<%BANNER%>

Modified Gravity Theories: Alternatives to the Missing Mass and Missing Energy Problems

xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID E20110320_AAAAEI INGEST_TIME 2011-03-20T22:55:56Z PACKAGE UFE0009241_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES
FILE SIZE 869076 DFID F20110320_AACNJI ORIGIN DEPOSITOR PATH soussa_m_Page_80.jp2 GLOBAL false PRESERVATION BIT MESSAGE_DIGEST ALGORITHM MD5
552c7b688f8792bb89652eeb57def804
SHA-1
1cf1d380a26d13bb1a351b878cfc534aabdd453c
759285 F20110320_AACNIU soussa_m_Page_64.jp2
a4cab7c8a5edbfa5d3cfd8f0e9db5b88
5b980562225327eabb6349e7190a020202b9d4f5
1087880 F20110320_AACNJJ soussa_m_Page_81.jp2
85e2fe35b63fb3f4492e34a43ce0bb3a
b857d30b62c03030478119d69770159aef80681e
876770 F20110320_AACNIV soussa_m_Page_65.jp2
850e9cfcdf17e71c139d7cf1cde64a9f
4add590ecdf01f0dba11320c1737cea9c930497f
662759 F20110320_AACNJK soussa_m_Page_82.jp2
8f8613f51b18a237a83027eab600ab7c
b5f91262f89b98e7ae31dfce2ed8ecc847eddece
915708 F20110320_AACNIW soussa_m_Page_67.jp2
4510f461f7aaced684930a3514c8c086
aab81eb5a3ab7c1f2b14a066cc76a5f50d7b4a7e
90394 F20110320_AACNJL soussa_m_Page_83.jp2
fc755ead8446eee5ad4fecb262ef8580
3ced9e91e5fef7bc65dcdb48caad4fbe247e058e
1003266 F20110320_AACNIX soussa_m_Page_68.jp2
65b268ad94700a614e768318a67c196d
ca5ad599fa553f9713304a255a3ff7be5ac52a4c
1089068 F20110320_AACNKA soussa_m_Page_05.tif
ab95d33a9b69a703a4b788bbf64275f6
56f21bc3c9636ef88713c440118a379630ec5865
115073 F20110320_AACNJM soussa_m_Page_84.jp2
c580a105c507cf0ad07ea4d1b27634d0
d004c3012f7e8c5ba2675adcff8597978c5108c3
766294 F20110320_AACNIY soussa_m_Page_69.jp2
0e8aca808c336a7ead0e7c2319e658cb
ed27c7887d3cf69aa38bf163afb0688589bb2fb3
26135236 F20110320_AACNKB soussa_m_Page_06.tif
a83708aac16d2e244d1240e17c48b237
cf6e26dc7582c14bf2011d3d0ac6bf08b58ba454
115953 F20110320_AACNJN soussa_m_Page_85.jp2
1e3d0a910dd98bf5837f4b44e8633a23
ca3af69a8c0dd9c58a19574f808a2c60abf95791
924373 F20110320_AACNIZ soussa_m_Page_70.jp2
87b1c04cb7a0413c09e8369972af8c81
e918b7da33c76a143fc0e1fcdf32f0d586335b81
F20110320_AACNKC soussa_m_Page_07.tif
0353062a6c1c0b20cfb87fe0080ff13a
1186e909dd791393a85251d0d48e5fb337fc9f17
F20110320_AACNKD soussa_m_Page_08.tif
6c39e10415c4becae29d53a3aa00d140
77563b609ab46fc710ab7c92400fb2a0183ae6b8
1087856 F20110320_AACNJO soussa_m_Page_86.jp2
5107e517a7573667aa1765f99a2c29b5
a0c4394727de4e08b60604e9bf22fad6145e89cd
F20110320_AACNKE soussa_m_Page_09.tif
a2ee0a84cc454ff2cc1a76857ad82c74
7576ea3b8e617107985483d0eb058295420bad31
1087888 F20110320_AACNJP soussa_m_Page_87.jp2
d478cf4c7aa356caeefb0f6396c1858b
9ecdae4a5864b6f08156bcbd2dda345f05e7abbb
101158 F20110320_AACNJQ soussa_m_Page_88.jp2
1a6d89fc52349c4f4e91f55cc754c971
026370d8c2a23dd33a53e59e9ff6f68c006e740d
F20110320_AACNKF soussa_m_Page_10.tif
933c88d01e65fd18c95237102560d72d
e28e8e29440fd4da40990ae5d6b1aeb7fd2e24e0
126461 F20110320_AACNJR soussa_m_Page_89.jp2
4c560a54c49eab81b555252f499ba904
ca26ac0d95cac66650f308457f901e3ef8bda94a
F20110320_AACNKG soussa_m_Page_11.tif
18403def2de438ccaf2e8a781ec6ad7a
5e891b59ff66bb8b6d1c6ca734c86a3f069c6370
126520 F20110320_AACNJS soussa_m_Page_90.jp2
d29ef865b4576392a9d1749b97c7954b
ecf44d0db72a1af3b4d37c3441fa679f0b79dec4
F20110320_AACNKH soussa_m_Page_12.tif
48c3e33cdb36e3479237554269f92d15
cc1c9098c2032cfdd3d97186d34447d0c2b2129b
122652 F20110320_AACNJT soussa_m_Page_91.jp2
ad9dbd20076e853d1a8187cdc138e95d
af2c73034182119a5612da597d04b1e63beceb4c
F20110320_AACNKI soussa_m_Page_13.tif
e2bff90803b2f6ace691445e9d0a4c79
3187efc850d469cca54d06c09d9d253bf4cbc5a8
116487 F20110320_AACNJU soussa_m_Page_92.jp2
109cba2a5ad36f8111760c05e4d5a072
677ecde1699ca12af801bb5fc1948707d6fceed9
F20110320_AACNKJ soussa_m_Page_14.tif
100d4e51758f324981b4cebf2e403c28
a76d05a7fc6ab2a082c4c279effffb3b4ae2b089
92797 F20110320_AACNJV soussa_m_Page_93.jp2
55f499d6743aabe69ea00c18f35499f6
0179d7bc62e92621591a79cb4eaae2235de140c0
F20110320_AACNKK soussa_m_Page_15.tif
c63d423bc27b60e88b9402a57114fe1c
26cdbe991a961949e372cfc0e41e1123af870ad7
20810 F20110320_AACNJW soussa_m_Page_94.jp2
458374806a2f2a84a25bfb8f91e2ca4c
4f01688c890eabb97c88170348b94a1077c1c0a3
F20110320_AACNLA soussa_m_Page_32.tif
1747d995dd2ef3520ae305276c9dfafb
42211aad7a45a49a6f7fce31696041eb39a05620
F20110320_AACNKL soussa_m_Page_16.tif
2b4cb26c81d642f415a4de1677532c39
a32d65529aa3db6df3d10c88722575c8a732817c
F20110320_AACNJX soussa_m_Page_01.tif
ebd675c34f9750b20aebb793ac0de3d2
8163f624ca364f8b6ede87f308b096ffbb14bc2f
F20110320_AACNLB soussa_m_Page_33.tif
0340cc4414897d8a030fa4d141df53e0
7e0e784b2e72adbbe42da5481ebf309d12ccb72a
F20110320_AACNKM soussa_m_Page_17.tif
883259d4385d4bd4b03d58a74eccbe3f
d0ca4daf2a90c023030618750f0bba8cfcdcb5ea
F20110320_AACNJY soussa_m_Page_03.tif
cec12f8ab91d49ba96cf3a0622365efc
21c8369b6358bcc3393249ec06e2064c91ea8e00
F20110320_AACNLC soussa_m_Page_34.tif
1a2de0ac93ee23fc0726f9cb34bff8b6
6d19a931e052ca46eacb12ac7d0dff6e17fc62c9
F20110320_AACNKN soussa_m_Page_18.tif
942fba03e352311bd3f3bd23d057a0fa
49b9dc32724c4147e8f7cd4c2e4809a13690ad4d
F20110320_AACNJZ soussa_m_Page_04.tif
92e1ae0f26a83bb495a219199bc6eea7
c6ab131b5a551a15dddbcaad387046478ca354d9
F20110320_AACNLD soussa_m_Page_35.tif
e6c70496b32550ca7cdcd9b797d70de3
39d2fd2a44e4858a8afdb4c6caf7226f190c20cf
F20110320_AACNKO soussa_m_Page_19.tif
5ae928551074646d8a65cd799e49fb46
04f1f7e4aa81de9d39f5f0506c61bc0889fa26a0
F20110320_AACNLE soussa_m_Page_36.tif
927d9cd9c6259403645ba645e5dac37e
df1a5bb48aa4a0252645186769ab00eb493fdf1c
F20110320_AACNKP soussa_m_Page_20.tif
2f9b04e23874f32f826c2f96a16c96d6
6f010bba0302e2fc083467d3fbbb3d2c3339e26e
F20110320_AACNLF soussa_m_Page_37.tif
4d1a50fa729f30c125ae10930ba27fac
d3f01d5d056f8077e58ff81fb173e49711b8fa7d
F20110320_AACNKQ soussa_m_Page_21.tif
22ed128e161459a250d7d0e9332815d6
18b96585c4a1b8108737ceca0434aa4058a8ef6f
F20110320_AACNKR soussa_m_Page_23.tif
ae17f94db97c5e7bdae8816ed572b838
0cd862f7d9dfe14f7c14124cc7c521ded663feb3
F20110320_AACNLG soussa_m_Page_39.tif
472eaecc3faed99ed6ed6ca7ca1d9873
4fad4dbc09231f38dc3690ed19577e15678ad05a
F20110320_AACNKS soussa_m_Page_24.tif
35fbcbac32e37f802b5d897b601834b5
903cbdf158d0fab2882e2bd5ea7a12715dfa7b43
F20110320_AACNLH soussa_m_Page_40.tif
a2b6ea9d6f4eeb39e4d889f5f94c1077
1b03f0cde3c91a09b707b4eea33fc4a0434f9029
F20110320_AACNKT soussa_m_Page_25.tif
cd42ee4bcb56551f02c1c34acee60401
f323fdf5234f09b4b04ebf4aacd264b378915f76
F20110320_AACNLI soussa_m_Page_41.tif
8e85ccf0c0e9e4f76b4b5b0ade1d0df8
c909cc607dc55818e9d35dd6298f21631ade6725
F20110320_AACNKU soussa_m_Page_26.tif
e74a570eccc4a44ca9b8edc2886dc2bf
70ec7819258dcb13763cd8441ff4dbf164764858
F20110320_AACNLJ soussa_m_Page_42.tif
a03427beb692cada66efd1b2084465a2
5fdcac28e16254bf108bbb36b82aa0dbd321d4e9
F20110320_AACNKV soussa_m_Page_27.tif
5789d68783487df42feaf03c09cde0fa
79dfc63252a5face80ac5dba2057a299e373099f
F20110320_AACNLK soussa_m_Page_44.tif
50addc0c120350a05be55ca65cb86b0f
913c895d19b2f9c1e41f9e6b2054e47d7c5309e8
F20110320_AACNKW soussa_m_Page_28.tif
eb45d571baa97771fbf046ee5e569238
142a0c0ec7342014c18d995c773fc9fbeb9d5279
F20110320_AACNLL soussa_m_Page_47.tif
271b2af053faf12323d8e7644e14544b
c7e23bc0a007bdce163cc0303fe940d6e89c03e6
F20110320_AACNKX soussa_m_Page_29.tif
50587bb9301b4228060e073f1f25aac1
54c16ed254cbe002c97d0a99adb44e4fb9b66673
F20110320_AACNMA soussa_m_Page_64.tif
5ec27b7f9e2b381d660b97259d641495
b6594070cfff3f7709d22bc0411a18321a842f71
F20110320_AACNLM soussa_m_Page_48.tif
cf486e665c15f82319ea7f293981fbe7
1869996824868b0bbe1b9572b74cd1ac7bf2a042
F20110320_AACNKY soussa_m_Page_30.tif
f281d08c3ad73a5de8c34829125f5166
4feb0d0df4c2cbab1fd70bbae487d5aa36b28ec1
F20110320_AACNMB soussa_m_Page_65.tif
a30d9582322e10ae575f145e0c95b481
7c534f0e26e46297a5bcae59a9999b97f9900e5f
F20110320_AACNLN soussa_m_Page_49.tif
5ef20898ec13373a54a39a0e57f57cda
5bbbcf8aebbb44fc6d3cf8e31b3031ccaed70b9f
F20110320_AACNKZ soussa_m_Page_31.tif
1e451b8dc23b709a02118c500a2b9d25
79ba83b232a2a7994314c36c80cd363426eccc24
F20110320_AACNMC soussa_m_Page_66.tif
10d1ff8cf3830a5bb33d64b42bc1124e
55ab3f9b6769f509580fb296621861819be62a7c
F20110320_AACNLO soussa_m_Page_50.tif
2ec3f05120308cec3d2826e279d77c7c
abd2fb86300c69f057baa675f8235c6439492f95
F20110320_AACNMD soussa_m_Page_67.tif
6d01190a0cbc1394e9aa04f843305abc
f66c3983f0ff52ed3ad8caa22455781365b9d1d6
F20110320_AACNLP soussa_m_Page_51.tif
eea3eb2fffa2fc6cd5b9edbd763f7118
ba97d44ffd73842d215c86641145b1e2c3e27e57
F20110320_AACNME soussa_m_Page_68.tif
43834a9b1a952726cdca855352c68880
68f4e9fe806a1ca362a1e0a7c68fee77ec795e38
F20110320_AACNLQ soussa_m_Page_52.tif
969f716c0a5fdeb507aef7dd38aba188
6ba85af8ae4fc68d8a4d9f64cb85fa87598157df
F20110320_AACNMF soussa_m_Page_69.tif
4625a2feb669437f7e64db4bf5d492e1
32d21cf085fdb8552442098af8a63448c45336a0
F20110320_AACNLR soussa_m_Page_54.tif
39615464f75572604be861b9c333f1f4
58772efd6868853a34a6e1279df3a6acac78225d
F20110320_AACNMG soussa_m_Page_71.tif
9ca9f1e1d7793d95a137ade06527b216
9f9692ce5f316b2947d8f791b20f5a3b61cc9d2a
F20110320_AACNLS soussa_m_Page_55.tif
f011e4b26a44163263212b5bda96ab6a
21d624b7d264d36846160b0c3ddea544cd0ada1e
F20110320_AACNLT soussa_m_Page_56.tif
88ef3fa35e5dd036ae9c3305160219f2
11d50bb018e4d4c802ec17fe0da8c476a5240a05
F20110320_AACNMH soussa_m_Page_72.tif
47231734ea51764ba4a98debf6a85e46
3af0672836761e89fb3a8f175d1cb470e78b8468
F20110320_AACNLU soussa_m_Page_57.tif
ae19139819a12b47b308baba17999d1e
68b2bf1e0cb051af0b5aa8d590f09782fbd99aa3
F20110320_AACNMI soussa_m_Page_74.tif
a669abc7ac85cc63df17b8836d0e7ec8
01f814bfc2f317a588ea29d0e81288886d104446
F20110320_AACNLV soussa_m_Page_58.tif
d7a6f7e1c28740438c96c2532f66b298
fa411daf777661137ee0f488a8190b5b0389368c
F20110320_AACNMJ soussa_m_Page_75.tif
430b4ed12815e838e74f83c078c255e9
a9fe47d599bd7f282499e254149fac5554fef14b
F20110320_AACNLW soussa_m_Page_59.tif
426537fcb1485a92e071ab6a62fd1a8e
6d9e9b1bd120ca500442ca578604a1f926eddff0
F20110320_AACNMK soussa_m_Page_76.tif
52be14cf5cf9af68ff19eb075e330395
2e44ce581bfa4aac0bc37de510b3319adb674717
F20110320_AACNLX soussa_m_Page_60.tif
6462910d3be0f5d44bfe8938fe0ecc0a
9bab2e788280558b8a5db09b31e0798c7cdeeddf
F20110320_AACNNA soussa_m_Page_94.tif
332530e13386d5ef67cd80cf3a61f509
38679844ba7e192e3c76ee493dc73e5a163ef456
F20110320_AACNML soussa_m_Page_77.tif
c0848161496ad814ab46a827821cd1ad
fa4e3e22a933a345d36a1ba69682ffcde100a085
F20110320_AACNLY soussa_m_Page_61.tif
6a3aad7ec9f21847171789d3387b218d
cbb4b541ccc018eac126b8ce430f66739fb55d9c
8444 F20110320_AACNNB soussa_m_Page_01.pro
f2fcb5c97a9ea795ccd03c46b754c277
79a9e4a42b04257733e71b8f10772d63818cc749
F20110320_AACNMM soussa_m_Page_78.tif
169994759b46f8d5807d26239ca78527
1b6b1d1b7e04b6abb0af96279c9bfa7e7764b598
F20110320_AACNLZ soussa_m_Page_63.tif
30d4b19c4b02d479ea6d86acf73adf0b
c91e9a0664ee954ef1ad9adf896f6a3788fc81d0
1251 F20110320_AACNNC soussa_m_Page_02.pro
e9d0115bf60835c8b4a05e3ea1c94531
43e94f0205c9a3c50318ac95de698ec13f746a74
F20110320_AACNMN soussa_m_Page_79.tif
cd0e51068bffe8c7a811884ec2a8b4b6
569c87945a1d9a946e46a2671c02c5e7549ccc2f
705 F20110320_AACNND soussa_m_Page_03.pro
9f649efef17a75fdb8f11157cd0e70bc
4333798ca0c26c8c56d81a11da1cae754ba7b3d9
F20110320_AACNMO soussa_m_Page_80.tif
28ba5d86e481841c619c76a5b7a9fd83
bb7ffce01ffa453f111eb7943107e481710b695a
43825 F20110320_AACNNE soussa_m_Page_04.pro
525f4cce9643a494fc1b7b0bfc6d457d
5d9a49c4429863f0f3686022fb018bb90ac550bb
F20110320_AACNMP soussa_m_Page_81.tif
45598be8219277913b393578c0d7ce2c
625ef5bd1d9b7de84434bb73c3437a06cc389fc9
32537 F20110320_AACNNF soussa_m_Page_05.pro
24cbe2d1386ed1070f4b613a05802ed5
511cb39916912eb0bd37726e239b2c29b27184b0
F20110320_AACNMQ soussa_m_Page_83.tif
581c03b39ef9d235d8d150b800c0d9c0
bb04dab771f2c3a9892927b7c4fa129bd3274654
36474 F20110320_AACNNG soussa_m_Page_06.pro
1b5527367577291e7c88dce1586690a2
1390da3cf15d29a801c89124700e28501c71a67a
F20110320_AACNMR soussa_m_Page_84.tif
a74c8d28208f7a8b999c8a0843a662f3
6f91b791a69108d5d36959cc8b12100aca35ff0d
22772 F20110320_AACNNH soussa_m_Page_08.pro
ca08d2d7c8a31cc92c353c6bca35c4c1
5dbea78660858d11f542f3526489c01c2e3beaef
F20110320_AACNMS soussa_m_Page_86.tif
f625ab9bb453b7f7b2cce9dc1eee2b96
5faaae90b5af211629b5ff2b09590c624afc8068
F20110320_AACNMT soussa_m_Page_87.tif
2fb82f5b19d340e8a28eb7aa586e6a36
1edadbac0376ac96263103825e1721dd375678fe
47632 F20110320_AACNNI soussa_m_Page_09.pro
ed345a936cd318d1bc20a7ba00adae4c
8310a2194b84dc1c8f5386745a33f7246d0e9dd4
F20110320_AACNMU soussa_m_Page_88.tif
30021b4df16809f1640c4f520ace590d
5018b710dc988152999b792ac7a10a1d7c5317d5
57273 F20110320_AACNNJ soussa_m_Page_11.pro
356f71790dd4edfa999e9d82c607656a
0491d1779ff1b6c33b1baeb321ccfd8b99729132
F20110320_AACNMV soussa_m_Page_89.tif
f0e9b6658bfc712071f5709dcc55dfb0
e1b31173e309be3d9c726b7eb18ee2fdd25a3667
37737 F20110320_AACNNK soussa_m_Page_13.pro
1e700c1a498c8a4e402dc2f3d1593040
896cf7cde2c0e57d26a9bc58b859fd2a5840bf48
F20110320_AACNMW soussa_m_Page_90.tif
2876e11f7905fa78b779088cbf3ef0c1
48686f776ebedae5039693eda9689091bc279ad6
43513 F20110320_AACNOA soussa_m_Page_30.pro
01ab597fee28a2f1fad3a5c1f5c56694
ef26a75c573e0b962c7b978b1948c1d87005d685
54033 F20110320_AACNNL soussa_m_Page_15.pro
7d3120ae4cd019bc36cd7aae13dba086
14f718d736cdacdc114144f0196ec83dc81b49b2
F20110320_AACNMX soussa_m_Page_91.tif
b506a031ccc4c47f0f7f8e1ffbbd1c0d
d209e464d8e648ed6fb11d8fa77cdc8e6ec8474e
42661 F20110320_AACNOB soussa_m_Page_31.pro
ec158e813852dafe36fb0d61574ffdfb
c821466fd910bdab9f0c599ee4ca8d17705fa727
56779 F20110320_AACNNM soussa_m_Page_16.pro
356e78aa852a3c0867439ad912b26949
9176aea866cfec2c615abb20a7831c9768e9df61
F20110320_AACNMY soussa_m_Page_92.tif
e456fdfd6687e1a6745f2557431ec7d8
2bddf0d5a94689bb909deb879db42fc56ab0f6f0
42922 F20110320_AACNOC soussa_m_Page_32.pro
57c3a0c658a1219dc9aca49d0321e25a
6cbf1293c00925109f0de4436dc0fc3bc44ff6a3
36973 F20110320_AACNNN soussa_m_Page_17.pro
0a17cf18beffcb8b710c44856baea139
5ab06b11fd1fa61c8b73a6c30c8bac1dda4ab750
F20110320_AACNMZ soussa_m_Page_93.tif
d9c496b3512d9e07892fdecdc5e00207
03dd2e42487be3b4761be19cf2b33bdfd216dbc3
31262 F20110320_AACNOD soussa_m_Page_33.pro
e0693709a04b7fe6381c731a573c0350
7bafcb1f98e628a3a7afbbd63262b6b51106f2ad
41927 F20110320_AACNNO soussa_m_Page_18.pro
6e14dec32273349b1d7e18bd871f7543
5ee779bd23e2c81c307e1acd38a7946e1df521ee
41702 F20110320_AACNOE soussa_m_Page_34.pro
899206326bfb543ad31e8a91dc3f2108
3656ca44c3d32683ec9e8d4f82083e3c4315f4ab
54987 F20110320_AACNNP soussa_m_Page_19.pro
02115c42483e9c0d7b9f1615a6d19bb5
12cdc5611b0c8396a40230f6d0998f1c0ab380a5
47747 F20110320_AACNOF soussa_m_Page_35.pro
45597d43ad6b48cccaec954b946f4125
0553a4bd0c4b07dc93e78eac9db5eb6d576e97af
52466 F20110320_AACNNQ soussa_m_Page_20.pro
c177d73f856b57ed77ca0dff404eda06
eee4bc78d91fc59230e7ffd97ca0b4bf84498407
43314 F20110320_AACNOG soussa_m_Page_36.pro
5e7e888c2fa9015926d008827c3aa8aa
3e2b6bc42369cda77692cd61ac2666cb7b0227fd
54481 F20110320_AACNNR soussa_m_Page_21.pro
1899969adc7f485e7d450cf4b4ed985e
73d77404c402512b57e56165156cf72335e171d5
41426 F20110320_AACNOH soussa_m_Page_37.pro
a505752f87c37367540c6b71573201f6
4b6fc9dabaade5fe752b3e599b1fa24c566512e5
8452 F20110320_AACNNS soussa_m_Page_22.pro
53aa52cec12ee3151e2f2e1bbb5c4482
16b40feb6bf84bcb968eb76e95f7328ba03d3915
37680 F20110320_AACNOI soussa_m_Page_38.pro
d34163697b223af6cca117973b733c53
b727fa17fa00179373f65aac8c088a8f8bb983c3
35336 F20110320_AACNNT soussa_m_Page_23.pro
09be993b20d0534cbe6cb1e1da2df776
cc9a623ed5d2563c367411e668f6c78e3ec03bfd
50292 F20110320_AACNNU soussa_m_Page_24.pro
47d7e71aa900519145014e4c07dc5531
aa366599b088d4664ccdbc90ae15b828c044aaab
31254 F20110320_AACNOJ soussa_m_Page_39.pro
b031786b04224d383347d740407956e9
f0d52b0238df74003f87e620ec70c8dd5af14dda
51621 F20110320_AACNNV soussa_m_Page_25.pro
6105e01ea3d4e85f1bab897b0a67e2f7
0ab48263c6e85c19eb63a69542775a68030c8ca0
39001 F20110320_AACNOK soussa_m_Page_40.pro
2e982fbf9480d7e213b55e127dd85a48
835253f79a4a130acb4892d183e9fef6fcb9d2f7
31315 F20110320_AACNNW soussa_m_Page_26.pro
bb586ac58a1ea6896cb2b0971ae85a02
948d42e1f8079cb3acc42dd8829a81580c38128d
40604 F20110320_AACNNX soussa_m_Page_27.pro
4435ee8a3246cfd13851d8c272fd58e3
b11a791f118f8fb9a6e618c91076a5a5f612cee2
37263 F20110320_AACNPA soussa_m_Page_58.pro
c2a7cf53e4595674dbde52f354bc29db
8009bb8ab3c63a15ff0fdcbe7d105fbb61890a7b
34392 F20110320_AACNOL soussa_m_Page_43.pro
efb9c522c097a77714017c9d6cf547d5
aad3e8ec1e286b16d5c4fbef77acad3c461898ec
45964 F20110320_AACNNY soussa_m_Page_28.pro
aaeafaa957ac452ee018610fb12f3829
134baf69f2d64e3f92ce91a69c2acc61fd835a5d
50491 F20110320_AACNPB soussa_m_Page_59.pro
07772d58488be946c5400a9612db9fe7
c3315b325dca05e1d2768d408d5dd2a8f6410658
39038 F20110320_AACNOM soussa_m_Page_44.pro
6e85bea5a63e49f564810a2680a8f841
418448b4d01c419cf9a60391d4c54ed4240b764e
35738 F20110320_AACNNZ soussa_m_Page_29.pro
788c772ea43a0d6ad9b4c5b7d635e4c8
a84e4057f8fec11e564af1c186e069e837a8ae91
55765 F20110320_AACNPC soussa_m_Page_60.pro
b3deeb8f79b758135ed295d8166e9132
074dab1601ade6aad92af857eaf663bf335c2a24
40714 F20110320_AACNON soussa_m_Page_45.pro
ecb433dfde4861806350d953ff9f03b3
b02b66ea25ed0fdf4fe70aa9362498e141c52cca
6373 F20110320_AACNPD soussa_m_Page_61.pro
a09f4af9d2a78273ff768f385190c790
aba271fd6d2a04af32426a1bb5d8abbc4083456d
43297 F20110320_AACNOO soussa_m_Page_46.pro
9a26675b0e5b2286c0a04dbbc1caad26
32a9ac12d4dc77ad69e31456241af2495969711f
39864 F20110320_AACNPE soussa_m_Page_62.pro
b7e382c6d59a6b0c71a57ef39c6cf029
c2ebe535241a1ad7539d76806bd5ee8d24bf9e4d
33225 F20110320_AACNOP soussa_m_Page_47.pro
cae154b638d2c5debf5b84f87a29b98a
4376cb5a0ece6bd2aa6e6850f8814bf84e5d8fa1
37213 F20110320_AACNPF soussa_m_Page_64.pro
616329b41c90bbe31643d17af3c7db47
4ea40465b56cd4f5b768ca671695db8ce87f1941
38092 F20110320_AACNOQ soussa_m_Page_48.pro
189279a1a77f9cbea603950aa3ef5420
c636ed631f3ab230a82e96f50903d78bfc53980c
41013 F20110320_AACNPG soussa_m_Page_65.pro
9ab8ae4a6778b2fb21393018bb881dc2
c33c53ad04bdf718eb00101c72d2727cecea22d2
34330 F20110320_AACNOR soussa_m_Page_49.pro
4e27bb52a103f27f63790be5ece978ad
05d6b3fc2943a4a421438fa0cee452427df4393a
47949 F20110320_AACNPH soussa_m_Page_66.pro
4b01085bd53c40393814f95e046344c6
1ae26bc3006f621634aa8ac3d959632b2e9c0cd2
28199 F20110320_AACNOS soussa_m_Page_50.pro
3f7d0d2e978c5b1297568b201abce411
81600bfd79591f1f96abcdfc7b8b77e15a5bc948
42951 F20110320_AACNPI soussa_m_Page_67.pro
fa1aab8bfc8af576d72bc99ef6c01c79
9f26d3be23eee02bd1a6926fcda40fc9ba7b1b90
38695 F20110320_AACNOT soussa_m_Page_51.pro
8b0f4dbc0f947a4433da5694c402233b
963c5edc742d46cba479fb57e60cc67b89820144
43201 F20110320_AACNPJ soussa_m_Page_68.pro
2561f8040f945fedaa8f545895b42fa8
37f762354d59d16a74a9be429313052f7b9b9ffc
45694 F20110320_AACNOU soussa_m_Page_52.pro
9f0025bc457ee097f3591d2e78996b05
259127890622b994e3d29b553b5ccab4a1908979
37248 F20110320_AACNOV soussa_m_Page_53.pro
fa0b6388f793eaf850759705c4586d56
cfd766b05b4382e0653c39ae76ff943141173b26
33875 F20110320_AACNPK soussa_m_Page_69.pro
5d72f03d68a0be4ae7504a0d060bf91f
0354f24744b8e79a5eb3148ac7d99ea9c90e0d90
43105 F20110320_AACNOW soussa_m_Page_54.pro
12b65046fe26b0ddfcc4918b8791410a
1c590393340b183173bcf6c937c6e151e284e1c3
F20110320_AACNQA soussa_m_Page_87.pro
8b23ebe5534db17fbeca99ccd3cf0bc1
dea83e7d705338ff60b17d5971ff13b7ae58589f
36509 F20110320_AACNPL soussa_m_Page_70.pro
03bf184b026efbc46b2397943266f659
1a304601efc45b22ac9d810a11381ce4a868eb7f
46646 F20110320_AACNOX soussa_m_Page_55.pro
7cff82306102d91057391153fd046403
137784c5c4625e2bbcd940afe5287ff0679e88d7
50671 F20110320_AACNQB soussa_m_Page_88.pro
2ff5c48160785e91d9a453bc1260913f
280122be395b30caa8079a4276dbd8879f6842a2
31888 F20110320_AACNPM soussa_m_Page_71.pro
5f1086d4e10b74bd43a1c6704ff4545e
76ffaa5670a915b0979dfcb3b36eddc153801745
35223 F20110320_AACNOY soussa_m_Page_56.pro
d6bdf7ed99ea66d6273ac6dcf35b7b6a
0676660652081b8450f9462bb08206e9bf79c71a
61161 F20110320_AACNQC soussa_m_Page_90.pro
5d4f7a2c458c24d5aa634ee0ad5fbb98
2b0d3da94a15bf5d7e63520040bb04bbc1e9958f
29913 F20110320_AACNPN soussa_m_Page_72.pro
a034eca0c51e3bff82e81b93ac914131
e4fe1787455ff5a6c5a51e8b1d1b08b04f2b382f
44513 F20110320_AACNOZ soussa_m_Page_57.pro
870a8b4974a954b445479d0cc1bb661e
d3a744b06a16ccc54b53fbc97c1cbee1135cbf5e
58371 F20110320_AACNQD soussa_m_Page_91.pro
ad220c628db647d18d2f4a6da9f5d979
96e2abad69ade758cb5aff69ca0986c67900b1a7
55325 F20110320_AACNPO soussa_m_Page_75.pro
29f0d693991fbc68299d5e919ba32539
d3f9d556feae8dc929044e9708e7a58c9bfc7a01
55402 F20110320_AACNQE soussa_m_Page_92.pro
ea56a28422c079109432c35c3cac206f
5a10b83eea22154ada3f8c2065f350a4521636de
38795 F20110320_AACNPP soussa_m_Page_76.pro
69e5a980c6742bff3db424f393544cb7
1de66161e616f90224105342bc8ce198e90b2fa2
42599 F20110320_AACNQF soussa_m_Page_93.pro
18951647f72cb0e5e96d1883bfa5a24b
da8e37e4be8a9633bf7cc4b225f4422d35f00163
30343 F20110320_AACNPQ soussa_m_Page_77.pro
3eb6f3f76301e32ddbe7dda52dbd84ff
e84360359afe3b6ff2d56bf35d5f9ff824eb776f
7807 F20110320_AACNQG soussa_m_Page_94.pro
b8a2f7fff3d5130d1f734fde9e4e66e8
97ded8bf3c8850022ae8acc701743f9903c54442
38383 F20110320_AACNPR soussa_m_Page_78.pro
c632db29cf73b757c268fdac708f8119
ceba1c93c4fb23c3bd6074c4c37273293431c040
464 F20110320_AACNQH soussa_m_Page_01.txt
2915087854b73ec320a607176a5c87a9
19467bce9bde0d6673ead2663272d2057c4d1b12
34670 F20110320_AACNPS soussa_m_Page_79.pro
b0533a25856bac09f66a8aaae86cb6d6
10dc499ec7e659869cb0e2ed2c3abdc37bf8e8c9
117 F20110320_AACNQI soussa_m_Page_02.txt
890bd57d0c5237205fb3c4c037efc120
0766fe6cab140358b2efe3f232c0f6ad85654426
40433 F20110320_AACNPT soussa_m_Page_80.pro
25ab75098785c66a5cb6a76648d8d5cf
3c6a6a6370d186fe2b4a300b62cb9ebd3358f418
45 F20110320_AACNQJ soussa_m_Page_03.txt
024d45fa876cd2c8f9535121de5a1370
d6fc6c2894d7e6e9ae9687abe8ddd76d169d9b35
54336 F20110320_AACNPU soussa_m_Page_81.pro
c4ecbf3a30b2262ded1afd525d681ce6
ac8376bab2c3550c8ea5796c507724a531d29cb7
1778 F20110320_AACNQK soussa_m_Page_04.txt
f7dbccf7e464d1a36fcf35c155fd57b4
1369b829b6f0e39ee2623295257c2497bd02280e
29434 F20110320_AACNPV soussa_m_Page_82.pro
15715a7e22457d2302ae2d29c1bef553
39116e1df2fe8eea1e256da294db80d03e8b8c63
43030 F20110320_AACNPW soussa_m_Page_83.pro
0f4906e0c4d9d2360c2446246235d2db
2cb085ec43b0d273534c854ca710d557d552747f
1321 F20110320_AACNQL soussa_m_Page_05.txt
87b1173ba183b98447a823fc50635295
234139650b1eec1166118989f5b7eded8e390dfe
55699 F20110320_AACNPX soussa_m_Page_84.pro
454dfcffa7d358f272457c198bf95f42
cfae992c7d39f03143f3397c3ccacd8b57352e10
2176 F20110320_AACNRA soussa_m_Page_24.txt
f7ef92ee6004fe2430cece5426004e65
48df7621498a762d9da4febe055e1ff2608d2d3a
1522 F20110320_AACNQM soussa_m_Page_06.txt
c41e35a63332617d0c9434b5fa1c2897
0d25fd9302982dfcebda9513086bd17708c301e7
56424 F20110320_AACNPY soussa_m_Page_85.pro
3ae1a95ac9cd5b010d0d5a899f7e4326
d02a98a398ad2f8855af38bdd5286c8ce0949dba
2035 F20110320_AACNRB soussa_m_Page_25.txt
bb50b8a9a01db77721f0af593f6ecc04
cc6d3b8785f22df50ae37c10bd6f48c3150344f2
182 F20110320_AACNQN soussa_m_Page_07.txt
5df63202a57bef30bcd01e7e3a325c59
80866907a11d429ec928a0f655920df256927ede
54759 F20110320_AACNPZ soussa_m_Page_86.pro
c45a710048633bd0eb59a7afbc17ef40
eb66fdecb8f6d28ae23cb6627ea4ef0b8c465a4c
1629 F20110320_AACNRC soussa_m_Page_26.txt
055edc0235db17086dccef56f003224e
d17fca8df4c8bee3bfc48dd869948f3c13e4f73e
1084 F20110320_AACNQO soussa_m_Page_08.txt
92bbdbd169aa4e3379f18d447eb0972e
2ff826b10a9b821267b0563c93903d3b31ae5bc3
1757 F20110320_AACNRD soussa_m_Page_27.txt
87d7457f084e321eef8d1a28c64345cf
e6adf7f07d2066cc6bd5394690179bc977d91726
1951 F20110320_AACNQP soussa_m_Page_09.txt
e75bc0500be5df97cf9128a5f959cf60
a7351664037cf11eaa15348fafa284749316e143
1864 F20110320_AACNRE soussa_m_Page_28.txt
a840937a1a7c2635657a03b8359742e8
2703800184336f05728e6758e89a89aeac61fe9c
2244 F20110320_AACNQQ soussa_m_Page_11.txt
6be8176e529df41988b15c842a8ff897
4c09c511535f0e961592d2f9ffaa242d6bbc76e3
1574 F20110320_AACNRF soussa_m_Page_29.txt
53a09af2ea40f6fa8c26a5439e7efc3c
887c6a1744a36ebfef771c50fc321bf6b9fc0217
2126 F20110320_AACNQR soussa_m_Page_14.txt
fa6e5d9a6226fc9814c2150a5a839112
04d030f515bb3edba367c6a940dbeb4bde787e46
1827 F20110320_AACNRG soussa_m_Page_30.txt
97319375b91add0a88c71d75ccc96989
9a0c6c62e3950c1930a1e8291924a4e62ff71c9a
2215 F20110320_AACNQS soussa_m_Page_15.txt
67f4ea693ee23385b30f66dd34466cc9
1d3e1e9a4f03c84732309d2972cfacb63e1e6eeb
1885 F20110320_AACNRH soussa_m_Page_31.txt
198ac3adbf5b7a4b6e1145e07cc948d2
78a9e2deac94fae4ad46316528cae210d08d268b
2234 F20110320_AACNQT soussa_m_Page_16.txt
5f88e3e552938f97ac413b7a4c651daf
5d5a970b1219bfba029e3dd6d7b4d66250c790d6
1786 F20110320_AACNRI soussa_m_Page_32.txt
bb4c810e18ca94e4887f441f71e89183
4bde498bdb2297c36e6da30ca9142b4dc1276cc7
1714 F20110320_AACNQU soussa_m_Page_17.txt
b6bb491aef6c7706a408090bf1a9275b
b167d3ccd3255c6488afbacbce29fdb450cbabfe
1494 F20110320_AACNRJ soussa_m_Page_33.txt
ecfdf61bf06cdfff54b5c4a32fb9972e
a47fd1ff580a3fa20d824fafadc737f1aad00bb9
1994 F20110320_AACNQV soussa_m_Page_18.txt
8a80963d2a39edc92bf3f53e38ae9bcf
80ad149179239ba3567b8884424af9da377bad05
1854 F20110320_AACNRK soussa_m_Page_34.txt
a855ae94b91610c11109343dcebf68e7
e72161ee3df423557a744b5ed730486d147ad4bd
2182 F20110320_AACNQW soussa_m_Page_19.txt
80db9c71caf1417b31248fc240b6cf69
8961f93908ec8ce61fd790293551f3ddb5c2b7d8
1913 F20110320_AACNRL soussa_m_Page_35.txt
39157d7b9643a7c12b5ce5ed41dfdb1f
83f4c08959204c61ec0e93c26af36db3b942b9e8
2111 F20110320_AACNQX soussa_m_Page_20.txt
914a1f1223879519efcb78edcea36d97
a107d59a2ddd7cf75eaf6f5a749ddd443c47dd41
1588 F20110320_AACNSA soussa_m_Page_51.txt
affc269ac415bb4dd2c2809cffd9b790
a85b1787cd650f2a75a50f5dcabf293560b28ff5
2173 F20110320_AACNQY soussa_m_Page_21.txt
5a62cfe26861b26130852ed3f22822a5
7d408cd43eec390c80effb72f734a6820991873d
1920 F20110320_AACNSB soussa_m_Page_52.txt
d4d01527f418e0d4265f29c18865ffe2
9b6d85df0ca57b2ec2e4867d602b7cd550be5c9e
1824 F20110320_AACNRM soussa_m_Page_36.txt
c7ec034d00e90bb645634b831c796247
18739dc2f1eaafb5344de6f65751e7e0abf8ae4d
416 F20110320_AACNQZ soussa_m_Page_22.txt
53a3f8638c032e899d99b52be2fbd85c
c20e032ca80b53bbc1bc199419a7f3bba12a2b28
1669 F20110320_AACNSC soussa_m_Page_53.txt
f1cad69dcaa88a579d04e4eca0407622
c9b4e5c68f3230f1ac887c7076be99c8e7365ea1
1921 F20110320_AACNRN soussa_m_Page_37.txt
3d810f4696835ae3f0b2e75ac3251e25
7992a27e63a832301473e8e1262af8f636f4d573
1930 F20110320_AACNSD soussa_m_Page_54.txt
f915e814d95ced0492bae260e0c3c741
40e2adc90e7b4a7a148477d0ed1e11d8e922c396
1849 F20110320_AACNRO soussa_m_Page_38.txt
f960c7bf87929f4492ba76152b1e4e22
94b6b10951769cc329c87c889185667409f7ba88
1916 F20110320_AACNSE soussa_m_Page_55.txt
f45a5658b0b86f9a5fd4d2c1c6705406
d83d8572e2b7f2ee4e403d841b17da92e1ed1e54
1763 F20110320_AACNRP soussa_m_Page_39.txt
2e29796af7fa913876fe7ad698a68763
77f19c55c53ea15bddad08f8c5bfc506d6260dcf
1783 F20110320_AACNSF soussa_m_Page_56.txt
4bc0cb2b56f1febb2fdc281fbdcc348e
ebc805202ec25aa5df4a8d27ab33871349c454ae
1829 F20110320_AACNRQ soussa_m_Page_40.txt
427f9b6b4904ca5048d0027a61f40f24
dc03394f83f35ab0fbc631288997aac1abb5e8d3
2012 F20110320_AACNSG soussa_m_Page_57.txt
0859d0ebd928d3928cc277922807fd44
c8e8e0a5bed11d2ef85c32e3f6968a10979244a9
2022 F20110320_AACNRR soussa_m_Page_41.txt
c5105d1d3e7dcda84d0a1f2e3e5a6272
b5ef1f3a6956be28d412f6f74d9eb9b2693e14e1
2026 F20110320_AACNSH soussa_m_Page_59.txt
f3d8185602dad73037040a3216660979
4093282390f8059799a8965d23a5339d46b92ad7
1880 F20110320_AACNRS soussa_m_Page_42.txt
e4a0ccc47381df0c9b9efaf9092b600c
e62ce5770fcc6c85d3ae7872d65f52f16ab909f6
2191 F20110320_AACNSI soussa_m_Page_60.txt
18f3ec80e739d1623aff162f08e62bc8
1b56f8e95ba8d1de15f1d00828ae0516603f8b3a
1421 F20110320_AACNRT soussa_m_Page_43.txt
8e11646daa169f85ff3c0f1b432bd5b5
fc63cd19f1c8d149b1fa668311368646a6180b8f
256 F20110320_AACNSJ soussa_m_Page_61.txt
b9c19b46b68ef8bb15a2673a413c7aa8
5e433101b35d56128cd0dddc712d49b9f4f9a5f0
2043 F20110320_AACNRU soussa_m_Page_44.txt
13091bbbfa99042ce20c356b0cdda716
da834475240c00b60704441e0d81f98a32e01777
1822 F20110320_AACNSK soussa_m_Page_62.txt
088fe074498426f2b48a362925497628
cfbfa808b52d88b1ffdb233594b4ff4edff66e57
2163 F20110320_AACNRV soussa_m_Page_46.txt
a550b41b453eded505f5524a94982e77
d97c2fd87a513479117721008cf060b3f1982614
1877 F20110320_AACNSL soussa_m_Page_64.txt
c4661423f547786e3653c1d6b57f73f6
54f2f080f06dc3846f1baf327095d6db80c759a3
1749 F20110320_AACNRW soussa_m_Page_47.txt
fac38e5d714ed94db866fd7aeedee159
5ae18cf8ccefc801978efc88321e27ad2034b503
1176 F20110320_AACNTA soussa_m_Page_82.txt
321c421193476f5bb0f9a18a8602d03c
c50a928c7302d2f77149b46ec2bfd2ac855e7601
2077 F20110320_AACNSM soussa_m_Page_66.txt
c96d9750c90c9377235f9609f7972203
c7ce41e55228378a3724f567df9e11ec7056f1df
2089 F20110320_AACNRX soussa_m_Page_48.txt
3379fb8841e66496f1f987199cc70150
d9d6b9c655c868e1cba7e726b07f30992f86d807
F20110320_AACNTB soussa_m_Page_83.txt
287c25dd0c0d40fd5ccd13be2b946612
c75757fe0697770d6317430ae8275b58cdbe522a
1603 F20110320_AACNRY soussa_m_Page_49.txt
7d8d87f7914551c4436634d697b1ac37
4c63cf1ef8560f86e3dd245636b4d67c6b019be9
2198 F20110320_AACNTC soussa_m_Page_84.txt
e9bfe967440e6d3d48472f2ade780c69
4d84b0d0f84f82156fdee398300463413a9f5620
1963 F20110320_AACNSN soussa_m_Page_67.txt
3380f0130c69b09cd20f1c20f54bf9b2
c2fc141c5c0f5516ebd45ad6d9c254fa509daad1
1348 F20110320_AACNRZ soussa_m_Page_50.txt
00c7d5351dc39573592493eef9bce54d
ca0791b9ab2a6a81effd99baa8d995ab00669100
2216 F20110320_AACNTD soussa_m_Page_85.txt
1c66f4a02f5b4e51b1023e0d24f1cc48
3bd7572fbb655ab3807918ee3c812cb118defa40
1731 F20110320_AACNSO soussa_m_Page_68.txt
e15d5aa4f4005910a75a326829a52750
8ee11536d075a1b8f2feddfe1e8b048c7c77a134
2156 F20110320_AACNTE soussa_m_Page_86.txt
b7f780039450f7184c123fcc5ddec521
e47f276236820539caa5ce72b141748a1d0521b4
1548 F20110320_AACNSP soussa_m_Page_69.txt
a12e0995f9f1179d5f946e8369486812
ae6a5cfa414f42392e10a66e57b62904a1cbb142
2037 F20110320_AACNTF soussa_m_Page_87.txt
51362e127e57927ac8d1de1ae9522b7e
973b2ac39a15f4ccbacad2bfa5ba003a0bed5eda
1566 F20110320_AACNSQ soussa_m_Page_70.txt
43133e53ede9ebb53eadd7e64e9cb821
e82a4c0ae92b7f6a096d97abdda50734fa71adda
2040 F20110320_AACNTG soussa_m_Page_88.txt
e9a1ec0b3e6d346dd1577a1adea3f72d
6bb4505ef7b76101b65efa876c47061568930bda
1378 F20110320_AACNSR soussa_m_Page_71.txt
96d48724f63e05308c255c8c058564ec
e544eb7a91e37fc2b8396c607314649886c04904
2495 F20110320_AACNTH soussa_m_Page_89.txt
083af51d00b520fa2c9e515e9167617a
b59e5aadc46aa4731893025d1b793970987ddb82
F20110320_AACNSS soussa_m_Page_72.txt
ff18926f881b06feb6e88db230d1c53a
b2376fe8a90efc951de4be1f06e09ea2af7959cf
2467 F20110320_AACNTI soussa_m_Page_90.txt
2570791365317c205cc1723ee7784b6a
b0e51dd7217c03e20cbaf38c3d10cd484408f9f6
2031 F20110320_AACNST soussa_m_Page_74.txt
2979192423b5b23ff31275c6447bffea
83b4c8a278aa05f23ec46586438adae94baa60ff
2180 F20110320_AACNSU soussa_m_Page_75.txt
b43ac039ce849a6e1aecb958a5e5eca7
6527d6d21dc4f68d97e2f80cced7603e45a0d5d9
2343 F20110320_AACNTJ soussa_m_Page_91.txt
3c1e8e7c627ade12d3d7a5d8c09df483
e512f4b82dcca37d94fb8e24828f486d0ba70002
1694 F20110320_AACNSV soussa_m_Page_76.txt
911a7ea24429d16ff14344f10bd46f5b
0271aa6d6955c5670989dbe97506161a23c765e3
F20110320_AACNTK soussa_m_Page_92.txt
e009acfe9db6457c062e1f1cba3d2203
29803ff1bf71c12b09096546335c96229e2587a6
1314 F20110320_AACNSW soussa_m_Page_77.txt
708bba44056bf3600c7172428c0157f7
c8f9637a8eb664936eaff79f1d5c51bed9479fa7
1741 F20110320_AACNTL soussa_m_Page_93.txt
62def19c6160d6cb4415d906d4085979
b3b4fe33e7394b1834830bfdee4ed0407455e78e
1919 F20110320_AACNSX soussa_m_Page_78.txt
c9c1e457610f058c3a1201ac12681c92
7a7e184e9163f791a3aebb4be6f1421c73dfaf11
6240 F20110320_AACNUA soussa_m_Page_22thm.jpg
b81943b346af3e073fae4ecf1aefb7f3
b9a6d5e78ab6bae1ba23a50fce530b80f3e9e8c7
357 F20110320_AACNTM soussa_m_Page_94.txt
537bbfacbf8b2a30ae27e16e38b1ab3d
cd4e0b157e18d5cbfaaeb316bb519bb16834a4d4
1826 F20110320_AACNSY soussa_m_Page_79.txt
aa0d5c486b1ea33b06ff56e1d199c878
cdb2511c290ee6733b9f4d9e1cb327eeab6076c0
25330 F20110320_AACNUB soussa_m_Page_89thm.jpg
1e12fcab1e9d3a51c9b88425ea93ccc4
db6e5cb8c7d375169a9910c328031db2dc0deeeb
499770 F20110320_AACNTN soussa_m.pdf
ba92d0df338ca40b960e44617d4ebd20
b81dedc34004fccbafcdcca221f83217a2ee8530
2164 F20110320_AACNSZ soussa_m_Page_81.txt
4aba58a05e0ed62bfe33ca0c1d2d57aa
406a96328afcd0945df1c645c3e87e13c6714065
46159 F20110320_AACNUC soussa_m_Page_58thm.jpg
e8790771a0c10b8203dcc63222585c45
95f115d9dae866fbccc6f910a4cad88b4483f668
21229 F20110320_AACNUD soussa_m_Page_09thm.jpg
bca4219fdb525767eda666dd846f2880
9ef26ed4175183975aa836795aa4c883a02783bf
7034 F20110320_AACNTO soussa_m_Page_01thm.jpg
6034713d8203527509e8caeecdb5c004
f7bef7150a978af0dd5c425ba601490a945a12b7
85661 F20110320_AACNUE soussa_m_Page_40.QC.jpg
1e208686482b4a095bce50c8a59fe3fe
e43b8963c4a9b9a5615168d2098d7687ee09e452
45789 F20110320_AACNTP soussa_m_Page_23thm.jpg
932ed379e7568b7d586ffe627667a03e
410165cf71adb29621e1b89cae0b3fe491dce3e5
45034 F20110320_AACNUF soussa_m_Page_50thm.jpg
23dba55c02a3eb85fbaf85548660ec8e
cef308c57208fddb2fe0268886fe389a785efeed
73981 F20110320_AACNTQ soussa_m_Page_09.QC.jpg
c589be70b2dc24070fa919a63b7f256a
210c88660e0b384361c3182a8df20f658be147fe
82631 F20110320_AACNUG soussa_m_Page_56.QC.jpg
ad274845ea1878203e71c6e0498979e0
8e8aa46f1a5a450554904dfd0c3be7efa4647a57
107574 F20110320_AACNTR soussa_m_Page_14.QC.jpg
2b85a90cd483ab7f167e00be2e371984
13744b229f9ef83342b61223676617f98a09878e
49830 F20110320_AACNUH soussa_m_Page_55thm.jpg
becd34ab025f5995c34d9b0ec2db5fb1
d8bb99e9a286d548cbaa68ee4edbe3aac812d5ea
53275 F20110320_AACNTS soussa_m_Page_14thm.jpg
c903928a6b17689c18fba2ab7e02933d
9b5f0ae4ef254c837f55d75e10d2a2ef95d340dd
46780 F20110320_AACNUI soussa_m_Page_06thm.jpg
3b26af0556dc947916437d8218435c0c
5f7fb4534997489eb1a9471ef154bf492b790af3
49171 F20110320_AACNTT soussa_m_Page_28thm.jpg
38503689ea39e66bcfd7b0c78203912d
176f0eb16e76bc16fdf2c19f104a0a767973fa46
57207 F20110320_AACNUJ soussa_m_Page_13.QC.jpg
09fdc89646b002334cb13f3ef8350568
6a3697f08154960b4c1ac9a83c4d4148c78f12e1
86233 F20110320_AACNTU soussa_m_Page_78.QC.jpg
1752042005840acf144d17a5d989af3a
fd1455b4b2cfe868d22246a470763e58a3dcc67d
43707 F20110320_AACNUK soussa_m_Page_69thm.jpg
d7a4b7874c2e4d8fd7253a8b20a6350e
8b5407ba7bd46e6966341fbbd78c8da562abd2f0
75827 F20110320_AACNTV soussa_m_Page_82.QC.jpg
642dedc7851f41bf1b8a0efbf24b2509
217c904e1e06910f84ba508b859396272d42e883
111098 F20110320_AACNUL soussa_m_Page_86.QC.jpg
959cc7a683e41b34ca59323e44399191
85a12afd59161f2044e529c202435d593814da98
48817 F20110320_AACNTW soussa_m_Page_32thm.jpg
38dfe45592b9950e5534504698da948d
34e3120073512a03b8e5bc2629fb5b6306a8cc26
104631 F20110320_AACNVA soussa_m_Page_59.QC.jpg
1ced4952f717a1a017e892124a54dfd8
4fb9f462998b195358f962634d2a45d4a4cdd2db
17615 F20110320_AACNUM soussa_m_Page_05thm.jpg
beeeacfb1352101dfd03a89b1fb9cce8
218799a1fc78c6c47efb47c92680e5a5790abe16
43564 F20110320_AACNTX soussa_m_Page_82thm.jpg
39cd0e0537dac909c3fbf7df8de5a732
ffdfbd66434546b37775d789a9ded4affc8a6f1c
26103 F20110320_AACNVB soussa_m_Page_60thm.jpg
89abc6b4a85d6e7e05675e921e596fca
8196d7f6bacc05891b77ec94045757c7d453ed0b
20023 F20110320_AACNUN soussa_m_Page_83thm.jpg
b82a4dc7cf508d40c78e5a5787e34f52
449645189f80662969155e43d2f1ee298fd06365
84802 F20110320_AACNTY soussa_m_Page_58.QC.jpg
af8864b54eb5b085aa967f1d57fc2ef1
427cbc358fcb34e75e73ab361589cfe60f660bc9
49142 F20110320_AACNVC soussa_m_Page_74thm.jpg
4e4f187ffb25fa88ca1ebc67656205e0
3cfc808f5b8ebeb7f45ad37b1c3c39663173d18b
96547 F20110320_AACNUO soussa_m_Page_46.QC.jpg
aa009eebd16c53c767035358a50a8739
75b4da4c575cf9fda25be39dc1395cde912e703b
44375 F20110320_AACNTZ soussa_m_Page_72thm.jpg
410d0dbed18c20af828df41553158da6
573e06a28f94e8d98f0687924d641940c81c6f99
89584 F20110320_AACNVD soussa_m_Page_27.QC.jpg
cfca0e30700bff50dbdfd952c960e667
0df9af975511504312d328d7f93ba1e75fc4c707
4806 F20110320_AACNVE soussa_m_Page_12thm.jpg
5492e8c5398572bedacacf7fbb5a8a84
a06b023e0fde4fde010dfcdc2e293eb13bb69e40
106053 F20110320_AACNUP soussa_m_Page_87.QC.jpg
1c232a653f5825a8629328772db6dd4f
fb093b9ee36a81863b53e8ff3fd78604d1b43003
27176 F20110320_AACNVF soussa_m_Page_11thm.jpg
e1fd5dbaa872d1bf6f395a2bcdb9b862
69864d695d68c1cb851bbbc6a7638dcd6714cfdd
45540 F20110320_AACNUQ soussa_m_Page_48thm.jpg
a26f73a202168b819002a4b59fb3c84a
3e386e0ea004c5d1b0f6f108b52ee27c9d5bd037
51111 F20110320_AACNVG soussa_m_Page_66thm.jpg
fd7134926374f5a8ff7853ef9475b70c
755cf9b7f1c0c57a61d07826b351fb44346b42c2
45829 F20110320_AACNUR soussa_m_Page_47thm.jpg
23d4a69a7facfce5c91ad0c8289ea52b
845f187e84204f035cf7c70c7deadf22153b9c9e
99611 F20110320_AACNVH soussa_m_Page_30.QC.jpg
d2084be99fc58ab35fc62b0089ec58b4
44617fcb8feb2d6a634f6d997f48f71d9b032a38
16545 F20110320_AACNUS soussa_m_Page_94.QC.jpg
72537b9e46962749c8ea0e75f8e834c6
d696eac9ff58523d797ebd4ffddeef70fe9cf207
69579 F20110320_AACNVI soussa_m_Page_88.QC.jpg
b0b8a701c7c87fb1d3d533a141d17f92
b847a44a420ae9651ce5d28459ed05a6b5dadb24
48709 F20110320_AACNUT soussa_m_Page_18thm.jpg
0ea407247e94945b1bf625c19843a72c
5ac6d3b174f0670ad176173867c2894bbadf2f53
89312 F20110320_AACNVJ soussa_m_Page_89.QC.jpg
d5ec23abedee781bcc54caefe69112ea
6f1233ddc06996ed11ccd6087f0a4dcda8128736
44944 F20110320_AACNUU soussa_m_Page_77thm.jpg
fc33802947e21f3b9640b5b8b85018fd
e21c83573e05aa43f4237e73c9399c7237a7713f
48691 F20110320_AACNVK soussa_m_Page_51thm.jpg
a41e253ab938c8dfbcc2e00293588045
072fb99bb83d2a009322966641239966c8b6d8b6
86166 F20110320_AACNUV soussa_m_Page_90.QC.jpg
c187b6a9e6a5dd2f9c783b9a705d614c
2f343d1c28225afcdfb56d0aba69ebad172f3f2c
67764 F20110320_AACNVL soussa_m_Page_83.QC.jpg
485d2cddec1579608d9896bf3c62a45a
3903ef44813962417d02beeb053163bdd8a29f63
100056 F20110320_AACNUW soussa_m_Page_74.QC.jpg
5e957c8ba8b22e3ec72ca7c22ef2559b
8d614f6776e61c5ed275dbc6d36fc883af4d82a3
53503 F20110320_AACNVM soussa_m_Page_05.QC.jpg
1e01706f7960006537f7dbf20a285695
e250e9ddd838505ccad0b3024c85b707120a52c8
85129 F20110320_AACNUX soussa_m_Page_91.QC.jpg
f150b7473dbe6c82d7de36ec7a353cf5
0487c121c247b17351980b8ffe411e2b758a8bf7
97107 F20110320_AACNWA soussa_m_Page_52.QC.jpg
dc26c926a8e98a4bdb6e6f24b5a8ec09
0fd1a5e0e1ce586c26893bd278f4a3d5afdd8eef
20320 F20110320_AACNVN soussa_m_Page_88thm.jpg
9f53ac4f7005c38df9a3f5a546ee3d05
8044590f8c8ed94531002f696ea23522dd72a125
49266 F20110320_AACNUY soussa_m_Page_34thm.jpg
507cd69f07e1941adeb2d171381cf56b
bba999e8be31e26adf124ed9be8873e25614f204
79129 F20110320_AACNWB soussa_m_Page_79.QC.jpg
ed4ddfb096d91e22d1cb21ee054fc11d
d0b29b6fa965eb60ba754afc0e29bd02d08ca735
109021 F20110320_AACNVO soussa_m_Page_25.QC.jpg
b7d8c29aa2ff2a26a7ae5212d4024730
535c54ab3ee309a53bd0b2bebef0fb28162a2967
50616 F20110320_AACNUZ soussa_m_Page_15thm.jpg
147e08df06eb4963a8409eb79aa0e469
dafac3cdffd73fd5e3a5b3895802bdf6c6e8db85
80256 F20110320_AACNWC soussa_m_Page_38.QC.jpg
b75b702c36d7840742d9382fdc6ababd
6505ba727523d98cbc01dbef33df3589fe8b9be2
46406 F20110320_AACNVP soussa_m_Page_45thm.jpg
e8bc067b9698249b4784c6fca4906260
44524411d6df500b1d66e5629efd64e44fa6ada1
83356 F20110320_AACNWD soussa_m_Page_17.QC.jpg
caafc922f959d3d7eb6fa7795324c756
1fc1ba79e1464b0317eb3ae3ea935fbef629f75e
86014 F20110320_AACNWE soussa_m_Page_85.QC.jpg
06c72d518246a8444ab08a092c1a42f2
1516964fb752772fb040198160eadf85ae48824c
48764 F20110320_AACNVQ soussa_m_Page_67thm.jpg
cbf153716f56e3becc402d062dd07813
dd35262d18e090b486b63fa116a4397945884e01
51949 F20110320_AACNWF soussa_m_Page_35thm.jpg
dbcda84c0ef81018fc8c48f95f0f2453
62d48f2388407e7ee48d6eeb11ec7a3dd99b1b8f
81809 F20110320_AACNVR soussa_m_Page_26.QC.jpg
596ec7ebf0ccc097c50db90845cdb4ad
05dd1d10f5a0b0581a2ea03be73bd18e8f023df6
64747 F20110320_AACNWG soussa_m_Page_93.QC.jpg
0605300ae5ff599e5b810d45876550a4
f9cb35092e9803b42959be6c37c74a966681234c
25989 F20110320_AACNVS soussa_m_Page_85thm.jpg
9b3c64f9ec033e411857aeaf73d6e334
0d4a747633ce1146812538d0c48784e6d31fc130
49342 F20110320_AACNWH soussa_m_Page_68thm.jpg
844a0ac7b90a16c4fce72a880e258863
e5d942c953f16948a93c9e26d1a7280dbbcab94f
46806 F20110320_AACNVT soussa_m_Page_78thm.jpg
23c8f7e1bcf67fafa18248010cae2d71
beb3413072e46f3f239525d4090e538dd404614c
58269 F20110320_AACNWI soussa_m_Page_63.QC.jpg
f84c8407be9a1f03d792778f10b2c288
67ffc691767963e21b606e48671e796e2b6d8e5e
15828 F20110320_AACNVU soussa_m_Page_22.QC.jpg
e28c7e80da9482089218a5a8233a88e2
be47467e82ee60f47b2f5babf16c85e26e5ef150
92821 F20110320_AACNWJ soussa_m_Page_34.QC.jpg
ea6ab2ca9b6fa0dc05efc337eb51f3e2
14c2a71eaa338f9548cfaca1bb1734d5899be6db
52621 F20110320_AACNVV soussa_m_Page_59thm.jpg
e350e732d0b944f21140580649814b94
2da3034206bc0d2466b503e9adbcefd31be26821
47758 F20110320_AACNWK soussa_m_Page_56thm.jpg
cf19ee6d5ead558ada3450f90d9ee625
0d8e7a74ce8b01aa41ac493b9a5a27a8a48493f7
47026 F20110320_AACNVW soussa_m_Page_40thm.jpg
272a07ef1f2ca6af0181714e70c77b3b
1b6d98517697c7285167bbe8f71071bb364f95c2
89097 F20110320_AACNWL soussa_m_Page_18.QC.jpg
64fb510cf021c6b4fd4b6eddfa812caf
f9df53fa099c1b0364795cc5285774602b840332
93025 F20110320_AACNVX soussa_m_Page_54.QC.jpg
447ab1a6fa7ea552fec6f52a6348496f
ed41e010ff427c8951094392a64db08e20700499
47477 F20110320_AACNXA soussa_m_Page_31thm.jpg
297cdb7c3724776b97963ef550640b87
f1b559e22cdf14f0339f3649016657080a0f3e16
96918 F20110320_AACNWM soussa_m_Page_68.QC.jpg
6914c5b7a5e43fbd4a1c3bb5663bde40
87fe4d7a1ce5c4378949c372dce53e9add6ee5e2
49763 F20110320_AACNVY soussa_m_Page_30thm.jpg
6960d3282141136521a691fd0e32c5b7
9289d93340dd306e40161682dfb80327e9802b5f
91363 F20110320_AACNXB soussa_m_Page_51.QC.jpg
62ce0efd880e4720a8730fa77792fa0e
94f37dd412ff0f0ff6fa7ae31605f6d7bb0d3c4e
99920 F20110320_AACNWN soussa_m_Page_66.QC.jpg
43c515ecdd67b1ba482b2c364a799dff
ee6ee31d030d7420d37b3614af73d0c28ac57e4e
49357 F20110320_AACNVZ soussa_m_Page_73thm.jpg
f3946931c7b6a03a3d00375db5a6c45d
c0892c3912d04cd1694a8341bc321743972fa5e7
2787 F20110320_AACNXC soussa_m_Page_03thm.jpg
074ff506d389b6088f68f51856b932fc
86c5e747236b7c9067e4734e9ea9358bbf7c2fde
83381 F20110320_AACNWO soussa_m_Page_71.QC.jpg
9905fae4dea1917613e7c4c242d9a92e
29f0fc022f8fe9b9d3e38310cf4aa147d9a34002
53192 F20110320_AACNXD soussa_m_Page_75thm.jpg
29038792fc2140c39fb2b10e87f8b4f5
e329805441e70a724fe81a5d42f5c9f003ed7af4
113100 F20110320_AACNWP soussa_m_Page_81.QC.jpg
eb414d9ee7c386a85b2ea855890e0843
46c56c23034ca3997e353d1da21d392dadc46ff6
47173 F20110320_AACNXE soussa_m_Page_62thm.jpg
819b215ca1b36c2aaad44f1c2520ed3d
966ad9aa89973a4b59559d62697c4609baea5b84
44909 F20110320_AACNWQ soussa_m_Page_79thm.jpg
fa9c1f323d4e26207da96fdc27e54c89
5475ca53d6b889a4fe4cc2bdfe9f90821d6cfffd
33176 F20110320_AACNXF soussa_m_Page_07thm.jpg
b79c9d1d7dc16a9a027ef3f652f33cf0
8f98831d3d03424738a3b1d87b56378e90243aa5
98573 F20110320_AACNXG soussa_m_Page_06.QC.jpg
5a9c3153a5e90dd36e6206fa285a6e28
aec660ae9b270941c58f0a096b1644282c8a42d6
91725 F20110320_AACNWR soussa_m_Page_44.QC.jpg
4bf56346fcfd5823a354c5d3d07e97c2
b70a1665d7bfb2618836773823a5c5f179c53429
49333 F20110320_AACNXH soussa_m_Page_36thm.jpg
115e15781004435e6fa1c70f71cfe699
c2d6933af2eddcca5696a016a8b4986bd587ac73
4650 F20110320_AACNWS soussa_m_Page_03.QC.jpg
37efb21c28d860475a2dacac3c671084
a8b552cee6e00e8678f058bc7ca9d5c869e38a58
91622 F20110320_AACNXI soussa_m_Page_73.QC.jpg
afe89e552db9b7c44051d729420b2de6
717520a4d81f32b3e4c8709df03e49ead8ae0204
22172 F20110320_AACNWT soussa_m_Page_04thm.jpg
37f226e37e9cd9ba013501b49d480bb5
9566f41fd399be0651898a88e7a2f29c79e1cc62
54287 F20110320_AACNXJ soussa_m_Page_16thm.jpg
285bc5c2144dc4cfd37d1294dd6a0647
58a2fa4e73c523ddac52995e9b40b08d3d9f9c8e
93482 F20110320_AACNWU soussa_m_Page_32.QC.jpg
c3e7a5cc959bc4d9469bf0e8d58a54fc
69f99d64efe4e3855d517cf9cef07b6ee8a0d3c5
27205 F20110320_AACNXK soussa_m_Page_84thm.jpg
8a517a69dd5d12a83ba9b454194a3519
17c9be27b937c8991c88f9c48f4696d9fb34beaa
F20110320_AACNWV soussa_m_Page_37thm.jpg
fc33f93e860f2c0921bc11d41f61c841
dd2944bedca142b522e962688b6e6849a4f7e7fa
75952 F20110320_AACNXL soussa_m_Page_39.QC.jpg
440366ffe9896b8a43ef72b1bbdaa415
9f865e0030441eed571e825b65688ea2165b8966
46118 F20110320_AACNWW soussa_m_Page_71thm.jpg
120eb44fff4c9274d7f5b179c3ccc252
313a05f590695b2d38f3852787c5968df577fcb9
95775 F20110320_AACNYA soussa_m_Page_31.QC.jpg
8411fee83f0eb6d3eee6389162a71184
1d2dbd49e3dea65ae8eff29d0f743905de7b4bfa
152236 F20110320_AACNXM UFE0009241_00001.xml FULL
b6e2e79cc644448cdb92db75ad004372
054b6201fe86021662bfdf63c492bbf7911d8d72
52390 F20110320_AACNWX soussa_m_Page_81thm.jpg
0255edcc7dde6d7a2996a4621817d13f
d28bbd913eb3724c7300f7a7475ed2122189985d
75897 F20110320_AACNYB soussa_m_Page_33.QC.jpg
907edaa42a8a4bd167b2f75902cae8c1
a32674089cb20859a30b4494e6539e54b481f300
20429 F20110320_AACNXN soussa_m_Page_01.QC.jpg
be578a93c4754c78c120bdcbbee55638
7be569f5d055fd956c696a146846be124cdbc877
85029 F20110320_AACNWY soussa_m_Page_60.QC.jpg
8cbd0a8b1dc31d5157377b9c47419e84
73ebff3bcdd3a17cb36448eb020dae939f23f3cf
94220 F20110320_AACNYC soussa_m_Page_36.QC.jpg
f9c7190fc3172c8de6421b4de1f36fd8
3f43744f1150233748a27a7660a5fa855f806204
5757 F20110320_AACNXO soussa_m_Page_02.QC.jpg
7bc7974a77bd47a32b8b2215ec073774
46d92d6be6509e962160aabfd6ba1c0ad000c03d
92924 F20110320_AACNWZ soussa_m_Page_70.QC.jpg
dfa2e829c6135139dfec8a0b1a7ef98c
338805721689bd78a46aa10a0d989ff707c31092
91242 F20110320_AACNYD soussa_m_Page_37.QC.jpg
af34f356f3ca3f707313dca47197a171
00b4cfe8351692dfef67e23080ae142ec5227f5c
37805 F20110320_AACNXP soussa_m_Page_07.QC.jpg
23a86ec6088b74122803126128c1eed8
0ad9745923ea580d465338599e8d3a73754785ea
102559 F20110320_AACNYE soussa_m_Page_41.QC.jpg
dba734bec8795b1c05440e02f3cbacb1
d44f3ac3c3a63dd4d5712489f03d0724b857dd92
38870 F20110320_AACNXQ soussa_m_Page_08.QC.jpg
983b63c0886c8c7526ef5651f5758d30
79143bf19d7cdf991e4804bcdce851d05e38912f
87680 F20110320_AACNYF soussa_m_Page_42.QC.jpg
bd69e2fa0502b12e30dca5ff7b567a9f
4bb838e7efc40eddd803ff0d5d249dd9a5aa7953
87980 F20110320_AACNXR soussa_m_Page_11.QC.jpg
8d5ac521c509c8e36f1991e10f2da825
e30850e713e32db0f9b77a8e22ac07a0e2ef21f2
84778 F20110320_AACNYG soussa_m_Page_43.QC.jpg
07938a58971a1b4072b577a157839e54
694fd6a69752d79926a22a4c29637e0e0d656882
10928 F20110320_AACNXS soussa_m_Page_12.QC.jpg
c02adf75a35037d5d97a09ae9938ce9e
4fab21b0b7da22d3da48b14cd04d9eddf021d565
86239 F20110320_AACNYH soussa_m_Page_45.QC.jpg
d61ebdcfc8f142c5ac2a97bf803afb3d
1b4bbde3ed20dca5b9df44f49f283ed98fae2e05
111822 F20110320_AACNXT soussa_m_Page_15.QC.jpg
c8521d3702c166f4e6623c37591f2954
177e203ab9e19eb74f1654d00866718fb0718e1e
193325 F20110320_AACNBA soussa_m_Page_62.jpg
4e7e38b8543541d214bd9c41c6ce1052
0ea1cac725d878802eccb65fd05b799fde19c75f
79215 F20110320_AACNYI soussa_m_Page_47.QC.jpg
1b6d173a68a027596d178b76351b2d6f
8106a82eebf88d769c3cc313426da27d978ea7be
111672 F20110320_AACNXU soussa_m_Page_19.QC.jpg
5e36d20ecc45fd91b54a90a438649a6a
4cee70d94ac85d6ffdc12361d238ca7899764fab
92508 F20110320_AACNBB soussa_m_Page_76.QC.jpg
45c00a52fd9cdbe86777042e0686245e
de46dc9baa4e6506272742a1b5d76ec37d3cbd22
72209 F20110320_AACNAN soussa_m_Page_50.QC.jpg
b4bccefa626bebb7e42319909185ea45
ecbdc4b4b8d24d3071cf77ee3fedeb7c532f5d1f
83242 F20110320_AACNYJ soussa_m_Page_48.QC.jpg
bfca27c693ac29502b9e8c7880e1508e
b6ce59ae02719772bb3f616cfd2fdf74b8326c9b
107426 F20110320_AACNXV soussa_m_Page_20.QC.jpg
b66af286701e9d53ffeb395449ffc0e5
34fbca9a7e1716de232231133b43ec9bc34cde1c
607302 F20110320_AACNBC soussa_m_Page_72.jp2
b3864c31d5970e5a8f70424c65be7c9e
52484445ae949d7307738469bb02ac413f7fe2eb
247178 F20110320_AACNAO soussa_m_Page_87.jpg
d4e79887062eece0ccf2bb61fd8b7ecc
179db93ff00134ae2b2ac3a54c51b3dd18e2ee53
59287 F20110320_AACNYK soussa_m_Page_49.QC.jpg
a538f178142c502324969a00526a69eb
0e399c20e24fe827d48d8e57d12d0c05a1c0af6a
111917 F20110320_AACNXW soussa_m_Page_21.QC.jpg
dbdcbfba828e713d77acab82cb3cb49c
50d9573e27934932f02954296ed805715b39b268
1944 F20110320_AACNBD soussa_m_Page_65.txt
1af1ee42804a6418575e42021bd0e42c
7d169afdd03507dcf452223dbc12b939493be2fc
37456 F20110320_AACNAP soussa_m_Page_63.pro
da0963369ca16497908df822572c30f2
f6dd9a97aaba485c599bfc39a3ff574d2c64190b
100046 F20110320_AACNYL soussa_m_Page_55.QC.jpg
729effe4634edd501f80a730b273b7fa
a315c0704be76f21c772df6b11436f7860d40b22
85952 F20110320_AACNXX soussa_m_Page_23.QC.jpg
04a180a38cb060b60a8ed789d6be595b
8aa7d87f1474ed99e207bdaf5035308d42b17bd1
62355 F20110320_AACNBE soussa_m_Page_89.pro
eb819fcf3b207304536098f84bc0d6f6
89eed2742f4256db8f1aedea8a1dda0450a3193d
1639 F20110320_AACNAQ soussa_m_Page_58.txt
e26e1ab3a63dda7a1f8590b67890df64
3b8506ef02a9c326082d7e49ec1c981c16cae081
54090 F20110320_AACNZA soussa_m_Page_19thm.jpg
1621c9900de3264a14b04acfa34ffb87
87842d880768c0d6a8163245f79b7a317fb83cb5
90557 F20110320_AACNYM soussa_m_Page_62.QC.jpg
13655ef20cc97de93e6102e5b5caef92
953434931aa57ef366987ef65291ba627e651fa8
98239 F20110320_AACNXY soussa_m_Page_28.QC.jpg
8533aca4c04b40a41fb23f658535d1eb
fce9770f01c4f1b6721fc7cd78059740c8923736
201114 F20110320_AACNBF soussa_m_Page_76.jpg
5798107ecc6c2f2031c671a5bc691020
22f4af20f607fec08a17d673d03470f4ec68e54b
19811 F20110320_AACNAR soussa_m_Page_53thm.jpg
a1bc110606ae8d18a2c9c341fc875b22
a7b456bdd8f9cc8e82a8c939df9e21362ff26722
54622 F20110320_AACNZB soussa_m_Page_21thm.jpg
d71865902b0e521c861fb9dc723a09ad
4aba008ba56c24aba03eb2266a7934dac08b362b
80813 F20110320_AACNYN soussa_m_Page_64.QC.jpg
1bd193eec8f284f9bfc6780122a0d31e
7471f52b34d4d57d56e657afe5d8e1a331df6749
85033 F20110320_AACNXZ soussa_m_Page_29.QC.jpg
47c20220ac8466eb44f5baf55e1ed98f
e476e78fb462cf0ef0c1d6f2bd00647a4332d581
49402 F20110320_AACNBG soussa_m_Page_46thm.jpg
a02a2cedfef6942a6d48c5ebc39d5b7a
579a49d55fa8ccc966f0dfadad1b9c0f85b2859b
147850 F20110320_AACNAS soussa_m_Page_77.jpg
e979ce32f70d82bca3c63e0d95a6ede3
beb7e68ff718e2bfad6b22f9544e57126b5dea85
49841 F20110320_AACNZC soussa_m_Page_24thm.jpg
f74763745d26602a07084bb79ea963d8
755a00cda2803595b8d4e47d97f41c59b86f6215
93122 F20110320_AACNYO soussa_m_Page_65.QC.jpg
70b04e2fa9d8d45be632483ffa62b748
c74aabe01c6f1ea0536a4ca81429a19471e106e0
51433 F20110320_AACNBH soussa_m_Page_20thm.jpg
407c6e7d3e35734972c478562abe8acd
465ad3b6b0ca6807765b94434b14a950d9ea0839
57248 F20110320_AACNAT soussa_m_Page_53.QC.jpg
b81f1921213bffe97bf47d4ebd24e856
7f1778ade0536b3ce8dc652923a1db734af01989
45021 F20110320_AACNZD soussa_m_Page_26thm.jpg
093d915a24b95a445077c43641537110
62bb11350b3985e228263c4b86d79d270df0c8eb
94516 F20110320_AACNYP soussa_m_Page_67.QC.jpg
73c92f5bc71c3e825217785f254f89a2
552d2da6d7de94e47c821b3a6fd83e9ee985ae60
1681 F20110320_AACNBI soussa_m_Page_63.txt
1ce26d004f735200f15d26bdc8a38902
56b125c12e2ae973f9b85c940f9def5547b7f06d
F20110320_AACNAU soussa_m_Page_85.tif
086e34169da828b1c5836600c74e8d96
e9f352a9a106779ff2e4b5ee04c639bc79495a0e
45972 F20110320_AACNZE soussa_m_Page_27thm.jpg
a5df8a2987953d7091ffc53e18047bb6
e4bd154e3b9c3b1bd697022087d0adb00ef3e32f
83907 F20110320_AACNYQ soussa_m_Page_69.QC.jpg
bce737b76e2cda544bc06c45614a2d7d
a6db8ccfbd16dc31228d1113cb78c32815d3c0e7
867208 F20110320_AACNBJ soussa_m_Page_51.jp2
e0bbf0943d65d299ddbf764688735328
c0775c92cdb83f0d0f29e5946223ebf456e2ff3f
3201 F20110320_AACNAV soussa_m_Page_02thm.jpg
6593a68d379677fb516fdc9de7932d1c
0e6cbcf091ff430ef74733045d63fb7f1393994e
48190 F20110320_AACNZF soussa_m_Page_29thm.jpg
23176b47a9646de6a3ecdb1063b69f43
1e6f0614d531661b1cb3b7259d2caabf84127bd7
72254 F20110320_AACNYR soussa_m_Page_72.QC.jpg
9f2eac414d3d2d54588e260079708e43
14377cc8a035c9f4f2f3cd03098e84c0d09a029e
F20110320_AACNBK soussa_m_Page_80.txt
420735c161b13765e096aed9c27d2c91
8c904675e80ab92d254c8ee762efa487a55a1e18
1891 F20110320_AACNAW soussa_m_Page_73.txt
aae36d010433e17d3bf92898d09cfa79
a8749696b0ad1545d5e9b3008236734f760b41cd
44983 F20110320_AACNZG soussa_m_Page_38thm.jpg
0bf210457da21491168d13c9c2b35cd6
a2c7ce4d6cf64c15b93d05524aa14d5fdc12533d
113411 F20110320_AACNYS soussa_m_Page_75.QC.jpg
fc51e0064acd6c424ea55c2614895959
d9e5f394cdf7ab5a17448f0872d42f642ed17e06
226892 F20110320_AACNBL soussa_m_Page_28.jpg
9d5bc7c2d80c784e38275cbe3b20e1cc
79bee6d8e1e79f530fd5342c72b81b4fe2cdf4fc
F20110320_AACNAX soussa_m_Page_02.tif
dd4db2048e36cb0b80c4aee8393cef96
d0ddb6178f31983feefad2d4c0acb5fe5c1618c1
43646 F20110320_AACNZH soussa_m_Page_39thm.jpg
12b9be20c34432b4379fdb8392aa11c4
fa7384a2915820218afcfaa3a28dd0b687209c90
F20110320_AACNBM soussa_m_Page_46.tif
9cec35b0ffe631f9af7923201f5ce1d6
c0b827f42d8c60b773438d8a325b9f90307d5970
98472 F20110320_AACNAY soussa_m_Page_24.QC.jpg
31df4b99bef4643f929467796647bb87
e091eeb03536b4ff92d5934bc855f24258490b86
51265 F20110320_AACNZI soussa_m_Page_41thm.jpg
9856491690af9a6f6c0a2a1aabebb412
754d9c7df95fb1e5425210e9543af727a48781bf
71582 F20110320_AACNYT soussa_m_Page_77.QC.jpg
e05959bdd5390bef4f9a53b014286f19
ba8e6468902020f8abb0b670e74af29135fda8cd
2101 F20110320_AACNCA soussa_m_Page_10.txt
1f37713dd23ec28215814635bb639b47
de53c94e84d80ef616a154f3328c7f9c9bd5718e
967276 F20110320_AACNBN soussa_m_Page_30.jp2
cb2c54546487ccfc315d89dcc3b8e3e8
8877513d9b7f7414c43cc3e33bd5825769727aab
74879 F20110320_AACNAZ soussa_m_Page_10.QC.jpg
290fd116868dba73e824a44283efde25
0a78e1241d046a52dcb95d3334b32631da888865
46528 F20110320_AACNZJ soussa_m_Page_42thm.jpg
21199d4f52fee96f63b1ebadc08ec3ac
76545208987890486b9f0915913c4ba0451b148a
91996 F20110320_AACNYU soussa_m_Page_80.QC.jpg
bab402b8d28b2e70f1b906e78079be0a
514128d0effc7010964177c2076fa8b53043b3d9
43890 F20110320_AACNCB soussa_m_Page_33thm.jpg
b11a9b8106e0da79fc5da3be2413250b
148589695eee663b42af22a3bab6b96f8db4e164
1087875 F20110320_AACNBO soussa_m_Page_19.jp2
ad369e65a9f1cce26c29a92bbb2550eb
e5de7e4ab01ec9ac8173524bb6fdb485f94da016
45721 F20110320_AACNZK soussa_m_Page_43thm.jpg
97462e5de7495520f7b9851982b72680
bb5c34e63c20888038d14167565f6132672a1ac3
84470 F20110320_AACNYV soussa_m_Page_84.QC.jpg
d48b4d97e28c4107fe17cfc472870010
156598e06463cb1b226a15292215d13da7485e1c
F20110320_AACNCC soussa_m_Page_82.tif
177f8a64aa8795e937e9dee65390330f
5039d93013150bd2578940c8f2a82662500fccd0
F20110320_AACNBP soussa_m_Page_45.tif
29ef672d855444e02a02984cdd874602
88a10beb9b705d61c350e201a446f070c220517c
49344 F20110320_AACNZL soussa_m_Page_44thm.jpg
b8093afbe3c27e47e1419700e7a3dfc6
9475d66e8007141869f07daad6e6fbd1575cc4b0
83685 F20110320_AACNYW soussa_m_Page_92.QC.jpg
709069e8213e85a99e05fad384332312
4ad1f2bd4ce608dec95e1d57495e42a0c021a465
46956 F20110320_AACNCD soussa_m_Page_17thm.jpg
6ceda02491479e8cbb377de8e91ce1eb
ef0a93b4b18603ddfe4a01c19393905d4f61e029
24872 F20110320_AACNBQ soussa_m_Page_91thm.jpg
ac22535dc9add1090d1b28f61a135390
aaea07f3f68eff26cb4246ec8bf5c4a295b7c648
48238 F20110320_AACNZM soussa_m_Page_54thm.jpg
dc31f53050885a8f58a20cf385751927
fb646a82e9291745481756edd8c1dd67bfa6d3db
12021 F20110320_AACNYX soussa_m_Page_08thm.jpg
90c0b40154dac7d9192d38218e7ddae1
f30ac48dc23464b1edd9bdc9fe4b7cd692793577
200626 F20110320_AACNCE soussa_m_Page_65.jpg
2f9e6236a5a8a92405564187d30df48a
118ce6c53ef5bcc5a92c76d9ba14a3b680a5925b
1810 F20110320_AACNBR soussa_m_Page_13.txt
bac73ca2031495c8e78a01621342acae
c2e648d0628b969f6fd0a9b18e0704adaedf9e66
23501 F20110320_AACNZN soussa_m_Page_57thm.jpg
3a43465e88182aa58ac203bfadbd2f15
16f615b82f3c6577a4b5735693b6bdc21b1c0edf
23642 F20110320_AACNYY soussa_m_Page_10thm.jpg
18f7f6414124ae978906e8cabede746e
bd0680b92c50362e1b900ac7b6dfe9f982ec1ebf
50604 F20110320_AACNCF soussa_m_Page_52thm.jpg
f1204811f6321dc3c0fbcd82e0deb310
e95b26de8f380ba6df38ef82a22f5715f8c844e2
F20110320_AACNBS soussa_m_Page_70.tif
bd76d2ef0d11d5e9ae56eb0ceb3497ff
1b4efa75e620f30a2e0f106e4262fcf89ed685e8
6025 F20110320_AACNZO soussa_m_Page_61thm.jpg
5e80c8618f2e1776df557a7575d7ed4d
acce792a8e8f803c0589ffde8017cb6395e15f6d
17516 F20110320_AACNYZ soussa_m_Page_13thm.jpg
1ee709bceb90defb8a4725bf661656b1
e1bf88de2c6fbe2e8c3cc5ab7f0a54f0334efdf5
1080631 F20110320_AACNCG soussa_m_Page_24.jp2
a86021ec7f77e38de02c6dd402aae5a7
ecac45e132e62ade4fcf0c0db26686d816470da5
822981 F20110320_AACNBT soussa_m_Page_58.jp2
97ef7151d8509de258e9a464f5074dcb
a6b8a7710a89d81a37c4dee0814e56a6e067141f
20381 F20110320_AACNZP soussa_m_Page_63thm.jpg
fc40c1376b3319044c75a64ad3d101e1
cbde45980085bab6b4870611f506bf96a255c46e
1616 F20110320_AACNCH soussa_m_Page_23.txt
7f692b1e1e8f2e3db11625df5b681f5c
d0f9c57074aac959f2595f78245a70a937396290
F20110320_AACNBU soussa_m_Page_43.tif
4d304619ccc65537fa4d586206ea0dc1
95a346b578fb7743aa6b70f55b44a1cc867912a4
48659 F20110320_AACNZQ soussa_m_Page_65thm.jpg
e3ed1379ce6359c438d53c898eb28ae6
afe055f0f8f1073a2921854e74955538ed6b6fda
47954 F20110320_AACNCI soussa_m_Page_10.pro
b1b1f714d975de6010fd20c13663b67f
bb2a9123c0a2c1771be0c8c414f6a93f40966823
160287 F20110320_AACNBV soussa_m_Page_33.jpg
1755d140eb313b0cf2833408d735bf7e
3c6256416b44efe86c9f232f5cdbb24b6dbd5011
48033 F20110320_AACNZR soussa_m_Page_70thm.jpg
3e6faf119cc8f8f38bfaab3eddfdcee5
48efa39a998bada81a4bf73c7cd9468ad9b852f1
104209 F20110320_AACNCJ soussa_m_Page_35.QC.jpg
f14ff3a60c68a4d30b09e46c9d940eb1
da3a6987e670eebd2a6d1692fe19dcf702453e89
238320 F20110320_AACNBW soussa_m_Page_84.jpg
b0bd033525ac4335426c2eead2c115a3
7999e500f2033de5140b246f15c8abc8a793da94
48856 F20110320_AACNZS soussa_m_Page_76thm.jpg
7d3a87117b9627bebf9105bf9786e626
d148981b3b2375a8ac32cfd1f227a996c72fe5d3
48207 F20110320_AACNCK soussa_m_Page_74.pro
c44baf8f15f5417dc453ba9b9eb75450
4cc2357afc36f8d09dd044493ebc9c1bb20e0be7
1087893 F20110320_AACNBX soussa_m_Page_15.jp2
a58320dd0f586abd00e43057a44bafd9
fa7242adf38259a051968d199becb49087c5f862
48532 F20110320_AACNZT soussa_m_Page_80thm.jpg
fbb1e8896f2233238ac638bef5430de8
a52eeb53fae71cf261eb62eb66d0d0af45528fb0
F20110320_AACNCL soussa_m_Page_22.tif
927ca2ee7816bee715065da53f42d039
e5e9d276188bb29aa709bb3abad2f266c8f15eb2
49448 F20110320_AACNBY soussa_m_Page_41.pro
16290f51855977d51c9aa7093f5bb930
f05e80fbeb2c7880ad1a309a36ef98d0147eef5a
194534 F20110320_AACNDA soussa_m_Page_18.jpg
9c6e64fc65cf59cf99573e11a3704ebc
10fff425a10d69dda2ed69889e09c459104f4f1f
13467 F20110320_AACNCM soussa_m_Page_61.QC.jpg
8a8fc64fb3bb2fce3a99f75353eec147
d3b5265f44e0d18288cfb18d104b0a965fdaba30
167099 F20110320_AACNBZ soussa_m_Page_79.jpg
2bc08aafa9d69a5946b2dc4ec523a3c9
0a494a5741295b904f9d7cf94165a0d111afd68c
53674 F20110320_AACNZU soussa_m_Page_86thm.jpg
2a7ba8811c74f8a39da8d49a72acc20f
ca9269c4dee0dad19ee884d6ad1942e918ca60fa
2075 F20110320_AACNDB soussa_m_Page_45.txt
18e295370341ee2371ba630d192ab9bf
7ffee88391cc3b6e7d9b54b6315d1481f84cab31
36316 F20110320_AACNCN soussa_m_Page_42.pro
50714d0450865c924e4a647d8ebce123
2b37384ce605c2b5689b650bcc3ce42dec05ffb3
51797 F20110320_AACNZV soussa_m_Page_87thm.jpg
6a056dc51e9dd90f40bbc22f22d54500
123ff69f4f9370e31876db43af659a1677b38505
206898 F20110320_AACNDC soussa_m_Page_67.jpg
1c32e23761955002f68963421aaed003
dd848cc19bcf08a9f0e1f96a7eeb11c70b1c1cbd
42099 F20110320_AACNCO soussa_m_Page_73.pro
7038a9050067526f33abc4656f35e573
f66129a607cec1d947d1dc3877864d21fd52ff16
25585 F20110320_AACNZW soussa_m_Page_90thm.jpg
4d20b0f620e23a9a2822545b969e40b1
9080cda3f9e867abbca12a043c75ef4d43ed0f54
757768 F20110320_AACNDD soussa_m_Page_56.jp2
382bbb3869be9f0a6db08f707de57453
3b3cd19cbef37070cb81b0a9a09153a4450bb18b
46732 F20110320_AACNCP soussa_m_Page_64thm.jpg
4468f3ab50bfe38fdada3dd1649bbcea
42ce7c3ec334dd988922059bbd31cda628ee66ba
24600 F20110320_AACNZX soussa_m_Page_92thm.jpg
837461e0dc56c749b98c93e784a84079
75031f9eabb8644451148ca9126f295ae60474c0
4498 F20110320_AACNDE soussa_m_Page_12.pro
9d5aad964945d56e6bb47e5bbdc1e1af
3290bac7d04ff41c03e917db3f4cadd4c6a39a09
67463 F20110320_AACNCQ soussa_m_Page_57.QC.jpg
1dcd9bd99e04c3f5eaf47306d879460a
ba936a27b38c2beca9e7c078fc376921ebd0423d
19001 F20110320_AACNZY soussa_m_Page_93thm.jpg
a689d08a64ea8c05f49b4297c6fe66a2
5dfac5d49d89a87832902691e9d3d8e8cc0cc52d
F20110320_AACNDF soussa_m_Page_53.tif
e142e5e3670211f977e37d830e6d7cd9
7cd0173bf536c2cefac929cb21dd2b0302643c10
53227 F20110320_AACNCR soussa_m_Page_14.pro
209fca1c280afd113417640c848e5570
d18b564a40cb6d1d0e036edd30d28a187ee4e117
5995 F20110320_AACNZZ soussa_m_Page_94thm.jpg
7bab205dfebf7ded392e779f561a296c
555345e2c00b5a872b58e58b7b6a9cbbe3935e57
46288 F20110320_AACNDG soussa_m_Page_22.jpg
a0a32651b7ded893a1831195195e1d60
b6397e91165716965c5fd5ec04de92716a52452d
19522 F20110320_AACNCS soussa_m_Page_49thm.jpg
13fc76fa15a3b7e4ce6c1518f4c4a7a0
d066696b7a87b4af72e32c9a5c773445339ae1d6
F20110320_AACNDH soussa_m_Page_62.tif
9ccc5e0cfaf9bd7ae989ac72d7675408
7a1f8046fd71d608951463c88f2ef6179f0c8f61
259 F20110320_AACNCT soussa_m_Page_12.txt
f55accef7bcfd77ca871fc139b8aff7e
abd7a73fb3d6cb027b14fcd4dbcf09ad53258bce
69574 F20110320_AACNDI soussa_m_Page_04.QC.jpg
54905e3cfc51b34ab5c846c5def85596
dda52bafb5a1533014cfb24b3af8e4b6ecf8be2e
264099 F20110320_AACNCU soussa_m_Page_75.jpg
1cc85ddc6d3122bf32dfdc72d6b99ff1
0fc9b1c6766ad24ea737bf05c3ce1fe83b4c8bad
4391 F20110320_AACNDJ soussa_m_Page_07.pro
6d8687b50014f75b83f84bbeaa01b386
494c0932bf0a9a956c91e4f189214bfe8080e095
52068 F20110320_AACNCV soussa_m_Page_25thm.jpg
520325e63a9f8fe8fa28ecf23f57f450
813b7736df4216305c2aff379d0d0ee2cadccb27
F20110320_AACNDK soussa_m_Page_73.tif
905642a85fda173e31bed166b651fe83
f275df29c6532a2f07d66ad99027f6f3587cb76d
12378 F20110320_AACNCW soussa_m_Page_12.jp2
de8678fbeab0baa49540f29ebbd0caed
539a41427c0c216362a893a81f9c41914ead620a
109297 F20110320_AACNDL UFE0009241_00001.mets
d9771768b911fde61d73bc8f314e3b3a
6d60f5da2e38396100dd9f28b999f0a5eefc3dab
F20110320_AACNCX soussa_m_Page_38.tif
373c9147427bf6ee2cdf961a9f66afcd
677a98dee9ef0f78198a42419584f4afdc1c06cd
157731 F20110320_AACNEA soussa_m_Page_13.jpg
b627bd1a9f8fa76620d04a5f6fb8ba3f
0e15a13beec202f27e6f0490e0b430b4653c980e
1033965 F20110320_AACNCY soussa_m_Page_66.jp2
eae34997426f5de5bb9475325c1f963f
d3fb39de7ab3c95bbcc77622c43da4522fb3f3dc
254885 F20110320_AACNEB soussa_m_Page_14.jpg
0e512297f27357684b9d857442f02e62
db5116147df73766ad1d15534ee31912487ba2ea
115611 F20110320_AACNCZ soussa_m_Page_16.QC.jpg
7d22ba9c9f7efd724bf3475c2f3d8836
eea947d6a3c5e93ed14e22ab64e906d1481fd5ad
260464 F20110320_AACNEC soussa_m_Page_15.jpg
a43135b19a87dcb359b5b8fe407637f4
6178c88cc6a6e74f141d8ca9a34e8c03c253cc7a
61720 F20110320_AACNDO soussa_m_Page_01.jpg
cb47dc5c5da47960341e2931d824d0e9
748164b4585fc4b09623a262dced6c735cc14053
271455 F20110320_AACNED soussa_m_Page_16.jpg
94f382b3156cab13b7b0bfc6461f3e6b
4f257e2acb53ac5dd0314ba15e86bd55595e2510
15660 F20110320_AACNDP soussa_m_Page_02.jpg
079521b74d753f808190f2b6dfd9d7d2
33f2c44281782cdeb687eeb9c5ad38486ade8dff
182565 F20110320_AACNEE soussa_m_Page_17.jpg
8443fa69bce8f59b1bdfb9ac8d5c02a5
04d8726e05569b8b91562a9883851a4c88a96fdd
12599 F20110320_AACNDQ soussa_m_Page_03.jpg
5ec7b11dea0e0aacfcf2e8412c49e3e5
638ec877b589cc1239e6f3031b8fd95bbb326fff
263936 F20110320_AACNEF soussa_m_Page_19.jpg
c86eab3033ed7a11e249857623494424
834f99a69f189518e8f7a906f39f72a8eec754ec
191159 F20110320_AACNDR soussa_m_Page_04.jpg
46b911de214eec9e7c00464586d0ca5d
fdf4150f63cc00d424a310eb2193ef5c9139b41c
249557 F20110320_AACNEG soussa_m_Page_20.jpg
e9cc61a56b6393143fcfc09043bea488
0090175e988661e5faa3b6796e3a03c782bb0a67
145127 F20110320_AACNDS soussa_m_Page_05.jpg
1a41eb3978fc10c49349a1a73900f6cd
d320d638eb7ae95fc57231f2bbe07e01816d6cc7
264191 F20110320_AACNEH soussa_m_Page_21.jpg
b3829852c80285a913ffdb1cc154dcd9
0c67f366a5d298f5d3911cdb75352dbf9339f116
246849 F20110320_AACNDT soussa_m_Page_06.jpg
d1ae7abf988ece456b9a94e8eac53237
86575784dbac94a5158a6103d08831b37c9a930d
188592 F20110320_AACNEI soussa_m_Page_23.jpg
a2b6fdb5c5604df5a9b025e06c3dbb96
aba7e0ebcb8b3cc7b8bca0cdd0436382ffd65ae1
56960 F20110320_AACNDU soussa_m_Page_07.jpg
b41070dfcf97dafed6dc02a8f44c5101
978c6b967796a4e59540bbdf36c529959b23527a
232674 F20110320_AACNEJ soussa_m_Page_24.jpg
5f5af3e4fc03a28528590caf3148a63a
3a36c314936861b09c5258e9fc8beff3088a9b96
111271 F20110320_AACNDV soussa_m_Page_08.jpg
72a1d925fd97aad69675c8945009ad10
cee95eda5652537233b4ca54ddecab268a7db1aa
251375 F20110320_AACNEK soussa_m_Page_25.jpg
50e0f1f904107a2aefda3486694732fa
fbc2e209a506336a5229a5cc369006313f6e0872
201222 F20110320_AACNDW soussa_m_Page_09.jpg
5b7ee9cdaae06dd0d829564b49b24331
4f4663c3988797fc7439f941548b66721e6e3d05
166879 F20110320_AACNEL soussa_m_Page_26.jpg
e8ffec32b0c21118c24e6b6fd8eb4e64
08e16160c84ea49804edbf62538aafe344aae4eb
203226 F20110320_AACNDX soussa_m_Page_10.jpg
7f3b03842fbeef47e5c3e6bf4d6aaa1d
e0250e350d9b7453b2383797a57fa83b53c06300
206265 F20110320_AACNEM soussa_m_Page_27.jpg
ecb1dc8c4ba167f7c786f0b9f72e7ec0
03f2b1cf9db027186d8ef8c5b4c0f80845f08620
246012 F20110320_AACNDY soussa_m_Page_11.jpg
d22804ec188d3edb0d3487c54b4b8f8c
3ae3c3544087bf62e38397751fc12291bbb382e9
186936 F20110320_AACNFA soussa_m_Page_43.jpg
f46b14021ee434e74d6646ec1f97bd3f
7ef071b0f1360cfa02efb14fab73210d11ba41aa
183768 F20110320_AACNEN soussa_m_Page_29.jpg
128b85946d984b7d6f8ee6a177e5371b
0fa21b6bff4f40041f0abdc2a293ecec7fa3d414
30379 F20110320_AACNDZ soussa_m_Page_12.jpg
1db893b97c35b9e53b6d1d340606ed85
f454ad483bf556b99f23e8682e2fbf81e012090e
204164 F20110320_AACNFB soussa_m_Page_44.jpg
abac86f0f83a9a451a78c37fd6785df1
dc306868a9ded3ab7714e0fc9b7fa6ae3a9480c4
217308 F20110320_AACNEO soussa_m_Page_30.jpg
31c7bd499836fa99ab24e624a50a41bf
c3e8338f65c58e521b44ede3ffb98dfecceb31ce
185405 F20110320_AACNFC soussa_m_Page_45.jpg
8511fcb9e00bd7dbe49117d0adb7b098
141cb768bf2c992176390b8bc1d27add320268a4
218100 F20110320_AACNEP soussa_m_Page_31.jpg
92341c5b9ec9aa6e658fa78d5d269137
3839ab30617519171255c6414b76cece5c5bde0f
211677 F20110320_AACNFD soussa_m_Page_46.jpg
0f5e11fde1cb817424d465352ac7205d
48c41d8bb9f8411b2573071ed27f1daed05f92c4
213196 F20110320_AACNEQ soussa_m_Page_32.jpg
b88d85b2bf9c57403db58ab157cca9a5
ec7d37a0ffa2d6a9244b9d3a294fd3ddcbc9b90c
170595 F20110320_AACNFE soussa_m_Page_47.jpg
171571b2e9ff05bf3b785c69eba3e960
e5bd08b1ad49d46036c20a14cd1f6a6c834c832f
189117 F20110320_AACNFF soussa_m_Page_48.jpg
824a3e43a0fcba161822386666d4a700
35cf7e4ad3f839f3020bf463746a7ea4705398a3
210927 F20110320_AACNER soussa_m_Page_34.jpg
33d45a7362e6b55794cf4e2bb5f10628
3f30034869a29137905972eaf5a70cc56ec82a1d
161592 F20110320_AACNFG soussa_m_Page_49.jpg
3764431eb1a875246710ec222a7fda9c
b17b2d90b6e72eab0287d0321106cbdfbd7ca3b1
234477 F20110320_AACNES soussa_m_Page_35.jpg
d2eb9fc4182642da2d8657b64fb275c1
0d2bb91730da652626e5af31b758ff4cd40333fd
151526 F20110320_AACNFH soussa_m_Page_50.jpg
fb631c468fbaba6f8d25a82361526598
88ccf361266cc32134fee0777a7b194a0ba5a642
221103 F20110320_AACNET soussa_m_Page_36.jpg
5781446563ae3cad1cef3cd385d24ee2
4d7bd6b9618d9d808580c621c8a9c1c4da15deee
205887 F20110320_AACNFI soussa_m_Page_51.jpg
be19012edbbe86f3d803cfbd8c16a3ad
3feb79ff4e7f62ead4c629c77c9abac899cfcded
201146 F20110320_AACNEU soussa_m_Page_37.jpg
59364adf86806aa8e3703a26c2594eb6
14e0824f0871a8717b642c8c06a3f4259b68656d
224597 F20110320_AACNFJ soussa_m_Page_52.jpg
626915cbb04e5af21fa55eb4d6d49419
4f57331e351b7305240b386c68a37109368432e1
174169 F20110320_AACNEV soussa_m_Page_38.jpg
6674356c3d39ea25de701159fcc97c71
62db08a03a2b128867de02c766275c663db71539
159900 F20110320_AACNFK soussa_m_Page_53.jpg
2f77bb944992407dd5b92a108bfb58a5
938aa79bd33c96f300952755a50ec05aede7666d
165229 F20110320_AACNEW soussa_m_Page_39.jpg
fd49f426c75f1efb7368c624e500ec7a
22db74025bb57d4ab146d5d045492b7683f120bf
149038 F20110320_AACNGA soussa_m_Page_72.jpg
54bc367347df63b41932fa531e67e1ed
68fe251d2320a775704111014303aa85ab0fa448
208379 F20110320_AACNFL soussa_m_Page_54.jpg
d708d9bcba8466aa4f429925e159da40
3d7877fdbdf89a71c9654ce79a88af97fbbff09b
192485 F20110320_AACNEX soussa_m_Page_40.jpg
dba503082fa5396fd74fca1f4db30e72
dc1c6df0435de57c1650046943fb03c3b7aed69a
227014 F20110320_AACNFM soussa_m_Page_55.jpg
7def1ea7c2916b10f564c6441d2ec802
ca7bae87daa487c780d8075a7e7ec4e344b68d2f
233279 F20110320_AACNEY soussa_m_Page_41.jpg
5e98215719b1ff11bd8a4c23819bd467
36056aa279bf6a3a28e160cbbcc0908db244fa8c
208991 F20110320_AACNGB soussa_m_Page_73.jpg
6aa912b4f6ab808f81c1f6c728fb6007
f65c5d3bdd8ba6bfdecbd79d469cc0fc53bec3c0
180068 F20110320_AACNFN soussa_m_Page_56.jpg
b40c7f3785d0021b83c0a391be1c1199
cc14a75e805b8aa3dd80874115c9ed4693f2b9c9
189648 F20110320_AACNEZ soussa_m_Page_42.jpg
bf4c7a3d80eb287355309e9317039e62
685fd51459ee14f40e69756ecb815dd6840c4ad4
225106 F20110320_AACNGC soussa_m_Page_74.jpg
c8fda7d15380b4ab1fa8bbf3c55144e8
12a3854cca3d0b96dff683557d89e170e760c4d6
182972 F20110320_AACNFO soussa_m_Page_57.jpg
fef4a2b0fc7aad357c0569d38599efff
d362619f4a998caa278d2f0009408e4ae8499dd6
186434 F20110320_AACNGD soussa_m_Page_78.jpg
fa82d1445c38101cdb35967dff52b367
b2fc5dea0895bd6406009963770410c6c635d004
189995 F20110320_AACNFP soussa_m_Page_58.jpg
7dcfd68145f0525ee1f9fb73477faafa
55525f48f89ac230c25fff7ab6c00b1c146d9b24
203688 F20110320_AACNGE soussa_m_Page_80.jpg
85cfe0c5b18f62a146e4a145931474e2
2028370be6a0de28a217e42060c74f3a24a23b27
244704 F20110320_AACNFQ soussa_m_Page_59.jpg
172ec6d4e5aff481d85233b0405ab032
b2385cbf1db7d5a5e19c67472e77a12dde966469
262120 F20110320_AACNGF soussa_m_Page_81.jpg
bd518723a0dc1e91a079de69e8cc949d
293caac5d33644af66f53a32218bdc07ad105b89
237507 F20110320_AACNFR soussa_m_Page_60.jpg
74914a2490785da50fdef5dd098b3a2f
8898ab28cbec581944f947af9ff244d6dac2df50
161411 F20110320_AACNGG soussa_m_Page_82.jpg
2e42c9e46c488fcd16d8df22f9008a54
5e5c5ebccf08a4ec25ec008f8ab4cfe2ab050c55
39650 F20110320_AACNFS soussa_m_Page_61.jpg
38ed7779a0a2ef1e9da8a90946077120
8378993788bcf5561c591b3ec6abb2c316c2a5a8
186905 F20110320_AACNGH soussa_m_Page_83.jpg
547b56078a224e1a49ee939056748c6d
68a68b1745e08037b9fcaa06da81eb4afc45dc7a
162534 F20110320_AACNFT soussa_m_Page_63.jpg
69c7420585a36c459c8576b4571b3374
ab145706babcb25f6adc3e05ceb90ae1d568dbb2
238748 F20110320_AACNGI soussa_m_Page_85.jpg
f0e2c03a098715c6929d516eb72cd741
5104a7d989e55b904bebd1a6f6b1d70c8bf03743
176094 F20110320_AACNFU soussa_m_Page_64.jpg
26ffd1a7ec8e2d83fb860e4ed9c8c943
203dd8ebde13fce154d4c83ab8cab905d0ebcc3a
257714 F20110320_AACNGJ soussa_m_Page_86.jpg
9e032b603a7c009e1cf24b905b507898
61e161c965f33b216206e68facf87e311cbe4c69
233327 F20110320_AACNFV soussa_m_Page_66.jpg
4ce7a3ac1dbb81ccc4f3a7a08380a4dd
286f27e03c359ddd68a7f4b4fe2fc18a6f06dedd
220891 F20110320_AACNGK soussa_m_Page_88.jpg
d4868d8d151560f3367bbbce9e963f0b
9dfe381c5641a2eab2a5dbe574150998f7ccae3d
223155 F20110320_AACNFW soussa_m_Page_68.jpg
a0b2f0366996f882a25f6b61c7e0cca6
20a12ddd38a031d3f4f438ed0280fb55ee5fccac
274683 F20110320_AACNGL soussa_m_Page_89.jpg
701eacc0f4f66a0f56990a10ce9f5214
79668887f457681f9f736f6658d2fc5f845e36b3
183082 F20110320_AACNFX soussa_m_Page_69.jpg
3272a8129b2d79cb7e765957c3f95f48
9f49b6e4c5182a31cb63a54f1a379b120182aa5c
98518 F20110320_AACNHA soussa_m_Page_10.jp2
39fe123c83767e2d4bbdf9c19436a07e
ecbc027b87941648caab86ab18249611a5bd0888
280217 F20110320_AACNGM soussa_m_Page_90.jpg
f0668791d65a113749ec7107b241be4d
9e98519a6f971a0b917354b8b65dab30462b6ff2
209144 F20110320_AACNFY soussa_m_Page_70.jpg
cadb8b5d201b620bb9158018eec80e5b
c0af8388352dfdb177939db083dcdaa130d40d45
119143 F20110320_AACNHB soussa_m_Page_11.jp2
04628d390a34e182eefa3d1df7983181
54e502900488afa8ebb14b0198f141d9b4d4f8e6
255957 F20110320_AACNGN soussa_m_Page_91.jpg
217562c88a570dd87775209664bfa53a
8ab6bb1f15a9680db5f4593e6ab7be66c5bf64d9
174706 F20110320_AACNFZ soussa_m_Page_71.jpg
9a1cf99ca9c654d00b4a6942f2a6b0f1
96d3c48b8f48a7ef838b086dcbc9ea2c6967e399
260067 F20110320_AACNGO soussa_m_Page_92.jpg
68994959cfe0ab0ffa0cc1beb75bff06
487eb0ae6f4c1306cf017c8ec8eefd7b42ab946b
78068 F20110320_AACNHC soussa_m_Page_13.jp2
a9b6b24fe80d589216225c3d85bf318a
bb3e43c31475252c63984df0bd7f3da7e9a66e68
201805 F20110320_AACNGP soussa_m_Page_93.jpg
ff1ff7cdf4242c45a0dadeabc1804c0d
30171bd8046e396d900d2d396d7712b95dca93c4
1087844 F20110320_AACNHD soussa_m_Page_14.jp2
8fe481730743b6f4a7f6d6be559ffdc2
d7b2e716db31809dd91f7d1f145bcf8749a3a86d
44592 F20110320_AACNGQ soussa_m_Page_94.jpg
93fc8987c3986d8e832aa8a124ae555c
7f1f5ddbbc25d58541201749f9bcc150553d2063
1087900 F20110320_AACNHE soussa_m_Page_16.jp2
405783c47b731df27dc8856898275c9d
01594d116663e43fc976445089d16f5f6380e924
25881 F20110320_AACNGR soussa_m_Page_01.jp2
ce486ddfb53d1e100e323605034dc035
908219c4e7da32614016ee163aee2d64d523b419
778419 F20110320_AACNHF soussa_m_Page_17.jp2
dbd65d32f47996a0fea9f57b405b4656
f0163ecaf2a25f886fb1f5e051854741fbea0db7
6067 F20110320_AACNGS soussa_m_Page_02.jp2
153dd0abcbf37cba5e834132940afd87
6b48553ccce4d660fd00090670a0acb44128c15d
861776 F20110320_AACNHG soussa_m_Page_18.jp2
fe6295134cf43b3b6e9b29257f4b73dc
58aff56f5ba0cda13295df1e8ef207cc5b663d42
4231 F20110320_AACNGT soussa_m_Page_03.jp2
970a2a0ac98ba0edeba79fbb5b6b1f75
b9f9d649d6ca16f4d41ebe225700547b3ca7af6c
1087898 F20110320_AACNHH soussa_m_Page_20.jp2
da4cefd06fc7010433af18ae82182baa
cdb1f112fbfdf1902ebf3bf2aa1a4fef7dd652d0
94177 F20110320_AACNGU soussa_m_Page_04.jp2
814b9268dc76236934aef939794e036e
b760cdecdf8b76d93a53be8f7f5c5c1bb9e2cf71
1087897 F20110320_AACNHI soussa_m_Page_21.jp2
542b80ba37f2c80570f9abaca734bf32
56bc611cb48505d1c389db2b24dd6ae15ad4ab87
71780 F20110320_AACNGV soussa_m_Page_05.jp2
60d53b20966f0d0d8e183526b7b4794c
3193127f8a91f00c6728ddea34237ee0a5260762
20991 F20110320_AACNHJ soussa_m_Page_22.jp2
232eddf7ad49a642764e65431cca9d29
1782a91502ff720abb7e7b790d0471d312438a1d
1087896 F20110320_AACNGW soussa_m_Page_06.jp2
808fc6caf2e137eb05b9c64e9e2661a3
ea65eff0b84854fe66db4147ad211e356a3c93d3
798828 F20110320_AACNHK soussa_m_Page_23.jp2
d722f65746722bd7b70166338dacd190
ba0b57fbef46574c758ee7cddc6dbd5c217ff07a
139903 F20110320_AACNGX soussa_m_Page_07.jp2
fb4533b1f9a6c916a7719bd05d622c04
d228169260b02f0c830c6305b76954de3a8f7466
1083234 F20110320_AACNIA soussa_m_Page_41.jp2
842df8c0052a1b14b24c16fa835cb238
1bf8cbbd6901e5cb90863303c90a0456055a4f11
1087851 F20110320_AACNHL soussa_m_Page_25.jp2
822a6f00ffcabcc5b4d5622d222cfa31
eb899e2ec7333b5fbff2e1206d60571f41426c44
53512 F20110320_AACNGY soussa_m_Page_08.jp2
5288d5991fae9f82c009f0b457e343cf
2ee39aa169eba0725567392c44abb5ef802afda4
793269 F20110320_AACNIB soussa_m_Page_42.jp2
b2678d0995f84bf849fcaf557dbddff0
2b912af7679e4c0613de7859b04e14e2a09e3a42
691144 F20110320_AACNHM soussa_m_Page_26.jp2
bbc984d01536165f588df901da0ecb4b
02ebc2fa6ea12a4f0d079e623256823e870eca3c
100090 F20110320_AACNGZ soussa_m_Page_09.jp2
c6ac5427d36c8d194244f43f5aa998d4
b840015895f5d93fe2c39c671d72d5414b1ee473
799539 F20110320_AACNIC soussa_m_Page_43.jp2
0558f5676443a272d37569fa9f21b93e
f47cce26d6d1ba500390fb564853287d15f045ec
891023 F20110320_AACNHN soussa_m_Page_27.jp2
717e93913e263c514236aab2a569dd4e
90eb7180bf1b24d40ed91000d3d40130dc044c2f
1029936 F20110320_AACNHO soussa_m_Page_28.jp2
0203f7a5be50062abb7e85bd99096fa6
f8a07f7e303e5e0dc3e1775dd2600352de1db43b
868585 F20110320_AACNID soussa_m_Page_44.jp2
53a60c5bb1332fa2aaa25d62c45b517c
fdb81cf80a0efe3b934ed62a612b10977dca943e
783522 F20110320_AACNHP soussa_m_Page_29.jp2
051af3dc5dc78e5a2ce63e8c814684af
699fe4dbb14b58a6ea68f022e1309fe0b72c2729
787193 F20110320_AACNIE soussa_m_Page_45.jp2
db90b04814406a2caaac3eb02219210e
cf75f376e5feaf9ff085624d3af4899838aa2120
945008 F20110320_AACNHQ soussa_m_Page_31.jp2
fa71cd9033f8d700dab38bcf440acaa2
ee40ca0aece413d6d31506a622dadb00d4777854
910827 F20110320_AACNIF soussa_m_Page_46.jp2
0001d0d2a255911028e32846d3dd43be
1d9ec4747afba21b52686cbfe8e45ea604764bf9
954504 F20110320_AACNHR soussa_m_Page_32.jp2
6b34f82e70cfbbc993f00369a40a94af
7e5919a542324f4c84ba20c177efa9bfa2c7cbb9
739328 F20110320_AACNIG soussa_m_Page_47.jp2
9ca98f213dc18604fbff9867aa9cc14f
5a0d662962bfdab60d68689502a060e8d77773af
687074 F20110320_AACNHS soussa_m_Page_33.jp2
529063d370b3252e0a63c3e5eb81d1b1
61a2f274aebdaf8c7f51e8e13fc9744f06d3f7f2
792208 F20110320_AACNIH soussa_m_Page_48.jp2
ac8aadba91b82920c4b526f76cda1f50
8150374aae024f76f63eb53267fddda4fe73e1c0
938589 F20110320_AACNHT soussa_m_Page_34.jp2
051d1ebecfeaec4075680bbb79236aa2
64c43118d9f9ad244844931d966777847ab2f542
77820 F20110320_AACNII soussa_m_Page_49.jp2
a154c46afa5c62827d8dda67da7e99d7
113eb03f4a49d90bfae32e4623732c30b86aff45
1048237 F20110320_AACNHU soussa_m_Page_35.jp2
acf992de8123755b5553899202724fff
878b005b6c4a61b0a560d18fed788d82e39524ba
603655 F20110320_AACNIJ soussa_m_Page_50.jp2
3ead8e91a4f911db03828449cd84d0ca
42bc978c3771630bf30b8a8ccccb2f2c126a1a27
964034 F20110320_AACNHV soussa_m_Page_36.jp2
5196e2040e787da10f18c29ade7063ca
bc85732247fad165b5b66197ba30927efb730b1e
982204 F20110320_AACNIK soussa_m_Page_52.jp2
9abe76f681bdbb12e7f014d4f21bd1c2
77f3b8bb4d54b2c84e90fd1e3ea59f768ccbd36c
870459 F20110320_AACNHW soussa_m_Page_37.jp2
52a60410633af4bc497feaa995a2b826
3ceb6c6bac84d3a94bf66c3b6d0933cf0d37ae3f
725674 F20110320_AACNJA soussa_m_Page_71.jp2
d697d492ec47705f7e679b700c1ef4f1
0d502498deb865c30c11a3865f1845e240a67af0
81519 F20110320_AACNIL soussa_m_Page_53.jp2
a7cbdbf664d7322289cf274e996ade1d
c0c5268a0915dad4950562f9d852e22382644519
723834 F20110320_AACNHX soussa_m_Page_38.jp2
0e6f97e6b29fa8848b94f3bec8d7d7db
7255033e751b0f7d6e1e3ee3ec7fdbddbb4f4f9e
907325 F20110320_AACNJB soussa_m_Page_73.jp2
6cd444092e74b970b36c85e3c5459f0c
152a8584e086a86239514a1be2389f13731ab501
916639 F20110320_AACNIM soussa_m_Page_54.jp2
c26affe9e16184168b2ad3c567872f1f
d92105e35eb8f71fc55f9c59605310dad6d81ab8
648586 F20110320_AACNHY soussa_m_Page_39.jp2
83e7ba7a6e76d1ba3cfd37c3438b180f
9a3ef171b5467d2d3cce33da85592066e19d4fff
1021197 F20110320_AACNJC soussa_m_Page_74.jp2
28f2ec3bc5ac5de0d45a7136c1a45df6
737eea0e2a0eb7b986b277bfff7eb1dbe29a3460
1009657 F20110320_AACNIN soussa_m_Page_55.jp2
95874e31665f72756ef31f314d725a06
92f9c90ff9c6c354219fb09511578e1870c269f4
803880 F20110320_AACNHZ soussa_m_Page_40.jp2
3efb0c20df55d3dfd06ae13f01233637
933846515ca980411356c0433f61b7acf0dbcc7c
1087882 F20110320_AACNJD soussa_m_Page_75.jp2
9ef7ec4aaa69ad9f6a263942ebe2025a
f05b4835723d8422e00cbfaff556b610aec666c8
91000 F20110320_AACNIO soussa_m_Page_57.jp2
52e6641e6e86f9a1be16184b747439df
9782750eee8a48d4e1638c54c6b8bab4c6ab03bc
1087895 F20110320_AACNIP soussa_m_Page_59.jp2
fd75f1937fdeda6fca639260bfd13ea5
f3dc3d4278913247f13eb7153bfa2c30f9ef2807
851014 F20110320_AACNJE soussa_m_Page_76.jp2
c94bdc6925c45ac6574baa4af2b86467
c94b27e500a887e441303dc219b472e1b2ac23d3
116096 F20110320_AACNIQ soussa_m_Page_60.jp2
bb0ef5c01d4767ffd327f528032aa297
1fb383b10c61044ac069dab7090d1e7f917786bf
622994 F20110320_AACNJF soussa_m_Page_77.jp2
48517f96fad4d6f03155254b25c60333
c831f4b0162bb6b08107b0f9367396b1e86fd022
17281 F20110320_AACNIR soussa_m_Page_61.jp2
68a056bd64a633920c609cd1de57fab8
27fc5e0a2716959b414b0273cc4dc3dc83f30132
792267 F20110320_AACNJG soussa_m_Page_78.jp2
b71dcc23eb7e4054ec14f66c7063def2
dd4c2ec46fa12281f0e57ec5f394148370c244f9
840663 F20110320_AACNIS soussa_m_Page_62.jp2
53041ee42e832c5b2c5805500968aa26
60284d89d249b06131fa720d4e41d856a6f142d4
687681 F20110320_AACNJH soussa_m_Page_79.jp2
2c6ad03145ad7405373fe1c863ed60e3
a1ea0be4aa2f3cb2a3d8e66b257e684f9c682cad
81068 F20110320_AACNIT soussa_m_Page_63.jp2
d853e2073141d1e523b4cbb194c7cd14
605ffa1acac1df1d1a77c799a0f8c6700bc30781



PAGE 4

TheorderinwhichIshallmakemyacknowledgementsinnowayreectstherelativeimportanceeachrepresents.Therearethosewhodirectlyandindirectlyimpactedmylifeasagraduatestudenthere,andthereforetheirinuencesareuniqueinalmosteveryrespect.Professionally,Ithankmycommitteemembers(JamesFry,DavidGroisser,PierreRamond,PierreSikivie,andRichardWoodard)foragreeingtoserveandmakingthenecessarytimecommitmentsrequired.Ofthosemembers,Imakespecialacknowledgmentstomyadvisor,RichardP.Woodard.Hisdedication,excellence,andunwaveringcommitmenttohisworkandhisstudentsserveasanexampletowhichanyphysicistcouldaspire.Mylifeandmymindwillforeverbeinuencedbyhistutelage,andforthatIameternallygrateful.IalsomakeaspecialacknowledgmenttoPierreRamondforhisconstantandcontinuingsupportofmypursuits,andhiscommittedeorttoensuringthatmyphysicseducationreceivedawell-roundedbalancefrommanyelds.Hisabilitytondauniqueperspectiveinwhichtoviewproblems(relatedandespeciallyunrelatedtohisowneldofresearch)issomethingIwillalwaysadmireandworktoemulate.IthankJamesFryandPierreSikiviefordraftinglettersofrecommendationonmybehalfandforbeingavailabletomyquestionsandrequests,whetheradministrativeorphysics-related.Oftheremainingfaculty,IacknowledgeHai-PingCheng,myrstadvisor,andwhoencouragedmetopursuemyinterestsandtookinterestinmyprogressthroughoutmygraduateschoolcareer.IthankMarkMeiselwhohasalwaysbeen iv

PAGE 5

v

PAGE 6

page ACKNOWLEDGMENTS ............................. iv ABSTRACT .................................... viii 1INTRODUCTION .............................. 1 2DARKMATTER:THEMISSINGMASS ................. 5 2.1Introduction .............................. 5 2.2DarkMatterTaxonomy ........................ 6 2.3DarkMatterDistribution ....................... 9 2.4ProblemsandDrawbackstotheCDMHaloModels ........ 11 2.5ConcludingRemarks ......................... 13 3MODIFIEDNEWTONIANMECHANICS ................. 15 3.1NonrelativisticFormulation ..................... 15 3.1.1Motivation ........................... 15 3.1.2ActionPrinciple ........................ 17 3.2RelativisticFormulation ....................... 19 3.2.1Motivation ........................... 19 3.2.2Scalar-tensorApproach .................... 20 3.2.3PurelyMetricApproach ................... 27 3.3TheMONDNo-GoStatementforPurelyMetricApproaches ... 43 3.3.1Motivation ........................... 44 3.3.2TheStatement ......................... 45 3.3.3AConnectionwithTeVeS ................... 49 3.3.4RevisitingtheNo-GoStatement ............... 51 4DARKENERGY:THEMISSINGENERGY ................ 54 4.1Introduction .............................. 54 4.2TheManyFacesofDarkEnergy ................... 55 5LATETIMEACCELERATIONWITHAMODIFIEDEINSTEIN-HILBERTACTION .................................. 61 5.1Late-timeAcceleration ........................ 61 5.2TheGravitationalResponse ..................... 66 5.3RemarksonourCalculationandFutureWork ........... 73 vi

PAGE 7

............................... 75 REFERENCES ................................... 80 BIOGRAPHICALSKETCH ............................ 86 vii

PAGE 8

Modiedtheoriesofgravityareexaminedandshowntobealternativepossibil-itiestothestandardparadigmsofdarkmatteranddarkenergyinexplainingthecurrentlyobservedcosmologicalphenomenology.SpecialconsiderationisgiventotherelativisticextensionofModiedNewtonianDynamics(MOND)insupplantingtheneedfordarkmatter.AspecicmodicationoftheEinstein-Hilbertaction(wherebyaninversepoweroftheRicciscalarisadded)isshowntoserveasanalternativetodarkenergy. viii

PAGE 9

Theadventofprecisionastrophysicsinthepast20yearshasprovidedcos-mologists,particletheorists,andgeneralrelativistswithahealthyvolumeofdataandmeasurementswithwhichtoworkandexplain.Ithasbecomeclearthatalargefractionoftheuniverse'senergycontentisunknowntous.Indeed,weareenteringanexcitingeraofastrophysicalinvestigationwherebyexperiments(past,present,andfuture)willguidephysiciststounderstandthefundamentalnatureoftheuniverse. Ourthesisconsiderstwoproblems:namely,whatIwillterm,withnoattemptsatoriginality,themissingmassandthemissingenergyproblem.Eachshallbeapproachedbyconsideringrstthepredominantororthodoxapproachtotheirexplanations.Inthecaseofthemissingmassproblemthiscorrespondstotheconceptofdarkmatter.Respectively,themissingenergyproblemintroducesasubstancedubbeddarkenergytodescribethelate-timeaccelerationoftheuniverse.Eachoftheseapproacheswillbeshowntopossessadvantageousandseemingly\natural"featureswhichseemtojustifytheiracceptanceastheleadingcandidates.However,theseapproachesarefarfrombeingsatisfactoryresolutionsoftheirtargetedproblems.Inconsistenciesandambiguitiesremain.Whilethatisso,alternativeapproachesmustbevigorouslyresearched. Oneofthemostimportantpointstounderlineinthisthesisisthefactthatneitherdarkmatternordarkenergyhavebeendetectedinalaboratorysetting;theyhaveonlybeenobservedinagravitationalcontext.Directdeterminationofdarkmatterwouldcertainlyquell(ifnotcompletelyputtorest)thenotionthatperhapswedonotunderstandgravityevenattheclassicallevel.However,until 1

PAGE 10

strongevidenceofeitherparticledarkmatterordarkenergyisobtainedwemayadmitthepossibilitythatitisnewgravitationalphysics,notmissingsubstanceswhichisresponsibleforourobserveduniverse. Einstein'sequationpossessestwosides:thesourcesideandthegravityside. whereTisthematter-energystresstensorandGR1 2gRistheEinsteintensor.Eachisobtainedbyvaryingtherespectiveactions, g gZd4xp gR;T=2 g gZd4xp gLM(;A;;:::);(1.2) whereLMisamatterLagrangiandensity.Wewilluseatime-likesignaturethroughoutthethesis.GcanbethoughtofasthesourceofgravityduetothemattercomponentsconstitutingT.Clearly,wechangethebehaviorofgravitybyalteringthesourcespresentinT.Indeed,the\darkhorses"ofmodernphysics,darkmatteranddarkenergy,arebothappendicestothesourceside,albeitinpeculiarforms.Gravitationalobservationcanonlytellusaboutthegravityside,andthustheabilityalwaysexiststoaddtermstothesourcesidetomakethegravitysidetrue.Onlybysolvingtheequationsofmotionofanewparticleeldandconrmingthesolutionexperimentallycanoneconcluderealexistence. Considerthemoregeneralsituation, Here,GisanotnecessarilytheEinsteintensor.Wewillrefertoitasthe\gravitytensor".Obviously,onemustmakerestrictionswhenformulatingthegravityten-sor.GeneralcovariancereconcilestherequirementsofstabilitywithlocalLorentzinvariance.Higherspineldsarenotoriousforpossessingnegativeenergydegreesoffreedom.However,inagenerallycovarianttheorythesedegreesoffreedomare

PAGE 11

eitherunphysical(e.g.,thenon-transversemodesofthephotoninLorentzgauge)orareconstraineddegreesoffreedom(e.g.,theNewtonianpotentialofgravity).Inadditiontoconformingwithgeneralcovariance,phenomenologicalrequirementsmustbemet.ThemostpoignantoftheseisNewton'slawofgravitation.Gravityiswellunderstoodatthesolarsystemscale.AnyproposedmodicationtoEinstein'sequationwouldhavetofaithfullyreproduceNewton'slawinthisregime.Further,Einstein'srelativity(whichhasproventobeextremelyrobustoverabroadrangeofphysicalscale)mustemergefromanycandidatetheoryundertheappropriateconditions.Gravitationallensing,thebendingoflightduetomattersources,willbeshowntoserveasanimportantphenomenologicalconstraint.AstrophysicaldatacomingfromrecentexperimentssuchastheWilkinsonMicrowaveAnisotropyProbe(WMAP)andCosmicMicrowaveExplorer(COBE);anddataanticipatedinthefuturefromtheSupernovaAccelerationProbe(SNAP)andthePlanckSatellitesimultaneouslyfurnishuswithbizarrechallengesnowandplacemoreandmorestringentrestrictionsonmodelsinthefuture. Thethesisisorganizedasfollows:Chapter2discussesthemissingmassproblemanddescribesthedarkmatterapproachtoitsexplanation.InChapter3,thealternativepropositionofMONDisintroducedandshownasaviablealternative.First,wediscussthenonrelativisticsuccessesofMOND,followedbyathoroughanalysisoftherelativisticextensionscurrentlyunderconsideration.Specically,thescalar-vector-tensortheoriesBekenstein,Milgrom,andSandersaresurveyedinsomedetailfollowedbyacompletetreatmentoftheauthor'scontributiontothepurelymetricapproach.Chapter4introducesthedarkenergyproblemdiscussingsomeofthemorecommonapproaches.Chapter5introducesaspecicalterationtotheEinstein-Hilbertactiononecanmaketoreproducethesameeectasdarkenergy.Theauthor'scontributiontothecomputationoftheforceofgravityduetosuchanalterationiscompletelytreated.Itisshowntoplace

PAGE 12

severelimitationsonthiswideclassofmodels.Chapter6summarizestheresultswithsomeremarksconcerningtheimplicationsforpresentandfuturework.

PAGE 13

2.1 Introduction Whenthevelocitiesofsatellitesorbitingspiralgalaxiesaremeasured,theybe-haveinaquitepeculiarfashion.Thevelocitiesareoftheorder102km/s(thereforev=c103),andonewouldnaivelyexpectaNewtoniandescriptionoftheirgravi-tationaldynamics.Fromelementaryphysics,weascribecentripetalaccelerationtoaparticleinacircularorbitoutsideamatterdistributionM(r),a=v2(r) r: However,ratherthanaKeplerianfallooftheasymptoticvelocity,satellitesareobservedtoasymptotetoaconstantvelocityfarfromthecentralgalacticbulge, Suchbehavior,onecaneasilyimagine,canbedescribedbyinsertingmorematterintothesystemintheappropriatedistribution.Indeed,thisphenomenonhasservedasamajorimpetusforinvokingtheexistenceofanunknownmattercomponent(darkmatter)thatpervadesthegalacticsystemsofouruniverse,andtheuniverse'sentiretyitself.Aswehavenotdirectlywitnessedthismatterviatheelectromagnetic,electroweak,orstrongnuclearforces,ithasacquiredthe\dark"nomenclature.Itsonlyinteractionthatwehaveobserved(ifitwereatrue 5

PAGE 14

componentofouruniverse)isitsgravitationalinteractionwithluminousandnonluminousmatter(andofcoursethecosmologicaluiditself). Theapplicationofthisideafacesmanyobstaclesfromtheonset.Immediately,itsoriginscomeintoquestion.Thatis,onemustusecosmologicalmotivationsandevidencetoaccountfortheexistenceofdarkmatter.GalaxyformationbecomesacriticalissuewhendiscussingdarkmattersinceearlyuctuationsintheCMBgiveevidencetothedensityuctuationsthatwerepresentatrecombination.Theseimprintsconstrainthepossibilitiesofhowmuchmatterenergydensitycanbeinvolvedingalaxyformation. Manycandidateshavebeenproposed,ofwhichafewwillbediscussedlater|butwemaytemporarilyspotlightthenecessitytoquantifydarkmatter'sstandingintheparticledescriptionofmatter.Specically,doesdarkmatterconsistoftheusualsuspects(i.e.theStandardModelparticles)?Orisdarkmattertheimplementationof\newphysics"|particlesandeldsnotcurrentlycapturedintheStandardModel?Itsdistributionand\symbiotic"relationshipwiththeluminousmatterinthegalaxyandtheuniversemustbeidentied.Further,withtherecentaugmentationofourexperimentalabilitiesinmeasuringgalacticobservables,darkmattermustbeembeddedintoourgalacticsystemsinaself-consistentfashionsuchthatthecurrentobservablesarenotvoidedbytheintroductionofanewexotic. 2.2 DarkMatterTaxonomy Wewilllimitthescopeofourdiscussionofdarkmattertoissuesconcerninggalacticsystems.However,itshouldbenotedthatthereisanenormousamountoftheoreticalandexperimentalworkextantdealingwithdarkmatter'spossibleroleincosmology.Darkmatter,ifexistent,occupiesfarmoreoftheintergalacticmediumthanthegalacticone.ThisisevidentfromrecentandquiteconstrainingdatafromtheWMAPprobe[ 1 ],whichrevealsthelargediscrepancybetweendark

PAGE 15

andluminousmattercriticalfractions,CDM0:27andB0:03,respectively(hereCDMandBrefertocolddarkmatterandbaryonicmatter,respectively,explainedbelow).Anycosmologicalcomponentrepresentssomefractionofthecriticalmassdensity(thedensityforwhichtheuniverseexpandstoacriticalradiusandfreezes)c=3H2=8G, XX whereHistheHubbleexpansionparameter.TheWMAPdataconrmsthehotbigbangtheoryfollowedbyaperiodofinationgivingrisetoaatuniverse.Intermsofcriticalfractions,thetotalfractionisTotal1withadarkenergycomponent,0:7,whichwillbediscussedlateringreaterdetail.Thequestionisthenwhetherthe30%energycomponent(i.e.thatwhichisnotcomingfromdarkenergy)isatruemattercomponentorwhetherthereisnewphysicsatthelevelofnewparticlesandelds,orfundamentalspacetimeprinciples. Inaddition,proofthatdarkmatterreallydoesexistmustcomefromitsobservedinteractions.Manydarkmattercandidateshaveemergedthroughtheyears.Roughly,onemaydividethemintotwocategories:nonluminousbaryonicmattersuchasbrowndwarfs,blackholes,andlargeplanets(MACHOS|MassivelyCompactHaloStructures);andweaklyinteractingparticlessuchasneutrinos,axions,andneutralinos(WIMPS|WeaklyInteractingMassiveParticles)whichpervadelargeportionsoftheuniverse.Ofthesetwocandidates,ithasbeenexperimentallyandphenomenologicallydeterminedthatifMACHOSdoexist,theyconstituteverylittleofthetotalpossibledarkmatterobserved[ 2 ]. WIMPScanbefurthercategorizedbytheircosmologicalhistory.Someparticlesformedinthebigbangarerelativisticforsomeperiodoftime.Dependingontheirmassesandcouplingstootherparticles,weareabletopredictandobservetheirtransitionfromtherelativisticregimetothenonrelativisticone.Thosethatarerelativisticattheonsetofgalaxyformationareclassiedashot

PAGE 16

darkmatter(HDM),whereasthosewhichhavedippedintothenonrelativisticregimeareclassiedascolddarkmatter(CDM).Alightneutrino(.20eV)andaheavyneutrino(100GeV)serveascandidatesforCDMandHDM,respectively[ 3 ].Finally,athirdtypeofparticledarkmatter,theaxion[ 4 ],arisesfromthePeccei-QuinnmechanismtosolvethestrongCPproblemofQCD[ 5 ].Theaxionisaparticlewhichexhibitsaparticularsymmetrythatensures(byreachingtheminimumofitspotential)thatCP-symmetryisnotviolatedinanystrongnuclearinteractions.Dependingonthevaluesoftheaxionmassandcouplings,itispossibletoaccountforalargefractionofthedarkmatter[ 6 ]. FurtheranalysisusingWMAPdata,however,stronglytiltsthefavortowardaCDMscenario[ 7 ].Becausegalacticformationdependsuponthenatureofitsdarkmatterconstituency[ 8 ],CDMhasemergedasitisable(unlikeHDM)toprovidesucientclumpingongalacticscalesweobservetoday.Therefore,wewillsurveytheconservativeapproachtogalacticdarkmatterandregarditasCDM. Galacticdarkmatterhasbeenmostcommonlyintroduceditselfintheliteratureandinscienticinvestigations(boththeoreticalandphenomenological)ashalosinwhichonemayeitherviewthegalaxyembeddedinthehalo,orthehaloembeddedinthegalaxy.Theamountofdarkmatterprojectedisoftenontheorderof90%greaterthanthatofordinarymatter.Sincetherotationcurvesoftheinnerregionsofgalaxiesarewellreproducedbyconsideringonlyluminousmatter,itmustbethatthemajorityofthedarkmatterresidesoutsidethecentralbulgetoensuretheasymptoticallyconstantsatellitevelocities. Wewillfurtherrestrictourselvestorotationcurvesofspiralgalaxies,astheyhavebeenbyfarthemoststudied.Theproblemistondhowthedarkmatterdistributesitselfinandaroundtheluminousmatterofthegalacticsystem.Itcannothaveagreatimpactondynamicsintheinnerregionsinceluminousmatteraccountsfortherotationcurvesthere.Italsofacesthechallengeofreproducing

PAGE 17

therotationcurvesoutsidetheinnerregionforawiderangeofphysicalscales|distance,luminousmass,mass-to-lightratios,etc.Thus,darkmatterprolesfacethefurtherchallengeofbeinguniversal(oratleastexhibitinguniversality). 2.3 DarkMatterDistribution Athoroughreviewofthedierenthalomodelsisgivenby[ 9 ].Weconsideronlytwohere,whichismorethansucienttocapturethemostimportantfeaturesofhalos.ThesimplestCDMdistributionwhichcansuccessfullyaccountfortherotationcurvesofspiralgalaxiesistheisothermalsphereproposedbyGunnandGott[ 10 ]withmassdensity, ImmediatelyfromEquation 2.5 weseetherearetwoparameterswhichmustbedetermined,thecentraldensity0andthecoreradiusrc.Clearly,thisprolegivesrisetotheobservedrotationcurves.Thecircularvelocityofaparticleintheisothermaldistributionis,v2(r)=4G rZr0dr0r02(r0); rc: Inthelimitofrrc,Equation 2.7 reducesto, theasymptoticvelocityrequiredtoexplaintherotationcurves.Apossiblyun-fortunatefeatureofEquation 2.8 isthatthevelocityneverceasestofallo,andthereforecertainlythisscenariocanonlyserveasarstapproximation.

PAGE 18

Anotherpopularclassofformulationsistheso-called\universal"Navarro,Frenk,andWhite(NFW)proles[ 11 12 ], r rs(1+r=rs)2;(2.9) wherecisthesameasinEquation 2.4 .Thereareagaintwoparameterstodetermine,asisalwaysthecasewithaCDMprole:adensityparameter(inthiscaseadimensionlesscharacteristicnumberc);andalengthscale(hererepresentedbythescaleradiusrs).Theseproleshaveinheritedtheclassication\universal"forthesimilaritiesintheprolesbetweenhalosofwidelyvaryingmass,whichcameasasurprise,inlightofthepower-spectrumdata[ 12 ]. Identicaltotheisothermalhalo,wecalculatethevelocityfromtheNFWproleEquation 2.9 1+rs=r(2.10) Thesquarevelocityhasthelimitingbehaviors, Theselimitingbehaviorsareclearlysuperiorinthephenomenologicalsensetotheisothermalhaloonaccountofthequasi-Keplerianfalloatlargeenoughdistances. Thenontrivialsolutiontothetranscendentalequation, x(1+2x)(1+x)2ln(1+x)=0;(2.12) wherex=r=rs,givestheratioofradiinecessarytoachievethemaximumvelocity.Thisequationcanbenumericallysolvedtogivex'2:16.Thevelocityapprox-imatelydropsto0:82vmaxand0:85vmaxforx=0:1xandx=10x,respectively.Therefore,itisquiteevidentthatatrotationcurvescanbedescribedwiththe

PAGE 19

NFWprole,withtheaddedfeaturethatatasymptoticallylargedistances,afalloisexhibited. 2.4 ProblemsandDrawbackstotheCDMHaloModels Althoughtheisothermalhalomodelenjoyssuccessinreproducingmanyoftheobservedrotationcurvesofdiskgalaxies,theassumptionsleadingtoitexposesitslackofuniversality.Theisothermalmodelassumeswhathasbeencalledthe\maximum-disk"hypothesis,whichassignstothediskthemaximummass-to-lightratioconsistentwithvelocitymeasurementsintheinnerregion[ 11 ].Themaximum-diskhypothesiseectivelyseparatesthediskfromthehalo.Therefore,satellitesintheinnerregioninheritallbutanegligiblefractionoftheirvelocitiesfromthediskalone.Thishastheeect,ofcourse,oflimitingthecoredensityofthehalo.However,inclusionofdatafromdwarfgalaxiesshowsthisassumptiontobreakdown[ 13 ].Therotationcurvesforthesesampleswereofquiteadierentshapeandcouldnotbeexplainedusingtheisothermalplusmaximum-diskmodel.Further,velocity-dispersionmeasurementsinthenormaldirectiontothediskshowedthatthediskonlycontributedapproximately60%totheinnervelocityofsatellites[ 14 ],therebynullifyingthemaximum-diskhypothesis. Themaximum-diskhypothesisattemptstoregardrotationcurvesasfunctionsoftheluminosityalone.Thiswastendentiouslyproposed[ 14 ]inresponsetotheobservationthatinlow-luminositygalaxies,rotationcurvesriseslowlyandcontinuerisingpasttheopticalradius;whereasinhigherluminositygalaxies,thecurvesrisemoresharplytotheirmaximum,levelingoandsometimesevendecliningpasttheopticalradius.However,itwasdiscovered[ 14 ]thatwithinthesubsetofobservedgalaxiesthatexhibitsimilarluminosities,dierentlyshapedcurvesweremeasured(distinguishedbythegalaxy'ssurfacebrightness). TheNFWprolesforgalactichalosandX-rayclustershavebeenstudiedextensivelyusingN-body/gasdynamicalsimulationsofCDMinaat,low-density,

PAGE 20

cosmologicalconstant-dominateduniverse[ 15 16 ].InsertingnonsingularisothermalhalosintoN-bodysimulationsshowsthesestructurestopoorlytthedata[ 15 ].TheNFWprolesbyfarconstituteamoresophisticatedapproachandareabletoovercomesomeoftheproblemsoftheisothermalmodel.Thatsaid,theNFWapproachcurrentlyrequiresfurtherdynamicalinputintodeterminingthespecicprolesthatcanaccountforthebroadrangeofobservedgalaxybrightnessesandmassesobserved.Forexample,lowsurface-brightnessgalaxiesarenotaswelltbyNFWproles[ 17 ]whererotationcurvesrisemoresharplyintheinnerregionthantheprolepredicts. Lastly,oneofthemoredisturbingfeaturesofCDMhalosistheirlargeparameterrange.Althoughitisbynomeansanindicatoroffutilityofthisapproach,itcertainlyspurstheadventofmoresophisticatedmodels(ifnotradicallynewideas).Bytradingodiskmassforhaloconcentration,oneisalwayscapableofproducingsimilarvelocitycurves.Infact,anyrotationcurvecanbetbysettingthedisk'smass-to-lightratiotozeroandtuningthehaloparameters.Thus,dierentiatingamongaclassofhalomodelsbecomesadauntingtaskthatcanonlybesimpliedbyinjectingnewdataornewfundamentalconceptsintotheprole-buildingprocess. Thisne-tuningproblemcomestolightwhenconsideringtheTully-Fisherrelation:theobservationthatagalaxy'sluminosityiscorrelatedtoitspeakrotationvelocityvia, Therotationvelocityismostlysetbythehalo,whereastheinfraredluminositycomesfromthevisiblematterinthegalaxy[ 18 ].Thene-tuningthatarisesfromthesymbioticrelationshipbetweenthediskandhalomustsomehowconsistentlyreproduceEquation 2.13 .TheobservationalprecisionofEquation 2.13 ,however,isnottobeeasilyexpectedfromstatisticalprocessesinvolvedingalaxyformation.

PAGE 21

Therefore,theTully-Fisherrelationremainsanissueforhaloprolesthatclearlyneedstobeaddressedbeforeanyspecicproleorhalomechanismisdeemedsatisfactory. 2.5 ConcludingRemarks Evidencefordarkmatter,regardlessofthegalaxyrotationcurves,isquiteextensive.TheStandardCosmologycannotdowithoutit;atleastnotwithoutaradicalchangetofundamentalphysics.ProcessessuchasBigBangNucleosynthesis(BBN)[ 19 20 ],structureformation[ 21 22 ],andthecosmicmicrowavebackground(CMB)[ 23 24 ]allindicatetheLambdaCDM(colddarkmatterwithacosmo-logicalconstant)approachtobethesuperiorscenario.Successesintheseareascannotbeignored.Theconservativeapproachtofavordarkmatterastheleadingcandidateofthe\missingmass"phenomenon.Itcanbesaidthathalomodelsarejustextendingpasttheirinfancy.Indeed,anygasdynamicalprocessincorporatesanenormousamountofcomplexity.Attemptingtonduniversalityamonggalaxiesisadauntingtaskifdynamicalhistorieshavedistinctimprintsintherotationcurves.Currently,NFWprolesoerthemostuniversalapproachinhalomodels.Despitetheirinabilitytoaccuratelytlow-surface-brightnessgalaxies,theirsuccessencouragesustoaddnewgalacticdynamicstothemodelinsteadofabandoningitaltogether.TheseprolesareinferredusingN-bodysimulations,andthereforequestionsastothevalidityofthesesimulationscertainlyenter.Forexample,onecouldarguethatthelimitednumberofparticlesemployedpreventsanaccuratereproductionofthedynamics;andthesingularnatureofNFWprolesiscertainlyanunattractivefeaturethatdoesnotexistinnature. Theenormousparameterspacealsoleadsonetoconcludethatdarkmatter'sexistencecannotbeprovedbygalaxyrotationcurvesalone.Evenmorenarrowly,perhapsneithercananyparticularhalomodel(atleastnotanyfromthecurrentarsenal).Alongwithcosmologicalevidenceandparticlesearchesfordarkmatter

PAGE 22

properties,abundances,andcomposition,galaxyrotationcurveswillserveasoneoftheapproachestoinvestigateitspossibility.Intheeventofa\smokinggun"observationofdarkmatter'sexistence,rotationcurveswillplayanimportantroleinunderstandinggalaxyformationanddynamicalevolution.

PAGE 23

MONDwasproposedbyMilgromin1983[ 25 ]asanempiricalalternativetodarkmatterinexplainingtherotationcurvephenomena.Byalteringgravityatlowaccelerationscales,onecanreproducetheasymptoticallyconstantvelocitiesofsatellitesoutsidethecentralgalacticbulge[ 26 ].ThischapterwillrstintroducethenonrelativisticformulationofMilgromandBekenstein.Next,relativisticextensionsofthistheorywillbediscussed:rstthescalar-tensorvarietieswhosemajorproponentshavebeenBekensteinandSanders,andsecondlythepurelymetricapproachofSoussaandWoodard.Wewillendwiththephenomenologicalconstraintsandimplicationsofeachoftheserelativisticapproaches. 3.1 NonrelativisticFormulation 3.1.1 Motivation OnemayformulateMONDbyalteringNewton'ssecondlawtobenonlinearintheacceleration~a, a0~awhere(x)=8>><>>:18x1;x8x1:(3.1) Thefunction(x)isconstructedtoreproduceNewton's2ndlaw,F=maforaccelerationsaa0(correspondingto1);andF=ma2=a0foraccelerationsaa0(correspondingto1).Thenumericalvalueofa0hasbeendeterminedbyttingtotherotationcurvesofninewell-measuredgalaxies[ 27 ], 15

PAGE 24

However,whenoneconsiderstheenormousinternalaccelerationsofgalacticandstellarconstituentsrelativetothecenter-of-massacceleration,itbecomespreferabletoregardMONDasamodicationofthegravitationalforceatlowaccelerations 28x1:(3.3) Thisempiricallawisconstructedtoensuretheasymptoticallyconstantvelocitiesobservedinthegalacticrotationcurves.Thatis,aparticleorbitingamassMatanaccelerationaGM r2willfollowatrajectorygovernedbytheforceFMOND=mp r=v21 Intheabsenceofdarkmatter,agalaxy'sluminosityLshouldbeaconstanttimesitsmasswheretheconstantdependsonthetypeofgalaxy.Therefore,MONDisabletoautomaticallyreproducetheexpectationLv41,whichistheobservedTully-Fisherrelation[ 29 ]. Whenthedataareanalyzed,MONDisshowntobeanimpressivelyrobustpredictivetool.Usingonlythemeasureddistributionsofgasandstars,andthettedmass-to-luminosityratiosforgasandstars,MONDhasaccuratelymatchedthedataofmorethan100measuredgalaxies.AreviewbySandersandMcGaugh[ 30 ]summarizesthedataandliststheprimarysources.Twosignicantthingsshouldbenoted:rst,MONDagreesindetail,evenwithlow-surface-brightness 28 ]

PAGE 25

galaxies[ 17 31 ];second,thettedmass-to-luminosityratiosarenotunreasonable[ 32 ]. Ontheotherhand,whenMONDisappliedtointergalacticscales,orclustersofgalaxies,ithasprovenasyettobelesssuccessful.Somedarkmattermustbeinvokedtoexplainthetemperatureanddensityprolesatthecoresoflargegalaxyclusters[ 33 ],anddatafromtheSloandigitalskysurveyclaimsthatsatellitesofisolatedgalaxiesviolateMONDwhencareistakentoexcludeinterlopergalaxies(denedasdwarfswithlargephysicaldistancesfromtheprimarygalaxieswhichareclaimedtomakethehalomassprolediculttomeasure)[ 34 ].Thisobjection,however,hasseriousdicultyinbeingappliedtoalltherotationcurves.Pradaetal.suggestthatthisiswhatleadstothesystematiceectsthatfoolstheobserverintomeasuringaconstantvelocitydispersionina\few"instances[ 34 ].Toregard100rotationcurves|mostofwhichhavenotbeensystematicallycheckedforthepresenceofthispurportedinterloperphenomenon|asafewinstancesiscurrentlyanoverestimationoftheinterloperhypothesis.Recently,apaperbyPe~narrubiaandBenson[ 35 ]analyzedtheeectsofdynamicalevolutiononthedistributionofdarkhalosubstructuresusingsemi-analyticmethods(checkedwiththelatestN-bodysimulations).Theirgoalwastodisentangletheeectsofprocessesactingonthesubstructures.Theyconcludethatorbitalpropertiesofsubstructurecomponentsaredeterminedaprioribytheintergalacticenvironment[ 35 ]precludingtheinterloperhypothesis. 3.1.2 ActionPrinciple MilgromandBekensteinwereabletoobtaintheMONDforcelawfromanonrelativisticLagrangianthatrespectedallthesymmetry(andhenceconserva-tion)principleswedemandofnonrelativistictheories[ 36 ].Consideringageneralgravitationalpotentialsourcedbyamassdensity,theyproposedthefollowing

PAGE 26

Lagrangian, wheretheinterpolatingfunctionFisrelatedtothefunctionofEquation 3.1 via, Assumingthatthepotentialvanishesontheboundary,varyingLwithrespecttogivestheequationofmotion, ConsideranisolatedmassM.UsingGauss'slawandsphericalsymmetrywetriviallyhave, r3~r:(3.8) inviewofourempiricalrequirementsetforthinEquation 3.3 ,weseethattheasymptoticbehavioroftheaccelerationofanobjectduetoanobjectofmassMmustbehaveas, r2~r+O(r2):(3.9) NotetheEquation 3.9 appliesinallregimes:MONDandNewtonian.Requiringthat, r2~r;(3.10) leadstothetrivialsolution, wherer0isanarbitraryradius.SolvingtheeldEquation 3.7 canbedonebyget-tingtherstintegralleavingonewithanalgebraicproblem.Fromtherotational,space,andtimetranslationalsymmetryofEquation 3.5 weimmediatelyobtain

PAGE 27

theconservedquantitiesoflinearmomentum,angularmomentum,andenergy,respectively. Theformoftheinterpolatingfunctionisobviouslynotuniqueandmanydif-ferentformsmaybetakenaslongasthelimitingbehaviormatchestherequirementEquation 3.3 .Atypicalexampleis,f(x)=s 2+1 2r 3.2 RelativisticFormulation 3.2.1 Motivation Thepurposeoftheprevioussection,andthatoftheoriginalauthors,wastodemonstrate:rst,theMONDforcelawisderivablefromanactionprinciple;andsecond(andadirectconsequenceoftherst),theactionprinciplewouldpossessthespacetimesymmetriesassociatedwithconservationofenergyandmomentum. TheneedtoextendMONDintotherelativisticdomainiseasilyseen.Esthet-ically,thenonrelativisticformulationofMONDleavesatheoristalmostachingtoextendittoafullyrelativisticdescription.However,andperhapsevenfortunately,itisphenomenologywhichservesasthegreatestimpetus.Asis,MONDproclaimsitselfasanalternativetodarkmatter,andthereforeanyphenomenatowhichthepresenceofdarkmatterhassucceededinexplainingmustnowbeequallyorbetterdescribedbyMOND. Ifoneisinterestedincosmologyandgravitationallensing,thereisnoescapefromtherequirementofagenerallycovariantformulationofMONDthatincludesatleasttheusualmetric.IfMONDisindeedaviablealternativeapproach,itmust

PAGE 28

accountforthedeciencyobservedinthegeneralrelativitywithnodarkmatterprediction[ 37 ].Milgrom,Bekenstein,andSandershaveascalar-tensorapproachtothisend[ 36 ] 3.2.2 Scalar-tensorApproach Wewillnotinanywayhereattempttothoroughlyconsiderscalar-tensortheo-ries.Rather,wewilltakeamoretaxonomicapproach,andintheprocesslisttheirrespectivestrengthsandweaknessesfromthetheoreticalperspective.Bekenstein[ 18 ]givesamoreexhaustivereviewofthesetheories.ThemainphenomenologicalissueiswhetherthemetricencodestheMONDforcelaworwhetheritiscomingfromascalareld.Allthescalar-tensorapproachespossessthelatterfeature,andthereforeonemayimmediatelyseethatanewkindofdarkmatteremerges.Namely,iftheseaddedeldsarerealthenweareagainfacedwiththechallengeofdetectingthemasanyotherdarkmattercandidate. AquadraticLagrangian:AQUAL BekensteinandMilgromrstproposedarelativisticformulationofMONDasanappendixtotheirprincipalthemeofdevisinganonrelativisticpotentialtheoryin[ 26 ].Theiroriginalapproachwastointroduceadynamicaldegreeoffreedomintheformofascalareldinthespiritofscalar-tensortheories.ParticlesnolongerfollowgeodesicsoftheEinsteinmetricg,butratherthatofaconformallyrelated\physical"metric~g=e2g.MONDphysicscomesfromthescalareldLagrangiandensity, 8GL2~f(L2g;;);(3.14) where~fisanaprioriknownfunctionwhichisconstructedsoastoreproduceMONDintheappropriateregimesandLisaconstantlength.Inthistheory,particlesfollowgeodesicsof~g.Thatis,ifweparameterizeaparticle'sworldline

PAGE 29

tobe(),ithasthefollowingaction, whereadotindicatesdierentiationwithrespectto.Tomakecontactwiththenonrelativistictheory,expandtheparticleaction, identifyingN=(1+gtt)=2astheNewtonianpotential,determinedbymassdensityviathelinearizedEinsteinequations.Ifwefurtherrestrictourselvestothequasi-staticcase,itisstraightforwardtorecovertheMONDequationofmotionEquation 3.7 intheweakeldlimit,withtheaccelerationofaparticlegovernedby, Phasecouplinggravitation:PCG AQUALwasdiscoveredtopossessthedebilitatingfeaturethatcouldpropagatesuperluminally[ 26 ].Toseethis,considerthewaveequationforfreepropagationofthatfollowsfromEquation 3.14 [~f0(L2g;;)g;];=0:(3.18) Hereasemicolonrepresentscovariantdierentiationwithrespecttog.NowlinearizeEquation 3.18 forsmallperturbationsinandconsiderthehighestderivativeterms.FollowingBekenstein'scoordinateprescription[ 26 ],itispossibletondalocalLorentzframetopointinthex-direction,allowingonetoexpandEquation 3.18 as, 0=;tt+(1+2);xx+;yy+;zz+:::;(3.19)

PAGE 30

wheredln~f0(y)=dlnyandthedotsindicatetermswithonlyonederivative.Todeterminewhethercanpropagateacausally,weneedonlyconsiderthehighestderivativetermandtheirrespectivecoecients.Since0,thecoecientsinEquation 3.19 clearlydisplay'sabilitytoviolatecausality. AnotherdownfallofAQUALcomesfromtheconformalnatureinwhichtheeldcouplestotheEinsteinandthephysicalmetrics.Itcannotinuencegravitationallensing.Wesimplystatethisfacthere:anyconformaltransformationoftheformg!2ghasnoimpactonthebendingoflight.Wewillrevisitthisstatementanddiscussitatgreaterlengthwhenconsideringapurelymetrictheory.Thismeansgalaxiesinducegravitationallensingonlytotheextentpredictedbygeneralrelativitywithoutdarkmatter.Thisisfartoosmall[ 38 ]. InordertopreventthesuperluminalpropagationofthescalareldinherenttotherelativisticAQUALtheory,onecanaddasecondscalareldwhichcouplestotoensurecausality.ThisincarnationofMOND,PCG(PhaseCoupledGravity)[ 39 ],hasnowforascalarLagrangiandensity, 2g(A;A;+2A2;;)+V(A2);(3.20) andequationofmotionforA, IncludingapointmassM,theequationofmotionforfollowsfromEquation 3.20 (A2g;);=2eM3(~r):(3.22) SmallvaluesofjjjustiesdroppingtherstterminEquation 3.20 andallowsustosolveforAintermsof.InsertingthisintoEquation 3.22 reproducesthesametypeofequationexhibitedbyAQUALfor.

PAGE 31

ForthechoiceV(A2)=1 32A6withaconstantonecanshowthataparticleaccelerationforsphericallysymmetricsolutionsbehavesas, r22M where23=21+q 2.MakinganappropriatechoiceofandthusandidentifyingthecriticalaccelerationscaleintermsofourPCGparameters, willsatisfytherotationcurverequirement.ThusPCGiscapableofreducingtotheAQUALbehaviorandthusthenonrelativisticregimewhichisresponsibleforrotationcurves.Italsoremovestheacausalpropagationofthescalareld.Naively,onewouldassumethatsincerstderivativesofinEquation 3.21 enterquadraticallythatcausalityensues.AmorethoroughanalysisbyBekenstein[ 40 ]showsthatalthoughthisisnotsucient,consideringonlystablebackgroundsenforcesthedesiredpropertyofcausalpropagation. Theparametersandarestringentlyconstrainedbysolarsystemtests.TheaccuracytowhichweknowtheperihelionprecessionofMercuryprovesenoughtomarginallyruleoutPCG(See[ 18 ]foradetaileddiscussion). Finally,PCGsuersthesameproblemasAQUAL:theconformalcouplingofthemetricsleadstonoenhancingofgravitationallensinginthegeneralrelativitywithnodarkmatterhypothesis. Disformallytransformedmetrics:Stratiedgravitation ThefailureofboththeAQUALandPCGtheoriesstemfromtheconformalrelationbetweentheEinsteinandphysicalmetrics.Consider,rathera\disformal"relation[ 41 ], ~g=e2(Ag+BL2;;);(3.25)

PAGE 32

whereAandBarefunctionsoftheinvariantg;;andLisaconstantlength.ThesecondterminEquation 3.25 isresponsiblefortheadditionallightdeectionneededtoexplainobservedgalaxylensingwithoutdarkmatter.However,ifonedemandscausalitythenitwasfound[ 42 ]thatthesignofBwouldhavetobesuchthattheeectofthedisformaltransformationwouldbetodecreasetheamountofgravitationallensing.OnewaytoovercomethisshortcomingistoreplacethesecondterminEquation 3.25 byanon-dynamicalvectoreldwhichispurelytime-like[ 43 ].Thisstratiedframework,whichchooses~g=e2g2UUsinh(2); isabletosuccessfullydescribeobservedgravitationallensingphenomena,andsatiseslocalsolarsystemtestsofgravity.However,itisclearlyapreferred-frametheory,andhasnoaprioriprincipleinwhichtoselectthepreferreddirection.Further,UmustbeofabizarreformtosatisfyEquation 3.27 atallspacetimepoints|undoubtedlyanunnaturalfeature. Tensor-Vector-ScalarTheory:TeVeS Recently,BekensteinhasbuiltonthesuccessesofSanders'stratiedtheory[ 18 ],byformulatingatheoryincorporatingavector,ascalar,andatensoreldwhichworkcooperativelytoexhibitthedesiredphenomenology|gravitationallensingbeyondgeneralrelativityaloneandcausalpropagationofscalarmodes.Inaddition,thistensor,vector,scalar(TeVeS)theoryisnolongerapreferred-frametheorylikethestratiedframeworktheoryofSandersbyvirtueofthevectoreld'sdynamics.

PAGE 33

TheTeVeStheoryproposesthefollowingtransformationbetweenthephysicalandEinsteinmetric,~g=e2g2UUsinh(2); Now,however,thevectorfollowsfromtheaction[ 18 ], g[ggU[;]U[;]4((x)=K)(gUU+1)];(3.30) where(x)isaLagrangemultiplierenforcingEquation 3.29 ,andKisaconstantofdimensionzero.Further,weemploythenotationV[;]=V;V;. 2Zd4xp g2(gUU);;+G whereFisafunctionagainconstructedtoreproduceMONDbehaviorandkand`areconstantsoflengthdimensionzeroandone,respectively.ThegravityactionistheusualEinstein-Hilbertactionwithmetricg,butthematteractionisconstructedcouplingto~ginsteadofg. TeVeS'sscalarequationofmotionis, where(y)isdenedbytheequation, 22F0()=y:(3.33) 44 ]haveconsideredmodelssuchasEquation 3.30 (Einstein-AetherTheories).

PAGE 34

Quantitieswithtildesareconstructedusingthephysicalmetric.Equation 3.32 isexact.ToexhibitAQUALbehavior,wetakeg!ande2!1.Further,weneglect~prelativeto~.Equation 3.32 canthenbeapproximated, Byproperlyconstructing,Equation 3.34 reproducesthenonrelativisticschemeofAQUAL.Similarly,onecanworkoutfromEquation 3.32 theMONDlimitandtheGRlimit|infact,Equation 3.32 isthestartingpointformostanalyses. Parameterizingthemetricas, Onecanshow[ 18 ]thatgravitationallensinginTeVeSisachievedby, '=b wherex=p 3.36 canbeapproximatedtoleadingorderviatherelation[ 18 ], '=2bZ10 where=+N.ThisresultisconsistentwiththeGRplusdarkmatterprediction. TeVeS'smajorsetbackisthat(likedarkmatter)itintroducesnewparameterstowhichonemustthenexaminetheirorigins.TakingappropriatelimitsofTeVeS'sthreeparametersk;`;KallowsonetoproperlygofromgeneralrelativitytoMOND,etc.Atleasttwo(wemayassumethatatleastoneoftheseparametersarerelatedexplicitlytoa0whichisdeterminedfromrotationcurvedata)addedexperimentshavetobeperformedtodeterminetheseparameters.Wecanimagine

PAGE 35

thatperhapssolarsystemtestsprovideone,lensinganother,androtationcurvesathird.Thus,likemanycurrentproblemsincurrentphysics,wemayrecastanoldproblemintermsofnewunknownparameters. Anotherdrawbackisthatifthescalarandvectoreldsarerealentities,theyareinessenceanewformofdarkmatterwhichneedexplanation.Onecanthusarguethatthisissimplydarkmatterinapeculiarguise.Undoubtedly,however,theTeVeSisanimprovementoverthepreviousscalar-tensorapproaches,anditsphenomenologicalsuccessalonemakesitaviableandseriouscandidateexplanationforthecurrentastrophysicaldata. 3.2.3 PurelyMetricApproach Motivation Oneinterestedinsimplicity,viz.bypuredegreesoffreedomwouldcertainlywanttoconsiderapurelymetricextensionofMOND,iffornootherreasonthantheoreticalcompleteness.Further,itiscertainlyarguablethatapurelymetricap-proachisclosertothe\spirit"ofgeneralrelativity.However,asisusuallythecaseinphysics,onegainssimplicityinonefacetofatheoryonlytoloseitinanother.WediscoveredthatnolocaltheorycanreproduceMONDbehavior.Considertheweak-eldexpansionofgeneralrelativityaboutaMinkowskibackground, 16GZd4xp gR!1 16GZd4xh;h;+O(h2);(3.38) WewantMONDcorrectionsto\turnon"atacharacteristicgravitationalacceleration.TheRicciscalar,however,vanishesforgeneralrelativityoutsideasource.SothereisnowayaputativeMONDcorrectiontermbaseduponRcan\know"toturnon.Youcangettermswhichdon'tvanishbyusingtheKretchmaninvariant,RR;thesecanindeedtellwhentoturnonbutfunctionsofthisinvariantautomaticallyinherittheOstrogradskianinstability[ 45 ].

PAGE 36

TheonlylocalactionswhichcanavoidthehigherderivativeprobleminvolvefunctionsoftheRicciscalaralone.TheGauss-Bonnetinvariantavoidsthisinstabilitybutispurelytopological.SincethenonrelativisticMONDforcelawinvolvesk~rk2,theweak-eldexpansionmuststartatcubicorderintheaction. Abandoninglocalityiscertainlynotanuncommonoccurrenceintoday'stheoreticalphysics.Eectivetheorieshavebecomemoreandmorecommonplaceinregimeswhereignoranceoffundamentalprinciplesdominates.Quantumgravity'seectiveaction,ofcourse,fallsinthiscategory;andalthoughweareunabletoevensaywhatthefulleectiveactionis,nothingpreventsusfromguessingitsform.WechosethesimplestclassofguesseswhichwouldbecapableofsatisfyingournonrelativisticconstraintEquation 3.7 ,actingwiththeinversecovariantd'AlembertianontheRicciscalar g@(p gg@):(3.39) (WeusetheconventionR;;+.)EmbeddingMONDinanonlocalLagrangianhastheform, g;(3.40) whereF(x)isaninterpolatingfunctionwhoseformforsmallxcontrolstheonsetofMONDbehaviorasinthenonrelativisticcaseconsideredpreviously. Althoughtheeldequationsarenonlocal,theydonotpossessadditionalgravitonsolutionsinweak-eldperturbationtheory.Toseethis,expandthemetric 46 ].

PAGE 37

aboutaMinkowskibackground, TheRicciscalarfollowseasily, 2h;+O(h2);(3.42) wheregravitonindicesareraisedandloweredusingtheLorentzmetric.UsingourgaugefreedomwechoosedeDondergauge, 2h;=0;(3.43) toshowthatthesmallpotentialislocalintheweak-eldlimit, 2h+O(h2):(3.44) SincetheLagrangiandependsupontherstderivativeof',thistheorycontainsnohigherderivativesolutionsinweak-eldperturbationtheory.Further,allsolutionstothesource-freeEinsteinequationsaresolutionstothistheorysinceR=0throughoutspacetime,whichimplies'=0aswell.Therefore,ourmodicationtotheEinstein-HilbertactioninEquation 3.40 isthechangeinresponsetosources,withoutaddingnewweak-elddynamicaldegreesoffreedom|acleardistinctionfromthescalar-tensortheoriessofardiscussed. Theclassofnonlineargravitytheoriesweareconsideringareknowntohaveaconnectiontoscalar-tensortheoriesthroughaconformalrescalingofthemetric,therebyintroducingaminimallycoupled,massivescalareld[ 47 ].Regardless,thenumberofdynamicaldegreesoffreedomremainequivalent.Thescalar-tensortheoriesofMilgrom,Bekenstein,andSandersallintroducenewdegreesoffreedom,andthereforetheseapproachesaretrulydistinct.Werethesmallpotential'[g]anindependentdynamicalvariable,ratherthanafunctionalofthemetric,thepurely

PAGE 38

gravitationalsectorofthesemodelswouldbeidentical,andthusthemattersectorwouldservetodistinguishthem.Mattercouplesintheusualwaytoginourclassofmodelswhereasitcouplesto'2gintheBekenstein-Milgromformalism.Noteinparticularthattheeldequationassociatedwithatrulydynamicalscalar, (';F0);=0;(3.45) isnotgenerallysolvedby'=1R. Phenomenologicalconstraints Thetwophysicalprocesseswewillusetoguideusinformulatingourrelativis-ticextensionofMONDaretherotationcurvesandgravitationallensing.Wewillconsidercircularorbitsasanapproximationtothetypicalorbitasatelliteofaspi-ralgalaxyfollows.Theinvariantlengthelementinastatic,sphericallysymmetricgeometrycanbeexpressedas, Theworldlineofatestparticlemovinginthisgeometrymaybeparameterizedby(t)andobeysthegeodesicequation, (t)+((t))_(t)_(t)=0:(3.47) ItisastraightforwardexercisetoobtainthenonzeroconnectioncoecientsfromEquation 3.46 ,ttr=B0 A;r=r Asin2;r=1

PAGE 39

Nowparameterizetheworldlineforthecaseofcircularmotion, (t;r;;)=ct;r; TheonlynontrivialgeodesicequationinEquation 3.47 is, A_2 TheA(r)isthusirrelevant.Incircularorbits,thevelocityhastherelationtotheangularvelocityv=r_.IntheMONDlimitv2approachestheconstantv21=p c4:(3.51) Forweak-eldswecanwrite, whereja(r)j1andjb(r)j1.Alargespiralgalaxyhasontheorderof1011solarmassesindustandgas,orM1041kg.Therefore,suchagalaxywouldentertheMONDlimitataradius, a01020m:(3.53) ItissignicantthatthenaturallengthscalecorrespondingtotheMONDaccelera-tion, isgreaterthantheHubbleradius.Thishastheimportantconsequencethat, RMOND1;(3.55) ongalaxyandgalacticclusterscales,andthereforepowersofrdonotnecessarilydistinguish`large'and`small'terms.

PAGE 40

WewillnowproposeaphenomenologicalAnsatzfortheasymptoticbehavioroftheweak-eldsintermsoffourorderoneparameters c2r+1r c4;b(r)!2GM c2r+2r c4lnr Rgal:(3.57) FromEquation 3.51 weseethatMONDpredicts2=2.Generalrelativitywithoutdarkmatterpredicts1=2=0and1=2=2.Theinsertionofanisothermaldarkhalowhosedensityischosentoreproducev21=p ToseewhattheremainingparametersinourAnsatzmustbetobeconsistentwithphenomenology,weconsidertheangulardeectionoflightfromamassMintermsoftheturningpointR0, =2Z1R0dr rvuut R02B(R0) Expandingthisexpressioninpowersoftheweak-eldsandchangingvariablestor=R0cscyields,=2Z1R0dr r1 r R021(1+a(r) 21 2b(R0)b(r) 1R0 Theweak-eldregimeisthereforeapplicablethroughouttheHubblevolume.

PAGE 41

SubstitutingintheAnsatzEquation 3.57 gives, =(12)GM c2R0+(1+2) c4+:(3.61) Withoutdarkmatter,generalrelativitygivestoolittledeectionatlargeR0tobeconsistentwiththefrequencyoflensingbygalaxies.Generalrelativitywithanisothermaldarkhaloisconsistentwiththeexistingdata[ 37 38 ].Therefore,forMONDtofaithfullyadheretothecurrentobservations,itisrequiredtohavethesum1+2tobepositiveandoforderone. Theeldequations InthissectiontheeldequationsthatwouldbederivedfromEquation 3.40 arepresented.Herewegiveamoreheuristicapproachtothisend.Toavoiddigression,wesimplystateherethattheonedoesnotgetcausaleldequationsbyvaryingatemporallynonlocalaction.Further,ifoneconsidersthisclassofmodelsinthecontextofquantumeldtheory,thenissuesofnonrealoperatoreigenvaluesquicklypresentthemselves.Wewillherederivetheeldequationswithoutlightoftheaboveconcerns.InsteadwewilluseatricksotospeaktoobtaincausalandconservedeldequationsfromEquation 3.40 .Therefore,onemayaswellregardtheresultingequationsofmotion,ratherthanEquation 3.40 asdeningthemodel. Themethodwepresentreconcilestherequirementsofcausalityandconser-vation.Usingretardedboundaryconditions,onemayeasilyaddcorrectionstotheeldequationstoenforcecausality.However,itisimmenselymorediculttoguesssymmetrictensorsofanycomplexitythatwillcombinetohaveavanishingcovariantdivergence.Ofcourse,eldequationsderivedfromanycoordinateinvari-antactionwillautomaticallybeconserved;however,varyingactionswhichinvolvenonlocaloperatorsresultinequationsatxwhichdependuponeldsinthefutureaswellasinthepastofx.

PAGE 42

Themethodissimplesttodescribebycomparingwiththecorrectvariation.Consideranarbitraryfunctionalofthemetric,f[g](y).Wecanwrite, whereweusedthefactthat1=1()1. Varyingthecovariantd'AlembertianandtheRicciscalargives,p @yp 2gg4(xy)@ @y; WenowdenethesmallpotentialusingtheretardedGreen'sfunction, UsingthewellknownpropertyGret(x;y)=Gadv(y;x),wehave,Zd4yf[g](y)'[g] 2gR1 2g';@1 ThetrickistosimplyreplacetheadvancedGreen'sfunctioninEquation 3.66 withtheretardedones,Zd4yf[g](y)'[g] 2gR1 2g';@1 SinceconservationdependsonlyuponthedierentialequationsobeyedbytheGreenfunction,itisnotaectedbythisreplacement.Thesourceforourgravi-tationalequationsofmotionisthestress-energytensorfromthevariationofthematteractionSm, gSm

PAGE 43

Finally,taking16Gc4=p gtimesthevariationofournonlocalactionEquation 3.40 |inthesenseofourtrickEquation 3.67 |anddeningthelargepotential [g]1 givesthefollowingeldequations,8Gc4T=2[;g]+[12]G+[g';;';;';;]+';';F0a20 ItisworthwhiletoexplicitlydemonstrateconservationaswehavenotrigorouslyderivedEquation 3.70 .TakingthecovariantdivergenceDofEquation 3.70 gives,2[;g];=2R; whichobviouslysumtozero.Because1=denotestheretardedGreen'sfunction,theseequationsarecausalinthesensethattheequationsatxdependonlyuponpointswithinthex'spastlight-cone 36 ].6 36 ].

PAGE 44

TheSchwarzchild-MONDsolution Hereweworkoutthesmallandpotentials:Equation 3.39 andEquation 3.69 ,respectively,forasphericallysymmetricandstaticmetricEquation 3.46 .TheygiverisetotwoindependentequationsofmotionderivingfromEquation 3.70 forthisgeometry. ThegenerallysphericallysymmetricandstaticgeometryEquation 3.46 ,Equation 3.48 givesrisetothefollowingRicciscalar, Forthiscase,andactinguponafunctiononlyorr,thecovariantd'Alembertianreducesto, drr2r Ad dr!:(3.77) Thedierentialequationwhichdenesthesmallpotentialthereforetakestheform, A'0!0=r2r AB0 Assumingtheparenthesizedtermsabovevanishatr=0,wecanwrite, BZr0dr0r0r AA1A0 Thedierentialequationthatdenesthelargepotentialis, gg;=@p gg';F0=)r2r A00=r2r A'0F00:(3.80) Assumingagainthattheparenthesizedtermsvanishatr=0wecanwrite, 0(r)='0(r)F0c4'02(r) Thesecondcovariantderivativesweshallneedare, ;tt=B0 2B0

PAGE 45

OnlythediagonalcomponentsoftheeldequationsEquation 3.70 arenontrivialinthisgeometry.Theandcomponentsareproportionaltooneanother,andareidenticallyobtainedfromtherrandttequationsfromconservation.Wehavethereforethetwoindependentequationsofmotion,8GA c4BTtt=200+4 BGtt(12)+a20 c4Trr=4 BTtt+hd dr+2 ThettandrrcomponentsoftheEinsteintensorare, BGtt=A0 Atthispointwebeginourperturbativeanalysisinthisgeometry,andrecallthatwemayexpressA(r)andB(r)intermsoftheweak-eldsa(r)andb(r),A(r)=1+a(r); IntheMONDregime,wehaveja(r)j1andjb(r)j1.Therefore,toleadingorderintheweak-eldsEquation 3.79 becomes, rb0+:(3.89) NoticethattheintegrandinEquation 3.79 vanishesexactlyinthegeneralrelativityregimewhenA=B1.IntheMONDregime,theintegrandisnolongerzero,butitissecondorderintheweakeldsandwearethereforejustiedinignoringthistermaltogetherforourpresentanalysis.

PAGE 46

Intheasymptoticregimewecanassumethateachderivativeaddsafactorof1=r.Hence'0(r)goeslike1=rtimesthesmallnumbersa(r)orb(r).Itfollowsthat0=rismuchlargerinmagnitudethan'00.Bysimilarreasoningwerecognizethat0=rand00dominatetheotherMONDcorrections, WewillassumeTrr=0intheweak-eldlimitandallowforanonzeroA=BTtt=.IncludingthersttwotermsinEquation 3.90 withthegeneralrelativitytermsallowsustoexpressEquation 3.83 andEquation 3.84 toleadingorderintheweak-elds,200+4 r2+:::=8G c4(r); r2+:::=0: TherstoftheseequationsEquation 3.91 canbeintegratedtogive, 4 r2+=K r3+16G c4r3ZrRgaldr0r02(r0);(3.93) whereKistheconstantofintegration.AddingEquation 3.92 andEquation 3.93 cancelstheleadingMONDcorrections, r2+=K r3+16G c4r3ZrRgaldr0r02(r0):(3.94) NoticethatEquation 3.94 isindependentofthestillunknowninterpolatingfunctionF.WecanthereforemakegeneralstatementsaboutallmodelsofthetypeEquation 3.40 .Intheabsenceofdarkmatter,themassintegralmusteventuallystopgrowing,forwhichcasethelefthandsideofEquation 3.93 mustfallas1=r3.Tosatisfythissituation,b0(r)mustgoasaconstanttimes1=randa(r)mustgolikeminusthissameconstant.IntermsofourAnsatzoftheprevioussection

PAGE 47

Equation 3.57 ,wehavejustdemonstratedthat, Weacquirenolensingatleadingorder|aphenomenologicallyunacceptableresult. ItisstillworthwhiletoseeifwecanndaninterpolatingfunctionF(x)toreproduceMONDrotationcurves.WewillconsiderasphereofmassMandradiusRwithverylow,constantdensity, IfthedensityissmallenoughtheMONDregimeprevailsthroughout,asinalowsurfacebrightnessgalaxy.ThismeansthatEquation 3.91 canbeintegratedallthewaydowntor=0togive, 20+a r+=8G c4r2Zr0dr0r02(r0):(3.97) WecanalsouseEquation 3.89 toeliminateb0(r)inrtimesEquation 3.92 40+'0a r+=0:(3.98) Noweliminatea(r)byaddingEquation 3.97 andEquation 3.98 ,andthenuseEquation 3.81 toobtainanequationforthesmallpotential, c4r2Zr0dr0r02(r0):(3.99) Forr>Rthemassintegralisconstant, c2r28r>R:(3.100) TogetatrotationcurveswedeterminedthatMONDrequires2=2.WehavejustcomputedexplicitlythatanymodelofthetypeEquation 3.40 musthave

PAGE 48

3.89 forthesmallpotentialimplies, c4+:::(3.101) ItfollowsthattheconstanttermwithinthesquarebracketsofEquation 3.100 mustexactlycancel,andthatthenextordertermmustinvolveonepowerof'0.Itisstraightforwardtocomputeourinterpolatingfunction, 6p 2 Theassociatedweak-eldsare,a(r)!4GM c4; c4lnr R: Forthegeneralweak-eldAnsatzEquation 3.57 ofsection2wehavejustshown21=2=8 3and1=2=2. WehavealargeamountoffreedominenforcingtheMONDlimitwithregardtochoosingtheinterpolatingfunctionF(x).TheMONDlimitisenforcedbydeterminingonlythersttwotermsinthesmallxexpansionofF(x).Thereforedependingonthelevelofsuppressiondesireditsfunctionalformisfarfromunique.OuronlyrequirementisthattheMONDcorrectionsmustbesucientlysmallwhenenteringthegeneralrelativityregime,i.e.jxj1.Forexample,wecanmakeF(x)!14 3jxj1 2forlargejxjwiththefollowingextension,F0(x)=7 18sgn(x) 1+1 6jxj1 2+2 9sgn(x) 6jxj1 22; 3jxj1 2+7 9jxj 6jxj1 2+44ln1+1 6jxj1 2:

PAGE 49

Forjxj1thiswouldtypicallysuppressMONDcorrectionsbysomecharacteristiclengthofthesystemdividedbyc2=a01027m.IfthatisnotsucientonecanalwaysextendF(x)dierentlytoobtainmoresuppression. TheFRW-MONDSolution Eventhoughwejustdiscoveredourrelativisticformulationisunabletoproduceenoughlensing,itisstillinstructivetoseewhatitdoesforcosmology.Further,itservesasapotentialgaugeofhowmuchageneralformulationofMONDchangesinpassingfromastaticgeometrytothetimedependentoneofcosmology.WebeginwiththeusualFriedmann-Robertson-Walkermetricforhomogeneousandisotropiccosmologies, InthisgeometrytheRicciscalaris, a:(3.108) Thesmallpotentialisdenedbytheequation, dcta3d' dct=R(t):(3.109) Wedenetheinitialvaluesof'anditsrstderivativetobezero,inwhichcasethesmallpotentialbecomes, Thelargepotentialisdenedbythedierentialequation, gg;=@p gg';F0=)d dta3_=d dta3_'F0:(3.111) Ifweagainassumenullinitialvaluestheresultis, (t)=Zt0dt0_'(t0)F0c2a20_'2(t0):(3.112)

PAGE 50

Thenonzerocomponentsofthesecondcovariantderivativeare, ;00=c2;;ij=c2H_gij:(3.113) Foraperfectuid,thestress-energytensoris, Stress-energyconservationimplies,_=3H(+p).ThenonzerocomponentsoftheEinsteintensorare,c2G00=3H2; ThetwonontrivialequationsofmotionfromEquation 3.70 inthisgeometryare,8Gc2=6H_+3H2(12)+a20 Conservationtellsusonlyoneoftheseequationsisindependent. IntheMONDregimewecanthereforeexpressEquation 3.117 as, 3'1 12_'2+=8Gc2:(3.119) Forcosmologytheargumentx=(c_'=a0)2isnegativesothelargepotentialhasthesamesignasthesmallpotential, (t)!1 6'(t):(3.120) IntheMONDregimewecanthereforeexpressEquation 3.117 as, 3'1 12_'2+=8Gc2:(3.121)

PAGE 51

Ofspecialinteresttocosmologyisthecaseofapower-lawscalefactor, HereHiis1=stimestheHubbleparameteratt=0.SubstitutingintoEquation 5.13 givesthesmallpotential, 3s1nlnh1+Hiti(13s)1h1+Hit13s1io:(3.123) ThelogarithmtermdominatesinEquation 3.124 atlatetimes.Inthisregime,wecanexpress_'intermsoftheHubbleparameterH, 3s1nlnh1+Hiti(13s)1h1+Hit13s1io:(3.124) WecanthereforewritetheMONDanalogoftheFriedmanequationforpowerlawexpansion, 3n1+22+2slnh1+HitioH2(t)+=8Gc2(t);(3.125) where(2s1)=(3s1).Fors>1 2,thelogarithmtermservestograduallyslowtheexpansion|consistentwiththeMONDstrengtheningoftheforceofgravityintheweak-eldregime. Forthecaseofradiationdomination(s=1=2and=0)wenotethat'(t)=0,andhencesotoo(t)=0.Theequationsarethereforethoseofgeneralrelativity,butwiththeenergyandpressurecomingfromordinarymatter.Thisisofcourseunacceptableinlightofrecentobservationswhichshowthatnonbaryonicmattermustpredominateoverbaryonicmatterbyaboutafactorofsix[ 1 ]. 3.3 TheMONDNo-GoStatementforPurelyMetricApproaches Intheprevioussectionwediscussedscalar-tensortheoriesofMOND.Thesemodelshavehadsuccessesincomplyingwiththephenomenologicalrestrictions

PAGE 52

currentlyavailable,buttodatetheyhavenotshowntobecompletelysatisfac-toryforthereasonsalreadypresented.WewentontodevelopsystematicallyarelativisticversionofMONDusingapurelymetricapproach.Thepurelymetricclassofmodelssueredfromfartoolittlelensing.Itisthepurposeofthissec-tiontodemonstratethatanypurelymetrictheoryofMONDwillsuerthesamephenomenologicalshortcoming. 3.3.1 Motivation ItwasourintentionindevelopingaphenomenologicallyviabletheoryofMONDwhichwouldsatisfytherequirementsofgravitationallensingandstillreproducetherotationcurves.Whatwediscovered,however,wasthattoleadingorderintheweak-eldsinourclassofmodelsEquation 3.40 ,theMONDpredictsnoadditionallensingtothepredictionofgeneralrelativity.Thisisinconsistentwithoutinvokingthepresenceofdarkmatter.Oneisimmediatelytemptedtoconsiderdierentclassesofmodelswhichcanovercomethelensing\disaster".Forexample,onemightreplacethecovariantd'Alembertianwiththeconformaloneindeningasmallpotential, 6R:(3.126) However,thedistinctionbetweenandcdisappearsintheweak-eldregimesinceRscalesasonepoweroftheweak-eldstimes1=r2.Therefore,thisclassofmodelswouldhavenohopeofhavinganysuccessinacquiringanonzerolensingcontributiontoleadingorderintheweak-elds. Further,anyMONDactionwhichonlycontainstheRicciscalarasthesourceuponwhichthenonlocaloperatoractswillhavenoimpactduringtheradiationphaseoftheuniverse|anentirelyunacceptablefeature.Thenextmost

PAGE 53

complicatedscalarpotentialwouldseemtobe, Because'2hasroughlytwoderivativesactingupontwopowersoftheweak-elds,onemustalsochangetheLagrangian, g:(3.128) ForthisclassofmodelsF2(x)wouldbelinearintheMONDregime. Insteadofembarkingonaprogramtodiscoveraclassoftheorieswhichareabletosatisfythelensingrequirements,weproposetostudythegeneralfeaturesanypurelymetricformulationofMONDpossesses.Thisapproachisobviouslythemorepowerfulifadenitiveresultcanbeobtained(oratleastifsomermerguidelinesastowhichclassesofmodelscanbeconsideredinmakingMONDrelativistic). 3.3.2 TheStatement Weintendtoshowherethatnophenomenologicallyviable,purelymetricapproachofMONDcanbeconstructedwithinasetofgivenassumptions. Weassumethatthegravitationalforceismediatedbythemetrictensorg(x),andthatitssourceistheusualstress-energytensorT(x).Infourspace-timedimensionsthemetricisdeterminedbythesetoftenequationshavingtheform, wherethegravitytensor,Gisafunctionalofthemetric(forordinarygeneralrelativityitissimplytheEinsteintensorG).Thestress-energytensorisobtainedasusualbyvaryingthematteraction.

PAGE 54

Weassumethatthegravitytensoriscovariantandiscovariantlyconserved, Atthispointwehavemadenorestrictionsonthegravitytensor.Inparticular,weallowittoinvolvehigherderivatives,andeventobeanonlocalfunctionalofthemetric. RecallthatMONDandNewtoniangravityaredistinguishableonlyforverysmallaccelerations.Theseaccelerationsareexpressedasderivativesofthemetric.ItiswellknownthatdieomorphisminvariancebestowsthefreedomtochooseacoordinateframeinwhichthemetricagreeswiththeMinkowskimetricatasinglepoint.Theobservedfactthatthegradientsofthemetricaresmallallowustomakethemetricnumericallyquiteclosetooveralargeregion.Therefore,wearejustiedinexpandingthegravitytensorinweak-eldperturbationtheory,g(x)=+h(x); ThecrucialobservationnowinspecializingtoMOND,istonoticethattheMONDforcelawEquation 3.4 scaleslikethesquarerootofthemass, r:(3.133) Asaresult,atleastonecomponentofhmustscalelikep 3.129 scaleslikeGM,andthereforeG[+h]musthaveatleastonenonzerocomponentwhoselowesttermisoforderh2. Ifwefurtherassumegravitytobeabsolutelystablethennotalltencompo-nentsofG[+h]canbeginatquadraticorderintheweak-eldexpansion.This

PAGE 55

isduetothefactthatthedynamicalsubsetofeldequationsareobtainedfromvaryingthegravitationalHamiltonian.IfitsvariationwerequadraticthentheHamiltonianwouldbecubic,andthiswouldbeinconsistentwithstability.TheconclusionthereforeisthatonlyasubsetofthetencomponentsofG[+h]canbeginatorderh2. Thissubsetmustbedistinguishedinsomecovariantfashion.Asymmetric,secondranktensorinfourdimensionshastwodistinguishedcomponents:itscovariantderivativeanditstrace.WecanimmediatelyseefromEquation 3.130 thatconservationoccursatallordersinperturbationtheory,andthereforethecovariantdivergencecannotberesponsiblefortherequiredh2term.Weareleftwiththetraceastheonlyremainingpossibility, Equation 3.134 impliesasymptoticconformalinvariance.AlthoughweareabletoreproducetheMONDrotationcurves,thecorrectionstogravitationallensingofgeneralrelativitywithnodarkmattercomeinatquadraticorder,andarethereforefartooweak[ 37 ]. Toseethis,notethatintheweak-eldlimit,onecanperformalocal,confor-malrescalingofthemetric, andcompletelyremovethecorrections|thelinearizedMONDweak-eldsaretraceless.IthasbeenknownforsometimethattracelessmetriceldequationsimplyinvarianceundertheconformaltransformationinEquation 3.135 [ 48 ].Thefulleldequationsarenottraceless,andsoneitheristhefulltheoryconformallyinvariant.Thismeansthatthelinearizedeldequationsonlydeterminethemetricuptoaconformalfactor(andalinearizeddieomorphism,butthisisirrelevant

PAGE 56

fortheargument).Theconformalpartofthemetricisxedbytheorderh2terminthetraceoftheeldequations,andthisishowonecomponenthcontrivestoscalelikep Thisisadisasterforthephenomenologyofgravitationallensing.RecallthatforageneralmetricgtheLagrangedensityofelectromagnetismis, 4FFggp g;(3.136) whereF@A@A.Equation 3.136 isinvariantunderthemetricrescalingEquation 3.135 ,andthusoblivioustoMONDcorrectionstogeneralrelativityintheweak-eldlimit. AnExample Herewewillillustrateourno-gostatement'susingournonlocal,purelymetricmodel.TheequationsofmotionEquation 3.70 implytheidentication,G[g]=2[;g]+[12]G+[g';;';;';;]+';';F0a20 Wehavealreadyworkedouttheleadingordertermsinthesmallandlargepotentials,andtheinterpolatingfunctionaswell.Wemayleavethelargepotential[g]=1 6x; 6': Intakingtheweak-eldlimitofGwemayneglectanyproductsofR,'or,suchasG,';;,and';';.Henceforth,theweak-eldlimitofGis

PAGE 57

containedinthefourterms, 3(g'';)+R1 2gR:(3.140) Ofcoursethesetermscontainhigherpowersofh,butmoreimportantlytheycontainallthelinearpieces.Andthetermswehavekeptareexactlytraceless,gG!g1 3g'1 3';+R1 2gR; Notethattracelessness(andhenceconformalinvariance)isnotafeatureofthefulleldequations.Inparticular, Thisscaleslikeh2intheweak-eldexpansion. 3.3.3 AConnectionwithTeVeS WehaveconstructedMONDasapurelyclassicaltheoryofgravityinthesensethatnoattemptatquantizationhasbeenmade(thatsaid,theclassofmodelswederivedcanbethoughtofasoriginatingfromtheeectiveactionofgravity).ItshouldbenotedthatBekenstein'sTeVeSmodelcanbeputintheformofanonlocal,purelymetrictheoryaslongasthescalarandvectoreldsarenotdirectlyobserved.Thisisdonebyintegratingoutthoseelds,leavingonewithanonlocal,purelymetricaction. AsecondandextremelyimportantdistinctionbetweentheTeVeStheoryandthepurelymetrictheoryisthecouplingofgravitytomatter.TheTeVeStheorypossessesaphysicalmetricandanEinsteinmetric.Onesimpleanddirectcon-sequenceofthisfactisthatgravitationalandelectromagneticradiationtravelingfromdistantsourcesshouldpossessdisparatetraveltimes.RecallthatintheTeVeStheory,thephysical(~g)andEinsteinmetric(g)arerelatedviathescalareld

PAGE 58

andthevectoreldU, ~g=e2g2UUsinh(2):(3.144) Supposeweweretoobservea\signicant"astrophysicalevent(suchasaSuper-nova)fromasourcesuchastheLargeMagellanicCloud(LMC) InobtainingEquation 3.146 wemadetwoassumptions.First,thatthevectorofEquation 3.144 isdirectedinthedirectionofthecosmologicalevolutionpa-rameter,i.e.U=0.Secondly,weassumethatthevalueofthescalareldisapproximatelyconstantandhasamagnitude<<1.Thislastassumptioncanbeunderstoodinfargreaterdetailin[ 18 ].However,areasonablechoicewouldbe106.ThedistancetotheLMCisD105lyrs;andthereforethisvalueofwouldcorrespondtoadelayofT10min.Consequently,theparameterspaceoftheorieslikeTeVeSshouldostensiblybeconstrained,andperhapseitherbebolsteredorfalsied.

PAGE 59

3.3.4 RevisitingtheNo-GoStatement Thissectionexaminestheno-gostatementinmoredetail.Specicallyweconsidercircumventingthegravitationallensingdisasterbyrelaxingtheassumptionofgravitationalstability. Letusrevisittheassumptionswhichledtoourno-goresult: 1. Thegravitationalforceiscarriedbythemetricwithitssourcebeingtheusualstress-energytensor. 2. Gravityisdescribedbyacovarianttheory. 3. TheMONDforcelawcanberealizedinweak-eldperturbationtheory. 4. Thetheoryofgravityisabsolutelystable. 5. Electromagnetismcouplesconformallytogravity. Thethirdandfthassumptionsarethemostrigid.Thethird,ifuntrue,wouldinhibitusfromworkingwithanyrelativistictheoryofMOND;ifthereisnoregionforwhichtheMONDforceisweak(oratleastasweakastheNewtoniangravitationalforce),thenthereisnohopeinpassingevensolarsystemexperiments. Therstassumptionmaybeviolatedifonemakesadistinctionbetweena\physical"and\gravitational"metric.Insuchacasetestparticleswouldfollowgeodesicsoftheformerwhilegravitywouldbehaveaccordingtodynamicsofthelatter.Thisisobviouslyaviolationofthestrongequivalenceprinciple,butitisworthnotingthattodatetherehasbeennoconclusivedataforbiddingthispossibility(See[ 36 ]foradetailedconsideration).ThisoldideahasbeenexploredwithmanymoremoderntheoriessuchasBrans-Dicke[ 49 ],Dirac'svariablegravitationalconstant[ 50 ],andstringtheories[ 51 ]tonameafew. Thesecondassumptioniseasilyforegoneifonespeciesapreferred-frameaswehaveseeninaprevioussection.However,bylosingcovarianceorperturbabilitywouldcertainlyseemtobecountertothespiritinwhichwesetuponinconstruct-ingapurelymetrictheory.Ourfundamentalprescriptionmakesstronguseof

PAGE 60

thestrongequivalenceprinciplewherebygravityandmatteraredescribedbyonemetric,nottwo. Relaxingthefourthassumption,thatofgravitationalstability,isseeminglythemostreasonablechoicetoovercometheno-gostatement.Giventhechoicebetweenastableandunstabletheorywhenexamininganobservablystablesystem,thephysicistwillalwayschoosetheformer.However,whenphenomenologicallydriven,thelattermaybethechoiceofgreaterutility.Whentheinstabilitymanifestsitselfatscalesoutsideornearlyoutsidethephysicalscale,oratleastinregimeswhereperturbativepredictionsnolongerhold,thephenomenologistmaycautiouslyaccept(oratleastconsideraccepting)theunstablesolutionasacandidateexplanation.Ifthegravitationalstabilityisonthesuper-clusterscaleorlarger,wemayconsiderthepossibilityofalltenofthelinearizedMONDequationsvanishing|thetracecomponentisnolongerdistinguished. Howdoesthisrelaxationaecttheno-gostatement?ImaginethatallofthelinearizedMONDweak-eldsvanishintheeldequations,inwhichcasetherewouldnolongerbealinearizedtheory{asucientbendingoflightcouldberealized.WehavealreadydiscussedthefactthatiftheMONDweak-eldsbeginatorderh2,thenthegravitationalHamiltonianbeginsatcubicorder.Thissignalsaninstability,butnotnecessarilyafatalone.Therearetwoweak-eldregimes{theweak-eld(orNewtonian)andultra-weak-eld(ordeepMOND).InregionssuchasthesolarsystemitwouldbetheNewtonianregimewhichdominatesandthusweexperiencenodeviationfromwellestablishedphysics.Atlargerscales(galacticand/orcosmological)weexpectthedeepMONDregimetoenterthefold.Atthesescales,theunstablesolutionwouldproceedtodecayintolargewavelengthparticlesdiusingastheuniverseexpands.TheresultisthatareturntotheNewtonianregimecouldoccurasdecayproductsbuildasucientlylargegravitationalpotential.Theinstabilitywould,inessence,turnitselfojustasit

PAGE 61

becomestoolargetobecomequantitativelyreliable.Wewouldnolongerhaveathetracelessnessofthelinearizedequations|therewouldbenolinearizedtheory,andhencegravitationallensingcouldbeaectedbyMONDcorrections.

PAGE 62

4.1 Introduction Oneofthegreatestsurprisestoastrophysicistsandparticlephysicistsalikeinthelast20yearsistherecentobservationfromTypeIaSupernovaethattheuniverseisenteringaphaseofacceleration.TheStandardCosmologyischaracterizedbyanearlyperiodofacceleratedexpansion(ination)leadingtoaatuniverse,aprocesssupportedbythelarge-scaleisotropyobservedintheCosmicMicrowaveBackground(CMB)[ 1 ].Thematterweseetodayistheresultofgravitationalcollapseover13.76Gyrsaftertheinitialsingularity|whichinturnisamanifestationofthedensityperturbationscreatedbyquantumuctuationsattheendofination.Thesumofthecriticalenergyfractionsisverynearlyone,withitscurrentdecompositionconsistingofnearly30%frommatter(ofwhichonlyapproximately4%isordinary),andover70%fromanunknownsource.Therstyear'sdataofWMAP[ 1 ]givesus(intermsoftheFriedmannequationofcosmologyinthepresentepoch)thecriticalfractions,tot=k+m+r+X=1:020:02; 54

PAGE 63

Thetermdarkenergy,muchlikedarkmatter,isaratherbroadencompass-mentoftheoreticalideas{essentiallyreferringtosomeaddedcomponenttotherighthandsideoftheEinsteinequationwhichrepresentsa\substance"whichexertsanegativepressureandthereforeinducesexpansion.Interestingly,Einstein'sgreatestblunder,thecosmologicalconstantintroducedinhisresearchtoensureastaticuniverse,hasnowalmostimpishlyreintroduceditselfintothetheoreticalarena. 4.2 TheManyFacesofDarkEnergy Herewereviewthefundamentalphysicsbehinddarkenergy.Simpleobserva-tionalideas|coupledwiththeory|allowsonetoeasilyunderstandthenatureofdarkenergy.Wewillsurveythemodernlandscapeoftheoreticalideaswithabroadbrushattemptingtocapturethemoreimportantthemesandidentifythecommonpropertieseachmustshare. Onlargescalestheuniverseishomogeneousandisotropic,allowingonetousetheFriedman-Robertson-Walker(FRW)metrictodenetheinvariantlengthelementinnaturalunits, Readingothemetriccomponents,assumingtheperfect-uidform(withenergyandpressuredensities(t)andp(t),respectively),andinsertingthemintotheEinsteinequationyieldsthetwoindependentequations,3_a a2=8G; a_a a2=8Gp: (4.8)

PAGE 64

TakingthelinearcombinationofEquations 4.6 and 4.7 gives, a(t) thenitisclearthatinorderfortheuniversetoundergoacceleratedexpansion(i.e.a>0),wemusthave, Ausefulbutunfortunatelynamedquantityisq,thedecelerationparameterdenedby, Clearly,_a2andaarepositivedenite,andthereforeanacceleratinguniversedemandsq<0. Observationally,onecanunderstandlate-timeexpansionusingaHubbleplot.Thecosmologicalredshift,z,canbeequivalentlydenedusingtheratiosofphotonwavelengthsortheratiosofscalefactorsatdierenttimes, wherea0isthevalueofthescalefactornowandtimet=0isthepresentandallvaluesoft>0involvethepast.Physicaldistancesaredeterminedviatherelation, Supernovaehavethedesirablefeatureofhavingwell-determinedluminosities,andthusaregoodfordistanceandvelocitymeasurements.TheuxFonemeasuresisrelatedtotheluminosityLthusly: wheredListheluminositydistance(physicaldistance)tothesupernova.ItissimpletoshowusingEquation 4.12 andtheHubbleparameterH=_a=athatthe

PAGE 65

luminositydistancecanbecalculatedwiththeintegral, SubstitutingintoEquation 4.15 theexpansionofH(z)forsmallzgives, UsingEquation 4.11 andthechainruleallowsustomaketheidenticationH00=(1+q)H0.IntegratingEquation 4.16 termbytermandcollectingpowersresultsinthefollowingpowerseriesinz, H01+1 2(1q0)z+::::(4.17) TherstterminEquation 4.17 representsHubble'slaw|namely,v=H0d.ThesecondtermistherstdeviationofHubble'slaw.Therefore,bymeasuringdLandzandplottingthemoneinfersthecurvature(ordeviationfromlinearity).Forz&1,thisexpansionbreaksdown;inwhichcasenumericalintegrationcanbeperformedusingtheenergydensityoneassumestobepresentinEquation 4.6 (thisobviouslyintroducessomemodel-dependenteects). Todeterminetheevolutionofthemissingenergycomponent,wedenetheparameterwwhichrelatestheenergyandpressuredensitiesatanygiventimebytheequationofstate, Equations 4.9 and 4.18 ,alongwiththerequirementthattheuniverseaccelerateforcestheinequality, Since0,darkenergymustgiverisetow<1 3.Recently,whasbecomeslightlymoreconstrainedasmeasurementshaveimproved.Inorderforthestructureformationwecurrentlyobservetoexistfromthedensityperturbationsindicated

PAGE 66

byCMBanisotropymeasurements,wemusthavew<1 2[ 52 ].Additionally,theabsenceofanyintragalacticphysicsduetodarkenergyleadsonetobelievethatitsdistributionbesmoothandhomogeneousonlarge-scales. TheCosmologicalConstant Thehistoryofthecosmologicalconstantisnowsowellknownitneedslittledevelopment.Einsteinintroducedaconstanttohisgeneralrelativityequationstobalancethecollapsingeectthatmatteralonewouldexertonthecosmicuid.Bydoingthisitimposedwhathefeltatthetimetobethenaturalstateoftheuniverse|static. Ofcourse,theobservedredshiftofdistantgalaxiesquicklydidawaywiththenotionofastaticuniverse;however,thecosmologicalconstantwouldundergoaconceptual\revolution"soonafter,whenparticletheoristswereforcedtoincorporatethequantumuctuationsofthevacuumwhichpersistingravityevenafterrenormalization.Forexample,considertheHamiltonianofthequantumharmonicoscillatorwithNdegreesoffreedomintermsoftheraisingandloweringoperatorsayanda,respectively: 2i=~!NXi=1ayiai+N~! Thetransitiontoeldtheorytakesthenumberofdegreesoffreedomtoinnity, 2i~!(~k):(4.21) Clearly,thegroundstatecontributesaninnitytoEquation 4.21 .TheusualpracticeistoredenetheHamiltonianbyshiftingtheenergybyaninniteamountasonlyenergydierencesareobservablequantities.Thisprocedure,however,cannotbeemployedwithgravity.TheorieslikeQED,QCD,andtheEWforceallpossessdimensionlessexpansionparameters.Thus,onemayalwaysndenoughcountertermsintherenormalizationschemeatallenergyscales.

PAGE 67

TheexpansionparameterofgravityisNewton'sconstantGN,whichinnaturalunitshasdimensionsM2.Thus,asoneincreasesinenergy(i.e.probingtheultraviolet)ittakesmoreandmorecountertermstorenormalizetoanitevalue|aninnitesuchcountertermsforhigherordertermsandthusgravityinthissenseisnonperturbativelynite.Admittingourignorancewemayinsertanadhoccuto, ThecutoscaleisoftenchosentobethePlanckmass,MP1019GeV,atwhichpointnewphysicsisneededtomakepredictionsastohowgravityandspacetimebehave.Further,theCasimireect,whichinQEDistheforceregisteredbytwoneutral,conductingplatesasaresultofquantumvacuumuctuationslendscredencethatthevacuumplaysadeniteroleatcertainscales[ 53 ]. Vacuumenergyisnaturallyhomogeneous,isotropic,andofcoursemustenterEinstein'sequationcovariantly, VacuumenergyhastheinherentpropertiesthatVACisuniformthroughoutspacetimeandthatpVAC=VAC(i.e.w=1). Thepropositionofacutointroducesanawkwardproblemwhichwemustface.Currently,thevalueoftheconstantcanbegrosslyestimatedbyassuming, Ifwetakeacutoseriously,thenabarecosmologicalconstantwouldhaveavalue, Thus,weareforcedtoaccountforadiscrepancyof120ordersofmagnitudebetweentheexpectedandtheobserved.Onemaydoawaywithmanyordersof

PAGE 68

magnitudeifsupersymmetryisincluded(withacutoscaleMSUSYTeV),orifthecutoisnotthePlanckscalebutrathertheelectroweakscaleof100GeV;however,itdoesnotdonearlyenoughandweareleftwithessentiallythesamequestions,ifbutperhapsinaslightlylessembarrassingform. Theobservationofasmallbutnon-zerocosmologicalconstantwhichleadstotheso-calledcoincidenceproblem:namely,whyhasitonlyrecentlyachievedrelativedominance[ 54 55 ]? Therehavebeenmanyattemptsatunderstandingthesecriticalproblems[ 56 57 58 59 60 61 62 ],noneofwhichcanbedeemedsatisfactorysolutions,elsewewouldcertainlyhavesomethingfarmoreprofoundtosayaboutdarkenergy.Introducingahomogeneousscalareldwhichpossessesdynamicswillwork[ 63 64 65 66 ],butonemustunderstandwhyitishomogeneous[ 67 ]andagainwhyithasachieveddominancenow.Thisapproach,namedquintessence,worksasatrackersolution,wherebytheenergydensityofthescalareldfollowstheenergydensityoftheuniverseinsuchawayastoproducelate-timeacceleration. Long-rangeforceshavebeensuggested[ 68 ]wherebyoneintroducesachargedscalareldwithalong-range,self-interactingforcemediatedbyvectorgaugeboson.Ifthegaugebosonmassweretovanishattheminimumofthescalarpotential,theeldwouldbeunabletorelaxtoitsminimum,andcosmicaccelerationcouldbeachieved[ 68 ].Unlikequintessence,thismodelpredictsanoscillatingequationofstate[ 68 ]whichcanostensiblybeobservedbyhigh-zSupernovae;andtherefore,thismodelisdistinguishable.

PAGE 69

Aswasthecasewithdarkmatter,darkenergyplaystheroleofanaddedandhithertounknowncomponenttotherighthandsideoftheEinsteinequation.Endowingitwiththespecialpropertythatitexertsanegativepressureonthecosmologicaluidprovidesuswithasomewhatnaturalmechanismwithwhichtoexplainlate-timeacceleration.AndjustasMONDannouncesitselfasanalternativetothedarkmatterhypothesis,modiedEinstein-Hilbertgravitiespositionthemselvesasalternativecandidateexplanations. ThischapterillustrateshowaddingatermproportionaltoaninversepoweroftheRicciscalargivesrisetoanacceleratinguniverseinlate-timecosmology,i.e.postbig-bangination.WethenexaminetheeectanaddedinverseRiccitermintheactionhasontheresultingforceofgravity. 5.1 Late-timeAcceleration Carroll,Duvvuri,Trodden,andTurnerproposedapurelygravitationalapproach[ 69 ].LatetimeaccelerationisachievedbyconsideringasubsetofnonlineargravitytheoriesinwhichafunctionoftheRicciscalarisaddedtotheusualEinstein-Hilbertaction,Sg[g]=1 16GZd4xp g[R+f(R)]; 61

PAGE 70

Fromdimensionalityweseethatisanaprioriunknownparameterofmassdimensionone.SomeconnectionstobraneworldshavebeenproposedinwhichtermswithinversepowersoftheRicciscalarareexhibited[ 70 ]. Forsimplicitywewillconsiderthecasep=1atnolossofqualitativeunderstanding.Wealsoincludethematteractionforcompleteness,inwhichcasetheactionis, 16GZd4xp gR4 TheequationsofmotionfollowdirectlyfromEquation 5.28 viathevariation,8GTM=2 gSg 214 whereTMisthematterenergy-momentumtensor.Itisquiteevidentthatthelimit!0inEquation 5.29 takesusbacktotheusualEinsteinequationofmotion.Equation 5.29 canbetriviallysolvedforRifoneisconsideringtheconstant-curvaturevacuumsolution(i.e.DR=0andTM=0).Interestingly,theyarenon-zero, unliketheirMinkowskicounterpart.Ofcourse,a(negative)positiveconstant-curvaturesolutionisprecisely(anti)deSitterspace,andwethereforeseeimme-diatelyhowourequationofmotionEquation 5.29 iscapableofprovidingapurelygravitationalmechanismforexplainingcosmologicalacceleration. Wewishtoconsidercosmologicalscenarios.Thus,onthegroundsoflarge-scaleisotropyandhomogeneityofthecosmologicaluid,werestrictourselvestotheperfectuidformoftheenergy-momentumtensor,

PAGE 71

whereUistheuidrest-framefourvelocity,Mistheenergydensityofmatterandradiation,PMisthepressureofmatterandradiationwhichisrelatedtotheenergydensityviatheequationofstatePM=wM.Inamatterdominateduniverse,w=0;andinaradiationdominateduniverse,w=1=3. HomogeneityandisotropyallowsalsotolimitouranalysistometricsoftheRobertson-Walkerform, ItisstraightforwardtocomputetheRicciscalarintermsofthescalefactora(t)fromEquation 5.8 a+_a2 whereHistheHubbleparameter, a:(5.10) WithEquation 5.9 andEquation 5.8 ,weobtainthetwotime-timeandspace-spaceequationsofmotionfromEquation 5.29 ,3H24 2H24 R6_R2 R!=4GPM; respectively. Thesefourth-orderequationsarecumbersomeandthereforeextractingtheircosmologicalimplicationsnotaneasytaskintheirpresentform.Instead,Carrolletal.[ 69 ]performedaspecicconformaltransformationontheoriginaldegreesof

PAGE 72

freedom,~g=p()g;pexpr whereisarealscalarfunctiononspace-time.Thistransformationhasbeenextensivelytreated[ 47 ],andinvolvesrepresentingmetricdegreesoffreedomintermsofactitiousscalareld.Thetransformationleadstothefollowingequationofmotionforthetransformedexpansionparameter, ~H2=8G andscalarequationofmotion, whereaprimedenotesdierentiationwithrespectto~t.Wehaveintroducedthepotential, andhereweidentifythetransformedenergydensityandscalarenergydensity,~M=K 202+V(); respectively.Carrolletal.[ 69 ]consideredthreequalitativelydistinctcases,assuminganinitialvalueforthescalareldtosatisfy,

PAGE 73

FromEquation 5.18 ,weseethatthepotentialvanisheswhen!0and!1.Thelimit!0wouldnormallycorrespondtotheMinkowskivacuum,butfromEquation 5.13 itisclearthatinsteadacurvaturesingularityexistsinthislimit.Although!1correspondstoR!0andseemslikeapossibleMinkowskivacuumsolution.However,fromEquation 5.17 andEquation 5.13 weseethatthesolutionisoscillatoryatasymptoticallylargevaluesofandthereforeunphysical. Whentheinitialcondition,00=0C,where0Cisthecriticalvalueforwhichthescalareldcomestorestatthepeakofthepotential,thescalareldenergydensitybecomesconstant.Therefore, ThisofcourseisthehallmarkofadeSitterexpansion,albeitunderunstableconditionssinceanyperturbationsinthescalareldwillhaveitexhibitoneofthealternativequalitativepossibilities. Forthescenario00<0C,thescalareldneverreachesthemaximumbutrollsbacktoward=0andtheuniversecollapsesuponitself.AsV!0andeHgoestoaconstant,thedecelerationparameterandtheRicciscalar,bothofwhichdependupon_HoreH0,aresingularsince_HV01 Alternatively,thescalareldcanbeendowedwith00>0Cinwhichcasethescalareldbecomesquitelargewithtimeandthepotentialbehavesas, 2 MP!:(5.23) Ifweseekapowerlawsolutionforthescalefactor, ~a~tn/p!eH1 ~t;(5.24) thenthisimplies, ~t!p~t4=3:(5.25)

PAGE 74

Thus,thescalefactorsbehaveas,~a~t4=3; Itispossibletoconsidertheabovesituationsforthemorerealisticcaseof~M6=0,whichwasconsideredin[ 69 ].Howevertheresultsarenomoreinstructive,andwethereforedirecttotheaforementionedarticleforamorethoroughdiscussion. Tothispointwehavesaidnothingoftheparameter.Althoughthe00=0Cscenarioisunstable,onemayarguethatthistheoryholdsphenomenologicalrelevance.ThiseternaldeSitterinationisnottooabsurdifthedecayrateofthephaseisontheorderof1(14Gyrs)1|theinverseageoftheuniverse.Intermsofamassscale,thiscorrespondsto1033eV.Therefore,onecanargueonphenomenologicalgroundsthatthistheoryisworthyofconsiderationsinceitclearlygivesrisetolate-timeacceleration.Ofcourse,isnobetterthanatunedparameterservingthefunctionofgivingcredencetotheabovestatement.Nevertheless,itisaviablealternativetothedarkenergymechanism,andassuchmeritsfurtherinvestigation. 5.2 TheGravitationalResponse WehaveshownintheprevioussectionthatwithaninverseRicciscalarterminthegravityaction,itispossibletoexplainlate-timeacceleration.However,wehaveyettoseewhatthistheorysaysabouttheforceofgravityoncosmologicalandlocalscales.Thatisthetaskofthissection,andwewillrestrictourselvestothedeSittersolutionwhichwasdiscussedtobeunstable,butwithaslowenoughdecayratetojustifyitsstudy. BeforeweembarkoncalculatingtheforceofgravitywithaninverseRiccitermaddedtothegravitationalaction,weshouldcommentontheinherentfeaturesofsuchactions.AswasapparentfromEquation 5.11 andEquation

PAGE 75

5.12 ,ourequationsofmotionsofmotionareofthehigherderivativevariety(thatis,theypossessmorethantwotimederivativesononeofthedegreesoffreedom).Typically,higherderivativesbringnegativeenergydegreesoffreedom;however,endowingtheLagrangianwithnonlinearfunctionsoftheRicciscalarcansometimesbepermitted[ 71 ].Thiswillonlygiverisetoasingle,spinzerohigherderivativedegreeoffreedom.Butsincethelowerderivativespinzeroisaconstrained,negativeenergydegreeoffreedom(theNewtonianpotential),itshigherderivativecounterpartcanoccasionallycarrypositiveenergy. Therehavebeenseveralrecentarticleswhichexamineaspectsofthismodel.DickconsideredtheNewtonianlimitinperturbationtheoryaboutamaximallysymmetricbackground[ 72 ];whileDolgovandKawasakidiscoveredanddiscussedaninstabilityintheinteriorofamatterdistribution[ 73 ].However,NojiriandOdintsovhaveshownthanR2canbeaddedtotheactionwithoutchangingthecosmologicalsolution,andthatthecoecientofthistermcanbechosentoenormouslyincreasethetimeconstantoftheinteriorinstability[ 74 ].MengandWanghaveexploredperturbativecorrectionstocosmology[ 75 ];andothershavedrawnconnectionswithaspecialclassofscalar-tensortheories[ 76 77 ]. Whatwewishtoconsiderhereisthegravitationalresponsetoadiusemattersourceaftertheepochofaccelerationhassetin.TheprocedurewillbetosolvefortheperturbedRicciscalar,whencewedeterminethegravitationalforcecarriedbythetraceofthemetricperturbation.Wewillconstrainthematterdistributiontohavethepropertythatitsrateofgravitationalcollapseisidenticaltotherateofspacetimeexpansion,therebyxingthephysicalradiusofthedistributiontoaconstantvalue.Further,weimposetheconditionthatinsidethematterdistributionthedensityislowenoughtojustiablyemployalocallydeSitterbackground,inwhichcasetheRicciscalarcanbesolvedexactlyandremainsconstant.

PAGE 76

TheCalculation Weshallconsideragravitationalactionparameterizedbyp>0, 16GZd4xp gR2(p+1)Rp:(5.28) (Weemployaspace-likemetricwithRiccitensorR;;+.)Functionallyvaryingwithrespecttothemetricandsettingitequaltothematterstressenergytensorleadstotheequationsofmotion,1+p2(p+1)R(p+1)R1 212(p+1)R(p+1)Rg+p2(p+1)(gDD)R(p+1)=8GT: gg@)isthecovariantd'Alembertian. AlthoughonemustreallysolveallcomponentsoftheeldequationsEqua-tion 5.29 wecangetanimportantpartofthegravitationalresponsebysimplytakingthetrace.Weshallalsorestricttop=1forsimplicity.Insidethematterdistributionthetraceequationis, (NotethatTisnegative.)Normally,onewouldexpectthematterstressenergytoberedshiftedbypowersofthescalefactorinanexpandinguniverse.However,recallthatthismatterdistributionpossessesarateofgravitationalcollapseequaltotherateofuniversalexpansion,andthusTremainsconstant.Sinceourmattersourceisalsodiuse,wemayperturbaroundalocallydeSitterbackground.Fortheinteriorsolution,weareabletosolveforRexactlyusingEquation 5.30 forthecaseTisconstantandDR=0,

PAGE 77

ObtainingdeSitterbackgroundobviouslyselectsthenegativeroot.Further,weconcentrateonthesituationjTj2, OutsidethemattersourceweperturbaroundthedeSittervacuumsolution, SubstitutingEquation 5.33 intoEquation 5.30 andexpandingtorstorderinRyieldstheequationdeningtheRicciscalarcorrection, InourlocallydeSitterbackgroundtheinvariantlengthelementis,ds2dt2+a2(t)d~xd~x; a=constant: WecanrelatetheHubbleconstantHtotheparameterviathevacuumRicciscalar, Identifying=a3@(a3g@),weexpandEquation 5.34 where@2@20+a2r2.ItisevidentfromEquation 5.38 thatthefrequencytermhasthewrongsignforstability[ 69 ].However,sincethedecaytimeisproportionalto1=H,wemaysafelyignorethisissue.

PAGE 78

SeekingasolutionoftheformR=R(Hak~xk)allowsustoconvertEquation 5.38 intoanordinarydierentialequation, dy+12R=0;(5.39) whereyHak~xk.Tosolvethisequationwetryaseriesoftheform, SubstitutingthisseriesintoEquation 5.38 yieldsasolutionwith=0, 4p 4)(n+3 4+p 4) (3 4p 4)(3 4+p 4)(2y)2n andasolutionwith=1, 4p 4)(n+1 4+p 4) (1 4p 4)(1 4+p 4)(2y)2n Bothsolutionsconvergefor0
PAGE 79

identifyTastheconstant, 33=6GM 3:(5.44) Intermsofourvariabley=Ha(t)k~xk,theboundaryofthematterdistributionisaty0=H.DemandingcontinuityoftheRicciscalaranditsrstderivativeaty0givesthefollowingresultforthecombinationcoecientsoftheexteriorsolutionEquation 5.43 ,1=3MG 3f0(y0)f00(y0) 3f1(y0)f01(y0) whereaprimerepresentsthederivativewithrespecttotheargument. Wearenowinapositiontocalculatethegravitationalforcecarriedbythetraceofthegravitoneld.Themetricperturbationmodiestheinvariantlengthelementasfollows, Furtherdeninghh00+hiiandimposingthegaugecondition, 2h;+3h(lna);=0;(5.48) allowsustoexpresstheRicciscalarintermsofh, 2@2h+4H@0h:(5.49) (Recallthatwedene@(@t;a1~r).)Assumingh=h(y)aswedidforRgivestheequationforthegravitationalforcecarriedbyh, dy+1

PAGE 80

ThesolutiontoEquation 5.50 is, Atthispointitisusefultoconsidertheyvalueswhicharerelevant.TheHubbleradiuscorrespondstoy=1,whereasthetypicaldistancebetweengalaxiescorrespondstoabouty=104,andatypicalgalaxyradiuswouldbeabouty=106.Wearethereforequitejustiedinassumingthaty01,andinspecializingtothecaseofy0y1.Nowconsidertheseriesexpansions,f0(y)=12y2+1 5y4+O(y6);1=3MG 3+O(y20); 3y4+O(y6);2=12MGy30 Weseerstthatj2j1|whichmeansR(y)1f0(y)|andsecond,thatf0(y)1|whichimpliesR(y)T=2.ThismeansthattheintegrandinEquation 5.51 failstofallofory>y0,sotheintegralcontinuestogrowoutsidetheboundaryofthematterdistribution.Forsmallyy0wehave, H23y+O(y3):(5.54) ToseethatthislineargrowthisaphenomenologicaldisasteritsucestocompareEquation 5.54 withtheresultthatwouldfollowforthesamematterdistribution,inthesamelocallydeSitterbackground,ifthetheoryofgravityhadbeengeneralrelativitywithapositivecosmologicalconstant=3H2.InthatcaseR(y)=T(y0y)and,fory>y0,theintegralinEquation 5.51 gives, 2narcsin(y0)y0(12y20)q =4GMH y2+O(1):

PAGE 81

ThelinearforcelawEquation 5.54 ofmodiedgravityisstrongerbyafactorof1 2(y y0)3.Fortheforcebetweentwogalaxiesthisfactorwouldbeaboutamillion. 5.3 RemarksonourCalculationandFutureWork WehavedeterminedthegravitationalresponsetoadiusemattersourceinalocallydeSitterbackground.Ourresultistheleadingorderresultintheexpansionvariabley,thefractionalHubbledistance.Equation 5.54 clearlyforcesustodisregardtheclassoftheoriesconsideredhereEquation 5.28 whencomparedtoGRwithacosmologicalconstant(forexample,thecorrectiontothegravitationalforcebetweentheMilkyWayandAndromedaincreasesbysixordersofmagnitude). Thetwoassumptionsmadeinouranalysiswere: Thesecondoftheseassumptionscanbeviewedratherexiblyifinterestedonlyinphenomenologicalimplications.Regardlessofwhetheritissatised,westillwouldexpectalinearlygrowingresponsefarfromthesource.Toseethis,recallthatthedominantpieceofthesolution,f0(y),fromequationEquation 5.43 remainsconstantandapproximatelyequaltooneformanyordersofmagnitude(forinstance,f0(108)f0(103)106).Therefore,althoughtheexteriorsolutionwouldnotbeveryreliablenearthemattersource,wecanbecondentthatatcosmicorevenintergalacticscalesperturbingaboutdeSitterbecomesappropriateandagrowingsolutionwouldstillbeobserved. Thisanalysiswasperformedforp=1,butofcoursenothingrestrictsusfromconsideringarbitrarypowersoftheinverseRicciscalar.Tonosurprise,however,varyingthepoweronlychangesthecoecientofthegravitationalforceleavingitsqualitativebehavioralone.TheinstabilityfoundbyDolgovandKawasaki[ 73 ]andthegrowingsolutioncalculatedinthisworkseemtoprecludeallsuchtheoriesphenomenologically.Thetwoproblemsseemtocomplementoneanotherbecause

PAGE 82

eitherproblemcouldbeavoidedbytheadditionofanR2term,whichwouldnotalterthecosmologicalsolution[ 74 ].However,avoidingtheinteriorinstabilityseemstorequiretheR2termtohavealargecoecient,whereasavoidingtheexteriorgrowthrequiresasmallervalue[ 77 ]. Noneoftheseissuesdiminishestheimportancethatshouldbeplacedonconsideringnovelapproachestounderstandingthedarkenergyproblem.Itistheresponsibilityofboththeoristsandexperimentaliststoconstructandconstraincandidatetheories,anditistrulyanexcitingepochofhumaninvestigationforwhichwearejustbeginningtoacquirethesecapabilities.GreaterfreedomcanbeobtainedbyaddingdierentpowersofR.(Notethatthisgenerallyaltersthecosmologicalsolution.)Althoughsuchmodelsseemepicyclicwhenconsideredasmodicationsofgravity,thesamewouldnotbetrueiftheyweretoarisefromfundamentaltheory.Forexample,itcanbeshownthatthebraneworldscenarioofDvali,GabadadzeandShifman[ 78 ]avoidsboththeinteriorinstabilityandthelinearlygrowingforcelaw[ 79 ].

PAGE 83

Thisthesishasexaminedalternativeexplanationstothedarkmatteranddarkenergyproblems.EachproblemhasbeenpresentedwithanalternativethatmodiestheEinstein-HilbertactionofgravityinfourdimensionswithafunctionoftheRicciscalar, 16GZd4xp gf(R):(6.1) Thesubsequentphenomenologyhasbeendiscussedandusedtomakedenitivestatementsastothestandingofthesetheoriesandprospectsforfutureinvestiga-tion. Darkmatter'ssuccesses|particularlya-CDMscenario|leavesmanywiththeimpressionthatitsroleingalacticrotationcurvesisanecessaryfeature.CDMisabletoexplaingalaxyformationbyprovidingenoughgravitationalpresencetoensureluminousmatterclumpingonthescalesweseetoday.IfonetakesseriouslythePeccei-Quinnmechanismasasolutiontothestrong-CPproblemofQCD,thentheaxionisarealparticleandthusaprimecandidatefordarkmatter.Bigbangnucleosynthesisalsocannotdowithoutdarkmatter.BaryonicmatteraloneisunabletoaccountforthedensityrequiredtoallowBBNtooccur.Weclearlyseethatdarkmatter'sconnectiontotheentirecosmologyoftheuniverseistoointertwinedforitsexistencetonotbetakenasapossiblereality. Nevertheless,newgravitationalphysicswhichoccursatdierentscalesiscertainlynotanimpossibility.Theevidencestatedaboveisonlygravitationalinnature.Thatis,itonlyservestoidentifydarkmatterviaitsgravitationalinteractions.Observingaparticlegravitationallyisaninsucientmethodof 75

PAGE 84

detection.Thisonlyservestodeterminethemetricinaxedgauge,whenceonemaythenconstructtheEinsteintensorandthendenethematter-stressenergytensorsoastomaketheEinsteinequationtrue.Therefore,ippingthesolutiononitshead:therecurrentlyexistsmodicationsduetogravitywhicharecapableofaccountingfortheobservedcosmology;andthesemodicationscanbeinterpretedasthepresenceofmatterstress-energywecalldarkmatter(muchliketheorganizingprincipleofperturbationtheoryinclassicalgeneralrelativity). Thecurrentdarkmatterproleswhichhavebeenstudiedsuerdeniteproblemswhichwehavediscussedinthisworktosomelength.Theyareunabletoexplain:theTully-Fisherrelation|theproportionalityoftheabsoluteluminositytothequarticpowerofthemaximumrotationalvelocity;andMilgrom'slaw|thefactthatdarkmatterneedstobeevokedwhensatellitespossessanaccelerationa.a01010m/s2.Additionally,theirne-tuningfeatures(byvirtueoftheirthreeparametertting)allleaveonetoconcludethattherotationcurvesalone|anamazinglyconsistentphenomenon|cannotpresentlyenableonetosaymuchaboutthefundamentalnatureofdarkmatter. MONDispurelygravitationalatthenonrelativisticlevel,andbydesignisconstructedtosatisfyMilgrom'slaw.Therefore,attheempiricallevel,itisvastlysuperiortodarkmatterhalos.Itisatthefundamentallevelwhereoneproperlydisplaysreservationsastoitsviabilityinlightofthesuccessesofdarkmatterinseveralkeyphysicalprocesses.TheneedforacovariantmetricformulationofMONDbecomesimmediatelyevident|onewhichcanbedirectlymeasuredalongsideitsdarkmattercompetitor. MOND'srelativisticextensionhasbeentreatedinthisthesisbyconsideringthetwopredominantapproaches:thescalar-tensortheoriesofMilgrom,Bekenstein,andSanders,andthepurelymetricapproachofSoussaandWoodard.Atpresent,itcanbesaidconclusivelythatofthescalar-tensorvarieties,theTeVeStheoryof

PAGE 85

Bekensteinisthemostviablecandidate.Naturally,allapproachesareconstructedtobeabletoreproducethenonrelativisticversionofMOND.However,thekeyissuesinextendingMONDhavebeenthelackofsucientgravitationallensingoflight,theacausalpropagationofdynamicalelds,andinherentambiguitiesinregardtoitscosmologicalimpact. Bekenstein'sTeVeSistherstrelativisticversionwhichisabletoresolvethersttwoofthesethreeissues(underappropriateassumptions)andnotbeapreferred-frametheory.Asitisfullyrelativistic,onemayseewhatitsaysaboutcosmology.Presently,nodenitiveconclusionscanbemadeandisthesubjectforfuturework.TeVeS,however,itnotwithoutproblems.Namely,thelargeparameterspacecreatesambiguityanditisnotoverlyclearwhichobservablescansetorconstraintheseparameters.Onepossibilitywouldbetotakeadvantageofthedisparatetraveltimesthatgravitonsandneutrinoswouldpossessfromdistantastrophysicalsources.Wefoundafterasimplecomputationthatthedelayinarrivaltimesofagravitationalwaveandapulseofneutrinoscouldbeontheorderofafewminutesunderreasonableassumptionsoftheparameters.Thereforeonewouldostensiblybeabletoconstraintheirvalues(orratiosthereof).Solarsystemtestsserveasgoodconstrainingtoolsinscalar-tensortheories(e.g.BransDickegravity),andthereforeitiscertainlynotunreasonabletohaveadegreeofoptimisminthefalsiabilityinherenttoatheorylikeTeVeS. Thepurelymetrictheorygainstheadvantageinoverall\naturalness"{thatis,thepurelymetricdegreesoffreedom,ifsucienttodescribeMONDinallregimesconsistentwithastrophysicalobservations,wouldfollowOckam'srazor.Avoidingphilosophicalvicissitudes,weshallunabashedlyassumethepreferentialtreatmentofsuchafeatureinthepurelymetrictheory.Theavoidanceofscalarandvectordegreesoffreedomresultsinfewerparameters.Whatwediscovered,unfortunatelyfromthemodelbuilder'sperspective,isthat,under

PAGE 86

conservativeassumptions,anypurelymetrictheorywillnevergiveenoughlensingduetotheconformalinvarianceofthelinearizedMONDequations.However,thisresultshouldbeviewedinapositivelight,asanypredictiveandultra-restrictingstatementinphysicsshould.WemayconcludethatthemostplausiblewaytoavoidthelensingdisasterinapurelymetricformulationofMONDisbyforegoingthenotionofgravitationalstability,alesspleasantbutnotunprecedentednorunfathomablesituation. Insimilarfashion,wehavesurveyedthecurrentlandscapeofthedarkenergyproblem.Likedarkmatter,manyoftheapproacheshavecenteredonaddinganewcomponenttotheuniversesuchasaconstantscalareld,adynamicalscalarelddesignedtoturnonattheappropriatetime,chargedscalarsthatexhibitlong-rangeforces,etc.Byconstruction,allthesemodelsservetheirpurpose|theygiverisetolate-timeaccelerationintheuniverse.Each,however,begsthequestiontotheirdetectionatthelevelofnewparticlesandelds. Contrarily,modicationsoftheEinstein-Hilbertactioninteractwithallmatterandenergy,andtheresignaturesareintheevolutionsanddynamicsoftheuniverse'sconstituents.ThisthesishasconsideredspecicallythemodicationofCarrolletal.[ 69 ]inwhichaninversepoweroftheRicciscalarisaddedtotheaction.Thistypeoftermisshowntogiverisetolate-timeaccelerationunderappropriateassumptions. TheworkofCarrolletal.[ 69 ]didnotconsidertheeectthiskindoftermwouldhaveontheforceofgravity.ThisworkpresentsthisverycalculationinalocallydeSitterbackgroundforthecaseofadiusemattersource.Theresultclearlyshowsthatthistypeoftermcaninnowaybephenomenologicallyviable.Thesolutionpossessesatermwhichgrowslinearlywithdistance,andthereforeevenphysicsontheclusterscalecompletelyrulesoutsuchamodel.Further,thelackofaNewtonianlimitwhichsurfacesasaninstabilityintheinnerregions

PAGE 87

ofmattersourcesinDolgovandKawasaki'swork[ 73 ]seeminglydoomssuchaproposal. OnemayconsideraddingtermsproportionaltoR2,andR3,and/orusingthePalatiniformalismtoremovetheinherentinstabilitiesofonlyhavinga1=Rtermintheaction.Presently,itdoesnotseemclearatallthatonemaybothremovetheinstabilityfoundbyDolgovandKawasakiandthelinearlygrowingsolutiondiscussedhere.Addingmoreandmoretermstotheactionintheepicyclicspiritseemscountertohowweshouldseeksolutions.However,upondoingsoalargertheoryoramorefundamentalgravitationalprinciplemayemerge|wemayndthesetermstonaturallyarisefromsomelargertheory,eitherasaneectiveeldtheory,orperhapsfromastringtheory.Measurement,phenomenology,andconsistencyareourguidestothisend. Darkenergyanddarkmatterarewithoutquestiontheconsensus|thecurrentlyorthodoxapproachtoexplaining96%oftheuniverse'senergy.Itis,undoubtedly,extremelypeculiarthatwehavenotdirectlydetectedanyofthis96%|neveronce.Theonlymeansatourdisposaltosayanythingempirically,thesolefashionwemayclaimtohaveobservedeitherofthesetwophenomena,isviagravity.Simplystated:Einstein'stheoryworks.Therefore,changestoitatanyscaleshouldandwillmeetresistancefromthewealthofdatathatexists|nottomentionthetheoreticalchallengeswhichmustbeovercome.Thatsaid,thereisseriousreasonstobelievethatgeneralrelativityevenattheclassicallevelisunabletoaccountforalloftheobserveduniverse.Theprocessesdiscussedherehaveallbeengravitationalandtheirorthodoxexplanationscanallberecastintotheformofapurelygravitationalsolution.Thisfactservesnotonlyasanincentivetosearchforalternatives,butalmostobligesthephysicist,inconformitywiththescienticspirit,toallowitspossibilities.

PAGE 88

[1] H.V.Peiris,E.Komatsu,L.Verde,D.N.Spergel,C.L.Bennett,M.Halpern,G.Hinshaw,N.Jarosik,A.Kogut,M.Limon,S.Meyer,L.Page,G.S.Tucker,E.Wollack,andE.L.Wrightland,\Firstyearwilkinsonmicrowaveanisotropyprobe(wmap)observations:Implicationsforination,"Astrophys.J.Suppl.,vol.148,pp.213,2003. [2] JaiyulYoo,JulioChaname,andAndrewGould,\Theendofthemachoera:Limitsonhalodarkmatterfromstellarhalowidebinaries,"Astrophys.J.,vol.601,pp.311{318,2004. [3] MarcoBattaglia,IanHinchlie,andDanielTovey,\Colddarkmatterandthelhc,"J.Phys.,vol.G30,pp.R217{R244,2004. [4] StevenWeinberg,\Anewlightboson?,"Phys.Rev.Lett.,vol.40,pp.223{226,1978. [5] R.D.PecceiandHelenR.Quinn,\Cpconservationinthepresenceofinstantons,"Phys.Rev.Lett.,vol.38,pp.1440{1443,1977. [6] S.J.Asztalos,E.Daw,H.Peng,L.J.Rosenberg,C.Hagmann,D.Kinion,W.Stoe,K.vanBibber,J.LaVeigne,P.Sikivie,N.S.Sullivan,D.B.Tanner,F.Nezrick,M.S.Turner,andD.M.Moltz,\Experimentalconstraintsontheaxiondarkmatterhalodensity,"Astrophys.J.,vol.571,pp.L27{L30,2002. [7] D.N.Spergel,L.Verde,H.V.Peiris,E.Komatsu,M.R.Nolta,C.LBen-nett,M.Halpern,G.Hinshaw,N.Jarosik,A.Kogut,M.Limon,S.S.Meyer,L.Page,G.S.Tucker,J.L.Weiland,E.Wollack,andE.L.Wright,\Firstyearwilkinsonmicrowaveanisotropyprobe(wmap)observations:Determi-nationofcosmologicalparameters,"Astrophys.J.Suppl.,vol.148,pp.175,2003. [8] MarcDavis,F.J.Summers,andDavidSchlegel,\Largescalestructureinauniversewithmixedhotandcolddarkmatter,"Nature,vol.359,pp.393{396,1992. [9] EdmundBertschinger,\Simulationsofstructureformationintheuniverse,"Ann.Rev.Astron.Astrophys.,vol.36,pp.599{654,1998. 80

PAGE 89

[10] JamesE.GunnandIIIGott,J.Richard,\Ontheinfallofmatterintoclusterofgalaxiesandsomeeectsontheirevolution,"Astrophys.J.,vol.176,pp.1{19,1972. [11] JulioF.Navarro,CarlosS.Frenk,andSimonD.M.White,\Thestructureofcolddarkmatterhalos,"Astrophys.J.,vol.462,pp.563{575,1996. [12] JulioF.Navarro,CarolsS.Frenk,andSimonD.M.White,\Auniversaldensityprolefromhierarchicalclustering,"Astrophys.J.,vol.490,pp.493{508,1997. [13] F.J.Sanchez-Salcedo,\Unstablecolddarkmatterandthecuspyhaloproblemindwarfgalaxies,"Astrophys.J.,vol.591,pp.L107{L110,2003. [14] RoelofBottema,\Simulationsofnormalspiralgalaxies,"Mon.Not.Roy.Astron.Soc.,vol.344,pp.358,2003. [15] JulioF.Navarro,CarlosS.Frenk,andSimonD.M.White,\Simulationsofx-rayclusters,"Mon.Not.Roy.Astron.Soc.,vol.275,pp.720{740,1995. [16] VincentR.Eke,JulioF.Navarro,andCarlosS.Frenk,\Theevolutionofx-rayclustersinlowdensityuniverses,"Astrophys.J.,vol.503,pp.569,1998. [17] StacyS.McGaughandW.J.G.deBlok,\Testingthehypothesisofmodieddynamicswithlowsurfacebrightnessgalaxiesandotherevidence,"Astrophys.J.,vol.499,pp.66{81,1998. [18] JacobD.Bekenstein,\Relativisticgravitationtheoryforthemondparadigm,"Phys.Rev.,vol.D70,pp.083509,2004. [19] KeithA.Olive,\Bigbangnucleosynthesis,"Nucl.Phys.Proc.Suppl.,vol.70,pp.521{528,1999. [20] SubirSarkar,\Bigbangnucleosynthesisandphysicsbeyondthestandardmodel,"Rept.Prog.Phys.,vol.59,pp.1493{1610,1996. [21] MarioG.Abadi,JulioF.Navarro,MatthiasSteinmetz,andVincentR.Eke,\Simulationsofgalaxyformationinalambdacdmuniverseii:Thenestructureofsimulatedgalacticdisks,"Astrophys.J.,vol.597,pp.21{34,2003. [22] WayneHu,\Structureformationwithgeneralizeddarkmatter,"Astrophys.J.,vol.506,pp.485{494,1998. [23] WayneHu,\Mappingthedarkmatterthroughthecmbdampingtails,"Astrophys.J.,vol.557,pp.L79{L83,2001. [24] B.Ratra,K.Ganga,N.Sugiyama,G.S.Tucker,G.S.Grin,H.T.Nguyen,andJ.B.Peterson,\Usingwhitedishcmbanisotropydatatoprobeopenandat-lambdacdmcosmogonies,"Astrophys.J.,vol.505,pp.8{11,1998.

PAGE 90

[25] M.Milgrom,\Amodicationofthenewtoniandynamicsasapossiblealternativetothehiddenmasshypothesis,"Astrophys.J.,vol.270,pp.365{370,1983. [26] J.D.BekensteinandM.Milgrom,\Doesthemissingmassproblemsignalthebreakdownofnewtoniangravity?,"Astrophys.J.,vol.286,pp.7{14,1984. [27] K.G.Begeman,A.H.Broeils,andR.H.Sanders,\Extendedrotationcurvesofspiralgalaxies:Darkhaloesandmodieddynamics,"Mon.Not.Roy.Astron.Soc.,vol.249,pp.523,1991. [28] MordehaiMilgrom,\Dynamicswithanonstandardinertiaaccelerationrelation:Analternativetodarkmatteringalacticsystems,"Ann.Phys.,vol.229,pp.384{415,1994. [29] R.B.TullyandJ.R.Fisher,\Anewmethodofdetermingdistancestogalaxies,"Astron.Astrophys.,vol.54,pp.661{673,1977. [30] R.H.SandersandJ.R.Fisher,,"A.Rev.Astron.Astrophys.,vol.40,pp.263,2002. [31] W.J.G.deBlokandS.S.McGaugh,\Testingmodiednewtoniandynamicswithlowsurfacebrightnessgalaxies{rotationcurvets-,"Astrophys.J.,vol.508,pp.66{81,1998. [32] E.F.BellandR.deJong,\Stellarmass-to-lightratiosandthetully-sherrelation,"Astrophys.J.,vol.550,pp.212{229,2001. [33] AnthonyAguirre,JoopSchaye,andEliotQuataert,\Problemsformondinclustersandthely-alphaforest,"Astrophys.J.,vol.561,pp.550,2001. [34] FransiscoPrada,MayritaVitvitska,AnatolyKlypin,JonA.Holtzman,DavidJ.Schlegel,EvaK.Grebel,H.W.Rix,J.Brinkmann,T.A.McKay,andI.Csabai,\Observingthedarkmatterdensityproleofisolatedgalaxies,"Astrophys.J.,vol.598,pp.260{271,2003. [35] J.PenarrubiaandA.J.Benson,\Eectsofdynamicalevolutiononthedistributionofsubstructures,"December2004,SubmittedtoMon.Not.Astron.Soc. [36] J.BekensteinandM.Milgrom,\Doesthemissingmassproblemsignalthebreakdownofnewtoniangravity?,"Astrophys.J.,vol.286,pp.7,1984. [37] DanielJ.MortlockandEdwinL.Turner,\Empiricalconstraintsonalternativegravitytheoriesfromgravitationallensings,"Mon.Not.Roy.Astron.Soc.,vol.327,pp.552,,327. [38] DanielJ.MortlockandEdwinL.Turner,\Gravitationallensinginmodiednewtoniandynamicss,"Mon.Not.Roy.Astron.Soc.,vol.327,pp.557,,327.

PAGE 91

[39] J.D.Bekenstein,\Phasecouplinggravitation:Symmetriesandgaugeelds,"Phys.Lett.,vol.B202,pp.497{500,1988. [40] J.D.Bekenstein,,"DevelopmentsinGeneralRelativity,AstrophysicsandQuantumTheory,p.156,1990,IOPPublishing,Bristol. [41] J.D.Bekenstein,,"ProceedingsoftheSixthMarcelGrossmanMeetingonGeneralRelativity,p.905,1992,WorldScientic,Singapore. [42] JacobD.BekensteinandRobertH.Sanders,\Gravitationallensesandunconventionalgravitytheories,"Astrophys.J.,vol.429,pp.480,1994. [43] R.H.Sanders,\Astratiedframeworkforscalar-tensortheoriesofmodieddynamics,"Astrophys.J.,vol.480,pp.492{502,1997. [44] T.JacobsonandD.Mattingly,\Einstein-aetherwaves,"Phys.Rev.,vol.D70,pp.024003,2004. [45] R.P.Woodard,\Theostrogradskianinstabilityoflagrangianswithnonlocalityofniteextent,"Phys.Rev.,vol.A67,pp.016102,2003. [46] N.C.TsamisandR.P.Woodard,\Nonperturbativemodelsforthequantumgravitationalback-reactiononination,"AnnalsPhys.,vol.267,pp.145{192,1998. [47] GuidoMagnanoandLeszekM.Sokolowski,\Onphysicalequivalencebetweennonlineargravitytheoriesandageneralrelativisticselfgravitatingscalareld,"Phys.Rev.,vol.D50,pp.5039{5059,1994. [48] N.C.TsamisandR.P.Woodard,\Nonewphysicsinconformalscalar-metrictheory,"Ann.Phys.,vol.168,pp.457,1986. [49] C.BransandR.H.Dicke,\Mach'sprincipleandarelativistictheoryofgravitation,"Phys.Rev.,vol.124,pp.925{935,1961. [50] PaulA.M.Dirac,\Longrangeforcesandbrokensymmetries,"Proc.Roy.Soc.Lond.,vol.A333,pp.403{418,1973. [51] Jr.Callan,CurtisG.,RobertC.Myers,andM.J.Perry,\Blackholesinstringtheory,"Nucl.Phys.,vol.B311,pp.673,1989. [52] MichaelS.TurnerandMartinJ.White,\Cdmmodelswithasmoothcomponent,"Phys.Rev.,vol.D56,pp.4439{4443,1997. [53] H.B.G.Casimir,\Ontheattractionbetweentwoperfectlyconductingplates,"Kon.Ned.Akad.Wetensch.Proc.,vol.51,pp.793{795,1948. [54] StevenWeinberg,\Thecosmologicalconstantproblem,"Rev.Mod.Phys.,vol.61,pp.1{23,1989.

PAGE 92

[55] SeanM.Carroll,\Thecosmologicalconstant,"LivingRev.Rel.,vol.4,pp.1,2001. [56] LawrenceM.KraussandMichaelS.Turner,\Thecosmologicalconstantisback,"Gen.Rel.Grav.,vol.27,pp.1137{1144,1995. [57] J.P.OstrikerandPaulJ.Steinhardt,\Theobservationalcaseforalowdensityuniversewithanonzerocosmologicalconstant,"Nature,vol.377,pp.600{602,1995. [58] AndrewR.Liddle,DavidH.Lyth,PedroT.P.Viana,andMartinJ.White,\Colddarkmattermodelswithacosmologicalconstant,"Mon.Not.Roy.Astron.Soc.,vol.282,pp.281,1996. [59] BharatRatraandP.J.E.Peebles,\Cosmologicalconsequencesofarollinghomogeneousscalareld,"Phys.Rev.,vol.D37,pp.3406,1988. [60] C.Wetterich,\Cosmologyandthefateofdilatationsymmetry,"Nucl.Phys.,vol.B302,pp.668,1988. [61] DavidWands,EdmundJ.Copeland,andAndrewR.Liddle,\Exponentialpotentials,scalingsolutionsandination,"Presentedat16thTexasSymp.onRelativisticAstrophysicsand3rdParticles,(PASCOS'92),Berkeley,CA,Dec13-18,1992. [62] PedroG.FerreiraandMichaelJoyce,\Structureformationwithaself-tuningscalareld,"Phys.Rev.Lett.,vol.79,pp.4740{4743,1997. [63] EdmundJ.Copeland,AndrewRLiddle,andDavidWands,\Exponentialpotentialsandcosmologicalscalingsolutions,"Phys.Rev.,vol.D57,pp.4686{4690,1998. [64] IvayloZlatev,Li-MinWang,andPaulJ.Steinhardt,\Quintessence,cosmiccoincidence,andthecosmologicalconstant,"Phys.Rev.Lett.,vol.82,pp.896{899,1999. [65] PhilippeBraxandJeromeMartin,\Therobustnessofquintessence,"Phys.Rev.,vol.D61,pp.103502,2000. [66] T.Barreiro,EdmundJ.Copeland,andN.J.Nunes,\Quintessencearisingfromexponentialpotentials,"Phys.Rev.,vol.D61,pp.127301,2000. [67] TanmayVachaspatiandMarkTrodden,\Causalityandcosmicination,"Phys.Rev.,vol.D61,pp.023502,2000. [68] MartinaM.Brisudova,WilliamH.Kinney,andRichardWoodard,\Cosmologywithalongrangerepulsiveforce,"Phys.Rev.,vol.D65,pp.103513,2002.

PAGE 93

[69] SeanM.Carroll,VikramDuvvuri,MarkTrodden,andMichaelS.Turner,\Iscosmicspeed-upduetonewgravitationalphysics?,"Phys.Rev.,vol.D70,pp.043528,2004. [70] Shin'ichiNojiriandSergeiD.Odintsov,\Wherenewgravitationalphysicscomesfrom:M-theory,"Phys.Lett.,vol.B576,pp.5{11,2003. [71] AndrewStrominger,\Positiveenergytheoremforr+r**2gravity,"Phys.Rev.,vol.D30,pp.2257,1984. [72] RainerDick,\Onthenewtonianlimitingravitymodelswithinversepowersofr,"Gen.Rel.Grav.,vol.36,pp.217{224,2004. [73] A.D.DolgovandM.Kawasaki,\Canmodiedgravityexplainacceleratedcosmicexpansion?,"Phys.Lett.,vol.B573,pp.1{4,2003. [74] Shin'ichiNojiriandSergeiD.Odintsov,\Modiedgravitywithnegativeandpositivepowersofthecurvature:Unicationoftheinationandofthecosmicacceleration,"Phys.Rev.,vol.D68,pp.123512,2003. [75] XinheMengandPengWang,\Modiedfriedmannequationsinr1-modiedgravity,"Class.Quant.Grav.,vol.20,pp.4949{4962,2003. [76] TakeshiChiba,\1/rgravityandscalar-tensorgravity,"Phys.Lett.,vol.B575,pp.1{3,2003. [77] Shin'ichiNojiriandSergeiD.Odintsov,\Modiedgravitywithlnrtermsandcosmicacceleration,"Gen.Rel.Grav.,vol.36,pp.1765{1780,2004. [78] GiaDvali,GregoryGabadadze,andM.Shifman,\Dilutingcosmologicalconstantininnitevolumeextradimensions,"Phys.Rev.,vol.D67,pp.044020,2003. [79] ArthurLueandGlennStarkman,\Gravitationalleakageintoextradimen-sions:Probingdarkenergyusinglocalgravity,"Phys.Rev.,vol.D67,pp.064002,2003.

PAGE 94

MarcSoussawasborninYork,Pennsylvania.HereceivedaB.A.fromCornellUniversityintheeldofbiochemistryandchemistry.Hewentontostudyhigh-energytheoryinthePhysicsDepartmentattheUniversityofFloridaunderthesupervisionofRichardWoodard. 86


Permanent Link: http://ufdc.ufl.edu/UFE0009241/00001

Material Information

Title: Modified Gravity Theories: Alternatives to the Missing Mass and Missing Energy Problems
Physical Description: Mixed Material
Copyright Date: 2008

Record Information

Source Institution: University of Florida
Holding Location: University of Florida
Rights Management: All rights reserved by the source institution and holding location.
System ID: UFE0009241:00001

Permanent Link: http://ufdc.ufl.edu/UFE0009241/00001

Material Information

Title: Modified Gravity Theories: Alternatives to the Missing Mass and Missing Energy Problems
Physical Description: Mixed Material
Copyright Date: 2008

Record Information

Source Institution: University of Florida
Holding Location: University of Florida
Rights Management: All rights reserved by the source institution and holding location.
System ID: UFE0009241:00001


This item has the following downloads:


Full Text











MODIFIED GRAVITY THEORIES: ALTERNATIVES TO THE MISSING MASS
AND MISSING ENERGY PROBLEMS















By

MARC EDWARD SOUSSA


A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA


2005

































Copyright 2005

by

Marc Edward Soussa















To myf iIK.,I,;/















ACKNOWLEDGMENTS

The order in which I shall make my acknowledgements in no way reflects the

relative importance each represents. There are those who directly and indirectly

impacted my life as a graduate student here, and therefore their influences are

unique in almost every respect.

Professionally, I thank my committee members (James Fry, David Groisser,

Pierre Ramond, Pierre Sikivie, and Richard Woodard) for agreeing to serve and

making the necessary time commitments required. Of those members, I make

special acknowledgments to my advisor, Richard P. Woodard. His dedication,

excellence, and unwavering commitment to his work and his students serve as an

example to which any physicist could aspire. My life and my mind will forever be

influenced by his tutelage, and for that I am eternally grateful.

I also make a special acknowledgment to Pierre Ramond for his constant

and continuing support of my pursuits, and his committed effort to ensuring

that my physics education received a well-rounded balance from many fields.

His ability to find a unique perspective in which to view problems (related and

especially unrelated to his own field of research) is something I will ahv-- -i admire

and work to emulate. I thank James Fry and Pierre Sikivie for drafting letters

of recommendation on my behalf and for being available to my questions and

requests, whether administrative or physics-related.

Of the remaining faculty, I acknowledge Hai-Ping C'!, 1;s, my first advisor,

and who encouraged me to pursue my interests and took interest in my progress

throughout my graduate school career. I thank Mark Meisel who has ahv-- -i been









available, encouraging, and sincerely concerned for my status and progress as a

graduate student.

I thank the entire administrative staff in the physics department. They greatly

eased the burden of paperwork and administrative requirements placed on graduate

students. Of the staff I especially recognize Darlene Lattimer, Susan Rizzo, and

Yvonne Dixon.

I acknowledge the following individuals for their impact my life on a personal

level. I especially thank my parents, to whom I owe a debt of gratitude which could

never be sufficiently expressed here. Vous etes, vous etiez toujours la pour moi.

Sans vous rien est possible. Je vous aime; je vous remercie.

I would like to thank Sudarshan Ananth for being (I can quite confidently -iw)

the only other graduate student with whom I could spend 4 years in an office. Our

countless mature conversations, remarkable analogies, and delicate treatment of

each other and our colleagues will be something I will carry throughout my career

with fond recollection.

I thank Jacqueline, Jessie, Bailey, and family for their support. Some of my

fondest memories and some of my happiest moments in Gainesville are directly

attributable to them.

I thank my friends -past, present, and unnamed.















TABLE OF CONTENTS


ACKNOW LEDGMENTS .............................


page

iv


ABSTRACT .......................


1 INTRODUCTION ..............................


2 DARK MATTER: THE MISSING MASS ....


Introduction .. .. .. .. .. .. .. ..
Dark Matter Taxonomy ...........
Dark Matter Distribution ..........
Problems and Drawbacks to the CDM Halo
Concluding Remarks ............


Models


3 MODIFIED NEWTONIAN MECHANICS ....


3.1 Nonrelativistic Formulation .......
3.1.1 M otivation .............
3.1.2 Action Principle ..........
3.2 Relativistic Formulation .........
3.2.1 M otivation .............
3.2.2 Scalar-tensor Approach ......
3.2.3 Purely Metric Approach .....
3.3 The MOND No-Go Statement for Purely
3.3.1 M otivation .. ...........
3.3.2 The Statement .. .........
3.3.3 A Connection with TeVeS .....
3.3.4 Revisiting the No-Go Statement


Metric


Approaches


4 DARK ENERGY: THE MISSING ENERGY. ............. ..54

4.1 Introduction .................. ........... .. 54
4.2 The Many Faces of Dark Energy .................. .. 55

5 LATE TIME ACCELERATION WITH A MODIFIED EINSTEIN-HILBERT
ACTION .................. ............. .. .. 61


Late-time Acceleration .. ....................
The Gravitational Response .. .................
Remarks on our Calculation and Future Work .. .........









6 CONCLUSIONS ............................. 75

REFERENCES ................................... 80

BIOGRAPHICAL SKETCH ........ ........ .. .......... 86















Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

MODIFIED GRAVITY THEORIES: ALTERNATIVES TO THE MISSING MASS
AND MISSING ENERGY PROBLEMS

By

Marc Edward Soussa

May 2005

C'!I ii: Richard P. Woodard
M, 1 ri Department: Physics

Modified theories of gravity are examined and shown to be alternative possibil-

ities to the standard paradigms of dark matter and dark energy in explaining the

currently observed cosmological phenomenology. Special consideration is given to

the relativistic extension of Modified Newtonian Dynamics ( MOND) in supplanting

the need for dark matter. A specific modification of the Einstein-Hilbert action

(whereby an inverse power of the Ricci scalar is added) is shown to serve as an

alternative to dark energy.















CHAPTER 1
INTRODUCTION

The advent of precision ..-1i1, ,i,!-l~ics in the past 20 years has provided cos-

mologists, particle theorists, and general relativists with a healthy volume of data

and measurements with which to work and explain. It has become clear that a

large fraction of the universe's energy content is unknown to us. Indeed, we are

entering an exciting era of astrophysical investigation whereby experiments (past,

present, and future) will guide physicists to understand the fundamental nature of

the universe.

Our thesis considers two problems: namely, what I will term, with no attempts

at originality, the missing mass and the missing energy problem. Each shall be

approached by considering first the predominant or orthodox approach to their

explanations. In the case of the missing mass problem this corresponds to the

concept of dark matter. Respectively, the missing energy problem introduces

a substance dubbed dark energy to describe the late-time acceleration of the

universe. Each of these approaches will be shown to possess advantageous and

seemingly "natural" features which seem to justify their acceptance as the leading

candidates. However, these approaches are far from being satisfactory resolutions of

their targeted problems. Inconsistencies and ambiguities remain. While that is so,

alternative approaches must be vigorously researched.

One of the most important points to underline in this thesis is the fact that

neither dark matter nor dark energy have been detected in a laboratory setting;

they have only been observed in a gravitational context. Direct determination of

dark matter would certainly quell (if not completely put to rest) the notion that

perhaps we do not understand gravity even at the classical level. However, until









strong evidence of either particle dark matter or dark energy is obtained we may

admit the possibility that it is new gravitational physics, not missing substances

which is responsible for our observed universe.

Einstein's equation possesses two sides: the source side and the gravity side.


G, =- 87wGT,,, (1.1)


where T,, is the matter-energy stress tensor and G,, R,, is the Einstein

tensor. Each is obtained by varying the respective actions,

2 6 4 -2 6 [
G,= dX R 4 -gM(OA, ....),
(1.2)

where LM is a matter Lagrangian density. We will use a time-like signature

throughout the thesis. GC can be thought of as the source of gravity due to the

matter components constituting T,. Clearly, we change the behavior of gravity by

altering the sources present in T,,. Indeed, the "dark horses" of modern physics,

dark matter and dark energy, are both appendices to the source side, albeit in

peculiar forms. Gravitational observation can only tell us about the gravity side,

and thus the ability in/, ; n- exists to add terms to the source side to make the

gravity side true. Only by solving the equations of motion of a new particle field

and confirming the solution experimentally can one conclude real existence.

Consider the more general situation,


9, = 8sTGT,, (1.3)


Here, g,, is a not necessarily the Einstein tensor. We will refer to it as the i ,Il i

- ii- .i Obviously, one must make restrictions when formulating the gravity ten-

sor. General covariance reconciles the requirements of stability with local Lorentz

invariance. Higher spin fields are notorious for possessing negative energy degrees

of freedom. However, in a generally covariant theory these degrees of freedom are









either unphysical (e.g., the non-transverse modes of the photon in Lorentz gauge)

or are constrained degrees of freedom (e.g., the Newtonian potential of gravity).

In addition to conforming with general covariance, phenomenological requirements

must be met. The most poignant of these is Newton's law of gravitation. Gravity is

well understood at the solar system scale. Any proposed modification to Einstein's

equation would have to faithfully reproduce Newton's law in this regime. Further,

Einstein's relativity (which has proven to be extremely robust over a broad range

of physical scale) must emerge from any candidate theory under the appropriate

conditions. Gravitational lensing, the bending of light due to matter sources, will

be shown to serve as an important phenomenological constraint. A-l i.|1 r, -ical

data coming from recent experiments such as the Wilkinson Microwave Anisotropy

Probe (WMAP) and Cosmic Microwave Explorer (COBE); and data anticipated in

the future from the Supernova Acceleration Probe (SNAP) and the Planck Satellite

simultaneously furnish us with bizarre challenges now and place more and more

stringent restrictions on models in the future.

The thesis is organized as follows: C'! lpter 2 discusses the missing mass

problem and describes the dark matter approach to its explanation. In C'! Ilpter

3, the alternative proposition of MOND is introduced and shown as a viable

alternative. First, we discuss the nonrelativistic successes of MOND, followed by

a thorough analysis of the relativistic extensions currently under consideration.

Specifically, the scalar-vector-tensor theories Bekenstein, Milgrom, and Sanders

are survn i, d1 in some detail followed by a complete treatment of the author's

contribution to the purely metric approach. Chapter 4 introduces the dark energy

problem discussing some of the more common approaches. C'! Ilpter 5 introduces

a specific alteration to the Einstein-Hilbert action one can make to reproduce the

same effect as dark energy. The author's contribution to the computation of the

force of gravity due to such an alteration is completely treated. It is shown to place







4

severe limitations on this wide class of models. ('! i lter 6 summarizes the results

with some remarks concerning the implications for present and future work.















CHAPTER 2
DARK MATTER: THE MISSING MASS

2.1 Introduction

When the velocities of satellites orbiting spiral galaxies are measured, they be-

have in a quite peculiar fashion. The velocities are of the order 102km/s (therefore

v/c ~ 10-3), and one would naively expect a Newtonian description of their gravi-

tational dynamics. From elementary physics, we ascribe centripetal acceleration to

a particle in a circular orbit outside a matter distribution M(r),

V2(r) GM(r)
,a (2.1)
r r

and thus well outside the mass distribution the .-i-~!,lil ic velocity behaves as,


S2 (2.2)


However, rather than a Keplerian fall off of the .-i-,,!,l')itic velocity, satellites are

observed to .-i-:i .,l')te to a constant velocity far from the central galactic bulge,


o, = constant (2.3)


Such behavior, one can easily imagine, can be described by inserting more

matter into the system in the appropriate distribution. Indeed, this phenomenon

has served as a in1 i, r impetus for invoking the existence of an unknown matter

component (dark matter) that pervades the galactic systems of our universe, and

the universe's entirety itself. As we have not directly witnessed this matter via

the electromagnetic, electroweak, or strong nuclear forces, it has acquired the

"I ,i : nomenclature. Its only interaction that we have observed (if it were a true









component of our universe) is its gravitational interaction with luminous and

nonluminous matter (and of course the cosmological fluid itself).

The application of this idea faces many obstacles from the onset. Immediately,

its origins come into question. That is, one must use cosmological motivations and

evidence to account for the existence of dark matter. Galaxy formation becomes

a critical issue when discussing dark matter since early fluctuations in the C'\ ll

give evidence to the density fluctuations that were present at recombination. These

imprints constrain the possibilities of how much matter energy density can be

involved in galaxy formation.

Many candidates have been proposed, of which a few will be discussed later

-but we may temporarily spotlight the necessity to quantify dark matter's

standing in the particle description of matter. Specifically, does dark matter

consist of the usual suspects (i.e. the Standard Model particles)? Or is dark

matter the implementation of i, .-- ply-r, particles and fields not currently

captured in the Standard Model? Its distribution and -y iili. .I ic" relationship

with the luminous matter in the galaxy and the universe must be identified.

Further, with the recent augmentation of our experimental abilities in measuring

galactic observables, dark matter must be embedded into our galactic systems in

a self-consistent fashion such that the current observables are not voided by the

introduction of a new exotic.

2.2 Dark Matter T.::;..i-n.i-

We will limit the scope of our discussion of dark matter to issues concerning

galactic systems. However, it should be noted that there is an enormous amount

of theoretical and experimental work extant dealing with dark matter's possible

role in cosmology. Dark matter, if existent, occupies far more of the intergalactic

medium than the galactic one. This is evident from recent and quite constraining

data from the WMAP probe [1], which reveals the large discrepancy between dark









and luminous matter critical fractions, QCDM ~ 0.27 and QB ~ 0.03, respectively

(here CDM and B refer to cold dark matter and baryonic matter, respectively,

explained below). Any cosmological component represents some fraction of the

critical mass density (the density for which the universe expands to a critical radius

and freezes) pc = 3H2/87rG,

x -- (2.4)
Pc
where H is the Hubble expansion parameter. The WMAP data confirms the hot

big bang theory followed by a period of inflation giving rise to a flat universe.

In terms of critical fractions, the total fraction is uTotal ~ 1 with a dark energy

component, QA ~ 0.7, which will be discussed later in greater detail. The question

is then whether the :il' energy component (i.e. that which is not coming from

dark energy) is a true matter component or whether there is new physics at the

level of new particles and fields, or fundamental spacetime principles.

In addition, proof that dark matter really does exist must come from its

observed interactions. Many dark matter candidates have emerged through

the years. Roughly, one may divide them into two categories: nonluminous

baryonic matter such as brown dwarfs, black holes, and large planets (\!.ACHOS

-Massively Compact Halo Structures); and weakly interacting particles such

as neutrinos, axions, and neutralinos (WIMPS -Weakly Interacting Massive

Particles) which pervade large portions of the universe. Of these two candidates, it

has been experimentally and phenomenologically determined that if MACHOS do

exist, they constitute very little of the total possible dark matter observed [2].

WIMPS can be further categorized by their cosmological history. Some

particles formed in the big bang are relativistic for some period of time. Depending

on their masses and couplings to other particles, we are able to predict and

observe their transition from the relativistic regime to the nonrelativistic one.

Those that are relativistic at the onset of galaxy formation are classified as hot









dark matter (HDM), whereas those which have dipped into the nonrelativistic

regime are classified as cold dark matter (CDM). A light neutrino (< 20 eV) and a

heavy neutrino (~ 100 GeV) serve as candidates for CDM and HDM, respectively

[3]. Finally, a third type of particle dark matter, the axion [4], arises from the

Peccei-Quinn mechanism to solve the strong CP problem of QCD [5]. The axion

is a particle which exhibits a particular symmetry that ensures (by reaching the

minimum of its potential) that CP-symmetry is not violated in any strong nuclear

interactions. Depending on the values of the axion mass and couplings, it is

possible to account for a large fraction of the dark matter [6].

Further analysis using WMAP data, however, strongly tilts the favor toward a

CDM scenario [7]. Because galactic formation depends upon the nature of its dark

matter constituency [8], CDM has emerged as it is able (unlike HDM) to provide

sufficient clumping on galactic scales we observe tod -i. Therefore, we will survey

the conservative approach to galactic dark matter and regard it as CDM.

Galactic dark matter has been most commonly introduced itself in the

literature and in scientific investigations (both theoretical and phenomenological)

as halos in which one may either view the galaxy embedded in the halo, or the

halo embedded in the galaxy. The amount of dark matter projected is often on the

order of 9 greater than that of ordinary matter. Since the rotation curves of the

inner regions of galaxies are well reproduced by considering only luminous matter,

it must be that the in i i, ily of the dark matter resides outside the central bulge to

ensure the .,-i-',,' .1l' ically constant satellite velocities.

We will further restrict ourselves to rotation curves of spiral galaxies, as they

have been by far the most studied. The problem is to find how the dark matter

distributes itself in and around the luminous matter of the galactic system. It

cannot have a great impact on dynamics in the inner region since luminous matter

accounts for the rotation curves there. It also faces the challenge of reproducing









the rotation curves outside the inner region for a wide range of physical scales

distance, luminous mass, mass-to-light ratios, etc. Thus, dark matter profiles face

the further challenge of being universal (or at least exhibiting universality).

2.3 Dark Matter Distribution

A thorough review of the different halo models is given by [9]. We consider

only two here, which is more than sufficient to capture the most important features

of halos. The simplest CDM distribution which can successfully account for the

rotation curves of spiral galaxies is the isothermal sphere proposed by Gunn and

Gott [10] with mass density,

p(r = o (2.5)
1 + (r/r,)2

Immediately from Equation 2.5 we see there are two parameters which must be

determined, the central density po and the core radius re. Clearly, this profile

gives rise to the observed rotation curves. The circular velocity of a particle in the

isothermal distribution is,


v2(r) 4G dr'r /2 p' (2.6)
r Jo

= 47Gpor2 i arctan (2.7)

In the limit of r > re, Equation 2.7 reduces to,


v4 V4Gpor (2.8)

the .i-,i ill ic velocity required to explain the rotation curves. A possibly un-

fortunate feature of Equation 2.8 is that the velocity never ceases to fall off, and

therefore certainly this scenario can only serve as a first approximation.









Another popular class of formulations is the so-called "universal" N i' 11 o,

Frenk, and White (NFW) profiles [11, 12],

p(v) Kc
p r + /)2 (2.9)
p rc (+r/r.s)2

where pc is the same as in Equation 2.4. There are again two parameters to

determine, as is alv--,v- the case with a CDM profile: a density parameter (in this

case a dimensionless characteristic number 6c); and a length scale (here represented

by the scale radius r,). These profiles have inherited the classification "universal"

for the similarities in the profiles between halos of widely varying mass, which came

as a surprise, in light of the power-spectrum data [12].

Identical to the isothermal halo, we calculate the velocity from the NFW

profile Equation 2.9,

v2 ) 4Gp) 1 (2.10)
r 1 + r,/r

The square velocity has the limiting behaviors,


2 27rGcpcrFr r < Fr ,
v2(r) -- (2.11)
c ln(v/r,) r >r,

These limiting behaviors are clearly superior in the phenomenological sense to the

isothermal halo on account of the quasi-Keplerian fall off at large enough distances.

The nontrivial solution to the transcendental equation,


x(1 + 2x)- (1 + x)2 In(1 + x)= 0 (2.12)

where x = r/r,, gives the ratio of radii necessary to achieve the maximum velocity.

This equation can be numerically solved to give x 2.16. The velocity approx-

imately drops to 0.82vmax and 0.85vmax for x = 0.1x and x = 10x, respectively.

Therefore, it is quite evident that flat rotation curves can be described with the









NFW profile, with the added feature that at .,-i- !,ll)tically large distances, a fall

off is exhibited.

2.4 Problems and Drawbacks to the CDM Halo Models

Although the isothermal halo model enjoys success in reproducing many of

the observed rotation curves of disk galaxies, the assumptions leading to it exposes

its lack of universality. The isothermal model assumes what has been called the

in i::in -d-hI: hypothesis, which assigns to the disk the maximum mass-to-

light ratio consistent with velocity measurements in the inner region [11]. The

maximum-disk hypothesis effectively separates the disk from the halo. Therefore,

satellites in the inner region inherit all but a negligible fraction of their velocities

from the disk alone. This has the effect, of course, of limiting the core density of

the halo. However, inclusion of data from dwarf galaxies shows this assumption to

break down [13]. The rotation curves for these samples were of quite a different

shape and could not be explained using the isothermal plus maximum-disk model.

Further, velocity-dispersion measurements in the normal direction to the disk

showed that the disk only contributed approximately I .to the inner velocity of

satellites [14], thereby nullifying the maximum-disk hypothesis.

The maximum-disk hypothesis attempts to regard rotation curves as functions

of the luminosity alone. This was tendentiously proposed [14] in response to the

observation that in low-luminosity galaxies, rotation curves rise slowly and continue

rising past the optical radius; whereas in higher luminosity galaxies, the curves rise

more sharply to their maximum, leveling off and sometimes even declining past the

optical radius. However, it was discovered [14] that within the subset of observed

galaxies that exhibit similar luminosities, differently shaped curves were measured

(distinguished by the galaxy's surface brightness).

The NFW profiles for galactic halos and X-ray clusters have been studied

extensively using N-body/ ,- i-Lvi ,i.i1 Ll simulations of CDM in a flat, low-density,









cosmological constant-dominated universe [15, 16]. Inserting nonsingular isothermal

halos into N-body simulations shows these structures to poorly fit the data [15].

The NFW profiles by far constitute a more sophisticated approach and are able

to overcome some of the problems of the isothermal model. That said, the NFW

approach currently requires further dynamical input into determining the specific

profiles that can account for the broad range of observed galaxy brightnesses and

masses observed. For example, low surface-brightness galaxies are not as well fit by

NFW profiles [17] where rotation curves rise more sharply in the inner region than

the profile predicts.

Lastly, one of the more disturbing features of CDM halos is their large

parameter range. Although it is by no means an indicator of futility of this

approach, it certainly spurs the advent of more sophisticated models (if not

radically new ideas). By trading off disk mass for halo concentration, one is .l ,-

capable of producing similar velocity curves. In fact, i;1, rotation curve can be fit

by setting the disk's mass-to-light ratio to zero and tuning the halo parameters.

Thus, differentiating among a class of halo models becomes a daunting task that

can only be simplified by injecting new data or new fundamental concepts into the

profile-building process.

This fine-tuning problem comes to light when considering the Tully-Fisher

relation: the observation that a galaxy's luminosity is correlated to its peak

rotation velocity via,

L o v,. (2.13)

The rotation velocity is mostly set by the halo, whereas the infrared luminosity

comes from the visible matter in the galaxy [18]. The fine-tuning that arises from

the symbiotic relationship between the disk and halo must somehow consistently

reproduce Equation 2.13. The observational precision of Equation 2.13, however,

is not to be easily expected from statistical processes involved in galaxy formation.









Therefore, the Tully-Fisher relation remains an issue for halo profiles that clearly

needs to be addressed before any specific profile or halo mechanism is deemed

satisfactory.

2.5 Concluding Remarks

Evidence for dark matter, regardless of the galaxy rotation curves, is quite

extensive. The Standard Cosmology cannot do without it; at least not without a

radical change to fundamental physics. Processes such as Big Bang Nucleosynthesis

(BBN) [19, 20], structure formation [21, 22], and the cosmic microwave background

(C \!11i) [23, 24] all indicate the Lambda CDM (cold dark matter with a cosmo-

logical constant) approach to be the superior scenario. Successes in these areas

cannot be ignored. The conservative approach to favor dark matter as the leading

candidate of the iii,--iig In i-- phenomenon. It can be said that halo models are

just extending past their infancy. Indeed, any ,- i-v ii 1iii l process incorporates

an enormous amount of complexity. Attempting to find universality among galaxies

is a daunting task if dynamical histories have distinct imprints in the rotation

curves. Currently, NFW profiles offer the most universal approach in halo models.

Despite their inability to accurately fit low-surface-brightness galaxies, their success

encourages us to add new galactic dynamics to the model instead of abandoning

it altogether. These profiles are inferred using N-body simulations, and therefore

questions as to the validity of these simulations certainly enter. For example, one

could argue that the limited number of particles employ, .1 prevents an accurate

reproduction of the dynamics; and the singular nature of NFW profiles is certainly

an unattractive feature that does not exist in nature.

The enormous parameter space also leads one to conclude that dark matter's

existence cannot be proved by galaxy rotation curves alone. Even more narrowly,

perhaps neither can any particular halo model (at least not any from the current

arsenal). Along with cosmological evidence and particle searches for dark matter







14

properties, abundances, and composition, galaxy rotation curves will serve as one

of the approaches to investigate its possibility. In the event of a -iil. .iig gun"

observation of dark matter's existence, rotation curves will pl i. an important role

in understanding galaxy formation and dynamical evolution.















CHAPTER 3
MODIFIED NEWTONIAN MECHANICS

MOND was proposed by Milgrom in 1983 [25] as an empirical alternative to

dark matter in explaining the rotation curve phenomena. By altering gravity at

low acceleration scales, one can reproduce the .,-i-,_i,!il.1 ically constant velocities of

satellites outside the central galactic bulge [26]. This chapter will first introduce

the nonrelativistic formulation of Milgrom and Bekenstein. Next, relativistic

extensions of this theory will be discussed: first the scalar-tensor varieties whose

in i ji proponents have been Bekenstein and Sanders, and secondly the purely

metric approach of Soussa and Woodard. We will end with the phenomenological

constraints and implications of each of these relativistic approaches.

3.1 Nonrelativistic Formulation

3.1.1 Motivation

One may formulate MOND by altering Newton's second law to be nonlinear in

the acceleration d,



FNewt = m/ d a where pI(x) = (3.1)
lx V < l.


The function p(x) is constructed to reproduce Newton's 2nd law, F = ma for

accelerations a < ao (corresponding to p > 1); and F ma2 /ao for accelerations

a > ao (corresponding to p < 1). The numerical value of ao has been determined

by fitting to the rotation curves of nine well-measured galaxies [27],


ao (1.20 0.27) x 10-10m s-2 (3.2)









However, when one considers the enormous internal accelerations of galactic and

stellar constituents relative to the center-of-mass acceleration, it becomes preferable

to regard MOND as a modification of the ,ian ;..:Ul..,.,il force at low accelerations 1


(F~ewt f i Vx 1 ,
FMOND = f Newt Newt where f(x)= (3.3)
mao / .


This empirical law is constructed to ensure the ivmptotically constant velocities

observed in the galactic rotation curves. That is, a particle orbiting a mass

M at an acceleration a < .- will follow a trajectory governed by the force

FMOND = m /aGM/r. Setting mv2/r FMOND gives,

/aoGM v2 4
-aoGM = va (3.4)
r r

In the absence of dark matter, a galaxy's luminosity L should be a constant times

its mass where the constant depends on the type of galaxy. Therefore, MOND is

able to automatically reproduce the expectation L ~ v,, which is the observed

Tully-Fisher relation [29].

When the data are analyzed, MOND is shown to be an impressively robust

predictive tool. Using only the measured distributions of gas and stars, and the

fitted mass-to-luminosity ratios for gas and stars, MOND has accurately matched

the data of more than 100 measured galaxies. A review by Sanders and McGaugh

[30] summarizes the data and lists the primary sources. Two significant things

should be noted: first, MOND agrees in detail, even with low-surface-brightness



1 For example, if we were to consider neutral Hydrogen as a classical planetary
system, the proton would be accelerating with a value of about 1019ms-2 about
the atomic barycentre and therefore well above MOND's characteristic acceleration
scale. Milgrom has considered strongly nonlocal nonrelativistic particle actions in
which the onset of MOND might be governed by the center-of-mass acceleration
[28]









galaxies [17, 31]; second, the fitted mass-to-luminosity ratios are not unreasonable

[32].

On the other hand, when MOND is applied to intergalactic scales, or clusters

of galaxies, it has proven as yet to be less successful. Some dark matter must be

invoked to explain the temperature and density profiles at the cores of large galaxy

clusters [33], and data from the Sloan digital sky survey claims that satellites of

isolated galaxies violate MOND when care is taken to exclude interloper galaxies

(defined as dwarfs with large physical distances from the primary galaxies which

are claimed to make the halo mass profile difficult to measure) [34]. This objection,

however, has serious difficulty in being applied to all the rotation curves. Prada et

al. -ii--.- -1 that this is what leads to the systematic effects that fools the observer

into measuring a constant velocity dispersion in a I. v instances [34]. To regard

100 rotation curves -most of which have not been systematically checked for

the presence of this purported interloper phenomenon -as a few instances is

currently an overestimation of the interloper hypothesis. Recently, a paper by

Penarrubia and Benson [35] analyzed the effects of dynamical evolution on the

distribution of dark halo substructures using semi-analytic methods (checked

with the latest N-body simulations). Their goal was to disentangle the effects of

processes acting on the substructures. They conclude that orbital properties of

substructure components are determined a priori by the intergalactic environment

[35] precluding the interloper hypothesis.

3.1.2 Action Principle

Milgrom and Bekenstein were able to obtain the MOND force law from a

nonrelativistic Lagrangian that respected all the symmetry (and hence conserva-

tion) principles we demand of nonrelativistic theories [36]. Considering a general

gravitational potential Q sourced by a mass density p, they proposed the following









Lagrangian,


L =- Jdr p(r#(r) + (87G)-laF (3.5)


where the interpolating function F is related to the function p of Equation 3.1 via,


p(x) F'(2) (3.6)

Assuming that the potential vanishes on the boundary, varying L with respect

to 0 gives the equation of motion,


V. [f(||V |/ao) ] = 47rGp, where f(x) F'(2) (3.7)

Consider an isolated mass M. Using Gauss's law and spherical symmetry we

trivially have,
GM
r 3
/(llVll/ao) GMr. (3.8)

in view of our empirical requirement set forth in Equation 3.3, we see that the

.I-i~,IIl ,'I ic behavior of the acceleration of an object due to an object of mass M

must behave as,
S- aoGM + 0(r-2) (3.9)
F-2

Note the Equation 3.9 applies in all regimes: MOND and Newtonian. Requiring

that,

2 G ,M (3.10)

leads to the trivial solution,


) G--- VoGMln(r/ro) + O(r-) (3.11)


where ro is an arbitrary radius. Solving the field Equation 3.7 can be done by get-

ting the first integral leaving one with an algebraic problem. From the rotational,

space, and time translational symmetry of Equation 3.5 we immediately obtain









the conserved quantities of linear momentum, angular momentum, and energy,

respectively.

The form of the interpolating function is obviously not unique and many dif-

ferent forms may be taken as long as the limiting behavior matches the requirement

Equation 3.3. A typical example is,

11 4
f(x) 2 2 (3.12)


and thus,


F(x) = xx2 + ln(x + V+x). (3.13)


3.2 Relativistic Formulation

3.2.1 Motivation

The purpose of the previous section, and that of the original authors, was to

demonstrate: first, the MOND force law is derivable from an action principle; and

second (and a direct consequence of the first), the action principle would possess

the spacetime symmetries associated with conservation of energy and momentum.

The need to extend MOND into the relativistic domain is easily seen. Esthet-

ically, the nonrelativistic formulation of MOND leaves a theorist almost aching to

extend it to a fully relativistic description. However, and perhaps even fortunately,

it is phenomenology which serves as the greatest impetus. As is, MOND proclaims

itself as an alternative to dark matter, and therefore any phenomena to which the

presence of dark matter has succeeded in explaining must now be equally or better

described by MOND.

If one is interested in cosmology and gravitational lensing, there is no escape

from the requirement of a generally covariant formulation of MOND that includes

at least the usual metric. If MOND is indeed a viable alternative approach, it must









account for the deficiency observed in the general relativity with no dark matter

prediction [37]. Milgrom, Bekenstein, and Sanders have a scalar-tensor approach to

this end [36]

3.2.2 Scalar-tensor Approach

We will not in anyway here attempt to thoroughly consider scalar-tensor theo-

ries. Rather, we will take a more taxonomic approach, and in the process list their

respective strengths and weaknesses from the theoretical perspective. Bekenstein

[18] gives a more exhaustive review of these theories. The main phenomenological

issue is whether the metric encodes the MOND force law or whether it is coming

from a scalar field. All the scalar-tensor approaches possess the latter feature,

and therefore one may immediately see that a new kind of dark matter emerges.

Namely, if these added fields are real then we are again faced with the challenge of

detecting them as any other dark matter candidate.

Aquadratic Lagrangian: AQUAL

Bekenstein and Milgrom first proposed a relativistic formulation of MOND as

an appendix to their principal theme of devising a nonrelativistic potential theory

in [26]. Their original approach was to introduce a dynamical degree of freedom

in the form of a scalar field i in the spirit of scalar-tensor theories. Particles no

longer follow geodesics of the Einstein metric gy,, but rather that of a conformally

related pliy-cal" metric gy= e2g,. MOND physics comes from the scalar field

Lagrangian density,

87GL2 f(L2 (3. 4)

where f is an a priori known function which is constructed so as to reproduce

MOND in the appropriate regimes and L is a constant length. In this theory,

particles follow geodesics of gy. That is, if we parameterize a particle's worldline









to be X"(T), it has the following action,


S -mn dre g(x(r))Y(r) (r) (3.15)

where a dot indicates differentiation with respect to r. To make contact with the

nonrelativistic theory, expand the particle action,


Sm,= m dr(1+ N+ s + +.... (3.16)

identifying KN = -(1 + gtt)/2 as the Newtonian potential, determined by mass

density p via the linearized Einstein equations. If we further restrict ourselves to

the quasi-static case, it is straightforward to recover the MOND equation of motion

Equation 3.7 in the weak field limit, with the acceleration of a particle governed by,


S= -V(4N + ) (3.17)

Phase coupling gravitation: PCG

AQUAL was discovered to possess the debilitating feature that ip could

propagate superluminally [26]. To see this, consider the wave equation for free

propagation of i that follows from Equation 3.14,


[f(L2"py ,'jg) & ,i 0 (3.18)

Here a semicolon represents covariant differentiation with respect to g,,. Now

linearize Equation 3.18 for small perturbations in i) and consider the highest

derivative terms. Following Bekenstein's coordinate prescription [26], it is possible

to find a local Lorentz frame to point in the x-direction, allowing one to expand

Equation 3.18 as,


0= S,tt + (1 + 2j)6Q,,xx + J+ + JQ, + ... (


(3.19)









where = dln f'(y)/dlny and the dots indicate terms with only one derivative. To

determine whether b can propagate acausally, we need only consider the highest

derivative term and their respective coefficients. Since ( > 0, the coefficients in

Equation 3.19 clearly display Jb's ability to violate causality.

Another downfall of AQUAL comes from the conformal nature in which

the field couples to the Einstein and the physical metrics. It cannot influence

gravitational lensing. We simply state this fact here: any conformal transformation

of the form gy, Q-2 9y has no impact on the bending of light. We will

revisit this statement and discuss it at greater length when considering a purely

metric theory. This means galaxies induce gravitational lensing only to the extent

predicted by general relativity without dark matter. This is far too small [38].

In order to prevent the superluminal propagation of the scalar field inherent to

the relativistic AQUAL theory, one can add a second scalar field which couples to

'b to ensure causality. This incarnation of MOND, PCG (Phase Coupled Gravity)

[39], has now for a scalar Lagrangian density,

[, A] -= [g"P(A,,A,, + r- 2A2 ,, ,) + V(A2)] (3.20)

and equation of motion for A,


A'; r-2A,, AV'(A2) 0 (3.21)

Including a point mass M, the equation of motion for b follows from Equation

3.20,

(A2gp,);~ ; ij2e M63() (3.22)

Small values of Ill justifies dropping the first term in Equation 3.20 and allows us

to solve for A in terms of '. Inserting this into Equation 3.22 reproduces the same

type of equation exhibited by AQUAL for '.









For the choice V(A2) -= -'2A6 with c a constant one can show that a

particle acceleration for spherically symmetric solutions behaves as,

GM 92M
a r 2 (3.23)


where K 2-3/2 ( + + 4 ( ) ). Making an appropriate choice of e and thus

K and identifying the critical acceleration scale in terms of our PCG parameters,

ao -, (3.24)
47Ge

will satisfy the rotation curve requirement. Thus PCG is capable of reducing to

the AQUAL behavior and thus the nonrelativistic regime which is responsible

for rotation curves. It also removes the acausal propagation of the scalar field.

Naively, one would assume that since first derivatives of i in Equation 3.21 enter

quadratically that causality ensues. A more thorough analysis by Bekenstein [40]

shows that although this is not sufficient, considering only stable backgrounds

enforces the desired property of causal propagation.

The parameters rl and c are stringently constrained by solar system tests. The

accuracy to which we know the perihelion precession of Mercury proves enough to

marginally rule out PCG (See [18] for a detailed discussion).

Finally, PCG suffers the same problem as AQUAL: the conformal coupling of

the metrics leads to no enhancing of gravitational lensing in the general relativity

with no dark matter hypothesis.

Disformally transformed metrics: Stratified gravitation

The failure of both the AQUAL and PCG theories stem from the conformal

relation between the Einstein and physical metrics. Consider, rather a "disformal"

relation [41],


gi = e-2 C (A + BL2(3 ,, '') ,


(3.25)









where A and B are functions of the invariant g~" ,i, and L is a constant length.

The second term in Equation 3.25 is responsible for the additional light deflection

needed to explain observed galaxy lensing without dark matter. However, if one

demands causality then it was found [42] that the sign of B would have to be such

that the effect of the disformal transformation would be to decrease the amount

of gravitational lensing. One way to overcome this shortcoming is to replace the

second term in Equation 3.25 by a non-dynamical vector field which is purely

time-like [43]. This stratified framework, which chooses


gy = e-2 g9, 2UU, sinh(2Q) (3.26)

g" UU, =-1 (3.27)

is able to successfully describe observed gravitational lensing phenomena, and

satisfies local solar system tests of gravity. However, it is clearly a preferred-frame

theory, and has no a priori principle in which to select the preferred direction.

Further, U, must be of a bizarre form to satisfy Equation 3.27 at all spacetime

points -undoubtedly an unnatural feature.

Tensor-Vector-Scalar Theory: TeVeS

Recently, Bekenstein has built on the successes of Sanders' stratified theory

[18], by formulating a theory incorporating a vector, a scalar, and a tensor field

which work cooperatively to exhibit the desired phenomenology -gravitational

lensing beyond general relativity alone and causal propagation of scalar modes. In

addition, this tensor, vector, scalar (TeVeS) theory is no longer a preferred-frame

theory like the stratified framework theory of Sanders by virtue of the vector field's

dynamics.









The TeVeS theory proposes the following transformation between the physical

and Einstein metric,


gY = e-26g, 2UUl sinh(20) (3.28)

g/""UU = -1 (3.29)

Now, however, the vector follows from the action [18],

Sv = j d g [g3gPu[,]U[3,v] 4(A(x)/K)(g1PUpU, + 1)] (3.30)
Sv (0327G

where A(x) is a Lagrange multiplier enforcing Equation 3.29, and K is a constant of

dimension zero. Further, we employ the notation V~,] = Vo,p V,. 2

The scalar action is,

S, = d4x g 2(gp U-PUv0,,v U + 2f 4F(kGu 2) (3.31)

where F is a function again constructed to reproduce MOND behavior and k

and f are constants of length dimension zero and one, respectively. The gravity

action is the usual Einstein-Hilbert action with metric g,,, but the matter action is

constructed coupling to g,, instead of g,,.

TeVeS's scalar equation of motion is,


[p(kf2,10 ,a] ; kGN(p + 3p)eC-2 (3.32)

where p(y) is defined by the equation,

F(p) F'(p) (3.33)
2



2 It should be noted that Jacobson et al. [44] have considered models such as
Equation 3.30 (Einstein-Aether Theories).









Quantities with tildes are constructed using the physical metric. Equation 3.32 is

exact. To exhibit AQUAL behavior, we take g3P -- 'r3 and e-2~ 1. Further, we

neglect p relative to p. Equation 3.32 can then be approximated,


S- [p(kf2(v)2t) kGp (3.34)


By properly constructing p, Equation 3.34 reproduces the nonrelativistic scheme of

AQUAL. Similarly, one can work out from Equation 3.32 the MOND limit and the

GR limit -in fact, Equation 3.32 is the starting point for most analyses.

Parameterizing the metric as,

.,, ..,dx3 = -e)dt2 + e(() [dQ2 + Q2(d02 + sin2 Odj2)] (3.35)


One can show [18] that gravitational lensing in TeVeS is achieved by,

b f" v'- (' + 4p'
Ap = dx (3.36)
2 J_,

where x J2 b2 is the Cartesian coordinate along the light-ray characterized

by distance p and impact parameter b from the source. Further, Equation 3.36 can

be approximated to leading order via the relation [18],


A = 2b dx (3.37)

where K = + LN. This result is consistent with the GR plus dark matter

prediction.

TeVeS's 1 i ri setback is that (like dark matter) it introduces new parameters

to which one must then examine their origins. Taking appropriate limits of TeVeS's

three parameters k, K allows one to properly go from general relativity to

MOND, etc. At least two (we may assume that at least one of these parameters

are related explicitly to ao which is determined from rotation curve data) added

experiments have to be performed to determine these parameters. We can imagine









that perhaps solar system tests provide one, lensing another, and rotation curves a

third. Thus, like many current problems in current physics, we may recast an old

problem in terms of new unknown parameters.

Another drawback is that if the scalar and vector fields are real entities, they

are in essence a new form of dark matter which need explanation. One can thus

argue that this is simply dark matter in a peculiar guise. Undoubtedly, however,

the TeVeS is an improvement over the previous scalar-tensor approaches, and its

phenomenological success alone makes it a viable and serious candidate explanation

for the current astrophysical data.

3.2.3 Purely Metric Approach

Motivation

One interested in simplicity, viz. by pure degrees of freedom would certainly

want to consider a purely metric extension of MOND, if for no other reason than

theoretical completeness. Further, it is certainly arguable that a purely metric ap-

proach is closer to the "spirit" of general relativity. However, as is usually the case

in physics, one gains simplicity in one facet of a theory only to lose it in another.

We discovered that no local theory can reproduce MOND behavior. Consider the

weak-field expansion of general relativity about a Minkowski background,


S 6-G d6gR ] d4x{h fw-hj+O(h2)} (3.38)


We want MOND corrections to "turn on" at a characteristic gravitational

acceleration. The Ricci scalar, however, vanishes for general relativity outside a

source. So there is no way a putative MOND correction term based upon R can

.!I 'v.--" to turn on. You can get terms which don't vanish by using the Kretchman

invariant, R ,asR"'6; these can indeed tell when to turn on but functions of this

invariant automatically inherit the Ostrogradskian instability [45].









The only local actions which can avoid the higher derivative problem involve

functions of the Ricci scalar alone. The Gauss-Bonnet invariant avoids this

instability but is purely topological. Since the nonrelativistic MOND force law

involves I||V 2, the weak-field expansion must start at cubic order in the action.

Abandoning locality is certainly not an uncommon occurrence in ,'div's

theoretical physics. Effective theories have become more and more commonplace in

regimes where ignorance of fundamental principles dominates. Quantum gravity's

effective action, of course, falls in this category; and although we are unable to

even -z'i what the full effective action is, nothing prevents us from guessing its

form. We chose the simplest class of guesses which would be capable of satisfying

our nonrelativistic constraint Equation 3.7, acting with the inverse covariant

d'Alembertian on the Ricci scalar3 We will refer to this as the small potential,

1 1
p[g] = R where D = --,(/gg"" ,) (3.39)

(We use the convention R, FP P ,P + PFP~ P" .) Embedding

MOND in a nonlocal Lagrangian has the form,


6G R + ca(4C40 2g( P,,v g, (3.40)

where F(x) is an interpolating function whose form for small x controls the onset

of MOND behavior as in the nonrelativistic case considered previously.

Although the field equations are nonlocal, they do not possess additional

graviton solutions in weak-field perturbation theory. To see this, expand the metric



3 This is not an unprecedented approach, but has been utilized in examining the
physics of the post-inflationary universe [46].









about a Minkowski background,


9g, = Tpv + h (3.41)

The Ricci scalar follows easily,

1
R = h" 1 2h, + O(h2), (3.42)


where graviton indices are raised and lowered using the Lorentz metric. Using our

gauge freedom we choose de Donder gauge,

1
h",- 2 h, = 0, (3.43)

to show that the small potential is local in the weak-field limit,


p[ + h] -h +0(h2) (3.44)
2

Since the Lagrangian depends upon the first derivative of p, this theory contains no

higher derivative solutions in weak-field perturbation theory. Further, all solutions

to the source-free Einstein equations are solutions to this theory since R = 0

throughout spacetime, which implies p = 0 as well. Therefore, our modification to

the Einstein-Hilbert action in Equation 3.40 is the change in response to sources,

without adding new weak-field dynamical degrees of freedom -a clear distinction

from the scalar-tensor theories so far discussed.

The class of nonlinear gravity theories we are considering are known to have

a connection to scalar-tensor theories through a conformal rescaling of the metric,

thereby introducing a minimally coupled, massive scalar field [47]. Regardless,

the number of dynamical degrees of freedom remain equivalent. The scalar-tensor

theories of Milgrom, Bekenstein, and Sanders all introduce new degrees of freedom,

and therefore these approaches are truly distinct. Were the small potential y[g] an

independent dynamical variable, rather than a functional of the metric, the purely









gravitational sector of these models would be identical, and thus the matter sector

would serve to distinguish them. Matter couples in the usual way to gy, in our

class of models whereas it couples to p2g in the Bekenstein-Milgrom formalism.

Note in particular that the field equation associated with a truly dynamical scalar,


(pF')" 0 (3.45)

is not generally solved by p = O-1R.

Phenomenological constraints

The two physical processes we will use to guide us in formulating our relativis-

tic extension of MOND are the rotation curves and gravitational lensing. We will

consider circular orbits as an approximation to the typical orbit a satellite of a spi-

ral galaxy follows. The invariant length element in a static, spherically symmetric

geometry can be expressed as,


ds2 gdxdx -B(rdt2 + A(r)dr2 + r2d (3.46)


The worldline of a test particle moving in this geometry may be parameterized by

xt(t) and obeys the geodesic equation,


i"(t) + FM^(x(t))xP(t)kx(t) 0 (3.47)

It is a straightforward exercise to obtain the nonzero connection coefficients from

Equation 3.46,

B' B' A'
Fttr- Irtt B rrr -
tr 2B" r 2A' 2A'
r r 1
Froo A' AF sin2 Or -
S- sincos, cot. (3.48)
Er 1 E06 sin O0cos 0, E0 cotO (3.48)
r 6









Now parameterize the worldline for the case of circular motion,


(xW,X 0,X,) = r, 2, (t) (3.49)

The only nontrivial geodesic equation in Equation 3.47 is,

B' r 2
0B'. (3.50)
2A A c2

The A(r) is thus irrelevant. In circular orbits, the velocity has the relation to

the angular velocity v = r. In the MOND limit v2 approaches the constant

v = /aGM, and thus the MOND limiting form of B(r) must obey,


B'(r) 2 4 (3.51)

For weak-fields we can write,


A(r) 1 + a(r), B(r) 1 + b(r), (3.52)


where la(r)| < 1 and Ib(r)| < 1. A large spiral galaxy has on the order of 1011

solar masses in dust and gas, or M ~ 1041kg. Therefore, such a galaxy would enter

the MOND limit at a radius,


Rgal -M 102m (3.53)
V ao

It is significant that the natural length scale corresponding to the MOND accelera-

tion,
c2
RMOND ~ 1027m, (3.54)
ao

is greater than the Hubble radius. This has the important consequence that,


-- t 1, (3.55)
RnMOND

on galaxy and galactic cluster scales, and therefore powers of r do not necessarily

distinguish 'large' and 'small' terms.








We will now propose a phenomenological Ansatz for the .-i ll..' ic behavior
of the weak-fields in terms of four order one parameters 4

GM [aoGM GM aoGM ( r
a(r) -+ VT b(r)- 62 2 In (3.57)
C 2 C C2 C gal

From Equation 3.51 we see that MOND predicts C2 = 2. General relativity without
dark matter predicts el = C2 = 0 and 61 = -62 = 2. The insertion of an isothermal
dark halo whose density is chosen to reproduce v = aGM would lead to the
general relativity prediction of el = 61 -62 = 2.
To see what the remaining parameters in our Ansatz must be to be consistent
with phenomenology, we consider the angular deflection of light from a mass M in
terms of the turning point Ro,

A = 2 dr (3.58)
JRo r 2 2 B(Ro) 1
nr o B(r) 1

Expanding this expression in powers of the weak-fields and changing variables to
r Ro csc 0 yields,

A0 2 j dr 1 +a(r) 1 b(Ro) b(r) (3.59)
P"r V+ +---- (3.59)
R 2 r 2 2 2 1 (R>o)


= I dO {a(Ro sec 0) csc2 0[b(Ro) b(Ro sec 0)] + .. } (3.60)



4 One may be worried about the logarithmic growth in b(r), but it is of no prac-
tical concern. The change in b(r) from the onset of MOND all the way to the cur-
rent horizon (Rhor ~ 1026m) is

b(Rhor) b(Rgai) ~ -62 x 10-6 + 2 x 10-5 (3.56)

The weak-field regime is therefore applicable throughout the Hubble volume.









Substituting in the Ansatz Equation 3.57 gives,


A0 (6 62)M+ ( +2) + a M ... (3.61)
C2 0L 2V 2 4

Without dark matter, general relativity gives too little deflection at large Ro to

be consistent with the frequency of lensing by galaxies. General relativity with an

isothermal dark halo is consistent with the existing data [37, 38]. Therefore, for

MOND to faithfully adhere to the current observations, it is required to have the

sum 1c + C2 to be positive and of order one.

The field equations

In this section the field equations that would be derived from Equation 3.40

are presented. Here we give a more heuristic approach to this end. To avoid

digression, we simply state here that the one does not get causal field equations by

varying a temporally nonlocal action. Further, if one considers this class of models

in the context of quantum field theory, then issues of nonreal operator eigenvalues

quickly present themselves. We will here derive the field equations without light

of the above concerns. Instead we will use a trick so to speak to obtain causal and

conserved field equations from Equation 3.40. Therefore, one may as well regard

the resulting equations of motion, rather than Equation 3.40 as defining the model.

The method we present reconciles the requirements of causality and conser-

vation. Using retarded boundary conditions, one may easily add corrections to

the field equations to enforce causality. However, it is immensely more difficult to

guess symmetric tensors of any complexity that will combine to have a vanishing

covariant divergence. Of course, field equations derived from any coordinate invari-

ant action will automatically be conserved; however, varying actions which involve

nonlocal operators result in equations at x" which depend upon fields in the future

as well as in the past of x".








The method is simplest to describe by comparing with the correct variation.
Consider an arbitrary functional of the metric, f[g](y). We can write,

S[g] (Y) 1 601 1 1 6R(y)
f[](y) f [g](y) 1 Ry) + (3.62)
f gPW (x) ([ Dy gl(x) EyR(Y) + Dy6gl-(x) f

where we used the fact that '0-1 I(D60)-1.
Varying the covariant d'Alembertian and the Ricci scalar gives,

6J g(y)E(y) a 1 64(X 1 a
6gpW(x) YP ay g/y y- 2g 9 Py17 (3.63)
R(y) [R,{,(y) + DD, g,(y)D]64(x- y) (3.64)


We now define the small potential using the retarded Green's function,

4[g](y) Jd4z Gret(y; Z)R(z). (3.65)

Using the well known property Gret(x; y) = Gadv(Y; X), we have,


d "(x) ) 2 v 2- +9 Pf
6gW 1 11dv 1

Eadv

The trick is to simply replace the advanced Green's function in Equation 3.66 with
the retarded ones,

6 4[gl 1 1
y f () (x 2 R f +_" ") 2- ] 2 f

+ [R,, + DDD, g,,] -f (3.67)

Since conservation depends only upon the differential equations obeyed by the
Green function, it is not affected by this replacement. The source for our gravi-
tational equations of motion is the stress-energy tensor from the variation of the
matter action S,,
2 6S,
T,, =- (3.68)
V Fg 6gl '









Finally, taking 167Gc-4/ g times the variation of our nonlocal action Equation

3.40 -in the sense of our trick Equation 3.67 -and defining the I.' ,/ potential5 ,


K [g] (

(3.69)


gives the following field equations,


8 -Gc-4T, 2[;,,, gjD0] + [1 2+]G,,


+ [g9 P, 'P4,P P,P, il,, + + 7,, '


29gp. (3.70)
2C4


It is worthwhile to explicitly demonstrate conservation as we have not rigorously

derived Equation 3.70. Taking the covariant divergence DV of Equation 3.70 gives,


2[4;,, gv,0N ];"

([ 2}]G,));"

[g 'P [ ;, g~,,2;



-1^):


2RP-, ,

-2R + R ,

-9p,w9 9R%, ,


-^.'^+


which obviously sum to zero. Because 1/H denotes the retarded Green's function,

these equations are causal in the sense that the equations at x" depend only upon

points within the x"'s past light-cone6



5 Note that the large potential would vanish identically had p been a fundamen-
tal scalar as in the scalar-tensor models of Bekenstein and Milgrom [36].
6 This issue of causality should be distinguished from causal propagation. Field
equations for which the highest derivative term is nonlinear can admit superluminal
propagation as in the relativistic model of Bekenstein and Milgrom [36].


(3.71)

(3.72)

(3.73)

(3.74)

(3.75)









The Schwarzchild-MOND solution
Here we work out the small and potentials: Equation 3.39 and Equation 3.69,
respectively, for a spherically symmetric and static metric Equation 3.46. They give
rise to two independent equations of motion deriving from Equation 3.70 for this
geometry.
The generally spherically symmetric and static geometry Equation 3.46,
Equation 3.48 gives rise to the following Ricci scalar,

B" B' A/ B' 2 ( B' 2 1
R + -+ + +' .- (3.76)
AB 2ABB (A B) rA A B r2 A

For this case, and acting upon a function only or r, the covariant d'Alembertian
reduces to,
1 d (r B d (3.77)
T/AB dr A dr
The differential equation which defines the small potential therefore takes the form,


S(3.7)A- --
(3.78)


Assuming the parenthesized terms above vanish at r = 0, we can write,

B (' B B'\
-p' (r) + -( t) -d AA -t))
B r r B 0 AA


(3.79)


The differential equation that defines the large potential is,

.( g/v7 w),. a( g c,/) z=7r (2 (r2 c'.') (3.80)


Assuming again that the parenthesized terms vanish at r = 0 we can write,


-(C4 12
'() seco'(nd' covariant derivatives we shall need are,
a A(re)

The second covariant derivatives we shall need are,


B' A'
ibV/ 4" B )]4/A/)
; tt A 02
2A r 2A


1 1 B' A' ( )
A r 2 B A


(3.81)









Only the diagonal components of the field equations Equation 3.70 are

nontrivial in this geometry. The 00 and 00 components are proportional to

one another, and are identically obtained from the rr and tt equations from

conservation. We have therefore the two independent equations of motion,

8_4GA 4 AG a f A'
8GT -= 24 + + (1 2+) + AF 4' '~ (3.83)
C4B r B 2c4 A
8xrG 4 a2 B'
r 2c'+ G,,( 2) -O', (3.84)
c4 r 2c4 B

and the two from conservation,

TT r3 B'AT d 2 A' B'
2 = Too =Tu + [+ --+ T, (3.85)
sin2(0) 2 2B B dr r A 2BT "

The tt and rr components of the Einstein tensor are,

A Gtt A' + (A ) G,, B' A (3.86)
B rA r 2 rB r2

At this point we begin our perturbative analysis in this geometry, and recall

that we may express A(r) and B(r) in terms of the weak-fields a(r) and b(r),


A(r) = 1 + a(r) (3.87)

B(r) 1 + b(r) (3.88)


In the MOND regime, we have la(r)| < 1 and Ib(r)| < 1. Therefore, to leading

order in the weak-fields Equation 3.79 becomes,

2a
-- -2 b' + . (3.89)
r

Notice that the integrand in Equation 3.79 vanishes exactly in the general relativity

regime when A = B-1. In the MOND regime, the integrand is no longer zero, but

it is second order in the weak fields and we are therefore justified in ignoring this

term altogether for our present analysis.









In the .,-vmptotic regime we can assume that each derivative adds a factor of

1/r. Hence p'(r) goes like 1/r times the small numbers a(r) or b(r). It follows that

KI'/r is much larger in magnitude than 9p''. By similar reasoning we recognize that

K'/r and 4" dominate the other MOND corrections,

1 ", > / A4 B- a (3.90)
r A B C 4

We will assume Trr = 0 in the weak-field limit and allow for a nonzero

A/BTtt = p. Including the first two terms in Equation 3.90 with the general

relativity terms allows us to express Equation 3.83 and Equation 3.84 to leading

order in the weak-fields,

4 a' a 8wG
2l" + '+ + + p(r (3.91)
r r r 2 C4
4 b' a
S+ +... 0. (3.92)


The first of these equations Equation 3.91 can be integrated to give,

4 2a K 167rG
V+ + 6G+ + d/2p( /) (3.93)
2 3 4 3 g
Rgal

where K is the constant of integration. Adding Equation 3.92 and Equation 3.93

cancels the leading MOND corrections,

b' a K 167rG
+ + + -- j dr 2( r) (3.94)
S r2 r3 C43 gal

Notice that Equation 3.94 is independent of the still unknown interpolating

function F. We can therefore make general statements about all models of the type

Equation 3.40. In the absence of dark matter, the mass integral must eventually

stop growing, for which case the left hand side of Equation 3.93 must fall as 1/r3.

To satisfy this situation, b'(r) must go as a constant times 1/r and a(r) must

go like minus this same constant. In terms of our Ansatz of the previous section









Equation 3.57, we have just demonstrated that,


1+ 2 0. (3.95)

We acquire no lensing at leading order -a phenomenologically unacceptable

result.

It is still worthwhile to see if we can find an interpolating function F(x) to

reproduce MOND rotation curves. We will consider a sphere of mass M and radius

R with very low, constant density,

3 Mc2
p(r) = 3 (R r) (3.96)
47R3

If the density is small enough the MOND regime prevails throughout, as in a low

surface brightness galaxy. This means that Equation 3.91 can be integrated all the

way down to r = 0 to give,

a 8rG "
2' + a + G 'dr12p(r) (3.97)
r C4r2 J0

We can also use Equation 3.89 to eliminate b'(r) in -r times Equation 3.92,


4)' + a' + 0 (3.98)
r

Now eliminate a(r) by adding Equation 3.97 and Equation 3.98, and then use

Equation 3.81 to obtain an equation for the small potential,


S'[1 + 6SF'( ) + < dr',2rp(r') (3.99)

For r > R the mass integral is constant,

c4,12 ] 2GM>
P[1 + 6F( ) + .. 2G Vr > R. (3.100)

To get flat rotation curves we determined that MOND requires C2 = 2. We have

just computed explicitly that any model of the type Equation 3.40 must have









e1 = -62 and therefore the weak-field limit Equation 3.89 for the small potential

implies,
Pr --W 6 /a0CM
'()- ... (3.101)

It follows that the constant term within the square brackets of Equation 3.100 must

exactly cancel, and that the next order term must involve one power of 9p'. It is

straightforward to compute our interpolating function,
3
1 x X X2
F'() + O(x) (x) 2 + O(~2) (3.102)
6 108 6 162

The associated weak-fields are,

4GM aoGM
a(r) 32 2 (3.103)
3C2r C4
8 GM aoGM r
b(r) + 2 ln (3.104)

For the general weak-field Ansatz Equation 3.57 of section 2 we have just shown

-261 = 62= -' and = =2 2.

We have a large amount of freedom in enforcing the MOND limit with regard

to choosing the interpolating function F(x). The MOND limit is enforced by

determining only the first two terms in the small x expansion of F(x). Therefore

depending on the level of suppression desired its functional form is far from unique.

Our only requirement is that the MOND corrections must be sufficiently small

when entering the general relativity regime, i.e. x| > 1. For example, we can make

F(x) --- -1 x for large Ix with the following extension,

7'z (x) 2 sgn(x)
() 9 2 (3.105)

22 ( 7
F(x) = + 441n ( + xl .X (3.106)
l+ |.| V 6 /









For |x| > 1 this would typically suppress MOND corrections by some characteristic

length of the system divided by c2/ao 1027 m. If that is not sufficient one can

alv-i-, extend F(x) differently to obtain more suppression.

The FRW-MOND Solution

Even though we just discovered our relativistic formulation is unable to

produce enough lensing, it is still instructive to see what it does for cosmology.

Further, it serves as a potential gauge of how much a general formulation of MOND

changes in passing from a static geometry to the time dependent one of cosmology.

We begin with the usual Friedmann-Robertson-Walker metric for homogeneous and

isotropic cosmologies,

ds2 -C2t2 + a(t)dX d. (3.107)

In this geometry the Ricci scalar is,

c2R =6H + 12H2 where H (3.108)

The small potential is defined by the equation,


(t) -a-3 d (a3 R(t) (3.109)

We define the initial values of po and its first derivative to be zero, in which case the

small potential becomes,


u(t) = dt'a-3(') dt"t3 (t") (6ft") + 12Ht2 ") (3.110)

The large potential is defined by the differential equation,


V(t) = dt'd(t')F C2a (_d (l/) .) (3.111)

If we again assume null initial values the result is,

S(t) u- t/ '(t')o' 2 (w) (3.112)
Jo









The nonzero components of the second covariant derivative are,


);oo = C -2


;i = -C-2H H-i .


For a perfect fluid, the stress-energy tensor is,


TI, = j ,,,,, + (p + p)uu .


Stress-energy conservation implies, P

the Einstein tensor are,


-3H(p + p). The nonzero components of


c2Goo 3H2 (3.115)

c2Gj = -(2H + 3H2)gij (3.116)


The two nontrivial equations of motion from Equation 3.70 in this geometry


are,


2
8rGc-2p -6HW + 3H2(1 24) + aF ,
2c2

8srGc-2p 2$ + 4H( (2H + 3H2)(1 24) A


22
2C2


Conservation tells us only one of these equations is independent.

In the MOND regime we can therefore express Equation 3.117 as,


-H + 3H2(1 _


For cosmology the argument x = -(c/

the same sign as the small potential,


S2 + = 87Gc-2p .


(3.119)


ao)2 is negative so the large potential has


1
4(t) ((t) .
6


(3.120)


In the MOND regime we can therefore express Equation 3.117 as,


S2 + 8rGc-2p .


(3.113)


(3.114)


(3.117)

(3.118)


H + 3H2 _-
3


(3.121)








Of special interest to cosmology is the case of a power-law scale factor,

a(t) = ( + Ht) (3.122)

Here Hi is 1/s times the Hubble parameter at t = 0. Substituting into Equation
5.13 gives the small potential,

(({) -6s ( ) n [1 + i] -(1 3s)-1( + t) 1-3 ] (3.123)

The logarithm term dominates in Equation 3.124 at late times. In this regime, we
can express ip in terms of the Hubble parameter H,

() = -6s( s { ) [1 + Hi] -(1 3s)-1[( + ,t) 1- ] (3.124)

We can therefore write the MOND analog of the Friedman equation for power law
expansion,

3{1 + 2a a2 + 2sa7ln l + Hit] }2(t) + 8- 8Gc-2p(t) (3.125)

where a (2s 1)/(3s 1). For s > 1 the logarithm term serves to gradually slow
the expansion -consistent with the MOND strengthening of the force of gravity in
the weak-field regime.
For the case of radiation domination (s = 1/2 and a = 0) we note that
p(t) = 0, and hence so too K(t) = 0. The equations are therefore those of general
relativity, but with the energy and pressure coming from ordinary matter. This is
of course unacceptable in light of recent observations which show that nonbaryonic
matter must predominate over baryonic matter by about a factor of six [1].
3.3 The MOND No-Go Statement for Purely Metric Approaches
In the previous section we discussed scalar-tensor theories of MOND. These
models have had successes in complying with the phenomenological restrictions









currently available, but to date they have not shown to be completely satisfac-

tory for the reasons already presented. We went on to develop systematically a

relativistic version of MOND using a purely metric approach. The purely metric

class of models suffered from far too little lensing. It is the purpose of this sec-

tion to demonstrate that ,:;, purely metric theory of MOND will suffer the same

phenomenological shortcoming.

3.3.1 Motivation

It was our intention in developing a phenomenologically viable theory of

MOND which would satisfy the requirements of gravitational lensing and still

reproduce the rotation curves. What we discovered, however, was that to leading

order in the weak-fields in our class of models Equation 3.40, the MOND predicts

no additional lensing to the prediction of general relativity. This is inconsistent

without invoking the presence of dark matter. One is immediately tempted to

consider different classes of models which can overcome the lensing I -I For

example, one might replace the covariant d'Alembertian with the conformal one in

defining a small potential,

1 1
cp[g] = R whereO, -R (3.126)
11, 6

However, the distinction between E and El, disappears in the weak-field regime

since R scales as one power of the weak-fields times 1/r2. Therefore, this class of

models would have no hope of having any success in acquiring a nonzero lensing

contribution to leading order in the weak-fields.

Further, any MOND action which only contains the Ricci scalar as the

source upon which the nonlocal operator acts will have no impact during the

radiation phase of the universe -an entirely unacceptable feature. The next most









complicated scalar potential would seem to be,

c4 t
[] 4- (R/"R, (3.127)

Because 92 has roughly two derivatives acting upon two powers of the weak-fields,

one must also change the Lagrangian,

4
2 l= G-4 -[.)] c g (3.128)

For this class of models F2(x) would be linear in the MOND regime.

Instead of embarking on a program to discover a class of theories which are

able to satisfy the lensing requirements, we propose to study the general features

I,';/ purely metric formulation of MOND possesses. This approach is obviously

the more powerful if a definitive result can be obtained (or at least if some firmer

guidelines as to which classes of models can be considered in making MOND

relativistic).

3.3.2 The Statement

We intend to show here that no phenomenologically viable, purely metric

approach of MOND can be constructed within a set of given assumptions.

We assume that the gravitational force is mediated by the metric tensor

g,,(x), and that its source is the usual stress-energy tensor T,,(x). In four space-
time dimensions the metric is determined by the set of ten equations having the

form,

GO[g] 8wGT, (3.129)

where the gravity tensor, g~, is a functional of the metric (for ordinary general

relativity it is simply the Einstein tensor G,). The stress-energy tensor is obtained

as usual by varying the matter action.









We assume that the gravity tensor is covariant and is covariantly conserved,


gP"DpP = 0 (3.130)

At this point we have made no restrictions on the gravity tensor. In particular, we

allow it to involve higher derivatives, and even to be a nonlocal functional of the

metric.

Recall that MOND and Newtonian gravity are distinguishable only for very

small accelerations. These accelerations are expressed as derivatives of the metric.

It is well known that diffeomorphism invariance bestows the freedom to choose a

coordinate frame in which the metric agrees with the Minkowski metric r1, at a

single point. The observed fact that the gradients of the metric are small allow us

to make the metric numerically quite close to rTl, over a large region. Therefore, we

are justified in expanding the gravity tensor in weak-field perturbation theory,


gpw(x) = ,r- v + h,(x) (3.131)

[g] = 9, v[ + h] (3.132)

The crucial observation now in specializing to MOND, is to notice that the

MOND force law Equation 3.4 scales like the square root of the mass,


FMOND (3.133)
r

As a result, at least one component of h., must scale like (/GM (for spherical

distributions this would be the rr component but this does not matter). It is

obvious that the right hand side of Equation 3.129 scales like GM, and therefore

91, [l + h] must have at least one nonzero component whose lowest term is of order

h2

If we further assume gravity to be absolutely stable then not all ten compo-

nents of Q,, [Tl + h] can begin at quadratic order in the weak-field expansion. This









is due to the fact that the dynamical subset of field equations are obtained from

varying the gravitational Hamiltonian. If its variation were quadratic then the

Hamiltonian would be cubic, and this would be inconsistent with stability. The

conclusion therefore is that only a subset of the ten components of Qv,[] + h] can

begin at order h2.

This subset must be distinguished in some covariant fashion. A symmetric,

second rank tensor in four dimensions has two distinguished components: its

covariant derivative and its trace. We can immediately see from Equation 3.130

that conservation occurs at all orders in perturbation theory, and therefore the

covariant divergence cannot be responsible for the required h2 term. We are left

with the trace as the only remaining possibility,


g1"G,[T4 + h] = (h2). (3.134)

Equation 3.134 implies .i~,- ill ic conformal invariance. Although we are able

to reproduce the MOND rotation curves, the corrections to gravitational lensing of

general relativity with no dark matter come in at quadratic order, and are therefore

far too weak [37].

To see this, note that in the weak-field limit, one can perform a local, confor-

mal rescaling of the metric,


gp9(x) Q2(x)g,(x) (3.135)

and completely remove the corrections -the linearized MOND weak-fields are

traceless. It has been known for some time that traceless metric field equations

imply invariance under the conformal transformation in Equation 3.135 [48]. The

full field equations are not traceless, and so neither is the full theory conformally

invariant. This means that the linearized field equations only determine the metric

up to a conformal factor (and a linearized diffeomorphism, but this is irrelevant









for the argument). The conformal part of the metric is fixed by the order h2 term

in the trace of the field equations, and this is how one component hy, contrives to

scale like /-GM.

This is a disaster for the phenomenology of gravitational lensing. Recall that

for a general metric g,, the Lagrange density of electromagnetism is,

1
L = -4FF1Pg/Pg"h-c g (3.136)


where F,, -_ ,A, 0,A,. Equation 3.136 is invariant under the metric rescaling

Equation 3.135, and thus oblivious to MOND corrections to general relativity in

the weak-field limit.

An Example

Here we will illustrate our no-go statement's using our nonlocal, purely metric

model. The equations of motion Equation 3.70 imply the identification,


GpQj[g] = 2[);pt, gD,0] + [1 21]G,
2
+ [g ,p -jP, 9, l + P,9 ,' (3.137)

We have already worked out the leading order terms in the small and large

potentials, and the interpolating function as well. We may leave the large potential

4[g] = (poPF');, in terms of the small potential o, in which case the necessary
relations are,

1
F(x) -- (3.138)
1
4 [g] --1. (3.139)
6

In taking the weak-field limit of 9,, we may neglect any products of R,,, o or

4, such as GA, p'PK,p, and 9,p4,w. Henceforth, the weak-field limit of g, is









contained in the four terms,


1 1
L./, ;/) + RP 1 2 PR (3.140)
3 2 (3.14)

Of course these terms contain higher powers of h.., but more importantly they

contain all the linear pieces. And the terms we have kept are exactly traceless,

gPIg gp G F ( ,, 3;v + R v gvR (3.141)

=O R 0 (3.142)


Note that tracelessness (and hence conformal invariance) is not a feature of the

full field equations. In particular,

2a2
g[", = -60D R[1 2] + 2 +'2 + ', a' F (3.143)

This scales like h2 in the weak-field expansion.

3.3.3 A Connection with TeVeS

We have constructed MOND as a purely classical theory of gravity in the

sense that no attempt at quantization has been made (that said, the class of

models we derived can be thought of as originating from the effective action of

gravity). It should be noted that Bekenstein's TeVeS model can be put in the form

of a nonlocal, purely metric theory as long as the scalar and vector fields are not

directly observed. This is done by integrating out those fields, leaving one with a

nonlocal, purely metric action.

A second and extremely important distinction between the TeVeS theory and

the purely metric theory is the coupling of gravity to matter. The TeVeS theory

possesses a physical metric and an Einstein metric. One simple and direct con-

sequence of this fact is that gravitational and electromagnetic radiation traveling

from distant sources should possess disparate travel times. Recall that in the TeVeS

theory, the physical (gy,) and Einstein metric (g,,) are related via the scalar field Q









and the vector field U,,


gY = e-2gp,, 2UU, sinh(2Q) (3.144)

Suppose we were to observe a -5i,11 1,il," .,-1 ii1r,'!-i I1 event (such as a Super-

nova) from a source such as the Large Magellanic Cloud (LMC)7 Assuming a

Minkowski background (which is a reasonable first approximation) we would expect

gravitational waves to take a time T =D/c to reach us, while ultrarelativistic

neutrinos would take a time,


T eD-2dr (3.145)
c o
ST(1 2Q) (3.146)


In obtaining Equation 3.146 we made two assumptions. First, that the vector

of Equation 3.144 is directed in the direction of the cosmological evolution pa-

rameter, i.e. U, = 60 Secondly, we assume that the value of the scalar field is

approximately constant and has a magnitude Q << 1. This last assumption can

be understood in far greater detail in [18]. However, a reasonable choice would

be Q 10-6. The distance to the LMC is D w 105lyrs; and therefore this value

of 0 would correspond to a delay of AT w 10 min. Consequently, the parameter

space of theories like TeVeS should ostensibly be constrained, and perhaps either be

bolstered or falsified.



7 For example, an observer at the Laser Interferometer Gravitational-Wave Ob-
servatory (LIGO) and an observer at SuperKamiokande (SuperK) would be capable
of detecting the gravitational waves and neutrino flux from the event in the LMC.









3.3.4 Revisiting the No-Go Statement

This section examines the no-go statement in more detail. Specifically we

consider circumventing the gravitational lensing disaster by relaxing the assumption

of gravitational stability.

Let us revisit the assumptions which led to our no-go result:

1. The gravitational force is carried by the metric with its source being the

usual stress-energy tensor.

2. Gravity is described by a covariant theory.

3. The MOND force law can be realized in weak-field perturbation theory.

4. The theory of gravity is absolutely stable.

5. Electromagnetism couples conformally to gravity.

The third and fifth assumptions are the most rigid. The third, if untrue,

would inhibit us from working with any relativistic theory of MOND; if there is no

region for which the MOND force is weak (or at least as weak as the Newtonian

gravitational force), then there is no hope in passing even solar system experiments.

The first assumption may be violated if one makes a distinction between a

1pl -i. I!" and Xi vi'l ,I ,,i i 1" metric. In such a case test particles would follow

geodesics of the former while gravity would behave according to dynamics of the

latter. This is obviously a violation of the strong equivalence principle, but it

is worth noting that to date there has been no conclusive data forbidding this

possibility (See [36] for a detailed consideration). This old idea has been explored

with many more modern theories such as Brans-Dicke [49], Dirac's variable

gravitational constant [50], and string theories [51] to name a few.

The second assumption is easily foregone if one specifies a preferred-frame as

we have seen in a previous section. However, by losing covariance or perturbability

would certainly seem to be counter to the spirit in which we set upon in construct-

ing a purely metric theory. Our fundamental prescription makes strong use of









the strong equivalence principle whereby gravity and matter are described by one

metric, not two.

Relaxing the fourth assumption, that of gravitational stability, is seemingly the

most reasonable choice to overcome the no-go statement. Given the choice between

a stable and unstable theory when examining an observably stable system, the

physicist will alv--, choose the former. However, when phenomenologically driven,

the latter may be the choice of greater utility. When the instability manifests itself

at scales outside or nearly outside the physical scale, or at least in regimes where

perturbative predictions no longer hold, the phenomenologist may cautiously accept

(or at least consider accepting) the unstable solution as a candidate explanation. If

the gravitational stability is on the super-cluster scale or larger, we may consider

the possibility of all ten of the linearized MOND equations vanishing -the trace

component is no longer distinguished.

How does this relaxation affect the no-go statement? Imagine that all of the

linearized MOND weak-fields vanish in the field equations, in which case there

would no longer be a linearized theory -a sufficient bending of light could be

realized. We have already discussed the fact that if the MOND weak-fields begin

at order h2, then the gravitational Hamiltonian begins at cubic order. This signals

an instability, but not necessarily a fatal one. There are two weak-field regimes

the weak-field (or Newtonian) and ultra-weak-field (or deep MOND). In regions

such as the solar system it would be the Newtonian regime which dominates and

thus we experience no deviation from well established physics. At larger scales

(galactic and/or cosmological) we expect the deep MOND regime to enter the

fold. At these scales, the unstable solution would proceed to decay into large

wavelength particles diffusing as the universe expands. The result is that a return

to the Newtonian regime could occur as decay products build a sufficiently large

gravitational potential. The instability would, in essence, turn itself off just as it









becomes too large to become quantitatively reliable. We would no longer have a the

tracelessness of the linearized equations -there would be no linearized theory, and

hence gravitational lensing could be affected by MOND corrections.














CHAPTER 4
DARK ENERGY: THE MISSING ENERGY

4.1 Introduction

One of the greatest surprises to i,-1 !1,vi--icists and particle physicists alike

in the last 20 years is the recent observation from Type Ia Supernovae that

the universe is entering a phase of acceleration. The Standard Cosmology is

characterized by an early period of accelerated expansion (inflation) leading to

a flat universe, a process supported by the large-scale isotropy observed in the

Cosmic Microwave Background (C' \!l) [1]. The matter we see 'ti-i is the result of

gravitational collapse over 13.76 Gyrs after the initial singularity -which in turn

is a manifestation of the density perturbations created by quantum fluctuations

at the end of inflation. The sum of the critical energy fractions is very nearly one,

with its current decomposition consisting of nearly 3:l,' from matter (of which

only approximately !' is ordinary), and over 711' from an unknown source. The

first year's data of WMAP [1] gives us (in terms of the Friedmann equation of

cosmology in the present epoch) the critical fractions,


-tot = Qk + m, + 2r + tx 1.02 0.02 (4.1)

k r =0 (95', CL) (4.2)

m = 0.27 0.04 (4.3)

x = 0.73 0.04. (4.4)


Qx of course represents the source of critical energy responsible for the acceleration

of the universe. This "dI ,1: energy has commanded the attention of a wide variety

of researchers, both theoretical and experimental.









The term dark energy, much like dark matter, is a rather broad encompass-

ment of theoretical ideas -essentially referring to some added component to the

right hand side of the Einstein equation which represents a -,lI-I ,i' which

exerts a negative pressure and therefore induces expansion. Interestingly, Einstein's

greatest blunder, the cosmological constant introduced in his research to ensure

a static universe, has now almost impishly reintroduced itself into the theoretical

arena.

4.2 The Many Faces of Dark Energy

Here we review the fundamental physics behind dark energy. Simple observa-

tional ideas -coupled with theory -allows one to easily understand the nature of

dark energy. We will survey the modern landscape of theoretical ideas with a broad

brush attempting to capture the more important themes and identify the common

properties each must share.

On large scales the universe is homogeneous and isotropic, allowing one to

use the Friedman-Robertson-Walker (FRW) metric to define the invariant length

element in natural units,


ds2 g, (x. idxV = dt2 +a2(t)dix di. (4.5)


Reading off the metric components, assuming the perfect-fluid form (with energy

and pressure densities p(t) and p(t), respectively), and inserting them into the

Einstein equation yields the two independent equations,


3 -) 87Gp, (4.6)

2- = -8rGp. (4.7)
a a


(4.8)









Taking the linear combination of Equations 4.6 and 4.7 gives,

(t) 4G [p(t) + 3p(t)], (4.9)
a(t) 3

then it is clear that in order for the universe to undergo accelerated expansion (i.e.

a > 0), we must have,

p < 0, and pl ~ |p| (4.10)

A useful but unfortunately named quantity is q, the deceleration parameter defined

by,

q aa. (4.11)

Clearly, a2 and a are positive definite, and therefore an accelerating universe

demands q < 0.

Observationally, one can understand late-time expansion using a Hubble plot.

The cosmological redshift, z, can be equivalently defined using the ratios of photon

wavelengths or the ratios of scale factors at different times,

/now 80O
z=- -1 z= -- (4. 12)
Then a(t)

where ao is the value of the scale factor now and time t = 0 is the present and all

values of t > 0 involve the past. Physical distances are determined via the relation,


dphys = a(t)dco-moving (4.13)


Supernovae have the desirable feature of having well-determined luminosities, and

thus are good for distance and velocity measurements. The flux F one measures is

related to the luminosity L thusly:

L
4rd = (4.14)

where dL is the luminosity distance (physical distance) to the supernova. It is

simple to show using Equation 4.12 and the Hubble parameter H = a/a that the









luminosity distance can be calculated with the integral,


dL -(1 + ) d' (4.15)
Jo H(z')

Substituting into Equation 4.15 the expansion of H(z) for small z gives,

dL (=+$i) dz'(1- Hz'+ ... (4.16)
Ho JO z Ho

Using Equation 4.11 and the chain rule allows us to make the identification

H' = (1 + q)Ho. Integrating Equation 4.16 term by term and collecting powers

results in the following power series in z,


dL- + (1 qo)z+.. (4.17)
Ho 2

The first term in Equation 4.17 represents Hubble's law -namely, v = Hod. The

second term is the first deviation of Hubble's law. Therefore, by measuring dL and

z and plotting them one infers the curvature (or deviation from linearity). For

z > 1, this expansion breaks down; in which case numerical integration can be

performed using the energy density one assumes to be present in Equation 4.6 (this

obviously introduces some model-dependent effects).

To determine the evolution of the missing energy component, we define the

parameter w which relates the energy and pressure densities at any given time by

the equation of state,

p =wp (4.18)

Equations 4.9 and 4.18, along with the requirement that the universe accelerate

forces the inequality,

p(l + 3w) < 0. (4.19)

Since p > 0, dark energy must give rise to w < Recently, w has become slightly

more constrained as measurements have improved. In order for the structure

formation we currently observe to exist from the density perturbations indicated









by C\!l l anisotropy measurements, we must have w < -' [52]. Additionally, the

absence of any intragalactic physics due to dark energy leads one to believe that its

distribution be smooth and homogeneous on large-scales.

The Cosmological Constant

The history of the cosmological constant is now so well known it needs little

development. Einstein introduced a constant to his general relativity equations

to balance the collapsing effect that matter alone would exert on the cosmic fluid.

By doing this it imposed what he felt at the time to be the natural state of the

universe -static.

Of course, the observed redshift of distant galaxies quickly did away with

the notion of a static universe; however, the cosmological constant would undergo

a conceptual it-ulution" soon after, when particle theorists were forced to

incorporate the quantum fluctuations of the vacuum which persist in gravity even

after renormalization. For example, consider the Hamiltonian of the quantum

harmonic oscillator with N degrees of freedom in terms of the raising and lowering

operators at and a, respectively:

N t N t 0)
H [a a+a + + (4.20)
i=1 i=1

The transition to field theory takes the number of degrees of freedom to infinity,


H = [at (k) a(k) + h(k ). (4.21)
k

Clearly, the ground state contributes an infinity to Equation 4.21. The usual

practice is to redefine the Hamiltonian by shifting the energy by an infinite

amount as only energy differences are observable quantities. This procedure,

however, cannot be employ, -1 with gravity. Theories like QED, QCD, and the

EW force all possess dimensionless expansion parameters. Thus, one may ahl--iv

find enough counter terms in the renormalization scheme at all energy scales.









The expansion parameter of gravity is Newton's constant GN, which in natural

units has dimensions M-2. Thus, as one increases in energy (i.e. probing the

ultraviolet) it takes more and more counter terms to renormalize to a finite value

-an infinite such counter terms for higher order terms and thus gravity in this

sense is nonperturbatively finite. Admitting our ignorance we may insert an ad hoc

cutoff,
A
HVAC ~ k) A. (4.22)

The cutoff scale is often chosen to be the Planck mass, A Mp ~ 1019GeV,

at which point new physics is needed to make predictions as to how gravity and

spacetime behave. Further, the Casimir effect, which in QED is the force registered

by two neutral, conducting plates as a result of quantum vacuum fluctuations lends

credence that the vacuum p1 i' a definite role at certain scales [53].

Vacuum energy is naturally homogeneous, isotropic, and of course must enter

Einstein's equation covariantly,


TVAC = PVAC / ,, 3" /lg (4.23)


Vacuum energy has the inherent properties that PVAC is uniform throughout

spacetime and that PVAC = -PVAC (i.e. w = -1).

The proposition of a cutoff introduces an awkward problem which we must

face. Currently, the value of the constant can be grossly estimated by ..--iiii:.-

3H2
P PA 10-48GeV4 (4.24)
87G

If we take a cutoff seriously, then a bare cosmological constant would have a value,


PA bare ~ A4 ~ 1076GeV4 (4.25)


Thus, we are forced to account for a discrepancy of 120 orders of magnitude

between the expected and the observed. One may do away with many orders of









magnitude if supersymmetry is included (with a cutoff scale MsUSY ~TeV), or

if the cutoff is not the Planck scale but rather the electroweak scale of 100 GeV;

however, it does not do nearly enough and we are left with essentially the same

questions, if but perhaps in a slightly less embarrassing form.

The observation of a small but non-zero cosmological constant which leads

to the so-called coincidence problem: namely, why has it only recently achieved

relative dominance [54, 55]?

There have been many attempts at understanding these critical problems

[56, 57, 58, 59, 60, 61, 62], none of which can be deemed satisfactory solutions,

else we would certainly have something far more profound to v- about dark

energy. Introducing a homogeneous scalar field which possesses dynamics will work

[63, 64, 65, 66], but one must understand why it is homogeneous [67] and again

why it has achieved dominance now. This approach, named quintessence, works as

a tracker solution, whereby the energy density of the scalar field follows the energy

density of the universe in such a way as to produce late-time acceleration.

Long-range forces have been si:r:.- -i .1 [68] whereby one introduces a charged

scalar field with a long-range, self-interacting force mediated by vector gauge boson.

If the gauge boson mass were to vanish at the minimum of the scalar potential, the

field would be unable to relax to its minimum, and cosmic acceleration could be

achieved [68]. Unlike quintessence, this model predicts an oscillating equation of

state [68] which can ostensibly be observed by high-z Supernovae; and therefore,

this model is distinguishable.














CHAPTER 5
LATE TIME ACCELERATION WITH A MODIFIED EINSTEIN-HILBERT
ACTION

As was the case with dark matter, dark energy pl i,- the role of an added

and hitherto unknown component to the right hand side of the Einstein equation.

Endowing it with the special property that it exerts a negative pressure on the

cosmological fluid provides us with a somewhat natural mechanism with which

to explain late-time acceleration. And just as MOND announces itself as an

alternative to the dark matter hypothesis, modified Einstein-Hilbert gravities

position themselves as alternative candidate explanations.

This chapter illustrates how adding a term proportional to an inverse power

of the Ricci scalar gives rise to an accelerating universe in late-time cosmology, i.e.

post big-bang inflation. We then examine the effect an added inverse Ricci term in

the action has on the resulting force of gravity.

5.1 Late-time Acceleration

Carroll, Duvvuri, Trodden, and Turner proposed a purely gravitational

approach [69]. Late time acceleration is achieved by considering a subset of

nonlinear gravity theories in which a function of the Ricci scalar is added to the

usual Einstein-Hilbert action,


S,] =dx R+f(R), (5.1)


where,


f(R) _-2(p+1)R-p V p > 0 (5.2)









From dimensionality we see that p is an a priori unknown parameter of mass

dimension one. Some connections to braneworlds have been proposed in which

terms with inverse powers of the Ricci scalar are exhibited [70].

For simplicity we will consider the case p = 1 at no loss of qualitative

understanding. We also include the matter action for completeness, in which case

the action is,

S d4 Rd4xM (5.3)

The equations of motion follow directly from Equation 5.28 via the variation,







where TM is the matter energy-momentum tensor. It is quite evident that the limit

p -- 0 in Equation 5.29 takes us back to the usual Einstein equation of motion.

Equation 5.29 can be trivially solved for R if one is considering the constant-


non-zero,
S2
Rvac = v/32 (5.6)

unlike their Minkowski counterpart. Of course, a (negative) positive constant-

curvature solution is precisely (anti) de Sitter space, and we therefore see imme-

diately how our equation of motion Equation 5.29 is capable of providing a purely

gravitational mechanism for explaining cosmological acceleration.

We wish to consider cosmological scenarios. Thus, on the grounds of large-

scale isotropy and homogeneity of the cosmological fluid, we restrict ourselves to

the perfect fluid form of the energy-momentum tensor,


(5.7)


T = (M + PM)UU + PMg1 ,









where U" is the fluid rest-frame four velocity, pM is the energy density of matter

and radiation, PM is the pressure of matter and radiation which is related to the

energy density via the equation of state PM = i,'rr. In a matter dominated

universe, w = 0; and in a radiation dominated universe, w = 1/3.

Homogeneity and isotropy allows also to limit our analysis to metrics of the

Robertson-Walker form,


ds2 = -gdxPdx v


It is straightforward to compute the Ricci

from Equation 5.8,

R a a2)

where H is the Hubble parameter,


dt2 + a2(t)d d .


(5.8)


scalar in terms of the scale factor a(t)


6(H + 2H2) ,


(5.9)


(5.10)


With Equation 5.9 and Equation 5.8, we obtain the two time-time and space-space

equations of motion from Equation 5.29,


31

3 2
2


4
H2 -(2HH + 15H2
12(H + 2H2)3

72( (4H + 9H2 + I2
72(H + 2H2)2 ( R


'H + 2H2 + 6H4)


- 6 P+ 4H
R2 P


8rTGpM (5.11)


-4WGPM,


(5.12)


respectively.

These fourth-order equations are cumbersome and therefore extracting their

cosmological implications not an easy task in their present form. Instead, Carroll

et al. [69] performed a specific conformal transformation on the original degrees of









freedom,


gp = p()gV p exp ( = 1 + )2, (5.13)
r / R2

dt =-pdt a(t) = vpa(t) (5.14)

PM P-2PM PM P-2PM (5.15)

where 0 is a real scalar function on space-time. This transformation has been

extensively treated [47], and involves representing metric degrees of freedom in

terms of a fictitious scalar field. The transformation leads to the following equation

of motion for the transformed expansion parameter,


H2 8- (pG +M), (5.16)

and scalar equation of motion,

/dV(O) (1 3w)
+ 3H' d+ 6( )pM, (5.17)

where a prime denotes differentiation with respect to t. We have introduced the

potential,

V(O) = (5.18)
87G p2
and here we identify the transformed energy density and scalar energy density,

K 47iG
M 3(w) exp -( 3w) (5.19)

Pt = \^ + V( (5.20)

respectively. Carroll et al. [69] considered three qualitatively distinct cases,

assuming an initial value for the scalar field to satisfy,

1
00 <. Mp (5.21)
vl67rG









From Equation 5.18, we see that the potential vanishes when Q -> 0 and Q oo.

The limit Q -> 0 would normally correspond to the Minkowski vacuum, but from

Equation 5.13 it is clear that instead a curvature singularity exists in this limit.

Although Q oo corresponds to R -> 0 and seems like a possible Minkowski

vacuum solution. However, from Equation 5.17 and Equation 5.13 we see that the

solution is oscillatory at .i, -ii:d! l ically large values of Q and therefore unphysical.

When the initial condition, 'o = where 0' is the critical value for which

the scalar field comes to rest at the peak of the potential, the scalar field energy

density becomes constant. Therefore,


H[O = c] = constant (5.22)

This of course is the hallmark of a de Sitter expansion, albeit under unstable

conditions since any perturbations in the scalar field will have it exhibit one of the

alternative qualitative possibilities.

For the scenario 0o < the scalar field never reaches the maximum but rolls

back toward 0 and the universe collapses upon itself. As V 0 and H goes to

a constant, the deceleration parameter and the Ricci scalar, both of which depend

upon H or H', are singular since H ~ V o.

Alternatively, the scalar field can be endowed with 0o > 0' in which case the

scalar field becomes quite large with time and the potential behaves as,


V p-3/2 p2M exp (- 3 (5.23)


If we seek a power law solution for the scale factor,


a t ocp- H (5.24)


then this implies,

Q' ->p ~ t/3 (5.25)
t:









Thus, the scale factors behave as,


a t4/3 (5.26)

a t2/3 (5.27)


It is possible to consider the above situations for the more realistic case of pM / 0,

which was considered in [69]. However the results are no more instructive, and we

therefore direct to the aforementioned article for a more thorough discussion.

To this point we have said nothing of the p parameter. Although the 'o = 'c

scenario is unstable, one may argue that this theory holds phenomenological

relevance. This eternal de Sitter inflation is not too absurd if the decay rate of

the phase is on the order of 7-1 ~ (14 Gyrs)1 the inverse age of the universe.

In terms of a mass scale, this corresponds to p r 10-33eV. Therefore, one can

argue on phenomenological grounds that this theory is worthy of consideration

since it clearly gives rise to late-time acceleration. Of course, p is no better than

a tuned parameter serving the function of giving credence to the above statement.

Nevertheless, it is a viable alternative to the dark energy mechanism, and as such

merits further investigation.

5.2 The Gravitational Response

We have shown in the previous section that with an inverse Ricci scalar term

in the gravity action, it is possible to explain late-time acceleration. However, we

have yet to see what this theory i- about the force of gravity on cosmological and

local scales. That is the task of this section, and we will restrict ourselves to the de

Sitter solution which was discussed to be unstable, but with a slow enough decay

rate to justify its study.

Before we embark on calculating the force of gravity with an inverse Ricci

term added to the gravitational action, we should comment on the inherent

features of such actions. As was apparent from Equation 5.11 and Equation









5.12, our equations of motions of motion are of the higher derivative v ,i I 1 i

(that is, they possess more than two time derivatives on one of the degrees of

freedom). Typically, higher derivatives bring negative energy degrees of freedom;

however, endowing the Lagrangian with nonlinear functions of the Ricci scalar

can sometimes be permitted [71]. This will only give rise to a single, spin zero

higher derivative degree of freedom. But since the lower derivative spin zero is

a constrained, negative energy degree of freedom (the Newtonian potential), its

higher derivative counterpart can occasionally carry positive energy.

There have been several recent articles which examine aspects of this model.

Dick considered the Newtonian limit in perturbation theory about a maximally

symmetric background [72]; while Dolgov and Kawasaki discovered and discussed

an instability in the interior of a matter distribution [73]. However, Nojiri and

Odintsov have shown than R2 can be added to the action without changing the

cosmological solution, and that the coefficient of this term can be chosen to

enormously increase the time constant of the interior instability [74]. Meng and

Wang have explored perturbative corrections to cosmology [75]; and others have

drawn connections with a special class of scalar-tensor theories [76, 77].

What we wish to consider here is the gravitational response to a diffuse matter

source after the epoch of acceleration has set in. The procedure will be to solve

for the perturbed Ricci scalar, whence we determine the gravitational force carried

by the trace of the metric perturbation. We will constrain the matter distribution

to have the property that its rate of gravitational collapse is identical to the rate

of spacetime expansion, thereby fixing the p,, ;/,. 'l1 radius of the distribution

to a constant value. Further, we impose the condition that inside the matter

distribution the density is low enough to justifiably employ a locally de Sitter

background, in which case the Ricci scalar can be solved exactly and remains

constant.








The Calculation
We shall consider a gravitational action parameterized by p > 0,


S[g 16 d4X [R -d 2(p+1) R-] (5.28)

(We employ a space-like metric with Ricci tensor R,~ FP,,P FP, P, + FP,,I -
P,,F' ,.) Functionally varying with respect to the metric and setting it equal to
the matter stress energy tensor leads to the equations of motion,


[1 +p2(p+1)R -(+1)] R [1 2(p+1)R-(+I)] Rg1

+ p 2(p+1)(gO DD)R-(P+) 8 GT,,. (5.29)

D. is the covariant derivative and O (-g)-1/2Q( 2ggP/ ') is the covariant
d'Alembertian.
Although one must really solve all components of the field equations Equa-
tion 5.29 we can get an important part of the gravitational response by simply
taking the trace. We shall also restrict to p = 1 for simplicity. Inside the matter
distribution the trace equation is,

R + 3 + 31/O = S1GgS T1, T. (5.30)

(Note that T is negative.) Normally, one would expect the matter stress energy
to be redshifted by powers of the scale factor in an expanding universe. However,
recall that this matter distribution possesses a rate of gravitational collapse equal
to the rate of universal expansion, and thus T remains constant. Since our matter
source is also diffuse, we may perturb around a locally de Sitter background. For
the interior solution, we are able to solve for R exactly using Equation 5.30 for the
case T is constant and DR = 0,

2 T 12+ .
Rill= 2 1 + (.1









Obtaining de Sitter background obviously selects the negative root. Further, we

concentrate on the situation IT7 < p2

T
Rin = 2 + (5.32)
Outside the matter source we perturb around the de Sitter vacuum solution,
Outside the matter source we perturb around the de Sitter vacuum solution,


Rout = /p2 + 6R.


(5.33)


Substituting Equation 5.33 into Equation 5.30 and expanding to first order in 6R

yields the equation defining the Ricci scalar correction,


DSR(x) + 3p26R(x) = 0.


(5.34)


In our locally de Sitter background the invariant length element is,


dst2- d2 + a2(t)dx di,


(5.35)


with a(t) having the property,


H=
a


constant.


(5.36)


We can relate the Hubble constant H to the parameter p via the vacuum Ricci

scalar,


R = 12H2 3= /2.


(5.37)


Identifying E = a-30 (a3gp7t,), we expand Equation 5.34,


[a2 3HOo + 12H2] 6R(t, x) = 0,


(5.38)


where 02 = -2 + a-2V2. It is evident from Equation 5.38 that the frequency term

has the wrong sign for stability [69]. However, since the decay time is proportional

to 1/H, we may safely ignore this issue.









Seeking a solution of the form 6R = 6R(H11I |.11) allows us to convert Equation
5.38 into an ordinary differential equation,


[(1 d2 ( 2 2)d + 12] R =0, (5.39)
dy y dy +

where y HIIII.T \. To solve this equation we try a series of the form,
00
f uy)= fn+". (5.40)
n=0
Substituting this series into Equation 5.38 yields a solution with a = 0,
0 V + 3 ')P(n + + ) (2y))2n
fo () 4 4 (5.41)
fo() S r(+ 57) (2n+ (541

and a solution with c = -1,

S1 Pn7)( + 1 + v) (2y)2n
iu) E( v-_ 7)P + v57) (2n)!( )
f _1( ) 4 4 4 4 (

Both solutions converge for 0 < y < 1. Both also have a logarithmic singularity

at y = 1, which corresponds to the Hubble radius. We can therefore employ them
quite reliably within the visible universe.

The solution we seek is a linear combination,

6R(y) 1 fo(y) + 2f- l(y), (5.43)

whose coefficients are determined by the requirements that 6R(y) and its first
derivative are continuous at the boundary of the matter distribution. We employ

a spherically symmetric distribution of matter, centered on the comoving origin.
If the matter distribution collapses at the same rate as the expansion of the
universe, its physical radius is a constant we call p. (This means that the comoving

coordinate radius is p/a(t).) If the total mass of the distribution is M we can








identify T as the constant,

87rGM 6GM
T 4 (5.44)
mp3 p
In terms of our variable y = Ha(t) I1.7T, the boundary of the matter distribution is
at yo = Hp. Demanding continuity of the Ricci scalar and its first derivative at yo
gives the following result for the combination coefficients of the exterior solution
Equation 5.43,

3MG foQo) f --o1
01 =3 [fo(yo) _- (of-i(yo) (5.45)

3MG f' l(yo)
02 P f-I(Yo) f' o) ) (5.46)
P3 0 fyo)

where a prime represents the derivative with respect to the argument.
We are now in a position to calculate the gravitational force carried by the
trace of the graviton field. The metric perturbation modifies the invariant length
element as follows,

ds2 -(1 hoo)dt2 + 2a(t)hoidtdxi + a2 t) (6 + hj)dx'dxj. (5.47)

Further defining h = -hoo + hii and imposing the gauge condition,

S 2 h, + 3h (lna),, 0, (5.48)

allows us to express the Ricci scalar in terms of h,

6R = --2hh + 4HOoh,. (5.49)

(Recall that we define 0, = (dt, a-V).) Assuming h h(y) as we did for 6R gives
the equation for the gravitational force carried by h,

[ 1, 26R(y) 2 (5.50)
(y2- 1) + l(,- 2) h'(y)-) (5.50)
dy y H2









The solution to Equation 5.50 is,

h'(y) 2 j- 2)3/ '2 ~ 1/26R (5.51)

At this point it is useful to consider the y values which are relevant. The
Hubble radius corresponds to y = 1, whereas the typical distance between galaxies
corresponds to about y = 10-4, and a typical galaxy radius would be about
y = 10-6. We are therefore quite justified in assuming that yo < 1, and in

specializing to the case of yo < y < 1. Now consider the series expansions,

1 3MG
fo(y) = 1 2y2 + 1 + 0(y6) 3 + O(yo2), (5.52)
5 p

f-i(y) 1 -- 7y2 + t44 + O(6) ,/2 1 G3 + O(). (5.53)
y 3 3p

We see first that |12 1 which means 6R(y) Pifo(y) -and second, that

fo(y) ~ 1 which implies 6R(y) -T/2. This means that the integrand in
Equation 5.51 fails to fall off for y > yo, so the integral continues to grow outside
the boundary of the matter distribution. For small y > yo we have,

2GM
h'(y) = + O(y3). (5.54)
H2 p3

To see that this linear growth is a phenomenological disaster it suffices to
compare Equation 5.54 with the result that would follow for the same matter
distribution, in the same locally de Sitter background, if the theory of gravity had
been general relativity with a positive cosmological constant A = 3H2. In that case

6R(y) = -TO(yo y) and, for y > yo, the integral in Equation 5.51 gives,

h'(y) 1 { arcsin(yo) yo( 2y) y. (5.55)
R 4H2 2(1 2
4GMH
2 + 0(). (5.56)
112 1)









The linear force law Equation 5.54 of modified gravity is stronger by a factor of

( y)3. For the force between two galaxies this factor would be about a million.

5.3 Remarks on our Calculation and Future Work

We have determined the gravitational response to a diffuse matter source in a

locally de Sitter background. Our result is the leading order result in the expansion

variable y, the fractional Hubble distance. Equation 5.54 clearly forces us to

disregard the class of theories considered here Equation 5.28 when compared to GR

with a cosmological constant (for example, the correction to the gravitational force

between the Milky Way and Andromeda increases by six orders of magnitude).

The two assumptions made in our analysis were:

the matter distribution is gravitationally bound,

the matter distribution has a mean stress energy T1 l p2.

The second of these assumptions can be viewed rather flexibly if interested only in

phenomenological implications. Regardless of whether it is satisfied, we still would

expect a linearly growing response far from the source. To see this, recall that

the dominant piece of the solution, fo(y), from equation Equation 5.43 remains

constant and approximately equal to one for many orders of magnitude (for

instance, fo(108-) fo(10-3) W 10-6). Therefore, although the exterior solution

would not be very reliable near the matter source, we can be confident that at

cosmic or even intergalactic scales perturbing about de Sitter becomes appropriate

and a growing solution would still be observed.

This analysis was performed for p = 1, but of course nothing restricts us from

considering arbitrary powers of the inverse Ricci scalar. To no surprise, however,

varying the power only changes the coefficient of the gravitational force leaving

its qualitative behavior alone. The instability found by Dolgov and Kawasaki [73]

and the growing solution calculated in this work seem to preclude all such theories

phenomenologically. The two problems seem to complement one another because









either problem could be avoided by the addition of an R2 term, which would not

alter the cosmological solution [74]. However, avoiding the interior instability seems

to require the R2 term to have a large coefficient, whereas avoiding the exterior

growth requires a smaller value [77].

None of these issues diminishes the importance that should be placed on

considering novel approaches to understanding the dark energy problem. It is the

responsibility of both theorists and experimentalists to construct and constrain

candidate theories, and it is truly an exciting epoch of human investigation for

which we are just beginning to acquire these capabilities. Greater freedom can

be obtained by adding different powers of R. (Note that this generally alters the

cosmological solution.) Although such models seem epicyclic when considered as

modifications of gravity, the same would not be true if they were to arise from

fundamental theory. For example, it can be shown that the braneworld scenario

of Dvali, Gabadadze and Shifman [78] avoids both the interior instability and the

linearly growing force law [79].















CHAPTER 6
CONCLUSIONS

This thesis has examined alternative explanations to the dark matter and

dark energy problems. Each problem has been presented with an alternative that

modifies the Einstein-Hilbert action of gravity in four dimensions with a function of

the Ricci scalar,
1 PX.r
S,[g = SEH[g4 + gf(R) (6.1)

The subsequent phenomenology has been discussed and used to make definitive

statements as to the standing of these theories and prospects for future investiga-

tion.

Dark matter's successes -particularly a A-CDM scenario -leaves many with

the impression that its role in galactic rotation curves is a necessary feature. CDM

is able to explain galaxy formation by providing enough gravitational presence to

ensure luminous matter clumping on the scales we see tod -v. If one takes seriously

the Peccei-Quinn mechanism as a solution to the strong-CP problem of QCD,

then the axion is a real particle and thus a prime candidate for dark matter. Big

bang nucleosynthesis also cannot do without dark matter. Baryonic matter alone

is unable to account for the density required to allow BBN to occur. We clearly

see that dark matter's connection to the entire cosmology of the universe is too

intertwined for its existence to not be taken as a possible reality.

Nevertheless, new gravitational physics which occurs at different scales is

certainly not an impossibility. The evidence stated above is only gravitational

in nature. That is, it only serves to identify dark matter via its gravitational

interactions. Observing a particle gravitationally is an insufficient method of









detection. This only serves to determine the metric in a fixed gauge, whence

one may then construct the Einstein tensor and then define the matter-stress

energy tensor so as to make the Einstein equation true. Therefore, flipping the

solution on its head: there currently exists modifications due to gravity which are

capable of accounting for the observed cosmology; and these modifications can be

interpreted as the presence of matter stress-energy we call dark matter (much like

the organizing principle of perturbation theory in classical general relativity).

The current dark matter profiles which have been studied suffer definite

problems which we have discussed in this work to some length. They are unable to

explain: the Tully-Fisher relation -the proportionality of the absolute luminosity

to the quartic power of the maximum rotational velocity; and Milgrom's law -the

fact that dark matter needs to be evoked when satellites possess an acceleration

a < ao 10-10m/s2. Additionally, their fine-tuning features (by virtue of their

three parameter fitting) all leave one to conclude that the rotation curves alone

an amazingly consistent phenomenon -cannot presently enable one to v- much

about the fundamental nature of dark matter.

MOND is purely gravitational at the nonrelativistic level, and by design is

constructed to satisfy Milgrom's law. Therefore, at the empirical level, it is vastly

superior to dark matter halos. It is at the fundamental level where one properly

di-pl',1i, reservations as to its viability in light of the successes of dark matter

in several key physical processes. The need for a covariant metric formulation

of MOND becomes immediately evident -one which can be directly measured

alongside its dark matter competitor.

MOND's relativistic extension has been treated in this thesis by considering

the two predominant approaches: the scalar-tensor theories of Milgrom, Bekenstein,

and Sanders, and the purely metric approach of Soussa and Woodard. At present,

it can be said conclusively that of the scalar-tensor varieties, the TeVeS theory of









Bekenstein is the most viable candidate. Naturally, all approaches are constructed

to be able to reproduce the nonrelativistic version of MOND. However, the key

issues in extending MOND have been the lack of sufficient gravitational lensing

of light, the acausal propagation of dynamical fields, and inherent ambiguities in

regard to its cosmological impact.

Bekenstein's TeVeS is the first relativistic version which is able to resolve

the first two of these three issues (under appropriate assumptions) and not be a

preferred-frame theory. As it is fully relativistic, one may see what it -Zi- about

cosmology. Presently, no definitive conclusions can be made and is the subject

for future work. TeVeS, however, it not without problems. Namely, the large

parameter space creates ambiguity and it is not overly clear which observables can

set or constrain these parameters. One possibility would be to take advantage of

the disparate travel times that gravitons and neutrinos would possess from distant

.i- i.' .1l, -ical sources. We found after a simple computation that the d.l li in

arrival times of a gravitational wave and a pulse of neutrinos could be on the order

of a few minutes under reasonable assumptions of the parameters. Therefore one

would ostensibly be able to constrain their values (or ratios thereof). Solar system

tests serve as good constraining tools in scalar-tensor theories (e.g. Brans Dicke

gravity), and therefore it is certainly not unreasonable to have a degree of optimism

in the falsifiability inherent to a theory like TeVeS.

The purely metric theory gains the advantage in overall i i, lu IIl~. -"

that is, the purely metric degrees of freedom, if sufficient to describe MOND

in all regimes consistent with .i-1 i !,!1, -i I1 observations, would follow Ockam's

razor. Avoiding philosophical vicissitudes, we shall unabashedly assume the

preferential treatment of such a feature in the purely metric theory. The avoidance

of scalar and vector degrees of freedom results in fewer parameters. What we

discovered, unfortunately from the model builder's perspective, is that, under









conservative assumptions, ,;, purely metric theory will never give enough lensing

due to the conformal invariance of the linearized MOND equations. However, this

result should be viewed in a positive light, as any predictive and ultra-restricting

statement in physics should. We may conclude that the most plausible way to

avoid the lensing disaster in a purely metric formulation of MOND is by foregoing

the notion of gravitational stability, a less pleasant but not unprecedented nor

unfathomable situation.

In similar fashion, we have surveyed the current landscape of the dark energy

problem. Like dark matter, many of the approaches have centered on adding a new

component to the universe such as a constant scalar field, a dynamical scalar field

designed to turn on at the appropriate time, charged scalars that exhibit long-range

forces, etc. By construction, all these models serve their purpose -they give rise

to late-time acceleration in the universe. Each, however, begs the question to their

detection at the level of new particles and fields.

Contrarily, modifications of the Einstein-Hilbert action interact with all

matter and energy, and there signatures are in the evolutions and dynamics of the

universe's constituents. This thesis has considered specifically the modification

of Carroll et al. [69] in which an inverse power of the Ricci scalar is added to the

action. This type of term is shown to give rise to late-time acceleration under

appropriate assumptions.

The work of Carroll et al. [69] did not consider the effect this kind of term

would have on the force of gravity. This work presents this very calculation in a

locally de Sitter background for the case of a diffuse matter source. The result

clearly shows that this type of term can in no way be phenomenologically viable.

The solution possesses a term which grows linearly with distance, and therefore

even physics on the cluster scale completely rules out such a model. Further, the

lack of a Newtonian limit which surfaces as an instability in the inner regions









of matter sources in Dolgov and Kawasaki's work [73] seemingly dooms such a

proposal.

One may consider adding terms proportional to R2, and R3, and/or using the

Palatini formalism to remove the inherent instabilities of only having a 1/R term

in the action. Presently, it does not seem clear at all that one may both remove

the instability found by Dolgov and Kawasaki and the linearly growing solution

discussed here. Adding more and more terms to the action in the epicyclic spirit

seems counter to how we should seek solutions. However, upon doing so a larger

theory or a more fundamental gravitational principle may emerge -we may

find these terms to naturally arise from some larger theory, either as an effective

field theory, or perhaps from a string theory. Measurement, phenomenology, and

consistency are our guides to this end.

Dark energy and dark matter are without question the consensus -the

currently orthodox approach to explaining '11.' of the universe's energy. It is,

undoubtedly, extremely peculiar that we have not directly detected i,;, of this '.'.

-never once. The only means at our disposal to ?- anything empirically, the

sole fashion we may claim to have observed either of these two phenomena, is via

gravity. Simply stated: Einstein's theory works. Therefore, changes to it at any

scale should and will meet resistance from the wealth of data that exists -not

to mention the theoretical challenges which must be overcome. That said, there is

serious reasons to believe that general relativity even at the classical level is unable

to account for all of the observed universe. The processes discussed here have

all been gravitational and their orthodox explanations can all be recast into the

form of a purely gravitational solution. This fact serves not only as an incentive

to search for alternatives, but almost obliges the physicist, in conformity with the

scientific spirit, to allow its possibilities.















REFERENCES


[1] H. V. Peiris, E. Komatsu, L. Verde, D. N. Spergel, C. L. Bennett, M. Halpern,
G. Hinshaw, N. Jarosik, A. Kogut, M. Limon, S. AT. i* r, L. Page, G. S. Tucker,
E. Wollack, and E. L. Wrightland, "First year wilkinson microwave anisotropy
probe (wmap) observations: Implications for inflation," AI,-'.I,,;-, J. Suppl.,
vol. 148, pp. 213, 2003.

[2] Jaiyul Yoo, Julio C'!I i iii and Andrew Gould, "The end of the macho era:
Limits on halo dark matter from stellar halo wide binaries," AJ,-. 'I,,;- J., vol.
601, pp. 311-318, 2004.

[3] Marco Battaglia, Ian Hinchliffe, and Daniel Tovey, "Cold dark matter and the
lhc," J. Phys., vol. G30, pp. R217-R244, 2004.

[1] Steven Weinberg, "A new light boson?," Phys. Rev. Lett., vol. 40, pp. 223-226,
1978.

[5] R. D. Peccei and Helen R. Quinn, "Cp conservation in the presence of
instantons," Phys. Rev. Lett., vol. 38, pp. 1440-1443, 1977.

[6] S. J. Asztalos, E. Daw, H. Peng, L. J. Rosenberg, C. Hagmann, D. Kinion,
W. Stoeffl, K. van Bibber, J. LaVeigne, P. Sikivie, N. S. Sullivan, D. B.
Tanner, F. Nezrick, M. S. Turner, and D. M. Moltz, "Experimental constraints
on the axion dark matter halo density," A;,-. '/i;- J., vol. 571, pp. L27-L30,
2002.

7] D. N. Spergel, L. Verde, H. V. Peiris, E. Komatsu, M. R. Nolta, C. L Ben-
nett, M. Halpern, G. Hinshaw, N. Jarosik, A. Kogut, M. Limon, S. S. AT. l,- r,
L. Page, G. S. Tucker, J. L. Weiland, E. Wollack, and E. L. Wright, "First
year wilkinson microwave anisotropy probe (wmap) observations: Determi-
nation of cosmological parameters," A,/'. IiI,;- J. Suppl., vol. 148, pp. 175,
2003.

18] Marc Davis, F. J. Summers, and David Schlegel, "Large scale structure in a
universe with mixed hot and cold dark matter," Nature, vol. 359, pp. 393-396,
1992.

[9] Edmund Bertschinger, "Simulations of structure formation in the universe,"
Ann. Rev. Astron. AVI.-''I,.li vol. 36, pp. 599-654, 1998.









110] James E. Gunn and III Gott, J. Richard, "On the infall of matter into cluster
of galaxies and some effects on their evolution," A;,-. '//i;- J., vol. 176, pp.
1-19, 1972.

[11] Julio F. N iv i rIo, Carlos S. Frenk, and Simon D. M. White, "The structure of
cold dark matter halos," A-l,. '/.-- J., vol. 462, pp. 563-575, 1996.

[12 Julio F. N ,v ii ro, Carols S. Frenk, and Simon D. M. White, "A universal
density profile from hierarchical (dn-i. i-, A;i,'. /I/;- J., vol. 490, pp.
493-508, 1997.

113] F. J. Sanchez-Salcedo, "Unstable cold dark matter and the cuspy halo problem
in dwarf galaxies," A;h-'.i/,;/, J., vol. 591, pp. L107-L110, 2003.

[14] Roelof Bottema, "Simulations of normal spiral galaxies," Mon. Not. Roy.
Astron. Soc., vol. 344, pp. 358, 2003.

[15] Julio F. N i., ro, Carlos S. Frenk, and Simon D. M. White, "Simulations of
x-ray clusters," Mon. Not. Roy. Astron. Soc., vol. 275, pp. 720-740, 1995.

[1 .] Vincent R. Eke, Julio F. N iv i ro, and Carlos S. Frenk, "The evolution of x-ray
clusters in low density universes," A;. ,'iI,;r J., vol. 503, pp. 569, 1998.

[17] Stacy S. McGaugh and W. J. G. de Blok, "Testing the hypothesis of modified
dynamics with low surface brightness galaxies and other evidence," A,- 'i'/1
J., vol. 499, pp. 66-81, 1998.

[18] Jacob D. Bekenstein, "Relativistic gravitation theory for the mond paradigm,"
Phys. Rev., vol. D70, pp. 083509, 2004.

[19] Keith A. Olive, "Big bang nucleosynthesis," Nucl. Phys. Proc. Suppl., vol. 70,
pp. 521-528, 1999.

::] Subir Sarkar, "Big bang nucleosynthesis and physics beyond the standard
model," Rept. Prog. Phys., vol. 59, pp. 1493-1610, 1996.

[21] Mario G. Abadi, Julio F. N i,- i ro, Matthias Steinmetz, and Vincent R. Eke,
"Simulations of galaxy formation in a lambda cdm universe ii: The fine
structure of simulated galactic disks," A;.,'iv,;-- J., vol. 597, pp. 21-34, 2003.

[22] Wayne Hu, "Structure formation with generalized dark matter," A;Ii,',.- I J.,
vol. 506, pp. 485-494, 1998.

231 Wayne Hu, M\! dipping the dark matter through the cmb damping tail s,"
A,. j/,./.I,; J., vol. 557, pp. L79-L83, 2001.

124] B. Ratra, K. Ganga, N. Sugiyama, G. S. Tucker, G. S. Griffin, H. T. Nguyen,
and J. B. Peterson, "Using white dish cmb anisotropy data to probe open and
flat-lambda cdm cosmogonies," AI,. hII;-, J., vol. 505, pp. 8-11, 1998.









25] M. Milgrom, "A modification of the newtonian dynamics as a possible
alternative to the hidden mass hypothesis," A/,I,/t. *;- J., vol. 270, pp.
365-370, 1983.

SJ. D. Bekenstein and M. Milgrom, "Does the missing mass problem signal the
breakdown of newtonian gravity?," A-,I,/.j 1;- J., vol. 286, pp. 7-14, 1984.

[27] K. G. Begeman, A. H. Broeils, and R. H. Sanders, "Extended rotation curves
of spiral galaxies: Dark haloes and modified dynamics," Mon. Not. Roy.
Astron. Soc., vol. 249, pp. 523, 1991.

128] Mordehai Milgrom, "Dynamics with a nonstandard inertia acceleration
relation: An alternative to dark matter in galactic systems," Ann. Phys., vol.
229, pp. 384-415, 1994.

[29] R. B. Tully and J. R. Fisher, "A new method of determine distances to
galaxies," Astron. AJ.- ,i.'. vol. 54, pp. 661-673, 1977.

L:] R. H. Sanders and J. R. Fisher, ," A. Rev. Astron. A i ,*t,;;-, vol. 40, pp.
263, 2002.

] W. J. G. de Blok and S. S. McGaugh, "Testing modified newtonian dynamics
with low surface brightness galaxies rotation curve fits-," AI,,-',I,.;- J., vol.
508, pp. 66-81, 1998.

:2] E. F. Bell and R. de Jong, "Stellar mass-to-light ratios and the tully-fisher
relation," AI, hI.'ji; J., vol. 550, pp. 212-229, 2001.

:] Anthony Aguirre, Joop Schaye, and Eliot Quataert, "Problems for mond in
clusters and the ly-alpha forest," AI.-'I,,- r J., vol. 561, pp. 550, 2001.

SFransisco Prada, Mayrita Vitvitska, Anatoly Klypin, Jon A. Holtzman,
David J. Schlegel, Eva K. Grebel, H. W. Rix, J. Brinkmann, T. A. McKay,
and I. Csabai, "Observing the dark matter density profile of isolated galaxies,"
AI.,',Ij;,- J., vol. 598, pp. 260-271, 2003.

:] J. Penarrubia and A. J. Benson, "Effects of dynamical evolution on the
distribution of substructures," December 2004, Submitted to Mon. Not.
Astron. Soc.

Sj. Bekenstein and M. Milgrom, "Does the missing mass problem signal the
breakdown of newtonian gravity?," A~,I,/'',q;- J., vol. 286, pp. 7, 1984.

[37] Daniel J. Mortlock and Edwin L. Turner, "Empirical constraints on alternative
gravity theories from gravitational lensing s," Mon. Not. Roy. Astron. Soc.,
vol. 327, pp. 552, ,327.

] Daniel J. Mortlock and Edwin L. Turner, "Gravitational lensing in modified
newtonian dynamics s," Mon. Not. Roy. Astron. Soc., vol. 327, pp. 557, ,327.









,] J. D. Bekenstein, "Phase coupling gravitation: Symmetries and gauge fields,"
Phys. Lett., vol. B202, pp. 497-500, 1988.

i J. D. Bekenstein, ," Developments in General R. /,1; .:I; A-I, I/;i..:, and
Quantum Th. .,;' p. 156, 1990, IOP Publishing, Bristol.

[41] J. D. Bekenstein, ," Proceedings of the Sixth Marcel Grossman Meeting on
General R. lil.; .:'/; p. 905, 1992, World Scientific, Singapore.

[42] Jacob D. Bekenstein and Robert H. Sanders, "Gravitational lenses and
unconventional gravity theories," A;,h-i/, 1/;- J., vol. 429, pp. 480, 1994.

[43] R. H. Sanders, "A stratified framework for scalar-tensor theories of modified
dynamics," AI,hI-,I;,- J., vol. 480, pp. 492-502, 1997.

[44] T. Jacobson and D. Mattingly, "Einstein-aether waves," Phys. Rev., vol. D70,
pp. 024003, 2004.

[45] R. P. Woodard, "The ostrogradskian instability of lagrangians with nonlocality
of finite extent," Phys. Rev., vol. A67, pp. 016102, 2003.

,] N. C. Tsamis and R. P. Woodard, "Nonperturbative models for the quantum
gravitational back- reaction on inflation," Annals Phys., vol. 267, pp. 145-192,
1998.

[4l7] Guido Magnano and Leszek M. Sokolowski, "On physical equivalence between
nonlinear gravity theories and a general relativistic selfgravitating scalar field,"
Phys. Rev., vol. D50, pp. 5039-5059, 1994.

[48] N. C. Tsamis and R. P. Woodard, "No new physics in conformal scalar -
metric theory," Ann. Phys., vol. 168, pp. 457, 1986.

1491 C. Brans and R. H. Dicke, \! I I.'s principle and a relativistic theory of
gravitation," Phys. Rev., vol. 124, pp. 925-935, 1961.

501 Paul A. M. Dirac, "Long range forces and broken symmetries," Proc. Roy.
Soc. Lond., vol. A333, pp. 403-418, 1973.

511 Jr. Callan, Curtis G., Robert C. Myers, and M. J. Perry, "Black holes in string
theory," Nucl. Phys., vol. B311, pp. 673, 1989.

52] Michael S. Turner and Martin J. White, "Cdm models with a smooth
component," Phys. Rev., vol. D56, pp. 4439-4443, 1997.

153 H. B. G. Casimir, "On the attraction between two perfectly conducting
plates," Kon. Ned. Akad. Wetensch. Proc., vol. 51, pp. 793-795, 1948.

54] Steven Weinberg, "The cosmological constant problem," Rev. Mod. Phys., vol.
61, pp. 1-23, 1989.









155] Sean M. Carroll, "The cosmological constant," Living Rev. Rel., vol. 4, pp. 1,
2001.

L] Lawrence M. Krauss and Michael S. Turner, "The cosmological constant is
back," Gen. Rel. Gray., vol. 27, pp. 1137-1144, 1995.

[57] J. P. Ostriker and Paul J. Steinhardt, "The observational case for a low
density universe with a nonzero cosmological constant," Nature, vol. 377, pp.
600-602, 1995.

[58] Andrew R. Liddle, David H. Lyth, Pedro T. P. Viana, and Martin J. White,
"Cold dark matter models with a cosmological constant," Mon. Not. Roy.
Astron. Soc., vol. 282, pp. 281, 1996.

[59] Bharat Ratra and P. J. E. Peebles, "Cosmological consequences of a rolling
homogeneous scalar field," Phys. Rev., vol. D37, pp. 3406, 1988.

:.] C. Wetterich, "Cosmology and the fate of dilatation symmetry," Nucl. Phys.,
vol. B302, pp. 668, 1988.

[61] David Wands, Edmund J. Copeland, and Andrew R. Liddle, "Exponential
potentials, scaling solutions and inflation," Presented at 16th Texas Symp. on
Relativistic A-li. .phi-ics and 3rd Particles, (PASCOS '92), Berkeley, CA, Dec
13-18, 1992.

[62] Pedro G. Ferreira and Michael Jcy',, "Structure formation with a self-tuning
scalar field," Phys. Rev. Lett., vol. 79, pp. 4740-4743, 1997.

[63] Edmund J. Copeland, Andrew R Liddle, and David Wands, "Exponential
potentials and cosmological scaling solutions," Phys. Rev., vol. D57, pp.
4686-4690, 1998.

[64] Iv -lo Zlatev, Li-Min Wang, and Paul J. Steinhardt, "Quintessence, cosmic
coincidence, and the cosmological constant," Phys. Rev. Lett., vol. 82, pp.
896-899, 1999.

[65] Philippe Brax and Jerome Martin, "The robustness of quintessence," Phys.
Rev., vol. D61, pp. 103502, 2000.

L'.] T. Barreiro, Edmund J. Copeland, and N. J. Nunes, "Quintessence arising
from exponential potentials," Phys. Rev., vol. D61, pp. 127301, 2000.

[67] Tanmay Vachaspati and Mark Trodden, "Causality and cosmic inflation,"
Phys. Rev., vol. D61, pp. 023502, 2000.

.] Martina M. Brisudova, William H. Kinney, and Richard Woodard, "Cosmology
with a long range repulsive force," Phys. Rev., vol. D65, pp. 103513, 2002.









, ] Sean M. Carroll, Vikram Duvvuri, Mark Trodden, and Michael S. Turner, "Is
cosmic speed-up due to new gravitational physics?," Phys. Rev., vol. D70, pp.
043528, 2004.

'j Shin'ichi Nojiri and Sergei D. Odintsov, "Where new gravitational physics
comes from: M-theory," Phys. Lett., vol. B576, pp. 5-11, 2003.

[71] Andrew Strominger, "Positive energy theorem for r+r**2 gravity," Phys. Rev.,
vol. D30, pp. 2257, 1984.

[72] Rainer Dick, "On the newtonian limit in gravity models with inverse powers of
r," Gen. Rel. Grav., vol. 36, pp. 217-224, 2004.

[73] A. D. Dolgov and M. Kawasaki, "Can modified gravity explain accelerated
cosmic expansion?," Phys. Lett., vol. B573, pp. 1-4, 2003.

[74] Shin'ichi Nojiri and Sergei D. Odintsov, "Modified gravity with negative and
positive powers of the curvature: Unification of the inflation and of the cosmic
acceleration," Phys. Rev., vol. D68, pp. 123512, 2003.

[75] Xinhe Meng and Peng Wang, "Modified friedmann equations in r-modified
gravity," Class. Quant. Grav., vol. 20, pp. 4949-4962, 2003.

L'] Takeshi Chiba, "1/r gravity and scalar-tensor gravity," Phys. Lett., vol. B575,
pp. 1-3, 2003.

[77] Shin'ichi Nojiri and Sergei D. Odintsov, "Modified gravity with In r terms and
cosmic acceleration," Gen. Rel. Grav., vol. 36, pp. 1765-1780, 2004.

SGia Dvali, Gregory Gabadadze, and M. Shifman, "Diluting cosmological
constant in infinite volume extra dimensions," Phys. Rev., vol. D67, pp.
044020, 2003.

."] Arthur Lue and Glenn Starkman, "Gravitational leakage into extra dimen-
sions: Probing dark energy using local gravity," Phys. Rev., vol. D67, pp.
064002, 2003.















BIOGRAPHICAL SKETCH

Marc Soussa was born in York, Pennsylvania. He received a B.A. from Cornell

University in the field of biochemistry and chemistry. He went on to study high-

energy theory in the Physics Department at the University of Florida under the

supervision of Richard Woodard.