<%BANNER%>

Studies in Synthetic Methodology: Routes to Sulfur- and Nitrogen-Containing Compounds

Permanent Link: http://ufdc.ufl.edu/UFE0011359/00001

Material Information

Title: Studies in Synthetic Methodology: Routes to Sulfur- and Nitrogen-Containing Compounds
Physical Description: Mixed Material
Copyright Date: 2008

Record Information

Source Institution: University of Florida
Holding Location: University of Florida
Rights Management: All rights reserved by the source institution and holding location.
System ID: UFE0011359:00001

Permanent Link: http://ufdc.ufl.edu/UFE0011359/00001

Material Information

Title: Studies in Synthetic Methodology: Routes to Sulfur- and Nitrogen-Containing Compounds
Physical Description: Mixed Material
Copyright Date: 2008

Record Information

Source Institution: University of Florida
Holding Location: University of Florida
Rights Management: All rights reserved by the source institution and holding location.
System ID: UFE0011359:00001


This item has the following downloads:


Full Text
xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID E20101124_AAAAEB INGEST_TIME 2010-11-25T01:34:53Z PACKAGE UFE0011359_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES
FILE SIZE 17064 DFID F20101124_AACYGT ORIGIN DEPOSITOR PATH witek_r_Page_030.QC.jpg GLOBAL false PRESERVATION BIT MESSAGE_DIGEST ALGORITHM MD5
f44ca62cfa9ddfe6468d5ca4d15a876a
SHA-1
f61021833bde93a4b68ddb1bf6deb35ae4d99d95
62164 F20101124_AACXZV witek_r_Page_097.jpg
0597a0363e8d40926b426b033a59ff70
9f994401d7e8508562f742453dfe8c71351e5a20
808630 F20101124_AACYBV witek_r_Page_078.jp2
50766ac18c1054c75ba89123bd45da8e
bb70826b5dcc5cd39bdfc99819159eae18068217
67142 F20101124_AACXSA witek_r_Page_035.jpg
538a576ebb0901249a1bd4799d155674
b2c57dade9e7ef52df91f903c9f59e0a254c2f5d
6196 F20101124_AACXUY witek_r_Page_099thm.jpg
2beb219c331d93f30899360f3ac4b808
c50b4ae63dfb98c6522b42a0cf3ddce377ac71c4
5066 F20101124_AACYGU witek_r_Page_030thm.jpg
173edbb6b86cad3445a15495221e3297
e20a3621ef1d1e2c755c01a0686f99fdff87e2b0
70957 F20101124_AACXZW witek_r_Page_098.jpg
40983f37aa166538f29e5e41f7684943
800bbe6fc2cab6d2d30b12dcb08412967b8abb4c
762197 F20101124_AACYBW witek_r_Page_079.jp2
8f9c13ea7724a1acc0a9dab84bbbcf8c
28b853aa3e7723a8973d6801d54bc1254f79a215
55180 F20101124_AACXSB witek_r_Page_028.jpg
49902091f14ab4f1fe3202130b82bd25
99867f7379f892b805a7053b8c794bfd3927b4cf
19629 F20101124_AACXUZ witek_r_Page_066.QC.jpg
7af75280ec085bbd6d2c0fe6241a9850
0b1c557a8bf98368f9dc6461b1f61852c0317a96
19265 F20101124_AACYGV witek_r_Page_031.QC.jpg
c65ee2069b6e3e8bdc75973d0ca43285
ce84c3a80ae78325fc94c886fd3b3db8e35243f4
65613 F20101124_AACXZX witek_r_Page_100.jpg
5f8a79a31f5a4755af22f34b1c942c81
9050db382b6c26f18c33b419ef5878eaae674946
70236 F20101124_AACYBX witek_r_Page_081.jp2
a21314901b21a54b6c5bae54bcb3ed46
77cb68c9a696301116414fe580fe0358fb20374e
65538 F20101124_AACXSC witek_r_Page_084.jpg
c29cfb86161fca64f7ba849f49b42955
b5ae2674b2eb3e6344df2e214db5dadcc3c7f34d
82630 F20101124_AACXXA witek_r_Page_013.jp2
155b93132bbc59ee5b7fb30865d8ab05
706686cf07b4cc7024b7f0911a64d2b0e685faa6
64101 F20101124_AACXZY witek_r_Page_101.jpg
a5dd18694338df4791e4ce087113a186
f47b1149c984f9ca3c2b4cc297c9a8b51c8582e4
694350 F20101124_AACYBY witek_r_Page_082.jp2
2f5da20327ef3763433dd9edb252cdd5
24ea2f913e58894fbf9ae85de6c38fae9962dae0
5546 F20101124_AACYGW witek_r_Page_031thm.jpg
8d926975fe7cfacc8e77a4dc19d0817e
d3a7ebee3371725ce0b3927755bc7c26a984adb8
1053954 F20101124_AACXXB witek_r_Page_087.tif
66bad3140d3f8f8f78eb3e267db6dda0
f33cce314396e574b996a81f3b696713cb18ccf6
15973 F20101124_AACXZZ witek_r_Page_102.jpg
026461ddb716098188ea55cbceedea1a
d4b31fa9c0b7713a24ce56a333fc8044bd971508
84088 F20101124_AACYBZ witek_r_Page_083.jp2
dcc6db6bfbb36c473f38b3e93c169d80
0a61c3f1755c9c861ea97e81a528a97ef984bc9c
68237 F20101124_AACXSD witek_r_Page_086.jpg
90855070bb8db382032781b340b4042a
11ea4b7e147286576b4c735fc89be0d4c689351b
23865 F20101124_AACYGX witek_r_Page_033.QC.jpg
7d4ab8ada59834da61d07bd9f4d4b627
6073e0d86491d25dc5d792b10a50cd49a2391505
75862 F20101124_AACXXC witek_r_Page_048.jp2
4e6c9ca8841b265268932d364c293f27
9b28311385fb49d9d3981e22bbf00049066146ad
15010 F20101124_AACXSE witek_r_Page_026.QC.jpg
72bc1119dfeb048aeebbf249756124f0
6c742e0b1df2d176c594cf76d7670e730fe25ffb
6686 F20101124_AACYGY witek_r_Page_034thm.jpg
8fba72b9812693c56d66fd95927d4984
674b77f5bb746371e3561d6ddcb48d65ae24f1dd
52848 F20101124_AACXXD witek_r_Page_019.jpg
ca6f09a36c28e5f49c5a160c2bd4669c
37a7d105672c4c94499c8046976fb9fe5e1b94e7
66445 F20101124_AACXSF witek_r_Page_056.jpg
4005ad0b3cdfce27e63608e15ad1e37d
21ec9dfcb0b2fb092a5cbf4e71a31d19d4de568f
F20101124_AACYEA witek_r_Page_066.tif
fa7139e87b0b7cf87a6208aff61236d1
6bd11579476ce38cc9d967da1c31d5513a1493c5
22662 F20101124_AACYGZ witek_r_Page_035.QC.jpg
545e155fc4f0e41f98e09d65e8dff159
484834b12f1459851edac5f4233a1b8a801d7df7
F20101124_AACXXE witek_r_Page_037.tif
70cac02a3e28c20619d28d676bba0b55
3e7981df9c227b68be1bba09232bccef123b2d44
89770 F20101124_AACXSG witek_r_Page_075.jp2
93d89c5ea59692f36f66b43b081ac296
dea7836ebeb14f10232beb7987da8cbe19ba2ef2
F20101124_AACYEB witek_r_Page_067.tif
b6252ea14cfe5e6d1d6f7e2b9c552d98
de08a743c5b8bb8c13c886fa6e8a2477bc9dbcda
F20101124_AACXXF witek_r_Page_033.tif
e125cec26d0f9436080993381e42fc8f
f115ce5ddaf436792f3a41ff0861c95c2fb83b33
22750 F20101124_AACXSH witek_r_Page_071.QC.jpg
376637bf65069cfad248e0c02d3ca313
c65f12effb32516e311fb32795bf1f29d8e9a4c9
F20101124_AACYEC witek_r_Page_069.tif
b10d0d862b4b119c0e1e54619c8f2f54
80fdcfeb6a3246e04ae2252a9339ee26fe90b811
17219 F20101124_AACYJA witek_r_Page_076.QC.jpg
f35afebe4d292aed6b94ec139a169a67
7ca10d478937d8a8948f3ceb5ce4010361296348
23022 F20101124_AACXXG witek_r_Page_060.QC.jpg
30c6dc24c030d71d204d8579cca2268f
ad38b04e6f86bc545e0d5efd12937321abfac195
F20101124_AACXSI witek_r_Page_047.tif
9903d43f5e94febea570404939756a68
3c63a78fdd42f0e5215fcf5a34ab0c69bb8b2f31
F20101124_AACYED witek_r_Page_071.tif
dc1ff9fda1b7e805fc6454ac21b720f9
57344edb88aa263b186ec502487e921c521cef3a
5263 F20101124_AACYJB witek_r_Page_076thm.jpg
062ba64cd1124b133ebded6f04b26d43
0875452c6969a6e086c9a12ef4c7580b0a300c20
6369 F20101124_AACXXH witek_r_Page_093thm.jpg
83ef90f0da3e24ff3eba08f779aee472
1ce09030406e1357d5c3d0d26d5181faa36fb25c
F20101124_AACXSJ witek_r_Page_095.tif
30565b791186d41a85603da89af59230
109294e1ddfee741a3bacf0325696f3098b3c9bb
F20101124_AACYEE witek_r_Page_072.tif
e23798d6f85d72bf12694a5642edd09f
dbd504a21c621ae7f010dab1e0f63808995a9dd6
15833 F20101124_AACYJC witek_r_Page_077.QC.jpg
a085ab3bac52b39cfab2627b5030ba55
5ede54fc64a586b8026f5d8a0b4d222c98932dd2
6376 F20101124_AACXSK witek_r_Page_054thm.jpg
1111b80bf5f92f883bd752343af0d85c
71222ea4060918724aaa48ca6a572f2bec651de1
F20101124_AACYEF witek_r_Page_073.tif
d72d00a9b96817435096b74eef4bb179
04245cdf532921152ce4d09c37a2a8ce34085c72
5046 F20101124_AACYJD witek_r_Page_077thm.jpg
e835de3a7e69c8c25711542a21c27e25
980458cfdb31b7e3967c5d8ea2f4dcfbae69bd1d
79248 F20101124_AACXXI witek_r_Page_015.jp2
bb91a1cc6678a518a40a9a1d6a29ed62
5196f714dea39865f786ffac5eb6b20f25c312e4
95313 F20101124_AACXSL witek_r_Page_100.jp2
f9fbdc39c9a915b9f4ef5342ee7ed529
2bd5ca83f70973822b60dd1479cf4fb8225aef14
F20101124_AACYEG witek_r_Page_074.tif
77ea7f8df3c5bf402ef9d40b662f4212
aeded5a3e4824d1c5e9a719f3931a60b3df0dd2e
16881 F20101124_AACYJE witek_r_Page_078.QC.jpg
745c2495dbbcc4eea60106101d3ea9c8
5bf841336d188d16cba155864e668790893240b7
52072 F20101124_AACXXJ witek_r_Page_082.jpg
0a460fb5f723dd56c969a12452065889
dccc431f6df0fdb82a62f60ebb87420f688ab916
F20101124_AACXSM witek_r_Page_062.tif
150d587b9fa03f2efe859100f6735658
781fd1ef8c215131398f2eec7730b9e863b14cb0
F20101124_AACYEH witek_r_Page_075.tif
ad390355f9776fee996c5888abd9eff8
8e09f533f5ba800934adaa40bbbaf969efae311a
4978 F20101124_AACYJF witek_r_Page_078thm.jpg
dd32bba14116f56a1b4865d4690f372a
1fd8f1aa234744c48b0eb83ec3848d198df35ecb
2903 F20101124_AACXXK witek_r_Page_007thm.jpg
6ee65111c1f36ce8723fc69e2996cc63
35ff6729ed22d41106a71010eea6fa6db9320f9a
22915 F20101124_AACXSN witek_r_Page_057.QC.jpg
a4e6f0b1cb44b6a17a9aabfda04dfe6b
1970113dacc95fc413d505968a6220b9dd7634ff
F20101124_AACYEI witek_r_Page_076.tif
61063ac6f2ac4a7ac5b7db1263fb0eeb
e4c71101f812edbe0196da1f14dc713df258925f
16532 F20101124_AACYJG witek_r_Page_080.QC.jpg
4e73d6f0e3b913e38d14aca27c1af7d2
19ffbae33b78a98fc8e855e23cbea4580a39ad5a
63908 F20101124_AACXSO witek_r_Page_099.jpg
de998dee835c3c06e17f7073a83054da
33c4a3d0a0c7300ce756c39fe44c93573767e8f3
25271604 F20101124_AACYEJ witek_r_Page_079.tif
22f485358f4a80c44096567460d356c8
2c7d581fcd440d475d855fcf9af1be1f6653108a
76740 F20101124_AACXXL UFE0011359_00001.mets FULL
bc59977b93d6b42f4f3f911af616e8cc
34d7d300f71c61e7b930bc03905befe5666e61fa
16539 F20101124_AACYJH witek_r_Page_081.QC.jpg
987c596f7ef925f9b047f2b4fc3c0849
24e6084ae557c7dc8d4f12440acb4b781dee132e
87146 F20101124_AACXSP witek_r_Page_025.jp2
c0b3c6005a11c46ba9e5ce288fa688b0
9d4064109b4d26a849418f3fe415557066a0ed76
F20101124_AACYEK witek_r_Page_080.tif
dee25374c5dcb85061f9354bb89e7194
32df4b4f526a3d7841ed784b40272c5af938ab7c
5053 F20101124_AACYJI witek_r_Page_081thm.jpg
070e72842464e9f3758bf5eb10ffca6f
b770863294326240c45f05fb40f338a2bbaf3444
60536 F20101124_AACXSQ witek_r_Page_038.jpg
e2d38642143ff1825a6a14bf41c5a745
3397ae005702264a41f5410c288c48076cf2c9dd
F20101124_AACYEL witek_r_Page_082.tif
7fd10d7b133ed5d44057a78ec325801a
0423954e719e646690ac742e1094fa5c32f898b4
16943 F20101124_AACYJJ witek_r_Page_082.QC.jpg
20b1d4207195628cd7abf2f52544382c
2485dde17f0c297a2c144fe8636f85d03da2c458
55901 F20101124_AACXSR witek_r_Page_061.jp2
1ff827cbc6b13e5d28e4fb144507b898
efb411cf162ba9526abbbfdbdaac635775887c98
F20101124_AACYEM witek_r_Page_084.tif
072630c5c0b03146f0e76d4201cca554
2a91b8d8cbaa7bf506118c45a6a43135cb4742e3
19480 F20101124_AACXXO witek_r_Page_003.jpg
acc36852218cef259e5f5459a2aba038
4b31a317f9deaf13063c4ae52c0e10955be5bcb9
5177 F20101124_AACYJK witek_r_Page_082thm.jpg
0fdce7216c1fd4571f1aff3b97587caa
a9a6ce81d676251cb353a33d349cb5ef5c9283d5
22134 F20101124_AACXSS witek_r_Page_056.QC.jpg
a9aea70cce5d4c0a0efa7f041b3c5ba4
640c2b2f4aa809571cfa9bf218ffa10efa764fb2
F20101124_AACYEN witek_r_Page_088.tif
51fb5381f759d8d230292ca44a115bc5
59c1cc8b3f899a56095c46ae33158d05d7688aac
30271 F20101124_AACXXP witek_r_Page_007.jpg
ec7ed7649760407e71f9a08bb7086681
cfefc18093c148977528c515e0f7e0421f3088ff
18896 F20101124_AACYJL witek_r_Page_083.QC.jpg
5e64ab3ef8e36fda86bbe2fa6cd0189a
abe47e32ee3eda788256f9e67fe06d3361eee09b
14355 F20101124_AACXST witek_r_Page_065.QC.jpg
0a41e783226410d72d12759512393d3e
26c9a63dd3b45ce2904d797a45c482af84d364e6
F20101124_AACYEO witek_r_Page_089.tif
8fb3d4db906410c5bf8ba32650dab076
44e96998fde35efd18e089523ac161fae31287e2
55649 F20101124_AACXXQ witek_r_Page_008.jpg
f672b836d70e9466bb99d3e52436c870
efc8d9b77c33f54effbd56d2645a83fa8a0928ee
21404 F20101124_AACYJM witek_r_Page_084.QC.jpg
7af8b6970c16955b590df6b7ba4b9026
5111201673bb5a47d91d9dcdb1c7d6623561e677
71247 F20101124_AACXSU witek_r_Page_018.jp2
396f90551d388f9621c921b2408fac99
3d5f81189af4f1c3f63f0b21c13226d56408b451
F20101124_AACYEP witek_r_Page_092.tif
67287028368a4fbb204a10720dcd08f6
eb866bd2be494609404675f21da5b68106376261
45725 F20101124_AACXXR witek_r_Page_010.jpg
fec2d0e3b1141cea343e5ce28d5d2e53
6edfe507835df1fc3305e55af0f6272fb6c4f64e
6267 F20101124_AACYJN witek_r_Page_084thm.jpg
e9d2e39428c51eac02dac318c2fc7d75
4fe3fdbb5083dcd277bee139cd43bfd8c4f71bc6
1051967 F20101124_AACXSV witek_r_Page_005.jp2
dd26d3bc1806220857f60dedc6ba2b57
1fda7c296d695df24f166c901a560576a534a862
F20101124_AACYEQ witek_r_Page_093.tif
50c90155b4e7e313f8dcb66d5630383f
bb25d5f70671f1711d6fbd01c842fd9cc5571011
32037 F20101124_AACXXS witek_r_Page_014.jpg
8acc8b133df724c54f24e0e466fedb11
4f4c9ce99450688e44137aa4d44dc74199acf49d
22341 F20101124_AACYJO witek_r_Page_085.QC.jpg
aefc17a9348aa8512177bb3d931b481a
d2fd54c7b10caa132d751c34c0f429d910f72dbd
20527 F20101124_AACXSW witek_r_Page_097.QC.jpg
f96f38f7ddabdefcc9811660c04ba102
bb59f13ea1bec756bce1796fffe951d49e1b9d1b
F20101124_AACYER witek_r_Page_094.tif
1c58df10c5dbfc50da4816f08023e5ca
11b7156ee5dea7a45d6458c9bbf19553633b6422
57957 F20101124_AACXXT witek_r_Page_016.jpg
5456340d9eb1fa419b9ff8c523169557
5ad6b6146f6f5e147c9cf9a2714d82d5324db4fa
6334 F20101124_AACYJP witek_r_Page_085thm.jpg
494b953aad22a30f4e1d69b2997e432d
8ef7ab34652f8f8246c750509dd6a24b952b34f9
19319 F20101124_AACXSX witek_r_Page_016.QC.jpg
ef46240c083c1ce70109f9df7d0b9e0e
68f675dd33f072db712f98e5aac7471f2a7fbc68
F20101124_AACYES witek_r_Page_099.tif
163bfefbe058f356b8d3a5a4637fec87
0c4de5cf680a3bf324043cded63dcd08e4f13663
43995 F20101124_AACXXU witek_r_Page_017.jpg
d07a04a487cca1c0e1a448a086457e0a
325d5396dd9f37c7353132c3356bb544ff7ecea1
22970 F20101124_AACYJQ witek_r_Page_086.QC.jpg
6ae7dfb34cd80f97a6f59b198c1d9079
44f5599e3094880c3c6a3f9094bc7b9941048548
56710 F20101124_AACXSY witek_r_Page_083.jpg
3eeb2664c9ee9028cb2828b7d9596a9c
a368e771ee99c245751c390072af4352b4114e85
F20101124_AACYET witek_r_Page_100.tif
37f38cc082ef0464b4257fee53c70483
c03613567cc182aa7d4003f615d6554d8805c9c6
49094 F20101124_AACXXV witek_r_Page_020.jpg
969b0c43de7fafad369eb86853df4fdb
703bbb41b66d57c04e4df2d2897794779382f967
6515 F20101124_AACYJR witek_r_Page_086thm.jpg
28fdbd741679ee9be579f013c36624f3
3da4862103bd22d7e001a338365290760c2604cd
16152 F20101124_AACXSZ witek_r_Page_021.QC.jpg
964611e5fd5d6b45820b184c031a315f
cdca1fb135e804dac82a09c44fa92c942d53a73a
50410 F20101124_AACXXW witek_r_Page_022.jpg
e4b1d7a48b4aaa0eb1818c2a7efce7a4
0a589c4765c80c13452c4a05225583da60c8eb53
6195 F20101124_AACYJS witek_r_Page_087thm.jpg
992dbc851b36fe1fbc9c18146ef65972
c8a44d4482326b299de047f86bb2564246b354d9
F20101124_AACYEU witek_r_Page_102.tif
4838be81ef527309f8fa6d2be9b8ff3f
7daba15d17ee2357a2ef5327b6a4ef40cddd7b9c
38173 F20101124_AACXXX witek_r_Page_023.jpg
7db6b2df4502ebffea2976d21d2924c5
197fd99584033f1e9c30adb1d79bd69d0c3a4546
5955 F20101124_AACYJT witek_r_Page_088thm.jpg
cc1a560ac881fb26e079edad95088cd8
379a62901f403e3fee666ff911f8478ce48b8a07
1560351 F20101124_AACYEV witek_r.pdf
6f60e09364a42f50fd6fcdb55c866f13
42b1743ccad4508fc8d901313f634a0942bb2297
96407 F20101124_AACXVA witek_r_Page_099.jp2
4ed2274d6350eb25550049d67fec9843
a12be692895b7b6a7b173b703efdc43461cc36a6
40444 F20101124_AACXXY witek_r_Page_024.jpg
277fa86afb346963f57111384d1f56fb
ed3f0cbc61e96c492eb723af5ec5bd20949f82b2
22545 F20101124_AACYJU witek_r_Page_089.QC.jpg
1fba9cedd2f3c8cec57e34426bfa21d3
62b5034807f4450f79aecde3af59394100cc1a6c
5685 F20101124_AACYEW witek_r_Page_050thm.jpg
da639b454eae5ecf0ccf5575c502b3cd
458dfda2f4b5a86c5db7360ec7c33060b4296e61
F20101124_AACXVB witek_r_Page_030.tif
57500bda1450b9a205d52296fc911c66
f56758716b89cde4ffd7c9af8efc347294ebddc9
58628 F20101124_AACXXZ witek_r_Page_025.jpg
779ce8347745fc6af1f95f413ecf9336
85d0c8aab274ed945512da4132004c39f2c92fc7
6224 F20101124_AACYJV witek_r_Page_089thm.jpg
deebecaf43eed2004b23d57370310bf1
27a87dcf5d87debc54de7108fda87d1ac8e8cc70
19825 F20101124_AACYEX witek_r_Page_032.QC.jpg
25d496ee57c5f37ae130c7746c3e50a4
a10b5bd660bd0db6fea366fa83f3f4018df3abeb
21943 F20101124_AACXVC witek_r_Page_087.QC.jpg
5fc0e8e4ea0ff91cf6d98b60ab09c071
0207e7ae400169d858633e81e9d462ac0134b5b3
20046 F20101124_AACYJW witek_r_Page_090.QC.jpg
5b4a50a82439cc4e2e5cd26e021d75c6
32b68b039991fb90f09cb4bd6ecf6cb5918ac361
95831 F20101124_AACYCA witek_r_Page_084.jp2
4d52dbc0e0109b0beba8187792f6f6aa
fb68bbd81c01a18e46eac51a02bbadaed7b5c330
20107 F20101124_AACYEY witek_r_Page_075.QC.jpg
d255d2be0d2f8a6f91f6d8537eb6b49f
a2ad15d37e2bb6efc317d89495da0ab3d9952bf8
4584 F20101124_AACXVD witek_r_Page_026thm.jpg
fd3a75927dad0540c6b8077eb8aabada
a8ea3cd8bb06b9461abc4387bf94926f0d670e74
5479 F20101124_AACYJX witek_r_Page_090thm.jpg
f9a56e63e56b520ae4ceb026455fb3bb
0a4d7c2b3e565be339bbfdf0d647083f86c36771
101194 F20101124_AACYCB witek_r_Page_086.jp2
fc22494ed97d755d8a7e89cddb647dae
ff744d45a5d54f4ad58a393db826ea50347fbeb9
21763 F20101124_AACYEZ witek_r_Page_054.QC.jpg
884fba65aaf70fd4be786fd4780f0751
8c3c5a6a5e529a1233722de94028ab5f2a50e365
81797 F20101124_AACXVE witek_r_Page_092.jp2
1918816245f80dc7994ad2d07fabccfa
998097098d87fb1268da8b9be4cf7ad6b6fb55ba
13309 F20101124_AACYJY witek_r_Page_091.QC.jpg
11b6bcc71f6fffdf48da1894adac3344
439f6a38ac830ee993538525738c8c78eb268919
95041 F20101124_AACYCC witek_r_Page_087.jp2
5c0d54a2a59b1d3f414dff026a5cce0b
9662995d85f0d1fa85931ada844ae50559c7f942
744730 F20101124_AACXVF witek_r_Page_080.jp2
0a4a485d9180b142fd5698dd064f1170
8f24ff8ab546705e0b63cf8bb09b2b7a52cc7c52
6335 F20101124_AACYHA witek_r_Page_035thm.jpg
094e46143c1afe5ddc0387e1d33997f2
f44487974a2fab1cdf18c3fc87b8287dd744b06b
92124 F20101124_AACYCD witek_r_Page_088.jp2
c4bde86c5f1b029102062170dd15f093
47a05e53b30962ca8841c8ec8583d28df105d31b
3768 F20101124_AACYJZ witek_r_Page_091thm.jpg
9e4e13cd48eaee2a686c8f83d3ae3f81
76263bf4572c4a6d102c550d5a108e7838eb3c8f
23245 F20101124_AACYHB witek_r_Page_036.QC.jpg
29856775c29365295f4f20e417326c26
056122f81bcab6f020be122c5b198e7f45c494ad
93309 F20101124_AACYCE witek_r_Page_090.jp2
94e30557a3a1c90b0e82447892ee4200
77e2bf74ddee78862820a67089e6894c3c674376
F20101124_AACXVG witek_r_Page_034.tif
636c4cf2253c06e43479323ed2dbfc48
cdd978062328a624f8be6d28a66d06a9d1c86e2f
6570 F20101124_AACYHC witek_r_Page_036thm.jpg
c5869bf8480dbe510cb3f43fddb23a07
95fde5422d5effdd2685edc9c8a938b7177ea661
101561 F20101124_AACYCF witek_r_Page_098.jp2
17042c5a5b936cc41fd5503418c4b26e
1d354cc9dde63545450e8e55651c3726eb1c25eb
79182 F20101124_AACXVH witek_r_Page_028.jp2
0a5c39b83810c46cdbbd486f3616a30e
4f0989bcb98be1af62f86a67897f697997656c80
7188 F20101124_AACYHD witek_r_Page_037.QC.jpg
61906b667eabcd36a81286323313c938
e09ad6c52591df6e9d61c20203fc81143d3690fa
92649 F20101124_AACYCG witek_r_Page_101.jp2
3ad2e7fd88faa70a628588a9901cda40
9cf789b2d201fd432a95c8453824885ca0aaf764
F20101124_AACXVI witek_r_Page_077.tif
3d715f1c3944423be925d1bf5c9df317
817dffdb1f071af95546b54366f0d8bcc5d16cba
19327 F20101124_AACYHE witek_r_Page_038.QC.jpg
78757c22ccc6c3cb4da0448ddfd8028c
e19e31ff8dfe38c53c04518cdbd0565200c5f787
15158 F20101124_AACYCH witek_r_Page_102.jp2
682b056a063d94ab4366e601deb40659
9a40cbb200ae74b0e3aa7f343c0938097b5848c9
F20101124_AACXVJ witek_r_Page_083thm.jpg
bd0ca924dfb38eea4ad18716ffae08e4
233bb53011e6166e1511bd7b292bfaef0d8c3ad3
5598 F20101124_AACYHF witek_r_Page_038thm.jpg
ff2f41862d78b6f86eeda88e2f70a3d0
a37420251d5fc166185dfcffc4f86e746f46dbff
65214 F20101124_AACYCI witek_r_Page_103.jp2
5182bfbf35787d81a6e0989d5a9c46e1
8266eb2af54a4f182487505229e7477d51886749
56746 F20101124_AACXVK witek_r_Page_013.jpg
61f36e8b11e9333d37e57c8406596995
c737d841f1fd9e38f59f635457217c88ded068e8
17513 F20101124_AACYHG witek_r_Page_039.QC.jpg
7b013d2738b08c54ce32db71aa3ee76a
a70a5419986c4911a96fbd4db2e3ae5b1e0766d6
F20101124_AACYCJ witek_r_Page_001.tif
574e8947cf1f94b677b795c063c7668c
1afff7ac2048583682cfc355d7473002440ad054
93504 F20101124_AACXVL witek_r_Page_093.jp2
4b6f0c60f345cf6e4d75184a1f4d2016
1ffbf4bab774e073823be0822330b87f70034840
19082 F20101124_AACYHH witek_r_Page_041.QC.jpg
70fa252a9be86713ae558bce2823bbf1
5603cb27f20e7319c5c2a1409de69bd9dc3799ee
F20101124_AACYCK witek_r_Page_002.tif
dbaee42884fd86a90fc35c3b7be83aa0
5928b0974e3eddf22d443509f0d4054a39426dac
F20101124_AACXVM witek_r_Page_054.tif
4738701881504f1cf7865e21c44a1606
01b68a9eb8ec4b9b012ac32d9388a70d0491b781
5768 F20101124_AACYHI witek_r_Page_041thm.jpg
0902cdb6ea0ebb2c7b2913aac41deda9
9c2105f46eb5dcfdd7d7c803d4f63fafe400dc77
F20101124_AACYCL witek_r_Page_003.tif
3094455b34a700923ae59295c5a85bdc
a1dc6a3bbf42c6d59ddf7c9d700c7289d2cf18c7
49374 F20101124_AACXVN witek_r_Page_018.jpg
dbb961b547aca8b1de7a0e6a333e6295
47b2da7d0a80b42982f17a6e2d5aa8f2fa9982ee
21727 F20101124_AACYHJ witek_r_Page_042.QC.jpg
9747b89ecd5b0ef739c5bcd4f48f4afa
96fde0938d6d11966be93c0286c40b9443495931
F20101124_AACYCM witek_r_Page_004.tif
4e105402b9c4a33c03e387d34319e3c5
44a2e7d82d87d379e0367a31c00e8cfae85231e5
68940 F20101124_AACXVO witek_r_Page_085.jpg
ab3ab6e29296bad76992b6839dd0cd32
4854fdc883ba7e875f7613c820b2d53cb21e54cf
6266 F20101124_AACYHK witek_r_Page_042thm.jpg
348fc232c91a8eef7d363e37d521a3bc
fe7562fa1b05c41c0e68ba5cfea3b73656344171
F20101124_AACYCN witek_r_Page_005.tif
8844167698ac9ade782fed7df9492055
65182202e3c40d15f33b7e1f4dfad8eabd7417b1
F20101124_AACXVP witek_r_Page_086.tif
b463f59710d996805468cd04e4f29c76
4d2c8fe178d391a2469171fc99362b1061e0f1c0
6557 F20101124_AACYHL witek_r_Page_043thm.jpg
8f7fa3396f5c937615ef7f2024124741
78c8c55cd1b7e96a798d7050d8f4aab720db2e5f
F20101124_AACYCO witek_r_Page_006.tif
5322ed3736a36f109ee5f9a3b7a7439d
ab4aa3a1e7a7aa8c378493f0048e8c0e1bc9e2c4
F20101124_AACXVQ witek_r_Page_097.tif
d9582d48f8a8263df4e2ea8ac1f2dc58
11acaea63be4c29666d50f9e0da6b4e824257ac5
14494 F20101124_AACYHM witek_r_Page_044.QC.jpg
773945a6a96a1cee67a7de34007a1994
804af8236f3df082ce05858c2dd8a8ad4d64bb1a
93079 F20101124_AACXVR witek_r_Page_062.jp2
3e2fd6ecee4bb89e5d75fce948ade891
7bca9e4629c0f98e9929a888237fcc6ff15e024e
15645 F20101124_AACXQU witek_r_Page_004.QC.jpg
a3a7c5ad1d5e79503cb6ac3237d26c9d
5d2db75adf3c235ab93a8377af11f77c637bed81
F20101124_AACYCP witek_r_Page_007.tif
362992972d01cc6d02775663f44e72b9
b89f7cbc5a8dfea398560e4cc03c24ffc16f4349
4509 F20101124_AACYHN witek_r_Page_044thm.jpg
c883bcf86979ca0e22be07d0acf8e246
d8abc4c4d3012536d70d355ca0da5d0bee4e377b
F20101124_AACXVS witek_r_Page_091.tif
7f191aa7d475f14a280bbd34a638e56d
41740cb4f6a03f93a500bef21c83c5d55b4c4f63
63047 F20101124_AACXQV witek_r_Page_073.jp2
333d2ef229a80e90d5116441d556cd2e
da1a1ca0a5d1ef4462a9d3c594618c808a07207a
F20101124_AACYCQ witek_r_Page_008.tif
c9ffff89a08a7676c3d2579091cad0c8
07f0d94660d6e045ef8906bd79944193d39fb971
21029 F20101124_AACYHO witek_r_Page_045.QC.jpg
cdff0ff171697d70cebf32e7780482d7
e46b259a7e898a2a8c8d3a987c450481948c0c59
5363 F20101124_AACXVT witek_r_Page_029thm.jpg
0f7e7733b61a17083b714aa87aa1269e
66b224bd102650b4d30b603714e69aa31f885b50
F20101124_AACXQW witek_r_Page_027thm.jpg
6cb58b3928ccd737ed0bd1020f0a7079
b3a5f45ee44b91cdaf6080bddef39b708bea8030
F20101124_AACYCR witek_r_Page_009.tif
c92a64048482812a4d020d3a590dba39
e144f3c3d9337a36ea2f3982d012774497082d18
5902 F20101124_AACYHP witek_r_Page_045thm.jpg
7b8b06532e19eed10ca672b08c11e02d
45a7180b8423fd546c2fdbfbf23493a622e10396
46650 F20101124_AACXVU witek_r_Page_103.jpg
5cbf53d3782318a4e4b804dbc423c73c
f865b3b12758e295ba93ea2db9012d15e1c60378
81012 F20101124_AACXQX witek_r_Page_011.jp2
8464efdb188828e3500cb34bc6abdc35
39141fd8e1f3d6af0d7dbceedccd42413cc561e6
5957 F20101124_AACYHQ witek_r_Page_046thm.jpg
c4c47c7af491518852fff6b45c69164b
b6de204216394fa1b13a2a22b2935cb6a600fbbe
F20101124_AACXVV witek_r_Page_090.tif
d1a993a0a6ea393e339dee1bebfc7312
b2b57072a050c33dfcd67e816ed0e5449bcf9a7a
40496 F20101124_AACXQY witek_r_Page_091.jpg
5f8cb00650f9582e7c6d31cb88134b27
490b37c2c5b09df912f86b7fa1dbebce7dbf2f6b
F20101124_AACYCS witek_r_Page_010.tif
905242051641313be1644ad028827c3f
a9ca46b8a4c9381c0b54f0a64c91048f6ad9f6a1
16359 F20101124_AACYHR witek_r_Page_047.QC.jpg
55cff8b74f44c70c75da2663237ad04f
be3a8e32c493bc7f429fd681cab336325dbf4188
55359 F20101124_AACXVW witek_r_Page_092.jpg
b1f8a44143801de60a375480987f1d14
cb78f869f5878f1b07677c7b6cce73fe1b51366c
100883 F20101124_AACXQZ witek_r_Page_069.jp2
caf130540352aa4d5cb27dd564d289f1
bfb3b201239e2ddf657d2f0b37f0d17c30e83891
F20101124_AACYCT witek_r_Page_013.tif
a396250ad53e88ffdec3675a89654612
b510c91183d6d1b3117f8fd8afdffb6364bac5f6
15934 F20101124_AACYHS witek_r_Page_049.QC.jpg
e3eedbf97d82f2bb8cd017bfd8eded48
19230da4ce9fb10db595155578637d2606205e28
1395 F20101124_AACXVX witek_r_Page_002thm.jpg
2f277e8ff0197c02b0b398e37768ff90
f477e15f68454e0d8873c8235287a34cd142892e
F20101124_AACYCU witek_r_Page_014.tif
90d5cdfcd9a3fa7629b45bb119f06fbf
28a754c697d332b817e5bce07e4b7f57c5a1dcd5
4887 F20101124_AACYHT witek_r_Page_049thm.jpg
73d6fe0e5f28734fdee13360e2bfaef2
29610d147a48ce8a00cebc60e56667c709c3cb81
92443 F20101124_AACXVY witek_r_Page_094.jp2
1eba1e7e1e591260bf1b85ba765e482f
0a8b693b544a3487c83692e42b1233a2ddc36819
F20101124_AACYCV witek_r_Page_016.tif
af50d70fe1260a12980f0b3aad5d1350
b0aa16c9ea414c2948c63ea18e95c1785b92f6d0
22466 F20101124_AACXTA witek_r_Page_070.QC.jpg
872ce2ab8de347396a31a0f5cd578912
3927524b79ad240828f1a9ce311eb8da6a29682c
19467 F20101124_AACYHU witek_r_Page_050.QC.jpg
8f94d7a0c91c189b7139bbd294ad41b6
f5c144fdcb47fe23a12e2b6138770b6fd88336c9
64600 F20101124_AACXVZ witek_r_Page_093.jpg
403e5de3dcf1929d0a444e274eaa7696
ef3c2bfb01b8b57548d4c7e330ff8562bb81919a
F20101124_AACYCW witek_r_Page_017.tif
6561692900e349fb25242b09a1134b37
ac514664141f05095d37e9842cb51e84d75fe251
56522 F20101124_AACXTB witek_r_Page_029.jpg
faec6774b38eab05e0b16190542d117f
53973c9dd0c653294631def0ee05464b78147c4e
23407 F20101124_AACYHV witek_r_Page_051.QC.jpg
5ae6b65435eeca1462a2ae3e794aba27
9d10fb36a1c791f6175c7669b2d752c913d4e7ed
F20101124_AACYCX witek_r_Page_018.tif
e047c777f460980b3e981ab03e5251da
020be4e2ff61dd27b528cc6de4932bd5dac9c21c
64261 F20101124_AACXTC witek_r_Page_040.jpg
e68e761b99e91b362cc8d80c9263c763
cc5df644f7b741ff7934e02541c4bc542fcb2b81
20183 F20101124_AACYHW witek_r_Page_052.QC.jpg
70000626971a13ffd586df22326b3eba
4b2ab9d518c9a919bad6fb173bc632462cc24391
47418 F20101124_AACXYA witek_r_Page_026.jpg
debb692130f28f948048f2528371d133
8432ada2289ab28d2669432c5e374a113ba65cf6
24780 F20101124_AACYAA witek_r_Page_001.jp2
f95fcbf2d3865298d5811d4f5e8f9e5a
f0edd01142f0694da7ddeb93cfc943be6b88bd60
F20101124_AACYCY witek_r_Page_019.tif
05b0feeeff110c1e79cdc06f23be5468
d34c09b794d2bed49a34f8c0f997bc83e9ce083e
F20101124_AACXTD witek_r_Page_098.tif
55104dba044e581b6d523273f0353b5f
6b877f4348474b36c1ce7e5484121cf95be1a516
58706 F20101124_AACXYB witek_r_Page_027.jpg
321c0a4a8b65573985dfd9dbb6e405b8
51c05ab9451b0e4cf5900212b749a269298b554a
5683 F20101124_AACYAB witek_r_Page_002.jp2
5c9c28dd91e9b59e55a27f00b7329f95
1668523888edc5950d5f59a597e1d240e2c8707c
F20101124_AACYCZ witek_r_Page_020.tif
3224cf98f3360aa2415c625a98fa78d4
ca5bbd3026a18b2dcc55c0abe9d86b8b0c024378
5853 F20101124_AACYHX witek_r_Page_052thm.jpg
f1a7710c2e1e19c6844b01ff19a3af12
ca4c971a6602949e53134766efe56233f5c5dac6
50845 F20101124_AACXYC witek_r_Page_030.jpg
c062fab2edb4bcdcb267bfa3299faf0b
88dbb22c3721313f1af57781dd34676575a4e9da
20095 F20101124_AACYAC witek_r_Page_003.jp2
2c910c3e58592e5effc2da6fc381c926
ef1137897f75914369ce535a2c488592d35cd8d4
53723 F20101124_AACXTE witek_r_Page_011.jpg
b08016e50c0d3909d8608397e71f3417
83ec32bacb2b48789ee430ff9553930624d3295f
17804 F20101124_AACYHY witek_r_Page_053.QC.jpg
c1f9769f90c0b0d2e6fc1b168cd2c0b6
f14860324546a292ed482d688570c4390c75bebd
4799 F20101124_AACYFA witek_r_Page_008thm.jpg
1ecc12e8c245d4c09152dd4fab78b100
720317c03ad522d3762451855c90581db08173c3
58210 F20101124_AACXYD witek_r_Page_031.jpg
e926c70e74b79105d01551e5130389cd
6de822a07aedc0d423fc496850426a95feb7d2d3
67020 F20101124_AACYAD witek_r_Page_004.jp2
caee7636ad90a0d1a0693fbab350c55e
078f749f73eee053bb484f2452c4b8d9b99ccb8a
F20101124_AACXTF witek_r_Page_011.tif
f4bca4bb37d1712afa1f8aab135005da
9d76c6689ba310f980670c3b13de858b5350f06a
5409 F20101124_AACYHZ witek_r_Page_053thm.jpg
0b7f68dd7888adb8beba2743f33c6a15
ba13d4a1e777bf6af163bb7e4756acc0765f86fa
9247 F20101124_AACYFB witek_r_Page_007.QC.jpg
abf60325660377b449a49cf4a949b78a
c73ee18961368ded27308f7e44a6a2678e08bab0
73820 F20101124_AACXYE witek_r_Page_033.jpg
a86d57611f38bf605c00598817516709
e0e5445dfb0eaf00d84c416ae617e6c6e550e8f6
1051964 F20101124_AACYAE witek_r_Page_006.jp2
fc1e4a05920e043452bab80f34647919
a64fe1cecdd16fad4f79f4a854850bcda4f8f572
6160 F20101124_AACXTG witek_r_Page_040thm.jpg
351291a9a2338af190fca358032f8dfe
da6583f92de132c80c285210bf46c6151b60c520
5052 F20101124_AACYFC witek_r_Page_102.QC.jpg
7bd17a7c4fb4ff2f056a1bba13308a18
5238bb971f253640e52ab44cd11e55b5cc56939a
69254 F20101124_AACXYF witek_r_Page_034.jpg
2e1d9ee550c1f1d690378c2b57df27b4
80abbb8a4068a9632d029ee8f38505e3a4afc3fc
676474 F20101124_AACYAF witek_r_Page_007.jp2
35979ce8ee6cfceb1b4abf82d5e502c6
ea6381ab8dc205cd40b19ffe2b065de2238d2f5b
F20101124_AACXTH witek_r_Page_056.tif
e41577ac2d01980207f07acc7eb4cf9a
8073834d3e8a2650e4529472d2454d57c5fb8a5f
17514 F20101124_AACYKA witek_r_Page_092.QC.jpg
b79db16e069d1d71633f7910e72822e9
e8802092296a1787394fbb62caf533742d79a8ba
4115 F20101124_AACYFD witek_r_Page_023thm.jpg
33a79c4f0c554225b51f4645851e7e1f
8750f71ffdaaed2a9fdfc5f545af3539c6508a93
21056 F20101124_AACXYG witek_r_Page_037.jpg
835d46c9e865fe89c03ab87be4277fee
d6887f8ada3f2312d4ec21576f89a941ad4f64c5
1051962 F20101124_AACYAG witek_r_Page_010.jp2
b9eb313e6ea8ec7973856e257e913811
63bfb0f202da8195f163e95e820b137bec684d69
18226 F20101124_AACXTI witek_r_Page_013.QC.jpg
cf07c60d3f302564e725b37cc890c3e6
addfffcee911ef771e9cf0151210f418356c75db
5330 F20101124_AACYKB witek_r_Page_092thm.jpg
bbee34f274e627a79d2eaf04019b96d5
ee5654feda6c9f48d068eead99c9d05c1204c5d8
2293 F20101124_AACYFE witek_r_Page_001thm.jpg
bb2807b7764efb18af846a2d6216f1b7
9620b8df6aecbbd5097ebd23a9ebcc54c5b1cf77
51511 F20101124_AACXYH witek_r_Page_039.jpg
08f56a2b570327a6e6b59c045eced338
34cfe8fbcbd9141003b2820fe24ac035823308eb
72551 F20101124_AACYAH witek_r_Page_012.jp2
6872640fc74b222a164afa8086b95c1a
076f29249e752e37da6fa22e05c3590d6f85cad2
99680 F20101124_AACXTJ witek_r_Page_058.jp2
20093acae35dcbc405338fc1786edbc1
2a7874f5fd4a3721dac744b3d2cae14763dd5fc1
21887 F20101124_AACYKC witek_r_Page_093.QC.jpg
c5404db9435edfdca90667d6c4d6d373
3c34cb1e4dcee9f86f10ad5315087d37dcd04c61
21392 F20101124_AACYFF witek_r_Page_088.QC.jpg
cd8d3ad07390fcc9e46c6c65d9d1ca7f
9bbcb4536fc74685aa1072b658f1c06214cd52dc
58139 F20101124_AACXYI witek_r_Page_041.jpg
0c9cbb13242f9eb7417e9a19421a6058
ef753834b403e904aa13dde0bc7724f9c786fa95
88617 F20101124_AACYAI witek_r_Page_016.jp2
9d964ebfb42f5daee2428f7ffde60c1e
e709a0d2310cd320077b5b58b25de6589c1232ff
F20101124_AACXTK witek_r_Page_009thm.jpg
6bcfa0ac3875301f32d918f1badff448
39691cca3a0bafcdc6ba9fac1ae17cb157cf0de3
20275 F20101124_AACYKD witek_r_Page_094.QC.jpg
8d2631f41bf936b94bad594b651303c9
2c4343472e17662b307f279e7e6c4fad46765573
20380 F20101124_AACYFG witek_r_Page_046.QC.jpg
ed5f8c41809e1c3f12bec1337e1a5f81
fe8fdfb3e967ed79c9a1b04e5b6c17ddfed1b2e5
60292 F20101124_AACYAJ witek_r_Page_017.jp2
d629cc3ff528188aef94eac668aa089d
dc34a6b88ebdb0244bcbdc5177e47fe0d3f76fb0
5106 F20101124_AACXTL witek_r_Page_079thm.jpg
8a1aac6add574e0eb91f08f4e345403c
9d9bef25698af0242934359aafeba9e23e63c204
6458 F20101124_AACYKE witek_r_Page_094thm.jpg
478853273f8926ebbe6baef61f7fff9b
ec0430e83bfb9be7b3c60f43733ec44654d12a43
6548 F20101124_AACYFH witek_r_Page_072thm.jpg
e1f1af47c118a91691cad6c1f54aeadb
769100b6ff4ffa200eedde3cbe5d49d73e6acf52
66046 F20101124_AACXYJ witek_r_Page_042.jpg
e95d4d79c533a1eaa9b63671b587f216
9c5c02ed4939f01e76f6c8843817c171855bf0f1
72626 F20101124_AACYAK witek_r_Page_020.jp2
7ef96e22cd37b412be56310ccec16a03
15f1ef192894a05dea9f1b1e83f0286e255afab0
47423 F20101124_AACXTM witek_r_Page_073.jpg
c8f89310994ea9bc17b793aea27108d1
6daef9f3677d1fd38706f7578e03b5b2eb896752
20935 F20101124_AACYKF witek_r_Page_095.QC.jpg
75867478f4b898ad770cc85fef3b4963
8b79d40bfacf8c48a914b6cc8a77a31e1be21e9b
17736 F20101124_AACYFI witek_r_Page_048.QC.jpg
2bfb2eafe6f1ac7ea5f01e7c3f77ebc9
72383792000f4e19d37deb19a2b876ef43159be6
67084 F20101124_AACXYK witek_r_Page_043.jpg
82d7b653bfb15002e6f345bc48152b11
0f2c1b429a6164be16ec8658b9602c912d2efc77
65820 F20101124_AACYAL witek_r_Page_021.jp2
34bfcac581f336282d10d29e01526e06
301e2b794537f6ca62d3ed99a30aefc68b922a2f
6661 F20101124_AACXTN witek_r_Page_058thm.jpg
eeb7506e9f7122f2d4163c25a21f3e4c
a76f34a6a3f846ce20513a71d44961288ac25115
6104 F20101124_AACYKG witek_r_Page_095thm.jpg
27360cc01aadc974fcd0d0109e01962c
588ffcf05e866840b9b6522786e6c3381c930790
111939 F20101124_AACYFJ UFE0011359_00001.xml
861d7b672b8a8abd09a6d7fa012ff96a
de235eb14cd3f9a74d58b2bada6e6918796a3fd0
45173 F20101124_AACXYL witek_r_Page_044.jpg
34a3eded3da8bb184d3c601b3980fe1a
fd898aef55c22f8cbe63a451e245822890d570d8
73587 F20101124_AACYAM witek_r_Page_022.jp2
6a5d3d11571bc572d8fa87d8fdbcdd44
39c5a57f9b78e9509344db05010d8e4f4d851784
102206 F20101124_AACXTO witek_r_Page_059.jp2
4107bd104e159e71abe592a5d83a3c09
9111fa064b11409f62b55a280804a72934f208a8
21376 F20101124_AACYKH witek_r_Page_096.QC.jpg
7cc0665dbbef4f2800325c8953c195ed
71e0182b8fad85ad0bc795f603aefa9ec16151ca
3277 F20101124_AACYFK witek_r_Page_002.QC.jpg
441d10014f49d69893310a7fbfb26f6e
6abaeeb610712b149b7312395cb8f162b6a13c97
66196 F20101124_AACXYM witek_r_Page_045.jpg
c881a9f23ca74a4090a2c1881f0d7ecf
8dd3a4985b84bca1b5300486748a4122e5371c43
51448 F20101124_AACYAN witek_r_Page_023.jp2
1280b0cf42586de374ba8a265f1450bd
9f97dafa54f1a016ce5c1b92e5f48797588c8e64
6337 F20101124_AACXTP witek_r_Page_070thm.jpg
4b65199030b2e7711df1b0246c53ec4b
e1da8b731da0ed1a741ed561edbe15213c3d5c10
6510 F20101124_AACYKI witek_r_Page_096thm.jpg
46d2548124a828315a68b619d90d0149
5adb8ecf5c2ffb9a4f236174a9845230692f61e5
62443 F20101124_AACXYN witek_r_Page_046.jpg
5ea4fa83f8fb6bc506ca7b7c21df7851
b2a66486f6e65b0e522978d047a40d92d48c4a4e
70514 F20101124_AACYAO witek_r_Page_026.jp2
d3a9cba41a8493080c86e403e20ceb49
7f96bf2b70dd82cf6ecb805258f77f67711a5add
5305 F20101124_AACXTQ witek_r_Page_039thm.jpg
c3218d593840b8f7a9bcf96579097960
795a63c0021d616ed39a296b172444155c2aad29
6153 F20101124_AACYFL witek_r_Page_003.QC.jpg
eebbffab81a362c2b594385beee376ac
bfc6ced9585cadf8490d7a63efccf5d297d9f521
6264 F20101124_AACYKJ witek_r_Page_097thm.jpg
7972485ac1e5191e9624520d535cf720
a45295bb6cd4b67ff0e996b72e494bfbc95ba3e5
48594 F20101124_AACXYO witek_r_Page_047.jpg
56337055f72da544898b7c4b0c9620fb
aeef5370e6ee7f0e50c4c61e27c16323d84b08b4
86359 F20101124_AACYAP witek_r_Page_027.jp2
dff71af39f94023406ba1f4d0e0b4830
0c781d3e0f11ac88b1430b309c4ffacea5b2856c
F20101124_AACXTR witek_r_Page_048.tif
2c817de144bb1a2efce5359ca3245a6a
9e5b174745edc2c722ce2da958c81647bcfbaa0b
2094 F20101124_AACYFM witek_r_Page_003thm.jpg
c505a8bd82b0cfdcdff31c3cc7b70c65
aa7209b9b71e6152f52d42b15c36a5cd29e23a73
21512 F20101124_AACYKK witek_r_Page_098.QC.jpg
bce24f5eed22ab401de2493c0904b8b7
3cc2a9b15f35979140efee447f5425cac8ab4c9b
52733 F20101124_AACXYP witek_r_Page_048.jpg
1bddedddf70f351472918a51dcc7e3fb
ceb3d17fc54da48c6c0ba49411e21911542ec224
103877 F20101124_AACXTS witek_r_Page_085.jp2
56207547d7176e2bb36d5bc74eff0db2
768cde2358fda18770bbd80b956b410bf0592e1f
4526 F20101124_AACYFN witek_r_Page_004thm.jpg
11d19ae55d1ff2040c1874e72650d775
14cd23723276c1033117e91160b0db08e44ec37b
6521 F20101124_AACYKL witek_r_Page_098thm.jpg
5d2a295417401184868ac6a82d41f82e
d2a145f2740b5b78d8d7b4a50c88420c95180e72
46856 F20101124_AACXYQ witek_r_Page_049.jpg
b140725d75d08b2160b414e980310d6c
c256d72712ebd851d0db8f46f64c0c4d756ce29e
69506 F20101124_AACYAQ witek_r_Page_030.jp2
5efe5873a21b8a8cd808685ff44093ea
1277203aa8a6285eb22adfeca33a38201ae62bd0
63661 F20101124_AACXTT witek_r_Page_009.jpg
71af941a5b8fc31cdc4df7027aefd231
c7e071d78104e069eeb14ba2016bc56fc406d997
19034 F20101124_AACYFO witek_r_Page_005.QC.jpg
887803b8705e0efacd30d81f37096f0c
68d1a0666b0af21f0af1c75cc968065d452071bd
20734 F20101124_AACYKM witek_r_Page_099.QC.jpg
31f1ab858612fc798b6f45e066897385
53b171616e0506d00c121d956ec1c13aaed23c55
58185 F20101124_AACXYR witek_r_Page_050.jpg
0a690121f1867c6611f3865ed97b9449
ead0a96908296a69377e83e12e60a497ddb3cd9a
86161 F20101124_AACYAR witek_r_Page_031.jp2
37bbe43e4f0317e1ed2885f93dfd7a16
1e79fe702dca002ed6020b6de35d7c6af89bea97
4853 F20101124_AACXTU witek_r_Page_011thm.jpg
42d11b401d525586b644eed8e1b29f38
90862bea3f6afdde609bbe509a3d125dfd8b10d9
5380 F20101124_AACYFP witek_r_Page_005thm.jpg
5788cff9f818684eac352009fcdb148a
3a7f5f2d976d92720ef9ca3fcf5ae6359ecd09fd
20970 F20101124_AACYKN witek_r_Page_100.QC.jpg
a74c13b73e0b20710bccbbd6f0a1f981
382cab0231c67a30ff5f3aec44ed7edac86d551e
61233 F20101124_AACXYS witek_r_Page_052.jpg
54875c5a4b5034dadf74fb3418971cfd
8d76bef3bee5fa478f45d84798f62d7fd12e3891
112915 F20101124_AACYAS witek_r_Page_033.jp2
d0de76e327898ca269e9fe61b8c1fa04
fbc2c8b9d99fb23488f31b8c583d4e518105f4a4
96979 F20101124_AACXTV witek_r_Page_089.jp2
bd58462c89f8acfc70c76ac50360fe27
e74823bc9a7be2057d87a5a63595586a2fe75798
25139 F20101124_AACYFQ witek_r_Page_006.QC.jpg
97c7f26a928933cf7eb6bca3953f4200
0f361d093731b94c4fbd8f3b56dd00accda5912f
6320 F20101124_AACYKO witek_r_Page_100thm.jpg
437608579409739998a2da3758aeca96
cd8781ad2134942615caa2885fbcf5f87aa61af5
52553 F20101124_AACXYT witek_r_Page_053.jpg
0c78e967cb532730985be9804a3a0182
5d831bd3afd3d8ee92f31a6810428f65a24c0791
94284 F20101124_AACYAT witek_r_Page_035.jp2
e1ee69b819075f03d5e47b47ff9b18ae
768ab4a91c04ceee74cf0f94af45c8b3b1b961cf
22767 F20101124_AACXTW witek_r_Page_069.QC.jpg
1cac770bbacc07e54197ab8c48b2dee2
bee783e748ce4e6fa0e8d37dfb71499b1fc96e94
16432 F20101124_AACYFR witek_r_Page_008.QC.jpg
0e942b97777d17c2e4aa11a147d7802f
4939472d4d8c85e8b665183980db03e55b1744ac
19962 F20101124_AACYKP witek_r_Page_101.QC.jpg
dc701ed08dd211af29eefcbefca58d4a
ae6c4a12cc2bd4004375ad101b4747302c28b58a
67981 F20101124_AACXYU witek_r_Page_054.jpg
add71ffc599021ae9d88881ab10cd9b9
9dc0c4a559a4f7f93ab7fad8c0210e2c11cd3746
96357 F20101124_AACYAU witek_r_Page_036.jp2
9dd2e1ce9a063b9a675ce308f223b5f3
ad1e761fdc7111b5208b381f7cc8581b34a00abc
F20101124_AACXTX witek_r_Page_057.tif
9ebc3625986083622b93d6402474e590
b32614e28fc41b29ee5aea46d6af3a02b5f9c79d
18477 F20101124_AACYFS witek_r_Page_009.QC.jpg
4da97185184cb94b5c62de6cac0003fd
ae492e499f2d0869997a03ad7997972c816da151
6177 F20101124_AACYKQ witek_r_Page_101thm.jpg
2a76284f714736063e900c85c1a301b8
9796c34fa9a60fd39abf845735a122143390eec5
69252 F20101124_AACXYV witek_r_Page_055.jpg
248904ff3b3f8c535b7294e46c1b34d6
22800c952bdfb734202a9043ed9a147ff927ab4d
23280 F20101124_AACYAV witek_r_Page_037.jp2
b3581166282370b16b4492241056d6fe
5649fe861bd18f92361b62fdc13692c112d65845
619018 F20101124_AACXRA witek_r_Page_065.jp2
21fa67726b2f21a2b2241f4ccf98d887
b7a997f08fdb7b080c65142769ef0e856c911c99
706749 F20101124_AACXTY witek_r_Page_063.jp2
414bc15b0e2bd0363897998014217a6c
256ce41e5a90dde903600aeb01dcc25ecadc284c
13407 F20101124_AACYFT witek_r_Page_010.QC.jpg
79a564fee641d972e83e021b4f45c449
d6c2f2f1b617714b6be92e8cc15b69537b62b30d
1941 F20101124_AACYKR witek_r_Page_102thm.jpg
b108e3d57ffbe9a983e632d5c5da1b43
cfcae70fb413b02dcbb9d70821be95105b517ab9
73151 F20101124_AACXYW witek_r_Page_058.jpg
4d20e2346353c29fbd9218103d5dc2fc
bef36706d896cc96cabfd33174c2ee80521c8d68
89692 F20101124_AACYAW witek_r_Page_038.jp2
a144cb0e64e71930544be4177558d130
abcc8a97c340b7356b66c8c9aec9ed437298e84d
F20101124_AACXRB witek_r_Page_043.tif
764309366cd19b7b52d151477f082952
3f155c116000ad888e2d7725e4f4fdb32b5eb302
F20101124_AACXTZ witek_r_Page_101.tif
407df6443b2e41f55aa0067ec3866889
49c78ec73514e3c95dce00de9ac784b783781c90
3893 F20101124_AACYFU witek_r_Page_010thm.jpg
33d20b73296722b3782b669c2d516f8a
4b5e4f6a6439492c84eb7f944a12d8f401dd9374
15210 F20101124_AACYKS witek_r_Page_103.QC.jpg
7f6ae424396b08baf8a92731cfb3eb94
5f27672e634bb94b82cd90a77a7928b599a58595
73611 F20101124_AACXYX witek_r_Page_059.jpg
7fd7a81c35d71b4a79064ffe9df09f3f
03f281ea156d0cd90e16bd2bfb5bb636b4086874
76678 F20101124_AACYAX witek_r_Page_039.jp2
e894e0e228fa11980f93f1f1a7fb0724
b066717cf69269da407e34a4eef854f7967b75ce
4472 F20101124_AACYKT witek_r_Page_103thm.jpg
3d9273168c607f850460abec2e36226f
be30c8e75a57018b17ccc9b73dcb8230fedb8e8d
68687 F20101124_AACXYY witek_r_Page_060.jpg
f0380783909a3e82cfccdedea4978102
c9790638a6d44d7664cf4ad3101b557ad5deb237
92411 F20101124_AACYAY witek_r_Page_040.jp2
5b662e22c123cfe098eca502da454167
08bb310e8da9f91dd7e221966d858b23104e3bd4
6878 F20101124_AACXRC witek_r_Page_001.QC.jpg
a076d5cd0f48f3583aef2f8854decd81
949de61e3449ea8463fe4e14c91668ead93b128a
16856 F20101124_AACYFV witek_r_Page_011.QC.jpg
e7dd4ecb43fb8a379659eb9e664de0e3
e9a5fe6264f1a395aa0de6844a59265ebf3b6a1a
4739 F20101124_AACXWA witek_r_Page_012thm.jpg
21bf4a8f0716cae07958c46ab391955b
ab3264d2d0eb4fc38cd94b6d40c98df84849d1db
63318 F20101124_AACXYZ witek_r_Page_062.jpg
33821ff1d44f6a8bdf067ce7efa643e0
d3793d9894f442e86a6ea1862ef181695ed16623
99023 F20101124_AACYAZ witek_r_Page_042.jp2
5133f2a6708e2e982078e3392b64755b
eeec65270691193be899c919a6f6fafbd72efa99
101159 F20101124_AACXRD witek_r_Page_034.jp2
64e475a650c98d323f5fbbe7b4fcfdb3
d6bb7491e5e5b329e03b4b9dd5381c58789d744b
15917 F20101124_AACYFW witek_r_Page_012.QC.jpg
c31e50cf0a0b8b198ad0d814d27ff322
4e702621d3665fc7d6db24a69545835ba17d6ad8
56990 F20101124_AACXWB witek_r_Page_032.jpg
e171cd1f95ea070e1d4a77703f06d498
303e645a788e7c8e8f38359dd8ef77f608e249e4
F20101124_AACXRE witek_r_Page_040.tif
be4f7461c12dcacc8d603b809b8cffc7
b6420a0f54bdae5acf07a79e8337f9b83e69bead
5003 F20101124_AACYFX witek_r_Page_013thm.jpg
85080d6e72b0c77744f73f80aeb44364
a4d4a1eb1170d6461b2f2c96a7fb6d79357b1492
102555 F20101124_AACXWC witek_r_Page_006.jpg
d700d4f41118526266065e58fa27feb4
f4085b5f284b446b536998134a0b220f8667fc79
F20101124_AACXRF witek_r_Page_085.tif
c064b85629d5cd85f317d6fea7a59763
f0dcf54edf8adeee1fe57ad3c746f534e78a55a1
F20101124_AACYDA witek_r_Page_021.tif
f5d6f84bf5821fa73d7ad7705c357500
d59388fb2c21ab02737d8c39581bd2e72ce24254
11271 F20101124_AACYFY witek_r_Page_014.QC.jpg
dbef739c1e84786ed13eb6c9089eceed
a9d63726c6bca70976ac2b51c5a6cd309bce8d1c
93906 F20101124_AACXWD witek_r_Page_097.jp2
48a2a8807a1a7b0a2a6aa9747013269e
521132218ae6f5ca1df2e52eed21c3b84c273271
6380 F20101124_AACXRG witek_r_Page_051thm.jpg
d86fb817b53119624fd00a8e6cb21bfc
38a1ab6bff0547e2856fa01bc8f2921a1edf2195
F20101124_AACYDB witek_r_Page_022.tif
72a29fac2cb0fe4444ec1cd90261188f
50a01d47bcb73e9c2fd157be6289821be5731a37
4097 F20101124_AACYFZ witek_r_Page_014thm.jpg
52c775e53bc6c68a77ede66a0c219065
075757db28db252255a39529cdfd11c5336d547c
97095 F20101124_AACXWE witek_r_Page_096.jp2
88f670d872d605674c5a57f1122399e8
f328c0f1d98af84113003d3c7cc2b03a5f8ec5a0
68231 F20101124_AACXRH witek_r_Page_069.jpg
465dc42fcfe48d8ae6592fdb76cb4934
87b6ae77963e5b550fa4767c38f9665e0f2ef39b
F20101124_AACYDC witek_r_Page_024.tif
e596f5c5161350e4e502a40a269a445f
21715cb7d193b2e3dc29454857dce29b614b379f
F20101124_AACXWF witek_r_Page_081.tif
75d26d9b28c1f30586609bb526ea5a92
bc1dde3683d3f7066bf3d6f54cd5446b23163366
22479 F20101124_AACYIA witek_r_Page_055.QC.jpg
656bc1934cd615849f2f27ce41c57337
a728e38dbb9b6bd577660c6e4e61b7161b1f8e6e
60678 F20101124_AACXRI witek_r_Page_075.jpg
21a0e441d2693002055273c06a5aef0c
3740480188f107df467fea8c0bba4b4bfbe37d2b
F20101124_AACYDD witek_r_Page_025.tif
68e136d6ee6c1837574c5b4fab66d71a
1ade806362fe2a8dbd8f5f4c0eba71a29afe07de
48104 F20101124_AACXWG witek_r_Page_004.jpg
7527c6a556c51d4ff6bc9053a0155ff2
9ccc24facc7116c9e86760337f4d7ee7c8b97793
6617 F20101124_AACYIB witek_r_Page_055thm.jpg
9c87aa01e63c5eadfef7fcf8d6942d7b
18872993a09fc4e9b0f3f56f81339a3632b365f3
69449 F20101124_AACXRJ witek_r_Page_057.jpg
9341d4d554d96929a079feaaec39891c
b78731d6e0248f9affd21b89158821a2d69cc4d0
F20101124_AACYDE witek_r_Page_026.tif
91ae24695b8227716a7aab9d8fc2c5df
4aa96b1c8c8aaa3200cb993485debd91a4492dcc
6172 F20101124_AACYIC witek_r_Page_056thm.jpg
1b592fc63c29ddf431c488aeca2173c8
edf4a345a36308967057826b00a5bde98e258cd0
17534 F20101124_AACXRK witek_r_Page_079.QC.jpg
2254a17388bb17b25dfa1a974ec48bfe
8b36f4450874ec9ed0f712f085d7d8d021a1dc82
F20101124_AACYDF witek_r_Page_028.tif
902b6724e8e44aeef8086529a688f6ef
dcd221faab0828ad8e91cbae7c9a218300378814
F20101124_AACXWH witek_r_Page_021thm.jpg
92dd0d4039936739640ae0480656aa9d
4b5aac73e9ee5df107721e383454398d2e3bcdd5
6476 F20101124_AACYID witek_r_Page_057thm.jpg
9b715fe62cf7c428c0ba00988d6ce951
fb57f60c0251dec7040779f14f7c3586e4553fd1
57161 F20101124_AACXRL witek_r_Page_091.jp2
1b201f504df651e98a314f9c61c18562
8c771571e273c7398e0549a6f6fce29e3b1fecbd
F20101124_AACYDG witek_r_Page_029.tif
e1955e98232e8e3a1b86af78221e7d37
c32f51edcbc2c24b9c751d06c80fbfa9dd07b949
5648 F20101124_AACXWI witek_r_Page_032thm.jpg
4f504f80a7573814ee2044e80c3f971b
b8753474ce87ff204b26b68862294fc294b47cbb
24912 F20101124_AACYIE witek_r_Page_058.QC.jpg
a14a7534f03f910e6f2bc7d2388e100f
dcfc58ee4d49cb0795027286322e5f7343645c53
F20101124_AACXRM witek_r_Page_023.tif
3fa6eded89117c3db9826c107fe45c1e
74f8ab4e920524b70ae786f18ab76e43076b4516
F20101124_AACYDH witek_r_Page_031.tif
c735b3cfabec0d23b0adc342cfa9b92f
3989753cd9cfb58cfcd3db21fba69b3a1650252a
22621 F20101124_AACXWJ witek_r_Page_034.QC.jpg
6ee8401f2ff30286d3ef74cc490f6f4e
4d82f7f4e2c28c0987cd2dcf072869b05138089c
25114 F20101124_AACYIF witek_r_Page_059.QC.jpg
cb8f59a8053a30c16010850051b3dd51
583b428f19a661166f5ded998e7021334fd64813
21588 F20101124_AACXRN witek_r_Page_043.QC.jpg
9a2a1710bf28795e18dc173eab7da162
cb018b67749ea09cbf49e26b60442a13ab5c1706
F20101124_AACYDI witek_r_Page_032.tif
cac1e1e73dec2d478851b73bfaf22089
ccafcca84202da642a4ec70532101bac695ec5a5
6504 F20101124_AACXWK witek_r_Page_033thm.jpg
15068bd3b1f147abcdbee017eda896f7
87d8e6d67c11199b11b6f1f3e42139519adf43cc
6801 F20101124_AACYIG witek_r_Page_059thm.jpg
eb7ca6cbd6fade54e865c8af6d880cea
9403172067024d0e49bceba918dc67f585b6b9e3
5058 F20101124_AACXRO witek_r_Page_047thm.jpg
f67db5dfa461718f072d65ade74986fa
ae8cbf64d9866246b56881ef2cfe1dbdc3d4230a
F20101124_AACYDJ witek_r_Page_035.tif
97e7c8601299187d4b75dfa0e591925d
594879452e764a1618394feeba16e26c7e1a6391
F20101124_AACXWL witek_r_Page_083.tif
d912cd88ef24b3ba4d535fd82fa5eb87
232291d61ce2e37e7b2d65b01bab52e4fd33ae0e
6460 F20101124_AACYIH witek_r_Page_060thm.jpg
b33af3106ad350d0769d89ab5c074395
166021ff6bd5048a05b0621e5b74553b9e0c5f57
F20101124_AACXRP witek_r_Page_096.tif
35d89e8ad4aac6dd9299468c6b1f9ed9
c78da2611ff3b8412a70ae542b626cc2f8464407
F20101124_AACYDK witek_r_Page_036.tif
d94044bfa5fbdc349775ab17d8aeaba1
6bdf59e6d808c19b8eb97ed94c3b8d2cffb72f69
51782 F20101124_AACXWM witek_r_Page_078.jpg
587d1224453fb5ce36e3ad6d98802864
f56290c4f26ea9ce25b3500a24fc1cf9b8ba656e
14860 F20101124_AACYII witek_r_Page_061.QC.jpg
3fb3d691248a860d5ca4cdd166c4c0de
757a1fc0a906718806d2cc5b1eb5b717aad09dc4
95440 F20101124_AACXRQ witek_r_Page_095.jp2
f0b059e4094200b394033f8d29e640cc
7cda9246c040a2b8f04b03ce399d0481d6c9f811
F20101124_AACYDL witek_r_Page_039.tif
ac52b499e71930891e5ccbcfea7aa691
ca6e3c9c10222442063b4a40fd83b57a5a0c863a
93555 F20101124_AACXWN witek_r_Page_056.jp2
b21c01661d6147c516ffddd73392c527
fb918a2b8ad5859643f4c9eaa9100aee05f7f949
4217 F20101124_AACYIJ witek_r_Page_061thm.jpg
e5eafd2e2e53a1757237b67462b197d4
3557f0d90e4a4244c29b435c03d9d9da38f8df99
73848 F20101124_AACXRR witek_r_Page_005.jpg
6f54e6f015fbf8d0aa452dff5e6153b7
720a3fcd8f3074c06df8eccfc13a9abeb9398200
F20101124_AACYDM witek_r_Page_042.tif
3b970305445d978f3e0838d37f72ae08
57694a3387207d1811a56648eb6f42e8c9ef8431
5483 F20101124_AACXWO witek_r_Page_074thm.jpg
3bdefba96b8ea48b7c8ccb84cfd53c65
24bb6e53d5c66b3b3d9c2a1dc8736c5285ee1080
19987 F20101124_AACYIK witek_r_Page_062.QC.jpg
6d358ec88abbe12e9c91cd7ec5b36c26
68a1b907b7e980038b5c0e6522f7efebeb2c65b7
6424 F20101124_AACXRS witek_r_Page_006thm.jpg
4fdb0471e0df199d86ff7effd364c78b
0bfaaf0d6b1b2ddce69f1e08d7f3dfeeb8bacd9a
F20101124_AACYDN witek_r_Page_044.tif
648ed34d335ffc42b16a911dafa4defc
cc6ed9200f81fd18bfb33746e54e115407fd79d1
20868 F20101124_AACXWP witek_r_Page_040.QC.jpg
a66c2a53cb99dd3786d5ecf5d9f11e7b
86e83aa2b0a40c5e771699b0f89399a6a11191de
5725 F20101124_AACYIL witek_r_Page_062thm.jpg
2b9e4fdc48ee1506427f016b1fde2ab5
7c483b51b5248afe7b73758fb2e65eaec0851e1e
F20101124_AACYDO witek_r_Page_045.tif
f599b5ab366fe8175b4d29bcef76842b
07b42cc3bd673b1032f6db1be27db060e80dc4a0
F20101124_AACXWQ witek_r_Page_058.tif
e7f9f524d136242167c8e2035627f418
232c17d042a7d375efc9a0f48b9677c3974ba384
10263 F20101124_AACXRT witek_r_Page_002.jpg
f7d133b5ab9507e8aef7b02c107d9d46
4ce42db27a786e8e80180a1576419548fc5d101b
4746 F20101124_AACYIM witek_r_Page_063thm.jpg
5d897f6ce856d7ce533b6a5183281ae8
edcf08f5a8db0c540ffc4334b4798a0632715ffd
F20101124_AACYDP witek_r_Page_046.tif
bbc3806c97321948470c731d60b00e81
5f6e82ef81ad2df98024595cb56c71b99522fc29
95407 F20101124_AACXWR witek_r_Page_055.jp2
b3bea8530ef38eaa6b650780420f9da9
60eebaea964b6a51b738bc32dbe23b2b671e7904
22608 F20101124_AACXRU witek_r_Page_001.jpg
318699c8f895040940ad33453cb8d609
b1f9963c4bf201c2a79cc40e7bc2cfe5af01e3d4
13537 F20101124_AACYIN witek_r_Page_064.QC.jpg
8575f5b86ea66fed9bbb73d603b636e2
8b6ca746c6622676a13706888bc1878280679fb4
F20101124_AACYDQ witek_r_Page_050.tif
82798b192d5bacae149a3305d4d9649e
33acca6d52a6e57327ab5c73888c06e26b0b2951
16221 F20101124_AACXWS witek_r_Page_063.QC.jpg
18b1dd86c7060c1a6c861ddd3c0466a8
6871b0da27eeefb1ebba5eb430a10c9082191519
F20101124_AACXRV witek_r_Page_012.tif
256c5000678893d9a9ae37e7650ab189
d82c06e9e387fd1cc7e5018668c6b1eef223849d
4267 F20101124_AACYIO witek_r_Page_064thm.jpg
7c44c4368dc1528df1122756f5fa345e
21b8342cf5044f0c8021667a7d61b1a8adad7fb3
F20101124_AACYDR witek_r_Page_051.tif
1376a8d1945421d771f5a44e64c33446
aa8d917436882110d6ccc93e7df0006492f3e96c
78377 F20101124_AACXWT witek_r_Page_019.jp2
d4d6354e0827275a506afd89cd23d43c
37bf96548c67ad734cde4a2a159ccd91f493112d
82123 F20101124_AACXRW witek_r_Page_032.jp2
73e2a0f9a84cebf90657e9d3a29ab5e4
5084b09cc4ab8566b82dc9e3894c5d2a412381d1
4381 F20101124_AACYIP witek_r_Page_065thm.jpg
d241700b7faea8a4dbfd6ab78da565d4
52517e78f62f9534223056743415d64f6924eef4
F20101124_AACYDS witek_r_Page_052.tif
f07a3d37772aaf46557e286efcc772cb
8f10b954b9263ea287cd097486c030efdb1492d1
102207 F20101124_AACXWU witek_r_Page_072.jp2
51e148a9bc01576b9654e2715d1dcfa0
a2076efb5b2b0ac6edc95de8b471bf3447bc6f9d
83118 F20101124_AACXRX witek_r_Page_029.jp2
67330d46b6dc5aacf5988c7986b66910
5ec052b440083fbb7280c622e6cbf73f726bb41b
5600 F20101124_AACYIQ witek_r_Page_067thm.jpg
26d514407188fc6bb97c2231b46e4f11
bb58d3e8b9e1ecfa0ec189bca064034730f3f6c9
F20101124_AACXWV witek_r_Page_049.tif
227553b5e6a280a596420cf7dc345867
42865b99b266c44fcf17f0b7fe5141d057224e63
1051979 F20101124_AACXRY witek_r_Page_008.jp2
9a4759c666f3485e3dc81c66f2af8403
f841d4437e21695500978dfc943f09725e97a053
19595 F20101124_AACYIR witek_r_Page_068.QC.jpg
78b33a13c6f62b8e3cc86aa1106e5fe4
21983527b75238b4fa444914a9fd7480dca3b139
F20101124_AACYDT witek_r_Page_053.tif
d0f3c30a90c6fee96cdd9ce3ce3a06ee
22b75d2b6f4aba90c78f2ccd37dc10f5ae563660
82235 F20101124_AACXWW witek_r_Page_050.jp2
2e46f76adb82405ca126b0c391907ed2
4411815aa029969c540a7892eaebd64487d2f3aa
F20101124_AACXRZ witek_r_Page_068.tif
655cdb7163fb474b5c97bb2b197b7407
a5195e02f2d444e61ad343b7ca9f7124c8d4322f
F20101124_AACYIS witek_r_Page_068thm.jpg
553a704e945d97d0c094aeaa1568c3a0
77691bc7d5ce04760d1faae3b097edf2be5be8b0
F20101124_AACYDU witek_r_Page_059.tif
5e50f33f0f7508ada635708ca8aff193
23271e41c92752e3307428efb7dec4539b944133
F20101124_AACXWX witek_r_Page_041.tif
f50630fd8cc1813a0febdefb242f6af3
e4fff249f072e2db5c5b2fb8e202458fc05930ea
6319 F20101124_AACYIT witek_r_Page_069thm.jpg
f1063b93e26d08bc88edbe061bbc85e6
67cd75a45023083b5fdc0fc839886584fc56470a
F20101124_AACYDV witek_r_Page_060.tif
08c24cde361c296260533ebc56789d83
b8705da1e1d75b04a4020d0e5583186621a97946
54353 F20101124_AACXUA witek_r_Page_015.jpg
98e8dd9a5d97f95df3361c0aeba5a140
58bd8263e771dba8ac35ed585b1037bd42467181
F20101124_AACXWY witek_r_Page_015.tif
3ca6229daf02a444ca273736d32ec12f
8089a88f78c919cd17dd3e6f8315aaf602ed249c
6544 F20101124_AACYIU witek_r_Page_071thm.jpg
6d7576eef666ed44d4d8bfa65d8a66da
032211cb252b52cea8b8ee5187f567ede1168683
F20101124_AACYDW witek_r_Page_061.tif
68dae6e0743ca493c06f447c4a5fb2bd
967a773ef5cfdcdda49d98630162ee8d1a6f920e
42881 F20101124_AACXUB witek_r_Page_061.jpg
877466a4ed2549e9156e5959be299d25
053e02a67912ba1c23b6baf4eb9aad7b9ed207d0
69312 F20101124_AACXWZ witek_r_Page_036.jpg
89db62cafe7f18b60eead091242c1661
cc2d0d7723f36711e2b3cb4f25af2b375cf19c01
23336 F20101124_AACYIV witek_r_Page_072.QC.jpg
6358aed505adf654a4432a9bc3919fd1
fe37f650cd60ce19b90d8e76b4e58cf0bc541bc8
F20101124_AACYDX witek_r_Page_063.tif
12b243f30537614e66ac0e5c8ca0d2ec
a519734dd61478c7e354ca45eb987e0952d27060
14599 F20101124_AACXUC witek_r_Page_017.QC.jpg
1d8ce83ca2087c6c137b3463f89f1009
974dee3368a02b1d9cf97689a1039925b069a990
16985 F20101124_AACYIW witek_r_Page_073.QC.jpg
43865728c45537813ab53714147db1d3
85656de1eef38d041d41dbd009237d7dfc8a9ed7
F20101124_AACYDY witek_r_Page_064.tif
a5c9c4d6f2e3a0bb2499e6b56219ee37
3d4d359ceb98a1d4e01bf01f41fe4b1c9c768712
F20101124_AACXUD witek_r_Page_078.tif
a7e2ef8834a38741055b1243b5878bc1
66a02b56fa0a2979d1bd3fe4c420854f79b500a4
44733 F20101124_AACXZA witek_r_Page_064.jpg
44abff4df7dcc7a9f11d60bf3fbdcc2b
3b2f0e3521853ff2927634c019502a8b58f76f10
94854 F20101124_AACYBA witek_r_Page_043.jp2
56eeeefdc678fbaca8c28437dcc26671
db38760a84f4bf941164a02887f361eb08eea9e5
4730 F20101124_AACYIX witek_r_Page_073thm.jpg
99f40ce31103f35f5c82dfa4604c33f0
68f9b20c468bcbf2103972cb27a8d55f6668a3d6
F20101124_AACYDZ witek_r_Page_065.tif
1f452f81656d504576d5bd2df94544ab
af9932dcf9fe4629301556f6b7e1d64cb85a391e
F20101124_AACXUE witek_r_Page_070.tif
8966f7f65cdc08ad57d10b126ed53865
fb8d37bd32cd09b932af92d22df9cf2cd8552570
45587 F20101124_AACXZB witek_r_Page_065.jpg
36b58a224982d88771f62c65f06cf409
b052dc745c04d20830952ebc46f5756ae325aa12
62806 F20101124_AACYBB witek_r_Page_044.jp2
028ce165ddd121d862a2beb59257516e
c5c6418f6b2f73cd037b0bd7cc62371710f58f14
59364 F20101124_AACXZC witek_r_Page_066.jpg
14883d94240c52c79c537f0f1c90c4a4
6f01e3bfc8f9e68fa66dd2490aaf009c79e76293
94780 F20101124_AACYBC witek_r_Page_045.jp2
c0f8cc857f8727ca5fd274c74e0d5e9e
3d874e63c85d02841520aef77b6dfddb68e98865
19262 F20101124_AACYIY witek_r_Page_074.QC.jpg
a6fb06c38a7088c660529c033f4b0a64
2041d964bc947a8073e136065a0acbebc5f2625f
F20101124_AACXUF witek_r_Page_055.tif
174d9874188992adf0d879f611d2e829
23c2c43762640f638d29b5182816244664965ba7
18250 F20101124_AACYGA witek_r_Page_015.QC.jpg
e4e25580514cdf53ed3ed0d6eb337864
deaabdd7b954be4f05b133282c64272792857c15
56090 F20101124_AACXZD witek_r_Page_067.jpg
21a4d47fcdaf0909b079ee5c32301894
abb2644c25f8278d9a30051d91644cb530bebe52
93541 F20101124_AACYBD witek_r_Page_046.jp2
0ce61bb4305fad085d1b43e7ef654948
473807d43455affc11b1d6f3ee51d221fab24542
5836 F20101124_AACYIZ witek_r_Page_075thm.jpg
8f1551d49c7eb31005069f5977f23688
1540432eaf2575eed9b75aff9cfb24e5ffa0dce9
5198 F20101124_AACXUG witek_r_Page_080thm.jpg
5037f545ef8ffed451de9e97f896ac6f
03c3d4e0e7dd1761392a95f118ad938bae4c4ae5
5327 F20101124_AACYGB witek_r_Page_015thm.jpg
3a77cb27ae97e72e3b6309f74cdc1c1c
5f9530f6fdac83fba2b460435febb6850c5d6c7d
60127 F20101124_AACXZE witek_r_Page_068.jpg
14671600dedfaf1a1b3f74f7afbccbac
402c0425da3634c4cff0069c71f353b408833f7e
72233 F20101124_AACYBE witek_r_Page_047.jp2
9f605dad910b43b366792865e3df74a3
69c3474b96af5da6b78674a7599fd01ed7d253b7
47366 F20101124_AACXUH witek_r_Page_021.jpg
749d0d46ebb62a39d69715a14bda967f
c869d7467a2c2aa6d0335c3603a2fcbcf6669851
5535 F20101124_AACYGC witek_r_Page_016thm.jpg
fd788480f78a4f4b0a95e2ccd1ae4a59
6173cbad78f2f810146c078bd5499736799fba50
68695 F20101124_AACXZF witek_r_Page_070.jpg
90f568e5ad3d3b87f9450da956069a92
ef38b0c22bf9067886a59eeac6991e610a5718dd
66217 F20101124_AACYBF witek_r_Page_049.jp2
7dd25ed45fdaab600d529556893fa756
96eb6fdf25e02f1e6505ef14bbd0c7fe0c960834
56057 F20101124_AACXUI witek_r_Page_024.jp2
b11017edd38732b290ffd4a53214297d
9aa953aa84f59e9dfafee32a097fb51c0a48193b
4444 F20101124_AACYGD witek_r_Page_017thm.jpg
26e8e894b0638eb13ccabd292a17254c
add9910575530ef1320dfc0b08d08cdc8836fa8f
69976 F20101124_AACXZG witek_r_Page_071.jpg
ac76601df29803e8f254a813655022a0
85d8ad2ec2d23d9cb6963dcfff984b91a18326db
109396 F20101124_AACYBG witek_r_Page_051.jp2
625120988b42a752e0ef27d3811227a6
956e80aacb5f5f7f07db8da0b97598c2b0be226f
18768 F20101124_AACXUJ witek_r_Page_067.QC.jpg
4c1bd6ba218522e122e4382bdecbd42f
f3b0c25745ef872960c54bcebaf6b5fcf20e1306
5016 F20101124_AACYGE witek_r_Page_018thm.jpg
17783629bc1ba18b13f51723c5b95679
015901ffba5b24e16ed6ec6ffde48e32ed62c70d
70670 F20101124_AACXZH witek_r_Page_072.jpg
c8fd2d6cff991808bd8ca110b81ed230
b82d4077cdbbff7b3b7534afc41e0c2adaf579a5
89795 F20101124_AACYBH witek_r_Page_052.jp2
be7832b9e562a48f1d378103318c735d
a3516668b4e162eae6e347a93746600f357ef85d
1051974 F20101124_AACXUK witek_r_Page_009.jp2
9a2ba6a4b0ee60fc3efa5125c4fdba34
41dfb4486416f666164bd27201b4cde032b11e04
17469 F20101124_AACYGF witek_r_Page_019.QC.jpg
89d9c9427d4b6b46e74e8f9aeffa0875
d1f2e67b6b5a3fb96fd0fd1dc10bcc67632e0b96
60901 F20101124_AACXZI witek_r_Page_074.jpg
cc51b1c5b5352ac864baf007c7673a06
73d0dbe7d998a7fe07b8e568ea33ea05262e24f9
81463 F20101124_AACYBI witek_r_Page_053.jp2
bac6385dbd02726904707f96ece92a3d
3015a151a7a86b850f54cfae25678aa3db4abe37
5368 F20101124_AACYGG witek_r_Page_019thm.jpg
ba06c3aa590802fddf5681da976e66b2
429986bbabe23e514ef46576f9a7be36f19d0872
71503 F20101124_AACXUL witek_r_Page_051.jpg
837e672554b1a3e6c9571270dba101f0
350881eda17dba7b72f0afb91bdfc50eb104c612
52380 F20101124_AACXZJ witek_r_Page_076.jpg
a271d62f312ad5fff112a0a60d1afe7b
aaf913253e8838efe4457c4ba04fc6a8a770dbac
102514 F20101124_AACYBJ witek_r_Page_054.jp2
5e8a2f4065fe866f53b7c2a56fbd4384
757f4c62b2264f5f0857123e1fefe5fdd11bde7c
16529 F20101124_AACYGH witek_r_Page_020.QC.jpg
8fdf8a5b81808bd902b14622e5deeb42
c87ceb84eb3b00dfe0eacaf2064bf638818d9f5c
89227 F20101124_AACXUM witek_r_Page_041.jp2
9ace23c79c7f0df761d68db1a76e5844
0390980ba58d13f1bcf4e2215103b7903e13e230
99202 F20101124_AACYBK witek_r_Page_057.jp2
19adcdc11904940643afc6a7398da328
d4e1dfa1e7fca095aa62ad199f82ffe4af7ec0aa
F20101124_AACYGI witek_r_Page_020thm.jpg
6849c291b11e6eaf8260cbbda3c2a28e
a502444e836be55d11df50c70029c4b43e060e40
6071 F20101124_AACXUN witek_r_Page_066thm.jpg
91961d0cd81ebf6eb561776316fe47c1
84a509ed6bba619810bc4b3025954c5997c3d418
49891 F20101124_AACXZK witek_r_Page_077.jpg
df7915e6e8efd246781ec975c1c2c80f
ff399b2a8f3647887363e77c4f1c5be759a21296
94612 F20101124_AACYBL witek_r_Page_060.jp2
3fb6c1c29d43ba35e3711fd682df5bb5
16a6cf3c6667ea8ffd471f85ac2cb8cd0ab86e26
16350 F20101124_AACYGJ witek_r_Page_022.QC.jpg
2b9684336ae1166e32aabec2f017819f
541c2899a4adb18dab0cd5a04a25d4a8150178e8
37847 F20101124_AACXUO witek_r_Page_014.jp2
9ce3a20ee3ba536ce8cbf048bb84a26c
69f3dc80f81a59b0d1c1a98801dc269b79153dcf
55031 F20101124_AACXZL witek_r_Page_079.jpg
3124281052bb9dfe4502e2899c700f47
37a4aed10e62f23e5c32c66491d07edb21add5d8
673987 F20101124_AACYBM witek_r_Page_064.jp2
2c7d5249f3d112f49c40a397cdc9b168
9e19ed82644dfb1777415906ca52865daf4f8aa2
4948 F20101124_AACYGK witek_r_Page_022thm.jpg
5e0141ff612522f9de05762e5d8bb59c
3410eeefd72d792d64bae9eb7630d29ca66274dc
53149 F20101124_AACXZM witek_r_Page_080.jpg
e293f1c00ce246b1937310dd19784cde
6f324d7b2cda2a948ac594376db7a36cee5870a1
87532 F20101124_AACYBN witek_r_Page_066.jp2
c14e9e007547cb11e656d9ca8858d5ab
4cf12cc241e430df9ad1ab63abada64a968e3ca0
F20101124_AACXUP witek_r_Page_103.tif
25228111d81c125559a6ad20bae36942
041cc32b445e566eef994f03bdaacbc49069969e
12288 F20101124_AACYGL witek_r_Page_023.QC.jpg
fdf58b97f7d423c51882f5bccc0a4d5f
3ac2cd118194c872d4625a4b053279dbe0fde120
48940 F20101124_AACXZN witek_r_Page_081.jpg
4c3ac9c3edaa68e6ae0c6ff2dc01b3ec
4f8555d00131625b59b6855dc24e988a2bc7eff8
77752 F20101124_AACYBO witek_r_Page_067.jp2
02ef7f9098e3839bfdb3d44f9eabe20a
a0016c5dbe3f779cc5cb9571115cbf93f7ed2253
50865 F20101124_AACXUQ witek_r_Page_063.jpg
1b4d432a8978b9a8b4e7ee6f0ff3888c
fb0597f2c5d21d82eb9f5baba23e5b9e40fa496c
13679 F20101124_AACYGM witek_r_Page_024.QC.jpg
6e4ffebb679c32753b54666c341daa24
58678f3940f1c3ce5f5866372638080bdca5ba7a
65973 F20101124_AACXZO witek_r_Page_087.jpg
47d3382a973d2abe7e05c80ce2023056
9f785b9738a3c5cf55f9b910aa26fccb23644094
88981 F20101124_AACYBP witek_r_Page_068.jp2
8a6ab9ff219bf9099c21beeac0a95378
51ecb0d5ee8846960bb591a568d7fe9a6d504395
2380 F20101124_AACXUR witek_r_Page_037thm.jpg
bc9acc9fb918be2361a1fd3ef05b82f6
2e612c67100360e08c896bad9e8e483302c868cb
4792 F20101124_AACYGN witek_r_Page_024thm.jpg
4bd00318b58b3d58408e0943ebd61efb
f39237612f1fd616508f61fd2975832b28000f4a
63930 F20101124_AACXZP witek_r_Page_088.jpg
3228675934e6a97598be719fa9ceb59c
d4d8ad91fba8ee9d626ae614e95e4f0aea51c90d
97078 F20101124_AACYBQ witek_r_Page_070.jp2
ee9669076ad0be2e6d7bd7843fb861af
30ec50fc6da40dfbf8dc597dc10aa943e0405095
5219 F20101124_AACXUS witek_r_Page_048thm.jpg
22a31bce0a6eb63dd8318d683992107c
8d81f856f18c9ca28c04dec00951a9b8cd1fae9f
19254 F20101124_AACYGO witek_r_Page_025.QC.jpg
8644d8a8a50dcc8ed917c52f723659f4
51ee577dc0a1c694ebcec2af5b45adb73c420939
68487 F20101124_AACXZQ witek_r_Page_089.jpg
4282fa74411b9dfce144b096691b64a0
3c74c69cb3d786698267e39ad4127f615fb1b952
F20101124_AACXUT witek_r_Page_027.tif
2101d82f43d6116feb9d6b05a2449b6c
7bc6e9f5db5e97fc0b2ffd5a4a1cd19530d87b77
5622 F20101124_AACYGP witek_r_Page_025thm.jpg
0ea806543a29c8624160bb914bc35d63
292e1b8e1df9a4fefa25017fba57e4dc0d28c59d
61123 F20101124_AACXZR witek_r_Page_090.jpg
bcd97ab5a4a918799fd5e619b378eb4a
855787fccfad822103297032df0236401854c129
100920 F20101124_AACYBR witek_r_Page_071.jp2
e933da547f533a77c3d685e210396db5
147338507bc71baaa763fe714e098eec39745ee6
F20101124_AACXUU witek_r_Page_038.tif
5d0bde5e1dac888d902a3047321967e0
a4fc1feeb211e2eb8ee78324937666295861bacd
18753 F20101124_AACYGQ witek_r_Page_027.QC.jpg
154a04337cb27e25aec24728017bc327
c610ec21b4c4597a5ca44043e103ddc400671dc3
62890 F20101124_AACXZS witek_r_Page_094.jpg
32142dd4c8ef8104b5fa2e9f29e353ff
0b1dbfe47c8cd6d255ba6c777f55f1633d512a13
88854 F20101124_AACYBS witek_r_Page_074.jp2
3f8a53dde4eec83868cf9dd7e3ce76de
1dd709e90626ebeaa03596fb8d0a69729384573c
48855 F20101124_AACXUV witek_r_Page_012.jpg
ede6d396cb577c0f0cca485433c412b7
9e7f2ccc553ab8a9334ccabca68ccd2b4d119ca5
5289 F20101124_AACYGR witek_r_Page_028thm.jpg
2ae9f323a8988add041dc3023d385783
3984c5ef58a8880eaf2445a0379a95ed7bbda7fb
64574 F20101124_AACXZT witek_r_Page_095.jpg
345990758eb1d71da6bc4bc860364cb4
bbe6b65517ec8c9349b0af2db3b7754cd4fd0c8a
77948 F20101124_AACYBT witek_r_Page_076.jp2
746eef57ffcebb4db86cc685fca19ad5
f42f54c895987294f0922ce686ea094923f7190e
18222 F20101124_AACXUW witek_r_Page_028.QC.jpg
0e20e5aca3ddfa780460550154c81b37
78189db09bf8826ade398164b6cc8cebeebbb314
18300 F20101124_AACYGS witek_r_Page_029.QC.jpg
4a5362e1b0eb4dfc80c67b0f77576c8e
80dccfb7858ec36bbfeec530995bb38c2524ea77
65572 F20101124_AACXZU witek_r_Page_096.jpg
c0bb03d99911a921c0ea3e06258c8330
ad41e556d7dd472e084422b1624e51c37363bf1c
696585 F20101124_AACYBU witek_r_Page_077.jp2
a04fd4ed15d7c26d75e7906c6843ae99
bc5d4ede373bec16ffaf4b37dfff44b721ba8efb
16058 F20101124_AACXUX witek_r_Page_018.QC.jpg
16e5d01c0edf516cecc8bd4b7cdbef44
b2df8954cbef856af21c7f15ca16213a61a9082f



PAGE 1

STUDIES IN SYNTHETIC METHODOLOGY: ROUTES TO SULFURAND NITROGEN-CONTAINING COMPOUNDS By RACHEL M. WITEK A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2005 i

PAGE 2

Copyright 2005 by Rachel M. Witek ii

PAGE 3

I dedicate this work to my mother Cheryl Lynn Fuller and to my father Kenneth Ray Fuller. This is also for my grandmother Lillie Grace Fuller, my grandfather Joseph Ivy Fuller, and my husband Rafal Piotr Witek. I never would have achieved any of this without their love and words of wisdom. iii

PAGE 4

ACKNOWLEDGEMENTS I am greatly indebted to many people in the preparation of this manuscript. First, I am fortunate to have had the opportunity of working for Prof. Alan R. Katritzky, whose drive and dedication compel those around him to strive for higher goals. I thank my committee members (Dr. Hartmut Derendorf, Dr. Kirk S. Schanze, Dr. Michael J. Scott, and Dr. Jon D. Stewart) for their helpful suggestions and instructions. I would like to thank all of the members of Dr. Katritzkys laboratory, my colleagues, and my dear friends: Dr. Valerie Rodriguez-Garcia, Dr. Stephane Ledoux, Hongfang Yang, Jim W. Rogers, Chaya Pooput, Dr. Ken Suzuki, Rong Jiang, Dr. Anya Gromova, Dr. Aleksander Shestopalov, Niveen Khashab, Chunming Cai, Hui Tao, Parul Angrish, Dr. Sanjay Singh, Dr. Ashraf A. A. Abdel-Fattah, and Dr. Rufine Aku-Gedu. Very special thanks go to Dr. Anatoliy Vakulenko, Mrs. Galina Vakulenko, Elizabeth Cox, Dr. Novruz Akhmedov, Mrs. Rena Akhmedova, Dr. Ference Soti, Mrs. Marta Soti, Mr. Zuoquan Wang, Dr. Zehui Cao, Dr. Dennis Hall, Dr. Eric Scriven, and Dr. Satheesh Nair for all their help. iv

PAGE 5

TABLE OF CONTENTS Page ACKNOWLEDGEMENTS...............................................................................................iv LIST OF TABLES............................................................................................................vii LIST OF FIGURES.........................................................................................................viii LIST OF SCHEMES..........................................................................................................ix ABSTRACT.......................................................................................................................xi CHAPTER 1 GENERAL INTRODUCTION.......................................................................................1 2 THIOACYLBENZOTRIAZOLES AS PRECURSORS TO THIOAMIDES..............15 2.1 Introduction............................................................................................................15 2.2 Results and Discussion..........................................................................................18 2.2.1 Preparation of Thiocarbonylbenzotriazoles (RCSBt)................................18 2.2.2 Synthesis of Thioamides from Thiocarbonylbenzotriazoles (RCSBt).......20 2.3 Conclusion.............................................................................................................20 2.4 Experimental Section.............................................................................................22 2.4.1 General Procedure for the Preparation of Thiocarbonylbenzotriazoles.....22 2.4.2 General Procedure for the Preparation of Thioamides..............................23 3 THIOACYLBENZOTRIAZOLES AS PRECURSORS TO THIONOESTERS.........26 3.1 Introduction............................................................................................................26 3.2 Results and Discussion..........................................................................................27 3.2.1 Preparation of Thiocarbonylbenzotriazoles (RCSBt)................................27 3.2.2 Synthesis of Thionoesters from Thiocarbonylbenzotriazoles (RCSBt).27 3.2.3 Attempted Preparation of Dithioesters.......................................................28 3.3 Conclusion.............................................................................................................29 3.4 Experimental Section.............................................................................................30 3.4.1 General Procedure for the Preparation of Thiocarbonylbenzotriazoles.....30 3.4.2 General Procedure for the Preparation of Thionoesters.............................30 3.4.3 General Procedure for the Preparation of a Dithioester.............................32 v

PAGE 6

4 1-(ALKYL/ARYLTHIOCARBAMOYL)BENZOTRIAZOLES AS STABLE ISOTHIOCYANATE EQUIVALENTS: SYNTHESIS OF DIAND TRISUBSTITUTED THIOUREAS.............................................................................33 4.1 Introduction............................................................................................................33 4.2 Results and Discussion......................................................................................36 4.2.1 Preparation of (Alkyl/arylthiocarbamoyl)benzotriazoles..................36 4.2.2 Preparation of Diand Trisubstituted Thioureas...................38 4.2.3 N, N-Disubstituted(thiocarbamoyl)benzotriazoles.....................39 4.2.4 One-Pot Synthesis of Unsymmetrical Thioureas............... 4.3 Conclusion.....................41 4.4 Experimental Section.....................42 4.4.1 General Procedure for the Preparation of Reagents...............................42 4.4.2 General Procedure for the Preparation of Thioureas.................................44 4.4.3 General Procedure for the One-Pot Preparation of Thioureas...................47 5 SYNTHESIS OF 3,3-DIARYLPYRROLIDINES FROM DIARYL KETONES........50 5.1 Introduction........................50 5.2 Results and Discussion.................. 5.3 Conclusion.....................................................................56 5.4 Experimental Section.............................................................................................57 5.4.1 General Procedure for the Preparation of 2-Cyano-3,3-diarylacrylates....57 5.4.2 General Procedure for the Preparation of Diaryl-pyrrolidine-2,5-diones..59 6 SYNTHESIS AND CHARACTERIZATION OF BLOWING AGENTS........... 6.1 Introduction........................62 6.2 Results and Discussion...................... 6.2.1 Thermoanalyses of Blowing Agents with Reported Decompositions.......64 6.2.2 Synthesis and Thermoanalyses of Pentaerythritol Tetranitrate.............67 6.2.3 Synthesis and Thermal Testing of Non-commercially Available Agents.69 6.2.3.1 Blowing Agents Derived from Disulfonyl Dichlorides..........69 6.2.3.2 N-(Hydrazinocarbonyl)-4-methylbenzenesulfonamide..............71 6.3 Conclusion.........................72 6.4 Experimental Section.................73 6.4.1 Synthesis of Pentaerythritol Tetranitrate........................... 6.4.2 Disulfonyl Dichloride Derivatives.............................................74 6.4.3 Synthesis of N-(Hydrazinocarbonyl)-4-methylbenzenesulfonamide.....77 7 CONCLUSION.............................................................................................................78 REFERENCES.......... BIOGRAPHICAL SKETCH.........................................................................91 vi

PAGE 7

LIST OF TABLES Table Page 2-1 Preparation of thiocarbonylbenzotriazoles 2.3ad................................18 2-2 Preparation of thioamides 2.4af.......................20 3-1 Synthesis of thionoesters 3.3 from thioacylation agents 2.3..............................28 4-1 Thiocarbamoybenzotriazoles 4.4 prepared................ 4-2 Di-and trisubstituted thioureas 4.5 prepared..................................38 4-3 Thioureas prepared using 4.3 in one-pot reactions with 1 o and 2 o amines........41 5-1 3,3-Diarylpyrrolidines prepared and the intermediates.....................55 vii

PAGE 8

LIST OF FIGURES Figure Page 1-1 Biologically active thioamides............................................................. 1-2 Thionoesters as probes of enzyme binding sites..........................................9 1-3 3,3-Diarylpyrrolidine structure..........................................................11 1-4 Common blowing agents...................................................................13 1-5 Synthesized blowing agents.......................................................................14 5-1 1 H NMR of ethyl [2-cyano-3-phenyl-3-(4-methoxyphenyl)]acrylate (5.2b).....51 5-2 13 C NMR of ethyl [2-cyano-3-phenyl-3-(4-methoxyphenyl)]acrylate (5.2b)... 5-3 1 H NMR of ethyl (2-cyano-3-phenyl-3-pyridinyl)acrylate (5.2i)......................53 6-1 Blowing agents with reported Differential Scanning Calorimetry (DSC) values.........................................................................................63 6-2 Literature blowing agents without reported DSC values.......................64 6-3 Thermoanalyses of (E)-1,2-diazenedicarboxamide (6.1)...................................65 6-4 Thermoanalyses of Nitrosan (6.2)..............................................................66 6-5 Thermoanalyses of dinitrosopentaethylenetetramine (6.4)................................67 6-6 Thermoanalyses of pentaerythritol tetranitrate (6.5).................68 6-7 Thermogravimetric analyses of compounds 6.6.8.............................................70 viii

PAGE 9

LIST OF SCHEMES Schemes Page 1-1 Introduction of the benzotriazole group into molecules......................................2 1-2 Selective activation of a molecule by benzotriazole................................ 1-3 Isomers of benzotriazole..............................................4 1-4 Synthesis of asymmetric thioureas from bis(benzotriazol-1-yl)methanethione......5 1-5 Preparation of symmetrical thioureas..........................................5 1-6 Classical syntheses of asymmetric thioureas...........................................................6 1-7 Benzotriazole-assisted thioacylation....................................................................6 1-8 Applications of N-acylbenzotriazoles......................................................................7 1-9 Classical routes to thioamides and thionoesters.......................................................9 1-10 Thiocarbonyl and thioformate derivatives of classical thioacylation reagents......10 1-11 3,3-Diarylpyrrolidine preparation from diarylacetonitriles...................................11 1-12 [4+2] Cycloadditions of nitroalkenes and activated alkenes.................................12 1-13 3,3-Diarylpyrrolidine preparation from 4-amino-3,3-diphenylbutan-1-ol.............12 1-14 Synthesis of 3,3-diarylpyrrolidines........................................................................12 2-1 Syntheses of heterocycles from thioamides...........................................................16 2-2 Classical routes to thioamides....................................................................17 2-3 Benzotriazole-mediated syntheses of thioamides..................................................18 2-4 Rapoports method for thiocarbonyl-6-nitro-1H-benzotriazoles 2.8.............19 3-1 Classical syntheses of thionoesters................................................27 ix

PAGE 10

3-2 Synthesis of thionoesters from thiocarbonylbenzotriazoles..................................27 3-3 Benzyl dithiobenzoate (3.4) from thiocarbonylbenzotriazoles..............................29 4-1 Literature methods to prepare symmetrical thioureas............................................34 4-2 Literature methods for unsymmetrical thioureas...................................................35 4-3 Preparation of thioureas from bis(benzotriazol-1-yl)methanethione.....................36 4-4 Comparison of benzotriazole and imidazole reagents...........................40 5-1 Preparation of 3,3-diarylpyrrolidines.............................................54 5-2 Mono-reduction of succinimide 5.7h.................................56 6-1 Synthesis of pentaerythritol tetranitrate (6.5).... 6-2 Synthesis of disulfonyl azide 6.6.......................69 6-3 Preparation of disulfonyl azide 6.7........................................71 6-4 Preparation of disulfonylhydrazine 6.8..............................................71 6-5 Synthesis of N-(hydrazinocarbonyl)-4-methylbenzenesulfonamide (6.9).............72 x

PAGE 11

Abstract of Dissertation Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy STUDIES IN SYNTHETIC METHODOLOGY: ROUTES TO SULFURAND NITROGEN-CONTAINING COMPOUNDS By Rachel M. Witek August 2005 Chair: Alan R. Katritzky Major Department: Chemistry Development of novel methodologies for the preparation of a diverse array of synthetic targets is the theme of this work. The first four chapters cover the development of benzotriazole methodologies as alternative routes to conventional syntheses. The focus in this area is on the syntheses of thioureas, thionoesters, and thioamides. The second part of this dissertation (Chapters 5 and 6) describes collaborative investigations with Merck and the US Army. Development of routes to 3,3-diarylpyrrolidines and blowing agents involved compilation and modification of classical syntheses. Chapter 1 provides a general overview of the methodologies employed in the preparation of the target compounds and includes an overview of cognate work carried out in these fields. Chapters 2 and 3 describe investigations of the synthesis and reactivity of benzotriazole reagents for thioacylation (RCSBt). Syntheses of thioamides (Chapter 2) and thionoesters (Chapter 3) are also reported. xi

PAGE 12

In Chapter 4, a route to asymmetric thioureas using benzotriazole methodology is described. 1-(Alkyl/arylthiocarbamoyl)benzotriazoles were synthesized in 91% yields from bis(benzotriazolyl)methanethione and were used as isothiocyanate equivalents for the efficient synthesis of seven secondary and eight tertiary thioureas in high yielding, convenient processes. Access to bioactive 3,3-diarylpyrrolidines (Chapter 5) was provided by 3,3-diarylsuccinic acids, which were prepared from diaryl ketones by Knoevenagel condensation with ethyl cyanoacetate followed by KCN addition and hydrolysis. These succinic acids were cyclized using primary amines to the respective diarylpyrrolidones, which were reduced to 3,3-diarylpyrrolidines using BH 3 THF. Chapter 6 details the preparation of blowing agents (energetic additives that reduce the cook off violence of explosive mixtures) for the US Army. Described herein are reasonable syntheses that potentially can be scaled to produce 50 g quantities of blowing agents possessing the following desirable properties: quick generation of gas, mp >75 o C, stable to shock and friction, and a DSC-indicated gas evolution of ~180 o C. xii

PAGE 13

CHAPTER 1 GENERAL INTRODUCTION Development of novel routes to target compounds possessing synthetic utility, biological activity, and desirable physical properties is the central theme tying together the diverse applications of synthetic organic chemistry covered in this dissertation. Utilization of convenient starting materials, which permit facile conversion to intermediates and desired products under mild and tolerant conditions, is a key component of an efficient methodology, and one for which we have strived. For the past twenty years, the Katritzky group has developed synthetic methodologies employing the benzotriazolyl group, as a selective auxiliary and masked synthon to carry out organic functional group transformations and for the synthesis of diverse heterocycles [95SL99, 95S1497, 95T13271, 97JOC4155, 99JHC1501, 00PAC1597, 01ARK19, 02ARK134, 03JOC5720, 03JOC1443, 03JOC4932, 04JOC811, 04JOC2976]. The benzotriazole group is easily introduced into a molecule (Scheme 1-1) by either nucleophilic substitution of various leaving groups (halide, alkoxide, aryloxide, alkylsulphide, or arylsulphide anions, etc.), addition to C-heteroatom multiple bonds, Michael addition to electron deficient C-C double or triple bonds, addition to electron rich C-C multiple bonds, or three component condensations of ketones, benzotriazole, and N, O, or S nucleophiles. 1

PAGE 14

2 RX BtNaRBt ROH BtHX = Cl, Br, I, OR, SR, etc.RBt R X O R Bt O R X S R Bt S BtNaBtNaOR' R R OR' BtHBt R R OR' R R Y R R YH Bt BtHY = O, S, NR, NR2 O R'' R R' BtH O R'' R R' Bt R R' R'' Z = OR, NR, SR, NCOR BtH R R' R'' Bt R R R' BtH Bt R R ZR' NNN Nucleophilic Substitutions Addition Reactions+ Three Component Condensations + + Z Z Z Z Bt = Scheme 1-1. Introduction of the benzotriazole group into molecules.

PAGE 15

3 Benzotriazole functions in a dual role as a selective activator of the part of the molecule to which it is attached (Scheme 1-2) and also as a good leaving group that is stable, non-toxic and easily removed in workup by a mild base wash. RCH X Bt R X+ X = NRR', OR, SR, etc. Bt OEtBt OEt nBuLiBtR Bt H H nBuLiR Bt H Li Bt Y R R Bt Y Li E = electrophile Bt OEtE Y = OR, OCOCH3, etc. i) ii) iii) iv)+solvolysis Scheme 1-2. Selective activation of a molecule by benzotriazole. Benzotriazole activates a molecule primarily in four ways: i) as a leaving group, ii) as a proton activator, iii) as an ambident anion directing group, and iv) as a cation stabilizer [00PAC1597]. These properties of benzotriazole are harnessed to provide benzotriazole reagents [98AA33, 98CR409], synthesis of heterocycles [98JCSPT(1)1059, 98JHC467, 98JOC3445, 98JOC9989, 99JHC371, 99JHC473, 99JHC755, 99JOC6076], and various organic group transformations [98AA33, 98CCCC599, 98CR409, 99T8263]. N-Substituted benzotriazoles are generally more stable, easier to prepare, and more versatile than their halogen and imidazole analogues [98CR409]. Some N-substituted benzotriazoles (usually -aminoalkyl, -alkoxyalkyl, or -alkylthiolalkyl)

PAGE 16

4 exist as 1and 2-substituted isomers equilibrating through an ionic form in which the benzotriazole dissociates and then re-attaches (Scheme 1-3) [98CR409]. These isomers show similar stability and reactivity; thus, separation usually is not required before further reactions. NN N NNN X R X+ R NNN R X 1-substituted Bt 2-substituted Bt X = NR2, OR, SR Scheme 1-3. Isomers of benzotriazole. Over the past twenty years, the Katritzky group has applied benzotriazole methodology to numerous synthetic targets. As part of our on-going research into providing convenient and efficient benzotriazole alternatives to hazardous and poor yielding classical synthetic routes, the development and application of novel benzotriazole thioacylating agents (Chapters 2) are disclosed in this dissertation. The first class of benzotriazole thioacylation reagents developed by our lab was thiocarbamoylbenzotriazoles. These reagents were first applied [04JOC2976] to the synthesis of novel asymmetrical thioureas (Chapter 4, Scheme 1-4), which are antibacterials [81JCSPT12186], fungicides [55CR181, 85JHC137], phenoloxidase enzymatic inhibitors [69CA101668v], and synthetic precursors to fiveand six-membered heterocycles[75AHC99]. Thiocarbamoylating benzotriazole reagents behave as isothiocyanate synthons and react with a variety of amines under mild conditions providing asymmetrical thioureas in high yields.

PAGE 17

5 SBtBtNHR1R2NH2RSNHBtRNHR1R2SNHNRR1R2(Stable)1)NH2R2)SNHNRR1R2one-pot Scheme 1-4. Synthesis of asymmetric thioureas from bis(benzotriazol-1-yl)methanethione. Traditional routes to thioureas usually employ thiophosgene or a thiophosgene equivalent like 1,1'-thiocarbonyldiimidazole in reactions with amines and have mainly focused on the preparation of symmetrical thioureas (Scheme 1-5) [62ACIE351, 62LA98, 78S803]. RR'NHS Cl Cl S N N R' R R' R RR'NHS N N N N 2 + 2 + Scheme 1-5. Preparation of symmetrical thioureas. The few reported syntheses of asymmetric thioureas (Scheme 1-6) fall into three main categories: i) reaction of amines with a thiocarbonyl transfer reagent (1-(methyl-dithiocarbonyl)imidazole) [00T629]; ii) reaction of isothiocyanates with amines [40CB1420]; iii) direct displacement, by amines, from 1,3-diphenylthiourea [93TL6447] or thiuram disulfide [95SC3381].

PAGE 18

6 S N N R R R R S SMe N N S X N R R X = NHPh, SCSNR NCS1) R1R2NH2) R3R4NH 31 2 4 i) ii) iii)1 2 1R2R3R4NH R1 R2 = H +R3R4NH Scheme 1-6. Classical syntheses of asymmetric thioureas In classical preparations of asymmetric thioureas, usually isothiocyanates are employed in reactions with amines [40CB1420, 55JACS4328, 63CJC2123, 89SC965]; however, isothiocyanates are poor reagents with most being oils that are difficult to handle. Furthermore, access to functionalized isothiocyanates is limited by synthesis constraints. In comparison, the benzotriazole-derived isothiocyanates disclosed in this work are stable, readily prepared solids (in all but two examples) that react easily with amines to provide asymmetrical thioureas. We have recently extended the methodology investigated in the synthesis of asymmetric thioureas to the preparation of other benzotriazole-containing thioacylating reagents (Scheme 1) and their application in the synthesis of thioamides (Chapter 2) and thionoesters (Chapter 3). R'R''NHS OR' R S N R NN S N R R''R' R'OH Scheme 1-7. Benzotriazole-assisted thioacylation.

PAGE 19

7 Acid chlorides are classical acylation reagents; however, their instability and hazards associated with their use have prompted research into more stable and environmentally friendly reagents such as N-acylimidazoles and N-acylpyrazoles [98MI]. In recent years, the Katritzky group has developed several novel benzotriazole acylating reagents and has applied these compounds quite successfully to the synthesis of: i) amides [00JOC8210], ii) -keto sulfones [03JOC1443], iii) -substituted -ketonitriles [03JOC4932], iv) oxazolines and v) thiazolines [04JOC811], and vi) C-acylated-pyrroles and vii) C-acylated-indoles (Scheme 1-8) [03JOC5720]. R NC O R' O N R NN O N R R''R' NH O R NH O R O R S O O R' ON R SN R i) ii) iii) iv) v) vi) vii) Scheme 1-8. Applications of N-acylbenzotriazoles. These studies led to investigations of analogous thioacylation reagents and their reactions (Chapters 2 and 3). Thioamides and thionoesters were selected as a test of nucleophilic reactivity of alcohols and amines towards the thioacylation reagents and also for their utility as biologically active molecules and importance as synthetic

PAGE 20

8 intermediates. Thioamides are pesticidal [96CA455871], fungicidal [94CA533719, 03CA132360], and anthelmintic agents (Figure 1-1) [01CA839295]. Azadecalinthioamide moieties are included in drugs used to treat patients with high cholesterol levels [93CA191562]. NHOC5H11SC5H11OPesticidal and Fungicidal AgentNS(CH2)4SCH2CH2NMe2MeHHOMeInhibitor of Cholesterol BioynthesisNOSNOMeMeMeMeMeOOSNMeMeMeOOSNMeMeMeOOSMeR1R1MeMeAnthelmintic Agent Figure 1-1. Biologically active thioamides Thioamides are used as synthons for the preparation of heterocycles. [88H1953, 03CR197]. For example, thiazoles are commonly prepared via Hantzsch reaction of -haloketones with thioamides [75JHC643, 03JOC7887]. Thionoesters are attractive synthetic targets because of their incorporation into synthetically useful macrocycles such as crown ethers [83JOC2653] and also for their application as chemical probes of the enzyme binding sites of cysteine [04BJ699] and serine [83JBC59] proteases (Figure 1-2).

PAGE 21

9 NH CH3 O O NH O S CH3 Probe of Cysteine ProteaseCysteine Protease Enzyme Figure 1-2. Thionoesters as probes of enzyme binding sites. Classical routes to thioamides and thionoesters involve reaction of thiophosgene [78S803] or thiophosgene equivalents (e.g., 1,1'-thiocarbonyldiimidazole [62LA98]) with the respective amines or alcohols (Scheme 1-9). Thiocarbonyl [83TL4927] [70LA201] [73LA636][68LA209] and thioformate [68CB3517] [74JOC3641] [62ACIE351] derivatives of these classical thioacylating agents are also employed (Scheme 1-10). Alternatively, thionating agents such as sulfur dihydride, [85T5061] phosphorus pentasulfide [70BSCF2272, 73S149], and Lawessons reagent convert the carbonyl groups of esters and amides into thiocarbonyls. Cl Cl S N N S N N ROH or RNH2 ROH or RNH2RY Cl S RRY R S Y = O, NHRY N S RRY R S Y = O, NH 1 1 MX 1 1 MX Scheme 1-9. Classical routes to thioamides and thionoesters.

PAGE 22

10 RO Cl S R Cl S R N S N RO N S N Scheme 1-10. Thiocarbonyl and thioformate derivatives of classical thioacylation reagents. Benzotriazole-assisted thioacylations offer competitive alternatives to classical syntheses providing thioamides in higher yields and access to novel compounds. In addition, the use of unstable or hazardous reagents is avoided and the mild conditions employed are tolerated by a large variety of functional groups. The two later chapters of this dissertation cover studies conducted in collaboration with Merck (Chapter 5) and the US Army (Chapter 6). In chapter 5, the development of an efficient route to 3,3-diarylpyrrolidines is detailed. The Katritzky group was approached by Merck to develop a general route to 3,3-diarylpyrrolidines due to interest in pyrrolidines as scaffold molecules in drug development (Scheme 1-3). Nitrogen containing five-membered rings are well known for their antibacterial, antiprotozoal, anticonvulsant, and anti-inflammatory properties [51JOC4895, 97BMCL979, 98JOC4481]. 3,3-Diaryl N-heterocycles such as succinimides and hydantoins show particularly potent anticonvulsant activity [51JOC4895].

PAGE 23

11 N R R' X Figure 1-3. 3,3-diarylpyrrolidine structure. Traditional routes to 3,3-diarylpyrrolidines suffer from the use of difficult-toaccess, non-commercially available starting materials, the need for expensive catalysts, or poor yields. Additionally, only a few syntheses are reported in the literature: i) preparation from diarylacetonitriles (Scheme 1-11) [53JACS2986], ii) [4 +2] cycloadditions of nitroalkenes and activated alkenes (Scheme 1-12) [93JOC3857], and iii) synthesis from 4-amino-3,3-diphenylbutan-1-ol hydrochloride (Scheme 1-13) [58JACS2519]. R R' H CN R R' O O CNEt NH O R R' NH R' R N Me R' R HCHOHCOOHLiAlH4BrCH2COOEtNaNH2H2, Raney nickel Scheme 1-11. 3,3-Diarylpyrrolidine preparation from diarylacetonitriles.

PAGE 24

12 N+ O O On-Bu N+O O On-Bu N H MADR1R2R2R2R1R1 + O Me Al O Me Me MAD = Scheme 1-12. [4 +2] Cycloadditions of nitroalkenes and activated alkenes O NH PhPhMe EtMgBrNH4Cl O NH2 PhPhMe Et LiAlH4 OH Me NH2 Et PhPh NH Et Me PhPh +1) HCl2) pyrolysis Scheme 1-13. 3,3-Diarylpyrrolidine preparation from 4-amino-3,3-diphenylbutan-1-ol hydrochloride. A new route to 3,3-diarylpyrrolidines was developed that utilizes readily available benzophenones (Scheme 1-14). Good to moderate yields of diversely functionalized 3,3-diarylpyrrolidines were obtained demonstrating the generality and efficiency of the new route as compared to previous methods. ArAr O COOHHOOCAr Ar N Ar Ar R 3 steps 4 steps Scheme 1-14. Synthesis of 3,3-diarylpyrrolidines.

PAGE 25

13 As part of a collaborative project with the US Army to develop novel munition formulations (Chapter 6), we have investigated the synthesis of a select group of energetic additives known as blowing agents and characterized their decomposition. The utility of blowing agents is not only limited to the development of explosive formulations. Blowing agents, such as dinitropentamethylenetetramine (DNPT) and p-tolysulfonylhydrazine (PTS) (Figure 1-3), are employed in the production of microcellular rubber [85PRPA281]. Azodicarbonamide (ADCA) (Figure 1-4) is a gas-generating agent commonly used in the plastics industry to provide polymer foams [99CP35,02HK427, 02JCED554]. Another significant application of blowing agents is their use in propellant formulations [95JPP838, 97HC153, 03JTAC931]. NN O NH2 NH2 O Me S O O NH NH2 N N N N ONNO (mp 200-206 oC) DSC 225 oC ADCA (mp 103 oC) PTS DSC 195 oC DNPT Figure 1-4. Common blowing agents. For Army applications to trinitrotoluene (TNT) and cyclotrimethylenetrinitramine (RDX) formulations, blowing agents that display separate isotherms from the other components of the explosive mixtures are required. Inclusion of these energetic additives in formulations provides a means of tempering the violence of explosions. Simple and convenient methodologies that allow scale-up of syntheses of blowing agents have been developed for five compounds (Figure 1-5).

PAGE 26

14 O S O O S O O N3N3 S S O O S O O N3N3 S S O O NH NH2 S NH O O NH2 Me S O O NH O NH NH2 (mp 97 98 oC) (mp 163 oC) (mp 200 oC) (mp 75 77 oC) ONO2 ONO2 ONO2 O2NO (mp 141 oC) Figure 1-5. Synthesized blowing agents. Chapter 5 provides the evaluation of the thermal and physical properties of the synthesized gas-generating agents. In summary, we have developed efficient syntheses of blowing agents, provided characterization of their hitherto unreported physical properties and evaluated their utility as munition additives based on their decomposition profiles. Also, a general route to 3,3-diarylpyrrolidines has been developed that provides access to biologically active scaffolds, which have the potential to be incorporated into new drugs. The most significant work disclosed in this dissertation is the development of methodologies utilizing benzotriazole thioacylation reagents as alternatives to problematic traditional routes. These general and convenient procedures provided access to numerous novel thioamides, thionoesters, and asymmetric thioureas.

PAGE 27

15 CHAPTER 2 THIOACYLBENZOTRIAZOLES AS PRECURSORS TO THIOAMIDES 2.1 Introduction Classical thioacylating agents include thiophosgene [78S803], carbon disulfide [03ARK155], and 1,1'-thiocarbonyldiimidazole[62LA98]. These reagents provide access to a wide variety of diversely functionalized thioamides. Thiocarbonyl [68LA209, 70LA201, 73LA636, 83TL4927] and thiocarbamate [65CB1293, 95JMC4929] derivatives can also be prepared from these classical thioacylating agents and reacted further with the appropriate nucleophile to afford the thioamides. Alternatively, thionating agents such as sulfur dihydride [85T5061], phosphorus pentasulfide [70BSCF2272, 73S149], and Lawessons reagent convert carbonyls into thiocarbonyl compounds. Thioamides exhibit a broad range of biological activity and have been implemented as pesticidal [96CA455871], fungicidal [94CA533719, 03CA132360], and anthelmintic [01CA839295] agents. In particular, N-substituted p-alkoxythiobenzamides have been shown to possess potent anti-tubercular activity [65BSCF3623]. Recently, azadecalinthioamides were proven to be inhibitors of cholesterol biosynthesis [93CA191562]. Much interest in thioamides concerns their functionalization and use as intermediates in organic synthesis [49BSCF172, 79JIC545], notably as synthons for the preparation of heterocycles (Scheme 2-1) [88H1953, 03CR197]. 15

PAGE 28

16 R N S R' R" SN R"' R i) R', R" = H N S R" EWG R"' N R" R i)ii)iii)iv) N N R R" ii) R' = CH2-EWGiii) R' = CH2Btiv) R' = CH2BtR'" R" = HEWG R"' R" = H Scheme 2-1. Syntheses of heterocycles from thioamides. Thiazoles are commonly prepared via Hantzsch reaction of -haloketones with thioamides (Scheme 2-1) [75JHC643, 03JOC7887]. Also, thioamides with active hydrogens are known to undergo addition-cyclization reactions with alkylidene derivatives of ketones to afford pyridine-2-thione derivatives [99PSS253]. Derivatives of pyrrole can be synthesized from N-(benzotriazolylmethyl)thioamides and ,-unsaturated esters, ketones, or nitriles [95T13271]. Similarly, imidazole derivatives can be prepared by reaction of N-(benzotriazolylmethyl)thioamides with imines. Retrosynthetically, thioamides have been synthesized via three main approaches (see Scheme 2-2): Route A typically involves thionation (A.i) of an amide by utilization of phosphorus pentasulfide[49BSCF172] or Lawessons reagent [85T5061]. Another method (A.ii) uses thiocarbonyl transfer reagents; 1,1'-thiocarbonyldiimidazole and bis-(1,2,4-triazole)methanethione have been shown to react with aldolnitrones to give thioamides in good yields [83TL4927].

PAGE 29

17 R2NCSSSSNR1R2NR1R2RMgXRLiRMgXSNMeMeClHNR1R2SRNR1R2SRNR1R2RSYP2S5 or Lawesson's Reagent(Im)2CSRN+O-MeORNR1R2A (i)+RouteARoute BRoute C B (i)NiCl2(dppe)Route CY= Cl, OEt, Im, BtNote: Im = Imidazolyl, Bt = BenzotriazolylA (ii)RoutesB (ii)B (iii) Scheme 2-2. Classical routes to thioamides. Through Route B, thioamides can be prepared by reactions of B.i) thiuram monosulfides with organolithium reagents [93S483], B.ii) aryl isothiocyanates with Grignard reagents[66JPC259, 71JICS791], or B.iii) N,N-dimethylthiocarbamoyl chloride and Grignard reagents catalyzed by NiCl 2 (dppe) [94SL719]. Access to thioamides by Route C is provided by reaction of amines with thiol esters [65BSCF3623], with thiobenzoylchlorides [68LA209], or with thioazolides [70LA201, 73LA636]. In our groups previously reported syntheses of thioamides (Scheme 2-3) in one-pot reactions from Grignard reagents, carbon disulfide, and amines mediated by 1-trifluoromethyl-sulfonylbenzotriazole [95S1497, 95SL99]; the putative intermediate thiocarbonylbenzotriazoles 2.3 were evidently formed, but were not isolated. Decomposition of analogous methyl-substituted thioacylimidazoles has been reported [73LA636]. We now report that the use of 1-chlorobenzotriazole (instead of 1-trifluoromethylsulfonylbenzotriazole) as the mediating reagent allows isolation of 2.3 in

PAGE 30

18 some cases (Scheme 2-3) and that thioacylbenzotriazole 2.3 are highly efficient thioacylation reagents. RMgBrCS2THFRSSMgBr2 BtXRSBtRSNR1R2R1R2NH2.1 2.2 2.3 2.4X = SO2CF3, Cl Scheme 2-3. Benzotriazole-mediated syntheses of thioamides. 2.2 Results and Discussion 2.2.1 Preparation of Thiocarbonylbenzotriazoles (RCSBt). Thiocarbonylbenzotriazoles 2.3ad were prepared from carbon disulfide, 1-chlorobenzotriazole and the respective Grignard or organolithium reagents (Table 2-1). The benzenoid thiocarbonylbenzotriazoles (42%, average 68%) are all stable reddish solids. Benzotriazol-1-yl-(4-methylphenyl)methanethione (2.3a) displays the characteristic 1 H NMR shifts for benzotriazole overlapping with aromatic shifts of the p-tolyl group 7.39 (d, J = 8.4 Hz, 2H), 7.55 (t, J = 7.5 Hz, 1H), 7.71 (t, J = 7.5 Hz, 1H), 8.14.19 (m, 3H), 8.39 (d, J = 8.4 Hz, 1H)}. A 13 C NMR shift ~170 ppm is common for the thiocarbonyl in compounds 2.3ad. Table 2-1. Preparation of thiocarbonylbenzotriazoles 2.3ad. 2.3 R % Yield a 4-Tolyl 63 b 4-Methoxyphenyl 89 c Phenyl 76 d 4-Chlorophenyl 42

PAGE 31

19 One limitation of this method is that use of Grignard reagent restricts this method to Grignard compatible functionalities. In addition, benzenoid aryl Grignard reagents react quite smoothly; however, alkyl, alkynyl, and heteroaryl Grignard and organo-lithium reagents either fail or give poor yields. Attempts to obtain n-butyl substituted thiocarbonylbenzotriazole in higher yield by conducting the reactions at 0 o C and at -78 o C failed. Likewise conversion of n-butyllithium to n-butylzinc bromide or n-butylcupric bromide for reactions with carbon disulfide and 1-chlorobenzotriazole failed. The stability of non-benzenoid thiocarbonylbenzotriazoles thus appears to be poor. Rapoport showed an electron-withdrawing nitro group on the benzotriazole moiety improves the stability and allows the isolation of aliphatic thiocarbonylbenzotriazoles (Scheme 2) [99JOC1065]. NH S R NH2 NO2N S R NN NO2 NH2 NH2 O2NHONO NH O R NH2 NO2 RCOClP2S5 2.5 2.6 2.7 2.8 Scheme 2-4. Rapoports method for thiocarbonyl-6-nitro-1H-benzotriazoles 2.8. This alternative method, however, is rather lengthy (carried out in three steps) and provides the desired thioacylation reagents in overall yields of only 48%. Thus, unless alkyl or nitrosubstituted thiocarbonyl-6-nitro-1H-benzotriazoles are the target, our Grignard method (Scheme 2-2) is the preferred means of obtaining thiocarbonylbenzotriazoles.

PAGE 32

20 2.2.2 Synthesis of Thioamides from Thiocarbonylbenzotriazoles (RCSBt). N-Monoand N,N-di-substituted thioamides 2.4af were readily prepared by reactions of thiocarbonylbenzotriazoles 2.3ad with the appropriate 1 o and 2 o amines, respectively (Scheme 2-2, Table 2-2). Table 2-2. Preparation of thioamides 2.4af. 2.4 R R 1 R 2 % Yield a 4-MeC 6 H 4 C 6 H 5 CH 2 H 99 b 4-MeOC 6 H 4 -(CH 2 ) 5 = R 1 93 c 4-MeC 6 H 4 C 2 H 5 C 2 H 5 87 d C 6 H 5 C 6 H 5 CH 2 H 97 e C 6 H 5 -(CH2) 2 O(CH2) 2 = R 1 78 f 4-ClC 6 H 5 PhCH 2 CH 2 H 66 Reaction of p-tolylthiocarbonylbenzotriazole (2.6a) with benzylamine afforded N-benzyl-(4-methylphenyl)thioamide (2.4a) in 99% yield. Simple base wash (5% sodium carbonate solution) followed by acidification with 1N HCl to remove benzotriazole and residual amines allows purification by recrystallization (5% ethyl acetate/hexanes). In this manner, thioamides 2.4af were provided in 66% to near quantitative yields. Formation of the thioamide is indicated by loss of benzotriazole signals in 1 H and 13 C NMR spectra and the shift of the thiocarbonyl peak to ~200 ppm. 2.3 Conclusion Routes to thioamides utilizing traditional thioacylation reagents, such as thiophosgene or 1,1'-thiocarbonyldiimidazole, suffer from the drawbacks that these reagents are inconvenient to handle either for being unstable to storage or for their high

PAGE 33

21 toxic, particularly in the case of thiophosgene, which can be lethal if spilled on the skin and is known to induce lung tumors upon exposure to mere trace amounts of vapors. Thus, the development of alternative thioacylation reagents that are safe, stable, non-toxic, and environmentally-friendly is indeed a significant advance in the area of sulfur chemistry. Our method to produce thioacylbenzotriazoles, although limited to synthesis of benzenoid derivatives, avoids highly toxic reagents and provides highly efficient thioacylating agents, which are safe, easy to handle solids that are stable to months of storage on the bench. Moreover, in comparison to previously described routes to thioamides, the use of our thioacylbenzotriazole reagents offers the advantages of: i) diversification of functional groups attached to the thioamide nitrogen (only N,N-dimethyl or N, N-diethyl substitutions are reported for NiCl 2 (dppe) catalyzed reactions of Grignard reagents with thiocarbamoyl chlorides) [94SL719]; ii) ease of purification in that mild base wash (5% sodium carbonate solution) followed by treatment with 1N HCl is sufficient to remove both benzotriazole and any residual amines allowing purification by recrystallization (methods employing Lawessons reagent or phosphorus pentasulfide often suffer from significant byproduct formation, which complicates purification by requiring at minimum column chromatography); and iii) high to near quantitative yields (alternative procedures involving the use of organolithium reagents with thiuram monosulfides [93S483] or Grignard reagents with isothiocyanates [66JPC259, 71JICS791] provide thioamides in only low to moderate yields). In conclusion, we have developed and applied a benzotriazole reagent for thioacylation (RCSBt) that avoids use of hazardous reagents, employs mild conditions, and provides yields of thioamides that are higher or comparable to known thioacylation

PAGE 34

22 methods. Ease of purification and high yields of both secondary and tertiary thioamides make our method choice for thioamide synthesis. 2.4 Experimental Section Melting points were uncorrected. 1 H (300 MHz) and 13 C (75 MHz) NMR spectra were recorded on a 300 MHz NMR spectrometer in chloroform-d solution unless stated. Column chromatography was performed on silica gel. THF was distilled from sodium-benzophenone ketyl prior to use. Commercially available Grignard reagents were used for the preparation of thioamides. The organometallic reactions were performed under a nitrogen atmosphere and in oven dried glasswares. 2.4.1 General Procedure for the Preparation of Thiocarbonylbenzotriazoles 2.3ad. To the appropriate Grignard reagent (10 mL, 1 M) in THF at rt, was added carbon disulfide (0.9 mL, 10 mmol). The reaction mixture was refluxed at 60 o C for 3hrs, then cooled to rt and 1-chlorobenzotriazole (3.06 g, 20 mmol) was added. After stirring overnight at rt, solvent was removed in vacuo and the mixture separated on silica gel column (2% ethyl acetate/hexanes). Recrystallization from ethyl acetate/ hexanes provided the desired thiocarbonylbenzotriazoles 2.3ad. Benzotriazol-1-yl-(4-methylphenyl)methanethione (2.3a). Red needles (63%), mp 140 o C. 1 H NMR 2.49 (s, 3H), 7.39 (d, J = 8.4 Hz, 2H), 7.55 (t, J = 7.5 Hz, 1H), 7.71 (t, J = 7.5 Hz, 1H), 8.14.19 (m, 3H), 8.39 (d, J = 8.4 Hz, 1H). 13 C NMR 21.8, 114.8, 120.1, 126.2, 128.6, 129.2, 130.3, 131.9, 144.9, 171.8. Anal. Calcd. For C 14 H 11 N 3 S: C, 66.38; H, 4.38; N, 16.59. Found: C, 66.83; H, 4.34; N, 16.66. Benzotriazol-1-yl-(4-methoxyphenyl)methanethione (2.3b). Red-orange needles (89%), mp 131 o C. 1 H NMR 3.92 (s, 3H), 6.93.98 (m, 2H), 7.55 (t, J =

PAGE 35

23 8.1 Hz, 1H), 7.69 (t, J = 7.5 Hz, 1H), 7.83.86 (m, 2H), 8.18 (d, J = 8.1 Hz, 1H), 8.52 (d, J = 8.4 Hz, 1H). 13 C NMR 55.7, 113.6, 113.9, 114.8, 115.2, 120.1, 120.4, 126.1, 126.4, 133.7, 134.4, 147.0, 164.1. Anal. Calcd. For C 14 H 11 N 3 OS: C, 62.43; H, 4.12; N, 15.60. Benzotriazol-1-yl-phenylmethanethione (2.3c). Red-pink needles (76%), mp 134 o C, (Lit. mp 139 o C)[73LA636]. 1 H NMR 7.46 (t, J = 7.5 Hz, 2H), 7.647.56 (m, 2H), 7.70.79 (m, 3H), 8.19 (d, J = 8.4 Hz, 1H), 8.63 (d, J = 8.4 Hz, 1H). 13 C NMR 115.4, 120.5, 126.8, 128.0, 130.6, 130.7, 132.5, 133.2, 142.7, 147.0, 202.1. Benzotriazol-1-yl-(4-chlorophenyl)methanethione (2.3d). Red-pink needles (42%), mp 123 o C. 1 H NMR 3.92 (s, 3H), 6.93.98 (m, 2H), 7.55 (t, J = 8.1 Hz, 1H), 7.69 (t, J = 7.5 Hz, 1H), 7.83.86 (m, 2H), 8.18 (d, J = 8.1 Hz, 1H), 8.52 (d, J = 8.4 Hz, 1H). 13 C NMR 115.4, 120.6, 127.0, 128.3, 130.9, 131.9, 133.1, 139.1, 140.9, 147.0, 200.2. Anal. Calcd. For C 13 H 8 ClN 3 S: C, 57.04; H, 2.95. Found: C, 56.70; H, 2.80. 2.4.2 General Procedure for the Preparation of Thioamides 2.4af. The appropriate amine (5 mmol) and triethylamine (0.5 g, 5 mmol) were added to the respective thiocarbonylbenzotriazole 2.3 (5 mmol) dissolved in methylene chloride (30 mL) at rt. Stirring was continued overnight, then solvent was removed by rotary evaporation. The residue was redissolved in ethyl acetate (100 mL), washed with 5% Na 2 CO 3 solution (3 x 100 mL), 1M HCl (2 x 100 mL), water, and brine. The collected organic layers were dried with sodium sulfate, then solvent was removed under vacuum. Recrystallization from ethyl acetate/ hexanes afforded thioamides 2.4af in 66 % yields.

PAGE 36

24 4-Methylthiobenzoic acid benzylamide (2.4a). Colorless needles (99%), mp 7879 o C, (Lit. mp 87.5.5 o C) [49BSCF172]. 1 H NMR 2.37 (s, 3H), 5.00 (d, J = 5.1 Hz, 2H), 7.17 (d, J = 8.1 Hz, 2H), 7.39.41 (m, 5H), 7.67 (d, J = 8.1 Hz, 3H). 13 C NMR 21.3, 51.0, 126.7, 128.2, 128.4, 129.0, 129.1, 136.3, 138.8, 141.8, 198.9. Anal. Calcd. For C 15 H 15 NS: C, 74.65; H, 6.26; N, 5.80. Found: C, 74.43; H, 6.31; N, 6.38. 1-(4-Methoxythiobenzoyl) piperidine (2.4b). Yellow needles (93%), mp 94 o C, (Lit. mp 107 o C) [65JOC2228]. 1 H NMR 1.58.59 (m, 2H), 1.77.82 (m, 4H), 3.58 (t, J = 5.4 Hz, 2H), 3.82 (s, 3H), 4.34 (t, J = 5.1 Hz, 2H), 6.84.89 (m, 2H), 7.25.28 (m, 2H). 13 C NMR 24.2, 25.5, 26.9, 51.0, 53.3, 55.3, 113.6, 127.5, 128.8, 135.9, 159.8, 199.8. N, N-Diethyl-4-methylthiobenzamide (2.4c). Yellow powder (87%) mp 89 o C. 1 H NMR 1.05 (t, J = 6.9 Hz, 3H), 1.29 (t, J = 6.9 Hz, 3H), 2.26 (s, 3H), 3.36 (q, J = 7.2 Hz, 2H), 4.03 (q, J = 7.2 Hz, 2H), 7.05 (s, 4H). 13 C NMR 11.1, 13.7, 21.0, 45.9, 47.6, 124.8, 127.7, 128.7, 137.7, 140.9, 200.4. Anal. Calcd. For C 13 H 19 NS: C, 70.53; H, 8.65; N, 6.33. Found: C, 70.58; H, 8.61; N, 6.76. N-Benzyl thiobenzamide (2.4d). White needles (97%), mp 86 o C, (Lit. mp 87 o C) [80JCSPT(1)665]. 1 H NMR 4.99 (d, J = 4.8 Hz, 1H), 7.35.46 (m, 8H), 7.75 (d, J = 7.5 Hz, 3H). 13 C NMR 51.0, 126.7, 128.2, 128.4, 128.5, 129.0, 131.1, 136.1, 141.6, 199.1. 1-Thiobenzoyl morpholine (2.4e). Clear needles (78%), mp 135 o C, (Lit. mp 137 o C) [78JOC2914]. 1 H NMR 3.62 (d, J = 5.4 Hz, 4H), 3.89 (t, J = 4.8 Hz, 2H), 4.45 (t, J = 4.8 Hz, 2H), 7.26.32 (m, 2H), 7.34.38 (m, 3H). 13 C NMR 49.5, 52.5, 66.5, 66.7, 125.9, 128.5, 128.9, 142.5, 201.0.

PAGE 37

25 4-Chlorothiobenzoic acid phenethylamide (2.4f). Yellow needles (66%), mp 103 o C. 1 H NMR 3.07 (s, 2H), 4.08 (d, J = 5.1 Hz, 2H), 7.27.32 (m, 7H), 7.55 (d, J = 7.2 Hz, 3H). 13 C NMR 33.7, 47.5, 126.9, 127.8, 128.6, 128.7, 128.9, 137.2, 138.1, 140.1, 197.7. Anal. Calcd. For C 15 H 14 ClNS: C, 65.32; H, 5.12; N, 5.08. Found: C, 64.99; H, 5.13; N, 4.99.

PAGE 38

26 CHAPTER 3 THIOACYLBENZOTRIAZOLES AS PRECURSORS TO THIONOESTERS 3.1 Introduction Successful application of thioacylbenzotriazole reagents to the synthesis of novel thioamides (Chapter 2) naturally led to the extension of our methodology to thionoesters, which are generally less studied than thioamides or their thiol ester counterparts because few reported syntheses for thionoesters provide sufficiently general access to these compounds; i. e., most literature methods are limited to the preparation of O-phenyl thionoesters [73S149, 95JCR1551]. Despite the lack of efficient methods to provide diverse thionoesters, these compounds are attractive synthetic targets because of their utility when incorporated into macrocycles, such as crown ethers [83JOC2653], and also for their application as chemical probes of the enzyme binding sites of cysteine [04BJ699] and serine [83JBC59] proteases. Application of our benzotriazole thioacylation reagents to the preparation of thionoesters compares favorably to classical syntheses (Scheme 3-1), which have involved: i) treatment of esters with phosphorus pentasulfide [70BSCF2272, 73S149] or Lawessons reagent, both often requiring a large excess of reagent and long reaction times [77BSCB679]; ii) reactions of imino ester with hydrogen sulphide, which often results in significant by-product formation [85T5061]; iii) low yielding reactions of dithioacids with 2-halo-1-methylpyridinium salts and subsequent treatment with the 26

PAGE 39

27 respective alcohols [90CA131954]; and iv) Friedel-Crafts acylations of unstable 1-chlorothioformates with aromatics [68CB3517]. CNH2ORR1SOR1RNMeClROHXR1SSH++(i)(ii)(iii)R1SClROH(iv)R1OORP2S5H2S+or Lawesson's Scheme 3-1. Classical syntheses of thionoesters. We now report a high-yielding, general and efficient methodology for the preparation of diverse thionoesters. 3.2 Results and Discussion 3.2.1 Preparation of Thiocarbonylbenzotriazoles (RCSBt). As previously described in detail in Chapter 2, the stable, reddish-colored crystalline thioacylation reagents, thiocarbonylbenzotriazoles 2.3ad, were prepared from carbon disulfide, 1-chlorobenzotriazole and the respective Grignard reagents in 42% yields (average 68%).(See Scheme 2-3, Table 2-1) 3.2.2 Synthesis of Thionoesters from Thiocarbonylbenzotriazoles (RCSBt). Thiocarbonylbenzotriazoles 2.3b and 2.3d were reacted with alcohols in the presence of triethylamine to provide representative examples of O-alkyland O-arylthionoesters, 3.3a and 3.3b, in 60 and 77% yields, respectively (Scheme 3-3). O S R R S R BtOHR 11 2.3 3.3 Scheme 3-2. Synthesis of thionoesters from thiocarbonylbenzotriazoles.

PAGE 40

28 Table 3-1. Synthesis of thionoesters 3.3 from thioacylating agents 2.3. Thionoesters 3.3 Alcohol R 1 = Thioacylating Agent R = Yield (%) a Ethyl 4-Chlorophenyl (3.3d) 60 b 4-Methoxyphenyl 4-Methoxyphenyl (3.3b) 77 c 2-Naphthyl 4-Methoxyphenyl (3.3b) 88 d Phenyl 4-Chlorophenyl (3.3d) 82 e Diphenylmethyl Phenyl (3.3c) 68 In a similar manner, additional thionoesters 3.3ce were prepared in 68% yields. Simple extraction of the reaction mixture with ethyl acetate and washing of the combined organic layers with 5% Na 2 CO 3 solution, 1M HCl, and brine provided clean isolation of the desired products, which were recrystallized from solutions of ethyl acetate/hexanes and characterized by NMR and elemental analysis. O-Ethyl 4-chlorothiobenzoate (3.3a) displays NMR spectra typical of thionoesters: the disappearance of benzotriazole peaks in the 1 H and 13 C NMR spectra indicates conversion of 2.3d to 3.3a by nucleophilic displacement of benzotriazole by the ethoxide anion. The shift of the thiocarbonyl peak in the carbon spectrum from 200.2 ppm to 209.8 ppm indicates transformation of the functional group to a thionoester. 3.2.3 Attempted Preparation of Dithioesters. In contrast to reactions of thioacylbenzotriazole 2.3 with alcohols, attempts to extend our methodology to analogous dithioesters were largely unsuccessful. Reactions of 2.3 with phenylthiol or its sodium salt (under reflux conditions and in the presence of triethylamine, pyridine, or 4-dimethylaminopyridine) failed. Refluxing 2.3c with benzyl

PAGE 41

29 mercaptan in acetonitrile in the presence of triethylamine provided benzyl dithiobenzoate (3.4) in only 14% yield (Scheme 3-3). S S R S R Bt PhCH2SH 2.3 3.4 14% Scheme 3-3. Benzyl dithiobenzoate (3.4) from thiocarbonylbenzotriazoles. 3.3 Conclusion Although our benzotriazole-assisted thioacylation method cannot be extended to dithioesters, the method has advantages for thionoesters in that use of unstable or hazardous reagents (e.g. H 2 S) is avoided, a simple purification procedure is employed, and good yields are attained. These points of merit address significant problems that were unresolved by current routes to thionoesters. For example, both treatment of esters with thionating agents (Lawessons reagent and phosphorous pentasulfide) and reaction of imino esters with hydrogen disulfide utilize toxic or inconvenient reagents, require long reaction times, and provide thionoesters in low yields due to substantial by-product formation. The limitations of traditional routes to thionoesters have hindered studies of their utility as organic synthons, their potential material applications, and possible biological activity. The promise of thionoesters in these diverse areas of application is highlighted by studies of their incorporation into crown ethers [83JOC2653] and also their utility as chemical probes of the enzyme binding sites [83JBC59, 04BJ699]. Our benzotriazole thioacylation methodology now provides broadened access to thionoesters, which should

PAGE 42

30 in turn lead to further developments in applications of this class of sulfur-containing compounds. 3.4 Experimental Section Melting points were uncorrected. 1 H (300 MHz) and 13 C (75 MHz) NMR spectra were recorded on a 300 MHz NMR spectrometer in chloroform-d solution unless stated. Column chromatography was performed on silica gel. THF was distilled from sodium-benzophenone ketyl prior to use. Commercially available Grignard reagents were used for the preparation of thioamides. The organometallic reactions were performed under a nitrogen atmosphere and in oven dried glasswares. 3.4.1 General Procedure for the Preparation of Thiocarbonylbenzotriazoles 2.3ad. To the appropriate Grignard reagent (10 mL, 1 M) in THF at rt, was added carbon disulfide (0.9 mL, 10 mmol). The reaction mixture was refluxed at 60 o C for 3hrs, then cooled to rt and 1-chlorobenzotriazole (3.06 g, 20 mmol) was added. After stirring overnight at rt, solvent was removed in vacuo and the mixture separated on silica gel column (2% ethyl acetate/hexanes). Recrystallization from ethyl acetate/ hexanes provided the desired thiocarbonylbenzotriazoles 2.3ad. (See Section 2.4.1 for characterization details) 3.4.2 General Procedure for the Preparation of Thionoesters 3.3ae. The appropriate alcohol (0.5 mmol) and triethylamine (0.05 g, 0.5 mmol) were added to the respective thiocarbonylbenzotriazole 2.3 (0.5 mmol) dissolved in methylene chloride (30 mL) at rt. Stirring was continued overnight, then solvent was removed by rotary evaporation. The residue was redissolved in ethyl acetate (100 mL), washed with 5% Na 2 CO 3 solution (3 x 100 mL), 1M HCl (2 x 100 mL), water, and brine. The

PAGE 43

31 collected organic layers were dried with sodium sulfate, and the solvent was removed under vacuum. Recrystallization from ethyl acetate/ hexanes afforded thionoesters 3.3ae. O-Ethyl 4-chlorothiobenzoate (3.3a). Yellow powder (60%), mp 34 o C, (Lit. mp 36 o C).[80CPB177] 1 H NMR 1.53 (t, J = 7.2 Hz, 3H), 4.72 (dd, J = 7.2, 6.9 Hz, 2H), 7.35 (d, J = 8.7 Hz, 2H), 8.12 (d, J = 8.4 Hz, 2H). 13 C NMR 13.7, 68.7, 128.2, 130.0, 136.6, 139.2, 209.8. O-(4-Methoxyphenyl)-4-methoxythiobenzoate (3.3b). Yellow powder (77%), mp 105 o C. 1 H NMR 3.83 (s, 3H), 3.89 (s, 3H), 6.92 (d, J = 9 Hz, 2H), 6.96 (d, J = 9 Hz, 2H), 7.03 (d, J = 9 Hz, 2H), 8.34 (d, J = 9 Hz, 2H). 13 C NMR 55.6, 113.4, 114.4, 122.9, 131.1, 131.7, 148.3, 157.5, 164.1, 210.5. Anal. Calcd. For C 15 H 14 O 3 S: C, 65.67; H, 5.14; N, 0. Found: C, 65.47; H, 5.14; N, 0.03. O-Naphth-1-yl 4-methoxythiobenzoate (3.3c). Yellow needles (88%), mp 93 o C. 1 H NMR 3.91 (s, 3H), 6.98 (d, J = 8.7 Hz, 2H), 7.24.27 (m, 1H), 7.44.56 (m, 3H), 7.80 (t, J = 6.3 Hz, 2H), 7.90 (d, J = 7.8 Hz, 1H), 8.47.50 (m, 2H). 13 C NMR 55.7, 113.7, 119.0, 121.6, 125.4, 126.4, 126.6, 126.8, 128.2, 131.0, 131.8, 134.8, 151.0, 164.3, 209.6. Anal. Calcd. For C 18 H 14 O 2 S: C, 73.44; H, 4.79; N, 0. Found: C, 72.65; H, 4.89; N, 0.03. O-Phenyl 4-chlorothiobenzoate (3.3d). Yellow powder (68%), mp 94 o C, (Lit. mp 92 o C).[95JCR1551] 1 H NMR 7.18.57 (m, 7H), 8.10 (d, J = 8.1 Hz, 2H). 13 C NMR 126.1, 128.1, 128.2, 129.1, 130.0, 134.1, 136.6, 139.2, 209.8. O-Benzhydryl thiobenzoate (3.3e). Yellow cubes, (from ethyl acetate) (82%), mp 102 C. 1 H NMR 7.097.49 (m, 16 H). 13 C NMR 83.3, 126.1, 126.8, 127.6,

PAGE 44

32 128.3, 129.2, 130.0, 140.3, 143.5, 210.3. Anal. Calcd. For C 20 H 16 OS: C, 75.64; H, 5.74; N, 4.20. Found: C, 75.65; H, 5.91; N, 4.17. 3.4.3 General Procedure for the Preparation of a Dithioester 3.4. Benzyl mercaptan (0.061 g, 0.5 mmol) and triethylamine (0.052 g, 0.5 mmol) were added to benzotriazol-1-yl-phenyl methanethione 2.3c (0.119 g, 0.5 mmol) dissolved in methylene chloride (30 mL) at rt. Stirring was continued overnight, then solvent was removed by rotary evaporation. The residue was redissolved in ethyl acetate (100 mL), washed with 5% Na 2 CO 3 solution (3 x 100 mL), 1M HCl (2 x 100 mL), water, and brine. The collected organic layers were dried with sodium sulfate, and the solvent was removed under vacuum. Recrystallization from ethyl acetate/ hexanes afforded dithioester 3.4. Benzyl dithiobenzoate (3.4). Red-orange microcrystals (14%), mp 49 o C, Lit. [73S149] mp 51 o C. 1 H NMR 4.60 (s, 2H), 7.22.55 (m, 8H), 7.99.01 (m, 2H). 13 C NMR 42.3, 126.9, 127.7, 128.3, 128.5, 128.7, 129.3, 129.4, 132.4, 134.9, 144.7, 229.0.

PAGE 45

33 CHAPTER 4 1-(ALKYL/ARYLTHIOCARBAMOYL)BENZOTRIAZOLES AS STABLE ISOTHIOCYANATE EQUIVALENTS: SYNTHESIS OF DIAND TRISUBSTITUTED THIOUREAS 4.1 Introduction Thioureas are of importance in medicinal chemistry [96JOC8811] due to their biological activity [96JMC1157, 98JMC975, 98JMC3159]; e.g. against bacteria and microbial infections [81JCSPT12186], as fungicides, herbicides, and rodenticides [55CR181, 85JHC137], and as phenoloxidase enzymatic inhibitors [69CA101668v]. Thioureas are routinely incorporated into peptides as biomimetic models [96JOC8811, 97TL4791]. Thioureas are also valuable building blocks for the synthesis of fiveand six-membered heterocycles [75AHC99]. A common functional group transformation is the derivatization of amines as stable thioureas [79COC465]. Treatment of two equivalents of a primary or secondary amine with thiophosgene is the easiest method of making symmetrical thioureas [78S803]; the unpleasant nature of thiophosgene can be avoided by using thiophosgene equivalents like 1,1'-thiocarbonyldi-imidazole [62ACIE351, 62LA98]. However, 1,1'-thiocarbonyldiimidazole is also not an ideal reagent, for decomposition occurs within 2 days of storage at room temperature; thus, 1,1'-thiocarbonyldiimidazole must always be freshly prepared before use [86JOC2613]. Reaction of isothiocyanates with primary or secondary amines is a common method of making unsymmetrical thioureas [55JACS4328, 63CJC2123, 89SC965], but suffers from side reactions like urethane formation (in alcoholic medium where the 33

PAGE 46

34 reaction is often carried out) or exchange between the amine and the isothiocyanate [40CB1420]. Many isothiocyanates are tedious to prepare and display poor long-term stability. Hence, numerous alternative methods have been developed for the synthesis of both symmetrical and unsymmetrical thioureas avoiding the use of isothiocyanates. Thus, symmetrical thioureas are formed as shown in Scheme 4-1 by i) either the direct [55OS394] or catalyzed [74TL1191, 99JOC1029] reaction of carbon disulfide and amines; ii) the reaction of carbodiimides with hydrogen sulphide [67CR107]; iii) the reaction of 2-chloropyridinium salts with sodium trithiocarbonate and amines [82CL641]; or iv) the reaction of 1,1-thiocarbonyldiimidazole [62ACIE351, 62LA98] with amines. RNCNRRNH2CS2H2SSNHNHRRNMeCl2 RNH2ISNNNa2CS32 RNH2+2direct orcatalyzed+++(i)(ii)(iii)(iv)NN Scheme 4-1. Literature methods to prepare symmetrical thioureas. Methods for the preparation of unsymmetrical thioureas (Scheme 4-2) comprise: i) the use of 1-(methyldithiocarbonyl)imidazole as a thiocarbonyl transfer reagent [00T629]; ii) the activation of a dithiocarbamate with a 2-halothiazolium salt and subsequent reaction with an amine [88JOC2263]; iii) direct displacement, by amines, from 1,3-diphenylthiourea (iiia) [93TL6447], nitrosothiourea (iiib) [99TL1957], or thiuram disulfide (iiic) [95SC3381]; or iv) the reaction of carbon disulfide with primary amines in the presence of a triaryl phosphite or a hexaalkyl phosphoroustriamide

PAGE 47

35 [75S384]. 1,1-Disubstituted thioureas are formed by the reaction of secondary amines with triphenylphosphine-thiocyanogen (v) [78TL1753, 79CPB1636]. Although these additional methods are of great utility in the synthesis of many thioureas, a synthetic equivalent to isothiocyanate or a protected form of it, which is stable, readily available, and easy to handle would be of considerable benefit. In this chapter, we describe the preparation and utility of 1-(alkyl/arylthiocarbamoyl)benzotriazoles which, in keeping with other classes of acylbenzotriazoles [00JOC8210, 01ARK41, 02ARK39, 01ARK19, 02ARK134], are highly effective thioacylating agents behaving as masked isothiocyanates. NCS NaR1RSSSMeNNNSR5PhClBF4NHR3R4RR1NCNHPhSSSMeNNMeINHR3R4Ph3P(SCN)2H2ONHR1RSNNR3RR4R1NCNRR1MeNOSNHR3R4PNR1RNR1RNR1RSCNSR1RSNCSR1R3 CS2NHR3R4or+R1 = H+R = PhR1= R4=H++R=H,R1=Me+R3=H+++R3=R4=H(i)(ii)(iiia)(iiib)(iiic)(iv)(v)R1NHRR4NHR3R4NHR3R=R1=CH34R4=HR, R1, R2, R3, R4 = alkyl or aryl, unless specified Scheme 4-2. Literature methods for unsymmetrical thioureas.

PAGE 48

36 4.2 Results and Discussion 4.2.1 Preparation of (Alky/arylthiocarbamoyl)benzotriazoles 4.4. Bis(benzotriazol-1-yl)methanethione (4.3) is easily prepared from 1-trimethylsilybenzotriazole and thiophosgene in quantitative yield (Scheme 4-3) [78JOC337]. The literature shows only one reaction of this compound with an amine, with aniline to give diphenylthiourea [78JOC337]. As part of our ongoing research on the synthesis and utility of benzotriazole-functionalized reagents [99JHC1501], we considered the possibility of using 4.3 as a thiophosgene equivalent in the synthesis of unsymmetrical thioureas. Thus, the reactivity of 4.3 with various primary amines was investigated first. Treatment of 4.3 with 1,5-dimethylhexylamine in methylene chloride at 20 o C followed by a 5% Na 2 CO 3 wash and re-crystallization afforded benzotriazole-1-carbothioic acid 1,5-dimethylhexylamide (4.4a) in 99% yield (Scheme 4-3, Table 4-1). SClClSiMe3BtNNNSBtBtSNBtR1R2NHR1R2NH2RSNHBtRNHR1R2SNHNRR1R2Bt = +1o or 2o amineNo reaction (R', R2 = H)4.14.24.34.44.54.4i (R1=R2= -(CH2)4-) See Table 4-2 for the designations of R, R 1 and R 2 Scheme 4-3. Preparation of thioureas from bis(benzotriazol-1-yl)methanethione 4.3.

PAGE 49

37 Table 4-1. Thiocarbamoybenzotriazoles 4.4 prepared. Entry 1 o Amine Thiocarbamoyl benzotriazoles 4.4 Yield (%) a 1,5-Dimethylhexylamine NH S Bt 99 b 2-Thiazolylamine NH S Bt NS 91 c 2-Furfurylamine NH S Bt O 99 d -(R)-Methylbenzylamine NH S Bt 99 e Benzylamine NH S Bt 97 f Pyrrolidine N S Bt 99 The 1 H NMR spectrum of benzotriazole-1-carbothioic acid 1,5-dimethylhexylamide (4.4a) displays the typical 1H-benzotriazole and thiocarbamoyl NH peaks in the aromatic region. The 13 C NMR spectrum of benzotriazole-1-carbothioic acid 1,5-dimethylhexylamide (4.4a) also displays a distinctive thioamide peak at 173.4 indicating conversion. Significantly, 4.4a was stored at room temperature for weeks without decomposition. Similarly, compounds 4.4be from other primary amines were also prepared in nearly quantitative yields (Table 4-1). Reagents 4.4ae are masked isothiocyanates and are useful alternatives for isothiocyanates in the preparation of secondary and tertiary thioureas.

PAGE 50

38 4.2.2 Preparation of Diand Trisubstituted Thioureas. Thiocarbamoylbenzotriazoles 4.4ad were reacted with a second primary amine to generate the corresponding disubstituted thioureas. Thus, when benzotriazole-1-carbothioic acid 1,5-dimethylhexylamide (4.4a) was treated with 4-methoxybenzylamine, thiourea 4.5a was isolated in 99% yield (Scheme 4-3, Table 4-2). The reaction was carried out in methylene chloride and the byproduct, benzotriazole, was removed by 5% sodium carbonate wash. Similar reactions of 4.4ad with other primary amines afforded the corresponding secondary thioureas 4.5bh in 57% yields (Table 4-2). Table 4-2. Di-and trisubstituted thioureas 4.5 prepared. 4.5 R R 1 R 2 Yield (%) a 1,5-Dimethylhexyl 4-MeOC 6 H 4 CH 2 H 99 b -(R)-Methylbenzyl EtO(CH 2 ) 2 H 99 c Furfuryl 4-CO 2 EtC 6 H 4 H 57 d 2-Thiazolyl Phenethyl H 95 e 1,5-Dimethylhexyl Phenyl Methyl 61 f -(R)-Methylbenzyl (CH 2 ) 2 O(CH 2 ) 2 92 g Furfuryl (CH 2 ) 5 94 h 2-Thiazolyl 3-Methylpiperidinyl 87 The 1 H NMR spectrum of 3-(1,5-dimethylhexyl)-1-methyl-phenylthiourea (4.5e) indicates conversion by the loss of the benzotriazole peaks present in the 1 H NMR spectrum of 4.4a. A shift of the thiocarbonyl peak in the 13 C NMR spectra from 173.4 ppm for the thiocarbamoylbenzotriazole reagent 4.4a to 181.0 ppm for the thiourea 4.5e indicates conversion.

PAGE 51

39 4.2.3 N, N-Disubstituted(thiocarbamoyl)benzotriazoles Reaction of secondary amines with bis(benzotriazol-1-yl)methanethione (4.3) also proceeded smoothly. Thus, the thiocarbamoylbenzotriazole 4.4f was prepared in 99% yield from pyrrolidine and 4.3. The reaction of 4.4f with a second secondary amine was attempted with the expected formation of the corresponding tetrasubstituted thiourea. However, in this case substitution of the second benzotriazole group did not proceed even with a primary amine under forcing conditions (refluxing DMF) and unreacted reagent 4.4f was recovered. We believe that reactions of 4.4ae with primary amines proceed with the intermediate formation of isothiocyanates, which add the amine to form the thiourea. This is supported by the observation that 4.4f failed to give thiourea by the reaction with a second amine. (Evidently, electronic assistance from a nitrogen lone pair is insufficient to energetically favor benzotriazole group displacement.) Moreover, on reaction with 4.3, aromatic amines (p-anisidine, p-ethoxycarbonylaniline) gave the corresponding isothiocyanates instead of the expected thiocarbamoyl reagents. This result could be advantageous since such isothiocyanate formation was observed only in those cases where the isothiocyanate is stabilized as in aromatic isothiocyanates. In cases where the isothiocyanate has a low stability (e. g. alkyl isothiocyanates), the reaction stops at the thiocarbamoylbenzotriazole-formation stage, which is in fact a protected isothiocyanate. Thus reagents 4.4ae can potentially replace unstable isothiocyanates. Reagent 4.3 also has advantages over its close counterpart, 1,1'-thiocarbonyldi-imidazole (4.7), which is hygroscopic and relatively unstable [86JOC2613] even though 4.7 has been extensively used as a thiocarbonyl transfer reagent [62ACIE351, 62LA98,

PAGE 52

40 83TL4927, 85CJC951]. Bis(benzotriazol-1-yl)methanethione 4.3 is stable at room temperature for months without any loss in reactivity. On reaction with primary amines (e.g. benzylamine), 1,1'-thiocarbamoyldiimidazole (4.7) reportedly produced a mixture of the corresponding thiocarbamoylimidazole 4.8, isothiocyanate 4.9, and the bisthiourea 4.10 in yields of 48%, 38%, and 6%, respectively (Scheme 4-4) [86JOC2613]. In contrast, 4.3 afforded the thiocarbamoylbenzotriazole 4.4e (Table 4-1) as the sole product in 97% yield from benzylamine. The bis-substitution product was never detected in the reactions of 4.3 with one equivalent of a primary amine unlike the case of thiophosgene, where the reaction mixture is often contaminated by the bis-substitution product [55CR181]. NNNNNBt =Im =SBtBtNH2SImImNHImSNHBtSPhNCSPhNHNHSPh4.4h, 97%++4.8, 48%4.9, 38%4.10, 6%4.64.34.7 Scheme 4-4. Comparison of benzotriazole and imidazole reagents. 4.2.4 One-Pot Synthesis of Unsymmetrical Thioureas. In a further demonstration of the utility of intermediate thiocarbamoyl-benzotriazoles in the preparation of unsymmetrical thioureas, we have utilized 4.3 in a one-pot reaction with two different primary amines in a sequential fashion. Thus, when 4.3 was treated with phenethylamine in methylene chloride followed by the addition of 4-methoxyaniline, the corresponding trisubstituted thiourea 4.11 was isolated in 94 % yield.

PAGE 53

41 A distinct advantage is that the purification requires only a mild base (5% Na 2 CO 3 ) wash to remove the eliminated benzotriazole. Other disubstituted thioureas 4.15 and 4.16 were afforded in 97 and 89% yields, respectively. (Table 4-3). Trisubstituted thioureas 4.12 and 4.17 were also prepared in good to excellent yields by reacting, sequentially, the appropriate primary and secondary amine respectively with 4.3 (Table 4-3). Table 4-3. Thioureas prepared using 4.3 in one-pot reactions with 1 o and 2 o amines. PhHNHNSOMeHNNSEtO2COHNNSMePhNHNSPhOEtONNHNSNHPhSNHNHNMeMePhSNNHNSC3H7Me4.11 (94%)4.12 (87%)4.13 (76%)4.14 (52%)4.15 (97%)4.16 (89%)4.17 (68%)Calculation of yields is based on conversion of bis(benzotriazolyl)methanethione (4.3) to thioureas 4.11-4.17. 4.3 Conclusion In conclusion, we have demonstrated the utility of 1(alkyl/arylthiocarbamoyl)-benzotriazoles (4.4) as masked isothiocyanates and bis(benzotriazol-1-yl)methanethione (4.3) as a thiophosgene equivalent. Reactions of 4.4 with amines are faster, high yielding, and less laborious in isolation and purification procedures than those with isothiocyanates. Our route to unsymmetrical thioureas utilizes stable reagents that are

PAGE 54

42 now commercially available (from Aldrich); whereas, traditional methodologies employ unstable reagents (e.g., isothiocyanates, 1,1-thiocarbonyl-diimidazole, triaryl phosphites, hexaalkyl phosphoroustriamides, and triphenylphosphine-thiocyanogen ) or difficult to access starting materials, such as nitrosothioureas or thiuram disulfides. The benzotriazole thiocarbamoylation methodologies described in this work are versatile, simple, and clean, providing access to diand tri-substituted thioureas by both one pot and two-step procedures. In all, these developments in benzotriazole thiocarbamoylation methodology constitute a significant advance in providing convenient and efficient access to diversely functionalized unsymmetrical thioureas. 4.4 Experimental Section Melting points were determined on a hot-stage apparatus and are uncorrected. 1 H (300 MHz) and 13 C (75 MHz) NMR spectra were recorded on a 300 MHz NMR spectrometer in chloroform-d or DMSO-d 6 solution with tetramethylsilane as an internal reference for 1 H and solvent as an internal reference for 13 C. Column chromatography was performed on silica gel (230 mesh). 4.4.1 General Procedure for the Preparation of Reagents 4.4af. Bis(benzotriazol-1-yl)methanethione [78JOC337] (4.3) (0.56 g, 2 mmol) was dissolved in methylene chloride at room temperature. The appropriate primary amine (2 mmol) was added dropwise, and the reaction mixture was stirred for 18 h. Solvent was removed under vacuum and the residue was re-dissolved in EtOAc, washed with 5% aqueous sodium carbonate, water and brine before drying over anhydrous sodium sulfate. Solvent was removed under vacuum and 1-thiocarbamoylbenzotriazole was recrystallized from ethyl acetate.

PAGE 55

43 Benzotriazole-1-carbothioic acid (1,5-dimethylhexyl)amide (4.4a). Yellow oil, 99%. 1 H NMR (CDCl 3 ) 0.86 (d, J = 6.6 Hz, 6H), 1.201.28 (m, 2H), 1.391.81 (m, 8H), 4.664.71 (m, 1H), 7.45.50 (m, 1H), 7.62.67 (m, 1H), 8.09 (d, J = 8.2 Hz, 1H), 8.90.95 (m, 2H). 13 C NMR (CDCl 3 ) 19.5, 22.5, 23.7, 27.8, 36.2, 38.6, 51.0, 116.2, 120.2, 125.6, 130.2, 132.5, 147.1, 173.4. Anal. Calcd For C 15 H 22 N 4 S: C, 62.03; H, 7.64; N, 19.29. Found: C, 62.48; H, 7.70; N, 19.52. Benzotriazole-1-carbothioic acid thiazol-2-ylamide (4.4b). Yellow microcrystals, 91%, mp 160161 o C. 1 H NMR (DMSO-d 6 ) 7.457.58 (m, 3H), 7.73 (t, J = 7.3 Hz, 1H), 7.96 (d, J = 4.4 Hz, 1H), 8.18 (d, J = 8.2 Hz, 1H), 8.88 (d, J = 8.4 Hz, 1H). 13 C NMR (DMSO-d 6 ) 112.2, 116.3, 119.4, 125.1, 125.9, 129.0, 130.6, 130.9, 146.0, 170.3. Anal. Calcd For C 10 H 7 N 5 S 2 : C, 45.96; H, 2.70; N, 26.80. Found: C, 45.48; H, 2.66; N, 26.26. Benzotriazole-1-carbothioic acid (furan-2-ylmethyl)amide (4.4c). Brown needles (from EtOAc/Hexanes), 99%, mp 117119 o C. 1 H NMR (CDCl 3 ) 5.03 (d, J = 5.4 Hz, 2H), 6.376.45 (m, 2H), 7.437.50 (m, 2H), 7.61.67 (m, 1H), 8.09 (d, J = 8.1 Hz, 1H), 8.90 (d, J = 8.4 Hz, 1H), 9.32 (br s, 1H). 13 C NMR (CDCl 3 ) 41.8, 109.3, 110.6, 115.9, 120.3, 125.7, 130.4, 132.4, 143.0, 147.0, 148.5, 174.2. Anal. Calcd For C 12 H 10 N 4 OS: C, 55.80; H, 3.90; N, 21.69. Found: C, 56.04; H, 3.85; N, 21.81. Benzotriazole-1-carbothioic acid [(R)-1-phenylethyl]amide (4.4d). Yellow oil, 99%. 1 H NMR (CDCl 3 ) 1.77 (d, J = 7.2 Hz, 3H), 5.745.84 (m, 1H), 7.307.50 (m, 6H), 7.61-7.66 (m, 1H), 8.09 (d, J = 8.2 Hz, 1H), 8.90 (d, J = 8.5 Hz, 1H), 9.32 (d, J = 6.3 Hz, 1H). 13 C NMR (CDCl 3 ) 21.0, 54.1, 116.1, 120.2, 125.7, 126.5, 128.0, 128.9,

PAGE 56

44 130.3, 132.5, 141.1, 147.1, 173.4. Anal. Calcd For C 15 H 14 N 4 S: C, 63.80; H, 5.00; N, 19.84. Found: C, 64.06; H, 4.93; N, 20.29. Benzotriazole-1-carbothioic acid benzylamide (4.4e). White needles (from EtOAc/Hexanes), 97%, mp 108 o C. 1 H NMR (CDCl 3 ) 5.04 (d, J = 4.2 Hz, 2H), 7.337.52 (m, 6H), 7.66 (t, J = 7.2 Hz, 1H), 8.10 (d, J = 8.4 Hz, 1H), 8.94 (d, J = 8.7 Hz, 1H), 9.32 ( br s, 1H). 13 C NMR (CDCl 3 ) 49.0, 116.0, 120.3, 125.7, 128.2, 128.3, 129.0, 130.4, 132.4, 135.5, 147.1, 174.4. Anal. Calcd For C 14 H 12 N 4 S: C, 62.66; H, 4.51; N, 20.88. Found: C, 62.79; H, 4.44; N, 20.82. Benzotriazol-1-ylpyrrolidin-1-ylmethanethione (4.4f). White needles (from EtOAc/Hexanes), 99%, mp 144145 o C. 1 H NMR (CDCl 3 ) 2.022.09 (m, 2H), 2.112.18 (m, 2H), 3.98 (t, J = 6.9 Hz, 1H), 4.11 (t, J = 6.9 Hz, 2H), 7.46.52 (m, 1H), 7.62.67 (m, 1H), 8.13 (dd, J = 8.1, 0.9 Hz, 1H), 8.30 (dd, J = 8.4, 0.6 Hz, 1H). 13 C NMR (CDCl 3 ) 24.3, 26.4, 54.3, 54.6, 114.5, 119.8, 125.1, 128.8, 133.0, 145.8, 172.0. Anal. Calcd For C 11 H 12 N 4 S: C, 56.87; H, 5.21; N, 24.12. Found: C, 56.64; H, 5.02; N, 23.89. 4.4.2 General Procedure for the Preparation of Thioureas 4.5ah. The appropriate thiocarbamoylbenzotriazole 4.4 (1 mmol) was dissolved in methylene chloride at room temperature. The corresponding amine (1 mmol) was added followed by triethylamine (0.3 mL, 2 mmol) and the reaction mixture was stirred for 24 h. Solvent was removed under vacuum and the residue was re-dissolved in EtOAc, washed with 5% aqueous sodium carbonate, 1 M HCl, water and brine before drying over anhydrous sodium sulfate. Solvent was removed under vacuum and the thioureas 4.5ah

PAGE 57

45 were purified by re-crystallization (in the case of solids) or column chromatography (in the case of oils), on silica gel (200 Mesh, EtOAc/hexanes). 1-(1,5-Dimethylhexyl)-3-(4-methoxybenzyl)thiourea (4.5a). Orange needles (from EtOAc/Hexanes), 100%, mp 5762 o C. 1 H NMR (CDCl 3 ) 0.84 (m, J = 6.6 Hz, 6H), 1.071.55 (m, 10H), 3.80 (s, 3H), 4.04 (br s, 1H), 4.55 (br s, 2H), 5.56 (br s, 1H), 5.94 (br s, 1H), 6.87.90 (m, 2H), 7.25 (d, J = 8.4 Hz, 2H). 13 C NMR (CDCl 3 ) 20.5, 22.5, 23.5, 27.8, 36.9, 38.7, 47.8, 50.4, 55.2, 114.3, 128.9, 159.3, 180.7. Anal. Calcd For C 17 H 28 N 2 OS: C, 66.19; H, 9.15; N, 9.08. Found: C, 66.41; H, 9.19; N, 9.33. 1-(2-Ethoxyethyl)-3-[(R)-1-phenylethyl]thiourea (4.5b). Yellow oil, 99%. [] D 25 = + 0.1 o (c 0.04, CH 2 Cl 2 ); 1 H NMR (CDCl 3 ) 1.05 (t, J = 6.9 Hz, 3H), 1.53 (d, J = 6.6 Hz, 3H), 3.323.60 (m, 7H), 5.02 (br s, 1H), 6.11 (br s, 1H), 7.217.38 (m, 5H). 13 C NMR (CDCl 3 ) 14.8, 22.9, 44.7, 53.8, 66.3, 69.0, 125.8, 127.4, 128.6, 142.4, 181.3. Anal. Calcd For C 13 H 20 N 2 OS: C, 61.87; H, 7.99; N, 11.10. Found: C, 61.65; H, 8.22; N, 11.10. 4-(3-Furan-2-ylmethylthioureido)benzoic acid ethyl ester (4.5c). Green needles (from EtOAc/Hexanes), 57%, mp 115116 o C. 1 H NMR (CDCl 3 ) 1.39 (t, J = 7.2 Hz, 3H), 4.36 (q, J = 7.2 Hz, 2H), 4.86 (d, J = 5.1 Hz, 2H), 6.316.34 (m, 2H), 6.55 (br s, 1H), 7.28 (d, J = 8.4 Hz, 2H), 7.357.36 (m, 1H), 8.06 (d, J = 8.4 Hz, 2H), 8.38 (s, 1H). 13 C NMR (CDCl 3 ) 14.2, 42.4, 61.2, 108.5, 110.5, 123.0, 128.1, 131.5, 140.4, 142.6, 149.7, 165.6, 180.1. Anal. Calcd For C 15 H 16 N 2 O 3 S: C, 59.19; H, 5.30; N, 9.20. Found: C, 59.06; H, 5.25; N, 9.34. 1-Phenethyl-3-thiazol-2-ylthiourea (4.5d). Orange needles (from EtOAc/Hexanes), 95%, mp 162 o C (lit. [95JMC659] mp 169.5.5 o C). 1 H NMR

PAGE 58

46 (CDCl 3 ) 3.03 (t, J = 7.2 Hz, 2H), 3.99 (q, J = 7.2 Hz, 2H), 6.80 (d, J = 3.6 Hz, 1H), 7.207.35 (m, 6H), 10.50 (br s, 1H), 10.83 (br s, 1H). 13 C NMR (CDCl 3 ) 34.8, 47.0, 111.1, 126.6, 128.6, 128.9, 137.6, 138.5, 161.6, 177.6. Anal. Calcd For C 12 H 13 N 3 S 2 : C, 54.72; H, 4.97; N, 15.95. Found: C, 54.99; H, 4.80; N, 15.93. 3-(1,5-Dimethylhexyl)-1-methyl-1-phenylthiourea (4.5e). Orange oil, 61%. 1 H NMR (CDCl 3 ) 0.820.85 (dd, J = 6.6, 1.5 Hz, 6H), 1.071.52 (m, 10H), 3.66 (s, 3H), 4.404.51 (m, 1H), 5.06 (d, J = 8.1 Hz, 1H), 7.21 (d, J = 7.2 Hz, 2H), 7.39 (t, J = 7.5 Hz, 1H), 7.47.51 (m, 2H). 13 C NMR (CDCl 3 ) 20.3, 22.4, 23.5, 27.7, 36.6, 38.6, 43.1, 51.4, 127.1, 128.4, 130.5, 142.9, 181.0. Anal. Calcd For C 16 H 26 N 2 S: C, 69.01; H, 9.41; N, 10.06. Found: C, 69.33; H, 9.61; N, 10.29. Morpholine-4-carbothioic acid [(R)-1-phenylethyl]amide (4.5f). White needles (from EtOAc/Hexanes), 92%, mp 117 o C. [] D 25 = 3.5 o (c 0.04, CH 2 Cl 2 ); 1 H NMR (CDCl 3 ) 1.61 (d, J = 6.6 Hz, 3H), 3.723.84 (m, 8H), 5.66 (br s, 1H), 5.775.87 (m, 1H), 7.267.44 (m, 5H). 13 C NMR (CDCl 3 ) 21.4, 47.4, 54.6, 66.1, 126.4, 127.5, 128.7, 142.9, 181.9. Anal. Calcd For C 13 H 18 N 2 OS: C, 62.36; H, 7.25; N, 11.19. Found: C, 62.05; H, 7.25; N, 11.62. Piperidine-1-carbothioic acid (furan-2-ylmethyl)amide (4.5g). White needles (from EtOAc/Hexanes), 94%, mp 104 o C. 1 H NMR (CDCl 3 ) 1.66 (br s, 6H), 3.783.80 (m, 4H), 4.87 (d, J = 4.8 Hz, 2H), 5.64 (br s, 1H), 6.30.34 (m, 2H) 7.38 (s, 1H). 13 C NMR (CDCl 3 ) 24.2, 25.4, 43.1, 48.8, 108.0, 110.5, 142.2, 151.1, 181.0. Anal. Calcd For C 11 H 16 N 2 OS: C, 58.90; H, 7.19; N, 12.49. Found: C, 58.35; H, 7.31; N, 12.28. 3-Methylpiperidine-1-carbothioic acid thiazol-2-ylamide (4.5h). Orange oil, 87%. 1 H NMR (CDCl 3 ) 0.89 (d, J = 6.6 Hz, 3H), 1.101.26 (m, 1H), 1.451.85 (m,

PAGE 59

47 4H), 2.66 (t, J = 11.1 Hz, 1H), 2.893.03 (m, 1H), 4.84 (t, J = 14.1 Hz, 2H) 6.62 (d, J = 4.2 Hz, 1H), 7.16 (d, J = 4.2 Hz, 1H). 13 C NMR (CDCl 3 ) 18.9, 25.1, 31.3, 33.0, 48.6, 55.2, 109.9, 127.6, 167.8, 180.6. Anal. Calcd For C 10 H 15 N 3 S 2 : C, 49.76; H, 6.26; N, 17.41. Found: C, 49.99; H, 6.28; N, 17.11. 4.4.3 General Procedure for the One-Pot Preparation of Thioureas 4.11. To 0.56 g of bis(benzotriazol-1-yl)methanethione (4.3) (2 mmol) in 30 mL of THF, the appropriate primary amine (2 mmol) was added and the mixture was stirred 36 h. Then, triethylamine (0.6 mL, 4 mmol) and the second primary amine or a secondary amine (2 mmol) were added, and the mixture was stirred for an additional 36 h. Solvent was evaporated and the remaining oil was dissolved in ethyl acetate and washed with 1M HCl, 10 % aqueous solution sodium carbonate, water, and brine. The organic layer was dried over anhydrous sodium sulfate, concentrated, and purified by re-crystallization or column chromatography (10 % EtOAc/ Hexanes). 1-(4-Methoxyphenyl)-3-phenethylthiourea (4.11). Gray needles (from EtOAc/Hexanes), 94%, mp 104105 o C. 1 H NMR (CDCl 3 ) 2.89 (t, J = 6.9 Hz, 2H), 3.81 (s, 3H), 3.86 (q, J = 6.9 Hz, 2H), 5.75 (br s, 1H), 6.826.86 (m, 2H), 6.95 (d, J = 8.7 Hz, 2H), 7.107.13 (m, 2H), 7.217.29 (m, 3H), 7.51 (br s, 1H). 13 C NMR (CDCl 3 ) 34.8, 46.1, 55.4, 115.1, 126.5, 127.6, 128.1, 128.6, 128.7, 138.4, 158.8, 180.9. Anal. Calcd For C 16 H 18 N 2 OS: C, 67.10; H, 6.33; N, 9.78. Found: C, 67.29; H, 6.38; N, 9.96. 4-[(2,3-Dihydroindole-1-carbothioyl)amino]benzoic acid ethyl ester (4.12). Gray needles (from EtOAc/Hexanes), 87%, mp 122123 o C. 1 H NMR (CDCl 3 ) 1.38 (t, J = 7.2 Hz, 3H), 3.12 (t, J = 8.1 Hz, 2H), 4.35 (q, J = 7.2 Hz, 2H), 4.45 (t, J = 8.1 Hz, 2H), 7.04 (t, J = 7.5 Hz, 1H), 7.17 (t, J = 7.8 Hz, 1H), 7.29 (d, J = 7.5 Hz, 1H), 7.43.50

PAGE 60

48 (m, 3H), 7.83 (br s, 1H), 8.00 (d, J = 8.4 Hz, 2H). 13 C NMR (CDCl 3 ) 14.4, 27.3, 55.0, 60.9, 114.9, 121.7, 124.4, 126.3, 126.6, 127.5, 130.6, 134.7, 141.5, 143.1, 166.1, 177.7. Anal. Calcd For C 18 H 18 N 2 O 2 S: C, 66.23; H, 5.56; N, 8.58. Found: C, 66.53; H, 5.61; N, 8.60. 1-Butyl-1-methyl-3-[2-(4-methylbenzoyl)phenyl] thiourea (4.13). Yellow oil, 76%. 1 H NMR (CDCl 3 ) 0.98 (t, J = 7.2 Hz, 3H), 1.381.46 (m, 2H), 1.671.77 (m, 2H), 2.44 (s, 3H), 3.38 (s, 3H), 3.87 (br s, 2H), 7.05.11 (m, 1H), 7.28 (d, J = 8.1 Hz, 2H), 7.497.56 (m, 2H), 7.67 (d, J = 8.1 Hz, 2H), 8.72 (d, J = 8.4 Hz, 1H), 10.69 (s, 1H). 13 C NMR (CDCl 3 ) 13.9, 20.1, 21.7, 29.2, 53.7, 122.1, 125.0, 125.9, 129.0, 130.5, 132.4, 132.6, 135.5, 142.2, 143.6, 179.6, 199.1. Anal. Calcd For C 20 H 24 N 2 OS: C, 70.55; H, 7.10; N, 8.23. Found: C, 70.19; H, 7.18; N, 8.64. (3-Benzyl-1-phenylthioureido)acetic acid ethyl ester (4.14). Red oil, 52%. 1 H NMR (CDCl 3 ) 1.30 (t, J = 7.2 Hz, 3H), 4.24 (q, J = 7.2 Hz, 2H), 4.82 (d, J = 5.4 Hz, 2H), 4.89 (s, 2H), 5.76 (br s, 1H), 7.177.48 (m, 10H). 13 C NMR (CDCl 3 ) 14.1, 49.9, 56.4, 61.2, 127.2, 127.4, 127.9, 128.6, 129.1, 130.6, 137.7, 141.4, 169.3, 182.9. Anal. Calcd For C 18 H 20 N 2 O 2 S: C, 65.83; H, 6.14; N, 8.53. Found: C, 66.19; H, 6.20; N, 8.62. 1-(3-Dimethylaminopropyl)-3-phenyl thiourea (4.15). Yellow needles (from EtOAc/Hexanes), 97%, mp 99100 o C. 1 H NMR (CDCl 3 ) 1.651.72 (m, 2H), 1.88 (s, 6H), 2.38 (t, J = 5.7 Hz, 2H), 3.74 (br s, 2H), 7.237.29 (m, 3H), 7.39 (t, J = 7.8 Hz, 2H), 8.00 (br s, 1H), 8.82 (br s, 1H). 13 C NMR (CDCl 3 ) 24.2, 44.5, 47.0, 59.0, 115.0, 125.6, 126.6, 129.2, 129.5, 136.8, 180.3. Anal. Calcd For C 12 H 19 N 3 S: C, 60.72; H, 8.07; N, 17.70. Found: C, 60.40; H, 8.01; N, 17.72.

PAGE 61

49 1-Benzyl-3-(3-imidazol-1-ylpropyl)thiourea (4.16). Colorless oil, 89%. 1 H NMR (CDCl 3 ) 1.962.06 (m, 2H), 3.48 (q, J = 5.7 Hz, 2H), 3.89 (t, J = 6.6 Hz, 2H), 4.65 (d, J = 3.6 Hz, 2H), 6.86 (s, 2H), 7.19 (s, 1H), 7.267.33 (m, 7H). 13 C NMR (CDCl 3 ) 30.3, 41.2, 44.3, 48.0, 119.1, 127.4, 127.5, 128.6, 128.7, 136.8, 137.5, 183.0. Anal. Calcd For C 14 H 18 N 4 S: C, 61.28; H, 6.61; N, 20.42. Found: C, 60.93; H, 6.79; N, 20.02. 1-Benzothiazolyl-3-methyl-3-(butyl)thiourea (4.17). Yellow powder (from EtOAc/Hexanes), 68%, mp 114 o C. 1 H NMR (DMSO-d 6 ) 0.92 (t, J = 7.2 Hz, 3H), 1.22 (d, J = 6.6 Hz, 3H), 1.32.43 (m, 2H), 1.48.67 (m, 2H), 4.30.39 (m, 1H), 7.28 (t, J = 7.8 Hz, 1H), 7.41 (t, J = 6.9 Hz, 1H), 7.64 (d, J = 7.8 Hz, 1H), 7.90 (d, J = 7.8 Hz, 1H), 9.84 (br s, 1H), 11.74 (br s, 1H). 13 C NMR (DMSO-d 6 ) 13.8, 18.6, 19.7, 37.6, 49.8, 119.1, 121.7, 123.6, 126.2, 129.6, 161.5, 178.1. Anal. Calcd For C 13 H 17 N 3 S 2 : C, 55.88; H, 6.13; N, 15.04. Found: C, 55.20; H, 5.99; N, 15.04.

PAGE 62

50 CHAPTER 5 SYNTHESIS OF 3,3-DIARYLPYRROLIDINES FROM DIARYL KETONES 5.1 Introduction Nitrogen-containing five membered rings are the basis of many natural and bioactive products [96JACS8266]; thus, these molecules are interesting synthetic targets. 3,3-diaryloxindoles exhibit antibacterial, antiprotozoal and antiinflammatory activities [98JOC4481]. Succinimides and hydantoins show antimuscarinic and anticonvulsant activity [97BMCL979] with the 3,3-diphenyl derivatives of these compounds being particularly potent anticonvulsants [51JOC4895]. For all the above-mentioned compounds, there is a notable trend that the 3,3-diaryl derivatives are more biologically important. Pyrrolidines are another important class of bioactive molecules shown to inhibit glycosidases [87ARB497, 92G199]. However, despite extensive study [88TL573, 90TL1741, 93T10793] there are hardly any reports in the literature on the general synthesis of 3,3-diarylpyrrolidines. Methods to 3,3-diarylpyrrolidines reported in the literature include the preparation of 3,3-diphenylpyrrolidine from: i) diarylacetonitriles [53JACS2986] (Scheme 1-11), ii) 4-phenoxyor 4-bromo-2,2-diphenylbutylamine hydrochloride [55JACS1083], and iii) 4-amino-3,3-diphenylbutan-1-ol hydrochloride [58JACS2519] (Scheme 1-13). Considering the significant biological importance of pyrrolidines and their derivatives [97TL2677, 98JOC4481], we have investigated synthesis of their 3,3-diaryl derivatives from readily available benzophenones and herein report the results of our studies. 50

PAGE 63

51 5.2 Results and Discussion Condensation of benzophenone 5.1a with ethyl cyanoacetate under Knoevenagel conditions was carried out following a literature procedure [50JOC381] with a slight modification (use of a three-fold excess of ammonium acetate catalyst) to afford ethyl [2-cyano-3-phenyl-3-(4-trifluoromethylphenyl)]acrylate 5.2a in 57% yield. Under this methodology, other diaryl ketones were also reacted with ethyl cyanoacetate to yield the corresponding diaryl acrylates 5.2bg and 5.2i in moderate to good yields. NMR spectra of all diaryl acrylates (except for 5.2i) indicated the presence of E and Z isomers in CDCl 3 solution (Figure 5-1, 1 H NMR of 5.2b) (Figure 5-2, 13 C NMR of 5.2b). Figure 5-1. 1 H NMR of ethyl [2-cyano-3-phenyl-3-(4-methoxyphenyl)]acrylate (5.2b).

PAGE 64

52 Figure 5-2. 13 C NMR of ethyl [2-cyano-3-phenyl-3-(4-methoxyphenyl)]acrylate (5.2b). Full substitution of the double bond rendered the determination of the isomer ratio difficult and precluded clear assignment of each signal to the respective isomer. Since racemic mixtures of 3,3-diarylpyrrolidines were the synthetic targets, isomer mixtures of diaryl acrylates 5.2 were not separated, but taken for further reactions. As noted above, diarylacrylate 5.2i derived from pyridyl phenyl ketone exists as a single isomer in CDCl 3 as seen from the 1 H NMR (Figure 5-3).

PAGE 65

53 Figure 5-3. 1 H NMR of ethyl (2-cyano-3-phenyl-3-pyridinyl)acrylate (5.2i). The subsequent conversion of 5.2a into 2,2-diphenylsuccinic acid 5.4a through the dicyanoester 5.3a was achieved through hydrolysis and decarboxylation [50JOC381]. Succinic acid 5.4a was cyclized to the anhydride 5.5a by treatment with acetyl chloride. Subsequent reaction of 5.5a with benzhydryl amine gave the succinimic acid 5.6a, which was cyclized to succinimide 5.7a in refluxing acetic anhydride (Scheme 5-1) [51JOC4895]. Other succinimides 5.7bd were prepared following this procedure. These were characterized by 1 H and 13 C NMR and were directly used for the reduction without further analytical characterization.

PAGE 66

54 EtCO2CH2CNNH4OAc, C6H6 KCN -CO2RR COOHCOOH1O R R 1 R R CO2EtNC1 R R CO2EtCNNC1 H2SO4/AcOH/H2O 5.1 5.2 5.3 5.4 AcCl R NH2AcONa/Ac2O222 O O O R R 1 O NH HOOCR R R 1 N O O R R R 1 N R R R 12NaBH4/I2 5.5 5.6 5.7 5.8 a a Preparation of compounds 5.8 by reduction of succinimic acids 5.7 was carried out by Dr. Satheesh Nair. Scheme 5-1. Preparation of 3,3-diarylpyrrolidines. 2-Cyano-3,3-diarylacrylates, 5.2e and 5.2i, prepared from the corresponding benzophenones were treated with KCN and the intermediate dicyano derivatives obtained were subjected to acid hydrolysis. However, in these cases, isolation of the expected acids was not possible. In addition to the normal hydrolytic treatment (H 2 SO 4 /H 2 O/AcOH), attempts to isolate the acids 5.4 were made using HCl, but these were conducted without success. Other work up modifications such as neutralization of pH also did not aid in isolation of the succinic acids 5.4e and 5.4i. Succinimic acid 5.6f, derived from 4-nitrobenzophenone and aniline, failed to ring close under the conditions applied. Apart from our normal procedure, neat heating of 5.6f at 150 o C was tried, which led to a complex mixture that could not be characterized. Whereas, anthrone and o-chloro benzophenone failed to undergo the condensation with ethyl cyanoacetate, o,o'-dichlorobenzophenone did react, surprisingly, but the isolated yield (<10%) of 5.2g was insufficient to proceed to subsequent steps.

PAGE 67

55 Dr. Nair carried out reduction of succinimides to the final pyrrolidine by treatment with BH 3 THF, which was generated in situ from NaBH 4 and I 2 following the method by Periasamy [92T4623]. Thus, refluxing 5.7a with an excess of BH 3 THF, generated from NaBH 4 and I 2 for 12h afforded 65% of 3-phenyl-3-(4-trifluoromethylphenyl)pyrrolidine 5.8a (Scheme 5-2). Other pyrrolidone diones 5.7b and 5.7c also reacted similarly giving the corresponding pyrrolidines 5.8b and 5.8c in reasonably good yields. Table 5-1. 3,3-Diarylpyrrolidines prepared and the intermediates. Percentage isolated yield Entry R R 1 R 2 5.2 5.4 5.7 5.8* a p-F 3 CC 6 H 4 Ph (Ph) 2 CH 57 b 70 72 b p-MeOC 6 H 4 Ph CF 3 CH 2 62 b 53 72 c Ph p-Br-C 6 H 4 PhCH 2 87 b 67 59 d 2-Naphthyl Ph t-Bu 35 b 63 e p-Me 2 NC 6 H 4 Ph 69 a f p-O 2 NC 6 H 4 Ph Ph 42 b a g o-ClC 6 H 4 o-ClC 6 H 4 10 h o-ClC 6 H 4 Ph a i 4-Pyridyl Ph 30 a j Anthrone a (a) No reaction observed, (b) Crude product used in the next step without purification, Product obtained by Dr. Satheesh Nair. 3-Phenyl-3-(2-naphthyl)-1-tert-butylpyrrolidine-2,5-dione 5.7d was prepared starting from 2-naphthyl phenyl ketone in 61% yield. When Dr. Nair carried out the reduction of 5.7d using BH 3 THF, only the mono reduced product 5.9 was isolated in 89% yield (Scheme 5-2).

PAGE 68

56 Use of a large excess (10 eq.) of the reagent and prolonged refluxing did not give the expected pyrrolidine. When Dr. Nair attempted reduction using LiAlH 4, the result was complete decomposition of the material. This could probably be due to two factors: 1) the steric hindrance by the bulky t-butyl group and (2) the reduced electrophilicity of the amide carbonyl by the electron donating t-butyl group. N Ph O O N Ph O BH3.THF 5.7h 5.9 Scheme 5-2. Mono-reduction of succinimide 5.7h. (Reaction conducted by Dr. Nair) 5.3 Conclusion Although pyrrolidines are a well-known class of bioactive heterocycles, few methods have been reported for the synthesis of 3,3-diarylpyrrolidines. Of those reported methods, none are general: these routes require the use of difficult-to-access or non-commercially available starting materials, such as diarylacetonitriles, 4-phenoxyor 4-bromo-2,2-diphenylbutylamine hydrochloride, or 4-amino-3,3-diphenylbutan-1-ol hydrochloride; involve steps that limit tolerance of functionality (e.g., pyrolysis); and only one limited method ([4 +2] cycloadditions of nitroalkenes and activated alkenes) provides 3,3-diarylpyrrolidines in moderate yields. In comparison, we have elaborated a general synthesis of 3,3-diarylpyrrolidines from readily available benzophenones. Benzophenones with electron withdrawing as well as electron donating substituents could be used effectively for the preparation of the

PAGE 69

57 respective succinic acids. However, under our specific acidic hydrolytic conditions, the use of benzophenones containing basic nitrogens is not recommended. Generally, while any primary amine could be used for the preparation of pyrrolidones 5.7, the final reduction restricts the use of amines like t-butylamine, which offers significant steric hindrance. Given the above-described caveats, this procedure has proven itself useful for the preparation of 3,3-diarylpyrrolidines. 5.4 Experimental Section Melting points were determined using a Bristoline hot-stage microscope and are uncorrected. 1 H (300 MHz) and 13 C (75 MHz) NMR spectra were recorded on a 300 MHz NMR spectrometer in chloroform-d solution. Column chromatography was performed on silica gel (230400 mesh). Elemental analyses were performed on a Carlo Erba-1106 instrument. 5.4.1 General Procedure for the Preparation of 2-Cyano-3,3-diarylacrylates 5.2ai. Diarylketone (50 mmol) was taken in benzene (50 mL) along with ethyl cyanoacetate (50 mmol). Ammonium acetate (150 mmol) was added in 2h intervals (50 mmol each time) and the mixture was refluxed for 24h with azeotropic water removal. The reaction mixture was cooled and washed with water (3x100 mL) followed by saturated solution of sodium chloride (100 mL). The organic layer was dried over sodium sulfate, concentrated and the crude mixture was purified by crystallization. Ethyl (2-cyano-3-(4-trifluoromethylphenyl)-3-phenyl)acrylate (5.2a). Obtained as a colorless liquid (57%, E/Z ~50:50). 1 H NMR 1.051.09 (m, 6H), 4.064.13 (m, 4H), 7.06 (d, J = 7.8 Hz, 4H), 7.20.39 (m, 6H), 7.15 (d, J = 7.8 Hz, 4H), 7.567.62 (m, 4H). 13 C NMR 13.6, 62.4, 105.6, 116.1, 121.7, 125.1, 125.2, 125.3,

PAGE 70

58 125.5, 125.6, 128.4, 128.7, 129.1, 129.3, 130.0, 130.4, 130.7, 131.7, 132.5, 133.0, 137.5, 137.7, 141.6, 161.9, 162.1, 167.0. Ethyl (2-cyano-3-(4-methoxyphenyl)-3-phenyl)acrylate (5.2b). Obtained as a yellow liquid (62%, E/Z ~50:50) 1 H NMR 0.98 (t, J = 7.2 Hz, 3H), 1.19 (t, J = 7.2 Hz, 3H), 3.35 (s, 3H), 3.71 (s, 3H), 3.98 (q, J = 7.2 Hz, 2H), 4.12 (q, J = 7.2 Hz, 2H), 6.80 (d, J = 8.7 Hz, 2H), 7.04 (d, J = 8.7 Hz, 2H), 7.267.40 (m, 5H). 13 C NMR 13.4, 13.6, 24.4, 55.1, 55.2, 61.6, 62.5, 101.4, 113.1, 113.3, 113.6, 117.3, 127.8, 128.1, 129.1, 129.9, 130.0, 130.2, 130.3, 131.1, 131.6, 132.3, 138.7, 162.8, 168.7. Ethyl (2-cyano-3-(4-bromophenyl)-3-phenyl)acrylate (5.2c). Obtained as a yellow powder (87%, E/Z ~50:50) mp 89-90 o C. 1 H NMR 1.11.22 (m, 6H), 4.114.22 (m, 4H), 7.01.04 (m, 2H), 7.13.30 (m, 6H), 7.357.57 (m, 1H). 13 C NMR 13.6, 13.7, 62.2, 62.3, 104.2, 111.2, 116.6, 124.9, 126.2, 126.8, 128.3, 128.5, 129.2, 130.1, 130.4, 130.5, 131.4, 131.6, 131.8, 136.9, 137.3, 137.7, 137.9, 146.4, 162.2, 162.3. Ethyl (2-cyano-3-naphthyl-3-phenyl)acrylate (5.2d). Obtained as yellow crystals (35%, E/Z ~50:50) mp 8990 o C. 1 H NMR 1.07 (t, J = 7.2 Hz, 3H), 1.15 (t, J = 7.2 Hz, 3H), 4.15 (m, 4H), 7.187.24 (m, 2H), 7.367.64 (m, 14H), 7.777.96 (m, 8H). 13 C NMR 13.6, 62.1, 116.9, 117.0, 126.3, 126.4, 126.7, 126.8, 127.5, 127.6, 127.7, 127.8, 128.1, 128.2, 128.4, 128.5, 128.9, 129.3, 129.5, 130.3, 130.4, 131.1, 131.4, 132.4, 133.8, 134.3, 135.5, 135.9, 138.3, 138.6, 162.6, 169.1. Ethyl (2-cyano-3-(4-N,N-dimethylaminophenyl)-3-phenyl)acrylate (5.2e). Obtained as pale brown crystals (ethanol) (69%) mp 128129 o C. 1 H NMR 1.12 (t, J = 3.3 Hz, 3H), 4.10 (q, J = 3.3 Hz, 2H), 6.606.64 (m, 2H), 7.187.41 (m, 7H). 13 C NMR

PAGE 71

59 13.7, 39.9, 61.4, 110.7, 118.9, 124.6, 127.8, 129.6, 130.8, 133.1, 139.7, 152.4, 152.7, 163.7. Ethyl (2-cyano-3-(4-nitrophenyl)-3-phenyl)acrylate (5.2f). Obtained isomers as yellow crystals (ethanol, 42%, E/Z ~50%) mp 124 o C. 1 H NMR 1.22 (t, J = 7.2 Hz, 3H), 4.19 (q, J = 7.2 Hz, 2H), 7.137.58 (m, 7H), 8.248.30 (m, 2H). 13 C NMR 13.6, 13.7, 62.6, 105.7, 115.8, 115.9, 123.4, 123.7, 128.5, 128.8, 129.0, 129.7, 129.8, 130.9, 131.9, 137.0, 137.2, 144.2, 144.8, 148.4, 148.9, 161.0, 161.7. Ethyl (2-cyano-3-(4-pyridyl)-3-phenyl)acrylate (5.2i). Obtained as yellow crystals (ethanol) (30%), mp 9597 o C. 1 H NMR 1.20 (t, J = 7.2 Hz, 3H), 4.20 (q, J = 7.2 Hz, 2H), 7.327.52 (m, 6H), 8.44 (d, J = 1.2 Hz, 1H), 6.67 (dd, J = 1.5, 4.90 Hz, 1H). 13 C NMR 13.7, 62.5, 116.3, 123.0, 128.8, 130.0, 134.6, 136.5, 137.6, 149.0, 151.0, 162.0, 165.9. 5.4.2 General Procedure for the Preparation of 2,2-Diaryl-pyrrolidine-2,5-diones 5.7 i) Preparation of dicyanoesters 5.3. The appropriate Knoevenagel condensation product 5.2 (50 mmol) was dissolved in 95% ethanol (50 mL) and added dropwise to a solution of KCN (100 mmol) in water (20 mL). The resulting mixture was heated and stirred at 90 o C for 2h. After cooling, conc. HCl was added until the pH of the solution became acidic (pH 3) to litmus. In most of the cases, the dicyano derivative precipitated out (if not, it was extracted with ethyl acetate). The precipitate was washed with water (3x50 mL) and was used without any further purification for subsequent steps. ii) Preparation of diaryl succinic acids 5.4. The obtained dicyanoester 5.3 (50 mmol) was dissolved in acetic acid (30 mL) and refluxed with 80% H 2 SO 4 (30 mL) for 12h. Cooled and poured into crushed ice, the resulting solid was filtered and washed with

PAGE 72

60 water (3x50 mL). This was directly taken in 20% KOH (50 mL) and refluxed for 72 h. The reaction mixture was cooled and acidified with con. HCl (until the pH of the solution became acidic (pH 3) to litmus) to precipitate the diaryl succinic acid (~4050% yields), which was filtered, washed with water (3x100 mL) and dried in oven. No purification was attempted and the acid was used directly for subsequent reactions. iii) Preparation of succinic anhydrides 5.5. The succinic acid 5.4 (20 mmol) was refluxed with acetyl chloride (10 mL) for 2h. The resulting mixture was concentrated under vacuum and the residue dissolved in ethyl acetate (50 mL). The organic layer was washed with water (3x50 mL), dried over sodium sulfate and concentrated to obtain the anhydride in quantitative yield (from the acid). iv) Preparation of 3,3-diaryl-pyrrolidine-2,5-diones 5.7. The anhydride 5.5 (10 mmol) was treated with the corresponding primary amine (10 mmol) in refluxing acetone (20 mL) for 2h, concentrated, and the succinimic acid 5.6 was taken in acetic anhydride (20 mL) with sodium acetate (10 mmol). The mixture was heated at 70 o C for 2h. Acetic anhydride was removed under vacuum and the crude material was purified by column chromatography over silica gel using ethyl acetate/hexane (95:5). Yields of 5.7ad refer to the yield from the corresponding diarysuccinic acids 5.4ad. 3-Phenyl-3-(4-trifluoromethylphenyl)-1-benzhydrylpyrrolidine-2,5-dione (5.7a). Obtained as a colorless oil (70%) 1 H NMR 3.41 (d, J = 18.2 Hz, 1H), 3.53 (d, J = 18.3 Hz, 1H), 6.61 (s, 1H), 7.207.36 (m, 17H), 7.54 (d, J = 8.4 Hz, 2H). 13 C NMR 44.5, 56.7, 58.8, 125.5, 125.6, 125.7, 127.3, 127.8, 127.9, 128.0, 128.3, 128.4, 128.4, 129.0, 130.0, 137.0, 137.1, 140.7, 145.4, 173.8, 177.1.

PAGE 73

61 3-Phenyl-3-(4-methoxyphenyl)-1-trifluoroethylpyrrolidine-2,5-dione (5.7b). Isolated as a colorless oil (53%) 1 H NMR 3.47 (d, J = 18.3 Hz, 1H), 3.55 (d, J = 18.3 Hz, 1H), 3.78 (s, 3H), 4.17 (d, J = 8.7 Hz, 1H), 4.23 (d, J = 8.4 Hz, 1H), 6.86 (d, J = 9.0 Hz, 2H), 7.187.37 (m, 7H). 13 C NMR 39.5, 39.9, 44.8, 114.2, 127.1, 127.7, 128.4, 128.9, 132.6, 141.4, 159.0, 173.4, 177.2. 3-Phenyl-3-(4-bromophenyl)-1-benzylpyrrolidine-2,5-dione (5.7c). Isolated as a pale yellow oil (67%). 1 H NMR 3.35 (d, J = 18.3 Hz, 1H), 3.43 (d, J = 18.3 Hz, 1H), 4.71 (s, 2H), 7.10 (d, J = 8.7 Hz, 2H), 7.167.19 (m, 2H), 7.247.31 (m, 8H), 7.40 (d, J = 8.7 Hz, 2H). 13 C NMR 42.7, 44.6, 56.4, 121.8, 127.1, 127.7, 128.0, 128.4, 128.6, 128.8, 129.1, 131.7, 135.3, 140.5, 141.1, 174.1, 177.5. 3-Phenyl-3-naphthyl-1-tert-butylpyrrolidine-2,5-dione (5.7d). Isolated as a colorless oil (63%). 1 H NMR 1.62 (s, 9H), 3.39 (d, J = 18.3 Hz, 1H), 3.46 (d, J = 18.3 Hz, 1H), 7.277.33 (m, 6H), 7.467.49 (m, 2H), 7.747.81 (m, 4H). 13 C NMR 28.4, 45.1, 56.5, 58.9, 125.7, 125.9, 126.4, 127.4, 127.5, 128.2, 128.6, 128.7, 132.3, 132.9, 139.2, 142.1, 175.8, 179.2.

PAGE 74

62 CHAPTER 6 SYNTHESIS AND CHARACTERIZATION OF BLOWING AGENTS 6.1 Introduction The rubber industry employs blowing agents (gas generating agents), such as dinitropentamethylenetetramine and p-tolysulfonylhydrazine, in the production of microcellular rubber [85PRPA281]. Azodicarbonamide, Exocerol 232, and Hyderocerol BIH are blowing agents (now replacing CFCs) that are commonly used in the plastics industry to provide polymer foams [99CP35, 02HK427, 02JCED554]. Another significant application of blowing agents is their use in propellant formulations [95JPP838, 97HC153, 03JTAC931]. In a collaborative effort to develop novel munition formulations, we have investigated the synthesis and characterization of energetic compounds to provide new blowing agents. The US Army has previously applied blowing agents (e.g. 2,4-dinitrophenylhydrazine) as energetic material additives in explosive mixtures to modify general munition properties. Inclusion of blowing agents that display separate isotherms from the other components of explosive mixtures is a means of tempering the violence of explosions. For a particular Army formulation containing trinitrotoluene (TNT) and cyclotrimethylenetrinitramine (RDX), inclusion of blowing agents possessing a differential scanning calorimetry (DSC) indicated decomposition of ~180 o C provides a means of bursting open any confinement before reaction of the main constituents; thus mitigating cook off violence. 62

PAGE 75

63 Of particular interest are blowing agents with the following characteristics: quick generation of gas, mp higher than 75 o C, stable, and with DSC that indicates gas evolution at 140 o C. There are a few stable blowing agents 6.1.5 (utilized in the plastics and rubber industry) reported to possess higher melting points and suitable DSCs (Figure 6-1) [77JTA75, 77PT97, 99PEP168, 02HK427, 04ACIE4924]. Among these compounds, commercially available ADCA 6.1, Nitrosan 6.2, and DNPT 6.4 were tested by DSC-TG. A non-commercially available compound with a reported DSC-indicated decomposition (PETN 6.5) was also selected for synthesis and testing. 4-Phenyltetrazole (PT) 6.3 was previously tested by the Army and found unsuitable for application as a blowing agent in RDX formulations; thus, further characterization of 6.3 was not merited. NN O NH2 NH2 O N Me O NON O Me NO NHNNN ONO2 ONO2 ONO2 O2NO N N N N ONNO (mp 200-206 oC) 6.1 DSC 225 oC (mp 118 oC) DSC 145 oC 6.2 6.3 DSC 195 oC (mp 215 oC) 6.4 DSC 221-243 oC DNPT Nitrosan ADCA PT 6.5 DSC 178 oC PETN (mp 141 oC) Figure 6-1. Blowing agents with reported Differential Scanning Calorimetry (DSC) values. In the literature, there are also several syntheses of energetic additives 6.6.9 that possess the higher melting points, but do not have reported DSCs values (Figure 6-2). In order to obtain DSC data for the evaluation of the suitability of energetic additives

PAGE 76

64 6.6.9 as blowing agents, we have developed reasonable syntheses that can potentially be scaled to provide 50100 g quantities of these compounds. Additionally, we have taken thermogravimetric analyses (TG) of compounds 6.6.9 to provide supplementary data for comparison with DSC analyses. O S O O S O O N3N3 S S O O S O O N3N3 S S O O NH NH2 S NH O O NH2 Me S O O NH O NH NH2 6.6 6.7 (mp 97 98 oC) (mp 163 oC) 6.8 6.9 (mp 200 oC) (mp 75 77 oC) Figure 6-2. Literature blowing agents without reported DSC values. 6.2 Results and Discussion 6.2.1 Thermoanalyses of Blowing Agents with Reported Decompositions. DSC-TG analysis of (E)-1,2-diazenedicarboxamide (ADCA) (6.1) shows concurrent mass loss and positive heat flow starting at 201 o C (Figure 6-3). The loss in mass stabilizes at 235 o C just after the exothermal peak at 232 o C. A net mass loss of 60% is recorded and a heat flow of +4 mW is observed for this process. (E)-1,2-diazenedicarboxamide (6.1) does not fully meet the Armys criteria of a DSC-indicated decomposition occurring in the range of 140 o C; thus further testing of 6.1 for the specific application as a blowing agent for RDX formulations was not carried out.

PAGE 77

65 Figure 6-3. Thermoanalyses of (E)-1,2-diazenedicarboxamide (6.1). TG plot (dotted line); DSC plot (solid line). Nitrosan (6.2) shows a sharp decomposition slope (beginning at 119 o C) that corresponds with a huge exotherm (+10 mW), which peaks at 126 o C (Figure 6-4). The temperature at which gas is generated occurs lower than the desired range of 140 o C to 200 o C; thus nitrosan is also not a suitable blowing agent under the given specification of DSC ~180 o C. However, compound 6.2 may prove useful for other Army applications due to its highly exothermic decomposition as indicated by DSC-TG.

PAGE 78

66 Figure 6-4. Thermoanalyses of Nitrosan (6.2). TG plot (dotted line); DSC plot (solid line). Upon heating, dinitrosopentaethylenetetramine (DNPT) (6.4) loses mass beginning at 195 o C (Figure 6-5). At 207 o C, the onset of rapid decomposition occurs and is concurrent to a sharp increase in positive heat flow (+12 mW). Initial loss of NO followed by decomposition of the ring system is reflected in the double peaks in the measurement of heat flow and the change to a more gradual rate in mass loss (total loss 95%) after 208 o C. DNPT (6.4) is a good blowing agent candidate and has been sent to the Army for additional testing, such as friction and shock sensitivity determination.

PAGE 79

67 Figure 6-5. Thermoanalyses of dinitrosopentaethylenetetramine (6.4). TG plot (dotted line); DSC plot (solid line). Of the commercially available compounds with reported DSC values, only DNPT (6.4) met the requirement of DSC-indicated gas evolution in the range of 140 o C. Further testing of the physical characteristics of DNPT (6.4) are required to definitively determine the suitability of 6.4 as a blowing agent for RDX formulations; however, initial test results for shock sensitivity are promising, for 6.4 is insensitive to shock when struck with a metal weight. 6.2.2 Synthesis and Thermoanalyses of Pentaerythritol Tetranitrate (PETN) (6.5). Synthesis of PETN (6.5) was accomplished in near quantitative yield (99%) using concentrated nitric (90%) and sulfuric acid (96%) (Scheme 6-1). Use of concentrated

PAGE 80

68 sulfuric acid is critical; it has been reported that using 80 % sulfuric acid leads instead to the isolation of the pentaerythritol trinitrate as the major product in 52% yield [55JACS751]. Scale up of the nitration using concentrated sulfuric acid is facile; Camp et al. [55JACS751] have previously described kilogram scale synthesis of PETN (6.5). ONO2 ONO2 ONO2 O2NO OH OH OH OH HNO3 90%H2SO4 96% 6.10 6.5 Scheme 6-1. Synthesis of pentaerythritol tetranitrate (6.5). Figure 6-6. Thermoanalyses of pentaerythritol tetranitrate (6.5). DSC analysis preformed on 2.9925 mg of PETN (1) showed a sharp loss in mass (52 %) at 175 o C and also indicated a large exothermic peak (+32 mW) at ~180 o C

PAGE 81

69 (Figure 6-6). Calculation of the generated heat flow per mmol is determined to be +3.38 W/mmol. These observations indicate that PETN (6.5) is an excellent blowing agent candidate. 6.2.3 Synthesis and Thermal Testing of Non-commercially Available Agents 6.6.9. Since literature search produced only a few compounds with DSC decompositions that matched our requirements for blowing agents, screening of promising energetic materials without reported DSC values was necessary. Synthesis of four energetic materials possessing sulfonyl and azide or hydrazine moieties were carried out and analyzed by TG. 6.2.3.1 Blowing Agents Derived from Disulfonyl Dichlorides. Both disulfonyl azides 6.6 and 6.7 [88ZAK1128] and disulfonylhydrazine 6.9 [84IJCB962] can be prepared from the respective disulfonyl dichlorides 6.12 and 6.14, which are accessible from diphenyl ether (6.11) and diphenyl sulfide (6.13) (Schemes 6-2, 6-3, and 6-4). O S O O S O O N3N3 O O S Cl O O S O O Cl NaN3 ClSO3H 6.11 6.12 (74%) 6.6 (83%) Scheme 6-2. Synthesis of disulfonyl azide 6.6.

PAGE 82

70 Starting from diphenyl ether (6.11), disulfonyl dichloride 6.12 was prepared in 74% yield (Scheme 6-2). Reaction of 6.12 with sodium azide provided disulfonyl azide 6.6 in 83% yield. TG data (obtained with 1.755 mg of 6.6 heating from 50 o C with a rate of 10 o C/min.) show as temperature increases, a gradual decline in mass that begins from ~ 140 o C and ends at ~ 175 o C with a total loss in mass of 14% corresponding to the expected loss of two molecules of N 2 per molecule of blowing agent 6.6 (Figure 6-7). Since off-gassing falls near 180 o C, 6.6 is a good candidate for further DSC testing and Army analysis. Figure 6-7. Thermogravimetric analyses of compounds 6.6.8. 6.7 6.6 6.8 Disulfonyl azide 6.7 was obtained in 18% yield (Scheme 6-3) from the disulfonyl dichloride 6.14, prepared from diphenyl sulfide (6.13) in 40% yield. The TG run conducted with 4.356 mg of disulfonyl azide 6.7 closely resembles that of 6.6 (Figure 6

PAGE 83

71 7). The loss of mass (12%, roughly 2 molecules N 2 per molecule 6.7) was gradual starting around 140 o C and ending at ~170 o C. S S O O S O O N3N3 S S S Cl O O S O O Cl NaN3 ClSO3H 6.14 (41%) 6.7 ( 18%) 6.13 Scheme 6-3. Preparation of disulfonyl azide 6.7. Disulfonylhydrazide 6.8 was obtained in 72% yield from reaction of disulfonyl chloride 6.14 with hydrazine (Scheme 6-4). In determining the melting point, it was observed that 4,4'-thiobis(benzenesulfonyl hydrazide) (6.8) simultaneously melts and off-gasses at 162 o C. This rapid off-gassing, however, was not as strongly evident in the TG, which displays only a slightly more rapid decrease in mass with heating (a 22% loss over a range of 130 o C) as compared to 6.6 and 6.7 (Figure 6-7). To resolve these questions, further analysis of 6.8 will be carried out by the Army. S S O O NH NH2 S NH O O NH2 S S Cl O O S O O Cl N2H4, EtOH 6.14 6.8, 72% Scheme 6-4. Preparation of disulfonylhydrazide 6.8. 6.2.3.2 N-(Hydrazinocarbonyl)-4-methylbenzenesulfonamide (6.9). A facile route to N-(hydrazinocarbonyl)-4-methylbenzenesulfonamide (6.9) proceeded via the intermediate, N-methoxycarbonyl-(4-methylphenyl)sulfonamide (6.16) [86IJCB934], prepared from p-tolylsulfonamide (6.15) (Scheme 6-5) [68JOC4442].

PAGE 84

72 Intermediate 6.16 was prepared in 69% yield by the reaction of ethyl chloroformate with p-tolylsulfonamide in the presence of triethylamine. Conversion of the carbamate 6.16 to 6.9 (92% yield) by reaction with hydrazine monohydrate in refluxing ethanol was successful (Scheme 6-5). Me S O O NH O NH NH2 Me S O O NH2 Me S O O NH O OEtN2H4, EtOHCl O OEt 6.15 6.16 6.9 reflux +Et3N MeCN Scheme 6-5. Synthesis of N-(hydrazinocarbonyl)-4-methylbenzenesulfonamide (6.9). TG analysis performed on N-(hydrazinocarbonyl)-4-methylbenzenesulfonamide (10) showed two distinctive regions, an area starting around 100 o C indicating loss of hydration (hydrazine ureas are hydroscopic) and a second area showing a broad decline in mass ~200 o C due to decomposition. Lack of a sharp decomposition profile and potential difficulties with storage of 6.9 concerning its hydroscopic nature have ruled out its utility as a blowing agent for incorporation into RDX munition formulations. 6.3 Conclusion Nine energetic additives 6.1.9 were evaluated for use as blowing agents. Based on DSC-TG and TG results, PETN (6.5) and disulfonyl azides 6.6.8 are the most promising candidates, for they show quick gas-generation, possess melting points higher than 75 o C, and decompose in the range of 140 o C. Commercially available DNPT (6.4) possesses a higher DSC value (near 200 o C); however, its sharp decomposition profile and high energy output per mole merit further investigation of its suitability for inclusion in RDX formulations. Further Army testing of these agents in comparison with

PAGE 85

73 RDX is required to determine whether or not these compounds maintain separate isotherms from the main explosive mixture and can be employed as blowing agents. Unfortunately, although commercially available (E)-1,2-diazenedicarboxamide (6.1) and Nitrosan (6.2) are insensitive to shock and quickly generate gas upon decomposition, these agents were found to decompose at temperatures outside of the desired range. Likewise, sulfonamide 6.9 was found unsuitable due to its high decomposition temperature and concerns about its hydroscopic nature. While applications in these specific RDX formulations are ruled out for 6.1, 6.2, and 6.9, these agents may find other applications as energetic materials. The utility of the blowing agent candidates examined in this study is not limited only to their incorporation into RDX munitions, since their properties of stability, insensitivity to shock and friction, and moderate temperatures for onset of decomposition are also of value for propellant formulations and for the preparation of foam polymers. The thermoanalyses conducted for these blowing agents have provided valuable information previously unavailable to researchers in the area of energetic materials. 6.4 Experimental Caution! Although we have not experienced any problems in synthesizing or handling these compounds, proper safety precautions should be followed and these materials should be treated with extreme care. Melting points were determined using a Bristoline hot-stage microscope and are uncorrected. 1 H (300 MHz) and 13 C (75 MHz) NMR spectra were recorded on a 300 MHz NMR spectrometer in DMSO-d 6 or chloroform-d solution as indicated. THF was distilled from sodium-benzophenone ketal prior to use. Column chromatography was

PAGE 86

74 performed on silica gel (300 mesh). Elemental analyses were performed on a Carlo Erba-1106 instrument. Thermogravimetric analyses were conducted with a PerkinElmer thermoanalyzer. DSC-TG analyses were performed on a Universal TA model #2960 SDT V3 instrument. 6.4.1 Synthesis of Pentaerythritol Tetranitrate (6.5). Pentaerythritol (4.80 g, 0.015 moles) was added to a mixture of 19.80 g of 90% concentrated nitric acid with an added trace of urea (0.03 g) cooled to 0 o C. Stirring was continued for 15 min., then 96% concentrated sulfuric acid (19.80 g) was added, and the reaction mixture was left to stir at 0 o C for 2h. The reaction mixture was poured onto ice, filtered and washed with water (400 mL). The precipitate was dissolved in 250 mL of acetone containing 0.75 g of ammonium carbonate by heating in a water bath at 50 o C. Ethanol and water were added to form a solvent mixture that was 7 parts acetone, 3 parts water and 2 parts ethanol from which pentaerythritol tetranitrate (6.5) was allowed to precipitate over 2h. Filteration and washing the precipitate with ethanol afforded a near quantitative yield (99%) of pentaerythritol tetranitrate (6.5) as white needles, mp 140 o C, (Lit. 17-[55JACS751] mp 141 o C). 1 H NMR (Acetone-d 6 / DMSO-d 6 ppm): 4.77 (s, 8H). 13 C NMR (Acetone-d 6 / DMSO-d 6 ppm): 68.6, 41.0. 6.4.2 Disulfonyl Dichloride Derivatives 6.6.8. 4-[4-(Chlorosulfonyl)phenoxy]benzenesulfonyl chloride (6.12). In a round bottom flask at room temperature, chlorosulfonic acid (20mL) was slowly added to neat diphenyl ether (6.11) (8.5 g, 0.05 mol). (Caution: reaction very exothermic) The reaction mixture was stirred at rt for 2 h. The mixture was then poured into ice water (200 mL),

PAGE 87

75 and the crude disulfonyl dichloride collected by filtration and thoroughly washed with water. Drying under vacuum gave 6.12 as off-white powder in 74% yield, mp 126 o C. 1 H NMR (DMSO-d 6 ppm): 8.10 (d, J = 9.0 Hz, 4H), 7.30 (d, J = 9.0 Hz, 4H). 13 C NMR (DMSO-d 6 ppm): 157.6, 138.3, 127.5, 118.0. Elemental analysis: Theory: % C, 39.25; % H, 2.20; % N, 0. Found: % C, 38.88; % H, 2.06; % N, 0.01. Bis[4-(azidosulfonyl)phenyl] ether (6.6). To disulfonyl dichloride 6.12 (0.37g, 1 mmol) dissolved in acetone at 0 o C, was added sodium azide (0.16g, 2.4 mmol). Stirring was continued for 18 h with the reaction mixture allowed to slowly warm to rt. Water (100 mL) was added and the precipitate filtered and recrystallized from acetone/water to give the desired sulfonyl azide 6.6 as a colorless microcrystals in 83% yield, mp 84 o C (Lit. 13-[88ZAK1128] mp 97 o C). 1 H NMR (DMSO-d 6 ppm): 8.01 (d, J = 9.0 Hz, 4H), 7.25 (d, J = 9.0 Hz, 4H). 13 C NMR (DMSO-d 6 ppm): 160.6, 134.2, 130.3, 119.9. Elemental analysis: Theory: % C, 37.89; % H, 2.12; % N, 22.09. Found: % C, 38.00; % H, 1.95; % N, 21.40. 4,4'-Sulfanediyl-bis-benzenesulfonyl chloride (6.14). In a round bottom flask at room temperature, chlorosulfonic acid (4 mL, excess) was slowly added to neat diphenyl sulfide (6.13) (1.7 mL, 0.010 mol). (Caution: reaction very exothermic) The reaction mixture was stirred at rt for 4 h and then poured into ice water (200 mL). The crude disulfonyl dichloride was collected by filtration and thoroughly washed with water. Drying under vacuum gave 6.14 as a white powder in 41% yield, mp 149 o C.

PAGE 88

76 1 H NMR (DMSO-d 6 ppm): 7.60 (d, J = 8.1 Hz, 4H), 7.28 (d, J = 8.1 Hz, 4H). 13 C NMR (DMSO-d 6 ppm): 147.2, 135.1, 130.0, 126.8. Elemental analysis: Theory: % C, 37.60; % H, 2.10; % N, 0. Found: % C, 37.60; % H, 1.94; % N, 0.01. 4,4'-Thiobis-benzenesulfonyl azide (6.7). To disulfonyl dichloride 6.14 (0.39g, 1 mmol) dissolved in acetone at 0 o C, was added sodium azide (0.16g, 2.4 mmol). Stirring was continued for 18 h with the reaction mixture allowed to slowly warm to rt. Water (100 mL) was added and the precipitate filtered and recrystallized from acetone/water to give the desired sulfonyl azide 6.7 as colorless microcrystals in 18% yield, mp 75 o C. 1 H NMR (DMSO-d 6 ppm): 7.93 (d, J = 8.4 Hz, 4H), 7.56 (d, J = 8.4Hz, 4H). 13 C NMR (DMSO-d 6 ppm): 142.7, 137.7, 131.4, 128.5. Elemental analysis: Theory: % C, 36.36; % H, 2.03; % N, 21.20. Found: % C, 36.47; % H, 1.84; % N, 20.20. 4,4'-Thiobis(benzenesulfonyl hydrazide) (6.8). The disulfonyl dichloride 6.14 (0.39 g, 1 mmol) was dissolved in ethanol at 0 o C. Hydrazine (0.1 mL, 5 mmol, 5 equiv.) was added dropwise and the reaction was stirred at 0 o C for 2 h. Then, ice water (50 mL) was added and the precipitate filtered to give crude product, which was recrystallized from ethanol providing colorless microcrystals in 72% yield, mp 162 o C, (Lit. 13-[88ZAK1125] mp 163 o C). 1 H NMR (DMSO-d 6 ppm): 8.16 (s, 2H), 7.88 (d, J = 8.7 Hz, 4H), 7.48 (d, J = 8.4 Hz, 4H), 3.63 (br s, 4H). 13 C NMR (DMSO-d 6 ppm): 139.3, 136.9, 130.4, 128.7. Elemental analysis: Theory: % C, 38.49; % H, 3.77; % N, 14.96.

PAGE 89

77 Found: % C, 38.47; % H, 3.73; % N, 14.17. 6.4.3 Synthesis of N-(Hydrazinocarbonyl)-4-methylbenzenesulfonamide (6.9). N-Ethoxycarbonyl-(4-methylphenyl)sulfonamide (6.16). Triethylamine (14 mL, 0.1 mol) and the sulfonamide 6.15 (6.48 g, 0.04 mol) were dissolved in acetonitrile (40 mL) at rt. Ethyl chloroformate (5.7 mL, 0.06 mol) was slowly added over 5 min. The reaction mixture was left to stir at rt for 18h. Ethyl acetate (100 mL) was added, and a 5% solution of sodium bicarbonate (100 mL x 3) was used to wash the organic layer. The aqueous layers were collected, combined, and treated with concentrated HCl until congo red to Litmus test. The product precipitated from the acidified solution to provide N-ethoxycarbonyl-(4-methylphenyl)sulfonamide (6.16) in 69% yield as white cubes, mp 80 o C, (Lit. 16-[68JOC4442] mp 80 o C). 1 H NMR (CDCl 3 ppm): 7.93 (d, J = 8.4 Hz, 2H), 7.57 (s, 1H), 7.34 (d, J = 8.1 Hz, 2H), 4.13 (q, J = 7.8 Hz, 2H), 2.45 (s, 3H), 1.21 (t, J = 7.8 Hz, 3H). 13 C NMR (CDCl 3 ppm): 150.5, 145.0, 135.5, 129.5, 128.3, 63.0, 21.6, 14.0. N-(Hydrazinocarbonyl)-4-methylbenzenesulfonamide (6.9). A mixture of hydrazine monohydrate (0.10 g, 0.02 mol, 2 equiv.) and N-ethoxycarbonyl-(4-methylphenyl)-sulfonamide (6.16) ( 2.43 g, 0.01 mol) in ethanol (20 mL) and water (10 mL) was refluxed for 18 hours. The mixture was then concentrated in vacuo and the residue was crystallized from methanol to give 6.9 in 92 % yield as white microcrystals, mp 200 o C. 1 H NMR (CDCl3, ppm): 7.95 (d, J = 8.4 Hz, 2H), 7.75 (s, 1H), 7.43 (d, J = 8.1 Hz, 2H), 4.32 (m, 2H), 2.53 (s, 3H). 13 C NMR (CDCl 3 ppm): 190.5, 151.5, 146.0, 137.5, 129.8, 122.3, 20.6.

PAGE 90

CHAPTER 7 CONCLUSION The aim of developing novel routes to target nitrogen and sulfur containing compounds possessing synthetic utility, biological activity, and desirable physical properties was achieved. The successful syntheses described herein employed convenient starting materials and mild conditions, and offered competitive alternatives to classical routes often with distinct advantages. Chapters 14 highlighted the versatility of synthetic methodologies employing the benzotriazolyl group as a selective auxiliary and masked synthon to carry out organic functional group transformations. Notably, the novel benzotriazole thioacylation and thiocarbamoylation reagents developed in the progress of this study were proven to be stable, easy to store, tolerant of functional diversity, and able to provide efficient conversions in high yields. Thiocarbamoylbenzotriazoles, which were shown to behave as isothiocyanate synthons and undergo reactions with a variety of amines under mild conditions provided asymmetrical thioureas (Chapter 4), which were previously problematic to obtain or inaccessible under previous methodologies. Logical extension of the methodology investigated in the synthesis of asymmetric thioureas led to the preparation of other benzotriazole-containing thioacylating reagents providing new routes to thioamides (Chapter 2) and thionoesters (Chapter 3). The common advantages of benzotriazole-assisted thioacylations over classical syntheses are access to novel compounds, simple purification procedures, and avoidance 78

PAGE 91

79 of the use of unstable or h azardous reagents. These genera l and convenient procedures provided access to numerous novel thioamides, thionoesters, and asymmetric thioureas. In separate collaborative efforts with Merck (Chapter 5) and with the US Army (Chapter 6), we investigated routes to 3,3-diarylpyrrolidi nes and blowing agents. A new route to 3,3-diarylpyrrolidi nes was developed that u tilizes readily available benzophenones and provides good to moderate yields of diversely functionalized 3,3diarylpyrrolidines, which are biologically active scaffolds that can be potentially incorporated into new drugs. In the case of the investigation of bl owing agents, simple and convenient methodologies that allow scal e-up of syntheses were developed, the physical properties of five blowing agents were characterized, and evaluation of their decomposition profiles provided lead compounds for further testing as munition additives.

PAGE 92

80 REFERENCES The reference citation system employed throughout this dissertation is that from Comprehensive Heterocyclic Chemistry II (Vol. 1), Pergamon Press, 1996 (Eds. Katritzky, A. R.; Rees, C. W.; and Scriven, E.). Each time a reference is cited, a number-letter code is designated to the corresponding reference with the first two (or four if the reference is before the 1910s) numbers indicating the year followed by the letter code of the journal and the page number at the end. Additional notes to this reference system are as follows: (i) Each reference code is followed by the conventional literature citation in ACS style. (ii) Journals which are published in more than one part, or more than one volume per year, include the appropriate part or volume in the abbreviation. (iii) Less commonly used books and journals are coded MI for miscellaneous. (iv) Patents are assigned appropriate three letter codes and are listed in alphabetical order at the end. (v) The reference list is arranged by code according to order of year, alphabetized journal code, part or volume (if included), and then page number. (vi) Unpublished results are listed by project number. [40CB1420] Zetzsche, F.; Fredrich, A. Chem. Ber. 1940, 73B, 1420. [43JACS900] Bost, R. W.; Andrews, E. R. J. Am. Chem. Soc. 1943, 65, 900. [49BSCF172] Chabrier, P.; Renard, S. H. Bull. Soc. Chim. Fr. 1949, D, 172. 80

PAGE 93

81 [49JOC962] Alliger, G.; Smith, G. E. P.;Carr, E. L.; Stevens, H. P. J Org. Chem. 1949, 14, 962. [50JACS1140] Skinner, S. G.; Bicking, J. B. J. Am. Chem. Soc. 1950, 72, 1140. [50JOC381] Cracoe, E. J.; Robb, C. M.; Sprague, J. M. J. Org. Chem. 1950, 15, 381. [51JOC4895] Miller, C. A.; Long, L. M. J. Org. Chem. 1951, 16, 4895. [53JACS2986] Sperber, N.; Fricano, R. J. Am. Chem,. Soc. 1953, 75, 2986. [53JOC1092] Elderfield, R. C.; Short, F. W. J. Org. Chem. 1953, 18, 1092. [55CR181] Schroeder, D. C. Chem. Rev. 1955, 181. [55JACS751] Camp, A.T.; Marans, N. S.; Elrick, D. E.; Preckel, R. F. J. Am. Chem. Soc. 1955, 77, 751. [55JACS1083] Brown, R. F.; van Gulick, N. M. J. Am. Chem. Soc. 1955, 1083. [55JACS4328] McKay, A. F.; Garmaise, D. L.; Gaudry, R.; Baker, H. A.; Paris, G. Y.; Kay, R. W.; Just, G. E.; Schwartz, R. J. Am. Chem. Soc. 1955, 81, 4328. [55OS394] Allen, C. F. H.; Edens, C. O.; van Allan J. In Organic Synthesis; Wiley: New York, 1955; vol. 3, p. 394. [57JACS6243] Weinstock, J.; Lewis, S. N. J. Am. Chem. Soc. 1957, 79, 6243. [58JACS2519] Easton, N. R.; Lukach, C. A.; Nelson S. J.; Fish, V. B. J. Am. Chem. Soc. 1958, 80, 2519. [59JACS4328] McKay, A.F.; Garmaise, D.L.; Gaudry, R.; Baker, H.A.; Paris, G. Y.; Kay, R.W.; Just, G.E.; Schwartz, R. J. Am. Chem. Soc. 1959, 4328. [62ACIE351] Staab, H. A. Angew. Chem., Int. Ed. Engl. 1962, 1, 351. [62LA98] Staab, H. A.; Walther, G. Liebigs Ann. Chem. 1962, 657, 98. [63CJC2123] Neville, R. G.; McGee, J. J. Can. J. Chem. 1963, 41, 2123. [63JACS2677] Corey, E. J.; Winters, R. A. E.; J. Am. Chem. Soc. 1963, 85, 2677.

PAGE 94

82 [65BSCF3623] Reynard, P.; Moreau, R. C.; Samama, J. P. Bull. Soc. Chim. Fr. 1965, 12, 3623. [65CB1293] Eilingsfeld, H.; Moebius, L. Chem. Ber. 1965, 98, 1293. [65JACS934] Corey, E. J.; Carey, F. A.; Winters, R. A. E.; J. Am. Chem. Soc. 1965, 87, 934. [65LA64] Walter, W.; Bode, K. D. Liebigs Ann. Chem. 1965, 681, 64. [66JACS65] Nace, H. R.; Nealey, R.H. J. Am. Chem. Soc. 1966, 88, 65. [67CR107] Kurzer, F.; Douraghi-Zadeh, K. Chem. Rev. 1967, 67, 107. [68CB3517] Viola, H.; Scheithauer, S.; Mayer, R. Chem. Ber., 1968, 101, 3517. [68JOC4442] Kerber, R. C. J. Org. Chem. 1968, 33, 4442. [68LA209] Voss, J.; Walter, W.; Liebigs Ann. Chem. 1968, 716, 209. [69CA101668v] Makhsumov, A. G.; Safaev, A. S.; Abidova, S. V. Katal Pererab. Uglevodordn. Syrya 1968,101; Chem. Abstr. 1969, 71, 101668v. [69TL4609] Tichy, M.; Sicher, J. Tetrahedron Lett. 1969, 4609. [70BSCF2272] Trebaul, C.; Teste, J. Bull. Soc. Chim. Fr. 1970, 2272. [70LA201] Walter, M.; Radke, M. Liebigs Ann. Chem. 1970, 739, 201. [70JOC3558] Harton, D.; Tindall, Jr.C. G. J. Org. Chem. 1970, 35, 3558. [71JACS4516] Paquette, L. A.; Philips, J. C.; Wingard, Jr. R. E. J. Am. Chem. Soc. 1971, 93, 4516. [72TL853] Harimann, W.; Fischer, H. M.; Heine, H. G. Tetrahedron Lett. 1972, 853. [73CA3753] Emerson, C. D.; Aideness, P. C. Chem. Abstr. 1973, 78, 3753. [73LA636] Walter, M.; Radke, M. Liebigs Ann. Chem. 1973, 636. [73S149] Soheeren, J. W.; Ooms, P. H. J.; Nivard, R. J. F. Synthesis, 1973, 149. [74JOC3641] Vedejs, E; Wu, E. S. C. J. Org. Chem. 1974, 39, 3641.

PAGE 95

83 [74TL1191] Yamazaki, N.; Higashi, F.; Iguchi, T. Tetrahedron Lett. 1974, 1191. [75AHC99] Griffin, T. S.; Woods, T. S.; Klayman, D. L. In Advances in Heterocyclic Chemistry; Katritzky, A. R.; Boulton, A. J., Eds.; Academic Press: New York, 1975; vol.18, p. 99. [75EQSS675] Casida, J. E.; Kimmel, E. C.; Lay, M.; Ohkawa, H.; Rodebush, J. E.; Gray, R. A.; Tseng, C. K.; Tilles, H. Environmental Quality and Safety Supplement 1975, 3, 675. [75JHC643] Babadjamian, A.; Metzger, J. J. Heterocycl. Chem. 1975, 12, 643. [75JMC1094] Bender, A. D.; Berkoff, C. E.; Groves, W. G.; Sofranko, L. M.; Wellman, G. R.; Liu, J. H.; Begosh, P. P.; Horodniak, J. W. J. Med. Chem. 1975, 18, 1094. [75S384] Yamazaki, N.; Tomioka, T.; Higashi, F. Synthesis 1975, 384. [77BSCB679] Lawesson, S.-O.; Perregaard, J.; Schelbeye, S.; Meyer, H. J.; Thomsen, I. Bull. Soc. Chim. Belg. 1977, 86, 679. [77JOC1265] Rasheed, K.; Warkentin, J. D. J. Org. Chem. 1977, 42, 1265. [77JTA75] Tall A., Zeman S., J. Thermal Analysis, 1977, 12, 75. [77PT97] May W.P., Plastics Technology, 1977, 23, 97. [78JOC337] Larsen, C.; Steliou, K.; Harpp, D. N. J. Org. Chem. 1978, 43, 337. [78S803] Sharma, S. Synthesis 1978, 803. [78TL1145] Labar, D.; Dumont, W.; Hevesi, L.; Krief, A. Tetrahedron Lett. 1978, 19, 1145. [78TL1753] Tamura, Y.; Adachi, M.; Kawasaki, T.; Kita, Y. Tetrahedron Lett. 1978, 1753. [79COC465] Duus, F. In Comprehensive Organic Chemistry; Jones, N. J., Ed.; Pergamon Press: Oxford, 1979; vol. 3, p. 465. [79CPB1636] Tamura, Y.; Kawasaki, T.; Adachi, M.; Kita, Y. Chem. Pharm. Bull. 1979, 27, 1636. [79JIC545] Singh, H. J. Indian Chem. Soc. 1979, 56, 545.

PAGE 96

84 [81JCSPT(1)2186] Mallams, A. K.; Morton, J. B.; Reichert, P. J. Chem. Soc. Perkin Trans 1 1981, 2186. [82CL641] Takikawa, Y.; Inoue, N.; Sato, R.; Takizawa, S. Chem. Lett. 1982, 641. [83JBC59] Campbell, P.; Nashed, N. T; Lapinskas, B. A.; Gurrieri, J. J. Biol. Chem. 1983, 258, 59; Chem. Abstr. 1983, 98, 30476. [83JOC2653] Jones, B. A.; Bradshaw, J. S.; Brown, P. R.; Christensen, J. J.; Izatt, R. M. J. Org. Chem. 1983, 48, 2653. [83JOC4750] Barany, G.; Schroll, A. L.; Mott, A.W.; Halsrud, D. A. J. Org. Chem. 1983, 45, 4750. [83TL4927] Harpp, D. N.; MacDonald, J. G. Tetrahedron Lett. 1983, 24, 4927. [84IJCB962] Cremlyn, R. J.; Swinbourne, F. J.; Fitzgerald, P.; Godfrey, N.; Hedges, P.; Lapthorne, J.; Mizon, C. Indian J.Chem., Sect. B 1984, 23B, 962. [85BSCF891] Bonnans-Plaisance, C.; Gressier, J. C.; Levesque, G.; Mahjoub, A. Bull. Soc. Chim. Fr. 1985, 891. [85CJC951] Harpp, D. N.; MacDonald, J. G.; Larsen, C. Can. J. Chem. 1985, 63, 951. [85JHC137] Sarkis, G. Y.; Faisal, E. D. J. Heterocycl. Chem. 1985, 22, 137. [85PRPA281] Kok, C. M.; Tok, I. F.; Toh, H. K. Plastics and Rubber Processing and Applications 1985, 5, 281. [85T5061] Cava, M. P.; Levinson, M. I. Tetrahedron 1985, 41, 5061. [86IJC659] Viswanathan, N.; Sidhaye, A. R. Indian J. Chem. 1986, 25B, 659. [86IJCB934] Husain, M. I.; Srivastava, V. P. Indian J. Chem. Sect. B 1986, 25B, 934. [86JOC2613] Kim, S.; Yang Yi, K. Y. J. Org. Chem. 1986, 51, 2613. [86JOC2615] Danishefsky, S. J.; DeNinno, M. P. J. Org. Chem. 1986, 2615. [87ARB497] Elbein, A. D. Ann. Rev. Biochem. 1987, 56, 497. [87S835] Beslin, P.; Dlabala, A.; Levesque, G. Synthesis, 1987, 835.

PAGE 97

85 [88H1953] Takahata, H.; Yamazaki, T. Heterocycles 1988, 27, 1953. [88JOC2263] Sugimoto, H.; Makino, I.; Hirai, K. J. Org. Chem. 1988, 53, 2263. [88TL573] Tomioka, K.; Nakajima, M.; Litaka, Y.; Koga, K. Tetrahedron Lett. 1988, 29, 573. [88ZAK1128] Veselov, V. Ya.; Savelev, Yu. V.; Grekov, A. P. Zh. Anal. Khim. 1988, 43, 1125. [89JN158] Koschansky, J.; Feldmesser, J. Journal of Nematology 1989, 21, 158. [89SC965] Sridevi, G.; Rao, J.; Reddy, K. K. Synth. Commun. 1989, 19, 965. [89TL1073] Hartke, K.; Gerber, H-D.; Roesrath, U. Tetrahedron Lett. 1989, 30, 1073. [90CA131954] Meeson, J.; McColm, A. A.; Acred, P.; Greenwood, D. Journal of Antimicrobial Chemotherapy 1990, 25, 103; Chem. Abstr. 1990, 131954. [90JAE293] Kochansky, J.; Cohen, C. F. J. of Agricultural Entomology 1990, 7, 293. [90TL1741] Tomioka, K.; Nakajima, M.; Koga, K. Tetrahedorn, Lett. 1990, 31, 1741. [92G199] Winchester, B.; Fleet, G. W. J. Glycobiol, 1992, 2, 199. [92T4623] Prasad, A. S. B.; Kanth, J. V. B.; Periasamy, M. Tetrahedron 1992, 48, 4623. [93APR94] Kim, K.; Kim, Y. H. Archiv. Pharm. Res. 1993, 16, 94. [93CA191562] Wannamaker, M. W.; Van Sickle, W. A.; Moore, W. R. Chem. Abstr. 1993, 118, 191562. [93JOC3857] Denmark, S. E.; Marcin, L. R. J. Org. Chem. 1993, 58, 3857. [93S483] Gronowitz, S.; Hrnfeldt, A.-B.; Temciuc, M. Synthesis 1993, 483. [93T10793] Nakajima, M.; Tomioka, K.; Litaka, Y.; Koga, K. Tetrahedron, 1993, 49, 10793. [93TL6447] Ramadas, K.; Srinivasan, N.; Janarthanan, N. Tetrahedron Lett. 1993, 34, 6447.

PAGE 98

86 [94CA533719] Wingert, H.; Sauter, H.; Bayer, H.; Oberdorf, K.; Lorenz, G.; Ammermann, E. Chem. Abstr. 1994, 121, 533719. [95JCR1551] Prangova, L. Osternack, K.; Voss, J. J. Chem. Res. 1995, 6, 1551. [95JPP838] Ou, Yuxiang; Chen, Boren; Yan, Hong; Jia, Huiping; Li, Jianjun; Dong, Shuan. Journal of Propulsion and Power 1995, 11, 838. [95JMC4929] Bell, F. W.; Cantrell, A. S.; Hogberg, M.; Jaskunas, S. R.; Johansson, N. G.; Jordan, C. L.; Kinnick, M. D.; Lind, P.; Morin, J. M. Jr.; Noreen, R.; Oberg, B.; Palkowitz, J. A.; Parrish, C. A.; Pranc, P.; Sahlberg, C.; Teransky, R. J.; Vasileff, R. T.; Vrang, L.; West, S. J.; Zhang, H.; Zhou, X.-X. J. Med. Chem. 1995, 38, 4929. [95S1497] Katritzky, A. R.; Moutou, J.-L.; Yang, Z. Synthesis 1995, 1497. [95SC3381] Ramadas, K.; Srinivasan, N. Synth. Commun. 1995, 25, 3381. [95SL99] Katritzky, A. R.; Moutou, J.-L.; Yang, Z. Synlett 1995, 99. [95T13271] Katritzky, A. R.; Zhu, L.; Lang, H.; Denisko, O.; Wang, Z. Tetrahedron 1995, 51, 13271. [96CA455871] Walter, H.; Zambach, W. Chem. Abstr. 1996, 125, 55871. [96JACS8266] Denmark, S. E.; Thorarensen, A.; Middleton, D. S. J. Am. Chem. Soc. 1996, 118, 8266. [96JMC1157] Stark, H.; Purand, K.; Ligneau, X.; Rouleau, A.; Arrang, J.-M.; Garbarg, M.; Schwartz, J.-C.; Schunack, W. J. Med. Chem. 1996, 39, 1157. [96JOC8811] Smith, J.; Liras, J. L.; Schneider, S. E.; Anslyn, E. V. J. Org. Chem. 1996, 61, 8811. [97BMCL979] Hudkins, R. L.; DeHaven-Hudkins, D. L.; Doukas, P. Bioorg. Med. Chem. Lett. 1997, 7, 979. [97HC153] Niu, Fushui; Ou, Yuxiang; Chen, Boren. Hanneng Cailiao 1997, 5, 153-156. [97JOC4155] Katritzky, A.R.; Pleynet, D. P. M.; Yang, B. J. Org. Chem. 1997, 62, 4155. [97TL2677] Cossy, J.; Belotti, D.; Bellosta, V.; Boggio, C. Tetrahedron Lett. 1997, 38, 2677.

PAGE 99

87 [97TL4791] Tobe, Y.; Sasaki, S.; Hirose, K.; Naemura, K. Tetrahedron Lett. 1997, 38, 4791. [98AA33] Katritzky A. R.; Belyakov, S. Aldrichimica Acta 1998, 31, 33. [98CCCC599] Katritzky, A. R.; Qi, M. Collect. Czech. Chem. Commun. 1998, 63, 599. [98CR409] Katritzky, A. R.; Lan, X.; Yang, J.; Denisko, O. V. Chem. Rev. 1998, 98, 409. [98JCSPT(1)1059] Katritzky, A.R.; Serdyuk, L.; Xie, L. J. Chem. Soc., Perkin Trans. 1 1998, 1059. [98JHC467] Katritzky, A. R.; Semenzin, D.; Yang, B.; Pleynet, D. P. M. J. Heterocycl. Chem. 1998, 35, 467. [98JMC975] Chalina, E. G.; Chakarova, L. Eur. J. Med. Chem. 1998, 33, 975. [98JMC3159] Walpole, C.; Ko, S. Y.; Brown, M.; Beattie, D.; Campbell, E.; Dickenson, F.; Ewan, S.; Hughes, G. A.; Lemaire, M.; Lerpiniere, J.; Patel, S.; Urban, L. J. Med. Chem. 1998, 41, 3159. [98JOC3445] Katritzky, A. R.; Wang, X.; Xie, L.; Toader, D. J. Org. Chem. 1998, 63, 3445. [98JOC4481] Klumpp, D. A.; Yeung, K. Y.; Prakash, G. K. S.; Olah, G. A. J. Org. Chem. 1998, 63, 4481. [98JOC9989] Katritzky, A. R.; Arend, M. J. Org. Chem. 1998, 63, 9989. [98MI] Staab, H. A.; Bauer, H.; Schneider, K. M. Azolides in Organic Synthesis and Biochemistry, Wiley-VCH, Weinheim (1998). [99CP35] Prasad, A.; Shanker, M. Cellular Polymers 1999, 18, 35. [99JHC371] Katritzky, A. R.; Cui, X.; Long, Q. J. Heterocycl. Chem. 1999, 36, 371. [99JHC473] Katritzky, A. R.; Agamy, S.; Yang, B.; Qiu, G. J. Heterocycl. Chem. 1999, 36, 473. [99JHC755] Katritzky, A. R.; Strah, S.; Tymoshenko D. O. J. Heterocycl. Chem. 1999, 36, 755. [99JHC1501] Katritzky, A. R. J. Heterocylic Chem. 1999, 36, 1501.

PAGE 100

88 [99JOC1029] Ballabeni, M.; Ballini, R.; Bigi, F.; Maggi, R.; Parrini, M.; Predieri, G.; Sartori, G. J. Org. Chem. 1999, 64, 1029. [99JOC1065] Shalaby, M. A.; Rapoport, H. J. Org. Chem. 1999, 64,1065. [99JOC6076] Katritzky, A. R.; Denisenko, A.; Arend, M. J. Org. Chem. 1999, 64, 6076. [99PEP168] Lbbecke S., Pfeil A., Krause H.H., Propellants, Explosives, Pyrotechnics, 1999, 24, 168. [99PSS253] Attaby, F. A.; El-Fattah, A. M. Phosphorus, Sulfur Silicon 1999, 155, 253. [99T8263] Katritzky, A. R.; Li, J.; Xie, L. Tetrahedron 1999, 55, 8263. [99TL1957] Xian, M.; Zhu, X.; Li, Q.; Cheng, J. P. Tetrahedron Lett. 1999, 40, 1957. [00JOC6237] Zhang, X.; Lee, Y. K.; Kelley, J. A.; Burke, T. R. Jr. J. Org. Chem. 2000, 65, 6237. [00JOC8210] Katritzky, A. R.; He, H.-Y.; Suzuki, K. J. Org. Chem. 2000, 65, 8210. [00PAC1597] Katritzky, A. R.; Denisko, O. V. Pure Appl. Chem. 2000, 72, 1597. [00T629] Mohanta, P. K.; Dhar, S.; Samal, S. K.; Ila, H.; Junjappa, H. Tetrahedron 2000, 56, 629. [01ARK19] Katritzky, A. R.; Wang, M.; Zhang, S. Arkivoc 2001, (ix), 19. [01ARK41] Katritzky, A. R.; Denisko, O. V.; Fang, Y.; Zhang, L.; Wang, Z. Arkivoc 2001, (xi), 41. [01CA839295] Jeschke, P.; Harder, A.; Etzel, W.; Gau, W.; Thielking, G.; Bonse, G.; Linuma, K. Chem. Abstr. 2001, 136, 839295. [01JOC4416] Klika, K. D.; Bernat, J.; Imrich, J.; Chomca, I.; Sillanpaa, R.; Pihlaja, K.; J. Org. Chem. 2001 66 4416. [02AJC287] Deady, Leslie W.; Ganame, Daniel; Hughes, Andrew B.; Quazi, Nurul H.; Zanatta, Shannon D. Aust.J.Chem. 2002, 55, 287. [02ARK39] Katritzky, A. R.; Yang, H.; Zhang, S.; Wang, M. Arkivoc 2002, (xi), 39.

PAGE 101

89 [02ARK134] Katritzky, A. R.; Wang, M.; Yang, H.; Zhang, S.; Akhmedov, N. G. Arkivoc 2002, (viii), 134. [02BMCL1263] Song, Y.; Goel, A.; Basrur, V.; Roberts, P. E. A.; Mikovits, J. A.; Inman, J. K.; Turpin, J. A.; Rice, W. G.; Apella, E. Bioorg. Med. Chem. Lett. 2002, 10, 1263. [02HK427] Kim, Kwan-Eung; Lee, Keun-Won. Hwahak Konghak 2002, 40, 427. [02JCED554] Marrucho, I. M.; Oliveira, N. S.; Dohrn, R. J. Chem. Eng. Data 2002, 47, 554. [03ARK155] Wang, C.; Chen, J.; Song, Q.; Li, Z.; Xi, Z. ARKIVOC 2003, ii, 155. [03CA132360] Hara, Y.; Saika, M.; Hamamura, H. Chem. Abstr. 2003, 138, 132360. [03CR197] Jadodziski, T. S. Chem. Rev. 2003, 103, 197. [03JOC1443] Katritzky, A.R.; Abdel-Fattah, A. A. A.; Wang, M. J. Org. Chem. 2003, 68, 1443. [03JOC4932] Katritzky, A.R.; Abdel-Fattah, A. A. A.; Wang, M. J. Org. Chem. 2003, 68, 4932. [03JOC5720] Katritzky, A.R.; Suzuki, K.; Singh, S. K.; He, H-Y. J. Org. Chem. 2003, 68, 5720. [03JOC7887] Ochiai, M.; Nishi, Y.; Hashimoto, S.; Tsuchimoto, Y.; Chen, D.-W. J. Org. Chem. 2003, 68, 7887. [03JTAC931] Krabbendam-La Haye, E. L. M.; de Klerk, W. P. C.; Miszczak, M.; Szymanowski, J. Journal of Thermal Analysis and Calorimetry 2003, 72, 931. [03OL4755] Barma, D. K.; Bandyopadhyay, A.; Capdevila, J. H.; Falck, J. R. Org. Lett. 2003, 5, 4755. [04ACIE4924] Patil, A. J.; Muthusamy, E.; Mann, S. Angew. Chem. Int. Ed. 2004, 43, 4928. [04BJ699] Reid, J. D.; Hussain, S.; Bailey, T. S. F.; Sonkaria, S.; Sreedharan, S. K.; Thomas, E. W.; Resmini, M.; Brocklehurst, K. Biochem. J. 2004, 378, 699.

PAGE 102

90 [04JOC811] Katritzky, A.R.; Cai, C.; Suzuki, K.; Singh, S. K. J. Org. Chem. 2004, 69, 811. [04JOC2976] Katritzky, A. R.; Ledoux, S.; Witek, R. M.; Nair, S. K. J. Org. Chem. 2004, 69, 2976.

PAGE 103

91 BIOGRAPHICAL SKETCH Rachel Melissa Witek, ne Rachel Melissa Fuller, was born in Albany, Georgia, on January 2 nd 1981, to Kenneth Ray Fuller and Cheryl Lynn Fuller. Until the age of 12, she lived in Lee county, Georgia. The family moved to LaGrange, Georgia, in 1993. Two weeks after moving to LaGrange, Cheryl Lynn Fuller died in a car accident. After her junior year in high school, Rachel left for college early joining the Advanced Academy of Georgia at West Georgia State University. After one year as a jointly enrolled college-high school student and two years as an undergraduate in the honors program doing research under Professors Ben DeMayo (physics) and Victoria Geisler (organic chemistry), she graduated with a Bachelor of Arts in chemistry at age 20. In the fall of 2001, she began her PhD study in organic chemistry at the University of Florida as an Alumni Fellow working under the mentorship of Professor Alan Katritzky. In 2002, she married Rafal Piotr Witek, a PhD student in the Interdisciplinary Program of the Medical College of the University of Florida. 91