<%BANNER%>

Simplified Method for Obtaining Navigational Information from Hydrophone Arrays

xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID E20110115_AAAABZ INGEST_TIME 2011-01-15T13:32:01Z PACKAGE UFE0008760_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES
FILE SIZE 42585 DFID F20110115_AABJDV ORIGIN DEPOSITOR PATH panez_r_Page_35thm.jpg GLOBAL false PRESERVATION BIT MESSAGE_DIGEST ALGORITHM MD5
4617583b6546a08d215ca0ec90160fe1
SHA-1
b486c5bf695b7147cbb89f5f28510f3f4cdbe320
9135 F20110115_AABJIS panez_r_Page_07.pro
302ece1917e3d009f9bdc42b64e0673c
ef84f8e2eba1d9858c8c5a65de339aeb4f35b630
181313 F20110115_AABJDW panez_r_Page_14.jpg
b67b560970943071a2e47237f01b7baf
dd1570e59428ab73783d17f4316912eeaf3634e3
35164 F20110115_AABJIT panez_r_Page_08.pro
0822bb31f15fb2ecab2bf8f3d89b9cdd
e209516f7e6f6497d28a808f085e96a9f716cfbc
1816 F20110115_AABJDX panez_r_Page_32.txt
86098f1acc9ea72e25e3b45d5fdcd1c1
3e4fa40e0e4bb0d7e9cb83ab502a09ecf5dfc8ec
28780 F20110115_AABJIU panez_r_Page_09.pro
0245e0dbdfe16678318f479bfc98c918
292f0de24c281a4ae78b69ebc640c284bec2583b
530 F20110115_AABJDY panez_r_Page_23.txt
fc794dddc8ab0fdb5510ec4f8778a7a5
4f7a8908a852d6b21d945d25aad8d35abdfdc92f
38797 F20110115_AABJIV panez_r_Page_11.pro
1b00c40eb2656e773abfc965c5620b8f
100c22aff51b457a6b6472dc7ac1ca9f6b6fcc20
35873 F20110115_AABJIW panez_r_Page_12.pro
b4fd6f5fd642b6238fb29aa4df9ae56b
794b01522191ed5b19376a168ad2b803bb1cf041
205385 F20110115_AABJDZ panez_r_Page_21.jpg
03ce071d5bd4c1220569bd7170b16272
1bd71b42480b407ca940f05c1eaf081a53730adf
1610 F20110115_AABJIX panez_r_Page_13.pro
c48f59415ad3150e5479b3635328f292
12a16ad07d8183f245761e9732fb91a4970420f4
191799 F20110115_AABJGA panez_r_Page_19.jpg
12b8ff6a76e2e87fb5e518df4cb1d09a
42bef41c4aa2bea9a014811c128d8fa3fdcc2cbc
35307 F20110115_AABJIY panez_r_Page_14.pro
ea3e9511170c95ef8622b0ec88c85133
4ec8a5ef1424374d7f62824a8b4e2c44194a29fa
60206 F20110115_AABJGB UFE0008760_00001.xml FULL
8fc65e359d8b4f0f729ca0634fe11bb7
69060d1bb4de7367977366844a520517bde5376b
21485 F20110115_AABJIZ panez_r_Page_16.pro
58c1ca29ce93df8bf1a7cf61d2c950ce
048b232d5fbc66b29eff0e777d384886a82f0989
82659 F20110115_AABJLA panez_r_Page_14.QC.jpg
bc774a3977542ad305ef244c19979596
55dcb82b65ff5cdebfb2484b0b821344ddaf2ec2
53511 F20110115_AABJGE panez_r_Page_01.jpg
838e38b56ef17a7a1a7d314a9c8feee9
8e6db111832923b95e71c0afe32f428de75931d1
40232 F20110115_AABJLB panez_r_Page_15thm.jpg
3fc3c8fab61324b3e8caba61c72fc2ca
14bb92cf9c3a64000990bed4aaef785cde5541ef
14289 F20110115_AABJGF panez_r_Page_02.jpg
54f164263804dd61503592be12db8c02
c2f86f69eb16a4334ecebb918a3e8bf651d879f3
68699 F20110115_AABJLC panez_r_Page_15.QC.jpg
ceead894ed4d548d7f051f42043a9c8a
3e64d8424e16b45615b746c294d36d0e55fdec0c
13229 F20110115_AABJGG panez_r_Page_03.jpg
768fcb8eb91eecfe25df119f595bf4ce
80097bc053370255ea18c819b352a311e9d64bab
44138 F20110115_AABJLD panez_r_Page_16thm.jpg
eef8b598b94566fb68c4685b3f10fb32
ae457fc0a5ed0db9be50a8ff97e451b96dfc85a2
53722 F20110115_AABJGH panez_r_Page_04.jpg
e178653ecd89b61e158a2b94cafe915e
bbfac1842351a2e9196f7eb7c622bb1b6f823a5d
85999 F20110115_AABJLE panez_r_Page_16.QC.jpg
f4233a318db82f63804e1fc693a97531
329c54b4fab3485fe3105c3bfcc5792e2fea80f5
89788 F20110115_AABJLF panez_r_Page_17.QC.jpg
faa91a3cd4af08d64ae1516e918a5f70
7a187e3e31fc3741e4b08e2c37d8d3bdb186d002
201222 F20110115_AABJGI panez_r_Page_05.jpg
e287781163573952bdd5e3377daa725c
285dfc0a637f450514912b496b24b97718f735a0
35601 F20110115_AABJLG panez_r_Page_18thm.jpg
362a0c4038a71939514698e98c4f175e
f0d3c93358ecb4bc6f10e3fa871a352e84c5a9aa
75049 F20110115_AABJGJ panez_r_Page_06.jpg
6641aa5ea8aee7a624fa5147d33af213
468292708f250b675f1acd4d06f13ecf8f9ae27e
53748 F20110115_AABJLH panez_r_Page_18.QC.jpg
5a8c8da9daa0c3cc499b70c55f6d8d3f
3dced980fcd90eb565d5b71dcf249ddce3643159
130656 F20110115_AABJGK panez_r_Page_09.jpg
21c0f7b30ca0b88f43b80a2332007c2a
d5014ed0ab7b7b7b9fbe0d706c241e71ef9ce09b
44785 F20110115_AABJLI panez_r_Page_19thm.jpg
a97abee918a1a5834ea8e0cd05b8260e
4990d0f7974cf63479fe302974e5b4241a4fbdbe
265043 F20110115_AABJGL panez_r_Page_12.jpg
47f527f6776139bba73d64bcdaadad2b
4427004eedce6140a8de8591b97266073914c5d9
38181 F20110115_AABJLJ panez_r_Page_20thm.jpg
396cf127251390fcb0052d807dd27b46
25b4050319eb006232fa3cd62c54657825e3adb3
161468 F20110115_AABJGM panez_r_Page_13.jpg
2b00602d9d549d6f399eee0da9296027
0b22bd33598f1b48a76b7314c8a60e4d47d2e048
61518 F20110115_AABJLK panez_r_Page_20.QC.jpg
f3f7c28c1ab9ab9c2c2c699abd652d85
75e0cca4da26ccf1777946a3ede97ed5fe7a1477
155828 F20110115_AABJGN panez_r_Page_15.jpg
4d087d5ff4eec3419f09bfdd19a47d47
c92f8cc23c5312c12b2e35900a9d8444d1346baa
44375 F20110115_AABJLL panez_r_Page_21thm.jpg
fab8941edfa61fc62626c8ac8baa21d6
102ad9154affc4e37113250d42198318903103a3
191942 F20110115_AABJGO panez_r_Page_16.jpg
81a7ec434132409df2ad962c5d382a68
6660ed4c5423d5f2c9d0efbb6764e6031ceb180d
90906 F20110115_AABJLM panez_r_Page_21.QC.jpg
6d9deca72e3f2be55e05cba0eeda3677
e0cd0834b9f0bdb5d636b233d3140999fb4bbadc
100299 F20110115_AABJGP panez_r_Page_18.jpg
d8d2175257620a663152d7734ee67ba2
ebdcb3ef7b71afa041f59845e223f191c94b0bbb
131662 F20110115_AABJGQ panez_r_Page_20.jpg
1d8265e4acec31d4ae1569cff517348d
8f4f1ea3476b7d2c5220c02d7c7507df5de3c6e8
47671 F20110115_AABJLN panez_r_Page_22thm.jpg
d3f82e630c49478d9815e9fed246e05f
889e0dfe733a93e97888860f416b2d050b088e47
234631 F20110115_AABJGR panez_r_Page_24.jpg
6b375f9db59a8a3358b90eabb75bf4e7
6818dcc32bfe1ac633062afc5329f5aecffeaf7a
98586 F20110115_AABJLO panez_r_Page_22.QC.jpg
d8cef0c98689ddf097837c2c76a3fb06
212468a092fd28ab7ac0b192671e3300e03e37ab
21619 F20110115_AABJGS panez_r_Page_25.jpg
b0756f7f3b2e7295551564d752e4cb07
bacab2aa0dac34259847cb6d9a80aac4d88a0138
4317 F20110115_AABJLP panez_r_Page_25thm.jpg
3dc46781d1a69cc231215731a326e030
3e4684a716c2c680c88856136f3cb8455331ae6f
138788 F20110115_AABJGT panez_r_Page_29.jpg
25ef2be057fbc361d6cdc173b722c36a
f3449477bbf1b2b3c7e36ba9563dc94115268fec
45673 F20110115_AABJBW panez_r_Page_17thm.jpg
bd81f931dcc3d59ebae6e14c18506ef9
d78901f5197c790a3f3ed035016a0034f85faf48
37446 F20110115_AABJLQ panez_r_Page_26thm.jpg
802f30692157048b5825b14012d7910c
76da96f932f83e53f6408f1d78d50a88caff618a
176217 F20110115_AABJGU panez_r_Page_30.jpg
5bdc63a9f60e9a6e5cd601f9f14b5c62
e1653b220da8d2f3763c31e49d5c8e8be7e73d3f
25271604 F20110115_AABJBX panez_r_Page_27.tif
a6e232a5624bcc746fef627ddf7990ec
7d1034f2ba719a8d73de21eddb7555e458bf41f0
77035 F20110115_AABJLR panez_r_Page_27.QC.jpg
f06acf17b83895b59941e7fafaac84eb
268b1452b242a8e55cdbca66b163d8fb1a612d14
215188 F20110115_AABJBY panez_r_Page_36.jpg
3c3433ce4ee6f89093c2e08b6c5f1502
f9a4174b73d87f861788dd1d94ede647fc9fe3ca
43018 F20110115_AABJLS panez_r_Page_28thm.jpg
6d412ad7bd0beae2bcb4276452792e20
c81adef5077da6d7c7f9a5d64ab65ab83afc5fe3
180657 F20110115_AABJGV panez_r_Page_32.jpg
3c67c524ed4c321e36f3467ce49a7856
1d7d949895b2586d96388e3546253e7bfcf4ed51
35361 F20110115_AABJBZ panez_r_Page_23thm.jpg
48c3ae2c41e1cd9354ed2eaf090b9889
5771a6db211863b0e972662a5206a00ea8cce05e
80411 F20110115_AABJLT panez_r_Page_28.QC.jpg
7daa6dcfe75d0fae81b14316f4ebb049
80fee827493f5a0e0efe5ad36fc474438b3f4e03
29361 F20110115_AABJGW panez_r_Page_37.jpg
6e9c282535d9399a19778f403eedef65
bc5f27032dbe51a573a91a3b81dd88758fc29697
68630 F20110115_AABJLU panez_r_Page_29.QC.jpg
36f8b6acc571a63da8175c456e80b29e
116e7bee8bdc3636b610297c8230f858f18f75f8
135169 F20110115_AABJGX panez_r_Page_38.jpg
c4ced02da2d746130fcd11f38aaef05e
e9fd592ff1fb15e08bbd2bf2d51d9d3c560d12e9
81756 F20110115_AABJLV panez_r_Page_30.QC.jpg
324f698b12be1475693802529d2a51c0
4a49ef2b649b68294021ded5b5846c63dbf048c0
7812 F20110115_AABJEA panez_r_Page_01.pro
8b536d18c46d06eb5ce3eb0f96703ae4
ad836677072c4ab030982a1d1d46205ef3066ba7
24592 F20110115_AABJGY panez_r_Page_01.jp2
20ba87b7024a8b197710ea972c436d16
3fe4b37c2748439291ad3aba0822a0e236c0d47e
39204 F20110115_AABJLW panez_r_Page_31thm.jpg
991f0cbfd3b113be3ec4112ec1402b0c
3dfcb5298f1cdbfc0e68308c9abd433bdc342856
1053954 F20110115_AABJEB panez_r_Page_36.tif
c856abf28b3f0a1831269f76e57ffcc1
ec77ea7c3d880f6b8026fe69507eae96f7643f5d
5467 F20110115_AABJGZ panez_r_Page_02.jp2
1af09b9938d2642d45677770be71378b
933435b5c1e7d53622d2cb8b2ff257bd3fb4eda7
63591 F20110115_AABJLX panez_r_Page_31.QC.jpg
550c50f4344858f08fc21babd8fa5a83
d438b5c26ef8e4f8658f50b0a8babce034eb5564
F20110115_AABJEC panez_r_Page_20.tif
6816306cca78dc5c466c7784e8acb323
465343078b6dc6d8c7996ba555e0fd38ca8f8c05
44512 F20110115_AABJJA panez_r_Page_17.pro
42a779544af95e7b54c1a532ee7e6f2d
f2ae52e577f3af3eec83d80d51936687a63d956f
82782 F20110115_AABJLY panez_r_Page_32.QC.jpg
8fc9a6a78631fe40e147a3ea9d151ac7
fc01bc6c2973956b17b9502cd9eedef712428b90
F20110115_AABJED panez_r_Page_14.tif
d0fef69ddf7031b878984de4f80b6427
f7f537fc596ec7599ee62333b73a9557c105e20a
1584 F20110115_AABJJB panez_r_Page_18.pro
97ac157c4c2ff9804d2e0303477e05a9
d436df0ca8667db24c14d5a940e508d10c63716f
85212 F20110115_AABJLZ panez_r_Page_35.QC.jpg
7af24e24678a0dc2a71c98becea8487d
dc3717fe9c507fc89669788b275bac59f29d4114
4924 F20110115_AABJEE panez_r_Page_37.pro
621728a2320a2fe62c3c9e7bc464d738
6f09fbf7bdd6f188ead2ffe8241fd58869ccfc29
37925 F20110115_AABJJC panez_r_Page_21.pro
b37d4fa89d2efdbc99cc44c2d56d3cc3
c001e0ba777cd71c6196ef8d4dd1e1299722cd39
30696 F20110115_AABJEF panez_r_Page_38.pro
599856d165339da16046cb6c3cdbffb2
8ef17fd2febdc92e3650d0dea31fef34aa1edc89
39347 F20110115_AABJJD panez_r_Page_22.pro
a812b6fbf6ea33a7017cfbabef881109
68dd2a775e046d277863e3771588921f906c3292
3921 F20110115_AABJJE panez_r_Page_25.pro
328b8a03c1ce6c6bd23b6b849113fd94
8ab2b558a3df6291b98eab591e03680a177ebb8e
29080 F20110115_AABJEG panez_r_Page_04.jp2
5189b311b58a63d4a22fc2482efce03b
284bac713ff0d56b0e4d69fc0223b1b57a13f760
16969 F20110115_AABJJF panez_r_Page_26.pro
d7402b694fffbc20af5f0a73c1cb5a6d
0aa469e04ff16b5338b05b75b7b762ff5c7f9956
60 F20110115_AABJEH panez_r_Page_33.txt
3d46d374e4d49ef2056982c0db6b4ccf
e35fc094c1491195f244adb905e306eaaf2854ce
32260 F20110115_AABJJG panez_r_Page_28.pro
ec16b5f5a400be23540ea1331bb1ebac
60326ff0387ab65e61976e8daa6c095676614647
F20110115_AABJEI panez_r_Page_38.tif
d58a510e42bfc72482435a11e56c40bb
45636ee66e9b546134ee8bb2d02e3dbeac68553d
16574 F20110115_AABJJH panez_r_Page_29.pro
39a19b849aa587a8af04a0c38b5617b8
06dd71e74e5da8cd80ea6ef7a7cb1f22c77a2eae
65230 F20110115_AABJEJ panez_r_Page_09.jp2
c038e10ff1ed7852e4caf771de4b49c6
41487fd165dbbe2c8b6dd51a38bdacae9ee3f686
14331 F20110115_AABJJI panez_r_Page_31.pro
61444c56b1dbddd1b661a060c8d65a36
15e681366369210f083cf4a8df368627ebfbc31a
F20110115_AABJEK panez_r_Page_34.tif
fd16ab590a346b2d8f686d000dec04e4
151286e2357f422acd60dbdfd9005269eefe9689
1325 F20110115_AABJJJ panez_r_Page_35.pro
b47a3291355df5aa177ca5bc32faf17e
7d0fcf41403dfbd35a3f235121abae2618e123c4
229113 F20110115_AABJEL panez_r_Page_35.jpg
ab963164dc889b25910fe949ec72c2e0
7bff11fd78804f7430205a1d1fcc58faadb41106
49009 F20110115_AABJJK panez_r_Page_36.pro
802ea53473a196c761833b6ea24223a3
9c1941703ed2e6985f75da7d0db80913ec79ebaa
47698 F20110115_AABJEM panez_r_Page_24thm.jpg
bc891c33624e5776235cf80d6053ac4e
bf8adb52b4d07b9143b904919b0d4a77195bd5ec
41356 F20110115_AABJEN panez_r_Page_27thm.jpg
71cf34e04bae8ba7987f88296592968f
2046caf059fba7200c57aedf76d5c83e5da6ef56
103 F20110115_AABJJL panez_r_Page_03.txt
a7c83ca8227b4e22e5665a4dfc9e01d3
650b4a347056c3af315cd6af7655c3d8f4894eae
F20110115_AABJEO panez_r_Page_33.tif
0b4026616f9c0f0648a5806c55272488
99cdac063b58ce1ac0414155fd6a04206c5d33bc
522 F20110115_AABJJM panez_r_Page_04.txt
ca5bc8bbace21620d386568842e11996
a56c478c83e7626181d682c9fef7381c60a217cd
2942 F20110115_AABJEP panez_r_Page_02thm.jpg
539d64b7d496ec2b7fe203094f4ce8ba
ae5804fbb8d546ba839d967bc591cf674248cfa3
461 F20110115_AABJJN panez_r_Page_07.txt
c90f00eb487f55f51c3e62d34a7845d6
1f40f3c6fb3feff468db64a702769f47a2200ba9
43155 F20110115_AABJEQ panez_r_Page_06.QC.jpg
dde4e2609094d007c2b7bd16fc8a7a7c
8d179b926471a7aade18f4f5c6857c9b4ed55cd6
1567 F20110115_AABJJO panez_r_Page_08.txt
c771e607d21dc2eb0e5c6b1fa133efd7
9fbeff5dda4999f8d87a3a5c785bed2e7d6439aa
233704 F20110115_AABJER panez_r_Page_22.jpg
ff6a58a3dd618521ac9ef6df85aedd0c
19c599585fe104f20bc1df19257a5a69a31c28d7
1331 F20110115_AABJJP panez_r_Page_09.txt
4706a0126df81bc5f31ccd06c2765c45
a6dd167891e2f4cef299827cee53b12bda2c7d55
6521 F20110115_AABJES panez_r_Page_23.pro
9218522e477ab3af3d8384cff5171044
12408656ca0e29c74cb913fb086c15f4a1399fcb
1741 F20110115_AABJJQ panez_r_Page_11.txt
71604b4fb1fe2236f0538eec89428fb2
33c39fcc0301786dbca113aad3f1f9d7d141a0b3
1994 F20110115_AABJET panez_r_Page_36.txt
620571a5ae8f90a8666f4f6fe2fe494d
f79aee97de989b67b3d2bcad64a79cd23b1c9bb7
167506 F20110115_AABJEU panez_r_Page_28.jpg
773f2f07bf3e9ab10a9ed674daf1522e
bb568247fdae24d463c66cfd8660c100dfe63946
1490 F20110115_AABJJR panez_r_Page_12.txt
dfb63c5bffff8b3e8634d6eb6c006c25
fb37e12fa2ec61798aaef30c244ddc07df9dba65
1051964 F20110115_AABJEV panez_r_Page_35.jp2
400b80c13ef22bb4d43b58e0710d7ebd
aea29acd98d537a375a98e44264235d542fa3d62
1659 F20110115_AABJJS panez_r_Page_14.txt
12c34489a0ccc150e20765f61e2a95de
4bbe6c371e1aa33422d51d52daac55541fc6c737
F20110115_AABJEW panez_r_Page_17.tif
5a38591d0c02ad0bae4fec90d40a8741
4a9ff36b5315c3ad59dbadaf3218813b26613839
1027 F20110115_AABJJT panez_r_Page_15.txt
de0286016f4cdcfa893718df1b2d991c
bd770bf90a4a2d69aff1a4b2ad7a5bb23a09e446
144 F20110115_AABJEX panez_r_Page_13.txt
d4baf379eedeb5f53b09c402b2077614
6f1e47fad7a81019f6dd9d0e36578b55b6ba9774
900 F20110115_AABJJU panez_r_Page_16.txt
eb226a517299a08dfba898377320493c
03e1d8d5dbb0fba606e7b06ea2e8e0d4b58a61c2
21044 F20110115_AABJCA panez_r_Page_15.pro
2b609b110bf0140c45d81c654ff79976
011c44f34d202e4c4570491b47ae83be4bc35d4b
41559 F20110115_AABJEY panez_r_Page_10.pro
30736bcb7f5e52a7a649cea68c98eea2
00063876d2fd6788a8fb0d85dd1132eb0d0903cb
1897 F20110115_AABJJV panez_r_Page_17.txt
b394decdbbd5699ac88b1c726df97262
23cc76d3f4caf02c981e9720f9799b43141a8919
527354 F20110115_AABJCB panez_r_Page_29.jp2
02fbf80bd490140710756d1c5ce85ba9
67ffb288e35b925b5e83788724f4b37da53c0ad9
44005 F20110115_AABJEZ panez_r_Page_32thm.jpg
1732513aca529eb542fdc864e56cd8b5
67b942d9f6314fe5c014510ae1d3edf11dd8636c
125 F20110115_AABJJW panez_r_Page_18.txt
46585e44117471049b5e6e7e18ccaa84
db3c50a48a8c5acfd75215822d73088b95ef4bb7
970583 F20110115_AABJCC panez_r_Page_17.jp2
451d1648f57f15eb829343f4bfe651bf
e29bc2fce05084bbde960ec884e9a1e4b63ba53a
1709 F20110115_AABJJX panez_r_Page_19.txt
21953c8fb28f2d585938dc7fb83fade5
a15c79ff5e63d6809488fe6f010bbf2c6a65416e
156949 F20110115_AABJCD panez_r_Page_34.jpg
1073323d2a9d9e8e0fd5839941c8b96d
e5d73241db83dd2c9540202f5d7012b8273e4396
5461 F20110115_AABJHA panez_r_Page_03.jp2
bd11a07f257cfb1eb53c85ede3d01289
90e506ebc5bc2b900706d493711103741a9eb6a6
1041 F20110115_AABJJY panez_r_Page_20.txt
9e44d3538eff550ccae53b4b0a7897e0
14db4735befebf4bc72f3879eb3d48bb40a9314c
227745 F20110115_AABJHB panez_r_Page_07.jp2
6eda39e7b0779ad75f4e08bfbf9b4863
b888263e716eb02f1f86396ccaaab067726f65c7
1689 F20110115_AABJJZ panez_r_Page_22.txt
c1cce6c256be13ace3a9c41996e8fee6
64af1bd15c746509ab5c2b98e007ee4e65436dc8
1051976 F20110115_AABJHC panez_r_Page_08.jp2
76c235d88ef024466e0bce37acec34bb
6a564aa1c97d573d43dcc7c5ccc569cbacd874d0
19806 F20110115_AABJCE panez_r_Page_20.pro
9cb354223e78a7364c8b473645137a2e
c36e536ec844df5ffdc730c0a5d73572a6c189b3
20289 F20110115_AABJMA panez_r_Page_36thm.jpg
d74bd7528d13d4c133f77298ef84e2ee
bbffe90420dcfb4249628eba0c89cb014094f8b9
917538 F20110115_AABJHD panez_r_Page_10.jp2
8ebf1676779d5823167a91623fe0036e
699b86e8d1a09aa7d9cdd8f81bf861deebdc6050
41530 F20110115_AABJCF panez_r_Page_29thm.jpg
b0b3ba926b1a7a989edf0bd5701a32d0
96d01ed9765f412b01a90462048d97928221b2a4
67553 F20110115_AABJMB panez_r_Page_36.QC.jpg
b6f390e42839193ba27d28619d006d92
20281f7c3ca3ff0ea33d539d9ddf1ce660cf90d8
915512 F20110115_AABJHE panez_r_Page_11.jp2
cf51f2f7e26a20a12d19941faa3caed5
c929f4f9e282d369d3c72816e6733b7c4eb28f86
455831 F20110115_AABJCG panez_r_Page_23.jp2
483a519eed233b02dd643e80a978222b
fe3b54cde807b2bec95e2869038c5cb633510bce
3945 F20110115_AABJMC panez_r_Page_37thm.jpg
5c1bf97de4777ecfdf867381ff56cf06
1c2b99f3100d199e85ca6256dcccbf048a46c1d2
1051985 F20110115_AABJHF panez_r_Page_12.jp2
a903d8eb06aeca7fb397824562011ef5
1f296bf70c5a3d024e9c529294d1ec84ce37a30c
220929 F20110115_AABJCH panez_r_Page_08.jpg
2f1721989a98a64d1c3ae6a9b00e7a41
fb9d4e95c1c1d5ea26b15e14da1aeaf7a3843a88
9756 F20110115_AABJMD panez_r_Page_37.QC.jpg
296de3c44522a22e95acc84ca2b181ea
f9e7f8013142cb2af36e214ec2309fcec4626ee7
782830 F20110115_AABJHG panez_r_Page_14.jp2
944be66fcd87683d227b0c398acbb58a
c9e7753dae03a1c7f0fdb3f5a82b0679a96a914d
1886 F20110115_AABJCI panez_r_Page_10.txt
a37d938ca0d6b1c83188cf26d638c094
d7e1bb729af31be91f4c3964182829d63d6cdb15
14767 F20110115_AABJME panez_r_Page_38thm.jpg
77d574375f9c185ff1e34d97575c1a7e
13b3a7fd91bfd0c0ab7c751f21811d386f78abdd
699743 F20110115_AABJHH panez_r_Page_15.jp2
ee4abc3edee52dd13019952ae2d3e582
885f8e4f69ee3c14740bc30b4554e8b0fffe21c7
993983 F20110115_AABJCJ panez_r_Page_13.jp2
2f35f8dccd6498c080617d0916c1caa4
8c25ddfcfaa9399547f810b6565d5c293c144c96
50101 F20110115_AABJMF panez_r_Page_38.QC.jpg
952b8e7aa6ccaad109888ef9e0cc3aea
575ea5f81ba47c1dec4a7128526466ec4c91408f
889742 F20110115_AABJHI panez_r_Page_16.jp2
1c4269fcf55101054b12b2f8dbde2184
f7b462e6c3db89ccee84c90cd572288d86503fbf
206711 F20110115_AABJCK panez_r_Page_17.jpg
5b1cba48eb7fcaa0235d9e3e5ace0d77
645db6ca76a06d5d8bb62e6294276fff54df7664
46966 F20110115_AABJMG UFE0008760_00001.mets
7c116e2d2e919fc492bd406a347a3ab6
6e2bd06607954ec4ca3962e2cd8e2f3e4bb6a389
32533 F20110115_AABJCL panez_r_Page_33.jp2
0134cb921649a396bb63784baa35b8cf
92decbf46c4203add8c5be5e8eb3426e28cb09fd
919656 F20110115_AABJHJ panez_r_Page_19.jp2
80276cffae34e82b4f17d88f4f655462
64ba30fee483bdb85daf6ddefd287fd0d030f00f
123173 F20110115_AABJCM panez_r_Page_26.jpg
7a9fbcff15ceddf52cf65e5a3b2b3e55
c3bffca50f0ae0907b587f1743316a45d445aeea
971243 F20110115_AABJHK panez_r_Page_21.jp2
26f6e36dc222c7a07522c6e19c886004
1e93aa7f004d028dd95e156e8b7496f3a8722e7d
2889 F20110115_AABJCN panez_r_Page_03thm.jpg
865d3e47e34428cf7542cc1c7aecc244
305d1b9480363105ca52f32cc928188277c2ccdc
10918 F20110115_AABJHL panez_r_Page_25.jp2
bfa638fab0c72f04c3232d81bbb2eb85
65a6d6be5d3657e594a48e3c640bac77851450a9
107 F20110115_AABJCO panez_r_Page_02.txt
37e3397bfa59669e98f4f2abba181ee1
021350e3fb322e6e72aabffd717043c4efe248e0
520816 F20110115_AABJHM panez_r_Page_26.jp2
333c7119a47ac57e375496b43dee0f08
0ecd10ed4f8425073c8b589c95f2b76a5d4309b1
83129 F20110115_AABJCP panez_r_Page_05.QC.jpg
437f152e8dcf090e6ab90afe495ae354
12d0c58a5e5461dd6c5031ed82626bec48b35236
726316 F20110115_AABJHN panez_r_Page_28.jp2
91dd13758721b94057072a4e2ab72c1e
a22fbd575616a8725147836f67f050389ac4109e
33705 F20110115_AABJCQ panez_r_Page_27.pro
9b42697a264582b877710146f299cc65
4243c35ca823396169c061dafe431770eb364796
450073 F20110115_AABJHO panez_r_Page_31.jp2
1a954f448579ddcf16b383381ad866b5
c2b458605d58bf22c29b131fca69530a8447a3a6
201841 F20110115_AABJCR panez_r_Page_11.jpg
ba31ae4415433a7ff0b718f145491a9b
41b20f39c833bfefec0dcd58d9497e0914e3dfb1
1028052 F20110115_AABJHP panez_r_Page_32.jp2
5df9207973aff6595d32ae8205d72cf6
0cee9c12ebf57dbf98b537e7b07ab7dad9688072
F20110115_AABJCS panez_r_Page_35.tif
bdeb3a936b2bb174042a3496f07500bf
13bdae03e9b9a99d33c777468746a22008e3f439
106659 F20110115_AABJHQ panez_r_Page_36.jp2
a3d005a0f50568cb189617f0bb6f148b
f3adf77b3c0dc4d3ff25dc27d653cbcf0128b074
40650 F20110115_AABJCT panez_r_Page_19.pro
310ea1dabca292a2147b614fd01db538
5214b91be28ce48f707cdbf95a082b86d524ec4a
14285 F20110115_AABJHR panez_r_Page_37.jp2
a1c158986a36050e08116b722946c31e
38ad2a240c105f29f8d8ef46883f250d693d90d3
54519 F20110115_AABJCU panez_r_Page_23.QC.jpg
f85a6217f0b8dc9b23a985d123c2424a
fd0577f172a9ecb65a22048d24a2adb68e787e14
F20110115_AABJHS panez_r_Page_01.tif
3137a4e12dc0de8e3799060d21e23c80
abf2ad4c35977b822ce1f1074600b5fadbc10378
121653 F20110115_AABJCV panez_r_Page_31.jpg
1be830760ecc8a49309942c80cae46a1
f602e821622cea91f562f131fcf3379769695c56
F20110115_AABJHT panez_r_Page_03.tif
fc1c0471f927b568ccb7833c6b6fd620
51bcf3bad255dbcecf4ca9991535ecc6a2f7943e
5986 F20110115_AABJCW panez_r_Page_02.QC.jpg
d3003989b81d52f5bad768356c902d0f
3864fb4b83dc1bc112744e0762efd4d5a178d404
F20110115_AABJHU panez_r_Page_04.tif
b80a5c73f8a3ca250d8bbd8cc6d8fa82
02a96b7ea6d4b31f02ef90517c39a0999e0e2685
750744 F20110115_AABJCX panez_r_Page_27.jp2
2d10884761734eb5056b95b1f5055735
9a0b86529aed8f8e8c02b331a925262c3d867145
F20110115_AABJHV panez_r_Page_05.tif
c44d370b4803388d38b82ff7d83e5188
7af2728e64ea565d945e50c47ceab1c4495ac7b9
41961 F20110115_AABJCY panez_r_Page_24.pro
66b7ad252fe1819834d97e4ac3a35e29
3bde2252ce79dcc20711703ce5007532cd2c31f8
F20110115_AABJHW panez_r_Page_07.tif
974f6d5d0e6226d193f49d89c40e55e1
169f14fca98c343fd201c0072246b67de69a5015
1051956 F20110115_AABJCZ panez_r_Page_05.jp2
28703a098aa4af140449fb653ea11701
0865d91c6025a03251eb3f942e4d0927cc956510
F20110115_AABJHX panez_r_Page_08.tif
565aaaae07c63d5c37237be06a2150d4
c54fa3cde38a026f7935429463989be828562389
F20110115_AABJFA panez_r_Page_13.tif
01e4e53f33142210aa072c512a9ceca1
fd427598f8c8a2308d282678e5ea9a3a6dbe3dbb
F20110115_AABJHY panez_r_Page_09.tif
4399eae729aaf34ff4c25c9884127393
648b22b0cf4412b67094b55ab213e99e17ba2ec0
F20110115_AABJHZ panez_r_Page_10.tif
545e29bd704dd7eece8bcee8e04b776e
77f4eb9b635a3bc6c0e3bef06a681385259a8860
1871721 F20110115_AABJFB panez_r.pdf
8ac9761bfb8fd3b7822754fad0d0636e
8a8ed6f54ad1f624045e4b91faa87d97d916c40f
68661 F20110115_AABJFC panez_r_Page_38.jp2
d83cd2d15c63c90df90ae8580888a0a1
081f1dfc7d6baf79e27f8b9869c1b72cac738092
1787 F20110115_AABJKA panez_r_Page_24.txt
bfa68473401dadac539fe7f21b3d069a
02315f393949f4283efd957b16586c5d5689dae2
F20110115_AABJFD panez_r_Page_15.tif
de5ffa59e062672c02bab0708fc70350
af8775d0d738c7b4fe33141fc02026bcdda6c48e
237 F20110115_AABJKB panez_r_Page_25.txt
9b65af99cb5e5ccd21f8d788eb6342bf
b71ac090b3839804acc6d71e4c13ad01a4210c46
1687 F20110115_AABJFE panez_r_Page_21.txt
5783e8ae8227ee50e681dd5129f1e22a
6244009235e50a8e31c09814e298300019aeac39
1465 F20110115_AABJKC panez_r_Page_27.txt
4631b211a210039417e74ceba05fa4ff
7ee5e16d88d95faa8f84b38b6d7e6c23553c60be
417 F20110115_AABJFF panez_r_Page_06.txt
ea986961fcf7c241ff71dbad50d07e1e
28e7d8ca043cece1b1aa08d56f95af5fbfc959e6
1736 F20110115_AABJKD panez_r_Page_28.txt
8ddfe3053e9405d1763cb65e4b54049c
90c91d943e24243c7cf3608bf5c91ee3f9fa6db2
6636 F20110115_AABJFG panez_r_Page_01thm.jpg
8b33b3cc08c2caaa1f63ca07f6b0844b
8a528d2e1c8155ba9dfbff2ced18d46409722554
744 F20110115_AABJKE panez_r_Page_29.txt
8be2ef50a1636e51097ce7c3d93756c9
03df77fd5326bb0f2782832885637dce8edce6a8
1742 F20110115_AABJKF panez_r_Page_30.txt
07a486cf4c9040f63243532d9b06c3d0
194abc378c49d88da763676c82a00d23589e7725
62171 F20110115_AABJFH panez_r_Page_26.QC.jpg
f87f6e7f7e3285ff8e378033c2db4375
32fa368b22162e708bd9e882a55a3415638eaeb5
85 F20110115_AABJKG panez_r_Page_35.txt
0440059d3da1675bae1eb8041aba05b6
97bf74de662ab99440d5f33bb400c5117f082928
806482 F20110115_AABJFI panez_r_Page_30.jp2
a3cf6a431338e3af44454e2057547dd7
c87378948c2fb4dd9f314dc2ee96b00661eb296d
275 F20110115_AABJKH panez_r_Page_37.txt
a10889d88318c9a6173e863edb9986d7
8486ecbc1b1ce0abbb6b81f16513c3a7977030e5
28197 F20110115_AABJFJ panez_r_Page_33thm.jpg
6b199b02772fc686b194827487bc8deb
766aac4ef5339521d26bf6ac61b370d0bf480c66
20490 F20110115_AABJKI panez_r_Page_01.QC.jpg
a6c05e38c6ef4b122f2ddf43ef43a6c5
2e143a71d7859830a23d45f6699cc679a8eaf9e0
F20110115_AABJFK panez_r_Page_24.jp2
63437893110d9ae33716e4ddb2e14abc
fd2b4e2a3e7ed717975147c72b7afb8ee375b7fd
5016 F20110115_AABJKJ panez_r_Page_03.QC.jpg
f2817df1864e9fd042ae3f99cfff4d17
2649b225c8d286ceb1ed15d632b4808fee86ebd3
F20110115_AABJFL panez_r_Page_02.tif
d77de8dcf57d7f4220db0a1441827121
0dc1080d1cba2255df8417a541d8b0c5397febd4
7509 F20110115_AABJKK panez_r_Page_04thm.jpg
694b5c094b9962087d207a934fc8d284
d076caedb9906f5233cabcfa18ab89922d880d56
1809 F20110115_AABJFM panez_r_Page_05.txt
f38852474339476a6d5c5c0b58a1596b
5001745add202be40e3960dd76587b7f2515486f
41731 F20110115_AABJKL panez_r_Page_05thm.jpg
28c4befe7cbd4bbac15b9d4740515123
f7f99fb2ea597f7c877ee14b3729df53442c37ad
F20110115_AABJFN panez_r_Page_26.tif
ec160b0f3cd5eaab592e16be0962b0e4
b7db8524746fc5d23bd3a577a9d1d0dbd06e53ce
510692 F20110115_AABJFO panez_r_Page_20.jp2
7b84b064eb1252b933da28c39beebadc
03757243ba883f6a420c253b623482d03a7f2390
31370 F20110115_AABJKM panez_r_Page_06thm.jpg
4dafcc1d7e5894bb7eb064d2f92b0174
c7022004fc4de0146d98e2e715bf30308d13e0d1
F20110115_AABJFP panez_r_Page_31.tif
72fe0e90c5cb7de6296cec62bd9aabbc
d3627dded3206476eb2c3cae3f7ed9d751bae9b7
31026 F20110115_AABJKN panez_r_Page_07thm.jpg
27f310245326a16e408a42050e94732d
e874ad5b8e57b5fcdf9df1a55031313d645e9a42
34194 F20110115_AABJFQ panez_r_Page_32.pro
dcd81ef8c719bb65943dfe178057cd51
ceb0fae63a13a5c8d5b9a5f1729eea89b391b174
40758 F20110115_AABJKO panez_r_Page_07.QC.jpg
aece1cd85d47e7fc88036653c17db93e
ecea6861d4d480eb44ec784d3475c0da9d46933a
36238 F20110115_AABJFR panez_r_Page_30.pro
d75ef172fc589238f3bc25f30c993863
f7a6a5951050f6be97505848970523ef2229cea3
45648 F20110115_AABJKP panez_r_Page_08thm.jpg
1f28201cd6aab88221ddd0abe182835c
afc6b1910ffe1b2aa2a85db24d7224dfe4936110
67886 F20110115_AABJFS panez_r_Page_07.jpg
3ad76ad2a5161b0bc1190a13df3ab3e8
e77237b9bd91a6b46faedf43ab75b9fde8e19d9f
91994 F20110115_AABJKQ panez_r_Page_08.QC.jpg
aec009a0049fc00e15a48c9f621653e6
4ddb519103657621bc089c3941e9c49acda8ce25
F20110115_AABJFT panez_r_Page_19.tif
8f72000722e21dff7d2795cc83909367
8b2834bdec6c3513bd6f5d0e355b97ba3001497e
14085 F20110115_AABJKR panez_r_Page_09thm.jpg
298f1b8a8535b691003ba61b65d1355a
d2750d802809a616b3680562122c0442069a2f15
1594 F20110115_AABJFU panez_r_Page_34.txt
be52411460637c5636b42381bbbb1f21
2ee3435fa71c8acceace52bd72eedafac59910fb
46090 F20110115_AABJKS panez_r_Page_09.QC.jpg
8a5e03183524a7ab4167c8183d55c681
385c065cee886bfaa71e6a0e83a35229153488d6
198521 F20110115_AABJFV panez_r_Page_10.jpg
68be6bf9b2c02842ae549395231037a0
d2bb9ea1a4ed608c5578333a55b3b9ca63282328
44451 F20110115_AABJKT panez_r_Page_10thm.jpg
ab5c6ea428acf3b7bd52eb0159d78733
883175f60abeaf00f9a29af24c0971be6c1e8d62
40563 F20110115_AABJFW panez_r_Page_34thm.jpg
250ef5dd67568bfa8afbc7afafb5631f
b38d3cb3374b19bc0d68b7e049d6703e9c0f0a16
87724 F20110115_AABJKU panez_r_Page_10.QC.jpg
0ed81d0c439361341a50f906e896b1bb
09865af41c91fc6f0cbbfef2e8cf1dd73cfdef42
834 F20110115_AABJFX panez_r_Page_26.txt
05aa72d452e4c155fb07429ddf28ac6a
37406dbd800941c75d5a4ec0b68f2537287033cc
45133 F20110115_AABJKV panez_r_Page_11thm.jpg
910869ba65ef4629964a5d8da7887b96
7d0adb7317258bb95d476e485f6408cf59e669d7
449 F20110115_AABJDA panez_r_Page_01.txt
bbd7cd99fc23e8b848ff888b5ef687c5
971b41c742268665cae18539818dee4ab6ea0ebc
98149 F20110115_AABJFY panez_r_Page_24.QC.jpg
da641b97e64d89dcc6a807e5facb2b14
96a456d93ab6bba5e3959d5edbb6aab692c4b91d
87237 F20110115_AABJKW panez_r_Page_11.QC.jpg
1fc20909362424f5a8daa8a075285d67
3308f629a0f9b1911292580367700e04db058bcd
100070 F20110115_AABJDB panez_r_Page_23.jpg
58544c87d9475b6a3754c86dc37dc0bd
9a6b5b754d5dc425c2af956e6c28446423d7a695
31407 F20110115_AABJFZ panez_r_Page_33.QC.jpg
6ae857ee186c81b024670a7b43498c66
df38f39e54a6bb1fc1be06389fb16412d4407eca
107641 F20110115_AABJKX panez_r_Page_12.QC.jpg
669d5898ca6e4ad9e06b1e3fd399f0ca
463d658702a2e9660e2e438eafd2e6cbf34e3174
20834 F20110115_AABJDC panez_r_Page_04.QC.jpg
d8afabdec343366be0003cdd1f46c76f
7260946e639c694f8f4b6a93f0e56da67f53ace2
70847 F20110115_AABJKY panez_r_Page_13.QC.jpg
86ecac149c8231515c87ebd0da975d19
e91cf37702fb3e370f0e0d1dae8c9dd2205993d5
165154 F20110115_AABJDD panez_r_Page_27.jpg
7b8097a6d75ef4e961f537c75e9d694a
802d018723f5e7fa2d243a102f02b84c67cbc4c6
F20110115_AABJIA panez_r_Page_11.tif
b82585007bd03c56a39d486d93fbbce0
d930b2e90ff345dffd3abae84d16a51769f1907d
42839 F20110115_AABJKZ panez_r_Page_14thm.jpg
3cf0fea37014de586e38ca093dbc4ae6
b11cf1fb29ede1eeef4f5bd4eae6db2e014056f1
628 F20110115_AABJDE panez_r_Page_31.txt
8b01c757488036b381f1ae841a418e2c
8aa72eb27263a0e3d3de557aae1b9b351058cd80
F20110115_AABJIB panez_r_Page_12.tif
13311aada076863290534d34f06d7c64
1af2afba77e5cbbe2122f9cc76b4e2a5189f857e
F20110115_AABJIC panez_r_Page_16.tif
b68092f47d422ca0968a3991549a9d89
b1414207ae944591bc9773bd545bda22c41dc661
87600 F20110115_AABJDF panez_r_Page_19.QC.jpg
206f3ce82c1739d3b2148afb6f859a1d
fe6555769801897f68ed3ab92646ca127ad38d3b
F20110115_AABJID panez_r_Page_18.tif
6927e0cd7eb8076be78869935c9d3c04
fcc07c2dba72bc5c013d8685d88580b5273a68db
50617 F20110115_AABJDG panez_r_Page_12thm.jpg
d99b0347abacff555f3ba9c136d20891
45308a29cc39c71c9233133331d7ce6db6403682
F20110115_AABJIE panez_r_Page_21.tif
930d4a26b4609e150c848c85f5db6486
afe8da16538acb7da99721deda795205ad081c40
40279 F20110115_AABJDH panez_r_Page_33.jpg
54e3387381497cf7493cb609b8ac6461
0cce0c2bfe7b0d963597a8cad450429bbfc7b084
F20110115_AABJIF panez_r_Page_23.tif
bb560dce4771124561420a5ab16353f9
e6615ff86418a12bba51e69d91af222a06b26286
F20110115_AABJDI panez_r_Page_22.tif
ab9317a98bad1ec2b1958ced11e464f5
3b0b1d312efcd993a2d06808e20e2d02108f317c
F20110115_AABJIG panez_r_Page_24.tif
41cc4c417133d757fd7b1f2f8e49f195
fcfaeb1b8e81514161de2740f455d925c2d39655
31708 F20110115_AABJDJ panez_r_Page_34.pro
1bdaf300b31e4f0beb2f9cfc847fb7d0
71ead1c2acec91055e549813b82d2f54b829a83f
F20110115_AABJIH panez_r_Page_25.tif
147eae3f359f73326165663fe8a9c7c3
b1482c8843ddc37e6e947c5b2b069b8788c1d411
840684 F20110115_AABJDK panez_r_Page_34.jp2
665b3e815a51cb3586808af98c5e3680
20be445f26432cad77d5fc60b1eedcb5b94e1306
F20110115_AABJII panez_r_Page_28.tif
7c137211ad26d12fd8f8ab182041c600
caa94089f432627db2c46ac0eaa99be62193e26d
F20110115_AABJDL panez_r_Page_06.tif
cad52f7fba31e8a5cef16131d56aab13
d92db97e1c1c1b95ca7ce8026a68d50819c1ae9d
F20110115_AABJIJ panez_r_Page_29.tif
8ce9c2db5e79e7938c3fb9eb05316d8d
3c575527d311db60f4da2cb046a05d576b51602c
8641 F20110115_AABJDM panez_r_Page_25.QC.jpg
571d5c5a6e3beb8de32d2e618374753a
250c0dacbf09f58e24e9f9a4359908525bfd7570
425453 F20110115_AABJDN panez_r_Page_18.jp2
161a11ef37948166c0caff1c4eebf488
83b87ce6234a4065ff170051e912162f4b36396e
F20110115_AABJIK panez_r_Page_30.tif
fcd9d7dc6b5eebd969728039c7335cff
397a36ed020e10833f34e729cb3b236d1b3329c5
262940 F20110115_AABJDO panez_r_Page_06.jp2
d7ccf0d195e0667c58c9e815225c69d6
c6144c9cb957cf9aeae8ca0b8387b5bc76d88b3a
F20110115_AABJIL panez_r_Page_32.tif
46bfd14e6575ae5d213313bc936e4265
68c1589e2171ffee1b9b40b375eaa291585aa77c
1051981 F20110115_AABJDP panez_r_Page_22.jp2
039c5c48f42c1351bc144e76f32e2dc4
b055146d62bc16e9c5506db527b2c1d0c0d3cfef
F20110115_AABJIM panez_r_Page_37.tif
1aa2b0adb1d3929b67cceb5d452badb7
64bb8f4e69fe2be9030b759dc7937ab542d745eb
1263 F20110115_AABJDQ panez_r_Page_38.txt
7b65087185535d4ab2268df32f64b637
975f61aa88553a5da5cdc014568360be00ee3ef3
1120 F20110115_AABJIN panez_r_Page_02.pro
38aef1350a5c91bf64d2156066e64bea
6a5d925c4b571e20ead6973ce1cb0a0637d328bd
39296 F20110115_AABJDR panez_r_Page_13thm.jpg
8ed5562b6c6269c71ab26f93f56084b0
5a8947c9231a8d090257d0a9226b66234dd891ea
1168 F20110115_AABJIO panez_r_Page_03.pro
a7f515fa06fa29bd12d97d462eb663c0
c415758af0bf150d4f4c1a7544cf225d921f03c4
44508 F20110115_AABJDS panez_r_Page_30thm.jpg
9616bed80df1374ed73a5fe5bff7ca9c
a8565ebf7fbcdc4c07cb946f9dc994aa18de6014
11970 F20110115_AABJIP panez_r_Page_04.pro
fc21a1abe3d30fe7e19f1c32601133f4
fba26d921776770a9dcc687d4eeeeb5dc01a3c12
1001 F20110115_AABJDT panez_r_Page_33.pro
a3942c729f51c9c1a01ad7dcb94b47a5
42edf08784f0fd0c075e9fc361d0579c03cda13b
40390 F20110115_AABJIQ panez_r_Page_05.pro
70ba73588f99349ab39af1d9dd0a003c
063cc1f413cb1f7692dad2335abb030d7ba5ce77
76125 F20110115_AABJDU panez_r_Page_34.QC.jpg
6520b78186bf710263a85efa2b566713
0e25665cb36c12fb013da97123af7ccdee3219e4
9909 F20110115_AABJIR panez_r_Page_06.pro
f221197bd35ba14add3413e9069f2892
ef0e20d55e17488de8f661b014c0728b1d52278b



PAGE 1

SIMPLIFIEDMETHODFOROBTAININGNAVIGATIONALINFORMATION FROMHYDROPHONEARRAYS By ROLANDOPANEZ ATHESISPRESENTEDTOTHEGRADUATESCHOOL OFTHEUNIVERSITYOFFLORIDAINPARTIALFULFILLMENT OFTHEREQUIREMENTSFORTHEDEGREEOF MASTEROFSCIENCE UNIVERSITYOFFLORIDA 2004

PAGE 2

Copyright2004 by RolandoPanez

PAGE 3

Idedicatethisworktomyfamily.

PAGE 4

ACKNOWLEDGMENTS Iwouldliketothankmyfamilyfortheirsupportthroughoutmycollegecareer.IwouldalsolikethankallthemembersoftheMachineIntelligenceLabatthe UniversityofFlorida.Theyhaveprovidedmewiththemotivationandknowledge tomakethisallpossible.Iwouldespeciallyliketoshowmyappreciationtothe professorsoftheMachineIntelligenceLab,forgivingmeanopportunitytoattain thisdegreeofeducation. iv

PAGE 5

TABLEOFCONTENTS page ACKNOWLEDGMENTS ............................. iv LISTOFTABLES ................................. vii LISTOFFIGURES ................................ viii ABSTRACT .................................... ix CHAPTER 1INTRODUCTION .............................. 1 1.1UnderwaterAcousticPinger ..................... 1 1.2Subjugator2000 ............................ 2 1.3CornellUniversityAUV ....................... 2 1.4Orca .................................. 3 1.5Hydrophones .............................. 3 2AMPLIFIERCIRCUIT ........................... 5 2.1DierentialSignal ........................... 5 2.2CircuitDesign ............................. 5 2.2.1InstrumentationAmplifer .................. 6 2.2.2Schmitt-triggerBuer ..................... 8 2.3BoardDesign ............................. 8 3SIGNALPROCESSINGBOARD ...................... 10 3.1AtmelMega128 ............................ 10 3.2AlteraFlex10K70 ........................... 11 4SIGNALPROCESSING ........................... 12 4.1FrequencyFilter ............................ 12 4.2HydrophoneTimeofArrival ..................... 15 5TRIANGULATION ............................. 17 6RESULTSANDCONCLUSION ...................... 19 6.1DataAcquisitionResults ....................... 19 6.1.1DataSet1 ........................... 20 v

PAGE 6

6.1.2DataSet2 ........................... 21 6.2TriangulationResults ......................... 22 6.3Conclusion ............................... 23 APPENDIXADDITIONALFIGURES .................... 24 REFERENCES ................................... 27 BIOGRAPHICALSKETCH ............................ 29 vi

PAGE 7

LISTOFTABLES Table page 1{1ALP-365aPingerSpecifcations ...................... 1 2{1INA331Specifcations ........................... 6 2{2ThresholdVoltages ............................ 8 3{1Flex10K70Specifcations ......................... 11 vii

PAGE 8

LISTOFFIGURES Figure page 1{1Subjugator2000HydrophoneArrayLayout ............... 2 1{2CornellAUV2003'sHydrophoneSensorPlacement .......... 3 1{3Subjugator2004HydrophonePlacement ................ 4 2{1AmplierOutput ............................. 5 2{2PSPICECircuitLayout .......................... 6 2{3PSPICETransientSimulation ...................... 7 2{4AmplierBoardLayout.NottoScale ................. 9 3{1SignalProcessingBoardBlockDiagram ................. 11 4{1TargetPingerFilterSimulation ..................... 12 4{2FilterSimulationHighFrequencyNoise ................. 13 4{3FilterSimulationLowFrequencyNoise ................. 13 4{4TimeofArrivalASMFlowChart:FirstTwoCases .......... 14 4{5SimulationofTimeofArrivalCalculator ................ 15 5{1HydrophoneArrayon2-DCoordinatePlane .............. 17 6{1Dataset1:Hydrophone3=0 ...................... 19 6{2Dataset1:Hydrophone1=0 ...................... 20 6{3Dataset1:Hydrophone2=0 ...................... 20 6{4Dataset2:Hydrophone3=0 ...................... 21 6{5Dataset2:Hydrophone3=0 ...................... 22 6{6Dataset2:Hydrophone3=0 ...................... 22 6{7TriangulationResultsofDataset1 .................... 23 8TimeofArrivalASM ........................... 25 9SignalProcessingBoard ......................... 26 viii

PAGE 9

AbstractofThesisPresentedtotheGraduateSchool oftheUniversityofFloridainPartialFulfllmentofthe RequirementsfortheDegreeofMasterofScience SIMPLIFIEDMETHODFOROBTAININGNAVIGATIONALINFORMATION FROMHYDROPHONEARRAYS By RolandoPanez December2004 Chair:A.AntonioArroyo MajorDepartment:ElectricalandComputerEngineering Thisthesisdescribesasimplifedmethodofacquiringacousticinformation fromahydrophonearray.Thehardwareconsistsofanamplifercircuitand acustomdesignedsignalprocessingboard.Thehydrophonesignalisdirectly convertedtodigitalformbysaturatingthesignalintheamplifercircuit.The resultisadigitalpulsewaveformthatcanbeanalyzedbydigitalnon-DSPdevices. ThesignalprocessingboardconsistsofaFlex10kFPGAandanAtmelMega128 8-bitmicrocontroller.UsingstatemachinesintheFPGA,thedigitalwaveform outputsoftheamplifercircuitareflteredandcross-correlated.Thetimeofarrival valuesbetweenthehydrophonesisusedinthetriangulationcalculationsinthe microcontroller. ix

PAGE 10

CHAPTER1 INTRODUCTION Hydrophonesareoftenusedonautonomoussubmarinesfornavigationalpurposes.ThisparticularsystemispartofSubjugator,anautonomoussubmarine designedbystudentsoftheMachineIntelligenceLabattheUniversityofFlorida. Themissionofthisrobotvariesyearly.ItissetbytherulesoftheannualAUVSI underwatercompetition.Inthepastthreeyears,themissionhasrequiredtherobot tonavigatetoanacousticpinger.Futurecompetitionswilllikelyinvolveasimilar task.Thereforethegoalofthissysteminvolvesgatheringaccuratedatafromthey hydrophonesensorarrayandprocessingthedatatoobtainnavigationalinformation.ThischapterdescribessimilarsystemsdesignedinpreviousSubjugator projectsaswellassystemsdesignedbyothercompetingschools. 1.1 UnderwaterAcousticPinger Theunderwateracousticlocatorpingerisusedtomarkanunderwatertarget orsite.Theyaretypicallyusedinoshoreenvironments.InthecaseoftheAUVSI 2004UnderwaterCompetitionitwasusedtoidentiythe recoveryzone ,whichwas thefnaltaskofthemission[ 1 ].Fortestingpurposes,priortothecompetition, anALP-365apingerwaspurchasedandwillbeusedinalltestingofthesystem describedinthisthesis.Thepingerspecifcations,whicharesimilartothoseofthe competitionpingers,arelistedintable 1{1 Table1{1:ALP-365aPingerSpecifcations DescriptionValue Frequency27kHz AcousticOutput162dB(re1 Pa) PulseLength5ms. PulseRepetition1pulse/sec. 1

PAGE 11

2 1.2 Subjugator2000 Subjugator2000wasthefrstofoursubmarinestouseanacousticpositioning system.Thearrayusedinthissubmarineconsistsoffvehydrophonessensorsin anultrashortbaselineconfgurationasshowninfgure 1{1 [ 2 ].Thevalueof d infgure 1{1 isequaltoonewavelengthofthepingersignal.Thereforethephase dierencebetweenthehydrophoneoutputsisusedinthebearingcalculation.The outputofthehydrophonesaresenttoapreamplifercircuit.Theoutputofthe preampliferisflteredusingananalogbandpassflter.Theflteredsignalispassed throughazero-crossingdetectorandfedintoaDSP.TheDSPthencross-correlates thesignalsandforwardsthetiminginformationtoanembeddedlinuxcomputer [ 3 ].Finally,thelinuxcomputercomputesthebearingtothepingersource[ 4 ]. Figure1{1:Subjugator2000HydrophoneArrayLayout 1.3 CornellUniversityAUV TheCornellAUV2003entryusedadierentarrayconfgurationfromthat usedonSubjugator2000.Thisconfguration,knownasshortbaseline[ 2 ],places fourhydrophonesattheextremitiesofthesubasshownin 1{2 .Thetiming informationobtainedisthetimeofarrivalbetweenthehydrophones.Thisonly allowsonesampleperpingtobeusedtocalculatethebearingtothesource.The dataacquisitioninthissysteminvolvesapreamplifercircuitconnectedtoanA/D

PAGE 12

3 converter.TheA/DvaluesareprocessedbyaDSP.Thesignalinformationfrom thefourhydrophonesareprocessedinanembeddedlinuxcomputertocomputethe bearingtothepingersource[ 5 ]. Figure1{2:CornellAUV2003'sHydrophoneSensorPlacement 1.4 Orca TheMIT2004AUVSIentry,ORCAVII,usesanultrashortbaselinehydrophonearray.Thearrayconsistsoffoursensorsinapyramidalformation.The dataacquisitionmethodissimilartothatusedontheCornellUniversityentry. TheonlyexceptionbeingthatasingleDSPisusedtoflterandcross-correlatethe hydrophonesignals.TheDSPalsocalculatesthebearingandelavationangletothe pingersourceandsendstheinformationtoehembeddedlinuxcomputer[ 6 ]. 1.5 Hydrophones Thehydrophonesusedinthisapplicationaredesignedfornavigationaluse. Thearrayhydrophonesarecustom-designedInternationalTransducerspartITC4155.Theyareomnidirectionalintheirhorizontalplane[ 4 ].Thesensitivityfor thefrequencyrangeof20-40kHzis-196through-205dBVreferencedto1 Pa. Theoutputfromthehydrophoneisadierentialsinusoidalsignalcorrespondingto theacousticsignalinthewater.Thehydrophoneswillbeusedinashortbaseline confgurationasdiscussedinchapter 5 andasshowninfgure 1{3 .

PAGE 13

4 Figure1{3:Subjugator2004HydrophonePlacement

PAGE 14

CHAPTER2 AMPLIFIERCIRCUIT Theamplifercircuitusedinthisapplicationisdesignedtoamplifyagiven signaltosaturation.Theinformationofinterestfromthehydrophonesignalsare thezero-crossings.Byamplifyingthesignaltosaturationthepertinentinformation ismaintained.Thischapterexplainshowthedierentialsignalofthehydrophones areaccessedandamplifed. Figure2{1:AmpliferOutput 2.1 DierentialSignal TheoutputoftheITC-4155consistsoftwowires.Onewirecarriesthesignal ofthesensoroutput.Theothercarriesasignalthatisequalandopposite.Likea single-endedsignal,adierentialsignalrequiresareturnpath[ 7 8 ].Inthecase oftheITC-4155hydrophones,thetwosignalwiresaresurroundedbyashielding, whichisthereturnpath.Toproperlyconnectthesensor,thesignalwiresare attachedtothedierentialampliferinputsandtheshieldingshouldbeconnected toground.Theinstrumentationampliferamplifesthedierenceoftwosignal wires.Inthismanner,anycommonvoltageonthesignals,usuallynoise,isnot amplifed. 2.2 CircuitDesign Theamplifercircuitconsistsoftwomaincomponents:aninstrumentation ampliferandaschmitttriggerbuer.Theinstrumentationampliferisusedto 5

PAGE 15

6 amplifythedierentialsignaltosaturation.Theamplifer'soutputisfedtothe schmitttriggerbuertoconvertthesignalintoadigitalwaveform. 2.2.1 InstrumentationAmplifer Sincetheoutputofthehydrophoneisadierentialsignal,aninstrumentation ampliferisused.TheBurr-BrownINA331instrumentationalampliferwaschosen basedonthespecifcationslistedintable 2{1 Table2{1:INA331Specifcations DescriptionRating Highgain5to1000V n V Bandwidth2MHz SlewRate5V n s Lowbiascurrent0.5pA TheINA331isthenincorporatedintotheamplifercircuitwiththefollowing designbehaviors: Gain=300V n V InputCommonModeVoltage=2.5V SingleSupplyConfguration VREF=0v Figure2{2:PSPICECircuitLayout

PAGE 16

7 GAIN =5+5( R 2 =R 1)(2.1) Thebehavioroftheinstrumentationampliferportionoftheamplifercircuit issimulatedinPSPICEusingtwosmall-signalsourceswithaphasedierenceof 180 ,seefgure 2{2 .Thisfgurealsoshowstheconnectionsrequiredforproper useoftheinstrumentationamplifer.ResistorsR1andR2determinethegainof theampliferasdefnedbyequation 2.1 .Thesimulatedinputisequivalenttoa dierentialsignalwithanamplitudeof50mV p )Tj/T1_3 7.97 Tf6.58701 0 Td(p .Theoutputofthesimulationis arectifed,saturated5V p )Tj/T1_3 7.97 Tf6.586 0 Td(p signalasshowninfgure 2{3 .Thesimulationresults, fgure 2{3 ,showaninputsignalof50mV p )Tj/T1_3 7.97 Tf6.586 0 Td(p andanoutputsignalsaturatedto5V thatstillcontainsthezero-crossinginformationoftheinputsignal. Figure2{3:PSPICETransientSimulation

PAGE 17

8 2.2.2 Schmitt-triggerBuer TheSchmitt-triggerbuerisusedtoconditiontheamplifedhydrophone signal.Wheninputvoltageexceedsthepositivegointhreshold, V T + ,theoutput voltageequals5V.Theoutputvoltageremainsat5Vuntiltheinputvoltageis belowthenegativegointhreshold, V T )Tj/T1_0 11.955 Tf6.752 -0.299 Td[(.Withthefollowingthresholdspecifcations, thebuerdeviceconvertsasinusoidalsignaltoadigitalwaveform. Table2{2:ThresholdVoltages V T + 2.65V V T )Tj/T1_0 11.955 Tf18.707 -0.299 Td[(1.88V 2.3 BoardDesign Thedesignoftheampliferboardisconstrainedbythespaceavailablein thegivenapplication,Subjugator2004.Inthissubmarine,theampliferboardis installedinlinebetweenthehydrophonesandthewetpluggablehullconnections. Theboardismadewater-proofbyusingamoldtosealitwithepoxy.Theshapeof themoldrequirestheboardtobelessthan4inchlongandlessthan1inchwide. Theampliferboardneedstobeplacedascloseaspossibletothehydrophone toretainmostofthesignalintegrity.Theinstrumentationampliferandthe schmitttriggerareavailableinsmallsurfacemountpackages.Theadditional passivecomponentsusedintheamplifercircuitarealsoavailableassufacemount components.Theboardlayoutisshowninfgure 2{4 Sinceasuitableconnectorforthehydrophonewireisnotreadilyavailable, theboardwasdesignedtoconnectdirectlytoit.Thethreepadsonthelefthand sideoftheboardarearrangedspecifcallyforthehydrophonesensorwire.When assemblingtheboard,thetwosignalwiresaresolderedtothesmallerpads.By pullingthebackovertheinsulation,itcanbesolderedtothelargerpad.

PAGE 18

9 Figure2{4:AmpliferBoardLayout.(NottoScale)

PAGE 19

CHAPTER3 SIGNALPROCESSINGBOARD ThesignalprocessingboardconsistsofanAtmelMega128andanAltera Flex10K70FPGA.TheMega128isthemaincontrolunitoftheautonomous submarine.Allsensorsareinterfacedtothemicrocontrollerasshowninfgure 3{1 .Themicrocontrollermakescontroldecisionsforitscurrenttaskbasedonits partiallyprocessedsensordata.TheFPGAiscurrentlyusedsolelyforprocessing thehydrophonesignals.Inthefuture,theFPGAcanbeusedtointerfacemore sensorsand/orprovideafastparallelprocessingenvironment.Theprocessing boardincludesadditionalhardwaretointerfaceadigitalcompass,communicateto aanembeddedlinuxPC,andallowin-systemprogrammingoftheMega128and Flex10k70.ThischapterdescribesthefunctionalityoftheMega128andtheFlex 10k70. 3.1 AtmelMega128 TheAtmelMega128isaneight-bitmicrocontrollerunitwithrexibleand powerfulon-chipperipheralcapabilities.Thefunctionalityofthismicrocontroller includeaneight-channelanalog-to-digitalconverter(ADC)withtenbitsof resolution,twouniversalasynchronousserialtransever(UART),andeighthighprecisiontimingoutputlines.ThearchitectureofthecodeonboardtheAtmel isdesignedasaninterrupt-drivensensordataacquision(ISDA)andinterruptdrivenaccutuatorcontrol(IAC).TheincorporationoftheISDA/IACphilosophy eliminateswastefulpollingroutinesfreeingprocessortimetomakehighlevel decisionsandperformcomplexcalculations[ 9 ]. 10

PAGE 20

11 Figure3{1:SignalProcessingBoardBlockDiagram 3.2 AlteraFlex10K70 AnAlteraFlex10K70servesasarexiblehardwareexpansiondevice.Currently,logiccellsareutilizedfordebugregisters,additionalI/Opins,andhydrophonelogic[ 9 ].Thehydrophonelogiconlyoccupies15%ofthelogicelements oftheFlex10k70.Thisleaves 3200logicelementsforfutureexpandability.The Flex10K70featuresareshownintable 3{1 DescriptionValue TypicalGates 70,000 LogicElements3,744 LogicArrayBlocks468 EmbeddedArrayBlocks9 TotalRAMBits18,432 Table3{1:Flex10K70Specifcations .

PAGE 21

CHAPTER4 SIGNALPROCESSING TheamplifedsignalisprocessedintheFPGAasadigitalwaveform.The threehydrophonesignalsareprocessedsimultaneouslytodeterminethetimeof arrivalofthepingersignaltoeachhydrophone.First,eachsignalisflteredfor apingerfrequencyof27kHz.Theoutputofeachflterblockisthenprocessed todeterminethetimeeachhydrophonesensedthepingrelativetothefrst hydrophonethatsensestheping.Thestatemachinesdevelopedforflteringthe signalsandtimingthearrivalofthepingsaredescribedinthischapter[ 10 11 ]. 4.1 FrequencyFilter Tworegisterscontainingthetimevaluesofthedesiredfrequencybandare accessedbytheMega128microcontrolleratreset.Astatemachineusesacounter tocalculatetheelapsedtimebetweenrisingedges.Whenthetimebetweenrising edgesfallsbetweenthedesiredfrequencybandvalues,thefrequencyfltermodule outputsahighsignal.Thestatemachineoperatesandsamplesthehydrophone signalwitha4MHzclock.A27kHzhydrophonesignalis 148samplesofa 4MHzclock.Tousea1kHzfrequencybandcenteredat27kHzinthestate machine,themicrocontrollerwritesfrequencybandvaluesof145and151to theircorrespondingregisters.Thesamplingfrequencycanbeincreasedformore Figure4{1:TargetPingerFilterSimulation 12

PAGE 22

13 Figure4{2:FilterSimulationHighFrequencyNoise accuracy,butitisnotnecessarysincethecompetitionpingerfrequencieswillbeat least1kHzapart. ModuleTesting.Thismoduleistestedusingthetestvectorfora27kHzsignal asshowninfgure 4{1 .Theinput,labeled hydro includessimulatednoiseidentifed bythecircledregions.Theresultingoutput,labeled freq ,ishighwhenthetime betweenrisingedgesoftheinputis 37us.Thesimulatednoisecreatesedgesthat falselytriggerthestatemachineandcausestheoutputtogolow. Thehighfrequencynoiseisdisplayedinmoredetailinfgure 4{2 .Theperiod ofthe27kHzis 37 s.Thethefrsttimebar,at203.455 s,isthefrstrising edge.Thenexttimebarisatthenextrisingedgeandisequalto+37.13 s.This causestheoutputsignal freq togohigh.Thenoiseedgeoccursat+44.215 s, resultinginaperiodof44 : 215 )Tj/T1_0 11.955 Tf12.45599 0 Td(37 : 13 7 s,whichcausesthestatemachineto trigger freq tolow. Thelowfrequencynoisecausesthesameresultonthe'freq'outputasshown infgure 4{3 .Thetimefromthefrsttimebar,at55.59 s,tothesecondtimebar is 37 s.Duringthistime,theoutputvalueof'freq'ishigh.Thetimefromthe secondtimebartothethirdtimebaris 40 s,whichis 25kHz.Thefrequency rangeliesoutsidethedesiredrange,causingtheoutputof'freq'togolow. Figure4{3:FilterSimulationLowFrequencyNoise

PAGE 23

14 Figure4{4:TimeofArrivalASMFlowChart:FirstTwoCases

PAGE 24

15 4.2 HydrophoneTimeofArrival Therowchartonpage 25 describesthestatemachineusedtocalculatethe timeofarrivalofthepingersignaltothehydrophones.Therowchartincludesall thedierentcombinationsinwhichthehydrophonescanrecievethepingersignal. Figure 4{4 referstotheinitialstates, S0 and S1 ,inwhichalltheoutputvaluesare resetandtheinputsignalsH1,H2andH3arealllow.Figure 4{4 furtherdescribes thefrstsetofcombinationswherethehydrophoneH1recievesthepingersignal frst.State S2 delay startsacounterusedtomeasurethetimeofarrivalofthe pingersignaltothehydrophones.Alsoinstate S2 delay ,theoutput WE1 isset highforoneclockcycle.Allthestateslabeled SX delay pulseawriteenablesignal thattriggeraregistertolatchthecurrentcountvalue.Whenanedgehasbeen detectedineachofthehydrophoneinputs,aninterruptsignalisgeneratedinstate Interrupt ,whichisinterfacedtotheMega128.TheMega128willreadthethree valuesfromthehydrophoneregistersintheinterruptserviceroutine. Figure4{5:SimulationofTimeofArrivalCalculator ModuleTesting.Thetestvectorforthismodulesimulatedtheoutputfromthe fltermodules.Anedgeisgeneratedoneachofthethreeinputlines.Figure 4{5 showsaninstanceofthesimulation,wherethewriteenablesignalsaregenerated aftereachedgeisdetectedinanyoftheinputs.Thesimulationalsoshowsthe

PAGE 25

16 interruptoccurringafteranedgeisdetectedoneachoftheinputs.Thestate machinereturnstoitsinitialstateafteradelay : 5 s .

PAGE 26

CHAPTER5 TRIANGULATION Theangletothepingersourceisdeterminedbyusingsimplegeometry.A systemoflinearequationsisderivedfromthedimensionsofthesensorarrayand theanglesofthehydrophonestothepinger.Figure 5{1 showshowthearrayis representedonacoordinatesystemwithrespecttothepingersource. Figure5{1:HydrophoneArrayon2-DCoordinatePlane Theoriginissetatthehydrophonethatrecievesthepingersignalfrst.The coordinatesoftheotherhydrophonesarederivedfromtheshapeofthearray,in 17

PAGE 27

18 relationtotheorigin.Thearcsrepresentthepingersignalsastheyarriveateach hydrophone.Thevalueof T 1 isequaltothedistancebetweenthearcsdivided bythespeedofsoundinwater.Similarlythevalueof T 2 isequaltothedistance betweenthearccrossingtheorigintheanarccrossingthelefthydrophone, whichisnotshown.ThevalueofListhemaximumtimedierencebetweentwo hydrophones,assumingthearrayisinanequilateraltriangleconfguration.The timeofarrivalvaluesareconvertedtodistancevaluesbytherelationshipofthe speedofsoundinwater 1500 m=s 5.1 isthedistanceequationbetweentwo cartesiancoordinatepoints( x 1 ;y 1 )and( x 2 ;y 2 ).Equations 5.2 and 5.3 aredistance equationsfortherighthydrophonetothepingerandthelefthydrophonetothe pinger,respectively. d = p ( x 2 )Tj/T1_1 11.955 Tf11.955 0 Td(x 1 ) 2 +( y 2 )Tj/T1_1 11.955 Tf11.955 0 Td(y 1 ) 2 )(5.1) T D + T 1 = p ( )Tj/T1_1 11.955 Tf9.299 0 Td(L sin30 )Tj/T1_1 11.955 Tf11.955 0 Td(D sin ) 2 +( )Tj/T1_1 11.955 Tf9.298 0 Td(L cos30 )Tj/T1_1 11.955 Tf11.955 0 Td(D cos ) 2 (5.2) T D + T 2 = p ( L sin30 )Tj/T1_1 11.955 Tf11.955 0 Td(T D sin ) 2 +( )Tj/T1_1 11.955 Tf9.299 0 Td(L cos30 )Tj/T1_1 11.955 Tf11.955 0 Td(T D cos ) 2 (5.3) Equations 5.2 and 5.3 arecombinedtogeneratetwoequations, 5.4 and 5.5 Thissystemofequationsaresolvedfortheangle giventhevaluesT1,T2,andL. T 2 (2 T D + T 2 )+ T D L sin = L ( L + p 3 T D cos )(5.4) T 1 (2 T D + T 1 )= L ( L + p 3 T D cos + T D sin )(5.5)

PAGE 28

CHAPTER6 RESULTSANDCONCLUSION Thesystemdescribedinthepreviouschapterswasintegratedandtestedin a2'x5'x1.5'containerofwater.Thefollowingfguresaretheresultsof 730 recordeddatavaluesforthefrstsetand 1030datavaluesforthesecondset. Sincephasedierenceisnotbeingused,onlyoneresultcanberecordedperping. Inthistestsetupthepingerwasplaced 5 fromthecenterlineofthethird hydrophone.Thearraywasplacedatoneendofthecontainer,whilethepinger wasattheotherend.Thischapterwilldescribedtheresultsofthedataacquisition andthetriangulation.Thefnalsectiondescribesmethodstoimprovethissystem. 6.1 DataAcquisitionResults Sincethepingerandthearrayarebothstationary,thetimevaluesofthese resultsarenotexpectedtoructuatemorethan10samplesfromameanvalue. Thefollowingthreefguresarehistogramsofthefrstsetofresults.Thexaxis correspondstotimevalues,whiletheyaxiscorrespondstonumberofoccurrences. Figure6{1:Dataset1:Hydrophone3=0 19

PAGE 29

20 Figure6{2:Dataset1:Hydrophone1=0 6.1.1 DataSet1 Figure 6{1 extractsallsetofvalueswhosetimeforhydrophone3isequalto zero.Thisfgureshowstwoverydistinguishablepeaksat 425forhydrophone1 and 680forhydrophone2.Thisanalysisconcludesthathydrophone3ismost likelyequaltozero. Figure 6{2 isahistogramofallsetofvalueswhosetimeforhydrophone1is equaltozero.Theresultisamoreevendistributionthanthatoffgure 6{1 Figure6{3:Dataset1:Hydrophone2=0

PAGE 30

21 Figure 6{3 isahistogramofallsetofvalueswhosetimeforhydrophone2is equaltozero.Theresultissimilartothatoffgure 6{2 6.1.2 DataSet2 Figure6{4:Dataset2:Hydrophone3=0 Fromthisdataset,fgure 6{4 representsthedistributionofthetimevaluesof hydrophones1and2,whilethetimevalueofhydrophone3isequaltozero.This fgurehasawelldefnedpeakforhydrophone1at 50whichoccursnearly700 times.Thehighestpeakforhydrophone2occursnearly300timesatatimevalue of 360. Figure 6{5 ,referstothedistributionoftimevaluesofhydrophones2and3 withrespecttohydrophone1beingequaltozero.Thisfgureshowsasimilardistributionasthatoffgure 6{4 ,wherehydrophone2nowcontiains 650occurrences oftheapproximatetimevalueof60.However,thepeakforhydrophone3islower thanthatofhydrophone2infgure 6{4 Thedistributioninfgure 6{6 correspondstothescenariowherehydrophone 2isequaltozero.Theresultsinthisfgurehavealownumberofoccurences. Thereforethisscenariocannotbeconsideredastheconclusiveresult.Theresultsof fgure 6{4 arethebestvaluestouseintriangulatingthisdataset.

PAGE 31

22 Figure6{5:Dataset2:Hydrophone3=0 Figure6{6:Dataset2:Hydrophone3=0 6.2 TriangulationResults Usingtheresultsfromtheprevioussection,theangleswerecalculatedper themethoddescribedinchapter 5 .Theangles,asshowninfgure 6{7 ,showthe distrubitionofvaluesfromtheprevioussectionasbeingmainlythererectionsof thepingersignalinthetestenvironment.Thecorrectangle, 5 ,iswithinthe

PAGE 32

23 clusterofbearingsclosetothezerodegreemark.Theechoesofthetestcontainer arevisibleinareacenteredat 220 Figure6{7:TriangulationResultsofDataset1 Similartestswereperformedinapool,thatresultedininconclusivedata.The acousticnoiseofthepoolpumpsdidnotallowthesignalflterstoworkproperly. 6.3 Conclusion Basedontheseresults,thesystemdescribedinthisthesisisaectedbynoise. Creatingareliableacousticbasedpositioningsystem,requiresaccuratesignal fltering.Thepassivehydrophonesensorsusedinthissystemaresensitivetomost frequenciesofnoise.Withproperanalogordigitalfltering,thesensorscanbe usedwithbetterresults.Thesystemdescribedinthisthesiscanbemademore reliablemaybuildingmorecomplexflteringentitiesintheFPGA.TheFPGAcan parallelprocessalltheflteringofthesignalsandcross-correlateathighspeeds. However,thedevelopmenttimeforusingtheFPGAwilltakelongerthanusing aDigitalSignalProcessor.Thebestapproachwouldlikelyinvoledevelopinga tunableanalogflterthatfeedsintoanFPGAorDSPtocross-correlatethesignals.

PAGE 33

APPENDIX ADDITIONALFIGURES 24

PAGE 34

25 Figure8:TimeofArrivalASM

PAGE 35

26 Figure9:SignalProcessingBoard

PAGE 36

REFERENCES [1] AUVSI,Ocialrulesandmission7thannualinternationalautonomousun-derwatervehiclecompetition,"http://www.auvsi.org/competitions/water.cfm,March2004,10/22/2004. [2] Sonardyne,Acoustictheory,"http://www.sonardyne.co.uk/theory.htm,October2004,10/22/2004. [3] JosephC.Hassab,UnderwaterSignalandDataProcessing,BocaRaton:CRCPress,1989. [4] JenniferL.Laine,ScottA.Nichols,DavidK.Novick,PatrickD.O'Malley,IvanZapata,MichaelC.Nechyba,andAntonioArroyo,Subjugator:Sinkorswim?,"AUVSI,vol.3,2000. [5] CUAUVTeam,Designandimplementationofanautonomousunderwatervehicleforthe2003auvsiunderwatercompetition,"AUVSI,vol.6,2003. [6] RobertC.Altshuler,JoshuaF.Apgar,JonathanS.Edelson,DavidL.Greenspan,DebraE.Horng,AlexKhripin,AraN.Knaian,StevenD.Lovell,SethO.Newburg,JordanJ.McRae,andMarvinB.Shieh,Orca-vii:Anautonomousunderwatervehicle,"AUVSI,vol.7,2004. [7] DouglasBrooks,Dierentialsignals:Thedierentialdierence!,"PrintedCircuitDesign,vol.18,pp.36{37,May2001. [8] PaulHorowitzandWineldHill,TheArtOfElectronics,Cambridge:CambridgeUniversityPress,1989. [9] RolandoPanez,KarlDockendorf,WilliamDubel,EnriqueIrigoyen,BrianPietrodangelo,AlexSilverman,JohnGodowski,EricM.Schwartz,MichaelC.Nechyba,andAntonioArroyo,Subjugator2004,"AUVSI,vol.6,2004. [10] StephenBrownandZvonkoVranesic,FundamentalsofDigitalLogicwithVHDLDesign,NewYork:McGraw-Hill,secondedition,2005. [11] J.Bhasker,AVHDLPrimer,EnglewoodClis:Prentice-Hall,1995. [12] ColinP.Clare,Acousticdirectionndingsystems,"U.S.Patent,,no.4,622,657,1986. [13] AtmelCorp.,Atmelmega128datasheet,"http://www.atmel.com,August2004,10/22/2004. 27

PAGE 37

28 [14] L.M.BrekhovskikhandYu.P.Lysanov,FundamentalsofOceanAcoustics:AIPSeriesinModernAcousticsandSignalProcessing,NewYork:Springer-VerlagNewYork,2003.

PAGE 38

BIOGRAPHICALSKETCH Myeducationalbackgroundincludesabachelor'sdegreeincomputerengineeringfromtheUniversityofFlorida.Afterbeinginvolvedinasuccessfulrobotics competitionteammylastsemesterasanundergraduate.Idesignedafrstplace autonomousPONGplayingrobotforthe2002IEEESoutheasternConference HardwareCompetition.Iwasgiventheopportunitytocontinuemyeducation, inthefocusofintelligentinformationsystems,bytheprofessorsoftheMachine IntelligenceLab.Throughoutmyeducationasagraduatestudent,Iparticipatedin manyroboticsprojects.Iwasamemberofthe2003SubjugatorTeamthatcompetedattheAUVSIunderwatercompetitionandplacedeighthoutof12teams. Forthe2004SubjugatorTeam,Iwaspromotedtoteamleader.Iwentontolead ateamofeightoutstandingengineerstodesignafunctionalandcompetitiveautonomoussubmarineinthreemonthstime.Weplacedseventhoutof18teamsat thatyear'sAUVSIUnderwaterCompetition.Iwentontograduatewithanexceptionalengineeringbackground,duetotheparticipationintheMachineIntelligence LabattheUniversityofFlorida. 29


Permanent Link: http://ufdc.ufl.edu/UFE0008760/00001

Material Information

Title: Simplified Method for Obtaining Navigational Information from Hydrophone Arrays
Physical Description: Mixed Material
Copyright Date: 2008

Record Information

Source Institution: University of Florida
Holding Location: University of Florida
Rights Management: All rights reserved by the source institution and holding location.
System ID: UFE0008760:00001

Permanent Link: http://ufdc.ufl.edu/UFE0008760/00001

Material Information

Title: Simplified Method for Obtaining Navigational Information from Hydrophone Arrays
Physical Description: Mixed Material
Copyright Date: 2008

Record Information

Source Institution: University of Florida
Holding Location: University of Florida
Rights Management: All rights reserved by the source institution and holding location.
System ID: UFE0008760:00001


This item has the following downloads:


Full Text










SIMPLIFIED METHOD FOR OBTAINING NAVIGATIONAL INFORMATION
FROM HYDROPHONE ARRAYS















By

ROLANDO PANEZ


A THESIS PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

UNIVERSITY OF FLORIDA


2004

































Copyright 2004

by

Rolando Panez



































I dedicate this work to my family.














ACKNOWLEDGMENTS

I would like to thank my family for their support throughout my college ca-

reer. I would also like thank all the members of the Machine Intelligence Lab at the

University of Florida. They have provided me with the motivation and knowledge

to make this all possible. I would especially like to show my appreciation to the

professors of the Machine Intelligence Lab, for giving me an opportunity to attain

this degree of education.














TABLE OF CONTENTS
page

ACKNOWLEDGMENTS ................... ...... iv

LIST OF TABLES ...................... ......... vii

LIST OF FIGURES ................... ......... viii

ABSTRACT ...................... ............. ix

CHAPTER

1 INTRODUCTION .................... ....... 1

1.1 Underwater Acoustic Pinger ......... ........ .... 1
1.2 Subjugator 2000 ............................ 2
1.3 Cornell University AUV .. ...... ............... 2
1.4 Orca ............................ .... 3
1.5 Hydrophones ............................ 3

2 AMPLIFIER CIRCUIT ........................... 5

2.1 Differential Signal ........................... 5
2.2 Circuit Design .................. ... 5
2.2.1 Instrumentation Amplifier ................ 6
2.2.2 Schmitt-trigger Buffer ................ .. 8
2.3 Board Design .................. ... 8

3 SIGNAL PROCESSING BOARD .................. ..... 10

3.1 Atmel Mega 128 .................. ......... .. 10
3.2 Altera Flex 10K70 .................. ........ .. 11

4 SIGNAL PROCESSING .................. ........ .. 12

4.1 Frequency Filter .................. ......... .. 12
4.2 Hydrophone Time of Arrival ................ .. .. 15

5 TRIANGULATION .................. .......... .. 17

6 RESULTS AND CONCLUSION .................. ..... 19

6.1 Data Acquisition Results .................. .. 19
6.1.1 Data Set 1 .................. ........ .. 20









6.1.2 D ata Set 2 . . . . . . .. 21
6.2 Triangulation Results .................. ...... .. 22
6.3 Conclusion .................. ............ .. 23

APPENDIX ADDITIONAL FIGURES .............. .. .. 24

REFERENCES ................... ............... 27

BIOGRAPHICAL SKETCH .................. ......... .. 29














LIST OF TABLES
Table page

1-1 ALP-;:' .. Pinger Specifications .................. ..... 1

2-1 INA331 Specifications .................. .... 6

2-2 Threshold Voltages .................. ..... 8

3-1 Flex 10K70 Specifications .................. ..... .. 11















Fig


LIST OF FIGURES
ure

1-1 Subjugator 2000 Hydrophone Array Layout . .

1-2 Cornell AUV 2003's Hydrophone Sensor Placement

1-3 Subjugator 2004 Hydrophone Placement . .

2-1 Amplifier Output . ..............

2-2 PSPICE Circuit Layout . ..........

2-3 PSPICE Transient Simulation . .......

2-4 Amplifier Board Layout.(Not to Scale) . ..

3-1 Signal Processing Board Block Diagram . .

4-1 Target Pinger Filter Simulation . ......

4-2 Filter Simulation High Frequency Noise . .

4-3 Filter Simulation Low Frequency Noise . ..

4-4 Time of Arrival ASM Flow C(! .it: First Two Cases

4-5 Simulation of Time of Arrival Calculator . .

5-1 Hydrophone Array on 2-D Coordinate Plane .

6-1 Dataset 1: Hydrophone 3 0 . ......

6-2 Dataset 1: Hydrophone 1 0 . .......

6-3 Dataset 1: Hydrophone 2 0 . .......

6-4 Dataset 2: Hydrophone 3 0 . ......

6-5 Dataset 2: Hydrophone 3 0 . ......

6-6 Dataset 2: Hydrophone 3 0 . ......

6-7 Triangulation Results of Dataset 1 . ....

A-i Time of Arrival ASM . ...........

A-2 Signal Processing Board . ..........


page

2

3

4

5

6

7

9

11

12

13

13

14

15

17

19

20

20

21

22

22

23

25

26


I














Abstract of Thesis Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Master of Science

SIMPLIFIED METHOD FOR OBTAINING NAVIGATIONAL INFORMATION
FROM HYDROPHONE ARRAYS

By

Rolando Panez

December 2004

C'!h Ii: A. Antonio Arroyo
Major Department: Electrical and Computer Engineering

This thesis describes a simplified method of acquiring acoustic information

from a hydrophone array. The hardware consists of an amplifier circuit and

a custom designed signal processing board. The hydrophone signal is directly

converted to digital form by saturating the signal in the amplifier circuit. The

result is a digital pulse waveform that can be analyzed by digital non-DSP devices.

The signal processing board consists of a Flex 10k FPGA and an Atmel Mega 128

8-bit microcontroller. Using state machines in the FPGA, the digital waveform

outputs of the amplifier circuit are filtered and cross-correlated. The time of arrival

values between the hydrophones is used in the triangulation calculations in the

microcontroller.














CHAPTER 1
INTRODUCTION

Hydrophones are often used on autonomous submarines for navigational pur-

poses. This particular system is part of Subjugator, an autonomous submarine

designed by students of the Machine Intelligence Lab at the University of Florida.

The mission of this robot varies yearly. It is set by the rules of the annual AUVSI

underwater competition. In the past three years, the mission has required the robot

to navigate to an acoustic pinger. Future competitions will likely involve a similar

task. Therefore the goal of this system involves gathering accurate data from they

hydrophone sensor array and processing the data to obtain navigational infor-

mation. This chapter describes similar systems designed in previous Subjugator

projects as well as systems designed by other competing schools.

1.1 Underwater Acoustic Pinger

The underwater acoustic locator pinger is used to mark an underwater target

or site. They are typically used in offshore environments. In the case of the AUVSI

2004 Underwater Competition it was used to identity the recovery zone, which was

the final task of the mission [ ]. For testing purposes, prior to the competition,

an ALP-;:,,, I pinger was purchased and will be used in all testing of the system

described in this thesis. The pinger specifications, which are similar to those of the

competition pingers, are listed in table 1-1.

Table 1-1: ALP-;:i.. Pinger Specifications

Description Value
Frequency 27 kHz
Acoustic Output 162 dB (re 1 pPa)
Pulse Length 5 ms.
Pulse Repetition 1 pulse/sec.








1.2 Subjugator 2000

Subjugator 2000 was the first of our submarines to use an acoustic positioning

system. The array used in this submarine consists of five hydrophones sensors in

an ultra short baseline configuration as shown in figure 1-1 [ ]. The value of d

in figure 1-1 is equal to one wavelength of the pinger signal. Therefore the phase

difference between the hydrophone outputs is used in the bearing calculation. The

output of the hydrophones are sent to a preamplifier circuit. The output of the

preamplifer is filtered using an analog bandpass filter. The filtered signal is passed

through a zero-crossing detector and fed into a DSP. The DSP then cross-correlates

the signals and forwards the timing information to an embedded linux computer

[ ]. Finally, the linux computer computes the bearing to the pinger source [ ].

A B


HQ I H2


D C

[ir J 'I H4


Figure 1-1: Subjugator 2000 Hydrophone Array Layout

1.3 Cornell University AUV

The Cornell AUV 2003 entry used a different array configuration from that

used on Subjugator 2000. This configuration, known as short baseline [ ], places
four hydrophones at the extremities of the sub as shown in 1-2. The timing

information obtained is the time of arrival between the hydrophones. This only

allows one sample per ping to be used to calculate the bearing to the source. The

data acquisition in this system involves a preamplifier circuit connected to an A/D








converter. The A/D values are processed by a DSP. The signal information from
the four hydrophones are processed in an embedded linux computer to compute the
bearing to the pinger source [ ].



.. ... .. .....,










Figure 1-2: Cornell AUV 2003's Hydrophone Sensor Placement

1.4 Orca

The MIT 2004 AUVSI entry, ORCA VII, uses an ultra short baseline hy-
drophone array. The array consists of four sensors in a pyramidal formation. The
data acquisition method is similar to that used on the Cornell University entry.
The only exception being that a single DSP is used to filter and cross-correlate the
hydrophone signals. The DSP also calculates the bearing and elevation angle to the
pinger source and sends the information to eh embedded linux computer [ ].
1.5 Hydrophones

The hydrophones used in this application are designed for navigational use.
The array hydrophones are custom-designed International Transducers part ITC-
4155. They are omnidirectional in their horizontal plane [ ]. The sensitivity for
the frequency range of 20-40 kHz is -196 through -205 dBV referenced to 1pPa.

The output from the hydrophone is a differential sinusoidal signal corresponding to
the acoustic signal in the water. The hydrophones will be used in a short baseline
configuration as discussed in chapter 5 and as shown in figure 1-3.














































Figure 1-3: Subjugator 2004


Hydrophone Placement














CHAPTER 2
AMPLIFIER CIRCUIT

The amplifier circuit used in this application is designed to amplify a given

signal to saturation. The information of interest from the hydrophone signals are

the zero-crossings. By amplifying the signal to saturation the pertinent information

is maintained. This chapter explains how the differential signal of the hydrophones

are accessed and amplified.



/ p \ > -Amplifier
50 mVp-p
5 Vp-p

Figure 2-1: Amplifier Output


2.1 Differential Signal

The output of the ITC-4155 consists of two wires. One wire carries the signal

of the sensor output. The other carries a signal that is equal and opposite. Like a

single-ended signal, a differential signal requires a return path [ ]. In the case

of the ITC-4155 hydrophones, the two signal wires are surrounded by a shielding,

which is the return path. To properly connect the sensor, the signal wires are

attached to the differential amplifier inputs and the shielding should be connected

to ground. The instrumentation amplifier amplifies the difference of two signal

wires. In this manner, any common voltage on the signals, usually noise, is not

amplified.

2.2 Circuit Design

The amplifier circuit consists of two main components: an instrumentation

amplifier and a schmitt trigger buffer. The instrumentation amplifier is used to









amplify the differential signal to saturation. The amplifier's output is fed to the

schmitt tri .-c --r buffer to convert the signal into a digital waveform.

2.2.1 Instrumentation Amplifier

Since the output of the hydrophone is a differential signal, an instrumentation

amplifier is used. The Burr-Brown INA331 instrumentational amplifier was chosen

based on the specifications listed in table 2-1.

Table 2-1: INA331 Specifications

Description Rating
High gain 5 to 1000 V\V
Bandwidth 2 MHz
Slew Rate 5 V\/s
Low bias current 0.5pA


The INA331 is then incorporated into the amplifier circuit with the following

design behaviors:

Gain 300 V \ V

Input Common Mode Voltage = 2.5V

Single Supply Configuration

VREF = Ov


0
T v3


Figure 2-2: PSPICE Circuit Layout










GAIN = 5 + 5(R2/R1) (2.1)

The behavior of the instrumentation amplifier portion of the amplifier circuit

is simulated in PSPICE using two small-signal sources with a phase difference of

1800, see figure 2-2. This figure also shows the connections required for proper

use of the instrumentation amplifier. Resistors R1 and R2 determine the gain of

the amplifier as defined by equation 2.1. The simulated input is equivalent to a

differential signal with an amplitude of 50 mVp_p. The output of the simulation is

a rectified, saturated 5 Vp_p signal as shown in figure 2-3. The simulation results,

figure 2-3, show an input signal of 50 mVp_p and an output signal saturated to 5 V

that still contains the zero-crossing information of the input signal.


Figure 2-3: PSPICE Transient Simulation









2.2.2 Schmitt-tri- 1-_ r Buffer

The Schmitt-trigger buffer is used to condition the amplified hydrophone

signal. When input voltage exceeds the positive goin threshold, VT+, the output

voltage equals 5 V. The output voltage remains at 5 V until the input voltage is

below the negative goin threshold, VT-. With the following threshold specifications,

the buffer device converts a sinusoidal signal to a digital waveform.

Table 2-2: Threshold Voltages

VT+ 2.65 V
VT- 1.88 V


2.3 Board Design

The design of the amplifier board is constrained by the space available in

the given application, Subjugator 2004. In this submarine, the amplifier board is

installed inline between the hydrophones and the wet pli'-' i. L hull connections.

The board is made water-proof by using a mold to seal it with epoxy. The shape of

the mold requires the board to be less than 4 inch long and less than 1 inch wide.

The amplifier board needs to be placed as close as possible to the hydrophone

to retain most of the signal integrity. The instrumentation amplifier and the

schmitt tri--.- v-r are available in small surface mount packages. The additional

passive components used in the amplifier circuit are also available as surface mount

components. The board layout is shown in figure 2-4.

Since a suitable connector for the hydrophone wire is not readily available,

the board was designed to connect directly to it. The three pads on the left hand

side of the board are arranged specifically for the hydrophone sensor wire. When

assembling the board, the two signal wires are soldered to the smaller pads. By

pulling the back over the insulation, it can be soldered to the larger pad.






































Figure 2-4: Amplifier Board Layout. (Not to Scale)














CHAPTER 3
SIGNAL PROCESSING BOARD

The signal processing board consists of an Atmel Mega 128 and an Altera

Flex 10K70 FPGA. The Mega 128 is the main control unit of the autonomous

submarine. All sensors are interfaced to the microcontroller as shown in figure

3-1. The microcontroller makes control decisions for its current task based on its

partially processed sensor data. The FPGA is currently used solely for processing

the hydrophone signals. In the future, the FPGA can be used to interface more

sensors and/or provide a fast parallel processing environment. The processing

board includes additional hardware to interface a digital compass, communicate to

a an embedded linux PC, and allow in-system programming of the Mega 128 and

Flex 10k70. This chapter describes the functionality of the Mega 128 and the Flex

10k70.

3.1 Atmel Mega 128

The Atmel Mega 128 is an eight-bit microcontroller unit with flexible and

powerful on-chip peripheral capabilities. The functionality of this microcontroller

include an eight-channel analog-to-digital converter (ADC) with ten bits of

resolution, two universal .i- vinchronous serial transever (UART), and eight high-

precision timing output lines. The architecture of the code onboard the Atmel

is designed as an interrupt-driven sensor data acquision (ISDA) and interrupt-

driven accutuator control (IAC). The incorporation of the ISDA/IAC philosophy

eliminates wasteful polling routines freeing processor time to make high level

decisions and perform complex calculations [ ].









Hydrophones


Analog Sensors


UART Mega 128


Address/Data


PC/Console


Figure 3-1: Signal Processing Board Block Diagram


3.2 Altera Flex 10K70

An Altera Flex 10K70 serves as a flexible hardware expansion device. Cur-

rently, logic cells are utilized for debug registers, additional I/O pins, and hy-

drophone logic [ ]. The hydrophone logic only occupies 15' of the logic elements

of the Flex 10k70. This leaves a 3200 logic elements for future expandability. The

Flex 10K70 features are shown in table 3-1.

Description Value
Typical Gates 70,000
Logic Elements 3,744
Logic Array Blocks 468
Embedded Array Blocks 9
Total RAM Bits 18,432
Table 3-1: Flex 10K70 Specifications


Flex 10K70


General I/O














CHAPTER 4
SIGNAL PROCESSING

The amplified signal is processed in the FPGA as a digital waveform. The

three hydrophone signals are processed simultaneously to determine the time of

arrival of the pinger signal to each hydrophone. First, each signal is filtered for

a pinger frequency of 27 kHz. The output of each filter block is then processed

to determine the time each hydrophone sensed the ping relative to the first

hydrophone that senses the ping. The state machines developed for filtering the

signals and timing the arrival of the pings are described in this chapter [ ].

4.1 Frequency Filter

Two registers containing the time values of the desired frequency band are

accessed by the Mega 128 microcontroller at reset. A state machine uses a counter

to calculate the elapsed time between rising edges. When the time between rising

edges falls between the desired frequency band values, the frequency filter module

outputs a high signal. The state machine operates and samples the hydrophone

signal with a 4 MHz clock. A 27 kHz hydrophone signal is t 148 samples of a

4 MHz clock. To use a 1 kHz frequency band centered at 27 kHz in the state

machine, the microcontroller writes frequency band values of 145 and 151 to

their corresponding registers. The sampling frequency can be increased for more






S r.-- Pin- mil
Figure 4 : Target Pinger Filter Simulation --

Figure 4-1: Target Pinger Filter Simulation














I I

Figure 4-2: Filter Simulation High Frequency Noise


accuracy, but it is not necessary since the competition pinger frequencies will be at

least 1 kHz apart.

Module Testing.This module is tested using the test vector for a 27 kHz signal

as shown in figure 4-1. The input,labeled i/,;./ includes simulated noise identified

by the circled regions. The resulting output, labeled freq, is high when the time

between rising edges of the input is 37 us. The simulated noise creates edges that

falsely trigger the state machine and causes the output to go low.

The high frequency noise is di-ph i' i t in more detail in figure 4-2. The period

of the 27 kHz is a 37/s. The the first time bar, at 203.455 ps, is the first rising

edge. The next time bar is at the next rising edge and is equal to +37.13 ps. This

causes the output signal freq to go high. The noise edge occurs at +44.215 ps,

resulting in a period of 44.215 37.13 7 7/s, which causes the state machine to

ti .- -r freq to low.

The low frequency noise causes the same result on the 'freq' output as shown

in figure 4-3. The time from the first time bar, at 55.59/s, to the second time bar

is ,37ss. During this time, the output value of 'freq' is high. The time from the

second time bar to the third time bar is 40/ps, which is -25 kHz. The frequency

range lies outside the desired range, causing the output of 'freq' to go low.





SI I I -


Figure 4-3: Filter Simulation Low Frequency Noise














I I




a a
-------- I ------






ia %a m


ic-













-00
;| a | a i



| A ^A 2





; A A i r








---------------------------
I I ir






-cc

0
0 <1- f
ia a












SnC 4A ^
BI *-*I

: k I ;








II ^^' ^
8~ D:D ___ ;S _____^
A~









4.2 Hydrophone Time of Arrival

The flow chart on page 25 describes the state machine used to calculate the

time of arrival of the pinger signal to the hydrophones. The flow chart includes all

the different combinations in which the hydrophones can recieve the pinger signal.

Figure 4-4 refers to the initial states, SO and S1, in which all the output values are

reset and the input signals HI, H2 and H3 are all low. Figure 4-4 further describes

the first set of combinations where the hydrophone H1 recieves the pinger signal

first. State S'?_I. 1r;/ starts a counter used to measure the time of arrival of the

pinger signal to the hydrophones. Also in state S'?_I. l.;, the output WE1 is set

high for one clock cycle. All the states labeled .qX_-.. .r; pulse a write enable signal

that trigger a register to latch the current count value. When an edge has been

detected in each of the hydrophone inputs, an interrupt signal is generated in state

Interrupt which is interfaced to the Mega 128. The Mega 128 will read the three

values from the hydrophone registers in the interrupt service routine.


,;1


|





[ count ,:
E delay_cnt I 'IIIII'I"I" ':"


Figure 4-5: Simulation of Time of Arrival Calculator


Module Testing. The test vector for this module simulated the output from the

filter modules. An edge is generated on each of the three input lines. Figure 4-5

shows an instance of the simulation, where the write enable signals are generated

after each edge is detected in any of the inputs. The simulation also shows the






16

interrupt occurring after an edge is detected on each of the inputs. The state

machine returns to its initial state after a delay a .5s.
















CHAPTER 5
TRIANGULATION

The angle to the pinger source is determined by using simple geometry. A

system of linear equations is derived from the dimensions of the sensor array and

the angles of the hydrophones to the pinger. Figure 5-1 shows how the array is

represented on a coordinate system with respect to the pinger source.



(DsinO,Dcos9)


10 ,


(-L sin30,-L cos 30c ,


SL sin 30,-L cos 30)


Figure 5-1: Hydrophone Array on 2-D Coordinate Plane


The origin is set at the hydrophone that recieves the pinger signal first. The

coordinates of the other hydrophones are derived from the shape of the array, in








relation to the origin. The arcs represent the pinger signals as they arrive at each

hydrophone. The value of T1 is equal to the distance between the arcs divided

by the speed of sound in water. Similarly the value of T2 is equal to the distance

between the arc crossing the origin the an arc crossing the left hydrophone,

which is not shown. The value of L is the maximum time difference between two

hydrophones, assuming the array is in an equilateral triangle configuration. The

time of arrival values are converted to distance values by the relationship of the

speed of sound in water t 1500m/s. 5.1 is the distance equation between two

cartesian coordinate points (xl, y ) and (x2, Y2). Equations 5.2 and 5.3 are distance

equations for the right hydrophone to the pinger and the left hydrophone to the

pinger, respectively.



d =V(x2 x)2 + (2 yy2) (5.1)

TD +1 T L(-L si3in30- Dsin )2 + (-Lcos 30- Dcos)2 (5.2)

TD + T2 (L sin 300 TD sin )2 + (-L cos 300 TD cos )2 (5.3)

Equations 5.2 and 5.3 are combined to generate two equations, 5.4 and 5.5.

This system of equations are solved for the angle 0 given the values T1, T2, and L.



T2(2TD + T2) + TDL sin 0 = L(L + /3TD cos ) (5.4)

T (2TD + T) = L(L + /3TD cos +TD sin ) (5.5)

















CHAPTER 6
RESULTS AND CONCLUSION

The system described in the previous chapters was integrated and tested in

a 2' x 5' x 1.5' container of water. The following figures are the results of =730

recorded data values for the first set and ,1030 data values for the second set.

Since phase difference is not being used, only one result can be recorded per ping.

In this test setup the pinger was placed 5 5 from the center line of the third

hydrophone. The array was placed at one end of the container, while the pinger

was at the other end. This chapter will described the results of the data acquisition

and the triangulation. The final section describes methods to improve this system.

6.1 Data Acquisition Results

Since the pinger and the array are both stationary, the time values of these

results are not expected to fluctuate more than 10 samples from a mean value.

The following three figures are histograms of the first set of results. The x axis

corresponds to time values, while the y axis corresponds to number of occurrences.

Time of arrir l dslinbution, OUTPUT7
100
Hydrophone 1
I Hytoptlone 2
90

80 -

70

60 -
50 -

40





10
o 200 4oo 600 1000 1200


Figure 6-1: Dataset 1: Hydrophone 3= 0









Time of arrival dslinbutlon. OUTPUT7


Figure 6-2: Dataset 1: Hydrophone 1 0


6.1.1 Data Set 1

Figure 6-1 extracts all set of values whose time for hydrophone 3 is equal to

zero. This figure shows two very distinguishable peaks at ,425 for hydrophone 1

and 680 for hydrophone 2. This analysis concludes that hydrophone 3 is most

likely equal to zero.

Figure 6-2 is a histogram of all set of values whose time for hydrophone 1 is

equal to zero. The result is a more even distribution than that of figure 6-1.

Time of arrival dslinbutlon. OUTPUT7


200 400 600 800 1000

Figure 6-3: Dataset 1: Hydrophone 2










Figure 6-3 is a histogram of all set of values whose time for hydrophone 2 is

equal to zero. The result is similar to that of figure 6-2.

6.1.2 Data Set 2

Time of earrivl dslnbution. OUTPUT6
700
m Hydrophone
M HyDoptone 2
600-



400

300

200-

100


0 100 200 300 400 500 600 700 800 900 1000

Figure 6-4: Dataset 2: Hydrophone 3= 0


From this data set, figure 6-4 represents the distribution of the time values of

hydrophones 1 and 2, while the time value of hydrophone 3 is equal to zero. This

figure has a well defined peak for hydrophone 1 at ,50 which occurs nearly 700

times. The highest peak for hydrophone 2 occurs nearly 300 times at a time value

of?360.

Figure 6-5, refers to the distribution of time values of hydrophones 2 and 3

with respect to hydrophone 1 being equal to zero. This figure shows a similar dis-

tribution as that of figure 6-4, where hydrophone 2 now contains =650 occurrences

of the approximate time value of 60. However, the peak for hydrophone 3 is lower

than that of hydrophone 2 in figure 6-4.

The distribution in figure 6-6 corresponds to the scenario where hydrophone

2 is equal to zero. The results in this figure have a low number of occurences.

Therefore this scenario cannot be considered as the conclusive result. The results of

figure 6-4 are the best values to use in triangulating this data set.










Time of arrival dslnbutlon. OUTPUT6


Figure 6-5: Dataset 2: Hydrophone 3= 0

Time of arrival dslnbutlon, OUTPUTG


1000


Figure 6-6: Dataset 2: Hydrophone 3= 0


6.2 Triangulation Results

Using the results from the previous section, the angles were calculated per

the method described in chapter 5. The angles, as shown in figure 6-7, show the

distrubition of values from the previous section as being mainly the reflections of

the pinger signal in the test environment. The correct angle, 5o, is within the










cluster of bearings close to the zero degree mark. The echoes of the test container

are visible in area centered at 220.


120 60
08
06
150/ \ 30
S04 \
02 2

180 0 O



210 \330


240 __- 300
270

Figure 6-7: Triangulation Results of Dataset 1



Similar tests were performed in a pool, that resulted in inconclusive data. The

acoustic noise of the pool pumps did not allow the signal filters to work properly.

6.3 Conclusion

Based on these results, the system described in this thesis is affected by noise.

Creating a reliable acoustic based positioning system, requires accurate signal

filtering. The passive hydrophone sensors used in this system are sensitive to most

frequencies of noise. With proper analog or digital filtering, the sensors can be

used with better results. The system described in this thesis can be made more

reliable may building more complex filtering entities in the FPGA. The FPGA can

parallel process all the filtering of the signals and cross-correlate at high speeds.

However, the development time for using the FPGA will take longer than using

a Digital Signal Processor. The best approach would likely invole developing a

tunable analog filter that feeds into an FPGA or DSP to cross-correlate the signals.














APPENDIX
ADDITIONAL FIGURES
























so
Reset delay
Reset counter


V




Sl V T S2a S3aa delay S3aa S4aa delay S4aa
WE1= 0 WE2=1 I WE2=0 a WE3 =1 WE3 =0





SWE1 WE31 WE31 WE2



VF S2b delay S3ba delay S3ba S4ba delay S4ba
WE2 = 1 WE1 = 1 WE1 = 0 WE3 = 1 WE3 0
> s tac hunter



S2b S3bb delay Sbb S4bb delay S4bb
F E2 =0 WE3 = 1 WE3 = 0 T WE1 1 WE1 0



S2cdelay S3ca delay Slca S4ca delay S4ca

W nE2= TWE1 1 TWE1=0 WE21 WE2 0



S2 V j S3cb delay | S3cb S4cb delay S4cb
WE3 = 0 T WE2= 1 WE2 = 0 T WE1 = 1 WE1 = 0







Interrupt
IROQ=1



V
Delay
Increment Delay



V
T T F





Figure A-1: Time of Arrival ASM






















r


Figure A-2: Signal Processing Board














REFERENCES


[1] AUVSI, "Official rules and mission 7th annual international autonomous un-
derwater vehicle competition," http://www.auvsi.org/competitions/water., b',
March 2004, 10/22/2004.

[2] Sonardyne, "Acoustic theory," http://www.sonarl i., co.uk/ll,, ..,;, ,i,,
October 2004, 10/22/2004.

[3] Joseph C. Hassab, Underwater S.:, ,1 and Data Processing, Boca Raton: CRC
Press, 1989.

[4] Jennifer L. Laine, Scott A. Nichols, David K. Novick, Patrick D. O'Malley,
Ivan Zapata, Michael C. Nechyba, and Antonio Arroyo, "Subjugator: Sink or
swim?," AUVSI, vol. 3, 2000.

[5] CUAUV Team, "Design and implementation of an autonomous underwater
vehicle for the 2003 auvsi underwater competition," A UVSI, vol. 6, 2003.

[6] Robert C. Altshuler, Joshua F. Apgar, Jonathan S. Edelson, David L.
Greenspan, Debra E. Horng, Alex Khripin, Ara N. Knaian, Steven D. Lovell,
Seth O. N. .v lurg, Jordan J. McRae, and Marvin B. Shieh, "Orca-vii: An
autonomous underwater vehicle," A UVSI, vol. 7, 2004.

[7] Douglas Brooks, "Differential signals: The differential difference!," Printed
Circuit Design, vol. 18, pp. 36-37, May 2001.

[8] Paul Horowitz and Winfield Hill, The Art Of Electronics, Cambridge:
Cambridge University Press, 1989.

[9] Rolando Panez, Karl Dockendorf, William Dubel, Enrique Irigov,- -i Brian
Pietrodangelo, Alex Silverman, John Godowski, Eric M. Schwartz, Michael C.
Nechyba, and Antonio Arroyo, "Subjugator 2004," A UVSI, vol. 6, 2004.

[10] Stephen Brown and Zvonko Vranesic, Fundamentals of Digital Logic with
VHDL Design, New York: McGraw-Hill, second edition, 2005.

[11] J. Bhasker, A VHDL Primer, Englewood Cliffs: Prentice-Hall, 1995.

[12] Colin P. Clare, "Acoustic direction finding systems," U.S. Patent, no.
4,622,657, 1986.

[13] Atmel Corp., "Atmel mega 128 datasheet," http://www.atmel.com, August
2004, 10/22/2004.






28

[14] L. M. Brekhovskikh and Yu. P. Lysanov, Fundamentals of Ocean Acoustics:
AIP Series in Modern Acoustics and S':j,,l Processing, New York: Springer-
Verlag New York, 2003.














BIOGRAPHICAL SKETCH

My educational background includes a bachelor's degree in computer engineer-

ing from the University of Florida. After being involved in a successful robotics

competition team my last semester as an undergraduate. I designed a first place

autonomous PONG p1 icing robot for the 2002 IEEE Southeastern Conference

Hardware Competition. I was given the opportunity to continue my education,

in the focus of intelligent information systems, by the professors of the Machine

Intelligence Lab. Throughout my education as a graduate student, I participated in

many robotics projects. I was a member of the 2003 Subjugator Team that com-

peted at the AUVSI underwater competition and placed eighth out of 12 teams.

For the 2004 Subjugator Team, I was promoted to team leader. I went on to lead

a team of eight outstanding engineers to design a functional and competitive au-

tonomous submarine in three months time. We placed seventh out of 18 teams at

that year's AUVSI Underwater Competition. I went on to graduate with an excep-

tional engineering background, due to the participation in the Machine Intelligence

Lab at the University of Florida.