &%#: (#-1%*-$-#/--(#1'#+#%()#&%#(1 ( (! (! :B< (#-1%*-$-#/--(*(1 ( (! (!%()*(1 ( (!*& ()'#(&%#:>> -'#% ( (! (!'1,-,$%(-# '#(&%#'#(&%#-2:>>< (#-1%*-$-#/--( '#(&%#-*2-%() '#( &%#:>> -'#% ( (! (!'1,-,$%(-# '#(&%#-( %'-&%#-(R< :>< (#-1%*-$-#/--($%'-&%#-(%()$%'-&%#:>> -'#% ( (! (!'1,-,$%(-# '#(&%#-( %'-&%#-(R :>< (#-1%*-$-#/--($%'-&%#-(%()$%'-&%#"-!2-'#"%#%**-##"-: (!'%--), (%#&'6+%(1 &-%()1 %)-6+%#-*'''-*# (%&%-%#%&&/1#"-##% & (*&+' (1#"-: (!+( *,-'' ('/%'-2 +'&) '*+''-) (#"-)' !(*(' )-%# (''-*# (0#" 2 (%&&/'1-'-%& (!/" &-' ,+&#%(+'&1%* & #%# (! ) #%##"(#-1%*-)-2-&-)1,#"-'+1%*-:#:'+1%*-*( #%*#3"--#"-%&+, (+,$%'&%#-( (#-1%*-'/ #"#"-$%'-&%#-0%'-, :* *+ &%!2-1 &-/%''-* 1 -)" '"%-%&&/'1#"(*&+' (1(&"%&11#"*'''-*# (/ #"#"--,% ( (!"%&1 $(!-'-2-)1*,-''-))-1,%# ( (#"-% -%$-#/--(#"-#/*,(-(#' '*(1 !+%# ( (#-(# (%&#-2-(#!%&2%( **' ($-#/--(#"-'-#/

PAGE 83

B *,(-(#'3"--*(#%*#**+'$-#/--(%&+, (+, %&&%()'#% (&-'''#--&0 *' (/ &&$-%**-&-%#-)C.+2 (%&&0<@?=D& +, (+, ',-%() *#"%('#--&%() #"--1-/ &&"%2-#"-!-%#-#-()-(* # ( K%())-2-&%!-%#-(-!%# 2-*"%!C-&-*#)-#-(# %&D"-%&+, (+,*,(-(#%*#' %'%(%()-%()#"-'#--&%*%#")-0 #"--$ %&&/ (!1#"-)-2-&,-(#1%(-&-*# %&*+-(#1&/ (!1,#"-%&+, (+, ##"-'#--&" '*(# (++') '*"%!-1%&+, (+ ('/ &&-2-(#+%&&*)-#"%# %#(#"-# -1*' (0-&-*#*"-, *%&* (0*%(**+ 1#"-'-%#'%&%*-) (%(-&-*#& # *'&+# ('+*"%'1-'"/% #-/%#-/ #"%" !"'%&#*(#-(# (-&-*#& # *'&+# (%*#'%'%( (*% -/ # "' # 2-&*"%!-)%&+, (+, (' (! (#'&+# (&-%2 (!%(-7*-''1(-!%# 2-& *"%!-)-&-*#('(#"-*,(-(# C-&-*#)-D" '%*# (/ &&*(# (+-+(# &%*( ) # (1-6+ & $ +, '-%*"-) C%&& )% 0-'( *40%()%(-0<@@D (*-#"-'*,(-(#'1+(*# ( (%( -(2 (,-(#/"--/%#'--%#-)&)% (-)1, %()-1 &&-) (##"-*-&&0-6+ & $ +, /+&)(#**+%()*(# (+-)*' (*+&)$--7 -*#-) "-*,$ (-)+'-1%( ('+&%#C( # &-: (!D% ())-: ( K-)/%#-%'% *(1 ( (!1&+ )"-&'#&-''(#"-#-(# %&1* (1#"-'-*,(-(#' )) # (%&&0#"-%&+, (+,$%'-&%#-(%() '-/% '%() K-)#1 && (#"-+' '+1%*-1#"-,%#%&0,%4 (! #,--' '#%(## #"--11-*#'1*' (%()"%)-( (! ###-*##"-'+1%*-1,%$%' (f,%-) ##"-*'#1,%*" ( (!#"(# *%#&%#-(0#"--&%# 2-&',%&&*'##%() K-#"-% # '+)-(#1,% (#% ( (! #' (#-! #/?fntfrff3 #"#"-'-*,(-(#')-' !(-)0%##-(# (#"-(#+( -)#/%)'#"--6+ -,-(#' 1 ('#+,-(#%# ( (*%#-)/ #"#"-*-&&' %, ( ,+,0 #/%')-* )-)#"%#%##%& 11 2-'-%&-)I#'J/--(--)-)#%(%&K-#"-' -* ,-()+ (!#-'# (!t1#"-'-

PAGE 84

B< #'0#/%-)-' !(%#-)1%7 %&'0#/1 %) %&'0%()(-1 #-,-%#+-,( # (!$/% 1%#"-, '#$3 #"#"--7*-# (1#"#"-, '#$-/" *" '*((-*#-)#%(+#&-#* ()+ #%##"-#1#"-*-&&0#"-,% ( (! ('#+,-(#'-7 ##"-*-&&#"+!"#"-$%' -&%#-%()%-*"%'-)(-%#&##"$%*41#"-*-&&b()-#-('+-#"--%-( &-%4'/"-(#"-*%$&-'-(-#%##"+!"#"-$%'-&%#-0'-* %&#/: -*-1 ## (!' /--*+-)"-'-1 ## (!'/-)-' !(-)'+*"#"%#%'#"-#/%#'%-'*-/-)#! -#"-%(: (!*,-''-'%!% ('##"*%$&-#"%# '%''-)#"+!"#"-#/%#'0#"--$ -11-*# 2-& '-%& (!#"--(-#%# ( )) # (%&&0#"-#/:%#%''-,$&*(#% ('%(+# -: (!#"%#'-%&'%!% ('#%$,%)-#"+!"#"-$%'-&%#-" '*(1 !+%# (,% 4-' ('#+,-(# ('#%&&%# (1#"-*-&& % )%()1&-7 $&-/ #"-!%)'#*(1 !+%# (/ ntffbtrtt"rf"-'-* 1 *%# (1) ,-(' (%&#&-%(*-/%'-6+ -)%'%#1#"-)-' !( *-''0%' # '/ #"%( ,%*" (-)-' !( (*-# /) 11--(#,%#%&'C%&+, (+,%&& %()'#% (&-'''#--&D/--+'-) (#"-*-&&0#"-,%& -7%(' (-11-*#'(--)-)#$*(' )--) "-(&,-%$&-*,(-(# (#"-*-&& '#"'# ('%-'+�#" '*,(-(# %()#"-#&-%(*-1#"-'&--2#'* &&%#-'/ #" (0/%%(#-)'-* %&*(' )-%# ( f%&*+&%# (1) ,-(' (%&#&-%(*-/%'%**,& '" -)+' (!#%$&-'+$& '"-)$#",*%(n%# (%&#%()%)b('# #+#-Cn b0<@B?D "'#('&--2-%''-,$&/%' *(' )--)%'%+(( (!*&-%%(*-1 #0/" *" '# *%&1%& *%# ('-6+ (!&+$ *%(# $-#/--(#"'#(%()'&--2-C%&-0<@@>D&#" +!" #/%'(# (#-()-)1&+$ *%(# #$-+'-)0#"-!%*-%#-)$-#/--(#"-#/*,((#'-('+-)#"%##"--/+&)(#$%(%$%' ()+-#*(#%*#(*(#%*#*+&)*%+ '-+(-*2-%$&-)%,%!-##"-

PAGE 85

B '+%*-1#"'#(%()) ( '" (!#"--11-*# 2(-''1#"-+:*+& '-%&'"*%&*+&%#-)#&-%(*-'/--#"-(*"-*4-)2-'+'#"%(# %#-)-7%(' (1#"'#( %()'&--2-#-('+-#"%#%!%/+&)'# &&-7 '#% #" !"#-'# (!#-,-%#+-' *%&*+&%# (0#"-" !"#-'##-,-%#+-/%'#%4-(%' <>Gf-11 -(#'1#"-,%& -7%(' (/--#%4-(%'<7<:A (HG1%&+, (+ ,%&&%()?7<:A (HG1'#% (&-'' '#--&C.+2 (%&&0<@?=D'*%($-'--(1,#"-'2%&+-'0#"-" !"-*-11 -(#1#"-,%& -7%(' (1#"-%&+, (+,%&& '#(2%& )%#-)# "-)-' !(*(' )-%# ('b1#"-!% $-#/--(#"'#(%()#"-'&--2-/--#',%&&0# "'#(*+&)$-*,--(!%!-)/ #" #"-'&--2-%#" !"-%# (!#-,-%#+-' (*-# "'#(/%'#$-%() K-)0#") %,-#-%()#&-%(*-/--)-1 (-)%''#:*%# (! &&#"+:"&-&*%# ('/--'-* 1 -)+' (!-*#%( !+&%*) (%#-'t2-:' K (! 1"&-'0 (&*%# ('/"--$&#'/+&)$-+'-)0/ %''-* 1 -)/ #"*,,() && ) %,-#-'" '-& -2-)#"-1%$ *%#1,#"-( --)&-''-11#1$#% ( (!%(2-: -'* $-)#&-%(*-" '2-:' K (!,%)-%&&#" -,-*"%( *%&*((-*# ( (#'1&-7 $&/ #"-!%)'# -(#%# (1#"-,%# (!%#' '1&-7 $ & #%&&/-)1, &) %)5+'#,-(#'0/" *"*-%#-)# ,%&'-%& (!*() # ('1#"-'#+*#+%&*,(-(#' "-&-(!#"1#"-*(1 ( (!*& ()-/%')-1 (-)# #"-"+()-)#"1%( (*"&#"+!"% ,-'# (!-(#2-%&&&-(!#"*+&)"%2-$--('-* 1 -)0) (!'/+&)"%2-&%*-)%( +()+-$+)-((#"-1%$ *%#%()-'+&#-) (" !" -#"%((-*-''%*'#"-%$ & #1 #"-'#+#'#$-&/--)% '-),-%(##"%##"-* &-%) '#%(*-1#"-#%()$##,&%#*(#&&-)/ #"#"-'#+#'*+&)*-*#%((#"-2-%&&&-(!#"1#"-*(1 ( (! *& ()-

PAGE 86

B= 6+%-:1 &-)!2-'1: (!'/--'-* 1 -) #%#&-%(*-%'-*,,-()-) $#"-,%(+1%*#+-"-'-#&-%(*-'--'-(##" -,%(+1%*#+-)#&-%(*-1#"-: (!'0/" *"0)+-##"-&%'# *-#0*%(%) 5+'##, () ,-(' (%& (#&-%(*-/*.!n"-1&+ )) '# $+# (''#-, '* # *%&1-11-* # 2-'#-'''#%#-#-'#'%()**& --''+-*() # ( (!/ #"+#%(#"-%& %# (1'#-''-'"-''#-, *,'-)11+$%' **,(-(#'0D%2%*++,H-''+ K-)% *(#&%(-&'*"-, %# *1#" '''#-, ''"/( ( !+>:B2((.(0 &$$"" +-0("2$"(.* $"" $.1"5$$. $.1" $1 $&("( $5(&( 2((. 2 5(&("(*A2" )%(11","$B $CC ;(0 !+->:B*"-,%# *1#"-&+ ) '# $+# (' #-,

PAGE 87

B> "-/%#-)-& 2-%()-''+ K%# (''#-, ''%%#-%()1--'#%() (!1,#"*-&&&&1 ## (!'%()*()+ #'%-" !":-''+*%%* #/ #"#"-, ( ,+,-''+1 ## (!"%2 (!%*%%* #1<' ''+&+ '1*%%* #2-%()$-()#",%7 ,+,#-'#-''+'/-)##"-%2% &%$ & # 11 ## (!'1,*,,('+& -' "-2%&2-'%-!%#-2%&2-',%(+1%*#+-)1,*%$( '#--& ()-#-, ( (!#"-&%+#1#"-) '# $+# (& (-' 0%(-11#/%',%)-#& ##"&-(!#"1-%*"-'-*# 2-& (-(&(!*()+ #'0 %"-(,-((-1--)#%'%)(%, 1(#*%(**+/"---''+--7-#-)%#(--() 1#"-*()+ # ')-&%-)1, )-2-& (!%##"-' #--()1#"-& (-" '%## $+#-)#' )-/%&&1 *# (0/" *" -#%)'#"--''+-#%(', ##%(*-"-2%&2-'/-' # (-)'+*"#"%##"-& ##"&-(!#"1*()+ #$-#/--(#"-%-%1 (#--'#%() #"--''+-#%(')+*-,( # (!#"%# & ("-''#-, '-''+-:) 2-(2 %%'-2:*(#&&)0")%+& *%&&%*#+%#-)2&+,*"%(!-" '2&+,-*"%(!-%*#'' &%&#%' (!(#"%# #)%/'/%#-1,% $-:#--'-2 %()#"-(&+(!-'#" '/%#(# #"-''#-,"+!"%(-#/41 +( ) -*# (%&2%&2-'0#"-2&+,-*"%(!'*%%$& -1-1 && (!/ #")-:% -)/%#-1, %( (& (-'#%!--'-2 / #"+#%&&/ (!%)-* -%'(-''+(#"-(-#/4$-() #,#"-2&+,-*"%(!-0-''+ K-)/%#-*%( $-) '# $+#-)#"+!"(-%( *,$ (%# (1#"--*()+ #'0$##,1'-* ,-(0 #1'-* ,-(0*-&& (#C*(1 ( (!'%*-%+()#"-'-* ,-(D%*"1#"'-#"--& (-' ',( #-)/ #"% -''+-#%(')+*-#"%#*,,+( *%#-'##"-2&+,*"%(!-#"+!"%''#-, *(#&&-0#"--$%&&/ (!1#"-*(#&1-7#-)-''+-'/ #" (%()%+()#"'-* ,-(" '*&'-)&*(#&%&&/'1-* '-,-%'+-,-(#%()% ),( # (!

PAGE 88

B 1-''+-)) # (%&&0#"-2&+,-*"%(!', ( #-)$%(0/" *"-#' #"-) '&%*-,-(#1#"'#(/ #" ( #'/ #" #"--''+-#%(')+*-'0#" %*#' (%*&'-)&/ #"#"-''#-,*(#&&-%& &/ (!1% ),( # (!%() *,,%()1' # ( (!*%& $%# (!#"-2&+,1/%#-) '*"%!-)1,#"-2&+,*"%(!--& (-%) '&%*-,-(#0#"-6+%(# #11& + )1*-)#"+!"#"-'-* ,-(*%($)-#-, (-)" '%* # *%&)-' !(-&-,-(# (# "%##" '6+%(# #%&&/'1#"21 *%# (1'%#+%# (1#"-'-* ,-( ()-##-*##"-*-&&%!% ('#)%,%!-)+-# %(%** )-(#%&2-:-''+-0% $&/:112%&2-/%' ('#%&&-) (#"-) '# $+# (' '#-,#"%# '!%+!-)#-( 1& (-''+--7*--)'>' '2%&2'&*%#-) ( #"-) '# $+# (& (-#"%#'+& -'/%#%+()#"-'-* ,-(" '' # (/%'&! *%&' ( *-#"-#-'#/ #"#"-!-%#-'#%(# %#-) -''+'#"() -*##-(' (C-7#-(' (D#-'#/ "-(#"--''+-%+()#"-'-* ,-( (*-%'-)+(# &1% &+-**+' (*-#"-2&+, -*"%(!'%#-)%#<' 01% -7*--) (!#"-*%%$ & #1#"-*-&&0 #/%'$-& -2 -)+)-(##%&&/1#"-'%1--&-%'1+(/%(#-)-''+1%''#-,,%&1+(*# (**+ -)-%'+-''+*"%'#" '%-''-(# %& ()-' !( (!%'%1-''#-,*(' )(!#" %##"--&%# 2(*,-'' $ & #1 /%#-*%( -&)*,+() (!2%&+-'1-''+-/ #" 2-& ##&-) '&%*-,-(#1#"2&+,-*"%(!"-$%' '1)-' !( (!#" '''#-, '1#"-#-'# (!1'-* ,-(' (-11-*# 2-'#-'' *() # ('"--1-0 # '(-*-''%#-('+-# "%##"-'-* ,-( ''%#+%#-)%()#"%##"1&+ )+'-)1'%#+%# ( '1--1,) ''&2-)% "-/%#-+'-)1%&&#-'# (! '1 '# )-:% -)+' (!%:& #-*%%* #2#-7)-:% '1&+ ) '#"-('#-) (%&%!2&+,-+(# &#-'# (!#"( # %&1 && (!1# "-*-&&#$-! (%#-'# (!'-6+-(*-0#"-

PAGE 89

BA &%!-2&+,')%/(() -*#&2 %%1 && (!& ( -#"%#+# & K-'-&-2%# ("-%)#-7-) #1 && (!#"-) '# $+# (11&+ )#"+!"#"'-* ,-(0#"-/%#'1 '#*(2--)#% ',%&&-'#%!-#%(4/"--0#"+!"%(-#/41*" -*42%&2-'0#"-1&+ )*%($(#)+*-) (##"-2&+,-*"%(!-$+-##%*4-''+-'%#+%# ( ''' $&-1,%/%#-2 &+,-'#%!-#%(4%()2%*++, & ((#-!%#-) (##"-/%#-) '# $+# (''#-, '%&&/'1%'-* ,-(#$('#%&&-) (##"-*-&&%()'%#+%#-)%()*() # ( -) (:&%*##-'# (! 1&/,-%'+-,-(#'#"+!"#"-'-* ,-(0#"-'' #-, '+#1 ##-)/ #"% *%& $%#-),$+-##-#"%# ')-' !(-)'-* 1 *% &&1+'-/"-(-1, (! -,-%$ & ##-'# (!/'r&nr !n#-,-%#+-*(#&0#"-/%#-)-& 2-''#-, *%($-*((-*#-)##"-% "-%#-*" &&-+( #"-"-%#-%()*" &&-%-%*"*%%$&-1+, (!/%#-#"+!" #"-/%#-)-& 2-''#-,%() (#%()+#1#"-* -&&*%2 # #-#+( (! (%*&'-): &%#"-,-%#+-*() # ( (! (#" ',%((+# & K-'#"(* &-1*()+*# ( %'#"-,)-1-(-!#%('1--(*"-*,$ (%# (1#"-"-%# (!%()*" &&-+( #'%& &/'#"-#-'#'-* ,-(#$*(#&&-)/ #" (#"-%(!-1:BG(& 4-#"''#-,'/" *"+'() -*# *() # ( (!,-#")'C -0%*&'-)*()+ #+(( ( !#"+!"%#-,-%#+-$%#"D0#" *(1 !+%# ("%'2-(2--'(' 2-%()*%%$& -1*() # ( (!%'-* ,-(1, ,#-,-%#+-##"-%1-,-(# (-)%(!-& #' (&-''#"%(@, (+#-' ) '*+'' ((*() # ( (!*(1 ,%# (/ #"#" '' '#-, '-'-(#-)&%#-

PAGE 90

BB //&r&"-*, &%# (1''#-,'/%')-' !(-)#2 )%,--11 -(#,%((( /" *"#-1,%,+&# #+)-1#-'#' ((-/4'# %# ("-**& *&%) (!%()-''+-*() # ( (!''#-, ')-' !(-)##-'#%' "%&#'-* ,-(' ($#"-11-*# 2-%() ##%&'#-''*() # ('0%'/-&&%', '#+-*() # ('-* ,-('/ #"/ #"+#%(#"'#-''-'-'-(##*&'/--)-2-&-)/" *"% &&/-)#"-''#-,#-1,8 (:&%*-'%#+%# (%()*() # ( (! ('#%(#"-%)-,-%$ & #)-#-, (%# ( %&& (!"-%)-,-%$ & #)-#-, (%# ( ,-'' (#-'# (! -' & -(#,)+&+'#-'# (! ,&-7,)+&+'#-'# (! +#+-)-2-&,-(#/ &&%&&/#"-''#-,#-1, #"-#-'#''+*"%'*-#-'# (!%()#-(' (#-'# (!"-'+**-''1+&)-2-& ,-(#1#"-'-#*&'/ &&%&&/#"+'-#-1,%,+&# #+)-1#-'#'/ #"+#-&*% # (!)%,%! (!#"-'-* ,-(",2-,-(#' (*%#-) (##" '(-/''#-,%&' ,%4-'#"--7* #%# (1-/%#-''+-,--%' &*(#&&-)0#"--$%&&/ (!1 %$-##-%''-'',-(#1'-* ,-( -'('-##"-'--''+-' *& *%) (!%()--''+-() # ( (!'#,-* 1 *%# (' 2-%&& ,-(' ('[[[[[[[' %7 ,+,-' !(-''+-[[[[[[[[[[[[[[[[[[[?' %7 ,+, '#(%2-&-(!#"[[[[[[[[[[[[[[[B (*"-' -* ,-( %,-#-[[[[[[[[[[[[[[> (*"-'C<, & & ,-#-'D -* ,-('-*#%# [[[[[[[[[[[[[[[[[[["+%'-&%#-0< "+&%#-

PAGE 91

B? -(#%# (%%$ & #[[[[[[[[[[[[[[7 %& 0>%) %& &+,-13%#-# &&-&&[[[[[[[[[[[[[[[=A!% &C? (=D #+*#+%&%,-%#%&[[[[[[[[[[[[[[#% (& -''#--&== (1 ( (!& ()-%#%&[[[[[[[[[[[[[&+, (+ ,AA<:A '#(Z()&%#-(%#%&[[[[[[[[[[[[[&+, (+ ,AA<:A 1#-%&%#%&[[[[[[[[[[[[[[[[[[[+(%:n: (!' '#(-%&%#%&[[[[[[[[[[[[[[:n # &-:* + -%&' 3%#-() # ( (!%(!-[ [[[[[[[[[[[[[[[[[[:BG/2&nr !n&+ )/%'+'-)1#-,-%#+-*(#&" '-6+ -)#"-'-* ,-(#$-'-%&-) / #"%=>?7<:>,C<: (D#" *4&%#-7,-,$%(-)+ (!#-'# (! #-,-%#+-' %$2-G0* *+&%# (!/%#-/%'+'-)1#-,-%#+ -*(#&"-/%#-)-& 2''#-,*%($-*((-*#-)##"-%"-%#-*" && -+( #"-"-%#-%()*" &&-%--%*" *%%$&-1+, (!/%#-#"+!"#"-/%#-)-& 2''#-,%() (#%()+#1#"-*-&& *%2 # #-#+( (! (%*&'-):&%#" () # ( (! (#" ',%((-+# & K-'#"(* &-1*()+*# (%'#"-,)-1-(-!#%(' 1--(*!+->:?)*#'% '*"-,%# *1#"-"-%# (!H*& (!''#-,+'-) "-*,$ (%# (1#"-"-%# (!%()*" &&-+( #'%& &/'#"-#-'#'-* ,-(#$*(#&&-)/ #" (#"-%(!-1G#BG(& 4#"-''#-,'0/" *"+'() -*# *() # ( (!,-#")'C -0%*&'-)*()+ #+(( ( !#"+!"%#-,-%#+-$%#"D0#" *(1 !+%# ("%'2-(2--'(' 2-%()*%%$& -1*() # ( (!%'-* ,-(1, ,#-,-%#+-##"-%1-,-(# (-)%(!-& #' (&-''#"%(@, (+#-'

PAGE 92

B@ f& (!+( # 3%#-+# -%# (!+( # 3%#( !+->:? %!%,1#"-3%#-f *+&%# ( '#-, #"%#f(#&'#"-%,&-,-%#+##"-# ,-#"-'-* ,-( '1 '#&%*-) (##"-' '#-,0 # ''#%$ & K-)%#, #-,-%#+-"-'-* ,-( ''++()-)%$+# #' *+,1--(# %&,-#-$ *(1 ( (!/%#-" '/%#-%*#'%'%,-) +,1# -,-%#+-*() # ( (!1#"'-* ,-('#"-#-,-%#+-:*() # (-)/%#-'+ +() (!#"-,-,$%(-:-(*%'-) '-* ,-( '* *&-)#"+!"#"-' '#-,0#"-, %&-(! '#"-)%/(1,#"'-* ,-(0%'**+')+ (!*& (!0%))-)# #0 %'**+')+ (!"-%# (!+ (!#"*& (!*-''0"-%# '*()+*#-)1,#"-'-* ,(##"-I*&)-J*(1 ( (!/%#-O#"' #'#+-1#"-"-%# (!*-'''#" *-''*(# (+-'0*(*-(# *&%-'1 #"-* & () *%&& '"%-)'-* ,-(-%*"#"-,%&-6+ & $ +,'#%# (!1,#"-+#-&% %(), !%# (!#/%)'#"-*-(#%&*-C\-(!%&0<@@ BD "-#%('1-1-(-!1,,--(-!-# *%# *&'#&-''-(-!-# *%)5%*-(# %# *&-'#"+!" (#-%*# (' '#"-#"-,)(%, *-''1*()+*# ("--6+%# ( 1#"-%#-1"-%#*()+*# ( ')-1 (-)%'8

PAGE 93

? *() 4 7 /"--*()M%#-1"-%#*()+*# (0C3D 4M#"-,%&*()+*# 2 #1#"-&%-0C3HC,]DDM%-%(,%&##"-) -*# (1"-%##%('1-0 C,D ^M#-,-%#+-) 11--(*-%*''#"-&%-0CD^7M#" *4(-''1&%-0C,D "-I&%-J-1--(*-) (#"-2% %$&-)-1 ( # (0 ^70 '#"-&%#-7,-,$%(-#"%# -(*%'+&%#-'#"-'-* ,-("-,%&*()+*# 2 #1 #"-&%#-7,-,$%(' %7 ,%#-&<=3H,]/ #"%#" *4(-''0^701 =>?,,C< (D *+,1--(# %&'+1%*-%-%1%7 ,%#-&> ,' ,& 1 -'6+%# (>:#8 *()M<@<@]^C3D '*%($-'--(1,6+%# (>:A0#"-&%!-#"-) 11--(*(#-,-%#+-%*'' #"-&%-0#"-!-%#-#"-%#-1"-%#*()+*# ( )) # (%&&0 #*%($(1--)#"%#0%' #"-#-,-%#+-(#"-' )-1#"-&%-%%* "-'-6+ & $ +,0#"-%#-1"-%# *()+*# ()-*-%'-'"--1-0#%*" -2-%'-* ,-(#%!-##-,-%#+-% )&0#"#-,-%#+-) 11--(*-$-#/--(#"-'-* ,-(%()#"* *+&%# (!/%#-,+'#$-%'&%!%''' $&-#,%7 K-#"-%#-1"-%#*()+*# ( / #"+#'+%'' (!#"-#%!-# #-,-%#+-/2n#"&nr rr"-1 (%&# (1#"-'-* ,-(#-%*"#-,-%# +--6+ & $ +, '#"-*-(#%& *-"--1-0 # '#" '-! (1#"-'-* ,-( #"%#*(#&'#"-&-(!#"1*() # ( (! # ,##"--'#%$& '",-(#1#"-,%&-6+ & $ +, (*-#"-#-'# (!#*&1 '-* ,-(#-,-%#+-*() # ( (!-& -'+(*()+ *#%(*-1'-* ,-("-%# (! C6+%# (>:D C6+%# (>:AD

PAGE 94

?< *& (!0 #/%'(-*-''%#&##"-*"%(!(#-, -%#+-1#"-*(1 ( (!/%#-%()#"*-1#"-'-* ,-(2-'+'# ,&#"+!"$#"#"-"-%#-%()*" &&-+( #'+'-)/ # "#"-''#-,) #%&&-##"/%#-#-,-%#+-/ #" (#"1&+ )-'-2 '0#" -,%&&''-'!% ('#"%#**+%&(! #"-1&+ )) '# $+# (%(-&*%(2%1,#"-#-)#-,-%#+-$'-2-%&)-!--' '-'1# %&'/--*()+*#-)1$#"*& (!%( )"-%# (!#)-#-, (-#"-,'## ,*('-2%# 2-'-6+-(*-#% )&%*" -2-#"-#%!-# #-,-%#+(*-#"-%#-1"-%# *()+*# ( ') -*#&# (%&##"-#-,-%# +-) 11--(*-%*''#"-&%-C&%#-7 ,-,$%(-D0 ( # %&&'-##-,-%#+-'/--' !( 1 %(#&&/-C (#"-*%'-1*& (!D !"-C (#"-*%'-1"-%# (!D#"%(#"-#%!-##-, -%#+-#-7-) #-#"-,%& -6+ & $ +,"-&%!-*,$ (-),%''1#"-# %7 %&*-&&0/%#-0%()*,(-(#'1#") '# $+# (%(-&-6+ -)%&%!-%#-1-(-! -7*"%(!-$,&-,-(#-) ()-# %*" -2-#"-#%!-##-,-%#+/#-:#"-,*+&-$-'*((-*#-)#) #%& !%!-'/--+'-)#-# #"-#-,-%#+-1#"-*(1 ( (!/%#-%()#"-*1#"-'-* ,-(#"+!"+#%'-' 1"-%# (!%()*& (!'-6+-(*-'"-#"-,*+&'+'-)/--$%-:# %()/-*((-*#-)#) #%&!%!-'#"%#"%)%-*) (!#& -%(*-1N
PAGE 95

? #%('1--(*-"-'-2% %$&-'%--'-(#)+-## "-,%&'+*-'%()' (4'C,-#%&*-&& *,(-(#'D0%'/-&&%' ('+&%#'C&%#-7,-,$%(-D "-,*+&-<0+'-)#,( # #"-*(1 ( (!/%#-#-,-%#+-0/%' ('#%&&-)#" +!"(-1#"-%**-''#'&*%#-) %##"-$%'-1#"-# %7 %&*-&&()-#%2 )1%&'--%) (!'#"%#,%"%2-**+-)$ *(#%*#$-#/--(#"-$-%(),-#%&*,(-(#'1# "-*-&&0#"--()1#"-$-/%' '+'-()-)/ #" (#"-2&+,-1#"-*-&&/ #"*##( #"-%)"-,*+&-0/" *"/%' -6+ -)#$(' )-1#"-'-* ,-(0/%',-) 1 1 *+&## ('#%&&' ,+&%#-#-'# (! *() # ('0#"-'-* ,-(/%'-6+ -)#$-/%-) (#"-&%#-7,-,$%(-#"--$ -2-(# (!+# (!1#"-#"-,*+&(##"-*-& && 4-#"%#1#"-1,-&) '*+''-) $-+# (!1#"-#"-,*+&-/ -#"+!"#" -*-&&;' '#(/%'-2-(#+%&& )-* )-)%'#"-(&2 %$&-# (#%*" -2-&%*-, -(#1#"-$--2-(#"+!" # -6+ -)) ',%(#& (!1%*# 2-*,(-(#'1#"-' '#-,"-'-* ,-(+'-)1 *%& $%# (/%'-%-)$1 '#*+## (!#"--()' #1%* & #%#-*(#%*#$-#/--(#"'-* ,-(%()#"--()&%#-('%&&/1#"(' #%&&%# (1#"-$(##"'-* ,-(0%: (*") %,-#-"&-/%') &&-) (# #"-'-* ,-(0%%&&-&/ #"#"&(! #+) (%&%7 '0'#%# (!*-(#--)(#"--()1 #"-'-* ,-(%()#-, (%# (!%#%)-#" -6+%&#P#"-&-(!#"1#"-'-* ,-("-#"-,* +&-/%'#"-( ('-#-)#"+!"#"*-&&;' '#(%() (##"-2 ) (#"-'-* ,-( ()-#%11 7#"-#"-,*+&( #' # (%()-2-(#-(-!#%('1-1,#"-% :1 &&-)2 )##"--()1#"'#(0#"-()1#"-'-* ,-(/%''-%&-)/ #"' & *(-"'-* ,-(/%'#"-('-#%' )-1> "+'#%&&/#"-' & *(-#*+-&&/ (!#">:"+*+-# ,-0#"-'-* ,-(/%' # (-)$-#/--(#"--()&%#-('0/%-)/ #"&% #-7,-,$%(-0%()'-*+-)##"-()&%#-('/ #": (!'

PAGE 96

?= '-2 +'&) '*+''-)0#"('#%&&%# (1#"-#" -,*+&(##"-'-* ,-( -6+ -)%# %&) ',%(#& (!1#"'#(%''-,$& "--,2%&1*,(-(#'+'-)# *()+*#/%#-#"+!"#"-'-* ,-(-2-(#-)%'%#+ %# ('-6+-(*-%' '# *%&/ #" #-'#'-* ,-('"--1-0 #/%')-* )-)#*%& $ %#-#"-"-%# (!%()*& (!# ,-'1 #"-'-* ,-( (%)*() # (3%#'%,-11 -(#*()+*#1#"-,%&-(-! #"%( '% 0A<=3HC,]D%()A3HC,]D0 -'-*# 2-&0#"--1-#-'# (!/ #"% )'-* ,-( -&)'*('-2%# 2-*%& $%# (# ,-' 1#"-,%&-6+ & $ +,/2," r(r rr##"-*,,-(*-,-(#1#"-*& (!*() # ( (! *-''0$#"#"-'-* ,-(%() #"-*() # ( (!/%#-/--%7 ,%#-&G/" "/%'#"-# *%&%,$ -(# #-,-%#+-1#"-, (/" *"#-'# (!**+-) ,+&# #+)-1*" &&-'-##-,-%#+*,$ (%# ('/--+(#)-#-, (-#"-,'#-7-) (#'-6+-(*-1-6+ & $ +,/ #"% #%!-#-()#-,-%#+-1GN
PAGE 97

?> ( # %&&0A, (+#-'1*() # ( (!# ,-/%'#"#%!-#1%*" -2-,-(#1#"-,%& -6+ & $ +,/ #" (#"-'-* ,-(" '#%!-#*() # ( (!# ,-/%'+'-)%'%$%' '1 K (!1#"-"-%#-%()*" &&-+'-)/ #"#"-''# -,1#-'-2-%&*%& $%# ('-6+-(*-'0 #/%'2%& )%#-)#"%##" '& #-)*() # ( (!# -/%''+11 -(##%*" -2-#"-#%!-# #-,-%#+-$+##"%#%(%)) # (%&=, (+#-'/+&) %&&/11+#"-'#%$ & K%# ( &#"+!"#"-'-* ,-(,%$-%##"-#%!-##-,-%# +-0#"--(# -,%''1#"-''#-, ,%(#"--1-0#"-%)) # (%&-(-!-7*"%(!*%("-&#$ (!,-1#"-''#-, ##"-#%!-##-,-%#+-0/" *"%*#'%'%#"-,%& $&%(4-#%+()#"-'-* ,-(/2 rr#"-#%!-##-,-%#+-1, (+#-' %#/" *"# ,-#"-'-##-,-%#+-/%' (*-%'-)#?G%(),% (#% (-)1%(%)) # (%& (+#-'"-'-* ,-(-%*"-)#"#%!-##-,-%#+-1:@0#"-*" &&-)* *+&%# (! /%#-%*" -2-)#"-'-# #-,-%#+-2-% )& #'#%$ & K (!%# #"( # %&'-##-,-%#+-1BG0#"/%#-#-,-%#+''"/(#)#%#-,-%#+&/-#"%(#"-'-##-,-%#+-" '%## $+#-)##"--'('-'-(' # 2 #1#"-*" &&#'-&1()-#% )&&/-#"-

PAGE 98

? r r r r r r r rr *""D% *""D% 1.$ !+->:@%"1#",-2'-,-%#+(% *%&:<-* ,-(F" && (! 1,,-,-%#+-#
PAGE 99

?A "--'* $-)#*&1*& (!#"-'-* ,-(# , (+#-'O "%(!-*" &&-'-##-,-%#+-#?G%()+(1 (+#-'O%() -1,#-'# (! /2/(r rr( # %&*() # ('1#"-'-* ,-(%()* *+&%# (! /%#-%##"-*,,-(*-,-(#1 #"-"-%# (!*-''/%'G0#"-"-%#-/%' ( # %&&'-#%#>G"-"%#-'-##-,-%#+-/%'"-&)1 (+#-'%#/" *"# ,-#"-'-##-,-%#+-/%')-*%'-)#>G%(),% (#% (-)1%( %)) # (%&=, (+#-'##"--()1#"-##%&@ (+#-'1*() # ( (!0#"-'-* ,-( *-#-,-%#+-"%)-%*"-)>G"-"-%#-/% '#"-(#+(-)11#"--$#-, (%# (! #"-1&/1*() # (-)/%#-#"+!"#"-''#-, "-'-* ,-(*-#-,-%#+-/%' ,( #-)1%(%)) # (%&=, (+#-'/"-(#"-()#-,-%#+-1#"-'-* ,-(/%' =@@G" '%(!-1#-,-%#+-C>GN:<0#"-* *+&%# (!/%#-% *" -2-)#"-'-##-,-%#+-2% )&%#/" *" #/%'%&&/-)#'#%$ & K-/" &#"-'-* ,-(*-#-,-%#+(*-%'-)&'(#%$&'#"-(-%%%&&-& ',1 #"-%#-1#-,-%#+(*-%'( '-* ,-(%()"-%#-1,#=, (+#-'1#-'## ,-" '%%&&-& ', '*(' '#-(#/ #" #"--6+%# (1#"-%#-1"-%#*()+*# ( (!#" '%%&&-& ', #/%')-#-, (-)#"%#$-*%+ '-#"-'%,&-%()#"-/%#-+'-) )+ (!#"-*() # ( (! (#" '-'-%*"'#%#-)%# %#-,-%#+-1%$+#GCB
PAGE 100

?B r r r r r r r r r r r rr +D% +D% 1.$ !+->:<%"1#",-2'-,-%#+(% *%&3:<-* ,-(F -%# (!1,G # ,-/+&)$--6+ -)#% '-#"-#-,-%#+-# #"->G"--1-0#"-%%4/%'%&&/-)#+(%#>G1=, (+#-'%()#"(%#>G1%(%)) # (%&< (+#-'##" (##"-"-%# (!$&%(4-#/+&)" %2-%&-%)$--(+# (&%*-%() /+&)*(# (+-,% (#% ( (!#"-% %#-#-,-%# +(#"-*-&&#"+!"+##"--'#1 #"-*() # ( (!*-'' "--'* $-)#*&1"-%# (!#"-'-* ,-(# >G ''+,,% K-)%'8 -#"-%#-#>G%()+(1=, (+#-'O "%(!-"-%#-'-##-,-%#+-#>G%()+(1< (+#-'O%() -1,*() # ( (!'-6+-(*"-#*&'1*& (!%()"-%# (!/-( # %&& )-2-&-)+' (!$#"#"-: <%()3:<, 7-'/ #"-*-(#2 )'1BTN T# '-*,,-()-)#"%##" #*&$-+'-)/ #"#"-, 7-'+'-) (#" '-'-% *"%()#"-*%'-, 7-'/ #" %7 ,%#-&' &%% 2 )-*-(#%!-#" -, 7-'0%$%'-& (-'"+&)$-

PAGE 101

?? )-2-&-)+' (!#"-'%,-,-#")&!%'-'-(#-)" -(#-('+-#"-%,+(#1# ,%()#-,-%#+-#'#%$ & K-#"-*-1#"-'-* -(

PAGE 102

?@ E '*"%#(#)+*-'#/6+%(# #%# 2-*"%%*#'# *'1%'"%&#, 7#+-' '#0 -'+&#'1#"-& )%-#")1-'#1#"--%'+ -,-(#13%#--,-%$ & #1 ,%*#-)'"%&#%2 (! 7#+-'%-'"/(-*( )&0%-1,%(*-:$%'-)1%*#+* #(11&-7 $&-%2-,-(#'0)+$$-)#"-I(-! %# 0J/ &&$-) '*+''-)2nr!"-& )%-#")1-'#1#"--%'+-,-(#13 %#--,-%$ & #1 ,%*#-)'"%&#%2 (! 7#+-'"%'#"-)-' !(%# (1:A" '#-'#+'-'% 1%&& (!"-%)-,-%$ & #'-#+#)-#-, (-#"-/% #-*()+*# 2 #1%(%'"%&#'%,&"-,-%'+-,-(#'1,#" '#-'#%-+'-)#*%&*+&% #-#"-(-:) ,-(' (%&0&%, (%1&/ 1/%#-#"+!"%'-* ,-($%'-)(%*;'&%/ &-%'-(#-#"%##" '-'-%*"/%' *()+*#-) (##"-# ,-0#"--/%'%'' $ & #1%*"%(!(#"-,-#")&! "--()1#"-+#1&/ -/%'&-1#%#%(-&-2%# (/-&&$-&/#"%#1#"-$##,1#"'%,&-)+ (!#" '-'-%*" '#-'#/%'-1,-)#"-&1 ()%*-&%# ( $-#/--(#"--,-%$ & #1% 7%()#"-, 7-';'+'*-# $ & ##, '#+-)%,%! -"--,-%$ & #1%, 7"%' $--(& (4-)##"-2 )*((-*# 2 ##"+!"+#%' %,&-"--7%('-1#"*((-*# ('$-#/--(2 )')-#-, (-'#"-%,+(#1 '+1%*-%-%%()#"-)-#"#/" *" /%#-*%(%11-*#*,%*#-)%'"%&# 7!%( #-, 7#+-'#"%#"%)$--()-2-&-)0%' ) '*+''-) ('-*# (=<0/--'+$5-*#-)##" -,-%$ & ##-'# (!*-)+-%$&-: <'"/'#"--'+&#'1#" '#-'# (!

PAGE 103

@ %$&-:<-'+&#'1#"-& )%-#")-,-%$ & #-'# b b bb b rrb b b rrb b bnb b !"#$%b&'( b b bnb b !"#$%b&'( b rt r b r t r b b r b r 2(f#,-rbf*rft,tr ''(0+-0%()%!-C=D'"/-)#"%#, '# +-)%,%!-'#(!& %11-*#' #"-1%*#+--' '#%(*-1, 7#+-'" ',-%('#" %#1%*#+-, -*"%( *'*%(%&'$+'-)#6+%(# 1#"--11-*#'1, '#+-)%,%!-( 7#+-' "-*-(#%&1-%#+-1#"-"#, 7%'"%%*#+,-*"%( *'1%,-/4)-2-&-) $#"-( 2-' #1& )%C9"%(!0+-0 '' (0%()%(!-#(!%,0
PAGE 104

@< 9"%(!0+-0%() ''(CO+-%()+##&%0<@@D "-%#-1)%,%!-!/#"+()-#"--(-!#"-'"& ) '!2-(-)$#"-*--# -'1#"-, 7#+-"-*--*,& %(*-1 7#+-'*%($---'-(#-)+' (!#"1&&/ (!/-1+(*# (8 C#DMX<#, b(#" '*%'-0C#D '*--*,& %(*-%()0<0%(),%-%%,-#-'$#% (-) 1,*--#-'#'-(*-0 # '%''+,-)#"%##"-% #-1, *:)%,%!'*(#&&-)$#",:2%&+-%()< %'-)(#"-*(*-#'%()1%*#+-,)-&0#"-1 &&/ (!4-%%,-#-' %-%#!2-(#"-*%*4 (!-1,%(*-1%'"%& #, 7#+-'8 f& #8) '' %#-)*--'#% (-(-!#1% & +-0 ,:2%&+-8%%,-#-!2-( (!#"-*--'#% (%#0%() <%%,-#-8%%,-#-!2-( (!#"-*--'#% ( %#b(%)) # (0#"-#-(' &-'#-'' (#"-%2-,-(#*( #&'/"--%()"/1%'#%*%*4 ( # %#-'%()!/'1%! 2-(%2-,-(#*(1 !+%# ( !+-:<'"/'%*(*-#+%& &&+'#%# (1#"-1%*#+-,-*"%( *'1%,-/ 40#"--(-!#"-'"&)'C%() fD0%()#"--11-*#'1%#-1*--%(),:2%&+(%#-1)%,%!-"-" !"-#"C6+%# (:
PAGE 105

@ ,:2%&+-0#"-1%'#-#"-%#-1%**+,+&%# (1f -* *&-$-*,-'0%()#"+'#"1%'#-#"-f& # '-%*"-) #% ((-! nCn+,$1%)& *%# ('D % & #"-'"&) %'#f--%#-C !", : 2%&+-D &/f--%#-C/, : 2%&+-D f#"-'"&) !+-:<%""/ (!(-!"-'"&)'%()#"11-*#'1%#-1f --%(), : 2%&+-(%#-1%,%!%'-)()-#% &-)1-(' (2-'# !%# ('1=A1 &)%2-,-(#'-*# ('14(/( *%*4 (!-1,%(*(& )%0%(1%*#+-,*"%( *':$%'-)-1,%(*'-* 1 *%# (* #(0#-,-)#"-I(-!%# J CD0/%')-2-&-)$ .%5& %) C=D" '%%,-#'%,-%'+-1#"-1%*#+ --' '#%(*-1, 7#+-'0%() -7-''-)$8 11 @? ( < f%f f /"--8f1M '' %#-)f--#% ((-!C (4.H,=D0 f, (M ( ,+, '' %#-)f--#% ((-!1%)-6+ %#*%*4 (!-1,%(*-C (4.H,=D0 <%(),%-*--%%,-#-' (A< /"--8_M#-(' &-'#-''1%'"%&#&%-C (' D 0%() C6+%# (:D

PAGE 106

@= #M#-(' &-'#-(!#"C (%D %'-)(#"-$'-2-)%2-,-(#-1,%(*-1,#"'-=A1 -&)'-*# ('0 .%5& %)C=D/%'%$&-#)-#-, (-%, ( ,+,f 1%)-6+%#-*%*4 (! -,%(*-1#"-, 7#+-'+'-).%5& %)C= D%&'-*,,-()-)%, ( ,+, -6+ -)C, (D12% +'#%11 *&-2-&'=, && ('0 #"--*,,-()-) ( '<<01<, && ('0, ( '<=0%()1=, && ('0, ( '
PAGE 107

@> A nnnn:@"-*() # ( (!1#"-%'"%&#'-* ,-('#%4-'&% *-$-7-# (!**& *-''+-(%&&/%#-%**-'' $&-2 )'1#"-'%,& -" '%**,& '"-)$'%#+%# (! #"-'%,&-%()#"-(&%* (! # (#%(% # !"#0/% #-:1 &&-)*"%,$-3%#'1*-) (# #"-*"%,$-#$+ &)+-''+-" '-''+' #%('1--)#-2-'+1%*-#"%##"/%#' (*(#%*#/ #"3"-(#" '-''+'* *&-) (##"-*"%,$-0 #*%(%**-&-%#, '#+-)%,%!(%'%,&-)) # (%&&0/" &-# '*() # ( (!*-)+-)+*-'% --''+--11-*#0#"-%!!-!%#-'#+*#+'( #&%*-)+()-%('#-''" '+(& 4#"-##,%(#-'#'C'--'-*# ('<%()= D/"--%'%#+%#-)'%,&''+$5-*#-) #%1--K-:#"%/**&(/" *"#"--7%(' (1#" -1K-(/%#-/ &&&%*-'#-''+( #"-%!!-!%#-'4-&-#( # (!1#"-%'"%,#"-%!!-!%#'%* ('-6+-(*-#"%#**+'$-*%+'-1 /%#-$(!+,-) (%()+#1#"-2 )'' ( #"-$ & (!/%#-#-'#C'-*# (<
PAGE 108

@ '+()-('#-''# ''' $&-0"/-2-01# "-%'"% &,#-7-(*-)%,%!-C%' ) '*+''-) ("%#-D "-'#+*#+%&&%-'1+-%2-%'"%&#'%-*(' )--)#"%2-*,&-#-& (#-*((-*#-)2 )'" '(##"-*%'(%*#+ %& #%'',-',%&&*4-#'1% ,% $-*,-#%-)#"+!"+#%'%,&-"-%'"% &,-(*&' (!%(% 2 )/ &&1&-7 / #" (*-%'-)-''+-)+-##"-*,-'' $ & # 1#"-% "-%'"% &,,%$-# /-%4#/ #"'#%()#" '-''+-"-%#'1#"%'"% &,#"%#%-(# ,,-) %#-& %11-*#-)$#" '-''+-,%/-%4-()+ (!#"-*( ) # ( (!*-''$-*%+'-1 '(#%(-+'-,+&' 1 *%# (C'--'-*# (==D #"-1%*#'##"(##"%# # '+'*-# $&-##"--''+-3" &-%'#%# *' # 2--''+-,%*%+'-#"-'--11-*#'0 # #" '-'-%*"-' ( (#"%##"-&(!:#-,--# # 2-**& (!1--''+-*%(*%+'1%# !+-1% &+(#"-%'"% &,%'/-&&(*#"-1 &,1% &'0/%#-*%($-1*-) (# (-/*"%((-&'01 ''+-' (#"-%!!-!%#-0-2-($#/--(#"-%!!-!%#-%()#"-%'"%&# )) # (%&&0#"--''+ K-)/%#-,%#"-($-%## -,# (!#-((-/2 )'3" &-% '#%# *(-!%# 2--''+-,%'#-''#"-%'"% & ,5+'#%'/-&&0#" '(-!%# 2--''+, !"#*&'-#"-'-*"%((-&'%()1 ''+-'0'' $&) -*-&-%# (!#"-, '#+-)%,%!-11-*#'' ,& 1 -)) %!%,1#"-'%,&-$(! &%)-)/ #" (*-%'-)--''+' '"/( ( !+-A:<" ') %!%,'"/'%(-(&%!,-(#1*"%((-&'#"+!"%'%,&%()#"--''+--7-#-)(#"-,$ (*-%'-)-''+-:rn ''-*# ()-'* $-'#"-*-''+'-)#*-%#-# "-*() # (-)'-#1'%,&-' '%,&-#"%#"%)$--()-#-, (-)#,--##"-%'#%( )%)C'--'-*# (=D/%'&%*-) (%,-'"0,-#%& '(%'%#+%# (*"%,$-" -*"%,$-/%'1 &&-)/ #"-(+!" /%#-#*2-#"-'%,&-$%7 ,%#-&((*" "'-%&&/-)#"-/%#-#

PAGE 109

@A "$?(1$C.1" *"*$(*.1" )( !+-A:< %!%,1#"--''+-'7-#-)(#""%((-&'"+!"%%,&-/ #" (*-%'-)--''+-%*"%&&'+1%*-'1#"&&"-& )/%'&%*-) (#"-*"%,$-%()#"-2%*++,+, #"%#/%'%##%*"-)# #/%'#+(-)("-*(#& 4($/%'%)5+'#-)'#"%##"--''+(#"-*"%,$-)-)#(-!%# 2-N (!C< ?N@?' D "-'%,&-/%'%&&/-)#' # (#" '2%*++,1< (+#-'"-'%,&-/%' '& !"#&%! #%#-)#-,2-',-1#"-% $+$$&-' *& (! (!##"-'+1%*-1#"'-* ,-($-1--&-%' (!#"-2%*++,"&&/%' %&&/-)#' #'+$,-!-)1 (+#-'%#(,%&-''+-" '%&&/-)#"-/%## (1 &#%#-#"-)---2 )' (#"'-* ,-(#"%#/%'-2 +'&1 &&-)/ #"% "'%,&-/%'*(' )--)'%#+%#-)%1##" '*-''/%'*,&-#-)%'-*()# ,-C/ #",%! #%# ($-1--&-%' (!#"-

PAGE 110

@B -''+-Dn'-* 1 *'%#+%# (&-2-&'/--#%! -#-)0' (*--%*", 7"%'%+( 6+-2 ) '#+*#+-#"%#,%-("%(*--)+*-#"-'%#+%# ( *%%* #1#"-, 7#+-#/%'1-&#$ #"--'-%*"-'#"%#1* (!%#%!-#'%#+%# (&2-&, !"#*&+)#"--11-*# 2-) 11--(*-' $-#/--(, 7#+-' (-' '# (!, '#+(!-''%() #"--1-,%'' $&*%+'(%)2-#-(#, '#+-)%,%!"-**& *&%) (!%()--''+-*() # ( (!' '#-,C'--'-*# (>=G0#"-*-'')-'* $-)$-&//%'+'-)#"-%# #"-/%#(#"-*-&&"-/%#-/%'* *+&%#-)#" +!"#"-"-,%%4-G1=, (+#-'%()#"-(%#>G1%(%)) # (%&<, (+#-'# ('+--2-("-%# (!

PAGE 111

@? #"+!"+##"-'%,&-C'--'-*# (>>D"-%# (!%)/%'*((-*#-)# #'/'+*-%()#-,-%#+-!%+!-/" &-#"-/%#-/%'* *+&%# (!"-"-%# (!%)/%' /%-)%+()#"-*"%,$-/%&&( ('+&%# ($&% (4-#/%'#"-(&%*-)%+()#" %()#"-#//--'-*+-)+' (!$+(!--*)'"-" -%# (!%)/%''/ #*"-)((*-#"/%#-#-,-%#+(' )-#"-*-&&-%*"-)=@G '/%'# ('+-#"%##"-"-%# (!%) ) )(### (*-%'-#"-/%#-#-,-%#+-#1 %'#%()2-'"##"-*-*# #-,-%#+-$%&%!-,%! ( "-1&&/ (!*-)+-/%'1&&/-)1%&&'%,&'$(!*() # (-)"#+$-'1#"-")%+& *'-#+/--+!-)1% %' ,+*"%''' $&-$+'" (!/%##"+!"#"-,+' (!#"-2&+,-*"%(!-"-*"%,$/%'*((-*#-)##"-")%+& 2&+,-*"%(!-'-#+2 %#"-'-#+$-'C'--'-*# (> =1#"-&+,$ (!'-#+D3%#/%'#"-(+'"-) (##"-$##,1#"-*"%,$-/ #" #"-+-%#1#"-*"%,$*((-*#-)##"-%((+&+'#+$-'/ #"#"2-(#-( '%&&/-),'#1#"-% (#"*"%,$-#$-1*-)+##/%'-2 )-(##"%##"**& *&%) (!%()--''+*() # ( (!*"%,$-/%'1 &&-)/ #"/%#-/"-(%' ,+*"/%#-1 &&-)#"-%((+&+'%'/%' +'"-) (##"-*"%,$-$#"-2&+,-*"%(!7 ,%#-&#"--:6+%#-'1#"--7*-''/%#( #"-%((+&+'/--)% (-) n-7#0#"-2-(###"-%((+&+'/%'*&'-)%()#"-2% &2-*((-*# (!#"-#+$-1,#"2%*++,# (1#"-2%*++,H-''+ K-)% *(# &%(-&C2%*++,#+$-D##"-%((+&+' /%'-(-)"--''+-/%')-*-%'-)$%7 %#-&< (!C' D2, (+#-' ()-#-,2-%(% #"%#/%''# && (#"-''#-,"%)!##-( (##"'%,&-)+ (!#"-#%('1-1,#"-2%*++,*"%,$##"-*() # ( (!*"%,$-" )-*-%'(-''+-/%'"-&)1%7 ,%#-&< (+#-'+(# &#"-,%5 #1#"-

PAGE 112

@@ % $+$$&-'*, (! (##"-%((+&+''+$' )-)"2%&2-##"-2%*++,#+$-/%'*&'-) %()#"-2-(#/%''&/&-(-)" '%&&/-)/%##-*-)-$%*4 (##"-*"%,$-# -&%*-#"-% #"%#"%)5+'#$--(-,2-)"-'#+/%'%&&/-)#' #1%(#"-< (+#-'$-1-#" '1 (%&% -,2%&*-''/%'* ,&-#-)%'-*()# ,-##" (# (#"-*() # ( (!*-)+-0%'%#+%#-)'%,&-" %)$--(-(*&'-) (%(% # !"# *() # ( (!*"%,$-*,&-#-&1 &&-)/ #"/%#-C #"-%#,#-,-%#+->GD %#(,%&-''+-"-2%&2-'##"-#%()$## ,1#"-*() # ( (!*"%,$-"%) $--(*&'-)%()#"-2%&2-*((-*# (!#"-")%+& 2&+,-*"%(!-##"-/%#-'+*/%'-(-) (%&&0#"-*,+#-!%,*(#&& (!#"-*() # ( (!*-)+-/%'#+(-) ("-!%,'#%#-)$)%/ (!/%#-1,#"'+*(##"-2&+,-*"%(!-"/%#-'+*-2%&2-/%'#"-(*&'-)%()#"-2%&2-# #"-$##,1#"-*() # ( (! *"%,$-/%'-(-)"-!%,/%' ('#+*#-)# *(# (+-%()) )'$' !(%& (! #"-")%+& *2&+,-*"%(!-#+'"/%#(##"*"%,$-+(# &#"--''+#%(')+*-0/" *"/%'*((-*#-)##"-#1#"-* "%,$-0-%)%*"%(!-1' C< (!Dn-7#0#"-$##,*"%,$-2%&2-/%'*&'-)% ()#"-/%#-'+*-2%&2---(-) "-")%+& *2&+,-*"%(!--*"%!-)$)%/ (! #' '#($%*4%()'+*4 (! (#"/%#-1,#"-'+*-"'-"-/%#-'+*-2%&2/%'%!% (*&'-)%()#"-$##, *"%,$-2%&2---(-)"-")%+& *2&+,-*"%(! -#"-(*(# (+-)##"-,% ('#%!1#"-*() # ( (!/"-#/+&)+'"/%#(# #"-*"%,$-+(# &#"--''+--%*"-) #"--6+ -),%7 ,+,& #1<00=' C= 0@0A<< (!D1%*"%(!-1 <00' C=0>B0@ (!D0-'*# 2-&"'#(/+&)#"-(-*-)-0 )%/ (!+##"--7*-''/%#-+(# &#"--''+( #"-*"%,$-/%'%' # 2-:' %!% (

PAGE 113

< '**&-/%'--%#-)(*--2-#"--'-*()'C ==KD01&&/ (!%' (-/%2-1,0 1%##%&10?**&-'(*-#"-'-**&-'/-*,&-#-)0#"--''+-/%'-&-%'-) $)%/ (!$%*4#"'#(%'#&0#"-"-%# (!$& %(4-#/%'-,2-)C 1+'-)D%()#"*"%,$-/%'-,# -)"-#-,-%#+-1#"-/%#/%'-*)-) 1#"-*-)+-/%' *,&-#-)%#,#-,-%#+-"-'%,&-/%'(/ *(' )--)*() # (-)

PAGE 114

<< B nnn<@(#" '"%#-0#"-, '#+-*() # ( (!''#-,) -'* $-) ("%#-> -2%&+%#-)1+'(%'"%&#, 7#+-'' (!1 2, 7#+-'/ #"%!!-!%#-'14(/( '#+-)%,%!-'+'*-# $ & #0#",%$5-*# 2-1#" '-'-%*"/%'#-2%&+%#-#"+'-1%(-/**& *--''+-:$%'-), '#+-* () # ( (!''#-,0+' (!%1%*#+,-*"%( *':$%'-)* #(0#"-01 ()+* (!%() 6+%(# 1 (!#"--11-*#'1, '#+)%,%!(, 7#+-'"-*() # (-), 7#+-'/-#-'#-)/ #"#"-+-%2#-'#11%*#+--# -'%()#"--'+&#'/--* ,%-)#+(*() # (-), 7#+-' "--'+&#'-'-(#-)'"/#"%#**& *--''+ -*() # ( (!1, 7#+-' -'+&#' (%**-&-%#-), '#+-)%,%!-%()'# ( !1#"-!%( #-, 7#+-'( *,% '(0#"-& ,-'#(-, 7#+-'%-'"/(#$-' '#%(##--''+()+*-) '#+-)%,%!-"-(-!%# CD0) '*+''-) -2 +'& ("%#-0 ''"/(# $-%+'-1+&%%,-#-1)-#-*# (!%%(!-1, #+-)%,%!(, 7#+-' %'-)(#"--'+&#'-'-(#-)0**& *--''+ -*() # ( (!1, 7#+-'0 1&&/-)$+-%2-#-'# (!11%*#+-%%,-#-'/ #"#"-,% 1,#"$%' '1, (!*,$ (-)-1,%(*-:$%'-)'-* 1 *%# (%()#-'# (!* #%1 -2%&+%# (!#"--11-*#'1, '#+-)%,%!(, 7#+ -'%'/-&&%'#"-2-%&&-' '#%(*-# 1%*#+" '*"%#-)-%&'/ #"#"-+'-1#"-(-/**& *& %) (!%()--''+*() # ( (!''#-,) '*+''-) ("%#->%&(!/ #"%+-%2-:$%'-)1%*#+-

PAGE 115

< -1,%(*-:$%'-)* #(0#"-01#"-*() # ( (!%()'+$'-6+-(#-2%&+%# (1 '#+-)%,%!-(, 7#+-'*(#% ( (!%!!-!%#-' 14(/('# (!-1,%(*-&/0%)-'* # ( '2 )-)1#"-,%#%&'% (),-#")&! -'+'-)01&&/-)$ #"-**& *--''+-#*&+'-)"-1 *() # (-)%()+(*() # (-) 7#+-' '*,%-)(%)) # (##"-(-!% # 0#"-4-+-%2-1%*#+%%,-#-'#"%#/--,( #-) (*&+)-*--# -'0-' & -(#,)+&+'0#-(' &'#-(!#"01%*#+--(-!& #0%()) '' %#-)*-'#% (-(-!& # "--!%( #-, 7#+-'/--)-2-&-)0+' (!#"-,#"))-'* $-) ('-*# ( =<0%()+'-)"-'-*(' '#-)1*+'"-)!%( # -1,-! %#"%#"%''"/( #-(# %&1'# (!"-#/& ,-'#(-, 7#+'/--4(/(#$-" !"&-' '#%(## '# (!"-+'-1'-&-*# (!!%( #-%()& ,-'#(-, 7#+-'12% (!!%)%# ( /%'#-('+-#"%##"-, 7#+-'#-'#-)/--1) 11 --(#%!!-!%#-#-0-,-%$ & #0%() #"-2&+,-# *-# -'"--'+&# (!!%)%# ('%-'"/( (%$&-B:<", 7#+-'%(!-)1,/"%#*+&)$-)-'* $-)%'1 ( -0+( 1,&:!%)-)%()1 (-0)-('-: !%)-)#*%'-0+( 1,&:!%)-)%()*%'-0!%: !%)-)%$&-B:'"/'#"%$&-B:< '#1%)%# ('1#"-%( #-%() ,-'#(7#+-' -*-(#%#%&%'' (!-%*" -2K-2KC,,D :<:<:=3:<3:< <@<<<<< <@B>@>B@>A@B@A @?@?>?<@? >BAA>A@=>?=== < A<==<@BBBA@A B===?>?>?

PAGE 116

<= 2&+,-# *-# -'1#"-, 7#+-'+'-)%*"--''+-%()#-,-%#+*,$ (%# (0#"--'%,&-'1-%*", 7/---%)b(%)) # (0#"--+(*() # (-) '-* ,-('1-%*", 7#+-/---%-) %$&-B: '#1#"-&+,-# *-# -'1#"%( #-%() ,-'#(7#+-' 7#+-# -' :f< :< := 3:f< 3:< '"%&#f(#-(#CTD AA= A? <> A A= -* 1 *%2 #1'"%&# <= <= <= <= <= +&4-* 1 *%2 # => =B> >> = > > "--# *%&%7-* 1 %2 # >> >B= =? ==? )'CTD > > > > >= )' ( (-%& !!-!%#-CTD
@ > $'$-)'"%&#CTD = = <= << 11-*# 2-'"%&#CTD A= > >B = = +'##'"%&#%# A A < B ? +%*--%C,H4!D == >< >@ >@ A< "--# *%& &, *4(-''0, *(' <@@ <=> @@ << @ "-+-%2-b#-'#/%'+'-)#-1,-' & -(#)+&+'C D0f-f,& %(*-0%()#-(!#"#-'#'C+##&%%()+-0 <@@>O6+-0-#%&<@@BO-)/ *40 <@@?D1,/" *"#"-1&&/ (!-# -'/--)-#, (-)0#-(' &-'#-(!#"0-' & -(# ,)+&+'01%*#+--(-!& #CD0) '' %#-)*-'#% (-(-!& #CfD0%() *---# -'' (!#"-'-, 7#+--# -'% ()#"-1%*#+-,-*"%( *':$%'-) (-!%# 1%*#+--1,%(*-* #()-2-& -)%##"-( 2-' #1& )%0#"-11-*#'1, '#+-)%,%!-(#"-1%*#+--' '#%( *-1#"-, 7#+-'/--*%&*+&%#-)

PAGE 117

<> <%rr" !5, .rnr+%! r(#"-1&&/ (!0#"--11-*#'1, '#+-)%,%!-( #"-1%*#+--' '#%(*-1 7#+-'%--2%&+%#-)%$&-B:='"/'%'+,,% 1#"-+-%2-1%*#+-# -'1#"-, 7#+-'#-'#-)"-1*( ) # (-), 7#+-' '&/-1%&& !%( #-, 7#+-'0%'-7-*#-) !+-'B:<0B:0 B:=0%()B:>'"/%*,% '( $-#/--(#"-*"%(!-' (1*() # (-)%()+(*( ) # (-), 7#+-'0#-'# (!-''+-' %()#-,-%#+-' &%&0 !+-'B:<0B:0B :=0%()B:>'"/#"-%# 1#"*() # (-)2-'+'+(*() # (-)1%&&, 7#+'0-''+-0%()#-,-%#+*() # ('#-'#-)"-!%( #-, 7#+-'C:<0: <0%():=D%&&'"/-)% )-*-%'(/ #"**& *--''+-*() # ( (!0/"--%'#"-& ,-'#(-, 7#+-' C3:<%()3:G-'+&#-) ( #"--7-*#-)) (#"-1#"-:<, 7#+-(*-0$%'-)(#"-'-& #-) -'+&#'0 #%-%'#"%# (%)) # (##"-%& *% # (1-''+-0-&-2%#-)*() # ( (! #-,-%#+-',%$--6+ -)#)+*-%*(' '#-( #-'('(*() # (-), 7#+-'0 %')-#-, (-)$#"--(-!%# %%,-#-0
PAGE 118

< *()H +(*() :::::::::: ?@==@B@==@B?<=>B@B=>@=A@<@<>>A?@<<=>@BB<<==<<@@?<=@>@?A<<<=B C4.H,=D <<?>?BB=?>A>?B?=>@>?=>>B=? < C@:BAA:B>?:B@<@:BA<=:B<=:A?B:B@<@:B=?<:BB:B<>:A@<@:B<<:A==:A@=?:B<>:A@<@:B ,:2%&+AB>=>>A % &+#% ( C<:AD B=>=@>=>?=?<><@=@<@=<>>?<@<<=>@==?=?>?=>A@ --,& %(*-%# <'-*()' C?@> @>?BA <<<@ @@>AA@ <>??@ < -' & -(# )+&+'0 C%D A=?B << ?=?ABB?>@>A?A?AB?>@A@?A?ABAB@> <= ?A?BA?B=@?@?=?A? %$&-B:=+,,%1 7#+--# -'1() # (-)%()(*() # (-)%,&-'%#%& + :< :<:= 3:< 3:< r2#2r2A :< :<:= 3:< r2#2r2A :< :<:= 3:< r2#?r2A :< :<:= 3:< r2#2r/?A :< :<:= 3:< 3:<

PAGE 119


PAGE 120


PAGE 121


PAGE 122

<@ )*rr)r)+0"(()+%$!%(rr r r r r r r r r r r)7?)7?:&?:&?:&?r). $0$0 ;$0$0 )*rr)r)+0"(()+%$!%(rr r r r r r r r r r r)7?)7?:&?:&?:&?&' !+-B:>/%"'*# (!(-!%# %&+'1 7#+-'() # (-)%# *& *--''+-'1:<' %()%-,-%#+1>GD'% ,% '(1(-!%# %&+-'-#/--(#"-() # (-) 7#+-'%() #"-(*() # (-) 7#+-'%()D"/'#"--*-(# %!-1(-!%# -#% (-)1#-#"7#+-3%'() # (-)

PAGE 123

<< "%#-<( (#)+*# (#) 11--(#,-*"%( ',' 1, '#+-)%,%!-%()-2 +' -'-%*"/%'-'-(#-) ("%#-"-,%#%&' %(),-#")&! -'+'-)%-&*%#-) ("%#-="%#->)-'* $-'#"--6+ ,-(#+' -))+ (!#" '5-*#"%#*(#% ('#"--,-%$ & #-'+&#'%'/-&&%'#"-" #:, 7%'"%%*#+-,-*"%( *' ) '*+'' (("%#-A0#"-'-* ,-(*() # ( ( !*-)+-/%') '*+''-) (%&&0 #" '*"%#-'#%#-'#"--'+&#'1#"-5-*#%() -*,,-()%# ('11+#+--'-%*"G-'+&#' (, '#+-)% ,%!-%##-('#"%#%-*(' '#-(#/ #" -7-*#-)$-"%2 ,-'#(-, 7#+-'/ #"2-( 1 -&)-1,%(*-#%*4-*)' '"/-)& ##&-(, '#+-)%,%!-"--! %! %( #-, 7#+-'0/" *"%-4(/(# -7" $ #, '#+-)%,%!-/ #"+##"--'-(*-1%(# :'# (!%!-(#'0'"/-), '#+)%,%!"-(-!%# CD*%($-+'-)#-2%&+%#-#"-11-*#'1, '#+-)%,%!-0 ()--()-(#1#"-*() # ( (!*-)+-' (!% *(' '#-(#1%,-/41-2%&+%# (! #"-)-# ,-(#%&-11-*#'1, '#+-)%,%!-0#"--11 -*#'12% +'*() # ( (!*-)+-' *%(%&'$--2%&+%#-),-#"+!"& &%&0 *() # ( (!, 7#+-'$**& (!-''+-'*%($-)(-/ #"/ #"+##"-+'-1 #-'# (!1-2%&+%# ( "-'--'+&#''"/#"%##"-+'-1**& *--' '+-*() # ( (!1, 7#+-' %**-&-%#-'#"-, '#+-)%,%!()+*-) (&%$%# 7#+-'+#"--'-%*" (--)-)#)-#-, (-#"-%,+(#1*() # ( (!(--) -)# ()+*-)%,%!(% I&%$%#J'%,&-#"%#/+&)*(' '#-(#&-) *# #"--1,%(*-1%I1 -&)J'%,&-

PAGE 124

<<< <2nnr"-(-/**& *&%) (!%()--''+-*() # ( (!''#-,#"%#/%')-'* $-) (#" '%(*%#-),%(+'-1+&*"%%*#'# *'C -0#"-1&+ )+# (!$%)%()#"#-,-%#+-*(#&''#-,1#"-'%,&-D/-20#" '''#-,/%')-' !(-)#*% +#,%('' $&-#-'#'%()*+&)$-!-%#&' ,& 1 -) 1 #/%'(&#$-+'-)1**& --''+-*() # ( (!' ,& 1 -)2-' (, -%(#(&1#" '#%'4/+&)(# -6+ -#"--7#-(%&&%) (!1%,-' ,&-0'-%& %$&-*(#% (-%$&-#/ #"'#%() ,)-%#-&" !"' # 2-%()(-!%# 2--''+-'0' &%#%(%'"%&#-''+-%! (! 2-''-&0/ #"(-*()+ ##"+!"#"-$%'-%()(-# "+!"#"-& )#%&&/1/%#%''%!-/+&)$-'+11 -(#"-'-*()+ #'*+&) $-%##%*"-)#%1&+ )) '# $+# ( ''#-,' &%##"-(-)-'* $-) ("%#->/ #"%-''+-#%(')+*(& (-/ #" #"-#%##%*",-(##,-%'+-#"--''+-/ #" (# "-*(#% (#*+&)$-'' $&-#'"#-(#"-*() # ( (!# ,-)%,%# *%&&+' (!%' ,& 1 -) *(#% (-'+*"%'#" '%'/-&&%'%'& !"#&%&#-)1&+ )) '# $+# (''#-,C -0&%!&+,$ (!%()%,-'-* %& K-)2&+,-*"%(!-D '/+&)%&&/%-)+*# ( ( '-#+# ,-0%' #/+&)$-'' $&-#'%#+%#-#"'%,&(#"-*(#% (-%()(#"%2-# #%('1#"-''#-,,%"%2-#"-%$ & ##,% (#% (%" !"-1-6+-(*)+ (! *() # ( (!/" &-,% (#% ( (!%'#%$&-**& *' (/%2-1,$+' (!#"-',) 1 *%# (' 11--(#*() # ( (!%%,-#-', !"#$-+'-)%'/-&&#/+&)$'' $&-#+'-(-!%# 2---''+-')+ (!#"*() # ( (!*-'' (%' ,& 1 -) *(#% (-/ #"#"-'-4 ()'1%%,-#-' # ''' $&-#"%#' ,& 1 -)*() # ( (!*-)+ -'-6+ (!-2-(&-''-6+ ,-(# ,%/4%'/-&&'#%# *-''+-*() # ( (!' '#-, '/#" (2-'# !%# (1 "&) (!%'%#+%#-)'%,&(#"-%' # 2%(-!%# 2---''+--(2 (,-(#

PAGE 125

<< / && ()+*-%,-%'+%$&-%,+(#1)%,%!-*(' '#-( #&0#"-(#"-*() # ( (!''#-, *%($--)+*-)#%(% # !"#*(#% (-0',-#+$ (!0%()%(% +,+#"--'-%*" / #"'-#+'& 4-#"-'-/+&)$--6+ -)#)-#-, (1%(%**-#%$&-%,+(#1 *() # ( (!*+&)$-,%'':)+*-)*(' '#-(#&

PAGE 126

<<= n )%,'(03 r 0" )) # (n-/r48."(3 &Z('0<@BA &%,00n-,+ 0%()(0n%K% %(0%() *(-&& r ( 2-' #1-7%'%#& %'0<@@? &:/% &, 0%()--&2%&+%# (13%#%,%!-1'"%&#(*-#7#+-'' (!#"-(2 (,-(#%&() # ( (!'#,CD &A<0>:>>#%+&0 ((-'#%0<@@ ,*%(''* %# (1#%#!"/%%()%('# %# (11 %&'CD r!"#$%&$'()* +, 0%#F-#")'1%,& (!%()-'# (! 3%'" (!#(00+!+'#<@?A ,*%(n%# (%&#%()%)('# #+#-CnD -r*.,#(!* 3%'" (!#(00<@B? --0%()."('#(0. 0-*()) # (n-/r48 *%/: &&0(*<@@ ''(006+-0%()%!-2%&+%# (1 3%#-%,%!-' (!# 7 '"%&#%*#+--*"%( *' / &B=0>>:>A0= +##&%03%()6++0r!n )r 1n %('#%# (-'-%*"-*)<>>0%('#%# ( -'-%*"%)0n%# (%&-'-%*"+(* &3%'" (!# (00 %-(#-03%()#-"-('(-,-%$ & #-' # (! (#"%7 %&-&& 2/ &@0n<0=:@0<@?A \-(!%&0r '#(8/ (H*%/: &&0<@@B

PAGE 127

<<> "+$%(-00%!-0%().+''-&,%( 0+3r 1)!r +, %--'-(#-)%##"-?#"((+%&%('#%# ( -'-%*"%) --# (!3%'" (!#(0 &%(#K0.%()n-/*,$ 3r 41 %('#%# (-'-%*"-*)<<0n%# (%&-'-%*"+(* &3% '" (!#(00<@@=% +# '030 ('&-0%().' & #%#-! !"/%-'-%*" !%, (%&-#:=0n%# (%&-'-%*" +(* &3%'" (!#(0 0<@@=$ +# '030#+:%) (-0.%((%(0%() .(-' 03r, %('#%# (-'-%*"-*)<=A0 %('#%# (-'-%*"%)0n%# (%&-'-%*" +(* &03%'" (!#(00 <@@ %&-0. 0+2 0 !"#") # (n-/r48)) '(:3-'&+$& '" (!,%(0<@@> ,,0."--*"%( ','1'"%&## (!1 ,!!-!%#-+1%*-' &>=0<@<: =#%+&0 ((-'#%0<@B> %&& )%00-'( *40%()%(0+#") # (n-/r48."(3 &Z('0(*0<@@ *4'0 + n%# (%&-%# 2!"/% -'-%*"!%,CnD(#"-' '1 !"/%%*# *-

PAGE 128

<< .+2 (%&&0 + n-/r48."(3 &-Z ('0(*0<@?= %()"%&0 r!( )r n%# (%&'"%&#%2-,-(#''* %# (CnD+%& # ,2-,-(#+$& *%# (<<@0-*-,$-<@@ %()"%&0 1r ( r) %('#%# (-'-%*"-*)<>>0%('#%# ( -'-%*"%)0n%# (%&-'-%*"+(* &3%'" (!# (00<<>:<>0<@@> %()"%&003+$&)0%()$-#'3%#%,%!-#'"%-&%'8%''# -' &?0 >:AB#%+&0 ((-'#%0<@?@ %()"%&0%() *4%)'-,%#+-% &+1'"%-&%'1,# (!8 %''# -' &B0<:<=#%+&0 ((-'#%0< -((-)03 6!1 n%# (%& ,''* %# (0+&&-# (=0<@?> !!+()+0%()$-#' r!(r&&& )n n%# (%&-(#-1'"%&#-*"(&!CnD -#??:0<@?? ,0r0:.--0%()n ##&-%# !+-"%% *#K%# (1'"%&#(*-#-' (! '*-&%'# #%()(# (++,%,%!-"/ &AA0:A@0<@@B ##,%(0 1& + %('#%# (-'-%*"-*)?>=0%('#%# (-'-%*" %)0n%# (%&-'-%*"+(* &3%'" (!#(00 <@?% ##,%(0 &+ 4 0 n%# (%&-%# 2!"/%-'-%*"!%,Cn D-# >A0%('#%# (-'-%*"%)0n%# (%&-'-% *"+(* &3%'" (!#(0 0<@?$ %&& *400.+&)0"%##%*"%5--0 -! ,%()0.%,-'0%() /( +)0 r %--'-(#-)%##"-%('#%# ( -'-%*"%)--# (!3%'" (!#(00= %'%)00 ''(0&:,% 0%()&C (-''D(%&' '1-,-%$ & # %()&+ )&/ ('"%&# 7-' r07r08 /0 0

PAGE 129

<
:=A#%+&0 ((-'#%0<@? n%# (%&-(#-1'"%&#-*"(&!CnD + +$+(( 2-' #0&%$%,%0<@@A n+4+(%0 02" 9 + +r *#%&) ''-#%# (0( 2-' #1& )%0% (-'2 &&-0< n+4+(%006+-0 %0%() ''(2 %&+%# (1%()#"&+,-# *-# -'%' #%1#"--' !(%( )**-#%(*-1+-%27#+-' / &B0 =?:AA0< %4-0.0%()"%%$-" 0 r %('#%# (-'-%*"-*) <<0%('#%# (-'-%*"%)0n%# (%&-'-% *"+(* &3%'" (!#(0 0<@?B *-0.-&%# ('" 1!!-!%#-"%%*#'# '##"-11-*#13%#-( #+, (+'%2 (! 7#+-' r03* (r 7r8r #.: 00<@? $-#'00%()"%&0/(0--0%( )3-((-) + 0-*()) # (n%# (%&'"%&# %2-,-(#''* %# (CnD-'-%*"%())+*%# ( +()%# (0%("%,0 <@@A 6+-0%()3+##&%"--2-&,-(#1%%'+-,-(#%()(%&' ''#-,# **+%#-&-#-, (-'"%&#(*-#--# -'' (!#"-() -*#-(' &)/ &A<0 =>:==0<@@ 6+-003+##&%0+#"0 %03 *4 '(0%()) 0 r!)5 (%&-#1#"-& )%-%#,-(#1%(' #%# (0( 2-' #1 & )%0% (-'2 &&-0+!+'#<@@B 6+-0099"%(!0%()%(4%-#-, (%# ( 1%*4/#"%#-%%,-#-'1 '"%&# 7#+-'' (!#"-+-%2-() -*#-(' (-'#CD / 0&A?0>>:>==0<@@@ *##0.n)"-' (%() '$() (!-*"%( ','1 '"%&#'-) ( !"/% ('#+*# (%()% (#-(%(*&>B0<@:>? ((-%& '0 ((-'#%<@B?

PAGE 130

<=0 n%# (%&-'-%*"+(* &03%'" (!#(00<@@> "-&-(0 r0& r !"/%-'-%*"%)0+&&-# (<@3%'" (!#( 0<@? +(( *& 110%()#(# :'# (!)) # 2-' ('"%&#(*-#-8#%#-:1: #"-:#-# &<0A:@=#%+&0 ((-'#%0<@? +(( *& 110%()# 6& n%# (%&-%# 2!"/%-'-%*"!%,Cn D-#B>0 %('#%# (-'-%*"%)0n%# (%&-'-%*" +(* &3%'" (!#(00 <@?> 9"%(!0906+-0%() ''( 015 2n) %('#%# (-'-%*"-*)n<#%+&0 ((-'#%0<

PAGE 131

<0<@B?0 (-(# (0n-/.-'-(-,(#" &%#-" '1%, &,2-)#*-(#%&& )%/"--"!-/+(*,&-# (!" !" '*"&0"--(&&-) (#"-( 2-' #1& )%/" --"--*2-)" '%*"-&1 -(*( 2 &(! (-(! (<-*(# (+-) '-)+*%# ($-(&& (! (#"* 2 &%()*%'#%&-(! (-(!!%)+%#-!%,%## "-( 2-' #1& )%+()-#") -*# (15( ''(+ (!" '!%)+ %#-*%--"-'#+) -)%'"%&#,%#%&' %()#%('#%# (-(! (-(!


Permanent Link: http://ufdc.ufl.edu/UFE0012162/00001

Material Information

Title: Evaluation of Cyclic Pore Pressure Induced Moisture Damage in Asphalt Pavement
Physical Description: Mixed Material
Copyright Date: 2008

Record Information

Source Institution: University of Florida
Holding Location: University of Florida
Rights Management: All rights reserved by the source institution and holding location.
System ID: UFE0012162:00001

Permanent Link: http://ufdc.ufl.edu/UFE0012162/00001

Material Information

Title: Evaluation of Cyclic Pore Pressure Induced Moisture Damage in Asphalt Pavement
Physical Description: Mixed Material
Copyright Date: 2008

Record Information

Source Institution: University of Florida
Holding Location: University of Florida
Rights Management: All rights reserved by the source institution and holding location.
System ID: UFE0012162:00001


This item has the following downloads:


Full Text












EVALUATION OF CYCLIC PORE PRESSURE INDUCED MOISTURE DAMAGE
IN ASPHALT PAVEMENT















By

TAIT K. KARLSON


A THESIS PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

UNIVERSITY OF FLORIDA


2005






























Copyright 2005

by

Tait K. Karlson
































This document is dedicated to James Ryan Howell, engineer and friend.















ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Bjorn Birgisson, for all of his guidance and

supervision as well as the opportunity to continue my education. I would also like to

thank my committee, Dr. Reynaldo Roque and Dr. Scott Washburn, for their time,

knowledge, and ideas that they have so generously passed on to me. I would like to

thank the Florida Department of Transportation for its support, the use of its equipment,

and the help of its engineers and technicians.

A great deal of gratitude goes to Mr. George Lopp whose expertise kept the

laboratory operational in spite of us graduate students. I would like to thank Eli Esquivel

who drew my attention to this field of engineering. Special thanks go to Jeff Frank,

Tipakom Samarmrak, Jagannatha Katkuri, Minh Le, and Adam Jajliardo whose efforts

and friendships made it possible for me to complete my research. I also wish to thank

everyone both formerly and currently in the Materials Group at the University of Florida

whose friendship and help made my experience there something I will always remember:

Zhanwu Cui, Claude Villiers, Hong-Joong Kim, Sungho Kim, Jaeseung Kim, Erkan

Ekingen, Boonchai Sangpetngam, Daniel D. Darku, Booil Kim, Chote Soranakom, Marc

Novak, Sylvester Asiamah, Linh Viet Pham, Michael P. Wagoner, Oscar F. Garcia, and

D.J. Swann.









I would like to thank my parents who have always given the support and parental

nudge I needed. Finally, I would like to thank my beautiful wife, Cynthia, whose love,

devotion, and runs to Wendy's kept me going through the long hours of research.
















TABLE OF CONTENTS

page

A C K N O W L E D G M E N T S ................................................................................................. iv

LIST OF TABLES ................ .............................................. ........ ix

LIST OF FIGURES ............................................... x

ABSTRACT ........ .............. ............. .. ...... .......... .......... xii

CHAPTER

1 IN T R O D U C T IO N ..................... .................................... .... .......... .. ............

1.1 Problem Statem ent and Background................................................ .............. 1
1.2 O objectives and Scope ..................................................... ... .. ........... 2
1.3 R research A approach ............... ............... .... ..... .............. .... ..... .......... .. 2

2 L IT E R A T U R E R E V IE W ..................................................................... .....................4

2.1 Adhesion and Stripping ............................... .......... ............ ............... 4
2.1.1 Chemistry of the Asphalt-Aggregate Bond ............................................... 5
2.1.2 A ggregate P roperties...................................................................................8
2.2 O their C ausative Factors......................................... .... .................................... 9
2.2.1 Type and U se of M ix ..................................................................... 10
2.2.2 Asphalt Characteristics ................................ ........... .............. .... 11
2.2.3 Construction Practice ........... .. ......... ............................. 13
2.3 M mechanism s of Stripping ......... .................................... .......................... 15
2.3.1 Detachment .................. ......... ................. 15
2 .3 .2 D isplacem ent ......................... .......... ............................... ... .... .. .. 16
2.3.3 Spontaneous Em ulsification ........................................ ....................... 16
2.3.4 Pore Pressure .............................................................................. 17
2.3.5 H ydraulic Scouring ....................................................................... 19
2.4 Anti-Stripping Additives.................................. ......... ................... 19
2 .4 .1 L iquid A additives ............................... ............................ ..... ............20
2.4.2 Lim e A additives ..................... ............... ..... ............... ....... ...... 21
2.5 Moisture Susceptibility Tests and Conditioning Systems ....................................22
2.5.1 Qualitative or Subjective Tests ....... ........ ........... ............... 23
2.5.1.1 Boiling W ater Test.................. .................................... ... ............... 23
2.5.1.2 Static-Immersion Test (AASHTO T-182, 1986) ...........................23









2.5.2 Quantitative Strength Tests....................................... .......................... 24
2 .5.2 .1 L ottm an T est .................. ....................................... .. ................ .. 24
2.5.2.2 Tunnicliff and Root Method .................................... ..................25
2.5.2.3 Modified Lottman Test (AASHTO T-283)......................................25
2.5.2.4 Immersion-Compression Test (AASHTO T-165) ...........................26
2 .5.2 .5 O their tests ........................................ ... ... .... ...... ................ 26
2.5.3 Mixture Performance Testing for the Evaluation of Moisture Damage .........28
2.5.4 Other Developments of Interest................................... ...............30
2.6 C conclusions ............................................. 31

3 MATERIALS AND METHODOLOGY..................... .... ......................... 33

3 .1 M materials ................................................................3 3
3.1.1 Limestone .......... .. ................ ...............33
3 .1 .2 G ran ite ................................................................3 4
3 .1.3 L iquid A asphalt ............................................................36
3.2 Methodology ............... ......... ................. 36
3.2.1 Sample Preparation ..... ............. ...... ....... ........36
3.2.2 Determining if a Sample Is Useable ........................................ .....37
3 .2 .3 S am p le T e stin g ......................................................................................... 3 9

4 PROPOSED CONDITIONING SYSTEM ........................... ........ 41

4 .1 B a c k g ro u n d ............. .. ............... ................. ..................................................... 4 1
4 .2 D design C on sideration s ....................................................................................... 4 3
4 .3 C construction and D design ................. .... ........... ........ ...............................48
4.3.1 Cyclic Loading and Pore Pressure Conditioning System Design................49
4.3.1.1 Design parameters determination ........................................... 49
4.3.1.2 Piston assembly design ................................... ..... ............... 53
4.3.1.3 Top and base plate design ............ .................. ...............56
4.3.1.4 Strut design .............. ........ ............. .............. .... ............ 59
4.3.1.5 End platen design............. .. ......... ...........63
4.3.1.6 Confining cylinder design................................. ..... ............... 65
4.3.1.7 Confining ring design ....................................... ...... ..... .. ...... .. 67
4.3.1.8 Radial LVDT holder design......................................... ............... 67
4.3.1.9 Seal selection and placement ........................................ ............... 68
4.3.1.10 Instrum entation ports ................................................... ............... 70
4.3.1.11 Component tolerance specification....................................71
4.3.2 Fluid Distribution System .................................................. ...............73
4.3.3 Water Temperature Conditioning Systems....................................76
4.4 Targeted Testing ....................... ........... .. ........... ............. 77
4.5 Tem perature C control System .................................................... ............... ... 78
4.5.1 Specimen Set-up for Temperature Calibration ........................................ 80
4.5.2 Method of Cooling and Heating Calibration ..........................................83
4.5.3 Cooling Calibration R esults........................................................... 84
4.5.4 Heating Calibration Results ................. ....... ..................86









5 ASPHALT MIXTURE CHARACTERISTICS ............... ...... ........................89

5.1 P erm ability ....................................................................................................... 89
5.2 Hot-M ix Asphalt Fracture M mechanics ........................... ................................... 90

6 SPECIM EN CONDITIONING ............................................................................94

6 .1 P rocedu re O v erview ....................................................................... ....................94
6.2 Sam ple C conditioning ....................................... .. .. ............ .........95

7 RESULTS AND CONCLUSIONS...................... ...... ........................... 101

7.1 Overview ................. ... ....................................101
7.2 Evaluation of Cyclic Pore Pressure Induced Moisture Damage Using the Energy
R a tio .............. ..... .......... ........................................................................1 0 4
7 .3 S u m m a ry .............. ..... ............ ................. ............................................... 1 0 4
7.4 C onclu sions ............................................ 110
7.5 Recommendations......................... ............... 111

LIST OF REFERENCES ........................ ...................113

BIOGRAPHICAL SKETCH ................ ........ ........ ........118
































v111
















LIST OF TABLES


Table page

3-1. Gradations for the Limestone Mixtures........ ................ ...............34

3-2. Conversion of an Fl Limestone Mix to an Fl Granite Mix.....................................35

4-1. N itrile O -ring Schedule. .................................................................... ...................69

5-1. Results of the Florida Method Permeability Test.....................................................90

7-1. List of Gradations for the Granite and Limestone Mixtures. .................................. 102

7-2. List of the Volumetric Properties of the Granite and Limestone Mixtures..............103

7-3. Summary of Mixture Properties for Conditioned and Unconditioned Samples.......105
















LIST OF FIGURES


Figure page

2-1. Illustration of the Surface Energy Theory of Adhesion. .............................................7

2-2. Illustration of Stripping by Detachment. ........................................ ............... 16

2-3. Illustration of the Effects of Pore Pressures on the Effective Stresses....................18

2-4. Illustration of Stripping by Hydraulic Scouring. ................. .............................. 19

4-1. Schematic of the Cyclic Loading and Pore Pressure Conditioning System
C o m p o n en ts ........................................................................ 4 8

4-2. Cut-away of the Loading and Conditioning Triaxial Cell-Front View ................51

4-3. Cut-away of the Loading and Conditioning Triaxial Cell-Rotated 450 from Front
V iew ........................................................................52

4-4. D etail of the Piston A ssem bly. ............................................................................. 55

4-5. Detail of the Connection of the Confining Ring to the Top Plate. ...........................59

4-6. Detail of the Connection of the Strut to the Top Plate. .................. ... ............ 60

4-7. Schematic of the Fluid Distribution System.......................... ..... .... ........... 73

4-8. Diagram of the Water Circulation System that Controls the Sample Temperature. ..79

4-9. Graph of the Time vs. Temperature in a Typical GA-C1 Specimen-Chilling
from Room Temperature to 10 C.......................................................... .......... 85

4-10. Graph of the Time vs. Temperature in a Typical WR-C1 Specimen-Heating
from 10C to 40C .......................................... ................. .... ....... 87

5-1. Graph Showing Energy Thresholds and the Effects of Rate of Creep and m-value
on R ate of D am age. ................................................ ........ .. ........ .... 92

6-1. Diagram of the Pressures Exerted on the Channels Through a Sample with
Increased P ore P pressure ...................................................................... .................. 96









7-1. Two Graphs Depicting Energy Ratio Values for Mixtures Conditioned at Cyclic
Pore Pressures of 5-15 psi and a Temperature of 25C ................... ............... 106

7-2. Two Graphs Depicting Energy Ratio Values for Mixtures Conditioned at Cyclic
Pore Pressures of 5-25 psi and a Temperature of 25C .........................................107

7-3. Two Graphs Depicting Energy Ratio Values for Mixtures Conditioned at Cyclic
Pore Pressures of 5-30 psi and a Temperature of 25C .........................................108

7-4. Two Graphs Depicting Energy Ratio Values for Mixtures Conditioned at Cyclic
Pore Pressures of 5-15 psi and a Temperature of 40C ................................. 109















Abstract of Thesis Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Master of Science

EVALUATION OF CYCLIC PORE PRESSURE INDUCED MOISTURE DAMAGE
IN ASPHALT PAVEMENT

By

Tait K. Karlson

December 2005

Chair: Bjorn Birgisson
Cochair: Reynaldo Roque
Major Department: Civil and Coastal Engineering

Moisture damage, occurring in several forms, can cause deterioration of asphalt

pavements leading to a shortened service life of the pavement. Some of these forms

include stripping (a loss of adhesion of the asphalt binder from the aggregate), hydraulic

scouring (where fines are transported through the voids in the pavement when a traffic

load causes positive and negative pore pressures), and a loss of cohesion in the asphalt

binder when repetitive positive and negative pore pressures break the connections

between the aggregate.

Several attempts have been made to create a test procedure that will accurately

determine the susceptibility of an asphalt pavement to moisture damage. None have

gained wide acceptance due to lack of repeatability, complication of the process, the need

for expensive equipment, or lack of quantitative results. A new cyclic loading and pore

pressure conditioning system was used to evaluate four different cyclic

pressure/temperature conditions. These conditions were 5-15 psi at 250C, 5-25 psi at









25C, 5-30 psi at 25C, and 5-15 psi at 400C. The SuperPaveTM IDT test was used to

obtain the tensile strength, resilient modulus, fracture energy limit (FE), dissipated creep

strain energy limit (DCSE), and creep properties from the conditioned and unconditioned

samples. These properties were used to determine a fracture mechanics-based

performance specification criterion, termed the "Energy Ratio" (ER), which measures the

fracture resistance of mixtures.

The results show that cyclic pore pressure conditioning at an elevated temperature

of 40C results in moisture damage patterns that are consistent with expected behavior.

Limestone mixtures with proven field performance track records showed little or no

moisture damage. The Georgia granite mixtures, which are known to exhibit moisture

damage without the presence of anti-stripping agents, showed a reduced ability to resist

fractures after conditioning.














CHAPTER 1
INTRODUCTION

1.1 Problem Statement and Background

Moisture has been sighted as a cause of several forms of damage in hot-mix asphalt

(HMA) pavements. These forms include rutting, traveling, and cracking and they

severely affect the performance and service life of HMA pavements. Moisture damage in

HMA mixtures occurs when water can penetrate the pavement system. This damage can

then cause stripping (a loss of adhesion of the asphalt binder from the aggregate),

hydraulic scouring (where fine aggregate particles are transported through the voids in

the pavement when a traffic load causes positive and negative pore pressures), or by a

loss of cohesion in the asphalt binder when the positive pore pressures push the aggregate

apart.

Depending on materials, loading, and environment, it may be that one or all of the

mechanisms of water damage are present and are contributory in a pavement in the field.

However, for a proper evaluation of any given mixture and testing procedure, it is

necessary to isolate and quantify the effects of each of the predominant mechanisms

contributing to moisture damage. In fact, the lack of delineation between pore water

effects and actual moisture damage may lead to erroneous conclusions. The damage

caused by water in HMA pavements may be represented by two extreme conditions, 1)

the rapid application of cyclic pore pressures under saturated conditions that correspond

to critical field conditions, and 2) the long term continuous low level exposure to water

without pore pressures. This project deals more with the first condition.









The problems of water damage in asphalt pavement have directed attention towards

the phenomenon called stripping in recent years. Several techniques can be used to

reduce the sensitivity of HMA mixtures to stripping. Liquid anti-strip chemicals are

commonly used throughout the United States as an additive to asphalt cement. Florida

summer days can be very harsh on HMA pavements. Many days will include extremely

high pavement temperatures and then cool midday downpours followed by hot

afternoons. These conditions could contribute to the stripping problems that Florida has

faced. As a result Florida has specified the use of approved anti-stripping agents in all

friction course and recycled mixtures.

There have been several projects developed through the years that have looked at

the phenomenon of water damage. Most of these studies have used destructible strength

tests on unconditioned and then on comparable conditioned samples to determine how

much the samples were affected by the conditioning. These conditioning procedures

have included cycling water in and out of the pores and cycling the pressures in the pores

of the specimens.

1.2 Objectives and Scope

The primary objective of this study was to accurately determine the effects of

cycling pore pressures in Superior Performing Asphalt Pavement (SuperPaveTM) samples.

Other purposes of this research included evaluating the possible effects of aggregate

mixture (course and fine-graded) and aggregate type (Georgia granite and oolitic

limestone) on pore pressures and moisture damage susceptibility.

1.3 Research Approach

In this project, the permeability was found for six granite mixtures using the

Florida Department of Transportation (FDOT) method. Three of these granite mixes and









two limestone mixes were used in a newly developed cell to condition them and test for

changes in their dynamic and resilient moduli.

An introduction to different mechanisms of moisture damage and previous research

are presented in Chapter 2. The materials and methodologies used are located in Chapter

3. Chapter 4 describes the equipment used during this project. Chapter 5 contains the

permeability results as well as the hot-mix asphalt fracture mechanics discussion. In

Chapter 6, the specimen conditioning procedure is discussed. Finally, Chapter 7 states

the results of the project and recommendations for future research.














CHAPTER 2
LITERATURE REVIEW

A major objective with this research project is to either identify or develop new

methods of evaluating the potential for moisture damage in mixtures. In order to

determine optimal ways to condition and test mixtures, it is important to include the most

likely mechanisms) that cause moisture damage in the field and use that mechanism for

conditioning in the laboratory. It is equally as important to develop a strong

understanding of the key mixture properties that are affected by moisture damage, so that

the evaluation and quantification of the effects of moisture damage can be robust and

effective. In this chapter, the current state of knowledge about moisture damage in

mixtures is reviewed. In particular, the focus is on 1) Review of key mechanisms of

moisture damage, and 2) Methods and evaluation protocols that have been either

proposed or used recently for conditioning of mixtures.

In the following, the chemistry of the asphalt-aggregate bond is discussed, with a

focus on factors that may contribute to stripping. Then, the mechanisms of stripping are

reviewed, followed by a discussion of existing test methods and evaluation protocols.

2.1 Adhesion and Stripping

The phenomenon of stripping is directly related to the sensitivity of the bond

between aggregates and asphalt in an asphalt mixture. Therefore, to determine why this

adhesive bond is broken, it is first necessary to understand the physics of how aggregates

and asphalt combine and adhere to each other to form an asphalt mixture. Numerous

theories have been proposed to explain the adhesion. Rice (1958) classified these









theories as mechanical interlocking, chemical reaction, and molecular orientation or

surface energy. Chemical interactions are believed to be the best explanation of the

adhesive bond (Curtis, Einsley, and Epps, 1993a). Furthermore, all theories assume that

the bond is influenced by the composition and surface chemistry of the aggregates.

A discussion of the chemistry of the asphalt-aggregate bond, as well as the

aggregate properties that promote adhesion follows. In addition, some others factors that

contribute are commented upon.

2.1.1 Chemistry of the Asphalt-Aggregate Bond

The asphalt-aggregate bond arises due to the presence of acidic and basic

components in an asphalt mixture that react forming water-insoluble compounds. The

adhesion of asphalt to aggregate must occur and be maintained for a good pavement to

exist. To investigate and control stripping problems, it is necessary to understand the

chemistry of both the asphalt and aggregate at the asphalt-aggregate interface, and the

effects of moisture on this bonding.

Asphalt is composed of a mixture of hydrocarbons that contain some polar

functionality, as well as constituents that contain metals such as nickel, vanadium, and

iron. The aggregate provides a surface that is heterogeneous and has a variety of sites of

different composition and levels of activity. These active sites are frequently charged or

contain partial charges that attract and orient the polar constituents of asphalt. Curtis,

Einsley, and Epps (1993b), in an investigation of the chemical and physical processes

that govern adhesion between aggregates and asphalt, stated that the polar functionalities

present at the point of contact between the asphalt film and the aggregate surface adhere

to the surface through electrostatic forces, hydrogen bonding, or Van der Waals

interactions.









When hot asphalt coats the aggregates particles, it tends to enter any available

pores. Short-range chemical interactions in asphalt molecules are feasible because of

electrostatic interactions that occur between the charged surface and the molecules

attracted to the surface. Adamson (1976) pointed out that polar molecules will position

themselves along a surface according to the difference in charge. A charged aggregate

surface attracts an oppositely charged or partially charged species or functional group

contained in the species. The part of the attracted molecule that is available for

interaction with other asphalt molecules would then be the charge of the aggregate and

hence would have electrostatic interaction with other oppositely charged or partially

charged asphalt molecules.

The intrusion of water or moisture may substantially affect the pH of the local

environment. According to Scott (1978), changes in the pH of the microscopic water

accumulations at the aggregate surface can alter the type of polar groups adsorbed, as

well as their state of ionization/dissociation, leading to the build-up of opposing,

negatively charged, electrical double layers on the aggregate and asphalt surfaces. The

drive to reach equilibrium attracts more water and leads to physical separation of the

asphalt from the aggregate.

In short, the bond that develops between asphalt and aggregate is primarily due to

relatively weak dispersion forces that cause molecular orientation to occur. Water

molecules, on the other hand, are highly polar and thus are attracted to aggregates by

much stronger orientation forces.

Therefore, if a three-phase interface consisting of aggregate, asphalt, and water

exists, water is better than asphalt for reducing the free surface energy of the system to a









thermodynamically stable condition of minimum surface energy (Figure 2-1). According

to Fromm (1974), once the asphalt film is breached and water enters under the asphalt,

surface tensions may force the water between the remaining asphalt-aggregate interface,

causing stripping.


WATER



WATER ASPHALT
ASPHALT


AGGREGATE AGGREGATE




Figure 2-1. Illustration of the Surface Energy Theory of Adhesion.

According to Thelen (1958), the surface or interfacial tensions (x) between these

phases are approximately as follows:

Xab = interfacial tension between aggregate and asphalt = 17 3 ergs/cm2

wXb = interfacial tension between water and asphalt = 30 5 ergs/cm2

aw = interfacial tension between aggregate and water = 0 ergs/cm2 (since under

usual ambient temperature the aggregate surface is approximately a free

water surface).

The energy potential to cause stripping is calculated as shown in the following

equation:

AF = b + Xwb aw = 47ergs/ cm2

Thus, usual asphalt and normal organic materials will voluntarily spread over water

films on aggregate, and will also tend to be stripped from these films by water. The rate









at which these processes occur no doubt depends somewhat on the magnitude of the free

energy evolved (DF), but in practice probably is controlled chiefly by the viscosity of the

asphalt.

2.1.2 Aggregate Properties

Failure of the bond can fail at the interface, within the asphalt as a cohesive failure,

or within the aggregate as a structural failure. Curtis et al. (1993b) showed that the

physicochemical surface properties of mineral aggregate are more important for moisture

induced stripping compared to the properties of asphalt cement binder.

The surface charge of the aggregate determines, to some degree, the extent of

attraction and adsorption of the asphalt. This surface charge can be quantified by

measuring the streaming potential or Zeta potential of the aggregate. Consequently, the

aggregate surface can be modified to effect favorable attraction between the asphalt and

aggregate.

Electron transfer from the asphalt at the interface relies on the ability of aggregates

to accept or donate these electrons. Scott (1978) observed that pH value varies

depending on whether the aggregates are siliceous or calcareous. In addition, Curtis et al.

(1993b) concluded, from studies of the electron donor and electron acceptor properties of

four aggregates, ranging from quartz, to silicate, to calcite-based, that aggregates

composed of quartz exhibit the strongest acceptor character, while silicate materials are

less strong. The carbonate rocks show a range of donor-acceptor properties.

Some mineral aggregates are inherently very susceptible to stripping. Interlocking

properties of the aggregate particles, which include individual crystal faces, porosity,

angularity, absorption, and surface coating are also believed to improve the bond strength









in an asphalt mixture. Kiggundu and Roberts (1988) postulated that the absence of a

sound interlocking network of these properties might induce stripping.

It is often observed that siliceous aggregates have slick, smooth areas, which may

give rise to stripping, while roughness may help to promote bonding. Besides, some

limestones and lime-treated aggregates tend to form stronger, more robust, and durable

bonds with asphalt. The insensitivity of these bonds to the action of water is believed to

cause this. The bonds formed in this case are strong, insoluble bonds. Curtis et al.

(1993a) observed, from reactivity measurements with model carboxylic acids, that even

within limestones, their ability to form insoluble salts varies substantially, depending on

the availability of the surface calcium to enter into bond formation.

2.2 Other Causative Factors

Tunnicliff and Root (1984) performed a survey to summarize and analyze the use

of anti-stripping additives in asphalt mixtures in the United States by submitting a

questionnaire to members of the American Association of State Highway and

Transportation Officials (AASHTO) Subcommittee on Materials, agencies, asphalt

cement producers, trade associations, and anti-stripping additive producers. Responses

from the questionnaire imply that other factors contribute to stripping, such as asphalt

cement characteristics, and construction practice.

On the other hand, Taylor and Khosla (1983) concluded, from a comprehensive

survey of the literature regarding moisture damage in asphalt pavements, that stripping is

a complex problem related to a large number of variables, including also the type and use

of mix, environment, and traffic.









Based on an evaluation of the factors responsible for inducing stripping, Kandhal

(1994) listed and discussed external factors and/or in-place properties of asphalt

pavements, dealing basically with the same factors stated before.

A proper knowledge of these factors is essential in identifying and solving the

stripping problem. A discussion of the most frequently listed factors identified by Taylor

and Khosla (1983) and Kandhal (1994) follows.

2.2.1 Type and Use of Mix

It has been found that the type and use of an asphalt mixture is related to the

likelihood of the stripping of the mix. The majority of pavement failures caused by

stripping occur in open-graded mixes, base courses, and surface treatments, all of which

are relatively permeable to water when compared with dense-graded mixes. Surface

treatments have been noted to be particularly vulnerable to stripping. Stripping in dense-

graded, hot-mix paving mixtures is generally not considered a large problem unless the

mixtures exhibit excessive air voids, insufficient bitumen, inadequate compaction, or

aggregate with adsorbed coatings. The practice of adding anti-stripping agents to the

mixture may be improving the field performance of these mixtures. The inherent

resistance to stripping exhibited by dense-graded, hot-mix paving mixtures may be

caused, in part, by the use of hot, dry aggregate in those mixtures. However, there is a

need to evaluate all mixtures for their susceptibility to moisture damage. In particular,

since the use of anti-stripping agents is common in mixtures, it is important to evaluate

mixtures that contain anti-stripping agents in an accurate and robust manner.

The small percentage of normally present air voids and the common presence of

anti-stripping agents in well-compacted, dense-graded hot mixes is probably largely

responsible for their excellent moisture resistance because the virtual absence of voids









renders the mixes much less permeable. Full-depth (deep strength) asphalt pavements, as

proposed by The Asphalt Institute, have been shown to provide excellent resistance to

stripping. The dense-graded asphalt bases often used in full-depth pavements are

observed to act as a vapor barrier so that little or no free moisture accumulates beneath

the pavements.

2.2.2 Asphalt Characteristics

The relationship most often referenced between the characteristics of the asphalt in

a paving mixture and the tendency of the mix to strip relates stripping resistance to the

viscosity of the binder in service. Binders of high viscosity have been observed to resist

displacement by water much better than those of low viscosity, although even 60-

penetration bitumen has been observed to strip. Fromm (1974) observed that high

viscosity asphalt resisted pulling along an air-water interface and that the pulling of the

asphalt film increased as asphalt viscosity decreased.

Low viscosity, however, is desirable during mixing operations because a low

viscosity fluid has more wetting power than one of high viscosity. Observations made by

Schmidt and Graf indicate that most asphalts appear to behave similarly with respect to

moisture, provided they are of the same viscosity; i.e., the effect of asphalt composition is

negligible. In contrast, Fromm (1974) observed that the rate of emulsion formation in an

asphalt submerged in water depends on the nature of the asphalt rather than its viscosity.

Logically, an emulsified asphalt may be more prone to stripping by spontaneous

emulsification if some concentration of emulsifier remains in the binder after mixing.

The presence of paraffin in asphalt is believed to be detrimental to stripping resistance.

Moreover, high viscosity asphalt cements cannot be used in many instances

because of other considerations such as low-temperature cracking in cold regions and









potential reduction in fatigue life of the surface courses. There is a need to understand

the fundamentals of aggregate-asphalt adhesion so that the problem can minimized by

other means rather than increasing the asphalt cement viscosity, which is not effective in

all cases and which may result in other performance problems.

Asphalt is composed of such a variety of chemical species that it most likely will

also have a continuum of electron donor and acceptor behavior, the exact range of which

is dependent on its chemistry. The matching of the electron donation and accepting

abilities of the aggregates and asphalts, respectively, may lead to improvements in road

performance.

One factor affecting the wetting of the aggregate surface by asphalt depends on the

interfacial tension, promoting wetting, and facilitating close contact between the asphalt

and the aggregate surface. However, the effectiveness of an additive, particularly an anti-

stripping agent, varies with the type of the additive, as well as with the asphalt and

aggregate.

After the asphalt has wetted the aggregate surface, some of its organic chemical

functionalities enter into bond formation with the aggregate constituents. Frequently,

these functional groups, such as carboxylic and phenolic acid, combine with alkali metals

present on the aggregate surface to form water-insoluble salts (e.g., sodium salts).

Consequently, these asphalt-aggregate bonds are ionic bonds that weaken or solubilize

over time with exposure to moisture. They become moisture susceptible because of their

inability to withstand solubilization and disbonding over an extended amount of time.

Thus, even though tensile strength ratio (TSR) measurements may exhibit high values,









these are reflective of only the physical strength of the bonds and do not measure their

ability to withstand exposure or weathering.

2.2.3 Construction Practice

Inadequate surface and/or subsurface drainage provides water or moisture vapor,

which is the necessary ingredient for inducing stripping. If excessive water or moisture is

present in the pavement system the HMA pavement can strip prematurely. Kandhal,

Lubold, and Roberts (1989) have reported case histories where the stripping was not a

general phenomenon occurring on the entire project but rather a localized phenomenon in

areas of the project saturated with water and/or water vapor due to inadequate subsurface

drainage conditions.

Water can enter the HMA pavement layers in different ways. It can enter as run-off

through the road surface, primarily through surface cracks. It can enter from the sides

and bottom as seepage from ditches and high water table in the cut areas.

The most common water movement is upward by capillarity under a pavement.

Above the capillary fringe, water moves as a vapor. Many subbases or subgrades in the

existing highway system lack the desired permeability; therefore, are saturated with the

capillary moisture. The construction of multilane highways (or widening) to greater

widths, gentler slopes and milder curves in all kinds of terrain has compounded the

subsurface drainage problem. Quite often, a four-lane highway is rehabilitated by paving

the median and shoulders with HMA resulting in a fully paved width of 72-78 feet, which

is equivalent to a six-lane highway without any increase in the subsurface drainage

capability.

Air voids in the HMA pavement may become saturated with water even from vapor

condensation due to water in the subgrade or subbase. A temperature rise after this









saturation can cause expansion of the water trapped in the mixture voids resulting in

significant void pressure when the voids are saturated. The pore pressure from stresses

induced by traffic can also cause the failure of the binder-aggregate bond. Initially, the

traffic stresses may further compact the mixture and trap or greatly reduce the internal

water drainage. Therefore, the internal pore water is in frequent motion (cyclic) and

considerable pore pressure may be built up under the traffic action.

Kandhal (1994) described telltale signs of water damage to HMA overlays (over

concrete pavements). He observed wet spots on the HMA overlay surface scattered

throughout the project. Usually at these wet spots water oozed out during hot afternoons.

Some of the wet spots contained fines suspended in the water, which were driven on and

turned into fatty areas (resulting from asphalt stripping from the aggregate and migrating

to the surface). This often preceded the formation of potholes.

Usually stripping in a four-lane highway facility occurs first in the slow traffic lane

because it carries more and heavier traffic compared to the passing lane. Typically, but

not always, stripping starts at the bottom of HMA layer, or a layer interface, and

progresses upwards.

It is evident from the preceding discussion that inadequate subsurface drainage is

one of the primary factors inducing premature stripping in HMA pavements.

Other construction factors that may cause or enhance stripping include:

* Inadequate Compaction,
* Excessive Dust Coating on Aggregate,
* Use of Open-Graded Asphalt Friction Course,
* Inadequate Drying of Aggregates,
* Use of Weak and Friable Aggregate,
* Placement of Overlays on Deteriorated Concrete Pavements,
* Use of Waterproof Membranes and Seal Coats.









2.3 Mechanisms of Stripping

Despite the fact that several factors have been associated with stripping, there is a

consensus that this phenomenon is principally caused by water. For this to occur,

however, water has to penetrate the asphalt film. This can occur under various conditions

and by several mechanisms.

There may be as many as five different mechanisms by which stripping of asphalt

cement from an aggregate surface may occur. Those five mechanisms include (e.g.

Stuart, 1990; Kandhal, 1994; Kandhal and Rickards, 2001):

* Detachment,
* Displacement,
* Spontaneous emulsification,
* Pore pressure, and
* Hydraulic scouring.

It appears that these mechanisms may act individually or together to cause adhesion

failure in bituminous mixtures. In addition to these mechanisms outlined, other less

likely, but potential mechanisms for stripping have been suggested such as osmosis due

to presence of salts or salt solution in the aggregate pores that creates an osmotic pressure

gradient that sucks water through the asphalt film. A discussion of each of the five

mechanisms follows.

2.3.1 Detachment

The most likely mechanism occurs when there is a discontinuity and, hence, a line

of juncture where asphalt, free water and aggregate are all in contact. In other words,

detachment is the separation of an asphalt film from an aggregate surface by a thin layer

of water, with no obvious break in the asphalt film (Figure 2-2).









In this case, the aggregates are completely uncoated in the presence of moisture,

indicating a complete loss of adhesion. The theory of interfacial energy provides the

rationale for explaining the detachment mechanism.


AGGREGATE


WATER
ASPHALT





Figure 2-2. Illustration of Stripping by Detachment.

2.3.2 Displacement

Stripping by displacement results from the penetration of water to the aggregate

surface through a break in the asphalt film. This break can be caused by incomplete

coating of the aggregate initially or by film rupture. Because the asphalt film at these

locations is generally thinner and under tension, rupture of the asphalt film is probable at

the sharp edges and covers of angular aggregate pieces as a result of traffic loading.

Stripping by displacement can result from pinholes in the asphalt film, which can form

soon after coating of a dusty aggregate. Both the surface energy and the chemical

reaction theory of adhesion can be used to explain stripping by displacement.

2.3.3 Spontaneous Emulsification

In spontaneous emulsification, water and asphalt combine to form an inverted

emulsion, where asphalt represents the continuous phase and water represents the

discontinuous phase. When such an emulsion is formed, the adhesive bond between the

asphalt and the aggregate is broken. This can be further aggravated by the presence of









emulsifiers such as mineral clays and some asphalt additives. The chemical reaction

theory of adhesion can be used to explain stripping by spontaneous emulsification.

Fromm (1974), investigating how water penetrates asphalt films, observed that

spontaneous emulsification occurs whenever asphalt films were immersed in water. The

rate of emulsification depended, however, on the nature of the asphalt and the presence of

additives. The fact that stripping has been observed to be reversible lends support to the

spontaneous emulsification mechanism because evaporation of the water from the

emulsion returns the asphalt to its original condition.

2.3.4 Pore Pressure

The effects of pore pressure take place when the air voids in the HMA pavement

are reduced due to loading and the water in the voids is compressed to create pressure

against the asphalt film. Once the pore pressure increases to a high level, the asphalt film

on the aggregate will rupture under the pressure and create a break in the film where

water can infiltrate to the surface of the aggregate. Pore pressure usually affects newly

placed HMA pavements because the pavement is placed at a higher than designed air

void content with the assumption that traffic loadings will decrease the air void content

over time. The voids are interconnected and allow the water to move through the

pavement. Once the pavement starts to become dense, the interconnected voids close and

traps water in the voids. Further densification causes the pores to collapse and increase

the pressure on the water. Several reasons are attributed to the increase in pore pressure

including traffic loadings, thermal expansion, freezing expansion, and thermal shock

(Lottman, 1982b). Once the asphalt film ruptures, then the displacement mechanism

removes the asphalt film.









The pore pressure can affect the pavement system even when the pavement is not

fully saturated. The unsaturated voids can create a capillary tension within the pavement,

causing the pore pressure to become negative. This can cause the effective stresses to

increase beyond the effective stresses when the pavement is saturated. However, when a

load is applied to the pavement, the total stress and the pore pressures will increase

according to the load intensity. In turn, the effective stresses within the pavement will

decrease. This will cause a cycling of compression and tension within the voids. This is

illustrated in Figure 2-3.

Total Stress Pore Pressure Effective Stress

\\ \'


a+Aa % ui+ Y a"



SV

II



U

Figure 2-3. Illustration of the Effects of Pore Pressures on the Effective Stresses.

Inspection of field specimens of stripped pavements has revealed that stripping

begins at the bottom of layer interfaces and works its way up, stripping mostly the coarse

aggregate. This behavior can be explained by the pore pressure mechanism, because:

* The asphalt at the bottom of a pavement layer is in tension upon the application of
load and is often subject to prolonged exposure to moisture from water trapped
within a granular base course above the subgrade.

* The observed hourglass distribution of air voids in compacted field mixtures, where
the top and the bottom of the layer have larger air voids and higher permeability,









but the middle of the layer has lower air voids and less permeability (Masad,
Birgisson, Al-Omari, and Cooley, 2005). The higher permeability parts of the
compacted layer are more likely to contain moisture, thus resulting in pore
pressures due to vehicle loadings. For pavements with "wet feet", where there is a
source of moisture underneath the pavement, stripping from the bottom more
permeable part of the asphalt layer is therefore more likely.

2.3.5 Hydraulic Scouring

Hydraulic scouring is a mechanism of stripping that is applicable only to surface

courses. Stripping due to hydraulic scouring results from the action of vehicle tires on a

saturated pavement surface. This causes water to be pressed down into the pavement in

front of the tire and immediately sucked away from the pavement behind the tire (Figure

2-4). This compression-tension cycle can move sediment in and out of the pavement,

causing scouring. This is believed to contribute to the stripping of the asphalt film from

the aggregate.



WHEEL




WATER







Figure 2-4. Illustration of Stripping by Hydraulic Scouring.

2.4 Anti-Stripping Additives

It is common practice to use anti-stripping (AS) additives to prevent stripping and

improve the asphalt pavement performance. Tunnicliff and Root (1984) defined anti-

stripping additives as substances that convert the aggregate surface to one that is more









easily wetted with asphalt than water. Both liquid and lime additives are used effectively

to resist stripping.

2.4.1 Liquid Additives

Most of the liquid AS agents are surface-active agents, which, when mixed with

asphalt cement, reduce surface tension and, therefore, promote increased adhesion to

aggregate. The chemical composition of most commercially produced AS agents is

proprietary. However, the majority of AS agents currently in use are chemical

compounds that contain amines (Kandhal, 1992 and Tunnicliff and Root, 1982). These

AS agents must be "heat stable." That is, they should not lose their effectiveness when

the modified asphalt cement is stored at high temperatures for a prolonged period of time.

The simplest and most economical way is to mix the AS agent with the asphalt

cement in a liquid state prior to mixing the asphalt cement with the aggregate. Although

this method is most commonly used, it is inefficient because only a portion of the AS

agent reaches the aggregate-asphalt cement interface. Direct application of the AS agent

to the aggregate surface is undoubtedly the most efficient way to ensure high quality

bonding between the asphalt and the aggregate. However, this is generally not practical

because of cost considerations in ensuring full coating of all aggregates, including the

dust component. Normally, only small amounts of AS agents (for example 0.5 percent

by weight of asphalt cement) are used in the binder.

The amount of AS agent to be used is important. Too little may not be effective

and too much may be detrimental to the HMA mix. The long-term effectiveness of liquid

AS agents during the service life of the HMA pavements has not been fully established.









Some agencies maintain an approved list of AS agents and require the contractors

to use an AS agent in all HMA mixes without conducting any moisture-susceptibility test

(Kandhal, 1994).

2.4.2 Lime Additives

Unlike liquid AS agents, which are added to the asphalt cement, lime is added to

the aggregate prior to mixing with asphalt cement. Many studies indicate that lime is a

very effective anti-stripping agent (e.g. Hicks, 1991; Kandhal, 1994). However, its anti-

stripping mechanism is not well understood. Various mechanisms have been postulated,

(a) lime interacts with acids in the asphalt cement that are readily absorbed on the

aggregate surface, (b) lime provides calcium ions which can replace hydrogen, sodium,

potassium and other cations on the aggregate surface, and (c) lime reacts with most

silicate aggregates to form a calcium silicate crust which has a strong bond to the

aggregate and has sufficient porosity to allow penetration of the asphalt cement to form

another strong bond.

Both hydrated lime Ca(OH)2 and quick lime CaO (in slurry form) are effective,

although the former is most commonly used. Dolomitic limes have also been used as

anti-stripping additives. However, as a carbonate CaCO3, lime is not as effective.

Generally, 1 to 1 1/2 percent of lime by weight of dry aggregate is used. Finer aggregates

may require higher percentages because of increased aggregate surface area.

Aggregates have been treated with lime by the following four methods (Hicks,

1991):

S Dry hydrated lime: The main problem in using dry lime is to maintain its coating
on the aggregate surface until it is coated with asphalt cement. It is more critical in
drum mixers, which tend to pick up some of the lime in the exhaust gas flow.
However, Georgia DOT has successfully instituted the use of dry hydrated lime in
drum mixers by injecting lime into the drum just ahead of the asphalt cement. The









pick up of lime by the gas stream is prevented by modifications of the flights and
providing suitable baffles inside the drum (Kennedy, 1984). Some asphalt-paving
technologists believe that the use of dry lime is not consistently effective, although
many agencies including Georgia DOT report satisfactory results with dry lime.

* Hydrated lime slurry: This method requires additional water to be added to the
aggregates which results in increased fuel costs and reduced HMA production
rates.

* Dry hydrated lime to wet aggregate: In this method dry hydrated lime is added to
wet aggregate, usually containing 3-5 percent water, and then mixed in a pugmill or
tumble mixer to obtain a homogeneous mix.

* Hot (Quicklime) slurry: The use of quicklime (CaO) slurry has at least two
advantages, (a) its cost is equal to that of hydrated lime, but when slaked the yield
is 25 percent greater, and (b) the heat from slaking results in an elevated
temperature which helps in the evaporation of the added moisture. However,
quicklime should be handled with caution because it can cause skin bums.

The relative effectiveness of the preceding four treatments based on comparative

laboratory and field studies have been generally inconclusive and, therefore, increased

fuel and equipment costs and decreased HMA production rates associated with the wet

process may not be justified at the present time.

2.5 Moisture Susceptibility Tests and Conditioning Systems

To combat stripping, proper mixture design is absolutely essential; however, it is

possible for a properly designed mix to strip in the field if water enters into the HMA

layer. Therefore, each mixture must be evaluated to determine if it is susceptible to

moisture damage.

Numerous test methods have been proposed and used in the past to predict the

moisture susceptibility of HMA mixes. (Al-Swailmi and Terrel, 1992; Coplantz and

Newcomb, 1988; Hicks, 1991; Kandhal, 1992; Kandhal, 1994; Lottman, 1982a; Stuart,

1986; Stuart, 1990; Terrel and Al-Swailmi, 1994; Tunnicliff and Root, 1984). However,

no single test has a wide acceptance, with the possible exception of the Modified Lottman









Test (AASHTO T-283, 1986), which is now a part of the SuperPaveTM mixture design

protocol. This is due to their overall recognized low reliability and lack of satisfactory

relationship between laboratory and field conditions. Only selected test methods, which

are commonly used by agencies, will be discussed briefly.

2.5.1 Qualitative or Subjective Tests

There are two main tests of this type. These tests are simple, take little time to

complete, and require very little equipment. However, they do not give definitive,

analytical results.

2.5.1.1 Boiling Water Test

In this test, loose HMA mix is added to boiling water. ASTM D3625 specifies a

10-minute boiling period. The percentage of the total visible area of the aggregate that

retains its original coating after boiling is estimated as above or below 95 percent. This

test can be used for initial screening of HMA mixtures. Some agencies use it for quality

control during production to determine the presence of an anti-stripping agent. This test

method does not involve any strength analysis. Also, determining the stripping of fine

aggregate is very difficult. This test method generally favors liquid anti-stripping agents

over lime.

2.5.1.2 Static-Immersion Test (AASHTO T-182, 1986)

A sample of HMA mix is immersed in distilled water at 770F (25C) for 16 to 18

hours. The sample is then observed through water to estimate the percentage of total

visible area of the aggregate, which remains coated as above or below 95 percent. Again,

this method does not involve any strength test.









2.5.2 Quantitative Strength Tests

The following tests can give quantitative results. In general however, they have not

gained very wide acceptance. This is mainly due to their lack of reliability. Also, they

can require long test times, complex procedures, or expensive equipment.

2.5.2.1 Lottman Test

Lottman (1982a) developed this method. Nine specimens 4 inches (102 mm) in

diameter and 2 12 inches (64 mm) high are compacted to expected field air void content.

Specimens are divided into 3 groups of 3 specimens each. Group 1 is treated as control

without any conditioning. Group 2 specimens are vacuum saturated (26 inches or 660

mm Hg) with water for 30 minutes. Group 3 specimens are vacuum saturated like Group

2 and then subjected to a freeze (0F or -180C for 15 hours) and a thaw (140'F or 60C

for 24 hours) cycle. All 9 specimens are tested for resilient modulus (Mr) and/or indirect

tensile strength (ITS) at 550F (13C) or 73F (23C). A loading rate of 0.065 inch/minute

(1.65 mm/minute) is used for the ITS test. Group 2 reflects field performance up to 4

years. Group 3 reflects field performance from 4 to 12 years. Retained tensile strength

(TSR) is calculated for Group 2 and Group 3 specimens as follows:

TSR = ITS of Conditioning specimens / ITS of Control specimens

A minimum TSR of 0.70 is recommended by Lottman (1982a) and Maupin (1982)

who reported values between 0.70 and 0.75 differentiated between stripping and non-

stripping HMA mixtures. It has been argued that the Lottman procedure is too severe

because the warm water soak of the vacuum saturated and frozen specimen can develop

internal water pressure. However, Stuart (1986) and Parker and Gharaybeh (1987)

generally found a good correlation between the laboratory and field results. Oregon has









successfully used this test with a resilient modulus ratio in lieu of tensile strength ratio

(TSR).

2.5.2.2 Tunnicliff and Root Method

This method was proposed by Tunnicliff and Root (1984) under NCHRP Project

274. They proposed six specimens to be compacted to 6-8 percent air void content and

divided into two groups of three specimens each. Group 1 is treated as control without

any conditioning. Group 2 specimens are vacuum saturated (20 inches or 508 mm Hg for

about 5 minutes) with water to attain a saturation level of 55 to 80 percent. Specimens

saturated more than 80 percent are discarded. The saturated specimens are then soaked in

water at 1400F (60C) using a loading rate of 2 inches/minute (51 mm/minute) A

minimum TSR of 0.7 to 0.8 is usually specified. The use of a freeze-thaw cycle is not

mandated in ASTM D4867-88, which is based on this method. The freeze-thaw cycle is

optional. The primary emphasis is on saturation of the specimen, which for a short

duration of about 24 hours has been reported to be insufficient to induce moisture-related

damage (Coplantz and Newcomb, 1988).

2.5.2.3 Modified Lottman Test (AASHTO T-283)

This method was initially adopted by AASHTO in 1985 (AASHTO, 1986). It

combines the good features of the Lottman Test (Lottman, 1982a) and the Tunnicliff and

Root Test (Tunnicliff and Root, 1984). Six specimens are compacted to 6-8 percent air

void content. Group 1 of three specimens is used as a control. Group 2 specimens are

vacuum saturated (55 to 80 percent saturation) with water, and then subjected to one

freeze-thaw cycle as proposed by Lottman. All specimens are tested for ITS at 77F

(25C) using a loading rate of 2 inches/minute (51 mm/minute), and the TSR is









determined. A minimum TSR of 0.7 is usually specified. This method is gaining

acceptance by the specifying agencies.

2.5.2.4 Immersion-Compression Test (AASHTO T-165)

Six specimens 4 inches (102 mm) in diameter and 4 inches (102 mm) high are

compacted with a double plunger with a pressure of 3000 psi (20.7 MPa) for 2 minutes to

about 6 percent air void content. Group 1 of three specimens is treated as control. Group

2 specimens are placed in water at 1200F (490C) for 4 days or at 1400F (60C) for 1 one.

All specimens are tested for unconfined compressive strength at 77F (25C) using a 0.2

inch/minute (5.1 mm/minute) loading rate. The retained compressive strength is

determined. Many agencies specify at least 70 percent retained strength. This test has

produced retained strengths near 100 percent even when stripping is evident. Stuart

(1986) has attributed this to the internal pore water pressure and the insensitivity of the

compression test to measure the moisture-induced damage properly. Lack of satisfactory

precision has been a major problem with this test.

2.5.2.5 Other tests

The California DOT use the moisture-vapor susceptibility, swell test, and film-

stripping test. Retained Marshall stability is used in Puerto Rico and some other states.

Evidently, a wide variety of test methods are being used by various agencies.

However, no test has proven to be "superior" and can correctly identify a moisture-

susceptible mix in all cases. This means that many HMA mixes, which might otherwise

perform satisfactory in the field, are likely to be rendered unacceptable if these tests and

criteria are used. Also, mixtures that may pass these tests, may not perform well in the

field. The lack of robust evaluation and test systems has simply encouraged the increased

use of anti-stripping agents in many states.









There are still many concerns and requirements related to the test methods, which

need to be addressed:

* Proliferation of test procedures and criteria.

* Reproducibility of most test methods is not satisfactory. For example, small
variations in air void content of the specimens can significantly affect the TSR
results in the AASHTO T-283 test (Coplantz and Newcomb, 1988).

* Need to consider minimum wet strength (if the desired value can be established) of
the conditioned specimens rather than relying solely on the TSR value. For
example, some additives increase both dry and wet strengths but might have a low
TSR value.

* Lack of satisfactory correlation between laboratory and field performance.

However, based on a survey of states (Kandhal, 1992) it appears that the Modified

Lottman Test (AASHTO T-283) is the most widely used test method available at the

present time to detect moisture damage in HMA mixes. AASHTO T-283 has been

included in SuperPaveTM mix design procedures. A minimum TSR of 0.70 is

recommended when using this test method. This criterion should be applied to the field-

produced rather than laboratory-produced mixes.

According to Choubane, Page, and Musselman (2000), the AASHTO T-283

specified range of moisture saturation may not be appropriate because TSRs of asphalt

samples saturated to the lower limit of the range may be significantly different than those

saturated to the upper limit. On the other hand, this procedure shows more promise for

predicting stripping potential in the laboratory when the saturation level is above 90

percent and a freeze-thaw cycle is considered. A modified AASHTO T-283 procedure is

proposed, including a vacuum saturation for 30 minutes with 610 mm of mercury, which

represents a level of saturation between 85 to 95 percent, and a freeze-thaw cycle.









2.5.3 Mixture Performance Testing for the Evaluation of Moisture Damage

The Strategic Highway Research Program (SHRP) had two research contracts

dealing with moisture susceptibility of HMA mixes. SHRP project A-003A

"Performance Related Testing and Measuring of Asphalt-Aggregate Interactions and

Mixtures" attempted to develop an improved test method to evaluate moisture

susceptibility. SHRP project A-003B "Fundamental Properties of Asphalt-Aggregate

Interactions Including Adhesion and Adsorption" studied the fundamental aspects of

asphalt- aggregate bonds.

The Net Adsorption Test (NAT) was developed under the SHRP A-003B

designation and completed by the National Center for Asphalt Technology (NCAT,

1996). It is a preliminary screening test for matching mineral aggregates and asphalt

cement (e.g. Kandhal, 1994) and is based on the principles of adsorption and desorption.

A solution of asphalt cement and toluene is introduced and circulated in a reaction

column containing the aggregate sample. Once the solution temperature has been

stabilized, 4 ml of solution is removed and the absorbance is determined with a

spectrophotometer. Fifty grams of minus No. 4 (4.75 mm) aggregate is then added to the

column, and the solution is circulated through the aggregate bed for 6.5 hours. A second

4-ml sample of the solution then is removed from the column and the absorbance is again

determined. The difference in the absorbance readings is used to determine the amount

of asphalt that has been removed from the solution (adsorption) because of the chemical

attraction of the aggregate for the molecular components of the asphalt cement.

Immediately after the second solution sample is taken, 575 mm of water is added to the

column. The solution is then circulated through the system for another 2 hours. A final 4

ml of solution is taken from the column at the end of this time. The increase in the









adsorptivity is a measure of the amount of asphalt cement that is displaced by water

molecules (desorption) Additional validation data are needed for the NAT.

The Environmental Conditioning System (ECS) was developed under SHRP

project A-003A "Performance Related Testing and Measuring of Asphalt-Aggregate

Interactions and Mixtures" (Al-Swailmi and Terrel, 1992; Terrel and Al-Swailmi, 1994),

and updated by researchers at the University of Texas, El Paso (Alam, Vemuri, Tandon,

Nazarian, and Picomell 1998). This system was designed specifically to evaluate the

moisture susceptibility of HMA specimens by resilient modulus testing. To saturate the

specimen, the Environmental Conditioning System uses a vacuum-based control panel

that draws water through the specimen from a storage reservoir. Simultaneously,

temperature conditioned water was cycled around the specimen to get it to a proper

temperature for testing. The disadvantage with this configuration is that by flowing

ambient temperature water through the specimen, adequate conductance was prevented

between the permeant and the confining water. As a result, the actual temperature of the

specimen was unknown during testing. The well-known sensitivity of HMA to

temperature makes this approach to control questionable. Additionally, the conditioning

system is inefficient relying upon a copper coil, which runs through a heated water bath.

The pressurized water running through the coil relies upon conductance through the

copper to condition it. This configuration required up to 16 hours before the system was

stabilized at temperature precluding it from use as a production capable system. Also, the

system is limited to testing at temperatures above ambient. The specificity of purpose

limited the Environmental Conditioning System's design to resilient modulus testing.









Despite the significant research effort during the SHRP project, the Environmental

Conditioning System has never reached acceptance by state agencies.

2.5.4 Other Developments of Interest

Based on the assumption that pore pressures were a major cause of moisture

damage in mixtures, Jimenez (1974) developed a test procedure and a device to

determine the stripping susceptibility of asphalt. Specimens were vacuum-saturated in a

50C (1220F) water bath and then conditioned by applying a sinusoidal load from 35 to

207 kPa (5 30 psi) at a rate of 580 times per minute for 10 minutes. The basic premise

of the loading was to induce cyclic pore pressures in the specimen that were believed to

be similar to those caused by traffic loads. After conditioning, the samples were placed

in a 25C water bath for 45 minutes before being tested for the indirect tensile strength

that was compared to the indirect tensile strength of an equivalent unconditioned sample.

Jimenez (1974) concluded that the new procedure was simple and repeatable but needed

field-testing before it could be implemented.

Hydraulic scouring, as a result of repeated generation of pore water pressure, is

considered to be the primary cause of moisture-induced damage in asphalt paving

mixtures in a paper written by Mallick et al. (2003). A new process was developed for

this research. Also, InstroTek, Inc. created a new piece of equipment in order to carry out

this procedure (Mallick et al., 2003). Specimens were placed in a chamber that was

positioned in a water bath. An immersion heater maintained the water temperature at

either 40 or 60C depending on the specimen's group. Compressed air was forced into

the chamber so that the water is forced out of and below the sample surface. Next, a

vacuum was applied that pulled the water back into the chamber. Depending on the

specimen's group, this procedure was cycled 2,000, 3,000, 4,000, or 6,000 times. The









tensile strength of the conditioned samples was then compared to the unconditioned

samples to determine the retained strength. Mallick et al. (2003) concluded that this

procedure gave comparable results with AASHTO T283 but needed further refinement.

2.6 Conclusions

Based on the literature review, the following conclusions can be reached:

* Of the five major potential mechanisms for moisture damage reported in the
literature, connecting theoretical considerations to observed field behavior has
proved none. Rather, these mechanisms are hypothesized based on field
observation, along with limited basic laboratory characterization.

* There are currently no performance-based methods for evaluating moisture damage
available that have been widely accepted by state agencies.

* The methods used to evaluate moisture susceptibility of mixtures tend to be either
qualitative in nature, like the boil test, or crude quantitative techniques that may
neither include the appropriate mechanism of moisture damage nor the appropriate
framework for analyzing the effects of moisture damage on mixtures. These
current laboratory testing procedures currently available, including the AASHTO
T-283 procedure, were primarily developed to determine the degree of resistance to
moisture damage by a particular combination of asphalt and aggregate, compare
mixes composed of different types and quantities of aggregate, or to evaluate the
effectiveness of anti-stripping agents (Al-Swailmi and Terrel, 1992; Curtis, Stroup-
Gardiner, Brannan, and Jones, 1992; Lottman, 1982a; Terrel and Al-Swailmi, 1994;
Tunnicliff and Root, 1984). These moisture susceptibility tests all evaluate the
effects of water damage in the laboratory by measuring the relative change of a
single parameter before and after conditioning (i.e., Tensile Strength Ratio,
Resilient Modulus Ratio). These parameters do not distinguish between the
different mechanisms present in a conditioned mixture, including the identification
of the effects of pore water versus actual moisture damage.

* The current SuperPaveTM specification uses the AASHTO T-283 moisture
susceptibility test for determining moisture sensitive mixtures. Most state agencies
use the AASHTO T-283 test, although there have been questions by the community
at large about the accuracy of the test. Frequent false positives and/or negatives
have been reported, leading to the initiation of current studies, including a larger
national study sponsored by the National Cooperative Highway Research Program
(NCHRP) and entitled "NCHRP Project 9-34: Improved Conditioning Procedure
for Predicting the Moisture Susceptibility of HMA Pavements."

* Depending on materials, loading, and environment, it may be that one or all of the
mechanisms of water damage are present and dominant in an actual pavement.
However, for a proper evaluation of any given mixture and testing procedure, it is









necessary to isolate and quantify the effects of each of the predominant
mechanisms contributing to moisture damage. Water damage effects in HMA
pavements may be bracketed by two extreme conditions, 1) the rapid application of
cyclic pore pressures under saturated conditions that correspond to critical field
conditions, and 2) the longer term continuous low level exposure to water without
pore pressures. However, little research has been conducted to further clarify the
most important condition i.e. pore pressures or long term continuous low-level
exposure.

In summary, there is a clear need to develop a robust performance-based

framework for the evaluation of mixture moisture damage susceptibility, as well as

identifying the most likely basic mechanisms of moisture damage in pavements, and

finally developing an appropriate conditioning system based on this mechanism.














CHAPTER 3
MATERIALS AND METHODOLOGY

3.1 Materials

The mixing formulas for the asphalt cement used in this research were obtained

from previous research conducted at the University of Florida by Dr. Bjorn Birgisson.

Six limestone gradations were prepared through research performed by Nukunya (2001).

Later research performed by Jaganatha Katkuri and Tipakorn Samarnrak produced

granite gradations that were volumetrically equivalent to the limestone gradations. The

appropriate amount of liquid asphalt was determined for each gradation as explained later

in this chapter.

The limestone aggregate was obtained from the Whiterock mine in southern

Florida. The granite aggregate (GA185) was attained from Georgia. Finally, AC-30

liquid asphalt was used for all research described herein.

3.1.1 Limestone

The limestone mix was made up of four components, coarse aggregate (S1A),

intermediate aggregate (S1B), whiterock screenings, and mineral filler. They were

blended together in different proportions to form a total of six total hot mix asphalt

(HMA) mixtures of coarse and fine gradations (Nukunya, 2001; Nukunya, Roque, Tia,

and Birgisson, 2001). Two previously designed SuperPaveTM mixtures prepared by the

Florida Department of Transportation (FDOT) were used as the basis for this research.

One of these was a coarse-graded mixture (Cl) and one was a fine-graded mixture (F 1).

Two gradations were then produced by changing the coarse portions (larger than no. 8









sieve size) and two gradations were created by altering the fine portions of the gradation

curve. The six limestone mixtures that were fashioned were Cl, C2, C3, Fl, F2, and

F3/C4. The F3/C4 mixture was derived from the fine mixture (F1), but was adjusted so

that it fell below the restricted zone and is thus a coarse-graded mixture. The gradations

for these mixtures are shown in Table 3-1.

Table 3-1. Gradations for the Limestone Mixtures.
Percent Passing
Sieve Size C1 C2 C3 F1 F2 F3/C4
19 (3/4) 100 100 100 100 100 100
12.5 (1/2) 97 91 98 96 91 95
9.5 (3/8) 90 74 89 85 78 85
4.75 (#4) 60 47 57 69 61 67
2.36 (#8) 33 30 36 53 44 37
1.18 (#16) 20 20 24 34 35 26
600 (#30) 15 14 18 23 24 20
300 (#50) 11 10 13 15 16 14
150 (#100) 7.6 6.7 9.2 9.6 9.1 8.6
75 (#200) 4.8 4.8 6.3 4.8 6.3 5.8

3.1.2 Granite

The granite mixes were also made up of a coarse aggregate (# 7 stone),

intermediate aggregate (# 89 stone), screenings (W-10 granite screenings), and a mineral

filler (granite dust). The granite gradations were developed to be volumetrically

equivalent to the limestone gradations as mentioned above; however, the granite designs

used only one material for each sieve size (i.e. all of the # 4 sieve size comes from # 89

stone). This was done to minimize error and because each of the types of granite

produced large amounts of certain sieve sizes but little amounts of the others. An

example of this is that 91 percent of the # 89 stone is retained on the # 4 sieve.

The conversion process started out with determining the specific gravity of each

type of aggregate. This information was used to determine the volume of each sieve size

retained for each type of limestone that contributed to a mix. Next, the sum of the














Table 3-2. Conversion of an Fl Limestone Mix to an Fl Granite Mix
Sla Slb
l WR/GA Ga # 7 b WR/GA Ga # 89
Sieve size Whiterock Using Vol. Wi Whiterock Using Vol. Weight
Wegt Vol. Weight Wih Vol. Weight
Weight Weight
12.5(1/2) 231 94.7 94.7 255 0 0 0 0
9.5(3/8) 402 164.7 192.9 519.6 69.1 28.3 0 0
4.75(#4) 220 90.2 0 0 553.8 226.8 317 852.4
2.36(#8) 33 13.5 0 0 391.7 160.4 0 0
1.18(#16) 7 3 0 0 56 22.9 0 0
600(#30) 2 0.7 0 0 9.1 3.7 0 0
300(#50) 2 0.7 0 0 3.4 1.4 0 0
150(#100) 3 1.1 0 0 13.7 5.6 0 0
75(#200) 4 1.5 0 0 13.7 5.6 0 0
<75(#200) 10 4.1 0 0 32 13.1 0 0


Sp. Gr. 2.441


2.693 2.442


2.689


Table 3-2. continued
size Whiterock WR/GA W-1 Whiterock WR/GUA i ranite lotal
Sieve size green t vl Using Vol. rfiler Wt Vol Using Vol. filler t Weiht
12.5(1/2) 0 0 0 0 0 0 0 0 255
9.5(3/8) 0 0 0 0 0 0 0 0 519.6
4.75(#4) 0 0 0 0 0 0 0 0 852.4
2.36(#8) 347.7 137.2 311.1 834.3 0 0 0 0 834.3
1.18(#16) 693 273.5 299.4 803 0 0 0 0 803
600(#30) 522.8 206.3 210.8 565.3 0 0 0 0 565.3
300(#50) 366.9 144.8 146.9 394.1 0 0 0 0 394.1
150(#100) 304.5 120.2 126.9 340.4 0 0 0 0 340.4
75(#200) 100.7 39.7 46.9 125.7 0 0 0 0 125.7
<75(#200) 62.3 24.6 0 0 46.1 17 58.8 159.4 159.4


2.682 2.71


4849.1
2.71


Sp. Gr. 2.534









volume for each sieve size was found and converted into weight of granite needed. Table

3-2 shows an example of converting a 4,500-gram Fl limestone mix design to an Fl

granite mix design.

3.1.3 Liquid Asphalt

The optimum amount of liquid asphalt was determined for each mix. The optimum

amount of asphalt for this research was the percent of the sample, by mass, that the

asphalt binder would contribute (Pb) for the sample to have 4.0% + 0.5% air voids (Va)

when compacted to the design number of gyrations (Ndes) 109 gyrations for this

research. This was found using calculations after the theoretical maximum specific

gravity (Gmm) of the asphalt covered aggregate and the bulk specific gravity (Gmb) of the

compacted sample were determined (see section 3.2.2). The mass of asphalt needed for

each mixture (derived from the calculated Pb for that mixture) was added to the mix

design to create a batch sheet. A different batch sheet was made for each size (four

inches in diameter by six inches in height and six inches in diameter by six inches in

height) of each mix.

3.2 Methodology

3.2.1 Sample Preparation

The following procedure was used to create compacted samples for this research.

Raw aggregate was placed in metal pans in an oven at 2600F (127C) for 8 to 12 hours to

ensure that it was dry. This aggregate was then sieved and stored by sieve size. A batch

of aggregate for a sample was created using the mix design of a particular batch sheet.

The batch, mixing tools, and asphalt were placed in an oven at 3000F (1490C) for 2.5 to 3

hours. The batch was then placed in a mixing mould. The correct mass of liquid asphalt









was added according to the batch sheet. The liquid asphalt and the aggregate were

thoroughly mixed in order to assure that every piece of aggregate was coated.

The mixed sample was placed in a pan and reheated in an oven at 275F (135C)

for 2 hours along with the compacting tools and mould. The IPC Servopac SuperPaveTM

gyratory compactor was set to have an angle of inclination of 1.250, a vertical pressure of

600 kPa (87 psi), a revolutionary rate of 30 gyrations per minute, to compact either a 4-

inch diameter or 6-inch diameter sample, and to compact to a specified height. The

specific height was determined per mix and was calculated to achieve a density in the

sample that would generate a 7.0 + 0.5 % of air voids. The sample was poured into the

mould as a mound (so that the distribution of the sizes of the aggregate would remain as

disbursed as possible) with a piece of filter paper below and above the sample. The

computer program was started once a top platen was fitted in the mould (above the filter

paper) and the mould was set in place in the gyratory compactor. The specimen was

extruded from the mould once it was compacted. The filter paper was removed and the

compacted sample was left to cool to room temperature.

3.2.2 Determining if a Sample Is Useable

This section explains how it was determined if a compacted sample met the criteria

for use in this research and is consistent with AASHTO procedure T 166-93, Bulk

Specific Gravity of Compacted Bituminous Mixtures Using Saturated Surface-Dry

Specimens. The compacted specimen (pill) was allowed to cool for 24 hours after it had

been prepared. The mass of the dry pill was measured and recorded as the dry mass (A).

The pill was then submerged in a tank of water and suspended from a cable attached to

the scale. The mass of the saturated sample was recorded after three minutes had passed









and the scale had stabilized. This number was recorded as the submerged mass (C),

along with the temperature of the water in the tank.

The pill was then removed and a damp cloth was used to eliminate the water from

the surface of the sample. The mass of the sample was again noted. This time it was

recorded as the saturated surface-dry, or SSD, mass (B). Finally, the bulk specific gravity

of the sample was calculated using the following formula:

Gmb = A/[B-(C*w)] (Equation 3-1)

where: Gmb = bulk specific gravity

A = dry mass (g)

B = SSD mass (g)

C = mass of sample in water (g)

w = correction factor for the water temperature (i.e., w = 1 at 25C)

While the Gmb must be calculated for each sample, the theoretical maximum

specific gravity (Gmm) was specific and standard for each mix. The Gmm for each mix

was determined by performing the Rice theoretical maximum specific gravity test, which

was consistent with AASHTO procedure T 209-94, Theoretical Maximum Specific

Gravity and Density of Bituminous Paving Mixtures.

A loose sample of asphalt-covered aggregate was created for the mix formula being

tested. The sample was first measured for its dry mass (A). It was then placed in a

beaker, covered in water, and placed under a vacuum to remove all the air from the

aggregate. The weight of this submerged, saturated sample was then recorded as the

weight of the beaker filled with the sample and water at 250C (E).









The sample was removed from the beaker and dried to the SSD condition. The

majority of the water was drained and then the remaining water was allowed to

evaporate. The moist sample was weighed every 15 minutes. The SSD condition was

met when the change in weight was less than 0.5 grams during one 15-minute period and

thus recorded as the mass of the SSD condition (B). The theoretical maximum specific

gravity was calculated by the following formula:

Gmm = A/(B+D-E) (Equation 3-2)

where: Gmm = theoretical maximum specific gravity

A = dry mass (g)

B = SSD mass (g)

D = mass of the beaker filled with water at 250C (g)

E = mass of the beaker filled with the sample and water at 250C (g)

The percentage of air voids (Va) in a compacted pill could then be calculated. This

was found by the following formula:

Va = (1- Gmb/Gmm) x 100 (Equation 3-3)

The sample was considered acceptable for testing in this research project if the Va

was 7.0 + 0.5 %.

3.2.3 Sample Testing

The samples were tested for their usability (see section 3.2.2) and then cut to a

proper size. The 6-inch diameter samples were cut to be a height of 50 5 mm (1.96 +

0.2 in) and then used in a permeability test (see Chapter 5). The 4-inch diameter samples

were cut to be a height of approximately 110 mm (4.3 in) and then conditioned (see

Chapter 6).









After allowing them to dry for 36 hours, the conditioned samples were cut into

three pucks of equivalent height with a wet saw. These pucks were rinsed to remove

excess particles and left to dry. Once dry, four aluminum buttons were glued to either

side of the puck in the shape of a square with the caddy-corer buttons located an inch

apart. This was done in accordance with the setup of specimens that are to be tested in

the indirect tensile (IDT) machine. The samples were then placed in a dehumidifier

chamber for 48 hours to dry them of any remaining moisture and bring them to a constant

humidity level. The specimens were then placed inside the environmental chamber of the

SuperPaveTM IDT machine for eight hours. This was to insure that the entire puck would

acclimate to the temperature inside of the environmental chamber. The environmental

chamber was set to a temperature of 10C (50F) for this research. Lastly, the samples

were tested for several characteristics including their resilient modulus, fracture energy,

creep compliance, and indirect tensile strength.














CHAPTER 4
PROPOSED CONDITIONING SYSTEM

The framework for the consistent evaluation of moisture damage has been

established, and pore pressures have been identified as a likely major mechanism of

premature moisture damage in mixtures. However, there is still a need to develop a

moisture conditioning system that more closely simulates the primary mechanism of

moisture damage in the field, namely cyclic pore pressures. In this chapter, a new cyclic

loading and pore pressure conditioning system, based on a modified triaxial chamber,

will be developed. The basic idea behind this system is to be able to both apply cyclic

pore pressure and loads at the same time, if needed. If only pore pressures are desired for

conditioning of mixtures, the current system could be greatly simplified into a self-

contained tabletop system that would not require an external loading frame.

In the following, the basis for the development of this new system will be

discussed, followed by a discussion on the design of the system, as well as basic

plumbing and environmental control considerations.

4.1 Background

The cyclic loading and pore pressure conditioning system is a modified triaxial

system designed specifically for the cyclic pore pressure conditioning of asphalt

specimens. The concept of the cyclic loading and pore pressure conditioning system was

prompted by the need to analyze better the effects of water-induced damage to an asphalt

mixture. Conditioning a specimen in the triaxial environment allows for precise

application of stress in three different directions, if needed. If a specimen is thought of as









a cube, these directions can be represented in the familiar x-y-z coordinate system. The

laboratory created specimens are cylindrically shaped, thereby reducing the coordinate

system to an axial vector (y) and a sum of radial vectors (x). These vectors, acting

normal to the surface of the specimen, can be increased or decreased in a multitude of

combinations allowing control of axial and confining stresses onto the specimen.

For years, the triaxial cell has been used by the geotechnical engineering

community to assimilate insitu stresses on the specimen of interest and then, through

deviation of the confining and axial stresses, quantify the material's reaction to an

anticipated load. The advantage of soil testing in a controlled environment is of

significant value and allows the engineer greater control than could be acquired in the

field. At present, there are several systems in different stages of development that

attempt to simulate field conditions while, at the same time, producing a testing sequence

that is simpler and more accurate than systems presently used. The cyclic loading and

pore pressure conditioning system is unique amongst other systems used today in that the

system is designed to be versatile and comprehensive with respect to specimen testing

and conditioning.

As with soil, asphalt concrete specimens have long been tested in a triaxial cell.

Tests such as hydraulic conductivity (permeability), resilient modulus, complex modulus,

shear strength, and creep are common in asphalt test laboratories using a triaxial device.

A distinct limitation to the triaxial cells constructed today as compared with the cyclic

loading and pore pressure conditioning system is the design of the force application

piston and how it transfers stress onto the specimen. Traditionally, these platens are no

more than a disk of rigid material that acts as a medium between the force from a shaft









and the specimen itself. The limitation occurs when stress is applied to the

circumferential surface as occurs when confining stress is applied. As the confining

stress increases, so too does the axial stress onto the specimen. This relationship limits

the stress combinations and stress paths that can be applied onto the specimen. The

initial design of the cyclic loading and pore pressure conditioning system addressed this

problem by designing a top platen (piston) encased within a sleeve. This piston-sleeve

design relieves the researcher of the limitation of stress paths by allowing the axial and

confining stresses to be independent of one another, thereby allowing for greater control

and flexibility with applied stresses. In addition, the system is designed to allow for in-

place conditioning with the support of an external water temperature conditioner as well

as the ability to perform both constant and falling head permeability testing without

removing the specimen from the test cell. These added benefits allow for a sequence of

testing and/or conditioning to be performed without the risk of damage to the specimen

during transportation from one test setup to another. Also, the additional integral

capabilities of the cyclic loading and pore pressure conditioning system diminish the need

for auxiliary equipment required to perform testing of conditioned specimens.

4.2 Design Considerations

Prior to the commencement of the system design, a full understanding of the end

purpose of the system needed to be defined. The system needed to be capable of

performing tests in compression and tension, as well as applying pore pressures both

independent and in conjunction with loading. As a result, the structural frame of the cell

needed to be designed to allow for the corresponding forces. The tests would all be

performed in effective stress state conditions, thereby creating the need to develop a

saturation procedure. And lastly, the system needed to be capable of getting a specimen









to a stabilized temperature rapidly and maintain that temperature throughout the duration

of the test.

Saturation of specimens, particularly those composed of soil, in triaxial cells is

typically achieved by pulling permeant through the specimen's structure using vacuum

techniques. For the design of the cyclic loading and pore pressure conditioning system,

allowance was made so that the system would be capable of applying a vacuum as well as

forcing the permeant through the specimen from the influent end.

The variation in test data, as a result of inconsistent specimen temperature during

testing, is well known and of foremost concern for a test requiring a high degree of

precision. Hot mix asphalt is extremely temperature susceptible (e.g. Roberts, Kandahl,

Brown, Lee, and Kennedy, 1996). Repeatability of tests such as resilient modulus (Mr)

determination is very unlikely if specimen groups are tested at varying temperatures. For

this reason, the creation of a system that would be capable of achieving target

temperature rapidly and continue to maintain that temperature throughout testing was a

criterion for design.

The achievement of heating and cooling of water used in existing triaxial testing

systems used at the University of Florida and in many systems are through indirect

methods. Heating is achieved via conduction from thermo probes onto the base plate.

The base plate would, in turn, heat the confining water. Thermo probes are commercially

available and operate much like the surface heating coil on an electric stove. As

electricity is passed through the probe, resistance is developed that transforms the

electrical energy to heat. Typically, two probes, approximately 0.375 inches in diameter

and 8 inches long, fit into the base plate of the cell via smooth borings that run parallel to









one another. The main disadvantage of this design is that the cell acts as a heat sink,

requiring that it be heated prior to the confining water. The specimen is then reliant upon

the conduction of heat from the confining water in order to arrive at the test temperature.

The combined mass of steel and water requires a large amount of time and energy to

arrive at the test temperature. Additionally, cooling of the confining water is achieved

via indirect methods. Chilled water is circulated through a copper coil that travels around

the exterior surface of the confining cylinder. To minimize the absorption of thermal

energy from the atmosphere, the cell was wrapped with a plastic-encased sheet of

fiberglass insulation. Although the insulation impedes the absorption of unwanted

thermal energy, it is not completely effective and the achievement of low temperatures is

not possible due to the inefficiency of the system. As with the method of heating, this

configuration must condition the temperature of the cell prior to the confining water,

thereby creating a lengthy conditioning period.

It was recognized early in this process that a direct method of water conditioning

would need to be developed that would be capable of readying a specimen in a

reasonable amount of time as to make the system useful in production testing. The rapid

achievement of test temperature was largely based upon three factors:

* The selection of properly sized cooling and heating devices.

* Reduction of the length of transmission lines in order to minimize thermal losses or
gains.

* The minimization of the volume of confining water space within the cell thereby
minimizing the amount of energy required by the temperature conditioner to be
either removed or added to the water.

The overall appearance of the cell is very typical of other existing triaxial cells.

The structural core consists of two round plates separated by posts or what are referred to









in this report as struts. The structural core is encased with a cylinder and the entire

package is sealed which creates an enclosed cavity capable of being pressurized. The

variable of the cell's design is the proportionality of these components. The dimensions

of the test specimen dictated much of the subsequent design of cell components. The

diameter of specimens used with this cell was decided as 4 inches (100 millimeters).

This system was developed as a prototype and it was deemed prudent to ensure it could

operate properly before designing a cell capable of testing larger specimens (6 inches or

150 mm). Additionally, as the diameter of the specimen increases, the overall size of the

cell increases in a near proportional manner. Therefore, in an attempt to balance overall

size and cost to manufacture, the smaller specimen size was chosen.

The system was designed as a self-contained testing device. In order to achieve a

saturated specimen, backpressure saturation techniques would be required. The

integration of a vacuum device capable of relieving at least one atmosphere of pressure to

assist with the liberation of air trapped in the specimen was required.

Although a prototype, the system was intended for use in production testing. The

process for specimen installation was examined as the cell design progressed. Owing to

the complexity of the installation of instrumentation used to monitor the specimen,

AutoCAD generated schematics were used to ensure that these instruments could be

installed in conjunction with the specimen. Traditional triaxial tests, Mr tests, and

Complex Modulus tests also required that a latex membrane be placed over the specimen

and overlapped over the end platens. This step is critical for ensuring the isolation of the

saturated specimen from the confining water. Therefore, consideration was given to the

allowances required to enable the operator to successfully position this membrane in a









limited space in order that the overall size of the cell be minimized as greatly as possible.

For this, several mockups were made to determine which combination of configuration

and spacing provided the optimum balance of size and function.

While trying to develop a modified Environmental Conditioning System (ECS) at

the University of Texas, El Paso (Alam et al., 1998), one of the problems experienced

was the lack of rigidity with the system as a whole. This lack of rigidity could contribute

to erroneous data as a result of linear displacement of the specimen during dynamic

testing since the system will deform slightly when induced by high-pressure loads. To

avoid such a problem with this system, connectivity of components of the cell was

examined prior to the construction. Where components interfaced with an o-ring

incorporated to act as a seal, allowance was made to ensure that the groove in which the

o-ring was seated provided proper volume to contain the compressed seal. This would

allow the mating components to achieve surface-to-surface contact thereby producing a

rigid connection. The center vertical core of the cell is configured to allow for all forces

from the piston to be directed normal to the base plate without rotation or movement

from an inclusive component. The base platen and piston employ both end bearing and

thread bearing from a threaded rod and piston shaft respectively. This compliment of

connectivity creates an extremely stable union of components.

Finally, a great effort was made to produce a system that not only would be simple

to manufacture and operate, but would also be as cost effective as requirements would

allow. Utilizing available raw metal shapes and specifying proper tolerances of

machining constructed a relatively inexpensive cell. Components that required a high










degree of machining effort, such as the top and base platen, were specified only after

being investigated for alternative design and necessity for the desired function of the cell.

4.3 Construction and Design

The cyclic loading and pore pressure conditioning system is composed of six sub

systems:

1. Modified triaxial cell
2. High-pressure water distribution system
3. Data acquisition system (Material Testing Systems (MTS) Model 810)
4. Hydraulic load frame (MTS 22 kip)
5. Low temperature water conditioner
6. High temperature water conditioner

A schematic of the system components is shown in Figure 4-1. Although the

conditioning of samples at temperatures below room temperature was not used during the


Axial MTS Load MTS Load
Force Frame Cell




Water Water Triaxial Pressure Transducers
Pressurization Distribution o Cell Thermocouple
System Panel LVDTs

Water
Heater
[_7 FWater
Chiller "

-MTS -
Controller -

Data
Acquisition



Figure 4-1. Schematic of the Cyclic Loading and Pore Pressure Conditioning System
Components.









research reflected in this paper, the ability to do this was an integral part of the design of

the cyclic loading and pore pressure conditioning system.

4.3.1 Cyclic Loading and Pore Pressure Conditioning System Design

The design for the modified triaxial cell was approached in the following order:

1. Determination of parameters of targeted testing that dictated design elements of the
cell (e.g., size of specimens to be tested, instrumentation to be integrated with the
cell, and system pressure)

2. Piston assembly design

3. Top and base plate design

4. Strut design and bearing capacity calculation

5. End platen design

6. Confining cylinder selection

7. Confining ring design

8. Seal selection and placement

9. Component tolerance specification

10. Radial LVDT holder design

4.3.1.1 Design parameters determination

The design specimen height was arrived at as a compromise between recommended

aspect ratios for the two primary tests of the system, hydraulic conductivity

(permeability) and resilient modulus. During the literature review of permeability

testing, an aspect ratio recommendation was found to be from 0.5 to 1.0 (Carpenter and

Stephenson, 1986). This translates into a specimen height of 2-4 inches (50-100

millimeters). The recommended aspect ratio of a specimen for resilient modulus testing

is 1.50, which translated into a specimen 6 inches (150 millimeters) high. A









compromised design specimen height of 5.5 inches (137.5 millimeters) was decided upon

in order to facilitate both of these tests into one device.

The cell was also designed for the development of a new test in which large

confining pressures would be placed onto the specimen to induce a failure in tension.

This meant that the cell would be expected to contain larger pressures than those in

typical triaxial cells. Based upon the mechanics of the anticipated failure, the cell was

designed to contain 400 psi of fluid pressure.

At this point in the design process, as with all new equipment development,

reasonable engineering judgment needed to be applied for certain parameters. One of

these parameters is the length of piston stroke required for the desired test. As will be

discussed later, the design of the top platen assembly required that the maximum stroke

length be minimized to maintain sealing integrity. Based on review of previous

compression to failure testing, the maximum stroke length was concluded to be 0.75

inches.

Another issue of design was how large the cell needed to be made in order to

minimize structural stresses and facilitate specimen installation. A thorough effort was

made to limit the overall size of the cell without making it so compact as to interfere with

specimen installation and subsequent data acquisition instrumentation such as linear

variable displacement transducers (LVDTs). This effort was made out of structural

concerns with regards to the sizing of the supporting struts (vertical support members)

compared to the end area of the cell. As the interior diameter of the cell increased, so too

did the diameter of the four supporting struts required to restrain the resulting force on

the top and bottom plates of the cell. The four struts that maintain the position of the










base and top plates are analogous to the columns of a building. However, unlike

columns, the struts must maintain forces in tension since the interior of the cell is

pressurized. Therefore, the resulting tension forces acting on the struts will increase as

the end areas of the cell (top and base plates) increase. An optimization of end area

versus strut diameter was performed to produce an interior cell cavity that was adequately

sized to install instrumentation, yet compact enough for reasonable structural component

sizing. The cell is intended for 4-inch (100 millimeter) diameter specimens with an

aspect ratio of 1.25-1.50. Side views of the cell components are shown in Figures 4-2


A

A
,/


1" 0 SHAFT

-SHAFT BEARING
BUTTON HEAD SCREW
3" L SOCKET HEAD BOLT
CONFINING RING
S --- TOP PLATE

S 1.25" 0 STRUT

CONFINING
CYLINDER


PISTON SLEEVE
PISTON

TOP PLATEN

BASE PLATEN

RISER

BASE PLATE


Figure 4-2. Cut-away of the Loading and Conditioning Triaxial Cell-Front View.


II~










and 4-3. All components are fabricated of 303 stainless steel with the exception of the

piston, end platens, and the confining cylinder, which were made from 6061-T6

aluminum. Stainless steel was chosen for four reasons, 1) availability, 2) high strength to

unit area ratio, 3) ease of machining, and 4) corrosion resistance. Aluminum was the

logical choice for components such as the confining cylinder where weight was an issue

and the end platens and piston where intricate design details precluded the use of

hardened steel.


Figure 4-3. Cut-away of the Loading and Conditioning Triaxial Cell-Rotated 450 from
Front View.


1" 0 SHAFT

SHAFT BEARING

BUTTON HEAD SCREW
1" L SOCKET HEAD BOLT -
CONFINING RING
%




TOP PLATE
BUTTON HEAD SCREW

PISTON SLEEVE
WATER DISTRIBUTION
CONDUIT
PISTON
TOP PLATEN

CONFINING CYLINDER
1.25" 0 STRUT
BASE PLATEN

RISER

BASE PLATE









Throughout the design process, corrosion control of components was a factor of

material selection. Owing to the aggressive environment that these components operate

in, the potential for reaction between dissimilar metals was an issue for design.

Aluminum and stainless steel are considered "compatible", as shown in galvanic series

charts, when one material is finished with at least one coat of anodizing primer (Juvinall,

1983). Where aluminum was used, these components were anodized to retard the

corrosion process. Anodizing of aluminum alloys produces a stable aluminum oxide film

that provides substantial corrosion resistance (Juvinall, 1983). Additionally, separation

between aluminum and stainless steel components was provided via buna-N o-rings,

which further assisted with the dampening of electrical current flow through the

dissimilar metal interface.

With the major design parameters defined, efforts were directed to the design of the

individual components.

4.3.1.2 Piston assembly design

The piston assembly was a logical place to begin the design process in that it

dictated many of the subsequent component designs. It was imperative that the sizing

and function of the piston assembly be determined prior to the design and manufacture of

the remaining cell components. As was previously mentioned, the most prominent

distinction between the cyclic loading and pore pressure conditioning system and

traditionally manufactured cells is the piston-sleeve assembly. The challenge of the

design was to create an assembly that would yield low frictional contributions while

simultaneously providing a leak-proof barrier between the interface of the cell and the

atmosphere. The initial piston-sleeve assembly design consisted of a Frelon bearing for

a sleeve and a custom fabricated stainless steel cylinder for a piston. A Frelon bearing









is a commonly used bearing constructed of a hollow, aluminum cylinder that is lined with

a sheet of the low-friction material Frelon. The opinion at the time was that the

Frelon bearing would act as a low friction surface for the cylinder to cycle on while, at

the same time, preventing water from emigrating from the triaxial cell interior, past the

Frelon bearing, and to the exterior of the cell. The foremost advantage to this design

was the immediate availability of the bearing from several suppliers with bore diameters

of 4 inch and 6 inch common. After procuring a bearing for a determination of

suitability, several weaknesses were discovered. First, the sheet of Frelon that lines the

bore is glued to the inside of the aluminum cylinder and results in a poor quality seam

where the two ends of the sheet union. After consideration, it was decided that this seam

would not be capable of restraining the increasing water pressure from within the cell

during a typical testing sequence. Secondly, the roundness from true of the interior of the

bearing (bore) varied in excess of 0.003 inches in diameter that would make the

complimentary mating of a piston difficult. After consulting with several area

machinists, it was concluded that even if a matching piston could be manufactured, the

precision required between the piston and the Frelon bearing to accomplish the

aforementioned goals is too high and not practical nor cost effective for the project.

The next consideration for a piston assembly was more tolerant of geometric

imperfections and proved easier and less costly to fabricate. The piston assembly is

composed of two main components, a piston sleeve and a piston. The piston sleeve is

affixed to the top plate of the cell and acts as a fixed member for the piston to travel

within. As is illustrated in Figure 4-4, the piston sleeve was constructed using stainless

steel. This material was selected for its ability to be machined to very high tolerances












and polished for low frictional contributions of seals in contact with the interior surface.


Additionally, this component required welding as part of its manufacture thereby


dismissing aluminum as a viable candidate. As can be seen in Figure 4-4, the piston


sleeve contains a flanged ring allowing for the passage of bolts to secure it to the top


plate. This flanged ring was welded to the tubular portion of the piston sleeve, which


made fabrication costs lower than if the piston were to be machined from a solid piece of


material. The utilization of available geometric shapes and sizes from material suppliers


not only expedited the construction process, but also aided with the creation of a cost-


effective cell.


O 1 00 SHAFT
(SHOWN FOR ILLUSTRATIVE
PURPOSES ONLY)
ENTRY FOR WATER
SUPPLY LINE
SL FLANGE-MOUNTED SELF ALIGNING
BEARING, 1 00 I D, 2 81L, FRELON LINED,
MOUNT W/ FOUR (4) 250-28UNF-3A x 1 OOL,
TOP PLATE 18-8 SS, BUTTON HEAD CAP SCREWS
0 9 80 x 1 00 THK
SS303




PISTON SLEEVE, 4 25L, SS 303,
MOUNT TO TOP PLATE W/ FOUR (4)
250-28UNF-3Ax 75L, 18-8 SS,
BUTTON HEAD CAP SCREWS

PISTON PLATE COVER
MOUNT TO PISTON W/ ONE (1)
250-20UNC-3Ax 75L, NITRILE LIP-TYPE SEAL
SLOTTED, 18-8SS, 3 501 D,4 00 D,
FLAT HEAD SCREW 250 WDE x 375 HIGH




PISTON




Figure 4-4. Detail of the Piston Assembly.


Conversely, the piston is machined from a billet of aluminum to provide the


strength necessary for compression-based tests. The piston contains two inscribed


grooves about its circumference designed to receive flexible seals. Although one seal









would have been adequate for this application, duplicity was chosen to further steady the

piston inside of the sleeve and act as a backup if the primary seal were to fail. Due to the

critical role these seals play in the successful operation of the cell, the grooves were

designed to compliment the component specifications of the seals. These seals are made

of wear-resistant nitrile lip seals and resemble a flared "U." They are installed into the

grooves of the piston cupped in the downward direction, which forces any increase in

water pressure to act within and outwardly through the seal. This change of pressure

increases the "squeeze" of the seal onto the interior surface of the piston sleeve. These

seals are appropriate for this application in that as they wear at the contact surface, the

downward cup design compensates by allowing the seal to open to a greater degree,

thereby assuring a tight seal against the piston sleeve. This attribute provides a much

longer service life than could be expected from other seals having a more symmetrically

shaped profile. Seals with a symmetrical profile such as o-rings, are less forgiving of an

uneven wear pattern and are not appropriate to dynamic applications.

This configuration has performed extremely well in proof testing and throughout

several production tests, having successfully prevented any bypass of water from the

cell's interior. For the purpose of design, the seals are considered to be consumable

components of the test system and will eventually require replacement. After many

sequences of testing, the seals have performed up to the design goal and indicate no

visible signs of wear.

4.3.1.3 Top and base plate design

The thickness of the base and top plate is a function of the bearing capacity

required from the struts onto the plate and was calculated with a factor of safety of 2 at









the maximum safe operating pressure of 800 psi. It was anticipated that the cell would

operate in the range of 0-400 psi for the types of tests the system was being designed for.

The base plate performs three basic functions. First, it acts as a staging platform

for other components of the system. Secondly, it contains the watertight entrances for

instrumentation cables entering the cell, and thirdly, it includes the conduits for

pressurized water entry both through and around the specimen.

There are four ports (thru holes) that were specified for use with plug-in type

fittings available from Geotechnical Consulting & Testing Systems (GCTS), Tempe,

Arizona. These fittings consist of hollow cored, threaded male and female pieces that,

when tightened together, compress a confined o-ring, thereby sealing the interface. The

cables for instrumentation used for the system can be chased through these assemblies,

allowing for easy installation of any combination of instruments into the cell. These

cables exit the cell's interior and are neatly chased via grooves in the bottom of the plate

to the data acquisition system.

The protocols for testing require that the system be capable of circulating water

both through and around the specimen. The ability to transport water through the

specimen is essential for achieving saturation and also is essential for permeability

testing. In order to apply fluid pressure around the specimen and condition it to the

testing temperature, it was required to have an entrance for fluid coming from the water

distribution panel. With these requirements in mind, the base plate has two 1/8-in

diameter conduits that run through the center of the base plate terminating at the

specimen location and the cell cavity location.









The thickness of material chosen for the base plate was dependent upon the

required bearing surface area of the threaded struts that fastened into the plate. An

optimization was conducted to size the struts versus the thickness of the plate (see strut

design for further discussion).

The primary function of the top plate is to act as a platform for the piston assembly.

The plate is fastened to the four struts via socket head screws that pass through the plate.

At this point in the design process, a block shear type of failure about the socket head

screw had not been investigated. This analysis was conducted in the following

component phase therefore, at this point, the thickness of the plate was assumed to be 1

inch. The piston assembly is fastened to the lower face of the top plate with four (4)

stainless steel button head cap screws. A 1-inch inside diameter flange-mounted self-

aligning bearing is fastened to the upper face of the plate to guide the travel of the rod

attached to the piston, shown in Figure 4-4. The incorporation of a self-aligning bearing

eliminates the potential for damage to the piston sleeve from a misaligned piston. Both

the piston assembly and the self-aligning bearing are capable of being adjusted about the

vertical axis of the cell to ensure proper alignment of the end platens on either end of the

specimen.

The top plate contains two 0.50-inch diameter holes that allow the exiting of fluid

from within the cell. One hole is located such that it falls over the piston. This hole

allows for the placement of copper tubing for the transport of water from the top of the

specimen. The second hole is positioned outside of the piston assembly profile providing

an outlet for temperature-conditioned water or an inlet for pressurized air.











4.3.1.4 Strut design

By this time in the design process, the diameter of the struts was already


determined during the optimization process within the base plate design stage. The


connectivity of the struts to the plates was determined based upon methodology of


construction. As can be derived from the connection detail shown in Figure 4-5, the


success of an adequate seal along an o-ring is dependent upon the uniform compression


of these seals along the length of the o-ring. To ensure uniformity, the separation


between the top and bottom plates must be tolerable within a fraction of the o-ring's


diameter. If, for example, the distance of separation were too far out of tolerance, one


portion of the o-ring would contact before the opposing side, creating an inadequate seal.


Designing a strut that would be capable of adjustment was therefore necessary to ensure


uniformity of seal compression.



S 0 250-28UNF-3A SAE 2,
75L BUTTON HEAD CAP
SCREW
0 500-20UNF-3A SAE 2,-
1 00L SOCKET HEAD
BOLT O-RING PARKERR 2-246)

O-RING PARKERR 2-271) TOP PLATE
O-RING (PARKER 2-274)\ 9 80 x 1 00 THK,
O-RING (PARKER 2-275)\\ SS 303


CONFINING RING
OD 1144x 50THK,
SS 303
PISTON SLEEVE
SS 303, 4 25 L


CONFINING CYLINDER
10020 I D x 0 365 THK x
14 60 L, ALUMINUM
6061 T6. SCHEDULE 40


Figure 4-5. Detail of the Connection of the Confining Ring to the Top Plate.











All four struts are typical and are a combination of exterior (male) threading on the


end that interfaces with the base plate, and interior (female) threading on the end


interfacing with the top plate. This combination allows for the struts to be adjusted for


equidistant separation prior to the top plate being installed. Subsequently, as shown in


Figure 4-6, the top plate is secured using the high-strength socket head bolts.


The design of the threaded ends of the struts had to be specified. Since the struts


were to be designed as tension members, the end bearing capacity of the struts were not


considered and the design approach turned to the bearing ability of the threads. Bolts (as


is the assimilation of the male strut end) can fail in tension in four different ways, 1)


thread stripping of the bolt if it is a weaker material than the nut, 2) thread stripping of


the nut if it is a weaker material than the bolt, 3) stripping of the bolt and nut if both are



O-RING PARKERR 2-020)

/ 0 .250-28UNF-3A SAE 2,
.75L BUTTON HEAD CAP
SCREW
0 .625-18UNF-3A SAE 5, /
3.00L SOCKET HEAD
BOLT O-RING PARKERR 2-246)

O-RING PARKERR 2-271) TOP PLATE
O-RING (PARKER 2-274) 0 9.80 x 1.00 THK.,
O-RING PARKERR 2-275) SS 303


CONFINING RING
O.D. 11.44 x .50 THK.,
SS 303
PISTON SLEEVE
STRUT SS 303, 4.25 L
0 1.25 x 14.250 L,
SS 303

CONFINING CYLINDER
10.020 I.D. x 0.365 THK. x
14.60 L, ALUMINUM
6061 T6, SCHEDULE 40


Figure 4-6. Detail of the Connection of the Strut to the Top Plate.









of similar material, and 4) shearing of the bolt if thread bearing strength surpasses the

bolt's tensile strength (Juvinall, 1983). In the case of the base plate connection, where

the strut (bolt) and the base plate (nut) are of the same material and limited engagement

depth precludes shearing of the strut, failure mode 3 controlled the design.

Based upon the geometry of the cell, the pressures it is designed to contain, and an

applied factor of safety of 2, the resulting tension force anticipated for each strut was

calculated as 15.7 kips. The bolt tensile force required to yield the entire threaded cross

section is defined as:

F=AtSY (0.9d)l2S (Equation 4-1)


where: F = bolt tensile load required to yield the entire thread-stripping failure

surface of the strut (kips)

At = total surface area of threads resisting tensile force (in2)

Sy = yield strength of strut (0.2% offset) (ksi)

D = major diameter of the strut (in)

The bolt tensile load required to yield the entire thread-stripping failure surface of

the base plate is defined as:

F = d(0.75t)(0.58S ) (Equation 4-2)

where: F = bolt tensile load required to yield the entire thread-stripping failure

surface of the base plate (kips)

d = major diameter of the strut (in)

t = depth of engagement into the base plate (in)

Sy = yield strength of strut (0.2 % offset) (ksi)









Equating the former two expressions for F yields balanced tensile and thread-

stripping strengths when the depth of engagement is approximately:

t=0.47d (Equation 4-3)

The process for calculating the design of the strut to base plate connection was as

follows:

* Calculate depth of engagement using Equation 4.3

* Arbitrarily choose a thread designation and, by using the depth of engagement t
solved for in step 1, determine the corresponding bolt tensile load required to yield
the entire thread-stripping failure surface of the base plate, F, as defined in
Equation 4.1

* Continue with iterations of differing thread designations until F, as defined in
Equation 4.2 approximates the design resistance force of 15.7 kips as defined for
the design

The design of the strut to top plate connection utilized the same methodology as the

previous connection with the primary exception being that it has inside threads and

utilizes a socket head bolt, as shown in Figure 4-6. The socket head bolts are Society of

Automotive Engineers (SAE) Grade 5, with yield strength, Sy, of 92 ksi. For all sense

and purpose, this level of strength far exceeds the requirement of this application.

However, the cost of these bolts was reasonably low and the added level of strength is of

value when considering this added strength effectively removes a failure mode from

probability. The additional failure modes that needed to be checked were:

* Shearing at the reduced-area cross section
* Shearing of the bolt
* Block failure (pullout) of the top plate about the socket head and bolt interface

With the design of these connections accomplished, the structural core of the

system was complete. The following components would be designed to compliment this

structure.









4.3.1.5 End platen design

The approach for the design of the end platens began with a review of needs for this

component from each test. Depending upon the test, these platens needed to perform

different tasks. For example, tests such as resilient modulus and drained and undrained

compression required that the platens resist induced compressive stresses. Additionally,

any contributory end effects resulting from friction between the platens and the

specimen's ends needed to be minimized as much as design would allow. Other tests

such as constant and falling head hydraulic conductivity (permeability) placed a greater

emphasis on the ability of the platens to conduct and distribute water with a minimal

amount of interference. It is the opinion of this researcher that existing designs do not

efficiently allow the transport of fluid through the specimen but rather force the fluid

through specific and limited paths, thereby introducing error into the test. This becomes

evident when an inventory of losses due to constrictions, expansions, and bends along the

fluid's path is made. After consideration of the requirements it was concluded that

different platens would be required for different tests.

Unlike more commonly used end platens, which distribute water via one hole and

conducting grooves or dimples, those in the cyclic loading and pore pressure conditioning

system contain many orifices across its surface. This allowed water to be transported

through the test specimen uniformly and without concern for isolated piping or excessive

pressure gradient development. Additionally, these platens are fabricated with concentric

grooves to better distribute the water across the face of the specimen. This configuration

is also advantageous in the initial specimen saturation phase since it allows for a front of

fluid to pass through the specimen, which more effectively liberates entrapped air









bubbles. The presence of conducting channels across the entire profile of the platens

diminishes the likelihood of entrapped air bubbles between the platens and the specimen.

The complexity of the profile coupled with the relatively small conducting orifices

specified dismissed stainless steel as a material candidate. Aluminum was chosen due to

its relative ease of machining and ability to harden to a level required for use by

anodizing the part. Both the top and the bottom platen have identical profiles. This

similarity ensures conservation of volume in and out of the specimen and decreases

production costs since only one profile had to be identified for machining.

The top platen is basically a plate that caps the end of the piston. It is fastened via

a screw into the piston which when tightened, compresses an o-ring placed between the

two mating parts that prevents water from being conducted through the mated seam. The

base platen is attached to the base plate via a threaded stud that also assists with the

proper, concentric alignment of the platen about the cell. A concentric, half-round

groove is machined into the mating face of the platen for installation of an o-ring serving

the same purpose, as does the aforementioned o-ring. Machined into the circumference

of the platen are two half-round grooves that are used to "seat" the o-rings that hold the

latex membrane to it. Additionally, a 1.0 inch high hollow riser was manufactured that

can be placed between the base plate and platen. The option of using a riser allows a

specimen height range of 5-6 inches (127.0-152.4 millimeters).

For compression-based testing it was necessary to protect the faces of the platens

from marring and increased damage. Additionally, the concentric grooving in the face of

the platens introduced an unfavorable end constraint of the specimen. To lessen these

end effects, several sets of low friction, high-strength Duron platens were fabricated to









fit between the aluminum platens and the specimen. These Duron platens are

mechanically fastened to the aluminum end platens to prevent any shifting during testing.

Additionally, they contain concentrically positioned holes that compliment the location of

the grooves contained in the aluminum platens, thereby still allowing a method to saturate

a specimen and determine its hydraulic conductivity prior to compressive testing.

4.3.1.6 Confining cylinder design

Due to the large diameter of the cell, the availability of cylindrically shaped

material was limited. Early in the design process, it was understood that the larger the

cell's diameter became, the less number of incremental diameters of confining cylinder

would be available. With this in mind, the selection of a suitable material/diameter

combination was researched. Since the cell would be operating at much higher pressures

than typical triaxial cells, plastics, such as the commonly used material Lucite with a

maximum allowable wall pressure of 150 psi, would not be adequate.

The finished length of the confining cylinder, considering cumulative compression

of o-rings, was calculated as 14.60 inches with a required diameter of approximately 9.5

inches or larger to accommodate the struts, specimen, and instrumentation within the

cylinder. Since this component would require constant removal and reinstallation for

testing, the overall weight was a concern for two reasons, 1) physical requirements for

any future operators (i.e., strength) were not reasonable to assume, and 2) as the weight

of the cylinder increases and becomes more unwieldy, so too does the potential for

damage attributed to mishandled or colliding parts. Therefore, relatively dense materials

such as stainless steel were excluded from consideration. Aluminum alloys were

researched for adequacy and availability. Aluminum 6061-T6 weighs approximately

0.10 lb/in3, which is roughly one-third the weight of a stainless steel material. A 10 inch









nominal diameter, schedule 40 pipe was located which has yield strength of 40 ksi. The

anticipated maximum hoop stress was calculated as (Beer and Johnston, 1992):


Chop = (factor of safety j (Equation 4-4)


where: P = maximum operating pressure (psi)

r = inside radius of cylinder (in)

t = cylinder wall thickness (in)

With a factor of safety of 2, the hoop stress was calculated as 10.98 ksi, far below

the allowable stress of the material. Although thinner walled material was available, it

would not have been adequate since this narrower dimension would have created

difficulties mating with the o-ring seals at the ends of the cylinder. It is of value to note

that pipe of this dimension and material type is difficult to locate. This type and size pipe

is used in specialized applications such as electric generation plants and is manufactured

in lengths exceeding 10 feet. The procurement of a 15 inch long piece of these segments

entailed a special cutting fee. The cylinder, while being structurally adequate, does raise

a concern with similarly designed cells that may be constructed in the future. Owing to

the fabrication method and subsequent storage of the material at the manufacturer, the

material is slightly out of round when purchased. This distortion makes the mating of the

cylinder to the o-rings contained in the lower and upper portions of the cell more difficult

than if the cylinder were truly round. If additional cells are manufactured in the future,

thicker walled cylinders are recommended followed by a center-less ground method of

machining to create a cylinder that is truly round.









4.3.1.7 Confining ring design

The confining ring is one of the most critical of all the components. The ring

compresses the seals in contact with the confining cylinder and the seal inset into the

exterior face of the top plate that prevents the migration of pressurized fluid from the

interior of the cell. The ring is attached to the top plate via four 1 inch long socket head

bolts. These bolts resist the force applied to the ring through a gap between the confining

cylinder and the top plate. The force against the ring is relatively small compared to

forces exerted onto other components. For this reason, the nominal thickness of the ring

is 0.50 inches. The socket head bolts employ flat washers between them and the surface

of the confining ring to increase the contact area with the ring. The ring was analyzed for

block shear about the bolts as well as stripping type failures of the bolt to top plate

connection.

The confining ring has a recessed, concentrically located channel machined into the

face that contacts the confining cylinder. This channel helps to align the top of the

confining cylinder within the ring thereby "locking" the two components together. Two

semi circular grooves are placed into the channel for the placement of o-rings where the

confining ring interfaces with the confining cylinder. Four thru holes are positioned into

the ring at locations that complement the bolt heads that connect the top plate to the

struts. An additional thru hole is provided which fits over a quick disconnect fitting

installed into the top plate allowing fluid to be cycled through the cell's interior.

4.3.1.8 Radial LVDT holder design

The use of LVDTs is necessary for the computation of the variation of the cross

sectional area of the specimen during failure testing in compression. These LVDTs are

positioned such that they are normal to the cylindrical surface of the specimen in 900









increments. A holder was designed that allows for the installation of four LVDTs in this

configuration. Machined from aluminum and anodized for corrosion resistance, the

holder contains four thru holes that allow the holder to be integrated with the struts of the

cell. Slightly oversized, these thru holes enable the holder to travel to any position along

the length of the struts. Once positioned, the holder is affixed to the struts via eight

nylon-tipped, stainless steel setscrews. The nylon tip prevents marring of the strut and is

intended for applications where the setscrew is continuously reengaged. The LVDTs are

placed into the holder via thru holes and restrained with stainless steel set screws. This

simple configuration allows for rapid positioning of the devices at any position along the

length of the specimen.

4.3.1.9 Seal selection and placement

With the exception of the U-cup seals used for the piston, all other seals were

accomplished with buna-N o-rings supplied by Parker Seals, Inc. Buna-N nitrilee) is a

commonly used o-ring material that is available in a wide range of diameters and cross

sectional thickness. Table 4-1 lists the technical specification details related to the o-

rings. This material is resistant to petroleum-based fluids and maintains its shape and

pliability after a high number of compression cycles. The combination of these factors

was necessary for the anticipated use of these o-rings. The design of all components

relying on these seals was performed simultaneously with the o-ring selection process.

This coordination ensured that specially sized o-rings would not have to be

manufactured.

As shown in Figures 4-5 and 4-6, the o-rings are placed such that as the cell is

assembled, the proper alignment of the o-rings with the corresponding component can be

achieved easily. The cross sectional diameter of the o-rings was chosen such that an









equivalent degree of compression of all the o-rings is accomplished following the

tightening of the cap head bolts about the confining ring. The consideration of group-

dependent compression of the o-rings is critical to ensure that each individual seal is

properly compressed to maintain the confinement pressure.

Table 4-1. Nitrile O-ring Schedule.
Parker N
Number
Component Part Application Description
Number
S10-341 1 Interface between confining cylinder and base plate
Base Plate
2-008 4 Sealant for cables exiting thru base plate
S2-272 1 Interface between top plate and confining ring
Top Plate
2-160 1 Interface between top plate and Frelon bearing
Strut 2-118 4 Interface between top of strut and top plate
SInterface between confining ring and confining
Confining Ring .
Con g Rg 2-275 1 cylinder
Piston Plate 2-044 2 Restraining rings for membrane to piston plate
IPiston Pe nterface between piston plate cover and piston
Piston Plate Cover -0 1
2-044 1 plate
SP 2-044 2 Restraining rings for membrane to piston platen
Base Platen #1
2-042 1 Interface between base platen and base plate
SP 2-044 2 Restraining rings for membrane to piston platen
Base Platen #2
2-042 1 Interface between base platen and base plate


The grooves that accept the o-rings are predominately square in profile and of

adequate cross sectional area to allow for the total inclusion of the o-ring upon

compression. As was previously discussed in the design considerations section, this

provision allows for proper sealing while simultaneously facilitating rigidity at the

interface developed from the surface-to-surface contact. Where the aluminum base

platen interfaces with the base plate, a semi-circular groove profile was specified. This

shape allows for the inclusion of only half of the cross section with the remaining half

being reserved for compressed deformation in the area between the two components.

This configuration is intentional to prevent galvanic corrosion between these two









components. Where contact occurs between aluminum alloy and stainless steel,

corrosion will be accelerated (Juvinall, 1983). Aluminum is more anodic than steel and

therefore will have the greater tendency to ionize and develop a greater negative charge

(electrode potential). The aluminum component acts as an anode and the steel a cathode,

thereby allowing for the development of an electrical current flowing from the aluminum

to the steel. This continuous discharge of aluminum ions will eventually corrode that

part. Another type of corrosion, electrochemical corrosion, can occur if these parts are

placed in an electrolytic solution such as fresh water or water with a high salt content.

An electrolytic solution acts as an ion carrier with positively charged aluminum ions

going into solution leaving an excess of negatively charged electrons on the component

(electrode). This action will continue until a condition of equilibrium is reached

(Halliday, Resnick, and Krane, 1992). Since these components function in an

environment where water is repeatedly drained from and refilled into the cell, equilibrium

would not occur and continued corrosion could be expected.

The combined use of an insulator nitrilee o-ring) and de-ionized water as a

confining fluid helps to lesson the potential for corrosion of these components.

Additionally, the aluminum base platen and riser was anodized to fill in the porous

surface of the material, making it more resistant to the effects of corrosion and hardening

it to protect the surface from abrasion. Compared to the cost of machining the intricate

platen, the relatively small cost to anodize the part is prudent for maintaining its integrity.

4.3.1.10 Instrumentation ports

With these components designed, attention then turned towards the requirements

for instrumentation incorporated with the cell. As a minimum, it was decided that a total

of five sealed "ports" were needed to analyze the specimen during testing. Of these









ports, two are designated for axial LVDTs, two for radial LVDTs, and one for

temperature monitoring by way of a thermistor probe. With the exception of the

thermistor probe which is connected to an outlet conduit at the top of the cell, the

remaining instruments exit the cell through the base plate and are chased neatly to the

back of the cell. In order to ensure there are no leaks when the LVDT cables penetrate

through the base plate, special two-piece fittings were procured. These fittings were

designed such that as the two parts are screwed together an o-ring compresses against the

cable that is passed through the two parts, thereby effectively sealing the penetration.

Additionally, the two-part assembly contains an outer o-ring that seals against a bore

made through the base plate. This configuration makes instrument installation of the cell

rapid and flexible with regards to configuration.

4.3.1.11 Component tolerance specification

The specification of dimensional tolerance was required as part of the design

process, as it is with any machine design. Since two different materials (aluminum alloy

and stainless steel) were used in the cell, thermal expansion effects needed to be

considered.

The only moveable component in the cell is the piston. As a result, this component

and the tolerance of the sleeve it oscillates within, warranted special consideration.

Calculation of dimensional tolerance was accomplished using tables published by the

American National Standard Institute (ANSI, 1978). The piston sleeve assembly was

considered as a running clearance fit, which is typical for applications requiring lubricant

between the piston and sleeve (Earle, 1994). Although it was not intended for lubricant

to be used, the gap created between the two components ensured that there would not be

any abrasion due to contact. Any contact could cause unrecoverable damage to the









surface of the piston and diminishing the effectiveness of the u-cup lip seals. The

calculated tolerances were then checked versus the anticipated expansion of the piston

and sleeve to ensure that a gap would still exist at high testing temperatures. For

calculation, the high test temperature was taken as 140oF. Coefficients of thermal

expansion were taken as 12 x 10-6 in/F for aluminum alloy and 8x10-6 in/F for stainless

steel (Juvinall, 1983). As can be seen from these values, the higher coefficient of thermal

expansion for the aluminum alloy piston validated the design considerations. If the gap

between the piston and the sleeve were too small, the piston could become engaged with

the sleeve at high operating temperatures. Since the piston was to be anodized, the

diameter and tolerance were defined as post-coating.

All thru-hole locations were specified using rectangular coordinates. Over-sizing

of holes, in locations where bolts would be used, was specified with common drill

diameters. This relieved the fabricator from the needless effort of obtaining an over-

prescribed tolerance. This over-sizing made all the mechanical connection points flexible

with regards to orientation of the mating parts. This flexibility allowed for mild

adjustments, which created optimal sealing conditions for the structural components.

The length of the confining cylinder was defined to the hundredth of an inch. Although a

more stringent overall length could have been specified, doing so would have placed an

undue burden on the fabricator and resulted in higher than necessary cost. The ability for

the struts to be lowered or raised meant that the clear distance of the top and bottom plate

controlled with the struts could correct any error in the overall length of the confining

cylinder.










Square-profiled grooves for o-rings were specified to a tolerance as recommended

by the manufacturer. These tolerances represent the manufactured tolerance of the o-

rings, which, due to their elastic property, can adjust to minor dimensional intolerance.

4.3.2 Fluid Distribution System

The fluid distribution system is critical for effective stress state tests and cyclic

pore pressure conditioning without any other application of stresses. The system is

composed of four basic components, 1) a hydraulically driven volume changer, 2) a 50

mL capacity graduated burette/annulus, 3) a manually controlled fluid routing board, and

4) a vacuum/pressurized air control panel. A schematic of this system is shown in Figure

4-7.



Vacuu m/Pressurize
Air Control Panel


3 E

0)


o, To Sample Top

,_To Sample Bottom


OTo Burette


To Annulus!


Figure 4-7. Schematic of the Fluid Distribution System.









The water delivery and pressurization system is separate and free standing from the

cell. All fittings and conduits are high-pressure capacity with the minimum pressure

fitting having a capacity of 1200 psi. This surplus of capacity over and beyond the

maximum test pressure is owed to the availability of fittings from common suppliers.

The valves are gate valves manufactured from carbon steel.

In determining the layout of the distribution lines, an effort was made to limit the

length of each respective line. In long conduits, a phenomenon referred to as a dynamic

front can occur where pressure exerted at one end of the conduit is delayed from

developing at the opposite end of the line. This is attributed to sidewall friction, which

retards the pressure transmittance. The valves were positioned such that they limit the

length of conduit between the area of interest and the pressure transducer monitoring that

line.

The system is pressure-driven via a servo-controlled, hydraulically actuated volume

changer. This volume changer acts similarly to a syringe in that it draws water from a

bore-type reservoir and then plunges this water into the system. Through a network of

unidirectional valves, the volume changer is capable of refilling with de-aired water from

an inline storage reservoir without allowing a decrease in pressure in the network beyond

it. From the volume changer, pressurized water can be distributed through one or any

combination of three conduits, bottom of specimen, top of specimen, or cell interior

(confining space around the specimen). Each of these three lines is monitored with a

pressure transducer that communicates to the volume changer through a system

controller, thereby allowing for the control of exerted pressures within and around the

specimen. This closed loop control allows for precise measurement and rapid monitoring









of pressure. Additionally, the volume changer is monitored by an LVDT, which reports

the displacement of the piston within it. As with the pressure transducers, this LVDT

acts in a closed loop with the system controller allowing for rapid monitoring and

command of positioning. By calibrating the volume of water discharged from the volume

changer per linear displacement, the quantity of fluid forced through the specimen can be

determined. This is a critical design element in that this quantity allows for the

verification of saturation of the specimen.

In order to protect the cell against damage due to an accidental over-pressure, a

blow-off valve was installed in the distribution system that is gauged to open if line

pressure exceeds 400 psi. This valve is located in the distribution line that supplies water

around the specimen. This position was logical since the test with the greatest anticipated

pressure is the indirect tension (extension) test wherein the pressure around the specimen

is increased until failure occurs. Since the volume changer is rated at 1200 psi, far

exceeding the capability of the cell, it was believed prudent to allow for the safe release

of unwanted pressure if a system malfunction occurred. Measures such as this are

essential in designing a safe system considering that the relative incompressibility of

water can yield compounding values of pressure with very little displacement of the

volume changer.

The basis for designing this system is for the testing of specimens in effective stress

conditions. Therefore, it is necessary to ensure that the specimen is saturated and that the

fluid used for saturation is free from dissolved air. The water used for all testing is first

de-aired using a 2-liter capacity vortex de-airer. This fluid is then stored in a large

volume until testing. For the initial filling of the cell to begin a testing sequence, the









large volume is drawn on directly via a filling line that utilizes elevation head to expedite

filling. For the distribution of fluid through the specimen, the water is first conveyed to a

smaller storage tank where, through a network of check valves, the fluid can be

introduced into the volume changer or burette.

Backpressure saturation is possible from a water volume storage tank and vacuum

line integrated into the water distribution system. This allows for a specimen to be

installed into the cell and saturated and conditioned in-place prior to testing.

For flow measurements through the specimen, the system is outfitted with a

calibrated 50 mL burette that is designed specifically for use when performing

permeability testing.

4.3.3 Water Temperature Conditioning Systems

For temperature control, the water delivery system can be connected to either a

heater or chiller unit. The heater and chiller are each capable of pumping water through

the water delivery system and into and out of the cell cavity prior to returning in a closed-

loop path. Temperature conditioning in this manner utilizes the principle of conduction

as the mode of energy transference.

The combination of the heating and chiller units allows the test specimen to be

controlled within the range of 2-75C. Unlike other systems which use indirect

conditioning methods (i.e., a closed conduit running through a temperature bath), this

configuration has proven very responsive and capable of conditioning a specimen from

room temperature to the aforementioned range limits in less than 90 minutes. A

discussion on conditioning confirmation with this system is presented later.









4.4 Targeted Testing

The compilation of systems was designed to provide a more efficient manner in

which to perform a multitude of tests in one workstation. The cyclic loading and pore

pressure conditioning system is designed to test asphalt specimens in both effective and

total stress conditions, as well as moisture condition specimens with or without any other

stresses present. Protocols were developed which allowed the system to perform:

* In-place saturation and conditioning
* Constant head permeability determination
* Falling head permeability determination
* Compression testing
* Resilient modulus testing
* Complex modulus testing

Future development will allow the system to perform other tests such as creep

testing and tension testing. The successful development of these protocols will allow the

user to perform a multitude of tests without relocating or damaging the specimen. The

improvements incorporated into this new system also makes the excitation of pore water

pressure more easily controlled, thereby allowing for a better assessment of specimen

response to these pressures.

Cyclic Loading and Pore Pressure Conditioning System Specifications

Overall Dimensions..................... 18.95 inches High x 12.50 inches Diameter

Maximum Operating Pressure.............. ..................... .............. 400 psi

M aximum Design Pressure................................... .. .............. 800 psi

M aximum Piston Travel Length......................... .... ......... 0.75 inches

Specimen Diameter.......................... ............. 4 inches (100 millimeters)

Specim en A spect R atio......................................................... 1.25 1.50

Accessory Ports ................................... 4 Thru Base Plate, 1 Thru Top Plate









LVDT Orientation Capability .............................. ........... 2 Axial, 4 Radial

Volume of W ater to Fill Cell.......................... ............... 3.6 gal (825in3)

Structural Frame Material.............. .................. Stainless Steel 303

Confining Cylinder Material.......................... ............ Aluminum 6061-T6

Piston & End Platen Material....................................... Aluminum 6061-T6

Soft Seal M aterial........... .. .............. ....... ...............Buna-N o-rings

Piston Seal Material.............. ......... .............. 2-Nitrile U-cup Lip Seals

W ater Conditioning R ange.................. .................. ..................... 2-75C

4.5 Temperature Control System

Fluid was used for temperature control. This required the specimen to be sealed

with a 3.048 x 10-4 m (0.012-in.) thick latex membrane during testing. For temperatures

above 2C, circulating water was used for temperature control. The water delivery

system can be connected to either a heater or chiller unit. The heater and chiller are each

capable of pumping water through the water delivery system and into and out of the cell

cavity prior to returning in a closed-loop path. Conditioning in this manner utilizes the

principle of conduction as the mode of energy transference. Figure 4-8 depicts a

schematic of the heating/cooling system used.

The combination of the heating and chiller units allows the test specimen to be

controlled within the range of 2C to 750C. Unlike other systems, which use indirect

conditioning methods (i.e., a closed conduit running through a temperature bath), this

configuration has proven very responsive and capable of conditioning a specimen from

room temperature to the aforementioned range limits in less than 90 minutes.












SWater in










Heating unit
Water out

Cooling unit




Figure 4-8. Diagram of the Water Circulation System that Controls the Sample
Temperature.

At the time the specimen is first placed into the system, it is stabilized at room

temperature. The specimen is surrounded about its circumferential perimeter by

confining water. This water acts as a medium for temperature conditioning of the

specimen. As the temperature-conditioned water surrounding the membrane-encased

specimen is cycled through the system, thermal energy is either drawn from the

specimen, as occurs during cooling, or added to it, as occurs during heating. During the

cooling process, heat is conducted from the specimen to the "colder" confining water; the

opposite is true for the heating process. As this process continues, concentric layers of

the cylindrically shaped specimen reach thermal equilibrium starting from the outer layer

and migrating towards the central core (Qengal, 1997).

The transfer of energy from more energetic particles to less energetic adjacent

particles through interactions is the thermodynamic process of conduction. The equation

for the rate of heat conduction is defined as:









AT
Qcond = kA (Equation 4-5)
Ax

where Qcond = rate of heat conduction, (W)

k = thermal conductivity of the layer, (W/(m-K))

A = area normal to the direction of heat transfer, (m2)

AT = temperature difference across the layer, (K)

Ax = thickness of layer, (m)

The "layer" referenced in the variable definition, Ax, is the latex membrane that

encapsulates the specimen. Thermal conductivity of the latex membrane is

approximately 0.13 W/m K with a thickness, Ax, of 0.3048 mm (0.012 in.). A

circumferential surface area of approximately 0.045 m2 simplifies Equation 4-5 to:

Qcond = 19.1 AT (W) (Equation 4-6)

As can be seen from Equation 4-6, the larger the difference in temperature across

the layer, the greater the rate of heat conduction. Additionally, it can be inferred that, as

the temperature on either side of the layer approaches equilibrium, the rate of heat

conduction decreases. Therefore, to achieve a specimen target temperature rapidly, the

temperature difference between the specimen and the circulating water must be as large

as possible to maximize the rate of heat conduction without surpassing the target

temperature.

4.5.1 Specimen Set-up for Temperature Calibration

The final portion of the specimen to reach temperature equilibrium is the central

core. Therefore, it is this region of the specimen that controls the length of conditioning

time prior to the establishment of thermal equilibrium. Since the testing protocol for

specimen temperature conditioning relies upon conductance for specimen heating or









cooling, it was necessary to plot the change in temperature of the confining water and the

core of the specimen versus time.

Although both the heater and chiller units used with the system digitally report the

water temperature within their fluid reservoirs, thermal losses or gains that occur along

the fluid distribution panel can vary from the reported temperature by several degrees. A

series of trials were conducted for both cooling and heating to determine the most time

conservative sequence to rapidly achieve the target temperature. Since the rate of heat

conduction is directly proportional to the temperature difference across the layer (latex

membrane), initially set temperatures were significantly lower (in the case of cooling) or

higher (in the case of heating) than the target temperature to expedite thermal

equilibrium. The large combined mass of the triaxial cell, water, and components of the

distribution panel required a large rate of energy exchange be implemented in order to

achieve the target temperature.

Two type-K thermocouple probes connected to digital gages were used to report

the temperature of the confining water and the core of the specimen throughout a series

of heating and cooling sequences. The thermocouples used were bare-tip and were

connected to digital gages that had a recording tolerance of +0. 1C. Prior to

implementation, the thermocouples were calibrated using a certified laboratory grade

mercury thermometer. From these calibrations, offsets were determined across the

anticipated range of temperatures. These offsets were applied to the raw recorded data to

derive a time versus temperature relationship.

The calibration of the specimen in conditions as close as is possible to those

anticipated during testing is extremely important to fully account for variables of energy









transference. These variables are present due to thermal sources and sinks (metal cell

components), as well as insulators (latex membrane). Thermocouple 1, used to monitor

the confining water temperature, was installed through one of the accessory ports located

at the base of the triaxial cell. In order to avoid false readings that may have occurred by

contact between the probe and metal components of the cell, the end of the probe was

suspended within the volume of the cell with cotton thread. Thermocouple 2, which was

required to be inside of the specimen, was more difficult to install. To simulate testing

conditions, the specimen was required to be wrapped in the latex membrane thereby

preventing routing of the thermocouple into the cell like that of the formerly discussed

probe. Routing of the thermocouple wire through the cell's piston was eventually

decided as the only viable option to achieve placement of the probe even though it

required dismantling of active components of the system. The specimen used for

calibration was prepared by first cutting the ends to facilitate contact between the

specimen and the end platens. To allow for the installation of the probe into the

specimen, a 0.25-inch diameter hole was drilled into the specimen, parallel with the

longitudinal axis, starting centered on the end of the specimen and terminating at a depth

equal to 12 the length of the specimen. The thermocouple was then inserted through the

cell's piston and into the void in the specimen. In order to affix the thermocouple in its

position and prevent energy transfer from the air-filled void to the end of the piston, the

end of the specimen was sealed with silicone. The specimen was then set aside for 24

hours to allow the silicone to cure. Following the 24-hour cure time, the specimen was

positioned between the end platens, wrapped with latex membrane, and secured to the

end platens with o-rings.









As previously discussed, the installation of the thermocouple into the specimen

required partial dismantling of the piston assembly. The removal of components used to

conduct water through the specimen prevented a saturation sequence as is typical with

test specimens. Therefore, it was decided to calibrate the heating and cooling times of

the specimen in a dry condition. Water is a more efficient conductor of thermal energy

than is air, 0.613 W/(m K) and 0.026 W/(m K), respectively, therefore testing with a

dry specimen yields conservative calibration times for thermal equilibrium.

4.5.2 Method of Cooling and Heating Calibration

At the commencement of the cooling conditioning process, both the specimen and

the conditioning water were approximately 25C which was the typical ambient

temperature of the room in which testing occurred. A multitude of chiller set temperature

combinations were run to determine the most expedient sequence for equilibrium with a

target end temperature of 10C 0. 1C for the specimen. Owing to the efficiency of the

chiller unit, care was taken not to allow the chiller to run lower than the target

temperature for too long. Once the specimen temperature is achieved in the cooling

process, any increase in temperature can only occur due to thermal conduction from the

surrounding warmer environment.

The heating conditioning sequence began with the specimen at approximately the

target temperature of the cooling process (10C). This was done in order to allow for

future nondestructive testing of specimens at low and high temperatures progressively.

As with the temperature combination iterations with the cooling process, those for the

heating process followed the same logic. The target end temperature was set at 400C +

0. 1C for the specimen.









Initially, 60 minutes of conditioning time was the target for achievement of thermal

equilibrium within the specimen. This target conditioning time was used as a basis for

sizing of the heater and chiller used with the system. After several calibration sequences,

it was validated that this limited conditioning time was sufficient to achieve the target

temperature but that an additional 30 minutes would allow for further stabilization.

Although the specimen may be at the target temperature, the entire mass of the system

may not. Therefore, the additional energy exchange can help to bring more of the system

to the target temperature, which acts as a thermal blanket around the specimen.

4.5.3 Cooling Calibration Results

For the target temperature of 10C, the chiller was initially set at 7C. Initial

conditions for the specimen and circulating water were 27. 1C and 25.0C, respectively.

The chiller set temperature was held for 40 minutes at which time the set temperature was

increased to 80C and maintained for an additional 50 minutes. The specimen reached the

target temperature of 10C after a total of 61 minutes of conditioning time. Further

conditioning was conducted for 29 minutes at which time the specimen stabilized to

10.0C. The chiller was then turned off thereby terminating the flow of conditioned

water through the system. The specimen core temperature was monitored for an

additional 30 minutes wherein the end temperature of the specimen was 10. 1C. This

range of temperature (10C + 0. 1C) was considered acceptable for the anticipated

testing. Water circulation was maintained throughout testing.

As is shown in Figure 4-9, the chilled circulating water achieved the set

temperature very rapidly. Prior to stabilizing at the initial set temperature of 7C, the

water temperature is shown to drop to a temperature lower than the set temperature. This

is attributed to the response sensitivity of the chiller itself. In order to rapidly lower the














30.0
25.0
S20.0
15.0
10.0
5.0
0.0
0 10 20 30 40 50 60 70 80 90 100
Time (min)

Chiller @ 7Deg C Chiller @ 8Deg C Specimen Core


Figure 4-9. Graph of the Time vs. Temperature in a Typical GA-C1 Specimen-Chilling
from Room Temperature to 100C.

temperature of the circulating water, the chiller maximizes the amount of energy that it

can draw from the fluid. As the circulating water approaches the set temperature, the

chiller decreases the rate of energy transference, thereby decreasing the change in

temperature per time. As was observed in all cooling sequences conducted, a DT of 18C

(initial temperature of 25C to a set temperature of 7C) was large enough that the

efficiency of the chiller exceeded its ability to decrease the rate of heat conduction. As a

result, the chiller "overshot" its target temperature. Additionally, it is shown that for the

maintenance of the target temperature inside of the specimen, the chiller must be set to a

lower temperature. For a specimen target temperature of 10C, the chiller is required to

be set to 80C. This loss of 2C from the time the fluid left the chiller to reaching the

interior of the cell is attributed to the conditioning water gaining energy from the ambient

temperature as the fluid is conducted through the distribution lines and the cell itself.









The prescribed protocol for cooling the specimen to 100C is summarized as:

* Set chiller to 7C and run for 40 minutes;
* Change chiller set temperature to 80C and run for 50 minutes; and
* Perform testing.

4.5.4 Heating Calibration Results

Initial conditions for the specimen and circulating water at the commencement of

the heating process was 10.2C and 26.5C, respectively. For the target temperature of

40C, the heater was initially set at 450C. The heater set temperature was held for 55

minutes at which time the set temperature was decreased to 400C and maintained for an

additional 35 minutes. At the end of the total 90 minutes of conditioning, the specimen

core temperature had reached 40.0C. The heater was then turned off thereby terminating

the flow of conditioned water through the system. The specimen core temperature was

monitored for an additional 30 minutes wherein the end temperature of the specimen was

39.90C. This range of temperature (40C + 0. 1C) was considered acceptable for the

anticipated testing. During anticipated testing, the heated water circulation is maintained

throughout testing.

As is shown in Figure 4-10, the circulating water achieved the set temperature very

rapidly at which it was allowed to stabilize while the specimen core temperature

increased. Also notable is the near parallelism of the rate of temperature increase in

specimen and heater from 0 to 35 minutes of test time. This parallelism is consistent with

the equation for the rate of heat conduction.

Using this parallelism it was determined that because the sample and the water used

during the conditioning in this research started at a temperature of about 22.0C (71.6F),

instead of the sample having a starting temperature of 10.90C as shown in the graph, less










50.0
45.0
40.0 -
0 35.0
S30.0
s 25.0
a. 20.0
S15.0
1-
10.0
5.0
0.0
0 10 20 30 40 50 60 70 80 90 100
Time (min)

L Heater @ 45DegC Heater @ 40DegC Specimen Core


Figure 4-10. Graph of the Time vs. Temperature in a Typical WR-C1 Specimen-
Heating from 10C to 400C.

time would be required to raise the temperature to the 40.0C. Therefore, the Haake P5

was allowed to run at 45.00C for 30 minutes and then at 40.00C for an additional 15

minutes. At this point the heating blanket would have already been put in place and

would continue maintaining the appropriate temperature in the cell throughout the rest of

the conditioning process.

The prescribed protocol for heating the specimen to 400C is summarized as:

* Set heater to 450C and run for 30 minutes;
* Change heater set temperature to 400C and run for 15 minutes; and
* Perform conditioning sequence.

The protocols for cooling and heating were initially developed using both the GA-

Cl and WR-C1 mixes with percent voids of 7.0% + 0.5%. It is recommended that this

protocol be used with the mixes used in this research and other coarse mixes with

approximately similar air void percentage. For other mixes, a baseline should be