<%BANNER%>

Gene Therapy for Phenylketonuria: Dominant-Negative Interference in a Recessive Disease


PAGE 1

G E N E T H E R A P Y F O R P H E N Y L K E T O N U R I A : D O M I N A N T N E G A T I V E I N T E R F E R E N C E I N A R E C E S S I V E D I S E A S E B y C A T H E R I N E E L I S A B E T H C H A R R O N A D I S S E R T A T I O N P R E S E N T E D T O T H E G R A D U A T E S C H O O L O F T H E U N I V E R S I T Y O F F L O R I D A I N P A R T I A L F U L F I L L M E N T O F T H E R E Q U I R E M E N T S F O R T H E D E G R E E O F D O C T O R O F P H I L O S O P H Y U N I V E R S I T Y O F F L O R I D A 2005

PAGE 2

C opyr i ght 2005 by C a t he r i ne E l i s a be t h C ha r r on

PAGE 3

I de di c a t e t hi s w or k t o m y pa r e nt s I f not f or t he i r s a c r i f i c e I w oul d not be he r e t oda y w r i t i ng a nd w o r ki ng i n a l a ngua ge t ha t I di d not l e a r n f r om bi r t h. T he y ga ve m e t he oppor t uni t y t o l e a d m y l i f e w i t h e ndl e s s pos s i bi l i t i e s i n s i ght a nd s e e t he w or l d a s a n ope n r oa d t o e xpl o r e

PAGE 4

i v A C K N O W L E D G M E N T S T he pa s t f our ye a r s w oul d no t ha ve be e n s o s uc c e s s f ul w i t hout t he he l p a nd s uppor t of m a ny. F i r s t I w oul d l i ke t o t ha nk a l l of m y c om m i t t e e m e m be r s D r s B yr ne L a i pi s L e w i n a nd P e t e r s e n, f or t he i r c ont i nue d s uppor t p os i t i ve a t t i t ude a nd br oa d know l e dge of s c i e nc e O ur m e e t i ngs w e r e a l w a ys a s our c e of i ns pi r a t i on t o w or k ha r de r a nd i nc r e a s e m y ge ne r a l know l e dge i n s c i e nc e s I e s pe c i a l l y t ha nk m y m e nt o r D r P hi l i p L a i pi s f o r hi s s uppor t f r i e nds hi p, a nd t r us t : w i t hout i t I w oul d not ha ve ha d t he c our a ge a nd t he pa t i e nc e t o pe r s e ve r e dur i ng r ough t i m e s I t ha nk h i m f or hi s c ont i nue d be l i e f i n m y a bi l i t i e s a l l ow i ng m e t o g r ow a s a s c i e nt i s t a nd a s a pe r s on. M a ny pe opl e ha ve c om e t hr ough ou r l a bo r a t or y i n t he pa s t f our ye a r s a nd I a m gr a t e f ul t o a l l f or t he i r f r i e nds hi p a nd he l p N e ni t a C or t e z H e a t he r S t e e l e a nd W e n T a o D e ng de s e r ve m a ny t ha nks f or he l pi ng m e be gi n m y w or k i n t he l a bo r a t or y a nd t e a c hi ng m e t he s ki l l s t ha t w e r e i ndi s pe ns a bl e t o t hi s pr oj e c t I t ha nk J on M i c ha e l K na pp a nd K e n R os s f or t he i r f r i e nds hi p a s I be ga n m y w or k i n t he l a b. A nd r e a s Z or i a nd D a w n Y oung I t ha nk f or t he i r e a ge r ne s s t o l e a r n a nd t he i r pa t i e nc e w i t h m e a s I s t r i ve t o be c om e a be t t e r t e a c he r e ve r yda y. I gi ve s pe c i a l t ha nks t o D r J e nni f e r E m bur y, w i t hout w hos e e xpe r t know l e dge a nd c ount l e s s hour s s pe nt a na l yz i ng our m i c e t hi s pr oj e c t w oul d not ha ve be e n c om pl e t e H e r pe r s e ve r a nc e a nd ge ne r os i t y a r e a n i ns pi r a t i on a nd a n e xa m pl e t ha t I w i l l e nde a vor t o f ol l ow t hr oughout m y c a r e e r I a m ve r y g r a t e f ul t o M a n dy B l a c kbur n a nd B r i a n O D onne l l f or t he i r e s s e nt i a l t e c hni c a l a s s i s t a n c e i n t he l a b. I a m de e pl y

PAGE 5

v i nde bt e d t o S t a c y P or va s ni k f o r he r he l p w i t h s ur g e r i e s H e r s ki l l s a nd ge ne r os i t y a l l ow e d f or m uc h s a ve d t i m e g i vi ng m e t he oppor t uni t y t o f i ni s h t hi s pr oj e c t i n s o f e w ye a r s I w oul d l i ke t o gi ve s pe c i a l t ha nks t o D r O m a t ht h a ge P P e r e r a H e i s a g r e a t e xa m pl e a s a s c i e nt i s t pa r e nt a nd pe r s on, a nd I a m de e pl y gr a t e f ul t o ha ve m e t hi m a nd l e a r ne d s o m uc h f r om hi m dur i ng hi s s hor t t i m e i n t he l a b. A ppr e c i a t i on i s e xt e nde d t o t he P a t hol ogy A ni m a l C a r e F a c i l i t y a nd t o t he V e c or C or e f or t he s uppor t t he y pr ovi de I a l s o a c know l e dge t he s t a f f i n bot h t he G e ne t i c s a nd B i oc he m i s t r y D e pa r t m e nt s a nd i n t he I n t e r di s c i pl i na r y P r oga m s m a i n of f i c e I w oul d l i ke t o t ha nk m y f a m i l y f or t he i r l ove a nd s uppor t dur i ng a l l t hi s t i m e I w oul d not be he r e t oda y i f not f o r t he i r c ont i nui ng e nc our a ge m e nt F i na l l y I w oul d l i ke t o t ha nk m y hus ba nd S e a n L e w i s f or h i s l ove a nd pa t i e nc e I c oul d not i m a gi ne doi ng t hi s w i t hout hi m ; he i s m y s t r e ngt h, m y l ove a nd m y be s t f r i e nd.

PAGE 6

vi T A B L E O F C O N T E N T S pa ge A C K N O W L E D G M E N T S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i v L I S T O F T A B L E S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i x L I S T O F F I G U R E S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x A B S T R A C T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi i C H A P T E R 1 I N T R O D U C T I O N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 P he nyl ke t onur i a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 H i s t or y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 C l i ni c a l F e a t ur e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 C l a s s i c phe not ype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 P he not ype of e a r l y t r e a t e d pa t i e nt s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 M a t e r na l phe nyl ke t onur i a s yndr om e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 G e ne t i c s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 T he P he nyl a l a ni ne M e t a bol i c P a t hw a y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 A ni m a l M ode l s f or P K U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 A l t e r na t i ve T he r a p i e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 G e ne T he r a py V e c t or s B a s e d on A de no A s s oc i a t e d V i r us . . . . . . . . . . . . . . . . . . . 16 A de no A s s oc i a t e d V i r us B i ol ogy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 C ur r e nt T r e nds a nd A ppl i c a t i ons of r A A V . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 R N A a nd D N A a s T he r a pe ut i c A ge nt s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 R N A I nt e r f e r e nc e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 R i boz ym e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2 M A T E R I A L S A N D M E T H O D S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 I n V i t r o R i boz ym e A na l ys i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 D e pr ot e c t i on of R N A O l i gos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 T a r ge t E nd L a be l l i ng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 T i m e C our s e of C l e a va ge R e a c t i ons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 I n V i t r o T r a ns c r i pt i on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 F ul l L e ngt h T r a ns c r i pt C l e a va ge R e a c t i on . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 M ul t i pl e T ur nove r K i ne t i c A na l ys i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

PAGE 7

vi i M ol e c ul a r C l oni ng P r ot oc ol s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 C l oni ng of R i boz ym e V e c t or s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 C ons t r uc t i on of C B m P A H F 263 S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 C ons t r uc t i on of C B m P A H H d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 C ons t r uc t i on of t R N A R z I 209 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 C e l l C ul t ur e P r ot oc ol s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 T r a ns i e nt C e l l T r a ns f e c t i on w i t h C a P O 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 T r a ns i e nt T r a ns f e c t i ons us i ng S upe r f e c t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 P he nyl a l a ni ne H ydr oxyl a s e A c t i vi t y A s s a y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 P r ot e i n C onc e nt r a t i on A s s a y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 W e s t e r n B l ot t i ng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 N or t he r n B l ot t i ng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 R e c om bi na nt A de no A s s oc i a t e d V i r us P a c ka gi ng . . . . . . . . . . . . . . . . . . . . . . . . . 41 A ni m a l P r oc e dur e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 G r ow t h R a t e A na l ys i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 B l ood C ol l e c t i on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 M i c r opl a t e S e r um P he nyl a l a ni ne A s s a y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 F ood C ons um pt i on M e a s ur e m e nt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 P or t a l V e i n I nj e c t i ons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 P he nyl a l a ni ne L oa di ng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 S a c r i f i c e a nd T i s s ue C ol l e c t i on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 R N a s e P r ot e c t i on A s s a ys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 S out he r n B l ot t i ng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 R N A I nt e r f e r e nc e P r ot oc ol s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 G e ne r a t i on of s i R N A C a s s e t t e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 R e ve r s e T r a ns c r i pt a s e R e a c t i on a nd P ol ym e r a s e C ha i n R e a c t i on . . . . . . . . . . 48 3 A N I M A L M O D E L A N A L Y S I S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 G e ne r a l S e x D i m or phi s m i n B T B R P ah e n u 2 M i c e . . . . . . . . . . . . . . . . . . . . . . . . . . 50 G r ow t h C ur ve A na l ys i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 S e r um P he nyl a l a ni ne L e ve l s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 F ood C ons um pt i on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 L i f e s pa n A na l ys i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 P he nyl a l a ni ne H ydr oxyl a s e i n B T B R P ah e n u 2 M i c e . . . . . . . . . . . . . . . . . . . . . . . . 56 L i ve r P A H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 M e s s a ge l e ve l s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 P r ot e i n l e ve l s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 A c t i vi t y l e ve l s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 K i dne y P A H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 D i s c us s i on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4 D O M I N A N T N E G A T I V E I N T E R F E R E N C E I N P H E N Y L K E T O N U R I A . . . . . . 68 G e ne T he r a py f o r P he nyl ke t onu r i a : D i ve r ge nt R e s ul t s by S e x i n B T B R P ah e n u 2 . . 69 L i ve r P A H : E vi de nc e of D om i na nt N e ga t i ve I nt e r f e r e nc e . . . . . . . . . . . . . . . . . . 70 I n v i t r o C e l l T r a ns f e c t i on S t udi e s w i t h N or m a l a nd M ut a nt P A H . . . . . . . . . . . . . . 71

PAGE 8

vi i i D i s c us s i on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5 D E S I G N I N G A H A M M E R H E A D R I B O Z Y M E A G A I N S T P H E N Y L A L A N I N E H Y D R O X Y L A S E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 H a m m e r he a d R i boz ym e D e s i gn f or m P A H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 I n V i t r o R i boz ym e T e s t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 C l oni ng R z I 209 i nt o p21 nhp a nd D e s i gni ng a R i b oz ym e R e s i s t a nt m P A H . . . . . . 85 R i boz ym e I 209 I s A c t i ve I n V i v o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 R i boz ym e I 209 C a n O ve r c om e D om i na nt N e ga t i ve I nt e r f e r e nc e . . . . . . . . . . . . . . 88 D i s c us s i on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6 G E N E T H E R A P Y F O R P H E N Y L K E T O N U R I A . . . . . . . . . . . . . . . . . . . . . . . . 103 D os e R e s pon s e i n B T B R P ah e n u 2 M a l e s t o r A A V 2 C B m P A H H d W P R E . . . . . 103 C om bi ni n g a n I ne f f e c t i ve D os e of r A A V 2 C B m P A H H d W P R E w i t h I nc r e a s i ng r A A V 2 C B R z I 209 ( S a l I ) D os e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 G e ne T he r a py w i t h a M i l dl y E f f e c t i ve D os e of r A A V 2 C B m P A H H d W P R E a nd I nc r e a s i ng A m ount s of r A A V 2 C B R z I 209 ( S a l I ) . . . . . . . . . . . . . . . . . . 110 D i s c us s i on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 7 D E V E L O P M E N T O F A S I N G L E V E C T O R C A R R Y I N G T H E M O U S E P A H G E N E A N D R I B O Z Y M E I 209 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 D e s i gn a nd C l oni ng of a D ua l r A A V V e c t or . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 C e l l T r a ns f e c t i on E xpe r i m e nt s w i t h C B m P A H H d t R N A R z I 209 . . . . . . . . . . . 125 I n V i v o E xpe r i m e nt s w i t h C B m P A H H d t R N A R z I 209 . . . . . . . . . . . . . . . . . . . 126 D i s c us s i on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 8 D E V E L O P M E N T O F S H O R T I N T E R F E R I N G R N A S F O R M U R I N E P A H . . . 134 S hor t I nt e r f e r i ng R N A S i t e S e l e c t i on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 s i R N A C e l l C ul t ur e T e s t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 D i s c us s i on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 9 S U M M A R Y C O N C L U S I O N A N D F U T U R E D I R E C T I O N S . . . . . . . . . . . . . . 141 G e ne r a l S i gni f i c a nc e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 S um m a r y a nd C onc l us i on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 F ut ur e D i r e c t i ons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 D ua l G e ne R e pl a c e m e nt a nd A nt i s e ns e T e c hnol o gy A ppr oa c he s f or t he T r e a t m e nt of G e ne t i c D i s e a s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 G L O S S A R Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 L I S T O F R E F E R E N C E S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 B I O G R A P H I C A L S K E T C H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

PAGE 9

i x L I S T O F T A B L E S T a bl e pa ge 2 1 M ul t i pl e t ur nove r k i ne t i c a na l ys i s r e a c t i on s e t up. . . . . . . . . . . . . . . . . . . . . . . . . 31 2 2 P C R m ut a ge ne s i s pr i m e r s f or m P A H F 263S c ons t r uc t i on. . . . . . . . . . . . . . . . . . 34 2 3 P C R m ut a ge ne s i s pr i m e r s f or m P A H H d c ons t r uc t i on. . . . . . . . . . . . . . . . . . . . . 35 2 4 O l i gos f or t R N A R z I 209 c ons t r uc t i on. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3 1 U npa i r e d t t e s t a na l ys i s of l i t t e r w e i ght s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3 2 R e s ul t s of A N O V A a na l ys i s of a dul t w e i ght s . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3 3 S e r um phe nyl a l a ni ne va l ue s i n B T B R P ah e n u 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3 4 L i f e s pa n a na l ys i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3 5 P A H a c t i vi t y i n l i ve r s a m pl e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5 1 R i boz ym e I 209 ki ne t i c p r ope r t i e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6 1 r A A V 2 C B m P A H H d W P R E ve c t or t i t e r s . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 6 2 S e r um phe nyl a l a ni ne l e ve l s f o r t i m e d bl e e ds i n m a l e P ah e n u 2 m i c e . . . . . . . . . . 106 8 1 S hor t i nt e r f e r i ng R N A s f or m ous e P A H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

PAGE 10

x L I S T O F F I G U R E S F i gur e pa ge 1 1 P he nyl a l a ni ne c onve r s i on t o t y r os i ne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1 2 H a m m e r he a d r i boz ym e s t r uc t ur e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3 1 B T B R P ah e n u 2 m ous e m ode l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3 2 B T B R m i c e gr ow t h c ur ve s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3 3 M a l e a nd f e m a l e w e i ght di f f e r e nc e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3 4 A ve r a ge da i l y f ood c ons um pt i on. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3 5 N or t he r n bl ot of m ous e P A H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3 6 W e s t e r n bl ot of m ous e P A H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3 7 K i dne y P A H a m ount s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4 1 r A A V ve c t or m a ps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4 2 S e r um phe nyl a l a ni ne l e ve l s a f t e r ge ne t he r a py w i r h r A A V 2. . . . . . . . . . . . . . . . . 77 4 3 P A H a m ount s i n m ous e l i ve r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4 4 C l oni ng s t r a t e gy f or c ons t r uc t i on o f C B m P A H F 2 63S . . . . . . . . . . . . . . . . . . . . 79 4 5 T e s t t r a ns f e c t i ons w i t h C B m P A H a nd C B m P A H F 263S . . . . . . . . . . . . . . . . . 80 4 6 M i xe d t r a ns i e nt t r a ns f e c t i on r e s ul t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4 7 W e s t e r n bl ot of na t i ve P A G E w i t h m i xe d t r a ns f e c t i on s a m pl e s . . . . . . . . . . . . . . 82 5 1 M ous e P A H r i boz ym e de s i gns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5 2 T i m e C our s e a na l ys e s w i t h r i boz ym e s a t 20m M M gC l 2 . . . . . . . . . . . . . . . . . . . . 92 5 3 T i m e C our s e a na l ys i s of r i boz ym e I 209 a t 5 m M M gC l 2 . . . . . . . . . . . . . . . . . . . . 93 5 4 R i boz ym e I 209 ki ne t i c a na l ys i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

PAGE 11

xi 5 5 L ong t a r ge t c l e a va ge a na l ys i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5 6 C B R z I 209. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5 7 C l oni ng s t r a t e gy f or t he c ons t r uc t i on of a r i boz ym e r e s i s t a nt m P A H c l one . . . . . 97 5 8 C B R z I 209 s t a bl y e xpr e s s e s R z I 209 i n 293 c e l l s . . . . . . . . . . . . . . . . . . . . . . . . . 98 5 9 C B m P A H H d i s r e s i s t a nt t o t he r i boz ym e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5 10 R i boz ym e I 209 s uc c e s s f ul l y pr e ve nt s dom i na nt ne ga t i ve i nt e r f e r e nc e i n 293 c e l l s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 5 11 N ul l r i boz ym e de s i gns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 5 12 T he nul l r i boz ym e s do not pr e ve nt dom i na nt ne ga t i ve i nt e r f e r e nc e . . . . . . . . . . 102 6 1 D os e r e s pons e t o r A A V 2 C B m P A H H d W P R E . . . . . . . . . . . . . . . . . . . . . . . 114 6 2 P h e nyl a l a ni ne l oa di ng e xpe r i m e nt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 6 3 R N a s e pr ot e c t i on a s s a y w i t h dos e r e s pons e a ni m a l s . . . . . . . . . . . . . . . . . . . . . 116 6 4 S out he r n bl ot of dos e r e s pons e a ni m a l s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 6 5 P he nyl a l a ni ne hydr o xyl a s e a c t i vi t y i n ge ne t he r a py t r e a t e d a ni m a l s . . . . . . . . . 118 6 6 S e r um phe nyl a l a ni ne l e ve l s a f t e r dua l ve c t or i nj e c t i ons . . . . . . . . . . . . . . . . . . . 119 6 7 R N a s e pr ot e c t i on a s s a y f or c o i nj e c t e d a ni m a l s . . . . . . . . . . . . . . . . . . . . . . . . . 120 6 8 S out he r n bl ot de t e c t i on of t w o r A A V ve c t or s . . . . . . . . . . . . . . . . . . . . . . . . . . 121 6 9 S e r um phe nyl a l a ni ne l e ve l s a f t e r c o i nj e c t i on of m i l dl y e f f e c t i ve C B m P A H H d W P R E dos e a nd i nc r e a s i ng a m ount s o f C B R z I 209 ( S a l I ) . . . . . . . . . . . . . 122 7 1 t R N A R z I 209 de s i gn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 7 2 C l oni ng s t r a t e gy f or c ons t r uc t i on o f t R N A R z I 209 c a s s e t t e . . . . . . . . . . . . . . . . 130 7 3 R e s ul t s of t r a ns i e nt c e l l t r a ns f e c t i ons w i t h C B m P A H H d t R N A R z I 209. . . . . . 131 7 4 t R N A R z I 209 a c t i vi t y a nd e xpr e s s i on i n H E K 293 c e l l s . . . . . . . . . . . . . . . . . . 132 7 5 I n v i v o r e s ul t s w i t h C B m P A H H d t R N A R z I 209. . . . . . . . . . . . . . . . . . . . . . . 1 33 8 1 C e l l c ul t ur e s i R N A w or ki ng c onc e nt r a t i on de t e r m i na t i on. . . . . . . . . . . . . . . . . . 139 8 2 M ous e P A H s i R N A t e s t r e s ul t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

PAGE 12

xi i A bs t r a c t of D i s s e r t a t i on P r e s e nt e d t o t he G r a dua t e S c hool of t he U ni ve r s i t y of F l or i da i n P a r t i a l F u l f i l l m e nt o f t he R e qui r e m e nt s f or t he D e g r e e of D oc t o r of P hi l os o phy G E N E T H E R A P Y F O R P H E N Y L K E T O N U R I A : D O M I N A N T N E G A T I V E I N T E R F E R E N C E I N A R E C E S S I V E D I S E A S E B y C a t he r i ne E l i s a be t h C ha r r on A ugus t 2005 C ha i r : P hi l i p J L a i pi s M a j or D e pa r t m e nt : B i oc he m i s t r y a nd M ol e c ul a r B i ol ogy P he nyl ke t onur i a ( P K U ) i s a n a ut os om a l r e c e s s i ve di s e a s e w he r e phe nyl a l a ni ne a c c um ul a t e s i n t he bl ood; hi gh br a i n l e ve l s of phe n yl a l a ni ne of t e n l e a d t o m e nt a l r e t a r da t i on. T he e nz ym e phe nyl a l a ni ne hyd r oxyl a s e ( P A H ) w hi c h c onve r t s phe nyl a l a ni ne t o t yr os i ne i s t he m ut a t e d ge ne f o r ove r 97% of pa t i e nt s D i e t a r y r e s t r i c t i on of phe nyl a l a ni ne i s t he onl y f o r m o f t he r a py f or P K U a nd i s r e c om m e nde d f or l i f e U n f or t una t e l y pa t i e nt s o f t e n go of f di e t du r i ng a dol e s c e nc e a nd t hi s ha s l e d t o a r i s e i n m a t e r na l P K U s yndr om e t he i nc r e a s e d i nc i de nc e of bi r t h de f e c t s i n c hi l dr e n bo r n t o phe nyl ke t onur i c w om e n. G e ne t he r a py f o r phe n yl k e t onur i a w oul d c ur e t he hype r phe nyl a l a ni ne m i a ( H P A ) a nd he l p p r e ve nt m a t e r na l P K U s yndr om e U s i ng r e c om bi na nt a de no a s s oc i a t e d vi r us s e r ot ype 2 ( r A A V 2) w e ha ve s uc c e s s f ul l y de l i ve r e d t he m ous e P A H ge ne t o m a l e m i c e a nd c ur e d t he H P A W hi l e s uc c e s s f ul t he dos e s ne e de d i n t he P ah e n u 2 m ous e m ode l a r e 5 t o 10 t i m e s hi ghe r t ha n t hos e us e d t o c ur e he m ophi l i a A i n a m ous e m ode l T he P ah e n u 2 m ous e m ode l ha s a

PAGE 13

xi i i m i s s e ns e m ut a t i on i n P A H r e nde r i ng t he e nz ym e i na c t i ve a nd w e f ound t ha t P A H i s pr e s e nt i n t he l i ve r a t 30 pe r c e nt o f no r m a l l e ve l s S i nc e t he e nz ym e i s a ho m ot e t r a m e r dom i na nt ne ga t i ve i nt e r f e r e nc e a f t e r ge ne t he r a py c oul d e xpl a i n t he ne e d f or hi gh r A A V dos e s t o c ur e H P A U s i ng t r a ns i e nt t r a ns f e c t i ons w e c onf i r m e d t ha t m ut a nt a nd nor m a l m onom e r i nt e r a c t t oge t he r a nd r e duc e t ot a l P A H a c t i vi t y. T o pr e ve nt t he dom i na nt ne ga t i ve i nt e r f e r e nc e w e de ve l ope d a r i boz ym e t ha t c l e a ve s t he e ndoge nous P A H m e s s a ge W he n bot h r i boz ym e a nd r e s i s t a nt P A H ge ne w e r e de l i ve r e d i n s e pa r a t e r A A V ve c t or s no i m p r ove m e nt i n t he e f f e c t i ve ne s s of t he t he r a py w a s obs e r ve d. E ndoge nous P A H m e s s a ge w a s r e duc e d i n l i ve r s a m pl e s c onf i r m i ng r i boz ym e a c t i vi t y i n v i v o A s i ngl e ve c t or w a s c ons t r uc t e d t o c ont a i n t he r e s i s t a nt P A H ge ne a nd t he r i boz ym e e xpr e s s e d by a m odi f i e d t R N A V a l pr om ot e r T he nove l ve c t or w a s de l i ve r e d t o m a l e P ah e n u 2 m i c e a nd nor m a l i z a t i on o f s e r um phe nyl a l a ni ne l e ve l s w a s a c hi e ve d w i t h f our f ol d l ow e r dos e s t ha n w i t h t he o r i gi na l C B m P A H ve c t or c onf i r m i ng t he do m i na nt ne ga t i ve i nt e r f e r e nc e hypot he s i s T hi s obs e r va t i on of dom i na nt ne ga t i ve i nt e r f e r e nc e t o g e ne t he r a py i n a c l a s s i c r e c e s s i ve di s or de r m a y pr ove qui t e c om m on i n m a ny hum a n ge ne t i c di s e a s e s

PAGE 14

1 C H A P T E R 1 I N T R O D U C T I O N P h e n yl k e t on u r i a P he nyl ke t onur i a ( P K U ) i s one of t he m os t c om m o nl y i nhe r i t e d hu m a n ge ne t i c di s e a s e s w i t h a n i nc i de nc e i n t he U ni t e d S t a t e s ( U S ) a r ound 1 i n 15, 000 bi r t hs T he ge ne a f f e c t e d i n t he m a j or i t y ( 97% ) o f pa t i e nt s i s phe nyl a l a ni ne hydr oxyl a s e ( P A H ) a nd t he di s e a s e i s i nhe r i t e d a s a n a ut os om a l r e c e s s i ve di s or de r A c c um ul a t i on o f phe nyl a l a ni ne ( P he ) i n t he bl ood b r a i n a nd ot he r o r ga ns i s t he c a us e of t he di s e a s e c l a s s i c a l l y c ha r a c t e r i z e d by s e ve r e m e nt a l r e t a r da t i on S i nc e t h e 1960s s e ve r e ( > 1m M ) o r m i l de r ( 0. 36 1m M ) hype r phe nyl a l a ni ne m i a ( H P A ) ha ve b e e n de t e c t e d i n t he ne ona t a l pe r i od, a nd t r e a t e d by t he di e t a r y r e s t r i c t i on o f phe nyl a l a ni ne I f bl ood P he l e ve l s a r e ke pt w i t hi n a nont oxi c r a nge t h r oughout c hi l dh ood, br a i n a nd c ogni t i ve de ve l opm e nt a r e ne a r nor m a l U nf or t una t e l y, t he di e t i s bot h e xpe ns i ve a nd unpl e a s a nt a nd i s now r e c om m e nde d f or l i f e by phys i c i a ns T hi s c ha pt e r p r e s e nt s a s um m a r y of t he c ur r e nt know l e dge on phe nyl ke t onur i a i nc l udi ng a di s c us s i on of t he i s s ue s a s s oc i a t e d w i t h m a t e r na l phe nyl ke t onur i a s yndr om e H i s t or y T he c l a s s i c phe nyl ke t onur i a phe not ype or i g i na l l y de s c r i be d by F ol l i ng i n 1934 i s c ha r a c t e r i z e d by s e ve r e m e nt a l r e t a r da t i on m i c r oc e pha l y, de l a ye d s pe e c h, s e i z ur e s e c z e m a a nd be ha vi or a bnor m a l i t i e s 1 W he n F ol l i n g di s c ove r e d t ha t t w o of hi s pa t i e nt s pr e s e nt i ng w i t h t he s a m e s ym pt om s w e r e r e l a t e d, he qui c kl y r e a l i z e d t ha t t hi s f o r m o f m e nt a l r e t a r da t i on w a s i nhe r i t e d i n a r e c e s s i ve pa t t e r n. A f t e r c he m i c a l a na l ys i s he

PAGE 15

2 de t e r m i ne d t ha t t he pa t i e nt s e xc r e t e d phe nyl pyr uvi c a c i d i n t he i r ur i ne : he ha d di s c ove r e d a ne w i nbor n e r r or of m e t a bol i s m t he f i r s t m e nt a l r e t a r da t i on t o ha ve a r e c ogni z e d c he m i c a l f e a t ur e 2 I n 1937 t he d i s e a s e w a s r e na m e d phe nyl ke t onur i a t o e m pha s i z e t hi s bi oc he m i c a l f e a t ur e 2 P e nr os e i n t he U ni t e d K i ngdom ( U K ) a nd J e r vi s i n t he U S s t udi e d t he know n pa t i e nt s e xt e ns i ve l y be c a us e of t he i nt e r e s t ge ne r a t e d by t hi s ne w i nbo r n e r r or of m e t a bol i s m a nd i t s e f f e c t on i nt e l l i ge nc e T he y ve r y qui c kl y obs e r ve d va r yi ng de gr e e s of s e ve r i t y i n t e r m s o f t he qua nt i t a t i ve t r a i t a nd de s c r i be d pa t i e nt s ( us i ng t he c om m on t e r m s a t t he t i m e ) a s i m be c i l e s i di ot s or s i m pl e m or ons S i nc e s e x c hr om os om e l i nka ge w a s f o und t o be ne ga t i ve t he di s e a s e w a s know n t o be a ut os om a l a nd s us pe c t e d of ha vi ng unde t e r m i ne d phe not ype i nf l ue nc i ng f a c t or s e i t he r e nvi r onm e nt a l o r ge ne t i c T he y r e por t e d a hi ghe r num be r of c a s e s i n w hi t e popul a t i ons a nd c a l c ul a t e d t he c a r r i e r f r e que nc y t o be a ppr oxi m a t e l y 1 i n 100 f o r bot h t h e U S a nd t he U K P e nr os e us e d P K U a s a m e di c a l e xa m pl e t o c ha l l e nge e uge ni c s s i nc e f or e l i m i na t i ng P K U f r om t he popul a t i on e uge ni c pr opone nt s w oul d ha ve t o s t e r i l i z e one pe r c e nt of t he popul a t i on : O nl y a l una t i c w ou l d a dvoc a t e s uc h a pr oc e dur e t o pr e ve nt t he oc c ur r e nc e of a ha ndf ul of ha r m l e s s i m be c i l e s 2 : 1 9 8 H e a l s o t he o r i z e d on how a l t e r i ng body m e t a bol i s m c oul d i nf l ue nc e t he ps yc hi a t r i c m a ni f e s t a t i on o f t he di s e a s e a c c ur a t e l y pr e di c t i ng t he f ut u r e s uc c e s s of t r e a t i ng P K U by di e t a r y t he r a py H ype r phe nyl a l a ni ne m i a ( H P A ) w a s f oun d t o be t h e c a us e of t he di s e a s e by J e r vi s i n 1947, a nd t he de f e c t i ve e nz ym e w a s de t e r m i ne d t o be l i ve r P A H i n 1953 by U de nf r i e nd a nd C oope r 3 I n t he s a m e ye a r B i c ke l de m ons t r a t e d t he pos s i bi l i t y of i m pr ovi ng t he m e nt a l r e t a r da t i on by us i ng a P he r e s t r i c t e d di e t T he ne e d t o i de nt i f y P K U

PAGE 16

3 pa t i e nt s e a r l y be c a m e obvi ous : a t t he t i m e i t i s e s t i m a t e d t ha t one pe r c e nt of t he popul a t i on i n m e nt a l i ns t i t ut i ons ha d P K U I n 195 7 t he f e r r i c c hl or i de di a pe r t e s t w a s t e s t e d i n s om e C a l i f or ni a w e l l ba by c l i ni c s bu t t he t e s t pr ove d t o be un r e l i a bl e dur i ng t he f i r s t m ont h of l i f e F our ye a r s l a t e r a r e l i a bl e a s s a y w a s de ve l ope d t o s c r e e n bl ood s pot s f r om ne w bor ns f or hype r phe nyl a l a ni n e m i a 4 T hi s m a de ne ona t a l s c r e e ni ng pos s i bl e a nd a l l ow e d f or t he P he r e s t r i c t e d di e t t o be s t a r t e d be f or e one m ont h of l i f e D ur i ng t he ne xt t w o de c a de s ne ona t a l s c r e e ni ng w a s i ns t i t ut e d t hr o ughout t he W e s t e r n W or l d a nd t hous a nds of P K U pa t i e nt s ha ve be e n pl a c e d on di e t s s hor t l y a f t e r bi r t h a nd gi ve n t he oppor t uni t y t o de ve l op nor m a l l y. C l i n i c al F e at u r e s C l as s i c p h e n ot yp e A l t hough m e nt a l r e t a r da t i on i s t he m a i n f e a t ur e of t he unt r e a t e d pa t i e nt t he m e c ha ni s m by w hi c h phe nyl a l a ni ne c a us e s t he di s e a s e i s s t i l l not know n. R e c e nt s t udi e s di s pl a y t he pot e nt i a l r i s ks a s s oc i a t e d w i t h hi gh P he c onc e nt r a t i on i n c e r e br os pi na l f l ui d ( C S F ) P a t c h c l a m p e xpe r i m e nt s s how t ha t by c om pe t i ng f or bi ndi ng s i t e s on N M D A a nd non N M D A r e c e pt or s P he de p r e s s e s gl ut a m a t e r e c e pt or f unc t i on i n hi ppoc a m pa l a nd c e r e br oc or t i c a l c ul t ur e d ne u r ons 5 T he gl u t a m a t e r e c e pt or i s a s s oc i a t e d w i t h f or m a t i on of s yna ps e s dur i ng e a r l y de ve l opm e nt a nd i n de ndr i t i c s pi ne c ha nge s i n a dul t t i s s ue a nd t hus i t i s i nvol ve d i n m e m o r y pe r f or m a nc e a nd l e a r ni ng. I n v i v o t he gl ut a m a t e r e c e pt or i s not s a t ur a t e d by i t s s ubs t r a t e a nd t hus c oul d e f f e c t i ve l y be i nhi bi t e d by hi ghe r C S F P he l e ve l s m os t l i ke l y l e a di ng t o m e m o r y a nd l e a r ni ng dys f unc t i ons T he B T B R P ah e n u 2 m ous e m ode l br a i n ( s e e l a t e r s e c t i on) s how s a n up r e gul a t i on o f t he de ns i t y of N M D A r e c e pt or s a s de t e r m i ne d by r a di oa c t i ve l i ga nd bi nd i ng a nd w e s t e r n bl ot t i ng f o r s pe c i f i c s ubuni t s of N M D A r e c e pt or s 6 A M P A r e c e pt or s u buni t s ( a non N M D A gl ut a m a t e

PAGE 17

4 r e c e pt or ) a r e a l s o f ound t o be e l e va t e d a s c om pa r e d t o t he he t e r oz ygot e f o r e br a i n s a m pl e s A s t udy m e a s ur i ng N a + K + A T P a s e a c t i vi t y i n e r y t hr oc yt e m e m br a ne s f r o m t r e a t e d P K U pa t i e nt s ha s s how n t ha t t he r e i s a ne ga t i ve c o r r e l a t i on be t w e e n A T P a s e a c t i vi t y a nd t he s e r um P he c onc e nt r a t i on i n t he pa t i e nt s 7 T he p a t i e nt s w ho ha d s e r um P he l e ve l s a bove 0. 30m M ha d de c r e a s e d N a + K + A T P a s e a c t i vi t y; t hi s c or r e l a t e s w i t h t he obs e r va t i on t ha t A T P a s e a c t i vi t y i s r e duc e d i n t he c or t e x of r a t s s ubj e c t e d t o e xpe r i m e nt a l P K U T he s a m e i s oz ym e of t he A T P a s e i s pr e s e nt i n t he br a i n a nd l os s of i t s a c t i vi t y oc c ur s i n ne ur ode ge ne r a t i ve di s or de r s D i r e c t i nh i bi t i on of t he N a + K + A T P a s e i s a s s oc i a t e d w i t h gl ut a m a t e r e l e a s e H ow e ve r i t i s u nknow n a t t hi s poi nt i f t he de c r e a s e d a c t i vi t y i n e r yt h r oc yt e s i s s i m i l a r i n t he b r a i n, a nd i f t hi s i s s om e how r e l a t e d t o t he i nc r e a s e i n N M D A r e c e pt or s obs e r ve d i n t he br a i n s of P ah e n u 2 m i c e C r e a t i ne ki na s e a c t i vi t y, i m po r t a nt i n m a i nt a i ni ng e ne r gy hom e os t a s i s i n t he br a i n, a nd dopa m i ne s ynt he s i s ha ve be e n f ound t o be r e duc e d i n hype r p he nyl a l a ni ne m i c m ous e or r a t br a i ns a ddi ng t o t he c om p l e xi t y of t he phe not ype 8 9 A n e a r l i e r s t udy i n a m ous e m ode l w i t h i nduc i bl e hype r phe nyl a l a ni ne m i a by a dm i ni s t r a t i on of P he i n t he dr i nki ng w a t e r e xa m i n e d a dul t m i c e b r a i ns S t a t i s t i c a l l y s i gni f i c a nt de c r e a s e s i n t he m us c a r i ni c a c e t yl c hol i ne r e c e pt or s i n t he hi ppoc a m pus a nd c e r e br a l c or t e x w e r e obs e r ve d. 1 0 P he ha s be e n s ho w n t o i nhi bi t A T P s ul f ur yl a s e de c r e a s i ng t he s ynt he s i s of s ul f a t i de s w hi c h a r e m ye l i n a s s oc i a t e d l i pi ds T he de c r e a s e i n s ul f a t i de s r e s ul t s i n l ow e r p r ot e c t i on l e ve l s of m ye l i n a nd hi ghe r m ye l i n t u r nove r not c om pe ns a t e d by hi ghe r m ye l i n s ynt he s i s L ow m y e l i na t i on w a s obs e r ve d i n t he b r a i n a ut ops y of s e ve r e unt r e a t e d P K U pa t i e nt s a nd i n t h e P ah e n u 2 br a i ns 8 1 1 T he br a i ns i n t he

PAGE 18

5 i nduc e d H P A s t udy s how e d l os s of t he a c e t yl c hol i ne r e c e pt or i n a [ P he ] a nd t i m e of e xpos ur e de pe nde nt m a nne r i n a r e gi on o f t he br a i n a s s oc i a t e d w i t h a c qui s i t i on a nd l ong t e r m s t or a ge of i nf o r m a t i on. T he a s s oc i a t i on of s pe c i f i c ne ur ona l r e c e pt or s a nd pos s i bl e pe r m a ne nt br a i n da m a ge w i t h H P A s uppor t s t he ne e d f or l i f e l ong t he r a py. P h e n ot yp e of e ar l y t r e at e d p at i e n t s O nc e ne ona t a l de t e c t i on of hype r phe nyl a l a ni ne m i a w a s pos s i bl e pa t i e nt s w e r e pl a c e d, w i t hi n one m ont h a f t e r bi r t h, on a phe nyl a l a ni ne f r e e di e t T h i s di e t pr e ve nt s t he e l e va t i on of s e r um P he l e ve l s a nd t he ne ur ops yc hol ogi c a l phe not ype i s a ve r t e d. T he di e t c ons i s t s of a m i xt ur e o f f r e e a m i no a c i ds or m odi f i e d pr ot e i n hyd r ol ys a t e s a nd i s i nge s t e d a s a dr i nk a f t e r di l ut i on i n w a t e r T he c om m e r c i a l pr oduc t s c ur r e nt l y a va i l a bl e ha ve i m pr ove d s i nc e t he e a r l y 1960s i n t e r m s of ove r a l l nut r i t i ona l qua l i t i e s a nd vi t a m i n ba l a nc e a nd ha ve be e n s how n t o l e a d t o no r m a l ph ys i c a l gr ow t h i n c hi l d r e n. 1 2 H ow e ve r t he t a s t e a nd s m e l l of t he pr oduc t s a r e poor a nd m a ke c om pl i a nc e t o t he di e t di f f i c ul t P he nyl ke t onur i c c hi l dr e n m us t be c l os e l y f ol l ow e d t hr oughout t he i r c hi l dhood by a c l i ni c t o m oni t or s e r um P he l e ve l s gr ow t h pa r a m e t e r s a n d di e t i nt a k e I n t he 1960s a f e w r e por t s c a m e ou t s ugge s t i ng t h a t t e r m i na t i on o f di e t i n e a r l y c hi l dhood w oul d not l e a d t o a ny s i de e f f e c t s U nf or t una t e l y, t he c onc l us i on w a s pr e m a t ur e I n 1978 a nd i n a f ol l ow up s t udy i n 19 91, S m i t h e t a l s how e d t ha t t e r m i na t i on or r e l a xa t i on of t he di e t c a n l e a d t o l os s of i nt e l l i ge nc e quot i e nt ( I Q ) poi nt s 1 3 1 4 P oor di e t a r y c ont r ol i n e a r l y a nd c ont i n uous l y t r e a t e d P K U pa t i e nt s ( 10 8 ye a r s ol d) a f f e c t s s hor t t e r m m e m o r y, s e l e c t i ve a t t e nt i on, be ha vi or a l i nhi bi t i on a nd r ul e ba s e d be ha vi or a s c om pa r e d t o w e l l c ont r ol l e d P K U pa t i e nt s w i t h P he l e ve l s be l ow 400 m ol / l a nd a ge a nd I Q m a t c he d nor m a l c ont r o l s ubj e c t s 1 5 I n t he s a m e s t udy, t he be t t e r c ont r ol l e d p a t i e nt s ha d s i gni f i c a nt but m i l d, i m pa i r m e nt s i n pl a nni ng a nd s us t a i ne d

PAGE 19

6 a t t e nt i on a s c om pa r e d t o t he nor m a l s ubj e c t s A ga i n, t hi s e m pha s i z e s t he ne e d t o f i nd a be t t e r c ur e f or P K U M at e r n al p h e n yl k e t o n u r i a s yn d r om e M a t e r na l P K U s yndr om e r e f e r s t o t he i nc r e a s e d r a nge of bi r t h de f e c t s s e e n i n c hi l dr e n bor n of hype r phe nyl a l a ni ne m i c m ot he r s o n a poor l y c ont r ol l e d di e t G r ow t h r e t a r da t i on, ps yc hom ot or ha ndi c a ps a nd ot he r bi r t h de f e c t s ha ve be e n r e por t e d 1 6 H i gh phe nyl a l a ni ne i n t he m ot he r w a s f i r s t not e d t o be t e r a t oge ni c t o t he f e t us by D e nt i n 1956 a nd M a br y i n 1963 1 7 T he f i r s t r e por t s not e d m e nt a l r e t a r da t i on i n t he non P K U of f s pr i ng of P K U m o t he r s but be f or e t he e nd o f t he de c a de r e por t s on m i c r oc e pha l y, i nt r a ut e r i ne gr ow t h r e t a r da t i on a nd hi gh f r e que nc y of c onge ni t a l he a r t de f e c t s w e r e publ i s he d. 1 7 S i nc e di e t w a s not r e c om m e nde d f or l i f e a f t e r i t s e a r l y i ns t i t ut i on i n t he 1960s a nd t he 1970s t he r i s e i n m a t e r na l P K U s yndr om e c a m e a bout a s t he f i r s t e a r l y t r e a t e d pa t i e nt s r e a c he d c hi l dbe a r i ng a ge T he e xt e nt of t he s yndr o m e w a s not f ul l y unde r s t ood unt i l t he r e por t f r om L e nke a nd L e vy, c om pi l i ng da t a f r om a w i de r a nge of m e t a bol i c c e nt e r s a c r os s t he w or l d, w a s publ i s he d i n t he N e w E ngl an d J our nal of M e di c i ne i n 1980 1 8 M e nt a l r e t a r da t i on i n t he c hi l dr e n bor n t o w om e n w i t h P he a t 20m g/ dL ( unt r e a t e d c l a s s i c P K U ) w a s f ound t o oc c ur i n 92 % of c a s e s m i c r oc e pha l y i n 73% c onge ni t a l he a r t de f e c t s i n 12% a nd l ow bi r t h w e i ght be l ow 2. 5kg i n 40% of bi r t hs T he s e r i s ks w e r e s how n t o i nc r e a s e a s t he m ot he r s P he l e ve l s i nc r e a s e d. I n t h e U S t w o t hi r ds of phe nyl ke t onu r i c w om e n a r e not on di e t w he n t he y be c om e p r e gna nt 1 9 T he be ne f i t s of t r e a t i ng P K U pa t i e nt s f r om i n f a nc y c oul d be e r a s e d i f t hi s i nc r e a s e i n bi r t h de f e c t s a n un f or e s e e n s i de e f f e c t of t he pr i o r s uc c e s s w i t h P K U i s not a ddr e s s e d. 2 0 T he M a t e r na l P K U C ol l a bor a t i ve S t udy w a s s t a r t e d i n 1984 t o e xa m i ne t he e f f e c t s of phe nyl a l a ni ne c ont r ol dur i ng ge s t a t i on on p r e gna nc y out c om e s T he i n t e r na t i ona l

PAGE 20

7 s t udy e nr ol l e d 382 w om e n w i t h 574 pr e gna nc i e s 2 1 T he w om e n w e r e m oni t o r e d dur i ng pr e gna nc y, a nd t he c hi l dr e n f ol l ow e d unt i l 6 7 ye a r s of a ge t o m e a s ur e c ogni t i ve de ve l opm e nt 2 2 T he f r e que nc y of a bnor m a l i t i e s i n t he c hi l dr e n w a s f ound t o be di r e c t l y r e l a t e d t o m a t e r na l phe nyl a l a ni ne l e ve l s dur i ng pr e gna nc y. 1 6 T he r a nge o f bi r t h de f e c t s a t t r i but a bl e t o m a t e r na l P K U s yndr om e i nc l ude s pr e na t a l gr ow t h r e t a r da t i on m i c r oc e pha l y, c onge ni t a l he a r t di s e a s e a nd f a c i a l dys m or phi a s 2 3 W hi l e f e t a l l os s f or P K U w om e n i s c om pa r a bl e t o t he nor m a l a ve r a ge s i nc r e a s e s i n t he s e bi r t h de f e c t s a r e a l w a ys r e l a t e d t o phe nyl a l a ni ne l e ve l s a nd l e ngt h of e xpos ur e dur i ng ge s t a t i on. 2 3 C ont r ol pr i o r t o c onc e pt i on a nd c ont r ol be l ow 360 m ol / L a c hi e ve d by 10 w e e ks of ge s t a t i on w i l l l e a d t o a no r m a l o r ne a r no r m a l out c om e bot h a t bi r t h a nd i n I Q a t f ol l ow up. C onge ni t a l he a r t di s e a s e i s not s t r i c t l y r e l a t e d t o P he c onc e nt r a t i on but i t s f r e que nc y i s i nc r e a s e d w he n poor c ont r ol w i t h i na de qua t e pr ot e i n a nd vi t a m i n i nt a ke oc c ur s dur i ng t he f i r s t t r i m e s t e r 2 2 P os t na t a l gr ow t h r e t a r da t i on i s i nve r s e l y c or r e l a t e d t o phe nyl a l a ni ne c ont r ol dur i ng t he ge s t a t i on pe r i od; I Q goe s dow n s i gni f i c a nt l y i n t he s a m e m a nne r W om e n w i t h I Q l e s s t ha n 85 ne e d s pe c i a l s uppor t s i nc e t he i r a dhe r e nc e t o t he di e t i s not a s e a s i l y a c hi e ve d: c ur r e nt l y i n t he U S t he s t a t us of c a r e a n d s uppor t i s not a de qua t e t o a l l ow f o r pr ope r c ont r o l a nd be t t e r pr e gna nc y out c om e s i n t he s e w om e n. O t he r f a c t or s be s i de s phe nyl a l a ni ne l e ve l s a r e t hou ght t o a f f e c t pr e gna nc y out c om e a nd t he c hi l d s I Q a t 6 t o 7 ye a r s of a ge T he s e i nc l ude a ge of t he m ot h e r s oc i oe c onom i c s t a t us pa r e nt a l I Q a nd hom e c ha r a c t e r i s t i c s 2 4 H o m e c ha r a c t e r i s t i c s a nd pa r e nt a l I Q c a n e xpl a i n m os t of t he l ow e r t ha n e xpe c t e d I Q s c or e s i n t he c hi l dr e n; m or e t ha n t h r e e of t he know n r i s k f a c t or s f or one pr e gna nc y a l s o c a n l e a d t o poor e r t ha n e xpe c t e d out c om e N one t he l e s s ni ne w om e n w i t h c l a s s i c P K U obs e r v i ng l a t e di e t c ont r ol ha d c hi l dr e n w ho

PAGE 21

8 de m ons t r a t e d hi ghe r t ha n e xpe c t e d I Q s a t 6 ye a r s 2 4 A c om m on f e a t ur e be t w e e n m a t e r na l P K U s yndr om e f e t a l a l c ohol s yndr om e a nd pyr uv a t e de hydr oge na s e de f i c i e nc y i s a pot e nt i nhi bi t i on of py r uva t e de hydr oge na s e : s i nc e m odi f i e r ge ne s a r e know n t o pr e ve nt t oxi c i t y i n f e t a l a l c ohol s yndr om e t he pos s i bi l i t y o f m odi f i e r ge ne s f o r P K U i s a n a t t r a c t i ve e xpl a na t i on f o r t he va r i a nc e i n t he r e s ul t s obs e r ve d i n t he l a t e t r e a t e d gr oup 2 4 G e n e t i c s T he i nc i de nc e of t he di s e a s e i n t he U S va r i e s f r om 1 i n 13 500 t o 1 i n 19 000 bi r t hs F or non P K U hype r phe nyl a l a ni ne m i a t he e s t i m a t e i s 1 i n 48, 000 bi r t hs 2 5 T he p r e va l e nc e of P K U i s h i ghe r i n w hi t e a nd N a t i ve A m e r i c a n t h a n i n bl a c k, hi s pa ni c a nd a s i a n popul a t i ons M uc h a l l e l i c di ve r s i t y ha s be e n r e por t e d a t t he l oc us ( > 450 know n m ut a t i ons ) ; a n e xt e ns i ve da t a ba s e c ont a i ni ng a l l o f t he kn ow n m u t a t i ons i s l oc a t e d a t ht t p: / / w w w pa hdb. m c gi l c a 2 6 T hi s di ve r s i t y l e a ds t o m uc h phe not ypi c v a r i a bi l i t y e ve n a m ongs t pa t i e nt s w i t h t he s a m e P A H ge not ype O t he r ge ne t i c a nd e nvi r on m e nt a l f a c t or s pr oba bl y i nf l ue nc e t he c l i ni c a l phe not ype but ha ve ye t t o be e l uc i da t e d. P A H i s l oc a t e d on t he hum a n c hr om os om e 12 a t p os i t i on q22 q24. 1 2 7 T he f i r s t hum a n c D N A c l one w a s i s ol a t e d i n 1985 T he pr ot e i n i s 451 a m i no a c i ds or 51 672 D a l t ons 2 8 T he pr ot e i n w a s i s ol a t e d f r om t he r a t a s a di m e r a nd t hought t o be m a de up o f t w o i de nt i c a l s ubuni t s 2 9 P A H c ont a i ns 13 e xons o ve r 90kb o f D N A 3 0 T he a ve r a ge e xon l e ngt h i s 114 ba s e s r a ngi ng f r o m 57 t o 892 ba s e s P he nyl a l a ni ne hydr oxyl a s e i s s t r ongl y hom ol o gous t o t yr os i ne hyd r oxyl a s e a nd t h i s hom ol ogy i s gr e a t e s t i n t he C t e r m i na l t w o t hi r ds of t he pr ot e i n I nt e r e s t i ngl y, f or P A H t h i s c or r e s ponds t o t he l a s t 1698 ba s e s of t he m R N A w hi c h i s c ode d i n 16kb of D N A w hi l e t he m os t di ve r ge nt pa r t s o f t he pr ot e i n c or r e s pond t o 567 ba s e s of m R N A c ode d i n 72kb of D N A T he l a r ge s t i nt r on be t w e e n e xons 3 a nd 4, i s 23kb a nd f a l l s be t w e e n a m i no a c i ds 117 a nd 118 w he r e t he hom ol ogy t o

PAGE 22

9 tyrosine hydroxylase begins. This suggests that functional and tissue specific regulat ors could be contained within that intron or at least within the 72kb of divergent DNA. 30 Rat and human PAH share 96% homology at the amino acid level, and 89% a t the nucleotide level, with 82% of the differing nucleotides as silent codon changes. 28 Transcription of PAH has been shown to be regulated by a 9kb fragment situated upstream of the human gene. As other housekeeping genes, it does not have a TATA box, and uses multiple transcription initiati on start sites both in humans and in rodents. 31 The 5 region of human PAH contai ns two half sites of the glucocorticoid response element (GRE), two consensus sites for activator protein 2 (AP2) and one partial site for cAMP response element (CRE). 32 A 1.7kb region situated from position 3.5kb to 5.2kb contains 2 hepatocyte nuclear factor 1 (HNF1) binding sites. 33 HNF1 was shown to activate the 9kb promoter region in a dose dependent manner, and can be enhanced by its dimerization cofactor DCoH. Interestingly DCoH is also the enzyme pterin 4 carbinolamine dehydratase (PCD), responsible for converting 4 carbinolamine tetrahydrobiopterin to 7,8 dihydrobiopterin quinoid form in the recycling pathway of BH 4 (see Figure 1 1 and later section). Both DCoH and PAH can be found on the sam e operon in Pseudomonas aeruginosa suggesting an evolutionary role in the regulation of PAH by DCoH: it can transactivate transcription of the gene and recycle the necessary cofactor. In the mouse, the activity of the promoter is completely dependent on its enhancer, situated 3.5kb upstream of the start site. The enhancer has binding sites with weak homology to HNF1 and C/EBP concensus sequences. Addition of cAMP and dexamethasone increases the activity of the promoter in the presence of the enhancer in an additive fashion. 31 The enzyme activity in rat cell lines is increased in the presence of

PAGE 23

10 hydr oc or t i s one due t o a n i nc r e a s e i n P A H t r a ns c r i p t s s ugge s t i ng t ha t t he r a t a nd m ous e pr om ot e r s ha ve s i m i l a r c ha r a c t e r i s t i c s 3 4 T r a ns ge ni c m i c e c ont a i ni ng t he hum a n r e gul a t or y r e gi on e xpr e s s t he P A H t r a ns ge ne l i ke t he m ur i ne P A H bot h i n a t i m e a nd t i s s ue s pe c i f i c m a nne r 3 5 T he m u r i ne e nha nc e r r e gi on i s 77. 5 % hom ol ogous t o t he hu m a n s e gm e nt c ont a i ni ng t he H N F 1 bi nd i ng s i t e s 3 3 I t i s s t i l l unknow n i f t he hum a n P A H ge ne i s hor m ona l l y r e gul a t e d, but unl i ke t he m ur i ne pr o m ot e r i t doe s not r e qui r e c A M P or de xa m e t ha s one f or i n v i t r o a c t i vi t y I n hum a ns t he P A H t r a ns c r i pt c a n be de t e c t e d du r i ng t he f i r s t t r i m e s t e r i n t he f e t a l l i ve r I n r ode nt s P A H i s a c t i va t e d a t da y 18 of ge s t a t i on, but s t r ongl y i nduc e d dur i ng t he f i r s t pos t na t a l w e e k i n t he l i ve r 3 5 P A H i s pr e s e nt i n r ode nt k i dne y, a nd w a s f ound i n hum a n ki dne y c or t e x a t 20% of l e ve l s obs e r v e d i n hum a n l i ve r 3 6 3 7 I n r a t s t he k i dne y ha s 20% of l i ve r m R N A a m ount s a nd bot h t he l i ve r a nd ki dne y m R N A s a r e t he s a m e s i z e 3 4 C ondi t i ons w hi c h a c t i va t e t he r a t pur i f i e d e nz ym e do not a c t i va t e t he ki dne y e nz ym e : i t i s i n a c o ns t a nt a c t i va t e d s t a t e 3 8 B e c a us e t he m R N A s a r e i de nt i c a l t he di f f e r e nc e i n a c t i vi t i e s m a y be f r o m di f f e r e nt pos t t r a ns l a t i ona l m odi f i c a t i ons a nd r e gul a t i on R a o pos t ul a t e d t ha t t he ki dne y e nz ym e c oul d m a ke up 50% of r a t s t o t a l P A H a c t i vi t y due t o i t s hi ghe r 5 6, 7 8 t e t r a hydr ob i opt e r i n ( B H 4 ) de pe n de nt a c t i vi t y. M ol l e r e t al de m ons t r a t e d t ha t t he hum a n ki dne y c ont r i bu t e s a l a r ge a m ount of t yr os i ne t o t he s ys t e m i c c i r c ul a t i on, w hi l e t he l i ve r i s a ne t r e m ov e r of bot h phe nyl a l a ni ne a nd t yr os i ne f r om t he c i r c ul a t i on. 3 9 T h e P h e n yl al an i n e M e t ab ol i c P at h w ay P he nyl a l a ni ne m e t a bol i s m i s ve r y c om pl e x due t o i t s f unc t i on a s a p r e c ur s or t o dopa m i ne e pi ne phr i ne a nd nor e pi ne phr i ne a nd i t s dua l gl uc oge ni c a nd ke t oge ni c r o l e P he nyl a l a ni ne i s a n e s s e nt i a l a m i no a c i d; i t s i npu t i s di e t a r y a nd i t s c l e a r a nc e i nc l ude s

PAGE 24

11 i nc l us i on i nt o pol ype pt i de s ( 5 10% ) a nd oxi da t i on t o t y r os i ne ( 75% ) M i nor pa t hw a ys of t r a ns a m i na t i on a nd de c a r boxyl a t i on do not c ont r i b ut e s i gn i f i c a nt l y t o i t s c a t a bol i s m A l l c e l l s us e phe nyl a l a ni ne f or pr o t e i n s ynt he s i s but h e pa t oc yt e s a nd ki dne y c e l l s a r e t he m a i n c ont r i but or s t o phe nyl a l a ni ne c l e a r a nc e 3 9 4 0 T he f i r s t e nz ym e i n t he c l e a r a nc e pa t hw a y i s phe nyl a l a ni ne hydr oxyl a s e or L phe nyl a l a ni ne 4 m onooxyge na s e by i t s f or m a l na m e P he nyl a l a ni ne hyd r oxyl a s e i s a t e t r a m e r i c e nz ym e m a de up of f our i de nt i c a l s ubuni t s P A H i s a s ubs t r a t e f or c A M P de pe nde nt pr ot e i n ki na s e I t i s a m e t a l l opr ot e i n r e qui r i ng 1m ol of i r on pe r m ol of s ubuni t a nd ha s a ne c e s s a r y c of a c t or B H 4 4 1 T he c onve r s i on o f phe nyl a l a ni ne t o t y r os i ne i s pos t ul a t e d t o oc c ur vi a t he N I H s hi f t s i nc e t he hydr oge n on c a r bon 4 of phe nyl a l a n i ne i s m ove d t o c a r bon 3 on t y r os i ne ( F i gur e 1 1) B H 4 i s s ynt he s i z e d de nov o f r om G T P i n a f our s t e p pa t hw a y i nvol vi ng G T P c yc l ohydr ol a s e I ( G T P C H ) 6 pyr uvoyl t e t r a hydr o pt e r i n s ynt ha s e ( P T P S ) a nd s e pi a pt e r i n r e duc t a s e ( S R ) H P A c a n a l s o be c a us e d by de f e c t s i n G T P C H a nd P T P S a nd t hi s oc c ur s i n 1 t o 2% of c a s e s I n t he P A H s ys t e m t w o e nz y m e s a r e r e s pons i bl e f or r e c yc l i n g B H 4 : P C D a nd di hydr opt e r i d i ne r e duc t a s e ( D H P R ) R e gul a t i on of P A H i s t hr e e f ol d ba s e d on s t udi e s d one w i t h t he r a t e nz ym e : P A H i s a c t i va t e d by phe nyl a l a ni ne a nd by phos phor yl a t i on by c A M P de pe nde nt pr ot e i n ki na s e T he phos phor yl a t i on s e e m s t o be s t i m ul a t e d by ph e nyl a l a ni ne w hi l e onc e phos phor yl a t e d l e s s phe nyl a l a ni ne i s ne e de d f or a c t i va t i on. 4 2 S i nc e phos phor yl a t i on of P A H i s pe r f o r m e d by c A M P de pe nde nt p r ot e i n ki na s e bl ood gl uc a gon l e ve l s i ndi r e c t l y a f f e c t t he r a t e a t w hi c h P he i s c l e a r e d: a f t e r a m e a l l e ve l s of c A M P i nc r e a s e t hus a c t i va t i ng P A H I n l ow bl ood gl uc os e c ondi t i ons P he t ur nove r c a n i nc r e a s e i n o r de r t o obt a i n f um a r a t e B H 4 i nh i bi t s P A H a c t i vi t y ke e pi n g t he e nz ym e i n a ( pos t ul a t e d) l e s s

PAGE 25

12 a c t i ve c onf or m a t i on; t he e f f e c t i s r e ve r s e d by P he T he s t r uc t ur e o f a P A H di m e r ha s be e n e l uc i da t e d. 4 3 T he 452 a m i no a c i d m ono m e r i s c om pos e d of t hr e e r e gi ons : a r e gul a t o r y, a c a t a l yt i c a nd a t e t r a m e r i z a t i on dom a i n. T he c a t a l yt i c dom a i n, a m i no a c i ds 118 427 c ont a i ns 13 he l i c e s a nd 9 s t r a nds T he r e gul a t or y dom a i n i s i n t he N t e r m i nus w hi l e t he t e t r a m e r i z a t i on dom a i n i s c o nt a i ne d i n t he C t e r m i nus T he a c t i ve s i t e i s bur i e d i n a de e p ba s ke t s ha pe d c l e f t w he r e t he i r on a t om i s bound b y H 290, H 285 Q 330 a nd a w a t e r m ol e c ul e K obe e t a l pos t ul a t e d t ha t m ove m e nt of t he N t e r m i na l r e gul a t o r y dom a i n a bout a hi nge r e gi on, m a ki ng a c c e s s t o t he c a t a l yt i c s i t e e a s i e r c oul d e xpl a i n t he r e gul a t i on by phos phor yl a t i on a nd P he 4 3 A s of M a y 2005, 498 di s e a s e c a us i ng m ut a t i ons w e r e r e c or de d i n t he P A H da t a ba s e S i xt y t w o pe r c e nt of t he s e m ut a t i ons a r e m i s s e ns e m ut a t i ons 2 7 I n v i t r o a na l ys e s ha ve be e n pe r f or m e d t o a na l yz e a w i de r a nge of t h e s e m ut a t i ons i n or de r t o obt a i n i ns i ght on t he ge not ype phe not ype r e l a t i ons hi p of P K U a n d t he bi oc he m i c a l m e c ha ni s m of di s e a s e 4 4 4 8 T he a na l ys e s i n m a m m a l i a n c e l l s ha ve s how n t ha t m ut a t i ons o f t e n ha ve a de c r e a s e of i m m unor e a c t i ve pr ot e i n but no r e a l di f f e r e nc e i n m R N A a m ount s T he s e c onf or m a t i ona l m ut a t i ons pr e di s pos e t he pr o t e i n m onom e r t o i nc or r e c t f ol di ng or m i s a s s e m bl y of t he e nz ym e a s de t e r m i ne d i n E c ol i e xpr e s s i on s ys t e m s a nd t w o hybr i d a na l ys e s t hus l e a di ng t o i nc r e a s e d t ur nove r of t he pr ot e i n. 4 4 I n v i t r o m a ni pul a t i ons s uc h a s t e m pe r a t ur e de c r e a s e s a nd i nc r e a s e d c ha pe r oni n l e ve l s c a n r e s c ue pr ot e i n a m ount s ol i gom e r i z a t i on pa t t e r n a nd, f or s om e m ut a t i ons a c t i vi t y a s w e l l 4 6 S i m i l a r m odul a t i ng e f f e c t s i n v i v o c oul d e xpl a i n t he di s c r e pa nc i e s i n p he not ype s be t w e e n pa t i e nt s of i de nt i c a l ge not ype 4 9

PAGE 26

13 A n i m al M od e l s f or P K U A m ous e m ode l na m e d B T B R P ah e n u 2 w a s c r e a t e d by N e t hyl N ni t r os our e a t r e a t m e nt of m a l e B T B R P as m i c e by S he dl ovs ky e t al i n 1993 5 0 T he s pe c i f i c phe not ype hype r phe nyl a l a ni ne ne m i a w a s s c r e e ne d f or i n ove r 300 o f f s pr i ng of m ut a ge ni z e d m a l e s c r os s e d t o B T B R P ah e n u 1 m i c e T he P ah e n u 1 l i ne w a s c r e a t e d a f e w ye a r s e a r l i e r a nd di s pl a ye d a m i l d P K U phe not ype s o t he m ut a ge ne s i s w a s r e pe a t e d i n or de r t o f i nd a m or e s e ve r e l y a f f e c t e d phe not ype 5 1 O nc e a pot e nt i a l c a r r i e r of a m ut a t i on una bl e t o r e s c ue t he P ah e n u 1 phe not ype w a s f ou nd, i t w a s br e d t o w i l d t ype B T B R P as f e m a l e m i c e a nd t w o c onge ni c m ut a nt l i ne s w e r e e ve nt ua l l y e s t a bl i s he d, B T B R P ah e n u 2 a nd P ah e n u 3 T he P ah e n u 1 a nd P ah e n u 3 m i c e ha ve di f f e r e nt P K U phe not ype s a nd w i l l not be di s c us s e d i n t hi s w or k. T he P ah e n u 2 m i c e e xhi bi t m a ny of t he c ha r a c t e r i s t i c s a s s oc i a t e d w i t h c l a s s i c P K U : hypopi gm e nt a t i on c ogni t i ve di s a bi l i t i e s a nd m a t e r na l P K U s yndr om e 5 2 5 3 T he s i ngl e ba s e m ut a t i on i n t he m o us e P A H ge ne l oc a t e d on c hr om os om e 10, i s i n e xon 7 t he s a m e e xon w he r e m os t hum a n m ut a t i ons a r e l oc a t e d, c ha ngi ng phe nyl a l a ni ne r e s i due 263 t o a s e r i ne a nd r e nde r i n g t he e nz ym e c a t a l yt i c a l l y i na c t i ve 5 4 S he dl ovs ky e t al r e por t e d r e duc e d i m m uno r e a c t i ve pr ot e i n a s c om pa r e d t o w i l d t ype B T B R P as m i c e a l ong w i t h one pe r c e nt of no r m a l P A H m R N A i n l i ve r e xt r a c t s T he m ut a t i on a l s o c r e a t e d a ne w A l w 26 I r e s t r i c t i on s i t e a l l ow i ng f o r qui c k ge not ypi ng f r om P C R a m pl i f i c a t i on f ol l ow e d by r e s t r i c t i on di ge s t 5 4 T he f e m a l e m i c e do not r e gul a r l y c a r r y l i t t e r s t o t e r m ; i f pups a r e bor n t he y w i l l not s ur vi ve be yond a f e w hour s T hi s m a t e r na l P K U s y ndr om e i n t he m ous e i s c a us e d by t he hi gh s e r um P he l e ve l s i n t he da m s 5 5 S pe c i f i c c a r di ova s c ul a r de f e c t s w e r e not e d i n e m br yos f r om 14. 5 da ys pos t c oi t um 5 3 C ogni t i ve d e f i c i t s i n t he m i c e w e r e a s s e s s e d by odor di s c r i m i na t i on t e s t s a nd l a t e nt l e a r ni ng T he P ah e n u 2 m i c e ha ve s t a t i s t i c a l l y

PAGE 27

14 s i gni f i c a nt de f i c i t s i n t he s e l e a r ni ng a nd m e m o r y t a s ks ; how e ve r t he s e de f i c i t s a r e not i nc a pa c i t a t i ng. T hi s e vi de nc e c om bi ne d w i t h t he hi gh s e r um P he l e ve l s a nd t he hypopi gm e nt a t i on c onf i r m s t ha t t he m ous e i s a ve r y good m ode l of hu m a n ph e nyl ke t onur i a A l t e r n at i ve T h e r ap i e s T he l a c k of a dhe r e nc e t o t he P he r e s t r i c t e d s ynt he t i c di e t a nd t he r e s ul t i ng i nc r e a s e i n m a t e r na l P K U s yndr om e hi ghl i gh t s t he ne e d f o r a n a l t e r na t i ve f or m of t he r a py f o r P K U T e t r a hydr obi opt e r i n s uppl e m e nt a t i on ha s be e n us e d w i t h s uc c e s s i n P K U pa t i e nt s w ho ha ve m ut a t i ons t ha t a r e know n t o be r e s pons i ve t o t he c o f a c t or T he s e pa t i e nt s t ypi c a l l y do not ha ve c l a s s i c P K U s i nc e m ut a t i o ns i n t he c a t a l yt i c dom a i n do not r e s pond t o B H 4 s uppl e m e nt a t i on. T he m e c ha ni s m f or B H 4 r e s pons i ve ne s s i s not f ul l y unde r s t ood. T he m ut a t i ons t ha t ha ve be e n s t udi e d i n v i t r o s how r e duc e d a c t i va t i on by phe nyl a l a ni ne a nd r e duc e d a f f i ni t y f o r phe nyl a l a ni ne 5 6 F e w of t he s e m ut a t i ons ha ve a de c r e a s e d a f f i ni t y t o t e t r a hydr obi opt e r i n H ow e ve r B H 4 s e e m s t o p r e ve nt m i s f ol di ng a nd i na c t i va t i on of t he s e m ut a nt pr ot e i ns 5 7 O t he r hypo t he s e s i nc l ude m R N A s t a bi l i z a t i on, i nduc t i on of P A H e xpr e s s i on by B H 4 a nd c ha nge s i n t he r e gul a t i on o f B H 4 s ynt he s i s a f t e r or a l a dm i ni s t r a t i on. T he r e s pons e t o t e t r a hydr obi opt e r i n i s obvi ous l y m ul t i f a c t or i a l a nd de pe nds on t he a l l e l e s pr e s e nt i n e a c h i ndi vi du a l pa t i e nt 5 8 I n t he t e t r a hydr obi opt e r i n pa t i e nt t r i a l s a nor m a l d i e t or a r e l a xe d di e t i s s uppl e m e nt e d w i t h B H 4 t o a c hi e ve l ow e r a nd c ont r ol l e d P he l e ve l s I n t w o s e pa r a t e s t udi e s nor m a l de ve l opm e nt i n a l l o f t he pa t i e nt s w a s obs e r ve d, a nd l ow e r i ng o f s e r um P he l e ve l s w a s a c hi e ve d i n t he pa t i e nt s t r e a t e d f or a n e xt e nde d pe r i od of t i m e 5 9 6 0 S i de e f f e c t s not e d a r e ps yc hone ur ot i c ur ol ogi c a l a nd ga s t r oi nt e s t i na l i n na t ur e 6 1 H ow e ve r no f ul l l ong t e r m o r l a r ge s c a l e s t udy ha s be e n c onduc t e d t o a s s e s s t he s a f e t y of r e pe a t

PAGE 28

15 a dm i ni s t r a t i on of B H 4 W hi l e B H 4 s uppl e m e nt a t i o n c a n be t hr e e t o f ou r t i m e s m or e e xpe ns i ve t ha n t he P he r e s t r i c t e d di e t i t c oul d he l p pr e ve nt t he e f f e c t s of m a t e r na l P K U s yndr om e by s t a bi l i z i ng P he l e ve l s a nd pr e ve nt i ng c onc e nt r a t i ons f r om pe a ki ng dur i ng t he da y. P he nyl a l a ni ne va r i a t i on du r i ng p r e gna nc y w a s f ound t o ha ve a ne ga t i ve e f f e c t on he a d c i r c um f e r e nc e a t bi r t h by t he C ol l a bor a t i ve S t udy. 2 2 E nz ym e r e pl a c e m e nt t he r a py c oul d be a n a t t r a c t i v e a l t e r na t i ve t o t r e a t a l l P K U pa t i e nt s M os t of t he w o r k w i t h e nz ym e r e pl a c e m e nt t he r a py ha s be e n done w i t h t he e nz ym e P he nyl a l a ni ne A m m oni a L ya s e ( P A L ) s i nc e i t doe s not r e qui r e a c of a c t or f or a c t i vi t y. 6 2 O r a l de l i ve r y of e nt e r i c ge l a t i n c oa t e d P A L c a ps ul e s w a s s how n t o be s uc c e s s f ul a nd r e duc e d P he l e ve l s by 22% i n P K U pa t i e nt s W hi l e pr om i s i ng i t m a y not be e nough f or c l a s s i c phe not ype s a nd m or e w or k i s be i ng done t o p r ot e c t t he a c t i vi t y of t he pr ot e i n f r om t he a c i di c e nvi r o nm e nt of t he s t o m a c h a nd opt i m i z e i t f o r t he i nt e s t i na l e nvi r onm e nt P E G yl a t i on of P A L w a s a l s o t e s t e d i n m i c e : t he e nz ym e ha s a l onge r ha l f l i f e but a f t e r m ul t i pl e i nj e c t i ons i t i s qui c kl y c l e a r e d f r om c i r c ul a t i on. E nz ym e r e pl a c e m e nt t he r a py w i t h P A H ha s a l s o be e n e xpl o r e d, but t he r e qui r e m e nt f or c o i nj e c t i on of B H 4 doe s not m a ke i t a s a t t r a c t i ve a t h e r a py a s P A L G e ne t he r a py f or P K U w oul d be a n i de a l f or m of t r e a t m e nt t o i m p r ove t he qua l i t y of l i f e of P K U a nd H P A pa t i e nt s a nd t o pr e ve nt m a t e r na l P K U s yndr om e S ki n m us c l e a nd bone m a r r ow ha ve be e n e xpl or e d a s pos s i bl e t a r ge t s f or ge ne t he r a py, but t he a va i l a bi l i t y of t he c of a c t or ha s l i m i t e d s uc c e s s i n t he s e a ppr oa c he s 6 3 6 6 W i t h r e c om bi na nt a de novi r us t w o g r oups a c hi e ve d l ow e r i ng o f s e r u m P he i n t he B T B R P ah e n u 2 m i c e us i ng t he R ous S a r c om a vi r us L T R a nd C A G p r om ot e r s r e s pe c t i ve l y. 6 7 6 8 H ow e ve r bot h gr oups r e por t e d a nt i bod i e s r a i s e d a ga i ns t a de novi r us a nd c om pl e t e r e ve r s a l of t r e a t m e nt

PAGE 29

16 a f t e r t w o w e e ks A l l of t he s e e xpe r i m e nt s w e r e i n t r oduc i ng f unc t i on a l hum a n P A H a s oppos e d t o m ous e P A H A de no a s s oc i a t e d vi r us ( A A V ) ha s a l s o be e n s uc c e s s f ul l y us e d t o t r e a t H P A i n t he m ous e m ode l U s i ng r e c om bi na nt A A V ( r A A V ) s e r ot ype 5 c a r r yi ng t he m ous e P A H ge ne l ong t e r m c or r e c t i on of m i c e 40 w e e ks w a s a c hi e ve d i n m a l e s but not i n f e m a l e s 6 9 O n e t hi r d l e s s ve c t or w a s ne e de d i n t he m a l e s t ha n i n t he f e m a l e s t o a c hi e ve a s i m i l a r P he c l e a r a nc e dur i ng t he f i r s t 6 w e e ks a t w hi c h poi nt t he f e m a l e s s e r um P he l e ve l s r e t ur ne d t o t he i r hype r phe nyl a l a ni ne m i c s t a t e T he m i ni m um e f f e c t i ve dos e i n m a l e s i n t hi s s t udy w a s 3x10 1 3 ve c t or ge nom e s o f r A A V 5. W i t h r A A V 2, t he hum a n P A H ge ne w a s de l i ve r e d t o m i c e w i t h a W P R E e l e m e nt i nc l ude d i n t he c a s s e t t e 7 0 A ga i n, f e m a l e m i c e di d no t r e s pond t o t he s a m e dos e t ha t w a s f ound e f f e c t i ve i n m a l e s 2x10 1 2 ve c t or ge nom e s T hi s dos e w a s e f f e c t i ve up t o 25 w e e ks a t w hi c h poi nt a n i nc r e a s e i n s e r um P he l e ve l s w a s not e d. A c c or di ng t o t he a ut h or s t hi s w a s due t o a l os s i n ve c t or D N A a m ount s a s de t e r m i ne d by s e m i qua nt i t a t i ve P C R A l l of t he s e s t udi e s ha ve s how n t ha t i t i s pos s i bl e t o t r e a t hype r phe nyl a l a ni n e m i a i n t he m i c e by ge ne t he r a py but m or e w or k i s r e qui r e d t o a c hi e ve t r ue l ong t e r m c o r r e c t i on i n t he m a l e s a nd t he s a m e r e s pons e i n f e m a l e m i c e G e n e T h e r ap y V e c t or s B as e d on A d e n o A s s oc i at e d V i r u s S om a t i c ge ne t he r a py f or t he c or r e c t i on of i nhe r i t e d ge ne t i c di s or de r s i s t he de s i r e d ha l l m a r k of f ut ur e i ndi vi dua l i z e d m e di c i ne V i r a l v e c t or s f or s uc h de l i ve r y ha ve be e n s t udi e d f or m a ny ye a r s 7 1 G e nom e s i z e i m m unoge ni c i t y, l e ngt h of ge ne e xpr e s s i on a nd i nt e gr a t i on c a pa bi l i t i e s a r e f a c t or s t ha t c a n a f f e c t t he c hoi c e of a vi r a l ve c t o r A de no a s s oc i a t e d vi r us ha s m a ny a t t r a c t i ve qua l i t i e s f or h um a n us e : i t i s nonpa t hoge ni c i t c a n i nf e c t di vi di ng a nd non di vi d i ng c e l l s i t doe s not h a ve t o c ont a i n a ny v i r a l c odi ng

PAGE 30

17 s e que nc e s a nd i t c a n m e di a t e l ong t e r m ge ne e xpr e s s i on i n a ni m a l m ode l s 7 2 7 4 T he r e a r e ove r 50 A A V s e r ot ype s know n; e a c h one m a y ha v e s l i ght l y di f f e r e nt c e l l t r opi s m of f e r i ng t he pos s i bi l i t y of e nha nc e d t r a ns duc t i on f or di f f e r e nt t a r ge t e d or ga ns 7 5 U nf or t una t e l y t he ge nom e s i z e of A A V i s i t s m a i n l i m i t a t i on s i nc e m a ny ge ne s a r e l onge r t ha n t he 4. 68kb pa c ka gi ng l i m i t R e por t s on a s m a l l pe r c e nt a ge of i nt e gr a t i on i nt o a c t i ve c hr om a t i n r e gi ons a nd t he pos s i bi l i t y of i nc r e a s e d t um or i ge ne s i s ha ve da r ke ne d t he pr os pe c t s of t hi s ge ne t he r a py ve c t or 7 6 N one t he l e s s r A A V s e r ot ype 2 i s c ur r e nt l y i n us e i n c l i ni c a l t r i a l s a nd s t i l l r e m a i ns a ve c t o r of c hoi c e f or t he de ve l opm e nt o f ge ne t he r a py f or i nhe r i t e d di s or de r s A d e n o A s s oc i at e d V i r u s B i ol ogy A de no a s s oc i a t e d vi r us i s pa r t of t he f a m i l y P ar v o v i r i dae a nd i s c l a s s i f i e d a s a de pe ndovi r us i n t he P ar v ov i r i nae s ubf a m i l y. D e pe ndovi r us e s r e qui r e t he p r e s e nc e of he l pe r vi r us e s s uc h a s A de no vi r us o r H e r pe s vi r u s t o e s t a bl i s h a pr oduc t i ve i nf e c t i on I n t he a bs e nc e of s uc h a he l pe r vi r us a l a t e nt i n f e c t i on c a n be m a i nt a i ne d by i nt e gr a t i on of t he vi r us D N A i nt o t he ge nom e I n hum a ns t he m a i n A A V i nt e gr a t i on s i t e i s 19q13 3 w he r e t he ge nom e us ua l l y i nt e g r a t e s i n t a nde m r e pe a t s 7 7 T h i s c a n be r e s c ue d by s ubs e que nt i nf e c t i on w i t h t he he l pe r vi r us T he vi r us ha s not be e n a s s oc i a t e d w i t h di s e a s e i n hum a ns T he A A V ge nom e i s s i ngl e s t r a nde d D N A a nd i s 4 679 ba s e s i n l e ngt h f o r A A V s e r ot ype 2. 7 1 I t i s f l a nke d on bot h s i de s by 145 nuc l e ot i de i nve r t e d t e r m i na l r e pe a t s ( I T R ) c om pos e d of t hr e e pa l i nd r om i c s e que nc e s w i t h onl y s e ve n ba s e s r e m a i ni ng unpa i r e d w he n f ol de d. T he I T R s a r e t he onl y e l e m e nt s r e qui r e d i n c i s f or e nc a ps i da t i on. T he ge nom e e nc ode s nons t r uc t ur a l pr ot e i ns ( R e p78, R e p 68, R e p 52 a nd R e p 40 ) a nd c a ps i d pr ot e i ns ( V P 1, V P 2, a nd V P 3 ) T he s e pr ot e i ns a r e e xpr e s s e d f r om t hr e e pol y m e r a s e I I

PAGE 31

18 pr o m ot e r s p5 p19 a nd p40 f r om a l t e r na t i ve l y s pl i c e d m R N A T he R e p p r ot e i ns a r e r e qui r e d f o r D N A r e pl i c a t i on, e s t a bl i s hm e nt of l a t e nt i nf e c t i ons s i t e s pe c i f i c i nt e gr a t i on i nt o c hr om os om e 19 a nd e nc a ps i da t i on of t he ge n om e T he C a p pr ot e i ns c om bi ne 60 s ubu ni t s i nt o T = 1 i c os a he dr a l s ym m e t r y w i t h V P 2 a s t he m a j or s t r uc t ur a l c om pone nt o f t he s m a l l vi r i on A A V s e r ot ype 2 bi nds t o t he ubi qui t ous l y e xpr e s s e d c e l l s ur f a c e he pa r i n s ul f a t e pr ot e ogl yc a n ( H S P G ) I t r e qui r e s f i b r obl a s t gr ow t h f a c t or r e c e pt or t ype 1 a n d t he i nt e gr i n V 5 f or e nt r y i nt o t he c e l l 7 8 7 9 U pt a ke oc c ur s t hr o ugh s t a nda r d e ndoc yt os i s f r om c l a t hr i n c oa t e d pi t s a nd t he c a ps i d i s r e m ove d i n t he nuc l e us 8 0 T he vi r us ge no m e c a n be f ound i n t he nuc l e us t w o hou r s a f t e r i nf e c t i on. R e c e pt or s us e d by t he ot he r A A V s e r ot ype s i nc l ude s i a l i c a c i d a nd P D G F R g i vi ng e a c h one a di f f e r e nt pr e f e r r e d c e l l t ype C u r r e n t T r e n d s an d A p p l i c at i on s o f r A A V R e c om bi na nt A A V vi r us c a n be m a de i n t he l a b w i t hout t he us e of he l pe r v i r us e s R e c om bi na nt vi r us pr oduc t i on i s a c c om pl i s he d by pr ovi di ng onl y t he ne c e s s a r y pr ot e i ns r e qui r e d f o r D N A r e pl i c a t i on a nd e nc a ps i da t i on on a pl a s m i d t ha t i s i nde pe nde nt of t he r e c om bi na nt A A V pl a s m i d. B ot h pl a s m i ds a r e c o t r a ns f e c t e d i nt o c e l l s a nd r A A V vi r us c a n be pur i f i e d f r e e o f he l pe r vi r us T h i s m e t hod i s e f f i c i e nt a nd pr oduc e s l ow pa r t i c l e t o i nf e c t i vi t y r a t i os T he I T R s a r e t he onl y w i l d t ype vi r us s e que nc e l e f t on t he r e c om bi na nt vi r us T hus i t i s i nc a pa bl e of r e pl i c a t i ng onc e i t ha s e nt e r e d t he c e l l T he vi r a l ge nom e i s s l ow l y c onve r t e d f r om s i ngl e s t r a nde d D N A t o do ubl e s t r a nde d D N A de l a yi ng t he ons e t of e xpr e s s i on i n t he c e l l T he ge nom e i s m a i nt a i ne d i n t he nuc l e us a s a l i ne a r o r c i r c ul a r hi gh m ol e c ul a r w e i ght c onc a t e m e r 8 1 M a ny a ni m a l m ode l s ha ve be e n t r e a t e d w i t h r A A V ve c t or s t o c or r e c t a v a r i e t y of i nhe r i t e d di s or de r s i n a va r i e t y of t i s s ue s T i s s ue s s uc c e s s f ul l y t a r ge t e d by di r e c t i n v i v o

PAGE 32

19 m e t hods i nc l ude l i ve r m us c l e he a r t b r a i n, l ung, e ye a nd ki dne y. 7 4 8 2 8 7 H e m ophi l i a B ha s be e n t r e a t e d by l i ve r di r e c t e d ge ne t he r a py bot h i n a m ous e m ode l a nd i n a c a ni ne m ode l de m ons t r a t i ng t he s a f e t y a nd t he l ong t e r m e xpr e s s i on m e di a t e d by r A A V 2. 7 3 8 8 T he s e s t udi e s a l s o s how e d a dos e r e s pons e c or r e l a t i ng i nc r e a s e d f a c t or I X c i r c ul a t i ng l e ve l s w i t h hi ghe r r A A V dos e s C l i ni c a l t r i a l s w i t h A A V s e r ot ype 2 a r e unde r w a y f or a num be r o f di s e a s e s a c r os s t he U S T w o t r i a l s one f or C ys t i c F i br os i s a nd one f or H e m ophi l i a B ha ve publ i s he d a num be r of upda t e s D e l i ve r y of r A A V 2 t o t he l ung s ha s not r e s ul t e d i n a ny a dve r s e e f f e c t s t o da t e but i t doe s not s e e m t ha t t he vi r us i s t r a ns duc i ng t he l ung e pi t he l i a l c e l l s ve r y e f f i c i e nt l y 7 5 R e s ul t s i n t he H e m ophi l i a B t r i a l s ha ve be e n a l i t t l e m or e e nc our a gi ng W hi l e de l i ve r y of r A A V 2 c ont a i ni ng t he F a c t or I X ge ne t o t he m us c l e w a s w e l l t ol e r a t e d, onl y a m i l d e f f e c t on F a c t or I X c onc e nt r a t i ons 1% of no r m a l ha s s o f a r be e n a c hi e ve d. W he n t he l i ve r w a s t he t a r ge t i n a pa r t ne r s t udy, 5 t o 12% o f no r m a l F a c t or I X l e ve l s ha ve be e n obs e r ve d i n t he c i r c ul a t i on of one pa t i e n t f or 5 w e e ks but t he n d r oppe d t o 2. 7% A A V w a s de t e c t e d i n t he s e m e n of one pa t i e nt a nd t hi s s e e m s t o ha ve be e n c l e a r e d a f t e r 3 m ont hs 7 5 T he r e s ul t s of t he s e t r i a l s ha ve no t ye t l e d t o t he c ur e s hope d f o r but t he y ha ve s how n t ha t r A A V 2 de l i ve r y t o hum a ns i s r e l a t i ve l y w e l l t ol e r a t e d a n d c a n a c hi e ve m ode s t t he r a pe ut i c e f f e c t s R N A an d D N A as T h e r ap e u t i c A ge n t s A nt i s e ns e ol i gonuc l e ot i de s c a n be us e d t o t a r ge t s p e c i f i c m e s s e nge r R N A s t o i nhi bi t t r a ns l a t i on o r t o i nduc e c l e a va ge a nd de gr a da t i on. A nt i s e ns e R N A ol i gonuc l e ot i de s r i boz ym e s a n d s hor t i nt e r f e r i ng R N A s ha ve be e n s t udi e d ove r t he ye a r s f or t he i r pot e nt i a l us e s a s t he r a pe ut i c c om pounds i n c a nc e r s a nd dom i na nt di s e a s e s

PAGE 33

20 W hi l e t he s e di f f e r e nt m ol e c ul e s ha ve di s t i nc t a dva nt a ge s w e w i l l f oc us on r i boz ym e s be c a us e t hi s m e t hodol ogy s e e m s be s t s ui t e d f or t he pa r t i c ul a r p r obl e m s s e e n i n P K U R N A I n t e r f e r e n c e T he pr oc e s s of R N A i nt e r f e r e nc e w a s di s c ove r e d i n t he w or m C ae nor habdi t i s e l e gans 8 9 W he n doubl e s t r a nde d R N A ( ds R N A ) i s i nt r oduc e d, s e que nc e s pe c i f i c pos t t r a ns c r i pt i ona l ge ne s i l e nc i ng oc c ur s T he e nz ym e D I C E R a n R N a s e I I I pr oc e s s e s l ong ds R N A m ol e c ul e s by c l e a vi ng t he ds R N A i nt o 22 nuc l e ot i de s hor t i nt e r f e r i ng R N A s ( s i R N A s ) T hi s dupl e x i s unw ound a nd bi nds t o i t s t a r ge t R N A vi a R I S C R N A i nduc e d s i l e nc i ng c om pl e x. I f t he s i R N A s e que nc e pe r f e c t l y m a t c he s i t s t a r ge t c l e a va ge oc c ur s a ppr oxi m a t e l y a t 10 nuc l e ot i de s f r om t he 5 e nd o f t he t a r ge t s e que nc e I t i s now know n t ha t t he ge ne r a l m e c ha ni s m o f ds R N A r e s pons e i s c ons e r ve d i n m os t e uka r yot e s t hus t he r e c e nt de ve l opm e nt s i n s i R N A t e c hnol ogy f o r us e i n m a m m a l i a n c e l l s T he c ur r e nt l y m os t popul a r a ppr oa c h f or e xp r e s s i on of s i R N A us e s a P ol I I I pr om ot e r t o e xpr e s s a ha i r pi n t ha t e nc ode s f or bot h t he s e ns e a nd t he a nt i s e ns e R N A s e que nc e T hi s i s t he n de l i ve r e d di r e c t l y t o t he c e l l s by t r a ns f e c t i on or c l one d i nt o a vi r a l ve c t or f or e a s y de l i ve r y i nt o a ni m a l m ode l s M uc h w or k ha s be e n done on de t e r m i ni ng m a r ke r s f or f unc t i ona l s i R N A de s i gn. O ne of t he r e qui r e m e nt s f or good s i R N A s i s t he ne e d f or 2 nuc l e ot i de 3 ove r ha ngs 9 0 I nt e r na l ge ne r a l r e qui r e m e nt s i nc l ude l ow G C c ont e nt t hr e e o r m o r e A / U ba s e pa i r s a t t he 3 e nd of t he s e ns e s t r a nd, a nd l a c k o f i nt e r na l r e pe a t s 9 1 9 2 T he pr e s e nc e of A / U ba s e pa i r s a t t ha t e nd c onf i r m s pr e vi ous r e s ul t s obt a i ne d by S c hw a r z w hi c h s ugge s t e d t ha t t he s t r a nd t ha t i s i nc l ude d i nt o R I S C ha s t he l e a s t t i ght l y bound 5 e nd t hus p r e f e r e nt i a l l y s e l e c t i ng t he a nt i s e ns e s t r a nd. 9 3 R N A i nt e r f e r e nc e ha s be e n us e d e xt e ns i ve l y f or f u nc t i o na l ge ne s t udi e s i n c e l l c ul t ur e s a nd i s be i ng s t udi e d f or t a r ge t i ng c a nc e r g e ne s vi r a l i n f e c t i ons a nd ge ne t i c

PAGE 34

21 di s or de r s 9 4 9 6 S a f e t y of s i R N A us e i n hum a ns i s c u r r e nt l y be i ng a s s e s s e d i n a c l i ni c a l t r i a l w he r e a n s i R N A t a r ge t i ng V E G F i s be i ng t e s t e d t o he l p p r e ve nt a ge r e l a t e d m a c ul a r de ge ne r a t i on. 9 7 H ow e ve r m o r e s t udy i s ne c e s s a r y s i nc e s i R N A s ha ve be e n i m pl i c a t e d i n c hr om a t i n a r c hi t e c t ur e i n s e ve r a l or ga ni s m s a nd t h e r ol e a nd m e c ha ni s m of s i R N A s ha s not ye t be e n f ul l y e l uc i da t e d i n m a m m a l i a n c e l l s 9 8 M i c r oR N A s ( m i R N A s ) a r e m a de f r om p r e c ur s or m i R N A s i n m a m m a l i a n c e l l s a nd h a ve be e n a s s oc i a t e d w i t h de ve l opm e nt a l ge ne r e gul a t i on. 9 9 M i c r oR N A s a r e a l s o 21 t o 23 nuc l e ot i de s w he n pr oc e s s e d f r om t he i r l onge r p r e c ur s or s T he y of t e n f unc t i on a s t r a ns l a t i ona l r e pr e s s or s a nd do not c ont a i n a n e xa c t m a t c h t o t he i r t a r ge t s r a i s i ng c onc e r ns a bout pos s i bl e s i de e f f e c t s of i nt r oduc e d s i R N A s T he i ne xa c t m a t c h o f m i R N A s t o t he i r t a r ge t s a l s o i m pl i e s t ha t t o c r e a t e a c D N A t ha t i s r e s i s t a nt t o a de s i gne d s i R N A w i l l r e qui r e e xt e ns i ve m odi f i c a t i ons T hi s r e qui r e m e nt i s t he m a i n r e a s on w hy w e f oc us e d on ha m m e r he a d r i boz ym e s f or ou r s t udy. N one t he l e s s t he l a r ge a m ount of r e s e a r c h be i ng done w i t h s i R N A s s houl d s oon unc ove r t he be s t a nd s a f e s t w a y t o us e t he m i n ge ne f unc t i on s t udi e s a nd a s t he r a pe ut i c a ge nt s R i b oz ym e s R i boz ym e s a r e R N A m ol e c ul e s c a pa bl e of c a t a l yz i ng c he m i c a l r e a c t i ons w i t hout pr ot e i n a s s i s t a nc e H a i r pi n r i boz ym e s R N a s e P G r oup I a nd I I i nt r ons c a n c a t a l yz e s uc h r e a c t i ons a s r i bonuc l e ot i de t r a ns e s t e r i f i c a t i on a nd hydr ol ys i s 1 0 0 H a m m e r he a d r i boz ym e s w e r e di s c ove r e d i n pl a nt s a t e l l i t e vi r us R N A s a nd m e di a t e r ol l i ng c i r c l e r e pl i c a t i on T he y s e l f c l e a ve t he R N A i n a n i n l i ne t r a ns e s t e r i f i c a t i on r e a c t i on. 1 0 1 S i nc e t he s e que nc e r e qui r e m e nt s of t he r e a c t i on ha ve be e n di s c ove r e d t he y ha ve be e n e ngi ne e r e d t o c a t a l yz e t he s a m e r e a c t i on i n t r ans f o r a s pe c i f i c c hos e n t a r ge t 1 0 2 T he t a r ge t s e que nc e of a r i boz ym e c ont a i ns N U X N i s a ny nuc l e ot i de a nd X i s a ny nuc l e ot i de but G T he

PAGE 35

22 r i boz ym e w i l l c l e a ve t he m R N A a f t e r X T he a c t ua l r a t e o f c l e a va ge i s s i gni f i c a nt l y a f f e c t e d by t he s e que nc e of N U X w i t h G U C a nd A U C ha vi ng hi ghe r a c t i vi t i e s 1 0 3 T he t ypi c a l l a b ha m m e r he a d r i boz ym e i s 33 t o 35 nuc l e ot i de s l ong, de pe ndi ng on t he l e ngt h of t he hyb r i di z i ng a r m s a nd i t s c or e s t r uc t ur e i nc l u de s s t e m s I a nd I I I ( t he hybr i d i z i ng a r m s ) a nd s t e m I I a ha i r pi n s t r uc t ur e us e d f or m a i nt a i ni ng s t a bi l i t y of t he r e qui r e d f ol di ng f o r c a t a l ys i s ( F i gu r e 1 2 ) O nc e bound t o i t s t a r ge t t he c l e a va ge r e a c t i on t a ke s pl a c e a nd t h e R N A pr oduc t s a r e s ubs e que nt l y de gr a de d. S i nc e t he y do not r e qui r e pr ot e i ns f or c a t a l ys i s t he m a i n i s s ue w i t h r i boz ym e us e i n t he r a pe ut i c s i s c hoos i ng t he r i ght de l i ve r y m e t h od. I f us e d a s s t a bi l i z e d R N A m ol e c ul e s di r e c t or ge ne r a l i nj e c t i ons m us t be t e s t e d t o a s c e r t a i n c o l oc a l i z a t i on w i t h i t s t a r ge t R N A w hi l e ke e pi ng i n m i nd t he ha l f l i f e of t he r i boz ym e D e l i ve r y w i t h a vi r a l ve c t or c a n obvi a t e t he pr e vi ous i s s ue a s l ong a s t he vi r us w i l l i nf e c t t he c or r e c t c e l l t ype T he pr ope r pr om ot e r m us t be c hos e n s o t ha t t he r i b oz ym e c a n e xi t t he nuc l e us t o r e a c h t he m R N A t a r ge t w i t hout be i ng p r oc e s s e d or de gr a de d i t s e l f R i boz ym e s onl y ne e d 12 nuc l e ot i de s f or t a r ge t r e c ogni t i on a nd t he c l e a va ge t a r ge t r ul e s a r e not a s r e s t r i c t e d a s i ni t i a l l y t hought 1 0 4 N one t he l e s s s pe c i f i c i t y of t he c l e a va ge r e a c t i on ha s be e n de m ons t r a t e d. 1 0 5 M a ny gr oups ha ve s uc c e s s f ul l y us e d r i boz ym e s a s a nt i vi r a l t r e a t m e nt s a nt i c a nc e r t r e a t m e nt s a nd di s e a s e t r e a t m e nt s f or di s or de r s s uc h a s A l z he i m e r s a nd r e t i ni s pi gm e nt os a 1 0 6 1 0 7 A ha m m e r he a d r i boz ym e A ngi oz ym e i s c ur r e nt l y i n P ha s e I I c l i ni c a l t r i a l s f o r t r e a t m e nt of a dva nc e d c ol or e c t a l c a nc e r s i n c om bi na t i on w i t h c he m ot he r a py 1 0 8 T he r i boz ym e t a r ge t s V E G F R 1 a nd i s a c he m i c a l l y m odi f i e d m ol e c ul e i nj e c t e d s ubc ut a ne ous l y on a da i l y ba s i s P a t i e nt s w ho ha d de t e c t a bl e V E G F R 1 l e ve l s pr i o r t o

PAGE 36

23 t he r a py w hi c h de c l i ne d pos t t he r a py ha ve be e n f ou nd t o ha ve be t t e r c l i ni c a l out c om e s t ha n pa t i e nt s w hos e l e ve l s di d not c ha nge A not he r s t a bi l i z e d ha m m e r he a d r i boz ym e i s i n a c l i ni c a l t r i a l f or H e pa t i t i s C V i r us 1 0 9 C l i ni c a l t r i a l s a r e a l s o unde r w a y t o t a r ge t H I V i nf e c t i on w i t h l e nt i vi r us i nt r oduc e d ha m m e r he a d a nd ha i r pi n r i boz ym e s 1 1 0 R i boz ym e s a r e a us e f ul t ool f o r s pe c i f i c m R N A de gr a da t i on a nd of f e r m a ny a dva nt a ge s i n t he i r s i m pl i c i t y. T he r e s e a r c h pr e s e nt e d i n t h i s t he s i s i nc l ude s c a r e f ul a na l ys i s of t he B T B R P ah e n u 2 m ous e m ode l i n v i t r o e xpe r i m e nt s de f i ni ng m ut a n t a nd nor m a l P A H p r ot e i n i nt e r a c t i ons a nd va r i ous r A A V de r i ve d ge ne t he r a py e xpe r i m e nt a l r e s ul t s f or t he t r e a t m e nt of phe nyl ke t onur i a G e ne r a l phys i ol ogi c a l obs e r va t i ons of t he B T B R P ah e n u 2 m ous e m ode l a l ong w i t h c a r e f ul m ol e c ul a r a na l ys i s of P A H i n t h e m i c e a r e r e po r t e d i n or de r t o p r ovi de f ur t he r i ns i ght i nt o t he di s e a s e s t a t us i n t he m ode l F r om t he obs e r va t i ons m a de i n m ous e l i ve r s t he i n t e r a c t i on be t w e e n nor m a l a nd m u t a nt pr ot e i n s ubuni t s of P A H w a s f ur t he r e va l ua t e d i n c e l l c ul t ur e a nd de t e r m i ne d t o l e a d t o dom i na nt ne ga t i ve i nt e r f e r e nc e T he de ve l opm e nt of a ha m m e r he a d r i boz ym e d i r e c t e d a ga i ns t m ous e P A H t o p r e ve nt t he dom i na nt ne ga t i ve i nt e r f e r e nc e i s de t a i l e d a l ong w i t h i t s e va l ua t i on i n c e l l c ul t u r e a nd i n v i v o F i na l l y t he c ons t r uc t i on of a nove l ve c t o r c a r r yi ng bot h t he m ous e P A H ge ne a nd t he r i boz ym e e xpr e s s e d f r om a m odi f i e d t R N A V a l pr om ot e r i s de s c r i be d a l ong w i t h i ni t i a l i n v i v o r e s ul t s i n m a l e m i c e T he f i ndi ngs r e por t e d i n t hi s r e s e a r c h c l e a r l y s how t ha t ge ne t he r a py f or P K U i s pos s i bl e but w he n t r e a t i ng pa t i e nt s w i t h m i s s e ns e m ut a t i ons t he p r e ve nt i on of a n i nt e r a c t i on be t w e e n nor m a l a nd m ut a nt p r ot e i n s ubuni t s m a y be ne c e s s a r y i n or de r f or t he ge ne t he r a py t o be s uc c e s s f ul a t l ow e r dos e s of r A A V M or e ove r t he da t a s how t he ne e d f o r c a r e f ul e va l u a t i on of m ous e m ode l s of bot h

PAGE 37

24 m i s s e ns e a nd nul l m ut a nt s w he n e va l ua t i ng t he po s s i bl e t r e a t m e nt of ge ne t i c di s e a s e s by ge ne t he r a py a nd t he c l i ni c a l r e l e va nc e t o hum a n p a t i e nt s

PAGE 38

25 F i gur e 1 1 P he nyl a l a ni ne c onve r s i on t o t y r os i ne T he e nz ym e P A H c onve r t s P he t o T y r us i ng B H 4 a nd oxyge n. B H 4 i s r e c yc l e d vi a a t w o s t e p pa t hw a y w hi c h ut i l i z e s N A D H

PAGE 39

26 F i gur e 1 2 H a m m e r he a d r i boz ym e s t r uc t ur e T he r i boz ym e i s a l i gne d t o i t s 12 nuc l e ot i de t a r ge t T he c l e a va ge r e a c t i on t a ke s pl a c e a f t e r t he X S t e m s 1 a nd I I I r e pr e s e nt t he hybr i di z i ng a r m s w he n bound t o t he t a r ge t R N A ; s t e m I I i s a ha i r pi n s t r uc t ur e w hi c h s t a bi l i z e s t he r i boz ym e s t r uc t ur e

PAGE 40

27 C H A P T E R 2 M A T E R I A L S A N D M E T H O D S T he r e s e a r c h pr e s e nt e d i n t h i s di s s e r t a t i on r e qui r e d t he us e of m a ny e xpe r i m e nt a l m e t hods T he y a r e de s c r i be d i n t hi s c ha pt e r i n de t a i l t o a l l ow ot he r r e s e a r c he r s t o us e t he e xpe r i m e nt s pr e s e nt e d. A ny s pe c i f i c m odi f i c a t i ons t o t he m e t hods a r e e xpl a i ne d w he r e r e l e va nt i n t he f ol l ow i ng c ha pt e r s I n V i t r o R i b oz ym e A n al ys i s F or t he s e e xpe r i m e nt s a l l e nz ym e s w e r e f r om P r o m e ga ( M a di s on, W I ) unl e s s ot he r w i s e i ndi c a t e d. R a di oa c t i ve nuc l e ot i de s w e r e or de r e d f r om A m e r s ha m B i os c i e nc e s ( P i s c a t a w a y, N J ) T he w a t e r us e d i n a l l of t he e xpe r i m e nt s w a s de i oni z e d, di s t i l l e d, pur i f i e d t h r ough i on e xc ha nge c hr om a t ogr a phy a n d a ut oc l a ve d. A l l ge l s f or r i boz ym e a na l ys i s w e r e 8 M ur e a a c r yl a m i de s e que nc i ng ge l s r un i n 1 X T B E buf f e r a nd pr e w a r m e d t o a ppr ox i m a t e l y 45 C p r i or t o l oa di ng t he s a m pl e s w hi c h w e r e he a t de na t ur e d a t 85 C f o r 3 m i nut e s f ol l ow e d by c hi l l i ng on i c e f or 3 m i nut e s T he ge l s w e r e f i xe d i n 40 % m e t ha nol 10 % a c e t i c a c i d a nd 3% g l yc e r ol f or 30 t o 45 m i nut e s a nd s ubs e que nt l y dr i e d a t 80 C unde r va c uum A l l of t he s e pr ot oc ol s w e r e de s c r i be d by F r i t z e t al 1 1 1 D e p r ot e c t i on of R N A O l i gos T he c hos e n r i boz ym e s e que nc e s a nd 12 nuc l e ot i de t a r ge t s w e r e or de r e d f r om D ha r m a c on, I nc ( L a f a ye t t e C O ) T he ol i gos w e r e r e s us pe nde d i n 100 l o f w a t e r U s i ng t he pr ovi de d de pr o t e c t i on T E M E D bu f f e r 20 l o f e a c h ol i go w a s di l ut e d t o 100 l w i t h t he buf f e r a nd i nc uba t e d a t 60 C f o r 30 m i nut e s T he r e a c t i on w a s s t oppe d by dr y i ng i n a

PAGE 41

28 S pe e dV a c ( S a va nt ) f o r 30 m i nut e s A s s um i ng 99% e f f i c i e nc y i n s ynt he s i s t he ol i gos w e r e r e s us pe nde d a t 200 pm ol e / l f or t he r i boz ym e s a nd a t 300 pm ol e / l f or t he t a r ge t s W or ki ng di l ut i ons w e r e pr e pa r e d: 2 pm ol e / l of r i boz ym e a nd 10 pm ol e / l of t a r ge t s S a m pl e s w e r e s t or e d a t 70 C unt i l f ur t he r us e T ar ge t E n d L ab e l l i n g T he t a r ge t s w e r e e nd l a be l e d w i t h # [ 3 2 P ] A T P t o a l l ow f or de t e c t i on of t he i n t a c t a nd c l e a ve d t a r ge t s on a pol ya c r yl a m i de s e que nc i ng gr a de ge l T w e nt y pi c om ol e s of t he t a r ge t w e r e a dde d t o 10 l of 1 X pol ynuc l e ot i de k i na s e buf f e r c ont a i ni ng 1 l o f R N a s i n $ R i bonuc l e a s e I nhi bi t or 1 l of 0 1 M D T T 1 l of pol ynuc l e ot i de ki na s e ( 5 t o 10 uni t s ) a nd 4 C i o f # [ 3 2 P ] A T P A f t e r i nc uba t i on a t 37 C f or 30 m i nut e s s i xt y f i ve m i c r ol i t e r s of w a t e r w e r e a dde d, a nd t he l a be l e d t a r ge t w a s e x t r a c t e d w i t h phe nol : c hl or of or m : i s oa m yl a l c ohol T hi s w a s pur i f i e d on a S e pha de x G 50 c ol um n ( U S A S c i e nt i f i c O c a l a F L ) T he l a be l e d t a r ge t c a n be s t or e d a t 20 C T i m e C ou r s e of C l e avage R e ac t i on s T he pur pos e of t he t i m e c our s e e xpe r i m e nt i s t o t e s t t he e f f i c i e nc y of t he r i boz ym e s a ga i ns t t he s hor t 12 nuc l e ot i de t a r ge t E xc e s s t a r ge t i s m i xe d 10: 1 w i t h t he r i boz ym e i n a s i ngl e l a r ge r e a c t i on f r om w h i c h t i m e d s a m pl e s a r e t a ke n a nd s ubs e que nt l y r un on a n 8 % ge l F i r s t t w o pi c om ol e s of t he r i boz ym e w or ki ng di l ut i on w a s m i xe d w i t h 88 l o f w a t e r a nd 13 l of 400 m M T r i s H C l T hi s w a s i nc uba t e d a t 65 C f o r 2 m i nut e s a nd l e f t a t r oom t e m pe r a t ur e f or 10 m i nut e s t o a l l ow f or pr op e r f ol di ng of t he r i boz ym e T hi r t e e n m i c r ol i t e r s of a 1: 10 di l ut i on of R N a s i n $ i n 0. 1 M D T T w a s a dde d w i t h 13 l of 200 m M M gC l 2 f or a 20 m M M gC l 2 f i na l c onc e nt r a t i on T h i s c onc e nt r a t i on i s us e d f or a l l f i r s t t i m e c our s e e xpe r i m e nt s w i t h ne w r i boz ym e s T he r e a c t i on w a s t he n i nc uba t e d a t 37 C

PAGE 42

29 f or 10 m i nut e s P r e pa r e d t ube s e a c h w i t h 20 l of R N A f or m a m i de buf f e r ( 90% f or m a m i de s upe r pur e gr a de 50 m M E D T A pH 8. 0, 0 05% b r om ophe nol bl ue 0 05% xyl e ne c ya nol ) w e r e pl a c e d on i c e a t t hi s t i m e a nd w e r e l a be l e d f or t he de s i r e d t i m e poi nt s t ypi c a l l y 0 0 5, 1, 2, 4, 8, 16, 32, 64, a nd 1 28 m i nut e s T w o m i c r o l i t e r s of unl a be l e d t a r ge t f r om t he w or ki ng d i l ut i on o r 20 p m ol e s a nd 2 l o f e nd l a be l e d t a r ge t w e r e a dde d i n t ha t or de r t o t he r e a c t i on. I m m e di a t e l y a f t e r a ddi ng t he ho t t a r ge t 10 l of t he r e a c t i on w a s r e m ove d a nd a dde d t o t he pr e pa r e d t ube l a be l e d 0 T hi s w a s r e pe a t e d f or e a c h t i m e poi nt T he s a m pl e s c a n be s t or e d a t 20 C S i x m i c r ol i t e r s of e a c h t i m e d s a m pl e w a s e l e c t r oph or e s e d on a n 8% ge l a t 40 m V unt i l t he b r om ophe nol bl ue w a s a ppr oxi m a t e l y 2/ 3 dow n. O nc e f i xe d a nd dr i e d i t w a s e xpos e d t o a phos phor e s c e nt s c r e e n ove r ni ght a nd s c a nne d w i t h a P hos hor I m a ge r ( M ol e c ul a r D yna m i c s S unnyva l e C A ) f or a na l ys i s T he pe r c e nt o f c l e a ve d t a r ge t a t e a c h t i m e poi nt w a s c a l c ul a t e d f r om t he i nt e ns i t y of t he pr oduc t ba nd ove r t he t ot a l i nt e ns i t y o f t he pr oduc t a nd t he i n t a c t t a r ge t I n V i t r o T r an s c r i p t i on A l i ne a r i z e d a nd pu r i f i e d pG E M T m P A H pl a s m i d w a s us e d t o c r e a t e f ul l l e ngt h m P A H t r a ns c r i pt s w i t h T 7 R N A P ol ym e r a s e T he r e a c t i on w a s s e t up i n 20 l a s f ol l ow s : 4 l o f 5 X pol ym e r a s e buf f e r 2 l 100 m M D T T 1 l R N a s i n $ ( 40 uni t s ) 1 l of a s ol ut i on of 20 m M e a c h A T P C T P a nd G T P 1 l 4 m M U T P 2 l l i ne a r i z e d pG E M T m P A H ( 100 ng ) 2 l o r 20 C i of [ 3 2 P ] U T P a nd 6 l of w a t e r O ne m i c r ol i t e r o f T 7 R N A pol ym e r a s e or 20 un i t s w a s a dde d l a s t T he r e a c t i on w a s i nc uba t e d a t 37 C f or 2 hour s F or t y m i c r o l i t e r s of w a t e r w a s a dde d t o t he r e a c t i on a nd w a s e xt r a c t e d w i t h 100 l of phe nol : c hl or of o r m : i s oa m yl a l c ohol T he a que ou s l a ye r w a s t he n pur i f i e d on a G 50

PAGE 43

30 column, and 1 l of the eluate was checked in a scintillation counter to calculate the concentration of the labeled transcript. Full Length Transcript Cleavage Reaction The full length transcript was incubated with the ribozyme at 37 C to determine if the cleavage site is accessible when the entire mRNA sequence is present. The reaction was set up with the desired ratio of ribozyme to target and magnesium concentration. For ribozyme I209, the experiment was set up in 30 l as follows: 3 l 400 mM Tris, 2 l or 6 picomoles of ribozyme, 10 l or 1.5 picomoles of label ed transcript, 3 l of 200 mM MgCl 2 3 l of a 1:10 dilution of RNasin $ in 0.1 M DTT and 9 l of water. Samples were taken at time 0, 1 and 2 hours. A 5% acrylamide gel was needed to separate the anticipated cleavage products of 862 and 660 bases. The gel was not fixed but dried and exposed to a phosphorescent screen overnight. Multiple Turnover Kinetic Analysis The kinetic properties of the ribozyme are calculated with the Michaelis Menten equation from a series of duplicate cleavage reactions set up with increasing ratios of target to ribozyme. By increasing the ratio from 1:40 to 1:1000, saturation of the ribozyme is achieved thus the cleavage reaction becomes the rate limiting step in the experiment. The series of duplicate reaction is shown in Table 2 1. Each reaction was set up as in the time course of cleavage reaction by adding the items in order and incubating at 65 C for 2 minutes and 10 minutes at room temperature after the ribozyme addition. The RNasin $ and the magnesium chloride were then added and the tubes were placed at 37 C for a minimum of 10 minutes. The 30pmole/ l target mixture contained 15 l of end labeled target, 15 l of 300 pmole/ l target stock and 120 l of water. A 3 pmole/ l

PAGE 44

31 di l ut i on w a s ne e de d t o s e t up t he l ow e r m ol a r r a t i o s of R z t o t a r ge t T he ne c e s s a r y a m ount of t a r ge t m i xt u r e w a s a dde d t o e a c h t ube i n a s t a gge r e d f a s hi on by w a i t i ng 15 t o 30 s e c onds be t w e e n e a c h a ddi t i on. T he t i m e s e l e c t e d t o s t op e a c h r e a c t i on w a s pr e de t e r m i ne d i n a t i m e c our s e e xpe r i m e nt a nd a l l ow e d t he r e a c t i on t o go t o 10 t o 20 % o f m a xi m um c l e a va ge T he r e a c t i ons w e r e s t oppe d b y t he a ddi t i on of 20 l of R N A s t op buf f e r a nd pl a c e d on i c e T a bl e 2 1 M ul t i pl e t ur nove r k i ne t i c a na l ys i s r e a c t i on s e t up. T u b es H 2 O 4 0 0 m M T ri s H Cl Ri b o zy me (0 3 p mo l / l ) 1 : 1 0 R N as i n 5 0 m M Mg Cl 2 T a rg et T a rg et s o l u t i o n u s ed Mo l ar rat i o R z: t arg et 1 1 1 1 4 2 0 1 2 1 3 p m/ l 2 1 2 1 0 2 1 1 2 4 3 p m/ l 1 : 4 0 3 1 3 8 2 1 1 2 6 3 p m/ l 1 : 6 0 4 1 4 6 2 1 1 2 8 3 p m/ l 1 : 8 0 5 1 5 1 3 2 1 1 2 1 3 0 p m/ l 1 : 1 0 0 6 1 6 1 2 2 1 1 2 2 3 0 p m/ l 1 : 2 0 0 7 1 7 1 0 2 1 1 2 4 3 0 p m/ l 1 : 4 0 0 8 1 8 8 2 1 1 2 6 3 0 p m/ l 1 : 6 0 0 9 1 9 6 2 1 1 2 8 3 0 p m/ l 1 : 8 0 0 1 0 2 0 4 2 1 1 2 1 0 3 0 p m/ l 1 : 1 0 0 0 E a c h s a m pl e w a s e l e c t r ophor e s e d on a n 8% ge l a n d e xp os e d t o a phos phor e s c e nt s c r e e n f or a na l ys i s I n or de r t o a na l yz e t he r e s ul t s a c a l i br a t i on c ur ve w a s a l s o ge ne r a t e d f r om a s e r i e s of t a r ge t s a m pl e s hybr i di z e d t o H ybo nd T M N + ( A m e r s ha m B i os c i e nc e s ) m e m br a ne us i ng a s l ot bl o t a ppa r a t us E a c h s a m pl e c ont a i n e d a know n a m ount of e nd l a be l e d t a r ge t f r om 0 t o 100 pi c om ol e s o f t a r ge t a l l ow i ng f or t he i n t e ns i t y of e a c h ba nd t o be c or r e l a t e d t o t he c onc e nt r a t i on of t a r ge t t hr ou gh a s i m pl e l i ne a r r e gr e s s i on. T he e qua t i on of t hi s l i ne w a s us e d t o c a l c ul a t e t he c onc e nt r a t i on of c l e a ve d t a r ge t i n e a c h of t he dupl i c a t e r e a c t i ons A s a t ur a t i on c ur ve w a s ge ne r a t e d f r om pl ot t i ng t he c l e a ve d t a r ge t c onc e nt r a t i on di vi de d by t he t i m e of t he r e a c t i on v e r s us t he i nput t e d t ot a l t a r ge t I f s a t ur a t i on i s not obt a i ne d hi ghe r c onc e nt r a t i ons of t a r ge t s houl d be s e t up i n a ne w

PAGE 45

32 e xpe r i m e nt A L i ne w e a ve r B ur k p l ot w a s c r e a t e d by gr a phi ng 1/ v ve r s us 1/ S : v i s t he ve l oc i t y or c l e a ve d t a r ge t ( nM / m i nut e ) a nd S i s t h e t ot a l i nput s ubs t r a t e c onc e nt r a t i on ( nM ) T he e qua t i on o f t he l i ne w a s u s e d t o de t e r m i ne V m a x K m a nd k c a t V m a x i s t he a bs ol ut e va l ue of 1/ Y w he n X i s 0; K m i s t he a bs ol ut e va l ue of 1/ X w he n Y i s 0; k c a t i s V m a x di vi de d by t he c onc e nt r a t i on of r i boz ym e us e d i n t he e xpe r i m e nt 15 nM M ol e c u l ar C l on i n g P r ot oc ol s M ol e c ul a r c l on i ng pr ot oc ol s us e d i n t hi s s t udy f ol l ow e d m a nuf a c t ur e r s r e c om m e nda t i ons f or e a c h e nz ym e o r c om pone nt us e d. E nz ym e s w e r e f r om N e w E ngl a nd B i oL a bs ( B e ve r l y M A ) un l e s s ot he r w i s e i ndi c a t e d. O t he r ge ne r a l pr ot oc ol s w e r e a da pt e d f r om M ol e c ul a r C l oni ng: A L a bor a t o r y M a nua l 1 1 2 C l on i n g of R i b oz ym e V e c t or s R i boz ym e I 209 a nd i t s t w o nul l de r i va t i ve s w e r e c l one d i nt o t he ve c t o r p21 ne w hp w hi c h i s ba s e d on pT R U F 12 T he r e s t r i c t i on s i t e s a t t he c l oni ng s i t e a r e H i nd I I I a nd S pe I a nd t he r i boz ym e s w e r e o r de r e d a s D N A ol i gos i nc l udi ng t he c or r e c t r e s t r i c t i on s i t e ba s e s f r om S i gm a G e nos ys ( T he W oodl a nds T X ) T he ol i gos w e r e ge l pur i f i e d, a nne a l e d a nd l i ga t e d i nt o t he di ge s t e d p21 ne w hp ve c t o r S u r e $ C e l l s ( S t r a t a ge ne L a J ol l a C A ) w e r e us e d f or t r a ns f or m a t i ons t o e ns ur e I T R r e t e nt i on. C l one s of e a c h r i boz ym e w e r e s e que nc e d a nd s e l e c t e d ba s e d on I T R r e t e nt i on by S m a I d i ge s t s T he R z I 209 pl a s m i d w a s r e na m e d C B R z I 209 ( F i gur e 5 6) T he r i boz ym e I 209 ve c t or us e d f o r pa c ka gi ng f o r a ni m a l e xpe r i m e nt s w a s m odi f i e d f r om t he or i gi na l C B R z I 209 ve c t or T he P Y F 441 e nha nc e r t he H S V t hym i di ne ki na s e pr om ot e r a nd t he ne om yc i n c a s s e t t e w e r e r e m ove d f r om t he ve c t or by S a l I di ge s t i on a nd r e l i ga t i on be c a us e t he ne om yc i n c a s s e t t e c ont a i ns c r ypt i c s pl i c e s i t e s w hi c h c oul d

PAGE 46

33 interference with gene expression if integrated into the genome. 113 This plasmid was named CB RzI209 ( Neo). Construction of CB mPAH F263S The plasmid vector CB mPAH was created from p43 hAAT developed by Loiler and Flotte at the University of Florida. Directed mutagenesis of mPAH was achieved using syntheti c DNA oligonucleotides as PCR primers. The 5 primer contained the desired base changes to change phenylalanine 263 to a serine and started at a unique restriction site, Xho I, to allow quick cloning of the mutagenized cassette ( Table 2 2). The PCR reacti on was set up using EasyStart TM PCR Mix in a tube (Molecular BioProducts, San Diego, CA). The 132 base pair PCR product was gel purified and ligated into pGEM $ T (Promega). After bacterial transformations into XL1 Blue MRF cells (Stratagene) and sequenci ng of the obtained clones, the fragment was cut from pGEM $ T with Xho I and Hind III, gel purified and ligated into pGEM T mPAH. The mutated gene, mPAH F263S, was moved from pGEM T to the CB backbone released from an EcoR I and Not I digest. Bacterial tra nsformations into Sure $ cells was followed by sequencing of clones obtained. Large DNA preparations were performed with Qiagens Plasmid Giga Kit. Construction of CB mPAH Hd The same strategy used for the construction of CB mPAH F263S was used to change t he CB mPAH plasmid to a resistant sequence to the RzI209. PCR mutagenesis was utilized to introduce silent base changes around the sequence for Isoleucine 209. The 5 primer again contained the necessary base changes, and started at a unique restriction si te, Stu I ( Table 2 3). After gel purification of the 322 base pair product, it was ligated

PAGE 47

34 T a bl e 2 2 P C R m ut a ge ne s i s pr i m e r s f or m P A H F 263S c ons t r uc t i on. Seq u en c e a 5 R es t ri ct i o n Si t e 3 R es t ri ct i o n Si t e N o r mal Pro t ei n cD N A 5 Pri mer F2 6 3 S Pro t ei n 5 G S C G S TT R G A D AT F T C L TG G G T G GG L G G A GG F T C R G A V CC F T C H AC C 5 G TC GT CT CG AG AT TT CT TG GG TG GC CT GG CC TT C CG AG TC TT C C AC TG C 3 5 G TC GT CT CG AG AT TT C C TG GG TG GC CT GG CC TT C CG AG TC T C CC AC TG C 3 5 G S C G S TT R G A D AT F T C L TG G G T G GG L G G A GG F T C R G A V CC S T C H AC C X h o I (C |T CG AG ) 3 Pri mer 5 T GG GC AA AG CT TC T A TC TG AA AA C 3 H i n d I II (A |A GC TT ) a Seq u en c e o f t h e o l i g o s ar e i n d i cat ed w i t h d es i g n at ed b as e an d a mi n o aci d ch an g es i n b o l d O n l y t h e 5 p ri mer co n t ai n ed ch an g es

PAGE 48

35 T a bl e 2 3 P C R m ut a ge ne s i s pr i m e r s f or m P A H H d c ons t r uc t i on. Seq u en c e a 5 R es t ri ct i o n Si t e 3 R es t ri ct i o n Si t e mP A H c D N A 5 Pri mer 5 T GA AG GC CT TG TA TA AA AC AC AT GC CT GC TA CG A GC AC AA CC AC AT C T TC CC TC TT C 3 5 T GA AG GC CT TG TA TA AA AC AC AT GC CT GC TA CG A GC AC AA CC A T AT T T T T CC TC TT C 3 St u I (A GG |C CT ) 3 Pri mer 5 T GG GC AA AG CT TC TA TC TG AA AA C 3 H i n d I II (A |A GC TT ) a Seq u en c es o f t h e o l i g o s are i n d i cat ed w i t h d es i g n at ed b as e ch an g es i n b o l d an d cl e av ag e s i t e u n d erl i n ed O n l y t h e 5 p ri me r co n t ai n ed ch an g es

PAGE 49

36 into pGEM T, moved to pGEM T mPAH and the entire mutagenized gene, mPAH Hd, cloned into the CB backbone to crea te CB mPAH Hd. The mPAH Hd cassette was also cloned into the CB WPRE backbone released from an EcoR I and Not I digest. Sequencing of pGEM T with the PCR insert and the final vector constructs was done, and the CB mPAH Hd and CB mPAH Hd WPRE plasmids were selected based on ITR retention. XLI Blue MRF cells were used for all pGEM T transformations, and Sure cells were used for all plasmids containing ITR sequences. Construction of tRNA RzI209 The tRNA RzI209 cassettewas designed in order to conserve nece ssary folding properties for the tRNA sequence and to allow the ribozymes hybridizing arms to reach their target sequence. From the necessary sequence a multi step strategy was devised to construct the 200 base pair cassette. Two restriction sites each ab out one third from the ends of the cassette were selected for cloning the cassette in three sets of oligos. The plasmid pGEM 3Zf(+) (Promega) was modified with a new elongated multiple cloning site to allow for the sequential cloning of the tRNA cassette ( Table 2 4). The modified pGEM 3Zf(+) was renamed pGEM 3Zf(+) MCS2. Each oligo set for the tRNA cassette was ordered from Sigma Genosys and gel purified prior to annealing and ligation into pGEM 3Zf(+) MCS2 ( Table 2 5). LyoComp GT116 cells (InvivoGen, San Diego, CA) were used for each cloning step, and blue white screening was utilized to help select properly ligated clones. A positive digest screen was used if possible at each cloning step. Once the full cassette was cloned into pGEM 3Zf(+), it was seque nced prior to cloning into the CB mPAH Hd plasmid. The cassette was introduced after the

PAGE 50

37 T a bl e 2 4 O l i gos f or t R N A R z I 209 c ons t r uc t i on. p G E M 3 Z f( + ) MC S2 Seq u en c e a Res t ri ct i o n Si t es Mu l t i p l e Cl o n i n g Si t e Kp nI B am HI Sa lI Ec oR I Av aI Ps tI H in dI II GA AT TC GA GC T CG GT AC CC G GG GA TC CT CT A GA G TC GA CC T GC AG GC AT G CA AG CT T CT TA AG CT CG A GC CA TG GG C CC CT AG GA GA T CT C AG CT GG A CG TC CG TA C GT TC GA A Mo d i fi ed Res t ri ct i o n Si t es Mo d i fi ed Mu l t i p l e Cl o n i n g Si t e C sp 45 I B am HI S al I Ec oR I Kp nI A va I Ec oR V Ps tI Hi n dI II GA AT TC GA GC T CG GT AC CT T CG AA CC CG GG G AT C CT CT AG A GA TA TC GT C GA CC TG CA GG C AT GC AA G CT T CT TA AG CT CG A GC CA TG GA A GC TT GG GC CC C TA G GA GA TC T CT AT AG CA G CT GG AC GT CC G TA CG TT C GA A MC S2 s en s e o l i g o MC S2 an t i s en s e o l i g o 5 CT TC GA AC CC GG GG AT CC TC TA GA TA TC G3 5 TC GA CG TT AT CT AG AG GA TC CC CG GG TT CG AA GG T AC 3 t RN A R zI2 0 9 cas s et t e b Seq u en c e a Res t ri ct i o n Si t es Seq u en c e E c oR I Cl aI Sa u9 6I Cs p4 5I 5 GA AT TC AT CG AT AC AG TT GG TT TA AG TA GT GT AG T GG T T AT CA CG TT CG CC TG AC AC G C GA AA GG TC CC CG G TT CG AA F ok I E co RV AC CG GG CA CT AC AA AA AC CA AC AG GG AA CT GA TG AG C GC T T CG GC GC GA AA TG TG GA TG G G AT AT C la I H i nd II I CA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A AA A A AA AA AA AA AA AA AA AA AA A A TT TT TA TC GA TA A GC TT 3 O l i g o S et 1 Sen s e O l i g o S et 1 A n t i s en s e 5' AA TT CA TC GA TA CA GT TG GT TT AA GT AG TG TA GT G GT T A TC AC GT TC GC CT GA CA CG C G AA AG G T CC CC GG T T3 5' CG AA CC GG GG AC CT TT CG CG TG TC AG GC GA AC GT G AT A A CC AC TA CA CT AC TT AA AC C A AC TG TA TC GA TG 3 O l i g o S et 2 Sen s e O l i g o S et 2 A n t i s en s e 5' CG AA AC CG GG CA CT AC AA AA AC CA AC AG GG AA CT G AT G A GC GC TT CG GC GC GA AA TG T G GA TG GG AT 3' 5' AT CC CA TC CA CA TT TC GC GC CG AA GC GC TC AT CA G TT C C CT GT TG GT TT TT GT AG TG CC CG GT TT 3' O l i g o S et 3 Sen s e O l i g o S et 3 A n t i s en s e 5' AT CA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A AA A A AA AA AA AA AA AA AA AA AA A A AA AA TT TT TA TC G AT A3 5' AG CT TA TC GA TA AA AA TT TT TT TT TT TT TT TT TT T TT T T TT TT TT TT TT TT TT TT TT T T TT TT TT TT TT TT T TT TT GA T 3' a Mo d i fi cat i o n s t o M CS2 an d ch eck d i g es t s are i n d i cat e d i n b o l d b T h e t R N A s eq u en ce w as ad d ed i n t h r ee o l i g o s et s : s et 1 i s fro m E co RI t o Cs p 4 5 I, s et 2 Cs p 4 5 I t o E co R V an d s et 3 E co R V t o H i n d III

PAGE 51

38 S V 40 pol yA s e que nc e a t t he C l a I s i t e a nd s c r e e ne d f or pr ope r or i e nt a t i on by r e s t r i c t i on di ge s t T hi s c l one w a s a l s o s e que nc e d. C e l l C u l t u r e P r ot oc ol s H E K 293 a nd a l l 293T c e l l s w e r e c ul t u r e d i n D ube l c o s M odi f i e d E a gl e M e di a c ont a i ni ng 25 m M gl uc os e 4 m M L gl ut a m i ne a n d 0. 04 m M phe nol r e d T he s e w e r e pa s s a ge d on a w e e kl y ba s i s w i t h 0. 25% t r y ps i n a n d us e d f or t r a ns i e nt c e l l t r a ns f e c t i ons of va r i ous pl a s m i d D N A T r an s i e n t C e l l T r an s f e c t i on w i t h C aP O 4 T r a ns i e nt c e l l t r a ns f e c t i ons of H E K 293 c e l l s w e r e done i n 6 w e l l pl a t e s ( 9 6 c m 2 pe r w e l l ) w i t h 80% c onf l ue nt c e l l s pa s s a ge d 24 hour s e a r l i e r T he de s i r e d D N A a m ount s w e r e m i xe d i n w a t e r a nd 300 l of 2. 5 M C a C l 2 w a s a dde d t o a f i na l vol um e o f 3 0 m l T hi s s ol ut i on w a s a dde d dr opw i s e t o 3. 0 m l o f 2 X H B S S ( H a nk s bu f f e r e d s a l t s ol ut i on) w hi l e vor t e xi ng l i ght l y. A f t e r a 15 m i nut e i nc uba t i on, i t w a s s e pa r a t e d i nt o f ou r w e l l s of t he 6 w e l l pl a t e a nd a dde d di r e c t l y t o t he c om pl e t e m e di a F our hou r s l a t e r t he m e di a w a s c ha nge d t o f r e s h c om pl e t e m e di a C e l l s w e r e ha r ve s t e d a f t e r 48 t o 72 hour s by r e m ovi ng t he m e di a w a s hi ng w i t h P B S a nd s c r a pi ng i n 1 0 m l of P B S pe r w e l l O f f our w e l l s 3 w e r e c ol l e c t e d t oge t he r i n P B S a nd one w a s c ol l e c t e d us i ng 1. 0 m l o f T R I z ol R e a ge nt i ns t e a d of P B S T he 3. 0 m l o f c e l l s w e r e c e nt r i f uge d a t 1000 r pm a nd r e s us pe nde d i n 0. 5 m l of hom oge ni z a t i on buf f e r : 1 5 m l 1 M K C l 8 5 m l H 2 O a nd 0 5 l of m e r c a pt oe t ha nol T he c e l l s w e r e hom oge ni z e d i n a gl a s s hom oge ni z e r a nd t hi s w a s r i ns e d w i t h 0. 5 m l o f bu f f e r a nd a dde d t o t he hom oge na t e s a ve d i nt o a f r e s h t ube T he l ys a t e w a s obt a i ne d by c e nt r i f uga t i on a t 14 000 r pm a t 4 C

PAGE 52

39 T r an s i e n t T r an s f e c t i on s u s i n g S u p e r f e c t 293T c e l l s w e r e obt a i ne d f r om D r C ha ng s l a bor a t or y. H i s l a b c ons t r uc t e d a s t a bl y i nt e gr a t e d 293T c e l l l i ne v i a a l e nt i vi r us s ys t e m c ont a i ni ng pT Y F m P A H a nd na m e d 293T T Y F m P A H T he l e nt i vi r us pl a s m i d w a s c on s t r uc t e d u s i ng our l a b s m P A H c a s s e t t e f r om C B m P A H T he s e c e l l s w e r e us e d f o r s i R N A t r a ns f e c t i ons us i ng S upe r F e c t ( Q i a ge n) C e l l s w e r e pa s s e d i nt o a 6 w e l l pl a t e 24 hour s pr i or t o t r a ns c r i pt i on a t a c onc e nt r a t i on 4x10 5 c e l l s pe r w e l l S e ve nt y f i ve m i c r ol i t e r s of D M E M w a s m i xe d w i t h 3. 5 g of D N A a t a m i ni m um 1 g/ l c onc e nt r a t i o n. A f t e r vor t e xi ng 7 l of S upe r F e c t w a s a dde d t o t he c e nt e r o f t he D M E M / D N A s ol ut i on, m i xe d up a nd dow n f i ve t i m e s a nd i nc uba t e d a t r oom t e m pe r a t ur e f or 7 t o 12 m i nu t e s T he m i xt ur e w a s t h e n a dde d dr opw i s e t o one w e l l o f c e l l s c ont a i ni ng 0. 6 m l f r e s h c om pl e t e m e di a A f t e r 6 hour s t he m e di a w a s c ha nge d t o 2 m l of c om pl e t e m e di a C e l l s w e r e ha r ve s t e d 48 hour s a f t e r t r a ns f e c t i on w i t h 1. 0 m l T R I z ol R e a ge nt a nd s t or e d a t 20 C unt i l R N A e xt r a c t i ons P h e n yl al an i n e H yd r oxyl as e A c t i vi t y A s s ay T he P A H a c t i vi t y a s s a y i s ba s e d on t he r e duc t i on o f N A D H t o N A D i n t he r e c yc l i ng pa t hw a y of B H 4 ( F i gur e 1 1) C e l l t r a ns f e c t i on or t i s s ue s a m pl e s a r e s e t up t w i c e : one r e a c t i on w i t hout phe nyl a l a ni ne a nd one w i t h phe nyl a l a ni ne t hus t he a s s a y m e a s ur e s t he phe nyl a l a ni ne l i nke d r e duc t i on of N A D H a t 340 nm F ou r s a m pl e s a r e r un i n one a s s a y w i t h t he 8 s a m pl e hol de r o f t he G e ne s ys 5 U V V i s s pe c t r ophot om e t e r ( T he r m o E l e c t r on C or por a t i on C a m br i dge U K ) T he r e a c t i on s w e r e s e t up i n 1m l t ot a l vol um e w i t h 100 l of c e l l l ys a t e or 20 l of t i s s ue hom oge na t e E a c h s a m pl e i nc l ude d t he f ol l ow i ng: 0. 10 M pot a s s i um phos pha t e buf f e r pH 6. 8 0 25 U c a t a l a s e 0. 10 m U D H P R 0. 04 m M 6 M e t hyl 5 6, 7 8 t e t r a hyd r opt e r i ne ( 6 M P H 4 ) 0 2 m M N A D H a nd 1 m M P he i f i nc l ude d. B ot h N A D H a nd 6 M P H 4 w e r e a dde d l a s t a nd t he r e a c t i ons

PAGE 53

40 de c r e a s e i n a bs or ba nc e a t 340 nm w e r e r e c or de d e ve r y f i ve m i nut e s f or 30 m i nut e s A f t e r c a l c ul a t i ng t he pr ot e i n c onc e nt r a t i on of t he s a m pl e s t he P he l i nke d r e duc t i on of N A D H w a s c a l c ul a t e d a s s pe c i f i c a c t i vi t y i n uni t s / m g o f t o t a l pr ot e i n. P r ot e i n C on c e n t r at i on A s s ay T he pr ot e i n c onc e nt r a t i on a s s a y i s a m odi f i e d s hor t pr ot oc ol L ow r y a s s a y. S t a nda r ds w e r e s e t up w i t h 10 X B S A ( N e w E ngl a nd B i oL a bs ) r a ngi ng f r o m 0 m g t o 100 m g of p r ot e i n. T ypi c a l l y 10 l of t i s s ue hom oge na t e a nd 20 l of c e l l l ys a t e w e r e d i l ut e d t o 100 l w i t h w a t e r f o r a na l ys i s S i x hundr e d m i c r ol i t e r s of c oppe r r e a ge nt ( 0. 6 m M N a 2 C uE D T A 0 2 M N a 2 C O 3 0 1 M N a O H ) w e r e a dde d t o t he p r ot e i n a nd i nc ub a t e d a t r oom t e m pe r a t ur e f or 10 m i nut e s S i x t y m i c r o l i t e r s of a 1: 1 di l u t i on o f F ol i n & C i oc a l t e u s phe nol r e a ge nt ( S i gm a ) i n w a t e r w e r e a dde d a nd a l l ow e d t o i nc uba t e f or 30 t o 45 m i nut e s a t r oo m t e m pe r a t u r e E a c h r e a c t i on a nd s t a nda r d i s s e t up i n dupl i c a t e a nd t he e nt i r e 760 l w a s r e a d a t 500 nm F r om t he a ve r a g e of t he dupl i c a t e s t a nda r ds a l i ne a r r e gr e s s i on w a s c a l c ul a t e d t o ge t a n e qua t i on o f t he l i ne us e d t o de t e r m i ne t he pr o t e i n c onc e nt r a t i on of t he e xpe r i m e nt a l s a m pl e s We s t e r n B l ot t i n g T he m ous e P A H a nt i body w a s r a i s e d a ga i ns t a 142 a m i no a c i d N t e r m i na l pe pt i de i n r a bbi t T he a nt i s e r a w a s us e d a t a 1: 1000 di l ut i o n i n T B S T w i t h 5 % m i l k. T i s s ue hom oge na t e or c e l l l ys a t e w e r e e l e c t r ophor e s e d on 12% a c r yl a m i de T r i s H C l ge l s w i t h a di s c ont i nuous bu f f e r s ys t e m c ont a i ni ng S D S T he pr ot e i n w a s t r a ns f e r r e d t o ni t r oc e l l ul os e m e m br a ne s bl oc ke d ove r n i ght a nd i nc uba t e d w i t h t w o p r i m a r y a nt i bodi e s : t he m ous e P A H a nt i s e r a a nd a r a bbi t po l yc l ona l a n t i body t o G A P D H ( A bc a m C a m br i dge U K ) a s a l oa di ng c ont r ol T he s e c onda r y a nt i body w a s ho r s e r a di s h pe r oxi da s e l i nke d a nd de ve l ope d a ga i ns t r a bbi t I g G i n donke y ( A m e r s ha m ) D e t e c t i on of

PAGE 54

41 s a m pl e s w a s done w i t h E C L T M W e s t e r n B l ot t i ng D e t e c t i on R e a ge nt s ( A m e r s ha m ) a nd t he bl ot s w e r e e xpos e d t o K oda k X A R f i l m f or 0. 5 t o 4 m i nut e s L a s e r de ns i t om e t r y w a s us e d t o qua nt i f y t he i nt e ns i t y of t he ba nds N or t h e r n B l ot t i n g T i s s ue s a m pl e s s a ve d i n R N A l at e r ( A m bi on) w e r e pr oc e s s e d w i t h T R I z ol R e a ge nt T he t i s s ue s a ppr oxi m a t e l y 100 m g w e r e hom oge ni z e d w i t h a n e l e c t r i c t i s s ue hom oge ni z e r i n 1 5 m l of T R I z ol a nd t he m a nuf a c t ur e r s pr ot oc ol w a s f ol l ow e d f or R N A e xt r a c t i on. S a m pl e s w e r e r e s us pe nde d i n a n a ppr o pr i a t e vol um e o f nuc l e a s e f r e e w a t e r a nd s t or e d a t 70 C L e ve l s of r i bos om a l R N A w e r e a dj us t e d, a nd e l e c t r ophor e s e d on 2. 2 M f or m a l de hyde 1 X M ops e l e c t r ophor e s i s buf f e r a nd 1% a ga r os e ge l s T he R N A w a s t r a ns f e r r e d ove r ni ght i n 10 X S S C by upw a r d c a pi l l a r y t r a ns f e r t o a ne ut r a l nyl on m e m br a ne H ybond T M N ( A m e r s ha m ) A f t e r U V i r r a di a t i on, t he m e m br a ne w a s s t a i ne d br i e f l y w i t h e t hi di um br om i de f or R N A vi s ua l i z a t i on. P r obe l a be l i ng w a s a c c om pl i s he d w i t h t he R e di pr i m e T M I I s ys t e m ( A m e r s ha m ) H yb r i di z a t i on t o t he m P A H a nd hum a n c oppe r z i nc S upe r O xi de D i s m ut a s e ( C uZ nS O D ) c D N A pr obe s w a s done i n C hur c h buf f e r ove r ni ght a t 65 C A f t e r w a s hi ng t h r e e t i m e s i n 0. 2 X S S C t he m e m br a ne s w e r e e xpos e d t o K oda k X A R f i l m a t 70 C a nd us i ng v a r i ous t i m e d e xpos ur e s t he l e ve l s of P A H m R N A i n t he di f f e r e nt t i s s ue s w e r e c om pa r e d us i ng l a s e r de ns i t om e t r y. R e c om b i n an t A d e n o A s s oc i at e d V i r u s P ac k agi n g A l l pa c ka gi ng of ve c t or D N A w a s done by t he U ni ve r s i t y of F l or i da V e c t or C or e L a bor a t or y. T he onl y s e r ot ype us e d f or t he s e e xpe r i m e nt s w a s r A A V t ype 2, m a t c hi ng t he t ype 2 I T R s e que nc e s pr e s e nt i n our ve c t or p l a s m i ds L a r ge pr e pa r a t i ons of pl a s m i d D N A w a s done i n our l a bor a t or y us i ng Q i a ge n s P l a s m i d G i ga K i t A f t e r t e s t i ng t he

PAGE 55

42 D N A pr e pa r a t i on by r e s t r i c t i on d i ge s t a nd c e l l t r a ns f e c t i on f or t he P A H a c t i vi t y a s s a y, t he e nt i r e yi e l d w a s gi ve n t o t he V e c t or C or e L a bo r a t or y. O ur ve c t or D N A w a s t he n c o t r a ns f e c t e d i nt o H E K 293 c e l l s w i t h t he pD G pl a s m i d w hi c h c ont a i ns A A V s r e p a nd c ap ge ne s a l ong w i t h t he r e qui r e d a de novi r us ge ne s 1 1 4 A f t e r 48 hour s a c e l l pe l l e t w a s obt a i ne d, f r e e z e t ha w e d, a nd t he l ys a t e w a s s e pa r a t e d on a n i odi xona l s t e p gr a di e nt T he vi r us w a s pur i f i e d on a he pa r i n a f f i ni t y c ol um n a n d a f t e r c onc e nt r a t i on t he vi r us w a s t i t e r e d by qua nt i t a t i ve c om pe t i t i ve P C R a nd i nf e c t i ous c e nt e r a s s a y. A n i m al P r oc e d u r e s G r ow t h R at e A n al ys i s S e l e c t e d l i t t e r s w e r e c l os e l y f o l l ow e d f r om bi r t h f o r 56 da ys P ups f r om t he he t e r oz ygot e da m t o P ah e n u 2 m a l e m a t i ngs w e r e t a t t ooe d on t he i r pa w s w i t hi n t he f i r s t 6 da ys a f t e r bi r t h i n o r de r t o s pe c i f i c a l l y f ol l ow e a c h pup s gr ow t h r a t e a nd l a t e r s or t a c c or di ng t o ge not ype I ndi a i nk w a s i nj e c t e d w i t h a 36 ga uge ne e dl e i nt o t he pa w s of t he pups a f t e r c hi l l i ng t he m b r i e f l y on i c e A s e que nt i a l pa t t e r n f or e a c h pup w a s us e d: no t a t t oo, l e f t f r ont r i ght f r ont l e f t r e a r r i ght r e a r l e f t f r ont a nd l e f t r e a r e t c unt i l a l l doubl e c om bi na t i ons w e r e e xha us t e d i f ne c e s s a r y. P ups w e r e w e i ghe d e ve r y 3 t o 4 da ys f or 36 da ys t he n e ve r y w e e k unt i l da y 56 T he da t a w a s s or t e d by ge not ype a nd t he n by s e x w i t hi n e a c h ge not ype W e i ght s w e r e a ve r a ge d s t a nda r d de vi a t i ons w e r e c a l c ul a t e d a nd a l l da t a s e t s w e r e a na l yz e d by s t ude nt s t t e s t s a nd A N O V A B l ood C ol l e c t i on A ni m a l s w e r e bl e d w i t hout a ne s t he s i a i n a r ot a t i ng t a i l i nj e c t or ( B r a i nt r e e S c i e nt i f i c B r a i nt r e e M A ) B l ood s a m pl e s a ppr oxi m a t e l y 90 t o 110 l w e r e c ol l e c t e d i nt o he pa r i ni z e d c a pi l l a r y t ube s : t he t a i l s o f t he m i c e w e r e c ut w i t h ve t e r i na r y s c i s s or s a nd t he t a i l w a s m a s s a ge d t ow a r ds t he c ut t o c ol l e c t t he bl ood T he e nt i r e pr oc e dur e

PAGE 56

43 i nc l udi ng w e i ghi ng t he m ous e i f ne c e s s a r y t a ke s a ppr oxi m a t e l y f i ve t o s i x m i nut e s pe r m ous e T he c ont e nt of t he c a pi l l a r y t ube w a s t r a ns f e r r e d i nt o a 200 L t ube T hi s w a s s pun dow n a t 10, 000 g a nd t he s e r um w a s c ol l e c t e d i nt o a s e c ond t ube B ot h b l ood a nd s e r um s a m pl e s w e r e s t or e d a t 20 C un t i l f ur t he r u s e M i c e w e r e us ua l l y bl e d i n l a t e a f t e r noon on a w e e kl y ba s i s but c a n be bl e d m or e of t e n i f ne c e s s a r y. M i c r op l at e S e r u m P h e n yl al an i n e A s s ay T he phe nyl a l a ni ne a s s a y i s a m odi f i c a t i on of t he a s s a y de ve l ope d i n 1962 by M c C a m a n. 1 1 5 O nl y 7 5 l of s e r um i s ne e de d f or t r i pl i c a t e r e a di ngs E a c h s a m pl e w a s T C A pr e c i pi t a t e d, w i t h 11 2 l of 0. 3 N T C A a nd c hi l l e d on i c e f or 10 m i nut e s or s t or e d a t 20 C unt i l t he a s s a y w a s s e t up. U s i ng a P C R p l a t e f or 96 s a m pl e s 64 l o f c oc kt a i l w a s di s pe ns e d i nt o e a c h w e l l T he c oc kt a i l c ont a i n s 4. 40 m l 0. 3 M s uc c i na t e pH 5 8, 1. 76 m l of 30 m M ni nhyd r i n, a nd 0 880 m l 5 m M L l e uc yl L a l a ni ne S t a nda r ds w e r e pr e pa r e d f r om 10 m M phe nyl a l a ni ne i n 0 3 N T C A : 0 m M 0. 05 m M 0 10 m M 0 25 m M 0. 50 m M 0 75 m M 1 0 m M a nd 1. 25 m M E a c h s t a nda r d a nd s a m pl e w a s r un i n t r i pl i c a t e F our m i c r ol i t e r s o f e a c h s t a nda r d w a s a d de d t o t he a pp r opr i a t e w e l l s T he pr e c i pi t a t e d s e r um s a m pl e s w e r e s pun dow n a t 13, 000 r pm o r 16 000 g f o r 10 m i nut e s i n a m i c r oc e nt r i f uge F ou r m i c r ol i t e r s of e a c h s a m pl e i s a dde d t o t he w e l l s a nd t he pl a t e w a s c a ppe d pr i or t o pl a c i ng i n a t he r m oc yc l e r t o i n c uba t e t he s a m pl e s a t 60 C f or 2 hour s T w o hundr e d m i c r ol i t e r s o f c oppe r r e a ge nt i s a dde d t o e a c h w e l l o f a 96 w e l l 0 5 m l bl a c k f l uo r i m e t e r pl a t e ( N unc D e nm a r k) T he c oppe r r e a ge nt i s c om pos e d of 1. 6 g N a 2 C O 3 0. 065 g po t a s s i um s odi um t a r t r a t e 0. 060 g C uS O 4 5H 2 O e a c h di s s ol ve d i n a bout 300 m l H 2 O a nd a dde d t oge t he r t o br i ng up t o 1 l i t e r O ne hund r e d m i c r o l i t e r s w a s a dde d

PAGE 57

44 t o t he i nc uba t e d s a m pl e s i n t he P C R pl a t e a nd t he n t he e nt i r e vol um e w a s m ove d i n t o t he f l uor i m e t e r pl a t e T he P C R pl a t e w a s w a s he d w i t h a not he r 100 l of c oppe r r e a ge nt a nd a dde d t o t he f l uor i m e t e r pl a t e a s w e l l T he pl a t e w a s r e a d t w i c e on a n F L x800 M ul t i de t e c t i on M i c r o pl a t e R e a de r ( B i oT e k, W i noo s ki V T ) B ot h r e a di ngs w e r e a ve r a ge d t o c a l c ul a t e t he phe nyl a l a ni ne c onc e nt r a t i on i n e a c h s a m pl e F ood C on s u m p t i on M e as u r e m e n t F ood c ons um pt i on w a s c a l c ul a t e d a s a n a ve r a ge pe r da y pe r gr a m of m ous e M i c e w e r e ke pt i n s t a nda r d h ous i ng, t w o t h r e e or f our t o a c a ge s e pa r a t e d by s e x a nd ge not ype T he m i c e a nd t he f ood w e r e w e i ghe d on c e a w e e k w he n t he m i c e w e r e c ha nge d t o ne w c a ge s T he f i r s t w e e k onl y t he f oo d i n t he ne w c a ge w a s w e i ghe d by m ovi ng i t t o a w e i gh boa t A t t he s e c on d a nd s ubs e que nt t i m e poi nt s t he l e f t ove r f ood w a s w e i ghe d t o c a l c ul a t e t he f ood c ons um pt i on, a n d t he ne w f ood pl a c e d w i t h t he m i c e w a s w e i ghe d a s w e l l T hi s w a s r e pe a t e d f or t w o t o f our w e e ks a nd pe r f or m e d a t c ons i s t e nt t i m e s t o a l l ow c or r e c t pe r da y c a l c ul a t i ons P or t al V e i n I n j e c t i on s A l l m i c e s e l e c t e d f or ge ne t he r a py e xpe r i m e nt s w e r e bl e d 2 t o 3 t i m e s pr i o r t o t he por t a l ve i n i n j e c t i ons i n or de r t o obt a i n a ba s e l i ne s e r um phe nyl a l a ni ne c onc e nt r a t i on. A t t he t i m e of s ur ge r y, a l l m i c e w e r e t ypi c a l l y be t w e e n 10 t o 14 w e e ks ol d. A l l i ns t r um e nt s a nd s ol ut i ons w e r e s t e r i l i z e d by a ut oc l a vi ng pr i o r t o s ur ge r y. T he m i c e w e r e w e i ghe d a nd i nj e c t e d s ubc ut a ne ous l y w i t h B a yt r i l a nd B upr e ne x di l ut e d 1 t o 10 s e pa r a t e l y w i t h i nj e c t i on s a l i ne s ol ut i on. G e ne r a l a ne s t he s i a w a s a c c om pl i s he d w i t h i s of l ur a ne A f t e r c l e a ni ng t he ve nt r a l s ur f a c e a m i dl i ne a bdom i na l c ut w a s m a de a nd t he po r t a l ve i n w a s e xpos e d f or i nj e c t i on w i t h or w i t hout m ovi ng i nt e s t i ne s out s i de of t he body c a vi t y. U s i ng a 29 ga uge ne e dl e t he i nj e c t i on w a s m a de i n t o t he por t a l ve i n i n a n a ppr oxi m a t e vo l um e

PAGE 58

45 of 0. 3 c c A f t e r b l e e di ng w a s s t oppe d w i t h c ot t on t i ppe d a ppl i c a t or s 0 5 c c t o 1 c c o f p r e w a r m e d L R S s ol ut i on w a s a dde d i nt o t he body c a v i t y t o p r e ve nt a dhe s i ons T he a bdom i na l m us c l e w a l l w a s s e w n w i t h 4. 0 s i l k a nd t he out e r s ki n w a s s t a pl e d c l os e d. M i c e w e r e pl a c e d i n c l e a n w a r m c a ge s a nd m oni t o r e d f or 15 t o 30 m i nut e s be f or e be i ng t a ke n ba c k i nt o t he c ol ony. S t e r i l e pe a nut but t e r w a s gi ve n t o t he m i c e on a pi e c e of nor m a l c how t o m oni t or t he i r r e c ove r y on t he ne xt da y. C ot t a ge c he e s e or phe nyl a l a ni ne f r e e c hoc ol a t e c a n a l s o be gi ve n t o i nc r e a s e t he i r a ppe t i t e i f ne c e s s a r y. O nc e a da y f or t he f ol l ow i ng w e e k t he m i c e w e r e c he c ke d t o m a ke s ur e t he w ounds w e r e c l e a n a nd no s t a pl e s w e r e l os t T he s t a pl e s w e r e r e m ove d a w e e k a f t e r s ur ge r y a t w hi c h t i m e t he m i c e a r e bl e d f o r t he f i r s t t i m e poi nt P h e n yl al an i n e L oad i n g A phe nyl a l a ni ne s ol ut i on w a s pr e pa r e d i n 0. 9 % s a l i ne a nd f i l t e r e d s t e r i l i z e d t hr ough a s t e r i l e s yr i nge a nd a 0. 22 m f i l t e r T he pH of t he s ol u t i on w a s 7. 4 T he c onc e nt r a t i on of 26 4 m g / m l w a s de t e r m i ne d by s p e c t r ophot om e t r i c a na l ys i s O n t he da y of t he s t udy, e a c h a ni m a l w a s bl e d ( 0 hou r ) w e i gh e d a nd t he n i nj e c t e d s ubc ut a ne ous l y w i t h 0. 8 m g L P he pe r g r a m of body w e i ght T he v ol um e s i nj e c t e d t h us r a nge d f r om 1 0 t o 1. 5 m l pe r m ous e E a c h bl ood s a m pl e t a ke n w a s a ppr oxi m a t e l y 30 l T i m e d bl ood s a m pl e s w e r e obt a i ne d a t 1. 5 3 6 12 a nd 24 hour s S e r um w a s s e pa r a t e d by c e nt r i f uga t i on a nd t he P he c onc e nt r a t i ons de t e r m i n e d w i t h t he no r m a l f l uor i m e t r i c a s s a y a nd r e pe a t e d t hr e e t i m e s S ac r i f i c e an d T i s s u e C ol l e c t i on G e ne t he r a py t r e a t e d a ni m a l s w e r e s a c r i f i c e d w i t h a n ove r dos e of s odi um pe nt oba r bi t a l f ol l ow e d by c e r vi c a l di s l oc a t i on o r b r a i n pe r f us i on w i t h 4% pa r a f or m a l de hyde T he f o l l ow i ng t i s s ue s w e r e c ol l e c t e d ( pr i or t o pe r f us i on) : m us c l e

PAGE 59

46 ki dne y, s pl e e n, l ung l i ve r a nd t e s t e s a nd qui c k f r o z e n on dr y i c e a nd s t or e d a t 70 C I ns t r um e nt s us e d f or di s s e c t i on w e r e c l e a ne d be t w e e n e a c h t i s s ue w i t h D e c on E l i m i na s e D e c ont a m i na nt ( E a s t S us s e x, U K ) t o p r e ve nt D N A c r os s c ont a m i na t i on. A ppr ox i m a t e l y 100 m g of l i ve r w a s s a ve d i n 2 m l of R N A l at e r ( A m bi on, A us t i n, T X ) a nd pl a c e d on i c e t he n m ove d t o 20 C A l l ot he r t i s s ue s w e r e f i xe d i n 10% f or m a l i n f or ge ne r a l pa t hol ogi c a l e xa m i na t i on. L i ve r s e c t i ons s a v e d i n t i s s ue c a s s e t t e s w e r e s e nt t o t he P a t hol ogy C or e f o r pa r a f f i n e m be ddi ng a nd s e c t i o ni ng. T he s e w e r e pr oc e s s e d by de hydr a t i on w i t h g r a de d e t ha nol s ol ut i ons c l e a r e d w i t h xyl e ne a nd e m be dde d i n pa r a f f i n. F i ve m i c r on s e c t i ons m ount e d on gl a s s s l i de s w e r e hydr a t e d i n gr a de d a l c ohol s ol ut i ons s t a i ne d w i t h he m a t oxyl i n a nd c ount e r s t a i ne d w i t h e os i n. T he s e w e r e de hydr a t e d onc e a ga i n t o pl a c e a c ove r s l i p on t he s l i de us i ng P e r m o unt N or m a l a ni m a l s w e r e s a c r i f i c e d by C O 2 a s phyxi a t i on f ol l ow e d by c e r vi c a l di s l oc a t i on. N e c e s s a r y t i s s ue s a m pl e s w e r e r e m ove d a nd s a ve d by qui c k f r e e z i ng, i n R N A l at e r or a s t i s s ue hom oge na t e s A ppr oxi m a t e l y 100 m g of t i s s ue w a s hom oge ni z e d i n 2 m l hom oge ni z a t i on bu f f e r i n a gl a s s hom oge ni z e r T h i s w a s c e nt r i f uge d a t 16, 000 g f or 10 m i nut e s a t 4 C T he s upe r na t a nt w a s s a ve d a t 70 C or us e d i m m e di a t e l y f or P A H a c t i vi t y a s s a ys R N as e P r ot e c t i on A s s ays R N A s a m pl e s w e r e e xt r a c t e d w i t h T R I z ol R e a ge nt ( I nvi t r oge n) a nd pr ot oc ol P r obe s f or t he R N a s e P r ot e c t i on A s s a y ( R P A ) w e r e de s i gne d, P C R a m pl i f i e d f r om C B m P A H a nd c l one d i nt o pG E M T T he c l one s s e l e c t e d f or t r a ns c r i pt i on r e a c t i ons w e r e c he c ke d t o be i n t he c or r e c t o r i e nt a t i on f or T 7 R N A pol ym e r a s e t r a ns c r i pt i on, di ge s t e d w i t h N ot I a nd pu r i f i e d by phe nol : c hl or o f or m e xt r a c t i on. T r a ns c r i pt i on o f t he p r obe s w a s

PAGE 60

47 done us i ng A m bi on s M a xi S c r i pt I n v i t r o T r a ns c r i pt i on K i t P r obe s w e r e ge l pu r i f i e d a nd e l ut e d ove r ni ght F i f t e e n m i c r og r a m s of R N A f r om t he e xpe r i m e nt a l s a m pl e s w e r e s e t up w i t h C B m P A H s e ns e pr obe s a nt i s e ns e pr o be s a s ne ga t i ve c on t r ol s a nd A c t i n pr obe s a s l oa di ng c ont r ol s Y e a s t R N A 2. 5 g, w a s i nc l ude d w i t h a l l pr obe s w i t h o r w i t hout R N A s e a ddi t i on a s R N a s e e f f i c i e nc y c ont r ol s T he a s s a y w a s done us i ng A m bi on s R P A I I I T M K i t a nd p r ot oc ol T he s a m pl e s w e r e r un on 5% a c r yl a m i de 8 M ur e a 1 X T B E ge l s a nd e xpos e d t o f i l m a t 70 C f or va r i ous t i m e s t o de t e c t p r ot e c t e d R N A f r a gm e nt s L a s e r de ns i t om e t r y w a s done t o c a l c ul a t e r e l a t i ve l e ve l s of p r ot e c t e d R N A S ou t h e r n B l ot t i n g D N A w a s e xt r a c t e d f r om t i s s ue s a m pl e s i n t a i l buf f e r : 50 m M N a C l 25 m M E D T A 50 m M T r i s pH 8. 0 w i t h 50 l o f 10% S D S a nd 50 l of 10 m g/ m l pr o t e i na s e K O ne hundr e d m i l l i g r a m s of t i s s ue w a s i nc uba t e d i n 500 l of buf f e r ove r ni ght a t 55 C 2 l of 10 m g/ m l R N a s e A s ol ut i on w a s a dde d i n t he m or ni ng f or 1 hou r i nc uba t i on a t 55 C A que ous l a ye r s w e r e s ubs e que nt l y e xt r a c t e d w i t h t he f ol l ow i ng: 500 l phe nol f or 1 hour a t r oom t e m pe r a t ur e 500 l phe nol : c hl o r of or m f o r 30 m i nut e s a t r oom t e m pe r a t ur e a nd 500 l c hl or o f or m f or 2 m i nu t e s a t r oom t e m pe r a t ur e T he l a s t a que ous l a ye r w a s e t ha nol pr e c i pi t a t e d a nd r e s us pe nde d i n a n a ppr opr i a t e vol um e of T E pH 8 0. D N A s a m pl e qua l i t y w a s c he c ke d by i nc uba t i ng a t 37 C f or 1 hou r i n 1 X N E B r e s t r i c t i on buf f e r 3 a nd 1 X B S A t he n e l e c t r ophor e s e d on 1% a ga r os e ge l s a ga i ns t uni nc u ba t e d s a m pl e s T w e nt y m i c r og r a m s of D N A w a s di ge s t e d ove r ni ght T he di ge s t e d s a m pl e s w e r e r un on 0 8% a ga r os e 1 X T A E ge l s a t 5 V / c m f o r 5 hour s D N A w a s t r a ns f e r r e d by

PAGE 61

48 dow nw a r d c a pi l l a r y t r a ns f e r i n 10 X S S P E ont o B i oR a d Z e t a P r obe G T m e m b r a ne T he m e m br a ne w a s U V c r os s l i nke d a nd ba ke d f o r 30 m i nut e s a t 80 C C hur c h buf f e r w i t h a dde d s he a r e d s a l m on s pe r m D N A w a s us e d f or h ybr i di z a t i on a t 65 C P r e hybr i di z a t i on w a s done f or 4 hour s F i f t y na nogr a m s of ge l pu r i f i e d di ge s t e d D N A f r a gm e nt s w e r e l a be l e d w i t h R e di pr i m e I I a t r oom t e m pe r a t ur e T he pr obe s w e r e pur i f i e d on G 50 c ol um ns a nd ha l f o f t he p r obe s w e r e us e d i n 10m l of hybr i di z a t i on buf f e r f o r a 12x 14c m m e m br a ne W a s he s w e r e done a t 65 C f or a t ot a l o f 3 hou r s M e m br a ne s w e r e e xpos e d f or 48 hour s t o K o da k B i oM a x M S f i l m i n a T r a ns S c r e e n H E c a s s e t t e a t 70 C S ubs e que nt e xpos ur e s w e r e done a s ne c e s s a r y. L a s e r de ns i t om e t r y w a s us e d t o m e a s ur e ba nd i nt e ns i t i e s R N A I n t e r f e r e n c e P r ot oc ol s G e n e r at i on of s i R N A C as s e t t e s D N A ol i gos f or t he t h r e e de s i gne d s i R N A s w e r e or de r e d f r om S i g m a G e nos ys T he ol i gos w e r e ge l pur i f i e d a nd di l ut e d t o 10 M ba s e d on c onc e nt r a t i ons obt a i ne d f r om opt i c a l de ns i t y r e a di ngs A m bi on s Si l e nc e r T M E xpr e s s s i R N A E xpr e s s i on C a s s e t t e K i t w a s us e d f or ge ne r a t i ng e a c h c a s s e t t e c ont a i ni ng t h e hum a n U 6 p r om ot e r T he pr ovi de d G A P D H a nd ne ga t i ve c a s s e t t e c ont r ol s w e r e a l s o m a de T he P C R r e a c t i ons w e r e done i n a M a s t e r c yc l e r ( E ppe ndor f ) us i ng P l a t i num T aq ( I nvi t r oge n) a c c or di ng t o pr ovi de d pr ot oc ol s w i t h 50 C f or t he a nne a l i ng t e m pe r a t u r e C o nc e nt r a t i ons of t he f i na l p r oduc t w e r e de t e r m i ne d by opt i c a l de ns i t y. R e ve r s e T r an s c r i p t as e R e ac t i on an d P ol ym e r as e C h ai n R e ac t i on R N A s a m pl e s w e r e e xt r a c t e d us i ng T R I z ol R e a ge nt a nd pr ot oc ol F i ve hundr e d na nogr a m s of R N A w e r e us e d f or t he r e ve r s e t r a ns c r i pt i on r e a c t i on f ol l ow e d by

PAGE 62

49 pol ym e r a s e c ha i n r e a c t i on ( R T P C R ) A l l r e a c t i on s w e r e s e t up i n 200 l t ube s a nd a l l i nc uba t i on s t e ps w e r e done i n t he M a s t e r c yc l e r t o e ns ur e e ve n i nc uba t i ons T he l i d t e m pe r a t ur e of t he M a s t e r c yc l e r w a s ke pt a t 105 C t hr ougho ut t he e xpe r i m e nt A l l R N A s a m pl e s w e r e f r om c e l l t r a ns f e c t i ons t hus w e r e f i r s t t r e a t e d w i t h R Q 1 R N a s e F r e e D N a s e ( P r om e ga ) f o r 30 m i nut e s a t 37 C E D T A w a s a dde d t o t he s a m pl e s a nd i nc uba t e d a t 65 C f or 10 m i nut e s f or i na c t i vi a t i on o f t he D N a s e T he r e ve r s e t r a ns c r i pt i on r e a c t i on w a s t he n s e t up us i ng P r o m e ga s A c c e s s Q ui c k T M R T P C R S ys t e m T hi s i nc l ude s a m i x t ha t c ont a i ns t he ne c e s s a r y c om pone nt s f or r e ve r s e t r a ns c r i pt i on a nd P C R r e a c t i ons T he r e ve r s e t r a ns c r i pt a s e w a s a dde d l a s t A one hou r i n c uba t i on a t 48 C f o r r e ve r s e t r a ns c r i pt i on w a s done f ol l ow e d by 35 c yc l e s of 94 C 0. 5 m i nu t e 55 C 1 m i nut e 72 C 5 m i nut e s a nd one l a s t 5 m i nut e i nc uba t i on a t 72 C H a l f of t he r e a c t i ons w e r e t he n r un on 15% pol ya c r yl a m i de 1 X T B E ge l s w i t h a n a pp r op r i a t e l a dde r T he ge l s w e r e s t a i ne d w i t h e t hi di um b r om i de f or v i s ua l i z a t i on on a n E a gl e E ye T M I m a gi ng S ys t e m ( S t r a t a ge ne ) R e l a t i ve i nt e ns i t e s of t he ba nds w a s c a l c ul a t e d us i ng t he s of t w a r e U N S C A N I T ge l A ut om a t e d D i gi t i z i ng S ys t e m V e r s i on 5. 1 ( S i l k S c i e nt i f i c C or por a t i on O r e m U T )

PAGE 63

50 CHAPTER 3 ANIMAL MODEL ANALYSI S The most useful animal model for phenylketonuria is the BTBR Pah enu2 mouse. A single nucleotide mutation in the PAH locus created the missense mutation F263S. 54 This mutation renders phenylalanine hydroxylase completely inactive. The mice have classic PKU: hyperphenylal aninemia, cognitive deficits, maternal PKU syndrome, and hypopigmentation ( Figure 3 1). Various studies of the mouse model have been done (see the Animal model section of Chapter 1), but some physiological parameters that we have observed with our colony h ave not been previously described. This chapter describes some general observations about the mouse model, and experiments performed to further understand this model of classic phenylketonuria. General Sex Dimorphism in BTBR Pah enu2 Mice Growth Curve Ana lysis A number of papers have been published about the BTBR Pah enu2 model, but none mentions any differences between the Pah enu2 male and female mice. Early on in our colony it was observed that the female mice were smaller and more fragile than their mal e counterparts. We decided to quantitate this observed difference from birth to adulthood. Three litters from male / to female +/ matings were followed from birth until post natal day 72. All pups were tattooed with India Ink in different patterns on their paws between day 3 and day 6 to follow each pups weight specifically, since genotype of the pups cannot be ascertained visually immediately after birth. Coat color identification between days 15 20 was used to assess genotype in these crosses which

PAGE 64

51 was later confirmed by serum Phe levels obtained at weaning. Five heterozygous males, seven heterozygous females, five Pah enu2 males and four Pah enu2 females were thus followed from birth. Weights pre determined in our inventory were added to the averages of these mice for the adult average values to obtain more accurate numbers. Three wild type litters were also followed from birth, but without tattooing of the pups. Eleven wild type males and seventeen wild type females were thus included in these calcula tions. Again values obtained from our inventory were also added into the adult weight averages. The results in Figure 3 2 show that Pah enu2 mice are smaller than both heterozygote and wild type mice. Using unpaired t test analysis (Table 3 1) from day 0 to day 56, wild type and heterozygous mice do not show any significant trends in the differences in their growth. While some points show significant differences, they can be explained by litter sizes: the wild type litters had each three to four more pups than the followed heterozygous litters thus being somewhat smaller at some of the early time points. Comparing males and females separately explains the significant p values towards the end of the 56 days. While males are not significantly different in th eir growth rates, the wild type females remain somewhat smaller than the heterozygous females, a lasting effect of the litter size differences that does not continue once the animals reach adulthood. Adult females, both wild type and heterozygote, are gene rally smaller than their male counterparts as expected. The Pah enu2 mice compared to heterozygous mice are significantly smaller starting at day 6 with a p value below 0.05. The p value comes below 0.001 at day 12 until day 49 when it comes back to just b elow 0.05. Again looking at the males alone, the difference in growth rates is only significant until day 49 when the PKU males reach weights that

PAGE 65

52 T a bl e 3 1 U npa i r e d t t e s t a na l ys i s of l i t t e r w e i ght s D ay s : 3 6 9 1 2 1 5 1 8 2 3 2 8 3 5 4 2 4 9 5 6 + / + t o + / a 0 0 6 6 3 0 0 0 8 8 b 0 0 0 4 1 0 0 0 0 1 c 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 4 5 4 0 0 1 2 3 M + / + t o m + / 0 1 0 5 1 0 0 3 6 1 0 0 1 6 9 0 0 0 2 6 0 0 0 3 5 0 0 0 4 5 0 0 0 0 2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 2 1 4 0 1 8 9 8 F+ / + t o f + / 0 3 9 4 5 0 0 6 4 7 0 0 6 5 1 0 0 2 1 8 0 0 1 3 8 0 0 0 8 0 0 0 0 1 6 0 0 0 0 5 0 0 0 0 0 0 0 0 1 2 0 0 0 0 2 0 0 0 0 0 + / + t o / 0 0 0 0 8 0 0 0 0 0 0 0 0 0 1 0 3 4 7 2 0 0 0 0 2 0 3 1 9 0 0 0 0 0 0 0 0 0 0 2 0 0 5 1 4 0 0 4 8 5 0 0 4 2 9 0 1 9 2 7 M + / + t o m / 0 0 4 7 1 0 0 0 8 9 0 0 0 3 8 0 9 0 5 4 0 0 0 8 5 0 1 9 6 3 0 0 0 2 3 0 0 0 0 1 0 0 1 8 4 0 0 0 6 9 0 0 4 4 3 0 5 1 9 0 F+ / + t o / 0 0 0 3 5 0 0 0 0 0 0 0 2 4 7 0 3 0 2 0 0 0 1 6 6 0 9 4 7 0 0 0 0 1 5 0 0 5 1 7 0 0 0 1 9 0 0 0 5 3 0 0 0 0 0 0 0 0 1 7 + / t o / 0 5 2 5 7 0 8 1 0 5 0 3 5 8 5 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 8 0 3 8 9 6 0 0 7 6 1 M + / t o m / 0 5 5 5 5 0 3 1 7 5 0 6 2 4 5 0 0 0 0 7 0 0 1 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 8 0 3 4 3 2 0 2 6 4 9 F+ / t o f / 0 0 9 0 2 0 0 4 0 7 0 3 6 0 0 0 0 0 5 1 0 0 0 5 8 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 In t ra + / + 0 0 0 4 2 0 0 0 8 1 0 5 6 6 7 0 5 8 6 1 0 6 4 9 1 0 8 8 3 7 0 1 5 4 4 0 0 0 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 In t ra + / 0 2 8 2 1 0 1 8 0 6 0 1 5 4 7 0 8 2 1 2 0 3 8 6 8 0 3 6 1 8 0 5 7 8 1 0 0 1 2 1 0 0 0 2 0 0 0 0 1 3 0 0 0 0 6 0 0 0 6 7 In t ra / 0 4 1 6 3 0 0 3 4 8 0 1 4 3 3 0 2 4 0 2 0 6 0 8 2 0 9 2 7 5 0 7 9 5 9 0 2 0 9 2 0 0 0 5 9 0 0 0 1 3 0 0 0 0 3 0 0 0 0 0 a Res u l t o f p ai r ed an al y s i s i s s h o w n fo r each s et o f d at a. b Bl u e t ex t i n d i cat es p v al u e l es s t h an 0 0 5 c Pi n k t ex t d en o t es p v al u e l es s t h an 0 0 0 1

PAGE 66

53 cannot be distinguished from heterozygous males, see Figure 3 3 and Table 3 1. This is different than the growth curves observed between the wild type and heterozygous males that did not show this delay in weight gain. The female Pah en u2 are significantly smaller than all the other mice in the model. When compared to heterozygote females, the p values are below 0.05 from day 12 until day 28 when the p value goes below 0.001 and remains there throughout their lifetime. This fragility is further demonstrated by ANOVA analysis of adult weights in Table 3 2 that shows that the p value only remains significant between the three populations when the Pah enu2 females are included in the calculations. Table 3 2 Results of ANOVA analysis of adul t weights. Groups DF a F b P c +/+, +/ / 194 16.61 2.23x10 7 +/+, +/ male / female / 194 52.61 7.82x10 25 +/+, +/ male / 124 0.31 0.73 +/+, +/ female / 144 55.26 1.78x10 18 a Degrees of freedom b F value: distance between individual distributions c P value Serum Phenylalanine Levels In humans, the classic PKU phenotype is normally defined as having serum phenylalanine levels of 1200 mol/L (1.2 mM) or more. 27 The mouse model, BTBR Pah enu2 has similarly elevated Phe levels that classify it as the classic phenotype. Table 3 3 shows normal, non hyperphenylalaninemic, heterozygote Phe values, and male and female Pah enu2 serum Phe values. Femal e mice have higher Phe levels than the male mice, and our lab has observed this phenomenon since the beginning of our colony. Only one recent report indicated similar findings where male mice had 1.80 mM serum Phe levels while female mice had 2.89 mM serum Phe levels. 70 Shedlovsky had re ported an average of 23.1 mg/dL (1.39 mM) serum Phe in the Pah enu2 mice with no mention of

PAGE 67

54 male and female differences. 50 The models Phe values have also been reported as 1. 70 mM 116 1.54 mM 64 1.57 mM 66 2.0 mM in males and 2.06 mM in females (deemed not significant) 69 and 1.23 mM 68 The varied values can be explained by differences in assay methods and sensitivity, and perhaps also explain the one report where male and female mice where not found to have significantly different values. Table 3 3. Serum phenylalanine values in BTBR Pah enu2 6 weeks a 8 we eks a Adult average a Heterozygote 0.07 +/ 0.02 0.07 +/ 0.01 0.09 Male / 1.50 +/ 0.14 1.36 +/ 0.08 1.13 +/ 0.08 Female / 1.82 +/ 0.12 1.58 +/ 0.05 1.54 +/ 0.03 a Values expressed in mM. The phenylalanine values in the Pah enu2 mice prior to 6 weeks are not significantly different and are around 2.0 mM. As the mice begin their sexual development, the values decrease as shown, with the males lowering by half their early levels by adulthood. The 6 week time point or 42 days corresponds to the t ime when male mice begin to catch up to heterozygote mice in terms of weight. Perhaps the gain in muscle weight can explain the 0.4 mM (or 6.7 mg/dL) difference by adulthood in the serum Phe values. Food Consumption The food consumption on a per week basi s was measured in the mice in order to find an explanation for the difference in serum Phe values between the male and female PKU mice. The mice were housed in standard housing in groups of 2 to 4 separated by sex and genotype. Each mouse was weighed once a week for a total of 2 to 4 weeks. Average food consumption was calculated on a per gram of mouse basis as protein intake is usually reported in the literature. Figure 3 4 shows that for adult mice, 10 weeks or older, the Pah enu2 ( / ) females eat more th an any of the other mice. Heat loss in these smaller mice may explain the difference in food intake since more energy expenditure

PAGE 68

55 should be required to maintain body temperature. To verify this hypothesis, one cage of heterozygote females had their food co nsumption measured starting at 6 weeks of age for 3 consecutive weeks. Their average weight over the 3 weeks was 23.3 g, similar to the adult Pah enu2 females. These mice also consumed more chow than their adult counterparts, with an average of 0.25+/ 0.03 g of food consumed per day per gram of mouse. Lifespan Analysis Using our entire mouse inventory, a natural lifespan analysis was performed. Only mice that died of natural causes were included in the calculations. Average lifespan, incidence of premature death defined as prior to 12 weeks of age, average adult lifespan (excluding mice that died prior to 12 weeks of age) and median adult lifespan were calculated from the data. Wild type and heterozygote data were combined by sexes since the pool samples wer e smaller than for the PKU mice. The results are displayed in Table 3 4. As an indication of overall relevance, the number of data points for each group is indicated along with the fraction of total mice of that category in the inventory that it represents The data are most likely skewed toward a lower than expected lifespan: animals that die young will be recorded into the inventory whilst older animals may be sacrificed prior to the end of their natural lifespan. However, the sample size for the PKU mic e seems large enough to infer that the female mice have a higher incidence of premature death, 0.15 versus 0.08, and a shorter adult lifespan than the males. 7.1 months versus 10.5 months. Normal males live longer than normal females, and the data for PKU males are similar to that of the normal males. Even though the sample size for heterozygote and wild type mice is much smaller, it seems likely that given a larger sample size the data would remain the same. This assumption is based on our

PAGE 69

56 obs e r va t i ons ge ne r a l a ppe a r a nc e of t he m i c e t he i r s i z e P he l e ve l s a nd f ood c ons um pt i on pr e s e nt e d i n t he e a r l i e r pa r t s o f t hi s c ha pt e r T a bl e 3 4 L i f e s pa n a na l ys i s Mal es a (+ / + an d + / ) Fem al es (+ / + an d + / ) / M al es / F em al es N (fract i o n o f t o t al i n v en t o ry ) 2 2 (9 % ) 4 6 (1 5 % ) 6 5 (4 0 % ) 8 1 (4 0 % ) A v e rag e l i fes p an (mo n t h s ) 9 3 7 2 9 8 6 3 In ci d en ce o f p remat u r e d e at h 0 0 9 0 1 5 0 0 8 0 1 5 A v e rag e ad u l t l i fes p an (mo n t h s ) 1 0 0 8 1 1 0 5 7 1 Med i an ad u l t l i fes p an (mo n t h s ) 9 5 7 3 1 0 7 6 6 a D at a i s p res en t ed as t h e av erag e i n mo n t h s b as ed o n t h e i n d i cat ed s a mp l e s i z e. P h e n yl al an i n e H yd r oxyl as e i n B T B R P ah e n u 2 M i c e I t i s c l e a r t ha t ba s e d on l i f e s pa n, s e r um P he va l ue s a nd gr ow t h c ur ve s t ha t f e m a l e P ah e n u 2 m i c e a r e m or e s e ve r e l y a f f e c t e d by t he di s e a s e t ha n t he m a l e m i c e T o f ur t he r e va l ua t e t he m ous e m ode l a nd a t t e m pt t o unde r s t a nd t he m a l e a nd f e m a l e di m o r phi s m P A H w a s m e a s ur e d i n i t s va r i ous f or m s i n bot h l i v e r a nd ki dne y. L i ve r P A H M e s s age l e ve l s T he m ous e m ode l c ont a i ns a m i s s e ns e m ut a t i on c a us i ng a phe nyl a l a ni ne c ha nge t o a s e r i ne I t w a s r e por t e d t ha t t he P ah e n u 2 m i c e ha ve 12% o f w i l d t ype P A H m R N A l e ve l s 5 0 G i ve n t ha t t he m u t a t i on i s a s i ngl e ba s e c ha nge bur i e d i n t he m i ddl e of t he P A H t r a ns c r i pt i t s e e m e d unl i ke l y t ha t i t w oul d c a us e s uc h a r e duc t i on i n t r a ns c r i pt i on or r e nde r t he m R N A uns t a bl e i n a ny w a y. M ous e l i ve r s a m pl e s w e r e e xt r a c t e d f o r R N A a nd t h e s e w e r e a na l yz e d by N or t he r n bl ot t i ng f or m P A H W hi l e N o r t he r n bl o t t i ng i s no t t he m os t s e ns i t i ve m e t hod f or R N A qua nt i f i c a t i on, a s e ve r e r e duc t i on i n R N A l e ve l s w oul d

PAGE 70

57 be easy to detect and confirm. Figure 3 5 shows a representative blot and the overall r esults. A total of eight adult animal samples were analyzed for +/+ and / mice, and 7 samples were analyzed for +/ mice. No statistically significant changes were observed between the three genotypes or between sexes. The message is very abundant and ea sily detectable using the full length cDNA probe as shown in Figure 3 5A. Protein levels Message levels were not expected to be different in the PKU mice, and the Northern blots showed that PAH in the liver was not reduced. We were uncertain what effects t he inactivity of the F263S protein would have on overall PAH protein levels in the liver. Shedlovsky had showed Pah enu2 levels to be approximately 33% of wild type. 50 That ev idence combined with normal levels of PAH mRNA indicates that perhaps mPAH F263S is less stable than the normal monomer and is directly selected for degradation after translation, or that the mutant protein does not easily form a tetramer and is also selec tively degraded, or that the mutant inactive tetramers are turned over quickly due to inactivity. Liver PAH protein amounts were determined by Western blotting. PAH amounts were found to decrease by approximately 40% between +/+ and +/ mice, and by approx imately 60% between +/+ and / mice, as shown in Figure 3 6, and in agreement with the original published results on Pah enu2 mice. Activity levels Phenylalanine hydroxylase activity was measured from freshly extracted liver protein to further define the liver environment. Since mPAH F263S has no catalytic activity, the Pah enu2 samples do not have any activity as measured by the spectrophotometric assay. In the heterozygote samples, Kaufman predicted based on a mathematical model developed with the propert ies of purified PAH, that a heterozygote

PAGE 71

58 pa t i e nt m i ght be e xpe c t e d t o ha ve 40 % of nor m a l a c t i vi t y ba s e d on r e por t e d r a t i os o f s e r um P he va l ue s i n obl i ga t e he t e r oz ygot e ve r s us n or m a l pa t i e nt s S a m pl e bi ops i e s f r om t he s e pa t i e nt s ha ve be e n r e por t e d t o be a r o und 30 % of nor m a l a c t i vi t y. 1 1 7 W e ha ve c a l c ul a t e d a n a ve r a ge of 42 % a c t i vi t y i n he t e r oz yg ot e m i c e a gr e e i ng w i t h K a uf m a n s pr e di c t i on. T a bl e 3 5 c ont a i ns t he r e s ul t of t he P A H a s s a ys w i t h t he l i ve r s a m pl e s T a bl e 3 5 P A H a c t i vi t y i n l i ve r s a m pl e s + / + + / / A ct i v i t y av er ag e a 1 0 0 0 4 2 0 0 2 St an d ard d ev i at i o n 0 1 5 0 1 0 0 0 7 N 9 8 1 3 a Res u l t s are g i v en as av er ag es + / s t an d ard d ev i at i o n re l at i v e t o w i l d t y p e act i v i t y l ev el s P r ot e i n l e ve l s i n he t e r oz ygot e m i c e w e r e a ppr oxi m a t e l y 62% o f w i l d t ype w hi l e a c t i vi t y ha s be e n f ound t o be onl y 42% of w i l d t yp e T he P ah e n u 2 m i c e ha ve 41 % of nor m a l pr ot e i n a m ount s w i t h a s e xpe c t e d, 0 % nor m a l a c t i vi t y. T hi s s ugge s t s t ha t t he m P A H F 263S m ono m e r s a r e t u r ne d ove r qui c kl y i n t he l i ve r pos s i bl y due t o i ns t a bi l i t y or i m pr ope r f ol di ng. I n he t e r oz ygot e s w i t h one c opy of t he m ut a t e d ge ne t he m i c e s how 16% of pr ot e i n a bove t he a s s um e d 50% no r m a l p r ot e i n. I f t he 16% e xt r a pr ot e i n i s a s s um e d t o be t he m P A H F 263 S pr o t e i n a m ount o ne c oul d a s s um e t ha t P ah e n u 2 m i c e s houl d onl y ha ve 32% pr ot e i n H ow e ve r 41% w a s a c t ua l l y obs e r ve d. M or e ove r t he 42% of nor m a l a c t i vi t y l e ve l s c ons i s t e nt l y obs e r ve d i n t he + / m i c e s ugge s t s t ha t a n i n t e r a c t i on be t w e e n nor m a l a nd m ut a nt m onom e r i s t a ki ng p l a c e t hus r e duc i ng t he t o t a l pot e nt i a l a c t i vi t y l e ve l s a nd pe r ha ps t he a m ount s o f no r m a l m onom e r s T he a nt i body i s i nc a pa bl e of di s t i ngui s hi ng be t w e e n nor m a l a nd m ut a nt m on om e r t hu s w e a r e una bl e t o de t e r m i ne w ha t r e l a t i ve a m ount s of e a c h pr ot e i n i s pr e s e nt i n t he he t e r oz ygot e m i c e

PAGE 72

59 Kidney PAH Similar experiments were conducted with kidney samples. Results are shown in Figure 3 7. Unlike liver PAH, protein amounts are equal betwee n each genotype. Activity levels decrease by 50% from wild type mice to heterozygote mice. The regulation of turnover and /or the stability of the protein seem to be different between the two organs, which is consistent with the state of activation observe d with purified kidney rat PAH. 38 The rat kidney enzyme was not responsive to p re incubation with phenylalanine unlike liver PAH, and it was found to have higher in vitro activity with BH 4 Since the promoters are the same, it is presumed that post translational modifications are different in each organ leading to the differences obs erved in stability of the protein. It is interesting that the liver and the kidney do not seem to regulate PAH in the same manner, and perhaps the kidney could be a good target for gene therapy. Colocalization of the cofactor BH 4 and the AAV vector would have to be achieved, thus requiring that the cell types where PAH and BH 4 are present in the kidney be susceptible to rAAV infection. Studies are currently underway to determine the localization of PAH in the mouse kidney. Discussion The mouse model for phenylketonuria, BTBR Pah enu2 was examined in detail for this study. BTBR Pah enu2 mice have a single base mutation in the PAH gene leading to the missense mutation F263S in exon 7. 54 The mutated enzyme is catalytically inactive, and the mice have classic PKU: hyperphenylalaninemia, hypopigmentation, c ognitive deficits and maternal PKU syndrome. We found that female BTBR Pah enu2 mice are significantly smaller than the male Pah enu2 mice and have a shorter lifespan and a higher incidence of premature death than any of the other mice. Serum phenylalanine l evels in

PAGE 73

60 a dul t f e m a l e P a h e n u 2 m i c e a r e on a ve r a ge 0. 5 m M hi ghe r t ha n t he m a l e s a nd t he f e m a l e s w e r e f ound t o e a t m o r e on a pe r g r a m ba s i s t ha n e i t he r P ah e n u 2 m a l e s he t e r oz ygot e o r w i l d t ype m i c e W hi l e t he i nc r e a s e d f ood i n t a ke m i ght be due t o hi ghe r e n e r gy e xpe ndi t ur e f or body t e m pe r a t u r e s t a bi l i z a t i on i n t he s m a l l e r f e m a l e m i c e t hus l e a di ng t o t he hi ghe r s e r um P he l e ve l s t he r e a s on f o r t he pe r s i s t e nt s m a l l e r s i z e i n t he f e m a l e s i s s t i l l unknow n. T he s e xua l di m or phi s m obs e r ve d i n t he a ni m a l m o de l i s not e xpl a i ne d by t he m ol e c ul a r s t a t us of P A H i n t he m i c e : no di f f e r e nc e s w e r e obs e r ve d be t w e e n m a l e s a nd f e m a l e s i n t e r m s of P A H t r a ns c r i pt pr ot e i n or a c t i vi t y. T hi s i s c ons i s t e nt w i t h t he f a c t t ha t P A H i s a hous e ke e pi ng ge ne e ve n t hough i n t h e m ous e t h e e nha nc e r ha s be e n s how n t o be r e gul a t e d by hor m one s s uc h a s de xa m e t hos one 3 1 T h e P A H t r a ns c r i pt w a s not f ound t o be s i gni f i c a nt l y r e duc e d i n a l l t hr e e ge not ype s of t he m ous e m ode l a s e xpe c t e d f or a m i s s e ns e m ut a t i on. P r ot e i n l e ve l s i n t he l i ve r w e r e 62% of nor m a l i n t he he t e r oz ygot e m i c e a nd 41 % of nor m a l i n t he P ah e n u 2 m i c e A c t i vi t y m e a s ur e m e nt s s how e d t ha t he t e r oz ygot e m i c e ha ve 42% of nor m a l P A H a c t i vi t y i n t he l i ve r T hi s a m ount o f a c t i vi t y a s c om pa r e d t o t he c a l c ul a t e d p r ot e i n a m ount s i n t he he t e r oz ygot e l i ve r s i s s ugge s t i ve of a dom i na nt ne ga t i ve i nt e r f e r e nc e e f f e c t i n t he m i c e s i nc e t he e nz ym e i s a hom ot e t r a m e r T he pr e s e nc e of P A H m ut a nt p r ot e i n i n t he P ah e n u 2 m i c e c oul d l e a d t o dom i na nt ne ga t i ve i nt e r f e r e nc e a f t e r ge ne t he r a py, a nd e xpl a i n t he ne e d f or hi gh r A A V dos e s t o c ur e hype r phe nyl a l a ni ne m i a O ur ge ne t he r a py r e s ul t s a nd t he i m pl i c a t i on of do m i na nt ne ga t i ve i nt e r a c t i on a r e d i s c us s e d i n de t a i l i n c ha pt e r s 4, 5 a nd 7 S i nc e s om e 60 % o f know n hum a n P A H m u t a t i ons a r e m i s s e ns e m ut a t i ons e xpr e s s e d i n t he pa t i e nt s f u r t he r s t udy of t hi s m e c ha ni s m i s ne e de d t o de ve l op c l i ni c a l l y a ppl i c a bl e t he r a py f o r hum a ns

PAGE 74

61 F i gur e 3 1 B T B R P ah e n u 2 m ous e m ode l T he P K U m i c e ( / ) a r e hypopi gm e nt e d a s c om pa r e d t o t he w i l d t ype ( + / + ) a nd he t e r oz ygot e ( + / ) m i c e

PAGE 75

62 F i gur e 3 2 B T B R m i c e gr ow t h c ur ve s T he P ah e n u 2 ( / ) m i c e a r e s i gni f i c a nt l y s m a l l e r t ha n t he he t e r oz ygot e ( + / ) a nd w i l d t ype ( + / + ) m i c e

PAGE 76

63 F i gur e 3 3 M a l e a nd f e m a l e w e i ght di f f e r e nc e s W hi l e f e m a l e P ah e n u 2 ( / F e m a l e s ) r e m a i n s i gni f i c a nt l y s m a l l e r t ha n a l l t he ot he r m i c e t he m a l e P ah e n u 2 ( / M a l e s ) c a t c h up t o t he he t e r oz ygot e ( + / ) m i c e a r o und da y 40.

PAGE 77

64 F i gur e 3 4 A ve r a ge da i l y f ood c ons um pt i on. F e m a l e / m i c e e a t s i gni f i c a nt l y m or e on a pe r gr a m ba s i s t ha n t he he t e r oz ygot e o r m a l e / m i c e p< 0. 05.

PAGE 78

65 F i gur e 3 5 N or t he r n bl ot of m ous e P A H A R e pr e s e nt a t i ve n or t he r n bl ot s how i ng m P A H s i gna l a nd l oa di ng c ont r ol C uZ nS O D B Q ua nt i t a t e d r e s ul t s c om bi ne d by ge not ype a s c a l c ul a t e d by l a s e r de ns i t om e t r y a nd r e por t e d a s r e l a t i ve P A H a m ount s nor m a l i z e d t o C uZ n S O D

PAGE 79

66 F i gur e 3 6 W e s t e r n bl ot of m ous e P A H A R e pr e s e nt a t i ve w e s t e r n bl ot f i l m f r om m a l e l i ve r s a m pl e s F i f t e e n m i c r ogr a m s o f t ot a l pr ot e i n w a s r un f or e a c h s a m pl e a nd m P A H a nd l oa di ng c ont r ol G A P D H s i gna l s a r e bot h i ndi c a t e d. B Q ua nt i t a t e d r e s ul t s of w e s t e r n bl ot s g r oupe d by ge not ype R e s ul t s a r e e xpr e s s e d a s r e l a t i ve m P A H a m ount s nor m a l i z e d t o G A P D H a s m e a s ur e d by l a s e r de ns i t om e t r y. W i l d t ype l e ve l s w e r e s e t t o on e a nd + / a nd / l e ve l s a r e s how n a s f r a c t i on of w i l d t ype

PAGE 80

67 F i gur e 3 7 K i dne y P A H a m ount s A l l r e s ul t s a r e pr e s e nt e d r e l a t i ve t o w i l d t ype l e ve l s s e t t o 1. m R N A a m ount s a r e a ve r a ge s + / a ve r a ge de v i a t i on, N = 5, N = 6 a nd N = 6 r e s pe c t i ve l y. P r ot e i n a m ount s a r e a ve r a ge s + / s t a nda r d de vi a t i on, N = 14, N = 12, a nd N = 8 r e s pe c t i ve l y. A c t i vi t y l e ve l s a r e gr a phe d a s a ve r a ge s + / s t a nda r d de vi a t i on, N = 12, N = 10 a nd N = 1 0 r e s pe c t i ve l y.

PAGE 81

68 C H A P T E R 4 D O M I N A N T N E G A T I V E I N T E R F E R E N C E I N P H E N Y L K E T O N U R I A D om i na nt ne ga t i ve i nt e r f e r e nc e i s de f i ne d a s a n i n t e r a c t i on be t w e e n t w o pr o t e i ns t ha t l e a ds t o ne ga t i ve r e gul a t i on or i na c t i va t i on o f t he nor m a l p r ot e i n s f unc t i on 1 1 8 T hi s m a y oc c ur w he n one p r ot e i n i s m ut a t e d i n a w a y t h a t pr e ve nt s i t s nor m a l a c t i vi t y; t he m ut a t e d pr ot e i n c om bi ne s w i t h a no r m a l pr o t e i n a n d l e a ds t o i m pa i r e d f unc t i on i na c t i va t i on, or de gr a da t i on. S ys t e m s t ha t r e qui r e d i m e r i z a t i on or ol i gom e r i z a t i on c a n be a f f e c t e d by dom i na nt ne ga t i ve i nt e r f e r e nc e by a n e xpr e s s e d a nd r e l a t i ve l y s t a bl e m ut a nt s ubuni t T he be s t know n e xa m pl e of dom i na nt ne g a t i ve i nt e r f e r e nc e i n a hum a n di s e a s e i s O s t e oge ne s i s I m pe r f e c t a ( O I ) w he r e one m ut a nt c ol l a ge n m ol e c ul e de s t a bi l i z e s t he e xt r a c e l l ul a r m a t r i x ( E C M ) of t he bone l e a di ng t o bone f r a gi l i t y a nd f r e que nt f r a c t ur e s t he m a i n c l i ni c a l f e a t ur e s of O I D om i na nt ne ga t i v e e f f e c t s due t o s pe c i f i c m ut a t i ons i n r e c e pt or s or ho r m one s c a n c a us e m a ny e ndoc r i ne d i s e a s e s F or e xa m pl e F a br y di s e a s e c onge ni t a l a dr e na l hypopl a s i a C r i gl e r N a j j a r s ynd r om e a nd pi t ui t a r y dw a r f i s m ha ve be e n f ound t o be dom i na nt ne ga t i ve di s e a s e i n s om e pa t i e nt s 1 1 8 A f t e r e a r l y r e s ul t s of ge ne t he r a py t r i a l s i n t he B T B R P ah e n u 2 m i c e our l a bor a t or y hypot he s i z e d t ha t dom i na nt ne ga t i ve i nt e r f e r e nc e c oul d be t h e r e a s on f or t he hi gh r A A V dos e s ne e de d t o c ur e H P A i n m a l e m i c e P he nyl a l a ni ne hydr oxyl a s e i s a t e t r a m e r i c e nz ym e a nd a f unc t i ona l m onom e r i nt r oduc e d by ge ne t he r a py c oul d i nt e r a c t w i t h t he e ndoge nous m ut a nt m onom e r s r e duc i ng t ot a l pot e nt i a l a c t i vi t y i n t he he pa t oc yt e s t hus t he ne e d f or hi gh dos e s t o c o r r e c t t he hype r phe nyl a l a ni ne m i a T hi s c ha pt e r pr e s e nt s t he

PAGE 82

69 gathered evidence that dominant negative interference occurs in this mouse model for phenylketonuria after gene therapy. Gene Therapy for Phenyl ketonuria: Divergent Results by Sex in BTBR Pah enu2 A recombinant Adeno associated virus vector was constructed in the lab and contains the mouse PAH cDNA. The gene is expressed from the hCMV enhancer and Chicken Actin hybrid promoter (CB). An SV40 poly A signal follows the mPAH cDNA, and the plasmid is 6823 bases in total ( Figure 4 1 panel A). An alternate vector contains the Woodchuck hepatitis virus post transcriptional regulatory element (WPRE) followed by the Bovine Growth Hormone polyA. This plasmid is 7519 bases ( Figure 4 1 panel B). Either vector can be packaged in trans to produce rAAV type 2 virions ( Figure 4 1 panels C and D). All virus packaging was done by the University of Florida Vector Core. Briefly, our vector DNA is co transfected into HE K 293 cells with the pDG plasmid which contains AAVs rep and cap genes along with the required Adeno virus genes. 114 After 48 hours a cell pellet is obtained, freeze th awed, and separated on an iodixonal step gradient. The virus is purified on a heparin affinity column, and after concentration the virus is titered by quantitative competitive PCR and infectious center assay. The first gene therapy trial was done with rAA V2 CB mPAH virus. Both male and female mice were injected via portal vein. Male mice responded to 1.5x10 11 infectious unit (IU) dose by lowering their serum phenylalanine levels from 1.10 mM to an average of 0.3 mM for 24 weeks, the end of the experiment ( data not shown). Normal phenylalanine levels would be around 0.10 mM. The dose of CB mPAH vector was therapeutic, but not fully effective. Female mice failed to respond to the same virus dose as the males. The females lack of response to the gene therapy at such a high doses

PAGE 83

70 prompted the construction of the second vector that includes the WPRE in order to enhance the effect of the gene therapy. The WPRE has been shown to enhance the activity of transcripts both in cells and in animals from a variety of vir us vectors. 119,120 In cell culture transfections, CB mPAH WPRE has 2 to 2.5 fold higher activity than CB mPAH (data not shown). We repeated our initial study using both newly packaged rAAV2 CB mPAH WPRE and rAAV2 CB mPAH. We note that continuous improvements by the University of Florida Vector Core have improved both the yields and quantitation accuracy of vector preparations. In this second trial, 3X10 10 infectious units of rAAV2 CB mPAH fully co rrected male BTBR Pah enu2 mice ( Figure 4 2). With the CB mPAH WPRE vector, males were fully corrected at about half the CB mPAH dose, 1.3x10 10 infectious units. Female mice responded to 3x10 11 infectious units of rAAV2 CB mPAH WPRE by lowering their serum Phe levels to approximately 0.6 mM. This dose is at least 20 times more than the dose used in the male mice and still failed to fully correct the females. These results are comparable to those obtained by Mochizuki et al. in 2004, although different serot ypes of AAV were used. 69 Liver PA H: Evidence of Dominant Negative Interference No difference between the sexes was observed at the molecular level for PAH. Nonetheless, the data do point to an interaction between mutant and normal PAH monomer. While RNA transcription is constant for the housekeeping gene in all three groups of mice, protein PAH levels vary in the liver ( Figure 4 3). In addition, activity levels are reduced from wild type to heterozygote mice due the presence of the mutant F263S monomer. While the overall PAH amount is app roximately 62% in heterozygote mice, the PAH activity detected in these samples is only 42% of wild type. If only the

PAGE 84

71 mutant monomers were degraded in the heterozygotes, one would expect to see 50% of wild type protein amounts and 50% of wild type activity Neither the western blots nor the activity assays can differentiate between normal and mutant monomers, but based on the less than ideal percentages observed, one can infer that both monomers interact in a dominant negative fashion leading to increased t urnover and reduced PAH activity. The heterozygote mice at 42% normal PAH activity have normal serum Phe levels and are indistinguishable from wild type mice. In vitro Cell Transfection Studies with Normal and Mutant PAH To further investigate the possibl e interaction between normal mPAH and mouse mutant mPAH F263S, a new vector was created to express mPAH F263S. PCR primers, containing nucleotide changes to create the F263S mutation, were used to amplify a 132 base pair segment of the PAH cDNA (Table 2 2) The amplified region was subcloned into a pGEM T plasmid, sequenced, cloned into pGEM T mPAH and the full length mPAH F263S gene was moved back into the rAAV CB mPAH plasmid ( Figure 4 4). The extra cloning steps were done to avoid subcloning a small PCR product into the large rAAV plasmid that must be transformed into Sure cells. The larger pieces used in the last ligation allow for better ligation efficiency and are easier to transform into the low efficiency Sure cells. HEK 293 cells are routinely used to test activity of DNA vector preparations, and were chosen to study the possible interactions between normal and mutant monomers of PAH. Calcium phosphate transient transfections were performed with various ratios of vector DNA, a cell lysate obtained a fter 48 to 72 hours post transfection, and used in the spectrophotometric PAH assay. All co transfection experiments performed together were normalized in terms of total DNA transfected with the p21 newhp plasmid which

PAGE 85

72 contains the same CB promoter as the mPAH plasmids. pTR UF11 was also transfected to visually monitor transfection efficiency by examining GFP expression in the cells prior to harvest. Both CB mPAH and CB mPAH F263S were tested for activity or protein production with increased DNA transfecte d in the cells, without normalization between transfections. This was done in part to determine what amount of CB mPAH DNA transfected would result in activity levels that could increase and decrease in a detectable range between each transfection. Both ac tivity and protein expression increased in an almost linear fashion when increased amounts of DNA were transfected into the HEK 293 cells ( Figure 4 5). The series of mPAH F263S transfections was analyzed by western blotting (Figure 4 5 panel A). The protei n amounts increased from 5 to 15 g and show that the F263S monomer is stable in this transient expression system. The mPAH transfections were analyzed by activity assay ( Figure 4 5 panel B). The amount of activity from 5 g per well to 10 g per well almo st tripled while the 15 g transfections were approximately 1.5 times more active than the 10 g transfections as expected. The 3 fold increase in activity from 5 g to 10 g is not completely unexpected since at 10 g more cells could have been transfecte d with multiple copies of CB mPAH thus producing a larger number of stable tetramers and increasing the activity by more than 2 fold. From 10 g to 15 g, the cells are more evenly transfected and the increase in activity follows the increase in DNA. Mix ed CB mPAH and CB mPAH F263S transfections were then performed to analyze the extent of the interaction between the two proteins in this system. For one half of the transfections, mPAH was held constant and mPAH F263S was increased relative

PAGE 86

73 to the normal v ector. For the second half, mPAH F263S was held constant and increased amounts of mPAH were co transfected in the cells. The results are presented relative to an mPAH only transfection (with total DNA normalized with p21 newhp to the highest amount of DNA transfected in the experiment) ( Figure 4 6). Averages of a minimum of 3 transfections with standard deviations are shown for all data sets. The results indicate that when both mutant and wild type monomers are present in the same cell PAH activity is reduc ed. At a one to one ratio, the PAH activity is reduced by half and this remains so even with increased amounts of null mPAH F263S. Increased mPAH F263S was expected to have a stronger effect on PAH activity; the lack of further decrease in activity may be explained by both the transient assay and details of subunit association. Turnover of the protein may not be as efficient in the saturated cells, and accumulation of functional tetramers would prevent further decrease in activity. Increased mPAH versus a c onstant DNA amount of mPAH F263S led to less than a linear increase in activity and further shows that the mutant and normal mPAH monomers interact in a dominant negative fashion. One set of samples from the mixed transfections was analyzed by native poly acrylamide gel electrophoresis and western blotting ( Figure 4 7). In native gel electrophoresis no SDS is included in running buffers or in the sample buffers. The cell lysate samples shown in the figure, mPAH:mPAH F263S and 2mPAH:mPAH F263S were run next to a cell lysate from a transfection with CB mPAH WPRE, and a lysate from CB mPAH ex13 WPRE. The later construct has exon 13 deleted from the cDNA, the region coding for the tetramerization loop, thus preventing the protein from forming tetramers. None o f the mixed transfections showed a change in oligomerization pattern as

PAGE 87

74 c om pa r e d t o t he m P A H W P R E t r a ns f e c t i on, a nd a l l t hr e e ha ve a di f f e r e nt pa t t e r n t ha n t he m P A H e x13 W P R E s a m pl e w hi c h i ndi c a t e s t he pos i t i on of di m e r s a nd p r e s um a bl y m onom e r s on t he ge l T he de c r e a s e s i n a c t i vi t y f r om t he m i xe d t r a ns f e c t i ons a r e due t o t he i nt e r a c t i on o f t he d i f f e r e nt m onom e r s w hi l e f or m i ng di m e r s a nd t e t r a m e r s a nd not t o i nc r e a s e d t ur nove r or s e ve r e c ha nge s i n ol i gom e r i z a t i on pa t t e r ns D i s c u s s i on M a l e P ah e n u 2 m i c e w e r e c ur e d o f hype r phe nyl a l a ni ne m i a w i t h 3x10 1 0 I U ( 3x10 1 2 vg) of r A A V 2 C B m P A H W hi l e t hi s i s c ons i s t e nt w i t h r e c e nt l y publ i s he d P K U s t udi e s t he m i ni m um e f f e c t i ve dos e i s hi gh w he n c om pa r e d t o ot he r r A A V us e s 6 9 7 0 P or t a l ve i n de l i ve r y of 4x10 9 I U of C B hA A T t o f e m a l e C 57 B l / J 6 m i c e r e s ul t e d i n s us t a i ne d t he r a pe ut i c l e ve l s of hum a n # 1 a nt i t r yps i n a nd i n a he m ophi l i a B m ous e m ode l a n r A A V 2 ve c t or c a r r y i ng hum a n F a c t or I X w a s t he r a pe ut i c a t 6. 3x10 1 0 ve c t o r ge nom e s 1 2 1 1 2 2 F ou r t o e i ght f ol d m or e r A A V 2 w a s ne e de d t o c ur e H P A i n m a l e m i c e a s c om pa r e d t o bot h of t he s e s t udi e s e ve n t hough C B hA A T i s t he s our c e of ve c t or s e que nc e s us e d t o c ons t r uc t C B m P A H W e hyp ot he s i z e d t ha t f or t he t e t r a m e r i c P A H e nz ym e dom i na nt ne ga t i ve i nt e r f e r e nc e be t w e e n e ndoge nous a nd r A A V de r i ve d p r ot e i n w a s di m i ni s hi ng t he e f f e c t i ve ne s s of t h e ge ne t he r a py, a nd t h i s pos s i bi l i t y w a s c onf i r m e d w he n w e f ound t ha t P ah e n u 2 m i c e ha ve 42 % o f no r m a l l i ve r P A H a m ount s T he di f f e r e nc e be t w e e n P A H pr ot e i n l e ve l s a nd P A H a c t i vi t y i n t he he t e r oz ygot e m i c e f u r t he r s ugge s t s t ha t a n i nt e r a c t i on be t w e e n t he t w o m onom e r s a f f e c t s P A H a c t i vi t y. T o c onf i r m t he hypot he s i s w e pe r f o r m e d m i xe d v e c t or c e l l t r a ns f e c t i on e xpe r i m e nt s I f one m ode l s t he pos s i bl e i nt e r a c t i on s of t he m ono m e r s ba s e d on t he a s s um pt i on t ha t t he e f f e c t be t w e e n t he m onom e r s oc c ur s a t t he di m e r l e ve l t he r e s ul t s of

PAGE 88

75 t he m i xe d t r a ns f e c t i on e xpe r i m e nt s a gr e e w i t h t he s t a t i s t i c a l pr e di c t i ons F or e xa m pl e a t a 1: 1 r a t i o of C B m P A H a nd C B m P A H F 263S of di m e r s w oul d be f u l l y w i l d t ype w oul d be m i xe d, a nd w oul d be m ut a nt I f t he a s s um pt i on i s m a d e t ha t a m i xe d di m e r m i ght ha ve be t w e e n z e r o a nd f ul l a c t i vi t y, t he obs e r va t i on of 62% of no r m a l a c t i vi t y s ugge s t s t ha t m i xe d di m e r s a r e a c t i ve a t a bout 75 % of w i l d t ype di m e r a c t i vi t y. A t t he 1: 2 t r a ns f e c t i on r a t i o, onl y 11% o f di m e r s a r e w i l d t yp e a nd 4 4% a r e m i xe d. T hi s p r e di c t s P A H a c t i vi t y s houl d be a bout 45% of f ul l a c t i vi t y, c l os e t o t he obs e r ve d 52% A t t he hi ghe r r a t i o of 1: 3, t he r e s ul t s f e l l out s i de of t he p r e di c t e d P A H a c t i vi t y r a nge ( pr oba bl y due t o s a t ur a t i on o f t he c e l l c ul t ur e s ys t e m or t u r no ve r of m i s s e ns e pr ot e i n) but i m por t a nt l y, w e r e s t i l l l ow e r t ha n nor m a l T he c e l l c ul t ur e m ode l da t a c on f i r m e d our hypot he s i s t ha t i nt e r a c t i on be t w e e n nor m a l a nd m u t a t e d m onom e r s l e a ds t o r e duc e d P A H a c t i vi t y t hus i nc r e a s i ng t he r A A V dos e s ne e de d t o r e du c e H P A i n m a l e m i c e F e m a l e m i c e ha ve s e r um P he l e ve l s 1. 5 t i m e s hi gh e r t ha n m a l e s O t he r s t udi e s ha ve s ugge s t e d r A A V 2 D N A i s r e t a i ne d a t a bout 7 f ol d hi ghe r l e ve l s i n m a l e s t ha n i n f e m a l e s a l t hough t hi s m a y de pe nd on ve c t or dos e 1 2 3 B a s e d on t he s e num be r s t e n t o f our t e e n f ol d m or e ve c t or m a y be ne e de d t o c ur e P ah e n u 2 f e m a l e s H ow e ve r t he f e m a l e s w e r e not c or r e c t e d a t a dos e 20 f ol d h i ghe r t ha n i n t he m a l e s s ugge s t i ng t ha t a ddi t i ona l m e c ha ni s m s m a y c a us e t he obs e r ve d di f f e r e nc e i n t he t he r a py r e s pons e M ul t i pl e s t udi e s a r e i n pr og r e s s t o a t t e m pt t o e l uc i da t e t he m a l e a nd f e m a l e di m o r phi s m i n t he r e s pons e t o ge ne t he r a py. W hi l e t hi s w i l l be ke y t ow a r ds c u r i n g m a t e r na l P K U s yndr om e i n t he m i c e a nd pot e nt i a l l y hum a ns t hi s s t udy c onc e nt r a t e d on r e duc i ng ove r a l l ne e de d ve c t or dos e s t o c ur e H P A by t a r ge t i ng t he dom i na nt ne ga t i ve i n t e r f e r e nc e

PAGE 89

76 F i gur e 4 1 r A A V ve c t or m a ps A a nd B s how t he f ul l pl a s m i d m a ps C a nd D s how t he pa c ka ge d D N A A a nd C : C B m P A H B a nd D : C B m P A H W P R E

PAGE 90

77 F i gur e 4 2 S e r um phe nyl a l a ni ne l e ve l s a f t e r ge ne t he r a py w i r h r A A V 2. M a l e m i c e t r e a t e d w i t h 3 00x10 1 0 I U C B m P A H ha d no r m a l p he nyl a l a ni ne l e ve l s 2 w e e ks a f t e r t r e a t m e nt S i m i l a r r e s ul t s w e r e ob t a i ne d w i t h 1 30x10 1 0 I U C B m P A H W P R E F e m a l e m i c e r e s ponde d m i l dl y t o a 3. 00x10 1 1 I U C B m P A H W P R E

PAGE 91

78 F i gur e 4 3 P A H a m ount s i n m ous e l i ve r A l l r e s ul t s a r e s how n r e l a t i ve t o w i l d t ype a m ount s m R N A a ve r a ge s + / s t a nda r d e r r or N = 8, N = 7, N = 8. P r o t e i n a ve r a ge s + / s t a nda r d de vi a t i on, N = 13, N = 12, N = 1 2 r e s pe c t i ve l y. A c t i vi t y a ve r a ge s + / s t a nda r d de vi a t i on, N = 9, N = 8, a nd N = 13.

PAGE 92

79 F i gur e 4 4 C l oni ng s t r a t e gy f or c ons t r uc t i on o f C B m P A H F 2 63S P C R m ut a ge ne s i s w a s us e d t o c r e a t e t he ne c e s s a r y ba s e c ha nge s t o m a ke m P A H F 263S T he P C R pr oduc t a f t e r ge l pur i f i c a t i on w a s s ubc l one d i nt o p G E M T m P A H T he f ul l ge ne m P A H F 263S w a s c l one d i nt o t he C B ve c t or a f t e r a c or r e c t s e que nc e w a s obt a i ne d.

PAGE 93

80 F i gur e 4 5 T e s t t r a ns f e c t i ons w i t h C B m P A H a nd C B m P A H F 263S A C B m P A H F 263S s e r i a l t r a ns f e c t i ons a na l yz e d by W e s t e r n bl ot t i ng s how i nc r e a s e d P A H s i gna l w he n t ot a l D N A t r a ns f e c t e d i s i nc r e a s e d. B C B m P A H s e r i a l t r a ns f e c t i ons a na l yz e d by a c t i vi t y a s s a y, r e l a t i ve i n c r e a s e s of t r a ns f e c t e d D N A a m ount s a r e i ndi c a t e d. A l t hough not qui t e l i ne a r t he a c t i vi t y doe s i nc r e a s e a s m or e m P A H w a s t r a ns f e c t e d.

PAGE 94

81 F i gur e 4 6 M i xe d t r a ns i e nt t r a ns f e c t i on r e s ul t s C ot r a ns f e c t i o ns of C B m P A H a nd C B m P A H F 263S w e r e pe r f o r m e d a nd t he a c t i vi t y a s s a y r e s ul t s a r e s how n. R a t i os i n t he f i r s t l i ne of t he da t a t a bl e a r e m ol a r r a t i os o f C B m P A H : C B m P A H F 263S

PAGE 95

82 F i gur e 4 7 W e s t e r n bl ot of na t i ve P A G E w i t h m i xe d t r a ns f e c t i on s a m pl e s L a ne 1: C B m P A H de l t a e x13 W P R E L a ne 2: C B m P A H W P R E L a ne 3: C B m P A H : C B m P A H F 263S L a ne 4: 2C B m P A H : C B m P A H F 263S

PAGE 96

83 C H A P T E R 5 D E S I G N I N G A H A M M E R H E A D R I B O Z Y M E A G A I N S T P H E N Y L A L A N I N E H Y D R O X Y L A S E I n or de r t o pr e ve nt t he dom i na nt ne ga t i ve i nt e r f e r e nc e be t w e e n nor m a l a nd m u t a t e d P A H s ubuni t s a s de s c r i be d i n C ha pt e r 4, t w o ha m m e r he a d r i boz ym e s w e r e de s i gne d t o t a r ge t e ndoge no us m P A H T hi s c ha pt e r pr e s e nt s t he i n v i t r o t e s t s pe r f or m e d w i t h t he s e r i boz ym e s t he c l oni ng of a r e c om bi na nt A A V ve c t or f o r t he e xpr e s s i on of t he s e l e c t e d r i boz ym e i n v i v o a nd c e l l c ul t ur e e xpe r i m e nt s us i ng t he r i boz ym e t o de m ons t r a t e dom i na nt ne ga t i ve i nt e r f e r e nc e H am m e r h e ad R i b oz y m e D e s i gn f or m P A H T he m ous e P A H c D N A w a s s e a r c he d f or s ui t a bl e N U X s i t e s ( N i s a ny nuc l e ot i de a nd X i s a nyt hi ng bu t gua nos i ne ) S i nc e G U C a nd A U C ha ve be e n f ound t o be m or e a c t i ve c l e a va ge s i t e s onl y t hos e t w o c om bi na t i ons w e r e l ooke d f or i n t he c D N A 1 0 3 F or e a c h pos s i bl e c l e a va ge s i t e t he s ur r ound i ng 12 nu c l e ot i de t a r ge t a nd t he ne c e s s a r y r i boz ym e w e r e c he c ke d f o r opt i m a l f ol di ng us i ng M F O L D 1 2 4 1 2 5 O nl y t a r ge t s i t e s w i t hout s e l f bi ndi ng a nd r i boz ym e s w i t h f r e e hybr i di z i ng a r m s i n t he i r be s t c onf or m a t i ons w e r e f u r t he r c he c ke d w i t h 100 o r s o ba s e s of t he t a r ge t r e gi on f or f ol di ng T w o s i t e s w i t h c l e a va ge s i t e A U C t he c odon f o r i s ol e uc i ne w e r e s e l e c t e d c or r e s pondi ng t o pos i t i ons I 94 a nd I 209 ( F i gu r e 5 1 ) B ot h s e que nc e s f or t he 12 nuc l e ot i de t a r ge t s a nd f ul l l e ngt h r i boz ym e s 33 nuc l e ot i de s w e r e o r de r e d a s R N A ol i gos f r om D ha r m a c on. I n V i t r o R i b oz y m e T e s t s T he f i r s t t e s t f or r i boz ym e a c t i vi t y i s a t i m e c ou r s e a na l ys i s t o m e a s ur e t he c l e a va ge r a t e of t he r i boz ym e a ga i ns t i t s t a r ge t T h i s i s done w i t h e xc e s s t a r ge t a nd w i t h a hi gh

PAGE 97

84 concentration of magnesium, 20mM, to allow for maximal ribozyme folding and stability. Based on protocols developed by Fritz et al. (2002), each target was end labeled with $ [ 32 P] ATP. 111 Ribozyme and target were mixed in a 10:1 target to ribozyme ratio for time course analyses and samples were taken at various time points The samples were electrophoresed on 8 M urea, 8% acrylamide, 1 X TBE sequencing gels and analyzed with a PhosphorImager (Molecular Dynamics, Sunnyvale CA). One of the two ribozymes, RzI209, was found to be very active, with 70% of the target cleaved by 4 minutes ( Figure 5 2). Further experiments were done with that particular ribozyme only, since ribozyme I94 was not as active. A second time course of cleavage reactions was performed with RzI209 at 5 mM MgCl 2 in order to simulate a more physiological magn esium concentration and with the same 10:1 ratio of target to ribozyme. The ribozyme was still very active: fifty percent of the target was cleaved by 4 minutes ( Figure 5 3). Kinetic properties of the ribozyme were determined in vitro at 5 mM MgCl 2 Ten d uplicate reactions were set up with increasing target to ribozyme ratios from 0:1 to 1000:1. Each reaction was allowed to go for 1 minute, where on the previous time course it was found that 10 to 20% of the target was cleaved. A saturation curve was gener ated after running the samples on a gel and analyzing with the PhosphorImager ( Figure 5 4A). The kinetic parameters of the ribozyme were determined from the equation of the line on the Lineweaver Burke plot (Figure 5 4 B). The ribozyme could catalyze about 41 reactions per minute (Table 5 1). A last in vitro experiment was meant to test RzI209s ability to cleave the full length target as opposed to the short target that had been ordered from Dharmacon. Using

PAGE 98

85 the pGEM T mPAH construct, an RNA, correspondin g to the full length mRNA, was transcribed with T7 polymerase. The transcribed product was incubated at 20 mM MgCl 2 with excess ribozyme at 37 C. Samples taken at one and two hours were run on a 5% PAGE 8 M Urea gel, and both cleavage products, 842 and 660 bases, were detected on the gel ( Figure 5 5). Ribozyme I209 is capable of cleaving full length PAH mRNA in an in vitro reaction. Table 5 1 Ribozyme I209 kinetic properties. V max 625.00 nM/min K m 12104.38 nM k cat 41.67 min 1 Cloning RzI209 into p21 n hp and Designing a Ribozyme Resistant mPAH The chosen rAAV vector for expressing the ribozyme, p21 newhp is based on pTR UF12. It contains the hybrid CMV enhancer and chicken actin promoter that is closely related to the hybrid promoter contained in the CB mPAH plasmids. The hCMV enhancer in p21 newhp is 381 nucleotides long of which 361 nucleotides from the 3 end are identical to the 3 end of the hCMV enhancer on CB mPAH which is 535 nucleotides in total. The p21 newhp plasmid is designed to express th e ribozyme from the CB promoter and follows the hammerhead ribozyme with a hybrid hairpin ribozyme to evenly cleave the 3 ends of the transcripts to allow the ribozyme maximum ability to reach its target mRNA. 125 The ribozyme is followed by an SV40 polyA, 187 nucleotides that is identical to the 5 end of the SV40 polyA in CB mPAH which is 222 nucleotides long. The ribozyme vector also includes a neomycin cassette driven by the PYF 441 enhancer and an HSV thymidine kin ase promoter followed by a bovine growth hormone polyA (BGHpA) signal that is identical to the BGHpA on the CB mPAH WPRE plasmid, both 208 nucleotides long.

PAGE 99

86 DNA oligonucleotides corresponding to ribozyme I209 sense and antisense sequences with added restr iction sites Spe I and Hind III were ordered from Sigma Genosys. The oligos were purified on a polyacrylamide gel, and subsequently annealed and ligated into the p21 newhp rAAV vector, renamed CB RzI209 ( Figure 5 6). Sure Cells (Stratagene) were used for b acterial transformations. All clones were sequenced at the Sequencing Core and screened for ITR retention. Since the vector derived mRNA would also be cleaved by the ribozyme, a ribozyme resistant construct of mouse PAH was designed by changing the cleavi ng and hybridization sequences targeted by the ribozyme. Directed mutagenesis of mPAH was achieved using synthetic DNA oligonucleotides as PCR primers ( Table 2 3). The 5 primer contained the desired base changes, which were silent mutations ( Figure 5 7). A 322 base pair PCR product was gel purified and ligated into pGEM % T (Promega). After bacterial transformations into XL1 Blue MRF cells (Stratagene) and sequencing of the obtained clones, the fragment was cut from pGEM T, moved to pGEM T mPAH plasmid. Th e resistant mPAH gene was named mPAH Hd. The new cDNA was cloned into the CB backbone and CB WPRE backbone. Bacterial transformations into Sure cells was followed by sequencing of clones obtained. Large DNA preparations were performed with Qiagens Plasmid Giga Kit. Ribozyme I209 Is Active In Vivo The mouse PAH and the ribozyme constructs utilize the CMV immediate early enhancer, the chicken actin promoter (with the first intron) and the rabbit globin exon as the splice site acceptor. HEK 293 cells were transiently transfected with the purified vector DNA constructs using calcium phosphate. The promoter strengths being

PAGE 100

87 equal, the plasmids are thus transfected in relative amounts using micrograms of DNA as a measure. This can be translated into molar rati os since the plasmids are less than one hundred eighty base pair different in size. Various combinations of the vectors were used while keeping the total DNA amount in each assay constant. After 48 72 hours approximately 3 X 10 6 cells were harvested, homo genized and a clear extract was obtained by centrifugation. The extracts are used immediately in the spectrophotometric PAH activity assay and a Lowry protein concentration assay. Ribozyme I209 was first checked for expression in HEK 293 cells. Ten microg rams of CB RzI209 was transfected into the cells and harvested with TRIzol for RNA extraction. Using the 5 sequencing primer for p21 newhp at position 1856 and the antisense oligonucleotide of RzI209, a reverse transcription reaction was performed followe d by PCR amplification with Promegas AccessQuick TM RT PCR kit. The ribozyme was easily detected in the sample ( Figure 5 8), thus it is expressed and relatively stable in the cells. The samples were electrophoresed on a 2% agarose 1 X TAE gel, and the ribo zyme product, while clearly visible, was not well separated from primer to primer amplification products so subsequent RT PCR reaction samples were thus electrophorsed on 15% polyacrylamide 1X TBE gels. The ribozyme was then tested for its ability to clea ve mPAH and reduce the total potential activity in the transfections. Combinations of CB mPAH and CB RzI209 were transfected into cells and assayed for activity as compared to a no ribozyme transfection (normalized for the maximum amount of DNA transfected in the experimental set with p21 newhp). Ratios of 1 to 4, 1 to 5 and 1 to 10 were tested. Phenylalanine hydroxylase activity was reduced to 70% at 1:4, 40% at 1:5 and 20% at 1:10 ( Figure 5 9). These ratios

PAGE 101

88 are consistent with early ribozyme studies that had predicted a need for 10 fold excess of ribozyme to target for inactivation of gene function. 126 Moreover in the long trancript cleavage reaction at a 4 to 1 ratio of ribozyme to target, the target was still present after 2 hours consistent with the need of a 10:1 excess of ribozyme to fully reduce PAH activity in vivo When RzI209 was similarly tested against C B mPAH Hd, the ribozyme was ineffective in reducing PAH activity ( Figure 5 9). 127 Ribozyme I209 Can Overcome Dominant Negative Interference Since CB mPAH Hd encod es RNA that was shown to be resistant to the RzI209, the mixed transfection experiments presented in Chapter 4 were repeated with CB mPAH Hd instead of CB mPAH. CB RzI209 was added to the mixed transfections of CB mPAH Hd and CB mPAH F263S to test its abil ity in preventing the dominant negative effect produced by the monomers interactions by selectively cleaving mPAH F263S and reducing the amount of mutant monomer produced in the cells. Ratios of 1 to 1 and 1 to 2 CB mPAH to CB mPAH F263S were used in thes e experiments with added CB RzI209 at an equal amount to CB mPAH Hd. The results show that RzI209 can reverse the dominant negative effect produced by the interaction of normal and mutant monomer ( Figure 5 10). The effect of the ribozyme at this single dos e is greater when less CB mPAH F263S is present. While a ratio of 1:10 was needed to lower PAH activity to 20% or normal, a ratio of 1:1 was sufficient here to restore PAH activity. As hypothesized in the first transfection tests, a small accumulation of f unctional tetramers in this imperfect system is probably enough to regain much activity, so a 1:1 ratio of mPAH Hd and ribozyme is enough to allow the accumulation of functional tetramers leading to the gain in activity.

PAGE 102

89 To verify that the gain in activit y in the ribozyme transfected samples in figure 5 10 is the specific result of RzI209 activity, two null ribozymes were designed and cloned into p21 newhp. Both null ribozymes have a G to C base change at position 8, this base is required for catalysis thu s both ribozymes should be unable to catalyze a cleavage reaction (Figure 5 11). 126 The second null ribozyme, N ull 2, has two base pair changes in the hybridizing arms of the ribozyme to prevent it from properly binding the target mPAH and thus preventing any antisense effect ( Figure 5 11 panel B). The cloning procedure for the null ribozymes was done exactly as de scribed for RzI209. Both null ribozymes were tested in cell transfections. The co transfections of CB mPAH and CB mPAH F263S were repeated and each null ribozyme was added to the combination in the same DNA amount. The activity of the cell lysates when e ither null ribozyme is added is around 60% of an mPAH only sample ( Figure 5 12). While this is somewhat higher in activity than the mPAH: mPAH F263S transfection, 50%, a mild antisense effect may be possible even though Null 2 is not supposed to bind to mP AH F263S. Nonetheless, this shows that the large gain in activity seen when RzI209 is added to the double transfection is specific to the ribozymes activity. Discussion Ribozyme I209 was found to be active in mammalian cells, and capable of specifically cleaving its target. Specificity of ribozyme activity has been shown in a number of studies. 105,128 The construction of the resistant mPAH Hd was relatively simple, and 3 base changes were sufficient to ensure cleavage specificity as detected with the PAH activity assay. Creating an endogenously targeted ribozyme and a resistant cDNA for the treatment of genetic diseases can be done with simple molecular biology methods. The in vitro methods used in this chapter successfully selected an active

PAGE 103

90 r i boz ym e W hi l e R N A ol i gos a r e e xpe ns i ve t he i n v i t r o t e s t s a r e m or e s t r a i gh t f or w a r d a nd t i m e s a vi ng t ha n c l oni ng a nd c e l l c ul t ur e w o r k m a ki ng i t w or t hw hi l e t o t e s t a s e r i e s of r i boz ym e s i n v i t r o be f or e i nve s t i ng m uc h t i m e a nd e f f or t i n i n v i v o s t udi e s W he n t he r i bo z ym e ve c t or w a s a dde d t o t he m i xe d ve c t or t r a ns f e c t i ons a r e ve r s a l of t he obs e r ve d dom i na nt ne ga t i ve i nt e r f e r e nc e a n d a ga i n i n P A H a c t i vi t y oc c ur r e d U s i ng t he nul l r i boz ym e s i n t he s a m e s e t t i ng s how e d t ha t t he e f f e c t i s s pe c i f c t o R z I 209. T hus t he r i bo z ym e c a n be t e s t e d i n c om bi na t i on w i t h t he r e s i s t a nt m P A H ge ne i n t he a ni m a l m ode l t o e va l ua t e t he a ppr oa c h i n a t r ue i n v i v o s e t t i ng. N ot on l y di d t he s e e xpe r i m e nt s s how t he e f f e c t i ve ne s s of t he r i boz ym e i n c ul t ur e d c e l l s t he y de f i ni t i ve l y de m ons t r a t e t h a t dom i na nt ne ga t i ve i nt e r f e r e nc e w a s t he c a us e of t he r e duc t i on of P A H a c t i vi t y s e e n i n t he m i xe d t r a ns f e c t i ons w i t h t he F 2 63S m ut a nt p r ot e i n.

PAGE 104

91 F i gur e 5 1 M ous e P A H r i boz ym e de s i gns R i boz ym e s a r e a l i g ne d t o t he i r t a r ge t s w i t h c l e a va ge t a r ge t s i t e i n r e d ( A a nd B ) O pt i m a l f ol di ng c onf or m a t i ons o f t he r i boz ym e s a s de t e r m i ne d by M F O L D G C bonds a r e i ndi c a t e d i n r e d, A U i n bl ue ( C a nd D ) A C R i boz ym e I 94 B D R i boz ym e I 209.

PAGE 105

92 F i gur e 5 2 T i m e C our s e a na l ys e s w i t h r i boz ym e s a t 20m M M gC l 2 T i m e i s i ndi c a t e d i n m i nut e s A R i boz ym e I 94 f a i l e d t o e f f e c t i ve l y c l e a ve i t s t a r ge t B R i boz ym e I 209 c l e a ve d 43% of i t s t a r ge t by 1 m i nut e

PAGE 106

93 F i gur e 5 3 T i m e C our s e a na l ys i s of r i boz ym e I 209 a t 5m M M gC l 2 A G e l of s a m pl e s f r om t i m e c our s e t i m e i s i n m i nut e s B F r a c t i on o f t a r ge t c l e a ve d pl ot t e d ove r t i m e F i f t y pe r c e nt of t he t a r ge t w a s c l e a ve d by 4 m i nut e s

PAGE 107

94 F i gur e 5 4 R i boz ym e I 209 ki ne t i c a na l ys i s A S a t u r a t i on c ur ve B L i ne w e a ve r B ur ke P l ot ge ne r a t e d f r om A

PAGE 108

95 F i gur e 5 5 L ong t a r ge t c l e a va ge a na l ys i s T i m e i s i ndi c a t e d i n m i nut e s B ot h c l e a va ge pr oduc t s w e r e de t e c t e d a t 1 a nd 2 hou r s

PAGE 109

96 F i gur e 5 6 C B R z I 209. T he p r om ot e r i s t he s a m e a s t ha t f or C B m P A H T he r i boz ym e i s f ol l ow e d by a n i nt e r na l l y pr oc e s s i ng ha i r pi n r i boz ym e

PAGE 110

97 F i gur e 5 7 C l oni ng s t r a t e gy f or t he c ons t r uc t i on of a r i boz ym e r e s i s t a nt m P A H c l one P C R m ut a ge ne s i s w a s pe r f or m e d t o s e l e c t i ve l y c h a nge ba s e s i n or de r t o r e nde r m P A H r e s i s t a nt t o R z I 209. A f t e r ge l pu r i f i c a t i on, t he P C R pr oduc t w a s s ubc l one d i nt o pG E M T m P A H T he f ul l l e ngt h m ut a g e ni z e d c D N A m P A H H d, w a s c l one d i nt o t he C B ve c t or

PAGE 111

98 F i gur e 5 8 C B R z I 209 s t a bl y e xpr e s s e s R z I 209 i n 293 c e l l s T e n m i c r og r a m s of C B R z I 209 D N A w a s t r a ns f e c t e d i nt o 293 c e l l s a nd t h e c e l l s w e r e c ol l e c t e d us i ng T R I z ol f o r R N A e xt r a c t i ons A f t e r a n R T P C R r e a c t i on, t he r i boz ym e i s s how n t o be s t a bl y e xpr e s s e d i n t he c e l l s a s c om pa r e d t o a c t i n l e ve l s N o r e ve r s e t r a ns c r i pt a s e c ont r ol r e a c t i ons w e r e done f or bot h s e t s of pr i m e r s

PAGE 112

99 F i gur e 5 9 C B m P A H H d i s r e s i s t a nt t o t he r i boz ym e T r a ns f e c t i ons of i nc r e a s i ng r a t i os of C B R z I 209 t o C B m P A H s how de c r e a s e d P A H a c t i vi t y i n t he s pe c t r ophot om e t r i c a s s a y. S i m i l a r r a t i os of C B R z I 209 t r a ns f e c t e d w i t h C B m P A H H d do not s how a ny de c r e a s e s i n P A H a c t i vi t y.

PAGE 113

100 F i gur e 5 10 R i boz ym e I 209 s uc c e s s f ul l y pr e ve nt s dom i na nt ne ga t i ve i nt e r f e r e nc e i n 293 c e l l s W he n C B R z I 209 i s c o t r a ns f e c t e d w i t h a 1: 1 r a t i o of C B m P A H a nd C B m P A H F 263S t he P A H a c t i vi t y r e m a i ns a t ne a r nor m a l l e ve l s T he P A H a c t i vi t y i s a l s o m i l dl y hi ghe r i n t h e l ys a t e s of 1: 2 r a t i os of m P A H t o m P A H F 26 3S t r a ns f e c t i ons t ha t i nc l ude t he r i boz ym e pl a s m i d.

PAGE 114

101 F i gur e 5 11 N ul l r i boz ym e de s i gns A N ul l 1 r i boz ym e B N u l l 2 r i boz ym e I n r e d i s t he t a r ge t s i t e o f t he r i boz ym e s B ol d t e xt i ndi c a t e s t he nuc l e ot i de c ha nge s m a de t o t he s e que nc e of R z I 209 T he c a t a l yt i c G h a s be e n c ha nge d t o a C i n bot h N ul l 1 a nd 2. N ul l 2 ha s e xt r a ba s e c ha nge s i n s t e m s I a nd I I I

PAGE 115

102 F i gur e 5 12 T he nul l r i boz ym e s do not pr e ve nt dom i na nt ne ga t i ve i nt e r f e r e nc e N e i t he r nul l r i boz ym e s w e r e a bl e t o r e ve r s e t he do m i na nt ne ga t i ve i nt e r a c t i on be t w e e n m P A H a nd m P A H F 263S i n c e l l t r a ns f e c t i ons

PAGE 116

103 C H A P T E R 6 G E N E T H E R A P Y F O R P H E N Y L K E T O N U R I A R i boz ym e I 209 w a s f ound t o be a c t i ve i n v i v o a nd a bl e t o pr e ve nt do m i na nt ne ga t i ve i nt e r f e r e nc e F or t he a ni m a l e xpe r i m e nt s C B m P A H H d W P R E w a s us e d s i nc e t he W P R E e na bl e s l ow e r ve c t or dos e s t o c ur e H P A a s c om pa r e d t o t he ve c t or w i t hou t t he s t a bi l i z i ng e l e m e nt T he V e c t or C or e pa c ka ge d bot h C B m P A H H d W P R E a nd C B R z I 209 ( S a l I ) i nt o r A A V 2, t he A A V s e r ot ype t ha t w e ha ve us e d s uc c e s s f ul l y i n m a l e m i c e T he f i r s t pa r t o f t he e xpe r i m e nt c ons i s t e d of de t e r m i ni ng a dos e r e s pons e c ur ve f o r t he r A A V 2 C B m P A H H d W P R E ve c t or O nc e de t e r m i ne d, a n i ne f f e c t i ve dos e o f r A A V 2 C B m P A H H d W P R E w oul d be c om bi ne d w i t h i nc r e a s i ng dos e s of r A A V 2 C B R z I 209 ( S a l I ) t o t e s t t he a bi l i t y of t he r i boz ym e i n v i v o t o e nha nc e t he e f f e c t o f t he ge ne t he r a py ve c t or by l ow e r i ng t he e ndoge nous m R N A a m ount s t hus e ndoge nous pr ot e i n s ynt he s i s a nd t he dom i na nt ne ga t i ve i nt e r f e r e nc e D os e R e s p on s e i n B T B R P ah e n u 2 M al e s t o r A A V 2 C B m P A H H d WP R E A t ot a l of t w e l ve c e l l f a c t or i e s w e r e t r a ns f e c t e d w i t h t he ve c t or D N A c om bi ne d i nt o t w o 1m L t ube s S i nc e t he t i t e r s w e r e s i m i l a r b e t w e e n t he t w o ba t c he s of vi r us t he y w e r e m i xe d t oge t he r a nd t he t i t e r s a ve r a ge d ( T a bl e 6 1) T he vi r us s t oc k w a s br i e f l y t ha w e d be f or e us e ke pt on i c e du r i ng s ur ge r i e s a n d s t or e d a t 70 C A dul t m a l e m i c e w e r e bl e d i n t he w e e ks pr i or t o s ur ge r y t o obt a i n b a s e l i ne s e r um P he l e ve l s S ur ge r i e s w e r e pe r f or m e d a s de s c r i be d i n c ha pt e r s 2 a nd 3. T he dos e s s e l e c t e d w e r e ba s e d on pr e vi ous ge ne t he r a py r e s ul t s O ne a ni m a l i nj e c t e d w i t h a h i gh dos e 4. 00x10 1 0 i nf e c t i ous uni t s ( I U ) w a s a nt i c i pa t e d t o be c ur e d of hype r phe nyl a l a ni ne m i a T he ne xt dos e

PAGE 117

104 1.33x10 10 IU, was also expected to be fully effective and was injected into two animals. One third of that dose was injected into two more animals, 4.28x10 9 IU, and the lowest dose, 1.43x10 9 IU was injected into the two final animals. One mouse received 0.3 mL of LRS as a no vector control animal. One week after surgery, the animals were bled, and this was repeated every week for six weeks, then every two weeks for another month, at which point the mice were bled on 4 to 6 week intervals until they died, or were sacrificed at week 36 after surgery. The doses injected behaved according to our predictions ( Figure 6 1). Both 4.00x10 10 IU and 1.33x10 10 IU lowered serum Phe levels to the normal range, 4.28x10 9 IU lowered serum Phe in the two animals to between 0.60 to 0.80 mM, and 1.43x10 9 IU had no detectable effect on serum Phe levels. Based on these results, we had a dose response curve with a known minim um effective dose, a partially effective dose, and a threshold ineffective dose of rAAV2 CB mPAH Hd WPRE in male mice. Table 6 1 rAAV2 CB mPAH Hd WPRE vector titers. Reference number Particle count (vector genomes) Infectious units 1703 1708 3.44x10 13 4.00x10 11 1709 1714 3.67x10 13 5.50x10 11 Average 3.56x10 13 4.75x10 11 At week 24 after gene therapy, a phenylalanine loading experiment was designed, similar to experiments performed by Scriver et al. in 2000. 116 Each animal still alive from the dose response study was injected subcutaneously with 0.8 mg L Phe per gram of body weight, and timed b lood samples were taken for the next 24 hours to determine the rate of phenylalanine clearance. A control adult male PKU mouse and a heterozygote male mouse were also added to this experiment. The animals were kept in standard housing with normal chow and unlimited water: their baseline Phe levels were at the same levels they had been during the past 24 weeks. The blood samples taken were 25 L

PAGE 118

105 to 30 L at each time point, taken at time 0 prior to the injection, 1.5, 3, 6, 12 and 24 hours post injection. Th is came to a maximum of 180 L of blood drawn during that period of time. The animals were allowed to recuperate for 2 weeks prior to their next scheduled bleed since the normal weekly blood sample is around 80 l. The highest phenylalanine values observe d were at 1.5 hours post injection. Each animal had a different highest serum Phe value and baseline value: the data was plotted on a relative scale from the highest value at 1.5 hours, set to 1.0 on the scale, to the baseline at 0 hour set to 0. Each time point was subsequently plotted giving a relative Phe clearance rate ( Figure 6 2A). From that data, one can clearly see that a heterozygote mouse, with 42% of normal enzyme activity, can clear the phenylalanine load in 3 to 6 hours. The control mice, both LRS and adult PKU mice, cleared the excess phenylalanine between 12 to 24 hours. The unresponsive dose, 1.43x10 9 IU was no different than the control mice. The treated animals at 4x10 10 1.33x10 10 and 4.28x10 9 IUs, which on normal daily food consumption ha ve normal or 0.60 mM serum Phe levels, cleared the excess load in 12 hours. One of the animals, at 4.00x10 10 IU, was sacrificed shortly after the challenge since it did not recuperate well after the many bleeds. Upon necropsy it was determined that the an imal most likely suffered from post renal azotemia: excess accumulation of nitrogen waste products (urea) in the blood due to kidney inefficiency. A bladder infection that caused stones or blockage prior to the loading experiment had gone undetected, and t he phenylalanine load contributed to the azotemia. The animal was sacrificed shortly thereafter since it was not eating and did not look well.

PAGE 119

106 Mice are bled in the late afternoon, at the end of their 12 hour inactivity period. For this phenylalanine chall enge, we started the experiment in the morning since many bleeds were required following the load. When the samples were assayed, we noticed that in the treated animals, the time 0 bleed was higher than their normal afternoon values ( Figure 6 2B). This was not at the time further investigated since insufficient animals were left in the experiment. With a different group of gene therapy treated animals, we have performed timed bleeds: one blood sample was obtained in the morning, and one at the normal time, in late afternoon (Table 6 2). On average, all treated animals, no matter their level of response to the treatment, had higher Phe levels in the morning by approximately 0.27 mM. The LRS animal also had higher levels in the morning by 0.33 mM, equivalent t o untreated Pah enu2 males with 0.34 mM difference. Neither heterozygote nor wild type males have significant differences in their serum Phe levels between morning and afternoon bleeds. The gene therapy animals PAH activity do not clear daily phenylalanine load immediately, but require time, perhaps up to 12 hours, to do so. Heterozygote animals with 42% of normal activity have stable phenylalanine levels throughout the day. Table 6 2 Serum phenylalanine levels for timed bleeds in male Pah enu2 mice. Aver age AM Phe Average PM Phe Difference Gene therapy treated mice DD a DD a 0.27 LRS control 1.53 1.20 0.33 Pah enu2 males 1.23 0.89 0.34 +/ males 0.07 0.05 0.02 +/+ males 0.13 0.12 0.01 a Dose dependent: varies for each gene therapy dose. The followin g samples were saved from all animals at the time of sacrifice: liver, kidney, lung, testes, muscle and spleen for DNA extraction; liver for RNA; and the whole body for necropsy and histologic analysis. The liver samples saved in RNA later TM were

PAGE 120

107 extracted with TRIzol Reagent according to the manufacturers protocol and used for RNase protection assays (RPA). A probe was designed to differentiate between vector derived RNA and endogenous PAH mRNA ( Figure 6 3A). Samples from three animals that died 4 days aft er vector delivery due to surgery complications were saved and analyzed first by RPA. One animal was an LRS control, one had received 4.28x10 9 IU, and one 4.00x10 10 IU of CB mPAH Hd WPRE. Both animals that had received vector were found to express the rAAV 2 derived mPAH at this early time point ( Figure 6 3B). This is consistent with the lowering of serum Phe levels observed one week after surgery in the surviving animals at the same doses. Recombinant AAV type 2 virus DNA is expressed in the liver four days after portal vein injections. All of the animals in the dose response experiment were sacrificed at 36 weeks, one at 26 weeks after the phenylalanine loading experiment, and two died at 20 weeks from undetermined causes. The RNAse protection assay detect ed vector RNA only in the animals that were sacrificed prior to 30 weeks. These animals had received 1.33x10 10 IU and 4.00x10 10 IU respectively ( Figure 6 3C). Both of these animals had responded to the therapy, thus it is consistent that vector mRNA was det ected at those time points. By the end of the experiment, starting around week 24, two of the five remaining animals serum Phe levels began to rise back towards a hyperphenylalaninemic state even though they had previously responded to the gene therapy. N one of these animals had detectable vector RNA in the extracted liver samples (Figure 6 3C). A Southern blot was then performed after DNA was extracted from the frozen liver samples. An mPAH exon 6 probe, 197 nucleotides, was used to detect vector DNA and genomic DNA ( Figure 6 4A). Twenty micrograms of DNA were run after overnight

PAGE 121

108 digestion on a 0.8% agarose 1 X TAE gel and transferred to BioRad ZetaProbe GT membrane. After washing, the membranes were exposed to Kodak BioMax MS film for 48 hours. All anima ls had detectable genomic DNA bands; a heterozygote control DNA sample, the LRS control animal and the only available 1.43x10 9 IU had no detectable vector DNA. Both 4.28x10 9 IU had light, but detectable, vector bands and all three animals at the higher dos es had easily detectable vector quantities ( Figure 6 4B). Liver samples for the 4.00x10 10 IU, both 1.33x10 10 IU, and the LRS control animals were extracted for protein in the standard homogenization buffer with added protease inhibitor cocktail (Sigma). T hese were assayed for PAH activity in the standard assay but with a larger volume of extract (100 l) than the 20 l normally used with fresh liver extracts. Only the two animals with detectable vector RNA had detectable PAH activity ( Figure 6 5). Upon pa thological examination of the livers of these animals, variable levels of changes in the hepatocytes have been found. These changes are consistent with those seen in animals from our previous studies that are suggestive of liver damage after injection with rAAV vectors, especially those that include the WPRE. The typical changes in the livers of the dose response animals were random, diffuse, to mild anisocytosis of the hepatocytes, with intranuclear cytoplasmic invaginations, and chromatin clumping which l ed to pre neoplasty or neoplasty in a number of cases. In this experiment, 3 of the 5 remaining animals at 36 weeks, the 1.43x10 9 IU mouse and both mice at 4.28x10 9 IU, had severe changes in nuclear morphology observed in the liver. The 1.33x10 10 IU animal had fewer changes than the three other animals, but these were still very significant. The LRS mouse had milder changes, but not a completely normal

PAGE 122

109 pathology. While some changes could be due to old age, as the results with the LRS mouse suggests, the sev ere changes observed in the treated animals require more study. Combining an Ineffective Dose of rAAV2 CB mPAH Hd WPRE with Increasing rAAV2 CB RzI209 ( SalI) Doses Dual vector approaches have been used to enhance the packaging capacity of recombinant AAV vectors in the muscle and in the liver. 129 133 These experiments showed that co transduction of cells by two vectors is possible, and we sought to utilize the small percentage of cells that should be co transduced by our vectors to combat the dominant negative interference. Four weeks after the beginning of the dose response study, the lowest dose used of CB mPAH Hd WPRE, 1.43x10 9 IU, was combined with increasing amounts of CB RzI209 ( SalI). One, three, six, and twelve times more than 1.43x10 9 IU of the ribozyme vector was co injected into adult male mice. A total of three animals were injected with rAAV2 CB mPAH Hd WPRE only, one was injected with the one to one ratio of CB mPAH Hd WPRE to CB RzI209 ( SalI), two at 1:3, two at 1: 6 and two were injected at 1:12. While some decreases in serum Phe levels were observed up until week 5, every mouse returned to background serum Phe levels by week 10 until week 24, the end of the experiment for the majority of the animals ( Figure 6 6). RNAse protection assays were done with liver RNA samples from these animals. No sample had detectable amounts of vector mPAH message present, which is consistent with the lack of response to the gene therapy. The density of endogenous PAH and actin bands o n the films were measured by laser densitometry to normalize all results and compare the amounts of endogenous PAH present. The LRS control mice, and the 1:0 mice all had relative PAH amounts ranging between 1.5 to 3.0 ( Figure 6 7). The 1:1

PAGE 123

110 mouse, one 1:6, and both 1:12 mice had PAH amounts that came out below 1, indicative of ribozyme activity in vivo DNA was extracted from frozen liver samples of the animals. The same Southern blot design as described in figure 6 4A was performed with these samples. The genomic DNA band was easily detectable in all samples with the exon 6 probe, and both 1:3 and both 1:12 mice had faint vector bands (Figure 6 8B). The small probe (197 nucleotides) is either not sensitive enough to detect this low dose of injected vector DNA, or the DNA was not stabilized in the hepatocytes. The CB RzI209 ( SalI) DNA was detected in both 1:3 mice, one 1:6 mouse and both 1:12 mice using the hCMV probe (Figure 6 8A and C). The 1:6 mouse and both 1:12 mice had reduced endogenous PAH mRNA leve ls as detected by the RNase protection assay in Figure 6 7. Only one of the 1:3 mice had a piece of liver saved for RNA analysis and this mouse was kept for 32 weeks after gene therapy (the second 1:3 mouse was disovered dead in its cage and only a liver p iece for DNA was saved). Although both vector bands were detectable in the Southern blots, the endogenous PAH signal was not significantly reduced in the RPA analysis. Gene Therapy with a Mildly Effective Dose of rAAV2 CB mPAH Hd WPRE and Increasing Amoun ts of rAAV2 CB RzI209 ( SalI) As soon as the animals from the previous experiment were determined unresponsive to the dual injections of CB mPAH Hd WPRE and CB RzI209 ( SalI), it was decided to attempt combining the mildly effective dose of rAAV2 CB mPAH H d WPRE with various amounts of rAAV2 CB RzI209 ( SalI). So 4.28x10 9 IU of CB mPAH Hd WPRE was co injected with CB RzI209 ( SalI) into adult male mice: one control mouse, two at 1:0, two at 1:3, and one at 1:5 ratios of the respective vectors. All animals l owered their serum Phe levels to between 0.60 mM to 0.80 mM for 24 weeks,

PAGE 124

111 the duration of the experiment ( Figure 6 9). Unfortunately no difference between any of the animals was observed, the ribozyme vector seemingly had no effect on the gene therapy. Di scussion Prior results in our lab had led us to develop an rAAV vector containing the WPRE element. This vector is two fold more effective in vivo than the CB mPAH vector. In this study we report the results of a careful dose response study for the treatme nt of PKU in male mice with two effective doses, one mildly effective dose and one ineffective dose. Even though cured, the phenylalanine loading experiment showed that the mice are far from able to handle a phenylalanine challenge. This form of therapy is thus not ready for the challenge of pregnancy in females, since upon a greater than normal dietary intake, the Phe levels are likely to rise above acceptable concentrations for a safe pregnancy outcome. The results of the RPA with the four day samples sh ow that rAAV DNA is expressed very shortly after portal vein injections. The lowest dose available at the early time point, 4.28x10 9 IU, is equivalent to 4.28x10 11 vector genomes. This means an approximate multiplicity of infection (MOI) of 4000 was delive red to the liver, assuming 1x10 8 hepatocytes per 30 gram mouse. It is very probable that such a quick onset of expression is the result of positive and negative polarity single stranded DNA annealing to form dsDNA rAAV monomers inside the same cell, and th us allow the quick expression of the delivered gene. 134 The animals were kept for 36 weeks after gene therapy but we noticed a loss of effectiveness starting around week 24, or 6 months. No samples obtained after 26 weeks had detectable vector message or liver PAH activity. Since vector DNA presence was

PAGE 125

112 c onf i r m e d by S out he r n bl ot o f l i ve r s a m pl e s a nd b ot h 1. 33x10 1 0 I U m i c e s how e qui va l e nt ve c t or D N A a m ount s w i t h one m ous e ha vi ng be e n s a c r i f i c e d a t 20 w e e ks a nd t he s e c ond a t 36 w e e ks t he l os s of e f f e c t i ve ne s s i s not a t t r i but e d t o l os s of ve c t o r D N A T hi s s e e m s unl i ke O h s s t udy i n 2004, i n w hi c h l os s of D N A e xpl a i ne d t he l os s of e f f e c t i ve ne s s i n t he r a py. 7 0 A l l o f ou r c om bi ne d e vi de nc e s ugge s t s t ha t s om e t i m e a f t e r 26 w e e k s ve c t or t r a ns c r i pt i on i s s hut of f t he ge ne t he r a py e f f e c t i s gr a dua l l y l os t a nd no P A H a c t i vi t y nor ve c t or P A H m e s s a ge c a n be de t e c t e d a t 36 w e e ks a f t e r s ur ge r y U pon pa t hol ogi c a l e xa m i na t i on, w e ha ve obs e r ve d m i l d t o s e ve r e c ha nge s i n t he l i ve r c e l l m o r phol ogy a nd a n i nc r e a s e d i nc i de nc e o f c a nc e r i n t he m i c e W P R E ha s r e c e nt l y be e n i m pl i c a t e d a s t he pos s i bl e l i nk be t w e e n i nc r e a s e d t um or i ge ne s i s a f t e r ge ne t he r a py due t o t he pr e s e nc e of pa r t i a l H bX pr ot e i n s e que nc e s i n t he e nha nc e r e l e m e nt 1 3 5 I nc r e a s e d c a r c i nom a i n a ni m a l s t r e a t e d by r A A V h a s be e n r e por t e d i n t he l i t e r a t u r e 1 3 5 1 3 6 T he m a r ke d nuc l e a r c ha nge s c oul d e xpl a i n t he l os s of t he ge ne t he r a py e f f e c t be yond 26 w e e ks but t he e xa c t m e c ha ni s m i s s t i l l unknow n a t t hi s poi nt a s i s t he e xa c t c a us e of t he s e nuc l e a r c ha nge s D ua l ve c t or a ppr oa c he s ha ve be e n us e d t o e nha nc e t he c a pa c i t y of r A A V ve c t or s W hi l e m or e s uc c e s s f ul i n m us c l e c o t r a ns duc t i on of l i ve r c e l l s by t w o s e pa r a t e ve c t or s ha s be e n s how n t o oc c ur i n 42% of t o t a l t r a ns duc e d he pa t oc yt e s a s e va l ua t e d by F I S H 1 3 7 U nf or t una t e l y t hi s t r a ns l a t e s t o onl y a bout 1% of t ot a l l i ve r he pa t oc yt e s w he n us i ng a dos e of 1x10 1 1 ve c t or ge nom e s pe r ve c t or S i nc e o t he r gr oups ha d p r e di c t e d t ha t on l y 10% of nor m a l P A H a c t i vi t y w oul d be ne e de d t o r e ve r s e hype r phe nyl a l a ni ne m i a i n t he m i c e w e de l i ve r e d bot h o f our ve c t or s i n a s i ngl e por t a l ve i n i n j e c t i on i nt o a dul t m a l e m i c e i n t he hope s t ha t a s m a l l pe r c e nt a ge o f c o t r a ns duc e d c e l l s m i ght l e a d t o a hi gh

PAGE 126

113 e nough ga i n i n P A H a c t i vi t y t o c l e a r H P A N e i t he r a n i ne f f e c t i ve dos e of C B m P A H H d W P R E ( 1. 07 x10 1 1 vg) nor a m i l dl y t he r a pe ut i c dos e ( 3. 21x10 1 1 vg ) w a s f ound t o be m or e e f f e c t i ve w he n C B R z I 209 w a s pr e s e nt i n va r i ous r a t i os U s i ng t he da t a of M i a o e t al a nd our ow n da t a w e e s t i m a t e t ha t a t t he de l i ve r e d dos e s a bout 3 10% of t he he pa t o c yt e s m a y be t r a ns duc e d. T he s m a l l pe r c e nt a ge o f c o t r a ns duc e d c e l l s i n t he l i ve r e s t i m a t e d i n a s i m i l a r m a nne r a s be t w e e n 1 4% of he pa t oc yt e s w a s pr oba bl y not s uf f i c i e nt t o ha ve a de t e c t a bl e e f f e c t on t he H P A phe not ype s i nc e bot h ve c t or s ne e d t o be e xpr e s s e d i n t he s a m e c e l l t o pr e ve nt dom i na nt ne ga t i ve i nt e r f e r e nc e P e r ha ps a l i m i t i ng f a c t or s uc h a s phe nyl a l a ni ne t r a ns por t i nt o e a c h he pa t oc yt e a l s o c ont r i but e d t o t he l a c k of s uc c e s s i n t he dua l ve c t or a pp r oa c h. N one t he l e s s a r e duc t i on i n ove r a l l l i ve r P A H m e s s a ge w a s obs e r ve d i n t he t r e a t e d a ni m a l s c onf i r m i ng r i boz y m e a c t i vi t y i n v i v o A s i ngl e ve c t or c a r r yi ng bot h t he f unc t i ona l ge ne a nd t he r i boz ym e i s ne e de d t o s uc c e s s f ul l y c om ba t dom i na nt ne ga t i ve i nt e r f e r e nc e i n t he l i ve r

PAGE 127

114 F i gur e 6 1 D os e r e s pons e t o r A A V 2 C B m P A H H d W P R E A dul t m a l e m i c e s e r um P he l e ve l s w e r e nor m a l i z e d a t 4 00x10 1 0 I U a nd a t 1. 33 x10 1 0 I U 4 28x10 9 I U l ow e r e d s e r um P he l e ve l s be t w e e n 0 6 a nd 0. 8 m M 1 43x10 1 0 ha d no de t e c t a bl e e f f e c t on t he H P A phe not ype

PAGE 128

115 F i gur e 6 2 P he nyl a l a ni ne l oa di ng e xpe r i m e nt A R e l a t i ve r a t e of de c r e a s e i n s e r um P he l e ve l s a f t e r t he phe nyl a l a ni ne l oa d B A c t ua l s e r u m P he l e ve l s a f t e r t he l oa di ng e xpe r i m e nt

PAGE 129

116 F i gur e 6 3 R N a s e pr ot e c t i on a s s a y w i t h dos e r e s pons e a ni m a l s A P r obe de s i gn f or di f f e r e nt i a t i ng be t w e e n e ndoge nous a nd ve c t or P A H R N A B E a r l y e xpr e s s i on of C B m P A H H d W P R E i n m i c e s a c r i f i c e d a t f our da ys a f t e r ve c t or i nj e c t i on. C V e c t or R N A w a s de t e c t e d i n o nl y t w o a ni m a l s w hi c h w e r e s a c r i f i c e d pr i or t o 30 w e e ks a f t e r ge ne t he r a p y.

PAGE 130

117 F i gur e 6 4 S out he r n bl ot of dos e r e s pons e a ni m a l s A T he m P A H e xon 6 p r obe i s us e d w i t h a N ot I a nd N c o I di ge s t t o s i m ul t a ne ous l y de t e c t ve c t or D N A a m ount s a nd e ndoge nous m P A H B D os e r e s pons e a ni m a l s s how a n i nc r e a s e i n ve c t or D N A c or r e s pondi ng t o t he i nc r e a s e i n dos e s

PAGE 131

118 F i gur e 6 5 P he nyl a l a ni ne hydr oxyl a s e a c t i vi t y i n ge ne t he r a py t r e a t e d a ni m a l s T w o a ni m a l s ha d de t e c t a bl e l e ve l s of P A H a c t i vi t y i n l i ve r s a m pl e s c or r e s pondi ng t o a ni m a l s t ha t ha d de t e c t a bl e ve c t or R N A

PAGE 132

119 F i gur e 6 6 S e r um phe nyl a l a ni ne l e ve l s a f t e r dua l ve c t or i nj e c t i ons 1. 43x10 9 I U of C B m P A H H d W P R E w a s c oi nj e c t e d i nt o m a l e m i c e w i t h i nc r e a s i ng a m ount s of C B R z I 209 ( S a l I ) a s i ndi c a t e d. R a t i os a r e of i nf e c t i ous uni t dos e s : C B m P A H H d W P R E : C B R z I 209 ( S a l I ) N o l a s t i ng e f f e c t s w e r e obs e r ve d on s e r um P he l e ve l s ove r 24 w e e ks

PAGE 133

120 F i gur e 6 7 R N a s e pr ot e c t i on a s s a y f or c o i nj e c t e d a ni m a l s 1 43x10 9 I U of C B m P A H H d W P R E w a s c oi nj e c t e d i nt o m a l e m i c e w i t h i nc r e a s i ng a m ount s of C B R z I 209 ( S a l I ) a s i ndi c a t e d a bove t he s a m pl e s R a t i os of i nf e c t i ous uni t dos e s a r e C B m P A H H d W P R E : C B R z I 209 ( S a l I ) A ni m a l s t ha t r e c e i ve d t he r i boz ym e ve c t or s how e d de c r e a s e d e ndoge nous P A H m R N A a m ount s N o ve c t or R N A w a s de t e c t e d i n a ny o f t he a ni m a l s T he a c t i n pe l l e t w a s l os t dur i ng pr e c i pi t a t i on

PAGE 134

121 F i gur e 6 8 S out he r n bl ot de t e c t i on of t w o r A A V ve c t or s 1. 43 x10 9 I U of C B m P A H H d W P R E w a s c oi nj e c t e d i nt o m a l e m i c e w i t h i nc r e a s i ng i nf e c t i ous uni t s o f C B R z I 209 ( S a l I ) a s i ndi c a t e d a bove t he s a m pl e s A T he hM C V pr obe i s a l i gne d t o bot h ve c t or s a nd B gl I I N ot I di ge s t i s us e d t o d e t e c t bot h ve c t or s on one bl ot B S out he r n bl ot r e s ul t f r om N c o I a nd N ot I di ge s t w i t h e xon 6 pr obe C S out he r n bl ot r e s ul t f r om B gl I I a nd N ot I di ge s t w i t h hC M V pr obe O ne 1: 3, one 1: 6 a nd bot h 1: 12 a ni m a l s ha ve bot h ve c t o r ba nds pr e s e nt

PAGE 135

122 F i gur e 6 9 S e r um phe nyl a l a ni ne l e ve l s a f t e r c o i nj e c t i on of m i l dl y e f f e c t i ve C B m P A H H d W P R E dos e a nd i nc r e a s i ng a m ount s o f C B R z I 209 ( S a l I ) 4 28x10 9 I U o f C B m P A H H d W P R E w a s i nj e c t e d i nt o m a l e m i c e w i t h i nc r e a s i ng i nf e c t i ous uni t s of C B R z I 209 ( S a l I ) a s i ndi c a t e d. A l l a ni m a l s s how e d a s i m i l a r t he r a pe ut i c de c r e a s e i n s e r um P he l e ve l s

PAGE 136

123 C H A P T E R 7 D E V E L O P M E N T O F A S I N G L E V E C T O R C A R R Y I N G T H E M O U S E P A H G E N E A N D R I B O Z Y M E I 209 T he c ur r e nt r i boz ym e c ons t r uc t i n t he p21 ne w hp ve c t or i s de s i gne d t o p r e ve nt e a r l y de gr a da t i on a nd t o pr o m ot e e xpor t f r o m t he nuc l e us ba s e d on t he s pl i c e s i t e a c c e pt or i n t he gl obi n e xon j us t ups t r e a m of t he r i boz ym e s e que nc e T o c ons t r uc t a s i ngl e r A A V ve c t or c a r r yi ng bot h t he m P A H ge ne a nd t he r i boz ym e t he c hoi c e o f a ne w pr om ot e r f or t he r i boz ym e w a s ne c e s s a r y be c a us e of A A V ge nom e s i z e pa c ka gi ng l i m i t s T he pr om ot e r f o r t he r i boz ym e w oul d ha ve t o of f e r s t a bi l i t y t o pr e ve nt e a r l y r i boz ym e de gr a t i on a nd a l l ow f or e xpor t o f t he r i boz ym e f r o m t he nuc l e us s o t ha t i t a nd t he e ndoge nous P A H m R N A c oul d be i n t he s a m e c e l l c om pa r t m e nt E xpe r i m e nt s by K uw a ba r a e t al ha ve de m ons t r a t e d t he f e a s i bi l i t y of e xpr e s s i ng r i boz ym e s j us t dow ns t r e a m of a m od i f i e d t R N A V a l 1 3 8 1 4 1 T he y ha ve s how n by i n s i t u hybr i di z a t i on a nd nor t he r n bl ot s o f c yt opl a s m i c a nd nuc l e a r f r a c t i ons t ha t t he t R N A dr i ve n r i boz ym e s a r e e xpor t e d t o t he c yt opl a s m a f t e r di r e c t i nj e c t i on i nt o t he nuc l e i o f H e L a c e l l s a nd a f t e r e xpr e s s i on f r om t r a ns i e nt l y t r a ns f e c t e d pl a s m i d D N A 1 4 2 S i nc e t he t R N A ha s bot h t he A a nd B bo x m ot i f s i nt a c t i t s t i l l s e r ve s a s i t s ow n pr om ot e r us i ng R N A pol ym e r a s e I I I K a w a s a ki a nd T a i r a r e por t e d i n 2002 t ha t a ddi ng a s hor t pol yA t a i l 3 of a r i boz ym e c ons t r uc t c oupl e d t he a c t i vi t y of a he l i c a s e t o t he r i boz ym e t hus a l l ow i ng c l e a va ge of a ny t a r ge t s i t e r e ga r dl e s s of s e c onda r y s t r uc t u r e 1 4 3 B a s e d on t hi s e vi de nc e w e opt e d t o i nc l ude a 60 a de nos i ne t a i l 3 o f t he r i boz ym e c ons t r uc t t o e nha nc e t a r ge t a c c e s s i bi l i t y a nd ove r a l l s t a bi l i t y o f t he r i boz ym e A not he r e l e m e nt s t udi e d by t he s a m e gr oup, c ons t i t ut i ve t r a ns por t e l e m e nt ( C T E ) c a n a l s o i nt e r a c t w i t h R N A he l i c a s e s b ut ha s a

PAGE 137

124 longer sequence thus would not be optimal for our use because of the packaging limits of rAAV. Design and Cloning of a Dual rAAV Vector The CB mPAH Hd cassette is 3970 bp including the ITRs. The insertion of a small cassette of less than 210 base s will not affect packaging ability of the vector, since wild type AAV is 4679 bases. Based on Kawasakis design, the mouse tRNA Val was modified and joined to RzI209, followed by a polyA tail of 60 bases and a PolIII terminator sequence. 143 By modifying linker sequences between the tRNA, the ribozyme and the polyA tail, the bes t possible confirmation of this full length product was determined by MFOLD ( Figure 7 1). The tRNA fold has been conserved and the ribozymes hybridizing arms are still free to find their target in the best conformation. This should allow for export from t he nucleus, and target binding and cleavage by the ribozyme. The tRNA RzI209 pA cassette is 203 nucleotides long and was designed to be inserted following the polyA site in the CB mPAH Hd construct. While the tRNA RzI209 pA cassette was originally designed to be cloned into both CB mPAH Hd and CB mPAH Hd WPRE plasmids, we decided not to continue with the CB mPAH Hd WPRE after seeing the loss of effectiveness in the dose response animals described in the previous chapter. A multi step procedure was needed to build the tRNA cassette ( Figure 7 2). Three sets of oligos were designed based on restriction sites present inside the cassette and the two necessary restriction sites at each end for the multi step procedure. Briefly, the tRNA cassette would first be clo ned into a modified pGEM % 3Zf(+) plasmid, pGEM 3Zf(+) MCS2 ( Table 2 4), thus allowing for the use of cold competent GT116 cells for cloning, blue white screening, and easy sequencing reactions. The three sets of DNA oligos were

PAGE 138

125 ordered and cloned individua lly into pGEM 3Zf(+) MCS2 which included all the necessary rare restriction sites. After each cloning step, aided by blue white screening which incidently alternatively switched from white to blue at each new transformed ligation, a positive check digest c ould be done from a restriction site inside each oligo set. Once all three sections of the cassette were cloned, sequencing reactions were performed to ascertain the conservation of the desired sequence. The tRNA cassette was moved into the CB mPAH Hd vect or and was renamed CB mPAH Hd tRNA RzI209. Unfortunately the design of the tRNA Rz requires optimization of folding with each different ribozyme attached to it. Even though two unique sites are included to clone the ribozyme after the tRNA, it may become necessary to change the linker sequences for each ribozyme based on optimal folding, thus adding an extra step for the construction of this ribozyme cassette. Cell Transfection Experiments with CB mPAH Hd tRNA RzI209 Mixed transfections of mPAH, mPAH Hd a nd mPAH Hd tRNA RzI209 were carried out in HEK 293 cells. Since the new dual vector was only constructed with the active ribozyme, it was decided not to test it in cells against the inactive protein from CB mPAH F263S. Instead, either CB mPAH Hd or CB mPA H was added to CB mPAH Hd tRNA RzI209. When CB mPAH Hd was added, the PAH activity doubled as compared to CB mPAH Hd tRNA RzI209 alone. When the non ribozyme resistant CB mPAH was added, the activity only increased by about 10% (Figure 7 3). A Western blo t with the PAH antibody was performed with one set of the samples from the previous transfections. It shows that when CB mPAH Hd is transfected with CB mPAH Hd tRNA RzI209 the protein amount is higher than with the addition of CB mPAH ( Figure 7 4A). Primer s for amplification of the tRNA cassette by RT PCR were

PAGE 139

126 designed and used to amplify a 105 base pair product from a saved RNA sample from one of the transfections. While a band is visible between 100 and 125 nucleotides, the primers were not very efficient and created a high background ( Figure 7 4B). The tRNA cassette is highly structured and meant to self bind in a specific manner, hence the selection of primers was extremely limited and not ideal. Nontheless the RT PCR result show that the modified tRNA Va l does express the ribozyme in HEK 293 cells. The combined results from the cell transfection experiments satisfied us that the ribozyme was expressed by the tRNA promoter. It seemed capable of reaching its target RNA and preventing an increase in PAH act ivity in the cell culture experiments. The CB mPAH Hd tRNA RzI209 plasmid was grown in a large scale, purified using Qiagens Giga Prep kit, and sent to the Vector Core for packaging in rAAV2. In Vivo Experiments with CB mPAH Hd tRNA RzI209 A limited amou nt of virus was received from the Vector Core, only 2 cell factories of purified virus in a 1mL volume. Because of this limit, and the difficult task of choosing correct doses, the animal experiments were staggered in small groups, using adult male mice. T he lowest fully effective dose in the dose response experiment was 1.33x10 10 IU of CB mPAH Hd WPRE ( Figure 6 1), and the lowest effective known dose of CB mPAH to work in male mice was 3.00x10 10 IU (Figure 4 1). As a first dose of the combined vector, we c hose 1.5x10 10 IU and injected this amount into two male mice. By the third week after surgery, the mice reached a normalized serum Phe level which has been maintained for another 15 weeks and is still ongoing (Figure 7 5). We then proceeded to inject progr essively lower doses of the dual vector into male mice. Two mice have received 3.75x10 9 IU and have lowered to 0.60 mM serum Phe concentration

PAGE 140

127 for up to 8 weeks. One animal injected at 7.5x10 9 is now at 0.2 mM serum Phe 4 weeks after surgery ( Figure 7 5). Between week 8 and 12 for the 1.5x10 10 IU animals, and between week 2 and 6 for the 3.75x10 9 IU animals, we performed timed bleeds as described in chapter 6. As compared to the treated animals of Table 6 2, which received the CB mPAH ex13 WPRE vector, th ese animals have a difference of 0.25 and 0.24 mM serum Phe levels between morming and afternoon bleeds. This means that 27 to 30% less variation in daily serum Phe levels has been achieved as compared to Pah enu2 mice. The reduction of serum Phe daily vari ation has been achieved with lower rAAV2 doses than those used with CB mPAH ex13 WPRE which has a similar dose response to CB mPAH Hd WPRE. Discussion We assumed that delivery of a single vector containing both the PAH gene and the ribozyme was needed to effectively combat dominant negative interference. One implication of this decision would be that a small promoter was required to express the ribozyme in order to fit within the packaging limits of rAAV. A modified tRNA Val was chosen based on studies fro m Kuwabara et al. After successful testing using cell transfections, the combined vector, CB mPAH Hd tRNA RzI209, was packaged into rAAV2. In vivo results have so far shown that the combined vector is four times as effective as CB mPAH alone, and at least twice as effective as CB mPAH WPRE after portal vein injections. The lowest effective dose of 7.5x10 9 IU, or 5.2x10 11 vector genomes is the lowest dose used in our lab and in the literature with either rAAV2 or rAAV5 to achieve normalization of serum Phe l evels in male Pah enu2 mice. Since the full effect of the gene therapy took longer to stabilize than it had in the mice that had received

PAGE 141

128 t he W P R E ve c t or ( F i gu r e s 6 1 a nd 7 5) t hi s m a y t ur n out t o be a s a f e r m e t hod t ha n t he pr e vi ous ve c t or a ppr oa c h. S t udi e s of t he l i ve r pa t h ol ogy a r e pl a nne d t o c om pa r e t o t he C B m P A H H d W P R E dos e r e s pons e a ni m a l s a l o ng w i t h R N a s e pr ot e c t i on a s s a ys a nd s out he r n bl ot s T hi s i s t he f i r s t r e por t o f c om bi ni ng bot h ge ne a nd r i boz ym e i nt o a s i ngl e ve c t or T he a ppr oa c h i s a n a l t e r na t i ve a nd s i m pl e r m e t hod t ha n t r a ns s pl i c i ng r i boz ym e s : r i boz ym e s ba s e d on T e t r ahy m e na gr oup I i nt r on de s i gne d t o a m e nd de f e c t i ve t r a ns c r i pt s 1 4 4 1 4 5 I t s houl d be a ppl i c a bl e t o a l l m ut a t i ons of a ny s i ngl e ge ne di s or de r unl e s s a pa t i e nt ha s a m ut a t i on a t t he c hos e n r i boz ym e bi ndi ng s e que nc e

PAGE 142

129 F i gur e 7 1 t R N A R z I 209 de s i g n. T he t R N A f ol di ng i s c ons e r ve d w hi l e t he hyb r i di z i ng a r m s f or t he r i boz ym e a r e l e f t unbound t o a l l ow f o r t a r ge t hybr i di z a t i on. T he pol y A doe s not bi nd t o t he r e s t of t he c a s s e t t e i n t hi s opt i m a l f ol di ng c onf or m a t i on.

PAGE 143

130 F i gur e 7 2 C l oni ng s t r a t e gy f or c ons t r uc t i on o f t R N A R z I 209 c a s s e t t e T hr e e s e t s of ol i gos w e r e a nne a l e d a nd i ndi vi dua l l y l i ga t e d i nt o t he m odi f i e d c l oni ng s i t e s of pG E M 3 Z f ( + ) M C S 2. T hi s c a s s e t t e w a s s ubs e q ue nt l y m ove d i nt o t he C B m P A H H d pl a s m i d.

PAGE 144

131 F i gur e 7 3 R e s ul t s of t r a ns i e nt c e l l t r a ns f e c t i ons w i t h C B m P A H H d t R N A R z I 209. A ddi t i on of a n e qua l a m ount of C B m P A H H d t o C B m P A H H d t R N A R z I 209 doubl e s t he P A H a c t i vi t y w hi l e a ddi t i on of C B m P A H doe s not r e s ul t i n a s i gni f i c a nt i nc r e a s e i n P A H a c t i vi t y

PAGE 145

132 Figure 7 4 tRNA RzI209 activi ty and expression in HEK 293 cells. A. Western blot of cell transfection samples from figure 7 3. PAH amount is only mildly increased when CB mPAH is co transfected with the tRNA vector. Lane 1: CB mPAH Hd tRNA RzI209 only. Lane 2: CB mPAH Hd tRNA RzI209 w ith CB mPAH. Lane 3: CB mPAH Hd tRNA RzI209 with CB mPAH Hd. B. RT PCR of CB mPAH Hd tRNA RzI209 transfection. The ribozyme is clearly expressed in the cells even though background from the primer was very abundant.

PAGE 146

133 F i gur e 7 5 I n v i v o r e s ul t s w i t h C B m P A H H d t R N A R z I 209. B ot h 1. 5x10 1 0 a nd 7 5x10 9 I U s ha ve nor m a l i z e d s e r um P he l e ve l s i n m a l e P ah e n u 2 m i c e m a ki ng t hi s ve c t or f our f ol d m or e e f f e c t i ve t ha n C B m P A H a l one T he 3. 75x10 9 a ni m a l s ha ve s e r um P he l e ve l s a r ound 0. 60 m M

PAGE 147

134 C H A P T E R 8 D E V E L O P M E N T O F S H O R T I N T E R F E R I N G R N A S F O R M U R I N E P A H R N A i nt e r f e r e nc e i s t he p r oc e s s of pos t t r a ns c r i pt i ona l s i l e nc i ng i nduc e d by doubl e s t r a nde d R N A S hor t i nt e r f e r i ng R N A s a r e dupl e x e s of 20 t o 22 nuc l e ot i de s a nd a r e pr oc e s s e d by R I S C t o t a r ge t a m e s s e nge r R N A f or c l e a va ge a nd de gr a da t i on. A s a n a l t e r na t i ve a ppr oa c h t o ha m m e r he a d r i boz ym e s t o pr e ve nt dom i na nt ne ga t i ve i nt e r f e r e nc e s hor t i nt e r f e r i ng R N A s w e r e de s i gne d t o t a r ge t m P A H S i nc e s i R N A s ha ve m a ny di f f e r e nt s e l e c t i on r ul e s a nd ne e d t o be t e s t e d i n v i v o f or t r ue de t e r m i na t i on o f a c t i vi t y, A m bi on s S i l e nc e r ki t w a s c hos e n t o t e s t t hr e e s e l e c t e d s i R N A s a ga i n s t m P A H 9 1 9 2 T he ki t c r e a t e s t he s i R N A c a s s e t t e by P C R a m pl i f i c a t i on a nd i s de s i gne d t o i nc l ude a c hos e n pr om ot e r i n t he s e e xpe r i m e nt s h um a n U 6. T he m e t hod s ki ps l e ngt hy c l oni ng s t e ps w hi l e s t i l l e xpr e s s i ng t he s i R N A i n t he c e l l s a s oppos e d t o t r a ns f e c t i ng R N A ol i gos w hi c h ha ve a f i n i t e ha l f l i f e 1 4 6 S h or t I n t e r f e r i n g R N A S i t e S e l e c t i on P ot e n t i a l s i R N A s i t e s w e r e s e l e c t e d f r om t he P A H c D N A s e que nc e i n t he r A A V C B m P A H ve c t or O nl y t he f i r s t 500 nuc l e ot i de s o f t he c D N A w e r e s c r e e ne d f or t he be s t pos s i bl e t a r ge t s i t e s T he r e a r e a num be r of pa pe r s publ i s he d t ha t c a n he l p one s e l e c t pos s i bl e good R N A i nt e r f e r e nc e s i t e s but none of t he r ul e s a r e f ool pr oof a nd t hi s i s of t e n e m pha s i z e d by t he a ut ho r s T o s e l e c t s i R N A t a r ge t s i t e s t hr e e a va i l a bl e t oo l s o n t he I nt e r ne t w e r e us e d: A m bi on s w e bs i t e P r om e ga s w e bs i t e a nd a t r i a l ve r s i on of S V M R N A i ve r s i on 5 0. E a c h w e bs i t e or p r ogr a m c a m e up w i t h di f f e r e nt l i s t s of be s t s i R N A pos i t i ons ; c om pa r i ng

PAGE 148

135 all three lists, target sites that were within 20 bases of each other were further examined using BLAST searches. If the designed siRNA was found to correspo nd to another gene besides PAH in the first 100 results by BLAST search, it was rejected as a possible design. The list of possible target sites was reduced and finally three target sites were selected for testing and the PCR primers necessary for the Sile ncer kit were ordered from Sigma Genosys ( Table 8 1). siRNA Cell Culture Tests The three siRNAs were made according to Ambions specifications. To determine what concentration of siRNA cassette was needed to test in cell cultures, the siGAPDH and siNegati ve control for human cells included in Ambions kit were amplified alongside the mPAH siRNAs. Three concentrations were tested with the siGAPDH and siNegative in HEK 293 cells by standard calcium phosphate transfection: 100 ng/well, 200 ng/well, and 300 ng /well of a six well plate. After two days, the cells were harvested for RNA extraction with TRIzol, and RT PCR reactions were set up to detect the amounts of GAPDH and Actin in each transfection. Based on the normalized GAPDH results, 300 ng/well was selec ted as a reasonable concentration to use in HEK 293 cells ( Figure 8 1). The three siRNAs for mPAH were then tested versus co transfected CB mPAH plasmid, 300 ng siRNA and 2 g CB mPAH. Each transfection was done in one well of a 6 well plate with approxim ately 8x10 5 cells per well and harvested after 48 hours for RNA with T RI zol. The results were analyzed by RT PCR for mPAH amount and GAPDH was used as an internal control in these experiments. The best siRNA was si333, knocking down PAH to approximately 50 % (Figure 8 2).

PAGE 149

136 T a bl e 8 1 S hor t i nt e r f e r i ng R N A s f or m ous e P A H mP A H 5 t a rg et ed s eq u en ce Pri me rs s i 3 3 3 A A C G A C A T T G G T G C C A C T G T C Sen s e: G T CC T A C A C A A A G A C A G T G G C A C C A A T G T C G C C G G T G T T T C G T C C T T T C C A C A A G A n t i s en s e: C G G C G A A G C T T T T T CC A A A A A A C G A C A T T G G T G CC A C T G T CC T A C A C A A A G A C A s i 4 0 1 A A G G A C C A T T C A G G A G C T G G A Sen s e: G G A C T A C A C A A A T C C A G C T CC T G A A T G G T C C T T C G G T G T T T C G T C C T T T C C A C A A G A n t i s en s e: C G G C G A A G C T T T T T CC A A A A A A A A G G A C C A T T C A G G A G C T G G A C T A C A C A A A T CC A s i 4 3 2 A A T C A G A T T C T C A G C T A T G G A Sen s e: G G A C T A C A C A A A T C C A T A G C T G A G A A T C T G A C C G G T G T T T C G T C C T T T C C A C A A G A n t i s en s e: C G G C G A A G C T T T T T CC A A A A A A T C A G A T T C T C A G C T A T G G A C T A C A C A A A T CC A

PAGE 150

137 Using a different cell line, 293T, the transfections with the siRNAs and CB mPAH were repeated. The transfections into this cell line were done using Qiagens Superfect transfection rea gent as described in Chapter 2. The same amounts of DNA were used and the results were also analyzed by RT PCR in the same manner. The results were similar, but si402 led to a better reduction of mPAH than si333 in these cells ( Figure 8 2). The reductions were not quite as great as those achieved in 293 cells. One last transfection experiment was performed with a newly acquired cell line, 293T TYF mPAH created by Dr Changs laboratory from our CB mPAH vector. The cells constitutively express the mPAH gene and were transfected with 300 ng of each siRNA, and 2 g of empty carrier plasmid pGEM 3ZF(+) MCS2 using the superfect protocol. The cells were harvested for RNA after 48 hours with T RI zol. The results of the RT PCR show that si333 can reduce the express ion of mPAH by 40% while the other two siRNAs did not efficiently reduce the mPAH message ( Figure 8 2). Discussion Based on all the combined results, si333 seems to be the best choice of siRNA from all three designs tested. The siRNA that performed the wo rst in all three cell lines, si432, followed only three of the selection rules suggested in Reynolds et al. but had been chosen because of its lower GC content. 91 Both si333 and si401 followed four suggested rules: si333 has 52.4% GC content, 2 G /C at the 5 end of the sense strand, 3 A/U at the 5 end of the antisense strand and does not contain a G/C stretch; si401 has 52.4% GC content, a U at position 10, 2 G/C at the 5 end of the sense strand and does not contain a G/C stretch. It is interest ing that si333 broke some of the negative selection rules for specific bases at certain positions but yet performed the best overall, reemphasizing the need for in vivo testing after algorithm based design.

PAGE 151

138 F ur t he r t e s t s a t va r i ous c onc e nt r a t i ons c oul d be do ne t o s e e i f m or e knoc kdow n of m P A H m R N A c a n be a c hi e ve d w i t h s i 333. F o r us e i n t he m ous e m ode l i n ge ne t he r a py e xpe r i m e nt s a not he r p r om ot e r a c t i ve i n m ur i ne c e l l s w i l l ha ve t o be t e s t e d t o c onf i r m t he a c t i vi t y of t he s i R N A t R N A p r om ot e r s ha ve b e e n us e d t o e xpr e s s s hor t i nt e r f e r i ng R N A s a nd w oul d be a good c hoi c e f or t he e xpr e s s i on of s i 333 1 4 7 1 4 8 T he s i 333 c oul d be c l one d i nt o t he C s p45I a nd C l a I s i t e s t o r e pl a c e R z I 209 i n t he c ur r e nt t R N A c a s s e t t e i n t he pG E M 3Z f ( + ) pl a s m i d f or s e pa r a t e t a r ge t t o s i R N A t e s t i ng. I f a c t i ve a r e s i s t a nt m P A H ve c t or w i l l ha ve t o be c ons t r uc t e d by e xt e ns i ve P C R m ut a ge ne s i s a nd t e s t e d a s w e l l pr i or t o a ny a ni m a l e xpe r i m e nt s O ur C B m P A H ve c t or i nc l ude s a ppr oxi m a t e l y 50 nuc l e ot i de s of t he 5 U T R o f P A H a nd a bout 400 nuc l e ot i de s of t he 3 U T R A n a l t e r na t e s i R N A de s i gn c oul d be t a r ge t e d a ga i ns t e i t he r r e gi on I f t he s i R N A w a s f o und t o be a c t i ve i n c e l l c ul t ur e t e s t s r e m ovi ng t ha t r e gi on f r om our c ons t r uc t w oul d r e nde r t he ve c t or c om pl e t e l y r e s i s t a nt t o t he s i R N A a voi di ng t he m ut a ge ne s i s r e qui r e d w i t h t he c ur r e nt s i R N A s

PAGE 152

139 F i gur e 8 1 C e l l c ul t ur e s i R N A w or ki ng c onc e nt r a t i on de t e r m i na t i on. T hr e e a m ount s of s i R N A s 100 ng, 200 ng a nd 300 ng w e r e t e s t e d by C a P O 4 t r a ns f e c t i on o f 4x10 5 H E K 293 c e l l s pl a t e d i n 6 w e l l pl a t e s i n 2 m l of m e di a R N A w a s e xt r a c t e d f or R T P C R r e a c t i ons D e ns i t y of obt a i n e d G A P D H a nd A c t i n ba nds w e r e e va l ua t e d w i t h U N S C A N I T ge l a nd nor m a l i z e d G A P D H a m ount s a r e gr a phe d a bove

PAGE 153

140 F i gur e 8 2 M ous e P A H s i R N A t e s t r e s ul t s T he t hr e e c hos e n s i R N A s e que nc e s w e r e t e s t e d i n c e l l t r a ns f e c t i ons a ga i ns t c o t r a ns f e c t e d o r e ndoge nous t a r ge t R e s ul t s a r e f r om R T P C R r e a c t i ons of e a c h c e l l t r a ns f e c t i ons gr a phe d a s r e l a t i ve m P A H a m ount N = 1 f o r 293 T T Y F m P A H c e l l s N = 3 f or t he ot he r t w o c e l l l i ne s S i 333 ga ve t he m os t c ons i s t e nt r e duc t i on of m P A H m e s s a ge

PAGE 154

141 C H A P T E R 9 S U M M A R Y C O N C L U S I O N A N D F U T U R E D I R E C T I O N S G e n e r al S i gn i f i c an c e T he e a r l i e s t s t udi e s f or de ve l opi ng ge ne t he r a py f o r P K U w e r e done i n 1986 by L e dl e y e t al 1 4 9 W hi l e a f e w g r oups ha ve s uc c e s s f u l l y t r e a t e d t he m ous e m ode l B T B R P ah e n u 2 w i t h e i t he r a de novi r us or r e c om bi na nt A A V t ype 2 a nd t ype 5 ( s e e C ha pt e r 1) t he r e s ul t s ha ve be e n di s a ppoi nt i ng a t be s t H i gh r A A V dos e s a r e ne e de d t o t r e a t m a l e m i c e a nd f e m a l e m i c e r e qui r e e ve n hi ghe r ve c t or dos e s t o r e a c h t he r a pe ut i c s e r um P he l e ve l s M or e ove r l os s of e f f e c t i ve ne s s ha s be e n r e por t e d a f t e r 25 w e e ks 7 0 T h i s s t udy r e por t s t he l ow e s t t he r a pe ut i c r A A V t ype 2 dos e i n m a l e s w hi l e us i ng a nove l ve c t or t ha t c a r r i e s bot h a ha m m e r he a d r i boz ym e a nd a r e s i s t a nt ge ne t o r e pl a c e t he e ndoge nous m ut a nt m R N A T he r e s ul t s a nd t he i r i m p l i c a t i ons a r e s um m a r i z e d be l ow a l ong w i t h pl a nne d f ut ur e s t udi e s f o r t he t r e a t m e nt o f m a t e r na l P K U s yndr om e S u m m ar y a n d C on c l u s i on T he m ous e m ode l f or phe nyl ke t onu r i a B T B R P ah e n u 2 w a s e xa m i ne d i n de t a i l f or t hi s s t udy. W hi l e t he s e xua l di m or phi s m obs e r ve d i n t he m i c e a r e not e xpl a i ne d a t t he m ol e c ul a r l e ve l t he pr ot e i n a nd a c t i vi t y l e ve l s s e e n i n t he he t e r oz ygot e m i c e s uppor t t he pos s i bi l i t y of dom i na nt ne ga t i ve i nt e r f e r e nc e S ys t e m s t ha t i nvol ve ol i gom e r i z a t i on a r e know n t o be s us c e pt i bl e t o dom i na nt ne ga t i ve i nt e r f e r e nc e w he n m ut a nt pr ot e i ns a r e e xpr e s s e d a nd r e l a t i ve l y s t a bl e D om i na nt ne ga t i ve i nt e r f e r e nc e i s t he c a us e of qui t e a f e w e ndoc r i ne di s e a s e s a nd ge ne t i c di s e a s e s w hi c h a c l a s s i c e xa m pl e be i ng O s t e oge ne s i s I m pe r f e c t a T he c e l l t r a ns f e c t i on e xpe r i m e nt s w i t h C B m P A H a nd C B m P A H F 263S

PAGE 155

142 c onf i r m e d t ha t t he P A H m onom e r s i nt e r a c t l e a di ng t o r e duc e d a c t i vi t y i n c e l l l ys a t e s T he r e f or e ge ne t he r a py f or m os t phe nyl ke t onur i a pa t i e nt s w i l l r e qui r e bot h ge ne r e pl a c e m e nt a nd a m e t hod t o pr e ve nt t he dom i na nt ne ga t i ve i nt e r f e r e nc e H a m m e r he a d r i boz ym e s w e r e c hos e n a s t he m e a ns t o de gr a de e ndoge nous P A H m R N A T he i r s m a l l s i z e a nd a l l e l e s pe c i f i c i t y w e r e i de a l f or de ve l opm e nt of a dua l ge ne r e pl a c e m e nt a nd a nt i s e ns e ge ne t he r a py a ppr oa c h. B a s e d on t he r e s ul t s of t he s e pa r a t e ve c t or e xpe r i m e nt s t he r e s e e m s t o be a m i ni m um num be r of c e l l s r e qui r e d t ha t e xpr e s s f unc t i ona l P A H a c t i vi t y i n o r de r t o c l e a r a s i gni f i c a nt a m ount of s e r um phe nyl a l a ni ne W hi l e t he dos e s ha ve be e n r e duc e d f ur t he r t o 7. 5x 10 9 I U w i t h t he c om bi ne d r i boz ym e a nd ge ne ve c t or i t i s s t i l l unknow n a t t hi s poi nt i f t he num be r of c e l l s t r a ns duc e d r e pr e s e nt s t he m i ni m um a m ount of ne e de d c e l l s f o r P he c l e a r a nc e o r i f t he r i boz ym e a c t i vi t y i s not s uf f i c i e nt t o c om pl e t e l y pr e ve nt t he dom i na nt ne ga t i ve i nt e r f e r e nc e T he l os s of e f f e c t i ve ne s s obs e r ve d i n t he dos e r e s pons e e xpe r i m e nt a f t e r 24 w e e ks w a s una nt i c i pa t e d s i nc e ot he r s t udi e s ha ve s how n t he r a pe ut i c e f f e c t s f r om s i m i l a r ve c t or s f or up t o 52 w e e ks 1 2 1 T he l a c k of ve c t or m e s s a ge a nd P A H a c t i vi t y i n t he a ni m a l s t ha t ha d r e t ur ne d t o hi gh s e r um P he l e ve l s w a s e xpe c t e d. H ow e ve r t he pr e s e nc e of t he ve c t or D N A i n t hos e s a m e a ni m a l s a nd t he nuc l e a r m o r p hol ogi c a l c ha nge s ha ve ve r y s e r i ous i m pl i c a t i ons f or t he f i e l d of r A A V ge ne t he r a py. W e a r e c l os e l y m oni t or i ng t he a ni m a l s t ha t r e c e i ve d t he c om bi ne d ge ne r i boz ym e ve c t or w hi c h doe s not c ont a i n t he W P R E a nd t hi s m a y a dd e vi de nc e a bout t he s our c e f or t he m or phol ogi c a l c ha nge s : r A A V D N A pr ot e i n ove r e xpr e s s i on, p r ot e i n pr ot e i n i nt e r a c t i on or t he W P R E e l e m e nt I t i s unc l e a r a t t he hi gh dos e s ne e de d t o t r e a t H P A how m a ny he pa t oc yt e s ha ve be e n t r a ns duc e d a nd how m a ny c opi e s of t he ve c t or ge nom e a r e p r e s e nt pe r c e l l I t m a y be unhe a l t hy f o r c e l l s

PAGE 156

143 t o ha ve hi gh ve c t or c opy num be r s w i t h hi ghl y e xpr e s s e d P A H pr ot e i n t ha t i s not s e c r e t e d, unl i ke hA A T T he pr e s e nc e of a n uns t a bl e m i s s e ns e pr ot e i n c om pl i c a t e s t he s i t ua t i on T he W P R E w hi c h a l l ow s i nc r e a s e d t r a ns l a t i on by s t a bi l i z i ng t he m R N A c oul d t hus be m or e de s t r uc t i ve ove r t i m e a nd out w e i gh t he be ne f i t s i t pr ovi de s e a r l y on by a l l ow i ng l ow e r ve c t or dos e s F u r t he r m or e t he dua l ge ne r i b oz ym e ve c t or s how s t ha t s i m pl e ove r e xpr e s s i on w a s not t he m os t e f f e c t i ve a ppr oa c h i n l ow e r i ng ne e de d ve c t or dos e s W hi l e m or e s t udy i s ne e de d t o unde r s t a nd t he i nc r e a s e d t um or i ge ne s i s a nd m or phol ogi c a l c ha nge s i t i s c l e a r t ha t c a r e f ul e va l ua t i on of bot h a m ous e m ode l a nd t he hum a n di s e a s e i s ne e de d be f or e a s uc c e s s f ul s a f e ge ne t he r a py a p pr oa c h f or hum a ns c a n be de s i gne d. F u t u r e D i r e c t i on s R e duc i ng ove r a l l a m ount s of ne e de d ve c t or w i l l be ne c e s s a r y pr i or t o c l i ni c a l t r i a l s bot h f or s a f e t y i s s ue s a nd c os t of ve c t or pr oduc t i on W hi l e t he c ur r e nt r e s ul t ha ve r e duc e d ve c t or dos e s t he us e of ne w e r s e r ot ype s of r A A V na m e l y r A A V 8, w i l l pr o ba bl y l e a d t o a n e ve n f ur t he r r e duc t i on of ne e de d dos e s t o c u r e H P A bot h i n m a l e s a nd i n f e m a l e s R e c om bi n a nt A A V 8 ha s be e n r e por t e d t o be 10 t o 100 t i m e s m or e e f f e c t i ve i n l i ve r t ha n A A V 2, 5 o r 7 1 5 0 I f 10 t i m e s m or e e f f e c t i ve 5. 2x1 0 1 0 ve c t or ge nom e s c o ul d be us e d t o t r e a t m a l e m i c e ne a r t he dos e s t e s t e d t o t r e a t hu m a n pa t i e nt s i n c ur r e nt va r i ous c l i n i c a l t r i a l s 7 5 1 5 1 T he C B m P A H H d t R N A R z I 209 ve c t or i s onl y 4 172 nuc l e ot i de s l ong. A ddi ng a s e c ond r i boz ym e w i t h i t s ow n t R N A pr om ot e r a ppr oxi m a t e l y 200 ba s e s i nt o t he c ons t r uc t c oul d f ur t he r e nha nc e t he e f f e c t a ga i ns t t he dom i na nt ne ga t i ve i nt e r f e r e nc e a nd a l l ow f or f ur t he r r e duc t i on of ne e de d ve c t or dos e s M ul t i m e r i c r i boz ym e s e xpr e s s e d f r om s i ngl e pr om ot e r s ha ve be e n us e d i n va r i ous s t udi e s by r e pe a t i ng t he s a m e r i boz ym e s e que nc e i n a s e r i e s e ngi ne e r e d f or s e l f c l e a va ge i n be t w e e n e a c h r e pe a t 1 5 2 1 5 3 U s i ng t he

PAGE 157

144 s a m e r i boz ym e c l one d t w i c e c oul d be e a s i l y t e s t e d w i t hi n a s hor t t i m e a nd w oul d a voi d d e ve l opi ng a s e c ond di f f e r e nt r i boz ym e f or m P A H A s a n a l t e r na t i ve a nd a c om pa r i s on t o ha m m e r he a d r i boz ym e s t he de s i gne d s i R N A s c ou l d be c l one d w i t h a n a ppr op r i a t e pr om ot e r a nd t e s t e d t o c onf i r m t he i r a c t i vi t y A r e s i s t a nt m P A H ve c t or w oul d be c ons t r uc t e d by e xt e ns i ve P C R m ut a ge ne s i s t o pr e ve nt t r a ns l a t i on i nhi bi t i on a nd c l e a va ge by t he s i R N A A l t e r na t i ve l y a n s i R N A c oul d be de s i gne d a ga i ns t t he U T R s pr e s e nt i n t he ve c t or w hi c h c oul d be r e m ove d t o a voi d m u t a ge ne s i s of t he ve c t or c ons t r uc t T he r e s ul t s of t hi s s t udy, w hi l e e xt r e m e l y s uc c e s s f ul i n r e duc i ng r A A V 2 dos e s ne e de d t o c ur e H P A i n m a l e m i c e ha ve no t be e n r e pe a t e d i n f e m a l e m i c e T he dos e s ne e de d t o c ur e f e m a l e s a r e di f f i c ul t t o pr e di c t w i t h t hi s ne w ve c t or T w e nt y f ol d hi ghe r dos e s of t he r A A V 2 C B m P A H W P R E ve c t or ha v e pr e vi ous l y l ow e r e d f e m a l e s e r um P he l e ve l s t o a t he r a pe ut i c r a nge I f s i m i l a r a m ount s a r e r e qui r e d w i t h t hi s ve c t or 1. 5x10 1 2 I U w i l l be ne e de d t o c ur e t he f e m a l e s A dos e r e s pons e s t udy w i t h t he dua l ve c t or i s pl a nne d i n f e m a l e s t o a s s e s s t he e f f e c t of t he r i boz ym e i n v i v o t o c om ba t dom i na nt ne ga t i ve i nt e r f e r e nc e i n f e m a l e l i ve r s P r e ve nt i on of m a t e r na l P K U s yndr om e r e m a i ns t h e f oc us of ge ne t he r a py s t udi e s f or P K U U nt r e a t e d P ah e n u 2 f e m a l e s do not nor m a l l y c a r r y l i t t e r s t o t e r m F ol l ow i ng ge ne t he r a py w i t h no r m a l i z a t i on of s e r um P he l e ve l s i n f e m a l e s w e pl a n on m a t i ng t he m t o bot h P ah e n u 2 a nd he t e r oz ygot e m a l e s I f l i t t e r s a r e obt a i ne d a nd t he pups s ur vi ve be yond a f e w hour s bo t h da m s a nd pups w i l l be c l os e l y m o ni t or e d t o a s s e s s t he e xt e nt of r e ve r s a l of m a t e r na l P K U s yndr om e G e ne r a l gr ow t h pa r a m e t e r s c a n be c om pa r e d t o nor m a l P ah e n u 2 a nd he t e r oz ygot e gr ow t h c ur ve s obt a i ne d i n t hi s s t udy.

PAGE 158

145 L i ve r di r e c t e d ge ne t he r a py f or P K U ha s be e n t he f oc us of a l l publ i s he d s t udi e s t o da t e O ur d a t a obt a i ne d f r om t he m i c e s how s t ha t t he ki dne y m i ght be a n i nt e r e s t i ng t a r ge t f or ge ne t he r a py a s w e l l T he e nz ym e s e e m s t o be d i f f e r e nt l y r e gul a t e d i n t he ki dne y a s c om pa r e d t o t he l i ve r P r ot e i n a m ount s b e t w e e n a l l t hr e e ge not ype s w e r e not r e duc e d i n t he ki dne y w hi l e a c t i vi t y l e ve l s w e r e a t 50% of nor m a l i n he t e r oz ygot e s a s w oul d be pr e di c t e d f or 1 c opy o f t he nor m a l ge ne S e r ot ype s of r A A V ne e d t o be t e s t e d f or t r a ns duc t i on of k i dne y c e l l s a nd c o l oc a l i z e d t o e ndoge nous B H 4 s i nc e i t i s r e qui r e d f or P A H a c t i vi t y. I t i s unknow n a t t hi s poi nt i f r A A V de r i ve d P A H p r ot e i n w oul d c a us e dom i na nt ne ga t i ve i nt e r f e r e nc e i n t he ki dne y, bu t he t e r oz ygot e P A H a c t i vi t y l e ve l s s e e m t o i ndi c a t e ot he r w i s e N one t he l e s s t he c om bi ne d v e c t or w oul d pr e ve nt t he pos s i bi l i t y o f dom i na nt ne ga t i ve i nt e r f e r e nc e by r e duc i ng e ndoge nous P A H pr ot e i n p r oduc t i on. I f a s e r ot ype of r A A V c a n be f ound t o t r a ns duc e t he pr ope r c e l l t ype pe r ha ps t r e a t m e nt of one or bot h ki dne ys c oul d be m or e e f f e c t i ve i n c l e a r i ng s e r um P he l e ve l s t ha n t he l i ve r s i nc e t he ki dne y ha s be e n pr e di c t e d t o be a bl e t o c l e a r 50% o f s e r um P he l e ve l s D u al G e n e R e p l ac e m e n t an d A n t i s e n s e T e c h n ol ogy A p p r oac h e s f or t h e T r e at m e n t of G e n e t i c D i s e as e s T he c om bi ne d ge ne r e pl a c e m e nt a nd a nt i s e ns e m ol e c ul e a ppr oa c h us e d i n t hi s s t u dy w i l l be e s pe c i a l l y us e f ul f o r t he t r e a t m e nt of a ut os om a l dom i na nt di s e a s e s F or e xa m pl e i n O s t e oge ne s i s I m pe r f e c t a e xpr e s s e d m ut a nt c ol l a ge n t ype 1 1 a nd 1 2 pr ot e i ns l e a d t o ve r y s e ve r e c l i ni c a l phe not ype s 1 5 4 T he i nc o r por a t i on o f t he m ut a nt 1 1 or 1 2 c ol l a ge n pr ot e i n i nt o t he t r i pl e he l i x of t ype I c ol l a ge n de s t a bi l i z e s t he c ol l a ge n m ol e c ul e s a nd t he e xt r a c e l l ul a r m a t r i x l e a di ng t o b one f r a gi l i t y T a r ge t i ng t he e ndoge nous m ut a nt c ol l a ge n t r a ns c r i pt w i t h a r i bo z ym e w o ul d pr e ve nt i t s a s s oc i a t i on i n t he t r i pl e he l i x w hi l e t he ve c t or de r i ve d nor m a l ge ne w oul d be i nc l ude d i n t he he l i x a nd

PAGE 159

146 w oul d i m pr ove t he s t r e ngt h o f t he E C M U s i ng t he e ndoge nous pr om ot e r f or c ol l a ge n w i l l be ne c e s s a r y f or t r e a t m e nt of t hi s di s e a s e s i nc e dos a ge i m ba l a nc e s of C O L 1A 1 c a n a l s o c a us e di s e a s e A ut os om a l r e c e s s i ve di s e a s e s c oul d a l s o be ne f i t f r om a dua l ge ne r e pl a c e m e nt a nd a nt i s e ns e m ol e c ul e a ppr oa c h i n ge ne t he r a py. L e s c h N yha n s yndr om e a nd K e l l e y S e e gm i l l e r s yndr om e ( gout ) r e s ul t f r om t he de f i c i e nc y of t he e nz ym e hypoxa nt hi ne gua ni ne phos phor i bos yl t r a ns f e r a s e ( H P R T ) I n bo t h s yndr om e s t he r e i s a r e s i dua l a m ount of a c t i vi t y be l ow 10 % of nor m a l H P R T i s a l s o a t e t r a m e r i c e nz ym e t hus t he pos s i bi l i t y of c a us i ng dom i na nt ne ga t i ve i nt e r f e r e n c e a f t e r ge ne t he r a py c oul d be a voi de d by us i ng a r i boz ym e a ga i ns t t he e ndoge nous t r a ns c r i pt I n c ys t i c f i br os i s 40 % o f know n C F T R m ut a t i ons a r e m i s s e ns e m ut a t i ons S om e m ut a t i ons a r e de gr a de d i n t he E R due t o t he i ns t a bi l i t y or i m pr ope r f o l di ng, a nd t he w i l d t y pe pr ot e i n i s t houg ht t o be i ne f f i c i e nt l y pr oc e s s e d a s w e l l W he n t r e a t i ng pa t i e nt s by ge ne t he r a py w i t h e xpr e s s e d m ut a t i ons i t m i ght be a dva nt a ge ous t o t he ve c t or de r i ve d pr ot e i n t o pr e ve nt t r a ns l a t i on o f t he e ndoge nous C F T R m R N A by us i ng a nt i s e ns e t e c hn ol ogy. I f onl y 25% of t r a ns l a t e d C F T R i s f ul l y pr oc e s s e d pe r ha ps a gr e a t e r e f f e c t f r om t he ge ne t he r a py c oul d be obs e r ve d by onl y a l l ow i ng t r a ns l a t i on, t hus a t t e m pt e d p r oc e s s i ng, of t he nor m a l pr ot e i n T hi s s t udy s how s t ha t ge ne t he r a py f or phe nyl ke t o nur i a i s pos s i bl e a nd c a n l e a d t o hype r phe nyl a l a ni ne m i a r e ve r s a l on a no r m a l di e t B y de t e r m i ni ng t he r e a s on f or t he ne e de d hi gh ve c t or dos e s i n p r e vi ous s t udi e s w e w e r e a bl e t o de vi s e a s uc c e s s f ul a ppr oa c h t o pr e ve nt dom i na nt ne ga t i ve i nt e r f e r e nc e i n t he t r e a t e d a ni m a l s t hus r e duc i ng r A A V 2 dos e s T he m ous e m ode l f or P K U B T B R P ah e n u 2 e xpr e s s e s a m i s s e ns e pr ot e i n. M a ny a ni m a l m ode l s f or ge ne t i c di s e a s e s a r e knoc k out m i c e t ha t do not pr oduc e a ny

PAGE 160

147 m ut a nt pr ot e i n W hi l e us e f ul f or pr e l i m i na r y s t udi e s t r e a t m e nt o f t he s e m i c e c a nnot t r a ns l a t e di r e c t l y t o hum a n c l i ni c a l t r i a l s A s t he P A H da t a ba s e s how s r e l a t i ve l y f e w m ut a t i ons a c t ua l l y l e a d t o nons e ns e or a bs e nt pr ot e i ns due t o c om pl e t e de g r a da t i on or l a c k of e xpr e s s i on. C a r e f ul a s s e s s m e nt of nor m a l a nd m ut a nt p r ot e i n i nt e r a c t i ons ne e d t o be pe r f or m e d t o de ve l op a pp r opr i a t e ge ne t he r a py a ppr oa c he s i n ge ne t i c di s e a s e s

PAGE 161

148 G L O S S A R Y A A V A de no a s s oc i a t e d vi r us A N O V A A na l ys i s of va r i a nc e A P 2 A c t i va t or pr ot e i n 2 B G H pA B ovi ne gr ow t h hor m one pol y A B H 4 T e t r a hydr obi opt e r i n B T B R B l a c k a nd t a n, t u f t e d m i c e C A G H ybr i d pr om ot e r c ont a i ni ng t he hC M V e nha nc e r a nd a m odi f i e d c hi c ke n a c t i n pr om ot e r a nd f i r s t i nt r on C B S a m e hybr i d p r om ot e r a s C A G C / E B P C C A A T / e nha nc e r bi ndi ng pr o t e i n C F T R C ys t i c f i br os i s t r a ns m e m br a ne c onduc t a nc e r e gul a t or C R E c A M P r e s pons e e l e m e nt C S F C e r obr os pi na l f l ui d C O L 1A 1 C ol l a ge n t ype 1, a l pha 1 ge ne C O L 1A 2 C ol l a ge n t ype 1, a l pha 2 ge ne C uZ nS O D C oppe r z i nc s uppe r oxi de di s m ut a s e r a t pr obe D C oH D i m e r i z a t i on c of a c t or t o H N F 1 D I C E R E ndor i bonuc l e a s e D i c e r D H P R D i hydr opt e r i di ne r e duc t a s e D M E M D ube l c c o s m odi f i c a t i on of E a gl e s m e di um

PAGE 162

149 E C M E xt r a c e l l ul a r m a t r i x E R E ndopl a s m i c r e t i c ul um F I S H F l uor e s c e nt i n s i t u hyb r i di z a t i on G A P D H G l yc e r a l de hyde phos pha t e de hydr oge na s e G R E G l uc oc or t i c oi d r e s pons e e l e m e nt G T P C H G T P c yc l ohydr ol a s e I H B S S H a nk s buf f e r e d s a l t s ol ut i on hC M V H um a n c yt om e ga l ovi r us i m m e di a t e e a r l y e nha nc e r H E K 293 H um a n e m br yoni c ki dne y t r a ns f or m e d c e l l l i ne H I V H um a n i m m unode f i c i e nc y vi r us H N F 1 H e pa t oc e l l ul a r nuc l e a r f a c t or 1 H P A H ype r phe nyl a l a ni ne m i a H P R T H ypoxa nt hi ne gua ni ne phos phor i bos yl t r a ns f e r a s e H S P G H e pa r i n s ul f a t e pr ot e ogl yc a n I gG I m m unogl obul i n c l a s s G I Q I nt e l l i ge nc e quot i e nt I T R I nve r t e d t e r m i na l r e pe a t I U I nf e c t i ous uni t s L R S L a c t a t e d r i nge r s i nj e c t i on s ol ut i on L T R L ong t e r m i na l r e pe a t 6 M P H 4 6 M e t hyl 5, 6, 7 8 t e t r a hydr opt e r i ne N I H s hi f t N a t i ona l I ns t i t ut e of H e a l t h s hi f t : i nt r a m ol e c ul a r h ydr oge n m i gr a t i on N M D A N m e t hyl D a s pa r t a t e

PAGE 163

150 O I O s t e oge ne s i s i m pe r f e c t a P A G E P ol ya c r yl a m i de ge l e l e c t r opho r e s i s P A H P he nyl a l a ni ne hydr oxyl a s e pr ot e i n P ah e n u 2 M ur i ne m ut a ge ni z e d l i ne w i t h F 263S a m i no a c i d c ha nge i n bot h P ah ge ne s p21 n e w hp pT R U F 12 de r i ve d ve c t or w i t h ne w ha i r pi n P A L P he nyl a l a ni ne a m m oni a l ya s e P K U P he nyl ke t onur i a P C D P t e r i n 4 c a r bi nol a m i ne de hydr a t a s e P T P S 6 pyr uvoyl t e t r a hydr opt e r i n s ynt ha s e R I S C R N A i nduc e d s i l e nc i ng c om pl e x R P A R N a s e pr ot e c t i on a s s a y R T P C R R e ve r s e t r a ns c r i pt i on a nd pol ym e r a s e c ha i n r e a c t i o n R z R i boz ym e s i R N A S hor t i nt e r f e r i ng R N A S R S e pi a pt e r i n r e duc t a s e S V 40pA S i m i a n vi r us 40 pol yA U T R U nt r a ns l a t e d r e gi on V E G F R 1 V a s c ul a r e ndot he l i a l gr ow t h f a c t o r r e c e pt or 1 vg V e c t or ge nom e s W P R E W oodc huc k he pa t i t i s vi r us pos t t r a ns c r i pt i ona l e l e m e nt

PAGE 164

151 L I S T O F R E F E R E N C E S 1. F ol l i ng, I T he di s c ove r y of phe nyl ke t onur i a A c t a P a e di a t r S uppl 407, 4 10 ( 1994) 2. P e nr os e L S P he nyl ke t onur i a a pr obl e m i n e uge n i c s A nn H um G e ne t 62 ( P t 3 ) 193 202 ( 1998 ) 3. K oc h, R & C r uz F dl H i s t or i c a l a s pe c t s a nd ove r vi e w of r e s e a r c h on phe nyl ke t onur i a M e nt a l R e t a r da t i on a nd D e ve l opm e nt a l D i s a bi l i t i e s R e s e a r c h R e vi e w s 5, 101 103 ( 1999) 4. G ut hr i e R & S us i A A S i m pl e P he nyl a l a ni ne M e t hod F or D e t e c t i ng P he nyl ke t onur i a I n L a r ge P opul a t i ons O f N e w bo r n I nf a nt s P e di a t r i c s 32 338 43 ( 1963) 5. G l us ha kov, A V D e nni s D M S um ne r s C S e ube r t C N & M a r t ynyuk, A E L phe nyl a l a ni ne s e l e c t i ve l y de pr e s s e s c ur r e nt s a t gl ut a m a t e r gi c e xc i t a t or y s yna ps e s J N e ur os c i R e s 72, 116 24 ( 2003) 6. G l us ha kov, A V G l us ha kova O V a r s hne y, M B a j pa i L K S u m ne r s C L a i pi s P J E m bu r y, J E B a ke r S P O t e r o, D H D e nni s D M S e ube r t C N & M a r t ynyuk, A E L ong t e r m c ha nge s i n gl ut a m a t e r g i c s yna pt i c t r a ns m i s s i on i n phe nyl ke t onur i a B r a i n 128, 300 7 ( 2005) 7. B e di n, M E s t r e l l a C H P onz i D D ua r t e D V D ut r a F i l ho, C S W ys e A T W a j ne r M & W a nnm a c he r C M R e duc e d N a ( + ) K ( + ) A T P a s e a c t i vi t y i n e r yt hr oc yt e m e m br a ne s f r om pa t i e nt s w i t h phe nyl k e t onur i a P e di a t r R e s 50, 56 60 ( 2001) 8. J os e ph, B & D ye r C A R e l a t i ons hi p be t w e e n m ye l i n pr oduc t i on a nd dopa m i ne s ynt he s i s i n t he P K U m ous e br a i n. J N e ur oc he m 8 6, 615 26 ( 2003 ) 9. C os t a be be r E K e s s l e r A S e ve r o D ut r a F i l ho C de S ouz a W ys e A T W a j ne r M & W a nnm a c he r C M H ype r phe nyl a l a ni ne m i a r e duc e s c r e a t i ne ki na s e a c t i vi t y i n t h e c e r e br a l c or t e x o f r a t s I nt J D e v N e ur os c i 2 1, 111 6 ( 2003 ) 10. H om m e s F A T he e f f e c t of hype r phe nyl a l a ni na e m i a on t he m us c a r i ni c a c e t yl c hol i ne r e c e pt or i n t he H P H 5 m ous e br a i n. J I nhe r i t M e t a b D i s 16 962 74 ( 1993)

PAGE 165

152 11. K a uf m a n, S T e t r a hydr obi opt e r i n: ba s i c bi oc he m i s t r y a nd r ol e i n hum a n di s e a s e vi i i 420 ( J ohns H opki ns U ni ve r s i t y P r e s s B a l t i m o r e 1997 ) 12. A c os t a P B Y a nni c e l l i S S i ngh R M of i di S S t e i ne r R D e V i nc e nt i s E J ur e c ki E B e r ns t e i n, L G l e a s on, S C he t t y M & R ous e B N ut r i e nt i nt a ke s a nd phys i c a l gr ow t h of c hi l dr e n w i t h phe nyl ke t onur i a unde r goi ng nut r i t i on t he r a py J A m D i e t A s s oc 103, 1167 73 ( 2 003) 13. S m i t h, I B e a s l e y, M G & A de s A E E f f e c t on i nt e l l i ge nc e of r e l a xi ng t he l ow phe nyl a l a ni ne di e t i n phe nyl ke t onur i a A r c h D i s C hi l d 66, 311 6 ( 1991) 14. S m i t h, I L oba s c he r M E S t e ve ns on, J E W ol f f O H S c hm i dt H G r ube l K a i s e r S & B i c ke l H E f f e c t of s t oppi ng l ow phe nyl a l a ni ne di e t on i n t e l l e c t ua l pr ogr e s s of c hi l dr e n w i t h phe nyl ke t onur i a B r M e d J 2, 723 6 ( 1978) 15. L e uz z i V P a ns i ni M S e c hi E C hi a r ot t i F C a r d uc c i C L e vi G & A nt onoz z i I E xe c ut i ve f unc t i on i m pa i r m e nt i n e a r l y t r e a t e d P K U s ubj e c t s w i t h nor m a l m e nt a l de ve l opm e nt J I nhe r i t M e t a b D i s 27, 115 2 5 ( 2004) 16. A m e r i c a n A c a de m y of P e di a t r i c s : M a t e r na l phe nyl ke t onur i a P e di a t r i c s 107, 427 8 ( 2001) 17. L e vy, H L H i s t or i c a l ba c kgr ound f or t he m a t e r na l P K U s yndr om e P e di a t r i c s 112, 1516 8 ( 2003 ) 18. L e nke R R & L e vy, H L M a t e r na l phe nyl ke t onur i a a nd hype r phe nyl a l a ni ne m i a A n i nt e r na t i ona l s ur ve y o f t he out c om e of unt r e a t e d a nd t r e a t e d p r e gna nc i e s N E ngl J M e d 303 1202 8 ( 1980 ) 19. B l a u, N & S c r i ve r C R N e w a ppr oa c he s t o t r e a t P K U : how f a r a r e w e ? M ol G e ne t M e t a b 81, 1 2 ( 2004 ) 20. P a ul D A doub l e e dge d s w or d. N a t ur e 405 515 ( 2000) 21. K oc h, R H a nl e y W L e vy H M a t a l on, R R ous e B T r e f z F G ut t l e r F A z e n, C F r i e dm a n E P l a t t L & de l a C r uz F M a t e r na l phe nyl ke t onur i a : a n i nt e r na t i ona l s t udy. M ol G e ne t M e t a b 71, 233 9 ( 2 000) 22. K oc h, R H a nl e y W L e vy H M a t a l on, K M a t a l o n, R R ous e B T r e f z F G ut t l e r F A z e n, C P l a t t L W a i s br e n, S W i da m a n, K N i ng, J F r i e dm a n, E G & de l a C r uz F T he M a t e r na l P he nyl ke t onur i a I nt e r na t i ona l S t udy: 1984 2002. P e di a t r i c s 112, 1523 9 ( 2003) 23. R ous e B & A z e n, C E f f e c t o f hi gh m a t e r na l b l oo d phe nyl a l a ni ne on of f s pr i ng c onge ni t a l a nom a l i e s a nd de ve l opm e nt a l out c om e a t a ge s 4 a nd 6 ye a r s : t he i m por t a nc e of s t r i c t di e t a r y c ont r ol pr e c onc e pt i on a nd t hr oughout p r e gna nc y. J P e di a t r 144, 235 9 ( 2004 )

PAGE 166

153 24. H a nl e y, W B A z e n, C K oc h R M i c ha l s M a t a l on, K M a t a l on, R R ous e B T r e f z F W a i s br e n, S & de l a C r uz F M a t e r na l P h e nyl ke t onur i a C ol l a bor a t i ve S t udy ( M P K U C S ) t he 'out l i e r s '. J I nhe r i t M e t a b D i s 27, 711 23 ( 2004 ) 25. N a t i ona l I ns t i t ut e s of H e a l t h C ons e ns us D e ve l opm e nt C onf e r e nc e S t a t e m e nt : phe nyl ke t onur i a : s c r e e ni ng a nd m a na ge m e nt O c t obe r 16 18 2000 P e di a t r i c s 108, 972 82 ( 2001 ) 26. S c r i ve r C R H ur t ubi s e M K one c ki D P hom m a r i nh, M P r e vos t L E r l a nds e n, H S t e ve ns R W a t e r s P J R ya n, S M c D ona l d, D & S a r ki s s i a n, C P A H db 2003: w ha t a l oc us s pe c i f i c know l e dge ba s e c a n do. H um M ut a t 21, 333 44 ( 2003) 27. S c r i ve r C R & K a uf m a n S H ype r phe nyl a l a ni ne m i a : P he nyl a l a ni ne H ydr oxy l a s e D e f i c i e nc y. i n T he m e t a bol i c a nd m ol e c ul a r ba s e s of i nhe r i t e d di s e a s e V ol I I ( e ds C ha r l e s R S c r i ve r M D C M A r t hur L B e a ude t M D W i l l i a m S S l y, M D & D a vi d V a l l e M D ) ( M c G r a w H i l l N e w Y or k, 200 1) 28. K w ok, S C L e dl e y, F D D i L e l l a A G R obs on, K J & W oo, S L N uc l e ot i de s e que nc e of a f ul l l e ngt h c om pl e m e nt a r y D N A c l o ne a nd a m i no a c i d s e que nc e of hum a n ph e nyl a l a ni ne hydr oxyl a s e B i oc he m i s t r y 2 4, 556 61 ( 1985 ) 29. L e dl e y, F D G r e ne t t H E D i L e l l a A G K w ok, S C & W oo, S L G e ne t r a ns f e r a nd e xpr e s s i on of hum a n phe nyl a l a ni ne hydr oxy l a s e S c i e nc e 228, 77 9 ( 1985) 30. D i L e l l a A G K w ok, S C L e dl e y, F D M a r vi t J & W oo, S L M ol e c ul a r s t r uc t ur e a nd pol ym or phi c m a p of t he hum a n phe nyl a l a ni ne hydr oxyl a s e ge ne B i oc he m i s t r y 25, 743 9 ( 1986 ) 31. F a us t D M C a t he r i n, A M B a r ba ux S B e l ka di L I m a i z um i S c he r r e r T & W e i s s M C T he a c t i vi t y o f t he hi ghl y i nduc i bl e m o us e phe nyl a l a ni ne hydr oxyl a s e ge ne pr om ot e r i s de pe nde nt upon a t i s s ue s pe c i f i c hor m one i nduc i bl e e nha nc e r M ol C e l l B i ol 16, 3125 37 ( 1996) 32. K one c ki D S W a ng, Y T r e f z F K L i c ht e r K one c ki U & W oo, S L S t r uc t u r a l c ha r a c t e r i z a t i on of t he 5' r e gi ons o f t he hum a n phe nyl a l a ni ne hydr oxyl a s e ge ne B i oc he m i s t r y 31, 8363 8 ( 1992 ) 33. L e i X D & K a uf m a n S I de nt i f i c a t i on of he pa t i c n uc l e a r f a c t or 1 bi ndi ng s i t e s i n t he 5' f l a nki ng r e gi on of t he hum a n phe nyl a l a ni ne hydr oxyl a s e ge ne : i m pl i c a t i on of a dua l f un c t i on o f phe nyl a l a ni ne hyd r oxyl a s e s t i m ul a t or i n t he phe nyl a l a ni ne hydr oxyl a t i on s ys t e m P r oc N a t l A c a d S c i U S A 9 5, 1500 4 ( 1998 ) 34. D a hl H H & M e r c e r J F I s ol a t i on a nd s e que nc e of a c D N A c l one w hi c h c ont a i ns t he c om pl e t e c odi ng r e gi on of r a t phe nyl a l a ni ne hy dr oxyl a s e S t r uc t u r a l hom ol ogy w i t h t y r os i ne hydr oxyl a s e g l uc oc or t i c oi d r e gul a t i on, a nd us e of a l t e r na t e pol ya de nyl a t i on s i t e s J B i ol C he m 261 4 148 53 ( 1986 )

PAGE 167

154 35. W a ng, Y D e M a yo, J L H a hn, T M F i ne gol d, M J K one c ki D S L i c ht e r K one c ki U & W oo S L T i s s ue a nd de ve l opm e nt s pe c i f i c e xpr e s s i on of t he hum a n phe nyl a l a ni ne hydr oxyl a s e / c hl or a m phe ni c ol a c e t yl t r a ns f e r a s e f us i on ge ne i n t r a ns ge ni c m i c e J B i ol C he m 267 15105 10 ( 1992 ) 36. T our i a n, A G odda r d, J & P uc k, T T P he nyl a l a ni ne hydr oxyl a s e a c t i vi t y i n m a m m a l i a n c e l l s J C e l l P hys i ol 73, 159 70 ( 1969) 37. A yl i ng, J E P i r s on, W D a l J a na bi J M & H e l f a nd, G D K i dne y phe nyl a l a ni ne hydr oxyl a s e f r om m a n a nd r a t C om pa r i s on w i t h t he l i ve r e nz ym e B i oc he m i s t r y 13, 78 85 ( 1974 ) 38. R a o, D N & K a uf m a n, S P ur i f i c a t i on a nd s t a t e o f a c t i va t i on of r a t ki dne y phe nyl a l a ni ne hydr oxyl a s e J B i ol C he m 261 886 6 76 ( 1986 ) 39. M ol l e r N M e e k, S B i ge l ow M A nd r e w s J & N a i r K S T he ki dne y i s a n i m por t a nt s i t e f or i n vi vo phe nyl a l a ni ne t o t y r os i ne c onve r s i on i n a dul t hum a ns : A m e t a bol i c r ol e of t he ki dne y. P r oc N a t l A c a d S c i U S A 97 1242 6 ( 2000 ) 40. L i c ht e r K one c ki U H i pke C M & K one c ki D S H um a n phe nyl a l a ni ne hydr oxyl a s e ge ne e xpr e s s i on i n ki dne y a nd ot he r n onhe pa t i c t i s s ue s M ol G e ne t M e t a b 67, 308 16 ( 1999) 41. S c r i ve r C R & C l ow C L P he nyl ke t onur i a a nd ot h e r phe nyl a l a ni ne hydr oxyl a t i on m ut a nt s i n m a n. A nnu R e v G e ne t 14 179 202 ( 19 80) 42. D os ke l a nd, A P M a r t i ne z A K na pps kog, P M & F l a t m a r k, T P hos phor yl a t i on of r e c om bi na nt hum a n phe nyl a l a ni ne hyd r oxyl a s e : e f f e c t on c a t a l yt i c a c t i vi t y s ubs t r a t e a c t i va t i on a nd pr ot e c t i on a ga i ns t non s pe c i f i c c l e a va ge of t he f us i on pr ot e i n by r e s t r i c t i on p r ot e a s e B i oc he m J 313 ( P t 2) 409 14 ( 1996) 43. K obe B J e nni ngs I G H ous e C M M i c he l l B J G oodw i l l K E S a nt a r s i e r o, B D S t e ve ns R C C ot t on, R G & K e m p B E S t r uc t ur a l ba s i s of a ut or e gul a t i on of phe nyl a l a ni ne hydr oxyl a s e N a t S t r uc t B i ol 6, 442 8 ( 1999) 44. W a t e r s P J H ow P A H ge ne m ut a t i ons c a us e hype r phe nyl a l a ni ne m i a a nd w hy m e c ha ni s m m a t t e r s : i ns i ght s f r om i n vi t r o e xpr e s s i on. H um M ut a t 21, 357 69 ( 2003) 45. W a t e r s P J S c r i ve r C R & P a r ni a k, M A H om om e r i c a nd he t e r om e r i c i nt e r a c t i ons be t w e e n w i l d t ype a nd m ut a nt phe nyl a l a ni ne hydr oxyl a s e s ubuni t s : e va l ua t i on of t w o hybr i d a pp r oa c he s f or f unc t i ona l a na l y s i s of m ut a t i ons c a us i ng hype r phe nyl a l a ni ne m i a M ol G e ne t M e t a b 73, 230 8 ( 2001 ) 46. P e y, A L D e s vi a t L R G a m e z A U ga r t e M & P e r e z B P he nyl ke t onu r i a : ge not ype phe not ype c or r e l a t i ons ba s e d on e xpr e s s i on a na l ys i s of s t r uc t ur a l a nd f unc t i ona l m ut a t i ons i n P A H H um M ut a t 21 370 8 ( 2003)

PAGE 168

155 47. M i r i s ol a M G C a l i F G l or i a A S c hi noc c a P D A m a t o, M C a s s a r a G L e o G D P a l i l l o L M e l i C & R om a no, V P A H ge ne m ut a t i ons i n t he S i c i l i a n popul a t i on: a s s oc i a t i on w i t h m i ni ha pl ot ype s a nd e xpr e s s i on a na l ys i s M ol G e ne t M e t a b 74, 353 61 ( 2001) 48. G a m e z A P e r e z B U ga r t e M & D e s vi a t L R E x pr e s s i on a na l ys i s of phe nyl ke t onur i a m ut a t i ons E f f e c t on f ol di ng a nd s t a bi l i t y of t he phe nyl a l a ni ne hydr oxyl a s e pr ot e i n. J B i ol C he m 275 29737 42 ( 2000) 49. K a ya a l p E T r e a c y, E W a t e r s P J B yc k, S N ow a c ki P & S c r i ve r C R H um a n phe nyl a l a ni ne hydr oxyl a s e m ut a t i ons a nd hype r ph e nyl a l a ni ne m i a phe not ype s : a m e t a na l ys i s of ge not ype phe not ype c or r e l a t i ons A m J H um G e ne t 61 1309 17 ( 1997) 50. S he dl ovs ky, A M c D ona l d, J D S y m ul a D & D ov e W F M ous e m ode l s of hum a n phe nyl ke t onur i a G e ne t i c s 134, 1205 10 ( 1993) 51. M c D ona l d, J D B ode V C D ove W F & S he dl ovs ky, A P a hhph 5: a m ous e m ut a nt de f i c i e nt i n phe nyl a l a ni ne hydr oxyl a s e P r o c N a t l A c a d S c i U S A 87, 1965 7 ( 1990 ) 52. Z a gr e da L G oodm a n, J D r ui n D P M c D ona l d, D & D i a m ond A C ogni t i ve de f i c i t s i n a ge ne t i c m ous e m ode l of t he m os t c om m on bi oc he m i c a l c a us e of hum a n m e nt a l r e t a r da t i on J N e ur os c i 19, 6175 82 ( 1999) 53. M c D ona l d, J D D ye r C A G a i l i s L & K i r by, M L C a r di ova s c ul a r de f e c t s a m ong t he pr oge ny of m ous e phe nyl ke t onur i a f e m a l e s P e di a t r R e s 42, 103 7 ( 1997) 54. M c D ona l d, J D & C ha r l t on, C K C ha r a c t e r i z a t i on o f m ut a t i ons a t t he m ous e phe nyl a l a ni ne hydr oxyl a s e l oc us G e nom i c s 39, 40 2 5 ( 1997 ) 55. C ho, S & M c D ona l d, J D E f f e c t of m a t e r na l b l ood phe nyl a l a ni ne l e ve l on m ous e m a t e r na l phe nyl ke t onur i a o f f s pr i ng. M ol G e ne t M e t a b 74, 420 5 ( 2001 ) 56. P e y, A L P e r e z B D e s vi a t L R M a r t i ne z M A A gua do, C E r l a nds e n, H G a m e z A S t e ve ns R C T ho r ol f s s on, M U g a r t e M & M a r t i ne z A M e c ha ni s m s unde r l yi ng r e s pons i ve ne s s t o t e t r a hydr obi opt e r i n i n m i l d phe nyl ke t onu r i a m ut a t i ons H um M ut a t 24 388 99 ( 2004) 57. E r l a nds e n, H P e y A L G a m e z A P e r e z B D e s vi a t L R A gua do, C K oc h R S ur e ndr a n, S T y r i ng, S M a t a l on, R S c r i ve r C R U ga r t e M M a r t i ne z A & S t e ve ns R C C or r e c t i on of ki ne t i c a nd s t a bi l i t y de f e c t s by t e t r a hydr obi opt e r i n i n phe nyl ke t onur i a pa t i e nt s w i t h c e r t a i n phe nyl a l a ni n e hydr oxyl a s e m ut a t i ons P r oc N a t l A c a d S c i U S A 101, 16903 8 ( 2004)

PAGE 169

156 58. D e s vi a t L R P e r e z B B e l a nge r Q ui nt a na A C a s t r o, M A gua do, C S a nc he z A G a r c i a M J M a r t i ne z P a r do M & U ga r t e M T e t r a hydr obi opt e r i n r e s pons i ve ne s s : r e s ul t s of t he B H 4 l oa di ng t e s t i n 31 S pa ni s h P K U pa t i e nt s a nd c or r e l a t i on w i t h t he i r ge not ype M ol G e ne t M e t a b 83, 157 62 ( 2004 ) 59. T r e f z F K & B l a u, N P ot e nt i a l r ol e of t e t r a hydr ob i opt e r i n i n t he t r e a t m e nt of m a t e r na l phe nyl ke t onur i a P e di a t r i c s 112 1566 9 ( 2003) 60. S hi nt a ku, H K ur e S O hu r a T O ka no, Y O hw a da M S ugi ya m a N S a kur a N Y os h i da I Y os hi no, M M a t s uba r a Y S uz uki K A oki K & K i t a ga w a T L ong t e r m t r e a t m e nt a nd di a gnos i s of t e t r a hydr obi opt e r i n r e s pons i ve hype r phe nyl a l a ni ne m i a w i t h a m ut a nt phe nyl a l a ni ne hydr oxyl a s e ge ne P e di a t r R e s 55, 425 30 ( 2004) 61. B l a u, N & E r l a nds e n, H T he m e t a bol i c a nd m ol e c ul a r ba s e s of t e t r a hydr obi opt e r i n r e s pons i ve phe nyl a l a ni ne hydr oxyl a s e de f i c i e nc y. M ol G e ne t M e t a b 82, 101 11 ( 2004) 62. K i m W E r l a nds e n, H S u r e ndr a n, S S t e ve ns R C G a m e z A M i c hol s M a t a l on, K T y r i ng, S K & M a t a l on, R T r e nds i n e nz ym e t h e r a py f or phe nyl ke t onur i a M ol T he r 10 220 4 ( 2004 ) 63. C hr i s t e ns e n, R G ut t l e r F & J e ns e n, T G C om pa r i s on of e pi de r m a l ke r a t i noc yt e s a nd de r m a l f i b r obl a s t s a s pot e nt i a l t a r ge t c e l l s f or s om a t i c ge ne t he r a py o f phe nyl ke t onur i a M ol G e ne t M e t a b 76 313 8 ( 200 2) 64. H a r di ng, C O W i l d, K C ha ng, D M e s s i ng, A & W ol f f J A M e t a bol i c e ngi ne e r i ng a s t he r a py f o r i nbo r n e r r or s of m e t a bol i s m de ve l opm e nt of m i c e w i t h phe nyl a l a ni ne hydr oxyl a s e e xpr e s s i on i n m us c l e G e ne T he r 5, 677 83 ( 1998) 6 5. L i n, C M T a n Y L e e Y M C ha ng, C C & H s i a o, K J E xpr e s s i on of hum a n phe nyl a l a ni ne hydr oxyl a s e a c t i vi t y i n T l ym phoc yt e s of c l a s s i c a l phe nyl ke t onur i a c hi l dr e n by r e t r ovi r a l m e di a t e d ge ne t r a ns f e r J I nh e r i t M e t a b D i s 20, 742 54 ( 1997) 66. H a r di ng, C O N e f f M J one s K W i l d, K & W ol f f J A E xp r e s s i on of phe nyl a l a ni ne hydr oxyl a s e ( P A H ) i n e r yt h r oge ni c bone m a r r ow doe s not c or r e c t hype r phe nyl a l a ni ne m i a i n P a h( e nu2) m i c e J G e ne M e d 5, 984 93 ( 2003) 67. F a ng, B E i s e ns m i t h, R C L i X H F i ne gol d, M J S he d l ovs ky, A D ove W & W oo, S L G e ne t he r a py f o r phe nyl ke t onu r i a : phe n ot ypi c c or r e c t i on i n a ge ne t i c a l l y de f i c i e nt m ous e m ode l by a de novi r us m e di a t e d he pa t i c ge ne t r a ns f e r G e ne T he r 1 247 54 ( 1994 )

PAGE 170

157 68. N a ga s a ki Y M a t s uba r a Y T a ka no, H F uj i i K S e noo M A ka num a J T a ka ha s hi K K u r e S H a r a M K a ne ga e Y S a i t o, I & N a r i s a w a K R e ve r s a l of hypopi gm e nt a t i on i n phe nyl ke t onu r i a m i c e by a de novi r us m e di a t e d ge ne t r a ns f e r P e di a t r R e s 45, 465 73 ( 1999) 69. M oc hi z uki S M i z uka m i H O gur a T K ur e S I c hi nohe A K oj i m a K M a t s uba r a Y K oba ya hi E O ka da T H os hi ka A O z a w a K & K um e A L ong t e r m c or r e c t i on of hype r phe nyl a l a ni ne m i a by A A V m e di a t e d ge ne t r a ns f e r l e a ds t o be ha vi or a l r e c ove r y i n phe nyl ke t onu r i a m i c e G e ne T he r 11 1081 6 ( 2004) 70. O h, H J P a r k, E S K a ng S J o, I & J ung, S C L ong t e r m e nz ym a t i c a nd phe not ypi c c or r e c t i on i n t he phe nyl ke t onu r i a m ous e m ode l by a de no a s s oc i a t e d vi r us ve c t or m e di a t e d ge ne t r a ns f e r P e di a t r R e s 56, 278 84 ( 2004 ) 71. M uz yc z ka N & B e r ns K P a r vov i r i da e : T he vi r us e s a nd t he i r r e pl i c a t i on i n F unda m e nt a l vi r ol ogy ( e ds K ni pe D H ow l e y, P & G r i f f i n, D ) 1089 1121 ( L i ppi nc ot t W i l l i a m s & W i l k i ns P hi l a de l phi a 200 1) 72. S ong, S E m bur y J L a i pi s P B e r ns K C r a w f o r d, J & F l o t t e T S t a bl e t he r a pe ut i c s e r u m l e ve l s of hum a n a l pha 1 a nt i t r yp s i n ( A A T ) a f t e r por t a l ve i n i nj e c t i on of r e c om bi na nt a de no a s s oc i a t e d vi r us ( r A A V ) ve c t or s G e ne T he r 8 1299 306 ( 2001 ) 73. H e r z og, R Y a ng, E C out o, L H a gs t r om J E l w e l l D F i e l ds P B ur t on M B e l l i nge r D R e a d, M B r i nkhous K P ods a kof f G N i c hol s T K ur t z m a n, G & H i gh, K L ong t e r m c or r e c t i on of c a ni ne he m ophi l i a B by ge ne t r a ns f e r of bl ood c oa gul a t i on f a c t or I X m e di a t e d by a de no a s s oc i a t e d vi r a l ve c t or N a t M e d 5, 56 63 ( 1999) 74. K a s pa r B R ot h, D L a i N D r um m J E r i c ks on, D M c K i r na n, M & H a m m ond H M yoc a r di a l ge ne t r a ns f e r a nd l ong t e r m e xpr e s s i on f ol l ow i ng i nt r a c or ona r y de l i ve r y of a de no a s s oc i a t e d vi r us J G e ne M e d 7, 316 24 ( 2005 ) 75. H i l di nge r M & A ur i c c hi o A A dva nc e s i n A A V m e di a t e d ge ne t r a ns f e r f or t he t r e a t m e nt of i nhe r i t e d d i s or de r s E ur J H u m G e ne t 12, 263 71 ( 2004 ) 76. N a ka i H M ont i ni E F ue s s S S t or m T G r om pe M & K a y, M A A V s e r ot ype 2 ve c t or s pr e f e r e nt i a l l y i n t e gr a t e i nt o a c t i ve ge ne s i n m i c e N a t G e ne t 34, 297 302 ( 2003) 77 Y a ng, C X i a o X Z hu, X A ns a r di D E ps t e i n, N F r e y, M M a t e r a A & S a m ul s ki R C e l l ul a r r e c om bi na t i on pa t hw a ys a nd vi r a l t e r m i na l r e pe a t ha i r pi n s t r uc t ur e s a r e s uf f i c i e nt f or a de no a s s oc i a t e d vi r us i nt e gr a t i on i n vi vo a nd i n vi t r o. J V i r ol 71 9231 47 ( 1997 ) 78. Q i ng, K M a h, C H a ns e n, J Z hou S D w a r ki V & S r i va s t a va A H um a n f i br obl a s t gr ow t h f a c t or r e c e pt or 1 i s a c o r e c e pt or f or i n f e c t i on by a de no a s s oc i a t e d vi r us 2. N a t M e d 5, 71 7 ( 1999)

PAGE 171

158 79. S um m e r f or d C B a r t l e t t J & S a m ul s ki R A l pha V be t a 5 i nt e gr i n: a c o r e c e pt or f or a de no a s s oc i a t e d vi r us t ype 2 i nf e c t i on. N a t M e d 5, 78 82 ( 1999) 80. T hom a s C E S t o r m T A H ua ng, Z & K a y, M A R a pi d unc oa t i ng of ve c t or ge nom e s i s t he ke y t o e f f i c i e nt l i ve r t r a ns duc t i on w i t h ps e udot ype d a de no a s s oc i a t e d vi r us ve c t or s J V i r ol 78 3110 22 ( 20 04 ) 81. N a ka i H Y a nt S S t or m T F ue s s S M e us e L & K a y, M E xt r a c hr om os om a l r e c om bi na nt a de no a s s oc i a t e d vi r us ve c t or ge nom e s a r e pr i m a r i l y r e s pons i bl e f or s t a bl e l i ve r t r a ns duc t i on i n vi vo. J V i r ol 75, 6969 76 ( 2001) 82. O ha s hi K N a ka i H C out o, L & K a y, M M odi f i e d i nf us i on pr oc e dur e s a f f e c t r e c om bi na nt a de no a s s oc i a t e d vi r us ve c t or t ype 2 t r a ns duc t i on i n t he l i ve r H um G e ne T he r 16 299 306 ( 2005 ) 83. L i u, M Y ue Y H a r pe r S G r a nge R C ha m be r l a i n, J & D ua n, D A de no a s s oc i a t e d vi r us m e di a t e d m i c r odys t r ophi n e xpr e s s i on pr ot e c t s young m dx m us c l e f r om c ont r a c t i on i nduc e d i nj ur y M ol T he r 11, 245 56 ( 2005 ) 84. P a s s i ni M M a c a ul e y, S H uf f M T a ks i r T B u, J W u, I P i e pe nha ge n, P D odge J S h i ha bu ddi n, L O 'R i or da n, C S c huc hm a n, E & S t e w a r t G A A V ve c t or m e di a t e d c or r e c t i on of b r a i n pa t hol ogy i n a m ous e m ode l of N i e m a nn P i c k A di s e a s e M ol T he r 11 754 62 ( 2005) 85. V i r e l l a L ow e l l I Z us m a n, B F ous t K L oi l e r S C onl on, T S ong S C he s nut K F e r kol T & F l ot t e T E nha nc i ng r A A V ve c t or e xpr e s s i on i n t he l ung. J G e ne M e d ( 2005) 86. H e nni g, A O gi l vi e J O hl e m i l l e r K T i m m e r s A H a us w i r t h, W & S a nds M A A V m e di a t e d i nt r a vi t r e a l ge ne t he r a py r e duc e s l ys os om a l s t or a ge i n t he r e t i na l pi gm e n t e d e pi t he l i um a nd i m pr ove s r e t i na l f unc t i o n i n a dul t M P S V I I m i c e M ol T he r 10 106 16 ( 2004 ) 87. T a ke da S T a ka ha s hi M M i z uka m i H K oba ya s hi E T a ke uc hi K H a ka m a t a Y K a ne ko, T Y a m a m ot o, H I t o C O z a w a K I s hi ba s hi K M a t s uz a ki T T a ka t a K A s a no, Y & K us a no, E S uc c e s s f ul ge ne t r a ns f e r us i ng a de no a s s oc i a t e d vi r us ve c t or s i nt o t he ki dne y: c om pa r i s on a m ong a de no a s s oc i a t e d vi r us s e r ot ype 1 5 ve c t or s i n vi t r o a nd i n vi vo N e p hr on E xp N e phr ol 96, e 119 26 ( 2004) 88. S nyde r R M i a o, C M e us e L T ubb, J D ona hue B L i n H S t a f f or d D P a t e l S T hom ps on, A N i c hol s T R e a d, M B e l l i nge r D B r i nkhous K & K a y, M C or r e c t i on of he m ophi l i a B i n c a ni ne a nd m u r i ne m ode l s us i ng r e c om bi na nt a de no a s s oc i a t e d vi r a l ve c t or s N a t M e d 5, 64 70 ( 1999) 89. F i r e A X u S M ont gom e r y M K K os t a s S A D r i ve r S E & M e l l o, C C P ot e nt a nd s pe c i f i c ge ne t i c i nt e r f e r e nc e by doubl e s t r a nde d R N A i n C a e nor ha bdi t i s e l e ga ns N a t ur e 391, 806 11 ( 1998)

PAGE 172

159 90. M c M a nu s M T & S ha r p, P A G e ne s i l e nc i ng i n m a m m a l s by s m a l l i nt e r f e r i ng R N A s N a t R e v G e ne t 3, 737 47 ( 2002) 91. R e ynol ds A L e a ke D B oe s e Q S c a r i nge S M a r s ha l l W S & K hvor ova A R a t i ona l s i R N A de s i gn f or R N A i nt e r f e r e nc e N a t B i ot e c hnol 22, 326 30 ( 2004 ) 92. U i T e i K N a i t o, Y T a ka ha s hi F H a r a guc hi T O hki H a m a z a ki H J uni A U e da R & S a i go K G ui de l i ne s f or t he s e l e c t i on o f hi ghl y e f f e c t i ve s i R N A s e que nc e s f or m a m m a l i a n a nd c hi c k R N A i nt e r f e r e nc e N uc l e i c A c i ds R e s 32, 936 48 ( 2004 ) 93. S c hw a r z D S H ut va gne r G D u, T X u Z A r oni n N & Z a m or e P D A s ym m e t r y i n t he a s s e m bl y of t he R N A i e nz ym e c om pl e x. C e l l 115, 199 208 ( 2003) 94. S ong, R X Z ha ng Z M or G & S a nt e n, R J D ow n r e gul a t i on of B c l 2 e nha nc e s e s t r oge n a popt ot i c a c t i on i n l ong t e r m e s t r a di ol de pl e t e d E R + br e a s t c a nc e r c e l l s A popt os i s 10, 667 78 ( 2005) 95. X i a H M a o, Q E l i a s on, S L H a r pe r S Q M a r t i ns I H O r r H T P a ul s on, H L Y a ng, L K ot i n R M & D a vi ds on, B L R N A i s uppr e s s e s pol ygl ut a m i ne i nduc e d ne ur ode ge ne r a t i on i n a m ode l of s pi noc e r e be l l a r a t a xi a N a t M e d 10, 816 20 ( 2004) 96. Z ha ng, W Y a ng, H K ong, X M oha pa t r a S S a n J ua n V e r ga r a H H e l l e r m a nn G B e he r a S S i nga m R L oc ke y, R F & M oha pa t r a S S I nhi bi t i on of r e s pi r a t or y s ync yt i a l vi r us i nf e c t i on w i t h i nt r a na s a l s i R N A na nopa r t i c l e s t a r ge t i ng t he v i r a l N S 1 ge ne N a t M e d 11, 56 62 ( 2005) 97. H e de K B l oc ki ng c a nc e r w i t h R N A i n t e r f e r e nc e m ove s t ow a r d t he c l i ni c J N a t l C a nc e r I ns t 97, 626 8 ( 2005) 98. D i l l i n, A T he s pe c i f i c s of s m a l l i nt e r f e r i ng R N A s pe c i f i c i t y. P r oc N a t l A c a d S c i U S A 100, 6289 91 ( 2003) 99. T a ng G s i R N A a nd m i R N A : a n i ns i ght i nt o R I S C s T r e nds i n B i oc he m i c a l S c i e nc e s 30, 106 ( 2005 ) 100. D oudna J A & C e c h, T R T he c he m i c a l r e pe r t oi r e of na t ur a l r i boz ym e s N a t ur e 418, 222 8 ( 2002 ) 101. S c ot t W G M ur r a y J B A r no l d, J R S t odda r d B L & K l ug, A C a pt ur i ng t he s t r uc t ur e of a c a t a l yt i c R N A i nt e r m e di a t e : t he ha m m e r he a d r i boz ym e S c i e nc e 274, 2065 9 ( 1996 ) 102. R uf f ne r D E S t o r m o, G D & U hl e nbe c k, O C S e qu e nc e r e qui r e m e nt s of t he ha m m e r he a d R N A s e l f c l e a va ge r e a c t i on. B i oc he m i s t r y 29, 10695 702 ( 1990 )

PAGE 173

160 103. S hi m a ya m a T N i s hi ka w a S & T a i r a K G e ne r a l i t y of t he N U X r u l e : ki ne t i c a na l ys i s of t he r e s ul t s of s ys t e m a t i c m ut a t i ons i n t h e t r i nuc l e ot i de a t t he c l e a va ge s i t e of ha m m e r he a d r i boz ym e s B i oc he m i s t r y 34 3 649 54 ( 1995 ) 104. K or e A R V a i s h, N K K ut z ke U & E c ks t e i n, F S e que nc e s pe c i f i c i t y of t he ha m m e r he a d r i boz ym e r e vi s i t e d; t he N H H r ul e N uc l e i c A c i ds R e s 26, 4116 20 ( 1998) 105. S ha w L C S kol d A W ong F P e t t e r s R H a us w i r t h, W W & L e w i n A S A n a l l e l e s pe c i f i c ha m m e r he a d r i boz ym e ge ne t h e r a py f or a por c i ne m ode l of a ut os om a l dom i na nt r e t i ni t i s p i gm e nt os a M ol V i s 7, 6 13 ( 2001 ) 106. P ue r t a F e r na nde z E R om e r o L ope z C B a r r os o d e l J e s u s A & B e r z a l H e r r a nz A R i boz ym e s : r e c e nt a dva nc e s i n t he de ve l opm e n t of R N A t ool s F E M S M i c r obi ol R e v 27, 75 97 ( 2003) 107. C a s t a not t o, D L i J R M i c hi e nz i A L a ngl oi s M A L e e N S P uy m i r a t J & R os s i J J I nt r a c e l l ul a r r i boz ym e a ppl i c a t i ons B i oc he m S oc T r a ns 30 1140 5 ( 2002 ) 108. B e r gs l a nd, E K U pda t e on c l i ni c a l t r i a l s t a r ge t i ng va s c ul a r e ndot he l i a l gr ow t h f a c t or i n c a nc e r A m J H e a l t h S ys t P ha r m 61 S 1 2 20 ( 2004) 109. U s m a n, N & B l a t t L M N uc l e a s e r e s i s t a nt s ynt he t i c r i boz ym e s : de ve l opi ng a ne w c l a s s of t he r a pe ut i c s J C l i n I nve s t 106 1197 202 ( 2000) 110. S ul l e nge r B A & G i l boa E E m e r gi ng c l i ni c a l a ppl i c a t i ons of R N A N a t ur e 418, 252 8 ( 2002 ) 111. F r i t z J J W hi t e D A L e w i n, A S & H a us w i r t h, W W D e s i gni ng a nd c ha r a c t e r i z i ng ha m m e r he a d r i boz ym e s f or us e i n A A V ve c t o r m e di a t e d r e t i na l ge ne t he r a pi e s M e t hods E nz ym ol 346, 358 77 ( 2002) 112. S a m br ook, J R us s e l l D W & M a ni a t i s T M ol e c ul a r c l oni ng: a l a bor a t or y m a nua l 3 v ( C ol d S p r i ng H a r bo r L a bor a t or y P r e s s C ol d S pr i ng H a r bor N Y 2001) 113. M e ye r s E N L e w a ndos ki M & M a r t i n, G R A n F gf 8 m ut a nt a l l e l i c s e r i e s ge ne r a t e d by C r e a nd F l p m e di a t e d r e c om bi na t i on N a t G e ne t 18 136 41 ( 1998) 114. Z ol ot ukhi n, S B yr ne B M a s on, E Z ol o t ukhi n, I P ot t e r M C he s nut K S um m e r f or d C S a m ul s ki R & M uz yc z ka N R e c om bi na nt a de no a s s oc i a t e d vi r us pur i f i c a t i on us i ng nove l m e t hods i m pr ove s i n f e c t i ous t i t e r a nd yi e l d. G e ne T he r 6 973 85 ( 1999 ) 115. M c C a m a n, M F l uor i m e t r i c m e t hod f or t he de t e r m i na t i on of phe nyl a l a ni ne i n s e r um J our na l of L a bo r a t or y a nd C l i ni c a l M e di c i ne ( 1962)

PAGE 174

161 116. S a r ki s s i a n, C N B oul a i s D M M c D ona l d, J D & S c r i ve r C R A he t e r oa l l e l i c m ut a nt m ous e m ode l : A ne w or t hol og ue f o r hum a n hype r phe nyl a l a ni ne m i a M ol G e ne t M e t a b 69, 188 94 ( 2000 ) 117. K a uf m a n, S A m ode l of hum a n phe nyl a l a ni ne m e t a bol i s m i n nor m a l s ubj e c t s a nd i n phe nyl ke t onur i c pa t i e nt s P r oc N a t l A c a d S c i U S A 96 3 160 4 ( 1999 ) 118. P hi l l i ps J A 3r d D om i na nt ne ga t i ve di a be t e s i ns i pi dus a nd ot he r e ndoc r i nopa t hi e s J C l i n I nve s t 112 1641 3 ( 2003) 119. P a t e r na J C & B ue l e r H R e c om bi na nt a de no a s s oc i a t e d vi r us ve c t or de s i gn a nd ge ne e xpr e s s i on i n t he m a m m a l i a n b r a i n. M e t hods 28, 208 18 ( 2002 ) 120. Z uf f e r e y R D one l l o, J E T r ono, D & H ope T J W oodc huc k he pa t i t i s vi r us pos t t r a ns c r i pt i ona l r e gul a t or y e l e m e nt e nha nc e s e xpr e s s i on of t r a ns ge ne s de l i ve r e d by r e t r ovi r a l ve c t or s J V i r ol 73 2886 92 ( 1999) 121. S ong, S E m bur y J L a i pi s P J B e r ns K I C r a w f o r d, J M & F l ot t e T R S t a bl e t he r a pe ut i c s e r um l e ve l s of hum a n a l pha 1 a nt i t r yp s i n ( A A T ) a f t e r por t a l ve i n i nj e c t i on of r e c om bi na nt a de no a s s oc i a t e d vi r us ( r A A V ) ve c t or s G e ne T he r 8 1299 306 ( 2001 ) 122. S nyde r R O M i a o, C M e us e L T ubb, J D ona hue B A L i n H F S t a f f or d D W P a t e l S T hom ps on, A R N i c hol s T R e a d, M S B e l l i nge r D A B r i nkhous K M & K a y, M A C or r e c t i on of he m ophi l i a B i n c a ni ne a n d m ur i ne m ode l s us i ng r e c om bi na nt a de no a s s oc i a t e d vi r a l ve c t or s N a t M e d 5, 64 70 ( 1999) 123. D a vi dof f A N g C Z hou J S pe nc e Y & N a t hw a ni A S e x s i gni f i c a nt l y i nf l ue nc e s t r a ns duc t i on of m u r i ne l i ve r by r e c om bi na nt a de no a s s oc i a t e d vi r a l ve c t or s t hr ough a n a nd r oge n de pe nde nt pa t hw a y. B l ood 102, 480 8 ( 2003) 124 Z uke r M M f ol d w e b s e r ve r f or nuc l e i c a c i d f ol di ng a nd hybr i di z a t i on pr e di c t i on N uc l e i c A c i ds R e s 31, 3406 15 ( 2003) 125. Q i X L e w i n A S H a us w i r t h W W & G uy, J O pt i c ne ur opa t hy i nduc e d by r e duc t i ons i n m i t oc hondr i a l s upe r oxi de di s m ut a s e I nve s t O p ht ha l m ol V i s S c i 44, 1088 96 ( 2003 ) 126. L i e be r A & S t r a us s M S e l e c t i on of e f f i c i e nt c l e a va ge s i t e s i n t a r ge t R N A s by us i ng a r i boz ym e e xpr e s s i on l i br a r y. M ol C e l l B i ol 15, 540 51 ( 1995) 127. C ha r r on, C E L e w i n, A S & L a i pi s P J E xpl o r i ng t he U s e of R i boz ym e w i t h G e ne T he r a py f o r P he nyl ke t onu r i a M ol e c ul a r T he r a py 7, S 396 ( 2003) 128. T oudj a r s ka I K i l pa t r i c k, M W N i u J W e ns t r up, R J & T s i pour a s P D e l i ve r y of a ha m m e r he a d r i boz ym e s pe c i f i c a l l y dow n r e gul a t e s m ut a nt t ype I c ol l a ge n m R N A i n a m ur i ne m ode l o f os t e oge ne s i s i m pe r f e c t a A nt i s e ns e N uc l e i c A c i d D r ug D e v 11, 341 6 ( 2001 )

PAGE 175

162 129. N a ka i H S t or m T & K a y, M I nc r e a s i ng t he s i z e of r A A V m e di a t e d e xpr e s s i on c a s s e t t e s i n vi vo by i n t e r m ol e c ul a r j o i ni ng o f t w o c om pl e m e nt a r y ve c t or s N a t B i ot e c hnol 18 527 32 ( 2000 ) 130. D ua n, D Y ue Y & E nge l ha r dt J E xpa ndi ng A A V pa c ka gi ng c a pa c i t y w i t h t r a ns s pl i c i ng or ove r l a ppi ng ve c t or s : a qua nt i t a t i v e c om pa r i s on. M ol T he r 4 383 91 ( 2001) 131. D ua n, D Y ue Y Y a n, Z & E nge l ha r dt J A ne w dua l ve c t or a ppr oa c h t o e nha nc e r e c om bi na nt a de no a s s oc i a t e d vi r us m e di a t e d ge ne e xpr e s s i on t hr ough i nt e r m ol e c ul a r c i s a c t i va t i on. N a t M e d 6 595 8 ( 2 000) 132. Y a n, Z Z ha ng, Y D ua n D & E nge l ha r dt J T r a ns s pl i c i ng ve c t or s e xpa nd t he ut i l i t y of a de no a s s oc i a t e d vi r us f o r ge ne t he r a py. P r oc N a t l A c a d S c i U S A 97 6716 21 ( 2000 ) 133. M a h, C S a r ka r R Z ol ot ukhi n I S c hl e i s s i ng, M X i a o, X K a z a z i a n, H H & B yr ne B J D ua l ve c t or s e xp r e s s i ng m ur i ne f a c t o r V I I I r e s ul t i n s us t a i ne d c or r e c t i on of he m ophi l i a A m i c e H um G e ne T h e r 14, 143 52 ( 2003 ) 134. N a ka i H S t or m T & K a y, M R e c r ui t m e nt of s i ng l e s t r a nde d r e c om bi na nt a de no a s s oc i a t e d vi r us ve c t or ge nom e s a nd i nt e r m ol e c ul a r r e c om bi na t i on a r e r e s pons i bl e f or s t a bl e t r a ns duc t i on o f l i ve r i n vi vo. J V i r ol 74 9451 63 ( 2000 ) 135. K i ngs m a n, S M M i t r opha nous K & O l s e n, J C P ot e nt i a l onc oge ne a c t i vi t y of t he w oodc huc k he pa t i t i s pos t t r a ns c r i pt i ona l r e gul a t or y e l e m e nt ( W P R E ) G e ne T he r ( 2004) 136. D ons a nt e A V ogl e r C M uz yc z ka N C r a w f or d J M B a r ke r J F l ot t e T C a m pbe l l T hom ps on, M D a l y, T & S a nds M S O bs e r ve d i nc i de nc e of t um or i ge ne s i s i n l ong t e r m r ode nt s t udi e s of r A A V ve c t or s G e ne T he r 8 1343 6 ( 2001) 137. M i a o, C N a ka i H T hom ps on, A S t or m T C hi u, W S nyde r R & K a y, M N onr a ndom t r a ns duc t i on of r e c om bi na nt a de no a s s oc i a t e d vi r us ve c t or s i n m ous e he pa t oc yt e s i n vi vo: c e l l c yc l i ng doe s not i n f l ue nc e he pa t oc yt e t r a ns duc t i on. J V i r ol 74, 3793 803 ( 2000 ) 138. K uw a ba r a T W a r a s hi na M K os e ki S S a no, M O hka w a J N a ka ya m a K & T a i r a K S i gni f i c a nt l y hi ghe r a c t i vi t y of a c yt opl a s m i c ha m m e r he a d r i boz ym e t ha n a c or r e s pondi ng nuc l e a r c ount e r pa r t : e ngi ne e r e d t R N A s w i t h a n e xt e nde d 3' e nd c a n be e xpor t e d e f f i c i e nt l y a nd s pe c i f i c a l l y t o t he c yt opl a s m i n m a m m a l i a n c e l l s N uc l e i c A c i ds R e s 29, 2780 8 ( 2001) 139. K uw a ba r a T W a r a s hi na M N a ka ya m a A O hka w a J & T a i r a K t R N A V a l he t e r odi m e r i c m a xi z ym e s w i t h hi gh pot e nt i a l a s ge ne i na c t i va t i ng a ge nt s : s i m ul t a ne ous c l e a va ge a t t w o s i t e s i n H I V 1 T a t m R N A i n c ul t ur e d c e l l s P r oc N a t l A c a d S c i U S A 96, 1886 91 ( 1999)

PAGE 176

163 140. W a r a s hi na M K uw a ba r a T K a t o, Y S a no, M & T a i r a K R N A p r ot e i n hyb r i d r i boz ym e s t ha t e f f i c i e nt l y c l e a ve a ny m R N A i nde p e nde nt l y of t he s t r uc t ur e o f t he t a r ge t R N A P r oc N a t l A c a d S c i U S A 98, 5572 7 ( 2001) 141. K a t o, Y K uw a ba r a T W a r a s hi na M T oda H & T a i r a K R e l a t i ons hi ps be t w e e n t he a c t i vi t i e s i n vi t r o a nd i n vi vo of va r i ous ki nds o f r i boz ym e a nd t he i r i nt r a c e l l ul a r l oc a l i z a t i on i n m a m m a l i a n c e l l s J B i o l C he m 276, 15378 85 ( 2001) 142. K uw a ba r a T W a r a s hi na M S a no, M T a ng, H W ong S t a a l F M une ka t a E & T a i r a K R e c ogni t i on of e ngi ne e r e d t R N A s w i t h a n e xt e nde d 3' e nd by E xpo r t i n t ( X po t ) a nd t r a ns por t of t R N A a t t a c he d r i boz ym e s t o t he c yt opl a s m i n s om a t i c c e l l s B i om a c r om ol e c ul e s 2, 1229 42 ( 2001 ) 143. K a w a s a ki H & T a i r a K I de nt i f i c a t i on of ge ne s b y hybr i d r i boz ym e s t ha t c oupl e c l e a va ge a c t i vi t y w i t h t he unw i ndi ng a c t i vi t y of a n e ndoge nous R N A he l i c a s e E M B O R e p 3, 443 50 ( 2002 ) 144. B yun, J L a n, N L ong, M & S ul l e nge r B A E f f i c i e nt a nd s pe c i f i c r e pa i r of s i c kl e be t a gl obi n R N A by t r a ns s pl i c i ng r i boz ym e s R na 9, 1254 63 ( 2003) 145. S hi n, K S S ul l e nge r B A & L e e S W R i boz ym e M e di a t e d I nduc t i on of A popt os i s i n H um a n C a nc e r C e l l s by T a r ge t e d R e pa i r of M ut a nt p53 R N A M ol e c ul a r T he r a py 10 365 ( 2004) 146. C a s t a not t o, D L i H & R os s i J J F unc t i ona l s i R N A e xpr e s s i on f r om t r a ns f e c t e d P C R pr oduc t s R na 8, 1454 60 ( 2002) 147. B ode n, D P us c h, O L e e F T uc ke r L S ha nk P R & R a m r a t na m B P r om ot e r c hoi c e a f f e c t s t he pot e nc y of H I V 1 s pe c i f i c R N A i nt e r f e r e nc e N uc l e i c A c i ds R e s 31, 5033 8 ( 2003) 148. K a w a s a ki H & T a i r a K S hor t ha i r pi n t ype of ds R N A s t ha t a r e c ont r ol l e d by t R N A ( V a l ) pr om ot e r s i gni f i c a nt l y i nduc e R N A i m e di a t e d ge ne s i l e nc i ng i n t he c yt opl a s m of hum a n c e l l s N uc l e i c A c i ds R e s 31, 7 00 7 ( 2003 ) 149. L e dl e y, F D G r e ne t t H E M c G i nni s S he l nut t M & W oo, S L C R e t r ovi r a l M e di a t e d G e ne T r a ns f e r of H um a n P he nyl a l a ni ne H ydr oxyl a s e i nt o N I H 3 T 3 a nd H e pa t om a C e l l s P N A S 83 409 413 ( 1986 ) 150. S a r ka r R T e t r e a ul t R G a o G W a ng, L B e l l P C ha ndl e r R W i l s on J & K a z a z i a n, H J T ot a l c or r e c t i on o f he m ophi l i a A m i c e w i t h c a ni ne F V I I I us i ng a n A A V 8 s e r ot ype B l ood 103, 1253 60 ( 2004) 151. N a t hw a ni A C D a vi dof f A M & L i nc h, D C A r e v i e w of ge ne t he r a py f o r ha e m a t ol ogi c a l di s or de r s B r J H a e m a t ol 128, 3 17 ( 2005)

PAGE 177

164 152 S m i c un, Y K i l pa t r i c k, M W F l o r e r J T oudj a r s ka I W u, G W e ns t r up, R J & T s i pour a s P E nha nc e d i nt r a c e l l ul a r a va i l a bi l i t y a n d s ur vi va l of ha m m e r he a d r i boz ym e s i nc r e a s e s t a r ge t a bl a t i on i n a c e l l ul a r m ode l of os t e oge ne s i s i m pe r f e c t a G e ne T he r 10 2005 12 ( 2003 ) 153. B a i J R os s i J & A kki na R M ul t i va l e nt a nt i C C R r i boz ym e s f or s t e m c e l l ba s e d H I V t ype 1 ge ne t he r a py. A I D S R e s H um R e t r ovi r us e s 17, 385 99 ( 2001) 154. C ol e W G A dva nc e s i n os t e oge ne s i s i m pe r f e c t a C l i n O r t hop R e l a t R e s 6 16 ( 2002)

PAGE 178

165 B I O G R A P H I C A L S K E T C H C a t he r i ne E l i s a be t h C ha r r on w a s bor n A pr i l 30, 19 79, i n M ont r e a l C a na da E duc a t e d i n F r e nc h s c hool s dur i ng he r yout h s he a t t e nde d a f i ve m on t h E ng l i s h c our s e i n f i f t h g r a de w he r e s he w a s i m m e r s e d i n t he l a ngua g e f or t he f i r s t t i m e S he c ont i nue d he r E ngl i s h e duc a t i on t hr ough a dva nc e d c l a s s e s dur i ng 6 t h 7 t h a nd 8 t h gr a de A t t he a ge of f our t e e n, s he a nd he r f a m i l y m ove d t o F or t L a ude r da l e F l or i da w he r e s he a t t e nde d C a r di na l G i bbons H i gh S c hool W hi l e t hi s w a s he r f i r s t e xpe r i e nc e i n a n a l l E ngl i s h s c hool s he gr a dua t e d t hi r d i n he r c l a s s i n 1997 S h e e nt e r e d t he U ni ve r s i t y of F l or i da i n t he f a l l o f 1997 a nd obt a i ne d a B a c he l or of S c i e nc e de gr e e i n c he m i s t r y i n D e c e m be r 2000. D ur i ng t ha t t i m e s he j oi ne d t he l a bor a t or y of D r J on S t e w a r t i n t he C he m i s t r y D e pa r t m e nt a nd w a s a r e c i pi e nt of t he U ni ve r s i t y o f F l or i da S c hol a r s p r ogr a m a w a r d I n t he f a l l o f 2001 s he be ga n he r doc t or a l e duc a t i on a t t he U ni ve r s i t y o f F l o r i da C ol l e ge of M e di c i ne I nt e r di s c i pl i na r y P r og r a m i n B i om e di c a l S c i e nc e s S he j oi ne d t he l a bor a t or y of D r P h i l i p L a i pi s i n 2002 a nd be ga n t o w or k on de ve l opi ng ge ne t he r a py a ppr oa c he s f o r t he t r e a t m e nt of phe nyl ke t onur i a A f t e r obt a i ni ng h e r doc t or a l de g r e e i n ge ne t i c s C a t he r i ne pl a ns t o pur s ue a c a r e e r i n a c a de m i c r e s e a r c h i n t he f i e l d o f ge ne t he r a py f or i nhe r i t e d ge ne t i c di s e a s e s


xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID E20101124_AAAACB INGEST_TIME 2010-11-24T18:19:48Z PACKAGE UFE0011392_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES
FILE SIZE 7295 DFID F20101124_AABUVE ORIGIN DEPOSITOR PATH charron_c_Page_160.QC.jpg GLOBAL false PRESERVATION BIT MESSAGE_DIGEST ALGORITHM MD5
cdf11e17ce6019f135b47235ab69828f
SHA-1
d85758c6b8e626e8f5c476a136f93bfc2373763d
9418 F20101124_AABUUP charron_c_Page_133.QC.jpg
5fe340c898ce60ea7aed1c9416949167
3064405afdb59deeb259a3d6b6c3d01bec503bec
111128 F20101124_AABTQZ charron_c_Page_084.jp2
7352bd37e317de06e2c0d3e78bc1080e
5935e9603c9e10deea0852f6d4b80dabdd8d4909
6893 F20101124_AABTSC charron_c_Page_158thm.jpg
889ea02e20cbd727d01e49b987021f31
60034a4d2f5edb4ebb58463e58f8d6e64f65ccdb
48085 F20101124_AABTRN charron_c_Page_042.pro
e16912a225043a1801a4f9684016a976
b07083e99ac006919fcf9b9ad4e46837972f6e50
12134 F20101124_AABUVF charron_c_Page_163.QC.jpg
b22eafe8c3428a912eee29aaae1ebf71
c9271d85f32bbc7d406f58268adddc0cb9184158
13160 F20101124_AABUUQ charron_c_Page_134.QC.jpg
c130b38a0e4444cc45708864c8f1a730
a8dc66c50720de44fa3070bfd06044e675c12ea7
538 F20101124_AABTSD charron_c_Page_078.txt
ea734e737ab4af1b3c48423f16af74eb
87bcea9c81cb62cd5cbee2b6eb31d8566a573a2f
64672 F20101124_AABTRO charron_c_Page_126.jp2
24f5ce72a999c85fb620f00bbd03f7ff
19158b05f87340c458ed1aefce010bcf11173c25
3950 F20101124_AABUVG charron_c_Page_163thm.jpg
c710384b237ce1a102c4e7fce884fb42
76def938869cb721d0cebef68311c26cd507828a
4020 F20101124_AABUUR charron_c_Page_134thm.jpg
f32ec14ee460df1b3c51d204539937aa
4e7c4b223b13341acaca0b2c1db8808cfbd4857e
2857 F20101124_AABTSE charron_c_Page_142thm.jpg
5728b8db467cff64191e2d2da698fb17
6625a11d95aacb7f1dc9dcfe956f87d954725b02
25271604 F20101124_AABTRP charron_c_Page_078.tif
301331f2d418d330784c8ea23b71d7ec
c58e54750aecd58512e78ab4e713ded0acf72b1e
25593 F20101124_AABUVH charron_c_Page_167.QC.jpg
a1bed1e550027df8c25d357b5498256b
72f6887588d048dc881fb1598d757b6b15eb6b25
3424 F20101124_AABUUS charron_c_Page_135thm.jpg
b07d3eafebad863cd37be04339908547
544cdebf6b57587f5c6ff1de7e334409f8bce8d0
463 F20101124_AABTSF charron_c_Page_001.txt
c1c04a016edd9e55034b5f605448a5a5
4bdc4d65801efcaaca4b2864f6ab628ebef6be3d
1796 F20101124_AABTRQ charron_c_Page_116.txt
8b887e3cd37c155981e9eea26defaa6a
e934cfc464af9acab5701146a1ba53c8f2709a19
6583 F20101124_AABUUT charron_c_Page_139thm.jpg
53ca403443c7c1fc23b3befecb7431dd
ccab9305428c106faa8457c3ddca55564d8b1ae5
1053954 F20101124_AABTRR charron_c_Page_121.tif
06eb3b7947ece38616038d501828f985
b1d001523394e6c686d86adbd9904df5988d0a17
6996 F20101124_AABUVI charron_c_Page_167thm.jpg
053425044cae4fe8a80fa199f9d0d302
f7b6167a4b193fd5dec6c0b6baa0048be5e3e1c7
6469 F20101124_AABUUU charron_c_Page_140thm.jpg
7b0577ece9af8c4b92e4c6008b11e486
3d6b203d3f23089c1528236d1d317c08a1d44064
94918 F20101124_AABTSG charron_c_Page_147.jp2
c7098320cf6ad0ae8341e319edf9da4b
a6626a9a3914ada2a14a5b50135aca58e711ceb8
F20101124_AABTRS charron_c_Page_105.tif
461b87d9a8462ed86f82753345a27acf
c8213f3c4c0d3091e3a5584ceba8625b89c964ce
24868 F20101124_AABUVJ charron_c_Page_168.QC.jpg
bc754fa0d6902d73e1b57a4fa837d244
dde126a7b01ebb30ffe5f30f5e03b5774ba22ccb
8431 F20101124_AABUUV charron_c_Page_142.QC.jpg
739f1a9197322e0828e08df890409347
94ca91ef54f8b345224a5dd54824eee899f093a0
12924 F20101124_AABTSH charron_c_Page_130.pro
69359b6a58e5e24ebc2db37e81c07a2a
7930556e18b3f871d7acc9de57e4be0370641ca4
1757 F20101124_AABTRT charron_c_Page_004.txt
87bfc8ccf6fb931aa89648e146700933
fe8e78341c6be01018026eb2801bbd3a41149e64
6627 F20101124_AABUVK charron_c_Page_168thm.jpg
610ce2f7c0f094da994703381b9412b0
c0ceb3fcc0af26fba59a32f9ecfd921080d0efcd
9779 F20101124_AABUUW charron_c_Page_144.QC.jpg
2927c2bac585f5c02d99d75f16679755
e51d73f85cee8a0db7755ebdb5701ddb7e3d8805
101696 F20101124_AABTSI charron_c_Page_148.jp2
93cf77292ec8deff558957bd9737b760
6270e7ce9da27b589474ce84dce2335f37f29b03
1054428 F20101124_AABTRU charron_c_Page_048.tif
12622da2094a89b801306394d7b66198
9316c11cc24ae7c3a3644c04c42c1abba6a0bab3
26751 F20101124_AABUVL charron_c_Page_170.QC.jpg
59497aaaa30d1941714ee9960a15fd9c
23d49aef1da4091728bb314cebb7e639ac7d0c22
10780 F20101124_AABUUX charron_c_Page_145.QC.jpg
e39eae488d108b66df348c505698cace
4f00fca865912f140c8d9309f64e284721dbc96a
23653 F20101124_AABTSJ charron_c_Page_159.QC.jpg
e3a7055d314dfee2200b3c778ff64a02
ad5bdbca34781840dcdf7a85e5ac1e26d5ad2c01
46846 F20101124_AABTRV charron_c_Page_149.jp2
859dd1820c66456fd4498057ae4bdacd
c812122284c99f8a6839c43841d33078e2aba692
26530 F20101124_AABUVM charron_c_Page_171.QC.jpg
4bd414c49672ec4b43179e7fde128517
0d5b4d0f359bc6e72184188152a698f518a180d4
6092 F20101124_AABUUY charron_c_Page_147thm.jpg
6133f08e87e2c4b9c1d5433748ac1000
407efb95faabeba92811798f28390fe998b60b26
F20101124_AABTSK charron_c_Page_102.tif
27dcc3802be1b741360936ce4e07217f
f6158907b8c77f501b941c0e5e82d40b008844c5
32348 F20101124_AABTRW charron_c_Page_048.jp2
a13fc071c5bc6f3afe6bc42571a7d013
d9b980682985bea79fa34b3322d48408e7b35fc8
24126 F20101124_AABUVN charron_c_Page_173.QC.jpg
b59b69e03de5964b33dbc146e70f8f6a
8bf4ffdc4e304f33ba4d2254830ca142bcf24071
6346 F20101124_AABUUZ charron_c_Page_148thm.jpg
1b572fecc7ab8e9c1cc0de375d7bd2e7
7ee4125b33d63d3e9747f2c1ed77e2201b984518
F20101124_AABTTA charron_c_Page_071.tif
ca6020331482df8d331b7d366bcbd840
76c896c79d7ae2303adebc8b9cf8504d997c32e8
103895 F20101124_AABTSL charron_c_Page_058.jp2
e353e0febf0947ccab58169cc1bceb19
713363013db6426d017f5fc50f91858d4716413a
110914 F20101124_AABTRX charron_c_Page_138.jp2
ce8b3713c14bfc45407fe0bd97c55f63
60e62d1162b925b770cb33900322c000ee9d6f8c
7190 F20101124_AABUVO charron_c_Page_174thm.jpg
1ed310b60ec42b1651f022f8829b61fe
55d5a086eed71887462cb3c7a9dee66e4c2c86db
6354 F20101124_AABTTB charron_c_Page_070thm.jpg
621638e759b4c604fbda84953ab4031b
93ff4cec97275de24eb5fa3734398881fb1da143
87242 F20101124_AABTSM charron_c_Page_168.jpg
3195a2a22ee611b77f56ace1e518a22e
ed6e987e273aaec5f43cb7d36675d85ec74bf2e3
24148 F20101124_AABTRY charron_c_Page_052.QC.jpg
062067e7eaa43244e874857bca9af3c0
909cc296134851a4d561c0b20a2791c40d6cc964
6813 F20101124_AABUVP charron_c_Page_176thm.jpg
a48b3ded33f25a4cf03701a2e009810c
aa10a964b0a1c0e244462675d2f6cc4331d1dce9
F20101124_AABTTC charron_c_Page_092.tif
3bf8c213091d20a51ce89c8776144db7
db30f913aa8e2f53e922480dda7d370f6b6c2943
480 F20101124_AABTSN charron_c_Page_142.txt
88f30895e52a107ce34fafe24c74a20c
b272147f6a0ae53f3e6ed700da5793b204796642
1927 F20101124_AABTRZ charron_c_Page_087.txt
6b14688db69baccddd17909934a18c11
22fbec316c27b3db870b43432d781aac09d8eccc
8180 F20101124_AABUVQ charron_c_Page_177.QC.jpg
7b1eb861a61100fb977c6e499599b240
d077ddd4f1d60e12dd6a676d78cb7c0fcb3a1d75
3493 F20101124_AABTTD charron_c_Page_145thm.jpg
e00b3d48e8bd96f01a0a5ee2618f8232
388a7c8bb7ab112813552161288e36dd063ad0ee
24488 F20101124_AABTSO charron_c_Page_103.pro
53eabf38885a2e0a84658ba18f014bb4
02d3e679c657354f2cc8615038bcb12a9fa90092
111073 F20101124_AABTTE charron_c_Page_120.jp2
5908b94977216aeee81c14496054432f
459d7dec8b3f5a42835af766828dc6aad2f74f0e
22411 F20101124_AABTSP charron_c_Page_157.QC.jpg
6fa8b278f161884a92fbb78332528b58
79de4527dc7dce2bdd47043b6e7162b17324f2aa
1655 F20101124_AABTTF charron_c_Page_040.txt
89ca8ceca808d27fd147370a86d9b67e
e7de1d377942864e1352d3e72f6f291266a9c4a5
5414 F20101124_AABTSQ charron_c_Page_108.QC.jpg
dd15d98d0e3b1bcbbb202da6a01f3386
c715d7c45ac15e769ec80db08d58dcab80d396eb
2392 F20101124_AABTTG charron_c_Page_160thm.jpg
7ddc0782348d082808f2ec4d3576b266
193c9cdd25900b6b5b680dae4049ec4b53e2d29c
3066 F20101124_AABTSR charron_c_Page_075thm.jpg
ea9164b262c843b4e3efab136c6e99b4
32526fc7adfd9c4e875f9cc83b91b8ba2396293f
2915 F20101124_AABTSS charron_c_Page_131thm.jpg
c522ac02c517575c816956ddc8a3ac07
6c49b0a1b0cc2f5f62187dd7589487700a4aa49d
1859 F20101124_AABTTH charron_c_Page_048thm.jpg
f82ff9f4690c3272f80f8655b7e2ff11
2adf8754790eadd9df78dc417d746060df71d434
F20101124_AABTST charron_c_Page_104.tif
1ef3af00544f6a3b45605689eb626c2e
35d0d407f461a78ae884722c985d2c07c5f77505
70156 F20101124_AABTTI charron_c_Page_066.jpg
8d707ca9396031c34f572b3fbe05d628
843abf8e6e03c0a3c66285fd6c90c329e22dfee2
1769 F20101124_AABTSU charron_c_Page_147.txt
69c383367762c4ba300395201dc350ba
2b7d2fa1d3c15e29e92fbe90539c896144e0aa7f
6544 F20101124_AABTTJ charron_c_Page_068thm.jpg
b041455779f60205ec43a33e81c4a0b0
1ad504c2684c793956ae257382174b4ca1bdadb5
1970 F20101124_AABTSV charron_c_Page_120.txt
0d28ead1c2d8de0e0deb6e86e2a21a8e
d8aaba38439c1e51db6924e3b4f491f0e9b97645
89094 F20101124_AABTTK charron_c_Page_176.jpg
7aa5379499f38c50cd97925c8f0c3e4f
3120ae48c7dfb70e617273901f9d07cda79a4fd3
22197 F20101124_AABTSW charron_c_Page_056.QC.jpg
53fc03ae1c47e9003e1b4fbc7cab7912
d8a0233098bdb8e9d551cf615a1e107e593e5ffc
49058 F20101124_AABTSX charron_c_Page_137.pro
32e0bc7f708c2ae54bfa7da43a734158
42f8c059cd4f4fa505d8ad80f40a9f8f806fa050
F20101124_AABTUA charron_c_Page_176.tif
1e15265fbbe36facf526eb0c080261e5
2ce61819a83886feba38198200f91b377e460bb3
260228 F20101124_AABTTL charron_c_Page_131.jp2
8fd7a4718d5e098a919f5636c2604514
d591547f1c82f4e57da29c4f927b0e87b12ef551
22036 F20101124_AABTSY charron_c_Page_011.QC.jpg
466c43a1fa32da6d2e618feccee12c75
a847b2dd6abab201cf0e5a615e47e6495ec849a2
5795 F20101124_AABTUB charron_c_Page_004thm.jpg
1e8fc211ec5e934fbddfd531a1c73ed4
14abb828f38cf07f4f2ddb13e67604fc531155cf
65720 F20101124_AABTTM charron_c_Page_069.jpg
3d8c610181f9a8841ba8117140595fb8
066df82c811d20950f11626f50cec4ea5b40d979
F20101124_AABTSZ charron_c_Page_057.tif
4cdda6205768d0d75cda05e715498c96
daa29d0106ff9e0980cecb42fc9637bc65c1a5b8
24379 F20101124_AABTUC charron_c_Page_169.QC.jpg
8a04095508cb0585ebcb9382b20aadd1
465e41f025ac5601fd0c69eb4b00091ae606f670
67163 F20101124_AABTTN charron_c_Page_061.jpg
9f1bba503671ca2271975396d35f6c0d
e7f5bcb8463678b0dafdec2f604f816d2a12c591
6533 F20101124_AABTUD charron_c_Page_027thm.jpg
76faf88816927ef0392038033414c8c7
40839fd7eeae7c16c0ff45e6ee602e17fe756a4e
50464 F20101124_AABTTO charron_c_Page_028.pro
071b805062f9a24f556c1c7f0802fe3c
6df8783ac932d73827f5be7de445b03ab0772d73
F20101124_AABTUE charron_c_Page_125.tif
b096802eeb4d6d8a925b39b734bee7e7
a265ab80130fc7f23e684119bc7a0ad1d822c688
F20101124_AABTTP charron_c_Page_032.tif
cccd2f8f6ce4d06487f3cb7f5130f488
798fb33801d29bfc92cf16c7f829a12fa598870b
73027 F20101124_AABTUF charron_c_Page_082.jpg
4fe8eca7566ce99a6aff16209bb3142a
e0b46c0c24eb8759d52c6d2750844224f4375f4d
50166 F20101124_AABTTQ charron_c_Page_050.pro
c690a8363df373c505f8dd5373225ecf
6e662759149c191bec2b10b192710b90fbd1f9b4
92684 F20101124_AABUAA charron_c_Page_175.jpg
71a7d5ab53f1c3723c84705f6eebeedd
dd36dd7e9d7e1dbf347e3d1dbd1f822eac813ce7
25036 F20101124_AABTUG charron_c_Page_138.QC.jpg
e4b0a3d0965742293b5af7ae6ab6fdad
1883d6058a33c514c30a8bd450eb869033c58dea
F20101124_AABTTR charron_c_Page_077.tif
d6ac084623dcd806bc8aad84881ed12b
d2c8c7503b40ce758825b370a326cb3a3e37816c
54692 F20101124_AABUAB charron_c_Page_178.jpg
8734ca1cb72e9fdffabd64208cdbe99f
ff96adec715abc027eb66274dbc402712c215d5a
140503 F20101124_AABTUH charron_c_Page_171.jp2
109278b9117ad2f100831fb407af5e9e
e9c66521db4d131d3c849dd319daedfef6e7a93e
103684 F20101124_AABTTS charron_c_Page_157.jp2
d08ae7f3ca93052147e2759069235a34
7c64cc730949a161779895eb1c25cec1151dd9cb
25374 F20101124_AABUAC charron_c_Page_001.jp2
2752ea5ce0765d5da24677d8a41c854e
eba4cc6f9abc46b0aad817e3e35ce5b65d452ded
73657 F20101124_AABTTT charron_c_Page_139.jpg
e8ab8f7d8c98b902969f1b6d4863a94d
8f39d4e5a671ac7dc762d7eb1e3da730788bfa88
6320 F20101124_AABUAD charron_c_Page_002.jp2
b172e490f1371a2e14f7ce8ae2ae2ee4
a3f024f5468b18d1f7511a88589ff725f711848f
666 F20101124_AABTUI charron_c_Page_094.txt
5fed2f55185e8d7c82f6cd6a47413fac
8e96aa4e6d15597ec6cee3f5774730a2e1001b2d
2232 F20101124_AABTTU charron_c_Page_095thm.jpg
f6e5d7582654be1b550317da8e8f6c07
146080139d5f0eb548d69fd15cdb5dfde38bf3af
17834 F20101124_AABUAE charron_c_Page_003.jp2
248eb68c4e454cd2cd15a3fa58651060
d6f7b73e17a5a42f64047e3b3cca44d5de5fdaa1
5532 F20101124_AABTUJ charron_c_Page_048.QC.jpg
2f765d698b163a2ca82de5bfb9a468c5
d4f161682dd0992c01d130578a58cfb4aefe2cea
88948 F20101124_AABTTV charron_c_Page_014.jp2
2eda77dc2c5c124fbb858f12c98e30f9
bf53b0e1f27879975d7b6bc6780f53287feb6911
56832 F20101124_AABUAF charron_c_Page_005.jp2
4e50c1697742b1f00460732eb17a87eb
44fed85acb7ad2c1e2277a02c2f030c3518dc830
2003 F20101124_AABTUK charron_c_Page_026.txt
1022b999249f0c316e0a52989dec8b4a
9701c54dc32551c9a67a352a78eaca98d65a4712
6500 F20101124_AABTTW charron_c_Page_030thm.jpg
8057fe78d18ee9c4d6ef2053043910bf
96107d0535f632bb6cf85a0cd34a7e32d9ca8b44
1051977 F20101124_AABUAG charron_c_Page_006.jp2
70615b14699f9936981b515de32e7e79
598501e1d0664a8e0afff676df27d9b36a11dc8e
103082 F20101124_AABTVA charron_c_Page_025.jp2
a6495bd1712757ba631c78c95a8e5a37
1287657f3de82523b561830a1c5dc6fc5c4763bf
26742 F20101124_AABTUL charron_c_Page_166.QC.jpg
a481864282767e4e3ff60ed4742b6ff2
e6d78cf5b695938bf609bc415be060569addfc52
6815 F20101124_AABTTX charron_c_Page_123thm.jpg
4e9536f8511e35180746ee939fdadc09
21411b9de4ab83c9ec0d8a542b1e32a427ffa822
1051976 F20101124_AABUAH charron_c_Page_007.jp2
18bb71d2e28abce6ed1aa1327f62b848
c6c8da6f4b84e6fb46a0432fa1a877ac211ef92b
105684 F20101124_AABTVB charron_c_Page_072.jp2
2b5ddbc24d1bc989125b7d1b355a5e12
771d705ae9cb1229b69f9d11f8a0502bc572c58d
F20101124_AABTUM charron_c_Page_151.tif
d6b5e751d2331e986685663c52cbe9ed
6facd9d875ad1fa654db6a643487878c48e33711
110127 F20101124_AABTTY charron_c_Page_024.jp2
a3e1323d1ceaa39cd8ddf96ca3561da2
37d12c1bba2687559f828e2ea106ebbf11fc3d24
F20101124_AABUAI charron_c_Page_008.jp2
de0404446f5010ce9a2cc57c46b36f72
70f04722498f44a94deb97b3eb39e03955134a84
1957 F20101124_AABTVC charron_c_Page_072.txt
9f7f03dc8dcb624b4b25f4eb3590e3a9
514461f69f006ca81c9c75a9d1ad5d0a4a05ed7c
6524 F20101124_AABTUN charron_c_Page_023thm.jpg
2191a0f36e14c238b75b32743e40a6e6
6dfb892b93ecefde8d7846b5ae927923e24322a2
50104 F20101124_AABTTZ charron_c_Page_100.pro
bf6baf314bb706d123a02881bdce87f9
07953c12c4bcfccaacc2c2ad60d4eaa8af453884
48882 F20101124_AABTVD charron_c_Page_055.pro
5c1069ffb8b18a151503001723b7fdef
f880204cd0d60feb8de28786d9b1f44efa2e1329
F20101124_AABTUO charron_c_Page_026.tif
77f324a8c2bdb30f78f23796ccd88ecd
d3160976a5cc8a0d47bb982b6022cc7ae435b41e
1051960 F20101124_AABUAJ charron_c_Page_009.jp2
ab7b1aadaec28f5fd4b64254bcba59f7
054c30242b10a924e1efb7639becc2efa169b3cc
F20101124_AABTVE charron_c_Page_171.tif
a9ce4e0f41a6fd731f683add8f64b9c3
bc14e8aec4db2e82c42d0eaa8a0088074eabe027
113173 F20101124_AABTUP charron_c_Page_158.jp2
19165cdb2cb33eab73dd8921d1dbea84
4d2dfea8f7d2a3222898b3c2b2ed47ae1724e38e
84374 F20101124_AABUAK charron_c_Page_012.jp2
30b843c7b16b163ac051b29ca38fd2c9
3694f3aba7e2ea0b124dee2bff72f05a8cb436e7
6866 F20101124_AABTVF charron_c_Page_165thm.jpg
f5fd9b0c30e077366c455d82674cb30f
17f6edb4e193772203143a0851c453c3012bb203
72040 F20101124_AABTUQ charron_c_Page_023.jpg
47b5c11a0a5a66288d9dca554d2c265e
29ebf15e93d8bdee0b8ea385ff54bb45302fb219
76259 F20101124_AABUAL charron_c_Page_013.jp2
142943b01d66aca6a9831533d6f4cdd9
088a4aa039317a8d9682d20dd9f1a58599cdfb0a
3475 F20101124_AABTVG charron_c_Page_079thm.jpg
48ab539580936936fabd256d2606776d
9c4dc986771668beef5cd28282c70a9d11009bd5
71246 F20101124_AABTUR charron_c_Page_030.jpg
4d33ff213e3efd3ab3c9b220c1c00a09
37046e5cff41eb4bb375cbc9e028442903ac5bfe
275421 F20101124_AABUBA charron_c_Page_039.jp2
9697a43824666e20bf9d0fd6545cef87
e9e9bbb56c82a40fc13e72fa1f8eac173ee46e1e
106428 F20101124_AABUAM charron_c_Page_015.jp2
a2c4b9d8f35537f13924757be81033bd
6e2d8a86d75fa5446f03b80d980ad532541943da
12778 F20101124_AABTVH charron_c_Page_129.QC.jpg
dae6f4561b8320540caff9a53d0890fe
e60aca83b44849b053e5f5cfdcde58e73f3b89db
111276 F20101124_AABTUS charron_c_Page_150.jp2
f847b85e32732b79bb55cf61e623ab63
ec5049b24e630c607489fde27a3bac1bc138a10b
88103 F20101124_AABUBB charron_c_Page_040.jp2
fd2b6cf9c65afcaf20cb5e19036a2ef6
9e3c66f1788ce5226fa39a0a19e5aac02bd3198c
112155 F20101124_AABUAN charron_c_Page_018.jp2
9fe521be867c30f70dab5022af63e3cc
f7e0ebd951457f0fe1d8274bc52cbe8e46576179
978 F20101124_AABTVI charron_c_Page_103.txt
81325ad3f8a0caf156dc8cc53145f9c3
91f5feb31bc4a9182fb7a4dc9b1393190a1cee88
69775 F20101124_AABTUT charron_c_Page_087.jpg
57664b94888566117dd5157283ecb658
81a86d237da00fecc8f55e9f98bb120c7c95c0ad
104654 F20101124_AABUBC charron_c_Page_042.jp2
2d92caf0974a7e35828c3dea7b4f8315
aa4f4d946785532c243aa09a96a49fb7ee9d98d9
110691 F20101124_AABUAO charron_c_Page_019.jp2
49d1f5a173489292be6c3976772b4940
0ec6323d36792e8ed816c55f93fa7efe214c36a9
18904 F20101124_AABTUU charron_c_Page_047.jpg
0b3f10dd5bc65e9379db64d74f75b70a
3011e9f92cd088f49e0c84a71ad6aa3f3d040a9e
104694 F20101124_AABUBD charron_c_Page_044.jp2
143f7124253a017cf67e284ec6c8ad9c
7cce1b44e21afbe90cce18e5733af809ee53e8d7
112970 F20101124_AABUAP charron_c_Page_020.jp2
0c40985180288e7d3551c167b69710bf
fe3c63d157b64db2bc6a1b7679bd488fbfc28e2b
4512 F20101124_AABTVJ charron_c_Page_006thm.jpg
48e7b76dca3b5a7bef35c432499658b5
0a49330ae9bdda9671b5ab5cf83b5447fe4705e9
455 F20101124_AABTUV charron_c_Page_105.txt
0af6d7bef6936dbcc15307f8dc7ed47f
71b51224bd182fc342820c91d9b49408ba2f531b
102673 F20101124_AABUBE charron_c_Page_045.jp2
23088246ea49d23d21fcfe9fc7db96f1
f342da0ccafaa762838b2c375221f7f2b0a00a1e
1051984 F20101124_AABUAQ charron_c_Page_021.jp2
fd760963ae623e831ffb239f813ed402
222a89da44171e93fe3985fe249e49a0a54f5d7f
24366 F20101124_AABTVK charron_c_Page_150.QC.jpg
624e3fd18213cb0ae63d26a185a038ea
60a5d7bdf1e218957cc71805af667e88a8d48e8e
3568 F20101124_AABTUW charron_c_Page_112thm.jpg
0e882f23e7d8874b7204446227480e37
1ad9bd470cf8ceb24af40a115baedcb17b02a580
101581 F20101124_AABUBF charron_c_Page_046.jp2
5c85ccdc9bc719dcbbd13d3137361cef
754a4fa66602d80f2329d677d4bcb4aed2047b0e
112260 F20101124_AABUAR charron_c_Page_022.jp2
ee62d61bbac899638dd1b2e1201bb91e
e2a4efd76e41506a92714d4f3da22be67cd6ae7d
5636 F20101124_AABTVL charron_c_Page_007thm.jpg
0531714365cf6aa23f650daa4f20eb1b
b6e348ad4275ac785c95d44617e9d0117e768957
2010 F20101124_AABTUX charron_c_Page_019.txt
09fc7787f9331f9ab5ba3e588d486cf1
c368b0f969833d39a068060841e40c3262105912
33565 F20101124_AABUBG charron_c_Page_047.jp2
5482a620c0c6efd41d3d808cc7a37016
515920d22c4ae14e30d06620c5e7299e44ce675c
72715 F20101124_AABTWA charron_c_Page_100.jpg
d919b754e18e831c0ccc40ce8098b692
9e2090a650143ff9a949dd12f0dcc22d8bd9b654
107447 F20101124_AABUAS charron_c_Page_023.jp2
e6d2ba226e8881adae14e56efd2ddfdc
bb7090e627239424117bd717911414e6180eef6e
74055 F20101124_AABTVM charron_c_Page_067.jpg
79beef4ef078bf3534737bf663ee6d49
a721eaef5c7d92e5bf4c905ea37505032c84b4e4
122600 F20101124_AABTUY charron_c_Page_172.jp2
a842ccf9790c325684ac79d35da726ee
2986926ddb892bbb2f02538bd48a3a15dc2764c9
104265 F20101124_AABUBH charron_c_Page_049.jp2
0d14630683817dc8087bbdf2fc54c18f
0fc09dbcfab549f6215a670dbfdb82dad0144bd9
F20101124_AABTWB charron_c_Page_011.tif
c0f4bc1c08fd2b6c62fa4834cc080c08
c404c8b3a399bfcf830942a901b7893c6cdbb535
69390 F20101124_AABTVN charron_c_Page_118.jpg
e1198562b5a6ff253cf468f9929444a6
004802e1c964bf2acdd799bbc8c2df7735529d11
F20101124_AABTUZ charron_c_Page_005.tif
3a59fb8b19222896eef13283b8582176
a4cdbaf9049cefe66fd622644e39c3195456dc92
109882 F20101124_AABUBI charron_c_Page_050.jp2
98e17e61a8b286f908f591620819dd0b
094eaf08d27ce6699068e2ca932bbab9ceac2df7
24151 F20101124_AABTWC charron_c_Page_001.jpg
9330fb99f5436c279ac5805d9fe9c7cf
fe9420f10de49300d1aad68109073c43046d59d4
111695 F20101124_AABUAT charron_c_Page_026.jp2
7311eedab943bd45874a085f71823171
91b61ab1e8512f4d424ce446cf988fd2ed9af031
6303 F20101124_AABTVO charron_c_Page_136thm.jpg
0cac2b8fddef4e92573fce28303dd5bf
57472e2daceac87c84dcfa041ae52d770bda167a
107056 F20101124_AABUBJ charron_c_Page_053.jp2
0148dd2ff8af5eb1d01843876793e307
b5ebc8c13ab716810837d0052b373120840d3419
9877 F20101124_AABTWD charron_c_Page_077.QC.jpg
8494314b30e44fd557004aa575001d36
4fca0a59fa9c22d7f639c8645db4ea7215500bc4
108175 F20101124_AABUAU charron_c_Page_027.jp2
cdc92c0031fda3bbfb9ba843dce1f3e6
0e52537d293bd45ed217a6ff71b273abc88f8638
2318 F20101124_AABTVP charron_c_Page_050.txt
54708baa990e7d9544dee9f0b1f8e687
8bbb76d8565a49fc5ad3edf49e0292d468d9abd4
105828 F20101124_AABUBK charron_c_Page_055.jp2
e11e9f72ecb1af7a8ff780ff8358f881
e0b1a72db7e3df594e6507c8bb9839f7cfeedf3a
F20101124_AABTWE charron_c_Page_088.tif
3808ca6c66d297224cba41e515b30234
381fa182864fcec4995597e39efb46d59db4800e
109558 F20101124_AABUAV charron_c_Page_028.jp2
1c0522bb6b011c1095d702015519e249
c13c2e590b6a88703af345e4d488636341f7723d
1990 F20101124_AABTVQ charron_c_Page_068.txt
26cb2ff4f8e84729d692b2c3853debc0
3bca5aba6603b5471b54db473d6effd958012a99
105648 F20101124_AABUBL charron_c_Page_059.jp2
ef6b6145e35d5b4bcfa043863ebec145
debec4486ac043737fbb5d627e6b40ed7dee5d04
F20101124_AABTWF charron_c_Page_089.tif
b2b79da088cbb342647f5fbd5a20e221
68ee2821c7e49b28182f713e0246f9983a6e081a
105056 F20101124_AABUAW charron_c_Page_032.jp2
be2bb7e75e7908ea208b0616f9cdf793
cfa2ee2e9af7d00fc715761a4e000bbe0dec0bf4
63046 F20101124_AABTVR charron_c_Page_063.jpg
a8b576110d8ebd9a1d5a01fc0f0eda63
45597159eb9b0d3de25e1144f4e43461b7c3bb44
105451 F20101124_AABUCA charron_c_Page_085.jp2
3404b78fdb571e226816c1ba6b1fe866
5433b8c23ef74be0121615ef816f3a1c911c364a
100901 F20101124_AABUBM charron_c_Page_061.jp2
0c5ee0db140663868eaaf06e99fb726e
8d6116f550e9951ea1c9901f072e456b1e170297
98595 F20101124_AABTWG charron_c_Page_116.jp2
355fab1512d04ee18da97e62d732b39d
3b85e70bd354a390485f74b51b0b6e93ca234bfc
113187 F20101124_AABUAX charron_c_Page_033.jp2
5367ad1a92032715d1a153663f2d5aeb
b6114577a4b4fd341e017d039d9b42ff1c01c472
11266 F20101124_AABTVS charron_c_Page_113.QC.jpg
d2b3016df4cde863b52fe47c9e9a20e8
a93b7dd5ed7b373d89b73ebbb4c854f81969ae6d
108241 F20101124_AABUCB charron_c_Page_086.jp2
c48176392f916afcabdaf89c8ae750d7
0aff59014ba46fe0149a77c50c539af02667d3be
75477 F20101124_AABUBN charron_c_Page_062.jp2
8a797c14ab15dbca13014fef30e7a4d4
75d0b1e26d77e53d5ac1f927cbdca7d67bf5461f
5249 F20101124_AABTWH charron_c_Page_012thm.jpg
5a3eeaf62535959b6b0e4e32b0d9e474
4d81030347c5ff5acd8df73dab796e1ad7e1eabf
111221 F20101124_AABUAY charron_c_Page_034.jp2
ee66729cc916c862a3613141c091e18e
6af99aacb08d90226f3e92d10f9c07d686a483e5
2704 F20101124_AABTVT charron_c_Page_167.txt
3675ccf3d7e582dadea371765f62a6b4
4e131b27de98fc14c0a9767e6eec5fcd168dd529
106824 F20101124_AABUCC charron_c_Page_088.jp2
4ce9865da17d58d6a87389421b13b959
588588bf2d949fce76476a828a4b590c8bb5a317
93950 F20101124_AABUBO charron_c_Page_063.jp2
40385db79173e98fa1108f7aa0314830
ea6b12f4357a41d0bc42b93a1855f28c593be6a0
2064 F20101124_AABTWI charron_c_Page_102.txt
cd456cb13ce8b93b0886596054258262
7c332081b06d937e23ae9e41aadb1a9e5f997409
339494 F20101124_AABUAZ charron_c_Page_038.jp2
baea7c0a857fcf4d01949a45ca791392
6d3be1f36121a15e58093add5706e7eb9c6824e9
12087 F20101124_AABTVU charron_c_Page_161.QC.jpg
b460bb87a6f48ba6d8731ca4648e0d2d
3da2e575b05bbffe442af09bec136a5031764f23
320392 F20101124_AABUCD charron_c_Page_091.jp2
4113b9c36629e4784179146881bcc054
6a264386b629196bc6aacdd100b7a8229cda46b9
111180 F20101124_AABUBP charron_c_Page_064.jp2
808e5afe38f462f4d6500df57885ecab
b0108ef8bf9b8bd3998f39810c00608af119b08b
205722 F20101124_AABTWJ UFE0011392_00001.mets FULL
1b48057425bb041e45ca4a11a81e9b37
8a3b6483455b986bf3db07d250ba600205220473
95521 F20101124_AABTVV charron_c_Page_154.jp2
6de0e84b0f5d35b131f70e1537b5514e
7f7648cf25683fc5722448a31dfd18ac64f0d4bb
342758 F20101124_AABUCE charron_c_Page_094.jp2
af40394d7367e4963c0910dccf393801
e91f3b0774c5c09072ae19f4a90a2347b2894f11
F20101124_AABUBQ charron_c_Page_065.jp2
d0e9237c3eac17d07e7e558e9a774cad
816f3a5a2feb49f2b362090122bec99fe7a2a586
8590 F20101124_AABTVW charron_c_Page_001.pro
631cefe89198d81ac7ef73a8e57ecb80
cfbb7b7280ec574a1fb7563b5afde2600b87ca3b
220101 F20101124_AABUCF charron_c_Page_095.jp2
1672fa0c94882be1fa28bb3030e05cba
33017d0f22967cfac5e6c177d823a3f93cf90d98
101805 F20101124_AABUBR charron_c_Page_066.jp2
6e4f3ec400cee9713a65978a9e73279f
5bad4f373c138eb7640e77283e771574e47016b8
73282 F20101124_AABTVX charron_c_Page_020.jpg
605a79b9c73cc9f7ea900a86cf63e054
5539304997728bffce2d9ce83d1a4eabe866ad1e
95977 F20101124_AABUCG charron_c_Page_096.jp2
f0ee03683d8c33242751b0e4b8cc24f6
26f4f1e492321d0d4d86e6b2d79537fbcdd6ae06
72276 F20101124_AABTXA charron_c_Page_034.jpg
3dce7841a745672020aa3f4cfab460da
11e76542978ce4cf27ca5519b7577febe11d2670
90452 F20101124_AABUBS charron_c_Page_069.jp2
27d225f63fcd0bdcc5511b8d7849286f
1b3b8849bbe504a0e28041e761ae11b1964fe9ce
71472 F20101124_AABTVY charron_c_Page_088.jpg
7bfd11f8e8a5b5f7fcbf294e39aaa68d
c5d4bc09e8c04f39155d01bd576c0c1be5223a68
106036 F20101124_AABUCH charron_c_Page_097.jp2
c8ad4a20c1546631d29e8833f144c2ae
2a96667accf7ca251049ffad3224561992d0c26c
70974 F20101124_AABTXB charron_c_Page_035.jpg
20b8b34c5d67a80a7b0c73d1b477087f
449c82ced3554dfe3b3941e333a1b6086bd80882
101810 F20101124_AABUBT charron_c_Page_071.jp2
cbaa3ff1c84e8ae47cf3511dd4789ef7
3bf9b047a13c0820a162ab33e62d9472dddc678d
10751 F20101124_AABTWM charron_c_Page_002.jpg
f17fb49effc2f7ea05976ad192ecea0f
813458e83b62f248a10cee577cb41e2d39594119
F20101124_AABTVZ charron_c_Page_145.tif
179211042d8f026d387f5abc5bc5d85b
a1cc1b5e89c2482198bac9cf98f8d2e41ef77eb9
101040 F20101124_AABUCI charron_c_Page_098.jp2
99c1f7b6cfbe3f8fac6da2e2859fe2dd
ab51e6e0060e503f0849b4b3fcf4260e80ef803a
72126 F20101124_AABTXC charron_c_Page_036.jpg
8d14adb5292d50f4d7ae2e65dd73e1c4
e533aa5969a713bb4ae0da0d77586dfb11d22a27
17611 F20101124_AABTWN charron_c_Page_003.jpg
7b476069d80bccb763a74ddacbc65bb4
c5a89657c525733e59be0c11d11e96d55e24bc1f
106136 F20101124_AABUCJ charron_c_Page_099.jp2
9e6e9a3a666857487d343b3432035e41
f3693d5c209769468490de65e8f57a94f8e463ab
26585 F20101124_AABTXD charron_c_Page_039.jpg
27360931d0ba1b275a957efe7537fb09
8dd8469db33b3d9e80b56ae16b5e9a4769280d08
708176 F20101124_AABUBU charron_c_Page_074.jp2
b3f84d1457259673bd191333e240786f
61b549f4d54cf78dfaf9ed4144cea14cba9a7161
63336 F20101124_AABTWO charron_c_Page_004.jpg
8b017be3484d0193f59002ff4fa38493
74c1a0fc66b81717ff816bdcb07f4bda24f9fadc
109948 F20101124_AABUCK charron_c_Page_100.jp2
63dee36e326266367b3591f99c6115ad
0cea978e0ec04238b5fb37f83fa71e4b3f158253
60052 F20101124_AABTXE charron_c_Page_040.jpg
2f7c02f21b8771523930f33a39f19fd0
de9179f825285af8d26293b881f4ce4122115be0
218047 F20101124_AABUBV charron_c_Page_075.jp2
e7979bddc4010e75288bf7e3117af9f1
0e25428fd8ec59408d57aa88dbad3c64cb1c175c
41232 F20101124_AABTWP charron_c_Page_005.jpg
d8eb1ef280cda1d55992efa26960628f
b179d3d2d1ec920c83f9d654232bec7e4bd920fa
106127 F20101124_AABUCL charron_c_Page_101.jp2
4905e3455eb2209cb116df619dcbb78c
c52c53b0bbf1f79ed924493c73024fc15d18334a
69344 F20101124_AABTXF charron_c_Page_041.jpg
4ce009b2be92dd3f71e1e38585c52e43
8e7c9f9660208a3a958e2940ee3dea16551af632
284930 F20101124_AABUBW charron_c_Page_076.jp2
52e93bd3f2c8301b20da9e0bce6f5168
96ad7d01ca1f764776d1dd4b2e549fcbd5b7b12a
97349 F20101124_AABTWQ charron_c_Page_007.jpg
1c71ef8f39667d2469063bbb00ac8570
4c5dd032265fba53344f097771d3179d858c2919
54842 F20101124_AABUCM charron_c_Page_103.jp2
6aadbeabf694e764f13b77dd4aac725c
50f9d98b9d20296618e4a281bdaac68bd1696010
70362 F20101124_AABTXG charron_c_Page_042.jpg
9e08e608562221dd8a3dba946be5ccb1
111b383825a6e6de278c680338dabae0c5c64abc
388600 F20101124_AABUBX charron_c_Page_079.jp2
348789e3b08d4bac82f4aaae58229945
d4a4488ceaf5585f78ee24773b5a3933dc69f876
44355 F20101124_AABTWR charron_c_Page_009.jpg
f0adcf9c07c92cab3cf37e1b7060722b
581469e1f025d36ffc51e73bdf08ddfd5aa076fb
368167 F20101124_AABUDA charron_c_Page_128.jp2
56692aee2a90f78eaaaa2f898193d774
c0f019c6d36c7313231619366c7f08219346eda6
434788 F20101124_AABUCN charron_c_Page_104.jp2
a2da52b52e81a8397a49f9c88b6d6f77
61496046d2bb0fcf76acb7fe75b12f75d0f78ce6
69209 F20101124_AABTXH charron_c_Page_043.jpg
1ce186b7ec5da21c30653aaa89e63e6c
83d01c84d3acfad189e39230be144fbbea54b25c
97578 F20101124_AABUBY charron_c_Page_081.jp2
1802f487a287e136503a3334c5062ee7
acd1f2b8c58e9680b80853c1b698547d00f1603a
79315 F20101124_AABTWS charron_c_Page_011.jpg
ca1eb6582847011040e32fcff3862d66
09182069b83f3208c02483550e9c822b3208176a
360199 F20101124_AABUDB charron_c_Page_133.jp2
87deaa305039396ac4787ec05ac170bc
60d3b4ef34168f952a2cc4adb6e7feddc3770d5e
374169 F20101124_AABUCO charron_c_Page_105.jp2
e75d548af5166b3129b45eae65474392
b21a969379791338208fd46624200ceb124b6bc5
67603 F20101124_AABTXI charron_c_Page_045.jpg
872a11ce698fc28a303251b389e20f4e
5b6edb4dbba2881b733467b5a983f8d7baeb6496
109310 F20101124_AABUBZ charron_c_Page_082.jp2
e3289a547078b5faf7996abb1dfaff0b
f20dfbb6040232c5f9470105bb700ff88a780e75
70534 F20101124_AABTWT charron_c_Page_015.jpg
d42e7ab416c120551f83e8dd622b9ebb
3d4aec3753cea13b850737ae0f2a9c43705450b6
29979 F20101124_AABTAA charron_c_Page_130.jpg
141cb191670a66bb00b0ee633080d2f4
0ab59b8c1188ae437b7473ba825226e1c711b7cb
808272 F20101124_AABUDC charron_c_Page_134.jp2
6ab54278996d8bcca53ea40c93d3389e
b0eaf03054388fcdc63f400a21cba6364400020b
151104 F20101124_AABUCP charron_c_Page_108.jp2
19767eef3a3deb437a2f1040ec025b30
bbe474432a24701c2582419f5527eb6b0cb49a4c
67772 F20101124_AABTXJ charron_c_Page_046.jpg
e10d5fbadd4db3c5c0ffa527ab248cdd
43192b0acd14a06c7da48cd47cbfb1914c9aca3d
74654 F20101124_AABTWU charron_c_Page_018.jpg
75404de5ea8819925770e3b0b267f62b
97d58953c18902327bbc3318ba419b787b058095
F20101124_AABTAB charron_c_Page_038.tif
d13efdc996d1529a1ed1b417295038d6
59b89f1307026704f5815acd70e902941120723d
327767 F20101124_AABUDD charron_c_Page_135.jp2
d48fee025fed22dfc26d2c282ad10a08
d24940b1484b68d889247cbc5f388bf73f29c3a2
443928 F20101124_AABUCQ charron_c_Page_110.jp2
c2875ac7c2aa3d51c8117672023d01a5
1d92857a1e3162ea7e70f53b95054faa7233be34
18303 F20101124_AABTXK charron_c_Page_048.jpg
cdd1cf9124158005868a7e5bb07cb732
47b8652293c5c05ed5046255cf0324cd81caa6ff
82145 F20101124_AABTWV charron_c_Page_021.jpg
c7391ab1d66d4f6571125275724113ed
4fa88d83863a931e54edcf846c023b5f54d09b7e
11368 F20101124_AABTAC charron_c_Page_094.QC.jpg
9e7df03dfd29eb8d69cc0f8d18d7b2e9
1b9f1da7fe207912c2904450b5cf781aae65e96b
109272 F20101124_AABUDE charron_c_Page_139.jp2
2ae6068bc0c52f38f4812c44fc49a5e5
7ff7fed43c0047c3d3de6eb4c607bb420fe3a32b
317546 F20101124_AABUCR charron_c_Page_111.jp2
2d4bd2cb374c55e344c720478224cd18
24c767e6ec42b5e76e61a9e7e2e9313680869159
73585 F20101124_AABTWW charron_c_Page_022.jpg
6ad7fbeb53b16e8457219a4050d273db
df4c47d2012b67d674e384cab5d3a266a9cfe302
F20101124_AABTAD charron_c_Page_051.tif
bb5779c2286491a14a94e742d56e9517
0eb273ecc3c1112e748c94bd574922151c11221e
104937 F20101124_AABUDF charron_c_Page_140.jp2
822aeee4e11af3328e7a04a9d82c23b0
a79a390ffda262ace64d6ae43eeef427615e60cb
33948 F20101124_AABTYA charron_c_Page_078.jpg
7d7dba83b9ec616463c3bcae7dd33eee
0baf2b425d77687fbcbfc9e418c94499583dc362
348638 F20101124_AABUCS charron_c_Page_113.jp2
545388fe94346e409d3c1e4ac30ceb2a
c30693608f59b64395a35b14497d53f264c33345
69836 F20101124_AABTXL charron_c_Page_049.jpg
fe40491263d9b5524cdf8b52c4a66c8f
3bc5a07b49aa7bf87c8ee14bc4f717098ae598f8
71288 F20101124_AABTWX charron_c_Page_027.jpg
09dc4d635926c3fe717e540a9636320f
698df5910302cd2d1fc56f1b1765f8f70e92f306
6385 F20101124_AABTAE charron_c_Page_097thm.jpg
42e26e8f8c7bd1f01a1eebc8c47a8292
32c4b6f8e80773d5e454735b7e99c83b7fc8903a
316545 F20101124_AABUDG charron_c_Page_142.jp2
1e5f9f0a3b720e12549f4a807693dbd6
084f4d77637c493a951adf4c62f7e812d3f76601
36352 F20101124_AABTYB charron_c_Page_079.jpg
2a138170b9cf9fa5a586366042d7b29b
05b08e4cd064268425d1fbb16df4fca3b78c49c7
246059 F20101124_AABUCT charron_c_Page_115.jp2
64aea59152bd7584aa63f42f28c7716d
ce57b7dc647bb3c70991601bdc7cf7e6588afb77
50247 F20101124_AABTXM charron_c_Page_050.jpg
514fdeee7269368d3b431ed75e052dae
c3859726d9d8491bd0daad757a5091ef9e85048c
73116 F20101124_AABTWY charron_c_Page_028.jpg
ffc4b4531474a49afe261d1e26d43678
e89fb1e77f3b2cd425bc619b8ad424bd5ef6a46d
45364 F20101124_AABTAF charron_c_Page_126.jpg
8e41a6536837278b9817fa4a3282ad7b
72aa7f0a13c2e351b85e605412cfc46be6181365
401722 F20101124_AABUDH charron_c_Page_143.jp2
b80c66dcc4f27f5d5284b26d92e1f117
aa639c96e3e99e0e2f1f2282fda12b29a8017d06
36261 F20101124_AABTYC charron_c_Page_080.jpg
08e9ddc191ed728b242a79faf07d3f0a
ba0ed16bd001ccee989bbbc3b777ff878be15292
101496 F20101124_AABUCU charron_c_Page_118.jp2
1fbc26c75abc0ea5e4f7883287f26635
c315b5e573547835045cfbe0b7a3b35789575067
65519 F20101124_AABTXN charron_c_Page_051.jpg
68d86745249ff970262e7dea0cef13a1
c7cd22d1ec5aca2f0536eef215894f24de26d1f2
69484 F20101124_AABTWZ charron_c_Page_032.jpg
f0c2e809359e3922261ec8fa431a0dcd
3e0f385c755c614f1e6bbdcf95eb48ee42f515f7
38568 F20101124_AABTAG charron_c_Page_128.jpg
1d407f675a1e881265f302e05906b0ac
3ed54b583182529a6fc963055ea2374e632513ce
271569 F20101124_AABUDI charron_c_Page_144.jp2
ce452d8dddb5202e70d204992b506eaf
a4dbcc8d9497ebe8fc2518e7f654fdde7d35c5d2
73064 F20101124_AABTYD charron_c_Page_083.jpg
2019c7032b1b748c0c7ae7118496d34f
104e36b6bee74e07e44d424b0030e04373488741
69996 F20101124_AABTXO charron_c_Page_054.jpg
95e3fb37d7ae8cc2d5b8aed7cc59e356
954c144b0d44c2688ea15f6c922fb88a3f9d45d5
23657 F20101124_AABTAH charron_c_Page_064.QC.jpg
9d2475e7496c2d1bcb0f1673796784c5
5b58feb706b5e8b56fd05709929a9c2147cc7978
338667 F20101124_AABUDJ charron_c_Page_146.jp2
1160e30303a28225c088ae9b3039605b
fd6df64a1192ef7727d5ba0ff5042e09dbbcd56d
73553 F20101124_AABTYE charron_c_Page_084.jpg
806dc6f3fca26f293afeb950a2e6473f
958e947794017e37a8cb5c6d71bdb64b549a9d50
108381 F20101124_AABUCV charron_c_Page_121.jp2
47e156d2d366953c54b17430d0d4cc2e
e5f4c51dac1d14fbb98ecd0c5175bcde3e6ff7ae
71228 F20101124_AABTXP charron_c_Page_057.jpg
fb689c07e90a5135a4dc4920c2cbb4f7
8240709fba84b64f2a246d2c3bd45cbd6e16606d
2560 F20101124_AABTAI charron_c_Page_165.txt
8e79d8b1f137764bdee0fde0a34658b1
ed752b8a79f63a60d0b6b406322891a0a4ee8e6c
66978 F20101124_AABUDK charron_c_Page_151.jp2
b362bea3621029023243bf7c78209a91
ec53c196ed248db03655675ee9c280c692db098b
70998 F20101124_AABTYF charron_c_Page_085.jpg
ed90aa81c85e8cd3d805718f6bfba11d
7779ff632633e43a76787bdba88906f279de1130
108337 F20101124_AABUCW charron_c_Page_122.jp2
a03c9dae69b6e35468838b011abf0e35
282686c937ceaafdbe03bae0af242bcb1eac3c41
69548 F20101124_AABTXQ charron_c_Page_058.jpg
5a48719777613a5991885c22c72e978b
7edc41019e43154b3aaa10b5f585e8e311df68ce
3510 F20101124_AABTAJ charron_c_Page_146thm.jpg
175694e36ad6153e1b9cec4a746fdc3d
55cf69dd1065dd811184d180762dd444531ad3a9
373503 F20101124_AABUDL charron_c_Page_153.jp2
365d4fb3c66117c5bba0a0eb02d6dcc9
51dea2ead852117ff1fb401689fe67a2f5b16bbb
F20101124_AABUEA charron_c_Page_009.tif
86eb8f7ccf9a3a560c8edfca748ff0e0
87ec360147bc394b1dc882e1f5a79dd95cdf42cd
72247 F20101124_AABTYG charron_c_Page_086.jpg
54c61b2b487b3e60691ff617b0cedb1e
12296daf97ac0d5bf9911bae02aa61135ea9ec02
110854 F20101124_AABUCX charron_c_Page_123.jp2
43fbb6f40380a76a7358c5c9c816e833
277c5f4b49cadf6785480838251f62f9db6a164d
69257 F20101124_AABTXR charron_c_Page_059.jpg
7ea049ad4e07301e406ddc6090a8c008
98b6929d90537967ead03b7a809a38514cc2d2a5
2845 F20101124_AABTAK charron_c_Page_171.txt
8f6b40c8ce78a8b81cc75e3fb10199c3
e29ff8eb3257ab46ab3bb77abb3e6e278edfc154
112268 F20101124_AABUDM charron_c_Page_155.jp2
b212f367fe4c6647bb7501601fa76094
6397078d622465ff786a6ff828aadc0fd1fe6ea0
F20101124_AABUEB charron_c_Page_013.tif
3ba43a222519002cb83b469e6a2d42e2
3557e145babfa9f9b39b4b0f93656b8cea13beab
32589 F20101124_AABTYH charron_c_Page_091.jpg
230632c9bce08b2849a4787744bfabd4
68fee7c5c621f85de510d42a2154c24b998937ae
103172 F20101124_AABUCY charron_c_Page_124.jp2
dec2ea820cc0727a190f39f289bd7596
2c75a1bd116219ecdbc20f81e0262246512640d5
72810 F20101124_AABTXS charron_c_Page_064.jpg
4e6a89fda421dd83bfc7d7ce74723440
95bd1a338ba4888553f368c83800a20bca9607ae
20747 F20101124_AABTAL charron_c_Page_147.QC.jpg
f98ce9f30c8fc7c85759ef0a0e1a07b8
1f1a6b65195d4b2233f7be7c11108015a8699f54
110189 F20101124_AABUDN charron_c_Page_159.jp2
a6c66891dd6d920c4af759b404156d74
7acd21e0b94165cb0c2a6925e126cd35ff1b207d
F20101124_AABUEC charron_c_Page_014.tif
13bfa021e446d07522ef12fe68eb2830
65e12f15f74a310c61546d04067ce8fda44d77de
20412 F20101124_AABTYI charron_c_Page_095.jpg
274f7467fe5d5f36d4786b2d8b057096
fd2a34ff101f5c72c9f595b71c8d8b1f83daef59
110380 F20101124_AABUCZ charron_c_Page_125.jp2
6a14a28bd2e2efafc3ac4264f36bf05d
026b5068395019d536780a8387182c74817c56c0
39386 F20101124_AABTXT charron_c_Page_065.jpg
6ac994c966d070d3698edf2365476ecf
55b06b50be90b735d6febbf1af0d0698b0a1fa89
69684 F20101124_AABTBA charron_c_Page_071.jpg
b3290ecface729963a03aecd4001e320
5a3bf7dac39b096b3ee38671cf45a1bfdbbd55d9
49796 F20101124_AABTAM charron_c_Page_083.pro
47ece20e92dfcb63184e91aa6530fb79
422b9c4cf1e3f16468fe59214441a801cec3e8dd
141657 F20101124_AABUDO charron_c_Page_166.jp2
007ff8e287b6d794b8fb41e6711e4044
da16dc12246e2533d59ba711216b769f22c44580
F20101124_AABUED charron_c_Page_016.tif
a3549a1cb6650e9fe615e86e0e1f36e6
f5729c711b2bddcca0be979375e2d42e295244aa
71675 F20101124_AABTXU charron_c_Page_068.jpg
5b13750db09ae97147714c079a691e3a
8ebc3dafd89a0671dbfaad7f7c9c1edbf55d30ed
1921 F20101124_AABTBB charron_c_Page_017.txt
fd2dc58918a8c3305f972705a1f79898
c2e4bd344f6cf9be4ffe4f4e548dfc7cb2444385
78946 F20101124_AABTAN charron_c_Page_178.jp2
d350c8a9df3e1696daec7f9a03561059
f5f90fdc5c31c708713d5018fa0f399d1455d4b0
136411 F20101124_AABUDP charron_c_Page_167.jp2
ec500cf93e2ec117ff97de2a98cfdb41
670b97e5356e5c0ec0a6c710326e962afab93de4
65162 F20101124_AABTYJ charron_c_Page_096.jpg
edb7ddae4641116a908176482d928e63
307135101bcf1ba76caa7043fac49df9f8f086ca
F20101124_AABUEE charron_c_Page_017.tif
2c3f18e17fbbe2362cd4034b450f3998
e7cad46b4245ffdbd9721febff442a0a4051e441
70167 F20101124_AABTXV charron_c_Page_070.jpg
468e6e844c3e7fb1676a688cfae597d7
4d6887ca140f8542c397dec1d65d4590db439ab3
1777 F20101124_AABTBC charron_c_Page_046.txt
962a95cb204599864a60eafd97a04cf1
b1b8c07231d7dbffec92fcaaca8a0e3610fc0d00
3957 F20101124_AABTAO charron_c_Page_161thm.jpg
cd6b194ec9263e0380a612a566a5b63e
73a9f953afdcb5751215b315c410771470aee1ed
128650 F20101124_AABUDQ charron_c_Page_168.jp2
bfe7bd772bc6994ee5b9c3de5a7e87f1
962906167474df6b83acfa6f1933eee4758f2d25
69903 F20101124_AABTYK charron_c_Page_097.jpg
b7742a0a0640205d2de98d3bcaefb217
d91f5d59800a0cf25e7ee5b2aec3722a93901d5a
F20101124_AABUEF charron_c_Page_019.tif
f405c1fef794216414a093be726613e7
10c48386652d2f9d0afa4d58ea879b94301256be
70902 F20101124_AABTXW charron_c_Page_072.jpg
ced85bfb0d08ccaf564b080118dd9d7c
b5ecd41727f46c62b884808e9fe3913a153296d3
81167 F20101124_AABTBD charron_c_Page_172.jpg
f6189ffdfff0b86cab73ca6b93cdbe86
af99f1afd102551b575a1e1f4b9028389b7dd490
6176 F20101124_AABTAP charron_c_Page_045thm.jpg
f0a8d5d8ecaf6dad8f7a08a10e1e931a
2e147f0d8f2e5fe18d4c8ad5038bd0503bba5c8a
127827 F20101124_AABUDR charron_c_Page_169.jp2
99452ac8c4c5a66d5e4f95def4ce5373
eb4a398a84886b395ecda13ec22846bab54b8bbf
69559 F20101124_AABTYL charron_c_Page_098.jpg
020d8e954dbbbbbd0a03810248e443ea
d58b80a33da8655e610d233187edaec614b115fc
F20101124_AABUEG charron_c_Page_021.tif
327a5174237cee3a8b401cfeeaa7ca32
e8f40fc57d30e2b4faf6c895d3d3a5ded07c7c4a
72363 F20101124_AABTXX charron_c_Page_073.jpg
f1ad83ff0ba3da84a22a3314bd6a4f99
b035e5d93de07853fba4579cbc76967d4ccd7541
20296 F20101124_AABTBE charron_c_Page_161.pro
a04c3b04b8d5a71fb2b8b9b386465038
9d34f8ef67642cf46c6af94b8caf698ace6a052a
25361 F20101124_AABTAQ charron_c_Page_162.pro
8d502cf36576be2404cd16284d87da87
05724705a2b1d7dff4bad82a7074fbbe74a02e3c
76375 F20101124_AABTZA charron_c_Page_119.jpg
dfd4ce2e7cbe7a7fc8f4af78184c2633
acadf56dca164dd9282e835d7bbcae248df2d2f5
141410 F20101124_AABUDS charron_c_Page_170.jp2
4aa6828d058e65492718185d2e9c109b
d322884b1457c61535380c193a436cf90a2a2d5a
F20101124_AABUEH charron_c_Page_022.tif
80a896cb9b9f87aab42996e5560a634b
14aeaa6e187eee8f4b664dbf9b6e9785fbbe859b
27730 F20101124_AABTXY charron_c_Page_075.jpg
da5f0dcdb084c4ce1351d2ed591cd904
492cd72356c6f648335cd6e945fc03bce0d8e433
39364 F20101124_AABTBF charron_c_Page_040.pro
409b67eba186701cae324aad361a6274
14c60c64350c75b2cdb5bebd1173014da4cb6d41
23557 F20101124_AABTAR charron_c_Page_029.QC.jpg
046d17e8e3d0028fbc293f30bc5af774
c2cbad9f04e162cdacaded1cfee459cb23b57ed0
73473 F20101124_AABTZB charron_c_Page_120.jpg
d58da689d4b0d7c217bb4c28b6485e5e
4d60bcd4d1da3876d41486b0ee088ad3f8660c2a
126056 F20101124_AABUDT charron_c_Page_173.jp2
49bea9d03aeb1f4f7b19b0ca765fdc9a
7b51a12d1d076b4f2d126f28d8e750157fb36b96
70278 F20101124_AABTYM charron_c_Page_099.jpg
7d0fca994ff0068a7aa71f20be2e70a5
c1c65574e5e65bac5bff7acc69ff61059033a163
F20101124_AABUEI charron_c_Page_024.tif
9c3b937e8a52786aaf5884afe0c4e1f6
11b1f2e1c63dc39454ec11fac04aeded02524c87
137200 F20101124_AABUDU charron_c_Page_174.jp2
7b38a9e159110d4c50c7abb7274188ce
abbed2211129f1302dedcb1b9391f7b4d6ab0d83
32061 F20101124_AABTXZ charron_c_Page_077.jpg
76c2bc48fddfd2389cd895d93d015c4e
20fc0d85d5df5683f35e6accfd75571baeab41b9
22493 F20101124_AABTBG charron_c_Page_059.QC.jpg
83a6a4891a5a87d050caf584b22c9349
d05af1c610df5450d71b034d7af1f03588be0368
2074 F20101124_AABTAS charron_c_Page_018.txt
601450a8bc5107873ab5b6b63653683a
c75d72a655fb6c50ce3930e00159c582b5e64762
71781 F20101124_AABTZC charron_c_Page_121.jpg
ab1a638340891ddd32c84e87848a5800
17265eb4fabaeb4eb42855d0d1e569367185d979
70590 F20101124_AABTYN charron_c_Page_101.jpg
216f8fa2dbfcd4e2a63b01dd17d54999
2ec97d9d089903222ede5f2c772c67750310324b
F20101124_AABUEJ charron_c_Page_025.tif
432112b51fb07782428b851568e5b09f
6f9f05a349eff0468a58c72831601918b87b7161
139383 F20101124_AABUDV charron_c_Page_175.jp2
15c860e0aadc917ce4f02c66af2350dc
26cece649d8dffcee512fccb478e5d2025caece6
F20101124_AABTBH charron_c_Page_050.tif
929c28dfab497445d4251f37ed0e28de
61e1e50492516fd76b2f560cf48da457ece049cb
F20101124_AABTAT charron_c_Page_030.tif
99e23b47519a2e77e6c0282ab961bb8a
133aa0bbd2fc9bea788207ba802b85d32c250c3c
73814 F20101124_AABTZD charron_c_Page_122.jpg
ac9adcae359443e38e78022c2395856c
95c5866ac42096274d6e07fccb8eadbc722cc642
73632 F20101124_AABTYO charron_c_Page_102.jpg
17c7b65946937562216947e23fc0c833
dfb1640ab1ae81c1f97f28dfda7742d28235bb3a
F20101124_AABUEK charron_c_Page_031.tif
ffc0677e14347220ed54be7889276ba2
6f25bb136c373900d9fed2246ed2a1141e6c9bab
F20101124_AABTBI charron_c_Page_074.tif
2a82d82656582d21474ef413ba04074f
5306113ee1862033d12d94d4fbb3075021cb5dff
74688 F20101124_AABTZE charron_c_Page_123.jpg
6f5431be9cd9bfe9112aa6962c6631f2
396f9cf0284e355d3d2ae9a8c484311933391bcb
39593 F20101124_AABTYP charron_c_Page_103.jpg
f0b16503f63c4495a8cdc9618cd50f53
2632d5608865717453fffa73855fb972c82418d9
F20101124_AABUEL charron_c_Page_033.tif
976c63bb859ed5de2d46fdd544440670
2d80284704f040ee5ba77800e348f1982dc03139
32450 F20101124_AABUDW charron_c_Page_177.jp2
1b933aeb1a5673507fe153eab1e9d336
7876e19fbeaac6c00def1c37b1e4816c423beafc
23026 F20101124_AABTBJ charron_c_Page_109.jpg
0b8f77547082ad70aff47b603863f604
b33440cb82379ef0a1ed5e2631c09b89c114a380
2428 F20101124_AABTAU charron_c_Page_109thm.jpg
2a56014b9e07f33f1377aea56a892b71
a19e97a2c150cd25ccc33f7705a3d66a75ceebad
68281 F20101124_AABTZF charron_c_Page_124.jpg
1d9df094fd0817336877080a684b1246
7fa72d3530ecd4a235252c55e2979b00eeef006b
32123 F20101124_AABTYQ charron_c_Page_104.jpg
e4347c9834a4211c4b0bf21eab8ec08b
2500751075447af5cac7692af3ad3984ab342fd6
F20101124_AABUFA charron_c_Page_062.tif
f6dddd71df4228a60bb103ea094ee36e
975af5c6df80d4d477625eba889cbc4a5765b931
F20101124_AABUEM charron_c_Page_035.tif
ee9a4e7a1fa0c3a21e797f08d41f477c
0b5bbc54e445530f994c3d302d2d5ec6e8e5fa2f
F20101124_AABUDX charron_c_Page_004.tif
062f0a51e439755b6b13d4107bfe9f2d
0e935da783746e5c83fbbb3ddc8f70f3893dc0c1
67926 F20101124_AABTBK charron_c_Page_025.jpg
1387b857a24c56f9d5fb0abd15bf8247
ecc4ffe46184854e65ff8284ccf4703431095835
1985 F20101124_AABTAV charron_c_Page_073.txt
3632fbe091c938c44286ca0a7a166e97
c4496971f034f09eb894a44b109ec31d65674436
72188 F20101124_AABTZG charron_c_Page_125.jpg
6a26d23698520df89ca4dd637c6a1859
fc7e57da63b42ad8e7ed6792a5f41b1763e0a4c9
27153 F20101124_AABTYR charron_c_Page_105.jpg
7b357fc80450665731e34c2c1dce91c3
a259271ffb65b5846c41add8f8af06cf3e0a2fe6
F20101124_AABUFB charron_c_Page_063.tif
2bfddf56f704683b7b893e12ff65d159
7508a9f202bd2d4f04fb5fb206bafbdeac1b2abe
F20101124_AABUEN charron_c_Page_040.tif
330fa30009ecfe8ae6764f04d1b2148c
aaafea7b594977db71611e4ca053e7a443734b97
F20101124_AABUDY charron_c_Page_007.tif
43ac8bff338806a210c17c22339bddf4
d6882048a8663078ad4eaf45dc3c975b3261b101
23116 F20101124_AABTBL charron_c_Page_088.QC.jpg
0988ea64f46f03cd6b414ad70e4b2aec
48d8dca4f69588236b13187e3f708b85ff6b12b9
44507 F20101124_AABTAW charron_c_Page_081.pro
a91d121007e90f6b51949626c9019131
97f69e2bc13c0a2b9eaa55538c24406ba5063d97
41247 F20101124_AABTZH charron_c_Page_129.jpg
ab92ccf442def657a23174b656f2031e
a61c3e94f86d5fd8499d03e69af510dc8e4393ea
26767 F20101124_AABTYS charron_c_Page_107.jpg
f1c8cda3bf4e87656ba4a456d8430edb
a55ec049b3ec4a639e4c8c05aea34ba4c57e8a46
F20101124_AABUFC charron_c_Page_064.tif
a7e45339cc20bc8da336b3615794624e
0f7d34621b4b69cffc6e94257de3331c23dda09a
F20101124_AABUEO charron_c_Page_041.tif
05da6de76e3581fbac5935e30bd4c5c4
71723e469b45634f82f52f49276aa786ad7d8bfa
F20101124_AABUDZ charron_c_Page_008.tif
8e35bbd83ec956dd480e797b6a832af4
5614d10d57ddc1715ebd02e07479f012316ec252
4556 F20101124_AABTBM charron_c_Page_151thm.jpg
70dcb27ee0224dcf30837b18edbab43e
70b64e46a00e18833f440480ebc215365802737a
F20101124_AABTAX charron_c_Page_093.tif
320664836f639f62b0089bf0a24f6f27
b65cc8c3f03db0af78b20cd1928a30953f1bdaf0
33471 F20101124_AABTZI charron_c_Page_132.jpg
02c6e5ea1e350f4073dd1192a8111113
3dde7d9f784e342957d349f1c1b47683595cb012
17430 F20101124_AABTYT charron_c_Page_108.jpg
a6fd3a266f3f5bca316ecedb3683ee4e
b8adbef8b721c2532bf09f6243032bc4d9476357
1988 F20101124_AABTCA charron_c_Page_139.txt
e998e07265f52129143825062aa44f65
ec512bf1bcb372e745592901a24705c531b7d015
25265604 F20101124_AABUFD charron_c_Page_065.tif
2b682ac33ad099943d91cefa6a3b04a6
9ff6e0802cef8730fd169741df2dde1138cb3288
F20101124_AABUEP charron_c_Page_042.tif
5c57c4071b2cb8bb6e95ed7a646a6530
19acca22cb0235fdc221bffe13c1cc70aab9d3e4
582 F20101124_AABTBN charron_c_Page_112.txt
3e94dc40fb98c0bc1f8d8183a67c0316
5ac232725236b16162fc13a0388a22f98b0a5839
13092 F20101124_AABTAY charron_c_Page_009.QC.jpg
4fde269255ea07f19f0f67b1dbfb4127
3be73398459567527447147405bc3b1f4daf2394
32395 F20101124_AABTZJ charron_c_Page_133.jpg
40b427b99101b031c6a6a9ab945e45c3
bf9f287c8948668070927038e6a909eb3fded2f1
37848 F20101124_AABTYU charron_c_Page_110.jpg
bdba9980351cf36a4139eeb694d7e032
046c8bd8f85ed5d4480ada9bd1534f363c8da284
1848 F20101124_AABTCB charron_c_Page_025.txt
46c3f295f7c6eaa449e831f47a9ce79a
315fae64c32a14cf2918a244671bcdce3dfaa08a
F20101124_AABUFE charron_c_Page_067.tif
9a94558d1d71195b245399f79c334996
76573f35c99d89e8f921039961960b5b8278c5ac
F20101124_AABUEQ charron_c_Page_043.tif
2111f0163ad7a3f67935ef82fb273721
2ff52bd0122053a2d5d19ef2fc80d771cd7a2fc1
67586 F20101124_AABTBO charron_c_Page_164.jpg
208381723d6d1ab04c158812707e8025
cd8901498c66d96f20c2f41686e07768537944b5
924 F20101124_AABTAZ charron_c_Page_132.txt
65b8a7bfe79dda4767bef5c40c18acd4
078e8a69629dcccf29a35245c2ef3e9e6d4ff5e3
44586 F20101124_AABTZK charron_c_Page_134.jpg
29d3a9d0c763bbca593d7ded4f59bf50
b9ee784579c953365a04d5b0cc0de4d432c50d9b
30547 F20101124_AABTYV charron_c_Page_112.jpg
35625784f6c5bbe7df56ff2222a0b5f4
6277a78a1c2e761069b970a2493d7129f8500a7b
100370 F20101124_AABTCC charron_c_Page_164.jp2
c82db2ea4185a9b57aa0385812041e42
dd174b683436343fb676f47e4c4b48b6252bf44d
F20101124_AABUFF charron_c_Page_068.tif
a545aa4c09ea9380368f22f423f0ba46
b4d1d180979e6ea726ed61126d5e12ff72b2cfb6
F20101124_AABUER charron_c_Page_044.tif
c3478456e72bf61931e68e8ccc89b16b
41e81fbaa2328ad52fc5533f86f9b26ef9045afb
10297 F20101124_AABTBP charron_c_Page_078.QC.jpg
a9f7b4bfb522734b97d61a2fef94a1c9
42421df24d8a5c64f204b5e4c44e7b915c5014bd
69791 F20101124_AABTZL charron_c_Page_136.jpg
dbb787724d2a06275548727e02fed780
50355177c99fea4df78b43b86f322c682131dcf5
34833 F20101124_AABTYW charron_c_Page_113.jpg
cddec3b0c6e6af7375a845aa772ee1a8
92cc416a1df5c8f0df62bf4af81f322696419a4b
23198 F20101124_AABTCD charron_c_Page_156.QC.jpg
2d569d2e584c08541ebbe852f55659d9
d82f1291bad6f72266317b27ede45f88b85fa5f7
F20101124_AABUFG charron_c_Page_075.tif
7b26fe4ba3212135ad7312044a5ee21c
e449b09ab355a2d9ae8561b7db92a29036351829
F20101124_AABUES charron_c_Page_046.tif
6b0c56fa8a397dd9bca07dc7fd6b0321
fcebe408b368e69a8a455a4f1cf0c2e2325b53d9
55362 F20101124_AABTBQ charron_c_Page_162.jp2
12edd91fcd2fea359421fe140daddf2d
b03bc1d912f936c6261a977ebc2df90b4f40bd42
69424 F20101124_AABTZM charron_c_Page_140.jpg
b097bc81bd015ce8c96c8c251d4da987
16c849178c8b920fc12df313fb05cc90aa9f15c6
25778 F20101124_AABTYX charron_c_Page_114.jpg
d4e4dd3ffd7ff427a34cc784ebef71d0
fc37d86bdaa7842a4ffcbddd320c6b7c95b286f8
107424 F20101124_AABTCE charron_c_Page_035.jp2
30cf18037681e6553a1f80cf11d57f68
2079e3dd0c97771340b886dde4ea8858c8b2701d
F20101124_AABUFH charron_c_Page_076.tif
d3b2fc35edce1e1bf34ee0136aebb8e2
3b283da4eb7250cf56352253c1798d36b06cbbfa
F20101124_AABUET charron_c_Page_049.tif
224291b733ec42571b7ea3a7e651c4e8
cd0fc380824793ab50583d156500056abdef2a99
6885 F20101124_AABTBR charron_c_Page_173thm.jpg
7a76489f390459306f5af4b309182cd8
5ce99d477fadf991d595b24c15a02a9db2c282e5
27871 F20101124_AABTYY charron_c_Page_115.jpg
0eb42081ad94f87c1752a6f8ef93af17
e2b65a84fcfaabfaed7a3d31e7144e494860a59c
7069 F20101124_AABTCF charron_c_Page_114.QC.jpg
56a1483ac2415a1a1930217906151392
0bd33fd7969b37ef5583f3f4a93404b67dcb6e04
F20101124_AABUFI charron_c_Page_079.tif
15828665746a950c9acc213f93b21cb3
1ecc47c6ae575f4e02988dbea9e17a7a7b9078c4
F20101124_AABUEU charron_c_Page_052.tif
238921cfdc94b74dc875bf11ce0ddf2d
db60e90c5ad503de9b58b05187bb7ea00d92619b
F20101124_AABTBS charron_c_Page_073.tif
7aac85c740aba2f4060a9dd902ce5318
2be1c6ef1ed82400fa972e9fd78d0fd1f093a40f
31026 F20101124_AABTZN charron_c_Page_141.jpg
1226550e057cb9d9dd76293d176c19d2
f6d30f69b9d76f4206eb3af1005c69e838b53e0d
67475 F20101124_AABTYZ charron_c_Page_116.jpg
3978ea0343ac70d92b6d08f7b31a4614
df0b87b9b0833f159b9765170779bd5871b198e4
108435 F20101124_AABTCG charron_c_Page_057.jp2
3fc3e741a4e2877bbc98a0e2cf2f2c2b
64153a48e391c481feab7681e28a4b20c4db870d
F20101124_AABUFJ charron_c_Page_080.tif
43376b1ce1302104086a8c24dc870f87
89ff50a6d01ec8e7f0a5ab6e6166b2cd648bf09c
F20101124_AABUEV charron_c_Page_053.tif
0ebf117e97c792780dc677285135aebc
02adecc92e2b60542703934e840cc89fa8c5cd09
72142 F20101124_AABTBT charron_c_Page_053.jpg
65f5f3efb4d0f898df45c9ef38ea5750
1ddc61abee3932060bab5a3a68efea2d0c689cc3
29430 F20101124_AABTZO charron_c_Page_142.jpg
a67176584cc19d5ceb68bb2703eba302
7f38b6dcd03fb1e9c2678d324e6d0929586cab5d
276193 F20101124_AABTCH charron_c_Page_114.jp2
49ce54b94e539a331c65ad3759cec7ae
b907152f07126356395324038f83003ec149d3a9
F20101124_AABUFK charron_c_Page_082.tif
60dcd09e9fd1161433100ff22982e1f7
469fe84003ff6c841e24fccd4e7d412ee818a3e1
F20101124_AABUEW charron_c_Page_054.tif
494a33b8bcbb5c2d0cd2802907ada605
0e8a2790df871ef2ffb8a0d63ca1dc3cd454c8d4
10709 F20101124_AABTBU charron_c_Page_146.QC.jpg
5dc4efdf82a8790b974753e6aef19cf6
6148426e0a42318054d8e811ffd950e27639b4bc
29464 F20101124_AABTZP charron_c_Page_144.jpg
1f7571aa18678437135e6ed6e7c3e840
19412a80f18d8dd7e4c5bd58786035eae8399db4
7757 F20101124_AABTCI charron_c_Page_001.QC.jpg
3d08c05f503de92b29795190d79dc561
0f3e75df3bb23e79267b3a11fa7275d2430f8190
F20101124_AABUFL charron_c_Page_083.tif
7e14280458008bc43cebc4b6cfb15967
fee1adffc89f3ae678f76a0e5ac1718ca61f052b
67451 F20101124_AABTZQ charron_c_Page_148.jpg
d9d7480a7c26b42380b848d151191dd2
04f3a58edfda70b2ea1b2f79128e1c711583f98d
F20101124_AABTCJ charron_c_Page_150.tif
8de87be87bf8801d3522102ca6807190
5c6d27130146d26b742663a18234cff99d8bf60b
F20101124_AABUGA charron_c_Page_116.tif
02c438440e6fd4626c530b0fcfebc4be
0c74c5c49b7fb927d195ef91450279a291598236
F20101124_AABUFM charron_c_Page_085.tif
467add64fd21e0b88d206d4d54e2002a
b70ee9bf3836b96807ad2f3be7993fb14a86a760
F20101124_AABUEX charron_c_Page_055.tif
7717e0adc139357dabf370b55f44b9ca
5a70e73691909c88fcb23688a58c5e528c76c3a1
105606 F20101124_AABTBV charron_c_Page_087.jp2
5d76434d5942a42b998c8112a6a18f5f
26ad0315d4bfa4f13b7fd2498e208c6c3cec84b4
73752 F20101124_AABTZR charron_c_Page_150.jpg
be2602443d7ac57dacb7f6387df5368e
df037aaf79ef0a06e15d5f972b83d75155c4cc23
73963 F20101124_AABTCK charron_c_Page_156.jpg
811f5cbcd7d6a9426ad66fc7bb3754c6
4d5d94e3dfd9a17623bf307781304be3f3075e19
F20101124_AABUGB charron_c_Page_117.tif
3c2bfd80a940f40e1a34f77fcce915c9
4ed82aacf05f47d2ca8141925b0afbba21e6fa25
F20101124_AABUFN charron_c_Page_087.tif
d71334bb43e3a45505e8de18d2612fb1
23fc93995082864a2e7a23282c02c59467404a30
F20101124_AABUEY charron_c_Page_059.tif
9758d600ad6ecf44728109b179fd9410
0572ceeff714dc9e51e226cb2814c685f409ea66
15375 F20101124_AABTBW charron_c_Page_132.pro
967016ddc49602ea3ad90e1d12e68e53
1084229ef7c52ae5d0a5616ce5201e96d5b8b9d4
46595 F20101124_AABTZS charron_c_Page_151.jpg
2064f824649a1d233728f5500597069e
d281a14895e918e801a1b50b5d1ab714f01f78ca
75136 F20101124_AABTCL charron_c_Page_117.jpg
e2572b5c44c7a79eb1977252fe978d45
8c21f2205a23af236b5e28854f9371bd81213696
F20101124_AABUGC charron_c_Page_118.tif
d0b09ebc9d874f5f605da4c5b9066f37
32f1e8f568a66e8a9a17bea2f0ca9ac6cc42503e
F20101124_AABUFO charron_c_Page_090.tif
6377bd6a0769357f75502e76cfc6ff03
0b5d68f55cc10d132b525fd63e5e5fdf380e9c15
F20101124_AABUEZ charron_c_Page_061.tif
d9390ca1d19841fc80eebcfb5e29e527
7256eff98c75068fb7109f3eb3f0ab39a0978a50
26325 F20101124_AABTBX charron_c_Page_074.jpg
f3084e7e5022e1c915cc0361b2b60b0a
fb5caf0fdb3b03eef1b869cd32608ce26e370349
35423 F20101124_AABTZT charron_c_Page_152.jpg
f3d581bcac3630e4b4cd75374978b434
b2fb66740d59581470dbbf7d78a02cf10447d0e6
F20101124_AABTDA charron_c_Page_028.tif
aee39c25bf8e7a4a6d497755f349d313
60c85d01d37c461e8dc69b9646790a3430235dfd
2080 F20101124_AABTCM charron_c_Page_117.txt
0e2ba1cca7be8de5f91f5ec28f5bf3b5
54480fdff17c28f8e8a8a7b70876968ab8037f10
F20101124_AABUGD charron_c_Page_119.tif
3691f59c3b262521111e99ffac3ee6e4
d5d1bf57cb3acddbd2b0dd42f52c842ab74787e1
F20101124_AABUFP charron_c_Page_094.tif
44a0db5f44683cf2bc35992097cde8d7
0303e55c010c1086a51835775b107c7e60f99f04
4875 F20101124_AABTBY charron_c_Page_062thm.jpg
dad6897ad7ea25c3ce0de56270bcf651
45add93076355a46a62af57422acfb587ae94e7d
74003 F20101124_AABTZU charron_c_Page_155.jpg
c5b01fe68c1d33e6de0f9cda2d958070
f1b38034fdaa1564e69368be0ed74b17be83a145
1481 F20101124_AABTDB charron_c_Page_104.txt
0149f2441c0e2283085b4c0a700a168d
8dd6239c88f031e0a42c217f26c8068199af3ad8
37790 F20101124_AABTCN charron_c_Page_065.pro
ceb4b2996c3a7dc304a62c9a4dddfe73
2fb6b3ab93cabb8fd9072952c9c242d5bf76a598
F20101124_AABUGE charron_c_Page_120.tif
c633b02f5d7e0e64a969190ec5b73405
a30c29ea82a8899fa307db711b2ac77d6bc47cc5
F20101124_AABUFQ charron_c_Page_095.tif
ca1df426b5f3ea1a57696a18d1c13d7c
371c334036e67da8bf6a6406242c5778be9376f2
96145 F20101124_AABTBZ charron_c_Page_170.jpg
4ca06150b13eff786e513fbbbeb5b963
bb3ee494753e0900b45237ca7b4ce6a426868d3b
69040 F20101124_AABTZV charron_c_Page_157.jpg
42f277c1173369e58c68abd862561094
7dd18becba20c8807296b3a3114eb5a1bcd68ebf
83242 F20101124_AABTDC charron_c_Page_008.pro
1ce704925aa5f95d6c557433a00f449f
c33ac78f215476c88c3e3a6885a80de28b14e314
F20101124_AABTCO charron_c_Page_010.tif
ff92b2e33d19eef0572092f563b49b13
09f94597bb478ddb92becc0d3e85d5a8d5b656f9
F20101124_AABUGF charron_c_Page_124.tif
9071c64305f1e4dd5ddead245611c604
c2cf06cf57ab6bde251385ba90041b18d94b118a
F20101124_AABUFR charron_c_Page_096.tif
f7b8916102c0732c428f8f545701ab54
ca2def67956bafb3b3cd22893e2d8b7ed7acddf3
40117 F20101124_AABTZW charron_c_Page_162.jpg
0f9205592e186c3d1c220792fc5a7427
fb532499c1cb851a3a981b53444a00d19cf8a4e9
338043 F20101124_AABTDD charron_c_Page_090.jp2
a1d8b0aacc464008377c428f04bd2d13
977641f1222e8d5316f816a0af68ea0d54e6a02f
286121 F20101124_AABTCP charron_c_Page_112.jp2
a8266ba67b7865f80fa8892f64d69602
90610c331e9ec63df532de2e5d7537cda9b026c9
F20101124_AABUGG charron_c_Page_126.tif
841e88ccf0bc5a3d09888f34066b22de
480c3d86a57f3c0565b19cdb0f9133b8d0605f6c
F20101124_AABUFS charron_c_Page_097.tif
2ea550ec2274accdbd0ba9c433902bf0
671bbc06fb162c2b67fbdabb6c6cfcd13947248b
87796 F20101124_AABTZX charron_c_Page_169.jpg
90d1c6d043083b3d337188f8fa46805f
3b25d6cde7725bcc1e9618d6d3df2732bc87e337
31893 F20101124_AABTDE charron_c_Page_076.jpg
4d202a7db824441edbcd9809e31612b1
f6b3b075b8b3ad9d918a50b3e44b8598761c7529
48272 F20101124_AABTCQ charron_c_Page_032.pro
d09e33d245073f9f6e9cef78ddd2a5be
63d34e4825a15d11d5c9ee57cb47584f3619a784
F20101124_AABUGH charron_c_Page_127.tif
f7f39aa85d20cd19c75375d5dee393ab
2191d2b95666fd3deff62749da081dc29ab65cb0
F20101124_AABUFT charron_c_Page_100.tif
5c3ae898b812660cbd2b056680bd86b7
b17e9a398387fa42aeabfb1d19147b30578d0bc3
95377 F20101124_AABTZY charron_c_Page_171.jpg
b0c7b37cf3280ec453458a556a586c35
bfe44b602c141df8d04fa2fef9fd8e2012317ed7
22707 F20101124_AABTDF charron_c_Page_140.QC.jpg
4d3633f324442d8a0d05f79a93bdd10c
9fb56414f3349a88572bdba05092bbf151fb14e0
3546 F20101124_AABTCR charron_c_Page_080thm.jpg
012e6d2954ddfa0e41fda9b22c212993
39e9ac5e5b259419207407d23ff1b548fdf20c77
F20101124_AABUGI charron_c_Page_130.tif
bcf7426424dba455343ba7007c05aeba
b6483360abe8d1e368c7428953d7c525aac556a0
F20101124_AABUFU charron_c_Page_106.tif
e33a6492b9d03e814f4dcb1e1843cbbf
34819a37f02aed82271508178c4c19c5351d0e66
86946 F20101124_AABTZZ charron_c_Page_173.jpg
b83d7b33423ef6ffbf5d187570f800ae
d7c4d0ce2090cf87e33dd470fcedcc26e7c15af2
23618 F20101124_AABTDG charron_c_Page_137.QC.jpg
674dcb2601608b8d417d199a5f900c36
40473b150e572a0526e1df62c71ece595e88ff2c
4386 F20101124_AABTCS charron_c_Page_129thm.jpg
dec9ce7f9441e9bfb5a465d10b82d92b
80b2bdc7a8f57651ce538754785a28e243581e54
F20101124_AABUGJ charron_c_Page_131.tif
72f4833e4cb7dc2b2fa1d104beba96e7
8b9e2e2d5a7fa1684782b871d8aa799c2fd424f2
F20101124_AABUFV charron_c_Page_108.tif
0c3505efa705650904785b5c83d7152a
9960306705047ddf243283a33cdcc3fca04bf4a6
F20101124_AABTDH charron_c_Page_060.tif
86dffe6f75cd984f68db6199e3cced2b
85a81fe8dcac2cd481e8cd2682e941827183b6bb
2515 F20101124_AABTCT charron_c_Page_168.txt
864f3aa6c15e0c24ea159cb01cfbdc3b
08651586b6f6be82bf4573f4f3d8edf339c75daf
F20101124_AABUGK charron_c_Page_132.tif
a1b1dda2cd6571d59204d18a845e3c83
b70cc10a859719531df39f007335fc6ee151d8bb
F20101124_AABUFW charron_c_Page_110.tif
2de8b04aed65d2f478e4f868f6b338f8
059294e1b44c41b71347f7fea9cab0c0f4b80d21
1407 F20101124_AABTDI charron_c_Page_002thm.jpg
381571aad3853615b76ba34d1a2f4c68
09e05edc289357f4480f02210545818ef8847c35
818 F20101124_AABTCU charron_c_Page_047.txt
0acdcfb26cbc859039c4cfefc47f6e32
e6233e326fd0cd801e27d52a0dff8cea65d4d407
F20101124_AABUGL charron_c_Page_135.tif
ea7af47cff4dab979e18f5d56ea5a0f5
7df5ad6543def9ceeceb7a1817f7f6e2fe69c8ba
F20101124_AABUFX charron_c_Page_111.tif
7bcc1c1a1c5e74088578cfae3981e864
d776a4e1e8aa1bd4af7b32baa8766caa51f81233
50200 F20101124_AABTDJ charron_c_Page_027.pro
9e95f3ebc724aa804737a27e5e99e247
daafdb9db8b5f602a38e0d83201ff3be0b1f45c1
1959 F20101124_AABTCV charron_c_Page_055.txt
efade9a423747e352f236a9d0b7d9267
bdd42734903f441a0186e6d8b5a96c359dea24a1
F20101124_AABUHA charron_c_Page_161.tif
8cebecb588c5e0b693e6f777b330e714
c1ef6e7525272dc4b40c4af9769d97e286d7295e
F20101124_AABUGM charron_c_Page_138.tif
c0a500be191fb03d92653714dd333542
472658a51ae05128d49ad009c736a82a4a5c12c7
F20101124_AABTDK charron_c_Page_045.tif
b01c0f58e439fcf4d79698ee68a16346
8e45f13fe87f3c6df81cc75cad95420a4d1eed1b
F20101124_AABUHB charron_c_Page_162.tif
55f76200b4f1d72681d305e0c1c60804
90e618b7b516e70b6588d16a2c7e027e948f4b8d
F20101124_AABUGN charron_c_Page_139.tif
9d8ae884b82bbc75c3fd3bfc94f8e9fd
8455ba0558c3f9473c389ec4236f5c980685a30a
F20101124_AABUFY charron_c_Page_114.tif
a797b6f11ef42896ce812cacd72259f1
a96d6e0f51e17a5b9cf638e858e7e8fb02235919
17767 F20101124_AABTDL charron_c_Page_141.pro
b079e498f190d250a210ece01582ffaa
b190d720876196d5d463fb3c88f62c814860de0d
24529 F20101124_AABTCW charron_c_Page_083.QC.jpg
b396f00ad73e02178e84c9f2de3cdc17
b41eebcc9a1d179db6d7276719ade2c8e04df673
F20101124_AABUHC charron_c_Page_164.tif
69d03070058c1f51b5ea2357efacc069
915ba486a4121b95641c5b5cec15bf6be468dd65
F20101124_AABUGO charron_c_Page_140.tif
22d068cc20c0ca782d183e85e862f68e
56fdb11d175df34522fd69a090383723ea1b47c7
F20101124_AABUFZ charron_c_Page_115.tif
80d434ee47529d22ff3ec1923a43f2b9
a3353d556370300a7f85945913d9886ce8486282
2996 F20101124_AABTEA charron_c_Page_130thm.jpg
cd29f79783dcbbacd2fc508bae495221
b82a1f71f56593be8a7a176cdd56016bd1c7c1cd
92781 F20101124_AABTDM charron_c_Page_174.jpg
658f279e2bed2c38c7f376d4e626da87
97a854e7da0c02331d4e3d3d6183513ced1260a1
3269 F20101124_AABTCX charron_c_Page_144thm.jpg
cd1ba289e830fbb2c4d47be7acb0bfa5
5262d771b65199d0d337100a66dc5cac1c9387c8
F20101124_AABUHD charron_c_Page_165.tif
fc4ab4de27071030834b28cb8804f1a3
7106077c455ae5da359486d38e3042804838864a
F20101124_AABUGP charron_c_Page_144.tif
b6d6db833593f06558b746393f2ca1f2
fbacfb3d634bece1a44dc7c1b6400224e23ff8cd
F20101124_AABTEB charron_c_Page_018.tif
7c4f349e239f7c504ab67b0d858a4525
c21d1a723e817dec2e479ba356ab26ff55ab6199
6356 F20101124_AABTDN charron_c_Page_061thm.jpg
b3358d0bdbb232964181f6ff014c6611
43c1fcace5f208c2dd0cc5e273ddca2e4ce47599
48603 F20101124_AABTCY charron_c_Page_085.pro
ae56e2dfab0e4497b6d556b99d5e6613
c66fdef432292f5537d9e84404423dc0e0e22890
F20101124_AABUHE charron_c_Page_166.tif
239fccdeb313a4e571ba5e5824cc1e03
d82a83cbb72ec4c6799ca1da4e2cc9384670df2d
F20101124_AABUGQ charron_c_Page_146.tif
d2328fa68a94b2d83559f48be0229506
20ea3e9c6b42a15d385f4f9d85520c1841d661be
F20101124_AABTEC charron_c_Page_020.tif
ce27e57dcf186511a6a7f8816a547f96
ae9088c02ec8fb0ea47a744845e7c9142cb4860b
9331 F20101124_AABTDO charron_c_Page_109.pro
ede27249173d0bfe411f0fbec9aa26be
ea096fe032fdfa6ada032bad710c398a2cf6aa11
6388 F20101124_AABTCZ charron_c_Page_157thm.jpg
b97c8ff619e946d70ae0db6b9f0cbbcb
edab504a4e82a54e8741357b87828de41868bedd
F20101124_AABUHF charron_c_Page_167.tif
b7e4ab6be6231176038d14a3554c9d08
667cb4e322f283b19a0fc8e6bbe30424c5d10061
F20101124_AABUGR charron_c_Page_147.tif
7f39d42693f7846200daafbee7f99eb0
f817aa98f096de1974b6344c69bde57e50610e71
F20101124_AABTED charron_c_Page_070.tif
994065bd34e2950a0d8903d4f659f82b
8bca612cc1b832d21e42e09500b41ae34397306c
109700 F20101124_AABTDP charron_c_Page_031.jp2
b9295469ff24a061f3d254dedd259ddb
2907c7756e20cb13b6a13ba9c2d5e1e54f08a7e6
F20101124_AABUHG charron_c_Page_169.tif
139a469021a0071257db020abc1ecdb9
e0f43e0245f647bc6a05f960bf1a3a1e315c915a
F20101124_AABUGS charron_c_Page_149.tif
cf59e5f2fc2129e5548af2c5ca9f6465
f56ed364887e0926847a85188b9a2fef0e9dc550
2251 F20101124_AABTEE charron_c_Page_149thm.jpg
c3c1255271190f7fa2c7cdeb40ae31f6
70e16dec54ed56dd46de9f1c836f721d67b61dd8
1935 F20101124_AABTDQ charron_c_Page_070.txt
6831f4e60b4acfef6deb430932316c4f
3a75a198795d199a2db6f59bed637e0842dfe56b
F20101124_AABUHH charron_c_Page_170.tif
b101c278a0776232a54df18fb4c76018
782af75962e03940e2a8961df46afc26ba93dcca
F20101124_AABUGT charron_c_Page_153.tif
cad6312d6db12eddac92f4c3b5c5622d
ba21bbf5d54ecfbf0da2722279f81144d8593a19
11553 F20101124_AABTEF charron_c_Page_080.QC.jpg
17c29520440958bd50af3a8b74cd335b
b3ad02d9057d2f0b7703e3ddee3d5cb2c6786c99
403922 F20101124_AABTDR charron_c_Page_078.jp2
0c58e5f5c94086b05a57618b25f91062
b65b71d92d7ade6543e5d833c7d1c1f092487fed
F20101124_AABUHI charron_c_Page_173.tif
12b93b1bfacbd8e1362327aec7c93fce
816103d073ff78130f336a88cbf51dd0a27cb1c7
F20101124_AABUGU charron_c_Page_154.tif
d63f2f92f7682278789462f9c26ee39b
a607d4eea4cc84caba35f28dac7a28f7f8addb66
73854 F20101124_AABTEG charron_c_Page_026.jpg
4d586a10ca263efbe6832d5e4ab73fdf
bf6b478d6f80eeef8c8c60ffbbf77cb4efd54dc5
4223 F20101124_AABTDS charron_c_Page_126thm.jpg
66266e2f0b2081b6aef2f47e54bce4fb
bff86dc1763f853cb73682d5d446fb455e552882
F20101124_AABUHJ charron_c_Page_175.tif
d6fb9597aac128c5a67abd75690f17af
99ab4866a81bc481db61d842e5343a8b2c58b9d6
F20101124_AABUGV charron_c_Page_155.tif
6022add650eaf39d330baffcc650bf12
08e33d5c253f5cc6256f573ed0f077ac1e42cd49
2341 F20101124_AABTEH charron_c_Page_172.txt
5f4c4d5150c4d9d9809216ae1d5c0da3
1190a6aea1f9daf0d216ce669252063b3a985f24
1961 F20101124_AABTDT charron_c_Page_035.txt
01048aea58d254b3f6a470ffb4c09403
c4da341af20e9dfaec03c5c632e7265f3ed0f546
F20101124_AABUHK charron_c_Page_178.tif
0eb88ade75775a6f4e2fceed45d60776
9f9819bc0bf7e5b53a3d5dac1c5dabc1feac6370
F20101124_AABUGW charron_c_Page_157.tif
3e4fff5927a6ca3b783325d2aa547dc9
af8f81d4e18aecd021747dab4cd93e162da8f9a6
683 F20101124_AABTEI charron_c_Page_080.txt
950ffe6633978a27ec0a2fca246d7375
35abec44e82ef69ad4a873112f2d3c2470fbd1a0
363753 F20101124_AABTDU charron_c_Page_093.jp2
422dab05869c255a8f74c07dbc53be0f
a46a09c119b343e97a900f32b27a18de75c5b89c
1487 F20101124_AABUHL charron_c_Page_002.pro
59c777150cdf9b55d79271bba4a6fe63
8c200794ca45b013f75cc305df5d5485c4e36bef
F20101124_AABUGX charron_c_Page_158.tif
5158c63d8e213ac688a91943ccdce479
9d573313a76dd8db7d247c68eed251c7c9690116
34895 F20101124_AABTEJ charron_c_Page_009.pro
a409332a74fd5c68059031b422c91533
5e34269cb9cba39f8683f1c93d45011cbfdbfe71
F20101124_AABTDV charron_c_Page_003.tif
f21e4f89909e13846ce7525ba40f1770
dcb5f65a05567d003f876a6fa11b73ca097a06e7
51025 F20101124_AABUIA charron_c_Page_026.pro
0d0dd34fae8f5ba5cf72c91cba8da7fd
a7206b08ddc596c133726fe4b04a61636b6a08ea
7690 F20101124_AABUHM charron_c_Page_003.pro
68f36318a84db4a9b9ffdb0e32ca3509
720d6e7d0fac15e602a410e7dc3bc35a15c48408
F20101124_AABUGY charron_c_Page_159.tif
23395c8076a43ce79ecf0d1436f9686d
7b0e613e050bda7532a651e3e3c3cbd6e4cb2a15
F20101124_AABTEK charron_c_Page_123.tif
f290f2f457ed9b5db0b8b7b408104a2c
af9c049963d784cd620f0fe5c6554cdef5f3ef11
F20101124_AABTDW charron_c_Page_172.tif
79bb1c50d08f28baf87120468fc9990c
dea062123aa08e8b54acd14d2e460ca3f557d007
49773 F20101124_AABUIB charron_c_Page_030.pro
e1d6940fda1505baae344752c890633e
e8b5f1afd7e264c3dd71ee9d0a3fa9fbdbc7af25
25673 F20101124_AABUHN charron_c_Page_005.pro
efbf37245dddeb0499345258a75979bb
1feb25695769cf26d75355fd58e9bf9d09a424ec
50326 F20101124_AABTEL charron_c_Page_029.pro
4c03738a89a09f9fa105b1751660d40a
b66ba07af97b9b09e8bde7922483d386cf295e52
51847 F20101124_AABUIC charron_c_Page_033.pro
80f908ab5e427082d18003453b8b94ed
715b23d719e536de127c763e6c452328260c53ca
76001 F20101124_AABUHO charron_c_Page_006.pro
7059e43d2f41bd2d796312b1fae47610
569ce52593b638ee9798ee879994dfd7fc99bc66
F20101124_AABUGZ charron_c_Page_160.tif
a1025b4dc9b8c3478180e4cba846d7aa
f22e85e1cef812a10d6b72ae218d56ad29b40848
27529 F20101124_AABTEM charron_c_Page_131.jpg
062b26ec6550dfc7c2cc4d02124800df
36f927d9d8ed5a1ceec662bf8cbb9992390c0339
1423 F20101124_AABTDX charron_c_Page_089.txt
f973e392a57977ba773bd9577bf57878
f22ad140693ca883a6c2a139fce31600be5002d0
1975 F20101124_AABTFA charron_c_Page_164.txt
3ebb537f996e806af6f9f0ce0232c153
61a0dddd82e471c7a4e38c074f4ad86babb5aeaa
50730 F20101124_AABUID charron_c_Page_034.pro
0a27de762bf608a7ad7caeb2ee7461a3
bdfd41d4fbb69dc454fe430bf7d9f528391ea411
101317 F20101124_AABUHP charron_c_Page_007.pro
0463922c43f4466c5c4215c5fe5aa356
2c2635c7d362360b867137bef25312f051cfe256
1823 F20101124_AABTEN charron_c_Page_148.txt
33c5ad4cd30d61281237e9648afe91ed
83824958a3827fbea61736073359ecbafeb0da38
42135 F20101124_AABTDY charron_c_Page_141.jp2
8bf5b2d10a829c7a7c763d2928446779
e21aa3fe411a4530c4b407753bd05daeed2597bb
12213 F20101124_AABTFB charron_c_Page_037.jp2
8d109ea3bdbc66d8c6f1f02a0e78554b
f0ad66436361711ecfd76461f68cf4ba75150ed1
50567 F20101124_AABUIE charron_c_Page_036.pro
321100ee1fac857c61425af7cd8a3a5f
4d6ad1dde0ae710eb4f8a27107013077970b62b3
66935 F20101124_AABUHQ charron_c_Page_011.pro
303bfa81ca87ef68e4387c798ec19b56
881dcc58907e6fccabc573e887a0896b2b3fffeb
96103 F20101124_AABTEO charron_c_Page_051.jp2
288e266d4844bf3ec2c6efd7cbb170fc
6b1707f2ada62a76f54491417e92689e67285802
4210 F20101124_AABTDZ charron_c_Page_037.pro
e3cb588b3900c242c466207a1fa60e08
78db0dc6c4f6f509afaa8717f2b71f2e772dc01a
14042 F20101124_AABTFC charron_c_Page_050.QC.jpg
19413f2787b1d7a2d33ef2ca6051652c
7bca036518b09c26c09c88301e39b52902f508e1
11859 F20101124_AABUIF charron_c_Page_038.pro
8d3cea8fd547713bcc0c6348b21d3851
1d79aefb9a18469f5c46a35a96ed264f3076cbbd
40426 F20101124_AABUHR charron_c_Page_014.pro
6f0752dea510fd2efca08fd952b3cf68
9fd27e43de6c630dd0e462ca321ca6eb219ae557
F20101124_AABTEP charron_c_Page_103.tif
1484fe0b9196fd94a8e2add2eb3617a4
348e738f4720897e38d5cac5cdf3ec9c998a93b8
61598 F20101124_AABTFD charron_c_Page_165.pro
b2fb31bf26982753b91fcf08031242cc
49339712e70a53268388428d0aa26fe7119a8cd2
47981 F20101124_AABUIG charron_c_Page_043.pro
2277bd247bfead7e97ce1391c28b1a4e
b2e4272107939422ac72e0bc488bbb15475d4e74
49945 F20101124_AABUHS charron_c_Page_016.pro
e48c875840f0ebf362d8e6323fce6885
3dd6be0b83598d1acb1bd948194a3179ab426345
65031 F20101124_AABTEQ charron_c_Page_147.jpg
7e6cbd9efa98e207442dc71f37361e78
5a385115828f1ca4ea425b2d8d66594e22eb57a1
13252 F20101124_AABTFE charron_c_Page_093.pro
a1539e723379873fa1109cce00ec5295
035664e1f9f270a8319567aa62f9c4c96ad1c011
54975 F20101124_AABUIH charron_c_Page_044.pro
2418ab1e30c191f9e44a2b9856fc4b90
9c5a1f4012a26cfef86c53c9b11c1ea72b816fff
48760 F20101124_AABUHT charron_c_Page_017.pro
3407889d23c1fc3ce222b381a46e3dd4
f7eb4eff9852d8c86bcba98370c18fd1b8c78b17
35629 F20101124_AABTER charron_c_Page_153.jpg
0f8b30b64ef50cfdda170fd613ad39a2
9d4de9dab254daa59102c28e300388aa57f27b15
F20101124_AABTFF charron_c_Page_112.tif
60ab34ba5f5a6480599cc9876206a274
2832c906e9e68d28b54d26fa0ce37c554182702a
16543 F20101124_AABUII charron_c_Page_047.pro
78ca93ff541fdee58928b46e88aa2d61
398364a04813377474c1392ca56b96324b3c0bfb
52840 F20101124_AABUHU charron_c_Page_018.pro
48dad3fc38a99911df15905aa9300d63
3de95a08d6484a6b988c2bb23524a78a3f082777
6723 F20101124_AABTES charron_c_Page_033thm.jpg
2e36a904a3f4baf60481238735bd1287
bcd1daec53ccebf1a6771d55101b398421ad8590
3738 F20101124_AABTFG charron_c_Page_094thm.jpg
00406930b22cf9e0b1d056b6ab2a56b9
9fbaddda077b05c9919b5fa42b575a3a3bd2d7a1
50485 F20101124_AABUIJ charron_c_Page_052.pro
dfdc96633466f2e351c1849eefe3b852
8eec8bd178598c9de00e3743a7dd06511cd373f0
51106 F20101124_AABUHV charron_c_Page_019.pro
bc9ec4e254fda0a72a57be5883636f00
898b14c17547d1e71b2444597b0bcf08b5a6d0f3
109151 F20101124_AABTET charron_c_Page_073.jp2
8d64af73c767ec6e070f55cdcc5c0816
12743ba71b0cabfd8c672773572f9b3815656337
65641 F20101124_AABTFH charron_c_Page_081.jpg
433be889ba1529ead7bf9b873207a5c3
3aecc75992e80df15c69fb8089c2cccfc6eb2cef
46619 F20101124_AABUIK charron_c_Page_054.pro
5619779ce11c7df1c812f3107cdd0d21
47d228a60a50fc9c13cf387bbec88f539b837b09
52404 F20101124_AABUHW charron_c_Page_020.pro
12c640c78e520cffd69b2ab0abfd5fb2
0bb5b99b8efa5d8ba6dba08393d63ad9472ecc32
7088 F20101124_AABTFI charron_c_Page_021thm.jpg
2333e359c1d7dd254d4e915fe68ee33d
4855cfe4a098b21ae8bb1f540d98fb95c85aaf3b
6415 F20101124_AABTEU charron_c_Page_101thm.jpg
a51c4b156a8cf0d923b62a65b83df27a
8ca555574cc2674022b59074d3c8815fe245c79a
49728 F20101124_AABUIL charron_c_Page_057.pro
2a45faa64d153fb47e1a6af3b2c97325
3ef4f4d9012a31062a11ad4d4321f972f73b343e
52302 F20101124_AABUHX charron_c_Page_021.pro
6c0d1ec27e8f34c90ba543a367b1a5fd
8172ddf5392f94d7d6e09c444ce4718faf3bcb57
F20101124_AABSZO charron_c_Page_148.tif
d5197b845e99def853a716d866b507c9
c257f04e6c10a6a8952a4a9aba3e0074068bb8ca
37739 F20101124_AABTFJ charron_c_Page_143.jpg
30a52980f03017d742ab84742ffb60c0
e685fb1895ee9909c55eabb43c12d59e3ed18820
108414 F20101124_AABTEV charron_c_Page_137.jp2
0df32343022883aafff43cb61dbc2b7b
4c78aa403645f304161455521114784e2970fcaa
9557 F20101124_AABUJA charron_c_Page_091.pro
229935354a40697730f041ae52b48222
2655da7d118f5a066a4937d5f5d427ac61429337
47189 F20101124_AABUIM charron_c_Page_059.pro
872be2bc018b94b909ffbf1992c9c394
eb06afd17444c496bf09d20740ca88e5c0f9684b
50745 F20101124_AABUHY charron_c_Page_024.pro
d045efa52ebc517c71a904907cfdafe1
e05d541e5c0ebed5398ac002195e3d1b8db0e126
F20101124_AABSZP charron_c_Page_168.tif
dbd2dd8fdc8ddb632bcb2918526572f2
bdb4878cd342a7e668bb51cab3487dba5ec594d4
19880 F20101124_AABTFK charron_c_Page_040.QC.jpg
f6c61883e4748487107ea8b4e2b9fa2f
f2d4cfc7a3a4b865b05049cfba0d632417e15af3
1836 F20101124_AABTEW charron_c_Page_098.txt
b432ff3376598e0eab3c89ef38d9e067
e321ac50e74cecee45cf2a48053878afa4a12495
7635 F20101124_AABUJB charron_c_Page_095.pro
38cc973eacb71d25a81aa98feafde044
a94f2575bfbcd4fd975e49ad4ae67acbfcfdd92f
44991 F20101124_AABUIN charron_c_Page_060.pro
488d60e328cac0ea3fefb0d8607cfe38
6fcced9eff7387dff696398b8894f7aff3f8bffb
46797 F20101124_AABUHZ charron_c_Page_025.pro
67359ddab3e68736ea909d5396d7fa59
3eec11155ccfdc3b73745e4e42d3de05a6fb4d56
3822 F20101124_AABSZQ charron_c_Page_143thm.jpg
146eba50e1d8878f31d9eb97edd7bedf
987f107b8730f3013a35dc8007e8c65641fd218c
2051 F20101124_AABTFL charron_c_Page_150.txt
b0b6df9b03d75f11d3ae799acf114a3f
ed86f090b95c054b2f42406d85a8210c4aad07b9
103008 F20101124_AABTEX charron_c_Page_043.jp2
36701cdce28c2a8dca49ec642b193224
aa765ae92eb3cafeef69361e474df7ef02a82c8c
46836 F20101124_AABUJC charron_c_Page_099.pro
ac43cdd92850004f93c6ec665eed993b
5a6fabf2e02f1db6c88b112af9a23316cbf49cb5
42345 F20101124_AABUIO charron_c_Page_063.pro
30348135c37e0cc6b4336ba10621b1db
bcc89fe787260cea6a7598404056c3c3fc5d9187
60520 F20101124_AABSZR charron_c_Page_168.pro
462c31e9a2b268085c74fd7ad7f6de2b
2325a1bfeaccbf47710f58463cc1d734a75abd79
F20101124_AABTGA charron_c_Page_015.tif
0a9a2a747b1568ac2b2f876b17465047
c0ab65c45ef077660e92cd732f65553843b216f4
37877 F20101124_AABTFM charron_c_Page_012.pro
3a0f9f1984d13fa99798d96368ba6a50
5334608e770325eb81c6488206af875e336b71fe
48645 F20101124_AABUJD charron_c_Page_101.pro
ba2220a26429022aff78ac6a0429e346
390cb0bdd6172df695d4bce1635936cb01e20715
51563 F20101124_AABUIP charron_c_Page_064.pro
6584adbcd7eada8bd186b23f09a760eb
38fda32ab82c22c6c308ede7903a363a705b6222
1912 F20101124_AABSZS charron_c_Page_140.txt
6c674250196185ed7ba95b7b6082bd92
abc47aa64c00473b3d0569c6b5a1e75bfe931574
20950 F20101124_AABTGB charron_c_Page_063.QC.jpg
f5c621872b5d0529d0c5af9526885220
e318e3a226d4d00dced001b6e26963a33ca616a8
6075 F20101124_AABTFN charron_c_Page_096thm.jpg
e17306363da07f36a6a0509bc01f8797
c66b27d2bb80f69754b236bd2f81e38432d3440e
47795 F20101124_AABTEY charron_c_Page_041.pro
152be8a677ece02f50f3bc87edac6ec2
689305c9278972562e443fd03b2641ac63773521
9992 F20101124_AABUJE charron_c_Page_105.pro
ff1f9bc68c7c8aa0c57ca26ccaf261e5
466a8202279116343e88943671c1ec196b52bc57
51140 F20101124_AABUIQ charron_c_Page_067.pro
36f7fc557355edc0309480b3cf7b8d83
e9d51a67434b7e0436ca6907c599eccf3cfee794
35174 F20101124_AABSZT charron_c_Page_093.jpg
442dc1812748b27b00de364cc9bd90d6
56162ce1ef80f264932234996081f47d6a007630
1972 F20101124_AABTGC charron_c_Page_027.txt
4f8e201ff795d85d9764439a65f3d075
3a152df1f6f1e5c0e0e046cb3671d2d7ff672f23
59310 F20101124_AABTFO charron_c_Page_012.jpg
c9357f5b7ce3494c1b74aa4730738071
74a8dda57925f86ca8a1cf8a435bf4471c90db9e
49435 F20101124_AABTEZ charron_c_Page_088.pro
038cc88b696cc652684c3ba6d62fb075
fef32ca0cb08783fb9df2b1da877f7663b6f2494
15725 F20101124_AABUJF charron_c_Page_106.pro
1d9bedb287f9dc0ea2380189865ef81a
f083320ab0153913c01c01149975149488aa55be
50808 F20101124_AABUIR charron_c_Page_068.pro
4d49fb89c8b8515b9fb5b81172c45600
381858992aaea17e99074e1677b793d013dbed59
1889 F20101124_AABSZU charron_c_Page_059.txt
a295500dc74b62ed09eaa7712fd8fd74
8d6b35bdf0eb9986c6d60a96dec99c946e22108c
25156 F20101124_AABTGD charron_c_Page_165.QC.jpg
2cf14e945875242253baeae752e991bb
e1fdf0417d8897de8c4775a391562d80813b9ce9
108322 F20101124_AABTFP charron_c_Page_030.jp2
0d9262326b411b0ed52477e4f4553f74
9560f567c816ef09af8149548906de1ebc2d9695
6136 F20101124_AABUJG charron_c_Page_108.pro
abf98ee069aabd8c60521e3ed6b4570a
f23028aec1b08e2745179032cb339f947ce561c6
45336 F20101124_AABUIS charron_c_Page_069.pro
5182be947beffbe5c1c5154b710b284d
47d21303a45bf88e180ec5d1d9cb68802b99da74
3305 F20101124_AABSZV charron_c_Page_141thm.jpg
57ffe07e6f7109f062115f2ab93ab6b6
a52de3f790914a59d29f6b82d812420431d40a18
48930 F20101124_AABTGE charron_c_Page_015.pro
27926793543f0e9e51257b2ab5a9b74b
aad5f3ffd632759e99b396ebaef10ff6c53f2a19
F20101124_AABTFQ charron_c_Page_143.tif
bc0fe61d70efcb5ef1c802e688f44a81
1d670e598713b54574762ab0f9c6bfe3321620fe
29509 F20101124_AABUJH charron_c_Page_110.pro
67ffaeade6b83ffb3c6a1f73a6365c89
5bc956caa50c0e44154849add7d70beb5a5a2162
50562 F20101124_AABUIT charron_c_Page_073.pro
d7b6f4520f447c022e35db0a7cf0509e
fb70e03330b4241a427014125dccca160e8ae5a2
36441 F20101124_AABSZW charron_c_Page_161.jpg
68c8223d95a51a7bebf1241aff332d8c
88e34c21c791c166bc2bac0395e7b859e6ef8369
24334 F20101124_AABTGF charron_c_Page_067.QC.jpg
251e6a20741fd710dd306bc9827cdd9f
42f3328331661a15b2968ec531eb5072cd467ff5
48754 F20101124_AABTFR charron_c_Page_053.pro
abf3b3ab38b6846e8c2c76304bcc91e2
6d7387817cb200c7d202cd6267365eba17b8826b
10003 F20101124_AABUJI charron_c_Page_112.pro
d63ad431a9e096ed729072f203253f68
614b7ec75486f2424a598ad88103f06eb6b15dfa
4528 F20101124_AABUIU charron_c_Page_074.pro
afa28878e6f0d1286e272cf112de544a
8d50e0dd00d4c44ec69a0d59ec05b3ddb2af6e4e
10830 F20101124_AABSZX charron_c_Page_093.QC.jpg
b2071e3421c9c6efdc1333084575a823
566fc2bcbadfe8b2a5d5620385dfa18a2561d41b
25668 F20101124_AABTGG charron_c_Page_021.QC.jpg
7e69e69206b7d6e1709edd578a06ff4b
6fc90561c7eee2c21f7e99418cd3474d596dc8a2
15197 F20101124_AABTFS charron_c_Page_149.pro
b884dbd69ed1337f3e6be14ceab0d8c6
50b5b9bacc584c748bfb4e9463a9f011970fd6f6
12521 F20101124_AABUJJ charron_c_Page_113.pro
e71d07fc5ebae445cd36dc4bb9068d53
e27dfabf22570a88e0f9183690bcc18f55c83320
10610 F20101124_AABUIV charron_c_Page_078.pro
5453f8852649196c1fba2aba5e9117b8
1d1def3c956a6dee65a91ec37312a11d3efb2805
329590 F20101124_AABSZY charron_c_Page_152.jp2
79aa9bc8e4fdef62edd0c02cb64f21c3
a554c8de414e504f6c25442edf148a5c093d70d0
1051985 F20101124_AABTGH charron_c_Page_011.jp2
f11f539946e6d67651b1e326829ec839
6d084191bd4eedc841ddfef8bd016a4f1a2df86f
34228 F20101124_AABTFT charron_c_Page_106.jpg
dea7c8cdca6f8969984827165b69847a
39b5f2e769d92395deb32afa9270354f7c864809
18579 F20101124_AABUJK charron_c_Page_114.pro
23bc326ed9468576c175aa8c1ae42be3
5502efa9cf19cc9ff1852f9b848552ff93a6a9b3
12330 F20101124_AABUIW charron_c_Page_080.pro
ea2da134d3364325d3b3f165a3311c0c
76dd195d8e21ccb68907efa2f903a293bcc735b2
56834 F20101124_AABSZZ charron_c_Page_172.pro
3353650c1e3c82b5b72a60f4fdeb7cfb
2f0a8ceb4cc2e3a81e1f2c4bc93b2f14f740a6ed
103758 F20101124_AABTGI charron_c_Page_041.jp2
7f5dd111075b4efdb76f3f5150f8562e
9e7108ed87ed9e894228d76fd7541a61c4fc0b57
F20101124_AABTFU charron_c_Page_156.tif
8c903e02666a637e9d1cec99d79e413c
3b408f973135c0e4c94638126c5ed889daa4d1e3
44023 F20101124_AABUJL charron_c_Page_116.pro
51944f9eceb259d5623389666e8c84b6
4ca4c37a08e8145ef3bb12b93559be27b29f2f8c
50003 F20101124_AABUIX charron_c_Page_082.pro
9d9d06326b3043d64268337f9d43be06
e00e8754ec382ca3f4cae1f8aa149766ee490420
678 F20101124_AABTGJ charron_c_Page_144.txt
54a71c2f2d1e59d0c3a3998a010b7769
97a9db12d6d2a92b4c67664caff283df275f3c59
6636 F20101124_AABTFV charron_c_Page_028thm.jpg
89439f7b938835bdce773524731cf41a
a01be937b9b68c69bb008ad88129f7272336a73b
10409 F20101124_AABUKA charron_c_Page_142.pro
f01a56ded90f79c566924cd4090bc6a9
1945408d4a00dcb1cb33285c4d05c3a9740143b3
52178 F20101124_AABUJM charron_c_Page_117.pro
e5d106d35888b95952c9a769235dd36c
232d3ee90f6582234033d50c72c4f81fde166792
23922 F20101124_AABUIY charron_c_Page_089.pro
684b7f068336dc0c68f91911141c1553
ae63dd61e2362879a91dbec9f59e1285ed586d28
68974 F20101124_AABTGK charron_c_Page_055.jpg
0942a85678677c3c49e65247840ae929
f74f9ca0752c50fba42fc0e5cb53311f55809983
F20101124_AABTFW charron_c_Page_027.tif
d0d90d800b52f3745ecdeda2fbff1273
a9756aa44e1eabecef8d3d3df78b9439c45762a2
25718 F20101124_AABUKB charron_c_Page_143.pro
6bfd4daf9f3db962a999411b61141c82
691a369bc873b3d0e47b2f85faf6515472507167
53216 F20101124_AABUJN charron_c_Page_119.pro
151a4c18615bd48ebd56467074b1a573
ab93e71a6d732f6f5eaddaa811c24bcf0bae0d78
15960 F20101124_AABUIZ charron_c_Page_090.pro
bee4f46a669dc40a7920ca11c3d55922
12bb99216c7a85ec2200f1866f31cdfba8babc90
27163 F20101124_AABTGL charron_c_Page_089.jpg
5977dcb313d6c085456fe5bba499bacf
fda67318059c4d96931603551a83460556abb95f
F20101124_AABTFX charron_c_Page_037.tif
d74923d2d2025a1acda65a36d1ac9d0b
43f60152c4493ba1da76c6f38f4f6ecaee8e8f93
12002 F20101124_AABUKC charron_c_Page_144.pro
0e7c9e9419c46d7d7a7f1135b5d6a9f6
3b6a6ff52de848c37831f51f3880377939feadb9
49997 F20101124_AABUJO charron_c_Page_120.pro
846bd5abb99e6f2d13a69d13e5d779d6
d72b7dc76236d836fc20aa812c167a388187d83c
3527 F20101124_AABTGM charron_c_Page_078thm.jpg
54a0163a2f8d650c65ed4fa56cc010c2
dac3ff10b46834e4e4f51fc82bec71f4322f3897
10585 F20101124_AABTFY charron_c_Page_106.QC.jpg
a7860de4c908dbfe4cd10270a9f40a8a
88d228c7333c62ad34285b8debe39da1f56e9d26
13574 F20101124_AABTHA charron_c_Page_037.jpg
0629c2b03628a3062975e1fd55342d52
9b036fd93a1b3f6103cd6d07161ce526cabaf553
15088 F20101124_AABUKD charron_c_Page_145.pro
69b351b1b9a8ae3554628681bff5fdb5
79041e0c1745a7fbfc07e6f486fecb4f93ed80cb
49688 F20101124_AABUJP charron_c_Page_121.pro
7bef3de282d422c0204fe3f5e2a511f2
161df102dba462754a2f125469d0126fb54ed814
52278 F20101124_AABTGN charron_c_Page_062.jpg
a3bec9bcc2c87b46dd50ed8b9fe1112c
cd001032bba4a7d1a219fee71f10f64c740fa7db
43581 F20101124_AABTHB charron_c_Page_004.pro
14dd4c108205a381858219abedba0c72
a4557328ca631c68e2f9131a90e92967cda7acc3
11475 F20101124_AABUKE charron_c_Page_146.pro
a7d10d5c45cac8c60238873bbb55f0e9
c9720716401c86bf0b484010a8d91cabcb0bcf13
49491 F20101124_AABUJQ charron_c_Page_122.pro
70cc67c61802f5b0c30ebec7cd78ee38
b1aca1aa424e9495443d0613bee401deb765fd48
F20101124_AABTGO charron_c_Page_099.tif
fd97bfb45f63718cd2871c7760b1ddb0
ebb1c7b0d80a383ebf8f18b2c881a263a125d5b9
1977 F20101124_AABTFZ charron_c_Page_069.txt
bb1120ab7a1e7b62b1c44aa5a0aee550
90f76b246a97f9bb2cc5dca347d5bf3854e9dad9
F20101124_AABTHC charron_c_Page_047.tif
1425c5dde83c621fc1e8709ee269e0dc
54f1d3ad2ff2e8e53ec78c25742ac5ab0e44da98
42732 F20101124_AABUKF charron_c_Page_147.pro
ff027a8b3274bfdbb043962cc0cf8360
9d67e6929a7c0c0939208e67ec55966871a205c5
50370 F20101124_AABUJR charron_c_Page_123.pro
a1a8bd084f45c08760f500e582915d54
80b7d78e81727362d5ce4ad07f1d2052de44bcd2
1543 F20101124_AABTGP charron_c_Page_065.txt
f25d3e357aae1f40bbb6e7eb4ad840f3
a290e3292bfff28e37faf4b4dcfa049942861a66
F20101124_AABTHD charron_c_Page_129.tif
f3750c62fa63e51b2df43fb6e9059094
a185c364634e253375b9a2b9bb786bba560305db
45544 F20101124_AABUKG charron_c_Page_148.pro
5977d1a05b39dcd1cea218e94fd00d89
6a0b07680e080deefa27fffd336a69c9de942c7e
28678 F20101124_AABUJS charron_c_Page_126.pro
5285dca83a5fd44a6b214f02222a33b6
8ffc1c2b48221dab07b48cb2184d538c624faef2
2607 F20101124_AABTGQ charron_c_Page_011.txt
bb22ff083a2aeb94e179a17b2426f9e1
978bb8a3927c6a6cd225ac42d0bfad053c52ae0c
33977 F20101124_AABTHE charron_c_Page_146.jpg
ebbe6309937ead734e848ef49ac13f36
59666628e94dc13132a982f2285538853780b4fa
51260 F20101124_AABUKH charron_c_Page_150.pro
9851e2dc9ea7720e25278629248d73a7
1f1c0b734b8e43be293c2b809233cc41f68f8e51
11591 F20101124_AABUJT charron_c_Page_127.pro
463b2f2266c61441f28e1e901351d7b3
0837a83709e68d033f709f06184bc34fb64b37ed
49741 F20101124_AABTGR charron_c_Page_035.pro
474415cbf2120ff816df9675aa3d4de3
759882135d5ae10c760b3880c7455d70f17e688d
3322 F20101124_AABTHF charron_c_Page_008.txt
2e0bec729f31bd83f9000f42979342ee
cae251c99fc1af8b179fc96e9b45394d5212058a
29603 F20101124_AABUKI charron_c_Page_151.pro
efcfa5b06e40bc816237b854c8dff1dc
da13079817ebb18b9dca6bb254315cf22cfbaecb
14567 F20101124_AABUJU charron_c_Page_128.pro
acb4ffcb8a7c77d1ae1142899f6960ca
00784c9d25d0379fb609e9f2b533af99b812240b
1187 F20101124_AABTGS charron_c_Page_151.txt
78f4de6ec78c8b756c114cb0802bf270
dcedd4d76a43964f33c5249d617fbffb9fc2959a
107247 F20101124_AABTHG charron_c_Page_070.jp2
7079773a6470614e7c4f65770f282813
4936cf0522de509297ec70827924fba38f0fa0cb
42829 F20101124_AABUKJ charron_c_Page_154.pro
7acf4259cd0ea51c1d325ac2fbd72259
36129edbaab93f7523ce89abcc665ec8885042a6
24382 F20101124_AABUJV charron_c_Page_129.pro
9ad5504039ff7735e5f668a959c67aa0
5c0285f0ff18b23a554960a95e6f347dd757a7a3
1986 F20101124_AABTGT charron_c_Page_028.txt
a340664d8e40de80093ab1705060d7dc
63f50efce34d97cb5a4b6eb2fb89547a848fa951
5884 F20101124_AABTHH charron_c_Page_011thm.jpg
12c8e0d33d510f0281181b705f9fbdee
e0bb195091d3a68b310f08ca4b1dd5e4aa76595a
51199 F20101124_AABUKK charron_c_Page_156.pro
8ee0d93ed68f144b46fb7006128f45c6
95fceea7632c7a95d5647b3bfd2f1d812f882ffa
47534 F20101124_AABUJW charron_c_Page_136.pro
70f448de5102425f63e57f9832f67451
fda5b3143650ee8011a822f8ebe6b4a309cc5206
26170 F20101124_AABTGU charron_c_Page_175.QC.jpg
3ea45dadfdb237b6979e039c01617102
22cd2a77a0598ccd00459cf2ef18d0be640f4488
1994 F20101124_AABTHI charron_c_Page_123.txt
0d3771cab3e5001bd438f07ce3bc6025
26b211dbcd64a2b2ee69e4e7dc8502fd99df84b8
49852 F20101124_AABUKL charron_c_Page_159.pro
d98d2febda15ab3bcbaf64b4903e4d36
97756ad51484d6ca25789f193e59c65a5b532884
50147 F20101124_AABUJX charron_c_Page_138.pro
2c521f5f98d97760fc6a1f19f6785226
4c2346485ebbeab0d33060b57969fd7dc07807ff
22251 F20101124_AABTGV charron_c_Page_148.QC.jpg
b3a02fe283949f3d268c4ded8397dc7e
7cc11a31b799f9ae97d28fc33a18aa23344863fc
6724 F20101124_AABTHJ charron_c_Page_156thm.jpg
1ee459442334a9e08f3f55d46066b7f9
df01696b08817bf2679dfb8f6ed47b8cd7f86043
1672 F20101124_AABULA charron_c_Page_012.txt
fd9d4f3fe547315fdf2c50a9946d2a8b
39920057d5b6d5c143be872ad38de7e040059182
11559 F20101124_AABUKM charron_c_Page_160.pro
b9e647a9c045d7c36f75ad45abbf1ec8
d399545cc11a03a2d964ca9c16ba09ed1d535f7e
50225 F20101124_AABUJY charron_c_Page_139.pro
52379436c71690e3b2c2d35912ab49fe
618ba690287ab89a0780604f48f9eef395e2e9cc
3427 F20101124_AABTGW charron_c_Page_115thm.jpg
9c58ce1f39b464231b0c352862aef165
6b6cdfb67dbb95996613753c6031e06d13084f58
6439 F20101124_AABTHK charron_c_Page_124thm.jpg
456a2450f2c2c4fd401701f4e7147dc0
12e801a358af35204877e4312e734a2a8db2b6cd
1333 F20101124_AABULB charron_c_Page_013.txt
47bec3db1c40328a97b4e00ed1769537
6965e8a84f7f3260d8b07ea3d761f0c78325a0c7
20592 F20101124_AABUKN charron_c_Page_163.pro
c9c85eb177c88f5eb638369adb40a0a3
5539077cadf893c484dd18f6171b8c7c1a122b8b
47671 F20101124_AABUJZ charron_c_Page_140.pro
cd5b90c85e8cc214ded0bc683530da6d
306f79ff901bb7584d1d1c52e11422e16b5baa47
49125 F20101124_AABTGX charron_c_Page_070.pro
2d213943e5d2648bfcadaa4984d5e403
efaf526f7b406468de4a291e3aa1ccabb93fdd97
14141 F20101124_AABTHL charron_c_Page_153.pro
23d0561d1c50ffaf9e7b257734a72ee7
0c25fb6335106652f85e2fe6d341ab3515ea75ff
1706 F20101124_AABULC charron_c_Page_014.txt
97c3472b154e73543d3a3c04e2d883e7
f46d5acf5cdd5da4357c8476d347319437500601
67364 F20101124_AABUKO charron_c_Page_166.pro
185e8a1146b54be71e0d7cdc14eb0726
75498b1003c99fac5e720c452dc0f3fc1b8ddd05
3849 F20101124_AABTGY charron_c_Page_113thm.jpg
917988b72087832d83494e1075e6d4a7
0f018a6eea068f73b84ba621af3d1bdb3318454d
35415 F20101124_AABTIA charron_c_Page_135.jpg
7fb070ed079452733928eb13130cee56
8723d9af5f605554034ffe5e066d0a13568c7f97
5935 F20101124_AABTHM charron_c_Page_047.QC.jpg
95a1579f3f9354bf195387a204e8c1d5
7db2850bd12bca33587dcdb6c9fd52cbef1d37ca
1929 F20101124_AABULD charron_c_Page_015.txt
16c145fe7739d5fd6dddfad4bf63c042
94ee064b097f12cd767a8e0df580658416ef0beb
65149 F20101124_AABUKP charron_c_Page_167.pro
b87ba36e2ef01c30bd13f06ebae82bfe
c1c53769cbb6df3d49717fa72ebccba817782dd1
34750 F20101124_AABTGZ charron_c_Page_145.jpg
ff62ad9e71ac3f30f2ac8d0c576f96ef
f180b1a9a2fdfcf9e7f28debd3550467a1eedc9c
2508 F20101124_AABTIB charron_c_Page_176.txt
e36111722d64cd3e76e9fa299c85acf7
d6701c2112ed27a3a7dede892f1f4131213af5fc
36759 F20101124_AABTHN charron_c_Page_092.jpg
791b30723273ea999c527a2fb6fa1107
3e9bbadefeb1d3a4f70518b0524c94bca093a36f
1960 F20101124_AABULE charron_c_Page_016.txt
3efa2d3f788cb73af884bef2e467e7e9
3090058fa4b85682f3b8c438bbe2204bbd12bc9b
68848 F20101124_AABUKQ charron_c_Page_170.pro
a7c923673bcf3c7d442669d20195821b
31595efd77e5316cd129cf74a9413c3f3519275b
854 F20101124_AABTIC charron_c_Page_135.txt
5f4f9e38bd27cc5e114e9ecaf2b6d433
4533770b9a3ea81ef9568cf3a2788770b4f53e65
1947 F20101124_AABTHO charron_c_Page_088.txt
204a56afa2aeec62e30501708f42f9a4
77758fa55b68c592d551606e19313d7b8fe998ed
2060 F20101124_AABULF charron_c_Page_020.txt
11cb30f9cd20b51b1f317fea2df59be8
c604ea6f4335b8e460ccc56744f34abe5f022687
68406 F20101124_AABUKR charron_c_Page_171.pro
2de3458b0c63967e54775d9a5d6a87d0
63a12fc25fb535291c90a06e2d48cd165b03c12b
373963 F20101124_AABTID charron_c_Page_130.jp2
e62e76d6981adfad0e6210449cb132b6
cdee8a2a3dc8b9e8582be88b6da79b9832adaa57
109126 F20101124_AABTHP charron_c_Page_068.jp2
277a43531b36b48c3fd468d9cb5586fd
6d9c6374d49ca8a454c2eb2be2f4ccd5ebfdc655
2037 F20101124_AABULG charron_c_Page_022.txt
defb15f019c37db2142a18711b1180ce
972bcdf831bc9c6d8e4e9332b301580724f69d20
59788 F20101124_AABUKS charron_c_Page_173.pro
7bedd4b84a4536d7751e390276c302b1
4874c019547efe1bea19fe003563e5ee332bc366
70975 F20101124_AABTIE charron_c_Page_029.jpg
389c430b6e20515d8ac81dbe9f54349b
1a9cfb0b001f11ab73e036b4a31ba9e6b4e57005
6654 F20101124_AABTHQ charron_c_Page_052thm.jpg
8ef6b16282e74300f15a384e4af4d774
cbf095360b1f351d35ed72949bfea7320d735ab7
1995 F20101124_AABULH charron_c_Page_023.txt
b18577b4a0bcb6afacb813cfba5c2c6e
50a2dba02161406608472fdfab7e6ae92be594d5
65557 F20101124_AABUKT charron_c_Page_174.pro
d296db14012ed426fcb49d3acd89567e
6afbef4e2d1e31c54ff0462275dd2d7af00d0bb4
1814 F20101124_AABTIF charron_c_Page_060.txt
88e1381e7efb67c17256f351ac133896
d16b5a27e2a8dd007ffdabdc9d5b991b539a2ced
1200 F20101124_AABTHR charron_c_Page_134.txt
67b24bb2c03c236c833192a48d608b28
9f58eb233dee6e465619726521ab948f5870a4b9
1992 F20101124_AABULI charron_c_Page_024.txt
9cc611f59f5005d0de10d5d2ba6072de
762e7b971de364c02959110ca780ff01d32ca233
61270 F20101124_AABUKU charron_c_Page_176.pro
522ef96f795918032ed06fb8569e026f
15f5c5156645f7c6ee47a53ec263c0346d93ab8d
64289 F20101124_AABTIG charron_c_Page_154.jpg
a2ac9555506aa74ea6c9b3e5301ebf46
dc9021e40e9fef46ea8f647dbfadb2b6451f917f
22871 F20101124_AABTHS charron_c_Page_072.QC.jpg
f0be57583effee9f8390189e6867b354
78dc633012f7cc0290d3ed31c446abc1e9cfc425
F20101124_AABULJ charron_c_Page_029.txt
4dc4513d295d43619fb5aa1401389eb3
1037d41a8c3aaf25510dde45043afb465b5e3f5d
35395 F20101124_AABUKV charron_c_Page_178.pro
4a8904b2fd75d7458ff1d52a636d63a5
cf2e03e7fbd630adf7836cb4f95ce6b6bb46a2a9
23909 F20101124_AABTIH charron_c_Page_104.pro
02928e4687172951ee363c286ec668bd
7b658de60b90395290a9ad2f4a98de0efc475820
51055 F20101124_AABTHT charron_c_Page_031.pro
2979af4c2e86f81ab40c81b86fd2bbfa
39fbcb8bdc7fbe7ac34d9688faa3b5c5fae3f2c6
2015 F20101124_AABULK charron_c_Page_031.txt
1111beed4226f3b20fc16aad944bfb11
446403c785321dd422b8357f59af4e4dd357d478
134 F20101124_AABUKW charron_c_Page_002.txt
6391a587d85b2f8a74480b53c4078a48
dacf40724f75635b8baf5a31270b79086905d8ef
58840 F20101124_AABTII charron_c_Page_010.jpg
1f4e350c2685a35a3a8ef230b829aed8
765e43bef0df4f592da5b8ee69dd538b133a151d
8788 F20101124_AABTHU charron_c_Page_107.QC.jpg
1162746772ca08364b32e3cbb1eba8d5
b8d0ed18824aa56dfda46ff821773d26fdf2a638
F20101124_AABULL charron_c_Page_032.txt
ae37c5cd1974199e55064ce83fc34055
82474ff88fe467ed3ee6f5de9e4ce1834a9db206
390 F20101124_AABUKX charron_c_Page_003.txt
69440f6cfcb2e2eeebbab2defd9ba0e6
6d77a53a5d0e3cf522016762a23def891c2f8de2
4809 F20101124_AABTIJ charron_c_Page_010thm.jpg
46bd171bc102b6fde083e68016830417
edf225001f8a3073dda66f29ee107c570f99b0f3
48038 F20101124_AABTHV charron_c_Page_056.pro
5c1bceb5d33403eec0203e077d15ada4
f924d82809e984b722832b5f1ce8c42f16b7971c
1955 F20101124_AABUMA charron_c_Page_057.txt
be4c8114488f3938eb285874958b4d5f
0078e95b826dbc29719b653565397d573b2f57d9
2042 F20101124_AABULM charron_c_Page_033.txt
c1e93e0d245e2ff403252290c1a986b8
b6138a672a855e844a14fb95e3e14009d42a2b05
3198 F20101124_AABUKY charron_c_Page_006.txt
d193b82d86311190b83a54914242c307
839ef281261c906a187c43e02059a125d963c25d
22353 F20101124_AABTIK charron_c_Page_160.jpg
3c15b95a31007db6ab1a42538e098fab
20c02e9e3ce5aa5cda9e371d597ee09d942ded75
108481 F20101124_AABTHW charron_c_Page_016.jp2
91f891091ee4b382a516d66ae7ded84a
a5a7465f98c5c10007615e539394b3980f1640fe
1881 F20101124_AABUMB charron_c_Page_058.txt
090e31b193c76bc71d2763201534f4c7
c5a91dc9d60971b9a9a951a80d28b33100ede45b
1987 F20101124_AABULN charron_c_Page_034.txt
b60a0990a1daaf46ff061802121c63dc
fb66bc2371485c8216736bf7e95f7c7ea064b3d9
1453 F20101124_AABUKZ charron_c_Page_009.txt
0a9350b46c5a8c089407c521581f0bc1
8ab8a8c6548213a84a9bb1d262f7e3bc748d45d7
75226 F20101124_AABTIL charron_c_Page_052.jpg
434580159fc730f4f62faebb2ab96c36
629606fe9452d9777f1d4a55413d14b89ed15a32
130336 F20101124_AABTHX charron_c_Page_176.jp2
9774eeb5b7aedc72c7cf306560be73f3
ce28396e7665ceafd12ed9f0dcf196260e6ab1e7
1329 F20101124_AABUMC charron_c_Page_062.txt
bccd8f0e4ec8c34bab86f2705067f819
e6fb4279650d342607f6e27680c10dc6d6e9bfcf
F20101124_AABULO charron_c_Page_036.txt
59ef8f943fb7c951b9fe4d537a298cdf
0efcef7b279d246fd8dfff6921e0ef1c6bd7d209
2029 F20101124_AABTJA charron_c_Page_064.txt
54127ebc273a6e4deecd8f76bf0123ab
c8654dcd414605fbb2a2d08a01dd74403c59f1a2
1773 F20101124_AABTIM charron_c_Page_061.txt
c0925cabcd3a69b6e3240b61fb7a3b5f
ec852764e16b99ea59e9a0673960a4ebef27b145
F20101124_AABTHY charron_c_Page_012.tif
5694c12651f74243fcf8dd1bb55aef8b
cfbd77ae70cc272df48a5c41e4498a0956a449b3
1750 F20101124_AABUMD charron_c_Page_063.txt
e8b0384ce5ceac22b8396f9737c6ad39
c60942fbc32f554010282636cd0fd0de90a471ff
210 F20101124_AABULP charron_c_Page_037.txt
4c490988f8c8595c9ada33391de9e89f
ba5d034c59a9e04218635f9ebe086d3a29b2f46c
F20101124_AABTJB charron_c_Page_109.tif
fe8bd27622aa6422bd93c9a7b65b909c
4e4bcb315e558d35a4440eec2da9435b5441beb6
5093 F20101124_AABTIN charron_c_Page_178thm.jpg
1364fc9aaa357a9cc3791b53980258ee
1c65a55dadb3a393ba4f4eba4f913f85763c60b1
1893 F20101124_AABTHZ charron_c_Page_056.txt
3d909c7f87813bb9b93f1e0a07561c0e
16a5f9e5be6e66c205d38f6267e10bdad6f67ee3
1933 F20101124_AABUME charron_c_Page_066.txt
f891928155e1ea4f412f51ded1eb5764
d40a9fbcabf30bbd0dacc49c23f713ac4a6e8fae
735 F20101124_AABULQ charron_c_Page_038.txt
113d7f535a5cf4cf81aded471ece0bc2
b951617025a1cf9b77dee08b5ba7a67ceeb1f7ab
11640 F20101124_AABTJC charron_c_Page_143.QC.jpg
dfb6d0cb5463d6006ead74c3fe494453
528613217aa00c83f0c4bae1044db5dbf465941f
27834 F20101124_AABTIO charron_c_Page_177.jpg
5fc07634921a180d7da45d223ee78bd4
453fd2d50f4f52494fc1796cddea753257965ba1
2076 F20101124_AABUMF charron_c_Page_067.txt
bc3e16be9ed7fd90e9d6cfadcfa72033
b78d60d2ad5b9df814bf2c5b41c7ad7d927d47b9
826 F20101124_AABULR charron_c_Page_039.txt
5d131e4ed428466929aa11e2e7f0feef
5d0c3860800a0ba4378525f06a814766aa8b189f
106184 F20101124_AABTJD charron_c_Page_054.jp2
82c76ea58314407c383056df366fbe9b
818846ced8b9a570b194d21cd3c84bea51c923d9
6588 F20101124_AABTIP charron_c_Page_016thm.jpg
d21953975df71efafa3534691741ffe1
ef1d4190f7689fcf319a904d4bf51bcd8a00a984
2004 F20101124_AABUMG charron_c_Page_071.txt
7408cc893eaeeebae153b368beea28af
caedf76d538c73b3d986aacd23430f222e8a6a45
1895 F20101124_AABULS charron_c_Page_042.txt
b1c812f578069a95ebea1ba29d4cb23a
cdc9cf7778ea073ef7f986e270dac057bd2a59e0
4988 F20101124_AABTJE charron_c_Page_013thm.jpg
d01432e99a1e4901ba215aacbad7c3a1
2f399a6e8708f5c5ff9ab3daf77d2d9c666bae37
F20101124_AABTIQ charron_c_Page_098.tif
1fb91cb9f54f239e07a2d8fc63e35fd6
7559711b2ace5c0f882524190eaa6b7682db146b
266 F20101124_AABUMH charron_c_Page_074.txt
8a0c4c53121f0e13d0aca944cecfeb73
f19ae9f1f2deb1543a71c5d4e5f5b1e9763ef0ce
1898 F20101124_AABULT charron_c_Page_043.txt
fd9ccec0d16049975daba50ac3e3b2c5
f19c8e135ff8f64d486504c994e25c009e892f59
43991 F20101124_AABTJF charron_c_Page_061.pro
cbf922a4b164a5edbc933134ae12c783
dac2ce39b4c81c7ce5613974f23fc96287eed744
24389 F20101124_AABTIR charron_c_Page_119.QC.jpg
36203c9ce0cacd122a2ae66201a86fa2
f388c61abef5f0341ad41b252cc4eefa8a9ba260
597 F20101124_AABUMI charron_c_Page_075.txt
e43747b2e0fe15c044fe8f6b67666280
542da3d2c0041d5a76d0501c7f21b34ab1a66a1a
2438 F20101124_AABULU charron_c_Page_044.txt
45fde54ffaafef4cbad256d12f6daab9
4e28bae8f93478d03b76a89dd86e4fdf12ce8673
423765 F20101124_AABTJG charron_c_Page_092.jp2
f6a43347d0dec777afb9d9616ae4912f
cbc9871aad6e7a9d3a02174714091d89ffacd40e
F20101124_AABTIS charron_c_Page_174.tif
00e9ec62dfb3fcc4483001b7c1133368
8c7c180ac8a7f6dcac3c6d42c0b26f9ed9d32034
726 F20101124_AABUMJ charron_c_Page_076.txt
614b94478f1b001aceb7873c128c6384
46dd7ca3f0ae6236c4cff7e02af1802d122ed5f1
809 F20101124_AABULV charron_c_Page_048.txt
f422511d1da0bc6e1a29fd0f1c8c26d8
21e30517c5270542e2b11f891103ac13218610a9
F20101124_AABTJH charron_c_Page_006.tif
c3e5d8b265d25ce409f06055f2b05252
b701249c89492e0bbce466d79ce0a9b47d55558b
359614 F20101124_AABTIT charron_c_Page_080.jp2
95566df80d5294a59f8248ab9022bbd6
c25f2c9e94593cf9bbe9265ecf8dbe72c0e9d509
1105 F20101124_AABUMK charron_c_Page_077.txt
eb4df04c61c0eee6668fef7520f8b5a7
6688aa767d58bb51bb41920e74a6a26583e92b1e
1829 F20101124_AABULW charron_c_Page_049.txt
32c352d814e3bfff56ba11e6a721602b
7df6bbb8f8cfd13f2548dbe7f553b8f28c9026ef
F20101124_AABTJI charron_c_Page_095.QC.jpg
c733bbcc6d7b18b8f70e213630c69c97
8f87d37ff24d02830e167def0afe0e9428b234db
4170 F20101124_AABTIU charron_c_Page_007.txt
c46c1b901edbeb8d9c83a139cd9590a4
673ecb0f70a1688b053e389f88e5a174a32c538d
1967 F20101124_AABUML charron_c_Page_082.txt
8e3727c4e11ba96348ae403f75396477
362b6da515d8cd27655a08ba02cad3064e42b5c4
2005 F20101124_AABULX charron_c_Page_052.txt
2024638965eb0b540a2418739b3e5f6c
f40b08da4a8de86a8f6249ef8d729708206a2391
51465 F20101124_AABTJJ charron_c_Page_102.pro
51ebf2effd661800466eeca0653b8254
c1d13eb11d3ac8381fbe97a13846825bbeea0c6e
73604 F20101124_AABTIV charron_c_Page_019.jpg
8ddc146b06fbd60d42bbe7c9c9a01a83
818aace24c4e7a78e534d91617d29d731a2c1771
444 F20101124_AABUNA charron_c_Page_115.txt
49d28950c64f8093039e529d75987186
4958161bb2522c6124c22115803473b024b8d865
1968 F20101124_AABUMM charron_c_Page_083.txt
78dede75bb2347c72fe0256808e4908c
17d214152c0aeb64fa0b31af83f4a412956f0e38
1979 F20101124_AABULY charron_c_Page_053.txt
59b41cb29e581822bb573547c2878b59
8df75174ad9f9fbcd0775ac7902668c5d4ebafae
F20101124_AABTJK charron_c_Page_107.tif
7ae79591aae7e212ef8463da8b55f5fe
8298ba270395ad024ce51d5b72ecff8bc0fe6b25
2451 F20101124_AABTIW charron_c_Page_173.txt
835f2c8b4a80cf65f06c206863eec144
b3ccd0edd47fd3080615319d2a677e3b8a3a7f57
1887 F20101124_AABUNB charron_c_Page_118.txt
f068c25e0494ef5d5507cc24774b6a53
1d0f2d23983bb6f3cb8201f6675dbbb06d6b1cb5
1999 F20101124_AABUMN charron_c_Page_084.txt
b202a770757db975d787b0dd6de66c7d
a7f94ed8686eb65bc8b3d466cdad645ac9ca1a92
1888 F20101124_AABULZ charron_c_Page_054.txt
47432d70c01251775d464414167eda54
a1ca492e4ac034c09c143baeb3823b53f9781eaa
46216 F20101124_AABTJL charron_c_Page_049.pro
437e1d291184bc6c2e81981f10c18a7b
eb2c9a390260f431455e6e2409b179d2ae22e87a
421 F20101124_AABTIX charron_c_Page_109.txt
8ac8676e21a844dba8510be1759ca6e3
a83e26013a19b75b716279f68994bd949cd51545
2218 F20101124_AABUNC charron_c_Page_119.txt
1858115c9765674e3378ce2ff47a4437
1cad28f1b16b23051d80fb05220377be2cde973a
1920 F20101124_AABUMO charron_c_Page_085.txt
e3d537d6fda2518e268e0d65dea1268e
fe5d44f8e95b2278e81b957eb5cb372ca1c65adf
F20101124_AABTJM charron_c_Page_142.tif
cddbe9991d6731c8519ee2d36f83239b
0386f86d29c09cf97ae2627fe91a504698c5d722
51641 F20101124_AABTIY charron_c_Page_155.pro
86c97542ca4500858e42e621ccbefa4a
97d74bbdc8df2aa5e35f2b1c8519801cabe3fb31
3775 F20101124_AABTKA charron_c_Page_103thm.jpg
c61795312f03629f9d8bfbbff41ceaf1
4c1de6abad51e09c42c53772f0ebf3e4a38fcc6f
F20101124_AABUND charron_c_Page_121.txt
ad4e02f7bce043187ae6149e1068ec29
388433c4ae5fe632b3ff68c9ff38aecbc51b13c9
875 F20101124_AABUMP charron_c_Page_090.txt
f19dc2d03fe2757e85c627a75baae521
413b92f96c22dfa3b0c756fe45297132b94bdf95
107732 F20101124_AABTJN charron_c_Page_083.jp2
f326ba9e67b5f8213cf7545243b65623
f185af7e150a642b9e8e97a151cdb864f111e70a
105220 F20101124_AABTIZ charron_c_Page_017.jp2
9ee10f6a215c178973fd239e3fbf9e8f
632e41bb144ccc70f57f9bb5d7fcf6dcbe6ba8aa
51168 F20101124_AABTKB charron_c_Page_161.jp2
f50233cfd0e66f68e70fc46fed93991f
6793a7e280b98bbb3529fd2401b392392c87bb17
1974 F20101124_AABUNE charron_c_Page_122.txt
152c219f6d7fd8e3a7c543f7fc7197d1
8054c621930c92d501963177b9f4e4a15c7efa51
1435 F20101124_AABUMQ charron_c_Page_092.txt
f82cc1214affe55fe1d2bf49174cb5fc
c6ff3e344421eb6886f5ad4d5cae212cf5a53b25
6739 F20101124_AABTJO charron_c_Page_138thm.jpg
36d9c82d847057c1690b7f2e90ea6df0
2c2529b67ea4580c027033e153e582005b34c383
32265 F20101124_AABTKC charron_c_Page_038.jpg
2ba7b4d1d7f203660fc6698144ee2153
3c51a14ece390fc85d6405a695ddf3586f48b7fd
1904 F20101124_AABUNF charron_c_Page_124.txt
b19220c64451e723ed268fb7e65207a7
defc9776bdbcd9c20ccd76b00614bc314f39912c
357 F20101124_AABUMR charron_c_Page_095.txt
070704f448149d90d66191d6def58142
4d62a0f058d0894ce8c55bceb3bdba28279befa9
47086 F20101124_AABTJP charron_c_Page_164.pro
61c41e958e6dcbdb2571c4b77d86c98b
38351d875b7779baaa1fed65067963de6112f585
776 F20101124_AABTKD charron_c_Page_079.txt
314312eee8f0ba5dbcd9e31d5c1f3150
173ddb958fe4f6a40bc1360a3668466f8d2d04b6
F20101124_AABUNG charron_c_Page_125.txt
18b561dcb37a1ec21e283ce0a6577c4b
0a923ec90f82481c5c2aed9ddf97b3c3a3723ce8
1907 F20101124_AABUMS charron_c_Page_097.txt
49c330b2f978361cc16bcfe7fc06bab8
bab084ab51af740db513cf8e848a82771d3301fb
1732 F20101124_AABTJQ charron_c_Page_110.txt
fa850f80bc893cb88161d37bbbe0c90f
fab5cbd109bda23a07b4720777b51af35f3cfacf
73565 F20101124_AABTKE charron_c_Page_031.jpg
3335a64a81aa129f7b646e0ab966f339
8689e29fef8929c82a35fb3e3b8e3328957a84ae
1138 F20101124_AABUNH charron_c_Page_126.txt
6741edc688067e38df538159b6bd01be
430086b958af315ede5887a2b904d419c0171ae4
1880 F20101124_AABUMT charron_c_Page_099.txt
74602bf243821a9a4b05c9be153b6d9f
51ab3082448da538b163a6643c11b15498f06e24
F20101124_AABTKF charron_c_Page_091.tif
6d89b2b03a4e5d8a884545674c39c74c
732b16af86ac632e7d328932a44b2e2bc4005b7e
66279 F20101124_AABTJR charron_c_Page_175.pro
e8ef63f2f0aa38c2832d0e88dd1da5a1
d180ec799928a0885154552833e5e33b5bff6faa
785 F20101124_AABUNI charron_c_Page_128.txt
197e034d7a26d7a727fd1ac394d76802
56fba07f09fed999ec92109a7c100c7f3b0b5c57
F20101124_AABUMU charron_c_Page_100.txt
7df9d053faed02685c585bcc11160f01
6df4affef3c18bf7c5b502fd1fea5e9218163017
72790 F20101124_AABTKG charron_c_Page_159.jpg
81a648a1f707805ac54ddc16afddc02e
5099c853a79954167cc4a3bbd9a3b01c83a28efa
47342 F20101124_AABTJS charron_c_Page_157.pro
667ae4230eca09538658043b1bf5201a
2e35d6ef7f19dc5406a138ee28a099b4def8c97a
1213 F20101124_AABUNJ charron_c_Page_129.txt
a7852f8157aab0cba6c7deb6c84670c1
e39f3a4a1d784cb54e8cccc6d34831fba79bf707
909 F20101124_AABUMV charron_c_Page_106.txt
2c3221c71466d8a382916ece3a5aad98
f86122198b46e333750ee67e6f8c70622c639b12
3745 F20101124_AABTKH charron_c_Page_152thm.jpg
3bcdf0b1cf6121d709ec233c3b30c2e7
0a7e74b9261e3945ec03123e3273b46b60143fc9
1812 F20101124_AABTJT charron_c_Page_096.txt
be4a486e84346abd51bae06b295fc5da
548f45fe42571f2a4c79014134d266912b6aaec4
687 F20101124_AABUNK charron_c_Page_130.txt
cfe40f9465305c27e8b2db2fba2c2f45
c0596a41fbc59c6614a77f2ded8d930c3cbf52a8
567 F20101124_AABUMW charron_c_Page_107.txt
f17d263e07ebd82302160afdae5f823b
4dfd091cced61a4211143dc7a3712eafe88375f8
F20101124_AABTKI charron_c_Page_163.tif
f000574cf473218ec3e9a3fb3fcc149c
afa14a73f7c9f302c216508bd69a90e71981b012
47564 F20101124_AABTJU charron_c_Page_058.pro
9b05612adf4ffd13ca1bd592cebadf0f
c4240450a51c447cf5a20598ee72d6ee456b0bf5
2099 F20101124_AABUOA charron_c_Page_158.txt
baa7bcebda8d259385a8cd69bac20fbe
6dc7239776afb565e9c76dfcd3f6658851ab8290
431 F20101124_AABUNL charron_c_Page_131.txt
f407299f2421d23248623b8ea156b5d9
1b4418ced63b2b6c91635ba3962db4b566c46994
267 F20101124_AABUMX charron_c_Page_108.txt
528535b2188741cf4e70bc683c842421
c04216a5e4fdb6472c67a1918ae27e66b831e597
736 F20101124_AABTKJ charron_c_Page_152.txt
04b14ff4c5a50dc83ca59015ff9b18a6
1c8c7b2f05d10fdf7f5638162625fc4c8b10f2ac
6554 F20101124_AABTJV charron_c_Page_041thm.jpg
faaad574ac37192d27554944f70b1ac3
35f8b34a040d2fa6925109d04058700ff43be83f
800 F20101124_AABUNM charron_c_Page_133.txt
a067c73695c7d0d2bd9ebfbabbf8764f
f3ca0c9ead7aa67da946b0db8097f1bd3b310d76
563 F20101124_AABUMY charron_c_Page_111.txt
fca8f889051d5d9ff56143a6cbec57b7
820cca50a4932769ebeec964978bd3d611788f4b
22827 F20101124_AABTKK charron_c_Page_030.QC.jpg
3555586f2fdea5ef05def9038b042171
2c55b3ea1fafa0851930dd2a1dae8e2a3a3e9012
45878 F20101124_AABTJW charron_c_Page_098.pro
dd70eda652ee2a4deb540e5a846615cf
f5125ab4ba7d7ca6aac075dea4b83319ab6dc60c
F20101124_AABUOB charron_c_Page_159.txt
39d2919f58e36ad97da4873c54d7fc30
1644b792bf60304dfe2de0134fff898dd9e1c500
1934 F20101124_AABUNN charron_c_Page_136.txt
b1e644a5cf560cdbfd6ed3002acc4a99
494ef02eed839fad630c136113eaf3ec67cd29f9
585 F20101124_AABUMZ charron_c_Page_113.txt
b7df7ebcc7849fe78541104a94d9a95a
0d186b062171410028feb9d7e3bce2a14d9c428d
2153 F20101124_AABTKL charron_c_Page_010.txt
dc15d437587504c2f67ebe08c7c4fc9e
ae55860a464368b9e0b514864b638e1d17ae60d1
7727 F20101124_AABTJX charron_c_Page_111.QC.jpg
4f79c883125c547abb38152c83ca1a93
a21dc73b9c681e28d5f64c04bd2859592b3d6714
500 F20101124_AABUOC charron_c_Page_160.txt
d96620eb7c4de37385fe7f9649807051
703dbad6786bec22c3f56d6eb2811e320d86d91f
1949 F20101124_AABUNO charron_c_Page_137.txt
2ea264b1e490c218f8c45d0e23d6cfc0
836410437bd7102b77b379cf091776782153213f
F20101124_AABTLA charron_c_Page_010.jp2
6b21cab5c0f3fd6ab81e4dcc2c68f654
7db022d3b8820dd7c280a06d5ee67122d2b13384
436476 F20101124_AABTKM charron_c_Page_145.jp2
d7fc107a4970ad7444c992fcee1d40c5
6cb9f9a7116ed5d06669fea198f27ab3aee170c3
48017 F20101124_AABTJY charron_c_Page_071.pro
7a0fed6cc1896a435ad3c540ce8eff99
1762a9c040044f4f1c4ab641cb3ec54f1e0a5ca4
883 F20101124_AABUOD charron_c_Page_161.txt
35efb21bb5ce95e6e3e68993bb65896e
518a9681157ccaa41c4773e93f00cf1f83952473
F20101124_AABUNP charron_c_Page_138.txt
0df031e476d9fd7673bc99110bb5b7ac
0e87064a23b18b922bd20c77e75240f0ebf7757f
6953 F20101124_AABTLB charron_c_Page_109.QC.jpg
829a92143ba6ba0e386d8530300bf0da
13b17ffd03c20aa4c35ea98881338c95a924dc35
F20101124_AABTKN charron_c_Page_086.tif
512becc5696c011c03e14fdd4d62a49e
c5232384209b1b5d690f54266c8f48e056a651aa
14902 F20101124_AABTJZ charron_c_Page_048.pro
f0e9a1c83a2391879f29aa60736a1e6d
73b5288e566d3cf5f138466af83678f52a9d2593
1106 F20101124_AABUOE charron_c_Page_162.txt
2794af2348cfb107b6d3eed9130950f8
da4645e2fc8cd0678422799a1a9e534d5400720f
715 F20101124_AABUNQ charron_c_Page_141.txt
973ee89f3287d2c1607b20e86ec31b9e
a5e0a1146ac90ad32b4a7d8c8e3ba4ea1431866b
222437 F20101124_AABTLC charron_c_Page_107.jp2
4ca4dc5d18bc63b28047260cf9b4c85a
467550ec18b6d4315171ef915d3009483201e504
11150 F20101124_AABTKO charron_c_Page_094.pro
e174081e63cd4f45903d515c3c4d7936
2a850777ae140459f4b752f85cfcbeeeafe39351
886 F20101124_AABUOF charron_c_Page_163.txt
13e8b8d87f232f74e684dfc38ecd3e47
06d47303f4f9c482af7895da0c6c55b9274949c6
1412 F20101124_AABUNR charron_c_Page_143.txt
9542f327c4f8a155987b76130ea85307
f2460e67edbf5dc6c485bbb76045abdcf9cedfbb
7845 F20101124_AABTLD charron_c_Page_074.QC.jpg
3e406b37350087f790524fd833b1d5a7
b71f83747afed87f5da9001f3f28c3d0f4bc76c6
107520 F20101124_AABTKP charron_c_Page_067.jp2
505445587e380eff0a81a8a79fbe52d4
d3b87a98615e474e4e6adb37d7ddcadcbcae8550
2530 F20101124_AABUOG charron_c_Page_169.txt
e56c3cc328e17a618561140354609aa5
c70229ede69cd979fd9793f408ecba505bb32ccb
679 F20101124_AABUNS charron_c_Page_145.txt
27b3a915feaa210f37c2c4a9d0e00a80
8047216e219415f2e3f348c1ed67bbfedb7080a9
89359 F20101124_AABTLE charron_c_Page_165.jpg
8a2c38c4af9b7e8b33491f151f241da8
9db9d504d395c9e1f85c1498705c1d70402cfb06
6563 F20101124_AABTKQ charron_c_Page_117thm.jpg
b1669ec57c79645893d0d2af92204377
f69fd1bccd48587182a537f04a34df3b4fc2ee64
2863 F20101124_AABUOH charron_c_Page_170.txt
5840b8dd021eed64cc50eb6c8ce42276
59413dd165d062701e05d224a62a24e4502a806f
601 F20101124_AABUNT charron_c_Page_146.txt
57b788cdd526209c6638cbc23215674a
5540a2486ec902c0db89b0d9f3e82092f53786f6
32779 F20101124_AABTLF charron_c_Page_090.jpg
c2ce0b41ea994df3844ad935ca5c2ac7
6178950008c450214f15bd4153885200dbb9b3a6
22857 F20101124_AABTKR charron_c_Page_087.QC.jpg
0fecdc307b3c8946a6dd622413878493
61b2a4770071474ae5614132713ce00dc940ddc8
2679 F20101124_AABUOI charron_c_Page_174.txt
539f2a28ba26aa3d79082bfa6d610bb6
7458168acb4a53452cf12efb3db06852333e0d8d
894 F20101124_AABUNU charron_c_Page_149.txt
46c866eebc6ee80b76920e1fbb47f546
ad2d9880b9c350c9b22257045a59b7d520eb1eef
6277 F20101124_AABTLG charron_c_Page_025thm.jpg
515259760482833cea23bd5301f45ca1
fa64627e97c8f14c0e09b035b806c2936bcee62b
5679 F20101124_AABTKS charron_c_Page_040thm.jpg
b0eb57621f4bb7cd348ce0983c4a1227
94ad49e301647a88ddb7e3f49256a5c429d773e1
2724 F20101124_AABUOJ charron_c_Page_175.txt
f32582c149cc28fa24caaaa486300e3a
eb56c621a41a63b731059e5dd31f41df0c720d24
653 F20101124_AABUNV charron_c_Page_153.txt
90a2d21fe2bf4c65374f748b0be1320c
0dbdd944038e2fdfa725004ddc4a52c182d13220
F20101124_AABTLH charron_c_Page_101.tif
751f101bf4d331a12ee820e2c7878cdb
f8cbacbe8d580137608be1ed8c55755dbbfb9dca
51682 F20101124_AABTKT charron_c_Page_013.jpg
f894578a892a573ecac25afd3f29abb2
8bde8e424aad5b9dc9ab109fb7bc4cebde7ac4af
1451 F20101124_AABUOK charron_c_Page_178.txt
56fc5742944f52f1fcda88e9b7105d64
851586731c752f7a136c32c35fa56b2887699710
1803 F20101124_AABUNW charron_c_Page_154.txt
0615aa59ab54077f0b6d06fee8b35466
aa926578a1941108979cdbcbfcb44c096312e19c
9244 F20101124_AABTLI charron_c_Page_131.pro
0a0549b3dfc68b5a7974f88da395a888
27e1ab81f6129d28c080de05afba556a1cfb6fd7
1856 F20101124_AABTKU charron_c_Page_045.txt
d7fd035f3fe5c97b7e6b51d6f7edcbed
8605f244e9bb4fbc1adb4bb4e8911e24f92c3d4d
23337 F20101124_AABUPA charron_c_Page_036.QC.jpg
b13e6ff2ee77562efd517972a6a19481
1af50ed562872e10b81846c2a59ae2a828b910e9
2522 F20101124_AABUOL charron_c_Page_001thm.jpg
13bf11daff48739590fc4a69c3c59d37
8d081e4ed2dcb3945c073929966117b3a837677a
2031 F20101124_AABUNX charron_c_Page_155.txt
b7125c772cb99f941a345608973b0c4d
2f896c44ca2997896480ed95da20fc18fc8823b2
24706 F20101124_AABTLJ charron_c_Page_134.pro
182a3588e6bf39ada19c2eb6538e9d77
9e4deac7d3f4892795caa65a106bec3f07d85911
6404 F20101124_AABTKV charron_c_Page_032thm.jpg
79e7f6ba37498e41f54438378624a9e3
325293f399261d277ca781501ebb090debb9c3f7
24171 F20101124_AABUPB charron_c_Page_117.QC.jpg
07dfbd107066bd026a3f00d119ba4665
af4e7f5f5862e0ab1a1292dd993b8d6989bb84d9
9349201 F20101124_AABUOM charron_c.pdf
27046f1551249b883a6d4c2889d41c45
fba90a93e9776d5d737a1a82f9578f0f1b616cda
F20101124_AABUNY charron_c_Page_156.txt
c84e65712124b9399da9dbe8dc0c5438
a149ddcb79a966ace2da5a735f21f4ba7efd600c
60099 F20101124_AABTLK charron_c_Page_014.jpg
4472d099f61fe4c13c4cc5ae63808c52
dc55f2efd6edcef2308ae457bfd6b98f0c1e75a4
12169 F20101124_AABTKW charron_c_Page_076.pro
6486b2911fb407b2c69b9e81cc59b69e
bc243c4ac266a1d8f149d03eff69f98f8befd41c
3714 F20101124_AABUON charron_c_Page_110thm.jpg
f21703c2729b14fe8353baab48a3851a
9e742ef88d348e414ba714a7542e060a0a1d1c31
1873 F20101124_AABUNZ charron_c_Page_157.txt
d51db429316d16014844c0c5e9a7a45f
abe07b82fe5b77e609c76a33e0897f70695849c9
23027 F20101124_AABTLL charron_c_Page_032.QC.jpg
f953512036c070770a9e363ed8627225
07db92b74ff0a9c9dfb8291bdd0c7024125d2798
6612 F20101124_AABTKX charron_c_Page_120thm.jpg
f3be2c2963e4a4578f0c17c8f2ed077d
a426ad20ba300e0e96306997b22faa261cd31e7d
6811 F20101124_AABUPC charron_c_Page_119thm.jpg
7e6ffbbe0fc1a6ade1c9ea23689b3553
32d0cc3226711a3bed291962259031d5a5762762
3599 F20101124_AABUOO charron_c_Page_038thm.jpg
52171bf7e9f3669cfad3a873220b3254
97ffe038f2bfc018d2b93ac961882343ce1cd628
75559 F20101124_AABTLM charron_c_Page_044.jpg
9d414a0a45e649d4e6344ffd5fbedbb4
8e3e168e1fa08dd914048c522bb0fc453a345c31
9404 F20101124_AABTKY charron_c_Page_075.pro
7800cf4c0ab276e43a741440402d3b41
9958d83d268775026e1435193577440bd3fda4ec
42716 F20101124_AABTMA charron_c_Page_096.pro
ae3bd04f35726b710a9ec5926a71643a
e182702e267173c6885461d1616395e5a6dd9561
13363 F20101124_AABUPD charron_c_Page_128.QC.jpg
e60e6282ed9057774ee7e0cb9d21995f
6c42bf1a73325a0dd5b9494ae1a955e7fdb7c243
25289 F20101124_AABUOP charron_c_Page_176.QC.jpg
ccc4f9dc1125b79339935b4826701734
404a02f69eaae2b1bf6876917ac38f593e38ecb7
226873 F20101124_AABTLN charron_c_Page_109.jp2
f2fab86139372b1e88bdb354124578f7
ca70371a3e8e402a4f25d23ade20a5e74a818770
F20101124_AABTKZ charron_c_Page_039.tif
5d3089360d94031e5509725736d1a4f9
2a5056e2e769570459bfcd24fde810ea23f95b31
425842 F20101124_AABTMB charron_c_Page_077.jp2
6f142466903e7ad9d738be24eac2af07
ee142112bd99710c60035c818ceee9c4d4da7c4d
10898 F20101124_AABUPE charron_c_Page_079.QC.jpg
e952d3d8d616bc1f2d5dd211b9bfcbb5
c3ce1e0ed20302dcb52080060d142450bc2a3141
7121 F20101124_AABUOQ charron_c_Page_170thm.jpg
70ba6bad6fa743cf9e7e9064ddac95ae
37f476bbe42facd14b8fa0394a1ce0e957d026e2
F20101124_AABTLO charron_c_Page_124.pro
1fce6690cd1b90bce1716c8282f1fcc3
6ab9780eddcc3f11a103709f50895721e7dcd941
51898 F20101124_AABTMC charron_c_Page_163.jp2
d7862e7e67b43a0222d1d441a0213a61
f35d3d3cb5bda526d3dae1238fac53993ecd518f
21695 F20101124_AABUPF charron_c_Page_060.QC.jpg
419c7285bd8765162c87734073eb058f
be9cfbf207c78bc8e01b53661d5255691bb49a6f
12987 F20101124_AABUOR charron_c_Page_162.QC.jpg
c1212e0c6387f914f70f339c50caf2bf
7433e1dd8c1f11b44be78ba7249a94bb8a08adb1
22805 F20101124_AABTLP charron_c_Page_070.QC.jpg
3cc2e51dc72522106dac9b689b1d5eb8
94a0fbd5440884bd6edcc9fe2b5f0c185472f6b3
F20101124_AABTMD charron_c_Page_141.tif
456ba600a1348c0cf1bc10cd6b23194a
9be9b64dd7eaca9950bc0898540955d81df078d7
6355 F20101124_AABUPG charron_c_Page_056thm.jpg
8a75e8cda034faac3ad7ffc9e1cef6d4
dae61530d36f8dce315a78c3178a7380927dd055
7037 F20101124_AABUOS charron_c_Page_175thm.jpg
4dad43315aec5daf2615e81837317921
9b174e02b09c6eb37ff05c970ea96b830172ecda
47965 F20101124_AABTLQ charron_c_Page_087.pro
01ead7cac2ec613045013d334b158ae2
a4fdb9f8e21425e60ad5631f5cd2feed574bdee0
5696 F20101124_AABTME charron_c_Page_164thm.jpg
b750d61c5e5f0fbc724dc6e0aeb3698b
e6f11872872791a42ad3d72f257a95392bfd8cb0
6405 F20101124_AABUPH charron_c_Page_121thm.jpg
b3a79d8d11e9d60620d5d43399e121b2
d0cdf967ec64e017d9e0eb90014be0a5442614f3
F20101124_AABUOT charron_c_Page_043thm.jpg
e41dd50d4a440de29f7fab20d9a04072
6f08c83a561576b5c4b9dd45b4777a08dec3c72e
50239 F20101124_AABTLR charron_c_Page_086.pro
f6ec3161039e299e49283e0f17c15192
cfd6aaead8dae3a1886c7482980cdba737ce9e6c
48630 F20101124_AABTMF charron_c_Page_072.pro
fee25099cb2cbe09b8c191293558ddea
90715f5c1e829808fa30c0e9fb03535558d13ed9
6621 F20101124_AABUPI charron_c_Page_059thm.jpg
4d689c046ea967fd4a7fef9544344dc9
ee6ef281706be5eea64dcff2a9de6f7f6d5b0edf
6522 F20101124_AABUOU charron_c_Page_042thm.jpg
c8ab3863fca8b6249b6fcb252878a5be
320aaec65ce1225223767aa3506f6f778f73e5cb
66662 F20101124_AABTLS charron_c_Page_006.jpg
bcae222daab8dc2e2fa82ef691a71f59
07a77ec610823f98c52a3ac800d1e76c4ee7337d
50645 F20101124_AABTMG charron_c_Page_084.pro
76e9573113134d05f726287c89565372
145b2656a08f683d6f323579f0a9900b43885f3a
21379 F20101124_AABUPJ charron_c_Page_051.QC.jpg
4440eafdcd047029efa7fdfb3a438b79
4e40c0e7fb67d59004640a0befcbc6f9a0c86cf2
21071 F20101124_AABUOV charron_c_Page_154.QC.jpg
7bc2d4d20a59e4e993de197909a2d8ee
b1c54de7a8c40405505cff6899883de00ce146c6
48505 F20101124_AABTLT charron_c_Page_066.pro
a9312fecb05a4402bf2c8e8269d5785e
fb72fbd614c2813c029542d3e8e644a6116f008e
F20101124_AABTMH charron_c_Page_136.tif
df55d61f1164f9cef6d6cd9e1560ae05
d5a307270e9c8ed42e6358aa5caa94a911190917
3417 F20101124_AABUPK charron_c_Page_132thm.jpg
ad73b9bffa37428e5332557f0c568605
d48624f91c84cfb7ebbb6d2d0df5d2de8ad1f377
6593 F20101124_AABUOW charron_c_Page_100thm.jpg
66ea628da53430b4faa9186134720a8d
74e46a711acbb27f855737488cc4fc8ed3cdad8c
F20101124_AABTLU charron_c_Page_058.tif
08fbfee04de2f366ddd4a868ede3e1c7
c49dd32e5f95ba5598253156196a4524f7f33a15
46202 F20101124_AABTMI charron_c_Page_045.pro
aee103ee2746af11daf384c83250ed10
f046600db0276b2f816260a8483cca2e9543cec7
6542 F20101124_AABUQA charron_c_Page_044thm.jpg
2cbbead5432617a0c8a95cf9053429d0
4ed6e7502ea14de8ccb3e5525acfd24062892cf4
22491 F20101124_AABUPL charron_c_Page_045.QC.jpg
15031200a55ed4c35880e942220f02fc
74869620644733cb670443d1d689683765c4b3ed
27063 F20101124_AABUOX charron_c_Page_174.QC.jpg
22d49028eb51935c7970987b287d6c0a
17762939af866f410a30251a7da272a97b14b47d
75934 F20101124_AABTLV charron_c_Page_138.jpg
d86d54ee7d01fe034cfbb9dd46be304f
9f6b0b4c7e6416bb0bfb43933400c61512577e25
23695 F20101124_AABTMJ charron_c_Page_023.QC.jpg
fc92ec4f61d05293e718b10b3e721554
574731b213ffc5b1f12d50d90f312b79df67bd3c
11354 F20101124_AABUQB charron_c_Page_135.QC.jpg
f6e9b63a173eb4999e07206ed205ecd1
1d5c21c96ed0843f5e2b48708e925e9589a8b892
20065 F20101124_AABUPM charron_c_Page_164.QC.jpg
2aafe636e06b94a6d8d67ac856e1e5e8
7317ba61b399f45fa1dd70de6659892222ff8536
24557 F20101124_AABUOY charron_c_Page_018.QC.jpg
3751301327a4a993c8a45a387970c557
bfbe0c128422c32c87495f2f49f17c3cf4608f28
617 F20101124_AABTLW charron_c_Page_177.txt
dad588f73226ef4df6c5efbe51f3d508
ed88fb472f1decd61f1aeedb8e12b4a3eddd4ff0
22727 F20101124_AABTMK charron_c_Page_058.QC.jpg
b25229ca3d4cb245499b3595bc198738
70ee0ab3d0633736b230141e5c9fa1c795d2a4f0
10976 F20101124_AABUQC charron_c_Page_038.QC.jpg
2fd3d34812ec5c4d2acc5cad17e3fe10
8a1f0b9d3fc9765b38766b3bbecd5b64f2880d78
10752 F20101124_AABUPN charron_c_Page_092.QC.jpg
8368b0aef960eff75aa00bee127673f7
e5c54fe4ae4a90a840fbd1606fb8f335fb3ee99d
25457 F20101124_AABUOZ charron_c_Page_158.QC.jpg
0becae54e7cd36ab2d17e3d841f9d723
0a0edeceb6f40605b48c1ef917deda5bece447df
F20101124_AABTLX charron_c_Page_001.tif
a32fa3a7ceb72ddff1ef21a7673f47f7
63ce78f20271a79cb29d69464cdc71d5e3c3e05b
9780 F20101124_AABTNA charron_c_Page_107.pro
6656a9bb94e2236e8b8ad92ea2844050
b04c1bfad58fe0273a108d09cdd4fcb1dbdff7d2
F20101124_AABTML charron_c_Page_113.tif
70174980dd4a084682758adb599709af
3f5e230ab2eb0cc730fa6cddb73be82eca34a5df
24368 F20101124_AABUPO charron_c_Page_155.QC.jpg
566fa51d2a2ed5ac6a14e3336cdaceb6
685325b0ba55612c3f0868be55957b5d33868271
F20101124_AABTLY charron_c_Page_066.tif
86d88cd9f745ce92ad27e1b7d137c53b
6e011b1678f3a14d795377899e41941295233034
110164 F20101124_AABTMM charron_c_Page_117.jp2
78d2cbcca73eb53029ca79854ead7bec
9ef1f767ff6aced9d4c8593841a1818adbe67cd9
6396 F20101124_AABUQD charron_c_Page_036thm.jpg
2f3f3b0764552a84d7356b8a5ea9867d
8f5582a00c4819c95b486935ad38d35e39a98400
11034 F20101124_AABUPP charron_c_Page_076.QC.jpg
a58d65b4d8801ce13e839ba034244157
c0a7556e4c4d9090df1aecf76f88749d175e2685
96486 F20101124_AABTLZ charron_c_Page_166.jpg
9652cef1a697988e1203f6af1d04226a
7e3d9e9f1aa004553228f543999edcf844b76957
28358 F20101124_AABTNB charron_c_Page_092.pro
48a3fb6e4c74f0666e6b01a49764d0ed
704d5497bbcad06aa167abefb2a835d15aabb456
F20101124_AABTMN charron_c_Page_030.txt
6cd44c3566553b3092642560b29100de
d92eea40a00a32f5dd744de6c839d23b26fb3f14
24532 F20101124_AABUQE charron_c_Page_082.QC.jpg
dc47496aa35631fcac79d1e76ce04ee6
a64a1b15219891d6d979ed760a6b9a1654d573f3
15559 F20101124_AABUPQ charron_c_Page_151.QC.jpg
cee269600497040b25f7fe8af3629dc4
ee8ed33e9738d61203ddfd11777806ea8822f846
24458 F20101124_AABTNC charron_c_Page_102.QC.jpg
89b522e2bde970d491d87b0723aeb406
17525d34d2352628bbf36af3c9d27fc3d8d5db5e
19686 F20101124_AABTMO charron_c_Page_014.QC.jpg
9d7aaa5854dfcc707d244a6f8e387873
7b0d6710046e53ef77efb2be0776d66997ee80a9
6363 F20101124_AABUQF charron_c_Page_169thm.jpg
5bd3ad9710717efdf147970a31fae7a0
e8e535754874ad3ff2b059a319ccf56a043165fb
23966 F20101124_AABUPR charron_c_Page_100.QC.jpg
3f3c686a45dcb811ae1ceb1bf44c9645
b2b44c0e2f769c7d2cb5b5fbf93dced59598e8bb
11820 F20101124_AABTND charron_c_Page_039.pro
8e41e98fc75785ea5a075e2caaaedc74
43f1c7e2d47bdf26d43c334254c4a755f60fb11e
93735 F20101124_AABTMP charron_c_Page_004.jp2
9a7f36693acfa3ee7c600414bb42503e
e5e71e1f088c4f092a878b5753fefb7baf668941
3575 F20101124_AABUQG charron_c_Page_091thm.jpg
6d852a6fc285c7636788c877a02a51a7
cc2271ec89d31bc222bf358d83eed329d81eba4c
7617 F20101124_AABUPS charron_c_Page_149.QC.jpg
81da92a43351b599297c4720eefb5e8b
aea614a4e3f5ea0e8babcc8da95c3fecd8010257
48295 F20101124_AABTNE charron_c_Page_097.pro
d6917262f90c3a2fa6efe1ce190c14d6
d3a23cfe55b3bd2d8409adfaf7615cd9056481b2
92175 F20101124_AABTMQ charron_c_Page_167.jpg
afd8c5d9d98c2e353b94012ce234854d
858b61c7b6ec0bb0b84d063546975b68443986a6
24512 F20101124_AABUQH charron_c_Page_139.QC.jpg
c7f36c74162e028bcc3a73f7ca9d4add
94da62ad19379b7aa0dd4e19ac054adc5e823127
3477 F20101124_AABUPT charron_c_Page_002.QC.jpg
bb75504eb15b4e1d69cab93b274c2cdd
30ec50db41b64d3b8a4fb154f7b92c3ed25dca8e
F20101124_AABTNF charron_c_Page_072.tif
d796655621c67868d894e4af85535545
db8a4df3939a131ce9b0d6ffe3fd384cf590af12
50673 F20101124_AABTMR charron_c_Page_125.pro
d2d2355b0cd965cd07ec7ff68604e2a1
40ce5436800469c48b97a0b75c537646af7e6853
23863 F20101124_AABUQI charron_c_Page_024.QC.jpg
2d6349fb2cc9a11263f85c839729dc18
eb3df596f59b058c73d6208a7ed548fddb506fab
10217 F20101124_AABUPU charron_c_Page_141.QC.jpg
d96768fe404e03bac366891a265ab364
a926aae18387ce262722c502e990c97ee5295614
22372 F20101124_AABTNG charron_c_Page_118.QC.jpg
97a5ef29745ff3445b01fc0318fe454d
9574eaf09f12bca3164d72bf5e778aa6e1749355
50577 F20101124_AABTMS charron_c_Page_023.pro
1adf6b83d388443fbcb0a06b67ef7d0c
9dc9dedc057aae1d6befe68ea3d300b3771f05f3
17885 F20101124_AABUQJ charron_c_Page_178.QC.jpg
0c96a0379a30294acbb43792c5fba367
1c220c7e0fbbbf378a34e9ab85636bd738d657a3
6449 F20101124_AABUPV charron_c_Page_058thm.jpg
c873006cc5b3a0658ec4b87daa830616
cba64b37cae336c826ecf8ec98b5278260bb0065
70327 F20101124_AABTNH charron_c_Page_056.jpg
2b3682fd2b859f2a529f0205b4a9f9e9
11c3acd269141926b370aae14c85a0bdbab39c73
F20101124_AABTMT charron_c_Page_023.tif
77f5b98fb88b0f05c76f662e78d16966
05e157cdd33068e053f5758721e8bb49705526de
3571 F20101124_AABUQK charron_c_Page_127thm.jpg
73712098992e13fb83e6460c9ff993e9
4adce988fb31d3537a757f3b3bcbb1eafe7316e1
6809 F20101124_AABUPW charron_c_Page_018thm.jpg
be76909d067e7d90e6e74a962bab490f
90b8cdb489c081c65b563cf70a57fe8f1d16d4d5
4008 F20101124_AABTNI charron_c_Page_128thm.jpg
66f2e7fcd75d694b7d5b064ba0d67738
69d73fac607502864cfd8360db0b79d15d2cc44c
94778 F20101124_AABTMU charron_c_Page_008.jpg
7694e0bd348f939d64f394f4bdaf32a6
64a12494f9473c2b89ad9acf603d09b9d12e81bc
23041 F20101124_AABURA charron_c_Page_015.QC.jpg
3efd007de4e75ec285b371bf081efc07
7b6c4f736ed87f24bbdb738cf9d9615abc9eed3a
24169 F20101124_AABUQL charron_c_Page_031.QC.jpg
48bfd94a80cf399b023cace577a37d97
47db8c475c4c87205421a179c9052e24ad8f5396
23837 F20101124_AABUPX charron_c_Page_019.QC.jpg
f398658d5a3a1f6d1c63112f53e90515
e2327e63a652a09a3062b46bd830be00bbaddd02
336160 F20101124_AABTNJ charron_c_Page_106.jp2
706fdb3b74f423fee838ac57cbc2a995
d4faca41173de8ceecbd09f7da9efba5c1fa3f1f
74815 F20101124_AABTMV charron_c_Page_033.jpg
aefada23c59b5dfabf7f954edbf8cfad
becca2e7ba4138f1f27f13f56b7f617d58c1bf9e
6426 F20101124_AABURB charron_c_Page_015thm.jpg
daea8692335cd4571021b0b55f18db68
e7bbcd406cfe55d9cd14a9a8c91d30a2b8bb4009
23987 F20101124_AABUQM charron_c_Page_026.QC.jpg
50ba20d18df3ee2b14b44c00a970e52a
317f678503b57036aba66061a2f82ab6aad11836
F20101124_AABUPY charron_c_Page_085thm.jpg
df160d40109763c23cca4a3a8feb40d4
fb6b41fc404524104a12b7a79fa48512d719358c
10046 F20101124_AABTNK charron_c_Page_065.QC.jpg
27f750b0de671c1eddd2a5189e8ac192
324ac7ea432ad1cb23bca5432c32cf46ecbbc7f9
72794 F20101124_AABTMW charron_c_Page_137.jpg
4311b628986d593767c22a842b260f60
afa2db8a03d71906dd6d8333a2b83c439af1ed89
6741 F20101124_AABURC charron_c_Page_019thm.jpg
ad2e736eb3b47c1aab98d37158bf7004
17c03f0eef31eadabc3139750d72c43d33138639
5438 F20101124_AABUQN charron_c_Page_014thm.jpg
d38d4507d3893c7fa755081c51584d46
e58b9ec39963ca03a8e409e45237f29b6080224b
7059 F20101124_AABUPZ charron_c_Page_166thm.jpg
63bcc6f066f8384513b7abe9ad4362da
cddbbad1296f11521ad823663af165fcd5d2dbfe
2052 F20101124_AABTOA charron_c_Page_021.txt
260d9b871031bcba4c19559f0b2d6702
74548ad77e6c8c64304040fd43db505a79681b53
76750 F20101124_AABTNL charron_c_Page_158.jpg
4dc8e66259b837cb3a8de871d228dfa1
7e2dc565a6ac764630a76b242838ed0e0c1ff572
F20101124_AABTMX charron_c_Page_128.tif
f05e33cbc8530d4e6db68580a2b38f99
9dec43c95de0092cf8f47767118a0324f55043b9
24066 F20101124_AABURD charron_c_Page_020.QC.jpg
8ef8d0fd77731fbb1eb574964dbfe7f0
de7096205f01c9293d17f18f8bbf8dab8e4cd334
6615 F20101124_AABUQO charron_c_Page_159thm.jpg
45566690e463df3a9f90397a782c4d96
13f6135e5f8d2f340bf73ab00c9aa5a4842ae5e5
F20101124_AABTOB charron_c_Page_002.tif
a2fedd28cd1385093d19d45dd9512c18
77d5713e66e96755ff16a9997b4280df332ab431
23399 F20101124_AABTNM charron_c_Page_085.QC.jpg
155067088b13599e37c18cfa88dba9be
44215f78c2331d3087082e3c0a93179f5d01c981
23194 F20101124_AABTMY charron_c_Page_057.QC.jpg
bee96a6e696066eb3ba8858f2099ab16
aa1013c251e67f1a6ec6b8672621b5e99a6544c8
F20101124_AABUQP charron_c_Page_050thm.jpg
5d2d0b53f7c373cf20092b0813b2f435
a280e546a3934604404831bd449c0dfb34122858
2928 F20101124_AABTNN charron_c_Page_133thm.jpg
464c26a9bc459762609b1b9ab2febbfa
7de309c6856b0b371b416a423f4727c361859dff
60337 F20101124_AABTMZ charron_c_Page_169.pro
8627e8c13e6df3a70900e6829d4c20bb
1e2a93231ee55720d3f18a0dbac48c618e0692db
6641 F20101124_AABURE charron_c_Page_020thm.jpg
db8241eb4956961eb3313e5514284d3e
7ea685749feeb2d3ea6f3bb60ae6c0c614f39602
23520 F20101124_AABUQQ charron_c_Page_068.QC.jpg
28306364bb992351d81589222357acaa
4c822f6b09ed49a541bf150c2869c56e5aeb49d2
17238 F20101124_AABTOC charron_c_Page_010.QC.jpg
15d0e8c3e938aa2f1fc5029a5844838b
a415e81af5d5071643d6382a1ad59c6f3e32b2f6
5228 F20101124_AABTNO charron_c_Page_003.QC.jpg
5de7b2e69980f2b0d4e86f4b2289728f
ef8dd552c9c2c9693c0ea40e9cc3b76327028ae7
6781 F20101124_AABURF charron_c_Page_022thm.jpg
e0fb4d94843c358ebf5dee4caa7698e7
88fbb89ac500b651ee9e0771fb94f4aa37d1d2ae
266567 F20101124_AABUQR UFE0011392_00001.xml
a37e8ec082aa9fb3c4cef8d7aacd5e4f
45a43a236f85fa9780a75b93f6248717291680e3
4240 F20101124_AABTOD charron_c_Page_162thm.jpg
fee92b9119cbc68891fca1da7458f591
cb6862ce4d2ef172aa9d7c505ac43fdeb56207d1
1038 F20101124_AABTNP charron_c_Page_005.txt
c8ceb16483b3ae35bff88eaf62dc9f8b
1f10bd9539feea2c89aaf1bceb6f732e2b971a29
6607 F20101124_AABURG charron_c_Page_024thm.jpg
ee864cc521f5567dc98f46f488e1c6b5
03b0a60c783abbb168bdd783a0cb79e7b6c03a8e
1878 F20101124_AABUQS charron_c_Page_003thm.jpg
568410f95ff02def9ee16fd61feeb8ef
ad1de6589f83455458f181fcc9b6e3b262b06796
24097 F20101124_AABTOE charron_c_Page_172.QC.jpg
bc284ae8c30e2d82a9ca9ac466e18482
25579ca2d1f544a4624e2074ef4177338793f590
23203 F20101124_AABTNQ charron_c_Page_097.QC.jpg
d02b31ec0d9e0e896cc8bde56524d312
4719c9d5eb833d68f4d4478e9f12998172ed56af
22419 F20101124_AABURH charron_c_Page_025.QC.jpg
ff813e67b78eaa65181e2b4dc5aa8d67
a6a0de92d3c66173678c4860c51508a2f739d7ce
20713 F20101124_AABUQT charron_c_Page_004.QC.jpg
3255c6518535b8954836b5575387afa7
0a31ef1aaccc1ddd30212064b589250a8a973d87
22388 F20101124_AABTOF charron_c_Page_043.QC.jpg
f5f2237c229539a52a737cd0e0b09c66
e6c14f56620bca8af125f9dd1ad79bd3dcfba31f
28025 F20101124_AABTNR charron_c_Page_160.jp2
210c058ac3edf8d6db494d1f3455445b
fee3547bb7ed51a9a39b2d2c3003ba7344dd1880
6610 F20101124_AABURI charron_c_Page_026thm.jpg
fdc0c12fb4d248f29091c737ab6f2a19
44cf4a70816939dc52bc4636b1f63aca3cf284af
13614 F20101124_AABUQU charron_c_Page_005.QC.jpg
92f7ff0a27bfea74be1fc7efca454453
2c65298ca699f2f07651e67fa6a16d37452c4630
8265 F20101124_AABTOG charron_c_Page_115.pro
bcd7429e3531ae66cca1835788670425
646ae6180c7c02f15d80c7a0b0ccf94f00b5f741
F20101124_AABTNS charron_c_Page_081.tif
3175eb1ad9282bbfba4f9637203a386a
04f2c8bf3d78161acaa67b28625a01c2939dd4ee
23429 F20101124_AABURJ charron_c_Page_027.QC.jpg
2c64541c866775c00643e9e111bdf647
572aa84c8483ad1bdd529b3797cf3fb6428e8dff
16474 F20101124_AABUQV charron_c_Page_006.QC.jpg
8a919f5f86408335e3949b7ec1724ff9
e40af347c0915700a9e4d2d83666636d2999efa1
F20101124_AABTOH charron_c_Page_152.tif
70a3734543104ad5aeb9b9b0ad9a3101
fafaacd7e2ff0b18cdb1501422a4ede31d8b3596
33399 F20101124_AABTNT charron_c_Page_013.pro
30beb2b3dbe270c7a9e540d326285e4a
136f7fed953026d89bb7fb6e881782df3f5a3e8d
23816 F20101124_AABURK charron_c_Page_028.QC.jpg
9ab78d45ea3d63ce3f813845958174f5
a93e1b2c9b9d33c40d96042c7def00da66a48a4a
24979 F20101124_AABUQW charron_c_Page_008.QC.jpg
028ce99c9aa660ba03dba3211e0f63ac
9851d599e7b9fabf2d9f6a8ffc26b87b57aa94f5
F20101124_AABTOI charron_c_Page_086.txt
bfe7b31a5ddff4cf57ff61beeed76bd6
8581f691abdd15951ebd05e0184da8460dd0eb03
F20101124_AABTNU charron_c_Page_137.tif
e9532884f58f6f291c85a0feab676cc4
80382c745fd6bd031c10a49519cd9ec568778ea0
F20101124_AABUSA charron_c_Page_054thm.jpg
27bc115cd8104b1bd7f4c2eec0ca4a26
950f36cb32e07910d13e8ca1b95d3605157a34f5
6803 F20101124_AABURL charron_c_Page_031thm.jpg
a38254f93704f0dd5261eb89c9931e3c
5cd507596a3187b828e6dd34ac022b4b9e6ce54c
6009 F20101124_AABUQX charron_c_Page_008thm.jpg
f6ea223b3ce2fe8c7a8b6cfb50d0ba74
0539e92441a63cf0cd8eacf36a2e7534f9531bf0
562 F20101124_AABTOJ charron_c_Page_127.txt
6ad620efe4254022c0e1f3411c0a0316
124009bce91882f89eb6b561174eaae8a68788da
16281 F20101124_AABTNV charron_c_Page_133.pro
93efda60d39363fc081aa14f4d222618
c592624c0957e56a9520f52337ddbb3ea9c3bc9c
23105 F20101124_AABUSB charron_c_Page_055.QC.jpg
2a51b2300e94a09b1b8a73212be561ad
8269002627e85e958b847061626e37b733b15196
24369 F20101124_AABURM charron_c_Page_033.QC.jpg
a2fa82987f0df18d8933ce07725f6196
6ec897e410784ba3e6756e5485aa9cdfd9bbbba6
3794 F20101124_AABUQY charron_c_Page_009thm.jpg
ed85aa64db36bc69c3198a3b1a406141
0ef6810b39f7d9592298b8aa88a05105f28de499
556524 F20101124_AABTOK charron_c_Page_129.jp2
962eeb1e5df27b93ebf8180774dd3a74
06df095a1eb8db7586cda97a07bf26d10a479059
108522 F20101124_AABTNW charron_c_Page_029.jp2
b84af470f7cc7f96920753eaddb2733c
90bcdd94d7d0974518a70a01a46b7d63a2c75188
6662 F20101124_AABUSC charron_c_Page_057thm.jpg
507c6448b9beb23e38d1e51b2f1829e4
0a3bd6985aa23c37ee8960a2f204731a890093ae
23896 F20101124_AABURN charron_c_Page_034.QC.jpg
88cd2c4d83d2a6b9f1f4db28fe5bb927
2df4fb6740faac79876237f3d28681fa967f7df4
18814 F20101124_AABUQZ charron_c_Page_012.QC.jpg
8a01723a0a4bd0962e5ea87c6fe52559
0582554964bfceca141ca7e333ba50f4ac3494c9
111769 F20101124_AABTOL charron_c_Page_102.jp2
a88636be601f37c4a0153f5ce68fc7cf
5b34e51562a78ee11fdf74fa415795264b6f75e2
F20101124_AABTNX charron_c_Page_116thm.jpg
9d31e17a155f7fa7056132fcda59cc48
e2c72b7624d431a1c466daf651149dd284f05e74
23298 F20101124_AABTPA charron_c_Page_016.QC.jpg
b0f662954fd8499437e1b50ac7ccea67
af3d2784e3929d03dbdc17794e38e26cff0a0fff
F20101124_AABUSD charron_c_Page_060thm.jpg
35b9a744bf2c619e8a4c5128797d3cf0
7c0f0a05ed5e042ced181834f7977097cdcb7f7f
23162 F20101124_AABURO charron_c_Page_035.QC.jpg
1c3196b0c73fd9ad216e818f2be4de58
8378b017def22e6f8592127eacdab42d5c0d6833
F20101124_AABTOM charron_c_Page_036.tif
a8926e37c38d5a9b030b066af39cfb98
862c2404b6812b08b939e3c0582c5e6bf6969b35
1804 F20101124_AABTNY charron_c_Page_081.txt
c2effbd43bace13861aa159451fa3a07
7a57b0e595bc6c68a46c86ee44813546852161cf
F20101124_AABTPB charron_c_Page_069.tif
1af0cd489c96eb5325431f783675a264
8253ab6af3b5535bbca1a14395444351eb2b4f46
21867 F20101124_AABUSE charron_c_Page_061.QC.jpg
596710a9d4b2a0e513db43fba86dbf8b
f60dcdd29a91befd3cf0cde78669c33b5223b902
6272 F20101124_AABURP charron_c_Page_035thm.jpg
968ff71e15e331c03d43bb80354ab529
b703de9a1c594dd69babf4fec058631bd8dfec30
36503 F20101124_AABTON charron_c_Page_163.jpg
f6f0be5bdf4f6e5bce15bbfbff672efa
03edb96a962d0cd974417838d6b0330b09bc4f44
51781 F20101124_AABTNZ charron_c_Page_022.pro
a72bd66e6eec8c955881352c0216667a
f6d013227e3c67f2c6c278a80a582cff39168da9
F20101124_AABTPC charron_c_Page_134.tif
a7c210fa667e607bb4c9d0a5cf2904b4
b27a43b893b5a4ce4b9f422abddd9d417d4df025
4612 F20101124_AABURQ charron_c_Page_037.QC.jpg
77cdf9f28260acfd9ce9baf9a0a85281
871b0ab00d41f14c558e482f637732056618c31e
7177 F20101124_AABTOO charron_c_Page_171thm.jpg
b4922710c010c7986810bcd24508ea3b
0f0933fb4f20a3ffcf97f356c437791fdc2b6a7c
17084 F20101124_AABUSF charron_c_Page_062.QC.jpg
53da17050e7a8da7cf993f9c9d940d11
21096212babe6b606b71001bfcc160927e2bc4f9
1725 F20101124_AABURR charron_c_Page_037thm.jpg
f54a6313ed6f2a4454c148ceea075233
e5d03e6c02be9e470abc404680d3e504801f863e
630 F20101124_AABTPD charron_c_Page_093.txt
07ad97b58491e26c13b4abbbb1b47c51
4bf977b232e03105774be2dacd76b21cb61aa3f9
F20101124_AABTOP charron_c_Page_029thm.jpg
654144ac284dbad407a4f501eb7767c0
fb7f64acb388c38efeb1a85a613d5e988db144f0
5958 F20101124_AABUSG charron_c_Page_063thm.jpg
64e4d752e4c539020eca23e778620c8b
e7143738c695d74da06018cb0d416ff06ed9d5be
22770 F20101124_AABURS charron_c_Page_041.QC.jpg
65da62cf257dd0dd2f6e97c625ef2a62
76d0a2453400002bc20189a90350793f996d7d06
34699 F20101124_AABTPE charron_c_Page_094.jpg
0139ecb2f1a03bbab72fd80dccd54e21
7e21d293f63673461bc4e7855b38ce77ffd06d7d
104154 F20101124_AABTOQ charron_c_Page_136.jp2
4d8356123a61aed07af9ef378ab0962e
87e8fe993485e12494a21ef454db1e3da6b8dc41
2754 F20101124_AABUSH charron_c_Page_065thm.jpg
eb11b5280a5a6810fc004f43dcfad70c
d347ad654082a835d35701dbcd3d268d46c5fef4
23578 F20101124_AABURT charron_c_Page_044.QC.jpg
f23ae21ea5bb95cb7e148d8a2e82213b
8797216a221a2e57c64b338cc1c83784d713ef92
71436 F20101124_AABTPF charron_c_Page_016.jpg
b101e9cdd99c883719e66fe94d11eeef
6bf2aa0f3bc23a9bd441738071c4847f02bb4f21
22232 F20101124_AABTOR charron_c_Page_046.QC.jpg
eb3c56764fdb955c26a4a6f25eef09c3
14f16af280cf24d8e554ef9d5b26400e2082790e
6297 F20101124_AABUSI charron_c_Page_066thm.jpg
c29c18756c6468fce7aa6e4f2d28d275
5c2a99be1f5d307d811f94869a0d7187409b3b66
6269 F20101124_AABURU charron_c_Page_046thm.jpg
19c5e2878fc885c7e72c9dbef00fd7d8
a303f7126676d9fcacea4eb8961d1761ad744768
24559 F20101124_AABTPG charron_c_Page_149.jpg
438d802f8c46588e6abaaf2ee5c682d2
ce65561e3e48fa2f6d0a6217b5e63fc24e918c96
23369 F20101124_AABTOS charron_c_Page_049.QC.jpg
852c658fcaeba73f6acfb07ea37b48f9
295dac4cbb7a502eea203118280632a9a75bc3d9
6606 F20101124_AABUSJ charron_c_Page_067thm.jpg
e38c83c59341fb7cc498b9edbd6dd9e5
b88df4cbf8d46495c285fe82fd1218faf44e8d9a
2097 F20101124_AABURV charron_c_Page_047thm.jpg
2a8a5594c6f0da3a6f21423166bea947
0ff4ba429f89238a73463ecb1e70ba99ebade025
104529 F20101124_AABTPH charron_c_Page_056.jp2
77128341ebd31cd02b438a5d0d4393b5
b5a411e0bd969c634bfc6f809241394c20d0919e
1925 F20101124_AABTOT charron_c_Page_101.txt
3d4002d00975c4be711efba0dbcfb34e
75b259c838e072b4c1d5380d754fb07c127f697a
21792 F20101124_AABUSK charron_c_Page_069.QC.jpg
030d0930a8b0938bfcfaa1a0f31bf058
04cd35051fee46eac7d36380fb78f548b0cfe7f5
6412 F20101124_AABURW charron_c_Page_049thm.jpg
d9daec823446c146cbc2863c94e80891
b70397fc480c0e0064c73e3016ffaa4fed2c788a
11146 F20101124_AABTPI charron_c_Page_127.QC.jpg
ebe638fe3b71fa84cbed4eafa8a14728
e5ede686c7a6766df4115acebf827ff44c9ce6e2
108546 F20101124_AABTOU charron_c_Page_119.jp2
c0fea68b7b4bb516b451302bb2577f78
cc618d4915a6e0abb927dd40f458c05e7f3e8627
23538 F20101124_AABUTA charron_c_Page_086.QC.jpg
7d1dbbea3198b44647df0b1acbdef36c
83cd5b58f5cf1295d1fc2d8ea67b05f95c54c478
5962 F20101124_AABUSL charron_c_Page_069thm.jpg
6ff4bedfe800d3b2bb3ce38edd72ac8f
2119b2150f33b27aa471ccae830f62f94f8bd0d6
23730 F20101124_AABURX charron_c_Page_053.QC.jpg
217ef68399990495cb8c2c6c4374924c
013585d903654494e8e3cef60f5d299113cd195c
6580 F20101124_AABTPJ charron_c_Page_150thm.jpg
ff7a18b85e168ac1065cbbcc619b56ac
eb0a59515e58261ae7464fec4b6dd21c0401a30a
6328 F20101124_AABTOV charron_c_Page_017thm.jpg
dac0ec0d9b657c0b6af545467dba1337
54dd5af0869fa79e98082b66c42b7d74391d936e
6660 F20101124_AABUTB charron_c_Page_086thm.jpg
1119a2c194de9ad08419dd5aee34700c
ee4b758c28270fab723f658689c71fda03500d1c
6126 F20101124_AABUSM charron_c_Page_071thm.jpg
88674d7177ca9e68f745eea85c8c41f3
d2c264eba46e283c35843521bb3b55d6ffbbc8ad
6586 F20101124_AABURY charron_c_Page_053thm.jpg
fe791ed1213e459c9484b4f3ca0cce14
24cd01ac8c63970f9cbcdf27718c7905e75f5272
313865 F20101124_AABTPK charron_c_Page_132.jp2
859c05a87624ac0efb6a55e7716d8b83
a624c5706062ef3ea85382470a4b5b6a2a2b7bdf
33461 F20101124_AABTOW charron_c_Page_062.pro
d7c7a1711afe009818dfb1c2da8c72de
7cef72c934e68837440f79323039b450a5a66210
6336 F20101124_AABUTC charron_c_Page_087thm.jpg
fd7513d4d75e93600b26b7ff73139a7e
0e86e8fae73be64ddb85297d10125e8e6658f221
6482 F20101124_AABUSN charron_c_Page_072thm.jpg
36204eafe6e5839a17e9d4026c8e2e88
2b6269e534910115a5c517ebccee5f4c1ddfef5d
23085 F20101124_AABURZ charron_c_Page_054.QC.jpg
a99eda0c40aa68917042169f0a6837a9
d7f60c24a8538b857364cf1f0bf891cbcba0ee4f
6113 F20101124_AABTQA charron_c_Page_051thm.jpg
413a1b2e786d63d9f0dc151a1b7abe5a
150b796140411422ba640a3f84f58fb4979bff29
23013 F20101124_AABTPL charron_c_Page_042.QC.jpg
2143edab1b72842e6dcc7d628c9b338d
13b390a79bd3ed1a2328da847d4fb62e61204756
16160 F20101124_AABTOX charron_c_Page_079.pro
631a0461afa83148f8c90db71fa58e64
e4e3607467345c0f032010d4de709401e9b08d3b
6557 F20101124_AABUTD charron_c_Page_088thm.jpg
90f84489b067e59e339032d8041b4f79
776aefed9922662ebed95131f5cfb2e966b43184
23623 F20101124_AABUSO charron_c_Page_073.QC.jpg
9bb821edac526f08b060bc8ea3f9802a
05b194cce362d588884f80a367207977c30e5c03
6548 F20101124_AABTQB charron_c_Page_064thm.jpg
be95fd8808ecf7187ce53f9ab62c4f53
ef49bd5ba8121ee0bf8e3da203a54acf3353a17f
74206 F20101124_AABTPM charron_c_Page_024.jpg
490c9c193bdc134736c09ad7de38bb29
7eb28c1993902a2e1cc84d44ff2faf35e2ab430e
14188 F20101124_AABTOY charron_c_Page_135.pro
e369a0454dae8ab233ec092313fb6d80
93b9cb651a69d9b16fe1ff440d5b8882e54d5923
3006 F20101124_AABUTE charron_c_Page_089thm.jpg
b60e29f4888b3c900a26e0d7b1da788a
cf11e89a0286fbe43ffcba92da3432bcd8856428
6433 F20101124_AABUSP charron_c_Page_073thm.jpg
fb56072f778a2d92364209c4fda34135
3c74744c1d8fd853cab12a2452c3ec89494f6146
111450 F20101124_AABTQC charron_c_Page_156.jp2
f349414a89840ab640f25585341c7c3a
1778ad0e9f598b6f7f5e3e6d7161733989976e60
F20101124_AABTPN charron_c_Page_122.tif
c5bb609ec5723c611176af0012576069
5992359aa6aab420b1f1b8b9cc3ec327170ee3f4
109786 F20101124_AABTOZ charron_c_Page_052.jp2
7e420095f17826030086c5419662d64a
fb1298e6134d63489e048c7c5d308614355cd539
10433 F20101124_AABUTF charron_c_Page_090.QC.jpg
811c906c4bcfa3da10c768e9fe4e45da
49a688003d84db9bfd2b9fb1e73f4ddc2afc8858
2712 F20101124_AABUSQ charron_c_Page_074thm.jpg
a74cbce8f4dd7374c468eddfda5a650b
cfb2175cf650a8994c82fb5ebd8c7dcf526e7b35
47678 F20101124_AABTQD charron_c_Page_118.pro
e9f992f933e2370eba5d0060844baf9a
12ee2cc3246b8c270c2835ae653f939192cb6390
F20101124_AABTPO charron_c_Page_177.tif
e68737c94998ddfc7caef388d50fa241
28f38d5aa300d661690ab7ebad766b064ec88783
9636 F20101124_AABUSR charron_c_Page_075.QC.jpg
cff0b2688f3cd6b1084f2a8e20d3d1f9
74ff789f03e9148c1952f4b41d7ef279d2a07136
F20101124_AABTPP charron_c_Page_055thm.jpg
4e93f027c07ee46ca00544bae99af354
33fdf0f16267218db434a0760c6a134693091c3b
3310 F20101124_AABUTG charron_c_Page_090thm.jpg
0cb00390085e1db2dd45434f48e234d3
1094d3b28efbd53bd36566a0d77c14f95e9ede30
3347 F20101124_AABUSS charron_c_Page_076thm.jpg
a245544504191c9ae8a99babceeb0507
17dc1b0daf244aaf0075c22a2e5954f9b823bcb1
F20101124_AABTQE charron_c_Page_034.tif
2af3f426df0057a9efdd3811aa63e800
6a75a35253c41b12274ebb5e46c73cd786a78c0b
22427 F20101124_AABTPQ charron_c_Page_071.QC.jpg
43729330876022db5203106fb21ef074
ca3a0d64bcb35ebc1707c19dc9e52f8d28e0fa52
11099 F20101124_AABUTH charron_c_Page_091.QC.jpg
fd1df1db9d4c61de6af8db00d5f52a29
3933793aa2129ad62907d7c83f6ee42d1a5c37c5
3112 F20101124_AABUST charron_c_Page_077thm.jpg
e383686e7df2aa04a6e79a5d9b49fc8a
0c8a270dc0ca1c4c0b0f34e552338d97d0a1159e
2944 F20101124_AABTQF charron_c_Page_107thm.jpg
1a0336dfc1f6022ead57628dde208f3d
75e927a1751846530f29e13e8d98504d2e169ada
F20101124_AABTPR charron_c_Page_084.tif
fc1211e041ca73dbbf1b11f68f3c7137
f79405782cb9254ca3b1b2530fb90ed0e9643e94
3554 F20101124_AABUTI charron_c_Page_092thm.jpg
4bae44eabcc9e4918755f244534fe7f5
68aacb292d7f28aadc0b59782ae0303db0f2ba6a
21568 F20101124_AABUSU charron_c_Page_081.QC.jpg
c58dce0957d8c852cbc9b9ddc252ac2e
ca22a5c395dea187ec3feda50037db959bda5eb2
23632 F20101124_AABTQG charron_c_Page_077.pro
eafd46a14929dcf56ad38de8bf7ada03
45e4962e9391f3dd8371d5d746f281f796342dfe
24131 F20101124_AABTPS charron_c_Page_007.QC.jpg
d3a878e84c17934d46565760d919defe
3a423913662f99286c339832551213a44b953ae9
3589 F20101124_AABUTJ charron_c_Page_093thm.jpg
718ad1ccbb6e6da9921455c95477de9f
f7fc1ab6a2d5858f5c366c18c565cd54db1b1bcd
5972 F20101124_AABUSV charron_c_Page_081thm.jpg
e617dc68727713de140856209cd875d7
d1155cf36d20ce0b4de674fbcf52c856c27afabb
12037 F20101124_AABTQH charron_c_Page_153.QC.jpg
5cdc02ebe946828931660df57298b090
a7c3d04bf7dabf9cd4703a5e23d61cb44b3f7a8c
22762 F20101124_AABTPT charron_c_Page_066.QC.jpg
edcdfd4122fc5a5944a1d5b4a77279a7
e296e1ba56c7d7dd6dcecf86ab86c69bf86a5ee2
20891 F20101124_AABUTK charron_c_Page_096.QC.jpg
35f0e0734146a3c4b62b5a8e2d54abe5
b8d615c02db19cdff05728dbbddb128b3fb3a5f3
6736 F20101124_AABUSW charron_c_Page_082thm.jpg
d3e8331da0ae15e5207757fcce82de46
998bfa23e0e0bc8830528328c4cf2f63e2729957
22267 F20101124_AABTQI charron_c_Page_017.QC.jpg
39460ec9bd85a20cf995567f4a9c6caf
ebc5a169bc10677bf2027ca09ba6e6abf826e0f5
6596 F20101124_AABTPU charron_c_Page_137thm.jpg
ab453331c057654bff89777166f51834
035a760e7a46068beb4a8cfa01f9b7f18785c42d
2329 F20101124_AABUUA charron_c_Page_114thm.jpg
528f8cb0de39178af1a639383df716bc
d1933a2df75494766cd1f32c3cf803e80027b2ff
23022 F20101124_AABUTL charron_c_Page_098.QC.jpg
b6102bf56809cdca9569389dd4820482
8752b35471e8441e47fab8c5b5f999f9214c3c18
6763 F20101124_AABUSX charron_c_Page_083thm.jpg
0b2f19b30d08df7c226e461fe8ba9ae3
1c05ba7680076cdfdb1e2a2a5c7804083a660080
1050 F20101124_AABTQJ charron_c_Page_114.txt
9aca5718f51787879a14bc88cfd3c721
a32f0f18c3b1ab95361ea73ffb1c94a8ccffec38
69381 F20101124_AABTPV charron_c_Page_017.jpg
8475c8e5df8b580c190a4a76f3989977
7ff2b4ea9daa7878676fe5d7b8136aa8c852fb90
9614 F20101124_AABUUB charron_c_Page_115.QC.jpg
6b1f7ac7de54db918f83c2790c42abf5
ce376c837ecbe4c6e9a030fba853e893eaffdcf6
6345 F20101124_AABUTM charron_c_Page_098thm.jpg
4d591fa54eec55a1ad6affd88ab7c67f
c15b8bff6e35fa35281b54c37b8dd5df9a589b7c
24132 F20101124_AABUSY charron_c_Page_084.QC.jpg
b6488f03409446004787495976dc1308
9d4ffa9151763879e422a18870ff43d8620f922a
100007 F20101124_AABTQK charron_c_Page_060.jp2
0d5068ab6adf38be34e3a52d59de3261
47d80d363f807a288c0ac73ad7f4e3fd3d73ff9b
6666 F20101124_AABTPW charron_c_Page_034thm.jpg
02e384add3da316e296c62530fdac9c8
e930949a3cf075d6003ce842316f6347b0ddab86
22435 F20101124_AABUUC charron_c_Page_116.QC.jpg
5c1d5ac7e69d40b4dfc894ac205347bd
0ab6c2ce789c2886ae0ff565378f9ffe8f5e5252
22575 F20101124_AABUTN charron_c_Page_099.QC.jpg
2007c8db5d7403726db0ea61a4b01354
ccdc5523b1ba8dfca85b04622482254585181ae8
6632 F20101124_AABUSZ charron_c_Page_084thm.jpg
4c8fb268c0cd89931ce3bfede5c2f988
36fbbe91f97f421b030dde0dc6dc351d1d8a0c07
67341 F20101124_AABTQL charron_c_Page_060.jpg
fa23a5724fd4e69f3cedcc0ee887477f
93ae336cfb02821c164699dde85d3a28b358a98c
3949 F20101124_AABTPX charron_c_Page_005thm.jpg
641bab189dfc4098237f6b515f74381b
8bda9642a50532f2c507e93bf4834da3d58cc89c
8033 F20101124_AABTRA charron_c_Page_039.QC.jpg
25fe00a900c4502d36350b24c3892150
b7717154ec3de4fe5e237f4e417dc562885e695d
6317 F20101124_AABUUD charron_c_Page_118thm.jpg
459d86c936bf18a1d5af43ab89681a65
01bfaa2d5c7177667ddb9f35e0a21d108cafd1c5
6318 F20101124_AABUTO charron_c_Page_099thm.jpg
f2f3e674df50a6d0284a7c57a9c45e12
eb2cc480f141311a891b62bf236a236501656f19
43155 F20101124_AABTQM charron_c_Page_051.pro
6fa34073ac7aff194672bb4a9d23c33e
60586aed2ef33bae0cfe6eba59b9797c339ed022
F20101124_AABTPY charron_c_Page_056.tif
9a0140ba4c65bed774f130a1c99edb1c
ea2478218572d2979f92aaea1e010b16466074d9
2713 F20101124_AABTRB charron_c_Page_039thm.jpg
f93149e33353bd9632c68ff070f1a6e5
437933e82dcf8833896ffe3720bf3dd14ca1d59f
24019 F20101124_AABUUE charron_c_Page_120.QC.jpg
52b68fab464edb900bf1b275a570f718
4d5862b36d2fec228f5d832281acc82415913470
23394 F20101124_AABUTP charron_c_Page_101.QC.jpg
8535048bf0a33d3e4be3fcb590594caa
73c424105f90109af259243bfea612aa10bcf017
13107 F20101124_AABTQN charron_c_Page_152.pro
2cbbf691a04a48f9378a52fbd31f23a6
76237e6b3745d4a8d1a424b22236010730aac9c5
332147 F20101124_AABTPZ charron_c_Page_127.jp2
70fa12a5f2fad1680bb98c55df852f71
c4707c230e829ed564293a0c98e231cbfb4afe70
1742 F20101124_AABTRC charron_c_Page_051.txt
eb866d110489455b279003a10eaf35f5
176d42f9be8c2a1a3ec86afe113557bd9f27559c
23705 F20101124_AABUUF charron_c_Page_121.QC.jpg
139b10b51fdf9d00e615b4a62077968b
761726a28e39367648b65856c62059e6d25eff85
6773 F20101124_AABUTQ charron_c_Page_102thm.jpg
aa2fcaf0a6de3a0c7d36204ef1db986a
1484f4691d053afa1ddcb2f32379b3d0ddf33610
11154 F20101124_AABTQO charron_c_Page_111.pro
c3e9e2ab3ecc12339eaa1d3596da223b
038bef9a1172ae5622b388ce67102a156d0b3bff
8960 F20101124_AABTRD charron_c_Page_130.QC.jpg
d279fd1db2a48548a092a321ef36b80d
7d7ce925be29c572d5ec9677e61cde56664159c7
24335 F20101124_AABUUG charron_c_Page_122.QC.jpg
af4cc249be6cd0a00db07b8bfb0c0aec
1b949cfcd8f3427946823ad7dc0d3c254b8572e0
13037 F20101124_AABUTR charron_c_Page_103.QC.jpg
a8d49a76c01d4356afb107fc5e87c19a
2dfa3172749d22ad7eeca0e58d3d2b52c5896362
F20101124_AABTQP charron_c_Page_133.tif
353c14895fe7a7e68753845878cda36c
4d75eb9ce65e623076d9d97a5f1ca5960d645e6e
8308 F20101124_AABTRE charron_c_Page_089.QC.jpg
563dbb09d29b7733c71464a9133d90a0
4b4960d7cd0eb76030b85d724ae8af27df950c3c
9208 F20101124_AABUTS charron_c_Page_104.QC.jpg
a18e8e27b8f60dfe69b20381f6e88b67
31257a55881dfb7cfd8162c1f29dabef8f3b135a
26393 F20101124_AABTQQ charron_c_Page_111.jpg
6d7a2410e213230a16fe75c0fa8b439d
5b108008ca8a216ea998d33ff394187065960a4d
6643 F20101124_AABUUH charron_c_Page_122thm.jpg
5e2bde7b1d968731a1bd98eaa78b50c5
64db4081551a67eb1ce7f540b8f3558b761d3deb
2889 F20101124_AABUTT charron_c_Page_104thm.jpg
b6683f2550895d9f2b51c61bdb569f25
5392d7684bfee4de4c0d97613b508d99a2db6da8
108609 F20101124_AABTQR charron_c_Page_036.jp2
484940b7a641c1c9df4ba155d92cad8f
feade912925a3a25b48bbbc8767ef48ef0d7357f
53561 F20101124_AABTRF charron_c_Page_010.pro
97cf8260a6d2cd56f70eed1f27914300
7be13b67c1f519188b9e4d6fd0fcf2f78afd98be
24561 F20101124_AABUUI charron_c_Page_123.QC.jpg
058c85c91923e1fa6e7bab525cfda8a3
d1edef49f979e4bccdc22c1ab90adcb333833887
8355 F20101124_AABUTU charron_c_Page_105.QC.jpg
1ee95664c31ffbbd4e89e6aa457a851e
fb4f86079d70819f0c40df426b41fdb00ac08cfa
17210 F20101124_AABTQS charron_c_Page_013.QC.jpg
5a720953df7b16700ca394dc8b570d28
11da56a2988e574ff716e2b71133297cfb54920b
52571 F20101124_AABTRG charron_c_Page_158.pro
142c343a6f811250b329fe6e9acb5d19
46544e87849d4a742132d6d3bfd6a72341647886
22979 F20101124_AABUUJ charron_c_Page_124.QC.jpg
b166cabc03c0501a0fb8085a4e4d9141
337c9cbf22fb5deff9464b8ba54011d61f345e59
3015 F20101124_AABUTV charron_c_Page_105thm.jpg
8c8955711ea0a7ba3d4a06082f99b421
bc24ca6515d10659004cb8f30fcb786c5b53ad63
460 F20101124_AABTQT charron_c_Page_091.txt
822290532c554d62de03c520b7fb2118
b34f4cd777e290ddc25a67fd5cae1039bb8c543e
1982 F20101124_AABTRH charron_c_Page_108thm.jpg
ceb69af05d508620a046cbd28cfe179a
cc35ae2bb4b00dad411f5bcc2c1df20ebdc2a9f1
23489 F20101124_AABUUK charron_c_Page_125.QC.jpg
142d9a913ec960f5a32394807e5bbc6d
164ad0365e109e7c495b0dabb0efd19096f60caa
3338 F20101124_AABUTW charron_c_Page_106thm.jpg
a57d75da6436af210ac06ded1c339f08
15419bc706b0a0a8991bdd42cc52f739404a13e4
6700 F20101124_AABTQU charron_c_Page_172thm.jpg
fea24ad992ecfde713aa43290c6be5b9
9e791063d2568c6bcaadff811dd9fd6d8ff46fed
13908 F20101124_AABTRI charron_c_Page_177.pro
42a9e023da4f656ccb332fb7283fcd3a
aa10921d849fe3b80719c4ba3d18295596766f29
11107 F20101124_AABUVA charron_c_Page_152.QC.jpg
44116514fced422a8ce36f64a6b09146
113e53d4cf6b5050e0e8ebe3927a365f4a577d92
6495 F20101124_AABUUL charron_c_Page_125thm.jpg
b89bea72a9a7c38378784dea10fda07e
185c8821766a107adc0fae5850a61bad52623f4a
11332 F20101124_AABUTX charron_c_Page_110.QC.jpg
6bb2e26c8899dc2f1528402594d72054
925f2aa1b0c045898e15cf28917eb156bd99a92c
24347 F20101124_AABTQV charron_c_Page_022.QC.jpg
959067626b39846d58de64bc7f899871
ed7026ab820a7b85a211eedd16beb60b8b160712
34319 F20101124_AABTRJ charron_c_Page_127.jpg
92247f7530a23900b0d10a2883637845
01b684d25bbf22ed858559d94999e8c76d8cd354
3902 F20101124_AABUVB charron_c_Page_153thm.jpg
2e408a85a8bbf8212b282815bc370a20
77da32c1acd66ef55a99c3831ba60c125178b8f1
14856 F20101124_AABUUM charron_c_Page_126.QC.jpg
22e87e2601c71a31dfa45a3c4c480f36
59bbb5a3c10e90729af055b2873bfc14ed6dd83a
F20101124_AABUTY charron_c_Page_111thm.jpg
1e1853ceebe4ab4d832a11020a1ccad9
51458cad3bf9577910d331c088f490478a629c4f
288086 F20101124_AABTQW charron_c_Page_089.jp2
717349a8c445e92ef940e7e2467c190f
b3e7339cb843151d33adbf88d148977f60a6d002
44906 F20101124_AABTRK charron_c_Page_046.pro
4eaf4a7879ede745b266af2ca82d8637
1b354c89cda27457fe66327fc2c48edfbc53e223
5858 F20101124_AABUVC charron_c_Page_154thm.jpg
a1ae8fc79cee1e0ac94aae16a02e7327
86ebdd42f5df8fcc344d4da83a7f739219cc6855
8705 F20101124_AABUUN charron_c_Page_131.QC.jpg
85ece680c19da3521321edfd5298affb
84a7216cd2071aa97e87c27b65724657a4f3c757
9825 F20101124_AABUTZ charron_c_Page_112.QC.jpg
d2c14d735a16ce92d3ec7846a17119f2
47c94af3e8ce0e305be2d61e327f6ef4eae367b7
F20101124_AABTQX charron_c_Page_029.tif
e4be800b340be4664cb9a7703d95d999
a6a07c2db55279f464fb745bfd84814a2750ec3e
2777 F20101124_AABTSA charron_c_Page_166.txt
9391b6882c1002b8c526b9b1da51a6ba
ecf777cad8e344b622648572c3ee605b79dffeff
2471 F20101124_AABTRL charron_c_Page_177thm.jpg
e0e017c81952dfdbc6d0a1578de4dcfa
567a7439925f60d2fd115de66903cff722de425f
6685 F20101124_AABUVD charron_c_Page_155thm.jpg
d54ca7d156872dfba397187ee886eb23
cfab89aa71366c8b5a88d5593b8d86539b616207
10966 F20101124_AABUUO charron_c_Page_132.QC.jpg
87039130376f9bb2fcda3272c29f35f5
a9b4837bba7000245a7da1e31bca059bd13249cd
22472 F20101124_AABTQY charron_c_Page_136.QC.jpg
1a93651e517d42689c55b527c8588989
737ad080c24027e76494ff5791b22da586eb9f33
125985 F20101124_AABTSB charron_c_Page_165.jp2
4a079e94d3d139479488fd754fff4720
3531e6d175d2bbe33bbe31636e160bb5a6a9d152
F20101124_AABTRM charron_c_Page_041.txt
1a450a3d91b30562b7c1ed2492ee1414
3e6c46fef1199fcf4f7e8df6793c5016fe2b9698


Permanent Link: http://ufdc.ufl.edu/UFE0011392/00001

Material Information

Title: Gene Therapy for Phenylketonuria: Dominant-Negative Interference in a Recessive Disease
Physical Description: Mixed Material
Copyright Date: 2008

Record Information

Source Institution: University of Florida
Holding Location: University of Florida
Rights Management: All rights reserved by the source institution and holding location.
System ID: UFE0011392:00001

Permanent Link: http://ufdc.ufl.edu/UFE0011392/00001

Material Information

Title: Gene Therapy for Phenylketonuria: Dominant-Negative Interference in a Recessive Disease
Physical Description: Mixed Material
Copyright Date: 2008

Record Information

Source Institution: University of Florida
Holding Location: University of Florida
Rights Management: All rights reserved by the source institution and holding location.
System ID: UFE0011392:00001


This item has the following downloads:


Full Text












GENE THERAPY FOR PHENYLKETONURIA: DOMINANT-NEGATIVE
INTERFERENCE IN A RECESSIVE DISEASE















By

CATHERINE ELISABETH CHARRON


A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA


2005

































Copyright 2005

by

Catherine Elisabeth Charron

































I dedicate this work to my parents. If not for their sacrifice, I would not be here today
writing and working in a language that I did not learn from birth. They gave me the
opportunity to lead my life with endless possibilities in sight and see the world as an open
road to explore.















ACKNOWLEDGMENTS

The past four years would not have been so successful without the help and support

of many. First I would like to thank all of my committee members, Drs. Byrne, Laipis,

Lewin and Petersen, for their continued support, positive attitude and broad knowledge of

science. Our meetings were always a source of inspiration to work harder and increase

my general knowledge in sciences. I especially thank my mentor, Dr. Philip Laipis, for

his support, friendship, and trust: without it I would not have had the courage and the

patience to persevere during rough times. I thank him for his continued belief in my

abilities, allowing me to grow as a scientist and as a person.

Many people have come through our laboratory in the past four years, and I am

grateful to all for their friendship and help. Nenita Cortez, Heather Steele, and Wen-Tao

Deng deserve many thanks for helping me begin my work in the laboratory and teaching

me the skills that were indispensable to this project. I thank Jon-Michael Knapp and Ken

Ross for their friendship as I began my work in the lab. Andreas Zori and Dawn Young, I

thank for their eagerness to learn and their patience with me as I strive to become a better

teacher everyday. I give special thanks to Dr Jennifer Embury, without whose expert

knowledge and countless hours spent analyzing our mice, this project would not have

been complete. Her perseverance and generosity are an inspiration and an example that I

will endeavor to follow throughout my career. I am very grateful to Mandy Blackburn

and Brian O'Donnell for their essential technical assistance in the lab. I am deeply









indebted to Stacy Porvasnik for her help with surgeries. Her skills and generosity allowed

for much saved time, giving me the opportunity to finish this project in so few years.

I would like to give special thanks to Dr. Omaththage P. Perera. He is a great

example as a scientist, parent and person, and I am deeply grateful to have met him and

learned so much from him during his short time in the lab.

Appreciation is extended to the Pathology Animal Care Facility and to the Vecor

Core for the support they provide. I also acknowledge the staff in both the Genetics and

Biochemistry Departments, and in the Interdisciplinary Progam's main office.

I would like to thank my family for their love and support during all this time. I

would not be here today if not for their continuing encouragement. Finally, I would like

to thank my husband Sean Lewis for his love and patience. I could not imagine doing this

without him; he is my strength, my love and my best friend.
















TABLE OF CONTENTS

page

A C K N O W L E D G M E N T S ...................................................................... ...................iv

LIST O F TA B LE S .......................................................................................... .... ....... ix

LIST OF FIGU RE S ................................................... x

A B STR A C T .............. ......... ... ........................................................ ...................... xii

CHAPTER

1 INTRODUCTION .............................................................. .. ... .............. 1

Phenylketonuria......................... ..............
H isto ry ........................................................... ........................................... 1
Clinical Features .................................. ............................ .. ............
Classic phenotype ....................................................................... 3
Phenotype of early-treated patients ......................................................... 5
Maternal phenylketonuria syndrome ........................................................ 6
G genetics ................................................................................................... 8
The Phenylalanine Metabolic Pathway ..................................... 10
Animal Models for PKU....................... ......... .................. 13
Alternative Therapies ............. ...... .... ........ .. ....... .. 14
Gene Therapy Vectors Based on Adeno-Associated Virus ..... ............... 16
Adeno-Associated Virus Biology................... ..... .................. 17
Current Trends and Applications of rAAV................................ ............. 18
RNA and DNA as Therapeutic Agents .............. ................................. 19
R N A Interference .................................. ........................... .............. 20
R ib ozy m es................................................... 2 1

2 MATERIALS AND METHODS ...................................... ......... .............. 27

In Vitro Ribozym e A analysis .......................... ....... ....... ................ .............. 27
Deprotection of RNA Oligos ........................ ...... ......... .......... ..... 27
Target E nd-L abelling ............. ........................... ................ .............. 28
Time Course of Cleavage Reactions ..................................................... 28
In Vitro Transcription ............ ..................... ......... 29
Full-Length Transcript Cleavage Reaction................................................. 30
M multiple Turnover K inetic A nalysis............................................. ... .............. 30









Molecular Cloning Protocols ......... ..... ......... ................ .. 32
Cloning of Ribozyme Vectors ....... ... ............. ................... .............. 32
Construction of CB-mPAH-F263S .... .................................. 33
Construction of CB-mPAH-Hd..... ..................... .................33
Construction of tRN A-RzI209 ....................... ...... ............. .............. 36
Cell Culture Protocols .......................................... 38
Transient Cell Transfection with CaPO4 ............. ............................... 38
Transient Transfections using Superfect ............. ........................................ 39
Phenylalanine Hydroxylase Activity Assay ......... .... ...... ........... ........ 39
Protein C concentration A ssay......................... ............. ................... .............. 40
W western B letting ............... ................. .................................................. ....... 40
N northern B letting .............................................................................................. 41
Recombinant Adeno Associated Virus Packaging.............................................. 41
Animal Procedures ................. .. ....... .......... ......... 42
Grow th Rate A analysis ............. ................. ......... .... ...................... 42
Blood Collection ................ ... .................. 42
Microplate Serum Phenylalanine Assay ................................. ................. 43
Food Consumption M easurement ... ............................................... 44
Portal Vein Injections ............. ........... .......................... 44
Phenylalanine Loading ......... .............. ................... 45
Sacrifice and Tissue Collection............................ ................. 45
R N ase P protection A ssay s ......................................................................... .... .... 46
Southern Blotting ................................................................... ... ......... 47
RN A Interference Protocols......................................................... ......... ..... 48
G generation of siRN A Cassettes................................................................... 48
Reverse Transcriptase Reaction and Polymerase Chain Reaction ..................... 48

3 ANIMAL M ODEL ANALYSIS........................... ......................... 50

General Sex Dimorphism in BTBR Pahenu2 Mice................................................. 50
G row th C urve A naly sis .................................................................... ....... 50
Serum Phenylalanine L evels.................................. .............. ... .. .............. 53
Food Consumption .............. .... ......... ................. 54
Lifespan Analysis ........................... .............. 55
Phenylalanine Hydroxylase in BTBR Pahenu2 Mice .................... ................. 56
Liver PAH ............... ......... ......... ............ 56
Message levels ................ .............. .............. 56
Protein levels...... ......... ................... .............. 57
Activity levels .............. .... ......... ................. 57
Kidney PAH ................................... ................ 59
D iscu ssion ......... .... .............. ................................ ........................... 59

4 DOMINANT-NEGATIVE INTERFERENCE IN PHENYLKETONURIA ............ 68

Gene Therapy for Phenylketonuria: Divergent Results by Sex in BTBR Pahenu2 .... 69
Liver PAH: Evidence of Dominant-Negative Interference ............................... 70
In vitro Cell Transfection Studies with Normal and Mutant PAH ......................... 71









D iscu ssio n ....................... ..... .................. ................. ............... 7 4

5 DESIGNING A HAMMERHEAD RIBOZYME AGAINST PHENYALANINE
HYDROXYLASE .............. .. ............ ...... ...... ................ 83

Hammerhead Ribozyme Design for mPAH ..................................... 83
In V itro R ibozym e T ests ................ ... .. .. ........... ...... .............. .................... 83
Cloning RzI209 into p21-nhp and Designing a Ribozyme-Resistant mPAH........... 85
Ribozyme 1209 Is Active In Vivo....................... ............................... 86
Ribozyme 1209 Can Overcome Dominant-Negative Interference............................ 88
D iscu ssion ...................... .. .. ......... .. .. ......... ................................... 89

6 GENE THERAPY FOR PHENYLKETONURIA .............................................. 103

Dose-Response in BTBR Pahenu2 Males to rAAV2-CB-mPAH-Hd-WPRE........... 103
Combining an Ineffective Dose of rAAV2-CB-mPAH-Hd-WPRE with Increasing
rA A V 2-CB -RzI209-(-SalI) D oses ...................................... ..... ................. 109
Gene Therapy with a Mildly Effective Dose of rAAV2-CB-mPAH-Hd-WPRE
and Increasing Amounts of rAAV2-CB-RzI209-(-SalI) .................................. 110
D discussion ............. ............................. ........................... 111

7 DEVELOPMENT OF A SINGLE VECTOR CARRYING THE MOUSE PAH
GENE AND RIBOZYME 1209 ........................... ...................123

Design and Cloning of a Dual rAAV Vector............................................. 124
Cell Transfection Experiments with CB-mPAH-Hd-tRNA-RzI209.................... 125
In Vivo Experiments with CB-mPAH-Hd-tRNA-RzI209 ........................... 126
D iscu ssio n ...................... ......1.............. ................................. .. 12 7

8 DEVELOPMENT OF SHORT INTERFERING RNAS FOR MARINE PAH...... 134

Short Interfering RN A Site Selection .............. ...... .................................... 134
siR N A C ell C culture T ests .......................................................................... ..... 135
D iscu ssion .................................................... ................... ............ .. 137

9 SUMMARY, CONCLUSION AND FUTURE DIRECTIONS ............................ 141

G general Significance ................................................................. .............. 14 1
Sum m ary and Conclusion..................................................... ....................... 141
Future D directions ............................... .... ... .... .... ........ ...... 143
Dual Gene Replacement and Antisense Technology Approaches for the Treatment
of Genetic Diseases........................................ 145

G L O S S A R Y ...................................................................................... 14 8

LIST OF REFEREN CES........................................................... .... ............. 151

BIOGRAPHICAL SKETCH .......................................................... ........... .... 165
















LIST OF TABLES

Table page

2-1 M multiple turnover kinetic analysis reaction set-up................................................ 31

2-2 PCR mutagenesis primers for mPAH-F263 S construction. ............................... 34

2-3 PCR mutagenesis primers for mPAH-Hd construction................................. 35

2-4 Oligos for tRNA-RzI209 construction. .......... .............................. ..............37

3-1 Unpaired t-test analysis of litter weights.... ........... .................................... 52

3-2 Results of ANOVA analysis of adult weights. .................................................. 53

3-3 Serum phenylalanine values in BTBR Pahen 2.................................................. 54

3-4 Lifespan analysis............... .. .......................... .. .... .. .... .......... 56

3-5 PAH activity in liver samples. ........................ ................ 58

5-1 Ribozym e 1209 kinetic properties ....... ..... ............................ .. .............. 85

6-1 rAAV2-CB-mPAH-Hd-WPRE vector titers. ............ ... .................. 104

6-2 Serum phenylalanine levels for timed bleeds in male Pahenu2 mice .................... 106

8-1 Short interfering RNAs for mouse PAH. .................................. 136
















LIST OF FIGURES

Figure page

1-1 Phenylalanine conversion to tyrosine ......... ............. ................... ............. 25

1-2 Hammerhead ribozyme structure ............... ........... ......... ....................... 26

3-1 BTBR Pahenu2 mouse model ..... .... ...... ........................... ......... 61

3-2 BTBR mice growth curves. .......... ..... ............................. 62

3-3 M ale and fem ale w eight differences. ........... ................................. .............. 63

3-4 Average daily food consumption ..... ....... .......................... ................. 64

3-5 Northern blot of mouse PAH.......... .................. ......... ........................ 65

3-6 Western blot of mouse PAH.............. ................................... 66

3-7 K idney PAH am ounts................... ...................................... .......................... 67

4-1 rA A V v sector m ap s. ............. ................. ................. ............. .............. ..... 76

4-2 Serum phenylalanine levels after gene therapy wirh rAAV2............. ..............77

4-3 PA H am ounts in m house liver ........................... .............................................. 78

4-4 Cloning strategy for construction of CB-mPAH-F263S.................................... 79

4-5 Test transfections with CB-mPAH and CB-mPAH-F263S. ............................ 80

4-6 Mixed transient transfection results...... ....................... .............. 81

4-7 Western blot of native PAGE with mixed transfection samples ......................... 82

5-1 Mouse PAH ribozyme designs. ........................... ..............91

5-2 Time Course analyses with ribozymes at 20mM MgC12.............. .............. 92

5-3 Time Course analysis of ribozyme 1209 at 5mM MgC12.......... .............. 93

5-4 Ribozyme 1209 kinetic analysis ............. ............................... .............. 94









5-5 Long target cleavage analysis. ............................................................. ... ......... 95

5-6 CB-Rz 209 ............................. ........... ..................... 96

5-7 Cloning strategy for the construction of a ribozyme-resistant mPAH clone........... 97

5-8 CB-RzI209 stably expresses RzI209 in 293 cells ........ ...............................98

5-9 CB-mPAH-Hd is resistant to the ribozyme ...................................... ............... 99

5-10 Ribozyme 1209 successfully prevents dominant-negative interference in 293
cells. .................................................................................... 10 0

5-11 N ull ribozym e designs ...................... .. ............. .. ..................... ............. 101

5-12 The null ribozymes do not prevent dominant-negative interference ................ 102

6-1 Dose response to rAAV2-CB-mPAH-Hd-WPRE. ..................................... 114

6-2 Phenylalanine loading experiment ...... ..................... ................ 115

6-3 RNase protection assay with dose-response animals .......................................... 116

6-4 Southern blot of dose response animals. ............. ........................... ............... 117

6-5 Phenylalanine hydroxylase activity in gene therapy-treated animals ................. 118

6-6 Serum phenylalanine levels after dual vector injections............................... 119

6-7 RNase protection assay for co-injected animals............................................... 120

6-8 Southern blot detection of two rAAV vectors................ ... .............................. 121

6-9 Serum phenylalanine levels after co-injection of mildly effective CB-mPAH-
Hd-WPRE dose and increasing amounts of CB-RzI209-(-Sal). ......................... 122

7-1 tRN A -R zI209 design ......................... ............. .. ....................... ............. 129

7-2 Cloning strategy for construction of tRNA-RzI209 cassette............. ............. 130

7-3 Results of transient cell transfections with CB-mPAH-Hd-tRNA-RzI209 ......... 131

7-4 tRNA-RzI209 activity and expression in HEK-293 cells. ................................ 132

7-5 In vivo results with CB-mPAH-Hd-tRNA-RzI209 ............. .... ............ 133

8-1 Cell culture siRNA working concentration determination.................................. 139

8-2 M house PAH siRNA test results. .................................................. ............ 140















Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

GENE THERAPY FOR PHENYLKETONURIA: DOMINANT-NEGATIVE
INTERFERENCE IN A RECESSIVE DISEASE

By

Catherine Elisabeth Charron

August 2005

Chair: Philip J. Laipis
Major Department: Biochemistry and Molecular Biology

Phenylketonuria (PKU) is an autosomal recessive disease where phenylalanine

accumulates in the blood; high brain levels of phenylalanine often lead to mental

retardation. The enzyme phenylalanine hydroxylase (PAH), which converts

phenylalanine to tyrosine, is the mutated gene for over 97% of patients. Dietary

restriction of phenylalanine is the only form of therapy for PKU and is recommended for

life. Unfortunately patients often go off diet during adolescence, and this has led to a rise

in maternal PKU syndrome, the increased incidence of birth defects in children born to

phenylketonuric women. Gene therapy for phenylketonuria would cure the

hyperphenylalaninemia (HPA) and help prevent maternal PKU syndrome.

Using recombinant adeno-associated virus serotype 2 (rAAV2), we have

successfully delivered the mouse PAH gene to male mice and cured the HPA. While

successful, the doses needed in the Pahnu2 mouse model are 5 to 10 times higher than

those used to cure hemophilia A in a mouse model. The Pahenu2 mouse model has a









missense mutation in PAH rendering the enzyme inactive, and we found that PAH is

present in the liver at 30 percent of normal levels. Since the enzyme is a homotetramer,

dominant-negative interference after gene therapy could explain the need for high rAAV

doses to cure HPA. Using transient transfections we confirmed that mutant and normal

monomer interact together and reduce total PAH activity.

To prevent the dominant-negative interference, we developed a ribozyme that

cleaves the endogenous PAH message. When both ribozyme and resistant PAH gene

were delivered in separate rAAV vectors, no improvement in the effectiveness of the

therapy was observed. Endogenous PAH message was reduced in liver samples

confirming ribozyme activity in vivo. A single vector was constructed to contain the

resistant PAH gene and the ribozyme expressed by a modified tRNA'al promoter. The

novel vector was delivered to male Pahenu2 mice and normalization of serum

phenylalanine levels was achieved with four fold lower doses than with the original CB-

mPAH vector, confirming the dominant-negative interference hypothesis. This

observation of dominant-negative interference to gene therapy in a classic recessive

disorder may prove quite common in many human genetic diseases.














CHAPTER 1
INTRODUCTION

Phenylketonuria

Phenylketonuria (PKU) is one of the most commonly inherited human genetic

diseases with an incidence in the United States (US) around 1 in 15,000 births. The gene

affected in the majority (97%) of patients is phenylalanine hydroxylase (PAH), and the

disease is inherited as an autosomal recessive disorder. Accumulation of phenylalanine

(Phe) in the blood, brain and other organs is the cause of the disease, classically

characterized by severe mental retardation. Since the 1960s, severe (>lmM) or milder

(0.36-1mM) hyperphenylalaninemia (HPA) have been detected in the neonatal period,

and treated by the dietary restriction of phenylalanine. If blood Phe levels are kept within

a nontoxic range throughout childhood, brain and cognitive development are near normal.

Unfortunately, the diet is both expensive and unpleasant, and is now recommended for

life by physicians. This chapter presents a summary of the current knowledge on

phenylketonuria including a discussion of the issues associated with maternal

phenylketonuria syndrome.

History

The classic phenylketonuria phenotype originally described by Folling in 1934 is

characterized by severe mental retardation, microcephaly, delayed speech, seizures,

eczema and behavior abnormalities.1 When Folling discovered that two of his patients

presenting with the same symptoms were related, he quickly realized that this form of

mental retardation was inherited in a recessive pattern. After chemical analysis, he









determined that the patients excreted phenylpyruvic acid in their urine: he had discovered

a new inborn error of metabolism, the first mental retardation to have a recognized

chemical feature.2 In 1937 the disease was renamed phenylketonuria to emphasize this

biochemical feature.2

Penrose, in the United Kingdom (UK), and Jervis, in the US, studied the known

patients extensively because of the interest generated by this new inborn error of

metabolism and its effect on intelligence. They very quickly observed varying degrees of

severity in terms of the quantitative trait and described patients (using the common terms

at the time) as imbeciles, idiots or simple morons. Since sex chromosome linkage was

found to be negative, the disease was known to be autosomal and suspected of having

undetermined phenotype-influencing factors either environmental or genetic. They

reported a higher number of cases in white populations and calculated the carrier

frequency to be approximately 1 in 100 for both the US and the UK. Penrose used PKU

as a medical example to challenge eugenics since for eliminating PKU from the

population eugenic proponents would have to sterilize one percent of the population:

"Only a lunatic would advocate such a procedure to prevent the occurrence of a handful

of harmless imbeciles." 2: 198 He also theorized on how altering body metabolism could

influence the psychiatric manifestation of the disease, accurately predicting the future

success of treating PKU by dietary therapy.

Hyperphenylalaninemia (HPA) was found to be the cause of the disease by Jervis

in 1947, and the defective enzyme was determined to be liver PAH in 1953 by

Udenfriend and Cooper.3 In the same year, Bickel demonstrated the possibility of

improving the mental retardation by using a Phe-restricted diet. The need to identify PKU









patients early became obvious: at the time it is estimated that one percent of the

population in mental institutions had PKU. In 1957 the ferric chloride "diaper test" was

tested in some California well-baby clinics, but the test proved to be unreliable during the

first month of life. Four years later a reliable assay was developed to screen blood-spots

from newborns for hyperphenylalaninemia.4 This made neonatal screening possible and

allowed for the Phe-restricted diet to be started before one month of life. During the next

two decades neonatal screening was instituted throughout the Western World and

thousands of PKU patients have been placed on diets shortly after birth and given the

opportunity to develop normally.

Clinical Features

Classic phenotype

Although mental retardation is the main feature of the untreated patient, the

mechanism by which phenylalanine causes the disease is still not known. Recent studies

display the potential risks associated with high Phe concentration in cerebrospinal fluid

(CSF). Patch-clamp experiments show that by competing for binding sites on NMDA and

non-NMDA receptors, Phe depresses glutamate receptor function in hippocampal and

cerebrocortical cultured neurons.5 The glutamate receptor is associated with formation of

synapses during early development and in dendritic spine changes in adult tissue, and

thus it is involved in memory performance and learning. In vivo the glutamate receptor is

not saturated by its substrate and thus could effectively be inhibited by higher CSF Phe

levels, most likely leading to memory and learning dysfunctions. The BTBR Pahenu2

mouse model brain (see later section) shows an up-regulation of the density of NMDA

receptors as determined by radioactive ligand binding and western blotting for specific

subunits of NMDA receptors.6 AMPA receptor subunits (a non-NMDA glutamate









receptor) are also found to be elevated as compared to the heterozygote forebrain

samples.

A study measuring Na+, K+-ATPase activity in erythrocyte membranes from treated

PKU patients has shown that there is a negative correlation between ATPase activity and

the serum Phe concentration in the patients. The patients who had serum Phe levels

above 0.30mM had decreased Na K+-ATPase activity; this correlates with the

observation that ATPase activity is reduced in the cortex of rats subjected to experimental

PKU. The same isozyme of the ATPase is present in the brain, and loss of its activity

occurs in neurodegenerative disorders. Direct inhibition of the Na+, K+-ATPase is

associated with glutamate release. However, it is unknown at this point if the decreased

activity in erythrocytes is similar in the brain, and if this is somehow related to the

increase in NMDA receptors observed in the brains of Pahenu2 mice. Creatine kinase

activity, important in maintaining energy homeostasis in the brain, and dopamine

synthesis have been found to be reduced in hyperphenylalaninemic mouse or rat brains,

adding to the complexity of the phenotype.8,9

An earlier study in a mouse model with inducible hyperphenylalaninemia by

administration of Phe in the drinking water examined adult mice brains. Statistically

significant decreases in the muscarinic acetylcholine receptors in the hippocampus and

cerebral cortex were observed.10 Phe has been shown to inhibit ATP-sulfurylase

decreasing the synthesis of sulfatides which are myelin-associated lipids. The decrease in

sulfatides results in lower protection levels of myelin and higher myelin turnover not

compensated by higher myelin synthesis. Low myelination was observed in the brain

autopsy of severe untreated PKU patients and in the Pahnu2 brains.8'11 The brains in the









induced HPA study showed loss of the acetylcholine receptor in a [Phe]- and time of

exposure-dependent manner in a region of the brain associated with acquisition and long-

term storage of information. The association of specific neuronal receptors and possible

permanent brain damage with HPA supports the need for lifelong therapy.

Phenotype of early-treated patients

Once neonatal detection of hyperphenylalaninemia was possible, patients were

placed, within one month after birth, on a phenylalanine-free diet. This diet prevents the

elevation of serum Phe levels and the neuropsychological phenotype is averted. The diet

consists of a mixture of free amino acids or modified protein hydrolysates and is ingested

as a drink after dilution in water. The commercial products currently available have

improved since the early 1960s in terms of overall nutritional qualities and vitamin

balance, and have been shown to lead to normal physical growth in children.12 However,

the taste and smell of the products are poor, and make compliance to the diet difficult.

Phenylketonuric children must be closely followed throughout their childhood by a clinic

to monitor serum Phe levels, growth parameters and diet intake.

In the 1960s, a few reports came out suggesting that termination of diet in early

childhood would not lead to any side effects. Unfortunately, the conclusion was

premature. In 1978, and in a follow up study in 1991, Smith et al. showed that

termination or relaxation of the diet can lead to loss of intelligence quotient (IQ)

points.13,14 Poor dietary control in early and continuously-treated PKU patients (10.8

years-old) affects short-term memory, selective attention, behavioral inhibition and rule-

based behavior as compared to well-controlled PKU patients with Phe levels below

400tmol/l and age- and IQ-matched normal control subjects.15 In the same study, the

better controlled patients had significant, but mild, impairments in planning and sustained









attention as compared to the normal subjects. Again, this emphasizes the need to find a

better cure for PKU.

Maternal phenylketonuria syndrome

Maternal PKU syndrome refers to the increased range of birth defects seen in

children born of hyperphenylalaninemic mothers on a poorly controlled diet. Growth

retardation, psychomotor handicaps and other birth defects have been reported.16 High

phenylalanine in the mother was first noted to be teratogenic to the fetus by Dent in 1956

and Mabry in 1963.17 The first reports noted mental retardation in the non-PKU offspring

of PKU mothers, but before the end of the decade reports on microcephaly, intrauterine

growth retardation, and high frequency of congenital heart defects were published.17

Since diet was not recommended for life after its early institution in the 1960s and the

1970s, the rise in maternal PKU syndrome came about as the first early-treated patients

reached childbearing age. The extent of the syndrome was not fully understood until the

report from Lenke and Levy, compiling data from a wide range of metabolic centers

across the world, was published in the New England Journal of Medicine in 1980.18

Mental retardation in the children born to women with Phe at 20mg/dL (untreated classic

PKU) was found to occur in 92% of cases, microcephaly in 73%, congenital heart defects

in 12% and low birth weight, below 2.5kg, in 40% of births. These risks were shown to

increase as the mother's Phe levels increased. In the US, two thirds of phenylketonuric

women are not on diet when they become pregnant.19 The benefits of treating PKU

patients from infancy could be erased if this increase in birth defects, an unforeseen side-

effect of the prior success with PKU, is not addressed.20

The Maternal PKU Collaborative Study was started in 1984 to examine the effects

of phenylalanine-control during gestation on pregnancy outcomes. The international









study enrolled 382 women with 574 pregnancies.21 The women were monitored during

pregnancy, and the children followed until 6-7 years of age to measure cognitive

development.22 The frequency of abnormalities in the children was found to be directly

related to maternal phenylalanine levels during pregnancy.16

The range of birth defects attributable to maternal PKU syndrome includes prenatal

growth retardation, microcephaly, congenital heart disease and facial dysmorphias.23

While fetal loss for PKU women is comparable to the normal averages, increases in these

birth defects are always related to phenylalanine levels and length of exposure during

gestation.23 Control prior to conception and control below 360tmol/L achieved by 10

weeks of gestation will lead to a normal or near normal outcome both at birth and in IQ at

follow up. Congenital heart disease is not strictly related to Phe concentration, but its

frequency is increased when poor control with inadequate protein and vitamin intake

occurs during the first trimester.22 Postnatal growth retardation is inversely correlated to

phenylalanine control during the gestation period; IQ goes down significantly in the same

manner. Women with IQ less than 85 need special support since their adherence to the

diet is not as easily achieved: currently in the US the status of care and support is not

adequate to allow for proper control and better pregnancy outcomes in these women.

Other factors besides phenylalanine levels are thought to affect pregnancy outcome

and the child's IQ at 6 to 7 years of age. These include age of the mother, socioeconomic

status, parental IQ, and home characteristics.24 Home characteristics and parental IQ can

explain most of the lower than expected IQ scores in the children; more than three of the

known risk factors for one pregnancy also can lead to poorer than expected outcome.

Nonetheless, nine women with classic PKU observing late diet control had children who









demonstrated higher than expected IQs at 6 years.24 A common feature between maternal

PKU syndrome, fetal alcohol syndrome and pyruvate dehydrogenase deficiency is a

potent inhibition of pyruvate dehydrogenase: since modifier genes are known to prevent

toxicity in fetal alcohol syndrome, the possibility of modifier genes for PKU is an

attractive explanation for the variance in the results observed in the late-treated group.24

Genetics

The incidence of the disease in the US varies from 1 in 13,500 to 1 in 19,000 births.

For non-PKU hyperphenylalaninemia, the estimate is 1 in 48,000 births.25 The prevalence

of PKU is higher in white and Native American than in black, hispanic and asian

populations. Much allelic diversity has been reported at the locus (>450 known

mutations); an extensive database containing all of the known mutations is located at

http://www.pahdb.mcgil.ca.26 This diversity leads to much phenotypic variability even

amongst patients with the same PAH genotype. Other genetic and environmental factors

probably influence the clinical phenotype but have yet to be elucidated.

PAH is located on the human chromosome 12 at position q22-q24.1.27 The first

human cDNA clone was isolated in 1985. The protein is 451 amino acids or 51,672

Daltons.28 The protein was isolated from the rat as a dimer, and thought to be made up of

two identical subunits.29 PAH contains 13 exons over 90kb of DNA.30 The average exon

length is 114 bases, ranging from 57 to 892 bases. Phenylalanine hydroxylase is strongly

homologous to tyrosine hydroxylase, and this homology is greatest in the C-terminal two-

thirds of the protein. Interestingly, for PAH this corresponds to the last 1698 bases of the

mRNA which is coded in 16kb of DNA, while the most divergent parts of the protein

correspond to 567 bases of mRNA coded in 72kb of DNA. The largest intron, between

exons 3 and 4, is 23kb and falls between amino acids 117 and 118 where the homology to









tyrosine hydroxylase begins. This suggests that functional and tissue-specific regulators

could be contained within that intron or at least within the 72kb of divergent DNA.30 Rat

and human PAH share 96% homology at the amino acid level, and 89% at the nucleotide

level, with 82% of the differing nucleotides as silent codon changes.28

Transcription of PAH has been shown to be regulated by a 9kb fragment situated

upstream of the human gene. As other housekeeping genes, it does not have a TATA box,

and uses multiple transcription initiation start sites both in humans and in rodents.31 The

5' region of human PAH contains two half sites of the glucocorticoid response element

(GRE), two consensus sites for activator protein 2 (AP2) and one partial site for cAMP

response element (CRE).32 A 1.7kb region situated from position -3.5kb to -5.2kb

contains 2 hepatocyte nuclear factor 1 (HNF1) binding sites.33 HNF1 was shown to

activate the 9kb promoter region in a dose-dependent manner, and can be enhanced by its

dimerization cofactor DCoH. Interestingly DCoH is also the enzyme pterin-4-a-

carbinolamine dehydratase (PCD), responsible for converting 4-a-carbinolamine-

tetrahydrobiopterin to 7,8-dihydrobiopterin quinoid form in the recycling pathway of BH4

(see Figure 1-1 and later section). Both DCoH and PAH can be found on the same operon

in Pseudomonas aeruginosa, suggesting an evolutionary role in the regulation of PAH by

DCoH: it can transactivate transcription of the gene and recycle the necessary cofactor.

In the mouse, the activity of the promoter is completely dependent on its enhancer,

situated 3.5kb upstream of the start site. The enhancer has binding sites with weak

homology to HNF 1 and C/EBP consensus sequences. Addition of cAMP and

dexamethasone increases the activity of the promoter in the presence of the enhancer in

an additive fashion.31 The enzyme activity in rat cell lines is increased in the presence of









hydrocortisone due to an increase in PAH transcripts, suggesting that the rat and mouse

promoters have similar characteristics.34 Transgenic mice containing the human

regulatory region express the PAH transgene like the murine PAH, both in a time and

tissue-specific manner.35 The murine enhancer region is 77.5% homologous to the human

segment containing the HNF1 binding sites.33 It is still unknown if the human PAH gene

is hormonally regulated, but unlike the murine promoter, it does not require cAMP or

dexamethasone for in vitro activity.

In humans, the PAH transcript can be detected during the first trimester in the fetal

liver. In rodents, PAH is activated at day 18 of gestation, but strongly induced during the

first post-natal week in the liver.35 PAH is present in rodent kidney, and was found in

human kidney cortex at 20% of levels observed in human liver.36'37 In rats the kidney has

20% of liver mRNA amounts, and both the liver and kidney mRNAs are the same size.34

Conditions which activate the rat-purified enzyme do not activate the kidney enzyme: it

is in a constant activated state.38 Because the mRNAs are identical, the difference in

activities may be from different post-translational modifications and regulation. Rao

postulated that the kidney enzyme could make up 50% of rats' total PAH activity due to

its higher 5,6,7,8-tetrahydrobiopterin (BH4)-dependent activity. Moller et al.

demonstrated that the human kidney contributes a large amount of tyrosine to the

systemic circulation, while the liver is a net remover of both phenylalanine and tyrosine

from the circulation.39

The Phenylalanine Metabolic Pathway

Phenylalanine metabolism is very complex due to its function as a precursor to

dopamine, epinephrine and norepinephrine and its dual glucogenic and ketogenic role.

Phenylalanine is an essential amino acid; its input is dietary and its clearance includes









inclusion into polypeptides (5-10%), and oxidation to tyrosine (75%). Minor pathways of

transamination and decarboxylation do not contribute significantly to its catabolism. All

cells use phenylalanine for protein synthesis, but hepatocytes and kidney cells are the

main contributors to phenylalanine clearance.39'40 The first enzyme in the clearance

pathway is phenylalanine hydroxylase or L-phenylalanine-4-monooxygenase by its

formal name. Phenylalanine hydroxylase is a tetrameric enzyme made up of four

identical subunits. PAH is a substrate for cAMP-dependent protein kinase. It is a

metalloprotein requiring Imol of iron per mol of subunit and has a necessary cofactor,

BH4.41 The conversion of phenylalanine to tyrosine is postulated to occur via the NIH

shift since the hydrogen on carbon 4 of phenylalanine is moved to carbon 3 on tyrosine

(Figure 1-1). BH4 is synthesized de novo from GTP in a four step pathway involving GTP

cyclohydrolase I (GTPCH), 6-pyruvoyl tetrahydropterin synthase (PTPS), and sepiapterin

reductase (SR). HPA can also be caused by defects in GTPCH and PTPS, and this occurs

in 1 to 2% of cases. In the PAH system, two enzymes are responsible for recycling BH4:

PCD and dihydropteridine reductase (DHPR).

Regulation of PAH is three-fold based on studies done with the rat enzyme: PAH is

activated by phenylalanine and by phosphorylation by cAMP-dependent protein kinase.

The phosphorylation seems to be stimulated by phenylalanine, while once

phosphorylated less phenylalanine is needed for activation.42 Since phosphorylation of

PAH is performed by cAMP-dependent protein kinase, blood glucagon levels indirectly

affect the rate at which Phe is cleared: after a meal, levels of cAMP increase thus

activating PAH. In low blood glucose conditions, Phe turnover can increase in order to

obtain fumarate. BH4 inhibits PAH activity keeping the enzyme in a (postulated) less









active conformation; the effect is reversed by Phe. The structure of a PAH dimer has been

elucidated.43 The 452 amino acid monomer is composed of three regions: a regulatory, a

catalytic and a tetramerization domain. The catalytic domain, amino acids 118-427,

contains 13 helices and 9 (3 strands. The regulatory domain is in the N-terminus while the

tetramerization domain is contained in the C-terminus. The active site is buried in a deep

basket-shaped cleft where the iron atom is bound by H290, H285, Q330 and a water

molecule. Kobe et al. postulated that movement of the N-terminal regulatory domain

about a hinge region, making access to the catalytic site easier, could explain the

regulation by phosphorylation and Phe.43

As of May 2005, 498 disease-causing mutations were recorded in the PAH

database. Sixty-two percent of these mutations are missense mutations.. In vitro analyses

have been performed to analyze a wide range of these mutations in order to obtain insight

on the genotype-phenotype relationship of PKU and the biochemical mechanism of

disease.44-48 The analyses in mammalian cells have shown that mutations often have a

decrease of immunoreactive protein but no real difference in mRNA amounts. These

conformationall" mutations predispose the protein monomer to incorrect folding or

misassembly of the enzyme, as determined in E. coli expression systems and two-hybrid

analyses, thus leading to increased turnover of the protein.44 In vitro manipulations such

as temperature decreases and increased chaperonin levels can rescue protein amounts,

oligomerization pattern and, for some mutations, activity as well.46 Similar modulating

effects in vivo could explain the discrepancies in phenotypes between patients of identical

genotype.49









Animal Models for PKU

A mouse model, named BTBR Pahenu2, was created by N-ethyl-N-nitrosourea

treatment of male BTBR Pas mice by Shedlovsky et al. in 1993.50 The specific

phenotype, hyperphenylalaninenemia, was screened for in over 300 offspring of

mutagenized males crossed to BTBR Pahenul mice. The Pahen"u line was created a few

years earlier and displayed a mild PKU phenotype, so the mutagenesis was repeated in

order to find a more severely affected phenotype.5 Once a potential carrier of a mutation

unable to rescue the Pahenul phenotype was found, it was bred to wild type BTBR Pas

female mice and two congenic mutant lines were eventually established, BTBR Pahenu2

and Pahenu3. The Pahenul and Pahenu3 mice have different PKU phenotypes, and will not

be discussed in this work. The Pahenu2 mice exhibit many of the characteristics associated

with classic PKU: hypopigmentation, cognitive disabilities, and maternal PKU

syndrome.52'53 The single base mutation in the mouse PAH gene, located on chromosome

10, is in exon 7, the same exon where most human mutations are located, changing

phenylalanine residue 263 to a serine and rendering the enzyme catalytically inactive.54

Shedlovsky et al. reported reduced immunoreactive protein as compared to wild type

BTBR Pas mice along with one percent of normal PAH mRNA in liver extracts. The

mutation also created a new Alw26I restriction site allowing for quick genotyping from

PCR amplification followed by restriction digest.54

The female mice do not regularly carry litters to term; if pups are born they will not

survive beyond a few hours. This maternal PKU syndrome in the mouse is caused by the

high serum Phe levels in the dams.55 Specific cardiovascular defects were noted in

embryos from 14.5 days postcoitum.53 Cognitive deficits in the mice were assessed by

odor discrimination tests and latent learning. The Pahenu2 mice have statistically









significant deficits in these learning and memory tasks; however these deficits are not

incapacitating. This evidence combined with the high serum Phe levels and the

hypopigmentation confirms that the mouse is a very good model of human

phenylketonuria.

Alternative Therapies

The lack of adherence to the Phe-restricted synthetic diet and the resulting increase

in maternal PKU syndrome highlights the need for an alternative form of therapy for

PKU. Tetrahydrobiopterin supplementation has been used with success in PKU patients

who have mutations that are known to be responsive to the cofactor. These patients

typically do not have "classic" PKU, since mutations in the catalytic domain do not

respond to BH4 supplementation. The mechanism for BH4 responsiveness is not fully

understood. The mutations that have been studied in vitro show reduced activation by

phenylalanine and reduced affinity for phenylalanine.56 Few of these mutations have a

decreased affinity to tetrahydrobiopterin. However, BH4 seems to prevent misfolding and

inactivation of these mutant proteins.7 Other hypotheses include mRNA stabilization,

induction of PAH expression by BH4, and changes in the regulation of BH4 synthesis

after oral administration. The response to tetrahydrobiopterin is obviously multifactorial

and depends on the alleles present in each individual patient.58

In the tetrahydrobiopterin patient trials, a normal diet or a relaxed diet is

supplemented with BH4 to achieve lower and controlled Phe levels. In two separate

studies, normal development in all of the patients was observed, and lowering of serum

Phe levels was achieved in the patients treated for an extended period of time.59'60 Side

effects noted are psychoneurotic, urological and gastrointestinal in nature.61 However no

full long-term or large-scale study has been conducted to assess the safety of repeat









administration of BH4. While BH4 supplementation can be three to four times more

expensive than the Phe-restricted diet, it could help prevent the effects of maternal PKU

syndrome by stabilizing Phe levels and preventing concentrations from peaking during

the day. Phenylalanine variation during pregnancy was found to have a negative effect on

head circumference at birth by the Collaborative Study.22

Enzyme replacement therapy could be an attractive alternative to treat all PKU

patients. Most of the work with enzyme replacement therapy has been done with the

enzyme Phenylalanine Ammonia-Lyase (PAL) since it does not require a cofactor for

activity.62 Oral delivery of enteric gelatin-coated PAL capsules was shown to be

successful and reduced Phe levels by 22% in PKU patients. While promising it may not

be enough for classic phenotypes and more work is being done to protect the activity of

the protein from the acidic environment of the stomach and optimize it for the intestinal

environment. PEGylation of PAL was also tested in mice: the enzyme has a longer half-

life, but after multiple injections it is quickly cleared from circulation. Enzyme

replacement therapy with PAH has also been explored, but the requirement for co-

injection of BH4 does not make it as attractive a therapy as PAL.

Gene therapy for PKU would be an ideal form of treatment to improve the quality

of life of PKU and HPA patients and to prevent maternal PKU syndrome. Skin, muscle

and bone marrow have been explored as possible targets for gene therapy, but the

availability of the cofactor has limited success in these approaches.63-66 With recombinant

adenovirus, two groups achieved lowering of serum Phe in the BTBR Pahenu2 mice using

the Rous Sarcoma virus LTR and CAG promoters respectively.67'68 However, both

groups reported antibodies raised against adenovirus and complete reversal of treatment









after two weeks. All of these experiments were introducing functional human PAH, as

opposed to mouse PAH.

Adeno-associated virus (AAV) has also been successfully used to treat HPA in the

mouse model. Using recombinant AAV (rAAV) serotype 5 carrying the mouse PAH

gene, long-term correction of mice, 40 weeks, was achieved in males, but not in

females.69 One third less vector was needed in the males than in the females to achieve a

similar Phe clearance during the first 6 weeks, at which point the female's serum Phe

levels returned to their hyperphenylalaninemic state. The minimum effective dose in

males in this study was 3x1013 vector genomes of rAAV5. With rAAV2, the human PAH

gene was delivered to mice with a WPRE element included in the cassette.70 Again,

female mice did not respond to the same dose that was found effective in males, 2x1012

vector genomes. This dose was effective up to 25 weeks, at which point an increase in

serum Phe levels was noted. According to the authors, this was due to a loss in vector

DNA amounts as determined by semiquantitative PCR. All of these studies have shown

that it is possible to treat hyperphenylalaninemia in the mice by gene therapy, but more

work is required to achieve true long-term correction in the males, and the same response

in female mice.

Gene Therapy Vectors Based on Adeno-Associated Virus

Somatic gene therapy for the correction of inherited genetic disorders is the desired

hallmark of future individualized medicine. Viral vectors for such delivery have been

studied for many years.71 Genome size, immunogenicity, length of gene expression and

integration capabilities are factors that can affect the choice of a viral vector. Adeno-

associated virus has many attractive qualities for human use: it is nonpathogenic, it can

infect dividing and non-dividing cells, it does not have to contain any viral coding









sequences, and it can mediate long-term gene expression in animal models.7274 There are

over 50 AAV serotypes known; each one may have slightly different cell tropism

offering the possibility of enhanced transduction for different targeted organs.75

Unfortunately the genome size of AAV is its main limitation since many genes are longer

than the 4.68kb packaging limit. Reports on a small percentage of integration into active

chromatin regions and the possibility of increased tumorigenesis have darkened the

prospects of this gene therapy vector.76 Nonetheless, rAAV serotype 2 is currently in use

in clinical trials, and still remains a vector of choice for the development of gene therapy

for inherited disorders.

Adeno-Associated Virus Biology

Adeno-associated virus is part of the family Parvoviridae and is classified as a

dependovirus in the Parvovirinae subfamily. Dependoviruses require the presence of

helper viruses, such as Adeno virus or Herpes virus, to establish a productive infection. In

the absence of such a helper virus, a latent infection can be maintained by integration of

the virus DNA into the genome. In humans, the main AAV integration site is 19ql3.3

where the genome usually integrates in tandem repeats.7 This can be rescued by

subsequent infection with the helper virus. The virus has not been associated with disease

in humans.

The AAV genome is single-stranded DNA and is 4679 bases in length for AAV

serotype 2.71 It is flanked on both sides by 145-nucleotide inverted terminal repeats (ITR)

composed of three palindromic sequences with only seven bases remaining unpaired

when folded. The ITRs are the only elements required in cis for encapsidation. The

genome encodes nonstructural proteins (Rep78, Rep 68, Rep 52 and Rep 40) and capsid

proteins (VP1, VP2, and VP3). These proteins are expressed from three polymerase II









promoters, p5, p19 and p40, from alternatively spliced mRNA. The Rep proteins are

required for DNA replication, establishment of latent infections, site-specific integration

into chromosome 19, and encapsidation of the genome. The Cap proteins combine 60

subunits into T=1 icosahedral symmetry with VP2 as the major structural component of

the small virion.

AAV serotype 2 binds to the ubiquitously expressed cell surface heparin sulfate

proteoglycan (HSPG). It requires fibroblast growth factor receptor type 1 and the integrin

avP35 for entry into the cell.78'79 Uptake occurs through standard endocytosis from

clathrin-coated pits, and the capsid is removed in the nucleus.80 The virus genome can be

found in the nucleus two hours after infection. Receptors used by the other AAV

serotypes include sialic acid and PDGFR, giving each one a different preferred cell type.

Current Trends and Applications of rAAV

Recombinant AAV virus can be made in the lab without the use of helper viruses.

Recombinant virus production is accomplished by providing only the necessary proteins

required for DNA replication and encapsidation on a plasmid that is independent of the

recombinant AAV plasmid. Both plasmids are co-transfected into cells, and rAAV virus

can be purified free of helper virus. This method is efficient and produces low particle-to-

infectivity ratios. The ITRs are the only wild type virus sequence left on the recombinant

virus. Thus it is incapable of replicating once it has entered the cell. The viral genome is

slowly converted from single stranded DNA to double stranded DNA, delaying the onset

of expression in the cell. The genome is maintained in the nucleus as a linear or circular

high molecular weight concatemer.81

Many animal models have been treated with rAAV vectors to correct a variety of

inherited disorders in a variety of tissues. Tissues successfully targeted by direct in vivo









methods include liver, muscle, heart, brain, lung, eye and kidney.74'82-87 Hemophilia B has

been treated by liver-directed gene therapy both in a mouse model and in a canine model

demonstrating the safety and the long-term expression mediated by rAAV2.73'88 These

studies also showed a dose response correlating increased factor IX circulating levels

with higher rAAV doses.

Clinical trials with AAV serotype 2 are underway for a number of diseases across

the US. Two trials, one for Cystic Fibrosis and one for Hemophilia B, have published a

number of updates. Delivery of rAAV2 to the lungs has not resulted in any adverse

effects to date, but it does not seem that the virus is transducing the lung epithelial cells

very efficiently.7 Results in the Hemophilia B trials have been a little more encouraging.

While delivery of rAAV2 containing the Factor IX gene to the muscle was well tolerated,

only a mild effect on Factor IX concentrations, 1% of normal, has so far been achieved.

When the liver was the target in a partner study, 5 to 12% of normal Factor IX levels

have been observed in the circulation of one patient for 5 weeks, but then dropped to

2.7%. AAV was detected in the semen of one patient and this seems to have been cleared

after 3 months.75 The results of these trials have not yet led to the cures hoped for, but

they have shown that rAAV2 delivery to humans is relatively well-tolerated and can

achieve modest therapeutic effects.

RNA and DNA as Therapeutic Agents

Antisense oligonucleotides can be used to target specific messenger RNAs to

inhibit translation or to induce cleavage and degradation. Antisense RNA

oligonucleotides, ribozymes and short interfering RNAs have been studied over the years

for their potential uses as therapeutic compounds in cancers and dominant diseases.









While these different molecules have distinct advantages, we will focus on ribozymes

because this methodology seems best suited for the particular problems seen in PKU.

RNA Interference

The process of RNA interference was discovered in the worm Caenorhabditis

elegans.89 When double stranded RNA (dsRNA) is introduced, sequence-specific post-

transcriptional gene silencing occurs. The enzyme DICER, an RNase III, processes long

dsRNA molecules by cleaving the dsRNA into 22-nucleotide short interfering RNAs

(siRNAs). This duplex is unwound and binds to its target RNA via RISC, RNA-induced

silencing complex. If the siRNA sequence perfectly matches its target, cleavage occurs

approximately at 10 nucleotides from the 5' end of the target sequence. It is now known

that the general mechanism of dsRNA response is conserved in most eukaryotes, thus the

recent developments in siRNA technology for use in mammalian cells.

The currently most popular approach for expression of siRNA uses a PolIII

promoter to express a hairpin that encodes for both the sense and the antisense RNA

sequence. This is then delivered directly to the cells by transfection or cloned into a viral

vector for easy delivery into animal models. Much work has been done on determining

markers for functional siRNA design. One of the requirements for good siRNAs is the

need for 2 nucleotide 3' overhangs.90 Internal general requirements include low GC

content, three or more A/U base pairs at the 3' end of the sense strand, and lack of

internal repeats.91'92 The presence of A/U base pairs at that end confirms previous results

obtained by Schwarz which suggested that the strand that is included into RISC has the

least tightly bound 5' end, thus preferentially selecting the antisense strand.93

RNA interference has been used extensively for functional gene studies in cell

cultures, and is being studied for targeting cancer genes, viral infections, and genetic









disorders.94-96 Safety of siRNA use in humans is currently being assessed in a clinical

trial where an siRNA targeting VEGF is being tested to help prevent age-related macular

degeneration.97 However, more study is necessary since siRNAs have been implicated in

chromatin architecture in several organisms, and the role and mechanism of siRNAs has

not yet been fully elucidated in mammalian cells.98 MicroRNAs (miRNAs) are made

from precursor miRNAs in mammalian cells and have been associated with

developmental gene regulation.99 MicroRNAs are also 21 to 23 nucleotides when

processed from their longer precursors. They often function as translational repressors

and do not contain an exact match to their targets raising concerns about possible side

effects of introduced siRNAs. The inexact match of miRNAs to their targets also implies

that to create a cDNA that is resistant to a designed siRNA will require extensive

modifications. This requirement is the main reason why we focused on hammerhead

ribozymes for our study. Nonetheless, the large amount of research being done with

siRNAs should soon uncover the best and safest way to use them in gene-function studies

and as therapeutic agents.

Ribozymes

Ribozymes are RNA molecules capable of catalyzing chemical reactions without

protein assistance. Hairpin ribozymes, RNaseP, Group I and II introns can catalyze such

reactions as ribonucleotide transesterification and hydrolysis.100 Hammerhead ribozymes

were discovered in plant satellite virus RNAs and mediate rolling circle replication. They

self-cleave the RNA in an in-line transesterification reaction.101 Since the sequence

requirements of the reaction have been discovered, they have been engineered to catalyze

the same reaction in trans for a specific chosen target.102 The target sequence of a

ribozyme contains "NUX', N is any nucleotide and X is any nucleotide but G. The









ribozyme will cleave the mRNA after X. The actual rate of cleavage is significantly

affected by the sequence of NUX with GUC and AUC having higher activities.103 The

typical lab hammerhead ribozyme is 33 to 35 nucleotides long, depending on the length

of the hybridizing arms, and its core structure includes stems I and III (the hybridizing

arms) and stem II, a hairpin structure used for maintaining stability of the required

folding for catalysis (Figure 1-2). Once bound to its target, the cleavage reaction takes

place and the RNA products are subsequently degraded.

Since they do not require proteins for catalysis, the main issue with ribozyme-use

in therapeutics is choosing the right delivery method. If used as stabilized RNA

molecules direct or general injections must be tested to ascertain co-localization with its

target RNA while keeping in mind the half-life of the ribozyme. Delivery with a viral

vector can obviate the previous issue as long as the virus will infect the correct cell type.

The proper promoter must be chosen so that the ribozyme can exit the nucleus to reach

the mRNA target without being processed or degraded itself. Ribozymes only need 12

nucleotides for target recognition, and the cleavage target rules are not as restricted as

initially thought.104 Nonetheless, specificity of the cleavage reaction has been

demonstrated.105 Many groups have successfully used ribozymes as anti-viral treatments,

anti-cancer treatments, and disease treatments for disorders such as Alzheimer's and

retinis pigmentosa.106,107

A hammerhead ribozyme, Angiozyme, is currently in Phase II clinical trials for

treatment of advanced colorectal cancers in combination with chemotherapy.108 The

ribozyme targets VEGFR-1 and is a chemically modified molecule injected

subcutaneously on a daily basis. Patients who had detectable VEGFR-1 levels prior to









therapy which declined post therapy have been found to have better clinical outcomes

than patients whose levels did not change. Another stabilized hammerhead ribozyme is in

a clinical trial for Hepatitis C Virus.109 Clinical trials are also underway to target HIV

infection with lentivirus-introduced hammerhead and hairpin ribozymes.110 Ribozymes

are a useful tool for specific mRNA degradation and offer many advantages in their

simplicity.

The research presented in this thesis includes careful analysis of the BTBRPahenu2

mouse model, in vitro experiments defining mutant and normal PAH protein interactions,

and various rAAV-derived gene therapy experimental results for the treatment of

phenylketonuria. General physiological observations of the BTBRPahenu2 mouse model

along with careful molecular analysis of PAH in the mice are reported in order to provide

further insight into the disease status in the model. From the observations made in mouse

livers, the interaction between normal and mutant protein subunits of PAH was further

evaluated in cell culture and determined to lead to dominant-negative interference. The

development of a hammerhead ribozyme directed against mouse PAH, to prevent the

dominant-negative interference, is detailed along with its evaluation in cell culture and in

vivo. Finally, the construction of a novel vector carrying both the mouse PAH gene and

the ribozyme, expressed from a modified tRNAv' promoter, is described along with

initial in vivo results in male mice. The findings reported in this research clearly show

that gene therapy for PKU is possible, but when treating patients with missense

mutations, the prevention of an interaction between normal and mutant protein subunits

may be necessary in order for the gene therapy to be successful at lower doses of rAAV.

Moreover, the data show the need for careful evaluation of mouse models, of both






24


missense and null mutants, when evaluating the possible treatment of genetic diseases by

gene therapy and the clinical relevance to human patients.












02


PAH


O H
BH4 H N


H2N N N H
I I
H H


SDHPR
NAD+ DHFR
NADP+ 0
H N H


NADH + H+
NADPH + H+


OH




GOO"
NH3




4a-carbinolamine
o H
I I OH I


HN N N
H


non-enzymatic in vitro
PCD in vivo


R = COH COH CH3


7,8-BH2 (quinoid form)
Figure 1-1 Phenylalanine conversion to tyrosine. The enzyme PAH converts Phe to Tyr
using BH4 and oxygen. BH4 is recycled via a two-step pathway which utilizes
NADH.









Stem II
G U
G-C
C-G
G-C
C-G
GAG
A U
A
Stem III I G Stem I
A CU
3'--GUCGUA UAGUU--5'
5' CAGCNUXAUCAA 3'
Figure 1-2 Hammerhead ribozyme structure. The ribozyme is aligned to its 12-nucleotide
target. The cleavage reaction takes place after the X. Stems 1 and III represent
the hybridizing arms when bound to the target RNA; stem II is a hairpin
structure which stabilizes the ribozyme structure.














CHAPTER 2
MATERIALS AND METHODS

The research presented in this dissertation required the use of many experimental

methods. They are described in this chapter in detail to allow other researchers to use the

experiments presented. Any specific modifications to the methods are explained where

relevant in the following chapters.

In Vitro Ribozyme Analysis

For these experiments, all enzymes were from Promega (Madison, WI) unless

otherwise indicated. Radioactive nucleotides were ordered from Amersham Biosciences

(Piscataway, NJ). The water used in all of the experiments was deionized, distilled,

purified through ion-exchange chromatography and autoclaved. All gels for ribozyme

analysis were 8 M urea, acrylamide sequencing gels run in 1 X TBE buffer and

prewarmed to approximately 450C prior to loading the samples, which were heat

denatured at 850C for 3 minutes followed by chilling on ice for 3 minutes. The gels were

fixed in 40% methanol, 10% acetic acid and 3% glycerol for 30 to 45 minutes and

subsequently dried at 800C under vacuum. All of these protocols were described by Fritz

et al.111

Deprotection of RNA Oligos

The chosen ribozyme sequences and 12-nucleotide targets were ordered from

Dharmacon, Inc (Lafayette, CO). The oligos were resuspended in 100 tl of water. Using

the provided deprotection TEMED buffer, 20 tl of each oligo was diluted to 100 tl with

the buffer and incubated at 600C for 30 minutes. The reaction was stopped by drying in a









SpeedVac (Savant) for 30 minutes. Assuming 99% efficiency in synthesis, the oligos

were resuspended at 200 pmole/tl for the ribozymes, and at 300 pmole/tl for the targets.

Working dilutions were prepared: 2 pmole/tl of ribozyme, and 10 pmole/tl of targets.

Samples were stored at -700C until further use.

Target End-Labelling

The targets were end-labeled with y-[32P]-ATP to allow for detection of the intact

and cleaved targets on a polyacrylamide sequencing-grade gel. Twenty picomoles of the

target were added to 10 tl of 1 X polynucleotide kinase buffer containing 1 1t of RNasin

Ribonuclease Inhibitor, 1 tl of 0.1 M DTT, 1 tl of polynucleotide kinase (5 to 10 units),

and 4 [Ci ofy-[32P]-ATP. After incubation at 370C for 30 minutes, sixty-five microliters

of water were added, and the labeled target was extracted with

phenol:chloroform:isoamyl alcohol. This was purified on a Sephadex G-50 column (USA

Scientific, Ocala, FL). The labeled target can be stored at -200C.

Time Course of Cleavage Reactions

The purpose of the time course experiment is to test the efficiency of the ribozymes

against the short 12-nucleotide target. Excess target is mixed 10:1 with the ribozyme in a

single large reaction from which timed samples are taken and subsequently run on an 8%

gel. First, two picomoles of the ribozyme working dilution was mixed with 88 tl of water

and 13 tl of 400 mM Tris-HC1. This was incubated at 650C for 2 minutes and left at

room temperature for 10 minutes to allow for proper folding of the ribozyme. Thirteen

microliters of a 1:10 dilution of RNasin in 0.1 M DTT was added with 13 tl of 200 mM

MgC12 for a 20 mM MgC12 final concentration. This concentration is used for all first

time course experiments with new ribozymes. The reaction was then incubated at 370C









for 10 minutes. Prepared tubes each with 20 tl of RNA formamide buffer (90%

formamide, super pure grade, 50 mM EDTA pH 8.0, 0.05% bromophenol blue, 0.05%

xylene cyanol) were placed on ice at this time and were labeled for the desired time

points, typically 0, 0.5, 1, 2, 4, 8, 16, 32, 64, and 128 minutes. Two microliters of

unlabeled target from the working dilution or 20 pmoles, and 2 tl of end-labeled target

were added in that order to the reaction. Immediately after adding the hot target, 10 tl of

the reaction was removed and added to the prepared tube labeled 0. This was repeated for

each time point. The samples can be stored at -200C.

Six microliters of each timed sample was electrophoresed on an 8% gel at 40 mV

until the bromophenol blue was approximately 2/3 down. Once fixed and dried, it was

exposed to a phosphorescent screen overnight, and scanned with a PhoshorImager

(Molecular Dynamics, Sunnyvale CA) for analysis. The percent of cleaved target at each

time point was calculated from the intensity of the product band over the total intensity of

the product and the intact target.

In Vitro Transcription

A linearized and purified pGEM-T-mPAH plasmid was used to create full-length

mPAH transcripts with T7 RNA Polymerase. The reaction was set up in 20 tl as follows:

4 tl of 5 X polymerase buffer, 2 tl 100 mM DTT, 1 tl RNasin (40 units), 1 tl of a

solution of 20 mM each ATP, CTP, and GTP, 1 tl 4 mM UTP, 2 tl linearized pGEM-T-

mPAH (100 ng), 2 tl or 20 [tCi of [a-32P]-UTP, and 6 tl of water. One microliter of T7

RNA polymerase or 20 units was added last. The reaction was incubated at 370C for 2

hours. Forty microliters of water was added to the reaction and was extracted with 100 [tl

of phenol:chloroform:isoamyl alcohol. The aqueous layer was then purified on a G-50









column, and 1 tl of the eluate was checked in a scintillation counter to calculate the

concentration of the labeled transcript.

Full-Length Transcript Cleavage Reaction

The full-length transcript was incubated with the ribozyme at 37C to determine if

the cleavage site is accessible when the entire mRNA sequence is present. The reaction

was set up with the desired ratio of ribozyme to target and magnesium concentration. For

ribozyme 1209, the experiment was set up in 30 tl as follows: 3 tl 400 mM Tris, 2 tl or

6 picomoles of ribozyme, 10 tl or 1.5 picomoles of labeled transcript, 3 tl of 200 mM

MgC12, 3 tl of a 1:10 dilution of RNasin in 0.1 M DTT and 9 tl of water. Samples were

taken at time 0, 1 and 2 hours. A 5% acrylamide gel was needed to separate the

anticipated cleavage products of 862 and 660 bases. The gel was not fixed but dried and

exposed to a phosphorescent screen overnight.

Multiple Turnover Kinetic Analysis

The kinetic properties of the ribozyme are calculated with the Michaelis-Menten

equation from a series of duplicate cleavage reactions set up with increasing ratios of

target to ribozyme. By increasing the ratio from 1:40 to 1:1000, saturation of the

ribozyme is achieved thus the cleavage reaction becomes the rate-limiting step in the

experiment. The series of duplicate reaction is shown in Table 2-1. Each reaction was set

up as in the time course of cleavage reaction by adding the items in order and incubating

at 65C for 2 minutes and 10 minutes at room temperature after the ribozyme addition.

The RNasin" and the magnesium chloride were then added and the tubes were placed at

37C for a minimum of 10 minutes. The 30pmole/tl target mixture contained 15 tl of

end-labeled target, 15 tl of 300 pmole/tl target stock and 120 tl of water. A 3 pmole/tl









dilution was needed to set up the lower molar ratios of Rz to target. The necessary

amount of target mixture was added to each tube in a staggered fashion by waiting 15 to

30 seconds between each addition. The time selected to stop each reaction was pre-

determined in a time course experiment and allowed the reaction to go to 10 to 20% of

maximum cleavage. The reactions were stopped by the addition of 20 [tl of RNA stop

buffer and placed on ice.

Table 2-1 Multiple turnover kinetic analysis reaction set-up.
Tubes H20 400 mM Ribozyme 1:10 RNasin 50 mM Target Target solution used
Tris-HCl (0.3 pmol/tl) MgCl2 Molar ratio Rz:target
1,11 14 2 0 1 2 1 3pm/tl
2, 12 10 2 1 1 2 4 3 pm/tl 1:40
3, 13 8 2 1 1 2 6 3 pm/tl 1:60
4, 14 6 2 1 1 2 8 3 pm/tl 1:80
5, 15 13 2 1 1 2 1 30 pm/tl 1:100
6, 16 12 2 1 1 2 2 30 pm/tl 1:200
7, 17 10 2 1 1 2 4 30 pm/tl 1:400
8, 18 8 2 1 1 2 6 30 pm/tl 1:600
9, 19 6 2 1 1 2 8 30 pm/tl 1:800
10,20 4 2 1 1 2 10 30 pm/tl 1:1000

Each sample was electrophoresed on an 8% gel and exposed to a phosphorescent

screen for analysis. In order to analyze the results, a calibration curve was also generated

from a series of target samples hybridized to HybondTM-N+ (Amersham Biosciences)

membrane using a slot blot apparatus. Each sample contained a known amount of end-

labeled target, from 0 to 100 picomoles of target, allowing for the intensity of each band

to be correlated to the concentration of target through a simple linear regression. The

equation of this line was used to calculate the concentration of cleaved target in each of

the duplicate reactions. A saturation curve was generated from plotting the cleaved target

concentration divided by the time of the reaction versus the inputted total target. If

saturation is not obtained, higher concentrations of target should be set up in a new









experiment. A Lineweaver-Burk plot was created by graphing 1/v versus 1/S: v is the

velocity or cleaved target (nM/minute), and S is the total input substrate concentration

(nM). The equation of the line was used to determine Vmax, Km and kcat. Vmax is the

absolute value of 1/Y when X is 0; Km is the absolute value of 1/X when Y is 0; kcat is

Vmax divided by the concentration of ribozyme used in the experiment, 15 nM.

Molecular Cloning Protocols

Molecular cloning protocols used in this study followed manufacturer's

recommendations for each enzyme or component used. Enzymes were from New

England BioLabs (Beverly, MA) unless otherwise indicated. Other general protocols

were adapted from Molecular Cloning: A Laboratory Manual.112

Cloning of Ribozyme Vectors

Ribozyme 1209 and its two null derivatives were cloned into the vector p21-newhp

which is based on pTR-UF 12. The restriction sites at the cloning site are Hind III and Spe

I and the ribozymes were ordered as DNA oligos including the correct restriction site

bases from Sigma Genosys (The Woodlands, TX). The oligos were gel purified, annealed

and ligated into the digested p21-newhp vector. Sure" Cells (Stratagene, La Jolla, CA)

were used for transformations to ensure ITR retention. Clones of each ribozyme were

sequenced and selected based on ITR retention by Sma I digests. The RzI209 plasmid

was renamed CB-RzI209 (Figure 5-6).

The ribozyme 1209 vector used for packaging for animal experiments was modified

from the original CB-RzI209 vector. The PYF 441 enhancer, the HSV thymidine kinase

promoter and the neomycin cassette were removed from the vector by Sal I digestion and

religation because the neomycin cassette contains cryptic splice sites which could









interference with gene expression if integrated into the genome.113 This plasmid was

named CB-RzI209-(-Neo).

Construction of CB-mPAH-F263S

The plasmid vector CB-mPAH was created from p43-hAAT developed by Loiler

and Flotte at the University of Florida. Directed mutagenesis of mPAH was achieved

using synthetic DNA oligonucleotides as PCR primers. The 5' primer contained the

desired base changes to change phenylalanine 263 to a serine and started at a unique

restriction site, Xho I, to allow quick cloning of the mutagenized cassette (Table 2-2).

The PCR reaction was set up using EasyStartTM PCR Mix-in-a-tube (Molecular

BioProducts, San Diego, CA). The 132 base pair PCR product was gel purified and

ligated into pGEM-T (Promega). After bacterial transformations into XL 1-Blue MRF'

cells (Stratagene) and sequencing of the obtained clones, the fragment was cut from

pGEM-T with Xho I and Hind III, gel purified and ligated into pGEM-T-mPAH. The

mutated gene, mPAH-F263S, was moved from pGEM-T to the CB backbone released

from an EcoR I and Not I digest. Bacterial transformations into Sure cells was followed

by sequencing of clones obtained. Large DNA preparations were performed with

Qiagen's Plasmid Giga Kit.

Construction of CB-mPAH-Hd

The same strategy used for the construction of CB-mPAH-F263 S was used to

change the CB-mPAH plasmid to a resistant sequence to the RzI209. PCR mutagenesis

was utilized to introduce silent base changes around the sequence for Isoleucine 209. The

5' primer again contained the necessary base changes, and started at a unique restriction

site, Stu I (Table 2-3). After gel purification of the 322 base pair product, it was ligated













Table 2-2 PCR mutagenesis primers for mPAH-F263S construction.
Sequence 5' Restriction Site 3' Restriction Site
Normal Protein S S R D F L G G L A F R V F H C Xho I
cDNA 5' GTCGTCTCGAGATTTCTTGGGTGGCCTGGCCTTCCGAGTCTTCCACTGC 3' (C TCGAG)
5' Primer 5' GTCGTCTCGAGATTTCCTGGGTGGCCTGGCCTTCCGAGTCTCCCACTGC 3'
F263S Protein S S R D F L G G L A F R V S H C
3' Primer 5' TGGGCAAAGCTTCTATCTGAAAAC 3' Hind III
S___(A AGCTT)
aSequence of the oligos are indicated with designated base and amino acid changes in bold. Only the 5' primer contained changes.













Table 2-3 PCR mutagenesis primers for mPAH-Hd construction.
Sequence 5' Restriction 3' Restriction
Site Site
mPAHcDNA 5' TGAAGGCCTTGTATAAAACACATGCCTGCTACGAGCACAACCACATCTTCCCTCTTC 3' Stu I
5' Primer 5' TGAAGGCCTTGTATAAAACACATGCCTGCTACGAGCACAACCATATTTTTCCTCTTC 3' (AGG CCT)
3' Primer 5' TGGGCAAAGCTTCTATCTGAAAAC 3' Hind III
S___(A AGCTT)
aSequences of the oligos are indicated with designated base changes in bold, and cleavage site underlined. Only the 5' primer contained changes.









into pGEM"-T, moved to pGEM-T-mPAH and the entire mutagenized gene, mPAH-Hd,

cloned into the CB backbone to create CB-mPAH-Hd. The mPAH-Hd cassette was also

cloned into the CB-WPRE backbone released from an EcoR I and Not I digest.

Sequencing of pGEM-T with the PCR insert and the final vector constructs was done,

and the CB-mPAH-Hd and CB-mPAH-Hd-WPRE plasmids were selected based on ITR

retention. XLI Blue MRF' cells were used for all pGEM-T transformations, and Sure"

cells were used for all plasmids containing ITR sequences.

Construction of tRNA-RzI209

The tRNA-RzI209 cassettewas designed in order to conserve necessary folding

properties for the tRNA sequence and to allow the ribozyme's hybridizing arms to reach

their target sequence. From the necessary sequence a multi-step strategy was devised to

construct the 200 base pair cassette. Two restriction sites each about one-third from the

ends of the cassette were selected for cloning the cassette in three sets of oligos. The

plasmid pGEM-3Zf(+) (Promega) was modified with a new elongated multiple cloning

site to allow for the sequential cloning of the tRNA cassette (Table 2-4). The modified

pGEM-3Zf(+) was renamed pGEM-3Zf(+)-MCS2. Each oligo set for the tRNA cassette

was ordered from Sigma Genosys and gel purified prior to annealing and ligation into

pGEM-3Zf(+)-MCS2 (Table 2-5). LyoComp GT116 cells (InvivoGen, San Diego, CA)

were used for each cloning step, and blue white screening was utilized to help select

properly ligated clones. A positive digest screen was used if possible at each cloning step.

Once the full cassette was cloned into pGEM-3Zf(+), it was sequenced prior to cloning

into the CB-mPAH-Hd plasmid. The cassette was introduced after the













Table 2-4 Oligos for tRNA-RzI209 construction.
pGEM-3Zf(+)- Sequencea
MCS2
Restriction Sites KpnI BamHI SalI
EcoRI Aval PstI HindIII
Multiple Cloning GAATTCGAGC TCGGTACCCG GGGATCCTCT AGAGTCGACC TGCAGGCATG CAAGCTT
Site CTTAAGCTCG AGCCATGGGC CCCTAGGAGA TCTCAGCTGG ACGTCCGTAC GTTCGAA
Modified Csp45I BamHI SalI
Restriction Sites EcoRI KpnI Aval EcoRV PstI HindIII
Modified Multiple GAATTCGAGC TCGGTACCTT CGAACCCGGG GATCCTCTAG AGATATCGTC GACCTGCAGG CATGCAAGCT T
Cloning Site CTTAAGCTCG AGCCATGGAA GCTTGGGCCC CTAGGAGATC TCTATAGCAG CTGGACGTCC GTACGTTCGA A
MCS2 sense oligo 5' CTTCGAACCCGGGGATCCTCTAGATATCG3'
MCS2 antisense 5' TCGACGTTATCTAGAGGATCCCCGGGTTCGAAGGTAC3'
oligo
tRNA-RzI209 Sequencea
cassette
Restriction Sites EcoRI Clal Sau96I Csp45I
Sequence 5' GAATTCATCGATACAGTTGGTTTAAGTAGTGTAGTGGTTATCACGTTCGCCTGACACGCGAAAGGTCCCCCGGTTCGAA
FokI EcoRV
ACCGGGCACTACAAAAACCAACAGGGAACTGATGAGCGCTTCGGCGCGGAAATGTGGATGGGATAT
Clal HindIII
CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAT T T T TATCGATAAGC T T 3'
Oligo Set 1 Sense 5 'AATTCATCGATACAGTTGGTTTAAGTAGTGTAGTGGTTATCACGTTCGCCTGACACGCGAAAGGTCCCCGGTT3'
Oligo Set 1 5' CGAACCGGGGACCTTTCGCGTGTCAGGCGAACGTGATAACCACTACACTACTTAAACCAACTGTATCGATG3'
Antisense
Oligo Set 2 Sense 5 'CGAAACCGGGCACTACAAAAACCAACAGGGAACTGATGAGCGCTTCGGCGCGAAATGTGGATGGGAT3 '
Oligo Set 2 5'ATCCCATCCACATTTCGCGCCGAAGCGCTCATCAGTTCCCTGTTGGTTTTTGTAGTGCCCGGTTT3'
Antisense
Oligo Set 3 Sense 5'ATCAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATTTTTATCGATA3'
Oligo Set 3 5 'AGCTTATCGATAAAAATTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTGAT
Antisense 3'
aModifications to MCS2 and check digests are indicated in bold.
bThe tRNA sequence was added in three oligo sets: set 1 is from EcoRI to Csp45I, set 2, Csp45I to EcoRV, and set 3, EcoRV to HindIII.









SV40 polyA sequence at the Cla I site and screened for proper orientation by restriction

digest. This clone was also sequenced.

Cell Culture Protocols

HEK-293 and all 293T cells were cultured in Dubelco's Modified Eagle Media

containing 25 mM glucose, 4 mM L-glutamine, and 0.04 mM phenol red. These were

passage on a weekly basis with 0.25% trypsin and used for transient cell transfections of

various plasmid DNA.

Transient Cell Transfection with CaP04

Transient cell transfections of HEK-293 cells were done in 6-well plates (9.6 cm2

per well) with 80% confluent cells passage 24 hours earlier. The desired DNA amounts

were mixed in water and 300 tl of 2.5 M CaC12 was added to a final volume of 3.0 ml.

This solution was added dropwise to 3.0 ml of 2 X HBSS (Hank's buffered salt solution)

while vortexing lightly. After a 15-minute incubation, it was separated into four wells of

the 6-well plate and added directly to the complete media. Four hours later the media was

changed to fresh complete media. Cells were harvested after 48 to 72 hours by removing

the media, washing with PBS and scraping in 1.0 ml of PBS per well. Of four wells, 3

were collected together in PBS, and one was collected using 1.0 ml of TRIzol Reagent

instead of PBS. The 3.0 ml of cells were centrifuged at 1000 rpm and resuspended in 0.5

ml of homogenization buffer: 1.5 ml 1 M KC1, 8.5 ml H20, and 0.5 tl of 3-

mercaptoethanol. The cells were homogenized in a glass homogenizer and this was rinsed

with 0.5 ml of buffer and added to the homogenate saved into a fresh tube. The lysate

was obtained by centrifugation at 14,000 rpm at 40C.









Transient Transfections using Superfect

293T cells were obtained from Dr Chang's laboratory. His lab constructed a stably

integrated 293T cell line via a lentivirus system containing pTYF-mPAH and named

293T-TYF-mPAH. The lentivirus plasmid was constructed using our lab's mPAH

cassette from CB-mPAH. These cells were used for siRNA transfections using SuperFect

(Qiagen). Cells were passed into a 6-well plate 24 hours prior to transcription at a

concentration 4x105 cells per well. Seventy-five microliters of DMEM was mixed with

3.5 [tg of DNA at a minimum 1 tgg/tl concentration. After vortexing, 7 tl of SuperFect

was added to the center of the DMEM/DNA solution, mixed up and down five times, and

incubated at room temperature for 7 to 12 minutes. The mixture was then added dropwise

to one well of cells containing 0.6 ml fresh complete media. After 6 hours the media was

changed to 2 ml of complete media. Cells were harvested 48 hours after transfection with

1.0 ml TRIzol Reagent and stored at -200C until RNA extractions.

Phenylalanine Hydroxylase Activity Assay

The PAH activity assay is based on the reduction of NADH to NAD in the

recycling pathway of BH4 (Figure 1-1). Cell transfection or tissue samples are set up

twice: one reaction without phenylalanine and one with phenylalanine thus the assay

measures the phenylalanine-linked reduction of NADH at 340 nm. Four samples are run

in one assay with the 8-sample holder of the Genesys 5 UV-Vis spectrophotometer

(Thermo Electron Corporation, Cambridge, UK). The reactions were set up in lml total

volume with 100 tl of cell lysate or 20 tl of tissue homogenate. Each sample included

the following: 0.10 M potassium phosphate buffer, pH 6.8, 0.25 U catalase, 0.10 mU

DHPR, 0.04 mM 6-Methyl-5,6,7,8-tetrahydropterine (6-MPH4), 0.2 mM NADH, and 1

mM Phe if included. Both NADH and 6-MPH4 were added last and the reactions'









decrease in absorbance at 340 nm were recorded every five minutes for 30 minutes. After

calculating the protein concentration of the samples, the Phe-linked reduction of NADH

was calculated as specific activity in units/mg of total protein.

Protein Concentration Assay

The protein concentration assay is a modified short-protocol Lowry assay.

Standards were set up with 10 X BSA (New England BioLabs) ranging from 0 mg to 100

mg of protein. Typically 10 tl of tissue homogenate and 20 tl of cell lysate were diluted

to 100 tl with water for analysis. Six hundred microliters of copper reagent (0.6 mM

Na2CuEDTA, 0.2 M Na2CO3, 0.1 M NaOH) were added to the protein and incubated at

room temperature for 10 minutes. Sixty microliters of a 1:1 dilution of Folin &

Ciocalteu's phenol reagent (Sigma) in water were added and allowed to incubate for 30 to

45 minutes at room temperature. Each reaction and standard is set up in duplicate, and the

entire 760 tl was read at 500 nm. From the average of the duplicate standards, a linear

regression was calculated to get an equation of the line used to determine the protein

concentration of the experimental samples.

Western Blotting

The mouse PAH antibody was raised against a 142 amino acid N-terminal peptide

in rabbit. The antisera was used at a 1:1000 dilution in TBS-T with 5% milk. Tissue

homogenate or cell lysate were electrophoresed on 12% acrylamide Tris-HCl gels with a

discontinuous buffer system containing SDS. The protein was transferred to

nitrocellulose membranes, blocked overnight, and incubated with two primary antibodies:

the mouse PAH antisera and a rabbit polyclonal antibody to GAPDH (Abcam,

Cambridge, UK) as a loading control. The secondary antibody was horseradish

peroxidase-linked and developed against rabbit IgG in donkey (Amersham). Detection of









samples was done with ECLTM Western Blotting Detection Reagents (Amersham), and

the blots were exposed to Kodak XAR film for 0.5 to 4 minutes. Laser densitometry was

used to quantify the intensity of the bands.

Northern Blotting

Tissue samples saved in RNAI/i/,/ (Ambion) were processed with TRIzol"

Reagent. The tissues, approximately 100 mg, were homogenized with an electric tissue

homogenizer in 1.5 ml of TRIzol, and the manufacturer's protocol was followed for RNA

extraction. Samples were resuspended in an appropriate volume of nuclease-free water

and stored at -700C. Levels of ribosomal RNA were adjusted, and electrophoresed on 2.2

M formaldehyde, 1 X Mops electrophoresis buffer and 1% agarose gels. The RNA was

transferred overnight in 10 X SSC by upward capillary transfer to a neutral nylon

membrane, HybondTM-N (Amersham). After UV irradiation, the membrane was stained

briefly with ethidium bromide for RNA visualization. Probe labeling was accomplished

with the RediprimeTM II system (Amersham). Hybridization to the mPAH and human

copper zinc Super Oxide Dismutase (CuZnSOD) cDNA probes was done in Church

buffer overnight at 65C. After washing three times in 0.2 X SSC, the membranes were

exposed to Kodak XAR film at -700C, and using various timed exposures, the levels of

PAH mRNA in the different tissues were compared using laser densitometry.

Recombinant Adeno-Associated Virus Packaging

All packaging of vector DNA was done by the University of Florida Vector Core

Laboratory. The only serotype used for these experiments was rAAV type 2, matching

the type 2 ITR sequences present in our vector plasmids. Large preparations of plasmid

DNA was done in our laboratory using Qiagen's Plasmid Giga Kit. After testing the









DNA preparation by restriction digest and cell transfection for the PAH activity assay,

the entire yield was given to the Vector Core Laboratory. Our vector DNA was then co-

transfected into HEK-293 cells with the pDG plasmid which contains AAV's rep and cap

genes along with the required adenovirus genes.114 After 48 hours a cell pellet was

obtained, freeze-thawed, and the lysate was separated on an iodixonal step-gradient. The

virus was purified on a heparin affinity column, and after concentration the virus was

titered by quantitative competitive PCR and infectious center assay.

Animal Procedures

Growth Rate Analysis

Selected litters were closely followed from birth for 56 days. Pups from the

heterozygote dam to Pahenu2 male matings were tattooed on their paws within the first 6

days after birth in order to specifically follow each pup's growth rate and later sort

according to genotype. India ink was injected with a 36-gauge needle into the paws of the

pups after chilling them briefly on ice. A sequential pattern for each pup was used: no

tattoo, left front, right front, left rear, right rear, left front and left rear, etc. until all

double combinations were exhausted if necessary. Pups were weighed every 3 to 4 days

for 36 days, then every week until day 56. The data was sorted by genotype and then by

sex within each genotype. Weights were averaged, standard deviations were calculated

and all data sets were analyzed by student's t-tests and ANOVA.

Blood Collection

Animals were bled without anesthesia in a rotating tail injector (Braintree

Scientific, Braintree, MA). Blood samples, approximately 90 to 110 tl, were collected

into heparinized capillary tubes: the tails of the mice were cut with veterinary scissors

and the tail was massaged towards the cut to collect the blood. The entire procedure,









including weighing the mouse if necessary takes approximately five to six minutes per

mouse. The content of the capillary tube was transferred into a 200 [tL tube. This was

spun down at 10,000 g and the serum was collected into a second tube. Both blood and

serum samples were stored at -200C until further use. Mice were usually bled in late

afternoon on a weekly basis, but can be bled more often if necessary.

Microplate Serum Phenylalanine Assay

The phenylalanine assay is a modification of the assay developed in 1962 by

McCaman.115 Only 7.5 tl of serum is needed for triplicate readings. Each sample was

TCA precipitated, with 11.2 tl of 0.3 N TCA and chilled on ice for 10 minutes or stored

at -200C until the assay was set up. Using a PCR plate for 96 samples, 64 [tl of cocktail

was dispensed into each well. The cocktail contains 4.40 ml 0.3 M succinate, pH 5.8,

1.76 ml of 30 mM ninhydrin, and 0.880 ml 5 mM L-leucyl-L-alanine. Standards were

prepared from 10 mM phenylalanine in 0.3 N TCA: 0 mM, 0.05 mM, 0.10 mM, 0.25

mM, 0.50 mM, 0.75 mM, 1.0 mM and 1.25 mM. Each standard and sample was run in

triplicate. Four microliters of each standard was added to the appropriate wells. The

precipitated serum samples were spun down at 13,000 rpm or 16,000 g for 10 minutes in

a microcentrifuge. Four microliters of each sample is added to the wells, and the plate

was capped prior to placing in a thermocycler to incubate the samples at 600C for 2

hours.

Two hundred microliters of copper reagent is added to each well of a 96-well 0.5

ml black fluorimeter plate (Nunc, Denmark). The copper reagent is composed of 1.6 g

Na2CO3, 0.065 g potassium sodium tartrate, 0.060 g CuSO4-5H20 each dissolved in about

300 ml H20 and added together to bring up to 1 liter. One hundred microliters was added









to the incubated samples in the PCR plate and then the entire volume was moved into the

fluorimeter plate. The PCR plate was washed with another 100 tl of copper reagent and

added to the fluorimeter plate as well. The plate was read twice on an FLx800

Multidetection Microplate Reader (BioTek, Winooski VT). Both readings were averaged

to calculate the phenylalanine concentration in each sample.

Food Consumption Measurement

Food consumption was calculated as an average per day per gram of mouse. Mice

were kept in standard housing, two, three or four to a cage separated by sex and

genotype. The mice and the food were weighed once a week when the mice were

changed to new cages. The first week, only the food in the new cage was weighed by

moving it to a weigh boat. At the second and subsequent time points, the leftover food

was weighed to calculate the food consumption, and the new food placed with the mice

was weighed as well. This was repeated for two to four weeks, and performed at

consistent times to allow correct per day calculations.

Portal Vein Injections

All mice selected for gene therapy experiments were bled 2 to 3 times prior to the

portal vein injections in order to obtain a baseline serum phenylalanine concentration. At

the time of surgery, all mice were typically between 10 to 14 weeks old. All instruments

and solutions were sterilized by autoclaving prior to surgery. The mice were weighed and

injected subcutaneously with Baytril and Buprenex diluted 1 to 10 separately with

injection-saline solution. General anesthesia was accomplished with isoflurane. After

cleaning the ventral surface, a midline abdominal cut was made and the portal vein was

exposed for injection with or without moving intestines outside of the body cavity. Using

a 29-gauge needle, the injection was made into the portal vein in an approximate volume









of 0.3 cc. After bleeding was stopped with cotton tipped applicators, 0.5 cc to 1 cc of pre-

warmed LRS solution was added into the body cavity to prevent adhesions. The

abdominal muscle wall was sewn with 4.0 silk and the outer skin was stapled closed.

Mice were placed in clean warm cages and monitored for 15 to 30 minutes before being

taken back into the colony. Sterile peanut butter was given to the mice on a piece of

normal chow to monitor their recovery on the next day. Cottage cheese or phenylalanine-

free chocolate can also be given to increase their appetite if necessary. Once a day for the

following week the mice were checked to make sure the wounds were clean and no

staples were lost. The staples were removed a week after surgery at which time the mice

are bled for the first time point.

Phenylalanine Loading

A phenylalanine solution was prepared in 0.9% saline and filtered sterilized

through a sterile syringe and a 0.22 [m filter. The pH of the solution was 7.4. The

concentration of 26.4 mg/ml was determined by spectrophotometric analysis. On the day

of the study, each animal was bled (0 hour), weighed and then injected subcutaneously

with 0.8 mg L-Phe per gram of body weight. The volumes injected thus ranged from 1.0

to 1.5 ml per mouse. Each blood sample taken was approximately 30 [1. Timed blood

samples were obtained at 1.5, 3, 6, 12, and 24 hours. Serum was separated by

centrifugation and the Phe concentrations determined with the normal fluorimetric assay

and repeated three times.

Sacrifice and Tissue Collection

Gene therapy-treated animals were sacrificed with an overdose of sodium

pentobarbital followed by cervical dislocation or brain perfusion with 4%

paraformaldehyde. The following tissues were collected (prior to perfusion): muscle,









kidney, spleen, lung, liver and testes, and quick frozen on dry ice and stored at -700C.

Instruments used for dissection were cleaned between each tissue with Decon* Eliminase*

Decontaminant (East Sussex, UK) to prevent DNA cross-contamination. Approximately

100 mg of liver was saved in 2 ml of RNAl/i,/ (Ambion, Austin, TX) and placed on ice

then moved to -200C. All other tissues were fixed in 10% formalin for general

pathological examination. Liver sections saved in tissue cassettes were sent to the

Pathology Core for paraffin embedding and sectioning. These were processed by

dehydration with graded ethanol solutions, cleared with xylene and embedded in paraffin.

Five-micron sections mounted on glass slides were hydrated in graded alcohol solutions,

stained with hematoxylin and counterstained with eosin. These were dehydrated once

again to place a coverslip on the slide using Permount.

Normal animals were sacrificed by CO2 asphyxiation followed by cervical

dislocation. Necessary tissue samples were removed and saved by quick freezing, in

RNAlater or as tissue homogenates. Approximately 100 mg of tissue was homogenized

in 2 ml homogenization buffer in a glass homogenizer. This was centrifuged at 16,000 g

for 10 minutes at 40C. The supernatant was saved at -700C or used immediately for PAH

activity assays.

RNase Protection Assays

RNA samples were extracted with TRIzol Reagent (Invitrogen) and protocol.

Probes for the RNase Protection Assay (RPA) were designed, PCR amplified from CB-

mPAH and cloned into pGEM-T. The clones selected for transcription reactions were

checked to be in the correct orientation for T7 RNA polymerase transcription, digested

with NotI, and purified by phenol:chloroform extraction. Transcription of the probes was









done using Ambion's MaxiScript In vitro Transcription Kit. Probes were gel purified

and eluted overnight. Fifteen micrograms of RNA from the experimental samples were

set up with CB-mPAH sense probes, antisense probes as negative controls, and Actin

probes as loading controls. Yeast RNA, 2.5 [tg, was included with all probes with or

without RNAse addition as RNase efficiency controls. The assay was done using

Ambion's RPA IIITM Kit and protocol. The samples were run on 5% acrylamide, 8 M

urea, 1 X TBE gels and exposed to film at -700C for various times to detect protected

RNA fragments. Laser densitometry was done to calculate relative levels of protected

RNA.

Southern Blotting

DNA was extracted from tissue samples in tail buffer: 50 mM NaC1, 25 mM

EDTA, 50 mM Tris pH 8.0, with 50 [tl of 10% SDS, and 50 [tl of 10 mg/ml proteinase K.

One hundred milligrams of tissue was incubated in 500 [tl of buffer overnight at 550C, 2

[tl of 10 mg/ml RNase A solution was added in the morning for 1 hour incubation at

550C. Aqueous layers were subsequently extracted with the following: 500 tl phenol for

1 hour at room temperature, 500 [tl phenol:chloroform for 30 minutes at room

temperature, and 500 [tl chloroform for 2 minutes at room temperature. The last aqueous

layer was ethanol precipitated and resuspended in an appropriate volume of TE pH 8.0.

DNA sample quality was checked by incubating at 370C for 1 hour in 1 X NEB

restriction buffer 3 and 1 X BSA, then electrophoresed on 1% agarose gels against

unincubated samples.

Twenty micrograms of DNA was digested overnight. The digested samples were

run on 0.8% agarose 1 X TAE gels at 5 V/cm for 5 hours. DNA was transferred by









downward capillary transfer in 10 X SSPE onto BioRad Zeta-Probe GT membrane. The

membrane was UV crosslinked and baked for 30 minutes at 800C. Church buffer with

added sheared salmon sperm DNA was used for hybridization at 650C. Pre-hybridization

was done for 4 hours. Fifty nanograms of gel purified digested DNA fragments were

labeled with Rediprime II at room temperature. The probes were purified on G-50

columns and half of the probes were used in 10ml of hybridization buffer for a 12x 14cm

membrane. Washes were done at 65C for a total of 3 hours. Membranes were exposed

for 48 hours to Kodak BioMax-MS film in a TransScreen HE cassette at -700C.

Subsequent exposures were done as necessary. Laser densitometry was used to measure

band intensities.

RNA Interference Protocols

Generation of siRNA Cassettes

DNA oligos for the three designed siRNAs were ordered from Sigma-Genosys. The

oligos were gel purified and diluted to 10 [tM based on concentrations obtained from

optical density readings. Ambion's SilencerTM Express siRNA Expression Cassette Kit

was used for generating each cassette containing the human U6 promoter. The provided

GAPDH and negative cassette controls were also made. The PCR reactions were done in

a Mastercycler (Eppendorf) using Platinum" Taq (Invitrogen) according to provided

protocols with 500C for the annealing temperature. Concentrations of the final product

were determined by optical density.

Reverse Transcriptase Reaction and Polymerase Chain Reaction

RNA samples were extracted using TRIzol Reagent and protocol. Five hundred

nanograms of RNA were used for the reverse transcription reaction followed by









polymerase chain reaction (RT-PCR). All reactions were set up in 200 Etl tubes and all

incubation steps were done in the Mastercycler to ensure even incubations. The lid

temperature of the Mastercycler was kept at 1050C throughout the experiment. All RNA

samples were from cell transfections, thus were first treated with RQ1 RNase-Free

DNase (Promega) for 30 minutes at 370C. EDTA was added to the samples and incubated

at 65C for 10 minutes for inactiviation of the DNase. The reverse transcription reaction

was then set up using Promega's AccessQuickTM RT-PCR System. This includes a mix

that contains the necessary components for reverse transcription and PCR reactions. The

reverse transcriptase was added last. A one hour incubation at 480C for reverse

transcription was done followed by 35 cycles of 940C 0.5 minute, 550C 1 minute, 720C 5

minutes, and one last 5 minute incubation at 720C. Half of the reactions were then run on

15% polyacrylamide 1 X TBE gels with an appropriate ladder. The gels were stained

with ethidium bromide for visualization on an Eagle EyeTM Imaging System (Stratagene).

Relative intensites of the bands was calculated using the software UN-SCAN-IT gel

Automated Digitizing System Version 5.1 (Silk Scientific Corporation, Orem, UT).














CHAPTER 3
ANIMAL MODEL ANALYSIS

The most useful animal model for phenylketonuria is the BTBR Pahenu2 mouse. A

single nucleotide mutation in the PAH locus created the missense mutation F263 S.54 This

mutation renders phenylalanine hydroxylase completely inactive. The mice have

"classic" PKU: hyperphenylalaninemia, cognitive deficits, maternal PKU syndrome, and

hypopigmentation (Figure 3-1). Various studies of the mouse model have been done (see

the Animal model section of Chapter 1), but some physiological parameters that we have

observed with our colony have not been previously described. This chapter describes

some general observations about the mouse model, and experiments performed to further

understand this model of classic phenylketonuria.

General Sex Dimorphism in BTBR Pahenu2 Mice

Growth Curve Analysis

A number of papers have been published about the BTBR Pahenu2 model, but none

mentions any differences between the Pahenu2 male and female mice. Early on in our

colony it was observed that the female mice were smaller and more fragile than their

male counterparts. We decided to quantitate this observed difference from birth to

adulthood. Three litters from male -/- to female +/- matings were followed from birth

until post-natal day 72. All pups were tattooed with India Ink in different patterns on

their paws between day 3 and day 6 to follow each pup's weight specifically, since

genotype of the pups cannot be ascertained visually immediately after birth. Coat color

identification between days 15-20 was used to assess genotype in these crosses which









was later confirmed by serum Phe levels obtained at weaning. Five heterozygous males,

seven heterozygous females, five Pahenu2 males and four Pahenu2 females were thus

followed from birth. Weights pre-determined in our inventory were added to the averages

of these mice for the adult average values to obtain more accurate numbers. Three wild

type litters were also followed from birth, but without tattooing of the pups. Eleven wild

type males and seventeen wild type females were thus included in these calculations.

Again values obtained from our inventory were also added into the adult weight averages.

The results in Figure 3-2 show that Pahenu2 mice are smaller than both heterozygote

and wild type mice. Using unpaired t-test analysis (Table 3-1) from day 0 to day 56, wild

type and heterozygous mice do not show any significant trends in the differences in their

growth. While some points show significant differences, they can be explained by litter

sizes: the wild type litters had each three to four more pups than the followed

heterozygous litters thus being somewhat smaller at some of the early time points.

Comparing males and females separately explains the significant p values towards the

end of the 56 days. While males are not significantly different in their growth rates, the

wild type females remain somewhat smaller than the heterozygous females, a lasting

effect of the litter size differences that does not continue once the animals reach

adulthood. Adult females, both wild type and heterozygote, are generally smaller than

their male counterparts as expected.

The Pahenu2 mice compared to heterozygous mice are significantly smaller starting

at day 6 with a p value below 0.05. The p value comes below 0.001 at day 12 until day 49

when it comes back to just below 0.05. Again looking at the males alone, the difference

in growth rates is only significant until day 49 when the PKU males reach weights that













Table 3-1 Un paired t-test analysis of litter weights
Days: 3 6 9 12 15 18 23 28 35 42 49 56
+/+ to +/-a 0.0663 0.0088b 0.0041 0.0001 0.0001 0.0001 0.0000 0.0000 0.0000 0.0004 0.0454 0.0123
M+/+tom+/- 0.1051 0.0361 0.0169 0.0026 0.0035 0.0045 0.0002 0.0000 0.0001 0.0001 0.0214 0.1898
F+/+to f+/- 0.3945 0.0647 0.0651 0.0218 0.0138 0.0080 0.0016 0.0005 0.0000 0.0012 0.0002 0.0000
+/+to -/- 0.0008 0.0000 0.0001 0.3472 0.0002 0.3190 0.0000 0.0002 0.0514 0.0485 0.0429 0.1927
M+/+tom-/- 0.0471 0.0089 0.0038 0.9054 0.0085 0.1963 0.0023 0.0001 0.0184 0.0069 0.0443 0.5190
F+/+to -/- 0.0035 0.0000 0.0247 0.3020 0.0166 0.9470 0.0015 0.0517 0.0019 0.0053 0.0000 0.0017
+/- to -/- 0.5257 0.8105 0.3585 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0028 0.3896 0.0761
M+/-tom-/- 0.5555 0.3175 0.6245 0.0007 0.0105 0.0000 0.0000 0.0000 0.0000 0.0078 0.3432 0.2649
F+/- to f-/- 0.0902 0.0407 0.3600 0.0051 0.0058 0.0000 0.0001 0.0000 0.0000 0.0001 0.0001 0.0001
Intra +/+ 0.0042 0.0081 0.5667 0.5861 0.6491 0.8837 0.1544 0.0042 0.0000 0.0000 0.0000 0.0000
Intra+/- 0.2821 0.1806 0.1547 0.8212 0.3868 0.3618 0.5781 0.0121 0.0020 0.0013 0.0006 0.0067
Intra -/- 0.4163 0.0348 0.1433 0.2402 0.6082 0.9275 0.7959 0.2092 0.0059 0.0013 0.0003 0.0000
aResult of paired analysis is shown for each set of data.
bBlue text indicates p value less than 0.05.
cPink text denotes p value less than 0.001.









cannot be distinguished from heterozygous males, see Figure 3-3 and Table 3-1. This is

different than the growth curves observed between the wild type and heterozygous males

that did not show this delay in weight gain.

The female Pahenu2 are significantly smaller than all the other mice in the model.

When compared to heterozygote females, the p values are below 0.05 from day 12 until

day 28 when the p value goes below 0.001 and remains there throughout their lifetime.

This fragility is further demonstrated by ANOVA analysis of adult weights in Table 3-2

that shows that the p value only remains significant between the three populations when

the Pahenu2 females are included in the calculations.

Table 3-2 Results of ANOVA analysis of adult weights.
Groups DFa Fb PC
+/+, +/-, -/-194 16.61 2.23x10-7
+/+, +/-, male -/-, female -/- 194 52.61 7.82x10-25
+/+, +/-, male -/- 124 0.31 0.73
+/+, +/-, female -/- 144 55.26 1.78x10'18
a Degrees of freedom
b F-value: distance between individual distributions
c P-value

Serum Phenylalanine Levels

In humans, the classic PKU phenotype is normally defined as having serum

phenylalanine levels of 1200 [tmol/L (1.2 mM) or more.27 The mouse model, BTBR

Pahenu2, has similarly elevated Phe levels that classify it as the "classic" phenotype. Table

3-3 shows normal, non-hyperphenylalaninemic, heterozygote Phe values, and male and

female Pahenu2 serum Phe values. Female mice have higher Phe levels than the male

mice, and our lab has observed this phenomenon since the beginning of our colony. Only

one recent report indicated similar findings where male mice had 1.80 mM serum Phe

levels while female mice had 2.89 mM serum Phe levels.70 Shedlovsky had reported an

average of 23.1 mg/dL (1.39 mM) serum Phe in the Pahen2 mice with no mention of









male and female differences.50 The model's Phe values have also been reported as 1.70

mM116, 1.54 mM64, 1.57 mM66, 2.0 mM in males and 2.06 mM in females (deemed not

significant)69, and 1.23 mM68. The varied values can be explained by differences in assay

methods and sensitivity, and perhaps also explain the one report where male and female

mice where not found to have significantly different values.

Table 3-3. Serum phenylalanine values in BTBR Paheu2.
6 weeks 8 weeks Adult average
Heterozygote 0.07 +/- 0.02 0.07 +/- 0.01 0.09
Male -/- 1.50 +/- 0.14 1.36 +/- 0.08 1.13 +/- 0.08
Female -/- 1.82 +/- 0.12 1.58 +/- 0.05 1.54 +/- 0.03
a Values expressed in mM.

The phenylalanine values in the Pahenu2 mice prior to 6 weeks are not significantly

different and are around 2.0 mM. As the mice begin their sexual development, the values

decrease as shown, with the males lowering by half their early levels by adulthood. The

6-week time point or 42 days corresponds to the time when male mice begin to catch up

to heterozygote mice in terms of weight. Perhaps the gain in muscle weight can explain

the 0.4 mM (or 6.7 mg/dL) difference by adulthood in the serum Phe values.

Food Consumption

The food consumption on a per week basis was measured in the mice in order to

find an explanation for the difference in serum Phe values between the male and female

PKU mice. The mice were housed in standard housing in groups of 2 to 4 separated by

sex and genotype. Each mouse was weighed once a week for a total of 2 to 4 weeks.

Average food consumption was calculated on a per-gram of mouse basis as protein intake

is usually reported in the literature. Figure 3-4 shows that for adult mice, 10 weeks or

older, the Pahenu2 (-/-) females eat more than any of the other mice. Heat loss in these

smaller mice may explain the difference in food intake since more energy expenditure









should be required to maintain body temperature. To verify this hypothesis, one cage of

heterozygote females had their food consumption measured starting at 6-weeks of age for

3 consecutive weeks. Their average weight over the 3 weeks was 23.3 g, similar to the

adult Pahenu2 females. These mice also consumed more chow than their adult

counterparts, with an average of 0.25+/-0.03 g of food consumed per day per gram of

mouse.

Lifespan Analysis

Using our entire mouse inventory, a natural lifespan analysis was performed. Only

mice that died of natural causes were included in the calculations. Average lifespan,

incidence of premature death defined as prior to 12 weeks of age, average adult lifespan

(excluding mice that died prior to 12 weeks of age) and median adult lifespan were

calculated from the data. Wild type and heterozygote data were combined by sexes since

the pool samples were smaller than for the PKU mice. The results are displayed in Table

3-4. As an indication of overall relevance, the number of data points for each group is

indicated along with the fraction of total mice of that category in the inventory that it

represents. The data are most likely skewed toward a lower than expected lifespan:

animals that die young will be recorded into the inventory whilst older animals may be

sacrificed prior to the end of their natural lifespan. However, the sample size for the PKU

mice seems large enough to infer that the female mice have a higher incidence of

premature death, 0.15 versus 0.08, and a shorter adult lifespan than the males. 7.1 months

versus 10.5 months. Normal males live longer than normal females, and the data for PKU

males are similar to that of the normal males. Even though the sample size for

heterozygote and wild type mice is much smaller, it seems likely that given a larger

sample size the data would remain the same. This assumption is based on our









observations, general appearance of the mice, their size, Phe levels, and food

consumption presented in the earlier parts of this chapter.

Table 3-4 Lifespan analysis.
Malesa Females -/- Males -/- Females
(+/+ and +/-) (+/+ and +/-)
N 22 46 65 81
(fraction of total (9%) (15%) (40%) (40%)
inventory)
Average lifespan 9.3 7.2 9.8 6.3
(months)
Incidence of 0.09 0.15 0.08 0.15
premature death
Average adult 10.0 8.1 10.5 7.1
lifespan (months)
Median adult 9.5 7.3 10.7 6.6
lifespan (months)
aData is presented as the average in months based on the indicated sample size.

Phenylalanine Hydroxylase in BTBR Paheu2 Mice

It is clear that based on lifespan, serum Phe values, and growth curves that female

Pahenu2 mice are more severely affected by the disease than the male mice. To further

evaluate the mouse model and attempt to understand the male and female dimorphism,

PAH was measured in its various forms in both liver and kidney.

Liver PAH

Message levels

The mouse model contains a missense mutation causing a phenylalanine change to

a serine. It was reported that the Pahenu2 mice have 12% of wild type PAH mRNA

levels.50 Given that the mutation is a single base change buried in the middle of the PAH

transcript, it seemed unlikely that it would cause such a reduction in transcription or

render the mRNA unstable in any way. Mouse liver samples were extracted for RNA and

these were analyzed by Northern blotting for mPAH. While Northern blotting is not the

most sensitive method for RNA quantification, a severe reduction in RNA levels would









be easy to detect and confirm. Figure 3-5 shows a representative blot and the overall

results. A total of eight adult animal samples were analyzed for +/+ and -/- mice, and 7

samples were analyzed for +/- mice. No statistically significant changes were observed

between the three genotypes or between sexes. The message is very abundant and easily

detectable using the full-length cDNA probe as shown in Figure 3-5A.

Protein levels

Message levels were not expected to be different in the PKU mice, and the

Northern blots showed that PAH in the liver was not reduced. We were uncertain what

effects the inactivity of the F263S protein would have on overall PAH protein levels in

the liver. Shedlovsky had showed Pahenu2 levels to be approximately 33% of wild type.50

That evidence combined with normal levels of PAH mRNA indicates that perhaps

mPAH-F263S is less stable than the normal monomer and is directly selected for

degradation after translation, or that the mutant protein does not easily form a tetramer

and is also selectively degraded, or that the mutant inactive tetramers are turned over

quickly due to inactivity. Liver PAH protein amounts were determined by Western

blotting. PAH amounts were found to decrease by approximately 40% between +/+ and

+/- mice, and by approximately 60% between +/+ and -/- mice, as shown in Figure 3-6,

and in agreement with the original published results on Pahenu2 mice.

Activity levels

Phenylalanine hydroxylase activity was measured from freshly extracted liver

protein to further define the liver environment. Since mPAH-F263 S has no catalytic

activity, the Pahenu2 samples do not have any activity as measured by the

spectrophotometric assay. In the heterozygote samples, Kaufman predicted based on a

mathematical model developed with the properties of purified PAH, that a heterozygote









patient might be expected to have 40% of normal activity based on reported ratios of

serum Phe values in obligate heterozygote versus normal patients. Sample biopsies from

these patients have been reported to be around 30% of normal activity.117 We have

calculated an average of 42% activity in heterozygote mice, agreeing with Kaufman's

prediction. Table 3-5 contains the result of the PAH assays with the liver samples.

Table 3-5 PAH activity in liver samples.
+/+ +/- -/-
Activity average" 1.00 0.42 0.02
Standard deviation 0.15 0.10 0.07
N 9 8 13
aResults are given as averages +/- standard deviation relative to wild type activity levels.

Protein levels in heterozygote mice were approximately 62% of wild type, while

activity has been found to be only 42% of wild type. The Pahenu2 mice have 41% of

normal protein amounts with, as expected, 0% normal activity. This suggests that the

mPAH-F263 S monomers are turned over quickly in the liver possibly due to instability or

improper folding. In heterozygotes, with one copy of the mutated gene, the mice show

16% of protein above the assumed 50% normal protein. If the 16% 'extra' protein is

assumed to be the mPAH-F263S protein amount, one could assume that Pahenu2 mice

should only have 32% protein. However, 41% was actually observed. Moreover, the 42%

of normal activity levels consistently observed in the +/- mice suggests that an interaction

between normal and mutant monomer is taking place thus reducing the total potential

activity levels and perhaps the amounts of normal monomers. The antibody is incapable

of distinguishing between normal and mutant monomer, thus we are unable to determine

what relative amounts of each protein is present in the heterozygote mice.









Kidney PAH

Similar experiments were conducted with kidney samples. Results are shown in

Figure 3-7. Unlike liver PAH, protein amounts are equal between each genotype. Activity

levels decrease by 50% from wild type mice to heterozygote mice. The regulation of

turnover and /or the stability of the protein seem to be different between the two organs,

which is consistent with the state of activation observed with purified kidney rat PAH.38

The rat kidney enzyme was not responsive to pre-incubation with phenylalanine unlike

liver PAH, and it was found to have higher in vitro activity with BH4. Since the

promoters are the same, it is presumed that post-translational modifications are different

in each organ leading to the differences observed in stability of the protein.

It is interesting that the liver and the kidney do not seem to regulate PAH in the

same manner, and perhaps the kidney could be a good target for gene therapy.

Colocalization of the cofactor BH4 and the AAV vector would have to be achieved, thus

requiring that the cell types where PAH and BH4 are present in the kidney be susceptible

to rAAV infection. Studies are currently underway to determine the localization of PAH

in the mouse kidney.

Discussion

The mouse model for phenylketonuria, BTBR Pahenu2, was examined in detail for

this study. BTBR Pahenu2 mice have a single base mutation in the PAH gene leading to

the missense mutation F263S in exon 7.54 The mutated enzyme is catalytically inactive,

and the mice have classic PKU: hyperphenylalaninemia, hypopigmentation, cognitive

deficits and maternal PKU syndrome. We found that female BTBR Pahenu2 mice are

significantly smaller than the male Pahenu2 mice and have a shorter lifespan and a higher

incidence of premature death than any of the other mice. Serum phenylalanine levels in









adult female Pahenu2 mice are on average 0.5 mM higher than the males, and the females

were found to eat more on a per gram basis than either Pahenu2 males, heterozygote, or

wild type mice. While the increased food intake might be due to higher energy

expenditure for body temperature stabilization in the smaller female mice, thus leading to

the higher serum Phe levels, the reason for the persistent smaller size in the females is

still unknown.

The sexual dimorphism observed in the animal model is not explained by the

molecular status of PAH in the mice: no differences were observed between males and

females in terms of PAH transcript, protein or activity. This is consistent with the fact

that PAH is a housekeeping gene even though in the mouse, the enhancer has been shown

to be regulated by hormones such as dexamethosone.31 The PAH transcript was not found

to be significantly reduced in all three genotypes of the mouse model as expected for a

missense mutation. Protein levels in the liver were 62% of normal in the heterozygote

mice, and 41% of normal in the Pahenu2 mice. Activity measurements showed that

heterozygote mice have 42% of normal PAH activity in the liver. This amount of activity

as compared to the calculated protein amounts in the heterozygote livers is suggestive of

a dominant-negative interference effect in the mice, since the enzyme is a homotetramer.

The presence of PAH mutant protein in the Pah e2 mice could lead to dominant-negative

interference after gene therapy, and explain the need for high rAAV doses to cure

hyperphenylalaninemia. Our gene therapy results, and the implication of dominant-

negative interaction are discussed in detail in chapters 4, 5 and 7. Since some 60% of

known human PAH mutations are missense mutations expressed in the patients, further

study of this mechanism is needed to develop clinically applicable therapy for humans.






61

+/+ -/- +/-






4






Figure 3-1 BTBR Pah "' mouse model. The PKU mice (-/-) are hypopigmented as
compared to the wild type (+/+) and heterozygote (+/-) mice.







62



50
+ +/+ +/- A-/-
45

40

35

30 -

.. 25--- A ---
-c- 25

20 2

15 A

10 l---




0 20 40 60 80 100 Adult average
Time (days)

Figure 3-2 BTBR mice growth curves. The Pahenu2 (-/-) mice are significantly smaller
than the heterozygote (+/-) and wild type (+/+) mice.







63




* +/- Males N +/- Females A -/- Males -/- Females










I- A
A i

A
1 *-
------


p----------------------------


80 100


Adult average


Time (days)


Figure 3-3 Male and female weight differences. While female Pahenu2 (-/- Females)
remain significantly smaller than all the other mice, the male Pahen2 (-/-
Males) catch up to the heterozygote (+/-) mice around day 40.


50

45

40

35

S30
4-J
-C 25

: 20

15

10

5

0




















* Male +/- U Female +/- Male -/- S Female -/-


0.30


0


E
0
0.25
o

E


o 0.20




L

0
(U




L 0.15




0
S 0.10
0.
E


C
o 0.05

0o
0
0
Ll


0.00 J


Figure 3-4 Average daily food consumption. Female -/- mice eat significantly more on a

per gram basis than the heterozygote or male -/- mice, p<0.05.


*






- - - -- -


I


.. .......................


::.:: ::: ::::::::::::::::::::::
::::::.::::::::.:::::::::::::::::::::: i
... ... ...... .... ,..... ....,
............. ... .........
. .... . . . . ,

.,.............. ..........,
. . .... .. ... .... .. ....,
.......... ... ..-. .... ..

.. . .... . . . .
. ... . . . . .
. .
.. . .

. . .
.. .. .. .
. . . . .
. . . .










x\,x x\' X ,
\e \


Iy -l <- e.


mPAH



CuZnSOD


B



ci)
(U


E

D..
ciL
ci


C'1


+/+ +/- -/-

Figure 3-5 Northern blot of mouse PAH. A. Representative northern blot showing mPAH
signal and loading control CuZnSOD. B. Quantitated results combined by
genotype as calculated by laser densitometry and reported as relative PAH
amounts normalized to CuZnSOD.













X\
mPAH M1


V v


GAPDH 0"


1.2

C
0 1
E
c
C
(D 0.8
0.

0.6

S0.4


0.2


0


+1+ +1- I


Figure 3-6 Western blot of mouse PAH. A. Representative western blot film from male
liver samples. Fifteen micrograms of total protein was run for each sample
and mPAH and loading control GAPDH signals are both indicated. B.
Quantitated results of western blots grouped by genotype. Results are
expressed as relative mPAH amounts normalized to GAPDH as measured by
laser densitometry. Wild type levels were set to one and +/- and -/- levels are
shown as fraction of wild type.







67



1.6
mRNA Protein Activity
1.4


S1.2 -


o 1
0

= 0.8
0

0.6

a) 0.4


0.2


0
+I+ +/-
-0.2

Figure 3-7 Kidney PAH amounts. All results are presented relative to wild type levels set
to 1. mRNA amounts are averages +/- average deviation, N=5, N=6 and N=6
respectively. Protein amounts are averages +/- standard deviation, N=14,
N=12, and N=8 respectively. Activity levels are graphed as averages +/-
standard deviation, N=12, N=10 and N=10 respectively.














CHAPTER 4
DOMINANT-NEGATIVE INTERFERENCE IN PHENYLKETONURIA

Dominant-negative interference is defined as an interaction between two proteins

that leads to negative regulation or inactivation of the normal protein's function.118 This

may occur when one protein is mutated in a way that prevents its normal activity; the

mutated protein combines with a normal protein and leads to impaired function,

inactivation, or degradation. Systems that require dimerization or oligomerization can be

affected by dominant-negative interference by an expressed and relatively stable mutant

subunit. The best-known example of dominant-negative interference in a human disease

is Osteogenesis Imperfecta (OI) where one mutant collagen molecule destabilizes the

extra cellular matrix (ECM) of the bone leading to bone fragility and frequent fractures,

the main clinical features of OI. Dominant-negative effects due to specific mutations in

receptors or hormones can cause many endocrine diseases. For example Fabry disease,

congenital adrenal hypoplasia, Crigler-Najjar syndrome, and pituitary dwarfism have

been found to be dominant-negative disease in some patients. 11

After early results of gene therapy trials in the BTBR Pahenu2 mice, our laboratory

hypothesized that dominant-negative interference could be the reason for the high rAAV

doses needed to cure HPA in male mice. Phenylalanine hydroxylase is a tetrameric

enzyme, and a functional monomer introduced by gene therapy could interact with the

endogenous mutant monomers, reducing total potential activity in the hepatocytes, thus

the need for high doses to correct the hyperphenylalaninemia. This chapter presents the









gathered evidence that dominant-negative interference occurs in this mouse model for

phenylketonuria after gene therapy.

Gene Therapy for Phenylketonuria: Divergent Results by Sex in BTBR Pahenu2

A recombinant Adeno-associated virus vector was constructed in the lab and

contains the mouse PAH cDNA. The gene is expressed from the hCMV enhancer and

Chicken-Pj-Actin hybrid promoter (CB). An SV40 polyA signal follows the mPAH

cDNA, and the plasmid is 6823 bases in total (Figure 4-1 panel A). An alternate vector

contains the Woodchuck hepatitis virus post-transcriptional regulatory element (WPRE)

followed by the Bovine Growth Hormone polyA. This plasmid is 7519 bases (Figure 4-1

panel B). Either vector can be packaged in trans to produce rAAV type 2 virions (Figure

4-1 panels C and D). All virus packaging was done by the University of Florida Vector

Core. Briefly, our vector DNA is co-transfected into HEK-293 cells with the pDG

plasmid which contains AAV's rep and cap genes along with the required Adeno virus

genes.114 After 48 hours a cell pellet is obtained, freeze-thawed, and separated on an

iodixonal step-gradient. The virus is purified on a heparin affinity column, and after

concentration the virus is titered by quantitative competitive PCR and infectious center

assay.

The first gene therapy trial was done with rAAV2-CB-mPAH virus. Both male and

female mice were injected via portal vein. Male mice responded to 1.5x1011 infectious

unit (IU) dose by lowering their serum phenylalanine levels from 1.10 mM to an average

of 0.3 mM for 24 weeks, the end of the experiment (data not shown). Normal

phenylalanine levels would be around 0.10 mM. The dose of CB-mPAH vector was

therapeutic, but not fully effective. Female mice failed to respond to the same virus dose

as the males. The females' lack of response to the gene therapy at such a high doses









prompted the construction of the second vector that includes the WPRE in order to

enhance the effect of the gene therapy. The WPRE has been shown to enhance the

activity of transcripts both in cells and in animals from a variety of virus vectors.119120 In

cell culture transfections, CB-mPAH-WPRE has 2 to 2.5 fold higher activity than CB-

mPAH (data not shown). We repeated our initial study using both newly packaged

rAAV2-CB-mPAH-WPRE and rAAV2-CB-mPAH. We note that continuous

improvements by the University of Florida Vector Core have improved both the yields

and quantitation accuracy of vector preparations.

In this second trial, 3X1010 infectious units of rAAV2-CB-mPAH fully corrected

male BTBR Pahenu2 mice (Figure 4-2). With the CB-mPAH-WPRE vector, males were

fully corrected at about half the CB-mPAH dose, 1.3x1010 infectious units. Female mice

responded to 3x1011 infectious units of rAAV2-CB-mPAH-WPRE by lowering their

serum Phe levels to approximately 0.6 mM. This dose is at least 20 times more than the

dose used in the male mice and still failed to fully correct the females. These results are

comparable to those obtained by Mochizuki et al. in 2004, although different serotypes of

AAV were used.69

Liver PAH: Evidence of Dominant-Negative Interference

No difference between the sexes was observed at the molecular level for PAH.

Nonetheless, the data do point to an interaction between mutant and normal PAH

monomer. While RNA transcription is constant for the housekeeping gene in all three

groups of mice, protein PAH levels vary in the liver (Figure 4-3). In addition, activity

levels are reduced from wild type to heterozygote mice due the presence of the mutant

F263 S monomer. While the overall PAH amount is approximately 62% in heterozygote

mice, the PAH activity detected in these samples is only 42% of wild type. If only the









mutant monomers were degraded in the heterozygotes, one would expect to see 50% of

wild type protein amounts and 50% of wild type activity. Neither the western blots nor

the activity assays can differentiate between normal and mutant monomers, but based on

the less than ideal percentages observed, one can infer that both monomers interact in a

dominant-negative fashion leading to increased turnover and reduced PAH activity. The

heterozygote mice at 42% normal PAH activity have normal serum Phe levels and are

indistinguishable from wild type mice.

In vitro Cell Transfection Studies with Normal and Mutant PAH

To further investigate the possible interaction between normal mPAH and mouse

mutant mPAH-F263S, a new vector was created to express mPAH-F263S. PCR primers,

containing nucleotide changes to create the F263S mutation, were used to amplify a 132

base pair segment of the PAH cDNA (Table 2-2). The amplified region was subcloned

into a pGEM-T plasmid, sequenced, cloned into pGEM-T-mPAH and the full-length

mPAH-F263 S gene was moved back into the rAAV-CB-mPAH plasmid (Figure 4-4).

The extra cloning steps were done to avoid subcloning a small PCR product into the large

rAAV plasmid that must be transformed into Sure cells. The larger pieces used in the last

ligation allow for better ligation efficiency and are easier to transform into the low-

efficiency Sure cells.

HEK-293 cells are routinely used to test activity of DNA vector preparations, and

were chosen to study the possible interactions between normal and mutant monomers of

PAH. Calcium phosphate transient transfections were performed with various ratios of

vector DNA, a cell lysate obtained after 48 to 72 hours post-transfection, and used in the

spectrophotometric PAH assay. All co-transfection experiments performed together were

normalized in terms of total DNA transfected with the p21-newhp plasmid which









contains the same CB promoter as the mPAH plasmids. pTR-UF 11 was also transfected

to visually monitor transfection efficiency by examining GFP expression in the cells prior

to harvest.

Both CB-mPAH and CB-mPAH-F263 S were tested for activity or protein

production with increased DNA transfected in the cells, without normalization between

transfections. This was done in part to determine what amount of CB-mPAH DNA

transfected would result in activity levels that could increase and decrease in a detectable

range between each transfection. Both activity and protein expression increased in an

almost linear fashion when increased amounts of DNA were transfected into the HEK-

293 cells (Figure 4-5). The series of mPAH-F263S transfections was analyzed by western

blotting (Figure 4-5 panel A). The protein amounts increased from 5 to 15 [tg and show

that the F263S monomer is stable in this transient expression system. The mPAH

transfections were analyzed by activity assay (Figure 4-5 panel B). The amount of

activity from 5 [tg per well to 10 [tg per well almost tripled while the 15 [tg transfections

were approximately 1.5 times more active than the 10 [tg transfections as expected. The

3-fold increase in activity from 5 [tg to 10 [tg is not completely unexpected since at 10 [tg

more cells could have been transfected with multiple copies of CB-mPAH thus producing

a larger number of stable tetramers and increasing the activity by more than 2-fold. From

10 [tg to 15 [tg, the cells are more evenly transfected and the increase in activity follows

the increase in DNA.

Mixed CB-mPAH and CB-mPAH-F263 S transfections were then performed to

analyze the extent of the interaction between the two proteins in this system. For one half

of the transfections, mPAH was held constant and mPAH-F263 S was increased relative









to the normal vector. For the second half, mPAH-F263 S was held constant and increased

amounts of mPAH were co-transfected in the cells. The results are presented relative to

an mPAH only transfection (with total DNA normalized with p21-newhp to the highest

amount of DNA transfected in the experiment) (Figure 4-6). Averages of a minimum of 3

transfections with standard deviations are shown for all data sets. The results indicate that

when both mutant and wild type monomers are present in the same cell PAH activity is

reduced. At a one to one ratio, the PAH activity is reduced by half and this remains so

even with increased amounts of null mPAH-F263 S. Increased mPAH-F263 S was

expected to have a stronger effect on PAH activity; the lack of further decrease in activity

may be explained by both the transient assay and details of subunit association. Turnover

of the protein may not be as efficient in the saturated cells, and accumulation of

functional tetramers would prevent further decrease in activity. Increased mPAH versus a

constant DNA amount of mPAH-F263 S led to less than a linear increase in activity and

further shows that the mutant and normal mPAH monomers interact in a dominant-

negative fashion.

One set of samples from the mixed transfections was analyzed by native

polyacrylamide gel electrophoresis and western blotting (Figure 4-7). In native gel

electrophoresis no SDS is included in running buffers or in the sample buffers. The cell

lysate samples shown in the figure, mPAH:mPAH-F263S and 2mPAH:mPAH-F263 S

were run next to a cell lysate from a transfection with CB-mPAH-WPRE, and a lysate

from CB-mPAH-A-exl3-WPRE. The later construct has exon 13 deleted from the cDNA,

the region coding for the tetramerization loop, thus preventing the protein from forming

tetramers. None of the mixed transfections showed a change in oligomerization pattern as









compared to the mPAH-WPRE transfection, and all three have a different pattern than the

mPAH-A-exl3-WPRE sample which indicates the position of dimers, and presumably

monomers, on the gel. The decreases in activity from the mixed transfections are due to

the interaction of the different monomers while forming dimers and tetramers, and not to

increased turnover or severe changes in oligomerization patterns.

Discussion

Male Pahenu2 mice were cured of hyperphenylalaninemia with 3x1010 IU (3x1012

vg) of rAAV2-CB-mPAH. While this is consistent with recently published PKU studies,

the minimum effective dose is high when compared to other rAAV uses.69'70 Portal vein

delivery of 4x109 IU of CB-hAAT to female C57 B1/J6 mice resulted in sustained

therapeutic levels of human al-antitrypsin and in a hemophilia B mouse model, an

rAAV2 vector carrying human Factor IX was therapeutic at 6.3x1010 vector

genomes.121,122 Four to eight-fold more rAAV2 was needed to cure HPA in male mice as

compared to both of these studies even though CB-hAAT is the source of vector

sequences used to construct CB-mPAH. We hypothesized that for the tetrameric PAH

enzyme, dominant-negative interference between endogenous and rAAV-derived protein

was diminishing the effectiveness of the gene therapy, and this possibility was confirmed

when we found that Pahenu2 mice have 42% of normal liver PAH amounts. The difference

between PAH protein levels and PAH activity in the heterozygote mice further suggests

that an interaction between the two monomers affects PAH activity.

To confirm the hypothesis, we performed mixed vector cell transfection

experiments. If one models the possible interactions of the monomers based on the

assumption that the effect between the monomers occurs at the dimer level, the results of









the mixed transfection experiments agree with the statistical predictions. For example, at

a 1:1 ratio of CB-mPAH and CB-mPAH-F263 S /4 of dimers would be fully wild type, /2

would be mixed, and /4 would be mutant. If the assumption is made that a mixed dimer

might have between zero and full activity, the observation of 62% of normal activity

suggests that mixed dimers are active at about 75% of wild type dimer activity. At the 1:2

transfection ratio, only 11% of dimers are wild type, and 44% are mixed. This predicts

PAH activity should be about 45% of full activity, close to the observed 52%. At the

higher ratio of 1:3, the results fell outside of the predicted PAH activity range (probably

due to saturation of the cell culture system or turnover of missense protein), but

importantly, were still lower than normal. The cell culture model data confirmed our

hypothesis that interaction between normal and mutated monomers leads to reduced PAH

activity thus increasing the rAAV doses needed to reduce HPA in male mice.

Female mice have serum Phe levels 1.5 times higher than males. Other studies have

suggested rAAV2 DNA is retained at about 7-fold higher levels in males than in females,

although this may depend on vector dose.123 Based on these numbers, ten to fourteen-fold

more vector may be needed to cure Pahenu2 females. However, the females were not

corrected at a dose 20-fold higher than in the males, suggesting that additional

mechanisms may cause the observed difference in the therapy response. Multiple studies

are in progress to attempt to elucidate the male and female dimorphism in the response to

gene therapy. While this will be key towards curing maternal PKU syndrome in the mice,

and potentially humans, this study concentrated on reducing overall needed vector doses

to cure HPA by targeting the dominant-negative interference.


















STR hCMV ie enhancer



Chicken beta actin promoter

CB-mPAH
6823 bp
Rabbit beta globbin
/ EcoRI
2000

l' ", ot mPAH
IN\ Xho mPAH
HimdIII HI


ITR
0 TR hCMV ie enhancer



Ampialcn resistance Chicken beta actin promoter


CB-mPAH-WPRE
SCB-mPAH'WPRE Rabbit beta globbin exon
75190 a




ITR mPAH
Bovine growth hormone poly A n4000 Oai Not


Chicken beta Actin promoter
hCMV ie enhancer
ITR
i i.


Chicken beta actin promoter
Rabbit beta globbin


ScoRI
gcne


'AH WPRE


Bovine growth hormone polyA


:o ITR
,:- -: :- -:


rAAV-CB-mPAH-WPRE
4665 bp


Figure 4-1 rAAV vector maps. A and B show the full plasmid maps, C and D show the

packaged DNA. A and C: CB-mPAH. B and D: CB-mPAH-WPRE.


Ampicllin resistance


Rabbit beta Globbin
mPAH


SV40pA
Not l


rAAV-CB-mPAH
3969 bp


hCMV ie enhancer
ITR

1 1- .







77



2.10

1.80

-15 0 Male -/- control
S1.50

E o 3.00E10 mPAH
1.20
Qo o A 1.30E10 mPAH-WPRE
E 0.90
SS Female 3.00E11 mPAH-
V)0.60 -WPRE
0.60
Female -/- control

0.30

0.00-
0 5 10 15 20 25
Time (weeks)

Figure 4-2 Serum phenylalanine levels after gene therapy wirh rAAV2. Male mice
treated with 3.00x1010 IU CB-mPAH had normal phenylalanine levels 2
weeks after treatment. Similar results were obtained with 1.30xl100 IU CB-
mPAH-WPRE. Female mice responded mildly to a 3.00x101 IU CB-mPAH-
WPRE.











*mRNA U Protein


2

1.75

1.5

1.25

1

0.75

0.5

0.25

0

-0.25


Figure 4-3 PAH amounts in mouse liver. All results are shown relative to wild type
amounts. mRNA averages +/- standard error, N=8, N=7, N=8. Protein
averages +/- standard deviation, N=13, N=12, N=12 respectively. Activity
averages +/- standard deviation, N=9, N=8, and N=13.


Activity








79




mPAH

.: (788)
StuI (622) HindIII (927)
I I- I


PCR amplification
Gel purification
Ligation to pGEM-T


pGEM-T-F263S PCR

Digest with XhoI and HindIII
Gel purification
Ligation into pGEM-T-mPAH


Amptillin resistance


F263S PCR HindII (2) NotI (630)








T7 promoter
lac operon mulaple doing rega


Stu (4240)
EcoR (3620) i Xhol(4406)
Eco* 362~i:..:..:...


MF263S
'.


Ampdtchn resistance
















Ampicillin resistance


ac oeron


Digest with EcoRI and NotI
Gel purification
Ligation into CB-mPAH


CB-mPAH-F263S
6823 bp


Chicken beta action promoter



S Rabbit beta globbin
EcoRI
2000


n Xhol H-
indlil mPAH-F2635


Figure 4-4 Cloning strategy for construction of CB-mPAH-F263S. PCR mutagenesis was
used to create the necessary base changes to make mPAH-F263S. The PCR
product after gel purification was subcloned into pGEM-T-mPAH. The full
gene mPAH-F263S was cloned into the CB vector after a correct sequence
was obtained.


EcoRI (2)


NotI (1544)
I


mPAH


SV40 pA












5ug lOug 15ug


mPAH-F263S


5


4


I3
I







1


0


mPAH 2 mPAH 3 mPAH


Figure 4-5 Test transfections with CB-mPAH and CB-mPAH-F263S. A. CB-mPAH-
F263 S serial transfections analyzed by Western blotting show increased PAH
signal when total DNA transfected is increased. B. CB-mPAH serial
transfections analyzed by activity assay, relative increases of transfected DNA
amounts are indicated. Although not quite linear, the activity does increase as
more mPAH was transfected.







81



4.00

3.50

3.00

2.50

2.00

au 1.50






0.00



PAH activity 2.45 1.75 1.00 0.62 0.52 0.60 -0.01
Standard deviation 0.95 0.19 0.21 0.12 0.15 0.09

Figure 4-6 Mixed transient transfection results. Cotransfections of CB-mPAH and CB-
mPAH-F263 S were performed and the activity assay results are shown. Ratios
in the first line of the data table are molar ratios of CB-mPAH:CB-mPAH-
F263S.

















1 2 3 4


* '
"*c,


.1: C~


..Oligomer

.qTetramer


Dimer...

Monomer.j,


Figure 4-7 Western blot of native PAGE with mixed transfection samples. Lane 1: CB-
mPAH-delta-exl3-WPRE. Lane 2: CB-mPAH-WPRE. Lane 3: CB-mPAH:
CB-mPAH-F263S. Lane 4: 2CB-mPAH: CB-mPAH-F263S.













CHAPTER 5
DESIGNING A HAMMERHEAD RIBOZYME AGAINST PHENYALANINE
HYDROXYLASE

In order to prevent the dominant-negative interference between normal and mutated

PAH subunits, as described in Chapter 4, two hammerhead ribozymes were designed to

target endogenous mPAH. This chapter presents the in vitro tests performed with these

ribozymes, the cloning of a recombinant AAV vector for the expression of the selected

ribozyme in vivo, and cell culture experiments using the ribozyme to demonstrate

dominant-negative interference.

Hammerhead Ribozyme Design for mPAH

The mouse PAH cDNA was searched for suitable 'NUX' sites (N is any nucleotide,

and X is anything but guanosine). Since GUC and AUC have been found to be more

active cleavage sites, only those two combinations were looked for in the cDNA.103 For

each possible cleavage site, the surrounding 12-nucleotide target and the necessary

ribozyme were checked for optimal folding using MFOLD.124,125 Only target sites

without self-binding and ribozymes with free hybridizing arms in their best

conformations were further checked with 100 or so bases of the target region for folding.

Two sites with cleavage site AUC, the codon for isoleucine, were selected corresponding

to positions 194 and 1209 (Figure 5-1). Both sequences for the 12-nucleotide targets and

full-length ribozymes, 33 nucleotides, were ordered as RNA oligos from Dharmacon.

In Vitro Ribozyme Tests

The first test for ribozyme activity is a time course analysis to measure the cleavage

rate of the ribozyme against its target. This is done with excess target and with a high









concentration of magnesium, 20mM, to allow for maximal ribozyme folding and

stability. Based on protocols developed by Fritz et al. (2002), each target was end-labeled

with y-[32P]-ATP.111 Ribozyme and target were mixed in a 10:1 target to ribozyme ratio

for time course analyses and samples were taken at various time points. The samples

were electrophoresed on 8 M urea, 8% acrylamide, 1 X TBE sequencing gels and

analyzed with a PhosphorImager (Molecular Dynamics, Sunnyvale CA). One of the two

ribozymes, RzI209, was found to be very active, with 70% of the target cleaved by 4

minutes (Figure 5-2). Further experiments were done with that particular ribozyme only,

since ribozyme 194 was not as active. A second time course of cleavage reactions was

performed with RzI209 at 5 mM MgCl2 in order to simulate a more physiological

magnesium concentration and with the same 10:1 ratio of target to ribozyme. The

ribozyme was still very active: fifty percent of the target was cleaved by 4 minutes

(Figure 5-3).

Kinetic properties of the ribozyme were determined in vitro at 5 mM MgCl2. Ten

duplicate reactions were set up with increasing target to ribozyme ratios from 0:1 to

1000:1. Each reaction was allowed to go for 1 minute, where on the previous time course

it was found that 10 to 20% of the target was cleaved. A saturation curve was generated

after running the samples on a gel and analyzing with the PhosphorImager (Figure 5-4A).

The kinetic parameters of the ribozyme were determined from the equation of the line on

the Lineweaver-Burke plot (Figure 5-4 B). The ribozyme could catalyze about 41

reactions per minute (Table 5-1).

A last in vitro experiment was meant to test RzI209's ability to cleave the full-

length target as opposed to the short target that had been ordered from Dharmacon. Using









the pGEM-T-mPAH construct, an RNA, corresponding to the full-length mRNA, was

transcribed with T7 polymerase. The transcribed product was incubated at 20 mM MgC12

with excess ribozyme at 37C. Samples taken at one and two hours were run on a 5%

PAGE 8 M Urea gel, and both cleavage products, 842 and 660 bases, were detected on

the gel (Figure 5-5). Ribozyme 1209 is capable of cleaving full-length PAH mRNA in an

in vitro reaction.

Table 5-1 Ribozyme 1209 kinetic properties.
Vmax 625.00 nM/min
K, 12104.38 nM
kcat 41.67 min'1

Cloning RzI209 into p21-nhp and Designing a Ribozyme-Resistant mPAH

The chosen rAAV vector for expressing the ribozyme, p21-newhp is based on pTR-

UF 12. It contains the hybrid CMV enhancer and chicken (3-actin promoter that is closely

related to the hybrid promoter contained in the CB-mPAH plasmids. The hCMV

enhancer in p21-newhp is 381 nucleotides long of which 361 nucleotides from the 3' end

are identical to the 3' end of the hCMV enhancer on CB-mPAH which is 535 nucleotides

in total. The p21-newhp plasmid is designed to express the ribozyme from the CB

promoter and follows the hammerhead ribozyme with a hybrid hairpin ribozyme to

evenly cleave the 3' ends of the transcripts to allow the ribozyme maximum ability to

reach its target mRNA.125 The ribozyme is followed by an SV40 polyA, 187 nucleotides

that is identical to the 5' end of the SV40 polyA in CB-mPAH which is 222 nucleotides

long. The ribozyme vector also includes a neomycin cassette driven by the PYF 441

enhancer and an HSV thymidine kinase promoter followed by a bovine growth hormone

polyA (BGHpA) signal that is identical to the BGHpA on the CB-mPAH-WPRE

plasmid, both 208 nucleotides long.









DNA oligonucleotides corresponding to ribozyme 1209 sense and antisense

sequences with added restriction sites Spe I and Hind III were ordered from Sigma

Genosys. The oligos were purified on a polyacrylamide gel, and subsequently annealed

and ligated into the p21-newhp rAAV vector, renamed CB-RzI209 (Figure 5-6). Sure

Cells (Stratagene) were used for bacterial transformations. All clones were sequenced at

the Sequencing Core and screened for ITR retention.

Since the vector-derived mRNA would also be cleaved by the ribozyme, a

ribozyme-resistant construct of mouse PAH was designed by changing the cleaving and

hybridization sequences targeted by the ribozyme. Directed mutagenesis of mPAH was

achieved using synthetic DNA oligonucleotides as PCR primers (Table 2-3). The 5'

primer contained the desired base changes, which were silent mutations (Figure 5-7). A

322 base pair PCR product was gel purified and ligated into pGEM-T (Promega). After

bacterial transformations into XL 1-Blue MRF' cells (Stratagene) and sequencing of the

obtained clones, the fragment was cut from pGEM-T, moved to pGEM-T-mPAH

plasmid. The resistant mPAH gene was named mPAH-Hd. The new cDNA was cloned

into the CB backbone and CB-WPRE backbone. Bacterial transformations into Sure cells

was followed by sequencing of clones obtained. Large DNA preparations were performed

with Qiagen's Plasmid Giga Kit.

Ribozyme 1209 Is Active In Vivo

The mouse PAH and the ribozyme constructs utilize the CMV immediate early

enhancer, the chicken-p-actin promoter (with the first intron) and the rabbit P3-globin

exon as the splice site acceptor. HEK-293 cells were transiently transfected with the

purified vector DNA constructs using calcium phosphate. The promoter strengths being









equal, the plasmids are thus transfected in relative amounts using micrograms of DNA as

a measure. This can be translated into molar ratios since the plasmids are less than one

hundred eighty base pair different in size. Various combinations of the vectors were used

while keeping the total DNA amount in each assay constant. After 48-72 hours

approximately 3 X 106 cells were harvested, homogenized and a clear extract was

obtained by centrifugation. The extracts are used immediately in the spectrophotometric

PAH activity assay and a Lowry protein concentration assay.

Ribozyme 1209 was first checked for expression in HEK 293 cells. Ten micrograms

of CB-RzI209 was transfected into the cells and harvested with TRIzol for RNA

extraction. Using the 5' sequencing primer for p21-newhp at position 1856 and the

antisense oligonucleotide of RzI209, a reverse transcription reaction was performed

followed by PCR amplification with Promega's AccessQuickTM RT-PCR kit. The

ribozyme was easily detected in the sample (Figure 5-8), thus it is expressed and

relatively stable in the cells. The samples were electrophoresed on a 2% agarose 1 X TAE

gel, and the ribozyme product, while clearly visible, was not well separated from primer

to primer amplification products so subsequent RT-PCR reaction samples were thus

electrophorsed on 15% polyacrylamide 1X TBE gels.

The ribozyme was then tested for its ability to cleave mPAH and reduce the total

potential activity in the transfections. Combinations of CB-mPAH and CB-RzI209 were

transfected into cells and assayed for activity as compared to a no ribozyme transfection

(normalized for the maximum amount of DNA transfected in the experimental set with

p21-newhp). Ratios of 1 to 4, 1 to 5 and 1 to 10 were tested. Phenylalanine hydroxylase

activity was reduced to 70% at 1:4, 40% at 1:5 and 20% at 1:10 (Figure 5-9). These ratios