<%BANNER%>

Acoustic characteristics of arabic fricatives

University of Florida Institutional Repository

PAGE 1

ACOUSTICCHARACTERISTICS OFARABICFRICATIVES By MOHAMEDALIAL-KHAIRY ADISSERTATIONPRESENTEDTOTHEGRADUATESCHOOL OFTHEUNIVERSITYOFFLORIDAINPARTIALFULFILLMENT OFTHEREQUIREMENTSFORTHEDEGREEOF DOCTOROFPHILOSOPHY UNIVERSITYOFFLORIDA 2005

PAGE 2

Copyright2005 by MohamedAliAl-Khairy

PAGE 3

Tomyfatherwhodidnotlivetoseethefruitofhiswork.

PAGE 4

ACKNOWLEDGMENTS AfterfnishingwritingthisdissertationonarainysummernightIdecided nottobotherwithalengthyacknowledgmentsection.AfterallIwastheonewho wroteit.Well,leavingegoandfalseprideaside,thisworkcouldnothavebeen donewithoutthehelpofmany.Firstandforemost,thanksgotoTheAlmighty GODforHisguidanceandblessingswithoutwhichgraduateschoolwouldhave beenaworsenightmare.Mygratitudegoesalsotomywonderfulsupervisorand mentorDr.RatreeWaylandwhosededicationtoherstudents,teaching,and researchisbeyondhighestexpectations.Withoutherhelp,guidelines,constant encouragement,andsupport,thisworkwouldnothavebeenpossible.Members ofmysupervisorycommittee(Dr.GillianLordandDr.CarolineWiltshire fromLinguistics,andDr.RahulShirvastavfromCommunicationSciencesand Disorders)wereoftheutmosthelpintheprocessoffnishingthiswork. MystayinGainesvilleintroducedmetomanypeople.Mostwereniceand cheerfulandsomeonecoulddefnitivelylivewithout.Iwillskipthelatter grouptosavespace.However,amongsuchniceandwonderfulpeopleIgot toknowduringthisjourneyarethewonderfulstudents,faculty,andstaof theLinguisticsDepartmentwhowereoftremendoushelpbothpersonallyand academically.MyspecialthanksandgratitudegoalsotoDr.AidaBamiaandDr. HaigDer-HoussikianfromtheDepartmentofAfricanandAsianLanguagesand Literature.Theirsupervision,friendship,andencouragementwentfarbeyondthe responsibilitiesofmentorstothoseofparents.ForthatIwillbeeternallygrateful. Ialsowouldliketothankmystudypartners,YousefAl-Dlaigan,whowasunjustly forcedtochangehiscareer,andAbdulWaheedAl-Saadi,whowasbraveenough iv

PAGE 5

tofnishhisPh.D.IregrettosaythatIamstillunclearoftheprocessofgene transformationinstrawberryandcitrus.Ihopethoughyoulearnedfrommehow toreadaspectrogram.Itriedmybest. Nowisthefunpart:thankingmyfriendsinthephoneticslab.Listedin chronologicalorderoftheirliberationfromschoolareRebeccaHill,JodiBray, PhilipMonahan,Sang-HeeYeon,HeeNamPark,VictorPrieto,andManjula Shinge.YettofeelthewonderfulbreezeoutsideTurlingtonbasementaremygreat friendsAndreaDallas,BinLi,andPriyankooSarmah.Ithankthemforallthe cheerfulmomentsandlaughswesharedattheUniversityofFlorida.Althoughlife mighttakeusintodierentroutes,ourfriendshipiseternal. Althoughtheyareinadierenttimezone,Ithankmyfriendsonthewest costandacrosstheAtlanticfortheirgreatadviceandemotionalsupport,without whichlongnightswoulddefnitelyhavebeenlonger.Iwillsendthemmyphone billslater.IamsurethatIleftoutsomenames;forthoseunintentionallymissedI extendmyapologiesandsincerethanks. Theacousticanalysesinthisdissertaionwerecarriedoutinatimelymanner thankstotheexistenceofthewonderful free PRAAT programandtheabundant helpandsuggestionfromitsauthorsandthe PRAAT usercommunity.Also,Iwas extremelyfortunatetoescapethenightmareoftypesettingusingthepopularbut-not-really-friendlycommercialsoftware.IthankRonSmithformakinghis ufthesis L A T E Xclassfreelyavailable. Acrossoceansandcontinents,theprayersandencouragementofmyparents andsiblingswereadrivingforceandendlessmotivationtofnishandjointhem backhome.AlthoughGodhadotherplansformyfatherandolderbrother,Iam suretheyareproudofwhattheirprayersfromhighabovehaveaccomplished. Finally,wordsfallshortindescribingmygratitudeandthankstowardmywife, Nadaa;andkids,FaisalandFarah.Theyhavesueredthroughthisdissertation v

PAGE 6

almostasmuchasIhave;maybeevenmore.ThroughthemanynightsIspentat thelab,theyhaveshownendlesspatience,love,andunderstanding.Itrulycannot imaginehavinggonethroughthisprocesswithoutsuchamazingloveandsupport. PartsofthisworkweresupportedbyaMcLaughlinDissertationFellowship fromtheCollegeofLiberalArtsandSciences,UniversityofFlorida. vi

PAGE 7

TABLEOFCONTENTS page ACKNOWLEDGMENTS ............................. iv LISTOFTABLES ................................. ix LISTOFFIGURES ................................ x ABSTRACT .................................... xii CHAPTER 1INTRODUCTION .............................. 1 2LITERATUREREVIEW .......................... 5 2.1Introduction .............................. 5 2.2FricativeProduction ......................... 5 2.3AcousticCuestoFricativePlaceofArticulation .......... 7 2.3.1AmplitudeCues ........................ 7 2.3.2DurationCues ......................... 13 2.3.3SpectralCues ......................... 15 2.3.4FormantTransitionCues ................... 22 2.4StudiesofArabicFricatives ..................... 26 3METHODOLOGY .............................. 29 3.1DataCollection ............................ 29 3.1.1Participants .......................... 29 3.1.2Materials ............................ 30 3.1.3Recording ........................... 30 3.2DataAnalysis ............................. 31 3.2.1SegmentationofSpeech .................... 31 3.2.2AcousticAnalyses ....................... 34 3.3StatisticalAnalyses .......................... 40 4AMPLITUDEANDDURATION ...................... 42 4.1AmplitudeMeasurements ....................... 42 4.1.1NormalizedFricationNoiseRMSAmplitude ........ 42 4.1.2RelativeAmplitudeofFricationNoise ............ 45 vii

PAGE 8

4.2TemporalMeasurements ....................... 56 4.2.1AbsoluteDurationofFricationNoise ............ 56 4.2.2NormalizedDurationofFricationNoise ........... 59 5SPECTRALMEASUREMENTS ...................... 63 5.1SpectralPeakLocation ........................ 63 5.2SpectralMoments ........................... 69 5.2.1SpectralMean ......................... 71 5.2.2SpectralVariance ....................... 74 5.2.3SpectralSkewness ....................... 80 5.2.4SpectralKurtosis ....................... 89 6FORMANTTRANSITION ......................... 96 6.1SecondFormant( F 2)atTransition ................. 96 6.2LocusEquation ............................ 100 7STATISTICALCLASSIFICATIONOFFRICATIVES .......... 102 7.1DiscriminantFunctionAnalysis ................... 102 7.2ClassifcationAccuracyofDFA ................... 103 7.3ClassifcationPowerofPredictors .................. 105 7.4ClassifcationResults ......................... 105 8GENERALDISCUSSION .......................... 111 8.1TemporalMeasurement ........................ 112 8.2AmplitudeMeasurement ....................... 113 8.3SpectralMeasurement ........................ 115 8.4TransitionInformation ........................ 118 8.5DiscriminantAnalysis ......................... 119 8.6Conclusion ............................... 120 REFERENCES ................................... 121 BIOGRAPHICALSKETCH ............................ 127 viii

PAGE 9

LISTOFTABLES Table page 1{1ArabicFricatives .............................. 3 4{1RelativeAmplitude:VowelContext ................... 48 4{2MeanRelativeAmplitude ......................... 53 5{1SpectralPeakLocation .......................... 65 5{2SpectralMoments ............................. 72 5{3SpectralSkewness:SignifcantContrastsforVoicedFricatives ..... 86 5{4SpectralSkewness:SignifcantContrastsforVoicelessFricatives .... 86 6{1SecondFormantatTransition ...................... 97 6{2LocusEquation:Slopeand y -intercept .................. 101 7{1PriorProbabilitiesforGroupMembership ................ 103 7{2VarianceAccountedforbyDFAFunctions ................ 104 7{3OverallVoicelessClassifcation ...................... 107 7{4Cross-ValidatedClassifcationResults .................. 107 7{5OverallVoicedClassifcation ....................... 109 7{6Cross-ValidatedVoicedClassifcation .................. 109 7{7OverallVoicelessClassifcation ...................... 109 7{8Cross-ValidatedVoicelessClassifcation ................. 110 ix

PAGE 10

LISTOFFIGURES Figure page 3{1ExampleofSegmentation ......................... 32 3{2Segmentationof/ Q / ........................... 33 3{3Hammingvs.KaiserWindow ...................... 35 3{4Duration .................................. 36 4{1FricationNoiseRMSAmplitude ..................... 43 4{2FricationNoiseRMSAmplitude:VowelContext ............ 44 4{3FricationNoiseRMSAmplitude:PlaceandVoicing .......... 45 4{4RelativeAmplitude ............................ 47 4{5RelativeAmplitude:PlaceandVoicing ................. 49 4{6RelativeAmplitude;PlaceandShortVowels .............. 51 4{7RelativeAmplitude;PlaceandLongVowels .............. 52 4{8RelativeAmplitude:VoicingandShortVowels ............. 54 4{9RelativeAmplitude:VoicingandLongVowels ............. 55 4{10FricativeDuration:PlaceandVoicing .................. 57 4{11FricativeDuration:PlaceandVoicingInteractions ........... 58 4{12FricativeDuration:VowelContext .................... 59 4{13NormalizedFricationNoise:PlaceandVoicing ............. 60 4{14NormalizedFricativeDuration:PlaceandVoicingInteractions .... 61 4{15NormalizedFricationNoise:VowelContext ............... 62 5{1SpectralPeakLocation:PlaceandVoicing ............... 66 5{2SpectralPeakLocation:Place VoicingInteraction .......... 67 5{3SpectralPeakLocation:Place Vowels ................ 68 5{4SpectralPeakLocation:Place ShortVowelInteraction ....... 69 x

PAGE 11

5{5SpectralPeakLocation:Place LongVowelInteraction ....... 70 5{6SpectralMean:PlaceandVoicing .................... 75 5{7SpectralMean:Voice ........................... 76 5{8SpectralMean:Place VoicingInteraction .............. 77 5{9SpectralMean:Vowel .......................... 78 5{10SpectralVariance:PlaceandVoicing .................. 81 5{11SpectralVariance:Place VoicingInteraction ............. 82 5{12SpectralVariance:Vowel ........................ 83 5{13SpectralSkewness:PlaceandVoicing .................. 85 5{14SpectralSkewness:Voice ......................... 87 5{15SpectralSkewness:Place VoicingInteraction ............ 88 5{16SpectralSkewness:Vowel ......................... 89 5{17SpectralKurtosis:PlaceandVoicing .................. 91 5{18SpectralKurtosis:Voicing ........................ 93 5{19SpectralKurtosis:Place Voiceinteraction .............. 94 5{20SpectralKurtosis:Vowel ......................... 95 6{1SecondFormant:Place VoicingInteraction ............. 98 6{2SecondFormant:VowelContext ..................... 99 6{3LocusEquation .............................. 100 7{1DiscriminationPlane ........................... 108 7{2DiscriminationPlanebyVoicing ..................... 110 xi

PAGE 12

AbstractofDissertationPresentedtotheGraduateSchool oftheUniversityofFloridainPartialFulfllmentofthe RequirementsfortheDegreeofDoctorofPhilosophy ACOUSTICCHARACTERISTICS OFARABICFRICATIVES By MohamedAliAl-Khairy August2005 Chair:RatreeWayland MajorDepartment:Linguistics Theacousticcharacteristicsoffricativeswereinvestigatedwiththeaim offndinginvariantcuesthatclassifyfricativesintotheirplaceofarticulation. However,suchinvariantcuesarehardtorecognizebecauseofthelong-noticed problemofvariabilityintheacousticsignal.Bothintrinsicandextrinsicsources ofvariabilityinthespeechsignalleadtoadefectivematchbetweenasignal anditspercept.Nevertheless,suchinvariancecanbecircumventedbyusing appropriateanalysismethods.The13fricativesofModernStandardArabic ( /f,T,D,D Q ,s,s Q ,z,S,X,K,,Q,h/ )wereelicitedfrom8maleadultspeakers in6vowelcontexts( /i,i:,a,a:,u,u:/ ).Theacousticcuesinvestigatedincluded amplitudemeasurements(normalizedandrelativefricationnoiseamplitude), spectralmeasurements(spectralpeaklocationandspectralmoments),temporal measurements(absoluteandnormalizedfricationnoiseduration),andformant informationatfricative-voweltransition(F2atvowelonsetandlocusequation). Forthemostpart,fricativesinArabichadpatternssimilartothosereported forsimilarfricativesinotherlanguages(e.g.,English,Spanish,Portuguese).A discriminantfunctionanalysisshowedthatamongallthecuesinvestigated,spectral xii

PAGE 13

mean,skewness,secondformantatvowelonset,normalizedRMSamplitude, relativeamplitude,andspectralpeaklocationwerethevariablescontributing themosttooverallclassifcationwithasuccessrateof83.2%.Whenvoicingwas specifedinthemodel,thecorrectclassifcationrateincreasedto92.9%forvoiced and93.5%forvoicelessfricatives. xiii

PAGE 14

CHAPTER1 INTRODUCTION Sincetheearlyyearsofspeechresearch,studies(usingvariousmodelsand methods)havefocusedonfndingthepropertiesthatdistinguishamongnaturally producedspeechsound.Manysuchstudiesinvestigatedthepropertiesofthe acousticsignalthroughwhichsoundistransmittedfromspeakertohearer. However,thetaskiscomplicatedbythelong-noticedproblemofvariabilityin theacousticsignalresultinginadefectivematchbetweenasignalanditspercept ( Liberman,Cooper,Shankweiler,andStuddert-Kennedy 1967 ).Theproduction mechanismofspeechsounds,particularlyfricatives,involvesintrinsicsourcesof variabilityarisingfromchangesintheshapeofthevocaltractandtherateofair row( Strevens 1960 ; TjadenandTurner 1997 ).Variabilityinthespeechsignalalso arisesfromextrinsicsourcesincludingspeakerage( Pentz,Gilbert,andZawadzki 1979 ),vocaltractsize( HughesandHalle 1956 ),speakingrate( Nittrouer 1995 ), andlinguisticcontext( Tabain 2001 ).Variabilityinspeechalsoisoftenaresultofa combinationofthesefactors. Withstandingthevariabilityfoundinthespeechsignal,numerousstudies ( Stevens 1985 ; BehrensandBlumstein 1988a b ; Forrest,Weismer,Milenkovic,and Dougall 1988 ; Sussman,McCarey,andMatthews 1991 ; HedrickandOhde 1993 ; Jongman,Wayland,andWong 2000 ; AbdelattyAli,VanderSpiegel,andMueller 2001 ; Nissen 2003 )foundinvariantcuesinthespeechsignalwhentheappropriate analysesarecarriedout.Alongthislineofresearch,ourstudyinvestigatedthe defningpropertiesoffricativesoundsasproducedinModernStandardArabic (MSA). 1

PAGE 15

2 WeusedArabicfricativesforthreeequallyimportantreasons.First,the articulatoryspaceoffricativesinArabicspansacrossmostoftheplacesof articulationinthevocaltract,startingfromthelipsandendingattheglottis. Second,unlikemostofthelanguagesusedinacousticstudiesoffricatives, Arabichastwouniquefeaturesthatserveaphonemicdistinction:pharyngeal co-articulationandsegmentlength.Specifcally,aphonemicdistinctionexists betweenplainfricatives( /D/and/s/ )andtheirpharyngealizedcounterparts /D Q /and/s Q / inArabic.Furthermore,althoughgovernedbysomephonological distributionrules,consonantandvowellengthinArabicarephonemic.Third,most studiesontheacousticcharacteristicsoffricativeswereconductedpredominantly withreferencetoEnglishfricatives.GiventhephoneticstatusofArabicand thegapintheliteratureduetothelackofArabic-relatedresearch,ourstudyis theoreticallyandempiricallyimportant.Ourfndingswillcontributegenerally tothewayfricativeproductionisviewedandspecifcallytothewaylanguages dierinthatrespect.Further,suchfndingswillaidspeechsynthesisandparsing softwaresrelatedtotheless-understood,yetimportant,Arabiclanguage. Asmentioned,bothconsonantandvowellengtharephonemicinArabic. However,tocompareandcontrasttheperformanceofcuesusedinourstudywith thosereportedintheliteratureforotherlanguages,weexaminedonlyvowel{length variations.TheinventoryoffricativesinArabicisshowninTable 1{1 .Arabic has11fricatives,withonly4pairsinvoicingcontrast.Also,forvoiceddental andvoicelessalveolarfricatives,apharyngealizedcounterpartalsoexists.The voicedpost-alveolarfricative /Z/ wasexcluded,sinceitwasarticulatedinmost oftheeliciteddataasanaricate // .StudiesofStandardArabicandArabic dialectologysuggestthat /Z/ isrealizedaseither /Z,,g/or/j/ dependingonthe geographicalregioninwhichArabicisspoken( Kaye 1972 ).

PAGE 16

3 Table1{1.PlaceofarticulationofArabicfricatives LabioDentalAlveolar PostUvularPharyngealGlottal dental alveolar voiceless fTsSXh voiced DzKQ /D/and/s/ havepharyngealizedcounterparts /D Q /and/s Q / Bothlocal(static)andglobal(dynamic)cueshavebeenshowntoparticipate intheidentifcationof(English)fricatives.Specifcally,threemainacousticfeatures havebeenexaminedinresearchaimedtodistinguishfricatives:thespectral propertiesofthefricationnoise,therelationbetweenthefrequencycharacteristics offricationnoiseversusthevowel,anddurationoffricationnoise.Ourstudy aimedtodescribetheacousticcharacteristicsofArabicfricativesusingmanyof theacousticmeasurementsusedinotherrelatedstudieswithspecifcinterestin fndingcuesthatdierentiatebetweenplainandpharyngealizedfricatives.Our studyalsoaimedtoseeifphonemicdierencesinvowellengthaecttheacoustic cuesmeasured.Ourdatawereelicitedfrom8maleadultspeakers(meanage= 20)whohadnohistoryofhearingorspeakingimpairmentsandwhohadlimited experiencewithEnglishasasecondlanguage. Cuesinvestigatedinourstudywereamplitudemeasurements(normalizedand relativefricationnoiseamplitude),spectralmeasurements(spectralpeaklocation andspectralmoments),temporalmeasurements(absoluteandnormalizedfrication noiseduration),andformantinformationatfricative-voweltransition(F2atvowel onsetandlocusequation).Normalizedamplitudeisdefnedhereastheratio betweentheaverageRMSamplitude(indB)ofthreeconsecutivepitchperiods atthepointofmaximumvowelamplitudeandtheRMSamplitudeoftheentire fricationnoise.Relativeamplitude,ontheotherhand,isdefnedastheamplitude ofthefricationnoiserelativetothevowelamplitudemeasuredincertainfrequency regions.Spectralpeaklocationrelatesthefricativeplaceofarticulationtothe

PAGE 17

4 frequencylocationofenergymaximuminthefricationnoise.Spectralmoments analysisisastatisticalapproachthattreatsFFTspectraasarandomprobability distributionfromwhichthefrstfourmoments(mean,variance,skewness,and kurtosis)arecalculated.Spectralmeanreferstotheaverageenergyconcentration andvariancetoitsrange.Skewness,ontheotherhand,isameasureofspectraltilt thatindicatesthefrequencyofmostenergyconcentration.Kurtosisisanindicator ofthedistributionpeakedness.Formanttransitionswereassessedusinglocus equationsthatrelatesecondformantfrequencyatvowelonset(F2 onset )tothatat vowelmidpoint(F2 vowel ). Alongwithreportinghoweachoftheacousticmeasuresmentionedabove dierentiatesbetweendierentplacesoffricativesarticulation,weusedastatistical method(discriminantfunctionanalysis)tofndthemostparsimoniouscombination ofacousticcuesthatdistinguishamongthedierentplacesoffricativearticulation andthecontributionofeachselectedcuetotheoverallclassifcationoffricatives intotheirplacesofarticulation.

PAGE 18

CHAPTER2 LITERATUREREVIEW 2.1 Introduction Inthischapterwereviewrelevantliteraturethatdealswiththeacoustic characteristicsthathavebeenshowntobeeectiveindierentiatingamong fricativeplaceofarticulationandvoicingintheworld'slanguages.Giventhe factthatcertainfricativesthatexistinStandardArabic(e.g.,pharyngealizedvs. non-pharyngealized)donotoccurinotherlanguagesoftheworld,inthischapter, wealsodiscusswhethertheseacousticcueswillbeeectiveindierentiating acousticallyamongStandardArabicfricatives. 2.2 FricativeProduction Fricativeproductionisbestdescribedintermsofthesource-fltertheoryof speechproduction( Fant 1960 ).Accordingtothattheory,speechcanbemodeled asaresultoftwoindependentcomponents:asourcesignal(whichcouldbethe glottalsource,ornoisegeneratedatacompressedlevelinthevocaltract);anda flter(rerectingtheresonanceinthecavitiesofthevocaltractdownstreamfrom theglottis,ortheconstriction). Thebasicmechanismforfricativeproductionisthataturbulenceformsin theairrowatapointintheoralcavity.Togeneratesuchturbulence,asteady airrowwithvelocitygreaterthanacriticalnumber 1 passesthroughanarrow constrictionintheoralcavityandformsajetthatmixeswithsurroundingairin 1 ThisnumberisReynold'sNumber(Re)whichisadimensionlessquantitythat relatestheconstrictionsizetothevolumevelocityneededtoproduceturbulencein theair.Forspeech Re> 1800( KentandRead 2002 ). 5

PAGE 19

6 thevicinityofaconstrictiontogenerateeddies.Theseeddies,whicharerandom velocityructuationsintheairrow,actasthesourceforfricationnoise( Stevens 1971 ).Dependingonthenatureoftheconstriction,fricationnoisecanalsobe generatedateitheranobstacleorawall( Shadle 1990 ).Accordingto Shadle obstaclesource referstofricativesinwhichsoundisgeneratedprimarilyatarigid bodyperpendiculartotheairrow.Anexampleistheproductionofvoiceless alveolarandvoicelesspost-alveolarfricatives( /s,S/ ):theupperandlowerteeth, respectively,actasthespoilerfortheairrow.Suchsourcesarecharacterizedby amaximumsourceamplitudeforagivenvelocity.Ontheotherhand, wallsource occurswhensoundisgeneratedprimarilyalongarigidbodyparalleltotheair row.Spectrumsofsoundsgeneratedbyawallsource,likevoicedandvoiceless velarfricatives( /x,G/ ),arecharacterizedbyaratbroadpeakwithlessamplitude thansoundsofobstaclesources( Shadle 1990 ).Vibrationofthevocalfoldsalso addstothesourcesresponsibleforvoicedfricativeproduction. Whateverthesource,theresultingturbulenceisthenmodifedbythe resonancecharacteristicsofthevocaltract( flter ).Thespectrumoftheproduct ofsuchaflterrepresentstheeectoftransferfunctionofthevocaltractwhich inturndependson1)thenaturalfrequenciesofthecavitiesanteriortothe constriction(poles),2)theradiationcharacteristicsofthesoundleavingthemouth, and3)theresonantfrequencyoftheposteriorcavity(zeros).Forfricatives,the vocaltractistightlyconstrictedandhencethecouplingbetweenthefrontandback cavitiesissmall( Johnson 1997 ).Therefore,thetransferfunctionofthevocaltract forfricativesislargelydependentontheresonancesofthefrontcavity.The n th resonancecanbecalculatedusingEquation( 2{1 )where c isthespeedofsoundand l isthelengthofthevocaltract.Incaseastrongcouplingoccursbetweenthefront andbackcavities,suchaswhenthe\constrictionisgraduallytapered"( Kentand Read 2002 ,p.43),theresonancesofthebackcavityarecalculatedusingEquation

PAGE 20

7 ( 2{2 ).Resonancesofthebackandfrontcavitiessharingthesamefrequencyand bandwidthcanceleachotherout. fn front = (2 n )Tj/T1_0 11.955 Tf11.955 0 Td(1) c 4 l (2{1) fn back = ( n ) c 2 l (2{2) 2.3 AcousticCuestoFricativePlaceofArticulation Bothlocal(static)andglobal(dynamic)cueshavebeenshowntoparticipate withdierentdegreesintheidentifcationof(English)fricatives.Thethreemain acousticcuesthathavebeenofmostinterestintheliteratureonfricativesarethe amplitudeandspectralpropertiesofthefricationnoise,therelationshipbetween thefrequencycharacteristicsoffricationnoiseandthoseofthevowel,andtherole ofdurationoffricationnoiseindistinguishingfricativeplaceandvoicing. 2.3.1 AmplitudeCues 2.3.1.1 Fricationamplitude Moststudiesoffricationnoiseamplitudehavefocusedon(English)voiceless fricatives,andfoundsimilarresults:sibilants( /s,z,S,Z/ )havehigheramplitude thannonsibilants( /f,v,T,D/ )withnodierenceswithineachclass.Thisdierence inamplitudebetweensibilantsandnonsibilantsispredictableifonelooksintothe aerodynamicsofproducingthesefricatives.Forexample,toexaminefricative productionmechanisms, Shadle ( 1985 )usedamechanicalmodelinwhich constrictionarea,length,locationcanvary,andthepresenceorabsenceofan obstaclecanbemanipulated.Basedonresultsfromspectraproducedusingsucha model, Shadle ( 1985 )concludedthatthelowerteethactasanobstacleatsome3 cmdownstreamfromthenoisesourceofsibilantconstriction.Suchconfguration resultsinanincreaseinturbulenceoftheairrow,whichinturncausesanincrease inthesibilantamplitude.Nonsibilantfricatives,ontheotherhand,havenosuch obstacle,resultinginverylowenergylevels.Thedierencebetweenthesibilant

PAGE 21

8 andnonsibilantfricativeswithregardtofricationamplitudewasalsofoundtohave auditorysalience. McCasland ( 1979 )studiedtheroleofamplitudeasaperceptual cuetofricativeplaceofarticulation.Hecross-splicednaturallyspokensyllables ofEnglish /f,T,s,S/and/i/ suchthatthefricativepartin /si/and/Si/ was cross-splicedtothevocalicpartofboth /fi/and/Ti/ .Theoverallamplitudeofthe spliced-infricationnoisewasattunedtothesamelevelofintensityasthatofthe originalnonsibilantfricativebyreducing /s,S/ amplitudetothatof /f/and/T/ Theresultingfricative-vowelsyllablessoundedlike /fi/and/Ti/ whenthevocalic partoftheutterancewascomingfromanoriginal /fi,Ti/ ,respectively.These fndingsledMcCaslandtoconcludethatthelowamplitudeofnonsibilantfricatives wasusedasaperceptualcuetodistinguishthemfromthesibilants /s,S/ .However, becauseofthecross-splicingmethodused,itisnotclearwhethertheresultscan beattributedsolelytothereductionof /s,S/ amplitude.Infact, Behrensand Blumstein ( 1988a )pointedoutthattheresultsof McCasland 'smethodarenot conclusivesincethemethodinvolvesmismatchinginformationfromfricationnoise andvocalictransition.Specifcally,itisnotclearwhetherlistenerswereusingthe reducednoiseamplitudeofsibilantsasacuefornonsibilants,ortheywereusing transitionalinformationintheoriginalvocalicpartofthenonsibilanttojudgethe tokentobe /f,T/ .Listenersmightbeusingeitheroneofthosecues,orboth;and therewasnowayoftellingwhich,usingthecross-splicingmethodology. Onewaytoremedytheshortcomingsofthecross-splicingmethodistouse syntheticspeech. Gurlekian ( 1981 )usedsynthetic /sa,fa/ syllablesinwhichthe frequencyandtheamplitudeofthevowelwerekeptconstantinordertotest whetherthedistinctionbetweensibilantandnonsibilantfricativescouldbebased solelyondierencesintheirnoiseamplitude.Forfricatives,thecenterfrequencyof thenoisewaskeptfxedat4500Hz,whileitsamplitudewasmanipulatedtovary relativetothefxedvowelamplitude.Thecentralfrequencyusedwassimilartothe

PAGE 22

9 rangeatwhich /s/ wascorrectlyidentifed90%ofthetimebyArgentineSpanish listeners( ManriqueandMassone 1979 ),andwithintherangedescribedforEnglish /s/ ( HeinzandStevens 1961 ).Anidentifcationtestwith6ArgentineSpanishand 6Englishlistenersshowedthatbothgroupsassigneda /fa/ percepttothetokens withlownoiseamplitudeanda /sa/ percepttothosewithhighnoiseamplitude. Also, BehrensandBlumstein ( 1988a )investigatedtheroleoffricativenoise amplitudeindistinguishingplaceofarticulationamongfricatives.Basically, BehrensandBlumstein alteredtheamplitudeofthefricationpartofCVsyllables, withtheCbeingoneof /f,T,s,S/ ,whilepreservingthevocalicpartofthe utterance.Thismatchingwasdonebyraisingthenoiseamplitudeof /f,T/ to thatof /s,S/ andconversely,loweringthenoiseamplitudeof /s,S/ tothatof /f,T/ withoutsubstitutingorchangingthevocalicpartoftheutterance.They found,contrarytopreviousstudies,thattheoverallamplitudeofthefricativenoise relativetotheamplitudeofthefollowingvoweldoesnotconstitutetheprimarycue forsibilant/nonsibilantsdistinction.Therefore, BehrensandBlumstein calledfor anintegrationofspectralpropertiesandamplitudecharacteristicsoffricativesin ordertosuccessfullydiscriminateamongtheirplacesofarticulation. Anotherwaytocaptureclassifcationinformationfoundinfricationnoise amplitudeistomeasuretheRoot-Mean-Square(RMS)amplitudeofthefricative noisenormalizedrelativetothevowel. Jongmanetal. ( 2000 )usedthismethod intheirlarge-scalestudyofEnglishfricatives.Amongthemanymeasuresusedto characterizefricatives, Jongmanetal. measuredthedierencebetweentheaverage RMSamplitude(indB)ofthreeconsecutivepitchperiodsatthepointofmaximum vowelamplitudeandtheRMSamplitudeoftheentirefricationnoise.Resultswere derivedfrom20nativespeakersofAmericanEnglish(10femalesand10males). Thespeakersproducedall8EnglishfricativesintheonsetofCVCsyllableswith therhymeconsistingofeachofsixvowels /i,e,,A,o,u/ and /p/ .Theauthors

PAGE 23

10 foundthatthis\normalizedRMSamplitude"candierentiateamongallfour placesoffricativesinEnglishwithvoicedfricativeshavingasmalleramplitude thantheirvoicelesscounterparts. Theintegrationoffricativeandvowelamplitudeasawayofnormalization wasalsousedforautomaticrecognitionofcontinuousspeech. AbdelattyAlietal. ( 2001 )usedMaximumNormalizedSpectralSlope(MNSS),whichrelatesthe spectralslopeofthefricationnoisespectrumtothemaximumtotalenergyinthe utterance,thuscapturingthespectralshapeofthefricativeanditsamplitudein additiontothevowelamplitudefeaturesinonequantity.Itdiers,however,from Jongmanandcolleagues'normalizedamplitudeintwoways:frstitusespeak amplitudeinsteadofRMSamplitudeforthevowelandthefricative;andsecond,it usesonlythestrongestpeakofthefricative(asopposedtowholefricationnoise) andnormalizesthatinrelationtothestrongestpeakofthevowel(asopposed totheaverageofthestrongestthreepitchperiods).ForMNSS,astatistically determinedthreshold(0.01forvoicedand0.02forvoicelessfricatives)isused toclassifythefricativeasnonsibilantifMSNNfallsbelowthethreshold,andas sibilantifitisaboveit.Usingsuchcriteria, AbdelattyAlietal. obtaineda94% recognitionaccuracyofsibilantvs.nonsibilantsfricatives.Nofurtherinformation wasgivenonusingMSNNtoclassifyfricativeswithintheseclasses. 2.3.1.2 Relativeamplitude Sinceamplitudecuesfromthefricationnoiseandspectralcuesofthevocalic partinasyllabledependoneachother( BehrensandBlumstein 1988a ; Jongman etal. 2000 );changesinamplitudemightcarrymoreperceptualweightifthe frequencyrangeoverwhichsuchchangesoccuristakenintoconsideration.Such integrationwaspresentedby StevensandBlumstein ( 1981 )asaninvariant propertyofspeechproduction.Theydemonstratedtheoreticallythatdierent amplitudechangesthatoccurattheconsonant-vowelboundaryincertainfrequency

PAGE 24

11 rangesarerelatedtoarticulatorymechanismsassociatedwithcertainplacesinthe vocaltract.Therefore,listenersmightbeusingtheserelationalvaluesasacuefor theplaceofaconsonantproduction.Totestthisclaim, Stevens ( 1985 )synthesized sibilant/nonsibilantandanterior/nonanteriorcontinuasuchthatthefricationnoise amplitudeatcertainfrequencyrangesonthecontinuumwasgraduallychanged fromonestimulitotheother.Listeners'judgmentsabruptlyshiftfrom /T/to /s/ whentheamplitudeoffricationnoiseintheffthandsixthformantfrequency regions( F5 & F6 )isincreasedrelativetotheamplitudeinthesamefrequency regionsatvowelonset.Ontheotherhand,listenersidentifedtheconsonanttobe /s/ ratherthan /S/ whenthefricationnoiseamplitudeatthe F3 region,relative to F3 amplitudeofthevowel,risesatthetransitionandas /S/ ifitfalls.These fndingsledStevenstohypothesizethatthevowelisusedasan\anchoragainst whichthespectrumofthefricativenoiseisjudgedorevaluated"( Stevens 1985 ,p. 249). Otherresearcherstriedtotesttherobustnessofthisfeatureindierent contexts. HedrickandOhde ( 1993 )lookedintotheeectoffricationduration andvowelcontextontherelativeamplitudeandwhethersuchchangeswould aectperceptionoffricativeplaceofarticulation.Thiswasdonebyvaryingthe amplitudeofthefricativerelativetovowelonsetamplitudeat F3 and F5 forthe contrast /s/-/S/and/s/-/T/ respectively.Fricationdurationandvowelcontext alsovaried.Tenadultlistenerswithnohistoryofspeechorhearingdisorderswho successfullyperceived(with70%accuracy)theendpointsof /s-S/and/s-T/ continuawereaskedtoidentifyeachstimulusasonememberofthecontrastive pairsabove.Inthe /s/-/S/ contrast,listenerschosemore /s/ responseswhen presentedwithlowerrelativeamplitudeandmore /S/ 'swhenpresentedwithhigher relativeamplitude.Thesefndingsheldconstantacrossthedierentvoweland durationconditionsandwereinagreementwiththoseobtainedby Stevens ( 1985 ).

PAGE 25

12 Furthermore,theadditionalpost-fricativevowelcontextsin HedrickandOhde 's studyinruencedonlythemagnitudeoftherelativeamplitudeeectforagiven contrast. HedrickandOhde claimthatrelativeamplitudeisusedasaprimary invariantcuesincelistenersusedrelativeamplitudeinformationmoreeectively thanthecontext-dependentformanttransitions.Tofurthertestthisassumption, HedrickandOhde ( 1993 )alsovariedalongacontinuumtheappropriateformant transitionsofthecontrastspresentedabovewhilekeepingtherelativeamplitude fxedacrossallstimuli.Thehypothesiswasthatifrelativeamplitudewasindeed aprimarycue,thenvariationinformanttransitionwouldnotaectidentifcation ofmembersofthecontrastingpair.Theirfndingsindicatethatforthe /s/-/S/ contrast,formanttransitiondidaecttheidentifcationofatleasttheendpointsof thecontinua.Forthe /s/-/T/ contrast,formanttransitionshadanegligibleeect ontheidentifcationofthetwofricativesevenatboundarypoints. Takentogether,allthesefndingsindicatethatrelativeamplitudeispartof aprimarycuetofricativeplaceofarticulation.Sucharolebecomesmoresalient whenthecontrastinvolvessibilantvs.nonsibilantfricatives.Additionally, Hedrick andOhde ( 1993 )fndingsalsosuggestthatformanttransitionsdoinruencethe perceptionoffricativeplaceofarticulation,atleastamongsibilants. However,atradingrelationshipseemstoexistbetweentheuseofthetwo cuesinthepresenceoffactorsobstructinganeectiveuseofagivencue. Hedrick ( 1997 )foundthatlistenerswithsensorineuralhearinglossreliedlessonformant transitioninformationthanonrelativeamplitudeindiscriminatingbetweenEnglish /s/and/f/ .Ontheotherhand,listenerswithnormalhearingshowedtheopposite preference.Thiswasthecaseevenwhentheformanttransitioninformationwas presentedatalevelaudibletolistenerswithsensorineuralhearingloss. Sofar,relativeamplitudehasbeenshownonlytodierentiatebetween sibilantsandnonsibilantsasaclass,withtheexceptionof Jongmanetal. ( 2000 )

PAGE 26

13 study,inwhichtheyfoundthatrelativeamplitude,asdefnedby HedrickandOhde ( 1993 ),alsodierentiatesamongallfourplacesoffricativesarticulationinEnglish. 2.3.2 DurationCues Fricativedurationmeasureswereusedinpreviousresearchmainlyto dierentiatebetweensibilantsandnonsibilants,andtoassessthevoicingof fricatives.Onesuchstudywasconductedby BehrensandBlumstein ( 1988b ) whorecordedthreenativespeakersofEnglishproducingeachofthe4English voicelessfricatives /f,T,s,S/ followedbyoneofthefvevowels /i,e,a,o,u/ .They foundthatsibilants /s,S/ werelongerthannonsibilants /f,T/ withanaverage dierenceof33ms.Also,theyfoundnosignifcantdierencesbetweentheduration ofmembersofthesameclass.Thevoweleectwasfoundtobeminimaland onlyamongthenonsibilantfricatives.Similarresultswereobtainedby Pirello, Blumstein,andKurowski ( 1997 ).Theresearchersalsofoundthatalveolarfricatives werelongeronaveragethanlabiodentalfricativesinEnglish. Jongman ( 1989 )questionedtheimportanceoffricationnoisedurationasacue forfricativeidentifcation.Hefoundthatlistenerscanidentifyfricativesbasedona fractionofitsfricationnoiseduration.Inaperceptiontest,listenersonlyneededas littleas50-msoftheinitialfricationnoiseofanaturallyproducedfricative-vowel syllabletosuccessfullyclassifyfricatives.Althoughcueslikeamplitudeorspectral propertieslocalizedattheinitialpartsofthefricationnoisemayhavebeenused here,itisimportanttonotethatsuchresultsunderminethesignifcanceofan absolutedurationvalueinclassifyingfricatives.Temporalfeaturesofspeechcan varyasafunctionofspeakingrate.Infact,whenfricationnoisedurationwas normalizedbytakingtheratiooffricativedurationoverwordduration, Jongman etal. ( 2000 )foundasignifcantdierenceamongallplacesoffricativearticulation withtheexceptionofthelabiodentalandinterdentalcontrast.

PAGE 27

14 Fricationnoisedurationhasalsobeenusedtoassessthevoicingdistinction betweenfricativesofthesameplaceofarticulation. ColeandCooper ( 1975 ) examinedtheroleoffricationnoisedurationontheperceptionofvoicingin fricatives.Theyfoundthatdecreasingthelengthoffricationnoiseofvoiceless fricativeinsyllable-initialpositionresultedinashiftintheirperceptiontoward theirvoicedcounterparts.Theynotedalsothatinsyllable-fnalposition,duration ofthefricationnoiserelativetothatoftheprecedingvowelbecomesthecuefor fricativevoicing(voicedfricativesbeingshorterthanvoiceless).Similarfndings werealsoobtainedby ManriqueandMassone ( 1981 )forSpanishfricatives /B,f, D,s,S,Z,x,G/ inthreeconditions:isolated,inCVsyllables,andCVCVwords. Noisedurationwassignifcantlyshorterforvoicedfricativesthanforvoiceless fricativesinallthreeconditions.However,ofthesefricatives,only /S,Z/and /x,G/ arehomorganic;whiletheothertwopairsdonotsharethesameplace ofarticulation( BaumandBlumstein 1987 ).Therefore,thereportedtemporal dierencesin ManriqueandMassone 'sstudymighthavebeenduetofactorsother thanfricativevoicingsince,asmentionedpreviously,durationaldierencesexisted betweenfricativessharingthesamevoicingbutbelongingtodierentplacesof articulation( BehrensandBlumstein 1988b ).Nevertheless, BaumandBlumstein 's ownexperimentsshowedthatsyllable-initialvoicelessEnglishfricativesincitation formsarelongerthantheirvoicedcounterparts.However,theynotedconsiderable overlapindurationdistributionsofvoicedandvoicelessfricativesatallplaces studied. Usingconnectedspeech, CrystalandHouse ( 1988 )alsofoundthat,onaverage, voicelessfricativesinword-initialpositionarelongerthanvoicedfricatives.Like BaumandBlumstein 'sresults,therewasaconsiderableamountofoverlapbetween thedurationdistributionsofthevoicedandvoicelessfricativesinconnectedspeech. Again,theuseofduration perse asthesolecueforfricativevoicingwasquestioned

PAGE 28

15 by Jongman ( 1989 )whofoundthatidentifcationoffricativesvoicingwasaccurate (83%)evenifonly20msoffricationnoiseisused.However, Jongmanetal. ( 2000 ) usedarelativemeasureofdurationtoquantifyitsuseasacueforfricativevoicing. Normalizedfricativenoiseduration(defnedastheratiooffricativedurationover thatofthecarrierword)signifcantlylongerforvoicelessthanforvoicedfricatives. Theyalsofoundthatsuchdierencesaremoreapparentinnonsibilantthanin sibilantfricatives. 2.3.3 SpectralCues Inadditiontoamplitudeandduration,spectralpropertiesofthefrication noisehavebeeninvestigatedtofndcuesthatidentifyfricativeplaceofarticulation. Amongthespectralpropertiespreviouslystudiedarespectralpeaklocationand spectralmomentsmeasurements. 2.3.3.1 Spectralpeaklocation Oneoftheearlyattemptstorelatethefricativeplaceofarticulationtothe frequencylocationofenergymaximuminthefricationnoisewasthestudyby HughesandHalle ( 1956 ).Inthisstudy,gated50mswindowsofthefricationnoise wereusedtoproducespectraofEnglishfricatives /f,v,s,z,S,Z/ .Aninvestigation ofthefricativespectrarevealedthatforsomespeakersastrongenergycomponent waslocatedatthefrequencyregionbelow700Hzforthespectrumofvoiced fricatives.Suchenergyconcentrationwasabsentatthesameregionforvoiceless fricatives.However,thesefndingswerenotconsistentamongallspeakers.Based onthisinconsistency,inadditiontothesimilaritiesfoundbetweenthespectra ofhomorganicvoicedandvoicelessfricativesabove1kHz, HughesandHalle ruledouttheuseofspectralprominenceasabasisforvoicingdistinctionamong fricatives.Ontheotherhand,thedistinctionofplacewasfoundtoberelated, toacertainextent,tothelocationofthemostprominentspectralpeak. Hughes andHalle foundthat /f,v/ hadarelativelyratspectrumbelow10kHz,whereas

PAGE 29

16 spectralprominencewasobservedfor /S,Z/ attheregionof2-4kHz,andfor /s, z/ attheregionabove4kHz.Also,theyfoundthattheexactlocationofthe peakforeachfricativewaslowerformalesandhigherforfemales.Basedonthese observations, HughesandHalle concludedthatthesizeandshapeoftheresonance chamberinfrontofthefricative'spointofconstrictiondeterminetheplaceof energymaximuminfricationnoisespectra.Specifcally,theyreportedthatthe lengthofthevocaltractfromthepointofconstrictiontothelipswasinversely relatedtothefrequencyofthepeakinthespectrum.Thus,thespectralpeak increasesasthepointofarticulationbecomesclosertothelips.Suchobservations areconsistentwithpredictionsmadebythethesource-fltertheoryofspeech productionpresentedinsection 2.2 Strevens ( 1960 )alsolookedintotheuseofspectralprominencetodierentiate betweenfricativesthroughexaminingthefront( /F,f,T/),mid(/s,S,/)andback (/x,X,h/) voicelessfricativesasproducedbysubjectswithprofessionaltrainingin phonetics.Basedonaveragelinespectra, Strevens foundthatthefrontfricatives werecharacterizedbyunpatternedlowintensityandsmoothspectra,themid fricativesbyhighintensitywithsignifcantpeaksonthespectraaround3.5kHz andthebackfricativesbymediumintensityandamarkedformantlikestructure withpeaksaround1.5kHz. Theresultsreportedaboveforfrontandmidfricativeswerealsoshownto beperceptuallyvalid( HeinzandStevens 1961 ).Usingasynthesizedcontinuum ofwhitenoisewithspectralpeaksinrangesrepresentativeofthosefoundin /S,, s,f,T/ HeinzandStevens foundthatparticipantswereconsistentlyshiftingthe identifcationofthefricativefrom /S/to//to/s/to/f,T/ asthepeakofthe resonancefrequencyincreased,withnodistinctionthatcouldbemadebetween /f, T/

PAGE 30

17 SimilarpropertieswerealsofoundforfricativesinSpanish.Intheirstudyof Spanishfricatives, ManriqueandMassone ( 1981 )foundthat /s/,/f/and/T/ have spectralpeakvaluescomparabletotheEnglishfricativesasreportedby Hughes andHalle ( 1956 ).Furthermore,theyreportedfndingthatspectralenergyin /x/ isconcentratedinalownarrowfrequencybandcontinuouswiththeF2ofthe followingvowelandthat // spectralfrequencyisconcentratedatalowband continuouswithF3ofthefollowingvowel. ManriqueandMassone ( 1981 )also examinedtheidentifcationofasubsetofSpanishfricativestoseewhetherchanges inspectralpeaklocationwouldchangethewayfricativesareperceivedbySpanish speakers.Theysynthesized9cascadestimuliofthemiddle500msofeachofa deliberatelylengthened /f,s,S,x/ usingasetoflow-andhigh-passflterssothat onlycertainspectralzoneswerepresentforeachstimuli.Theunflteredfricatives hadrecognitionscoresrangingfrom95%for /f/and/s/ ,to100%for /S/and/x/ Fortheflteredfricatives,theyfoundthatthespectralpeaklocationcarriesthe perceptualloadfortheidentifcationof /s/,/S/,and/x/ .However,thediused spectrumof /f/ wasbelievedtobethecharacterizingfactorofitsidentifability. OtherstudiesofEnglishfricativesconfrmedthatspectralpeaklocation canclassifysibilantsfromnonsibilantsasaclass,andonlybetweensibilants. Forexample, BehrensandBlumstein ( 1988b )foundthatforEnglishvoiceless fricatives,majorspectralpeaksinrangeswithin3.5-5kHzwereapparentfor /s/ andwithin2.5-3.5kHzfor /S/ .Ontheotherhand /f/and/T/ appearedratwith adiusedspreadofenergyfrom1.8-8.5kHzwithagooddealofvariabilityintheir spectralshape.Thesamepatternwasalsoobservedacrossagegroups. Pentzetal. ( 1979 ),forexample,comparedthespectralpropertiesofEnglishfricatives( /f, v,s,z,S,Z/ )producedbypreadolescentchildrentothatreportedforadults.As reportedforadultselsewhere,theyfoundthesamepatternofenergylocalization andconstrictionpoint.However,thevaluesobtainedfromchildrenintheirstudy

PAGE 31

18 werehigherthanthoseobtainedformaleandfemaleadultspeakersinthestudies mentionedabove.Thisdierencewasattributedinlargeparttothedierences invocaltractlengths.Maleadultspeakershavethelongestvocaltractandthe lowestvocaltractresonance,whilechildrenhavetheshortestvocaltractandthe highestvocaltractresonance;femaleadultspeakersfallbetweenthetwogroups.In anotherstudy, Nissen ( 2003 )investigated,amongothermetrics,thespectralpeak locationofvoicelessEnglishobstruentsasproducedbymaleandfemalespeakers offourdierentagegroups.Forthefricativesinthestudy,hefoundthat\the spectralpeakdecreasedasafunctionofincreasedspeakerage"( Nissen 2003 ,p. 139).Besidebeingageandgenderdependent,spectralpeaklocationhasalsobeen foundtobevoweldependent( MannandRepp 1980 ; Soli 1981 )andhighlyvariable forspeakerswithneuromotordysfunction( ChenandSteven 2001 )duetotheirlack ofcontroloverarticulatorymuscles. However,incontrasttoallthestudiesmentionedabove, Jongmanetal. ( 2000 )foundthatacrossall(maleandfemale)speakersandvowelcontexts,all fourplacesoffricativearticulationinEnglishweresignifcantlydierentfrom eachotherintermsofspectralpeaklocation.Further,theyfoundspectralpeak locationtoreliablydierentiatebetween /T/and/D/ andbetween /f/and/v/ Theresearchersjustifedtheuseofthelargeranalysiswindowtheyadoptedintheir study,ascomparedtootherstudies,asawaytoobtainbetterresolutioninthe frequencydomainattheexpenseoftemporaldomainresolution.Theyarguethat suchacompromiseisadvantageousduetothestationarynatureoffricationnoise. Insummary,spectralpeaklocationforthefricativesincreasesasthe constrictionbecomesclosertotheopenendofthevocaltract.Also,spectralpeak forbackfricativesshowsaformant-likestructuresimilartothefollowingvowel. Bothofthesegeneralizationscanbeaccountedforbythesource-fltertheoryof speechproduction.Fricativesarecharacterizedbyturbulentairrowthrougha

PAGE 32

19 narrowconstrictionintheoralcavity,withtheportionofthevocaltractinthe frontoftheconstrictioneectivelybecomingtheresonatingchamber.Forlong andnarrowconstrictions,likefricatives,theacoustictheoryofspeechproduction predictsthattheonlypresentresonancecomponentsinthespectrumarethose relatedtotheareainfrontoftheconstrictionduetolackofacousticcoupling fromthecavitybehindtheconstriction( HeinzandStevens 1961 ).Thesizeofthe resonatingcavity,therefore,canbeinverselycorrelatedwiththefrequencyofthe mostprominentpeakinthespectrum( HughesandHalle 1956 ).Asaresultofthis correlation,fricativesproducedatorbehindthealveolarregionarecharacterized byawell-defnedspectrumwithpeaksaround2.5-3.5kHzfor /S,Z/ andat3.5-5 kHzfor /s,z/ .However,duetotheverysmallareainfrontoftheconstriction, fricativesproducedatthelabialorlabiodentalareaarecharacterizedwitha ratspectrumandadiusedspreadofenergybetween1.5and8.5kHz.Since nonsibilantproductioncreatesacavityincloseproximitytotheopenendofthe vocaltract,dierentdegreesofliprounding( Shadle,Mair,andCarter 1996 ),and theadditionalturbulenceproducedbytheairstreamhittingtheteeth( Strevens 1960 ; BehrensandBlumstein 1988a )willintroduceagreatamountofvariability inthelocationoftheenergyconcentration.Ontheotherhand,sibilantsusually haveaclearlydefnedspectralpeaklocation.However,forspeakerswithlimited precisionovertheplacementoftheconstriction( ChenandSteven 2001 ),such variabilityalsoexistsforsibilants. 2.3.3.2 Spectralmoments Spectralmomentsanalysisisanothermetricthathasbeenusedforfricative identifcation.Unlikespectralpeaklocationanalysis,thisstatisticalapproach capturesbothlocal(meanfrequencyandvariance)andglobal(skewnessand kurtosis)aspectsoffricativespectra.Spectralmeanreferstotheaverageenergy concentrationandvariancetoitsrange.Skewness,ontheotherhand,isameasure

PAGE 33

20 ofspectraltiltthatindicatethefrequencyofthemostenergyconcentration. Skewnesswithapositivevalueindicatesanegativespectraltiltwithenergy concentrationatthelowerfrequencies,whilenegativeskewnessisanindicationof positivetiltwithenergyconcentrationathigherfrequencies( Jongmanetal. 2000 ). Kurtosisisanindicatorofthedistribution'speakedness. Oneoftheearlyapplicationsofspectralmomentstoclassifyspeechsounds wasthestudyby Forrestetal. ( 1988 )onEnglishobstruents.Forthefricatives inthatstudy, Forrestetal. generatedaseriesofFastFourierTransforms(FFT) usinga20msanalysiswindowwithastep-sizeof10msthatstartedatthe obstruentonsetthroughthreepitchperiodsintothevowel.TheFFT-generated spectrawerethentreatedasarandomprobabilitydistributionfromwhichthe frstfourmoments(mean,variance,skewness,andkurtosis)werecalculated. ThespectralmomentsobtainedfrombothlinearandBarkscaleswereentered intoadiscriminantfunctionanalysisinanattempttoclassifyvoicelessfricatives accordingtotheirplaceofarticulation.Classifcationscores,onbothscales,were goodforthesibilants /s/and/S/ with85%and95%respectively.Thenonsibilants, ontheotherhand,werenotasaccuratelyclassifedusinganymomentoneitherof thetwoscales(58%for /T/ and75%for /f/ ).Subsequentimplementationsofthe spectralmomentanalysistriedtoextendorreplicate Forrestetal. approachwith somemodifcations.Thestudyby Tomiak ( 1990 )ofEnglishvoicelessfricatives, forexample,usedadierentanalysiswindow(100ms)atdierentlocationsof theEnglishvoicelessfricationnoise.Likeinpreviousresearch,spectralmoments weresuccessfulinclassifyingsibilantsand /h/ data.Inthecaseofnonsibilants,it wasfoundthatthemostusefulspectralinformationiscontainedinthetransition portionofthefrication.Additionally,incontrastto Forrestetal. Tomiak foundan advantageforthelinearlyderivedmomentproflesovertheBark-scaledones.

PAGE 34

21 Spectralmomentswerealsousedby Shadleetal. ( 1996 )toclassifyvoiced andvoicelessEnglishfricatives.Thestudyinvolvedspectralmomentsmeasured fromdiscreteFouriertransform(DFT)analysesperformedatdierentlocations withinthefricationnoiseandatdierentfrequencyranges.Theyfoundthat spectralmomentsprovidedsomeinformationaboutfricativeproductionbutdidnot discriminatereliablybetweentheirdierentplacesofarticulation.Furthermore, theirresultsindicatedthatspectralmomentsaresensitivetothefrequencyrange oftheanalysis.However,themomentswerenotsensitivetotheanalysisposition withinthefricative.Similarresultswerealsoobtainedforchildren( Nittrouer, Stiddert-Kennedy,andMcGowan 1989 ; Nittrouer 1995 ).Theuseofspectral momentsasatooltodistinguishbetween /s/and/S/ wasalsoextendedtoatypical speechandfoundtobereliable. TjadenandTurner ( 1997 ),forexample,compared spectralmomentsobtainedfromspeakerswithamyotrophiclateralsclerosis(ALS) andhealthycontrolsmatchedforageandgenderandfoundthatthefrstmoment wassignifcantlylowerfortheALSgroup. TjadenandTurner suggestedthatthe lowmeansvaluesfoundamongASLspeakerscanbeattributedtodicultiesthey faceatmakingtheappropriatedegreeofconstrictionrequiredtoproducefrication, ortoaweakersubglottalsoundsourceduetoweakrespiratorymusclesthatare commonwithASLspeakers. Thestudiesmentionedsofardemonstratetheabilityofspectralmoments todistinguishsibilantsfromnonsibilantsasaclassandthattheycanreliably distinguishonlyamongsibilants.However,contrarytothestudiesmentioned above, Jongmanetal. ( 2000 )foundthatspectralmomentsweresuccessfulin capturingthedierencesbetweenallfourplacesoffricativearticulationinEnglish. Jongmanetal. study,however,diersfromotherstudiesinthatitcalculated momentsfroma40msFFTanalysiswindowplacedatfourdierentplacesin thefricationnoise(onset,mid,end,andtransitionintovowel)andthatitusesa

PAGE 35

22 largerandmorerepresentativenumberofspeakersandtokens(2880tokensfrom 20speakers)ascomparedtoasmallerpopulationinotherstudies.Acrossmoments andwindowlocations,varianceandskewnessatonsetandtransitionwerefound tobethemostrobustclassifersofallfourplaces.Also,onaverage,variancewas showntoeectivelydistinguishbetweenvoicedandvoicelessfricativeswiththe formerhavinggreatervariance. 2.3.4 FormantTransitionCues 2.3.4.1 Secondformantattransition Earlyresearchonformanttransitionfocusedonperceptualusefulnessofsuch informationinclassifyingspeechsounds.Forexample, Harris ( 1958 )recordedthe Englishfricatives /f,v,T,D,s,z,S,Z/ followedbyoneofeachofthevowels /i, e,o,u/ .Thenshesplicedandrecombinedvocalicandfricationpartitionsofall CVcombinations.Listenerscorrectlyidentifedsibilantfricativesregardlessof thesourceofthecross-splicedvocalicpart.Fricationnoisealonewassucientfor correctidentifcationofsibilantfricatives.Ontheotherhand,amongnonsibilant fricatives,acorrectidentifcationas /f,v/ occurredonlywhenthevocalicpartwas matching(i.e.comingfroma /f,v/ syllable),andas /T,D/ withmismatching vocalicparts.Basedontheseidentifcationpatterns, Harris suggestedthat theperceptionoffricativesoccursattwoconsecutivestages.Inthefrststage, cuesfromfricationnoisealonedeterminewhetherthefricativeisasibilantor nonsibilant.Ifsibilantisthedeterminedclass,thencuesfromthefrication noisealonewilldierentiateamongthesibilantfricatives.However,iftheclass isdeterminedtobenonsibilantatthefrststage,thentheformanttransition informationisusedforthewithin-classclassifcation.Aswasthecasewithcrosssplicingmethodspreviouslymentioned(section 2.3.1.1 ),thismethodalsodoesnot eliminatethepossibilityofdynamiccoarticulatoryinformationfrombeingcolored intotheprecutvoweland/orfricative.Itisnotclear,therefore,thattheresults

PAGE 36

23 obtainedcanbeattributedsolelytothemismatchingvocalicpartofthecrosssplicedsignal.Toovercomethisproblem, HeinzandStevens ( 1961 )synthesized stimuliconsistingofwhitenoiseofvaryingfrequencypeaks,similartopeaksfound inEnglishfricatives,followedbyfoursyntheticformanttransitionvalues.Listeners wereinstructedtolabelthesestimuliasoneofthefourvoicelessEnglishfricatives /f,T,s,S/ .Basedonidentifcationscores,theresearchersconcludedthat /f/ is distinguishedfrom /T/ onthebasisoftheF2transitioninthefollowingvowel. Therewasnoapparenteectofformanttransitiononthedistinctionbetween /s/ and/S/ .Thesefndingssupportthoseof Harris ( 1958 ),whileusingmorecontrolled stimuli. Theroleofformanttransition,however,wasnotfoundtobeascrucialinother studies. LaRiviere,Winitz,andHerriman ( 1975 )usedthefricativenoiseinits entiretyinaperceptualtestandobtainedhighrecognitionscoresfor /s,S/ ,lower scoresfor /f/ andpoorscoresfor /T/ .Moreimportantly,whenvocalicinformation wasincludedforthe /f,T/ tokens,nosignifcantincreaseintheirrecognitionwas obtained.Otherstudies( ManriqueandMassone 1981 ; Jongman 1989 )alsofound similarresultsusingdierentmethods. Theperceptualexperimentsthusfarmentionedusedaforced-choicetechnique thatmighthavebiasedparticipants'responses.Forthatreason Manriqueand Massone ( 1981 )usedatapesplicingparadigmtostudytheeectofformant transitionontheperceptionofSpanishfricativesbySpanishlisteners.They constructedtheirstimulibysplicingCVsyllablesintotheirrespectivefrication andvowelparts.Listenerswereaskedtochoosethefricativewhenpresentedwith thefricationnoisealoneandtofreelyguessthesoundthatprecededthevowel whenpresentedwiththevocalicpart.Inthelattercase,mosttokenwerejudged (85%oftheresponses)tohavebeenprecededwithastopsharingthesameplace ofarticulationasthesplicedfricative.Spanishfricativeswithnostopssharing

PAGE 37

24 thesameplaceofarticulationwereperceivedas /t/ ,withtheexceptionof /f/ whichwasperceivedas /p/ 50%ofthetimes.Thesamelistenerswereableto identifythefricativeaccuratelyfromonlythefricationpartinallcasesexcept for /x/and/G/ .However,anotherstudyfoundthatformanttransitionwasnot crucialforcorrectidentifcationoffricatives( Jongman 1989 ).Basedonlyonthe fricationnoisepartoffricative-vowelsyllables, Jongman ( 1989 )achievedcorrect (92%)fricativeidentifcationinaperceptualexperimentofEnglishfricatives.More importantly,therewasnosignifcantincreaseinidentifcationaccuracywhenthe entirefricative-vowelsyllablewaspresented. Aswithresultsobtainedfromsyntheticspeech,measuresofformanttransition fromnaturallyproducedfricativesarealsoconricting. WildeandHuang ( 1991 ),for example,measuredtheF2atthevowelonsetforfricativesofonlyonemalespeaker andfoundthattheF2valuedidnotdierentiatesystematicallybetween /f/and /T/ .However,inanotherstudy, Wilde ( 1993 )foundthattransitionalinformation asmeasuredbyF2valueatthefricative-vowelboundarycanbeusedtoidentify fricativeplaceofarticulation.Themeasurementsheobtainedfromtwospeakers showedthatastheplaceofconstrictionmovesbackinthevocaltract,thevalueof F2systematicallyincreasesanditsrangebecomessmaller. 2.3.4.2 Locusequations Locusequationsprovideamethodtoquantifytheroleofformanttransition intheidentifcationoffricativeplaceofarticulationbyrelatingsecondformant frequencyatvowelonset(F2 onset )tothatatvowelmidpoint(F2 vowel ).Locus equationsarestraightlineregressionftstodatapointsformedbyplottingonsets ofF2transitionsalongthe y axisandtheircorrespondingvowelnucleiF2along the x axisinordertoobtainthevalueoftheslopeand y -intercept.Thismetric hasbeenusedprimarilytoclassifyEnglishstops( Lindblom 1963 ; Sussmanetal. 1991 ).Itwasonlyrecentlythatthismeasurewasappliedtofricatives. Fowler

PAGE 38

25 ( 1994 )investigatedtheuseoflocusequationsascuestoplaceofarticulationacross dierentmannersofarticulationincludingthefricatives /v,D,z,Z/ asspoken byfvemalesandfvefemalesspeakersofEnglish.Inthisstudy, Fowler found thatlocusequations(intermsofslopeand y -intercept)ofahomorganicstopand fricativeweresignifcantlydierent,whilethoseofastopandafricativeofdierent placeofarticulationweresignifcantlysimilar.Nevertheless,locusequationswere abletodierentiatebetweenmembersthatsharethesamemannerofarticulation. Slopesforfricatives /v,D,z,Z/ ,forexample,weresignifcantlydierent(slopes of0.73,0.50,0.42,and0.34respectively).Inanotherstudy, Sussman ( 1994 ) investigatedtheuseoflocusequationstoclassifyconsonantsacrossmannersof articulation(approximants,fricatives,andnasals).Incontrastto Fowler ( 1994 ), hefoundthatfricativeswerenotdistinguishablebasedontheslopeoftheirlocus equations.Only /v/ hadadistinctiveslope. ResultsofotherstudiesofEnglishfricativesweresimilartothoseof Sussman ( 1994 ).Forexample,intheirlarge-scalestudyofEnglishfricatives, Jongmanetal. ( 2000 )calculatedtheslopeand y -interceptforallEnglishfricativesinsixvowel environments.Specifcally,JongmanandcolleaguesmeasuredF2 onset andF2 vowel froma23.3msfullHammingwindowplacedattheonsetandmidpointofthe vowelrespectively.Thiswasthesamemethodusedbythepreviouslymentioned studies.Similarto Sussman ( 1994 ), Jongmanetal. ( 2000 )foundthatonlythe slopevaluefor /f,v/ wassignifcantlydierentandthatthe y -interceptwere distinctonlyfor /f,v/and/S,Z/ .Locusequationsareparticularlyofinterest heresincetheyhavebeenshowntoworkacrosslanguages( Sussman,Hoemeke, andAhmed 1993 ),gender( Sussmanetal. 1991 ),speakingstyle( Krull 1989 ),and speakingrate( Sussman,Fruchter,Hilbert,andSirosh 1998 ).

PAGE 39

26 2.4 StudiesofArabicFricatives Theuseofacousticcuestodistinguishbetweenthedierentfricativesin Arabichasbeenunderinvestigatedintheliterature.Furthermore,theveryfew studiesdealingwithacousticcharacteristicofArabicfricatives(seebelow)have beenpredominantlyconcernedwithasingleacousticfeatureandnotwiththe waymultiplecuescanbeintegratedinordertodistinguishamongthefricative placeofarticulation.Whilesomeofthecuesmentionedaboveseemtodistinguish witharelativelygoodaccuracybetweenEnglishfricatives,thesamecueswhen usedtoclassifyArabicfricativesneedtotakeintoaccountacousticcharacteristics particulartoArabic.Forexample,unlikeEnglish,Arabicutilizesdurational dierencesofbothvowelsandconsonantsforphonemicdistinctions.Itisof interest,therefore,toseehowsuchdurationalpropertywouldaectvoicingand placeclassifcationofArabicfricatives.AnotherinterestingfeatureofArabicisthe existenceofco-articulated(pharyngealized)fricativesthatarephonemicallydistinct fromtheirplaincounterparts.Duetotheirdoublearticulationmechanism,itis expectedinourstudythatpharyngealizedfricativeswillhavetwopatternsofpeaks emergingatthemiddleandneartheendoffrication.Therefore,itseemsnecessary touseasecondanalysiswindowattheendoffricationnoisesuchthatitsright shoulderisalignedwiththeendoffricationnoise.Additionally,thetwowindow locationsaresuggestedbecausestudiesofspectralpeaklocationhavedemonstrated thathighfrequencypeaksaremorelikelytoemergeatthemiddleandendof fricationnoise( BehrensandBlumstein 1988b ).Also,thefrequencyofthemost prominentpeakforthepharyngealizedfricativesisexpectedtobelowerthantheir plaincounterpartsbecauseofacousticcouplingresultingfromco-articulation. Spectralmomentsseemtobeanotherpromisingtechniqueinclassifying Arabicfricativesifthepropersizeandlocationoftheanalysiswindowsareused. Infact,inastudyoffricativesinCairoArabic, Norlin ( 1983 )foundthat /s,

PAGE 40

27 s Q ,z,z Q / arecharacterizedbyasharppeakinhigherfrequencies,andthatthe peakof /s Q ,z Q / arebroaderthan /s,z/ Norlin usedCenterofGravity(COG) anddispersionaswaysofquantifyingthelocationofthepeakandthespreadof thedispersionrespectively.Therefore,itseemsthatacombinationofspectral meanandvariancealongwithskewnessmeasureswoulddierentiatebetween pharyngealizedandplainfricatives. Theuseofformanttransitioninformationwasinvestigatedintheliterature inrelationtothefricativesarticulatedatthebackoftheoralcavity.Forexample, El-Halees ( 1985 )foundthattheF1valueatthetransitiondierentiatesbetween uvularandpharyngealfricativeswiththeformerbeinglower.Also,hefound thatlistenerscandierentiatebetweenthetwoclassesbasedonlyonthissingle feature.TheperceptualsalienceofF1 onset wasalsodemonstratedby Alwan ( 1989 ), whousedsyntheticspeechtotestthediscriminationbetweenvoicedpharyngeal fricative /Q/ andvoiceduvularfricative /X/ .ShefoundthatthehigherF1 onset forthepharyngealwasessentialtomakethedistinction,whileF2 onset wasnot. TherelationbetweenbackarticulationandhighF1wasalsoattestedforvowels followingsuchsounds. Zawaydeh ( 1997 )foundthatF1atthemiddleofthevowel wasraisedwhenprecededbyoneofthegutturals /s Q ,/ ortheglottal /h/ as comparedtonon-gutturals. Inadditiontofrstandsecondformantattransition,locusequationswere alsousedasaclassifcationmetricforArabic.Thefrstattemptwaspartofa cross-linguisticstudyoflocusequationsasacueforstopsplaceofarticulation. Sussmanetal. ( 1993 )recordedthevoicedstops /b,d,d Q ,g/ asproducedby threespeakersoftheCairenedialectofArabic.Theyfoundthatbothslopeand y -interceptforalmostallcomparisonsweresignifcantlydierentexceptforthe slopeof /d/and/d Q / ,andthe y -interceptfor /b/and/g/ .Thesecondstudy wasconductedby Yeou ( 1997 )whoelicitedbothstopsandfricativesfromnine

PAGE 41

28 Moroccansubjects. Yeou foundthat y -interceptandslopedistinguishedbetween mostfricativecomparisons.However,neitherslopenor y -interceptdistinguished /S/from//or/f/from/X/ .Moreimportantly,locusequationslopeswereable togrouppharyngealized( /D Q ,s Q / )togetherasadistinctgroupdieringfrom theirnon-pharyngealizedcounterpartsandotherfricativeswithdistinctlylow y -interceptsandratslopes. Yeou arguedthatunliketheirplaincounterparts, pharyngealizedfricativesresistthearticulatoryeectsofthefollowingvoweldue totheirdoublearticulation.Insteadtheyinducetheircoarticulatoryeecton thefollowingvowelbyraisingitsF1andloweringitsF2.ThischangeinF2,as comparedtoplainfricatives,causestheslopetoberatterandtheintercepttobe lower. Tosummarize,severalacousticcuesrelatedtospectral,temporaland amplitudeinformationfoundinthespeechsignalwereusedindierentlanguages toclassifyfricativesintotheirplacesofarticulation.Suchcues,aloneand collectively,servedtodistinguishbetweendierentplaces/classesoffricatives inEnglish.Howeve,theuseofthesecuestoclassifyArabicfricativeshasnot receivedmuchattention.Inourstudyweattempttoexaminehoweachofthe spectral,temporalandamplitudecharacteristicsmentionedinSections( 2.3 ) wouldservealoneandcollectivelytodistinguishbetweenplaceofarticulationof Arabicfricatives.Additionally,ofparticularimportancetoourstudyistoseeif theacousticcuesfoundtobeeectiveinfricativeclassifcationinotherlanguages willbeaectedbythevowellengthdierencespresentinArabic;andifsuchcues woulddistinguishbetweenplainandpharyngealizedfricatives.Inthefollowing chapter,wewilldiscusshowsuchcuesareinvestigatedandthemodifcations implementedinthemeasurementstechniquesifany.

PAGE 42

CHAPTER3 METHODOLOGY Severalspectral,amplitude,andtemporalmeasurementshavebeenused inpreviousresearchtodescribetheacousticcuesthatcharacterizefricativesin dierentlanguages.ThecurrentstudyinvestigatedArabicfricativestofndsuch acousticcues.Thischapterdescribesthewayinwhichthespeechsampleswere elicited,recordedandanalyzed.Formostoftheacousticanalyses,thisresearch followedtheprocedurescommonlyusedtostudyfricativesinEnglishasillustrated in Jongmanetal. ( 2000 ).Certainmodifcationswereappliedtofurtherinvestigate characteristicsparticulartoArabic.Allcodinganddataanalysiswascarried outusingthe PRAAT software( BoersmaandWeenink 2004 )andasetofscripts developedatthephoneticslaboftheUniversityofFloridabytheauthor. 3.1 DataCollection 3.1.1 Participants AgroupofeightadultmalespeakersofModernStandardArabic(MSA) wererecruitedtoparticipateinourstudyfromthegeneralundergraduatestudent populationofKingSaudUniversity 1 .Themeanageofparticipantswas20years. Theydidnothaveanyhistoryofhearingorspeakingimpairments,andallhada verylimitedexperiencewithEnglishasasecondlanguage.Participantsweregiven classcreditbytheirinstructorsforparticipatinginthestudy. 1 KingSaudUniversity,Riyadh,SaudiArabia 29

PAGE 43

30 3.1.2 Materials ThereisagapthatexistsinArabicbetweenMSAanditsvernacularvarieties. Arabichasbeenknownasatraditionalexampleof diglossia inwhichtwovarieties ofthelanguageareusedtofulflldierentcommunicativefunctions( Ferguson 1959 ).AlthoughparticipantswereallruentspeakersofMSA,additionalcare wastakeninelicitingspeechmaterialinordertoensurethattheparticipants wouldstaywithinthetargetMSAregister.Thereforefricativeswereelicited usingscreenpromptedspeechinconjunctionwithprerecordedaudioprompts.A trainedphonetician,whoisalsoaruentspeakerofMSA,producedCVCsyllables wheretheinitialconsonantwasaMSAfricative/ f,T,D,D Q ,s,s Q ,z,S,X,K,,Q, h /followedbyeachofthesixvowels/ i,i:,a,a:,u,u: /.Thefnalconsonantwas always/t/.Eachresultingwordwasrepeatedthreetimestoyieldatotalof234 audioprompts(13fricatives 6vowels 3repetitions).Therecordedprompts weretheneditedtobeofequallength( 1second)byaddingsilencetotheend ifneeded.ThewrittenpromptswereconstructedusingfullyvowelledArabic orthographyonawhitebackground.Theparticipantswereinstructedtorepeat thewordpresentedinthecarrierphrase\qul marratajn"(say twice);with theaudiopromptfunctioningonlyasareference.Thepromptswerepresented randomlyinblocksof39wordswithbreaksbetweenblocks.Beforetheactual recordingofanyparticipant,apracticesessionwith10wordspresentedintwo blockswasconductedtofamiliarizetheparticipantswiththetask. 3.1.3 Recording TherecordingwascarriedoutusingthefacilitiesoftheComputer& ElectronicsResearchInstituteatKACST 2 .Twoadjacentsound-attenuated boothswithamonitoringwindowbetweenthemhostedthedatacollectionprocess. 2 KingAbdulazizCityforScienceandTechnology,Riyadh,SaudiArabia.

PAGE 44

31 InoneboothaPCcomputerrunningMicrosoftPowerPointwasusedtopresent thesynchronizedaudio-writtenproductionpromptsviaanLCDscreenaxedto theoutsideofthemonitoringwindowoftheotherbooth.Thetextwasshownon theLCDscreenwhilethesynchronizedaudiopromptwasfedthroughheadphones (SennheiserNoisegardmobileHDC451).AKayElemetricsCSL(Computer SpeechLab)model4300BwhichwasconnectedtoanotherPCcomputerwas usedforin-linerecordingoftheparticipants'utterances.Itshouldbepointedout thatanti-aliasingiscarriedoutautomaticallyduringdatacapturethroughCSL externalmodule.Allrecordingsweredoneat22.05kHzsamplingrateand16bit quantization.Theparticipant'sproductionofthewordinthecarrierphrasewas capturedusingalow-impedance,unidirectionalhead-worndynamicmicrophone (SHURESM10A)positionedabout20mmtotheleftoftheparticipants'mouthin ordertopreventdirectairrowturbulencefromimpingingonthemicrophone. Eachwordlasted4secondsonthescreenandthenthefollowingwordwas shown.Incaseaparticipantdidnotproducethewordintheallocatedtimeor amispronunciationoccurred,therecordingwasstoppedbytheauthorandthat particularwordwaspresentedagain. Eachblockwassavedtoaseparatesoundfleforeasymanipulation.The resultingsoundfleswerethentransferedinto PRAAT forsegmentationandfurther analyses. 3.2 DataAnalysis 3.2.1 SegmentationofSpeech Bothawide-bandspectrogramandawaveformdisplaywereusedinthe segmentationoftherecordedmaterialintothemonosyllabicwordscontaining thetestfricatives.Foreachtoken,fourpointswereidentifedonthewaveforms: thebeginningoffrication,theosetoffricative/beginningofthevowel,theend ofthevowel,andtheendofword.Forallthesepointsthenearestzero-crossing

PAGE 45

32 wasalwaysused.Fricativeonsetwastakentobethepointintimeatwhichhighfrequencyenergyappearedonthespectrogramand/orasignifcantincreasein zero-crossingsrateoccurred.Theosetofthevoicelessfricativewastakentobe thepointofminimumintensityprecedingtheperiodicityofthevowel.Forthe voicedfricatives,theosetwastakentobethezero-crossingofthepulsepreceding theearliestpitchperiodexhibitingachangeinthewaveformfromthatseen throughouttheinitialfrication( Jongmanetal. 2000 ).Thevowelosetwastaken tobetheendofperiodicitywhiletheendofthesegmentedtokenwastakentobe theonsetofstopburstrelease.Figure 3{1 showsanexampleofthesepoints.The timeindicesofthesegmentationpointswerewrittentoa PRAAT TextGridfle.Such flesmakeiteasiertohandlethesignalindependentlyfromthesegmentationdata andlabels. Figure3{1.ExampleofSegmentation

PAGE 46

33 Theonlyexceptiontotheabovementionedgeneralruleswaswiththevoiced pharyngealfricative/ Q /,whereitwasdiculttovisuallylocalizethefricativevowelboundary.Pharyngealfricative/ Q /isknowntohaveaformant-likestructure continuouswiththatofthefollowingvowel,withthelowestfrequencyofthe fricativematchesthatofthesecondformantofthefollowingvowel( Johnson 1997 ).Therefore,thefricationosetfor/ Q /wastakentobethepointatwhich anupwardsintensity-shiftoccurredwithreferencetotheintensityofthefricative onset.Suchpointindicatestheshiftfromlowintensityfoundsinthefrication noisetowardsthehigherintensityofthevocalicpart.Figure 3{2 showsanexample ofthesegmentationof/ Q /.Duetotheabsenceofvoicingduringfrication,such modifcationinsegmentationcriteriawasnotnecessaryforeither/ /nor/ h /. Figure3{2.Segmentationof/ Q /.Thedottedlineshowstheintensitylevel.

PAGE 47

34 3.2.2 AcousticAnalyses Allmeasurementsdescribedbelowwereobtainedusingscriptswrittenbythe authorforthe PRAAT program.AllmeasurementswerethenenteredintoaMySQL databaseforlaterqueryingandstatisticalanalyses.Forspectralanalysesbased onfastFouriertransform(FFT),adouble-Kaiserwindowwasused.Awindow isafrequencyweightingfunctionappliedtothetimedomaindatatoreduce thespectralleakageassociatedwithfnite-durationtimesignals.Thisprocessis achievedbyapplyingasmoothingfunctionthatpeaksinthemiddlefrequencies (formingamainlobe)anddecreasestonearzeroattheedges(formingsidelobes), thusreducingtheeectsofthediscontinuitiesasaresultoffniteduration.The idealwindowisonethathasanarrowmainlobeandlowsidelobes( Harris 1978 ). However,thereisatradorelationshipbetweenthesetwocharacteristicsas narrowingthemainlobeintroducesmanylevelsofsidelobesandviceversa. Traditionally,inspeechresearch,HammingandHannwindowswereused forspectralanalyses.However,themoreoptimumKaiserwindowisusedinour study.TheKaiserwindowisthebestapproximationtoaGaussianwindowgiven acertainratiobetweenphysicallengthandeectivelength.Moreprecisely,when weightingisused,aKaiserwindowofdoublephysicallengthisappliedtothe signal( BoersmaandWeenink 2004 ).Suchwindowingfunctionproducessimilar bandwidthascomparedtoaHammingwindowwithcomparableeectivewidth. However,withaHammingwindow,weendupwithsidelobesofabout )Tj/T1_0 11.955 Tf9.298 0 Td[(42dBon eachsideofthemainlobewhilesuchwindowingartifactsareatalevelof )Tj/T1_0 11.955 Tf9.298 0 Td[(190dB fortheKaiserwindow(Figure 3{3 ).MostspeechanalysissoftwareusesaHamming (orHann)windowbecauseevaluatingaKaiserwindowasexplainedaboveisslower byafactoroftwosincetheanalysisisperformedontwiceasmanysamplesper frame.Withmoderncomputers,suchspeed/performancetradeoisminimaland hencetheadaptationoftheweightingfunctionforourstudy.

PAGE 48

35 AB Figure3{3.TwoWindowfunctions.A)The0.1-secondsHammingWindow.B)The 0.2-secondsKaiserWindow. Pre-emphasisofeachspectralanalysisintervalwascarriedoutinorderto correctforthe )Tj/T1_0 11.955 Tf9.298 0 Td[(6dBperoctavefalloinproductionofvoicedspeech.Thisfallo isaresultofthe12dBperoctavedecreaseduetoexcitationsourceand6dBper octaveincreaseduetotheradiationcompensationatthelips.Withpre-emphasis applied,therattenedspectrumwouldbeafunctionofthevocaltractalone.Preemphasiswasappliedasdescribedinthe PRAAT manualasaflterchangingeach sample x j ofthesound(exceptfor x 1 )startingfromthelastsampleaccording toEquation( 3{1 )where 4 t isthesamplingperiodofthesoundand F isthe frequencyabovewhichthechangeisapplied.Inourstudy wassetto0.98and F to50Hz.Thepre-emphasisflterwasappliedtothesignalbeforewindowing. = exp ( )Tj/T1_0 11.955 Tf9.299 0 Td(2 F 4 t ) x j = x j )Tj/T1_3 11.955 Tf11.955 0 Td[(x j )Tj/T1_5 7.97 Tf6.586 0 Td(1 (3{1)

PAGE 49

36 3.2.2.1 Duration Threetemporalmeasurementswereextractedbasedonthesegmentation criteriamentionedabove:fricative,vowelandwordduration.Sincedierenttokens ofthesamefricativeincludeddierentstopburstdurations,worddurationwas measuredfromfricativeonsettothepointwherethereleaseofstopburstisvisible onthespectrogram(Figure 3{4 ). Figure3{4.Duration 3.2.2.2 SpectralMoments SpectralMomentsmeasurementsweremodeledafterthoseof Forrestetal. ( 1988 )withthewindowlengthmodifcationemployedby Jongmanetal. ( 2000 ). Afterpre-emphasisisappliedtothesignal,FFTspectrawerecalculatedfrom fourdierentlocationsinthefricativewitha40msdouble-Kaiserwindow.The frstthreewindowswerealignedsothatthefrstcoveredtheinitial40msofthe fricative,thesecondthemiddle40msandthethirdthefnal40msoffrication noise.Thefourthwindowwascenteredoverthefricative-vowelboundarysothat itcovered20msofeach,capturinganytransitionalinformation.Theanalysis

PAGE 50

37 windowsmayormaynotoverlapbasedonthelengthofthefricationnoise. Following Forrestetal. ( 1988 ),eachFFTwastreatedasarandomprobability distributionfromwhichthefrstfourmoments(mean,variance,skewness,and kurtosis)werecalculated.Onlymomentsfromlinearspectrawerecalculatedsince previousresearchonfricatives( Jongmanetal. 2000 )reportedthattherewasno substantialdierencebetweenthelinearandbark-transformedspectra.The PRAAT programmeasuresthefrstmoment(centerofgravity)asinEquation( 3{2 )where S ( f )isthecomplexspectrum, f isthefrequencyandthedenominatoristhe energy.Thequantity p wassetto2inordertoweightheaveragefrequencybythe powerspectrum(notbytheabsolutespectrum). R 1 0 f j S ( f ) j p df R 1 0 j S ( f ) j p df (3{2) TheotherthreemomentswerefrstcalculatedusingEquation( 3{3 )where n denotesthe n th moment.Tonormalizeskewnesswithregardtodierentlevelsof variance,theproductofEquation( 3{3 ),with n =3,wasdividedby1.5powerof thesecondmoment.Likewise,tonormalizekurtosis,theproductofEquation( 3{3 ), with n =4,wasdividedbythesquareofthesecondmomentandthenavalueof3 wassubtracted( Forrestetal. 1988 ). R 1 0 ( f )Tj/T1_2 11.955 Tf11.955 0 Td(f c ) n j S ( f ) j p df R 1 0 j S ( f ) j p df (3{3) 3.2.2.3 RMSAmplitude Root-Mean-Square(RMS)amplitudeindBwasmeasuredfromtheentire fricationnoise.Sincedierentspeakersandrecordingsessionsmayresultin dierentintensities,directmeasuresofamplitudecannotbecomparedacross speakers.Therefore,fricativeamplitudewasnormalizedusingthemethod describedby BehrensandBlumstein ( 1988b ).Basically,theaverageRMS amplitude(indB)ofthreeconsecutivepitchperiodsatthepointofmaximum

PAGE 51

38 vowelamplitudewassubtractedfromtheRMSamplitudeoftheentirefrication noise.In PRAAT ,RMSamplitudewasgiveninunitsofPascalandwerethen changedintodBfollowingEquation( 3{4 ). RMSAmplitudedB=20 log 10 n Amplitude pascal 2 10 )Tj/T1_3 7.97 Tf6.58701 0 Td(5 o (3{4) 3.2.2.4 SpectralPeakLocation SpectralPeakLocationofthefricativewasestimatedusinga40msdoubleKaiserwindowpositionedoverthemiddleofthefricationnoise.Theanalysis windowwassetthislargeinordertogainbetterfrequencyresolution( Jongman etal. 2000 ).Anotherwindowwasplacedattheendofthefricationnoisesuch thatitsrightshoulderwasalignedwiththeendoffricationnoise.Thetwowindow locationswereusedbecausestudiesofspectralpeaklocationhavedemonstrated thathighfrequencypeaksaremorelikelytoemergeatthemiddleandendof fricationnoise( BehrensandBlumstein 1988a ).Further,asexplainedinSection ( 2.3.3.1 ),itisanticipatedthattwopatternsofpeakswillemerge:oneatmiddleof thefricationnoiseandtheotherattheendoftheco-articulatedpharyngealized fricativesduetotheircoarticulatorynature.Afterapplyingpre-emphasisand windowing,anFFTspectrumwasderived.Ascriptwrittenfor PRAAT searched eachspectrumtofndthehighestamplitudepeakanditsassociatedfrequency.As before,theamplitudewasconvertedintodBusingEquation( 3{4 ). 3.2.2.5 RelativeAmplitude RelativeAmplitudewasmeasuredasdescribedin HedrickandOhde ( 1993 ) andlaterin Jongmanetal. ( 2000 )withonemoremodifcation.AnFFTspectrum wasderivedatvowelonsetwitha23.3msdouble-Kaiserwindow.Themeanvalue ofthefrstsixformantsinthewindowedselectionwereestimatedbasedonthe FFTspectrum.Eachspectrumwasthenflteredusingapass-bandHannflterto

PAGE 52

39 isolateregionsofthesecond,thirdandffthformantsbasedonthemeanvalues obtainedabove.Eachregionspannedfromthemeanfrequencyofthetarget formanttohalfthedistancetothetwoadjacentformants.Aschematicexampleof theupperandlowerlimitsofsuchregionispresentedinEquation( 3{5 ). maxF i =meanF i +[(meanF i )Tj/T1_0 11.955 Tf11.955 0 Td(meanF i )Tj/T1_4 7.97 Tf6.586 0 Td(1 ) = 2] minF i =meanF i )Tj/T1_0 11.955 Tf11.955 0 Td[([(meanF i +1 )Tj/T1_0 11.955 Tf11.955 0 Td(meanF i ) = 2] (3{5) Ascriptwrittenfor PRAAT searchedeachfrequencyregionofthespectrum tofnditsspectralpeakandassociatedamplitudeasmentionedinSection 3.2.2.4 above.Similartopreviousresearchwith(English)fricatives,spectralpeakatthe F 5regionwasusedfornon-sibilantfricatives /f,T,D/ andspectralpeakat F 3 regionforsibilantfricatives /s,z,S/ .However,fortheremainingfricatives( /X,K, Q,h,s Q ,D Q / ),spectralpeakofthe F 2regionwasused. AnotherFFTspectrumwasderivedatthemiddleoffricationnoiseand subsequentlyflteredintofrequencyregionsbasedonthefrequencyofamplitude peaksof F 2, F 3and F 5regionsofthevowel.Eachregionspanned128Hzon eachofthetwosidesaroundthevowel'sfrequencyregions.Theamplitudeofthe spectralpeakinthesaidregionswasmeasuredusingthesameprocedureoutlined aboveforthevowel.Relativeamplitudewasthendefnedforeachfrequencyregion astheratiobetweenfricativeamplitudeandvowelamplitudeatthatfrequency range.Ratiosinlogscaleareexpressedasthedierencebetweenthetwovalues. 3.2.2.6 LocusEquations Followingpreviousresearchonlocusequations(forexample Sussmanetal. 1991 1993 ; Fowler 1994 ; Sussman 1994 ; Yeou 1997 ; Govindarajan 1998 ; Jongman 1998 ; Jongmanetal. 2000 ; Tabain 2002 ),coecientsoflocusequationswere derivedfromscatterplotsof F 2valuesmeasuredatvowelonsetandvowelnucleus foreachspeakerandplaceofarticulationcombination.Specifcally,thesecond formantatvowelonsetaswellasatthemiddleofthevowelwereestimatedusing

PAGE 53

40 theformanttrackingprocedureimplementedin PRAAT .Atfrst,thesoundwas resampledto10kHzandthenpre-emphasizedusingthealgorithmmentioned aboveEquation( 3{1 ).AfteraGaussian-likewindowof25mslengthwasappliedto thesignal,theLPCcoecientswerecalculatedforeachanalysiswindowusingthe algorithmbyBurg,asgivenin Anderson ( 1978 )and Press,Flannery,Teukolsky, andVetterling ( 1992 ).Foreachspeakerandplacecombination,linearregression ftswereappliedonscatterplotswith F 2averagedacrossallvowelcontexts.Each scatterplothad F 2measuredattheonsetofthevowelrepresentedonthe y -axes and F 2measuredatthemid-pointofthevowelrepresentedonthe x -axes.The coecientsofeachregressionline(theslope` k 'andthe y -intercept` c ')weretaken tobethetermsoflocusequations. 3.2.2.7 F2atTransition SecondFormantatthetransitionwasalsomeasuredfromthefrstwindow(at vowelonset)usedtoderive F 2forthelocusequationsabove. 3.3 StatisticalAnalyses Alongwithreportingthedescriptivestatisticsfortheacousticmeasures mentionedabove,measuresofsignifcantdierencesbetweendierentplaces ofarticulationforthesemeasureswereobtainedusingappropriateAnalysisof Variance(ANOVA)methods.Allreportedstatisticswerecalculatedfromdata pointsaggregatedacrossthethreerepetitionsforeachspeaker. Discriminantfunctionanalysis(DFA)wasusedtomeasurethecontribution ofdierentcuestowardstheclassifcationoffricativesintotheirrespectiveclasses. TheDFAprocedurereducesthephysicalspace,builtbyextractedcues,into subspacescorrespondingtothesoundclassesunderconsideration( Jassem 1979 ). Thisclassifcationmethodworksfrstbyforming vectors ofthemetricsmentioned above.Recallthateachcuementionedabove,exceptforlocusequations,represents avalueofsomesinglefeatureatagivenpointintime.Therefore,eachtokencan

PAGE 54

41 berepresentedasacombinationofvalues(avector)fromallthesecues.Allthe tokens,then,arerepresentedaspointsdefnedbytheirrespectivevectorsina multidimensionalspace.Thedimensionsofsuchspacedependonthenumberof parametersinuse. ThegoalofDFAistofndtheoptimalnumberofparametersthatprovidethe optimalclassifcationaccuracyoftokensintotheirpre-defnedclasses.Thisprocess involvescalculatingthreetypesofprobabilities:theprobabilityofobservinga particularparameter p foratoken t ( P [ p j t ]),theprobabilityofobservingatoken t inthedata( P [ t ])andfnallytheprobabilityofobservingaspecifcvaluefor aparameter( P [ p ]).Alltheseprobabilitiesarecalculatedfromtrainingdatato predictthemembershipofanunknowntokenintestingdatausingtheBayesian Theorem( 3{6 ).Thevalue P [ t j p ]istheprobabilitythatanunknowntokenbelongs toclass t givenavalueforparameter p ( HarringtonandCassidy 1999 ). P [ t j p ]= P [ p j t ] P [ t ] P [ p ] (3{6) TheunknowntokenthenisclassifedasbelongingtoclassA( t a )notclassB ( t b )ifthecondition P [ p j t a ] P [ t a ] >P [ p j t b ] P [ t b ]issatisfed( HarringtonandCassidy 1999 ).Thetraditionalwayofapplyingthismethodtofricativesclassifcation(see forexample ShadleandMair 1996 ; Tabain 1998 ; Jongmanetal. 2000 ; Nissen 2003 ) involvesall-but-onespeakersasthetrainingdataandtokensfromtheremaining speakerasthetestingdata.Theprocessisrepeatedsothateachspeakerwillbe inthetestingdataatagiventime.TheDFAprocedureproducesaclassifcation accuracyscorealongwithasetofcoecientsthatrepresentthecontributionofthe parametersintheclassifcation.

PAGE 55

CHAPTER4 AMPLITUDEANDDURATION Thischapterreportsresultsoftheamplitudeanddurationmeasurements. Theseresultswerederivedfromathree-wayANOVAwithplaceofarticulation, voicing,andvowelcontextasbetween-subjectfactors. Posthoc testsofsignifcant eectswereadjustedformultiplecomparisonsusingtheBonferronimethod.All datawereaggregatedacrossthethreerepetitionsofeachspeakerpriortoany statisticalanalysis. 4.1 AmplitudeMeasurements 4.1.1 NormalizedFricationNoiseRMSAmplitude NormalizedfricationRMSamplitudewascalculatedasthedierence betweenfricationnoiseRMSamplitudeandtheaverageRMSamplitudeof threeconsecutivepitchperiodsatthepointofmaximumvowelamplitude. Athree-wayAnalysisofVariance(ANOVA)withnormailizedfricationnoise RMSasthedependentfactorandtheplaceofarticulation,voicing,andvowel contextasbetweensubjectfactorsrevealedasignifcantmaineectofPlace [ F (8 ; 561)=75 : 241 ;p< 0 : 001; 2 =0 : 518].Duetoalackofvoicingcontrast atsomeplacesoffricativearticulationinArabic(Labiodental,Post-Alveolar,and Glottal),dierenceswithinvoicelessfricativesandwithinvoicedfricativeswill beinterpretedseparately.Forbothvoicedandvoicelessfricatives,subsequent Bonferroni posthoc testsshowedthatplainfricativesandtheirpharyngealized counterparts( /D-D Q /and/s-s Q / )didnotdierinnormalizedRMSamplitude (meannormalizedRMSvaluesarereportedinFigure 4{1 ).However,withthe exceptionofthecontrastbetweenvoicedalveolaranduvularfricatives( /zK/ ),normalizedRMSamplitudesignifcantly( p< 0 : 0001)distinguishedall 42

PAGE 56

43 placesofvoicedfricativearticulation.Additionally,withinvoicelessfricatives, nonsibilantfricatives /f,T/ hadthelowestnormalizedRMSamplitude( )Tj/T1_0 11.955 Tf9.298 0 Td(23 : 94 and )Tj/T1_0 11.955 Tf9.299 0 Td(22 : 50dBrespectively).WhilesuchRMSamplitudevaluesfor /f/and/T/ werenotstatisticallydierentfromeachother,normalizedRMSamplitudevalues ofboth /f/and/T/ weresignifcantlylowerthanallothervoicelessfricatives. Additionally,nodierenceswereobtainedbetween /s,S,h/ orbetween /X,/ .All othercontrastsweresignifcant(Figure 4{1 ). NormalizedRMSAmplitude(dB) PlaceofArticulation Figure4{1.MeanfricationnoisenormalizedRMSamplitude(dB)byplaceof articulationandvoice. TherewasalsoasignifcantmaineectofVowelcontext[ F (5 ; 561)= 16 : 185 ;p< 0 : 001; 2 =0 : 126].Forshortvowels,normalizedfricationRMS amplitudetendedtobelowerasthevowelcontextchangedfrom /i/to/u/to

PAGE 57

44 /a/ withmeansof )Tj/T1_0 11.955 Tf9.299 0 Td(16 : 51dB, )Tj/T1_0 11.955 Tf9.298 0 Td(17 : 03dB,and )Tj/T1_0 11.955 Tf9.299 0 Td(17 : 81dBrespectively.Thesame patternwasalsoobservedwithlongvowels( /i:/to/u:/to/a:/ withmeansof )Tj/T1_0 11.955 Tf9.299 0 Td(14 : 30dB, )Tj/T1_0 11.955 Tf9.299 0 Td[(16dB,and )Tj/T1_0 11.955 Tf9.298 0 Td(18 : 58dBrespectively).However,statisticallysignifcant dierencesintermsofvowelcontexteect,assuggestedby posthoc tests,were observedwithlongvowelsonlywith p =0 : 004forthe /i:-u:/ contrastand p< 0 : 001forallothercontrasts.Additionally,ascanbeseenfromFigure 4{2 whencomparingashortvoweltoitslongvariant,wefndthatonlythefront longvowel /i:/ resultedinasignifcantly( p< 0 : 001)lowervaluefornormalized fricationRMSamplitudethanitsshortcounterpart /i/ VowelContext NormalizedRMSAmplitude(dB) Figure4{2.MeanfricationnoisenormalizedRMSamplitude(dB)byvowel context. Finally,asignifcantmaineectofVoicing[ F (1 ; 518)=315 : 204 ;p< 0 : 001; 2 =0 : 36]wasalsofound.NormalizedRMSamplitudeofvoicedfricatives

PAGE 58

45 (mean= )Tj/T1_0 11.955 Tf9.298 0 Td(14 : 22dB)wasgreaterthanthatofvoicelessfricatives(mean= )Tj/T1_0 11.955 Tf9.299 0 Td(18 : 26 dB).Inadditiontothismaineect,therewasasignifcantPlacebyVoicing interaction[ F (3 ; 561)=41 : 9 ;p< 0 : 001; 2 =0 : 183].AscanbeseeninFigure 4{3 ,Bonferroni posthoc testsshowedthatthesignifcantdierenceinnormalized fricationRMSamplitudebetweenvoicedandvoicelessfricativesnotedabovewas notpresentforalveolarfricatives /s,z/ Figure4{3.MeanfricationnoisenormalizedRMSamplitude(dB)asafunctionof placeofarticulationandvoicing. 4.1.2 RelativeAmplitudeofFricationNoise Relativeamplitudeisdefnedhereastheratiobetweentheamplitudeof aspecifcfrequency( F 3for /f,T,D/ F 5for /s,z,S/ ,and F 2for /X,K,s Q ,D Q ,Q,h/ )measuredatthefricationnoisemidpointandtheamplitudeofthe correspondingfrequencymeasuredatvowelonset.Resultsofathree-wayANOVA

PAGE 59

46 (place voice vowel)withrelativeamplitudeasthedependentvariableshoweda signifcantmaineectofPlace[ F (8 ; 561)=104 : 525 ;p< 0 : 001; 2 =0 : 598]. Ingeneral,relativeamplitudeofafricativebecomesgreaterastheplaceof articulationadvancestowardsthelips(Figure 4{4 ).Theonlynotableexception wasthepost-alveolarfricative( /S/ ).Itwastheonlyfricativeinwhichthefrication amplitudemeasuredattheregionof F 3wasgreaterthantheamplitudeofthe samefrequencyregionatthefollowingvowelonset(i.e.,givingavalueforrelative amplitudeabove zero ).Collapsedacrossvoicing,dierencesinrelativeamplitude betweenallplacesoffricativearticulationweresignifcantwiththeexceptionofall possiblepairwisecomparisonsbetweenthefollowingthreeplaces:alveolar /s,z/ pharyngeal /,Q/ ,andglottal /X,K/ fricatives.However,sincevoicingcontrast isnotpresentatallplaces,Bonferroni posthoc testscarriedoutonvoicedand voicelessfricativesshowedadierentpattern.Withinvoicedfricatives,relative amplitudeofpharyngealizeddentalfricative /D Q / wassignifcantlylowerthanthose ofallothervoicedfricatives,whilethoseofalveolar /z/ ,dental /D/ ,anduvular /K/ fricativeswerenotstatisticallydierentfromoneanother.Furthermore,the dierenceinrelativeamplitudebetween /D/and/Q/ wasnotsignifcant.Allother contrastsbetweenvoicedfricativesweresignifcant(Figure 4{4 ).Withinvoiceless fricatives,relativeamplitudedierentiated /f/ ( )Tj/T1_0 11.955 Tf9.298 0 Td[(5.22dB)and /T/ ( )Tj/T1_0 11.955 Tf9.299 0 Td[(5.45dB) fromallotherfricatives;however,nosignifcantdierencewasobservedbetween thesetwononsibilantfricatives.Additionally,relativeamplitudedierentiated betweenallothervoicelessfricativeswiththeexceptionofthecontrastsbetween /s/ { // /s/ { /h/ ,and // { /h/ TherewasalsoasignifcantmaineectforVowelcontext[ F (5 ; 561)= 11 : 642 ;p< 0 : 001; 2 =0 : 094].However,thesourceofthismaineectasrevealed byBonferroni posthoc testscanbesolelyattributedtodierencesinthecontextof longvowels.Specifcally,relativeamplitudeoffricativesfollowedbythehighback

PAGE 60

47 RelativeAmplitude(dB) PlaceofArticulation Figure4{4.Meanrelativeamplitudeoffricatives.

PAGE 61

48 vowel /u:/ (mean= )Tj/T1_0 11.955 Tf9.298 0 Td(11 : 31dB)wassignifcantlyhigher( p< 0 : 0001)thanrelative amplitudeoffricativeinfrontofanyothervowelexcept /i:/ whichhassimilar heightandlengthas /u:/ .Anothersourcefortheobtainedmaineectabovewas thesignifcantlylow( p< 0 : 016)relativeamplitudeoffricativesprecedingthelow vowel /a:/ (mean= )Tj/T1_0 11.955 Tf9.298 0 Td(17 : 02dB)inrelationtootherlongvowels.Furthermore, therewasageneraltrendsuchthatashortvowelwouldresultinalowerrelative amplitudethanitslongcounterpartwithonly /u,u:/ contrastreachingsignifcance level( p< 0 : 05).Meanvaluesforrelativeamplitudeoffricativesindierentvowel contextsarepresentedinTable 4{1 wherecellswithsignifcantdierencesare shaded. Table4{1.RelativeamplitudeindierentVowelcontexts.Meansarearrangedin descendingorder. Mean /i//u//a//i://u://a:/ /u:/ -11.31 /i:/ -13.85 /i/ -16.17 /u/ -16.33 /a:/ -17.02 /a/ -18.61 signifcantdierenceat p< 0 : 05 TheANOVAalsorevealedasignifcantPlacebyVoicinginteraction [ F (3 ; 561)=20 : 834 ;p< 0 : 001; 2 =0 : 10].Bonferroni posthoc testsshowed thatonlythedierencesbetweenvoicelessandvoiceddentalfricatives /T,D/ (9 : 5 dB)andbetweenvoicelessandvoicedpharyngealfricatives /,Q/ ( )Tj/T1_0 11.955 Tf9.298 0 Td(5 : 5dB)were signifcant(Figure 4{5 ).However,nomaineectofvoicingwasobtained. APlacebyVowelcontextinteractionwasalsosignifcant[ F (40 ; 561)= 4 : 101 ;p< 0 : 001; 2 =0 : 226].Multipleone-wayANOVAs,withBonferroni post hoc testscorrectedformultiplecomparisons,wereconductedforeachplaceof articulationinwhichvowelcontextwasseparatedaslongandshortvowels.The resultsoftheseANOVAsshowedthatforlongvowels,thesignifcantincrease

PAGE 62

49 Figure4{5.RelativeamplitudeasafunctionofPlaceandVoicing.

PAGE 63

50 ofrelativeamplitudeinfrontof /u:/ mentionedabovewaspresentonlywithin labiodental( /f/ )(mean=5 : 34dB)andalveolar( /s,z/ )(mean= )Tj/T1_0 11.955 Tf9.298 0 Td(6 : 37dB) fricatives.Inaddition,relativeamplitudewithinpharyngealizedalveolars( /s Q / )in thecontextoflowvowel /a:/ wassignifcantlylower(mean= )Tj/T1_0 11.955 Tf9.299 0 Td(38 : 21dB)thanin thecontextofhighvowels /i:/ (mean= )Tj/T1_0 11.955 Tf9.298 0 Td(21 : 36dB)and /u:/ (mean= )Tj/T1_0 11.955 Tf9.299 0 Td(22 : 54dB). Finally,unliketheabsenceofdierencesbetweenlongvowelsofthesameheight observedabove,therelativeamplitudeofglottalfricative( /h/ )inthecontext ofthefrontvowel /i:/ (mean= )Tj/T1_0 11.955 Tf9.299 0 Td(10 : 21dB)wassignifcantlyhigherthaninthe contextofbackvowel /u:/ (mean= )Tj/T1_0 11.955 Tf9.299 0 Td[(20dB)(Figure 4{6 ).Asforshortvowels, asimilarpatternofsignifcantdierenceswasobtained.Specifcally,therelative amplitudeoflabiodental( /f/ )andalveolar( /s,z/ )fricativeswassignifcantly higherinthecontextof /u/ (mean= )Tj/T1_0 11.955 Tf9.299 0 Td(1 : 31and )Tj/T1_0 11.955 Tf9.298 0 Td(10 : 64dBrespectively)than either /i/ (mean= )Tj/T1_0 11.955 Tf9.298 0 Td(9 : 77and )Tj/T1_0 11.955 Tf9.298 0 Td(21 : 58dBrespectively)or /a/ (mean= )Tj/T1_0 11.955 Tf9.298 0 Td(9 : 83 and )Tj/T1_0 11.955 Tf9.299 0 Td(20 : 79dBrespectively).Moreover,therelativeamplitudeofpharyngealized Alveolar( /s Q / )inthecontextoflowvowel /a/ (mean= )Tj/T1_0 11.955 Tf9.298 0 Td(39 : 07dB)wasonly signifcantlylowerthaninthecontextofhighvowel /i/ (mean= )Tj/T1_0 11.955 Tf9.299 0 Td(28 : 02dB) (Figure 4{7 ).Meanvaluesforrelativeamplitudeoffricativesindierentvowel contextarealsopresentedinTable( 4{2 ). Finally,aVowelcontextbyVoicinginteractionwasalsofoundtobesignifcant [ F (5 ; 561)=4 : 574 ; p < 0 : 001; 2 =0 : 039].Bonferroni posthoc testswerecarriedout onlongandshortvowelsseparately.Ingeneraltherelativeamplitudeofvoiceless fricativesinagivenvowelcontextishigherthanthatofvoicedfricativesinthe samecontext(Figure 4{8 andFigure 4{9 ),howeverthisdierencewassignifcant onlywith /i:/ (mean= )Tj/T1_0 11.955 Tf9.299 0 Td(10 : 80dBforvoicelessand )Tj/T1_0 11.955 Tf9.299 0 Td(18 : 71dBforvoiced).

PAGE 64

51 PlaceofArticulation RelativeAmplitude(dB) /h//,Q//X,K/ /S/ /s Q //s,z/ /D Q //T,D//f/ Figure4{6.Relativeamplitude(dB)asafunctionofplaceofarticulationandshort vowels.

PAGE 65

52 PlaceofArticulation RelativeAmplitude(dB) /h//,Q//X,K/ /S/ /s Q //s,z/ /D Q //T,D//f/ Figure4{7.Relativeamplitude(dB)asafunctionofplaceofarticulationandlong vowels.

PAGE 66

53 Table4{2.Meanrelativeamplitudeoffricationnoise. /i//u/ /a/ shortlongshortlongshortlong LabiodentalVoiceless-9.77-7.12-1.315.34-9.83-8.64 Dental Voiced-18.88-15.22-14.49-9.36-15.85-15.88 Voiceless-7.13-5.26-6.510.87-7.55-7.12 Alveolar Voiced-21.54-18.67-9.83-6.91-22.28-18.44 Voiceless-21.62-17.87-11.46-5.84-19.30-18.49 Pos-AlveolarVoiceless-2.09-1.053.737.96-3.160.01 Uvular Voiced-21.31-22.71-18.45-15.10-22.58-20.15 Voiceless-16.67-16.52-29.88-22.51-27.48-22.90 Pharyngeal Voiced-12.98-12.05-14.65-10.58-10.78-9.66 Voiceless-10.60-7.04-24.63-21.55-19.76-20.35 PharyngealizedDentalVoiced-26.30-24.91-28.53-26.76-32.02-29.67 PharyngealizedAlveolarVoiceless-28.02-21.36-38.21-22.54-39.07-38.21 GlottalVoiceless-13.30-10.21-18.09-20.00-12.20-11.80

PAGE 67

54 VoicelessVoiced RelativeAmplitude(dB) Figure4{8.Relativeamplitude(dB)asafunctionofvoicingandvowelcontext (shortvowels).

PAGE 68

55 VoicelessVoiced RelativeAmplitude(dB) Figure4{9.Relativeamplitude(dB)asafunctionofvoicingandvowelcontext (longvowels).

PAGE 69

56 4.2 TemporalMeasurements Twomeasuresoffricativenoisedurationarereportedhere:absolutefricative durationandnormalizedfricativeduration.Forthelatter,theratiobetweenword andfricativedurationswascalculatedtonormalizeandaccountforthedierent speakingratesthatmighthaveoccurred.Foreachmeasure,athree-wayANOVA (place voice vowelcontext)wascarriedout.Subsequent posthoc testswere correctedformultiplecomparisonsusingtheBonferronimethod. 4.2.1 AbsoluteDurationofFricationNoise Athree-wayANOVA(place voice vowelcontext)withtheduration ofthefricationnoiseasthedependentfactorrevealedamaineectofPlace [ F (8 ; 561)=50 : 092 ;p< 0 : 001; 2 =0 : 417]withmeanfricationnoiseduration of117.99ms.Meandurationoffricationnoiseasafunctionofplaceofarticulation andvoicingarepresentedinFigure 4{10 .Averagedacrossvoicingandvowel context,pharyngealizeddental /D Q / andglottalfricative /h/ hadtheshortest durationwithameanof86.47and98.55msrespectively.Duetothewellknown eectofvoicingonsegmentalduration( ColeandCooper 1975 ; Manriqueand Massone 1981 ; BaumandBlumstein 1987 ; BehrensandBlumstein 1988b ; Crystal andHouse 1988 ; Pirelloetal. 1997 ,amongothers),twosetsofcomparisonswere mad,oneforevoicedandtheotherforvoicelessfricatives.Amongvoicedfricatives, alveolarfricative /z/ wassignifcantlylongerthanallothervoicedfricativeswitha meandurationof110.12ms.Nootherdierencesamongvoicedfricativesreached thesignifcancelevelof p< 0 : 05. Ontheotherhand,contrastswithinvoicelessfricativesrevealedthatglottal fricative /h/ ,withameandurationof98.55ms,wassignifcantlyshorterthanall othervoicelessfricatives.Althoughnosignifcantdierencebetweennonsibilants wasobserved,eachofthenonsibilants /f/and/T/ (127.86and131.68ms respectively)weresignifcantlyshorterthaneachofthesibilants /s/,/s Q /,and

PAGE 70

57 /S/ .Additionally,alveolar /s/ anditpharyngealizedcounterpart /s Q / (mean= 149.86and149.70ms)weresignifcantlylongerthanallothervoicelessfricatives excluding /S/ .Asinthecaseofvoicedfricatives,nosignifcantdierenceswere foundamongvoicelesslabiodental,dental,uvular,andpharyngealfricativesor betweenpharyngealizedfricativesandtheirplaincounterparts( /s Q -s/ ). FricationNoiseDuration(ms) PlaceofArticulation Figure4{10.AbsoluteFricationnoisedurationasafunctionofplaceandvoice averagedacrossallvowelcontextandspeakers. Also,asexpected,amaineectofVoicingwasfound[ F (1 ; 561)=721 : 75 ;p< 0 : 001; 2 =0 : 563],withvoicelessfricatives(mean134.21ms)beingsignifcantly longerthanvoicedfricatives(mean92.05ms).APlacebyVoiceinteractionwas alsosignifcant[ F (3 ; 561)=3 : 327 ;p< 0 : 05; 2 =0 : 017].SubsequentBonferroni post hoc testsshowedthatthisdierencewassignifcantacrossallplacesofarticulation

PAGE 71

58 withavoicingcontrast(Figure 4{11 ).Thesourceofthisinteractionisprobably duetovariationinthemagnitudeofdurationdierencesbetweenavoicedand voicelessfricativeinagivenplace.AsisapparentfromFigure 4{11 ,thedierence betweenvoicedandvoicelessfricativeswasgreaterforuvularandpharyngealthan fordentalandalveolarfricatives. Figure4{11.Meanabsolutefricationnoisedurationforplaceswithavoicing contrast. Finally,amaineectofVowelcontext[ F (5 ; 561)=4 : 708 ;p< 0 : 001; 2 =0 : 04] wassignifcant.However, posthoc testsshowedthatdierencesinfrication noisedurationmeasuredinthecontextofvowelsofthesamelengthwerenot signifcantlydierentfromeachother.Moreover,thesourceofthemaineectwas duetothesignifcantlyincreaseddurationoffricativesmeasuredinthecontextof /i:/ (mean123.25ms)ascomparedtoallshortvowels;andthesignifcantlylonger

PAGE 72

59 durationoffricationnoiseinthecontextof /u:/ (mean122.80ms)whencompared to /a,u/ (Figure 4{12 ). VowelContext FricationnoiseDuration(ms) Figure4{12.Meanabsolutefricationnoisedurationindierentvowelcontexts. 4.2.2 NormalizedDurationofFricationNoise Normalizedfricationnoisedurationisdefnedhereastheratiobetween fricativedurationandwordduration.AscanbeseenfromFigure 4{13 ,normalized fricationnoisefollowedapatternsimilartotheoneobservedwithabsolute fricationnoiseduration.Specifcally,averagedacrossvoicingandvowelcontext, pharyngealizeddental /D Q / andglottalfricative /h/ hadtheshortestnormalized durationwithmeansof0.27and0.31respectively.Theresultsofthethree-way ANOVArevealedamaineectofPlace[ F (8 ; 561)=49 : 82 ;p< 0 : 001; 2 =0 : 415]. Separatedaccordingtovoicing,Bonjferroni posthoc testsshowed,aswasthecase

PAGE 73

60 withabsoluteduration,that /z/ (mean0.34)wassignifcantlylongerthanallother voicedfricatives.Nosignifcantdierenceswereobservedamongvoiceddental, uvular,andpharyngealfricativesorbetweenpharyngealizeddentalandtheirplain counterparts(i.e., /D Q -D/ ). Asforcontrastswithinvoicelessfricatives,glottalfricative /h/ ,withthe meandurationof0.307,wassignifcantlyshorterthanallothervoicelessfricatives. Moreover,voicelessalveolar /s/ wassignifcantlylongerthanallothervoiceless fricativesexcludingthepost-alveolarandpharyngealizedalveolarfricatives /S,s Q / whichinthemselvesweresignifcantlylongerthanlabiodental,pharyngeal,and glottalfricatives /f,,h/ .Nodierenceamongvoicelessfricativesreachedthe signifcancelevelof p< 0 : 05. NormalizedFricationNoiseDuration PlaceofArticulation Figure4{13.Meannormalizedfricationnoisedurationasafunctionofplaceand voiceaveragedacrossallvowelcontextsandspeakers.

PAGE 74

61 TheeectofVoicingonnormalizedfricativedurationwasalsosignifcant [ F (1 ; 561)=724 : 74 ;p< 0 : 001; 2 =0 : 564].Averagedacrossotherconditions, voicedfricativeshadsignifcantlyshorternormalizeddurations(mean=0 : 29) thanvoicelessfricatives(mean=0 : 38).Inaddition,asignifcantPlacebyVoicing interaction[ F (3 ; 561)=7 : 079 ;p< 0 : 001; 2 =0 : 036]andsubsequentBonferroni posthoc testsshowedthatthisdierencewasgreaterforuvularandpharyngeal thanfordentalandalveolarfricatives(Figure 4{14 ). Figure4{14.Meanofnormalizedfricationnoisedurationforplaceswithavoicing contrast. Finally,asshowninFigure 4{15 ,normalizedfricationnoisedurationwas signifcantlyaectedbytheVowelcontext[ F (5 ; 561)=8 : 862 ;p< 0 : 001; 2 = 0 : 073].However,sucheectassuggestedbyBonferroni posthoc testswaslocalized onlywithreferencetocontrastsinvolvinglongvowels.Specifcally,whileno

PAGE 75

62 signifcantdierenceswereobservedwithinshortvowels,normalizedfricationnoise durationwassignifcantlyshorter(mean=0 : 32)inthecontextof /a:/ thanall othervowels.Ontheotherhand,fricativespreceding /i:/ hadsignifcantlylonger normalizedduration(mean0.35)thaninthecontextofotherlongvowels. VowelContext NormalizedFricationNoiseDuration Figure4{15.Meannormalizedfricationnoisedurationindierentvowelcontexts.

PAGE 76

CHAPTER5 SPECTRALMEASUREMENTS 5.1 SpectralPeakLocation Thischapterreportsonresultsofthespectralmeasurementswhichinclude spectralpeaklocation(frequencyregionofeneregymaximuminfricationnoise) andspectralmoments(mean,variance,skewness,andkurtosis).Asmentionedin Section( 3.2.2.4 ),spectralpeakfrequenciesweremeasuredatehcenteraswellas theendoffricationnoise.First,meanspectralpeaklocationobtainedfromthetwo locationswasusedinaone-wayANOVAasdependentvariabletotestfortheeect oftheanalysiswindowlocation.TheANOVAshowedamaineectforWindow Location[ F (1 ; 1246)=1022 : 9 ;p< 0 : 001; 2 =0 : 451].Meanspectralpeaklocation whenmeasuredatthemiddleofthefricationnoise(4323Hz)washigherthanwhen measuredattheendoffricationnoise.However,athree-wayANOVA(place vowel voicing)withspectralpeakmeasuredattheendofthefricationnoiseas thedependentvariableshowednosignifcanteectforplace.Thereforeonlythe resultsofmeasurementsderivedfromthemiddleoffricationnoisewillbereported indetailsbelow. Table 5{1 representsthemeanfrequencyofspectralpeaklocationobtained froma40-msKaiserwindowplacedatthemiddleoffricationnoiseofallfricatives indierentvowelcontextsaveragedacrossspeakersandrepetitions.Resultsof athree-wayANOVA(place vowel voicing)withspectralpeakmeasuredat themiddleoffricationnoiseasthedependentvariablerevealedamaineectfor Place[ F (8 ; 561)=143 : 402 ;p< 0 : 001; 2 =0 : 672].Theobservedgeneraltrend ofspectralpeaklocationisthat,whenaveragedacrossspeakersandvowelcontext, 63

PAGE 77

64 thefrequencyofthepeaktendstodecreaseastheplaceofarticulationmoves backwardsintheoralcavity. Sincevoicingcontrastisnotpresentforsomeplacesoffricativearticulation inArabic,Bonferroni posthoc testsconductedtotestforthesimplemaineect forplacewillbeconductedseparatelyforvoicedandvoicelessfricatives.Thatis, dierenceswithinvoicelessfricativesandwithinvoicedfricativeswillbeinterpreted separately.Meanfrequenciesofspectralpeakoffricativesseparatedbyplace andvoicingarepresentedinFigure( 5{1 ).Amongvoicelessfricatives,three homogeneousgroupsoffricativesarticulatedatadjacentplacesemerged,with dierencesinspectralpeaklocationsignifcantonlyforcontrastsbetweenmembers ofdierentgroups.Thefrstgroupincludedlabiodental,dental,andalveolar fricatives( /f,T,s/ );thesecondincludedpost-alveolaranduvularfricatives( /S, X/ );andfnallythethirdgroupconsistedofpharyngealandglottalfricatives( /, h/ ).Asforvoicedfricatives,onlythedierencebetween /K/and/Q/ wasnot signifcant.Moreover,nosignifcantdierencewasobservedbetweenplainfricatives andtheirpharyngealizedcounterpart( /D-D Q /or/s-s Q / ). AnothermaineectwasobservedforVoicing[ F (1 ; 561)=152 : 388 ;p< 0 : 001; 2 =0 : 214],inwhichthefrequencyofspectralpeaklocationfor voicelessfricatives(mean=4957Hz)wassignifcantlygreaterthanthatofvoiced fricatives(mean=3279Hz).However,asignifcantPlacebyVoicinginteraction [ F (3 ; 562)=26 : 48 ;p< 0 : 001; 2 =0 : 124]andsubsequentBonferroni posthoc comparisonswithinplacesthathaveavoicingcontrastshowedthatthedierence betweenvoicelessandvoicedfricativeswasnotsignifcantforalveolarfricatives( /s, z/ ).Also,asapparentfromFigure( 5{2 ),thedierencewasmostprominentforthe nonsibilantdentalfricatives( /T,D/ ). AmaineectforVowelcontextwasalsosignifcant[ F (5 ; 561)=8 : 473 ;p< 0 : 001; 2 =0 : 07].Whilenosignifcantdierencesbetweenvowelsdieringonlyin

PAGE 78

65 Table5{1.Meanfrequency(Hz)ofamplitudepeakasmeasuredatthemiddleoffricationnoise. /i//u/ /a/ shortlongshortlongshortlong LabiodentalVoiceless814472107031624176137940 Dental Voiced411558382559382329421788 Voiceless768682757426751378797248 Alveolar Voiced672080795228528371247237 Voiceless801676865583580173897270 Post-AlveolarVoiceless348636903327366833483495 Uvular Voiced187221531414136821862104 Voiceless320632383927339833233767 Pharyngeal Voiced76311396406419001162 Voiceless249325452651241422032298 PharyngealizedDentalVoiced341342493101276737024047 PharyngealizedAlveolarVoiceless713568754738614769727137 GlottalVoiceless22432363935114917762042

PAGE 79

66 SpectralPeakLocation(Hz) PlaceofArticulation Figure5{1.Meanspectralpeaklocationasafunctionofplaceandvoicing

PAGE 80

67 PlaceofArticulation SpectralPeakLocation(Hz) Figure5{2.Placeofarticulationandvoicinginteractionforspectralpeaklocation

PAGE 81

68 lengthwerepresent(Figure 5{3 ),subsequent posthoc testsadjustedformultiple comparisonsusingtheBonferronimethodshowedthatfrequencyofspectralpeak locationmeasuredinthecontextofeither /u/or/u:/ wassignifcantlylowerthan spectralpeaklocationmeasuredinthecontextofeither /i/or/i:/ .Moreover, spectralpeaklocationoffricativespreceding /u/ hadsignifcantlylowerfrequencies thaninthecontextofallothervowelsexceptasnotedaboveforthe /u-u:/ contrast. PlaceofArticulation SpectralPeakLocation(Hz) Figure5{3.Frequencyofspectralpeaklocationindierentvowelcontexts Asignifcant[ F (40 ; 561)=1 : 441 ;p< 0 : 05; 2 =0 : 093]PlacebyVowelcontext interactionwithsubsequentBonferroni posthoc testsshowedthattheeectof vowelcontextmentionedabovewasconfnedonlytoalveolarandglottalfricatives. AsapparentfromFigure( 5{4 )andFigure( 5{5 ),both /u/and/u:/ resultedina signifcantlylowerfrequencyofspectralpeaklocationinalveolarfricativesthan

PAGE 82

69 allothervowels.Inthecaseofglottalfricative /h/ ,theshorthighbackvowel /u/ (mean=935Hz)introducedasignifcantlylowerspectralpeakfrequencyonlywhen comparedto /i/and/i:/ (mean=2243Hzand2363Hzrespectively).Although thefrequencyofthespectralpeaklocationof /s Q / inthecontextof /u/ wasabout 2396Hzlowerthanthatof /a,i/ ,suchadierencewasonlymarginallysignifcant ( p =0 : 051). PlaceofArticulation Spectralpeaklocation(Hz) /h//,Q//X,K/ /S//s Q //s,z//D Q //T,D/ /f/ Figure5{4.Meanfrequencyofspectralpeaklocationasafunctionofplaceand shortvowels 5.2 SpectralMoments Thefrstfourstatisticalmomentswerecomputedfromthree40mswindows locatedattheonset,middle,andosetofthefricationandfroma40mswindow centeredatthefricativeosettocaptureanytransitionalinformationintothe vowel.Inthissection,twoanalysesarepresentedforeachmoment.Specifcally,to capturethegeneraltrendofspectralmoments,separateone-wayANOVAswere

PAGE 83

70 PlaceofArticulation SpectralPeakLocation(Hz) /h//,Q//X,K/ /S//s Q //s,z//D Q //T,D/ /f/ Figure5{5.Meanfrequencyofspectralpeaklocationasafunctionofplaceand longvowels

PAGE 84

71 conductedforplaceandvoicewithmomentsacrosswindowlocationsasdependent variables.Additionally,apreliminaryone-wayANOVAtestofdierencesbetween momentscomputedatdierentwindowsshowedamaineectforwindowlocation forallmoments.Therefore,separatethree-wayANOVAs(place vowel voicing) withsubsequentBonferroni posthoc testswereconductedforeachmomentand windowlocationcombination.Asummaryofthespectralmomentscollapsedacross speakers,vowelcontext,andwindowlocationsarepresentedinTable( 5{2 ). 5.2.1 SpectralMean One-wayANOVAsforplaceandvoicingwerecarriedoututilizingspectral meanmeasurementsacrossthefourwindowlocationsasthedependent variable.TheANOVArevealedamaineectforPlaceofarticulation [ F (8 ; 2487)=210 : 567 ;p< 0 : 001; 2 =0 : 403].SubsequentBonferroni post hoc testswereconductedforvoicelessandvoicedfricativesseparately.Forvoiced fricatives,spectralmeanwashighestforalveolar /z/ (5935Hz)andlowestfor pharyngeal /Q/ (1547Hz).Dierencesinspectralmeansforallcontrastswithin voicedfricativesweresignifcant,withtheexceptionofthecontrastbetweenplain dental /D/ anditspharyngealizedcounterpart /D Q / .Asforvoicelessfricatives, alveolar /s/ hadthehighestspectralmean(5546Hz),whileglottal /h/ hadthe lowest(2513Hz).Also,withtheexceptionofthenonsibilants( /f,T/ ),spectral meantendstodecreaseasthefricativearticulationmovestowardstheback ofthemouth.Additionally,aswasthecaseinspectralpeaklocation(Section 5.1 ),threecategoriescontainingfricativesarticulatedinadjacentplaces( /f,T, s,s Q /,/S,X/and/Q,h/ )wereobservedtohavenowithin-groupdierencesthat werestatisticallysignifcant.Onlycomparisonsinvolvingmembersofdierent groupsweresignifcant.Theonlyexceptiontothisgeneralobservationwaswith thefrstgroupinwhichthecontrastbetweenlabiodental /f/ (4802Hz)and alveolar /s/ (5546Hz)wassignifcant.AmaineectwasalsoobtainedforVoicing

PAGE 85

72 Table5{2.Spectralmomentsforplaceandvoiceaveragedacrossallwindowlocations. PlaceSpectralMeanVarianceSkewnessKurtosis ofArticulation (Hz) (MHz) LabiodentalVoiceless4802 5.97 0.70 2.96 Dental Voiced3999 6.91 0.65 1.15 Voiceless52665.990.250.72 46336.45 0.45 0.93 Alveolar Voiced5935 5.26 -0.06 0.74 Voiceless55464.390.441.05 57404.83 0.19 0.89 Post-AlveolarVoiceless3888 3.61 1.33 2.38 Uvular Voiced2396 4.38 1.79 6.48 Voiceless36524.401.363.97 30244.39 1.57 5.23 Pharyngeal Voiced1547 1.46 2.25 13.69 Voiceless25222.452.429.79 20341.96 2.34 11.74 PharyngealizedDentalVoiced3910 7.45 0.84 2.10 PharyngealizedAlveolarVoiceless5257 4.39 0.69 1.51 GlottalVoiceless25134.431.764.56

PAGE 86

73 [ F (1 ; 2494)=59 : 025 ;p< 0 : 001; 2 =0 : 023].Collapsedacrossallspeakers,place andvowelcontexts,voicelessfricativeshadhighervaluesforspectralmean(4181 Hz)thanvoicedfricatives(3557Hz). Asmentionedabove,valuesforspectralmeanmeasuredatdierentwindow locationswerestatisticallydierent[ F (3 ; 2492)=326 : 978 ;p< 0 : 001; 2 =0 : 28]. Therefore,separatethree-wayANOVAs(place vowel voicing)werecarried outforspectralmeanateachwindowlocation.Therewasamaineectforplace ofarticulationforallwindowlocationswith 2 valuesof0.736(window1),0.830 (window2),0.790(window3)and0.602(window4).Therangeof 2 indicates thatspectralinformationmeasuredatthesewindowscontributedwithvarying degreestotheseparationoffricativesaccordingtotheirplaceofarticulation.This observationwasconfrmedby posthoc testsfordierencesperformedonvoiced andvoicelessfricativesseparately.Forvoicedfricatives,acrossallwindows,alveolar fricative /z/ hadthehighestspectralmeanwhilepharyngeal /Q/ hadthelowest. Additionally,spectralmeandistinguishedbetweenallplacesofvoicedfricativesin allwindows,withtheexceptionofthecontrastsbetween( /D/and/D Q / )inthefrst threewindowsandbetweenanycombinationof( /K/,/Q/and/D Q / )inthefourth window(Figure 5{6 ).Ontheotherhand,dierencesbetweenvoicelessfricatives intermsofspectralmeanmeasuredatdierentwindowswerenotascategorically distinguishingasinthecaseofvoicedfricatives.Nevertheless,asnotedabove, threeclusterscontainingfricativesarticulatedinadjacentplaces( /f,T,s,s Q /,/S,X/ and/,h/ )emergedasdistinctgroupsforwhichnowithin-groupdierenceswere signifcantwithregardtospectralmeanmeasuredatthesecond(middle)andthird (oset)windows.However,allcomparisonsbetweenmembersofdierentgroups weresignifcantwithspectralmeandecreasingasthearticulationmovedbackwards inthemouth(Figure 5{6 ).Furthermore,spectralmeanasmeasuredatthefrst (onset)windowsignifcantlydierentiatedbetweenallplaceswiththeexception

PAGE 87

74 ofallpossiblecontrastinvolving( /T,s,s Q / )andthecontrastbetween( /-h/ ). Onlyalveolar /s/ wassignifcantlydierentthanallothervoicelessfricativesat thefourth(transitional)window.Moreover,attheonsetandtransitionalwindows, dierencesobservedelsewherebetween /f/and/T/ werenotsignifcant(Figure 5{6 ). TherewasalsoamaineectforVoicinginallfourwindows.Ascanbeseen fromFigure( 5{7 ),spectralmeanforvoicelessfricativeswassignifcantlyhigher thanvoicedfricativesinthefrstthreewindowsandsignifcantlyloweratthelast (transitional)window.Additionally,asignifcantPlacebyVoicinginteraction (Figure 5{8 )revealedthatalveolarfricatives /s,z/ werenotsignifcantlydierent fromeachotherintermsofspectralmeaninallbutthefourthwindowatwhich the /s-z/ contrastwastheonlyonereachingsignifcancelevel( p< 0 : 05). Finally,therewasamaineectforVowelcontextatallfourwindows.Spectral meanwashighestforfricativespreceding /i/and/i:/ ,andlowestforfricatives precedingeither /u/or/u:/ .Pairwisecomparisonsforthedierentvowelcontexts ateachwindowshowedthatthedierencebetweenanyofthehighfrontvowels( /i, i:/ )andeitherof /u/and/u:/ wassignifcantatallwindowlocations.Additionally, spectralmeanoffricativesinthecontextofboth /i,i:/ wassignifcantlyhigher thanthatinthecontextofeither /a,a:/ atthefourth(transitional)window (Figure 5{9 ). 5.2.2 SpectralVariance One-wayANOVAsforPlaceandVoicewereconductedwithspectralvariance averagedacrossallwindowlocations.AmaineectforPlaceofarticulationwas obtained[ F (8 ; 2487)=206 : 936 ;p< 0 : 001; 2 =0 : 399],withthelowestvariance observedforsibilantsandbackarticulatedfricativeswhilethehighestvariance wasobservedfornonsibilants.Table( 5{2 )showsmeanvariancevaluesforall fricativesmeasuredinMegahertz(MHz).Bonferroni posthoc testsshowedthat

PAGE 88

75 SpectralMean(Hz) SpectralMean(Hz) WindowLocation onsetmiddleosettransition Figure5{6.Spectralmean(Hz)averagedacrossvowelcontextsforeachwindowas afunctionofplaceofarticulation.A)voiced.B)voiceless.

PAGE 89

76 WindowLocation onsetmiddleosettransition Figure5{7.Spectralmean(Hz)averagedacrossplaceandvowelcontextsforeach windowasafunctionofvoicing.

PAGE 90

77 AB CD Figure5{8.Placeofarticulationandvoicinginteractionforspectralmeanatfour windowlocations.A)onset,B)middle,C)oset,andD)transition.

PAGE 91

78 AB CD Figure5{9.Spectralmeanasafunctionofvowelcontextatfourwindowlocations. A)onset,B)middle,C)oset,andD)transition.

PAGE 92

79 withinvoicedfricatives,spectralvariancedidnotdierentiatebetweenplaindental ( /D/ )anditspharyngealizedcounterpart( /D Q / ).However,allothercomparisons withinvoicedfricativesweresignifcant( p< 0 : 001).Asforvoicelessfricatives, spectralvarianceforthenonsibilants /f,T/ wassignifcantlyhigherthanthoseof allotherplaces.However,spectralvarianceforthe /f/and/T/ themselveswasnot signifcantlydierent.Moreover,spectralvariancefor /S/and// wassignifcantly lowerthanthatofallotherplaces.AnothermaineectwasobservedforVoicing [ F (1 ; 2494)=39 : 778 ;p< 0 : 001; 2 =0 : 016]withvoicedfricativeshavinghigher variance(5.09MHz)thanvoicelessfricatives(4.45MHz). Sinceaone-wayANOVAshowedthatoverallspectralvariancediered signifcantlyasafunctionofWindowLocation[ F (3 ; 2492)=33 : 742 ;p< 0 : 001; 2 =0 : 04],multiplethree-wayANOVAs(place vowel voicing)were carriedoutforspectralvarianceateachwindowlocation.TheANOVAsrevealeda maineectforPlaceofArticulation[ F (8 ; 561)=104 : 502(onset),98.597(middle), 137.024(oset),55.05(transition); p< 0 : 001; 2 =0 : 6(onset),0.58(middle), 0.66(oset),0.44(transition)].AsapparentfromFigure( 5{10 ),forbothvoiced andvoicelessfricatives,nonsibilants( /f,T,D,D Q / )hadthehighestvariancewhile pharyngealfricatives( /,Q/ )hadthelowestvariance.Pairwisecomparisons withinvoicedfricativesshowedthatonlythedierencebetween /D-D Q / wasnot signifcantatallwindows.Withtheexceptionofthe /D-D Q / contrast,spectral variancedierentiatedbetweenallplacesofarticulationwithinvoicedfricatives atallwindowlocations.Ontheotherhand,spectralvariancedidnotdierentiate betweenvoicelessfricativesinthesamemannerasitdidwithvoicedfricatives. Specifcally,spectralvariancewasabletodistinguishbetweenanycombination ofvoicelessfricativeseitheratthesecondorthethirdwindow(Figure 5{10 ). Theonlyexceptionsaretheexpectedlackofdierencebetween /s,s Q / andthe insignifcantdierencebetween /h,s Q / atallwindows.Additionally,aswithvoiced

PAGE 93

80 fricatives,nonsibilantfricatives( /f,T/ )hadsignifcantlyhighervariancethanall othervoicelessfricativesinatleastthreeofthefouranalysiswindows. Asmentionedpreviously,amaineectofVoicingwasobservedwiththe overallspectralvariance.However,ANOVA'sconductedforindividualwindows revealedthatsucheectwasonlypresentatthesecond(middle)window [ F (1 ; 561)=9 : 973 ;p< 0 : 001; 2 =0 : 017]withtheexpectedincreaseinvariance forvoicedfricatives(5.4MHzcomparedto4.5MHzforvoicelessfricatives). Nevertheless,asignifcantPlacebyVoicinginteractionwaspresentatallanalysis windows.Bonferroni posthoc testsshowedthattheincreaseinspectralvariancefor voicedfricativesascomparedtovoicelessfricativeswassignifcantonlyfordentals ( /T,D/ )atthesecondwindow;andforalveolars( /s,z/ )atfourthwindow.Another sourceoftheinteraction,ascanbeseenfromFigure( 5{11 ),isduetoanincrease inspectralvarianceforvoiceless,ratherthanvoiced,pharyngealfricatives.Suchan increase,andsubsequentshiftinthevoicingeect,waspresentatallwindowsbut signifcantonlyatthefricative-vowelboundary(windowsthreeandfour). TherewasalsoamaineectforVowelcontext( p< 0 : 0001)inallbutthefrst analysiswindow.Thesourceforthiseectasrevealedby posthoc testsistwofold: frst,therewasasignifcantincreaseinspectralvarianceforfricativespreceding either /u/or/u:/ ascomparedtoallothervowelsinthesecond(middle)andthird (oset)windows(Figures 5{12 AandB);andsecond,thevarianceoffricatives preceding /i/and/i:/ wassignifcantlyhigherthanthatofeither /a/or/a:/ inthe fourthwindow(Figure 5{12 C). 5.2.3 SpectralSkewness Aone-wayANOVAforspectralskewnessacrossallwindowlocationsshoweda signifcantmaineectforPlace[ F (8 ; 2487)=137 : 975 ;p< 0 : 001; 2 =0 : 31],with skewnessrangingfrom2.34forpharyngeal( /,Q/ )to0.19foralveolarfricatives ( /s,z/ ).SubsequentBonferroni posthoc testsindicatedthatforbothvoicedand

PAGE 94

81 SpectralVariance(MHz) SpectralVariance(MHz) WindowLocation onsetmiddleosettransition Figure5{10.Spectralvariance(MHz)averagedacrossvowelcontextsforeach windowasafunctionofplaceofarticulation.A)voiced.B)voiceless.

PAGE 95

82 AB CD Figure5{11.Placeofarticulationandvoicinginteractionforspectralvarianceat fourwindowlocations.A)onset,B)middle,C)oset,andD) transition.

PAGE 96

83 AB C Figure5{12.Spectralvarianceasafunctionofvowelcontextatthreewindow locations.A)middle,B)oset,andC)transition.

PAGE 97

84 voicelessfricatives,skewnessdidnotdierentiatebetweenplainfricativesand theirpharyngealizedcounterparts( /D-D Q ,s-s Q / ).However,besidestheexception notedabove,allvoicedfricativesweresignifcantlydierentfromeachotherin termsofskewness(meansarereportedinTable( 5{2 ).Withinvoicelessfricatives, skewnesssignifcantlydierentiatedamongnonsibilants /f/and/T/ (0.7and0.25 respectively).However,skewnessdidnotdistinguishnonsibilantsfromeither /s/ or/s Q / orbetween /S/and/X/ .Allothervoicelessfricativesweresignifcantly dierentfromeachotherintermsofspectralskewness.Theeectofvoicingon spectralskewnesswasnotsignifcant( p =0 : 67). Duetothepreviouslymentionedsignifcantdierencesbetweenskewness measuredatdierentwindows[ F (3 ; 2492)=145 : 382 ;p< 0 : 001; 2 =0 : 15],a three-wayANOVA(place vowel voicing)wasconductedforspectralskewness ateachwindowlocation.AmaineectforPlacewasobtainedatallwindow locations.Withtheexceptionof /D-D Q / contrast,pairwisecomparisonsshowed thatallvoicedfricativesweresignifcantlydierentfromeachotherintermof spectralskewnessatthesecond(middle)andthird(oset)windows(Figure 5{13 ).Pharyngeal /Q/ hadthehighestskewness,indicatingaconcentrationof energyatfrequencieslowerthanforallothervoicedfricatives,whilethenegative skewnessobtainedfor /z/ indicatesaconcentrationofenergyathigherfrequencies. Interestinglythedierenceinskewnessbetweendentalandpharyngealizeddental ( /D-D Q / )reachedsignifcance( p =0 : 008)onlyatthefourthwindowlocatedat fricative-voweltransition(Table 5{3 ).Thelackofasignifcantdierencebetween plainfricativesandtheirpharyngealizedcounterpartswasalsopresentforvoiceless fricatives /s-s Q / atallwindowlocations.AscanbeseeninTable( 5{4 ),skewness dierentiatedbetweenallvoicelessfricativesinatleasttwowindowswiththe notableexceptionofthe /S-h/ contrast,whichwassignifcantonlyatthefourth window(transition).Ifthenumberofplacesdistinguishedintermofskewness

PAGE 98

85 SpectralSkewnessSpectralSkewness WindowLocation onsetmiddleosettransition Figure5{13.Spectralskewnessaveragedacrossvowelcontextsforeachwindowas afunctionofplaceofarticulation.A)voiced.B)voiceless.

PAGE 99

86 dierencesatagivenwindowisusedasanindicatortothatwindow'sdistinctive spectralinformation,windowsplacedatthemiddleandosetoffricationnoise weremoresuccessfulindistinguishingbetweenvoicelessfricativesthanothers (Tables 5{3 and 5{4 ). Table5{3.Windowlocationsatwhichadierencebetweenvoicedfricativesin termsofspectralskewnessaresignifcant. /D//z//K//Q/ /z/ 1234 /K/ 12341234 /Q/ 12341234 23 /D Q / 41234123 123 indicatesabsenceofsignifcantdierences Table5{4.Windowlocationsatwhichadierencebetweenvoicelessfricativesin termsofspectralskewnessaresignifcant. /f//T//s//S//X////s Q / /T/ 1 4 /s/ 2 41 4 /S/ 1234123 123 /X/ 123 12341234 34 // 123 123412341234123 /s Q / 2 4123 123 2 41234 /h /123 12341234 4 23 123 1234 indicatesabsenceofsignifcantdierences Althoughtheeectofvoicingwasnotsignifcantfortheoverallskewness,a maineectforVoicingwasobtainedatallbutthethird(oset)window.Atboth fricationonsetandmiddlewindows,voicelessfricativeshadsignifcantly( p< 0 : 001) lowerskewnessthanvoicedfricatives;whileskewnessmeasuredatthefricativevoweltransitionwassignifcantly( p< 0 : 0001)higherforvoicelessfricativesthan voicedones(Figure 5{14 ).Also,aPlacebyVoicinginteractionwassignifcant atallbutthelast(transition)window.Ingeneral,thereductioninskewnessfor voicelessfricativeswhencomparedtovoicedfricativesasnotedinthemaineect abovewasreversedforalveolarandpharyngealfricativesinthefrstthreewindows; andforallfricativesinthefourthwindow(Figure 5{15 ).However,thisincreasein

PAGE 100

87 skewnessforvoicelessfricativeswasonlysignifcant( p< 0 : 05)foralveolarfricatives atthefourth(transition)window. WindowLocation SpectralSkewness 0 0.5 1 1.5 2 2.5 onsetmiddleosettransition Figure5{14.Spectralskewnessaveragedacrossplaceandvowelcontextsforeach windowasafunctionofvoicing. TheANOVAsalsorevealedamaineectofVowelcontextatallwindow locations.Themagnitudeoftheeectbecomeslargerasthewindowmovescloser tothevowel( 2 =0.028atfricationmid-piont,0.037atfricationosetand0.31at fricative-voweltransition).Thesourceofsucheect,asillustratedinFigure( 5{16 ) andassociatedBonferroni posthoc tests,isattributedtothesignifcantdecrease infricativeskewnessinthecontextofshort /i/ andlong /i:/ .Specifcally,long /i:/ resultedinsignifcantlylowerskewnessthanlong /u:/ inallbutthesecond window,whileshort /i/ resultedinsignifcantlylowerskewnessthanshort /u/ inthefrstandfourthwindows.Additionally,dierencesbetweenhighfrontand

PAGE 101

88 AB CD Figure5{15.Placeofarticulationandvoicinginteractionforspectralskewnessat fourwindowlocations.A)onset,B)middle,C)oset,andD) transition.

PAGE 102

89 lowfrontvowels( /i,i:/ and /a,a:/ )weresignifcantonlyatthetransitionwindow (Figure 5{16 D). AB CD Figure5{16.Spectralskewnessasafunctionofvowelcontextatfourwindow locations.A)onset,B)middle,C)oset,andD)transition. 5.2.4 SpectralKurtosis One-wayANOVAstestingforeectsofplaceandvoicewithspectralkurtosis measurementsacrossthefourwindowsasthedependentvariablerevealedamain eectofPlace[ F (8 ; 2487)=99 : 567 ;p< 0 : 001; 2 =0 : 24].Bonferroni post hoc testsconductedonvoicedfricativesshowedthatonlykurtosisofuvular /K/ (6.5)andpharyngeal /Q/ (13.7)weresignifcantlyhigherthanallothervoiced

PAGE 103

90 fricatives.Asforwithinvoicelessfricatives,kurtosissignifcantlydierentiated betweenthenonsibilants /f/and/T/ withameanof2.96and0.72respectively. Moreover,pharyngeal // withkurtosisof9.8wassignifcantlyhigherthanall othervoicelessfricatives.TheANOVAalsorevealedamaineectofVoicing [ F (1 ; 2494)=22 : 922 ;p< 0 : 001; 2 =0 : 01]inwhichvoicelessfricatives hadsignifcantlylowerkurtosisthanvoicedfricatives(meanof3.376and4.83 respectively). Aone-wayANOVAshowedthatkurtosisdieredsignifcantlyasafunction ofWindowlocation[ F (3 ; 2492)=67 : 968 ;p< 0 : 001; 2 =0 : 076],withthe fourth(transition)windowregisteringthehighestvaluesforkurtosis.Therefore,a three-wayANOVA(place vowel voicing)wasconductedforspectralkurtosis ateachwindowlocation.Theresultsofthethree-wayANOVAsshowedamain eectofPlaceatallwindowlocations.Withtheexceptionofthefourthwindow, themagnitudeoftheeectbecomeslargerasthewindowadvancestowardsthe fricative-vowelboundary( 2 ofthefrstthreewindowswas0.34,0.46and0.51 respectively).SubsequentBonferroni posthoc testsateachwindowwerecarried outforvoicedandvoicelessfricativesseparately(Figure 5{17 ).Withinvoiced fricatives,nosignifcantdierenceswereobservedwithallpossiblecontrasts between /D,D Q ,z/ atallwindowswiththeexceptionofthe /D Q -z/ contrast, whichreachedsignifcancelevel( p< 0 : 05)atthefourthwindowonly.Moreover, whilekurtosisofpharyngeal /Q/ wassignifcantlyhigherthanuvular /K/ in allbutthelast(transition)window,eachofthetwofricativeshadsignifcantly higher( p< 0 : 01)kurtosisthanallothervoicedfricativesinthefrstandthird window.Asimilarpatternwasalsoobservedwithvoicelessfricatives.Specifcally, voicelesspharyngealfricative // hadsignifcantlyhigherkurtosisthanallother voicelessfricativesinthesecond(mean=11.6)andthirdanalysiswindows(mean =10.8).Also,aswasthecasewith /D-D Q / contrast,nodierencewasobtained

PAGE 104

91 SpectralKurtosis SpectralKurtosis WindowLocation onsetmiddleosettransition Figure5{17.Spectralkurtosisaveragedacrossvowelcontextsforeachwindowasa functionofplaceofarticulation.A)voiced.B)voiceless.

PAGE 105

92 betweenplainalveolar /s/ anditspharyngealizedcounterpart /s Q / atallwindows. Additionally,whilekurtosisofglottal /h/ wassignifcantlylowerthanthatof pharyngeal // atallwindows,itwassignifcantlyhigherthankurtosisof /S/ inthefourthwindowandsignifcantllyhigherthanallotherremainingvoiceless fricativesinthesecondandthirdwindows(Figure 5{17 ). AmaineectofVoicingwasalsoobtainedatallbutthefourthwindow. Similartotheeectobservedwiththeoverallkurtosis,voicelessfricativesinthe aforementionedwindowshadsignifcantlylowerkurtosisthanvoicedfricatives (Figure 5{18 ).Thesizeofthiseectwasrathersmallandgenerallydecreased inthemiddlewindow( 2 ofthefrstthreewindowswas0.05,0.03and0.06 respectively).Moreover,aPlacebyVoicinginteractionwasalsosignifcantatthe frstthreewindows.Basically,assuggestedbythecorrosponding posthoc tests showninFigure( 5{19 ),theeectofvoicingwassignifcant( p< 0 : 05)foruvulars /K,X/ atfricationonset,forpharyngeals /,Q/ atthemiddleoffricationnoiseand forbothuvularandpharyngealplacesofarticulationatthefricationoset. Finallytheeectofvowelcontextwasobservedonlyattheedgesofthe fricationnoise:fricationonset[ F (5 ; 561)=3 : 068 ;p< 0 : 001; 2 =0 : 03];and transitionintothevowel[ F (5 ; 561)=17 : 406 ;p< 0 : 001; 2 =0 : 134].Subsequent Bonferroni posthoc testscarriedoutatthesewindowsshowedthatthesourceof themaineectisduetothesignifcantdecreaseinkurtosisforafricativepreceding /i:/ ascomparedonlyto /u/ attheonsetwindow(Figure 5{20 A);anddueto thegreaterdecreaseinkurtosisforfricativesprecedingshort /i/ andlong /i:/ ascomparedtoallothervowelsatthetransitionwindow(Figure 5{20 B).The dierencebetweenlong /i:/ andlong /u:/ wasmarginallysignifcant( p =0 : 056)at theonsetwindow.

PAGE 106

93 SpectralKurtosis 0 1 2 3 4 5 6 7 8 9 WindowLocation onsetmiddleosettransition Figure5{18.Spectralkurtosisaveragedacrossplaceandvowelcontextsforeach windowasafunctionofvoicing.

PAGE 107

94 AB C Figure5{19.Placeofarticulationandvoicinginteractionforspectralkurtosisat fourwindowlocations.A)onset,B)middle,andC)oset.

PAGE 108

95 AB Figure5{20.Spectralkurtosisasafunctionofvowelcontextattwowindow locations:A)onsetandB)transition.

PAGE 109

CHAPTER6 FORMANTTRANSITION Thischapterreportsonacousticmeasurementsrelatedtospectralinformation atthefricative-voweltransitionthatmighthelpdistinguishbetweenthedierent placesoffricativearticulation.Thefrstmeasurementreportedisthefrequencyof thesecondformant( F 2)measuredinHertzfroma25-mskaiserwindowplacedat thevowelonset.Thesecondmeasurementisthecoecientsofregressionlinefts withscatterplotsof F 2atthevowel'sonset( y -axes)andmid-point( x -axes)derived foreachplaceandspeakerandaveragedacrossvoicingandvowelcontext. 6.1 SecondFormant( F 2)atTransition Table( 6{1 )presentsthe F 2valuesattheonsetofthevowelforeachplaceof articulationandvoicing,averagedacrossspeakersandvowelcontext.Theresultsof athree-wayANOVA(place voicing vowel)showedasignifcantmaineectfor Placeofarticulation[ F (8 ; 561)=97 : 988 ;p< 0 : 0001; 2 =0 : 58].Subsequent post hoc testswerecarriedoutseparatelyonvoicedandvoicelessfricatives.Forboth voicedandvoicelessfricatives,pharyngealizedfricatives( /D Q / 1164Hzand /s Q / 1288Hz)hadsignifcantlylower F 2frequenciesthantheirplaincounterparts( /D/ : 1603Hzand /s/ :1636Hz).Infact,withinvoicedfricatives /D Q / hadasignifcantly lowerfrequencythanallvoicedfricativeswiththeexceptionofuvular /K/ .While upholdingthelackofsignifcancebetween /D Q -K/ ,voiceduvular /K/ alsohad asignifcantlylower F 2frequency(1171Hz)thanallothervoicedfricatives.No othercontrastswithinvoicedfricativeswerestatisticallysignifcant. Asimilarpatternwasalsoobservedwithinvoicelessfricatives.Specifcally,as wasthecaseforvoicedfricatives,therewasalackofsignifcantdierencebetween pharyngealizedanduvularfricatives( /s Q -X/ inthiscase),andbetweendentaland 96

PAGE 110

97 alveolarfricatives( /T-s/ ).Moreover,the F 2frequenciesofbothpharyngeal // andglottal /h/ werestatisticallysimilarto /f/,/T/and/s/ (meansarereportedin Table( 6{1 )).Additionally,nosignifcantdierencewasobtainedbetweenuvular andpharyngeal( /X/).Allothercontrastsbetweenvoiclessfricativeswere signifcant( p< 0 : 05forwithinnon-sibilantsand p< 0 : 0001forothercontrasts). Table6{1.Meanvaluesof F 2(Hz)attransitionaveragedacrossspeakersand vowelcontextasafunctionofplaceandvoicing. PlaceofArticulation F2attransition(Hz)mean LabiodentalVoiceless1496 DentalVoiced 1603 Voiceless1602 1602 AlveolarVoiced 1633 Voiceless1636 1634 Post-AlveolarVoiceless1742 UvularVoiced1171 Voiceless1325 1248 PharyngealVoiced1555 Voiceless1589 1572 PharyngealizedDentalVoiced 1164 PharyngealizedAlveolarVoiceless1288 GlottalVoiceless1565 TheANOVAalsorevealedamaineectofVoicing[ F (1 ; 561)=9 : 145 ;p< 0 : 005; 2 =0 : 016],withvoicelessfricativesregisteringhigher F 2frequenciesthan voicedfricatives(mean1530and1425respectively).However,asignifcantPlace byVoicinginteraction[ F (3 ; 561)=5 : 337 ;p< 0 : 002; 2 =0 : 028]andsubsequent Bonferroni posthoc tests(Figure 6{1 )showedthatsucheectwaslimitedtouvular fricatives.

PAGE 111

98 Figure6{1.Placeofarticulationandvoicinginteractionfor F 2(Hz)measuredat vowelonset.

PAGE 112

99 TherewasalsoamaineectofVowelcontext[ F (5 ; 561)=221 : 237 ;p< 0 : 0001; 2 =0 : 66].Asexpected, F 2(measuredattheonsetofhighfrontvowels /i, i:/ withmeanfrequencyof1708and1919Hzrespectively)weresignifcantlyhigher thanallothervowels( p< 0 : 0001).Also,the F 2frequenciesofbackvowels( /u,u:/ withmeansof1209and1259Hzrespectively)weresignifcantlylowerthanthoseof allothervowelcontexts( p< 0 : 0001).Themeanfrequencyof F 2at /a/ onsetwas 1435Hzand1409Hzfor /a:/ .Theeectofvowellengthon F 2frequencywasnot signifcantexceptforthe /i-i:/ contrast,forwhichlongvowelsintroducedhigher F 2frequencies. Figure6{2. F 2(Hz)measuredatvowelonsetasafunctionofvowelcontext.

PAGE 113

100 6.2 LocusEquation Locusequationcoecientsforeveryplaceofarticulationwereobtainedfor eachoftheeightspeakersinourstudy(8speakers 9placesofarticulation). Specifcally,alinearregressionftwasappliedonscatterplotswithF2values averagedacrossallvowelcontexts.Eachscatterplothad F 2measuredattheonset ofthevowelrepresentedonthe y -axesandF2measuredatthemid-pointofthe vowelrepresentedonthe x -axes.Thecoecientsofeachregressionline(theslope ` k 'andthe y -intercept` c ')weretakentobethetermsoflocusequations.An exampleplotispresentedinFigure( 6{3 ). Figure6{3.Anexampleofascatterplottoderivecoecientsoflocusequation. Table( 6{2 )presentsmeanslopeand y -interceptvaluesforeachplaceof articulationaveragedacrossvowelcontexts.Aone-wayANOVAforslopeshowed

PAGE 114

101 amaineectforPlaceofArticulation[ F (8 ; 63)=15 : 092 ;p< 0 : 001; 2 =0 : 66]. Pharyngealizedfricativeshadthelowestslope(0.168for /D Q / and0.399for /s Q / ), whileglottal /h/ hadthehighest(meanslopeof0.924).However, posthoc tests revealedthattheslopeforpharyngealizeddental /D Q /wassignifcantlydierent fromallotherplain(non-pharyngealized)fricatives.Furthermore,thehighslope of /h/ wassignifcantlydierentfromallotherfricativeswiththeexception ofuvularfricatives /X,K/ .Theslopeofpharyngealizedalveolar /s Q / wasonly signifcantlydierentfromuvularfricatives.Noothercontrastsweresignifcant. Ontheotherhand,aone-wayANOVAfor y -interceptrevealedamaineectfor place[ F (8 ; 63)=10 : 313 ;p< 0 : 001; 2 =0 : 57].Glottal /h/ anduvularfricatives /X,K/ hadthelowest y -interceptvalues(160and289Hzrespectively),whilethe highest y -interceptvaluewasobservedforpost-alveolarfricative /S/ (956Hz). Althoughnosignifcantdierencesbetween y -interceptof /h/and/X,K/ were observed,Bonferroni posthoc testsshowedthat y -interceptfor /h/ wassignifcantly lowerthanallotherplacesofarticulation.Additionally,the y -interceptvaluesfor uvularfricativesweresignifcantlylowerthanallotherplacesofarticulationwith theexceptionoflabiodentalandpharyngealfricatives( /f/ and /Q,/ ).Noother signifcantdierenceswereobtained. Table6{2.Meanslopeand y -interceptvaluesforeachplaceofarticulation averagedacrossvowelcontexts. Place slopey-intercept ofArticulation Labiodental0.565652 Dental0.507825 Alveolar0.451930 Post-Alveolar0.502956 Uvular0.692289 Pharyngeal0.579665 PharyngealizedDental0.168938 PharyngealizedAlveolar0.399751 Glottal0.925160

PAGE 115

CHAPTER7 STATISTICALCLASSIFICATIONOFFRICATIVES DiscriminantFunctionAnalysis(DFA)wasusedtodeterminethemost parsimoniouswaytodistinguishamongthedierentplacesofarticulationusingthe acousticcuesinvestigatedinourstudy(descriptiveDFA).Furthermore,DFAwas usedheretoassessthecontributionofeachselectedcuetotheoverallclassifcation offricativesintotheirplacesofarticulation.Also,togetamorerealisticindication oftheuseofthesecuesindistinguishingunknowntokens,across-validation methodwasusedwiththeobtaineddiscriminantfunctions(predictiveDFA). AllacousticvariablesinvestigatedinourstudywereusedintheDFAprocedure withtheexceptionoflocusequationssincetheydonotrerectmeasuresofsingle tokens,butratherthecoecientsoflinearregressionftsonaggregateddatapoints representingplacesofarticulationforeachspeaker. 7.1 DiscriminantFunctionAnalysis Discriminantfunctionanalysisisastatisticalprocedurethatclassifestokens intotwoormoremutuallyexclusive apriori groups(i.e.,placeofarticulation) usingasetofpredictors(i.e.,acousticcues)( Klecka 1980 ; Hair,Anderson, andTatham 1987 ; Stevens 2002 ).Adiscriminationfunctionconsistsofalinear combinationofoneormorevariablesthatmaximizesthedistance(i.e.,dierences) betweenthegroupsbeingclassifed.Inourstudy,forbothdescriptiveand predictiveDFA,predictorswereenteredintotheanalysisusingastep-wisemethod inwhichonlythepredictorthatminimized Wilks'Lambda ()statistic,alsoknown asU-statistic,wouldbeenteredatanygivenstep.Thecriteriaforentrywasset at p =0 : 05andat p =0 : 10forremoval.Also,sincethelevelsofthedependent variables(i.e.,placesofarticulation)haveunequalnumbersofcasesduetolackof 102

PAGE 116

103 voicingcontrastinsomeplaces,thepriorprobabilitiesforgroupmembershipwere calculatedfromthegroupsize(Table 7{1 ). Table7{1.Priorprobabilitiesforgroupmembership CasesUsed PlacePriorinAnalysis Labiodental 0.07748 Dental 0.15496 Alveolar 0.15496 Post-Alveolar 0.07748 Uvular0.15496 Pharyngeal0.15496 PharyngealizedDental0.07748 PharyngealizedAlveolar0.07748 Glottal0.07748 Total 1624 ThenumberofdiscriminantfunctionsobtainedbytheDFAprocedureisthe smallestof( g )Tj/T1_0 11.955 Tf12.10899 0 Td[(1),where g isthenumberofgroups,or( k ),where k isthenumber ofpredictors.Inourstudythenumberofdiscriminantfunctionsobtainedwas eightandallweresignifcant( p< 0 : 001).Table( 7{2 )showsthepercentageof varianceaccountedforbyeachoftheeightfunctions.Althoughallfunctionswere signifcant,welimitedourinterpretationtothefrstthreefunctionssincetheywere theonescontributingthemosttotheaccumulativevarianceasinferredfromtheir eigenvaluesandthecanonicalcorrelationassociatedwiththesefunctions(Table 7{2 ). 7.2 ClassifcationAccuracyofDFA BeforeinterpretingtheclassifcationresultsobtainedfromDFAprocedure, anassessmentofthevalidityofthecurrentmodelanditsaccuracywascarried out.Foranyclassifcationmethod,acertainpercentageofanyperformancecanbe attributedsolelytorandomchance.Therefore,forthecurrentclassifcationmodel derivedfromDFAtobevalid,itneedstoclassifycasesinamannerbetterthan iftheclassifcationwasdonebasedonchance.Sincethegroupsizesareunequal

PAGE 117

104 Table7{2.Theamountofthevarianceaccountedforbyeachofthefunctions calculatedbytheDFA. FunctionEigenvalue%ofVarianceCumulative%CanonicalCorrelation 15.22443.0 43.0 0.916 23.65130.1 73.1 0.886 31.89415.6 88.7 0.809 40.4703.992.50.566 50.3873.295.70.528 60.2442.097.70.443 70.1771.599.20.388 80.0980.8100.0 0.298 inourstudy,thedeterminationofthechanceclassifcationweredoneusingtwo criteria:theproportionalchancecriterion(C pro )andmaximumchancecriterion (MCC)( Hairetal. 1987 ).Theproportionalchancecriterionisameasureofthe averageprobabilityofclassifcationcalculatedconsideringallgroupsizes,whilethe MCCisthepercentageofthetotalsamplerepresentedbythelargestgroup.Given thetotalnumberofcasesandgroupsinourstudy,MCCwasestimatedtobe15.4% andC pro tobe12.4%.However,bothmeasuresserveonlyassubjectivereference pointsformodelaccuracy.Infact,thereisnogeneralconsensusonhowhighthe classifcationaccuracyshouldbeinrelationtochance.However, Hairetal. ( 1987 ) suggestthatitshouldbeatleastonefourthgreaterthanclassifcationbychance. Subsequently,thecurrentmodelshouldachieveanoverallclassifcationratehigher than19.25%(1.25 MCC)tobevalid.Proportionalandmaximumchancecriteria werecalculatedasinEquations( 7{1 )andEquation( 7{2 ),respectively,where N = totalnumberofcases, g =numberofgroups, n =numberofcasesinagroupand gmax =groupwithlargestnumberofcases. C pro =100 g X i =1 n i N 2 (7{1) MCC =100 n gmax N (7{2)

PAGE 118

105 Itisimportanttonotethatbothproportionalandmaximumchancecriteria aresubjectiveinnature.Tocircumventthisissue,Press'Qstatistic(Equation 7{3 ) wasusedasanadditionalmeasurementofmodelaccuracy.SignifcanceofPress'Q statisticisassessedusingachi-square( 2 )distributedwithonedegreeoffreedom. Thisvaluewillbecalculatedbelowforbothsetsofclassifcationresults(descriptive andpredictiveDFAs).Thevalue n correct inEquation( 7{3 )denotesthenumberof correctlyclassifedcases. Q = N )Tj/T1_4 11.955 Tf11.955 9.68401 Td()Tj/T1_1 11.955 Tf5.479 -9.68401 Td(n correct g 2 N )Tj/T1_0 11.955 Tf11.95599 0 Td(( g )Tj/T1_0 11.955 Tf11.955 0 Td(1) (7{3) 7.3 ClassifcationPowerofPredictors Thestandardizedcanonicalfunctioncoecientsindicatethepartial contributionofeachvariabletothediscriminantfunction(s),controllingfor otherindependentsenteredintheequationandareusedtoassesseachindependent variable'suniquecontributiontothediscriminantfunction( Klecka 1980 ; Hairetal. 1987 ).Basedonthesecoecients,spectralmean(fricationnoiseonset,middle, andoset),skewness(onset,osetoffricationandtransitionintothevowel), secondformantatvowelonset,normalizedRMSamplitudeandspectralpeak locationwereidentifedtobethevariablescontributingthemosttotheoverall classifcation. 7.4 ClassifcationResults Asmentionedabove,thefrstgoalofDFAimplementationinourstudywas tofndthedegreetowhichtheacousticcuesinvestigatedherewouldsuccessfully classifyfricatives.Tothateect,DFArevealedthat83.2%oftheoriginalgrouped casesweresuccessfullyclassifedintotheirrespectiveplacesofarticulationusing discriminantfunctionsderivedfromtheacousticmeasurementsinvestigatedinour study.Furthermore,whenthedatawassplitintovoicedandvoicelesssubgroups,

PAGE 119

106 theoverallclassifcationaccuracywas92.9%forvoicedand93.5%forvoiceless fricatives.Thisclassifcationratioexceededboththemaximumlikelihoodandthe proportionalchancevalue.Additionally,thePress'sQstatistic( Q =17 : 99)was signifcantat0.0001.Therefore,itcanbeconcludedthatthemodelinvestigated wasvalid.Ingeneral,threegroupscanbeidentifedusingatwo-dimensional discriminationplane(Figure 7{1 andFigure 7{2 ). Aleave-one-out(alsoknownasjackknife)classifcationprocedurewasalso usedtocross-validatethediscriminationfunctionsderivedabove.Inthisprocedure, thedatawassplitintotwosetswithdiscriminationfunctionsobtainedfromallbut-onesubjects(trainingset)andthenusedtoclassifythecasesoftheremaining subject(testingset).Theprocedurewasrepeateduntileachspeakerwasincluded inthetestingphase.Theoverallperformanceofthediscriminationfunctionwas takentobetheaveragedscoreacrossallspeakers.Anoverallcorrectclassifcation ratioof79.3%wasobtainedusingthecross-validationmethodoutlinedabove. Whenvoicingwasspecifedinthemodel,cross-validatedcorrectclassifcationratios of87.9%and89.8%wereobtainedforvoicedandvoicelessfricativesrespectively. BothproceduressatisfythecriteriamentionedinSection( 7.2 )formodelvalidity (C pro ,MCCandPress'Q). TheconfusionmatricespresentedinTables( 7{3 )to( 7{8 )showthepercentage ofpredictedclassmembershipintermsofthefricativeplaceofarticulation. Numbersin boldface representcorrectclassifcationrateswhileothernumbers representmisclassifcationrates.Generallyspeaking,DFAclusteredthenineplaces offricativearticulationintothreegroups:non-sibilants( /f,T,D,D Q / ),sibilants( /s, s Q ,z,S/ andback-articulatedfricatives( /K,X,,Q,h/ )withmisclassifcationrarely crossingtheboundariesofthesegroups.Suchobservationwastrueevenwhen fricativesarepartitionedaccordingtovoicing.

PAGE 120

107 Table7{3.Overallclassifcationresultsofallfricatives. PredictedGroupMembership Place /f//T,D//D Q //s,z//s Q //S//X,K//,Q//h/ /f/ 88 100002000 /T,D/ 6 76 7000307 /D Q / 02 88 200602 /s,z/ 020 89 62100 /s Q / 00017 83 0000 /S/ 00000 98 200 /X,K/ 026002 72 107 /,Q/ 0000005 87 8 /h/ 002000810 79 Table7{4.Cross-validatedclassifcationresultsofallfricatives. PredictedGroupMembership Place /f//T,D//D Q //s,z//s Q //S//X,K//,Q//h/ /f/ 79 170002200 /T,D/ 8 72 8000308 /D Q / 06 77 2001004 /s,z/ 020 84 93100 /s Q / 20015 83 0000 /S/ 00000 98 2.100 /X,K/ 027002 70 127 /,Q/ 0000017 82 9 /h/ 002000813 77

PAGE 121

108 Figure7{1.Discriminationplaneforallfricatives.

PAGE 122

109 Table7{5.Overallclassifcationresultsofvoicedfricatives. PredictedGroupMembership Place /D//D Q //z//K//Q/ /D/ 89.6 8.302.10 /D Q / 8.3 87.5 04.20 /z/ 00 100 00 /K/ 6.34.20 89.6 0 /Q/ 0002.1 97.9 Table7{6.Cross-validatedclassifcationresultsofvoicedfricatives. PredictedGroupMembership Place /D//D Q //z//K//Q/ /D/ 83.3 8.32.16.30 /D Q / 14.6 75 010.40 /z/ 00 100 00 /K/ 6.36.30 83.3 4.2 /Q/ 0002.1 97.9 Table7{7.Overallclassifcationresultsofvoicelessfricatives. PredictedGroupMembership Place /f//T//s//s Q //S//X////h/ /f/ 79.2 16.7002.12.100 /T 8.3 91.7 000000 /s 02.1 87.5 8.32.1000 /s Q / 0018.8 81.3 0000 /S/ 0000 100 000 /X 02.1002.1 91.7 4.20 // 000006.3 93.8 0 /h/ 0000006.3 93.8

PAGE 123

110 Table7{8.Cross-validatedclassifcationresultsofvoicelessfricatives. PredictedGroupMembership Place /f//T//s//s Q //S//X////h/ /f/ 83.3 12.5002.12.100 /T 6.3 93.8 000000 /s 00 91.7 8.30000 /s Q / 0010.4 89.6 0000 /S/ 0000 100 000 /X 00000 97.9 2.10 // 000002.1 97.9 0 /h/ 0000006.3 93.8 A B Figure7{2.Discriminationplaneforvoicedandvoicelessfricatives.A)voiced.B) voiceless.

PAGE 124

CHAPTER8 GENERALDISCUSSION Severalacousticmeasurementswereinvestigatedinourstudywiththeaimof describingtheacousticcharacteristicsoffricativesasproducedbynativespeakers ofArabic.TheuseofArabicwasmotivatedbythreereasons.First,fricative articulationinArabicspansmostoftheplacesofarticulationinthevocaltract, startingfromthelipsandendingattheglottis.Second,forcertainfricatives inArabic,aphonemicdistinctionexistsbetweenplainfricatives( /D/and/s/ ) andtheirpharyngealizedcounterparts( /D Q /and/s Q / );andbetweenshortand longvowels( /i-i:,u-u:,a-a:/ ).Third,themajorityofstudiesdealingwith theacousticcharacteristicsoffricativeshavebeencarriedoutpredominantly withreferencetoEnglishfricatives.Therefore,ourstudyaimedatdescribing theacousticcharacteristicsofArabicfricativesutilizingmanyoftheacoustic measurementsinvestigatedinotherrelatedstudies,withspecifcinterestinfnding cuesthatwoulddierentiatebetweenplainandpharyngealizedfricatives. Thecuesinvestigatedinourstudywereamplitudemeasurements(relative andnormalizedfricationnoiseamplitude),spectralmeasurements(spectral peaklocationandspectralmoments),temporalmeasurements(absoluteand normalizedfricationnoiseduration)andformantinformationatthefricative-vowel transition(F2atvowelonsetandlocusequation).Alongwithreportingthese cues,anattemptwasalsomadetoclassifyfricativesintotheirrespectiveplaces ofarticulationusingstatisticalmodeling(discriminantfunctionanalysis)withan optimumcombinationofthemeasurementsmentionedabove. 111

PAGE 125

112 8.1 TemporalMeasurement Findingsofthepresentstudywereinagreementwithpreviousresearchdealing withtheeectofplaceofarticulationtothefricationnoiseduration.Specifcally, inagreementwithpreviousresearch( BehrensandBlumstein 1988b ; Jongman 1989 ; Pirelloetal. 1997 ),ourstudyfoundthattheoverallabsolutefricationnoise durationofsibilantfricatives(mean138.09ms)waslongerthannonsibilants(mean 109.34ms).Thelongerdurationofsibilantscanbeattributedtothegreater articulatoryeortneededtoforceairthroughthenarrowconstrictionrequiredfor sibilantarticulation.Additionally,fricationnoisedurationofvoicelessfricatives (mean134.21ms)waslongeronaveragethanthatofvoicedfricatives(mean92.05 ms).SucheectofvoicingwasalsofoundinpreviousstudiesofEnglish( Coleand Cooper 1975 ; BaumandBlumstein 1987 ; CrystalandHouse 1988 ; Fox,Nissen, McGory,andRosenbauer 2001 ; Nissen 2003 )andSpanishfricatives( Manriqueand Massone 1981 ).Theeectofvoicingonthereductionofsegmentaldurationcan beattributedinparttothedecreaseinairrowduetohigherglottalimpedance duringvoicing. Contrarytowhatwasreportedinpreviousresearch( Nissen 2003 ),ourstudy didnotfndaneectofvowelcontextforvowelsofthesamelength.However, fricativedurationwassignifcantlylongerwhenitwasfollowedbylonghigh vowels( /i:,u:/ )thanwhenfollowedbytheirshortcounterparts( /i/and/u/ respectively).Similarresultswithregardtosibilant/nonsibilantdurationand eectofvoicingwereobtainedwhenthedurationofthefricativeswasnormalized relativetowordduration.However,adierentpatternofvowelcontexteect emergedwithnormalizedfricationduration.Specifcally,withinlongvowels,high vowels( /i:,u:/ )inducedalongernormalizedfricationdurationthanthelowvowel /a:/ .Additionally,thenormalizedfricationnoisedurationoffricativeswaslonger precedingthefrontvowel /i:/ thanprecedingthebackvowel /u:/ .Sucheects

PAGE 126

113 ofvowelcontextarenotsurprisingifintrinsicdierencesbetweenvowelduration istakenintoconsideration.Voweldurationhasbeenshowntocorrolatewiththe degreeofjawloweringassociatedwithitsproductionsuchthatthelowerthevowel thelongeritsduration.( Fant 1960 ; Lindblom 1967 ; Beckman 1986 ). 8.2 AmplitudeMeasurement Bothnormalizedfricationnoiseamplitudeandrelativeamplitudewere investigatedinourstudy.NormalizedfricationRMSamplitudewasdefnedas thedierencebetweentheRMSamplitudeoffricationnoiseandtheaverage RMSamplitudeofthreeconsecutivepitchperiodsatthepointofmaximumvowel amplitude.Thefndingsofourstudyareconsistentwithfndingsfromprevious researchinthatsuchmeasurementsdierentiatednonsibilants( /f,T,D,D Q / )asa classfromsibilantfricatives( /s,s Q ,z,S/ )whilefailingtodistinguishwithineach ofthetwoclasses.Although Jongmanetal. ( 2000 )studyofEnglishfricatives foundnoiseamplitudetodierentiatewithinsibilantsandwithinnonsibilants, otherresearchonfricationnoiseamplitude( Strevens 1960 ; HeinzandStevens 1961 ; ManriqueandMassone 1979 ; BehrensandBlumstein 1988a )reportedthatwhile fricationnoiseamplitudedistinguishedbetweensibilantandnonsibilantsfricatives, itcouldnotdistinguishwithinsibilantorwithinnonsibilantfricatives. ThedecreaseinnonsibilantfricationnoisenormalizedRMSamplitudeas comparedwithsibilantfricativeswasexpectedgiventheintrinsicamplitude associatedwiththetwoclasses.Specifcally,sibilantarticulation,asexplainedin Section( 8.1 ),involvesagreaterarticulatoryeorttoforcetheairthroughthe narrowconstrictionneededforsibilantarticulation,givingrisetoanincreasein noiseamplitude.Thesamereasoningcanbeusedtoexplainthelowerfrication noiseRMSamplitudeofvoicelessfricatives(mean )Tj/T1_0 11.955 Tf9.298 0 Td(14 : 22dB)ascomparedtotheir voicedcounterparts(mean )Tj/T1_0 11.955 Tf9.298 0 Td(18 : 26dB).Anadditionalsourceforthisdierence isthepresenceoftwosourcesofacousticenergyduringtheproductionofvoiced

PAGE 127

114 fricative.Theenergyresultingfromglottalvibrationduringvoicing,inadditionto acousticenergyresultingfromfricationatanoralconstriction,resultsinanoverall increaseintheRMSamplitudeofvoicedfricatives. NotsurprisingalsowasthefndingthatnormalizedfricationnoiseRMS amplitudeincreasedproportionaltotheheightofthevowel.Recallherethat fricationnoiseRMSamplitudeisnormalizedbysubtractingthevowelRMS amplitude,sowhentheintrinsicvowelamplitudeincreases,theoverallnormalized noisefricationRMSamplitudedecreases.Additionally,suchintrinsicvowel amplitudeiscontrolledbythedegreeofopenness/closeness(height)ofthe vowel.Inthearticulationof /a (:)/ ,theoralcavityiswideopengivingriseto anacousticwaveformofintrinsicallyhigheramplitude( LehisteandPeterson 1959 ; Beckman 1986 ).Theoppositeistruewithhighvowels.Interestingly,intrinsic vowelamplitude,aswellasduration(seeabove),ledtosignifcantdierencesinthe overallfricationnoiseRMSamplitudeonlywhenthecomparisonsareconfnedto longvowels. Previousresearchonrelativeamplitudegenerallyinvolvedtheperceptual eectofthiscueondistinguishingplacesofarticulationwith Jongmanetal. ( 2000 )astheonlynotableexception.Ourstudyfoundrelativeamplitudeto beareliableacousticcuethatdierentiatesamongsome,butnotall,placesof fricativearticulation.Ontheotherhand,thetrendinourdatawasparallelto previouslyreportedvaluesintheliterature( HedrickandOhde 1993 ; Jongman etal. 2000 ).Specifcally,thevoicelesspost-alveolarfricative( /S/ ,mean=0 : 9dB) hadthegreatestrelativeamplitude,indicatingastrongerconcentrationofenergy abovetheF3region.Furthermore,inlinewith Jongmanetal. ( 2000 )fndings, ourstudyfoundthatnonsibilants,especiallyvoicelessones,havethehighest relativeamplitude.Moreimportantly,pharyngealizedfricatives /D Q /and/s Q / had signifcantlylowerrelativeamplitudethantheirplaincounterparts.

PAGE 128

115 Thedierenceinrelativeamplitudebetweenplainandpharyngealized fricativescanbeattributedtotheloweringofvowel'sF2frequencycausedby pharyngealization( Stevens 1998 )withtheincreaseinamplitudeassociatedwith it.Recallherethatforpharyngealizedfricatives,relativeamplitudewasdefnedas thedierencebetweenthefricative'sandthevowel'samplitudeattheF2region. Therefore,anincreaseinvowelamplitudeatsuchfrequencywillleadtoalowering oftherelativeamplitudevalue.Therewasalsoaneectofvowelcontextparallelto thatobtainedfornormalizedfricationnoiseRMSamplitude.Asbefore,sucheect ofvowelcontextisrelatedtovowels'intrinsicamplitude.Withrelativeamplitude, ourstudyrevealedthatrelativeamplitudemeasuredforfricativesprecedinglow vowel /a:/ wassignifcantlylowerthanthoseprecedinghighvowels /i:,u:/ ,dueto theinherenthigheramplitudeof /a:/ 8.3 SpectralMeasurement Spectralpeaklocationoffricatives,aswasthecaseinpreviousstudies ( HughesandHalle 1956 ; Strevens 1960 ; ManriqueandMassone 1981 ; Behrens andBlumstein 1988b ; Jongmanetal. 2000 ),tendstodecreaseastheplaceof articulationmovesbackwardsintheoralcavity.Furthermore,theresultsofthe currentstudywereinlinewithpreviousresearchinthatspectralpeaklocation distinguishednonsibilantfromsibilantfricatives,withtheonlyexceptionbeing thesimilarvaluesobtainedfor /s/ andvoicelessnonsibilants /f,T/ .Although spectralpeaklocationdistinguishedbetweenpost-alveolar /S/ andalveolar fricatives /s,z/ ,itfailedtodistinguishamongnonsibilants.Moreover,plainand pharyngealizedfricativesdidnotdierintermsofthefrequencyoftheamplitude peakasmeasuredatthemidpointoffricationnoise. Ofinteresthere,however,isthefactthatthreemutuallyexclusiveregionsof fricativeplaceofarticulationcanbeidentifedbasedonspectralpeaklocation.For voicelessfricatives,thefrstgroupincludesfricativesarticulatedatoranteriorto

PAGE 129

116 thealveolarridge,thesecondincludespost-alveolaranduvularfricatives,while thethirdgroupconsistsofpharyngealandglottalfricatives.Forvoicedfricatives, thegroupsfollowedthemoretraditionaldivisionofnonsibilants,sibilantand back-articulatedfricatives.Spectralpeaklocationwasfoundnottobeaectedby vowellengthbutratherbyitsdegreeofroundednesssuchthatroundedvowel /u/ introducedalowerspectralpeaklocationthanunroundedvowels /i,a/ Spectralmoments(spectralmean,variance,kurtosisandskewness)were estimatedinourstudyfromfourwindowscenteredatfricationnoiseonset, midpoint,osetandtransitionintothevowel.Albeitlowerduetothemale populationfromwhichthedataweresampled,theaveragevaluesforspectralmean inourstudywereconsistentwiththosereportedforsimilarfricativesin Jongman etal. ( 2000 ); Nissen ( 2003 ):alveolarfricativeshadthehighestwhilethelowest spectralmeanwasobservedforpharyngealandglottalfricatives.Furthermore, spectralmean,averagedacrossallwindows,servedtodistinguishallplacesof voicedfricativesarticulation,and,aswasthecasewithspectralpeaklocation, identifedthreemutuallyexclusivegroupsofvoicelessfricatives( /f,T,s,s Q /, /S,K/and/Q,h/ ).Suchclassifcationabilityofspectralmean,forbothvoiced andvoicelessfricatives,waspresentatthesecond(fricationnoisemidpoint)and third(transition)windows.Itwasalsofoundthatvoicelessfricativeshadhigher spectralmeansthanvoicedfricativesinthefrstthreewindows,whiletheeectwas reversedwhenthevocalicpart(transitionwindow)wasusedtomeasurespectral mean. Similartotheeectsexplainedaboveforspectralpeaklocation,vowelcontext alsoinruencedthemeasuredspectralmeaninallfourwindows;withroundedvowel /u (:)/ introducinglowerspectralmeanforthefricatives.Specifcallyofinterest hereisthefactthatitwasonlywhenthefricative'stransitionintothevowelwas usedtoderivespectralmeanvaluesthatasignifcantdierencebetweenplain

PAGE 130

117 andpharyngealizedfricativeswasobservedinpartduetopharyngealizationeect onthevocalicpartofthewindow.Asmentionedabove,thegeneralpatternof theobtainedspectralmeanvalueswasparalleltothatof Jongmanetal. ( 2000 ). Contrarytothissimilarity,inourstudyspectralmeanwasmoreeectiveatthe fricationmidpointandosetinseparatingfricativesintotheirrespectiveplacesof articulationascomparedto Jongmanetal. onsetandtransitionwindows. Theresultsobtainedforthesecondstatisticalmoment(variance)wereparallel innaturetothatofspectralmeanandverysimilartovaluesreportedby Nissen ( 2003 ).Nodirectcomparisoncouldbemadewithvariancevaluesreportedin Jongmanetal. ( 2000 )sinceinthatstudyvalueswereaveragedacrossvoicing. However,likebothstudies,ourstudyfoundspectralvarianceofsibilantstobe signifcantlylowerthansibilantsinthefrstthreewindowsforvoicelessfricatives andatallwindowsforvoicedfricatives.Nevertheless,nodierenceswerefound withinnonsibilantfricatives. Jongmanetal. ( 2000 )reportedsimilarresultsforall butthesecondwindow.Anotherfndingconsistentwithpreviousresearchisthe lowervarianceofvoicelessfricativesascomparedtovoicedfricatives(4.5MHzand 5.4MHzrespectively)atthemiddleoffricationnoise.Althoughvarianceservedto distinguishmanyoffricativeplaceofarticulation,itfailedatallofthefouranalysis windowstostatisticallydistinguishbetweenplainandpharyngealizedfricatives,or betweenfricativesinthevocaliccontextsdieringinlength. Skewnessmeasuredatallwindowlocationsdidnotdierentiatebetweenplain fricativesandtheirpharyngealizedcounterparts.However,skewnessmeasuredat thesecondandthirdwindowsdierentiatedbetweenallvoicedfricatives.With theexceptionofalveolar /z/ thathadtheonlynegativelyskeweddistribution amongvoicedfricatives,skewnessbecamepositivelyskewedandincreasedasthe placeofarticulationadvancesbackwardsintheoralcavity.Forvoicelessfricatives, skewnessdistinguishedbetweensibilantsandnonsibilants;andwithinsibilantsat

PAGE 131

118 thesecondanalysiswindow.Ingeneral,alveolarfricativeshadthelowestskewness indicatingaconcentrationofenergyathigherfrequencies,whilesuchconcentration ofenergywasatlowerfrequenciesforpharyngealandglottalfricatives.Although thenumberofplacesinvestigatedhereisgreaterthanineither Jongmanetal. ( 2000 )or Nissen ( 2003 ),ourresultsareingeneralagreementwithbothstudiesfor alveolarandpost-alveolarfricatives.Also,ourstudyisinagreementwith Jongman etal. inthatskewnessincreasessubstantiallyatthefricative-voweltransitiondue to\thepredominanceoflow-frequencyoverhigh-frequencyenergyasthevowel begins"( Jongmanetal. 2000 ,p.1257).Theeectofthevowelcontextbecame morepronouncedatthistransitionwindowwithroundedvowels /u,u:/ withtheir inherentlylowerfrequencies. Kurtosiswasusedpreviouslyintheliteratureasameasureofthepeakedness ifthespectraldistribution.Inourstudy,kurtosiswassubstantiallyhigherfor pharyngealfricatives /,Q/ atthefrstthreewindowsthanallotherfricatives. Furthermore,thepeakednessofalveolarfricativesobservedelsewhereinthe literature( Tomiak 1990 ; Jongmanetal. 2000 ; Nissen 2003 )wasnotobservedinour results. 8.4 TransitionInformation Formanttransitionsatthefricative-vowelboundarywereinvestigatedinour studyusingmeasuresofthesecondformantattransitionandlocusequations.For F2values,theresultsobtainedwereconsistentwithpredictionsoftheSource-Filter theoryofspeechproduction.Specifcally,F2valuesofpharyngealizedfricatives weresignifcantlylowerthantheirplaincounterparts.Asmentionedpreviously, suchvaluesareexpectedduetotheloweringeectofsecondformantinpharyngeal co-articulation( Stevens 1998 ).Alsoofinterestwasthefndingthat,withinthe backarticulatedfricatives,onlytheuvularfricativeshadsimilar(andsignifcantly lower)F2valuesthansibilantsandnonsibilants.

PAGE 132

119 Thesimilargroupingofuvularandpharyngealizedfricativessuggestssimilar articulatoryprocessesintheirproduction.Thereasoningbehindthisgroupingis twofold:frst,valuesofF2areinverselyrelatedtotheheightofthetongue;and second,thesecondaryconstrictioninvolvedinthe /D Q ,s Q / productionisinahigher positionthanthatofplainpharyngealfricatives( Al-Ani 1970 ; McCarthy 1994 ; LadefogedandMaddieson 1996 ).Therefore,thefactthatbothpharyngealized anduvularfricativessharedsimilarF2properties,thatweredistinctfromall otherfricatives,supports McCarthy ( 1994 )'sproposaltonameco-articulated emphaticsinArabicas\uvularized"ratherthan\pharyngealized".However,such ageneralizationshouldbetakencautiouslysincetherealizationofemphaticsas eitheruvularizedorpharyngealizedisdependentonthedialectofArabicused ( Keating 1988 ; Zawaydeh 1997 ; Watson 1999 ). Boththeslopeand y -interceptoflocusequationsinourstudy,ingeneral,did notdistinguishbetweenallthedierentplacesoffricativearticulation.However, bothmeasurementsservedtodistinguishuvularandglottalfricatives /X,K,h/ asagrouphavingahigherslopeandalower y -interceptthanallotherfricatives. Moreimportantlyandincontrasttofndingsreportedin Yeou ( 1997 ), y -intercept ofpharyngealizedfricativesdidnotdierfromtheirplaincounterparts,whileonly theslopeof /D Q / wasdierentfrom /D/ 8.5 DiscriminantAnalysis Thevariousacousticalcues,exceptforlocusequations,wereusedina discriminantfunctionanalysistoidentifythecuesmaximallycontributingtothe classifcationoffricativesintoplacesofarticulation.Itwasfoundthatthespectral mean(atfricationnoiseonset,middle,andoset),skewness(atonset,osetof fricationandtransitionintothevowel),secondformantatvowelonset,normalized RMSamplitudeandspectralpeaklocationwerethevariablescontributingthe mosttotheoverallclassifcationwithasuccessrateof83.2%.Whenvoicingwas

PAGE 133

120 specifedinthemodelthecorrectclassifcationrateincreasedto92.9%forvoiced and93.5%forvoicelessfricatives.Itisworthmentioning,however,thatifrateof misclassifcationwastakenintoconsideration,thenfricativescouldbeclustered intothreegroups,namelynonsibilants,sibilantsandgutturalswithpharyngealized fricativesgroupedwiththeirplaincounterpartsinthesamenaturalclass. 8.6 Conclusion OurstudyinvestigatedtheacousticcharacteristicsofArabicfricatives.Results obtainedfrommostofthecuesusedwereconsistentwithresultsobtainedin previousresearchforfricativesinotherlanguages.Amongthecuesinvestigated, spectralmeasureswerethemostecientindistinguishingamongthedierent placesoffricativearticulation.Furtherresearchshouldfocusontheperceptual realityoftheacousticcuesinvestigatedinthisstudyandhowchangesinthe acousticcueeecttheperceptuallyoffricativeplaceofarticulation.

PAGE 134

REFERENCES AbdelattyAli,A.M.,J.VanderSpiegel,andP.Mueller(2001).Acoustic-phonetic featuresfortheautomaticclassifcationoffricatives. JAcoustSocAm109 (5Pt 1),2217{2235. Al-Ani,S.H.(1970). ArabicPhonology .Paris:Mouton,TheHague. Alwan,A.(1989).Perceptualcuesforplaceofarticulationforthevoiced pharyngealanduvularconsonants. JAcoustSocAm86 (2),549{556. Anderson,N.(1978).Onthecalculationoffltercoecientsformaximumentropy spectralanalysis.InD.G.Childers(Ed.), Modernspectrumanalysis ,pp. 252{255.NewYork,NY:IEEEPress. Baum,S.R.andS.E.Blumstein(1987).Preliminaryobservationsontheuseof durationasacuetosyllable-initialfricativeconsonantvoicinginEnglish. J AcoustSocAm82 (3),1073{1077. Beckman,M.E.(1986). Stressandnon-stressaccent .Dordrecht,Holland:Foris. Behrens,S.andS.E.Blumstein(1988a).AcousticcharacteristicsofEnglish voicelessfricatives:adescriptiveanalysis. JPhonetics16 ,295{298. Behrens,S.andS.E.Blumstein(1988b).Ontheroleoftheamplitudeofthe fricativenoiseintheperceptionofplaceofarticulationinvoicelessfricative consonants. JAcoustSocAm84 (3),861{867. Boersma,P.andD.Weenink(2004). Praat:asystemfordoingphoneticsby computer .Amsterdam:InstituteofPhoneticSciencesoftheUniversityof Amsterdam. Chen,H.andK.N.Steven(2001).Anacousticalstudyofthefricative /s/ inthe speechofindividualswithdysarthria. JSpeechLangHearRes44 (6),1300{1314. Cole,R.A.andW.E.Cooper(1975).PerceptionofvoicinginEnglisharicates andfricaitves. JAcoustSocAm58 (6),1280{1287. Crystal,T.andA.House(1988).Segmentaldurationsinconnected-speechsignals: Currentresults. JAcoustSocAm83 ,1553{1573. El-Halees,Y.(1985).TheroleofF1intheplace-of-articulationdistinctionin Arabic. JPhonetics13 (3),287{298. Fant,G.(1960). Acoustictheoryofspeechproduction .Mouton:TheHague. 121

PAGE 135

122 Ferguson,C.A.(1959).Diglossia. Word15 ,325{340. Forrest,K.,G.Weismer,P.Milenkovic,andR.N.Dougall(1988).Statistical analysisofword-initialvoicelessobstruents:preliminarydata. JAcoustSoc Am84 (1),115{123. Fowler,C.A.(1994).Invariants,specifers,cues:Aninvestigationof locusequationsasinformationforplaceofarticulation. Perception& Psychophysics55 ,597{611. Fox,R.A.,S.Nissen,J.McGory,andK.Rosenbauer(2001).Age-relatedchanges intheacousticcharacteristicsofvoicelessEnglishfricative. JAcoustSoc Am110 ,2704. Govindarajan,K.(1998).Listeners'perceptualmappingoflocusequationsand variability. BehavBrainSci21 (2),266{267. Gurlekian,J.A.(1981).RecognitionoftheSpanishfricatives /s/ and /f/ JAcoust SocAm70 (6),1624{1627. Hair,J.,R.Anderson,andR.Tatham(1987). Multivariatedataanalysiswith readings .NewYork,NY:MacMillan. Harrington,J.andS.Cassidy(1999). TechniquesinSpeechAcoustics .Norwell, MA:KluwerAcademicPublisher. Harris,F.J.(1978).Ontheuseofwindowsforharmonicanalysiswiththediscrete fouriertransform. ProceedingsofIEEE66 ,51{83. Harris,K.S.(1958).CuesforthediscriminationofAmericanEnglishfricativesin spokensyllables. LangSpeech1 ,1{7. Hedrick,M.(1997).Eectofacousticcuesonlabelingfricativesandaricates. J SpeechLangHearRes40 (4),925{938. Hedrick,M.S.andR.N.Ohde(1993).Eectofrelativeamplitudeoffricationon perceptionofplaceofarticulation. JAcoustSocAm94 (4),2005{2027. Heinz,J.M.andK.N.Stevens(1961).Onthepropertiesofvoicelessfricative consonants. JAcoustSocAm33 ,589{596. Hughes,G.W.andM.Halle(1956).Spectralpropertiesoffricativeconsonants. J AcoustSocAm28 ,303{310. Jassem,W.(1979).Classifcationoffricativespectrausingstatisticaldiscriminant functions.InB.LindblomandS. Ohman(Eds.), FronteirsofSpeechResearch London:AcademicPress. Johnson,K.(1997). AcousticandAuditoryPhonetics .Oxford:Blackwell.

PAGE 136

123 Jongman,A.(1989).Durationoffricativenoiserequiredforidentifcationof Englishfricatives. JAcoustSocAm85 ,1718{1725. Jongman,A.(1998).Arelocusequationssucientornecessaryforobstruent perception? BehavBrainSci21 (2),271{272. Jongman,A.,R.Wayland,andS.Wong(2000).AcousticcharacteristicsofEnglish fricatives. JAcoustSocAm108 (3Pt1),1252{1263. Kaye,A.S.(1972).Arabic /z/ :Asynchronicanddiachronicstudy. Linguistics79 31{63. Keating,P.(1988). ASurveyofPhonologicalFeatures .Bloomington,IN:Indiana UniversityLinguisticsClub. Kent,R.D.andC.Read(2002). TheAcousticAnalysisofSpeech .SanDiego: SingularPublishingGroup. Klecka,W.(1980). DiscriminantAnalysis .London:Sage. Krull,D.(1989).Secondformantlocuspatternandconsonant-vowelcoarticulation inspontaneousspeech. Perilus10 ,87{108. Ladefoged,P.andI.Maddieson(1996). Thesoundsoftheworld'slanguages Oxford:Blackwell. LaRiviere,C.,H.Winitz,andF.Herriman(1975).Thedistributionofperceptual cuesinEnglishprevocalicfricatives. JSpeechHearRes18 ,613{622. Lehiste,I.andG.Peterson(1959).Vowelamplitudeandphonemicstressin americanenglish. JAcoustSocAm31 ,428{435. Liberman,A.M.,F.S.Cooper,D.P.Shankweiler,andM.Studdert-Kennedy (1967).Perceptionofthespeechcode. PsycholReview74 (6),431{461. Lindblom,B.(1963).Aspectrographicstudyofvowelreduction. JAcoustSoc Am35 ,1773{1781. Lindblom,B.(1967).Voweldurationandamodeloflipmandiblecoordination. STL-QPSR8 (4),1{29. Mann,V.A.andB.H.Repp(1980).Inruenceofvocaliccontextonperceptionof the[s]-[sh]distinction. Perception&Psychophysics28 ,213{228. Manrique,A.M.andM.I.Massone(1979).OntheidentifcationofArgentine Spanishvoicelessfricatives.In ProceedingsoftheNinthInternationalCongressof PhoneticSciences ,Volume1,Copenhagen,Denmark,pp.237. Manrique,A.M.andM.I.Massone(1981).Acousticanalysisandperceptionof Spanishfricativeconsonants. JAcoustSocAm69 (4),1145{1153.

PAGE 137

124 McCarthy,J.(1994).Thephoneticsandphonologyofsemiticpharyngeals.In P.Keating(Ed.), Papersinlaboratoryphonology3:Phonologicalstructureand phoneticform ,pp.191{233.Cambridge:CambridgeUniversityPress. McCasland,G.P.(1979).Noiseintensityandspectrtuirtcuesforspokenfricatives. JAcoustSocAmSuppl165 ,S78{79. Nissen,S.(2003). Anaccousticanalysisofvoiclessobstruentsproducedbyadults andtypicallydevelopingchildren .Ph.D.thesis,OhioStateUniversity,Columbus, OH. Nittrouer,S.(1995).Childrenlearnseparateaspectsofspeechproductionat dierentrates:evidencefromspectralmoments. JAcoustSocAm97 (1), 520{530. Nittrouer,S.,M.Stiddert-Kennedy,andR.McGowan(1989).Theemergence ofphoneticsegments:evidencefromthespectralstructureoffricative-vowel syllablesspokenbychildrenandadults. JSpeechHearRes32 ,120{132. Norlin,K.(1983).AcousticanalysisoffricativesincairoArabic. WorkingPapers, PhoneticsLaboratory,LundUniversity25 ,113{137. Pentz,A.,H.R.Gilbert,andP.Zawadzki(1979).Spectralpropertiesoffricative consonantsinchildren. JAcoustSocAm66 (6),1891{1893. Pirello,K.,S.E.Blumstein,andK.Kurowski(1997).Thecharacteristicsofvoicing insyllable-initialfricativesinAmericanEnglish. JAcoustSocAm101 (6), 3754{3765. Press,W.H.,B.P.Flannery,S.A.Teukolsky,andW.T.Vetterling(1992). NumericalrecipesinC:theartofscientifccomputing .Cambridge:Cambridge UniversityPress. Shadle,C.,S.J.Mair,andJ.N.Carter(1996).Acousticcharacteristicsofthefront fricatives[ f,v,T,D ].In ProceedingsofETRW-4thSpeechProductionSeminar Aturans,France,pp.193{169. Shadle,C.H.(1985). Theacousticsoffricativeconsonants .Ph.D.thesis,M.I.T., Cambridge,MA. Shadle,C.H.(1990).Articulatory-acousticrelationshipsinfricativeconsonants.In W.J.HardcastleandA.Marchal(Eds.), SpeechProductionandspeechmodelling pp.187{209.Dordrecht,Netherlands:KluwerAcademicPublishers. Shadle,C.H.andS.J.Mair(1996,October).Quantifyingspectralcharacteristics offricatives.In ProceedingsoftheFourthInternationalConferenceonSpoken LanguageProcessing ,Volume3,Philadelphia,PA.,pp.1521{1524.

PAGE 138

125 Soli,S.D.(1981).Secondformantsinfricatives:acousticconsequencesoffricativevowelcoarticulation. JAcoustSocAm70 (4),976{984. Stevens,J.(2002). Appliedmultivariatestatisticsforthesocialsciences .Mahwah, NJ:Erlbaum. Stevens,K.N.(1971).Airrowandturbulencenoiseforfricativeandstop consonants:Staticconsiderations. JAcoustSocAm50 ,1182{1192. Stevens,K.N.(1985).Evidencefortheroleofacousticboundariesinthe perceptionofspeechsounds.InV.Fromkin(Ed.), PhoneticLinguistics. ,pp. 243{256.NewYork,NY:AcademicPress. Stevens,K.N.(1998). AcousticPhonetics .Cambridge,MA:MITPress. Stevens,K.N.andS.E.Blumstein(1981).Thesearchforinvariantacoustic correlatesofphoneticfeatures.InP.D.EimasandJ.L.Miller(Eds.), PerspectivesoftheStudyofSpeech. Hillsdale,NJ:Erlbaum. Strevens,P.(1960).Spectraoffricativenoiseinhumanspeech. LangSpeech3 32{49. Sussman,H.M.(1994).Thephonologicalrealityoflocusequationsacrossmanner classdistinctions:Preliminaryobservations. Phonetica51 ,119{131. Sussman,H.M.,D.Fruchter,J.Hilbert,andJ.Sirosh(1998).Linearcorrelates inthespeechsignal:theorderlyoutputconstraint. BehavBrainSci21 (2), 241{299. Sussman,H.M.,K.A.Hoemeke,andF.S.Ahmed(1993).Across-linguistic investigationoflocusequationsasaphoneticdescriptorforplaceofarticulation. JAcoustSocAm94 (3Pt1),1256{1268. Sussman,H.M.,H.A.McCarey,andS.A.Matthews(1991).Aninvestigationof locusequationsasasourceofrelationalinvarianceforstopplacecategorization. JAcoustSocAm90 ,1309{1325. Tabain,M.(1998).Non-sibilantfricativesinEnglish:spectralinformationabove10 khz. Phonetica55 (3),107{130. Tabain,M.(2001).Variabilityinfricativeproductionandspectra:implications forthehyper-andhypo-andquantaltheoriesofspeechproduction. Lang Speech44 (Pt1),57{94. Tabain,M.(2002).Voicelessconsonantsandlocusequations:acomparisonwith electropalatographicdataoncoarticulation. Phonetica59 (1),20{37. Tjaden,K.andG.S.Turner(1997).Spectralpropertiesoffricativesin amyotrophiclateralsclerosis. JSpeechLangHearRes40 (6),1358{1372.

PAGE 139

126 Tomiak,G.R.(1990). Anacousticandperceptualanalysisofthespectralmoments invariantwithvoicelessfricativeobstruents. Ph.D.thesis,StateUniversityof NewYork,Bualo,NY. Watson,J.C.(1999).Thedirectionalityofemphasisspreadinarabic. Linguistic Inquiry30 ,289{300. Wilde,L.(1993).Inferringarticulatorymovementsfromacousticpropertiesat fricative-vowelboundaries. JAcoustSocAm94 ,1881. Wilde,L.F.andC.B.Huang(1991).Acousticpropertiesatfricative-vowel boundariesinAmericanEnglish.In Proceedingsoftheofthe12thInternational CongressofPhoneticsSciences ,Aix-en-Provence,pp.394{401. Yeou,M.(1997).LocusequationsandthedegreeofcoarticulationofArabic consonants. Phonetica54 ,187{202. Zawaydeh,B.A.(1997).AnacousticanalysisofuvularizationspreadinAmmaniJordanianArabic. StudiesintheLinguisticSciences27 (1),185{200.

PAGE 140

BIOGRAPHICALSKETCH MohamedAliAl-KhairywasborninMakkah,SaudiArabia.HewenttoUmm Al-QuraUniversityandearnedhisB.A.inEnglishLiteratureandLinguistics.At theUniversityofFlorida,hestartedgraduatestudyinlinguisticsinFall1998.He completedanM.A.inlinguisticsinFall2000andthenembarkedonaPh.D.degree inlinguistics.Duringhisstudy,hetaughtfortheDepartmentofAfricanandAsian LanguagesandLiteraturefrom1999to2004.HereceivedanAlecCourtelisAward forExceptionalInternationalStudentsin2002andaCollegeofLiberalArtsand SciencesAwardforInternationalStudentwithOutstandingAcademicAchievement inthesameyear.HewasalsoawardedaMcLaughlinDissertationFellowshipin Spring2005. 127


xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID E20101124_AAAABX INGEST_TIME 2010-11-24T17:46:04Z PACKAGE UFE0011399_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES
FILE SIZE 383963 DFID F20101124_AABRLJ ORIGIN DEPOSITOR PATH alkhairy_m_Page_075.jp2 GLOBAL false PRESERVATION BIT MESSAGE_DIGEST ALGORITHM MD5
d1f7e7c8c2bbedf4d35e184ed1bfa515
SHA-1
708bb8b1517b0db9692bf155279139087d21890d
1051918 F20101124_AABRKV alkhairy_m_Page_050.jp2
3fc7be7f94bf558a0c2804b7ab8aa59e
affd5923ae8aecb8fb179bc083ac5e43b650fdee
1051955 F20101124_AABRLK alkhairy_m_Page_077.jp2
df339ec388d90c63590307d6cdb54b45
701c646fad73e32a7282ab27d5c656d03bd0da80
1051948 F20101124_AABRKW alkhairy_m_Page_051.jp2
3869a0e649f1243cea63d950f1eae5d9
c120751fb3789bee6ff5ad61c419f599eafa61ae
660566 F20101124_AABRMA alkhairy_m_Page_113.jp2
1f541d8b43fe80fca7a98f72fadffd33
76fae1e8444da5bcc7cf87c449ca901f04aac640
245440 F20101124_AABRLL alkhairy_m_Page_080.jp2
9602d917420d7887d38f1202313947d0
074da781d38fe970233fa93649829fe7e0b97ece
1051916 F20101124_AABRKX alkhairy_m_Page_052.jp2
862aad0ad20d205d52cf55c50afedc8a
fec2b3aa58807bd10652aa5df5b94bc1994d1b46
102649 F20101124_AABRMB alkhairy_m_Page_114.jp2
8310aceceed257d07fa6897d9574ab4d
5f18320d0cd769146e2062f3522c46792463cc19
706187 F20101124_AABRLM alkhairy_m_Page_081.jp2
60400aa28953830051180a96e3d8f896
6f2f66788cb1453ff412b785d59ae2a0328a20bd
1012407 F20101124_AABRKY alkhairy_m_Page_055.jp2
0920306926fd5d1c7f86d20470e639f1
5284f3ec9ccb28b3d844ece036718785bf4a1184
55396 F20101124_AABRLN alkhairy_m_Page_085.jp2
bfc8e60a42b386f36ad43dd4ab1ea49f
069b6a315a341c32caf7cb08376f44cf38deb456
739146 F20101124_AABRKZ alkhairy_m_Page_056.jp2
ef7ad673d92ea36132887e2dc4a40936
cffc6cd2e2d55001eb74e8d3ef5eef29bd9664ac
1051913 F20101124_AABRMC alkhairy_m_Page_115.jp2
1e85f1a7d60f727824bbae56fae273e8
715f06790bf8d652a360fb6ba7119657614e41a2
1051980 F20101124_AABRLO alkhairy_m_Page_087.jp2
d08f79a03d95bdf29e3a682976820f0f
d77a1fba3cfa5a477a304c11ac25fa2ce5210342
994697 F20101124_AABRMD alkhairy_m_Page_117.jp2
96b33bba6d63f56630c76c8265196a4b
c547373864eb0cbc6929353c1befdeab6eef34c4
52972 F20101124_AABRLP alkhairy_m_Page_088.jp2
aba78706d76004115861c578d4128678
cc14d19530dab5f089b63e2481e19963cc2c04f2
1051907 F20101124_AABRME alkhairy_m_Page_118.jp2
b29ccb818c1a7dac8c35ae30437e38fd
79eb0f51f3ffd4ae29291c30ed9e54cafad6655e
224263 F20101124_AABRLQ alkhairy_m_Page_089.jp2
8916fc8b995926fbd9a62d302aaea8c0
b517d3375a727deeb29e654224ab009d27be0a83
46981 F20101124_AABRMF alkhairy_m_Page_120.jp2
9c74cd997f401e559cec9948efc09045
de77cd1fa42c4ae4475eb12777287605e9e4dc22
33945 F20101124_AABRLR alkhairy_m_Page_090.jp2
914fde3007748d5cbac8f2de6137dea4
9932fa6de1969918f6bb54dafa31d2c057478b3a
650484 F20101124_AABRMG alkhairy_m_Page_121.jp2
e7d819ede799cecaa4a22d6f4453de14
7b07c88b8d79d6cc35b4d330f157c2d7e53224ed
1051979 F20101124_AABRLS alkhairy_m_Page_092.jp2
fa2c71fd7f3a5a7e8d93ff25d2e35933
b6e7af799aa97c07ba28850dd3cab52af3481b3f
814692 F20101124_AABRMH alkhairy_m_Page_123.jp2
454a02b641c889a0e88de3da94cce067
22555581cb1e9b933ce1545f66c3b54db6022c04
1051956 F20101124_AABRLT alkhairy_m_Page_093.jp2
fd733962176b5084a74bbc0e7c4a0eca
a6e5d294a1673a5c7316ad1ee13656c27bf348df
1051970 F20101124_AABRMI alkhairy_m_Page_126.jp2
0c19ee720a712b5888dc55630220cfa5
f6f349bbf1d8862b94a0e7f4dc8c489411a5de1e
238965 F20101124_AABRLU alkhairy_m_Page_096.jp2
5b38c0fb08057cec248272c85d4f2556
ca2a7efc093ac2e5f4057d2cf933a2582c214e48
1051986 F20101124_AABRMJ alkhairy_m_Page_127.jp2
f25c3b7138fe143850e2e0a41c5d191f
28e5b8ca3f2ad01442a3fdf4d45a5a9b6dc4d210
603626 F20101124_AABRLV alkhairy_m_Page_102.jp2
6b82408bdb5429194133e60fd1d112f2
99078449baf1dee3cb66082824434f77dabbaa70
1051962 F20101124_AABRMK alkhairy_m_Page_129.jp2
0c7b11e95d3f5dd204c8151eb72377e8
812b5eda688913fa51d987c7044e27dcae0539ce
1051935 F20101124_AABRLW alkhairy_m_Page_105.jp2
43cfd78412ba3919df217d215867e7e6
e73dfac2e0e671534c13e372e61257c6ec5e3c06
1051965 F20101124_AABRML alkhairy_m_Page_132.jp2
eaf890fd5e29bc459869446a9c80bb5e
16c742bc5552fc3a6dad63eb8976b8491a12b69f
31748 F20101124_AABRLX alkhairy_m_Page_107.jp2
694b7e833277bc60188897e856a6a83c
1181a9fc7c193916c64faacc2e3fc054298d64be
25271604 F20101124_AABRNA alkhairy_m_Page_023.tif
97c98fbc76cc11a93aac1b390882df95
b0ca5247673be2e80b4750b92b8cfe83fe3daa7d
57291 F20101124_AABRMM alkhairy_m_Page_133.jp2
311eef66c26a4741e53d8a1329af5c6d
dc8bc9fd4fc8c556773c7f6d0372d99b9ac7a3ba
811714 F20101124_AABRLY alkhairy_m_Page_110.jp2
d26f80affeb5a008fe1f3b82def86cb7
4fe8ac185ef5e0c39e382c5c02e2d5dfcb6b830b
F20101124_AABRNB alkhairy_m_Page_028.tif
f4123790affbdffa0b84645b80b1fd3d
7b9a0d301a3ffc24da1623102e4c4ff5dd9e6404
111864 F20101124_AABRMN alkhairy_m_Page_134.jp2
873be64ff3183b3085acca5b3b231b12
8c765f580554886a5aad8ad4918d672988de7ff3
529789 F20101124_AABRLZ alkhairy_m_Page_112.jp2
1131fe3d631a5c501e859511d8bcff1b
5f1bf1839fab463d6ee60371654535fc56243014
F20101124_AABRNC alkhairy_m_Page_030.tif
8f314871a9eb9962198c2f1d61248108
65c54dd0e4ae2725fa35fd77825be6d808da1b68
55131 F20101124_AABRMO alkhairy_m_Page_139.jp2
7265b3781be5783702e27016ab4d6352
638aa3db0d9bd833d187c02050aee854d3251642
46325 F20101124_AABRMP alkhairy_m_Page_140.jp2
f24e210107f5d597c29b2f0ed142ec88
eb38c362aa6ada1cb757e17edc394ceca0f6e666
F20101124_AABRND alkhairy_m_Page_031.tif
8e7c50edf5e34f5088b83d9ddaea47ab
ead8a6f794cfa5610783ac754f655dbc93140013
1053954 F20101124_AABRMQ alkhairy_m_Page_004.tif
16db582a349c604afe62d14a57cbc02d
b1b9e8b4813d846a5b029c512d8ae977e366fe0f
F20101124_AABRNE alkhairy_m_Page_032.tif
6a61b486b2c7b43a82dad5e3e9a86aa7
12477ff0a3270b141f1ebf48371fe43b235f0e0b
F20101124_AABRMR alkhairy_m_Page_007.tif
ea058cb47aef3ea4e3e061b0a722cb25
1472dc70ff81904eb1836ffaff755efc9de9649c
F20101124_AABRNF alkhairy_m_Page_033.tif
73d07e6ded9f421bbb37b79bcdc630e3
40c1060cca0c63e5608e7dd6bb79af8615009b21
F20101124_AABRMS alkhairy_m_Page_009.tif
773876dd4c5f0e0894242c703dfbd26c
b32949850af91ad1e2a98ff4475e5739b2193cbe
F20101124_AABRNG alkhairy_m_Page_034.tif
1ae6dbcb9ad4b6937379ff42ac69a6fc
a1d57e58f55eb64b9ad73a1b9ab317ee4d22cc4e
F20101124_AABRMT alkhairy_m_Page_010.tif
f63604c49291fac3772d0f9be1565401
0d62f4f0e80a9829d152344d0c8663f7a0f593d2
F20101124_AABRNH alkhairy_m_Page_035.tif
3ae3886ef193c2528f7d4de42e3f95f5
df98617976be4f691f4c7b336a452978b81dcd8a
F20101124_AABRMU alkhairy_m_Page_011.tif
3955b53d04b3f2c587645f9b7598fa1f
2761ea3f57faa150f78998a55ee15f8ffb980569
F20101124_AABRNI alkhairy_m_Page_036.tif
2bd3cba04d793904dff13b3799cdfb17
9cd0362d7a0ea31e569019504b97df29ce764a3c
F20101124_AABRMV alkhairy_m_Page_012.tif
33e808320a05aae95c606ddc4ebfff95
dc812a42351a6a728ef990226a25383143a30c52
F20101124_AABRNJ alkhairy_m_Page_037.tif
50b18ea4e660c164ac1187bfe7ac9a94
7d681b742dbb0c7563c38858fd850fa9c7b66efb
F20101124_AABRMW alkhairy_m_Page_016.tif
d52a7ea4f9d037454871b6329618e846
efc9a0e0fb61b632d7fc216c1d43b68b66bec257
F20101124_AABRNK alkhairy_m_Page_038.tif
e586b196b924505f932a69eee9ac7336
3e1ea8f6a5e5e6258a66a8807336ddb7b28a1273
F20101124_AABRMX alkhairy_m_Page_019.tif
56856eb5a7c7cb0a5abaf1755f90a494
8b7711d1e0738d05e402d1afbe2555f0bfdc96c9
8423998 F20101124_AABROA alkhairy_m_Page_075.tif
340f904704fd755cc2b485160cd182da
6ae8245a436e0bb41432d893883a6c88a5c27b70
F20101124_AABRNL alkhairy_m_Page_040.tif
fd23ee246871ba193e41c6bc016e973e
ac44c697b6bc352a7818e677db4c1ac9678432e6
F20101124_AABRMY alkhairy_m_Page_020.tif
435988089cd4d0fdadbd92387d82bd80
3197d3c86d76741803d0147b3a5c257eee34b6dc
F20101124_AABROB alkhairy_m_Page_076.tif
84445df84ff7b0df297f2f19b1953d2a
e7c3f03e81d94a508b30ccacef7402e3633d890c
F20101124_AABRNM alkhairy_m_Page_043.tif
a0a54ebe6d26c637eb04d28949a03148
e1b876aedf55b7f6899111bfb3c81428cb83ac08
F20101124_AABRMZ alkhairy_m_Page_022.tif
131286fd166056e1b77640b7fd60b3da
e4d451ebd70248eec0252e4e94a0e1adf5747e93
F20101124_AABROC alkhairy_m_Page_077.tif
ca3ca075f9b35a2ee93c3e012399affb
552a3d0ac3eb2a76870902830cf4a73aaac2ceb7
F20101124_AABRNN alkhairy_m_Page_046.tif
b0ee81e450c47d975e7f6b8ef607b417
2096ec5968c036eef5b89f209e7dac0de6ea414c
F20101124_AABROD alkhairy_m_Page_079.tif
b9970471ead45a9b922f0c1b1d3a68bc
6c2b7082c90f05d3aa3839687671c473fef6414f
F20101124_AABRNO alkhairy_m_Page_047.tif
29a9553194ac067a90ba83b49541ca8b
0880694231aefb823e51e444c118c0fdef0a4130
F20101124_AABRNP alkhairy_m_Page_048.tif
fcf5001a76143f18a85a0462c782f977
9bb4542727abb46eb980a5d1e4ba6acd84580b81
F20101124_AABROE alkhairy_m_Page_080.tif
47064aabc210e1ed396c28c647e532dd
525cf7a184204a2b2d9bee4b1182a33d4d9da660
F20101124_AABRNQ alkhairy_m_Page_050.tif
ef60328680fac6d8a3a627df25d70a82
6697840f39e0c49ba66b3cf0e9058608a23ee6a8
F20101124_AABROF alkhairy_m_Page_081.tif
e038514f0a374841e99e4f8927076411
7fbe6ab55059ec290120af4830d80d6e3a11d3f3
F20101124_AABRNR alkhairy_m_Page_051.tif
9657f64d27a854d6ee196f4ce25b580a
db4938dc5339bdf3cf7b9fc27511718d8ba9af82
F20101124_AABROG alkhairy_m_Page_083.tif
4f34e5d126abc69e8af177e5c274153e
3185de2369966161c90c6699d5948c5439c1e18f
F20101124_AABRNS alkhairy_m_Page_053.tif
b5f86287de17229bc083adc805b06780
8d5cd1213760b6f962e741e99e39e4dc26d24cf9
F20101124_AABROH alkhairy_m_Page_088.tif
01382c026101d52efee43d245aa53de5
44cd05bb2c3f932255c6dd4fb2da5efb1105b8da
F20101124_AABRNT alkhairy_m_Page_058.tif
bab2e642dc14ee7546103b76eef5c8f0
d22f3739403509298334fbf8e20c119dba5a76bb
F20101124_AABROI alkhairy_m_Page_091.tif
313cd9259593ca660f2bbb68be932901
bc1bc3b38bbc242d8118e0ae108022198e523413
F20101124_AABRNU alkhairy_m_Page_060.tif
8aeba3bac811ec20c5cdc994d1cf342a
9f719f0e1db2d87298a2456a0fa05703b1f113f9
F20101124_AABROJ alkhairy_m_Page_092.tif
c9a1dc4c439cd2b1af2703882fd8572d
a16f13d8ee16efa5673870893a9372528fab3f0e
F20101124_AABRNV alkhairy_m_Page_062.tif
fb8aae833518a66c9376ed0027e72e98
15cba8004ea05c7ad45ecca7ebb47a1e7d528577
F20101124_AABROK alkhairy_m_Page_094.tif
58f9b31dad64cfbd2b4de88d2160a027
f9ffe0602317afb25cb8857d2311da0d2306bc59
F20101124_AABRNW alkhairy_m_Page_067.tif
84fa02a6c5923f731d8cdb42bbf50777
230ee47f82718aadea22e0c179db5180a954e2fd
F20101124_AABRPA alkhairy_m_Page_124.tif
ca0fab4ac32d916905dc6d08462200ea
34d68552991f27d2e873ca1339e30bfcbdb60e16
F20101124_AABROL alkhairy_m_Page_096.tif
602b8b9ea9671707c507278df0308d96
ca948d682392aec0ad4f14f1f1890c8539e4ab8f
F20101124_AABRNX alkhairy_m_Page_069.tif
2f15d006fdb79ef2bfebfa8d7401ef51
c03a516709a4f8753a70dac7f6ab5d6c95734659
F20101124_AABRPB alkhairy_m_Page_126.tif
f911b73b0f139519173996b42b829c2b
87e1db0888642853f959911b204cd39b4e969a34
F20101124_AABROM alkhairy_m_Page_098.tif
fbeb3206d3f2ef705393a03438c3117b
f2c966d478c4fc7b845cca2db60b08034766fad9
F20101124_AABRNY alkhairy_m_Page_072.tif
00fc0863771007ebcfc2f587abdcf5ea
5dfd565bc4b844330d922a0ee3fb0495750db34d
F20101124_AABRPC alkhairy_m_Page_131.tif
3ae761e53de6b9279b9e33f732314d17
ade46a3e6a5698a344fdecd0e8bd732a2ecdc707
F20101124_AABRON alkhairy_m_Page_101.tif
f965c113407057f80d8365bbb4701072
3fd4d3ca2fcee71f8bbbd721527faafcd0125f94
F20101124_AABRNZ alkhairy_m_Page_074.tif
4d2a7bdeaf900e48a819ae109ede5520
c367c984f3faafb8dbabbf242da15e700843842b
F20101124_AABRPD alkhairy_m_Page_133.tif
64aeab56fb500f644ef84099143e61f5
d27228c5255962b111ca288c8fdd7692dbaab80f
F20101124_AABROO alkhairy_m_Page_102.tif
69690232ea4215d8b07107a5d81fc4fa
5ead05aa43ae8b75ec6e7ba81c4a56520834a42a
F20101124_AABRPE alkhairy_m_Page_137.tif
011f1300161be3c3699e94f6d6eb6a4d
8ee6cfa367aa2e5b7855457c8612902faf77e831
F20101124_AABROP alkhairy_m_Page_103.tif
b3e790d1d618015c4716e4127c78e043
9461710544129482d566ee26510d427249c7242d
F20101124_AABROQ alkhairy_m_Page_104.tif
4fcdc37082c7cc46145627f4f622f418
9f5e52f2c1f62b18b2dff97c92b956146820ef83
F20101124_AABRPF alkhairy_m_Page_138.tif
c9b6ca75556cdc899ee50e66d960a419
555bb8375aa8d1e03672d4810beeb2af0b02776a
F20101124_AABROR alkhairy_m_Page_107.tif
0363b0ec6bc7ce82cea6af7f4b99b18c
4c2c97f1837c2af03e68ec4e05c7ae06c30d2433
F20101124_AABRPG alkhairy_m_Page_139.tif
86094839adaadd27dd2c1d8bdf461d84
b3966c47633d7fe808f66a3fdf2edf86e4100d00
F20101124_AABROS alkhairy_m_Page_109.tif
72a75655e039042718a7a80f8652b4f8
7acb685e2ca4bf4b5d3e972c1d9f40011a64789b
F20101124_AABRPH alkhairy_m_Page_140.tif
23424a467bae4cd2b609bbb8893e62d5
6193e9d821219a1a6a14f2b0446c77386bf32eb1
F20101124_AABROT alkhairy_m_Page_110.tif
13c16607d136d43f74eb8c46eb2c1d8e
ab43e52235f3af3145f4e8147eb8ff79dc60f62f
1332 F20101124_AABRPI alkhairy_m_Page_002.pro
c8c709f81863d5fcdcd41b47f4e04c29
9e5d71d4536317792e506f0ee2ca1aa76f389f90
F20101124_AABROU alkhairy_m_Page_111.tif
d7b68519a19ec5ad5abc40dea48009f1
01ed94c5705c08ca06bfd757ce786e4f6df7a562
48046 F20101124_AABRPJ alkhairy_m_Page_004.pro
a91db1ba938c338486686bd53afdb6dc
733364773fa82b5c908b3a058959f052d722bd63
F20101124_AABROV alkhairy_m_Page_115.tif
43f65b1d492f3383d699ea39e597f876
6d683b8a26e184dd2546f736a84e4896da42c108
35005 F20101124_AABRPK alkhairy_m_Page_007.pro
e1bb3d18faef5ae4f46c80e7b3e4bedf
8cde351a16896b157ddf2d4137ea4a8a06e87bc1
F20101124_AABROW alkhairy_m_Page_117.tif
1bfad4824f65b5f1ff1c9e6e32a4a24f
7cf76164e1d5dc4e3e12b165034bdff02460c57f
28707 F20101124_AABRPL alkhairy_m_Page_008.pro
526f085b8ffcdd222242e10857ff8cd9
785b13490ca920109b7a62986cf9ad0d7b2be0ed
F20101124_AABROX alkhairy_m_Page_119.tif
b2126b411adc7ccc139f82a98ac31d8d
1fc25a15622e924a4d71d5ff76dfebafc75902b9
55780 F20101124_AABRQA alkhairy_m_Page_033.pro
2cd2133fb8064ead68129a182b3effaf
5ec52b1509cabbdee596f375ce263c14150594c3
32979 F20101124_AABRPM alkhairy_m_Page_009.pro
d599905049c4d12c60008cc6c46e12de
2c5a5c7bf2f13fcf028cfec60cbc53f3f419face
F20101124_AABROY alkhairy_m_Page_121.tif
3de0146817ecb8c848633dacd450961f
cfda57164883518f3044625c5f312f2e104ec533
56392 F20101124_AABRQB alkhairy_m_Page_034.pro
b8ab79c653ed5c98c58d2c4a6a35e42b
f6f088b0a65b3ee7c70ac80ae745285e8b74816b
42319 F20101124_AABRPN alkhairy_m_Page_011.pro
71094aca407297c9177322a33c56d994
c518a3ed824bf5d3a601ad3582b137985bda4e9c
F20101124_AABROZ alkhairy_m_Page_122.tif
a4154087a021e1032c4d445222eb89da
075e7deb085e89d0c0ff64c31c462bc12514de92
55836 F20101124_AABRQC alkhairy_m_Page_036.pro
707155c2bf3e659e617452823b31e981
7348f9aa24a86e80ea88c29974d1ea87a4e3d077
57222 F20101124_AABRQD alkhairy_m_Page_039.pro
7bf1939ebc7436bb75c3d42a0f855cfc
c7ea8aeb36116dbe84105104dfade3e17a8ce272
42792 F20101124_AABRPO alkhairy_m_Page_012.pro
51ffd3379650f25a126aec366253b22f
64878205a3aecfaaf620e597e04503df9de1f3ba
55256 F20101124_AABRQE alkhairy_m_Page_040.pro
d4c79eed15764cfde07af06898f3160a
8d165ee4890129c80ee57964e7a34fcdbcb74ec3
54801 F20101124_AABRPP alkhairy_m_Page_015.pro
ea998c964980d4629ce4a8c8a1de6ca6
c200626b52325be9bd2feb26f653ca1780c05b51
50758 F20101124_AABRQF alkhairy_m_Page_041.pro
bd7a319e5e941fa81b5a2c568ffdab73
5aacffd9e282277412e232240de235d9fff461b0
29852 F20101124_AABRPQ alkhairy_m_Page_017.pro
fe711876cb9c74c593582ca72bd705df
d5bcbf11874456aed7fef05f76823bc94cc85c88
42108 F20101124_AABRPR alkhairy_m_Page_018.pro
41cfbf62d51a0cf1587c34bc4b108795
0c47e6111a397c9a3c55c2582ce94a0ed4e1cb57
51128 F20101124_AABRQG alkhairy_m_Page_043.pro
a6d0fa885f29d340077fa914c76e7e60
884c252d5e0420cbb40d9cfca1a75817fea77d34
58846 F20101124_AABRPS alkhairy_m_Page_019.pro
14e2514f6d5fed433ee647511f91af4a
d3d68864ae0a6366a00427bd976d74ed3ecfb29a
54963 F20101124_AABRQH alkhairy_m_Page_047.pro
b6ee247ddd2f4782d6fffebcd6fbad9e
927c0e61b94f429bc6476681be7c6ce389ab2c9a
59358 F20101124_AABRPT alkhairy_m_Page_021.pro
907c5105df002c33e24200c7c36357bd
953170a37b39006c00e1a09969e4c22dfb426716
47424 F20101124_AABRQI alkhairy_m_Page_054.pro
44a6cda780341fa12a53652724b26596
e59a21ea52ff2cb40949790779c3f8726d873104
58332 F20101124_AABRPU alkhairy_m_Page_022.pro
3bf22a84d3160dc7172ce924511a01df
766d08e4e225ab0568273958c76e9d57054ebb74
31004 F20101124_AABRQJ alkhairy_m_Page_056.pro
e9f49f77247dcd6ab8a289fddb4d8ba5
48955d28ac1f63437d69c2de52e8e7f9d5f0b9e2
55015 F20101124_AABRPV alkhairy_m_Page_023.pro
423c1fc0e4a4cd66adf6edd244efbbc1
ea1ce5eb456c35019d4ae6617f88038915e9acb2
58053 F20101124_AABRQK alkhairy_m_Page_059.pro
c0d2f45e78cab0b711b1f7995264c0f3
04ddd103e0eaa03a4caa9a5d10de4480f51cbcec
57110 F20101124_AABRPW alkhairy_m_Page_027.pro
e29e4b11aabbbc8f3eaaa4c79e157747
41b1dc9de7e56744ca3624beac1c09222606bbb4
55374 F20101124_AABRRA alkhairy_m_Page_084.pro
91e1241b4f87f7c67b675ffd820e95fe
66f7522113bb8c90ce1beb81a13a7f8efdafffc9
8641 F20101124_AABRQL alkhairy_m_Page_060.pro
9a9ecb2c6ec0f78e4e9822fa829faadf
19a5bbf3171bf71ef41fe39d0d63a22452cf2099
51587 F20101124_AABRPX alkhairy_m_Page_029.pro
ce5b78f663611c6665030b0cb12e8971
d24a3144dfbc879e8f9638e6876d6238a042f5d3
57863 F20101124_AABRRB alkhairy_m_Page_086.pro
a479b7a39c3cfb375ea669fc92751cb8
5ae0cf2b20fef758e2018ed5d3720049b4f5299d
47744 F20101124_AABRQM alkhairy_m_Page_061.pro
406197dd9048cb5e8cd30af47098a8bc
15765859b875cb36214aba700addbb4302faf29d
58782 F20101124_AABRPY alkhairy_m_Page_030.pro
c10a3388f9f8ebc12dad6c3d40b7146e
b73b170b6cdb7688d06f1ab1abfd1aac11fe5f27
53651 F20101124_AABRRC alkhairy_m_Page_087.pro
d370eeaddf7c6955f32baedf5693d6a3
86615d7b3e0d5e165b7059d3661271eaca2903d8
8460 F20101124_AABRQN alkhairy_m_Page_064.pro
791835fb1bbb63e5d193848a9b5fde4b
5820bac3e1ee2daef83d95cb553b6421134cf5cf
57262 F20101124_AABRPZ alkhairy_m_Page_031.pro
e900777e13c6313c2f161e54dbe55c17
860621707b31e70b87c7fe92112ede2c8b23da7a
16185 F20101124_AABQOB alkhairy_m_Page_007.QC.jpg
2906eaf2bafc08f8c4cf0eb5edc844e3
b270d7c43d5541ca1dd1a2343edec5d88e560ae1
15501 F20101124_AABRRD alkhairy_m_Page_088.pro
a7f210cd98926663b39ca39d01b067a4
46dcc9a7620b306228bc5670e0c930fbd646cd03
6485 F20101124_AABRQO alkhairy_m_Page_065.pro
652985446afc31834dad833647e59519
6dafe74dcfe614f11f0fa9a00acc8d542a8649a6
24509 F20101124_AABQOC alkhairy_m_Page_122.pro
8196938279da518b287b2bab3b5989bc
7f6396fb5f2d7d513c3dd7b3a967ce7ec93d8eee
14776 F20101124_AABRRE alkhairy_m_Page_094.pro
9adfc5b377c7eddb718f269e088a8988
d7718bffe625493bf3c51f2b2acf8e323c28c5a9
5369 F20101124_AABRQP alkhairy_m_Page_067.pro
02c9201d0d5af56b98fd25522a3a083e
60551c2bd3c6430013d9c4d310612a537cf3181d
F20101124_AABQOD alkhairy_m_Page_078.tif
4c3e99a238f7e8b8d9a24917e7441037
b6c1cd1989246bbc7f349041cc068b72b7b9926b
26240 F20101124_AABRRF alkhairy_m_Page_095.pro
d8e5ec5b47f04e5d126db9fbc0363959
f7e84e691b0fdca3fb35475803272223f2df3f8e
6703 F20101124_AABRQQ alkhairy_m_Page_068.pro
f57eb930004f7812c49ce9b43d59cb7a
e6ca9d276bc90efda1e0051fcc1a9f807788967b
F20101124_AABQOE alkhairy_m_Page_043.jp2
bb89d19eb77bd52027a735d746d986fe
57a960bd2bcac19dfc11ebfb1a2da600217e6dda
9051 F20101124_AABRRG alkhairy_m_Page_096.pro
ea328df0a3ef989c4d50480d824f922a
bfd6ff509ac928dbfedc64fba78fe35d4ea8096c
27955 F20101124_AABRQR alkhairy_m_Page_072.pro
583b1c56b9c582899cdf58fbc1218bdb
920991f01d7f16ace078c62e56d276a6ef769cb9
33987 F20101124_AABRQS alkhairy_m_Page_073.pro
999ca01ec45ed4c0c977052c0aedbde6
607fd07d5d074c11541bf44c4f41d886a649d7ad
54409 F20101124_AABQOF alkhairy_m_Page_026.pro
0332fe1eaf78b83cb7611a0516901b64
d3765cf74ebbb94dcb4031da709372e7aba6ec90
57879 F20101124_AABRRH alkhairy_m_Page_097.pro
c1ccf10e7ea9c286555a50c9aa65cb98
99b34495f6a01a5a5946a05c82a0d94d2895c7c4
14904 F20101124_AABRQT alkhairy_m_Page_075.pro
fd11b30fdc35a83ff12ce1dc29fff61e
9ee64c05c71e070ec83d1c135cd15cd0494e501b
37784 F20101124_AABQOG alkhairy_m_Page_088.jpg
ab8347f5237c2334c82116f7a7f57b43
dbd460b4ac5fd4a0f2e55b985dbc7fc02cb6635a
12167 F20101124_AABRRI alkhairy_m_Page_101.pro
4c2aaa4ddfe8a63446f997474d7f960e
3b2e9dbe22f641950e0064180bef534bf9670c43
45166 F20101124_AABRQU alkhairy_m_Page_076.pro
873be3559cd5dbea094a84c257deaf4d
7c771b3480f85db322532ac17f8cc14a6f8b90c8
3069 F20101124_AABQOH alkhairy_m_Page_140thm.jpg
227bb5cc92a56333a9237a109fb75edb
f9c4ffcaf28e1635705af184702db9faa4377e53
55925 F20101124_AABRRJ alkhairy_m_Page_103.pro
49401ebbca571c33616e0761cb37058f
d366cd150d3011c98ce4f3c4ebe9414a14ec9828
20379 F20101124_AABRQV alkhairy_m_Page_078.pro
e8d3352a83750dfcfd95d98f07b0a12b
12a68e4fed30d80e099098fcdd9b82552c201774
F20101124_AABQOI alkhairy_m_Page_049.tif
925190288087536eff3bda9fa96a017f
ef9fc710f5f64df3b501dcfad58e3c1d9dc9f8ee
12101 F20101124_AABRRK alkhairy_m_Page_104.pro
ee6d08ce54048d5719cbf9a38fdf6708
b256dd0c3c61af6192dcc08f91ca84ea94197f38
8998 F20101124_AABRQW alkhairy_m_Page_079.pro
2233b9f4cf47ae1302c33d804b2710f3
923c2986f81e9d4c19b6e44cc183e671f704ef87
6530 F20101124_AABQOJ alkhairy_m_Page_129thm.jpg
9871509688ae649ee5f4a7ffb6ddbc39
b9f44b4395f9d2fb955f40198e4c421c7f490fd5
51487 F20101124_AABRRL alkhairy_m_Page_105.pro
44d81711fb625e5e93fdece368628d51
3cc95b1d8649c75acc033c387ee167c5fe4de688
7504 F20101124_AABRQX alkhairy_m_Page_080.pro
71fee1975022bc312a1c9bd9482c0bfe
8f0d10ee6e8931c0fef2600c32370318f2e16105
56542 F20101124_AABRSA alkhairy_m_Page_136.pro
dd580fc5af199784f3c3abe8a9a599b0
d7fe94e5ba959d3c4e46c1184837e382d1186ebb
2193 F20101124_AABQOK alkhairy_m_Page_103.txt
6f1d93cd54b98a703e032d15e19c06bc
f1718235e989828ad2fdf791f549bdaad4c6020c
9846 F20101124_AABRRM alkhairy_m_Page_107.pro
79d9595f02013fb703755560ddcaefdd
a88d7ff97f721a5984842675ea452800f2f4f8e2
29285 F20101124_AABRQY alkhairy_m_Page_082.pro
c972c1c109507541e664be3d9cf23302
210321f3b52ae17a830767c37519ffac73d8a150
61411 F20101124_AABRSB alkhairy_m_Page_137.pro
95e7f10044592edc1ef8910c910cd2a8
309faf2e69a97daff0775b7808849d12c72e57f4
5644 F20101124_AABQOL alkhairy_m_Page_102thm.jpg
ddd74305b68f6345f5bc96984ab59ccb
75de002659bf75a3db4258598eaf0339eaa873b6
50098 F20101124_AABRRN alkhairy_m_Page_109.pro
8658e8a42195ec2dbc0a5e9358d42d6b
3fdd4d0a3af1fcd6ab2dfe20d4d29a68beb3ea6c
8724 F20101124_AABRQZ alkhairy_m_Page_083.pro
6e0f767ff899f312c4fcee26a3bf45e8
d98a24c9ff0291160bfae013f482aafb593c74c9
F20101124_AABQPA alkhairy_m_Page_106.tif
c20be412e3b52fa864d5c6ea11ea2946
9d0d0f2a47e94c8b862dcfe3855a62b100e1340a
23924 F20101124_AABRSC alkhairy_m_Page_139.pro
c96d3efcc2026a855eed29ba849f419a
fec736115a23b9928612fc6725dd1e81cd605ee8
69937 F20101124_AABQOM alkhairy_m_Page_076.jpg
2313a04657254f641907e42792e9c6ab
14a8892ec5deb60eb367d7c35f8620439f1d88e4
37726 F20101124_AABRRO alkhairy_m_Page_110.pro
b6ff4f5a5fadec79ca20ca822c19a2d4
414c18572268bae47390612ad0c26567e58f7c5b
50586 F20101124_AABQPB alkhairy_m_Page_044.pro
2df9e36914cc28c2204b78e7f7bd418d
0772d205b8a6193fa4c34f21237a44bb37a347d7
381 F20101124_AABRSD alkhairy_m_Page_001.txt
428e960bd6401ea4c596300675877c9b
9d4e0e5e2046b2a6458937ccb94fef2be08fef27
F20101124_AABQON alkhairy_m_Page_054.tif
947aa2460fd75163b57991ed34155dde
e929b046f0033c0b8e53c08c4cf97705038429dc
49296 F20101124_AABRRP alkhairy_m_Page_114.pro
af6dca6b8f68e36fcb73cf6c6f48a047
e628a1a22ab3e4f3132637f23f6e1b1cb7bedda8
2191 F20101124_AABQPC alkhairy_m_Page_033.txt
145164c7331c2a4f4459c60c0e250abf
10cd2bb29d007e571d8abcf8d5af8c7de64c4e1a
123 F20101124_AABRSE alkhairy_m_Page_002.txt
b83846609076c824ce36206d1bf98315
559f8e1f3f2879037c49e59a4b4f2dc1d9ad257a
76764 F20101124_AABQOO alkhairy_m_Page_082.jp2
f38421c4338eb7d09441ced1cd367a46
911ca1ab4f271d79e2493b6b933adf12eb9a70c7
46650 F20101124_AABRRQ alkhairy_m_Page_116.pro
3bd0766a0222128c587c7249572872a3
72ed3c68456174d6da085652de34637515216062
3941 F20101124_AABQPD alkhairy_m_Page_078thm.jpg
67ba3bb4e458c151abf2ba16b7147b1b
860974362b5cfc57e42828bbf7afc11e572e7acd
88 F20101124_AABRSF alkhairy_m_Page_003.txt
21dfea87b9e08d4e490e232a009f63a1
ed6d682d4ef1e5e6ec43ce871090e75001842be8
25139 F20101124_AABQOP alkhairy_m_Page_102.pro
dbf7d3bfe4d71053cf06dbd1794c4e5b
d5d156ea5eb5621bf5d4ba80a84acd1fc62e11ec
47955 F20101124_AABRRR alkhairy_m_Page_117.pro
aabc11b487872cc7cb3e5038c0899278
e542e44a0dc7514ce81cebaa55413fb7e2983186
29927 F20101124_AABQPE alkhairy_m_Page_100.pro
7d5193e1777cf92efdb594a1014e0123
2a3ad7f9f74441162f4cdb61022309a6da3e766f
2116 F20101124_AABRSG alkhairy_m_Page_005.txt
15f657763f58f4117cf0b9fef9bf57f6
c7e93f40f6d4249125838a9f66ea80e21eae664a
1296 F20101124_AABRSH alkhairy_m_Page_008.txt
187bd1b7e3f03166f1598fe36bcf5357
a4cfee71729f9de3d9967bd04ff7af07fc97e24c
21296 F20101124_AABQOQ alkhairy_m_Page_106.jpg
1780b59cc1584a906e01d7788995b288
e7630fcf356ca74b6253f9efdd997819e9f33898
48804 F20101124_AABRRS alkhairy_m_Page_118.pro
befebcb4aa567e8f9e46f8a4e3b30368
3b5d1dd9e90a3a2cc2d6ed83f723b2ff1c5a5f1a
F20101124_AABQPF alkhairy_m_Page_005.tif
34f9d9a57a861b524b068bf5401134e3
e2769499e3d5e67f85abce5a04500d1e36d0d2f8
2132 F20101124_AABQOR alkhairy_m_Page_131.txt
56ad3261381b24725e77657b738ff148
0fcce6d0bcd951438c3300ebf5f642235f0c9285
29354 F20101124_AABRRT alkhairy_m_Page_120.pro
e9b080a8e5f864809013dd7363dbcc3c
1aff2e8663a56a43cf4a1d96f314932ffac6ab46
1700 F20101124_AABRSI alkhairy_m_Page_011.txt
00639fa0ffee487a91faa8b9245ae311
835953043ec6b80a198b2f4cffd20b5d087f5ff3
2248 F20101124_AABQOS alkhairy_m_Page_031.txt
5c2c03cfbdb97ec0a1d22af24272b42a
7c07b547aba5843f98de6b84ad586018724ecafe
14808 F20101124_AABRRU alkhairy_m_Page_121.pro
c6297db769d1bd51238e239196ee33c5
10b17d97a08e04014af79ad9faba3562b8c31f3b
24317 F20101124_AABQPG alkhairy_m_Page_029.QC.jpg
5c04c477f831db6c7565c2747eff32a5
90b130cb17e460c669aaa99355594e1816e9bf66
1877 F20101124_AABRSJ alkhairy_m_Page_012.txt
f614c146803e2a4d388101ab09b9dedb
a2c6811d8e50b8c2d3f1d739bb7e0345ad6e5fc6
F20101124_AABQOT alkhairy_m_Page_028.jp2
78a064f9ee3aa0cfc420b046e3d72719
7d77efdef632d1331aed90dad6e3544eaf4065b0
55348 F20101124_AABRRV alkhairy_m_Page_125.pro
01e9a20e1a6daf65bced090d6cba88e2
4a9ad3f706ca9cee45e951ba81b110b587c30333
9347 F20101124_AABQPH alkhairy_m_Page_107.QC.jpg
5207a89d0541911ca8a7fda0bdbc3dd2
f36ecbc40e6c2ccfc8f4026fba9ad3e711f128f8
1832 F20101124_AABRSK alkhairy_m_Page_014.txt
d32bf9922fe53d054a02184611fdbc99
53da5e0859ceb967b7ca067ec18e9ad7ced6f0a1
458959 F20101124_AABQOU alkhairy_m_Page_094.jp2
c2eeaf2163cfca6c67192c366cd62bc5
f882b7381348823e9d3e28c7807067c9faad3042
55000 F20101124_AABRRW alkhairy_m_Page_127.pro
233f55e0207ed424837ae619f130b0b1
f0bd3b41ed5d15a8f0b59810e630e80b3b129d91
841 F20101124_AABQPI alkhairy_m_Page_140.txt
538c3df2e6b0efe44b34962058e98d12
4d46ca0ecaea51dd2543245129c46a39767b370f
2022 F20101124_AABRTA alkhairy_m_Page_044.txt
60547801f8532ca8808bc5f7b1861ca6
6f02e788ffbb00bbc8f97c2d13ca161e37a1945c
2339 F20101124_AABRSL alkhairy_m_Page_016.txt
76c29df9024663a274062d002767b814
1fcf983baa71f2cb82212f35e7dd31acb75b2740
2163 F20101124_AABQOV alkhairy_m_Page_023.txt
c83f668004b6ca4657d8ca065ad570ad
a5bb17f2e50db9d0acac07988eea58c254b9d7cf
55206 F20101124_AABRRX alkhairy_m_Page_128.pro
e9f75ac71021ab4dca9761de747a7e7a
0a75f3ebf563081fe22276d30c3f3c13f0788c14
2232 F20101124_AABQPJ alkhairy_m_Page_116.txt
bfb0e9107ebd95147fffa00087986ddc
e7e720841ad95a9d8201cef196f3fb029d06fee9
1074 F20101124_AABRTB alkhairy_m_Page_045.txt
344df691701b64bf12c151b75b6d1d18
d6e6f938c7ad0f254c12aa64417f923d320bcca3
2281 F20101124_AABRSM alkhairy_m_Page_025.txt
f36b5ceb60c0cfd4efd82501185ce696
4a99c671d9c447f3ceef96b5ad0034732e209a96
F20101124_AABQOW alkhairy_m_Page_023.jp2
ad94b2f0f89f020fda3ce27cda5700e0
ec11612ad29e5063e5c0a032750121fbd55f545a
56475 F20101124_AABRRY alkhairy_m_Page_129.pro
ea88ca3b6dbe58f01cafa4635b91572b
98a79faa99c5f2daafc2d7713e45b1f05e719f1e
7055 F20101124_AABQPK alkhairy_m_Page_108.QC.jpg
fb8a5506477e545169a734ae79585c6e
2eaafe579edf254e08bde240908f95bb83dd8371
2162 F20101124_AABRTC alkhairy_m_Page_047.txt
e41ecbd77e25e97358a3cc424fb7aa43
a25aa5733b471a55c4e5595f8e3a6e9e4d1f45fc
2145 F20101124_AABRSN alkhairy_m_Page_026.txt
e3b3975f39697aa894966c1fae5828d6
84b8dd1354d7cd7acd820e0a5f22cc3ca5a115f8
2179 F20101124_AABQOX alkhairy_m_Page_135.txt
c2b4d01507a269f99edb612419fda5a3
1095d48519451191b43d879eba85370b1c21323e
55145 F20101124_AABRRZ alkhairy_m_Page_135.pro
c748eff211a76d790899ea77a019fde1
0fec22df9487789e50f3c3bc9dde87bbcf32c3ba
F20101124_AABQQA alkhairy_m_Page_039.tif
2b6b436abcea9056620b1d1a9ae6f098
d133b89f4f43047828ad719b9e5edfdaca20a929
F20101124_AABQPL alkhairy_m_Page_084.tif
e287134d4b7608081d46dba51443d380
229d7c32b46ca6bdce591e018e715217ca8b77c7
1644 F20101124_AABRTD alkhairy_m_Page_048.txt
4e6a5a9c6e224621120c2fb7838e85b2
7733abc3c4bd11fc993b8fd1ad02032aeeb8b071
2095 F20101124_AABRSO alkhairy_m_Page_028.txt
788496c2f023fb6bfdf19a3760e99c3e
ab38177259afe64f673108bdf6e63f7c06cf6c76
79214 F20101124_AABQOY alkhairy_m_Page_043.jpg
338965a5a832f27b90c5ab9a9eb7b84d
018cf727fd9e9fd0d9d292617474c324df70c3bd
38583 F20101124_AABQQB alkhairy_m_Page_101.jp2
bde04ace1bef6b1d3ef98e1b8590c447
a783a226516ede9705b689cc71685468030f0913
1548 F20101124_AABQPM alkhairy_m_Page_009.txt
a8aeb4cdba23a75f9b513191a5130c63
ea26139950906653de444c2ad948941c439a6441
1976 F20101124_AABRTE alkhairy_m_Page_051.txt
bbd4d00818c7dfe4ebe2517c6a25a8c8
39d5951e406552f4fa59a37bf8df1f1032c34500
2039 F20101124_AABRSP alkhairy_m_Page_029.txt
39d6a1f8f60e5709a1d3f2d49e311f0c
e7e3bfcd6b3e4d9c911fec1091f77e4e7b05ee10
87128 F20101124_AABQOZ alkhairy_m_Page_086.jpg
11ff4af31b8f8f702663d5347eca23b0
d647916c0a83ce70badaedd48ffab1f023b5ad9b
53502 F20101124_AABQQC alkhairy_m_Page_131.pro
5efdb378155de63b069d3ef6b0f09e75
7cf3d2f6c42098115a9ca624838f4b3d89f6b60e
F20101124_AABQPN alkhairy_m_Page_119.jp2
fc976ab3f389f8acad39fccaa62a6f1f
bc460ada4074285615f0be07e1d66123939dec5a
2144 F20101124_AABRTF alkhairy_m_Page_052.txt
2109d7a0e30a66a403c730a96a6c97a5
b5aa019c1e4aacb998babcd36e42484a3216f1ef
2308 F20101124_AABRSQ alkhairy_m_Page_030.txt
1e26b15275d530c47beeb352a940de82
70735f3c11dc9b711c39ba8739f64f06f358109c
F20101124_AABQQD alkhairy_m_Page_099.tif
38b683996eda66adb158f246ee148d35
ffb32b975abe259fce9989373b9db38d86ba61c8
1965 F20101124_AABQPO alkhairy_m_Page_050.txt
720bd0551ce7464d3c390e96ccc47933
20e5fcb9a4900de531c874164c31405a3295268d
2110 F20101124_AABRTG alkhairy_m_Page_053.txt
af2104efbac2fd299f6341519e5b7191
b0eabe55b492d66daaed3373d8b56c6c4e4f88cf
2215 F20101124_AABRSR alkhairy_m_Page_034.txt
ff83b2a2bd1bdeaec67d93f2241108fb
0c78400ee734e426e5cf0b4a84c90c20e0919240
31436 F20101124_AABQQE alkhairy_m_Page_083.jp2
9e2a72fa43b0a4f43ab3bbee66d77bd4
9d1f948fadde28b22f8e0b66519fd90274f15ede
6511 F20101124_AABQPP alkhairy_m_Page_068.QC.jpg
9cb087e0194210ce71521c5eae4feeb0
a200f8d88d69a82b01583a1da70f49680f6b7afc
1874 F20101124_AABRTH alkhairy_m_Page_055.txt
b2b29d93e563b481ee187644f2f84e9b
57442f068fb2bcc9d02a82f1ac301db29b38e8b4
2175 F20101124_AABRSS alkhairy_m_Page_035.txt
3e974f105acf99b6f126285d2462204d
b87c252b637b28958679a6b0bbb67c840cd864cd
2139 F20101124_AABQQF alkhairy_m_Page_069.txt
525eed19ad9a084a27f1937ad23443dc
10c820086a8c43753275a445da6486629c342ef0
6470 F20101124_AABQPQ alkhairy_m_Page_084thm.jpg
06cfecb639cb15420733bdd6dd4d55c4
d681629682b610d76592e79a43ecf848a4c5ff61
1243 F20101124_AABRTI alkhairy_m_Page_058.txt
82272d79af0058554e8500b97531bc88
71d50b44357315ae4eff68ca200d0fb24660cd04
2195 F20101124_AABRST alkhairy_m_Page_036.txt
baddca3364088756601c249d975642cc
07643bff6cdc4551f7a76aaf616ed4c127b5724b
29136 F20101124_AABQQG alkhairy_m_Page_057.pro
54f232624dd873225ad19fe46edd6559
ea70a32d79bb71084a9c0debc3011040d934a76c
1051981 F20101124_AABQPR alkhairy_m_Page_025.jp2
cab91c7f9fe979e72dfe97b776ed0b21
22185caeb60dfd8347b791bfb2f8821cbdff20e7
2190 F20101124_AABRSU alkhairy_m_Page_037.txt
50e6c5bba32ff7a0ca4a96ea7e67c84c
1d0287deb69202fea295c365a14eb2d9cc785d3d
F20101124_AABQPS alkhairy_m_Page_114.tif
8717ab88458c21b61c33c4a55a34c546
7a498f222ff2b0f4bd871114a215b88b592fdfa4
2283 F20101124_AABRTJ alkhairy_m_Page_059.txt
4cd1236f4eaa953a5aeb398cd129d89f
742bed6c052b67b57b6fef3a42fd3f11a65774d3
2079 F20101124_AABRSV alkhairy_m_Page_038.txt
a026832d7f847af82f98a59a90735de7
6d5a93d00f5889e426d6571977676cc97bb194ee
1051940 F20101124_AABQQH alkhairy_m_Page_084.jp2
8be9e828dbae50254a22b1cd329ea892
9c785ab86e21763583be60f1f3a24a318bc9701a
58206 F20101124_AABQPT alkhairy_m_Page_092.pro
59d493988df8fcaed106f13a3eb59cb3
93dff5883f447b1d9ee8c5826c457d560305e595
2005 F20101124_AABRTK alkhairy_m_Page_061.txt
3b34438c84a0b977e1aa976ccbc1fc0d
1645ee5b91ec1f88c295e237eee0b3999cc76742
2274 F20101124_AABRSW alkhairy_m_Page_039.txt
72eb5d26432ae9cf3a6502156167235d
7a0cd74e0ea08ff487b71eec7dfa36f5b8d43577
5397 F20101124_AABQQI alkhairy_m_Page_100thm.jpg
16a33162d98a33cea590f19a376c8f64
62cfa508cdef4a098d9f65bcff4f8fc9a7ad8247
14843 F20101124_AABQPU alkhairy_m_Page_112.QC.jpg
555e86115f9837385f4eac5781080c8e
cd17e383a281dbb37b37cac006d542208eb1835c
1365 F20101124_AABRUA alkhairy_m_Page_098.txt
fa54c9aacf71dbaac73875e290f4a0d9
569bf826ccf3ed3ea912aea9350f9be18e32109c
728 F20101124_AABRTL alkhairy_m_Page_062.txt
142429989f6e4eedaab268d73f01e295
fcf2b21f60329eae796e89279f63c06a0ef783f9
2172 F20101124_AABRSX alkhairy_m_Page_040.txt
ad2d7351dca3ebd2f8ac5ddcaaca130d
87cc82392438e5c99dbe093815b23a7096a0efb5
2289 F20101124_AABQQJ alkhairy_m_Page_022.txt
82e78c74d9e8d5f225277b24a87c791a
edaf96e007391356c0a159d7c223f835c01be4f5
57910 F20101124_AABQPV alkhairy_m_Page_025.pro
02977b97d63e92c0603b2050266be970
394c059e1939a8ddac2ca1f7454c79b2c577376d
2167 F20101124_AABRUB alkhairy_m_Page_099.txt
f425fb6e23e00c6228a6a280e0d585ce
8920920f67fe203cb8b5c23045059f621ba5e776
882 F20101124_AABRTM alkhairy_m_Page_065.txt
51c8df42703728e840a0a28cd686d6cf
e077531c1af39e4dd6eca05d5c2f1873759b584f
1559 F20101124_AABRSY alkhairy_m_Page_042.txt
7c0b7a9ffca61f1f51b92398ea653cec
96a401fe268c4ab9de9d221a1cee92ff35969227
485 F20101124_AABQQK alkhairy_m_Page_060.txt
127111e42fc617402a94d3f898207c17
6ab090e74b2946e29e143aeae0962e339dc35fe1
2317 F20101124_AABQPW alkhairy_m_Page_068thm.jpg
1777fe726e9eec923586b0ef582fd845
96be362d07dc6d145d5fd466517d10d6c9c501b9
1249 F20101124_AABRUC alkhairy_m_Page_100.txt
c97a8cd73fc50722a1b01cb62d3b1e29
2fb114cdaf8a3c4190dc60d5bc3080d57efbfdb1
783 F20101124_AABRTN alkhairy_m_Page_066.txt
0e7029b8685195152e3c935283caec4f
1907e76033286912fc564c9eadb234f297f96aaa
2018 F20101124_AABRSZ alkhairy_m_Page_043.txt
891109ccdd41bfb9f20a385f130df768
35b47fc494c25887c081911b496c43b21a4c6d9e
987 F20101124_AABQRA alkhairy_m_Page_085.txt
81bb5f1fda1bce8f92289cf4825d9cb1
d01631b81b12488f5df7771c497e133be0a007d3
1273 F20101124_AABQQL alkhairy_m_Page_122.txt
fc2c801bf87a20a89090e9a04739c5b6
e0370d37291d0207c046ee0943651be5e00706d7
24679 F20101124_AABQPX alkhairy_m_Page_069.QC.jpg
692f9067fa3617e336474ec33a7b54cf
e7e146d0f751cd39a4fbb63514ffc93bf5d53861
710 F20101124_AABRUD alkhairy_m_Page_101.txt
0b025352059c34f1fd01c5b0f0b5a915
238ff6e7a3d160606e931266079b49754e7b35c6
793 F20101124_AABRTO alkhairy_m_Page_068.txt
c3fc42292414a5d06f79703041701205
d5e1c960d7ec34f662628716b9a7524c4fcd9b07
25813 F20101124_AABQQM alkhairy_m_Page_046.pro
21fca5b1eb0d1f26a1c0c4ee4ab85bb1
910ee5c28452f6908ee758a463c8e0a5867f00ee
39147 F20101124_AABQPY alkhairy_m_Page_104.jpg
e48ca7c74853c6659d091bae29579663
08c909bb4ee152e4876a20fd5a4b489844ce4e39
26580 F20101124_AABQRB alkhairy_m_Page_027.QC.jpg
4780f7296d5c21892e87923faaed23ec
ea3439e56fd81e98e745ddfd17300384f0a141d4
1128 F20101124_AABRUE alkhairy_m_Page_102.txt
b99b4e63d03ed8eda22d3669effd771e
94fc91b8cfd6be336c8bb72e0a9810e95f7e8a35
1459 F20101124_AABRTP alkhairy_m_Page_071.txt
4cc278821ae94d22a0bfa7341c8e295f
7ba4c2d3b67a929e78f2ca03bea03c773b4efe87
6514 F20101124_AABQQN alkhairy_m_Page_052thm.jpg
6acfab078e9672fbbb6c09e31431e7c7
c3e3390509fc0b77a5dc873a2ec94673e8a6933a
941 F20101124_AABQPZ alkhairy_m_Page_064.txt
7d6361d48f7aaf27cb9ac2e22a9d1d45
29e9cbf2aab48cb00f52e2917b8798fc1cb0e01d
4970 F20101124_AABQRC alkhairy_m_Page_042thm.jpg
d342f2333340fa327740b13424dfb07e
4c90c681b22e94c789233e5b5e6540326bd7c13a
296 F20101124_AABRUF alkhairy_m_Page_106.txt
e10f2151c61f959e41b844f0c74aefd0
85603a065999ca3168be1861d65b4c49b787044c
1166 F20101124_AABRTQ alkhairy_m_Page_072.txt
99972a0c504a8d578c1a768a00ac8bda
0b15eb06259e15493db6cd83040a5f0d32379338
1224 F20101124_AABQQO alkhairy_m_Page_094.txt
2033aee664fa81cc1237459b899c49cc
0aff52992ba883b80f76ab9cbc927d31049199c5
2219 F20101124_AABQRD alkhairy_m_Page_129.txt
f62fad67aefa76ac8740d94864b99915
a5060f99474eab4638a04345aad27a8ae30bf663
440 F20101124_AABRUG alkhairy_m_Page_108.txt
e09423b8a5278d81a035c5d4cb360377
826c9d941142de721b5006eaf6d028787342e40a
1238 F20101124_AABRTR alkhairy_m_Page_074.txt
8cd9a684a284e64e82dc5b41a5a8ba07
4d8b66f6b271cd6f172a2bd2c294cb5b932771ef
F20101124_AABQQP alkhairy_m_Page_059.jp2
24eba0f0356c600294e372d1728a8d38
52571252180118ce323f005c498669579a13c680
86889 F20101124_AABQRE alkhairy_m_Page_130.jpg
db9b3425bc279d59ef3482e96f9e02ce
7cc83eb820aafe764c3b7c94d66ef9f6e811b183
2063 F20101124_AABRUH alkhairy_m_Page_109.txt
da6e2a4d028346492184f745d17e475a
2b92362c23e34d230ccd7fb3099a2e259bff835a
1000 F20101124_AABRTS alkhairy_m_Page_078.txt
b91b3bc86d108cabcaf8181ebec0479f
3d3d24fa1bf52b00e1c711b5061d4eb956910442
6674 F20101124_AABQQQ alkhairy_m_Page_067.QC.jpg
5949f3ab9211042d912a452347c7bb21
529beee489d6d37077ed9ac3a4e28b6903da0ff5
1113 F20101124_AABQRF alkhairy_m_Page_121.txt
7cea7043b499f52967cbfb92f7ca48e5
ec66a137b449aa69745093e68cec7dd1ada28a1a
2170 F20101124_AABRUI alkhairy_m_Page_110.txt
5181c08b3cc113f69b99f00870e37d54
c5a6c3a36d0cd1620752a36919ade4e8b0287d33
501 F20101124_AABRTT alkhairy_m_Page_080.txt
0360c2c3c05964666543d5b83205c63b
b2ca6d5f119cfc9b618c8e252bccc508ebbd46b8
956390 F20101124_AABQQR alkhairy_m_Page_116.jp2
f20a81fbb7ae0dc53f4415f49bbfae67
7a6245164863fd333e9918e508a714007ec4c8c7
6444 F20101124_AABQRG alkhairy_m_Page_040thm.jpg
5384c72f9cb7d5764480a537fbb3949c
91679f04836f31e9dc7e219c6c446a863c9691f0
586 F20101124_AABRUJ alkhairy_m_Page_111.txt
c12b56a8cb55b03b0efa59c16fe66816
e7d97dfeef3578cfd4b94361d886ee2a2365a320
1216 F20101124_AABRTU alkhairy_m_Page_082.txt
099377a341ed4ba444bb073c43f2051e
2c33ebdfcf4dec80d63d00c67c1dd467e91cd863
7593 F20101124_AABQQS alkhairy_m_Page_089.pro
6b17d417044876350d9d638716b71853
a55e8aa0f8405086471b777857827f9fa7cc1429
5145 F20101124_AABQRH alkhairy_m_Page_018thm.jpg
9f919015cd2b6a3931ca121ffaa3b8cd
068deb4fa1bfeac9595dc43e97f38296f0ff4cc6
522 F20101124_AABRTV alkhairy_m_Page_083.txt
86abad7f37775bbbb0bcb53b604e4932
421eb54efee007a23a8a484cd57a2e190eb56520
6338 F20101124_AABQQT alkhairy_m_Page_033thm.jpg
b49daa43e382204fcaf09c7179abfc16
bdd101aa9326c2293c406194072e5ce78c07cd74
1055 F20101124_AABRUK alkhairy_m_Page_112.txt
52f102594e59cdafee33652decd54a15
5d779806d37af0a3c4bc322411441dd13817bb39
2155 F20101124_AABRTW alkhairy_m_Page_087.txt
ffbee73d9451f805c6a7c16618021f25
b9972c6fd84c49da3da7d9400949c7517ba1de74
56092 F20101124_AABQQU alkhairy_m_Page_126.pro
f7c6ac75ad6defd5496c105ecd05afa1
fcd22a46e7540c87d06882d2d2f09f6ba3899b0b
11671 F20101124_AABQRI alkhairy_m_Page_091.QC.jpg
54b5a9d08a14fa427ef95b5e09945959
6c7a955d33ede5e6565dee0bc7bacd1ae2062185
2207 F20101124_AABRVA alkhairy_m_Page_001thm.jpg
5302c0241a74ed52011bac56fa8f515e
51cf9fea38541d40fad04d6da4ece6d2f429b81f
1170 F20101124_AABRUL alkhairy_m_Page_113.txt
9f65cf1f92a18456ea3168a7f488defe
086c35ac0991ad7957bfbc534dd89268c7e9c35e
1769 F20101124_AABRTX alkhairy_m_Page_090.txt
72f742689c22edb44c86b1994860098a
1fdf8eb34a27da7f8378c9de8c422552e8bb52e4
F20101124_AABQQV alkhairy_m_Page_003.tif
51e310977d74808c7cc79155c36db78a
7b3b94f6391bcc3e73037ddec9fa626f11d92925
F20101124_AABQRJ alkhairy_m_Page_020.jp2
4ed88ca92c37fc241f03b7c7da382a56
111809ffb31b449086db2fb67807fcb4e401d5b4
3699034 F20101124_AABRVB alkhairy_m.pdf
68c71b64e8e6f4ac5d8b47a2bcfe6adf
4a709d5806455ed6a7dbf9d47356bae52fe7ee15
2337 F20101124_AABRUM alkhairy_m_Page_114.txt
cd4521320e029018d4412494edee59cb
57949c9e63d5ec3bd46adb36eaf36645a8239273
F20101124_AABRTY alkhairy_m_Page_093.txt
206b6b628f459aaa28aa983938fa7af4
08d9f0cd8f7952295914d53bda8b33d1a84c0a37
654368 F20101124_AABQQW alkhairy_m_Page_072.jp2
2b5fc9d04347f2782d38fc98b2fa9276
c7e44cf3632069fab6deb08b8d6a928d258dac13
F20101124_AABQRK alkhairy_m_Page_013.tif
dedf4d9ed0939020fa5629e114d0de26
e113e346a3e9f7fd3124757dc5d73c0753694d2b
21107 F20101124_AABRVC alkhairy_m_Page_134.QC.jpg
c673124e3b7c581541aa2c18a0d2df03
6e1dac0edb1f7376e99786c9e599f8a5f3a6d5f2
2033 F20101124_AABRUN alkhairy_m_Page_115.txt
dcefe58523d070dbc285e56b601ac27e
76c4d5b6c2466c4c0ccbe363099ab07ce680e92e
523 F20101124_AABRTZ alkhairy_m_Page_096.txt
b8457cd2e2f820663f76cc5d1094b7e1
e1091aff3b167e4e244895b73da366e6dc7f77a7
5166 F20101124_AABQQX alkhairy_m_Page_110thm.jpg
a00e8a7870e2eef9f59575715d245948
26ffa55718321460e16529028ca39f004e8b2e3b
88550 F20101124_AABQSA alkhairy_m_Page_030.jpg
e8366f8e4b242b3ce97f161259934499
9698dd8e32f83384cadc2594529f9d9b96f27440
F20101124_AABQRL alkhairy_m_Page_041.txt
33ff49cc093f5e8b1fcf7ec30d831e5f
166e8d7df9431cfde4d0bdc7b19701b8e97b7b4e
9207 F20101124_AABRVD alkhairy_m_Page_065.QC.jpg
9bd4bd69f793bb1fd4b041d941649dcc
2c07b5892c5d7c8623aaeff2323724a2b2a46734
2208 F20101124_AABRUO alkhairy_m_Page_117.txt
e2892f427f971d46f71272c2bae57f96
ce92ea0dd6703dc4b7289b184e3da30e42d95279
55469 F20101124_AABQQY alkhairy_m_Page_035.pro
a00d0ac915eab8abbc5c80632d1fceac
9f3b5d757ef8258c43d282f285ca4afbfbcfd115
F20101124_AABQSB alkhairy_m_Page_029.tif
691a843cfec677de3bd01086b245f23d
d02e59fff2e33418abdecf2076844006fccedb5b
447 F20101124_AABQRM alkhairy_m_Page_089.txt
3ec68d5d5acef76cb5066de88b8c1d3d
165aefc76cc4651d444551866f8b967d7a149f25
5323 F20101124_AABRVE alkhairy_m_Page_081thm.jpg
61b127c918a01c8e4b74050108c7e67c
5ec8df4639c6ae32fb91e08824232e79f9a5fa9e
2124 F20101124_AABRUP alkhairy_m_Page_119.txt
93bf0efd833ced5017ec7779c14e7187
a216d06f5ed3bdbb1452dfe11e56e3e3389fd8f4
484925 F20101124_AABQQZ alkhairy_m_Page_098.jp2
83b0c2076d87eabe3f2476c54904f262
0866f5549a9ffe7468b4a537f1f2cb3c834f0cd9
669 F20101124_AABQSC alkhairy_m_Page_067.txt
41abbb1c5de87b2a6fb13bb87b25b1c7
45c3a79069665a9a604b3f72ed50f47506effbec
7265 F20101124_AABQRN alkhairy_m_Page_108.pro
b83fcfe386f36c4184957a66325ff9dc
03da8deb9a3c8dbbd7393151676274f4c3ec8d1a
3698 F20101124_AABRVF alkhairy_m_Page_094thm.jpg
053885af93b3875ddd327914bd15d96b
36d8e1a4e12795c258fb5e2d757995ab4b84e428
1044 F20101124_AABRUQ alkhairy_m_Page_123.txt
c10269211f2b164204b451a722e65a3f
7351ddd4af8ac90fa8dc9293046dac8cb0aa50bc
84669 F20101124_AABQSD alkhairy_m_Page_128.jpg
fa6d97d8a9c4d160861362a224284080
8bdd401c705095c4a643ae4d89d014d29458704e
25657 F20101124_AABQRO alkhairy_m_Page_033.QC.jpg
0fb2f9c74ea0852d1368bd4cb7eada37
7c04d10ac0f625a6d2fe22e2750ed17a37ffac1c
20628 F20101124_AABRVG alkhairy_m_Page_114.QC.jpg
cf4ccf035047ab0fb1633174e8545463
83b9cc5413edf2c4500d2d7a82490792f25aefb6
1847 F20101124_AABRUR alkhairy_m_Page_124.txt
1bcce75d99579c2196838cc99a4636f5
9e0ec5a3dc3e8f1de7b1113272605ee542dd728a
19603 F20101124_AABQSE alkhairy_m_Page_018.QC.jpg
550ad4f8d72d052ae54d639df4aebb0f
5c8b661109167af38edf72b052d92c8d698b9a27
26178 F20101124_AABQRP alkhairy_m_Page_103.QC.jpg
f77dd0d576b8d293ee1798f6f3371a75
a03e3b563c12db233bedb22870fb8540bbfb73b4
6500 F20101124_AABRVH alkhairy_m_Page_032thm.jpg
f47daa1477719696dd6bd6cf67b390ed
bcac6eb187220443a7299add055421a21487b7c5
2201 F20101124_AABRUS alkhairy_m_Page_125.txt
ae5bdadc22f09af4cdc8850eb16dd0af
2303d086d97d98be41a2a9ed5d40071eb40d4850
19936 F20101124_AABQSF alkhairy_m_Page_006.jpg
3944363ffa70717602ad44ab9cf655c4
c83c14c0c4097445ce34355e2a245c3a53473897
6629 F20101124_AABQRQ alkhairy_m_Page_130thm.jpg
10c71ee7fc1b2e685ea4927dbbd0c304
614cac6ff619581d6b1b0cb32ceb66c909641ece
25509 F20101124_AABRVI alkhairy_m_Page_032.QC.jpg
d4843dcef2f0e81d12f6319e4f56e650
933ced932dd8473bf60159ceffb4be14905745ec
2231 F20101124_AABRUT alkhairy_m_Page_126.txt
fe77a59f0d71604cd4d450549afda355
2dda31f1a55af326853cc612c4ab8ad987c57df4
69744 F20101124_AABQSG alkhairy_m_Page_020.jpg
10fef9314b6b8267bca699be8318ca85
2c5deed003ff305cb77e4b289b9c3509e5311ead
6308 F20101124_AABQRR alkhairy_m_Page_015thm.jpg
c21fdb847cd92292001cc11be9bb60b7
061985468aafe31c105c7ed52c6f0aa851b348c4
3848 F20101124_AABRVJ alkhairy_m_Page_066thm.jpg
0fb707cbf875cbc168abc6cf689d9bec
55f70becade1c26d9c40ef96ef533642885826a9
2164 F20101124_AABRUU alkhairy_m_Page_127.txt
915f43f2ffdb0947f09f63adf4340f08
152e222b2a5bb08573399c77ea11ad77868b43d7
27124 F20101124_AABQSH alkhairy_m_Page_030.QC.jpg
58ec1d1516ad3cb9b0ee6804889bf30c
73bad842e5c68b774dcd339ffc667b0b5ae9f532
296349 F20101124_AABQRS alkhairy_m_Page_091.jp2
3b21f0d0dcf75dbb02454f5ef37b5bbe
0e75273debf672cd5807f375d679df94e44744ef
2901 F20101124_AABRVK alkhairy_m_Page_062thm.jpg
648da5bb818392f1ed572e8126e084fa
764bc20e4bf13bfca3f1ed4f4268ac30ebd9ae22
F20101124_AABRUV alkhairy_m_Page_132.txt
31669d59e2fb5851221d828ef708b946
dcb620bbd1418f91844667677080bb707fc92549
2268 F20101124_AABQSI alkhairy_m_Page_097.txt
3036ca988c9ac7b406af7946e263d0c9
a3921c551bb5ca6b18311183c416ee4fbec38f42
49719 F20101124_AABQRT alkhairy_m_Page_115.pro
c6ddb43f6dbb92fd0935895ed99b4408
045da0ee88eac8b9050c77426824255291be90b2
2111 F20101124_AABRUW alkhairy_m_Page_134.txt
93c4f4fb1e26932a8edd23f7914aa341
0593b5732b30246332256620d5a4ef86e86010b9
796444 F20101124_AABQRU alkhairy_m_Page_070.jp2
00cf7c837bf2c7fca9ff00bf354aee10
2f3f11ad4a011899c69c4f60de8c0fcfa959d2ba
6656 F20101124_AABRWA alkhairy_m_Page_024thm.jpg
5c2471d6bf8e09b0501c5b92c203d61e
fde9b8577f0e48fca9c09eff890d624158906946
5634 F20101124_AABRVL alkhairy_m_Page_056thm.jpg
0e9324522b00098a27ff5b79c881a788
957a6c39f59c6c9bf8efedce24300a047cc31f55
2257 F20101124_AABRUX alkhairy_m_Page_136.txt
4a040ecf3a7fa447b14632e5457fd1ac
8e8f9d33b8a0ce8b11cb2da015a63592405d4d89
4548 F20101124_AABQSJ alkhairy_m_Page_048thm.jpg
a834a4718f21125a598d58df7c00f9c7
b62f94b766a81acb84ff25967ebb5f971292b75b
69857 F20101124_AABQRV alkhairy_m_Page_118.jpg
9f5cf1450661366d9ae274aaf4cb7f6d
1db496dcca99b5e567a925bcd40310f9c4c6d109
17767 F20101124_AABRWB alkhairy_m_Page_042.QC.jpg
044af0225c8ec34213358949c968c392
f3355ab015601b20a437a33bfcb8dc6b53471ae0
2275 F20101124_AABRVM alkhairy_m_Page_067thm.jpg
8657f9f97858f443d3c6218f51f4b009
86acb71141d4652e6579eef49c0df0b5c4e5edde
2355 F20101124_AABRUY alkhairy_m_Page_138.txt
1e5d2eb5ab7dd44eac1a243001cbd870
28560c80617f10f2ba58d5731370eb2bf96becf8
F20101124_AABQSK alkhairy_m_Page_097.tif
e5dd2b88f962a7d18148a6e3900eb916
c92cbe2d59c9a2d84515f8779838fb47fd03bb8f
27032 F20101124_AABQRW alkhairy_m_Page_045.pro
10829f22220db2d664405118ae06c9cd
2b7520aaef2c988c5a7a5564541242b712769311
25572 F20101124_AABRWC alkhairy_m_Page_077.QC.jpg
333b9a0d88337d69b6fe2ce393182f75
ee06ed150235889abff88a2688629ccb127251e3
6450 F20101124_AABRVN alkhairy_m_Page_093thm.jpg
7eee5f66938cd5323f13aba1e8784d8e
831b686eeb107026b53730b59a0d86b0a2e2c19a
958 F20101124_AABRUZ alkhairy_m_Page_139.txt
4b124b4586f7f8122d4495d25867e882
b41abb9beadcec132ea94c1c28c1d56ca63646e4
9052 F20101124_AABQTA alkhairy_m_Page_060.QC.jpg
f62818fa4446679231fc9e835451654a
c69b61eb9b2187a74ad8e265cccc19e9b1d6e26b
45269 F20101124_AABQSL alkhairy_m_Page_055.pro
a11fbe0539f8c1e1903cd55690280eed
1e62437a5e01391175adb658eab4a72a9b73e2e4
F20101124_AABQRX alkhairy_m_Page_017.tif
24fab865ad8a13cf3991a67724a4f639
46009dfec87a618a836ecdc55082d675edbc8815
18424 F20101124_AABRWD alkhairy_m_Page_057.QC.jpg
1c25b6926ef8a644c1c21d197fe7f9c2
0f7a21beeeeb319d3628fc068d085ee2e55ebc52
24921 F20101124_AABRVO alkhairy_m_Page_028.QC.jpg
d34479e8dfa13ad69d4ff09444f89b2f
022bdd25c9d2fd404e1f32d9f8cdd98b7d9c49df
F20101124_AABQTB alkhairy_m_Page_129.tif
dfb6a31630314ce22d1626cecbf31f41
4a9f06b8d46b6df762d55949e392ee02d9dc21a7
6395 F20101124_AABQSM alkhairy_m_Page_037thm.jpg
9f25232e877759bb705864765da6226d
387be96570d1cf5f210ac7284f717c27b695409f
55682 F20101124_AABQRY alkhairy_m_Page_077.pro
205d2987044440bf694b8e6c4042353c
b4e046ad4c1d0740fc8cf4fab3983086a27ce243
211415 F20101124_AABRWE UFE0011399_00001.xml FULL
d47d8fd1811013ff307418380cb7afbf
a630cab0caea71b8f1219eabf5e9c0a0e6c49f82
17589 F20101124_AABRVP alkhairy_m_Page_071.QC.jpg
a8050e3bf43de12e35a169c2ebbce801
aceaf2e4af39a57c4a9a92e02db0244eaa081db4
1051985 F20101124_AABQTC alkhairy_m_Page_007.jp2
e4966485cd2ebd3a71b52c6008e097ec
d548fc94827190553100b485616ec9c4c1392dde
48671 F20101124_AABQSN alkhairy_m_Page_051.pro
9d28c5dd99a29198a67b31ea571e10a9
e475c5d3cc8fb97997876724a82aaba86e3278f1
79488 F20101124_AABQRZ alkhairy_m_Page_028.jpg
114130e467273fd3c7cb34bddb2838f9
c7b71740add42b5c64be64d246ce952afed39d23
3385 F20101124_AABRWF alkhairy_m_Page_003.QC.jpg
b7b246beb0ce431feb5864c39b97561a
5179cc76b923fd2886277c8e35984ab6b32a2d36
6367 F20101124_AABRVQ alkhairy_m_Page_127thm.jpg
6c37b8629e2d73dc40fb1d07a0b19f4b
53e23dc206ad124762394b6b3aa22a4d724d656e
40969 F20101124_AABQTD alkhairy_m_Page_095.jp2
8364eb43f9c2d68ef59fd85dc36e0fcf
1d7e808c134775848cc994a344dc0e78c22acd79
55751 F20101124_AABQSO alkhairy_m_Page_037.pro
2514db4042e5b628461ae3503db64ee2
cbe4b3bcb8552a893543373c4e73c29e44fc58aa
1363 F20101124_AABRWG alkhairy_m_Page_003thm.jpg
fbe3a68770638141fec3e4668cf58a92
7c67283e10e071ae5ab06ae05c0f782166bd41a3
5659 F20101124_AABRVR alkhairy_m_Page_014thm.jpg
29bc830c56e7c140eaf6243076cbfc85
1decf57be8521f7ff4aa6595630c6e1e4b17124d
58464 F20101124_AABQTE alkhairy_m_Page_130.pro
c904fa5fb468a5251883b957b3cb75ab
82537e1b741818bf6dc9c33b0ddd4b14ab4cbd44
2296 F20101124_AABQSP alkhairy_m_Page_130.txt
df27c2e0d25445cce396c9fd1f605f15
281792a63fb0eabef70c1abebfa3292484072649
22692 F20101124_AABRWH alkhairy_m_Page_005.QC.jpg
84abc28c7c2989549a2dbf0487ccdea6
4869cd8154d972094db4f8611dd844a1665a504d
8342 F20101124_AABRVS alkhairy_m_Page_089.QC.jpg
09ff984b413001a34823fdbb3bfaca32
0a6d1076f8e070a285b891134a4e1dbcfe9c49c2
77429 F20101124_AABQTF alkhairy_m_Page_061.jpg
1b2d63b60bb7484a7e2bddbad5e81919
0a861d0c5283d732046625e3d1a6722dc25428e2
F20101124_AABQSQ alkhairy_m_Page_057.tif
c986c4567490df30b91de0a4ae0c06d4
21f8d2b4e8eccd81407e9e0569743975d57d6b38
5854 F20101124_AABRWI alkhairy_m_Page_005thm.jpg
1077d5d4f2f39c7d55439a56354caf8e
8c800a30f1d9c356e59ebd7111af515d60f75c02
5189 F20101124_AABRVT alkhairy_m_Page_058thm.jpg
44789c70ecfeb05cbc3e891913550a98
e48d7b7740d1ac472855070c1adb1e4e40e1e83d
6477 F20101124_AABQTG alkhairy_m_Page_103thm.jpg
2fe956fa6d414e99c046cec4ef7ec97f
6c4326bf13faf43e57aea0174065cd2558de0199
1075 F20101124_AABQSR alkhairy_m_Page_133.txt
779199a81a9ea5558ba7968759cea3f6
37f6fd940564c2dfcf672a1e3e4db4221418ad6c
6446 F20101124_AABRWJ alkhairy_m_Page_006.QC.jpg
b374804dff2f57529055a43f970cd9bf
aa92699903bee60f7b507ff77214e1e695535596
22007 F20101124_AABRVU alkhairy_m_Page_044.QC.jpg
7c6a28f840527c04be6d6477d3074770
d429bb6b8fb81ebb6ff9f299fccd175f8a3a5f44
11889 F20101124_AABQTH alkhairy_m_Page_094.QC.jpg
228ea4243bebad0184f1f10122543bdc
5ecc94049ee829c079cf0dc092ca23a4cf8bc505
22187 F20101124_AABQSS alkhairy_m_Page_020.QC.jpg
a1b1d18c8a0a3fb8b9d23b9fd87d3e01
efbb23f34b914c24c071a6c46bd8ab74242f0d0d
4155 F20101124_AABRWK alkhairy_m_Page_007thm.jpg
c53271f64ae41b94b0ae78ab9f2a5406
60a9f3d25569f181a0ea32273a55b5c74b083d37
6243 F20101124_AABRVV alkhairy_m_Page_053thm.jpg
e4ab2cef1fb0fb49dbb5ea1492e9830a
4762718674c8d2e0ab3c3643cbf87178d5411272
5907 F20101124_AABQTI alkhairy_m_Page_135thm.jpg
54adb0be5615b5153ebd8522579ea060
73930e6f10b357a4a34a19b1516dc910e4c1e511
84972 F20101124_AABQST alkhairy_m_Page_024.jpg
ed389323de8cc51ccb949c05fe921743
643d2e10f464cb13cd7be1b89cf25a9ec7d1efaa
16575 F20101124_AABRWL alkhairy_m_Page_008.QC.jpg
7e2b7e7f2e6811fc0fa75b663f566d35
bc25bed4ed120214c881ec7eda5f800ee5fc26ca
8224 F20101124_AABRVW alkhairy_m_Page_121.QC.jpg
d3414705c5370eda0a6e6507e4bac2d9
1343d178105a1c4ff082230720b6d0f071bc1821
3441 F20101124_AABQTJ alkhairy_m_Page_133thm.jpg
34a0c1cfb9311899c7ed32a0af9421b1
0c50dcfe577fb35a660ad2b87330511eb5205848
F20101124_AABQSU alkhairy_m_Page_071.tif
1c5b73e3de8d61093c688a34072d6ba5
fb72ef5c60665a46f3c43180a584401bd8d1ed59
6625 F20101124_AABRXA alkhairy_m_Page_036thm.jpg
275d2793469daeaf37d89fb9852fc5f2
2c55c3bbf578ee46a83cf1594a91e9111ee06061
6189 F20101124_AABRVX alkhairy_m_Page_013.QC.jpg
ee65c5a3928607c0b9ea80c865e486b5
c7ad2186541fb6585ccb4b40c83a31f4fbbf078d
86855 F20101124_AABQSV alkhairy_m_Page_025.jpg
4f6b3b6e5748a0c11eda8c6c048b015a
ae8bf5bf62488708369955acbc02b72faa1ffc7f
6535 F20101124_AABRXB alkhairy_m_Page_039thm.jpg
bb760a171f49076acd34c656014c9b42
77c023265579889481346a03d4332e5e3688c244
4291 F20101124_AABRWM alkhairy_m_Page_008thm.jpg
77324c0d2e1324ec947d79cf7cb8acba
618532a871fa98cef2b2b85d2ba07409ad31cf3e
21074 F20101124_AABRVY alkhairy_m_Page_014.QC.jpg
0c03bc7668ec92fe8469e41bed29c764
6a33cab103815eaa20b3b8f30ea30f7a2618c040
23409 F20101124_AABQTK alkhairy_m_Page_111.jpg
b6fca4c26029ca2424102f3320126da7
b430f887177de058f2e383a3aae98dd4b34b9e66
13110 F20101124_AABQSW alkhairy_m_Page_066.QC.jpg
7a504a9c290415dc20a74e5f01dee56a
115dd3688b36908242e3032f5907602d800ada21
25734 F20101124_AABRXC alkhairy_m_Page_040.QC.jpg
b2d2cf36dc57492aabafb81d6e7846aa
1c6fd39ce78d2e2b582935a223bb90a872d13245
16395 F20101124_AABRWN alkhairy_m_Page_011.QC.jpg
7a833345c114d1fe61fe07b55cd50559
920c74e4a92e34f91f1a38699db3de9fb80f8f42
22193 F20101124_AABRVZ alkhairy_m_Page_099.QC.jpg
364c1caddbac4ce64d8699c80266d494
292e072603136879ceb994c9c964964af4d0e3ec
6678 F20101124_AABQTL alkhairy_m_Page_030thm.jpg
43d0ff52c5cc71a3a5abd8bb71919a10
a26fa824d9cfd479e1ad266ce1edeb076431d55b
5344 F20101124_AABQSX alkhairy_m_Page_114thm.jpg
32ddcd267ecefb8eb94326ae9afd0e12
e75318ad54b1eeab81a16dc56431258349d57562
20971 F20101124_AABQUA alkhairy_m_Page_001.jpg
4bd0a7876f3a0c9b28f08f6107bf76e3
3692a570052ebcfe7a10c0f74c46c6d861802102
24708 F20101124_AABRXD alkhairy_m_Page_043.QC.jpg
2a892abe0d5a1e7c629312b894873a58
942a89fd637423a56053448e9072ed67e24cac6e
18046 F20101124_AABRWO alkhairy_m_Page_012.QC.jpg
7836b3003e667105b0fd0634ba17eda8
93f78a228c44f2d841df06fd01ac213c93075093
57165 F20101124_AABQTM alkhairy_m_Page_081.jpg
45387d999a7011e2d30d7851bcc7647c
6a405cf042d35c77d5602e4966ad63a21c13d82d
1284 F20101124_AABQSY alkhairy_m_Page_081.txt
fc8b47656f01007f458092b2c80beb86
091bdb6688be81ddbd46be09eb4d5018ffde780b
6605 F20101124_AABQUB alkhairy_m_Page_019thm.jpg
683aa38b4890feae861c79942c12ae1a
41b175923e0cf8a4f6de57fe8d8eae4a44f084f9
5152 F20101124_AABRXE alkhairy_m_Page_045thm.jpg
e4ae848b445db7e380e85ab08b9c6df3
ea1137744cfe2d3b84d92e6107194c2d3436c6ae
4806 F20101124_AABRWP alkhairy_m_Page_012thm.jpg
155e56285d474f793171e3b62aa1973c
bdbe7b577145797a2006fb205ac4a02fdcc62949
1051968 F20101124_AABQTN alkhairy_m_Page_053.jp2
5b7cd3ecb8ae2fcc5813f08d90ac7af9
6328b91ee4045239d64229b0351114a43bdbcab1
20077 F20101124_AABQSZ alkhairy_m_Page_116.QC.jpg
fc2d8343b687d46a3436fc68603264cb
67276c69b1c02a856a3826082ba226f100e9760e
18794 F20101124_AABQUC alkhairy_m_Page_123.pro
1857d9b770da99fafc309e51d3171904
a9c551ca04cf4a749e84281d2bbeb9e62cb93fe3
5340 F20101124_AABRXF alkhairy_m_Page_046thm.jpg
ad1574e02de0b95e2f913b62edead7d0
1da97fa680005be3cb60a71cd91eacccdcc3ca0a
2043 F20101124_AABRWQ alkhairy_m_Page_013thm.jpg
6be7bd72ddc9d523c40a745c4054503f
9a8174ccc4edb9ac9e7f9e4081d6db5d7d91fdc3
24756 F20101124_AABQTO alkhairy_m_Page_119.QC.jpg
d2787867897695b6e2d0d46b72156501
3c59618c6894a2de0efa2616207fb41c62f3e0ec
458627 F20101124_AABQUD alkhairy_m_Page_104.jp2
4e02d80e35fd480f1aedb521615a5ef0
e86f294ad36b82dedee1f921cccfa60cce7389a8
14998 F20101124_AABRXG alkhairy_m_Page_048.QC.jpg
c0424c5036c67cc9f21c9bc2d57f34f3
ac0fa9ea4d50577469b0bd2d3f24afc536c2fb46
26780 F20101124_AABRWR alkhairy_m_Page_019.QC.jpg
0a4a180ab28b24574afef3482859b479
06000d6b72d43671d324de0db64f24d68c2c7ae2
F20101124_AABQTP alkhairy_m_Page_025.tif
95d8d43be74577a2f1a87f3059fb646c
25709ff0ff63a8ad2aa19757829fa9999de7cd6c
81393 F20101124_AABQUE alkhairy_m_Page_131.jpg
67ad3b1e794bcb9c71e9e6b1e2761908
354a8b1011815a56bd978cbb02c017d301d9bd49
5552 F20101124_AABRXH alkhairy_m_Page_049thm.jpg
3cac8608f2df364c0701d3e8236ce9ba
17c7a014d35ad81752201d31369d18f508d796ac
27136 F20101124_AABRWS alkhairy_m_Page_021.QC.jpg
99ce405c9eebcf0c2701d063dea8fa91
8e32fcc578406bed97e8394c9ca7bdffc11c9b07
26285 F20101124_AABQTQ alkhairy_m_Page_047.QC.jpg
5738500897242120319de72728b63cec
00343bd1e6ea287b6fa65fb4d7a857c8d711d350
26525 F20101124_AABQUF alkhairy_m_Page_060.jpg
e2d3aa8af55e711d146726b841c04335
40f9c1f9158ed9f69ca086e4b6487e26d1981afc
22490 F20101124_AABRXI alkhairy_m_Page_050.QC.jpg
ac16d0dca490a9f6b453c3dd1e872233
200992c2b271ed0897a1926984049ead869c935a
25772 F20101124_AABRWT alkhairy_m_Page_023.QC.jpg
1ae2dc556829c97424e12e7d0c6ef8fb
4b41df38c70b35ec5c81a194712f7afd1803ddba
6274 F20101124_AABQTR alkhairy_m_Page_043thm.jpg
34c98f561d3b8a78e521e40f71a65548
b1567563942fea49dc56a5acaa1ed6f706b1977b
62355 F20101124_AABRAA alkhairy_m_Page_056.jpg
3cc37fcd9db1fe986e37fd21199f358c
ae4179b962012f08a822480ad1ed0ec94714dbcd
1051933 F20101124_AABQUG alkhairy_m_Page_097.jp2
7fc713465bc319fdc5cb32d9785cfee2
c15c581cf58c24ab9b8152e504da806071b0f8c9
23591 F20101124_AABRXJ alkhairy_m_Page_051.QC.jpg
5f52c104129b860690bbc3768adf8cf5
d4fcba74ddf63442d393682a580b7e022e6a1ade
25603 F20101124_AABRWU alkhairy_m_Page_026.QC.jpg
6edfe7a6befb4ef60663390afb83703b
8f58f595c71177a51be0224c36c4b8e4e33f9765
F20101124_AABQTS alkhairy_m_Page_024.txt
d128460edca34307a762576762cf078f
1b3cfa2af7ddfad4709c89e610f8178b6475f388
78607 F20101124_AABRAB alkhairy_m_Page_087.jpg
4b4f0d42d4119cd7943ce7253f1300c2
57570d5c7969cb3871dde1c123208adf66fe4dd6
33997 F20101124_AABQUH alkhairy_m_Page_048.pro
f76a893c08340003416030f22b0a664f
3fee879353163361b4a6b93846b57855144561c2
6236 F20101124_AABRXK alkhairy_m_Page_051thm.jpg
5aa037bfb50d08bb25440396e1d01631
eb59fd5c508e5cb2f4a5464f40442e1d849c7d6e
F20101124_AABRWV alkhairy_m_Page_026thm.jpg
0dc51dc291081eed4f37f9de509c2b34
696a8a3fce1ebd4d02a2f95ca1b12629fc2e549a
39016 F20101124_AABQTT alkhairy_m_Page_122.jpg
c5cc1896e0b433d4cc5c1a2ce6f63c13
d303c377b8eaa1588ceb78fa3054642da5b5749b
6134 F20101124_AABRAC alkhairy_m_Page_038thm.jpg
acbf4925545356e239cfb76542155294
d7d642b04d7449fabe3099fc6e692d83be3bdc0f
5407 F20101124_AABQUI alkhairy_m_Page_004thm.jpg
85313d6c3751d0beea198a33732a423f
ccb3d998faf6661463526ad60596d39c6513bd2e
25769 F20101124_AABRXL alkhairy_m_Page_052.QC.jpg
3e3e967baacee17b4950b5c63dd7dc2d
1269e9826146834944e139b7dfd2340992168ef1
6388 F20101124_AABRWW alkhairy_m_Page_028thm.jpg
ccfdce33bdd0319c111cc9ae840bd76f
367e5f3a1104d585e42e731cb63635b0adfe7ac5
F20101124_AABQTU alkhairy_m_Page_118.tif
5015b9988bade853521d9c2480e40e7e
baa3163548d109926d9a05d2d90bdf94d025a25a
1875 F20101124_AABRAD alkhairy_m_Page_076.txt
dd807c96bf9a1d5756f95353e61874b4
c1146c6426448eace4996a6795996c90ff7c9029
1051966 F20101124_AABQUJ alkhairy_m_Page_039.jp2
670fde79c910e1f89f41e0a09efa01e5
cce882b26342fc63fbe5e7f598189e41e78310f3
3716 F20101124_AABRYA alkhairy_m_Page_075thm.jpg
da693f6eae123df8f3ef0ca2c0b59867
33ce212991fb0f22860e73f128353b14f53b2a51
25114 F20101124_AABRXM alkhairy_m_Page_053.QC.jpg
34f9f5b9b0729011333da3f7fa02dfe3
4a9a2464c27ce3026186fc338b575f8fa12edfcd
6611 F20101124_AABRWX alkhairy_m_Page_031thm.jpg
1f68c83a6d958bf6298d6a7bf421b844
0dba6db349bc4ab07abe21dd518262e62a15d8ec
9762 F20101124_AABQTV alkhairy_m_Page_096.QC.jpg
942df6cc06b8d14cc70e526156f5b4f0
40d5c567eec4291bdd9e902f1abe3f6cbbccbb59
3934 F20101124_AABRAE alkhairy_m_Page_009thm.jpg
193957d4623247bf038696912ac2774e
0a6816c268ecb80b5a3a7b5f36fa3cabd92f760f
19799 F20101124_AABQUK alkhairy_m_Page_046.QC.jpg
555b5456257bc4d0882baab7b918a762
f5a1fdbc1ec4e941d3a7a217124a8c16c933412d
5822 F20101124_AABRYB alkhairy_m_Page_076thm.jpg
31adefa3c5f9ab736d884d92605bc0b5
18a6e6a7a939c2474e106c1eca78152182e3343e
25100 F20101124_AABRWY alkhairy_m_Page_035.QC.jpg
0b1cf6f99a4955f44dd05228b3101da9
708546ae692aa2f51cde9e3edb92d7e24b5c6f7c
85090 F20101124_AABQTW alkhairy_m_Page_125.jpg
54dba562e3c613934a94a0642aed8b64
c969b0cd362cb2f5f321a8c5ab027f42c57b744a
F20101124_AABRAF alkhairy_m_Page_090.tif
af56f5dcdc820c04493040f1e15f8fe9
b21e6cd44817a90685ca31a17e45b10784039c35
6456 F20101124_AABRYC alkhairy_m_Page_077thm.jpg
1a214d9dc7f804cd2ab2d724b4beb627
a618d3b663dc25473e952fa00b9dda077c43dfee
5626 F20101124_AABRXN alkhairy_m_Page_055thm.jpg
5809e53dc4fc429aade700704973ade6
ba97abff90b43bec593056d6e1dcec2309800013
25765 F20101124_AABRWZ alkhairy_m_Page_036.QC.jpg
fdd2eb5002e540f7d050228ffc0eaa19
5056079babf0865d18db539d66a378baa576e2a2
F20101124_AABQTX alkhairy_m_Page_008.tif
1cd550b713e883d104bcec8cd457d9ea
df5ac7239dad3d27d4b6ba34498cc19ab9fdeff5
53850 F20101124_AABRAG alkhairy_m_Page_052.pro
9dcbbbbfdb80daa08c280f0453cffe28
a6cba0c04406bf80dc22faa19c8a420e5b7c5ab6
F20101124_AABQVA alkhairy_m_Page_084.txt
cc4ceac5f3b30be9bd2ad4d03174cb34
2fdfd155eea207a961edf2994c63230adec9518a
63150 F20101124_AABQUL alkhairy_m_Page_018.jpg
2b9f3cd11b2d8cf4ab1a058ddb568f34
8d043ca09eac0007cca1d5ed56b366b6b89a9467
12613 F20101124_AABRYD alkhairy_m_Page_078.QC.jpg
c583ec5bcc62eb61d23f6be71ffa3e1b
366454fd6c8cf2c83ac6d0795a1970f225e7eab9
20349 F20101124_AABRXO alkhairy_m_Page_056.QC.jpg
336fba800ef6bce94e7436bf5651d464
d20e87283cc3117c43d66c8fc394ea669493e489
F20101124_AABQTY alkhairy_m_Page_021.tif
b283af40f81517b498193d12fec96b4b
06c13397b7fcd151fe662260988c78f6c5d90268
F20101124_AABRAH alkhairy_m_Page_061.tif
ec249c70e6b85b48518d206f762b6b1f
10561eb71757b741631114f1b289669e67ab8a3b
38066 F20101124_AABQVB alkhairy_m_Page_078.jpg
eb2fc0437c7f248cd85cae956da4e7ab
1bb68583b1d6c1e69a66773594835b624313d7e1
70166 F20101124_AABQUM alkhairy_m_Page_050.jpg
cf1faa520f0a6ec7da1ceccf136489d4
560679d24a98301b33d941e35f6b27ccba1b537d
10577 F20101124_AABRYE alkhairy_m_Page_079.QC.jpg
d1a641c4c85db0131b43e2937824674a
e22420e696614028b65aed03d561ad04d331e4cd
26413 F20101124_AABRXP alkhairy_m_Page_059.QC.jpg
74f41caa04f2f5a9b73bf343ff494fcd
034af336e21aa8fbd9e3f6c98502bf80f8cb0211
21893 F20101124_AABRAI alkhairy_m_Page_055.QC.jpg
8923ac2d1baff6b9ddbabcd997b488e6
dab13c1d15a828d30ca3320a0e5fea2445b3e1c6
21601 F20101124_AABQVC alkhairy_m_Page_135.QC.jpg
a00e03a9a0fbe1355a767d447e9b78f2
c87808c0e1de9f7e71ca12a4b47c3e3361fd28d2
19205 F20101124_AABQUN alkhairy_m_Page_045.QC.jpg
ddb740cef1b089d72a7c26acf45fb51e
35f88662a22afa177f84a909fc4a6125ab6e7e46
1051974 F20101124_AABQTZ alkhairy_m_Page_014.jp2
1c78532827347515c11279d3ec433720
d29f0227b0980a05de047f475c22400e425ea32c
3150 F20101124_AABRYF alkhairy_m_Page_079thm.jpg
47100599448f19bbf5eaa730fd4e9383
14040bd8d3cb0934fca7db63b5669bbb0e21e33d
2899 F20101124_AABRXQ alkhairy_m_Page_060thm.jpg
ee3cb8789b14874e6cf7379647d8331e
53983f3c30a5aff35c2aa210bd0ce9fda0d94365
25695 F20101124_AABRAJ alkhairy_m_Page_131.QC.jpg
408bed9239c383629e7db7af5382ea3a
ab751862c6babe7c3733448e20646188b5d7a1fa
F20101124_AABQVD alkhairy_m_Page_052.tif
fec3cd3a6ebaad86974e4fe947902c9c
003cf9d5be1e0605f35dfda16d56057e1335c4ed
83319 F20101124_AABQUO alkhairy_m_Page_037.jpg
1972d3eb3c12503de3c3935939046c02
fc7678ca08c5b0940d367bd86edb8d5c86e5db0e
8220 F20101124_AABRYG alkhairy_m_Page_080.QC.jpg
803f6e6a5b6659b2ebce85de9eec9049
c70c4c428e1f4d5f200e286c7ffb86784d763bb7
6126 F20101124_AABRXR alkhairy_m_Page_061thm.jpg
af33557c8d4c1e8a11d5ef0b38e63e04
5755f232a102da826ab5e9463fb3074abd56e777
F20101124_AABRAK alkhairy_m_Page_027.tif
155d083cd2bf4c6a52a4e151242e2a17
0137eadd360d1e7887acb166d94c73e2323d4781
49689 F20101124_AABQVE alkhairy_m_Page_122.jp2
61616af14db8600ebc900c62f901f7aa
88bdd922a660678c6b48136e11986fdabc0bc050
F20101124_AABQUP alkhairy_m_Page_085.tif
d1fd5230b4ca608eba2a83539c4b59c0
8002e5557cf2fb37d9b1e0628d916c6b9bacc563
18847 F20101124_AABRYH alkhairy_m_Page_081.QC.jpg
b70593ab0265cf1bb6e704a4382e3e45
fe35c1895e721cefd1718abc4636dafb18fafcb5
23276 F20101124_AABRXS alkhairy_m_Page_063.QC.jpg
03d60599a95c85d03ac4e70f173e11d5
2dc8c807092fecc9712f32fcd3e85bd23e239d20
6533 F20101124_AABRAL alkhairy_m_Page_023thm.jpg
6de632461f4a03fc5c77f98132415a4d
7873d3a39b599a25ec4096bb8dba4e39037e38be
10336 F20101124_AABQVF alkhairy_m_Page_003.jpg
836a8f8e8eb30a2e71554e72b9c6470b
e05e4c488d4885100f6489477a10dad9b1c19205
18909 F20101124_AABQUQ alkhairy_m_Page_124.QC.jpg
6207da2b462ba572fb2e9b919dc00af0
eb7d9e8f4126639871eacbcf4810f7f1a34a5b0c
5609 F20101124_AABRYI alkhairy_m_Page_082thm.jpg
eed15c543377563a59987dfdc61b66b7
87ee98982f08ee0a20ff67cc41ee1b82dee89779
6376 F20101124_AABRXT alkhairy_m_Page_069thm.jpg
84848d455c1e17702e512705f152c9cd
53c02a0275f68d236755370af5df747774b4e1f4
1271 F20101124_AABRAM alkhairy_m_Page_057.txt
cab1c5d96cc30bc3d7828c3e0a553428
8f86b7dbd10bc72c13714f21870f1d130f6613a4
1051960 F20101124_AABQVG alkhairy_m_Page_036.jp2
74ed536186db66f75961bcdacf29ec88
1e4fc71c620e9f4de8414967c721f8dfb86602e9
1612 F20101124_AABQUR alkhairy_m_Page_073.txt
3e1dc2dca1b3ce7a3c246320d29a1c17
1806a34e9167a5ca18daa4e0fcf47fe99d9bfb54
F20101124_AABRBA alkhairy_m_Page_066.tif
e4755ddc024445fa4f0f1107e1407d01
c6b4be10d516ed6edbc415bd822a8096c5d0efa4
10567 F20101124_AABRYJ alkhairy_m_Page_083.QC.jpg
dc3c78083ea9ad0f332c4682dd0eeb3a
225455a21ad36f46ded7d59a4bc29c633cbd1744
21041 F20101124_AABRXU alkhairy_m_Page_070.QC.jpg
ec39e5e74622147c634e28669e06ec0d
8763ac3450272cf890990e75cc0a3080275bd69c
1051978 F20101124_AABRAN alkhairy_m_Page_035.jp2
054a2d0464050348467e8f574ab9705a
ce7c0262f3270d49807c4ad6f3949f7bf4198d36
F20101124_AABQVH alkhairy_m_Page_087.tif
3a6d731d13ad5237ec3c2d88342c02fd
c22af25af46d07ee227c1ef05e99e9382fbc1296
1051901 F20101124_AABQUS alkhairy_m_Page_024.jp2
df70eb9f8f297f6c11467825ec1f87a8
1c44a51e39867bafd3ee4073234422979eb1b4b4
F20101124_AABRBB alkhairy_m_Page_108.tif
9d419e2b0ea7c1bc674ece673568f56a
28442279581a1f109a37cf66654e1a5ca58b522d
3614 F20101124_AABRYK alkhairy_m_Page_083thm.jpg
7183f0a5244e49e37f4f6f5eb6b60013
d03bfcbd51b1a4ec4fffa9e7063e86c7114e6c40
5616 F20101124_AABRXV alkhairy_m_Page_070thm.jpg
a1bd08f7e6526e22de9382a2844486b4
0f48c036e467e2561a53bc7a24219389e680eb27
F20101124_AABRAO alkhairy_m_Page_041.tif
92e7da3598bfd9b135870591f0132c99
007fe823c729b5ad8aa785de0fe4ba708f22dbd9
83137 F20101124_AABQVI alkhairy_m_Page_127.jpg
52ce174170a59d3504163108e4aa08c3
2e9cb4610f6bb7504339c665f081e9409f8fc19b
7961 F20101124_AABQUT alkhairy_m_Page_062.QC.jpg
8d27fcb7088ccb820e6b6cc3c5e0e56e
64c09cf39d06dd6c85f3eed0d69486e009e45668
5744 F20101124_AABRBC alkhairy_m_Page_099thm.jpg
076bcd9a7d4a1fa3840a3b5e8340d38b
b1a609f5908e32ff5462c73b8223dd7d2139ab23
26341 F20101124_AABRYL alkhairy_m_Page_084.QC.jpg
5dcbdb655553939ec7d32da4a546e750
700f69d3a7e6ac3cdfc356a9f66196d8fc31537f
5354 F20101124_AABRXW alkhairy_m_Page_071thm.jpg
dae45e0154eb77e4192b6d5a07fc5b64
8b3374737dd9d86b5bbba29e52c699834049c4fa
248957 F20101124_AABRAP alkhairy_m_Page_060.jp2
6c7786c16e028b376784cf0f33faadc3
c47cc59c4c6f21ef25cfb96f4abd34aad5ec47ba
F20101124_AABQVJ alkhairy_m_Page_027.jp2
37bdee74bac68fc7bb87a439e1d4e3f3
6957a9410d63acf85f3ca18ba1038c96c1e1660e
3715 F20101124_AABQUU alkhairy_m_Page_101thm.jpg
f7392e87001c8bb48334446ae352b75e
1fdcceb35bd899f7e2c64d90f9656855ed5b2683
1051984 F20101124_AABRBD alkhairy_m_Page_125.jp2
587ebfb24e239300312379021a808118
9844a106af2e7c75b8fb4f9d4ac4d16ec9a99d77
2500 F20101124_AABRZA alkhairy_m_Page_108thm.jpg
5b48e0faf7ec6353553296cdcbeae20e
16b93907f9034bf5c0a46f7546ba8452c1c97048
11650 F20101124_AABRYM alkhairy_m_Page_085.QC.jpg
f1bf1c150261fa1b1958ac979c5480d5
87410b391e4cd50545a42ef7603ff4230c9f68ca
5198 F20101124_AABRXX alkhairy_m_Page_072thm.jpg
d1aaa66383025eac84bfa54ee2087ab3
923a063d7d7f7a23d6e6313e6041766f2c5f5140
6576 F20101124_AABRAQ alkhairy_m_Page_025thm.jpg
8b7b1210d8c9bc6170c0bee3617249e1
580f446b2ce8ca63b26786e3662beda1f57e2368
5995 F20101124_AABQVK alkhairy_m_Page_138thm.jpg
3c66f81cf9492ad495ebcfae5b3d0078
c151b26ebcf12ab79d518cf1216be3ef4f03b3b5
85692 F20101124_AABQUV alkhairy_m_Page_034.jpg
c502eec0e45a225008641ea50d40d8a3
0d04431c4587147861b3baca07dc1304c2597e90
193168 F20101124_AABRBE alkhairy_m_Page_106.jp2
fd43bc4fa7a0aaef31fcbeaffe4d7e9f
1c0d7fd6a3d8a4c15e88364a02daf3ba7f1cce3f
2954 F20101124_AABRZB alkhairy_m_Page_111thm.jpg
25eed5d8cf3f71ba23330d3f765071e2
bd60ecbc1b9f4252a72210547a6169fc34de3102
12018 F20101124_AABRYN alkhairy_m_Page_088.QC.jpg
dd528a719531557c4d8703fe23be5d64
67fdf692ce1008791dbaad57e8833df66b403b40
20500 F20101124_AABRXY alkhairy_m_Page_073.QC.jpg
83b3cb82d3ba4aa892501903b2545263
cca5f3b1ffb6c27d6013c68a70ca99d0139b500c
25655 F20101124_AABRAR alkhairy_m_Page_080.jpg
d239c4fb43e6e02a12df3fb679f0b756
25d15bbe348bded6692f0ee336df085815237bcb
26281 F20101124_AABQVL alkhairy_m_Page_039.QC.jpg
411723ea956f835bd32d03eea0bc7d18
ef81054bd41f21b2900a9e402b654c844020f4ba
18125 F20101124_AABQUW alkhairy_m_Page_074.QC.jpg
9360f8557ba9f29e905123e5bb7f2368
7ef31fdd5f71be381e641d097d99c96cc077c8ca
56162 F20101124_AABRBF alkhairy_m_Page_058.jpg
927b0474996d38569da4353ed7c297b5
b6079dc62cd328857b3e512ca9f8e113ec35e4f2
4372 F20101124_AABRZC alkhairy_m_Page_112thm.jpg
f5e7fbc3287747af4f6174e502a19df3
2cb4c6ca4b72c0f1f985c9c1b747009252e79529
5317 F20101124_AABRXZ alkhairy_m_Page_074thm.jpg
c53139900b7b621121a5c270558ff765
5bfba0a40546c82abe03475ea7d9b31215aae0df
64611 F20101124_AABRAS alkhairy_m_Page_116.jpg
2973d350463e93655dd7c34aa073c600
64eb0d3588969bc8fd789bf7530be402f62b2614
3201 F20101124_AABQUX alkhairy_m_Page_002.QC.jpg
b76631e52889988e8d8b8b48eaec37bb
837d035614e16ec2673f1d35d0e5e224691f7523
F20101124_AABRBG alkhairy_m_Page_008.jp2
a216fbe301f2d2a3d51431a916e68bbf
565f7c5fcec2e5daf012e8cbdc983b7bae04b289
29296 F20101124_AABQWA alkhairy_m_Page_049.pro
e0c7cba9d0a564113283bb430d702c72
ccca38835e238c822646b3bdec07fab72a1c93d3
22644 F20101124_AABRZD alkhairy_m_Page_115.QC.jpg
89d4111bf6ff7914d5d1e2568224b023
6269a64b002b75e936208c3973e29a78c6978202
3308 F20101124_AABRYO alkhairy_m_Page_090thm.jpg
c52cc1ad48131ae0225f72c00a844b66
dd8e3b96013e987ef66a540bd509be9ea62167c1
26711 F20101124_AABRAT alkhairy_m_Page_025.QC.jpg
f5d419f5c64d1f582d813550b7fd020b
421adc4805411cd9dc32a291fcfa8d5c2603e2ce
50059 F20101124_AABQVM alkhairy_m_Page_063.pro
b78d4cdbe27fc04bab556005ad7dd451
85454fcc448546848911a17ddda77656d9033dfa
61291 F20101124_AABQUY alkhairy_m_Page_049.jpg
a450832de23ad36d44ae9f6b2ea7db97
d8a7471357eb8c4222a8425ee23d364f71ab7990
14265 F20101124_AABRBH alkhairy_m_Page_009.QC.jpg
d0a23de85a3320f35ede2764760d01ee
e9c9cd5776f90f57d03d97c27c05d8253d8cfbff
53641 F20101124_AABQWB alkhairy_m_Page_069.pro
cf8cd3870449b9ee4fccb5412b963557
29073ba461d8eae3b3b7218d833e13854c12a987
6067 F20101124_AABRZE alkhairy_m_Page_115thm.jpg
a92ef0145c9c7734d833276cb2863bd3
000494573b705440808d4ac06c55e40200ca5d80
12588 F20101124_AABRYP alkhairy_m_Page_098.QC.jpg
f17da77f364c349fa22d8e03b2b3125c
32a756c365928c9d6cf3fc745702d33b9e9442c8
788527 F20101124_AABRAU alkhairy_m_Page_073.jp2
e99e74c09ffd7820c65d869d8b660135
d4687efd755938c3b63c49ecefa2c388b98ba25e
F20101124_AABQVN alkhairy_m_Page_070.tif
bb4b6c4cadeaf6516bb1ff524f39282f
d99b9fffea888c3c38ef25348b689bae20432236
F20101124_AABQUZ alkhairy_m_Page_130.tif
c5030dd0b59f4bad83957e9b11199979
1d6034ee657574a2399776a705b90640cb150141
F20101124_AABRBI alkhairy_m_Page_127.tif
0a8f45135f5577b1f468fdfa9774a6cc
a965c243818fda11a0b2d81b3af64aea07022dad
33621 F20101124_AABQWC alkhairy_m_Page_095.jpg
7ad1ade7b7f40863fdf9f1b4e762fe8f
81b6c8b90841b93b963ebe473832f2ba386fd9c0
5431 F20101124_AABRZF alkhairy_m_Page_116thm.jpg
0694d6f76f0e2991a6319338b5b578eb
eedc8796433db5cd7c04a707620a7bc0dc163378
3912 F20101124_AABRYQ alkhairy_m_Page_098thm.jpg
bdda3985b725ec32735f3ad789f3c4b5
a516ea32fc182074b9378d2b612b90d99ed18d60
48092 F20101124_AABRAV alkhairy_m_Page_050.pro
e014cd198f789b6f01cdcf47e484a4af
f3acb701569b89825e43c910f34ea8361b9a937a
48654 F20101124_AABQVO alkhairy_m_Page_099.pro
c4fe11749ca599d806313791bd21a44d
bea791dfc0d95b2b3c6f36535ce06212fc83220c
2192 F20101124_AABRBJ alkhairy_m_Page_032.txt
87bf2d0985fd0e9ec5b498fcb08033f8
905b3abb9a51b6a706322bfb8ebfe520a2f847b2
5544 F20101124_AABQWD alkhairy_m_Page_057thm.jpg
2621e0e7c7e86d020984b9953f30a1d5
2e9540d10206f3b78dd4b66b7fc3c69924bf21bc
21212 F20101124_AABRZG alkhairy_m_Page_117.QC.jpg
eae13e7f2f7f335862ebcf5d0956c982
478efa4b170d5f61bca8060cf5c396d544298ed3
18065 F20101124_AABRYR alkhairy_m_Page_100.QC.jpg
493d98491e3b3abd748664b57ff5d5cf
b2f24d8c197b4364bd15949e1b3714f66598d71f
25232 F20101124_AABQVP alkhairy_m_Page_006.jp2
ef68549274a4be62a26f19e52440e237
fa06f98b55363a763300fe242ac73657038f9b33
1540 F20101124_AABRBK alkhairy_m_Page_007.txt
30b8fbaebb5fca1294d848f95a80b93e
20aea75352255535965e00c5b4cc2648ace2af0c
417 F20101124_AABQWE alkhairy_m_Page_006.txt
dcfd0c204e79f5c692f503627b9d3cdb
1932c36e8b1a5a8cc3ab946764b3266ffbaf6a64
22541 F20101124_AABRZH alkhairy_m_Page_118.QC.jpg
6acd4a4a57a65c20f4defe808268645e
bfa3dc6e36099666646f39494a514136b26eee61
10820 F20101124_AABRYS alkhairy_m_Page_101.QC.jpg
b20aa38f402fcbf7db2f2bdea12fd0ed
aa21f5f70cd09c1e5aa118b2db2f326275dd8905
130268 F20101124_AABQVQ alkhairy_m_Page_137.jp2
a08cf23a3253fcb91ad120354aac2bcf
9153f27562e48890f4bc94b780f9939e6081bcd4
F20101124_AABRBL alkhairy_m_Page_064.tif
b9e8eae283af2ef668a12cf7c3a0619f
5c0d2790b530ee8bf07abb6f4317c6102171ecc2
742686 F20101124_AABQWF alkhairy_m_Page_048.jp2
e3f676dfb9df6f5fcce39cce0d20e2d6
855afd978bed68968a21e77d4822dfddb9a50fce
F20101124_AABRAW alkhairy_m_Page_093.tif
ae3bc304d63540b254bc2401b2ccc674
1954cfe99dd4d3ef1a09b06eb844688c4210bef0
11765 F20101124_AABRZI alkhairy_m_Page_120.QC.jpg
8a61ab21df7ce3ebef8e0f67ce420c1d
9b7549a9e4757e55f204d345061085f7114d6c5d
18035 F20101124_AABRYT alkhairy_m_Page_102.QC.jpg
580a6febf32759334c6d393de8ce1f66
91ea2819edfb68b1b3029b87994cf88c53e324c0
3949 F20101124_AABQVR alkhairy_m_Page_085thm.jpg
b22205e44e87247d4ee55f9aad43569a
4c47cb18dc6ee86d833b498776326b18715d3351
55656 F20101124_AABRCA alkhairy_m_Page_042.jpg
3feec57ae2ac862f47d7eff83deeea83
a18ba5331e8518ca8e18da80bf1c5e0e42d197a9
25994 F20101124_AABRBM alkhairy_m_Page_037.QC.jpg
ab51aad1ff292f665e7705d952152661
4d80c3c1fe501cb3b0c2cde5a1884906a59887b1
F20101124_AABQWG alkhairy_m_Page_123.tif
d991bff27f21cf1bf692aaea0bab951a
ef8d21f881a722cd8175657c0ca09c527a6d6dc4
F20101124_AABRAX alkhairy_m_Page_034.jp2
1bb0c642bed47eec522879f2be166396
eec893551ef026e60a17acfdbe5e6be80963579d
12834 F20101124_AABRZJ alkhairy_m_Page_123.QC.jpg
73fa22e151bec814df4a7b8caec30aad
412aa4585932ba506952d8e44e1a976c7c23aef9
11771 F20101124_AABRYU alkhairy_m_Page_104.QC.jpg
40ad74fef483c79e11ad2c892c355002
f4fdbaf11daa6f9307f3eb42acded382a30d3d0a
F20101124_AABQVS alkhairy_m_Page_113.tif
05aca547f9b7057512f2aea02cf790f7
dae3ed237a1ed88c28024597e3c084bd14d4caac
F20101124_AABRCB alkhairy_m_Page_018.tif
335fa21c04d16f5c32f3f475a2b6b8bc
62bc4dc1ac4a12a9068c8bc73af5381fd735f264
52713 F20101124_AABRBN alkhairy_m_Page_038.pro
897aea7fb9264fd260ee08e16c67af0a
9981538cfa9d6b8bbf106b48995821da5f9003e1
862331 F20101124_AABQWH alkhairy_m_Page_042.jp2
e56b72e95e682c58b53acfb01e039247
56e1490166eb25c3e39cc98848a242b19b4bc23c
285150 F20101124_AABRAY alkhairy_m_Page_079.jp2
1173f34fb9a4f0b3f4eac8d9ccffa089
b86ea9efc8b43d9e2821463cefca0fdebf144b2b
3966 F20101124_AABRZK alkhairy_m_Page_123thm.jpg
f748deedf7ed0aec58e213e00776b411
a6dc03e518c280d47d0310b357167d5981851555
3624 F20101124_AABRYV alkhairy_m_Page_104thm.jpg
fa2c459e5e028623059bd88c3a800d54
2a29dcbc25d80a517055b74e6062ea140bc2fdd1
79448 F20101124_AABQVT alkhairy_m_Page_035.jpg
413fdb8feb634b290125c3ef0123cc00
afedd00114fcbd18d37a3a827a8231d83ccf0606
22185 F20101124_AABRCC alkhairy_m_Page_112.pro
7b944c41df40c2a3cea42d6607e6d479
fdd3b48ca46d3c1c6c0e5d6bbd014e3a49233918
6682 F20101124_AABRBO alkhairy_m_Page_086thm.jpg
d8386d05066aff1d231ee5a0eae11412
06e030e31b5b9695a4c05a281c988284a7ebe5ff
20017 F20101124_AABQWI alkhairy_m_Page_140.pro
c5bd38cc88902a4329ce61b4165f6dd3
c214a15f1bff51e8123269c2a61223d6776bbb0e
20990 F20101124_AABRAZ alkhairy_m_Page_004.QC.jpg
f29daf1f7429237f3a2deb9aa8503f79
0f592267c95561c9bfebe681c8c76509eac92b8b
25977 F20101124_AABRZL alkhairy_m_Page_125.QC.jpg
79fed0d14b6a34a7d5bd2e1f5f9afcdc
e1105492d144ad69f48f37d3fa28a6e7b12a7c1d
23672 F20101124_AABRYW alkhairy_m_Page_105.QC.jpg
72a3147f2e9f40bbf26a36fd2dfd2959
54b56fa2793262aad431d66d1a086bbc4a335b46
69760 F20101124_AABQVU alkhairy_m_Page_117.jpg
3ff21893cb0e816eae3a5c179c35508d
c250aa9cfb20054e9dcb978e302a6b39ac453415
34486 F20101124_AABRCD alkhairy_m_Page_070.pro
dfa2e7f42b6cac464081756480d31562
2a88f945b704ed8c9622231638896506f1c76a37
24706 F20101124_AABRBP alkhairy_m_Page_111.jp2
f5827da82629b435dc09c4dc387f5cec
8616dfaff28854a11dda90d84b9fd36dd0498f01
26997 F20101124_AABQWJ alkhairy_m_Page_090.pro
987c15eb8a25d85982a619248792c80f
b619a3a13998f3a40c91a2ebb796e5c10ab27961
6503 F20101124_AABRZM alkhairy_m_Page_126thm.jpg
1cfee9914e1ef22854292353199b0704
29092da7a9a9142e643314330f51fbc091aafab1
6006 F20101124_AABRYX alkhairy_m_Page_105thm.jpg
bae47dea0c7090c2d329a02947f98204
d46f351c92463bcd1130bb61a56fc2902d8e2ca5
F20101124_AABQVV alkhairy_m_Page_089.tif
0615df4db8fa67bb8f036e6e85ead21e
81032525a405bb6dcaa2a884c488c01577c08dc6
2325 F20101124_AABRCE alkhairy_m_Page_021.txt
c04d6d311fe22497e4396a1dda9aa787
e67aa71fd84e0f3f7470592b27c826e0aad28cc6
18753 F20101124_AABRBQ alkhairy_m_Page_085.pro
d2abc81536af4cd43e1fd05436e59e8c
81ff1cddcee0daa94b6d9a639f804a9ac0489662
55027 F20101124_AABQWK alkhairy_m_Page_016.pro
0b16786161ac976faa514f05d4e2efdb
b68ec590156a88647ab825071270799dc91ed00a
25531 F20101124_AABRZN alkhairy_m_Page_127.QC.jpg
3047f13f52a61955c8e50038e0d19b6a
decc140e2f7c076fcdea6821d780c509768d94ae
7057 F20101124_AABRYY alkhairy_m_Page_106.QC.jpg
206e5382550c20e504fa4befc5f916f4
8c7b52fbd501900a0be81b38fd27642fa093af4a
52186 F20101124_AABQVW alkhairy_m_Page_113.jpg
cab7961b57fb5f9366af69cf995c2e05
295c2354729aad42ea32778ecff90d3436cc680f
9426 F20101124_AABRCF alkhairy_m_Page_090.QC.jpg
9e9074f487cfa71427a55df0a7b8873f
afd1cffe347aa9ae04123ed8036d696d9838f554
22919 F20101124_AABRBR alkhairy_m_Page_109.QC.jpg
c5707ca1302d348ebad3c9a6befa9cdf
2dd4d9ce62bd2c22b3a03e67a1fb66fd10c1886c
89105 F20101124_AABQWL alkhairy_m_Page_012.jp2
0a5dd0291130c49776ffeb68dbff527d
f50a767c4c273112e3626cce7daeb83e47a48b41
6407 F20101124_AABRZO alkhairy_m_Page_128thm.jpg
37f88a2f7800544bb2cc0ffdaaaa7858
c96ddb7980890f4c86c7e3d30396114dc27bacd3
2630 F20101124_AABRYZ alkhairy_m_Page_106thm.jpg
1cd078e3a0ca1bc843abcd39e269d01e
6259d751474a52daa0e7dc23775467c46890cb17
F20101124_AABQVX alkhairy_m_Page_042.tif
0d0673e77447a09d58412e9e6eea2cd3
dbe93d9ca652d56b035ec47a913164991eb3074c
53224 F20101124_AABRCG alkhairy_m_Page_028.pro
0d7b88b407a9ab5021064b1043301769
211155a07ee1db888c898229646f4109e50760dc
F20101124_AABQXA alkhairy_m_Page_125.tif
fb0a1200f3fdd4bc0846ca72ac0bb085
e8233fb1532da065872aa2872b94253a0c33fc52
F20101124_AABRBS alkhairy_m_Page_119.pro
aaa30fc0f658eb0bf7e97656da73e9d7
58af81a395c14acfc79ce237729b84f474bdd823
1193 F20101124_AABQWM alkhairy_m_Page_017.txt
177562c484ee87b59693b8068b52e458
9cd4ba76a8187d60563040c9d91eb00ef63eb844
3184 F20101124_AABQVY alkhairy_m_Page_089thm.jpg
e92406d3f353aeb372327e2ad74ec73a
2b80be5e787fc36ce31320697d455231ebb1e041
3785 F20101124_AABRCH alkhairy_m_Page_120thm.jpg
e615270d422d029607346abbb25e6a4f
533fdcae5e6952c5278c03d0c9c3c1fa18c09843
F20101124_AABQXB alkhairy_m_Page_105.tif
64489e7e927b77591f41f53396c10bed
f4c5876866ecdce4875a6097f28fd28caca8796e
576 F20101124_AABRBT alkhairy_m_Page_079.txt
47e5ec8b818f0567278bfe3568d3d9ff
143049890afbc786499bc3704ff0181ddc592e68
26262 F20101124_AABRZP alkhairy_m_Page_129.QC.jpg
356ac18651238b93dd3454f7a94476ac
b6413476790b56889000a8fd6cb04a51ecc1a519
84687 F20101124_AABQVZ alkhairy_m_Page_027.jpg
c06da1289d7d3bf2153b570c316d1368
05bc1c1694d81fc47ed41e4224e2f9a1c1ae901e
27331 F20101124_AABRCI alkhairy_m_Page_113.pro
3b4a7914f13365863a361d58b7e3852e
959f09075e6c30fb028b868d6d3303443f3c34c9
8666 F20101124_AABQXC alkhairy_m_Page_091.pro
09a11e267963e3cde0e8d26f68ff853f
894a91120a075766f49f6b1a349ede7f37da7045
1604 F20101124_AABRBU alkhairy_m_Page_070.txt
61f0aea11d8c9e2a787302862a407ab3
7da95f78f5ddbcea2669b16276459c7088da3c44
7441 F20101124_AABQWN alkhairy_m_Page_001.pro
12ac216527e6a0cbc7bf3b2248e640ee
1c5c8a0bd22d47e51eb4ee4744da41d4cd0a65f7
6467 F20101124_AABRZQ alkhairy_m_Page_131thm.jpg
608e0943808293b7735096cf0c117f92
932979711165dd3354a0587084497b1136a33d27
82349 F20101124_AABRCJ alkhairy_m_Page_053.jpg
614db236f1a402e94b8c3d809e230e39
2d82e6634c6713584403cb07c66407aff51e7971
F20101124_AABQXD alkhairy_m_Page_092.txt
74bc2db77f4bcb8db0b97d7949e13b15
d2eeaf540b13f8130c07c1a3c94b09fad6ba44d6
F20101124_AABRBV alkhairy_m_Page_001.tif
3eb37ea9e82b9abced9a8222f4e77118
936e35e73d409a9dfd6e90bf688d5178df41d42e
F20101124_AABQWO alkhairy_m_Page_132.tif
5fb9fc8ad5f4b164c4e497e7cd5d3da3
51dade791ae3c3e23f7f1f0ffe572049057c2da5
25833 F20101124_AABRZR alkhairy_m_Page_132.QC.jpg
647bd8bb73c7f0892b0c3ea3d6a668a4
9f1407dd917310f6bc2ce8397c913120876750c9
26335 F20101124_AABRCK alkhairy_m_Page_024.QC.jpg
e7c6a2ad204629c33b0f7d707ff98616
b1944fc8178d162ca40df3cd04bfd1488063e33c
17306 F20101124_AABQXE alkhairy_m_Page_072.QC.jpg
23c796fe5fec63902695d447f2e42df8
a025122cba0b83e7f395b4c2c464ca27753738ae
2786 F20101124_AABRBW alkhairy_m_Page_080thm.jpg
b67a57e1dd63ceb8435e893feba82ed1
0efc7c6770ca68614b067ccb9915e70dad24b7e4
F20101124_AABQWP alkhairy_m_Page_065.tif
30054abc7b4df51a20202fcaa89f61df
f583b17547ca33f62cce996bd20c42b579ca2485
11917 F20101124_AABRZS alkhairy_m_Page_133.QC.jpg
c19f02083edb6b42f51a40bc641bf88d
73d2fa5f972907d528164170da7f39c8ebcc4971
456 F20101124_AABRCL alkhairy_m_Page_091.txt
4e7809b6ef41be593e0fbb0e6d3bcfec
c3cc147e81925ad6ec182687effd913bf4cd6401
F20101124_AABQXF alkhairy_m_Page_086.tif
8fc7d342861e336712dbabfdc5819bf5
74ab21ba71357a9f8c50f604768d1a9d5b4e6f61
675919 F20101124_AABQWQ alkhairy_m_Page_057.jp2
822e27ea1e434f01e658c66d9f38bc98
a0c7012637c5e9a9da1ac91d388df760fb3e822f
22364 F20101124_AABRZT alkhairy_m_Page_136.QC.jpg
d1b2b68a6cb3a3e52b119d062f1f7be9
00ebca423305dc00ec9ffd3b6dbc9a13895687c8
28100 F20101124_AABRCM alkhairy_m_Page_090.jpg
3a9902cae0660b0fc6dd945da9211839
293d0a4ebf5806939c1a86582a113f11c3af2f70
1396 F20101124_AABQXG alkhairy_m_Page_002thm.jpg
95fb7c67558393d415bd25d82a8b0a83
6fc0f2479f164981ab4de9b9c45d5fc99e64b1f3
F20101124_AABRBX alkhairy_m_Page_011.jp2
a443963291423621640b639e5b36caa8
44a145c6e7084b2ae5b2459e1b41da526771dc6f
16669 F20101124_AABQWR alkhairy_m_Page_113.QC.jpg
7ebc355bcc83c65f64a5a06dcfa7b590
2f8131cf08e16d7e806aafe180fdcaf337efd4d5
6591 F20101124_AABRDA alkhairy_m_Page_047thm.jpg
bcd4fc44213d1492c6e701a2243e589d
5d88c7e1271a4b95e64dc2c8471bd9bf3087ccda
5905 F20101124_AABRZU alkhairy_m_Page_137thm.jpg
57799733b95fcba4879fcab0a063e1bd
e8941aed0b13e84332a7cdac4013f9895daad14c
44862 F20101124_AABRCN alkhairy_m_Page_124.pro
e802c0eec0c8e97b259955d4e8234eaf
140457acaf8ccd145ac12ab205c7dcc5cdf02e6c
6596 F20101124_AABQXH alkhairy_m_Page_027thm.jpg
faaaf92b31ac8e447df5c58cb222a7aa
e3c0a67ea41eeed96f3af6bf142534cfacef3094
59804 F20101124_AABRBY alkhairy_m_Page_138.pro
f6c62a19bac804600b7ad48a1dcfc0d0
a249715562fbeb93d4a57b7411dca1339df5010b
5422 F20101124_AABQWS alkhairy_m_Page_073thm.jpg
0ce6ff7823380dd4c0e73241f8a51ec8
9a281d69bacd6f29634782ecc5bc34e6bd7bf598
3730 F20101124_AABRDB alkhairy_m_Page_017thm.jpg
873c6d327062d94d3ab798f07c198063
1ea8a9a69e434194673ba636126b2bc6bbd60a6d
10911 F20101124_AABRZV alkhairy_m_Page_139.QC.jpg
89fa75987540d9ecb748d759227208a1
8efff2ddf2ce7032ac09c3469928dc5baf3d5909
4895 F20101124_AABRCO alkhairy_m_Page_010thm.jpg
b0069fced996e17ad97379a7a159b9f5
1a05813263c6bfa3492367445ced30a4b6f06bf5
26965 F20101124_AABQXI alkhairy_m_Page_096.jpg
5a4bebe1be81ca4c03cfdf54cc719396
f6d562b961b737e5e386e92569063c6c28101200
877642 F20101124_AABRBZ alkhairy_m_Page_045.jp2
f4194b6cf3158af5a90527eba5aae70f
112171a755f13004025e6dbb213c2ab92e01b322
6708 F20101124_AABQWT alkhairy_m_Page_021thm.jpg
5e9d5f0dd992b8b3939765a4221a6c78
bdc000406a610ff39438bbec8d1ffe9130b5d18e
53403 F20101124_AABRDC alkhairy_m_Page_134.pro
aca5bbd7616509775189037c5ab939f1
6516afa73a8186b7093339af837f7d832814a406
3142 F20101124_AABRZW alkhairy_m_Page_139thm.jpg
ff6c971378d687583deb8616c2b8b720
0ce676a87e8ccfbc49547f911779abe3414e1e99
2304 F20101124_AABRCP alkhairy_m_Page_019.txt
71a84fd22c592010ab38b35e5adc766b
000c29b514a9bf0cc80aaed8eae392a403f14e27
F20101124_AABQXJ alkhairy_m_Page_068.tif
92c11662fac4067d7f3438bb07e63255
0627a33d0cbe99601f508621ef74bdc21bed00af
898647 F20101124_AABQWU alkhairy_m_Page_046.jp2
ca9a387ed03e22b81360003fd2cacc31
56e92c60cdfe53d134d18f4d47c660e89c7442ad
27344 F20101124_AABRDD alkhairy_m_Page_022.QC.jpg
f7e772a9652c4d94f6fd6488b9a1525e
7c1a3f947d1818b376ca9c278ecf8406c937c4fd
10584 F20101124_AABRZX alkhairy_m_Page_140.QC.jpg
f7916d41e55dee427abc451325f40663
78d94b04479d2e45b60ac1b9af1a7b3b2842a80d
18723 F20101124_AABRCQ alkhairy_m_Page_049.QC.jpg
702d41c1cac8497c0b16958d260e9858
ca7b7698591686053fdfe8da4fe44448a52d48ca
23616 F20101124_AABQXK alkhairy_m_Page_041.QC.jpg
5be14e404367dd2a272aa96e1246fa53
63021d2bd3275cdff6e53048835c97eb6c3e0e93
86264 F20101124_AABQWV alkhairy_m_Page_031.jpg
a7a6126b1d2b52635baf7f3c05bc6652
b5eb55e1bd0a8b32bed25904be91f075e173e6e8
3939 F20101124_AABRDE alkhairy_m_Page_088thm.jpg
004952a94e953c4be398b5b89e93d79c
a919a9bfede7e357fbdad0a2e3ad3aae6e25e74b
26789 F20101124_AABRCR alkhairy_m_Page_097.QC.jpg
c43b836ecbafe7402a4f0102ec073238
856f65f8f1fa0f036511de53c14359c8b915571d
52830 F20101124_AABQXL alkhairy_m_Page_053.pro
c7f710e46f4031a2e261d50f63fe1a90
01a5329d48e38015f9d9aefe085dadebdfd1f8bf
26559 F20101124_AABQWW alkhairy_m_Page_034.QC.jpg
aaf26f88610c77137630b74e79693a67
f8864a68821ded0ac02b890b2454076d5b7396f2
5727 F20101124_AABRDF alkhairy_m_Page_054thm.jpg
92bbcf9c3b12f1017cd3a8f136fe4a79
425a3724b580ccb5e9897979774cbc8026ab77da
1314 F20101124_AABQYA alkhairy_m_Page_088.txt
2d70da0bc3f410de9b2027a68da13d16
10979007ff79861cbc91712f2b1d69f91533957d
2081 F20101124_AABRCS alkhairy_m_Page_020.txt
ea39c8ab8e0d0b84b8fd8e6ad74ef054
afb440073fb27d5ad9cc9d1bbaaf093015a8cfd1
3177 F20101124_AABQXM alkhairy_m_Page_065thm.jpg
a8621e9a374ce912905becf428c6f87e
1b74a81764c2e36e11f2503c1d9c61a6f31e1da0
3659 F20101124_AABQWX alkhairy_m_Page_091thm.jpg
b7fdea77715f8700741dca28c6502826
25af9d7f23a1fdcd99560c2441a84c5325eb7dad
6312 F20101124_AABRDG alkhairy_m_Page_001.QC.jpg
91ef4144d5b327aec01972c48b31161e
1b67f286a9c281cfd00fa9bb4c9a8eb589ad501c
5621 F20101124_AABQYB alkhairy_m_Page_117thm.jpg
50306b552d2c59acf4d91585eede934c
81b3e2b57821b28eb7286d36024ba7f6d5ef8d06
2416 F20101124_AABRCT alkhairy_m_Page_137.txt
7aacdd4d3ab94c0160df813d71ee00e5
83aaafff1d076571557a3ae1cd75b7ed7ee5ec36
14344 F20101124_AABQXN alkhairy_m_Page_066.pro
45a6a50fcc992e98b8d1832b977d9061
806f54bc0c621b270c1a82f1a8524f24fef9b2a0
5969 F20101124_AABQWY alkhairy_m_Page_063thm.jpg
1801b63ce4624dd0fcba383650a11228
aed45d1f728fca30e5f26c2d19b50cf2eb4f5a28
F20101124_AABRDH alkhairy_m_Page_006.tif
4ec0cad0a7fa2095a718069696b40e90
4e4b793e463f908677b4da80f51229bb04e62d5f
24820 F20101124_AABQYC alkhairy_m_Page_087.QC.jpg
097789312bd7f21c0226d065030d7a9a
db17db35d0fc75c7afabb87acd1a0dbc8ac69993
6507 F20101124_AABRCU alkhairy_m_Page_059thm.jpg
0682639c34727d8f411fdbfd7f5df998
f2de9bd92df253b87e53f1021f33db3f72a4635d
6448 F20101124_AABQWZ alkhairy_m_Page_034thm.jpg
29806ccccb8533ed8aa2a517230b2208
83533e6e0aa2b90499e0312068289f698f818bef
29532 F20101124_AABRDI alkhairy_m_Page_074.pro
bc321d50572f31ba893f8b4cc62d6cc0
d8e51b79d77c534b61f6c96f2eaaab1c8f48c2c2
26998 F20101124_AABQYD alkhairy_m_Page_086.QC.jpg
b704cc4f493beb21a689baf9ab0fcd09
9726fd331e36341d76f937b2190d735e8dd7c92b
F20101124_AABRCV alkhairy_m_Page_136.tif
813dc5ed008099a80407249b4045c27b
70e389caf4bb7b9ea12dcb6213b7315221a868ad
1822 F20101124_AABQXO alkhairy_m_Page_003.pro
c97d2506468487c143acc24ff633d5b3
c04bfbb1b87c335789a2098503023fe971c9adda
1051973 F20101124_AABRDJ alkhairy_m_Page_099.jp2
85aeb26fcfd7b611eaa34637beda61ec
13d1da1bd3cdcd7fbeb4247796cb345d2cf96091
53510 F20101124_AABQYE alkhairy_m_Page_005.pro
98f6b88e55830ef48e748592a50a39d2
e16474d1578d13722dab7310a0190e395328aa68
21871 F20101124_AABRCW alkhairy_m_Page_054.QC.jpg
55cf6aded7d334b96e0a2048b23fa886
3cf1643702fb48edc671f04e0b2f5473867a9c2a
5994 F20101124_AABQXP alkhairy_m_Page_118thm.jpg
a1e43d4b8bdde3c51235686e5a0f53a9
5ae52c3e92cb85437ac37d8491d7a7d4f2f54f9c
1051953 F20101124_AABRDK alkhairy_m_Page_130.jp2
2afd3ccdd4dd00b83b2d323c39dae0b4
c0ea7129339dd118f4c9f5338010daf00018b30a
690670 F20101124_AABQYF alkhairy_m_Page_100.jp2
4d526a8406e8bca8d9f16c12003cc436
e52cd19546a90bb1813c9e6543f7d7cc1a5a7958
8951 F20101124_AABRCX alkhairy_m_Page_064.QC.jpg
a3d960dd0f7ca5ab0a3858825bb9aa2a
6c1feb408e4d9e0f86b1f8f1c06b8b2b05762e44
25017 F20101124_AABQXQ alkhairy_m_Page_038.QC.jpg
d8cc8b384a16f07bc9d3b09be4ce30ca
0da124fae01df6ab719c6b7c10cc0537da93e279
5794 F20101124_AABRDL alkhairy_m_Page_106.pro
8aac30db66b8f8e1d5b243677227e956
f07d49174dce51354ad9e560d5fa7dac4b80641d
F20101124_AABQYG alkhairy_m_Page_073.tif
67264e3a237914152947f0b738131290
0d2fc9eb0251789fad64ec1af7f0c1ec827c0392
24284 F20101124_AABQXR alkhairy_m_Page_089.jpg
d5a3376ccfe4482591bf4fa8c90c3802
afdf837e2dd88f11eaec51531457b70bd7a6c291
F20101124_AABREA alkhairy_m_Page_135.tif
bd34e443a47667e107ae2b2a041b1690
27c358c51ed7b6961e86d40fe21b8aaf54e62815
177845 F20101124_AABRDM alkhairy_m_Page_108.jp2
1830fe3ae896dd95aab0676bc886fcd9
9f0e7804c0f10778d001e90763fe46a7434d4fe1
27040 F20101124_AABQYH alkhairy_m_Page_092.QC.jpg
a2ff28bea0424f68b3d7eb58e6231f59
322b2f30cbe54931241bdd48f0e9ed005e0b567b
F20101124_AABRCY alkhairy_m_Page_063.tif
d74787616ff5d43df41ef1e765ce1fea
82831f4bce2e8cd2e7171a694ece0d69e3402bdd
11136 F20101124_AABQXS alkhairy_m_Page_075.QC.jpg
3f13b527b9d2c91299cac9bd80eff1bd
1e1c1a7f3a0ff86046e0d77d28283c162125048a
26027 F20101124_AABREB alkhairy_m_Page_133.pro
41354091daa1a85e13acc9fdf0182e61
18d6a1cba5a1f2f876bae359234775b4d507e893
17509 F20101124_AABRDN alkhairy_m_Page_058.QC.jpg
d756f45a8ea81bb592268e6d5f40a08c
faa2b6763714e504e159faeba6ab9cc7dde0e210
22810 F20101124_AABQYI alkhairy_m_Page_062.jp2
37c7a3740bce68d1125bec374ace2cb5
49f42c6da27d8ebedf8e329bea33e19edc9f725f
4948 F20101124_AABRCZ alkhairy_m_Page_124thm.jpg
0c0e44e9b4e5492bb8fa705eb626697a
d685e0dba278b7accfc63f75fb96dedac3e5129c
6343 F20101124_AABQXT alkhairy_m_Page_132thm.jpg
a35d38b3f86548f4f2341e0cc9573ce8
103a821dd3cb5022b36ac9479e78b18d2820d555
2159 F20101124_AABREC alkhairy_m_Page_015.txt
fe5efd935b0b4347408e7c60a974f3e2
dba59503831dae6977db9b69e0282b2c79490978
24319 F20101124_AABRDO alkhairy_m_Page_062.jpg
c15355ee03ee0da4beb99b07e2d067ee
74248dc7e83dea1967813e81c5f524d5698aafe8
5947 F20101124_AABQYJ alkhairy_m_Page_050thm.jpg
e9f009fc1a045a17c3a24748c0ed1c45
3894a18252f921d8bcc328db0056ed8f48ca2024
1311 F20101124_AABQXU alkhairy_m_Page_049.txt
089071adbe5c66deba91e6d4e6b6e42c
f8fe874039cfc733381d4d39c1605d0f582825b3
30584 F20101124_AABRED alkhairy_m_Page_081.pro
775d4abd94df56cbd14333b305976fc3
dc84214e1107cc107cce434a7a9c11873c7e0a7f
6540 F20101124_AABRDP alkhairy_m_Page_003.jp2
e4beb66fdb003c0153be49787c4a96fa
36718015199b49038062222ca2cf9a952aa7d11a
124542 F20101124_AABQYK alkhairy_m_Page_138.jp2
4754eee40f55f082daaae738a4947057
1be64959c6a5a63513cd853d0ead90f32506cf3c
5865 F20101124_AABQXV alkhairy_m_Page_016thm.jpg
d5323d1bf3456df69effe522f56bc52b
977518b3b9ab820cbef75c610f94fbb186e3ddf1
F20101124_AABREE alkhairy_m_Page_128.tif
b953423c73a1048fbfa7cd99b2c26da5
d9131e43d97df3294c566ac7a17687a294c5808c
6657 F20101124_AABRDQ alkhairy_m_Page_022thm.jpg
b373e670653ef68bb6ce101de1f80803
0294a68c9d1c9d0dc984deb006ba0923261d7ed6
F20101124_AABQYL alkhairy_m_Page_059.tif
05d89b6a9518a3d7b28d4c6528ccdedd
3c07354344ddfcf7aa0d85ab7d9f4472bd017e02
1927 F20101124_AABQXW alkhairy_m_Page_004.txt
0ef7ca409a6c606bc8212b38e0f00c09
08ef9f8bf7cd9ec2e7ca17b3d69f7e0e5da9832c
5934 F20101124_AABREF alkhairy_m_Page_041thm.jpg
82b5e969785cf134250b593e855bdb3c
70a60b70ec3e9f89cef508e36133716b73642cc5
5936 F20101124_AABRDR alkhairy_m_Page_029thm.jpg
d966c20d945f02cb6271eb4d56c2b307
a37b0645ff9555f129a62f6a2f82354fb6157745
26547 F20101124_AABQYM alkhairy_m_Page_126.QC.jpg
e9b5c7ad2a0fa87a04d712ef97084800
234c790996c5c6ccec1b1f9f0a9b36c781bc6f08
83394 F20101124_AABQXX alkhairy_m_Page_103.jpg
f1ede46684cfb5083571116de2aad02f
4abebdcaa76c55ec9665c08a6aadf148984f3cca
85733 F20101124_AABREG alkhairy_m_Page_059.jpg
eaff8f562bf5247d318073d914947d84
86604a5bd1a417bd985916583c58beb5de686327
F20101124_AABQZA alkhairy_m_Page_116.tif
faedc3924383707b76006a212ab01360
d7e9d340051340888eb68a7ba1c97fabfd928529
1024 F20101124_AABRDS alkhairy_m_Page_046.txt
072388ce9fe5c466bc94b12bb2b1fb7a
4ba2b5d3def34f65a32114b2f5e19a45140465cc
F20101124_AABQYN alkhairy_m_Page_100.tif
9de17e6304ed63456328d5b5ff015498
4dd3a20d713ce6b28c80f9ef956230e93a33bceb
8238 F20101124_AABQXY alkhairy_m_Page_111.QC.jpg
384049c74acebddc190a0ca9d8387767
8eca9abde5740861110248a78fd7521e7dce5f9a
5992 F20101124_AABREH alkhairy_m_Page_136thm.jpg
25d035dab6d31dc6b9d1f26948bc585a
dfbabc8b880e26c4f73ebb308ecf8e0adf7089fa
1051976 F20101124_AABQZB alkhairy_m_Page_086.jp2
9962a31512408d9a8cb9431696e6e2df
0169376b716738361accbc13e839ed79bb16ce4d
22536 F20101124_AABRDT alkhairy_m_Page_016.QC.jpg
fd514fcf644318c319d46d91222ae585
82a8b35c6730f46678fc75c112fd68b5211fd322
F20101124_AABQYO alkhairy_m_Page_134.tif
78f67605ea3030a89b881b58396a2e49
85d355ef60a85cae9e585fa77e89f340f11fc541
F20101124_AABQXZ alkhairy_m_Page_024.tif
b1382f4d05992f7094926ca986d50fbe
7b4aad5c5efeea1d8dceb15a729908f26c6ed8de
F20101124_AABREI alkhairy_m_Page_112.tif
98459b7235a56c75e2fb3e89c1bd9a02
41d198c8c9a1f7e896ab5caf86515f6b7cb9c9e3
117024 F20101124_AABQZC alkhairy_m_Page_135.jp2
d225dd1cd55d7f20ca5ddd767342cb24
e8f8e94519819b26630916faa591a4aa2f1fce43
64953 F20101124_AABRDU alkhairy_m_Page_017.jp2
36c8ee6a1f2aee6ac54fbe4c82aa8083
85b0e3316696ca663f1492bd74d6c5acf88cd55e
F20101124_AABREJ alkhairy_m_Page_077.txt
aa92170934b225347b39b35082ab2568
4e37d70c81f3fbab0e145c1bf769ee5ab7c43164
F20101124_AABQZD alkhairy_m_Page_044.tif
977ed633b474df1bb6ad53d463fd40c6
6ab969399d896b5a72121133e226e81279d7aa30
19036 F20101124_AABRDV alkhairy_m_Page_010.QC.jpg
d42acdd207dc822f682686331c9d4071
c445d80e2fee95cb9c1297430359f422c9c4928d
F20101124_AABQYP alkhairy_m_Page_009.jp2
1c1d2b36799da2710b0670e184d836c4
ce1dfbeaecd5a1ebfbe242c86debafc0fd94a1cf
3143 F20101124_AABREK alkhairy_m_Page_064thm.jpg
62475ca74de4eb91399f2c332e537853
f3e5e846e7ab62abea328873ffd9f2239e48f423
6566 F20101124_AABQZE alkhairy_m_Page_092thm.jpg
620f362fb6df611601dbbe043457f2ac
8f790832965ff939adf9b84723920b5ca6e9259c
25403 F20101124_AABRDW alkhairy_m_Page_093.QC.jpg
f250d1b91b3172753c5f917562ebb70c
b6d022ebb1088ed85e5904fcbf25fefa417211c9
6517 F20101124_AABQYQ alkhairy_m_Page_097thm.jpg
da13323ec04e3e25a3644a3fa21e2b00
63e3def7a5ac8dd562fc0137c0db8e972b3b20e9
6454 F20101124_AABREL alkhairy_m_Page_035thm.jpg
4b95a5f8ef7aad3a32a3bf25111f3f7e
7646bba198b000a887eed29deeb87356b5667f46
1970 F20101124_AABQZF alkhairy_m_Page_054.txt
1395c0bf9397fc3e8eef8997b78cf381
1339a53abfca8f1e2120c7e0a4f2aa082fb30ada
2733 F20101124_AABRDX alkhairy_m_Page_121thm.jpg
beb00ac06683077dc8aef438c36a0ad9
5af7e0f8c56813cb2980bf732e75279ebf273b57
7087 F20101124_AABQYR alkhairy_m_Page_111.pro
00ae24553a3ab590ee0fbcde7a82450e
20cbff053871146c5374fcbda2bacccf30518f4b
744 F20101124_AABRFA alkhairy_m_Page_075.txt
3933ad47d9f6c42afea4829e0ccde0e2
5d6345fd06daa596286725b9334ff7516c3916ce
1051961 F20101124_AABREM alkhairy_m_Page_054.jp2
9b1cde305eed1db4bc3f40371b820289
f52de974635b78d55c2d81a664bcd64952af7736
31230 F20101124_AABQZG alkhairy_m_Page_071.pro
e5b75d4b059f27ad631a7d1651e2591b
0744f3d3b5707cdfaf6df29da6a7536456cfba35
78922 F20101124_AABRDY alkhairy_m_Page_029.jpg
b76f2bfb1afdec914963407f65144302
eaf4ea4df648cd1adf42f4f452d8a758de5edf89
13924 F20101124_AABQYS alkhairy_m_Page_017.QC.jpg
9b2fbcfbe35788262008ec1ca011193f
676a019f400d57d3ec1e5036f0cd50e614bd1b29
5814 F20101124_AABRFB alkhairy_m_Page_020thm.jpg
302650390c176056b28c552b3c87cb82
17b6cfa9fe58e7d072ae4174350fc953e213d4a5
18107 F20101124_AABREN alkhairy_m_Page_082.QC.jpg
ed731024bcb407d7f307e70fefdd75dd
307899083e1f6c00eacb6723f5ca892044e15e0e
83567 F20101124_AABQZH alkhairy_m_Page_033.jpg
683afffc120097b91b1ff7535a6def48
922f1d6a408b96288df1e0ebe068cfc57f658470
56574 F20101124_AABQYT alkhairy_m_Page_024.pro
26ae4ae350afde1ddbd9189aecb457c5
01abfaf139ac65c966b890faf7e9f6e7d172a8ce
F20101124_AABRFC alkhairy_m_Page_015.tif
56b2653e1d0e540ef7856cd7a397804d
859698b4941bd7c1d2943255f9f6d8dfb878e53c
6322 F20101124_AABREO alkhairy_m_Page_119thm.jpg
7d4777979cb8bdfad6bd88159bb74e72
6f6847442f762b0143fd9de2cee4c99fd36f3550
81980 F20101124_AABQZI alkhairy_m_Page_032.jpg
a0e21eb7f419993bc72a25091454c393
c7ad54f008faa733ff605b4c8df8becefec94204
3171 F20101124_AABRDZ alkhairy_m_Page_107thm.jpg
b64bb7aa5e6cecfdfbb17b5eb50ebbaf
27fd2905f54c2e4ad5c2397200b7adbdc2b099e3
F20101124_AABQYU alkhairy_m_Page_095.tif
bf5f9c941137c20fa1b3283c50f8aa45
fe8f8d0050d1d951266c0843afa108175e6d49a7
1051982 F20101124_AABRFD alkhairy_m_Page_061.jp2
6517003e123886e0b16cfa3449ed942d
ee0c38d1b7e2811b1e066209ea81f2d75f504274
53824 F20101124_AABREP alkhairy_m_Page_072.jpg
d6910ec56ff92229654aaa9605ed6da5
b77070ecd2582757522e6d9aaa810965a98a1dde
79191 F20101124_AABQZJ alkhairy_m_Page_138.jpg
962cb9434b943833f7655d813a0c666a
02049a761863249c54d1ccb780a8c4b6b3a3c443
1805 F20101124_AABQYV alkhairy_m_Page_018.txt
67f08645bc54c2409e25d1e1f186b267
a1fc6ffef07b40296844755a842082e41ab7e229
1425 F20101124_AABRFE alkhairy_m_Page_056.txt
525675f8db9dc62384f4d7e78ff7164c
693240ff091002d2df8f754c981535a501fc70e0
110870 F20101124_AABREQ alkhairy_m_Page_016.jp2
42f39c58d19c6e90498ad8428824437e
8b4e981c41b62f4be7024a6da2aa4d252bf095a0
18467 F20101124_AABQZK alkhairy_m_Page_110.QC.jpg
7f090cd513d8cc5d0e96e65a31294c1e
9df71958f6d2ec6eb1b522d87f43076bcb1d076a
2241 F20101124_AABRFF alkhairy_m_Page_027.txt
55cfbee7a33dc06b4f2451571a357580
e4b8de002d60220ec0ae77ed917fda7d56fe8947
58481 F20101124_AABRER alkhairy_m_Page_078.jp2
d21c474507114078f48ce25bf584be2d
215d83afd1bd0f3ac4cfc00daabfec3d2ee44d78
94695 F20101124_AABQZL alkhairy_m_Page_124.jp2
693c2d5308d372afbbe1f282b86d626b
6affe42fac1cd7ef85b5a5cfb88cd63a61d4052a
26712 F20101124_AABQYW alkhairy_m_Page_031.QC.jpg
3cb41392115c558e34377765795ae936
b0148bc33c9db393d9210b6f852e4d36099e8471
F20101124_AABRFG alkhairy_m_Page_026.tif
c1cc4be77cc6765351658e962665716e
a0ff378ee912d86f65f2f0f3f7599a8b94f23298
F20101124_AABRES alkhairy_m_Page_038.jp2
bb55614847e6a211db27f5d598b90103
5b12e50411308c1036da9b28a62d0c9acb5af2f9
712 F20101124_AABQZM alkhairy_m_Page_104.txt
76dcb0447458dfb106487a7e4168901a
c1c824f52b68d1707e7019382c2009447d97f5cb
26929 F20101124_AABQYX alkhairy_m_Page_130.QC.jpg
d20c435d0f81e67759b7245e2246ae8f
5700fbb98195bcf956956cd73230b74bafeffaab
4340 F20101124_AABRFH alkhairy_m_Page_011thm.jpg
4e377519b2a12bc97f1ee31e6c005d08
441339f52e10e7f1bbcc5d5c304d739e06daeec1
28014 F20101124_AABRET alkhairy_m_Page_107.jpg
d4d95f44742f6ed368b7916b1ba01533
2a4882b78b111d12381a5f65346918146b168436
18019 F20101124_AABQZN alkhairy_m_Page_098.pro
1c3f2ba9c9a048a28c0497e2ad4a9825
3bfe8f4e6f3dc762936c74d6b0e73a7497eb42dc
3092 F20101124_AABQYY alkhairy_m_Page_096thm.jpg
12074445e91738a3eb3cba43556517e4
11b3129d1e720599bbbe113a9e2c2b16a653c29b
1999 F20101124_AABRFI alkhairy_m_Page_010.txt
4da36525c05b4e841e80a68e3335c7b3
2b40c7554bf48d770133bbd3366aca7898f64a64
F20101124_AABREU alkhairy_m_Page_045.tif
d12d9425582c3a0fe7a628eceebe6920
f305fe5a55c8f20bc536b6c18251c313c8b7eda8
28940 F20101124_AABQZO alkhairy_m_Page_058.pro
4683669749ecc463cc05bd5d43f1a9a0
2a251984252542f183dc33761a6ddf888c1ff340
F20101124_AABQYZ alkhairy_m_Page_002.tif
1c1a4c481a61fe66cb7831b7e8a70400
ca4176b1d81ec0a354b09004cc102152009f799f
5674 F20101124_AABRFJ alkhairy_m_Page_044thm.jpg
e89362a905799746bfa43220cf8612bc
7f6fb304b4c9e3e5f8f6d77205042f734f27097c
25434 F20101124_AABREV alkhairy_m_Page_015.QC.jpg
829819b52815eb5e396074663e2a4545
fc0f81a6966a48b8576ac6669e226ec7abaf3b22
10332 F20101124_AABQZP alkhairy_m_Page_006.pro
dc76ef0488d5c0306c15091647124a73
679e892c2fae314e884755a77ecdf19687537f53
50423 F20101124_AABRFK alkhairy_m_Page_020.pro
05700b964ba4d60ddd59fef0d45e8dcb
a8a397965d33e95b8b8fb75d9cc0861363ac4a6f
697204 F20101124_AABREW alkhairy_m_Page_058.jp2
ed2ff7dbdb975588f6996667b8da17ab
aac1eb84c08db63a089de35c40392de9990d41cb
9656 F20101124_AABRFL alkhairy_m_Page_013.pro
db75ee79350602a49bb69c8c79dfd451
582f06c907d2d879db8e2d32bdb71b847387692a
22831 F20101124_AABREX alkhairy_m_Page_137.QC.jpg
f7f5919d01b82adac19678857d79fe91
f1c7a857b3b7df535b2fb024a5fc711d03a243bf
23059 F20101124_AABQZQ alkhairy_m_Page_138.QC.jpg
72e856d446696c4986ed85d242aabccc
a3f336e4a9c26a5d75c93f78216c92522ea394b2
55901 F20101124_AABRFM alkhairy_m_Page_093.pro
7b7e19c19b305358f8813d1c66aba2e5
3a472a39f7898e796ab28ed4fdd60924dc7ffb49
3670 F20101124_AABREY alkhairy_m_Page_122thm.jpg
19031a12976d047e4dd3f0e685963760
d25e0c6a9d2fa6ead30c1e1369c9ba9275b5a997
F20101124_AABQZR alkhairy_m_Page_014.tif
163cb17a75f4d353facaa288b33e1bf6
bf13d46de8044e6fda12a8fb13e9e1d9d6a3ae4e
6224 F20101124_AABRGA alkhairy_m_Page_087thm.jpg
6e4e3a770bba4b10a98043f23a09f68e
9c308d76b35834e27bd4c2f0f81e63cd0f535408
2107 F20101124_AABRFN alkhairy_m_Page_006thm.jpg
844a26eee062700cbff3bf3e53eff3ec
9a851f56c4ae7370e176655393c96f723168354a
F20101124_AABREZ alkhairy_m_Page_105.txt
42de0e454ac7d56661e30649ea2b207b
6dde542d3ebdb5c5db9f1b22c47a21633473fe74
F20101124_AABQZS alkhairy_m_Page_120.tif
1619b20a75c00dda711b029fb5117e9d
d6b9a81642cbf6a882f108448629a320858b72dc
F20101124_AABRGB alkhairy_m_Page_026.jp2
8a82da4ba72fb048a3ab807e7558db13
c159b72c990e16ee001d27236add224728e3485e
1051957 F20101124_AABRFO alkhairy_m_Page_033.jp2
ebfead5cbc30319787ba75dd1b2446d1
7b16d6e3e254e88102c264d09fea45b368adb5f3
55855 F20101124_AABQZT alkhairy_m_Page_071.jpg
22d456e5b0a92744effa05661ed2c222
5d0ad2312ceba8c0bd2326dc217a853b1dc5195a
44422 F20101124_AABRGC alkhairy_m_Page_014.pro
c4cf302de6fe0bb909323756b2a7415f
be2b5aa713efa0f18c370d2efcfc8bb9c48f328c
36099 F20101124_AABRFP alkhairy_m_Page_042.pro
ee4b8d58841426fe7005afea7fe8d282
bb6e47a153a597720cfbd17611b7802a9b15006a
1051959 F20101124_AABQZU alkhairy_m_Page_131.jp2
9de80974212203f6b2b166098f66a29f
87bc182f1c6d0d76744b27228bdeb97856e93585
F20101124_AABRGD alkhairy_m_Page_055.tif
263b36cd7674a361bf2112a3bdffb801
4d283d4755f2b2869ef330ea13cde658fa1d1d55
1014613 F20101124_AABRFQ alkhairy_m_Page_076.jp2
e1b01a263c72333a0d322e1a25e43acd
71387cfdc7db8181bf18b8ea8b88e222215d5402
F20101124_AABQZV alkhairy_m_Page_056.tif
dbb17b2cf6df5e4c53976f5eaec07662
c5ea41bdc78d588803adf34c37f3959f4ae7a598
120364 F20101124_AABRGE alkhairy_m_Page_136.jp2
7894b1825a1ec3f12091470b7e1da03a
d5179a145c0e9cc915943692e22929538291592d
31581 F20101124_AABRFR alkhairy_m_Page_101.jpg
006090c3222e6525a51f5472a82029a8
4c3c402c504bba0117433c8a6897a2a4c5614a05
2267 F20101124_AABQZW alkhairy_m_Page_086.txt
c6590e1056a78e8e73741a3eddca8956
663a12076391183d4e0d3a41c1e81b05dc167314
387 F20101124_AABRGF alkhairy_m_Page_013.txt
2ef7332b53e174c6acb16efff42c6a07
4d91eb51e77215a1f608b8fb549d1100271fb51b
75756 F20101124_AABRFS alkhairy_m_Page_099.jpg
662f2b4a7a56fbb9bb7206c57a6d559e
2c496e851f283d01d67955e2d53e02ae91c4bedf
6394 F20101124_AABQZX alkhairy_m_Page_125thm.jpg
1b654cc97c14892bf436402fb997e4a7
823a5e3b703552cf341ce7e69b4fb5fa2970ad99
1603 F20101124_AABRGG alkhairy_m_Page_120.txt
f8c26650886fcbaa0c38ccf2f88dc64f
dcf68deba79712b7f84e00fa958f471cbc92651b
2034 F20101124_AABRFT alkhairy_m_Page_118.txt
75c36731e19ca8e991b20f727990138d
50d89e0a9e72fed5d23d1d01a50e9900c72f4495
F20101124_AABQZY alkhairy_m_Page_109.jp2
c22acc5753dae7ca25465da03303e54b
0d6781a26f2224fcfff8d3fec3b0ded06a26fafe
5413 F20101124_AABRGH alkhairy_m_Page_134thm.jpg
4ed1e5350f16b442b2dfef5a790b5f36
8c1acec03ec431ea19405631f3e8b94d7dfd9871
578 F20101124_AABQZZ alkhairy_m_Page_107.txt
dbd1e2682127ed2952b7949ac2ed9bf6
ff27c26ffadad397bb5ed9d038475b7ac944093e
26291 F20101124_AABRGI alkhairy_m_Page_128.QC.jpg
5b5893c3a42d0bd5eac3089511e29259
8f45721f6317b4d480edb4a0aaa1d6a1eec5fb00
21603 F20101124_AABRFU alkhairy_m_Page_076.QC.jpg
4d49185279631c082d7d6a4ed7b12d62
6545805e1924e050de4a7fb6d0942e3cb493a672
3851 F20101124_AABRGJ alkhairy_m_Page_095thm.jpg
4e7dcc8dee819366813b487b88a79f20
25ceb4be4bcea4fa4b5feaa6dde92856f58c1545
55874 F20101124_AABRFV alkhairy_m_Page_032.pro
e49dd2bf5c82959d6bc4345cddd858ad
4fb4b5d6272f618bf998c069f8106da08cfc964b
1977 F20101124_AABRGK alkhairy_m_Page_063.txt
2c02f2b882409ef02080a99220c0da44
58214ba6fd1a1f49c16eb7bad4560af6b8ea0317
11855 F20101124_AABRFW alkhairy_m_Page_122.QC.jpg
56a69f5214a0c5bed9ad30e71bf61abe
2432a05a7006d374dcec0dec3d3cab3356c47061
2205 F20101124_AABRGL alkhairy_m_Page_128.txt
800f855e4fe9b442e1cdc498119582f0
1b176ebfdf5bee10da8e10a10b1db4f0450d996a
9427 F20101124_AABRFX alkhairy_m_Page_062.pro
9f47fe67adb79d6415c438ca44c2e8bd
46d5d63e34f13888008635ec8e10a9fe37e349dc
1692 F20101124_AABRGM alkhairy_m_Page_095.txt
b773f9f69454cc106af06cda77ec9806
616efba502434b838b219e51a8dfb6de8baf6854
F20101124_AABRFY alkhairy_m_Page_128.jp2
fadbc41c1dcea42b5cde8f2e8f182e07
5a763e8f583d210476378bde1f35ca601ab29d3c
85104 F20101124_AABRGN alkhairy_m_Page_126.jpg
d66f36284032529530aacd7270bce343
298c4d10eeca3e98ce83770710d6c48d54ef5b94
46404 F20101124_AABRFZ alkhairy_m_Page_010.pro
165f880946262bf3812f5ae49cf2c258
7a8857ece7d343fbee3b9be560f30d07d200a288
10473 F20101124_AABRHC alkhairy_m_Page_002.jpg
4f182879d39e68da7c55c9bc9c6b4691
8643500ddf18296fae20da23c696dae4680bd5ce
38631 F20101124_AABRGO alkhairy_m_Page_066.jpg
05227f5cc8b9aac71943de8d34e3361c
9f7d0a37e120d505c3e229cd43bd2ddcf85e9d6e
65849 F20101124_AABRHD alkhairy_m_Page_004.jpg
fb7d957c984ef620b943149b33ab5679
dc634816edec4288ee6cdf613e2fba5470406495
23221 F20101124_AABRGP alkhairy_m_Page_061.QC.jpg
19178c9b4a4cce96098590b16d240ad3
b512c61692b4153d58586541fe1876ee7501a776
71076 F20101124_AABRHE alkhairy_m_Page_005.jpg
8fed1622bd70eaa1e7b65b11f9466f18
ea4a89dfd9f7b4e15e587420a5e04d7cf8327e73
F20101124_AABRGQ alkhairy_m_Page_103.jp2
352cae62a0205e5d5584b45b96d1e939
2bbe77e2920070fdd60edcabd7eb01d92b2b645c
56982 F20101124_AABRHF alkhairy_m_Page_007.jpg
ae7f2b741da755d419a528d7904ed73f
f1b18d9f458492300f981da68f983c0b727f01de
11335 F20101124_AABRGR alkhairy_m_Page_095.QC.jpg
9b53cf117310ece9e7bfc7d9e6bc9822
adb924435f9c864555903a02134e0ed4351750ec
57609 F20101124_AABRHG alkhairy_m_Page_008.jpg
4306c47f3ae12d2e166a25dde1e30c07
823620dc85659d96bb33e220df1fdaf1d6aca765
60821 F20101124_AABRGS alkhairy_m_Page_110.jpg
257b9a259c1c90fa6e2e4809674e270a
8d5a04d079e27cacbb73d30cfd617c420958aa0e
47574 F20101124_AABRHH alkhairy_m_Page_009.jpg
19d19302fcbf43a4b47159a52d372eab
ac6fa320a49727831f3bc4885b5daed3e6b85d93
49642 F20101124_AABRGT alkhairy_m_Page_048.jpg
8dc60d4cd2c4af1babe1231800c5d549
138eee24503aa565fb18dc3cd2b40fe37981bcd2
54463 F20101124_AABRHI alkhairy_m_Page_011.jpg
bca80547a6ad9fc6864c6f81be13e8e9
6cf97dbcfcf690fb077c131f48a10175321db586
5916 F20101124_AABRGU alkhairy_m_Page_109thm.jpg
2c97da57f311acb3084b5cc9db06c295
1d73beb0e39c63499c355060bbbc998f8b99381d
59390 F20101124_AABRHJ alkhairy_m_Page_012.jpg
9c1e2ca843cbcb692be12c56849f95f7
c3d7ec77d81a1a4c1e8f7d4ff27700b57b26e415
4492 F20101124_AABRGV alkhairy_m_Page_113thm.jpg
01407e0e29f8cb7327a5043a6945b7ac
0453f96e24374da01110ac33a251afe3e6d568f9
18830 F20101124_AABRHK alkhairy_m_Page_013.jpg
f4104d965a26906503b9fe2c4e301063
51aa0d750ac2649504bd899cf84262fde1578044
F20101124_AABRGW alkhairy_m_Page_082.tif
21044590f417eec2214270260ea3356e
c6a861581e31edad31792473941d474dce56f429
69822 F20101124_AABRHL alkhairy_m_Page_014.jpg
4fcf0e5cdb65e756817dd8ea40ef8a27
c2f57a09c204dd3b217eb8f328b79d94ff5e5924
63863 F20101124_AABRGX alkhairy_m_Page_010.jpg
2fd9995dd8c17f3820522a384c9aeea9
db2fce36f817fda9062cb95e2d4775f80a3b3feb
82812 F20101124_AABRHM alkhairy_m_Page_015.jpg
6abdf840a5451732dfc358a76dc95c4d
eb250f92cadfa1d583832d6181864d96bf365f98
55302 F20101124_AABRGY alkhairy_m_Page_132.pro
7582bfe6a7ae5f11a73b807a1872e228
62b897edf8bd5f4fb20e0869f946beb9ef6550f9
62956 F20101124_AABRIA alkhairy_m_Page_045.jpg
1ec61dbf7bf9c1d498576f4a0574f2eb
ad71c940508dcb3901ecd3f34a5e5ade4ae50043
69897 F20101124_AABRHN alkhairy_m_Page_016.jpg
0730cef3a1f1ba758d43de4500e5b997
5b5b143f31f372371a51f1c8f26eaa522cc1726c
163164 F20101124_AABRGZ UFE0011399_00001.mets
c3d62272de9ed27a28172ac479d972c8
e8898801e10159ffb85fc355cadb793a981dc67f
64441 F20101124_AABRIB alkhairy_m_Page_046.jpg
455797ac866ba6425b6078c0ee2990d2
137c994971602b6912d39f208593c6baeedaaf30
42587 F20101124_AABRHO alkhairy_m_Page_017.jpg
03e8b32bde155631e358f247fb384ef6
5219f4c6a95b3c26c933442dc9ba27ad1853a9fa
84666 F20101124_AABRIC alkhairy_m_Page_047.jpg
15b7359e9ac6c74fd9fc5d967e897766
a321f16108fce6cb3a308dc8cf3a755fea26a32c
86877 F20101124_AABRHP alkhairy_m_Page_019.jpg
7679c29c04e29cb384ec544405097827
8bbe05bae0e0f9cbab0b6aeee64c9425c526c5af
76841 F20101124_AABRID alkhairy_m_Page_051.jpg
a9944cd4dcf0d9b2829030b3ed12d921
c4582dbf54a0df409bedf8cbc63771af553c19dc
87618 F20101124_AABRHQ alkhairy_m_Page_021.jpg
14db329afcf11d815e32578a5034be44
0f5fda28a4f371416e11a766292054fa44c8c9a8
82426 F20101124_AABRIE alkhairy_m_Page_052.jpg
30c0d80322969a5a9215485162b93724
b343bbd9aacea20b23c23c0e2e3af6b2bc0702f5
88180 F20101124_AABRHR alkhairy_m_Page_022.jpg
bccb39281928814bd77b83ee635a8ed7
d6e5c1ad28d7aa5e241ce6c8f307f663304607f0
72340 F20101124_AABRIF alkhairy_m_Page_054.jpg
acee9bc959fb7212e55a8302a7b29ab1
5904d10985d7f4e870aebdf77b6abd6bcbe5f9a3
82922 F20101124_AABRHS alkhairy_m_Page_023.jpg
be93e33676484bc8cb5e87968fcfae3d
add74072b86dcc28693dc7648e2cf41eb1102695
69693 F20101124_AABRIG alkhairy_m_Page_055.jpg
8b551c2ff56cc6cc7500d2182956d186
9a242aac9c160bcb4d0486603c33b610b28428ff
83021 F20101124_AABRHT alkhairy_m_Page_026.jpg
2d1f55f0f653710d734b3b63037a8334
e5bb4d76d1bca1d4a8735f7534f99b00fec3aeff
57300 F20101124_AABRIH alkhairy_m_Page_057.jpg
051bd480bcd568c66e5c0272030fd501
b4beb148ecce96474c821aa8ba67f23937edf057
83837 F20101124_AABRHU alkhairy_m_Page_036.jpg
f0d7196e4929f20ac5c91319afda1240
48778a38ceae27c095098ee185f53655105c579e
77228 F20101124_AABRII alkhairy_m_Page_063.jpg
89670cbb97d7213154d4167bcfb64c1a
736e2579604f39f4d0802123d8336ef966add1ec
81641 F20101124_AABRHV alkhairy_m_Page_038.jpg
a66b709b483969b34dcfc35984e35ca2
b2a1574aeeefdc08fc1802627fe8240be29b62f8
27229 F20101124_AABRIJ alkhairy_m_Page_064.jpg
389c72ff773429b37bb1d5692302ea7d
f6af44c44412a864e7946c435767f701db9f84cd
85672 F20101124_AABRHW alkhairy_m_Page_039.jpg
684148c0667fcff3d1d2d62dbbc08698
759f6f4ea4a18a6d4659d4643539209c9c27b821
27954 F20101124_AABRIK alkhairy_m_Page_065.jpg
fcf763fd7baa1db5843f5275785d8a48
7d6e98da5a6f20047904f236082ccd94c948e89d
83557 F20101124_AABRHX alkhairy_m_Page_040.jpg
34e24615f3f508cca4456cec2c6d9f97
16b5d709d537f9378b396870debc73db992124dc
19382 F20101124_AABRIL alkhairy_m_Page_067.jpg
e17761c4cd72bffb7eaeb39c92186f65
68d01d574a97a3d43e373de629a095a8231967bb
77436 F20101124_AABRHY alkhairy_m_Page_041.jpg
3ac092855f441b090349b82cad155b3c
57110998dc66ea0ca59f4e646242ae48fef5439e
82377 F20101124_AABRJA alkhairy_m_Page_093.jpg
2dc3289645fd8d9da8bc61aef1b94451
9dd1b1d1c89b2444a7eab53b8a9a0b5fcf1a067b
20467 F20101124_AABRIM alkhairy_m_Page_068.jpg
d91f16084f538730cc119c5de5576ddd
c2701303ff85b3024f5ffc46b8e9b60e7461a7d1
66653 F20101124_AABRHZ alkhairy_m_Page_044.jpg
3ec1da4166d5bc3951c0748334828e6b
0d5a5da1a402bce5dc287c9d23446b1ac3b8482c
36625 F20101124_AABRJB alkhairy_m_Page_094.jpg
ffc2f38a48c187fb5dfaf057b98708b1
b4d29444088db245b215952f9940d44be70e13cc
80056 F20101124_AABRIN alkhairy_m_Page_069.jpg
6a48982bde2e44a5142f1a4393e7d919
3419519cfad49c072712e9751b387ba18c2377a7
86104 F20101124_AABRJC alkhairy_m_Page_097.jpg
1664b14efdcbe443a3ac4541c7c905d0
c3b12037089c91b709a6abae3b403f14fdb615fe
65028 F20101124_AABRIO alkhairy_m_Page_070.jpg
06ef02dea98906e6c8bc6aca81da1104
f5f5bc9a944d8ab2d0332f18d9b2d25fd6947760
40822 F20101124_AABRJD alkhairy_m_Page_098.jpg
2bd1dac502de2b4d31f0de09e14bb453
e47553ebf5cfac66b610068eb5bfeb9a74bd3fd7
65374 F20101124_AABRIP alkhairy_m_Page_073.jpg
bc185f48dac6f6346334725c0a22869a
6e855815a67dd79426a5d7966d9461927d62b4e1
55990 F20101124_AABRJE alkhairy_m_Page_100.jpg
8743b6720159c263bcb7de22a5519c1c
5a4c318da814de88d7cc0138fd188cad38c65a1d
54730 F20101124_AABRIQ alkhairy_m_Page_074.jpg
2363d4b92332d6066ac10d72fb2353d9
e94be2714a7f80946331fd4b960752fc21b44c41
51206 F20101124_AABRJF alkhairy_m_Page_102.jpg
c75400c63e1a912c843e2fae50c6bb55
134fbc0df6fff6642bba0e92d73f31355d55f5b5
31696 F20101124_AABRIR alkhairy_m_Page_075.jpg
810a31079a32b6e3e464e8e8a869196b
ac650ca3c1e707fd82505e75ff826ab72e19591c
78556 F20101124_AABRJG alkhairy_m_Page_105.jpg
c8697feded9ed434009dbdc701b0e93d
c3939a2b3a3db6fec9bc46650ea10dd80449beb8
82714 F20101124_AABRIS alkhairy_m_Page_077.jpg
cdad83043e456d9acb24a1f250cf3d71
4a84995bd6061c35fabb8e5792f8d578e455b875
21957 F20101124_AABRJH alkhairy_m_Page_108.jpg
89ace13a26745e78f2b23fffabf79dfd
6af0b27d7a1a555b866950f8c308e59c1ff50d29
29875 F20101124_AABRIT alkhairy_m_Page_079.jpg
1f33fd0514fbc0dba807e89bc49dce9a
ea5e3cdde867006217c71667dc0bd3af1f961105
75709 F20101124_AABRJI alkhairy_m_Page_109.jpg
78c225910c26287445ee7ba67bca9b38
1a33ea52ec4656624033675146ad415fbc3a7cd3
55637 F20101124_AABRIU alkhairy_m_Page_082.jpg
ae04c3ee8bb3123af6c6d8b85bc65976
01de1137bef8ca5079aa12075797f218cf374297
43134 F20101124_AABRJJ alkhairy_m_Page_112.jpg
d0c4625273dbf758285d4026adfa1824
edd6abe7a3b1acd2c97f61f2c53ef5af88a3492a
31379 F20101124_AABRIV alkhairy_m_Page_083.jpg
c423c09fa733811b12751f2665f29ed8
76fb7bc5f6165473b9924f132dff3c1d37f997ba
66282 F20101124_AABRJK alkhairy_m_Page_114.jpg
6e4e015b185613901cb8b7555949e903
02de1a1b2f2ba4dcb28613a744ae3650d36ebef4
83887 F20101124_AABRIW alkhairy_m_Page_084.jpg
a776dd7d5f3867bc7851b06fe3f1b9d9
c79a8706ddb0bf4876788c1812ae83f3012c393a
74862 F20101124_AABRJL alkhairy_m_Page_115.jpg
2a7cf9ffb8722115420ac7a6754b2155
67e96ecffa8fda504859b76e79bd1fe987a52b5e
35650 F20101124_AABRIX alkhairy_m_Page_085.jpg
fec76264917ff9653f3f4e27001e703f
607c8b8e4b94db2e782c651cd5901d71fb220aed
22583 F20101124_AABRKA alkhairy_m_Page_001.jp2
e29e272a8f4ad12c626abdcc5d2870a3
20dc515f39a9d6b95ddedafd497f3c24ed146e02
80697 F20101124_AABRJM alkhairy_m_Page_119.jpg
c409fd67b39ea5dc6517d1fb033f90de
57466a32191d7705603600bf597dbeb94c48d072
31644 F20101124_AABRIY alkhairy_m_Page_091.jpg
90a05e1d1b338c5e0ba76b507f841e69
45e38b7df569af2f3a1e570a067d62d5570ecd05
6085 F20101124_AABRKB alkhairy_m_Page_002.jp2
cea8ce89a82c1f6dad358e6e1a98ec4e
e193b814c497bee49b65e1e836ea22ef2c310844
36976 F20101124_AABRJN alkhairy_m_Page_120.jpg
7949debb5cd8611f6a27a8ca1e23f130
f4ef6e123a63aa1738d404bdb2f40bddf051f46d
87533 F20101124_AABRIZ alkhairy_m_Page_092.jpg
819bb7ec24418a0600b8dfac048c46e1
5347ba839fefd37697740403c2665de115dfd015
101905 F20101124_AABRKC alkhairy_m_Page_004.jp2
4da015c5b11d631a5c9f441f998c170b
14ccfa8d999cce3208f2e7493d1b070db4d5a0e2
27664 F20101124_AABRJO alkhairy_m_Page_121.jpg
0e4535428ce18336be910ecd4e39203e
87ee8aa3799cf57ba44cb9daf8814f7945736e81
110688 F20101124_AABRKD alkhairy_m_Page_005.jp2
ac3e2c44079ba440949e7565385e164d
11efd91c5b49bc2c12f90716454bf3983fb27fef
43752 F20101124_AABRJP alkhairy_m_Page_123.jpg
5b5cf7499df96b5128eb7d6f8aa5ee60
bb96ebe193651d2038ace507faea5eff86298106
F20101124_AABRKE alkhairy_m_Page_010.jp2
b098922a8ba9ce25f8d13bc06f23cbfe
4aee3301be74dcb50be65cca77eb74e119d695a5
59341 F20101124_AABRJQ alkhairy_m_Page_124.jpg
4379a42a6afbd6e38b0e412026f0f018
e65d68338d11fe444f7fdf4ced6dd8ee18c02e19
24393 F20101124_AABRKF alkhairy_m_Page_013.jp2
444cf7932387a6f96cd0afb2c590b5ea
c539f476107e0085ee38d0e49748804fda0a11de
84257 F20101124_AABRJR alkhairy_m_Page_129.jpg
ab03d5df479f8e84e395f98880e126b4
e4a1f54861b4851ff8e009ec719c2de1acc0c484
1051983 F20101124_AABRKG alkhairy_m_Page_015.jp2
100ae18d847ea2326eace83646b832d3
18a4d771d27f0af872a3543c204aa4a75f967a63
82666 F20101124_AABRJS alkhairy_m_Page_132.jpg
78f772cd22bbead0d4b52ebbddbe5a29
07f9afbe5a240a80429bb8fafe57842ca00376c5
946133 F20101124_AABRKH alkhairy_m_Page_018.jp2
603f40d0edb12bf1a0a6c6d3b3ec4889
278d1ca0749af7d51d8cb1c022ba1661dfb5d99b
38248 F20101124_AABRJT alkhairy_m_Page_133.jpg
be4c9d97ad8663028bb8af7efb0b7f1d
3eed1b0ba000e2e59a4e8a83dde16cbeaecc2833
F20101124_AABRKI alkhairy_m_Page_019.jp2
9828bcbd9dc195a38d045b0c83facccf
3854e95a75dc5827c3f26488ae14061988b73eb5
72568 F20101124_AABRJU alkhairy_m_Page_134.jpg
f28bb6cc64715a41edc9653f6bc27c47
832b51e4a969a2799bb0a1355c1428b6854575b9
F20101124_AABRKJ alkhairy_m_Page_021.jp2
e79781f0a29a42962ed33e88e833b77e
8a3510d047db7877103a5a27a24789068fc34526
72284 F20101124_AABRJV alkhairy_m_Page_135.jpg
eb4fe5a1d204ebc9313a311b8da05326
03f7504e0988c7ebc44ec6c0a5e40076282915d5
F20101124_AABRKK alkhairy_m_Page_022.jp2
a5db74bbf0f7d6edbd4638cd78cc79c0
cda2722fc3bd929d05d750c6227f62dc71283702
75146 F20101124_AABRJW alkhairy_m_Page_136.jpg
cbde380571296ead61a77bffc6a35d3f
05f7ed5e9c6570c5cf991c71eaa2a251511321a8
1051952 F20101124_AABRKL alkhairy_m_Page_029.jp2
9f7e302419247913b0f7461456ea3aba
7cffa0d039985ae86cbe32df02e9e180de492b64
78674 F20101124_AABRJX alkhairy_m_Page_137.jpg
d80a62a5823d1a5f8d9b5ed469f512e9
e9ee57af5ab9321b68df4eea421b70288ad422dd
1051971 F20101124_AABRLA alkhairy_m_Page_063.jp2
445c23fb75afb349b8d5ac888b958bb6
0f4ca93b7f4da49a7f20d919bf65dd545abbea8e
1051950 F20101124_AABRKM alkhairy_m_Page_030.jp2
ff7342e7972402c105facb7091d81432
0770b51c61040adb5ae04fd4fd89d952f5f4bd38
38062 F20101124_AABRJY alkhairy_m_Page_139.jpg
dce481bfe17b95c6a79e22952859ff30
7c34e8a4b6fb00a88b48af2a786d39d9df818cc7
1051975 F20101124_AABRKN alkhairy_m_Page_031.jp2
2e0f02a7f0251c29af44455256c76a45
9ccf0be8b0620c00c6d4de8a4269f9fec93b92e6
33282 F20101124_AABRJZ alkhairy_m_Page_140.jpg
6336468e75a784f7c741f7e501b410db
06f019f788812bffc659a5fc9e2937d1770e7721
283844 F20101124_AABRLB alkhairy_m_Page_064.jp2
0bfea50dd51ea00e94cab120ee1b5482
c5f7ba1faa8535cf547540e825a9e37882bf06a8
F20101124_AABRKO alkhairy_m_Page_032.jp2
78bc20a7cdfeafb70656e8a84e139ba2
81f9009c62438fdffb5ceff64a95d86bec5f67a7
284996 F20101124_AABRLC alkhairy_m_Page_065.jp2
c28583c42951fa9b845ce457edaa9368
3092b77493d77afc97e5244495372f33c3c8845f
F20101124_AABRKP alkhairy_m_Page_037.jp2
fad0afb628ac8df805155133a1090201
0036dc654156ae59eaae11f8bfa0871f4df0f11a
56856 F20101124_AABRLD alkhairy_m_Page_066.jp2
28d94a3c3e8cc2306d52cf56576040b0
e05fab3f1d0e1371c653bb0de3997de031ae414b
F20101124_AABRKQ alkhairy_m_Page_040.jp2
82b3e3fc226d63e43a40be93f6bdd518
6f94682662dac8c95e18547bac0dfe193e90ba73
171199 F20101124_AABRLE alkhairy_m_Page_067.jp2
adf13c8101456f4070c330d74bdd6c35
6ea34a75ef25fb90cf2c4b29695adcf3dd168724
176107 F20101124_AABRLF alkhairy_m_Page_068.jp2
5aef1cd0b2fe5bac6336bea78f937095
5535074e6107ab19303a400a3220eedd67173eda
1051958 F20101124_AABRKR alkhairy_m_Page_041.jp2
1f51dfa7690fa81223b780cc021073d5
642ea8a912dbbc3d3cd214b61aa3a6db891f3d39
F20101124_AABRLG alkhairy_m_Page_069.jp2
ba8b1aef3b3fa50f9c5fb4b6b0b8bd95
2583957e98be6d4c27d4fdc061180a085aaa490a
108069 F20101124_AABRKS alkhairy_m_Page_044.jp2
553cbe3d651cf002bd24d2f95e284053
8055d450244f82cd4153331d6d6abdcf1efe4ef1
725344 F20101124_AABRLH alkhairy_m_Page_071.jp2
ccc153502ddb6c57a631cbbb7a75c28b
5724cfedf112737602bab1e70bc76fa0a1d5e732
F20101124_AABRKT alkhairy_m_Page_047.jp2
b5e3f184947901156b9b86b703298e6f
622a4811f1eff9dfc6c29edc0d9bb6f6b224fd6b
725329 F20101124_AABRLI alkhairy_m_Page_074.jp2
fbae8f2f271b80df36e169eeef19a112
c870e68a703c63dc8659502d45cb7e836660fb21
898472 F20101124_AABRKU alkhairy_m_Page_049.jp2
5b3fa2d68d384f5fa5d700eccd5ad294
98895e0af1cb1343ff6a8844faa54b91d7c00000


Permanent Link: http://ufdc.ufl.edu/UFE0011399/00001

Material Information

Title: Acoustic characteristics of arabic fricatives
Physical Description: Mixed Material
Language: English
Creator: Al Khairy, Mohamed Ali ( Dissertant )
Wayland, Ratree ( Thesis advisor )
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2005
Copyright Date: 2005

Subjects

Subjects / Keywords: Linguistics thesis, Ph. D.
Dissertations, Academic -- UF -- Linguistics

Notes

Abstract: The acoustic characteristics of fricatives were investigated with the aim of finding invariant cues that classify fricatives into their place of articulation. However, such invariant cues are hard to recognize because of the long-noticed problem of variability in the acoustic signal. Both intrinsic and extrinsic sources of variability in the speech signal lead to a defective match between a signal and its percept. Nevertheless, such invariance can be circumvented by using appropriate analysis methods. The 13 fricatives of Modern Standard Arabic were elicited from 8 male adult speakers in 6 vowel contexts (/i, i:, a, a:, u, u:/). The acoustic cues investigated included amplitude measurements (normalized and relative frication noise amplitude), spectral measurements (spectral peak location and spectral moments), temporal measurements (absolute and normalized frication noise duration), and formant information at fricative-vowel transition (F2 at vowel onset and locus equation). For the most part, fricatives in Arabic had patterns similar to those reported for similar fricatives in other languages (e.g., English, Spanish, Portuguese) . A discriminant function analysis showed that among all the cues investigated, spectral mean, skewness, second formant at vowel onset, normalized RMS amplitude, relative amplitude, and spectral peak location were the variables contributing the most to overall classification with a success rate of 83.2%. When voicing was specified in the model, the correct classification rate increased to 92.9% for voiced and 93.5% for voiceless fricatives.
General Note: Title from title page of source document.
General Note: Document formatted into pages; contains 140 pages.
General Note: Includes vita.
Thesis: Thesis (Ph. D.)--University of Florida, 2005.
Bibliography: Includes bibliographical references.
General Note: Text (Electronic thesis) in PDF format.

Record Information

Source Institution: University of Florida
Holding Location: University of Florida
Rights Management: All rights reserved by the source institution and holding location.
System ID: UFE0011399:00001

Permanent Link: http://ufdc.ufl.edu/UFE0011399/00001

Material Information

Title: Acoustic characteristics of arabic fricatives
Physical Description: Mixed Material
Language: English
Creator: Al Khairy, Mohamed Ali ( Dissertant )
Wayland, Ratree ( Thesis advisor )
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2005
Copyright Date: 2005

Subjects

Subjects / Keywords: Linguistics thesis, Ph. D.
Dissertations, Academic -- UF -- Linguistics

Notes

Abstract: The acoustic characteristics of fricatives were investigated with the aim of finding invariant cues that classify fricatives into their place of articulation. However, such invariant cues are hard to recognize because of the long-noticed problem of variability in the acoustic signal. Both intrinsic and extrinsic sources of variability in the speech signal lead to a defective match between a signal and its percept. Nevertheless, such invariance can be circumvented by using appropriate analysis methods. The 13 fricatives of Modern Standard Arabic were elicited from 8 male adult speakers in 6 vowel contexts (/i, i:, a, a:, u, u:/). The acoustic cues investigated included amplitude measurements (normalized and relative frication noise amplitude), spectral measurements (spectral peak location and spectral moments), temporal measurements (absolute and normalized frication noise duration), and formant information at fricative-vowel transition (F2 at vowel onset and locus equation). For the most part, fricatives in Arabic had patterns similar to those reported for similar fricatives in other languages (e.g., English, Spanish, Portuguese) . A discriminant function analysis showed that among all the cues investigated, spectral mean, skewness, second formant at vowel onset, normalized RMS amplitude, relative amplitude, and spectral peak location were the variables contributing the most to overall classification with a success rate of 83.2%. When voicing was specified in the model, the correct classification rate increased to 92.9% for voiced and 93.5% for voiceless fricatives.
General Note: Title from title page of source document.
General Note: Document formatted into pages; contains 140 pages.
General Note: Includes vita.
Thesis: Thesis (Ph. D.)--University of Florida, 2005.
Bibliography: Includes bibliographical references.
General Note: Text (Electronic thesis) in PDF format.

Record Information

Source Institution: University of Florida
Holding Location: University of Florida
Rights Management: All rights reserved by the source institution and holding location.
System ID: UFE0011399:00001


This item has the following downloads:


Full Text











ACOUSTIC CHARACTERISTICS
OF ARABIC FRICATIVES















By

MOHAMED ALI AL-KHAIRY


A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA


2005

































Copyright 2005

by

Mohamed Ali Al-Khairy















To my father who did not live to see the fruit of his work.















ACKNOWLEDGMENTS

After finishing writing this dissertation on a rainy summer night I decided

not to bother with a lengthy acknowledgment section. After all I was the one who

wrote it. Well, leaving ego and false pride aside, this work could not have been

done without the help of many. First and foremost, thanks go to The Almighty

GOD for His guidance and blessings without which graduate school would have

been a worse nightmare. My gratitude goes also to my wonderful supervisor and

mentor Dr. Ratree Wayland whose dedication to her students,', 1 ii.i- and

research is beyond highest expectations. Without her help, guidelines, constant

encouragement, and support, this work would not have been possible. Members

of my supervisory committee (Dr. Gillian Lord and Dr. Caroline Wiltshire

from Linguistics, and Dr. Rahul Shirvastav from Communication Sciences and

Disorders) were of the utmost help in the process of finishing this work.

My stay in Gainesville introduced me to many people. Most were nice and

cheerful and some one could definitively live without. I will skip the latter

group to save space. However, among such nice and wonderful people I got

to know during this journey are the wonderful students, faculty, and staff of

the Linguistics Department who were of tremendous help both personally and

academically. My special thanks and gratitude go also to Dr. Aida Bamia and Dr.

Haig Der-Houssikian from the Department of African and Asian Languages and

Literature. Their supervision, friendship, and encouragement went far beyond the

responsibilities of mentors to those of parents. For that I will be eternally grateful.

I also would like to thank my study partners, Yousef Al-Dlaigan, who was unjustly

forced to change his career, and AbdulWaheed Al-Saadi, who was brave enough









to finish his Ph.D. I regret to -; i that I am still unclear of the process of gene

transformation in strawberry and citrus. I hope though you learned from me how

to read a spectrogram. I tried my best.

Now is the fun part: thanking my friends in the phonetics lab. Listed in

chronological order of their liberation from school are Rebecca Hill, Jodi Bray,

Philip Monahan, Sang-Hee Yeon, HeeNam Park, Victor Prieto, and tM iI'ula

Shinge. Yet to feel the wonderful breeze outside Turlington basement are my great

friends Andrea Dallas, Bin Li, and Priyankoo Sarmah. I thank them for all the

cheerful moments and laughs we shared at the University of Florida. Although life

might take us into different routes, our friendship is eternal.

Although they are in a different time zone, I thank my friends on the west

cost and across the Atlantic for their great advice and emotional support, without

which long nights would definitely have been longer. I will send them my phone

bills later. I am sure that I left out some names; for those unintentionally missed I

extend my apologies and sincere thanks.

The acoustic analyses in this dissertaion were carried out in a timely manner

thanks to the existence of the wonderful free PRAAT program and the abundant

help and r-----, -Ii. from its authors and the PRAAT user community. Also, I was

extremely fortunate to escape the nightmare of typesetting using the popular-

but-not-really-friendly commercial software. I thank Ron Smith for making his

ufthesis I4TFX class freely available.

Across oceans and continents, the prayers and encouragement of my parents

and siblings were a driving force and endless motivation to finish and join them

back home. Although God had other plans for my father and older brother, I am

sure they are proud of what their prayers from high above have accomplished.

Finally, words fall short in describing my gratitude and thanks toward my wife,

Nadaa; and kids, Faisal and Farah. They have suffered through this dissertation









almost as much as I have; maybe even more. Through the many nights I spent at

the lab, they have shown endless patience, love, and understanding. I truly cannot

imagine having gone through this process without such amazing love and support.

Parts of this work were supported by a McLaughlin Dissertation Fellowship

from the College of Liberal Arts and Sciences, University of Florida.















TABLE OF CONTENTS


ACKNOWLEDGMENTS ..........

LIST OF TABLES ..............

LIST OF FIGURES ............

ABSTRACT ................

CHAPTER

1 INTRODUCTION ...........

2 LITERATURE REVIEW .......

2.1 Introduction ...........
2.2 Fricative Production ......
2.3 Acoustic Cues to Fricative Place
2.3.1 Amplitude Cues .....
2.3.2 Duration Cues ......
2.3.3 Spectral Cues ......
2.3.4 Formant Transition Cues
2.4 Studies of Arabic Fricatives .

3 METHODOLOGY .. .........


page

iv


Articulation


3.1 D ata Collection . . . . . . .
3.1.1 Participants . . . . . . .
3.1.2 M materials . . . . . . .
3.1.3 R recording . . . . . . .
3.2 D ata A analysis . . . . . . . .
3.2.1 Segmentation of Speech .. .................
3.2.2 Acoustic Analyses .. ...................
3.3 Statistical Analyses . . . . . . .

4 AMPLITUDE AND DURATION .. ..................

4.1 Amplitude Measurements .. ...................
4.1.1 Normalized Frication Noise RMS Amplitude .. ......
4.1.2 Relative Amplitude of Frication Noise .. ..........











4.2 Temporal Measurements .. .............
4.2.1 Absolute Duration of Frication Noise .....
4.2.2 Normalized Duration of Frication Noise ..

5 SPECTRAL MEASUREMENTS .. ............


5.1 Spectral Peak Location .
5.2 Spectral Moments .
5.2.1 Spectral Mean .
5.2.2 Spectral Variance
5.2.3 Spectral Skewness
5.2.4 Spectral Kurtosis


6 FORMANT TRANSITION .. ...............

6.1 Second Formant (F2) at Transition ..........
6.2 Locus Equation .. .................

7 STATISTICAL CLASSIFICATION OF FRICATIVES .


7.1 Discriminant Function Analysis
7.2 Classification Accuracy of DFA
7.3 Classification Power of Predictors
7.4 Classification Results ........

8 GENERAL DISCUSSION .. .......

8.1 Temporal Measurement .......
8.2 Amplitude Measurement ......
8.3 Spectral Measurement .. .....
8.4 Transition Information .......
8.5 Discriminant Analysis ....
8.6 Conclusion .. ............

REFERENCES .. ...............

BIOGRAPHICAL SKETCH .. .........


. . . .
. . . .
. . . .
. . . .
. . . .
. . . .















LIST OF TABLES


Table

11

41

42

51

52

53

54

61

62

7-1

7-2

7-3

7-4

7-5

7-6

7-7

7-8


Arabic Fricatives........... . . .....

Relative Amplitude: Vowel Context . .....

Mean Relative Amplitude.... . . .....

Spectral Peak Location........ . ......

Spectral Moments .................. . .....

Spectral Skewness: Significant Contrasts for Voiced Fricatives .

Spectral Skewness: Significant Contrasts for Voiceless Fricatives .

Second Formant at Transition . .

Locus Equation: Slope and y-intercept . . .

Prior Probabilities for Group Membership . .

Variance Accounted for by DFA Functions ..... . .

Overall Voiceless Classification. . .....

Cross-Validated Classification Results . .....

Overall Voiced Classification.. . .....

Cross-Validated Voiced Classification . .

Overall Voiceless Classification. . .....

Cross-Validated Voiceless Classification . .


page

3

48

53

65

72

86

86

97

101

103

104

107

107

109

109

109

110















LIST OF FIGURES
Figure page

3-1 Example of Segmentation ................ ...... 32

3-2 Segmentation of /7/ ............... ... 33

3-3 Hamming vs. Kaiser Window ................ . .35

3-4 Duration ............... ............. .. 36

4-1 Frication Noise RMS Amplitude ................ .... 43

4-2 Frication Noise RMS Amplitude: Vowel Context . . ... 44

4-3 Frication Noise RMS Amplitude: Place and Voicing . .... 45

4-4 Relative Amplitude ............... ........ .. 47

4-5 Relative Amplitude: Place and Voicing ............ .. 49

4-6 Relative Amplitude; Place and Short Vowels . . ..... 51

4-7 Relative Amplitude; Place and Long Vowels . ..... 52

4-8 Relative Amplitude: Voicing and Short Vowels . . 54

4-9 Relative Amplitude: Voicing and Long Vowels . . 55

4-10 Fricative Duration: Place and Voicing ............. .. 57

4-11 Fricative Duration: Place and Voicing Interactions . .... 58

4-12 Fricative Duration: Vowel Context ................ 59

4-13 Normalized Frication Noise: Place and Voicing . . 60

4-14 Normalized Fricative Duration: Place and Voicing Interactions . 61

4-15 Normalized Frication Noise: Vowel Context . . 62

5-1 Spectral Peak Location: Place and Voicing .............. ..66

5-2 Spectral Peak Location: Place x Voicing Interaction . ... 67

5-3 Spectral Peak Location: Place x Vowels ... . . 68

5-4 Spectral Peak Location: Place x Short Vowel Interaction ...... ..69











5-5 Spectral Peak Location: Place x Long Vowel Interaction


5-6 Spectral Mean: Place and Voicing . ..

5-7 Spectral Mean: Voice . .........

5-8 Spectral Mean: Place x Voicing Interaction .

5-9 Spectral Mean: Vowel . ..

5-10 Spectral Variance: Place and Voicing . .

5-11 Spectral Variance: Place x Voicing Interaction .

5-12 Spectral Variance: Vowel . .

5-13 Spectral Skewness: Place and Voicing . .

5-14 Spectral Skewness: Voice . .......

5-15 Spectral Skewness: Place x Voicing Interaction

5-16 Spectral Skewness: Vowel . .......

5-17 Spectral Kurtosis: Place and Voicing . .

5-18 Spectral Kurtosis: Voicing . .......

5-19 Spectral Kurtosis: Place x Voice interaction .

5-20 Spectral Kurtosis: Vowel . ........

6-1 Second Formant: Place x Voicing Interaction

6-2 Second Formant: Vowel Context . ...

6-3 Locus Equation . .............

7-1 Discrimination Plane . ..........

7-2 Discrimination Plane by Voicing . ...


.. . 75

.. . 76

. . 77

.. . 78

.. . 8 1

. . . 82

.. . 83

.. . 85

.. . 87

. . . 88

.. . 89

.. . 9 1

.. . 93

. . 94

.. . 95

. . 98

.. . 99

.. . 100

.. . 08

.. . 110















Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Phil. .. hi,

ACOUSTIC CHARACTERISTICS
OF ARABIC FRICATIVES

By

Mohamed Ali Al-Khairy

August 2005

C('!, : Ratree Wayland
Major Department: Linguistics

The acoustic characteristics of fricatives were investigated with the aim

of finding invariant cues that classify fricatives into their place of articulation.

However, such invariant cues are hard to recognize because of the long-noticed

problem of variability in the acoustic signal. Both intrinsic and extrinsic sources

of variability in the speech signal lead to a defective match between a signal

and its percept. Nevertheless, such invariance can be circumvented by using

appropriate analysis methods. The 13 fricatives of Modern Standard Arabic

(/f, 0, 6, 61, s, s', z, J, X, h, h/) were elicited from 8 male adult speakers

in 6 vowel contexts (/i, i:, a, a:, u, u:/). The acoustic cues investigated included

amplitude measurements (normalized and relative frication noise amplitude),

spectral measurements (spectral peak location and spectral moments), temporal

measurements (absolute and normalized frication noise duration), and formant

information at fricative-vowel transition (F2 at vowel onset and locus equation).

For the most part, fricatives in Arabic had patterns similar to those reported

for similar fricatives in other languages (e.g., English, Spanish, Portuguese) A

discriminant function analysis showed that among all the cues investigated, spectral









mean, skewness, second formant at vowel onset, normalized RMS amplitude,

relative amplitude, and spectral peak location were the variables contributing

the most to overall classification with a success rate of 83."' When voicing was

specified in the model, the correct classification rate increased to 92.9'. for voiced

and 93.5'. for voiceless fricatives.















CHAPTER 1
INTRODUCTION

Since the early years of speech research, studies (using various models and

methods) have focused on finding the properties that distinguish among naturally

produced speech sound. Many such studies investigated the properties of the

acoustic signal through which sound is transmitted from speaker to hearer.

However, the task is complicated by the long-noticed problem of variability in

the acoustic signal resulting in a defective match between a signal and its percept

(Liberman, Cooper, Shankweiler, and Studdert-Kennedy 1967). The production

mechanism of speech sounds, particularly fricatives, involves intrinsic sources of

variability arising from changes in the shape of the vocal tract and the rate of air

flow (Strevens 1960; Tjaden and Turner 1997). Variability in the speech signal also

arises from extrinsic sources including speaker age (Pentz, Gilbert, and Zawadzki

1979), vocal tract size (Hughes and Halle 1956), speaking rate (Nittrouer 1995),

and linguistic context (Tabain 2001). Variability in speech also is often a result of a

combination of these factors.

Withstanding the variability found in the speech signal, numerous studies

(Stevens 1985; Behrens and Blumstein 1l]' .1,, Forrest, Weismer, Milenkovic, and

Dougall 1988; Sussman, McCaffrey, and Matthews 1991; Hedrick and Ohde 1993;

Jongman, Wayland, and Wong 2000; Abd, 1 I11 i Ali, Van der Spiegel, and Mueller

2001; Nissen 2003) found invariant cues in the speech signal when the appropriate

analyses are carried out. Along this line of research, our study investigated the

defining properties of fricative sounds as produced in Modern Standard Arabic

(MS I.k).









We used Arabic fricatives for three equally important reasons. First, the

articulatory space of fricatives in Arabic spans across most of the places of

articulation in the vocal tract, starting from the lips and ending at the glottis.

Second, unlike most of the languages used in acoustic studies of fricatives,

Arabic has two unique features that serve a phonemic distinction: pharyngeal

co-articulation and segment length. Specifically, a phonemic distinction exists

between plain fricatives (/6/ and /s/) and their pharyngealized counterparts

/' / and /s'/ in Arabic. Furthermore, although governed by some phonological

distribution rules, consonant and vowel length in Arabic are phonemic. Third, most

studies on the acoustic characteristics of fricatives were conducted predominantly

with reference to English fricatives. Given the phonetic status of Arabic and

the gap in the literature due to the lack of Arabic-related research, our study is

theoretically and empirically important. Our findings will contribute generally

to the way fricative production is viewed and specifically to the way languages

differ in that respect. Further, such findings will aid speech synthesis and parsing

software related to the less-understood, yet important, Arabic language.

As mentioned, both consonant and vowel length are phonemic in Arabic.

However, to compare and contrast the performance of cues used in our study with

those reported in the literature for other languages, we examined only vowel-length

variations. The inventory of fricatives in Arabic is shown in Table 1-1. Arabic

has 11 fricatives, with only 4 pairs in voicing contrast. Also, for voiced dental

and voiceless alveolar fricatives, a pharyngealized counterpart also exists. The

voiced post-alveolar fricative /3/ was excluded, since it was articulated in most

of the elicited data as an affricate /cd/. Studies of Standard Arabic and Arabic

dialectology -ii--.- -1 that /3/ is realized as either /3, cd, g/ or /j/ depending on the

geographical region in which Arabic is spoken (K-,-,- 1972).







3

Table 1-1. Place of articulation of Arabic fricatives
Labio- Post-
dt Dental Alveolar Uvular Pharyngeal Glottal
dental alveolar
voiceless f 0 s J h h
voiced 5 z ?
/o/ and /s/ have pharyngealized counterparts /1'/ and /s'/.


Both local (static) and global (dynamic) cues have been shown to participate

in the identification of (English) fricatives. Specifically, three main acoustic features

have been examined in research aimed to distinguish fricatives: the spectral

properties of the frication noise, the relation between the frequency characteristics

of frication noise versus the vowel, and duration of frication noise. Our study

aimed to describe the acoustic characteristics of Arabic fricatives using many of

the acoustic measurements used in other related studies with specific interest in

finding cues that differentiate between plain and pharyngealized fricatives. Our

study also aimed to see if phonemic differences in vowel length affect the acoustic

cues measured. Our data were elicited from 8 male adult speakers (mean age =

20) who had no history of hearing or speaking impairments and who had limited

experience with English as a second language.

Cues investigated in our study were amplitude measurements (normalized and

relative frication noise amplitude), spectral measurements (spectral peak location

and spectral moments), temporal measurements (absolute and normalized frication

noise duration), and formant information at fricative-vowel transition (F2 at vowel

onset and locus equation). N., i i 1i. .1 amplitude is defined here as the ratio

between the average RMS amplitude (in dB) of three consecutive pitch periods

at the point of maximum vowel amplitude and the RMS amplitude of the entire

frication noise. Relative amplitude, on the other hand, is defined as the amplitude

of the frication noise relative to the vowel amplitude measured in certain frequency

regions. Spectral peak location relates the fricative place of articulation to the









frequency location of energy maximum in the frication noise. Spectral moments

analysis is a statistical approach that treats FFT spectra as a random probability

distribution from which the first four moments (mean, variance, skewness, and

kurtosis) are calculated. Spectral mean refers to the average energy concentration

and variance to its range. Skewness, on the other hand, is a measure of spectral tilt

that indicates the frequency of most energy concentration. Kurtosis is an indicator

of the distribution peakedness. Formant transitions were assessed using locus

equations that relate second formant frequency at vowel onset (F2,,,se) to that at

vowel midpoint (F2,ow,,).

Along with reporting how each of the acoustic measures mentioned above

differentiates between different places of fricatives articulation, we used a statistical

method discriminantt function analysis) to find the most parsimonious combination

of acoustic cues that distinguish among the different places of fricative articulation

and the contribution of each selected cue to the overall classification of fricatives

into their places of articulation.















CHAPTER 2
LITERATURE REVIEW

2.1 Introduction

In this chapter we review relevant literature that deals with the acoustic

characteristics that have been shown to be effective in differentiating among

fricative place of articulation and voicing in the world's languages. Given the

fact that certain fricatives that exist in Standard Arabic (e.g., pharyngealized vs.

non-pharyngealized) do not occur in other languages of the world, in this chapter,

we also discuss whether these acoustic cues will be effective in differentiating

acoustically among Standard Arabic fricatives.

2.2 Fricative Production

Fricative production is best described in terms of the source-filter theory of

speech production (Fant 1960). According to that theory, speech can be modeled

as a result of two independent components: a source signal (which could be the

glottal source, or noise generated at a compressed level in the vocal tract); and a

filter (reflecting the resonance in the cavities of the vocal tract downstream from

the glottis, or the constriction).

The basic mechanism for fricative production is that a turbulence forms in

the air flow at a point in the oral cavity. To generate such turbulence, a steady

air flow with velocity greater than a critical number1 passes through a narrow

constriction in the oral cavity and forms a jet that mixes with surrounding air in



1 This number is Reynold's Number (Re) which is a dimensionless quantity that
relates the constriction size to the volume velocity needed to produce turbulence in
the air. For speech Re > 1800 (Kent and Read 2002).









the vicinity of a constriction to generate eddies. These eddies, which are random

velocity fluctuations in the air flow, act as the source for frication noise (Stevens

1971). Depending on the nature of the constriction, frication noise can also be

generated at either an obstacle or a wall (Shadle 1990). According to Shadle,

obstacle source refers to fricatives in which sound is generated primarily at a rigid

body perpendicular to the air flow. An example is the production of voiceless

alveolar and voiceless post-alveolar fricatives (/s, J/): the upper and lower teeth,

respectively, act as the spoiler for the airflow. Such sources are characterized by

a maximum source amplitude for a given velocity. On the other hand, wall source

occurs when sound is generated primarily along a rigid body parallel to the air

flow. Spectrums of sounds generated by a wall source, like voiced and voiceless

velar fricatives (/x, y/), are characterized by a flat broad peak with less amplitude

than sounds of obstacle sources (Shadle 1990). Vibration of the vocal folds also

adds to the sources responsible for voiced fricative production.

Whatever the source, the resulting turbulence is then modified by the

resonance characteristics of the vocal tract (filter). The spectrum of the product

of such a filter represents the effect of transfer function of the vocal tract which

in turn depends on 1) the natural frequencies of the cavities anterior to the

constriction (poles), 2) the radiation characteristics of the sound leaving the mouth,

and 3) the resonant frequency of the posterior cavity (zeros). For fricatives, the

vocal tract is tightly constricted and hence the coupling between the front and back

cavities is small (Johnson 1997). Therefore, the transfer function of the vocal tract

for fricatives is largely dependent on the resonances of the front cavity. The nth

resonance can be calculated using Equation (2-1) where c is the speed of sound and

I is the length of the vocal tract. In case a strong coupling occurs between the front

and back cavities, such as when the "constriction is gradually tapered" (Kent and

Read 2002, p. 43), the resonances of the back cavity are calculated using Equation









(2-2). Resonances of the back and front cavities sharing the same frequency and

bandwidth cancel each other out.

(2n 1)c
front (2-1)

fnback = (2-2)


2.3 Acoustic Cues to Fricative Place of Articulation

Both local (static) and global (dynamic) cues have been shown to participate

with different degrees in the identification of (English) fricatives. The three main

acoustic cues that have been of most interest in the literature on fricatives are the

amplitude and spectral properties of the frication noise, the relationship between

the frequency characteristics of frication noise and those of the vowel, and the role

of duration of frication noise in distinguishing fricative place and voicing.

2.3.1 Amplitude Cues

2.3.1.1 Frication amplitude

Most studies of frication noise amplitude have focused on (English) voiceless

fricatives, and found similar results: sibilants (/s, z, f, 3/) have higher amplitude

than nonsibilants (/f, v, 0, 6/) with no differences within each class. This difference

in amplitude between sibilants and nonsibilants is predictable if one looks into the

aerodynamics of producing these fricatives. For example, to examine fricative

production mechanisms, Shadle (1985) used a mechanical model in which

constriction area, length, location can vary, and the presence or absence of an

obstacle can be manipulated. Based on results from spectra produced using such a

model, Shadle (1985) concluded that the lower teeth act as an obstacle at some 3

cm downstream from the noise source of sibilant constriction. Such configuration

results in an increase in turbulence of the airflow, which in turn causes an increase

in the sibilant amplitude. Nonsibilant fricatives, on the other hand, have no such

obstacle, resulting in very low energy levels. The difference between the sibilant









and nonsibilant fricatives with regard to frication amplitude was also found to have

auditory salience. McCasland (1979) studied the role of amplitude as a perceptual

cue to fricative place of articulation. He cross-spliced naturally spoken syllables

of English /f, 0, s, J/ and /i/ such that the fricative part in /si/ and /Ji/ was

cross-spliced to the vocalic part of both /fi/ and /Oi/. The overall amplitude of the

spliced-in frication noise was attuned to the same level of intensity as that of the

original nonsibilant fricative by reducing /s, J/ amplitude to that of /f/ and /0/.

The resulting fricative-vowel syllables sounded like /fi/ and /Oi/ when the vocalic

part of the utterance was coming from an original /fi, Oi/, respectively. These

findings led McCasland to conclude that the low amplitude of nonsibilant fricatives

was used as a perceptual cue to distinguish them from the sibilants /s, J/. However,

because of the cross-splicing method used, it is not clear whether the results can

be attributed solely to the reduction of /s, J/ amplitude. In fact, Behrens and

Blumstein (1988a) pointed out that the results of McCasland's method are not

conclusive since the method involves mismatching information from frication noise

and vocalic transition. Specifically, it is not clear whether listeners were using the

reduced noise amplitude of sibilants as a cue for nonsibilants, or they were using

transitional information in the original vocalic part of the nonsibilant to judge the

token to be /f, 0/. Listeners might be using either one of those cues, or both; and

there was no way of telling which, using the cross-splicing methodology.

One way to remedy the shortcomings of the cross-splicing method is to use

synthetic speech. Gurlekian (1981) used synthetic /sa, fa/ syllables in which the

frequency and the amplitude of the vowel were kept constant in order to test

whether the distinction between sibilant and nonsibilant fricatives could be based

solely on differences in their noise amplitude. For fricatives, the center frequency of

the noise was kept fixed at 4500 Hz, while its amplitude was manipulated to vary

relative to the fixed vowel amplitude. The central frequency used was similar to the









range at which /s/ was correctly identified 9 '-I. of the time by Argentine Spanish

listeners (i\! ,1i ,lue and Massone 1979), and within the range described for English

/s/ (Heinz and Stevens 1961). An identification test with 6 Argentine Spanish and

6 English listeners showed that both groups assigned a /fa/ percept to the tokens

with low noise amplitude and a /sa/ percept to those with high noise amplitude.

Also, Behrens and Blumstein (1988a) investigated the role of fricative noise

amplitude in distinguishing place of articulation among fricatives. Basically,

Behrens and Blumstein altered the amplitude of the frication part of CV syllables,

with the C being one of /f, 0, s, '/, while preserving the vocalic part of the

utterance. This matching was done by raising the noise amplitude of /f, 0/ to

that of /s, J/ and conversely, lowering the noise amplitude of /s, J/ to that of

/f, 0/ without substituting or changing the vocalic part of the utterance. They

found, contrary to previous studies, that the overall amplitude of the fricative noise

relative to the amplitude of the following vowel does not constitute the primary cue

for sibilant/nonsibilants distinction. Therefore, Behrens and Blumstein called for

an integration of spectral properties and amplitude characteristics of fricatives in

order to successfully discriminate among their places of articulation.

Another way to capture classification information found in frication noise

amplitude is to measure the Root-Mean-Square (RMS) amplitude of the fricative

noise normalized relative to the vowel. Jongman et al. (2000) used this method

in their large-scale study of English fricatives. Among the many measures used to

characterize fricatives, Jongman et al. measured the difference between the average

RMS amplitude (in dB) of three consecutive pitch periods at the point of maximum

vowel amplitude and the RMS amplitude of the entire frication noise. Results were

derived from 20 native speakers of American English (10 females and 10 males).

The speakers produced all 8 English fricatives in the onset of CVC syllables with

the rhyme consisting of each of six vowels /i, e, a, a, o, u/ and /p/. The authors









found that this "normalized RMS amplitude" can differentiate among all four

places of fricatives in English with voiced fricatives having a smaller amplitude

than their voiceless counterparts.

The integration of fricative and vowel amplitude as a way of normalization

was also used for automatic recognition of continuous speech. Abd. 1 i i Ali et al.

(2001) used Maximum Normalized Spectral Slope (\ NSS), which relates the

spectral slope of the frication noise spectrum to the maximum total energy in the

utterance, thus capturing the spectral shape of the fricative and its amplitude in

addition to the vowel amplitude features in one quantity. It differs, however, from

Jongman and colleagues' normalized amplitude in two v--,-i- first it uses peak

amplitude instead of RMS amplitude for the vowel and the fricative; and second, it

uses only the strongest peak of the fricative (as opposed to whole frication noise)

and normalizes that in relation to the strongest peak of the vowel (as opposed

to the average of the strongest three pitch periods). For MNSS, a statistically

determined threshold (0.01 for voiced and 0.02 for voiceless fricatives) is used

to classify the fricative as nonsibilant if MSNN falls below the threshold, and as

sibilant if it is above it. Using such criteria, Abdelatty Ali et al. obtained a !'-.

recognition accuracy of sibilant vs. nonsibilants fricatives. No further information

was given on using MSNN to classify fricatives within these classes.

2.3.1.2 Relative amplitude

Since amplitude cues from the frication noise and spectral cues of the vocalic

part in a syllable depend on each other (Behrens and Blumstein 1988a; Jongman

et al. 2000); changes in amplitude might carry more perceptual weight if the

frequency range over which such changes occur is taken into consideration. Such

integration was presented by Stevens and Blumstein (1981) as an invariant

property of speech production. They demonstrated theoretically that different

amplitude changes that occur at the consonant-vowel boundary in certain frequency









ranges are related to articulatory mechanisms associated with certain places in the

vocal tract. Therefore, listeners might be using these relational values as a cue for

the place of a consonant production. To test this claim, Stevens (1985) synthesized

sibilant/nonsibilant and anterior/nonanterior continue such that the frication noise

amplitude at certain frequency ranges on the continuum was gradually changed

from one stimuli to the other. Listeners' judgments abruptly shift from /0/ to

/s/ when the amplitude of frication noise in the fifth and sixth formant frequency

regions (F5 & F6) is increased relative to the amplitude in the same frequency

regions at vowel onset. On the other hand, listeners identified the consonant to be

/s/ rather than /J/ when the frication noise amplitude at the F3 region, relative

to F3 amplitude of the vowel, rises at the transition and as /J/ if it falls. These

findings led Stevens to hypothesize that the vowel is used as an "anchor against

which the spectrum of the fricative noise is judged or evaluated" (Stevens 1985, p.

249).

Other researchers tried to test the robustness of this feature in different

contexts. Hedrick and Ohde (1993) looked into the effect of frication duration

and vowel context on the relative amplitude and whether such changes would

affect perception of fricative place of articulation. This was done by varying the

amplitude of the fricative relative to vowel onset amplitude at F3 and F5 for the

contrast /s/-/J/ and /s/-/O/ respectively. Frication duration and vowel context

also varied. Ten adult listeners with no history of speech or hearing disorders who

successfully perceived (with 7I' accuracy) the end points of /s J/ and /s 0/

continue were asked to identify each stimulus as one member of the contrastive

pairs above. In the /s/-/J/ contrast, listeners chose more /s/ responses when

presented with lower relative amplitude and more /J/'s when presented with higher

relative amplitude. These findings held constant across the different vowel and

duration conditions and were in agreement with those obtained by Stevens (1985).









Furthermore, the additional post-fricative vowel contexts in Hedrick and Ohde's

study influenced only the magnitude of the relative amplitude effect for a given

contrast. Hedrick and Ohde claim that relative amplitude is used as a primary

invariant cue since listeners used relative amplitude information more effectively

than the context-dependent formant transitions. To further test this assumption,

Hedrick and Ohde (1993) also varied along a continuum the appropriate formant

transitions of the contrasts presented above while keeping the relative amplitude

fixed across all stimuli. The hypothesis was that if relative amplitude was indeed

a primary cue, then variation in formant transition would not affect identification

of members of the contrasting pair. Their findings indicate that for the /s/-/J/

contrast, formant transition did affect the identification of at least the end points of

the continue. For the /s/-/O/ contrast, formant transitions had a negligible effect

on the identification of the two fricatives even at boundary points.

Taken together, all these findings indicate that relative amplitude is part of

a primary cue to fricative place of articulation. Such a role becomes more salient

when the contrast involves sibilant vs. nonsibilant fricatives. Additionally, Hedrick

and Ohde (1993) findings also -i-i- -1 that formant transitions do influence the

perception of fricative place of articulation, at least among sibilants.

However, a trading relationship seems to exist between the use of the two

cues in the presence of factors obstructing an effective use of a given cue. Hedrick

(1997) found that listeners with sensorineural hearing loss relied less on formant

transition information than on relative amplitude in discriminating between English

/s/ and /f/. On the other hand, listeners with normal hearing showed the opposite

preference. This was the case even when the formant transition information was

presented at a level audible to listeners with sensorineural hearing loss.

So far, relative amplitude has been shown only to differentiate between

sibilants and nonsibilants as a class, with the exception of Jongman et al. (2000)









study, in which they found that relative amplitude, as defined by Hedrick and Ohde

(1993), also differentiates among all four places of fricatives articulation in English.

2.3.2 Duration Cues

Fricative duration measures were used in previous research mainly to

differentiate between sibilants and nonsibilants, and to assess the voicing of

fricatives. One such study was conducted by Behrens and Blumstein (1988b)

who recorded three native speakers of English producing each of the 4 English

voiceless fricatives /f, 0, s, J/ followed by one of the five vowels /i, e, a, o, u/. They

found that sibilants /s, J/ were longer than nonsibilants /f, 0/ with an average

difference of 33 ms. Also, they found no significant differences between the duration

of members of the same class. The vowel effect was found to be minimal and

only among the nonsibilant fricatives. Similar results were obtained by Pirello,

Blumstein, and Kurowski (1997). The researchers also found that alveolar fricatives

were longer on average than labiodental fricatives in English.

Jongman (1989) questioned the importance of frication noise duration as a cue

for fricative identification. He found that listeners can identify fricatives based on a

fraction of its frication noise duration. In a perception test, listeners only needed as

little as 50-ms of the initial frication noise of a naturally produced fricative-vowel

syllable to successfully classify fricatives. Although cues like amplitude or spectral

properties localized at the initial parts of the frication noise may have been used

here, it is important to note that such results undermine the significance of an

absolute duration value in classifying fricatives. Temporal features of speech can

vary as a function of speaking rate. In fact, when frication noise duration was

normalized by taking the ratio of fricative duration over word duration, Jongman

et al. (2000) found a significant difference among all places of fricative articulation

with the exception of the labiodental and interdental contrast.









Frication noise duration has also been used to assess the voicing distinction

between fricatives of the same place of articulation. Cole and Cooper (1975)

examined the role of frication noise duration on the perception of voicing in

fricatives. They found that decreasing the length of frication noise of voiceless

fricative in syllable-initial position resulted in a shift in their perception toward

their voiced counterparts. They noted also that in syllable-final position, duration

of the frication noise relative to that of the preceding vowel becomes the cue for

fricative voicing (voiced fricatives being shorter than voiceless). Similar findings

were also obtained by Manrique and Massone (1981) for Spanish fricatives /p, f,

5, s, f, 3, x, y/ in three conditions: isolated, in CV syllables, and CVCV words.

Noise duration was significantly shorter for voiced fricatives than for voiceless

fricatives in all three conditions. However, of these fricatives, only /f, 3/ and

/x, y/ are homorganic; while the other two pairs do not share the same place
of articulation (Baum and Blumstein 1987). Therefore, the reported temporal

differences in Manrique and Massone's study might have been due to factors other

than fricative voicing since, as mentioned previously, durational differences existed

between fricatives sharing the same voicing but belonging to different places of

articulation (Behrens and Blumstein 1988b). Nevertheless, Baum and Blumstein's

own experiments showed that syllable-initial voiceless English fricatives in citation

forms are longer than their voiced counterparts. However, they noted considerable

overlap in duration distributions of voiced and voiceless fricatives at all places

studied.

Using connected speech, Crystal and House (1988) also found that, on average,

voiceless fricatives in word-initial position are longer than voiced fricatives. Like

Baum and Blumstein's results, there was a considerable amount of overlap between

the duration distributions of the voiced and voiceless fricatives in connected speech.

Again, the use of duration per se as the sole cue for fricative voicing was questioned









by Jongman (1989) who found that identification of fricatives voicing was accurate

(8 :;' ) even if only 20 ms of frication noise is used. However, Jongman et al. (2000)

used a relative measure of duration to quantify its use as a cue for fricative voicing.

Normalized fricative noise duration (defined as the ratio of fricative duration over

that of the carrier word) significantly longer for voiceless than for voiced fricatives.

They also found that such differences are more apparent in nonsibilant than in

sibilant fricatives.

2.3.3 Spectral Cues

In addition to amplitude and duration, spectral properties of the frication

noise have been investigated to find cues that identify fricative place of articulation.

Among the spectral properties previously studied are spectral peak location and

spectral moments measurements.

2.3.3.1 Spectral peak location

One of the early attempts to relate the fricative place of articulation to the

frequency location of energy maximum in the frication noise was the study by

Hughes and Halle (1956). In this study, gated 50 ms windows of the frication noise

were used to produce spectra of English fricatives /f, v, s, z, f, 3/. An investigation

of the fricative spectra revealed that for some speakers a strong energy component

was located at the frequency region below 700 Hz for the spectrum of voiced

fricatives. Such energy concentration was absent at the same region for voiceless

fricatives. However, these findings were not consistent among all speakers. Based

on this inconsistency, in addition to the similarities found between the spectra

of homorganic voiced and voiceless fricatives above 1 kHz, Hughes and Halle

ruled out the use of spectral prominence as a basis for voicing distinction among

fricatives. On the other hand, the distinction of place was found to be related,

to a certain extent, to the location of the most prominent spectral peak. Hughes

and Halle found that /f, v/ had a relatively flat spectrum below 10 kHz, whereas









spectral prominence was observed for /J, 3/ at the region of 2-4 kHz, and for /s,

z/ at the region above 4 kHz. Also, they found that the exact location of the

peak for each fricative was lower for males and higher for females. Based on these

observations, Hughes and Halle concluded that the size and shape of the resonance

chamber in front of the fricative's point of constriction determine the place of

energy maximum in frication noise spectra. Specifically, they reported that the

length of the vocal tract from the point of constriction to the lips was inversely

related to the frequency of the peak in the spectrum. Thus, the spectral peak

increases as the point of articulation becomes closer to the lips. Such observations

are consistent with predictions made by the the source-filter theory of speech

production presented in section 2.2.

Strevens (1960) also looked into the use of spectral prominence to differentiate

between fricatives through examining the front (/4, f, 0/), mid (/s, J, c/) and back

(/x, X, h/) voiceless fricatives as produced by subjects with professional training in
phonetics. Based on average line spectra, Strevens found that the front fricatives

were characterized by unpatterned low intensity and smooth spectra, the mid

fricatives by high intensity with significant peaks on the spectra around 3.5 kHz

and the back fricatives by medium intensity and a marked formant like structure

with peaks around 1.5 kHz.

The results reported above for front and mid fricatives were also shown to

be perceptually valid (Heinz and Stevens 1961). Using a synthesized continuum

of white noise with spectral peaks in ranges representative of those found in /J, c,

s, f, 0/, Heinz and Stevens found that participants were consistently shifting the

identification of the fricative from /J/ to /c/ to /s/ to /f, 0/ as the peak of the

resonance frequency increased, with no distinction that could be made between /f,

0/.









Similar properties were also found for fricatives in Spanish. In their study of

Spanish fricatives, Manrique and Massone (1981) found that /s/, /f/ and /0/ have

spectral peak values comparable to the English fricatives as reported by Hughes

and Halle (1956). Furthermore, they reported finding that spectral energy in /x/

is concentrated in a low narrow frequency band continuous with the F2 of the

following vowel and that /g/ spectral frequency is concentrated at a low band

continuous with F3 of the following vowel. Manrique and Massone (1981) also

examined the identification of a subset of Spanish fricatives to see whether changes

in spectral peak location would change the way fricatives are perceived by Spanish

speakers. They synthesized 9 cascade stimuli of the middle 500 ms of each of a

deliberately lengthened /f, s, J, x/ using a set of low- and high-pass filters so that

only certain spectral zones were present for each stimuli. The unfiltered fricatives

had recognition scores ranging from 95' for /f/ and /s/, to 10i' for /J/ and /x/.

For the filtered fricatives, they found that the spectral peak location carries the

perceptual load for the identification of /s/, /J/, and /x/. However, the diffused

spectrum of /f/ was believed to be the characterizing factor of its identifiability.

Other studies of English fricatives confirmed that spectral peak location

can classify sibilants from nonsibilants as a class, and only between sibilants.

For example, Behrens and Blumstein (1988b) found that for English voiceless

fricatives, 1i ii Pr spectral peaks in ranges within 3.5-5 kHz were apparent for /s/

and within 2.5-3.5 kHz for /f/. On the other hand /f/ and /0/ appeared flat with

a diffused spread of energy from 1.8-8.5 kHz with a good deal of variability in their

spectral shape. The same pattern was also observed across age groups. Pentz et al.

(1979), for example, compared the spectral properties of English fricatives (/f,

v, s, z, J, 3/) produced by preadolescent children to that reported for adults. As

reported for adults elsewhere, they found the same pattern of energy localization

and constriction point. However, the values obtained from children in their study









were higher than those obtained for male and female adult speakers in the studies

mentioned above. This difference was attributed in large part to the differences

in vocal tract lengths. Male adult speakers have the longest vocal tract and the

lowest vocal tract resonance, while children have the shortest vocal tract and the

highest vocal tract resonance; female adult speakers fall between the two groups. In

another study, Nissen (2003) investigated, among other metrics, the spectral peak

location of voiceless English obstruents as produced by male and female speakers

of four different age groups. For the fricatives in the study, he found that "the

spectral peak decreased as a function of increased speaker i,, (Nissen 2003, p.

139). Beside being age and gender dependent, spectral peak location has also been

found to be vowel dependent (\! ,ii, and Repp 1980; Soli 1981) and highly variable

for speakers with neuromotor dysfunction (Chen and Steven 2001) due to their lack

of control over articulatory muscles.

However, in contrast to all the studies mentioned above, Jongman et al.

(2000) found that across all (male and female) speakers and vowel contexts, all

four places of fricative articulation in English were significantly different from

each other in terms of spectral peak location. Further, they found spectral peak

location to reliably differentiate between /0/ and /6/ and between /f/ and /v/.

The researchers justified the use of the larger analysis window they adopted in their

study, as compared to other studies, as a way to obtain better resolution in the

frequency domain at the expense of temporal domain resolution. They argue that

such a compromise is advantageous due to the stationary nature of frication noise.

In summary, spectral peak location for the fricatives increases as the

constriction becomes closer to the open end of the vocal tract. Also, spectral peak

for back fricatives shows a formant-like structure similar to the following vowel.

Both of these generalizations can be accounted for by the source-filter theory of

speech production. Fricatives are characterized by turbulent airflow through a









narrow constriction in the oral cavity, with the portion of the vocal tract in the

front of the constriction effectively becoming the resonating chamber. For long

and narrow constrictions, like fricatives, the acoustic theory of speech production

predicts that the only present resonance components in the spectrum are those

related to the area in front of the constriction due to lack of acoustic coupling

from the cavity behind the constriction (Heinz and Stevens 1961). The size of the

resonating cavity, therefore, can be inversely correlated with the frequency of the

most prominent peak in the spectrum (Hughes and Halle 1956). As a result of this

correlation, fricatives produced at or behind the alveolar region are characterized

by a well-defined spectrum with peaks around 2.5-3.5 kHz for /f, 3/ and at 3.5-5

kHz for /s, z/. However, due to the very small area in front of the constriction,

fricatives produced at the labial or labiodental area are characterized with a

flat spectrum and a diffused spread of energy between 1.5 and 8.5 kHz. Since

nonsibilant production creates a cavity in close proximity to the open end of the

vocal tract, different degrees of lip rounding (Shadle, Mair, and Carter 1996), and

the additional turbulence produced by the air stream hitting the teeth (Strevens

1960; Behrens and Blumstein 1988a) will introduce a great amount of variability

in the location of the energy concentration. On the other hand, sibilants usually

have a clearly defined spectral peak location. However, for speakers with limited

precision over the placement of the constriction (C'!, i1 and Steven 2001), such

variability also exists for sibilants.

2.3.3.2 Spectral moments

Spectral moments analysis is another metric that has been used for fricative

identification. Unlike spectral peak location analysis, this statistical approach

captures both local (mean frequency and variance) and global skewnesss and

kurtosis) aspects of fricative spectra. Spectral mean refers to the average energy

concentration and variance to its range. Skewness, on the other hand, is a measure









of spectral tilt that indicate the frequency of the most energy concentration.

Skewness with a positive value indicates a negative spectral tilt with energy

concentration at the lower frequencies, while negative skewness is an indication of

positive tilt with energy concentration at higher frequencies (Jongman et al. 2000).

Kurtosis is an indicator of the distribution's peakedness.

One of the early applications of spectral moments to classify speech sounds

was the study by Forrest et al. (1988) on English obstruents. For the fricatives

in that study, Forrest et al. generated a series of Fast Fourier Transforms (FFT)

using a 20 ms analysis window with a step-size of 10 ms that started at the

obstruent onset through three pitch periods into the vowel. The FFT-generated

spectra were then treated as a random probability distribution from which the

first four moments (mean, variance, skewness, and kurtosis) were calculated.

The spectral moments obtained from both linear and Bark scales were entered

into a discriminant function analysis in an attempt to classify voiceless fricatives

according to their place of articulation. Classification scores, on both scales, were

good for the sibilants /s/ and /f/ with 85'. and 95'. respectively. The nonsibilants,

on the other hand, were not as accurately classified using any moment on either of

the two scales (5-'~. for /0/ and 7.' for /f/). Subsequent implementations of the

spectral moment analysis tried to extend or replicate Forrest et al. approach with

some modifications. The study by Tomiak (1990) of English voiceless fricatives,

for example, used a different analysis window (100 ms) at different locations of

the English voiceless frication noise. Like in previous research, spectral moments

were successful in classifying sibilants and /h/ data. In the case of nonsibilants, it

was found that the most useful spectral information is contained in the transition

portion of the frication. Additionally, in contrast to Forrest et al., Tomiak found an

advantage for the linearly derived moment profiles over the Bark-scaled ones.









Spectral moments were also used by Shadle et al. (1996) to classify voiced

and voiceless English fricatives. The study involved spectral moments measured

from discrete Fourier transform (DFT) analyses performed at different locations

within the frication noise and at different frequency ranges. They found that

spectral moments provided some information about fricative production but did not

discriminate reliably between their different places of articulation. Furthermore,

their results indicated that spectral moments are sensitive to the frequency range

of the analysis. However, the moments were not sensitive to the analysis position

within the fricative. Similar results were also obtained for children (Nittrouer,

Stiddert-Kennedy, and McGowan 1989; Nittrouer 1995). The use of spectral

moments as a tool to distinguish between /s/ and /J/ was also extended to atypical

speech and found to be reliable. Tjaden and Turner (1997), for example, compared

spectral moments obtained from speakers with amyotrophic lateral sclerosis (ALS)

and healthy controls matched for age and gender and found that the first moment

was significantly lower for the ALS group. Tjaden and Turner -i-i-- -1 I 1 that the

low means values found among ASL speakers can be attributed to difficulties they

face at making the appropriate degree of constriction required to produce frication,

or to a weaker subglottal sound source due to weak respiratory muscles that are

common with ASL speakers.

The studies mentioned so far demonstrate the ability of spectral moments

to distinguish sibilants from nonsibilants as a class and that they can reliably

distinguish only among sibilants. However, contrary to the studies mentioned

above, Jongman et al. (2000) found that spectral moments were successful in

capturing the differences between all four places of fricative articulation in English.

Jongman et al. study, however, differs from other studies in that it calculated

moments from a 40 ms FFT analysis window placed at four different places in

the frication noise (onset, mid, end, and transition into vowel) and that it uses a









larger and more representative number of speakers and tokens (2880 tokens from

20 speakers) as compared to a smaller population in other studies. Across moments

and window locations, variance and skewness at onset and transition were found

to be the most robust classifiers of all four places. Also, on average, variance was

shown to effectively distinguish between voiced and voiceless fricatives with the

former having greater variance.

2.3.4 Formant Transition Cues

2.3.4.1 Second formant at transition

Early research on formant transition focused on perceptual usefulness of such

information in classifying speech sounds. For example, Harris (1958) recorded the

English fricatives /f, v, 0, 5, s, z, f, 3/ followed by one of each of the vowels /i,

e, o, u/. Then she spliced and recombined vocalic and frication partitions of all

CV combinations. Listeners correctly identified sibilant fricatives regardless of

the source of the cross-spliced vocalic part. Frication noise alone was sufficient for

correct identification of sibilant fricatives. On the other hand, among nonsibilant

fricatives, a correct identification as /f, v/ occurred only when the vocalic part was

matching (i.e. coming from a /f, v/ syllable), and as /0, 6/ with mismatching

vocalic parts. Based on these identification patterns, Harris -Ii.-.- -1. 1 that

the perception of fricatives occurs at two consecutive stages. In the first stage,

cues from frication noise alone determine whether the fricative is a sibilant or

nonsibilant. If sibilant is the determined class, then cues from the frication

noise alone will differentiate among the sibilant fricatives. However, if the class

is determined to be nonsibilant at the first stage, then the formant transition

information is used for the within-class classification. As was the case with cross-

splicing methods previously mentioned (section 2.3.1.1), this method also does not

eliminate the possibility of dynamic coarticulatory information from being colored

into the precut vowel and/or fricative. It is not clear, therefore, that the results









obtained can be attributed solely to the mismatching vocalic part of the cross-

spliced signal. To overcome this problem, Heinz and Stevens (1961) synthesized

stimuli consisting of white noise of varying frequency peaks, similar to peaks found

in English fricatives, followed by four synthetic formant transition values. Listeners

were instructed to label these stimuli as one of the four voiceless English fricatives

/f, 0, s, f/. Based on identification scores, the researchers concluded that /f/ is

distinguished from /0/ on the basis of the F2 transition in the following vowel.

There was no apparent effect of formant transition on the distinction between /s/

and /f/. These findings support those of Harris (1958), while using more controlled

stimuli.

The role of formant transition, however, was not found to be as crucial in other

studies. LaRiviere, Winitz, and Herriman (1975) used the fricative noise in its

entirety in a perceptual test and obtained high recognition scores for /s, J/, lower

scores for /f/ and poor scores for /0/. More importantly, when vocalic information

was included for the /f, 0/ tokens, no significant increase in their recognition was

obtained. Other studies ( \!ioi ique and Massone 1981; Jongman 1989) also found

similar results using different methods.

The perceptual experiments thus far mentioned used a forced-choice technique

that might have biased participants' responses. For that reason Manrique and

Massone (1981) used a tape splicing paradigm to study the effect of formant

transition on the perception of Spanish fricatives by Spanish listeners. They

constructed their stimuli by splicing CV syllables into their respective frication

and vowel parts. Listeners were asked to choose the fricative when presented with

the frication noise alone and to freely guess the sound that preceded the vowel

when presented with the vocalic part. In the latter case, most token were judged

(85'. of the responses) to have been preceded with a stop sharing the same place

of articulation as the spliced fricative. Spanish fricatives with no stops sharing









the same place of articulation were perceived as /t/, with the exception of /f/

which was perceived as /p/ 50', of the times. The same listeners were able to

identify the fricative accurately from only the frication part in all cases except

for /x/ and /y/. However, another study found that formant transition was not

crucial for correct identification of fricatives (Jongman 1989). Based only on the

frication noise part of fricative-vowel syllables, Jongman (1989) achieved correct

(9'"- ) fricative identification in a perceptual experiment of English fricatives. More

importantly, there was no significant increase in identification accuracy when the

entire fricative-vowel syllable was presented.

As with results obtained from synthetic speech, measures of formant transition

from naturally produced fricatives are also conflicting. Wilde and Huang (1991), for

example, measured the F2 at the vowel onset for fricatives of only one male speaker

and found that the F2 value did not differentiate systematically between /f/ and

/0/. However, in another study, Wilde (1993) found that transitional information

as measured by F2 value at the fricative-vowel boundary can be used to identify

fricative place of articulation. The measurement she obtained from two speakers

showed that as the place of constriction moves back in the vocal tract, the value of

F2 systematically increases and its range becomes smaller.

2.3.4.2 Locus equations

Locus equations provide a method to quantify the role of formant transition

in the identification of fricative place of articulation by relating second formant

frequency at vowel onset (F2oNSET) to that at vowel midpoint (F2vowEL). Locus

equations are straight line regression fits to data points formed by plotting onsets

of F2 transitions along the y axis and their corresponding vowel nuclei F2 along

the x axis in order to obtain the value of the slope and y-intercept. This metric

has been used primarily to classify English stops (Lindblom 1963; Sussman et al.

1991). It was only recently that this measure was applied to fricatives. Fowler









(1994) investigated the use of locus equations as cues to place of articulation across

different manners of articulation including the fricatives /v, 6, z, 3/ as spoken

by five males and five females speakers of English. In this study, Fowler found

that locus equations (in terms of slope and y-intercept) of a homorganic stop and

fricative were significantly different, while those of a stop and a fricative of different

place of articulation were significantly similar. Nevertheless, locus equations were

able to differentiate between members that share the same manner of articulation.

Slopes for fricatives /v, 6, z, 3/, for example, were significantly different (slopes

of 0.73, 0.50, 0.42, and 0.34 respectively). In another study, Sussman (1994)

investigated the use of locus equations to classify consonants across manners of

articulation (approximants, fricatives, and nasals). In contrast to Fowler (1994),

he found that fricatives were not distinguishable based on the slope of their locus

equations. Only /v/ had a distinctive slope.

Results of other studies of English fricatives were similar to those of Sussman

(1994). For example, in their large-scale study of English fricatives, Jongman et al.

(2000) calculated the slope and y-intercept for all English fricatives in six vowel

environments. Specifically, Jongman and colleagues measured F2oNSET and F2VOWEL

from a 23.3 ms full Hamming window placed at the onset and midpoint of the

vowel respectively. This was the same method used by the previously mentioned

studies. Similar to Sussman (1994), Jongman et al. (2000) found that only the

slope value for /f, v/ was significantly different and that the y-intercept were

distinct only for /f, v/ and /f, 3/. Locus equations are particularly of interest

here since they have been shown to work across languages (Sussman, Hoemeke,

and Ahmed 1993), gender (Sussman et al. 1991), speaking style (Krull 1989), and

speaking rate (Sussman, Fruchter, Hilbert, and Sirosh 1998).









2.4 Studies of Arabic Fricatives

The use of acoustic cues to distinguish between the different fricatives in

Arabic has been underinvestigated in the literature. Furthermore, the very few

studies dealing with acoustic characteristic of Arabic fricatives (see below) have

been predominantly concerned with a single acoustic feature and not with the

way multiple cues can be integrated in order to distinguish among the fricative

place of articulation. While some of the cues mentioned above seem to distinguish

with a relatively good accuracy between English fricatives, the same cues when

used to classify Arabic fricatives need to take into account acoustic characteristics

particular to Arabic. For example, unlike English, Arabic utilizes durational

differences of both vowels and consonants for phonemic distinctions. It is of

interest, therefore, to see how such durational property would affect voicing and

place classification of Arabic fricatives. Another interesting feature of Arabic is the

existence of co-articulated (pharyngealized) fricatives that are phonemically distinct

from their plain counterparts. Due to their double articulation mechanism, it is

expected in our study that pharyngealized fricatives will have two patterns of peaks

emerging at the middle and near the end of frication. Therefore, it seems necessary

to use a second analysis window at the end of frication noise such that its right

shoulder is aligned with the end of frication noise. Additionally, the two window

locations are -,r -.-- -I 1 because studies of spectral peak location have demonstrated

that high frequency peaks are more likely to emerge at the middle and end of

frication noise (Behrens and Blumstein 1988b). Also, the frequency of the most

prominent peak for the pharyngealized fricatives is expected to be lower than their

plain counterparts because of acoustic coupling resulting from co-articulation.

Spectral moments seem to be another promising technique in classifying

Arabic fricatives if the proper size and location of the analysis windows are used.

In fact, in a study of fricatives in Cairo Arabic, Norlin (1983) found that /s,









s', z, z'/ are characterized by a sharp peak in higher frequencies, and that the

peak of /s', z'/ are broader than /s, z/. Norlin used Center of Gravity (COG)

and dispersion as v--i of quantifying the location of the peak and the spread of

the dispersion respectively. Therefore, it seems that a combination of spectral

mean and variance along with skewness measures would differentiate between

pharyngealized and plain fricatives.

The use of formant transition information was investigated in the literature

in relation to the fricatives articulated at the back of the oral cavity. For example,

El-Halees (1985) found that the Fl value at the transition differentiates between

uvular and pharyngeal fricatives with the former being lower. Also, he found

that listeners can differentiate between the two classes based only on this single

feature. The perceptual salience of FlONSET was also demonstrated by Alwan (1989),

who used synthetic speech to test the discrimination between voiced pharyngeal

fricative /?/ and voiced uvular fricative /x/. She found that the higher FlONSET

for the pharyngeal was essential to make the distinction, while F2oNSET was not.

The relation between back articulation and high Fl was also attested for vowels

following such sounds. Z i .V- i', (1997) found that Fl at the middle of the vowel

was raised when preceded by one of the gutturals /s', h/ or the glottal /h/ as

compared to non-gutturals.

In addition to first and second formant at transition, locus equations were

also used as a classification metric for Arabic. The first attempt was part of a

cross-linguistic study of locus equations as a cue for stops place of articulation.

Sussman et al. (1993) recorded the voiced stops /b, d, d', g/ as produced by

three speakers of the Cairene dialect of Arabic. They found that both slope and

y-intercept for almost all comparisons were significantly different except for the

slope of /d/ and /d'/, and the y-intercept for /b/ and /g/. The second study

was conducted by Yeou (1997) who elicited both stops and fricatives from nine









Moroccan subjects. Yeou found that y-intercept and slope distinguished between

most fricative comparisons. However, neither slope nor y-intercept distinguished

/f/ from /h/ or /f/ from /X/. More importantly, locus equation slopes were able

to group pharyngealized (/7', s'/) together as a distinct group differing from

their non-pharyngealized counterparts and other fricatives with distinctly low

y-intercepts and flat slopes. Yeou argued that unlike their plain counterparts,

pharyngealized fricatives resist the articulatory effects of the following vowel due

to their double articulation. Instead they induce their coarticulatory effect on

the following vowel by raising its Fl and lowering its F2. This change in F2, as

compared to plain fricatives, causes the slope to be flatter and the intercept to be

lower.

To summarize, several acoustic cues related to spectral, temporal and

amplitude information found in the speech signal were used in different languages

to classify fricatives into their places of articulation. Such cues, alone and

collectively, served to distinguish between different places/classes of fricatives

in English. Howeve, the use of these cues to classify Arabic fricatives has not

received much attention. In our study we attempt to examine how each of the

spectral, temporal and amplitude characteristics mentioned in Sections (2.3)

would serve alone and collectively to distinguish between place of articulation of

Arabic fricatives. Additionally, of particular importance to our study is to see if

the acoustic cues found to be effective in fricative classification in other languages

will be affected by the vowel length differences present in Arabic; and if such cues

would distinguish between plain and pharyngealized fricatives. In the following

chapter, we will discuss how such cues are investigated and the modifications

implemented in the measurements techniques if any.















CHAPTER 3
METHODOLOGY

Several spectral, amplitude, and temporal measurements have been used

in previous research to describe the acoustic cues that characterize fricatives in

different languages. The current study investigated Arabic fricatives to find such

acoustic cues. This chapter describes the way in which the speech samples were

elicited, recorded and analyzed. For most of the acoustic analyses, this research

followed the procedures commonly used to study fricatives in English as illustrated

in Jongman et al. (2000). Certain modifications were applied to further investigate

characteristics particular to Arabic. All coding and data analysis was carried

out using the PRAAT software (Boersma and Weenink 2004) and a set of scripts

developed at the phonetics lab of the University of Florida by the author.

3.1 Data Collection

3.1.1 Participants

A group of eight adult male speakers of Modern Standard Arabic (ilSA)

were recruited to participate in our study from the general undergraduate student

population of King Saud University1. The mean age of participants was 20 years.

They did not have any history of hearing or speaking impairments, and all had a

very limited experience with English as a second language. Participants were given

class credit by their instructors for participating in the study.



1 King Saud University, Riyadh, Saudi Arabia









3.1.2 Materials

There is a gap that exists in Arabic between MSA and its vernacular varieties.

Arabic has been known as a traditional example of diglossia in which two varieties

of the language are used to fulfill different communicative functions (Ferguson

1959). Although participants were all fluent speakers of MSA, additional care

was taken in eliciting speech material in order to ensure that the participants

would stay within the target MSA register. Therefore fricatives were elicited

using screen prompted speech in conjunction with prerecorded audio prompts. A

trained phonetician, who is also a fluent speaker of MSA, produced CVC syllables

where the initial consonant was a MSA fricative /f, 0, ', s, s', z, J, X, T, ,

h/ followed by each of the six vowels /i, i:, a, a:, u, u:/. The final consonant was

ahv-b-l- /t/. Each resulting word was repeated three times to yield a total of 234

audio prompts (13 fricatives x 6 vowels x 3 repetitions). The recorded prompts

were then edited to be of equal length (- 1 second) by adding silence to the end

if needed. The written prompts were constructed using fully vowelled Arabic

orthography on a white background. The participants were instructed to repeat

the word presented in the carrier phrase "qul ____ marratajn" (-i- ____ twice); with

the audio prompt functioning only as a reference. The prompts were presented

randomly in blocks of 39 words with breaks between blocks. Before the actual

recording of any participant, a practice session with 10 words presented in two

blocks was conducted to familiarize the participants with the task.

3.1.3 Recording

The recording was carried out using the facilities of the Computer &

Electronics Research Institute at KACST2. Two .,Ii lent sound-attenuated

booths with a monitoring window between them hosted the data collection process.


2 King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.









In one booth a PC computer running Microsoft PowerPoint was used to present

the synchronized audio-written production prompts via an LCD screen affixed to

the outside of the monitoring window of the other booth. The text was shown on

the LCD screen while the synchronized audio prompt was fed through headphones

(Sennheiser N. .i-, ird mobile HDC 451). A Kay Elemetrics CSL (Computer

Speech Lab) model 4300B which was connected to another PC computer was

used for in-line recording of the participants' utterances. It should be pointed out

that anti-aliasing is carried out automatically during data capture through CSL

external module. All recordings were done at 22.05 kHz sampling rate and 16 bit

quantization. The participant's production of the word in the carrier phrase was

captured using a low-impedance, unidirectional head-worn dynamic microphone

(SHURE SM1OA) positioned about 20 mm to the left of the participants' mouth in

order to prevent direct air flow turbulence from impinging on the microphone.

Each word lasted 4 seconds on the screen and then the following word was

shown. In case a participant did not produce the word in the allocated time or

a mispronunciation occurred, the recording was stopped by the author and that

particular word was presented again.

Each block was saved to a separate sound file for easy manipulation. The

resulting sound files were then transferred into PRAAT for segmentation and further

analyses.

3.2 Data Analysis

3.2.1 Segmentation of Speech

Both a wide-band spectrogram and a waveform display were used in the

segmentation of the recorded material into the monosyllabic words containing

the test fricatives. For each token, four points were identified on the waveforms:

the beginning of frication, the offset of fricative/beginning of the vowel, the end

of the vowel, and the end of word. For all these points the nearest zero-crossing









was ah--iv- used. Fricative onset was taken to be the point in time at which high-

frequency energy appeared on the spectrogram and/or a significant increase in

zero-crossings rate occurred. The offset of the voiceless fricative was taken to be

the point of minimum intensity preceding the periodicity of the vowel. For the

voiced fricatives, the offset was taken to be the zero-crossing of the pulse preceding

the earliest pitch period exhibiting a change in the waveform from that seen

throughout the initial frication (Jongman et al. 2000). The vowel offset was taken

to be the end of periodicity while the end of the segmented token was taken to be

the onset of stop burst release. Figure 3-1 shows an example of these points. The

time indices of the segmentation points were written to a PRAAT TextGrid file. Such

files make it easier to handle the signal independently from the segmentation data

and labels.


Fricative onset Fricative offset Vowel offset Stop release


Figure 3-1. Example of Segmentation









The only exception to the above mentioned general rules was with the voiced

pharyngeal fricative /7/, where it was difficult to visually localize the fricative-

vowel boundary. Pharyngeal fricative /7/ is known to have a formant-like structure

continuous with that of the following vowel, with the lowest frequency of the

fricative matches that of the second formant of the following vowel (Johnson

1997). Therefore, the frication offset for /7/ was taken to be the point at which

an upwards intensity-shift occurred with reference to the intensity of the fricative

onset. Such point indicates the shift from low intensity founds in the frication

noise towards the higher intensity of the vocalic part. Figure 3-2 shows an example

of the segmentation of /7/. Due to the absence of voicing during frication, such

modification in segmentation criteria was not necessary for either /h/ nor /h/.


Figure 3-2. Segmentation of /7/. The dotted line shows the intensity level.









3.2.2 Acoustic An i1.- -,

All measurements described below were obtained using scripts written by the

author for the PRAAT program. All measurements were then entered into a MySQL

database for later querying and statistical analyses. For spectral analyses based

on fast Fourier transform (FFT), a double-Kaiser window was used. A window

is a frequency weighting function applied to the time domain data to reduce

the spectral leakage associated with finite-duration time signals. This process is

achieved by applying a smoothing function that peaks in the middle frequencies

(forming a main lobe) and decreases to near zero at the edges (forming side lobes),

thus reducing the effects of the discontinuities as a result of finite duration. The

ideal window is one that has a narrow main lobe and low sidelobes (Harris 1978).

However, there is a tradoff relationship between these two characteristics as

narrowing the main lobe introduces many levels of sidelobes and vice versa.

Traditionally, in speech research, Hamming and Hann windows were used

for spectral analyses. However, the more optimum Kaiser window is used in our

study. The Kaiser window is the best approximation to a Gaussian window given

a certain ratio between physical length and effective length. More precisely, when

weighting is used, a Kaiser window of double physical length is applied to the

signal (Boersma and Weenink 2004). Such windowing function produces similar

bandwidth as compared to a Hamming window with comparable effective width.

However, with a Hamming window, we end up with sidelobes of about -42 dB on

each side of the main lobe while such windowing artifacts are at a level of -190 dB

for the Kaiser window (Figure 3 3). Most speech analysis software uses a Hamming

(or Hann) window because evaluating a Kaiser window as explained above is slower

by a factor of two since the analysis is performed on twice as many samples per

frame. With modern computers, such speed/performance tradeoff is minimal and

hence the adaptation of the weighting function for our study.











80- 80-


I I
main lobe

60- 60-
) side lobes
o I

I I
O 40- ) 40-




980 1020 980 1020
Frequency (Hz) Frequency (Hz)
A B

Figure 3-3. Two Window functions. A)The 0.1-seconds Hamming Window. B)The
0.2-seconds Kaiser Window.


Pre-emphasis of each spectral analysis interval was carried out in order to

correct for the -6 dB per octave falloff in production of voiced speech. This falloff

is a result of the 12 dB per octave decrease due to excitation source and 6 dB per

octave increase due to the radiation compensation at the lips. With pre-emphasis

applied, the flattened spectrum would be a function of the vocal tract alone. Pre-

emphasis was applied as described in the PRAAT manual as a filter changing each

sample xj of the sound (except for xi) starting from the last sample according

to Equation (3-1) where At is the sampling period of the sound and F is the

frequency above which the change is applied. In our study a was set to 0.98 and F

to 50 Hz. The pre-emphasis filter was applied to the signal before windowing.


a = exp (-2 O F At) (3)
xj = x axj-1









3.2.2.1 Duration

Three temporal measurements were extracted based on the segmentation

criteria mentioned above: fricative, vowel and word duration. Since different tokens

of the same fricative included different stop burst durations, word duration was

measured from fricative onset to the point where the release of stop burst is visible

on the spectrogram (Figure 3-4).

















Fricative
Vowel
Word

Figure 3-4. Duration

3.2.2.2 Spectral Moments

Spectral Moments measurements were modeled after those of Forrest et al.

(1988) with the window length modification employ, l1 by Jongman et al. (2000).

After pre-emphasis is applied to the signal, FFT spectra were calculated from

four different locations in the fricative with a 40 ms double-Kaiser window. The

first three windows were aligned so that the first covered the initial 40 ms of the

fricative, the second the middle 40 ms and the third the final 40 ms of frication

noise. The fourth window was centered over the fricative-vowel boundary so that

it covered 20 ms of each, capturing any transitional information. The analysis









windows may or may not overlap based on the length of the frication noise.

Following Forrest et al. (1988), each FFT was treated as a random probability

distribution from which the first four moments (mean, variance, skewness, and

kurtosis) were calculated. Only moments from linear spectra were calculated since

previous research on fricatives (Jongman et al. 2000) reported that there was no

substantial difference between the linear and bark-transformed spectra. The PRAAT

program measures the first moment (center of gravity) as in Equation (3-2) where

S(f) is the complex spectrum, f is the frequency and the denominator is the
energy. The quantity p was set to 2 in order to weigh the average frequency by the

power spectrum (not by the absolute spectrum).
r f S(f)| df (3

f IS(f)lPdf

The other three moments were first calculated using Equation (3-3) where n

denotes the nth moment. To normalize skewness with regard to different levels of

variance, the product of Equation (3-3), with n = 3, was divided by 1.5 power of

the second moment. Likewise, to normalize kurtosis, the product of Equation (3-3),

with n = 4, was divided by the square of the second moment and then a value of 3

was subtracted (Forrest et al. 1988).

r (f fc)" IS(f)p df (3
j IS(f)lPdf

3.2.2.3 RMS Amplitude

Root-Mean-Square (RMS) amplitude in dB was measured from the entire

frication noise. Since different speakers and recording sessions may result in

different intensities, direct measures of amplitude cannot be compared across

speakers. Therefore, fricative amplitude was normalized using the method

described by Behrens and Blumstein (1988b). Basically, the average RMS

amplitude (in dB) of three consecutive pitch periods at the point of maximum









vowel amplitude was subtracted from the RMS amplitude of the entire frication

noise. In PRAAT, RMS amplitude was given in units of Pascal and were then

changed into dB following Equation(3-4).



RMS Amplitude dB 20 x logo0 Amplitude1psc (3-4)
2 x 10.5

3.2.2.4 Spectral Peak Location

Spectral Peak Location of the fricative was estimated using a 40 ms double-

Kaiser window positioned over the middle of the frication noise. The analysis

window was set this large in order to gain better frequency resolution (Jongman

et al. 2000). Another window was placed at the end of the frication noise such

that its right shoulder was aligned with the end of frication noise. The two window

locations were used because studies of spectral peak location have demonstrated

that high frequency peaks are more likely to emerge at the middle and end of

frication noise (Behrens and Blumstein 1988a). Further, as explained in Section

(2.3.3.1), it is anticipated that two patterns of peaks will emerge: one at middle of

the frication noise and the other at the end of the co-articulated pharyngealized

fricatives due to their coarticulatory nature. After applying pre-emphasis and

windowing, an FFT spectrum was derived. A script written for PRAAT searched

each spectrum to find the highest amplitude peak and its associated frequency. As

before, the amplitude was converted into dB using Equation (3-4).

3.2.2.5 Relative Amplitude

Relative Amplitude was measured as described in Hedrick and Ohde (1993)

and later in Jongman et al. (2000) with one more modification. An FFT spectrum

was derived at vowel onset with a 23.3 ms double-Kaiser window. The mean value

of the first six formants in the windowed selection were estimated based on the

FFT spectrum. Each spectrum was then filtered using a pass-band Hann filter to









isolate regions of the second, third and fifth formants based on the mean values

obtained above. Each region spanned from the mean frequency of the target

formant to half the distance to the two .,.i ,i:ent formants. A schematic example of

the upper and lower limits of such region is presented in Equation (3-5).

maxFE = meanFi + [(meanFi meanFi_,)/2] (35)
minFi = meanF [(meanFi+1 meanFi)/2]

A script written for PRAAT searched each frequency region of the spectrum

to find its spectral peak and associated amplitude as mentioned in Section 3.2.2.4

above. Similar to previous research with (English) fricatives, spectral peak at the

F5 region was used for non-sibilant fricatives /f, 0, 6/ and spectral peak at F3

region for sibilant fricatives /s, z, J/. However, for the remaining fricatives (/Z, B,

7, h, s', o'/), spectral peak of the F2 region was used.

Another FFT spectrum was derived at the middle of frication noise and

subsequently filtered into frequency regions based on the frequency of amplitude

peaks of F2, F3 and F5 regions of the vowel. Each region spanned 128 Hz on

each of the two sides around the vowel's frequency regions. The amplitude of the

spectral peak in the said regions was measured using the same procedure outlined

above for the vowel. Relative amplitude was then defined for each frequency region

as the ratio between fricative amplitude and vowel amplitude at that frequency

range. Ratios in log scale are expressed as the difference between the two values.

3.2.2.6 Locus Equations

Following previous research on locus equations (for example Sussman et al.

1991, 1993; Fowler 1994; Sussman 1994; Yeou 1997; Goviind l li i- 1998; Jongman

1998; Jongman et al. 2000; Tabain 2002), coefficients of locus equations were

derived from scatterplots of F2 values measured at vowel onset and vowel nucleus

for each speaker and place of articulation combination. Specifically, the second

formant at vowel onset as well as at the middle of the vowel were estimated using









the formant tracking procedure implemented in PRAAT. At first, the sound was

resampled to 10 kHz and then pre-emphasized using the algorithm mentioned

above Equation (3-1). After a Gaussian-like window of 25 ms length was applied to

the signal, the LPC coefficients were calculated for each analysis window using the

algorithm by Burg, as given in Anderson (1978) and Press, Flannery, Teukolsky,

and Vetterling (1992). For each speaker and place combination, linear regression

fits were applied on scatterplots with F2 averaged across all vowel contexts. Each

scatterplot had F2 measured at the onset of the vowel represented on the y-axes

and F2 measured at the mid-point of the vowel represented on the x-axes. The

coefficients of each regression line (the slope 'k' and the y-intercept 'c') were taken

to be the terms of locus equations.

3.2.2.7 F2 at Transition

Second Formant at the transition was also measured from the first window (at

vowel onset) used to derive F2 for the locus equations above.

3.3 Statistical Analyses

Along with reporting the descriptive statistics for the acoustic measures

mentioned above, measures of significant differences between different places

of articulation for these measures were obtained using appropriate Analysis of

Variance (ANOVA) methods. All reported statistics were calculated from data

points .:: -regated across the three repetitions for each speaker.

Discriminant function analysis (DFA) was used to measure the contribution

of different cues towards the classification of fricatives into their respective classes.

The DFA procedure reduces the physical space, built by extracted cues, into

subspaces corresponding to the sound classes under consideration (Jassem 1979).

This classification method works first by forming vectors of the metrics mentioned

above. Recall that each cue mentioned above, except for locus equations, represents

a value of some single feature at a given point in time. Therefore, each token can









be represented as a combination of values (a vector) from all these cues. All the

tokens, then, are represented as points defined by their respective vectors in a

multidimensional space. The dimensions of such space depend on the number of

parameters in use.

The goal of DFA is to find the optimal number of parameters that provide the

optimal classification accuracy of tokens into their pre-defined classes. This process

involves calculating three types of probabilities: the probability of observing a

particular parameter p for a token t (P[p I t ]), the probability of observing a token

t in the data (P[ t ]) and finally the probability of observing a specific value for

a parameter (P[ p ]). All these probabilities are calculated from training data to

predict the membership of an unknown token in testing data using the B ,, -~i I

Theorem (3-6). The value P[t p] is the probability that an unknown token belongs

to class t given a value for parameter p (Harrington and Cassidy 1999).

P[IP It]P[t]
P[t p1p] (3 6)
P[ p (

The unknown token then is classified as belonging to class A (t") not class B

(tb) if the condition P[plto] P[t,] > P[pltb]P[tb] is satisfied (Harrington and Cassidy
1999). The traditional way of applying this method to fricatives classification (see

for example Shadle and Mair 1996; Tabain 1998; Jongman et al. 2000; Nissen 2003)

involves all-but-one speakers as the training data and tokens from the remaining

speaker as the testing data. The process is repeated so that each speaker will be

in the testing data at a given time. The DFA procedure produces a classification

accuracy score along with a set of coefficients that represent the contribution of the

parameters in the classification.














CHAPTER 4
AMPLITUDE AND DURATION

This chapter reports results of the amplitude and duration measurements.

These results were derived from a three-way ANOVA with place of articulation,

voicing, and vowel context as between-subject factors. Post hoc tests of significant

effects were adjusted for multiple comparisons using the Bonferroni method. All

data were .,. --regated across the three repetitions of each speaker prior to any

statistical analysis.

4.1 Amplitude Measurements

4.1.1 Normalized Frication Noise RMS Amplitude

Normalized frication RMS amplitude was calculated as the difference

between frication noise RMS amplitude and the average RMS amplitude of

three consecutive pitch periods at the point of maximum vowel amplitude.

A three-way Analysis of Variance (ANOVA) with normailized frication noise

RMS as the dependent factor and the place of articulation, voicing, and vowel

context as between subject factors revealed a significant main effect of Place

[F(8, 561) = 75.241, p < 0.001; r12 = 0.518]. Due to a lack of voicing contrast

at some places of fricative articulation in Arabic (Labiodental, Post-Alveolar, and

Glottal), differences within voiceless fricatives and within voiced fricatives will

be interpreted separately. For both voiced and voiceless fricatives, subsequent

Bonferroni post hoc tests showed that plain fricatives and their pharyngealized

counterparts (/6 6'/ and /s s'/) did not differ in normalized RMS amplitude

(mean normalized RMS values are reported in Figure 4-1). However, with the

exception of the contrast between voiced alveolar and uvular fricatives (/z -

u/), normalized RMS amplitude significantly (p < 0.0001) distinguished all









places of voiced fricative articulation. Additionally, within voiceless fricatives,

nonsibilant fricatives /f, 0/ had the lowest normalized RMS amplitude (-23.94

and -22.50 dB respectively). While such RMS amplitude values for /f/ and /0/

were not statistically different from each other, normalized RMS amplitude values

of both /f/ and /0/ were significantly lower than all other voiceless fricatives.

Additionally, no differences were obtained between /s, J, h/ or between /X, h/. All

other contrasts were significant (Figure 4 1).


Glottal voiced U voiceless


Pharyngeal
-7.52

Uvular -13.66


Post-Alveolar

Cr
3 Pharyngealized
Alveolar -16.55

4-4 Alveolar
o -14.53

e Pharyngealized
Dental

Dental-17.26


Labiodental

Normalized RMS Amplitude (dB)

Figure 4 1. Mean frication noise normalized RMS amplitude (dB) by place of
articulation and voice.


There was also a significant main effect of Vowel context [F(5, 561)

16.185, p < 0.001; r2 = 0.126]. For short vowels, normalized frication RMS

amplitude tended to be lower as the vowel context changed from /i/ to /u/ to







44

/a/ with means of -16.51 dB, -17.03 dB, and -17.81 dB respectively. The same

pattern was also observed with long vowels (/i:/ to /u:/ to /a:/ with means of

-14.30 dB, -16 dB, and -18.58 dB respectively). However, statistically significant

differences in terms of vowel context effect, as sl----- -i .1 by post hoc tests, were

observed with long vowels only with p = 0.004 for the /i: -u:/ contrast and

p < 0.001 for all other contrasts. Additionally, as can be seen from Figure 4-2,

when comparing a short vowel to its long variant, we find that only the front

long vowel /i:/ resulted in a significantly (p < 0.001) lower value for normalized

frication RMS amplitude than its short counterpart /i/.

/i/ /u/ /a/
n


-4

o, -6

-1
< -8
-10








-16
-14


-18


* Short Vowels


Long Vowels


Figure 4-2. Mean frication
context.


Vowel Context

noise normalized RMS amplitude (dB) by vowel


Finally, a significant main effect of Voicing [F(1, 518) = 315.204, p <

0.001; r2 = 0.36] was also found. N. ,i ii 1i.. .1 RMS amplitude of voiced fricatives










(mean = -14.22 dB) was greater than that of voiceless fricatives (mean = -18.26

dB). In addition to this main effect, there was a significant Place by Voicing

interaction [F(3, 561) 41.9, p < 0.001; 12 = 0.183]. As can be seen in Figure

4-3, Bonferroni post hoc tests showed that the significant difference in normalized

frication RMS amplitude between voiced and voiceless fricatives noted above was

not present for alveolar fricatives /s, z/.

0 1


-5
ta






-15
4-e





-20
C
-



-25


Figure 4-3.


Dental Alveolar Uvular Pharyngeal
Place of Articulation

Mean frication noise normalized RMS amplitude (dB) as a function of
place of articulation and voicing.


4.1.2 Relative Amplitude of Frication Noise

Relative amplitude is defined here as the ratio between the amplitude of

a specific frequency (F3 for /f, 0, 6/, F5 for /s, z, f/, and F2 for /X, H, s', 5T,

h, T, h/) measured at the frication noise midpoint and the amplitude of the

corresponding frequency measured at vowel onset. Results of a three-way ANOVA









(place x voice x vowel) with relative amplitude as the dependent variable showed a

significant main effect of Place [F(8,561) = 104.525, p < 0.001; 12 = 0.598].

In general, relative amplitude of a fricative becomes greater as the place of

articulation advances towards the lips (Figure 4-4). The only notable exception

was the post-alveolar fricative (/J/). It was the only fricative in which the frication

amplitude measured at the region of F3 was greater than the amplitude of the

same frequency region at the following vowel onset (i.e., giving a value for relative

amplitude above zero). Collapsed across voicing, differences in relative amplitude

between all places of fricative articulation were significant with the exception of all

possible pairwise comparisons between the following three places: alveolar /s, z/,

pharyngeal /h, Y/, and glottal /X, H/ fricatives. However, since voicing contrast

is not present at all places, Bonferroni post hoc tests carried out on voiced and

voiceless fricatives showed a different pattern. Within voiced fricatives, relative

amplitude of pharyngealized dental fricative /6 / was significantly lower than those

of all other voiced fricatives, while those of alveolar /z/, dental /6/, and uvular

/H/ fricatives were not statistically different from one another. Furthermore, the

difference in relative amplitude between /6/ and /7/ was not significant. All other

contrasts between voiced fricatives were significant (Figure 4-4). Within voiceless

fricatives, relative amplitude differentiated /f/ (-5.22 dB) and /0/ (-5.45 dB)

from all other fricatives; however, no significant difference was observed between

these two nonsibilant fricatives. Additionally, relative amplitude differentiated

between all other voiceless fricatives with the exception of the contrasts between

/s/-/h/, /s /-/h/, and /h/-/h/.

There was also a significant main effect for Vowel context [F(5, 561)

11.642, p < 0.001; r2 = 0.094]. However, the source of this main effect as revealed

by Bonferroni post hoc tests can be solely attributed to differences in the context of

long vowels. Specifically, relative amplitude of fricatives followed by the high back























Glottal


Pharyngeal


Uvular


G Post-Alveolar
o

3 Pharyngealized
U Alveolar
4-D

4 Alveolar

SPharyngealized
I Dental

Dental


Labiodental


Voiced U Voiceless


-11.78


-20.05 I


0.90


-16.28


-28.031


-14.95


Relative Amplitude (dB)

Figure 4-4. Mean relative amplitude of fricatives.









vowel /u:/ (mean = -11.31 dB) was significantly higher (p < 0.0001) than relative

amplitude of fricative in front of any other vowel except /i:/ which has similar

height and length as /u:/. Another source for the obtained main effect above was

the significantly low (p < 0.016) relative amplitude of fricatives preceding the low

vowel /a:/ (mean = -17.02 dB) in relation to other long vowels. Furthermore,

there was a general trend such that a short vowel would result in a lower relative

amplitude than its long counterpart with only /u, u:/ contrast reaching significance

level (p < 0.05). Mean values for relative amplitude of fricatives in different vowel

contexts are presented in Table 4-1 where cells with significant differences are

shaded.

Table 4-1. Relative amplitude in different Vowel contexts. Means are arranged in
descending order.
Mean /i/ /u/ /a/ /i:/ /u:/ /a:/
/u:/ -11.31 .: .,
/i:/ -13.85
/i/ -16.17
/u/ -16.33
/a:/ -17.02
/a/ -18.61
significant difference at p < 0.05

The ANOVA also revealed a significant Place by Voicing interaction

[F(3, 561) = 20.834, p < 0.001; 12 = 0.10]. Bonferroni post hoc tests showed

that only the differences between voiceless and voiced dental fricatives /0, 0/ (9.5

dB) and between voiceless and voiced pharyngeal fricatives/h, T/ (-5.5 dB) were

significant (Figure 4-5). However, no main effect of voicing was obtained.

A Place by Vowel context interaction was also significant [F(40, 561) =

4.101, p < 0.001; 12 = 0.226]. Multiple one-way ANOVAs, with Bonferroni post

hoc tests corrected for multiple comparisons, were conducted for each place of

articulation in which vowel context was separated as long and short vowels. The

results of these ANOVAs showed that for long vowels, the significant increase







49














0
-*-- Voiced
-- Voiceless

-5 -




-10 1














-25
Dental Alveolar Uvular Pharyngeal








Place of Articulation

Figure 4-5. Relative amplitude as a function of Place and Voicing.
-25
Dental Alveolar Uvular Pharyngeal
Place of Articulation

Figure 4-5. Relative amplitude as a function of Place and Voicing.









of relative amplitude in front of /u:/ mentioned above was present only within

labiodental (/f/) (mean = 5.34 dB) and alveolar (/s, z/) (mean = -6.37 dB)

fricatives. In addition, relative amplitude within pharyngealized alveolars (/s'/) in

the context of low vowel /a:/ was significantly lower (mean = -38.21 dB) than in

the context of high vowels /i:/ (mean = -21.36 dB) and /u:/ (mean = -22.54 dB).

Finally, unlike the absence of differences between long vowels of the same height

observed above, the relative amplitude of glottal fricative (/h/) in the context

of the front vowel /i:/ (mean = -10.21 dB) was significantly higher than in the

context of back vowel /u:/ (mean = -20 dB) (Figure 4-6). As for short vowels,

a similar pattern of significant differences was obtained. Specifically, the relative

amplitude of labiodental (/f/) and alveolar (/s, z/) fricatives was significantly

higher in the context of /u/ (mean = -1.31 and -10.64 dB respectively) than

either /i/ (mean = -9.77 and -21.58 dB respectively) or /a/ (mean = -9.83

and -20.79 dB respectively). Moreover, the relative amplitude of pharyngealized

Alveolar (/s'/) in the context of low vowel /a/ (mean = -39.07 dB) was only

significantly lower than in the context of high vowel /i/ (mean = -28.02 dB)

(Figure 4-7). Mean values for relative amplitude of fricatives in different vowel

context are also presented in Table (4-2).

Finally, a Vowel context by Voicing interaction was also found to be significant

[F(5, 561) = 4.574, p < 0.001; /2 = 0.039]. Bonferroni post hoc tests were carried out
on long and short vowels separately. In general the relative amplitude of voiceless

fricatives in a given vowel context is higher than that of voiced fricatives in the

same context (Figure 4-8 and Figure 4-9), however this difference was significant

only with /i:/ (mean = -10.80 dB for voiceless and -18.71 dB for voiced).






















/f/ /0, o/ /6/ /s, z/ /s/ // /, / /h, T/ /h/
10



0



S. -10 Q



-20 S



-30



-40
-4- / i /
-U-- / u /
--A--/a/ -50
-50
Place of Articulation

Figure 4-6. Relative amplitude (dB) as a function of place of articulation and short
vowels.






















/f/ /0, o/ /6/ /s, z/ /s/ // /, / /h, /h/
10



0



-10
4-D




S* 0 \
S-30



-40
-201






-4'-- / "/






Figure 4-7. Relative amplitude (dB) as a function of place of articulation and long
vowels.
vowels .









53













> 0001 < r '0t -O 0>- r 0

OD 0 or 00 o on C O o 061 c
CA 01 C 01 01 00


0 o0 010 r 10 -h- 0 0 01

S rI 1 r 01 01 cr




0 ^ C c- rc CO crO IO 0
S00 0 00 0 r t u h- '0 0
I I I r-- r 01 01 01




oc 0 u C' b- 60 Ci 0t 01 0o




0101 c( OJO 0 i-u 1 00 03 00 01
0 1- 1 oo r^ I r r cr r I 0 0 r
I I I I I I -I 1 I-


^ I1- 00r















c




L&.







54













-5




-10




-15



S. -20
-20

-4-- / i /



Voiced Voiceless

Figure 4 8. Relative amplitude (dB) as a function of voicing and vowel context
(short vowels).






























-10





S-15
4A
i--------------------- -







-
-^-^^^ -






-20

-4- / i /

/--I u: /
-A- a:

Voiced Voiceless

Figure 4-9. Relative amplitude (dB) as a function of voicing and vowel context
(long vowels).









4.2 Temporal Measurements

Two measures of fricative noise duration are reported here: absolute fricative

duration and normalized fricative duration. For the latter, the ratio between word

and fricative durations was calculated to normalize and account for the different

speaking rates that might have occurred. For each measure, a three-way ANOVA

(place x voice x vowel context) was carried out. Subsequent post hoc tests were

corrected for multiple comparisons using the Bonferroni method.

4.2.1 Absolute Duration of Frication Noise

A three-way ANOVA (place x voice x vowel context) with the duration

of the frication noise as the dependent factor revealed a main effect of Place

[F(8, 561) = 50.092, p < 0.001; 12 = 0.417] with mean frication noise duration

of 117.99 ms. Mean duration of frication noise as a function of place of articulation

and voicing are presented in Figure 4-10. Averaged across voicing and vowel

context, pharyngealized dental /o'/ and glottal fricative /h/ had the shortest

duration with a mean of 86.47 and 98.55 ms respectively. Due to the well known

effect of voicing on segmental duration (Cole and Cooper 1975; Manrique and

Massone 1981; Baum and Blumstein 1987; Behrens and Blumstein 1988b; Crystal

and House 1988; Pirello et al. 1997, among others), two sets of comparisons were

mad, one fore voiced and the other for voiceless fricatives. Among voiced fricatives,

alveolar fricative /z/ was significantly longer than all other voiced fricatives with a

mean duration of 110.12 ms. No other differences among voiced fricatives reached

the significance level of p < 0.05.

On the other hand, contrasts within voiceless fricatives revealed that glottal

fricative /h/, with a mean duration of 98.55 ms, was significantly shorter than all

other voiceless fricatives. Although no significant difference between nonsibilants

was observed, each of the nonsibilants /f/ and /0/ (127.86 and 131.68 ms

respectively) were significantly shorter than each of the sibilants /s/, /s'/, and









/J/. Additionally, alveolar /s/ and it pharyngealized counterpart /s / (mean =

149.86 and 149.70 ms) were significantly longer than all other voiceless fricatives

excluding /J/. As in the case of voiced fricatives, no significant differences were

found among voiceless labiodental, dental, uvular, and pharyngeal fricatives or

between pharyngealized fricatives and their plain counterparts (/s -s/).


Glottal U Voiceless
E Voiced

Pharyngeal 83.82


Uvular


Post-Alveolar

Pharyngealized
S Alveolar
-4

4-4 Alveolar
0 110.21

C Pharyngealized
9 Dental 86.47

Dental 91.36


Labiodental

Frication Noise Duration (ms)

Figure 4-10. Absolute Frication noise duration as a function of place and voice
averaged across all vowel context and speakers.


Also, as expected, a main effect of Voicing was found [F(1, 561) = 721.75, p <

0.001; f2 = 0.563], with voiceless fricatives (mean 134.21 ms) being significantly

longer than voiced fricatives (mean 92.05 ms). A Place by Voice interaction was

also significant [F(3, 561) = 3.327, p < 0.05; r2 = 0.017]. Subsequent Bonferroni post

hoc tests showed that this difference was significant across all places of articulation










with a voicing contrast (Figure 4-11). The source of this interaction is probably

due to variation in the magnitude of duration differences between a voiced and

voiceless fricative in a given place. As is apparent from Figure 4-11, the difference

between voiced and voiceless fricatives was greater for uvular and pharyngeal than

for dental and alveolar fricatives.

160
-*-- Voiced
150 -

m140 -
S4 ---- -

130 r
C'
120

cM110

100

S90 -

80

70

60
Dental Alveolar Uvular Pharyngeal
Place of Articulation

Figure 4-11. Mean absolute frication noise duration for places with a voicing
contrast.


Finally, a main effect of Vowel context [F(5, 561) = 4.708, p < 0.001; r2 = 0.04]

was significant. However, post hoc tests showed that differences in frication

noise duration measured in the context of vowels of the same length were not

significantly different from each other. Moreover, the source of the main effect was

due to the significantly increased duration of fricatives measured in the context of

/i:/ (mean 123.25 ms) as compared to all short vowels; and the significantly longer









of frication noise in the context of /u:/ (mean 122.80 ms) when compared

(Figure 4-12).


duration

to /a, u/

140


120


100 -
a
O

S80


3 60
a
a
t 40-
.


Figure 4-12.


U Short Vowels

F__]


_ Long Vowels

I I


/i/ /u/ /a /
Vowel Context
Mean absolute frication noise duration in different vowel contexts.


4.2.2 Normalized Duration of Frication Noise

Normalized frication noise duration is defined here as the ratio between

fricative duration and word duration. As can be seen from Figure 4-13, normalized

frication noise followed a pattern similar to the one observed with absolute

frication noise duration. Specifically, averaged across voicing and vowel context,

pharyngealized dental /o / and glottal fricative /h/ had the shortest normalized

duration with means of 0.27 and 0.31 respectively. The results of the three-way

ANOVA revealed a main effect of Place [F(8, 561) = 49.82, p < 0.001; r72 = 0.415].

Separated according to voicing, Bonjferroni post hoc tests showed, as was the case









with absolute duration, that /z/ (mean 0.34) was significantly longer than all other

voiced fricatives. No significant differences were observed among voiced dental,

uvular, and pharyngeal fricatives or between pharyngealized dental and their plain

counterparts (i.e., /& 6/).

As for contrasts within voiceless fricatives, glottal fricative /h/, with the

mean duration of 0.307, was significantly shorter than all other voiceless fricatives.

Moreover, voiceless alveolar /s/ was significantly longer than all other voiceless

fricatives excluding the post-alveolar and pharyngealized alveolar fricatives/J, s'/,

which in themselves were significantly longer than labiodental, pharyngeal, and

glottal fricatives /f, h, h/. No difference among voiceless fricatives reached the

significance level of p < 0.05.


Glottal U Voiceless
E Voiced

Pharyngeal 0.263


Uvular


z Post-Alveolar

Pharyngealized
Alveolar

4-4 Alveolar
0 0.335

c Pharyngealized
P Dental 0.266

Dental 0.284


Labiodental

Normalized Frication Noise Duration
Figure 4-13. Mean normalized frication noise duration as a function of place and
voice averaged across all vowel contexts and speakers.










The effect of Voicing on normalized fricative duration was also significant

[F(1,561) = 724.74, p < 0.001; 12 = 0.564]. Averaged across other conditions,

voiced fricatives had significantly shorter normalized durations (mean = 0.29)

than voiceless fricatives (mean = 0.38). In addition, a significant Place by Voicing

interaction [F(3, 561) = 7.079, p < 0.001; r2 = 0.036] and subsequent Bonferroni

post hoc tests showed that this difference was greater for uvular and pharyngeal

than for dental and alveolar fricatives (Figure 4-14).

0.45


a
.4
S0.40


1)
O 0.35



0.30
o-



N 0.25

S
o
0.20



0.15


Figure 4-14.


Dental Alveolar Uvular Pharyngeal
Place of Articulation

Mean of normalized frication noise duration for places with a voicing
contrast.


Finally, as shown in Figure 4-15, normalized frication noise duration was

significantly affected by the Vowel context [F(5, 561) = I,2 p < 0.001; 912

0.073]. However, such effect as -,r-.-- -I. 1 by Bonferroni post hoc tests was localized

only with reference to contrasts involving long vowels. Specifically, while no







62

significant differences were observed within short vowels, normalized frication noise

duration was significantly shorter (mean = 0.32) in the context of /a:/ than all

other vowels. On the other hand, fricatives preceding /i:/ had significantly longer

normalized duration (mean 0.35) than in the context of other long vowels.

0.4 1


0.35
a

0.3
03

0.25


S0.2
*-e


So.15


S0.1


0.05


0


U Short Vowels


Long Vowels


/i / /u/ /a /
Vowel Context

Figure 4-15. Mean normalized friction noise duration in different vowel contexts.















CHAPTER 5
SPECTRAL MEASUREMENTS

5.1 Spectral Peak Location

This chapter reports on results of the spectral measurements which include

spectral peak location (frequency region of energy maximum in frication noise)

and spectral moments (mean, variance, skewness, and kurtosis). As mentioned in

Section (3.2.2.4), spectral peak frequencies were measured at eh center as well as

the end of frication noise. First, mean spectral peak location obtained from the two

locations was used in a one-way ANOVA as dependent variable to test for the effect

of the analysis window location. The ANOVA showed a main effect for Window

Location [F(1, 1246) = 1022.9, p < 0.001; Tr2 = 0.451]. Mean spectral peak location

when measured at the middle of the frication noise (4323 Hz) was higher than when

measured at the end of frication noise. However, a three-way ANOVA (place x

vowel x voicing) with spectral peak measured at the end of the frication noise as

the dependent variable showed no significant effect for place. Therefore only the

results of measurements derived from the middle of frication noise will be reported

in details below.

Table 5 1 represents the mean frequency of spectral peak location obtained

from a 40-ms Kaiser window placed at the middle of frication noise of all fricatives

in different vowel contexts averaged across speakers and repetitions. Results of

a three-way ANOVA (place x vowel x voicing) with spectral peak measured at

the middle of frication noise as the dependent variable revealed a main effect for

Place [F(8, 561) = 143.402, p < 0.001; Tr2 = 0.672]. The observed general trend

of spectral peak location is that, when averaged across speakers and vowel context,









the frequency of the peak tends to decrease as the place of articulation moves

backwards in the oral cavity.

Since voicing contrast is not present for some places of fricative articulation

in Arabic, Bonferroni post hoc tests conducted to test for the simple main effect

for place will be conducted separately for voiced and voiceless fricatives. That is,

differences within voiceless fricatives and within voiced fricatives will be interpreted

separately. Mean frequencies of spectral peak of fricatives separated by place

and voicing are presented in Figure (5 1). Among voiceless fricatives, three

homogeneous groups of fricatives articulated at .,.li i:ent places emerged, with

differences in spectral peak location significant only for contrasts between members

of different groups. The first group included labiodental, dental, and alveolar

fricatives (/f, 0, s/); the second included post-alveolar and uvular fricatives (/f,

x/); and finally the third group consisted of pharyngeal and glottal fricatives (/h,
h/). As for voiced fricatives, only the difference between /i/ and /7/ was not

significant. Moreover, no significant difference was observed between plain fricatives

and their pharyngealized counterpart (/6 6 / or /s s'/).

Another main effect was observed for Voicing [F(1, 561) = 152.388, p <

0.001; rI2 = 0.214], in which the frequency of spectral peak location for

voiceless fricatives (mean =4957 Hz) was significantly greater than that of voiced

fricatives (mean =3279 Hz). However, a significant Place by Voicing interaction

[F(3, 562) = 26.48, p < 0.001; r2 = 0.124] and subsequent Bonferroni post hoc

comparisons within places that have a voicing contrast showed that the difference

between voiceless and voiced fricatives was not significant for alveolar fricatives (/s,

z/). Also, as apparent from Figure (5-2), the difference was most prominent for the

nonsibilant dental fricatives (/0, 6/).

A main effect for Vowel context was also significant [F(5, 561) = 8.473, p <

0.001; I2 = 0.07]. While no significant differences between vowels differing only in



























Sbc 0 00 00 h- 0 0 -Tb- 1c O >- t- (M
0 400 CT1- 0C 0q t Z 00
7t 0 h-c 0101 -I t- -1 0M t- t




4c l c- 03 ( O ^ 0 O C O 3 CIA
C.) cc l- Ln c oo rr, -
h- -th- h-h- 00 010 -t01 h- 0I 1







r 0000 00 0000 h- 0c
C o 1- 000 CI A o cOO 't I-O
0 o 01 00C0 CI c1 CIo 000 CO h- -


7"0 Lut 1 I 1t 1 CI 1 ut 0 00 00
C. C T) 1 t- L OO L (M -" (M I A1 0 TO




cb-
CI0 0 u A M1u 00 -O COCO C I 0
0 h- M1h- utut0 00 r- 0 01 00 T ^




r r 0 -01 C0 0- 00 I t COt
2 h -- 1 '00 00h- 0T0 01 00 CM tO M1


t C + l O OCO C"O 0 O 0000 00 1-0 00A




S00m m h m m CO00 m r00 m 01 m m





















aH C
cc c]O z


"d























Glottal


Pharyngeal


Uvular


o Post-Alveolar
4D
3 Pharyngealized
U Alveolar
4-D

4- Alveolar
0

^ Pharyngealized
P4 Dental

Dental


Labiodental


Figure 5-1. M


1850
---I


SVoiceless
n Voiced


6612


3547


3511




Spectral Peak Location (Hz)

ean spectral peak location as a function of place and voicing






















9000
-*-- Voiced

8000 -- -Voiceless

-7000 ----.

6000

o 5000

4000

D 3000

m 2000

1000

0 -
Dental Alveolar Uvular Pharyngeal
Place of Articulation

Figure 5-2. Place of articulation and voicing interaction for spectral peak location










length were present (Figure 5-3), subsequent post hoc tests adjusted for multiple

comparisons using the Bonferroni method showed that frequency of spectral peak

location measured in the context of either /u/ or /u:/ was significantly lower than

spectral peak location measured in the context of either /i/ or /i:/. Moreover,

spectral peak location of fricatives preceding /u/ had significantly lower frequencies

than in the context of all other vowels except as noted above for the /u-u:/

contrast.

6000


Short


long


5000
N

a4000
o


3000



S2000



1000



0



Figure 5-3.


/i/ /a / /u/
Place of Articulation

Frequency of spectral peak location in different vowel contexts


A significant [F(40, 561) = 1.441, p < 0.05; rl2 = 0.093] Place by Vowel context

interaction with subsequent Bonferroni post hoc tests showed that the effect of

vowel context mentioned above was confined only to alveolar and glottal fricatives.

As apparent from Figure (5-4) and Figure (5-5), both /u/ and /u:/ resulted in a

significantly lower frequency of spectral peak location in alveolar fricatives than


F-


I - -









all other vowels. In the case of glottal fricative /h/, the short high back vowel /u/

(mean =935 Hz) introduced a significantly lower spectral peak frequency only when

compared to /i/ and /i:/ (mean =2243 Hz and 2363 Hz respectively). Although

the frequency of the spectral peak location of /s'/ in the context of /u/ was about

2396 Hz lower than that of /a, i/, such a difference was only marginally significant

(p = 0.051).


/f/ /0, o/ /'/ /s, z/ /s // / /, s/ /h, /


9000

8000

7000

6000

5000

4000

3000

2000

1000

0


Figure 5-4.


Place of Articulation

Mean frequency of spectral peak location as a function of place and
short vowels


5.2 Spectral Moments

The first four statistical moments were computed from three 40 ms windows

located at the onset, middle, and offset of the frication and from a 40 ms window

centered at the fricative offset to capture any transitional information into the

vowel. In this section, two analyses are presented for each moment. Specifically, to

capture the general trend of spectral moments, separate one-way ANOVAs were





















/f/ /0, o/ /o/ /s, z/ /sV /J/ /x, / /h, T/ /h/
9000

8000 A

S7000"

6000\

5000 1

4000

S3000

2000
1000 ---- /-i:/

-/u:/
-A- --/-a:-/
1000
1000! ~U : /----------------""*

Place of Articulation

Figure 5-5. Mean frequency of spectral peak location as a function of place and
long vowels









conducted for place and voice with moments across window locations as dependent

variables. Additionally, a preliminary one-way ANOVA test of differences between

moments computed at different windows showed a main effect for window location

for all moments. Therefore, separate three-way ANOVAs (place x vowel x voicing)

with subsequent Bonferroni post hoc tests were conducted for each moment and

window location combination. A summary of the spectral moments collapsed across

speakers, vowel context, and window locations are presented in Table (5-2).

5.2.1 Spectral Mean

One-way ANOVAs for place and voicing were carried out utilizing spectral

mean measurements across the four window locations as the dependent

variable. The ANOVA revealed a main effect for Place of articulation

[F(8, 2487) = 210.567, p < 0.001; r]2 = 0.403]. Subsequent Bonferroni post

hoc tests were conducted for voiceless and voiced fricatives separately. For voiced

fricatives, spectral mean was highest for alveolar /z/ (5935 Hz) and lowest for

pharyngeal /?/ (1547 Hz). Differences in spectral means for all contrasts within

voiced fricatives were significant, with the exception of the contrast between plain

dental /6/ and its pharyngealized counterpart /'/. As for voiceless fricatives,

alveolar /s/ had the highest spectral mean (5546 Hz), while glottal /h/ had the

lowest (2513 Hz). Also, with the exception of the nonsibilants (/f, 0/), spectral

mean tends to decrease as the fricative articulation moves towards the back

of the mouth. Additionally, as was the case in spectral peak location (Section

5.1), three categories containing fricatives articulated in .,.ii ient places (/f, 0,

s, s'/, /f, X/ and /T, h/) were observed to have no within-group differences that

were statistically significant. Only comparisons involving members of different

groups were significant. The only exception to this general observation was with

the first group in which the contrast between labiodental /f/ (4802 Hz) and

alveolar /s/ (5546 Hz) was significant. A main effect was also obtained for Voicing























Lo CIA ( u G o CCL- 00 cc r-
0 r- t- b-C0 00 ~0 'b1- ut ut
01 rC Co 01 Z0 o00 H A >


0 LOut zt 00 0O u0 > CI 0I C O
b- t0 ( 00I b1- O00 o O b-
o 0o0 d A AA ioi 6 6


m





0
0








m
m
0.1





Q






0
- N
Q








CrX















0;

0^
-N



CsQ













0
L











s ^
o
ay-
0,


01 OC O utO Go IO0 b I t- 00
00 Q01 o 0 Q 0 Q 0 0
0 Q 03 .- 0 .- Q -





m m m m m m m m
m r- m m m r m r- m m m
a u ao u o o o a
,3 ,3 ,C I ,3 C
I > >^ c >I > q 0 C
OD ODU DU l l l


0 03
a
Q a


O
c


- _1
0 0 0
^ t.
0; r

I~ N

&


t- 0 tZ 0 Go 0 t0 ut 0a 0
10 00 0 1000 o5 > 0 0









[F(1, 2494) = 59.025, p < 0.001; f2 = 0.023]. Collapsed across all speakers, place

and vowel contexts, voiceless fricatives had higher values for spectral mean (4181

Hz) than voiced fricatives (3557 Hz).

As mentioned above, values for spectral mean measured at different window

locations were statistically different [F(3, 2492) = 326.978, p < 0.001; T2 = 0.28].

Therefore, separate three-way ANOVAs (place x vowel x voicing) were carried

out for spectral mean at each window location. There was a main effect for place

of articulation for all window locations with r12 values of 0.736 (window 1), 0.830

(window 2), 0.790 (window 3) and 0.602 (window 4). The range of r12 indicates

that spectral information measured at these windows contributed with varying

degrees to the separation of fricatives according to their place of articulation. This

observation was confirmed by post hoc tests for differences performed on voiced

and voiceless fricatives separately. For voiced fricatives, across all windows, alveolar

fricative /z/ had the highest spectral mean while pharyngeal /7/ had the lowest.

Additionally, spectral mean distinguished between all places of voiced fricatives in

all windows, with the exception of the contrasts between (/6/ and /6'/) in the first

three windows and between any combination of (/e/, /7/ and /6'/) in the fourth

window (Figure 5-6). On the other hand, differences between voiceless fricatives

in terms of spectral mean measured at different windows were not as categorically

distinguishing as in the case of voiced fricatives. Nevertheless, as noted above,

three clusters containing fricatives articulated in .,.li i:ent places (/f, s/, /f, X/

and /h, h/) emerged as distinct groups for which no within-group differences were

significant with regard to spectral mean measured at the second (middle) and third

(offset) windows. However, all comparisons between members of different groups

were significant with spectral mean decreasing as the articulation moved backwards

in the mouth (Figure 5-6). Furthermore, spectral mean as measured at the first

(onset) window significantly differentiated between all places with the exception







74

of all possible contrast involving (/0, s, s'/) and the contrast between (/h- h/).

Only alveolar /s/ was significantly different than all other voiceless fricatives at

the fourth (transitional) window. Moreover, at the onset and transitional windows,

differences observed elsewhere between /f/ and /0/ were not significant (Figure

5-6).

There was also a main effect for Voicing in all four windows. As can be seen

from Figure (5-7), spectral mean for voiceless fricatives was significantly higher

than voiced fricatives in the first three windows and significantly lower at the last

(transitional) window. Additionally, a significant Place by Voicing interaction

(Figure 5-8) revealed that alveolar fricatives /s, z/ were not significantly different

from each other in terms of spectral mean in all but the fourth window at which

the /s z/ contrast was the only one reaching significance level (p < 0.05).

Finally, there was a main effect for Vowel context at all four windows. Spectral

mean was highest for fricatives preceding /i/ and /i:/, and lowest for fricatives

preceding either /u/ or /u:/. Pairwise comparisons for the different vowel contexts

at each window showed that the difference between any of the high front vowels (/i,

i:/) and either of /u/ and /u:/ was significant at all window locations. Additionally,

spectral mean of fricatives in the context of both /i, i:/ was significantly higher

than that in the context of either /a, a:/ at the fourth (transitional) window

(Figure 5-9).

5.2.2 Spectral Variance

One-way ANOVAs for Place and Voice were conducted with spectral variance

averaged across all window locations. A main effect for Place of articulation was

obtained [F(8, 2487) = 206.936, p < 0.001; r2 = 0.399], with the lowest variance

observed for sibilants and back articulated fricatives while the highest variance

was observed for nonsibilants. Table (5-2) shows mean variance values for all

fricatives measured in Megahertz (\! Il.). Bonferroni post hoc tests showed that
















S7000-


S6000-
(D

^ 5000
A

.4000-


3000'
Place of Articulation
20 -0- Labiodental
2000*
-A-- Dental
X -V- Alveolar
Post-Alveolar
Uvular
S- Pharyngeal
7000- Pharyngealized
Dental
SPharyngealized
S6000 Alveolar
S- Glottal
S5000-


4000-
4-D B\

S3000-


2000-

onset middle offset transition
Window Location

Figure 5-6. Spectral mean (Hz) averaged across vowel contexts for each window as
a function of place of articulation. A) voiced. B) voiceless.




















6000



5000



N 4000


a,
2 3000

o
2000



1000


0 ------ ^
onset middle offset
Window Location
Figure 5-7. Spectral mean (Hz) averaged across place and
window as a function of voicing.


* Voiced
* Voiceless


transition


vowel contexts for each










77


















8000 8000

H-- ----J -* VOiced
-\ -- voicceless
S6000 - 6000



S4000 4000


U aU
C) 2000 2000



0 0
Dental Alveolar Uvular Pharyngeal Dental Alveolar Uvular Pharyngeal

A B
8000 8000



N 6000 N' 6000



S4000 4000








o 0
CO 2000 Ci) 2000 -



0------------------- 0------------------
Dental Alveolar Uvular Pharyngeal Dental Alveolar Uvular Pharyngeal

C D


Figure 5-8. Place of articulation and voicing interaction for spectral mean at four

window locations. A) onset, B) middle, C) offset, and D) transition.





















6000


4000



2000


/u/


6000


4000



2000


0 -


6000
I-N
N
I

5 4000


4-J
U

+-
2 2000



0


/a/


6000


4000



2000


Short long


/u/


/u/ /a/


/a/


/u/ /a/


Figure 5-9. Spectral mean as a function of vowel context at four window locations.
A) onset, B) middle, C) offset, and D) transition.









within voiced fricatives, spectral variance did not differentiate between plain dental

(/6/) and its pharyngealized counterpart (/0 /). However, all other comparisons
within voiced fricatives were significant (p < 0.001). As for voiceless fricatives,

spectral variance for the nonsibilants /f, 0/ was significantly higher than those of

all other places. However, spectral variance for the /f/ and /0/ themselves was not

significantly different. Moreover, spectral variance for /f/ and /h/ was significantly

lower than that of all other places. Another main effect was observed for Voicing

[F(1, 2494) = 39.778, p < 0.001; r2 = 0.016] with voiced fricatives having higher

variance (5.09 MHz) than voiceless fricatives (4.45 MHz).

Since a one-way ANOVA showed that overall spectral variance differed

significantly as a function of Window Location [F(3, 2492) = 33.742, p <

0.001; Tr2 = 0.04], multiple three-way ANOVAs (place x vowel x voicing) were

carried out for spectral variance at each window location. The ANOVAs revealed a

main effect for Place of Articulation [F(8, 561) = 104.502 (onset), 98.597 (middle),

137.024 (offset), 55.05 (transition); p < 0.001; f2 = 0.6 (onset), 0.58 (middle),

0.66 (offset), 0.44 (transition)]. As apparent from Figure (5-10), for both voiced

and voiceless fricatives, nonsibilants (/f, 0, 6, 6'/) had the highest variance while

pharyngeal fricatives (/h, 7/) had the lowest variance. Pairwise comparisons

within voiced fricatives showed that only the difference between /6 6'/ was not

significant at all windows. With the exception of the /6 6/ contrast, spectral

variance differentiated between all places of articulation within voiced fricatives

at all window locations. On the other hand, spectral variance did not differentiate

between voiceless fricatives in the same manner as it did with voiced fricatives.

Specifically, spectral variance was able to distinguish between any combination

of voiceless fricatives either at the second or the third window (Figure 5-10).

The only exceptions are the expected lack of difference between /s, s'/ and the

insignificant difference between /h, s'/ at all windows. Additionally, as with voiced









fricatives, nonsibilant fricatives (/f, 0/) had significantly higher variance than all

other voiceless fricatives in at least three of the four analysis windows.

As mentioned previously, a main effect of Voicing was observed with the

overall spectral variance. However, ANOVA's conducted for individual windows

revealed that such effect was only present at the second (middle) window

[F(1,561) = 9.973, p < 0.001; r2 = 0.017] with the expected increase in variance

for voiced fricatives (5.4 MHz compared to 4.5 MHz for voiceless fricatives).

Nevertheless, a significant Place by Voicing interaction was present at all analysis

windows. Bonferroni post hoc tests showed that the increase in spectral variance for

voiced fricatives as compared to voiceless fricatives was significant only for dentals

(/0, 6/) at the second window; and for alveolars (/s, z/) at fourth window. Another

source of the interaction, as can be seen from Figure (5-11), is due to an increase

in spectral variance for voiceless, rather than voiced, pharyngeal fricatives. Such an

increase, and subsequent shift in the voicing effect, was present at all windows but

significant only at the fricative-vowel boundary (windows three and four).

There was also a main effect for Vowel context (p < 0.0001) in all but the first

analysis window. The source for this effect as revealed by post hoc tests is twofold:

first, there was a significant increase in spectral variance for fricatives preceding

either /u/ or /u:/ as compared to all other vowels in the second (middle) and third

(offset) windows (Figures 5 12A and B); and second, the variance of fricatives

preceding /i/ and /i:/ was significantly higher than that of either /a/ or /a:/ in the

fourth window (Figure 5 12C).

5.2.3 Spectral Skewness

A one-way ANOVA for spectral skewness across all window locations showed a

significant main effect for Place [F(8, 2487) = 137.975, p < 0.001; T12 = 0.31], with

skewness ranging from 2.34 for pharyngeal (/h, Y/) to 0.19 for alveolar fricatives

(/s, z/). Subsequent Bonferroni post hoc tests indicated that for both voiced and





















S6- A



4 4


m Place of Articulation
2' 0 Labiodental
x Dental
V Alveolar
Post-Alveolar
Uvular
X Pharyngeal
^Pharyngealized
f80 Dental
Pharyngealized
C Alveolar
/M Glottal
.6*


B




2'

onset middle offset transition
Window Location

Figure 5-10. Spectral variance (\ II.:) averaged across vowel contexts for each
window as a function of place of articulation. A) voiced. B) voiceless.






















8 8
7 7 --voiced

N 6 -- voiceless

5 5





2 2
0 0
o o



Dental Alveolar Uvular Pharyngeal Dental Alveolar Uvular Pharyngeal

A B
8 8

7 7
N N
I 6 6

c 5 c(U 5 -



1 1
S3 i\3

12 \ 2


0 0

Dental Alveolar Uvular Pharyngeal Dental Alveolar Uvular Pharyngeal

C D

Figure 5-11. Place of articulation and voicing interaction for spectral variance at
four window locations. A) onset, B) middle, C) offset, and D)
transition.
























SShort E Long


- I


/u/


7

6-
N

I 5
(,
-
c4
4-

> 3

S2


0 --


7

S6
N
-1-
I-
u4

> 3

2


0 ---


/a/


-I


I


/u/


/a/


/u/

B


/a/


C

Figure 5-12. Spectral variance as a function of vowel context at three window
locations. A) middle, B) offset, and C) transition.


7

- 6
N
5

U
= 4

> 3

S2

0 1









voiceless fricatives, skewness did not differentiate between plain fricatives and

their pharyngealized counterparts (/6 0', s s'/). However, besides the exception

noted above, all voiced fricatives were significantly different from each other in

terms of skewness (means are reported in Table (5-2). Within voiceless fricatives,

skewness significantly differentiated among nonsibilants /f/ and /0/ (0.7 and 0.25

respectively). However, skewness did not distinguish nonsibilants from either /s/

or /s'/ or between /J/ and / x/. All other voiceless fricatives were significantly

different from each other in terms of spectral skewness. The effect of voicing on

spectral skewness was not significant (p = 0.67).

Due to the previously mentioned significant differences between skewness

measured at different windows [F(3, 2492) = 145.382, p < 0.001; r12 = 0.15], a

three-way ANOVA (place x vowel x voicing) was conducted for spectral skewness

at each window location. A main effect for Place was obtained at all window

locations. With the exception of /6 6 / contrast, pairwise comparisons showed

that all voiced fricatives were significantly different from each other in term of

spectral skewness at the second (middle) and third (offset) windows (Figure

5-13). Pharyngeal /7/ had the highest skewness, indicating a concentration of

energy at frequencies lower than for all other voiced fricatives, while the negative

skewness obtained for /z/ indicates a concentration of energy at higher frequencies.

Interestingly the difference in skewness between dental and pharyngealized dental

(/6 6'/) reached significance (p = 0.008) only at the fourth window located at

fricative-vowel transition (Table 5-3). The lack of a significant difference between

plain fricatives and their pharyngealized counterparts was also present for voiceless

fricatives /s s'/ at all window locations. As can be seen in Table (5-4), skewness

differentiated between all voiceless fricatives in at least two windows with the

notable exception of the /J h/ contrast, which was significant only at the fourth

window (transition). If the number of places distinguished in term of skewness
















3.00-

S2.50
a ----=--T
) 2.00-

S1.50
A
-D 1.00-

m 0.50

0.00
Place of Articulation
-0.50 0 Labiodental
A Dental
-1.00 I Alveolar
Post-Alveolar
SUvular
3.00- Pharyngeal
Pharyngealized
2.50" Dental
S- Pharyngealized
S2.00- Alveolar
-N-- Glottal
1.50-

1.00-

S0.50-

m 0.00-

-0.50

-1.00 .
onset middle ofset transition
Window Location

Figure 5-13. Spectral skewness averaged across vowel contexts for each window as
a function of place of articulation. A) voiced. B) voiceless.









differences at a given window is used as an indicator to that window's distinctive
spectral information, windows placed at the middle and offset of frication noise
were more successful in distinguishing between voiceless fricatives than others
(Tables 5-3 and 5-4).

Table 5-3. Window locations at which a difference between voiced fricatives in
terms of spectral skewness are significant.
/M/ /z/ // /7/
/z/ 1234
/4/ 1234 1234
/T/ 1234 1234 23
/6/ Q/ 4 1234 1230 123
Q indicates absence of significant differences

Table 5-4. Window locations at which a difference between voiceless fricatives in
terms of spectral skewness are significant.
/f /0/ // / / / /h/ /sJ/
/0/ 1Q 4
/s/ Q2 4 1 Q4
/f/ 1234 123 1233
/X/ 123 1234 1234 QQ34
/h/ 123 1234 1234 1234 1233
/s'/ 2 4 123Q QQQQ 123 2 2 4 1234
/h/ 1233 1234 1234 4 23 123 1234
Q indicates absence of significant differences


Although the effect of voicing was not significant for the overall skewness, a
main effect for Voicing was obtained at all but the third (offset) window. At both

frication onset and middle windows, voiceless fricatives had significantly (p < 0.001)

lower skewness than voiced fricatives; while skewness measured at the fricative-
vowel transition was significantly (p < 0.0001) higher for voiceless fricatives than
voiced ones (Figure 5-14). Also, a Place by Voicing interaction was significant
at all but the last (transition) window. In general, the reduction in skewness for
voiceless fricatives when compared to voiced fricatives as noted in the main effect
above was reversed for alveolar and pharyngeal fricatives in the first three windows;
and for all fricatives in the fourth window (Figure 5-15). However, this increase in









skewness for voiceless fricatives was only significant (p < 0.05) for alveolar fricatives

at the fourth (transition) window.

2.5


2



0 1.5


cm





0.5



0


Figure 5


Voiced U Voiceless


onset middle offset transition
Window Location
14. Spectral skewness averaged across place and vowel contexts for each
window as a function of voicing.


The ANOVAs also revealed a main effect of Vowel context at all window

locations. The magnitude of the effect becomes larger as the window moves closer

to the vowel (Tr2 = 0.028 at frication mid-piont, 0.037 at frication offset and 0.31 at

fricative-vowel transition). The source of such effect, as illustrated in Figure (5-16)

and associated Bonferroni post hoc tests, is attributed to the significant decrease

in fricative skewness in the context of short /i/ and long /i:/. Specifically, long

/i:/ resulted in significantly lower skewness than long /u:/ in all but the second

window, while short /i/ resulted in significantly lower skewness than short /u/

in the first and fourth windows. Additionally, differences between high front and