<%BANNER%>

Study of Tungsten(IV) and Tungsten(VI) Imido Complexes: Synthesis, Structural Analysis, and Reactivity

xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID E20101123_AAAACT INGEST_TIME 2010-11-23T14:29:13Z PACKAGE UFE0011630_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES
FILE SIZE 39482 DFID F20101123_AABNQI ORIGIN DEPOSITOR PATH wilder_c_Page_188.pro GLOBAL false PRESERVATION BIT MESSAGE_DIGEST ALGORITHM MD5
9ee0b052a7378f8a3da32a2d02209587
SHA-1
6615d95518de09681bd49a125e9ce088fa5ba4a0
115247 F20101123_AABONB wilder_c_Page_100.jp2
7d67cd5bae45da3f74c9526896ae7cbd
e98f395bea4b1a35c080d2b833dc2cec5eb109e2
112847 F20101123_AABONC wilder_c_Page_102.jp2
7287b8fc233fd79c115b28399bbf3d96
15ec63a79e90e39541522a74ffbc26dd60b1e90a
1053954 F20101123_AABNQJ wilder_c_Page_150.tif
e9ef58c1f5266926cc472ae8f25128c7
1b2351e90645ae5b9f6c4149a86b2e29271b0af0
102606 F20101123_AABOND wilder_c_Page_104.jp2
a8f1f763c3cf2aa18ec1ee706ea91980
200c0e4a762f1d25761e92574fbf584d289a1ccf
10494 F20101123_AABNQK wilder_c_Page_121.QC.jpg
d106deedeb7af9906ece4a50640f89a2
994326489eb39daffa99273efd26fd4df03eff37
99534 F20101123_AABONE wilder_c_Page_105.jp2
61affbf2d63ec20fef140794d57b70a1
c0d8bc657a7c2ea25e3b762b2224e5c5a21b513c
939 F20101123_AABNQL wilder_c_Page_121.txt
0b69ea4cc70d6f751f2eacb776e4d1a3
57d1886e0dd950b191e8b369aedcdb0a185b8cf7
86169 F20101123_AABNDA wilder_c_Page_082.jp2
2e87e52b4bf68ec0f9a755723d2ac27a
064021419c2a85bb59053134884c93ac2ccacd3d
21647 F20101123_AABNQM wilder_c_Page_082.QC.jpg
0e703501f58ad970334cea296519f474
44bdd45b42fc16dcb5aa8d61254852f59c629d60
107482 F20101123_AABONF wilder_c_Page_107.jp2
cfa557ef272a1e04568649e300c82b8e
ecb1f9e9c1d68376d88bb57ae3e76ba4dd4b1b0b
3490 F20101123_AABNDB wilder_c_Page_037thm.jpg
945702871821e65f7586a39f0ea5792b
18023e190cbd898525081982707153481d2a274d
3476 F20101123_AABPKA wilder_c_Page_218thm.jpg
a8a9fc23cfb27802c377bf2d1778b0b5
c02b9ef7c94beffd0f6ca191315320eb6541ee70
F20101123_AABNQN wilder_c_Page_229.tif
7f8361f81330e80e894ab3207a4b23eb
6b2c046b16b5ad02751e27a99df5abebd3068d89
117492 F20101123_AABONG wilder_c_Page_109.jp2
c75b5ffcf2ea8fddaffb0467650b10c6
088be9dd31e9e1576fb41f199dd6ed316f77d8d5
157 F20101123_AABNDC wilder_c_Page_169.txt
085e1ae8fcde76555692ed1546650792
0f9114f9679d848271c14f0f06ad1f781b909d4f
4546 F20101123_AABNQO wilder_c_Page_134thm.jpg
9771e6ecdb57ba86002fdd085f838615
4f04b6c0fc1471cc8e9ff76b351f7cc0d882d1f8
110622 F20101123_AABONH wilder_c_Page_110.jp2
a8d4bdd7bf6dc16a7c79b3c980498974
ed8f101aaee4eb2ebd0fd699fe9076b24c6d1584
690 F20101123_AABNDD wilder_c_Page_226.txt
484965114735d2b2f0498885061f987a
2fc79179aa782d31b062ecb91a49127957375256
13709 F20101123_AABPKB wilder_c_Page_219.QC.jpg
3afd018a51beeff8fea0b01cc38abd96
7c97b7918a36a55d02f3675b18ff29d09894ec4f
F20101123_AABNQP wilder_c_Page_033.tif
eee63bb3f735c529bb0ee41447bfd943
f70148dff5faa72935138cd7547b7b779763b361
65058 F20101123_AABONI wilder_c_Page_115.jp2
9bc2a324e19f73e3284706f503b833cb
09d17c75e37fba50f8a55c1301586420df74ec85
69440 F20101123_AABNDE wilder_c_Page_244.jpg
ed505ea2a900978367f00d8f92bc09a4
614a97495385b3938345488c28048d086033a3f5
13326 F20101123_AABPKC wilder_c_Page_220.QC.jpg
81366948db6d608ff97b5ee5ec77050e
7ba2f236388998cd90dae49c505f1d80263782db
1781 F20101123_AABNQQ wilder_c_Page_065.txt
81c568c601852c3d0c5ae8be6a382ee1
ce2a645a4541347657332c6c3a0791ac980f8cc6
47359 F20101123_AABONJ wilder_c_Page_119.jp2
e19864e9e6a1682f3c7dd768d6295f91
327b3f83815751757569df202bcb535e243e772e
69582 F20101123_AABNDF wilder_c_Page_134.jp2
ef71b2a29e8a46e1154bfea32805e29a
2b37161475fb4c1e675fb08ee57e52c73c1b6433
4283 F20101123_AABPKD wilder_c_Page_220thm.jpg
967346d77b63da7b17c533828e8038e1
aec2626ff471a1f2c23ed996798e05ecba3b83f7
1996 F20101123_AABNQR wilder_c_Page_128.txt
44dde84b3f7d989d63dd3785f42f248a
0bda3a250c0142e89e83563b595fa53bf80b91ad
46821 F20101123_AABONK wilder_c_Page_120.jp2
29f524c050b32cc08a4efa7cf8a226ff
7ef50ff5399b38fd6ed1a24f4d2b422732b79f6b
71100 F20101123_AABNDG wilder_c_Page_098.jpg
72b988697a225d17a2ba294055a7c87d
766ae0e308eb91a7efcfccc901db90585caea97c
13615 F20101123_AABPKE wilder_c_Page_221.QC.jpg
9b4baa4743e75034f1f44d0aee1393a5
dac8a8578152af7ec4890883f5023bc580c55e7a
F20101123_AABOAA wilder_c_Page_066.tif
8db9bfb7b4dd8ae5f7b91303f6804115
ef5a0372d72e3c626fb55be4ad0eaa8d3b72047d
3269 F20101123_AABNQS wilder_c_Page_233thm.jpg
63128917c8aa4b8d7bf09d2e9c670896
c40e4ce9b87a6cd8d98b9e3c4a655e294fd6667c
44466 F20101123_AABONL wilder_c_Page_121.jp2
2d2b845f1cfbd974716f283cc4f1eb30
08d7d5ba2b23e70457e1b5b238f674d7691c0f31
68942 F20101123_AABNDH wilder_c_Page_032.jpg
b8103c861128191a2255d1c5b61e8d1c
3f1c0c854a47412c17f85293d51de96156029767
2652 F20101123_AABPKF wilder_c_Page_222thm.jpg
4994b32ffe03971aa04b2ed43f753e3e
796239a12af8ec633db593a68c3c09a2127df7a7
20510 F20101123_AABOAB wilder_c_Page_038.QC.jpg
ac7eb5b8249347030b3fab344c9b7e08
81fcd604a3a2234c0bfc6754aaf752f158914c86
35878 F20101123_AABNQT wilder_c_Page_164.jpg
d48f1441bd5e83fd685fa41c817da353
ebb3814803212489e51b788ec8a2a05d32e0bf7c
65421 F20101123_AABONM wilder_c_Page_123.jp2
51868e2e1a24e4915ebecadf9983c030
02c5cd252af471fc6dcf15a97572152978f605a0
4481 F20101123_AABNDI wilder_c_Page_219thm.jpg
3cd75d2255ffbaeca7dc8e4410d92412
9bb30eb4695dc10b73955d260a424bda2a1eaaee
1579 F20101123_AABPKG wilder_c_Page_224thm.jpg
dcdc056a61ed3b19d69c4cbf34b14660
2b4f6c1868b90df7bdf5460c358b9ee0231cf2cc
40719 F20101123_AABOAC wilder_c_Page_031.jp2
f1fa90163e67bb4b7bd15801b60f541b
c874f5f85621f3d9959c6eaa26b1029b1539a1b1
49299 F20101123_AABNQU wilder_c_Page_090.jpg
3d15d4fd686dce3046a374c28fe12bc3
4f04d870e52e09db1b22b41d9e91cb4083cc0fc7
13834 F20101123_AABONN wilder_c_Page_126.jp2
b7caec6b16af2f97bfe976998d507bdd
da1ac7f340a28d31e976207ddf70f720c35a36f8
21975 F20101123_AABNDJ wilder_c_Page_211.pro
6adaa3f032b2205d0bc138a4388983b8
56d7a789d02a127017b6038345efa7785ba46fe2
17477 F20101123_AABPKH wilder_c_Page_225.QC.jpg
9532ebaa027ca7ae755ef669f27b4e86
fbe29bcf97fa4b6f59f6cea64fafe382c341e8cc
45533 F20101123_AABOAD wilder_c_Page_173.jp2
e9a9c6ef96c6da59f7e8bb7cfe633aa0
9a345b9bbfbfefbc04965b720bb939f61c177580
9083 F20101123_AABNQV wilder_c_Page_093.QC.jpg
0b520b1fd3a9d199a1bc53edd0d0b25e
ecf0d56bbb493116298ed48ed8519feb68594a2e
41167 F20101123_AABONO wilder_c_Page_130.jp2
ef33bf939db4c1b4891caf6a02e14f14
c312a9c3e58335a307ca761e761f3fecef3c6d39
4592 F20101123_AABNDK wilder_c_Page_205thm.jpg
af1b03ad3307002a332f883f66a32cfb
71a9af0fbf093550b2cb816e6156c048e4094001
4943 F20101123_AABPKI wilder_c_Page_225thm.jpg
d3e327c8da73acba70ddc9b5a2b0f5d8
ae841c4c3086cf04b52334ca52aa472c4b66cc9d
51953 F20101123_AABOAE wilder_c_Page_067.pro
20e19ffda140c9b0970b3b31a080fc6e
b5ba52542fa2c1030249f1df4315b4e1c87335de
F20101123_AABNQW wilder_c_Page_205.tif
22a89935d508bed0cbb1d183911a58b8
81613a6a119864817a7700cf36d8bc3a94842b04
50241 F20101123_AABONP wilder_c_Page_132.jp2
6f5f5af2663e486c389ca05bb6540032
f66fb0affd119f905edc4fa26e5cc23806250ef4
7839 F20101123_AABNDL wilder_c_Page_156.QC.jpg
c51206b5215648ddc26549c8cfb86a8f
5c65b683516ddd14113587c64e49967f38064627
2462 F20101123_AABPKJ wilder_c_Page_226thm.jpg
c76c516ddad85652fdca0d5218558f14
504c09e7dc631cf24a9a78f0b184f5fd0d09869c
12511 F20101123_AABOAF wilder_c_Page_007.QC.jpg
77430ffad7d1951327ba63ce56ecf858
762a1e6c5e73d942f37b552f924709cc44dfa659
1051986 F20101123_AABNQX wilder_c_Page_010.jp2
1ef608bd68d00d8ab4a398d973e44d08
a3028c8190530e1e61d7323e632edb9b221f8127
70606 F20101123_AABONQ wilder_c_Page_133.jp2
2c569cda935bed78801b35f07a4f26ec
f7221e74651471c4932853f16be6be2bc519aa57
7780 F20101123_AABNDM wilder_c_Page_222.QC.jpg
dc6a3e7bc0aacba3b18f821cc6579181
ae842c7df350b342b15ebe2a87b06615600bae3e
3199 F20101123_AABPKK wilder_c_Page_227thm.jpg
bd8c88860f2e4bb77d3e403a8d0b4c60
f5e3288740a8201d8c16d6e2df1868f161c26f2a
1047 F20101123_AABOAG wilder_c_Page_199.txt
2db17e652532240adda991f166c3eb2b
0213c6f3858053911ea1abd551c3bcd40887456d
41400 F20101123_AABNQY wilder_c_Page_128.pro
b43169e47fd36c4e326db2058eb19527
344490a2598101f6ec2566b01d4fd8b761defb90
61293 F20101123_AABONR wilder_c_Page_135.jp2
8ecb2f20b97ab529fc8a1e7845f5d8cb
09a7229ed1da52915325657d14b128066065257d
F20101123_AABNDN wilder_c_Page_087.tif
6f311fac7fb697bdfc0a36d877fd2539
9d01bd7c2f45db59eb204565edf0902b39ee4793
9915 F20101123_AABPKL wilder_c_Page_229.QC.jpg
a60532bff5daf3563d38420d567ab19e
af65d8b80b0410d98cea4b9eba5f35a0e43c456d
31358 F20101123_AABNQZ wilder_c_Page_034.pro
91c9c451248747652f352745c7ecf99b
6ac92dd18fef35612f75deeb10fa4d28a9b6631f
76565 F20101123_AABONS wilder_c_Page_137.jp2
bdaac2f7e9cd13c7b13b51febdfcee17
f5bea93e6423551bc3928e733bec105a6a421891
3414 F20101123_AABNDO wilder_c_Page_087thm.jpg
151eb5cda1b55222b5fa99f0741e6487
09460e54ce92794ffb5a15c535fa7258589f3c55
1158 F20101123_AABOAH wilder_c_Page_148.txt
7f578bc1ea57173dd82aec44c08b7dcb
0694129f6d11779d6f187dbc846ee2f847cd28d2
2980 F20101123_AABPKM wilder_c_Page_229thm.jpg
78100b21656a46ea6252bab2d47ad110
a8c3ca0690d4464dd4a7c2f6bb6ac58d86bcc2cc
42656 F20101123_AABONT wilder_c_Page_139.jp2
41119db1c91917f3a3236a6eecf971a8
91244d18ab13d4a5f7ff774703bbddb74954a055
F20101123_AABNDP wilder_c_Page_133.tif
10a9f37589bf6790404b67f7ce3ed819
50b95422686df50bfa1aeb39c9ee4a728a703d93
61552 F20101123_AABOAI wilder_c_Page_159.jp2
2690e6188f155587dab242015324c1dc
d7851c3bae015a43e3d8bf8d1eafc7475f11dd15
11083 F20101123_AABPKN wilder_c_Page_230.QC.jpg
4b1cedf168107b8bead8428cabe5526c
5e20fa94c20aa98ab63d721a24835ed5272a515d
42093 F20101123_AABONU wilder_c_Page_148.jp2
e27e3ef03ec72af31d23d722fd30302b
c575f28586f0267b41e1ccaa20ab95d01b67b00a
59993 F20101123_AABMZA wilder_c_Page_204.jpg
77574e0e0f760e445b2fb85c1934bcfb
7f0735ff591f4c35a6cb990ed36326d535f3a483
30686 F20101123_AABNDQ wilder_c_Page_222.jp2
43e7851c7c359c76ed7a825679a99d8b
0e6efd487ad0f12ad65b91dff84e8b448c901495
F20101123_AABOAJ wilder_c_Page_180.tif
d7cba0312dc5b53157cc81965c4a1607
cb6885ab15bedb87f0b1ee9e5f84c1caecb5e720
10196 F20101123_AABPKO wilder_c_Page_232.QC.jpg
f0e8daf144be71f171f7cbcad4b1141d
230aafb48e4ccba2d5f7f673c902d756264b95b1
44974 F20101123_AABONV wilder_c_Page_151.jp2
4dfecb64d90906d8b372809e7405d092
0b5acdb77da987d94ab85f52fbdb67df17867860
12486 F20101123_AABMZB wilder_c_Page_169.jpg
3afdb1ea3a1bb01f7f9b8a7d55e82130
213d7c79613af11e029af69cbb38739acff82175
25038 F20101123_AABNDR wilder_c_Page_103.QC.jpg
1ba81bf1e03ef0df708cab4c0e4b3496
da8e17f8025e067a893fedb39621888a827a1f2b
6846 F20101123_AABOAK wilder_c_Page_069thm.jpg
de3cb63400e80087d72a6a3ffa0bbef4
5615f0aa1032d47cb675ddf0c9202d3f36dafd6f
3130 F20101123_AABPKP wilder_c_Page_232thm.jpg
2228cc2224ddf4e0d86e74fc7f11c9b5
f5060ef99a5e808cf921098979eb49075808ab5a
45737 F20101123_AABONW wilder_c_Page_153.jp2
898e2831534be865c896576d93a8b22e
ddc8a764b53b479c819bfbebd9e9783ec1e72b78
1400 F20101123_AABMZC wilder_c_Page_043.txt
e6b6699db0f35afc5bff63f20204431f
34be77514a3ba9077bed35e5ad3f4da30905cb46
6460 F20101123_AABNDS wilder_c_Page_045thm.jpg
16bd77224656ccef9793d19246ceb95b
174ae40b51ec6d0308a0b02051147328fd32702d
F20101123_AABOAL wilder_c_Page_020.tif
5fc04d6aac20564c8a3fd0d3389a29d6
9f5db81910dad593e108586ccb6a29fe45ce73d7
11086 F20101123_AABPKQ wilder_c_Page_234.QC.jpg
48dc19bddc9e7bc069d7e7bd103aa294
9faf6e02a481859d50cf931efa2e75d57c3e195e
49873 F20101123_AABONX wilder_c_Page_154.jp2
4dea450b39aac08ccb7b2fd0893d6539
2d0dfcf0011873f573f851624f6e704646d3ad3e
F20101123_AABMZD wilder_c_Page_192.tif
e054394e285c097705cbc331f460bbf1
d6a1231b54659996b39f304cc4d35eaf0e6266e3
25271604 F20101123_AABNDT wilder_c_Page_070.tif
3f59646260ed19aafb992e987f0f4b86
1a2b5c807537837a46c1a4d3f714f7e32810bc5c
19860 F20101123_AABOAM wilder_c_Page_132.pro
ae7438f2a084e61e936cd1fd305cf0fa
1ba2969ad6b300439c2eb6343089dc0b4b58284b
3181 F20101123_AABPKR wilder_c_Page_234thm.jpg
71f048422823837c8448fdbb97dcc653
f1a837e6f05b57b9ab2e2bfc8922a1720ef7601a
52453 F20101123_AABONY wilder_c_Page_155.jp2
0a5fb7f2b2af3d4561c6444f3c8e9b41
d527cfa9eb5e43d173e7482105b8e48939aa9368
46349 F20101123_AABMZE wilder_c_Page_150.jp2
66f1a5ebcc6fff748d11c91ad1fc30cf
a8e3e7d59ec6e18980ef324c0de423e6cc43d58f
17619 F20101123_AABNDU wilder_c_Page_138.QC.jpg
e0c2e79468a10d16d00a94df09957169
80244b97ae55f41ea2c841e3345800af719b1ad9
34474 F20101123_AABOAN wilder_c_Page_044.jpg
ca161978b5ae394d719489bea923f050
b1313903f5048c423ac01f69f665cf8286f93763
11137 F20101123_AABPKS wilder_c_Page_235.QC.jpg
c02ff24d0f38f98948f0b4455f183c71
ba63263242ba1ab9c5f269f01e73afc0c9d6b4d6
92987 F20101123_AABONZ wilder_c_Page_157.jp2
06d9a382eda69f5d1110cc124d2979cd
1e2384bfd8a012a8f90765a313ecacc2acbcd151
107994 F20101123_AABMZF wilder_c_Page_108.jp2
ae82c66b69b44a05384d89b13aed8961
fdbe4245f33e9bfb6c3eff6da258a2cec72f15dc
19325 F20101123_AABNDV wilder_c_Page_153.pro
d345b9608a8869b814e25fb1121e3784
cd74a30102383610d47aa857db650b87a1340afb
1599 F20101123_AABOAO wilder_c_Page_241.txt
d647ae294ccbad8cc24366dbba9f800c
a68e4f3386f9ad7df13dfd29dcd203c20a562225
19575 F20101123_AABPKT wilder_c_Page_237.QC.jpg
f2fe7ad65cc9d7aadbb0ad0a7307e5eb
49d7d32d660d5f2be79092b06e304525be5c578e
13159 F20101123_AABMZG wilder_c_Page_167.QC.jpg
17491b3b4c3baf86b1f530671388ae97
83aa1b15b2545b7e33f2d393d6c72ca4c1e2bf4f
46103 F20101123_AABNDW wilder_c_Page_206.jp2
6bb1ea1f48000bbed2110a8b5c2f1dd6
895d3d06df42dc96b4c80af278f37084582974f8
23664 F20101123_AABOAP wilder_c_Page_039.QC.jpg
7441567c4c3fa9b0c51d6678120b40b4
43af426e27ddf594acbb2d5842df6238be8425ae
5746 F20101123_AABPKU wilder_c_Page_237thm.jpg
d07e7e3774e8db732b77fb7228b99ca2
312e839b546c8bff0602d1d64317636ddc47efa6
F20101123_AABMZH wilder_c_Page_142.tif
0c476c78eac6967e2eb888bfdcf86089
076f4893fb9fc3c773d29eea83268cf16e78e38d
38207 F20101123_AABNDX wilder_c_Page_134.pro
40e660d41d52c7da0087393327468942
39ac3febe22062bbdd8f7ddd0c68505cab27b576
104410 F20101123_AABNWA wilder_c_Page_112.jp2
6dbc343befd3977dcce6423f9e1f3b60
1e91fd67878ea9d2d359cd19970866772530304e
5788 F20101123_AABOAQ wilder_c_Page_216thm.jpg
ace3eb62d4d3b40cea35df6804f8735e
cdbf4c8632b6f1165bb308ac29a9ed96cebaf1cc
8521 F20101123_AABPKV wilder_c_Page_238.QC.jpg
dfd4946fdd1aeec119fd4f8ef4e86e98
2849cba69a8de8ca2da66f25841ddec62764d8d9
4698 F20101123_AABMZI wilder_c_Page_093.pro
0f00229d1c31b27628fb711c192792e1
fab63c0ce0b4df35b95fbdde24143e91c39bf643
79308 F20101123_AABNDY wilder_c_Page_100.jpg
0d55bedf4353c9522f335daebdadfcf0
6fc669f1ebaf2317e0d2d01cdb479a13b9dbe5fc
1078 F20101123_AABNWB wilder_c_Page_218.txt
b10dafa0b76e38d8193d7bb21b48960b
a20669d72716249b2e4e8e2839e88f89c6d445eb
F20101123_AABOAR wilder_c_Page_104.tif
914c467267070e0d3e994c70842980b5
5908637947e6bb6203746dd46d003fe0d58b4e28
2710 F20101123_AABPKW wilder_c_Page_238thm.jpg
aace9e29ff1618d5fa8628e229a8c999
0f2b17ddd811237cd7c239633d719d2a89da1ceb
49254 F20101123_AABMZJ wilder_c_Page_196.jp2
3cd43c9bf3bfa0fa442625659edac213
d85f2a8b558b68abf635e8288bc1c70f69e03a9b
31120 F20101123_AABNDZ wilder_c_Page_031.jpg
17dd47508303f25f0eb7932637252d51
1dc20204d4c2fa658c4663c671f3480e0895eeaf
3913 F20101123_AABNWC wilder_c_Page_224.QC.jpg
9976cc84eca7152f2ebd4bc88e2d4805
4d8841a90e8b10e23a97cf15b69b15cdc9e20339
45238 F20101123_AABOAS wilder_c_Page_052.jp2
3d225f89054b7f4c09358d8fb9de43e0
556213f1861eb1470cc14f3f7b8e43142c1266d6
13679 F20101123_AABPKX wilder_c_Page_239.QC.jpg
425038246555c85d94b27221bcb142e4
70977c0b250939377aec6fbb9c48c40dc8278e99
51476 F20101123_AABMZK wilder_c_Page_064.pro
7aef2ce057d591b58c5b84909866a603
ba10ba235e365f09b8bb8ceaa1eb1d3a0123bb35
18732 F20101123_AABNWD wilder_c_Page_241.QC.jpg
a00e1d9959d911b1b475d8e1fc339c98
f436ff907cde1c4d4b062e0fe6fdb4149cb15b21
215 F20101123_AABOAT wilder_c_Page_052.txt
436ce366eb4333ac92e6853bd51f573c
a867ff81ffe529c0d578112f2041c04be12a81fb
4327 F20101123_AABPKY wilder_c_Page_239thm.jpg
8e1c9aa4a37f7e651a68f114245b93ff
dbbfa2e53fa6f07605530cee567179e920a2138d
23376 F20101123_AABMZL wilder_c_Page_098.QC.jpg
0bef23d74addc88cf3f4165e447f16a9
3a5d0f16cf88aa49b2aba9cae2cf0bc49aaaa49c
F20101123_AABNWE wilder_c_Page_008.tif
f7ef52af7d5562b89880797a74e04ab9
a0d880b916d3d0f63e706a16bc73813dd86f45dd
587 F20101123_AABOAU wilder_c_Page_156.txt
196b1fa04f26bd6aca79813cdd0be491
cd4a54b3349e87221b11098f9ed59cd8ad0f1c85
11366 F20101123_AABPKZ wilder_c_Page_240.QC.jpg
77ab2927b9867057d9108ee6e4ccf446
1866907f5620c41a532b774b0fb75e8fd939ee95
58864 F20101123_AABMZM wilder_c_Page_056.jpg
754557f01b53e59ee3f371d95be46e87
74dd43c165878b892f41540cbb3f4b0050766b92
31180 F20101123_AABNWF wilder_c_Page_133.pro
d8e70c2f7139854c769947d56324da64
fa83a8dce83d10b5e89ad9ff6ac8a7201f561bbc
73020 F20101123_AABOAV wilder_c_Page_108.jpg
482c12a03e5a5f880024d09841fc3be7
de7b6142d5700e623b15680b7c74d2aaf6c50f28
71627 F20101123_AABMZN wilder_c_Page_048.jpg
602d5d91252a3869122699828dae92d6
707480d1d1efc4533851e72d6bc6aa3082a826dc
52062 F20101123_AABNWG wilder_c_Page_100.pro
e3d0e792e5c7434df462902d527bec9d
fb638a0826b61989e3ab89877f3464492e38df2f
29095 F20101123_AABOAW wilder_c_Page_006.QC.jpg
652708a1d9fe7cc94987c65e883039f5
27e8c926a356875356961d8a2d8a02ea54c1675d
F20101123_AABOTA wilder_c_Page_207.tif
4cd0f39511e2cc138b85b0934e0fe6ae
15ce043936f2be6c7374302964a7caf9dc83432e
2548 F20101123_AABMZO wilder_c_Page_001thm.jpg
829f41255d820f4de7978c1a42b115d9
8cb927bd563b318014e37a78744708b5befcbe88
1051979 F20101123_AABNWH wilder_c_Page_008.jp2
dec0ec42cf98ca236018652bcea49cba
7e58cb460cbdde485930264490ea6676c34a7192
9852 F20101123_AABOAX wilder_c_Page_148.QC.jpg
180659a1348ee24f6a0850215f096f60
496cf062b3e99a5baba0551c14f52d26163da435
F20101123_AABOTB wilder_c_Page_208.tif
f20af2913fec3f28e501d2810fe9c65d
b5cc419520a693c50ac5d36b1d6b8fc229918582
19238 F20101123_AABMZP wilder_c_Page_074.QC.jpg
b374f8b4a0b8d38c5e1d1fd35c08f9a9
c20c6f1952c67da85815a7778f066d83575384c3
39148 F20101123_AABNWI wilder_c_Page_178.pro
50bc947989386fc5fc4169fd2dd5b67b
c3ef45f10e174ef22566eab6f39733917862bcd6
F20101123_AABOTC wilder_c_Page_210.tif
437e7cc91b1a144417c5ac8d88356491
345d7f483b7aef88da058ae4610ffbb317ceb86f
16064 F20101123_AABMZQ wilder_c_Page_118.pro
41db1ebb68a3f87e21f740030e1adb65
4140a9d2e96044d6cd7642f596963b3523179ff6
3173 F20101123_AABNWJ wilder_c_Page_164thm.jpg
8a2109486c4c29da591383a1008e287c
f7f556627f87aa984f21ef2a619693cc1e28bca2
60913 F20101123_AABOAY wilder_c_Page_013.jpg
9a0ec73cf07a18d22ba35520ecadf99d
86fd6d09546a0888387bdddfd6d5bfd96d328153
F20101123_AABOTD wilder_c_Page_212.tif
2e4eddf578eb73d5d82a60240563182b
7381b528b89814c34a353544c92adc948e1e48f3
10478 F20101123_AABMZR wilder_c_Page_224.jp2
9891bab3bad83a2df8f6cb4a839d500e
3f61f1c54b2d092354a074c55e20ac1546045288
15970 F20101123_AABNWK wilder_c_Page_090.QC.jpg
43e19e87c117907442dc1cc7c199af7c
a36ab8ec4e21cbbeebf8ac5be1acb91d4e850b21
104860 F20101123_AABOAZ wilder_c_Page_057.jp2
69e4f88433f5091239dc6c5814c9aa03
eab6b7ad0acbafcaa68a22cbffcde749b95ea4f6
F20101123_AABOTE wilder_c_Page_214.tif
5ebea959ea6a2b73289f3f233b1bc5cc
02cd8eabeffd836fb116ea1cbf0713c98d14a4fe
3471 F20101123_AABNJA wilder_c_Page_041.pro
be2b33083d72c92b6744bf5f548e90d9
16d9041f4a188403298f2c9a8ea6bd51c12c6dab
5209 F20101123_AABMZS wilder_c_Page_015thm.jpg
f9054eed4c349c671d2ea6f095d3f545
e1a9004f2273b8169af33fba84b6fb5f07ca4ced
1937 F20101123_AABNWL wilder_c_Page_189thm.jpg
2f5028a04dbc032da4b5b8eea777abf1
73f800c8587aea5642e52b4d10de544b0661ccef
F20101123_AABOTF wilder_c_Page_215.tif
29d26cc626f913d48f340586c77ed2ae
944914b29ddc16b741c280d4eeab8172ab13bce6
4614 F20101123_AABNJB wilder_c_Page_123thm.jpg
43955239e20f110264f0c07e689f0fb7
cd847f2f383444d531796431df8e21d59c27b3b9
2249 F20101123_AABNWM wilder_c_Page_205.txt
38a6b1fc6439419e93682363e1a3bab0
01874184ccea094fa82017a5c5554f6a6724656b
F20101123_AABOTG wilder_c_Page_216.tif
3ec27ec1bd0ee9be2e7e7a7495d50c8c
05a5c7ad0508a0654725c445d4690c837111cd72
6485 F20101123_AABMZT wilder_c_Page_049.QC.jpg
c0bdde4b375b3aa392398d269e061f3a
dc1e61f74b029120619daba0898c3c7d11b6961c
714 F20101123_AABNWN wilder_c_Page_184.txt
9e48118d3c877f538e6360ac23059ff6
b2ad04570fd399befb4a6516312bc3e9f3bf032b
F20101123_AABOTH wilder_c_Page_218.tif
0159ca893f708be34847e0bde8ff92bb
f5be073631f1978a9255366188b1de65d2ece112
3099 F20101123_AABNJC wilder_c_Page_184thm.jpg
24007b3d87cca67d2785a8cb99a2dafa
b8a60b8fc80635d916764a486ee565652882f291
1051918 F20101123_AABMZU wilder_c_Page_067.jp2
5d45a7b0c01a6ec873ad7d19bc363fc2
faf21b63caedbb71a94d899a71916777646bc80e
2978 F20101123_AABNWO wilder_c_Page_150thm.jpg
05fe117798112755f1da0b135e7884a3
6ddaf56c0530cc8518de021ef31a20b284c41ad2
F20101123_AABOTI wilder_c_Page_219.tif
4b2eaf1419266d6b0efc090ec4b29d97
a737d0340bbeca85eb3611590b29d49e132f0259
25961 F20101123_AABNJD wilder_c_Page_068.QC.jpg
8ec1348e776594b7937d9cd19cb9e9fd
9540c61a555567639223060a3e3e9c914355c4fa
F20101123_AABMZV wilder_c_Page_185.tif
af2e3dd9314771dc23e56f8c80a70867
6e318b1cd515f1d30e465f90ce692533d501dd10
F20101123_AABOTJ wilder_c_Page_224.tif
755cf32c48a86aace6dcf28b140c6b06
420501a30be29e68e177116f76e48afcc1c8ddb4
34343 F20101123_AABNJE wilder_c_Page_050.jpg
0429fd13ccd85df4683db3c051793f7d
498741bcc797971515156f52d8236983648a1201
9708 F20101123_AABMZW wilder_c_Page_186.QC.jpg
4081f71dcd7f8277f347536329f70f28
aa7c4cf17fd84bb5891645bcf756e2781ece9151
3365 F20101123_AABNWP wilder_c_Page_199thm.jpg
4d62b242d981124d3eae7bdab5a21a7e
5c5cba4c398a9ff23b43f3473ea682cca9ef514b
F20101123_AABOTK wilder_c_Page_225.tif
da144724fdcfd05fe937a04482ccf0f2
30d70db8cd9f6576e3c7d98f1366486f07eca8cf
37184 F20101123_AABNJF wilder_c_Page_153.jpg
e4e777a6955d0345dd5a0189236604ef
29c3f34f9dc531b4b9a7ee035d9eda1ab41717ff
566 F20101123_AABMZX wilder_c_Page_072.txt
f96c96aa29630620b4ed9d371178c2b0
a6425905127a7b99e72a87be44da953f26c1a823
23202 F20101123_AABNWQ wilder_c_Page_048.QC.jpg
418cec16dc18802e30c77020e21b81ae
12253f42bff6b0881f1e96ec682f0e8ba6993a76
1891 F20101123_AABNJG wilder_c_Page_094.txt
9bb2416364445b392a146d5b5a9b3c69
7271632571bca9820e0174ef779922f005739286
6483 F20101123_AABMZY wilder_c_Page_094thm.jpg
fe1e4fcb409579317164be53f6c1bc49
d2e0882854fbb3c8d06ba1788b6528afccec0807
1484 F20101123_AABNWR wilder_c_Page_015.txt
d922a15a3d11a69e5db749d295d338fd
be83b99ec34d335622bdd9b505cede118dd80dcf
F20101123_AABOTL wilder_c_Page_226.tif
78513b65f943343371ac2e3e67f90b77
f8643c4776b4eac99c39a507580414ee278f7774
4848 F20101123_AABNJH wilder_c_Page_191thm.jpg
9829ea3e3162baffdf454a2474da0baa
24b9c9d6ee143c5b4b3b39ae2d51f024c672e5ac
40457 F20101123_AABMZZ wilder_c_Page_116.pro
84e9b6b7c75e168185c29d648df383a2
0c4d7922368b14fc2a48671b27ca92a69e32d1d3
4972 F20101123_AABOGA wilder_c_Page_138thm.jpg
8289c34b17ac45a73770efb40f13d0ce
69dcc58f9d034b73a5e0a395ffc4904e00189ad9
F20101123_AABNWS wilder_c_Page_209.tif
f14759893fd373ab27d019a9c5471d49
c838f96304e67fc42ddf5cc5d4466deabc0d17b1
F20101123_AABOTM wilder_c_Page_228.tif
b6fec29a52b207cd78deb620ff15fadd
2ca50bfa2aa24ada3f21f1223d594eedde198af0
719 F20101123_AABNJI wilder_c_Page_152.txt
288e80dabe6a05594a01f644757b8d56
189304407e1ce9394e147210236171fc45cb8f08
F20101123_AABOGB wilder_c_Page_220.tif
37a616204af6601dcd44a2f469c4b302
c6d44cf53a2059d547f531679ca2e8dd0ab132a5
F20101123_AABNWT wilder_c_Page_068.tif
0f20f1f615e5dcd7c08bbfe84826bf41
7d9b8cccd5a779ac34152cfc3c6e6ef109917521
F20101123_AABOTN wilder_c_Page_230.tif
9f3d0b6f89c7ce3ca7df6f48a7592246
691c1856a61bd43613435f8b144033303908a37c
1105 F20101123_AABNJJ wilder_c_Page_076.txt
9c9f7f6faad9a1334080e9e335d5e23c
017083ef67ae3d5d038591137abe2eb0fcf4f574
42621 F20101123_AABOGC wilder_c_Page_163.jp2
6a3e4788f7c80a26db7d69b76bfc11cd
d828f0fe774dc50e28d65809764a5e19588f3440
37123 F20101123_AABNWU wilder_c_Page_230.jpg
abb12d1a9f02564411079372725fa3a7
5afa292e6a8117ab20f9e7cfb3fbf1cb4944c7ca
F20101123_AABOTO wilder_c_Page_232.tif
e52d633576be75d40027163ada8b01c5
1027da09a8212a2b150cf10433e096159ba5792d
F20101123_AABNJK wilder_c_Page_038.tif
ba5dbfc4a4dde34b9b76716599bfdb4e
118351fec3ac78c3a57989b428eee27adf12f0fb
49319 F20101123_AABOGD wilder_c_Page_170.jpg
131d414810385c4931d3b7e36d325e46
633c2946bb66b141d5456af7832d8ecccb98c28b
51314 F20101123_AABNWV wilder_c_Page_069.pro
716d3a397ac3063c85a875dedebc708d
f8cca1267af544905ddfd86f3704b7c649c7c223
F20101123_AABOTP wilder_c_Page_234.tif
7ca8615b3db9d7184001b4a839eace7f
4dc69e098538f9cfb7666ba04619c439b73bc44d
F20101123_AABNJL wilder_c_Page_125.tif
3b20e0b32f7b940fd0007d33dd108891
0b8a18b28058908725c49dc6b068ec8c9e9dc146
60151 F20101123_AABOGE wilder_c_Page_178.jp2
3d35e5f15e21345ece08c10bb6fd167b
b7bfa11e200458e7d4e1377a6339f9b84517f6cf
78269 F20101123_AABNWW wilder_c_Page_145.jp2
0898f6f3366c5cd25ed4f75c18ebbd2e
e83ac19eaa6c851985ed264f5bc7060286d11d90
F20101123_AABOTQ wilder_c_Page_238.tif
ac2a9dab0e058436bcbe398812d6b272
5459c801d9c913f582b37e5df7cd74eb2f915994
F20101123_AABNJM wilder_c_Page_217.tif
fafb60d8a82de593d2b874ebe610a5ca
5dd94b0ac3f77f55658290205be7dff081cc4990
49638 F20101123_AABOGF wilder_c_Page_134.jpg
525833fa80705e90f57ff4ec15ae7ab1
45e99d1ca09932c2d49220ab3fc3547c3671207d
1108 F20101123_AABNWX wilder_c_Page_171.txt
a73a75d3553b279d713c4cf5ff54f75d
c14bd233b13a2b253ed7f20263e6d4e0d9092538
F20101123_AABOTR wilder_c_Page_240.tif
440d9d9b1f82571e811d8685449eab17
f8728749bd50b7b8e0d52c1eaee64da9110a0d90
59383 F20101123_AABNJN wilder_c_Page_247.jpg
c960d8f7cebcd12287d3f2aa599feeae
d0fd10bc0d95494b8c9d3bd5b6f80beb05babcd7
17838 F20101123_AABOGG wilder_c_Page_173.pro
23d24cf7897bd185a77cda2955027fbc
bd5cf64a6a51a5e3db5ea955a4558c446bb843b6
16695 F20101123_AABNWY wilder_c_Page_146.QC.jpg
f7b57939ea97e21af06706024876d9b1
5c306a139951efa7e4a22cb127a17d9d0dc65926
18932 F20101123_AABPDA wilder_c_Page_012.QC.jpg
82ce43090cba1f81baf7f912601d9ee2
b48dd97d7aead5ca7edefc3862e24ef7521d2605
F20101123_AABOTS wilder_c_Page_241.tif
f28d099c05cb8a1800ddad8e0c7666a9
5ef9b0c6f642d3ef88ee822d0a6127f7160acd1e
2020 F20101123_AABNJO wilder_c_Page_219.txt
538919025ebbdb476dbe996efb240c52
ab9d69198f99b9b93df794260916ac9a508eaa92
45992 F20101123_AABOGH wilder_c_Page_115.jpg
7266d434e5d0c55abd47e82f8e69d6b1
6592e7aac87f53d8631bf1bc0b2928f4e25bf2c7
12232 F20101123_AABNWZ wilder_c_Page_212.QC.jpg
0f604f06b9723584bd7e8a43a4436c3e
34db33794a59e7bb5db8026ba38304214d5ff410
18355 F20101123_AABPDB wilder_c_Page_013.QC.jpg
3450b7a0a931373633713ebaafb12317
145e850a6791af730822839e1dd98b56134e1810
F20101123_AABOTT wilder_c_Page_242.tif
5b3a3fc9e83578cb4c2f9b0a74dbda7c
f9ec24f44cd0fcc6cd4ede172ab4e71e3ea36b68
50143 F20101123_AABNJP wilder_c_Page_058.pro
7a12188a676738b670df1540fc7cd348
bed937d2cd8ebe2261284dc65bba76e58190932a
14652 F20101123_AABOGI wilder_c_Page_197.pro
eefb8f0c548def72ad6993a82a3412d6
e6fb34db4f89c41ec1685f20c20055efa83a5267
4940 F20101123_AABPDC wilder_c_Page_013thm.jpg
0e8ffa9bcc95cfa18c3ad0667f8d3c9c
97f32c51f3ea50f2e2d5d13cba3b34a335326e3b
F20101123_AABOTU wilder_c_Page_243.tif
fef25a5b401cf44146e198acdc2d81ab
d2bfc252be4557f116be1a23c410fde2961f4973
2986 F20101123_AABNJQ wilder_c_Page_118thm.jpg
5c72c40576eca949d16efa489b4ec8ca
0b26669bab071bbb3178dddb3bbfee3acc868108
32062 F20101123_AABOGJ wilder_c_Page_186.jpg
f0681bf3ec55d17e901e36abd8ec45ec
249a215e8c1bc8443ded9a203cae1634d6a52f3f
5405 F20101123_AABPDD wilder_c_Page_014thm.jpg
9fce3b510fe9b32224a3b59b8042f1d5
9297cbe25a85d12dca44318e36e8a0b0a1e47897
F20101123_AABOTV wilder_c_Page_245.tif
a2cc65bdf7b5cea813c5455c1e98066e
dfdb3b2a9126b8904eca07cc8f847858f9ffef86
44078 F20101123_AABNJR wilder_c_Page_003.pro
4a42e6d992c22d58d283bebba3ed7856
4475c83fc40cbfe3c0c88219eb03fadb3a1507fe
11126 F20101123_AABOGK wilder_c_Page_154.QC.jpg
f60d7ab5313e4173c82d5f924ddd7fc5
4087b7dd21936f1d80ee8bb99dd1567bc0ab585a
18642 F20101123_AABPDE wilder_c_Page_015.QC.jpg
207582adca7ebe2b4cb40614dfde87c7
743b4dfcf0b9770ea0f1e82997ccd7dcc7663f9d
F20101123_AABOTW wilder_c_Page_247.tif
8765ba356e02bf7998d990907fdeb2f9
22750c3dcf63728cdc466758fecfca3e3c923b43
68446 F20101123_AABNJS wilder_c_Page_035.jpg
0ea86533467bdbb3c31f93150c3c6b49
623c362f171997d41ab34e60357962ca56e333af
F20101123_AABOGL wilder_c_Page_108.tif
c13be3476fc2a9e3a315265f54c12458
35471eeb2faee88bd85e134d20556fa0a0ffd2d7
20711 F20101123_AABPDF wilder_c_Page_016.QC.jpg
1ce091317c9f6407a3926afc6b6b6883
4affd5862e62d1fb3391f4ef59a7013b932fc95b
8739 F20101123_AABOTX wilder_c_Page_001.pro
b906735126359a8ac9b5c67caba2fb68
0048b04218024bf32b78919d1f21d9957db1352a
35065 F20101123_AABNJT wilder_c_Page_167.pro
beb528a96fe27c1cd0be1e271a80e405
36e48186d4e09090ff90623cc9886f9abe081fee
6484 F20101123_AABOGM wilder_c_Page_215.QC.jpg
1990324f35c406a0f284a21be481fa84
390d6adebfb553f3c5c7931554bdfdd1f0919bb5
20158 F20101123_AABPDG wilder_c_Page_017.QC.jpg
3ba1ddc872837ee75e578a8b91a91bba
9e570348c437179f58d091f57397e09c19c12811
5906 F20101123_AABOTY wilder_c_Page_002.pro
621b655f233ba34b988c512f82fe852a
096adf00f96d03bfec08b0d8bf9999252fdf8e2a
217 F20101123_AABNJU wilder_c_Page_049.txt
47b5bbc7c1bd534a224854bcda723753
a05d8142f7127ef3ddddbe6cf4ccbf8817da526c
1571 F20101123_AABOGN wilder_c_Page_071.txt
2c416ca55c36456bd49a09154f3ee5c4
5cea6986c64917f60180db0c6ad95e866556dc50
5107 F20101123_AABPDH wilder_c_Page_018thm.jpg
cd22d3891b6fe1519b673269e0d22a65
0b56dad8a886711bf622a7401ae0a2a62344e485
34086 F20101123_AABOTZ wilder_c_Page_007.pro
7956a8438fc4f60a61c7091e3235ee6b
16fc90dc8c7336f88cb63fa1e9f5d89dc185b018
F20101123_AABNJV wilder_c_Page_105.tif
d77ab73b171dc761fbfc46f23e9d9f08
abb13d4bb2bec035ba60313d63c076bb18c61e8a
79594 F20101123_AABOGO wilder_c_Page_038.jp2
7c9b4a311e2b3b3f7a7de94b62e09c18
160f0a5ded83ce89040d133e4bcac05356048403
6565 F20101123_AABPDI wilder_c_Page_020thm.jpg
df80d53f7c4bbac963cdce8ce24711d5
585c4f46e4b0dbd2c25fec55fb900e95b441fd72
5533 F20101123_AABNJW wilder_c_Page_022thm.jpg
238f61e536caa40191cab001d426497e
c5b10281033687d6341525e8913b59afc350cd26
20217 F20101123_AABOGP wilder_c_Page_053.jpg
cc8d313d966f68a5767ea60319f247e7
24ed861bdec35e8fc9b2909c6393e56666920b6e
36259 F20101123_AABNJX wilder_c_Page_022.pro
bc21988cd2a83d6d8760b021a0518e97
e8f58c49bc7b32420384e3e76ddcd5defaf8aa72
121392 F20101123_AABOGQ wilder_c_Page_006.jpg
f2c7aa8364a600f3115303bbd540ed15
7f7f6d960ab09e02ef88eb98ea8557aeb0173a2a
6293 F20101123_AABPDJ wilder_c_Page_021thm.jpg
a6b62306c504ef3042dc619158804478
21f48c705cbfe5df29c8b42969fc01542f483dc1
14928 F20101123_AABNJY wilder_c_Page_123.QC.jpg
23eb8b8ad0f22a6bfa2c034c8a455609
aabadffec208fea1c5f640147cd1b483585994ca
6941 F20101123_AABOGR wilder_c_Page_109thm.jpg
d2f6432422cff13d4745a785dd6b7f98
0b9dafa29f44ae9a242cadcb618ff47a548902e1
5779 F20101123_AABPDK wilder_c_Page_025thm.jpg
ca7c63def9f7824b9271bf8e4fd69de6
218cf7590a4b54b6d027448bf27f43019af4c101
52607 F20101123_AABNJZ wilder_c_Page_202.jpg
afbf96a8d760f0cf33cc5a8c336dab07
79ce96cd32a884261706febfa02ea10c25f99c6d
2609 F20101123_AABOGS wilder_c_Page_008.txt
3eb739f4e1e9e339f14670c5c9898fa4
819421bb4168aa1d9ca740c13fba0b1d6704b612
15348 F20101123_AABPDL wilder_c_Page_026.QC.jpg
b96e6f908d1ce6403ee73391f3f57be5
c45960f73f3ebb1c7bfaff3c5608fe37cb424d01
F20101123_AABOGT wilder_c_Page_194.tif
b64bda94ec67ab8f5856c3ac2ddf5cef
b09ae80ab929af302648de94ede5ff426ee53e8a
5939 F20101123_AABPDM wilder_c_Page_027thm.jpg
f4fe7ca17e9c52df93d1681ef981b478
0c14c1bd9ec2a510c327c1cdbe9beb71855fdf3f
368036 F20101123_AABOGU UFE0011630_00001.xml FULL
13505a135b5140d66d826b2c06c3836e
fe276258de7158db7a567ddc9e60f4bc4e1319e7
23513 F20101123_AABPDN wilder_c_Page_028.QC.jpg
7d0b4949c0d0008509067bbf670bb5cf
5ecb9384bb7f1a225040134c91b396728d4c2ebc
6502 F20101123_AABPDO wilder_c_Page_028thm.jpg
22fea11872a42b0a70460b21093cc167
797f2c6b7ac11b58af9c6ef6b231aa9f8e8e2c85
18557 F20101123_AABPDP wilder_c_Page_029.QC.jpg
08320b99658bb4898304ea19dc4a603d
bd83e6db8c3e7fbf4d6dff1b0a2bff32a97cc0f3
25113 F20101123_AABOGX wilder_c_Page_001.jpg
ec41c304e6f436710978e81db88943a1
695873812f57d52a46047ecdbc7dfc46b2c3947c
283 F20101123_AABOZA wilder_c_Page_041.txt
23b5e960a9eff64f16b1d0e54adadcea
0d3da99d67f9fd7fd665b53e23f2a90f78fdb3b9
5453 F20101123_AABPDQ wilder_c_Page_029thm.jpg
08999a5643f0b3c860b8f08e068ea666
62dd7fc0aab37a62ae450f7532253b5048809bb2
16447 F20101123_AABOGY wilder_c_Page_002.jpg
4db60c476d7b6b0c41f033069b06cb8a
679a4f85050821e5aee2341629af477e95cedbb2
1877 F20101123_AABOZB wilder_c_Page_045.txt
47223c803c2d5b189b985e24348e002b
a91615d16e048d3ead82503b60aea51964e24292
11673 F20101123_AABPDR wilder_c_Page_030.QC.jpg
a46bd4365367b355cac9817d51f1eec1
b99f834bd072821b69e4a2fbec542d2b1086142b
50177 F20101123_AABOGZ wilder_c_Page_007.jpg
b734e8a39a9daaf1ebfb1ff5a99fb8b1
29d5fb6fc7017ac7e294e5bee84df7dbe29d411d
1855 F20101123_AABOZC wilder_c_Page_047.txt
faf01b3dccff99247476541715ab4f5e
996452feaf155efe902ea68819afa36d3fc47885
4175 F20101123_AABPDS wilder_c_Page_030thm.jpg
9f342cf44623f92018ac41a1199c2d73
534a47e28fe1b1df55c3fb036c2f3fa3720c6c0a
1294 F20101123_AABOZD wilder_c_Page_050.txt
d17686eb728604cf6b1fe9315725b988
86c954bc2ff7d8b8d163d750c5d9ee232bdf5294
22256 F20101123_AABPDT wilder_c_Page_032.QC.jpg
e8d454fdbbe47dc0dbe44459e14ff081
064630ffdd2e04502f156d61149731d94d16c891
2938 F20101123_AABNPA wilder_c_Page_011.pro
75456b3dd7c1f518ed5bcd868355caef
0fa2ceb007e633fac7087ebb112606ebeb011a26
1045 F20101123_AABOZE wilder_c_Page_051.txt
7fffdc108c4d780cab0d6facec51c852
a8022793964ffaed1cdb7e90061d3a0f701b8688
5754 F20101123_AABPDU wilder_c_Page_033thm.jpg
2209ed0f16b5399a8b271de69528c1f2
949b93f9bfd6bffb2d774d4fb5a7bb4b3854d7ea
63655 F20101123_AABNPB wilder_c_Page_003.jpg
b3d3a7120b59d5e6da95282ea58887a5
b0fea14f72d43e79cb24da4dbe9c603bdc341416
370 F20101123_AABOZF wilder_c_Page_053.txt
14ba5f59f65c820fcdabbbc71370ece8
8d444c83992b65cab9d6bfdd3e4329da391e73cc
5290 F20101123_AABPDV wilder_c_Page_034thm.jpg
f39a8b4a88144801380862a894c066cd
cd3d4997082e05f911b599391d9270c8aa644453
30338 F20101123_AABNPC wilder_c_Page_043.pro
3496a5696b61274750ad0a8c72cdf5ea
ca9717ffe2fec6b0842956785b5b5e5876c1d4f5
1882 F20101123_AABOZG wilder_c_Page_057.txt
c2c01144e88a7ceccbd3f94d7989a48d
f33bb05d33f5f70561db75b38aad476fd22bccb2
6421 F20101123_AABPDW wilder_c_Page_035thm.jpg
e2bd0f6777ec72b26e56692128480d9d
c6298356c544de6e4d480e43cf36e3d8c5a45a4f
53717 F20101123_AABNPD wilder_c_Page_128.jpg
14a24b2af408d6a63e5ed98b31c1376b
f2a33d3e57e96907fa5f76e18b2f98b04bdb47bc
1997 F20101123_AABOZH wilder_c_Page_058.txt
6b141fb52ac132c0760b2ad3c23a0091
70f45b6baa989a0a97f9fdcdda06c26fa77b92b0
12056 F20101123_AABPDX wilder_c_Page_036.QC.jpg
d666ee5fcee23d5fc0a5ef96da965a83
207f948f8e005823c62380f9d22ebaa511443d33
49836 F20101123_AABNPE wilder_c_Page_141.jp2
d2e6a3bf508c59eed8504ae9bdee61c8
a11e57791826a9b4da03adfa86e7c90994851afc
1941 F20101123_AABOZI wilder_c_Page_059.txt
98d4689ff2d4bd717e107786ce4a0535
d65c424d61831e99004fcef21ff3e2ca70ea8867
5718 F20101123_AABPDY wilder_c_Page_038thm.jpg
698fb6ad5a9e9815a301da4a4efee59c
8384be49f7d2422158a8496c527b741c11b89e5c
1972 F20101123_AABNPF wilder_c_Page_106.txt
aff57d2a0d820783b515f0c477d54f32
e64ade87251868fe3b5c6d4fa795c9a2dd11d253
2038 F20101123_AABOZJ wilder_c_Page_062.txt
c770c86dd61d8c50aeb1a69ed237bf42
bfacd1c4e2d5ba3532199336ec041acea0d1274b
4942 F20101123_AABPDZ wilder_c_Page_040thm.jpg
8ad8071a6c36b00be48cd7394ffc34dc
0cdc270aeb5d0118f53c4c8d76fc4d8f6c7f500a
807 F20101123_AABNPG wilder_c_Page_141.txt
e0075270225706d28b14ce2b03d46dcf
175fa6b731c8a28a0999e2ec6d7a32c42bf1799c
2048 F20101123_AABOZK wilder_c_Page_067.txt
abdb969c5466350d42a1298eccde099d
a762ca6ee51449b98f44e1e5dfb9b62f1b141ffa
21341 F20101123_AABNPH wilder_c_Page_024.QC.jpg
9dd23e3ab558cebf6dcf5c0df127cb88
637d39797df066939b8d1d87b652c7491e6ec54f
106472 F20101123_AABOMA wilder_c_Page_048.jp2
48f961d8ce0365482ede8c318bb3b91c
dee1e8c51c2237fba80a0b9b07973ded3127fc7b
2052 F20101123_AABOZL wilder_c_Page_068.txt
b57f93abacfde881ad21f4de9fdc8c48
1cf28d3d16fa318da82b45f961c68ba76a092dab
237714 F20101123_AABOMB wilder_c_Page_049.jp2
02013809499060e54619741079ee3ced
2145b4a0411a558cb4c283f306dae1cc5326f1e1
F20101123_AABOZM wilder_c_Page_069.txt
14619de11a0e79af4c0353e662ad666e
fdbe0c2d57f54ed9840fb093b5e3df7875a5783c
9648 F20101123_AABNPI wilder_c_Page_118.QC.jpg
e1b3aa41c70c35203a2c7682a9af6a81
610ae77e1f5cebd01bf8182a3e62e78aca3745f3
204144 F20101123_AABOMC wilder_c_Page_053.jp2
5f20d2584bc23a36fdb724fcb43ab310
3a3085255663db19ff373443d33810c1a98fb556
1858 F20101123_AABOZN wilder_c_Page_074.txt
22fb2a1b05cca6e83820874a2dc8fcf8
628ff72616ef3200f2351755159f8c081d84929b
41138 F20101123_AABNPJ wilder_c_Page_157.pro
5e309f789d33bbf95dd2201defbc1c80
4eb61eb82230b8676d0d2ddedf679f966bc3328b
108200 F20101123_AABOMD wilder_c_Page_055.jp2
4ff0e2e368cd46f48a2fd0818e0d6098
d27faf8c3c7637b9b22939ba3ef67a23f6030c36
1466 F20101123_AABOZO wilder_c_Page_075.txt
0db9cb713bd786f68d3fe1c52f7f34a3
865aab605a4e308709aa6ddef8fad723a219aadd
F20101123_AABNPK wilder_c_Page_165.tif
35b84860beb22f45f7cb7bf1c8cf30d3
d23cc5bafb42ca93814bd03c55ea25d42284ebb3
2056 F20101123_AABOZP wilder_c_Page_077.txt
b9e8665573315e85d95891a98e0b92bc
066ea3b34a61eee70a1ca083dcc73c8228ea5c52
114911 F20101123_AABNPL wilder_c_Page_111.jp2
929fdb10f3de2368d320b034ed17ab10
0f12aefdcb04c11ce8615715b51ba7f9d636f3b7
801335 F20101123_AABOME wilder_c_Page_056.jp2
b5f41e86664de0eb4ecdce734bccca7a
45175eb7857923f0fe4a6dc4092d0f21f211c6a6
46878 F20101123_AABNCA wilder_c_Page_054.pro
717d7777d066fa7b3996eadcc9349619
df4f9576082d41256ad6f9561344a0f539d2772b
1900 F20101123_AABOZQ wilder_c_Page_083.txt
f3591dd528ba92e5d43d122ea8d1445e
e58babf4167cb9cfd8ebc11b5cceb2ed7afe1cdf
672 F20101123_AABNPM wilder_c_Page_149.txt
0c4591ca284854e788f4c7313ade5248
e3f2dcfbeaaff568c116f0a7e565819a3bfc77ba
103212 F20101123_AABOMF wilder_c_Page_059.jp2
51d667ba262e0e3b64cb0c0e8aabe51f
24fd360a987c835ba7ee0fbdb9dacee1a3713fbc
34747 F20101123_AABNCB wilder_c_Page_056.pro
a260f84681d15854068878a9656f8e01
e35a26841004a8cd5b451f6b6da996d1b59f685b
F20101123_AABNPN wilder_c_Page_138.tif
2f727ac90763f57dc60c19505efbda75
c40ade94dcb1b6a8dd058429db5966f0f6221b27
451124 F20101123_AABOMG wilder_c_Page_060.jp2
65bbcc152b938f55bac9e10472509cdc
1574a0e6e0dc43e598744b79a3b8bafe3050a0a9
22414 F20101123_AABNCC wilder_c_Page_047.QC.jpg
76213c8d602aea715df839072429eff6
bab07694857ceac70bdfa3ffae5f228a4110646a
2015 F20101123_AABOZR wilder_c_Page_084.txt
345d25ae322f74ce7ed7b112a18142e0
f1d441f8ee2617b0a263f61a8605e7fb42140ec8
83808 F20101123_AABNPO wilder_c_Page_022.jp2
9554c3d23980c48425f0d86a55b24b2e
08bc26cd1cfec87a469de272616cabd5c71f5da5
75874 F20101123_AABOMH wilder_c_Page_061.jp2
df7434b1fbebc732f129f289d352dd05
f9d30b40b23965358c0d759fe02fb558a3f94d1d
4288 F20101123_AABPJA wilder_c_Page_181thm.jpg
9332f21adbd88f8856cd6431ed1db8e5
53ca6c3b6793f7cd92be451b0590c7e3303c7ad5
14793 F20101123_AABNCD wilder_c_Page_170.QC.jpg
dda832112c43e2d068c07c397b1a94f3
ef20cb27afc4453a6e3edf75c31d33d13ee10de8
412 F20101123_AABOZS wilder_c_Page_089.txt
fc454264ceedaaa50e6326997d7ce202
383a928ad36ca93ca697a3b4d8572122cedbd092
F20101123_AABNPP wilder_c_Page_146.tif
6ab5fd09b50de32447bff2e188da1c97
2eb83c7176c1fd686881e1f9a6718c5367e893a5
59692 F20101123_AABOMI wilder_c_Page_066.jp2
2cd5c1ab057c162494cc69e74751e359
51250dc0c6dfe06079c205c2e7328674fe4e5579
3070 F20101123_AABPJB wilder_c_Page_182thm.jpg
1eace8b82e0cfba40ebd0b16dc5808e0
aa1616399e11e8810fa7872539fdfe654341addd
80482 F20101123_AABNCE wilder_c_Page_063.jpg
50e5fb98a5681397239f8bd72efe7d0e
e3cf2339b3846dbdbe1a9a3f83eb9277c6d6c9db
318 F20101123_AABOZT wilder_c_Page_092.txt
02d513f208865733b3cd9dd161bbf0ba
16c142c6ec2f85f310c79506cb564dd2d974b320
15367 F20101123_AABNPQ wilder_c_Page_238.pro
f0c6bd768a0bb9bcf964fa64d5bd1ac1
74e3a106f9914bb6a42c50a7b6ba594e67fa3697
111565 F20101123_AABOMJ wilder_c_Page_069.jp2
158150561691cb12ea40d489246549fc
e316f5152f8c2b3f8130e5442a6f23c202364c7c
9866 F20101123_AABPJC wilder_c_Page_183.QC.jpg
5426723478921d74ef9c411665f93ab8
8137481b59cf9f183abecd51f5c696b50fae32ee
799 F20101123_AABNCF wilder_c_Page_088.txt
20662b27740021b46256eb3da48b171d
ccba6445facc99ffa093c30280de137f3b24c293
463 F20101123_AABOZU wilder_c_Page_093.txt
f6db5615567f32daba2f672ac504a1ea
6ed3ec2b89490fc449e546e2d6ce0e00cd036f97
33776 F20101123_AABNPR wilder_c_Page_150.jpg
31c450dbe9f02d910e148747fa67e262
a35ca0892445123044f5c3158f5c1b0046a16b56
1051976 F20101123_AABOMK wilder_c_Page_070.jp2
0bbe6e1d58f7c8641c6b349cbb0ab9f4
89aaabbf262271d9f9681e7e40c55b4e0bf409d4
2997 F20101123_AABPJD wilder_c_Page_183thm.jpg
ef14a6e33df7af572d1496e9ef0e804b
cac259b7d51f2cf68128d7970a371ac0ec1efcfe
F20101123_AABNCG wilder_c_Page_030.tif
2bb58ee27c58bd3f6cc657f4338407d2
f5af4652bc3e65951002bc4a2c3169ef77f60782
2082 F20101123_AABOZV wilder_c_Page_096.txt
dd17341b8238b9d3c84f74b8abf7d951
66a4ea1f597a8e1c0955d2b797d7b2cac8053477
49794 F20101123_AABNPS wilder_c_Page_037.jp2
8406847fe87b16e96497b0918027dc58
0a6c65dffc454946c5458d615b855e231724bd54
31317 F20101123_AABOML wilder_c_Page_072.jp2
364d48587401214b1ae3cfeff07a69b7
f95e559cf9e5e910acf460cddf9b7307331a8db6
10020 F20101123_AABPJE wilder_c_Page_185.QC.jpg
5845b59c027609de7aa25f1a21fbe0dc
25547998b9767b84610a0df25da2feae979ec8f8
F20101123_AABNCH wilder_c_Page_114.tif
29b9434971e733e5072d938d90e161c4
b18decad9512cb70b8b0b79be5cf9a576cde277b
2000 F20101123_AABOZW wilder_c_Page_097.txt
6428c718bf3d54fc6ed63a1816dc48f3
19e8115ff7e924a938ef4cbe21d87bf699e2825f
41868 F20101123_AABNPT wilder_c_Page_159.pro
5cb1c7e26406d9699cac8c1376f83f68
5f6732de90d6ee9137384b75448e7d68a80c53e1
99555 F20101123_AABOMM wilder_c_Page_073.jp2
4bb230b1975ca082879ef77d23bf0784
72500238d68ef38a62bfd2e06c25188951248dcf
3048 F20101123_AABPJF wilder_c_Page_185thm.jpg
ddb96f5cc7ae3ff97e7f61c57d36cafb
508976e8ee99836f7d0b69b94ef7d4662d5b2768
37746 F20101123_AABNCI wilder_c_Page_023.pro
2042f5e2fc3bbe95f0011f5a2edfc69f
6c79394215c552b239f5e20abb52d248cd416af5
1871 F20101123_AABOZX wilder_c_Page_101.txt
912dcb6f4f6f7f0260c9d2e97799c82a
622d16decd483b2e32fd74f083637020705b8cf8
2994 F20101123_AABNPU wilder_c_Page_172thm.jpg
6c971bd2516b2ac5ca77c13ce5569313
3289fc45df2422162a130351be3a39921e3ffd19
105453 F20101123_AABOMN wilder_c_Page_079.jp2
f23e3842f0b8031e40cf2f9390e7821d
a8241f83d203eacda1bd22c3508815f403b8d4da
2928 F20101123_AABPJG wilder_c_Page_186thm.jpg
a2730c87e97183248502952eb756c1f8
f3d2ea026f31d4c5e771536c802b337a12724ed2
38337 F20101123_AABNCJ wilder_c_Page_209.jpg
426a60f70b4a9e94986bf1c6959bc57f
4750b2d73745f93b08f9b30b670b532b574f843c
1990 F20101123_AABOZY wilder_c_Page_103.txt
138f061e96d4e82e137b894853886821
c920601361ca0540e7720c969a2bcfb4cfec69b6
15531 F20101123_AABNPV wilder_c_Page_133.QC.jpg
b7804ddec46a9d9c637b468a9ac9f538
2d602669d1090ad0e45cabbab886562a2c052b6b
112684 F20101123_AABOMO wilder_c_Page_080.jp2
a53155b8e472fe44bc64b63201b25068
0e9afaffff444d091f5bc665a0e29289fea8dba7
10028 F20101123_AABPJH wilder_c_Page_192.QC.jpg
e776af125ac8b2c1d9112bf53b3621a2
f6e2c45c270a27cad6dd0d8092c563f8deb68662
11691 F20101123_AABNCK wilder_c_Page_179.jpg
2542a3b663a15920b600838920225dec
3753c1091ec5afe16952e2823fad9f9231041a9c
1845 F20101123_AABOZZ wilder_c_Page_104.txt
786a55eb51db87f0c5fafafbdcd06f4a
9532678c4bfec11b0f751cb2412f8c6f5c13d81c
F20101123_AABNPW wilder_c_Page_042.tif
5c71e9fb13afc02b40dec53888ed9e5b
41615872255a1e95ed5d62aa420b5525e9077114
59316 F20101123_AABOMP wilder_c_Page_081.jp2
a33267fd26fb31bd34513d7ccc280e54
f41a141757dddf90bae39d3c6f0c0e3620f62833
10232 F20101123_AABPJI wilder_c_Page_193.QC.jpg
7d4c63ea02dee73fe23ea06d3741a317
ab49fcfc019cc82f7756ee44d15ba400c2e31466
36418 F20101123_AABNCL wilder_c_Page_168.pro
260ef60d8c4d0816ee1f1745a4774d6b
a3a806c114d218f0292b3695ca4effd13cf236a0
F20101123_AABNPX wilder_c_Page_049.tif
c38792feca5572e8a1475be1aadc57c3
3ef784b32c2c3b79aa7722a5c4bf4a5e9ac775db
104165 F20101123_AABOMQ wilder_c_Page_083.jp2
2ee247a6460a925a8127ee01f8a84601
ee786798612d5a4749699c14ff1c425504ad1bd8
3407 F20101123_AABPJJ wilder_c_Page_195thm.jpg
1db1d6276d41f58fd2121f61178c319d
99222bdefab709c56aa60f0d827e264786a18ee3
17348 F20101123_AABNCM wilder_c_Page_205.QC.jpg
d74084c6f7a506dd4d590d3823077a30
a9d15e9756e22cc344f8fa2e208de2a38cc94686
21423 F20101123_AABNPY wilder_c_Page_210.pro
ec0fe04291abc939472bbece3a3815c9
da8a709b9fda10086c102b8e3982897d65b45b61
82461 F20101123_AABOMR wilder_c_Page_085.jp2
71ccd8a4fe49998d6b4b65a657707f8e
f7b1188cc66b4254781205e5ac43c20a83ea4a8e
3308 F20101123_AABPJK wilder_c_Page_196thm.jpg
41b65d60bc7e30e93876c026e4374037
621c0079e3a21157ef0ea830352a0078880cd27a
1557 F20101123_AABNCN wilder_c_Page_027.txt
51f4bea668154208b4d2fdb9b40498a7
a4b6c98ee84409748ab7871187a5e86c1a164658
19009 F20101123_AABNPZ wilder_c_Page_022.QC.jpg
9e899268dba4725a397b89bd7f44883d
ef45802a976626806512916172cd46def8f411d7
40342 F20101123_AABOMS wilder_c_Page_087.jp2
12ff5fcc25f465061ca6f2cfd9023670
29aafc241623c83b2fedeaee99019f52f6fb015e
9027 F20101123_AABPJL wilder_c_Page_197.QC.jpg
3bf345d2cab15e66502801f564243fd1
2b3ed76bacde58c37dc665b2897e62ee1018f0e7
3795 F20101123_AABNCO wilder_c_Page_088thm.jpg
75e55b27a3f6f33a7e0267615d0b64d1
c1b0d66756a8e05a797584a4ae4d162544ac9c35
530603 F20101123_AABOMT wilder_c_Page_088.jp2
b803f6af457c58c76a16f3f524902295
9d0ce0c69feee17db377e2525fd656c08acf3e8d
19249 F20101123_AABPJM wilder_c_Page_198.QC.jpg
c452cdd84dd897fea38216a142db2b5d
3f9b93441800807f46da99af344a84fe9ad0d424
110957 F20101123_AABNCP wilder_c_Page_103.jp2
442a5b598497b4bbaa8e78a724c0a3c6
691fbd529dc881b6cf4ac443ac24f56b81c60689
55929 F20101123_AABOMU wilder_c_Page_090.jp2
639829ce18c1a93dddc3d9e12e7a303c
6691004a50e453dc3e9866b703c213199d1a5148
5522 F20101123_AABPJN wilder_c_Page_198thm.jpg
4ed2701cc0d6a88de56ca20d2524de9d
9c83998483b5ec1dfc36c64ed8c491d1b93e5edd
65684 F20101123_AABMYA wilder_c_Page_054.jpg
46c8774e23bb5d7daa714dede68c77b1
af5ff323e118addc5bdbc6dbcc9e59a1e0ba5e1b
6606 F20101123_AABNCQ wilder_c_Page_095thm.jpg
ecdd43705d656e3464fe698b01c78345
1b7c544bbdeef1eaab852b550ec2528b204ff52f
455047 F20101123_AABOMV wilder_c_Page_091.jp2
8bb6c79722106ada04873a3ca96776df
1f5966bed943e1004ffe75395de59c94dc188caf
4337 F20101123_AABPJO wilder_c_Page_200thm.jpg
dd9b834853ea5810f38d38eac0894520
e1ec0b022f069daf220c0c3baa1fb44663489ec1
1472 F20101123_AABMYB wilder_c_Page_018.txt
b5fdd4940a27045d3e0e06f0eb205a6e
26409faf69afb6f045200082fe38f66e650ab006
5034 F20101123_AABNCR wilder_c_Page_043thm.jpg
79f71d93a3ab884a2078b3e22cd97cd7
7495a69832020d0d4d6764264d776fe3ee210f86
465763 F20101123_AABOMW wilder_c_Page_092.jp2
95a6c3c61511579668f683e98c37d1b2
8bbfed89d98dd536af115e7e8f92c41a2dc187dd
3213 F20101123_AABPJP wilder_c_Page_201thm.jpg
aca4d75e66d3b531f26292ba046b3040
f1298f8e8b4510d800823b25d0670555d1752074
F20101123_AABMYC wilder_c_Page_189.tif
b8d501ebd96a4ab40f32ef286a1b60eb
32381baccd34f831503526ed85c9520b97404490
696 F20101123_AABNCS wilder_c_Page_238.txt
ec50d65c51bc2b71aa459f920745d8e0
cab0775f3132ca19faeac19158cd5896b28a284d
105345 F20101123_AABOMX wilder_c_Page_094.jp2
40fdc6c03efba642a3006b84d53f938f
93dadedb888bbd7d35e48fd1a4f537c9cdaa5275
4783 F20101123_AABPJQ wilder_c_Page_202thm.jpg
1487313609e1f752804f8c2ac6ff6484
13f290e6282f2bef03f544547c3210cd30637d4a
51167 F20101123_AABMYD wilder_c_Page_043.jpg
f188db4a1d65191d50125c11a6ca25d8
d7b2252c07a30ebefb6b0f80f9d7224b676757f2
10060 F20101123_AABNCT wilder_c_Page_151.QC.jpg
df1fdf0029664d26bf0094530975de84
2132ceacdf8103a73298072e65f3ffe884fad328
105906 F20101123_AABOMY wilder_c_Page_095.jp2
f40e3daf77e79a3459911d11f8611d65
aba6fedf016dbbfb3f015a3b312c8e2a60509387
3018 F20101123_AABPJR wilder_c_Page_206thm.jpg
b3183638d24740866f5900bf31334b52
35d0263c254bd918e94365dee6ce83609effa6d3
73361 F20101123_AABMYE wilder_c_Page_127.jp2
c6302da658471b0dfde4e48eaf5917dc
e1bd9b5849859597b2ddc0c6c2f2c55e6914ea3c
9457 F20101123_AABNCU wilder_c_Page_171.QC.jpg
2354275c253ba9ee000245a7e3e5101e
29ee5dc99d56493274a32e513c423dbc0a8642fd
11226 F20101123_AABPJS wilder_c_Page_207.QC.jpg
8c58490ab0134c7087cee0d75076da04
b76ee60ef08a3b17a37608483621a1f2e0d14914
114748 F20101123_AABOMZ wilder_c_Page_096.jp2
26137b994699f7bbb025ec91d23bacf8
643dd5cb6029c6979de40349b84a60827d65a143
32550 F20101123_AABMYF wilder_c_Page_192.jpg
58b516f07ded6356176de98e193bf34d
0851fd4368097bb5290bfa92fd222588f81c3a89
430359 F20101123_AABNCV wilder_c_Page_093.jp2
5b23e43c93abba16bcb48fb2f281f4d3
b2702e6c70d2c503e808c16abc3d753f8a246b55
3336 F20101123_AABPJT wilder_c_Page_207thm.jpg
51ca178476da5272639a27bc50b79e2a
5cd34eb1b6c3e4312e82f113168ff582b16ffd0b
115889 F20101123_AABMYG wilder_c_Page_006.pro
f6ea36ec835d45abff9ae6db479b6672
d098a7a160633f4f08f3b48f9dd150a05bae5755
37722 F20101123_AABNCW wilder_c_Page_014.pro
8066fbda6f233d8469a7ba577832a893
27c72b0103d4430b6ff6bd7c780c662c05423acf
10180 F20101123_AABPJU wilder_c_Page_208.QC.jpg
9d59055897e87c42bf57ac3059b916ce
ed64d54e49c5235725c50f68976948222d0a28c0
9960 F20101123_AABNVA wilder_c_Page_172.QC.jpg
f937ccaa3795cf631e2c56a6b58c1d4c
a70da57aeeae122c4043d209b7590541d87a4d83
97267 F20101123_AABMYH wilder_c_Page_054.jp2
3878d9f9f0f0653dcf771bc94f0f81f1
7f04e7830ace8b780dc1c0913a5c897817c3bd87
1543 F20101123_AABNCX wilder_c_Page_127.txt
8adb17310d416b81571208ef1fd8a995
cef0575b883d114524f0fe17d90003f06bdec449
3531 F20101123_AABPJV wilder_c_Page_210thm.jpg
95f9e4b356ad4c4b1c231b8efa5243ed
e11df5ec4863bcac86d0008509351d1d1da042e2
30237 F20101123_AABMYI wilder_c_Page_115.pro
bce078b876931f94517258cf557ec49f
810a5dd99adde8f344d9a0e857ac65738ed7c44e
26529 F20101123_AABNCY wilder_c_Page_201.pro
1d57b45b28c299acad53796ad633dbf8
a6a5d3330b67df8e33de536614c6aaf27853f58d
4291 F20101123_AABNVB wilder_c_Page_221thm.jpg
907050d87e365bb1dd09c3ba7e7a64b0
5c7304d0e02d56540291d1b3379947f4b4b9010a
12658 F20101123_AABPJW wilder_c_Page_211.QC.jpg
0ec539a3a3b41df5333d2431b1d4b250
db15429cc3bcc7ab7862867b3a7dc56e55120264
68631 F20101123_AABMYJ wilder_c_Page_246.jpg
93d810160c48d0b27735256e5fe32938
319462817b4e4baa9b89b42143e476687cc662dc
6516 F20101123_AABNCZ wilder_c_Page_242thm.jpg
70371abfc4c00bc17a7cf77ef7ec4a22
5e5939a4c1ef42efaca963a92aa6bbe4a6ede6d9
53087 F20101123_AABNVC wilder_c_Page_113.pro
eb0fdd08f64a748adf9df241522e0fc5
a49b4bd42390880b6cbe7e416bddafc0bca141cb
12073 F20101123_AABPJX wilder_c_Page_213.QC.jpg
011e3ddcb07cdf8bea6e9a718ae9c709
0d35250e6af2c9e9a04aebc5bf1e1b0f68607afc
F20101123_AABMYK wilder_c_Page_154.tif
6c80b07508d4e62f4bf604758a432ef6
54c6308497f65f0e715db1407aa274ca4212e83e
F20101123_AABNVD wilder_c_Page_024.tif
5f903d56176f5dc669d64ac207faf199
d18261a05ebd3f490ba2c2ed7055061ea245ab1e
3550 F20101123_AABPJY wilder_c_Page_214thm.jpg
7df2ebdb207212e31dd02a5deb4acdf1
1025dab8878cd1f041e3bd83b3e1497a61f08b33
103325 F20101123_AABMYL wilder_c_Page_098.jp2
082bc726c7c43771fc3196b12f98ee3b
c5f0fe5ea589f2907ede55663e9dee7537263b87
4857 F20101123_AABNVE wilder_c_Page_126.QC.jpg
1e56195701ee78853f2efeb36c58c1c9
2939494c1f43faf808537077ed6646b603cb4650
5590 F20101123_AABPJZ wilder_c_Page_217thm.jpg
520343942b29a05697ce93a0f12917ca
686ead6930bb5ba799a39c416931de656953c0db
2022 F20101123_AABMYM wilder_c_Page_176thm.jpg
6844c478b567a18c0e7ffdd117f84c88
d663b4d0981b38b69e9eb8aab2dbb095071f1e2f
35953 F20101123_AABNVF wilder_c_Page_085.pro
5b27f144844270de951984ff3afae79d
f6d8581ba13334491cbf08608e8ab26fcdcc96cc
11180 F20101123_AABMYN wilder_c_Page_199.QC.jpg
7fe07128e66f6d064a629c7cf8203436
fffad51e294a3d9c08c18c8ea3c413a336a05489
1778 F20101123_AABNVG wilder_c_Page_016.txt
718a5ad245a713e413527c30d143e00f
d71d3b8b19accd223ee9f1ba5efa8becff955228
F20101123_AABOSA wilder_c_Page_152.tif
67f417aff7406255bb168f9a275bdcf8
2fe2eecfbe0f705a6917722bb4f3fa0bc5dcb1cc
81576 F20101123_AABMYO wilder_c_Page_029.jp2
b28498bde4ca24517fd57f1e423340cf
1d6d7a3157cdb3c7337120bdfb62650c4974d113
76098 F20101123_AABNVH wilder_c_Page_116.jp2
997151f14102df9453942b95582d767b
ac26efe3d47e031b6256252d1e3bc55c20c0a71e
F20101123_AABOSB wilder_c_Page_155.tif
392b4ea704c07c092696e6093c83c146
bc9716699d68d81c1530e55fbcc43e91e893f714
783 F20101123_AABMYP wilder_c_Page_196.txt
2843b2b901ff418de8daa53ce398f190
caa4b0c667315399774eb782af231b896e0dbb5f
4664 F20101123_AABNVI wilder_c_Page_158thm.jpg
a468d1d486e81f46dc345a27fff3fb59
0dc18b40b4f94cbb740a5c236e1c4cbd0add5d23
F20101123_AABOSC wilder_c_Page_156.tif
4db6f54bca4e115fb3115d37387fd222
34d487939a72822a269e0061b6937266d6dd9a27
48718 F20101123_AABMYQ wilder_c_Page_207.jp2
5ee31a807fb10828fee38307bd6f788f
a974446faec1a4dc85510791d73d93fd56953bd6
2225 F20101123_AABNVJ wilder_c_Page_165thm.jpg
0ba698b337c44a55e46ede283ae06f5d
3b9fa34c5479cc66d1a8e51d4e99f583c590f107
F20101123_AABOSD wilder_c_Page_158.tif
e1d50e2a340fb5851f19d06f78fd7a4c
b304b03b4406d130af8802701a51d8e2f31ad107
3194 F20101123_AABMYR wilder_c_Page_175thm.jpg
d8f865d514922715ef20cc4aa01155e6
11f75cdfcb56d2b956af8bae280361abe33c59d6
22665 F20101123_AABNVK wilder_c_Page_094.QC.jpg
70f46eb0f816de94e086d83c6100c9e0
c6e8a3add33f029a042144c0b30b163025adab22
F20101123_AABOSE wilder_c_Page_161.tif
e1398f6a00792406ffdff182ab83da9e
a0527cdb1ba4cc8ea71d136b744f6f3720220b9b
33976 F20101123_AABNIA wilder_c_Page_185.jpg
20e8336dc699e5fb658f0b3d71ec3987
4cb603ba37d8aa75dcb7bbc866937548cd26b6f6
5782 F20101123_AABNVL wilder_c_Page_019thm.jpg
3e89c070896d6f5cec13dba95fa0b151
543e26e5c0cbbfb453f45ee01bde9027681cec82
F20101123_AABOSF wilder_c_Page_162.tif
db8cf996ac94eaa4c77933c2c1f8e212
9d36f118b17689515bac890cede8d4b7e8ce6e20
F20101123_AABMYS wilder_c_Page_160.tif
0736b8cef84f453b12e4f4e74b6845a2
6be69415587d0171bce7f0a82b054b16d8b89f1e
F20101123_AABNVM wilder_c_Page_084.tif
dfa575690ddfdbf4e3b5d850a4323395
ea7b7b8f70641967144cd9182d9e750f391020ec
F20101123_AABOSG wilder_c_Page_164.tif
40a86c802d39ea59c9005899a883760c
71a94635cfea1a9604278422684dc427458cea73
7621 F20101123_AABNIB wilder_c_Page_160.jp2
0622f68d8d5f760a86b3584fcb35edde
4ad019a4a31e3f4e92c988a0ec5b4b8008347700
7771 F20101123_AABMYT wilder_c_Page_226.QC.jpg
c1d2930193b1a8ef58c6cf11eac23758
b7aefdc7de29d54ce02045fb287e40b820c788e6
107927 F20101123_AABNVN wilder_c_Page_106.jp2
3facebcc6ad8d3d668e2a3ab5e71a4e6
dab3285abc4a543c62690c6d97e13dd4458b3ab4
F20101123_AABOSH wilder_c_Page_166.tif
915ca6d1c289e666cf7134a6ad9fc119
04e56502aa0ae4e68cef86a41bdf2101e5f8fa0e
50855 F20101123_AABNIC wilder_c_Page_039.pro
832df795950188e974c47dd3016cb26b
d69deaa300692d719241049ffbeac199827214ab
F20101123_AABMYU wilder_c_Page_112.tif
c6cce353cc6082c4f5196c0f122d5c6a
98071eaafd58240594b018dd46dec39374e55005
F20101123_AABOSI wilder_c_Page_172.tif
ecedaad2adae87c0a62bcc10f2188b9b
2d5e766810373568f6fe90a2222a5a2890999613
44235 F20101123_AABNID wilder_c_Page_188.jpg
41301e9b8af401c4010358c48f8ee481
d6a4dd1c2b2bd8d0486ab2119ed6d0aa29efc244
2083 F20101123_AABMYV wilder_c_Page_220.txt
f526c7f53c0ebc42578404613188a2c8
55c667afa05925bbb30aca954d0aeb4e3fe9adb9
5912 F20101123_AABNVO wilder_c_Page_046thm.jpg
73a74a30814baf27f6298b37444be6b9
342b0137b501963548d4e0b15ff0132d960de61b
F20101123_AABOSJ wilder_c_Page_173.tif
0889c381cd04491158ee3f0161ff2dbd
2800a4c45b8fb4d48fa8e6481505bb0324164d8e
48100 F20101123_AABNIE wilder_c_Page_083.pro
476227d169684067fce7e0dcf259e005
9872b829d221c9ef5f669806d767e6edd94cea53
4938 F20101123_AABMYW wilder_c_Page_075thm.jpg
43134f9a533ce09cd4974c95b2924402
ff779b33eb37d3ca4fa74537266b0749d58f8c90
19148 F20101123_AABNVP wilder_c_Page_033.QC.jpg
bfebd5e7a989db44641c501688be39f6
0f81356a44d109030b5119ce8ae0087ee2c6b92b
797 F20101123_AABNIF wilder_c_Page_060.txt
886407e82cb5456ad5d92e4ed421efdd
1f398a46bb54ca30801e938256fb8c61b3ac57e9
F20101123_AABMYX wilder_c_Page_223.tif
95ff2272f2722ed60dd600087d6bb73b
1a45ee190ed1f5b6e7f13d10e28534bf5f8331c4
13213 F20101123_AABNVQ wilder_c_Page_072.pro
f3deb2b54ff0586ce201e1f169a354bd
c607192bbeaffdc9e07b57fa6d691723aba678fe
F20101123_AABOSK wilder_c_Page_174.tif
a6713caf965ed51287263719e0be6c37
e8a62e7061f1c5befd9c0ca6d6628e76f263ed94
36405 F20101123_AABNIG wilder_c_Page_233.jpg
aed31ff558cf9a4e39be03d9ae894909
8019b381bf207e8b1c88206cbf7af0a9c9c33821
3103 F20101123_AABMYY wilder_c_Page_194thm.jpg
fd32d2ddb90b9f4a5d61c9e96daf5d48
7bc59d8732dc4ae20fdefbc907289c23dcc5df63
50638 F20101123_AABNVR wilder_c_Page_209.jp2
183cf4e7676f8ab97bee44adaefa2093
0b36303798bc2024aea85f7457a55925df4514bd
F20101123_AABOSL wilder_c_Page_175.tif
0ba6ae599caa7c58bbdbb998d7099431
854754ca25e9156ee1146d779e00a6c105a3bf04
3297 F20101123_AABNIH wilder_c_Page_230thm.jpg
e3308c9f74d1e8c5f4c4821ccfaf403b
4c58eb43b508454032545bd8dba427df7d267e6b
70903 F20101123_AABMYZ wilder_c_Page_112.jpg
a091afae84706f7516f011c216cd18a5
658f58dd9c9f7216841eefd0ba585cbcdccb35fb
F20101123_AABOFA wilder_c_Page_063.tif
41e01bc25cea89d5264f7194ccfda593
bb8eeda6d2aa46bd9d92ac4fdfdf29241a0549a2
77242 F20101123_AABNVS wilder_c_Page_071.jp2
c075bf4617abc703cc6372d128bbf3bc
e7db1ff61c7928401fff2df3c5d9e2699c876962
F20101123_AABOSM wilder_c_Page_176.tif
a54b6c2f15b6ccf16a5618102203bf40
f398117d7ee0f5086dcdf21429f6379ea90e0292
43664 F20101123_AABNII wilder_c_Page_135.jpg
cddfc8970d8b83b770f8285bba8ed3af
470dac0afa2dd1460d4fe75bcd44bdf9cb1c6991
48358 F20101123_AABOFB wilder_c_Page_140.jp2
6c549845bf0a236d6f1abb6eb14e509c
2fe27ca0452e816cecfc1a677eb965e45e32d5d5
4695 F20101123_AABNVT wilder_c_Page_223thm.jpg
d363f049eedfc6a8621ecd24c4819609
00dfe835d5bae808372e8f31c71c868b3d01dee3
F20101123_AABOSN wilder_c_Page_181.tif
393fdda401c2642c124d78371fd43b3a
3d71a790902861f6707a26632d67891ebc283d0e
6523 F20101123_AABNIJ wilder_c_Page_104thm.jpg
111e792041fe2ccdb6c7ef6d73899757
00e682a9b4e0aac487b81b2353b909109a570aac
945 F20101123_AABOFC wilder_c_Page_175.txt
f2fadbb3843b0c829904ff38630293a0
1f1c85b9c83ba85503cd9d4bdc7965a734799228
1051984 F20101123_AABNVU wilder_c_Page_009.jp2
1f6a3733db804f5c0e32e7af2e92662d
71e196fe72fda0cb985b3fe5fbe946bca7a2e954
F20101123_AABOSO wilder_c_Page_182.tif
d06475989347753a83e44c6e40478eb6
c75372e3fc16f35b2e203735a493d3189cf4f625
29915 F20101123_AABNIK wilder_c_Page_092.jpg
a6b58f4f1d0e8387a82c0c0d75ebe486
a1a3ded10ea2eee91513863bc5705ed915eda040
3498 F20101123_AABOFD wilder_c_Page_212thm.jpg
c1c669607a307985d613836d13fd286f
4ba47ceaa3bf6b6205b382e1735fa051b3aaec09
18822 F20101123_AABNVV wilder_c_Page_207.pro
16230bf0f038a76e225eb38b4abb68a5
135f078eccc9f287aba50d8d94cb61bf2ac49cdf
F20101123_AABOSP wilder_c_Page_187.tif
433d9de71184c5d1a0a0322876cc18de
132af9309dc3ba2b732ec60c57f14168a8ea7ecc
1051977 F20101123_AABNIL wilder_c_Page_064.jp2
95776b0dd1dbc661e1a7b53499bc2700
b13b6ff69a9ba929659200b7451ed6e07d24d131
155 F20101123_AABOFE wilder_c_Page_203.txt
e0df9f8e047f23515f7a2f7f75c5f4fb
f6ea4aebc0947df455811d6462d5e09dcca62dcd
31980 F20101123_AABNVW wilder_c_Page_086.jpg
af940e121e438f2e3629062d43d4959c
c95c128de43767289f5042bdec22b980d2ccfe58
F20101123_AABOSQ wilder_c_Page_190.tif
ab8c3418204f4cb036ecff368f5cd440
9d199f50f0f52be3c0b0bcd74381998d2c98b1c7
8389 F20101123_AABNIM wilder_c_Page_144.QC.jpg
695d9d6e975710007e1395e09840e578
b0cc969bcbeff74e82698c03935da4e420addb0b
542856 F20101123_AABOFF wilder_c_Page_026.jp2
2c38b76e274643e835f26095b445795e
bb748b9d481deb4ccb88125661a05ae0cc549a93
23297 F20101123_AABNVX wilder_c_Page_199.pro
53143f68cc64aae367d2c323299afd8f
65cf8e3ffc47b8402282c626209ce8ab544a8c77
F20101123_AABOSR wilder_c_Page_193.tif
83a3da0d5bffbd2ec27c65ba0e32ef03
318c158d3273431fefca068fa2328a87a1e5e53e
45041 F20101123_AABNIN wilder_c_Page_219.jpg
3ac78db84c5324fb49b3d1b740dccb7b
288c55540c7b0649d90a23e0db50ae009d4314ec
F20101123_AABOFG wilder_c_Page_059.tif
7698e46417f75dbfbff2f774a408c28a
5d0e009f10cc010ba04d6afb66c9779a1c7541a0
43266 F20101123_AABNVY wilder_c_Page_076.jpg
bf0a9e322ce6631114cedb85a652946d
5e2055e4ebb2029b121e9c34ca253f1b5e155b37
2273 F20101123_AABPCA wilder_c_Page_217.txt
cc4d541354b90910a5d8f5d434aafa90
ff10c7462ab87a38f2abf8d6ff484226e729eec5
F20101123_AABOSS wilder_c_Page_195.tif
05e1c42f99daf650fb04c4b90039106c
f2604a8af28881b2a6a21049060823e953284f85
58869 F20101123_AABNIO wilder_c_Page_081.jpg
7d5aa19287f6dfde5507c95847f9e46b
6cffc3bd6e55b9d41f7c5d691fb2ad10692bd9f1
1677 F20101123_AABOFH wilder_c_Page_017.txt
cbfbd84bf44f082caf9ac32f04befa21
a07d72c6c68036947ffc9e5263f0f70b4b191512
F20101123_AABNVZ wilder_c_Page_141thm.jpg
f49d827c84115de1a1635545b52f2262
0ab0c431982e1eb4e3660c0f444ab7d9e09a2466
2062 F20101123_AABPCB wilder_c_Page_221.txt
24499f6d263f3246f44cb6ce26db52d5
f96d7b382f7c2c07281fc8e79bef7f79465baa53
F20101123_AABOST wilder_c_Page_196.tif
ca9956b6897b98080ffd61757a462f16
b7a3a2f0b7808d198ede97d6ac743774cfdde4fc
691 F20101123_AABNIP wilder_c_Page_150.txt
dafc64aedf4c021feeaddf0636184d75
62ef1c0849baf59dd549ac048b8a612a42a72c92
F20101123_AABOFI wilder_c_Page_237.tif
3f0232dea7a3749a2eb6162140807a4f
bebf895e3077796fe1cdf3d59fc4e08546362da3
884 F20101123_AABPCC wilder_c_Page_222.txt
7969b4e47f845d4cdd24f905fb2548a2
eb352a62cc300434d3abcc7b76cae5e93bfc8de8
F20101123_AABOSU wilder_c_Page_197.tif
61d814147f3a0d2d40decbe066b70f6a
cf745a1831b820dc51ae389deb1071c58eed518b
73474 F20101123_AABNIQ wilder_c_Page_020.jpg
40e107e1cbf6a7ce8c907b287ad3d828
db52f547c8b0d4b28e9ec68475681f6389915a9a
2285 F20101123_AABOFJ wilder_c_Page_012.txt
4b91ab6ea6dc74b3a63432a653ccc2c6
254695ed0ab3a6dcdab74abcc13faf21fd856b48
156 F20101123_AABPCD wilder_c_Page_224.txt
ed2d04e1610440a696b6f1cdf76ad8e7
45eda1293b1f46583285b2892cf2ea5e26dcdfcf
F20101123_AABOSV wilder_c_Page_199.tif
82b6a12899e40f371bb7835c9b85ba4e
865f544d733fcb23ca377fe75ef2ad88b2003565
F20101123_AABNIR wilder_c_Page_191.tif
86196b3e737c5d2323ebcca8e1a38887
ddc755a3711d56963ed647ca7dea3532b99086e3
47692 F20101123_AABOFK wilder_c_Page_035.pro
851f27f65cf3105e17aaabbad8feb66e
899214eae71a4fe141eaa085a10cbd64f02f0a85
1096 F20101123_AABPCE wilder_c_Page_227.txt
279d14135b2341c296acf16c2ecddc74
24e174ddbdf9a5ab5c6514682979ac500d4f4ff5
F20101123_AABOSW wilder_c_Page_200.tif
64ac84df0050d7beb8f5bfac51d31c09
fdc778b51a204a1b01b22ef63e81515be5d92cff
20685 F20101123_AABNIS wilder_c_Page_216.QC.jpg
b1cda4ab856ecb15b8197eab2d89884f
1142635c73c7d5f11ba3e53c56557da6a8010dfb
23837 F20101123_AABOFL wilder_c_Page_136.jpg
2c55c73fb549dc661311c98f144d7964
1d158b0aa0f468f2ef10971ec9d4a90c1ebd63ba
772 F20101123_AABPCF wilder_c_Page_230.txt
bfeb414ff458818dfb2139cc9dde1a4f
b3403a5236204ae4529db3028a21b717258763c5
F20101123_AABOSX wilder_c_Page_201.tif
e329a1fe64e50e773e9289ed60675403
d52a1698583a9e51a0fe4e43b189edb4f88710cc
F20101123_AABNIT wilder_c_Page_119.tif
c76660011c10bec532a0a116259a361c
154423e69c6619985a12045b43b6f52a4f4a40d0
22756 F20101123_AABOFM wilder_c_Page_045.QC.jpg
99c0175c86da00cf777ba681048013df
62c7249e6a9b2062ad75621775a0ad40741daaab
754 F20101123_AABPCG wilder_c_Page_231.txt
c307d51d3737b4cace482aba2db2b499
f087787ba336a73423da79c3655919667e77d68a
F20101123_AABOSY wilder_c_Page_202.tif
06e67ef0c40336089b8962969a80e45c
90f1a0d94a74c80eaa051cf93f9756508e4e619d
1106 F20101123_AABNIU wilder_c_Page_182.txt
7334148777d2e7f05f6fc544aa4afeee
68de73b5d23753c373d0967d2553c01382f9a56f
1063 F20101123_AABOFN wilder_c_Page_192.txt
753b12a00ae7e557fc2c95c2bdc09f25
a86acb5c082db8f2805a68920ee1760fd192841c
F20101123_AABPCH wilder_c_Page_232.txt
75231a687b408773dc91efc60b8a9295
1c30b8611a4bf3c5f92a7d65825b94b9aa2a018e
F20101123_AABOSZ wilder_c_Page_204.tif
2181b792344aae56770a6def3b833403
f2cab3eaa41b103b2941e795ff26bdc29f54b18c
F20101123_AABNIV wilder_c_Page_028.tif
b5112e483d6ff6d1104754a930015567
1f050ad071b538ec985467f17d44444425feee84
108467 F20101123_AABOFO wilder_c_Page_028.jp2
abac5e7b3dc038a64f34b14cc13d8d1d
c68735134787b5e93cc89e6e2537ce761ff3eb88
764 F20101123_AABPCI wilder_c_Page_233.txt
86147014f616e7df8cf90d621e00e2ff
a5d41704db4951bfa158aa97bd52e93e494afd23
756 F20101123_AABNIW wilder_c_Page_207.txt
02e6623aca83eb082a4736e409d1e922
3d971beacb0291c402e5993f822c787542589053
6281 F20101123_AABOFP wilder_c_Page_105thm.jpg
7e0a0cf029c6b1ea69e3554552a2f918
1da7042983faffede5059c6f3f3c5590ae27ae96
788 F20101123_AABPCJ wilder_c_Page_235.txt
0555ee14a2fc33b9fdabf02c6e5fdb03
b89bd0389fdb5494e5d1f1338618724894f6340c
F20101123_AABNIX wilder_c_Page_064.txt
68e09d29a0b35fe08bc9be617f619c67
a44a5e9ccc721c98e0844589d0ee4991f07a4386
52794 F20101123_AABOFQ wilder_c_Page_217.pro
e2e8d213ec0a71f3fd40279d8881d732
b860d5a5ff142fd66a85aabf70f0d5e998116fcf
312 F20101123_AABPCK wilder_c_Page_236.txt
feceb4fb2d0a99d14f963dc6e3e7071e
a0e37dbfce7b4f4abcc2e4cf7b1b7874390545a9
17082 F20101123_AABNIY wilder_c_Page_163.pro
45d0b2ef3af084d2ee6051801e77a157
ee4cffb0f3a30e55aa9f5d48ab218ab1cdd1dae5
3161 F20101123_AABOFR wilder_c_Page_093thm.jpg
c5219601c7a06e2d14c158a7dbb1b249
665fbc9f5090ec9c19517621bc73c8d7c3562fac
1759 F20101123_AABPCL wilder_c_Page_237.txt
27e2d44d998d698875dd468aff6fb200
c229cc3eedc3b57f073ab7779cd3a04e30f94b41
16308 F20101123_AABNIZ wilder_c_Page_116.QC.jpg
fce4c577c80608b9758816eec3dee806
e05e9301b6e0369c642022ad140d7513c152a5ef
11139 F20101123_AABOFS wilder_c_Page_037.QC.jpg
1a0515cf413508760b37a55b44aaf200
a9111fc28b543bb61dc4ff2f305d2b221663e4db
1897 F20101123_AABPCM wilder_c_Page_242.txt
108836e6fdfa56531fbdbf314310cdb9
67f25b32be5bf75bf6c7522ddcfb5711f8485927
7892 F20101123_AABOFT wilder_c_Page_179.jp2
a5f22a7b4f54ebf9ce6e2a3a119bf6c3
6dff5c46cb6a63d8e5ace70ac0b26e28a13ac539
1824 F20101123_AABPCN wilder_c_Page_243.txt
f240bf3bfaeee041c14719ab307d7213
0ffa964c69a8054f633db49237ff33419f1bbc18
F20101123_AABOFU wilder_c_Page_169.tif
693e0fb0def4a9ad6800e684e8c4ab34
befa3757e8ac571aa75f4b363519fad45dd36c02
1979 F20101123_AABPCO wilder_c_Page_244.txt
f5061b3ae34e744c325750f09e6560ba
6fa5b6f509048b24de07fec8b56e3f355579093d
2087 F20101123_AABOFV wilder_c_Page_160.pro
5e659fb0a41266395952e7253761ebee
78245af3718b10ef4ac776433d6afc3636a6c7e2
1793 F20101123_AABPCP wilder_c_Page_247.txt
3dd588b4a5af1f78770432f102476cef
3cb6a86b2580745e1b9c680ff661fb878cbb5ec4
58032 F20101123_AABOFW wilder_c_Page_143.jp2
c7f95d8ab13a358a168e6e25f771fdbc
6f21aa2c2b7a6397258e84995206e23823159419
39508 F20101123_AABOYA wilder_c_Page_239.pro
56ecf7ae812a245d5d7602a20580cc52
de294c781ee8b0c24ff2182f7687e7d2f01f9087
1914287 F20101123_AABPCQ wilder_c.pdf
1901cf44e182ebfaec75c23405eb2a32
7d1a198089f1976e9d693bcc8d5eae6d60cfdea2
F20101123_AABOFX wilder_c_Page_100.txt
1099c8e8de5d5096eb94273a3d54eeb2
a7e31d3eb713073c27d55b4a1f3d97a82e605e19
30868 F20101123_AABOYB wilder_c_Page_240.pro
70772870c170e200885c9ef498081148
bff780e306bb8248a3149be949f49851da194197
7615 F20101123_AABPCR wilder_c_Page_001.QC.jpg
dc30a1268bb3e76d083bdb52a9731dfd
068a15d6966d59422dd64ab4d747e7a413ff0e42
12122 F20101123_AABOFY wilder_c_Page_210.QC.jpg
ca10aec1766b3eb734642181cd4832d8
2ec684fab01a675204b0bd7442b44fb2a4fb6578
46839 F20101123_AABOYC wilder_c_Page_245.pro
34af16364929273226f6bf17f7215661
51da476791c5c0e18571b76abcd50bc61a588806
1836 F20101123_AABPCS wilder_c_Page_002thm.jpg
42d8cb1b298838980da87b28535a6df0
245f504941fca56d7b80ab3950a222653afd7fba
4714 F20101123_AABOFZ wilder_c_Page_002.QC.jpg
305a944724946ff11562301503b7e9f1
0d910f16b1ab58299397270fa5de8bf8afee9f68
5955 F20101123_AABPCT wilder_c_Page_003thm.jpg
c5e60d6cc4cd5d01938d9ec128d36039
291555db2a16307c97720afdd86a213f5b4f45ea
16838 F20101123_AABOYD wilder_c_Page_248.pro
c8a5a79868c1bdd7038f0409821393e0
43dbfb66b9ea68956983f9f43f689dffb158011e
19906 F20101123_AABPCU wilder_c_Page_005.QC.jpg
6af99569513fc461252961416c1dbc7b
c0ff070bd1ea0960e69fa0606540578314c293f4
F20101123_AABNOA wilder_c_Page_126.tif
7c8071151f0864a70b5e165a82dbe4f5
1b20861ce9e314c3d407b3673c1328a7e4d8f99c
464 F20101123_AABOYE wilder_c_Page_001.txt
f3b46b8a671868d827d4c90a6f91037a
92d6babba29e0c43725a853e13ba5c60d1cc563a
10050 F20101123_AABNOB wilder_c_Page_227.QC.jpg
e59df145ad21ed4eff2420a7bc16afb9
1c3b785a921f45b14599c09e880231ecc253dd0b
306 F20101123_AABOYF wilder_c_Page_002.txt
ea0cd61deedd6d80a6bb0a771d73e3e0
37a6555d8da67fa6c7b8d3b67b0701178e59dc97
5484 F20101123_AABPCV wilder_c_Page_005thm.jpg
e0c1c87259423391330afec664905771
c8f14f9c9a85dc92ab853f2ace359592a85a9f7f
1456 F20101123_AABNOC wilder_c_Page_049.pro
40b143223fdc34b8f7745ee8a6979662
99875f5df0dcf9597fda33c3c000a1fe0c79ff60
1783 F20101123_AABOYG wilder_c_Page_003.txt
fdc9ca0dde93dd712fdf1f89b386488c
740297acdcfb9d8400a05828687e2f799f9bed71
3268 F20101123_AABPCW wilder_c_Page_007thm.jpg
3fe5e0634fbc80dd0cfb70be0e163c5d
396accf7416107e94e6abb78695e526d3a89ec60
45919 F20101123_AABNOD wilder_c_Page_075.jpg
12e89a55d3c8ae56dc1cf6fc6e41656f
e31e197c8536cb17e0d0260cda774930497db34c
916 F20101123_AABOYH wilder_c_Page_004.txt
bdc82a44c69ddb29d4ef05f5509d7ba6
9d61c449b0620a151db9d58a7c5637b5eac39f69
6081 F20101123_AABPCX wilder_c_Page_008thm.jpg
a22334ef62be236015495bc1955f4b19
f130e0f54b075b05a16611144cc12017d69c231b
35918 F20101123_AABNOE wilder_c_Page_123.pro
5d3bf525e9d6a215bee6e16aee742f5a
bbcce5b763e71e20aa7a157b816a17f3efe6eec8
4701 F20101123_AABOYI wilder_c_Page_006.txt
43e981c20e03e942bc2cba051858f830
e6be22b7da5499ce7195873a2cc55bf9a2bb9e05
24059 F20101123_AABPCY wilder_c_Page_009.QC.jpg
e2a296f0286452b1b10a14dfc1a55878
73df3073e23c0116a83843809822be01e3bbfcde
24725 F20101123_AABNOF wilder_c_Page_063.QC.jpg
323815adb59ff584e2de772d3aff7593
d0de8bf2ad03d8677eb35083e49a44ebfa6ec00f
1360 F20101123_AABOYJ wilder_c_Page_007.txt
4163039e9c0bf2a1967627f29e27ca86
3d0a40bbfcbec52033c9884743af910b6c0536f2
48473 F20101123_AABNOG wilder_c_Page_244.pro
af0b9c2cf8ea89393a39938b9735e622
baa6ea434eed027ab737913e1ee9998433a5b0c3
2605 F20101123_AABOYK wilder_c_Page_010.txt
7be71e64be89820b9e6c8fcae81f2bb2
757171783c6bee877ea90e85179ed787dff7a5ae
F20101123_AABPCZ wilder_c_Page_009thm.jpg
4038bbd5219c10279f04a27ae2492741
747fdf0fd30358cc7dcb7c49c2dfd85627dc0348
37717 F20101123_AABOLA wilder_c_Page_234.jpg
3ad1d5096eeb7965a5b7641082efc9da
26f05d31e57169777086e746aab2d5fb1017c8e2
119 F20101123_AABOYL wilder_c_Page_011.txt
240f869facf85cc447122e1f1be2c103
a63c589e3e05ba2c7abcffb7dac5584a9c2f08f0
F20101123_AABNOH wilder_c_Page_244.tif
2a0fa76d9845bcd46c770964bdbc13d9
cc8b10af0958dde32182bb4b538931e21cd7f149
37748 F20101123_AABOLB wilder_c_Page_235.jpg
6812c9c566ab630be24b8633d39a283f
9b1a2b9eb91c2e5ce6d84e4c81d970a5fdf22e84
1660 F20101123_AABOYM wilder_c_Page_014.txt
f3cc146ef944045bb1ee20c9971a028c
f6183e83cd16332d7452bc587f72e4a0cc04bbaa
1051980 F20101123_AABNOI wilder_c_Page_006.jp2
e73b42c3aaf6657ff129f41bbdbad9c0
bfffcf4bb703a7ef33e303571f2a0c7641260d0d
17974 F20101123_AABOLC wilder_c_Page_236.jpg
e48204e8a6cf8bb63edee55e6f134493
da442eefb1509bb68336b155d5e9922a541add1b
1617 F20101123_AABOYN wilder_c_Page_019.txt
181d6d6f342c6fd046d1873352044c4d
8399a500f25aae0bd37d8392b39ea7149e240d6d
20610 F20101123_AABNOJ wilder_c_Page_027.QC.jpg
5c5d41aaab66e27a324ddf1f6219a163
92d7cdc704cda6015a242714f806f4d7538a2099
1801 F20101123_AABOYO wilder_c_Page_021.txt
7dfb5bdd194843481b76ebfa3a12cfc2
358ed2f03a6177da737c95303de61f16a18ed41f
F20101123_AABNOK wilder_c_Page_002.tif
aa26ac644a8b71c7334583a3ef49ec1c
d8b9d10c131bcb27dae81ffaae109c383357aa32
36916 F20101123_AABOLD wilder_c_Page_240.jpg
f2bd1bb147f2e5be15deb302328c9b5a
49986a30454e6c1605b9a1cb21627e17da6a93b3
1554 F20101123_AABOYP wilder_c_Page_022.txt
eb1da28f413193261167db68f118270b
68249c56ece2af69552067ddd09642ef70ff4e24
6365 F20101123_AABNOL wilder_c_Page_065thm.jpg
d0142e4ad67aa5f284b4aad7da758adc
50e0ca1a80779bccd94c2c609e10f171941271a6
57980 F20101123_AABOLE wilder_c_Page_241.jpg
9629fe34a1d64b1ebbc786f748499d18
64421e3514e99e75e3b69f1f268db4eec98b8ac6
28154 F20101123_AABNBA wilder_c_Page_136.jp2
b21a60050baf73a8edd916336c97762c
007963b9235a65a68edd0482ba30cdf9fdc646db
31446 F20101123_AABNOM wilder_c_Page_171.jpg
415c38e3341f71d2c5aba5522e06488f
dcd9bb0e83cbe0a8dd2e165d433ae585dc559d4d
62738 F20101123_AABOLF wilder_c_Page_243.jpg
1bdbfca300608409ad699ca2b92a977c
a99efd367194f7d5f027f45fc7e0e68fd8bae7bb
F20101123_AABNBB wilder_c_Page_227.tif
6a3cb5fe39135be0db561aefcafa920b
424e5a5658eb947d8029eab8204f787c56b3552d
1676 F20101123_AABOYQ wilder_c_Page_023.txt
644e54989d84a1fafd05ec085f2284e2
699858a7e50439877b8c63c513c5e465d88f0c53
47357 F20101123_AABNON wilder_c_Page_225.pro
c50986186db5812851e0667657513192
c220e41d3b20f51bba4c83e0e5cf5c1ad3117bc4
68146 F20101123_AABOLG wilder_c_Page_245.jpg
c4fd7f9d6d650050b03111bf7faea22f
4417952e0069a12d2a31a8d48fccf8738930cb10
44211 F20101123_AABNBC wilder_c_Page_200.jpg
e8363dec221e103cd56647b6f45029e8
8450bac44ad4ce3af6b79f5eb8178b67fc6a8528
1966 F20101123_AABOYR wilder_c_Page_028.txt
3ad325547cda76049df5d2b82e2ac740
8f686f930a8b63462a46438473dba4fef1e7e9f3
5525 F20101123_AABNOO wilder_c_Page_081thm.jpg
1efcdf9b3d374f5fcceb1855a4513629
80bb852408bed1eacd1794a8dc580d66599f6fb6
31146 F20101123_AABOLH wilder_c_Page_248.jpg
4c0ec712bb4aaf9ff0ed6218f95477a8
0441d7a90baf31b008a008a4063471b067f84561
3207 F20101123_AABPIA wilder_c_Page_154thm.jpg
f221d367d7a13ba3c4a0917a66799175
0737ba3c70e0dd83e13c530d33b4fdd7a0ff5966
45253 F20101123_AABNBD wilder_c_Page_175.jp2
07325ea4bf9dc6de2f569eaf000f4911
8b1f82399f88ac3ff6727118806f04b6323bdbe2
1823 F20101123_AABOYS wilder_c_Page_029.txt
71c7e36a04f77402c38018284c90cb8f
574eda74612121036c6cac477d3c3895b3083e21
37178 F20101123_AABNOP wilder_c_Page_218.jpg
bd54b00e664f72440a86497d2cc8be21
cd61cdbb0ce97e452d3d9e1860c421bb993b18e3
15478 F20101123_AABOLI wilder_c_Page_002.jp2
53e2ee5f87cc38efa2ba03891870ad9e
1f8e02e58f285066be6e88be41ef99ebc2339218
11321 F20101123_AABPIB wilder_c_Page_155.QC.jpg
03f27df3ce99b18df56c7ffa79927ba5
0519cadcb2bcfb612c176405c0449f4b427e36bb
3282 F20101123_AABNBE wilder_c_Page_231thm.jpg
f11234ac7db633f3ccf400bae3016b49
d7ea271dfa4b698741092111da1d4be88dfb60dc
644 F20101123_AABOYT wilder_c_Page_030.txt
85e5a9843e443d39a0cca61bab7d530a
971348ca9dac2a79762f1108a06b670104ba8904
6694 F20101123_AABNOQ wilder_c_Page_044.pro
99dd336b16f0ca935427d18f07680f39
e8631189b0cd4db0872fe1b641c5b3a13efa1b86
93817 F20101123_AABOLJ wilder_c_Page_003.jp2
08a2a3cec0e7c8183ba9fb491a1c4a48
30143e1e22ec2baa9401e9c11a41c5d336b9718b
5658 F20101123_AABPIC wilder_c_Page_157thm.jpg
a5885fabe7ed989ea54eba16d0a7c233
314d964bc381af80232415f21aa8b3d8c9db58cb
2298 F20101123_AABNBF wilder_c_Page_204.txt
f068d750b07b9334a1092fc1ff4a1bd8
5812ce0b9141ea5cd3e6a2f950bfcb4665eb12d6
710 F20101123_AABOYU wilder_c_Page_031.txt
fe2374c33cc69752262c3d90a3167f5d
ab682070eea8ecb087f7a796831099be8ae6a6c1
1938 F20101123_AABNOR wilder_c_Page_024.txt
362e1dbd6d50195530c1df5ce09cb325
c1773c9f5f92798e6b564ec3d67583cd17d8f052
51366 F20101123_AABOLK wilder_c_Page_004.jp2
b541f93f35ee2e5293c15e19fd9ea783
9c74dbd756308992a665a16c4b52c4fe51761d5e
15197 F20101123_AABPID wilder_c_Page_158.QC.jpg
7bff6a57acddbba9c4a5f6fc26372eb6
e3603ff9007ff86848fcdf423ad28f38527a046e
24737 F20101123_AABNBG wilder_c_Page_097.QC.jpg
536f97eaf6fc69e3bc0ba5a83b57a022
85431c7b9c26361f10a630d817ee21abba03e229
1907 F20101123_AABOYV wilder_c_Page_032.txt
a04fa0767186f43d325aeacae43333d3
269379d5a0750a16f500780d2b6df1f2239b898d
F20101123_AABNOS wilder_c_Page_246thm.jpg
d21bbe43e0c81fe612d14bd7e1000503
9150d58fbbe2f7ba1cf62903ef41bad7f0b7cbb0
99989 F20101123_AABOLL wilder_c_Page_011.jp2
aded5dcdb83a0ff925b0eb947dd5025f
7c29053df9a2fdb6b8d90d9ccea38d581ee754b7
13503 F20101123_AABPIE wilder_c_Page_159.QC.jpg
b3f6671d27cdd9f13acd75c352bc8b23
1ecdc73198824bbbfe162d4539d4d79e24827caf
109608 F20101123_AABNBH wilder_c_Page_062.jp2
03f655d42e3628b0d59c57b93638f8eb
ef9d191dc95beac308a9584d35eeb5a9200a2d2e
1643 F20101123_AABOYW wilder_c_Page_034.txt
cb6a9b195c365ed98ada0b41493b15f3
d6b413e4f3bc81fa3cfbdbe902e1c6fbf58c51fa
81223 F20101123_AABNOT wilder_c_Page_023.jp2
4101a82cefccef8c250e59daefda2080
887807291fa7f652cd0ce3c26e6fb2230444e923
85612 F20101123_AABOLM wilder_c_Page_015.jp2
8eebcdaf8f12c7945bdf1e3d2bab2a70
8d2c21a1483b5660f9f209923a695ba887965d98
4367 F20101123_AABPIF wilder_c_Page_159thm.jpg
9838086adb76d1df0ba83c37ee18ebe0
40f28b4ff64e0c6984888bf7acb3862c1d18cb24
24297 F20101123_AABNBI wilder_c_Page_106.QC.jpg
ecb2f69bc52bd147dc2edbb9b5f8bc0c
1ee95b61e168d385c5bb587c465109fe41198904
1044 F20101123_AABOYX wilder_c_Page_037.txt
2d316a176a28cafc0070beb26f4f399a
d9a0a5f273462a97bdac1255fc2fd37a373a5f6a
34743 F20101123_AABNOU wilder_c_Page_119.jpg
5c7cc6099fd28c4d85a6e368d338579e
ba401c6d1b2eb13169af706af49bd614af51faa7
94968 F20101123_AABOLN wilder_c_Page_016.jp2
fc01f51d55c7b8628394cb684f9cd0e5
6be4c0aa60fe22e467915e0686eb29b0dca2c695
3688 F20101123_AABPIG wilder_c_Page_160.QC.jpg
88c504f9f9143a8ff428c2dca7aeef03
11343fed510b084d8c528a554c8cc36602f3c6ae
3084 F20101123_AABNBJ wilder_c_Page_208thm.jpg
ba01261c2cfeca8dcc3c7399b1aa8779
f9f3274e90fb8fa6413e8a7cc0727f7a8c76970e
1503 F20101123_AABOYY wilder_c_Page_038.txt
094f6c73114bbf50a90fbf9e713a2c47
ad984b8a1aa3da0741539de3a7b18e0066363892
6782 F20101123_AABNOV wilder_c_Page_080thm.jpg
f5d2290e641a500ce22adc178f1b74bf
6196a8057b319147be7ece83d8a92b0d4c8678f7
708403 F20101123_AABOLO wilder_c_Page_018.jp2
8ea8cc8c60971a2d11527b9ae46255ab
a44c4d690e82ecd44084bfbf0d59407fb16cabba
4957 F20101123_AABPIH wilder_c_Page_161thm.jpg
6e5acbbfa7bf739ca69b608e3cc1402c
372f056ba5f88aa00475a9191b5cf4a793bfd7f6
3749 F20101123_AABNBK wilder_c_Page_004thm.jpg
773edfeff60d7d0a057efe1806aa5acd
c625e2eb82bdcbc7803fc20b5dfc5a0b735f4bd0
1305 F20101123_AABOYZ wilder_c_Page_040.txt
2edd0f770e9eaace86274645f1de178b
3072d3a3239de5771d5df040229401b73dae0a2d
64677 F20101123_AABNOW wilder_c_Page_005.pro
8c59671d396627a3b31dc14751a7472b
26aa4f91400cb09e52b6d09c371a2415d9cd5b23
111169 F20101123_AABOLP wilder_c_Page_020.jp2
6120423cce9e1ab93a31ebc2e3b1f453
b39858fa07d87471eeca27560d9d36323d2e3169
4621 F20101123_AABPII wilder_c_Page_162thm.jpg
e63b882ae3fd625f3f4e3f5fcdcf65f5
3bd825629cb4d2325e7250a8043f067a1ae40c0b
19142 F20101123_AABNBL wilder_c_Page_014.QC.jpg
c966fd939b5581a1d23557eecffcfca0
baf263d56ec33fe57319cfb74fc8a34d487c7ea7
474346 F20101123_AABNOX wilder_c_Page_086.jp2
608aa1fdba1692495328f4ddb147fe97
31e4af0a7ef48cf0f56f148f17a25ed783e788dd
96758 F20101123_AABOLQ wilder_c_Page_021.jp2
582adc7b36051628508a7ef5732d178d
3da422e154532b10b7091ee300ae036d92d265c5
3150 F20101123_AABPIJ wilder_c_Page_163thm.jpg
d31d433dd3ee666d309b051583d639cd
305b8a1a09ac4a3b2ceaaa69d546a0dd0fd31907
45505 F20101123_AABNBM wilder_c_Page_233.jp2
7f3fb6a609e84a8ce192feec8153fcc2
d1344b399687c4c85b25f99ab40a502a3b49526c
75837 F20101123_AABNOY wilder_c_Page_043.jp2
04b02abe4b10e1a8010110a6fee50b00
46674d0e135cc44d99baaf9b9ba4aaa31cb5f17e
94085 F20101123_AABOLR wilder_c_Page_024.jp2
a6e68289797274b7c57827d418ef95f2
3fcf9dcbb13945b73826048050ce6de6a0ea6bd0
10807 F20101123_AABPIK wilder_c_Page_164.QC.jpg
6fc36a35da2eef6495d1974898501f44
9088d126c90f822a7710f1650deca44779ae79f3
933 F20101123_AABNBN wilder_c_Page_122.txt
84fd42563aa6427d04e202a5a6090525
e8e89a750a52c27ea6dca5845d3396617b0d4e4d
6257 F20101123_AABNOZ wilder_c_Page_085thm.jpg
841f650fd4f63ea45f204a0b954797e1
896f8e9d787399c4ff542ee348e240a8510ef64a
782905 F20101123_AABOLS wilder_c_Page_025.jp2
6d42839c203699e9de1122b3364296ff
240fd27e2446641d5bcc4608a28106e83fa9b9a4
6686 F20101123_AABPIL wilder_c_Page_165.QC.jpg
47328bfdb5743a77bc87bb11847f8936
af876c45d58a1e591e98ab707e09c608f7eefbe6
22124 F20101123_AABNBO wilder_c_Page_105.QC.jpg
a71b7d863c7f808f4dfbadf2be9c3746
bddb1ebc4dfcf2fe9d9b9adab1366d32ad8698d8
1051916 F20101123_AABOLT wilder_c_Page_027.jp2
f38d039b9758c804fdbd97cf91e766e1
458b2b943dcdde75c264429451d8e8a1bae4a7b8
18131 F20101123_AABPIM wilder_c_Page_166.QC.jpg
86dad89b2eb86f0e0e79e734724081e4
a76cce9a9b1c9da0b2837c054394b1390b1d18a1
36985 F20101123_AABNBP wilder_c_Page_207.jpg
aa4027b06d6318b4bfbc2d434b6ccee1
1186ead1b050e09457ceff093e0a4937dd8059da
398904 F20101123_AABOLU wilder_c_Page_030.jp2
ff4e12a4c8f82aa4a365b762b8552707
c59449b9110e6e64b51fb08b39b74f0f24dba73b
5002 F20101123_AABPIN wilder_c_Page_166thm.jpg
3544d226760e0956939ae43cd49e99ab
89089ef42e444a3966e559ee790032dd8aebc196
1841 F20101123_AABMXA wilder_c_Page_081.txt
5d36c3c3d99afd319bae8440867731fe
67bdd652bb29a8b5ff5fd69df3fa576af6a55f17
43540 F20101123_AABNBQ wilder_c_Page_016.pro
2fc8bb5f59e55abd7626bea414309238
4f0995d92eb80288fd1683b98815be62dfb9bf80
74528 F20101123_AABOLV wilder_c_Page_034.jp2
3c71e82436b0f91aa62ead9560b69be4
35b7c15c82a88a2da9c5a96a27bd2157991a10ed
4811 F20101123_AABPIO wilder_c_Page_168thm.jpg
e4fa69eb2d23e558981b163f51f44e1a
68e33679e59832b26752ccf762058acec657b69e
F20101123_AABMXB wilder_c_Page_139.tif
38b032829fca49b786e39b09d33f7746
c3b0e83d1e25ce9c5f37578caafc205b98194092
10372 F20101123_AABNBR wilder_c_Page_203.jp2
e02448ac3f6c1def4ea6d50d3d86fe34
29b85bf7346abc506fcef16114e8dff100251fa0
103279 F20101123_AABOLW wilder_c_Page_035.jp2
38e8144c1dbb374838503423ff138cdf
9e59b2623480192a278cad68459e943ef02621ae
1575 F20101123_AABPIP wilder_c_Page_169thm.jpg
da363aa1bf10b9eb254940a0b3c9d8c4
0fe1321b39ef3cd3ef2b4bfdcd12da93fe2a037f
F20101123_AABMXC wilder_c_Page_077.tif
3f13d4ec3aa4919fa93399a2b5d57405
76a342b993e502d2716bf649545c256c07ad3963
4517 F20101123_AABNBS wilder_c_Page_143thm.jpg
f1b9b402a77f928cb790b61ee56b07e1
0e0f18733ff9ff3926a482173a27cc4e9850ea94
47805 F20101123_AABOLX wilder_c_Page_036.jp2
fb052c25cbf5b521947f5fe3f8b4f735
962259c9690867f0d62a589e57a744e1afc74a2e
4185 F20101123_AABPIQ wilder_c_Page_170thm.jpg
661208aacb2a001af8ddddece1bd6c4e
e40aaddf06e6c70abf1f7b89d9e50e226c089449
103267 F20101123_AABMXD wilder_c_Page_245.jp2
3921407e9d3cfe484ca1646455ccdef6
d6ea0f3cbd03f80e9ce44bb04f0a6c50dce6c123
5014 F20101123_AABNBT wilder_c_Page_026thm.jpg
5fac2fa1a2d3eefe85292e875d50999e
2aed5c3af8a2e73ec6bb23eca941e3bf4c4c787c
70545 F20101123_AABOLY wilder_c_Page_040.jp2
a89f3fa65b96142f38dbeb44555c88d4
d46a093f6c727a652bd2a7115523de9c5e497d32
10370 F20101123_AABPIR wilder_c_Page_173.QC.jpg
7983873a4371260fd8a43863c4140bd8
271d99b222e44dde29098b4d80cbae6e01eb497b
10541 F20101123_AABMXE wilder_c_Page_119.QC.jpg
fb44865ca9696abaddd0b71be4a5ccb9
40fb779fbf3e051c0ad1a1ec5652655321bfe16a
35772 F20101123_AABNBU wilder_c_Page_088.jpg
c50e882c512adae5bc3eac6289aeebb3
c7256e1ff4d0c801afc64c5a4f74b0d7301c013a
40624 F20101123_AABOLZ wilder_c_Page_041.jp2
388c024868ec378bfba34fa3e042edd2
beda3afdd5bd5355c5872010515f0156e4b23b94
3106 F20101123_AABPIS wilder_c_Page_173thm.jpg
b63afacd852bd69075ac43840d1a415d
23769d349b1efcf7d4b9301f29b6c7d9462db83f
F20101123_AABMXF wilder_c_Page_167.tif
16c9a2f61680c60b9942e99b0187847d
3578c5bed37cef916ee4e2a0e7062d2c7935dd75
23645 F20101123_AABNBV wilder_c_Page_084.QC.jpg
01ee94ecfde3bf9b6518e73d09832293
00ef55cbc56ca4780e7e0a310b5b6b2b1f2ce4d7
F20101123_AABPIT wilder_c_Page_174thm.jpg
e3a98515d7849cfbf7e3cee5d8bb0eb8
305ec211d8b3f7b5f70d6e5e047c5cae58bfe014
23099 F20101123_AABMXG wilder_c_Page_104.QC.jpg
0c309d3940c6ea4ced757f0180c2ad46
7b68aa319929bbe15c8045442a4c3ba5f10088ee
10620 F20101123_AABNBW wilder_c_Page_231.QC.jpg
9705054e15711c26f8c448ba31cde92d
fe069302c6c971341cf07f80222fc184c4e834a5
10695 F20101123_AABNUA wilder_c_Page_042.QC.jpg
0e481a20fe098f5046e92d6fa2c41c39
81ae154f34ccc00686eb48b3c94fdbad75a9c0d5
5909 F20101123_AABPIU wilder_c_Page_176.QC.jpg
aefbaec9282c05c3c7d3f3e518217b94
50f1d59b0c09176773a7727c3048ecdfbd7b40b4
1765 F20101123_AABMXH wilder_c_Page_099.txt
9c2b16ba30081ece8430913407f02451
8832d1e9ce75b0feb6570b61a42df2a06573a0a2
42977 F20101123_AABNBX wilder_c_Page_187.jpg
575736d267e6e39dd54f56ed0fdff159
761ec9ae5be2fe3b25750059cbe924142d870ecd
73655 F20101123_AABNUB wilder_c_Page_078.jpg
b41609fa4df942c421dfff380e02d52f
af4f9ae1394fcacbb5aa9b911c735513f3501dbd
16241 F20101123_AABPIV wilder_c_Page_177.QC.jpg
3e498aacf54ffb95998c0515003e4f47
128686c37b6c782ad5491518d0fcb7f0a31ac2e8
25123 F20101123_AABMXI wilder_c_Page_113.QC.jpg
1435cbeb4049c87ffd3bde48ae5f604d
e5e54c6b7b37c5b7c5225f196b82df6a1dacfdd6
15070 F20101123_AABNBY wilder_c_Page_181.QC.jpg
4a569c1709f617449455844b2c23c506
5071aee6090e8033d4d9a4a2fd86323ec0666232
45255 F20101123_AABNUC wilder_c_Page_152.jp2
aca9fe24233e4c01a26cc13bf0ef94a8
6793575763d381f12272945d7cc626c6660fe3c8
4779 F20101123_AABPIW wilder_c_Page_177thm.jpg
80a66856e4c70a2944cf9edfc582a479
cd3c257e4d822cbd2527bb45f2f1b1e280f27493
60805 F20101123_AABMXJ wilder_c_Page_017.jpg
9895fc63c9e0a5f933b78ebe191cc591
2c359fd9db911967edc0a604262fed4b3315c84f
F20101123_AABNBZ wilder_c_Page_055.txt
716b02f264859e810433d00e94d1d228
9085b2e24ac0f9b4da8d474e742a063552fb1b52
53514 F20101123_AABNUD wilder_c_Page_195.jp2
aaa2f4ef0b027e8eb51fc8414eec6836
aeb424019a195c1aa77a0becc82e01803e352efc
4209 F20101123_AABPIX wilder_c_Page_178thm.jpg
baf5b5e7517c6672b5a05d3079744d4e
3ebea7af57bdab3616da92c2581ea9b15f517603
6883 F20101123_AABMXK wilder_c_Page_006thm.jpg
877b80f068e4ccbfcd4c180678884662
24cff396c06667749378ab278ad2a1fe52dcf2ee
80108 F20101123_AABNUE wilder_c_Page_010.jpg
8e718d94333182e2452d81469d847753
b5135423e4771a8270268de21d052423bdb456ef
3701 F20101123_AABPIY wilder_c_Page_179.QC.jpg
1e7c3650a7c0372313135ef1448be1b7
3276a31ac2be94070e67278ba3c2bc0cd12dd26a
1051935 F20101123_AABMXL wilder_c_Page_068.jp2
40920a64ad5c443a09a3006e216fc18d
4d0faaf76b684336fe4586fff3d68b3c63c4abb0
9458 F20101123_AABNUF wilder_c_Page_182.QC.jpg
26eeb09e73fd02c7636d2e38cc354435
be02a0b919a4c5fa76b1998410000868e2353b80
17322 F20101123_AABPIZ wilder_c_Page_180.QC.jpg
4a393396693a66f57685e41c7b9ce795
9b0a4c98e293fb7651ef7f3bacd508bf1869b8e6
6735 F20101123_AABMXM wilder_c_Page_059thm.jpg
4b46f7ab0dcc2380d3baa4efb6924047
5214a29cf708ecfe7367ee8bd9a007b49f2d5e80
704 F20101123_AABNUG wilder_c_Page_194.txt
eb07e0195589897557969eb675e9a9f1
d42c50e07776fd85e84fc5a93a37bc329a3efb7e
23546 F20101123_AABMXN wilder_c_Page_090.pro
ce3d75d1a8e6cef8984bb87598497483
b3e676e47d4d0f435224448633a27781cac2b7ea
F20101123_AABNUH wilder_c_Page_154.txt
d2a152ecc3fcb2db205d504fa18e5872
5e7426427e6ececa30e3d68e82c5798425f840e1
F20101123_AABORA wilder_c_Page_092.tif
36c100b7bf063023ca4faad1077c5d1c
b3638da2360cb1d3ba07a874bb21f60b6b1d595d
F20101123_AABMXO wilder_c_Page_222.tif
3231c934ae9c92eb0ba3d0c4475c6754
66c96ef8c3c7b96bcbea8443d4da8c22ae6fa275
F20101123_AABNUI wilder_c_Page_135.tif
aef244b1253ccb4989969921c712ada4
650d4703d26a43176c86e36b578fb142f8839932
F20101123_AABORB wilder_c_Page_093.tif
9100a891fe3604a871c000cfabe5d6af
1fde2d5166fe65981a63c908d0fc084fc54d4d17
53796 F20101123_AABMXP wilder_c_Page_117.jp2
99a2d177c70339ac8142c3275e43748e
36774987d5fe23f6315e4f9d14777eb710e3e842
F20101123_AABNUJ wilder_c_Page_167.txt
4c038753883aab98056bf3493ce8926a
aef25de332852be9ef5c44349c4807e29e3ff8b8
F20101123_AABORC wilder_c_Page_094.tif
f473f526463350f57f47e44166a175c2
c43b2ccf2626b6d54a2e4ac4f7e8aa912d924d68
804 F20101123_AABMXQ wilder_c_Page_195.txt
38c4d534f3a561e0f36b6abc39c660b8
2e4b859a56c1380b0a03c348ce411663ee39f638
30518 F20101123_AABNUK wilder_c_Page_018.pro
1fd8cd483ef0791af27044f6815c405c
dbb4cc5fcf82a60316536893ffb3aebb1c29b4dd
F20101123_AABORD wilder_c_Page_095.tif
9b8475d5b1d12cec76b6fb24d62d82e6
9b09c9c04f441505d270fd2c9e8d1fd25988d760
3323 F20101123_AABNUL wilder_c_Page_041thm.jpg
536b5be9f6d46901248df53c9165a8c6
da8c78b710df5ab1c87232f800989a8081ad9861
F20101123_AABORE wilder_c_Page_096.tif
fd3baadcded38b0af4488a4f834426da
cf6dadb642fe6c92d34c6cf991af34d3a3706403
F20101123_AABMXR wilder_c_Page_117.tif
08d95be49c33b533d61a0b11cf9560a6
9e1bed2ddca9b3688747dcd35d562bd078776e10
55041 F20101123_AABNUM wilder_c_Page_147.jp2
975c5b900fbbb806311b40a41b831073
00f6b7e17c4e0a73ae4021e1b64c93a8365b1706
F20101123_AABORF wilder_c_Page_097.tif
2648f1753c17deeb2f12065d39f4681f
718ba7053378981e5c09df25dbac66ca479cbf59
F20101123_AABNHA wilder_c_Page_056.tif
3f19d1e581cb7b3b58eec43d59782e5a
aa5b9a1df494d38ab5e0978f8552cbe8b34c135c
54546 F20101123_AABMXS wilder_c_Page_109.pro
554cb427d1392f3ee0dba3a44a93955b
4ccdfebd873d7d41bd802554278b1f0e3c06e5ea
F20101123_AABORG wilder_c_Page_098.tif
8a63e796ee5ece0f1e062bd79b4390fe
8366b05917c9f6fdda85e151d3c01a5708f6e0fa
F20101123_AABNHB wilder_c_Page_046.txt
a88420a6ba54c60a328ff2d613ab62ab
5043a6f176d5c8dbc6e1967693262c1d6998f91a
87554 F20101123_AABMXT wilder_c_Page_014.jp2
3f1876c92e3117ca92bb5446eb105853
1273234908682edc73dde0d701411ec1c65ec6af
F20101123_AABORH wilder_c_Page_099.tif
a5458c22b9ddd7e0c5884769687308de
d312332890b69cdb88d1ed104e4ae4223988689e
102013 F20101123_AABNHC wilder_c_Page_246.jp2
6122cbf963843d3364beebac6cc7eb57
2b962c0476838bd8a8c0fbcea9978d0eb9d661c8
105493 F20101123_AABMXU wilder_c_Page_045.jp2
db2424b72cf36d3fedf37df72533d772
21441352a3bcb891fe3fdc04449c4ed8fb399da0
9421 F20101123_AABNUN wilder_c_Page_042.pro
0df5f331e9863dec1831ca2bc044b331
87e9e59c8883648413ef584cdf46ee4c6ed22ade
F20101123_AABORI wilder_c_Page_102.tif
05e45e6eb65d4b20f8ea86d72e7d6da2
a7d167887a82f6e153043e3de270cd1c821400c8
1051983 F20101123_AABNHD wilder_c_Page_012.jp2
f00c503876bc7c45e061eef5312bcc43
7eebd70201ad065dcc66ac6777477bfd39dd1d70
F20101123_AABMXV wilder_c_Page_110.tif
e10352f4f3579759cf7619ee852affe9
ab58bc8ab3292d5278f0522b3aa9d4c20146e0b8
1581 F20101123_AABNUO wilder_c_Page_203thm.jpg
387e0d93631cc9476c36cddd86260fea
e7883919c0c8291351e77e82d3f4b937752ff89f
10084 F20101123_AABNHE wilder_c_Page_174.QC.jpg
4f938b9f7957f5d76b0adb7bca485616
2b5601cb26c34ba0525506bb4dd3973366dc61dd
6608 F20101123_AABMXW wilder_c_Page_084thm.jpg
1c0a18e62cffd0f4b261678ed60cc947
737a5a8ffd152044902258c48ef5b201ed99fe37
42985 F20101123_AABNUP wilder_c_Page_227.jp2
a2266461e5083acdc4fc79427a0f3b08
c7eecbf032a61d16184f9205971378b9ae11b169
F20101123_AABORJ wilder_c_Page_103.tif
c0a5977515a0acd61962555322efe2ce
bef83817de4a090a8a08407695f772c52b6978f8
F20101123_AABNHF wilder_c_Page_051.tif
0055dbbdf531bae0a6a9e9a5410f9930
c02421ebc39b7d15a9f8b24c27ddd67b99d8958c
6174 F20101123_AABMXX wilder_c_Page_086.pro
197c7600f41d6024d4ba999d882df44f
17c16c74144692c2c0500b63ef52515ba7a73a75
2929 F20101123_AABNUQ wilder_c_Page_228thm.jpg
6114d88f386ce6845420cf746e7932c6
835a3a9864287ca885109e8205e7e9dcbe8daa22
F20101123_AABORK wilder_c_Page_109.tif
f14273db20fbf9a0ac2b1efb0a6f4d8b
05e3a79c5819e35ce2144affa85b54bf7a291856
40535 F20101123_AABNHG wilder_c_Page_248.jp2
8a34a7cdac742a13f6645178abe8dd2e
ba8947ae326ecb256f4080349a9484721e7201e2
49942 F20101123_AABMXY wilder_c_Page_230.jp2
6ab01811bdfbef02febdadecbecb53ef
30fe464536a1c8e4dfdc9e0cd4dd3389fc8a97a1
111481 F20101123_AABNUR wilder_c_Page_078.jp2
13995c30011236642afa60f3525ba52d
5fd6236eeaec1191ae593d4cf150f9cc693a5fe3
F20101123_AABORL wilder_c_Page_115.tif
f710670c8f0b5092f0c15e94e90fe4bd
8f3f4795e1abbc4428d178b1fc5da857ca9e29ad
43509 F20101123_AABNHH wilder_c_Page_047.pro
6232659aa9da8b9fc03ce4ca22929b92
ea56fe1bb8f13ab0c598ddf7e1e80a4fbe3287cf
21917 F20101123_AABMXZ wilder_c_Page_192.pro
1ef9acbc66eb09b113c739a16579237e
985a69d51b71dec7d2250a9850141a46f2747e54
41403 F20101123_AABOEA wilder_c_Page_171.jp2
d36398a7868fa2cfe75a0b52e1b48557
4ccb78a932a7e741a01d1b37d4f1b15af5e8d108
31577 F20101123_AABNUS wilder_c_Page_182.jpg
2f0267e5591cf5867b8c53f3da4437de
4ad104e647ab1d951158e5f4355a37755a6b3db3
F20101123_AABORM wilder_c_Page_122.tif
7536314017044ef714aa71da77ef3426
9e27a7c560ee41a57eac49809039041f98ce9849
14499 F20101123_AABNHI wilder_c_Page_226.pro
073ce6fc65a7dee51095ad7198325d40
975afd04657108ab29e7664a9520a84e199a8eb8
26179 F20101123_AABOEB wilder_c_Page_064.QC.jpg
adbf74beb69faecf28af4443c30f9b12
6a4c2890a1d28d78ed8af7e6fea0e40c9de4cdfe
3705 F20101123_AABNUT wilder_c_Page_117thm.jpg
c451a8fb3961ae3acb2c50c63f63661c
b507ddb01d3a80f443ef7af27944b59ddfeaa65b
F20101123_AABORN wilder_c_Page_123.tif
ee0c29c9e9344b3ee843fdc11a0407dc
e43775b2a2ca2716b36b9c960d67f8cd93f773fc
42490 F20101123_AABNHJ wilder_c_Page_221.pro
7e6bcc715dffb7382875e3f44a83995d
ac40ffd8f81530ae81240b61774b3fc7107fc996
62551 F20101123_AABOEC wilder_c_Page_046.jpg
131b38bf052bc07e8feef0061ce72419
bd32c59b9a63166e76ba5846862c7d06d11dc89f
3248 F20101123_AABNUU wilder_c_Page_155thm.jpg
b61c17e12f70718ce837dae36c0003be
5c616b45be1f93b645cef77214e06ff6b7ccd4af
F20101123_AABORO wilder_c_Page_124.tif
1e5596453a9d4e58eeb9725423145745
66a03a41bc19de0425c07478e1b80afa62f52b93
798 F20101123_AABNHK wilder_c_Page_140.txt
82de92854e503adbd9c0ac53d33870ce
bd5ee1e5d153a8cdfd2699401bfd4264ed2c63e3
9363 F20101123_AABOED wilder_c_Page_228.QC.jpg
7a85a0d0b3665881a3d5de335691e50c
5ec7aca35819f0c19d1737d5fb6fa845659a12b6
3632 F20101123_AABNUV wilder_c_Page_086thm.jpg
d42de5dc2f7979806464fb8007de3cc8
dbbcfddd22bd7332263b96b911f24b173b5d2dd1
F20101123_AABORP wilder_c_Page_130.tif
f9e568faefc9ccf9b3a9a553cb288279
dcd94920840865a5a4374387cffbdec1fad31d8c
50112 F20101123_AABNHL wilder_c_Page_133.jpg
168dbb8b38bbb026aa1c09af922eb083
e328f9a58741aed10088ebba54dd5fec3d21e62a
46946 F20101123_AABOEE wilder_c_Page_158.jpg
488a85aebdf2c98907e22892ebf97574
8b447b182c0a93dce55da04d8d872c730eb025fa
10327 F20101123_AABNUW wilder_c_Page_184.QC.jpg
1e9c5c802cd5c9d8456d6e798ef05395
df9f5a390f9e71d6206e7e82859f9435f4829690
F20101123_AABORQ wilder_c_Page_131.tif
9a1761acec504a04d70f85e4f5aa33aa
74db6bd03dd2254e420d8ff36425e054df065cb9
F20101123_AABNHM wilder_c_Page_236.tif
02370858aafa4228dcf9166d9933689c
ef7eea87a3be44fc46ca7593dc4aa22dc97af415
24078 F20101123_AABOEF wilder_c_Page_008.QC.jpg
024bd765236e6dc1ea4f09383abc0a63
6c61179793c0a01f36bda16fb66dd7c96eba8356
F20101123_AABNUX wilder_c_Page_179.tif
652a38ecccb5307631ade5d04be3357d
a4b2f555142be2e01519cf6c0e316b3c2ba61e0b
F20101123_AABORR wilder_c_Page_132.tif
d342b7541212f37dc2eed5a92b57ef19
a67ebf0bdab6b007090074fe69ad45409aaa4d90
17982 F20101123_AABNHN wilder_c_Page_204.QC.jpg
be9dc919949231492c14fea9c357a4dc
8c216fa60357ed2ad043c386d66765bfe8aad21c
18801 F20101123_AABOEG wilder_c_Page_056.QC.jpg
f3a62c0715fcdb414e3cd88708bef9b3
a91643e858ae884d42c9a62002628a84f7f492ef
F20101123_AABNUY wilder_c_Page_021.tif
96206ae82ad06dcff99515b2a2d384a8
00b033cc04e9288f754ea020dd680eb93681d17d
480 F20101123_AABPBA wilder_c_Page_165.txt
f1eda932f95c9981c8ff758195194934
82afe17201192981769ec35c898513bdc8db7a7c
F20101123_AABORS wilder_c_Page_134.tif
bc08387999a444f2d4b5409144bec180
517f1ba125ca6c967bc2a53a33a932dae483dba9
F20101123_AABNHO wilder_c_Page_054.tif
cbb5f4fce52257c6c9d57ba22040cda1
194ea75eb0f0885406888886a1fc8524264f2941
16780 F20101123_AABOEH wilder_c_Page_183.pro
938fed0d5f3378bef855a8f711a8ed70
fa8bf98d121f2d6e046d58180e5961cdad1684cc
51139 F20101123_AABNUZ wilder_c_Page_070.pro
3a470e56cd513ccaa86f422613cb7062
f6d87af7908d360472824d096a39b069cbce84c6
1577 F20101123_AABPBB wilder_c_Page_166.txt
1c61710dda7c6cda71b4e0feafcec72c
0b3b4f69e35c20e3f616f1004b559a71141acb82
F20101123_AABORT wilder_c_Page_136.tif
80832a9f8e2352e561009ffe286fec4c
e7bf19642ec44a3b66324185de989dd3ce52f696
59022 F20101123_AABNHP wilder_c_Page_051.jp2
709b7902547fc7aee18e1f7521793d0e
174b6df8d4cb6242a43aa67464530e984a2a7246
876 F20101123_AABOEI wilder_c_Page_214.txt
70ae75862834204cda12f1ffc17181df
eb75bc01532f57d4ac7fb36ac7fa12b4244ff2ad
1831 F20101123_AABPBC wilder_c_Page_170.txt
609eb2fd9d12601c0149e2cbd7b74b2c
52f32c57ade76f5ae767349f18db86df7b7694b7
F20101123_AABORU wilder_c_Page_140.tif
457b1efc25612b5c8b3d9d8967dd4d5f
eb2a60de717df232d863e27a50af7ed0434b48ff
1526 F20101123_AABNHQ wilder_c_Page_223.txt
de1fead0b2a5ca1bb5c3a0e6859ec3fb
6c35deef45d2d6209b2a3fcd1a2b13219220a63a
89341 F20101123_AABOEJ wilder_c_Page_017.jp2
44d9f222c739814e0b569c2e569db128
e3f8109a7389fd4ae010669dadb9ce0701165f5c
717 F20101123_AABPBD wilder_c_Page_173.txt
ffa9796956b1541c2e8c4e33094ea58a
a525ffd52c3985c28504af72b1e96a9d24f60bbe
F20101123_AABORV wilder_c_Page_143.tif
acfc8037f7941fb0d06ea7c674a1711f
cf5ac982dbd5125803669fd86311c91fe03a4289
57023 F20101123_AABNHR wilder_c_Page_187.jp2
4d78d34831ebdb2f9bcdde330c850f19
45f10c9f5fc5507d0711d24cbdc7e35668e3e3c4
32485 F20101123_AABOEK wilder_c_Page_172.jpg
1833e3ad2b561a05a1420fcd6a1aed1d
787289be718188b9b96c7ca82576f82c33f360d6
683 F20101123_AABPBE wilder_c_Page_174.txt
ced8d99c18c31ca80694a0745d2bec54
bfe8d91fd96ddd0a1b65fff3f71e373a7c4447a5
F20101123_AABORW wilder_c_Page_147.tif
274a9a1abc2ae1a0ea46bb7909b7ad57
4db718a7c9e0627e4265d42361726150885810f5
38732 F20101123_AABNHS wilder_c_Page_177.pro
ac8ad973f13b5f13098be58abc0cec29
ea67695dd96a13bbe98737c39e88ef9c3cba0bec
13681 F20101123_AABOEL wilder_c_Page_178.QC.jpg
e91afaeedecef5f8e36dd5de59c14780
46559ff72abde3a1cbf4735b34762fb9bb09a771
332 F20101123_AABPBF wilder_c_Page_176.txt
317794147dd4d713c0fda89a5e797b37
da78e95ed7c1ce78acb54bac2a6db8560deb2617
F20101123_AABORX wilder_c_Page_148.tif
0f172c93afa0d2b858529e462bc2307f
9f698d4a0a71f43fef2423b9aa472cd297d1e09b
F20101123_AABNHT wilder_c_Page_081.tif
96b80e347f6296844810277dbd31275f
6b559ff49a9deaba489f2bf1b6a0d7841ea398b0
5644 F20101123_AABOEM wilder_c_Page_017thm.jpg
037c51268a6c4dadef605f3ceee35ed6
32624befb433bae814317f56d120205f51e829c8
1755 F20101123_AABPBG wilder_c_Page_177.txt
5c8481ecfca32de43415f00fcebc7f4f
cfa7a0d213005f5a66e3e8a16f1f0944c71739b2
F20101123_AABORY wilder_c_Page_149.tif
d6d63200a3844412f16e64f16d9b55f1
64dc32f1e00475ed04e3ca2eff09fe78d8951871
4128 F20101123_AABNHU wilder_c_Page_051thm.jpg
a493f97999a771a60c399612906e2a5e
7b88d580c956862dd72961b34de32c25bf10715f
19134 F20101123_AABOEN wilder_c_Page_023.QC.jpg
7804603a281c2c8706f670e5a4ae1f4e
0023b38732f731730d5fa091738159f99bcc60d1
145 F20101123_AABPBH wilder_c_Page_179.txt
3a7f164bf1727d1f7d425927f8d4c0be
201838ed42c5f5c93d7cd01ce7cc44d17de494ba
F20101123_AABORZ wilder_c_Page_151.tif
dc07987e03aa68759fac82671c8049c3
c1c1d790e704a9a44af5e06e65fef3564a22ec27
73583 F20101123_AABNHV wilder_c_Page_058.jpg
df4719d77e45f6da04f434c12abadb17
defee2ee51df4298cf8c82cdb847794fb7fad9d6
F20101123_AABOEO wilder_c_Page_067.tif
c84c9520f375bdb217a9fc3bd718cebf
48db401f98226d846904f1861e0cbf769f604944
1613 F20101123_AABPBI wilder_c_Page_180.txt
906761ded9d233fbb970345760672498
8cf1726f3f276c2c4e046243e662d019534277b5
49236 F20101123_AABNHW wilder_c_Page_131.jp2
334ae43304a70936d6df68dd5bce2366
9ba2c3a6fcdd258277548622fb12a55b50397ec3
F20101123_AABOEP wilder_c_Page_057.tif
e85d570a11d4907c1c3de9cf12b14b99
af38eafe32e6868c793c18697b5354f2da71048d
1825 F20101123_AABPBJ wilder_c_Page_181.txt
e870054ed526438c1766f23cde33c02b
4cdfc0874191c49821ceb8cea185d07ff0ecfe85
F20101123_AABNHX wilder_c_Page_129.tif
23e0c2315818433885ac9dc5d76a9d6e
f7bcf7f815d6690575fd852fd87fd451c3f0f7e1
19607 F20101123_AABOEQ wilder_c_Page_025.QC.jpg
82debd3ea4d533fe9c0ecc596fa6e7f2
dc270f2a2a1a13852591e12856f60d1e9931603c
F20101123_AABPBK wilder_c_Page_185.txt
356c91d4a8abfb096bca5de8e5d68e04
d5c9868ffea04e86af72f3d6e2a0d6eac7111c71
66618 F20101123_AABNHY wilder_c_Page_082.jpg
494f2bb21b4dcdcd68dabdcd297e8df3
7281b6145be6890d701800ace214e971f0d5b53c
17080 F20101123_AABOER wilder_c_Page_034.QC.jpg
ec5490fac6207421fe9439ccd774cdec
97071ac3e252147af90beb742f35e7bcee9bd97f
780 F20101123_AABPBL wilder_c_Page_186.txt
b0dd002b281bd5cbd5ba056e64deecf5
e576467bb3c16cfe91581c426a0fb791909d2df2
24681 F20101123_AABNHZ wilder_c_Page_218.pro
e752ca7b821ef5c2eaed9f719edd5589
6bd00abc8e05e09037d1733b1a6a6f77fc41c279
F20101123_AABOES wilder_c_Page_213thm.jpg
63f18e85c6c70e478455e81cf9b140c2
ecfdc001121136c1f203ef432b2cea094ba1998c
982 F20101123_AABPBM wilder_c_Page_187.txt
291eff5bf320095e6910926d89e07769
ae94a69e0cca24c9b0fb097da8722362720dbb7a
F20101123_AABOET wilder_c_Page_188.tif
caab5a703f231c142bcea9fb0953c861
d8b6b0c97ef8feb2a2ecbf4c84e6d43f9b072732
331 F20101123_AABPBN wilder_c_Page_189.txt
f85ef381b4688691894305204ae56b27
13d4623def591ec13c4c35312c6cf0bed54b5a8b
2692 F20101123_AABOEU wilder_c_Page_005.txt
82f7d9c6e8ee290b2a7530f2c09d840d
bd873287672ccd834c5f8b2a55e9f031b3c5709e
2268 F20101123_AABPBO wilder_c_Page_191.txt
dcb1bd995c05e1d22063cec27ae293b1
c96cf9c6a673347080b735ac39a569fac54758af
51411 F20101123_AABOEV wilder_c_Page_068.pro
42b791f7d2e03f4f3bb268e84df7d61a
61498583b56c2c100fb12404a6a4e24c0f348c96
596 F20101123_AABPBP wilder_c_Page_197.txt
34ea14d2f36dbd392a766684f26a349d
25961c6ebaf25d3a93b34ddee40ed90784696bae
674 F20101123_AABOEW wilder_c_Page_229.txt
4963e23562e697f934d990d3d0838c63
b73e52cfe0b9489bb186b8d83de6f1e1541d67f2
22782 F20101123_AABOXA wilder_c_Page_187.pro
47264cd3b316d74d48b35a28219a4eed
3b128e1a7fbb27a4230875cb650f0f04ee90ad00
2205 F20101123_AABPBQ wilder_c_Page_198.txt
40d73c4569e1d991e68de3b051156017
84f000e810b5518c81990658f77bb69060660460
3915 F20101123_AABOEX wilder_c_Page_169.QC.jpg
7bce7367658429e77153f3cb45681335
08dfa359a8b16fb8838aa864895dd84ffc46b02c
5662 F20101123_AABOXB wilder_c_Page_189.pro
2e28d420d3ea88ed79654242a066441a
7b1de6c898bc3ba2a8954f171ef7b48c31e050f4
2044 F20101123_AABPBR wilder_c_Page_200.txt
ab2ee162823538c68b19ce821ccddfdc
93d5bd48ac1290781184bed26ca253036645d816
F20101123_AABOEY wilder_c_Page_089.tif
40c2ab757487ea36fdad1269c16d124f
69c1229d87815354c8cbee53f3634d9fa5627c11
36446 F20101123_AABOXC wilder_c_Page_190.pro
8c8aba656cfbb8324133de5b06d655ee
304a66dd4e1a0e86d9b368bf1e77aa2bca785e3b
1363 F20101123_AABPBS wilder_c_Page_201.txt
72d5991dfcd6e204c8b8f08cd3c6b5f4
78680f5dbb385420c671ca0f30ac08bde8eb41c2
900 F20101123_AABOEZ wilder_c_Page_086.txt
12c3113810d2228541080acc39deed2f
c54371ed151fdebe03d21b9f4aa8baf86e6b256d
24438 F20101123_AABOXD wilder_c_Page_193.pro
831fef6babd1952553576258db6483de
29f94513b64678344d5ac675c6bfdd5852f8e0c7
1555 F20101123_AABPBT wilder_c_Page_202.txt
3abde4c9540c1431ba77875fc605afe2
8921599ae51b1d0ba61c7fa1ab8c317dc84bfb6a
17490 F20101123_AABOXE wilder_c_Page_194.pro
cc0c0165f4bc4ea6741851cab0918e98
e742e55e94c8495a1b6c73713721c3db3bb028b9
1079 F20101123_AABPBU wilder_c_Page_206.txt
180f484b7d945d860535af5079f26ad4
94214f1cc747b4d2434222e1786722ca7fbb40a4
21489 F20101123_AABNNA wilder_c_Page_026.pro
532c86159fda9790fb09e8634dcb9023
5408afa1bbcbcf614e400cfd23ed3f608a2bb442
F20101123_AABOXF wilder_c_Page_195.pro
a14a995b73cc9e2176f8e276e706c536
9b3ce8e117887fb409fc0f14ca6da7da81f7287a
703 F20101123_AABPBV wilder_c_Page_208.txt
35e45f0ef82aed099745a86f794f700b
746acce6fd5f8f5e9126161796b85a5567562140
47334 F20101123_AABNNB wilder_c_Page_112.pro
15983f965a439f7412e07f37f52ebc6c
54d80357ab2e1dca0ac7ce9d596b2758be256cc3
19596 F20101123_AABOXG wilder_c_Page_196.pro
5c99574b3ec8d54db94be7f3e5da5bbe
5c46aae4d72ffb70d1d26afea981d19f6ec9bc08
821 F20101123_AABPBW wilder_c_Page_209.txt
6de01efabaf116e7fa90270442170a38
094f93d21b9b94f79d4d913b8898426030832c66
16414 F20101123_AABNNC wilder_c_Page_202.QC.jpg
9a0a91c42962bf3001226da6ba2e589d
d9945b8573e1a46acc514d141a191dd29fd3dfb3
50023 F20101123_AABOXH wilder_c_Page_198.pro
3baf9e25baabd44b2754610890b6bff2
dc3308528b2983ed4ff574044f42613bab2714eb
855 F20101123_AABPBX wilder_c_Page_210.txt
2b8c7fa30d7a8f2e8a4b8ea6587eaa1a
400fd4c0f5f8b45d2664f7d6c5ccb26d86ba3275
12731 F20101123_AABNND wilder_c_Page_214.QC.jpg
748cb473397bd7101e6e48181f1129bf
3aea0fb935a0f40ebafbab2897466e94945c4409
38924 F20101123_AABOXI wilder_c_Page_200.pro
a8ef89eb3f3a43868576786566c08ae0
eaccf38e8f6e5c4b9b8b5642b5cdf60a19562d77
7348 F20101123_AABNNE wilder_c_Page_036.pro
1b33635b437983a2cb524784f33fa990
d57074b66368f3c3d411f0ad48afe3a5daeb2cb5
35149 F20101123_AABOXJ wilder_c_Page_202.pro
a9c8270d525695e3a8119243b35c9f13
5d246190ae3a03ef97c0f9b398c365eb9ed236cf
854 F20101123_AABPBY wilder_c_Page_213.txt
f8e0c1b1ae539fd6f64b5d3b9989ce59
e25984c7d87a2ecc2f090b8faefff9af93e9b49c
42734 F20101123_AABNNF wilder_c_Page_216.pro
87c33153bcfe133da201a8ab95fdcf3d
9e07449147842f37c2b73f7b4787b0266b962c63
47406 F20101123_AABOXK wilder_c_Page_205.pro
198e358c529718e3cfa737da00850978
f0ad4881e18992f4927ec39b7198524b4c618c49
1775 F20101123_AABPBZ wilder_c_Page_216.txt
b01210f18a07005502dc9c9abb39aa4c
4d09d03f39224d74f2cae08852b173e7f06590d7
22231 F20101123_AABOXL wilder_c_Page_206.pro
b4ff0241db5a3127a9c7e15e10372fd2
8d411780fc23545fc51044bea7eb00d4768b514b
2093 F20101123_AABNNG wilder_c_Page_111.txt
eea02cd280c3b3692d07fff5cbf9a0cb
f8d958ca92276758131f4ec9cdeb1ad0baab76c2
51631 F20101123_AABOKA wilder_c_Page_177.jpg
ae9b07b7c16978aea833c1a6c980b63e
771965a666226a56b86b868058373137280c84ff
17476 F20101123_AABOXM wilder_c_Page_208.pro
2b62ebb23cefe1e1218ff94a02879ac6
a147a79b005f79d8d11d873a0aa3f0b3a396413e
11921 F20101123_AABNNH wilder_c_Page_117.QC.jpg
9471ea57ff803ac24f5657b6b14e7c14
8a6f879ac61bd6a11fc30819f2bb0b45671c00c8
50694 F20101123_AABOKB wilder_c_Page_181.jpg
c715654eb21c2add34d3baf5f1213dd5
d50172e57f57e2666b084a4abfb102188d51dfa3
21372 F20101123_AABOXN wilder_c_Page_212.pro
1f4864605a47c38d3d9a65775938f0c2
b35491baefc5c8dabc498a3f0992b8c7893b378c
95052 F20101123_AABNNI wilder_c_Page_217.jp2
c167c05fc35b3d85acc0da9b8ec8430d
8955db98d3696b475d1ee81a6d994e599119d519
21985 F20101123_AABOXO wilder_c_Page_214.pro
86fe21e3f6b23f3f08e7bd78b6872caf
8727e4dcdff66061519db39afe1c20c20b0037ba
543 F20101123_AABNNJ wilder_c_Page_044.txt
26dcdeb1904b2d453ab26b70afc01740
86f4ccd17a3d53be099eb24b7e25b0e52ed28fbf
32521 F20101123_AABOKC wilder_c_Page_183.jpg
6930dfd2a2d764c9036feabb09892251
bcb1053157e903c26e3d6ca449a223e91c710e71
33839 F20101123_AABNNK wilder_c_Page_063.pro
be5a304da096f3c55bc8987ea1966faf
db76367055bf7b3f83cc4df719afff3e6e16e76a
34632 F20101123_AABOKD wilder_c_Page_184.jpg
a89aeeaf79d323df29e94bbca3d09a22
07f48698fc93110725dbcd43c1ba71816930a985
F20101123_AABNNL wilder_c_Page_248.tif
7eb70fa28fcadecdf6fcb20d1a759f91
5ecb757887486cfba5a457843dea3be43713f1bd
15066 F20101123_AABOKE wilder_c_Page_189.jpg
4f9e77980dd5ca5c7838bf1bf1842c5c
081030957982a63ca3d97f6893894751d8f3f90d
F20101123_AABNAA wilder_c_Page_121.tif
b0e6cd484648710cb0dc765b43837510
20f9f78866f3b9a794a63f952932a2fb5b05e93a
9755 F20101123_AABOXP wilder_c_Page_215.pro
8a8f8e7e58bac96ea9ec0f622eff12cd
6586bd2df593e54e5189f85003b99c3c108daa1e
6473 F20101123_AABNNM wilder_c_Page_101thm.jpg
e40072e64774a0577827c616d6a84475
dccebbe79a04458ef7e865cdaca481b6e09eca44
53794 F20101123_AABOKF wilder_c_Page_190.jpg
5eda148e51bddfd707f30863525417b6
dd378708fd731f30a5c50497b15a750f69977147
1961 F20101123_AABNAB wilder_c_Page_095.txt
f9593300094d71867e2e13c219c9f0be
aa182945a43a94bdd916779ce85cff361cb518ca
39808 F20101123_AABOXQ wilder_c_Page_219.pro
6edaedbf2faf6206464d26833db00e49
467b0ac8b14070533e3f095c412b605cbf90dd13
F20101123_AABNNN wilder_c_Page_184.tif
c20721cb79527ac47be9bebaa8e8d75b
60c6936704a789251fd1a64cb5b9a518c6b24cbb
33853 F20101123_AABOKG wilder_c_Page_193.jpg
12a444312a78f2b72e0f17eb826a8383
5e0c209ce0245903c32f92059a28b7f347df288b
88254 F20101123_AABNAC wilder_c_Page_205.jp2
91f1c56d773c0ce74cd232f576e504b3
03d27b64bad368f872d7e0ffc41d9f604624b2db
17693 F20101123_AABOXR wilder_c_Page_222.pro
f8f1f02184005a4747d46c51a6d2e774
57f64f9536258555e3de895715f8148cb3e0464a
41300 F20101123_AABNNO wilder_c_Page_051.jpg
4f8734aeac8828f2f2dc2d35b5de966a
2e57bc8963862e68c4401b8e9e5f6a2892c74682
38292 F20101123_AABOKH wilder_c_Page_195.jpg
82b0cca6678497721426b413b0c3d5ca
35af49ec31e180715b2678446b1cf098f58fbab6
3044 F20101123_AABPHA wilder_c_Page_124thm.jpg
95a15bde3f86b09b18bdb6bc7fd8ab94
be9670dc9a99234890b6f26a442683662f4ef85d
1631 F20101123_AABNAD wilder_c_Page_168.txt
ea783094aa000a461a32e6f7ef36f023
80d0d63a174f2a7a8d2643ddbf88625ebf5fcd3d
34685 F20101123_AABOXS wilder_c_Page_223.pro
c2a124b19be28ee1032453d33f764262
5ebb4a5518c89ce784545f03f251609e655b674d
1339 F20101123_AABNNP wilder_c_Page_147.txt
359b57314621760341ee83ca568e045e
57a00c908354f887d5b8677ae290badf779d0658
37088 F20101123_AABOKI wilder_c_Page_196.jpg
62adbbeeede380965b2ecc1fce3273a8
bf043f9fc44c1e30af60647cc2d41686ef5c46c3
4353 F20101123_AABPHB wilder_c_Page_125thm.jpg
ac47eb69911d8bbd5dbaaf94786a8a9e
99c7168100b3b172dc900b1f9bdc133409e256f2
35254 F20101123_AABNAE wilder_c_Page_087.jpg
370282517ff7e600b909fa7892ded31d
4ec334a40c7b83af891c7194ed2624f4dadf88a4
F20101123_AABOXT wilder_c_Page_228.pro
110dfdf9cabcd1c4d9f90a30426d3f5d
dce5b86399b3ae70049dd30895de0ec20318389f
17270 F20101123_AABNNQ wilder_c_Page_191.QC.jpg
02933a97f741c4ac4d18b03677a1d5fa
69aa9d07be3229efb18bfecb16dce810647af4fd
61402 F20101123_AABOKJ wilder_c_Page_198.jpg
ddeb14a861465b8bf3f15046c89ef3e9
e2eae16b453cb5ce96a79a43032de534cffcba18
1774 F20101123_AABPHC wilder_c_Page_126thm.jpg
430ebccd4d819cfa8f4d4e06d5d8eec3
ee10d47b4467123e5b0b43a4735eb131784fb40c
F20101123_AABNAF wilder_c_Page_248.txt
ec1ebe619227eae6764205916d8081b1
413ab81a1148229261a9970966dbc1906a2bf7fe
16593 F20101123_AABOXU wilder_c_Page_229.pro
f5f0dc74d596d2bfe90acbb921454226
bd2878ed2ed699e6462b0026cefa094d8c7ec4f6
42404 F20101123_AABNNR wilder_c_Page_220.pro
d9542836407ce85041b0623089d7fb8e
7d3b1df06ad9837d7f45303ccff3d48cbdd349d0
12423 F20101123_AABOKK wilder_c_Page_203.jpg
4e8b09510bb0e80a64dd04d6f4d8a0c8
8923259b29cea81b9c1624604667420535004fc5
16223 F20101123_AABPHD wilder_c_Page_127.QC.jpg
694648dfe5f29e0226f8b6e4c82c0c71
a722088e966e758f6f5739a147824a0ee0364cca
707680 F20101123_AABNAG wilder_c_Page_019.jp2
e5b690ea9fa521139f7d08bf8605e4f1
5f611fcba019e8f66ca8cb494fc7b60264bd8fed
19308 F20101123_AABOXV wilder_c_Page_230.pro
b1138e14f1d34589ff679e169eb2d48a
11b48961493ccb4dcbd7add254fa453062cd5dc2
65978 F20101123_AABNNS wilder_c_Page_027.jpg
4379c3f8b75a4a4090060d28cc97cb82
5976c01e1740a6bff0a3f1508921bda885cba742
57981 F20101123_AABOKL wilder_c_Page_205.jpg
303fb3729d9de3d86765596f5123aae9
f31e10ea9999042a3d8ce72467456f8b25eba6a0
4682 F20101123_AABPHE wilder_c_Page_127thm.jpg
b2a7a5f8962224bfaecaec6fdafee392
dcfd519ce23d8b2b38c7de17f5a5476253481088
2199 F20101123_AABNAH wilder_c_Page_215thm.jpg
a6cf2ae779f29b0975fb210503f4995e
6c9f9022f288c0c20269da9cda051c10c0a088ec
18948 F20101123_AABOXW wilder_c_Page_231.pro
a3a653f181c42cfdc5f364b3fdfcde5a
7e3a0a05fd72b6c5502d6f10d730cc25e1a1d8d2
16652 F20101123_AABNNT wilder_c_Page_168.QC.jpg
4e2c56d74cf1110552bdb2913b391c1c
b977a93bbacf15911abdf8f493d7426fd04a7e4e
34414 F20101123_AABOKM wilder_c_Page_208.jpg
1478a26176864440c98ce7855e81c7c1
0857bffe867e9da43786ef432063c0dd6675af04
16705 F20101123_AABPHF wilder_c_Page_128.QC.jpg
71380493f213fbed0acde1d11f731fd7
526bd1691f7a831a73f95c031e2b5ea7aaa79e2e
19222 F20101123_AABNAI wilder_c_Page_247.QC.jpg
22eeb363ac355cabe3efc0ea897476d1
5be2a82d88f61c36f60852bccc52b17ba61e607e
23398 F20101123_AABOXX wilder_c_Page_234.pro
534d80f6c131801257cf91e4ed16cee0
bf06ee99330ab3205a15b1851322ef7e70d71aeb
3256 F20101123_AABNNU wilder_c_Page_092thm.jpg
104bf5583a294f03317a82d58b52f6b7
8e5717132ea4608286174d67b544b5bb1586d7f1
42960 F20101123_AABOKN wilder_c_Page_211.jpg
6ded7a3526bc4320698f08e88847d682
8ab947f028f8eced53ef313d0ac933fff201b084
4675 F20101123_AABPHG wilder_c_Page_128thm.jpg
c9ec23df96afca6ebcca6f4ed43a89ba
5083a5d0d4d906f9c10d8e272bbfcfa99405ce55
1876 F20101123_AABNAJ wilder_c_Page_246.txt
7077de418936f6821cde24b97f567d50
857567c6f16d779a9d9b65b990eab429e822015c
19601 F20101123_AABOXY wilder_c_Page_235.pro
fa92a7ff264f0ef146ca7726a2b1c120
36c5b64a1a4120c4565e28014798ec461a0eb316
36994 F20101123_AABNNV wilder_c_Page_015.pro
34bfd6df671acedc6ab884f227eea49b
1b86494189021125e096554c801b87162064148a
41770 F20101123_AABOKO wilder_c_Page_213.jpg
d3c60aee26ddb794f35cdaa67165ff71
d92524b3ba88a754b363ed35a3d9e6b50d275948
14067 F20101123_AABPHH wilder_c_Page_129.QC.jpg
7adb75dd2a2907ecc818f134bb6e1da5
a14340ab51a99ffc2844965d00edb16501d7fafb
F20101123_AABNAK wilder_c_Page_013.jp2
21cee994358d39f67e0f5f8b4893d3a8
021ddf874610087b9bd0830bc994fda4322e016a
6253 F20101123_AABOXZ wilder_c_Page_236.pro
95f1d782c07b669a3e27e93a4e2b6041
7f66b4bd7eb8c60c9b1e642f36b83daafd605f2f
48691 F20101123_AABNNW wilder_c_Page_079.pro
07afa08bf9279581024166e6ade473da
d626dc49f0f116e6125ef1aefa7884546428aa34
66399 F20101123_AABOKP wilder_c_Page_216.jpg
b8bed0b0a4d911e1656b415c97b4af6c
83d7ba681fbd5ae95443d20df7b743c2fe65d857
3816 F20101123_AABPHI wilder_c_Page_129thm.jpg
449d674d51eed43e010bac5119c1b347
f4daf5eedb4452760a9cc1ba79180913dd8c2259
2050 F20101123_AABNAL wilder_c_Page_239.txt
e8e88a93f5dbd4a6cd967324a534c15f
2122bec1d871aa71df0f39c8d5f862d243214115
F20101123_AABNNX wilder_c_Page_085.tif
794888ec6955a962d1ff9a19d1adcce7
1d2cb3869fea57fa10e6dbbebc6027f589123708
65206 F20101123_AABOKQ wilder_c_Page_217.jpg
85553a5fcd90e8ab75d7209d25517ed6
b395b31aa65008a20c54bd0aa91b46725d1a76aa
10804 F20101123_AABPHJ wilder_c_Page_131.QC.jpg
bd21755071f866b8d861ff4474877792
7467d3dc3b84ac76f9f8d2bfeacb342535c63acd
2483 F20101123_AABNAM wilder_c_Page_156thm.jpg
fd607cd3e34ded202dd2483db6876dc5
e99bad4cb9518159fdfd7be46182fd16eb52d16d
1102 F20101123_AABNNY wilder_c_Page_193.txt
e0206649ada90f77ddf16b8807578b6e
72d41e9afc59de40590f4fc967fcb5b93d540e1b
43787 F20101123_AABOKR wilder_c_Page_220.jpg
3e2b038d66fc4b0fd99ecf61b153e9af
b9a6d7ed44be7bc30b57f535ca52209188f4bf2b
10872 F20101123_AABPHK wilder_c_Page_132.QC.jpg
5e2680b722248a11c46be209178aec6e
8060bbe1ad44a7c20ede11c27784de6045a40230
12063 F20101123_AABNAN wilder_c_Page_147.QC.jpg
3c7cbd523931824e6a16d74025b742df
a31915f81741efdc7f14d1f22462c8a2cd63f190
102959 F20101123_AABNNZ wilder_c_Page_099.jp2
86eb697ddb7247c3edc05d2f78ab09d7
46f8c2651873914751342bf58513bfabc444afd7
44604 F20101123_AABOKS wilder_c_Page_221.jpg
3c21196887828e24eb6d422c8213e105
45113de7aad3c40fae9f94983d4c60c903a57db6
4817 F20101123_AABPHL wilder_c_Page_133thm.jpg
bdc32436a9ad9eef47f00269c1abe87e
3ea1a440fd464d364f7af83c9f665114e6ce432b
1903 F20101123_AABNAO wilder_c_Page_236thm.jpg
e84d3c6bf5049696a459f3d21eee7cc4
8f0049443654d1ca718460527fc29ef1f461a63a
51902 F20101123_AABOKT wilder_c_Page_223.jpg
065c2c4596f27c62a0e9791f5631b30c
d14e7e1a4770754c19aea69d6eadc511a570bad9
13629 F20101123_AABPHM wilder_c_Page_135.QC.jpg
7c0b4409676ea15fd8af17a95a985ce6
29919de03de1c9cbb621a8c7dd2cbca96a037f78
58383 F20101123_AABNAP wilder_c_Page_191.jpg
6f63b63bdcbea740395f3a187c5ac4a5
0c4cf7fd3f45858b4f89862ea1df184f4424a060
12483 F20101123_AABOKU wilder_c_Page_224.jpg
416fc3f13efd4828ca693907fc53f332
dda7b09fa30a5fc2042660e8be2c56690b39ce48
7463 F20101123_AABPHN wilder_c_Page_136.QC.jpg
57092e7c47915bcf0bbd5893d212a3eb
d3d6bd6fefd1e61c7dbe651568434e681cc45fb3
F20101123_AABNAQ wilder_c_Page_060.tif
cabf65ca959c3a597287f8538c4544b3
c20671fc49b88b82986d36ca8226e400aa43beca
59650 F20101123_AABOKV wilder_c_Page_225.jpg
d705b4e523aa1a8de5f4f63d70e831f8
0656d6594c4cb3d345096c93eb1c0936b63b2b53
2632 F20101123_AABPHO wilder_c_Page_136thm.jpg
fe5cc5df0f8eb6989797544bf15223e0
53539c136a39a6506f866ffa36d7f465a24f46d6
72024 F20101123_AABNAR wilder_c_Page_028.jpg
4867b20e40d6786c58cdbabda786ead2
0161add93640a2ebe31e7b131b13079666a29e0d
32950 F20101123_AABOKW wilder_c_Page_227.jpg
a36b8c1c7fd36a7ef820754c9c2e8d7e
4f8f2da63b64e1d5206c34d1c6c6a4b7460e7e1f
17299 F20101123_AABPHP wilder_c_Page_137.QC.jpg
64ac3d0bba7020fa6df53873ffc42c63
62f6c408934d44dc05dbbe95d660b8158cf264c0
F20101123_AABNAS wilder_c_Page_221.tif
13dc48f79b0a92063178e151acfd4d60
b4b8372528f7f3fd05152c7380b0b014409121d7
32644 F20101123_AABOKX wilder_c_Page_229.jpg
c860bb28cb570a5b023b5d3be86a40a2
fe3e55924ab57bde266f1563511430918c441eb9
4946 F20101123_AABPHQ wilder_c_Page_137thm.jpg
d8f9f3450efe1356c3723c63a4d3709f
41a48b47cde55c1d53831d701c143e5335a3de31
11864 F20101123_AABNAT wilder_c_Page_052.QC.jpg
61b20351c5219c61420d1b6aaadd86aa
d0eaf730143d9d167bc8ff62a9e7f617e7cf0f4e
36061 F20101123_AABOKY wilder_c_Page_231.jpg
4df1a4938c64b1d4aa7b464fd384d290
7ed76d29d93144e38bde54f12ad4a38f1dedcb99
3229 F20101123_AABPHR wilder_c_Page_140thm.jpg
5cdae8fe1be156d36be2d61419065973
afe1cf13ff6769dacf2edeecd49dd335c21eae6d
1921 F20101123_AABNAU wilder_c_Page_079.txt
884acca0524ac73932e011c5c72159c3
d335e5f704c097dff8a4a59101e25341334b6cc4
34371 F20101123_AABOKZ wilder_c_Page_232.jpg
74af3674bd87979e6170ac9b20a8aa0f
f766ab511e8150dfd922dd2b5d75482096140728
13257 F20101123_AABPHS wilder_c_Page_143.QC.jpg
bf0a00349559d448655aad487ed0d945
ed1449b30c3093b89352c5fc5bd62b2069497bdb
46762 F20101123_AABNAV wilder_c_Page_042.jp2
26352b7c75eeffdd751b48c4a48f34dd
0d6782db0a185310f24576e43867de67e498851a
2921 F20101123_AABPHT wilder_c_Page_144thm.jpg
b7b606ed102b9cfa365d0e43dce1f084
373fe90fff167aa4670c101ca7671b8a7d0c9dc7
F20101123_AABNAW wilder_c_Page_027.tif
837f28a7056cd7955ef4781fc58bfad5
351488401f0425317051f7a6994d5ed1c0eb088d
36211 F20101123_AABNTA wilder_c_Page_137.pro
df482c20b0ce118d2a66ef2e56582c48
e7e4fe2e3737fa258393f830c6e0090b18c9c3bd
4973 F20101123_AABPHU wilder_c_Page_145thm.jpg
07937ef4e75f68921db1e474b7b3572e
002832cfc1b2cd014f3b46bd3436390a8cd3a6de
F20101123_AABNAX wilder_c_Page_015.tif
12919840bdd63da2d3c6083e5614923f
ebbfd70dae821f6c1f554f2213429d17e2a89cce
4077 F20101123_AABNTB wilder_c_Page_167thm.jpg
4d5cba9c1fad2cc83831007fc740d521
46fbcfef557c61cc76e9dc7e23f59f0def8e5c3a
4835 F20101123_AABPHV wilder_c_Page_146thm.jpg
6b21ac5493e751c5850b6b20d66773c3
25c56788116409c08ff5f7a0bbadb29b0e4457a4
11299 F20101123_AABNAY wilder_c_Page_050.QC.jpg
63a339e7f7bb36696fa43e27cc7a85df
eca0d7bec8569227b89fb1a2a2a235ea4168f502
23941 F20101123_AABNTC wilder_c_Page_020.QC.jpg
0f3bf8d95e398e1c7dc4a60f21dc7ba2
bd50c5b2fbb22ceaa3239de883d796c1a381e99f
3142 F20101123_AABPHW wilder_c_Page_148thm.jpg
85ad2ad40729881fc74a378a19064643
cc3a9e727ef9e281c08934595199dfd8fd5dc4bf
F20101123_AABNTD wilder_c_Page_128.tif
a7c3144f4fb3fe38a70349557a1a542d
bf77f39eff476707c048eaa10a74d88c73fa7ba5
10021 F20101123_AABPHX wilder_c_Page_150.QC.jpg
c61c6c4b9bc8810e2cc960a49b5f66b3
3da8e9e89b609ca214113f28530461a60868851a
46161 F20101123_AABMWK wilder_c_Page_073.pro
358f9a276883680d52271279557a71f7
6cca8e2c644e09c62d866ceac20f337afd4c813c
F20101123_AABNAZ wilder_c_Page_100.tif
6e5658481064176978a54c3ee7dfb724
a5542c7f52ce1c0a3566a5d81c9311575cc6e6d3
F20101123_AABNTE wilder_c_Page_006.tif
bcbd429fda181209b7de5c84ee730e29
9eb94d5401bd39344299e82b57ca99de1bef3c46
3133 F20101123_AABPHY wilder_c_Page_151thm.jpg
37aa1981a1a25934a677d0bd8ad1618d
acb18c9caf9ab8bfa3d0a53a1c8474d1dd8ced56
9934 F20101123_AABMWL wilder_c_Page_163.QC.jpg
66dda8357469758d1ff6167adccb6a30
c66a6f5220d78bcdbcd17641ddf4e899f891c5d4
44482 F20101123_AABNTF wilder_c_Page_232.jp2
c03805d26e80e707ff07b93c1b6e96da
631a170616d01133a5979966d02ff479b6670687
3073 F20101123_AABPHZ wilder_c_Page_152thm.jpg
7c9c21a6e281d0f1f61955f350e54703
328339c22de704bd20505411df61ee00db3becf4
39926 F20101123_AABMWM wilder_c_Page_145.pro
3c97ed311a49def8d939c99dfaa2a840
a3ffa66636a13e34ab93019dee183c90a2a32c48
F20101123_AABNTG wilder_c_Page_213.tif
4a2b1c98aea59f7bb15a4bb7b9af215d
38e59faf01860dd58c2fdf5dbf6142a2d08716e7
17129 F20101123_AABMWN wilder_c_Page_145.QC.jpg
859da7c5df9b258c434a929a4aaf1333
630ee61b6e69901d453fd4c05fca79da01f9f490
1009 F20101123_AABNTH wilder_c_Page_135.txt
ab8338e3a9fd3b2c7e319f46ba4ff6be
0152ece74791b24fb447f366529305861171b087
F20101123_AABOQA wilder_c_Page_026.tif
98eaf17aee0c1d8e10e20b24b48e21e7
eca09fcc44e26afc4e306b82ffbf46032434c8de
35090 F20101123_AABMWO wilder_c_Page_120.jpg
63ac97ed1a3c76255ed49c4066cf7242
f9efd70bf62034b2895d95cf49b04f95733f2579
42958 F20101123_AABNTI wilder_c_Page_172.jp2
43f34df8b0cbe729ae881c475866442c
fbf32781cd630cf57ca1d9fc03454dad5b111249
F20101123_AABOQB wilder_c_Page_029.tif
2f177cd1172734113715286fec15e305
25259e007de4bf98ab1934e1afc75dcd3f070efc
33006 F20101123_AABMWP wilder_c_Page_144.jp2
5d9f15278a654f223590269bdb7f1223
8f7b28505f3a5197dd4b5a66128bdb0d7c4cf133
37695 F20101123_AABNTJ wilder_c_Page_004.jpg
459d550020467bc6cc7d0037bafabaca
b8cfa6d18925166e691fed7f36cfb6c0835d3c28
F20101123_AABOQC wilder_c_Page_031.tif
e5b773604fadca3635265400b7ffbfa0
9a41bad81bb4261d57265c18bcf3e84fdb0a7f48
F20101123_AABNTK wilder_c_Page_172.txt
de8af4d201444c0d8e0757b4d10f3f06
d3587e08e7666b2bdf73ad10018a7bc200582786
F20101123_AABOQD wilder_c_Page_032.tif
6f4de9970b7b74bd7c3977304c39f33d
921516f66f03d9770f31099cc638619bd3c40ebf
76804 F20101123_AABMWQ wilder_c_Page_180.jp2
33652a27dd3d6e7677d3bc1eefd72b30
e8234579ef8d63bbfc205cb6bad71db0c63d6b65
74699 F20101123_AABNTL wilder_c_Page_202.jp2
31ba4f467977aa8547026379e5c1d439
1a4c64872fbb1066edb53c22d56c4779cd05c9ac
F20101123_AABOQE wilder_c_Page_036.tif
8aef4efea63eab5133929ccbf06c35e4
c2615c5ea9ab044b1008c649ab446a3917b0c032
61289 F20101123_AABMWR wilder_c_Page_014.jpg
1151eb1983e0e2077eec8e59cf03d1f5
0f3d2bc2c29b9177e9807435da2f70bb5fcd9b6a
F20101123_AABOQF wilder_c_Page_037.tif
84ab6ae128cd70fa3a902852e7c4a978
fc44a0b462d1ec5e2ff4085b603a789855972787
109401 F20101123_AABNGA wilder_c_Page_039.jp2
b32eccab7a73a3801bb4e2a48759a476
45384a524db8b4c323b5c0c2a252ff4ebc504203
947 F20101123_AABMWS wilder_c_Page_026.txt
eb90eb421f4c49a8b9d360827515a522
3cf49c000f3f3d71170b6e8c9f3e2a7a32f077fc
46627 F20101123_AABNTM wilder_c_Page_032.pro
9f6b9ebb7c8903a2f1f45217491c93ed
6443c166264ade23ced3e203e3c762606ed5c124
F20101123_AABOQG wilder_c_Page_039.tif
ef5e9383caa7df2ebb70ca8c9baa5918
48b74f1ee3d84b87a7eed8befebcccd6c7cf5a64
2955 F20101123_AABNGB wilder_c_Page_192thm.jpg
ed821a71995e8301dfcc48c005e885bd
59268fbf9601c1740c223c593bc5f89d782e88c7
83692 F20101123_AABMWT wilder_c_Page_142.jp2
8c0d0f2b42fe0aea9c7983a133e54f7b
b50f0f3ba2063874e41ba61be6da6ac5e6bdeddf
F20101123_AABNTN wilder_c_Page_153.tif
37331f3bf688ce35eb62c0605a3efac7
c1389cef2030ecac211482847b278437db19dc17
F20101123_AABOQH wilder_c_Page_041.tif
39bd45ff47495c25ba8b6c863752ccea
cf9b7971cd069845503705ea7e4b9efff2fb4733
10088 F20101123_AABNGC wilder_c_Page_031.QC.jpg
773056f4e2c51d1a610fb615073d2c10
3356a304b395b7f7c8540a866196ad991fa7c777
1000427 F20101123_AABMWU wilder_c_Page_065.jp2
0f07765c1bf01c326e0630177487a09a
1261aa26f78ad29c224f3a8eed6b964f014b626e
70368 F20101123_AABNTO wilder_c_Page_094.jpg
b313b808552a216b5c2ac70d9471e5a3
f68a9211691b25f65b3f0efaae4490cc5aa44759
F20101123_AABNGD wilder_c_Page_016.tif
5c66f27a69af00988a7080e0bf5e3f9e
1e97bac07e16eae5a32984d985f0a0a13cf1a32f
19451 F20101123_AABMWV wilder_c_Page_019.QC.jpg
f08c9c64568699768b214f27205b1bc7
f0c1a9b6b6424097006619205fa337cc74250ee5
971 F20101123_AABNTP wilder_c_Page_234.txt
c072db5c7c8dc67800585e5051b95b0b
6e5d98d8a9a32fa2e8624868a46f1d72be207e89
F20101123_AABOQI wilder_c_Page_043.tif
af2a7d8477430ada9fb0110e234a3982
a18743f34e2fb76a83538045d74c6835310675a1
1909 F20101123_AABNGE wilder_c_Page_107.txt
b5581a85da72122e8d4b9c404b2e0d96
a9d5c4ce1a9efe370ece3a2bf747e6dbfdcb74e9
45042 F20101123_AABMWW wilder_c_Page_146.pro
795e9c7dcacbb9efd1633a2f22c64db6
a83a17bd8890af7e3a9a0076bc1ec0eaba66d1b1
875 F20101123_AABNTQ wilder_c_Page_211.txt
1f31a174b865562fab9006adcb1f876f
9446e7cbd26df9e9e485da4cb048402e969cac01
F20101123_AABOQJ wilder_c_Page_045.tif
1410143c0957a51245f59802282e040c
08cb7ffd7777cc66c336069d2f3e49d3dfc06164
F20101123_AABNGF wilder_c_Page_034.tif
33e97bed0c8b8f1dd55aa71f723c1cd2
95c29c5f2c29cb403205f2a857dd8187ee781278
F20101123_AABMWX wilder_c_Page_159.tif
fbeb931b3dcd6078324c9dfc3345c464
317c3d95b228b6f49714d8419f6688393caa92e0
10012 F20101123_AABNTR wilder_c_Page_194.QC.jpg
f50a622d00c46cd771db1fd6fc7a0ba0
df9a78113dddfd950737f48fa22f470ee22529b8
F20101123_AABOQK wilder_c_Page_046.tif
733591ba03c0b948b4fd6edd4930e779
923ac1eca9325af0081c49b757b209e894ec5a05
69977 F20101123_AABNGG wilder_c_Page_045.jpg
802083d7f70df7f593d5936f2a129b9b
2179217b1c99c6836d643fba4e3a7f970aa20180
6998 F20101123_AABMWY wilder_c_Page_100thm.jpg
815c38e7853cc561d6d976321ae7e68b
10459eb433f0f8f2a20779654d94f47f839a404c
5473 F20101123_AABNTS wilder_c_Page_142thm.jpg
747691e968e1cfe2a4c1b4925f4798d3
b61302dbf4005ee7c360e1233f2136dd41634934
F20101123_AABOQL wilder_c_Page_047.tif
0bccc4185282f9e1ea84a76326c3b7ee
c82ab5b1ee43c5616b5d959e9b5f4a2ebccfae69
23236 F20101123_AABNGH wilder_c_Page_171.pro
77e0ebd948c92ab3908c9c81dc667cc9
c33b4a0ab18883d176ec608666e1be7af61ffbd8
5552 F20101123_AABMWZ wilder_c_Page_074thm.jpg
2c51696cee2262fd2b4b5a330a1a729d
4a03f56622da40457e80928a2361195265dc0067
4810 F20101123_AABODA wilder_c_Page_189.QC.jpg
3b4d65cd81aaf850d8ae00f04c7ae387
6c6f8d62c0f3c315a9d45acdc18c07bad8e82cbb
48073 F20101123_AABNTT wilder_c_Page_231.jp2
b3f1c6b84124f8b382021874ee9e56af
2c493aea28d77664b37f61aca9eed007d41854b0
F20101123_AABOQM wilder_c_Page_048.tif
84606992e53361cce2eccf34add62a1f
2e13e47a2b384aee8e845751366110984a1b8d6c
49522 F20101123_AABNGI wilder_c_Page_123.jpg
a01c848941f63449e71768936c4286e4
08b28f9fb255f9b0c46782573f469b711c4f8037
42314 F20101123_AABODB wilder_c_Page_183.jp2
1df8377d7f7e2b86c7d1d3810cfd8325
2b282e808921ecd5f5fde0f29f4415b10792d5dd
998 F20101123_AABNTU wilder_c_Page_090.txt
a22873d50b05548c326d9d404e88f5a3
9fff7096a91d5a9081387542671571ff02ec49b4
F20101123_AABOQN wilder_c_Page_052.tif
4dc257d7b475d8ce1e1c1dabef912d16
4833c677f63015988169d07b4f6f21a05fa0161c
3191 F20101123_AABNGJ wilder_c_Page_031thm.jpg
20463bb7fb2a3c5d2bc504226eeac321
173fcc5a0dc856176f62afd60031b2163b85d82c
3233 F20101123_AABODC wilder_c_Page_235thm.jpg
ed3424b6bf9396d0bc5d5c62ad8b1910
31567d91b8be481257b12683ea3be54cfdd299b9
10052 F20101123_AABNTV wilder_c_Page_091.QC.jpg
082d983d950b7720c36eca3bdd6814a0
d6ee9502a7e8366d1d46502099bee1bbcb379532
F20101123_AABOQO wilder_c_Page_053.tif
b3a20eb8ceab405fccba4aa49d9a5e85
ed927adde99cc5e846d64585cc6ea8c5f045c683
F20101123_AABNGK wilder_c_Page_082.tif
3994371891a9f846c59800b1bae493d1
31939e1305842780bffdb4c6d5159d9d052f8c56
45206 F20101123_AABODD wilder_c_Page_242.pro
67e1317b4a2f4dd120a9afab1ffa160b
3184941488ac052177720e673abcbc75e647e8c9
14143 F20101123_AABNTW wilder_c_Page_087.pro
65e952c2929f9aa41453aa2d8f88b9f2
3beb0f44da5ba4f851e360298d731cf56d34a8ba
F20101123_AABOQP wilder_c_Page_058.tif
ee519b4b96b67040bea75a87bc8c52de
6ac7fe36d1d90d8b5a8a0764f4697e8ca9cbce86
46455 F20101123_AABNGL wilder_c_Page_191.pro
92686034117487ccd2042aa67b640e06
9ffb1148d1fbd594895d5843e8499a180c3a62a3
21692 F20101123_AABODE wilder_c_Page_073.QC.jpg
fc66bbe3d0698dea4402d2d682ca5a62
144cb89124533c359d1559f6a343a3532e92904b
F20101123_AABNTX wilder_c_Page_035.tif
5d18abf6cc1cb576abda39ad3d231d87
7ea4ec5693eba829ea8ff66c3108097e783407aa
F20101123_AABOQQ wilder_c_Page_061.tif
536c48e57d30f4cc884124f624f2dee0
00debfda6f1f3a4ef67f6b4adaa62a8bb9b6d889
1376 F20101123_AABNGM wilder_c_Page_133.txt
cb4e672f00208f45877b8f9fca8890a3
4118f61e5f908a235f9acc742fafd8b65b087b6f
42884 F20101123_AABODF wilder_c_Page_229.jp2
dcebc4439b081f64c8591234fe0ea5a8
ac4f1d5a6d9864d44d5405b6ad15723dc81a4c4d
F20101123_AABOQR wilder_c_Page_064.tif
237d0540e6c4a25d3e90141c19e6d027
7995234828967f0c6c133a98d29958f1548cb8d5
F20101123_AABNGN wilder_c_Page_163.tif
b8dd914267272f7eaf09efaa899b16a5
d2d8af5e8319228b9c466d4afff8e3fe1664b828
51758 F20101123_AABODG wilder_c_Page_080.pro
a6fcac29a0c79896df98b3525fbfd08b
44c7ff5257549b3a327b185fd02fee234452857f
2006 F20101123_AABNTY wilder_c_Page_039.txt
ad53b2ca6c8586a3b21862fba3cc9d01
c13a34831f70f754c04d92a462f84e9b7851fe09
1743 F20101123_AABPAA wilder_c_Page_105.txt
8f43b4993abc70e7f3c5e88b5404f9dd
da1faf40371fa49d628cf28ec15703287964ae7b
F20101123_AABOQS wilder_c_Page_065.tif
516bf2c55875c585ff0ac13ecc275264
7c6dac6f1af3700fdee50d2ededaafd122c2043c
19067 F20101123_AABNGO wilder_c_Page_233.pro
4cae5d7075968a4fc87619a16c5f36de
df26dd0bc1b984c0883fe2c4f8489be9d35f1862
767 F20101123_AABODH wilder_c_Page_036.txt
93c705d462e5334322352f839cba5b6f
c687e6f57da25ad9bcfbf5b41b1a9475395e2bc8
53527 F20101123_AABNTZ wilder_c_Page_116.jpg
e23a914d9486e391a49c2f08e2d1c3ee
48b4a2b665de638499370880a4ccc2f0c6836f1f
1985 F20101123_AABPAB wilder_c_Page_108.txt
8df10749cf8720005f36ce14d627c9e2
fe032cd19fa20ab445e8ed3d2d8f37c083915944
F20101123_AABOQT wilder_c_Page_071.tif
b33a4bfc2ef1806d6bf1d853108c3486
ac7e55d5abf0f871204f7de68aadea392429a3de
38684 F20101123_AABNGP wilder_c_Page_117.jpg
6c182c2cb9811b61f296ec721d53ca7a
1043e9cb673423b1283cdbee0b8a416bc88e63f0
3186 F20101123_AABODI wilder_c_Page_121thm.jpg
bddfd1efb706e179b99cf9681c7eb5e1
26c6aeca7c51b4ae4e19a1cf9bb2df14c03b0f14
2017 F20101123_AABPAC wilder_c_Page_110.txt
c04bebdac89a79c2ec3ef6324d242385
1b956f5726b5d169e2117725e92169b0d9415a47
F20101123_AABOQU wilder_c_Page_073.tif
8369364691feaf8192aa83138b2344ae
01f6b65ada25bfce700501253cd7564abb1844c5
F20101123_AABNGQ wilder_c_Page_233.tif
1e479a417471ea188fb175c029e8ae8d
e17f8819404bf212e578a469175386deef33c0f9
5801 F20101123_AABODJ wilder_c_Page_054thm.jpg
903c203823b360ca946f4d390d8c07d1
d3876038e5c6ba676d110644801981eade8c7e38
1881 F20101123_AABPAD wilder_c_Page_112.txt
0bcfa2bd0eb3a5a0b6bb974f260eea8d
1451140dc35d7747375183cbc508f3bbe66e97bf
F20101123_AABOQV wilder_c_Page_075.tif
feba83e78ada859f1b3f6484fc4dbe5a
b4937a90a721ebafaa5fe026cfd034d30a0a263c
43460 F20101123_AABNGR wilder_c_Page_243.pro
7bc89ad3c8671b7f403b51b4eec2672c
4501f0820d21dd3efe196c580d7f016ec8b34d8f
2028 F20101123_AABODK wilder_c_Page_102.txt
9d2571d182ecb737363e617f5ee383a7
a13e57c8b5a312268b125a3bf47244636466030a
2104 F20101123_AABPAE wilder_c_Page_113.txt
9d4e51aba1d0e0f42cb8483eae8ad14a
19d022309f29db668fdebd1c4c08fe326188653f
F20101123_AABOQW wilder_c_Page_076.tif
e8849d0f5fa60826201370514e779c51
e9edf101a950aa7875e02e8517c0b5ce19e07fa6
1739 F20101123_AABNGS wilder_c_Page_063.txt
3b39905bd27552aca3179466ede3e825
6888cd05f9003ddd7c1dd189352b2d7ed45a9706
393 F20101123_AABODL wilder_c_Page_126.txt
e6059996f8ae3bf97365f11fe7b4cf6d
a39768ee8a7125699cb514d0ae4f2bda8cc20ba5
624 F20101123_AABPAF wilder_c_Page_114.txt
8ddb370c9c32c326d09cf422929b6cf3
d37fe5c6da888c54dbb43f360cd300b9f5cbae62
F20101123_AABOQX wilder_c_Page_079.tif
1eaf0618235f45e43816fd05b1fe7ea8
e4697a33a82fa83212cd0b77f25f423974406b1a
F20101123_AABNGT wilder_c_Page_011.tif
0e4687d2962e7ba89bcda44dc0c871be
c6ac74c0c704fc372936913b761c96d7464a65cf
28722 F20101123_AABODM wilder_c_Page_041.jpg
cbf875664acffebec4b77ebfa06edb70
b2fea873c8b355b52e85d5bafb7bcedec9df8474
1926 F20101123_AABPAG wilder_c_Page_116.txt
08c7122a9a796c98906ada22135f93af
6dd5f6c1ef076122573469970f123deeb501f69c
F20101123_AABOQY wilder_c_Page_080.tif
2a0d0b2aac5102dfba18afec0e3b79c9
f37316391d5782d60fe79ebf371d90abc26a1514
80372 F20101123_AABNGU wilder_c_Page_146.jp2
b5e5fd0f0eb87e496e0dc505db581c3f
ee30617080de0334a421dd1de085c8d11c5be811
F20101123_AABODN wilder_c_Page_183.tif
11d60fc8988285b1daf09979b5707b7d
9f94f5dd456f93547f686e80d631710f549644ed
892 F20101123_AABPAH wilder_c_Page_117.txt
7e7e5090393945d18673933bffad9366
de2eb90b119471734e60385a401516f9cf9e8185
F20101123_AABOQZ wilder_c_Page_091.tif
7f349b8d169a5cb771ec7bf70809addc
1636464d743816b9a07ea6164399fdb154839101
6823 F20101123_AABNGV wilder_c_Page_113thm.jpg
d863b1b7b450f1081322dcdb5dff5ec0
f49418dd4b14a8e8e464887cd887674b2d3d498e
75021 F20101123_AABODO wilder_c_Page_168.jp2
3e7fc1b5f129f80e06f49ed972317cac
3629b774a661441a9e61b01168593ad3791f44ec
944 F20101123_AABPAI wilder_c_Page_124.txt
ce7b12e6572a431ae577d32650add493
d7f2bf29906a258ed9807c81927e981703ad294e
F20101123_AABNGW wilder_c_Page_178.txt
224fe46b5cd5e6261aed74c62dfca59e
fc9c0fcb73abf106f9e37b5058a82ce4bce77c2c
19499 F20101123_AABODP wilder_c_Page_209.pro
789ed5586a281ef29c09b5fb89e3aadd
44f990167ad3d6b7461ea5131a1c01cd51163746
2040 F20101123_AABPAJ wilder_c_Page_125.txt
09ec6c42627822c79a2735eff62b1fd0
c15a6dc6435f3b4f1d8f0363d5eedb8af12b43a6
4911 F20101123_AABNGX wilder_c_Page_180thm.jpg
b9291eab6e8204b80feafb4f0c617906
c085258f747910bc0e561a11073b0d1d6f60d79e
39498 F20101123_AABNZA wilder_c_Page_142.pro
24929894668983e7ed8cda7ab0d59e38
4b9787afc33571b0d8d5cfeffdc2af4586ac8214
18549 F20101123_AABODQ wilder_c_Page_186.pro
be409aa42d5ce53da648162f407f847e
1fd36fa4f2f52c261481979d7f7a4849655a83e6
1065 F20101123_AABPAK wilder_c_Page_130.txt
0dff92837324e2d34cf44d1301b9367f
31ade570ff9d911d2a3ef2053f6d86cd054195ca
104394 F20101123_AABNGY wilder_c_Page_101.jp2
0fd558409cea332eb464d655df2eaf2c
6eba4586dde42b9ce4bdbd518bc6613c8bae14a3
17780 F20101123_AABNZB wilder_c_Page_151.pro
56825027a25507fbda3fea11beb72edb
6630e2081eec011e6f31b874fdb8bb83e68f64b9
F20101123_AABODR wilder_c_Page_157.tif
e9838528350e0d3ed7e02c701cd990d7
3189820b3d28a371ea00581074ba5b4e68af154f
785 F20101123_AABPAL wilder_c_Page_132.txt
59be1076d0195e419a7ceee73f01356c
d7b6897d074302894bb0d9cadf33de37285f999d
F20101123_AABNGZ wilder_c_Page_005.jp2
387e58a96c172377cb1a8ffcb88a5edf
030a68c680dc874ad98207b39bef919953d49a9a
F20101123_AABNZC wilder_c_Page_145.tif
5db472b979728bc80c26612965b9a0b9
b3df8ca907ca875586972612c95086bd53ccb765
F20101123_AABODS wilder_c_Page_074.tif
df28ea2d0f7068c7edbdd755552fc899
5a6747eaddb33a3ec5d49750b4aa32b09789e0d7
1669 F20101123_AABPAM wilder_c_Page_134.txt
958249769c49100ed4ec5a839a533080
fe252d118d84091a5edb643bee9b87030797cccb
62471 F20101123_AABNZD wilder_c_Page_239.jp2
a91ae1462ce2b4a50d44219766a60429
6138c49253c3a1e8fa329463e9abea1cdc3c018e
46100 F20101123_AABODT wilder_c_Page_234.jp2
cdc905c6ad20b9929e3cb7b9033666c5
292af760f5e979ba623f7e84ee4b749fabe5b9fb
1585 F20101123_AABPAN wilder_c_Page_137.txt
189d62785185b286f739fd86bba26a4d
b2bc473121ef46fb8211b89b0fe20af384307cad
65695 F20101123_AABNZE wilder_c_Page_158.jp2
e7c46bb77dc23a1023dbbacbcbf654f8
b141924314149308c9062d347d70bed835e4f9f3
23129 F20101123_AABODU wilder_c_Page_010.QC.jpg
1798be5ec0ac33c2025baf8e7eea3ae8
e2d250fff5b1b3e12010c6692c81691fbcf0b382
1130 F20101123_AABPAO wilder_c_Page_139.txt
26a166ff0656043c4cf7c3d108ca07bb
6ac83f63d4a5658f1c3a9cfbad2ef07c8807f39d
47547 F20101123_AABNZF wilder_c_Page_164.jp2
bffa4f5141371962f5083e8850db33bf
cd8a90cf3bbcf17779cb2dcdfce06a317cd2a64a
F20101123_AABODV wilder_c_Page_170.tif
bebb44187f52c3cff67218c8061b0f6e
8853cf036ba5da453ea41c661a7a001c61b38f31
1637 F20101123_AABPAP wilder_c_Page_142.txt
89e985e201ac31597a33ac5eec527472
d42b41db37015a60d783e72c959d5f984fa9820f
20565 F20101123_AABNZG wilder_c_Page_046.QC.jpg
08d7c6004f526612449e73d776c93eb0
2a94e8c1f3a30aedb3c2dfbe39b3047394424d95
115255 F20101123_AABODW wilder_c_Page_113.jp2
b8b66fa1e609a1d219e13e3889ac22ce
1adb228efda75ba3749f9bb65fd0ca214e39b8bf
6733 F20101123_AABOWA wilder_c_Page_126.pro
7034d786f308d25ffda1e2029609cf33
5189c290e60e01d70767a10a8b370bf59a1ca049
973 F20101123_AABPAQ wilder_c_Page_144.txt
6c5fa4156e59f9c2e7f9aca26d695819
f492c3a793e1d2ce5388ba264dd7feb453be6fea
F20101123_AABNZH wilder_c_Page_050.tif
57e495675de4fd7fe1127c374953528c
de32c886e82b77fbb36eda38bde1db4ec6711fa9
17164 F20101123_AABODX wilder_c_Page_150.pro
d1e564fdd81bee2d2aa8b084c12dda1f
a1d782a82ba5c9a0dcc4fcd1b3d749a076f14b9f
34983 F20101123_AABOWB wilder_c_Page_127.pro
0bc31a722b06a85bc654b5082d3dacea
9125e8dfd2d9cce1cc776f35e53d93777b1cbed2
1886 F20101123_AABPAR wilder_c_Page_145.txt
27831728d00b6c45d56c0967e94a059f
9674dfd27691e2208f57d02892dc49f6e880f91b
43207 F20101123_AABNZI wilder_c_Page_201.jp2
d106b3a685f928badc6131a45171c2ab
68c026bfe9bbfb2559c60f2a2cb18a1aba646b54
77296 F20101123_AABODY wilder_c_Page_128.jp2
1006898e8e95dc299cbdf1714292c695
88d714cf5570ab73eab20778cc8faeccb23fe98e
22739 F20101123_AABOWC wilder_c_Page_130.pro
351f63de21c1f0bde766ad03db5177ca
dc361fffa67988995331a739b1837c8e3fd9212e
775 F20101123_AABPAS wilder_c_Page_153.txt
8932e355386c307378704f6b28aec9b9
eea6cbc5db0f059b34c4559357944c0f01e30b50
11196 F20101123_AABNZJ wilder_c_Page_141.QC.jpg
0750e1fac0436bfff116d51a0027c361
435ad41bb60c297e871b0e111e63e9949e1c0aaa
46872 F20101123_AABODZ wilder_c_Page_204.pro
edc7a183332794119748fd75bcbf3037
254d2d1ca14929ab5bbba20249c45f3fded66860
47191 F20101123_AABOWD wilder_c_Page_138.pro
a82ecbcce4ae2d5bab083f1160db7cf4
21bb019e90cf4dbf77540b624adfa04f56c54f2e
800 F20101123_AABPAT wilder_c_Page_155.txt
452777333977debc4c33c27227374a23
e8e1f4119ae8d2b4e218a81d4ae9069b58a65071
60181 F20101123_AABNZK wilder_c_Page_076.jp2
9d0e84ecfd2ec752718e7fbc423a477c
6af96762446e162fcdd83743a8c6a6dc44e99ec9
19666 F20101123_AABOWE wilder_c_Page_140.pro
be827cdf477ac1941d9156a17970ce2e
1c1ae9968ec8c29b398a4eb74ed10900d5848f8b
1863 F20101123_AABPAU wilder_c_Page_157.txt
427bff9633c9d9ab00772a26d2c95217
035bc6546c6f3563bbc28832beb2c1e03ee07cf0
71799 F20101123_AABNMA wilder_c_Page_077.jp2
34d52bead992e5bb5c49cf1442d9abb5
67627e46efd2d5fb675dfcc212cb721031bc583a
18904 F20101123_AABNZL wilder_c_Page_142.QC.jpg
289eb6deaf351524f8d50cc556f79fea
cbc8e48d679c92123c3f599ae6e789ee8c55c6ef
20266 F20101123_AABOWF wilder_c_Page_141.pro
0e05d78dac6dec34b2cc3f9e4226ec8e
d74b8355b338145b3bda18d05ebe628bf859a2ff
1206 F20101123_AABPAV wilder_c_Page_158.txt
5bbb0958f7d91f10b5eacf3490edb88e
83140f7c817959d4315164338376c216cca70ce1
10390 F20101123_AABNMB wilder_c_Page_120.QC.jpg
16a09e4bc91d6348ec85cd0b581ca2a8
9473fe614123b8e5a07b3315e88aaeaa9330fa09
9121 F20101123_AABNZM wilder_c_Page_130.QC.jpg
77ecb66d6ba324061fc643f85505d68d
2064ed4855439e51320b1b802baa720fe33ee3d9
23490 F20101123_AABOWG wilder_c_Page_143.pro
b74b71e63ce39133dc9c3dbaa00200ab
717ee7bba0eca229dbbdb6048890c71e7b59754f
146 F20101123_AABPAW wilder_c_Page_160.txt
a018713025cd2cd2a16ef8e697beb006
265fc7fc12e6b515172b3fd88b20beead5ebfdad
62905 F20101123_AABNMC wilder_c_Page_237.jpg
77c84968ad7a6c5b02a0ac0b622be6ea
c4c0bc112b545cc00fad046b17d7b7a2e8513b97
7083 F20101123_AABNZN wilder_c_Page_068thm.jpg
1c7e8f5c9087fba2588ae6e1fb612d28
e19eee6d07f807f8956d8c523221b401c86b9b4f
18636 F20101123_AABOWH wilder_c_Page_144.pro
4766fc026fd0d00edafe7793c755a149
eaf600dedd1fd537a209e804dc37d11189ccbeb9
41604 F20101123_AABNMD wilder_c_Page_118.jp2
f63729d7ad0f2ff6c7f6b8b1064b8c00
08f0cb55c52a3963fb8ed2de49c89a806d9bd9d5
2853 F20101123_AABNZO wilder_c_Page_197thm.jpg
a4143e064a4003dbf9a0358ad8e49c3a
fbfd05bbf1bbeb2da3658c4c533c3ed036c95bd3
24475 F20101123_AABOWI wilder_c_Page_148.pro
8838b4500bc162641d174c9106ef6adf
a521054b45b9b2f17bc758a52a17d38cb1f942bd
1611 F20101123_AABPAX wilder_c_Page_161.txt
ef5ce6d3c6ceee5fb9a07457c3e90ce4
cf1d027de987ef7b2b203a54b1edbf5279b51db0
F20101123_AABNME wilder_c_Page_069.tif
2d5203308e63f300aa822e22b7b07534
bc63ceb27de7e61e46620b7094e105af71fe385b
57940 F20101123_AABNZP wilder_c_Page_033.jpg
68c20737e1f0383e4aead7e2aa82aa57
f80f1462178b7fb3cbdabff334f238daf4cb09f9
16894 F20101123_AABOWJ wilder_c_Page_149.pro
eb3ff650be5981f2c32c2be1a587e9db
ee6d8b128e3e02ba755fe468321d4bddc7e71e65
1988 F20101123_AABPAY wilder_c_Page_162.txt
daeeabe80123a52e950a4849a1b38b28
42063e4562cbb07c273b5c8fa5cf54f773715af7
11937 F20101123_AABNZQ wilder_c_Page_087.QC.jpg
162f1e0fba6b6f3450d3f479b35c0e88
03599b489bb65559a5ef5071909d2c6960c24c4a
17916 F20101123_AABOWK wilder_c_Page_152.pro
dfe9738b6b7ebfe1958137490df96cbb
aa6a763635086a5059cd9067b69a4f36a7613bfd
753 F20101123_AABPAZ wilder_c_Page_164.txt
0443c4fc7eb9ab7a269918660bf82dcd
31d274da995424c190a29085129d80973e174010
71131 F20101123_AABNMF wilder_c_Page_055.jpg
f480273e5f147a7f0bdeb6636ead687f
abfb4796e1ab284e482492eb143dc5733f7a0dc6
53506 F20101123_AABNZR wilder_c_Page_162.jpg
5140e86e1f38620b4495710e0b96105e
0619213990eb2672a8d853f1e95c35921fc94b3f
19907 F20101123_AABOWL wilder_c_Page_154.pro
d8a9c34cc98c6a9481994b33e28ab5eb
0b31ba3a541aa7568a1d5f0db0e4bac27ee8c7bf
66513 F20101123_AABNMG wilder_c_Page_010.pro
702582a49c0a0234703e26c7c8d64bef
a03fbbc9e026992a3f2ce772aa41442563fe4cdd
37041 F20101123_AABOJA wilder_c_Page_132.jpg
71ea003a4cd4a1dab2cb095091123fac
a32cc7fe79d7d2ad0479858f6b02701adffb5d56
19999 F20101123_AABOWM wilder_c_Page_155.pro
987941043b4cb37eaa7e41696c013aa7
cc210218f37d62b89e4d94ee50370a569ceebdc7
F20101123_AABNMH wilder_c_Page_235.tif
fe773c4fa449cbd3910302c8c4f1adcb
c863fe9e4e94b141623a902c10301993506928f0
99928 F20101123_AABNZS wilder_c_Page_032.jp2
c9fb6673b48a36edacc981914e9d223a
c41a1da7071f00db60c4396a2aa9f1509cb80ad4
13736 F20101123_AABOWN wilder_c_Page_156.pro
1f6ac1abaf893d9e86b9069620a09f60
f82c488555bc6cef9274c60b349131850976cd14
95381 F20101123_AABNMI wilder_c_Page_243.jp2
7f499a32c659755fa054fc2b62abe087
7f957945ddd0d7baa7efbdfdb74b96e85a8f04fd
53829 F20101123_AABOJB wilder_c_Page_137.jpg
9fb8319df15f534ccbb02a7c46994660
d12e4ad0ba94c20bd52dade6b8d37411afb17b48
25413 F20101123_AABNZT wilder_c_Page_102.QC.jpg
dc0c032b7abd430482dc06c5d137b89e
b7df1feddf668107615970a4dd87c7d65ef31494
52010 F20101123_AABNMJ wilder_c_Page_127.jpg
767695dcdd9b566801e5067e1ba3d5d0
725c2ef03364b2fc5765abb9d8468d8034fd11f3
59940 F20101123_AABOJC wilder_c_Page_138.jpg
58b4abb7ad0d2986a07a532594fbf443
4712bd63b269c8a9f91038a08d5d9003fa862454
2574 F20101123_AABNZU wilder_c_Page_061.txt
749a6c26146c42bdcda9b635c5a502d1
4ee440fb0247ef06847fe95c1485a15da3635c92
27611 F20101123_AABOWO wilder_c_Page_158.pro
385692ef4264682b58dc6904247e875f
fa6f44424cf6505c39b5cee5400ebb85b09baefe
47015 F20101123_AABNMK wilder_c_Page_101.pro
f4954719f61290ac39c542b900fcfa7f
926fffe08a9d44d5bad11a5a0b5dd59d717cd8ba
32574 F20101123_AABOJD wilder_c_Page_139.jpg
7b81522f78b946f376f1ae5f68d9955e
9eda64b2ce5dd3dfcfb3c8a7b8e0f8613cd6fa4d
F20101123_AABNZV wilder_c_Page_086.tif
6ccc2b11e33935ec90879aaa7e40ccdd
21fd4e7e758ec52c99ffcf0f507113187bcae124
18800 F20101123_AABOWP wilder_c_Page_164.pro
1b9a8715433d0ea6a8c136257cce18e9
a39af12a7516ba73ca55e9f4bac7ffc7d09a85b3
35472 F20101123_AABNML wilder_c_Page_121.jpg
040cb16d90a2fb4a1a7f7b23ef3612cc
bfde2a2241c91f9a85dfd479c881357de928a544
36351 F20101123_AABOJE wilder_c_Page_140.jpg
4c010a97e4f38930ccef0e23a1ea05fa
055c628d5cfc9e18c7d0675bea4dff5710e5d77b
85213 F20101123_AABNZW wilder_c_Page_074.jp2
d2e199c528abc43bafa83d147c45afa0
7d638ece3988bf6711c75b76c0ac021a259eea95
35761 F20101123_AABOWQ wilder_c_Page_166.pro
e742c6c60b95496e42c43b9b01d64182
ed023a9118a34b05eda66c6e1b9dca31292aa95a
38227 F20101123_AABNMM wilder_c_Page_033.pro
9c71977ec01c88f7ad155a6c9d815747
18673d9e235b7d482ce071989b3fa5bde42365d9
38034 F20101123_AABOJF wilder_c_Page_141.jpg
e64c437c20cad53af822dd1d44014623
04ac2d9c7b926674245241175ceb453f85405634
13490 F20101123_AABNZX wilder_c_Page_200.QC.jpg
d8b07655a7fd17ea98fbdfc3bc6bafc7
9a4612f502471b18d280498d00f95ac14361a58e
2907 F20101123_AABOWR wilder_c_Page_169.pro
c21b16358bfa47ff2fbc9b5f12d122ee
126c69caee6aa9d338f4cb965f466d87b2bb71c7
110648 F20101123_AABNMN wilder_c_Page_084.jp2
69532875b305ec54d0ab801194d9ba08
751cdcb836ba4c6b85fd216ebbc30dd6ceb6aa9a
60355 F20101123_AABOJG wilder_c_Page_142.jpg
357a3df69f50a21ff6f9b1163209f6db
1b853a0233b1e4b3d0eabc7cb42566289e82174f
4718 F20101123_AABNZY wilder_c_Page_116thm.jpg
d5c358cd0e8c14ff1a5a2d7f619dec02
bdc1f5b8c3340ac8766f8f4a8ab1bc340e84342d
37107 F20101123_AABOWS wilder_c_Page_170.pro
cac9b845c996a792c2deef6e3c2f6625
8650ea388799a0448cbc4061541a47597ceaab3c
F20101123_AABNMO wilder_c_Page_247thm.jpg
bcf137d9b929c4e0937cb2bdeca19a3f
997832a69953bc6733db41a8940df0fa21cd8643
42649 F20101123_AABOJH wilder_c_Page_143.jpg
027f64d5a0c176d9a0a1a5668d9b7f0f
da4920fb65180955cc016354c0f1d85585e0ce3b
13826 F20101123_AABNZZ wilder_c_Page_188.QC.jpg
2c91d550fcbdc31aedaefd1dd7511cb1
ed201a59966b53f2ffdf5f73c6902858b427f1d8
9549 F20101123_AABPGA wilder_c_Page_092.QC.jpg
11ce3c70d900d3904f4f66e6bf857016
d902457f71a976de9d1395b12f1cd2d53d233e9c
16958 F20101123_AABOWT wilder_c_Page_174.pro
1bf301cddd691d9e02734bcd8906d4d9
40e5421dad9ace1a6e8cd6e4ec8d170e268dd296
F20101123_AABNMP wilder_c_Page_239.tif
dcd792c8046162d50cd8b33317c35c3b
bc73f3e045c106ad8f540e2ccda2e85895d330e7
26623 F20101123_AABOJI wilder_c_Page_144.jpg
2b3e12ae61637934d993fbb33a593870
fc858b63162546455f78ff4b9c6f4d38685cbc21
25547 F20101123_AABPGB wilder_c_Page_096.QC.jpg
21ef591d76f37a72b5cdc048a217e9f0
7194d99fe1c7d9f86247b922046a1e0392a33005
22892 F20101123_AABOWU wilder_c_Page_175.pro
5c406de70b776e8500ea984066dda3aa
f76e441d00c1c3664995901ec7f708559ec16bc6
22174 F20101123_AABNMQ wilder_c_Page_021.QC.jpg
6eecff19cfa91f91e2617d2bb3bbeb5d
3b497c643195d6487bc73db53c87aad529e17bd8
54375 F20101123_AABOJJ wilder_c_Page_145.jpg
096f046a80be859218bff8256dcc05e5
464ea986a1bd4c8ab4855c80963624763f7a794f
6994 F20101123_AABPGC wilder_c_Page_096thm.jpg
3308b25ee6c3f400a324dc5601d35ed5
5d0aa372611472c4988465994e6324d3dc2acc67
2075 F20101123_AABOWV wilder_c_Page_179.pro
9af99a6667a76566f4a5b7af7f779926
a1985dfcef611618483ac634d5a64c64285e80b9
F20101123_AABNMR wilder_c_Page_186.tif
4bd145a9e8109c2868930f84b04d5fcf
aa40849a75343756c4b6c2a40b3a4bfee22dad5e
55451 F20101123_AABOJK wilder_c_Page_146.jpg
59d9b1645cbc4694816739de7e413f9d
21eb9cca8f5070ede5acde58e9d5bf52e8795edd
6879 F20101123_AABPGD wilder_c_Page_097thm.jpg
7c4bd675870b3590fc2ed9901d5c1e00
364e382114029336082cec3b99ebffea0e7d3e97
36864 F20101123_AABOWW wilder_c_Page_180.pro
e6e8e23992c22a539456388b55296199
d87e2648e9782b96505a083683f4dddd1f67bc35
850 F20101123_AABNMS wilder_c_Page_212.txt
57d3bfce93efdd887688066510719e6e
606cd05b38664ffab3905f2edd2c7de14fdd2e82
39157 F20101123_AABOJL wilder_c_Page_147.jpg
5a275ce894b61e8f9e5362900e680710
6a80f1ca3dd07d0190d73ed0e2966703466325b9
6400 F20101123_AABPGE wilder_c_Page_098thm.jpg
a2178b0c1f3352737ccfeb63e47608dc
ce309d0c8c560d8d7cc72fc7b81d81fa01013ce1
23234 F20101123_AABOWX wilder_c_Page_182.pro
e311e26db42703defd4b55193ed715c4
3efacd4a5eeef88e64ecc1e3c5d7a925c447c7de
16289 F20101123_AABNMT wilder_c_Page_223.QC.jpg
22f605d75322fb9e62b79b8ac6df3138
00bd4b929da5454cf5ce696d5bace8277728146b
32172 F20101123_AABOJM wilder_c_Page_148.jpg
2238d67dafd06f197fab6d1c10915470
830e1bd31fb4196cd7b142d9090ce7140eda36e8
23069 F20101123_AABPGF wilder_c_Page_099.QC.jpg
60d735db6e035736c573dc97465bf23e
76a9f0f79fe7bf9795c22e4d67b8b43887459a20
17768 F20101123_AABOWY wilder_c_Page_184.pro
ead0848f5a5970f6c307619c71775f60
04912a77e83d5bfda52787cb1ad5d194552c614a
F20101123_AABNMU wilder_c_Page_179thm.jpg
eb0af8035d4692361e013d430a0989ba
3c71200ed1384db08ee7db06dbf62a5c40512fdd
32690 F20101123_AABOJN wilder_c_Page_149.jpg
db348a1f9b7bdba3680f730a19098c45
fedf23b9b83a2456a478b04982639d7145e09c8a
6426 F20101123_AABPGG wilder_c_Page_099thm.jpg
4c39584348ec8a91d96c719e367eeae2
72a8bb2d4aa0d21819d5627e1e85ea7397a09a83
21814 F20101123_AABOWZ wilder_c_Page_185.pro
0527428f5925b4d9a970f88d2079d618
d84bf0bd446b99e5cdc545927f57c5786ededf16
38813 F20101123_AABNMV wilder_c_Page_241.pro
df0362da870ce89109a9e7ba6b55fc37
8977d7c888a695cf8e73f140daa28da0804c6a73
34233 F20101123_AABOJO wilder_c_Page_151.jpg
e37fd3463e3369623c7496302ab0fb28
ecb864b068d3e339d1556dc7254eaaa2bc5466b8
25653 F20101123_AABPGH wilder_c_Page_100.QC.jpg
5e23b2eab512c6db475232f836e9af51
7fb27f8791d77499378d5680fae3c18d0d59bc2f
32302 F20101123_AABNMW wilder_c_Page_091.jpg
6e2d74bd3bea0f0e9260f752ea9a3f82
85dbf79a971ccf7066a92fe6de47ef54a4a1013a
38276 F20101123_AABOJP wilder_c_Page_155.jpg
1e8327e4ecac4be372d9e0a2b332b79b
b86f85da6b81663ff96b5b2cda559cd57580848b
23526 F20101123_AABPGI wilder_c_Page_101.QC.jpg
fcfc6f2bb18d0566e91667e515f77d42
5a3856bdd6c87362d3682ffc56e503ccdb83d36e
3500 F20101123_AABNMX wilder_c_Page_211thm.jpg
1a5aff8c34bc58bd55f5d14a1abab441
6acc05f83a5301a115058cb84bf159c6629b4f51
63601 F20101123_AABOJQ wilder_c_Page_157.jpg
d352d35d87e38e7d4d01e11f2e288b2c
2f9b53aa77d32bafd5837615779e2b641d83a9ea
6831 F20101123_AABPGJ wilder_c_Page_102thm.jpg
ccb2bee3f491624ab90c7acddc1dccd6
a339d1d013b45f09808b478b4e457b44b7c91b20
F20101123_AABNMY wilder_c_Page_246.tif
113ee8bbd4bd7ca7c6c14ea50f5d3c57
2186f1ca5944f1f6b0ccc2841058198f67713e40
44267 F20101123_AABOJR wilder_c_Page_159.jpg
3e4d90703b420d5ead18ebf8d465d60c
91af211557f8609f2803bf80298bfca9ec2f586c
F20101123_AABPGK wilder_c_Page_103thm.jpg
36888812361b0c301e7b380fbbd44467
654ef28864151f38b51f289077728bf20a28a631
54061 F20101123_AABNMZ wilder_c_Page_180.jpg
a108e90481ffdbc1cce1a5f05bedb956
e7735a3f3c3c71f7d4093db57cdf14a0283c9015
53997 F20101123_AABOJS wilder_c_Page_161.jpg
1fb25b2e877f557590d99d9e5549bb6e
db7fd0827504b62a51e7b72f73c20ca36de670c4
6681 F20101123_AABPGL wilder_c_Page_106thm.jpg
c8b1f801ab97ce74baaa99ae82bd49a1
71ad2c3447d7e76757d091a9a96e6ba2989d4cfc
32958 F20101123_AABOJT wilder_c_Page_163.jpg
533d79c3defdf8e315fb0257361762d0
e63039bb2bb1201b47aef67794e92b60e3a92ccd
6684 F20101123_AABPGM wilder_c_Page_107thm.jpg
46d3033d95eb4566e56e8e214d3f5e04
891ea974316cb5973121130164b0ad54dc23f257
21832 F20101123_AABOJU wilder_c_Page_165.jpg
510c1d4773089cee8141c51f184747f9
f72a7075fa8e2f7cadca23aeb38be17146a508e7
24065 F20101123_AABPGN wilder_c_Page_108.QC.jpg
ad28ee2e659a9e56799fd664bf309b75
de6a3cac290a65f8866a2d2317a090cad81cb12d
41001 F20101123_AABOJV wilder_c_Page_167.jpg
f1302d0a40b363c31a00ce3a56e1f89a
a7ad8af22c89ada3afb8e84c2441400db3c6dcce
6347 F20101123_AABPGO wilder_c_Page_108thm.jpg
72a2f462dd1c72c5af722d1f6bf5547b
8608c9dccb8eb7f4f076e10ab79db5c85ee7dcf0
53157 F20101123_AABOJW wilder_c_Page_168.jpg
dc2db265a43a041c098ad71cc96333d9
58699bad72d1f63731668c417a688bfcf57a1934
25192 F20101123_AABPGP wilder_c_Page_109.QC.jpg
6c9d45047a58aa3cf99df6be6c7f3cfc
ffd87eab067bafafc330b647faad26003dfedb95
34565 F20101123_AABOJX wilder_c_Page_173.jpg
44de51b4f9a5e3275a17fe8207905700
cb29116e62de05beadb16140564567ac68c15560
24038 F20101123_AABPGQ wilder_c_Page_110.QC.jpg
0d1734ae57ef6fee2ce2da02f939b2d7
e3c7c18edcdede24370f82df92ce750ffa1ae7d0
36512 F20101123_AABOJY wilder_c_Page_175.jpg
89c9497b5be700b9d809b1a1a5d25973
fc6dc163850496ab70746ab717453d0a768bc553
6624 F20101123_AABPGR wilder_c_Page_110thm.jpg
4cbab0b7ab878874fe54532d2aa9f7fe
4a633b804db2a44070f7bbf27a09b41458599f1d
19069 F20101123_AABOJZ wilder_c_Page_176.jpg
e7c4c6aa365d08456e372591eeb75c32
69a648d147a963bd54f4bb61102b07de62d25f6a
24934 F20101123_AABPGS wilder_c_Page_111.QC.jpg
882f47ddf62c8086c56376befe08c8b6
3124052a730cef100008e18f3f0b17fde31668f0
6446 F20101123_AABPGT wilder_c_Page_112thm.jpg
5d77096c78f991264b3e13f40fa6b2c3
82ad6d3947dfa703e7318e206466c1217392a165
6160 F20101123_AABNSA wilder_c_Page_245thm.jpg
271f3c1eb52db13d88f8b5e06d9ae4dc
54059e37ec7c701d42b17a9e70d9bdc6b32a1c0f
8854 F20101123_AABPGU wilder_c_Page_114.QC.jpg
3e565635b20fdb7ece2b5014db8c8032
02c1b4da8cf8df24704bcf019338d0bed210f60f
1394 F20101123_AABNSB wilder_c_Page_115.txt
e9172ab7dbef06ec2a777b17412e5245
a3b863ea7b6eac870d9a406c50dd584239ba93f2
2786 F20101123_AABPGV wilder_c_Page_114thm.jpg
1a2154dec486e315b0b527b65c708d08
b1bb8b06d136413fa7c37603c8b98839f251284e
4295 F20101123_AABNSC wilder_c_Page_187thm.jpg
1ff3f8bbe8456fbd7937eb02e3d4662d
87dd646ef075b88dd67e4ff00556b43f54da931f
4436 F20101123_AABPGW wilder_c_Page_115thm.jpg
c9b54847fc4e55d6b8c8b193a8b5a0f7
27bea5507f5b274a0ed95509db16d5b19acb5a44
65312 F20101123_AABNSD wilder_c_Page_075.jp2
1e337b316ed8df3fc47b017682381f22
bf0823f0d91dddf56fadeede9ae6d217a04d3382
3075 F20101123_AABPGX wilder_c_Page_119thm.jpg
566384a5de4bff88f1bc27caca47bdfb
c5b7735ce7204c3db4e393b58e4f9226d958d498
1963 F20101123_AABNSE wilder_c_Page_245.txt
1919adbcf9a8f8a21543186dbd332683
8cab48b006eb79a0e2d25c3d03aee6f51f2e1c7b
10955 F20101123_AABPGY wilder_c_Page_122.QC.jpg
00fd760716823dd590f3792ff1b08889
52feab1b035446ed184c26660d7db60f470750b1
1691 F20101123_AABNSF wilder_c_Page_033.txt
b7d965cffd60edcda05b7d0717be4b7e
6646dfc90e43a5ec86427162cd921a4dc2090c81
3086 F20101123_AABPGZ wilder_c_Page_122thm.jpg
d0fb81b5cd55dd814734d85f985c1feb
b792eae11da70b4fb0ada3a1d2f9f2ec85a8c49b
20984 F20101123_AABNSG wilder_c_Page_003.QC.jpg
33634fd652b5a9d10e33f8edabf835ae
9d77c7646aebc81dc41e8599b20dd2cedc6ce069
24716 F20101123_AABNSH wilder_c_Page_227.pro
754d66b04696690d7a8510db5a559f36
24a7c343b064e1349568da637d55f7386f263895
62550 F20101123_AABOPA wilder_c_Page_219.jp2
e4705d854694b561041ceb47e4c85083
bd0a0a7bc11cc4d931764acfb1f8ea2c405d517b
67363 F20101123_AABNSI wilder_c_Page_073.jpg
358e58ebd71e26428275497deb74f482
138c7ad94f0a119edd9d9f5df05b314866164b7e
64233 F20101123_AABOPB wilder_c_Page_220.jp2
dedbd8c815965114ddff5fe955f58467
4d61cda36d9e539300129a3f24f77b1a036202d7
34551 F20101123_AABNSJ wilder_c_Page_152.jpg
7a762830c1cf54d0cc7bbc365ea34565
2a4906ad90547c671b73386c4fd709aa77fcdbd6
65445 F20101123_AABOPC wilder_c_Page_221.jp2
f8477ef718838db167d3ffb5b5269375
e54da0cba4634f41211f78851ca6cd5625c04dff
31139 F20101123_AABNSK wilder_c_Page_226.jp2
68597b2068f298801c88b41635042acf
ce637a3830621257eaabd38f71e189d0858b221f
73206 F20101123_AABOPD wilder_c_Page_223.jp2
02e87d294bc4f2876c6470751ce38944
39811841a93ebbfeb86d3a51a6ff892ffe2d83d6
86825 F20101123_AABOPE wilder_c_Page_225.jp2
7eb2567eda7b03ab8cab62864afd5223
bf544ced75c090ccb97638275f1b0d259430e84b
F20101123_AABNSL wilder_c_Page_107.tif
36429e64d07edf06158c42c165bcf314
41213c35d94709ab2927b41adcd977bfb12e6d95
41294 F20101123_AABOPF wilder_c_Page_228.jp2
111955df96bd73d119844a0040266d0c
e8fdb1ff19715321abc021439af551914fd695ad
36765 F20101123_AABNFA wilder_c_Page_161.pro
f6462fcde275e718b5050dbc9b8ef111
c752d460ef86bcc569278230bf01fd0b2319772c
F20101123_AABNSM wilder_c_Page_225.txt
2be5a44390f06be28c39f804385883c1
5bf8c67afe4c9b12aea76519d4ff4be012cea3df
48416 F20101123_AABOPG wilder_c_Page_235.jp2
019f88d9ff1bcf38be278502a8dce0ed
69dde5b0a15062838c5687e99918d0c1f06fc65e
22788 F20101123_AABNFB wilder_c_Page_112.QC.jpg
e066e915ee0b576ba1e6df040f4643f5
bf4716f3ab8e7f24d66edb1605deb2fa69939ff6
47825 F20101123_AABNSN wilder_c_Page_122.jp2
7097ae607fd520e60c694d4f969bb4ca
abeb18498b87c3b1aa7f6ff9dbd05f5a3157adb3
4268 F20101123_AABNFC wilder_c_Page_188thm.jpg
88a714b69e0aad1268f6dee835301bbd
40414cb4f4b5b50bdd6fb553e56402e7578f3192
5304 F20101123_AABNSO wilder_c_Page_236.QC.jpg
a1e1117fb42f76b6aa2ed0589b67360f
a1ab6b76e1a9a88b10469d668ecd59f5dd503399
18228 F20101123_AABOPH wilder_c_Page_236.jp2
0293c420a25576101924dda7c782ae47
a097be6b3e361b2884f22a58f6540303b9529e2f
22875 F20101123_AABNFD wilder_c_Page_004.pro
d6de22d0eff8c293e7af063e86374859
51a7c3c9f4a8a0b0aff095208cf36a954257759f
F20101123_AABNSP wilder_c_Page_127.tif
bdd75a50e08292f2b7dddc4cce8727df
0d637f59a5f10d7cb055a0231fb09a9a02700dd5
89415 F20101123_AABOPI wilder_c_Page_237.jp2
d3f8f03cb149db2ed1659f43d0d176e3
68c48b1f886d20de6d140dceec669a1276c78697
19454 F20101123_AABNFE wilder_c_Page_131.pro
7986d7ead2d8e98a3da37f6d5388a7d6
53be12d31b90e6417398a8b358b959c9ae9411a0
76068 F20101123_AABNSQ wilder_c_Page_103.jpg
3033d00b5fbd86948db254588e7e172e
28dec896b0c81eb88a0b574253ba03f6e31736d4
32864 F20101123_AABOPJ wilder_c_Page_238.jp2
6c091b9f46228f9fd806e57f8f9a2c4d
46cf5daeb74d2000dc732d854b0c1dbc9173720f
41454 F20101123_AABNFF wilder_c_Page_210.jpg
535cb17188f2a9babcc7c90224c158ab
6c67ce35f65dad23fc26636942510764260b7a4d
836 F20101123_AABNSR wilder_c_Page_136.txt
06fb2f6e6a40914b9eccc2ba70ada1d1
dd01fee95e6a15ded107458435af260001e52815
48932 F20101123_AABOPK wilder_c_Page_240.jp2
cb77959521e3bad51c78cdb6a571e00d
3cc8c8946192e8097cc61da56e19ce65ebf198fe
23704 F20101123_AABNFG wilder_c_Page_135.pro
e65d44be85c05a0765b37adc07d9e7d5
a7420b3ad56e1be30e83f2b9052872fd44a5db41
9886 F20101123_AABNSS wilder_c_Page_149.QC.jpg
f5869fb1f454fc1a1bea97f4132db3a5
e9df48f95d4099fb0db6cec13e2752f3d35cb4b8
F20101123_AABOPL wilder_c_Page_241.jp2
f1588ef1123069747de9a2d84d2a1a48
4d5cfc86cbb20f09c88fb2f74fe1107606cda072
1908 F20101123_AABNFH wilder_c_Page_054.txt
9b18ca87677652c72c906906e8804bfa
4488d57164c26bae82786487c3e1a4d28630a6f7
2069 F20101123_AABOCA wilder_c_Page_078.txt
caeed2add67d5ed6b02a3523dc603cd3
e8a52e5ad93ca32394e67255c0c770c1dc03d776
74869 F20101123_AABNST wilder_c_Page_069.jpg
0594526a1aa2c266795f77e47300ad24
012275c35e9f82505f4ecb852706b03e5c32a507
101080 F20101123_AABOPM wilder_c_Page_242.jp2
d7365e46be71dadd20b2563508106c52
48c6d5bfb17a28749b2e6ca95f98e2330eabb89a
24141 F20101123_AABNFI wilder_c_Page_095.QC.jpg
1b210ab5302ad1448abe51be8283f51e
96d243ee2fd82d89db6ccb368489588ca8eaa1f0
F20101123_AABOCB wilder_c_Page_088.tif
0106a721fc505a2f900fba9303b373f4
353fa1b561070ad48cd99db807d5ec0d2d8f5d74
737 F20101123_AABNSU wilder_c_Page_120.txt
f0d96ce6db6375c0fdd197e736f8a429
f6d609fb8cdee83921f3c4c458f9e883e15aa761
104716 F20101123_AABOPN wilder_c_Page_244.jp2
30701fdacf5f08c451c10d0590bb4f56
a87bc70d38398f5063372ee9b4fdd1e09552fc5e
26836 F20101123_AABNFJ wilder_c_Page_156.jpg
65ab694e9f8b0f8a921e61e1a11682c3
1f19bdbd9ce7a888ae8741755206deccf7c02433
42326 F20101123_AABOCC wilder_c_Page_212.jpg
cc2b197075b5946bf52278683df03ddc
cd8c4c865f59daa08319b51be9d48e99698cf8c9
70854 F20101123_AABNSV wilder_c_Page_177.jp2
f397ab58e0fd6e079bbc4ca47383d2a1
33475d9edcd9d0de8412d7cb2edc5a491dae7844
F20101123_AABOPO wilder_c_Page_001.tif
3415e0bc78bdf4f17e62f00a06b7cc23
f7a505955d452f09eb303b650fd1baa450d1875a
F20101123_AABNFK wilder_c_Page_007.tif
41efca47961c23d422b5e6fd3d1c8033
ca6b98482bf5655c41121583051a2362c998b3c8
81009 F20101123_AABOCD wilder_c_Page_109.jpg
24c0dc58182d7282fbb532185919a0fb
73ea281a7c577953f5bdd626769a45d7f3fe3224
F20101123_AABNSW wilder_c_Page_224.pro
485aa7c73a622de57b988707d9decdef
9e61ced944107595f73d53560fa2ae28bab223de
F20101123_AABOPP wilder_c_Page_003.tif
aa6d454545110d3b04bd6cfe73846965
7ca1f4efceb8d2823075af92e4e5006679586f39
F20101123_AABNFL wilder_c_Page_078.tif
db367939612ce25f81acff7a9c315331
de03123f417adb99e900e23c3aeb100d332a1814
4731 F20101123_AABOCE wilder_c_Page_089.pro
2fd23a61ebd3712a377a625e7b8685c6
339aa4eeac1368817e7fb92dc50d4e9d0498929b
925 F20101123_AABNSX wilder_c_Page_091.txt
94de78c933cec00bea75bee31ba5b1dd
b5486683afeeb1c98cd9736c7bd62eb2b9a5339e
F20101123_AABOPQ wilder_c_Page_004.tif
0c543f834101cd4cd30e6fc34b4d95a6
adee20e010290328e784152ffc622e700970b24b
F20101123_AABNFM wilder_c_Page_010.tif
d030b10dfd81f1955ff35e2d948111d0
075af3f978eaae19ec6617a587d3344d0fa4ac5b
16628 F20101123_AABOCF wilder_c_Page_172.pro
3c3535f9f9e96b3b8caab5778076f355
3224c90f415c395a0cc9e5005a2c19c30226ba28
F20101123_AABNSY wilder_c_Page_206.tif
65c7d1a2b598c514659cb3cbd5e3e637
a4f45bf4ca88dac8ea1a5fcf9b57f4f2cc7cec95
F20101123_AABOPR wilder_c_Page_009.tif
1687c241b4665a85a55e1892c10b7861
a62a4932ac9f99fb01e4ededc5c13f03508b8077
10758 F20101123_AABNFN wilder_c_Page_175.QC.jpg
c9216ca81334053de029f30bbf5d38b3
1b120fe9839947020caab5596d9df411d8f2ab54
F20101123_AABOCG wilder_c_Page_035.txt
bd0d8244d46ec983b0c030fa248967f8
5f2daa7492a6770909b55ea24329e44b0b4a4fca
F20101123_AABNSZ wilder_c_Page_062.tif
4f3a33121b4ebe5924f542193754a6ce
ed57cdf53b7779cc36f3e3da545a282c48e3c8f7
F20101123_AABOPS wilder_c_Page_012.tif
8b0603c8ca1440e1ca8130a5f47d7abf
8dff184a5e245d910bfe1ff9a6d414583c8f70a5
43072 F20101123_AABNFO wilder_c_Page_214.jpg
46e3af498d3f26822ccfec9c82279b38
7e02c66162eb63cf2df0c14975451bb3bc598ad0
48759 F20101123_AABOCH wilder_c_Page_044.jp2
826d78ac4c40556ae6b6b9ca3329309a
206b7431ad54e98e3f4ba2d411d7a742c37571a8
F20101123_AABOPT wilder_c_Page_013.tif
ee85cb3ca4932a5af34b5eecf7ba0080
2e94f00c5a19a4142e0f26a4c9b36cd34926b427
3665 F20101123_AABNFP wilder_c_Page_011.QC.jpg
75ae96b2d2d756c0df6cb03e9724a53e
78347bee39d0d170ad8742cf08d159d2e74ecfef
22534 F20101123_AABOCI wilder_c_Page_244.QC.jpg
509f2a4680b0ef05ceffac313db92300
b0da75297e7cc71daf65d563d636d73f7bfafee5
F20101123_AABOPU wilder_c_Page_014.tif
d55ef477aa189e04d215af2a1079248d
c2e9e984e50d732eda1b64f182be19a31b9d3605
72209 F20101123_AABNFQ wilder_c_Page_062.jpg
333752e5c8aa56f39d6c5b98d1fea6a2
a4f23af34ee41a434ccf3c9ba77eb1622d613ad2
17192 F20101123_AABOCJ wilder_c_Page_190.QC.jpg
c22dad3e3ef21184d5c98121d64b3114
49a1e42775b304527240155258bc96ab4ac58665
F20101123_AABOPV wilder_c_Page_017.tif
2305127aa332669e93a0b57f05dc8bab
d82d35a7a34b09108a24cd5cfe09429438df23a4
35935 F20101123_AABNFR wilder_c_Page_029.pro
d34df8511bc9540e07234fe9b1245277
da2aaf76d59f8ef0ac56d526213925045c90260a
49554 F20101123_AABOCK wilder_c_Page_050.jp2
b57851b3f9948445040f2a9b6a8215dd
a826f0efc69c05533b8cffe27fe9326bae36385e
F20101123_AABOPW wilder_c_Page_018.tif
8c807744dabda93236f6a9c13543aa3c
f35cfc8b775f2f8653a2924f9a092963582800d0
50845 F20101123_AABNFS wilder_c_Page_110.pro
3c44c6f83118914c1db264b8a8ffdfeb
9bed78a62de2729b705191ae2f1ec9a1727a4f7c
1471 F20101123_AABOCL wilder_c_Page_011thm.jpg
5cc0c136f5d66cdb875feda68d26cdcd
7624b619b4eff8442f479663cbf6deafa972a025
F20101123_AABOPX wilder_c_Page_019.tif
13a861b77f5d1c623929dbfa4718fbd3
720380853bcc39c259fe2b47b3e37e4f33b23588
9893 F20101123_AABNFT wilder_c_Page_124.QC.jpg
88997b3363c3b382e62e457a51f4f797
229b46ba6d4bc6c5636ca80fdc9a52a2bb73c9ef
44437 F20101123_AABOCM wilder_c_Page_065.pro
fbdd57fcf0cbbc9fef66b03d6cff97a4
0302006aad160669056c2bb2237337a05291e675
F20101123_AABOPY wilder_c_Page_022.tif
1289ba3c85eb3736990042b28aa42804
16226aafa22ce9d8b99b03dce63c8e82ce0d2316
4475 F20101123_AABNFU wilder_c_Page_076thm.jpg
4e07588f2fcc8b3a6983f0198c448515
af07dc88e0816b3406769ea233258267c99d92ed
2650 F20101123_AABOCN wilder_c_Page_009.txt
a366896e2e9ca57aee213cbd31410ee8
3bba38d1ccf38b3163a32ab1ad3d855546d6c0e1
F20101123_AABOPZ wilder_c_Page_023.tif
4deb2c24d0f2cd324087b2a6a0c3186e
cdc423799050bbb64bcaf1f4717969c29afe5ba5
6509 F20101123_AABNFV wilder_c_Page_010thm.jpg
3ddb33c377ddeda7c5f50bba8faedf9f
129a01d9c839cccf3f8be3cc38a34e05338751f3
19816 F20101123_AABOCO wilder_c_Page_081.QC.jpg
2017f01b094ea23ae7580e234c58a88c
a6eccedad911c0c9d543892f69a417e7afc39dea
24632 F20101123_AABNFW wilder_c_Page_107.QC.jpg
156ff0712dd36694ae00d68438500e81
54e91b7e0fec598dbd78af2bbf54ca8cd374520a
11598 F20101123_AABOCP wilder_c_Page_160.jpg
6a079f1cc682724601ebb418715b69df
0f79e21c25314b4b57e368e6b6ced50ed7e2cd12
3949 F20101123_AABNFX wilder_c_Page_036thm.jpg
edd0509ea541cdb9d73f72651d399cdd
6203ff2e4528b01ff29f5112bbd9919b46091fcd
34188 F20101123_AABNYA wilder_c_Page_199.jpg
c5d5871c9006adc7dca58fd4c75b6d13
d14fd083899b69b361325d35cade34ca2484a8f2
34770 F20101123_AABOCQ wilder_c_Page_114.jp2
cb5f4612ef243714a2f6429108f5785c
b16021faca948295ca8e044b364184636524d08f
3243 F20101123_AABNFY wilder_c_Page_132thm.jpg
9a0d000c4bd31c141f63fd314d9739b2
b7da7ef33d1baa745e0ec24b2932308b28591e3f
3999 F20101123_AABNYB wilder_c_Page_052.pro
e8079c4bdfac111a0430976dda6f020a
7a02653a4c7399919d8a701450b97e535774d46f
5411 F20101123_AABOCR wilder_c_Page_012thm.jpg
a10be04bf751af8b1948b1faa374fa37
bcd587f4c3b36a156db1fae787e3ab1ba19e9c2b
10169 F20101123_AABNFZ wilder_c_Page_139.QC.jpg
0e5a7291921d5d09d43403e1ba43977d
b6e39873eab604443a7b2715466a5e0feebefd76
21959 F20101123_AABNYC wilder_c_Page_242.QC.jpg
e848dacdbe0bf9f69a1e89183ccff343
542177fbe0fbd9959be09b6ffca0290cdf3311fc
3100 F20101123_AABOCS wilder_c_Page_153thm.jpg
1e428dfdf588d839aeaf1cb328b90dc6
5ab07f3dcf394f05080112bb685b7a1dd586aeae
22961 F20101123_AABNYD wilder_c_Page_035.QC.jpg
1f736ab16680fe1b76c81d9669a66c92
a05f8ee5f10dbf834e0a8716dce880ab5b2927a9
6539 F20101123_AABOCT wilder_c_Page_057thm.jpg
98bb5b3fb1f54314db4e865695eb87b9
19766e28ea5e951b4b01958ba8b411f112e81b89
21401 F20101123_AABNYE wilder_c_Page_213.pro
87dbf995a2ff5e6cd7b1f54706c6acbc
7b88fea28d90133bd00dd4a5b1487bbb15aaec7c
11013 F20101123_AABOCU wilder_c_Page_153.QC.jpg
3e0ffc1414356ec839638b358383e347
1231e43a47246190b0c04c92045f6b6e65e4eb6a
7182 F20101123_AABNYF wilder_c_Page_067thm.jpg
68944d60a1bbefb0f80d10e0e7e091fa
f1a0131f58ed7b688414f3d96a1a5d7bcbe04e2f
F20101123_AABOCV wilder_c_Page_131.txt
4146bc3e69c40aeb5f1bc57b728d1db5
017ed6d0b44777954e382112a7446dc1074c2112
649 F20101123_AABNYG wilder_c_Page_118.txt
aba469ea77374ded1a7275bdecc7e280
5329dab22c84de1be032f1f2f249a64dfeb1a23b
33257 F20101123_AABOCW wilder_c_Page_071.pro
108e2b574df0f53c8e3c8afd9d426ae7
50b306c5e1bd746b6c91b4c80def19817dae61f0
27105 F20101123_AABOVA wilder_c_Page_081.pro
9b70cd3ffcf88c5b8525ec46247679c5
d4c762d7fb93d5bf63b577ff8bf37984c79d27ea
28191 F20101123_AABNYH wilder_c_Page_147.pro
d1e8e07f22f097c7639e52c576f316ff
65e1766f825551182c59af26ee02586dcdfbec6a
1015 F20101123_AABOCX wilder_c_Page_129.txt
75f0c78eed085e9de81b40521fbe1241
65eebd96811a6a183e92e598ba637c59ed05762c
39501 F20101123_AABOVB wilder_c_Page_082.pro
61834b7626877512633adb5af2fd0800
39cf2510070c2c8b509a81354d3a1eadbce4e33c
3670 F20101123_AABNYI wilder_c_Page_147thm.jpg
711a0427788aeeb564dcdb6d33522503
3cbd907f21512b2bf84fb1e6f2902d9750dc9eb8
40775 F20101123_AABOCY wilder_c_Page_237.pro
fb57a586e9fd705b7028c9fa629a3e58
c9f15d13dc6b26fc4ea3c62bfef529c5d1b11625
51100 F20101123_AABOVC wilder_c_Page_084.pro
316be3b6866d65bc63f8608b70003f83
3c4d217ee2ce51b54ca0dc987ef4d2cf076fcfb1
F20101123_AABNYJ wilder_c_Page_203.tif
893d9ecf3670c624ea63bae1febe8fda
0589bb6f98775315216eae0ecb84bc22368a46b5
2037 F20101123_AABOCZ wilder_c_Page_020.txt
a79eb339702e52251bd272e6e19e5e03
d5a026d0dd582835cc4dc8f5eb929b9bb72d394d
7315 F20101123_AABOVD wilder_c_Page_088.pro
4eeca3a0c6b9e9dc42c8182462e83f92
17bdd17a0966a06288243c90090c6c70ed2f4105
F20101123_AABNYK wilder_c_Page_138.txt
ff3a4e3328be431a03932d6de03d6c94
c9b95798d3f92eaccf3e5049ba5f6a61f72c0b24
5943 F20101123_AABOVE wilder_c_Page_091.pro
0a069af6da959df91c634e6e935f8068
e90223dd03b6c8c2ba76af35823d6db215b8f52a
F20101123_AABNLA wilder_c_Page_083.tif
8d1d977b612db59182a2617dc8bd3ea6
ec10d93408d7ad7b1f2ace03fcd2974698146978
43428 F20101123_AABNYL wilder_c_Page_178.jpg
56ce66db37a9c566e3cf1d584a3a5969
939f8787e8f28c97aa7f244bff423c646a657ae1
5832 F20101123_AABOVF wilder_c_Page_092.pro
6460687485c3249338ec81ae3a5c28f8
c14094101a2827a6ce15434e2ca29ce5efda3bb5
82653 F20101123_AABNLB wilder_c_Page_064.jpg
a6712ae67c6fea797a2f51a937abf728
444a6dd53d885a0f68d311b8fddaabbc68ead2a4
56339 F20101123_AABNYM wilder_c_Page_061.jpg
176440d3d26690fd5f9b2134dc2e8ced
f7246c3f3ea7036bba2a0e5c93a2acee5f9b5a72
48040 F20101123_AABOVG wilder_c_Page_094.pro
703f7144c0eb871228d7fd8b59873d6e
2f09d44e97c2eac4b0747228b305e95888713e67
10526 F20101123_AABNLC wilder_c_Page_050.pro
28345021358b7f916a29788e1369f0ae
26a4fa3f36631325f9bb2b1faf0a1b173d658838
F20101123_AABNYN wilder_c_Page_044.tif
c802c9d5e43c045b8cf7dbb9181cb880
29ef74776ae6bcd08f406cfaa5f5726ff13d8ccd
53079 F20101123_AABOVH wilder_c_Page_096.pro
9617840804e9c3e741367631a45626dd
5e356c92d4f1579f71694f0a39a5620ddc0a4733
1839 F20101123_AABNLD wilder_c_Page_098.txt
f25f040867afef0fa9371eb461366038
18f6a2d40e3951497fd7222721c5537fd3f5d752
F20101123_AABNYO wilder_c_Page_005.tif
010030b430ea2b047baed7792b7945c9
e3dc5e850000849dd3fe496304522a5a49e7b5b9
50848 F20101123_AABOVI wilder_c_Page_097.pro
a0fdf6955aa5db963ad470f51071471c
aebbcd9bb4264f7fd5c0df2a2a927af0a5fc0ff3
71094 F20101123_AABNYP wilder_c_Page_005.jpg
2df248e30a02e6bf18a26bf773704552
8dbdf64754a1915d4e17b9f6e33a579000aa557d
46775 F20101123_AABOVJ wilder_c_Page_098.pro
8a4e7943255281a65ef5245a76ca3490
122561ee28015ee577b17d27d4f5ea065129f0b2
46431 F20101123_AABNLE wilder_c_Page_246.pro
ba22caa76da07cefffea7e0937501954
a8e9d5882bf7fc3ad2a8f83eea55a5bdf5367bc0
57564 F20101123_AABNYQ wilder_c_Page_166.jpg
b35b03b7956e4f57e1a231efa6c90aef
c3ee54ea563572aaa6a02f82dcbfc6ea68ac3f7f
44672 F20101123_AABOVK wilder_c_Page_099.pro
5dc6ab6763633039d30b8b10aa91c382
4c3fba65f0931b2393384adf7a88d62ca1663183
15553 F20101123_AABNLF wilder_c_Page_126.jpg
4cb85cf5cf89c6d4329e5dec120a2852
53b19cd81138d8916075a1e5558871edf348b16f
51464 F20101123_AABOVL wilder_c_Page_102.pro
32b00720e4c131bee68994451cef3425
1a1c8309ec6d9344fc111abea732f4eec58b50d0
F20101123_AABNLG wilder_c_Page_073.txt
87d5fdf12007c68cde930427b9345861
d06b5d85e4f8ded1300fae1912f68bb9b272f00f
79890 F20101123_AABNYR wilder_c_Page_009.jpg
f3ca1a9f1e32a1876182b53799213e4d
c142d44755d9a22bad9726fa2d62aa79a801a286
50646 F20101123_AABOVM wilder_c_Page_103.pro
5bc16fb34a8ba8cc3381c6cffc6f6c0c
0f905b1749b55e352a79149eec53fd58b9fd77e9
58584 F20101123_AABNLH wilder_c_Page_125.jp2
a3e0a397cfba6ebf8161abfcd5cb3afe
917739d6151d41bd18882cf791c3ab3b279bd596
78856 F20101123_AABOIA wilder_c_Page_070.jpg
c9185552247a4c38c6ebf8d917c4d118
ae2d7707626e8e6419f9970fb105ff64f00e6f3a
16019 F20101123_AABNYS wilder_c_Page_162.QC.jpg
03a151e1bc726f66b9472546963192e0
46bb116d1ae464b80df2c7858709e542a925d74c
1462 F20101123_AABNLI wilder_c_Page_066.txt
8bd7911d0405e7a9f16c42b9abf1594c
237c558b18fe611bb23f29438989fa4b52a7a025
52950 F20101123_AABOIB wilder_c_Page_071.jpg
3b70edc0d2ead0c67b08a9bf8735e67e
b4d6b730f0cabd7ebd6954da0dbe3bd8c6efcb05
F20101123_AABNYT wilder_c_Page_120.tif
695ec22382cf312ae795f160186fbc04
c147d7e80bee3617d52dd971bf9aa44fbe02adfd
46591 F20101123_AABOVN wilder_c_Page_104.pro
0bd747581d65b2b1eba376b1f55bb700
e3c97792968295cb015dcbf1d2a8adbf6d06b0fc
32005 F20101123_AABNLJ wilder_c_Page_042.jpg
3fe0d08acc192b9c8283697349ac4df0
77629b495679205570621203ba159ac35db0062b
70463 F20101123_AABOIC wilder_c_Page_079.jpg
caa8158af10a51e330a0baea8492e49c
53521d37741bb70c1f8963b5ecfa1cf6f1f6636c
2123 F20101123_AABNYU wilder_c_Page_013.txt
fd701a78888d459d9be028814a783e9c
aae17321dd11bfbf913baf4e501bec608c810b67
43864 F20101123_AABOVO wilder_c_Page_105.pro
6319aeb730746e5f80fa749f6c6d1314
fd07170fa1d4900d748ef592c63090dc442d2a0b
69088 F20101123_AABNLK wilder_c_Page_085.jpg
4117ad5d50c604fea0445e8dd1b16733
ab0fa1fd4a5c24ff4ee30880ab46f42f8345ec08
73743 F20101123_AABOID wilder_c_Page_080.jpg
cb8e7cbe792dfe0d1b69134c7e1161b9
b2ec8bac119f8614104666c4b720712135ccffba
37880 F20101123_AABNYV wilder_c_Page_154.jpg
b2edae2a9c4ca6ec80d1b16e4abd5039
8cc0a19e3f7bd624a23d1ce28850d113d89ce864
49910 F20101123_AABOVP wilder_c_Page_106.pro
0a50296eacc56053e070df4245c8a739
6b0b8c7777193e7c520983f5ffae3e442ff19f71
109062 F20101123_AABNLL wilder_c_Page_058.jp2
8f5a2c8850ae6845dda37c229885da56
fc8c3fe1628092df98f549728b39add3489c16e9
70639 F20101123_AABOIE wilder_c_Page_083.jpg
b8423a3381c4fb6c26b65f9b38e5c23e
257e9bbd5c7f3c01b40e58627257b01268acb79a
3006 F20101123_AABNYW wilder_c_Page_149thm.jpg
72505decfc10fbdfd8e382588d8d4784
efb49041ad7738fd67a7be7e6d79eb30e461a2e4
48361 F20101123_AABOVQ wilder_c_Page_107.pro
da9ba89ab3e4180d00dc0ee99cc3b0f4
3c90477ea6a82937ede968b40877f3b9a42cdec1
2117 F20101123_AABNLM wilder_c_Page_159.txt
ea41f9e2d821289cf0d73af13cdf9e10
d31be413893cb098abaa2280c9908ac157bf98b5
73160 F20101123_AABOIF wilder_c_Page_084.jpg
78461772e7beba68d0a753615c13b8f0
ddc45c552c940b7697e4bd0acf283dc91f4b7d0c
45783 F20101123_AABNYX wilder_c_Page_199.jp2
3762f84cef104da3024c95487d95749c
750dabf42f513ce623725a50110c9dc044df1f08
49168 F20101123_AABOVR wilder_c_Page_108.pro
539827808767004d41499c864eb4c498
6147a1cacbc1f60851e75b5597b9d04804784ce5
F20101123_AABNLN wilder_c_Page_113.tif
77a8e1588fafcbd15195adc56b954c75
0b06c600d6f9d13a9b9c13347bcea8ff9ac6c3e8
31125 F20101123_AABOIG wilder_c_Page_089.jpg
7dd20832c141fb30dff3dc639408afef
b39d2407f4b0e27a90f7c69d7327fe967c96bfef
30616 F20101123_AABNYY wilder_c_Page_040.pro
295233494e8f9e656b624c68aa78e0bf
49bc04b644a04679966c08f4044f1027163f58b3
53053 F20101123_AABOVS wilder_c_Page_111.pro
cff2275a0e49b398db1414f9f457e21b
8d0cdfcda3ebc495f5697ab1b963a514ff83e284
63008 F20101123_AABNLO wilder_c_Page_129.jp2
e50381a062f91aa42f913f310ff6d787
adea271e2fd39777b52262e38e6110d547783002
28720 F20101123_AABOIH wilder_c_Page_093.jpg
acc9e6b78609bf0d3c161683fe42e3a0
b362241924a498f35b2fdcd7d15034952a2c61e1
94425 F20101123_AABNYZ wilder_c_Page_216.jp2
78b44feefa238b59e92cbd8a0e31a9f6
2f21a21ef374fb1bda182da0a83311dc67674663
22503 F20101123_AABPFA wilder_c_Page_065.QC.jpg
8e9f741257a3386d7169383b25610c14
536b61d4fd8a2bb333c57e18375a490e70b79880
21597 F20101123_AABOVT wilder_c_Page_117.pro
b9810ef48d83e5bdacbaaeee7efba124
8ddb87532cc43b693e3bb6057cbac69f12eee4aa
4015 F20101123_AABNLP wilder_c_Page_052thm.jpg
fdb8e8ac5f26092821534a55bd0c6c97
7de117b230c2c3b2b988c130d1bc7a1cf7c4da76
F20101123_AABOII wilder_c_Page_097.jpg
29b866641eb66828b9dd1bd4dd576de5
e644653ee43a95e41be8ba9cb9b915acdbbae93f
14119 F20101123_AABPFB wilder_c_Page_066.QC.jpg
5c5d4287b583d22b7578fe35bbb3522d
a3bed9990c7fedb4a3f9a9c1ad90d3430c6867ce
18145 F20101123_AABOVU wilder_c_Page_119.pro
062cb33d72196d64545212ebc74514a1
65ddf4a2fa4229c9782de3a174a8e108d235e5c7
658 F20101123_AABNLQ wilder_c_Page_087.txt
e8aef9018abd2e748cd06e2cd0838823
c8db3d0aee86e3d11ccbc3b4e470c7621983f990
70865 F20101123_AABOIJ wilder_c_Page_099.jpg
413a846952a51c0a27768014e79ea3a5
5fdcad792d4dd8b5bc69b352ba1dfeb0b7f871c1
4472 F20101123_AABPFC wilder_c_Page_066thm.jpg
e74f381c6b0d620c3eede0daf3bb588c
650fb8c0da7e6c3aeb8a3e6903428f0d400fbf7f
18380 F20101123_AABOVV wilder_c_Page_120.pro
44c8bb8ce01f11299846690c3165d4a1
6a2e3e6a1cdb074522d70bafd15871b1646b011c
729 F20101123_AABNLR wilder_c_Page_119.txt
f22393be1fa3c632107d391559eeaa84
4326c8904b9766e04fc4904b2f3450d321dcd7d1
71030 F20101123_AABOIK wilder_c_Page_101.jpg
4f686b102815cf3fc4b2c6dfd622f1d1
6e971ec5c7af37cd041d5bcd780dc70a92c95ed4
26491 F20101123_AABPFD wilder_c_Page_067.QC.jpg
06b1c964ad6833346784a57175606be2
bb7f034513b646d7c23c5cb71a7abee20bb60a28
22947 F20101123_AABOVW wilder_c_Page_121.pro
f8ca88cf9dfbb4dd0b42f93ed45242df
49a6fd53acd1df45afadebf0679c607b0c61c806
450504 F20101123_AABNLS wilder_c_Page_089.jp2
f2a2c51f36cb77f29c5c2ac41c724baa
82cd198cfcd6ea377b68eab5c9e642579a338825
77068 F20101123_AABOIL wilder_c_Page_102.jpg
9a1d4b8d3da5c34feec6daa75444cd72
5ad95e2115d6590ee2b68ca03a2c726e6a56816d
24418 F20101123_AABPFE wilder_c_Page_069.QC.jpg
eea0942a8cddd9445104aec41575dd79
d11b322ea976491c0cbc4b14aaec8716c292e1c5
22151 F20101123_AABOVX wilder_c_Page_122.pro
7ca9b04842dcdf3474632561f54b4798
07bad9da666a8cb03351afec4bf67b861fa07334
1051969 F20101123_AABNLT wilder_c_Page_007.jp2
0a68cef903e4623df1bdd87801adf93f
b839255562375b7c941d83c889d1c13ddd81ba9c
69424 F20101123_AABOIM wilder_c_Page_105.jpg
42a4b8a7b58576ff0ca0355545c7afd3
05725d2d58fa4bf2bf415ba31d7950e67d03b5bf
25626 F20101123_AABPFF wilder_c_Page_070.QC.jpg
74630db3d883c56c683465da1794228b
21cac78bba3db7c48c32a8be6e8a9f6de197f9b8
21610 F20101123_AABOVY wilder_c_Page_124.pro
9b7cb1233eb48642fe87c8a2bf48da1d
6af77fa4cd7ad9fa44c1083a754da48565cd6362
F20101123_AABNLU wilder_c_Page_181.pro
bb93f467af1f551f48f8a2b6b4acd732
b61a569853dccf393244d321c3603f02e50e6941
74209 F20101123_AABOIN wilder_c_Page_106.jpg
50456df0e9602b2589f12f88a9511f1b
ccf0d0f87bffb400ef45f3a644c9519d0a9452e2
7137 F20101123_AABPFG wilder_c_Page_070thm.jpg
1c271218db695d53c4e0477583d05ed0
477854c7155d43cc65e3c8597b1fd9693a3e2bf3
38877 F20101123_AABOVZ wilder_c_Page_125.pro
fdb76075c173e20ca51b8e07f97d0c52
3d76f347050b8148e6f0622d6ea84f52cc44c90d
F20101123_AABNLV wilder_c_Page_144.tif
7e90154700458550f7c95610f1416c84
1e5a4c82ab23518284edf34b1e9daacd03694a7d
75628 F20101123_AABOIO wilder_c_Page_107.jpg
74fc9291035bc12cce80a301699e756c
fd875cc730be559e34f1dc4766a09333de071b37
17679 F20101123_AABPFH wilder_c_Page_071.QC.jpg
f4fc920c07033a156392ea529ee5159d
8e33550c27797bd95f7c9ae5db94cd1c493cf93b
1633 F20101123_AABNLW wilder_c_Page_160thm.jpg
90df8d30f6cb814a9f61c3622d335ddd
29bc520fb36744d572fce9dcc14999c0e4a0c6de
74711 F20101123_AABOIP wilder_c_Page_110.jpg
04e940ed53d8c1adadf7115e9934fd44
2f5fd0240a32cf18e6a3517b1c77df8233421ee3
6061 F20101123_AABPFI wilder_c_Page_073thm.jpg
00bca53fbb54a8365560f80050a4a86b
f10eff4651775fe6442bdd146c1df84b61676ea8
48821 F20101123_AABNLX wilder_c_Page_095.pro
5fb055adbab9bde09e90fca910c4fa26
0ae50784dcf76e76a81300e6b040fda75f8d3e87
76097 F20101123_AABOIQ wilder_c_Page_111.jpg
745a02b0b5dc56d57bd8912a088faa98
1d8ca007a0c90e6b9c682745d2bd941daeaeacaf
15633 F20101123_AABPFJ wilder_c_Page_075.QC.jpg
f3b718188baad0880a65044102a0b247
0f6429a195181d33aedae61fb489e070fcd8874c
11942 F20101123_AABNLY wilder_c_Page_218.QC.jpg
cbe8c7cb1f4e0283c63aea085731ab6f
7bb30c6a558737e581e64428b5f6cd556e357719
76744 F20101123_AABOIR wilder_c_Page_113.jpg
e203cdb6247842d0791a6ed8465f5398
09842eb29a13ee0dc19ef782e24749635266ee1b
F20101123_AABPFK wilder_c_Page_077.QC.jpg
3fa2c039abb5d51a01bcdb6bb5207913
342e5a1943c3c748c6a35c4faf87cdddf12cbfc3
3209 F20101123_AABNLZ wilder_c_Page_131thm.jpg
2d57099a50a74bffa52645bf1fbca184
033b1f0928bed412121d96f79f0ba24c4c0259db
26801 F20101123_AABOIS wilder_c_Page_114.jpg
b9df564668e7dc2ca67d2970637c7072
b984d3a3227141e2e9bf1bf562d1947063999543
4888 F20101123_AABPFL wilder_c_Page_077thm.jpg
6545963860776fa93bdcd0c6d88a549a
a72fb1e605ccc48b5722049f612f089c373e1e93
31353 F20101123_AABOIT wilder_c_Page_118.jpg
fa71ee4a3258a9a1466aab4baf90e7f2
39062d6df9f28a3ebdc92430eeaf0b1e29f9a738
24260 F20101123_AABPFM wilder_c_Page_078.QC.jpg
c8ffb800f7f80735ed5d114cd295e3ad
b59109cb6c7a1741a8f8264036ce88674d083dd7
37066 F20101123_AABOIU wilder_c_Page_122.jpg
93d16c5ae9141e164f295178f8f1410c
18bf7c1c8683f99e53ebc514124547c9b904aea6
6627 F20101123_AABPFN wilder_c_Page_078thm.jpg
a4d3079af548751eb11d0044854851f7
1a17241540804e074af65e32392521ce10953176
30838 F20101123_AABOIV wilder_c_Page_124.jpg
03cd7aedc3bfd98bf533ce7f60698575
1dc7bb401996bb6121be1934f0cab8f405236e08
22863 F20101123_AABPFO wilder_c_Page_079.QC.jpg
28191eae1f88c9111da1b070e868056e
5892c836dbc5c81cdefddb03bc9df9e9d8a3b757
42614 F20101123_AABOIW wilder_c_Page_125.jpg
4db867a4b99bfe5f46913673a29fe129
6b6e13192187d2213af9eb270df8534709fa889c
24511 F20101123_AABPFP wilder_c_Page_080.QC.jpg
4cbddebdda32a7c3e34011c101430083
d715e2ee777b7e5ef741fd9a77913ea1ccc6e5b5
44442 F20101123_AABOIX wilder_c_Page_129.jpg
364926e58083a334345e807ed712d3f6
94e883fac3f7c2d18156a2161f7286a7708db49c
6177 F20101123_AABPFQ wilder_c_Page_082thm.jpg
3096a0de7dc77f45e049547addfd4b84
8de62c832fed5e41e86e7d1a373539eae198731a
30615 F20101123_AABOIY wilder_c_Page_130.jpg
e101ff8275889000f08cba0424a4f034
cd038f7938cc29493a876db7e6582c5df5e8d47d
22651 F20101123_AABPFR wilder_c_Page_083.QC.jpg
3088aba7c48bce612350acd38f46ee32
f28723e792b520f28e1979f6ce1dbd6576b4a2ef
36151 F20101123_AABOIZ wilder_c_Page_131.jpg
54897b9248a51d080a3104b0be696811
690f6fd8d2e202722e79be3c0e634bdc2ba64ecb
6589 F20101123_AABPFS wilder_c_Page_083thm.jpg
2102fba67d7e77e5676ae02492498069
40b767b6147b6e56680d8d3dc27a4f4186d0fead
22844 F20101123_AABPFT wilder_c_Page_085.QC.jpg
e61a008b460d010691745f7ab28511bb
e871f1730a3cb1e5c6a9028eb69b8e636518e554
24756 F20101123_AABNRA wilder_c_Page_072.jpg
4716d2795c5d860cd0f0787609e79afa
6852e14500e67668e52b4cb971b0c3c64f0254ba
10393 F20101123_AABPFU wilder_c_Page_086.QC.jpg
fc3fecc586057b39b1f9c51062585368
bddd589fb8c7bb9e96866d9d06aea326818f975c
23325 F20101123_AABNRB wilder_c_Page_055.QC.jpg
335620ecaf95225f29ac95517f6d94e3
6e30fc2c20727a12df76a9e61afa1eb1e027fd31
11355 F20101123_AABPFV wilder_c_Page_088.QC.jpg
047c5d3b3e8494cbb4c8046d329c4c6a
14940205b2da281fdf9526de107d7f7f6ed0b89e
17326 F20101123_AABNRC wilder_c_Page_161.QC.jpg
c7c623015b063e4a731917e1cd80916c
33133b1de1d26da1779a92a470251eb644f2f0b7
9431 F20101123_AABPFW wilder_c_Page_089.QC.jpg
2c9f7713c0f6eb6c26a291040c76fb39
a67385b9f78fe34840d6247a0c7c0377298d3aac
4326 F20101123_AABNRD wilder_c_Page_135thm.jpg
fdc01c059a63bda1485a22bc43a56be3
24d9281b22fd01039b298ee0c9c6e14229a0526a
3299 F20101123_AABPFX wilder_c_Page_089thm.jpg
060f653731f1f4b9ca734c366eba111a
c8408acc6b91ecf7a360b6af828b6257d74f374b
45083 F20101123_AABNRE wilder_c_Page_024.pro
14d662aaee5ad5b43b281455d3a4246a
54c65d2a198fade2ad09f457e20055bb17d94c7e
4603 F20101123_AABPFY wilder_c_Page_090thm.jpg
c9763e24f09672d6b2153444275dbc46
057169d4a8b33a4cf5efc206a4bd571e039e92d8
715 F20101123_AABNRF wilder_c_Page_151.txt
08ceb6c95f2866f70d34dbca2a7f7dfa
18b64defa2fc8847a69c58bc55f4b5d6ba5028d0
3578 F20101123_AABPFZ wilder_c_Page_091thm.jpg
ccc00c59572b6990b4699e0788948daa
071386d8c21edb5423f8373e33cf30ddc631fbf2
3910 F20101123_AABNRG wilder_c_Page_203.QC.jpg
8a1337e90308fe328e217f1f00bdf8cc
ee6af447a3a3698a2c36991f7b5ce997141adb02
1603 F20101123_AABNRH wilder_c_Page_190.txt
cd0879d9db6c5ea1ed5feed5deee2f3f
d46f0d0d628633dd3f7592afc111b5fc235b0a11
75982 F20101123_AABOOA wilder_c_Page_161.jp2
e28c6666ce544ff7ccce0cbbd77d2ec4
84f050098e73c014bac1b2b10163789d501056e2
F20101123_AABNRI wilder_c_Page_055.tif
8427501afd9e02471703cc085a004063
e8b63ae9b2c3f5f715fb620ed93aae7159373152
75173 F20101123_AABOOB wilder_c_Page_162.jp2
5595c942c76a06e7e02433a86961bdd5
3477dc04e98899767b0e352481662dc78583937f
6557 F20101123_AABNRJ wilder_c_Page_079thm.jpg
a156c3c603f556e8c5ffc2f20c5f8c8d
1f30bba19006a9c1b64dd2e743446e53f0cb1f20
24028 F20101123_AABOOC wilder_c_Page_165.jp2
abda2b5cbc7bbe515327e4da4f7656d2
0be684ae810b148bb9e21ec6e240cb9063f7c2ce
55380 F20101123_AABOOD wilder_c_Page_167.jp2
87509316b49321b970330c7e3c18c7f5
1dc0057b5a024e7a5470d5d52144de0c9d023cde
44496 F20101123_AABNRK wilder_c_Page_239.jpg
a03f375e6ad60eb3d13905945a43c242
5e0bebed583469de98846ad26f84b80042c43f38
10413 F20101123_AABOOE wilder_c_Page_169.jp2
a140b828f67e1cdb7e98b35008830a32
934308e1dce322b9c1cd94907ce2548946e326bc
3362 F20101123_AABNRL wilder_c_Page_139thm.jpg
407e7f08e3090e671833e97d4fa6a669
9e7e0124e5c971cec5dd85c37233dd62527cabf9
67788 F20101123_AABOOF wilder_c_Page_170.jp2
27fcd91ff67a48e22a8bf21d81a6c590
55134469abe05b39cef1ea07afd105808d38faf1
74146 F20101123_AABNEA wilder_c_Page_095.jpg
a0332f73463a52a860ff0826004367ae
8631235075412d6daf2d7550db936b38d0bdf2d4
F20101123_AABNRM wilder_c_Page_072.tif
5cf1f23841d97ac212c7571d9dc21596
f76fe9d4a75d9c309d6673cde8462c129555950a
1978 F20101123_AABNEB wilder_c_Page_048.txt
803b1efca61e7a373ede20d054937928
f155215029cdfc6fe58ba03faa46c0f269cfd879
3621 F20101123_AABPLA wilder_c_Page_240thm.jpg
aedbdb732b500de50488359e89466ba4
97b66e8e608ad22751168034392c628f49494ca2
3115 F20101123_AABNRN wilder_c_Page_171thm.jpg
85be73241daacfb487d245cc17f9a145
5173f5d8de5c99fb59b17fd8ef6157daa301b0bc
44152 F20101123_AABOOG wilder_c_Page_174.jp2
936d829eb461d40af6a0e5ca677c305b
01a901d97c60e6763d30776725f71ebe5835cb62
2972 F20101123_AABNEC wilder_c_Page_130thm.jpg
2344eb8e689bcc9b9e2ce10df438587c
b451b0dc3594b14c92a32b56668e18785a75f08c
5532 F20101123_AABPLB wilder_c_Page_241thm.jpg
59e371f2dd54209a3287ff33b8d2bb28
fe7a94c1b89c8759798e4152493a97bb400c48f2
5580 F20101123_AABNRO wilder_c_Page_023thm.jpg
8b66732be91ae144cb2f94aee1347ed1
f798ee345964f81197f458aa4b5ec521b84935f4
71104 F20101123_AABOOH wilder_c_Page_181.jp2
1f48870460f6449f9097180afcb93c31
80908ddbb20e8da409f10dc7f89856bcf962ddf8
14113 F20101123_AABNED wilder_c_Page_115.QC.jpg
f9d778ed83000eed791021e1a6f4f965
8b4b4ceed34371cc64758bb7e65efe9698c47acd
43021 F20101123_AABNRP wilder_c_Page_149.jp2
c2dc0eccb0fd35c5b27fe770e5f5fbdf
7214bc7d85facb16dae9e2bd09f02483bf8174b1
41933 F20101123_AABOOI wilder_c_Page_182.jp2
969b0611fc9df3ae8920707107ebbdcb
b1b29befccdcad55f9554945e7bec22008b7f6fb
94655 F20101123_AABNEE wilder_c_Page_046.jp2
bf5efb6526507de77b145108cae36a85
9f9a9104b63475317fdfabc1666ceffa233a2927
21020 F20101123_AABPLC wilder_c_Page_243.QC.jpg
8704bdcc20d80ba7ebea6a7d325a5c62
deca2bc2409f07bd4d39f6f269daac1aef197952
26988 F20101123_AABNRQ wilder_c_Page_238.jpg
b912567f5431ef69a7fa1f5222cb5d58
ddb33db9053077e0349da67d9409e13b969b730e
44222 F20101123_AABOOJ wilder_c_Page_185.jp2
ac10f2b07eeded3753deb1756011f83b
19fab6234c9248a14c7ce932a37ccd35bf74bf17
78478 F20101123_AABNEF wilder_c_Page_096.jpg
e17db21c5ad293bf2c9b49dee7862be8
434b72b853f4fa4731fb805e389abb6a928375fe
F20101123_AABPLD wilder_c_Page_244thm.jpg
70cccda99e3ef7df3b9260d9ab6aba87
e21d166500d759b93531464ca2790805a7e32477
34061 F20101123_AABNRR wilder_c_Page_037.jpg
6a5feef6e1b0736a6e1c20417245d6dd
eeb12e00d36e4dcd14bcc302955ea0cfe027a9de
37650 F20101123_AABOOK wilder_c_Page_186.jp2
aeee705dcaa9397c224dba2926eb14bc
a22db14c167d4fe97aafc8706fec0c55dcaf7a4b
F20101123_AABNEG wilder_c_Page_141.tif
2f29158da28ddc1591f40a00da6b346d
98bcd9c05c6ecbba12f7a1d5ecf756874cbd034d
22136 F20101123_AABPLE wilder_c_Page_245.QC.jpg
a4b1f9809abb9fb759fd9daed828f8ef
df18614dd3d10e53ebc12cbc1b99b20570601fab
5314 F20101123_AABNRS wilder_c_Page_071thm.jpg
affebe13bf387d80b48d8826d8183cf8
9f9d9831b0ac855289a090832f3bb732bd948d89
61483 F20101123_AABOOL wilder_c_Page_188.jp2
16604ea70b9282d4a40b619c8d6dde35
eddd6a5e44dba86b5cd909dd1ebddafadfd37769
34008 F20101123_AABNEH wilder_c_Page_206.jpg
127615bfac77dac039da86dcd44bf569
6231dfa74911af253535e000898b5d6996029cc6
6120 F20101123_AABOBA wilder_c_Page_024thm.jpg
a92ebf56c94368f711181e9f086de7d7
55c58fbd971551a8a5f4808ff33d53a6bfb8a393
22581 F20101123_AABPLF wilder_c_Page_246.QC.jpg
6497ac53da4e2d540f511a1531ff343e
a49773019124bbf6aae3b7f890ba0fef30918d6c
25465 F20101123_AABNRT wilder_c_Page_001.jp2
5a8be02ca89203373307cbe9ef4b9c97
4fbc757cbdfe136151b77cf4e4e632ca7f29d86c
12781 F20101123_AABOOM wilder_c_Page_189.jp2
77ce9400c262da3b80f183786e4c30ec
2526cdf5bd12dda070bd218beb6d0435a8e0c5ec
F20101123_AABNEI wilder_c_Page_168.tif
ac89540d0572659aaf206d9f8a922ca7
e7b4513473a4d6b40a325bd73f0ce864f3de3eae
53618 F20101123_AABOBB wilder_c_Page_013.pro
453f9169d2c56a7b898635d131f17b28
7da7c02d394f074bb9b0bf7a878e6c367551c88f
10106 F20101123_AABPLG wilder_c_Page_248.QC.jpg
f8b96a024e72be582e7b2d2db15ae2f2
22045a36a03a1feb915bafc3d961ef5096955950
45483 F20101123_AABNRU wilder_c_Page_194.jp2
f5704d9624fb9008e7f0a3cda1f6de9f
ef568c7e9725ea69445979fa41c31a4590eda3b3
76116 F20101123_AABOON wilder_c_Page_190.jp2
42dc00e190b3d7b2a8645263ed01a1d0
7c65f4fd2fd06c4e7d3040771e7943a7f8a12202
10436 F20101123_AABNEJ wilder_c_Page_206.QC.jpg
b4420ead6af7a878dd441504c3c160b9
d58e602715296e89eb8a199e4eddfb176b2a5e0d
728 F20101123_AABOBC wilder_c_Page_183.txt
bd310382eae46c17444f17c02d495ca9
bfe5642b5154d5a67943169eeac0786f2c87893f
3157 F20101123_AABPLH wilder_c_Page_248thm.jpg
073af6e79ba54a2f0b622b0bb04bb719
d407b318ed2e1b96e3dbf196c07e65016480aae9
10303 F20101123_AABNRV wilder_c_Page_201.QC.jpg
bede8358dc394370453f8ac6d59576fc
80ae21746738f653f28fe5b36f34dc9d169e73b5
43173 F20101123_AABOOO wilder_c_Page_192.jp2
1054fdbec69c1b036235fe9237557af2
6d522192bd2a0a14e0f644dae233fa6f4ac2027e
39562 F20101123_AABNEK wilder_c_Page_124.jp2
a8b25ff5f949b6787579f6d9a0655f4e
e58d0338426069ad19563f644859894e651b7f14
14997 F20101123_AABOBD wilder_c_Page_060.pro
25bbae1914bb955deca1e52858a512f0
f96fcd2f59f8534a3e11a0d2895ea1d70dc61cf0
283801 F20101123_AABPLI UFE0011630_00001.mets
06b1d746ffb973f0f78ef1f332b5dc2f
f95bb92a25539428b4e1061c9e0950804968e999
F20101123_AABNRW wilder_c_Page_211.tif
c0e0512daf191859478029d047b2fa69
cf1e5b43c4ba30b6fc567b49386b081259db20e5
44871 F20101123_AABOOP wilder_c_Page_193.jp2
14fda3069ac0559a8be944a7d45f0d22
57818c06366c3673ed928c29179228e00bdc178a
5811 F20101123_AABNEL wilder_c_Page_016thm.jpg
ae90223caa9de607dac463e778a091ff
e9d63151e8bbfec3daf5af0eefca8f4b7862dbf3
F20101123_AABOBE wilder_c_Page_106.tif
6b718064f6dc68939f91e603a6feef74
8b7d3731b80cd2b05039284dd4f88b36ccce5c73
F20101123_AABNRX wilder_c_Page_231.tif
99e99a4b40d5156062f68ad7d5c705e3
1d0ae2528c0dfc4dcbbcfeba65e9fba2136e08d5
86433 F20101123_AABOOQ wilder_c_Page_198.jp2
26e60544979c59b544b4b46f5056d68d
ee7fac2988247d9596890061243427553bb0ac80
17302 F20101123_AABNEM wilder_c_Page_232.pro
2ebb645814bb95d47bc1f2e9155dad31
68276fc18c0ab51edd4fd378388e1369d6d0097d
F20101123_AABOBF wilder_c_Page_090.tif
1ad0a7c6a2b6507f64c5f430fee18de6
6301facc14d7594be40d0885bd8d55d5c57e3d72
91957 F20101123_AABNRY wilder_c_Page_247.jp2
0562091767d23d3dc9ae54823582bbef
eb8fc14a777587a309f6cfce6b0240b9660991f0
62138 F20101123_AABOOR wilder_c_Page_200.jp2
23d0ef92658ae58d6d5fdc965c172b77
0e67845bd0fe1e855d9d16522e62b7b5005a77ed
33129 F20101123_AABNEN wilder_c_Page_201.jpg
7d6b5c96bf8d00a597c311b6cd1ae50b
cbddbcb45b4d1969d36bf08731730d25dc0f892f
417 F20101123_AABOBG wilder_c_Page_215.txt
39b9c8a23d35aa5d4f3303c86007b364
6326a79fd0eabc1b28e5b73d521c801df4002faa
1010 F20101123_AABNRZ wilder_c_Page_143.txt
45448c12ed70d81fcde554c0d4693f0d
bb8e82943884fc7d31ea2f56e57f3294971443e0
87953 F20101123_AABOOS wilder_c_Page_204.jp2
ac530b40e22cc56326d0ac9100ad1f48
a3033a901749657a8069ec02f2c0df4f02cd260a
F20101123_AABNEO wilder_c_Page_111.tif
96227e6920018362162f893306878f99
3c0125c945e43ffa13e43cbdcea51dd38160b36e
19820 F20101123_AABOBH wilder_c_Page_157.QC.jpg
3c902425de260a6f76c6af21fa67a2a7
17d382fc34acf8f1442108e0f5655a5677e557cb
45265 F20101123_AABOOT wilder_c_Page_208.jp2
1409759ae006f9dc8da0d8ea38aeb646
cba50bd0bd5ed54977bfa28f5e5739beb7d82ff9
1568 F20101123_AABNEP wilder_c_Page_240.txt
79c0e50d413dc4fce303711ef81835a1
38856276782a20d9805458703d21c031a0efbd55
14533 F20101123_AABOBI wilder_c_Page_076.QC.jpg
f919dc9615af456fe0366d120d83b6e4
09e797fd0057d23bce90e8c12e08596904c314a1
55552 F20101123_AABOOU wilder_c_Page_210.jp2
2e4eb744ccd253785f3b31b684decd33
3527bdde71ceb96d280a9aed8123a7d69afbc4dc
30711 F20101123_AABNEQ wilder_c_Page_197.jpg
cefbe128153eed18009c0d230021cd63
de0308efd7fbc3e164f0c12b6817f4a61d2b8d72
2589 F20101123_AABOBJ wilder_c_Page_072thm.jpg
834e584889cc3b6a35016101fd6cb121
4c17db82236339d01b13c474201dc8409b0811eb
56736 F20101123_AABOOV wilder_c_Page_211.jp2
a7e82e456ea2648f39596926b2d7869a
062fd89364a01eaf535fb40b11c927ab0d15df9c
7696 F20101123_AABNER wilder_c_Page_176.pro
9b8ee901cdc189a28b5ac9b2b764931f
c66ddafa39bccfd112c12c208e98f166f1d2189a
1051975 F20101123_AABOBK wilder_c_Page_063.jp2
d7f71a9ecc0819384c2ca040fd6e8eb3
385f4c3dd68040ace7145e3c4451f6109a09763c
55892 F20101123_AABOOW wilder_c_Page_212.jp2
323c24da83f40e3d421df27d74253bd9
7e674ab0faee3060bc6d832e25a7992ec2a31214
49011 F20101123_AABNES wilder_c_Page_077.jpg
6024457e14e0191dd748e2f8fbda72e8
8efa7de4f5db3757b09492e3b4e7a4c2743ac55e
2168 F20101123_AABOBL wilder_c_Page_146.txt
8bf827e946f1aa2d44bdddf53f0adbd9
339e11ca5e7574dd14ab640097e27ea26539410f
55419 F20101123_AABOOX wilder_c_Page_213.jp2
d448d8e08cfb67fd37d77bb8fe9f321c
36bc9e673922b1e8f4df9ef5be3f608068d30c2c
6076 F20101123_AABNET wilder_c_Page_032thm.jpg
7a22a4ecfdecc9251e738a23337d35e3
619a7b46b70141749ee45e12aa41a778263e094d
1943 F20101123_AABOBM wilder_c_Page_082.txt
41dd473ba6c825078e3f5c7e1e59ab9f
2bd0c65041046b5cd01fe6a2a7b8dac6074c9bea
56237 F20101123_AABOOY wilder_c_Page_214.jp2
8c031e1b2f1e9412e55e03bcec4447ca
0e973c5781d81540125b6a8638d199040d30867a
77825 F20101123_AABNEU wilder_c_Page_166.jp2
23a92118a4740b6a606b8fd96885dc55
96bd5c16dace0bf558afcfc90300bb934d9ee4c6
2881 F20101123_AABOBN wilder_c_Page_203.pro
93557da5857a28f15214a4231d6fa5c6
c1a0a0da5b1b78b1b11508c7d5a06ea9ad860dd6
49494 F20101123_AABOOZ wilder_c_Page_218.jp2
dbb72bd5bcf890a72bcea56b68013cc7
9d4c3eed3d5227bfe340544327f1e472a6a5db07
69935 F20101123_AABNEV wilder_c_Page_104.jpg
27a3751dabb929ebc656697e2dab4be4
a64b4faf1df9aa27a873d490b9bc066db068389f
F20101123_AABOBO wilder_c_Page_137.tif
6e40774b757bac89335ebd89b89dd60a
ebdd87dcd8377d2c37afeb47246314775147e655
10893 F20101123_AABNEW wilder_c_Page_165.pro
0156092819f7f259bf278585f45da882
95f4d8b6219fc383b2ea87326cb88e19e2256251
10259 F20101123_AABOBP wilder_c_Page_152.QC.jpg
c13b0345a8529fb8d833f1b95f638bcd
fc082756f2d3a6791849f0fb77dff24a41a1625b
2155 F20101123_AABNEX wilder_c_Page_109.txt
347306f0db75943be71c3347c5f774d5
6bd25b726091532448818442d696e079b7b682da
5027 F20101123_AABNXA wilder_c_Page_204thm.jpg
956fbea70d07effc70aeab5efb50be6e
6932348addf3f7f615223ced9d0fbcb019c7973e
F20101123_AABOBQ wilder_c_Page_118.tif
f1fdd7ac680cf75659118a18c64f5067
de40eb10a79c06a966339814840bddc20be665fb
31261 F20101123_AABNEY wilder_c_Page_228.jpg
da4380c834cdee62508a5b4d42844665
a6d8aec7be35d8452a998930c46a908b5461fe50
68452 F20101123_AABNXB wilder_c_Page_047.jpg
8aea1dc0aea5c666d28a8d00488c10c9
c921ffdf488d4dba555f09023334ed1931059878
F20101123_AABOBR wilder_c_Page_116.tif
8b02f403932e00dc89d10ae7e7d87353
79b6f97a16f4af3ee006d9bcb6c6f45641dc0b8e
F20101123_AABNEZ wilder_c_Page_040.QC.jpg
db0dd7793feb9e9e582b36da2a44f98a
fda114ecd0674b14b0283a2008a95c8c38d57f39
33533 F20101123_AABNXC wilder_c_Page_194.jpg
93353c856fe7285d5c0a7c8bff4daf87
8f4a877b0e8acbce6194792640b2c29ac481e6f1
16093 F20101123_AABOBS wilder_c_Page_134.QC.jpg
ebb09e3a615fdf800be2a4c6844e66d6
bb27cd390020248b16d9405c7d6e5e02ebadd498
10875 F20101123_AABNXD wilder_c_Page_233.QC.jpg
00d0bc12ec0792395eb3ab0d3ce11713
50784960e454e4fc3ff07bf7fad40d42b33c09f9
19075 F20101123_AABOBT wilder_c_Page_176.jp2
dfbc221819993785df74a19956fb79ba
a5e7f6d6524c33807d50ae75f906e71c4dae981c
39511 F20101123_AABNXE wilder_c_Page_060.jpg
85264a32bb897642e91213312a8c5741
b2b2382ec8f743e8b8a81535f4cc0050f7bd5d48
12728 F20101123_AABOBU wilder_c_Page_004.QC.jpg
dc43839bd7548d55a795ff039d5ccd44
c8bf540ff5892518c3f707c96da138fc38430ed1
72926 F20101123_AABNXF wilder_c_Page_039.jpg
6b08e2db50a18c0de96ab16b6fa96549
0a48e89c53161a3908a875f3c0a76af10655915c
23595 F20101123_AABOBV wilder_c_Page_215.jp2
0cf8d63b3e6555400539c18a05e54c59
3133e926e7776b25b151b404cbbcfe19b1b00724
F20101123_AABNXG wilder_c_Page_163.txt
7487a103283e6f1957fb319f10ec97b7
57cc42f3cf073cdad9e6c1c11848b77d5301d611
22573 F20101123_AABOBW wilder_c_Page_215.jpg
561e55f7f6415e1ffca599fece8c12a7
4511e49a7fb0526eb8c9b75734d580bd2ef434f5
65806 F20101123_AABOUA wilder_c_Page_008.pro
80d1f7a4421c21cc7927a7c01d10d875
d356d7eec5f9999a5e8def90f4809110b56d8407
83422 F20101123_AABNXH wilder_c_Page_191.jp2
6abfd58c1c307b1d1898ecdedba6af68
b7218309debc8aac2129b237988abe7dba349784
F20101123_AABOBX wilder_c_Page_190thm.jpg
3d31a904e4b8920af6eba7a24e14e88d
f41b665ac23e9e4036f23bc1f7e0c5309337fce2
67537 F20101123_AABOUB wilder_c_Page_009.pro
d554be73bc6319d9b4cc8ad1fa71fb84
70daed88b2f0e775c08df1f429b5ec878b9010b7
43349 F20101123_AABNXI wilder_c_Page_247.pro
97ed6301f08f0f817d431ec0d92ee986
7fbcf2a3928b146f495628c9375b8dc555e8bfb0
6617 F20101123_AABOBY wilder_c_Page_111thm.jpg
d0f34039e7af1c282bcd5c6c6019cb4a
0bd4fdb55ce1ad288d906192beef96788e1f0b2d
56926 F20101123_AABOUC wilder_c_Page_012.pro
6478cde23b8ae45af5b975e341568007
2b328d2c5b134090c0457fc529705e4656cb714d
81898 F20101123_AABNXJ wilder_c_Page_008.jpg
7f4bc7fff7b31c525091b4e282a8b632
fd301b47861c81385c2ae02189002e7cf3c073d1
41741 F20101123_AABOUD wilder_c_Page_017.pro
dcba4629dd6e86b8b3b9c200fa3f2b02
b946c40250c7fbaa6071d2050657ce54eae4e319
38166 F20101123_AABNXK wilder_c_Page_197.jp2
422636b663006be84df50c00e31ed57f
3d202f29ed2fdada136f0e86b6f32b234d81e01d
48346 F20101123_AABOBZ wilder_c_Page_059.pro
6d0594dfbe6300b8023687f3b09aefb8
605b39a0f2271b7be55d62b349908e8127eb7bf9
30535 F20101123_AABOUE wilder_c_Page_019.pro
de4e0ee78809beff88b8cc12d8a744ed
02c21256008fce32ae408cc6585948ed487caf22
F20101123_AABNKA wilder_c_Page_171.tif
5ff7e3beb6415f5ba45f7987a8f464f1
494424a25a5c701643ec30a2c99bfcde6bfebc35
86330 F20101123_AABNXL wilder_c_Page_138.jp2
13c06b8d195b76e63c82c439e19d1d49
3227b30fa58ab9c7a52012be9afc2b46e4962156
51895 F20101123_AABOUF wilder_c_Page_020.pro
b5b783eabeef332bfdb87895a8397546
be69244481ffe87b4edca9a9074145133be3e034
6367 F20101123_AABNKB wilder_c_Page_243thm.jpg
3364daa8954f7139d0f0f6319f5e09fc
917ec7cd7e9fc5c6e4587bf584a5579abc6de190
3175 F20101123_AABNXM wilder_c_Page_193thm.jpg
26227bdddabec76f3c22ef86f1792446
7118a8cb3b8a370e7705d4e7d1cef9988adc31fa
42390 F20101123_AABOUG wilder_c_Page_021.pro
4dfdddf9470f1295f4020d7d8d33ff69
bfeb5bc7bab79c167bfd7c802013cac1f766dca1
8267 F20101123_AABNKC wilder_c_Page_072.QC.jpg
943401f7bd2835495fe2dbb7edb569e2
ed63a54bc3c58b38e4c616dfe462e06442d347a7
65745 F20101123_AABNXN wilder_c_Page_242.jpg
83ce96212bb7f49c60554f584387ce83
28039b18afdfdb9c80b84dc7ce9882ec6c7712e6
38244 F20101123_AABOUH wilder_c_Page_025.pro
22c947f42a48bf48ff20e882372e708c
d058671c07031b7074cdd6c44419707187d8adef
16008 F20101123_AABNXO wilder_c_Page_136.pro
b9b6f830970f6b2ac373d1042875c2b2
7ad067b6a928b95adacc86f5e46f9a8ca98c3b25
35346 F20101123_AABOUI wilder_c_Page_027.pro
661e4b710e3783967728653d1198c610
5ba6858bc98d2a3ee8b1c0d06eaa74b26fc1e7c2
2330 F20101123_AABNKD wilder_c_Page_053thm.jpg
3513fd1e2a1d6fa32cdcc55cfc1caada
4e6500c559927936207d5fc6446a7c9df2d175b8
1866 F20101123_AABNXP wilder_c_Page_025.txt
17004f5079440b48c294fa839bf129b6
b44f21ac6a678fa5ec3587972d7087cb60278404
50137 F20101123_AABOUJ wilder_c_Page_028.pro
06d4212b5868b794d9b5e6897dff5835
a7cf4fa8155b82d8332d8843f32a3d874ad4dc70
44921 F20101123_AABNKE wilder_c_Page_184.jp2
1a32281f7fedbe8283d619285475e8c0
d581f793813901fd2db863cbdfed88a043c51bd3
10044 F20101123_AABOUK wilder_c_Page_030.pro
8bd4688fdbe383a48e9b9407a6c0872b
985fa31b5cb687186bc16ab00e96bbdc9d413ef5
3347 F20101123_AABNKF wilder_c_Page_209thm.jpg
41a5b144036dad4b5b34d1a15abb8d38
8b513642acd5a1c3956d170af9f2d301212715b6
23749 F20101123_AABNXQ wilder_c_Page_139.pro
743c2adbc98bf529d65e7d46a7ef9326
8d9adc0901313605ecda3f4fb551e01dad1dbb41
8685 F20101123_AABOUL wilder_c_Page_037.pro
11fa6311ecb162093c85e9f15a81a2a1
0dd8ae6167fb1d87fe5ef5e31f5a1904401c6d25
1505 F20101123_AABNKG wilder_c_Page_085.txt
968b0db8a814faba48c1151e8cfc0ef0
802ef984a3867c3d7832effe1c76e38d62022b5b
645 F20101123_AABNXR wilder_c_Page_228.txt
31eb2c9504644eeb08ceaface21b50f2
d3547549e90e391c8a88eb05c5a50a8c5397d266
2055 F20101123_AABNKH wilder_c_Page_080.txt
598639f228bea8fb2087bb53b6344c0d
7e44baa5447976d7c4a2340d3d9f4771e81777ec
11651 F20101123_AABOHA wilder_c_Page_011.jpg
cf0fd443fb52d0f5cd47ffa3dc58f3ca
38d224f937e72d869bea3496fbd8753e120bf15d
3151 F20101123_AABNXS wilder_c_Page_120thm.jpg
22d6184655db7f13134427121dc371ab
c73f42a29af2fcfa7b556644b43237e5d62e97db
34313 F20101123_AABOUM wilder_c_Page_038.pro
a04f34ebb8d22b05a00207218f783f6f
5f0ad72c154f8ec06ce85041d3c7c3a2035a5cb6
1605 F20101123_AABNKI wilder_c_Page_123.txt
00532a5047dd5145915977f5777be39f
c08df4c0dad30c37c7bea5968f9a3c9382738197
62374 F20101123_AABOHB wilder_c_Page_012.jpg
c70726877ed639ea571d53dc56280e59
7f1918259deefef38304a303afdfcaf84992a6af
24798 F20101123_AABNXT wilder_c_Page_129.pro
cd4d50080610d709c36b3885b2c1ff46
82c36cb8fb232a2b6c3dd751570dac9ede120c32
47664 F20101123_AABOUN wilder_c_Page_045.pro
3da4468c8458a55b16e68f6d841eee6e
79ef41724d75c517a7de4261356755a0b99b3e24
40620 F20101123_AABNKJ wilder_c_Page_162.pro
798eb51cdc2153988fd45699eeb05b30
3e189ee3ebe9b63a944cd9830bc011f9f9b6b4e4
56987 F20101123_AABOHC wilder_c_Page_015.jpg
69218fae5a789563926f6608e83af6e9
e2039c8701deb939759fb1e9af3a40aa1dbb0678
11038 F20101123_AABNXU wilder_c_Page_196.QC.jpg
a442f06bb834b14648eac6cd6fc7d040
dc4eddaa23f225e91110e8c3139a1cf6d0fcd0b6
43302 F20101123_AABOUO wilder_c_Page_046.pro
68081515d4899dd7cb4ace29a96924d9
5c2955f2bf0f8c89269a94bf151d8b8669f6b640
13590 F20101123_AABNKK wilder_c_Page_125.QC.jpg
232515d4199e3ab8aa7f64b252ceef0a
c427e3180d89c9dcb8c2c76cc167f428abe98911
63764 F20101123_AABOHD wilder_c_Page_016.jpg
d1bf0a228bcb870e5be11edde7f1290e
0ff5c0eae25c0f1a15a405dbbab42183c57ad3da
F20101123_AABNXV wilder_c_Page_177.tif
59203bcf5fae94b9cf46efb0373a46f1
a9e455c8287e88a4668b59143e1a914147c675b7
49927 F20101123_AABOUP wilder_c_Page_048.pro
f2cf61c29a8104f38983199edbaab188
151a11de98d99721871c78f2a6ff50a37aee1375
F20101123_AABNKL wilder_c_Page_178.tif
5174876d0ff9e71ed1718fbc761d161e
16b85683b538d6a509b2cdf38f57c403f776ae60
54274 F20101123_AABOHE wilder_c_Page_018.jpg
7f0090a4f06670d37b482bc6d6eeacd9
7913a8720cb6eb5b693caffa50fcef0393a065bc
6438 F20101123_AABNXW wilder_c_Page_039thm.jpg
c707f05474c3972283d6000dfbf50ccc
6a7319edb7735346071fd367c74303e0543f9487
26051 F20101123_AABOUQ wilder_c_Page_051.pro
b9f95f228a5eae7650655e307b241dfc
fead31124f6f05d9f6b20aa8c34087e02f8050e6
84503 F20101123_AABNKM wilder_c_Page_033.jp2
7af13243892e40cf900254a12de815bb
8d40e6dfde1e99b23ce40c412c3fdbdc79057ae0
58926 F20101123_AABOHF wilder_c_Page_019.jpg
aed0e49e110f58de12276f40ce5873af
c0bc5b3502f616ab1bfcb0f64c745812a2550952
14684 F20101123_AABNXX wilder_c_Page_114.pro
68645b73026f7590b3c60c7a1ac19095
5c0218baca7cd63c57602dacccdf398ddef0db2d
4607 F20101123_AABOUR wilder_c_Page_053.pro
3e59f0d1f36b2e3ce06ed371d21bc60c
035a75b4861bc814877b28f646aa854ed293f74c
25491 F20101123_AABNKN wilder_c_Page_226.jpg
5076ee0f3959f18abdea79abecfe8aa6
0974c72326548db734f3b5bdac15cec0a4c02e35
66865 F20101123_AABOHG wilder_c_Page_021.jpg
cf8efab718f2a65189e9f5b61810222a
20ea890466bff144c6c34432c19489a25569c561
F20101123_AABNXY wilder_c_Page_040.tif
66752de13041479620b629a791170ea2
3706d35d6a90255367fde677dc0e30a31f88d758
47708 F20101123_AABOUS wilder_c_Page_057.pro
91ada5eb9ac3de12dde89ee22b538bd6
46eee5c6ccdd39f558eea4b07ebd6f7e9ddba0fb
13235 F20101123_AABNKO wilder_c_Page_187.QC.jpg
c509a5128b7236a4d8f69792138c30a9
26fb4e0538cad9604d697f6a61a38ff30c8e8154
56817 F20101123_AABOHH wilder_c_Page_022.jpg
5be955dc0be5851aaf8bdaa32385ada1
f6c6113079ad4bb7633ac725537b5106abf7c3e4
F20101123_AABNXZ wilder_c_Page_198.tif
8e459ca00deceba514f82f5bfce48770
a7a228ef40bce7fcd44fd9bd5f443d6c04444501
9669 F20101123_AABPEA wilder_c_Page_041.QC.jpg
2dadc89d57e2e513fe1fb458be96d919
6ac459531617883399e13752e7ae5f7711cf8c3a
50849 F20101123_AABOUT wilder_c_Page_062.pro
ec8a7beef69d329180333bcc873bfaa2
837190236b596c81238de7186f3107886867909a
F20101123_AABNKP wilder_c_Page_025.tif
babf2c09433641de9f008c2feaee57c1
20fadaca81e7184afdd7fee4f770fffacfebef8d
56776 F20101123_AABOHI wilder_c_Page_023.jpg
9e2af82c43426bc5a01fb210a20f0c6b
3ed288197a9a9451e4ad1e275123ce9d61d49e31
F20101123_AABPEB wilder_c_Page_042thm.jpg
c3f83dd2977ca4b640d82dc04ee4c82a
82be9045e93eb8acdcbf250ab3b78809be655eb4
26494 F20101123_AABOUU wilder_c_Page_066.pro
a937f772433ced59762cee26032e63da
e547ddd15bf9b4b89ad0df910584ecd8bec87864
1675 F20101123_AABNKQ wilder_c_Page_056.txt
9726ab1f2900611a04f4a63b0a957225
f0007bcafb2a401b9c2271aca825c897f2db30ff
63683 F20101123_AABOHJ wilder_c_Page_024.jpg
5816752ca90da0614eb3f53f857db0ab
269ea8a5d77d2bcf9206c9d5267b37e380fce920
17330 F20101123_AABPEC wilder_c_Page_043.QC.jpg
e1bb46cb998af3144e26a63cf552dc21
7618cafcacf2bfedcea0e10237644e76cff1be0a
41175 F20101123_AABOUV wilder_c_Page_074.pro
8b22fe25da4d944adf5c39ceea1e0c9b
5a1ae2283fa8b1f901eb6b6f883242281e4eb456
F20101123_AABNKR wilder_c_Page_101.tif
1c589aed692c7f42e45c87d8ebeb54e4
a655efa4191b7e26a6dd817520caae412d30cbf4
58848 F20101123_AABOHK wilder_c_Page_025.jpg
6c98105477bbbf7234f1b5b3d5f09b06
a5d6d3c0fc43726cb696c4b4ddd355afd6c400a5
11016 F20101123_AABPED wilder_c_Page_044.QC.jpg
09fe75226efb6956b79c74a82eefe6fa
23ec634a5ffaed6bb6121ac6a49f8b551ea32654
28610 F20101123_AABOUW wilder_c_Page_075.pro
2304d8ffd127dabb4a329be93bd9489b
d2fc069c33f73714ea495e0f891f05bb07a5f20b
2019 F20101123_AABNKS wilder_c_Page_070.txt
71fca559c2cb6dc059cf04d4f980cd28
f9ca53e1380c18e750e93295a3647bfcb04f3c3d
45906 F20101123_AABOHL wilder_c_Page_026.jpg
1b7fa570c32e1ca7e1bbad0529b23c70
607a418bb06a05a2a21d411e0c167c57fbd2b5a8
3684 F20101123_AABPEE wilder_c_Page_044thm.jpg
b5565694993aba86c0eb3b365ca1061b
c89f2b96b1db7f4f8a1155b9093b7c29b7cf5eaf
25749 F20101123_AABOUX wilder_c_Page_076.pro
5997b9fa8f62398a283b92b97a49b2c2
519f4556c732692d80b2b7363bb0e0af792156cb
57972 F20101123_AABNKT wilder_c_Page_074.jpg
36b0153f19b5e3996f9e0707860dd158
265304c9a8a71e339d7d22c5677e702498d3c05c
55318 F20101123_AABOHM wilder_c_Page_029.jpg
d5204309cb588951395f74ea5f53b0d1
a56e2b8f00368a2063f2f21b1a6d3341e4c78e9b
6378 F20101123_AABPEF wilder_c_Page_047thm.jpg
fa81716439c42bcc47460778f5e20792
22f0fb69f5573bb21079a67a9111b32ed3718a5b
33814 F20101123_AABOUY wilder_c_Page_077.pro
20c0f84f052b144f38718b89bded74ad
a5756226acbfc41700ca7867f0796fc97fa97cca
32899 F20101123_AABNKU wilder_c_Page_156.jp2
1e191c996192cd85e54c6277a3881b29
f935f52c85e738ce75b7262ea7998b159846f9d4
34880 F20101123_AABOHN wilder_c_Page_030.jpg
a19001dcc7faf8aff785ff30252f63f3
ed94d50404d9b3dce2ddf81c7783d9e1a8b351b6
6507 F20101123_AABPEG wilder_c_Page_048thm.jpg
b3b918e0edb537c23fe0538aba2b5b5f
fb3ea06c36753a7b51051a72f0021919bf32642b
52211 F20101123_AABOUZ wilder_c_Page_078.pro
2113b8fa9c35d6fa1894f7bd43df2071
e5891fe99a27a4c2df1e5dee0eeb536d26b9cee2
50091 F20101123_AABNKV wilder_c_Page_055.pro
8025af07d6100de3ef971b66f498731c
52f63d4214f1440c2279e626ba5ef65f2bf731d6
51312 F20101123_AABOHO wilder_c_Page_034.jpg
f356397bd4f4def9afc95505cbe3ab8a
8b1468b1c82b0e971f86d17e5e53bc692099579b
2270 F20101123_AABPEH wilder_c_Page_049thm.jpg
4e8eb25a501045f0325eaf2a57a1e788
c84f19f2ba3117108f4f9b4cecec2776e9bacca4
16986 F20101123_AABNKW wilder_c_Page_018.QC.jpg
859799c2b1895240e4bba7b1d3637b3a
3b82be5e9c68232dddc99281f1f820ba74a15369
34789 F20101123_AABOHP wilder_c_Page_036.jpg
8519832e88470091075d6194c7c29f1c
667eecdfed1652e23251c99c51d3d8ee79f401bc
3805 F20101123_AABPEI wilder_c_Page_050thm.jpg
71a07852c1bb6fec0bcf9534add8dedf
d11a4e98804e3d12bfa1a4aa5bf24497fe366d4a
1053 F20101123_AABNKX wilder_c_Page_042.txt
25c46913b072547c05f36391e3a9f207
4321f075b9b70ea1f7bb6cdc25c1afc39912d11a
63740 F20101123_AABOHQ wilder_c_Page_038.jpg
9b943b319e62222d00edf372b2bc47b6
4f1119b72ed44920124eb37e8bf00e05221e84c8
13850 F20101123_AABPEJ wilder_c_Page_051.QC.jpg
7a9bb2b216de8c69d98cf5e175ee0a04
7202fe03a75eebb4d27c94e3e5ba4e54abb4f981
16742 F20101123_AABNKY wilder_c_Page_031.pro
b3341f4f98874244e2f10172b32b2a62
a49a72567fbca51a3c2935c4d89298a473879efd
52506 F20101123_AABOHR wilder_c_Page_040.jpg
03adf0e06888407110c6082059984e41
d535c9171c847e30a4121ea771b51baa182276ca
6637 F20101123_AABPEK wilder_c_Page_053.QC.jpg
a969f3324f9d0219292debe471f81c5d
5f8c966db291f03237e2c3cbebeee44a35004e91
95601 F20101123_AABNKZ wilder_c_Page_047.jp2
59db399b06b92fb436f319b702156217
c2a584917e742a08325a81786f85c6329be8326d
20501 F20101123_AABOHS wilder_c_Page_049.jpg
2140649bc90c2075bab6b1e953dc4923
8dee75d6f0bf2d712e727a726890df0b0b3e0ae3
19935 F20101123_AABPEL wilder_c_Page_054.QC.jpg
eedbe1b852231c7b6e40ebf56757f728
33561c141168da30b230e14004781a248efae939
33177 F20101123_AABOHT wilder_c_Page_052.jpg
3fae95fe5c8551a7aa9b9f1ca23f54f3
7b922a3de2d4553a9f3471e105f5a4c30d9f3444
6360 F20101123_AABPEM wilder_c_Page_055thm.jpg
eb90018728e9145cdb5c7e6512cd51cd
f84b7d02070e447f991c76ef13a68f2f7d66873f
70158 F20101123_AABOHU wilder_c_Page_057.jpg
8290e82b6add66ec9ac0af488a67cda7
5b928f129b5dfd57ba9d5690e81be6c705cc9344
5622 F20101123_AABPEN wilder_c_Page_056thm.jpg
0cc0fdb1158941526c66456368b5c877
de056fe181ac572fa97aaae8e70640fd2ec7ffa0
71118 F20101123_AABOHV wilder_c_Page_059.jpg
bf0bc4a3ccf07d4e58e02a9ffca5b501
1777ede6be1ad2e4bca1a8696ed10a0cc1d1d332
22967 F20101123_AABPEO wilder_c_Page_057.QC.jpg
f685c4b69a7e5e6bf0eaa2fee9a5b09e
84ca3488b38e415448f56e472a44244eeb82ea5d
73028 F20101123_AABOHW wilder_c_Page_065.jpg
bb349d026ebdbd3567d80ddb1b90af1b
851449dd0cf80d1f3ebda1578fe479b9a735caba
23790 F20101123_AABPEP wilder_c_Page_058.QC.jpg
63b61b09507127dc126b2a635ec7c816
30c87291076df640595d520917befc821858c222
42707 F20101123_AABOHX wilder_c_Page_066.jpg
431512377f1c1ffd32016ccc0a76e6ef
c7c21ea07352dd6ea1b5d1182ac05fe2335da29a
6560 F20101123_AABPEQ wilder_c_Page_058thm.jpg
86a682ba5d665466bf8fd71df9fde1d2
7ec00b4bda02f1beaa4f102c4c6a66ae03a47448
82257 F20101123_AABOHY wilder_c_Page_067.jpg
0a2476ae3f5532fb6ff1591f2ae59cb1
ebd047c43480bfdb8ae25a6ba87443d09d6a4a94
23268 F20101123_AABPER wilder_c_Page_059.QC.jpg
8a9c289cff8d64d0e9e9cc8e1a87bdf6
5f75749549914ea3503eb1a9114a47c2ae2ba318
82204 F20101123_AABOHZ wilder_c_Page_068.jpg
de6410eda0a3918090019ac981f998d2
bfba4a2f7b9a05103cfd221ec9a98ad530ce7fa2
13114 F20101123_AABPES wilder_c_Page_060.QC.jpg
942c5e801a8439eff2e2aac1a79d1c80
42bb164b1ed5f05d692f37ae202cd4c2e3543e32
F20101123_AABPET wilder_c_Page_060thm.jpg
983adb6cb043a7f24fbd5bcba820ffdd
a780da0db858aac886bed0877d6635d9dafa783e
20595 F20101123_AABNQA wilder_c_Page_217.QC.jpg
6e1ef052f3d99b201b206bdb5694e2ad
06f6957736a50831c7bb5e520f30733ad23deb5c
18397 F20101123_AABPEU wilder_c_Page_061.QC.jpg
2eb63527083595953eb99b12c40732cb
7d752f3d850a6ec680fcde5d95c50ab6260a97a5
10771 F20101123_AABNQB wilder_c_Page_140.QC.jpg
b8f72ed09b9d37d65a3a7c9820dac4ac
572ec0dbb7d69fc6972039823ff2d2044931246d
5310 F20101123_AABPEV wilder_c_Page_061thm.jpg
8985e2279bc829252bfe3d00621b117f
9fea9cccfbcc2c06ada14175de34fc6917ebf798
24950 F20101123_AABNQC wilder_c_Page_222.jpg
de2f41f73f2cd1f3fe8b1180a33476d5
5b225051d1d05233f7a55b9889bbb5f718e3d744
23777 F20101123_AABPEW wilder_c_Page_062.QC.jpg
5491b7778d75e1693bf3d3a7767c5b7e
51a8b06e1dfce22ac22ad65b70ecb874f4ba151c
33960 F20101123_AABNQD wilder_c_Page_174.jpg
792bab64352b25b6c87bc224f3b36f16
36ee02cade6df030c571000f1dda8acbbe1fa4e6
F20101123_AABPEX wilder_c_Page_062thm.jpg
54eccf2717850c03336f684eb17adb7b
b067ad79548e37ae876cd0a4052f1bc31335700d
11589 F20101123_AABNQE wilder_c_Page_209.QC.jpg
a4e09f229947a8a73c8023fafc209f44
24d2587d22833c04055921753eebab74e9b6eb56
6756 F20101123_AABPEY wilder_c_Page_063thm.jpg
c576948a75708e82a4f61b3508192af1
5803783a5ef54022f325ef78e96afeb11e747cae
F20101123_AABNQF wilder_c_Page_188.txt
c2b49952f0722a587fdb8c8930a8c4eb
50ed6b685a8d1005f29579971151aab93138ec40
6964 F20101123_AABPEZ wilder_c_Page_064thm.jpg
065d2aa9ce833caccf28769594f77de7
bfd9ecc400f57074e52afd990c005ab9d7010135
41142 F20101123_AABNQG wilder_c_Page_061.pro
d38be9acb84e7b9ca3ddee29387d38f0
e9721557a185a2e461088938d8faefa58e589cca
11121 F20101123_AABNQH wilder_c_Page_195.QC.jpg
7d23498fc47781b7674643f4ba36f463
d764b303e9e137f92cc71ad06977844846d6cffc
110743 F20101123_AABONA wilder_c_Page_097.jp2
27b1aa1b8253dd623a13bd287178fd0d
5f94bffcdc60f09ad3166a034d0fa20b4812f75a



PAGE 1

STUDY OF TUNGSTEN(IV) AND TUNG STEN(VI) IMIDO COMPLEXES: SYNTHESIS, STRUCTURAL AN ALYSIS AND REACTIVITY By COREY B. WILDER A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLOR IDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2005

PAGE 2

This document is dedicated to traditional and ongoing strength and pr ide of the Smith and Wilder families of Carthage, Mississippi. May the completion of th is dissertation honor my ancestors and inspire my legacies.

PAGE 3

ACKNOWLEDGMENTS First, I would like to thank God for providing me with numerous blessings along lifes pathway that made it possible for me to be in a position to write this thesis. Without Him, none of this would have been possible. I wish to thank to my first advisor, Dr. James Boncella, for his guidance and patience. His uncanny abilities to interpret spectra and suggest just the right experiment to advance a project are priceless. It has been a pleasure to work with someone who can be both personal and professional. I would also like to thank all of the members of the Boncella research group of both past and present. Dr. Ryan Mills will always hold a special place in my memory for training me to perform air-sensitive chemistry and showing great patience. I would also like to thank Elon Ison for providing friendship, conversation, and good music to listen to while in the lab. I wish to extend very special thanks to my current advisor, Dr. Lisa McElwee-White. She allowed me to join her research team under very non-traditional circumstances and has been an excellent advisor from day one. Her door is always open, and she is very committed to aiding her students. It is truly a luxury to work with a willing, accessible mentor. I also would like to thank my co-workers in the McElwee-White research group. I would like to thank Corey Anthony and Daniel Serra for being like brothers and Dr. Chatu Sirimanne and Laurel Reitfort for all they have done. I also owe great appreciation to Dr. Khalil Abboud for going above and beyond the call of duty to help me secure all of the crystallographic data and structures contained in iii

PAGE 4

this dissertation. His efficiency is remarkable, and he never grew impatient regardless of the countless useless samples I asked him to inspect. I would also like to thank Dr. David Powell and Maria Dancel for their efforts in obtaining the mass spectrometry data that is contained in this work. I would now like to thank my loved ones who have been my guidance and inspiration for my entire life. First, I would like to thank the members of my immediate family. I would like to thank my parents, Robert and Gloria Wilder, for providing me with love, discipline and morals. I would like to thank my brother, Robert Brad Wilder, Jr., for being a good brother and providing an excellent example of how a young man should conduct himself. I also would like to thank my extended family for always providing encouragement and never letting me feel the need for love. iv

PAGE 5

TABLE OF CONTENTS page ACKNOWLEDGMENTS .................................................................................................iii LIST OF TABLES ...........................................................................................................viii LIST OF FIGURES ..........................................................................................................xii CHAPTER 1 INTRODUCTION AND BACKGROUND.................................................................1 Synthesis of Transition Metal Alkyl Complexes..........................................................2 Decomposition of Transition Metal Alkyl Complexes.................................................4 -Hydrogen Elimination........................................................................................5 -Hydrogen Abstraction........................................................................................8 -Hydrogen Abstraction........................................................................................8 Transition Metal-Mediated Bond Activation................................................................9 C-H Oxidative Addition......................................................................................13 C-C Oxidative Addition......................................................................................14 2 SYNTHESIS, STRUCTURE, AND REACTIVITY OF DIALKYL COMPLEXES.............................................................................................................17 Synthesis of W(VI) Dialkyl Complexes.....................................................................17 Structure Study for W(VI) Dialkyl Complexes..........................................................20 Tungsten Mediated C-N Bond Activation..................................................................23 3 SYNTHESIS, CHARACTERIZATION, AND STRUCTURE OF W(VI) BIS-ALKOXY COMPLEXES...........................................................................................28 Synthesis of bis-Alkoxy Complexes...........................................................................28 Characterization of bis-Alkoxy Complexes................................................................31 Mechanistic Study of the Formation of bis-Alkoxy Complexes................................33 4 METAL-ORGANIC CHEMICAL VAPOR DEPOSITION OF TUNGSTEN NITRIDE FROM TUNGSTEN IMIDO PRECURSORS..........................................39 Mass Spectrometry Investigations..............................................................................43 Volatilization of the Precursor....................................................................................44 v

PAGE 6

Film Structure.............................................................................................................47 Film Composition.......................................................................................................49 Comparison of Films Grown from 12a and 13a......................................................53 5 SYNTHESIS AND CHARACTERIZATION OF W(VI) GUANIDINATE AND AMIDINATE COMPLEXES.....................................................................................58 Synthesis of W(VI) Guanidate and Amidinate Complexes........................................58 NMR Characterization................................................................................................62 Mass Spectrometry Investigations..............................................................................63 X-ray Crystallography Study......................................................................................65 Experimental Procedures............................................................................................79 General Procedures..............................................................................................79 Syntheses....................................................................................................................80 W(NPh)(Me) 2 (1,8-(Me 3 SiN) 2 -C 10 H 6 ) (2)............................................................80 W(NPh)(CH 2 C 6 H 5 ) 2 (1,8-(Me 3 SiN) 2 -C 10 H 6 ) (3)..................................................80 W(NPh)(CH 2 CH 2 C 6 H 5 ) 2 (1,8-(Me 3 SiN) 2 -C 10 H 6 ) (4)...........................................81 W[(NSiMe 3 )C 10 H 6 ](NPh)PMe 3 (5).....................................................................82 W(NPh)(o-(Me 3 SiN) 2 C 6 H 4 )(OCH 2 C 6 H 5 )(OCH(2-C 5 H 4 N)(C 6 H 5 ) (8)................82 W(NPh)(o-(Me 3 SiN) 2 C 6 H 4 )(OCH 2 (p-C 6 H 4 CH 3 )(OCH(2-C 5 H 4 N)( pC 6 H 4 CH 3 ) (9).......................................................................................................83 W(NPh)(o-(Me 3 SiN) 2 C 6 H 4 (C 5 D 5 N) 2 (7-d 10 ).......................................................84 W(NPh)(o-(Me 3 SiN) 2 C 6 H 4 )(OCHD(p-C 6 H 4 CH 3 )(OCH(2-C 5 D 4 N)( pC 6 H 4 CH 3 ) (9-d 5 )..................................................................................................84 W(NPh)(o-(Me 3 SiN) 2 C 6 H 4 )(OCH 2 (p-C 6 H 4 OCH 3 )(OCH(2-C 5 H 4 N)( pC 6 H 4 OCH 3 ) (10)..................................................................................................84 W(NPh)(o-(Me 3 SiN) 2 (OCH 2 (2-C 4 H 3 S)(OCH(2-C 5 H 4 N)(2-C 4 H 3 S) (11)...........85 W(NPh)(C 9 H 20 N 3 )Cl 3 (16)...................................................................................86 W(N(C 6 H 11 ))(C 9 H 20 N 3 )Cl 3 (17)...........................................................................86 W(NCH(CH 3 ) 2 )(C 9 H 20 N 3 )Cl 3 (18)......................................................................87 W(NC 6 H 5 )(C 10 H 21 N 2 )Cl 3 (19).............................................................................88 W(NCH(CH 3 ) 2 )(C 10 H 21 N 2 )Cl 3 (20).....................................................................89 W(NC 6 H 11 )(C 10 H 21 N 2 )Cl 3 (21)...........................................................................89 W(NCH(CH 3 ) 2 )(C 8 H 21 N 2 Si 2 )Cl 3 (22)..................................................................90 W(N(C 6 H 5 )(C 8 H 21 N 2 )Cl 3 (23) .............................................................................91 W(NCH(CH 3 ) 2 )(C 8 H 21 N 2 )Cl 3 (24) ......................................................................91 W(NC 6 H 11 )(C 8 H 21 N 2 )Cl 3 (25) .............................................................................92 Crystallographic Studies.............................................................................................93 X-ray Data Collection and Structure Refinement for Compounds 2 and 3.........93 X-ray Data Collection and Structure Refinement for Compound 5....................93 X-ray Data Collection and Structure Refinement for Compound 8....................94 X-ray Data Collection and Structure Refinement for Compound 16..................95 X-ray Data Collection and Structure Refinement for Compound 17..................95 X-ray Data Collection and Structure Refinement for Compound 18..................96 X-ray Data Collection and Structure Refinement for Compound 19..................97 X-ray Data Collection and Structure Refinement for Compound 22..................97 X-ray Data Collection and Structure Refinement for Compound 24..................98 vi

PAGE 7

APPENDIX TABLES OF CRYSTALLOGRAPHIC DATA..............................................................100 Crystallographic Data for W(NPh)(Me) 2 (1,8-(Me 3 SiN) 2 -C 10 H 6 ), (2)......................100 Crystallographic Data for W(NPh)(CH 2 C 6 H 5 ) 2 (1,8-(Me 3 SiN) 2 -C 10 H 6 ), (3)............112 Crystallographic Data for W-(NSiMe 3 )(C 10 H 6 (NSiMe 3 ))(NPh)(PMe 3 ), (5)............122 Crystallographic Data for W(NPh)(o-(Me 3 SiN) 2 C 6 H 4 )(OCH 2 (p-C 6 H 4 CH 3 )(OCH(2-C 5 H 4 N)(p-C 6 H 4 CH 3 ), (9)........................................................130 Crystallographic Data for W(NPh)(C 9 H 20 N 3 )Cl 3 (16).............................................146 Crystallographic Data for W(N(C 6 H 11 ))(C 9 H 20 N 3 )Cl 3 (17)......................................153 Crystallographic Data for W(NCH(CH 3 ) 2 )(C 9 H 20 N 3 )Cl 3 (18)..................................165 Crystallographic Data for W(NC 6 H 5 )(C 10 H 21 N 2 )Cl 3 (19).........................................175 Crystallographic Data for W(NCH(CH 3 ) 2 )(C 8 H 21 N 2 Si 2 )Cl 3 (22)............................187 Crystallographic Data for W(NCH(CH 3 ) 2 )(C 8 H 21 N 2 )Cl 3 (24).................................208 LIST OF REFERENCES.................................................................................................226 BIOGRAPHICAL SKETCH...........................................................................................233 vii

PAGE 8

LIST OF TABLES Table page 1.1. Synthetic methods for preparing transition metal alkyl complexes.............................4 1.2. Transition metal alkyl complexes lacking -hydrogens...............................................6 1.3. Characteristics of some alkanes and other hydrocarbons...........................................10 2.1. Summary of selected bond lengths () and angles ( o ) for 2......................................23 2.2. Summary of selected bond lengths () and angles ( o ) for 3......................................23 2.3. Selected bond lengths () and angles ( o ) for 5..........................................................25 3.1. Selected bond lengths () and angles ( o ) for 10........................................................32 4.1. Mass spectrometry data for 13a and 12a...................................................................46 5.1. Mass spectrometry data for tungsten guanidinate and amidinate complexes............66 5.2. Selected bond lengths () and angles () for compound 16......................................70 5.3. Selected bond lengths () and angles () for compound 17......................................70 5.4. Selected bond lengths () and angles () for compound 18......................................70 5.5. Selected bond lengths () and angles () for compound 19......................................72 5.6. Selected bond lengths () and angles () for compound 22......................................75 5.7. Selected bond lengths () and angles () for compound 24......................................75 A-1: Crystal data and structure refinement for 2............................................................100 A-2: Atomic coordinates (x 104) and equivalent isotropic displacement parameters (x 103) for 2.......................................................................................................101 A-3: Bond lengths [] and angles [] for 2....................................................................102 A-4: Anisotropic displacement parameters (2x 103) for 2..........................................108 A-5. Hydrogen coordinates (x 10 4 ) and isotropic displacement parameters for 2..........110 A-6: Crystal data and structure refinement for 3............................................................112 A-7. Atomic coordinates (x 10 4 ) and equivalent isotropic displacement parameters ( 2 x 10 3 ) for 3........................................................................................................113 viii

PAGE 9

A-8. Bond lengths [] and angles [] for 3....................................................................114 A-9. Anisotropic displacement parameters (2x 103) for 3...........................................118 A-10. Hydrogen coordinates (x 104) and isotropic displacement parameters for 3.......120 A-11: Crystal data and structure refinement for 5..........................................................122 A-12. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (2x 103) for 5.......................................................................................................123 A-13. Bond lengths [] and angles [] for 5...................................................................124 A-14. Anisotropic displacement parameters (2x 103) for 5.........................................127 A-15: Hydrogen coordinates (x 104) for 5.....................................................................128 A-16. Crystal data and structure refinement for 9..........................................................130 A-17. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (2x 103) for 9.......................................................................................................131 A-18. Bond lengths [] and angles [] for 9...................................................................133 A-19. Anisotropic displacement parameters (2x 103) for 9.........................................142 A-20. Hydrogen coordinates (x 104) for 9......................................................................143 A-21. Crystal data and structure refinement for 16........................................................146 A-22. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (2x 103) for 16.....................................................................................................147 A-23. Bond lengths [] and angles [] for 16................................................................148 A-24. Anisotropic displacement parameters (2x 103) for 16c....................................151 A-25. Hydrogen coordinates ( x 10 4 ) for 16...................................................................152 A-26. Crystal data and structure refinement for 17........................................................153 A-27. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (2x 103) for 17.....................................................................................................155 A-28. Bond lengths [] and angles [] for 17................................................................156 ix

PAGE 10

A-29. Anisotropic displacement parameters (2x 103) for 17.......................................162 A-30. Hydrogen coordinates ( x 10 4 ) for 17...................................................................163 A-31. Crystal data and structure refinement for 18........................................................165 A-32. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (2x 103) for 18.....................................................................................................166 A-33. Bond lengths [] and angles [] for 18.................................................................167 A-34. Anisotropic displacement parameters (2x 103) for 18.......................................172 A-35. Hydrogen coordinates ( x 10 4 ) for 18...................................................................173 A-36. Crystal data and structure refinement for 19........................................................175 A-37. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (2x 103) for 19.....................................................................................................176 A-38. Bond lengths [] and angles [] for 19................................................................178 A-39. Anisotropic displacement parameters (2x 103) for 19.......................................183 A-40. Hydrogen coordinates ( x 10 4 ) for 19...................................................................185 A-41. Crystal data and structure refinement for 22........................................................187 A-42. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (2x 103) for 22.....................................................................................................189 A-43. Bond lengths [] and angles [] for 22................................................................192 A-44. Anisotropic displacement parameters (2x 103) for 22.......................................201 A-45. Hydrogen coordinates ( x 10 4 ) for 22...................................................................204 A-46. Crystal data and structure refinement for 24 ........................................................208 A-47. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (2x 103) for 24.....................................................................................................210 A-48. Bond lengths [] and angles [] for 24................................................................212 A-49. Anisotropic displacement parameters (2x 103) for 24.......................................222 x

PAGE 11

A-50. Hydrogen coordinates ( x 10 4 ) for 24...................................................................224 xi

PAGE 12

LIST OF FIGURES Figure page 1.1. Plot of nucleophilic reactivity vs. metal electronegativity in M-C bonds...................3 1.2. Mechanism for -hydrogen elimination.......................................................................6 1.3. Metal alkyl complexes with hindered coplanar M-C-C-H transition states...............7 1.4. Titanium complex with an agostic interaction.............................................................8 1.5. Mechanism for -hydrogen abstraction.......................................................................8 1.6. Mechanism for -hydrogen abstraction.......................................................................9 1.7. Reactions catalyzed by metal catalysts......................................................................11 1.8. Chemisorption of methane onto a metal surface........................................................12 1.9. Mechanism for C-H activation by metal complexes..................................................14 1.10. Catalytic cycle incorporating C-H oxidative addition.............................................15 1.11. C-C bond activation of strained alkane....................................................................16 2.1. Structure of tungsten dichloride starting materials....................................................18 2.2. Synthesis of W(VI) dialkyl complexes......................................................................19 2.3. Crystal structure of 2..................................................................................................21 2.4. Crystal structure of 3..................................................................................................22 2.5. Proposed mechanism for the formation of 5..............................................................26 2.6. Crystal Structure of 5.................................................................................................27 3.2. Crystal structure of 7..................................................................................................29 3.4. 1 H NMR spectrum of 10............................................................................................34 3.5. Crystal structure of 10................................................................................................35 xii

PAGE 13

3.6. Proposed mechanism for the formation of bis-alkoxy complexes.............................37 3.7. 1 H NMR spectrum of deuterated 9.............................................................................38 4.1. Tungsten nitride growth via co-reactant and single-source techniques.....................41 4.1. Mass spectra of 13a...................................................................................................45 4.3. Change in XRD pattern with deposition temperature for WN x C y grown from 13a.48 4.4. AES data for films grown from 12a and 13a..........................................................51 4.5. Variation of film sheet resistance with deposition temperature for films deposited from 12a and 13a...................................................................................................56 5.1. Resonance forms of guanidinate and amidinate anions.............................................59 5.2. Possible bis-imido species resulting from fragmentation under CVD conditions.....60 5.3. Tungsten imido complexes used as WN x precursors.................................................60 5.4. Common metal guanidinate and amidinate complex syntheses................................61 5.5. General synthesis of guanidinate and amidinate complexes 16-25...........................62 5.6. Crystal structure of 16.................................................................................................71 5.7. Bonding scheme of 16...............................................................................................72 5.8. Crystal structure of 17.................................................................................................73 5.9. Crystal structure of 18.................................................................................................74 5.10. Crystal structure of 19...............................................................................................76 5.11. Crystal structure of 22...............................................................................................77 5.12. Crystal structure of 24...............................................................................................78 xiii

PAGE 14

Abstract of Dissertation Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy STUDY OF TUNGSTEN(IV) AND TUNGSTEN(VI) IMIDO COMPLEXES: SYNTHESIS, STRUCTURAL ANALYSIS AND REACTIVITY By Corey B. Wilder December, 2005 Chair: Lisa McElwee-White Major Department: Chemistry A series of tungsten(VI) imido complexes containing the diamido ligand [1,8-(Me 3 Si) 2 C 10 H 6 ] have been synthesized with the formulae W(NPh)(1,8-(Me 3 Si) 2 C 10 H 6 )R 2 R = Me (2), CH 2 Ph (3), CH 2 CH 2 Ph (4). These compounds were synthesized by reacting W(NPh)(1,8-(Me 3 Si) 2 C 10 H 6 )Cl 2 with two equivalents of the corresponding Grignard reagent. These compounds have been characterized by 1 H and 13 C NMR, and X-ray crystal structures were obtained for 2 and 3. The solid state structures of both compounds are square pyramidal with the imido ligand occupying the apical position. The reactivity of these compounds was investigated, and it was found that thermolysis of 4 in the presence of PMe 3 results in a rare C-N single bond cleavage to yield W[(NSiMe 3 )C 10 H 6 ](NPh)PMe 3 (5). The compound was characterized by 1 H and 13 C NMR and X-ray crystallography. Also, a mechanism is proposed for the formation of 5. A series of tungsten(VI) bis-alkoxy complexes with the formulae: W(NPh)(o-(Me 2 Si) 2 C 6 H 4 )(OCH 2 R)(OCH(C 5 H 4 N)R), R = C 6 H 5 (6), C 6 H 4 CH 3 (7), C 6 H 4 OCH 3 (8), xiv

PAGE 15

C 4 H 3 S (9) have been synthesized by reacting the W(IV) complex W(NPh)(o-(Me 2 Si) 2 C 6 H 4 )(NC 5 H 4 ) 2 with two equivalents of the corresponding aldehyde These compounds have been characterized by 1 H and 13 C NMR, and an X-ray crystal structure of 8 was obtained. The mechanism for the formation of 6-9 was probed by conducting deuterium labeling experiments and a mechanism is proposed. Tungsten nitride thin films were produced from the single-source precursors W(N i Pr)Cl 4 (L) and W(NPh)Cl 4 (L) (L = NCPh, NCMe, OEt 2 ). Mass spectrometry was used to probe fragmentation tendencies of the precursors. X-ray diffraction data were used to analyze film crystallinity and Auger electron spectroscopy was used to determine film composition. The effect of deposition temperature on film properties and composition was also investigated. The data made it possible to make correlations between precursor fragmentation tendencies and subsequent film properties. A series of tungsten guanidinate and amidinate complexes were synthesized to serve as precursors for the metal-organic chemical vapor deposition of tungsten nitride. Compounds were characterized by 1 H and 13 C NMR. In addition, mass spectrometry was used for characterization as well as to give insight into precursor fragmentation tendencies. Crystallography experiments were also conducted to investigate the bonding motifs present in the series of compounds. xv

PAGE 16

CHAPTER 1 INTRODUCTION AND BACKGROUND The field of organometallic chemistry lies at the interface of classical organic and inorganic chemistry. Organometallic chemistry is a subfield of coordination chemistry in which the complexes possess direct metal-carbon or metal-hydrogen bonds. [1] Research in this field has provided a great number of synthetic methods for organic chemistry. In addition, numerous industrial processes have been developed and subsequently optimized that involve transition metal based catalysts for the large-scale production of various chemicals and materials. Modeling studies involving transition metal complexes have provided a great deal of insight about the active sites of metalloenzymes. In addition, organometallic ideas have been useful in interpreting the activity of metal surfaces and colloids. Indeed, research in this field has provided the scientific community with a wealth of valuable knowledge. [1-5] At the very core of organometallic chemistry, along with other concepts, one will find the synthesis and reactivity of transition metal alkyl complexes and bond activation. The field itself being defined by the metal-carbon bond, it is not surprising that metal alkyl complexes are so widely studied. Frankland with his discovery of ZnEt 2 in 1849 laid the foundation for the tremendous body of research that has since been done along these lines. Bond activation (carbon-carbon, carbon-hydrogen, carbon-nitrogen, etc.) achieved by transition metal complexes is invaluable providing numerous synthetic routes to various useful products. This chapter will provide background information 1

PAGE 17

2 concerning transition metal alkyl complexes and transition metal mediated bond activation. Synthesis of Transition Metal Alkyl Complexes In a very basic sense, one can think of a metal alkyl as the result of combining an alkyl anion with a metal cation. The amount of stability achieved by this union is highly dependent on the metal in question. As one examines the metals present in the periodic table, it is noted that the electronegativity increases as one goes from left to right in a given period as well as descending in a given group. As a result of this trend, the nature of the metal-carbon bond is altered in nature as the metal is changed. Consider the compounds NaCH 3 and Mg(CH 3 ) 2 The bonding in the former is essentially ionic while the bonding in the latter is classified as polar covalent. The polar covalent materials oxidize readily in air and also hydrolyze in the presence of moisture, even with traces of humidity, to form M-OH and release RH. For this reason, care must be taken to ensure that these materials are stored in an environment free from both moisture and air. The alkyl complexes of the later transition metals show a greater stability with respect to moisture and air oxidation due to the essentially covalent nature of the M-C bond resulting from the increased electronegativity of the metal. The Hg-C bond, for example, is so robust that the [Hg-Me] + ion is stable in aqueous sulfuric acid under an air atmosphere. This trend can be observed in pictorial form in Figure 1.1, which plots nucleophilic reactivity vs. metal electronegativity. [1]

PAGE 18

3 Figure 1.1. Plot of nucleophilic reactivity vs. metal electronegativity in M-C bond s. Figure reproduced from ref. 1. Also evident from the graph is the fact that the nature of the hybridization of the carbon also a factor determining bond strength. This increasing stability is ae of the s character of the orbital housing the lone pair on the e s cter increases, the lone pair is more stabilized. This results in ity. ommon route used to synthesize transition metal alkyl complexes involves sfer reagents such as Grignard reagents and alkyl lithium reagents. These ly a urce of carbanion which performs nucleophilic attack on the er. There are several other synthetic routes to yield metal alkyl complexes, some of which are outlined in Table 1.1. With the numerous synthetic methods available, etal alkyl complexes attainable is virtually limitless. of the M-C bond is attributed to the increcarbon atom. As th s harac a decrease in reactiv The most calkyl tran reagents are primari so metal cent the number and variety of transition m

PAGE 19

4 T able 1.1. Synthetic methods for preparing transition metal alkyl complexes. Alkylating reagent M-X +M'-RM-R+M'-X Electrophilic attack of the metal center (LnM)-+ R -XLnM-R + XOxidative coupling of alkenes and MM + C=C alkynes Oxidative addition M + R-HR-M-H Insertion M-H +C=CM H -Bond Metathesis R MH-H M-R' + R M-R + R'-H 1,2-Addition LnM=NR + R'-HLnMNHR R' Cyclometallation C-H L+ML C-M-H Decomposition of Transition Metal Alkyl Complexes 2, a considerable effort was focused on synthesizing other transition metal alkyl complexes. Much of this effort, however, resulted only in the synthesis of low-valent metal species and organic decomposition products. These findings were a consequence of numerous pathways by which transition metal alkyl complexes decompose. Identifying and understanding these pathways is just as important as being familiar with methods used to synthesize these types of complexes. In Following the discovery of ZnEt [6]

PAGE 20

5 addition to using the knowledge of these decomposition pathways to synthesize stabtransition metal alkyl complexes, one can take advantage of these pathways to incorporate them into a synthetic method. This can be achieved by more or less engineering an alkyl complex that will strategically decompose into the desired product. A good understanding of the decomposition pathways of transition metal alkcomplexes is necessary if one desires either to avoid or employ them. -Hydrogen Elimination le yl d the t is that there is an empty orbital on the metal which can accept the pair of electrons that form the -carbon-hydrogen bond and will ultimately constitute the metal-hydride bond. The mechanism by which -hydrogen elimination takes place is illustrated in Figure 1.2. The box in the diagram nter. The coordinated olefin may or mechanism. Having identified -hydrogen elimination as the major decomposition pathway of transition metal alkyl complexes and noted the criteria necessary for its occurrence, it is now important to discuss measures that one can take in order to synthesize transition metal alkyl complexes that will be stable with respect to -hydrogen elimination. One of the more obvious ways to circumvent this form of decomposition is to use alkyl One cannot speak about transition metal alkyl complexes without discussing -hydrogen elimination. This form of elimination is considered to be the major decomposition pathway for alkyl complexes. [7] In order for -hydrogen elimination totake place, there are some criteria that must first be met. First, the -carbon of the alkyl substituent must bear a hydrogen atom. Secondly, the nature of the alkyl chain an steric environment around the metal center must be able to accommodate a roughly coplanar M-C-C-H arrangement. [8] The final requiremen represents an empty coordination site on the metal ce may not stay bound to the metal as shown in the second step of the

PAGE 21

6 substituents that do not bear -hydrogens. Examples of some transition metal alkyl complexes lacking -hydrogens are shown in Table 1.2. LnMH2CCH2HLnMH2CHLnM-H+CH2=CHFigure 1.2. Mechanism for -hydrogen elimination. Table 1.2. Transition metal alkyl complexes lacking -hydrogens CH22 WMe6Ti(CH2Ph)4TaCl2(CH2CMe3)3C2F5Mn(CO)5 W(CHSiMe)LAuCFCFMe Pt(CHCOMe)Cl(NH) Pt(CCCF3)2L2 23622232 fragment must be able to form a syn-coplanar arrangement in the transition state. With this in mind, one can prepare stable transition metal alkyl complexes by selecting alkyl substituents that would have difficulty forming the syn-coplanar transition state. This can be achieved by employing bridgehead alkyl groups such as norbornyl and adamantyl groups.[9-11] -Hydrogen elimination from a compound of this nature would result in a very unfavorable situation, unsaturation at a bridgehead carbon (Bredts rule). In addition to bridgehead alkyls, one can hinder the formation of the coplanar intermediate at the metal center must have a vacant orbital that can accept a pair of electrons in order for -hydrogen As mentioned earlier, in order for -hydrogen elimination to occur, the M-C-C-H by forming metallacycles. The rigidity of the metallacycle itself hinders the formation ofthe transition state that would accommodate -hydrogen elimination. In Figure 1.3, there are pictorial representations of the types of stable compounds discussed in this section. One can also design complexes that are electronically saturated in order to synthesize stable transition metal alkyl complexes. Recall th

PAGE 22

7 M M1-norbornyl1-adamantylHHMetallacycle Figure 1.3. Metal alkyl complexes with hindered coplanar M-C-C-H transition states. elimination to be possible. When the transition metal complex is already electronicsaturated (18 electrons), -hydrogen elimination would have to proceed through an unfavorable 20-electron intermediate. There are cases where -hydrogen eliminatiobeen observed for 18 electron LnMally n has complexes, but in these instances, there is evidence that there is prior ligand dissociation in these complex that is stable towards -ill be discussed here. These are alkyl complexes of some d0 rogen R and (CH) as determined by IR. Figure 1.4 is an example of a complex with an agostic metal-hydrogen interaction. plexes. There is one more type of transition metal alkyl com hydrogen elimination that w metal centers. In order for the -hydrogen to be transferred to the metal center, the metalmust be sufficiently -acidic and -basic. In the case of some d 0 complexes, the metal center is too electron deficient to be -basic enough to break the carbon-hydrogen bond by backbonding into the orbital. What results are only a weakened carbon-hydbond and an agostic metal-hydrogen interaction. [12] The weakening of the carbon-hydrogen bond can be confirmed by the lowering of J(C,H) as determined by NM

PAGE 23

8 TiPPMe2CCH2HClCl Figure 1.4. Titanium complex with an agostic interaction. ClMe2H2-tuent which is then eliminated as alkane.[13] The mchanism is shown in Figure 1.5. -Hydrogen Abstraction Another common decomposition pathway for transition metal alkyl complexes is -hydrogen abstraction. Like -hydrogen elimination, this mechanism involves the hydrogen of an alkyl substituent. The difference between the two mechanisms lies in the fate of the hydride. In the -hydrogen abstraction mechanism, the hydride is not transferred to the metal center. It is instead transferred to an adjacent alkyl substi e M R'R' RHRR'Figure 1.5. Mechanism for -hydrogen abstraction. -Hydrogen Abstraction The final mechanism for the decomposition of transition metal alkyl complexes that will be discussed in this chapter is -hydrogen abstraction. In this mechanism, the hydrogen of the -carbon of an alkyl substituent is transferred to an adjacent alkyl substituent. The result is the formation of a metal-carbon double bond, or alkylidenethe elimination of alkane. The reaction is believed to proceed via a four-center transtate depicted in Figure 1.6. MM H+R-H and sition [14] The alkylidene complexes that are afforded by -hydrogen abstraction are themselves quite useful materials. These materials are capable

PAGE 24

9 of converting -olefins into internal olefins, performing ring opening metathesipolymerizations, and performing acyclic diene metathesis polymerizations. s [15, 16] LnMH2H2CR'LnMHCHHR'+CHLnMCHR CRCRH3R' ediated Bond Activation The activation of chemical bonds, especially carbon-carbon and carbon-hydrogen bonds, by metals is an interesting reactivity. Metals are widely used in the oil refining industry for this type of activity. Alkanes, or saturated hydrocarbons, make up the majority of the compounds found in crude oil, and the inert nature of these compounds is well known. In fact, alkanes are also called paraffins, a word derived from the Latin phrase parum affinis, which means without affinity. These compounds react with oxygen only at elevated temperatures to produce carbon dioxide and water. This reaction is important for the production of energy but is useless as a means of forming useful organic products. Reactivity can be observed from alkanes at lower temperatures, but highly reactive species such as free radicals or carbenes must be used. The problem with using such reagents is their lack of selectivity. The inert nature of alkanes is a consequence of their high bond strength and ionization potentials. A summary of such lues is shown in Table 1.3. The use of metals to activate hydrocarbon has proven to be hose Figure 1.6. Mechanism for -hydrogen abstraction. Transition Metal-M va very valuable. Using metals as catalysts, reactivity can be achieved with alkanes and other hydrocarbons under much milder conditions, i.e., lower temperatures, than t

PAGE 25

10 used in the absence of the catalyst. Also, greater selectivity can be achieved when usinmetal catalysts. Table 1.3. Characteristics of some alkanes and other hydrocarbons. Figure reproduced[17] g from Shilov and Shulpin. A logical place to begin a discussion about bond activation mediated by metals is heterogeneous catalysis. The surfaces of metals and metal oxides are capable of activating alkanes and other hydrocarbons towards various transformations. Some of these transformations are isomerization which leads to branching of straight chain alkanes, the cracking of which provides simpler alkanes from long chain alkenes, and dehydrogenation which provides unsaturated hydrocarbons. A summary of the various transformations is displayed in Figure 1.7.

PAGE 26

11 Figure 1.7. Reactions catalyzed by metal catalysts. Figure reproduced from ref 17. It is important to investigate just how these metal surfaces interact with hydrocarbons in order to activate them. The key to the activation is the chemisorption of the alkane to the metal surface. Calculations suggest that this chemisorption takes place by the

PAGE 27

12 formation of weak, three-center C-H-M bonds. [18, 19] The fashion in which methane is proposed to interact with a metal surface is illustrated in Figure 1.8. This interaction with the metal serves to weaken the C-H bond. The aforementioned problem of the C-H bond strength is now somewhat alleviated. This bond is now more reactive and various transformations can be performed under the appropriate conditions. Figure 1.8. Chemisorption of methane onto a metal surface. Figure reproduced from ref.17. The activation of hydrocarbons by transition metal complexes can be viewed similarly to activation by metal surfaces. A metal surface can be viewed as a metal atom surrounded by certain ligands, and this environment can be mimicked in a complex. Even transformations that require the simultaneous participation of several metal atoms on the surface can be reproduced by using cluster complexes. [18] One advantage of using metal complexes is that the homogeneous nature simplifies the elucidation of the mechanism. Conditions of the homogenous reactions are also generally much milder. In addition, one may even be able to trap an intermediate or view it spectroscopically. The methods by which these metal complexes activate hydrocarbons can be classified by the

PAGE 28

13 reaction type, and the types that will be discussed here are C-H oxidative addition and C-C oxidative addition. C-H Oxidative Addition The direct C-H bond activation of hydrocarbons is very valuable. It makes the conversion of inert alkanes into synthetically useful organic compounds possible. [18] This type of reactivity by transition metal complexes was first observed by Goldshle et. al. They observed H/D exchange with CH 3 COOH and various alkanes in the presence of [PtCl 4 ] 2 [20] The key step in this process is the cleavage of the C-H bond. This is proposed to happen via an alkane complex. The overall mechanism for C-H oxidative addition is shown in Figure 1.9, and the alkane complex is noted. Proceeding to A from the alkane complex is generally unfavorable for a couple of reasons. First, a strong C-H bond (~ 96 kcal/mol) is broken in exchange for two weaker bonds, an M-C bond (~ 30 kcal/mol) and an M-H bond (~ 60 kcal/mol). Bond strengths mentioned above vary depending on the alkane and the metal involved. Secondly, the process is disfavored entropically because two particles become one. Even though the transition from the alkane complex to A is usually unfavorable, species A is present in small, equilibrium quantities. This species can then be trapped by subsequent steps that are thermodynamically favorable to lead to useful products. In the previous paragraph, the impression may have been given that C-H oxidative addition by metal complexes is always unfavorable and not very efficient. This is, however, not the case. For example, two Ir systems, Cp Ir(PMe 3 )H 2 and CpIr(CO) 2 are capable of performing C-H oxidative addition to form stable products without the aid of subsequent reactions. [20, 21] Each of these complexes becomes a very reactive 16-electron species following photon induced loss of H 2 or CO, respectively. It is this activated

PAGE 29

14 species that oxidatively adds the C-H bonds. There is also evidence that metal complexes can be quite efficient at oxidatively adding C-H bonds. In Figure 1.10, there is a relatively efficient catalytic cycle that involves C-H oxidative addition. [22] Clearly the cleavage of C-H bonds is difficult, but properly designed metal complexes can achieve this feat with relative ease. LnMRHLnMRHAlkane complexLnMHRLnMR+H+AB Figure 1.9. Mechanism for C-H activation by metal complexes. C-C Oxidative Addition When compared to C-H oxidative addition, C-C oxidative addition is even less favorable. First we must consider that two relatively weak M-C bonds are formed at the cost of breaking a C-C bond (~ 85 kcal/mol). In addition, C-C bonds are less accessible. For these reasons, direct C-C bond breaking has only been observed for strained alkanes. The relief of the strain upon C-C bond cleavage provides the additional driving force for the reaction to proceed. An example of such a system is shown in Figure 1.11. [23, 24] The rearrangements of some strained hydrocarbons are also believed to proceed by C-C bond activation. In this thesis, research involving W(VI) dialkyl complexes is presented, including synthesis and characterization. Through investigating the reactivity of these compounds,

PAGE 30

15 Figure 1.10. Catalytic cycle incorporating C-H oxidative addition. Figure reproduced from ref. 1.

PAGE 31

16 PtCl2PtCl2n Figure 1.11. C-C bond activation of strained alkane. a product that is generated via a rare C-N single bond activation was isolated. Research involving the synthesis of bis-alkoxy complexes from a W(IV) bis-pyridine complex is also presented. It was shown that the reaction proceeded via C-H activation of pyridine and that the reaction is highly stereoselective. Also included is research involving tungsten nitride precursor synthesis. Within this project several novel guanidinate and amidinate complexes of tungsten were synthesized and investigated with mass spectrometry and crystallography experiments.

PAGE 32

CHAPTER 2 SYNTHESIS, STRUCTURE, AND REACTIVITY OF DIALKYL COMPLEXES Synthesis of W(VI) Dialkyl complexes This work is focused on the chemistry of W(VI) imido dichloride and dialkyl complexes stabilized by a chelating diamide ligand derived from N,N-bis-trimethylsilyl-1,8-diaminonapthalene [1,8-(Me 3 SiN) 2 -C 10 H 6 ]. [25] The results obtained from this work can be compared to those from previous research involving analogous complexes using a different ancillary diamide ligand, [o-(Me 3 SiN) 2 C 6 H 4 ]. [26, 27] With all other things being equal, one can view any observed differences in stability, reactivity, etc. as a ligand effect. The results discussed in this chapter need not only be viewed in a comparative sense because the complexes herein are novel in their own right. To begin investigating the differences between the ligand systems discussed in the previous paragraph, a logical place to start is the solid state structure of the respective dichloride starting materials (Figure 2.1). In both systems, there is a folding of the diamide ligand along the N-N vector. In the system involving [o-(Me 3 SiN) 2 C 6 H 4 ], or (TMS) 2 Pda, this fold angle is 131.8 o (A in Figure 2.1). In the [1,8-(Me 3 SiN) 2 -C 10 H 6 ] system, this fold angle is 119.3 o (B in Figure 2.1). This makes the coordination site trans to the imido ligand more sterically encumbered in the latter. Also, the bite angle between in the diamide systems about the metal center (N-M-N) is 83.9(4) o in the former and 89.0(3) o in the latter. There are a couple of consequences that result from the increased bond angle. First, the bulky TMS groups on the nitrogen atoms in B are in a position that is more central in the basal plane relative to A. Also, the orbital overlap of the nitrogens 17

PAGE 33

18 with the metal center is different. The differences discussed here may seem subtle, but when viewed collectively, one can appreciate their significance. WNNNMe3SiMe3SiClClNNMe3SiMe3SiNWClClABFold AngleFold Angle Figure 2.1. Structure of tungsten dichloride starting materials. The synthesis of the dichloride starting material, W(NPh)(1,8-(Me 3 SiN) 2 -C 10 H 6 )(Cl) 2 1, involves reaction of the dilithium salt of [1,8-(Me 3 SiN) 2 -C 10 H 6 ] 2with W(NPh)(Cl) 4 (OEt 2 ) in diethyl ether. The dilithium salt is generated in situ by deprotonating 1,8-(Me 3 SiNH) 2 -C 10 H 6 with n-BuLi. The overall synthesis is illustrated in Figure 2.2. [25] This reaction is relatively successful on large scale (~ 18 g of W(NPh)(Cl) 4 (OEt 2 ) giving a yield of 70%. Compound 1 is a black, air and moisture-sensitive solid. This material is indefinitely stable in solution or in the solid state at room temperature if stored under an inert atmosphere. Compound 1 is very well suited for synthesizing a variety of alkyl complexes. As indicated in Figure 2.1, the chloride ligands are cleanly displaced by carbanion equivalents. It was determined experimentally that Grignard reagents provided better results than lithium reagents. Reactions involving lithium reagents led to complex

PAGE 34

19 NH2 NH2 1. 2 TMSCl2. NEt3 NH NH SiMe3 SiMe3 1. 2 n-BuLi2. W(NPh)(Cl)4(OEt2) N N W Me3Si SiMe3 N Cl Cl 2 RMgClN N W Me3Si SiMe3 N R R R = Me (2), CH2Ph (3), CH2CH2Ph (4)0oC-oC-78oC12 4 78 Figure 2.2. Synthesis of W(VI) dialkyl complexes. mixtures of products from which the desired alkyl complexes could not be isolated. The alkyl complexes, 2-4, are all air and moisture-sensitive solids that have a limited solubility in hydrocarbon solvent, but are soluble in ether, THF, and aromatic hydro-carbons. All of the alkyl complexes are indefinitely stable at room temperature in an inert environment. Noteworthy is the fact that compound 4 is stable even though the metal center is both electronically and coordinatively unsaturated and the alkyl substituents have -hydrogens. The room temperature 1 H and 13 C NMR spectra of the alkyl complexes all exhibit equivalent TMS groups. This observation is consistent with a square pyramidal structure. Also, in the 1 H NMR spectra of compounds 3 and 4, the protons of the respective CH 2

PAGE 35

20 groups are diastereotopic. This is due to the fact that even though the protons are bonded to the same carbon atom, there is no symmetry operation that equates them. Structure Study for W(VI) Dialkyl Complexes Single crystal X-ray diffraction studies were performed on compounds 2 and 3. The crystals were grown by slow evaporation of pentane and d 6 -benzene solutions, respectively. The thermal ellipsoid plots are displayed in Figures 2.3 and 2.4, and selected bond lengths and angles are provided in Tables 2.1 and 2.2. Some general comments about the structures are warranted. Both of the structures have short W-N(imido) bond lengths (~1.74 ). Also, in both cases the W-N-Ph angle is close to being linear. These two observations are consistent with a W-N triple bond and are within range observed for tungsten-imido complexes. [28] In this type of bonding, there is donation of the nitrogen lone pair into an empty d orbital on the metal center. Other features to note are the bond lengths between the metal center and the carbon atoms of the alkyl chains. The bond lengths (2.17(3)-2.24(3) ) are within range for a typical W(VI)-C bond. [29] There is no evidence either spectroscopically or structurally for any agostic interactions even though the metal center is coordinatively and electronically unsaturated. Each of the five coordinate complexes assumes a square pyramidal structure about the tungsten center, and the imido ligand occupies the axial position. In both structures, the metal sits above the plane defined by the two nitrogens of the diamide ligand and the two carbon atoms of the alkyl chain. Just as in the dichloride starting material, the diamide ligand is folded along the N-N vector resulting in dihedral angles of 120.1 o and 119.0 o for 2 and 3, respectively.

PAGE 36

21 Figure 2.3. Crystal structure of 2. Thermal ellipsoids are drawn at 40% probability, and hyrdrogens have been omitted for clarity.

PAGE 37

22 Figure 2.4. Crystal structure of 3. Thermal ellipsoids are drawn at 40% probability and hydrogens have omitted for clarity.

PAGE 38

23 Table 2.1. Summary of selected bond lengths () and angles ( o ) for 2. W-N1 1.763(2) N1-W-N2 112.10(10) N1-W-C17 101.13(10) W-N2 1.991(2) N3-W-N2 88.04(8) N3-W-C17 85.08(10) W-N3 1.979(2) N1-W-C18 102.82(10) N2-W-C17 145.22(10) W-C17 2.182(3) N3-W-C18 138.01(10) C18-W-C17 78.33(12) W-C18 2.167(3) N2-W-C18 84.40(11) Table 2.2. Summary of selected bond lengths () and angles ( o ) for 3. W-N1 1.741(3) N1-W-N3 112.39(11) N1-W-C23 82.31(9) W-N3 1.957(2) N1-W-N2 113.15(9) N3-W-C23 139.34(10) W-N2 2.019(2) N3-W-N2 87.94(9) N2-W-C23 82.31(9) W-C30 2.202(3) N1-W-C30 99.53(10) C30-W-C23 77.11(10) W-C23 2.242(3) N3-W-C30 89.87(9) Tungsten Mediated C-N Bond Activation Complexes 2-4 are all electronically and coordinatively unsaturated, and, therefore, should be able to accommodate the coordination of a Lewis base-type donor ligand. To this point, adducts of either PMe 3 or t-butyl isocyanide have not been observed. It is likely that steric congestion around the vacant coordination site caused by the bulkier ligand is responsible for making coordination less facile. The results of some experiments suggest that 4 may coordinate PMe 3 at elevated temperature and react further.

PAGE 39

24 When compound 4 in benzene solution is exposed to excess PMe 3 for 48 hours at 70 o C, the solution slowly changes in color from dark purple to wine red. The product that is isolated upon work-up is compound 5 (Figure 2.5). An interesting observation about this reaction is that in going from reactant to product, there is the activation of a C-N single bond. The observation of direct C-N single bond activation is rare. Activation of C-N multiple bonds are more common. [30, 31] Furthermore, the observation of this type of reactivity has mostly been limited to strained amines and amidines. [32-34] C-N activation of a similar nature has been achieved by a Mo(IV) bis-pyridine complex. [35] The mechanism proposed for the formation of 5 involves -hydrogen transfer induced by ligand coordination. This type of reactivity has been observed previously in the TMSpda system. [26] This reactivity itself is unusual because -hydrogen transfer is actually induced by increasing the coordination number of the metal. The first step in the mechanism is the reversible coordination of PMe 3 This coordination promotes -hydrogen transfer to form a styrene complex with the release of ethyl benzene. This intermediate possesses a reactive W(IV) center which oxidatively adds a C-N bond of the chelating diamide ligand with the release of styrene. When this reaction is followed by 1 H NMR, free ethyl benzene and styrene are both observed. The formation of the W-N triple bond appears to be the driving force for the reaction. An illustration of this proposed mechanism is shown in Figure 2.5. Single crystals of 5 suitable for X-ray diffraction studies were obtained and its structure was determined (Figure 2.6). The complex adopts a distorted TBP structure with the nitrogen of the chelating ligand and the PMe 3 ligand occupying the axial positions. Both the W-NPh and W-NTMS bonds are relatively short (1.783(2) and

PAGE 40

25 1.775(2) respectively) and the W-N-C and W-N Si bond angles are close to linear. These findings are consistent with W-N triple bonds. In addition, the W-C bond distance (2.222(2) ) is consistent with a W(VI)-C single bond. Other selected bond lengths and angles are shown in Table 2.3. Table 2.3. Selected bond lengths () and angles ( o ) for 5. W-N3 1.775(2) N3-W-N1 113.66(10) N2-W-C7 77.27(8) W-N1 1.783(2) N3-W-N2 102.92(9) N3-W-P1 86.14(7) W-N2 2.072(19) N1-W-N2 105.69(8) N1-W-P1 83.99(7) W-C7 2.221(2) N3-W-C7 123.85(9) N2-W-P1 162.21(6) W-P1 2.537(6) N1-W-C7 120.26(9) C7-W-P1 84.96(7) In conclusion, it is evident that compound 1 is a convenient material for the synthesis of a variety of new W(VI) complexes. Stable dialkyl complexes, 2-4, have been synthesized. These compounds have been fully characterized by 1 H and 13 C NMR. In addition, it has been shown that compound 4, though stable, is capable of further activity. Thermolysis of 4 in the presence of PMe 3 yields the bis-imido complex 5 via an uncommon C-N single bond activation. This type of reactivity is indeed interesting.

PAGE 41

26 WNNMe3SiMe3SiNPMe3WNNMe3SiMe3SiNPMe3WNNMe3SiMe3SiNPMe3HEtPhWNNMe3SiMe3SiNPMe3StyreneWPMe3NSiMe3NNSiMe354 Figure 2.5. Proposed mechanism for the formation of 5.

PAGE 42

27 Figure 2.6. Crystal Structure of 5. Thermal ellipsoids are drawn at 40% probability, and hydrogens are omitted for clarity.

PAGE 43

CHAPTER 3 SYNTHESIS, CHARACTERIZATION, AND STRUCTURE OF W(VI) BIS-ALKOXY COMPLEXES Synthesis of bis-Alkoxy Complexes The work discussed in this chapter was initiated by some unpublished results attained by Ryan Mills. The results were obtained by reacting a W(IV) complex, W(NPh)(o-(Me 3 SiN) 2 C 6 H 4 )(C 5 H 5 N) 2 (6) [36] with two equivalents of acetone. The general reaction scheme is illustrated in Figure 3.1 and the crystal structure of the product is shown in Figure 3.2. The product that was generated was a bis-alkoxy, six-coordinate W(VI) complex (7). The generation of this product was unexpected, and a study to determine the generality and mechanism of this reaction was undertaken. WN N NN Me3Si Me3Si N O WO N N N Me3Si Me3Si O H N THF+230 min.7 6 Figure 3.1. Reaction of W(IV) pyridine complex with two equivalents of acetone. To begin investigating the generality of this type of reactivity, it was desired to determine if the same reactivity that the W(IV) starting material displayed with ketones would be observed with aldehydes. Due to convenience, the first aldehyde that was used 28

PAGE 44

29 Figure 3.2. Crystal structure of 7. Thermal ellipsoids are drawn at 40% probability and hydrogens have been omitted for clarity.

PAGE 45

30 in these experiments was benzaldehyde. The 1 H and 13 C NMR data of the product of this reaction were consistent with a structure that would be analogous to that of the product of the acetone reaction, however further characterization was needed. The presence of several overlapping aromatic protons and carbons impaired peak assignment. Also, all attempts to grow crystals of this material suitable for diffraction studies failed. The experiment was then repeated substituting p-tolualdehyde for benzaldehyde. The p-tolualdehyde substrate was chosen for primarily two reasons. First, the 1 H NMR spectrum of the product would have an aromatic region that would be simpler by two protons. This could potentially reduce the problem of overlapping peaks. Secondly, suitable single crystals for X-ray diffraction studies may be more easily obtained from the p-tolualdehyde derivative. Upon obtaining the product of the reaction and 1 H and 13 C NMR data thereof, the problem of overlapping aromatic protons and carbons persisted. A series of two-dimensional NMR experiments (COSY and NOESY) were used to fully characterize this material by NMR. The characterization of the compounds synthesized in the project is discussed in the following section. Along with p-tolualdehyde, p-anisaldehyde, and 2-thiophene carboxaldehyde were also tested. A summary of all of these experiments is shown in Figure 3.3. Special note should be made of the experiment involving 2-thiophene carboxaldehyde. The reactant was chosen due to reactivity observed and reported concerning the W(IV) bis-pyridine complex and thiophene. The W(IV) complex is capable of oxidatively adding the carbon-sulfur bonds of thiophene. [37] By choosing a thiophene with an aldehyde substituent, it could determined which type of reactivity

PAGE 46

31 WN N NN Me3Si Me3Si N +H R O WN N N Me3Si Me3Si O N R Hc 2Et2O30 min. O R R = C6H5 (8), C6H4CH3 (9), C6H4OCH3 (10), C4H3S (11)Hb Ha 8 11 Figure 3.3. Synthesis of W(VI) bis-alkoxy complexes 8-11.would be preferred: formation of a bis-alkoxy complex or C-S activation. The only product observed in this reaction is the bis-alkoxy complex shown in Figure 3.3. Characterization of bis-Alkoxy Complexes As mentioned in the previous section, characterization of the complexes discussed in this section was complicated by the presence of numerous overlapping aromatic protons. Full assignments of the 1 H and 13 C NMR spectra are given in the experimental section, but some features of the spectra are worthy of note here. The spectra of all of these compounds display inequivalent TMS methyl groups in both proton and carbon NMR. There are also a couple of interesting features in the 1 H NMR spectra of these compounds regarding protons on the carbon atoms immediately adjacent to the oxygen atoms. First, the proton on the carbon that links the pyridine ring to the R group formerly of the aldehyde (H c in Figure 3.3) appears as a sharp, tall singlet at ~6.4 ppm in these complexes. Secondly, on the other alkoxy linkage, the two protons (H a and H b in Figure 3.3) on the carbon appear as an AB quartet at ~5.8 ppm. Other features that are common to these complexes are associated with the 6-position of the pyridine ring. The carbon of this position shows up at ~158 ppm or higher, and the proton at this position shows up as

PAGE 47

32 a doublet at ~8.4ppm. Another interesting observation associated with this chemistry is that even though two chiral centers are generated in the product, the W center and the carbon atom bound to the 2-position of pyridine, we only observe one of the possible diastereomers. This reflects the very selective nature of this reaction. The proton NMR spectrum of 10 is shown in Figure 3.4. In this spectrum, the inequivalent methoxy groups are also visible as two singlets at ~3.2 ppm. Single crystals suitable for X-ray diffraction studies were obtained for 10, and its structure was determined (Figure 3.5). The overall structure is distorted octahedral with the two oxygens mutually cis. There is a key difference in the structure of this complex when compared to the structure of 7. In 7, one of the alkoxy substituents occupies the position trans to the pyridine ligand. In the structure of 8, the imido ligand occupies this position. The steric bulk of the alkoxy substituent in 7 prevents it from being able to be in the same plane as the bulky TMS groups and the other alkoxy ligand. A table of selected bond lengths and angles for 10 is found in Table 3.1. Table 3.1. Selected bond lengths () and angles ( o ) for 10. W-N1 1.731(7) N1-W-O2 98.4(3) N1-W-N2 103.1(3) W-O2 1.934(6) N1-W-O1 94.0(3) O2-W-N2 156.8(3) W-O1 1.968(6) N2-W-O1 97.5(2) O1-W-N2 89.8(3) W-N3 2.027(7) N1-W-N3 107.0(3) N3-W-N2 79.2(3) W-N2 2.049(7) O2-W-N3 86.2(3) N1-W-N4 165.0(3) W-N4 2.291(7) O1-W-N3 158.0(3) O2-W-N4 77.5(2) O1-W-N4 72.6(3) N3-W-N4 87.3(3) N2-W-N4 83.8(3)

PAGE 48

33 Mechanistic Study of the Formation of bis-Alkoxy Complexes As mentioned earlier, there was interest in probing the mechanism for the formation of the complexes discussed in this chapter. By looking at the structure of the compounds, a first hypothesis concerning the identity of an intermediate species was formulated. It was logical that the products resulted from the 1,2-insertion of the carbonyl group of the ketone or aldehyde in question into the W-C and W-H bonds of a pyridyl hydride intermediate (Figure 3.6). This intermediate would result from C-H bond activation of the 2-position of one of the pyridine rings present in the starting material. To test this hypothesis, a deuterated pyridine analogue of the W(IV) bis pyridine complex 6 was synthesized. If the mechanism that we proposed is valid, then either H a or H b in Figure 3.3 would be replaced by deuterium, and the AB pattern observed in the 1 H NMR spectrum would disappear. When the experiment was carried out using p-tolualdehyde, the 1 H NMR spectrum of the product was consistent with the working hypothesis (Figure 3.7). The coupling has been removed and the proton at this position appears as a singlet at ~5.6 ppm. There is another small singlet that appears at ~5.8 ppm. This is observed because of the presence of a second isomer in which the positions of the proton and the deuteron have been swapped with respect to the major isomer. The major isomer is present in a 10-fold excess. The fact that this isomer is present in such a small quantity is once again testament to the selectivity of this reaction. These findings are at least consistent with the reaction proceeding through a pyridyl hydride intermediate like the one pictured above. No such intermediate has been observed spectroscopically, so its identity is not certain. It is also unknown if the intermediate is present when the starting

PAGE 49

34 Figure 3.4. 1 H NMR spectrum of 10.

PAGE 50

35 Figure 3.5. Crystal structure of 10. Thermal ellipsoids are drawn to 40% probability and hydorgens have been omitted for clarity.

PAGE 51

36 material is in solution in some small equilibrium concentration or its formation is induced by the coordination of the carbonyl substrate. At the very least it has been demonstrated that C-H activation of the 2-position of one of the pyridine ligands is achieved by the W center. In conclusion, we have shown that we can synthesize a variety of bis-alkoxy complexes by reacting 6 with acetone and various aldehydes. These compounds are very stable, octahedral complexes. The formation of these products proceeds very selectively, yielding only one diastereomer while three chiral centers are generated. The mechanism of this reaction has been investigated by performing a deuterium labeling experiment, and it was confirmed that the reaction involves the C-H activation of the 2-position of pyridine. Crystal structures of two of the compounds in this series have been obtained. From these data, the effect of ligand bulk on spatial arrangement about the metal center can be observed.

PAGE 52

37 WNNHNMe3SiMe3SiNWNNNNMe3SiMe3SiNROHROHWNNONMe3SiMe3SiNRWNNONMe3SiMe3SiNROHRROHWNNONMe3SiMe3SiRONR Figure 3.6. Proposed mechanism for the formation of bis-alkoxy complexes.

PAGE 53

38 Figure 3.7. 1 H NMR spectrum of deuterated 9.

PAGE 54

CHAPTER 4 METAL-ORGANIC CHEMICAL VAPOR DEPOSITION OF TUNGSTEN NITRIDE FROM TUNGSTEN IMIDO PRECURSORS The focus of this work is to produce films of tungsten nitride from single-source precursors. 1 The tungsten nitride films are intended to serve as Cu diffusion barriers in integrated circuits. As feature sizes on integrated circuits (ICs) become smaller, the need for a thin, effective barrier to prevent intermixing of silicon and metallization layers becomes more critical. Copper is being increasingly used as the interconnect metallization for various levels on ICs due to its lower bulk resistivity, greater resistance to electromigration, and diminished contact resistance relative to aluminum. [38] Un-fortunately, copper has much higher mass diffusivity in silicon than does aluminum, making diffusion barrier performance even more crucial. [39] Ideally, diffusion barrier materials used in ICs should have amorphous film structure, low resistivity, good conformality over different device features, and low deposition temperature ( 500 C). Material selection is vital to a successful diffusion barrier. Use of refractory metal thin films as diffusion barriers failed due to the formation of grain boundaries, which are facile pathways for Cu migration to the underlying substrate. [40] Refractory metal nitrides, such as tantalum nitride (TaN) and tungsten nitride (WN x ), however, are 1 Film growth and characterization were performed by Omar Bchir, Kelly Green,and Mark Hlad in Prof Timothy Andersons research group in the Department of Chemical Engineering at the University of Florida. Mass spectrometry was performed by Dr. David Powell at the University of Florida. Dr. Benjamin Brooks assisted with synthesis and sample preparation. 39

PAGE 55

40 promising diffusion barrier materials for Cu metallization. [41] Excess nitrogen in these films accumulates at the grain boundaries during polycrystal formation, which is believed to hinder Cu diffusion. Nitrogen atoms at the grain boundary significantly reduce diffusion through a stuffing process, which involves repulsive Cu-N interactions. [42, 43] Although TaN is currently used as a copper diffusion barrier material for intermediate level wiring in IC applications, [44] WN x offers several advantages. These include superior adhesion to copper, [45] more efficient subsequent processing (e.g., ease in use of chemical mechanical polishing or CMP), [46] and potential use as an electrode layer to enable seedless copper electrodeposition. [47] In addition to material selection, diffusion barrier properties are heavily influenced by the choice of technique and conditions used to deposit the film. Chemical vapor deposition (CVD) operating in the kinetically limited growth regime is a technique that is well suited to deposit highly conformal films. Selection of appropriate precursors for the CVD process may enable deposition of amorphous films at low temperature. One variant of CVD depends on reduction of halide precursors to deposit films. In another variant, metal-organic chemical vapor deposition (MOCVD), material is deposited on the substrate surface by reaction of one or more carbon-containing vapor phase precursor compounds. Both of these variants are often operated at low pressure to increase mass transfer rates to the extent that deposition is reaction limited, thus producing more conformal films. The typical strategies for CVD of multi-element barrier materials involve the use of either single-source or co-reactant precursors. Co-reactant deposition uses a separate precursor for each element desired in the film; hence, bonds between these elements must

PAGE 56

41 be formed by intermolecular processes during deposition. In contrast, a single-source precursor already has bonds established between the elements that will comprise the film prior to deposition. This approach is particularly useful when the bond strengths in the individual precursor candidates, and thus decomposition temperatures, are quite different. Previous examples of WN x deposited by CVD are dominated by co-reactant systems using NH 3 as the nitrogen source (Figure 4.1). Early examples employed WF 6 WCl 6 or WO 3 as the tungsten source. [48-55] Unfortunately, the high temperatures required for reaction of metal halides with NH 3 (greater than 500 C), [56] along with the resulting reactive by-products (e.g., hydrogen halides), [57, 58] are two major drawbacks to barrier deposition by co-reactant metal halide processes. Figure 4.1. Tungsten nitride growth via co-reactant and single-source techniques. More recently, organometallic precursors have been employed in co-reactant systems. Accordingly, W(CO) 6 and NH 3 have been used to deposit amorphous WN x films below 275 C. [59] In a similar study, deposition of WN x from W(CO) 5 (C 5 H 11 NC)

PAGE 57

42 and NH 3 was reported in the temperature range 250 to 400 C. [60] In the sole prior example of a single-source precursor for WN x deposition, polycrystalline thin films were obtained by pyrolyzing the bis(imido) bis(amido) complex ( t BuNH) 2 W(N t Bu) 2 in the temperature range 450 to 650 C. [61-63] Recently, MOCVD of amorphous WN x thin films were deposited from benzonitrile solutions of the single-source imido precursor W(N i Pr)Cl 4 (CH 3 CN) (12a) as a mixture with the benzonitrile derivative 12a. [64, 65] The properties of these films were compared with those of films deposited from the other reported tungsten imido precursor, ( t BuNH) 2 W(N t Bu) 2 [64, 65] Mass spectrometry was used to probe the fragmentation patterns of 12a. Care must be taken in using mass spectral data to predict CVD behavior since the latter is thermal in nature. [66] Nevertheless, mass spectrometry does provide insights into the relative fragmentation characteristics of various precursors. [67] N-C cleavage in tungsten imido precursors is vital for the formation of tungsten nitride, therefore it is promising when fragments resulting from N-C cleavage are observed in mass spectral data. The relative abundances of these promising fragments can also be used to compare one precursors potential to another. In this chapter, mass spectrometry and film growth studies involving W(NPh)Cl 4 (L) (L = NCMe 13a, L = NCPh 13a, L = OEt 2 13b) will be discussed. [68] Compound 13a was previously prepared by Nielson. [69] Compound 13b was previously prepared by Schrock. [70] Compound 13a was not isolated but generated in situ. The results will be compared with those generated from studies involving 12a and 12b. Relationships involving N-C bond strength, mass spectrometry data, and subsequent film properties will also be discussed.

PAGE 58

43 Mass Spectrometry Investigations. In the mass spectrometry investigations, positive ion electron-impact ionization (EI) and negative ion electron capture chemical ionization (CI) mass spectral techniques were used. As observed in the mass spectra of the isopropyl precursor (12a), no molecular ion was detected for 13a using either ionization method. The base peak in the EI spectrum occurs at m/z 382, and corresponds to the fragment [Cl 3 W(NPh)] + The highest mass peak observed in the EI spectrum was [Cl 4 W(NPh)] + at m/z 417 (9% abundance). Interestingly, although the high mass envelopes correspond to fragments in which acetonitrile is lost, only a small amount (~1% abundance) of the [CH 3 CN] + ion was detected at m/z 41 in the EI spectrum of 13a. The presence of the [Cl 4 W] + and [Cl 3 W] + fragments suggests cleavage of the W-N bond occurs in the gas phase. Furthermore, observation of the [Ph] + fragment (m/z 77) indicates that the critical N-Ph bond is broken to some extent under EI conditions; however, there is no evidence of a metal nitrido fragment in the resulting spectrum. Moreover, the base peak in the NCI spectrum corresponds to [Cl 4 W(NPh)] (m/z 417) while the mass envelope of the nitride fragment [Cl 4 WN] (m/z 340) has a relative abundance of 4%. The presence of the fragment [Cl 5 W(NPh)] suggests that the nitrile ligand of 13a is removed during the process of heating the condensed phase sample to afford [W(NPh)Cl 4 ] 2 prior to ionization. The mass spectral data for phenylimido complex 13a and isopropylimido complex 12a show some similarities. For both, the most prevalent ion on the high mass end of the EI spectrum corresponds to [Cl 3 W(NR)] + although 13a does also exhibit lower abundance peaks from [Cl 4 W(NPh)] + This, coupled with the lack of molecular ion signals, is consistent with high lability of the nitrile ligand in both complexes. Moreover,

PAGE 59

44 the presence of the [Cl 5 W(NPh)] fragment in the NCI spectrum suggests that the lability of the nitrile ligand results in partial conversion of 13a to the dimer [W(NPh)Cl 4 ] 2 prior to ionizations. The observation of this chloride transfer process in 13a, but not 12a, is consistent with the greater electron withdrawing nature of the phenyl substituent, as compared to isopropyl. The most notable difference in the spectra of 13a and 12a concerns the fragments [Cl 3 WNH] + and [Cl 4 WN] Since these ions are derived from cleavage of the N-R bond of the imido moiety, they are critical to the CVD process. As shown in Table 1, [Cl 3 WNH] + appears in the EI spectrum of 12a with a relative abundance of 78%; however, this fragment is not present in the spectrum of the phenylimido complex 13a. Nevertheless, the presence of [Ph] + indicates the N-Ph bond is broken to a certain extent under EI conditions. The ion [PhN] + (m/z 91) was observed in very small relative abundance (<1%), and its subsequent fragmentation may be responsible for the small clusters of peaks centered at m/z 64, 51 and 37. [71] Even more striking is the fact that the [Cl 4 WN] fragment is the base peak in the NCI spectrum of 12a, but only accounts for 4% relative abundance in the phenylimido complex 13a. In relation to the use of W(NPh)Cl 4 (PhCN) (13a) as a precursor for tungsten nitride deposition, the mass spectral data of 13a and 12a suggest that the N-Ph bond is more difficult to break than the Ni Pr bond. This is consistent with the homolytic bond strength of the two N-R moieties. [72] The EI and CI mass spectra of 13a can be viewed in Figure 4.2. A list of EI and CI data for compounds 12a and 13a can be viewed in Table 4.1. Volatilization of the Precursor Deposition of thin films by MOCVD requires transport of the solid phenylimido

PAGE 60

45 precursor (13a) to the reactor in the vapor phase. Previous tests with similar complexes Figure 4.1. Positive ion electron-impact ionization (EI) and negative ion electron capture chemical ionization (CI) mass spectra of 13a.

PAGE 61

46 Table 4.1. Mass spectrometry data for 13a and 12a. Complex EI Fragments NCI Fragments m/z Abundance a,b 13a [Cl 4 W(NPh)] + 417 9 [Cl 3 W(NPh)] + 382 100 [Cl 4 W] + 326 7 [Cl 3 W] + 291 15 [PhN] + 91 <1 [Ph] + 77 22 [C 5 H 4 ] + 64 1 [C 4 H 3 ] + 51 10 [CH 3 CN] + 41 1 [C 3 H 2 ] + 38 1 [Cl 5 W(NPh)] 452 23 [Cl 4 W(NPh)] 417 100 [Cl 4 WN] 340 4 12a [Cl 3 W(N i Pr)] + 348 100 [Cl 4 W] + 326 26 [Cl 3 WNH] + 306 78 [Cl 3 W] + 291 30 [CH 3 CN] + 41 24 [Cl 4 W(N i Pr)] 383 42 [Cl 4 WN] 340 100 a Relative abundances were adjusted by summing the observed intensities for the predicted peaks of each mass envelope and normalizing the largest sum to 100%. b Values for 12a are from reference 64. in a solid source delivery system resulted in minimal precursor transport, due to the low vapor pressure of the compounds. Transport difficulties were overcome by using a nebulizer to generate an aerosol of the precursor/solvent mixture, which is conveyed by carrier gas to the reactor. Although benzonitrile is an appropriate solvent for deposition from isopropylimido complexes 12a,b, poor solubility of the phenylimido complexes in benzonitrile necessitated a co-solvent mixture of 10:1 benzonitrile:ether to achieve the same precursor concentration previously used with 12a,b. To determine the impact, if

PAGE 62

47 any, of the co-solvent on film composition, acetonitrile was tested in place of ether. AES results indicated similar film compositions regardless of the co-solvent used. Film Structure The films typically had a smooth, shiny metallic appearance with color varying from black to gold, depending on the deposition conditions. The desired WN x film structure and stoichiometry is face centered cubic (FCC) -W 2 N (-WN x x = 0.5), since this phase has the lowest resistivity. Resistivity is a concern given the desired application of the tungsten nitride films. In the ICs, high resistivity of the diffusion barrier leads to heating of the device, and this heating can cause device failure. X-ray diffraction (XRD) analysis was performed on the tungsten nitride films. XRD data can be used to determine crystal phase and degree of crystallinity. Figure 4.3 shows XRD data for films grown from 13a at temperatures from 475 to 750 C. The evolution of crystallinity with deposition temperature can be observed. There is a general trend of an increase in crystallinity with an increase of deposition temperature. This same trend was observed in previous work involving 12a. [65] Four characteristic peaks are evident, with relative peak intensities indicating that no preferred crystal orientation exists. Although the relative peak intensities in Figure 4.3 are consistent with the pattern for polycrystalline -W 2 N, the 2 peak positions lie between the standard values for -W 2 N and -W 2 C. Peak positions between these standard values suggest that carbon is mixing with nitrogen and vacancies on tungstens interstitial sublattice to form -WN x C y polycrystals. For the spectrum in Figure 4.3, primary reflections at 37.13 and 43.08 2 degrees are consistent with (111) and (200) -WN x C y growth planes, while additional reflections at 62.73 and 74.98 2 degrees indicate (220) and (311) planes, respectively.

PAGE 63

48 2 Degrees 304050607080 Intensity (Arbitrary Units) 01000200030004000 T=700 CT=650 CT=625 CT=600 CT=550 CT=525 CT=500 CT=475 CT=750 CT=575 CT=675 C-WNxCy(111)-WNxCy(200)Si(200) K Si(400) K Si(400) K -WNxCy(311) WOX -WNxCy(220) Figure 4.3. Change in XRD pattern with deposition temperature for WN x C y grown from 13a on Si (100) in a H 2 atmosphere. No peaks arising from the hexagonal WN or WC phases, or the body centered cubic (BCC) -W phase were evident for any of the films. As the temperature increases to 500 C, peaks appear at 23.48 (not shown) and 47.98 2 degrees, consistent with formation of tungsten oxide (WO x x 3). Repeated attempts to deposit films at 500 C resulted in formation of tungsten oxide, while peaks consistent with WN x are seen at all deposition temperatures above this. Reproducible deposition of tungsten oxide at a single temperature suggests that an air leak in the reactor system is unlikely to be the source of oxygen. Microstructure dependent, postgrowth oxygen incorporation is a likely cause of oxide formation, especially for low temperature, clean tungsten films with low carbon and nitrogen levels. This is due to

PAGE 64

49 lower contamination levels, which make these films less resistant to oxygen in-diffusion and reaction. The existence of a second oxygen incorporation pathway involving the Et 2 O co-solvent, however, cannot be ruled out. Diethyl ether is known to undergo both homogeneous and heterogeneous decomposition at temperatures near 500 C. [73, 74] Although oxide formation still occurs for films grown at 500 C from W(NPh) Cl 4 (PhCN) (13a) in a benzonitrile/acetonitrile mixture (no Et 2 O present), the size of the oxide crystallites is larger when the ether complex Cl 4 (Et 2 O)W(NPh) (13b) was used to generate precursor or when Et 2 O is the co-solvent. Even though the film is amorphous at 475 C, indicating that inadequate thermal energy is available to produce oxide polycrystals, the possibility of oxygen incorporation similar to that at 500 C cannot be ruled out. High levels of oxygen in the amorphous film, as demonstrated by AES data (vide infra), support this possibility. Film Composition For the intended application, the composition of the WNx films is very important. It is necessary to identify impurities like carbon and oxygen that can increase the resistivity and halides that can be corrosive. In these investigations Auger electron spectroscopy (AES) and XPS were used to identify and quantify the elements present in the films. AES results for films deposited from the phenylimido complex 13a indicate the presence of W, N, C and O (Figure 4.4). No chlorine was detected in the films by AES or XPS, placing an upper limit of ~1 at. % on Cl content. HCl is the thermodynamically favored gas phase chlorine-containing species, and was observed by residual gas analysis during deposition from 12a. It is assumed that HCl is the dominant gas phase chlorine-containing species for deposition from 13a as well. Neither Cl 2 nor chlorinated hydrocarbons were detected in the reactor effluent, leading to the conclusion

PAGE 65

50 that chlorine is lost from the precursor as HCl. From 475 to 500 C, the carbon level is constant at approximately 3 to 5 at. %. The carbon content jumps from 5 to 14 at. % between 500 and 525 C. Although XRD indicates -WN x polycrystalline deposition at 525 C, results for growth rate and sheet resistance (vide infra) at this temperature show strong deviation from the trends evident between 550 to 750 C. Given the proximity in deposition temperature of the carbon spike (525 C) to the anomalous tungsten oxide formation seen in the XRD (500 C), the two phenomena may be related. Above 550 C, the carbon content rises steadily from 9 to 22 at. % at 750 C. The increase in carbon content from lowest to highest deposition temperature reflects the increasing tendency of the hydrocarbon groups present in the precursor ligands and the solvent to deposit in the films at higher growth temperature. The initial nitrogen content of films grown at 475 C was 1 at. %. The nitrogen content increased to a maximum value of 3 at. % at 525 C as a consequence of decreased oxygen concentration through this range. The nitrogen concentration then decreased with increasing temperature, dropping below 1 at. % above 700 C. Although metal nitride barriers typically exhibit low nitrogen content at higher deposition temperatures (due to desorption of N 2 gas), the films deposited from 13a were nitrogen-deficient throughout the temperature range studied. This nitrogen deficiency in the films contrasts with XRD results in Figure 4.3, which indicate -WN x polycrystal growth at lower temperatures. This may indicate that -WN x C y polycrystal formation begins at temperatures below

PAGE 66

51 Deposition Temperature (C) 400500600700800 Concentration in Film (atomic %) 020406080100 Deposition Temperature (C) 400500600700800 Concentration in Film (atomic %) 020406080100 Deposition Temperature (C) 400500600700800 Concentration in Film (atomic %) 020406080100 Deposition Temperature (C) 400500600700800 Concentration in Film (atomic %) 020406080100 C 12a13a N 12a13a O 12a13a W 12a13a Deposition Temperature (C) 400500600700800 Concentration in Film (atomic %) 020406080100 Deposition Temperature (C) 400500600700800 Concentration in Film (atomic %) 020406080100 Deposition Temperature (C) 400500600700800 Concentration in Film (atomic %) 020406080100 Deposition Temperature (C) 400500600700800 Concentration in Film (atomic %) 020406080100 C 12a13a N 12a13a O 12a13a W 12a13a Figure 4.4. AES data for films grown from 12a and 13a. 600 C, with carbon filling the excess vacancies present in the polycrystals due to nitrogen deficiency. Although the value of y in -WN x C y should be relatively small at the lower deposition temperatures, it may be sufficiently large to shift the XRD peak position to lower values of 2 (and concomitantly increase the lattice parameter, vide infra), even at the lower temperatures. It should also be noted that preferential incorporation of carbon

PAGE 67

52 and removal of nitrogen by Ar + sputtering during AES analysis has been reported to cause artificially high carbon and low nitrogen concentration readings. [75] Since the AES data were collected after 2.0 minutes of sputter, artificially high carbon and low nitrogen compositions may have been observed. In addition, the lack of a standard film sample for calibration of elemental concentrations means that AES data may vary up to several atom percent from the actual values. Despite the error bars on the concentrations, the AES data serve to identify trends in film composition with deposition temperature. The slight oxygen contamination in the film samples deposited at higher temperatures likely resulted from post-growth exposure of the film samples to air. The higher oxygen levels in films deposited at and below 500 C may be influenced by the presence of the Et 2 O co-solvent during growth and exposure of the films to air after growth. Incremental AES sputtering showed a steady decrease in oxygen levels with increasing depth into the WN x films. The oxygen concentration was highest at 475 C, reaching 15 at. %, and then decreased slightly to 11 at. % at 500 C. This behavior is consistent with low density and high porosity in the amorphous films deposited below 525 C, which allow substantial amounts of oxygen to penetrate into the film lattice. High oxygen concentrations (~20%) attributed to air exposure have been reported for porous TiN, TiC and TiCN barriers. [76-78] XPS results for oxygen in the films are consistent with WO 3 which has considerably higher thermodynamic stability than -WN x or -WC x. For example, values of the Gibbs energy of formation (G f ) at 750 C for the WO 3 -WN 0.5 and -WC 0.5 phases are kJ/mol, +21 kJ/mol, and .5 kJ/mol, respectively. [79-81] The experimental observation of lower levels of oxygen at higher deposition temperatures is consistent with post-growth oxygen contamination. As the

PAGE 68

53 deposition temperature rises from 500 to 525 C, the oxygen content drops sharply to 4 at. %, while the carbon and nitrogen levels are moderately steady. This behavior is consistent with the change in crystallinity observed by XRD. As the film crystallizes, it becomes more dense, [82] thereby inhibiting post-growth oxygen diffusion into the lattice and decreasing the density of adsorption sites. As deposition temperature increases above 525 C, the oxygen concentration drops further, falling below 1 at. % above 700 C. This drop in oxygen levels likely results from film densification (by polycrystal grain growth) and increased carbon levels at higher deposition temperature stuffing the grain boundaries. Porosity of amorphous films grown below 525 C may be problematic for diffusion barrier applications, since defects in the film may degrade the barriers resistance to Cu diffusion. A previous report, however, indicates that diffusion barrier performance depends more strongly on film microstructure than film density. [83] In addition, impurities such as O, N and C have been reported to enhance the stability of diffusion barrier films. [84] Comparison of Films Grown from 12a and 13a In terms of their decomposition chemistry, the most significant difference between isopropylimido complex 12a and phenylimido complex 13a is the dissociation energy of the N-C bond in the imido ligand. Based on data from organic model compounds, the N-C bond of isopropylimido complex 12a is expected to be approximately 20 kcal/mol weaker than the analogous bond in 13a. [72] Since cleavage of this bond is necessary for deposition of WN x one would expect there to be differences in film structure and film composition between films grown from the two precursors. Amorphous film growth occurs below 500 C for 12a and 13a. At 500 C (Figure 4.3), a broad -W 2 N (111) polycrystalline peak appears for films from 12a,

PAGE 69

54 while polycrystalline oxide peaks appear for the material from 13a. Evidence of polycrystalline WN x deposition from 13a first appears at 525 C. The anomalous film characteristics of material grown from 13a at 500 C appear to be linked to the presence of the Et 2 O co-solvent (necessary because the solubilities of 12a and 13a differ). The maximum deposition temperature for films deposited from the isopropyl complex was 700 C. Above this temperature, black particles were deposited on the substrate and susceptor, which subsequently compromised film quality. In contrast, deposition from phenylimido complex 13a was possible up to 750 C. The higher temperature limit could be due to the enhanced N-C bond strength in its imido ligand. Corroborating evidence for this effect can be found in the mass spectral data. Facile dissociation of the isopropyl group from 12a is indicated by the observation of [Cl 3 WNH] + at 78% abundance in the EI spectrum and detection of [Cl 4 WN] as the base peak in the NCI trace. Loss of the phenyl moiety from 13a to yield the same ions does not occur under EI conditions and the NCI spectrum contains [Cl 4 WN] at only 4% abundance. Moderate amounts of [Cl 4 W] + and [Cl 3 W] + were detected in the mass spectra of 13a under EI conditions, as well as fragments a-d (Figure 4.1), which are consistent with what has previously been observed upon generation of NPh + from phenyl azide. [71] Although the mass spectral evidence for NPh loss consists of low intensity mass envelopes, their presence is significant. Because of the difference in conditions between mass spectrometry (ion chemistry) and MOCVD (thermal decomposition), the data in Figure 4.1 and Table 4.1 do not rule out loss of NPh as a major heterogeneous process during deposition. Ideally, cleavage of the N-C bond in 13a to release a phenyl group should occur during CVD of WN x films. However, the high N-C dissociation energy

PAGE 70

55 would slow this process, allowing cleavage of the W-N bond to compete. Isopropylimido complex 12a, with its weaker N-C bond, would be more likely to release the isopropyl moiety and leave the imido nitrogen in the growing film. For both precursors, oxygen levels were highest for films deposited at the lower end of the temperature range ( 500 C). AES indicated a decrease in oxygen content with increasing sputter depth into the films; hence, high oxygen levels were attributed to post-growth exposure of the films to air. The low density and high porosity of the amorphous structures grown at lower temperatures allow more rapid diffusion of oxygen from the air into the films and provide a large surface to volume ratio for adsorption. High oxygen levels in the films from 13a, however, may be due to a combination of post-growth exposure to air and the presence of Et 2 O during deposition. Increased carbon content in the films grown at higher temperatures is believed to inhibit post-growth oxygenation of the films by stuffing grain boundaries. As mentioned earlier, resistivity is an important property of the films in these investigations. Film resistivities were calculated using the equation = R s t, where is resistivity (-cm), R s is sheet resistance as measured by 4-point probe (/), and t is film thickness determined by X-SEM (cm). These calculations depend both on sheet resistance and film thickness. To decouple the impact of film thickness from the films electrical properties, the sheet resistance was plotted as a function of deposition temperature. The sheet resistance of films from 13a increases sharply as the temperature increases from 475 to 500 C. The sheet resistivities are 75 and 475 / respectively. The sheet resistivity rises even further to 2000 / at 525 C. This increase in sheet resistance for the less conductive films grown at 500 and 525 C indicates that these

PAGE 71

56 higher resistivity values are not due solely to higher film thickness and is consistent with oxide formation and the spike in carbon content (vide supra) determined by AES. With the exception of the anomalous results for growth at 500 and 525 C, comparison of the sheet resistances, which negate the impact of film thickness on electrical properties, shows that the films from 12a and 13a have similar electrical properties when deposited at or below 675 C. Above 675 C, 12a films have higher sheet resistance than 13a films, consistent with the high carbon levels in the 12a films, which scatter electrons flowing through the material. Deposition Temperature (C) 400500600700800 Sheet Resistance (/square) 05001000150020002500 12a13a Figure 4.5. Variation of film sheet resistance with deposition temperature for films deposited from 12a and 13a. In conclusion, the tungsten imido complex W(NPh)Cl 4 (CH 3 CN) 13a was tested to determine its suitability as a single-source precursor for low temperature growth of -WN x thin films. Comparison of the film growth properties of 13a to those of its isopropylimido analogue 12a allows evaluation of the effect of the imido N-C bond

PAGE 72

57 dissociation energy on film growth and properties. Films deposited from 13a were deficient in nitrogen compared to those from 12a, consistent with a tendency of the stronger imido N-C bond of 13a to result in dissociation of intact NPh fragments during deposition. Since its films contain more nitrogen and have lower amorphous deposition temperatures and sheet resistances, the isopropyl imido precursor 12a is superior to the phenyl imido precursor 13a for -WN x barrier deposition.

PAGE 73

CHAPTER 5 SYNTHESIS AND CHARACTERIZATION OF W(VI) GUANIDINATE AND AMIDINATE COMPLEXES Synthesis of W(VI) Guanidate and Amidinate Complexes Guanidinate and amidinate anions have recently generated interest as ancillary ligands. [85, 86] The first transition-metal guanidinate complexes were reported in 1970 by Lappert et. al. [87] These anions make attractive ligands due to their steric and electronic tunability through the programmed variation of the N and C substituents. [88-92] These anions ability to serve as alternatives to Cp has been confirmed, and they have been used extensively in coordination chemistry of transition, f-block, and main group metals. [93-102] Part of the versatility possessed by the guanidinate anions stems from the resonance forms accessible via lone pair donation of the NR 2 moiety to the central carbon atom of the anion (Figure 5.1). This zwitterionic resonance form has formal negative charges on both metal-bound nitrogens which can lead to more electron donation to the metal center. This resonance ability also offers the possibility of the ligand to attenuate its electronic donation to the metal as the metals electronic demands change during catalytic cycles. Amidinate ligands, though lacking the ability to form zwitterions in this manner, are still very versatile and widely used. In addition, complexes of this nature containing tungsten are surprisingly under-represented in the literature. To our knowledge, there are only four such publications, and this work will also serve to broaden that library. [103-106] The goal is to employ these ligands in the syntheses of novel precursors for the metal-organic chemical vapor deposition (MOCVD) of tungsten nitride (WN x ) thin films. 58

PAGE 74

59 RN N R N R' R' RN N R N R' R' RN N R N R' R' RN N R N R' R' RN N R R' RN N R RN N R R' Figure 5.1. Resonance forms of guanidinate and amidinate anions. The tungsten nitride that is produced is intended to serve as copper diffusion barriers in microelectronic devices. The growth and characterization of the resulting films are performed in the research group of Prof. Timothy Anderson in the Department of Chemical Engineering at the University of Florida. It has been previously shown that tungsten imido complexes of the formula W(NR)Cl 4 (NCPh) (R = i Pr (12a), Ph (13a), Cy (14), allyl (15)) are suitable precursors for the MOCVD of WN x and WN x C y ( Figure 5.3). [107-110] Recently, Carmalt et al., have reported successful chemical vapor deposition of titanium carbonitride using titanium guanidinate complexes as precursors [111] The strategy is to synthesize guanidinate and amidinate derivatives of 12a-15 with the hopes of generating films of WN x with even better diffusion barrier properties and to do so at lower temperatures. The guanidinate and amidinate ligands were chosen with the hope that they would decompose to generate a second imido ligand under CVD conditions (Figure 5.2). The presence of the second W-N triple bond would presumably result in higher nitrogen content in the resulting films than that obtained from the mono-imido complexes mentioned earlier.

PAGE 75

60 ClW Cl Cl N N R N X R' R' CVDClW Cl N N R R' Figure 5.2. Possible bis-imido species resulting from fragmentation under CVD conditions WCl Cl Cl Cl N N C CH3 WCl Cl Cl Cl N N C CH3 WCl Cl Cl Cl N N C CH3 WCl Cl Cl Cl N N C CH3 12a13a1415 Figure 5.3. Tungsten imido complexes used as WN x precursors. Generally, guanidinate and amidinate complexes are synthesized by two routes. One method is the insertion of a carbodiimide into a metal-amido or metal-alkyl bond (A in Figure 5.4). The second is a metathesis reaction between either a lithium amidinate or guanidinate salt, generated in situ, and a metal halide (B in Figure 5.4). In these investigations, the latter synthetic route was used. The tungsten starting materials would require either an alkyl or amido group to use the other synthetic route, and the substitution reaction to generate such a ligand would have added a step to the syntheses.

PAGE 76

61 NC N R' R' LnMR + LnMN N R R R' R'NC NR' +LiRR'N N R' R LnMX Ln-1MN N R R' R +LiXA)B) Li Figure 5.4. Common metal guanidinate and amidinate complex syntheses. To generate the lithium salts of the guanidinate and amidinate ions, lithium dimethylamide and MeLi, respectively, were added to the corresponding carbodiimide. The reaction required 2 hours for the former and 4 hours for the latter. The resulting lithium salts were then added to cooled ether solutions of the corresponding tungsten imido complexes (-78 C and -30 C for guanidinate and amidinate complexes, respectively). All reactions were stirred for 16 hours after slowly warming to room temperature. This general procedure as well as a list of products is shown in Figure 5.5. The guanidinate complexes were consistently more difficult to obtain in pure form then the amidinates. Recrystallization was always necessary for the former. The amidinate

PAGE 77

62 complexes could be isolated as pure compounds without further purification, though still not in impressive yields (see Experimental Procedures). Another note is that syntheses involving cyclohexyl and isopropyl imido groups were conducted in the absence of light. The parent imido complexes have some degree of light sensitivity, so light was excluded as a precautionary measure. R'NC NR' +LiXR'N NR' X Li Et2O2-4 hrs ClW Cl Cl Cl NO Et2O, -78 or -20 oC 18 hrsClW Cl Cl N N R N X R R' R' 16, R = Ph, R' = iPr, X = NMe217, R = Cy, R' = iPr, X = NMe218, R = iPr, R' = iPr, X = NMe219, R = Ph, R' = tBu, X = Me20, R = iPr, R' = tBu, X = Me21, R = Cy, R' = tBu, X = Me22, R = iPr, R' = TMS, X = Me23, R = Ph, R' = iPr, X = Me24, R = iPr, R' = iPr, X = Me25, R = Cy, R' = iPr, X = Me Figure 5.5. General synthesis of guanidinate and amidinate complexes 16-25. NMR Characterization The 1 H and 13 C spectra of compounds 16-25 have similar features. The spectra of 23 will be discussed here in detail, and a full list of NMR data for all complexes can be found in the Experimental Section. The 1 H NMR spectrum (CD 3 Cl) exhibits two resonances for the inequivalent isopropyl substituents of the chelating nitrogens. The

PAGE 78

63 chemical shifts of isopropyl methyl groups appear as doublets (J = 6Hz) at 1.49 and 1.51 ppm. The methyl group on the amidinate ligand backbone appears as a singlet at 2.07 ppm. The methine protons of the inequivalent isopropyl groups appear as septets at 4.34 and 4.86 ppm, respectively. The para proton of the phenyl ring appears as a triplet at 7.13 ppm. The ortho protons appear as a doublet (J = 6Hz) at 7.42 ppm, and the meta protons appear as an apparent triplet (J = 6Hz) at 7.57 ppm. In the 13 C spectrum (CD 3 Cl), the resonance for the methyl group of the amidinate backbone appears the most upfield at 13.0 ppm. Next, the chemical shifts of the methyl substituents of the isopropyl groups are observed at 22.4 and 24.9 ppm. The methine carbons of the isopropyl groups appear at 52.1 and 56.4. The aromatic protons appear at 128.2, 129.4, 131.2, and 151.7. Lastly the chemical shift of the central carbon of the amidinate ligand appears at 172.1. Extended acquisition times (up to 3 hours) were needed to observe central carbon chemical shifts in complexes 16-25 due to the long relaxation times of these quaternary centers. Mass Spectrometry Investigations In the past, mass spectrometry data have been used to investigate various tungsten imido complexes potential and viability as tungsten nitride precursors. [108, 112, 113] It is noted that care must be taken when using mass spectral data to predict CVD behavior since the latter is thermal in nature. [66] Nevertheless, mass spectrometry does provide insights into the relative fragmentation characteristics of various precursors. [67] Not only can mass spectrometry validate the potential of complexes to serve as CVD precursors but also compare that potential in a relative sense. [108] In these experiments, the focus is relative abundance of fragments in which the N-R bond of the imido moiety was cleaved. Given the nature of the precursors, the cleavage of this bond during the deposition

PAGE 79

64 process is vital to generate tungsten nitride. Correlations have been observed among estimated N-R bond strength, relative abundance of desired mass spectrometry peaks, and subsequent growth kinetics and nitrogen content of the WN x and WN x C y films. [108, 112] This type of screening has been extended to the new guanidinate and amidinate complexes. Early in the mass spectrometry investigations, it was noticed that contrary to the results obtained from the unsubstituted imido precursors 12a-15, molecular ions were observed for guanidinate and amidinate complexes 16-25. In the unsubstituted complexes W(NR)Cl 4 (L) (R = i Pr, L = NCMe (12a); R = i Pr, L = OEt 2 (12b); Ph, L = NCMe (13a); R = Ph, L = OEt 2 (13b); R = Cy, L = NCMe (14a); R = Cy, L = OEt 2 (14b); R = Allyl, L = NCMe (15a); R = Allyl, L = OEt 2 (15b)) the ligand trans to the imido (acetonitrile or diethyl ether) completely dissociated before detection. Observing the molecular ions for 16-25 has allowed the determination of molecular formulas by high resolution mass spectrometry. It is undetermined, however, if this increased stability will be a hindrance to decomposition during CVD. Mass spectral fragmentation data were obtained for the tungsten guanidinate and amidinate complexes 16, 19, 20, 23, and 25. Spectra were taken in both positive ion electron impact and negative ion electron capture modes. In general, more fragmentation was observed in the electron impact experiments. This is to be expected since this is a more aggressive technique. Through the investigations, it was learned that the guanidinate and amidinate ligands fragment differently. For the amidinate complexes, peaks corresponding to the loss of the methyl group of the central carbon of the ligand are present in high relative abundance. The dimethylamido group of the guanidinate

PAGE 80

65 complexes is much more reluctant to fragment. This observation supports the presence of double bond character between the nitrogen and the central carbon that is suggested in the zwitterionic resonance form shown in Figure 5.1. Instead, the guanidinate ligands fragment to yield a second imido moiety or dissociate from the metal center intact. There were also consistent fragmentation trends among the amidinate ligands themselves. Peaks corresponding to the loss of the tert-butyl groups from the chelating nitrogens (conpounds 19-21) were always present in higher relative abundance than peaks that would correspond to the loss of isopropyl and TMS in analogous complexes (compounds 22-25). Lastly, peaks were observed corresponding to bis-imido species analogous to those illustrated in Figure 5.2 for complexes 16, 19, 20, 23, and 25. In addition, imido-nitrido fragments are also observed in some instances. These results suggest that these complexes will be suitable precursors for the MOCVD of tungsten nitride and that the nitrogen content of the resulting film will be greater than that obtained from complexes 12-15. The mass spectrometry data suggest that complexes 16, 19, and 25 are promising tungsten nitride precursors due to the observation of bis-imido and/or imido-nitrido fragments in high relative abundance. Table 5.1 contains data obtained from mass spectrometry investigations. X-ray Crystallography Study Single crystals suitable for X-ray analysis were grown for compounds 16-18, 19, 22, 24 (Figure 5.5). X-ray analysis was performed by Dr. Khalil A. Abboud at the University of Florida. All of these complexes adopt a distorted octahedral structure with the three chlorides and one of the nitrogens of the chelating ligand forming the square plane. The imido and the second nitrogen of the chelate occupy the axial positions. An ORTEP drawing of compound 16 is shown in Figure 5.7 The W-N(1) bond length of

PAGE 81

66 Table 5.1. Mass spectrometry data for tungsten guanidinate and amidinate complexes. Note that only peaks of interest and/or high relative intensity are included. Cmpd EI Peaks NCI Peaks m/z Relative Abundance a 16 [(C 9 H 20 N 3 )Cl 3 W(NPh)] 550 16 [(C 9 H 21 N 3 ) Cl 2 W] 426 100 [(C 9 H 21 N 3 )ClW] 392 38 [Cl 3 W(NPh)(N i Pr)] 438 17 19 [(C 10 H 21 N 2 )Cl 3 W(NPh)] + 551 4 [(C 9 H 18 N 2 )Cl 3 W(NPh)] + 536 6 [Cl 2 W(N t Bu)(NPh)] + 418 4 [Cl 2 W(N)(NPh)] + 360 11 [ClW(N)(NPh)] + 326 3 [C(CH 3 ) 3 ] + 57 100 [(C 10 H 21 N 2 )Cl 3 W(NPh)] 551 17 [(C 10 H 21 N 2 )Cl 2 W(NPh)] 515 26 [Cl 2 W(N t Bu)(NPh)] 418 100 [Cl 2 W(N)(NPh)] 360 33 20 [(C 10 H 21 N 2 )Cl 3 W(N i Pr)] + 517 9 [(C 9 H 18 N 2 )Cl 3 W(N i Pr)] + 500 37 [Cl 2 W(N)(N i Pr)] + 327 9 [C(CH 3 ) 3 ] + 57 100 [(C 10 H 21 N 2 )Cl 3 W(N i Pr)] 517 100 [Cl 2 W(N i Pr)(N t Bu)] 384 6 23 [(C 8 H 17 N 2 )Cl 3 W(NPh)] + 523 10

PAGE 82

67 23 [(C 7 H 14 N 2 )Cl 3 W(NPh)] + 508 20 [C 6 H 14 ] + 84 89 [C 3 H 8 ] + 42 100 [(C 8 H 17 N 2 )Cl 3 W(NPh)] 523 99 [(C 8 H 17 N 2 )Cl 2 W(NPh)] 487 100 [Cl 2 W(N i Pr)(NPh)] 404 17 25 [(C 8 H 17 N 2 )Cl 3 W(NCy)] 529 11 [Cl 2 W(N i Pr)(NCy)] 410 100 [Cl 2 W(N)(NCy)] 367 55 [ClW(N)(NCy)] 330 28 a Relative abundances were adjusted by summing the observed intensities for the predicted peaks of each mass envelope and normalizing the largest sum to 100%. 1.741(3) is within the acceptable range of a W-N triple bond. [114, 115] The W-N(1)-C(10) bond angle of 170.0(2) is also consistent with the presence of the triple bond. The W-Cl(1), W-Cl(2), and W-Cl(3) bond lengths are 2.367(9), 2.391(9), and 2.397(8) respectively. These are in good agreement with the W-Cl bond length of 2.392 for six-coordinate W reported by Orpen et. al. [115] The bond angle between the two axial ligands is 161.70(11). The ligand bite angle of 62.40(11) contributes to this distortion from linearity. The W-N(2) and W-N(3) bond lengths are 1.960(3) and 2.226(3) respectively. The strong trans influence of the imido ligand can be observed in the elongated W-N(3) bond. [114] The C(1)-N(2) and C(1)-N(3) bond lengths are 1.414(4) and 1.299(4) respectively, the latter clearly exhibiting double bond character. Typical C-N single bond lengths are 1.42-1.45 [116] The C(1)-N(4) bond length of 1.351(4) also

PAGE 83

68 exhibits double bond character. This confirms the lone pair donation of N(4) to provide more electron density to the metal center. The angle between the planes defined by N(2), C(1), and N(3) and C(9), N(4), and C(8) is 37.16. This angle also supports lone pair donation from N(4) to C(1). The dihedral angle indicates that the dimethylamido group has oriented itself to favor conjugation. The three bond angles about N(2) total 359, suggesting sp 2 hybridization. Since the C(1)-N(2) bond length suggests that it is a single bond, the lone pair of N(2) must be donated to the metal center to achieve the sp 2 hybridization. An illustration of the bonding suggested by the crystallography data is shown in Figure 5.6. A list of selected bond lengths and angles for compound 16 can be found in Table 5.2. X-ray crystal structures were also obtained for the guanidinate complexes 17 and 18. ORTEP representations can be seen in Figure 5.8 and Figure 5.9. For 17, the crystal system is orthorhombic and the space group is Pna2(1). For 18, the crystal system is triclinic and the space group is P-1. Both compounds are structurally similar to 16. Both exhibit tungsten-imido bond lengths that are within range of W-N triple bonds (1.722(3) and 1.702(4) ). The bond angles about the imido nitrogens, 178.2(3) and 164.4(8), are also consistent with the presence of W-N triple bonds. For 17, the N(4)-C(7) bond length is 1.357(4) and the dimethylamido torsion angle is 42.28. Similar to what is observed for 16, we see a shortened C-N bond and dimethylamido orientation to favor conjugation. This trend is mirrored in 18 with a C(1)-N(4) bond length of 1.373(6) and a dimethylamido torsion angle of 45.03. A list of selected bond lengths and angles for 17 and 18 can be viewed in Table 5.2 and Table 5.3.

PAGE 84

69 The crystal structures that were obtained for the tungsten amidinate complexes were very similar to those of the guanidinate complexes. The ORTEP representations of 19, 22, and 24 can be viewed in Figures 5.10-5.12. There are, however, some subtle but significant differences. First, the amidinate ligands exhibit slightly longer W-N bonds when compared to the guanidinate complexes. The average differences are 0.04 for the W-N bond in the equatorial plane and 0.05 for the W-N bond in the axial position. The presence of the shorter bonds in the guanidinate complexes is consistent with the ligands ability to be a better electron donor. Another difference between the two ligand systems lies in the bond lengths between the central carbon of the chelate and the nitrogen in the axial position. This bond is consistently shorter in the amidinate complexes, suggesting more double bond character. For the guanidinate complexes 16, 17, and 18, the lengths of these bonds are 1.299(4), 1.304(4), and 1.294(6) respectively. The corresponding bond lengths for 19, 22, and 24 are 1.289(4), 1.271(9), and 1.281(5) Although the difference is not large, it is consistent. Lists of selected bond lengths and angles for 19, 22, and 24 can be viewed in Tables 5.5-5.7. In the case of 22, some atoms are labeled with an A. The asymmetric unit consists of four chemically equivalent but crystallographically independent molecules labeled as A, B, C, and D. The A molecule was chosen for inclusion here, and all bond lengths and angles of other molecules within the unit cell are comparable to those of A. In conclusion, a series of amidinate and guanidinate complexes were synthesized. Mass spectrometry was used to probe the complexes fragmentation tendencies, and favorable cracking of the ligands was observed. X-ray crystallography data were used for characterization and to examine bonding motifs in the complexes.

PAGE 85

70 Table 5.2. Selected bond lengths () and angles () for compound 16. W-N1 1.174(3) C1-N2 1.414(4) N2-W-N3 62.40(11) W-N2 1.960(3) C1-N3 1.299(4) N1-W-N2 99.55(12) W-N3 2.226(3) C1-N4 1.351(4) W-N2-C1 99.57(19) W-Cl1 2.367(9) N1-W-N3 161.77(11) N2-C1-N3 106.84(3) W-Cl2 2.391(9) N2-W-Cl3 94.31(7) W-N3-C1 91.18(2) W-Cl3 2.397(8) Cl1-W-Cl2 168.68(3) W-N1-C10 170.0(2) Table 5.3. Selected bond lengths () and angles () for compound 17. W-N1 1.723(3) C7-N2 1.304(4) N2-W-N3 61.86(10) W-N2 2.258(3) C7-N3 1.411(4) N1-W-N2 162.53(11) W-N3 1.951(3) C7-N4 1.357(4) W-N2-C7 90.39(19) W-Cl1 2.384(9) N1-W-N3 100.87(12) N2-C7-N3 106.8(3) W-Cl2 2.384(8) N3-W-Cl2 155.40(8) W-N3-C7 100.89(19) W-Cl3 2.373(10) Cl1-W-Cl3 167.33(3) W-N1-C1 178.2(3) Table 5.4. Selected bond lengths () and angles () for compound 18. W-N1 2.247(4) C1-N2 1.399(6) N2-W-N3 101.44(19) W-N2 1.961(4) C1-N1 1.294(6) N1-W-N2 61.88(16) W-N3 1.702(4) C1-N4 1.373(6) W-N1-C1 90.3(3) W-Cl1 2.3752(15) N1-W-N3 163.23(18) N1-C1-N2 107.8(4) W-Cl2 2.3819(16) N2-W-Cl3 155.81(13) W-N2-C1 100.0(3) W-Cl3 2.3833(14) Cl1-W-Cl2 167.30(5) W-N3-C10 168.4(8)

PAGE 86

71 Figure 5.6. Crystal structure of 16. Thermal ellipsoids are drawn at 40% probability and hydrogens have been omitted for clarity.

PAGE 87

72 ClW Cl Cl NN N N Figure 5.7. Bonding scheme of 16 as suggested by crystallography data. Table 5.5. Selected bond lengths () and angles () for compound 19. W-N1 1.731(3) C11-N2 1.416(4) N2-W-N3 61.62(9) W-N2 1.969(2) C11-N3 1.284(4) N1-W-N2 105.34(11) W-N3 2.280(2) C11-C12 1.503(4) W-N2-C11 99.79(18) W-Cl1 2.3623(8) N1-W-N3 166.94(10) N2-C11-N3 108.5(3) W-Cl2 2.3888(8) N2-W-Cl2 160.90(7) W-N3-C11 89.83(19) W-Cl3 2.3769(8) Cl1-W-Cl3 165.02(3) W-N1-C1 170.4(2)

PAGE 88

73 Figure 5.8. Crystal structure of 17. Thermal ellipsoids are drawn at 40% probability and hydrogens have been omitted for clarity.

PAGE 89

74 Figure 5.9. Crystal structure of 18. Thermal ellipsoids are drawn at 40% probability and hydrogens have been omitted for clarity.

PAGE 90

75 Table 5.6. Selected bond lengths () and angles () for compound 22. W-N1 1.700(6) C7-N2 1.392(9) N2-W-N3 62.1(2) W-N2 1.975(6) C7-N3 1.300(9) N1-W-N2 101.2(3) W-N3 2.275(6) C7-C8 1.492(10) W-N2-C7 99.1(5) W-Cl1 2.358(2) N1-W-N3 163.3(3) N2-C7-N3 110.1(7) W-Cl2 2.375(2) N2-W-Cl2 155.16(19) W-N3-C7 61.4(4) W-Cl3 2.358(2) Cl1-W-Cl3 167.61(8) W-N1-C1 179.5(6) Table 5.7. Selected bond lengths () and angles () for compound 24. W-N1 1.720(3) C7-N2 1.407(5) N2-W-N3 60.95(12) W-N2 1.966(3) C7-N3 1.281(5) N1-W-N2 103.16(14) W-N3 2.290(3) C7-C8 1.488(5) W-N2-C7 100.9(2) W-Cl1 2.3750(9) N1-W-N3 103.16(14) N2-C7-N3 108.0(3) W-Cl2 2.3754(11) N2-W-Cl3 154.12(9) W-N3-C7 90.1(2) W-Cl3 2.3679(10) Cl1-W-Cl2 166.01(4) W-N1-C1 174.0(3)

PAGE 91

76 Figure 5.10. Crystal structure of 19. Thermal ellipsoids are drawn at 40% probability and hydrogens have been omitted for clarity.

PAGE 92

77 Figure 5.11. Crystal structure of 22. Thermal ellipsoids are drawn at 40% probability and hydrogens have been omitted for clarity.

PAGE 93

78 Figure 5.12. Crystal structure of 24. Thermal ellipsoids are drawn at 40% probability and hydrogens have been omitted for clarity.

PAGE 94

Experimental Procedures General Procedures Unless otherwise stated, all procedures were performed using standard Schlenk techniques under nitrogen or argon or in a dry box filled with either nitrogen or argon. All solvents used were dried using standard literature techniques and stored under nitrogen over activated molecular sieves. All glassware was dried prior to use. All NMR solvents were degassed using the freeze-pump-thaw method and stored over molecular sieves inside a dry box. All reagents were purified using literature procedures prior to use unless otherwise stated. 1 H, 13 C, and 31 P NMR spectra were measured using a Varian Gemini 300, VXR 300, or Mercury 300 spectrometer with C 6 D 6 C 7 D 8 or CDCl 3 as the solvent. The chemical shifts for the 1 H and 13 C NMR spectra were reported in parts per million downfield from tetramethylsilane ( = 0 ppm) and were referenced to residual protons present in the deuterated solvents. The chemical shifts of 31 P spectra are reported in parts per million and referenced with respect to external H 3 PO 4 ( = 0 ppm). Elemental analyses were performed by either Complete Analysis Labs, Inc (Parsippany, New Jersey) or Robertson Microlit Laboratories (Madison, New Jersey). Crystallographic studies were performed by Dr. Khalil A. Abboud at the Center for X-ray Crystallography at the University of Florida. Mass spectrometry was performed by Dr. David Powell and Maria Dancel at the University of Florida. Film growth and characterization were carried out by Omar Bchir, Kelly Green, Mark Hlad, and Hiral Ajmera in the lab of Prof. Timothy Anderson in the Department of Chemical Engineering at the University of Florida. W(NPh)(1,8-(Me 3 SiN) 2 -C 10 H 6 )(Cl) 2 and W(NPh)(o-(Me 3 SiN) 2 C 6 H 4 )(C 5 H 5 N) 2 were prepared according to literature procedures. 27, 37 79

PAGE 95

80 Syntheses Synthesis of W(NPh)(Me) 2 (1,8-(Me 3 SiN) 2 -C 10 H 6 ) (2) A pentane solution (100 mL) of W(NPh)(1,8-(Me 3 SiN) 2 -C 10 H 6 )(Cl) 2 (1.00 g, 1.55 mmol) was cooled to -78 C. Two equivalents of MeMgCl in THF solution (3.0M, 1.04 mL, 3.11 mmol) were added dropwise via syringe. The reaction mixture was allowed to warm to room temperature and was stirred for 3 hours. During this time, the solution changed in color from black to dark red and precipitates formed. The reaction mixture was filtered and the insoluble residue extracted with pentane (3 x 15 mL). The pentane extracts were combined and concentrated in vacuo. The pentane solution was cooled to -20 C for 16 hours during which time dark red crystals formed. The crystals were filtered and dried in vacuo affording 0.628 g (67%) of 2. 1 H NMR (C 6 D 6 ): 0.39 (s, 18H, SiMe 3 ); 1.32 (s, 6H, CH 3 ); 6.49 (d, 2H, 2-DANH J = 7 Hz); 6.80 (t, 1H, p-NPhH J = 8 Hz); 7.02 (d, 2H, o-NPhH J = 8 Hz); 7.15 (t, 2H, 3-DANH J = 8 Hz); 7.30 (d, 2H, 4-DANH J = 8 Hz). There is one aromatic proton whose chemical shift could not be identified due to overlap with other peaks. 13 C NMR (C 6 D 6 ): 2.4 (SiMe 3 ); 48.5 (CH 3 ); 122.0, 123.8, 125.7, 126.2, 127.8, 129.1, 139.2, 145.3, 155.6 (aromatic). There was one carbon atom whose chemical shift could not be identified due to overlap with solvent or other peaks. Anal. Calcd. for C 24 H 35 N 3 Si 2 W: C, 47.60; H, 5.83; N, 6.94. Found: C, 47.62; H, 5.87; N, 7.02. Synthesis of W(NPh)(CH 2 C 6 H 5 ) 2 (1,8-(Me 3 SiN) 2 -C 10 H 6 ) (3) A pentane solution (100 mL) of W(NPh)(1,8-(Me 3 SiN) 2 -C 10 H 6 )(Cl) 2 (1.00 g, 1.55 mmol) was cooled to -78 C. Two equivalents of PhCH 2 MgCl in diethyl ether solution (1.0M, 3.11 mL, 3.11 mmol) were added dropwise via syringe. The reaction mixture was allowed to warm to room temperature and was stirred for 3 hours. During this time, the

PAGE 96

81 solution changed in color from black to dark red and precipitates formed. The reaction was filtered and the insoluble residue extracted with pentane (3 x 15 mL). The pentane extracts were combined and concentrated in vacuo. The pentane solution was cooled to -20 C for 16 hours during which time dark red crystals formed. The crystals were filtered and dried in vacuo affording 0.844 g (72%) of 3. 1 H NMR (C 6 D 6 ): 0.24 (s, 18H, SiMe 3 ); 3.12 (m, 4H, C H 2 Ph); 6.61 (d, 2H, 2-DANH J = 7 Hz) 6.74 7.31 (19H overlapping aromatic protons. 13 C NMR (C 6 D 6 ): 2.4 (SiMe 3 ); 74.4 ( C H 2 Ph); 121.6, 124.2, 124.8, 126.6, 127.2, 127.7, 129.1, 129.6, 139.2, 144.4, 150.8 (aromatic). There are 3 carbon atoms that could not be observed due to overlap with solvent or other peaks. Synthesis of W(NPh)(CH 2 CH 2 C 6 H 5 ) 2 (1,8-(Me 3 SiN) 2 -C 10 H 6 ) (4) A pentane solution (130 mL) of W(NPh)(1,8-(Me 3 SiN) 2 -C 10 H 6 )(Cl) 2 (1.50 g, 2.32 mmol) was cooled to -78 C. Two equivalents of 1.0M PhCH 2 CH 2 MgCl in THF solution (1.0 M, 4.64 mL, 4.64 mmol) were added dropwise via syringe. The reaction mixture was allowed to warm to room temperature and was stirred for 3 hours. During this time, the solution changed in color from black to dark purple and precipitates formed. The reaction mixture was filtered and the insoluble residue extracted with pentane (3 x 15 mL). The pentane extracts were combined and concentrated in vacuo. The pentane solution was cooled to -20 o C for 16 hours during which time dark purple crystals formed. The crystals were filtered and dried in vacuo affording 0.525 g (28%) of 4. 1 H NMR (C 6 D 6 ): 0.42 (s, 18H, SiMe 3 ); 2.28 (m, 4H, CH 2 C H 2 Ph); 3.11 (m, 4H, C H 2 CH 2 Ph); 6.74 (d, 2H, 2-DANH J = 7.3Hz); 6.90 (t, 1H, p-NPhH J = 7 Hz); 6.80 7.24 (16H overlapping aromatic protons); 7.31 (d, 2H, 4-DANH J = 8 Hz). 13 C NMR (C 6 D 6 ): 2.2 (SiMe 3 ); 41.1 (CH 2 C H 2 PH); 73.7 ( C H 2 CH 2 PH); 120.6, 124.0, 125.8, 126.1, 127.8, 129.0, 129.4, 139.2, 145.2, 149.1, 155.8 (aromatic). There are 3 aromatic carbon atoms

PAGE 97

82 whose chemical shifts could not be detected. Anal. Calcd. for C 38 H 47 N 3 Si 2 W: C, 58.08; H, 6.03; N, 5.35. Found: C, 57.98; H, 6.18; N, 5.37. Synthesis of W[(NSiMe 3 )C 10 H 6 ](NPh)PMe 3 (5). A Youngs ampoule was charged with 4 (0.300 g, .0382 mmol) in 30 mL of benzene and excess PMe 3 (~ 10 eq.). The mixture was then warmed to 70 C for 48 hours during which time the mixture slowly changed color from purple to wine red. The solution was then transferred via cannula into a Schlenk tube, and the solvent was removed in vacuo. The resulting solid was dissolved in minimal pentane and cooled to o C for 16 hours. The resulting crystals were isolated by filtration and dried in vacuo to yield 4 (0.142 g, 57%) as dark purple crystals. 1 H NMR (C 6 D 6 ): 0.20 (s, 9H, SiMe 3 ); 0.60 (s, 9H, WNSiMe 3 ), 1.15 (d, 9H, PMe 3, J P-H = 10 Hz), 6.75 (t, 1H, p-NPhH J = 7 Hz); 7.23 7.18 (3H overlapping aromatic protons) 7.23 (d, 2H, o-NPhH J = 7 Hz); 7.42 (t, 1H, 3-NapH J = 8 Hz); 7.52 (t, 1H, 6-NapH J = 8 Hz); 7.82 (t, 2H, m-NPhH J = 7 Hz). 13 C NMR (C 6 D 6 ): 3.4 (SiMe 3 ); 3.6 (WNSiMe 3 ); 17.3 (PMe 3 ); 110.8, 116.6, 126.1, 126.6, 127.5, 127.7, 127.9, 128.8, 129.0, 136.1, 138.3, 138.3, 158.0, 185.2 (aromatic). 31 P NMR (C 7 D 8 ): 1.02 (s, J W-P = 268.6Hz). Synthesis of W(NPh)(o-(Me 3 SiN) 2 C 6 H 4 )(OCH 2 C 6 H 5 )(OCH(2-C 5 H 4 N)(C 6 H 5 ) (8) W(NPh)(o-(Me 3 SiN) 2 C 6 H 4 )(C 5 H 5 N) 2 (0.800 g, 1.17 mmol) was dissolved in 80 mL of diethyl ether. Two equivalents of benzaldehyde (0.238 mL, 2.34 mmol) were then added via syringe. The mixture was stirred for 30 minutes during which time the solution changed color from dark purple to dark red. The solvent was removed in vacuo. The resulting solid was re-dissolved in minimal diethyl ether and layered with pentane and cooled to -20 C for 16 hours. The resulting crystals were isolated by filtration and dried in vacuo affording 0.758 g (76%) of 8. 1 H NMR (C 6 D 6 ): 0.53 (s, 9H, SiMe 3 ); 0.70 (s,

PAGE 98

83 9H, SiMe 3 ); 5.72 (d, 1H, OC H 2 Ph, J = 14 Hz); 5.84 (d, 1H, OC H 2 Ph, J = 14 Hz); 6.30 (2H overlapping aromatic protons); 6.48 (s, 1H, OC H PyPh); 6.50 7.21 (18H overlapping aromatic protons); 7.34 (d, 2H, o-NPhH J = 8 Hz); 8.43 (d, 1H, 6-PyH J = 5 Hz). 13 C NMR (C 6 D 6 ): 3.2 (SiMe 3 ); 4.2 (SiMe 3 ); 76.7 (O C H 2 Ph); 89.0 (O C HPyPh); 119.2, 119.4, 120.1, 120.4, 121.4, 122.4, 126.6, 126.7, 127.0, 128.0, 129.0, 129.2, 129.4, 138.4, 144.6, 147.8, 155.2, 165.2 (aromatic). There are five aromatic carbon atoms whose chemical shifts could not be observed due to overlap with other peaks. Synthesis of W(NPh)(o-(Me 3 SiN) 2 C 6 H 4 )(OCH 2 (p-C 6 H 4 CH 3 )(OCH(2-C 5 H 4 N)( pC 6 H 4 CH 3 ) (9) W(NPh)(o-(Me 3 SiN) 2 C 6 H 4 (C 5 H 5 N) 2 (0.800 g, 1.17 mmol) was dissolved in 80 mL of diethyl ether. Two equivalents of p-tolualdehyde (0.182 mL, 2.34 mmol) were then added via syringe. The mixture was stirred for 30 minutes during which time the solution changed color from dark purple to dark red. The solvent was removed in vacuo. The resulting solid was re-dissolved in minimal diethyl ether and layered with pentane and cooled to -20 C for 16 hours. The resulting crystals were isolated by filtration and dried in vacuo affording 0.572 g (57%) of 9. 1 H NMR (C 6 D 6 ): 0.50 (s, 9H, SiMe 3 ); 0.68 (s, 9H, SiMe 3 ); 2.07 (s, 6H, PhC H 3 ); 5.65 (d, 1H, OC H 2 Ph, J = 14 Hz); 5.89 (d, 1H, OC H 2 Ph, J = 14 Hz); 6.32 (2H overlapping aromatic protons); 6.48 (s, 1H, OC H PyPh); 6.49 7.21 (17H overlapping aromatic protons); 7.35 (d, 2H, o-NPhH J = 8 Hz); 8.45 (d, 1H, 6-PyH J = 5 Hz). 13 C NMR (C 6 D 6 ): 3.24 (SiMe 3 ); 4.4 (SiMe 3 ); 21.4 (Ph C H 3 ); 76.0 (O C H 2 PhCH 3 ); 88.3 (O C HPyPhCH 3 ); 119.2, 119.4, 120.1, 120.2, 121.5, 122.4, 126.4, 126.5, 126.5, 128.8, 129.3, 130.2, 136.3, 138.5, 141.7, 141.8, 147.8, 149.9, 155.3,

PAGE 99

84 165.6 (aromatic). There are 3 aromatic carbon atoms whose chemical shifts could not be observed due to overlap with other peaks. Synthesis of W(NPh)(o-(Me 3 SiN) 2 C 6 H 4 (C 5 D 5 N) 2 (7-d 10 ) W(NPh)(o-(Me 3 SiN) 2 C 6 H 4 (C 5 D 5 N) 2 was synthesized according to literature procedures for the synthesis of W(NPh)(o-(Me 3 SiN) 2 C 6 H 4 (C 5 H 5 N) 2 substituting C 5 D 5 N for C 5 H 5 N. [36] Synthesis of W(NPh)(o-(Me 3 SiN) 2 C 6 H 4 )(OCHD(p-C 6 H 4 CH 3 )(OCH(2-C 5 D 4 N)( pC 6 H 4 CH 3 ) (9-d 5 ) W(NPh)(o-(Me 3 SiN) 2 C 6 H 4 (C 5 D 5 N) 2 (1.00 g, 1.44 mmol) was dissolved in 100 mL of diethyl ether. Two equivalents of p-tolualdehyde (0.225 mL, 2.88 mmol) were then added via syringe. The mixture was stirred for 30 minutes during which time the solution changed color from dark purple to dark red. The solvent was removed in vacuo. The resulting solid was re-dissolved in minimal diethyl ether and layered with pentane and cooled to -20 C for 16 hours. The resulting crystals were isolated by filtration and dried in vacuo affording 0.710 g (57%) of 9-d 5 1 H NMR (C 6 D 6 ): 0.45 (s, 9H, SiMe 3 ); 0.63 (s, 9H, SiMe 3 ); 2.02 (s, 6H, PhC H 3 ); 5.60 (s, 1H, OC HD Ph); 6.70 7.20 (15H overlapping aromatic protons) 7.32 (d, 2H, o-NPhH J = 7 Hz). Synthesis of W(NPh)(o-(Me 3 SiN) 2 C 6 H 4 )(OCH 2 (p-C 6 H 4 OCH 3 )(OCH(2-C 5 H 4 N)( pC 6 H 4 OCH 3 ) (10) W(NPh)(o-(Me 3 SiN) 2 C 6 H 4 (C 5 H 5 N) 2 (0.300 g, 0.439 mmol) was dissolved in 60 mL of diethyl ether. Two equivalents of p-anisaldehyde (0.108 mL, 0.877 mmol) were then added via syringe. The mixture was stirred for 40 minutes during which time the solution changed color from dark purple to dark red. The solvent was removed in vacuo. The resulting solid was re-dissolved in minimal diethyl ether and layered with pentane and

PAGE 100

85 cooled to -20 C for 16 hours. The resulting crystals were filtered and dried in vacuo affording 0.250 g (64%) of 10. 1 H NMR (C 6 D 6 ): 0.50 (s, 9H, SiMe 3 ); 0.69 (s, 9H, SiMe 3 ); 3.33 (s, 3H, PhOC H 3 ); 3.39 (s, 3H, PhOC H 3 ); 5.62 (d, 1H, OC H 2 PhOCH 3, J = 13.8Hz); 5.86 (d, 1H, OC H 2 PhOCH 3, J = 68.2Hz); 6.32 (2H overlapping aromatic protons); 6.48 (s, 1H, OC H PyPh OCH 3 ); 6.54 7.20 (16H overlapping aromatic protons); 7.38 (d, 2H, o-NPhH J = 7.3Hz); 8.46 (d, 1H, 6-PyH J = 5.3Hz). 13 C NMR (C 6 D 6 ): 3.25 (SiMe 3 ); 4.57 (SiMe 3 ); 55.08 (PhO C H 3 ); 55.16 (PhO C H 3 ); 75.45 (O C H 2 PhOCH 3 ); 88.38 (O C HPyPhOCH 3 ); 114.21, 114.40, 119.17, 119.38, 119.79, 120.13, 121.53, 122.42, 126.56, 126.76, 130.16, 136.51, 136.83, 138.44, 147.91, 150.09, 155.21, 160.73, 165.69 (aromatic). There are 4 aromatic carbon atoms whose chemical shifts could not be observed due to overlap with other peaks. Synthesis of W(NPh)(o-(Me 3 SiN) 2 (OCH 2 (2-C 4 H 3 S)(OCH(2-C 5 H 4 N)(2-C 4 H 3 S) (11) W(NPh)(o-(Me 3 SiN) 2 C 6 H 4 (C 5 H 5 N) 2 (0.600 g, 0.878 mmol) was dissolved in 80 mL of diethyl ether. Two equivalents of 2-thiophenecarboxaldehyde (0.164 mL, 1.76 mmol) were then added via micro syringe. The mixture was stirred for 40 minutes during which time the solution changed color from dark purple to dark red. The solvent was removed in vacuo. The resulting solid was re-dissolved in minimal diethyl ether and layered with pentane and cooled to -20 o C for 16 hours. The resulting crystals were filtered and dried in vacuo affording 0.509 g (70%) of 11. 1 H NMR (CDCl 3 ): 0.26 (s, 9H, SiMe 3 ); 0.45 (s, 9H, SiMe 3 ); 5.55 (d, 1H, OC H 2 C 4 H 3 S, J = 72.0Hz); 5.65 (d, 1H, OC H 2 C 4 H 3 S, J = 14.0Hz); 6.49 (2H overlapping aromatic protons); 6.51 (s, 1H, OC H Py C 4 H 3 S); 6.60 7.50 (15H overlapping aromatic protons) 8.54 (d, 1H, 6-PyH J = 5.2Hz). 13 C NMR (CDCl 3 ): 2.4 (SiMe 3 ); 3.7 (SiMe 3 ); 83.3 (O C HPy C 4 H 3 S); 118.7, 118.8, 119.2, 119.4, 122.4, 123.7, 125.7, 126.1, 126.3, 126.3, 126.4, 126.7, 128.0, 147.8, 149.8 (aromatic).

PAGE 101

86 There are 8 aromatic carbons whose chemical shifts could not be observed due to overlap with other peaks. Synthesis of W(NPh)(C 9 H 20 N 3 )Cl 3 (16). A 250 mL Schlenk tube was charged with LiNMe 2 (0.156 g, 3.06 mmol) and 100 mL of Et 2 O. The resulting colorless suspension was cooled to 0 C, and 1,3-diisopropylcarbodiimide (0.48 mL, 3.1 mmol) was added dropwise via syringe. The reaction mixture was warmed to room temperature over 2 hr. The resulting cloudy solution of lithium guanidinate reagent was cannula-transferred into a 250 mL Schlenk tube containing a solution of W(NPh)Cl 4 (OEt 2 ) (1.50 g, 3.06 mmol) in Et 2 O (100 mL) at -78 C. The reaction mixture was stirred for 20 min at -78 C and was warmed to room temperature overnight. Removal of solvent in vacuo, followed by extraction into Et 2 O (200 mL) and filtration, afforded a purple solution. Et 2 O was removed in vacuo to give crude 1 as a purple powder. Recrystallization from a toluene solution layered with hexane at -20 C gave pure 1 as purple crystals (1.01 g, 60%). 1 H NMR (300 MHz, C 6 D 6 ): 1.33 (d, 6H, J = 6 Hz, CH(C H 3 ) 2 ), 1.67 (d, 2H, J = 6 Hz, CH(C H 3 ) 2 ), 2.05 (s, 6H, N(CH 3 ) 2 4.15 (septet, 1H, C H (CH 3 ) 2 ), 4.38 (septet, 1H, C H (CH 3 ) 2 ) 6.56 (t, 1H, J = 8 Hz, CH), 6.96 (t, 2H, J = 8Hz, CH), 7.41 (d, 2H, J = 8Hz, CH): 13 C NMR (300 MHz, CDCl 3 ): 22.8 (CH( C H 3 ) 2 ), 25.1 (CH( C H 3 ) 2 ), 40.8 (N(CH 3 ) 2 ), 50.1 ( C H(CH 3 ) 2 ), 55.5 ( C H(CH 3 ) 2 ), 128.0 (CH), 129.5 (CH), 130.9 (CH), 151.6 (C, ipso), 164.1 (N 2 C CH 3 ). Anal. Calcd. for W(NPh)(C 9 H 20 N 3 )Cl: C, 32.66; H, 4.57; N, 10.16. Found: 32.94; H, 4.72; N, 9.96. Synthesis of W(N(C 6 H 11 ))(C 9 H 20 N 3 )Cl 3 (17). A 250 mL Schlenk tube was charged with LiNMe 2 (0.102 g, 2.01 mmol) and 100 mL of Et 2 O. The resulting colorless suspension was cooled to 0 C, at which temperature

PAGE 102

87 1,3-diisopropylcarbodiimide (0.317 mL, 2.01 mmol) was added dropwise via syringe. The reaction mixture was warmed to room temperature over 2 hr. The resulting cloudy solution of lithium guanidinate reagent was cannula-transferred into a 250 mL Schlenk tube containing a solution of W(C 6 H 11 )Cl 4 (OEt 2 ) (1.00 g, 2.01 mmol) in Et 2 O (100 mL) at -78 C. The reaction mixture was stirred for 20 min at -78 C and was warmed to room temperature overnight in the absence of light. Removal of solvent in vacuo, followed by extraction into Et 2 O (200 mL) and filtration, yielded a dark amber solution. Et 2 O was removed in vacuo to give crude 3 as a dark amber powder. Recrystallization from a toluene solution layered with hexane at -20 C afforded pure 3 as amber crystals (0.616 g, 55%). 1 H NMR (300 MHz, C 6 D 6 ): 1.15 (m, 4H, CH 2 ), 1.48 (d, 6H, J = 4 Hz, CH(C H 3 ) 2 ), 1.72 (d, 6H, J = 6 Hz, CH(C H 3 ) 2 ), 1.78 (br, 2H, CH 2 ), 2.05 (br, 4H, CH 2 ), 2.15 (s, 6H, N(CH 3 ) 2 ), 4.08 (septet, 1H, C H (CH 3 ) 2 ), 4.41 (septet, 1H, C H (CH 3 ) 2 ), 5.47 (m, 1H, WNCH). 13 C NMR (C 6 D 6 ): 23.4 (CH 2 ), 23.9 (CH 2 ), 25.5 (CH 2 ), 25.9 (N(CH 3 ) 2 ), 33.7 (CH( C H 3 ) 2 ), 39.9 (CH( C H 3 ) 2 ), 50.4 ( C H(CH 3 ) 2 ), 53.9( C H(CH 3 ) 2 ), 72.6 (WNC), 164.8 (N 3 C). Anal. Calcd. for W(N(C 6 H 11 ))(C 9 H 20 N 3 )Cl 3 : C, 32.31; H, 5.60; N, 10.05. Found: C, 32.16; H, 5.65; N, 9.86 Synthesis of W(NCH(CH 3 ) 2 )(C 9 H 20 N 3 )Cl 3 (18). A 250 mL Schlenk tube was charged with LiNMe 2 (0.223 g, 4.38 mmol) and 100 mL of Et 2 O. The resulting colorless suspension was cooled to 0 C, at which temperature 1,3-diisopropylcarbodiimide (0.69 mL, 4.4 mmol) was added dropwise via syringe. The reaction mixture was warmed to room temperature over 2 hr. The resulting cloudy solution of lithium guanidinate reagent was cannula-transferred into a 250 mL Schlenk tube containing a solution of W(NCH(CH 3 ) 2 )Cl 4 (OEt 2 ) (2.00 g, 4.38 mmol) in Et 2 O (100 mL) at -78 C. The reaction mixture was stirred for 20 min at -78 C and was warmed to

PAGE 103

88 room temperature overnight in absence of light. Removal of solvent in vacuo, followed by extraction into Et 2 O (200 mL) and filtration, yielded a dark amber solution. Et 2 O was removed in vacuo to afford crude 18 as a dark amber powder. Recrystallization from a toluene solution layered with hexane at -20 C afforded pure 18 as amber crystals (1.27 g, 56%). 1 H NMR (300 MHz, C 6 D 6 ): 1.23 (d, 6H, J = 6 Hz, CH(C H 3 ) 2 ), 1.38 (d, 6H, J = 7 Hz, WNCH(C H 3 ) 2 ), 1.70 (d, 6H, J = 6 Hz, CH(C H 3 ) 2 ), 2.14 (s, 6H, N(CH 3 ) 2 ), 4.08 (septet, 1H, C H (CH 3 ) 2 ), 4.39 (septet, 1H, C H (CH 3 ) 2 ), 5.31 (septet, 1H, WNC H (CH 3 ) 2 ). 13 C NMR (C 6 D 6 ): 23.3 (CH( C H 3 ) 2 ), 23.4 (WNCH( C H 3 ) 2 ), 25.4 (NCH( C H 3 ) 2 ) 40.1 (N(CH 3 ) 2 ), 50.4 ( C H(CH 3 ) 2 ), 53.8 ( C H(CH 3 ) 2 ), 66.8 (WN C H(CH 3 ) 2 ), 164.7 (N 3 C). Anal. Calcd. for W(NCH(CH 3 ) 2 )(C 9 H 20 N 3 )Cl: C, 27.85; H, 5.26; N, 10.83. Found: C, 28.14; H, 5.52; N, 10.52. Synthesis of W(NC 6 H 5 )(C 10 H 21 N 2 )Cl 3 (19). Methyllithium (1.6 M in Et 2 O, 2.29 mL, 3.7 mmol) was added dropwise to a solution of 1,3-di-tert-butylcarbodiimide (0.565 g, 3.66 mmol) in 100 mL of Et 2 O at -30 C. The mixture was warmed to room temperature and stirred for 4 hr. The resulting colorless solution was then added to a solution of W(NC 6 H 5 )Cl 4 (OEt 2 ) (1.80 g, 3.66 mmol) in 50 mL of Et 2 O at -30 C. The reaction mixture was stirred overnight. All volatiles were then removed under reduced pressure, and the resulting solid was extracted with Et 2 O (100 mL). The Et 2 O extract was dried in vacuo to afford pure 19 as a purple powder (1.25 g, 62%). 1 H NMR (300 MHz, C 6 D 6 ): 1.21 (s, 9H, C(CH 3 ) 3 ), 1.58 (s, 3H, N 2 CCH 3 ), 1.62 (s, 9H, C(CH 3 ) 3 ), 6.51 (t, 1H, J = 8 Hz, CH), 6.83 (t, 2H, J = 8 Hz, CH) 7.31 (d, 2H, J = 8 Hz, CH). 13 C NMR (C 6 D 6 ): 22.2 (N 2 C C H 3 ), 31.4 (C( C H 3 ) 3 ), 32.1 (C( C H 3 ) 3 ), 59.9 ( C (CH 3 ) 3 ), 63.4 ( C (CH 3 ) 3 ), 130.0 (CH), 131.1 (CH), 173.1 (N 2 C CH 3 ): There are two aromatic carbons that could not be observed due to overlap with other

PAGE 104

89 peaks. Anal. Calcd. for W(NC 6 H 5 )(C 10 H 21 N 2 )Cl 3 : C, 34.90; H, 4.76; N, 7.63. Found: C, 35.39; H, 4.32; N, 7.36. Synthesis of W(NCH(CH 3 ) 2 )(C 10 H 21 N 2 )Cl 3 (20). Methyllithium (1.6 M in Et 2 O, 1.64 mL, 2.6 mmol) was added dropwise to a solution of 1,3-di-tert-butylcarbodiimide (0.405 g, 2.62 mmol) in 100 mL of Et 2 O at -30 C. The mixture was warmed to room temperature and stirred for 4 hr. The resulting colorless solution was then added to a solution of W(NCH(CH 3 ) 2 )Cl 4 (OEt 2 ) (1.20 g, 2.62 mmol) in 50 mL of Et 2 O at -30 C. The reaction mixture was stirred overnight in the absence of light. All volatiles were then removed under reduced pressure, and the resulting solid was extracted with Et 2 O (100 mL). The Et 2 O extract was dried in vacuo to afford pure 20 as a purple powder (0.880 g, 65%). 1 H NMR (300 MHz, C 6 D 6 ): 1.22 (s, 9H, C(CH 3 ) 3 ), 1.28 (d, 6H, J = 6 Hz, CH(C H 3 ) 2 ), 1.56 (s, 3H, N 2 CCH 3 ), 1.58 (s, 9H, C(CH 3 ) 3 ), 5.12 (septet, 1H, WNC H (CH 3 ) 2 ). 13 C NMR (300 MHz, C 6 D 6 ): 22.1 ((N 2 C C H 3 ), 23.0 (NCH( C H 3 ) 2 ), 31.4 (C( C H 3 ) 3 ), 32.0 (C( C H 3 ) 3 ), 67.1 ( C (CH 3 ) 3 ), 68.4 ( C (CH 3 ) 3 ), 88.9 (N C H(CH 3 ) 2 ), 167.1 (N 2 C CH 3 ). Anal Calcd. for W(NCH(CH 3 ) 2 )(C 10 H 21 N 2 )Cl 3 : C, 30.23; H, 5.46; N, 8.13. Found. C, 29.99; H, 5.68; N, 7.91. Synthesis of W(NC 6 H 11 )(C 10 H 21 N 2 )Cl 3 (21). A solution of methyllithium (1.6 M in Et 2 O, 1.26 mL, 2.01 mmol) in Et 2 O was added dropwise to a solution of 1,3-di-tert-butylcarbodiimide (0.310 g, 2.01 mmol) in 100 mL of Et 2 O at -30 C. The mixture was warmed to room temperature and stirred for 4 hr. The resulting colorless solution was then added to a solution of W(NC 6 H 5 )Cl 4 (OEt 2 ) (1.00 g, 2.01 mmol) in 50 mL of Et 2 O at -30 C. The reaction mixture was stirred overnight in the absence of light. All volatiles were then removed

PAGE 105

90 under reduced pressure, and the resulting solid was extracted with hexane (100 mL). The hexane extract was dried in vacuo to afford pure 21 as a purple powder (0.65 g, 58%). 1 H NMR (300 MHz, C 6 D 6 ): 0.28 (s, 3H, N 2 CCH 3 )1.0 (br, 4H, CH 2 ), 1.25 (s, 9H, C(CH 3 ) 3 ), 1.6 (s, 9H, C(CH 3 ) 3 ), 1.9 (br, 6H, CH 2 ), 1.97 (s, 3H, N 2 CCH 3 ), 5.2 (m, 1H, WNCH). 13 C NMR (C 6 D 6 ): 22.2 (N 2 C C H 3 ), 24.3 (CH 2 ), 25.7 (CH 2 ), 31.4 (C( C H 3 ) 3 ), 32.0 (C( C H 3 ) 3 ), 33.4 (CH 2 ), 59.6 ( C (CH 3 ) 3 ), 61.9 ( C (CH 3 ) 3 ), 73.5 (WNCH), 172.7 (N 2 C CH 3 ). Anal. Calcd. for W(NC 6 H 11 )(C 10 H 21 N 2 )Cl 3 : C, 34.52; H, 5.79; N, 7.55. Found: 34.33; H, 5.53; N, 7.32. Synthesis of W(NCH(CH 3 ) 2 )(C 8 H 21 N 2 Si 2 )Cl 3 (22). Methyllithium (1.6 M in Et 2 O, 1.78 mL, 2.85 mmol) was added dropwise to a solution of 1,3-trimethylsilylcarbodiimide (0.531 g, 2.85 mmol) in 100 mL of Et 2 O at -30 C. The mixture was warmed to room temperature and stirred for 4 hr. The resulting colorless solution was then added to a solution of W(NCH(CH 3 ) 2 )Cl 4 (OEt 2 ) (1.30 g, 2.85 mmol) in 50 mL of Et 2 O at -30 C. The reaction mixture was stirred overnight in the absence of light. All volatiles were then removed under reduced pressure, and the resulting solid was extracted with hexane (100 mL). The hexane extract was dried in vacuo to afford pure 22 as a pink powder (1.25 g, 62%). 1 H NMR (300 MHz, C 6 D 6 ): 0.21 (s, 9H, Si(CH 3 ) 3 ), 0.56 (s, 9H, Si(CH 3 ) 3 ), 1.32 (d, 6H, J = 6 Hz, CH(C H 3 ) 3 ),1.40 (s, 3H, N 2 CCH 3 ), 5.23 (septet, 1H, CH(CH 3 ) 2 ). 13 C (C 6 D 6 ): 1.4 (Si(CH 3 ) 3 ), 2.1 (Si(CH 3 ) 3 ), 23.6 (NCH( C H 3 ) 2 ), 26.8 (N 2 C C H 3 ), 66.6 (N C H(CH 3 ) 2 ), 170.5 (N 2 C CH 3 ): MS (EI): calcd for W(NCH(CH 3 ) 2 )(C 8 H 21 N 2 Si 2 )Cl 3 (M) + m/z 547.0397, found (M) + m/z 547.0385.

PAGE 106

91 Synthesis of W(N(C 6 H 5 )(C 8 H 21 N 2 )Cl 3 (23) Methyllithium (1.6 M in Et 2 O, 1.91 mL, 3.1 mmol) was added dropwise to a solution of 1,3-diisopropylcarbodiimide (0.48 mL, 2.9 mmol) in 100 mL of Et 2 O at -30 C. The mixture was warmed to room temperature and stirred for 4 hr. The resulting colorless solution was then added to a solution of W(N(C 6 H 5 )(CH 3 ) 2 )Cl 4 (OEt 2 ) (1.50 g, 3.06 mmol) in 50 mL of Et 2 O at -30 C. The reaction mixture was warmed to room temperature and stirred overnight. The liquid portion of the mixture was collected by filtration, and the solid residue was extracted with Et 2 O (3 x 10 mL). The liquid portions were combined and dried under vacuum to afford pure 23 as a purple crystalline solid (1.06 g, 67%). 1 H NMR (300 MHz, CDCl 3 ): 1.49 (d, 6H, J = 6 Hz, CH(C H 3 ) 2 ), 1.51 (d, 6H, J = 6 Hz, CH(C H 3 ) 2 ), 2.07 (s, 3H, N 2 CCH 3 ), 4.34 (septet, 1H, C H (CH 3 ) 2 ), 4.86 (septet, 1H, C H (CH 3 ) 2 ), 7.13 (t, 1H, J = 8 Hz, CH), 7.45 (d, 2H, J = 8 Hz, CH), 7.57 (t, 2H, J = 8 Hz, CH). 13 C (CDCl 3 ): 12.9 (N 2 C C H 3 ), 22.4 (CH( C H 3 ) 2 ), 24.9 (CH( C H 3 ) 2 ), 52.1 ( C H(CH 3 ) 2 ), 56.3 ( C H(CH 3 ) 2 ), 128.2 (CH), 129.4 (CH), 131.2 (CH), 151.7 (C ipso), 172.1 (N 2 C CH 3 ). Anal. Calcd. for W(N(C 6 H 5 )(C 8 H 21 N 2 )Cl 3 : C, 32.18; H, 4.24; N, 8.04. Found: C, 32.46; H, 4.41; N, 7.86. Synthesis of W(NCH(CH 3 ) 2 )(C 8 H 21 N 2 )Cl 3 (24) Methyllithium (1.6 M in Et 2 O, 1.78 mL, 2.9 mmol) was added dropwise to a solution of 1,3-diisopropylcarbodiimide (0.45 mL, 2.9 mmol) in 100 mL of Et 2 O at -30 C. The mixture was warmed to room temperature and stirred for 4 hr. The resulting colorless solution was then added to a solution of W(NCH(CH 3 ) 2 )Cl 4 (OEt 2 ) (1.30 g, 2.85 mmol) in 50 mL of Et 2 O at -30 C. The reaction mixture was warmed to room temperature and stirred overnight in the absence of light. The liquid portion of the mixture was collected by filtration, and the solid residue was extracted with Et 2 O (3 x 10

PAGE 107

92 mL). The liquid portions were combined and dried under vacuum to afford pure 24 as a purple crystalline solid (0.97 g, 70%). 1 H NMR (300 MHz, C 6 D 6 ): 0.89 (s, 3H, N 2 CCH 3 ) 1.23 (d, 6H, J = 6 Hz, CH(C H 3 ) 2 ), 1.26 (d, 6H, J = 7 Hz, WNCH(C H 3 ) 2 ), 1.60 (d, 6H, J = 6 Hz, CH(C H 3 ) 2 ), 3.71 (septet, 1H, C H (CH 3 ) 2 ), 4.00 (septet, 1H, C H (CH 3 ) 2 ), 5.24 (septet, 1H, WNC H (CH 3 ) 2 ). 13 C NMR (C 6 D 6 ): 11.4 (N 2 C C H 3 ), 22.5 (CH( C H 3 ) 2 ), 23.1 (WNCH( C H 3 ) 2 ), 24.7 (NCH( C H 3 ) 2 ), 51.9 ( C H(CH 3 ) 2 ), 54.2 ( C H(CH 3 ) 2 ), 67.0 (WN C H(CH 3 ) 2 ), 171.5 (N 3 C). Anal. Calcd. for W(NCH(CH 3 ) 2 )(C 8 H 21 N 2 )Cl 3 : C, 27.04; H, 4.95; N, 8.60. Found: C, 27.31; H, 4.77; N, 8.39. Synthesis of W(NC 6 H 11 )(C 8 H 21 N 2 )Cl 3 (25) Methyllithium (1.6 M in Et 2 O, 1.59 mL, 2.5 mmol) was added dropwise to a solution of 1,3-diisopropylcarbodiimide (0.35 mL, 2.9 mmol) in 100 mL of Et 2 O at -30 C. The mixture was warmed to room temperature and stirred for 4 hr. The resulting colorless solution was then added to a solution of W(NCH(CH 3 ) 2 )Cl 4 (OEt 2 ) (1.30 g, 2.54 mmol) in 50 mL of Et 2 O at -30 C. The reaction mixture was warmed to room temperature and stirred overnight in the absence of light. The liquid portion of the mixture was collected by filtration, and the solid residue was extracted with Et 2 O (3 x 10 mL). The liquid portions were combined and dried under vacuum to afford pure 25 as a purple crystalline solid (0.86 g, 64%). 1 H NMR (300 MHz, CDCl 3 ): 1.55 (m, 16H, 4CH 3 + 2CH 2 ), 2.02 (s, 3H, N 2 CCH 3 ), 2.05 (m, 6H, 3CH 2 ), 4.23 (septet, 1H, C H (CH 3 ) 2 ), 4.77 (septet, 1H, C H (CH 3 ) 2 ), 5.71 (m, 1H, WNC H ). 13 C NMR (300 MHz, CDCl 3 ): 12.7 (CH 2 ), 22.4 (NCH( C H 3 ) 2 ), 23.8 (CH 2 ), 25.1 (NCH( C H 3 ) 2 ), 25.5 (CH 2 ), 33.5 (N 2 C C H 3 ), 52.0 ( C H(CH 3 ) 2 ), 55.0 ( C H(CH 3 ) 2 ), 73.3 (WNCH), 171.5 (N 3 C). Anal Calcd. for W(NC 6 H 11 )(C 8 H 21 N 2 )Cl 3 : C, 31.81; H, 5.34; N, 7.95. Found: C, 31.89; H, 4.99; N, 7.66

PAGE 108

93 Crystallographic Studies X-ray Data Collection and Structure Refinement for Compounds 2 and 3. Data for 2 and 3 were collected at 173 K on a Siemens SMART PLATFORM equipped with A CCD area detector and a graphite monochromator utilizing MoK radiation ( = 0.71073 ). Cell parameters were refined using up to 8192 reflections. A full sphere of data (1381 frames) was collected using the -scan method (0.3 o frame width). The first 50 frames were remeasured at the end of data collection to monitor instrument and crystal stability (maximum correction on I was < 1 %). Absorption corrections by integration for 2 and 3 were applied based on measured indexed crystal faces. The structures of 2 and 3 were solved by the Direct Methods in SHELXTL5, and refined using full-matrix least squares. The non-H atoms were treated anisotropically, whereas the hydrogen atoms were calculated in ideal positions and were riding on their respective carbon atoms. Special comment is warranted in regard to 3. Although the complex can have a molecular mirror symmetry, it is not located on a crystallographic mirror symmetry, thus excluding the possibility of C2/c being the correct space group. A total of 279 and 386 parameters were refined in the final cycle of refinement of 2 and 3, respectively, using 5612 and 6201 reflections for 2 and 3, respectively, with I > 2(I) to yield R 1 and wR 2 of 1.34% and 3.42%, respectively, for 2 and 1.93% and5.17% respectively for 3. Refinement was done using F 2 The final atomic coordinates for the non-hydrogen atoms of 2 and 3 are given in Tables A-1A-5 and A2.1-A-10, respectively, of The Appendix. X-ray Data Collection and Structure Refinement for Compound 5. Data for 5 were collected at 173 K on a Siemens SMART PLATFORM equipped with A CCD area detector and a graphite monochromator utilizing MoK radiation ( =

PAGE 109

94 0.71073 ). Cell parameters were refined using up to 8192 reflections. A full sphere of data (1381 frames) was collected using the -scan method (0.3 o frame width). The first 50 frames were remeasured at the end of data collection to monitor instrument and crystal stability (maximum correction on I was < 1 %). Absorption corrections by integration for 5 were applied based on measured indexed crystal faces. The structure for 5 was solved by the Direct Methods in SHELXTL5, and refined using full-matrix least squares. The non-H atoms were treated anisotropically, whereas the methyl hydrogen atoms were calculated in ideal positions and were riding on their respective carbon atoms. A total of 298 parameters were refined in the final cycle of refinement for 5 using 5690 reflections with I > 2(I) to yield R 1 and wR 2 of 2.03% and 4.91%, respectively. Refinement was done using F 2 The final atomic coordinates for the non-hydrogen atoms of 5 are given in Tables A-11A-15 of The Appendix. X-ray Data Collection and Structure Refinement for Compound 8 Data for 8 were collected at 173 K on a Siemens SMART PLATFORM equipped with A CCD area detector and a graphite monochromator utilizing MoK radiation ( = 0.71073 ). Cell parameters were refined using up to 8192 reflections. A full sphere of data (1850 frames) was collected using the -scan method (0.3 o frame width). The first 50 frames were remeasured at the end of data collection to monitor instrument and crystal stability (maximum correction on I was < 1 %). Absorption corrections by integration for 8 were applied based on measured indexed crystal faces. The structure of 8 was solved by the Direct Methods in SHELXTL5, and refined using full-matrix least squares. The non-H atoms were treated anisotropically, whereas the hydrogen atoms were calculated in ideal positions and were riding on their respective carbon atoms. A total of 416 parameters were refined in the final cycle of refinement for 8, using 2788 reflections with I > 2(I) to yield R 1 and wR 2 of 4.7% and 6.06%,

PAGE 110

95 respectively. Refinement was done using F 2 The final atomic coordinates for the non-hydrogen atoms of 8 are given in Tables A-16A-20 of The Appendix. X-ray Data Collection and Structure Refinement for Compound 16 Data were collected at 173 K on a Siemens SMART PLATFORM equipped with A CCD area detector and a graphite monochromator utilizing MoK radiation ( = 0.71073 ). Cell parameters were refined using up to 8192 reflections. A full sphere of data (1850 frames) was collected using the -scan method (0.3 frame width). The first 50 frames were remeasured at the end of data collection to monitor instrument and crystal stability (maximum correction on I was < 1 %). Absorption corrections by integration were applied based on measured indexed crystal faces. The structure of 16 was solved by the Direct Methods in SHELXTL6, and refined using full-matrix least squares. The non-H atoms were treated anisotropically, whereas the hydrogen atoms were calculated in ideal positions and were riding on their respective carbon atoms. The asymmetric unit consists of the complex and one molecule of dichlormethane. A total of 241 parameters were refined in the final cycle of refinement using 4797 reflections with I > 2(I) to yield R 1 and wR 2 of 2.32% and 6.10%, respectively. Refinement was done using F 2 The final atomic coordinates for the non-hydrogen atoms of 16 are given in Tables A-21A-25 of The Appendix. X-ray Data Collection and Structure Refinement for Compound 17 Data were collected at 173 K on a Siemens SMART PLATFORM equipped with A CCD area detector and a graphite monochromator utilizing MoK radiation ( = 0.71073 ). Cell parameters were refined using up to 8192 reflections. A full sphere of data (1850 frames) was collected using the -scan method (0.3 frame width). The first 50 frames were remeasured at the end of data collection to monitor instrument and crystal

PAGE 111

96 stability (maximum correction on I was < 1 %). Absorption corrections by integration were applied based on measured indexed crystal faces. The structure of 17 was solved by the Direct Methods in SHELXTL5, and refined using full-matrix least squares. The structure was solved and refined in space group Pna2 1 It lacked the extra symmetry to have the centrosymmetric space group Pnma. The non-H atoms were treated anisotropically, whereas the hydrogen atoms were calculated in ideal positions and were riding on their respective carbon atoms. A total of 215 parameters were refined in the final cycle of refinement using 18428 reflections with I > 2(I) to yield R 1 and wR 2 of 1.86% and 4.23%, respectively. Refinement was done using F 2 The final atomic coordinates for the non-hydrogen atoms of 17 are given in Tables A-26A-30 of The Appendix. X-ray Data Collection and Structure Refinement for Compound 18 Data were collected at 173 K on a Siemens SMART PLATFORM equipped with A CCD area detector and a graphite monochromator utilizing MoK radiation ( = 0.71073 ). Cell parameters were refined using up to 8192 reflections. A full sphere of data (1850 frames) was collected using the -scan method (0.3 frame width). The first 50 frames were re-measured at the end of data collection to monitor instrument and crystal stability (maximum correction on I was < 1 %). Absorption corrections by integration were applied based on measured indexed crystal faces. The structure of 18 was solved by the Direct Methods in SHELXTL6, and refined using full-matrix least squares. The non-H atoms were treated anisotropically, whereas the hydrogen atoms were calculated in ideal positions and were riding on their respective carbon atoms. The isopropyl moiety on N1 is disordered and is refined in two parts with their site occupation factors dependently refined. A total of 189 parameters were refined in the final cycle of refinement using 2299 reflections with I > 2(I) to yield R 1 and wR 2

PAGE 112

97 of 2.64% and 4.87%, respectively. Refinement was done using F 2 The final atomic coordinates for the non-hydrogen atoms of 18 are given in Tables A-31A-35 of The Appendix. X-ray Data Collection and Structure Refinement for Compound 19 Data were collected at 173 K on a Siemens SMART PLATFORM equipped with A CCD area detector and a graphite monochromator utilizing MoK radiation ( = 0.71073 ). Cell parameters were refined using up to 8192 reflections. A full sphere of data (1850 frames) was collected using the -scan method (0.3 frame width). The first 50 frames were re-measured at the end of data collection to monitor instrument and crystal stability (maximum correction on I was < 1 %). Absorption corrections by integration were applied based on measured indexed crystal faces. The structure of 19 was solved by the Direct Methods in SHELXTL6, and refined using full-matrix least squares. The non-H atoms were treated anisotropically, whereas the hydrogen atoms were calculated in ideal positions and were riding on their respective carbon atoms. The asymmetric unit consists of two chemically equivalent but crystallographically independent molecules. A total of 429 parameters were refined in the final cycle of refinement using 24622 reflections with I > 2(I) to yield R 1 and wR 2 of 2.08% and 4.77%, respectively. Refinement was done using F 2 The final atomic coordinates for the non-hydrogen atoms of 19 are given in Tables A-36A-40 of The Appendix. X-ray Data Collection and Structure Refinement for Compound 22. Data were collected at 173 K on a Siemens SMART PLATFORM equipped with A CCD area detector and a graphite monochromator utilizing MoK radiation ( = 0.71073 ). Cell parameters were refined using up to 8192 reflections. A full sphere of

PAGE 113

98 data (1850 frames) was collected using the -scan method (0.3 frame width). The first 50 frames were re-measured at the end of data collection to monitor instrument and crystal stability (maximum correction on I was < 1 %). Absorption corrections by integration were applied based on measured indexed crystal faces. The structure of 22 was solved by the Direct Methods in SHELXTL6, and refined using full-matrix least squares. The non-H atoms were treated anisotropically, whereas the hydrogen atoms were calculated in ideal positions and were riding on their respective carbon atoms. The asymmetric unit consists of four chemically equivalent but crystallographically independent molecules labeled as a, b, c, and d. A detailed search for higher crystallographic symmetry was carried out but none was found. A total of 721 parameters were refined in the final cycle of refinement using 29049(I) to yield R 1 and wR 2 of 4.42% and 7.47%, respectively. Refinement was done using F 2 The final atomic coordinates for the non-hydrogen atoms of 22 are given in Tables A-41A-45 of The Appendix. X-ray Data Collection and Structure Refinement for Compound 24. Data were collected at 173 K on a Siemens SMART PLATFORM equipped with A CCD area detector and a graphite monochromator utilizing MoK radiation ( = 0.71073 ). Cell parameters were refined using up to 8192 reflections. A full sphere of data (1850 frames) was collected using the -scan method (0.3 frame width). The first 50 frames were re-measured at the end of data collection to monitor instrument and crystal stability (maximum correction on I was < 1 %). Absorption corrections by integration were applied based on measured indexed crystal faces. The structure of 24 was solved by the Direct Methods in SHELXTL6, and refined using full-matrix least squares. The non-H atoms were treated anisotropically, whereas the hydrogen atoms were calculated in ideal positions and were riding on their respective

PAGE 114

99 carbon atoms. The asymmetric unit consists of two chemically equivalent and crystallographically independent molecules. The N4 imido group was disordered and was refined in two parts with their site occupation factors dependently refined. A total of 362 parameters were refined in the final cycle of refinement using 20476(I) to yield R 1 and wR 2 of 2.56% and 6.32%, respectively. Refinement was done using F 2 . The final atomic coordinates for the non-hydrogen atoms of 24 are given in Tables A-46A-50 of The Appendix.

PAGE 115

APPENDIX TABLES OF CRYSTALLOGRAPHIC DATA Crystallographic Data for W(NPh)(Me) 2 (1,8-(Me 3 SiN) 2 -C 10 H 6 ), (2) Table A-1: Crystal data and structure refinement for 2. Empirical formula C 24 H 35 N 2 Si 2 W Formula weight 591.57 Temperature 193(2) K Wavelength 0.71073 Crystal system Monoclinic Space group Cc Unit cell dimensions a = 10.8032(5) = 90. b = 16.9426(7) = 95.760(2). c = 14.4213(6) = 90. Volume 2626.3(2) 3 Z 4 Density (calculated) 1.496 Mg/m3 Absorption coefficient 4.502 mm-1 F(000) 1180 Crystal size 0.26 x 0.19 x 0.06 mm3 Theta range for data collection 2.24 to 27.50. Index ranges -14h13, -21k22, -18l18 Reflections collected 11593 Independent reflections 5750 [R(int) = 0.0168] Completeness to theta = 27.50 99.7 % Absorption correction Integration Max. and min. transmission 0.7669 and 0.3943 Refinement method Full-matrix least-squares on F2 Data / restraints / parameters 5750 / 2 / 279 Goodness-of-fit on F2 1.036 Final R indices [I>2sigma(I)] R1 = 0.0134, wR2 = 0.0342 [5612] 100

PAGE 116

101 Table A-1-continued R indices (all data) R1 = 0.0140, wR2 = 0.0344 Absolute structure parameter -0.007(4) Largest diff. peak and hole 0.437 and -0.339 e.-3 R1 = (||Fo| |Fc||) / |Fo| wR2 = [w(Fo2 Fc2)2] / wFo22]]1/2 S = [w(Fo2 Fc2)2] / (n-p)]1/2w= 1/[2(Fo2)+(0.0197*p) 2 +0.0*p], p = [max(Fo2,0)+ 2* Fc2]/3 Table A-2: Atomic coordinates (x 10 4 ) and equivalent isotropic displacement parameters ( 2 x 10 3 ) for 2. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ________________________________________________________________________ x y z U(eq) ________________________________________________________________________ W 709(1) 3007(1) 1904(1) 27(1) Si1 -495(1) 1176(1) 1583(1) 37(1) Si2 381(1) 3700(1) -334(1) 38(1) N1 -744(2) 3317(1) 2173(1) 34(1) N2 743(2) 1856(1) 1629(1) 31(1) N3 1165(2) 3200(1) 628(1) 29(1) C1 -1825(2) 3554(1) 2550(2) 32(1) C2 -1746(3) 3782(2) 3482(2) 39(1) C3 -2819(3) 4020(2) 3865(2) 49(1) C4 -3955(3) 4012(2) 3333(2) 50(1) C5 -4030(3) 3779(2) 2420(2) 45(1) C6 -2978(2) 3555(2) 2016(2) 38(1) C7 1967(2) 1618(1) 1496(2) 30(1) C8 2753(2) 2135(1) 1004(2) 28(1) C9 2382(2) 2883(1) 581(2) 29(1) C10 3251(2) 3316(2) 150(2) 37(1) C11 4453(3) 3043(2) 70(2) 43(1) C12 4819(2) 2334(2) 434(2) 40(1) C13 3998(2) 1860(2) 906(2) 33(1)

PAGE 117

102 Table A-2-continued C14 4406(2) 1127(2) 1272(2) 39(1) C15 3648(2) 660(2) 1744(2) 41(1) C16 2440(2) 911(2) 1861(2) 38(1) C17 1835(3) 4049(2) 2282(2) 48(1) C18 1625(3) 2667(2) 3251(2) 45(1) C19 -749(4) 843(2) 2781(2) 64(1) C20 -1931(3) 1661(2) 1070(4) 78(1) C21 -203(3) 338(2) 796(2) 47(1) C22 -1284(3) 3809(2) -129(2) 51(1) C23 990(4) 4725(2) -485(3) 74(1) C24 543(5) 3096(2) -1383(3) 77(2) Table A-3: Bond lengths [] and angles [] for 2. ___________________________________________________ W-N1 1.736(2) W-N3 1.979(2) W-N2 1.991(2) W-C18 2.167(3) W-C17 2.182(3) Si1-N2 1.761(2) Si1-C20 1.843(3) Si1-C21 1.864(3) Si1-C19 1.864(3) Si2-N3 1.768(2) Si2-C24 1.848(4) Si2-C22 1.862(3) Si2-C23 1.878(3) N1-C1 1.396(3) N2-C7 1.414(3) N3-C9 1.428(3) C1-C2 1.393(3) C1-C6 1.398(4) C2-C3 1.392(4)

PAGE 118

103 Table A-3-continued C2-H2A 0.9500 C3-C4 1.380(5) C3-H3A 0.9500 C4-C5 1.369(4) C4-H4A 0.9500 C5-C6 1.381(4) C5-H5A 0.9500 C6-H6A 0.9500 C7-C16 1.385(3) C7-C8 1.453(3) C8-C13 1.444(3) C8-C9 1.446(3) C9-C10 1.387(4) C10-C11 1.394(4) C10-H10A 0.9500 C11-C12 1.354(4) C11-H11A 0.9500 C12-C13 1.420(4) C12-H12A 0.9500 C13-C14 1.402(4) C14-C15 1.368(4) C14-H14A 0.9500 C15-C16 1.400(4) C15-H15A 0.9500 C16-H16A 0.9500 C17-H17A 0.9800 C17-H17B 0.9800 C17-H17C 0.9800 C18-H18A 0.9800 C18-H18B 0.9800 C18-H18C 0.9800 C19-H19A 0.9800 C19-H19B 0.9800 C19-H19C 0.9800

PAGE 119

104 Table A-3-continued C20-H20A 0.9800 C20-H20B 0.9800 C20-H20C 0.9800 C21-H21A 0.9800 C21-H21B 0.9800 C21-H21C 0.9800 C22-H22A 0.9800 C22-H22B 0.9800 C22-H22C 0.9800 C23-H23A 0.9800 C23-H23B 0.9800 C23-H23C 0.9800 C24-H24A 0.9800 C24-H24B 0.9800 C24-H24C 0.9800 N1-W-N3 118.21(9) N1-W-N2 112.10(10) N3-W-N2 88.04(8) N1-W-C18 102.82(10) N3-W-C18 138.01(10) N2-W-C18 84.40(11) N1-W-C17 101.13(11) N3-W-C17 85.08(10) N2-W-C17 145.22(10) C18-W-C17 78.33(12) N2-Si1-C20 109.20(14) N2-Si1-C21 110.31(12) C20-Si1-C21 106.42(18) N2-Si1-C19 110.13(13) C20-Si1-C19 108.1(2) C21-Si1-C19 112.56(15) N3-Si2-C24 107.48(14) N3-Si2-C22 108.50(12)

PAGE 120

105 Table A-3-continued C24-Si2-C22 110.9(2) N3-Si2-C23 112.83(16) C24-Si2-C23 110.8(2) C22-Si2-C23 106.36(16) C1-N1-W 170.07(18) C7-N2-Si1 121.71(16) C7-N2-W 109.99(15) Si1-N2-W 128.26(13) C9-N3-Si2 120.85(16) C9-N3-W 107.38(15) Si2-N3-W 131.70(12) C2-C1-N1 118.9(2) C2-C1-C6 119.8(2) N1-C1-C6 121.3(2) C3-C2-C1 119.3(3) C3-C2-H2A 120.3 C1-C2-H2A 120.3 C4-C3-C2 120.4(3) C4-C3-H3A 119.8 C2-C3-H3A 119.8 C5-C4-C3 120.0(3) C5-C4-H4A 120.0 C3-C4-H4A 120.0 C4-C5-C6 120.9(3) C4-C5-H5A 119.6 C6-C5-H5A 119.6 C5-C6-C1 119.6(3) C5-C6-H6A 120.2 C1-C6-H6A 120.2 C16-C7-N2 120.5(2) C16-C7-C8 119.7(2) N2-C7-C8 119.7(2) C13-C8-C9 117.7(2) C13-C8-C7 116.6(2)

PAGE 121

106 Table A-3-continued C9-C8-C7 125.7(2) C10-C9-N3 119.4(2) C10-C9-C8 118.7(2) N3-C9-C8 121.8(2) C9-C10-C11 122.7(3) C9-C10-H10A 118.6 C11-C10-H10A 118.6 C12-C11-C10 120.0(3) C12-C11-H11A 120.0 C10-C11-H11A 120.0 C11-C12-C13 121.1(3) C11-C12-H12A 119.5 C13-C12-H12A 119.5 C14-C13-C12 119.6(3) C14-C13-C8 120.7(2) C12-C13-C8 119.8(2) C15-C14-C13 121.2(2) C15-C14-H14A 119.4 C13-C14-H14A 119.4 C14-C15-C16 119.7(2) C14-C15-H15A 120.1 C16-C15-H15A 120.1 C7-C16-C15 122.0(2) C7-C16-H16A 119.0 C15-C16-H16A 119.0 W-C17-H17A 109.5 W-C17-H17B 109.5 H17A-C17-H17B 109.5 W-C17-H17C 109.5 H17A-C17-H17C 109.5 H17B-C17-H17C 109.5 W-C18-H18A 109.5 W-C18-H18B 109.5

PAGE 122

107 Table A-3-continued H18A-C18-H18B 109.5 W-C18-H18C 109.5 H18A-C18-H18C 109.5 H18B-C18-H18C 109.5 Si1-C19-H19A 109.5 Si1-C19-H19B 109.5 H19A-C19-H19B 109.5 Si1-C19-H19C 109.5 H19A-C19-H19C 109.5 H19B-C19-H19C 109.5 Si1-C20-H20A 109.5 Si1-C20-H20B 109.5 H20A-C20-H20B 109.5 Si1-C20-H20C 109.5 H20A-C20-H20C 109.5 H20B-C20-H20C 109.5 Si1-C21-H21A 109.5 Si1-C21-H21B 109.5 H21A-C21-H21B 109.5 Si1-C21-H21C 109.5 H21A-C21-H21C 109.5 H21B-C21-H21C 109.5 Si2-C22-H22A 109.5 Si2-C22-H22B 109.5 H22A-C22-H22B 109.5 Si2-C22-H22C 109.5 H22A-C22-H22C 109.5 H22B-C22-H22C 109.5 Si2-C23-H23A 109.5 Si2-C23-H23B 109.5 H23A-C23-H23B 109.5 Si2-C23-H23C 109.5 H23A-C23-H23C 109.5

PAGE 123

108 Table A-3-continued H23B-C23-H23C 109.5 Si2-C24-H24A 109.5 Si2-C24-H24B 109.5 H24A-C24-H24B 109.5 Si2-C24-H24C 109.5 H24A-C24-H24C 109.5 H24B-C24-H24C 109.5 _____________________________________________________________ Symmetry transformations used to generate equivalent atoms: Table A-4: Anisotropic displacement parameters (2x 103) for 2. The anisotropic displacement factor exponent takes the form: -22[ h2 a*2U11 + ... + 2 h k a* b* U12 ] ________________________________________________________________________ U11 U22 U33 U23 U13 U12 ________________________________________________________________________ W 24(1) 29(1) 27(1) -1(1) 3(1) -3(1) Si1 28(1) 31(1) 54(1) 1(1) 4(1) -5(1) Si2 48(1) 34(1) 32(1) 5(1) 5(1) 11(1) N1 30(1) 35(1) 37(1) -1(1) 5(1) 0(1) N2 25(1) 29(1) 38(1) 1(1) 2(1) -3(1) N3 31(1) 28(1) 29(1) 0(1) 5(1) 1(1) C1 33(1) 28(1) 36(1) 4(1) 7(1) 0(1) C2 37(1) 43(2) 37(1) 4(1) 6(1) 4(1) C3 59(2) 50(2) 41(1) 4(1) 16(1) 11(1) C4 46(2) 51(2) 56(2) 14(1) 22(1) 18(1) C5 32(1) 50(2) 55(2) 16(1) 6(1) 9(1) C6 33(1) 42(1) 39(1) 5(1) 5(1) 3(1) C7 25(1) 29(1) 34(1) -3(1) 2(1) -1(1) C8 26(1) 32(1) 26(1) -4(1) 0(1) -3(1) C9 30(1) 30(1) 28(1) -3(1) 3(1) -2(1) C10 39(1) 38(2) 34(1) 5(1) 7(1) -4(1)

PAGE 124

109 Table A-4-continued C11 36(1) 54(2) 40(2) 2(1) 11(1) -10(1) C12 29(1) 52(2) 39(1) -4(1) 6(1) -3(1) C13 27(1) 39(1) 32(1) -8(1) 2(1) -3(1) C14 29(1) 43(2) 46(1) -9(1) 1(1) 8(1) C15 38(1) 32(1) 53(2) 3(1) 0(1) 4(1) C16 34(1) 31(1) 48(1) 2(1) 5(1) -1(1) C17 50(2) 48(2) 47(1) -14(1) 10(1) -15(1) C18 39(1) 60(2) 34(1) 3(1) -1(1) -2(1) C19 72(2) 55(2) 69(2) -10(2) 34(2) -25(2) C20 35(2) 45(2) 147(4) -5(2) -22(2) -4(1) C21 53(2) 38(2) 49(2) -4(1) -1(1) -9(1) C22 45(2) 53(2) 52(2) 9(1) -4(1) 10(1) C23 75(2) 43(2) 107(3) 34(2) 32(2) 10(2) C24 100(4) 93(3) 36(2) -14(2) -10(2) 48(2)

PAGE 125

110 Table A-5. Hydrogen coordinates (x 104) and isotropic displacement parameters (x 10 3) for 2. ________________________________________________________________________ x y z U(eq) ________________________________________________________________________ H2A -968 3776 3853 47 H3A -2769 4188 4496 59 H4A -4685 4169 3601 60 H5A -4816 3771 2060 55 H6A -3038 3403 1379 46 H10A 3019 3819 -100 44 H11A 5015 3354 -241 51 H12A 5638 2151 374 48 H14A 5224 953 1191 47 H15A 3942 168 1992 49 H16A 1928 587 2201 45 H17A 1530 4495 1892 72 H17B 2705 3942 2186 72 H17C 1777 4178 2939 72 H18A 1529 3089 3703 67 H18B 2512 2579 3198 67 H18C 1250 2181 3460 67 H19A 41 659 3103 95 H19B -1354 411 2743 95 H19C -1067 1284 3127 95 H20A -2165 2078 1490 117 H20B -2602 1271 982 117 H20C -1789 1892 467 117 H21A -127 540 167 71 H21B -897 -35 776 71 H21C 569 70 1030 71 H22A -1638 3288 -24 76 H22B -1743 4055 -675 76 H22C -1348 4142 419 76 H23A 1157 4977 127 110

PAGE 126

111 Table A-5-continued H23B 370 5035 -872 110 H23C 1762 4699 -788 110 H24A 1421 2963 -1412 116 H24B 235 3395 -1940 116 H24C 58 2610 -1352 116 ________________________________________________________________________

PAGE 127

112 Crystallographic Data for W(NPh)(CH 2 C 6 H 5 ) 2 (1,8-(Me 3 SiN) 2 -C 10 H 6 ), (3). Table A-6: Crystal data and structure refinement for 3. Empirical formula C 36 H 43 N 3 Si 2 W Formula weight 757.76 Temperature 193(2) K Wavelength 0.71073 Crystal system Monoclinic Space group P2(1)/c Unit cell dimensions a = 19.1853(8) = 90. b = 13.8583(6) = 94.395(2). c = 12.6680(5) = 90. Volume 3358.2(2) 3 Z 4 Density (calculated) 1.499 Mg/m3 Absorption coefficient 3.540 mm-1 F(000) 1528 Crystal size 0.34 x 0.22 x 0.02 mm3 Theta range for data collection 1.06 to 27.50. Index ranges -24h24, -17k17, -16l16 Reflections collected 29318 Independent reflections 7672 [R(int) = 0.0401] Completeness to theta = 27.50 99.3 % Absorption correction Integration Max. and min. transmission 0.9310 and 0.4625 Refinement method Full-matrix least-squares on F2 Data / restraints / parameters 7672 / 0 / 386 Goodness-of-fit on F2 1.114 Final R indices [I>2sigma(I)] R1 = 0.0193, wR2 = 0.0517 [6201] R indices (all data) R1 = 0.0291, wR2 = 0.0630 Extinction coefficient 0.00004(6) Largest diff. peak and hole 1.040 and -0.637 e.-3 R1 = (||Fo| |Fc||) / |Fo| wR2 = [w(Fo2 Fc2)2] / wFo22]]1/2

PAGE 128

113 Table A-6-continued S = [w(Fo2 Fc2)2] / (n-p)]1/2 w= 1/[2(Fo2)+(0.032*p) 2 +0.0652*p], p = [max(Fo2,0)+ 2* Fc2]/3 Table A-7. Atomic coordinates (x 10 4 ) and equivalent isotropic displacement parameters ( 2 x 10 3 ) for 3. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ________________________________________________________________________ x y z U(eq) ________________________________________________________________________ W 2671(1) 4940(1) 2932(1) 22(1) Si1 3541(1) 7096(1) 2828(1) 29(1) Si2 1296(1) 5797(1) 4165(1) 34(1) N1 2230(1) 5176(2) 1707(2) 30(1) N2 3258(1) 6061(1) 3500(2) 22(1) N3 2080(1) 5134(1) 4106(2) 27(1) C1 1853(2) 5303(2) 735(2) 28(1) C2 2170(2) 5201(2) -202(3) 45(1) C3 1789(2) 5340(3) -1165(3) 55(1) C4 1089(2) 5557(2) -1198(3) 46(1) C5 776(2) 5654(3) -280(3) 54(1) C6 1145(2) 5522(3) 689(3) 47(1) C7 3570(1) 5814(2) 4509(2) 24(1) C8 3200(2) 5215(2) 5234(2) 26(1) C9 2493(2) 4873(2) 5050(2) 29(1) C10 2196(2) 4301(2) 5786(2) 39(1) C11 2561(2) 4070(2) 6751(2) 45(1) C12 3224(2) 4402(2) 6972(2) 43(1) C13 3564(2) 4965(2) 6234(2) 33(1) C14 4250(2) 5298(2) 6487(2) 39(1) C15 4579(2) 5850(2) 5799(2) 40(1) C16 4241(2) 6105(2) 4822(2) 32(1) C17 2918(2) 7334(2) 1672(2) 47(1) C18 3544(2) 8141(2) 3750(3) 46(1)

PAGE 129

114 Table A-7-continued C19 4427(2) 6949(2) 2326(2) 39(1) C20 1193(2) 6176(3) 5549(3) 60(1) C21 1377(2) 6903(2) 3352(3) 58(1) C22 539(2) 5066(2) 3651(3) 46(1) C23 3721(1) 4329(2) 2638(2) 28(1) C24 3855(1) 3927(2) 1575(2) 25(1) C25 4039(2) 4533(2) 762(2) 34(1) C26 4194(2) 4173(2) -211(2) 42(1) C27 4153(2) 3194(2) -415(2) 41(1) C28 3972(2) 2575(2) 376(2) 40(1) C29 3830(2) 2940(2) 1352(2) 33(1) C30 2498(2) 3372(2) 3021(2) 31(1) C31 1770(2) 3011(2) 3062(2) 29(1) C32 1550(2) 2576(2) 3970(2) 41(1) C33 885(2) 2202(2) 3994(3) 54(1) C34 425(2) 2250(3) 3114(3) 55(1) C35 635(2) 2658(2) 2195(3) 49(1) C36 1296(2) 3044(2) 2174(2) 39(1) Table A-8. Bond lengths [] and angles [] for 3. _____________________________________________________ W-N1 1.741(3) W-N3 1.957(2) W-N2 2.019(2) W-C30 2.202(3) W-C23 2.242(3) Si1-N2 1.774(2) Si1-C17 1.848(3) Si1-C18 1.860(3) Si1-C19 1.871(3) Si2-N3 1.769(2) Si2-C22 1.847(3)

PAGE 130

115 Table A-8-continued Si2-C20 1.855(3) Si2-C21 1.860(3) N1-C1 1.390(4) N2-C7 1.411(3) N3-C9 1.429(4) C1-C2 1.383(4) C1-C6 1.388(4) C2-C3 1.387(5) C3-C4 1.373(5) C4-C5 1.355(5) C5-C6 1.382(4) C7-C16 1.380(4) C7-C8 1.460(4) C8-C9 1.439(4) C8-C13 1.441(4) C9-C10 1.379(4) C10-C11 1.398(4) C11-C12 1.362(4) C12-C13 1.414(4) C13-C14 1.408(5) C14-C15 1.352(4) C15-C16 1.398(4) C23-C24 1.497(3) C24-C25 1.395(4) C24-C29 1.396(3) C25-C26 1.383(4) C26-C27 1.381(4) C27-C28 1.384(4) C28-C29 1.382(4) C30-C31 1.488(4) C31-C36 1.392(4) C31-C32 1.393(4) C32-C33 1.380(4)

PAGE 131

116 Table A-8-continued C33-C34 1.371(5) C34-C35 1.382(5) C35-C36 1.378(4) N1-W-N3 112.39(11) N1-W-N2 113.15(9) N3-W-N2 87.94(9) N1-W-C30 99.53(10) N3-W-C30 89.87(9) N2-W-C30 145.44(9) N1-W-C23 107.73(10) N3-W-C23 139.34(10) N2-W-C23 82.31(9) C30-W-C23 77.11(10) N2-Si1-C17 108.77(12) N2-Si1-C18 108.31(12) C17-Si1-C18 109.21(16) N2-Si1-C19 113.24(11) C17-Si1-C19 107.41(14) C18-Si1-C19 109.84(15) N3-Si2-C22 110.35(13) N3-Si2-C20 109.85(15) C22-Si2-C20 110.52(17) N3-Si2-C21 107.29(13) C22-Si2-C21 110.71(18) C20-Si2-C21 108.03(18) C1-N1-W 176.0(2) C7-N2-Si1 120.51(17) C7-N2-W 108.73(15) Si1-N2-W 129.35(11) C9-N3-W 106.52(18) Si2-N3-W 130.35(14) C2-C1-C6 118.7(3) C2-C1-N1 120.9(3)

PAGE 132

117 Table A-8-continued C9-N3-Si2 120.98(18) C6-C1-N1 120.4(3) C1-C2-C3 120.2(3) C4-C3-C2 120.4(3) C5-C4-C3 119.5(3) C4-C5-C6 121.3(3) C5-C6-C1 119.9(3) C16-C7-N2 120.7(2) C16-C7-C8 118.2(2) N2-C7-C8 121.0(2) C9-C8-C13 116.8(3) C9-C8-C7 125.6(3) C13-C8-C7 117.6(3) C10-C9-N3 118.6(3) C10-C9-C8 120.8(3) N3-C9-C8 120.5(2) C9-C10-C11 121.2(3) C12-C11-C10 119.9(3) C11-C12-C13 121.4(3) C14-C13-C12 120.0(3) C14-C13-C8 120.2(3) C12-C13-C8 119.8(3) C15-C14-C13 120.9(3) C14-C15-C16 120.4(3) C7-C16-C15 122.6(3) C24-C23-W 120.52(18) C25-C24-C29 116.5(2) C25-C24-C23 120.7(2) C29-C24-C23 122.8(2) C26-C25-C24 121.6(3) C27-C26-C25 120.5(3) C26-C27-C28 119.1(3) C29-C28-C27 119.9(3) C28-C29-C24 122.3(3)

PAGE 133

118 Table A-8-continued C31-C30-W 118.68(18) C36-C31-C32 117.5(3) C36-C31-C30 121.2(3) C32-C31-C30 121.3(3) C33-C32-C31 121.3(3) C34-C33-C32 120.2(3) C33-C34-C35 119.5(3) C36-C35-C34 120.3(3) C35-C36-C31 121.1(3) _____________________________________________________________ Symmetry transformations used to generate equivalent atoms: Table A-9. Anisotropic displacement parameters (2x 103) for 3. The anisotropic displacement factor exponent takes the form: -22[ h2 a*2U11 + ... + 2 h k a* b* U12 ] ________________________________________________________________________ U11 U22 U33 U23 U13 U12 ________________________________________________________________________ W 21(1) 23(1) 22(1) 0(1) 2(1) 0(1) Si1 32(1) 25(1) 30(1) 2(1) 7(1) -3(1) Si2 27(1) 34(1) 43(1) -8(1) 11(1) -1(1) N1 28(1) 31(1) 30(1) 1(1) 2(1) -1(1) N2 23(1) 22(1) 22(1) 1(1) 2(1) -1(1) N3 28(1) 26(1) 29(1) -1(1) 8(1) -3(1) C1 28(2) 27(1) 27(2) 4(1) -1(1) -2(1) C2 39(2) 62(2) 33(2) -7(2) -1(2) 10(2) C3 65(3) 72(2) 28(2) -6(2) 1(2) 8(2) C4 54(2) 47(2) 34(2) 4(1) -14(2) 1(2) C5 33(2) 74(3) 53(2) 13(2) -7(2) 8(2) C6 38(2) 70(2) 34(2) 8(2) 5(2) 8(2) C7 28(2) 20(1) 25(1) -4(1) 2(1) 4(1) C8 35(2) 18(1) 25(1) -2(1) 2(1) 4(1) C9 38(2) 23(1) 26(1) -5(1) 9(1) 0(1) C10 54(2) 30(2) 35(2) -3(1) 13(2) -10(1)

PAGE 134

119 Table A-9-continued C11 76(3) 28(2) 33(2) 5(1) 16(2) -5(2) C12 75(3) 29(2) 24(2) 4(1) 6(2) 13(2) C13 50(2) 24(1) 24(1) -2(1) 0(1) 11(1) C14 47(2) 39(2) 29(2) -5(1) -10(1) 17(2) C15 33(2) 47(2) 40(2) -8(1) -8(1) 7(1) C16 31(2) 33(1) 33(2) -2(1) 0(1) 1(1) C17 48(2) 47(2) 45(2) 22(2) -1(2) -6(2) C18 64(2) 28(2) 48(2) -5(1) 17(2) -3(2) C19 41(2) 34(2) 44(2) 4(1) 14(2) -7(1) C20 41(2) 79(3) 61(2) -37(2) 15(2) 4(2) C21 39(2) 39(2) 99(3) 8(2) 20(2) 11(2) C22 31(2) 52(2) 56(2) -7(2) 3(2) -4(1) C23 25(2) 28(1) 30(2) -4(1) 2(1) -1(1) C24 19(1) 29(1) 27(1) -2(1) 2(1) 1(1) C25 38(2) 29(2) 37(2) 1(1) 5(1) -4(1) C26 44(2) 49(2) 33(2) 8(1) 9(1) -6(2) C27 41(2) 54(2) 31(2) -9(1) 10(1) -3(2) C28 44(2) 32(2) 44(2) -9(1) 11(2) 0(1) C29 37(2) 30(1) 32(2) 1(1) 10(1) 1(1) C30 31(2) 26(1) 37(2) -1(1) 5(1) 0(1) C31 31(2) 22(1) 35(2) -4(1) 6(1) -2(1) C32 47(2) 40(2) 36(2) -1(1) 1(2) -16(2) C33 60(2) 57(2) 45(2) -1(2) 14(2) -29(2) C34 40(2) 61(2) 64(2) -4(2) 10(2) -26(2) C35 42(2) 56(2) 48(2) -4(2) -6(2) -17(2) C36 39(2) 38(2) 40(2) 1(1) 5(1) -8(1)

PAGE 135

120 Table A-10. Hydrogen coordinates (x 104) and isotropic displacement parameters (2x 10 3) for 3. ________________________________________________________________________ x y z U(eq) ________________________________________________________________________ H2A 2651 5035 -186 54 H3A 2013 5284 -1805 66 H4A 827 5640 -1858 55 H5A 294 5815 -304 65 H6A 914 5580 1323 56 H10A 1736 4060 5634 47 H11A 2346 3682 7252 54 H12A 3464 4252 7635 51 H14A 4484 5133 7150 47 H15A 5043 6065 5981 48 H16A 4485 6495 4355 38 H17A 2916 6786 1183 71 H17B 3060 7919 1309 71 H17C 2448 7425 1909 71 H18A 3112 8138 4117 69 H18B 3573 8742 3348 69 H18C 3948 8093 4270 69 H19A 4607 6303 2506 59 H19B 4745 7436 2653 59 H19C 4393 7031 1555 59 H20A 1123 5605 5985 90 H20B 787 6603 5565 90 H20C 1614 6520 5828 90 H21A 1777 7285 3642 87 H21B 949 7288 3365 87 H21C 1448 6720 2621 87 H22A 608 4857 2927 70 H22B 113 5455 3649 70 H22C 496 4499 4103 70 H23A 4071 4844 2800 33

PAGE 136

121 Table A-10-continued H23B 3823 3809 3164 33 H25A 4059 5210 880 41 H26A 4330 4602 -743 50 H27A 4249 2950 -1090 50 H28A 3944 1900 248 48 H29A 3713 2505 1890 39 H30A 2695 3074 2399 37 H30B 2775 3130 3658 37 H32A 1865 2535 4586 49 H33A 746 1910 4624 64 H34A -36 2004 3135 66 H35A 323 2672 1576 59 H36A 1430 3339 1543 47

PAGE 137

122 Crystallographic Data for W-(NSiMe 3 )(C 10 H 6 (NSiMe 3 ))(NPh)(PMe 3 ), (5) Table A-11: Crystal data and structure refinement for 5. Empirical formula C 25 H 38 N 3 P Si 2 W Formula weight 651.58 Temperature 193(2) K Wavelength 0.71073 Crystal system Monoclinic Space group P2(1)/c Unit cell dimensions a = 10.3354(5) = 90. b = 19.016(2) = 92.743(2). c = 14.5183(8) = 90. Volume 2850.2(3) 3 Z 4 Density (calculated) 1.518 Mg/m3 Absorption coefficient 4.210 mm-1 F(000) 1304 Crystal size 0.19 x 0.10 x 0.04 mm3 Theta range for data collection 1.77 to 28.01. Index ranges -13h13, -24k24, -18l18 Reflections collected 25402 Independent reflections 6683 [R(int) = 0.0401] Completeness to theta = 28.01 97.1 % Absorption correction Analytical Max. and min. transmission 0.8339 and 0.5665 Refinement method Full-matrix least-squares on F2 Data / restraints / parameters 6683 / 0 / 298 Goodness-of-fit on F2 1.014 Final R indices [I>2sigma(I)] R1 = 0.0203, wR2 = 0.0491 [5690] R indices (all data) R1 = 0.0264, wR2 = 0.0504 Largest diff. peak and hole 1.281 and -0.735 e.-3 R1 = (||Fo| |Fc||) / |Fo| wR2 = [w(Fo2 Fc2)2] / wFo22]]1/2 S = [w(Fo2 Fc2)2] / (n-p)]1/2 w= 1/[2(Fo2)+(0.0268*p) 2 +0.00*p], p = [max(Fo2,0)+ 2* Fc2]/3

PAGE 138

123 Table A-12. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (2x 103) for 5. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ________________________________________________________________________ x y z U(eq) ________________________________________________________________________ W 11199(1) -3405(1) 8757(1) 22(1) P1 10316(1) -2559(1) 9924(1) 29(1) Si1 12769(1) -4528(1) 7426(1) 27(1) Si2 12171(1) -4447(1) 10660(1) 33(1) N1 12390(2) -2739(1) 8623(1) 29(1) N2 11340(2) -4066(1) 7633(1) 25(1) N3 11548(2) -3973(1) 9707(1) 30(1) C1 13422(2) -2287(1) 8829(2) 30(1) C2 14448(3) -2488(2) 9433(2) 41(1) C3 15447(3) -2020(2) 9638(2) 51(1) C4 15432(4) -1361(2) 9256(2) 60(1) C5 14425(4) -1160(2) 8677(2) 56(1) C6 13428(3) -1620(2) 8459(2) 46(1) C7 9256(2) -3308(1) 8046(2) 26(1) C8 8182(2) -2892(1) 8194(2) 32(1) C9 7001(3) -2962(2) 7679(2) 38(1) C10 6854(3) -3466(2) 7010(2) 37(1) C11 7891(2) -3904(1) 6806(2) 30(1) C12 7806(3) -4439(1) 6127(2) 34(1) C13 8857(3) -4826(1) 5933(2) 32(1) C14 10066(3) -4716(1) 6406(2) 28(1) C15 10200(2) -4215(1) 7099(2) 23(1) C16 9096(2) -3806(1) 7311(2) 24(1) C17 13305(3) -4355(2) 6231(2) 40(1) C18 14118(3) -4219(2) 8222(2) 37(1) C19 12569(3) -5496(1) 7622(2) 39(1) C20 13785(3) -4092(2) 11051(2) 44(1) C21 11040(3) -4393(2) 11611(2) 48(1) C22 12344(3) -5382(2) 10321(2) 52(1) C23 11531(3) -2406(2) 10844(2) 41(1)

PAGE 139

124 Table A-12-continued C24 8923(3) -2824(2) 10548(2) 38(1) C25 10000(4) -1671(1) 9512(2) 47(1) Table A-13. Bond lengths [] and angles [] for 5. _____________________________________________________ W-N3 1.775(2) W-N1 1.783(2) W-N2 2.0717(19) W-C7 2.221(2) W-P1 2.5370(6) P1-C24 1.809(3) P1-C23 1.812(3) P1-C25 1.817(3) Si1-N2 1.756(2) Si1-C18 1.863(3) Si1-C17 1.875(3) Si1-C19 1.876(3) Si2-N3 1.748(2) Si2-C21 1.854(3) Si2-C22 1.856(3) Si2-C20 1.863(3) N1-C1 1.391(3) N2-C15 1.408(3) C1-C6 1.377(4) C1-C2 1.396(4) C2-C3 1.385(4) C3-C4 1.370(5) C4-C5 1.361(5) C5-C6 1.378(4) C7-C8 1.389(3) C7-C16 1.430(3) C8-C9 1.406(4) C9-C10 1.367(4)

PAGE 140

125 Table A-13-continued C10-C11 1.401(4) C11-C12 1.417(4) C11-C16 1.427(3) C12-C13 1.353(4) C13-C14 1.412(3) C14-C15 1.387(3) C15-C16 1.427(3) N3-W-N1 113.66(10) N3-W-N2 102.92(9) N1-W-N2 105.69(8) N3-W-C7 123.85(9) N1-W-C7 120.26(9) N2-W-C7 77.27(8) N3-W-P1 86.14(7) N1-W-P1 83.99(7) N2-W-P1 162.21(6) C7-W-P1 84.96(7) C24-P1-C23 102.48(13) C24-P1-C25 106.73(15) C23-P1-C25 101.56(15) C24-P1-W 118.62(10) C23-P1-W 109.60(10) C25-P1-W 115.74(11) N2-Si1-C18 110.33(11) N2-Si1-C17 110.98(12) C18-Si1-C17 105.84(13) N2-Si1-C19 111.40(11) C18-Si1-C19 107.45(13) C17-Si1-C19 110.64(13) N3-Si2-C21 109.88(12) N3-Si2-C22 108.75(12) C21-Si2-C22 108.79(15) N3-Si2-C20 110.16(12) C21-Si2-C20 109.86(14)

PAGE 141

126 Table A-13-continued C22-Si2-C20 109.36(16) C1-N1-W 160.30(18) C15-N2-Si1 119.61(16) C15-N2-W 117.88(15) Si1-N2-W 121.96(10) Si2-N3-W 169.14(14) C6-C1-N1 120.2(3) C6-C1-C2 118.6(3) N1-C1-C2 121.2(2) C3-C2-C1 119.7(3) C4-C3-C2 120.4(3) C5-C4-C3 120.1(3) C4-C5-C6 120.3(3) C1-C6-C5 120.8(3) C8-C7-C16 115.3(2) C8-C7-W 133.36(19) C16-C7-W 111.23(17) C7-C8-C9 122.9(2) C10-C9-C8 120.5(3) C9-C10-C11 120.5(3) C10-C11-C12 123.5(2) C10-C11-C16 118.1(2) C12-C11-C16 118.4(2) C13-C12-C11 120.8(2) C12-C13-C14 121.3(2) C15-C14-C13 120.6(2) C14-C15-N2 126.1(2) C14-C15-C16 118.6(2) N2-C15-C16 115.4(2) C15-C16-C11 120.3(2) C15-C16-C7 117.2(2) C11-C16-C7 122.5(2) _____________________________________________________________ Symmetry transformations used to generate equivalent atoms:

PAGE 142

127 Table A-14. Anisotropic displacement parameters (2x 103) for 5. The anisotropic displacement factor exponent takes the form: -22[ h2 a*2U11 + ... + 2 h k a* b* U12 ] ________________________________________________________________________ U11 U22 U33 U23 U13 U12 ________________________________________________________________________ W 23(1) 21(1) 20(1) -2(1) 2(1) -2(1) P1 34(1) 25(1) 29(1) -7(1) 4(1) 0(1) Si1 29(1) 28(1) 26(1) -4(1) 4(1) 3(1) Si2 38(1) 33(1) 26(1) 6(1) -1(1) -1(1) N1 29(1) 28(1) 30(1) -5(1) 7(1) -6(1) N2 26(1) 24(1) 23(1) -2(1) 1(1) 1(1) N3 35(1) 30(1) 25(1) -2(1) 3(1) 0(1) C1 31(1) 28(1) 30(1) -7(1) 3(1) -6(1) C2 43(2) 43(2) 36(2) -9(1) 2(1) 3(1) C3 34(2) 77(2) 42(2) -23(2) -3(1) -1(2) C4 61(2) 71(2) 49(2) -22(2) 15(2) -38(2) C5 75(2) 46(2) 48(2) -2(2) 2(2) -32(2) C6 54(2) 48(2) 35(2) 6(1) -2(1) -23(2) C7 28(1) 28(1) 23(1) 3(1) -1(1) -2(1) C8 30(1) 37(2) 30(1) -5(1) 3(1) 2(1) C9 31(1) 47(2) 37(2) 2(1) 3(1) 9(1) C10 26(1) 53(2) 32(1) 7(1) -2(1) -4(1) C11 28(1) 35(1) 26(1) 7(1) 1(1) -6(1) C12 38(2) 40(2) 24(1) 4(1) -6(1) -15(1) C13 42(2) 32(1) 21(1) -2(1) -2(1) -10(1) C14 36(1) 26(1) 21(1) 0(1) 2(1) -4(1) C15 28(1) 24(1) 17(1) 3(1) 1(1) -4(1) C16 28(1) 26(1) 20(1) 2(1) 3(1) -4(1) C17 38(2) 48(2) 35(2) -4(1) 9(1) 2(1) C18 30(1) 44(2) 39(2) -6(1) 0(1) 3(1) C19 41(2) 31(1) 44(2) -1(1) 4(1) 3(1) C20 41(2) 51(2) 38(2) 3(1) -3(1) 0(1) C21 51(2) 58(2) 35(2) 12(1) 6(1) -5(2) C22 70(2) 37(2) 49(2) 8(2) -2(2) 4(2) C23 42(2) 44(2) 38(2) -18(1) 1(1) -6(1)

PAGE 143

128 Table A-14-continued C24 37(2) 44(2) 35(1) -7(1) 9(1) 2(1) C25 63(2) 28(2) 48(2) -4(1) 4(2) 3(1) Table A-15: Hydrogen coordinates (x 104) and isotropic displacement parameters (2x 10 3) for 5. ________________________________________________________________________ x y z U(eq) ________________________________________________________________________ H2A 14460 -2944 9701 49 H3A 16148 -2157 10047 61 H4A 16124 -1044 9396 72 H5A 14410 -700 8422 67 H6A 12736 -1476 8048 55 H8A 8247 -2545 8665 39 H9A 6301 -2656 7797 46 H10A 6043 -3519 6682 45 H12A 7002 -4527 5803 41 H13A 8781 -5178 5470 38 H14A 10795 -4988 6249 33 H17A 12633 -4514 5780 60 H17B 14112 -4609 6137 60 H17C 13449 -3849 6153 60 H18A 14220 -3710 8158 56 H18B 14924 -4454 8068 56 H18C 13921 -4332 8859 56 H19A 12148 -5573 8204 58 H19B 13421 -5723 7651 58 H19C 12033 -5698 7114 58 H20A 14406 -4175 10574 66 H20B 14084 -4328 11622 66 H20C 13713 -3585 11163 66

PAGE 144

129 Table A-15-continued H21A 10939 -3901 11794 72 H21B 11389 -4666 12140 72 H21C 10196 -4585 11403 72 H22A 11504 -5563 10087 78 H22B 12648 -5658 10860 78 H22C 12972 -5419 9839 78 H23A 11208 -2058 11275 62 H23B 12325 -2229 10583 62 H23C 11717 -2848 11172 62 H24A 9128 -3253 10898 57 H24B 8189 -2912 10111 57 H24C 8696 -2448 10974 57 H25A 9331 -1683 9010 70 H25B 10797 -1469 9286 70 H25C 9700 -1382 10019 70 ________________________________________________________________________

PAGE 145

130 Crystallographic data for W(NPh)(o-(Me 3 SiN) 2 C 6 H 4 ) (OCH 2 (p-C 6 H 4 CH 3 )(OCH(2-C 5 H 4 N)(p-C 6 H 4 CH 3 ), (9). Table A-16. Crystal data and structure refinement for 9. Empirical formula C 39 H 48 N 4 O 2 Si 2 W Formula weight 844.84 Temperature 133(2) K Wavelength 0.71073 Crystal system Monoclinic Space group P2(1)/n Unit cell dimensions a = 9.1946(11) = 90. b = 33.186(4) = 103.286(2). c = 13.3503(16) = 90. Volume 3964.6(8) 3 Z 4 Density (calculated) 1.415 Mg/m3 Absorption coefficient 3.011 mm-1 F(000) 1712 Crystal size 0.18 x 0.04 x 0.02 mm3 Theta range for data collection 1.23 to 24.15. Index ranges -10h10, -37k38, -15l15 Reflections collected 20464 Independent reflections 5653 [R(int) = 0.1581] Completeness to theta = 24.15 89.0 % Absorption correction Integration Max. and min. transmission 0.9413 and 0.7327 Refinement method Full-matrix least-squares on F2 Data / restraints / parameters 5653 / 0 / 416 Goodness-of-fit on F2 0.816 Final R indices [I>2sigma(I)] R1 = 0.0470, wR2 = 0.0606 [2788] R indices (all data) R1 = 0.1392, wR2 = 0.0742 Largest diff. peak and hole 1.182 and -1.564 e.-3 R1 = (||Fo| |Fc||) / |Fo| wR2 = [w(Fo2 Fc2)2] / wFo22]]1/2 S = [w(Fo2 Fc2)2] / (n-p)]1/2 w= 1/[2(Fo2)+(0.0*p) 2 +0.0*p], p = [max(Fo2,0)+ 2* Fc2]/3

PAGE 146

131 Table A-17. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (2x 103) for 9. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ________________________________________________________________________ x y z U(eq) ________________________________________________________________________ W -8761(1) 1352(1) 2091(1) 20(1) Si1 -7604(3) 1539(1) -82(2) 27(1) Si2 -11202(3) 2057(1) 2522(2) 28(1) O1 -7369(6) 899(2) 2132(4) 21(2) O2 -9394(6) 1224(2) 3338(4) 20(2) N1 -10201(8) 1119(2) 1220(5) 15(2) N2 -7666(7) 1664(2) 1161(5) 16(2) N3 -9441(8) 1922(2) 2281(5) 16(2) N4 -6665(8) 1491(2) 3345(6) 20(2) C1 -11151(10) 823(3) 673(7) 18(3) C2 -10828(11) 410(3) 827(8) 30(3) C3 -11814(13) 122(3) 276(9) 41(4) C4 -13111(14) 242(4) -376(9) 45(4) C5 -13431(11) 639(4) -559(8) 38(3) C6 -12484(10) 940(3) -8(7) 25(3) C7 -7477(10) 2079(3) 1473(7) 18(3) C8 -8467(10) 2218(3) 2100(8) 23(3) C9 -8339(10) 2612(3) 2471(7) 29(3) C10 -7313(11) 2867(3) 2203(8) 31(3) C11 -6343(10) 2738(3) 1600(8) 36(3) C12 -6425(11) 2341(3) 1242(8) 25(3) C13 -9171(11) 1790(4) -954(7) 74(5) C14 -5825(11) 1658(3) -458(8) 54(4) C15 -7790(11) 982(3) -273(7) 37(3) C16 -12578(9) 1638(3) 2182(7) 33(3) C17 -10961(11) 2174(3) 3922(7) 42(3) C18 -12029(10) 2498(3) 1673(8) 52(4) C19 -5745(11) 940(3) 2504(8) 38(3)

PAGE 147

132 Table A-17-continued C20 -5515(11) 1236(3) 3410(7) 22(3) C21 -4249(10) 1243(3) 4200(7) 27(3) C22 -4048(12) 1545(3) 4917(8) 43(4) C23 -5238(11) 1815(3) 4882(7) 24(3) C24 -6478(11) 1779(3) 4102(8) 31(3) C25 -5115(10) 520(3) 2778(8) 22(3) C26 -5611(10) 292(3) 3472(8) 29(3) C27 -5039(11) -105(3) 3684(8) 36(3) C28 -3974(11) -260(4) 3200(9) 33(3) C29 -3420(12) -686(3) 3420(8) 58(4) C30 -3502(11) -12(3) 2504(8) 37(3) C31 -4065(10) 378(3) 2277(8) 27(3) C32 -9991(10) 838(3) 3515(7) 29(3) C33 -10366(11) 803(3) 4536(8) 25(3) C34 -10064(10) 1113(3) 5239(8) 28(3) C35 -10410(10) 1083(3) 6194(9) 33(3) C36 -11011(11) 735(4) 6487(8) 35(3) C37 -11396(13) 684(3) 7547(8) 58(4) C38 -11293(11) 425(3) 5761(9) 32(3) C39 -10990(10) 452(3) 4831(8) 28(3)

PAGE 148

133 Table A-18. Bond lengths [] and angles [] for 9. _____________________________________________________ W-N1 1.731(7) W-O2 1.934(6) W-O1 1.968(6) W-N3 2.027(7) W-N2 2.049(7) W-N4 2.291(7) Si1-N2 1.724(8) Si1-C13 1.831(9) Si1-C14 1.860(9) Si1-C15 1.870(9) Si2-N3 1.779(7) Si2-C16 1.865(8) Si2-C17 1.872(9) Si2-C18 1.899(9) O1-C19 1.468(10) O2-C32 1.435(10) N1-C1 1.402(10) N2-C7 1.438(11) N3-C8 1.387(10) N4-C20 1.341(10) N4-C24 1.373(11) C1-C6 1.402(11) C1-C2 1.407(12) C2-C3 1.402(13) C2-H2A 0.9500 C3-C4 1.364(14) C3-H3A 0.9500 C4-C5 1.358(13) C4-H4A 0.9500 C5-C6 1.416(12) C5-H5A 0.9500 C6-H6A 0.9500 C7-C12 1.387(11) C7-C8 1.447(12)

PAGE 149

134 Table A-18-continued C8-C9 1.393(12) C9-C10 1.374(12) C9-H9A 0.9500 C10-C11 1.399(12) C10-H10A 0.9500 C11-C12 1.397(12) C11-H11A 0.9500 C12-H12A 0.9500 C13-H13C 0.9800 C13-H13B 0.9800 C13-H13A 0.9800 C14-H14C 0.9800 C14-H14B 0.9800 C14-H14A 0.9800 C15-H15C 0.9800 C15-H15B 0.9800 C15-H15A 0.9800 C16-H16C 0.9800 C16-H16B 0.9800 C16-H16A 0.9800 C17-H17C 0.9800 C17-H17B 0.9800 C17-H17A 0.9800 C18-H18C 0.9800 C18-H18B 0.9800 C18-H18A 0.9800 C19-C25 1.524(13) C19-C20 1.533(12) C19-H19A 1.0000 C20-C21 1.380(11) C21-C22 1.368(12) C21-H21A 0.9500 C22-C23 1.409(12) C22-H22A 0.9500

PAGE 150

135 Table A-18-continued C23-C24 1.361(11) C23-H23A 0.9500 C24-H24A 0.9500 C25-C26 1.353(12) C25-C31 1.377(12) C26-C27 1.424(12) C26-H26A 0.9500 C27-C28 1.391(12) C27-H27A 0.9500 C28-C30 1.384(13) C28-C29 1.509(13) C29-H29C 0.9800 C29-H29B 0.9800 C29-H29A 0.9800 C30-C31 1.402(12) C30-H30A 0.9500 C31-H31A 0.9500 C32-C33 1.485(12) C32-H32B 0.9900 C32-H32A 0.9900 C33-C34 1.376(12) C33-C39 1.395(13) C34-C35 1.387(12) C34-H34A 0.9500 C35-C36 1.375(13) C35-H35A 0.9500 C36-C38 1.396(13) C36-C37 1.546(13) C37-H37C 0.9800 C37-H37B 0.9800 C37-H37A 0.9800 C38-C39 1.336(12) C38-H38A 0.9500 C39-H39A 0.9500

PAGE 151

136 Table A-18-continued N1-W-O2 98.4(3) N1-W-O1 94.0(3) O2-W-O1 97.5(2) N1-W-N3 107.0(3) O2-W-N3 86.2(3) O1-W-N3 158.0(3) N1-W-N2 103.1(3) O2-W-N2 156.8(3) O1-W-N2 89.8(3) N3-W-N2 79.2(3) N1-W-N4 165.0(3) O2-W-N4 77.5(2) O1-W-N4 72.6(3) N3-W-N4 87.3(3) N2-W-N4 83.8(3) N2-Si1-C13 108.0(4) N2-Si1-C14 115.8(4) C13-Si1-C14 110.2(5) N2-Si1-C15 110.3(4) C13-Si1-C15 109.1(5) C14-Si1-C15 103.3(5) N3-Si2-C16 111.2(4) N3-Si2-C17 109.2(4) C16-Si2-C17 108.4(5) N3-Si2-C18 110.0(4) C16-Si2-C18 105.9(4) C17-Si2-C18 112.1(5) C19-O1-W 122.8(6) C32-O2-W 122.7(5) C1-N1-W 162.1(7) C7-N2-Si1 118.6(6) C7-N2-W 110.6(6) Si1-N2-W 126.3(4)

PAGE 152

137 Table A-18-continued C8-N3-Si2 120.3(6) C8-N3-W 114.1(6) Si2-N3-W 125.3(4) C20-N4-C24 115.4(8) C20-N4-W 116.1(6) C24-N4-W 128.3(6) N1-C1-C6 119.4(9) N1-C1-C2 121.4(9) C6-C1-C2 119.2(10) C3-C2-C1 119.8(10) C3-C2-H2A 120.1 C1-C2-H2A 120.1 C4-C3-C2 120.1(12) C4-C3-H3A 120.0 C2-C3-H3A 120.0 C5-C4-C3 121.3(12) C5-C4-H4A 119.4 C3-C4-H4A 119.4 C4-C5-C6 120.5(11) C4-C5-H5A 119.7 C6-C5-H5A 119.7 C1-C6-C5 119.0(10) C1-C6-H6A 120.5 C5-C6-H6A 120.5 C12-C7-N2 125.5(9) C12-C7-C8 119.5(9) N2-C7-C8 115.0(9) N3-C8-C9 127.4(9) N3-C8-C7 113.1(9) C9-C8-C7 119.5(9) C10-C9-C8 119.5(10) C10-C9-H9A 120.3 C8-C9-H9A 120.3 C9-C10-C11 121.9(10)

PAGE 153

138 Table A-18-continued C9-C10-H10A 119.1 C11-C10-H10A 119.1 C12-C11-C10 119.6(10) C12-C11-H11A 120.2 C10-C11-H11A 120.2 C7-C12-C11 120.0(10) C7-C12-H12A 120.0 C11-C12-H12A 120.0 Si1-C13-H13C 109.5 Si1-C13-H13B 109.5 H13C-C13-H13B 109.5 Si1-C13-H13A 109.5 H13C-C13-H13A 109.5 H13B-C13-H13A 109.5 Si1-C14-H14C 109.5 Si1-C14-H14B 109.5 H14C-C14-H14B 109.5 Si1-C14-H14A 109.5 H14C-C14-H14A 109.5 H14B-C14-H14A 109.5 Si1-C15-H15C 109.5 Si1-C15-H15B 109.5 H15C-C15-H15B 109.5 Si1-C15-H15A 109.5 H15C-C15-H15A 109.5 H15B-C15-H15A 109.5 Si2-C16-H16C 109.5 Si2-C16-H16B 109.5 H16C-C16-H16B 109.5 Si2-C16-H16A 109.5 H16C-C16-H16A 109.5 H16B-C16-H16A 109.5 Si2-C17-H17C 109.5 Si2-C17-H17B 109.5

PAGE 154

139 Table A-18-continued H17C-C17-H17B 109.5 Si2-C17-H17A 109.5 H17C-C17-H17A 109.5 H17B-C17-H17A 109.5 Si2-C18-H18C 109.5 Si2-C18-H18B 109.5 H18C-C18-H18B 109.5 Si2-C18-H18A 109.5 H18C-C18-H18A 109.5 H18B-C18-H18A 109.5 O1-C19-C25 107.2(8) O1-C19-C20 105.9(8) C25-C19-C20 114.9(9) O1-C19-H19A 109.6 C25-C19-H19A 109.6 C20-C19-H19A 109.6 N4-C20-C21 123.6(9) N4-C20-C19 112.9(9) C21-C20-C19 123.6(10) C22-C21-C20 120.1(10) C22-C21-H21A 120.0 C20-C21-H21A 120.0 C21-C22-C23 117.7(10) C21-C22-H22A 121.1 C23-C22-H22A 121.1 C24-C23-C22 118.4(10) C24-C23-H23A 120.8 C22-C23-H23A 120.8 C23-C24-N4 124.5(9) C23-C24-H24A 117.7 N4-C24-H24A 117.7 C26-C25-C31 121.8(10) C26-C25-C19 120.4(9) C31-C25-C19 117.8(10)

PAGE 155

140 Table A-18-continued C25-C26-C27 119.1(10) C25-C26-H26A 120.5 C27-C26-H26A 120.5 C28-C27-C26 121.2(11) C28-C27-H27A 119.4 C26-C27-H27A 119.4 C30-C28-C27 117.0(11) C30-C28-C29 123.0(10) C27-C28-C29 119.9(11) C28-C29-H29C 109.5 C28-C29-H29B 109.5 H29C-C29-H29B 109.5 C28-C29-H29A 109.5 H29C-C29-H29A 109.5 H29B-C29-H29A 109.5 C28-C30-C31 122.5(10) C28-C30-H30A 118.7 C31-C30-H30A 118.7 C25-C31-C30 118.4(10) C25-C31-H31A 120.8 C30-C31-H31A 120.8 O2-C32-C33 113.5(9) O2-C32-H32B 108.9 C33-C32-H32B 108.9 O2-C32-H32A 108.9 C33-C32-H32A 108.9 H32B-C32-H32A 107.7 C34-C33-C39 117.5(10) C34-C33-C32 121.0(11) C39-C33-C32 121.4(10) C33-C34-C35 121.3(10) C33-C34-H34A 119.3 C35-C34-H34A 119.3 C36-C35-C34 120.9(11)

PAGE 156

141 Table A-18-continued C36-C35-H35A 119.5 C34-C35-H35A 119.5 C35-C36-C38 116.4(10) C35-C36-C37 122.8(11) C38-C36-C37 120.7(11) C36-C37-H37C 109.5 C36-C37-H37B 109.5 H37C-C37-H37B 109.5 C36-C37-H37A 109.5 H37C-C37-H37A 109.5 H37B-C37-H37A 109.5 C39-C38-C36 123.3(11) C39-C38-H38A 118.4 C36-C38-H38A 118.4 C38-C39-C33 120.5(11) C38-C39-H39A 119.8 C33-C39-H39A 119.8 _____________________________________________________________ Symmetry transformations used to generate equivalent atoms:

PAGE 157

142 Table A-19. Anisotropic displacement parameters (2x 103) for 9. The anisotropic displacement factor exponent takes the form: -22[ h2 a*2U11 + ... + 2 h k a* b* U12 ] ________________________________________________________________________ U11 U22 U33 U23 U13 U12 ________________________________________________________________________ W 16(1) 20(1) 23(1) 0(1) 4(1) -2(1) Si1 26(2) 29(2) 27(2) -1(2) 6(2) 0(2) Si2 24(2) 29(2) 32(2) 1(2) 10(2) 1(2) O1 21(4) 16(4) 24(4) -1(3) -1(4) 7(3) O2 20(4) 20(5) 22(4) 2(3) 6(3) -10(3) N2 16(5) 21(6) 7(5) 8(4) -3(4) 7(4) N4 21(5) 11(6) 27(6) 10(4) 5(4) 6(4) C2 31(7) 32(8) 31(8) 9(6) 17(6) 6(6) C3 44(9) 27(8) 67(10) -30(8) 41(8) -25(7) C4 51(10) 44(10) 46(9) -20(8) 25(8) -20(8) C5 18(7) 70(10) 27(8) -12(8) 6(6) -22(7) C6 22(7) 32(8) 24(7) -14(6) 9(6) -9(6) C7 6(6) 16(7) 31(7) 7(6) 1(5) 1(5) C8 16(7) 23(7) 34(7) 7(7) 12(6) 3(6) C9 20(7) 20(7) 47(9) -13(6) 7(6) -2(6) C10 20(7) 21(8) 46(8) 0(6) -5(6) -2(6) C11 10(6) 45(9) 53(9) 19(7) 8(6) -6(6) C12 31(7) 10(7) 38(8) -1(6) 14(6) 0(6) C13 68(9) 113(12) 31(8) -17(8) -10(7) 60(9) C14 66(9) 39(8) 72(9) -20(7) 43(8) -27(7) C15 63(8) 22(8) 35(8) -7(6) 26(7) -17(6) C16 13(6) 27(7) 64(8) 2(6) 15(6) 2(5) C17 59(8) 47(9) 23(7) -3(7) 15(7) 16(7) C18 26(7) 55(9) 81(10) 27(8) 25(7) 13(7) C19 20(7) 68(10) 35(8) 1(8) 21(6) -3(7) C22 41(8) 54(9) 22(7) -17(7) -17(6) -3(7) C23 35(7) 16(7) 15(7) -11(6) -5(6) 9(6) C24 40(8) 29(8) 24(8) 10(6) 7(6) 19(6) C25 7(6) 19(7) 38(8) -3(6) 2(6) -2(5) C26 21(7) 29(8) 45(9) 1(7) 23(6) 0(6) C27 38(8) 16(8) 54(9) 0(7) 10(7) -2(6)

PAGE 158

143 Table A-19-continued C28 19(7) 45(9) 34(8) -14(7) 4(6) 3(7) C29 62(9) 26(8) 74(11) 9(8) -6(8) 26(7) C30 37(8) 44(9) 29(9) -17(7) 7(7) 16(7) C31 16(7) 31(8) 35(8) -2(6) 5(6) 8(6) C32 18(6) 41(8) 33(8) -4(6) 16(6) -4(6) C33 21(7) 21(8) 34(8) -10(7) 7(6) 12(6) C34 26(7) 32(8) 32(8) 22(7) 19(6) 7(6) C35 16(7) 27(8) 55(9) 3(7) 7(6) 5(6) C36 34(8) 64(10) 9(7) 8(7) 9(6) 8(7) C37 75(10) 56(9) 45(11) 10(7) 17(8) -6(8) C38 42(8) 28(8) 27(8) 8(7) 8(7) -10(6) C39 30(7) 32(8) 28(8) -3(6) 20(6) 2(6) Table A-20. Hydrogen coordinates (x 104) and isotropic displacement parameters (2x 10 3) for 9. ________________________________________________________________________ x y z U(eq) ________________________________________________________________________ H2A -9945 326 1303 36 H3A -11577 -156 356 50 H4A -13804 45 -708 54 H5A -14298 714 -1062 46 H6A -12747 1216 -97 30 H9A -8956 2704 2905 35 H10A -7261 3138 2434 38 H11A -5633 2919 1435 43 H12A -5759 2251 840 30 H13C -10112 1667 -881 111 H13B -9072 1758 -1665 111 H13A -9169 2077 -782 111 H14C -5757 1949 -559 82

PAGE 159

144 Table A-20-continued H14B -5802 1517 -1100 82 H14A -4979 1569 86 82 H15C -6947 847 186 56 H15B -7794 916 -989 56 H15A -8727 891 -116 56 H16C -12597 1543 1484 50 H16B -13573 1734 2214 50 H16A -12285 1415 2670 50 H17C -10663 1929 4327 63 H17B -11908 2274 4047 63 H17A -10188 2380 4126 63 H18C -11290 2715 1746 78 H18B -12921 2596 1881 78 H18A -12304 2410 953 78 H19A -5309 1056 1947 46 H21A -3515 1038 4246 32 H22A -3137 1571 5420 52 H23A -5177 2019 5391 29 H24A -7268 1965 4079 37 H26A -6331 396 3812 35 H27A -5392 -267 4165 44 H29C -4276 -870 3327 87 H29B -2831 -705 4130 87 H29A -2795 -761 2946 87 H30A -2768 -110 2167 44 H31A -3730 541 1790 33 H32B -9253 627 3458 35 H32A -10904 787 2971 35 H34A -9609 1352 5067 34 H35A -10229 1305 6653 39 H37C -11262 942 7913 87 H37B -10733 482 7951 87 H37A -12436 596 7451 87 H38A -11722 182 5937 39

PAGE 160

145 Table A-20-continued H39A -11201 231 4368 33 ________________________________________________________________________

PAGE 161

146 Crystallographic data for W(NPh)(C 9 H 20 N 3 )Cl 3 (16). Table A-21. Crystal data and structure refinement for 16. Empirical formula C16 H27 Cl5 N4 W Formula weight 636.52 Temperature 173(2) K Wavelength 0.71073 Crystal system Triclinic Space group P-1 Unit cell dimensions a = 10.2626(13) = 82.903(2). b = 10.6129(14) = 66.452(2). c = 11.9855(16) = 73.701(2). Volume 1148.5(3) 3 Z 2 Density (calculated) 1.841 Mg/m3 Absorption coefficient 5.619 mm-1 F(000) 620 Crystal size 0.28 x 0.12 x 0.11 mm3 Theta range for data collection 1.85 to 27.49. Index ranges -13h13, -13k13, -15l15 Reflections collected 9827 Independent reflections 5059 [R(int) = 0.0485] Completeness to theta = 27.49 95.8 % Absorption correction Integration Max. and min. transmission 0.5893 and 0.2519 Refinement method Full-matrix least-squares on F2 Data / restraints / parameters 5059 / 0 / 241 Goodness-of-fit on F2 1.057 Final R indices [I>2sigma(I)] R1 = 0.0232, wR2 = 0.0610 [4797] R indices (all data) R1 = 0.0248, wR2 = 0.0617 Largest diff. peak and hole 1.413 and -1.468 e.-3 R1 = (||Fo| |Fc||) / |Fo| wR2 = [w(Fo2 Fc2)2] / wFo22]]1/2 S = [w(Fo2 Fc2)2] / (n-p)]1/2 w= 1/[2(Fo2)+(m*p) 2 +n*p], p = [max(Fo2,0)+ 2* Fc2]/3, m & n are constants.

PAGE 162

147 Table A-22. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (2x 103) for 16. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ________________________________________________________________________ x y z U(eq) ________________________________________________________________________ W1 3867(1) 2141(1) 2683(1) 24(1) Cl1 3500(1) 1999(1) 4769(1) 39(1) Cl2 4688(1) 2368(1) 517(1) 33(1) Cl3 4909(1) 3944(1) 2528(1) 33(1) N1 2016(3) 2884(3) 2999(2) 26(1) N2 3871(3) 308(3) 2593(2) 26(1) N3 5967(3) 620(3) 2388(3) 31(1) N4 5928(3) -1616(3) 2286(3) 32(1) C1 5352(4) -306(3) 2419(3) 28(1) C2 2855(4) -350(3) 2436(3) 27(1) C3 1532(4) -314(4) 3621(4) 38(1) C4 2398(4) 286(3) 1392(3) 34(1) C5 7411(4) 460(3) 2433(4) 37(1) C6 7249(5) 1067(4) 3590(4) 42(1) C7 8358(4) 1092(5) 1296(4) 45(1) C8 7460(5) -2179(4) 1524(4) 47(1) C9 5143(5) -2576(3) 3038(4) 42(1) C10 504(3) 3372(3) 3448(3) 26(1) C11 -277(4) 3672(3) 2687(3) 32(1) C12 -1781(4) 4184(4) 3168(4) 38(1) C13 -2519(4) 4387(4) 4406(4) 38(1) C14 -1756(4) 4076(4) 5167(3) 41(1) C15 -249(4) 3570(4) 4698(3) 35(1) C16 -2451(5) 4142(4) -758(4) 43(1) Cl4 -1410(1) 4482(1) -25(1) 50(1) Cl5 -1354(2) 3026(1) -1940(1) 64(1) ________________________________________________________________________

PAGE 163

148 Table A-23. Bond lengths [] and angles [] for 16. _____________________________________________________ W1-N1 1.741(3) W1-N2 1.960(3) W1-N3 2.226(3) W1-Cl1 2.3668(9) W1-Cl2 2.3910(9) W1-Cl3 2.3969(8) W1-C1 2.600(3) N1-C10 1.384(4) N2-C1 1.414(4) N2-C2 1.487(4) N3-C1 1.299(4) N3-C5 1.465(4) N4-C1 1.351(4) N4-C8 1.457(5) N4-C9 1.467(5) C2-C3 1.519(5) C2-C4 1.524(4) C5-C7 1.528(6) C5-C6 1.530(5) C10-C15 1.395(5) C10-C11 1.396(5) C11-C12 1.381(5) C12-C13 1.382(6) C13-C14 1.380(6) C14-C15 1.382(5) C16-Cl5 1.752(4) C16-Cl4 1.757(4) N1-W1-N2 99.55(12) N1-W1-N3 161.70(11) N2-W1-N3 62.40(11) N1-W1-Cl1 92.46(9) N2-W1-Cl1 94.33(8) N3-W1-Cl1 86.28(8)

PAGE 164

149 Table A-23-continued N1-W1-Cl2 96.62(9) N2-W1-Cl2 90.83(8) N3-W1-Cl2 87.20(8) Cl1-W1-Cl2 168.68(3) N1-W1-Cl3 103.86(9) N2-W1-Cl3 156.46(8) N3-W1-Cl3 94.31(7) Cl1-W1-Cl3 87.08(3) Cl2-W1-Cl3 84.20(3) N1-W1-C1 131.90(11) N2-W1-C1 32.44(10) N3-W1-C1 29.97(10) Cl1-W1-C1 89.91(7) Cl2-W1-C1 89.05(7) Cl3-W1-C1 124.23(8) C10-N1-W1 170.0(2) C1-N2-C2 124.5(3) C1-N2-W1 99.57(19) C2-N2-W1 134.5(2) C1-N3-C5 127.0(3) C1-N3-W1 91.2(2) C5-N3-W1 140.3(2) C1-N4-C8 122.1(3) C1-N4-C9 122.7(3) C8-N4-C9 114.5(3) N3-C1-N4 130.2(3) N3-C1-N2 106.8(3) N4-C1-N2 123.0(3) N3-C1-W1 58.86(18) N4-C1-W1 170.9(2) N2-C1-W1 47.99(14) N2-C2-C3 109.8(3) N2-C2-C4 110.6(3) C3-C2-C4 111.6(3)

PAGE 165

150 Table A-23-continued N3-C5-C7 109.1(3) N3-C5-C6 110.6(3) C7-C5-C6 111.1(3) N1-C10-C15 118.7(3) N1-C10-C11 121.8(3) C15-C10-C11 119.5(3) C12-C11-C10 120.0(3) C11-C12-C13 120.1(3) C14-C13-C12 120.2(3) C13-C14-C15 120.4(3) C14-C15-C10 119.8(3) Cl5-C16-Cl4 111.2(2) _____________________________________________________________ Symmetry transformations used to generate equivalent atoms:

PAGE 166

151 Table A-24. Anisotropic displacement parameters (2x 103) for 16. The anisotropic displacement factor exponent takes the form: -22[ h2 a*2U11 + ... + 2 h k a* b* U12 ] ________________________________________________________________________ U11 U22 U33 U23 U13 U12 ________________________________________________________________________ W1 19(1) 22(1) 29(1) -4(1) -8(1) -2(1) Cl1 47(1) 39(1) 32(1) -4(1) -17(1) -9(1) Cl2 31(1) 36(1) 28(1) -3(1) -6(1) -8(1) Cl3 26(1) 26(1) 43(1) -7(1) -9(1) -7(1) N1 23(1) 25(1) 29(1) -3(1) -9(1) -5(1) N2 22(1) 27(1) 30(1) -5(1) -12(1) -3(1) N3 24(2) 26(1) 42(2) -9(1) -16(1) 1(1) N4 34(2) 23(1) 40(2) -5(1) -19(1) 0(1) C1 28(2) 29(2) 29(2) -3(1) -15(1) -4(1) C2 26(2) 26(1) 33(2) -5(1) -14(1) -6(1) C3 33(2) 39(2) 40(2) -5(1) -9(2) -13(2) C4 33(2) 36(2) 38(2) -6(1) -20(2) -6(1) C5 26(2) 32(2) 56(2) -9(2) -22(2) -1(1) C6 44(2) 45(2) 46(2) 5(2) -27(2) -14(2) C7 20(2) 69(3) 46(2) -15(2) -11(2) -8(2) C8 37(2) 36(2) 58(2) -17(2) -17(2) 9(2) C9 50(2) 26(2) 58(2) 3(2) -32(2) -7(2) C10 18(2) 23(1) 31(2) -2(1) -5(1) -4(1) C11 27(2) 36(2) 30(2) 0(1) -9(1) -6(1) C12 29(2) 40(2) 44(2) 3(2) -18(2) -4(2) C13 20(2) 39(2) 48(2) -2(2) -9(2) 1(1) C14 26(2) 52(2) 30(2) -8(2) -3(1) 1(2) C15 28(2) 45(2) 29(2) -7(1) -10(1) -2(1) C16 44(2) 42(2) 47(2) -3(2) -20(2) -14(2) Cl4 64(1) 57(1) 42(1) -1(1) -22(1) -32(1) Cl5 84(1) 62(1) 49(1) -17(1) -25(1) -18(1) ________________________________________________________________________

PAGE 167

152 Table A-25. Hydrogen coordinates ( x 10 4 ) and isotropic displacement parameters ( 2 x 10 3 )for 16. ________________________________________________________________________ x y z U(eq) ________________________________________________________________________ H2A 3386 -1289 2230 33 H3A 1861 -762 4264 56 H3B 871 -758 3516 56 H3C 1010 600 3849 56 H4A 3277 296 656 50 H4B 1808 1188 1606 50 H4C 1816 -217 1244 50 H5A 7894 -499 2439 44 H6A 6740 2000 3612 62 H6B 8225 972 3595 62 H6C 6680 616 4305 62 H7A 7879 2027 1265 68 H7B 8481 661 570 68 H7C 9324 993 1324 68 H8A 7520 -2879 1030 70 H8B 8017 -2542 2041 70 H8C 7873 -1494 989 70 H9A 5731 -3149 3464 63 H9B 4976 -3106 2517 63 H9C 4195 -2113 3634 63 H11A 226 3525 1837 39 H12A -2310 4397 2647 45 H13A -3554 4741 4733 46 H14A -2270 4211 6018 49 H15A 272 3358 5224 42 H16A -3249 3773 -160 51 H16B -2907 4968 -1092 51 ________________________________________________________________________

PAGE 168

153 Crystallographic Data for W(N(C 6 H 11 ))(C 9 H 20 N 3 )Cl 3 (17). Table A-26. Crystal data and structure refinement for 17. Empirical formula C15 H31 Cl3 N4 W Formula weight 557.64 Temperature 173(2) K Wavelength 0.71073 Crystal system Orthorhombic Space group Pna2(1) Unit cell dimensions a = 15.2729(7) = 90. b = 15.1873(7) = 90. c = 9.3274(5) = 90. Volume 2163.53(18) 3 Z 4 Density (calculated) 1.712 Mg/m3 Absorption coefficient 5.714 mm-1 F(000) 1096 Crystal size 0.23 x 0.12 x 0.05 mm3 Theta range for data collection 1.89 to 27.50. Index ranges -19h19, -18k19, -12l12 Reflections collected 18428 Independent reflections 4905 [R(int) = 0.0403] Completeness to theta = 27.50 99.2 % Absorption correction Integration Max. and min. transmission 0.7531 and 0.4150 Refinement method Full-matrix least-squares on F2 Data / restraints / parameters 4905 / 1 / 215 Goodness-of-fit on F2 1.013 Final R indices [I>2sigma(I)] R1 = 0.0186, wR2 = 0.0423 [4442] R indices (all data) R1 = 0.0229, wR2 = 0.0436 Absolute structure parameter -0.017(6) Extinction coefficient 0.00007(7) Largest diff. peak and hole 0.912 and -0.446 e.-3 R1 = (||Fo| |Fc||) / |Fo| wR2 = [w(Fo2 Fc2)2] / wFo22]]1/2 S = [w(Fo2 Fc2)2] / (n-p)]1/2

PAGE 169

154 Table A-26-continued w= 1/[2(Fo2)+(m*p) 2 +n*p], p = [max(Fo2,0)+ 2* Fc2]/3, m & n are constants.

PAGE 170

155 Table A-27. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (2x 103) for 17. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ________________________________________________________________________ x y z U(eq) ________________________________________________________________________ W 2350(1) 3876(1) 4178(1) 26(1) Cl1 1166(1) 3195(1) 2935(1) 39(1) Cl2 1911(1) 5200(1) 3010(1) 41(1) Cl3 3289(1) 4778(1) 5576(1) 47(1) N1 3177(2) 3477(2) 3102(3) 32(1) N2 1404(2) 4057(2) 6014(3) 24(1) N3 2298(2) 2962(2) 5647(3) 27(1) N4 1344(2) 2847(2) 7707(3) 34(1) C1 3893(3) 3161(3) 2213(4) 40(1) C2 4633(3) 3817(3) 2255(5) 55(1) C3 4394(3) 4667(3) 1511(6) 64(1) C4 4103(4) 4505(3) 5(6) 71(2) C5 3336(4) 3882(3) -34(5) 66(2) C6 3562(3) 3011(3) 691(5) 58(1) C7 1629(2) 3294(2) 6538(3) 24(1) C8 1050(3) 3294(2) 9000(4) 45(1) C9 1086(3) 1919(2) 7611(4) 45(1) C10 670(2) 4613(2) 6456(3) 28(1) C11 1017(3) 5511(2) 6856(5) 47(1) C12 8(2) 4672(2) 5244(4) 38(1) C13 2851(3) 2184(2) 6013(4) 34(1) C14 2754(3) 1506(3) 4841(5) 42(1) C15 3800(3) 2465(3) 6236(4) 45(1) ________________________________________________________________________

PAGE 171

156 Table A-28. Bond lengths [] and angles [] for 17. _____________________________________________________ W-N1 1.723(3) W-N3 1.951(3) W-N2 2.258(3) W-Cl3 2.3731(10) W-Cl2 2.3837(8) W-Cl1 2.3842(9) W-C7 2.615(3) N1-C1 1.453(4) N2-C7 1.304(4) N2-C10 1.463(4) N3-C7 1.411(4) N3-C13 1.492(4) N4-C7 1.357(4) N4-C8 1.454(5) N4-C9 1.466(4) C1-C2 1.507(6) C1-C6 1.524(6) C1-H1A 1.0000 C2-C3 1.510(6) C2-H2A 0.9900 C2-H2B 0.9900 C3-C4 1.494(8) C3-H3A 0.9900 C3-H3B 0.9900 C4-C5 1.506(7) C4-H4A 0.9900 C4-H4B 0.9900 C5-C6 1.525(6) C5-H5A 0.9900 C5-H5B 0.9900 C6-H6A 0.9900 C6-H6B 0.9900 C8-H8A 0.9800 C8-H8B 0.9800

PAGE 172

157 Table A-28-continued C8-H8C 0.9800 C9-H9A 0.9800 C9-H9B 0.9800 C9-H9C 0.9800 C10-C11 1.509(5) C10-C12 1.519(5) C10-H10A 1.0000 C11-H11A 0.9800 C11-H11B 0.9800 C11-H11C 0.9800 C12-H12A 0.9800 C12-H12B 0.9800 C12-H12C 0.9800 C13-C14 1.510(5) C13-C15 1.525(5) C13-H13A 1.0000 C14-H14A 0.9800 C14-H14B 0.9800 C14-H14C 0.9800 C15-H15A 0.9800 C15-H15B 0.9800 C15-H15C 0.9800 N1-W-N3 100.87(12) N1-W-N2 162.53(11) N3-W-N2 61.86(10) N1-W-Cl3 94.63(11) N3-W-Cl3 92.84(9) N2-W-Cl3 84.22(8) N1-W-Cl2 103.71(9) N3-W-Cl2 155.40(8) N2-W-Cl2 93.63(7) Cl3-W-Cl2 86.22(4) N1-W-Cl1 96.90(11)

PAGE 173

158 Table A-28-continued N3-W-Cl1 90.13(9) N2-W-Cl1 86.33(7) Cl3-W-Cl1 167.33(3) Cl2-W-Cl1 85.98(3) N1-W-C7 132.86(11) N3-W-C7 31.99(10) N2-W-C7 29.90(9) Cl3-W-C7 89.24(7) Cl2-W-C7 123.43(7) Cl1-W-C7 86.76(7) C1-N1-W 178.2(3) C7-N2-C10 127.6(3) C7-N2-W 90.39(19) C10-N2-W 140.8(2) C7-N3-C13 123.9(3) C7-N3-W 100.89(19) C13-N3-W 134.5(2) C7-N4-C8 122.2(3) C7-N4-C9 121.2(3) C8-N4-C9 114.6(3) N1-C1-C2 109.4(3) N1-C1-C6 109.4(3) C2-C1-C6 111.8(4) N1-C1-H1A 108.7 C2-C1-H1A 108.7 C6-C1-H1A 108.7 C1-C2-C3 111.8(4) C1-C2-H2A 109.3 C3-C2-H2A 109.3 C1-C2-H2B 109.3 C3-C2-H2B 109.3 H2A-C2-H2B 107.9 C4-C3-C2 111.3(4) C4-C3-H3A 109.4

PAGE 174

159 Table A-28-continued C2-C3-H3A 109.4 C4-C3-H3B 109.4 C2-C3-H3B 109.4 H3A-C3-H3B 108.0 C3-C4-C5 110.9(4) C3-C4-H4A 109.5 C5-C4-H4A 109.5 C3-C4-H4B 109.5 C5-C4-H4B 109.5 H4A-C4-H4B 108.0 C4-C5-C6 111.0(5) C4-C5-H5A 109.4 C6-C5-H5A 109.4 C4-C5-H5B 109.4 C6-C5-H5B 109.4 H5A-C5-H5B 108.0 C1-C6-C5 111.0(3) C1-C6-H6A 109.4 C5-C6-H6A 109.4 C1-C6-H6B 109.4 C5-C6-H6B 109.4 H6A-C6-H6B 108.0 N2-C7-N4 131.4(3) N2-C7-N3 106.8(3) N4-C7-N3 121.9(3) N2-C7-W 59.71(16) N4-C7-W 168.8(2) N3-C7-W 47.12(15) N4-C8-H8A 109.5 N4-C8-H8B 109.5 H8A-C8-H8B 109.5 N4-C8-H8C 109.5 H8A-C8-H8C 109.5 H8B-C8-H8C 109.5

PAGE 175

160 Table A-28-continued N4-C9-H9A 109.5 N4-C9-H9B 109.5 H9A-C9-H9B 109.5 N4-C9-H9C 109.5 H9A-C9-H9C 109.5 H9B-C9-H9C 109.5 N2-C10-C11 108.8(3) N2-C10-C12 109.5(3) C11-C10-C12 111.4(3) N2-C10-H10A 109.0 C11-C10-H10A 109.0 C12-C10-H10A 109.0 C10-C11-H11A 109.5 C10-C11-H11B 109.5 H11A-C11-H11B 109.5 C10-C11-H11C 109.5 H11A-C11-H11C 109.5 H11B-C11-H11C 109.5 C10-C12-H12A 109.5 C10-C12-H12B 109.5 H12A-C12-H12B 109.5 C10-C12-H12C 109.5 H12A-C12-H12C 109.5 H12B-C12-H12C 109.5 N3-C13-C14 108.6(3) N3-C13-C15 110.3(3) C14-C13-C15 112.5(3) N3-C13-H13A 108.4 C14-C13-H13A 108.4 C15-C13-H13A 108.4 C13-C14-H14A 109.5 C13-C14-H14B 109.5 H14A-C14-H14B 109.5 C13-C14-H14C 109.5

PAGE 176

161 Table A-28-continued H14A-C14-H14C 109.5 H14B-C14-H14C 109.5 C13-C15-H15A 109.5 C13-C15-H15B 109.5 H15A-C15-H15B 109.5 C13-C15-H15C 109.5 H15A-C15-H15C 109.5 H15B-C15-H15C 109.5 _____________________________________________________________ Symmetry transformations used to generate equivalent atoms:

PAGE 177

162 Table A-29. Anisotropic displacement parameters (2x 103) for 17. The anisotropic displacement factor exponent takes the form: -22[ h2 a*2U11 + ... + 2 h k a* b* U12 ] ________________________________________________________________________ U11 U22 U33 U23 U13 U12 ________________________________________________________________________ W 28(1) 27(1) 23(1) 5(1) 5(1) 4(1) Cl1 45(1) 44(1) 27(1) -4(1) -4(1) -1(1) Cl2 44(1) 34(1) 44(1) 19(1) 9(1) 6(1) Cl3 33(1) 51(1) 57(1) -6(1) -3(1) -8(1) N1 37(2) 32(2) 29(2) 6(1) 10(1) 7(1) N2 29(2) 24(1) 21(1) 1(1) 1(1) 2(1) N3 33(2) 27(1) 23(1) 2(1) 4(1) 8(1) N4 46(2) 31(2) 25(2) 7(1) 10(1) 3(1) C1 41(2) 38(2) 39(2) 7(2) 15(2) 16(2) C2 34(3) 68(3) 64(3) -7(2) 13(2) 8(2) C3 50(3) 41(2) 100(4) 0(3) 41(3) -2(2) C4 75(4) 63(3) 74(3) 28(3) 48(3) 26(3) C5 78(4) 93(4) 27(2) 1(2) 16(2) 27(3) C6 64(3) 58(3) 52(3) -18(2) 24(2) -3(2) C7 29(2) 26(2) 17(2) -1(1) -2(1) 2(1) C8 62(2) 52(2) 23(2) 9(2) 9(2) 14(2) C9 54(3) 34(2) 48(2) 13(2) 12(2) 3(2) C10 31(2) 26(2) 26(2) 1(1) 3(1) 5(1) C11 56(3) 31(2) 54(2) -11(2) 11(2) 2(2) C12 28(2) 46(2) 42(2) 9(2) 1(2) 7(2) C13 43(2) 32(2) 26(2) 7(1) 5(2) 17(2) C14 58(3) 29(2) 40(2) 3(2) 5(2) 14(2) C15 41(2) 51(2) 42(2) 1(2) -6(2) 20(2) ________________________________________________________________________

PAGE 178

163 Table A-30. Hydrogen coordinates ( x 10 4 ) and isotropic displacement parameters ( 2 x 10 3 ) for 17. ________________________________________________________________________ x y z U(eq) ________________________________________________________________________ H1A 4106 2588 2608 47 H2A 5155 3559 1784 66 H2B 4787 3943 3265 66 H3A 3919 4962 2048 76 H3B 4908 5064 1506 76 H4A 4594 4253 -554 85 H4B 3935 5071 -444 85 H5A 3167 3771 -1042 79 H5B 2831 4155 460 79 H6A 3036 2631 718 70 H6B 4018 2704 127 70 H8A 1292 3892 9023 68 H8B 1250 2967 9844 68 H8C 409 3325 9004 68 H9A 1210 1699 6645 68 H9B 458 1864 7808 68 H9C 1417 1575 8314 68 H10A 382 4344 7313 34 H11A 1388 5460 7710 70 H11B 526 5907 7059 70 H11C 1363 5747 6059 70 H12A 277 4963 4417 58 H12B -501 5012 5562 58 H12C -179 4078 4972 58 H13A 2629 1925 6929 41 H14A 2131 1378 4692 64 H14B 3059 965 5119 64 H14C 3007 1734 3950 64 H15A 4048 2660 5320 67 H15B 4139 1966 6603 67

PAGE 179

164 Table A-30-continued H15C 3822 2950 6928 67 ________________________________________________________________________

PAGE 180

165 Crystallographic data for W(NCH(CH 3 ) 2 )(C 9 H 20 N 3 )Cl 3 (18) Table A-31. Crystal data and structure refinement for 18. Empirical formula C12 H27 Cl3 N4 W Formula weight 517.58 Temperature 173(2) K Wavelength 0.71073 Crystal system Triclinic Space group P-1 Unit cell dimensions a = 8.4844(7) = 93.063(2). b = 8.8717(8) = 101.094(2). c = 14.8556(13) = 116.862(2). Volume 966.23(15) 3 Z 2 Density (calculated) 1.779 Mg/m3 Absorption coefficient 6.389 mm-1 F(000) 504 Crystal size 0.06 x 0.05 x 0.01 mm3 Theta range for data collection 1.42 to 24.60. Index ranges -9h9, -9k9, -16l16 Reflections collected 6201 Independent reflections 2732 [R(int) = 0.0465] Completeness to theta = 24.60 83.6 % Absorption correction Integration Max. and min. transmission 0.9390 and 0.6490 Refinement method Full-matrix least-squares on F2 Data / restraints / parameters 2732 / 1 / 189 Goodness-of-fit on F2 0.935 Final R indices [I>2sigma(I)] R1 = 0.0264, wR2 = 0.0487 [2299] R indices (all data) R1 = 0.0361, wR2 = 0.0502 Largest diff. peak and hole 0.757 and -0.694 e.-3 R1 = (||Fo| |Fc||) / |Fo| wR2 = [w(Fo2 Fc2)2] / wFo22]]1/2 S = [w(Fo2 Fc2)2] / (n-p)]1/2 w= 1/[2(Fo2)+(m*p) 2 +n*p], p = [max(Fo2,0)+ 2* Fc2]/3, m & n are constants.

PAGE 181

166 Table A-32. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (2x 103) for 18. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ________________________________________________________________________ x y z U(eq) ________________________________________________________________________ W 7016(1) 7032(1) 7632(1) 26(1) Cl1 5687(2) 7915(2) 8678(1) 38(1) Cl2 8116(2) 6483(2) 6359(1) 40(1) Cl3 8410(2) 9951(2) 7413(1) 41(1) N1 4397(6) 6343(5) 6592(3) 24(1) N2 5064(6) 4661(5) 7418(3) 27(1) N3 8643(6) 6959(5) 8474(3) 34(1) N4 2017(6) 3424(5) 6419(3) 28(1) C1 3727(7) 4783(7) 6756(4) 24(1) C2 399(7) 3668(7) 6198(5) 45(2) C3 1760(8) 1769(6) 6008(4) 38(2) C4 4696(8) 3194(7) 7934(4) 37(2) C5 6139(8) 2624(7) 7907(5) 51(2) C6 4637(12) 3662(9) 8917(5) 76(3) C7 3574(7) 6973(6) 5844(4) 26(1) C8 4842(8) 7656(7) 5194(4) 39(2) C9 3186(8) 8344(7) 6261(4) 40(2) C10 10305(16) 7240(20) 9166(9) 60(5) C11 11945(17) 8636(18) 9104(9) 74(6) C12 10170(20) 7930(20) 10126(12) 77(5) C10' 9830(20) 6760(20) 9284(8) 15(4) C11' 11400(30) 6870(30) 8919(17) 109(11) C12' 9780(30) 7210(30) 10141(17) 71(8) ________________________________________________________________________

PAGE 182

167 Table A-33. Bond lengths [] and angles [] for 18. _____________________________________________________ W-N3 1.702(4) W-N2 1.961(4) W-N1 2.247(4) W-Cl1 2.3752(15) W-Cl2 2.3819(16) W-Cl3 2.3833(14) N1-C1 1.294(6) N1-C7 1.468(6) N2-C1 1.399(6) N2-C4 1.488(6) N3-C10 1.485(8) N3-C10' 1.488(8) N4-C1 1.373(6) N4-C3 1.463(6) N4-C2 1.464(6) C2-H2A 0.9800 C2-H2B 0.9800 C2-H2C 0.9800 C3-H3A 0.9800 C3-H3B 0.9800 C3-H3C 0.9800 C4-C6 1.513(9) C4-C5 1.527(8) C4-H4A 1.0000 C5-H5A 0.9800 C5-H5B 0.9800 C5-H5C 0.9800 C6-H6A 0.9800 C6-H6B 0.9800 C6-H6C 0.9800 C7-C8 1.527(7) C7-C9 1.526(7) C7-H7A 1.0000 C8-H8A 0.9800

PAGE 183

168 Table A-33-continued C8-H8B 0.9800 C8-H8C 0.9800 C9-H9A 0.9800 C9-H9B 0.9800 C9-H9C 0.9800 C10-C11 1.408(16) C10-C12 1.57(2) C10-H10A 1.0000 C11-H11A 0.9800 C11-H11B 0.9800 C11-H11C 0.9800 C12-H12A 0.9800 C12-H12B 0.9800 C12-H12C 0.9800 C10'-C12' 1.33(3) C10'-C11' 1.50(3) C10'-H10B 1.0000 C11'-H11D 0.9800 C11'-H11E 0.9800 C11'-H11F 0.9800 C12'-H12D 0.9800 C12'-H12E 0.9800 C12'-H12F 0.9800 N3-W-N2 101.44(19) N3-W-N1 163.23(18) N2-W-N1 61.88(16) N3-W-Cl1 95.27(17) N2-W-Cl1 91.76(13) N1-W-Cl1 84.12(12) N3-W-Cl2 95.84(17) N2-W-Cl2 92.04(14) N1-W-Cl2 87.00(12) Cl1-W-Cl2 167.30(5)

PAGE 184

169 Table A-33-continued N3-W-Cl3 102.74(15) N2-W-Cl3 155.81(13) N1-W-Cl3 93.92(11) Cl1-W-Cl3 85.29(5) Cl2-W-Cl3 86.29(5) C1-N1-C7 126.1(4) C1-N1-W 90.3(3) C7-N1-W 142.6(3) C1-N2-C4 123.8(4) C1-N2-W 100.0(3) C4-N2-W 134.1(3) C10-N3-C10' 19.6(8) C10-N3-W 168.4(8) C10'-N3-W 171.1(8) C1-N4-C3 121.2(4) C1-N4-C2 121.5(4) C3-N4-C2 114.9(5) N1-C1-N4 130.2(5) N1-C1-N2 107.8(4) N4-C1-N2 121.9(5) N4-C2-H2A 109.5 N4-C2-H2B 109.5 H2A-C2-H2B 109.5 N4-C2-H2C 109.5 H2A-C2-H2C 109.5 H2B-C2-H2C 109.5 N4-C3-H3A 109.5 N4-C3-H3B 109.5 H3A-C3-H3B 109.5 N4-C3-H3C 109.5 H3A-C3-H3C 109.5 H3B-C3-H3C 109.5 N2-C4-C6 110.9(5) N2-C4-C5 108.7(5)

PAGE 185

170 Table A-33-continued C6-C4-C5 112.3(5) N2-C4-H4A 108.3 C6-C4-H4A 108.3 C5-C4-H4A 108.3 C4-C5-H5A 109.5 C4-C5-H5B 109.5 H5A-C5-H5B 109.5 C4-C5-H5C 109.5 H5A-C5-H5C 109.5 H5B-C5-H5C 109.5 C4-C6-H6A 109.5 C4-C6-H6B 109.5 H6A-C6-H6B 109.5 C4-C6-H6C 109.5 H6A-C6-H6C 109.5 H6B-C6-H6C 109.5 N1-C7-C8 109.4(4) N1-C7-C9 109.7(4) C8-C7-C9 111.8(4) N1-C7-H7A 108.7 C8-C7-H7A 108.7 C9-C7-H7A 108.7 C7-C8-H8A 109.5 C7-C8-H8B 109.5 H8A-C8-H8B 109.5 C7-C8-H8C 109.5 H8A-C8-H8C 109.5 H8B-C8-H8C 109.5 C7-C9-H9A 109.5 C7-C9-H9B 109.5 H9A-C9-H9B 109.5 C7-C9-H9C 109.5 H9A-C9-H9C 109.5 H9B-C9-H9C 109.5

PAGE 186

171 Table A-33-continued C11-C10-N3 116.0(12) C11-C10-C12 98.6(12) N3-C10-C12 106.6(11) C11-C10-H10A 111.6 N3-C10-H10A 111.6 C12-C10-H10A 111.6 C12'-C10'-N3 119.9(15) C12'-C10'-C11' 129.7(16) N3-C10'-C11' 103.5(13) C12'-C10'-H10B 98.6 N3-C10'-H10B 98.6 C11'-C10'-H10B 98.6 C10'-C11'-H11D 109.5 C10'-C11'-H11E 109.5 H11D-C11'-H11E 109.5 C10'-C11'-H11F 109.5 H11D-C11'-H11F 109.5 H11E-C11'-H11F 109.5 C10'-C12'-H12D 109.5 C10'-C12'-H12E 109.5 H12D-C12'-H12E 109.5 C10'-C12'-H12F 109.5 H12D-C12'-H12F 109.5 H12E-C12'-H12F 109.5 _____________________________________________________________ Symmetry transformations used to generate equivalent atoms:

PAGE 187

172 Table A-34. Anisotropic displacement parameters (2x 103) for 18. The anisotropic displacement factor exponent takes the form: -22[ h2 a*2U11 + ... + 2 h k a* b* U12 ] ________________________________________________________________________ U11 U22 U33 U23 U13 U12 ________________________________________________________________________ W 24(1) 26(1) 27(1) 5(1) 3(1) 12(1) Cl1 42(1) 42(1) 33(1) 3(1) 11(1) 21(1) Cl2 37(1) 47(1) 41(1) 5(1) 14(1) 24(1) Cl3 41(1) 28(1) 47(1) 8(1) 13(1) 9(1) N1 25(3) 20(3) 26(3) 9(2) 2(2) 12(2) N2 30(3) 23(3) 24(3) 4(2) 1(2) 13(2) N3 30(3) 34(3) 34(3) 3(2) -5(2) 17(2) N4 28(3) 26(3) 28(3) 6(2) 3(2) 13(2) C1 23(3) 26(3) 25(3) 4(3) 6(3) 13(3) C2 23(3) 43(4) 71(5) 24(4) 9(3) 16(3) C3 39(4) 25(3) 38(4) 1(3) 9(3) 7(3) C4 44(4) 31(4) 30(4) 10(3) -3(3) 18(3) C5 60(5) 39(4) 59(5) 13(4) -1(4) 32(4) C6 134(8) 65(5) 49(5) 37(4) 44(5) 53(5) C7 24(3) 24(3) 26(4) 11(3) 1(3) 9(3) C8 51(4) 40(4) 28(4) 14(3) 5(3) 23(3) C9 45(4) 34(4) 49(4) 13(3) 13(3) 25(3) ________________________________________________________________________

PAGE 188

173 Table A-35. Hydrogen coordinates ( x 10 4 ) and isotropic displacement parameters ( 2 x 10 3 ) for 18. ________________________________________________________________________ x y z U(eq) ________________________________________________________________________ H2A 658 4759 6545 68 H2B -614 2729 6371 68 H2C 70 3681 5530 68 H3A 1313 1600 5332 56 H3B 871 852 6262 56 H3C 2925 1745 6155 56 H4A 3480 2225 7609 44 H5A 6170 2388 7261 77 H5B 5839 1584 8189 77 H5C 7334 3534 8255 77 H6A 5799 4649 9238 114 H6B 4428 2688 9249 114 H6C 3647 3951 8902 114 H7A 2395 5997 5482 31 H8A 6016 8593 5545 59 H8B 4294 8079 4695 59 H8C 5029 6734 4925 59 H9A 2272 7831 6621 59 H9B 2727 8825 5761 59 H9C 4312 9254 6670 59 H10A 10415 6167 9186 71 H11A 12056 8585 8460 110 H11B 12975 8584 9507 110 H11C 11948 9708 9302 110 H12A 10928 7699 10628 116 H12B 8902 7351 10172 116 H12C 10600 9164 10179 116 H10B 9144 5488 9242 18 H11D 11844 7858 8595 164 H11E 11005 5821 8485 164

PAGE 189

174 Table A-35-continued H11F 12387 6996 9437 164 H12D 9524 8176 10158 107 H12E 10961 7534 10568 107 H12F 8824 6236 10330 107 ________________________________________________________________________

PAGE 190

175 Crystallographic Data for W(NC 6 H 5 )(C 10 H 21 N 2 )Cl 3 (19). Table A-36. Crystal data and structure refinement for 19. Empirical formula C16 H26 Cl3 N3 W Formula weight 550.60 Temperature 173(2) K Wavelength 0.71073 Crystal system Monoclinic Space group P2(1)/c Unit cell dimensions a = 15.6057(9) = 90. b = 15.8939(9) = 100.812(2). c = 16.7485(9) = 90. Volume 4080.5(4) 3 Z 8 Density (calculated) 1.793 Mg/m3 Absorption coefficient 6.057 mm-1 F(000) 2144 Crystal size 0.22 x 0.11 x 0.07 mm3 Theta range for data collection 1.33 to 27.50. Index ranges -20h19, -20k10, -21l21 Reflections collected 24622 Independent reflections 9142 [R(int) = 0.0423] Completeness to theta = 27.50 97.6 % Absorption correction Integration Max. and min. transmission 0.6728 and 0.3149 Refinement method Full-matrix least-squares on F2 Data / restraints / parameters 9142 / 0 / 429 Goodness-of-fit on F2 1.025 Final R indices [I>2sigma(I)] R1 = 0.0208, wR2 = 0.0477 [7624] R indices (all data) R1 = 0.0290, wR2 = 0.0511 Largest diff. peak and hole 0.773 and -0.811 e.-3 R1 = (||Fo| |Fc||) / |Fo| wR2 = [w(Fo2 Fc2)2] / wFo22]]1/2 S = [w(Fo2 Fc2)2] / (n-p)]1/2 w= 1/[2(Fo2)+(m*p) 2 +n*p], p = [max(Fo2,0)+ 2* Fc2]/3, m & n are constants.

PAGE 191

176 Table A-37. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (2x 103) for 19. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ________________________________________________________________________ x y z U(eq) ________________________________________________________________________ W2 661(1) 7181(1) 1708(1) 25(1) Cl5 468(1) 5912(1) 941(1) 38(1) Cl6 -385(1) 6621(1) 2416(1) 39(1) Cl4 1896(1) 7451(1) 1112(1) 41(1) N4 -28(2) 7808(2) 1021(1) 29(1) N6 1050(2) 7952(2) 2634(1) 26(1) N5 1717(2) 6724(2) 2754(1) 28(1) C27 1703(2) 7441(2) 3113(2) 29(1) C17 -449(2) 8346(2) 424(2) 28(1) C29 758(2) 8779(2) 2924(2) 32(1) C22 17(2) 8661(2) -151(2) 36(1) C18 -1307(2) 8601(2) 406(2) 35(1) C23 2337(2) 6028(2) 3027(2) 34(1) C19 -1687(2) 9176(2) -177(2) 38(1) C20 -1223(2) 9492(2) -732(2) 40(1) C30 1494(2) 9428(2) 3014(2) 43(1) C32 6(2) 9107(2) 2293(2) 42(1) C21 -378(2) 9231(2) -722(2) 44(1) C28 2291(2) 7737(2) 3871(2) 48(1) C26 2135(3) 5637(3) 3800(2) 63(1) C31 414(2) 8645(2) 3718(2) 46(1) C24 2206(3) 5356(3) 2374(3) 65(1) C25 3289(2) 6298(3) 3130(3) 62(1) W1 5702(1) 7507(1) 1096(1) 26(1) Cl2 4706(1) 7455(1) -174(1) 43(1) Cl1 6340(1) 8703(1) 606(1) 40(1) Cl3 4746(1) 6546(1) 1575(1) 43(1) N2 6210(2) 7785(2) 2232(1) 27(1) N3 5018(2) 8489(2) 1747(2) 29(1) N1 6376(2) 6741(2) 816(1) 30(1)

PAGE 192

177 Table A-37-continued C11 5630(2) 8429(2) 2374(2) 28(1) C7 6918(2) 7417(2) 2873(2) 31(1) C1 6791(2) 6080(2) 506(2) 29(1) C6 7633(2) 6157(2) 355(2) 37(1) C8 7213(2) 6585(2) 2548(2) 41(1) C10 6545(3) 7215(2) 3636(2) 43(1) C13 4273(2) 9091(2) 1620(2) 37(1) C2 6331(2) 5333(2) 328(2) 39(1) C14 3689(2) 8838(3) 820(2) 53(1) C3 6713(2) 4669(2) -14(2) 46(1) C4 7538(2) 4753(2) -168(2) 47(1) C12 5757(2) 8954(2) 3134(2) 44(1) C9 7698(2) 8012(2) 3049(2) 46(1) C16 4593(2) 9986(2) 1517(2) 53(1) C5 7998(2) 5486(3) 17(2) 45(1) C15 3757(3) 9016(3) 2312(3) 65(1) ________________________________________________________________________

PAGE 193

178 Table A-38. Bond lengths [] and angles [] for 19. _____________________________________________________ W2-N4 1.734(3) W2-N6 1.981(2) W2-N5 2.287(2) W2-Cl6 2.3629(7) W2-Cl4 2.3705(7) W2-Cl5 2.3797(8) W2-C27 2.630(3) N4-C17 1.385(4) N6-C27 1.426(4) N6-C29 1.501(4) N5-C27 1.289(4) N5-C23 1.485(4) C27-C28 1.495(4) C17-C18 1.394(4) C17-C22 1.403(4) C29-C32 1.517(4) C29-C30 1.530(5) C29-C31 1.539(4) C22-C21 1.375(5) C18-C19 1.385(4) C23-C24 1.514(5) C23-C26 1.522(4) C23-C25 1.524(5) C19-C20 1.376(4) C20-C21 1.381(5) W1-N1 1.731(3) W1-N2 1.969(2) W1-N3 2.280(2) W1-Cl1 2.3623(8) W1-Cl3 2.3769(8) W1-Cl2 2.3888(8) W1-C11 2.613(3) N2-C11 1.416(4) N2-C7 1.506(4)

PAGE 194

179 Table A-38-continued N3-C11 1.284(4) N3-C13 1.489(4) N1-C1 1.385(4) C11-C12 1.503(4) C7-C9 1.526(5) C7-C8 1.533(5) C7-C10 1.535(4) C1-C6 1.389(4) C1-C2 1.391(5) C6-C5 1.380(5) C13-C14 1.527(5) C13-C16 1.528(5) C13-C15 1.536(5) C2-C3 1.387(5) C3-C4 1.366(5) C4-C5 1.374(5) N4-W2-N6 102.99(11) N4-W2-N5 163.40(11) N6-W2-N5 61.63(9) N4-W2-Cl6 98.59(8) N6-W2-Cl6 88.82(7) N5-W2-Cl6 87.82(6) N4-W2-Cl4 93.92(8) N6-W2-Cl4 93.63(7) N5-W2-Cl4 81.60(6) Cl6-W2-Cl4 166.37(3) N4-W2-Cl5 97.45(9) N6-W2-Cl5 159.40(7) N5-W2-Cl5 98.31(7) Cl6-W2-Cl5 85.53(3) Cl4-W2-Cl5 87.52(3) N4-W2-C27 134.86(11) N6-W2-C27 32.31(10)

PAGE 195

180 Table A-38-continued N5-W2-C27 29.35(9) Cl6-W2-C27 88.84(7) Cl4-W2-C27 86.14(7) Cl5-W2-C27 127.60(7) C17-N4-W2 170.2(2) C27-N6-C29 123.0(2) C27-N6-W2 99.77(18) C29-N6-W2 136.68(19) C27-N5-C23 125.6(3) C27-N5-W2 90.25(19) C23-N5-W2 143.75(19) N5-C27-N6 108.3(3) N5-C27-C28 127.8(3) N6-C27-C28 123.8(3) N5-C27-W2 60.40(16) N6-C27-W2 47.92(13) C28-C27-W2 170.6(2) N4-C17-C18 121.3(3) N4-C17-C22 118.6(3) C18-C17-C22 120.0(3) N6-C29-C32 108.6(2) N6-C29-C30 110.8(3) C32-C29-C30 107.8(3) N6-C29-C31 109.5(3) C32-C29-C31 107.4(3) C30-C29-C31 112.6(3) C21-C22-C17 119.3(3) C19-C18-C17 119.3(3) N5-C23-C24 108.2(3) N5-C23-C26 109.8(3) C24-C23-C26 107.8(3) N5-C23-C25 113.0(3) C24-C23-C25 106.1(3) C26-C23-C25 111.8(3)

PAGE 196

181 Table A-38-continued C20-C19-C18 120.5(3) C19-C20-C21 120.2(3) C22-C21-C20 120.6(3) N1-W1-N2 105.34(11) N1-W1-N3 166.94(10) N2-W1-N3 61.62(9) N1-W1-Cl1 98.89(9) N2-W1-Cl1 92.06(8) N3-W1-Cl1 83.16(7) N1-W1-Cl3 95.22(9) N2-W1-Cl3 89.01(7) N3-W1-Cl3 84.23(7) Cl1-W1-Cl3 165.02(3) N1-W1-Cl2 93.51(8) N2-W1-Cl2 160.90(7) N3-W1-Cl2 99.47(7) Cl1-W1-Cl2 87.99(3) Cl3-W1-Cl2 86.15(3) N1-W1-C11 137.58(10) N2-W1-C11 32.27(10) N3-W1-C11 29.43(9) Cl1-W1-C11 85.37(7) Cl3-W1-C11 87.61(7) Cl2-W1-C11 128.90(7) C11-N2-C7 124.6(2) C11-N2-W1 99.79(18) C7-N2-W1 135.3(2) C11-N3-C13 127.3(3) C11-N3-W1 89.83(19) C13-N3-W1 142.6(2) C1-N1-W1 170.4(2) N3-C11-N2 108.5(3) N3-C11-C12 127.6(3) N2-C11-C12 123.9(3)

PAGE 197

182 Table A-38-continued N3-C11-W1 60.73(16) N2-C11-W1 47.94(13) C12-C11-W1 170.2(2) N2-C7-C9 110.5(3) N2-C7-C8 108.1(2) C9-C7-C8 108.7(3) N2-C7-C10 109.4(3) C9-C7-C10 112.4(3) C8-C7-C10 107.5(3) N1-C1-C6 121.7(3) N1-C1-C2 118.0(3) C6-C1-C2 120.2(3) C5-C6-C1 119.0(3) N3-C13-C14 106.2(3) N3-C13-C16 110.6(3) C14-C13-C16 107.4(3) N3-C13-C15 110.4(3) C14-C13-C15 109.3(3) C16-C13-C15 112.7(3) C3-C2-C1 119.5(3) C4-C3-C2 119.9(4) C3-C4-C5 120.7(3) C4-C5-C6 120.6(3) _____________________________________________________________ Symmetry transformations used to generate equivalent atoms:

PAGE 198

183 Table A-39. Anisotropic displacement parameters (2x 103) for 19. The anisotropic displacement factor exponent takes the form: -22[ h2 a*2U11 + ... + 2 h k a* b* U12 ] ________________________________________________________________________ U11 U22 U33 U23 U13 U12 ________________________________________________________________________ W2 28(1) 24(1) 21(1) 0(1) 5(1) 1(1) Cl5 45(1) 33(1) 37(1) -11(1) 5(1) 0(1) Cl6 39(1) 39(1) 43(1) 3(1) 18(1) -3(1) Cl4 38(1) 53(1) 34(1) 1(1) 14(1) -7(1) N4 35(1) 27(1) 24(1) 1(1) 5(1) -3(1) N6 32(1) 23(2) 25(1) 0(1) 6(1) 3(1) N5 32(1) 27(2) 26(1) 1(1) 7(1) 4(1) C27 32(2) 31(2) 22(1) 2(1) 5(1) 4(1) C17 36(2) 24(2) 22(1) -2(1) 1(1) -2(1) C29 42(2) 25(2) 28(2) 0(1) 6(1) 6(1) C22 40(2) 39(2) 29(2) 2(1) 8(1) 5(2) C18 34(2) 40(2) 31(2) 3(1) 4(1) -1(2) C23 33(2) 33(2) 34(2) 1(1) 4(1) 10(1) C19 37(2) 39(2) 34(2) -1(2) -6(1) 3(2) C20 56(2) 35(2) 24(2) 4(1) -7(1) 3(2) C30 58(2) 28(2) 39(2) -4(2) 5(2) -2(2) C32 53(2) 29(2) 40(2) -6(2) -3(2) 13(2) C21 63(2) 46(2) 25(2) 6(2) 12(2) 0(2) C28 56(2) 41(2) 37(2) -12(2) -12(2) 13(2) C26 77(3) 58(3) 56(2) 25(2) 20(2) 31(2) C31 60(2) 41(2) 42(2) -5(2) 21(2) 9(2) C24 78(3) 42(2) 65(3) -14(2) -9(2) 26(2) C25 39(2) 55(3) 92(3) -3(2) 12(2) 12(2) W1 27(1) 28(1) 21(1) -2(1) 4(1) 3(1) Cl2 37(1) 60(1) 28(1) -3(1) -3(1) 5(1) Cl1 46(1) 41(1) 37(1) 3(1) 18(1) -6(1) Cl3 51(1) 38(1) 41(1) -3(1) 13(1) -13(1) N2 30(1) 27(1) 24(1) 1(1) 6(1) 2(1) N3 27(1) 29(2) 33(1) 0(1) 8(1) -1(1) N1 35(1) 34(2) 22(1) -5(1) 4(1) 3(1)

PAGE 199

184 Table A-39-continued C11 30(2) 30(2) 26(1) -4(1) 11(1) -4(1) C7 33(2) 34(2) 24(1) 3(1) 1(1) 2(1) C1 34(2) 30(2) 22(1) -2(1) 3(1) 5(1) C6 45(2) 34(2) 36(2) 0(2) 14(1) 4(2) C8 46(2) 41(2) 31(2) 4(2) -3(1) 14(2) C10 61(2) 40(2) 29(2) 9(2) 12(2) 3(2) C13 30(2) 33(2) 49(2) -7(2) 9(1) 4(1) C2 36(2) 42(2) 35(2) -3(2) -3(1) 2(2) C14 36(2) 52(3) 64(2) -10(2) -6(2) 15(2) C3 61(2) 33(2) 37(2) -9(2) -7(2) 5(2) C4 69(3) 43(2) 28(2) -2(2) 6(2) 27(2) C12 51(2) 44(2) 36(2) -12(2) 6(2) 7(2) C9 37(2) 51(3) 48(2) -1(2) 0(2) -8(2) C16 49(2) 36(2) 68(3) -6(2) -2(2) 8(2) C5 50(2) 52(3) 37(2) 7(2) 17(2) 18(2) C15 50(2) 83(4) 71(3) -10(3) 32(2) 14(2) ________________________________________________________________________

PAGE 200

185 Table A-40. Hydrogen coordinates ( x 10 4 ) and isotropic displacement parameters ( 2 x 10 3 ) for 19. ________________________________________________________________________ x y z U(eq) ________________________________________________________________________ H22A 598 8482 -147 43 H18A -1628 8384 789 42 H19A -2271 9352 -193 46 H20A -1486 9893 -1124 48 H30A 1969 9256 3453 64 H30B 1271 9978 3143 64 H30C 1713 9466 2504 64 H32A 197 9175 1772 63 H32B -186 9652 2470 63 H32C -480 8707 2230 63 H21A -66 9446 -1112 53 H28A 2480 7255 4224 71 H28B 1975 8136 4156 71 H28C 2802 8016 3728 71 H26A 2249 6050 4242 94 H26B 2506 5142 3946 94 H26C 1521 5469 3710 94 H31A -41 8211 3633 69 H31B 170 9173 3878 69 H31C 895 8464 4148 69 H24A 1593 5183 2260 97 H24B 2575 4870 2562 97 H24C 2366 5582 1877 97 H25A 3370 6636 2661 93 H25B 3662 5799 3170 93 H25C 3446 6634 3627 93 H6A 7952 6663 484 45 H8A 6709 6211 2399 61 H8B 7648 6317 2970 61 H8C 7472 6696 2068 61

PAGE 201

186 Table A-40-continued H10A 6438 7740 3908 64 H10B 6964 6870 4007 64 H10C 5996 6905 3481 64 H2A 5759 5277 441 46 H14A 3993 8948 369 79 H14B 3148 9167 743 79 H14C 3549 8238 834 79 H3A 6402 4158 -140 55 H4B 7796 4298 -407 57 H12A 5535 9523 2999 66 H12B 6380 8981 3373 66 H12C 5439 8699 3524 66 H9A 7882 8161 2539 70 H9B 8181 7734 3413 70 H9C 7533 8524 3310 70 H16A 4931 10185 2036 79 H16B 4090 10357 1347 79 H16C 4961 9990 1104 79 H5A 8573 5532 -90 54 H15A 3655 8421 2416 98 H15B 3196 9305 2158 98 H15C 4091 9274 2806 98

PAGE 202

187 Crystallographic Data for W(NCH(CH 3 ) 2 )(C 8 H 21 N 2 Si 2 )Cl 3 (22). Table A-41. Crystal data and structure refinement for 22. Empirical formula C11 H28 Cl3 N3 Si2 W Formula weight 548.74 Temperature 173(2) K Wavelength 0.71073 Crystal system Triclinic Space group P-1 Unit cell dimensions a = 16.9001(8) = 67.7010(10). b = 16.9834(8) = 64.0670(10). c = 18.7651(9) = 89.6510(10). Volume 4397.9(4) 3 Z 8 Density (calculated) 1.658 Mg/m3 Absorption coefficient 5.722 mm-1 F(000) 2144 Crystal size 0.10 x 0.06 x 0.03 mm3 Theta range for data collection 1.32 to 27.50. Index ranges -21h21, -16k22, -23l24 Reflections collected 29049 Independent reflections 19263 [R(int) = 0.0490] Completeness to theta = 27.50 95.4 % Absorption correction Integration Max. and min. transmission 0.8399 and 0.6272 Refinement method Full-matrix least-squares on F2 Data / restraints / parameters 19263 / 0 / 721 Goodness-of-fit on F2 0.952 Final R indices [I>2sigma(I)] R1 = 0.0442, wR2 = 0.0747 [11489] R indices (all data) R1 = 0.0945, wR2 = 0.0889 Largest diff. peak and hole 1.169 and -0.887 e.-3 R1 = (||Fo| |Fc||) / |Fo| wR2 = [w(Fo2 Fc2)2] / wFo22]]1/2 S = [w(Fo2 Fc2)2] / (n-p)]1/2

PAGE 203

188 Table A-41continued w= 1/[2(Fo2)+(m*p) 2 +n*p], p = [max(Fo2,0)+ 2* Fc2]/3, m & n are constants.

PAGE 204

189 Table A-42. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (2x 103) for 22. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ________________________________________________________________________ x y z U(eq) ________________________________________________________________________ W1A 1432(1) 4197(1) 7169(1) 32(1) Cl1A 1581(2) 3578(1) 6195(1) 43(1) Cl2A 763(1) 5232(1) 6463(1) 43(1) Cl3A 953(1) 4776(1) 8217(1) 45(1) Si1A 2360(2) 2707(2) 8228(2) 48(1) Si2A -1010(2) 3173(2) 8291(2) 43(1) N1A 2524(4) 4694(4) 6647(4) 33(2) N2A 1443(4) 3083(4) 8031(4) 34(2) N3A 120(4) 3219(4) 8087(4) 34(2) C1A 3449(6) 5118(6) 6197(6) 53(3) C2A 3819(7) 5332(9) 5239(7) 116(5) C3A 3538(6) 5867(7) 6374(7) 76(3) C4A 2606(6) 3378(7) 8680(7) 77(4) C5A 3280(5) 2815(6) 7179(6) 55(3) C6A 2063(6) 1543(6) 8993(6) 77(3) C7A 534(5) 2722(5) 8470(5) 37(2) C8A 147(6) 1897(5) 9280(5) 53(3) C9A -1719(5) 2079(6) 9077(6) 69(3) C10A -941(6) 3348(7) 7214(6) 75(4) C11A -1399(7) 4026(7) 8611(8) 87(4) W1B 1143(1) 8659(1) 7695(1) 30(1) Cl1B 2677(1) 9093(1) 6658(1) 46(1) Cl2B 1498(1) 9308(1) 8469(1) 45(1) Cl3B -376(1) 8538(1) 8668(1) 40(1) Si1B 667(2) 7738(2) 6566(2) 37(1) Si2B 1045(2) 11018(2) 6685(2) 42(1) N1B 1168(4) 7586(4) 8202(4) 30(2) N2B 828(4) 8637(4) 6793(4) 29(2) N3B 975(4) 9943(4) 6812(4) 32(2) C1B 1178(5) 6681(5) 8612(6) 43(2)

PAGE 205

190 Table A-42-continued C2B 455(6) 6328(6) 9571(6) 77(3) C3B 2100(6) 6558(6) 8510(6) 63(3) C4B -241(5) 6892(5) 7591(6) 53(3) C5B 1761(5) 7381(5) 6198(6) 47(2) C6B 309(6) 7989(6) 5703(6) 57(3) C7B 860(4) 9542(5) 6405(5) 29(2) C8B 775(6) 9908(5) 5585(5) 47(2) C9B 2168(6) 11406(6) 6460(9) 109(5) C10B 214(8) 10986(7) 7748(6) 88(4) C11B 722(7) 11753(6) 5882(6) 75(3) W1C 5726(1) 3842(1) 7975(1) 32(1) Cl1C 6298(1) 3166(1) 8952(1) 47(1) Cl2C 4631(1) 2550(1) 8731(2) 49(1) Cl3C 5195(1) 4265(1) 6928(1) 45(1) Si1C 7336(2) 5703(1) 6791(2) 38(1) Si2C 6797(2) 2343(2) 6920(2) 45(1) N1C 5189(4) 4496(4) 8445(4) 36(2) N2C 6914(4) 4604(4) 7058(4) 33(2) N3C 6737(4) 3310(4) 7066(4) 36(2) C1C 4674(6) 5037(6) 8847(6) 46(2) C2C 4092(9) 4482(8) 9804(6) 149(7) C3C 4112(7) 5441(7) 8411(7) 82(4) C4C 6747(6) 6380(5) 6225(6) 62(3) C5C 7131(6) 5741(6) 7825(6) 54(3) C6C 8582(5) 6025(5) 6036(6) 57(3) C7C 7247(5) 4079(5) 6641(5) 30(2) C8C 8051(5) 4399(5) 5768(5) 48(2) C9C 6577(9) 1480(6) 7981(7) 120(6) C10C 5944(8) 2226(8) 6605(10) 120(6) C11C 7913(6) 2313(6) 6164(7) 73(3) W1D 6111(1) 8797(1) 7191(1) 31(1) Cl1D 6891(1) 10238(1) 6213(1) 42(1) Cl2D 7470(1) 8342(1) 6501(2) 47(1) Cl3D 5578(1) 7348(1) 8260(1) 44(1)

PAGE 206

191 Table A-42-continued Si1D 4127(1) 9351(2) 8241(2) 36(1) Si2D 7451(2) 8926(2) 8323(2) 38(1) N1D 5527(4) 8728(4) 6645(4) 39(2) N2D 5238(4) 9197(4) 8059(4) 28(2) N3D 6522(4) 9043(4) 8116(4) 32(2) C1D 5064(6) 8677(6) 6181(6) 51(2) C2D 4730(7) 7748(6) 6404(7) 74(3) C3D 5711(10) 9138(10) 5200(7) 183(9) C4D 3478(5) 8301(5) 8583(6) 49(2) C5D 4238(6) 10201(5) 7205(6) 53(3) C6D 3573(6) 9776(6) 9098(6) 61(3) C7D 5718(5) 9169(5) 8514(5) 34(2) C8D 5289(5) 9220(6) 9376(5) 50(2) C9D 7454(6) 7770(6) 8788(7) 70(3) C10D 8431(5) 9586(7) 7260(6) 77(4) C11D 7407(6) 9384(6) 9102(6) 59(3) ________________________________________________________________________

PAGE 207

192 Table A-43. Bond lengths [] and angles [] for 22. _____________________________________________________ W1A-N1A 1.700(6) W1A-N2A 1.975(6) W1A-N3A 2.275(6) W1A-Cl3A 2.358(2) W1A-Cl1A 2.358(2) W1A-Cl2A 2.375(2) W1A-C7A 2.589(8) Si1A-C4A 1.800(9) Si1A-N2A 1.804(6) Si1A-C5A 1.838(9) Si1A-C6A 1.856(10) Si2A-N3A 1.772(7) Si2A-C11A 1.789(10) Si2A-C9A 1.861(9) Si2A-C10A 1.876(9) N1A-C1A 1.439(9) N2A-C7A 1.392(9) N3A-C7A 1.300(9) C1A-C3A 1.454(12) C1A-C2A 1.510(13) C7A-C8A 1.492(10) W1B-N1B 1.717(6) W1B-N2B 1.996(6) W1B-N3B 2.290(6) W1B-Cl1B 2.361(2) W1B-Cl3B 2.3634(19) W1B-Cl2B 2.382(2) W1B-C7B 2.566(7) Si1B-N2B 1.786(6) Si1B-C5B 1.857(8) Si1B-C4B 1.862(8) Si1B-C6B 1.872(9) Si2B-N3B 1.747(6) Si2B-C9B 1.821(9)

PAGE 208

193 Table A-43-continued Si2B-C11B 1.847(9) Si2B-C10B 1.849(10) N1B-C1B 1.437(9) N2B-C7B 1.418(9) N3B-C7B 1.271(9) C1B-C3B 1.508(11) C1B-C2B 1.536(11) C7B-C8B 1.498(10) W1C-N1C 1.694(6) W1C-N2C 1.997(6) W1C-N3C 2.291(6) W1C-Cl1C 2.357(2) W1C-Cl3C 2.375(2) W1C-Cl2C 2.377(2) Si1C-C4C 1.851(9) Si2C-C11C 1.813(9) Si2C-C10C 1.818(10) W1C-C7C 2.580(8) Si1C-N2C 1.800(6) Si1C-C5C 1.843(9) Si1C-C6C 1.886(8) Si2C-N3C 1.760(7) Si2C-C9C 1.842(11) N1C-C1C 1.453(10) N2C-C7C 1.365(9) N3C-C7C 1.306(9) C1C-C2C 1.503(12) C1C-C3C 1.512(12) C7C-C8C 1.487(10) W1D-N1D 1.737(7) W1D-N2D 2.003(6) W1D-N3D 2.297(6) W1D-Cl3D 2.364(2)

PAGE 209

194 Table A-43-continued W1D-Cl1D 2.368(2) W1D-Cl2D 2.385(2) W1D-C7D 2.597(8) Si1D-N2D 1.792(6) Si1D-C4D 1.826(8) Si1D-C5D 1.859(8) Si1D-C6D 1.881(8) Si2D-N3D 1.767(6) Si2D-C9D 1.824(9) Si2D-C10D 1.848(8) Si2D-C11D 1.875(9) N1D-C1D 1.426(10) N2D-C7D 1.400(9) N3D-C7D 1.297(9) C1D-C2D 1.512(12) C7D-C8D 1.493(10) C1D-C3D 1.534(13) N1A-W1A-N2A 101.2(3) N1A-W1A-N3A 163.3(3) N2A-W1A-N3A 62.1(2) N1A-W1A-Cl3A 95.5(2) N2A-W1A-Cl3A 90.59(18) N3A-W1A-Cl3A 85.40(16) N1A-W1A-Cl1A 96.0(2) N2A-W1A-Cl1A 91.67(18) N3A-W1A-Cl1A 84.90(16) Cl3A-W1A-Cl1A 167.61(8) N1A-W1A-Cl2A 103.7(2) N2A-W1A-Cl2A 155.16(19) N3A-W1A-Cl2A 93.08(17) Cl3A-W1A-Cl2A 86.54(7) Cl1A-W1A-Cl2A 86.30(7) N1A-W1A-C7A 133.2(3)

PAGE 210

195 Table A-43-continued N2A-W1A-C7A 32.1(2) C11A-Si2A-C10A 112.6(5) N3A-W1A-C7A 30.1(2) Cl3A-W1A-C7A 85.83(18) Cl1A-W1A-C7A 89.64(18) Cl2A-W1A-C7A 123.12(19) C4A-Si1A-N2A 104.9(4) C4A-Si1A-C5A 114.6(5) N2A-Si1A-C5A 107.2(4) C4A-Si1A-C6A 110.9(5) N2A-Si1A-C6A 112.2(4) C5A-Si1A-C6A 107.1(4) N3A-Si2A-C11A 107.2(4) N3A-Si2A-C9A 112.7(4) C11A-Si2A-C9A 114.3(5) N3A-Si2A-C10A 103.7(4) C9A-Si2A-C10A 105.8(5) C1A-N1A-W1A 179.5(6) C7A-N2A-Si1A 131.4(5) C7A-N2A-W1A 99.1(5) Si1A-N2A-W1A 129.4(4) C7A-N3A-Si2A 134.4(6) C7A-N3A-W1A 88.4(5) Si2A-N3A-W1A 136.9(3) N1A-C1A-C3A 110.6(8) N1A-C1A-C2A 108.6(8) C3A-C1A-C2A 113.7(9) N3A-C7A-N2A 110.1(7) N3A-C7A-C8A 128.4(8) N2A-C7A-C8A 121.5(7) N3A-C7A-W1A 61.4(4) N2A-C7A-W1A 48.9(4) C8A-C7A-W1A 168.6(6) N1B-W1B-N2B 101.0(3)

PAGE 211

196 Table A-43-continued N1B-W1B-N3B 163.8(2) N2B-W1B-N3B 62.9(2) N1B-W1B-Cl1B 96.5(2) N2B-W1B-Cl1B 90.35(17) N3B-W1B-Cl1B 85.55(16) N1B-W1B-Cl3B 94.8(2) N2B-W1B-Cl3B 91.68(17) N3B-W1B-Cl3B 84.77(16) Cl1B-W1B-Cl3B 167.91(8) N1B-W1B-Cl2B 103.3(2) N2B-W1B-Cl2B 155.70(18) N3B-W1B-Cl2B 92.82(17) Cl1B-W1B-Cl2B 87.04(8) Cl3B-W1B-Cl2B 86.22(7) N2B-W1B-C7B 33.3(2) Cl2B-W1B-C7B 122.37(19) N1B-W1B-C7B 134.3(3) N3B-W1B-C7B 29.7(2) Cl1B-W1B-C7B 85.48(16) Cl3B-W1B-C7B 89.67(16) N2B-Si1B-C5B 106.4(3) N2B-Si1B-C4B 107.2(3) C5B-Si1B-C4B 113.0(4) N2B-Si1B-C6B 114.4(4) C5B-Si1B-C6B 108.8(4) C4B-Si1B-C6B 107.1(4) N3B-Si2B-C9B 107.9(4) N3B-Si2B-C11B 115.5(4) C9B-Si2B-C11B 112.6(5) N3B-Si2B-C10B 105.7(4) C9B-Si2B-C10B 109.6(6) C11B-Si2B-C10B 105.2(5) C1B-N1B-W1B 178.3(6) C7B-N2B-Si1B 135.4(5)

PAGE 212

197 Table A-43-continued C7B-N2B-W1B 96.0(5) Si1B-N2B-W1B 128.4(3) C7B-N3B-Si2B 135.2(6) C7B-N3B-W1B 87.3(5) Si2B-N3B-W1B 137.4(4) N1B-C1B-C3B 110.5(7) N1B-C1B-C2B 107.9(7) C3B-C1B-C2B 112.7(8) N3B-C7B-N2B 113.5(7) N3B-C7B-C8B 128.2(7) N2B-C7B-C8B 118.3(7) N3B-C7B-W1B 63.0(4) N2B-C7B-W1B 50.7(3) C8B-C7B-W1B 167.4(6) N1C-W1C-N2C 102.5(3) N1C-W1C-N3C 164.0(3) N2C-W1C-N3C 61.7(2) N1C-W1C-Cl1C 97.0(2) N2C-W1C-Cl1C 92.12(18) N3C-W1C-Cl1C 86.70(17) N1C-W1C-Cl3C 94.1(2) N2C-W1C-Cl3C 89.67(19) N3C-W1C-Cl3C 83.77(17) Cl1C-W1C-Cl3C 168.07(8) N1C-W1C-Cl2C 103.2(2) N2C-W1C-Cl2C 154.18(19) N3C-W1C-Cl2C 92.47(17) Cl1C-W1C-Cl2C 86.92(8) Cl3C-W1C-Cl2C 86.35(8) N1C-W1C-C7C 133.7(3) N2C-W1C-C7C 31.6(2) N3C-W1C-C7C 30.4(2) Cl1C-W1C-C7C 91.97(17) Cl3C-W1C-C7C 83.41(17)

PAGE 213

198 Table A-43-continued Cl2C-W1C-C7C 122.64(18) N2C-Si1C-C5C 106.5(4) N2C-Si1C-C4C 105.2(3) C5C-Si1C-C4C 116.3(4) N2C-Si1C-C6C 111.5(3) C5C-Si1C-C6C 108.0(4) C4C-Si1C-C6C 109.3(4) N3C-Si2C-C11C 112.9(4) N3C-Si2C-C10C 106.2(4) C11C-Si2C-C10C 114.2(6) N3C-Si2C-C9C 105.6(4) C11C-Si2C-C9C 104.6(5) C10C-Si2C-C9C 113.1(6) C1C-N1C-W1C 176.0(6) C7C-N2C-Si1C 131.4(5) C7C-N2C-W1C 98.5(5) N2C-C7C-W1C 50.0(4) C8C-C7C-W1C 166.4(6) Si1C-N2C-W1C 129.7(4) C7C-N3C-Si2C 134.9(6) C7C-N3C-W1C 87.1(5) Si2C-N3C-W1C 137.8(3) N1C-C1C-C2C 108.5(8) N1C-C1C-C3C 109.7(7) C2C-C1C-C3C 111.0(9) N3C-C7C-N2C 111.9(7) N3C-C7C-C8C 125.8(7) N2C-C7C-C8C 122.1(7) N3C-C7C-W1C 62.5(4) N1D-W1D-N2D 101.2(3) N1D-W1D-N3D 163.1(3) N2D-W1D-N3D 62.0(2) N1D-W1D-Cl3D 96.4(2) N2D-W1D-Cl3D 89.98(17)

PAGE 214

199 Table A-43-continued N3D-W1D-Cl3D 85.36(16) N1D-W1D-Cl1D 95.5(2) N2D-W1D-Cl1D 91.51(17) N3D-W1D-Cl1D 84.44(16) Cl3D-W1D-Cl1D 167.54(8) N1D-W1D-Cl2D 103.4(2) N2D-W1D-Cl2D 155.43(18) N3D-W1D-Cl2D 93.51(16) Cl3D-W1D-Cl2D 86.40(7) Cl1D-W1D-Cl2D 87.11(7) N1D-W1D-C7D 133.3(3) N2D-W1D-C7D 32.3(2) N3D-W1D-C7D 29.9(2) Cl3D-W1D-C7D 84.12(17) Cl1D-W1D-C7D 90.56(17) Cl2D-W1D-C7D 123.15(18) N2D-Si1D-C4D 107.3(3) N2D-Si1D-C5D 106.8(3) C4D-Si1D-C5D 114.1(4) N2D-Si1D-C6D 112.3(4) C4D-Si1D-C6D 109.9(4) C5D-Si1D-C6D 106.5(4) N3D-Si2D-C9D 107.4(4) N3D-Si2D-C10D 104.9(4) C9D-Si2D-C10D 115.8(5) N3D-Si2D-C11D 113.1(4) C9D-Si2D-C11D 108.9(5) C10D-Si2D-C11D 106.8(5) C1D-N1D-W1D 178.8(6) C7D-N2D-Si1D 133.9(5) C7D-N2D-W1D 97.9(5) Si1D-N2D-W1D 127.5(3) C7D-N3D-Si2D 135.2(6) C7D-N3D-W1D 87.9(5)

PAGE 215

200 Table A-43-continued Si2D-N3D-W1D 136.1(3) N1D-C1D-C2D 111.8(7) N1D-C1D-C3D 108.4(8) C2D-C1D-C3D 109.0(9) N3D-C7D-N2D 111.3(7) N3D-C7D-C8D 127.1(7) N2D-C7D-C8D 121.5(7) N3D-C7D-W1D 62.1(4) N2D-C7D-W1D 49.8(4) C8D-C7D-W1D 165.9(6) _____________________________________________________________ Symmetry transformations used to generate equivalent atoms:

PAGE 216

201 Table A-44. Anisotropic displacement parameters (2x 103) for 22. The anisotropic displacement factor exponent takes the form: -22[ h2 a*2U11 + ... + 2 h k a* b* U12 ] ________________________________________________________________________ U11 U22 U33 U23 U13 U12 ________________________________________________________________________ W1A 35(1) 30(1) 36(1) -15(1) -21(1) 10(1) Cl1A 61(2) 35(1) 42(1) -19(1) -30(1) 13(1) Cl2A 51(1) 35(1) 48(1) -15(1) -28(1) 16(1) Cl3A 53(1) 43(1) 49(1) -26(1) -26(1) 14(1) Si1A 58(2) 58(2) 56(2) -34(1) -42(2) 33(1) Si2A 37(1) 43(2) 53(2) -17(1) -26(1) 11(1) N1A 31(4) 30(4) 37(4) -16(3) -13(3) 5(3) N2A 39(4) 35(4) 43(4) -23(3) -25(4) 14(3) N3A 44(4) 33(4) 34(4) -17(3) -23(3) 10(3) C1A 46(6) 39(6) 78(7) -23(5) -33(6) 7(4) C2A 60(8) 181(15) 56(8) -48(9) 13(6) -39(9) C3A 47(6) 81(9) 102(9) -45(7) -33(6) 4(6) C4A 74(7) 120(10) 113(9) -80(8) -80(7) 57(7) C5A 54(6) 55(6) 86(7) -46(6) -45(6) 29(5) C6A 76(8) 80(8) 69(7) -23(6) -35(6) 51(6) C7A 41(5) 43(5) 33(5) -16(4) -23(4) 11(4) C8A 59(6) 45(6) 44(5) 2(4) -34(5) -1(5) C9A 32(5) 74(8) 67(7) -4(6) -18(5) 4(5) C10A 50(6) 120(10) 55(6) -23(6) -34(6) -8(6) C11A 67(8) 100(10) 127(11) -69(9) -57(8) 47(7) W1B 31(1) 29(1) 37(1) -16(1) -20(1) 8(1) Cl1B 29(1) 48(1) 55(1) -19(1) -18(1) 5(1) Cl2B 54(1) 47(1) 55(1) -27(1) -39(1) 13(1) Cl3B 31(1) 56(1) 39(1) -22(1) -19(1) 13(1) Si1B 35(1) 43(2) 46(2) -29(1) -20(1) 9(1) Si2B 55(2) 29(1) 62(2) -23(1) -40(1) 15(1) N1B 34(4) 36(4) 27(4) -17(3) -18(3) 11(3) N2B 22(3) 35(4) 34(4) -18(3) -15(3) 7(3) N3B 32(4) 29(4) 48(4) -22(3) -24(3) 10(3) C1B 44(5) 35(5) 67(6) -26(5) -35(5) 6(4)

PAGE 217

202 Table A-44-continued C2B 76(8) 56(7) 50(7) 7(5) -14(6) 8(6) Si1C 45(2) 26(1) 45(1) -10(1) -25(1) 5(1) C3B 71(7) 35(6) 96(8) -20(5) -55(6) 22(5) C4B 44(6) 44(6) 73(7) -23(5) -30(5) -3(4) C5B 45(6) 54(6) 60(6) -39(5) -26(5) 13(4) C6B 60(6) 72(7) 72(7) -51(6) -40(6) 19(5) C7B 18(4) 32(5) 27(4) -6(4) -8(3) 11(3) C8B 63(6) 43(6) 45(5) -17(4) -34(5) 13(5) C9B 73(8) 39(7) 240(16) -55(9) -96(10) 18(6) C10B 147(11) 80(9) 73(8) -55(7) -62(8) 72(8) C11B 137(10) 38(6) 75(7) -19(5) -75(7) 22(6) W1C 29(1) 28(1) 36(1) -11(1) -15(1) 7(1) Cl1C 42(1) 49(1) 42(1) -9(1) -23(1) 13(1) Cl2C 36(1) 37(1) 58(2) -11(1) -15(1) 1(1) Cl3C 44(1) 49(1) 47(1) -17(1) -28(1) 12(1) Si2C 44(2) 34(1) 59(2) -26(1) -19(1) 11(1) N1C 36(4) 37(4) 41(4) -24(3) -18(3) 11(3) N2C 33(4) 27(4) 39(4) -11(3) -19(3) 4(3) N3C 30(4) 33(4) 45(4) -17(3) -16(3) 11(3) C1C 43(5) 43(6) 60(6) -26(5) -27(5) 9(4) C2C 216(16) 122(12) 34(7) -22(7) -6(9) 96(11) C3C 94(9) 99(9) 108(9) -70(8) -71(8) 71(7) C4C 78(7) 26(5) 100(8) -18(5) -64(7) 12(5) C5C 56(6) 50(6) 70(7) -35(5) -33(5) 6(5) C6C 50(6) 34(5) 71(7) -12(5) -22(5) -14(4) C7C 32(5) 30(5) 32(5) -16(4) -16(4) 8(4) C8C 56(6) 38(5) 29(5) -14(4) -4(4) 7(4) C9C 180(14) 33(7) 68(8) -14(6) 1(8) 43(8) C10C 142(12) 89(10) 249(17) -123(11) -147(12) 49(8) C11C 60(7) 44(6) 96(8) -44(6) -9(6) 9(5) W1D 29(1) 31(1) 39(1) -19(1) -16(1) 8(1) Cl1D 43(1) 34(1) 44(1) -14(1) -17(1) 3(1) Cl2D 36(1) 47(1) 58(1) -30(1) -16(1) 14(1) Cl3D 46(1) 32(1) 55(1) -19(1) -24(1) 9(1)

PAGE 218

203 Table A-44-continued Si1D 28(1) 35(1) 49(2) -20(1) -18(1) 9(1) Si2D 34(1) 43(2) 44(1) -18(1) -24(1) 12(1) N1D 32(4) 44(4) 43(4) -25(4) -14(3) 6(3) N2D 24(4) 32(4) 27(4) -14(3) -9(3) 10(3) N3D 26(4) 35(4) 44(4) -21(3) -20(3) 12(3) C1D 59(6) 58(7) 53(6) -26(5) -39(5) 16(5) C2D 86(8) 61(8) 112(9) -41(7) -73(7) 8(6) C3D 204(17) 217(19) 46(8) 23(10) -54(10) -102(15) C4D 35(5) 49(6) 55(6) -19(5) -18(5) 5(4) C5D 51(6) 43(6) 72(7) -18(5) -41(5) 16(4) C11D 57(6) 85(8) 65(6) -46(6) -41(5) 29(5) ________________________________________________________________________ C6D 43(6) 68(7) 85(7) -55(6) -23(5) 31(5) C7D 36(5) 28(5) 37(5) -7(4) -21(4) 10(4) C8D 34(5) 81(7) 40(5) -32(5) -16(4) 14(5) C9D 62(7) 63(7) 111(9) -41(7) -60(7) 31(5) C10D 37(6) 131(10) 52(6) -27(7) -21(5) -22(6)

PAGE 219

204 Table A-45. Hydrogen coordinates ( x 104) and isotropic displacement parameters (2x 103) for 22. H1BA 1017 6370 8321 52 ________________________________________________________________________ x y z U(eq) ________________________________________________________________________ H1AA 3787 4697 6427 64 H2AA 3754 4798 5166 174 H2AB 4455 5601 4929 174 H2AC 3489 5734 5001 174 H3AA 3308 5679 7003 113 H3AB 3194 6281 6172 113 H3AC 4171 6145 6065 113 H4AA 2086 3278 9238 116 H4AB 2739 3989 8275 116 H4AC 3125 3233 8772 116 H5AA 3456 3423 6757 82 H5AB 3080 2458 6961 82 H5AC 3793 2620 7260 82 H6AA 1573 1460 9562 116 H6AB 2587 1360 9059 116 H6AC 1872 1196 8761 116 H8AA -347 1571 9302 79 H8AB -79 2029 9792 79 H8AC 612 1549 9277 79 H9AA -1778 1952 9655 103 H9AB -1438 1643 8881 103 H9AC -2314 2068 9110 103 H10A -567 3915 6770 113 H10B -1545 3327 7267 113 H10C -676 2892 7044 113 H11A -1422 3906 9174 130 H11B -2001 4063 8665 130 H11C -989 4577 8170 130 H2BA -131 6413 9601 115

PAGE 220

205 Table A-45-continued H2BB 596 6637 9861 115 H3CC 3709 4982 8470 123 H2BC 440 5708 9864 115 H3BA 2533 6790 7888 95 H3BB 2096 5938 8789 95 H3BC 2269 6865 8787 95 H4BA -73 6737 8058 79 H4BB -330 6377 7497 79 H4BC -799 7117 7756 79 H5BA 2211 7847 5655 71 H5BB 1698 6865 6095 71 H5BC 1952 7240 6648 71 H6BA 774 8432 5150 86 H6BB -253 8206 5877 86 H6BC 218 7462 5629 86 H8BA 470 10402 5570 71 H8BB 427 9461 5570 71 H8BC 1373 10101 5078 71 H9BA 2608 11420 5898 164 H9BB 2293 11014 6923 164 H9BC 2208 11990 6439 164 H10D 352 10609 8207 132 H10E -387 10757 7877 132 H10F 238 11573 7722 132 H11D 1145 11808 5297 112 H11E 734 12325 5893 112 H11F 116 11516 6030 112 H1CA 5094 5507 8775 55 H2CA 4471 4230 10072 224 H2CB 3684 4016 9878 224 H2CC 3742 4839 10085 224 H3CA 4506 5805 7791 123 H3CB 3759 5797 8690 123 H4CA 6099 6215 6616 93

PAGE 221

206 Table A-45-continued H4CB 6881 6290 5700 93 H4CC 6949 6992 6058 93 H5CA 6486 5574 8230 81 H5CB 7350 6331 7712 81 H5CC 7448 5339 8084 81 H6CA 8707 6007 5482 85 H6CB 8890 5621 6306 85 H6CC 8795 6614 5930 85 H8CA 8472 4001 5781 72 H8CB 8342 4977 5619 72 H8CC 7870 4432 5330 72 H9CA 5984 1463 8430 180 H9CB 7035 1597 8134 180 H9CC 6596 920 7942 180 H10G 6101 2696 6034 180 H10H 5363 2252 7040 180 H10I 5910 1667 6570 180 H11G 8075 2751 5577 109 H11H 7925 1738 6162 109 H11I 8343 2435 6347 109 H1DA 4542 8977 6327 61 H2DA 4331 7444 7033 112 H2DB 5241 7460 6236 112 H2DC 4401 7739 6087 112 H3DA 5923 9744 5049 275 H3DB 5399 9119 4870 275 H3DC 6223 8847 5053 275 H4DA 3437 7893 9139 73 H4DB 3775 8079 8139 73 H4DC 2874 8369 8657 73 H5DA 4526 10008 6736 79 H5DB 4604 10740 7056 79 H5DC 3642 10303 7275 79 H6DA 3500 9347 9660 91

PAGE 222

207 Table A-45-continued H6DB 2984 9883 9151 91 H6DC 3947 10318 8931 91 H8DA 5667 9664 9366 75 H8DB 5220 8657 9836 75 H8DC 4698 9373 9492 75 H9DA 7483 7526 8382 104 H9DB 6905 7478 9343 104 H9DC 7977 7683 8888 104 H10J 8478 9368 6831 115 H10K 8976 9549 7324 115 H10L 8357 10192 7060 115 H11J 6888 9057 9674 88 H11K 7353 9994 8881 88 H11L 7958 9340 9158 88

PAGE 223

208 Crystallographic Data for W(NCH(CH3)2)(C8H21N2)Cl3 (24) Table A-46. Crystal data and structure refinement for 24. Crystal size 0.22 x 0.16 x 0.06 mm3 Empirical formula C11 H24 Cl3 N3 W Formula weight 488.53 Temperature 173(2) K Wavelength 0.71073 Crystal system Monoclinic Space group P2(1)/c Unit cell dimensions a = 16.6234(11) = 90. b = 13.9173(9) = 114.095(2). c = 16.9854(11) = 90. Volume 3587.2(4) 3 Z 8 Density (calculated) 1.809 Mg/m3 Absorption coefficient 6.876 mm-1 F(000) 1888 Theta range for data collection 1.97 to 27.28. Index ranges -20h17, -17k17, -21l20 Reflections collected 20476 Independent reflections 7210 [R(int) = 0.0622] Completeness to theta = 27.28 89.6 % Absorption correction Integration Max. and min. transmission 0.6719 and 0.2461 Refinement method Full-matrix least-squares on F2 Data / restraints / parameters 7210 / 0 / 362 Goodness-of-fit on F2 1.041 Final R indices [I>2sigma(I)] R1 = 0.0256, wR2 = 0.0632 [6207] R indices (all data) R1 = 0.0325, wR2 = 0.0660 Largest diff. peak and hole 0.780 and -1.068 e.-3 R1 = (||Fo| |Fc||) / |Fo| wR2 = [w(Fo2 Fc2)2] / wFo22]]1/2 S = [w(Fo2 Fc2)2] / (n-p)]1/2

PAGE 224

209 Table A-46-continued w= 1/[2(Fo2)+(m*p)2+n*p], p = [max(Fo2,0)+ 2* Fc2]/3, m & n are constants.

PAGE 225

210 Table A-47. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (2x 103) for 24. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ________________________________________________________________________ x y z U(eq) ________________________________________________________________________ W1 4546(1) 8040(1) 3696(1) 30(1) W2 9293(1) 7530(1) 8728(1) 36(1) Cl1 5683(1) 9150(1) 3840(1) 39(1) Cl2 3695(1) 6717(1) 3809(1) 57(1) Cl3 4998(1) 8212(1) 5204(1) 54(1) Cl4 8250(1) 8699(1) 8738(1) 58(1) Cl5 10046(1) 6183(1) 8488(1) 59(1) Cl6 8738(1) 7810(1) 7222(1) 51(1) N1 3671(2) 8821(2) 3283(2) 35(1) N2 4600(2) 7474(2) 2658(2) 33(1) N3 5589(2) 6895(2) 3851(2) 30(1) N4 10108(10) 8418(9) 9070(11) 40(3) N4' 10279(10) 8113(9) 9169(10) 32(3) C1 2926(3) 9465(3) 3019(3) 42(1) C2 2075(3) 8913(4) 2673(5) 90(2) N5 8222(2) 6435(2) 8602(2) 37(1) N6 9294(2) 6935(2) 9776(2) 37(1) C3 3016(4) 10109(4) 3758(4) 84(2) C4 4102(3) 7534(3) 1715(3) 44(1) C5 3887(3) 8566(3) 1428(3) 54(1) C6 3296(4) 6905(4) 1437(3) 77(2) C7 5293(3) 6812(3) 3030(2) 33(1) C8 5590(3) 6150(3) 2514(3) 43(1) C9 6324(3) 6335(3) 4482(3) 39(1) C10 5947(3) 5684(3) 4968(3) 53(1) C11 7013(3) 7011(3) 5074(3) 49(1) C12 10777(7) 9142(12) 9296(7) 51(3) C12' 11125(11) 8634(11) 9430(10) 58(3) C13 10695(9) 9594(9) 8470(8) 78(4) C13' 10937(19) 9638(14) 9360(30) 220(20)

PAGE 226

211 Table A-47-continued C14 11667(8) 8806(14) 9841(15) 134(11) C14' 11620(10) 8303(12) 8988(13) 107(7) C15 7446(3) 5936(3) 7972(3) 51(1) C16 7748(4) 5346(3) 7384(3) 68(2) C17 6752(3) 6659(4) 7482(3) 60(1) C18 8558(2) 6323(3) 9422(2) 33(1) C19 8277(3) 5681(3) 9965(3) 46(1) C20 9841(3) 6995(3) 10715(3) 48(1) C21 9917(4) 8036(4) 11006(3) 62(1) C22 10729(4) 6537(4) 10913(3) 74(2) ________________________________________________________________________

PAGE 227

212 Table A-48. Bond lengths [] and angles [] for 24. _____________________________________________________ W1-N1 1.720(3) W1-N2 1.966(3) W1-N3 2.290(3) N3-C9 1.476(5) N4-C12 1.43(2) N4'-C12' 1.48(2) N5-C18 1.282(5) N5-C15 1.471(5) N6-C18 1.408(5) N6-C20 1.480(5) C1-C3 1.500(6) C1-C2 1.501(6) C1-H1A 1.0000 C2-H2A 0.9800 W1-Cl3 2.3679(10) W1-Cl1 2.3750(9) W1-Cl2 2.3754(11) W1-C7 2.625(4) W2-N4' 1.705(16) W2-N4 1.748(16) W2-N6 1.964(3) W2-N5 2.286(3) W2-Cl6 2.3699(10) W2-Cl5 2.3802(12) W2-Cl4 2.3818(12) W2-C18 2.624(4) N1-C1 1.443(5) N2-C7 1.407(5) N2-C4 1.474(5) N3-C7 1.281(5) C2-H2B 0.9800 C2-H2C 0.9800 C3-H3A 0.9800 C3-H3B 0.9800

PAGE 228

213 Table A-48-continued C3-H3C 0.9800 C4-C6 1.506(7) C4-C5 1.512(6) C4-H4A 1.0000 C5-H5A 0.9800 C5-H5B 0.9800 C5-H5C 0.9800 C6-H6A 0.9800 C6-H6B 0.9800 C6-H6C 0.9800 C7-C8 1.488(5) C8-H8A 0.9800 C8-H8B 0.9800 C8-H8C 0.9800 C9-C11 1.506(6) C9-C10 1.523(6) C9-H9A 1.0000 C10-H10A 0.9800 C10-H10B 0.9800 C10-H10C 0.9800 C11-H11A 0.9800 C11-H11B 0.9800 C11-H11C 0.9800 C12-C14 1.465(16) C12-C13 1.491(15) C12-H12A 1.0000 C12'-C14' 1.399(18) C12'-C13' 1.43(2) C12'-H12B 1.0000 C13-H13A 0.9800 C13-H13B 0.9800 C13-H13C 0.9800 C13'-H13D 0.9800 C13'-H13E 0.9800

PAGE 229

214 Table A-48-continued C13'-H13F 0.9800 C14-H14A 0.9800 C14-H14B 0.9800 C14-H14C 0.9800 C14'-H14D 0.9800 C14'-H14E 0.9800 C14'-H14F 0.9800 C15-C17 1.501(7) C15-C16 1.528(7) C15-H15A 1.0000 C16-H16A 0.9800 C16-H16B 0.9800 C16-H16C 0.9800 C17-H17A 0.9800 C17-H17B 0.9800 C17-H17C 0.9800 C18-C19 1.489(5) C19-H19A 0.9800 C19-H19B 0.9800 C19-H19C 0.9800 C20-C22 1.515(7) C20-C21 1.519(6) C20-H20A 1.0000 C21-H21A 0.9800 C21-H21B 0.9800 C21-H21C 0.9800 C22-H22A 0.9800 C22-H22B 0.9800 C22-H22C 0.9800 N1-W1-N2 103.16(14) N1-W1-N3 164.06(13) N2-W1-N3 60.95(12) N1-W1-Cl3 102.69(11)

PAGE 230

215 Table A-48-continued N2-W1-Cl3 154.12(9) N3-W1-Cl3 93.17(8) N1-W1-Cl1 97.78(10) N2-W1-Cl1 91.54(10) N3-W1-Cl1 84.66(8) Cl3-W1-Cl1 86.29(4) N1-W1-Cl2 95.22(11) N2-W1-Cl2 90.50(10) N3-W1-Cl2 84.25(8) Cl3-W1-Cl2 85.84(4) Cl1-W1-Cl2 166.01(4) N1-W1-C7 134.88(13) N2-W1-C7 31.77(12) N3-W1-C7 29.20(11) Cl3-W1-C7 122.35(9) Cl1-W1-C7 88.32(8) Cl2-W1-C7 86.15(8) N4'-W2-N4 16.6(4) N4'-W2-N6 99.0(5) N4-W2-N6 106.4(5) N4'-W2-N5 158.6(5) N4-W2-N5 166.0(6) N6-W2-N5 61.04(12) N4'-W2-Cl6 106.1(5) N4-W2-Cl6 98.7(5) N6-W2-Cl6 154.67(10) N5-W2-Cl6 93.63(9) N4'-W2-Cl5 88.3(5) N4-W2-Cl5 102.9(4) N6-W2-Cl5 90.95(10) N5-W2-Cl5 84.40(9) Cl6-W2-Cl5 86.84(4) N4'-W2-Cl4 104.1(4) N4-W2-Cl4 89.0(4)

PAGE 231

216 Table A-48-continued N6-W2-Cl4 90.75(10) N5-W2-Cl4 85.13(9) Cl6-W2-Cl4 86.11(4) Cl5-W2-Cl4 166.98(5) N4'-W2-C18 130.4(5) N4-W2-C18 137.9(5) N6-W2-C18 31.81(12) N5-W2-C18 29.24(11) Cl6-W2-C18 122.87(9) Cl5-W2-C18 86.92(9) Cl4-W2-C18 87.73(8) C1-N1-W1 174.0(3) C7-N2-C4 121.2(3) C7-N2-W1 100.9(2) C4-N2-W1 137.8(3) C7-N3-C9 125.4(3) C7-N3-W1 90.1(2) C9-N3-W1 144.5(2) C12-N4-W2 176.2(13) C12'-N4'-W2 172.2(13) C18-N5-C15 126.6(3) C18-N5-W2 90.1(2) C15-N5-W2 143.2(3) C18-N6-C20 122.6(3) C18-N6-W2 100.9(2) C20-N6-W2 136.5(3) N1-C1-C3 109.3(4) N1-C1-C2 110.8(4) C3-C1-C2 112.9(4) N1-C1-H1A 107.9 C3-C1-H1A 107.9 C2-C1-H1A 107.9 C1-C2-H2A 109.5 C1-C2-H2B 109.5

PAGE 232

217 Table A-48-continued H2A-C2-H2B 109.5 C1-C2-H2C 109.5 H2A-C2-H2C 109.5 H2B-C2-H2C 109.5 C1-C3-H3A 109.5 C1-C3-H3B 109.5 H3A-C3-H3B 109.5 C1-C3-H3C 109.5 H3A-C3-H3C 109.5 H3B-C3-H3C 109.5 N2-C4-C6 109.9(4) N2-C4-C5 111.0(3) C6-C4-C5 112.8(4) N2-C4-H4A 107.6 C6-C4-H4A 107.6 C5-C4-H4A 107.6 C4-C5-H5A 109.5 C4-C5-H5B 109.5 H5A-C5-H5B 109.5 C4-C5-H5C 109.5 H5A-C5-H5C 109.5 H5B-C5-H5C 109.5 C4-C6-H6A 109.5 C4-C6-H6B 109.5 H6A-C6-H6B 109.5 C4-C6-H6C 109.5 H6A-C6-H6C 109.5 H6B-C6-H6C 109.5 N3-C7-N2 108.0(3) N3-C7-C8 128.6(4) N2-C7-C8 123.3(3) N3-C7-W1 60.7(2) N2-C7-W1 47.36(17) C8-C7-W1 170.5(3)

PAGE 233

218 Table A-48-continued C7-C8-H8A 109.5 C7-C8-H8B 109.5 H8A-C8-H8B 109.5 C7-C8-H8C 109.5 H8A-C8-H8C 109.5 H8B-C8-H8C 109.5 N3-C9-C11 109.5(3) N3-C9-C10 107.8(3) C11-C9-C10 112.2(4) N3-C9-H9A 109.1 C11-C9-H9A 109.1 C10-C9-H9A 109.1 C9-C10-H10A 109.5 H10A-C10-H10B 109.5 C9-C10-H10B 109.5 C9-C10-H10C 109.5 H10A-C10-H10C 109.5 H10B-C10-H10C 109.5 C9-C11-H11A 109.5 C9-C11-H11B 109.5 H11A-C11-H11B 109.5 C9-C11-H11C 109.5 H11A-C11-H11C 109.5 H11B-C11-H11C 109.5 N4-C12-C14 114.7(14) N4-C12-C13 106.4(10) C14-C12-C13 114.2(12) N4-C12-H12A 107.0 C14-C12-H12A 107.0 C13-C12-H12A 107.0 C14'-C12'-C13' 115.8(15) C14'-C12'-N4' 111.9(12) C13'-C12'-N4' 107.8(18) C14'-C12'-H12B 107.0

PAGE 234

219 Table A-48-continued C13'-C12'-H12B 107.0 N4'-C12'-H12B 107.0 C12-C13-H13A 109.5 C12-C13-H13B 109.5 H13A-C13-H13B 109.5 C12-C13-H13C 109.5 H13A-C13-H13C 109.5 H13B-C13-H13C 109.5 C12'-C13'-H13D 109.5 C12'-C13'-H13E 109.5 H13D-C13'-H13E 109.5 C12'-C13'-H13F 109.5 H13D-C13'-H13F 109.5 H13E-C13'-H13F 109.5 C12-C14-H14A 109.5 C12-C14-H14B 109.5 H14A-C14-H14B 109.5 C12-C14-H14C 109.5 H14A-C14-H14C 109.5 H14B-C14-H14C 109.5 C12'-C14'-H14D 109.5 C12'-C14'-H14E 109.5 H14D-C14'-H14E 109.5 C12'-C14'-H14F 109.5 H14D-C14'-H14F 109.5 H14E-C14'-H14F 109.5 N5-C15-C17 109.5(4) N5-C15-C16 107.7(4) C17-C15-C16 112.4(4) N5-C15-H15A 109.0 C17-C15-H15A 109.0 C16-C15-H15A 109.0 C15-C16-H16A 109.5 C15-C16-H16B 109.5

PAGE 235

220 Table A-48-continued H16A-C16-H16B 109.5 C15-C16-H16C 109.5 H16A-C16-H16C 109.5 H16B-C16-H16C 109.5 C15-C17-H17A 109.5 C15-C17-H17B 109.5 H17A-C17-H17B 109.5 C15-C17-H17C 109.5 H17A-C17-H17C 109.5 H17B-C17-H17C 109.5 N5-C18-N6 107.9(3) N5-C18-C19 129.7(4) N6-C18-C19 122.4(3) N5-C18-W2 60.6(2) N6-C18-W2 47.29(17) C19-C18-W2 169.7(3) C18-C19-H19A 109.5 C18-C19-H19B 109.5 H19A-C19-H19B 109.5 C18-C19-H19C 109.5 H19A-C19-H19C 109.5 H19B-C19-H19C 109.5 N6-C20-C22 109.3(4) N6-C20-C21 109.8(4) C22-C20-C21 112.7(4) N6-C20-H20A 108.4 C22-C20-H20A 108.4 C21-C20-H20A 108.4 C20-C21-H21A 109.5 C20-C21-H21B 109.5 H21A-C21-H21B 109.5 C20-C21-H21C 109.5 H21A-C21-H21C 109.5 H21B-C21-H21C 109.5

PAGE 236

221 Table A-48-continued C20-C22-H22A 109.5 C20-C22-H22B 109.5 H22A-C22-H22B 109.5 C20-C22-H22C 109.5 H22A-C22-H22C 109.5 H22B-C22-H22C 109.5 _____________________________________________________________ Symmetry transformations used to generate equivalent atoms:

PAGE 237

222 Table A-49. Anisotropic displacement parameters (2x 103) for 24. The anisotropic displacement factor exponent takes the form: -22[ h2 a*2U11 + ... + 2 h k a* b* U12 ] ________________________________________________________________________ U11 U22 U33 U23 U13 U12 ________________________________________________________________________ W1 34(1) 33(1) 27(1) -2(1) 16(1) -1(1) W2 34(1) 46(1) 32(1) 3(1) 17(1) -6(1) Cl1 41(1) 34(1) 44(1) -2(1) 19(1) -5(1) Cl2 54(1) 50(1) 75(1) 2(1) 34(1) -12(1) Cl3 68(1) 71(1) 31(1) -4(1) 29(1) -2(1) Cl4 75(1) 48(1) 66(1) 11(1) 44(1) 11(1) Cl5 51(1) 81(1) 53(1) 8(1) 29(1) 20(1) Cl6 52(1) 70(1) 35(1) 11(1) 21(1) 0(1) N1 35(2) 37(2) 38(2) -4(1) 21(1) -1(1) N2 39(2) 35(2) 25(2) -4(1) 13(1) 3(1) N3 34(2) 27(1) 29(2) 0(1) 14(1) -1(1) N4 34(6) 40(7) 49(5) 27(5) 21(5) 6(5) N4' 31(6) 30(7) 33(5) 10(5) 11(5) -1(5) N5 36(2) 39(2) 37(2) 1(2) 15(2) -3(1) N6 38(2) 44(2) 30(2) -1(1) 16(1) -7(1) C1 34(2) 42(2) 52(2) 2(2) 19(2) 6(2) C2 35(3) 76(4) 140(6) -14(4) 17(3) -6(3) C3 72(4) 84(4) 86(4) -30(3) 23(3) 28(3) C4 49(3) 49(2) 27(2) -4(2) 10(2) 9(2) C5 69(3) 59(3) 27(2) 6(2) 12(2) 2(2) C6 80(4) 68(3) 46(3) -3(3) -11(3) -15(3) C7 36(2) 31(2) 35(2) -4(2) 17(2) -3(2) C8 54(3) 39(2) 36(2) -7(2) 17(2) 8(2) C9 41(2) 36(2) 38(2) 3(2) 16(2) 5(2) C10 60(3) 49(2) 50(3) 17(2) 22(2) 4(2) C11 44(3) 54(3) 41(2) 3(2) 8(2) -1(2) C12 28(5) 57(8) 60(6) 12(6) 11(4) -13(5) C12' 49(9) 61(8) 68(8) -1(7) 28(7) -12(7) C13 112(10) 61(7) 80(8) 11(6) 59(7) -28(7) C13' 230(30) 83(13) 490(70) -120(30) 290(40) -95(19)

PAGE 238

223 Table A-49-continued C14 30(7) 117(14) 190(20) 71(14) -19(9) -16(8) C14' 67(9) 137(13) 139(16) -53(12) 63(10) -33(9) C15 48(3) 56(3) 43(2) 8(2) 13(2) -16(2) C16 77(4) 48(3) 53(3) -9(2) -1(3) 2(3) C17 39(3) 84(3) 53(3) 7(3) 14(2) -1(2) C22 66(3) 89(4) 47(3) 10(3) 2(3) 14(3) ________________________________________________________________________ C18 27(2) 38(2) 37(2) 4(2) 16(2) 3(2) C19 47(2) 47(2) 45(2) 17(2) 22(2) 2(2) C20 51(3) 63(3) 31(2) 3(2) 19(2) -8(2) C21 69(3) 72(3) 46(3) -18(2) 26(2) -20(3)

PAGE 239

224 Table A-50. Hydrogen coordinates ( x 104) and isotropic displacement parameters (2x 103) for 24. H12B 11475 8494 10055 70 ________________________________________________________________________ x y z U(eq) ________________________________________________________________________ H1A 2940 9877 2543 51 H2A 2048 8513 2188 135 H2B 1579 9364 2476 135 H2C 2044 8504 3129 135 H3A 3576 10457 3952 126 H3B 3003 9721 4234 126 H3C 2528 10569 3571 126 H4A 4488 7276 1442 52 H5A 4433 8942 1623 82 H5B 3499 8835 1678 82 H5C 3590 8591 798 82 H6A 3472 6247 1637 115 H6B 2994 6910 806 115 H6C 2898 7150 1685 115 H8A 6141 5838 2894 65 H8B 5688 6515 2068 65 H8C 5138 5660 2242 65 H9A 6592 5929 4166 46 H10A 5502 5259 4559 80 H10B 5675 6078 5271 80 H10C 6421 5297 5387 80 H11A 7238 7413 4736 74 H11B 7498 6639 5496 74 H11C 6751 7420 5376 74 H12A 10622 9646 9630 61 H13A 10089 9820 8152 117 H13B 10840 9119 8122 117 H13C 11102 10138 8595 117 H13D 10597 9798 9697 331

PAGE 240

225 Table A-50-continued H13E 10595 9806 8754 331 H13F 11491 10001 9583 331 H14A 11670 8525 10371 201 H14B 12078 9348 9987 201 H14C 11848 8319 9529 201 H14D 11730 7613 9091 161 H14E 12184 8647 9195 161 H14F 11294 8419 8369 161 H15A 7206 5492 8286 61 H16A 8197 4883 7730 102 H16B 7997 5776 7084 102 H16C 7243 5002 6959 102 H17A 6571 7011 7883 90 H17B 6241 6328 7053 90 H17C 6990 7112 7190 90 H19A 7727 5356 9601 69 H19B 8183 6064 10405 69 H19C 8736 5201 10247 69 H20A 9541 6624 11022 57 H21A 9327 8296 10870 92 H21B 10205 8412 10708 92 H21C 10267 8070 11630 92 H22A 10645 5867 10719 111 H22B 11087 6559 11536 111 H22C 11031 6889 10613 111 ________________________________________________________________________

PAGE 241

LIST OF REFERENCES [1] R. H. Crabtree, The Organometallic Chemistry of the Transition Metals, John Wiley and Sons, New Haven, Connecticut, 2001. [2] G. Marr, B. W. Rockett, The Chemistry of the Metal-Carbon Bond, John Wiley and Sons, Chichester, Chichester, New York, 1982. [3] G. O. Spessard, G. L. Miessler, Organometallic Chemistry, Prentice-Hall, Upper Saddle River, New Jersey, 1997. [4] A. Yamamoto, Organotransition Metal Chemistry, John Wiley and Sons, Chichester, New York, 1986. [5] F. A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry, John Wiley and Sons, Chichester, New York, 1988. [6] F. A. Cotton, Chemical Reviews 1955, 55, 551. [7] J. X. McDermott, J. F. White, G. M. Whitesides, Journal of the American Chemical Society 1976, 98, 6521. [8] G. M. Whitesides, E. R. Stedrons, J. F. Gaasch, Journal of the American Chemical Society 1972, 94, 5258. [9] H. B. Abrahamson, Organometallics 1984, 3, 1379. [10] B. K. Bower, H. G. Tennent, Journal of the American Chemical Society 1972, 94, 2512. [11] D. K. Wilkinson, G. B. Young, J. Chem. Soc., Dalton Trans. 1980, 1879. [12] M. Brookhart, M. J. Green, Journal of Organometallic Chemistry 1983, 395. [13] R. J. Goddard, R. Hoffman, D. J. Eluvanthingal, Journal of the American Chemical Society 1980, 102, 7667. [14] K. B. Wagener, J. M. Boncella, J. G. Nel, Macromolecules 1991, 24, 2649. [15] K. J. Ivin, Ring Opening Polymerizations, Elsevier, New York, 1984. 226

PAGE 242

227 [16] M. F. Jarrod, J. E. Bower, Journal of the American Chemical Society 1988, 110, 6706. [17] A. E. Shilov, G. B. Shul'pin, Activation and Catalytic Reactions of Saturated Hydrocarbons in the Presence of Metal Complexes, Kluwer Academic Publishers, Dordrecht, 2000. [18] A. H. Janowicz, R. G. Bergman, Journal of the American Chemical Society 1982, 104, 352. [19] C. Zheng, J. E. Apeloig, J. Hoffman, Journal of Physical Chemistry 1988, 92, 749. [20] N. F. Goldshle, M. B. Tyabin, A. E. Shilov, A. A. Shteinma, Russian Journal of Physical Chemistry 1969, 43, 1222. [21] A. H. Janowicz, R. G. Bergman, Journal of the American Chemical Society 1982, 104, 352. [22] M. J. Burk, R. H. Crabtree, Journal of the American Chemical Society 1897, 109, 8025. [23] D. Adams, T. L. Alford, N. D. Theodore, S. W. Russell, R. L. Spreitzer, J. W. Mayer, Thin Solid Films 1995, 262, 199. [24] C. F. H. Tipper, Journal of the Chemical Society 1955, 2045. [25] D. D. VanderLende, Ph.D. Dissertation, University of Florida 1994. [26] S. Y. S. Wang, K. A. Abboud, J. M. Boncella, Journal of the American Chemical Society 1997, 119, 11990. [27] S. Y. S. Wang, D. D. VanderLende, R. L. Huff, W. M. Vaughn, K. A. Abboud, J. M. Boncella, Journal of Organometallic Chemistry 1997, 530, 59. [28] W. A. Nugent, J. M. Mayer, Metal-Ligand Multiple Bonds, Wiley, New York, 1988. [29] A. A. Eagle, C. G. Young, E. R. Tiekink., Organometallics 1992, 11, 2934. [30] K. A. Hall, J. Mayer, Journal of the American Chemical Society 1992, 114, 10402. [31] K. E. Meyer, P. J. Walsh, R. G. Bergman, Journal of the American Chemical Society 1995, 117, 974. [32] J. R. Hagadorn, J. Arnold, Organometallics 1994, 13, 4670.

PAGE 243

228 [33] C. C. Cummins, R. R. Schrock, W. M. Davis, Inorganic Chemistry 1994, 33, 1448. [34] G. Proulx, R. G. Bergman, Journal of the American Chemical Society 1994, 116, 7953. [35] T. C. Cameron, K. A. Abboud, J. M. Boncella, Chemical Communications 2001, 1224. [36] R. C. Mills, S. S. Wang, K. A. Abboud, J. M. Boncella, Inorganic Chemistry 2001, 40, 5077. [37] R. C. Mills, K. A. Abboud, J. M. Boncella, Chemical Communications 2001, 16, 1506. [38] E. Kolawa, P. J. Pokela, J. S. Reid, J. S. Chen, M. A. Nicolet, Applied Surface Science 1991, 53, 373. [39] J. Baumann, C. Kaufmann, M. Rennau, T. Werner, T. Gessner, Microelectronic Engineering 1997, 33, 283. [40] M. A. Nicolet, Thin Solid Films 1978, 52, 415. [41] M. A. Nicolet, M. Bartur, Journal of Vacuum Science & Technology 1981, 19, 786. [42] B. M. Ekstrom, S. Lee, N. Magtoto, J. A. Kelber, Applied Surface Science 2001, 171, 275. [43] N. Shamir, J. C. Lin, R. Gomer, Surface Science 1989, 214, 74. [44] C. H. Winter, Aldrichimica Acta 2000, 33, 3. [45] A. R. Ivanova, C. J. Galewski, C. A. Sans, T. E. Seidel, S. Grunow, K. Kumar, A. E. Kaloyeros, Mater. Res. Soc. Symp. Proc. 1999, 564, 321. [46] C. Galewski, T. Seidel, European Semiconductor 1999, 31. [47] M. J. Shaw, S. Grunow, D. J. Duquette, Journal of Electronic Materials 2001, 30, 1602. [48] K. Iguchi, M. Urai, C. Shiga, M. Koba, in Jpn. Kokai Tokkyo Koho, (Sharp Corp., Japan). JP, 1989, p. 4 pp. [49] C. W. Lee, Y. T. Kim, C. Lee, J. Y. Lee, S. K. Min, Y. W. Park, Journal of Vacuum Science & Technology B 1994, 12, 69. [50] S. D. Marcus, R. F. Foster, Thin Solid Films 1993, 236, 330.

PAGE 244

229 [51] M. Nagai, K. Kishida, Applied Surface Science 1993, 70-1, 759. [52] M. Nagai, K. Kishida, S. Omi, Nippon Kagaku Kaishi 1994, 907. [53] M. Nagai, K. Kishida, S. Omi, Nippon Kagaku Kaishi 1996, 368. [54] T. Nakajima, K. Watanabe, N. Watanabe, Journal of the Electrochemical Society 1987, 134, 3175. [55] L. Volpe, M. Boudart, Journal of Solid State Chemistry 1985, 59, 332. [56] S. Ganguli, L. Chen, T. Levine, B. Zheng, M. Chang, Journal of Vacuum Science & Technology B 2000, 18, 237. [57] Y. T. Kim, S. K. Min, Applied Physics Letters 1991, 59, 929. [58] A. L. Currie, K. E. Howard, Journal of Materials Science 1992, 27, 2739. [59] J. E. Kelsey, C. Goldberg, G. Nuesca, G. Peterson, A. E. Kaloyeros, B. Arkles, Journal of Vacuum Science & Technology B 1999, 17, 1101. [60] R. G. Gordon, S. Barry, R. N. R. Broomhall-Dillard, V. A. Wagner, Y. Wang, Mater. Res. Soc. Symp. Proc. 2000, 612, D9.12/1. [61] H. T. Chiu, S. H. Chuang, Journal of Materials Research 1993, 8, 1353. [62] M. H. Tsai, S. C. Sun, H. T. Chiu, S. H. Chuang, Applied Physics Letters 1996, 68, 1412. [63] E. L. Crane, H.-T. Chiu, R. G. Nuzzo, Journal of Physical Chemistry B 2001, 105, 3549. [64] S. W. Johnston, C. G. Ortiz, O. J. Bchir, Y. Zhang, L. McElwee-White, T. J. Anderson, in Chemical Vapor Deposition: CVD XV (15th), Vol. 2000-13 (Eds.: M. D. Allendorf, T. M. Besmann), Electrochemical Society, Pennington, NJ, 2000, pp. 268. [65] O. J. Bchir, S. W. Johnston, A. C. Cuadra, T. J. Anderson, C. G. Ortiz, B. C. Brooks, D. H. Powell, L. McElwee-White, Journal of Crystal Growth 2003, 249, 262. [66] T. S. Lewkebandara, P. H. Sheridan, M. J. Heeg, A. L. Rheingold, C. H. Winter, Inorganic Chemistry 1994, 33, 5879. [67] L. V. Interrante, G. A. Sigel, M. Garbauskas, C. Hejna, G. A. Slack, Inorganic Chemistry 1989, 28, 252.

PAGE 245

230 [68] O. J. Bchir, K. M. Green, M. S. Hlad, T. J. Anderson, B. C. Brooks, C. B. Wilder, D. H. Powell, L. McElwee-White, Journal of Organometallic Chemistry 2003, 684, 338. [69] A. J. Nielson, J. M. Waters, Australian Journal of Chemistry 1983, 36, 243. [70] S. F. Pedersen, R. R. Schrock, Journal of the American Chemical Society 1982, 104, 7483. [71] W. D. Crow, C. Wentrup, Tetrahedron Letters 1967, 4379. [72] S. W. Benson, Thermochemical Kinetics, 2nd ed., Wiley-Interscience, New York, 1976. [73] C. J. M. Fletcher, G. K. Rollefson, J. Am. Chem. Soc. 1936, 58, 2129. [74] J. F. Foucaut, R. Martin, International Journal of Chemical Kinetics 1979, 11, 789. [75] S. Ingrey, M. B. Johnson, R. W. Streater, G. I. Sproule, Journal of Vacuum Science & Technology 1982, 20, 968. [76] K. C. Park, K. B. Kim, I. Raaijmakers, K. Ngan, Journal of Applied Physics 1996, 80, 5674. [77] S. J. Wang, H. Y. Tsai, S. C. Sun, Journal of the Electrochemical Society 2001, 148, C563. [78] M. Eizenberg, K. Littau, S. Ghanayem, A. Mak, Y. Maeda, M. Chang, A. K. Sinha, Applied Physics Letters 1994, 65, 2416. [79] D. R. Lide, JANAF Thermochemical Tables, 3rd ed., American Institute of Physics, New York, 1985. [80] Y. M. Lakhtin, Y. D. Kogan, T. M. Borovskaya, G. A. Solodkin, Russian Metallurgy 1979, 158. [81] P. Gustafson, Materials Science and Technology 1986, 2, 653. [82] P. J. Pokela, C. K. Kwok, E. Kolawa, S. Raud, M. A. Nicolet, Appl. Surf. Sci 1991, 53, 364. [83] S. H. Kim, D. S. Chung, K. C. Park, K. B. Kim, S. H. Min, Journal of the Electrochemical Society 1999, 146, 1455. [84] K. M. Chang, I. C. Deng, T. H. Yeh, K. D. Lain, C. M. Fu, Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 1999, 38, 1343.

PAGE 246

231 [85] P. J. Bailey, S. Pace, Coordination Chemistry Reviews 2001, 214, 91. [86] J. Barker, M. Kilner, Coordination Chemistry Reviews 1994, 133, 219. [87] G. Chandra, A. D. Jenkins, M. Lappert, R. C. Srivastava, Journal of the Chemical Society 1970, 2550. [88] F. A. Cotton, T. Ren, Journal of the American Chemical Society 1992, 114, 2237. [89] S. Dagorne, T. A. Guzei, C. M. P., R. F. Jordan, Journal of the American Chemical Society 2000, 122, 274. [90] D. J. Dick, R. Duchateau, J. J. H. Edema, S. Gambarotta, Inorganic Chemistry 1993, 32, 159. [91] R. Duchateau, C. T. Wee, A. Meetsma, J. H. Teuben, Journal of the American Chemical Society 1993, 115, 4931. [92] R. Duchateau, C. T. Wee, J. H. Teuben, Organometallics 1996, 15, 2291. [93] E. A. C. Brussee, A. Meetsma, B. Hessen, J. H. Teuben, Organometallics 1998, 17, 4090. [94] M. P. Coles, R. F. Jordan, Journal of the American Chemical Society 1997, 119, 8125. [95] M. P. Coles, D. C. Swenson, R. F. Jordan, Organometallics 1998, 17, 4042. [96] J. M. Decker, S. J. Geib, T. Y. Meyer, Organometallics 1999, 18, 4417. [97] H. Kondo, Y. Yamaguchi, H. Nagashima, Chemical Communications 2000, 1075. [98] H. Kondo, Y. Yamaguchi, H. Nagashime, Journal of the American Chemical Society 2001, 123, 500. [99] L. A. Koterwas, J. C. Fettinger, L. R. Sita, Organometallics 1999, 18, 4183. [100] G. Talarico, P. H. M. Budzelaar, Organometallics 2000, 19, 5691. [101] Y. Yamaguchi, H. Nagashima, Organometallics 2000, 19, 725. [102] J. Zhang, R. Ruan, Z. Shao, L. Weng, X. Zhou, Organometallics 2002, 21, 1420. [103] F. A. Cotton, P. Huang, C. A. Murrillo, D. J. Timmons, Inorganic Chemistry 2002, 5, 501. [104] P. Legzdins, S. A. Lumb, J. Victor G. Young, Organometallics 1998, 17, 854.

PAGE 247

232 [105] Y. Yamaguchi, K. Ogata, K. Kobayashi, T. Ito, Inorganica Chimica Acta 2004, 357, 2657. [106] Y. Yamaguchi, K. Ogata, K. Kobayashi, T. Ito, Dalton 2004, 23, 3982. [107] O. J. Bchir, K. M. Green, M. S. Hlad, T. J. Anderson, B. C. Brooks, L. McElwee-White, Journal of Crystal Growth 2004, 261, 280. [108] O. J. Bchir, K. M. Green, M. S. Hlad, T. J. Anderson, B. C. Brooks, C. B. Wilder, D. H. Powell, L. McElwee-White, Journal of Organometallic Chemistry 2003, 684, 338. [109] O. J. Bchir, S. W. Johnston, A. C. Cuadra, T. J. Anderson, C. G. Ortiz, B. C. Brooks, D. H. Powell, L. McElwee-White, Journal of Crystal Growth 2003, 249, 262. [110] O. J. Bchir, K. C. Kim, T. J. Anderson, V. Craciun, B. C. Brooks, L. McElwee-White, Journal of the Electrochemical Society 2004, 151, G697. [111] C. J. Carmalt, A. C. Newport, S. A. O'neill, I. P. Parkin, A. J. P. White, D. J. Williams, Inorganic Chemistry 2005, 44, 615. [112] O. J. Bchir, K. M. Green, H. M. Ajmera, E. A. Zapp, T. J. Anderson, B. C. Brooks, L. L. Reitfort, D. H. Powell, K. A. Abboud, L. McElwee-White, Journal of the American Chemical Society 2005, 127, 7825. [113] O. J. Bchir, S. W. Johnston, A. C. Cuadra, T. J. Anderson, C. G. Ortiz, B. C. Brooks, D. H. Powell, L. McElwee-White, Journal of Crystal Growth 2003, 249, 262. [114] W. A. Nugent, J. Mayer, Metal-Ligand Multiple Bonds, John Wiley and Sons, New York, 1988. [115] A. G. Orpen, L. Brammer, F. H. Allen, O. Kennard, D. G. Watson, R. Taylor, Journal of the Chemical Society, Dalton Transactions 1989, S1. [116] A. P. Duncan, S. M. Mullins, J. Arnold, R. G. Bergman, Organometallics 2001, 20, 1808.

PAGE 248

BIOGRAPHICAL SKETCH Corey B. Wilder was born on March 9, 1977, in Drew, Mississippi. Even at a very early age, he showed an interest in science. He was accepted into Tougaloo College in 1995. During his undergraduate tenure, he became a member Phi Beta Sigma fraternity. In 1999 he graduated with a B.S. degree in chemistry. He began his graduate work at the University of Florida in 1999 and joined the research group of Dr. James Boncella, where he spent three years exploring the world of organometallic chemistry. In 2002, he joined the research group of Dr. Lisa McElwee-White where he continued to learn and grow as a chemist. 233


Permanent Link: http://ufdc.ufl.edu/UFE0011630/00001

Material Information

Title: Study of Tungsten(IV) and Tungsten(VI) Imido Complexes: Synthesis, Structural Analysis, and Reactivity
Physical Description: Mixed Material
Copyright Date: 2008

Record Information

Source Institution: University of Florida
Holding Location: University of Florida
Rights Management: All rights reserved by the source institution and holding location.
System ID: UFE0011630:00001

Permanent Link: http://ufdc.ufl.edu/UFE0011630/00001

Material Information

Title: Study of Tungsten(IV) and Tungsten(VI) Imido Complexes: Synthesis, Structural Analysis, and Reactivity
Physical Description: Mixed Material
Copyright Date: 2008

Record Information

Source Institution: University of Florida
Holding Location: University of Florida
Rights Management: All rights reserved by the source institution and holding location.
System ID: UFE0011630:00001


This item has the following downloads:


Full Text












STUDY OF TUNGSTEN(IV) AND TUNGSTEN(VI) IMIDO COMPLEXES:
SYNTHESIS, STRUCTURAL ANALYSIS AND REACTIVITY














By

COREY B. WILDER


A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA


2005

































This document is dedicated to traditional and ongoing strength and pride of the Smith and
Wilder families of Carthage, Mississippi. May the completion of this dissertation honor
my ancestors and inspire my legacies.















ACKNOWLEDGMENTS

First, I would like to thank God for providing me with numerous blessings along

life's pathway that made it possible for me to be in a position to write this thesis.

Without Him, none of this would have been possible.

I wish to thank to my first advisor, Dr. James Boncella, for his guidance and

patience. His uncanny abilities to interpret spectra and suggest just the right experiment

to advance a project are priceless. It has been a pleasure to work with someone who can

be both personal and professional. I would also like to thank all of the members of the

Boncella research group of both past and present. Dr. Ryan Mills will always hold a

special place in my memory for training me to perform air-sensitive chemistry and

showing great patience. I would also like to thank Elon Ison for providing friendship,

conversation, and good music to listen to while in the lab.

I wish to extend very special thanks to my current advisor, Dr. Lisa McElwee-

White. She allowed me to join her research team under very non-traditional

circumstances and has been an excellent advisor from day one. Her door is always open,

and she is very committed to aiding her students. It is truly a luxury to work with a

willing, accessible mentor. I also would like to thank my co-workers in the McElwee-

White research group. I would like to thank Corey Anthony and Daniel Serra for being

like brothers and Dr. Chatu Sirimanne and Laurel Reitfort for all they have done.

I also owe great appreciation to Dr. Khalil Abboud for going above and beyond the

call of duty to help me secure all of the crystallographic data and structures contained in









this dissertation. His efficiency is remarkable, and he never grew impatient regardless of

the countless useless samples I asked him to inspect. I would also like to thank Dr. David

Powell and Maria Dancel for their efforts in obtaining the mass spectrometry data that is

contained in this work.

I would now like to thank my loved ones who have been my guidance and

inspiration for my entire life. First, I would like to thank the members of my immediate

family. I would like to thank my parents, Robert and Gloria Wilder, for providing me

with love, discipline and morals. I would like to thank my brother, Robert "Brad"

Wilder, Jr., for being a good brother and providing an excellent example of how a young

man should conduct himself. I also would like to thank my extended family for always

providing encouragement and never letting me feel the need for love.
















TABLE OF CONTENTS

page

A C K N O W L E D G M E N T S ......... .................................................................................... iii

L IST O F T A B L E S ......... ...... ................................. .... ................ ... viii

LIST OF FIGURE S ......... ..................................... ........... xii

CHAPTER

1 INTRODUCTION AND BACKGROUND ..................................... ...............

Synthesis of Transition M etal Alkyl Complexes .............. .. ... .............. ...................2
Decomposition of Transition M etal Alkyl Complexes...................... .....................4
P-Hydrogen Elimination ............... .......................................5
P-Hydrogen Abstraction ........... .........................................8
c-Hydrogen Abstraction....................................................... 8
Transition M etal-M ediated Bond A ctivation..................................... .....................9
C-H Oxidative A addition ................. ........ .............. ............................. 13
C -C O xidative A addition ............................................... ............ ............... 14

2 SYNTHESIS, STRUCTURE, AND REACTIVITY OF DIALKYL
COMPLEXES ........................ ......................... 17

Synthesis of W (VI) Dialkyl Complexes .............. .............................................. 17
Structure Study for W(VI) Dialkyl Complexes.................................... ...................20
Tungsten M ediated C-N Bond Activation.............................. ...................... 23

3 SYNTHESIS, CHARACTERIZATION, AND STRUCTURE OF W(VI) BIS-
ALK OXY COM PLEXES...................... .... ................... ................... ............... 28

Synthesis of bis-Alkoxy Complexes....... ............................... .................... 28
Characterization of bis-Alkoxy Complexes............... ..... ............... 31
Mechanistic Study of the Formation of bis-Alkoxy Complexes .............................33

4 METAL-ORGANIC CHEMICAL VAPOR DEPOSITION OF TUNGSTEN
NITRIDE FROM TUNGSTEN IMIDO PRECURSORS .......................................39

M ass Spectrom etry Investigations ........................................ ......................... 43
V olatilization of the Precursor........................................................ ................44









F ilm S tru ctu re ....................................................................................................4 7
Film Com position .............. ...... .. ........ .................. ........... .. .... .............. 49
Comparison of Films Grown from 12a' and 13a' .............................................53

5 SYNTHESIS AND CHARACTERIZATION OF W(VI) GUANIDINATE AND
AMIDINATE COMPLEXES ...............................................................................58

Synthesis of W(VI) Guanidate and Amidinate Complexes............... .................. 58
N M R C characterization .. ........................................................... .............................62
M ass Spectrom etry Investigations................................... .............................. ....... 63
X -ray Crystallography Study .......................................................... ............... 65
Experim ental Procedures ............................................................. ............... .79
G general P rocedures........ ........................................................ .. .... ........ 79
S y n th e se s ........................................ ..................................................................... 8 0
W(NPh)(Me)2(1,8-(Me3SiN)2-C10H6) (2)...................................................... 80
W(NPh)(CH2C6H5)2(1,8-(Me3SiN)2-CloH6) (3) ................................................ 80
W(NPh)(CH2CH2C6H5)2(1,8-(Me3SiN)2-C 10H6) (4) .................. ..................... 81
W [(N SiM e3)C oH 6](N Ph)PM e3 (5). .................................................................... 82
W(NPh)(o-(Me3 SiN)2C6H4)(OCH2C6H5)(OCH(2-C5H4N)(C6H5) (8) ................82
W(NPh)(o-(Me3 SiN) 2C6H4)(OCH2(p-C6H4CH3)(OCH(2-CsH4N)( p-
C 6H 4C H 3) (9 ) ............................................... ................... ................ .. 8 3
W(NPh)(o-(Me3SiN)2C6H4(C5D5N)2 (7-dio) .......................................................84
W(NPh)(o-(Me3SiN)2C6H4)(OCHD(p-C6H4CH3)(OCH(2-C5D4N)(p-
C 6H 4C H 3) (9 -d 5) .................................................................................................. 8 4
W(NPh)(o-(Me3 SiN)2C6H4)(OCH2(p-C6H4OCH3)(OCH(2-C5H4N)( p-
C 6H 4O C H 3) (1 0 ) ............................................................................................... .. 8 4
W(NPh)(o-(Me3 SiN)2(OCH2(2-C4H3 S)(OCH(2-C5H4N)(2-C4H3 S) (11) ...........85
W (N P h)(C 9H 2 N 3)C 3 (16) .................................................................................86
W (N (C6H n))(C9H 20 N 3)C1 3 (17)................................................... ................. 86
W(NCH(CH3)2)(C9H2oN3)C13 (18). ......................................... ...............87
W (N C6H 5)(C oH 2N 2)C1 3 (19). ..................................................... ............... 88
W(NCH(CH3)2)(Co0H21N2)C 3 (20). ...................................... ............... 89
W (N C6H 1)(C o0H 2iN 2)C1 3 (21). .................... ............................................. 89
W(NCH(CH3)2)(C8H21N2Si2)C13 (22)....................................... ........................90
W(N(C6H5)(C8H21N2)C13 (23)............................ ......................................... 91
W(NCH(CH3)2)(C8H21N2)C13 (24)..................................... ........ ...........91
W(NC6H )(C8H21N2)C13 (25)............................ .......................................... 92
C rystallographic Studies................................................... ........................ 93
X-ray Data Collection and Structure Refinement for Compounds 2 and 3.........93
X-ray Data Collection and Structure Refinement for Compound 5 ..................93
X-ray Data Collection and Structure Refinement for Compound 8....................94
X-ray Data Collection and Structure Refinement for Compound 16.................95
X-ray Data Collection and Structure Refinement for Compound 17.................95
X-ray Data Collection and Structure Refinement for Compound 18.................96
X-ray Data Collection and Structure Refinement for Compound 19.................97
X-ray Data Collection and Structure Refinement for Compound 22 .................97
X-ray Data Collection and Structure Refinement for Compound 24 .................98









APPENDIX


TABLES OF CRYSTALLOGRAPHIC DATA .............................................................100

Crystallographic Data for W(NPh)(Me)2(1,8-(Me3SiN)2-C10H6), (2)....................100
Crystallographic Data for W(NPh)(CH2C6H5)2(1,8-(Me3SiN)2-CioH6), (3). ...........112
Crystallographic Data for W-(NSiMe3)(CioH6(NSiMe3))(NPh)(PMe3), (5)............122
Crystallographic Data for W(NPh)(o-(Me3SiN)2C6H4)(OCH2(p-
C6H4CH3)(OCH(2-C5H4N)(p-C6H4CH3), (9) ............................... ..................... 130
Crystallographic Data for W(NPh)(C9H20N3)C13, (16).....................................146
Crystallographic Data for W(N(C6Hni))(C9H20N3)C13 (17)................................ 153
Crystallographic Data for W(NCH(CH3)2)(C9H20N3)Cl3 (18)................................165
Crystallographic Data for W(NC6H5)(Co1H21N2)C13 (19).......................................175
Crystallographic Data for W(NCH(CH3)2)(C8H21N2Si2)C13 (22). .......................... 187
Crystallographic Data for W(NCH(CH3)2)(C8H21N2)C13 (24) .............. ...............208

LIST O F R EFEREN CE S .......................................................................... .............226

BIOGRAPH ICAL SKETCH ...................................................... 233









LIST OF TABLES


Table page

1.1. Synthetic methods for preparing transition metal alkyl complexes............................4

1.2. Transition metal alkyl complexes lacking P-hydrogens ............................................6

1.3. Characteristics of some alkanes and other hydrocarbons .......................................10

2.1. Summary of selected bond lengths (A) and angles (o) for 2......................................23

2.2. Summary of selected bond lengths (A) and angles (o) for 3......................................23

2.3. Selected bond lengths (A) and angles (o) for 5. ................................ ............... 25

3.1. Selected bond lengths (A) and angles (o) for 10. ................... ............. ...... ......... 32

4.1. M ass spectrometry data for 13a and 12a. ..................................... ..................46

5.1. Mass spectrometry data for tungsten guanidinate and amidinate complexes............66

5.2. Selected bond lengths (A) and angles () for compound 16.....................................70

5.3. Selected bond lengths (A) and angles () for compound 17 ..............................70

5.4. Selected bond lengths (A) and angles () for compound 18 ..............................70

5.5. Selected bond lengths (A) and angles () for compound 19 ..............................72

5.6. Selected bond lengths (A) and angles () for compound 22.................................75

5.7. Selected bond lengths (A) and angles () for compound 24.....................................75

A-i: Crystal data and structure refinement for 2. .................................... ..........100

A-2: Atomic coordinates (x 104) and equivalent isotropic displacement parameters
(A 2x 103) for 2 .................................... ................ ......... .. ............ 101

A-3: Bond lengths [A] and angles [] for 2. .................................... ......................102

A-4: Anisotropic displacement parameters (A2x 103) for 2. ......................................108

A-5. Hydrogen coordinates (x 104) and isotropic displacement parameters for 2..........110

A-6: Crystal data and structure refinem ent for 3. ..........................................................112

A-7. Atomic coordinates (x 104) and equivalent isotropic displacement parameters
( 2x 103) for 3 ...................................................................... ....... ....... 113









A-8. Bond lengths [A] and angles [] for 3.............. ............................................114

A-9. Anisotropic displacement parameters (A2x 103) for 3 .........................................118

A-10. Hydrogen coordinates (x 104) and isotropic displacement parameters for 3.......120

A-11: Crystal data and structure refinement for 5. ................................ ...............122

A-12. Atomic coordinates (x 104) and equivalent isotropic displacement parameters
(A 2x 103) for 5 .................................... ................ ....... .. ............ 123

A -13. B ond lengths [A ] and angles [] for 5....................................... ......................124

A-14. Anisotropic displacement parameters (A2x 103) for 5........................................127

A-15: Hydrogen coordinates (x 104) for 5. ...................................... ............... 128

A-16. Crystal data and structure refinement for 9. .....................................................130

A-17. Atomic coordinates (x 104) and equivalent isotropic displacement parameters
(A 2x 103) for 9.................................................................... .. .............. 131

A -18. B ond lengths [A ] and angles [] for 9....................................... ......................133

A-19. Anisotropic displacement parameters (A2x 103) for 9......................................142

A -20. H ydrogen coordinates (x 104) for 9....................................... ......................143

A-21. Crystal data and structure refinement for 16. ............................................. 146

A-22. Atomic coordinates (x 104) and equivalent isotropic displacement parameters
(A 2x 103) for 16....................... ........ .. ............ .... ...... .......... .. 147

A-23. Bond lengths [A] and angles [] for 16................................... ..................148

A-24. Anisotropic displacement parameters (A2x 103) for 16c...................................151

A-25. Hydrogen coordinates (x 104) for 16. ..................................... ...................152

A-26. Crystal data and structure refinement for 17. ............................................. 153

A-27. Atomic coordinates (x 104) and equivalent isotropic displacement parameters
(A 2x 103) for 17............ ... .................................................................... ... ... 155

A-28. Bond lengths [A] and angles [] for 17................................... ............... ...156









A-29. Anisotropic displacement parameters (A2x 103) for 17....................................162

A-30. Hydrogen coordinates (x 104) for 17. ..................................... ............... ..163

A-31. Crystal data and structure refinement for 18 ................................................ 165

A-32. Atomic coordinates (x 104) and equivalent isotropic displacement parameters
(A 2x 103) for 18....................... ............ .. .......... ...... .......... .. 166

A-33. Bond lengths [A] and angles [] for 18.................................... ...................167

A-34. Anisotropic displacement parameters (A2x 103) for 18..................................172

A-35. Hydrogen coordinates (x 104) for 18. ..................................... ...................173

A-36. Crystal data and structure refinement for 19. ............................................. 175

A-37. Atomic coordinates (x 104) and equivalent isotropic displacement parameters
(A 2x 103) for 19....................... ........ .. ............ .... ...... .......... .. 176

A-38. Bond lengths [A] and angles [] for 19................................... ............... ...178

A-39. Anisotropic displacement parameters (A2x 103) for 19..................................183

A-40. Hydrogen coordinates (x 104) for 19. ..................................... ...................185

A-41. Crystal data and structure refinement for 22. ............................................. 187

A-42. Atomic coordinates (x 104) and equivalent isotropic displacement parameters
(A2x 103) for 22 ....................................... .. .................. ............. 189

A -43. B ond lengths [A ] and angles [] for 22...................................... ......................192

A-44. Anisotropic displacement parameters (A2x 103) for 22.....................................201

A-45. Hydrogen coordinates (x 104) for 22. ........................................ ......................204

A-46. Crystal data and structure refinement for 24............................... ............... 208

A-47. Atomic coordinates (x 104) and equivalent isotropic displacement parameters
(A 2x 103) for 24 ............ .... ...................................................... .. ..... 2 10

A -48. B ond lengths [A ] and angles [] for 24...................................... ......................212

A-49. Anisotropic displacement parameters (A2x 103) for 24.....................................222









A-50. Hydrogen coordinates (x 104) for 24. ..................................... ..................224
















LIST OF FIGURES

Figure p

1.1. Plot of nucleophilic reactivity vs. metal electronegativity in M-C bonds ................3

1.2. Mechanism for P-hydrogen elimination.............................................. ...............6

1.3. Metal alkyl complexes with hindered coplanar M-C-C-H transition states. ..............7

1.4. Titanium complex with an agostic interaction.................................. ...... ............ ...8

1.5. M echanism for P-hydrogen abstraction. ........................................... ............... 8

1.6. M echanism for a-hydrogen abstraction ........................ ...... .............................. 9

1.7. Reactions catalyzed by metal catalysts. ........................... .... ........... ........ 11

1.8. Chemisorption of methane onto a metal surface............................................12

1.9. Mechanism for C-H activation by metal complexes.......................................14

1.10. Catalytic cycle incorporating C-H oxidative addition.. ........................................15

1.11. C-C bond activation of strained alkane........... ................................ ............... 16

2.1. Structure of tungsten dichloride starting materials. ........................ ...............18

2.2. Synthesis of W(VI) dialkyl complexes ................... ............ ..... ............... 19

2.3. Crystal structure of 2............... .... .................. ....... .. ......21

2.4. Crystal structure of 3............... .... .................. ....... .. ......22

2.5. Proposed mechanism for the formation of 5 ............... .................. .............. 26

2.6. C crystal Structure of 5. ...................... .................... ................... .. ......27

3 .2 C ry stal stru ctu re of 7 ............................................................................. .... 2 9

3.4. 1H N M R spectrum of 10. ................................................ ............................... 34

3.5. Crystal structure of 10................. ................ ..................... ......... 35









3.6. Proposed mechanism for the formation of bis-alkoxy complexes...........................37

3.7. 1H NM R spectrum of deuterated 9....................................... ......................... 38

4.1. Tungsten nitride growth via co-reactant and single-source techniques...................41

4.1. M ass spectra of 13a. ............................................. ................... .. .....45

4.3. Change in XRD pattern with deposition temperature for WNxCy grown from 13a'.48

4.4. AES data for films grown from 12a' and 13a'. ..................................................51

4.5. Variation of film sheet resistance with deposition temperature for films deposited
from 12a' and 13a'. ........................... ..... ............... ...............56

5.1. Resonance forms of guanidinate and amidinate anions ..................... .......... 59

5.2. Possible bis-imido species resulting from fragmentation under CVD conditions.....60

5.3. Tungsten imido complexes used as WNx precursors..............................................60

5.4. Common metal guanidinate and amidinate complex syntheses. ............................61

5.5. General synthesis of guanidinate and amidinate complexes 16-25 .........................62

5.6. Crystal structure of 16 .............. ................. ............. .................. ..... 71

5.7 B ending scheme e of 16 ....................................................................... ..................72

5.8. Crystal structure of 17 .................................................... .......................73

5.9. Crystal structure of 18 .............. ................. ............. .......................74

5.10. C ry stal structure of 19 .................................................................... ... ..................76

5.11. Crystal structure of 22 .................................... ............... .....................77

5.12. Crystal structure of 24........................................................................ 78















Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

STUDY OF TUNGSTEN(IV) AND TUNGSTEN(VI) IMIDO COMPLEXES:
SYNTHESIS, STRUCTURAL ANALYSIS AND REACTIVITY

By

Corey B. Wilder

December, 2005

Chair: Lisa McElwee-White
Major Department: Chemistry

A series of tungsten(VI) imido complexes containing the diamido ligand [1,8-

(Me3Si)2C10H6] have been synthesized with the formulae W(NPh)(1,8-(Me3Si)2C10H6)R2

R = Me (2), CH2Ph (3), CH2CH2Ph (4). These compounds were synthesized by reacting

W(NPh)(1,8-(Me3Si)2C10H6)C12 with two equivalents of the corresponding Grignard

reagent. These compounds have been characterized by 1H and 13C NMR, and X-ray

crystal structures were obtained for 2 and 3. The solid state structures of both compounds

are square pyramidal with the imido ligand occupying the apical position. The reactivity

of these compounds was investigated, and it was found that thermolysis of 4 in the

presence of PMe3 results in a rare C-N single bond cleavage to yield

W[(NSiMe3)CioH6](NPh)PMe3, (5). The compound was characterized by 1H and 13C

NMR and X-ray crystallography. Also, a mechanism is proposed for the formation of 5.

A series of tungsten(VI) bis-alkoxy complexes with the formulae: W(NPh)(o-

(Me2Si)2C6H4)(OCH2R)(OCH(C5H4N)R), R = C6H5 (6), C6H4CH3 (7), C6H4OCH3 (8),









C4H3S (9) have been synthesized by reacting the W(IV) complex W(NPh)(o-

(Me2Si)2C6H4)(NC5H4)2 with two equivalents of the corresponding aldehyde. These

compounds have been characterized by 1H and 13C NMR, and an X-ray crystal structure

of 8 was obtained. The mechanism for the formation of 6-9 was probed by conducting

deuterium labeling experiments and a mechanism is proposed.

Tungsten nitride thin films were produced from the single-source precursors

W(N'Pr)C14(L) and W(NPh)C14(L) (L = NCPh, NCMe, OEt2). Mass spectrometry was

used to probe fragmentation tendencies of the precursors. X-ray diffraction data were

used to analyze film crystallinity and Auger electron spectroscopy was used to determine

film composition. The effect of deposition temperature on film properties and

composition was also investigated. The data made it possible to make correlations

between precursor fragmentation tendencies and subsequent film properties.

A series of tungsten guanidinate and amidinate complexes were synthesized to

serve as precursors for the metal-organic chemical vapor deposition of tungsten nitride.

Compounds were characterized by 1H and 13C NMR. In addition, mass spectrometry was

used for characterization as well as to give insight into precursor fragmentation

tendencies. Crystallography experiments were also conducted to investigate the bonding

motifs present in the series of compounds.














CHAPTER 1
INTRODUCTION AND BACKGROUND


The field of organometallic chemistry lies at the interface of classical organic and

inorganic chemistry. Organometallic chemistry is a subfield of coordination chemistry in

which the complexes possess direct metal-carbon or metal-hydrogen bonds.[]l Research

in this field has provided a great number of synthetic methods for organic chemistry. In

addition, numerous industrial processes have been developed and subsequently optimized

that involve transition metal based catalysts for the large-scale production of various

chemicals and materials. Modeling studies involving transition metal complexes have

provided a great deal of insight about the active sites of metalloenzymes. In addition,

organometallic ideas have been useful in interpreting the activity of metal surfaces and

colloids. Indeed, research in this field has provided the scientific community with a

wealth of valuable knowledge.[15]

At the very core of organometallic chemistry, along with other concepts, one will

find the synthesis and reactivity of transition metal alkyl complexes and bond activation.

The field itself being defined by the metal-carbon bond, it is not surprising that metal

alkyl complexes are so widely studied. Frankland with his discovery of ZnEt2 in 1849

laid the foundation for the tremendous body of research that has since been done along

these lines. Bond activation (carbon-carbon, carbon-hydrogen, carbon-nitrogen, etc.)

achieved by transition metal complexes is invaluable providing numerous synthetic

routes to various useful products. This chapter will provide background information









concerning transition metal alkyl complexes and transition metal mediated bond

activation.

Synthesis of Transition Metal Alkyl Complexes

In a very basic sense, one can think of a metal alkyl as the result of combining an

alkyl anion with a metal cation. The amount of stability achieved by this union is highly

dependent on the metal in question. As one examines the metals present in the periodic

table, it is noted that the electronegativity increases as one goes from left to right in a

given period as well as descending in a given group. As a result of this trend, the nature

of the metal-carbon bond is altered in nature as the metal is changed. Consider the

compounds NaCH3 and Mg(CH3)2. The bonding in the former is essentially ionic while

the bonding in the latter is classified as polar covalent. The polar covalent materials

oxidize readily in air and also hydrolyze in the presence of moisture, even with traces of

humidity, to form M-OH and release RH. For this reason, care must be taken to ensure

that these materials are stored in an environment free from both moisture and air. The

alkyl complexes of the later transition metals show a greater stability with respect to

moisture and air oxidation due to the essentially covalent nature of the M-C bond

resulting from the increased electronegativity of the metal. The Hg-C bond, for example,

is so robust that the [Hg-Me] ion is stable in aqueous sulfuric acid under an air

atmosphere. This trend can be observed in pictorial form in Figure 1.1, which plots

nucleophilic reactivity vs. metal electronegativity. [1]










Nucleophilic
reactivity
M-CH3





M-C6H5



M-CCR



Na Mg Ti Cu Pt Au
1 2
Electronegativity -*


Figure 1.1. Plot of nucleophilic reactivity vs. metal electronegativity in M-C bonds.
Figure reproduced from ref. 1.

Also evident from the graph is the fact that the nature of the hybridization of the carbon

of the M-C bond is also a factor determining bond strength. This increasing stability is

attributed to the increase of the s character of the orbital housing the lone pair on the

carbon atom. As the s character increases, the lone pair is more stabilized. This results in

a decrease in reactivity.

The most common route used to synthesize transition metal alkyl complexes involves

alkyl transfer reagents such as Grignard reagents and alkyl lithium reagents. These

reagents are primarily a source of carbanion which performs nucleophilic attack on the

metal center. There are several other synthetic routes to yield metal alkyl complexes,

some of which are outlined in Table 1.1. With the numerous synthetic methods available,

the number and variety of transition metal alkyl complexes attainable is virtually

limitless.









Table 1.1. Synthetic methods for preparing transition metal alkyl complexes.
Alkylating reagent M-X + M'-R M-R + M'-X

Electrophilic attack

of the metal center (LnM)- + R-X LnM-R + X-

Oxidative coupling

of alkenes and M + C=C M

alkynes

Oxidative addition M + R-H R-M-H

Insertion M-H + C= C

M---R
I I
M-R + R'-H M-R' + R-H
o-Bond Metathesis R'- -H

NHR

1,2-Addition LnM=NR + R'-H LnM
1,2-Addition
R'

Cyclometallation L M L


C-H -C-M-H




Decomposition of Transition Metal Alkyl Complexes

Following the discovery of ZnEt2, a considerable effort was focused on synthesizing

other transition metal alkyl complexes. Much of this effort, however, resulted only in the

synthesis of low-valent metal species and organic decomposition products.[6] These

findings were a consequence of numerous pathways by which transition metal alkyl

complexes decompose. Identifying and understanding these pathways is just as

important as being familiar with methods used to synthesize these types of complexes. In









addition to using the knowledge of these decomposition pathways to synthesize stable

transition metal alkyl complexes, one can take advantage of these pathways to

incorporate them into a synthetic method. This can be achieved by more or less

"engineering" an alkyl complex that will strategically decompose into the desired

product. A good understanding of the decomposition pathways of transition metal alkyl

complexes is necessary if one desires either to avoid or employ them.

P-Hydrogen Elimination

One cannot speak about transition metal alkyl complexes without discussing P-

hydrogen elimination. This form of elimination is considered to be the major

decomposition pathway for alkyl complexes.[7] In order for P-hydrogen elimination to

take place, there are some criteria that must first be met. First, the P-carbon of the alkyl

substituent must bear a hydrogen atom. Secondly, the nature of the alkyl chain and the

steric environment around the metal center must be able to accommodate a roughly

coplanar M-C-C-H arrangement.[8s The final requirement is that there is an empty orbital

on the metal which can accept the pair of electrons that form the P-carbon-hydrogen bond

and will ultimately constitute the metal-hydride bond. The mechanism by which P-

hydrogen elimination takes place is illustrated in Figure 1.2. The box in the diagram

represents an empty coordination site on the metal center. The coordinated olefin may or

may not stay bound to the metal as shown in the second step of the mechanism.

Having identified P-hydrogen elimination as the major decomposition pathway of

transition metal alkyl complexes and noted the criteria necessary for its occurrence, it is

now important to discuss measures that one can take in order to synthesize transition

metal alkyl complexes that will be stable with respect to P-hydrogen elimination. One of

the more obvious ways to circumvent this form of decomposition is to use alkyl









substituents that do not bear P-hydrogens. Examples of some transition metal alkyl

complexes lacking P-hydrogens are shown in Table 1.2.

O/ /H
LnM H O- LnM LnM-H + CH
HC\ CH CH2
H2C-CH2 H2C,
H2^


2=CH2


Figure 1.2. Mechanism for P-hydrogen elimination.

Table 1.2. Transition metal alkvl complexes lacking


As mentioned earlier, in order for P-hydrogen elimination to occur, the M-C-C-H

fragment must be able to form a syn-coplanar arrangement in the transition state. With

this in mind, one can prepare stable transition metal alkyl complexes by selecting alkyl

substituents that would have difficulty forming the syn-coplanar transition state. This can

be achieved by employing bridgehead alkyl groups such as norbornyl and adamantyl

groups.[9-11] P-Hydrogen elimination from a compound of this nature would result in a

very unfavorable situation, unsaturation at a bridgehead carbon (Bredt's rule). In

addition to bridgehead alkyls, one can hinder the formation of the coplanar intermediate

by forming metallacycles. The rigidity of the metallacycle itself hinders the formation of

the transition state that would accommodate P-hydrogen elimination. In Figure 1.3, there

are pictorial representations of the types of stable compounds discussed in this section.

One can also design complexes that are electronically saturated in order to

synthesize stable transition metal alkyl complexes. Recall that the metal center must

have a vacant orbital that can accept a pair of electrons in order for P-hydrogen













M LnM H
M R


1-norbomyl 1-adamantyl Metallacycle

Figure 1.3. Metal alkyl complexes with hindered coplanar M-C-C-H transition states.

elimination to be possible. When the transition metal complex is already electronically

saturated (18 electrons), P-hydrogen elimination would have to proceed through an

unfavorable 20-electron intermediate. There are cases where P-hydrogen elimination has

been observed for 18 electron complexes, but in these instances, there is evidence that

there is prior ligand dissociation in these complexes.

There is one more type of transition metal alkyl complex that is stable towards P-

hydrogen elimination that will be discussed here. These are alkyl complexes of some do

metal centers. In order for the P-hydrogen to be transferred to the metal center, the metal

must be sufficiently o-acidic and 7t-basic. In the case of some do complexes, the metal

center is too electron deficient to be 7t-basic enough to break the carbon-hydrogen bond

by backbonding into the o* orbital. What results are only a weakened carbon-hydrogen

bond and an agostic metal-hydrogen interaction.[12] The weakening of the carbon-

hydrogen bond can be confirmed by the lowering of J(C,H) as determined by NMR and

v(CH) as determined by IR. Figure 1.4 is an example of a complex with an agostic

metal-hydrogen interaction.










Me2 H2
-Pills/,, 1...\\\C-- CH2


Me2 CI C

Figure 1.4. Titanium complex with an agostic interaction.

P-Hydrogen Abstraction

Another common decomposition pathway for transition metal alkyl complexes is P-

hydrogen abstraction. Like P-hydrogen elimination, this mechanism involves the P-

hydrogen of an alkyl substituent. The difference between the two mechanisms lies in the

fate of the hydride. In the P-hydrogen abstraction mechanism, the hydride is not

transferred to the metal center. It is instead transferred to an adjacent alkyl substituent

which is then eliminated as alkane.[13] The mechanism is shown in Figure 1.5.

R'R


M \ M M-- + R-H
\R R R'

Figure 1.5. Mechanism for P-hydrogen abstraction.

a-Hydrogen Abstraction

The final mechanism for the decomposition of transition metal alkyl complexes that

will be discussed in this chapter is a-hydrogen abstraction. In this mechanism, the

hydrogen of the a-carbon of an alkyl substituent is transferred to an adjacent alkyl

substituent. The result is the formation of a metal-carbon double bond, or alkylidene, and

the elimination of alkane. The reaction is believed to proceed via a four-center transition

state depicted in Figure 1.6.[14] The alkylidene complexes that are afforded by a-

hydrogen abstraction are themselves quite useful materials. These materials are capable









of converting a-olefins into internal olefins, performing ring opening metathesis

polymerizations, and performing acyclic diene metathesis polymerizations.[15, 16]


R
H2 H
C-R C
LnM LnM'
LnM LnM H LnM=CHR + CH3R'

HC- R' H R'


Figure 1.6. Mechanism for a-hydrogen abstraction.

Transition Metal-Mediated Bond Activation

The activation of chemical bonds, especially carbon-carbon and carbon-hydrogen

bonds, by metals is an interesting reactivity. Metals are widely used in the oil refining

industry for this type of activity. Alkanes, or saturated hydrocarbons, make up the

majority of the compounds found in crude oil, and the inert nature of these compounds is

well known. In fact, alkanes are also called paraffins, a word derived from the Latin

phraseparum affinis, which means without affinity. These compounds react with oxygen

only at elevated temperatures to produce carbon dioxide and water. This reaction is

important for the production of energy but is useless as a means of forming useful

organic products. Reactivity can be observed from alkanes at lower temperatures, but

highly reactive species such as free radicals or carbenes must be used. The problem with

using such reagents is their lack of selectivity. The inert nature of alkanes is a

consequence of their high bond strength and ionization potentials. A summary of such

values is shown in Table 1.3. The use of metals to activate hydrocarbon has proven to be

very valuable. Using metals as catalysts, reactivity can be achieved with alkanes and

other hydrocarbons under much milder conditions, i.e., lower temperatures, than those









used in the absence of the catalyst. Also, greater selectivity can be achieved when using

metal catalysts.

Table 1.3. Characteristics of some alkanes and other hydrocarbons. Figure reproduced
from Shilov and Shul'pin.[17]


D(R-H) I.P. E.A. P.A. pKl
RH R* kcal mol-' eV eV eV


CH4 CH3* 104 12.7 5.3 40
C2H6 C2H5- 98 11.5 5.6 42
C3Hs n-C3H7- 97 11.1 6.1
iso-C3H7T 94 44
C4Ho tert-C4H9* 10.6
cyclo-C6H12 cyclo-CHn 94 9.9 45
CsHI CIsHs 109 9.2 -1.1 7.5 37
CH2=CH2 CH2=CH* 106 10.5 -1.8 6.9 36
CH=~CH CH C* 120 11.4 25
C-HsCH3 C6H5CH2- 85 8.8 -1.3 7.3 35
CH3CN NCCH2- 79 12.1 8.1 24
H2 H* 104 15.4 -3.6 4.4 25
H20 HO- 118 12.6 1.8 7.1 16


A logical place to begin a discussion about bond activation mediated by metals is

heterogeneous catalysis. The surfaces of metals and metal oxides are capable of

activating alkanes and other hydrocarbons towards various transformations. Some of

these transformations are isomerization which leads to branching of straight chain

alkanes, the cracking of which provides simpler alkanes from long chain alkenes, and

dehydrogenation which provides unsaturated hydrocarbons. A summary of the various

transformations is displayed in Figure 1.7.









Cracking:
n-C7H16


- CH4 + QzH6 + ... + HCH + H2


Hydrogenolysis hydrocrackingg):
n-C7H16 + H2 CH4 + CH6 + Q;H + C~HCH3


Isomerization:


+


t- ...


Dehydrogenation:


---- + + + H2


Dehydrocyclization:

n-C7H,6

Oxidative coupling:

CH4

Condensation:

CH4

Oxidation:

CH4 2

CH4 0
CIH4


C6HsCH3 + 1H2


CH4 C6H6


CH2=CH2



C2H6 + C3HS + Hz



CO2 + H20

CH30H + HCHO + HCOOH


Figure 1.7. Reactions catalyzed by metal catalysts. Figure reproduced from ref 17.

It is important to investigate just how these metal surfaces interact with hydrocarbons

in order to activate them. The key to the activation is the chemisorption of the alkane to

the metal surface. Calculations suggest that this chemisorption takes place by the


Y"









formation of weak, three-center C-H-M bonds.[18' 191The fashion in which methane is

proposed to interact with a metal surface is illustrated in Figure 1.8. This interaction with

the metal serves to weaken the C-H bond. The aforementioned problem of the C-H bond

strength is now somewhat alleviated. This bond is now more reactive and various

transformations can be performed under the appropriate conditions.


H H H H

H H
H H H H







Catalyst surface


Figure 1.8. Chemisorption of methane onto a metal surface. Figure reproduced from
ref. 17.

The activation of hydrocarbons by transition metal complexes can be viewed

similarly to activation by metal surfaces. A metal surface can be viewed as a metal atom

surrounded by certain ligands, and this environment can be mimicked in a complex.

Even transformations that require the simultaneous participation of several metal atoms

on the surface can be reproduced by using cluster complexes.1181 One advantage of using

metal complexes is that the homogeneous nature simplifies the elucidation of the

mechanism. Conditions of the homogenous reactions are also generally much milder. In

addition, one may even be able to trap an intermediate or view it spectroscopically. The

methods by which these metal complexes activate hydrocarbons can be classified by the









reaction type, and the types that will be discussed here are C-H oxidative addition and C-

C oxidative addition.

C-H Oxidative Addition

The direct C-H bond activation of hydrocarbons is very valuable. It makes the

conversion of inert alkanes into synthetically useful organic compounds possible.[18] This

type of reactivity by transition metal complexes was first observed by Goldshle et. al.

They observed H/D exchange with CH3COOH and various alkanes in the presence of

[PtC14]2.[20] The key step in this process is the cleavage of the C-H bond. This is

proposed to happen via an alkane complex. The overall mechanism for C-H oxidative

addition is shown in Figure 1.9, and the alkane complex is noted. Proceeding to A from

the alkane complex is generally unfavorable for a couple of reasons. First, a strong C-H

bond (- 96 kcal/mol) is broken in exchange for two weaker bonds, an M-C bond (- 30

kcal/mol) and an M-H bond (~ 60 kcal/mol). Bond strengths mentioned above vary

depending on the alkane and the metal involved. Secondly, the process is disfavored

entropically because two particles become one. Even though the transition from the

alkane complex to A is usually unfavorable, species A is present in small, equilibrium

quantities. This species can then be trapped by subsequent steps that are

thermodynamically favorable to lead to useful products.

In the previous paragraph, the impression may have been given that C-H oxidative

addition by metal complexes is always unfavorable and not very efficient. This is,

however, not the case. For example, two Ir systems, Cp*Ir(PMe3)H2 and CpIr(CO)2, are

capable of performing C-H oxidative addition to form stable products without the aid of

subsequent reactions.[20, 21] Each of these complexes becomes a very reactive 16-electron

species following photon induced loss of H2 or CO, respectively. It is this activated









species that oxidatively adds the C-H bonds. There is also evidence that metal complexes

can be quite efficient at oxidatively adding C-H bonds. In Figure 1.10, there is a

relatively efficient catalytic cycle that involves C-H oxidative addition.[22] Clearly the

cleavage of C-H bonds is difficult, but properly designed metal complexes can achieve

this feat with relative ease.

H
H LnM~R
SR
H A
LnM R LnM--
R

Alkane complex
LnM-R + H

B

Figure 1.9. Mechanism for C-H activation by metal complexes.

C-C Oxidative Addition

When compared to C-H oxidative addition, C-C oxidative addition is even less

favorable. First we must consider that two relatively weak M-C bonds are formed at the

cost of breaking a C-C bond (- 85 kcal/mol). In addition, C-C bonds are less accessible.

For these reasons, direct C-C bond breaking has only been observed for strained alkanes.

The relief of the strain upon C-C bond cleavage provides the additional driving force for

the reaction to proceed. An example of such a system is shown in Figure 1.11.[23, 24] The

rearrangements of some strained hydrocarbons are also believed to proceed by C-C bond

activation.

In this thesis, research involving W(VI) dialkyl complexes is presented, including

synthesis and characterization. Through investigating the reactivity of these compounds,








L

H '>-


RK


L
H [I OCOCF3
Ir
H
L
R

e L
L
HI I OCOCF3
-ft
Ir
H I
L


R









L
H I O
Ph Ir CF3
Ph 1 0
L
12.10


L
I


t-Bu


OCOCF3


kI O>-CF3


1l1


t-Bu ^


L
I OCOCF3
I

L


A



F


l b

L
H. I ,OCOCF3
Ir
H'
L


t-Bu
12.9


12.11


Figure 1.10. Catalytic cycle incorporating C-H oxidative addition.
from ref 1.


Figure reproduced









PtC2 [PtC12] n


Figure 1.11. C-C bond activation of strained alkane.

a product that is generated via a rare C-N single bond activation was isolated. Research

involving the synthesis of bis-alkoxy complexes from a W(IV) bis-pyridine complex is

also presented. It was shown that the reaction proceeded via C-H activation of pyridine

and that the reaction is highly stereoselective. Also included is research involving

tungsten nitride precursor synthesis. Within this project several novel guanidinate and

amidinate complexes of tungsten were synthesized and investigated with mass

spectrometry and crystallography experiments.














CHAPTER 2
SYNTHESIS, STRUCTURE, AND REACTIVITY OF DIALKYL COMPLEXES

Synthesis of W(VI) Dialkyl complexes

This work is focused on the chemistry of W(VI) imido dichloride and dialkyl

complexes stabilized by a chelating diamide ligand derived from N,N'-bis-trimethylsilyl-

1,8-diaminonapthalene [1,8-(Me3SiN)2-C10H6] [25] The results obtained from this work

can be compared to those from previous research involving analogous complexes using a

different ancillary diamide ligand, [o-(Me3SiN)2C6H4]. [26, 27] With all other things being

equal, one can view any observed differences in stability, reactivity, etc. as a ligand

effect. The results discussed in this chapter need not only be viewed in a comparative

sense because the complexes herein are novel in their own right.

To begin investigating the differences between the ligand systems discussed in the

previous paragraph, a logical place to start is the solid state structure of the respective

dichloride starting materials (Figure 2.1). In both systems, there is a folding of the

diamide ligand along the N-N vector. In the system involving [o-(Me3SiN)2C6H4], or

(TMS)2Pda, this fold angle is 131.80 (A in Figure 2.1). In the [1,8-(Me3SiN)2-Co1H6]

system, this fold angle is 119.3 (B in Figure 2.1). This makes the coordination site trans

to the imido ligand more sterically encumbered in the latter. Also, the bite angle between

in the diamide systems about the metal center (N-M-N) is 83.9(4) in the former and

89.0(3) in the latter. There are a couple of consequences that result from the increased

bond angle. First, the bulky TMS groups on the nitrogen atoms in B are in a position that

is more central in the basal plane relative to A. Also, the orbital overlap of the nitrogens









with the metal center is different. The differences discussed here may seem subtle, but

when viewed collectively, one can appreciate their significance.







N Me3Si N
Me3MeSi N

Me3Si I ,.CI MeSi N W CII. C
< N ^ ci N iC

Fold Angle \ Fold Angle

A B

Figure 2.1. Structure of tungsten dichloride starting materials.

The synthesis of the dichloride starting material, W(NPh)(1,8-(Me3SiN)2-

C1oH6)(Cl)2, 1, involves reaction of the dilithium salt of [1,8-(Me3SiN)2-Co1H6]2- with

W(NPh)(C1)4(OEt2) in diethyl ether. The dilithium salt is generated in situ by

deprotonating 1,8-(Me3SiNH)2-C10H6 with n-BuLi. The overall synthesis is illustrated in

Figure 2.2.[25] This reaction is relatively successful on large scale (- 18 g of

W(NPh)(C1)4(OEt2) giving a yield of 70%.

Compound 1 is a black, air and moisture-sensitive solid. This material is

indefinitely stable in solution or in the solid state at room temperature if stored under an

inert atmosphere. Compound 1 is very well suited for synthesizing a variety of alkyl

complexes. As indicated in Figure 2.1, the chloride ligands are cleanly displaced by

carbanion equivalents. It was determined experimentally that Grignard reagents provided

better results than lithium reagents. Reactions involving lithium reagents led to complex












/ 1. 2 TMSC1 1. 2 n-BuLi
2. NEt, 2. W(NPh)(C1)4(OEt2)
NH2 0C NH -780C

SiMe3






Me3Si N Me3Si N

^ N W CI 2 RMgC1 N_ R
N cl -780C N R

SiMe3 SiMe3

2-4

R = Me (2), CH2Ph (3), CH2CH2Ph (4)

Figure 2.2. Synthesis ofW(VI) dialkyl complexes.

mixtures of products from which the desired alkyl complexes could not be isolated. The

alkyl complexes, 2-4, are all air and moisture-sensitive solids that have a limited

solubility in hydrocarbon solvent, but are soluble in ether, THF, and aromatic hydro-

carbons. All of the alkyl complexes are indefinitely stable at room temperature in an

inert environment. Noteworthy is the fact that compound 4 is stable even though the

metal center is both electronically and coordinatively unsaturated and the alkyl

substituents have P-hydrogens.

The room temperature 1H and 13C NMR spectra of the alkyl complexes all exhibit

equivalent TMS groups. This observation is consistent with a square pyramidal structure.

Also, in the 1H NMR spectra of compounds 3 and 4, the protons of the respective -CH2









groups are diastereotopic. This is due to the fact that even though the protons are bonded

to the same carbon atom, there is no symmetry operation that equates them.

Structure Study for W(VI) Dialkyl Complexes

Single crystal X-ray diffraction studies were performed on compounds 2 and 3. The

crystals were grown by slow evaporation of pentane and d6-benzene solutions,

respectively. The thermal ellipsoid plots are displayed in Figures 2.3 and 2.4, and

selected bond lengths and angles are provided in Tables 2.1 and 2.2. Some general

comments about the structures are warranted. Both of the structures have short W-

N(imido) bond lengths (-1.74 A). Also, in both cases the W-N-Ph angle is close to being

linear. These two observations are consistent with a W-N triple bond and are within

range observed for tungsten-imido complexes.[28] In this type of bonding, there is

donation of the nitrogen lone pair into an empty d orbital on the metal center. Other

features to note are the bond lengths between the metal center and the carbon atoms of

the alkyl chains. The bond lengths (2.17(3)-2.24(3) A) are within range for a typical

W(VI)-C bond.[291 There is no evidence either spectroscopically or structurally for any

agostic interactions even though the metal center is coordinatively and electronically

unsaturated.

Each of the five coordinate complexes assumes a square pyramidal structure about

the tungsten center, and the imido ligand occupies the axial position. In both structures,

the metal sits above the plane defined by the two nitrogens of the diamide ligand and the

two carbon atoms of the alkyl chain. Just as in the dichloride starting material, the

diamide ligand is folded along the N-N vector resulting in dihedral angles of 120.1 and

119.00 for 2 and 3, respectively.














C5


C3
C6

C2
C20 C22 C1 C


C19 N1

Sil Si2







C16 (C8 C10


C15 C11
C12
C14



Figure 2.3. Crystal structure of 2. Thermal ellipsoids are drawn at 40% probability, and
hyrdrogens have been omitted for clarity.













C4

C5
C3


C6
C2 C35

C1




C17 C31 C26 C27
C22 C36



C28
C255
SO N2 C10 C29
C9 C24
C18 C19 C8 C23

C7 C11
C12




C14
C15





Figure 2.4. Crystal structure of 3. Thermal ellipsoids are drawn at 40% probability and
hydrogen have omitted for clarity.









Table 2.1. Summary of selected bond lengths (A) and angles (o) for 2.
W-N1 1.763(2) N1-W-N2 112.10(10) N1-W-C17 101.13(10)

W-N2 1.991(2) N3-W-N2 88.04(8) N3-W-C17 85.08(10)

W-N3 1.979(2) N1-W-C18 102.82(10) N2-W-C17 145.22(10)

W-C17 2.182(3) N3-W-C18 138.01(10) C18-W-C17 78.33(12)

W-C18 2.167(3) N2-W-C18 84.40(11)





Table 2.2. Summary of selected bond lengths (A) and angles (o) for 3.
W-N1 1.741(3) N1-W-N3 112.39(11) N1-W-C23 82.31(9)

W-N3 1.957(2) N1-W-N2 113.15(9) N3-W-C23 139.34(10)

W-N2 2.019(2) N3-W-N2 87.94(9) N2-W-C23 82.31(9)

W-C30 2.202(3) N1-W-C30 99.53(10) C30-W-C23 77.11(10)

W-C23 2.242(3) N3-W-C30 89.87(9)



Tungsten Mediated C-N Bond Activation

Complexes 2-4 are all electronically and coordinatively unsaturated, and, therefore,

should be able to accommodate the coordination of a Lewis base-type donor ligand. To

this point, adducts of either PMe3 or t-butyl isocyanide have not been observed. It is

likely that steric congestion around the vacant coordination site caused by the bulkier

ligand is responsible for making coordination less facile. The results of some

experiments suggest that 4 may coordinate PMe3 at elevated temperature and react

further.









When compound 4 in benzene solution is exposed to excess PMe3 for 48 hours at

70C, the solution slowly changes in color from dark purple to wine red. The product

that is isolated upon work-up is compound 5 (Figure 2.5). An interesting observation

about this reaction is that in going from reactant to product, there is the activation of a C-

N single bond. The observation of direct C-N single bond activation is rare. Activation

of C-N multiple bonds are more common. [30,31] Furthermore, the observation of this type

of reactivity has mostly been limited to strained amines and amidines.[32-34] C-N

activation of a similar nature has been achieved by a Mo(IV) bis-pyridine complex.[35]

The mechanism proposed for the formation of 5 involves P-hydrogen transfer

induced by ligand coordination. This type of reactivity has been observed previously in

the TMSpda system.[26] This reactivity itself is unusual because P-hydrogen transfer is

actually induced by increasing the coordination number of the metal. The first step in the

mechanism is the reversible coordination of PMe3. This coordination promotes P-

hydrogen transfer to form a styrene complex with the release of ethyl benzene. This

intermediate possesses a reactive W(IV) center which oxidatively adds a C-N bond of the

chelating diamide ligand with the release of styrene. When this reaction is followed by

1H NMR, free ethyl benzene and styrene are both observed. The formation of the W-N

triple bond appears to be the driving force for the reaction. An illustration of this

proposed mechanism is shown in Figure 2.5.

Single crystals of 5 suitable for X-ray diffraction studies were obtained and its

structure was determined (Figure 2.6). The complex adopts a distorted TBP structure

with the nitrogen of the chelating ligand and the PMe3 ligand occupying the axial

positions. Both the W-NPh and W-NTMS bonds are relatively short (1.783(2) and









1.775(2) A respectively) and the W-N-C and W-N Si bond angles are close to linear.

These findings are consistent with W-N triple bonds. In addition, the W-C bond distance

(2.222(2) A) is consistent with a W(VI)-C single bond. Other selected bond lengths and

angles are shown in Table 2.3.

Table 2.3. Selected bond lengths (A) and angles (o) for 5.
W-N3 1.775(2) N3-W-N1 113.66(10) N2-W-C7 77.27(8)

W-N1 1.783(2) N3-W-N2 102.92(9) N3-W-P1 86.14(7)

W-N2 2.072(19) N1-W-N2 105.69(8) N1-W-P1 83.99(7)

W-C7 2.221(2) N3-W-C7 123.85(9) N2-W-P1 162.21(6)

W-P1 2.537(6) N1-W-C7 120.26(9) C7-W-P1 84.96(7)



In conclusion, it is evident that compound 1 is a convenient material for the

synthesis of a variety of new W(VI) complexes. Stable dialkyl complexes, 2-4, have

been synthesized. These compounds have been fully characterized by 1H and 13C NMR.

In addition, it has been shown that compound 4, though stable, is capable of further

activity. Thermolysis of 4 in the presence of PMe3 yields the bis-imido complex 5 via an

uncommon C-N single bond activation. This type of reactivity is indeed interesting.



















PMee, N
Me3 I














Me3SI>











PMe3





SIMe3
N

SiMe3
5


Figure 2.5. Proposed mechanism for the formation of 5.


- Styrene













C4

C5 C3



C6
C2
C17 C18 CC

Sil

N1 C20


N2 .C19 W N3 C22 Si2

C14 C15 C23


C16 P1
C13 C25 C21
C7

C12
C11
C8 C24


C10 C9





Figure 2.6. Crystal Structure of 5. Thermal ellipsoids are drawn at 40%

probability, and hydrogens are omitted for clarity.














CHAPTER 3
SYNTHESIS, CHARACTERIZATION, AND STRUCTURE OF W(VI) BIS-ALKOXY
COMPLEXES

Synthesis of bis-Alkoxy Complexes

The work discussed in this chapter was initiated by some unpublished results

attained by Ryan Mills. The results were obtained by reacting a W(IV) complex,

W(NPh)(o-(Me3SiN)2C6H4)(C5HsN)2(6)[36] with two equivalents of acetone. The general

reaction scheme is illustrated in Figure 3.1 and the crystal structure of the product is

shown in Figure 3.2. The product that was generated was a bis-alkoxy, six-coordinate

W(VI) complex (7). The generation of this product was unexpected, and a study to

determine the generality and mechanism of this reaction was undertaken.




M Me3SI\ 0

\MNil N/. THF
\ 2 30 min. MeSI
Me3SI


Figure 3.1. Reaction of W(IV) pyridine complex with two equivalents of acetone.

To begin investigating the generality of this type of reactivity, it was desired to

determine if the same reactivity that the W(IV) starting material displayed with ketones

would be observed with aldehydes. Due to convenience, the first aldehyde that was used
















C29


C30


N2 C3


C12 C4
Cl C12Sil C15 C6 C5



C20 N4 01


C20
C13







C26




Figure 3.2. Crystal structure of 7. Thermal ellipsoids are drawn at 40% probability and
hydrogens have been omitted for clarity.









in these experiments was benzaldehyde. The 1H and 13C NMR data of the product of this

reaction were consistent with a structure that would be analogous to that of the product of

the acetone reaction, however further characterization was needed. The presence of

several overlapping aromatic protons and carbons impaired peak assignment. Also, all

attempts to grow crystals of this material suitable for diffraction studies failed. The

experiment was then repeated substituting p-tolualdehyde for benzaldehyde. Thep-

tolualdehyde substrate was chosen for primarily two reasons. First, the 1H NMR

spectrum of the product would have an aromatic region that would be simpler by two

protons. This could potentially reduce the problem of overlapping peaks. Secondly,

suitable single crystals for X-ray diffraction studies may be more easily obtained from the

p-tolualdehyde derivative. Upon obtaining the product of the reaction and 1H and 13C

NMR data thereof, the problem of overlapping aromatic protons and carbons persisted.

A series of two-dimensional NMR experiments (COSY and NOESY) were used to fully

characterize this material by NMR. The characterization of the compounds synthesized

in the project is discussed in the following section. Along with p-tolualdehyde, p-

anisaldehyde, and 2-thiophene carboxaldehyde were also tested. A summary of all of

these experiments is shown in Figure 3.3.

Special note should be made of the experiment involving 2-thiophene

carboxaldehyde. The reactant was chosen due to reactivity observed and reported

concerning the W(IV) bis-pyridine complex and thiophene. The W(IV) complex is

capable of oxidatively adding the carbon-sulfur bonds of thiophene.[37] By choosing a

thiophene with an aldehyde substituent, it could determined which type of reactivity












9 Ha Hb
MeSI \
Me ,SI NN/,,,
S2 Et20 l 2ow
/ R 30 min. MeSIR
MeSI Hc

R =C6H5 (8), C6H4CH3 (9), 8 11
C6H40CH3 (10), C4H3S (11)

Figure 3.3. Synthesis ofW(VI) bis-alkoxy complexes 8-11.would be preferred:

formation of a bis-alkoxy complex or C-S activation. The only product observed in this

reaction is the bis-alkoxy complex shown in Figure 3.3.

Characterization of bis-Alkoxy Complexes

As mentioned in the previous section, characterization of the complexes discussed in

this section was complicated by the presence of numerous overlapping aromatic protons.

Full assignments of the H and 13C NMR spectra are given in the experimental section,

but some features of the spectra are worthy of note here. The spectra of all of these

compounds display inequivalent TMS methyl groups in both proton and carbon NMR.

There are also a couple of interesting features in the 1H NMR spectra of these compounds

regarding protons on the carbon atoms immediately adjacent to the oxygen atoms. First,

the proton on the carbon that links the pyridine ring to the R group formerly of the

aldehyde (He in Figure 3.3) appears as a sharp, tall singlet at -6.4 ppm in these

complexes. Secondly, on the other alkoxy linkage, the two protons (Ha and Hb in Figure

3.3) on the carbon appear as an AB quartet at -5.8 ppm. Other features that are common

to these complexes are associated with the 6-position of the pyridine ring. The carbon of

this position shows up at -158 ppm or higher, and the proton at this position shows up as









a doublet at -8.4ppm. Another interesting observation associated with this chemistry is

that even though two chiral centers are generated in the product, the W center and the

carbon atom bound to the 2-position of pyridine, we only observe one of the possible

diastereomers. This reflects the very selective nature of this reaction. The proton NMR

spectrum of 10 is shown in Figure 3.4. In this spectrum, the inequivalent methoxy groups

are also visible as two singlets at -3.2 ppm.

Single crystals suitable for X-ray diffraction studies were obtained for 10, and its

structure was determined (Figure 3.5). The overall structure is distorted octahedral with

the two oxygens mutually cis. There is a key difference in the structure of this complex

when compared to the structure of 7. In 7, one of the alkoxy substituents occupies the

position trans to the pyridine ligand. In the structure of 8, the imido ligand occupies this

position. The steric bulk of the alkoxy substituent in 7 prevents it from being able to be

in the same plane as the bulky TMS groups and the other alkoxy ligand. A table of

selected bond lengths and angles for 10 is found in Table 3.1.

Table 3.1. Selected bond lengths (A) and angles (o) for 10.

W-N1 1.731(7) N1-W-02 98.4(3) N1-W-N2 103.1(3)

W-02 1.934(6) N1-W-01 94.0(3) 02-W-N2 156.8(3)

W-O1 1.968(6) N2-W-01 97.5(2) 01-W-N2 89.8(3)

W-N3 2.027(7) N1-W-N3 107.0(3) N3-W-N2 79.2(3)

W-N2 2.049(7) 02-W-N3 86.2(3) N1-W-N4 165.0(3)

W-N4 2.291(7) 01-W-N3 158.0(3) 02-W-N4 77.5(2)

01-W-N4 72.6(3) N3-W-N4 87.3(3) N2-W-N4 83.8(3)









Mechanistic Study of the Formation of bis-Alkoxy Complexes

As mentioned earlier, there was interest in probing the mechanism for the formation

of the complexes discussed in this chapter. By looking at the structure of the compounds,

a first hypothesis concerning the identity of an intermediate species was formulated. It

was logical that the products resulted from the 1,2-insertion of the carbonyl group of the

ketone or aldehyde in question into the W-C and W-H bonds of a pyridyl hydride

intermediate (Figure 3.6). This intermediate would result from C-H bond activation of

the 2-position of one of the pyridine rings present in the starting material. To test this

hypothesis, a deuterated pyridine analogue of the W(IV) bis pyridine complex 6 was

synthesized. If the mechanism that we proposed is valid, then either Ha or Hb in Figure

3.3 would be replaced by deuterium, and the AB pattern observed in the 1H NMR

spectrum would disappear. When the experiment was carried out using p-tolualdehyde,

the 1H NMR spectrum of the product was consistent with the working hypothesis (Figure

3.7). The coupling has been removed and the proton at this position appears as a singlet

at -5.6 ppm. There is another small singlet that appears at -5.8 ppm. This is observed

because of the presence of a second isomer in which the positions of the proton and the

deuteron have been swapped with respect to the major isomer. The major isomer is

present in a 10-fold excess. The fact that this isomer is present in such a small quantity is

once again testament to the selectivity of this reaction. These findings are at least

consistent with the reaction proceeding through a pyridyl hydride intermediate like the

one pictured above. No such intermediate has been observed spectroscopically, so its

identity is not certain. It is also unknown if the intermediate is present when the starting







34




















C








































Figure 3.4. 1H NMR spectrum of 10.













C5

C4




Sc18 C16
C1
C2
C13
C13 Si2 N1

Sil ( C32 C39
S 02 C33
C38
C10 N2
C7
C14 01 C34 C35 C36 C37
C11 C12
C19
C24 C25 C26
C20
C27
C23 \ C31 C28

C22 C21 C30 C29



Figure 3.5. Crystal structure of 10. Thermal ellipsoids are drawn to 40% probability and
hydorgens have been omitted for clarity.









material is in solution in some small equilibrium concentration or its formation is induced

by the coordination of the carbonyl substrate. At the very least it has been demonstrated

that C-H activation of the 2-position of one of the pyridine ligands is achieved by the W

center.

In conclusion, we have shown that we can synthesize a variety of bis-alkoxy

complexes by reacting 6 with acetone and various aldehydes. These compounds are very

stable, octahedral complexes. The formation of these products proceeds very selectively,

yielding only one diastereomer while three chiral centers are generated. The mechanism

of this reaction has been investigated by performing a deuterium labeling experiment, and

it was confirmed that the reaction involves the C-H activation of the 2-position of

pyridine. Crystal structures of two of the compounds in this series have been obtained.

From these data, the effect of ligand bulk on spatial arrangement about the metal center

can be observed.

















0



R ^H


Me3Si,


Me3Si


0

-R H

R- H


Me3Si


Figure 3.6. Proposed mechanism for the formation of bis-alkoxy complexes.








38












yr i fc-









U,
C. 3









VI-












-_




















i
Fr 3 H sermfdtad9
g -



sfv '-


i J Q -_____

D
03 r ) V _____
^l --------------------










Fiue37 M pctmo etrtd9















CHAPTER 4
METAL-ORGANIC CHEMICAL VAPOR DEPOSITION OF TUNGSTEN NITRIDE
FROM TUNGSTEN IMIDO PRECURSORS


The focus of this work is to produce films of tungsten nitride from single-source

precursors.1 The tungsten nitride films are intended to serve as Cu diffusion barriers in

integrated circuits. As feature sizes on integrated circuits (ICs) become smaller, the need

for a thin, effective barrier to prevent intermixing of silicon and metallization layers

becomes more critical. Copper is being increasingly used as the interconnect

metallization for various levels on ICs due to its lower bulk resistivity, greater resistance

to electromigration, and diminished contact resistance relative to aluminum.[38] Un-

fortunately, copper has much higher mass diffusivity in silicon than does aluminum,

making diffusion barrier performance even more crucial.[39] Ideally, diffusion barrier

materials used in ICs should have amorphous film structure, low resistivity, good

conformality over different device features, and low deposition temperature (< 500 oC).

Material selection is vital to a successful diffusion barrier. Use of refractory

metal thin films as diffusion barriers failed due to the formation of grain boundaries,

which are facile pathways for Cu migration to the underlying substrate.140] Refractory

metal nitrides, such as tantalum nitride (TaN) and tungsten nitride (WNx), however, are


1 Film growth and characterization were performed by Omar Bchir, Kelly Green,and Mark Hlad in Prof
Timothy Anderson's research group in the Department of Chemical Engineering at the University of
Florida. Mass spectrometry was performed by Dr. David Powell at the University of Florida. Dr.
Benjamin Brooks assisted with synthesis and sample preparation.









promising diffusion barrier materials for Cu metallization.[411 Excess nitrogen in these

films accumulates at the grain boundaries during polycrystal formation, which is believed

to hinder Cu diffusion. Nitrogen atoms at the grain boundary significantly reduce

diffusion through a "stuffing" process, which involves repulsive Cu-N interactions.[42, 43]

Although TaN is currently used as a copper diffusion barrier material for intermediate

level wiring in IC applications,[44] WNx offers several advantages. These include superior

adhesion to copper,[45] more efficient subsequent processing (e.g., ease in use of chemical

mechanical polishing or CMP),[46] and potential use as an electrode layer to enable

seedless copper electrodeposition.[47]

In addition to material selection, diffusion barrier properties are heavily

influenced by the choice of technique and conditions used to deposit the film. Chemical

vapor deposition (CVD) operating in the kinetically limited growth regime is a technique

that is well suited to deposit highly conformal films. Selection of appropriate precursors

for the CVD process may enable deposition of amorphous films at low temperature. One

variant of CVD depends on reduction of halide precursors to deposit films. In another

variant, metal-organic chemical vapor deposition (MOCVD), material is deposited on the

substrate surface by reaction of one or more carbon-containing vapor phase precursor

compounds. Both of these variants are often operated at low pressure to increase mass

transfer rates to the extent that deposition is reaction limited, thus producing more

conformal films.

The typical strategies for CVD of multi-element barrier materials involve the use

of either single-source or co-reactant precursors. Co-reactant deposition uses a separate

precursor for each element desired in the film; hence, bonds between these elements must










be formed by intermolecular processes during deposition. In contrast, a single-source

precursor already has bonds established between the elements that will comprise the film

prior to deposition. This approach is particularly useful when the bond strengths in the

individual precursor candidates, and thus decomposition temperatures, are quite different.

Previous examples of WNx deposited by CVD are dominated by co-reactant

systems using NH3 as the nitrogen source (Figure 4.1). Early examples employed WF6,

WCl6 or WO3 as the tungsten source.[48-55] Unfortunately, the high temperatures required

for reaction of metal halides with NH3 (greater than 500 "C),[56] along with the resulting

reactive by-products (e.g., hydrogen halides), [57,58] are two major drawbacks to barrier

deposition by co-reactant metal halide processes.


x
X ~ 'X
X'I__W___X


CO
OC,,, ,CO
ocV W-co
CO


X=CI, F
NH:, / NH3


WN, Thin Film
WNW




Fiur OC,, ,cniCO

/X N
NH H\




Figure 4.1. Tungsten nitride growth via co-reactant and single-source techniques.

More recently, organometallic precursors have been employed in co-reactant

systems. Accordingly, W(CO)6 and NH3 have been used to deposit amorphous WNx

films below 275 C.[59] In a similar study, deposition of WNx from W(CO)5(C5H11NC)









and NH3 was reported in the temperature range 250 to 400 oC.160] In the sole prior

example of a single-source precursor for WNx deposition, polycrystalline thin films were

obtained by pyrolyzing the bis(imido) bis(amido) complex (tBuNH)2W(NtBu)2 in the

temperature range 450 to 650 oC.[61-63]

Recently, MOCVD of amorphous WNx thin films were deposited from

benzonitrile solutions of the single-source imido precursor W(N'Pr)C14(CH3CN) (12a) as

a mixture with the benzonitrile derivative 12a'.[64' 65] The properties of these films were

compared with those of films deposited from the other reported tungsten imido precursor,

(tBuNH)2W(NtBu)2.[64, 65] Mass spectrometry was used to probe the fragmentation

patterns of 12a. Care must be taken in using mass spectral data to predict CVD behavior

since the latter is thermal in nature.[66] Nevertheless, mass spectrometry does provide

insights into the relative fragmentation characteristics of various precursors.[67] N-C

cleavage in tungsten imido precursors is vital for the formation of tungsten nitride,

therefore it is promising when fragments resulting from N-C cleavage are observed in

mass spectral data. The relative abundances of these promising fragments can also be

used to compare one precursor's potential to another. In this chapter, mass spectrometry

and film growth studies involving W(NPh)C14(L) (L = NCMe 13a, L = NCPh 13a', L =

OEt2 13b) will be discussed.[68] Compound 13a was previously prepared by Nielson.[69]

Compound 13b was previously prepared by Schrock.1701 Compound 13a' was not

isolated but generated in situ. The results will be compared with those generated from

studies involving 12a and 12b. Relationships involving N-C bond strength, mass

spectrometry data, and subsequent film properties will also be discussed.









Mass Spectrometry Investigations.

In the mass spectrometry investigations, positive ion electron-impact ionization

(EI) and negative ion electron capture chemical ionization (CI) mass spectral techniques

were used. As observed in the mass spectra of the isopropyl precursor (12a), no

molecular ion was detected for 13a using either ionization method. The base peak in the

El spectrum occurs at m/z 382, and corresponds to the fragment [Cl3W(NPh)] The

highest mass peak observed in the El spectrum was [Cl4W(NPh)] at m/z 417 (9%

abundance). Interestingly, although the high mass envelopes correspond to fragments in

which acetonitrile is lost, only a small amount (-1% abundance) of the [CH3CN] ion

was detected at m/z 41 in the El spectrum of 13a. The presence of the [Cl4W] and

[Cl3W] fragments suggests cleavage of the W-N bond occurs in the gas phase.

Furthermore, observation of the [Ph] fragment (m/z 77) indicates that the critical N-Ph

bond is broken to some extent under El conditions; however, there is no evidence of a

metal nitrido fragment in the resulting spectrum. Moreover, the base peak in the NCI

spectrum corresponds to [Cl4W(NPh)]- (m/z 417) while the mass envelope of the nitride

fragment [C14WN]- (m/z 340) has a relative abundance of 4%. The presence of the

fragment [Cl5W(NPh)]- suggests that the nitrile ligand of 13a is removed during the

process of heating the condensed phase sample to afford [W(NPh)C14]2 prior to

ionization.

The mass spectral data for phenylimido complex 13a and isopropylimido complex

12a show some similarities. For both, the most prevalent ion on the high mass end of the

El spectrum corresponds to [Cl3W(NR)]+, although 13a does also exhibit lower

abundance peaks from [Cl4W(NPh)]+. This, coupled with the lack of molecular ion

signals, is consistent with high liability of the nitrile ligand in both complexes. Moreover,









the presence of the [Cl5W(NPh)]- fragment in the NCI spectrum suggests that the liability

of the nitrile ligand results in partial conversion of 13a to the dimer [W(NPh)C14]2 prior

to ionizations. The observation of this chloride transfer process in 13a, but not 12a, is

consistent with the greater electron withdrawing nature of the phenyl substituent, as

compared to isopropyl.

The most notable difference in the spectra of 13a and 12a concerns the fragments

[Cl3WNH]+ and [C14WN]-. Since these ions are derived from cleavage of the N-R bond

of the imido moiety, they are critical to the CVD process. As shown in Table 1,

[Cl3WNH]+ appears in the El spectrum of 12a with a relative abundance of 78%;

however, this fragment is not present in the spectrum of the phenylimido complex 13a.

Nevertheless, the presence of [Ph] indicates the N-Ph bond is broken to a certain extent

under El conditions. The ion [PhN] (m/z 91) was observed in very small relative

abundance (<1%), and its subsequent fragmentation may be responsible for the small

clusters of peaks centered at m/z 64, 51 and 37.[71] Even more striking is the fact that the

[C14WN]- fragment is the base peak in the NCI spectrum of 12a, but only accounts for

4% relative abundance in the phenylimido complex 13a.

In relation to the use of W(NPh)C14(PhCN) (13a') as a precursor for tungsten

nitride deposition, the mass spectral data of 13a and 12a suggest that the N-Ph bond is

more difficult to break than the N-'Pr bond. This is consistent with the homolytic bond

strength of the two N-R moieties.[72] The El and CI mass spectra of 13a can be viewed in

Figure 4.2. A list of El and CI data for compounds 12a and 13a can be viewed in Table

4.1.

Volatilization of the Precursor

Deposition of thin films by MOCVD requires transport of the solid phenylimido










precursor (13a') to the reactor in the vapor phase. Previous tests with similar complexes


100


80


60


40


20


[Ph]*

Z


[CI3W(NPh)]i


[CI4W]

291
[CI3W] 326
326
I i, l 1 ..


[CI4W(NPh)]t
./


50 100 150 200 250 300 350 400 450
m/z


[CI4W(NPh)]-










[CI4WN]-


340


[CIW(NPh)]-




452


~~'" ~ ~ ~ r"'"'" ""


50 100 150 200 250 300 350


400 450


Figure 4.1. Positive ion electron-impact ionization (EI) and negative ion electron capture
chemical ionization (CI) mass spectra of 13a.


100


80


60


40


20











Table 4.1. Mass spectrometry data for 13a and 12a.
Complex El Fragments NCI m/z Abundance'b
Fragments
13a [C14W(NPh)] 417 9
[Cl3W(NPh)]+ 382 100
[Cl4W] 326 7
[Cl3W]+ 291 15
[PhN]+ 91 <1
[Ph] 77 22
[C5H4]+ 64 1
[C4H3]+ 51 10
[CH3CN]+ 41 1
[C3H2]+ 38 1

[Cl5W(NPh)]- 452 23
[Cl4W(NPh)]- 417 100
[C14WN]- 340 4

12a [Cl3W(N'Pr)] 348 100
[Cl4W]+ 326 26
[C13WNH] 306 78
[Cl3W]+ 291 30
[CH3CN]+ 41 24

[Cl4W(N'Pr)]- 383 42
[C14WN]- 340 100

"Relative abundances were adjusted by summing the observed intensities for the
predicted peaks of each mass envelope and normalizing the largest sum to 100%.
Values for 12a are from reference 64.

in a solid source delivery system resulted in minimal precursor transport, due to the low

vapor pressure of the compounds. Transport difficulties were overcome by using a

nebulizer to generate an aerosol of the precursor/solvent mixture, which is conveyed by

carrier gas to the reactor. Although benzonitrile is an appropriate solvent for deposition

from isopropylimido complexes 12a,b, poor solubility of the phenylimido complexes in

benzonitrile necessitated a co-solvent mixture of 10:1 benzonitrile:ether to achieve the

same precursor concentration previously used with 12a,b. To determine the impact, if









any, of the co-solvent on film composition, acetonitrile was tested in place of ether. AES

results indicated similar film compositions regardless of the co-solvent used.

Film Structure

The films typically had a smooth, shiny metallic appearance with color varying

from black to gold, depending on the deposition conditions. The desired WNx film

structure and stoichiometry is face centered cubic (FCC) P-W2N (P-WNx, x = 0.5), since

this phase has the lowest resistivity. Resistivity is a concern given the desired application

of the tungsten nitride films. In the IC's, high resistivity of the diffusion barrier leads to

heating of the device, and this heating can cause device failure.

X-ray diffraction (XRD) analysis was performed on the tungsten nitride films.

XRD data can be used to determine crystal phase and degree of crystallinity. Figure 4.3

shows XRD data for films grown from 13a' at temperatures from 475 to 750 C. The

evolution of crystallinity with deposition temperature can be observed. There is a general

trend of an increase in crystallinity with an increase of deposition temperature. This

same trend was observed in previous work involving 12a'.[651 Four characteristic peaks

are evident, with relative peak intensities indicating that no preferred crystal orientation

exists. Although the relative peak intensities in Figure 4.3 are consistent with the pattern

for polycrystalline 3-W2N, the 20 peak positions lie between the standard values for 3-

W2N and 3-W2C. Peak positions between these standard values suggest that carbon is

mixing with nitrogen and vacancies on tungsten's interstitial sublattice to form P-WNxCy

polycrystals. For the spectrum in Figure 4.3, primary reflections at 37.13 and 43.08 20

degrees are consistent with (111) and (200) P-WNxCy growth planes, while additional

reflections at 62.73 and 74.98 20 degrees indicate (220) and (311) planes, respectively.









4000
P-WNxCy(111) S46i41,1Kp P-WNxCy, iS14i', Kau
Si(200) Ka / -WN C, i, n (220) P -WNxC,
T=750 C 311)
-2 3000 T=700 OC



2000T=65 C
2000 _T=525 /





wo,__ T=500
T=475 C
0
SI I I

30 40 50 60 70 80

20 Degrees


Figure 4.3. Change in XRD pattern with deposition temperature for WNxCy grown from
13a' on Si (100) in a H2 atmosphere.

No peaks arising from the hexagonal WN or WC phases, or the body centered cubic

(BCC) 3-W phase were evident for any of the films.

As the temperature increases to 500 oC, peaks appear at 23.48 (not shown) and

47.98 20 degrees, consistent with formation of tungsten oxide (WOx, x & 3). Repeated

attempts to deposit films at 500 OC resulted in formation of tungsten oxide, while peaks

consistent with WNx are seen at all deposition temperatures above this. Reproducible

deposition of tungsten oxide at a single temperature suggests that an air leak in the

reactor system is unlikely to be the source of oxygen. Microstructure dependent, post-

growth oxygen incorporation is a likely cause of oxide formation, especially for low

temperature, "clean" tungsten films with low carbon and nitrogen levels. This is due to









lower contamination levels, which make these films less resistant to oxygen in-diffusion

and reaction. The existence of a second oxygen incorporation pathway involving the

Et20 co-solvent, however, cannot be ruled out. Diethyl ether is known to undergo both

homogeneous and heterogeneous decomposition at temperatures near 500 "C.[73' 74]

Although oxide formation still occurs for films grown at 500 OC from W(NPh)

C14(PhCN) (13a') in a benzonitrile/acetonitrile mixture (no Et20 present), the size of the

oxide crystallites is larger when the ether complex C14(Et20)W(NPh) (13b) was used to

generate precursor or when Et20 is the co-solvent. Even though the film is amorphous at

475 C, indicating that inadequate thermal energy is available to produce oxide

polycrystals, the possibility of oxygen incorporation similar to that at 500 OC cannot be

ruled out. High levels of oxygen in the amorphous film, as demonstrated by AES data

videe infra), support this possibility.

Film Composition

For the intended application, the composition of the WNx films is very important.

It is necessary to identify impurities like carbon and oxygen that can increase the

resistivity and halides that can be corrosive. In these investigations Auger electron

spectroscopy (AES) and XPS were used to identify and quantify the elements present in

the films. AES results for films deposited from the phenylimido complex 13a' indicate

the presence of W, N, C and O (Figure 4.4). No chlorine was detected in the films by

AES or XPS, placing an upper limit of-1 at. % on Cl content. HC1 is the

thermodynamically favored gas phase chlorine-containing species, and was observed by

residual gas analysis during deposition from 12a'. It is assumed that HC1 is the dominant

gas phase chlorine-containing species for deposition from 13a' as well. Neither Cl2 nor

chlorinated hydrocarbons were detected in the reactor effluent, leading to the conclusion









that chlorine is lost from the precursor as HC1. From 475 to 500 OC, the carbon level is

constant at approximately 3 to 5 at. %. The carbon content jumps from 5 to 14 at. %

between 500 and 525 C. Although XRD indicates P-WNx polycrystalline deposition at

525 C, results for growth rate and sheet resistance videe infra) at this temperature show

strong deviation from the trends evident between 550 to 750 C. Given the proximity in

deposition temperature of the carbon spike (525 C) to the anomalous tungsten oxide

formation seen in the XRD (500 C), the two phenomena may be related. Above 550 C,

the carbon content rises steadily from 9 to 22 at. % at 750 C. The increase in carbon

content from lowest to highest deposition temperature reflects the increasing tendency of

the hydrocarbon groups present in the precursor ligands and the solvent to deposit in the

films at higher growth temperature.

The initial nitrogen content of films grown at 475 C was 1 at. %. The nitrogen

content increased to a maximum value of 3 at. % at 525 C as a consequence of decreased

oxygen concentration through this range. The nitrogen concentration then decreased with

increasing temperature, dropping below 1 at. % above 700 C. Although metal nitride

barriers typically exhibit low nitrogen content at higher deposition temperatures (due to

desorption of N2 gas), the films deposited from 13a' were nitrogen-deficient throughout

the temperature range studied. This nitrogen deficiency in the films contrasts with XRD

results in Figure 4.3, which indicate P -WNx polycrystal growth at lower temperatures.

This may indicate that P -WNxCy polycrystal formation begins at temperatures below



























w
--12a'
- 13a'


500 600 700
Deposition Temperature ('C)


400 500 600 700
Deposition Temperature ('C)


12a' 0
-- 13a' -o--- 12a'
S 80 80 ---- 13a'


60 60


40 g 40


0 0



400 500 600 700 800 400 500 600 700 800
Deposition Temperature ('C) Deposition Temperature ('C)


Figure 4.4. AES data for films grown from 12a' and 13a'.


600 C, with carbon filling the excess vacancies present in the polycrystals due to


nitrogen deficiency.


Although the value ofy in P-WNxCy should be relatively small at the lower


deposition temperatures, it may be sufficiently large to shift the XRD peak position to


lower values of 20 (and concomitantly increase the lattice parameter, vide infra), even at


the lower temperatures. It should also be noted that preferential incorporation of carbon









and removal of nitrogen by Ar sputtering during AES analysis has been reported to

cause artificially high carbon and low nitrogen concentration readings.[75] Since the AES

data were collected after 2.0 minutes of sputter, artificially high carbon and low nitrogen

compositions may have been observed. In addition, the lack of a standard film sample

for calibration of elemental concentrations means that AES data may vary up to several

atom percent from the actual values. Despite the error bars on the concentrations, the

AES data serve to identify trends in film composition with deposition temperature.

The slight oxygen contamination in the film samples deposited at higher

temperatures likely resulted from post-growth exposure of the film samples to air. The

higher oxygen levels in films deposited at and below 500 C may be influenced by the

presence of the Et20 co-solvent during growth and exposure of the films to air after

growth. Incremental AES sputtering showed a steady decrease in oxygen levels with

increasing depth into the WNx films. The oxygen concentration was highest at 475 C,

reaching 15 at. %, and then decreased slightly to 11 at. % at 500 OC. This behavior is

consistent with low density and high porosity in the amorphous films deposited below

525 C, which allow substantial amounts of oxygen to penetrate into the film lattice.

High oxygen concentrations (-20%) attributed to air exposure have been reported for

porous TiN, TiC and TiCN barriers.176-78] XPS results for oxygen in the films are

consistent with WO3, which has considerably higher thermodynamic stability than 3-

WNx or P-WCx. For example, values of the Gibbs energy of formation (AGf) at 750 C

for the WO3, P-WNo.5 and P-WCo.5 phases are -579 kJ/mol, +21 kJ/mol, and -8.5 kJ/mol,

respectively.[79-81] The experimental observation of lower levels of oxygen at higher

deposition temperatures is consistent with post-growth oxygen contamination. As the









deposition temperature rises from 500 to 525 C, the oxygen content drops sharply to 4

at. %, while the carbon and nitrogen levels are moderately steady. This behavior is

consistent with the change in crystallinity observed by XRD. As the film crystallizes, it

becomes more dense,[82] thereby inhibiting post-growth oxygen diffusion into the lattice

and decreasing the density of adsorption sites. As deposition temperature increases

above 525 C, the oxygen concentration drops further, falling below 1 at. % above 700

C. This drop in oxygen levels likely results from film densification (by polycrystal grain

growth) and increased carbon levels at higher deposition temperature stuffing the grain

boundaries. Porosity of amorphous films grown below 525 C may be problematic for

diffusion barrier applications, since defects in the film may degrade the barrier's

resistance to Cu diffusion. A previous report, however, indicates that diffusion barrier

performance depends more strongly on film microstructure than film density.[83] In

addition, impurities such as O, N and C have been reported to enhance the stability of

diffusion barrier films.[84]

Comparison of Films Grown from 12a' and 13a'

In terms of their decomposition chemistry, the most significant difference

between isopropylimido complex 12a' and phenylimido complex 13a' is the dissociation

energy of the N-C bond in the imido ligand. Based on data from organic model

compounds, the N-C bond of isopropylimido complex 12a' is expected to be

approximately 20 kcal/mol weaker than the analogous bond in 13a'.[72] Since cleavage of

this bond is necessary for deposition of WNx, one would expect there to be differences in

film structure and film composition between films grown from the two precursors.

Amorphous film growth occurs below 500 C for 12a' and 13a'. At 500 C

(Figure 4.3), a broad 3-W2N (111) polycrystalline peak appears for films from 12a',









while polycrystalline oxide peaks appear for the material from 13a'. Evidence of

polycrystalline WNx deposition from 13a' first appears at 525 C. The anomalous film

characteristics of material grown from 13a' at 500 OC appear to be linked to the presence

of the Et20 co-solvent (necessary because the solubilities of 12a' and 13a' differ). The

maximum deposition temperature for films deposited from the isopropyl complex was

700 C. Above this temperature, black particles were deposited on the substrate and

susceptor, which subsequently compromised film quality. In contrast, deposition from

phenylimido complex 13a' was possible up to 750 C. The higher temperature limit

could be due to the enhanced N-C bond strength in its imido ligand.

Corroborating evidence for this effect can be found in the mass spectral data.

Facile dissociation of the isopropyl group from 12a' is indicated by the observation of

[Cl3WNH]+ at 78% abundance in the El spectrum and detection of [C14WN]- as the base

peak in the NCI trace. Loss of the phenyl moiety from 13a' to yield the same ions does

not occur under El conditions and the NCI spectrum contains [C14WN]- at only 4%

abundance. Moderate amounts of [Cl4W] and [Cl3W] were detected in the mass spectra

of 13a' under El conditions, as well as fragments a-d (Figure 4.1), which are consistent

with what has previously been observed upon generation of NPh+ from phenyl azide.[71]

Although the mass spectral evidence for NPh loss consists of low intensity mass

envelopes, their presence is significant. Because of the difference in conditions between

mass spectrometry (ion chemistry) and MOCVD (thermal decomposition), the data in

Figure 4.1 and Table 4.1 do not rule out loss of NPh as a major heterogeneous process

during deposition. Ideally, cleavage of the N-C bond in 13a' to release a phenyl group

should occur during CVD of WNx films. However, the high N-C dissociation energy









would slow this process, allowing cleavage of the W-N bond to compete. Isopropylimido

complex 12a', with its weaker N-C bond, would be more likely to release the isopropyl

moiety and leave the imido nitrogen in the growing film.

For both precursors, oxygen levels were highest for films deposited at the lower

end of the temperature range (< 500 C). AES indicated a decrease in oxygen content

with increasing sputter depth into the films; hence, high oxygen levels were attributed to

post-growth exposure of the films to air. The low density and high porosity of the

amorphous structures grown at lower temperatures allow more rapid diffusion of oxygen

from the air into the films and provide a large surface to volume ratio for adsorption.

High oxygen levels in the films from 13a', however, may be due to a combination of

post-growth exposure to air and the presence of Et20 during deposition. Increased

carbon content in the films grown at higher temperatures is believed to inhibit post-

growth oxygenation of the films by stuffing grain boundaries.

As mentioned earlier, resistivity is an important property of the films in these

investigations. Film resistivities were calculated using the equation p = Rst, where p is

resistivity (Q-cm), Rs is sheet resistance as measured by 4-point probe (Q/0), and t is film

thickness determined by X-SEM (cm). These calculations depend both on sheet

resistance and film thickness. To decouple the impact of film thickness from the film's

electrical properties, the sheet resistance was plotted as a function of deposition

temperature. The sheet resistance of films from 13a' increases sharply as the temperature

increases from 475 to 500 OC. The sheet resistivities are 75 and 475 Q/0 respectively.

The sheet resistivity rises even further to 2000 Q/0 at 525 C. This increase in sheet

resistance for the less conductive films grown at 500 and 525 C indicates that these









higher resistivity values are not due solely to higher film thickness and is consistent with

oxide formation and the spike in carbon content videe supra) determined by AES. With

the exception of the anomalous results for growth at 500 and 525 C, comparison of the

sheet resistances, which negate the impact of film thickness on electrical properties,

shows that the films from 12a' and 13a' have similar electrical properties when deposited

at or below 675 C. Above 675 C, 12a' films have higher sheet resistance than 13a'

films, consistent with the high carbon levels in the 12a' films, which scatter electrons

flowing through the material.


2500

12a'
S2000 -- 13a'


1500
03

5 1000


-s 500



400 500 600 700 800
Deposition Temperature (C)


Figure 4.5. Variation of film sheet resistance with deposition temperature for films
deposited from 12a' and 13a'.

In conclusion, the tungsten imido complex W(NPh)C14(CH3CN) 13a' was tested

to determine its suitability as a single-source precursor for low temperature growth of P-

WNx thin films. Comparison of the film growth properties of 13a' to those of its

isopropylimido analogue 12a' allows evaluation of the effect of the imido N-C bond






57


dissociation energy on film growth and properties. Films deposited from 13a' were

deficient in nitrogen compared to those from 12a', consistent with a tendency of the

stronger imido N-C bond of 13a to result in dissociation of intact NPh fragments during

deposition. Since its films contain more nitrogen and have lower amorphous deposition

temperatures and sheet resistances, the isopropyl imido precursor 12a' is superior to the

phenyl imido precursor 13a' for 0 -WNx barrier deposition.














CHAPTER 5
SYNTHESIS AND CHARACTERIZATION OF W(VI) GUANIDINATE AND
AMIDINATE COMPLEXES

Synthesis of W(VI) Guanidate and Amidinate Complexes

Guanidinate and amidinate anions have recently generated interest as ancillary

ligands.[85, 86] The first transition-metal guanidinate complexes were reported in 1970 by

Lappert et. al.1871 These anions make attractive ligands due to their steric and electronic

tunability through the programmed variation of the N and C substituents.[88-921 These

anions' ability to serve as alternatives to Cp has been confirmed, and they have been used

extensively in coordination chemistry of transition, f-block, and main group metals.193-102]

Part of the versatility possessed by the guanidinate anions stems from the resonance

forms accessible via lone pair donation of the NR'2 moiety to the central carbon atom of

the anion (Figure 5.1). This zwitterionic resonance form has formal negative charges on

both metal-bound nitrogens which can lead to more electron donation to the metal center.

This resonance ability also offers the possibility of the ligand to attenuate its electronic

donation to the metal as the metal's electronic demands change during catalytic cycles.

Amidinate ligands, though lacking the ability to form zwitterions in this manner, are still

very versatile and widely used. In addition, complexes of this nature containing tungsten

are surprisingly under-represented in the literature. To our knowledge, there are only

four such publications, and this work will also serve to broaden that library.[103-106]

The goal is to employ these ligands in the syntheses of novel precursors for the

metal-organic chemical vapor deposition (MOCVD) of tungsten nitride (WNx) thin films.









R1 R' R' R' RR R'
N N N

R N N R N N R R N NR
Se e e



R' R'

R N N R R N N R
e e

Figure 5.1. Resonance forms of guanidinate and amidinate anions.

The tungsten nitride that is produced is intended to serve as copper diffusion

barriers in microelectronic devices. The growth and characterization of the resulting films

are performed in the research group of Prof. Timothy Anderson in the Department of

Chemical Engineering at the University of Florida. It has been previously shown that

tungsten imido complexes of the formula W(NR)C14(NCPh) (R = 'Pr (12a), Ph (13a), Cy

(14), allyl (15)) are suitable precursors for the MOCVD of WNx and WNxCy ( Figure

5.3).[107-'10] Recently, Carmalt et al., have reported successful chemical vapor deposition

of titanium carbonitride using titanium guanidinate complexes as precursors 1]. The

strategy is to synthesize guanidinate and amidinate derivatives of 12a-15 with the hopes

of generating films of WNx with even better diffusion barrier properties and to do so at

lower temperatures. The guanidinate and amidinate ligands were chosen with the hope

that they would decompose to generate a second imido ligand under CVD conditions

(Figure 5.2). The presence of the second W-N triple bond would presumably result in

higher nitrogen content in the resulting films than that obtained from the mono-imido

complexes mentioned earlier.









R

N R



SCVD
x R' R'R


Figure 5.2. Possible bis-imido species resulting from fragmentation under CVD
conditions







N N N N

C III II I l CI ICCl Y I


C C C C
I I I I
CH3 CH3 CH3 CH3

12a 13a 14 15

Figure 5.3. Tungsten imido complexes used as WNx precursors.

Generally, guanidinate and amidinate complexes are synthesized by two routes.

One method is the insertion of a carbodiimide into a metal-amido or metal-alkyl bond (A

in Figure 5.4). The second is a metathesis reaction between either a lithium amidinate or

guanidinate salt, generated in situ, and a metal halide (B in Figure 5.4). In these

investigations, the latter synthetic route was used. The tungsten starting materials would

require either an alkyl or amido group to use the other synthetic route, and the

substitution reaction to generate such a ligand would have added a step to the syntheses.














LnM-R


+ R'-N C N-R' -O


B) R'N C=NR' + LiR -


Li


R'



LnM\N D-R
N

R'


LnM-X


N
Ln-iM ) R + LiX
N

R'

Figure 5.4. Common metal guanidinate and amidinate complex syntheses.

To generate the lithium salts of the guanidinate and amidinate ions, lithium

dimethylamide and MeLi, respectively, were added to the corresponding carbodiimide.

The reaction required 2 hours for the former and 4 hours for the latter. The resulting

lithium salts were then added to cooled ether solutions of the corresponding tungsten

imido complexes (-78 C and -30 C for guanidinate and amidinate complexes,

respectively). All reactions were stirred for 16 hours after slowly warming to room

temperature. This general procedure as well as a list of products is shown in Figure 5.5.

The guanidinate complexes were consistently more difficult to obtain in pure form then

the amidinates. Recrystallization was always necessary for the former. The amidinate










complexes could be isolated as pure compounds without further purification, though still

not in impressive yields (see Experimental Procedures). Another note is that syntheses

involving cyclohexyl and isopropyl imido groups were conducted in the absence of light.

The parent imido complexes have some degree of light sensitivity, so light was excluded

as a precautionary measure.

R

N
CI- lX CI


_Et2O O
R'N C= NR' + LiX -Et- R'N NR' _
2-4 hrs
Li
Et2O, -78 or -20 C
18 hrs

R


CI I CI
N

'N R'CI



x



16, R = Ph, R' = 'Pr, X = NMe2 19, R = Ph, R' = Bu, X = Me 23, R = Ph, R' = 'Pr, X = Me
17, R = Cy, R' = 'Pr, X = NMe2 20, R = 'Pr, R' = tBu, X = Me 24, R = 'Pr, R' ='Pr, X = Me
18, R = 'Pr, R' = 'Pr, X = NMe2 21, R = Cy, R' = tBu, X = Me 25, R = Cy, R' ='Pr, X = Me
22, R ='Pr, R' = TMS, X = Me


Figure 5.5. General synthesis of guanidinate and amidinate complexes 16-25.

NMR Characterization

The 1H and 13C spectra of compounds 16-25 have similar features. The spectra of

23 will be discussed here in detail, and a full list of NMR data for all complexes can be

found in the Experimental Section. The 1H NMR spectrum (CD3C1) exhibits two

resonances for the inequivalent isopropyl substituents of the chelating nitrogens. The









chemical shifts of isopropyl methyl groups appear as doublets (J= 6Hz) at 1.49 and 1.51

ppm. The methyl group on the amidinate ligand backbone appears as a singlet at 2.07

ppm. The methine protons of the inequivalent isopropyl groups appear as septets at 4.34

and 4.86 ppm, respectively. The para proton of the phenyl ring appears as a triplet at

7.13 ppm. The ortho protons appear as a doublet (J= 6Hz) at 7.42 ppm, and the meta

protons appear as an apparent triplet (J= 6Hz) at 7.57 ppm. In the 13C spectrum (CD3CI),

the resonance for the methyl group of the amidinate backbone appears the most upfield at

13.0 ppm. Next, the chemical shifts of the methyl substituents of the isopropyl groups

are observed at 22.4 and 24.9 ppm. The methine carbons of the isopropyl groups appear

at 52.1 and 56.4. The aromatic protons appear at 128.2, 129.4, 131.2, and 151.7. Lastly

the chemical shift of the central carbon of the amidinate ligand appears at 172.1.

Extended acquisition times (up to 3 hours) were needed to observe central carbon

chemical shifts in complexes 16-25 due to the long relaxation times of these quaternary

centers.

Mass Spectrometry Investigations

In the past, mass spectrometry data have been used to investigate various tungsten

imido complexes' potential and viability as tungsten nitride precursors. 108'112 113] It is

noted that care must be taken when using mass spectral data to predict CVD behavior

since the latter is thermal in nature.[66] Nevertheless, mass spectrometry does provide

insights into the relative fragmentation characteristics of various precursors.[67] Not only

can mass spectrometry validate the potential of complexes to serve as CVD precursors

but also compare that potential in a relative sense.1108] In these experiments, the focus is

relative abundance of fragments in which the N-R bond of the imido moiety was cleaved.

Given the nature of the precursors, the cleavage of this bond during the deposition









process is vital to generate tungsten nitride. Correlations have been observed among

estimated N-R bond strength, relative abundance of desired mass spectrometry peaks, and

subsequent growth kinetics and nitrogen content of the WNx and WNxCy films.[108, 112]

This type of screening has been extended to the new guanidinate and amidinate

complexes.

Early in the mass spectrometry investigations, it was noticed that contrary to the

results obtained from the unsubstituted imido precursors 12a-15, molecular ions were

observed for guanidinate and amidinate complexes 16-25. In the unsubstituted

complexes W(NR)C14(L) (R = 'Pr, L = NCMe (12a); R = 'Pr, L = OEt2 (12b); Ph, L =

NCMe (13a); R = Ph, L = OEt2 (13b); R = Cy, L = NCMe (14a); R = Cy, L = OEt2

(14b); R = Allyl, L = NCMe (15a); R = Allyl, L = OEt2 (15b)) the ligand trans to the

imido acetonitrilee or diethyl ether) completely dissociated before detection. Observing

the molecular ions for 16-25 has allowed the determination of molecular formulas by

high resolution mass spectrometry. It is undetermined, however, if this increased

stability will be a hindrance to decomposition during CVD.

Mass spectral fragmentation data were obtained for the tungsten guanidinate and

amidinate complexes 16, 19, 20, 23, and 25. Spectra were taken in both positive ion

electron impact and negative ion electron capture modes. In general, more fragmentation

was observed in the electron impact experiments. This is to be expected since this is a

more aggressive technique. Through the investigations, it was learned that the

guanidinate and amidinate ligands fragment differently. For the amidinate complexes,

peaks corresponding to the loss of the methyl group of the central carbon of the ligand are

present in high relative abundance. The dimethylamido group of the guanidinate









complexes is much more reluctant to fragment. This observation supports the presence of

double bond character between the nitrogen and the central carbon that is suggested in the

zwitterionic resonance form shown in Figure 5.1. Instead, the guanidinate ligands

fragment to yield a second imido moiety or dissociate from the metal center intact. There

were also consistent fragmentation trends among the amidinate ligands themselves.

Peaks corresponding to the loss of the tert-butyl groups from the chelating nitrogens

(conpounds 19-21) were always present in higher relative abundance than peaks that

would correspond to the loss of isopropyl and TMS in analogous complexes (compounds

22-25). Lastly, peaks were observed corresponding to bis-imido species analogous to

those illustrated in Figure 5.2 for complexes 16, 19, 20, 23, and 25. In addition, imido-

nitrido fragments are also observed in some instances. These results suggest that these

complexes will be suitable precursors for the MOCVD of tungsten nitride and that the

nitrogen content of the resulting film will be greater than that obtained from complexes

12-15. The mass spectrometry data suggest that complexes 16, 19, and 25 are promising

tungsten nitride precursors due to the observation of bis-imido and/or imido-nitrido

fragments in high relative abundance. Table 5.1 contains data obtained from mass

spectrometry investigations.

X-ray Crystallography Study

Single crystals suitable for X-ray analysis were grown for compounds 16-18, 19,

22, 24 (Figure 5.5). X-ray analysis was performed by Dr. Khalil A. Abboud at the

University of Florida. All of these complexes adopt a distorted octahedral structure with

the three chlorides and one of the nitrogens of the chelating ligand forming the square

plane. The imido and the second nitrogen of the chelate occupy the axial positions. An

ORTEP drawing of compound 16 is shown in Figure 5.7. The W-N(1) bond length of








Table 5.1. Mass spectrometry data for tungsten guanidinate and amidinate complexes.
Note that only peaks of interest and/or high relative intensity are included.
Cmpd El Peaks NCI Peaks m/z Relative
Abundance'
16 [(C9H2oN3)Cl3W(NPh)]- 550 16

[(C9H21N3) C12W] 426 100

[(C9H21N3)ClW]- 392 38

[Cl3W(NPh)(N'Pr)]- 438 17

19 [(CloH21N2)Cl3W(NPh)] 551 4

[(C9HlsN2)Cl3W(NPh)] 536 6

[Cl2W(N'Bu)(NPh)] 418 4

[Cl2W(N)(NPh)] 360 11

[ClW(N)(NPh)] 326 3

[C(CH3)3]+ 57 100

[(CioH21N2)Cl3W(NPh)]- 551 17

[(CloH21N2)Cl2W(NPh)]- 515 26

[Cl2W(N'Bu)(NPh)]- 418 100

[Cl2W(N)(NPh)]- 360 33

20 [(C10H21N2)Cl3W(N'Pr)] 517 9

[(C9HlsN2)Cl3W(N'Pr)]+ 500 37

[Cl2W(N)(N'Pr)] 327 9

[C(CH3)3]+ 57 100

[(CioH2iN2)Cl3W(N'Pr)] 517 100

[Cl2W(N'Pr)(N'Bu)]- 384 6

23 [(CsH17N2)Cl3W(NPh)] 523 10








23 [(C7H14N2)Cl3W(NPh)]+ 508 20

[C6H14] 84 89

[C3H8]+ 42 100

[(CsH17N2)Cl3W(NPh)]- 523 99

[(CsH17N2)Cl2W(NPh)]- 487 100

[Cl2W(N'Pr)(NPh)]- 404 17

25 [(C8Hi7N2)C13W(NCy)]- 529 11

[C12W(N'Pr)(NCy)]- 410 100

[C12W(N)(NCy)]- 367 55

[ClW(N)(NCy)]- 330 28

"Relative abundances were adjusted by summing the observed intensities for the
predicted peaks of each mass envelope and normalizing the largest sum to 100%.


1.741(3) A is within the acceptable range of a W-N triple bond.114' 115] The W-N(1)-

C(10) bond angle of 170.0(2) is also consistent with the presence of the triple bond. The

W-Cl(1), W-Cl(2), and W-Cl(3) bond lengths are 2.367(9), 2.391(9), and 2.397(8) A

respectively. These are in good agreement with the W-C1 bond length of 2.392 A for six-

coordinate W reported by Orpen et. al. 1151 The bond angle between the two axial ligands

is 161.70(11). The ligand bite angle of 62.40(11) contributes to this distortion from

linearity. The W-N(2) and W-N(3) bond lengths are 1.960(3) and 2.226(3) A,

respectively. The strong trans influence of the imido ligand can be observed in the

elongated W-N(3) bond.[1141 The C(1)-N(2) and C(1)-N(3) bond lengths are 1.414(4) and

1.299(4) A, respectively, the latter clearly exhibiting double bond character. Typical C-N

single bond lengths are 1.42-1.45 A.11161 The C(1)-N(4) bond length of 1.351(4) A also









exhibits double bond character. This confirms the lone pair donation of N(4) to provide

more electron density to the metal center. The angle between the planes defined by N(2),

C(1), and N(3) and C(9), N(4), and C(8) is 37.160. This angle also supports lone pair

donation from N(4) to C(1). The dihedral angle indicates that the dimethylamido group

has oriented itself to favor 7n conjugation. The three bond angles about N(2) total 3590,

suggesting sp2 hybridization. Since the C(1)-N(2) bond length suggests that it is a single

bond, the lone pair of N(2) must be donated to the metal center to achieve the sp2

hybridization. An illustration of the bonding suggested by the crystallography data is

shown in Figure 5.6. A list of selected bond lengths and angles for compound 16 can be

found in Table 5.2.

X-ray crystal structures were also obtained for the guanidinate complexes 17 and

18. ORTEP representations can be seen in Figure 5.8 and Figure 5.9. For 17, the crystal

system is orthorhombic and the space group is Pna2(1). For 18, the crystal system is

triclinic and the space group is P-1. Both compounds are structurally similar to 16. Both

exhibit tungsten-imido bond lengths that are within range of W-N triple bonds (1.722(3)

and 1.702(4) A). The bond angles about the imido nitrogens, 178.2(3) and 164.4(8), are

also consistent with the presence of W-N triple bonds. For 17, the N(4)-C(7) bond length

is 1.357(4) A, and the dimethylamido torsion angle is 42.280. Similar to what is

observed for 16, we see a shortened C-N bond and dimethylamido orientation to favor n

conjugation. This trend is mirrored in 18 with a C(1)-N(4) bond length of 1.373(6) A and

a dimethylamido torsion angle of 45.030. A list of selected bond lengths and angles for

17 and 18 can be viewed in Table 5.2 and Table 5.3.









The crystal structures that were obtained for the tungsten amidinate complexes

were very similar to those of the guanidinate complexes. The ORTEP representations of

19, 22, and 24 can be viewed in Figures 5.10-5.12. There are, however, some subtle but

significant differences. First, the amidinate ligands exhibit slightly longer W-N bonds

when compared to the guanidinate complexes. The average differences are 0.04 A for the

W-N bond in the equatorial plane and 0.05 A for the W-N bond in the axial position. The

presence of the shorter bonds in the guanidinate complexes is consistent with the ligands'

ability to be a better electron donor. Another difference between the two ligand systems

lies in the bond lengths between the central carbon of the chelate and the nitrogen in the

axial position. This bond is consistently shorter in the amidinate complexes, suggesting

more double bond character. For the guanidinate complexes 16, 17, and 18, the lengths

of these bonds are 1.299(4), 1.304(4), and 1.294(6) A respectively. The corresponding

bond lengths for 19, 22, and 24 are 1.289(4), 1.271(9), and 1.281(5) A. Although the

difference is not large, it is consistent. Lists of selected bond lengths and angles for 19,

22, and 24 can be viewed in Tables 5.5-5.7. In the case of 22, some atoms are labeled

with an A. The asymmetric unit consists of four chemically equivalent but

crystallographically independent molecules labeled as A, B, C, and D. The A molecule

was chosen for inclusion here, and all bond lengths and angles of other molecules within

the unit cell are comparable to those of A.

In conclusion, a series of amidinate and guanidinate complexes were synthesized.

Mass spectrometry was used to probe the complexes' fragmentation tendencies, and

favorable cracking of the ligands was observed. X-ray crystallography data were used for

characterization and to examine bonding motifs in the complexes.










Table 5.2. Selected bond lengths (A) and angles (0) for compound 16.
W-N1 1.174(3) C1-N2 1.414(4) N2-W-N3 62.40(11)

W-N2 1.960(3) C1-N3 1.299(4) N1-W-N2 99.55(12)

W-N3 2.226(3) C1-N4 1.351(4) W-N2-C1 99.57(19)

W-Cll1 2.367(9) N1-W-N3 161.77(11) N2-C1-N3 106.84(3)

W-C12 2.391(9) N2-W-C13 94.31(7) W-N3-C1 91.18(2)

W-C13 2.397(8) Cll1-W-C12 168.68(3) W-N1-C10 170.0(2)



Table 5.3. Selected bond lengths (A) and angles (0) for compound 17.
W-N1 1.723(3) C7-N2 1.304(4) N2-W-N3 61.86(10)

W-N2 2.258(3) C7-N3 1.411(4) N1-W-N2 162.53(11)

W-N3 1.951(3) C7-N4 1.357(4) W-N2-C7 90.39(19)

W-Cll1 2.384(9) N1-W-N3 100.87(12) N2-C7-N3 106.8(3)

W-C12 2.384(8) N3-W-C12 155.40(8) W-N3-C7 100.89(19)

W-C13 2.373(10) Cll-W-C13 167.33(3) W-N1-C1 178.2(3)



Table 5.4. Selected bond lengths (A) and angles (0) for compound 18.
W-N1 2.247(4) C1-N2 1.399(6) N2-W-N3 101.44(19)

W-N2 1.961(4) C1-N1 1.294(6) N1-W-N2 61.88(16)

W-N3 1.702(4) C1-N4 1.373(6) W-N1-C1 90.3(3)

W-Cll1 2.3752(15) N1-W-N3 163.23(18) N1-C1-N2 107.8(4)

W-C12 2.3819(16) N2-W-C13 155.81(13) W-N2-C1 100.0(3)

W-C13 2.3833(14) Cll1-W-C12 167.30(5) W-N3-C10 168.4(8)












C13


C12 C14



C15
C11
C10

C3
N1

C4

C2
N2


C9

C1
N4 N3


C5
C6
C8
C7




Figure 5.6. Crystal structure of 16. Thermal ellipsoids are drawn at 40% probability and
hydrogens have been omitted for clarity.























Figure 5.7.


S

Bonding scheme of 16 as suggested by crystallography data.


table 5.5. Selected bond lengths (A) and angles () or con found 19.
W-N1 1.731(3) C11-N2 1.416(4) N2-W-N3 61.62(9)

W-N2 1.969(2) C11-N3 1.284(4) N1-W-N2 105.34(11)

W-N3 2.280(2) C11-C12 1.503(4) W-N2-C11 99.79(18)

W-Cll 2.3623(8) N1-W-N3 166.94(10) N2-C11-N3 108.5(3)

W-C12 2.3888(8) N2-W-C12 160.90(7) W-N3-C11 89.83(19)

W-C13 2.3769(8) C11-W-C13 165.02(3) W-N1-C1 170.4(2)













C3 C4
C2


C5
C6
C1



N1

C15


C14 .p** M

N3
C13



N2

C7 C11


C9 C10C12

C8




Figure 5.8. Crystal structure of 17. Thermal ellipsoids are drawn at 40% probability and
hydrogens have been omitted for clarity.
























K


C3
C8
N4
C7 C9
C2





Figure 5.9. Crystal structure of 18. Thermal ellipsoids are drawn at 40% probability and
hydrogens have been omitted for clarity.








Table 5.6. Selected bond lengths (A) and angles () for com ound 22.
W-N1 1.700(6) C7-N2 1.392(9) N2-W-N3 62.1(2)

W-N2 1.975(6) C7-N3 1.300(9) N1-W-N2 101.2(3)

W-N3 2.275(6) C7-C8 1.492(10) W-N2-C7 99.1(5)

W-Cll 2.358(2) N1-W-N3 163.3(3) N2-C7-N3 110.1(7)

W-C12 2.375(2) N2-W-C12 155.16(19) W-N3-C7 61.4(4)

W-C13 2.358(2) C1-W-C13 167.61(8) W-N1-C1 179.5(6)



Table 5.7. Selected bond lengths (A) and angles () for com ound 24.
W-N1 1.720(3) C7-N2 1.407(5) N2-W-N3 60.95(12)

W-N2 1.966(3) C7-N3 1.281(5) N1-W-N2 103.16(14)

W-N3 2.290(3) C7-C8 1.488(5) W-N2-C7 100.9(2)

W-Cl1 2.3750(9) N1-W-N3 103.16(14) N2-C7-N3 108.0(3)

W-C12 2.3754(11) N2-W-C13 154.12(9) W-N3-C7 90.1(2)

W-C13 2.3679(10) Cll1-W-C12 166.01(4) W-N1-C1 174.0(3)















C3



C6
C2
C1



N1
C8



C7 -

C9

N2

C10

C11 N3
C13
C14

C12
C16

C15






Figure 5.10. Crystal structure of 19. Thermal ellipsoids are drawn at 40% probability and
hydrogens have been omitted for clarity.













C2A


SC5A

C4A


C6A


C8A


S / C3A



N1A













C10A


f / C11A


C9A


Figure 5.11. Crystal structure of 22. Thermal ellipsoids are drawn at 40% probability and
hydrogens have been omitted for clarity.
























C6I





N2





C7
N3
C8
C9

C11
C10




Figure 5.12. Crystal structure of 24. Thermal ellipsoids are drawn at 40% probability and
hydrogens have been omitted for clarity.









Experimental Procedures


General Procedures

Unless otherwise stated, all procedures were performed using standard Schlenk

techniques under nitrogen or argon or in a dry box filled with either nitrogen or argon.

All solvents used were dried using standard literature techniques and stored under

nitrogen over activated molecular sieves. All glassware was dried prior to use. All NMR

solvents were degassed using the freeze-pump-thaw method and stored over molecular

sieves inside a dry box. All reagents were purified using literature procedures prior to

use unless otherwise stated.

1H, 13C, and 31P NMR spectra were measured using a Varian Gemini 300, VXR 300,

or Mercury 300 spectrometer with C6D6, C7D8, or CDC13 as the solvent. The chemical

shifts for the 1H and 13C NMR spectra were reported in parts per million downfield from

tetramethylsilane (6 = 0 ppm) and were referenced to residual protons present in the

deuterated solvents. The chemical shifts of 31P spectra are reported in parts per million

and referenced with respect to external H3PO4 (6 = 0 ppm). Elemental analyses were

performed by either Complete Analysis Labs, Inc (Parsippany, New Jersey) or Robertson

Microlit Laboratories (Madison, New Jersey). Crystallographic studies were performed

by Dr. Khalil A. Abboud at the Center for X-ray Crystallography at the University of

Florida. Mass spectrometry was performed by Dr. David Powell and Maria Dancel at the

University of Florida. Film growth and characterization were carried out by Omar Bchir,

Kelly Green, Mark Hlad, and Hiral Ajmera in the lab of Prof. Timothy Anderson in the

Department of Chemical Engineering at the University of Florida. W(NPh)(1,8-

(Me3 SiN)2-C10H6)(Cl)2 and W(NPh)(o-(Me3 SiN)2C6H4)(C5H5N)2 were prepared

according to literature procedures.27' 37









Syntheses

Synthesis of W(NPh)(Me)2(1,8-(Me3SiN)2-Co1H6) (2)

A pentane solution (100 mL) of W(NPh)(1,8-(Me3SiN)2-Co1H6)(Cl)2 (1.00 g, 1.55

mmol) was cooled to -78 C. Two equivalents of MeMgCl in THF solution (3.0M, 1.04

mL, 3.11 mmol) were added dropwise via syringe. The reaction mixture was allowed to

warm to room temperature and was stirred for 3 hours. During this time, the solution

changed in color from black to dark red and precipitates formed. The reaction mixture

was filtered and the insoluble residue extracted with pentane (3 x 15 mL). The pentane

extracts were combined and concentrated in vacuo. The pentane solution was cooled to

-20 C for 16 hours during which time dark red crystals formed. The crystals were

filtered and dried in vacuo affording 0.628 g (67%) of 2. 1H NMR (C6D6): 6 0.39 (s,

18H, SiMe3); 1.32 (s, 6H, CH3); 6.49 (d, 2H, 2-DAN-H, J= 7 Hz); 6.80 (t, 1H, p-NPh-H,

J= 8 Hz); 7.02 (d, 2H, o-NPh-H, J= 8 Hz); 7.15 (t, 2H, 3-DAN-H, J= 8 Hz); 7.30 (d,

2H, 4-DAN-H, J= 8 Hz). There is one aromatic proton whose chemical shift could not be

identified due to overlap with other peaks. 13C NMR (C6D6): 6 2.4 (SiMe3); 48.5 (CH3);

122.0, 123.8, 125.7, 126.2, 127.8, 129.1, 139.2, 145.3, 155.6 (aromatic). There was one

carbon atom whose chemical shift could not be identified due to overlap with solvent or

other peaks. Anal. Calcd. for C24H35N3Si2W: C, 47.60; H, 5.83; N, 6.94. Found: C,

47.62; H, 5.87; N, 7.02.

Synthesis of W(NPh)(CH2C6H5)2(1,8-(Me3SiN)2-CioH6) (3)

A pentane solution (100 mL) of W(NPh)(1,8-(Me3SiN)2-CloH6)(Cl)2 (1.00 g, 1.55

mmol) was cooled to -78 C. Two equivalents of PhCH2MgCl in diethyl ether solution

(1.OM, 3.11 mL, 3.11 mmol) were added dropwise via syringe. The reaction mixture was

allowed to warm to room temperature and was stirred for 3 hours. During this time, the









solution changed in color from black to dark red and precipitates formed. The reaction

was filtered and the insoluble residue extracted with pentane (3 x 15 mL). The pentane

extracts were combined and concentrated in vacuo. The pentane solution was cooled to

-20 C for 16 hours during which time dark red crystals formed. The crystals were

filtered and dried in vacuo affording 0.844 g (72%) of 3. 1HNMR (C6D6): 6 0.24 (s,

18H, SiMe3); 3.12 (m, 4H, CH2Ph); 6.61 (d, 2H, 2-DAN-H, J= 7 Hz) 6.74 7.31 (19H

overlapping aromatic protons. 13C NMR (C6D6): 6 2.4 (SiMe3); 74.4 (CH2Ph); 121.6,

124.2, 124.8, 126.6, 127.2, 127.7, 129.1, 129.6, 139.2, 144.4, 150.8 (aromatic). There are

3 carbon atoms that could not be observed due to overlap with solvent or other peaks.

Synthesis of W(NPh)(CH2CH2C6H5)2(1,8-(Me3SiN)2-C1oH6) (4)

A pentane solution (130 mL) of W(NPh)(1,8-(Me3SiN)2-CioH6)(Cl)2 (1.50 g,

2.32 mmol) was cooled to -78 C. Two equivalents of 1.OM PhCH2CH2MgCl in THF

solution (1.0 M, 4.64 mL, 4.64 mmol) were added dropwise via syringe. The reaction

mixture was allowed to warm to room temperature and was stirred for 3 hours. During

this time, the solution changed in color from black to dark purple and precipitates formed.

The reaction mixture was filtered and the insoluble residue extracted with pentane (3 x 15

mL). The pentane extracts were combined and concentrated in vacuo. The pentane

solution was cooled to -200C for 16 hours during which time dark purple crystals formed.

The crystals were filtered and dried in vacuo affording 0.525 g (28%) of 4. 1H NMR

(C6D6): 6 0.42 (s, 18H, SiMe3); 2.28 (m, 4H, CH2CH2Ph); 3.11 (m, 4H, CH2CH2Ph);

6.74 (d, 2H, 2-DAN-H, J = 7.3Hz); 6.90 (t, 1H, p-NPh-H, J = 7 Hz); 6.80 7.24 (16H

overlapping aromatic protons); 7.31 (d, 2H, 4-DAN-H, J= 8 Hz). 13C NMR (C6D6): 6

2.2 (SiMe3); 41.1 (CH2CH2PH); 73.7 (CH2CH2PH); 120.6, 124.0, 125.8, 126.1, 127.8,

129.0, 129.4, 139.2, 145.2, 149.1, 155.8 (aromatic). There are 3 aromatic carbon atoms









whose chemical shifts could not be detected. Anal. Calcd. for C38H47N3Si2W: C, 58.08;

H, 6.03; N, 5.35. Found: C, 57.98; H, 6.18; N, 5.37.

Synthesis of W[(NSiMe3)CloH6](NPh)PMe3 (5).

A Young's ampoule was charged with 4 (0.300 g, .0382 mmol) in 30 mL of

benzene and excess PMe3 (- 10 eq.). The mixture was then warmed to 70 C for 48 hours

during which time the mixture slowly changed color from purple to wine red. The

solution was then transferred via cannula into a Schlenk tube, and the solvent was

removed in vacuo. The resulting solid was dissolved in minimal pentane and cooled to

-20C for 16 hours. The resulting crystals were isolated by filtration and dried in vacuo

to yield 4 (0.142 g, 57%) as dark purple crystals. H NMR (C6D6): 6 0.20 (s, 9H,

SiMe3); 0.60 (s, 9H, WNSiMe3), 1.15 (d, 9H, PMe3,JP-H= 10 Hz), 6.75 (t, 1H, p-NPh-H,

J= 7 Hz); 7.23 7.18 (3H overlapping aromatic protons) 7.23 (d, 2H, o-NPh-H, J= 7

Hz); 7.42 (t, 1H, 3-Nap-H, J= 8 Hz); 7.52 (t, 1H, 6-Nap-H, J= 8 Hz); 7.82 (t, 2H, m-

NPh-H, J= 7 Hz). 13C NMR (C6D6): 6 3.4 (SiMe3); 3.6 (WNSiMe3); 17.3 (PMe3);

110.8, 116.6, 126.1, 126.6, 127.5, 127.7, 127.9, 128.8, 129.0, 136.1, 138.3, 138.3, 158.0,

185.2 (aromatic). 31P NMR (C7Ds): 1.02 (s, Jw-p = 268.6Hz).

Synthesis of W(NPh)(o-(Me3SiN)2C6H4)(OCH2C6H5)(OCH(2-CsH4N)(C6H5) (8)

W(NPh)(o-(Me3SiN)2C6H4)(C5H5N)2 (0.800 g, 1.17 mmol) was dissolved in 80 mL

of diethyl ether. Two equivalents of benzaldehyde (0.238 mL, 2.34 mmol) were then

added via syringe. The mixture was stirred for 30 minutes during which time the solution

changed color from dark purple to dark red. The solvent was removed in vacuo. The

resulting solid was re-dissolved in minimal diethyl ether and layered with pentane and

cooled to -20 OC for 16 hours. The resulting crystals were isolated by filtration and dried

in vacuo affording 0.758 g (76%) of 8. 1H NMR (C6D6): 6 0.53 (s, 9H, SiMe3); 0.70 (s,









9H, SiMe3); 5.72 (d, 1H, OCH2Ph, J= 14 Hz); 5.84 (d, 1H, OCH2Ph, J= 14 Hz); 6.30

(2H overlapping aromatic protons); 6.48 (s, 1H, OCHPyPh); 6.50 7.21 (18H

overlapping aromatic protons); 7.34 (d, 2H, o-NPh-H, J= 8 Hz); 8.43 (d, 1H, 6-Py-H,

J= 5 Hz). 13C NMR (C6D6): 6 3.2 (SiMe3); 4.2 (SiMe3); 76.7 (OCH2Ph); 89.0

(OCHPyPh); 119.2, 119.4, 120.1, 120.4, 121.4, 122.4, 126.6, 126.7, 127.0, 128.0, 129.0,

129.2, 129.4, 138.4, 144.6, 147.8, 155.2, 165.2 (aromatic). There are five aromatic

carbon atoms whose chemical shifts could not be observed due to overlap with other

peaks.

Synthesis of W(NPh)(o-(Me3SiN) 2C6H4)(OCH2(p-C6H4CH3)(OCH(2-CsH4N)(p-

C6H4CH3) (9)

W(NPh)(o-(Me3SiN)2C6H4(C5H5N)2 (0.800 g, 1.17 mmol) was dissolved in 80 mL

of diethyl ether. Two equivalents ofp-tolualdehyde (0.182 mL, 2.34 mmol) were then

added via syringe. The mixture was stirred for 30 minutes during which time the solution

changed color from dark purple to dark red. The solvent was removed in vacuo. The

resulting solid was re-dissolved in minimal diethyl ether and layered with pentane and

cooled to -20 OC for 16 hours. The resulting crystals were isolated by filtration and dried

in vacuo affording 0.572 g (57%) of 9. 1H NMR (C6D6): 6 0.50 (s, 9H, SiMe3); 0.68 (s,

9H, SiMe3); 2.07 (s, 6H, PhCH3); 5.65 (d, 1H, OCH2Ph, J= 14 Hz); 5.89 (d, 1H,

OCH2Ph, J= 14 Hz); 6.32 (2H overlapping aromatic protons); 6.48 (s, 1H, OCHPyPh);

6.49 7.21 (17H overlapping aromatic protons); 7.35 (d, 2H, o-NPh-H, J= 8 Hz); 8.45

(d, 1H, 6-Py-H, J= 5 Hz). 13C NMR (C6D6): 6 3.24 (SiMe3); 4.4 (SiMe3); 21.4 (PhCH3);

76.0 (OCH2PhCH3); 88.3 (OCHPyPhCH3); 119.2, 119.4, 120.1, 120.2, 121.5, 122.4,

126.4, 126.5, 126.5, 128.8, 129.3, 130.2, 136.3, 138.5, 141.7, 141.8, 147.8, 149.9, 155.3,









165.6 (aromatic). There are 3 aromatic carbon atoms whose chemical shifts could not be

observed due to overlap with other peaks.

Synthesis of W(NPh)(o-(Me3SiN)2C6H4(C5D5N)2 (7-do0)

W(NPh)(o-(Me3SiN)2C6H4(C5D5N)2 was synthesized according to literature

procedures for the synthesis of W(NPh)(o-(Me3SiN)2C6H4(C5H5N)2 substituting C5D5N

for CsH5N.[36]

Synthesis of W(NPh)(o-(Me3SiN)2C6H4)(OCHD(p-C6H4CH3)(OCH(2-CD4N)( p-

C6H4CH3) (9-ds)

W(NPh)(o-(Me3SiN)2C6H4(C5D5N)2 (1.00 g, 1.44 mmol) was dissolved in 100 mL

of diethyl ether. Two equivalents ofp-tolualdehyde (0.225 mL, 2.88 mmol) were then

added via syringe. The mixture was stirred for 30 minutes during which time the solution

changed color from dark purple to dark red. The solvent was removed in vacuo. The

resulting solid was re-dissolved in minimal diethyl ether and layered with pentane and

cooled to -20 OC for 16 hours. The resulting crystals were isolated by filtration and dried

in vacuo affording 0.710 g (57%) of 9-ds. 1H NMR (C6D6): 6 0.45 (s, 9H, SiMe3); 0.63

(s, 9H, SiMe3); 2.02 (s, 6H, PhCH3); 5.60 (s, 1H, OCHDPh); 6.70 7.20 (15H

overlapping aromatic protons) 7.32 (d, 2H, o-NPh-H, J= 7 Hz).

Synthesis of W(NPh)(o-(Me3SiN)2C6H4)(OCH2(p-C6H40CH3)(OCH(2-CH4N)( p-

C6H40CH3) (10)

W(NPh)(o-(Me3SiN)2C6H4(C5H5N)2 (0.300 g, 0.439 mmol) was dissolved in 60 mL

of diethyl ether. Two equivalents ofp-anisaldehyde (0.108 mL, 0.877 mmol) were then

added via syringe. The mixture was stirred for 40 minutes during which time the solution

changed color from dark purple to dark red. The solvent was removed in vacuo. The

resulting solid was re-dissolved in minimal diethyl ether and layered with pentane and









cooled to -20 OC for 16 hours. The resulting crystals were filtered and dried in vacuo

affording 0.250 g (64%) of 10. H NMR (C6D6): 6 0.50 (s, 9H, SiMe3); 0.69 (s, 9H,

SiMe); 3.33 (s, 3H, PhOCH3); 3.39 (s, 3H, PhOCH3); 5.62 (d, 1H, OCH2PhOCH3,J

13.8Hz); 5.86 (d, 1H, OCH2PhOCH3,J= 68.2Hz); 6.32 (2H overlapping aromatic

protons); 6.48 (s, 1H, OCHPyPh OCH3); 6.54 7.20 (16H overlapping aromatic

protons); 7.38 (d, 2H, o-NPh-H, J= 7.3Hz); 8.46 (d, 1H, 6-Py-H, J= 5.3Hz). 13C NMR

(C6D6): 6 3.25 (SiMe3); 4.57 (SiMe3); 55.08 (PhOCH3); 55.16 (PhOCH3); 75.45

(OCH2PhOCH3); 88.38 (OCHPyPhOCH3); 114.21, 114.40, 119.17, 119.38, 119.79,

120.13, 121.53, 122.42, 126.56, 126.76, 130.16, 136.51, 136.83, 138.44, 147.91, 150.09,

155.21, 160.73, 165.69 (aromatic). There are 4 aromatic carbon atoms whose chemical

shifts could not be observed due to overlap with other peaks.

Synthesis of W(NPh)(o-(Me3SiN)2(OCH2(2-C4H3S)(OCH(2-CsH4N)(2-C4H3S) (11)

W(NPh)(o-(Me3SiN)2C6H4(C5H5N)2 (0.600 g, 0.878 mmol) was dissolved in 80 mL

of diethyl ether. Two equivalents of 2-thiophenecarboxaldehyde (0.164 mL, 1.76 mmol)

were then added via micro syringe. The mixture was stirred for 40 minutes during which

time the solution changed color from dark purple to dark red. The solvent was removed

in vacuo. The resulting solid was re-dissolved in minimal diethyl ether and layered with

pentane and cooled to -200C for 16 hours. The resulting crystals were filtered and dried

in vacuo affording 0.509 g (70%) of 11. 1H NMR (CDC13): 6 0.26 (s, 9H, SiMe3); 0.45

(s, 9H, SiMe3); 5.55 (d, 1H, OCH2C4H3S, J= 72.0Hz); 5.65 (d, 1H, OCH2 C4H3S, J=

14.0Hz); 6.49 (2H overlapping aromatic protons); 6.51 (s, 1H, OCHPy C4H3S); 6.60 -

7.50 (15H overlapping aromatic protons) 8.54 (d, 1H, 6-Py-H, J= 5.2Hz). 13C NMR

(CDC13): 6 2.4 (SiMe3); 3.7 (SiMe3); 83.3 (OCHPy C4H3S); 118.7, 118.8, 119.2, 119.4,

122.4, 123.7, 125.7, 126.1, 126.3, 126.3, 126.4, 126.7, 128.0, 147.8, 149.8 (aromatic).