<%BANNER%>

Effect of Ambient Air Contaminants of the Performance of a Proton Exchange Membrane Fuel Cell

xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID E20110320_AAAACA INGEST_TIME 2011-03-20T11:58:52Z PACKAGE UFE0009425_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES
FILE SIZE 1051981 DFID F20110320_AABACI ORIGIN DEPOSITOR PATH osullivan_g_Page_41.jp2 GLOBAL false PRESERVATION BIT MESSAGE_DIGEST ALGORITHM MD5
ccceb90bfbf21911d6dbb6f158209cf5
SHA-1
1b01d8b4bf4f3d706dcc24317806373412424a00
60757 F20110320_AAAZMS osullivan_g_Page_78.QC.jpg
365bed10f86ef45479b8c98b32dd05cb
3bc5ec99b48f465fcd8d16d18ef8c7baa779d80a
74689 F20110320_AAAZWM osullivan_g_Page_08.QC.jpg
9bfb958b261e39e17782127da982593a
d3026ed6e722d5f50dc7efe52b49d293fcb7ae51
1855 F20110320_AAAZRP osullivan_g_Page_32.txt
47e31494ed3cfdc89d7cf3c6881f2e44
9b879eecc9cbcbad3619af811144169a53aa2e70
113977 F20110320_AAAZWN osullivan_g_Page_09.QC.jpg
cec76a0980433d7518c806e790156818
68c63711729a133b9f841dda875de238ac6582e9
1873 F20110320_AAAZRQ osullivan_g_Page_34.txt
7d4d6f2ac9b7870abad8b230d0b77838
1cffc96006057041497213b2565f303a6062c359
86621 F20110320_AAAZMT osullivan_g_Page_74.jpg
a141ae042242f1486840f01055bb8294
986209b2f25b62e0c946c338243417e0d5907945
1051979 F20110320_AABACJ osullivan_g_Page_42.jp2
6211e5391ac571fc27a0df7e5eede65a
367638c6f83e07e450f612c221832660ff15b5b5
209374 F20110320_AAAZWO osullivan_g_Page_10.jpg
d62bf987d578de3688c9fd3a888e4dc0
bbf936538023459ecda494d8969a4df3d9ea7ce1
1937 F20110320_AAAZRR osullivan_g_Page_35.txt
18947b92d0fba1ada41f03aa181f9e51
b7bfffc57fb9d0b1081f3168d0e4a4e3bb553968
49713 F20110320_AAAZMU osullivan_g_Page_25.pro
6e08fe58e16ea3d8524151d5342d9f1a
9e65ecdb3f5428ade13db48fb50fd93c1022d21e
1051982 F20110320_AABACK osullivan_g_Page_43.jp2
80b503fc78ebf0e45e3fd1338d9067af
09219bcb0e436738ff2c67e2c4c05fe1a2719537
88417 F20110320_AAAZWP osullivan_g_Page_10.QC.jpg
84365702f364a89d42c19bb14d5500e1
401bbf8b2a4b378ecd1c8591fc14c2a398ab18a9
688 F20110320_AAAZRS osullivan_g_Page_36.txt
ce1aac9a0523f244956b695a6e392512
7b3babc4ef6232e262b1a112252140da33fe6840
1051986 F20110320_AAAZMV osullivan_g_Page_10.jp2
c2d60912eb99c0ddf30366cbf8a8df95
e539fdcd5723bf6519cc12397be7f6ff23f84344
1051933 F20110320_AABACL osullivan_g_Page_44.jp2
189c12784ceb6c0e225ed77870ef4a1b
45bdcbab9f90fa53a37fc3d69bfe1d08ab0ad18e
83226 F20110320_AAAZWQ osullivan_g_Page_11.jpg
663c10e9d16c9b02cc55ff6327c4d581
bbea6b79e764dbc540f8e8623c10fa1436b4ebe8
1280 F20110320_AAAZRT osullivan_g_Page_37.txt
37a7203adbd64c6638f45cf8b2b594ef
3b7daa10e3910957161ca899b5866a4d14f630ff
1007158 F20110320_AAAZMW osullivan_g_Page_15.jp2
db9217196aa221077ba1541056ee3da7
56aec633c7470c8af95389a3035cb929006456f7
965257 F20110320_AABACM osullivan_g_Page_45.jp2
9c5b9c9f372d6ea04b0d7df25f091eab
9fa564b684461594fe18f3120d56f091b84a6c9b
48850 F20110320_AAAZWR osullivan_g_Page_11.QC.jpg
45387787c042cc91faa3866260445904
6ffff63af383402056f72bddac0b175eac49248e
796 F20110320_AAAZRU osullivan_g_Page_39.txt
6cc5feca7cc6f8328458f7e4cebf987f
c6d29dbe9fa2a0b25d76b73e11bca0233b8abce8
25271604 F20110320_AAAZMX osullivan_g_Page_73.tif
8c9d9fad08d5bb481766b806454d5009
c0fd5406bdbdb9215f046dbf3fa8657efb8f7874
602334 F20110320_AABACN osullivan_g_Page_47.jp2
5b3641f1225bba42f9238ac1c0306804
78042a95a02cf4bd229d9fa84e6f1d679ad179a0
79141 F20110320_AAAZWS osullivan_g_Page_12.jpg
51a70e0f9448e1022a61f238341794be
02cfbeda802e5e0dfe06c093dbeac9fa1bd97c00
890 F20110320_AAAZRV osullivan_g_Page_40.txt
9b6519ca4c155bc6a68596aa0b05ac9e
4cd4384efe6c97a0ba30f2ba5ac68ae2c1efdd97
744 F20110320_AAAZMY osullivan_g_Page_14.txt
ce18ce0b758c2b04e7e011749c0bf194
8d3558ca379b8a88a6ca6b563bebe85aea161f0d
1051960 F20110320_AABACO osullivan_g_Page_48.jp2
1bd82b78c2dc6f692fa8715a801317d7
c1e31f5c8687164a2b91dc1c3c2a5eefb542f9f0
48186 F20110320_AAAZWT osullivan_g_Page_12.QC.jpg
89f44fb62b68d18bcab9d37bae42a291
5f76fd3266b6315eeb39e9acd340f3a7d9c449b3
776 F20110320_AAAZRW osullivan_g_Page_41.txt
53c1acc8482afafcc465f389b11c4742
536c756307f141a399b86443ff153faff5f2335a
994315 F20110320_AABACP osullivan_g_Page_49.jp2
a9db171c8363a8eabfe237845cb9e267
ed4d20e9423d943352de734d0317298aa5675d0b
86555 F20110320_AAAZWU osullivan_g_Page_13.QC.jpg
c673a275bb93ad747312f67c90306d0e
18dc8a274db2dc41907fb24ea718cf674a358603
1068 F20110320_AAAZRX osullivan_g_Page_42.txt
96d6dbdd030a9d8a47ae2c567ba5d219
ff3ee0e0f984f9b1c78aabfa086e33b757d0f4c5
816972 F20110320_AAAZMZ osullivan_g_Page_69.jp2
4669388ae57c85bcf04c2339f2cd730e
87712d24c0fb49ba720c623a4a4002a8d9ead9b9
283277 F20110320_AABACQ osullivan_g_Page_50.jp2
906c54e64896616007782960967799b8
2228ca5b91869dda066ec0f475fc75c0c5f08670
108559 F20110320_AAAZWV osullivan_g_Page_14.jpg
2189637928c01c4df26956d932c7cfd6
6de71108f4640a715fcae545c6e6c0de449e2ec0
1004 F20110320_AAAZRY osullivan_g_Page_43.txt
3fd405defe4e19c88351c6273285229a
816c01667456604d7a6ec4722e42319965294c45
637071 F20110320_AABACR osullivan_g_Page_51.jp2
ab606a17340513c7ec64332b710c90ac
158262ff37eba27d6e7ce9eaf353415096abb9e6
56700 F20110320_AAAZWW osullivan_g_Page_14.QC.jpg
9c34d43fa80480da8765aa74ae0d274b
4e90059ad8a0ccffb8da7cb0588ddc3d0d0d665a
F20110320_AAAZPA osullivan_g_Page_30.tif
70c70d2f2f513afadf366068d04d4f0d
082b732f02444191d151ff55e9a8b9c9ac69bddb
464 F20110320_AAAZRZ osullivan_g_Page_44.txt
d842b8db11556c6891627e5341eee355
9bd297cc1db53d9236123f22e9143635db82302d
688079 F20110320_AABACS osullivan_g_Page_53.jp2
92b51d825e99d4e48edfa4af91a34c24
a969982946eb6d249c66b44462d30823557e23a9
96597 F20110320_AAAZWX osullivan_g_Page_15.QC.jpg
17a6e57667d34ad474eb4a1330955455
ceca4e8ee19154069130ec15558e1f66bb03e838
F20110320_AAAZPB osullivan_g_Page_31.tif
56db79acf68533b8685fbb887c6de9e1
715b2d08dfa4dc2320fd3f7faee19d010b247f02
902914 F20110320_AABACT osullivan_g_Page_54.jp2
f26d25cf7c18ea62dd4fcabccf7923d4
43c968eaa6d7cc276f1c1e5fbddfe01fa491267e
206718 F20110320_AAAZWY osullivan_g_Page_17.jpg
484b8d011241c0112d4ea655d3ad92d2
b59438e607243b914677f6a1717d398667280c1c
F20110320_AAAZPC osullivan_g_Page_32.tif
9f4c47931324a5c562fbb873b3165150
3cfeaf17e535880eed9bb9c0c262789bfbe56f48
49106 F20110320_AAAZUA osullivan_g_Page_26.pro
98cf1fc55adeba78f0d6d50344ca4340
479eb0f2476cb4fe4811366d51cc55089d411764
875186 F20110320_AABACU osullivan_g_Page_56.jp2
e12bdb9ef9a4a8e39f4a33b35000e88a
56a9967a76987725264ac4ad9aef6cdad042e4ec
95051 F20110320_AAAZWZ osullivan_g_Page_17.QC.jpg
6992da5e8495dca905fba9e390f4a73a
1d2606661545fb661828a3b6238607eaaf86e620
F20110320_AAAZPD osullivan_g_Page_33.tif
615d83c5d5aeb30e6266e7837d148e0b
48cc7e60ec3bb818bbb2265b2ba7ce78fadef895
883546 F20110320_AABACV osullivan_g_Page_58.jp2
5fc4260ec5cb76668d75aa3780d5021f
49c6f71b7a5572bf4485e192e448be92cc4dfb54
F20110320_AAAZPE osullivan_g_Page_34.tif
70e7597b140e0fef64f4685490d8b2e2
349b59d52166c8ef2e392e664ba2d11cfea815e1
33881 F20110320_AAAZUB osullivan_g_Page_27.pro
cce27969e1d5534e8daac9de21ebb15d
0a67369396a48f0db5e0b536d4323910773a303d
739371 F20110320_AABACW osullivan_g_Page_60.jp2
ad84c942f1c64fdbca802d22598da62e
729424bb47e50cda2097c10a63a4ac124cc630b5
F20110320_AAAZPF osullivan_g_Page_36.tif
da7325cc4262914c73ed6155561f958c
f79b00a3170f90c813bdb0e39ecfba1026bad9c4
95299 F20110320_AAAZZA osullivan_g_Page_46.QC.jpg
4c3c79e4e17a7c129cb4780f62198670
a7cdbf9aad1155124829644112be99e4cf899358
47364 F20110320_AAAZUC osullivan_g_Page_28.pro
2cdf70efa1cf2fa5cc89b9a6702996e9
c879efd06552f79b512b8a12b3ad7cca2c52cf19
742582 F20110320_AABACX osullivan_g_Page_62.jp2
8fa7274f17415ad191ca20556e2d1238
8b76376c49ea041103f42f2e63bad24393a05f9f
F20110320_AAAZPG osullivan_g_Page_37.tif
b9abe1cf834e3bfeab01fa57aba7269b
f3bcb4612b96a77bf4fe8a5563eafd96c11b844a
142450 F20110320_AAAZZB osullivan_g_Page_47.jpg
f652c9e10dbddcbcd95699bb7b6cc922
e2b369bca743ba8074bd9e4dfb399ccbe959c76a
48170 F20110320_AAAZUD osullivan_g_Page_29.pro
dfde4ad0c8f0c531836c281e3b95250d
0a38fd7479a4d2a6bfd6e688bed89090d2d89d6a
939290 F20110320_AABACY osullivan_g_Page_63.jp2
2abeb1433806f9650c16d917a1b8481d
14fd8258886f9846982c284a12a317a3188ecd96
99593 F20110320_AABAAA osullivan_g_Page_61.QC.jpg
c4e4bb583b7c37f22f849f564f4d2668
1ad012827a2954f435b3666ada190a105bfcf5c9
F20110320_AAAZPH osullivan_g_Page_39.tif
1232660ba061ed70d31a125b7335ac24
977789a759e2aed2ec12cd7b7f0605ffc199b33f
68582 F20110320_AAAZZC osullivan_g_Page_47.QC.jpg
8e2d3bf870d369a92c8270b13b77f314
31487d6179695cff54aa0e086893a2df3266a8af
38871 F20110320_AAAZUE osullivan_g_Page_30.pro
e3eb887fe795ac75fb82f9a44dc9ff8f
1c9ade132cb7f2ece541a0d68941138cc1582e21
805501 F20110320_AABACZ osullivan_g_Page_64.jp2
f09099890383a94f7492a5ac558c9098
5e8a614e960d79d6f99d8aab021c3fceab6e0cfb
155234 F20110320_AABAAB osullivan_g_Page_62.jpg
bd51c13adac6a88f62fee39d882df785
e6dd968116b44ca5ca3cb6ec154fbd2dc3e72213
F20110320_AAAZPI osullivan_g_Page_40.tif
069fa61303403815a2d34ec9208f6a4d
cfd7e2c338fee7b40705254b70988c31570498f0
229703 F20110320_AAAZZD osullivan_g_Page_48.jpg
c84a9a3d71904545a0d5f46344be828e
673d7b93f51ca449c0abda5b5455f6ea1c61032d
19705 F20110320_AAAZUF osullivan_g_Page_31.pro
a05ca5403dc394758bf1e5766e220048
869114e076555c68ce1817e61ca32314e87ad823
70892 F20110320_AABAAC osullivan_g_Page_62.QC.jpg
017f475c9f0c86dd05c98fecd3b01ad6
e0239ffa7dc2f1391536724fa23ade6d2746f51a
F20110320_AAAZPJ osullivan_g_Page_41.tif
c2c8be820251ad31f9478ed1e7f6ce9f
4f50d8b78b261a22086f3cf0261cfdb33cdd7548
212530 F20110320_AAAZZE osullivan_g_Page_49.jpg
b2fa86a9f2ed8df2bd1f79b68e90ba5d
d782c20601946044848e49e52a5fc4a2a0efb18e
49596 F20110320_AAAZKM osullivan_g_Page_28thm.jpg
237060c4ef9523e337e5a6d3dbbfa3aa
a773aa3f96cee678b6b2da106197f13b51424651
44522 F20110320_AAAZUG osullivan_g_Page_32.pro
3e5ce8ec1545a1f6bb0540fc971c7d04
88e11636bacd8dfcdc86d53250c72d6b1127b63f
47391 F20110320_AABAFA osullivan_g_Page_45thm.jpg
fb4bb64116eaea65bf3a4c076701edc6
26987a6fb7ebcd93333166427b0e3a9cec38fd43
197639 F20110320_AABAAD osullivan_g_Page_63.jpg
d2a32b2add9b2e8caeb17a90b54bbfb9
8f8bf417966565f8dc373b1d2741c33b95223eb2
F20110320_AAAZPK osullivan_g_Page_42.tif
8870ff5a626476d852ab859f7c0002f9
d02bbda4ff466e7488f0ce64030ed321f873c9e7
97142 F20110320_AAAZZF osullivan_g_Page_49.QC.jpg
8ba7ccfe695f4672aab8f2527876e50b
a33882663539717453d743bff63ead934e839196
50393 F20110320_AAAZKN osullivan_g_Page_16.QC.jpg
4ff177f4533f0180f895c204055170e2
dbc595a94eb030ef2d1963bdf615d2e6cb8a2134
15129 F20110320_AAAZUH osullivan_g_Page_33.pro
0b8221e73c03b8f251a7b2fcccc2db7b
bbb3024081f705e8d6f3a1489a230bd2587e31ed
48890 F20110320_AABAFB osullivan_g_Page_46thm.jpg
cf88e007f6a825180db24156d1860426
3a2c93dbfd95a4fc99f23f063b05206fc530170d
88204 F20110320_AABAAE osullivan_g_Page_63.QC.jpg
e1262d7459cbf6d1e6cb67b78f18f4ad
6f0caa3cdd2867e23928e69616e0676840f2df40
F20110320_AAAZPL osullivan_g_Page_43.tif
a6249e5e7ff1b746d5f5cccdd19a273e
d66db327dfcb33779791c0aa8ad7dba2c1fb528c
1051831 F20110320_AAAZKO osullivan_g_Page_37.jp2
863b83e3d415a7656aba30a47b0b685a
f828fd0af9ef9202f420dc7472f906e492247dc4
47635 F20110320_AAAZUI osullivan_g_Page_34.pro
6c6e027b580c8c3f4767f7f820967ae2
1c8046b1c049647cc2eaeca9d75ff175c1ebe3f3
40867 F20110320_AABAFC osullivan_g_Page_47thm.jpg
47ef50c3e1cf867570a04bdc759bf269
5f735dc8db84afd0ae3a98ef3e768f0640d674a4
170183 F20110320_AABAAF osullivan_g_Page_64.jpg
5d9ff688753b7263794d7f4815ef3fd7
5c4351309693b5416e4e7c8795566c4b9035ec59
F20110320_AAAZPM osullivan_g_Page_44.tif
1c6719d041fc9c47affd8908159a44cc
46e0c9e2f659ac5d19818679844aa27847383489
84981 F20110320_AAAZZG osullivan_g_Page_50.jpg
80520cff46def3a9c308cba1b44069ff
ad2b62fd0aac88768667ab986c1c3a0d190e71d6
1673 F20110320_AAAZKP osullivan_g_Page_79.txt
d05605f8e4de74f02b0613ba377b2b2d
b651e221891aa26ec1176979df66ece3b30dc42b
48960 F20110320_AAAZUJ osullivan_g_Page_35.pro
a35fd3eae5eb4025cc6b7e47c68f9aee
431c30ba4e0f0c263ec7ac2dafac6884e1badded
48790 F20110320_AABAFD osullivan_g_Page_48thm.jpg
b72a4f05e6504b98c4de50ac823acae0
f8db8a2831db3f018fc3ae1865de3c28ece4b51d
80529 F20110320_AABAAG osullivan_g_Page_64.QC.jpg
9ed6e200c16826b0c2bd4cd7491d0668
059f021c610d562280448c9e84ebf1b894d92ccc
F20110320_AAAZPN osullivan_g_Page_45.tif
af947a22b675fb0846ebfccd1b7a1f6b
08b9ec0eb5fde8a91a1c2949030817eeb623bc65
130882 F20110320_AAAZZH osullivan_g_Page_51.jpg
ce04a4fae074c29534c9ed169bb19ccd
9206234671de7875d846812a7f6fda15a8d66185
580 F20110320_AAAZKQ osullivan_g_Page_11.txt
b3865ade0eae1bc4d463130bfa41cb17
631c9186bf22bbd92599b7e2fc3fd0b63ffbe259
16993 F20110320_AAAZUK osullivan_g_Page_36.pro
1d1f1fa62ec8d20907861d45f49237b7
5cf92aeab2a5c8bf5994d17641c090960cc5f826
33474 F20110320_AABAFE osullivan_g_Page_50thm.jpg
f08a8f1d25c8e0c43acee79bd755bdad
add059a20b792bc41963cd0721d50b1010628937
F20110320_AAAZPO osullivan_g_Page_46.tif
0cc85f0d886f7266ac0513f67e0a76fc
8e0627327ac10110f98b4f5ea944c75343824134
65893 F20110320_AAAZZI osullivan_g_Page_51.QC.jpg
f38890e65ebebbd8f53f9c0c26e9cd67
f2cc85909811f6b04a9d47b2a2fc9806a865282f
1057 F20110320_AAAZKR osullivan_g_Page_51.txt
26ae6feb39f78c2e46fad9a9923866c8
17f3367a0fe9a3fb542792a97f0e67b4d45bcb68
30965 F20110320_AAAZUL osullivan_g_Page_37.pro
76efb1bfa68a04147aed6df4ed8f0b0a
0ebeb6444cfa20f18fb6e12224aa8250f8185a71
40074 F20110320_AABAFF osullivan_g_Page_51thm.jpg
1c1ea376735f4766c7ae4aabafd9d6ab
992991a2b6b28b6c0dcdc569a8fbb3a02e5fb5b5
182744 F20110320_AABAAH osullivan_g_Page_65.jpg
808ed895923da3480af13effba5556dc
b4f2988a67fafb4ceb2681dbd3b73e6a1e9d89b9
145957 F20110320_AAAZZJ osullivan_g_Page_52.jpg
520c7c24c37a157e804dbe5112e1e3ff
92043dd4b44c10f0e81d9b917944ebbc006c2916
42725 F20110320_AAAZKS osullivan_g_Page_20.pro
0d32e8e49e7b33f13bb697c244dfa941
51d71e596a5a1ab710e792e2fc23014fde762704
22861 F20110320_AAAZUM osullivan_g_Page_38.pro
8360b1659456ba8f73a896dcd1c18a36
3db8e916dc48c4f95453fceff6cd886f9e708b13
F20110320_AAAZPP osullivan_g_Page_47.tif
061add7f5ed85d8d01e0953ad7a6d2b2
76c7503aef9ef8602d3a1852c2f87ebb6f75889c
40527 F20110320_AABAFG osullivan_g_Page_52thm.jpg
0160672256f561cf969e327136bbcbce
06daa192af350dace088b5f3aeacfee53d22d642
85346 F20110320_AABAAI osullivan_g_Page_65.QC.jpg
2f276e1bc5de372744b5aa345d97615f
f4301921eb6f0e4194fef0b629bb83033d50db79
68569 F20110320_AAAZZK osullivan_g_Page_52.QC.jpg
13de8390722d1666c98da3430da83c07
be0ad30b77e7ed56f6fe38dac27a9a25415ac669
44727 F20110320_AAAZKT osullivan_g_Page_10thm.jpg
5c0348bfe381e72327e3b1d9e768d5af
1dddb91e8f11951c42b9c96bd6bff252de1b1408
18910 F20110320_AAAZUN osullivan_g_Page_39.pro
8a249f4947376ce2fc2d60e04e41f3ec
b552c227365147f8cd81bea0ea84b8431128bbf2
F20110320_AAAZPQ osullivan_g_Page_48.tif
a435cf3ed649b82382654fec33ee62d5
c61b823bd29ad91ae6d156336542e159f67664ce
40655 F20110320_AABAFH osullivan_g_Page_53thm.jpg
16a23bd31a227dad31d5f9581706a787
6df37ba7948964c30a3e30a295f41efbec86d504
147405 F20110320_AABAAJ osullivan_g_Page_66.jpg
1998aa8b7c8f23ca9e31542c91d0eaa2
5d2780ea5674e2e0fc819955bbab57b80d5a211e
134946 F20110320_AAAZZL osullivan_g_Page_53.jpg
5d8f08e031cae553275352c607806512
df4fe9f933184bc19b8539068cf33df6a74463ef
46617 F20110320_AAAZKU osullivan_g_Page_20thm.jpg
2354762fc6b77e5399138587e79ca219
91586577fe8131e4182fbbe0793e9b9975480076
21025 F20110320_AAAZUO osullivan_g_Page_40.pro
e25da04a0b63d2deea74649493db986f
8509c6ebf58f731bfea3782dc5d21f8ad30d6e06
F20110320_AAAZPR osullivan_g_Page_49.tif
0867427aeca2a7b06b6fec6673795049
677fe7ffac74fd3f027e9a4ce1f2d6a9766f4537
46790 F20110320_AABAFI osullivan_g_Page_54thm.jpg
3366d24c189d6083bea1d27389a188e5
d173edec101bdabb84a899c0948d32dd9de9546a
72065 F20110320_AABAAK osullivan_g_Page_66.QC.jpg
cd958ab683dd57e6c24b6b5618554fd9
b99ade0c41972d5a2a646ddd8aec4617d6fc533d
65548 F20110320_AAAZZM osullivan_g_Page_53.QC.jpg
7813a4efd653fc7fa5344f25d8d3aacc
21be298cecf674c13a7ae955c54c80b96e32d4da
47235 F20110320_AAAZKV osullivan_g_Page_59thm.jpg
b11b55bf8c25deb420b56d7280a5fa0e
4e0dcacaa7d40a0d0f8fc9413c52dd0360314f0e
22842 F20110320_AAAZUP osullivan_g_Page_42.pro
166209d37318b0b9cdc7d3f530c63a9b
e82b5e5e0a5ee9316ab889fc5e899497eda2b926
F20110320_AAAZPS osullivan_g_Page_50.tif
d0cc1418bbeecfaa26bec4581347d29c
0bfb87dff8983a125764d9f2735a1971dfc29c30
46316 F20110320_AABAFJ osullivan_g_Page_55thm.jpg
a9d8fcee64f6bb5988fe680f66ce3805
332ab6a30b7c95de43b981815788d4d5bc800f51
176029 F20110320_AABAAL osullivan_g_Page_67.jpg
5caf5fcf6650808d281e15b4a75e9c0d
de6a45c4f9e2b96f00fa8e092b7e08b828e874cf
199083 F20110320_AAAZZN osullivan_g_Page_54.jpg
e19cab8f6279e682b5d3c37d765a815c
6d385b7252422d19c8238dff06d4bd88e443d556
45614 F20110320_AAAZKW osullivan_g_Page_57thm.jpg
a2cfebbb6095f2723332d64811548050
002224bd729cc52f1c6c71a71a1d072d835cef99
24399 F20110320_AAAZUQ osullivan_g_Page_43.pro
b8110fb3e831cd33535f71a100ec7b90
d894bd0869423308bb17574aef9a7d1be7c16124
F20110320_AAAZPT osullivan_g_Page_51.tif
1f6316d6fea52160e98299d21521879b
747170035b67fc2aba07c9c127bb4a81bdeb5bf8
45415 F20110320_AABAFK osullivan_g_Page_56thm.jpg
4e9c62ca8c2ddf698bc0b2d5353b754c
9ba088492f2e73b13d7dcac2708daf13e8f6a7f4
85445 F20110320_AABAAM osullivan_g_Page_67.QC.jpg
92cf4eb829238edb4970c199daee019c
2b1dfb761350bdd8eb864cbb3c608dd3b7b2a101
89300 F20110320_AAAZZO osullivan_g_Page_54.QC.jpg
a71c657d4778bd121656bb4360bb7dcd
499f52043e13f9ff2b262219841c8a0db8ec6ccc
11477 F20110320_AAAZUR osullivan_g_Page_44.pro
56b8a8bc26bce31ee5598b8c64a3f598
a3915093e1630379faba31a57821a0e1e25cf755
F20110320_AAAZPU osullivan_g_Page_53.tif
14d5944cdae6b857176caf97c0673e57
d8d6f4c973b5600b3def81b53a789a3539ab3d42
45684 F20110320_AABAFL osullivan_g_Page_58thm.jpg
04c57dc0fa80d6d2d4d59a6c32de72d8
3d0c0105348ba8f603b55f2e608b7789fada7a9d
173915 F20110320_AABAAN osullivan_g_Page_68.jpg
8e6b4c396c0f412c445801ac5f6a5bff
94543f113fa1aaf000ab397c16dcf97b978829eb
188620 F20110320_AAAZZP osullivan_g_Page_55.jpg
c96d51ca309700904b3713d2993e6af5
d4eff8f6c514a1a098f5dbd0ab4f7310bb4716e8
980590 F20110320_AAAZKX osullivan_g_Page_24.jp2
22a7e7c97f22b1527dedd9f44b1f114e
bd2b6eec3601d1d358e87b03c2dbece9e51ad427
43423 F20110320_AAAZUS osullivan_g_Page_45.pro
80a9163a08cfb899f487e32f0109c770
7a14a77fb55a83ea11e2cbd91cc8362b2f51bb9c
F20110320_AAAZPV osullivan_g_Page_54.tif
b5d9f14c5cf5f4b23578dede955bd152
51b892488755c5d1a89130569c4d2cf40fdbe97c
81051 F20110320_AABAAO osullivan_g_Page_68.QC.jpg
cbb07e3b754e4e8774715c2e6c07a73c
25cf1cf98878afc89c885e8383786cfb2b9dc7bd
87647 F20110320_AAAZZQ osullivan_g_Page_55.QC.jpg
f5b3160d8762e182978bacf09c9a9160
098ad46b52edba9ee6b926a74bdace94057c14e4
1881 F20110320_AAAZKY osullivan_g_Page_28.txt
2bcbe09b4e04b8e4ded251e50d03cf03
2e402965defce18fc894e1ba2624dc7537fdf027
45495 F20110320_AAAZUT osullivan_g_Page_46.pro
f82bbd3873945253bac08955d2aed371
9faf1565d02bc16e961975e2505bd77616ac4f1c
F20110320_AAAZPW osullivan_g_Page_55.tif
1219466a3cb601cbd601fedd134c33e2
34e02f0b509da149b5da817ecec4597ee654407f
42787 F20110320_AABAFM osullivan_g_Page_60thm.jpg
12f62527bd9d962d1644d77d34cfb826
5c0843a2424544e3508ec35fbf82c81b23209c3b
160923 F20110320_AABAAP osullivan_g_Page_69.jpg
9be844671a7b0f4fbd49301e70662e03
d4f8bb6299d1ec076f80194b7c5d1b101faa5a77
186548 F20110320_AAAZZR osullivan_g_Page_56.jpg
9b9e7da92bca61ce31ef33b19e863ff6
4a186bd49851d33e7c77f9c3fc684523c4237bb2
186644 F20110320_AAAZKZ osullivan_g_Page_58.jpg
6fe41492de0d3482a2c09894ffb5cf48
5ac66c8d3ffcee060fda59c816b305974bbeb7cb
26519 F20110320_AAAZUU osullivan_g_Page_47.pro
290b06f288926fad08d0877ddfbe47b5
16cad9ebbcafacfb9a4edba734e3685577d93a2c
F20110320_AAAZPX osullivan_g_Page_56.tif
5651eec0c09145901992d75cfd3c1da9
9b8ad2daf7409468b7708020452e1700f0def38d
47979 F20110320_AABAFN osullivan_g_Page_61thm.jpg
1c920ab0bda78e429785be88e40651ea
ba5290adbeb7e61c4fdec1c3a95d05eb1b55c514
75369 F20110320_AABAAQ osullivan_g_Page_69.QC.jpg
20a8ed71b93751475427b5c3d3182b01
225df6ee6f974fea581131d060de68a6d4d85638
85792 F20110320_AAAZZS osullivan_g_Page_56.QC.jpg
d2e60b5a97f4552d3502a7931fedb04a
79db2ee9b96129fa296bfd4309238fa17c5fdb69
48992 F20110320_AAAZUV osullivan_g_Page_48.pro
487066576aa48ba357d211fba265368e
edb3ce4b3c6cd0d8410bcc676f0ba3cb60c68775
F20110320_AAAZPY osullivan_g_Page_57.tif
4d2b8533d7556f22157cf06fcb57bb58
95a94e58f9e6e23c26270b427d44e7dc6c76a00f
42224 F20110320_AABAFO osullivan_g_Page_62thm.jpg
afd6254ac97de946a8716eede2d665fb
8defff25c324c3316718daa39c462b8d9c2db611
202527 F20110320_AABAAR osullivan_g_Page_70.jpg
75c7b075f6620c4ee9b4540af928963c
39e21c4b36136c0ee1f1f5e788e4cb2c0c434096
190549 F20110320_AAAZZT osullivan_g_Page_57.jpg
8ea5ec661082e053d5ddaee12258920b
5dabc6bc62ba1a3c6d9aee2bf02bd5e5f74e99cd
45716 F20110320_AAAZUW osullivan_g_Page_49.pro
74fbdf3f56581d19c2bfc7672ea88247
1dbd6756df1492bd0e287c6f644fcf427030e1dd
1050906 F20110320_AAAZNA osullivan_g_Page_61.jp2
04f371c353abb291679de8668d6f0f37
e91a42663bdf93003980dc2e90c74fcfe3a2d485
F20110320_AAAZPZ osullivan_g_Page_58.tif
71b242134acfbf50f89ec6c4ce01a0fc
2e71b227b6a18c228b454a07c79e4d55f3b30d3e
47075 F20110320_AABAFP osullivan_g_Page_63thm.jpg
0ac83fe74928eec27aecd218b4d0ed83
86c259e8fe34900310a52a1e0deab2101362e8c4
99483 F20110320_AABAAS osullivan_g_Page_71.QC.jpg
beca797d9ae699d5cfb0bf0eb0975a2c
c55880acd062e452f2bb08c6b773e6995c77f456
87445 F20110320_AAAZZU osullivan_g_Page_57.QC.jpg
60138fadcd92b0aace9920f729fbc511
8da9b5804e68ac3e4ba6c2144ef7b03c8cb36bb3
12999 F20110320_AAAZUX osullivan_g_Page_50.pro
705917d60cdb19ec885ac07ef268a55a
db3d91fc5a8ca12345df7e052e424364307b8db6
1609 F20110320_AAAZNB osullivan_g_Page_76.txt
92984f6a5ae034509bbdd64459aed629
7d4616fd6e93c560092969276c29de7f0b022c5b
44445 F20110320_AABAFQ osullivan_g_Page_64thm.jpg
560d3c0117553f203921f072dc2fec9a
134a1d851ead46b4658ffe7a19b5b9336ff7f6f9
162194 F20110320_AABAAT osullivan_g_Page_72.jpg
bbbd07ba2bb672800dc6fb806a9c9429
59191402fb47743c12a8c61fcf0405fdf63e5440
82401 F20110320_AAAZZV osullivan_g_Page_58.QC.jpg
cfebf5bba74ff562a28a664bcb9a66fa
0ffd4ffbacc0746a6ebe425855c53b74d7fd2aba
19185 F20110320_AAAZUY osullivan_g_Page_51.pro
10aa66aacfa768d8e74d11b84127c65b
52e64ab0c50888eabc631b3c5cef04979c294c57
95820 F20110320_AAAZNC osullivan_g_Page_06.pro
9edca6e508e665d6645df1cda28ac531
d70876c443590e2530d34aa4cd31e7b5cebc2bce
44411 F20110320_AABAFR osullivan_g_Page_65thm.jpg
e61591b50ad92ab596d1032c9d2ef18b
5383008c5c38fcfe7f9abd5ff935591ca84d16f0
75159 F20110320_AABAAU osullivan_g_Page_72.QC.jpg
a5b88b282506c5bc7f80eec3cf42644f
5e6e1e4eed725599f987338af8b065b9701a4045
202711 F20110320_AAAZZW osullivan_g_Page_59.jpg
dd7a6eb2304c1a45871bff62d5493f83
2ad5c2f42a476fc85a1776d944c29f27e78d4aa8
1925 F20110320_AAAZSA osullivan_g_Page_46.txt
a8c176ab9aa6b367a320ac8cfd237aab
e3cd2a0e2bafaf8e1aa914f6c556b88441e223e8
24731 F20110320_AAAZUZ osullivan_g_Page_52.pro
c3ef25b8d83646d997acb7c06335ab9d
61fdeadc3932d1c7916590f34b69dcd9a798aae7
38918 F20110320_AAAZND osullivan_g_Page_07.QC.jpg
0c20b4aabc107af11b8a75e0ffd5650c
f7a8d3cee594d31491f2831ff0a22bbb90d5d9d5
41280 F20110320_AABAFS osullivan_g_Page_66thm.jpg
949fd9a58dc98017a3e00ca977429206
e6400179de4e24e0293cae07987732e93ee79d27
123996 F20110320_AABAAV osullivan_g_Page_73.jpg
3b7631a876cf1fb754e0cb3de2191aa6
4ec73e832d9a8864127e73f02d21f468878e02da
91701 F20110320_AAAZZX osullivan_g_Page_59.QC.jpg
e3ddc0a4050df6fdbbf92641ebb5e6a1
f61adaf1cd6fce5573941e9f261e54d2762b29bf
1274 F20110320_AAAZSB osullivan_g_Page_47.txt
0a8fa60424428a8f57e336dba52ad4b1
a198cf4f0a866890396545847b4f29ec8baf443d
219696 F20110320_AAAZNE osullivan_g_Page_71.jpg
b4072203b8028de893c004e88c20bf6c
8ecef613ad19b47e187c7b05afb04ecdf28deee3
44449 F20110320_AABAFT osullivan_g_Page_67thm.jpg
482b4428922e4b5bd1c33b5317ef671e
ef4076bf416f67e3b7f780b6a3d7199e17ff02b9
156030 F20110320_AABAAW osullivan_g_Page_75.jpg
6f978089f9d6aee25e0e54f48474bd49
fc5899a6cc9774fef9d747da757c9fb7e2d95d3f
162310 F20110320_AAAZZY osullivan_g_Page_60.jpg
a1c2afd065f2f350ca3ad539331ad48e
1b1f08919a68e7f15a2b13109a53855fe1203217
2350 F20110320_AAAZSC osullivan_g_Page_48.txt
052107d52c89265aef83de0b510db5c7
c7b90faa29f6193f40e8e34016627b6c490dffcd
74931 F20110320_AAAZNF osullivan_g_Page_60.QC.jpg
c127ad163ea0232008a5bb9b68820cf3
ee584ebafc0c0ac26e5dc3af321188f3d37eaa60
202829 F20110320_AAAZXA osullivan_g_Page_18.jpg
fa96f884fa394f020fb07732a8b7285a
2a4669bacd472e2841b3b0c3eb39b6a5c592044f
42728 F20110320_AABAFU osullivan_g_Page_69thm.jpg
aa2e91da8120e243eab9e33c0c8c0b8f
693d43437b201ea9fc137b2cdae0f2ea205034bb
74862 F20110320_AABAAX osullivan_g_Page_75.QC.jpg
46dfa15e5fe3e6b77af970070e5b9432
8f10c4e1345e8d2c81abe4c78ce1f3d92f7a2d0c
227501 F20110320_AAAZZZ osullivan_g_Page_61.jpg
c9213bfc1de853d0394fda6843131201
bbc2f7d85a200428c377ecf878e6ccd2b6225918
1902 F20110320_AAAZSD osullivan_g_Page_49.txt
9a0978a18847da5cf6e005b19c681357
77504056803bcb7e73951111a90137eb45aa16d2
177566 F20110320_AAAZNG osullivan_g_Page_77.jpg
4869ad1e10f4e0c245acf4baf553e914
a718b49f01d20879b4351fd558cf2540c86cd41d
91330 F20110320_AAAZXB osullivan_g_Page_18.QC.jpg
df7c09abb33921b32a1cec7b11ac480a
37c41f4f117b25ca8f8ff85bc9d384ad343e9545
47110 F20110320_AABAFV osullivan_g_Page_70thm.jpg
d8024606bb69269afcc75b3e0a812aff
c76fd7d91727acdce88a9b39b9ba83b9f680a164
181674 F20110320_AABAAY osullivan_g_Page_76.jpg
492a5ff4696c26c288d738620a04eea4
bb56dcfa55016d689af5307d3767c18e892ca172
605 F20110320_AAAZSE osullivan_g_Page_50.txt
f6d185345c155c9971f43a33ef2f5815
f536b59539340a0cfc478e283724b8bc9a8e1288
36832 F20110320_AAAZNH osullivan_g_Page_67.pro
b39af932cb3f7e5ce60e204e5f4d2ea1
6488a0c15d0f1d2ea48d448a76d704c90fe0081d
178135 F20110320_AAAZXC osullivan_g_Page_19.jpg
1a0e181536e529b4f335212903c52f1b
3b4f995b353c98c9b806f2685ce7b9dc62e64ff9
50170 F20110320_AABAFW osullivan_g_Page_71thm.jpg
dc1a23eb31466b9573c5f3fb82635d28
df96a216a40f87759c02fea63638f868e206b606
116667 F20110320_AABAAZ osullivan_g_Page_78.jpg
9576b153db271ca8eb53ce99aec590ca
972623bb750a4f8406b62456283ea544f6bbefb0
1180 F20110320_AAAZSF osullivan_g_Page_52.txt
bd9d295cd6da163ed07f0360340aac95
9ae349ec30c38162bfeea731d446763aaa5b6c52
43430 F20110320_AAAZNI osullivan_g_Page_68thm.jpg
213e92f6e78f885e27b3d605c47e4857
0f5c8afc1acd2c220a660b52a222b3fc293358ed
81220 F20110320_AAAZXD osullivan_g_Page_19.QC.jpg
984d4f4692a9883d7ce1dcd4a4d85eda
b49f577074c89bebb4ec1eea30d0174983c55760
42866 F20110320_AABAFX osullivan_g_Page_72thm.jpg
d0673f835e05502c5eb6a401f93ecf7d
89c55355e5c09799077972895f4ccc004f2f57b6
1195 F20110320_AAAZSG osullivan_g_Page_53.txt
1fbd575464a24d69060152796ca3dd72
8afc16b0697fb9240dbf644631304084834867d1
938610 F20110320_AAAZNJ osullivan_g_Page_20.jp2
a7310a654e2177d7057409c4e2cb3220
73148add8c33675cfcd2461674ddca3513882802
39048 F20110320_AABAFY osullivan_g_Page_73thm.jpg
db906d39decbc9dce86ff07f577aecbf
37053d1a5605bbf3b88410d9430e0967acc3ff61
862496 F20110320_AABADA osullivan_g_Page_65.jp2
9013c065d37adea51dd21e0ee2ae4dd5
39bd8e38cf34444436b51122fd07a2bae54e0166
1766 F20110320_AAAZSH osullivan_g_Page_54.txt
8387318b7ad3946757492b1bbd610b5f
00317d33bda51b8f8e88ba0b4c109f964d46dc19
92302 F20110320_AAAZNK osullivan_g_Page_70.QC.jpg
5dc3358d5812fa190fb2557727787791
1f9daf288b0430144c05d5cbf53501b9bb571cc4
201841 F20110320_AAAZXE osullivan_g_Page_20.jpg
398edb67d2afbdf36083fddab70ef8a3
03446185e6b805f1c4cb2960f72289034be46411
44122 F20110320_AABAFZ osullivan_g_Page_76thm.jpg
7d394097aaa1b5b7c21dcdcdb5d7ff1e
b85fe1a69c58d7670d90dd582afce894a8ace630
677346 F20110320_AABADB osullivan_g_Page_66.jp2
653b0f37abb13656b5ad742bba724ef5
1f093fba83612896c6576905e2ded64b2fe915fd
2072 F20110320_AAAZSI osullivan_g_Page_55.txt
2621ba5b30d32a98711244470fe7c75f
eb2ace4bd88204948bf1f8604d80f01ef2e750a1
1014866 F20110320_AAAZNL osullivan_g_Page_59.jp2
a33f756331a278fed8d142a3deb2535d
000ad54522af720127a2b0faa6e19f86487febc0
89222 F20110320_AAAZXF osullivan_g_Page_20.QC.jpg
a00249b8761daa5d6fdcf4c3d8e5daf9
c7a63cf14deca5566b986a5c1c71a2170dc3ea00
872097 F20110320_AABADC osullivan_g_Page_67.jp2
5ae26e5e96388ad41e7b5cc6e75dab85
60e248454f0439c7186c6b6821aca941d184e66b
1836 F20110320_AAAZSJ osullivan_g_Page_56.txt
fd3a0bc4fab4cfe8288905f28ce88bf6
3a333335b53d6c2e3c7e0a395da735b91c59fb11
1983 F20110320_AAAZNM osullivan_g_Page_23.txt
72fc9e5e3db2194daeb9bd2be03fd859
c1bdc425b1fbb64837deea15356670626b364cac
219910 F20110320_AAAZXG osullivan_g_Page_21.jpg
41beea18b60ff627620246c3bb5bf8ca
cf2069f0696512f0e9e8bbb4c4d4787c5e4cdb0d
932747 F20110320_AABADD osullivan_g_Page_70.jp2
04fd464a53d0c101c0d3747ce48ca245
9c688cfbea977ccdaf8845aa488310e9c5f20834
1548 F20110320_AAAZSK osullivan_g_Page_57.txt
3189260f168fd78679faf5680dfc998c
70a8f1d752152fe1049f3b948925a326c56cddd2
48169 F20110320_AAAZNN osullivan_g_Page_24thm.jpg
b79e21df415692948f4ec83688a14fb3
ec8a8191e370a58cde6db7fe99cd46e281a0363d
96212 F20110320_AAAZXH osullivan_g_Page_21.QC.jpg
f46eed093871179e881255563cc2140d
e602e0f2941021cae12dad5274de419e08f60198
1034921 F20110320_AABADE osullivan_g_Page_71.jp2
fde15a91fe407f5b9ab43a3e6fcba745
83833700c4acc2b22c1636e13a146b275c33f940
979913 F20110320_AAAZNO osullivan_g_Page_55.jp2
526a457dae7d2994ad5ad485208dca98
ca1f9ed5b3c4e1afd5e825b5cd1fa7f0257dd2f2
87662 F20110320_AAAZXI osullivan_g_Page_22.QC.jpg
97642e61bf4857c1e3f473b404d80d79
afe3718f582e9fd3ac46e3ae14be90b3a29abdee
1478 F20110320_AAAZSL osullivan_g_Page_58.txt
596107992936dd331b3a9b2601b65b7e
a63dccf7d3dafeb464a6ed876cdfefb2efb9f1eb
711033 F20110320_AABADF osullivan_g_Page_72.jp2
6a15ffc43aa5669860d7be3a5688b7ec
eda25ee196b8e73e416fb40d2c13bc693ca9e9c8
F20110320_AAAZNP osullivan_g_Page_62.tif
fbaf0b7efa5b3d8cff99dc10dbfa58b1
a3340404b552d36bfb05eb838e8be6f8fbdd78ad
229938 F20110320_AAAZXJ osullivan_g_Page_23.jpg
31b344446343472a18064d23a68766b7
eb65b701dde43b9ee7500026e4936139cdf4e8ab
2204 F20110320_AAAZSM osullivan_g_Page_59.txt
711de5af949f3ddc2792e0a6993a075f
aa0cd8578f93cc3b593ca7204ba177d63b934950
592548 F20110320_AABADG osullivan_g_Page_73.jp2
85aa8192900260877f866fb38ed1a952
c5020daacd1215466a80e6a0013ea3098a8b0e7e
197079 F20110320_AAAZNQ osullivan_g_Page_13.jpg
cb9a8ceebf5c5b48bdc6806b3ac1fc63
bc34ce581ebbb93b7bea43fe8cd78a95c8da65f6
106404 F20110320_AAAZXK osullivan_g_Page_23.QC.jpg
1ff6e0f9fe2043186e367a903768afd3
6d849eb7dd3d019803b2198b5195f8cffaefc5b9
1652 F20110320_AAAZSN osullivan_g_Page_60.txt
57f0378294d5d6056a315a471710ba9e
7500c1034d4588a35ec863213b5dc1cbfbf46344
322774 F20110320_AABADH osullivan_g_Page_74.jp2
f497c70ffa0e869e2f3b374e7ae41b74
57cf8f1ca0da175202af76aca839ff6a05401625
F20110320_AAAZNR osullivan_g_Page_36.jp2
1b9c6bdbcccca7b956f28a46524dbdb1
81b5e67ba4d921a2cc9b5b7ce9d84a50218d70b9
210614 F20110320_AAAZXL osullivan_g_Page_24.jpg
23013759f4bfd41b94bf1640db68b52e
77a76e3d6b89f7848e5b828d0c7a3427d4367f5c
1892 F20110320_AAAZSO osullivan_g_Page_61.txt
855995561857395088da844c789c9528
855aec5dda731d736f1e50e146cc9a23efdd69bb
666048 F20110320_AABADI osullivan_g_Page_75.jp2
e8ad423ea14f634ac8a7a70821ef0a14
e2c383ab39fe23626f263ff107e533826fd43ba5
30660 F20110320_AAAZNS osullivan_g_Page_58.pro
e653ea79609a88d46408e793befb7133
9adcfec04a38bc2ec9d3dc2f38af9a8b271bcedb
93336 F20110320_AAAZXM osullivan_g_Page_24.QC.jpg
66483acd12924da83e91e119dd993676
80f477daebb7326f9dd8f5604c74ccd93b85765f
1520 F20110320_AAAZSP osullivan_g_Page_62.txt
35ace02a91d63bbd0ad5aaddd0480462
42215272c81c31155f6bf0a0cbd571f717ad16e8
795331 F20110320_AABADJ osullivan_g_Page_76.jp2
2873ddee2057c330040daac8af888ddc
ce38dfeb971a07e4648624eb191749d4ff437c3f
82770 F20110320_AAAZNT osullivan_g_Page_42.QC.jpg
9c9fe2ec856923c8f1380e7c6c30337d
9c423bd2790ac30b9adcf5937da8b78cf5fe0553
231627 F20110320_AAAZXN osullivan_g_Page_25.jpg
41e2f5a70a76774976ab5b9d7df0d11e
65a47d18497048e5137249b0041c39965677eb40
1794 F20110320_AAAZSQ osullivan_g_Page_63.txt
b810145f6673d6a6518210f9761f790d
338397adf2818cf3139283980c351d080f3a44bf
1051956 F20110320_AAAZNU osullivan_g_Page_23.jp2
1cbaf242e9bb60dab656f1a1fd5acb8a
39ae1eae74c81eace917e118322e6af52bb8dbd1
233319 F20110320_AAAZXO osullivan_g_Page_26.jpg
201a844ad7774017fec4138cdf3ff253
ad073198af5568e930ae8c4850f2aeed48262b5b
1554 F20110320_AAAZSR osullivan_g_Page_64.txt
635e3498062cf88482bdef39f15089ce
8580c6a831bc051f7ca5912f74a2e543052920ec
803419 F20110320_AABADK osullivan_g_Page_77.jp2
3b9e8c8a05668e8088c755a5585a3198
d16b6305194f1619bf7d749d57d32cfd6d02c196
F20110320_AAAZNV osullivan_g_Page_65.tif
ba10a4bf86d4fa7ec75bd1d9f263927f
ea654237b7967d5321c828325ce78e5a391e735e
104699 F20110320_AAAZXP osullivan_g_Page_26.QC.jpg
38a9d6c2a92e22e0c348edd0a5e6e0e0
15219b5346392bffe61a26efb26dfc4d6ca8ef30
1415 F20110320_AAAZSS osullivan_g_Page_65.txt
21effd942cbd6f98f603681e442d2e60
ca21e6170879a337843c2cfbe52911a95889a7f1
450501 F20110320_AABADL osullivan_g_Page_78.jp2
662afd5f8f0183e4edc061cf1739d676
f6949a7ffd5cdf7aa7e4dbecfcffdc04f9b0e133
47336 F20110320_AAAZNW osullivan_g_Page_49thm.jpg
d0b588924a5d74ddcc0d23d5eb1e7069
dca91d11aa4ba2836d45b1a527e86174707559c4
191898 F20110320_AAAZXQ osullivan_g_Page_27.jpg
de67a42333d03c703a2f4ec681263c3d
3b376aa7976594e88f1d5f448bfb460c0d29343a
976 F20110320_AAAZST osullivan_g_Page_66.txt
fd1f205a68e2e7cb101c2528b8acebde
063c5f30fce7c145f8e18ee164956eb358c3724f
562449 F20110320_AABADM osullivan_g_Page_80.jp2
59368f91e3de992a2014c95e7e8bae48
de8578489b217309dbb07ee8ab04cef9fc3fb150
132032 F20110320_AAAZNX UFE0009425_00001.xml FULL
86a3247f578e59fc6b1b8db764d66c89
9cb2b8f248395e3fbc793a29bac6da47e252045b
89226 F20110320_AAAZXR osullivan_g_Page_27.QC.jpg
888f466424035aa18e9444d5ca7fa41b
ff342e8ce31795b4f3fcd8f2a29fd59dee860f75
1979 F20110320_AAAZSU osullivan_g_Page_67.txt
c6fd139498d2a16c1a028ed1e0f35587
dbccd5a691205bfac0039da5bcd8102b5034893a
32799 F20110320_AABADN osullivan_g_Page_01thm.jpg
e92919b59fc75350d0d670c70a91b6c7
4faa6a3344157da1fe38a2601ed4843c84de2406
224160 F20110320_AAAZXS osullivan_g_Page_28.jpg
ef8d5e445c5533bb228416e4a83c2a6d
a6e174b75855a83eb113b25aaf64ed1c433b470b
1728 F20110320_AAAZSV osullivan_g_Page_69.txt
92b755c2efc6b7ad8d6d1779882c5c53
8221b5be0942db19025d1ab44bb883aef0e96f43
28529 F20110320_AABADO osullivan_g_Page_02thm.jpg
13bcfc2b4119ff02c386df6501e48bb2
300da67d73a8789087f1952506da9da68a8d51f9
99800 F20110320_AAAZXT osullivan_g_Page_28.QC.jpg
c5844507cd8cf200d6ffcf6fd119333c
bd750c5d292da5eabb66aceba3a6e5e9d77b2c8a
1727 F20110320_AAAZSW osullivan_g_Page_70.txt
4e0d36367f3312827983a26bd7958430
4b67743caccc3ad88675afa6d7d74dbd09092c4c
88318 F20110320_AAAZLA osullivan_g_Page_16.jpg
a21814e64b794263b82aae22294121b9
e45189e230102cadf29ddcaf8f4959087bfbe77a
28318 F20110320_AABADP osullivan_g_Page_03thm.jpg
201a4f4c3ea05adef19ddb60c525a771
9c278a0b13402925f9cefbc75a31620b558f1e3b
226649 F20110320_AAAZXU osullivan_g_Page_29.jpg
353e9c30f5ed0e1ac0258d1feae54931
019098f790aea1dd02790175334d3d163f408e49
1896 F20110320_AAAZSX osullivan_g_Page_71.txt
3f37149b57344ee5f6e0e59eaef5fb5c
6cd2864a11b19668f99b93c2ef98ea9b0d0c81c3
F20110320_AAAZLB osullivan_g_Page_06.tif
32cf0d2e2c21e666aaf3723f3325e65d
649bc275c499d611f018d828a242c56ab0d271b5
44740 F20110320_AABADQ osullivan_g_Page_04thm.jpg
9086bed09966027f943e800584166a65
740df27403b9bdf5e2c893c429005f68383fd7b2
98963 F20110320_AAAZXV osullivan_g_Page_29.QC.jpg
1e234c1ff38a49463e4f54e4c5905b8d
a999ab03af1b0f9fef862460a32fdddcc5fbbe41
1868 F20110320_AAAZSY osullivan_g_Page_72.txt
e87242f5ec61966d515caa78a9dc3a87
b7892825586586abd3b4ab05b3ec51e275501b8c
695 F20110320_AAAZLC osullivan_g_Page_33.txt
c799554811606906c4fb1090473ceeeb
851dcea8a4b917cef623a4069d30313267b8767e
45757 F20110320_AABADR osullivan_g_Page_05thm.jpg
a6034f44a121be7fdb8fa6adb647257a
95eb0512471bdbd72cf115b549f7fda50d6be4bd
194231 F20110320_AAAZXW osullivan_g_Page_30.jpg
730d8a11bd194a10c2fbafcd4ce35024
edd7b7404e47fe16477c5b656c7af470cb692ca7
F20110320_AAAZQA osullivan_g_Page_60.tif
8f25481fd95545895996e07b03586423
342283213591c145034ddbfff75534b3cbb888ad
953 F20110320_AAAZSZ osullivan_g_Page_73.txt
aed0f3ce8decfcba7afacc0f82df8e78
91cc13926154c177aa4ca83079ed1d760c96a28e
F20110320_AAAZLD osullivan_g_Page_52.tif
540c80219401c9023f023762281c34d0
7bbc56a1497a5376a57168cdcc5e0b3f6ce42bdf
49401 F20110320_AABADS osullivan_g_Page_06thm.jpg
b6aa059d1c2ea6dc707b65d4e4173a9a
5b10dfd37fc70c050081d290d6b34bb1da67f41b
86067 F20110320_AAAZXX osullivan_g_Page_30.QC.jpg
3d6e94eda6f4d7b77f8cb2a346d82286
b76ff86fae87adcf8945e540c3ae5ef6884a4cda
F20110320_AAAZQB osullivan_g_Page_61.tif
948fa19ae0bbd73c5f2755723b22025e
fb5306ed0a6e4d075fd64ab432a63b849b81323d
1647 F20110320_AAAZLE osullivan_g_Page_68.txt
002510f1c3104e996f03a54f045744e3
3cbe036d2b04709f9f357c14a2869c410c5cba97
31480 F20110320_AABADT osullivan_g_Page_07thm.jpg
e633449c2caec855ee654a1f3291f748
720f76ccdca38e1a3197293ff794ed2562304c76
16832 F20110320_AAAZVA osullivan_g_Page_53.pro
687819bc6e93959a7530fece72b31bad
56030999109b4e64da30a8be4288b856d9f2072a
114977 F20110320_AAAZXY osullivan_g_Page_31.jpg
be9d2f626c0225504bf115f8a08791b6
b3ab68d44af98f784508233995c765a7a522d5db
F20110320_AAAZQC osullivan_g_Page_63.tif
36177845892def5995401d46ba0d04ca
773bd224fcb746afe1617287649999b7a6cd8726
865101 F20110320_AAAZLF osullivan_g_Page_57.jp2
75fa036be64eff1fbb81c5ca843ceb47
53eaa2cf2c816db4e38e1a2e54c552316d02d059
40593 F20110320_AABADU osullivan_g_Page_08thm.jpg
33681adcd087532a9f5e8d78c01b9093
d74bc3fb6e3dcf76cd607411b2efc41f785c687c
40597 F20110320_AAAZVB osullivan_g_Page_54.pro
284eb6e6732427561b47b4e30fb5d976
2d8ff7d2f1721f93f0581dc161446a62fb2f596a
214720 F20110320_AAAZXZ osullivan_g_Page_32.jpg
c06ed97cbdae0d678bb4cd868eacfd0d
08ccc8f4cf55a9b1ec99d4aa442d59eae6cff2d5
F20110320_AAAZQD osullivan_g_Page_64.tif
71b28139a8e44070f08eefbfd9c8034c
4b4d87a0af50468cc802a0af610e14f184023b45
1883 F20110320_AAAZLG osullivan_g_Page_15.txt
6a681c0026a9b816de02d04021211356
288cb96f615f34b16728251ce6852625acad7616
51024 F20110320_AABADV osullivan_g_Page_09thm.jpg
be09da40ddc09d6d23098e5987c149e3
6a68c47eac501848daef1314de8fe274d8e2e71e
F20110320_AAAZQE osullivan_g_Page_66.tif
494f6e6398d7543e3bf110aa56151e72
d1b28616a102edeec939c4b7739b32bad0c46a69
804140 F20110320_AAAZLH osullivan_g_Page_68.jp2
3d3cf7c9b3d776bbb24f2df7edcf2c94
a525f414e78bfc34e98e39a330d38fbd8e9ec8a2
33319 F20110320_AABADW osullivan_g_Page_11thm.jpg
e262ea75b1d0c9f38a9cfa2e3c13787d
43ca48983db7cf5dd0684a675020a843d624a25c
38900 F20110320_AAAZVC osullivan_g_Page_55.pro
eda78375ef934c8a09ad634d104d5bee
bbd32f08ef3e4af8731b967ee6480e143257f06a
F20110320_AAAZQF osullivan_g_Page_67.tif
676181f3a28740fa39015f74c61a9cc7
4276371686ffcdcb27969afa6e3077dda392d45b
1002628 F20110320_AAAZLI osullivan_g_Page_46.jp2
7895a3839464fe08595d16047de6a0b1
24eb55601c45df6cc89af9c44f655cb7cc0e2735
44618 F20110320_AABADX osullivan_g_Page_13thm.jpg
cba7bf89784517d838764a0e7c37dda0
ea9671d0d2b9d56de3041c2b81fe86b345b86e70
36467 F20110320_AAAZVD osullivan_g_Page_56.pro
c5624499e6e0e0f25dda0386c79c915a
bac4a3ebb783a9a5f3433c66dc6759702dfabe83
F20110320_AAAZQG osullivan_g_Page_68.tif
a60e2e24cbb2287168d0fdca5f69dd71
254c0f011ecd95965862540c70f416714e49c728
41711 F20110320_AAAZLJ osullivan_g_Page_75thm.jpg
57a9ff02683ab0c058f56b0597ab6f45
31e744ee84a5e17bfe255c5218a33c22128dd21a
36491 F20110320_AABADY osullivan_g_Page_14thm.jpg
986feed8c8809ade63d2e6a3dda78651
21fce68892abdf2d19ef0fc7a77eb693994de75c
208114 F20110320_AABABA osullivan_g_Page_79.jpg
383a20fadaf94062584992dc9cee10e2
6e099d114ffeb61e744cfb70a058a1efc319a6be
38636 F20110320_AAAZVE osullivan_g_Page_59.pro
5b7dcf353a76483cdf3ab0bd6d369970
c5128c5bfb68af9e5513cd8b2ef9d1c26a828b34
F20110320_AAAZQH osullivan_g_Page_69.tif
3a306cd6eed482a0baf9d5cb4ad68652
783931b02243f2fb88cb4c9a08bbeddefd834f25
19182 F20110320_AAAZLK osullivan_g_Page_41.pro
8754893f1d18e6356014db98e79cbfab
6184724a67c9e1fc3917c44a982b58a8679bf01e
47633 F20110320_AABADZ osullivan_g_Page_15thm.jpg
a321069dc115775043fd36f0d8c8c265
69e443d36adde92df330e69a64faf4ade4f1abbd
86642 F20110320_AABABB osullivan_g_Page_79.QC.jpg
f22149dbca13b36a45ca8afb8bc98902
42884b7003905d097ab9894aafb0caf29349cf40
28177 F20110320_AAAZVF osullivan_g_Page_60.pro
b2d0aca01f236f9f78704ec29574d1d5
c5275ee3eace6dc6af143c8d0bd9e3534cd37ae5
F20110320_AAAZQI osullivan_g_Page_70.tif
c628c48bd97056660bd84fc07467cd5e
cdbded1e80467d8dcd6c0b062f3fd8da0e122b71
F20110320_AAAZLL osullivan_g_Page_71.tif
713bec15c272b4c632d069262823f9f7
6a1f52e04b3aad5ef33338704a5a4c5bb4f07e5b
134832 F20110320_AABABC osullivan_g_Page_80.jpg
19dff8810dfb828c33566a53aaef1805
d82c2c7cb15a1233cdc6807bf7df12b4c71b268d
47805 F20110320_AAAZVG osullivan_g_Page_61.pro
b5f2d9a57fa5acbcc2cecfc19275de2e
cc0b92f54909d05edc710e39f319d4da23ef37f1
F20110320_AAAZQJ osullivan_g_Page_72.tif
2b70c963378ed0d414784ec6fd334385
a251021bc926d98ae2970e69c6d869c9bfe4cc03
F20110320_AAAZLM osullivan_g_Page_11.tif
b41f944c35fd21797ac1327cd73ca74e
da5a3884a2fdb16ac7cd97d0325dd5139f98fd96
44331 F20110320_AABAGA osullivan_g_Page_77thm.jpg
b95f742020927460f965c72730ac3ade
21c35196395ea028d376735c84c2e5bc7abb4ffe
66646 F20110320_AABABD osullivan_g_Page_80.QC.jpg
cb48d8830abbe0cc2ac41af9aae4b27f
f7e5491c75e42856e4d21fc22721784394677e20
F20110320_AAAZQK osullivan_g_Page_74.tif
027dec63505ce2044a4a9e551a3ab2b7
959e92c8e99f63784de999045b8b76b605fc9a6a
F20110320_AAAZLN osullivan_g_Page_18.tif
7ddcab72a3468d13c73077d62dd6de8e
4202f2f25150c29b6bc8cdf794a5a3171193b99a
24925 F20110320_AAAZVH osullivan_g_Page_62.pro
80f4a93f25cae32e2419ea7ae65981f9
fc715e81314f20ba70003e737190eb14c77109b2
44548 F20110320_AABAGB osullivan_g_Page_79thm.jpg
cc5112359c4f46e611e3f4d9d6d44d4d
b322f82a2c3fcc751d643210e39d8b18dd621d95
32678 F20110320_AABABE osullivan_g_Page_02.jp2
15d688cda22139bda7e98d4f650d23ff
b0058aeb921beb91ae88010eae9c8fa1a445eca8
F20110320_AAAZQL osullivan_g_Page_75.tif
09f4142d7ec9e47442fae9536dbb9625
2115687264fb5fe4fb0f9bdeecc2cc4a97e2b585
214677 F20110320_AAAZLO osullivan_g_Page_15.jpg
9fde64c05b3e41bec1622c03edcc9540
ede4fdbdfd942b30440e5782d432a54fc4d3f074
43025 F20110320_AAAZVI osullivan_g_Page_63.pro
7cbdff73cabaf6c82f1cd9c6b92a269c
223bc4fca8e261c7d144df45f1ac7a7d1d8d0e51
39638 F20110320_AABAGC osullivan_g_Page_80thm.jpg
ae0985ddce1ca16dfc9424cabe325d29
30e82eb6aeb57d991ee68b79652ee9e5cbd91f0d
33189 F20110320_AABABF osullivan_g_Page_03.jp2
e40c74f56a3fcbd4cde3845ce2401245
f9930fa5e3bed215e6d5d68ec439cdc91026a388
F20110320_AAAZQM osullivan_g_Page_77.tif
e7da2975440f29a400235ccd03e58132
f0d9d87ccd0d172fc2f1c28eb4a876c7d3e91fd4
49040 F20110320_AAAZLP osullivan_g_Page_74.QC.jpg
d7c102b0ff98b36b3892246c3cc9612b
d8056aca9e4ecf38c195611598a886c520f4a253
33790 F20110320_AAAZVJ osullivan_g_Page_64.pro
531366e44b9fbfe6085f6a654277c65f
790c6a2501a55d7311d153884cd6e315700b0967
18327288 F20110320_AABAGD osullivan_g.pdf
75b6111850805977d5ef7fc2c441a9ad
e678e0ecbe577b228a0c327161459c025776038f
792932 F20110320_AABABG osullivan_g_Page_04.jp2
a6fdc5a18e9db54d0f9a46d549575786
55b067b952eda3e4204efc61d3df32be89308522
F20110320_AAAZQN osullivan_g_Page_78.tif
7b80a1f48f7c1f4b56b7bc11e843c6d3
73a06602e7abcaf8328a92a8cfc19da3207d4dea
F20110320_AAAZLQ osullivan_g_Page_35.tif
493aba02a00128a7b0be7abc33be1172
91722857d19174f50fede118e54f0e6332cee372
30920 F20110320_AAAZVK osullivan_g_Page_65.pro
ba55bae992391c153349d4f644c125ef
c229ec006b7693bf78ba03435e566fe257aa4dbf
94995 F20110320_AABAGE UFE0009425_00001.mets
3a7a47d5a58ea48c8fb2560bdf17e6b9
a941a5316d76039b870e0a8f1fa2d87200eb2903
1051972 F20110320_AABABH osullivan_g_Page_05.jp2
68315b0836afa76ff9ec485f3d4cb9c6
c97ff4862109b85225a9473cc84f1878adc6b626
F20110320_AAAZQO osullivan_g_Page_79.tif
bc4f6a8d64ed4da55b944c0489cb4f50
151318042b48356fc8559bdde7683eb4f35220ff
97090 F20110320_AAAZLR osullivan_g_Page_48.QC.jpg
e4a8f9f31ddc3ddde4e844c2a6452192
f24e840675f6267e6b05374be7edbf98b230ef84
18773 F20110320_AAAZVL osullivan_g_Page_66.pro
a5e70776ce2c1c3a88d8338c1b842b13
3fa2987f68dfe129c613bbd946c2e33440129cc0
F20110320_AAAZQP osullivan_g_Page_80.tif
105ff902b1c5ea4d80bf3caf96d3e117
608126ce3fa07e9558430f38c7cb7a4f224e75f4
85642 F20110320_AAAZLS osullivan_g_Page_76.QC.jpg
1c5098330382f35a496287f1a4765050
d1a3b711eda614984e4a9d6ffb7170a3a0c6cdbe
34161 F20110320_AAAZVM osullivan_g_Page_68.pro
cb955e2ffd7a25cb7a2364d23941ee77
8e0b012742f0e38bf75a7b0d20166d6ee76296f6
1051966 F20110320_AABABI osullivan_g_Page_06.jp2
31a78e12b5c4274e69959b787065bf7c
68575e7c019b3e0a89d0229cd03fa0a5e5736760
470 F20110320_AAAZQQ osullivan_g_Page_01.txt
9926b062f92affc0cc41b405880145b3
3f0984336960dba2b2090f34f346e637e51b5e4d
63982 F20110320_AAAZLT osullivan_g_Page_73.QC.jpg
be2469287e61ae1414f9adcf30d1bec4
f2591e0d3e9fd28222334574b6f943bc4a1fa05f
26727 F20110320_AAAZVN osullivan_g_Page_69.pro
7c9c3f2445398888a26c1179bf1c6f08
2a625fb74d556b1b9c4671c559da1b0c4e7a32f4
323777 F20110320_AABABJ osullivan_g_Page_07.jp2
f953a7c13f9ed603404f49d01a6dee24
1e67d95123b9827e2e1d40e5ae9d27e390c682d0
113 F20110320_AAAZQR osullivan_g_Page_02.txt
bd48474f3a36d8fd7113aa861839d02c
08f398be34695e8f49ac1986e8b7c1d06a13338f
1303 F20110320_AAAZLU osullivan_g_Page_03.pro
1a35ccafe710ec9ab218c9803735c8c8
aae5c1598360625f0845a0e5264dc6bb8d77daaf
41830 F20110320_AAAZVO osullivan_g_Page_70.pro
215690802dd345585d8646dbd33a8206
97c08c932dd0039216c9a5861e747a386e2dc45a
1051985 F20110320_AABABK osullivan_g_Page_08.jp2
8e1e4942f600bb36aa8a519507c8e1b1
2fcb1e766b13392bb55af643df679385bd8312cd
104 F20110320_AAAZQS osullivan_g_Page_03.txt
0de3e845715f1f3148870a991f21743a
304c1cd70d40a0cfd5a5c7f5a0a1a401b654b361
288863 F20110320_AAAZLV osullivan_g_Page_09.jpg
65bcaf0d589fff2a397f0189ba96bf8d
2c63617b49058bdf58c09d343edb1c97b9e7a3b2
46919 F20110320_AAAZVP osullivan_g_Page_71.pro
d173599a67a2a7712fe0bdece8d5120c
cb6157e3f4f63bfe0e2f0fb0e799bc4e7ec077eb
1051947 F20110320_AABABL osullivan_g_Page_09.jp2
20d8c23aab7028480eb9c1be643d804c
b85245efe2f056b5d349dcb83e62e7f14fd5e898
1497 F20110320_AAAZQT osullivan_g_Page_04.txt
278497baff23234e2e0f563c152deceb
1237e0ec5c5fd9164bc4abab55487e5d2d580c4a
1824 F20110320_AAAZLW osullivan_g_Page_17.txt
551c2b7691d422a00689538b6e61dc89
088b7952887dc9a5bd5a9e81b92677ace43543d1
31168 F20110320_AAAZVQ osullivan_g_Page_72.pro
334f0f7c9944e834bb6a260e52405955
543db2a207293628837c71a1ba8e8bc32d2211fb
272525 F20110320_AABABM osullivan_g_Page_11.jp2
817e13baf14cd2e006a576d38cb04e4c
90b89c065cd135fba50232a5e18453400f9aa629
3150 F20110320_AAAZQU osullivan_g_Page_05.txt
27e626f1b042eaacb0f575ec38105206
5940958335552caf5d4ec97004b748bc04f46a3b
35062 F20110320_AAAZLX osullivan_g_Page_74thm.jpg
199aa59f15ee55f7396f6f73d75c66f8
9ea9a3eb345e16ddbc76e91efdd82aa3e5069cc7
15238 F20110320_AAAZVR osullivan_g_Page_73.pro
2a5609cee84cddbcd27c2a8aa1068e1a
28d85d1c6ed4ac10959ee5bfbc2079ec1bbe4a07
256457 F20110320_AABABN osullivan_g_Page_12.jp2
fd4d0fa54cdd5d51e58c2a7a5224ce7c
a1c17f8ba09c8a197b1ba985f97dcd714cbae23a
3939 F20110320_AAAZQV osullivan_g_Page_06.txt
e95e18ef8f13d8105c9f6dbeb394d919
a6751f2399d1fbf5ee956b8225da11ff3d17cbed
9112 F20110320_AAAZVS osullivan_g_Page_74.pro
cb29195fe91688a17d4cc7c7e623eea4
0d708f8c4c334992c4096752e53be5bfdc9b07d8
885256 F20110320_AABABO osullivan_g_Page_13.jp2
42833f0089fc87fac8afa738cd46e7de
9391feb879ccd3bdb93893a97b51a3f2bcc5982c
609 F20110320_AAAZQW osullivan_g_Page_07.txt
51bd2c7b37a68e0395ab5d11e4514ef0
0f62f1228a86c0dc0cdb6c52de8d2f7f7dc9ce78
37926 F20110320_AAAZLY osullivan_g_Page_78thm.jpg
f81b505db8d3b07f033cb40361a6ebd0
3252964bbac8085db529b4ef349245f998070796
35883 F20110320_AAAZVT osullivan_g_Page_76.pro
6080a3bd87fd18bb2a3e115b081ac260
a9a1c4a0fb5953f2a4da97588a2daaa18ad7e13a
424488 F20110320_AABABP osullivan_g_Page_14.jp2
499c8e2a0f64fb8eb282b6e67e1084f2
e3fb8d54262d185381f919bd86575d7bb6fc0331
1391 F20110320_AAAZQX osullivan_g_Page_08.txt
e1a2f8da36d315dd1d22d9a05835a559
af8c3f57c43d601922e8672b6c62a905187855f2
597194 F20110320_AAAZLZ osullivan_g_Page_52.jp2
89bf7bc43904c43ff9b2193ecac3c2e8
05b59788975c106243284c61a5e0156278596998
35986 F20110320_AAAZVU osullivan_g_Page_77.pro
041c53dcb638819206849a233ca4f712
70074b64918f2d55f244a2e2a95393cab30173e4
308454 F20110320_AABABQ osullivan_g_Page_16.jp2
8e766d69c7b09d3c293890af46e0a585
aa2863b20a98848da9d38837094c5dfdced2538c
2501 F20110320_AAAZQY osullivan_g_Page_09.txt
3473f30b9ed8ae8b478834ef930018a4
2c77caec4dcefe71028b57b255e383457299c176
20152 F20110320_AAAZVV osullivan_g_Page_78.pro
e1f2409d0f483ddb49c9559b8c268cb4
7857d6754d9b379695c37c61fa30954d82d02f97
799404 F20110320_AABABR osullivan_g_Page_19.jp2
b5a236c8f5fb1461a5d5642adc6a1486
4cfdfba7f31e234babac4a7a5a69be968ae2a9e2
1551 F20110320_AAAZQZ osullivan_g_Page_10.txt
66c7667a9e84b46d2bde1fd3eb4161b8
1be4f9ff34212976a33e98109058c24fa5ebdb7e
41519 F20110320_AAAZVW osullivan_g_Page_79.pro
f24f2bcedcea9a976cc91d51521d817e
1b48f2452e7e48aff2764a89041529bba05db13d
F20110320_AAAZOA osullivan_g_Page_01.tif
afa93e1ee5577b5a190ed048d9c3f44a
4b7a006dc8ccdcde71bc398f7571c6ede22b5c7e
1026616 F20110320_AABABS osullivan_g_Page_21.jp2
9e3fa9d5f2f5c3c74989104bb2114adc
8b345d74f96e2357d0ae7c0c76d654660351dcbe
23636 F20110320_AAAZVX osullivan_g_Page_80.pro
db72052892e8741d66600314d8c2576f
b8cb6dffe9e9b5655d3c72a4c061caeff88f1e12
F20110320_AAAZOB osullivan_g_Page_02.tif
c24c71450a7860addc0a29f7953d5a9a
46d0b336cb9bdb6ebabe5f5a4c6d552ee1e7af83
885949 F20110320_AABABT osullivan_g_Page_22.jp2
0168a9e49b211a309a0a74e4f9111f96
398781947a489e9ba63c8c37a3661e1cb5cc9934
82775 F20110320_AAAZVY osullivan_g_Page_01.jpg
e8b130d8412222fb9b44e72c892add83
de26fbc78487f956fb324c5b3c177f02525512d1
F20110320_AAAZOC osullivan_g_Page_03.tif
b27364092401ee2da16d2f664dc90d6b
9e32126239a680975391eff15808504aa1a87ba9
1051961 F20110320_AABABU osullivan_g_Page_25.jp2
7c680454fad1c7373078b847a38f644e
ceeb70026818aa3f3480241d8bc27767f9068c88
457 F20110320_AAAZTA osullivan_g_Page_74.txt
bfe7cb4422054ee7993065cc2d20dcd1
6f77796a90cf5177b287a431f1664fc2043b944c
46376 F20110320_AAAZVZ osullivan_g_Page_01.QC.jpg
3a01ad78313171147fd7f083b4878f5f
a7ce73908b43f6dd97113bac18187d630b3bebc9
F20110320_AAAZOD osullivan_g_Page_04.tif
bc82af6c2eb0fcc9994cad5f58adf1c8
82cde40c797fd3da49f2cba492fb46d5c57454ed
1051967 F20110320_AABABV osullivan_g_Page_26.jp2
c3c6eb967b753fd69abadfde4283105e
d5b854ed577e42e55378117090b062e3bd15933e
1326 F20110320_AAAZTB osullivan_g_Page_75.txt
a56212fb10c324440d763e78b97d7305
19cf1a5fef5fd3fc037240ae278cd21632e451b8
F20110320_AAAZOE osullivan_g_Page_05.tif
e2bdef00aa393744f6e307391a7a2a57
c92f6cab5f8a39e5f02b9cef622f6a484e8df4d9
846487 F20110320_AABABW osullivan_g_Page_27.jp2
14954b6855d90881a036ce2e729015e8
5c872cb04597186919f5b84ae98e04fdc7227207
94980 F20110320_AAAZYA osullivan_g_Page_32.QC.jpg
4cfd818b7393868ae80cd2022c07649e
50a347bba787c9b690faa4d4c7adfc4e69d500ee
1628 F20110320_AAAZTC osullivan_g_Page_77.txt
3397655f9955d46a63a6b41d9ca01558
928c4566429244d9d74742bc7874bd169955bed8
F20110320_AAAZOF osullivan_g_Page_07.tif
9f0b7e0e05eb41b30260ba460b755ef7
8e3fad2ac2608e6ca6fccfd9ff934b83d9250c07
1051928 F20110320_AABABX osullivan_g_Page_28.jp2
14789d9751df3a5f2c844f3c4c4db31a
60f369d19eb5240ab164796838b2e1e1453d228a
230197 F20110320_AAAZYB osullivan_g_Page_33.jpg
772ea7aff566cf0dc7d60d64e164e133
a6323542bb00fefa36c8502f417eca8194edf6a1
924 F20110320_AAAZTD osullivan_g_Page_78.txt
7022468e6271446053841bbced7cf0ed
af86c5c73962a2db044318bbfa8f5b688c95802b
F20110320_AAAZOG osullivan_g_Page_08.tif
408cdf497f54ba33b422a2ffe2c0657d
31710073fc9637d3d72481babd7dbf84ac1e0a66
1051969 F20110320_AABABY osullivan_g_Page_29.jp2
92e5ec00a986f3e94d241ead01acc88f
f3f81ae722d032b3c9a24f77d2d5c73f6189662f
93494 F20110320_AAAZYC osullivan_g_Page_33.QC.jpg
a07a47ba36a1f87cfa19eaf621b4fc67
8cfd6e3149cf60e8d717a72d4bd7b1fde82dd529
998 F20110320_AAAZTE osullivan_g_Page_80.txt
695fe8eb21cbe72f9a5e148270c3621c
f2de29387c1b10708789a9c53a4601cd445ccdac
F20110320_AAAZOH osullivan_g_Page_09.tif
fc7cd6f21bb33e83925b73324a4bd6cb
567387c60f5f32b004b836e8067aa876b8a1e566
876374 F20110320_AABABZ osullivan_g_Page_30.jp2
5f41feda697e27ef01657f879170b484
6f5ae96b9ee54edef13f42d1ddccabb03b6db055
224231 F20110320_AAAZYD osullivan_g_Page_34.jpg
c4920baea106d5c4fd09935746103cbf
e0d533e9ad5e825382d4cc29b0c40616192c56b2
8464 F20110320_AAAZTF osullivan_g_Page_01.pro
498a97fd597fcc780af2addf4133765b
4bfcbc466d87a12020925338266dde3c34c7e4d5
F20110320_AAAZOI osullivan_g_Page_10.tif
fa962dba3ec5aebb3d775b3f16779413
814b2136d7c30adfde52b9e33d99fba02896d40a
1229 F20110320_AAAZTG osullivan_g_Page_02.pro
00e67cd02afe8e15f448a3669e463682
0fe0b495e7e308b4d162846869e0ec9c411d1763
F20110320_AAAZOJ osullivan_g_Page_12.tif
8b522fab32ef13a84b6eba10fcb40482
b3de4c79a79d079fc26db426d54ab379849ee3ff
98680 F20110320_AAAZYE osullivan_g_Page_34.QC.jpg
f83ddea313e7f7365c01270c1518de62
eddc03d2e0315cc5f3eda42fc5d9e638a8f87ccb
33647 F20110320_AABAEA osullivan_g_Page_16thm.jpg
5f203fa7a7205b87221cfc1bc8bcfb73
530a6f1d9e3ccd49812abc8066d3bbb9c56acc93
36290 F20110320_AAAZTH osullivan_g_Page_04.pro
84c187ce757e2eb129a61e4df95ccfb4
3b8404628ff3e31d93820c072519d841c6ba348e
F20110320_AAAZOK osullivan_g_Page_13.tif
ae6387eda424cd88fa54cb19d61937c6
336f9ec2b1a3cf7f5dae2b46e05b5f7dffabe1bf
47168 F20110320_AABAEB osullivan_g_Page_17thm.jpg
e032a9c21a91cb9df6739af2561547ee
2a53bbe4d55d710028d803beda551594a8c78c74
74406 F20110320_AAAZTI osullivan_g_Page_05.pro
25b830267d4579d2b065cc67b29796a2
b7a2e7ec84ea70cbfbc495307aa68b0fa92b0545
F20110320_AAAZOL osullivan_g_Page_14.tif
eba1618054779277fcbf5ab36106ea0d
28e6f76ec273c6dd6383f9b5ee21633e4dda1623
231465 F20110320_AAAZYF osullivan_g_Page_35.jpg
e9295a4a35a13896681c2c42c368853f
a9c1f5aa156a996f02b7a9fdb6a17045c412ae99
46825 F20110320_AABAEC osullivan_g_Page_18thm.jpg
63e1d6ffb974ae35b8e624ae1ba567ce
14fe6b03b4806bb53d1e99d3e3cbd0f25dfc5126
14957 F20110320_AAAZTJ osullivan_g_Page_07.pro
f475c682a6f84234209d0d88d828ff92
5f4445a84186d464f6f4bd7af8188e7d29b836b8
F20110320_AAAZOM osullivan_g_Page_15.tif
7c50cf06b48f8366850a1491807ed8ea
b69ea501eef39e330989c98ceabfbdb9c4659dcf
99196 F20110320_AAAZYG osullivan_g_Page_35.QC.jpg
29980b4338739a85a661cf652794eefd
361395b12cf768b73e10e8edcd1ba7fa512d70ac
45199 F20110320_AABAED osullivan_g_Page_19thm.jpg
6ea2c4184382cfc34eeb84db6238e994
3a8eeb5e45b16a1f97f4ba82318199744a518a14
33203 F20110320_AAAZTK osullivan_g_Page_08.pro
074f29db6e595b08da834ebd1292147b
6f4ead1f576c7431f3a941e0e24df804eb405786
F20110320_AAAZON osullivan_g_Page_16.tif
56000c116de7034ba04508bfe156172d
5ac54a5f9dcad66c4c31548c1f7ff28e220284e8
248293 F20110320_AAAZYH osullivan_g_Page_36.jpg
b6e238d119ccb062c536de61f0f24c05
4f15b0fa4ed781f6723503b35834312af13e82e9
47404 F20110320_AABAEE osullivan_g_Page_21thm.jpg
4950bd9659da1d1d3ae171a58f489af4
15e9cd58c71d64b9bf93626da3ae7054db2a0a75
62151 F20110320_AAAZTL osullivan_g_Page_09.pro
bbb541d7902cfa69be25d7dcc1a1f7de
008aaa51893d9272be85288826bcbaa62c9aff95
F20110320_AAAZOO osullivan_g_Page_17.tif
cfbcb222661f9d75108cdd31340b4e2b
553f6754ea4b4081d24220003516ab62b16d71d7
100459 F20110320_AAAZYI osullivan_g_Page_36.QC.jpg
5c0d5bb47e1e4d786fbd054d277912d5
f273814271d506a6e622d2b2350307c97256def0
45181 F20110320_AABAEF osullivan_g_Page_22thm.jpg
54de59cf560043bbec13643e5a62d9ff
7c35e46aa0db697c697841dff28614149340f23f
38741 F20110320_AAAZTM osullivan_g_Page_10.pro
fffb263f90ba8e2902498c2b70134c2b
0be7123dcd95411f83424e2bc660af8faf75b30a
F20110320_AAAZOP osullivan_g_Page_19.tif
0462e1e2d0d78e93680cd2550d9cbb26
2c15cddb4d090b6964ee0ca30dfb075ce481ba53
211530 F20110320_AAAZYJ osullivan_g_Page_37.jpg
a712d2da6bd50c0eb69e58be348eff62
ca5a26b5f7fa6f078a6fdf3a6c29c053f17d2889
50108 F20110320_AABAEG osullivan_g_Page_23thm.jpg
c21e7a38995e77fe139fbda955f5b957
a3e463e7dfb7e1d10ebe96ed12ac57ac6a6bd4cc
12172 F20110320_AAAZTN osullivan_g_Page_11.pro
05c36c76d888f2df556137f3052b7de1
4f17ac998b04335ae1f2e2558502a22f96da383c
F20110320_AAAZOQ osullivan_g_Page_20.tif
5a47ca1e0e063e0dcaad1c412474c565
a82db63d97de45730caca80fa6c9692ce66bbe6d
90705 F20110320_AAAZYK osullivan_g_Page_37.QC.jpg
bc44c69f92452fa98d0af52f94d834ee
ea0f6ebab3b41688631d60c0b370bbdfd3e99c5b
48622 F20110320_AABAEH osullivan_g_Page_25thm.jpg
9162fad1069e208bb5c7fc12e6aeb51f
fef8c5b99ba12f11f4483a5fca0823a3e2192c2f
11591 F20110320_AAAZTO osullivan_g_Page_12.pro
4b2ae8b2da9b576c2e0f4c1f02fc26fa
dd3369a89159886ca51f2e1582b8013d85c0087c
F20110320_AAAZOR osullivan_g_Page_21.tif
0b39911d113550d23cf24d49f77ac7aa
9d1c59245c66c72f3d027abb6b37e82bd136233e
145000 F20110320_AAAZYL osullivan_g_Page_38.jpg
391a4005206df61297e9ec9a55131264
2c2e07c44621beebdaa9c44f2b6985c32137c690
49517 F20110320_AABAEI osullivan_g_Page_26thm.jpg
8dda90c543832e491a509cabae60cdec
09289fee10e829265d373be23701127a94fa9c65
38572 F20110320_AAAZTP osullivan_g_Page_13.pro
e4f9d0321bd4892df80018b0864cbca4
d5bb80e98a82971c4d3130f4e8830bc3ac3f07b4
F20110320_AAAZOS osullivan_g_Page_22.tif
ec23ff254a75737b6a18c2dfb13fca6d
74800ae2bb7718fad5f2ef0a381caef6003b98da
68633 F20110320_AAAZYM osullivan_g_Page_38.QC.jpg
02eadfb78bbf3c9e8f3dbcc762f641fb
7a9fda39565c8772f24e04046fc4fcf85c57025c
43810 F20110320_AABAEJ osullivan_g_Page_27thm.jpg
b37d0be24e68b8ba86d50644181503ef
f0b7370e5cdbeebb098774885c639fde4ff2810b
18531 F20110320_AAAZTQ osullivan_g_Page_14.pro
e01c498b297b6105eb3d948edbbb2ab9
72727cdd0f285044822066b013940712cffd4add
F20110320_AAAZOT osullivan_g_Page_23.tif
075f60622d7d2ce6c23c3d76cde3d14c
9233abe3a39a4c3f6b1201f8849bfe9fa35f0093
212881 F20110320_AAAZYN osullivan_g_Page_39.jpg
3308e567a05ddc25ac3c50b12524a004
af2b9f742fb024869722c9ed3de42546ea29179c
48707 F20110320_AABAEK osullivan_g_Page_29thm.jpg
97106c0a29fdaa7ea1675639d1e58f15
888ef3b3e2e2299c3e8ff7b2106cd676cd9bdc3d
45818 F20110320_AAAZTR osullivan_g_Page_15.pro
3b99ea93019ad7cd72afea826e3e5775
4c4bb6ad1f60d702d3b7da4a364ba3ccac810af3
F20110320_AAAZOU osullivan_g_Page_24.tif
5d822bc7491530779150838009d8a458
e0f60f4425cbfd08975b85d5d84fff60dfa578c5
90687 F20110320_AAAZYO osullivan_g_Page_39.QC.jpg
91d2bc9ce04afcb2c544d1960124eb2a
5bd34f1bfd4e03238a1da8a00bc4839742514de0
13740 F20110320_AAAZTS osullivan_g_Page_16.pro
1509fbe8092ac94b8e994acf66f33e9b
f74d762e578dac8ce7f67ff702bd82a1c8aeff49
F20110320_AAAZOV osullivan_g_Page_25.tif
a9b9e31bd22baf22933bd9d872ed6f13
fb3cc3c071e7f49231e4c9de408b3e17df9da543
252743 F20110320_AAAZYP osullivan_g_Page_40.jpg
63f57e56371414831f7c7590584a3292
6bc37afdd06b5f78d772acf03efb1633e890f2f6
45764 F20110320_AABAEL osullivan_g_Page_30thm.jpg
a9727c01edb4b2c46fd9ce22dfa55188
77c6ce334692785c3f05a411c4e01b7c1af2730c
44184 F20110320_AAAZTT osullivan_g_Page_17.pro
2f0e00e644cacf9808f90d0c0917645f
ce67e93a73b17acd757245ddb93b38e75c5f17cf
F20110320_AAAZOW osullivan_g_Page_26.tif
e6d7cf068203edb0dad1f350f0e56c2d
a8b3b8d63def016f2d3c04581a3c454a0c24a111
102126 F20110320_AAAZYQ osullivan_g_Page_40.QC.jpg
ece67f50b365734f96edaa4d6cf7d587
88d9173b4f1e85a1ed3454bf7a8590a7f8af2e9a
37510 F20110320_AABAEM osullivan_g_Page_31thm.jpg
4b76a09dd07d091716e6107c8ad8b97a
d591ea007763d8a026d5f922b531aadbc46b2d6b
42331 F20110320_AAAZTU osullivan_g_Page_18.pro
0748c34344f4834c267c36ef47b67b64
76935d2d68319b431343afe3235f09348dbe5f52
F20110320_AAAZOX osullivan_g_Page_27.tif
b5ab8b68e7b8560e115a4bedcf5d4689
e2735f3463cbf9340eed128a67498bb75f609bd9
246846 F20110320_AAAZYR osullivan_g_Page_41.jpg
e524c6dcbd2d67d6999a9fc063540d58
761f724287ea71edad11ce9e07d377182ff1a700
47301 F20110320_AABAEN osullivan_g_Page_32thm.jpg
8bbf2064584ca382bf34eef0c11ff0c4
7bcfc361225cee0d76f6268323cc0dafd58312b3
37163 F20110320_AAAZTV osullivan_g_Page_19.pro
ad3b6e402348dbbb55ec933fce6e2558
e731069cd9a1af5efc15f029d1d3700855f4bace
F20110320_AAAZOY osullivan_g_Page_28.tif
19303ae687e8edfc9d5b21141e6a05a0
32b17f291dd06ccc3a5c20b9cef43e1a2c375b1d
98501 F20110320_AAAZYS osullivan_g_Page_41.QC.jpg
db7634b996fc0a13579ff76376db477c
f1047e85ea1db8d33cea4c6c766db5dfe4d8c44b
47709 F20110320_AABAEO osullivan_g_Page_33thm.jpg
91c196abb82dc832e06847f96922fe6a
49dc52c32f72973cd1a220952bb92a91f549c2f8
47394 F20110320_AAAZTW osullivan_g_Page_21.pro
8eb75ceec86c82d76a51ddd536996d05
7184f433248b36cbb7b649d4c7103c84797380fa
33939 F20110320_AAAZMA osullivan_g_Page_12thm.jpg
a37f41e77739b3c54953be1d7b9f8348
de209a99e11df1c31ec75b1250d5ac0b61dd6557
F20110320_AAAZOZ osullivan_g_Page_29.tif
f9c3fa099d5a0de14e900eab68718774
4bf522636331dca24598c806c75c8a2a8760fb31
193373 F20110320_AAAZYT osullivan_g_Page_42.jpg
536425ba2b4bf8378dc8515f48bd98aa
6091539399cb223cb984fd895ca1de1ec1d55019
48475 F20110320_AABAEP osullivan_g_Page_34thm.jpg
e92e9aae61506bf018b10cd59fc2002b
cb01aaa47438f5579df6f420905b92532571169c
42722 F20110320_AAAZTX osullivan_g_Page_22.pro
3582478accbbd0cc55692892b9f25415
4a0f33d74cbe79a65a2b4f8cfab82cefcddb5803
47553 F20110320_AAAZMB osullivan_g_Page_50.QC.jpg
480c4380f312728abe8b24f0c3232f6d
d08aae760fce2dbedeb32a5fc3fa3d0a6f2d0702
222896 F20110320_AAAZYU osullivan_g_Page_43.jpg
cf5a8a56552e28a54e0236ab85bd259c
2e57dfa0cffa2aa053fc3668dc96553b2b16aefa
48911 F20110320_AABAEQ osullivan_g_Page_35thm.jpg
17e71b678458d810d23aeb64d147b9b4
c0c6eddf823feb6c568b5d4fe51f9bdbb2aa317f
50005 F20110320_AAAZTY osullivan_g_Page_23.pro
62c802abdbfe1a747e3eac9922355385
b455de14cb424a9116cf63091e7260fb50fcedbb
259243 F20110320_AAAZMC osullivan_g_Page_01.jp2
61b50248ad6a1c8ca20959863bcb8bd4
e2a8a462ef5e22b94a68923d73c5a3bb85d98692
91030 F20110320_AAAZYV osullivan_g_Page_43.QC.jpg
40a370bfcc4d42812ee2f59fe8f17c9f
388376eacb39b84bf85c0f015777fbd40a4dc7e3
48114 F20110320_AABAER osullivan_g_Page_36thm.jpg
f327899895b3b5d813fbbd089833173d
3d5e30c69946c7d2992eaa99036c5224ce0f3f03
44450 F20110320_AAAZTZ osullivan_g_Page_24.pro
d19bc53665353b7129c6bd837c07b30e
1159af5ae0e77744dab552ca0b17aa9f86a2dc78
195871 F20110320_AAAZMD osullivan_g_Page_22.jpg
675a7f384d9c3d36dede6c800464fc36
f5645918f5be4dde6d8507cb0a265355a935762c
181490 F20110320_AAAZYW osullivan_g_Page_44.jpg
3a17fa0a2b74848bd79cfd0059f12e74
6d375a90249ee1f35afe688a09c49797fef1adbd
542 F20110320_AAAZRA osullivan_g_Page_12.txt
ffb6099ec37e9fcc3905075c23770428
bd271520970a9c1bd70fd5eb12828ae3c0beff43
47486 F20110320_AABAES osullivan_g_Page_37thm.jpg
f8f22abc49cb0cc7c8f1b94b43495d18
a2688fbe1635fe768a038e96fe4041c177702045
F20110320_AAAZME osullivan_g_Page_59.tif
a2990dadd083af90058ff8a8edabcff9
8b8f2c2c0b5f29696b9aa8fb0b37885f1c0bfe74
78255 F20110320_AAAZYX osullivan_g_Page_44.QC.jpg
4c110628a46b08606966113e9800f7bd
1de58c637768891564a868a1ffaa7523de83706d
1704 F20110320_AAAZRB osullivan_g_Page_13.txt
971843fbfddbe5a170282980016d7b95
cda250f0d0259dc0354b0327d8ce499eaa8db124
41350 F20110320_AABAET osullivan_g_Page_38thm.jpg
c30b48b3a0edbea0d6f16fd2481d39db
411fa1e9856f44ec5fbde974c3ecfe14603c1508
941545 F20110320_AAAZMF osullivan_g_Page_79.jp2
8c1b41b625994b85856875b3f724c85a
b5d0cedf28dc30f94bf3446f9a6989da5ce2e1a0
40212 F20110320_AAAZWA osullivan_g_Page_02.jpg
18a41e5e303cf7a46a33a15013a9b742
398fe97073b2366af9e52082f8497641bc86d196
95282 F20110320_AAAZYY osullivan_g_Page_45.QC.jpg
7e6c76bef318e415136404bc534963e7
273f5b9edffd7bb6d892f18ee98bb6d7738e407c
586 F20110320_AAAZRC osullivan_g_Page_16.txt
087c71679c2b68ad4fb6ed07b0b378f0
5925d1a6dbc86d8808388dec3680dcff42e01bb5
45673 F20110320_AABAEU osullivan_g_Page_39thm.jpg
e3c7fda92b8097ffb56721a10bcb95a1
5c0fd53a03e0cc97b8576ec3b476663787629bef
1815 F20110320_AAAZMG osullivan_g_Page_45.txt
0a2d091b21463815e37bf4d29f8cf56a
5cababb384ba07f1bbdd6c95fccc18e1e355c521
31183 F20110320_AAAZWB osullivan_g_Page_02.QC.jpg
d3215d3d6b2014070fabbee85922db59
ce885b00a6471c1dd211b8302a242521b0d72e11
214406 F20110320_AAAZYZ osullivan_g_Page_46.jpg
09b138df9a75403828ef4c875486d32d
dbe936b9d291ae1484e82fb4950df0b2c4f6f038
F20110320_AAAZRD osullivan_g_Page_18.txt
893cd585ee319b77e7a2427504058265
de1852f854c6c8528cab0c530cadeec72791c38d
49993 F20110320_AABAEV osullivan_g_Page_40thm.jpg
391265c60721a60e1fda4b5cc1d0b237
d8929ef9005801959968e6bb02e7c1bbf516cfa0
85866 F20110320_AAAZMH osullivan_g_Page_77.QC.jpg
910df24eee75539eda247b0733493c16
d4e9a3f5e0f769b35f49fa2986af5f7c1edbaecc
40316 F20110320_AAAZWC osullivan_g_Page_03.jpg
fcdb20498a9282cf62efd4ceef64bb84
410af5e8e0c11017bb5ad401d1c36aa9cedf221b
1635 F20110320_AAAZRE osullivan_g_Page_19.txt
98ccee9e96d1989e39b1e19757217369
46f5a7034fd726205fdc86f786c2c1bb3d3d6fb4
48055 F20110320_AABAEW osullivan_g_Page_41thm.jpg
9fe9f8718926436533f10f62d0f1d888
a8bbd251e0faa8b80dd95fad7e753965e3975d00
103153 F20110320_AAAZMI osullivan_g_Page_25.QC.jpg
a67a6c99239b83fdc80f3d527e974c86
2684d7e07e4d6afb792c5c0d1fdc1d19c8c134eb
1725 F20110320_AAAZRF osullivan_g_Page_20.txt
05c3c1c7dd314a212dd56a42bb6faf00
ebbd2ae0f85190850998afff647c41886d31ca89
43903 F20110320_AABAEX osullivan_g_Page_42thm.jpg
6209d6780c515c4c8ea25ac4dcd611c6
f4bc8ca8c3dba282b3318bfe6d7102d788fe35db
974366 F20110320_AAAZMJ osullivan_g_Page_17.jp2
507c61f4f3dd27f4596932cdb33ea02c
7fe9e2f35d5cca4bab6064fa27a1500bf09520b1
30860 F20110320_AAAZWD osullivan_g_Page_03.QC.jpg
6f69322b54319ef999d27cdc5fe1a37c
7b958a2656cbd0952f911112ea54380acca743c6
1915 F20110320_AAAZRG osullivan_g_Page_21.txt
959da647ed28c09c671ce800b9229993
2523f60a0bdbeb89bf59f371368be52bf10f56db
47118 F20110320_AABAEY osullivan_g_Page_43thm.jpg
cc999594b33fe0c578e17fac656349c8
5516c253694d093eaa0b3b0267c9f793e9b16ac1
448341 F20110320_AABACA osullivan_g_Page_31.jp2
ccf64f40839c71d8b49dbebdc8f16e43
8d52959940121d7c3a454e663d0a88721b68b833
58915 F20110320_AAAZMK osullivan_g_Page_31.QC.jpg
b1cdb1baec7190ff03b9ead2e0dfb2b6
a0d26b8b533774cf42c2324e4e0fb88d8a990c33
181587 F20110320_AAAZWE osullivan_g_Page_04.jpg
2ab7c0ebc04f3083c51b7b0fa6e5eee6
09284ec6e4aafb7d8e0c513c3e03c4560c3e558b
2360 F20110320_AAAZRH osullivan_g_Page_22.txt
82fc1d46e63f4763426b9603a33e8d46
66c952deed2c107ca6223c5a187e4b74078b4f3b
42374 F20110320_AABAEZ osullivan_g_Page_44thm.jpg
fc1ac28a4c879b0076ffe228dbb231c9
276020021e6377dce3b8c37edb9fa6372544f946
998854 F20110320_AABACB osullivan_g_Page_32.jp2
68747313f830c26d3ac1605012886b8b
02d3f283783b9c215c3e5997ce9ae095226ba02c
F20110320_AAAZML osullivan_g_Page_38.tif
30a4b44572e31725bb2adf1d89dd6b7e
c90b93f1b4c1da6f091a29469140d35d2fecbc7b
83935 F20110320_AAAZWF osullivan_g_Page_04.QC.jpg
299edb15c0b488b713a46e224ed4d485
990bb170b08908604e0196cf7de9ceb5cb64a033
1797 F20110320_AAAZRI osullivan_g_Page_24.txt
fff2e0862abcd28195019aee2dccb74e
a146f2057f655f04749f58055da1d51d2e6e4967
1051983 F20110320_AABACC osullivan_g_Page_33.jp2
59eaf403657ff04a7e5b0e2177c67463
492bba85dd7867a7b8c2dc6cf567425d2304d1aa
F20110320_AAAZMM osullivan_g_Page_76.tif
d7b26c7aee8e01266342f1566cb7f537
0be56a75ebf5e18ed95940ff93ae873fd27880b5
239433 F20110320_AAAZWG osullivan_g_Page_05.jpg
2e6fe8f1c84c3ad2bbadccd83b482246
6e61ce57f972f4c049da68e775fb3b4db429de9a
1961 F20110320_AAAZRJ osullivan_g_Page_25.txt
9139bc492f41e4072569f280fd6a27af
6841a992fe0107d5a5a6f1e420956a9673b2da3e
1051936 F20110320_AABACD osullivan_g_Page_34.jp2
a81a2a34143906f09c9939511d5a846c
d9077a8aeee34145c73c9169f47b4f61f60ea0c4
38739 F20110320_AAAZMN osullivan_g_Page_57.pro
b3de37e7a67d643475c0f2dbc0014906
f9b75dbe9378f0da3264c5f66073bfa02b9c7ae0
89113 F20110320_AAAZWH osullivan_g_Page_05.QC.jpg
49d6106c67f73498bf8aedd8dd30e971
f1e3dfc1fa00041b04ab79b664be512efd488b8c
1940 F20110320_AAAZRK osullivan_g_Page_26.txt
c24ad239bb58c063e68a8a1b5ec16d9c
81e078fc168e8a4f57c40e46ab0728a7efb6c48d
F20110320_AABACE osullivan_g_Page_35.jp2
67629b49f03f5faee6f856dc3ab7c629
eb10eaf9670231f752041091b7cd35683d1001fb
204880 F20110320_AAAZMO osullivan_g_Page_45.jpg
958bb51a6474f7e8a4c046bc7b23601f
4ea1e6420b16ebb1a241340b784de1378db83c5d
315738 F20110320_AAAZWI osullivan_g_Page_06.jpg
6d8c06152569aca824e724ecce7a234c
04745a733fa41f4dc9b37a251bf71a67832d3bab
1581 F20110320_AAAZRL osullivan_g_Page_27.txt
2a3469a54584c5b74a36f84a4273d7b6
70ef62c026d1d427fc58573502c522fda90cf234
590981 F20110320_AABACF osullivan_g_Page_38.jp2
7f4b3be56105d2a1ae00e981903aa559
a56b7e7ce8c69c3806efdd159cad83ac945374d9
1065 F20110320_AAAZMP osullivan_g_Page_38.txt
35091fca20a53636ea450aca77f0a41e
8a0a970f448c6033618ea6a8335e71b9e873219b
110883 F20110320_AAAZWJ osullivan_g_Page_06.QC.jpg
fb6501930428ec6fac1d935b0f5cb704
72ff0cc47488d47a0e3a5fdb7ef7315742e20fd4
F20110320_AAAZRM osullivan_g_Page_29.txt
fb13e5791c01a7be3139002cafdfe855
2236c2d7df4f742d345107f79bd336b4a7b48a45
F20110320_AABACG osullivan_g_Page_39.jp2
4f3c796514a4f6b18b44cc0775cb917b
20edcbda4669ccae67bbc7e23fd4fec3a7103d97
27854 F20110320_AAAZMQ osullivan_g_Page_75.pro
1953237bd80db957c348edd140472ed6
3a213f6cbaea755f3f5367c97bde2bc24a3b772c
74520 F20110320_AAAZWK osullivan_g_Page_07.jpg
3c189e2f3f605c0b9fce82f4460bb08b
afcb5a6dc8860075becf000db385719a4874c598
1640 F20110320_AAAZRN osullivan_g_Page_30.txt
947f1821b460865f86b613f7384d4bab
2b47f8dae1402871ce77337ef0bc3a0b892080ec
F20110320_AABACH osullivan_g_Page_40.jp2
7015c9fc9b7ae059e60c89d14311dbf1
a042861a3c77ef2cb90f8de2f84118a8e73ab60d
947858 F20110320_AAAZMR osullivan_g_Page_18.jp2
08644fb61b14476724e4c2c45e88e7a3
947139d1c6702118205204415f587ff4d6bc1f4b
165784 F20110320_AAAZWL osullivan_g_Page_08.jpg
91cfd89552ec3eda5cbb6b04b747e348
30890bef5cbeba2b9852a4daf571d7cbed985c92
882 F20110320_AAAZRO osullivan_g_Page_31.txt
bfe2135a6a44d16296c612b2e1ea373b
253e52d10f11167a7062af6fa79b6c4416102f33



PAGE 1

btnnfbnrffb fbtf t ffbnrn rnrfrf nfrnfnfnnb fn fbrff brfn nfrnfn

PAGE 2

!"# %&r() *&+

PAGE 3

" ,"%, ,,'%' -&#%'#.%+#,/

PAGE 4

* 01br n(' ,# 4%#"&+%$%#+!)%! +!.%"%#(+ #% #" ,%&#(+ *%, #+'%-#"&#"%)' +#%%,#n('&),) 4% #"&/ .)%#-" % +!&))"%&2+.+ *%, ##) '&# &,, ,#%"%+%*%n+%%'%'"%) +&))n&+##"&1 )) &.%&! 2&. &4 +!# .% #. ##%%/ n.%'&%-&(,%"%%&#&3 -%, %+#,&'%& ,%"% -" )'%+ #"%+ #%#&#%,"%&.%%24.%)&+'.+#",$%3%2&, +&+'"&*%)2&%)'.%."%&+'. ,#% ,#+#"% *%,.%*% &#%3(2"&#"%'&+'-+# +(% ('"&*%#(+ # %, 4%#" ,/ ) '&&,&%&#%&+ +!%8% %+-%%!%+%&)7 #&,3 ,# .%2& 3...%+'n( 4%%+'&&)"&#)) %+',+' #"% %+',n.&'%"%%& +%,* ))%+# "%&,#&"%%2%%%..%+#,"%% ) '&#"&#n("&*%&'%# #"(#) ##)%"%)..3 %+',"%$ !!%,# )%,,&*%%&+%' .%"%%,))%%',) 3%"&,"%% 3&. )+' %+',n% "%.))/ +' +&))n(,#"&('+%*%$%! +#(+##"%+(.$%$)%,, +!, n"&*%+. 3%+' #,)),+!/

PAGE 5

* tr !% 01br ///////////////////////////////////////////////////////////////////////////////////////////////// nrtr //////////////////////////////// /////////////////////////////////////////////////////////////////////////// nrnfr //////////////////////////////////////////////////////////////////////////////////////////////// /////////// 8 bf //////////////////////////////////////////////////////////////////////////////////////////////// ////////// 8 trf //////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////// 8 f 9 nfn ////////////////////////////////////////////////////////////////////////////////////////////////////////9 t0f //////////////////////////////////////////////////////////////////////////////////////////////// //////////: (%)%))&, -, //////////////////////////////// //////////////////////////////////////////////////////////////// ////////////; )%-#"%. -&)%&-# + ////////////////////////////////////////////////////////////////////////////////////// &#"'%"&&-#% ,# -, /////////////////////////////////////////////////////////////////////////////////// < )&# +(.&#&)# //////////////////////////////////////////////////////////////////////////////////////////// = & >&# *%, /////////////////////////////////////////////////////////////////////////////////////////////// = !%+&+'f%3. %,,%, //////////////////////////////////////////////////////////////// /////? (%)%))+#&. +&# ///////////////////////////////////////////////////////////////////////////////////////////// ,+#&. +&+#, //////////////////////////////////////////////////////////////////////////////////////// 99 %* %,%&-+#&. +&# "%+'% //////////////////////////////// //////////// b%#"', # !&# +!#"%+#&. +&# ////////////////////////////////////////////////////////// 9: "&))%+!%,(%)%))%" -)%, ////////////////////////////////////////////////////////////////////////////// +#&. +&# //////////////////////////////// //////////////////////////////////////////////////////////////// ////// &'% //////////////////////////////////////////////////////////////////////////////////////////////// 9< #!% '% //////////////////////////////// //////////////////////////////////////////////////////////////// /9< : fnbrb /////////////////////////////////////////////////////////////////////////////////////9@ t&))&41%8&2%'(% //////////////////////////////////////////////////////////////// //////////9@ %8&($,#%., //////////////////////////////// //////////////////////////////////////////////////////////////// / !%+,#%. ////////////////////////////////////////////////////////////////////////////////////////// 8 '&+# ,#%. //////////////////////////////////////////////////////////////////////////////////////// +!,#%. /////////////////////////////////////////////////////////////////////////////////////////////

PAGE 6

* r&3%##%. //////////////////////////////////////////////////////////////////////////////////////////////// A+#&. +&+#)%&,%.%+#+'b 8 +! ////////////////////////////////////////////////////// b%&,%.%+# //////////////////////////////// /////////////////////////////////////////////////////////////////////// #($% //////////////////////////////// //////////////////////////////////////////////////////////////// ///// 33%%+# &)%,,%&+,'(-% //////////////////////////////////////////////////////////////// // b&,,)+#)% /////////////////////////////////////////////////////////////////////////////////// &,%, //////////////////////////////// //////////////////////////////////////////////////////////////// //////////// &+4 //////////////////////////////// //////////////////////////////////////////////////////////////// //// r&3%# //////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////// &,.&#& //////////////////////////////////////////////////////////////////////////////////////////////////// ; b /////////////////////////////////////////////////////////////////////////////////////////////////////:9 t&,%) +%%3.&+-%%,# + ////////////////////////////////////////////////////////////////////////////////////:9 & >&# *%%+%&# //////////////////////////////////////////////////////////////// ////////////:9 +,#&+#&%,# +! ///////////////////////////////////////////////////////////////////////////////////////// +#&. +&# %,# +! //////////////////////////////////////////////////////////////////////////////////////////////// & >&# *%%+%&# //////////////////////////////////////////////////////////////// ////////////:; +,#&+#&%,# +! ///////////////////////////////////////////////////////////////////////////////////////// +#&. +&# %-*% ///////////////////////////////////////////////////////////////////////////////////// %.&#%33%-#, ////////////////////////////////////////////////////////////////////////////////////////////////////:< frrnrrrn /////////////////////////////////////////////////////////////////////////////////:= t&,%) +%)& >&# &#& //////////////////////////////////////////////////////////////////////////////////////////:= t&,%) +%+,#&+#&#& //////////////////////////////////////////////////////////////////////////////////////:@ +#&. +&# %,(#, //////////////////////////////////////////////////////////////////////////////////////////////// &'% //////////////////////////////////////////////////////////////////////////////////////////////// +,#&+#&' //////////////////////////////////////////////////////////////////////////////////////////////// & >&# -*%, /////////////////////////////////////////////////////////////////////////////////////// ;< f&' +5%-# +,&$.'% /////////////////////////////////////////////////////////// ;= #!% '% //////////////////////////////// //////////////////////////////////////////////////////////////// / +,#&+#&' //////////////////////////////////////////////////////////////////////////////////////////////// f&' +5%-# +,+ #!%+' '% //////////////////////////////////////////////////////////// %.&#%33%-#, //////////////////////////////////////////////////////////////////////////////////////////////////// < rnfbnr /////////////////////////////////////////////////////////// n tn1bfffb ////////////////////////////////////////////////////////////////////// t rf B ffr //////////////////////////////////////////////////////////////////////////////////////<9 %8&#&#( %% //////////////////////////////////////////////////////////////////////////////////////////////<9 %8&"(#'%% /////////////////////////////////////////////////////////////////////////////////////////<9 rfn+,#(.%+#,% %,&,.&#& /////////////////////////////////////////////////////

PAGE 7

* r#&#-%% //////////////////////////////////////////////////////////////////////////////////////////////// %,#%'% //////////////////////////////// //////////////////////////////////////////////////////////////// /////<: r"(#'%%, ////////////////////////////////////////////////////////////////////////////////////////// <; nrfr /////////////////////////////////////////////////////////////////////////////////////////////////// tnfn0 /////////////////////////////////////////////////////////////////////////////////////////////<<

PAGE 8

* nrtr &$)% !% /9 -&))%*%),&.'%--' +!#*& (&) #%#,/ //////////9< -&))%*%),+ #%+' '%--' +!#& &) #%#,/ ////////////9= ;/9 +-%+#&# +#&. +&+#. 8#%!&,%, +'%,/ //////////////////////////////////////:: ;/ +#&. +&+#)&#%,%% )&#%,D:7% -+#&. +&+#!&,%,#&+'+#&. +&+#!&, 8#%,##E/ ///////////////////// :; ;/: r%)%-#%'--%+#&# %,# +!$&,%' ,, +,%#,)%-#%' ) #%&#%%* %2/ //////////////////////////////// //////////////////////////////////////////////////////////////// /////// /9 r#&-#&!%+',#&-%))&$)%&+!%,(+'%.&)&# -+' # +,/ //////////////////////////////// //////////////////////////////////////////////////////////////////////////////// %-%+#&!%"&+!%,)#&!%&2% &+5%-# +,&# -+,#&+#.,/ ///////////////////////////////////////////////////////////////////////////////////////// ;? /: %-%+#&!%"&+!%,)#&!%&2% &+5%-# +,& #,#&+# )./ //////////////////////////////// //////////////////////////////////////////////////////////////// ///////

PAGE 9

8 nrnfr % !% /9 -&))& >&# &))(,#&# %! +,3+#*& #, *%%+# &)t)%+%#/&)7??:E/ //////////////////////////////////////////////////////////////// ///////////@ %))#&!%&3#%"&+! +!#"%(%)&,#.F+'%&#&)#F #/f(/F%+'AF ,%4%#/&)7??@E/ /////////////// 9: :/9 t&))& '/1%8&(+ #+'*& +#,/ /////////////////////////////////////////////////9? :/ A+#&. +&+# 8 +!.&+ 3'7t&))&%8&3(%)%)))'$&+47 !&, +'%,%8&bb#2&%/ //////////////////////////////////////////////////////////////// / :/: n+) +%%)#&#($% #",2&!%) ## +!,++%-#%'##&# -&+''+&. %,,%%&' +!'%* -%,/ ///////////////////////////////////////////////////////////////////////////////////////// :/; +%&#(##"% B B "% + % +%, +' -&#% #"%&8 .(.%&+-%,+-)(' +!&#%.&#%*& &# B / ////////////// :/ r%+, B 33%%+# &)%,,%#&+,'(-%/ //////////////////////////////// //////////// :/< &#"..&,,+#))%-++%-#%#2&!%)($ +!/ //////////////////////////////// ////////// :/= t&-4* %2'$&+4 #",%*%&)%, ,#, &&))%)-+,#(-#%&# %+# %#%&,&-%'&#% +#%D+#-#%'E/ ////////////////////////////////////////////////// :/@ +#* %23'$&+4 #",%*%&),2 #-"%,#&-# *&#%%, ,#,+' %+# %#%) !"#&'5(,#.%+#,/ //////////////////////////////////////////////////////////////// /////// :B & &3%#%&,%,F %8# +!( ,"%7,.%A-&+ '%'%#%-# &+'!&, +'%#,/ //////////////////////////////////////////////////////////////////////////////////////// :/9 rfn+,#(.%+#,,&#&"/ ////////////////////////////////////////////////////////////// +3 '%+-%+#%*&)& >&# *%,$&,% 8#%,#,/ ////////////////////////////////:@ /: r#&-#&!%+',#&-%#+,#&+#)3./ ///////////////////////////////////:? /; r#&-#&!%+',#&-%#+,#&+#)3./ ///////////////////////////////////:? & '%%,#9.E#+,#&+#)3./ /////////////////////////////////;9

PAGE 10

8 /< & '%%,#:.E#+,#&+#)3./ ///////////////////////////////// /= & '%%,#9.E#+,#&+#)./ ///////////////////////////////;; /@ & '%%,#9.E#+,#&+#)./ /////////////////////////////// /? & >&# -*%,.&'%/ /////////////////////////////////////;< f&' +5%-# +,.E#+,#&+#)3./ /////////////;@ /99 f&' +5%-# 9.E#-+,#&+# .,/ //////////;@ f&' +5%-# 9.E#-+,#&+#.,/ ////////// 9: #!%+' 8 '%%,## +,#&+#)3./ ////////////////////////////////// /9; #!%+' 8 '%$E#-+,#&+#./ ///////////////////////////////////// #!%+' 8 '%E#+,#& +#)./ //////////////////////////////// //////////// f&' +5%-# +,+ #!%+' '%D.E# -+,#&+#.,/ ///////////////////////////////////////////////////////////////////////////////////////// 9= %.&#%33%-#,(%)%))3.&+-%& >&# *%,2% -*%,"+%.&#%,D7E/ //////////////////////////////// //
PAGE 11

8 bf H 33%%+# &)%,,% ( 3)33 %+# n +!%+,") '% &'% %))#&!%"%-4% &.%#%..J 33%%+# &)%,,% +* +.%+#&)#%-# !%+: (%)%))+#&. +&# +# (%)%))%" -)% r () B r-&)% &,.&#& !%+ !%+ '% n n+#%+&).$(,# +! +%

PAGE 12

8 %)&..&$ ) # # . )) B &. b b%.&+%)%-#'%,,%.$) #!% '% 8!%+ &))&' (. b 8-"&+!%%.&+% t &#, )) b &#, )) # )&# +(. f" f"' (. rb r#&+'& #%,b +(#% rr( 8 '% "%.&)+'(-# #%#%-# #&!% %-#%+#E 1,1% !"#%+, # 4!A.:J

PAGE 13

8 $,#&-#"%, ,%,%+#%'##"%&'(&#%"%+ *%, #) '& &# &)(3 )).%+#"% f%C( %.%+#,"%%%%&,#%%+-% btnnfbnrffb fb tf t %& -"&%)r() *&+ b& "& K %$%#+!)%7 nnn b&5%#.%+#K%-"&+ -&)+'%-%+! +%% +! 8-"&+!%%.&+%(%)%)),%+, '%%'#"%# +!-&+' '&#% 3%&+!#"%%,-%+*% -)%,$%-&(,%"% %'%+, #+'" !" %+%33 %+%,%.&#%,"%%%& %,#+#3(%)%)) *%" -)%$(#+%.+))%#,,%+# &) ,,(% #&. +&# %,%&+(%)%))+#&. +&# +##%&,'%&)#,%)2 #" #,%33%-#"%&+'%"%(%) -%))7'(%+#&. +&+#," ,# +%3.%'(%),"% ,#(%)%))2%%'*%" -)%, 2 ))$%%-#%'#%3.)+!, '%+#%+&)-.$(,# +! +%,+'' %,%)+! +%, 2" -"%. #"&.3(+#&. +&+#,(-"&,&$+.'%7+ #%'%,7&+',( '%,"%%3%"%&'*%,%%33%-#," -#"%,%+#&. +&+#,&+"&*%"% 3.&+-%(%)%))"('$%(+'%,#"&##%#. # !&# +!#"%+%!&# *% %33%-#, -&+$%&4%+/ "%)" ,#,##%. +%"%+-%+#&# +,#" -"-&.'% &+'+ #!%+' '%$%! +#'*%,%)33%-#"%3.&+-%&))&%8&(%)

PAGE 14

8 -%))%*%&)%,#,%%'%, !+%#, .(&#%"%#,+* +.%+#, +" -"&(%) -%))%%'*%" -)%(&#%"%3.&+-%%-*% %,%% -&)-()&#%'."%)%-#%''&#&"%33%-# #%.&#%&,#(' %'/ "%%,(#,"%', !+ 3 -&+#,%,3.&+-% #%*%),$*% ./ &+, %+#%,+,%%,#,'%.+,#&#%#"%(%)%)),$ ) ##%-*% -%#%),#% %3+5%-# +,3*%!"-+-%+#&# ,&'%"% -& '%%-"&+ ,.3,+ +!,%%.,(+-# "%))#%+# &) & +-%+#&# '*%,%%33%-#,%%' ,-*%%'-+-%+#&# +, .#"% .%+#%*&)#%,#%'/

PAGE 15

9 f9 nfn "%%8-"&+!%%.&+%bE(%)%)),,%&-%.%+#, -+*%+# &)-%,%"&,%-% *%'! +!&##%+# %-%+#'%*%)%+#, 3(%)%))#%-"+)*%&'%b(%)%)),&##%+'%#%)&%#"%+#%+&) -$(,# +! +%nE+*%" -)%,"%,%(%)%))%" -)%,E&%'(-%"&.3( %. ,, +,+''%-%&,%'%+'%+-% )"%#&+, # 3(%)%)) %%'*%" -)%, ))#&4%*%)+!# .%'(%(%) +! +3&,#(#%&+'-+,(.% &'&&# 3+%2%-"+)"%,% ,#, ))$%%%-#%#&#%&)+!, '% #&' # &)+! +%,"%"&.3(). ,, +,"&#"%,%*%" -)%,'% #+#"%& .&%*%%)33%-#"%3.&+-%"%(%)%))*%" -)%, "%&# +(.&#&)#+#"%)%-#'%,b(%)%))%, $)%%&4 +! '+#"%!%+&+'+ ,*%(,-%# $)%+#&. +&# *%+,.&)) -+-%+#&# +,# -(&-+#&. +&+#&+"&*%+&'*%,%33%-#+#"%&)) 3 .&+-%b(%)%))(-"%%,%&-##%"&,'%&)# #"#" ,&'*%,% %33%-#"%+'%3(%), '%"%(%)%))E%-&(,%"%+#&. +&+#," ,# + %3.%'(%),% ##)% +3.&# ,*& )&$)%$(##"%-+#&. +&+#,3 3%-#"% -&#"'%D& '%"%(%)%))E33#,(,#%+%#''%,,"% %+* +.%+#,"%,%b(%)%))%" -)%,&&#%+7, +-%# 4%)"&#(%)%)) *%" -)%, ))&2"% '&+# #+%%',&#%3."%(+' +!&.$ %+# "%(," ,%,%&-" ,##"%33%-#,3%)%-#%-+#&. +&+#,"% -&#"'%+''%#%. +%,"%+-%+#&# +,#" -"#"%,%'%# .%+#&)33%-#,$%! #

PAGE 16

#&4%&-%& % .%+#,%%'%, !+%'# .(&#%"%+' # ,.& %+-(+#%&+, %+#%,%%,#,2%%%'#,,%,,#"%(%)%)),$ ) ##%-% &3#%%*%%-+#&. +&# "%$ ) #(%)-%))#%-% #, +&) 3.&+-%,.#&+#(+'%,#&+' +!#"%%-"&+ ,.#"% +#&. +&# "% %8% .%+#&)'&#&&,#"%+&+&)%##%. +%# -(&-+#&. +&+#,33%-#"% 3(%)%)),%3.&+-%+'#%*%%-%3#%-#&. +&# &'-%&,%

PAGE 17

: f t0f 8-"&+!%%.&+%(%)%)),"&*%$%-.%"%.# +!&)#%+&# *% %!%+%&# +!'%* -%3"%*%" -)%,"%(#%"%+ (%)+&+ +#%+&) -$(,# +! +%, +%33 %+#%,,8#&-# +!%+%! .(%)"% -+*%, (%)+#)%-# #+(%)%)),#%%)%-#"%. -&)-%,, r +-%)%-# # ,!%+%&#%'' %-#)+''%,#+*)*%++#%.%' &#%%-"&+ -&) "%.&)%,,7(%)-%)),%%33 %+##"&+& "%%-"+)! %, 1 #"(%)%))%-"+)# )) #, +3&+-"%%,(-%,%&-"$% +!'+% *& &.%#%,"!%-#(%)%))3.&+-%+%# -(&+-%+ ,&#&)# -+#&. +&# "%&#&)#, +&8-"&+!%%.& +%bE(%)%))3. #"%#.#&+#(+-# +F#"%%&+&!%+.%-(%,"%,% -&#&)#,&%*%%+, # *%+#&. +&# +''%&'% +"%%,%+-%+#&. +&+#, "%+#&. +&+#,',$"%(3&-%"%&#&) ,#,+'%*%+##"% >%+' 3(%).%&4 +!'+&+'"%+-% +" $ #"%(%)%)),$ ) ##(+-# .%"% -+#&. +&+#,"&#&33%-#b(%)%)),%&.'%7+ #%'%,7,(3 '%,7$%+>%+%+%+'*& "%"% -&),#"&#&+$%+#"%.$ %+# & f%,%&-"-+'(-#%(%)%))#&. +&+#,"&,(,% .& ) -+#&. +&+#,+#% +#"%+'%, '%"%(%)%))" ,,'(%#"%&-#"&#& 3(%)%)),%%3.%+*%#(%),("&,+&#&)!&,.%#"&"%!&+ 3(%),+#!%" ,%3. +!%,,(-%," !"-+-%+#&# ,&

PAGE 18

; .'%"%"%. -&),"&#&+"&*%'%# .%+#&)33%-#"%(%)%)) "%%3%(-"%%,%&-""&,(,% .& )&) +! #"#" ,'*%,%%33%-#/ "%%"&,$%%+*% ##)%+3.&# ,"%&$(#"%33%-#,+#&. +&+#, "%&#'% # -&)#"%3.&+-%"%(%)%)) +#2& ,#7#"% & '%,#"%+%-%,,& %#%"%)%-#"%. -&)%,,+*%# +! #"%!%+ +#)%-# #+'&#%%-#"% & %,&#%7& B '(-#"% 3(%)%))%&-# #"%(%)%))/#"%2 ,%#"%&#%(')"%(%)%))&+' %*%+##"%%)% -#"%. -&)%,,/ btnt (%)%)),%)%-#"%. -&)+%!+*%, +'%* -% +!)%(%)%)) -+, ,#,2 )%-#%,"%(%))%-#'%+'%' >%,"%!%+(%)+ #"% )%-#'%&#'%%'(-%,"% (%)%)),%"&&-#% >%"% )%-#)%%'$%#2%%+#"%,%2)%-#'%,/.%8&.%,"%,(%) -%)),%).%)%-#%%.$&+%bE7", -%-#%#"&) )4&) +%b#%&+&#%7&+'r) 8 '%/ b 3(%)%)),%& %)%-#)%)&-%'$%#2%%+2 %)%-#'%,"%&#&)# ,'% #%+#"%,%)%-#%,+',-&))&# +(. b(%)%)),%"%# +%-%(%)-%))%%'*%" -)%,"% 3% %%'%+, #&+'" !"%+%-+*%, %33 %+%,2" )%&# +! &#%)&# *%))%.&#%,b-%)),%&), !"#2% !"#+'--#&4 +!#"%. ,( #&$)%&(# *% -&# ,/

PAGE 19

frnbrn (%)%)),+%)%-# -"%. -&)'%* -%" -"-+*%#,#"%%% B %+% %)%-#"%. -&)%&-# +#)%-# -&)+%"% .%,#.3"%&))(%) -%)),%&-# ,"+$%)K ,%&-# + ,%,(#2%&#%%&-# +,&4 )&-%"%)%-#'%, )&# +(.,%'&,&#&)##"%%)%-#'%# +-%&,%"%&#%"%%&-# +%# -, %*%&# +(.,8%+, *%7&) #%%,-%+'*%,(,% $)%#,+ +! 3.+#&. +&+#,"%)%-#"%. -&)%&-# +,"&##&4%&-%)&# +(. %)%-#&#&),#,%"+$%)K +'% LLB &#"'%LL;%B B: "%%'(-# %&-# ,"+ +.(& B :7" -"#&4%,&-%+#"% -&#"'% ,#%&,#"%%'%,&!+ #('%)2%"&+#"%+'%%&-# +-%"%% ,)%&-"&))%+!% +-%&, +!#"%)%-#&#&) --# #"%&#"'%%&-# # ,*% .#&+#"&#"% +! +#"%(%)-%)) ,%)&# *%))%&+&+'%% "&.3(+#&. +&+#," -"-('#"%%'(-%"%&#%%&-# +/ "%!%%&4,2+ +#+,+'%)%-#+,"% !%+ # !&#% #"%, %#"%&#"'%"%%#"%%% B -.$ +%' #"#"%)%-#+, &+#.2&#%"%)%-#+,,,"+%8#%+&) -( #'(-% %)%-# #

PAGE 20

< brrntrnt n#,#%+(+'%,##"& #"% '%&).&8 .(.33 %+-+%)%-#"%. -&) %+%+*%#%'%+',"%)%-#-"%. -&)"%.+&. -,"%%&,"%%&) %33 %+-%+',"%)%-#'% +%# -,t ,7?
PAGE 21

= "%+-%+#&# %+# &) ,&(,%,#&+,#) #&# "% !&,' 33(, &"%&#"'%##"%-# *%&#&)# #%, "%,%%+# &),&%%'. +&#%)#"%)+%,,"% %'( -# %&-# +/ "%%'(-# + ,+%+(.$%, $)%%&-# +,#"% %)%-#%'(-# ,"%.###&-# *%%&-# #&#&)%(%"% !%+# &) *%,"%" !"%,#, $)%%))#&!%"%(%)%))%)2, "%)%-#!% %'(-# %&-# +/ L;%B E B; brnbrr % # +!&# +(."%3&-%"%)%-#'%+-%&,%,"%&#%#"% %)%-#"%. -&)%&-# )#&# +(."&,$%%*%+ ,"%#33%-# *% -&#&)#%'(-# #,*%%+, # *%+#&. +&# .&))+-%+#&# +, DNE3&+ '%&(,%'%&'&# + +#"%(%)-%)),3.&+-%" &'*%,%%33%-#,$&$)"%&', 3"% .)%-(%,#-# *% -&#&)# #%,"%8-)(, +.%-(%,)&# +(.,),&+%8+, *%+' ,-&-%%#&)+'#"%%3%"%%,(-"%33#+ +' +!&&%'(-%"%.(+# &# +(.'% #%#"%)%-#'%7%"%%#& ),"&#.&))' #"#"% &# +(.%'7f & nbrnt "%3.&+-%(%)%)),#%&" -&))%%,%+#%'(, +!&& >&# -*%#,&*%%)&# +!#"%(%+#'%+, #+'#"%%)))#&!%"%, +!& +!)% 3(%)%))"%+&(%)%))#&-4 ,%'#"%& >&# -*%%)&#%,#"%#&-4-(%+## #"%#&-#&!%"%&8 .(."%.. -%*%, $)%%))#&!% ,"% -*%!& ,","%* #&)%#"&#%)%-#'% +%# -,& +#"%3.&+-%"%

PAGE 22

@ 3(%)%))2)%-#&#&) --# #,"%%&#%,#33%-#"% +33 %+,#&#%'$%3%"%!%%'(-# %&-# +"%&#"'%%)%-#'% ,.(-",)% #"&+#"%&'%%&-# #%+#'%+, # %," %+# %),,+#"%(%)%))#%+# &) 3."%%*%, $)%*&)(%,'(%&-# *&# %+# &)#"%+%)%-#% Dt)%+O(!%2&E-&)& >&# *%,"+ % B 9/ % B 9/-&))& >&# &))(,#&# + %! +,3+#*& #, *%%+# &) t)%+%#/&)7??:E/ ,*%-&+$%!%+%&#%'(%)%))+'2 )))2&"&*%"%&.%!%+%&) -"&&-#% ,# -,'(%#"%%+# &),%,%*%"%&.%#%,"&#-&+&33%-# #" %3.&+-% ))"&+!%"%)"% +%&# 3"%*%"%%%& &.%#%,"&#+3)(%+-%"%3.&+-%b(%)%))+'#"%+-)('%&# +! #%.&#%7%,,%+'"(. 3 -&# "%!%+ &+' #%&.,

PAGE 23

? "%,)"%& >&# (*% ))%-%&,%&,"%&# %.&#% +-%&,%," ,,'(%##"%+-%&,% +#"%8-"&+!%%+#'%+, #&+' -+'(-# #%*%. 3 -&# "%%.&+%$%-.%,%.#&# +! #%.&#%, *%"%) +#&#%/ "%3.&+-%"%(%)%))+-%&,%, ##"%&# +!%,,%"%(%) -%))" ,&+$%%% # *%" 3#"%& >&# *% # +-%&, +! %,,%,"%&# %,,%+-%&,%7#"% # &)%,,%,"%%&-#&+#!&,%, +-%&,%,)%&' +!###%3.&+-% 1"%+#"%!&,#%&.. 3 -&# %.&#%,%#"&+#"%&# +! #%.&#%7"%(%)%)),3.&+-% ))%-%&,%&+'-&+$%"+ #"&+%!&# *% ," 3# "%& >&# *%,&.%# -#(b(%)%))%3.&+-%+' #"%%,+' & >&# -*%,&+$%+&+!/7%#/&)/ ))#&!%,%,&+$%' '% +#2/"% ,#+*)*%,&) ),%,'(%#"%&+, #+' +%# -%,,%,++'&-,#"%%.&+%)%-#'% &,,%.$)bE"%%-+*)*%,)$&)),%,-&(,%"%)+! B #"% B -"&++%)(+ 3. #%%'!&,%,+'&#%+-%+#&# D0( 4*,4 nt tt !%+(%),#"%,,%+# &)#(%)%)),#%.$(#),"%% 33 -(#$)%.,-%"%+&4 +!&$"%, $ ) #(%)%))%% *%" -)%,!%+ ,#"%#$(+'&+#)%.%+#"%)&+%#%*%"%-% ,, %8#&-# +!#" ,%!%+.&$+,&#% ,&" !"%+%!%,, r.%8&.%,!%+ ,%8#&-#%'.&$+,7-&))%%3. +!7&% ,#%&.%3. +!7&# &)'&# +'-)!&, 3 -&# )%-#) , %,, ,%&# +!&#% +#%!%&+!&,%," -2('$%'%&)$%-&(,%

PAGE 24

#"%&-.3(+#&. +&+#,%*%7%)%-#, ,*%+%+#%+, *% %,,/ )#%!%3(%),"%)# .&#%(%)7 #, 4%)"&# "% ,# -.%&) >%'(%)%))%%'*%" -)%,E ))&*%%&(%) -&$)%(%),%'+#"% +#%+&)$(,# +! +%nE" ,,$%-&(,%#"%% 2 ))+%%#$%&+, # .'&,(%) +! +3&,#(-#% #2 '%,%& +3&,#(-#(%"%'(-# +',%!%3(%)"% ,#(%)%)) *%" -)%, ))$%8%-#%'3.&)+!, '%+! +%,+,. ## +! -+#&. +&+#,.%3. %,,%,"(,"%%. #&. +&# ,,& .#&+#%.''%,,,#"%!%+(%))%./ rnbrn ,&!%-&)%.%&) >&# b(%)%)),&2,),%7%33#,.(,# #,,(%,%)&# +!#"%%+* +.%+#+" -"#"%,%(%)%)), ))&#%/ (%)%)) '%*%)%+##%"&,#&4%&-%+&+#))%'%+* +.%+#&&#%% 3.%&) B 2)'-#&. +&+#,+)%,,"%'&+#,) %'#"%%)),. -+#& +%',-%%/!/7$#)%'& E7 # %,%,%+# +#"% ..%' &#%# ."%%& &'*%,%)33%-#"% 3.&+-% "%%"&,$%%+.(-%,%&-"'+%##%"&#%&), #"#"%+%!&# *%33%-# -+#&. +&+#,"&*%(%)%))3.&+-%%*%)&!%.&5 #"&#%,%&2&,''%,,%'#+#&. +&+#33%-#, "%&'%"%(%)%))%-&(,%##"% !%+(%)%#2%(%)%)),,%3.%'.&#"%%% # %,&# -(&)7#"&#+%%#%.*%'."%%3.&#%$%3%#+#%, #"%(%)%))/

PAGE 25

99 b(%)%)),(%+ #)(,%%%#&)-&#&)#,#%!",3&-%%& -&$+,,&-# *%-&#"'%&#&)#)&,!%%'(-# +D&. + % -4, ,"%%'(-# %,,-,* &,3&-%'%# %,,7&&!% -&#&)#(3&-%%& +-%&,%,"%.$%%&-# #%,#"%%+-%&, +!-&#&)# (# ) >&# # %,"&#&$%&2+ 3."%+* +.%+#"&#& #"%,%-# *%-&#&)# #%, ))'%-%&,%"%&#% '&# +'#"(,'%-%&,%&)) 3.&+-%/ n#,#"%%3% # -&)#(+'%,#&+'2" -"-+#&. +&+#,33%-#"%(%)-%)), 3.&+-%+'&#"&#-+-%+#&# +,"%,%33%-#,$%-%%.&# -/#, .#&+#),%*%3"%'&.&!%,%*%, $)%.&+%+#+-%+#&# + % % .%%2.#&+#&-#,#"%, $)%%&'&# "%&#&)#, +-%"%+#&. +&+#,33%-#,+'#"%%#"',+#&. +&# %(+'%,#"%+#"% +%-%,,&#%&+$%#&4%+# # !&#%"%'*%,%33%-# trnrt "%% %&+#&. +&+#," ,##"%.$ %+# #"&#&+"&*% '%# .%+#&)33%-#"%&#&)#"%(%)%))"%*%"%+-%+#&# +,#" -" #"%%"&>&'(,%+.%$&%+* +.%+#,.%"%,%% %+ >%+%7&+'(#&' %+%"%,%+#&. +&+#,%"%)(#&+#, #"&#%. ##%' +&(#$ )%8"&(,#&'%,&!&,%'(-# +-%#%$(,# + +#%+&).$(,# +! +%, #!%'%,&%%)%&,% +# #"%+* .%+#,%,(#, )(%)$(,# # -'%,-..+&(# %8"&(,##&')' >%,#.+ #%+' 8 '%(3' '% ,!%+%&)). ##% 3.' %,%)+ +!%+! +%,&# )%!&+ -.(-"&,$%+>%+% $(#&' % +%%"!&, +%&+'' %,%)+! +%8"&(,#

PAGE 26

1"%+-+, '% +!#"%,%(%)%)),&$&##)%3 %)'%+* +.%+#"%%&%%*%&) -"%. -&)&3&%!%+#,#"&#)'&33%-#3.&+-%(-"&,7,& +7,()(,#&'7 -+!%+,") '%nE!%+-+ '%E"%,%# -()&&3&% &!%+#,"&*%$%%+++#% )-. ,%"%3.&+-%"%(%)%)) ttrnbrn b(-"%%,%&-" +** +!-#&. +&+#,b(%)%)),"&,% %3(,% "%&.'%%."%+(, %3.%&(%),% !%+&,&(%)-%"&,& #&# +,%+&(#.$ )%," ,(%)(,#$% ,#%'% #"%+-%,,%'!&,.7+ -&))#%' ) C( '.' ,$% +#%#&) '%&-"%,%,,#&!%%-"&+ ,.,"&*%&5' ,&'*&+#&!%, #"%%3%#"% #%&#%(!!%,#,!%+ ))$%, %%3. +!&& 3(%)(-"&,.%#"&"%%3.&# .%#"&%,()#, +&!&, 8#% $(#=; -%+#!%-%+#&' '%+'9 B -%+# ,%4%#)/7??@E & '%%*%),-&+$%%'(-%'#,), +!,%&#%!&,%&#.%+# %,,%, #b3(%)%)),%&# +(.&#&)#$%-&(,%#, %33%-# *%+%,, !% '&# #)2&# +!#%.&#%,(#*%&*%.&))+-%+#&# N.E+#"%!%+(%)#%&.&+,($,#&+# &))%'(-%"%3.&+-% #"%(%)%))/"%. ,$,"%&# +(. #%,"%8-)( !%" ,, $)%%-&(,%"%,%#+!)'&# +(.#"&%+7&,+' -&#% %&#%%+# &)%C( %'"%'&# "&!%+7&+'#"%# -4 +! $&$ ) #&# +(., .%,#!%" &#"&#!%&# +(. D ,%4%#)/7??@E*%+*%,.&))+-%+#&# +#"%(%)&%,()#

PAGE 27

9: -%#%*%&!%"%&#&)#,&-# *% #%,'&# &+'#"%%3%"% 3.&+-% ))&,# -&))-%&,% #+' (-#% ,%%#)3 !+ 3 -&+#3.&+-%"% &,%,%+##"%!%+(%),#%&."%"(%)%))%3.&+-% '%+',#+!)+-%+#&# +&+'#"%&#&)#%"%),"&##"% %-*%(%) -%))+ # &)-%))#&!% ,#%&&-#2,%'# ,+ +!# .%"%&" %-*%,"+$%)/ % B %))#&!%&3#%"&+! +!#"%(%)&,#.F+'%&#&)#F #/f(/F%+'A F ,%4%#/&)7??@E/ rtnrnnrrnbrn "%%% *%%#"',*& )&$)%#. # !&#%"%%33%-#+#&. +&+#,,+ +! b(%)%))-&#&)#,"%%#"%%&# +(.))&#&)##"%+5%-# %+ +#"%(%)#%&.7#"%+5%-# !% '%E7 +-%&, +!#"%3(%) -%))%&# +!#%.&#%7&+'%33%-# *%&#%&+&!%.%+#

PAGE 28

9; )&# +(.,%'$%-&(,%#3%," !" '&# -# ##"%&# +! #%.&#%,,, &#%2 # b(%)%*%7#"%&%(,-% $)%#,+ +! #"%%,%+-%*%+-%+#&# +,+ #)&# +(.))(-"&,# B f # B f"7&# B &+ +-%&,%#"%)%&+-%#+#&. +&+#," ),#%%+!&" !" %8-"&+!%(%+#%+, # ,,$%-&(,%"%%'&# %+# &)"%)) .%#&).&%'##/ "%+5%-# + +#"%(%),#%&.,+%+#2&"% ,#%# %-#) +5%-#,$%#2%% B -%+#+ +##"%+'%7" -"-& +-%&,%#"% #% &+-%."%%-,#"%+5%-# 3+#"%+'% "(. 3 %"%'%-%,!%+&+&+'#"%%+&-#,# >%#"%+' .*%"%#%&+-%"%-&#&)#Dt&,-"(4O %*%" ,%# # !&# ,%3("%&#'% !"%%&# +!#%.&#(%"&,%%+,"+#+-%&,%)%&+-% -+#&. +&+#,%*%" !"%#%.%&#(%, b(%)%)),,%&, $)%$%-&(,%#"% .%.&+%(,#$%"(. 3 %'&+'&" !"%#%.&#% ('&--%)%&#%"%*&&# "% C( '&#%+'"%+-%'%&#%"%%.&+%/ #+%," #2%%+&)',+'#"%)&.&# +&)&&# -&))%'#"%(%)%))#&. +&# +#:E"&,$%%%,#&$) ,"%##"%%33%-# .$ %+#+#&. +&+#,"%3.&+-% 3%&$ ) #b(%)%)), +&)',,% #, )#%8%# ,%*%) )#&# #%.,"&#& (%)%))+! +%, 3%"%%,%&-"$% +!'+%" ,,$%% ,-)%'&+'&()%#,%8%-#%' +#"% &) >%' )#% %8%-#%#$%"%)(# #&. +&# %./

PAGE 29

tnt "% +!)%.#.#&+#"&))%+!%"%--%&+-%(%)%))*%" -)%, E &,%)&-%.%+#+#%+&)$(,# +! +%,DnE,#"%+%%'"% #%-"+)#.&#-8-%%'#"%%8 ,# +!n%-"+)" ,,# .% -"&))%+!%$%-&(,%"%.& #&# +,+%2%-"+) 4%%,%+#,% #",% #&# +,%(%)+3&,#(-#(% B $&'#&!%(%) B $&'(%) %3. +!7,#&# B .%7 *&$ ) #*%" -)%,&+, %+#%,,%"&+!%+'%.&+'E -&#&)##&. +&# +'.#.#&+#7-# "% .%,#+'$%,#(%)%))# %.,3% +!*%" -)%,%,%+" #"%(%),-+*%#%'' %-#) +#"%(%)%)) #""%+%%'% B %,, "%%%+#%+'%,7+&.%)"%' %-#!%b7#"%' %-#!% &)4&) +%(%)%))#"%' %-#%#"& b7&+'#"%' %-#.%#"&!%+(%) -%)) #"& C( '&%)%-#)%Db-#&)/7%*%#,) 4%)"&#"% 3 ,#.%&) >%, ))%& C( '(%)#"&# ,&# $)% ##"%8 ,# +! 3(%) +! +3&,#(-#%#" ,#,&+,%C(%+#)#"%,% ,#,2 ))), '(+!-+#&. +&+#,+#"% &%"%&.%%. #"& +#&. +&# +&, #"%+! +%, n rnbrn (%)%))2%%'*%" -)%, ))+%%'&2+&.$ %+# ."% ( (+' +!, ##"%'&+#%%'%# +!#"%'&+##"%*%" -)%,+#+%8%-#% ,(# %-&(,%"%'' # &)% !"#%+,#&!%+ #(%,%+#"% *& #&. +&+#," ,#+&.$ %+# "&*%$%%+,"+#*% &'*%,%%33%-# "%(%)%))# -(&)))(#%'&%&,(-"&,$&'2&7" !"#&33 -)(.% &%&, +'(,# &)%&,+'%*%+& #+* +.%+#,

PAGE 30

9< n+#"%+ #%#&#%,#"%%8"&(,#.(#$ )%,+'#(-4,--(+# "%%)%&,% +##"% n+.&5$&+&%&,7.*%" -)%,%%, $)% ?P%. ,, +,' ,,%,C( -4) & 7,'%&#%&+'" !%*%),"% !&,%(&))#%-#% +&%&, #" !+ 3 -&+#.*%" -)%&3 3 -2 #" +%+-),% ,-%,"%%.&--(.(&#%7??=E%*%&)& C(&) #%#,"% + #%#&#%,+'#"%+ #%' +!'.%%%* %2%%*%),%%.(-% &)&%&,+'++ B (,&33 +#"%&+!% B .%* %),.&5$& &%&,(-"&,+!%)%,%2 #"%%)(#&+#,('&--(.(&#%+#"% Q*&))%R$%#2%%+$( )' +!,"%%(,&33 -('%. #8"&(,#,( $%," !"&,+%8#%.% #(&# ,/ &$)% B -&))%*%),&'%--' +!#& C(&) #%#,/ #t b"n$ nr . . %nrn n+#"%+ #%#&#%,&(#8"&(,#--(+#,$ B ;P+ #!%' '% %. ,, +, #!%+' 8 '%,(-%'&# #."% #%+&+'+ # '%)#"(!"+ #%+' '%. ,, +,"&*%$%%'%-) +%'(%#"% +#-# &#&) --+*%#%, +,#&))%' +*%" -)%,## ))%,%+#,-+#&. +&# %. ,%)2%%"%%*%),3+' +*& #%&#%

PAGE 31

9= &$)% B -&))%*%),+ #!%' '%--' +!#& C(&) #%#,/ %#'t b"n$ nr "%,%2 +#&. +&+#,%%",%+$&,%%* %2+#&. +&+#,%,# 3(%)%)),#,+#"&#%+# &)+%!&# *%33%-#"%,%#2+#&. +&+#,&*% (%)%)),%*%, $)%+%*%&)#"%-+#&. +&+#,(-"&,$%+>%+% 97&' %+%7&+',(3' '%%%+, '%%'$(#%%3*%%*%, $)% '&.&!%"%(%)%))+#"%+#%%,#.&+%+#)&' +!#"%(%)%)) -"&,%'" ,,#%%,%+&,"%#2+#&. +&+#,%## & #&. +&# 33%-#,/

PAGE 32

9@ f: fnbrb 18-"&+!%%.&+%(%)%))&+(3&-#%&))&% r#%.,&,-"&,%3" ,8% .%+#"% +)%#"%(%)%))2&,.' 3 %', -+#&. +&+#!&,%,('$%+,%#% +#"% #%&.# %, %'-+-%+#&# +, +! 3).%&, +!'%* -%,&+'.&,,)2+#)%,& %2&.2&, ##%# -+#)"%)&#%+#&. +&+#!&,%,$&,%"%%C( %'& )&#%"%(%) -%)) +&))"%+#&. +&#%'& 8#%,%%&+& )%, +!&!&,.&#&# -+3 ."&#"%. 8 +'-+#&. +&+#,&,$% +!&-" %*%'/ *+% t&))&%#%.,%%#)%, $)%"%%+%2%' +#%%,#+(%)%)), 3'#&+,#&# +!#"%??,+'$%!&+'%*%).%+#b(%)%)),/"% %8&(%)%)),%"% ,#.%&))*& )&$)%(%)-%)),&-# -&)+' %'(-&# +&)%,"%%8&(+ #,.&)).& +#%+&+-%7&+'()(#&#% 3(%)%)),#%.'%, !+% '#+#%&#%' +#'(-#,#&$)%&+'$&-4 B % & -&# ,7,%)),&+%'(-&# +&) *%, # %,+'+ %,/ #()#"%%8&'(-%,&##,%!(&#%%#. +&) #&!%#,7&#')%"%# #&!% ,#,"%#%.&# ,() &(#&#%'#(!"*& +#)#%.,+#&'##&-"%'##"%, '%3 #"%%8&%-% *%,*& !+&),%*%&)%+,, #" +"%(%)%))#&..(+ -&# +#+' "%+#&'%"&r B % &) +4# -%"%%8&bb#2&%)),"%%#%&'&+'),%*%&)'&#&

PAGE 33

9? +#,(-&,#&-#%.&#(%7,#&-#&!%7,#&-4-(%+#7!%%,,% !%+-+-%+#&# !%++,(. +-+-%+#&# %.&#% &!%%))#&!% %))(,#&# +!#"%%8&(+ #,,"+ % B 9/ % B t&))&'/1%8&(+ #+'*& +#,/9 9(#%3t&))&'%8&2%b'()%%&# +!b&+(&)/

PAGE 34

%"b-!ttrt r "%%8&(+ #&#%, %!%+.+#& +%',-%"%!% ,#%..+ #,+'%!(&#%,"%(!%+#"&%,,(%#&+,'(-% %,,%%) %3*&)*%7,%+ '*&)*%7%,,%%!(&+'&!%%&4'%#%-# ))"%,%.+#,+,% #"%% ,&+&'%C(&#%3(%)2" )%),& +#& + +!,&3% &# +!-+' # +, % #!%+&+'&#% &#%"%&#"'%#"% &+'%!"#"%%.&+%+'&--(.(&#%+#"%+'%" ,,+ #% -"%-4 +!#"%%)))#&!%+ %2%%)),+-%"%*%&!%#&!%"%,%%2%)), %#& %*%)"%!%'/"%!%'!%+ ,' ,-"&!%' +#"% +!& #%."%%#, )(#%#%*%)&$%)"%%)&..&$ ) # # !%%&4'% #%-#+,%,"&#!%%*%),%))$%)"% # -&) #, 2 #"&!%+,#%.&3%#,3$,(#%.#&+-%/ #"nrr "%'&+#%C( %'"%(%)%))%&-# ,* '%'..$ %+# &2+ #+& %,,+#"%(%)%))#&-+ +#&4% )#%%.*%,# -(&#%, 3+& $(#,&$)%%-##"%(%)%)),#&-4+#&. +&+#!&,%,(-"&, "%+#"%(%)%))+,"%A%&-# + +-%&,%) 2 ))+%&,%"%%+#&+'#"(,%C( %,%'&+## +#-%,"% +-%&,%,#"%%,,%' ,'5(,#%&'&--' +!) "%'&+#,#%.),. 3 %,"%++!& +!#"%&#%(-% #"%(%)%))%&-# "% B '(-#&#%-%' ,#""(. # %8-"&+!%"%%"%+-. +!& %-% *%,#"#"%&#%+'"%&#"%%&-# ,,+%-%,,&%%"%%.&+%,,#%8-"&+!%/

PAGE 35

nr "%(%)%))#&-4 -%'(, +! +!&+#"&#), "%%+# %#&-4/ ,.%+# +%'&$*%!%!%+ ,' ,-"&!%' +##"% +!,#%."%%#, )(#%'&%)"%2%)&..&$ ) # #E" ,&3%#+##%. &(#&# -&))"(#,+#"% (%)%))3"%-+-%+#&# %&-"%,P"%/ -rr "% %8&"&,%*%&)&3%##%.,"&#%*%+#C( %+#'&.&!%+'&))&3% &# +,#&!%,7-%+#7#%.&#%,#-&%))+ #%'#+,%#"% ,#& # +&3 %&+!%!%%&4'%#%-#%*%+#,"%!% -+-%+#&# +.%&-" +!#"%/+-+-%+#&# %+,+,%,"% &'%C(&#%&.(+#,$% +!,) %%))#&!%-"%-4%E+ #,"% #&!%%#& +%)),F&)#&!%-%)),2 ))"(#2+#"%(%)%)) '%# %-#"%,#&-"%)%+ '*&)*%%*%+#,!%+%&* +!#"%-+#& +% ,-%"%+"%(%)%)),%&# +' +&))"%%,,%%) %3*&)*%+,(%, &!%"%%)),#"%,, > +!#"%(%)%))#&-))#"%,% -+#,$ +%* '%+ # +!7&+ +!&+'&)&.,7&+',"(# .%-"&+ ,.,+,%,&3%&# &#)) .%,/ n.rnr,btrn"n 8 +!. &+ 3'&,+,#(-#%#$)%+5%-#+#&. +&+#,+#"% ++!& #%&."%(%)%))!%#"%%, %'-+-%+#&# +#&. +&+#+! +#"%(%)-%))2&,+,#(-#%'&#"% +)%#&+'-%#%)%&)% +%+-" &,&' +##"%+# '%"%"%+* '%,)&-%#%&,%"%& )&#% $% &2+ +#"%(%)%))#"% & %,,,%))&,&-%#+5%-##"% &#%.(+#+#&. +&+#!&,%,

PAGE 36

+#"% #%&., +!-%,,%'+'%, &,+, '%%'%--&#% #%,# +!$(#(%"% !(.%& #"%%8&%C( %,"%.(+# ) +'%, 2&, .+#%&, $)%/%*%&)# +,%%*& )&$)%%&, +!#"%& ) %+#% +!#"%3(%)%))##($%A%,,%#&+,'(-%#%.&,",%+&,# %'(-&# +&)&+'%-&)&#--&#%)%&,%#"% )"%+# % %8% .%+#&)%# B &$% % B :/ % B A+#&. +&+# 8 +!. &+ 3'7t&))&%8&3(%)%)))'$&+47!&, +'%,%8&bb#2&%/

PAGE 37

btr "%) +!,%-# %,$%,))"%+#,%)%-#%3"%%&,%.%+# #"% )+''%) *%"%+#&. +&+#!&,%,+'"%%%,%+&, "%%,# "%! *%+&) -&# +/ nr .'%)% %,+) +%%)#&($%&,-"&,%' B 1%,#+,#(.%+#, n# ) >%,#2*%&! +!3))%.%+#,C(&)%&%+,%,#&!+&# +'#"%#&# 33%%+# &)%,,%* +!. + .(..&+%+#%,,%,"%3))%.%+#,% &-%'&#"%%+#%%&'%'@R,%-# %+'-&+$%##&-"%'##"%+-" #"%+'/"%+-&,",%#*%&" !"%+(!" 3)*%) #"%# #($%##%) &$)%%&' +!/#"%&8 .(. ) &#%%.&+'%"%(%)%))bE"%#($% )).%&,%' 33%%+# &) %,,%E"%%3%"%%)%-# ( #&$)%%,,%&+,'(-% #%&#" ,%8#%.% ))(%&, # -&)/ -#(%"%*%&! ##($% &+',2&!%)4 ## +!, ,,"+ + % B :/ % :B:n+) +%%)#&#($% #",2&!%) 4 ## +!,++%-#%'##&# -&+''+&. %,,%%&' +!'%* -%, /

PAGE 38

&nrnbtt t %+, r&,#%'$%+, #"%+ *%, #) '&F#, )&+!%' 33%%+# &)%,,%#&+,'(-% #&.%&,%.%+#&+!%. B ,%,,(%&+,'(-%2&,$%,#( #%'" -&# %-&(,%#, %,)(# &#"%)#,%&,%.%+#&+!%#%,,"&()-&)%DrE"%%,(# "&,&+!% B "%&+,'(-%%C( %,%+' "&, +%& B 7&,"+ + % B % B +%&#(##"% B B "% +% +%, +' -&#% #"%&8 .(.%&+-%,+-)(' +!&#%.&#%*& &# B / (#%3r%+, +r 9&#&,"%%#/

PAGE 39

% B r%+, B 33%%+# &)%,,%#&+,'(-%/ bttr n'%#+##"%)&#%+#&. +&+#!&,%,"% +'%+#"% ,#%&.7&&#".f% %,#& +)%,,,#%%)&,,)+#)%&,%)%-#%'&+' -"&,%"%&+!%"%+#)%, B b"%+#))%%,& ))& #"%.&) %-"+)#%-#)%&,%&,,)"%+#)%&,%%'$ +'(,% B +%&+(##&!%,.+ #+'-+#)"% (+ #%.%-%2&!%)($ +!&+' ## +!%%%'#&+,#!&,%, #"%!&,) +'%,#"%+#)%&+'%*%+#(&))"% +)%# #"%(%)%))/

PAGE 40

% B
PAGE 41

,2 #-"%A32%% 8%'#&!%'7&%+# %#%2&,),%'#$)%# 3 +%(+%"%%+#$% +&2"%%))" ,'$&+4 &))%'+-%.%+#&) ,#%-%+#" -"&))%& >&# -*%,%&#% ,#%'$%)%))#"% %, ,#,#"&#%%%'K B &##7.%, ,#, 99S&##%, ,#, S&##.%, ,#,&-% &) )%) %)' +., S#7..%+# %#% "%+#+'$&-+%)"%$&+4&%2+ + %, B =&+': B @/ % B= t&-4* %2'$&+4 #",%*%&)%, ,#, &&))%)-+,#(-#%&# %+# %#%& ,&-%'&#%+#%D+#-#%'E/

PAGE 42

% B +#* %23'$&+4 #",%*%&),2 #-"%,#&-# *&#%%, ,#,+' %+# %#%) !"#&'5(,#.%+#,/ -r "%%8&(+ #%,&(!%+(%)&#%# ,+%-%,,& &2&% &+'(+'%,#&+'#"%&3%#%C( %.%+#,%)&#%#!%+&+'-%,,% !&,%,)#""%%8&(+ #"&,%*%&)&3%#%&#%,#"&#%*%+#,&3%&# &'' # +&)%&,%,(,#$%&4%+ +'%%+,%&3%' # +, +#"%&&# !%+ ,+%8#%.%))&..&$)%!&,F"%%3%-%,!+ # 2%%&-%+%&"%(+ #&!% )%&,)&-% #" +&' ,#&+-% 3."% +'%,+"%5%-#$(#&,' ,-++%-#%'.#,% ,-%/ ))!&,) +'%,%%%%'##"%)&&#&)) +!&))#, &%!(&#,%%))"%-4%'%&4, +!& C( )%&'%#%-#/

PAGE 43

8!%+'%%# ,,(%$%-&(,%"%%8&+*%#,!%+ +#&#% "%&&#%&&,%%))%+# )&#%#+,%"% %2&,'%C(&#% +/ )%-# -&)++%-# ,"%-4%'$%3%*%#%,#(+#%*%+# %)%-#(# %,/ & '%'%#%-#,7,.%)&.,+'& %8# +!( ,"%%% &-%'+%&"%%8&(+ #/ % B & &3%#%&,%,F %8# +!( ,"%7,.%A-&'%'%#%-# &+'!&, +'%#,/ /btbr fn+,#(.%+#,,% %,!&,"&#&&,%'#+&)%#"% -+#&. +&#%'& 8#%,+,(%#"% 8 +!.&+ 3'&,'%) *% +!#"% &.(+#, -+#&. +&+#,"%!&,&#&E%,& %*%+'&(.+# -&))%&#%"%&,%% .%&# +!("%(."% ,%&%#"%+' %-#% +#"%.&)+'(-# ##%-#E"%%! ,#%,

PAGE 44

%+ # &) 33%%+-%-,,"%&#,#+% '!%" ,'&#& ,-)%-#%'&+'' ,&%&, &4,# .%%&4r .%#2&% "% ,#+%%'%'#%&) &#%2 #"++-+-%+#&# +,$%3% #%,# +!#"%,&.%&4%+."%. 8 +!.&+ 3) 2%,#!&, +'%, #"+ +-%+#&# +,%%(,%'D+'.E"%fn,"+ + % B @/ % B 9/fn+,#(.%+#,!&,&#&"/

PAGE 45

:9 f; b n'%#+*%,# !&#%#"%33%-#,!&,%,(%)%))3.&+-% ,%*%&)%,#,2%%(+(, +!#"%&))&%8&(+ #%*%&)%) +&%,#,%% 3.%, +!-)%&+& & +$&,%) +%3.&+-%'&#&+3 '%+-%+#%*&)&, -&)-()&#%, +!#"%& )%&(+,$)%,# +!( ,"$%#2%%& !+ 3 -&+# -"&+!%+'.&))(-#(&# +, 3.&+-%& >&# -*%,%%-%&#%'&# *& -%+#&# +,"!&,%,+,#&+#&'#%,#%% %3.%+#"%%)%-#% -+-%+#&# +,"%+#&. +&+#!&,%,##%%' 33%%+#&',%-*%+3.&# 2&,),& +%'"%+,#&+#'#%,#,,2 #-" +!.)%&+& -+#&. +&#%'& +'* -%*%,&&#&)%-#%2&,"%+-.% '#($ ,"%''&#&/ btntrn nbrnbrn '%#%,#&$) ,#"%$&, -3.&+-%"%%8&(%)%)), 8#%,#(+,%% -%#%"%%8&&, %2 #"(#&" #!%+ +'%+' & &,&2+."%(+' +!,7" -"%%"%)'&#%)&# *%),#&+#%.&#(% &+'"(. #"%%8&&,))%'#&.# .%"&#"% + # &)#&#%.&#%2&,"%&.%&-"#%,#" ,&),+,(%'"%%8&"&%&-" %& C(&, B ,#%&#&#%'+-%.%+#,.%%",%+#*%(),-#(. '&#&+#,%&#%)& >&# (*%#&# +!&#+ + # &)."%' 2&,+-%&,%'%*% +(#%,%+,%"%(%)-%))&%&-"%'&#%&' #&#%#&)',#%#."%(%)%))&',,,%'#,&8 .(.%

PAGE 46

2&##,+'&,'(+&##,#&!%E7-%+#&.E%2&##,E7& 3)rbE7& #%.&#%DE7&+',#&-#%.&#(%E%%)) )!!%'%*% ,%-+',#%&-"%+ +%',#%,"%#&!%+'-%+#'&#&-)%-#%'&"% 8#%,#(+,&,,%'#+,#(-#+3 '%+-%+#%*&)" ,+3 '%+-%+#%*&) 2&,%'#%+,%-"&+!%,)#&!%,'(%+#&. + &# %% !+ 3 -&+#/ trrtrn +#&. +&# 33%-#,&%&, %%%+(+'%+,#&+#)'/#+,#&+#'#"% #&!% ,),+,#&+#&+'&"&+!%#&!%&+$%## $(#%'#"%+#&. +&# %33%-#,#,"%++%-%,,& &),%#$&,%) +%%3.&+-%'&#&"%(%)%)) 3 .,'%+,#&+#) # .%%%',%%%)%-#%'#%"%()&+!% "%%8&(%)%)),#&-"%',%)%-#%'%%."%,%%+#, $%,#%3)%-##"% +%&# "%& >&# *%7#"%&#"%*%"&# 4%) #33%-#%"%#&. +&# r (+,7%&+(#%,7&-"%%% )',%%-.%#%'#&!& +.+3 '%+-% +#%*&)2" -"%&+-%"% -+,#&+ #'-+#&. +&# %,# +!/ rnbrntrn r%)%-#%'-+-%+#&# ,+#&. +&+#,%+#'(-%' +##"% +)%#,#%&. #"%(%)%)) +!&. 8 +!.&+ 3'-+,#(-#%'##($%%,,% #&+,'(-%*-7.&,,)+# )%&+'&& %2&. ##%+#+#"% %,,"%)&#%3"% +#"%)%&' +!#"%(%)%)),-&)-()&#%'. #"%' 33%%+# &)%,,%%&' +!."%##($% +!#"%.(&! *%+$%)K 9=@? / E DB9

PAGE 47

:: )33 %+# /..
PAGE 48

:; &$)% B +#&. +&+#)&#%,%%& )2&#%,7% -+#&. +&+#!&,%,#&+'+#&. +&+#!&, 8#%,##E/ "%& %2&.2&, ##%#+#"%%,, +5%-# +!-+#&. +&+# !&,%,+#"%+)%# #%&."%&.%&',"% )&#% +##"%3(%)%))&+' #"%+-&)-(&#%,"%+%-%,,&)&#%+#&. +&+#!&,%,#& #"%'%, % +-%+#&# + +(#"%%"%3+#+%)3"%&.&" -&)),&#"% '%, %-+-%+#&# (#bE7#"%' 33%%+# &)%,,(%'(-%' +#"%##($%D E7#"% )&#%bE7#"%'%, %'-+#&. +&+#)&#%DbE +'#"% &-#(&)+#&. +&+#)&#%DbE7" -" ,%%'$&-4,%+#"%&.3."% .&,,3)+#)%"%)&+&),%&3."%.&,,)+#)%#,%)3 %+,%"%)&#%' &!&.3"%+#+%)&+'#"%' &&.&+$% 3+#"%&+' nbrnbrn &-"-+#&. +&+#& >&# +-*%,%+%&#%'(, +!#"%&.%%% (,%'"%$&,%) +%3.&+-%%,#,233%%+#+-%+#&# +,&-+#&. +&+#"&*%$%%+, %)%-#%'$&,%"%. ,, +,%#,)%-#% +#"% #%&#(% %* %2"%%)%-#%'-+-%+#&# ,%"+ &$)% B

PAGE 49

&$)% B: r%)%-#% -%+#&# %,# +!$&,%. ,, +,%#,)%-#%' ) #%&#%%* %2/+#&. +&+#&, # +-%+## +#%,#%' r%-+'+-%+## +#%,#%' 9. :. 9$ ;$ trrtrn +,#&+# )&'#%,# ,%%&),3.%'F #&+,#&+#)'#"%#&!% #"%+#&. +&# 33%-#, ))&, )$%%%"%&.% -%%% +%,#&$) ," + #"%$&,%) +%3.&+-% ))$%%'"%3 -+-%+#&# +#&. +&+# ))$% #%,#%'. +(#%,#%&-D.,E3'*%,%33%-#,%,%%+&#& -%#& +-+-%+#&# +'&+#"%%,# )) %3.%(, +!#"&#&.% -+-%+#&# +&+')"%%8& ))%&#%+-)%&+& +(#%,)% +(#%+#&. +&# +#"%+$&-#)%&+& +(#%,%*%%-*% "%33%-#&-"-+#&. +&+#"&,#"%(%)%))#&-4 ))$%'%#%. +%'"% ,)"%#&!%-*% !"%+-%+#&# ,&%' 3"%% ,"&+!% #&!% #""%+-%+#&# +,%)%-#%' rnbrn r#(' +!""%(%)%)),#&-%-*%,"&.3(33%-#,,&,. #&+#, ,#(' +!#"%33%-#,"%.,%)*%,"%%3%3#%"%+,#&+#'#%,#"%+#&. +&+# ,-% ))$%+%3+'#"%%8& ))$%&))%'#(+%,"& #%% 3"% #&!%%#(+,"% + # &))#&!%"% #%&#%(!!%,#,#"&# ""&*% %*%, $)%33%-#,3#%+#&. +&# %*%&)-+#&. +&+#,%%%)%-#%#,% +#" ,%#$%-&(,%"% + %*%, $)%33%-#,+' # +#%+# .&+%+#)&'%#"%%8&(%)%))-"&,%'" ,8 .%+#

PAGE 50

:< brrt ))(,#&#%#"%' 33%%+#&.%#%,#"!%-#"%& >&# +-*%+'"%+-% #"%3.&+-%"%(%)%))7#"%%33%-#,%.&#% ))%#(' %#,2 3."% #%&#%"&#+-%&,%',#&-4#%. &#%+-%&,%,#"%3.&+-%"%(%) -%)))& >&# (*%,2 ))$%&)-()&#%&#' 33%%+#%.&#%,+ +-%.%+#, #&# +!&##,8%-#%#"&#,"%#%.&#% +-%&,%,"%,#&-#&!% 2 ))+-%&,%

PAGE 51

:= f frrnrrrn btnnbrnbrb r%*%&))& >&# (*%,%%!%+%&#%'#& +$&,%) +%3.&+-%'&#& #"%%8&(%)%))(+'%.&)&# +!-+' # +,))%,#,%%+'(-#%'&# &%)&# *%"(. # % B 9' ,&"%& >&# *%,!%+%&#%' btbbnbfrr trbb % B 9/r & >&# *%,%+%&#%'(+'%.&)&# +!-' # +,7= &#."% -%,,% +%)&# *%"(. # t&,%"% 8#%,#(+,+3 '%+-%+#%*&)2&,+,# (-#%'&+' ,"+ 3 % B

PAGE 52

:@ trfrrfr trb % B +3 '%+-%+#%*&)& >&# *%,$&,% 8#%,#,/ btntrrbrb )#& >&# (*%,! *%%8-%))%+#+3.&# $(#"% 33%%+# &.%#%,"!%-#(%)%))3. &+-%#,&, %#%%"%+#&. +&+#,33%-# 3.&+-%%,# +!#"%+#&. +&+#,(+'%&-+,#&+#"%%%',%)%-#% 2%%."%,%%%',$%,#%3)%-##"% +%&# "% & >&# +7"%#"%( *%#"&#,#33%-#%"&+! &# +!-+' # +, %, B & B ;,2"%#&-#&!%&+'#"%#&-2%+,#&+#)', &.7#"%'&#&.,, )&"%,%2&",+'"%+-%" &#&&,))%-#%'%* %%-+',. +(#%,/

PAGE 53

:? tbr !"r#b t b t $ffrb%& t t n n b'( frfr r fr % B :/r#&-#&!%+',#&-%#+,#&+#)3. tbr)!"r* n n t $ffrb%&b '( frfr r % B ;/r#&-#&!%+',#&-%#+,#&+#)3./

PAGE 54

+,%"&#"&+!%+,#&-)#&!%%, !+ 3 -&+#"%+ +# (+! -+#&. +&+#,+#"% #%&.+(+-%#& +# +#%*&)&,+,#(-#%'#&-)#&!% &+',#&-2%&-"'&+' ,,"+ +#&$)% B 9/ &$)% B 9/r#&-#&!%&+',#&-2%))&$)%&+!%,'%.&)&# -+' # +,/ rnbrntrt "%+-%+#&# +,& '%%)%-#%2%%",%+$&,% +,%*%&)& C(&) #%#,!&#"%%3."% #%&#%%* %2.%&*&)(%.%%,%+#% #"%+-%+#&# "&#($%+#-&)$&+%&,&8 .(.*&)(% .%%,%+#,"%" !"%--%+#&# #"&#('%8 ,# & !"#&33 -(.% &$(, #%& #) ##)%*%+# )&# 7D,&))%T,#%%#&+,E"-+-%+#&# 2%%%,#%&#"%#%%%)%-#%'-+,#&+#)',& >&# -*%,%%&),+%&#% (, +!) +-%.%+#,.#"%&8 (.. trr "%%8&(%)%))&,))%'#%&#%)%&+& # ) #"&%&-"%&C(&, ,#%&#&#%/"%%)%-#%'-+-%+#&# &.'%&,"%+ +#'(-%'&# -+,#&+#'&+'&))%'#&#%3. +(#%,3 #&!%&,'%#%-#%'&# #"%"% +(#%,"%(%)%))&,))%'#+# +(%(++ )%&+& # $#& %-%+3.&# +,#&+# & r#&-#&!%E r#&-%2&##,E :;/U ;/: ::/;U
PAGE 55

;9 "%+-%+#&# +,%%&-#%,#%'&#"%%', &.E% #"%+-%+# &# "%'& !+ 3 -&+#"&+!% +% #"%#&-#&!% ,#&-%#&))"%%,#,"%+-%'#"%-)%&+& #%,#, % B ,","%.%,##+,#&+#./ t+r,rf#!)! n n $ffrb%& '( frfr r % B & '%%,#9.E#+,#&+# )3./ "%#&!%"%)%)&# *%)+,#&+###,2" )%"%2%%.& +%'&# &&##,"%3)(-#(&# +,,%%+ + % B +' &))#"%'&#&)%-#%'&% '(%"%!%%)))%,"%%8&(%)%))&(#&# -&))3 .,"%,%!% -)%,%*% B %-',"%#&!%%#& + +' '(&)-%)), #" #"%#&-4&% .+ #%+-%"%)#&!%&'%, !+&#%' # -&)*&)(%"%+# %#&-4 ,!% "%!%+(%)%)%&,%+#&. +&+#,"%+ % '%" ,!%)% %3)+-%&,%,"%,#&-#&!%

PAGE 56

"%#%,#,&##"%+,#&+#).-%', )&%,(#,&, ,"+ + % B #""%#&!%,%%.& + +! #" +#"%(+-%#& +# +#%*&)'%3 +% r )&)"%%,#,3.%' #.' '(-%& !+ 3 -&+#"&+!%, +#"%(%)%))3.&+-%,&+$%%%+ + !% B <&#-+,#&+#.,/ *!t+r,rftrr& !b t b t b trb%& t t n n b b '( rfr r % B
PAGE 57

;: ,#+'(-#%'&#"% +-(++%)%2 #"&#)%*%),," !"&, .('$% +!%8#%.%)&&33 -9),"%+-%+#&# & .'%+' %,%). ,, +,&+$%&," !"&,.F #" +&#' ,#&+-% 3.' %-#' %,%)8"&(,#&+-(+#%) %*%),+%&.3#%+, '% +!#"% %8"&(,#)'$%' )(#%'%2"&#+#"% "%%8&&,($5%-#%#-& '%+'#"%'&#&%*%&)%'& 3.&+-% +!#"% +(#%%,###%(+'%,#&+'#"%33%-#"% -+#& +&+#' 33%%+#%,#%#&,%'7#"%%8&&,))%'#(+ +(#%,)%&+& )2% +(#%,.&+'#"%+&))%'#&#% )%&+& 3. +(#%,"%-*% % B ,"," ,%,#3.%'& # &+,#&+#./ "%+#-# .&'%'(-%'&/<=P+,#&#&!%&+'&/<9P&)),#&-%/#, +#%%,# +!#%%"&#"%-&$ .'%%%.%'#33%-#"%(%)-%)) ..%' &#%) #' +# +(%&'% #"%#&!%*% .%7 #%.& +%' +&C(&, #%&'#&#%"%+!&#"% -+#&. +&# # 3"%&+ % B #"%" !"%&)(%,#&-#&!%&% '(%"%!%)%,2" -"%%%& +%%* )#" ,& !%'(-%,& %3+-%&,%#&!%&%$(#"%+%))&')# )#"%%8&,!%'&!& +/ 9,#('-+'(-#%'$#"%79??:/

PAGE 58

;; tbrf*!fr-#!!t.*!fr-tbrf*!frrr& t n b t n b $ffrb t t n n'( frfr nfr trfrfr #!! b't.bb' frbrf % B =/& '%%,#9.E#+,#&+#)./ %,#%#"%%'(-# +,#&-#&!%&%"%%8&' %-*% "%#&#&!%%-*%%'#?=P#, +&)#&!%" )%"%%%-*%%'#?


PAGE 59

tbrf*!fr-#!!t*!fr-tbrf*!frrrb*! t n b t n b $ffrbn b b '( frfr nfr trfrfr #!! b't.bb' frbrf % B & '%%,#9.E#+,#&+#)./ "%#&-)#&!%&,%'(-%" )%#"%#&-2%&,%'(-% :/:P)#"(!""%%"%+#&. +&# %%.% ##%&' )%-%&,%"%#&!%&, .% 2%+#!& +#"%%8&%%.%'#%-*%3#%+#&. +&# "%#&-4#&!% %-*%%'#?@/
PAGE 60

;< nbrnt & >&# -*%,%% !%+%&#%'t%! ++ +!&# &."%'&,+-%&,%' +-%.%+#,.,*% +(#%,,%* )#% .' +#"&*% !+ 3 -&+#-"&+!%"%(%)%))%3.&+-%7#"% & >&# -*%,!%+% &#%'"%,%2+-%+#&# +,%)) #" +#"%+3 '%+-% +#%*&)2+ + % B % B ?,",& >&# *%,& "%-*%&)), !"#, '%"%+#%*&)&+'#"%%3%"&,+'&'*%,%33%-# #"%3.&+-% &#&+#,.,+#"%.%,#(% #&4%+'(%#"%&,,)+#)% ,,(%, ,-(,,%'/ r!r!! trb rrf t! !"r# $% t!"r# $% "r&f'( f r#r)tf)f )* % B & >&# -*%,.&'%/

PAGE 61

;= n0rntb! %&) >&# #"&## -&))%*%),&'%'%#%-#%$&+&%& ,#%%#,"&'+33%-#"%3.&+-%"%(%)%))7&##%+# &,&2+#.% %8#%.%&,%,"%%&.'% !"#$%#(-"" !"%%*%),8&.%7 3 3(%)%))%" -)%&, +# &33 -$%" +'&' %,%)(-4%. ## +!#,8"&(,#' %-#) +#"% + #"% +#&4%"%b(%)%))+#"%*%" -)%7#" ,(%)'&(" !"%-%+#&# %,#&,%, !+%#%-%&#%" ,% #(&# 2" -"& % 3& +-%&,%+-%+#&# !"#$%+#'(-%' +#"%(%)%))+')#"% %-*%"%%,#&,2+,#&+#',F+':."%(%)%))&, &))%'#&#%)%&+& # )C(&, B ,#%&'#&#%&,%&-"%"% +#" ,#&#% 2&,%&-"%'"%(%)%))&,))%'#&#%3%-+',$%3%+#'(.%-+',"%)2&,"%+,#'&+'&))2%'#%-*% ,%-+',$%3%" !"%-+-%+#&# +&,+#(-%" ,%%&, +# +(%' -+-%+#&# +,." ,%,#&,),-%#%'+' +'#"%+-%+#&# #" -"-+#&. +&# 33%-#,$%! #&4%&-% %33%-#,%%,%%+(+# )"%+-%+#&# %&-"%. % B "," #%,#&#)'./ %,#%% )(-#(&# +,#"%#&-2%#&!%7#"%'&#&%)) #" #"%&+!%%3 %' #&$)% B 9&+' ,"%%3% !+ 3 -&+#+' +-)(' !+ 3 -&+#3.& +-%-%+-%2&,+5%-#%"%,% %,(#,%%'&#)%+'-&+$%+ % B %","%%,# -%#%'+-%+#&# B 9<.#+,#&+#)./

PAGE 62

;@ trr& !'f0fr1frt.#!-*!-/!-2! t n b tnb $ffrbt t n n b b '( frfr bttn ttn fttn rbttn % B 9/&' +5%-# +, .E#+,#&+#)3./ tr& !'f0fr1frt+r,r#!!-# !-#)!-#/! t n b tn $ffrb +,f(! "-(!f +,f(! "-f ,f(! "-(! +,f(t! "-f % B 99/&' +5%-# 9.E#-+,#&+#.,/

PAGE 63

;? "%& +5%-# +,+#&. +&+#,"%'#"!%-#,..%' &#%"% "%"&+'#"% .%"%(%)%)) %-*% # +&)#&!%&,&),& n+,%&,%,"%)#&!%-#(&)) .*%'&3#%%-*%" ,% +,#&#&!%&"%&-#"&#(+'%+#&. +&#%'-+' # ,"%(%)%))#&-4.&$% "%&# 2" -"(%, (#+$%##%3.&+-%"%#&-& +!#"% #%.&#%"%#&,+#"% # !&# +!#"%%!&# *%33%-#, -+#&. +&+#,/ &$)% B %-%+#&!%"&+!%,)#&!%&2% &+5%-# +,&# -+,#&+#. ,/+-%+#&# +,D.E %-%+#&!%'D)#&!%A2%E %-%+#&!% f %-*%D)#&!%A2%E 9 /@PA9/9P ??/@?PA9/9P 9 9/:;PA9/::P ??/@;PA??/<9P 9; /99PA/;P 9/:;PA9/:;P 9< :/PA:/9@P 9PA9/9P "%& .%%,#&,+'(-#%'&#" !"%.+'%,(#%' & !+ 3 -&+#)" !"%3.&+-%+' ,"+ % B "%.%,# 2&, )&"%.%,##"%-%+#"&+!%,3.&+-%%%(-"" !"% &,"+ #&$)% B :/ "%,%%,()#,!& +,2"&#" !"%"%#&-%+# &)%,()#,&&!% 3.&+-%1"%+-+, '% +!&*%" -)%%%b(%)%))" ,'*%,%%33%-# $%-% # -&),,(%--%)%&# %C( %,,#%%+-%&, %+%"% ,#&-"%+#&. +&# "%(%)%))('!%&#)+" $ #"%(%)%)) '(+!#"%%+%-%,,&+'"%+-%%'(-%"%&)) *&$ ) #"%*%" -)%/

PAGE 64

trrb*!t.fr1fr#!!-# !-#)!-#/! t b t b tnb $ffrb +,f(! "(!f +,f(! "-(!f +,f(! "-(!f +,f(t! "-(!f % B 9/&' +5%-# .E# +,#&+#.,/ &$)% B %-%+#&!%"&+!%,)#&!%&2% &+5%-# +,&# -+,#&+#.,/+-%+#&# +,D.E %-%+#&!%'D)#&!%A2%E %-%+#&!% f %-*%D)#&!%A2%E 9 9/@ PA 9/9 P 9/9 PA 99/?? P 9 ;/ PA ;/<9 P 9/;? PA 9/@ P 9; @/;PA@/; P 9/ < ;PA 9/9? P 9< 9/:?PA9/ P 9 /< PA9 /?? P %nrn "%+-%+#&# +,%)%-#%'#%%,%+#"%&*%&!%+'.&8 .(.%*%), &$&+&%&%% %,-# *%)"%,%-+-%+#&# +,%%%,#% ,%&#%)&#%%-+,#&+#',D.E& >&# *%,+'#"%& +5%-# #%,#,%%),-%#%'&,+#"%-&$.'%%,#,

PAGE 65

trr "%+,#&+# #%,#,+'(-#%'+ #%+' 8 '%%%#"%&.%+'(-#%' -& '%"%%8&&,))%'#%&#%)%&+& #%&-"&C(&, B ,#%& ,#&#%$%3%#"%%)%-#%-+-%+#&# + #!%+' '%&,+#'(-%"%&,, 3)+#)% 2&,'%, !+%'&.'%)7,+*%, 3&-#&, +%%'%'#%"%)+#)%%,"%.&)%+,%-"+)2" -"&)), #"%%+*%, &-#,"%&) &#%!&,%,#"%!&,%,"%+*%, 3&-#7&),-&) )%'&&-#7&,-%+#"%)&#%%&' +!/ n#&,"&#+% #"%#"%"%'& !+ 3 -&+#-"&+!% 3.&+-%,&+$%%%+ + %, B 9:& B 9;/ fr3ff#!!+rrb !b t b t $ffrb%& t t n n b frfr r % B 9:/ #!%+' '%%,#9#+,#&+# )./

PAGE 66

fr3ff)!!+rrb !b t b t $ffrb%& t t n n b'( frfr r % B 9;/ #!%+' '%$E#-+,#&+#)./ !"%+-%+#&# +,%%%,#%&#-+,#&+#', +'&+ 3.&+-%"%" !"%,#+-%+#&# &, #%"%&+!%"%&,,) -+#))% "%&8 .(.+-%+#&# "&#)'$%(,#& +%"%+#)%&, .!& +#" ,-+-%+#&# +#%)'&+'*%,%%33%-#,,2 + % B 9

PAGE 67

fr3ff#trr&*!b t t n b $ffr%&b b '' frfr r % B 9/ #!%+' '%E#+,#&+#./ n 0rntnrn "%& +5%-# %,#,3.%2 #"-&.'%%)'%'#"%# +#%%,# +!'&#&+'"%+-%&,!& 3.%2 #"+ #!%+' '%"% #,"% .&,,3)+#)%%*%+#%'#%,# +!-+-%+#&# +,$*% .3"%+,#&+# )'#%,#$%-&(,%#%C( %'#"%)-+#))%(,#& &" !")&#%3 ,($,#&+# &).(+# .%%*%"%-+#))%&,$)%+')% !")&#%, &# .%V. +(#%E" !"%-%+#&# +,-('$%%&-"%' +#"%& +5%-# +,#%,#,"%,%#%,#,%%(+&#.$%-&(,%"%% 3)&#% %C( %"% )"%%,(#,&%"+ + % B 9
PAGE 68

trr& !'f0. fr1fr2!!-#!!!-# !!-#)!!+ t n b n $ffrb +,fb#( !f +,f!( !f +,f*!( !f +,f*!( !f % B 9
PAGE 69

-&+$%%%#"&##%+##"%33%-#,%.&#(%%.(-.% !+ 3 -&+#" .&'(%#"%&-##"&## !"%#%.&#%"%%.&+%& %() &#%(# #" +-%&,%,+-(%+#"%&#%&#%-# ),+-%&,%, # +&))" -" #+%%"%%.&+%.,#+'#"%-# *% #%,"% -&#&)#+&+'"%+-% .*%,"%(%)%))%3.&+-%"%33%-#,%. &#% &%"+ + % B 9=/ $4rbffrt trb t b t'( ./0 ./t0 ./n0 ./b0 ./0 ./t0 ./n0 ./b % B 9=/%.&#%33%-#,(%)%))%3.&+-%& >&# *%,+' %*%,"+%.&#%,E/

PAGE 70

f< rnfb nr t&,%8% .%+#&)&#&#&,"&##"%-&))%*%),&'% &+'+ #!%+' '%+' $&&%&,#, !+ 3 -&+#)33%-#"%%3.&+-% b(%)%))"%# .%+#%*&)%,#%'/ %*%#"%8% .%+#7#"%(%)%)) 3.&+-%$%!&+##%*%),+'" !"%)#*%!"7 #"%,%)%*%),('$%(+'(+'%8#%.%+' # +,+&"%&&33 -(.% &%& "%&.'%,+ +!.%-"&+ .%%.,(+-# "-%)) %+# &)++-%+#&# +,"%#&!%&+',#&-%2%%..%' &#% &3#%+#-# "%#"('$%%#"&#"%# .%+#%*&)%,#%#"% &'*%,%%33%-#,%%.%',#&+&&, B ,#%&'#&#%(#%4,"('&),+, '%#"% %33%-# .%+#&. +&# "%%8&(%)%))"&&*%!% -+,(. &#%&+'#"(,+!%# .%'#%,#,%%%&, $)% "%&+, %+#%,%%,#,%*%&)% .#&+#+3.&# $(# "%b(%)%)) &$ ) #%-*%& ')&3#%"%-%,,&# "%+#&. +&+#"%(%)%))&,$)%# %-*%%#%), #%"% %3+5%-# +,*%!"-+-%+#&# ,"% -+#&. +&+# "%8% .%+#,+*)* +!+ #%' '% +#&*% !+ 3 -&+# %33%-#"%3.&+-%+-%+#&# +,.+#"% .%+#%*&)%,#% +%%&,"%.&"&*%33%-#%#"%3.&+-%#"%(%)%))&#"% -+-%+#&# +,%,#%'&,"%&-##"&# #!%+' '%,%8#%.%)($%+&#%

PAGE 71

"%++!& #%&.,,%,"!"&"(. #8-"&+!%7" ,-%,,'' +! .,#%#"% #%&..&*%-($$%#"%"%&-#(&))%&-#,2 # 2&#%'(-%+ # -&'&K D!ED)E :D&CED!E < B 9E %*%7 3" ,%&-# &,&4 +!&-%#"%%,"('"&*%$%%+,%"&+!% 3.&+-%$%-&(,%"%33%-#"%+ # '%%,%+##"% +(#% 247#"%+#&. +&+#,"('$%+#'(-%' +##"% #%&.3#%"% "&,$%% "(. 3 %+#"%(# ($%. 3"% #))7, +-%"%&#%, $% -%"%&#"'%)%&#,%.#&+#. 3"%(%)#%&. ($ ) #33%-#&, 4%)+ ,,(%"%$%-&(,%# ,).#+,)($% 2&#%/ ,#2&, .& )+-%+%2 #",# B #%.%%,#,)+!%%,#, .&%*%&)'' # &)+3.&# $(#"%#&. +&# %-"&+ ,. )#"(! "#"%%8&(%)%)),#&-4&,%&#%&+ +!#%+%(+3&. ) & 2 #"#"%#%-"+)# ,'%&)8% .%+#&# "%%8&"&,%*%&)($,#%., #"&#%-#,#,%)3.&(&)&# +!-+' # +,n3(#%4 +,#(' +!# "% %33%-# +#&. +&+#,"%&#"'%7%33#,"('$%(+%'#, !+ +!&+' -+,#(-# +!+' '(&) +!)%b(%)%)),+,#(-# +!,%*%&)' 33%%+#%.&+% %)%-#'%,,%.$) %,b,E('&))%,%&-"%#' %-#+3.&# $(# -+#&. +&+#33%-#,"%%%%& &$)%, +#"%%8&#%,# +!#"%%(+4+ $%-&(,%#"%%8&,.%8,#%. 1 #", +!)%b(%)%)),7.%%*%%#&. +&+#, #, $)% %*%, $)% %33%-#,('$%%,#%), #", +!)%% )),#"%33%-#&# &.%#%,(-"&,

PAGE 72

%,,%,7#%.&#%,&+'"(. #%.&#%,"%+%!&# *%%33%-#, -+#&. +&# ('$%,#(' %"%$ ) ##+#&))#"%,%&.%#%,('! *% -)%&%(+'%,#&+' "%+#&. +&# +.%-"&+ ,.&.%8% .%+#&)#%., ,"+ + % B 9/ % B 9/&.%8% .%+#&)#%.+#& + +!& +!)%b(%)%))+'*& (, -+#,+#))&# &&.%#%,b%#&)E f%,%&-" +!+'#%,# +!' 33%%+#&#& )#,,%' +#"%)%-#'%,,), %-.%+'%'(#%)&# +(.))&#&),#,&, !+ 3 -&+#)+"&+-%"% #%&+-%)%*%).3(+#&. +&+#," )%),%'(+!#"%#,"%*% %8%+, *%%&# +(.&#&)#,

PAGE 73

n tn1bff fb "%) +! ,"%)-4' &&.&+'+#+%)"%& %2&. 2 ##%+#+##"%)2&#%+#&. +&+#!&,%,$&,%+#"%)&#% +! +#"%(%)-%))/

PAGE 75

<9 n rf B ffr ,#%'"%%&%"%#&#,"(#'%%,"%%8&(%)%))+'#"% ,#&##%,# +!A,"(#'%%3"%&,.&#&"/ %"b-rr 9/ "%-4"%#"%(33 %+#!% ,%,%+##"% +'% &%&-% +'%3%-%,,& "%-4#"%++%-# ,%#2%%+#"%%8&+'#"%!%+'% :/ "%-4#"%&'-++%-# +, ;/ "%-4#"%!%%,,%#"%+'%& B &E "%!%+,
PAGE 76

;/ r2 #-"%% r2 #-"%& +#!!)%A$(##"%#2&% %/ B r%#%%,,%%!()&# B "%-%+',#&#"%-&#&&./D%&4r .%E B b&4%%#"%%+#'%#%-##!!)%2 #-"7)&#%+#"% !"# '% #"%&#&, +"%3 # +#"%& %"% ,2 #-" ,)&#%"%%3# '%"%&#&"/ B +!#"%' ,&"%3+#"%&#&.+ ##"%+&+' %.&#%,& #(+# )#"%&*%%&-"%#"% %# +#,$%3% -+# +( ,"($% ;=+'V%,-# *%)"%%#+# &+'&-#(&)&)(%,&+$%' ,&%'$+ +!% #"%"%2+%8# #"%"% &#%%)%-# "%!!)%,2 #-"$%)2"%' ,& .&4%,"%%,+'# #"%#"%)% %## +!/ B ), +!#"%' ,&"%-4#"&#"%(.+"%&%,,(%, &+'#"%& %%,,%, 3 #"%"%,%*&)(%,&%' 33%%+# #"%%-($%4&!%"%(.& %!&, )#%%.%3% #"%& +(&)#"%"%)

PAGE 77

<: B "%-4& %!&,)2#f%3&,8 #R&#%"%%3# '% #"%&#& ...%,%"%"%($% 2&#%+') $($$%, B "%-4&.%!&,)#"%&.%!&,8 #)&#%'(+'%+%&##" % -*%"% !"#&+', '%"%)(." ,&.%&++%, #"%%3%%+-%8 #/ B b*%"%%+#!!)%2 #-""%, # ,&$%)%'&, Q" !"R/ tr ,%,#-%%)'$%)%'%&-"# .%&&. )%,+&)%"% -&#&,*%%+, # *%7,& &# +, %%&&(,%$&'%,(#,/ B b&4%%#"%##%+( #-" ,,%##"%,2 #-" ,)&#%"% !"# '%"%&#&"/ B ,%"%%'5(,#%#"% )#&!%"%+,&#%'(,# &$*%"%##%+( #-"%-#(&)##&!%-&+$%%%"% ,#2&%' ,&+' ,&$%)%'&,r#&+'$KR"%#&!%,"&*% $%8&-#)%#&#&+' # )) 3# +!#%,# +!/ B &.%!&,&2$%&4% ,##"%+%%')%"('$%)(,"% ,&+$%&-,"% #"'&2 +!,%&.%!&,+'#"%+%5%-# +! #3" ,,'+%%*%&) .%,7& "&#&,+#"%+%%')%,"('$% ,&-%'/ B 1 #"'&2&.% !&,+',#&#&#&(+%)%-# +! f(+'%#"%&#&%+%&4r .%/

PAGE 78

<; B #. +(#%,$%! +5%-# +!#"%&.%+#"%%(. + ," +5%-# +!&# ,)+5%-# .%#+,%,"&#&.%%&4,$&-4#(!" #"% %#(.&#%"%+%%')%2" )%#, +"%%#(." ,( -&(,%#(#)(!+-%"%%%')% #"&2+7-"%-4#&4%%# ,(!!%'/ B +-%))#"%&4,%"+7,#"%&#&+'&+&)%"%%,()#, %)%# +!f%,(#,(+'%"%+&)>%%+( +#"%#2&%/'%#,%% -+-%+#&# %,(#,7 #.&+%-%,,&)'"%&) &# )%,/ -r,t B 3%+#* +!#"%%+##!!)%2 #-"#. '')% # B 33"%& %#"%"&#& B 3.% B )%& %!&,%!()&# )*%/

PAGE 79

nrfr t&,-"(4/6/ &.'%,+ +!8-"&+!%%.&+%(%) -%)),+#6+&)+%%,%&'5K B =9:/ t%##,&+ %)'%) +!&+&) ,(%)%))+! +%,&+,#&# -&# +7&,#% ,"%, ,+ 3) '&& +%,* ))% t).%/6/b/6/7b(!%2&(%)%))#%.,)%+(.%,,%247??:/ t ,7b(%)%)),K"% )%-#"%. ,#b-&2 B ))%247?
PAGE 80

<< tnfn0 %& -"&%)r() *&+&,(!(,#(%%+,%2 # %,"% ,# -"&%)+'b&!&%#r() *&+&+''%#"%%&+&+ &# &r() *&%&'&##%+'%'-"$ ,) !-(+ "%& ,# "%,+'+##(..%,#"% B (',&))%&.4 +! # .%+#&))+' -&'&+''%&3" )%+/ %&'&##%+'%'&(..%%,%&-&.%"%&# +&)%+-% (+'&# &#)%.,+ *%, #2" -"%+-&!%' .&'(&#%-) &+'-+# +(%" ,'(-&# 3#%&'(&# +!."%%2+,# #(#%%-"+) &%&'%)%'&#"%+ *%, #3) '&%&'(&#% & 2 #"&&,#%%+-%+.%-"&+ -&)+! +%% +! 7,&) > +! #"%.&)%+-%&+' 3)( ''+&. -,/ %&&+,&*%)%2.+#",$%3%%#+ +!#%2 #


Permanent Link: http://ufdc.ufl.edu/UFE0009425/00001

Material Information

Title: Effect of Ambient Air Contaminants of the Performance of a Proton Exchange Membrane Fuel Cell
Physical Description: Mixed Material
Copyright Date: 2008

Record Information

Source Institution: University of Florida
Holding Location: University of Florida
Rights Management: All rights reserved by the source institution and holding location.
System ID: UFE0009425:00001

Permanent Link: http://ufdc.ufl.edu/UFE0009425/00001

Material Information

Title: Effect of Ambient Air Contaminants of the Performance of a Proton Exchange Membrane Fuel Cell
Physical Description: Mixed Material
Copyright Date: 2008

Record Information

Source Institution: University of Florida
Holding Location: University of Florida
Rights Management: All rights reserved by the source institution and holding location.
System ID: UFE0009425:00001


This item has the following downloads:


Full Text












EFFECT OF AMBIENT AIR CONTAMINANTS ON THE PERFORMANCE OF A
PROTON EXCHANGE MEMBRANE FUEL CELL















By

GERARD MICHAEL O'SULLIVAN


A THESIS PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

UNIVERSITY OF FLORIDA


2005

































Copyright 2005

by

Gerard O'Sullivan

































This thesis is dedicated to my parents.















ACKNOWLEDGMENTS

I would first like to thank Dr. Herbert Ingley for giving me the opportunity to come

to this great university and work on a project that I held interest in. I would also like to

thank Dr. Jim Fletcher for coming all the way down from University of North Florida to

assist me whenever I needed help. Finally I want to thank Dr. William Lear and Dr. Yogi

Goswami for taking time to sit on my committee.

I am only here today because of the great sacrifices my parents made to raise their

children in the United States. They came to New York from Ireland months before I was

born and have always held me, my brother, and my sister first in their lives. I am forever

grateful for what they did and continue to do so I could have opportunities like this.

Florida was a great learning experience for me in general, it was my first time away

from my home and I would like to send a special thank you to all my friends in NY and

the friends I made here in Gainesville in the past year. There were some moments here in

Florida that I would not have made it without a little help from my friends. The biggest

lesson I have learned in my time here is all one needs in life to be happy is the love of

family and friends. I love them all.

And finally I must thank God. I could never begin to count the number of blessings

I have in my life and it is all God's doing.
















TABLE OF CONTENTS

page

A C K N O W L E D G M E N T S ................................................................................................. iv

LIST OF TABLES .............................................. ........ viii

LIST OF FIGURES ......... ......................... ...... ........ ............ ix

N O M E N C L A T U R E .......................................................................................................... x i

A B S T R A C T .......................................... ..................................................x iii

CHAPTER

1 IN TRODU CTION ................................................. ...... .................

2 BACKGROUND ................................... .. .......... ................. .3

Fuel C ell B asics ............................................................... ... .... ......... 4
E lectrochem ical R action .......................................................... ...............5..
C athode characteristics............................................ ........................... 6
Platinum catalyst ..................... .. ....................... .. ...... .................
Polarization Curves .................................................................... .7
H hydrogen and R reform ing Processes ........................................ .....................9
Fuel C ell C ontam nation .................................................. ............................... 10
Types of Contam inants.................. ......... .............. ...... ............... 11
Previous Research on Contamination of the Anode................. ..................12
M ethods of M itigating the Contamination .......................................................13
Challenges for Fuel Cell V vehicles ................................................... .. ... .......... 15
A ir Contam nation ........................................................ .............. .. 15
Carbon M monoxide ............................................. .. ...... ................. 16
N nitrogen Dioxide .................. ............................ .... ... ................. 16

3 EXPERIM EN TAL SY STEM ......................................................... ................ 18

Ballard 1.2 kW N exa Pow er M odule................................................ ....... ........ 18
Nexa Subsystems..................................... ... ....... .. ......20
H ydrogen system ........................................... ........ .... .......... .. 20
Oxidant air system ......................................... .. ........................20
C ooling sy stem ................................................................ ............... 2 1


v









S safety sy stem .............................................................. .. 2 1
Air/Contaminant Flow Measurement and Mixing...................................................21
M easu rem en t .................................................... ................ 2 3
P itot T ube .................................................................. 23
Differential Pressure Transducer..... .......... ........................................24
M ass Flow Controller.............. ............................ 25
G a se s .........................................................................2 6
L o ad B an k ..............................................................2 6
S a fety ................................................................2 8
G as Chrom autograph ........ ............................... ................. ........ ..... 29

4 M E T H O D O L O G Y ...................... .. .. ......... .. .. ........................ .......................... 3 1

Baseline Performance Testing ................................. ..................................... 31
Polarization Curve Generation ......... ....................... .................... 31
C on stant L oad T testing .............................................................. .....................32
C ontam nation T esting............ ... ...................................................... .. .... ........ 32
Polarization Curve G generation ........................................ ........................ 34
C constant L oad T testing ............................................................... ............... 35
Contam nation Recovery ...................................... ........... .... ........... .... 35
Temperature Effects.............. .. ................ ...................36

5 RESULTS AND DISCU SSION ...................................................... ................ 37

B aseline P olarization D ata............................................................... .....................37
B aseline C constant L oad D ata.............................. .......................... ............... 38
Contam nation R esults.................. ................. .............. ...... .............. .. 40
Carbon M monoxide ................. ................ ..... .............. ............... .. 40
C o n stan t lo ad ............................................................... .............. 4 0
Polarization curves .................................... .................... ..............46
Rapid injections of carbon monoxide ................ .................................47
Nitrogen Dioxide .................. ....... .......... ......... 50
Constant load ......... ... ....... .. ... .. ................ ................... 51
Rapid injections of nitrogen dioxide ..................... ................... ........ 53
Temperature Effects.............. .. ................ ...................54

6 CONCLUSION AND RECOMENDATIONS........................... .....................56

APPENDIX

A LABVIEW COMPUTER PROGRAM ........................................... ............... 59

B STAR T-UP PR O CED URE S ............................................... ............ ............... 61

N exa Startup Procedure ........................................................................... 61
N exa Shutdow n Procedure ............... ..... ....................................................... 61
SRI Instruments 8600 Series Gas Chromatograph ............................................... 62









Startup P procedure ............................. .................... .. .. ....... .... ............62
Test Procedure ................................... ........................... .... ....... 63
Shutdow n Procedures .................................................. .............................. 64

L IST O F R E FE R EN C E S ........................................................................... .......... .......... 65

B IO G R A PH IC A L SK E TCH ...................................................................... ..................66
















LIST OF TABLES


Table page

2.1 Typical levels of carbon monoxide according to various air quality reports..........16

2.2 Typicallevels of nitrogen dioxide according to various air quality reports. ............17

4.1 Concentration of contaminant mixture gases in cylinders. .....................................33

4.2 Contaminant flow rates for three air flow rates (30, 60, 90), for pure
contaminant gases (top) and for contaminant gas mixtures (bottom). ...................34

4.3 Selected concentration for testing based on emissions reports collected in
literate re rev iew ................................................................................... 3 5

5.1 Stack voltage and stack power allowable ranges under normal operation
conditions. ...........................................................................40

5.2 Percentage changes in voltage and power during rapid CO injections at a
constant load of 20 am ps ......................... ...................... ................. .. ......... ...... 49

5.3 Percentage changes in voltage and power during rapid CO injections at constant
load of 30 am ps. .................................................... ................. 50
















LIST OF FIGURES


Figure page

2.1 A typical polarization graph illustrating regions of control by various types of
overpotential (B lom en et. al, 1993) ................................... ............................. ......... 8

2.2 Cell voltage after changing the fuel gas at 400 mA cm-2; anode catalyst;
Pto.5Ruo.5; pure H2 and H2/100ppm CO; T = 80C (Divisek et. al, 1998). ..............13

3.1 Ballard 1.2kW Nexa unit and various components............... ..................19

3.2 Air/Contaminant mixing manifold, Ballard Nexa fuel cell, load bank,
gas cylinders, NexaMon OEM software. ..................................... ............... 22

3.3 Inline Delta tube with swagelok fittings connected to static and dynamic
pressure reading devices ............................................................................ ... .... 23

3.4 Linear output at 5VDC supply of the SDP-1000-L. The fine lines indicate
the maximum tolerances including a temperature variation from 0-50C. ..............24

3.5 Sensirion SDP- 1000 differential pressure transducer. ...........................................25

3.6 Fathom mass controller connected to Swagelok tubing .........................................26

3.7 Back view of load bank with several resistors in parallel, constructed at UNF.
Potentiometer was placed at center (not pictured). ...............................................27

3.8 Front view of load bank with several switches to activate resistors and
potentiom eter for slight adjustm ents ......................................................................28

3-9 Various safety measures; fire extinguisher, smoke/carbon monoxide detector
and gas cylinder supports. ............................................................. .....................29

3.10 SRI Instruments 8600 gas chromatograph. ................................... ............... 30

5.2 Confidence interval of polarization curves based on six tests. .............................38

5.3 Stack voltage and stack power at constant load of 20 amps. ..................................39

5.4 Stack voltage and stack power at constant load of 40 amps. ..................................39

5.5 Carbon monoxide test (10 ppm) at constant load of 40 amps..............................41









5.6 Carbon monoxide test (30 ppm) at constant load of 20 amps..............................42

5.7 Carbon monoxide test (100 ppm) at constant load of 20 amps.............................44

5.8 Carbon monoxide test (100 ppm) at constant load of 30 amps.............................45

5.9 Polarization curves for 60 and 100 ppm carbon monoxide.............................. 46

5.10 Rapid injections of CO (10, 30, 60, 80 ppm) at constant load of 20 amps. ............48

5.11 Rapid injection of CO (100,120,140 160 ppm) at constant load of 20 amps...........48

5.12 Rapid injection of CO (100,120,140 160 ppm) at constant load of 30 amps...........50

5-13 Nitrogen dioxide test (100 ppb) at constant load of 20 amps..............................51

5.14 Nitrogen dioxide (400 ppb) at a constant load of 20 amps. ..............................52

5.15 Nitrogen dioxide (Ippm) at constant load of 30 amps ....................................... 53

5.16 Rapid injections of nitrogen dioxide (800, 1000, 1200 and 1400 ppm) at
constant load of 20 am ps. .......................................... .............. ............. ..54

5.17 Temperature effects on fuel cell performance. Polarization curves and power
curves shown for temperatures (50F, 60F, 70F and 80F). ...............................55

6.1 A sample experimental system containing a singb PEM fuel cell and various
components to control all operating parameters (Moore et. al) ............................58
















NOMENCLATURE


AP Differential Pressure

Au Gold

Cf Flow Coefficient

CNCI Cyanogens Chloride

CO Carbon Monoxide

CVC Cell Voltage Checker

D Pipe Diameter [mm]

DP Differential Pressure

EPA Environmental Protection Agency

FC3 Fuel Cell Contamination Control Group

FCV Fuel Cell Vehicle

FS Full-Scale

GC Gas Chromatograph

H2 Hydrogen

HCN Hydrogen Cyanide

ICE Internal Combustion Engine









LFL Lower Flammability Limit

mA milli- amps

MEA Membrane Electrode Assembly

NO2 Nitrogen Dioxide

02 Oxygen

Pd Palladium

PEM Proton Exchange Membrane

PPB Parts per Billion

PPM Parts per Million

Pt Platinum

Rh Rhodium

SLPM Standard Liters per Minute

SO2 Sulphur Dioxide

TCD Thermal Conductivity Detector

VDC Voltage (Direct Current)

Ws Weight Density of Air [kg/m3]















Abstract of Thesis Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Master of Science

EFFECT OF AMBIENT AIR CONTAMINANTS ON THE PERFORMANCE OF A
PROTON EXCHANGE MEMBRANE FUEL CELL
By

Gerard Michael O'Sullivan

May 2005

Chair: Herbert A. Ingley, III
Major Department: Mechanical and Aerospace Engineering

Proton exchange membrane fuel cells are considered the most promising candidate

for replacing the power source in vehicles because of their high power density and high

energy efficiencies at low temperatures. There are many barriers to entry for a fuel cell

vehicle but one commonly overlooked yet essential issue is air contamination. Research

in fuel cell contamination to date has dealt solely with its effect on the anode of the fuel

cell, due to contaminants that exist in reformed fuels. The first fuel cell powered vehicles

will be expected to perform alongside internal combustion engines and diesel engines

which emit harmful contaminants such as carbon monoxide, nitrogen oxides, and sulphur

dioxides. Therefore the adverse effects which these contaminants can have on the

performance of a fuel cell should be understood so that steps to mitigating the negative

effects can be taken.

The goal of this study is to determine the concentrations at which carbon monoxide

and nitrogen dioxide begin to adversely affect the performance on a Ballard Nexa fuel









cell. Several tests were designed to simulate the types of environments in which a fuel

cell powered vehicle would operate. The performance drops and recoveries were

calculated from the collected data. The effect of air temperature was studied.

The results showed significant losses in performance with CO levels above

100ppm. Transient response tests demonstrated the fuel cell's ability to recover

completely despite brief injections of very high concentrations of carbon monoxide. The

carbon monoxide mechanism for poisoning seems to be a function of both cell potential

and CO concentration. No adverse effects were discovered for NO2 concentrations up to

1.4 ppm for the time interval tested.














CHAPTER 1
INTRODUCTION

The use of proton exchange membrane (PEM) fuel cells as replacements for

conventional sources of power has received growing attention. Recent developments in

fuel cell technology have made PEM fuel cells a strong contender to replace the internal

combustion engine (ICE) in vehicles. These fuel cell vehicles (FCV) can reduce harmful

emissions and decrease our dependency on foreign oil. The transition to fuel cell

powered vehicles will take a very long time due to fueling infrastructure and consumer

adaptation of a new technology. These first FCVs will be expected to operate alongside

traditional ICE engines. The harmful emissions that these vehicles deposit into the air

may severely affect the performance of the fuel cell vehicles.

The platinum catalyst on the electrodes of a PEM fuel cell responsible for breaking

down the hydrogen and oxygen is very susceptible to contamination. Even small

concentrations of a particular contaminant can have an adverse effect on the overall

performance of a PEM fuel cell. Much of the research to date has dealt with this adverse

effect on the anode (fuel side of the fuel cell) because of the contaminants that exist in

reformed fuels. Very little information is available about the contaminants effect on the

cathode (air side of the fuel cell). Efforts must be turned to address the type of

environments these PEM fuel cell vehicles may operate in, since it is likely that fuel cell

vehicles will draw the oxidant it needs to operate from the surrounding ambient air.

The focus of this research is to study the effects of selected contaminants on the

cathode and determines the concentrations at which these detrimental effects begin to






2


take place. Various experiments were designed to simulate the conditions a FCV may

encounter. Transient response tests were used to assess the fuel cell's ability to recover

after severe contamination. The ability of a fuel cell to recover to its original

performance is important for understanding the mechanism of the contamination. The

experimental data was then analyzed to determine a particular contaminant's effect on the

fuel cell's performance and to observe and recovery after contamination had ceased.














CHAPTER 2
BACKGROUND

Proton exchange membrane fuel cells have become the most promising alternative

power generating device for the vehicles of the future. The burning of fuel in an internal

combustion engine is an inefficient process for extracting energy from a fuel. The

conversion of fuel into electricity in a fuel cell is a one step electrochemical process.

Since electricity is generated directly and does not involve any intermediate mechanical

or thermal process, fuel cells are more efficient than any other technologies.

With fuel cell technology still in its infancy there is much research being done on

various parameters that affect fuel cell performance. One particular concern is catalyst

contamination. The catalysts in a proton exchange membrane (PEM) fuel cell perform

the most important function; they break down oxygen and hydrogen molecules. These

catalysts are very sensitive to contamination and degrade in the presence of contaminants.

The contaminants adsorb onto the surface of the catalysts and prevent the oxidizer and

fuel from breaking down and hence inhibit the fuel cell's ability to function. Some of the

contaminants that affect PEM fuel cells are carbon monoxide, nitrogen oxides, sulfur

oxides, benzene, propane and various other chemicals that can be found in the ambient

air.

Research conducted on fuel cell contaminants has focused primarily on

contaminants entering on the anode side of the fuel cell. This is due to the fact that many

fuel cells use a reformer to convert fuels such as natural gas, methanol and other organic

fuels into hydrogen. This reforming process produces high concentrations of carbon









monoxide and other chemicals that can have a detrimental effect on the fuel cell.

Therefore much of the research has focused primarily on dealing with this adverse effect.

There has been very little information published about the effects of contaminants

on the cathode. Air is critical to the performance of the fuel cell in two ways. First, the

air provides the oxygen necessary to complete the electrochemical process of converting

the hydrogen into electricity and water. Second, the air carries water, a by-product of the

fuel cell reaction, out of the fuel cell. Otherwise the water would flood the fuel cell and

prevent the electrochemical process.

Fuel Cell Basics

Fuel cells are electrochemical energy conversion devices. A single fuel cell

consists of two electrodes. The fuel electrode or anode oxidizes the hydrogen fuel and

the air electrode or cathode reduces the oxygen. Fuel cells are characterized by the type

of electrolyte used between these two electrodes. Some examples of the types of fuel

cells are Polymer Electrolyte Membrane (PEM), Phosphoric Acid, Direct Methanol,

Alkaline, Molten Carbonate, and Solid Oxide.

PEM fuel cells use a solid polymer electrolyte placed between two porous

electrodes. The catalyst is deposited onto these electrodes and is typically platinum.

PEM fuel cells are the most promising power source for fuel cell powered vehicles. They

offer a very high power density and high energy conversion efficiencies while operating

at relatively low temperatures. PEM cells are also lightweight and compact making them

suitable for automotive applications.









Electrochemical Reaction

A fuel cell is an electrochemical device which converts the free-energy of an

electrochemical reaction into electrical energy. The simplest form of the overall fuel

cell's reaction is shown below:

H2 + 1/2 02 = H20 2-1

This reaction is a result of two separate reactions taking place on the electrodes.

Platinum is used as a catalyst on the electrode to increase the rate of the reaction kinetics.

However platinum is expensive, a limited resource and very susceptible to poisoning

from contaminants. The electrochemical reactions that take place on platinum

electrocatalysts are shown below:

Anode H2 2H+ + 2e- 2-2

Cathode 02 +4H+ + 4e- 2H20 2-3

The oxygen reduction reaction, shown in formula 2-3, which takes place on the

cathode, is at least three orders of magnitude slower than the anode reaction. Since there

is already a challenge in increasing the electrocatalytic activity of the cathode reaction it

is very important that the air coming into the fuel cell is relatively clean and free from

harmful contaminants which could further reduce the rate of reaction.

The hydrogen breaks down into protons and electrons. The hydrogen ions mitigate

through the solid polymer to the cathode where they are re-combined with the electrons

and oxygen to form water. The electrons pass through an external circuit and produce

electricity.









Cathode characteristics

It is often understood that the ideal of maximum efficiency of an electrochemical

energy converter depends upon the electrochemical thermodynamics whereas the real

efficiency depends on the electrode kinetics (Bockris, 1969).

Electrode kinetics is the fundamental theory that describes the direct

electrochemical process of converting chemical energy into electricity and is a relatively

new area of research. An electrode impregnated with a platinum catalyst is called an

electrocatalyst. Noble metals such as Pt, Pd and Rh and their alloys have been found to

be the catalysts of choice for oxygen reduction. However, even the best of these

catalysts, Pt, is at least 106 times less active for oxygen reduction than for H2 reduction.

This leads to high overpotentials and is the major catalytic limitation to fuel cell

efficiency (Hoogers, 2003).

The voltage drop caused by the oxygen reduction reaction is the major source of the

irreversible voltage drop in the fuel cell. This voltage drop is influenced by several

physical and operating parameters including the cell current density, the active catalyst

surface area, conductivities and thickness of the catalyst layer and the concentrations and

diffusion coefficient of oxygen (Jeng et al. 2004).

There are three sources of overpotential that combine to reduce the overall voltage

of the fuel cell and reduce its performance.

* The activation overpotential is the loss in voltage due to the lack of
electrocatalystis.

* The ohmic overpotential is due to thermodynamic losses due to electrolyte
resistance to ion transport.









* The concentration overpotential is caused by gas transport limitation through the
gas diffusion layer of the cathode to the active catalyst sites.
These overpotentials are predominately due to the slowness of the oxygen

reduction reaction.

The reduction of oxygen is governed by a number of possible reactions but the four

electron reduction is the most attractive reaction to catalyze due to the high potential

gives the highest possible cell voltage for the fuel cell. Below is the four electron oxygen

reduction reaction.

02 + 4H+ + 4e 2H20 (Eo = 1.229 V) 2-4

Platinum catalyst

Depositing platinum onto the surface of the electrode increases the rate of the

electrochemical reaction. Although platinum has been proven as the most effective

catalyst for oxygen reduction it is very sensitive to contamination. Small concentrations

(< 10ppm) of carbon monoxide cause degradation in the fuel cell's performance. This

adverse effect is probably due to the adsorption of the CO molecules onto to active

catalyst sites to the exclusion of oxygen molecules. Platinum is also an expensive and

scarce metal and therefore there is much effort in finding a way to reduce the amount of

platinum deposited on the electrode, some other metals that may be alloyed with the

platinum are Pd, Rh, Ni, and Au.

Polarization Curves

The performance of a fuel cell is often graphically represented using a polarization

curve. It is a curve relating the current density and the cell voltage when using a single

fuel cell. When a fuel cell stack is used the polarization curve relates the stack current to

the stack voltage. The maximum thermodynamic reversible cell voltage is 1.23 V. The

curve again shows the vital role that electrode kinetics plays in the performance of the











fuel cell. Low electrocatalytic activity has the greatest effect on the drop in efficiency.


As stated before the oxygen reduction reaction in the cathode electrode is much slower


than the anode reaction. At low current densities the entire loss in the fuel cell potential


from the reversible value is due to activation overpotential at the oxygen electrode.


(Blomen & Mugerwa). A typical polarization curve is shown in Figure 2-1.



1.5
THERMMoYNuAMI 1.0
REVERSIBL CELL NTHNSIC
POTENTIAL (El MAXIMUM
Th THE IDEAL CELL POT TtAL-CURIENT RELATlON EfI
CELL POTIETAL LOSSES DUE TO
\ ACTIVATtION OVRWPOTENTIL&
S IACK OF nECTROCATALYtS) UNEAR DROP IN CEL
POTENTIAL MINLVY DUE TO
J OHMIC LOSStS IN SOLUTION
S-ETeEN E RCTRODES
1-

I-

Oj

U tOSSES CAUSE OF [
eCBIAsU Of CELL
OTNTIMAL TO ZERO



0 o
0 0.5 1
CELL CURRENT, amperes



Figure 2-1. A typical polarization graph illustrating regions of control by various types of
overpotential (Blomen et. al, 1993).

This curve can be generated for any fuel cell and will always have the same general


characteristics due to the overpotential losses. However, other parameters that can affect


the performance will change the slope of the linear portion of the curve. There are many


parameters that influence the performance of a PEM fuel cell and they include operating


temperature, pressure and humidification of the hydrogen and air streams.









Theslope of the polarization curve will decrease as the operation temperature

increases. This is due to the increase in the exchange current density and proton

conductivity. However humidification of the membrane becomes a problem at operating

temperatures over the boiling point of water.

The performance of the fuel cell increases with the operating pressure of the fuel

cell. This can be seen by a positive shift of the polarization curve with increasing

pressure. As the operating pressure increase, the partial pressures of the reactant gases

increases leading to better performance.

When the gas stream humidification temperature is lower than the operating

temperature, the fuel cell's performance will decrease and can be shown with a negative

shift of the polarization curves. A parametric study on PEM fuel cell performance and

the corresponding polarization curves can be found in Wang L., et.al.

All voltage losses can be divided into two groups. The first group involves local

losses due to the transport and kinetic processes in and across the membrane electrode

assembly (MEA). The second group involves global losses caused by the along-the-

channel nonuniformity of feed gases and water concentration (Kulikovsky, 2002).

Hydrogen and Reforming Processes

Hydrogen fuel is the essential part of a fuel cell system but also one of the more

difficult problems to overcome when speaking about the possibility of fuel cell powered

vehicles. Hydrogen is the most abundant element on the planet. However the process of

extracting this pure hydrogen from hydrocarbons or water is a high energy process.

Some examples of how hydrogen is extracted from hydrocarbons, called reforming, are

steam reforming, partial oxidation, and coal gasification. Electrolysis is a process of

separating water into pure hydrogen and oxygen gases which would be ideal because of









the lack of any harmful contaminants. However, electrolysis is a very energy intensive

process.

Although pure hydrogen fuel is the ultimate fuel, it is likely that the first

commercialized fuel cell powered vehicles (FCV) will have to use a hydrocarbon fuel

comparable to fuels used in the internal combustion engine (ICE). This is because there

will need to be a transition period from today's fueling infrastructure to a widespread

infrastructure for the production and supply of pure hydrogen fuel. The first fuel cell

vehicles will be expected to perform alongside ICE engines and FCVs emitting

contaminants from reforming processes. Thus the problem of air contamination is as an

important problem to address as the hydrogen fuel problem.

Fuel Cell Contamination

As large scale commercialization of PEM fuel cells draws closer, efforts must turn

to issues relating to the environment in which these fuel cells will operate. Fuel cell

development to date has taken place in a controlled environment of a laboratory, free

from real-world contaminants. Unless the oxidant is supplied to the cells from a

contained source (e.g., bottled air), impurities present in the immediate atmosphere may

adversely affect their performance.

There has been much research done to date that deals with the negative effect

contaminants have on fuel cell performance, however a large majority of that research

was addressed to contaminant effects on the anode of the fuel cell. Because most of the

hydrogen fuel used to power fuel cells is reformed from a hydrocarbon there are

impurities, particularly CO, that need to be removed from the reformate before it enters

the fuel cell.









PEM fuel cells currently use noble metal catalysts supported on high surface area

carbons as active cathode catalyst layers for oxygen reduction (Larminie & Dicks 2002).

As the oxygen reduction process occurs via a surface decomposition process, a large

catalyst surface area increases the number of reaction sites, thereby increasing catalyst

utilization. Any impurities that can be drawn in from the environment that may block

these active catalyst sites will decrease the rate of oxidation and thus decrease overall

performance.

It is therefore critical to understand which contaminants affect the fuel cell's

performance and at what concentrations these effects become problematic. It is

important to also observe if the damage is reversible or permanent. Concentration and

exposure time are two important factors in the possible degradation of the catalysts.

Once the contaminants effects and the methods of contamination are understood then the

necessary steps can be taken to mitigate the adverse effect.

Types of Contaminants

There are many contaminants that exist in the ambient air that can have a

detrimental effect on the catalyst of the fuel cell, however the concentrations at which

they are hazardous are found only in more urban environments. Some of these are CO,

NO2, SO2, Benzene, and 1, 3 Butadiene. These contaminants are the type of pollutants

that are emitted in automobile exhaust. Carbon monoxide is a gaseous byproduct of

incomplete combustion in internal combustion engines. Nitrogen oxides are released into

the environment as a result of fossil fuel combustion. Nitric oxide is common in auto

exhaust but rapidly oxidizes to form nitrogen dioxide. Sulfur dioxide is generally emitted

from diesel burning engines. Volatile organic compounds such as benzene and 1, 3

butadiene are found in both gasoline and diesel engine exhaust.









When considering the use of fuel cells in a battlefield environment there are several

chemical warfare agents that could affect performance such as, sarin, sulphur mustard,

cyanogens chloride (CNC) and hydrogen cyanide (HCN). These particular warfare

agents have been known to seriously compromise the performance of the fuel cell.

Previous Research on Contamination of the Anode

Much of the research involving contaminants and PEM fuel cells has been focused

on the carbon monoxide problem when using reformed hydrocarbon fuels. Pure

hydrogen as a fuel source has many limitations for use in automobiles. This fuel must be

stored either in compressed gas form, cryogenically stored in liquid form or adsorbed

onto a metal hydride. Each of theses storage mechanisms have major disadvantages,

therefore the literature suggests hydrogen will be supplied by reforming a hydrocarbon

fuel such as methanol. The reformation of methanol results in a gas mixture of about 74

percent hydrogen, 25 percent carbon dioxide and 1-2 percent CO (Divisek et al., 1998).

Carbon monoxide levels can be reduced to as low as 5 ppm using separate gas treatment

processes.

Most PEM fuel cells use a platinum catalyst because of its effectiveness in

hydrogen oxidation at low operating temperatures. But even a very small concentration

of CO (<10 ppm) in the hydrogen fuel stream can substantially reduce the performance of

the fuel cell. CO chemisorbs on the platinum sites to the exclusion of hydrogen. This is

possible because the CO is more strongly bonded to platinum than hydrogen, as indicated

by a greater potential required for the oxidation of CO than hydrogen, and the sticking

probability of CO on platinum is 15 times stronger than that of hydrogen on platinum

(Divisek et al., 1998). So even very small concentration of CO in the fuel can result in










complete coverage of the catalyst's active sites for oxidation and therefore the

performance will drastically decrease.

A study conducted by Divisek et al. found significant drops in performance when

CO was present in the hydrogen fuel stream. They found that fuel cell performance

depends strongly on CO concentration and the catalyst used. They also found that the

recovery of a fuel cell to initial cell voltage is shorter by a factor of two as compared to

poisoning time. The graph showing recovery is shown below.




800
H/CO -0 H,
700 A 6 6



W<40t0-.H` O ........ = L-


1D 00 ---------- ------------- ------ -- -- -- -
300

200W
100
0 :1--+-II
0 20 45 70 95 120 145 170 195 220
time / min

Figure 2-2. Cell voltage after changing the fuel gas at 400 mA cm-2; anode catalyst;
Pto.5Ruo.5; pure H2 and H2/100ppm CO; T = 80C (Divisek et. al, 1998).

Methods of Mitigating the Contamination

There are five methods available to mitigate the effect of contaminants poisoning

on PEM fuel cell catalysts. They are the use of a platinum alloy catalyst, the injection of

oxygen in the fuel stream, the injection of hydrogen peroxide (H202), increasing the fuel

cell operating temperature, and effective water management.









Platinum is used because it offers high oxidation activity at the low operating

temperatures associated with PEM fuel. However, they are susceptible to poisoning in

the presence of very low concentrations of an impurity. Platinum alloys such as Pt-Ru,

Pt-Rh, and Pt-Au can increase the tolerance to contaminants whilst keeping a high

exchange current density. This is because of the lower oxidation potential of the alloy

metal compared to Pt.

The injection of oxygen into the fuel stream is done in two ways. The first method

directly injects between 2-5 percent oxygen into the anode, which can increase the

tolerance of CO up to 500ppm. The second is the injection of H202 in the anode

humidifier. The H202 decomposes to hydrogen and oxygen and the oxygen acts to

oxidize the CO and improve the tolerance of the catalyst (Baschuk & Li, 2001).

However this method of mitigation is not useful for the cathode.

A higher operating temperature has been shown to increase tolerance to

contaminants. However higher temperatures in PEM fuel cells is not feasible because the

membrane must be humidified and a higher temperature would accelerate the evaporation

of the liquid water and hence dehydrate the membrane.

A partnership between Donaldson Co and the Los Alamos National Laboratory

called the Fuel Cell Contamination Control (FC3) has been established to study the effect

of ambient contaminants on the performance, life and durability of PEM fuel cells.

Donaldson hopes to use its filter expertise to develop air filtration systems that can

prolong a fuel cell engine's life. The research being done by this group has not been

disclosed and a full report is expected in the spring of 2005. A specialized filter is

expected to be the solution to air contamination problem.









Challenges for Fuel Cell Vehicles

The single most important challenge for the acceptance of fuel cell vehicles (FCV)

as a replacement of internal combustion engines (ICE) is the need for the FCV

technology to match or exceed the existing ICE technology. This is not a simple

challenge because of the many limitations a new technology like FCV presents. Some of

those limitations are fuel infrastructure, on-board storage of fuel, on-board fuel

reforming, start-up time, drivability (vehicles transient response to change in demand),

catalyst contamination and most important, cost.

The simplest and best fuel cell systems for powering vehicles are those in which

the fuel is converted directly in the fuel cell without the need for any pre-processing.

There are four contenders, namely, the direct hydrogen PEMFC, the direct hydrogen

alkaline fuel cell, the direct methanol PEMFC, and the direct methanol or hydrogen fuel

cell with a liquid acid electrolyte (McNicol et al., 2001). However it is likely that the

first commercialized FCVs will use a liquid fuel that is compatible with the existing

fueling infrastructure that exists today. Consequently these first FCV's will also be

producing contaminants into the air and pose the same problem with air contamination as

the ICE engines.

Air Contamination

Fuel cell powered vehicles will need to draw in ambient air from their surroundings

to supply the oxidant needed. Storing the oxidant onboard the vehicle is not an expected

solution because of the additional weight an oxygen storage unit would present. The

various contaminants that exist in ambient air have been shown to have an adverse effect

on the fuel cell, particularly in polluted areas such as urban roadways, high traffic volume

areas, industrial areas and even airport environments.









Carbon Monoxide

In the United States the exhaust from automobiles and trucks account for up to 60%

of the CO released into the air. In major urban areas, motor vehicles are responsible for

95% of CO emissions. CO disperses quickly in air, so moderate and high levels of the

gas are usually detected in areas with significant motor vehicle traffic or within enclosed

spaces where CO may accumulate (EPA, 1997). Several air quality reports from the

United States and the United Kingdom were reviewed. CO levels were much lower in

rural areas and non-rush hour traffic, in the range of 1-32 ppm. Levels in major urban

areas such as Los Angeles and New York City where pollutants would accumulate in the

"valleys" between buildings where rush hour traffic would emit exhaust for hours could

be as high as 67 ppm CO in extreme situations.

Table 2-1. Typicallevels of carbon monoxide according to various air quality reports.
CO levels Mean Level Maximum Level

City 12 ppm 30 ppm

Rural 5 ppm 15 ppm


Nitrogen Dioxide

In the United States auto exhaust accounts for about 30-40% of nitrogen dioxide

emissions. Nitrogen dioxide is produced by oxidation of atmospheric nitrogen and nitric

oxide. Although nitrogen dioxide emissions have been on a decline due to the

introduction of catalytic converters installed in vehicles it still presents a contamination

problem for FCVs. Below are some of the levels of NO2 found in various literature.









Table 2-2. Typical levels of nitrogen dioxide according to various air quality reports.
NO2 levels Mean Level Maximum Level

City 200 ppb 400 ppb

Rural 80 ppb 200 ppb


These two contaminants were chosen based on a review of contaminants testing on

fuel cells. It is known that any potential negative effect these two contaminants may have

on a fuel cell is reversible for CO and NO2. Several other contaminants such as benzene,

1, 3 butadiene, and sulfur dioxide were considered but were found to have irreversible

damage to the fuel cell. So in the interest of not permanently degrading the fuel cell

purchased for this study, CO and NO2 were chosen as the two contaminants used to study

air contamination effects.














CHAPTER 3
EXPERIMENTAL SYSTEM

A 1.2 kW proton exchange membrane fuel cell manufactured by Ballard Power

Systems was purchased for this experiment. The air inlet of the fuel cell was modified so

contaminant gases could be inserted into the air stream at desired concentrations using

flow measuring devices and mass flow controllers. A LabView program was written to

control the flow rate of contaminant gases based on the required air flow rate of the fuel

cell. Finally the contaminated air mixtures were analyzed using a gas chromatograph to

confirm that the proper mixing of air and contaminants was being achieved.

Ballard 1.2 kW Nexa Power Module

Ballard Power Systems were partly responsible for the renewed interest in fuel cells

for road transportation during the 1990s and began development of PEM fuel cells. The

Nexa fuel cell is one of the first commercially available fuel cells for practical and

educational purposes. The Nexa unit is a small, low maintenance, and fully automated

fuel cell system designed to be integrated into products for portable and back-up power

applications, as well as an educational tool for universities and companies.

At full load the Nexa produces 1200 watts of unregulated DC power at a nominal

voltage of 26 volts, at idle the output voltage is 46 volts. The system operation is fully

automated through various control systems. A control board attached to the outside of

the Nexa receives various signals from several sensors within the fuel cell stack.

Communication into and out of the control board are through a RS-485 serial link to a

computer. The NexaMon OEM software allows the user to read and log several data







19


points such as stack temperature, stack voltage, stack current, hydrogen pressure,

hydrogen concentration, hydrogen consumption, oxygen concentration, air temperature

and purge cell voltage. A figure illustrating the Nexa unit is shown in Figure 3-1.


al Hydogen :1 P'ocecs
Ia Hyarogan Inki A.r Inlet
Priniur ial \
Vent fbrt k


Senior


A Cc'Jeng
Air .lu' el
\


Hydm pen
- 4--a"e
!~e~cuate


Figure 3-1. Ballard 1.2kW Nexa unit and various components.1



1 Courtesy of Ballard Nexa Power Module Operating Manual.









Nexa Subsystems

Hydrogen system

The Nexa unit operates on pure hydrogen from a contained source. The hydrogen

system monitors and regulates the supply of hydrogen through a pressure transducer,

pressure relief valve, solenoid valve, pressure regulator, and a hydrogen leak detector.

All these components ensure there is an adequate fuel supply while also maintaining safe

operating conditions for indoor use. Nitrogen and water migrate from the cathode to the

anode through the membrane and accumulate in the anode. This is monitored by

checking the cell voltage in a few key cells. Once the average voltage of these few cells

drops to a certain level they a purged. The purged hydrogen is discharged into the

cooling air system where it is diluted to a level far below the lower flammability limit. A

hydrogen leak detector ensures that hydrogen level is well below the critical limit. As

with any hydrogen system safety is of absolute importance.

Oxidant air system

The oxidant required for the fuel cell reaction is provided from ambient air drawn in

through an air compressor in the fuel cell stack. An intake filter removes particulates

found in air but is not able to protect the fuel cell stack from contaminant gases such as

CO and NO2. The load on the fuel cell governs the H2/02 reaction. An increased load

will increase the current and thus requires more oxidant to be introduced. As the load

increases, the compressor speed is adjusted upward accordingly.

The oxidant system also humidifies the incoming air using the water produced by

the fuel cell reaction. The by-product water produced is run through a humidity

exchanger where the incoming air receives both the water and heat from the reaction.

This is necessary to keep the membranes moist for good ion exchange.









Cooling system

The fuel cell stack is air cooled using a cooling fan that blows air over the entire stack.

As mentioned above, purged hydrogen is discharged into the cooling system where it is

diluted far below the lower flammability limit (LFL). This safety control system

automatically shuts down the fuel cell if the H2 concentration reaches 25% of the LFL.

Safety system

The Nexa has several safety systems that prevent equipment damage and allow for safe

operation indoors. Voltages, current, temperatures etc. are all monitored to ensure they

stay within a specified range. A hydrogen leak detector prevents the hydrogen

concentration from reaching the LFL. An oxygen concentration sensor ensures the

adequate amount of 02 is being supplied. A cell voltage checker (CVC) monitors the

voltage of certain cells; a drop in voltage in cells will shut down the fuel cell in order to

protect the stack. The solenoid valve prevents hydrogen from leaving the contained

source when the fuel cell is not in operation and finally the pressure relief valve ensures

no damage to the cells through over pressurizing the fuel cell stack. All these

components combine to provide monitoring, warning and alarms, and shut down

mechanisms to ensure safe operation at all times.

Air/Contaminant Flow Measurement and Mixing

A mixing manifold was constructed to be able to inject contaminants into the

incoming air stream of the fuel cell to get the desired concentration of contaminant going

into the fuel cell. A box was constructed around the air inlet and completely sealed. A

one inch PVC pipe was tapped into the front side of the box. The one inch PVC pipe

provides a place to measure the air flow rate of air being drawn into the fuel cell from the

air compressor as well as a place to inject the appropriate amount of contaminant gases








into the air stream. Using compressed cylinders of air was considered for more accurate

testing but due to the high volume of air the Nexa requires the amount of air cylinders

was simply not feasible. Several options were available for measuring the air flow

entering the fuel cell. A pitot tube/pressure transducer system was chosen as most

educational and economical way to accurately measure the air flow. The entire

experimental set-up can be found in Figure 3-3.


AT


-r/ S FE!


Figure 3-2. Air/Contaminant mixing manifold, Ballard Nexa fuel cell, load bank, gas
cylinders, NexaMon OEM software.


ir/


''''~~II
::









Measurement

The following section describes all the components selected for the measurement of

the air flow and delivery of the contaminant gases and why they were chosen as the best

option for the given application.

Pitot Tube

A model 300 series inline Delta Tube was purchased from Mid-West instruments.

It utilizes two averaging flow elements of equal area to sense stagnation and the static

differential pressure providing minimum permanent pressure loss. The flow elements are

placed at the center of a threaded 8" section of pipe and can be attached to the one inch

PVC pipe on either end. The one inch PVC pipe was chosen to give us a high enough

flow velocity through the pitot tube to get a reliable reading. At the maximum air flow

rate demanded by the fuel cell (90 SLPM) the pitot tube will measure a differential

pressure (dp) of 0.1 in of H20. Therefore the selection of a suitable pressure transducer

to read this extreme low end dp value was critical. A picture of the averaging pitot tube

and swagelok fittings is shown in figure 3-3.

















Figure 3-3. Inline Delta tube with swagelok fittings connected to static and dynamic
pressure reading devices.









Differential Pressure Transducer

A Sensirion SDP 1000 was donated by Sensirion to the University of Florida; it is a

low range differential pressure transducer with a measurement range from 0-2 in of H20.

This pressure transducer was best suited for this application because of its high resolution

at the low end of its measurement range. At less than 30% full scale (FS) the resolution

has a range of 0.0002-0.0008 in of H20. The transducer requires a 5V power supply and

has a linear 0.25-4V output, as shown in figure 3-2.


4.00
SDP1I000-L / SDP2000 -L


3.00



2.00
3
ca-






0 20 40 60 80 100

differential pressure [% full scale]

Figure 3-4. Linear output at 5VDC supply of the SDP-1000-L. The fine lines indicate
the maximum tolerances including a temperature variation from 0-50C.2


2 Courtesy of Sensirion SDP-1000 Datasheet.




































Figure 3-5. Sensirion SDP- 1000 differential pressure transducer.



Mass Flow Controller

In order to control the flow rate of contaminant gases from the cylinder into the air

stream, a Fathom GR series stainless steel mass flow controller was selected and

purchased. The range of the controller is 0-1.2 SLPM. The controller uses a capillary

type thermal technology to directly measure mass flow. The controller was powered by

115VDC and used 0-5VDC linear input and output voltages to monitor and control the

unit from a remote source. Swagelok tubing and fitting were used to transport gases from

the gas cylinders to the controller and eventually to the pvc inlet air pipe to the fuel cell.



































Figure 3-6. Fathom mass controller connected to Swagelok tubing.

Gases

A large cylinder of ultra high purity hydrogen gas was purchased from Praxair. A

2000 psi tank of 30 ppm nitrogen dioxide mixed with air was purchased from Spectra

Gases, as well as a 2000 psi tank of 3000 ppm carbon monoxide mixture with nitrogen.

A specialty stainless steel regulator was purchased for the NO2 gas cylinders. The CO

and H2 cylinders used a standard brass regulator. The concentrations of CO and NO2 in

the cylinders were selected in order to be able to use the same mass flow controller for

each contaminant gas.

Load Bank

A load bank was constructed at the University of North Florida and used to

dissipate the 1200 watts of power. Several resistors that connected in parallel could be









switched on/off were fixed to a large board, a potentiometer was also used to be able to

fine tune the current being drawn out of the cell. This load bank allowed for incremental

steps in current which allowed polarization curves to be created. Listed below are all the

resistors that were used:

* 5 250 watt, 5 ohm resistors
* 11 100 watt, 25 ohm resistors
* 4 100 watt, 5 and 10 ohm resistors placed in parallel yielding 15 ohms
* 1 600 volt, 2.5 amps, 50 ohm potentiometer


The front and back panel of the load bank are shown in figures 3-7 and 3-8.


Figure 3-7. Back view of load bank with several resistors in parallel, constructed at UNF.
Potentiometer was placed at center (not pictured).



































Figure 3-8. Front view of load bank with several switches to activate resistors and
potentiometer for slight adjustments.

Safety

The Nexa unit uses a supply of hydrogen fuel to operate. It is necessary to be

aware of and understand the safety requirements related to hydrogen and compressed

gases. Although the Nexa unit has several safety features that prevent unsafe operation

additional measures must be taken in order to ensure safe conditions in the laboratory.

Hydrogen is an extremely flammable gas; therefore no sources of ignition
were placed near the unit. A large boiler was in place within a distance
from the cylinders for another project but was disconnected from its power
source.

All gas cylinders were secured to the laboratory wall using wall supports
and regulators were all checked for leaks using a liquid leak detector.









* Oxygen depletion is an issue because the Nexa converts oxygen into water.
The laboratory area was kept well ventilated to ensure there was adequate
oxygen.

* Electrical connections checked before every test run to prevent
electrocution or fires.


* Carbon monoxide detectors, smoke alarms and a fire extinguisher were
placed near the Nexa unit.


Figure 3-9. Various safety measures; fire extinguisher, smoke/carbon monoxide detector
and gas cylinder supports.

Gas Chromatograph

A SRI Instruments 8600 series gas chromatograph was used to analyze the

contaminated air mixtures to ensure the mixing manifold was delivering the proper

amounts of contaminants. The gas chromatograph (GC) uses a mol sieve and a column to

physically separate the gaseous specie over time by heating up the column oven. The

specie are then directed into a thermal conductivity detector (TCD). The TCD registers a









potential difference across a Wheatstone bridge. This data is collected and displayed as

peaks over time in PeakSimple software.

The GC first needed to be calibrated with known concentrations of CO before

testing the sample taken from the mixing manifold. Two test gas cylinders with known

CO concentrations were used (20 and 100 ppm). The SRI 8600 is shown in figure 3-8.


Figure 3-10. SRI Instruments 8600 gas chromatograph.














CHAPTER 4
METHODOLOGY

In order to investigate the effects CO and NO2 gases on fuel cell performance

several tests were run using the Ballard Nexa unit. Several preliminary tests were

performed using clean air to obtain baseline performance data. A confidence interval was

calculated using the various clean runs to be able to distinguish between a significant

change and normal fluctuations in performance. Polarization curves were created at

various concentrations of both gases. Constant load test were performed on the selected

concentrations of the contaminant gases at three different loads. Recovery information

was also obtained from the constant load tests by switching from clean air to

contaminated air and vice versa. Data collected was then compared to published data.

Baseline Performance Testing

Polarization Curve Generation

In order to establish the basic performance of the Nexa fuel cell, six test runs were

completed. The Nexa was supplied with ultra high purity hydrogen from a cylinder and

air was drawn from the surroundings, which were held at relatively constant temperature

and humidity. The Nexa was allowed to warm up for a short time so that the initial stack

temperature was the same for each test run. This also ensured the Nexa had reached a

quasi-steady state. Load increments of 5 amps were chosen to give a full spectrum of

data points to create a polarization curve. Starting at an initial load of 5 amps the load

was increased every 5 minutes to ensure the fuel cell had reached a steady state at each

load step. At 45 amps the fuel cell had surpassed its maximum power output of 1200









watts and was producing 1300 watts. Voltage (V), current (amps), power (watts), air

flow (SLPM), air temperature (C), and stack temperature (C) were all logged every 10

seconds at each of the nine load steps. The voltage and current data collected from each

of the six test runs was used to construct a confidence interval. This confidence interval

was used to ensure any changes in voltages due to contamination were significant.

Constant Load Testing

Contamination effects are easier seen under a constant load. At constant load the

voltage is also constant, and any change in voltage can be attributed to the contamination

effects. It is then necessary to also get baseline performance data on how the fuel cell

performs under constant load over time. Three loads were selected to cover the full range

of the Nexa fuel cell stack. The loads selected were 20, 30 and 40 amps. These currents

best reflect the linear portion of the polarization curve, the part of the curve that is likely

to be affected by the contamination. Six runs, each 45 minutes, for each of the three

loads were completed to again form a confidence interval by which we can compare the

constant load contamination testing.

Contamination Testing

Selected concentrations of contaminants are introduced into the air inlet stream of

the fuel cell by using a mixing manifold constructed from a pitot tube, pressure

transducer, pvc pipe, mass flow controller and a LabView program written to control the

process. The flow rate of the air in the pvc pipe leading to the fuel cell is calculated from

the differential pressure reading from the pitot tube using the formula given below:


FlowRatear (SLPM) = 0.1789 Cf D2 A 4-1
W,









Cf= Flow Coefficient = 0.559

D = Pipe I.D. mm = 26.6446

W, = Weight density of air in kg/m3 at 600F and 14.696 psi = 1.22377

AP = Differential pressure mm



The desired concentration of contaminant gas in parts per million (PPM) is input

into the LabView program. Based on the desired concentration input and the air flow rate

calculated the necessary flow rate of contaminant gas is calculated using the formula

given below:

PPM
FlowRate Cona min antGas PPMDd FlowRateAzr 4-2
P CyhnderMzxture




Table 4-1. Concentration of contaminant mixture gases in cylinders.
Carbon Monoxide mixed in N2 Nitrogen Dioxide mixed in air

3000 ppm 30 ppm



Swagelok tubing carried the contaminant gas from the compressed cylinder to the

mass flow controller and into the pvc pipe leading into the air inlet of the fuel cell. The

concentration of the contaminated air is verified using a gas chromatograph. Flow rates

of contaminant gases for different flow rates of air are given in Table 4.2.










Table 4-2. Contaminant flow rates for three air flow rates (30, 60, 90), for pure
contaminant gases (top) and for contaminant gas mixtures (bottom).
Pure Gases Flow Rate (LPM)
Contaminants (PPM) 30 60 90
CO 0 0.0003 0 001- 0.0009
30 0 0009 j 0 0013 0.0027
NO2 0.1 3_0E-06 6 0E-63 9.0E-06
0.4 1.2E-05 2.4E-05 3.6E-05

Gas Mixtures Flow Rate (LPM)
Contaminants (PPM) 30 60 90
3000 CO* I10 0.1 0.2 0.3
PPM mixture 30 0.3 0.6 0.9
30 NO2** 0.1 0.1 0.2 0.3
PPM mixture 0.4 0.4 0.8 1.2
mixed with N2
** mixed with Air

The LabView program was written to control the process of injecting contaminant

gases into the inlet air stream. The program reads the air flow rate into the fuel cell and

then calculates the necessary flow rate of contaminant gases to obtain the desired

concentration input by the user. The front panel of the program graphically displays the

desired concentration input (PPM), the differential pressure produced in the pitot tube (in

of H20), the air flow rate (CCPM), the desired contaminant flow rate (CCPM) and the

actual contaminant flow rate (CCPM), which is feedback sent to the program from the

mass flow controller. The flow can also be read from the mass flow controller itself to

ensure the proper flow rate. A diagram of the front panel and the block diagram can be

found in the appendix A.

Polarization Curve Generation

For each contaminant a polarization curve is generated using the same procedure

used for the baseline performance tests. Two different concentrations for each

contaminant have been selected based on the emissions reports collected in the literature

review. The selected concentrations are shown in Table 4-2.









Table 4-3. Selected concentration for testing based on emissions reports collected in
literature review.
Contaminant Gas First Concentration tested Second Concentration tested

CO 10 ppm 30 ppm

NO2 100 ppb 400 ppb


Constant Load Testing

Constant load tests were also performed; at a constant load the voltage drop due to

the contamination effects will easily be seen. The same procedure used in establishing

the baseline performance will be used. The specific concentration of contaminant will be

tested for 45 minutes at each load (20, 30, 40 amps). If adverse effects are seen at a

certain concentration and load another test will be performed using that same

concentration and load. The Nexa will operate on clean air for 30 minutes followed by a

30 minute contamination then back to clean air for 30 minutes to observe recovery.

The effect each contaminant has on the fuel cell stack will be determined from the

slope of the voltage curve. Higher concentrations may be used if there is no change in

voltage with the concentrations selected

Contamination Recovery

Studying how the fuel cell stack recovers from harmful effects is as important as

studying the effects themselves. Therefore after the constant load test the contaminant

source will be turned off and the Nexa will be allowed to run on fresh air to see if the

voltage returns to the initial voltage. The literature suggests that CO and NO2 both have

reversible effects after contamination. Several contaminants were not selected to be used

in this report because of their known irreversible effects and it is not out intent to

permanently degrade the Nexa fuel cell purchased for this experiment.






36




Temperature Effects

To illustrate the different parameters that affect the polarization curve and hence

the performance of the fuel cell, the effects of temperature will be studied. It is known

from the literature that increased stack temperature increases the performance of the fuel

cell. Polarization curves will be calculated at four different temperatures in increments of

10F starting at 600F. It is expected that as the temperature increases the stack voltage

will increase.

















CHAPTER 5
RESULTS AND DISCUSSED

Baseline Polarization Data

Several polarization curves were generated to obtain baseline performance data of


the Nexa fuel cell under normal operating conditions. All tests were conducted at 70F


and 55% relative humidity. Figure 5-1 displays the polarization curves generated


Nexa Fuel Cell Baseline Performance


20 O
0 5 10 15 20 25 30 35 40
Stack Current (amps)

Figure 5-1. Six polarization curves generated under normal operating conditions, 700F,
atmospheric pressure and 55% relative humidity.



Based on the six test runs a confidence interval was constructed and is shown in


figure 5-2.


45




40




35



30
25 3




25


45 50












Confidence Interval for Polarization Curve

45

40

35

30

g
S25

0 20

15

10

5

0
0 5 10 15 20 25 30 35 40 45 50
Stack Current (amps)



Figure 5-2. Confidence interval of polarization curves based on six tests.

Baseline Constant Load Data

Although polarization curves give excellent information about the different


parameters that affect fuel cell performance it is easier to see the contaminants effect on


performance by testing the contaminants under a constant load. The three loads selected


were 20, 30 and 40 amps. These three loads best reflect the linear portion of the


polarization, the part of the curve that is most affected by changing operating conditions.


Figures 5-3 and 5-4 show the stack voltage and the stack power for constant loads of 20


and 40 amps, the data for 30 amps is similar to these two graphs and hence not shown.


Data was collected every 10 seconds for 45 minutes.
















Clean 20 amps Run 1


. r nY (h. nir AIrn Mnn .f r --- I a68UU


34


32


S30
E

o 28


26


> 24


22


20


18


0 10 20 30 40 50
Time (minutes)

-*-Stack Voltage Load -m-Stack Power




Figure 5-3. Stack voltage and stack power at constant load of 20 amps.



Clean 40 amp Run 3


45




41

a 39


37


33




3 31


29


27


25
0 10 20 30 40 50
Time (minutes)

--- Stack Voltage Load --w- Power]




Figure 5-4. Stack voltage and stack power at constant load of 40 amps.


750




700




650



600




550


1400



1300



1200








1000


Polff-rWN 1. M


e
-


-









To ensure that any change in stack voltage or power is significant when introducing

contaminants into the air stream an uncertainty interval was constructed for stack voltage

and stack power for each load and is shown in table 5-1.

Table 5-1. Stack voltage and stack power allowable ranges under normal operation
conditions.

Constant Load Stack Voltage (V) Stack Power (watts)

20 amps 34.5 + 0.155 690 4.3

30 amps 33.4 0.142 990 6.1

40 amps 30.5 + 0.138 1225 9.8


Contamination Results

Carbon Monoxide

The concentrations of carbon monoxide selected were chosen based on several air

quality reports gathered from the literature review. A mean value of 10 ppm represented

the type of concentration that would be found in typical urban areas. A maximum value

of 30 ppm represents the higher concentration that would exist in a high traffic volume in

a busy city area with little ventilation, (so called 'street canyons'). Both concentrations

were tested at the three selected constant loads. Polarization curves were also generated

using load increments of 5 amps up to the maximum 45 amps.

Constant load

The Nexa fuel cell was allowed to operate on clean air until it had reached a quasi

steady state. The selected concentration of carbon monoxide was then introduced at a

constant load and allowed to operate for 45 minutes. If any voltage drop was detected at

the end of the 45 minutes the fuel cell was allowed to continue running on clean air to

obtain recovery information.







41


The concentrations of 10 and 30 ppm were each tested at three loads (20, 30 and 40


amps). Neither concentration showed any significant change in either stack voltage or


stack power throughout all the tests when compared to the clean air tests. Figure 5-5


shows the 10ppm test at a constant load of 40 amps.


Carbon Monoxide (10 ppm) 40 amps

43 1400

41 1350

39
1300

" 1250

S1200
33 a.
o 1150
,r 31

1100
29

27 1050

25 1000
0 5 10 15 20 25 30 35 40 45 50
Time (minutes)
-*-Stack Voltage Load ----Power


Figure 5-5. Carbon monoxide test (10 ppm) at constant load of 40 amps.

The voltage held relatively constant at 30.5 volts while the power remained at


around 1225 watts. The fluctuations seen in figure 5-5 and in all the data collected are


due to the purge cell cycles. The Nexa fuel cell automatically performs these purge


cycles every 40-60 seconds. The voltage of certain individual cells within the stack are


monitored, once the voltage drops to a designated critical value the entire stack is purged


of the hydrogen fuel to release any contaminants on the anode side. This purge cycle


briefly increases the stack voltage.








42



The 10 ppm tests at the constant load of 20 and 30 amps produced similar results as


shown in figure 5-5 with the voltages and power remaining within the uncertainty


interval defined.


Similarly, the tests performed with 30 ppm did not produce any significant changes


in the fuel cell performance as can be seen in figure 5-6 at a constant load of 20 amps.


30 ppm Carbon Monoxide at Constant Load of 20amps

38 900

36
850
34
S800
E 32
3 750
2630

28 ----700
a)E
26--------------------------------------------------------------
a 26 -
S- 650
S24
S- 600
22
550
20

18 500
0 5 10 15 20 25 30 35 40
Stack Current (amps)
-*- Stack Voltage Load --- Power


Figure 5-6. Carbon monoxide test (30 ppm) at constant load of 20 amps.


Tests at 30 and 40 amps produced a similar graph to figure 5-6 and hence are not


shown because of the insignificant change in performance.


The data collected from the 10 and 30 ppm tests showed that the Nexa can tolerate


the typical levels of carbon monoxide that would be encountered in under normal traffic


conditions. Therefore, further review of the literature was conducted to find if there


existed conditions where the concentrations of carbon monoxide would be higher. A









study conducted at the Lincoln Tunnel in New York City found that levels as high as 100

ppm could be found during extremely heavy traffic1. Also, the concentration of carbon

monoxide in diesel emissions can be as high as 500 ppm; a FCV within a short distance

from direct diesel exhaust may encounter levels near 100 ppm after considering the

exhaust would be diluted somewhat in the air.

The Nexa was subjected to 100 ppm carbon monoxide and the data revealed a drop

in performance during the 45 minute test. To better understand the effect of the

contaminant a different test methodology was used, the Nexa was allowed to run for 30

minutes on clean air followed by 30 minutes of 100 ppm CO and then allowed to operate

on clean air for 30 minutes to show any recovery. Figure 5-7 shows this test performed at

a constant 20 amps.

The introduction of 100 ppm carbon monoxide produced a 1.67% drop in stack

voltage and a 1.61% drop in overall stack power. It is interesting to see that the carbon

monoxide seemed to affect the fuel cell immediately but it did not continue to degrade

the voltage over time, it remained in a quasi steady state. When looking at the

contamination portion of the graph in figure 5-7 the higher values of stack voltage are

due to the purge cycles which were explained previously, this rapid purge produces a

brief increase in voltage and power but then fell rapidly until the Nexa is purged again.


1 A study conducted by the CDC, 1993.








44



Clean air 30 minutes, 100ppm CO for 30 minutes, Clean air 30 minutes at a constant Load of 20 amps


40

39

38

37

36

35

" 34

33

32

31

30


Begin Flow of CO stopped,
Contamination allowed to recover
(100 ppm) using clean air


0 10 20 30 40 50 60 70 80 90
Time (minutes)

-- Stack Voltage -U- Power




Figure 5-7. Carbon monoxide test (100 ppm) at constant load of 20 amps.


Despite the reduction in stack voltage and power the Nexa did recover. The stack


voltage recovered to 98.97% of its original voltage while the power recovered to 98.96%


of its original power output before contamination.


This same concentration was performed at a higher load of 30 amps however the


test could not be run at 40 amps because of the limitation of the mass flow controller.


The range of the mass flow controller was selected to give excellent accuracy at the 10


and 30 ppm concentrations and was therefore out of range for the air flow demanded by


the fuel cell at 40 amps. Figure 5-8 displays the results from the 30 amp test.


0


-550



-500




450












Clean air for 30 minutes, 100 ppm Co for 30 minutes, Clean air for 30 minutes at a constant load of 30 amps

40 1050

39
1000


37
950
36
Begin
35 Contamination Flow of CO stopped, 900
S(100 ppm) allowed to recover
34 using clean air
3 850


32
800
31

30 750
0 10 20 30 40 50 60 70 80 90
Time (minutes)
-*-Stack Voltage -- Power


Figure 5-8. Carbon monoxide test (100 ppm) at constant load of 30 amps.


The stack voltage was reduced by 2.58% while the stack power was reduced by


3.30%. Although here the contamination seemed to steadily decrease the voltage as time


went on. Again the Nexa seemed to recover after contamination, the stack voltage


recovered to 98.69% or its original voltage and the power recovered 98.03% of its


original power output.


The drop in performance was more severe at the higher potential. The mechanism


for adsorption of CO onto platinum appears to be a function of both potential and CO


concentration. These concentrations of carbon monoxide (100 ppm) represent extreme


cases of pollution a fuel cell vehicle may encounter in an urban area with heavy traffic


and little ventilation. A step to mitigating this adverse effect would be to use the popular


alloy catalyst Pt-Ru, which can be effective up to 100ppm CO.











Polarization curves

Polarization curves were generated for 10, 30, 60 and 100 ppm CO. Beginning at 5


amps the load was increased increments of 5 amps every 5 minutes. As previously noted


10 and 30 ppm CO did not have any significant change on the fuel cell performance, the


polarization curves generated for these two concentrations fell within the confidence


interval shown in figure 5-2. Figure 5-9 shows polarization curves for 60 and 100 ppm.


The 60 ppm curve falls right outside the interval and therefore has and adverse effect on


the performance. Data points for 40 and 45 amps in the 100 ppm CO test could not be


taken due to the mass flow controller issues discussed.



Polarization Curve for 60 and 100 ppm


45
60 ppm Carbon
Monoxide


40
Clean Air with confidence
interval based on 6 test
runs.

>35

0


30


100 ppm Carbon
Monoxide
25




20
0 5 10 15 20 25 30 35 40 45 50
Stack Current (amps)

-polarization curve -A-60ppm -+ 100 ppm


Figure 5-9. Polarization curves for 60 and 100 ppm carbon monoxide.









Rapid injections of carbon monoxide

Upon realization that typical levels of carbon monoxide detected on urban area

streets had no effect on the performance of the fuel cell, attention was drawn to more

extreme cases where carbon monoxide might be at much higher levels. For example, if a

fuel cell vehicle was in traffic behind a diesel truck emitting its exhaust directly in the

vicinity of the air intake for the PEM fuel cell in the vehicle, this would yield a much

higher concentration.

A test was designed to try to recreate this type of situation in which a brief rapid

increase in CO concentration might be introduced into the fuel cell and look at the

recovery. The test was done for two constant loads; 20 and 30 amps. The fuel cell was

allowed to operate on clean air until a quasi-steady state was reached. When this state

was reached the fuel cell was allowed to operate for 60 seconds before introducing 100

ppm for 60 seconds. The CO flow was then stopped and allowed to recover for 60

seconds before a higher concentration was introduced. This procedure was continued for

concentrations of 120, 140 and 160 ppm. This test was also completed for 10, 30, 60 and

80 ppm to find the concentration at which contamination effects begin to take place. No

effects were seen until the concentration reached 100 ppm CO. Figure 5-10 shows this

test at a load of 20 amps.

Despite some minor fluctuations in the stack power and voltage, the data fell within

the range specified in table 5-1 and is therefore not significant up to and including 90

ppm. Significant drops in performance occurred once 100 ppm CO was injected. These

results are looked at closer and can be found in figure 5-11. This figure shows the test

completed for concentration 100-160 ppm at a constant load of 20 amps.








48




Constant Load of 20 amps with injections of CO (10,30,60,80 ppm)


900



850



800



750



700



650


0 1 2 3 4 5 6 7 8 9 10
Time (minutes)

-- Stack Voltage -- Pwer



Figure 5-10. Rapid injections of CO (10, 30, 60, 80 ppm) at constant load of 20 amps.



Constant Load (20 amps) with injections of Carbon Monoxide (100,120,140,160ppm)


38



37



Injection of 120ppm Injection of 160ppm
36 CO for one minute CO for one minute


- / I
- 35



34
Injection of 100ppm
CO for one minute
Injection of 140ppm
CO for one minute
33



32
0 1 2 3 4 5 6 7 8 9 10
Time (minutes)



Figure 5-11. Rapid injection of CO (100,120,140 160 ppm) at constant load of 20 amps.


Clean 10 ppm Clean 30ppm Clean 60ppm Clean 80 ppm Clean
- _,









The rapid injections of contaminants showed that effect of CO is immediate, on the

other hand the time for the fuel cell to recover to it original voltage was also very rapid.

In some cases the voltage actually improved after recovery. This minor rise in stack

voltage may due to the fact that under contaminated conditions the fuel cell stack may be

heating up, which would result in better performance of the stack. Raising the

temperature of the stack is another option for mitigating the negative effects of

contaminants.

Table 5-2. Percentage changes in voltage and power during rapid CO injections at a
constant load of 20 amps.
Concentrations (ppm) Percentage drop (Voltage/Power) Percentage Recovery(Voltage/Power)

100 0.82% / 1.21% 99.89% / 100.1%

120 1.34% / 1.33% 99.84% / 99.61%

140 2.11% / 2.54% 100.34% / 100.34%

160 3.02% / 3.18% 100% / 100.1%



The same test was conducted at a higher load of 30 amps and resulted in a

significantly higher drop in performance and is shown in Figure 5-12. The 30 amps test

was similar to the 20 amps test but the percent changes in performance were much higher

as shown in table 5-3.

These results again show that higher the stack potential results in a larger drop in

performance. When considering a vehicle powered by a PEM fuel cell this adverse effect

become a critical issue. Acceleration of a FCV requires a steep increase in power of the

stack. The contamination of the fuel cell would greatly inhibit the fuel cell from

producing the power necessary, and hence reduce the overall drivability of the vehicle.












Constant load (30 amps) CO injections (100,120,140,160ppm)


38


36


34


32

0
- 30


28


26


24


0 1 2 3 4 5
Time (minutes)


6 7 8 9 10


Figure 5-12. Rapid injection of CO (100,120,140 160 ppm) at constant load of 30 amps.

Table 5-3. Percentage changes in voltage and power during rapid CO injections at
constant load of 30 amps.
Concentrations (ppm) Percentage drop (Voltage/Power) Percentage Recovery(Voltage/Power)

100 1.08% / 1.15% 102.01% / 1(.99 %

120 4.22% / 4.61% 100.49% / 100.58%

140 8.04% / 8.42% 100.64% / 100.19%

160 12.39% / 12.52% 100.56% / 100.99%



Nitrogen Dioxide

The concentrations selected to represent the average and maximum levels found in


and urban area were 100 ppb and 400 ppb respectively. These concentrations were tested


separately at three constant loads (20, 30 and 40 amps). Polarization curves and the rapid


injection tests were also completed as in the carbon monoxide tests.


Injection of 120ppm Injection of 160ppm
CO for one minute CO for one minute





-y-4 ~r\ Wr


XU~


Injection of 140ppm
CO for one minute


Injection of 100ppm
CO for one minute








51



Constant load


The constant load tests conducted for nitrogen dioxide were the same conducted for


carbon monoxide. The Nexa was allowed to operate on clean air to reach a quasi-steady


state before the selected concentration of nitrogen dioxide was introduced. The mass


flow controller was designed for carbon monoxide flow, so a conversion factor was


needed to use NO2. The flow controller uses a thermal sensor technology which allows


the use of conversion factors from the calibrated gases to other gases. The conversion


factor, also called a K factor, was 0.74 percent of the flow rate reading.


It was found that neither the 100 ppb nor the 400 ppb had any significant change in


performance as can be seen in figures 5-13 and 5-14.



Nitrogen Dioxide (100 ppb) at constant load of 20 amps


34-- -

32

30

PR


6--

4--
76 1-----------------1---------------------


t4 1 ------------------------------------ T


20


0 5 10 15 20 25 30
Time (minutes)

-o- Stack Voltage Load -a- Power


35 40 45


Figure 5-13. Nitrogen dioxide test (100 ppb) at constant load of 20 amps.


o
.o

r0


o

V5


2

2








52




Nitrogen Dioxide (400ppb) at constant load of 20 amps


36


34


32


E
S30

0
-o
28


o 26

0
,24
o

22


20


18


0 5 10 15 20 25 30
Time (minutes)

-*-Stack Voltage Load -- Power


35 40 45


Figure 5-14. Nitrogen dioxide (400 ppb) at a constant load of 20 amps.




Higher concentrations were tested at constant loads to find any drop in


performance. The highest concentration was limited by the range of the mass flow


controller. The maximum concentration that could be sustained by the controller was


1000 ppb or 1 ppm. Again this concentration did not yield any adverse effects as shown


in figure 5-15.


MUU




750




700




650




600




550




500


0
m




a

U)
s
J
0,







53



Nitrogen Dioxide 1ppm at Constant Load of 30 amps

36 1200

35 1150

34 1100


3 33 1050 --
0 V5



0 31 950

30 900


29 850


28 800
0 10 20 30 40 50 60 70 80 90 100
Time (minutes)
-*-Stack Voltage Load -m-Power


Figure 5-15. Nitrogen dioxide (lppm) at constant load of 30 amps.

Rapid injections of nitrogen dioxide

The rapid injection tests performed with carbon monoxide yielded the most


interesting data and hence was again performed with nitrogen dioxide. The limits of the


mass flow controller prevented testing concentrations above 1 ppm N02 for the constant


load test because it required the flow controller to sustain a high flow rate for a


substantial amount of time. However the controller was able to handle high flow rates for


a short period of time (-1 minute) so higher concentrations could be reached in the rapid


injections tests. These tests were run at 20 amps because of the lower air flow rate


required by the air flow. The results are shown in figure 5-16.











Constant Load of 20 amps with N02 injections (800,1000,1200,1400 ppb)

38



37



36
Inject 800 ppb for Inject 1 2 ppm for
one minute one minute




34


Inject 1 ppm for Inject 1 4 ppm for
33 one minute one minute


32
0 1 2 3 4 5 6 7 8 9 10
Time (minutes)


Figure 5-16. Rapid injections of nitrogen dioxide (800, 1000, 1200 and 1400 ppm) at
constant load of 20 amps.

The results of the rapid injection tests did not yield any significant drop in


performance and it was concluded that the Nexa fuel cell was able to tolerate nitrogen


dioxide with no adverse effects. This agrees with what was found in the literature


(Moore et. al).


Temperature Effects

Temperature is one of the many factors that influence the performance of a fuel


cell. It was gathered from literature that an increase in temperature increase the overall


performance of the fuel cell. With increased temperature the exchange current density


increases which reduces the activation losses. However there is a limit to how high the


temperature can be due to humidification issues. If the membrane material in the catalyst


is not fully hydrated this could cause a decrease in active surface area in the catalyst. It












can be seen that at low current the effects of temperature are much more significant. This


may be due to the fact that at higher temperature the membrane may not be fully


hydrated. But with increases in current the rate of water production also increases


proportionally which in turn keeps the membrane moist and the active sites on the


catalyst open and hence improves the fuel cell performance. The effects of temperature


are shown in figure 5-17.



Temperature Effects on Polarization Curves


1600


A' 1400


-1200


1000


800


600


400


___ 200


0
5 10 15 20 25 30 35 40 45 50
Stack Current (amps)
S--T=50F ---T=60F -- T=70F -A-T=80F
-ix-T=50F -- T=60F --T=70F -A-T=80


Figure 5-17. Temperature effects on fuel cell performance. Polarization curves and
power curves shown for temperatures (500F, 600F, 700F and 800F).


45


40


35


30

ca
" 25
0
0
-r 20
U)
15


10















CHAPTER 6
CONCLUSION AND RECOMMENDATIONS

Based on experimental data it appears that the typical levels of carbon monoxide

and nitrogen dioxide found in urban areas do not significantly affect the performance of a

PEM fuel cell over the time interval tested. However in the experiment, the fuel cell

performance began to drop at CO levels of 100ppm and higher. Although very high,

these levels of CO could be found under extreme conditions in a heavy traffic volume

area.

The carbon monoxide poisoning mechanism seems to be a function of both cell

potential and CO concentrations. The drops in voltage and stack power were immediate

after introduction of the CO. It should be noted that for the time interval tested the

adverse effects seemed stay in a quasi-steat state. Future work should also consider the

effect of time on contamination. The Nexa fuel cell had a very high hydrogen

consumption rate and thus longer timed tests were not feasible.

The transient response tests revealed important information about the PEM fuel cell

ability to recover rapidly after the cessation of the contaminant. The fuel cell was able to

recover completely despite the brief injections of very high concentrations of the

contaminant.

The experiments involving nitrogen dioxide did not appear to have any significant

effect on the performance up to concentrations of 1.4 ppm in the time interval tested.

One reason the NO2 may not have affected the performance of the fuel cell at the

concentrations tested was the fact that nitrogen dioxide is extremely soluble in water.









The incoming air stream passes through a humidity exchanger, this process of adding

moisture to the air stream may have scrubbed out the NO2. The NO2 actually reacts with

water to produce nitric acid and NO:

3 N02(g) + H20(l) 2 HNO3(aq) + NO(g) (6-1)

However, if this reaction was taking place, there should have been some change in

performance because of the effect of the nitric oxide now present in the air. In future

work, the contaminants should be introduced into the air stream after the air has been

humidified. Another solution would be to not humidify the air at all, since the water is

being produced on the cathode already, it is more important to humidify the fuel stream.

This solubility effect was not likely an issue for the CO because it is almost insoluble in

water.

This study was primarily concerned with short-term exposure tests, longer tests

may reveal additional information about the contamination mechanism.

Although the Nexa fuel cell stack was a great learning tool for someone unfamiliar

with the technology, it is not ideal for experimentation. The Nexa has several subsystems

that protects itself from any unusual operating conditions. In future work in studying the

effect of air contaminants on the cathode, efforts should be turned to designing and

constructing individual single PEM fuel cells. Constructing several different membrane

electrode assemblies (MEAs) would allow a researcher to get direct information about

contaminant effects. There were many variables in the Nexa testing that were unknown

because the Nexa is a complex system.

With single PEM fuel cells, more severe contaminants with possible irreversible

effects could be tested. Also with single cells, the effect of operating parameters such as











pressures, temperatures and humidity temperatures on the negative effects of


contamination could be studied. The ability to control all these parameters would give a


clearer understanding of the contamination mechanism. A sample experimental system is


shown in figure 6-1.



constant temperature inon haust to
nd humidity generator



Data
Reservoir Flowmeters Sytm

\ Detector (GC)

Temperature and
humidity sensor


AdsarberCarbon vfumeo
Pump concentrationfilter cupbheckrd
Pressure sensor Mixerthe
Exhaust to
Pump |fume
cupboard

Challenge gas Carbon
generators platinum ct filter

Adsorber for volumetric
concentration check


Figure 6-1. A sample experimental system containing a single PEM fuel cell and various
components to control all operating parameters (Moore et. al)

Researching and testing different catalysts used in the electrodes is also


recommended for future work. Platinum alloy catalysts can significantly enhance the


tolerance level to harmful contaminants while also reducing the costs of the very


expensive pure platinum catalysts.



















APPENDIX A
LABVIEW COMPUTER PROGRAM


The following is the block diagram and front panel from the LabView program


written to control the flow rate of contaminant gases based on the flow rate of air going


into the fuel cell.



Fie Edit Operate Tools Browse Window Help

A


i' 7 trt iE&IE c r 4 N tt o2


If Pitot Pressure I|
Pressure in Hessu20e










_oncentration (rm)
y CMass Fow Controler -




.00033333333


r FC Feedback (cc m









rn__ .


VI
> :















Preq.'.iir~ (in H'?Fil


Airflow ((cpn)


Gas hlow ((:L:pi I
Cc'ncenltralion I pnI I



M IFC feedback I,:,C:_nil

l'r V-

f-


+ I k I ,r. F I ....


.1~T 231111I


171 -I


+I I al-I II


. I I .1


! -T,- sart PELwbVIEW IS :ont.nant conro l i nite PitIf-21 P MP~














APPENDIX B
START-UP PROCEDURES

Listed here are the startup/shutdown procedures for the Nexa Fuel Cell and the

startup/testing/shutdown procedure for the Gas Chromatograph.

Nexa Startup Procedure

1. Check whether sufficient hydrogen is present in the cylinder and replace

cylinder if necessary

2. Check the connections between the Nexa and the hydrogen cylinder

3. Check the load connections

4. Check the hydrogen pressure in the cylinder (70kPa-1720kPa)

5. Turn ON the hydrogen supply

6. Run the NexaMon software and click ON the main toggle ON/OFF button

7. Switch the 24V power supply ON

8. Check for the STANDBY status of the software

9. Enter log file name and location and start data logging

10. Turn ON the main 5V ON/OFF switch

11. Check whether the status has changed to STARTING

12. Check the status again after 30 sec. It should display RUNNING

Nexa Shutdown Procedure

1. Switch OFF the main 5V ON/OFF switch

2. Check is the status of the Nexa has changed to NORMAL SHUTDOWN

3. Check if the current level has dropped to zero









4. Switch OFF the 24V power supply

5. Switch OFF the main toggle ON/OFF button on the software

6. Turn OFF the hydrogen supply



SRI Instruments 8600 Series Gas Chromatograph

Startup Procedure

The chromatograph should be turned on 2 hours before any testing is done. This

allows the voltage baseline to stabilize.

-Set He pressure regulator to 70 psi

Turn on the computer and start the chromatograph program. (PeakSimple)

-Make sure the TCD current detector toggle switch, located on the right side of

the chromatograph, is in the off position. Turn on the main power. The

switch is located on the left side of the chromatograph.

Using the display on the front of the chromatograph, monitor the oven and

TCD temperatures. Wait until they have reached their setpoints before

continuing. This should be ~ 47C and 107C respectively. The setpoint

and actual values can be displayed by turning either of the two knobs next to

the LCD to the appropriate selection. The toggle switch below the display

makes the LCD correspond to either the upper or lower knob setting.

Also using the display, check that the Column 1 head pressure is 7 or 8 psi

and the Carrier 1 pressure is -49 psi. If either of these values are different,

there could be a blockage of the column or a carrier gas filter problem. Refer

to the manual for further help.









-Check for carrier gas flow at "TCD Ref Gas Exit" located on the left side of

the chromatograph. Simply immerse the end of the tube in water and look for

bubbles

Check for sample gas flow at the sample gas exit, located underneath the top

cover on the right hand side of the column box. Do this same manner as for

the reference exit.

-Move the TCD current toggle switch to the up position. This is labeled as

"high".

Test Procedure

This test procedure should be followed each time a sample is analyzed. The

chromatograph is very sensitive, so variations in procedure may cause bad results.

-Make sure the Attenuator Switch is set tol. the switch is located on the right

side of the chromatograph.

-Use the Zero Adjust Knob to zero the output voltage. The knob is located just

above the Attenuator Switch. The actual output voltage can be seen on the

software display and is labeled as "Stand by:". The voltage does not have to

be exactly zero to start, and it will drift during testing.

-A sampleof gas can now be taken. First the needle should be flushed of air.

This can be accomplished by withdrawing some sample gas and then ejecting

it. If this is done several times, any air that was in the needle should be

displaced.

-Withdraw a 1CC sample of gas and start a chromatograph run by selecting

RUN under the Chromatograph menu in PeakSimple.









-At 0.9 minutes begin injecting the sample into the septum. Finish injecting at

1 min. This slow injection method insures that no sample leaks back through

the septum. Do not rotate the needle while it is in the septum. This would

cause it to cut out a plug. Once the needle is withdrawn, check to make sure it

is not plugged.

-Once all the peaks are shown, stop the chromatograph and analyze the results

by selecting Results under the Analyze menu in the software. In order to see

concentration results, it may be necessary to load the calibration files.

Shutdown Procedures

-Turn off current by moving the TCD Current toggle switch to middle position

-Turn off the main power to the chromatograph

Turn off computer

Close carrier gas regulation valve.















LIST OF REFERENCES

Baschuk J.J., Li X., Carbon monoxide poisoning of proton exchange membrane fuel
cells, Int. Journal of Energy Research, 2001, 25: 695-713.

Betts, Daniel, Modeling and Analysis of Fuel Cell Engines for Transportation
Application, Masters Thesis, Univ. of Florida, Gainesville, 2000

Blomen L.J.M.J., Mugerwa M., Fuel Cell Systems, Plenum Press, New York, 1993.

Bockris, J. O'M, Fuel Cells: Their Electrochemistry, McGraw-Hill, New York, 1969.

Divisek J, Oetkin H-F, Peinecke V., Schmidt V.M., Stimming U., Components for
PEM fuel cell systems using hydrogen and CO containing fuels, Electrochimica Atca,
1998, 43(24): 3811-3815.

Environmental Protection Agency (EPA), Office of Air and Radiation, 1997 National
Air Quality: Status and Trends, Brochure, New York, December 1999.

Hoogers Gregor, Fuel Cell Technology Handbook, CRC Press, Boca Raton, 2003.

Jeng K.T., Kuo C.P., Lee S.F., Modeling the catalyst layer of a PEM fuel cell cathode
using a dimensionless approach, Journal of Power Sources, 2004, 128:145-151.

Kulikovsky A.A., The voltage-current curve of a polymer electrolyte fuel cell:
"exact" and fitting equations, Electrochemistry Communications, 2002, 4:845-852.

Larminie J., Dicks A., Fuel Cell Systems Explained, John Wiley & Sons, Ltd.,
Chichester, England, 2002.

McNicol B.D., Rand D.A.J, Williams K.R., Fuel cells for transportation purposes -
yes or no?, Journal of Power Sources, 2001, 100, 47-59

Wang L., Husar A., Zhou T., Liu H., A parametric study of PEM fuel cell
performances, Int. Journal of Hydrogen Energy, 2003, 28:1263-1272.















BIOGRAPHICAL SKETCH

Gerard Michael O'Sullivan was born August 29, 1980, in Queens, New York City.

He is the first son of Michael and Margaret O'Sullivan and older brother to Sean and

Patricia O'Sullivan. Gerard attended Archbishop Molloy High School run by the Marist

brothers and spent most summers at the Mid-Hudson Valley Camp working with

mentally handicapped and deaf children.

Gerard attended a summer research program sponsored by the National Science

Foundation at Clemson University, which encouraged him to apply to graduate school

and continue his education. After graduating from the New York Institute of Technology

in May 2003, Gerard enrolled at the University of Florida. He graduated in May 2005

with a Master of Science in mechanical engineering, specializing in thermal science and

fluid dynamics.

Gerard plans to travel for a few months before returning to New York City.