<%BANNER%>

Bracing Requirements of Cold-Formed Steel Cee-Studs Subjected to Axial Compression

xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID E20110113_AAAAEP INGEST_TIME 2011-01-13T23:56:59Z PACKAGE UFE0007014_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES
FILE SIZE 72499 DFID F20110113_AACXZJ ORIGIN DEPOSITOR PATH viswanath_v_Page_217.jpg GLOBAL false PRESERVATION BIT MESSAGE_DIGEST ALGORITHM MD5
a2647b505528a11ce2db5e80789552c9
SHA-1
0facdd99981daee3f39019b4f31633d267b8f37d
5857 F20110113_AADBQG viswanath_v_Page_138thm.jpg
26522a349fbd366d40b6a02a9935f768
0e05d73345c6c8e8cd4cbe7a7ebffa481710505f
11735 F20110113_AADAPD viswanath_v_Page_423.pro
6f059861a8091e7d206b12c627cd0909
020955d82754eab55d0da6e7ade1053974ff4204
55234 F20110113_AACXZK viswanath_v_Page_151.jpg
69b9131e6c24b595dc444e8c0aaa6742
af75bb4f147a4b3aed229d48aeac69f2a89c05f0
18871 F20110113_AADBQH viswanath_v_Page_139.QC.jpg
ae0cc3ec7e404a12077d37623148a26e
6f0f31afada69ffcaa05012df822d3fc7b674e9d
9737 F20110113_AADAPE viswanath_v_Page_424.pro
6b4cf5d5c76e002c0d74884d7dec1124
14716ae8af7bdc0fb0c328746cc4ab307abe5889
17847 F20110113_AACXZL viswanath_v_Page_132.QC.jpg
a3fd7d7c7aded5660aa03aef0a99985d
00ea1cca0d35a9876ec349d1c0293eae3d762771
5817 F20110113_AADBQI viswanath_v_Page_139thm.jpg
b368d1e84301f101634894436a2b2659
417b939719afcc32231f25cc915b78e92beebb84
24170 F20110113_AADAPF viswanath_v_Page_425.pro
aa432698cd9b101e61c4baed26852782
83d34f4c75c03962c56efd260975c6997f056d5f
5717 F20110113_AADBQJ viswanath_v_Page_140thm.jpg
c63b50f075d3bbcd2169ee7ed701e986
b3c7abb462cdb03cdce6e4378e5efd96a608a9e7
53336 F20110113_AADAPG viswanath_v_Page_426.pro
55357c8ba4d6e7488c1e4f31d4417660
a636bb85f22a0def8c8a9b196be9b5a0c68d9f44
6983 F20110113_AACXZM viswanath_v_Page_013thm.jpg
a84ff06ce53c4d13ab025b53ea4bc353
59694865002fbabc0086d7081ed4262cedb4f363
16021 F20110113_AADBQK viswanath_v_Page_141.QC.jpg
1f9aadc891af2152d6ffe6c174b42c14
3fca49aafe967d140343ebad47e47736d9229c91
38767 F20110113_AADAPH viswanath_v_Page_427.pro
5e982fe0abcba525d352dc3a9445eb37
114497e5cad14143701526e56103fdfcf6270e13
12221 F20110113_AACXZN viswanath_v_Page_351.QC.jpg
22d9160d8852b2e41f7b8ae0aadcd4d8
ead93998aa3961c0ec67347ebed36b30ab8f7c01
4751 F20110113_AADBQL viswanath_v_Page_141thm.jpg
5fdadc9a6939e87a2da0c0fa4a4500e4
7d5db49fd652c161ca7d2ba277726c1e7b304d16
32513 F20110113_AADAPI viswanath_v_Page_428.pro
103853f062bb0931f89994a0d231ed71
c7870a79c0a873bb63c64b89e2a1b22d6d450ec2
17610 F20110113_AACXZO viswanath_v_Page_447.jpg
6fb44a19482ff87730db3f3d84261019
d413b4c7ca308d336a0ca57fcb0402a97a0fe980
14364 F20110113_AADBQM viswanath_v_Page_142.QC.jpg
5fd1ea2b25419ff9ce46e6f43c1b5957
f21d54bf7df9e98745cfb17eb18cfc1b269606fd
27828 F20110113_AADAPJ viswanath_v_Page_429.pro
e830fda0362985865ae3d007cd17e69e
fd57dccb3fba03407d4a7c126693b831e32a4f69
521848 F20110113_AACXZP viswanath_v_Page_292.jp2
f92c87bc1eee630b5051b0e9799bf0fc
c121ba4b313c6c4f642380794634a0c1db91071b
4717 F20110113_AADBQN viswanath_v_Page_142thm.jpg
7fec504ce7e6c70ddf6372a6744a4dd1
9bc8b5023be60ec4dade0de3c0060e95ca3bfe61
40019 F20110113_AADAPK viswanath_v_Page_430.pro
3b03cf8abef722fd0c990ec2b5e7a1b8
381cc608ae2150346bccb5ff11ff76792582de8d
6543 F20110113_AACXZQ viswanath_v_Page_308thm.jpg
512da0786de17a3ee04efb58de3c7c25
0758dcf133ffe56405f1a69b4fb7849b7593637f
13904 F20110113_AADBQO viswanath_v_Page_143.QC.jpg
aaef93633ab52223b825b19c3f46fb92
3302bdb36fa34f427f6f6a4d08819ee3e30abc7b
34252 F20110113_AADAPL viswanath_v_Page_431.pro
7bfe0522115a17a788ff63c6de1fb752
49ce4c1fe5f8d6d41a1522155440861b2cbb34d4
111296 F20110113_AACXZR viswanath_v_Page_323.jp2
da79c8b9b3ef0c9c42065d89704c368e
a450e9a233b996fb1db5a51a6d4848ed7a83e38a
4445 F20110113_AADBQP viswanath_v_Page_143thm.jpg
a4b3855cb88b2dc30bc7a8e134515ac5
dd18e31122f74e6a36d45f1827f3e9a878d87e61
39847 F20110113_AADAPM viswanath_v_Page_432.pro
4ea475fc5a99d2c23c2e242c145acabc
151de09eb30b9cd78e134afc3c76056cfa87f9e4
25271604 F20110113_AACZZA viswanath_v_Page_410.tif
c115f2cec50b72e853a87c53318595af
039311f4498aa0813c1bf90b37a388fca7b3be76
1871 F20110113_AACXZS viswanath_v_Page_432.txt
770b67b714d7eef34f24ec413dc9bdcb
dc1e608fe345e0d6896dc26092ade2878544bd1e
14654 F20110113_AADBQQ viswanath_v_Page_144.QC.jpg
f7d367ddb436f36691c7bcf7965b1219
73838e7cec081c72df8a852ec12da51f16eff5df
45277 F20110113_AADAPN viswanath_v_Page_433.pro
657b19336b0f2513a3206db34150339b
e841671c82145884080cdd7ce562730b162b038d
F20110113_AACZZB viswanath_v_Page_411.tif
66386ec7b12fd03568876b5c6ab33827
c2cdb0bcfec8ad34434d5eabef936ca5a9c8c5f5
19375 F20110113_AACXZT viswanath_v_Page_050.QC.jpg
b0ead5913e7895950ecb3be0d770e7e5
5483e37096e590c87b2e7350a5ea96376d420a9f
4574 F20110113_AADBQR viswanath_v_Page_144thm.jpg
290c9e894b7ad5b4bed9d3068248a669
82e851c5be74e3064f03c28f930ba0c1601fa286
52812 F20110113_AADAPO viswanath_v_Page_434.pro
ceea37ce72bee4bd6da24a0aa4e341e5
ce50f48ddb1e3eecf323a1c88d1f059b40158781
F20110113_AACZZC viswanath_v_Page_412.tif
3c0002df7aacbc0190925f21fe725e25
a8f4fce53113b3979af4ab5fadfd9f28f6197f47
51951 F20110113_AACXZU viswanath_v_Page_250.pro
86f45922a16b36a3d644d3aa2043f2dd
9549180be2b5748897226d0224dacb7a593be766
13179 F20110113_AADBQS viswanath_v_Page_145.QC.jpg
c4f413e75dac6e9a9362d81edf0f7fea
2a7c2051b13caad3c28f7c52bf565c2820df22e9
45253 F20110113_AADAPP viswanath_v_Page_435.pro
bf11002d3923032487e9702a70705619
101c21073b447a214ab1562356f3d506ad37b590
F20110113_AACZZD viswanath_v_Page_414.tif
7dae2d66cc6f6ac9df322d8c14cd6140
fd9a536974bc1f9fa143ce0e570a71b00ce27546
30027 F20110113_AACXZV viswanath_v_Page_104.jp2
b407d4a99a6a9161e99a0914f7f9e137
98bedc0c0af86d89fa4c6cc74925497cc4ea37dc
4166 F20110113_AADBQT viswanath_v_Page_145thm.jpg
354c05483b0cdeee555a4cda24d9907e
e11c1e69ce75a4338b02d772b3084247c0e3c506
1051961 F20110113_AACYYA viswanath_v_Page_108.jp2
4d12934f1280bb040fecc794f7bd2e2f
e15893929854424f8778273f64c253cb1046505a
41115 F20110113_AADAPQ viswanath_v_Page_436.pro
dfe28d31135eb343c67900a0226b8abc
aca05b967835f00251b0cc5f3d90bf6b33c2d049
F20110113_AACZZE viswanath_v_Page_415.tif
e4ce525bd99a4c69f51809001a3bb31f
4f2ec9dc222d29b8e016be4cc599f64ead31fe67
47663 F20110113_AACXZW viswanath_v_Page_041.jpg
7981058224a18d8f16b85d701443ab90
bdc3538b99b9efb6716ddc1fa333dd90a2aea527
12174 F20110113_AADBQU viswanath_v_Page_146.QC.jpg
ab6438903f007937dbb0f37507495d01
9b18f0d45aa578dd334b47ceea039c0beaad9f1e
129192 F20110113_AACYYB viswanath_v_Page_109.jp2
9168f1038d567e888ec5c90fd3c50c4b
ca01693ddbcb3d91efe1e836ed61e63d5ee5b693
30310 F20110113_AADAPR viswanath_v_Page_437.pro
8575c5246b72756475471933ba9bedcf
43ad17fba1d548d4c7cbe71e8f0cc1c36e2716b5
F20110113_AACZZF viswanath_v_Page_416.tif
e93de684147890b5552891b0db065e50
efd9b8c18171487ff42fd407c2f1cc0abd325f7d
13243 F20110113_AACXZX viswanath_v_Page_292.pro
93af3c88f5f7180483586cd3588f5529
81f094df175ff848ebe75b2682034e830dcd527a
4121 F20110113_AADBQV viswanath_v_Page_146thm.jpg
ae75af58c40b4904087f09d6943bf131
a3916291e49604b9898e09fc8cbe566e7dc4426f
1051976 F20110113_AACYYC viswanath_v_Page_110.jp2
bb9363b0309bba7b719c6b54ca7ed3aa
17738f33bcd60e6cfca54cc26f41457f18127862
37021 F20110113_AADAPS viswanath_v_Page_438.pro
905c9b35515a0570e878da5b99fc8285
d83d718c9829c5451b4744dda41f2c7243ad785d
F20110113_AACZZG viswanath_v_Page_417.tif
12ef04150224574b84d3cbb842216564
db67de6ddb68d8d7c80e3e88429546b573d0bf0f
52646 F20110113_AACXZY viswanath_v_Page_318.pro
05ca4640a04eda92f46e599a35eab8c0
7c38e56bfce5c89a601467bfdf65b109e18267ca
13493 F20110113_AADBQW viswanath_v_Page_147.QC.jpg
14aa50927d788188c9b1c3d0cc7fb0d1
e90a0ce7a65b2bf3a21ec57cdf77d0d7879f6b87
129341 F20110113_AACYYD viswanath_v_Page_111.jp2
a3396b90312b96d4e4afa4729a320a1f
6d78b48ae534336e23ecaf3afc48050d46bf22e0
25154 F20110113_AADAPT viswanath_v_Page_439.pro
3d0ae1da12486e68871a6437f4c50d9b
3abe3863c216da5c24c58c00637f2cb52d429cc2
1053954 F20110113_AACXXA viswanath_v_Page_127.tif
cc9cca3a93da41b62bc7f14aca268aa7
f47621823fdd6b6fa8b68eb059cb84695b1464c1
F20110113_AACZZH viswanath_v_Page_418.tif
fad45333ffa0d939b4848bfca3e5cff6
af4b419c78799c4499ebf4f00f47bd587dcb112e
522548 F20110113_AACXZZ viswanath_v_Page_331.jp2
3e9b6ae658e8ec8dc651c0af67503c37
db49de770a900b974027fb2f7c7c8a5e5f188fe6
4441 F20110113_AADBQX viswanath_v_Page_147thm.jpg
7080982d50441828febcff505899ea16
132cbeedb134d1a11bb90aa741ab9797ce12c941
103063 F20110113_AACYYE viswanath_v_Page_112.jp2
629db83815899c0a1b99b369cc46f3f2
e2cb01299a50098adfb87a3c5a0575346384a7c6
48641 F20110113_AADAPU viswanath_v_Page_440.pro
99ea135491b4a7440c83b7baeeb3c543
65c619691db928ee28cc959f1102d174bfb7c404
100927 F20110113_AACXXB viswanath_v_Page_052.jp2
53b3f50f70a316394b4367016dc74e5b
630f2da83703fd17362f0bb138bc9de38548e6c2
F20110113_AACZZI viswanath_v_Page_419.tif
4cecfdf17a4072b4c4ec93fa79f39779
16b59388f277642c9bdf589d481d8f28d6be0836
14412 F20110113_AADBQY viswanath_v_Page_148.QC.jpg
d7d20bbdaa248a2b3249420ea2fdbbb8
adb54208c6e50a9362a94e65a340c9476e896063
109315 F20110113_AACYYF viswanath_v_Page_113.jp2
03ac96a8baf5c9a65e3695bfce601e96
6decbc98cc5306c7f6af2c51e565eaf637ff4d63
10580 F20110113_AADAPV viswanath_v_Page_442.pro
1127d14010d06fde0a9ddfe929a9133c
a582828ac74db4a1e2a5e96908170d7ba561ece5
19269853 F20110113_AACXXC viswanath_v.pdf
fa998025d75503ca3f1c0386a9fe2f26
8bab6496521d49bec1f7fe592b254e8353e4956d
F20110113_AACZZJ viswanath_v_Page_420.tif
8c27d3af7a53abf831d11d803c557a46
4dba7cf8a6071a1c259007cd2b45b9a0a836b445
17962 F20110113_AADBOA viswanath_v_Page_108.QC.jpg
5cd1c9499ed0b1afcec31b6cbe12221d
e4a6b8a18ec4ccab55564c326b0b247ea2104e43
4597 F20110113_AADBQZ viswanath_v_Page_148thm.jpg
b913e70e71f76fb754a6fe123ab22cfb
ee53a258e579f6ae49b9e3f84fd7400c1b055d1a
100257 F20110113_AACYYG viswanath_v_Page_114.jp2
5c56e94b2f06a9006a61580fdcc26b5f
2c0848e57aea271bd3fb46e265afeaed74695a10
33307 F20110113_AADAPW viswanath_v_Page_443.pro
2b2d19d0ce84c2c9a2799bb00db86bc5
33d21924538ab44ceeec9d81d3e4ada974aedd47
45316 F20110113_AACXXD viswanath_v_Page_144.jpg
828bb2d7738e905b80633964442ffded
de9ed56b5e7921e49017723ac14d4fa9d5211f5d
4397 F20110113_AADBOB viswanath_v_Page_108thm.jpg
498e5f83a8d34916523d64c428f2d5eb
65f38e7cef3cd28b174bf1c48561171ff22a8e88
87273 F20110113_AACYYH viswanath_v_Page_115.jp2
9c558408d5107ce272ced6049c02de70
5a26005042ea1e5a47dcddd84ab08235e038a0c3
37581 F20110113_AADAPX viswanath_v_Page_444.pro
1a1023d0c53bf0de6a8b36576997e437
64d5904fd2f67469f88ffc9505f730bd68f8ad1b
F20110113_AACXXE viswanath_v_Page_424.tif
87e00867a04036b17f3ff29be6888895
31e91ea83eb3bf1f3e26d946a3e46cda3facb7f2
F20110113_AACZZK viswanath_v_Page_421.tif
df091f98ef966ad706e76ce1a43fc390
8d851288d31179c1a14e7ba2ba09ed7b88494ad5
32775 F20110113_AADBOC viswanath_v_Page_109.QC.jpg
1ee54c8ec6d33fa401a413c6eccc81f7
730a8e7a1a4fb87fb239be5524b8b4a4ed28d61c
60617 F20110113_AACYYI viswanath_v_Page_116.jp2
9081cb8b6f5e9d9731c1ff4a36d88a9e
598cd66058bb96e6dd145e527904d3d2a6e11d65
36862 F20110113_AADAPY viswanath_v_Page_445.pro
6630d7edccf80f46c947b5cff5b8914f
8479dfb8cbea0141ae38e3a21abd7d347f38e85b
763384 F20110113_AACXXF viswanath_v_Page_417.jp2
7ff17dc0fbcc6fff61c9519b3705620d
d977545031c1b3097cdbc2f5f05e2fe2751c5560
F20110113_AACZZL viswanath_v_Page_422.tif
1d95c9700ed4e9c190994c8230854289
58a4aee50d625c5349a3643b142f012da5dc888c
8043 F20110113_AADBOD viswanath_v_Page_109thm.jpg
b4124790079d9fd4b101d5e4b69443b1
f92ec3d7447ba0e69b229cfc87a5391138a484a4
38349 F20110113_AACYYJ viswanath_v_Page_117.jp2
d39d5ae5f9cc5a2df097cc62d3d783c5
0a85ef62658e847b1be50e29cb3d682d36d967b2
14457 F20110113_AADANA viswanath_v_Page_365.pro
431973a812846ed53f4685c35c2aed35
b4d48e856528a40c4fd1c71570c934dd7dbc3b1d
15579 F20110113_AADAPZ viswanath_v_Page_446.pro
efb4d0f0c0c079e488890c48fd0e7d90
4d9da15f95481a42c5def700db00753850acbec4
1015718 F20110113_AACXXG viswanath_v_Page_150.jp2
3f275348ba27f66469a237b3d533281e
e8da44a014cbb76c1f10e2f0973d7c36c58fb6a2
F20110113_AACZZM viswanath_v_Page_425.tif
4652b0ecc4a95f7071dcb55387e26384
58a29f03c8dc22756b44fabcfb4b52b1406b8779
30776 F20110113_AADBOE viswanath_v_Page_110.QC.jpg
7094c4e6142561f3713498373103e106
fac49d4ed48db52f60bd7f594d8e62de08418eb0
15817 F20110113_AADANB viswanath_v_Page_366.pro
0f9eec42eb095f7954af774548a0fe20
46565b2aea4ec7a7d3367f29228a07fb9f2a4261
11634 F20110113_AACXXH viswanath_v_Page_046.QC.jpg
5f684c15cbf5e528d0c6094ab29d8538
4acc4c45b68dbbaa93fae0acd959e53e351f5477
F20110113_AACZZN viswanath_v_Page_426.tif
c7c2f810af5f671c0f1e524320c49155
bea70d2fedec5e2979e42ec78cd0631c55c1ebf4
7410 F20110113_AADBOF viswanath_v_Page_110thm.jpg
574fc0b6a7955ba4fa4688f1b6d3b1fa
ad3f22eb62097dc70b99536d577e8ccfd3cd71ea
129373 F20110113_AACYYK viswanath_v_Page_118.jp2
872a9628824b06c270267aae3aeb5fe4
b9654d254f84895a1fa2c22367c1ee616b566f73
45674 F20110113_AADANC viswanath_v_Page_367.pro
cb375cfb46d7a318b3a5cebc4fd1ce95
16aa092b172ad2fd86398a9f2d92bdc5ddcecfa9
16697 F20110113_AACXXI viswanath_v_Page_134.QC.jpg
2da9282d761c44b4f1475d030b0c022c
0c34971a1e6d0728b48a8e314e5ce3c0981c39d8
F20110113_AACZZO viswanath_v_Page_427.tif
898be08b94140ba35164147d17ebc47e
743d8d7f61aa940cb93de0ef522d0ec5d178171e
30599 F20110113_AADBOG viswanath_v_Page_111.QC.jpg
287c94bff8d59cfac5acb13b1b9bb2ff
533920f43c278afa1bcfcc1264fb5df3f2af3468
71576 F20110113_AACYYL viswanath_v_Page_119.jp2
e8cea445d5b9f914db9ef5f26f0a4ebc
62a46617548d070cdd6e1192d1fd667ade7a106c
9076 F20110113_AADAND viswanath_v_Page_368.pro
c2735eabb9204b9ea36d2063d6198086
8771a7c1db70db1e95506870bf938da990f99d36
41727 F20110113_AACXXJ viswanath_v_Page_009.jpg
4a0ad233f7278375b5b055f070af4df7
894d56d527f3666097885118a68adae75c4ede31
F20110113_AACZZP viswanath_v_Page_428.tif
433752800250539745fbb6730ab8196d
6bbce25a800ee372d0d592ac0e15a69af6565596
7293 F20110113_AADBOH viswanath_v_Page_111thm.jpg
4af7354621d78392c7444422e098c399
010504d6f8a82d0fc26c2154bfb6dd26f822bdbe
96089 F20110113_AACYYM viswanath_v_Page_120.jp2
7fd35fbce34d1130c5e3f82a43d58384
8df830c286f156ebdc0d15facb7a4b97b87ee956
8419 F20110113_AADANE viswanath_v_Page_369.pro
43688f8c69dd35eb1eb2563beff99182
cc672d334db202467687884676553eac253036a2
F20110113_AACZZQ viswanath_v_Page_429.tif
b62a0d06564b3d05fa4632a51959cffc
ef4fd341cd41acb6529e8d5e9921c7fc100fd68d
16183 F20110113_AADBOI viswanath_v_Page_112.QC.jpg
69917bbd289313cfa71693e90da299d6
99dd2fc7169e993d03af2cecbf2b25be8add710d
123634 F20110113_AACYYN viswanath_v_Page_121.jp2
d62bdc92866a2ce0b5f84bc48fa14d9f
faf985f67f57992787c50c27808454698da56238
13196 F20110113_AADANF viswanath_v_Page_370.pro
c3c9cfbd0f216317819a527deeb0468d
f9d347dbb8ea33b2ad2057d1958e62543e3b0953
510571 F20110113_AACXXK viswanath_v_Page_297.jp2
48ccf51c7dac0b65ec08cca015d2cff6
fd87b1cccad8ff389ce9539c67cbe9d2e0275aed
F20110113_AACZZR viswanath_v_Page_430.tif
512bd0e572254ec5142b7bcb1c74e726
a195f0ad96881cfa574e84574f35b714031dc713
4124 F20110113_AADBOJ viswanath_v_Page_112thm.jpg
6bfff228a3f3f82141a5d95c3e34cae9
df9f7ecd122efce155fb8dc9bb8a4e9ea69425a0
71863 F20110113_AACYYO viswanath_v_Page_122.jp2
e103e79980efbd0c256856c7fd5eaf29
65ae4abf5a4c2d31f18dc5cbe0e49a197e407c4a
16945 F20110113_AADANG viswanath_v_Page_371.pro
81463fca3b461ced375ac376e2517ca5
354f89882b8806edee15e6da4c390260a400e47b
16803 F20110113_AACXXL viswanath_v_Page_401.QC.jpg
4c7b8873a92f53e8d3464dd21cc2cd78
887e732923e3880fe452ecc9c401663be212c639
F20110113_AACZZS viswanath_v_Page_431.tif
112063cab7d2d04bfe816d64f1c26349
ed7d5eb44ee9908ef0c047f469d143f80507d9c5
17898 F20110113_AADBOK viswanath_v_Page_113.QC.jpg
8d11faa213d22e83f93ef09f941ba948
c105d46c3f06cf6002bdf52c1020eee3c4f5139d
69587 F20110113_AACYYP viswanath_v_Page_123.jp2
d64922ba751370389d82fa88a95f2f1b
852f6121745339c6f451d467177a3f5fe118489f
31143 F20110113_AADANH viswanath_v_Page_372.pro
5e44fc786c71b06ef22ea1e20f0d9302
a8af97cc05256ae33d24126e229061d48e415c04
833 F20110113_AACXXM viswanath_v_Page_279.txt
9819b179a7d18f0212a9e5f81338b7f3
97c7af0f96c143eb5fe0f424d06e4b6305f28862
F20110113_AACZZT viswanath_v_Page_432.tif
0eacc191d4f5ec2a3afb621dbe7b1b09
54e162641dce8938e5aad5006712fcedd1616335
4652 F20110113_AADBOL viswanath_v_Page_113thm.jpg
abb07fe053ad9d37ac06550dd95e36b0
cd1e5c54943e5a950de407e32932ae6c0ac805be
36036 F20110113_AACYYQ viswanath_v_Page_124.jp2
6df2873593d63eab17006f083d3a5fa4
52f9cc4e774b6f4945486ef9409f653720cf46c8
11648 F20110113_AADANI viswanath_v_Page_373.pro
e1748de1897d0eb450413781fe5aba02
7d73c494928f36582cea05ba8132bd862a7a20e9
1051952 F20110113_AACXXN viswanath_v_Page_398.jp2
e8d6e9ac6ecf32541db2d64fdb966d99
8a387dfc783243e2e57abc5763a034e4933c8f15
F20110113_AACZZU viswanath_v_Page_433.tif
f572bf42f51a6e43ee3c91c70b8f131d
0e43bf8ed499b2b38241b31a060480b54a6bee79
16689 F20110113_AADBOM viswanath_v_Page_114.QC.jpg
215c1eb74659471a55f96e5480633eea
e4c1ea7d3010e697b28bac22f68025b73024bc91
39624 F20110113_AACYYR viswanath_v_Page_125.jp2
4e5d18118a0bf5cd32c130051a2ec48a
5c96f0547af91d95e5bb020247339d17ff1395de
9720 F20110113_AADANJ viswanath_v_Page_374.pro
f14cc00e06798a2b0eb74d704cd53033
fad71bfb3ab68fba2905cb77e6c1737329bc72c8
1387 F20110113_AACXXO viswanath_v_Page_429.txt
19ef03a1340bd048dbd4e88a34d9a65c
b409335f6536dcd7b6a97b0ed4dbfb035657b6a8
F20110113_AACZZV viswanath_v_Page_434.tif
366f52bcd41ba63d1deff095c4fb9359
a1d9c26317a7fdbd1e883ffdf1ac90c9d96094d6
4231 F20110113_AADBON viswanath_v_Page_114thm.jpg
793170e387ebaf3373c4124d8e9dd418
467249d965dfe8ff78dcff708dd8948f0a5d605b
102738 F20110113_AACYYS viswanath_v_Page_126.jp2
5ac33d9941d676fa05bc9b9edcafbc0c
a4dafbd82cfcc842924d236fff5b3170efaeb8c1
9596 F20110113_AADANK viswanath_v_Page_375.pro
53ff2fbc566940bae1f6626038f164b8
2125c1c702889c3d5de73fa03cee7603add812de
537578 F20110113_AACXXP viswanath_v_Page_200.jp2
06020d5b5c708cbc310876df285b57e6
38717b9b1554a4047bf810f9c17a4c1a900e1524
F20110113_AACZZW viswanath_v_Page_435.tif
182cc3797c90447090f450021d1fd601
4efa7cea4c1162e48a995f84616956bab7fc4878
14074 F20110113_AADBOO viswanath_v_Page_115.QC.jpg
cd8767c64feea2659b18d1112d0debe9
727fd60d5e504a3c2b7d7ff42d37fb8bb14d6058
937665 F20110113_AACYYT viswanath_v_Page_128.jp2
64e7124004cf45f3178785b5c24aaa75
77ba7ce365b326ffb7a0bc17da447c1ffbd9959c
10103 F20110113_AADANL viswanath_v_Page_376.pro
ac5715954188fb642944f57de904dfc1
f4251b00ae4a2a1d096cd2d163ea8f82125a50e8
1095 F20110113_AACXXQ viswanath_v_Page_130.txt
165549f571cabde92455b6f6190f8916
d358dab4e913f25d175d2603269b4b74d8f0e72c
F20110113_AACZZX viswanath_v_Page_436.tif
a85b343bf786096b6ee3f8d5bb87e4e4
4f038c56d25f014b26e01f15ab08857b1c298bd3
3876 F20110113_AADBOP viswanath_v_Page_115thm.jpg
acbf0e1180d73f613b066530f2f51dfd
53656849902ceab7680c6a5e765024ee30732056
739100 F20110113_AACYYU viswanath_v_Page_129.jp2
a35b8b5b105baf1fa03d50264c5291e1
0b2a6d860c2bd839b0c01c0867c2d5c8c6f0f564
10026 F20110113_AADANM viswanath_v_Page_377.pro
f419e9852a6cfcb2a8278c22d12d6f80
b196f5665ae23231627bd7703747fa0052ebf6d8
42601 F20110113_AACXXR viswanath_v_Page_359.jpg
0e9941b9f257cd8ee4050198ce6d44dc
85f5df287dcc56eb3e74b907fcff88e3126b108b
F20110113_AACZZY viswanath_v_Page_437.tif
11e4aeacf9230175f044f5bb4a75f40d
329516b458c3046c56be80302d05c61534e66fcf
10806 F20110113_AADBOQ viswanath_v_Page_116.QC.jpg
c641c7b1e1a8b6953b1211f5fe8ba8dc
a8c2c096ac44da2c7971fee7de9f4b3936901eb0
804749 F20110113_AACYYV viswanath_v_Page_130.jp2
38092eb2717a41d87d8048f5c6f21e46
de563e5aca2c46558115859aab7015d9917f5dd2
10089 F20110113_AADANN viswanath_v_Page_378.pro
7850367d5dca416c958e1bb7e0371211
48cf6f8f429f89c28b5110b0c54e7a6fa5835480
F20110113_AACZXA viswanath_v_Page_352.tif
e3a749fe6ee95f8a6f401a4d6d9c8a22
d91badbd817a7846106a5e9d153d0abcd01a2fae
20798 F20110113_AACXXS viswanath_v_Page_442.jpg
6effed7f8a293d24ede06357543743cb
94711a094b120bf444854f295766c23c479fb892
F20110113_AACZZZ viswanath_v_Page_438.tif
f947a9a12ff269d44942831db7c73007
1ff20285a76e0e693ac2a207f5fbe49986f57bb4
3089 F20110113_AADBOR viswanath_v_Page_116thm.jpg
986c724cca878f6084ff5d924c9f95cf
44d533ca9d085ebf425dd6ff522f57361edd19f3
1042916 F20110113_AACYYW viswanath_v_Page_131.jp2
feeaa2e7fee8b5e6f730d0ba59619a0b
bb2c0d03d095f450739ff2bca88e850c327060c3
9192 F20110113_AADANO viswanath_v_Page_379.pro
5577c61d82e339d452d17b2882596102
45c5718b3f343f9e273266d16d89f4599626781a
F20110113_AACZXB viswanath_v_Page_353.tif
c42ba6ac317b3dd8db737aba43b2eac7
4931c91349dfbd91556ac35f4a3489e2b0c017bc
F20110113_AACXXT viswanath_v_Page_191.tif
15fe38bc87249ce1a6cdbbca3fc44b1c
ac4de3f98b1a55f9156804de28d786a7a31a34a1
13278 F20110113_AADBOS viswanath_v_Page_117.QC.jpg
1b1c7e6985904cefe2ce38be9c5558ba
9919ae4843185912512ce7a56365551c809e35d1
762345 F20110113_AACYYX viswanath_v_Page_132.jp2
2277fc4f2eb7a3dc3812f3bda12fc29b
bc87ef3311381703173072e1cee4a523bf83ecfc
12100 F20110113_AADANP viswanath_v_Page_380.pro
83864014dff6a3a7d2fd637709dbc2e9
c6167fb79704a31fde095c4f4760d4abf46c3018
F20110113_AACZXC viswanath_v_Page_354.tif
4b2e8c5bb35b2807463d45316c5d1810
10d8080ba7c88260f3de128915a8c9584d5a9d37
12635 F20110113_AACXXU viswanath_v_Page_306.QC.jpg
6524a244f52f45049a67089925e3f60e
70171703c56fe95bb88f13a9e9c6e19f71851210
3660 F20110113_AADBOT viswanath_v_Page_117thm.jpg
dc2b38676d7580dd0a2d5d286cf12a22
89fde6e2285b1c66449db3170fb5804806a938cf
618023 F20110113_AACYWA viswanath_v_Page_047.jp2
ca4fff5f761068e5abf8adeeda780f2d
255fbb2ab2a1b2c7f37e0ef9433b19f29c24644c
867981 F20110113_AACYYY viswanath_v_Page_133.jp2
24ecb9b78eba0b9f58c6e35ff22fc03c
02af5a194fd22e4357913137a0dd8e4557fc0501
11719 F20110113_AADANQ viswanath_v_Page_381.pro
9b4bd39575de082c1959eba9b345b5f2
59be9dae95cfe9e4c3015256ca70b5d7e5dd089e
F20110113_AACZXD viswanath_v_Page_355.tif
a66f68d727f0b6738ef29594188e7829
2ecc5fcd36c3703aa5a7882e42c10ec405a3557f
25223 F20110113_AACXXV viswanath_v_Page_091.QC.jpg
ffa8724332330a7b5db4ca6e17820c00
dc4d35553bb6ba3a9c2a04586cd5d348a43b1553
31431 F20110113_AADBOU viswanath_v_Page_118.QC.jpg
a06f162637693abd09eb321dcbf2c625
bfdbb45a9c39909873a0dd7ff11e422d2ff61941
533288 F20110113_AACYWB viswanath_v_Page_048.jp2
cee1fbb38fa743a05b07cfcee151f704
fd0b9ff096df72826258f982cbd445c16ca9851b
898190 F20110113_AACYYZ viswanath_v_Page_134.jp2
6f7cf8ff00272ae3c7319f15c40a105b
5dfac087c14746a943501b92072687d8a33e68a0
10888 F20110113_AADANR viswanath_v_Page_382.pro
550c087ed0609368cf2b33bf36e98472
08af1d001baf48b30c5e351dcc178181282a8a6b
F20110113_AACZXE viswanath_v_Page_356.tif
4ba66c061fb41351d03f656c04baf8ac
5dd22ed9d298202a005f72cf8ec23767d6fc84c1
792091 F20110113_AACXXW viswanath_v_Page_156.jp2
62e2dfac5b5a03006ed608047c094718
66c5981486e2b68db4e22d769c24a0eb7d7ad019
7594 F20110113_AADBOV viswanath_v_Page_118thm.jpg
e7b56bfbd6823fe7ca2ff5ca28cb9ba3
455777e84dcdb1c837762a8a48018f286260d5b4
524653 F20110113_AACYWC viswanath_v_Page_049.jp2
c707abfa9549e0558180767b4cc37b0a
4524d909baea015c8e0df5d549aaa644f06e7d18
11576 F20110113_AADANS viswanath_v_Page_383.pro
4bd39df07789854d41abc061a7fb9869
355fe5ee3e52045b1ca0dd5a5a5e547d2e4567fd
F20110113_AACZXF viswanath_v_Page_357.tif
29483d18e623ff35c198c2c2aa2968b3
0e72504bbc6f78537d5daa144ceca28796957d15
698698 F20110113_AACXXX viswanath_v_Page_071.jp2
d9518bd9fbaf45fce9db3b83de2c32ed
5d36369c684ad6eaf868f3dc3fdbc452c62235c2
12395 F20110113_AADBOW viswanath_v_Page_119.QC.jpg
b6ee9ae0a28dc691cd19d58c788a9176
ef88b1bf153008ee6a81aeb47773a06d5086cae6
88068 F20110113_AACYWD viswanath_v_Page_050.jp2
1d2adb6e1977b4683c8a07d0a23f7a92
87f58a07c23a11f5ff2764ec048f6b2fb21bf824
9695 F20110113_AADANT viswanath_v_Page_384.pro
65407e9b55961b12095efb1cf0517987
9a264dca9d6b345d327746863f1563eb14399f3d
3631 F20110113_AACXVA viswanath_v_Page_319thm.jpg
b67aa718db87aefe143867530a8f84d1
c0cd3eb7a19244be950ea0517fe13d35f0f57e48
F20110113_AACZXG viswanath_v_Page_358.tif
a6d14c156fed3e14d576fb1307642ada
4d93b4bb7551188fd99aa040626fd03a9cc93c8e
69520 F20110113_AACXXY viswanath_v_Page_191.jpg
61941a0785efd974828186d5015ae512
aaece999a9ff80164bc470e020a8a26a26e38c87
3314 F20110113_AADBOX viswanath_v_Page_119thm.jpg
77908b9f2828962000cf56fef32745e8
e0ef0f04fcfeff7317a3b3ca91cd8bdbb0581856
94026 F20110113_AACYWE viswanath_v_Page_051.jp2
cc42579223cdd57ce3a57f80baa93d6c
679a58bd26a541db17710a683e55757bc7087f71
F20110113_AADANU viswanath_v_Page_385.pro
cbec82ad9b72acc975b5c563332e241c
b8abea9456b18b899b19fb9967740032ec808e4e
102593 F20110113_AACXVB viswanath_v_Page_225.jp2
47c92bc4d56578c3b1dadff5e4d3d4e3
b353ba535141021a04b978edec140158d9113bcb
F20110113_AACZXH viswanath_v_Page_359.tif
2b1c7b93b4ba088da3aaad24fc7df0d5
081c51275d99ff267d585efdb3e4ae041e054cc0
1051929 F20110113_AACXXZ viswanath_v_Page_267.jp2
6cfb55183ade98f8d65b7590d4cbc314
c7168e344d26859cb26777eef9a1795650ff4ae0
105499 F20110113_AACYWF viswanath_v_Page_053.jp2
b6f41e15a714d32f87cd492b6933f081
9f7c7530270932302d0f1ecdaa39a540f77601b4
13978 F20110113_AADANV viswanath_v_Page_388.pro
601195c324331bc8dcc24e4ec25bbd6c
b61338fbb67b737ef43c37e379bbb40f0729bc12
8425398 F20110113_AACXVC viswanath_v_Page_108.tif
d3ac9f00d7029fb510fbf6ffea2811e2
dc611d101b6ca1776964723d070a9df75a4fe8ea
15539 F20110113_AADBOY viswanath_v_Page_120.QC.jpg
1ef009504942ddf89eb104f828f9c519
54ab3fc4c7486b7380882e5f506f544ec17e57a9
100878 F20110113_AACYWG viswanath_v_Page_054.jp2
3bb1881e9281cdd49a304f9f358d0b52
c10dfc13ebf971c5106f4717e018cbebcfcd1dd6
11673 F20110113_AADANW viswanath_v_Page_389.pro
37c686f2e314ca4d5c1b4bed034f7a25
e221399b54da7f4904251e93495650d4a2c68734
99061 F20110113_AACXVD viswanath_v_Page_184.jp2
2fdf4c6f3279722c171b5ce2f7cd5ec1
fb80c81a465ad17eb4c13be86ef3c22574975e61
F20110113_AACZXI viswanath_v_Page_360.tif
eba08c8ab79978c46dfb31a130cd40c3
d8d48a156c90eee7ce2c6f1294252d15183c00ad
24838 F20110113_AADBMA viswanath_v_Page_078.QC.jpg
8bde265c5863a934b62cf598133cc37a
4b41754f3e8bb12a6aa8e84e33ee3368c375b770
3938 F20110113_AADBOZ viswanath_v_Page_120thm.jpg
6f73a7a2c3ba3f027cd697af685d85fb
86257091a8be4df50dbbe8dd1218c4a68841444c
105597 F20110113_AACYWH viswanath_v_Page_055.jp2
cb84cb8542f2351272d97c4b2278d715
8411029df4c795b2c1c941cd01d40cc40e0c34dd
12707 F20110113_AADANX viswanath_v_Page_390.pro
4836be3b6e06f0589a4c8eb4297b9f30
faafffe631cb1087d668989ed6bdf41e6fc7a27e
4216 F20110113_AACXVE viswanath_v_Page_370thm.jpg
d2f6cbbc110ecf2edab791aed409c86b
88ffd28935a8c10a1e2c689742302904ac57b15d
F20110113_AACZXJ viswanath_v_Page_361.tif
443c3b45f7bd7539d18f5335c37ee217
306febb8e2df20f4605f5a30a7cc43c64ee1f4b6
21760 F20110113_AADBMB viswanath_v_Page_079.QC.jpg
a8b82a7623cd7479fd79d76f66ff1f8d
ba4623c0fcf8556857d6ef9730a6eb30b1f53ec1
4304 F20110113_AACXVF viswanath_v_Page_296thm.jpg
38c132080800128dae16091d502689c2
cd7deb5ad3b95b8fddbb75e5c3b4278202a51728
F20110113_AACZXK viswanath_v_Page_362.tif
532bf528799660002f9de946f6271531
5425aa375c793ef6210b126581b37d4e51ff290b
6295 F20110113_AADBMC viswanath_v_Page_079thm.jpg
ac1c35224721e430134846661e979534
8e76eebf46f4d4069ab2fddb3a83871b0958b06d
97851 F20110113_AACYWI viswanath_v_Page_057.jp2
063fffbbffdd0ab4178232e6a2f5fff8
725ac5e759d910f87ec7269cb9537a91be1a282d
25794 F20110113_AADALA viswanath_v_Page_304.pro
caf2397fc9c359c37b86637efbad89d4
33e213667a856febb933c952be73cfa5be52f905
9052 F20110113_AADANY viswanath_v_Page_391.pro
a4c3e9092a64f963d392fac0a451dbab
154b8b448f124f28d941605adc4133a5d6fc06d0
36717 F20110113_AACXVG viswanath_v_Page_329.jp2
17b510e3ffcbc080b67e6ab78f641e95
17491327821c41dc185d7e0732030ac009bbc6e8
F20110113_AACZXL viswanath_v_Page_363.tif
0d28270693eb847122f26a3330c33d43
f355fe82df97f4bb26da2b9f8fb64139b0ed3805
23548 F20110113_AADBMD viswanath_v_Page_080.QC.jpg
c0a5d637fc1d5a138a1f974256fd0c15
0eaed479414dade4d3aba3ee4a10a6f919924bd8
90847 F20110113_AACYWJ viswanath_v_Page_058.jp2
86017f20a9946d54ab00457d5a9bffb0
5d32c24f2564b0297c878d89a32cb1955c8bcbb5
10309 F20110113_AADALB viswanath_v_Page_305.pro
09046318d71ffacbe598ae0e32147b77
483cc0a6ea4f9381384ccb8218519908a85bd4d2
11336 F20110113_AADANZ viswanath_v_Page_392.pro
ce73d3b9fdfbdd30810b1814e3342441
d842e3419c0f852e7590f7369636009b6b6257c8
97056 F20110113_AACXVH viswanath_v_Page_285.jp2
7b56945551f708d0a37d24861a7ae189
9feb1e7fcf10396fd928c28c22c35d9e342c54d2
F20110113_AACZXM viswanath_v_Page_364.tif
48753e458cc7da82f4e85130ba40ef4e
77968d8fa9655aadab8579cbda16c8f9d6fd644c
6627 F20110113_AADBME viswanath_v_Page_080thm.jpg
99b79eb8fcc76577e2beb44ca75b7682
0029d30e24531c122c53ba1aa87fbf1055018534
115707 F20110113_AACYWK viswanath_v_Page_059.jp2
b9b21b841660e415444b6d43e0324823
6b001985671063d69786f17a5344f085bd5c95ff
9445 F20110113_AADALC viswanath_v_Page_306.pro
65ff072e27be18cddf1b8b6c0cb676b5
2ac2e0600a6f4fd46e24ca0e7c16129e48986e8c
F20110113_AACZXN viswanath_v_Page_365.tif
4440b91fb33589f21f191b83ebfc0fd3
c3cdb384c93db677020867db768f2d08ccbe869d
25842 F20110113_AADBMF viswanath_v_Page_081.QC.jpg
8b0d2e6fa3b54c2317fcf309aae6bf2a
67e0d128c3f117e46f46d7a74210516805e7c2d6
108033 F20110113_AACYWL viswanath_v_Page_060.jp2
24952729bc34512c82584f6e28dcee5b
c247969c26f22be44231a171a90014d7ee4280f2
14637 F20110113_AADALD viswanath_v_Page_307.pro
7d228921ad70c5b68724f8283fc5ba3e
5986851ea2e2b4fb51981b8a104d065c073d26d8
13363 F20110113_AACXVI viswanath_v_Page_365.QC.jpg
4fb30ee6291aefaae0bf2809c992c629
bee2f542e3fce6f0de715fa0c73c5c8aacf4432b
F20110113_AACZXO viswanath_v_Page_366.tif
5cf6154c02418d6d636509813f99a1dd
e6f465eae233af0e2751728e6d4657afe661205e
6863 F20110113_AADBMG viswanath_v_Page_081thm.jpg
7a6cf7e7f1fe1be488cbfdce1605d819
5fd36a6be9564091ff04811371c2707a66289a98
84929 F20110113_AACYWM viswanath_v_Page_061.jp2
cef155aae3338d42fb913fe450322825
69dbb8f511ca7f46b108480f9114797884cc17b6
50705 F20110113_AADALE viswanath_v_Page_308.pro
e921be2c7ceb7219e6a5664fd615c293
c8945e807bc8ce530f8b560be0dd1b84218db2d8
339 F20110113_AACXVJ viswanath_v_Page_330.txt
f5720cac33f437fed672b5328a6542c0
88fb64c295041ef96c2a135e042d887c5c9774a8
F20110113_AACZXP viswanath_v_Page_368.tif
99f5dd7c3c1353ff6eb9377f033a7172
8a382ef44ea13797cc105a9415b99176b39a40cb
24308 F20110113_AADBMH viswanath_v_Page_082.QC.jpg
0cb06462bd659a77f861ffec335dc1f6
c9f55d9c65fd5eda0ec2561a5d5de326933ea87d
114850 F20110113_AACYWN viswanath_v_Page_062.jp2
48a1ecc58129c991daaf42fe672ed431
26c36ffd39927083eb9dbf545746a68632b20ef6
6675 F20110113_AADALF viswanath_v_Page_309.pro
897b6d7f042122e5cc50642e724c4999
8c631a3c46a05242a7293dde12202bfcab1de47f
53873 F20110113_AACXVK viswanath_v_Page_375.jpg
8690741494a208b4416925810a7c69ed
da818ae808c45762729e7e693a2cadab2aacaac4
F20110113_AACZXQ viswanath_v_Page_369.tif
6085183e476d00e1d3f274e8ee93f262
733ec61149d5cb90de617a1879bffcf32c6a4a06
6548 F20110113_AADBMI viswanath_v_Page_082thm.jpg
24642d5bad42d471bf5099a37392cca1
1439f18204819a2a400a4743662e486c0eb97cef
113163 F20110113_AACYWO viswanath_v_Page_063.jp2
0a19d59496e1a69e93c2d2ed30c01ba2
5e7cb033c18980df37ccde357d0d36f649b18741
16230 F20110113_AADALG viswanath_v_Page_311.pro
4982d00dcabaa5a17ef85579ace652fe
83cd942066382dd0330dd890020572454f3c99ec
45214 F20110113_AACXVL viswanath_v_Page_073.jpg
12648e0de1b41ecf199c53a224916ef0
fcd0e72f9abe8d9ae24b0703057fe9c4824d17e5
F20110113_AACZXR viswanath_v_Page_370.tif
05202a4a4ab4e3aee8a09f348bd63da3
0198d4fdc7086923d712b81f78a5ae3703f25cc9
25241 F20110113_AADBMJ viswanath_v_Page_083.QC.jpg
77022bff9b0fa3eb8ad5fc85ceb1bd1d
a5259fe820f423a2dccba1dbbf753fa1cca6020e
114870 F20110113_AACYWP viswanath_v_Page_064.jp2
2856f6d656669fd586e47efdf9492277
fdfb979fb0b27d4e30572a35cde73e6a01e0ce73
8092 F20110113_AADALH viswanath_v_Page_312.pro
d2bb11d2c7566f2cb9265f02237ab4f0
6cbd7b64dc137e6903fce4b7191e1516fd1ceee2
15522 F20110113_AACXVM viswanath_v_Page_263.QC.jpg
93e599efb58d6d21c949b8386d636717
0f06c2468ce901b023f95e30939cc6bb994d09b8
F20110113_AACZXS viswanath_v_Page_371.tif
17f6c8a40a1778c3ff6493ca23e3dba8
be32545f5815b58bcf0163e16fe94679cecb4000
6817 F20110113_AADBMK viswanath_v_Page_083thm.jpg
209919b118647f43fb2044b7fbfa7cb4
fb1810f427cc58463b83e748b6857f83f3349e5b
71229 F20110113_AACYWQ viswanath_v_Page_065.jp2
c0cf8f23591508aa4a79d0592d17d91e
f5ac56f6b2099a6e5f8e3bcf65f25ed6e9b4a172
47480 F20110113_AADALI viswanath_v_Page_313.pro
fb707a7c6d839a6b74488ca1c43d257e
3c3129d59ff01577f096085648f8ef86e32ae414
15441 F20110113_AACXVN viswanath_v_Page_189.QC.jpg
95851463b397509fcb971f4c31799d44
ec8ea0cea814de8dc1332723078f1b342d557e1d
F20110113_AACZXT viswanath_v_Page_373.tif
5ace15e1b3d1d8392c0b5233ca2e67bf
70baabcad06e3251806b16da05a2be4f8e09b79c
19490 F20110113_AADBML viswanath_v_Page_084.QC.jpg
eeef38cea8c3799a98343de7c3bd88ff
c40c4556b3bfa3ad1155c968b775deeeff80fd25
78892 F20110113_AACYWR viswanath_v_Page_066.jp2
5648ba6060a37f0b2139580e43cf9b90
e87e693c00d5d64d947a81583e92ee834091d4f4
10104 F20110113_AADALJ viswanath_v_Page_315.pro
5539facf9e7c8b29e9f6c2d9f04aeaf0
25c5103b89baf1064db6e715a64d18c4020fd30e
54475 F20110113_AACXVO viswanath_v_Page_411.jpg
fb68ba91dbbfea12234607868515dbf2
69dfa6f5293f7ed06d8d245bf0e6c32d3fe501d9
F20110113_AACZXU viswanath_v_Page_374.tif
09525c527740a81c0c1e8f497ad1b1ec
5b869da52724c9a0dde41bed8a27133d4eb2bd77
5678 F20110113_AADBMM viswanath_v_Page_084thm.jpg
90a740a4a38b4a7a2cea21670d621e01
483806f25a8c9b1d3cca3cca52294d0ae2fd887f
125387 F20110113_AACYWS viswanath_v_Page_067.jp2
90e28cb3990e056d1737a32033f990a8
bef70c7a305fdca81e60a3c3ee1bd863ea6ab12a
13408 F20110113_AADALK viswanath_v_Page_316.pro
6ddc765104e447190d7984b18929a502
dce81d31900b9fafa60a314583fae586a1ab1880
1038726 F20110113_AACXVP viswanath_v_Page_401.jp2
90d98b814d1b2689f1a2295c995c7388
9ddef9901b1f8c175d25783a0d2a3c7cfda60014
F20110113_AACZXV viswanath_v_Page_375.tif
f871ec38aa18090521c69a78a3874a02
5b5fd22e43632d1f0393d0feec295bf2198770cb
23499 F20110113_AADBMN viswanath_v_Page_085.QC.jpg
b6f8ba9c6ffd0025766355cb3caa439f
292a032ac7f1b02a4ed1363b8f7c0f23e0f2d29e
673221 F20110113_AACYWT viswanath_v_Page_068.jp2
866e96755965a0829ef528712773e705
9429a5eb6c05c68b8164f4b1231126d18ac6836a
13275 F20110113_AADALL viswanath_v_Page_317.pro
dd58e37da4732816e857bf39ca757a89
099d9e1392c5fc7a1f6e413a25d90e4d12db1c4f
525 F20110113_AACXVQ viswanath_v_Page_383.txt
906b7523b066f530276b45a45d4e63a9
b0820940945b6b399598fd8cde424ca142c9a71b
F20110113_AACZXW viswanath_v_Page_376.tif
6fe488a1e9bc0c7fbf947fb2c7a32083
c740a9b480aa7f29be5fb1afe99bcbd22a7cd21c
6723 F20110113_AADBMO viswanath_v_Page_085thm.jpg
87baa07fc066be81966546f079ee4758
e0d97870144358be7044171c22e4045efdc93b6d
516915 F20110113_AACYWU viswanath_v_Page_069.jp2
5d06a0efffc67091ebbc33cc33b76feb
26136daf524de0848b485ead37ab1467312990d0
22265 F20110113_AADALM viswanath_v_Page_319.pro
f0d7edd18f946b8d0b96ae4ecb5b2bda
44c19f13a76ee42101e8fec65321d345ee99ff4c
F20110113_AACXVR viswanath_v_Page_168.tif
ddb84f425bdd109b10581d612449643b
c9b7c685110d1533d9ebc6f1b285798a8d501458
F20110113_AACZXX viswanath_v_Page_377.tif
a982704af343fc59351e4eabe703ce8c
f081cd4aef97124681754e90c2b1dd330d706359
25287 F20110113_AADBMP viswanath_v_Page_086.QC.jpg
ec67621f3ba70467ef8d9ef5f1839bfa
9ada48ea4e38257cd1ebcb7e63ef4ce676e23f08
838994 F20110113_AACYWV viswanath_v_Page_070.jp2
16de1ebf8c8ab1977d8da75c366db0bb
dbca7d0bee7be448b44b7ef76b03f62d00aedcbe
8295 F20110113_AADALN viswanath_v_Page_320.pro
2691b62b043fc53e5efe2e0d6030b1a6
a8ab360701cc8b1c0164f04110c54842b49f8211
F20110113_AACZVA viswanath_v_Page_299.tif
c36d966a95bf7dd5d87c5273cb9cc4a3
9ed1149a8f2c19321c0d97556d05f92b50f3a06c
F20110113_AACXVS viswanath_v_Page_099.tif
ef4bb0f60d4c95bfa7696a6cbbb85781
7693cb2867cb059d17db16118d8dd733eaadf549
F20110113_AACZXY viswanath_v_Page_378.tif
d6399d7739c820f66f353eba33701089
dbe29e152f5e4f1445348b5deca651c437212cf3
6923 F20110113_AADBMQ viswanath_v_Page_086thm.jpg
8433d6cac3614c394d378e80eab777f9
9ed665c5b2adb6b1ed002bdaa7ac3d6f30bededc
815431 F20110113_AACYWW viswanath_v_Page_072.jp2
ccc6a28ba94ce1ce6dab0c0abaec075d
f3330e2f1b1120ab19d3ded83685206644e4c672
17694 F20110113_AADALO viswanath_v_Page_322.pro
25374c2b97be10ee21f200951e7ca8c8
c04759dbb1ba7e6f8df9ba0d1b9df2af3376e35c
F20110113_AACZVB viswanath_v_Page_300.tif
c76c93bc96dd7413b5088d5839b6d2c4
90b9423e6f52e30a1102be37e724019034a7dcf6
F20110113_AACXVT viswanath_v_Page_062.tif
43781a2367e1a07a20a213c5b86decc9
23f3556d8b8b6e47c636cd9df01eb58e38d93bd4
F20110113_AACZXZ viswanath_v_Page_379.tif
6b2d263849078751ec841e747edf1bd6
c70138908daba95f19f991984fa7bddefc212619
6823 F20110113_AADBMR viswanath_v_Page_087thm.jpg
d6f990999707094f02c2aad1d9a188f6
b0e37caab2ac4168c33f50c0fbb154c6b25d913f
499984 F20110113_AACYWX viswanath_v_Page_073.jp2
1d326875018af2443aa4b35d4667f68f
807bf67f0d275a818510f6ec0a1e07da04b92e32
52672 F20110113_AADALP viswanath_v_Page_323.pro
b1510b58d7f909096c28a58505c6c159
3c9eb886a91046410c1c3fb5ee1142daf8fb9070
F20110113_AACZVC viswanath_v_Page_301.tif
f07e8949227f93c8cff0e80b80e19105
4e9ba20495fba8091ec6d6992026eb647aa9573e
15529 F20110113_AACXVU viswanath_v_Page_374.QC.jpg
c5b25b2e34f763f6e0586d5f2e3eb930
c17ddb2d356e13b57d282612547170ff9e7727d5
25821 F20110113_AADBMS viswanath_v_Page_088.QC.jpg
f8e29ac61ccf1bb8af35d8fdfe2b2d01
15ecf1d4bf783c216352296401cacb4cf359cd4e
617604 F20110113_AACYWY viswanath_v_Page_074.jp2
f4af0b951e9de05cd480cd934868e269
9a33e4a9e44efa546d7564d65bd537fb1db1b49a
11379 F20110113_AADALQ viswanath_v_Page_324.pro
cc6976ef2c3904f008da2bd4a63e6986
23a3ba53b484fd8c2d5be01f42b80ce95f3d1af5
F20110113_AACZVD viswanath_v_Page_302.tif
3a2137c0a9cbc65df03abdcbf3d37b7b
de27eb07ea80d7eed3a7ee2eb9b49c67fb78699a
54892 F20110113_AACXVV viswanath_v_Page_086.pro
38689b17cd386fcfd779403ffa3425f0
c41784f1441ae3805fa64689afefc80d6c279ede
6849 F20110113_AADBMT viswanath_v_Page_088thm.jpg
1482f5bd4536b304eeffd142e4df8397
ab876baca0e564a826ca30785d4dcd17c4328d4d
55486 F20110113_AACYUA viswanath_v_Page_440.jpg
54e79b156219ab647ebcbfc38921345c
5ac57a286b5fd6ce1ff878946831eab5c78cf23d
1051920 F20110113_AACYWZ viswanath_v_Page_075.jp2
02476e7153aca675dce22811f44dada9
38ba34dc043fe5dd49eb84e5c9f3b5e07b0d149c
7553 F20110113_AADALR viswanath_v_Page_325.pro
0947917fe2d38860dd2dd35c567d4d3d
83dbcbd0a161e1f1fb3f6ba9ef9c65987b0ebe55
F20110113_AACZVE viswanath_v_Page_303.tif
68c2661e6b2b46d637d6920a4dfdea09
01b5b1f67816ed7e16d10a1158d2b8f2d6c056b4
F20110113_AACXVW viswanath_v_Page_367.tif
708f7807a075711bb27b79d3568b87b2
ed3f08e95fc9fa54b5cb06360771aafddfe8fd73
25972 F20110113_AADBMU viswanath_v_Page_089.QC.jpg
20805b0c5026c468762e6530042ef69c
07be04dcce2d0c943e3c38837ea43dd8cf6ef1dc
30642 F20110113_AACYUB viswanath_v_Page_441.jpg
7a98bed48c11b9b36bbe5a0157d1a4e7
a462653b84a92f4ac619923db8be0d98a0bc1d08
17007 F20110113_AADALS viswanath_v_Page_326.pro
0479e8152e95343aaa4ea6c63de3d260
8bec386c2a08c2e657f1a3768582e44eb3413b99
F20110113_AACZVF viswanath_v_Page_304.tif
2a3ff32a49fe9c222384055227ae4c58
31d95f1d54d3ebee76958e73457403c5c4933aac
15141 F20110113_AACXVX viswanath_v_Page_297.pro
75233807e741cac206be2d06321ae406
cb3a72dbf9cc21c7e2341a98e25318c827e2c2b4
7130 F20110113_AADBMV viswanath_v_Page_089thm.jpg
a6db51b132186a98ac4ba16eb0a42bc4
4c8ad5cb7314465fc9d50ad69085f974f678ae57
37099 F20110113_AACYUC viswanath_v_Page_443.jpg
a64daa4452826218189ac1c8be87cd87
914b508dd83f222d2078d4ce98e0bafe3ff80494
4634 F20110113_AADCLA viswanath_v_Page_438thm.jpg
d286b8ddfe30f982148ca190039fe275
423934c750a1a5aa54a0c388d8bba765b7c282a0
17171 F20110113_AADALT viswanath_v_Page_327.pro
54b838131687b6376d734b99b5d136ea
b72fb6f29235cf6ad0ce506496f683c8345529fa
49622 F20110113_AACXVY viswanath_v_Page_381.jpg
2292db2a65433e3af3f408154cce9824
6c11a7410080603bd7b917218b7352d62c692712
49161 F20110113_AACYUD viswanath_v_Page_444.jpg
4c3778a50f5fde07c52012e69283e996
36a5013e14caad6bc874dc60c0cf3f5e12e78f8b
13992 F20110113_AADCLB viswanath_v_Page_439.QC.jpg
a94a3d93686837d8a7374684f1d0d1ef
06c2f0d0a96c7672e7b554abf8c9c00401417a81
50155 F20110113_AADALU viswanath_v_Page_328.pro
7777c22b20a11acfd2fbbd2a87ff9dee
fe25641330479f1d99ee2bd6f13ab31a97887ecf
F20110113_AACZVG viswanath_v_Page_305.tif
96125a42af86b538e6abd8fdd59ec88c
cc1faaaa31e60b8498401e82f5750f5943e8d9c0
1676 F20110113_AACXVZ viswanath_v_Page_221.txt
5c3d9b8f602c0cd4e8d6e52b99ccdd23
380eeba621da58563fb0481b73f71f477ca62d2d
25875 F20110113_AADBMW viswanath_v_Page_090.QC.jpg
f53f9edfb007dcef69269aa1b9b5061f
60aea0c8172b25c8dd5ad3e09b03fefbdd9a2e0e
50816 F20110113_AACYUE viswanath_v_Page_445.jpg
2d38f2c4e931771565e6955803c01f6a
a60d5bcb4b409780be0c85db5c95d7a74b0af01f
4412 F20110113_AADCLC viswanath_v_Page_439thm.jpg
1f51bdabc08d8d0c9ec3f6febad11ee9
6e091e435cb3ce492b6f9e22affbdb9ad327add9
7581 F20110113_AADALV viswanath_v_Page_330.pro
2847fd4bb1d2914b0568a470e7802fa3
261d8cc5bb7f2c8dd89c6ea771b489a0bbcd3f11
F20110113_AACZVH viswanath_v_Page_306.tif
7fc7c05fd666414ee28ae3a4f2bd23de
29bc960d5e9d032c00e5a55f77d03d5341d4a921
7055 F20110113_AADBMX viswanath_v_Page_090thm.jpg
e4641df0f085ff05fc76bf8de8f4d34d
f8003c7b8d810ca021493dfda81d8d799f963e33
75056 F20110113_AACYUF viswanath_v_Page_448.jpg
fc9800d801369903b41e18fb9fcfbbe2
57d0714b9ea7e95bd6848ab17ab29c4ba7179b9d
15810 F20110113_AADCLD viswanath_v_Page_440.QC.jpg
7a04d86d4c9c0023b44b4f3438274f17
cf3cb8751ea628482d849ad8dded1d5103f38c48
F20110113_AACZVI viswanath_v_Page_307.tif
79e7ec2217fa48fcc358f34f70317dc2
26a14df342930b3515214383a7fca51678b51e05
4576 F20110113_AADBKA viswanath_v_Page_049thm.jpg
fe91a0ecb808a1faccc1fb5ab39658d8
194a4eb8dbee8b98ac65f073b83939c7d846ccdf
6747 F20110113_AADBMY viswanath_v_Page_091thm.jpg
fc729319594458241d26d47892da0285
6b713f8f1382713d1a40ebac75c8ffa4059b47e2
4401 F20110113_AADCLE viswanath_v_Page_440thm.jpg
6f632d617d966a4459006b1c7f88e740
38e8e090f7b6960111d7b6ef84bf2ff3a224c60d
11744 F20110113_AADALW viswanath_v_Page_331.pro
7598b648b3a867b575add42d32d91eda
70f669858474e8c2f113d9024ead90e7f489024c
F20110113_AACZVJ viswanath_v_Page_308.tif
4fd7771bf06a68cd88062b1f3c83bcd1
dcb81147580055a88f00afbe7b9bc9911af6f130
5542 F20110113_AADBKB viswanath_v_Page_050thm.jpg
0d2c408ce656346672efc14a56982cee
146cf24788260a4ae1e267f67148193de5d443a6
22480 F20110113_AADBMZ viswanath_v_Page_092.QC.jpg
4e352bc65967df06c2dcc0779083b8fb
e75714f8a4d8351af1c61703d7f5dca8ca37e7d1
89088 F20110113_AACYUG viswanath_v_Page_449.jpg
fb00c36921b51f13f15fb4c8b5058d5a
4da3d9e3eda829449449d1076f1612bf1dbb36f1
9601 F20110113_AADCLF viswanath_v_Page_441.QC.jpg
4ce804b2598869798c67c5fba89d63a9
9a7cf02c65a7a292f81727f59809cb02658edf3a
17676 F20110113_AADALX viswanath_v_Page_332.pro
0da7be0d8acc96571cd68c71598a81bc
929edf42a60e0a264d2870cdb3826f6a7195daa3
F20110113_AACZVK viswanath_v_Page_309.tif
3321e17b85c8e4dd00d310d5e952b06b
f0875c6cff9e1d343357de243ae9379d05407f61
20338 F20110113_AADBKC viswanath_v_Page_051.QC.jpg
5f0f387e77447c339e7f6cc1329f4794
3d00d66faceb30d357792e1c5776fef5ae0799ea
24649 F20110113_AACYUH viswanath_v_Page_450.jpg
2e7fd51d825c97b815ac7cf73be1645d
e93d3e57ce93e996224974db8dbf6bdb3a34560f
3403 F20110113_AADCLG viswanath_v_Page_441thm.jpg
e5c6c459e911c1b00e93ca1200151099
3d797b92922c85fe0efd5c97c94807bfdf55b1b8
49548 F20110113_AADALY viswanath_v_Page_333.pro
fb9977db49f76aa90f8b63d8d1aa1a2f
8228b331e9d7be4d1f7e39cbb5771144cb3e8779
F20110113_AACZVL viswanath_v_Page_310.tif
b7982743aaf693c11d03e65e748c741e
9a7de380a6ceda1d76421fcf043a4f184705551f
5777 F20110113_AADBKD viswanath_v_Page_051thm.jpg
27cc244bc4d3b61fbfb4abc15355e1a9
c6509ceb62c9ad9b1e117b3d4044097b0ae3834b
62715 F20110113_AACYUI viswanath_v_Page_451.jpg
5bddd8f5c1a10c6716dfeed0c7375fbe
d31142161f3bda3bbd38af81a02a89d6e3a559f0
17324 F20110113_AADAJA viswanath_v_Page_239.pro
e149e9d183378c5aae81aac31e1d6b9d
cdfdf1a9d8cc4a2ed98a079fbcaeb695ee65f1d7
6322 F20110113_AADCLH viswanath_v_Page_442.QC.jpg
7ee9f297a0dc4539166b07dd4a944f79
ea1b75f1f8706216a93129c9d98a8f1f6defc928
16800 F20110113_AADALZ viswanath_v_Page_334.pro
01602148ce1fb7fb0b271612c19f3a47
d3df69a30c7b70fc28d733c54557278fef041857
F20110113_AACZVM viswanath_v_Page_311.tif
c188267874a841be6d181d5c3f15b102
ed093665c6c210ad8779afcbf3db6181d42f46e8
22268 F20110113_AADBKE viswanath_v_Page_052.QC.jpg
5e53ef33f472f854f33a09964a18c1ee
1c5d0c3ae99b8ec3836d3b730be509b6e0d481d6
24322 F20110113_AACYUJ viswanath_v_Page_001.jp2
c995bffd372bb246b0ebee12518f2a30
d863985786b12b10436c3c49977f6ce0394f7f69
50974 F20110113_AADAJB viswanath_v_Page_240.pro
df600658ec4ecdc8e1fd285db335f4bd
3fc54ccbf3102b06e431e04f65f1f5ff8d339618
2366 F20110113_AADCLI viswanath_v_Page_442thm.jpg
bdbf3e1d109496a650ef30bf0bad4535
a47819a4fa17afe887390724271edcde8a80192f
F20110113_AACZVN viswanath_v_Page_312.tif
87c447484ffb71580424d667b822d948
cbb02421dcaa060d8c2f003f4d56a470cf656f81
6431 F20110113_AADBKF viswanath_v_Page_052thm.jpg
7eac1e4584186c3a74d41a9c9988aaa3
ca16018b8f60047d281f841c6689e16cd12207bd
8039 F20110113_AACYUK viswanath_v_Page_003.jp2
dae491e79fcfb91469cc160ec94d3e79
f3dcccd2a29358f3ad590a19174f0ddf6c54b070
29720 F20110113_AADAJC viswanath_v_Page_241.pro
0e55810cb3bf0be48a52c3dc1cff4345
32d593365bceac349a07e26f09755b3d2f2114ac
F20110113_AADCLJ viswanath_v_Page_443.QC.jpg
556334339d9f102d4eed7a6f67902ca2
e16143c0519f33d32759c41e81e68df63c782881
F20110113_AACZVO viswanath_v_Page_313.tif
5222b6e7551dc7c16f760a4d36ea9933
39456ec55107441d44cb708e75ca760d4a4ffecb
22991 F20110113_AADBKG viswanath_v_Page_053.QC.jpg
41180db5e2fc8880608317a960bfde27
6f40128242c83b6c6a2914c1726c544f7d55dbe2
88931 F20110113_AACYUL viswanath_v_Page_004.jp2
0eeac861ec201e1261b9d93acd250721
7afc79bfe77c0a4ac4bc0cdb63b8040b80bfb051
11022 F20110113_AADAJD viswanath_v_Page_242.pro
75c48504d0ecb8810f5bef5e4d01a0fb
93ccec1a2c4a0485451fa6df5dcda0f4c80faf67
3865 F20110113_AADCLK viswanath_v_Page_443thm.jpg
d466d14fea3296c49fa54922511515aa
8dcbe3ee23b842860bd9261ae4e1858e9e67794c
F20110113_AACZVP viswanath_v_Page_314.tif
321b1a05e4eb27951f314714d3a0044a
f23d4ddc25d348e45f73bdcffe829903df76c0a6
21366 F20110113_AADBKH viswanath_v_Page_054.QC.jpg
262f5d9de489a57718ee5ec6fd9f8252
3f9824addb4cdca40345f6823f0631f992c3a9e8
1051986 F20110113_AACYUM viswanath_v_Page_005.jp2
4c9c2bcc875cf76693ea99af1c977166
42c5c18764d5e7bd38453866287037170f3221db
16009 F20110113_AADAJE viswanath_v_Page_243.pro
345e744c349cf5f8b40516950100c619
f3dd423e8f5ce6a1d6ab67ea5613ab4c6cc2b473
15289 F20110113_AADCLL viswanath_v_Page_444.QC.jpg
a59f2cbeb225a5dbf619ee63a6cc4647
fa6cfd80413b6bca8ee3febf3a1a7305de164f3f
F20110113_AACZVQ viswanath_v_Page_315.tif
92438e7a254f9d2b61bea19b1fc7377d
25c2feec0123f1e01a2dea6b258ea8ae3ebf93eb
6328 F20110113_AADBKI viswanath_v_Page_054thm.jpg
998471a51722712ee334531b39e4cd0a
26bd0dde7049e1e486f04f437f1f2e4068ce2baf
1051957 F20110113_AACYUN viswanath_v_Page_006.jp2
e6f8265b725ec97294f9a93b42f75bb6
16e63b9468aeeae2a96ee9a2e2d6a9f27f3cc5a0
50776 F20110113_AADAJF viswanath_v_Page_245.pro
ca38cb56198163d69975cb1bec54e27c
6de855700ba710c8628673ee1e7b83503318bd05
16557 F20110113_AADCLM viswanath_v_Page_445.QC.jpg
97aefbbe7a42b5ae1893a852bbe512b5
b3ca77c8b4f14927ccbb38433ba49006554a65b1
F20110113_AACZVR viswanath_v_Page_316.tif
921a4d8f05606783f7535c39674284df
75068f9e6c36667a7adfcc94822de35f20f4f348
6430 F20110113_AADBKJ viswanath_v_Page_055thm.jpg
58a441786af1478eea60be2ea44e3b62
058f8b4a60f5a3ab8b325c581fc4be781eb49131
1051973 F20110113_AACYUO viswanath_v_Page_007.jp2
af1e1088c4d4b652de2ee0e22919d35e
056255a0e183f9cc7f5f38185c107db2bc198af4
31514 F20110113_AADAJG viswanath_v_Page_246.pro
e071766862d85f4db2f999ce7a1dd02b
5a0db44acf92920a4dddc4144e799d57f9a493a0
4836 F20110113_AADCLN viswanath_v_Page_445thm.jpg
aa6c0e36d9941b9c1291ea6ba802610b
84f60dd944591b4f1c3d764f7d595ac513970884
F20110113_AACZVS viswanath_v_Page_317.tif
0a6f1995def02b8e44f38dcbf7aee6a4
6961515526d89a5f559e640f1561aee407f18cbf
24746 F20110113_AADBKK viswanath_v_Page_056.QC.jpg
bbf9b1d2c1a040d646e5cb921a21e1db
3300656f3bb026083d07e929b92efb9351e96f54
1051931 F20110113_AACYUP viswanath_v_Page_008.jp2
40186469ddcc7192576eca705d22f660
7319beaf1847a34fca87186128f8988f2bfbe295
12476 F20110113_AADAJH viswanath_v_Page_247.pro
2bea8cde27c045f8a559af0ed02491ce
387d74eedb2b330a9cb6ec5a95f2d6aa498ab529
9165 F20110113_AADCLO viswanath_v_Page_446.QC.jpg
a4213f4742dc8bab1a7d846ed7013073
19b5fcc4c4190c5a8367049e4ecae51a6ab910b3
F20110113_AACZVT viswanath_v_Page_318.tif
a7dabd60ad678c7295b293276757e023
9f24a5ad1d94f2e40754db17e01d6d64d4007b7a
6829 F20110113_AADBKL viswanath_v_Page_056thm.jpg
f322d1722109c53d9889cc630aeaadc2
ce43acc2f60a3d66cf5b08974f19eaaf281c6b15
1051984 F20110113_AACYUQ viswanath_v_Page_009.jp2
789da92891e221ca609bb624bae4169f
31d36840eb2d1a8f9dfb1427a1f651986a2311bc
13606 F20110113_AADAJI viswanath_v_Page_248.pro
116e3fc1e181be1f5f4e37af0cff6fed
093d4d02424e0be38017a67fcc55655d6eab15f8
3376 F20110113_AADCLP viswanath_v_Page_446thm.jpg
08445ae75de7958fc8986a70fdb5c4d4
7d55024db0e1edee149ba5c19ae85b888d77cbb7
F20110113_AACZVU viswanath_v_Page_319.tif
e9bc9c9699e3eba3e716a4a949011192
c42aadcc54910521a4e458eaa8c7bade2dd0030e
21773 F20110113_AADBKM viswanath_v_Page_057.QC.jpg
3598fe581f6fc0f7ffe59d2ab5516c66
a3fe4623523db57f30e103a76db2f342eda4c74d
1051977 F20110113_AACYUR viswanath_v_Page_010.jp2
1d162603ebe5567fa1d60ea3da8d5b43
1bc1c7f4e506fa98c2fda350063ee51058828be5
17276 F20110113_AADAJJ viswanath_v_Page_249.pro
10b3d818ad0fafda4923bfa6a0957969
43e698a496c28e44fbe8216a6ccc34c6679c836d
6310 F20110113_AADCLQ viswanath_v_Page_447.QC.jpg
9da90b39e2ad4dafa23bb79cd03b334d
03e8935ed21dac48ab95f9152f88ad04af1b441e
F20110113_AACZVV viswanath_v_Page_320.tif
323faa40a9a2c635a43b4b50fe7cfbac
1f2dc2a5e321049c9611fc37b0fbbd250cccfe51
6445 F20110113_AADBKN viswanath_v_Page_057thm.jpg
5eff773ed4a8e84d6d2304f61cb06298
e4658c3fb407316e00ba27678c404ffd4c588416
1051954 F20110113_AACYUS viswanath_v_Page_011.jp2
1e51c5fb37977c38b038e3a7302b6b1c
3344f7cc6841b0422ae473c520e2f671a2234651
44352 F20110113_AADAJK viswanath_v_Page_251.pro
196192d02485c54a49346a7b73b893fb
3845ea06ce2f37fff62e2c8d1a444bc496681d12
21608 F20110113_AADCLR viswanath_v_Page_448.QC.jpg
8b73e38d437932f5455568736538de61
d31184517494e69593a3a0fb76534cd16e2e87b3
F20110113_AACZVW viswanath_v_Page_321.tif
3453f9b17ce14dfa7b7d8d642b733b77
d91610646e3122d431f2744cb66291c27fe50851
20035 F20110113_AADBKO viswanath_v_Page_058.QC.jpg
846d9a3b7361ee62d80dd7501b056ef1
184eaac42c4e56e28b3a8490b5ad27a3de69a6ff
1051966 F20110113_AACYUT viswanath_v_Page_013.jp2
b2aca25a6924f101e1b552ecdefeb37b
356a2412f9f8e1d7d71ca7b9d8c36f41637aea65
10762 F20110113_AADAJL viswanath_v_Page_252.pro
6a90f5115e0c1f4f079218283fd03c17
4dfc3d797124b7a705defe0cfe46180152c6912f
5997 F20110113_AADCLS viswanath_v_Page_448thm.jpg
23611514899d057ef8f803970cfe7d08
26fca862d067459c1ec036663a05a8cccde7e61f
F20110113_AACZVX viswanath_v_Page_322.tif
6764ae5f1364d739eb6db51d54bbdee5
5f0c3007d1e85aa1757e582481358e9e58753d51
6064 F20110113_AADBKP viswanath_v_Page_058thm.jpg
3456c6fc2e54c58ffce431de18dda542
650e9b7b0cc3ab082326f67e2dc0e7d4021db635
1051953 F20110113_AACYUU viswanath_v_Page_014.jp2
3105a9360456baddbbb8f119e3775b3a
e5bca2a746046bb5b395edd9f3e4123fc7f99a7e
10667 F20110113_AADAJM viswanath_v_Page_253.pro
28e3d4e38f9a64dc19ad487e09d99f4d
9313a6628d9b9c21af68e2d677e6459528fae902
26498 F20110113_AADCLT viswanath_v_Page_449.QC.jpg
8f19f729ac17cfd6fe71865248fb5bef
f6bcf545fd2599abcc1bb9337cc0c45f9223d875
F20110113_AACZTA viswanath_v_Page_247.tif
4f2a951fff264f710c4f1813179ab6b2
6e8729fab244fe279ae6a6f6068004f05daf871a
F20110113_AACZVY viswanath_v_Page_323.tif
7955718734bddc6784bdb86c3039d1ff
5530d43e46e60cf9e6ca4745019035fa6f9fedcb
25021 F20110113_AADBKQ viswanath_v_Page_059.QC.jpg
e45017bcf33e7983055a859b4cb68820
e7a5ce1fc350ba677cc98d0a5bc8dfbb4547e416
1046417 F20110113_AACYUV viswanath_v_Page_015.jp2
ae15dffd397ca3beb433646f8ace2fc2
9ea826cdc35f4b75180b36ff4c3dc4ef333bd56e
48587 F20110113_AADAJN viswanath_v_Page_255.pro
dca8325b2e42391cd3d7bd12fe523970
c5109e4214586acfada89b0f7e6d50332d0f33b4
F20110113_AACZTB viswanath_v_Page_248.tif
9135eeda8db3d5b03bdd94dfae8de93f
9641c4d59c1bb066b07c785837ece8d032f981f3
F20110113_AACZVZ viswanath_v_Page_324.tif
9112a0a68b4bbab0c85e4de6c4f1d738
c8aba0ce7ef60c9bda7f4cc36c98ffab7bab86ea
6862 F20110113_AADBKR viswanath_v_Page_059thm.jpg
569853f4632a4ab66ed009721c83c61c
1d07987761babe2752536a1f9726f0c85cc80369
88402 F20110113_AACYUW viswanath_v_Page_016.jp2
f6c9ae1460ef629cbe6c7b72fb2cda74
4b7445ead94e0e36cc0bd9326db8e3a0591f36ba
35605 F20110113_AADAJO viswanath_v_Page_256.pro
f9c291dcce8cfda084b9a845689f25d1
ff10f364e20c46b9e65d33d175664e1cfc3e5368
7050 F20110113_AADCLU viswanath_v_Page_449thm.jpg
51b9efa928e6c2331a2a6213d0efbd9f
7f1c9c60dc51b7c779f7510850cdcace0f14e373
F20110113_AACZTC viswanath_v_Page_249.tif
d69078db7b030d59f3ddab1be614846b
dc1240137bc80831e65ed3f624ad937de75ba7a6
24356 F20110113_AADBKS viswanath_v_Page_060.QC.jpg
404143907b067f725dd49ca16697e2ea
fb7be9a81afe8bd3d862bc6453676bf8062fe587
45533 F20110113_AACYUX viswanath_v_Page_017.jp2
ebbc86f2f4c0f82c5cc44516e12b3f93
7352cbd33a2468013328e7974eeaaff149ca88d4
12099 F20110113_AADAJP viswanath_v_Page_258.pro
8f246bfb81710965f047c57f7a004786
38522a51d89fd5d1bb5c42afe21cb6ba13a3aac6
7850 F20110113_AADCLV viswanath_v_Page_450.QC.jpg
35d3500c1346a4ec9d099942ee69adf8
edb08303524d9a8a3f86a6d264cec204252fc2a3
F20110113_AACZTD viswanath_v_Page_250.tif
fe4a9d96750c34786f61b1cd2b30886d
6147226b40e6b0bcbdc522fdfb73a835690c0d2d
6838 F20110113_AADBKT viswanath_v_Page_060thm.jpg
f701ba2fae9788b45075d508cad41780
3447daa2c7fc4c1c1d5f5ac7fad5cac096c3fe66
53010 F20110113_AACYSA viswanath_v_Page_385.jpg
9ea1b6ad0c410fd69a58cad55fede8b5
78724fa13904db02c0bf8e4c0501db2ceafba1f6
93616 F20110113_AACYUY viswanath_v_Page_018.jp2
9418a0305ab167a956882940809d65a6
d528c42d3416ef47364772ed23bb68e366e67abd
13285 F20110113_AADAJQ viswanath_v_Page_259.pro
8cdb7da7a2fef85609a5790f338f0e0c
bcf9dcea666b9000e48f01215204a914528071d9
2559 F20110113_AADCLW viswanath_v_Page_450thm.jpg
c23aa99ce307f9dd84245d21488203b3
cc227b70b37c361df5e8b4ff66438d3c49280181
51737 F20110113_AACYSB viswanath_v_Page_386.jpg
081b10c275b216ea2fe3a2dd510de2f4
48ee5d3751621f3440a42b928d5305a073e21304
108570 F20110113_AACYUZ viswanath_v_Page_019.jp2
e5d0b9f9c37aa4701e653b9ebfe00a7e
8eecf51aba2536169ba4f3d3058773626b2eeb85
50419 F20110113_AADAJR viswanath_v_Page_260.pro
053a07373b131cb24b1b0172b33c9c5a
43be90435568e27ea173b8c5727f7a6c7137fc6f
20598 F20110113_AADCLX viswanath_v_Page_451.QC.jpg
201ff03fad91e919ca971c602087bc09
e7c0344d70ee335cbfc5e1a872a6f531b61aafb2
F20110113_AACZTE viswanath_v_Page_251.tif
61d8811653cf537df4ec34b51e665ec2
dce9c4ee9c9a11f775e29f1e7d69253903786da4
18588 F20110113_AADBKU viswanath_v_Page_061.QC.jpg
a98568d125f48bcbdc88d99091d78fbe
a006e75fa84170ca450bf85d4eb2490543823d66
51489 F20110113_AACYSC viswanath_v_Page_387.jpg
0c6ed5a76be41023d9392d4c01c28e3e
7e32c56c6f4b5de355bfb4ef5376efdd7124439f
15292 F20110113_AADAJS viswanath_v_Page_261.pro
dfb52585b385a466f70b1d912e877115
4d41352482812cebbba98df193d57481b7aa7d21
5648 F20110113_AADCLY viswanath_v_Page_451thm.jpg
1a58c61dac3c617018d409876af443c9
45560543cf0f71d974bfb632049ab342ade66576
F20110113_AACZTF viswanath_v_Page_252.tif
71272d2358b495a3f316faf47d6d0292
5086491e5c8972986460a03902ce00a87ff8e90f
5363 F20110113_AADBKV viswanath_v_Page_061thm.jpg
6d35ff4540361ad0a015a2961db97e01
dd9359cd511e590921d2247130b88083ad3d3662
55183 F20110113_AACYSD viswanath_v_Page_388.jpg
5544f2fc53caa668688a91e9980e63b0
238f9ad425adaf3b47ee97e98dcabfbcc952258c
5061 F20110113_AADCJA viswanath_v_Page_410thm.jpg
f550d68817eb4da9793362b9271a9909
547f1d3d8b873dccd8933d3318e0f6fbc97fc1f5
11258 F20110113_AADAJT viswanath_v_Page_262.pro
c7451ba0d8c776c921c72c542bb7d71c
ce2c3cf46f494a4101d8d338fad9304919dc663f
520723 F20110113_AADCLZ UFE0007014_00001.mets FULL
9d2a4f611b2490266d8ccbbd3504dc9c
2e0f02df45ec8b510b6305c169bbf283329cd26d
F20110113_AACZTG viswanath_v_Page_253.tif
ed3de76dd48ab016b63dd730656b1455
d2d3c84cb621fac861fe3a2b95e382d155f6a422
28546 F20110113_AADBKW viswanath_v_Page_062.QC.jpg
3c86ca6b67297d4255f68ed49c521608
1bba70e055b475fde005b16d589b4b6686d5cbfb
16496 F20110113_AADCJB viswanath_v_Page_411.QC.jpg
b62c8d8e5519ed14669f6ffb6b9ce726
f1f117c63b52e9d6879f29be16836a98a2bb5f8f
F20110113_AACZTH viswanath_v_Page_254.tif
5b4438f21c784c311f5fa9c2142a79c5
e6c2a0bf71603ed0de18d1311eae8b5a8a9ae353
7059 F20110113_AADBKX viswanath_v_Page_062thm.jpg
919386508f6278f04887ee05a0463ffd
fcf7d1416218ee01aa28801ed5788eae8200a7e5
56095 F20110113_AACYSE viswanath_v_Page_389.jpg
aee120c7cb64fecdcbcfa5b1055864e6
048b9358be980e7ffc919fbefff401720b0b1de6
13201 F20110113_AADCJC viswanath_v_Page_412.QC.jpg
a583414589445ed350b57da37a46b083
e90dc49c6ff0e0423a7b44a55620e46cdd9f0a1f
15857 F20110113_AADAJU viswanath_v_Page_263.pro
1365ec8684ef0aba3df5604c2d2d6db5
f07e9e6db8f18a0ff1d2e7162a689efaa4c8a9d7
F20110113_AACZTI viswanath_v_Page_255.tif
3068617b76a6c6fccf94c1fa16a98316
4c4a4f281faa05362934b8d1871e2334f3a734eb
9261 F20110113_AADBIA viswanath_v_Page_022.QC.jpg
197f39c1b7fd40bc476d5649ad3d0246
b2cf6c51f59c47fa01bd621160f18d9158ccd887
15191 F20110113_AADBKY viswanath_v_Page_063.QC.jpg
ab278d05d4d63028813eb572ea0f2ca7
202aa21eec2c8a143cda091aaa4a31046f50d93f
53216 F20110113_AACYSF viswanath_v_Page_390.jpg
52eab09d7509305116e0d2228548ef60
fe595e55fee2580a6d8529297db38f8a29c34047
4184 F20110113_AADCJD viswanath_v_Page_412thm.jpg
cf2a2669aa5eec7ad6d49922ec8ef1d8
657cf835b16274ab7bdb02dcc45945209d2e7e82
48495 F20110113_AADAJV viswanath_v_Page_265.pro
2835a24a9601ad5d6ec457898059ee2a
676a1edf98683729d644142cfd1c7395493a2c39
F20110113_AACZTJ viswanath_v_Page_256.tif
8df6fdd6cdcff744e2f4587410d983cd
38ec7bb1e60501ed2e5759ece0424b77a1932d34
2829 F20110113_AADBIB viswanath_v_Page_022thm.jpg
4238e5e01950d57942801c2605cdf422
f19625b64176cdbf312e1339a720f37060f0398b
3844 F20110113_AADBKZ viswanath_v_Page_063thm.jpg
f8849fcdcc8d8bb9a347ba3b0cbd3ca6
96c537776f386eec9acf06e5251f529611cab4c1
41943 F20110113_AACYSG viswanath_v_Page_391.jpg
ec5f83b17e405dd5116e91dee4f2b3d8
7735d7acf68a7899be79a2c6ac439185a49ff320
16720 F20110113_AADCJE viswanath_v_Page_413.QC.jpg
f69195e19508f50dd075ad7b477b5d22
ea51b2b502655eb5e11d4453991ceca693f039e3
5213 F20110113_AADAJW viswanath_v_Page_266.pro
cb3d985db34c8f85d4246f50e051432e
893e4025f3022f001b1453540609729b74feb4b1
F20110113_AACZTK viswanath_v_Page_257.tif
3f723586627145cb1a651fd3ee6c740c
e3b5c7f0f482f6b8b2738f2f96221859e9f744dc
19911 F20110113_AADBIC viswanath_v_Page_023.QC.jpg
1c2639f2805d7dd5ce5bd2280610a87a
b01880bb587a6edea4e9b69a24b866c7b64dc558
51187 F20110113_AACYSH viswanath_v_Page_392.jpg
0878a8a62aff92402e34b6d8bd3dcf53
038acd023b3f6cce8744a58ecb39bbea4a5e9c08
5156 F20110113_AADCJF viswanath_v_Page_413thm.jpg
e85f5bbdf4a70981171a89192b83efc6
a6ad96367901db41a6cb77ae4385b028cd8fd690
8260 F20110113_AADAJX viswanath_v_Page_268.pro
612c44d6ec4ea3a8e6347ffc4335fa98
7bb6d7d4aac86d027e5beccda2d1bb68193dd0e3
F20110113_AACZTL viswanath_v_Page_258.tif
5ea0c4824d7cabc0ddb09fb4939ffe75
a5b274cad5cbe6726fc5a08c86ee44778d639530
5584 F20110113_AADBID viswanath_v_Page_023thm.jpg
8e11ba5730955be24f8989d3bdb61622
6ff52ac959caa5afb4a1d3c2e08a1dec370ce2f0
52262 F20110113_AACYSI viswanath_v_Page_393.jpg
b4d799916a5cb6b625bee2a5a9aac0b0
9ef31b0b8d5ca537cff64cd8d594802a66657d29
78755 F20110113_AADAHA viswanath_v_Page_185.pro
57173eecebdad8a283c128402f1bdf85
19bb9aac27ec4f6367a567eb79fc1e03f4965507
16295 F20110113_AADCJG viswanath_v_Page_414.QC.jpg
a379a591b8089f9811a3838fbbe214fa
9f730b6390b3b25905601b82e0d797cf6f5a79ae
14561 F20110113_AADAJY viswanath_v_Page_269.pro
88e94990a75e54720dc54ad58b211067
1339a318c92409741bdd6648991ba5604f168199
F20110113_AACZTM viswanath_v_Page_259.tif
94673e6caf6c588831b2a3011359fb8e
0a9a268345608dc5ba5282e8395c9b42fa45d176
17281 F20110113_AADBIE viswanath_v_Page_024.QC.jpg
f45c9403f1af824cc4c3f151f38bc350
05f0e8ba819b5913a3bfbda096b398591fd82114
52194 F20110113_AACYSJ viswanath_v_Page_394.jpg
dde1338abb786294a7087756305b408a
0edf7478b8e43c5b80f6317c8a7a5c78742baf29
84706 F20110113_AADAHB viswanath_v_Page_186.pro
4edae0b3dabe11a712304b6fdb061508
8a5e7339f9f13b8bcf291075d71a104758deecb3
5096 F20110113_AADCJH viswanath_v_Page_414thm.jpg
651c057c68850ab2948b8d0cde02e432
360c3b2f7b2e67595a2f64bae5f00b9d99b8fe3f
48973 F20110113_AADAJZ viswanath_v_Page_270.pro
6687b8c7a6c12b4131d0d48f0bf90d7c
8c78762b01d8aff05deaa611414baef17770899a
F20110113_AACZTN viswanath_v_Page_260.tif
8e57fcd7f4ec29c62c6f5af5b4b033a8
1fd9fdaec08690b0d4b40e23290f0d29cd556d67
5376 F20110113_AADBIF viswanath_v_Page_024thm.jpg
6e3c18cf21909c254a014f7bd39436d2
a72825b0312220e52223eb914c81378ede91aa51
54676 F20110113_AACYSK viswanath_v_Page_395.jpg
2557cc9d85138093138290c845076cd2
12b161dd7780c0b4148a58b215fb4dac3f2e5713
28944 F20110113_AADAHC viswanath_v_Page_187.pro
be083adf8e0fe89258999aae074a2cee
2af783db54b4b8797129fb27e6c061a7279d8282
5107 F20110113_AADCJI viswanath_v_Page_415thm.jpg
4c83bec24cc7d9bc8f5f744842983e31
03ae388fa52d0419363f84273a79f4adebb5a3ff
F20110113_AACZTO viswanath_v_Page_261.tif
0a11fb128408ca64c40656d8dc6966c4
5a453977921aac37537298bacf79a179e0a1c91a
18199 F20110113_AADBIG viswanath_v_Page_025.QC.jpg
d5e14c416d1e6196d4d8e373c9c96c78
afd9d52c40e80caced873c1156f28c38aa0f308b
56592 F20110113_AACYSL viswanath_v_Page_396.jpg
9ef6030aec069518e8f2f23205ae3964
a5a8d5b8010be20550e36765e1e19c54b8226425
16638 F20110113_AADAHD viswanath_v_Page_188.pro
a2750b02ebc5cc7f378567c3c483ddd2
153cdda87d3a04ff44c4b6ad291a645108ec2d67
F20110113_AADCJJ viswanath_v_Page_416.QC.jpg
5e8eeebf3778032a745a3ac397ec9d33
8121956ba8368f33d9a3e49bb68c72480b8fc082
F20110113_AACZTP viswanath_v_Page_262.tif
b6644e12a1e2af8ab152407de06cd597
168d024d7c35a070b8c8ab322ce386af8491d398
5523 F20110113_AADBIH viswanath_v_Page_025thm.jpg
65d30509f27b2036faa8d83bd86a70b2
fdb24b959d3c0497dab02a36f222cdfb1e012b6c
55612 F20110113_AACYSM viswanath_v_Page_397.jpg
9368dec8d8b25434426d95323cf9da90
6b6c082dc2025096b0bb5e131955da0dae08cd18
30922 F20110113_AADAHE viswanath_v_Page_189.pro
ce38a5b9742a6b56de61ff17b883d1e3
35c41e2d74faaa416853dcb93dde880da5931d6d
4226 F20110113_AADCJK viswanath_v_Page_416thm.jpg
0fa140e655d66dd6f8f7f5a555bb0bca
37a8babe38a5ed1476ec2a7edbfeaab9b6ce13d9
F20110113_AACZTQ viswanath_v_Page_263.tif
f0c3ab8c45e8938b5b150719aab6010f
cd2e99f2523b0ffd5c500a6cfddb3c448e6fef51
17836 F20110113_AADBII viswanath_v_Page_026.QC.jpg
6a2862935f6c6028e0d0c6fcb88fe2bf
617e5045c066b598cbe1f9eb9b25220ba3fbf368
51837 F20110113_AACYSN viswanath_v_Page_398.jpg
7fbb7bb1fb6849ac71b56a8f7bb9c1c7
2a07c02475ae23a1d599f5f623bf4cffc5a970bb
13911 F20110113_AADAHF viswanath_v_Page_190.pro
16dfef207e15f6d679efcaf513fec36a
5407b32578d5187ae7c8bc1dfec1e3bf6b65849c
13409 F20110113_AADCJL viswanath_v_Page_417.QC.jpg
875c6719af427d7ccdcda8ab134633d9
7a582ef9b6e94f34650e2ae99540381e7a755f23
F20110113_AACZTR viswanath_v_Page_264.tif
0aefeb69579957d9525c3fc9095b6e76
9f377cfe1eeae77901fd4cdcde364550965a0eac
5313 F20110113_AADBIJ viswanath_v_Page_026thm.jpg
6e93f983ff01bb265678db3ee1a4b7d1
20be147b6d88c40debb2afd76282fdaba7627d6b
52470 F20110113_AACYSO viswanath_v_Page_399.jpg
0e50c11d07569907c9ef5cff4b3ca80b
bdc7b82cd415faa8923e53d55716156a075a9831
48547 F20110113_AADAHG viswanath_v_Page_191.pro
f18a6dfba71b2bc5bc22f7bd70d1dd3f
d10dac62f5f070581c99a1212b3b93c9b90ce8fe
4330 F20110113_AADCJM viswanath_v_Page_417thm.jpg
47bf49d1d4e1ae552bb47503e78cd963
b4755b789ecf507b9b32fd1d7610b2b62e4aadc9
F20110113_AACZTS viswanath_v_Page_265.tif
95226f72a8775b34f5dd08d4ad70c0b1
bc2c80ce21ee69c70e8219f864f9008f53afb351
16546 F20110113_AADBIK viswanath_v_Page_027.QC.jpg
07a292efbdbf15416d3960a1eb649485
741a07c606f50a7ffa3cb63a7a6468d967344d78
53683 F20110113_AACYSP viswanath_v_Page_400.jpg
fb134164ce56a985f6fe575aab259978
1e4eb8a007ce22184503727015c6aecfde67397a
16453 F20110113_AADAHH viswanath_v_Page_192.pro
04d34a6226765d44f91f1dc0dc812b79
14b34b6c85d1a1832ee5f57f10dc65e367a493e0
13263 F20110113_AADCJN viswanath_v_Page_418.QC.jpg
5162cff4e0f40eb15c4332f3e8087551
590773b8a32842b6d577b46ba4df1beed7f77a2a
F20110113_AACZTT viswanath_v_Page_266.tif
f9a0b1cb91072d9e1cb465fbc14364ec
294f8a75e26e2f1d918dd5d189d5a25eec3c4ee6
22672 F20110113_AADBIL viswanath_v_Page_028.QC.jpg
6ca61a0ee175610d73f54ef0f3a57eb0
716215cea28aa9f60f31f5050654b216d9a1a4a3
51421 F20110113_AACYSQ viswanath_v_Page_401.jpg
a02ee3bc1c6662337f8b87f535a3fe87
19e1185e6755ed5a6e9586171e3bc305f8b69440
12127 F20110113_AADAHI viswanath_v_Page_193.pro
06925a55b2f8a221569ddf2816706c8b
2dbbc927fe43bd4dff496d17de09f5666b5fe787
4288 F20110113_AADCJO viswanath_v_Page_418thm.jpg
f7c991b456b82552b01ba84e56530322
38c63ff417b1766a2e1f6f56467b4dbbd6b2be79
F20110113_AACZTU viswanath_v_Page_267.tif
96e5dc7049e4b56a0add9dcbae2c8860
05838f2e5601c318142b60cb4cdb044b5bf50d5d
6338 F20110113_AADBIM viswanath_v_Page_028thm.jpg
c4317e6f7121c3270440df21281c5a75
a1616b9607620a0b64a0dbaac07ef87777e6fd25
55597 F20110113_AACYSR viswanath_v_Page_402.jpg
a9f1f420609da7cb167518f20d280c35
b8bc6c924353781bacd2295b27749cdc89fbf7eb
18045 F20110113_AADAHJ viswanath_v_Page_194.pro
bd15c5c27c98cf06759c2b52e4f205c8
9f1e2f2fbcdc3fb105a92a713bb186b668cf6bd8
16278 F20110113_AADCJP viswanath_v_Page_419.QC.jpg
caef1d3fe9697444d748e64afc0560c3
a702a9377acc75f563f5721ecad81f322a9691a8
F20110113_AACZTV viswanath_v_Page_268.tif
1b97c3ae7823f81bd63a6b371d5e2854
2f084cc19be844b2edc9d62c124030704ed87f1f
15565 F20110113_AADBIN viswanath_v_Page_029.QC.jpg
8e185e10b55a187bd994252f094b9aa8
91dc16d211c379d7f21eb84c4df67a15636d2526
54973 F20110113_AACYSS viswanath_v_Page_403.jpg
dacd04230c40b6f8a271b67f93ac0b7f
d5402c1c1eb1420f4146cf146b12c5b93a6b5779
8896 F20110113_AADAHK viswanath_v_Page_195.pro
81ef7ee7901137eb6a64a63d984767e4
6078604dc86c019b74917efd0bb24e79706cdcb7
5082 F20110113_AADCJQ viswanath_v_Page_419thm.jpg
8d31ef2561534a4a97d0cbd25145407d
d3b4bc639b81d8e1f95c4f2ff16ae19d4e11906b
F20110113_AACZTW viswanath_v_Page_269.tif
2b97d5e6f182689340561ac6c293d73d
a79a1d968d66153ab712d445cacac96108d2684f
4832 F20110113_AADBIO viswanath_v_Page_029thm.jpg
79d3d451f0a156855ec11d9db17c69a9
49d821d7015265459f0b4208d1326d520d6a74e8
52140 F20110113_AACYST viswanath_v_Page_404.jpg
94aeb08bcc152adf52f53cc80b116293
d1757acbb973302a7bf3f645f1c6122e6a0dd9ae
53184 F20110113_AADAHL viswanath_v_Page_196.pro
13eb85b216e59eb4b3a3d0818f57ce70
473c537873101f63311ada7d2f4fe429ff41002a
13280 F20110113_AADCJR viswanath_v_Page_420.QC.jpg
7914df70c44bcb08737a6e2eb63ec3bc
8756458d7a643b0ffb78d0be424a256878c78d97
F20110113_AACZTX viswanath_v_Page_270.tif
9081c20eebf8ad2822eb609900418e14
d79e257e7ef11dc711d8200921eec43ab80b58cc
23397 F20110113_AADBIP viswanath_v_Page_030.QC.jpg
38512bfa22d963d47deb83ed9d1c7f31
a2d06e4dfbb3c89d8253d40876051a17bc20f8e6
52847 F20110113_AACYSU viswanath_v_Page_405.jpg
32ef23f4f4d02c4f261b251abbefe077
201ff79496003885c6a3fb22a5572914d8f21bef
22384 F20110113_AADAHM viswanath_v_Page_197.pro
842f5ffc4723fe9a9b91be41b50ceaa5
4ca29327f8ce6c4ebc727c968a53821ea3ca48e9
F20110113_AACZTY viswanath_v_Page_271.tif
f6b1820032e3d610504ef1937590c275
fcd8169c750d278ab368dc118a4e25213bfe7bb3
6443 F20110113_AADBIQ viswanath_v_Page_030thm.jpg
5c09be259308ce1e45857002d4153db3
6633ef893062c5b56427c069865548b1210ba583
58909 F20110113_AACYSV viswanath_v_Page_406.jpg
56d9dd44ff5c73b72992ef1bd3e8b8a8
fdb99ef657e38e03fe6a51ea3f276fa8607f9d35
9605 F20110113_AADAHN viswanath_v_Page_198.pro
96ebcc640c93d815d4d2779208b737a6
5122fdb3c7b166868bc284f6bf1b0edfe532f175
4378 F20110113_AADCJS viswanath_v_Page_420thm.jpg
995b228d40765e72b8d173a44801e480
1e5b70536b2d37451765eab54e39e3b2b071c51c
F20110113_AACZRA viswanath_v_Page_194.tif
215a880f7cb84d2e387dda140b329970
58fcc5f62da47979b8dedc01401e490559e01b39
F20110113_AACZTZ viswanath_v_Page_272.tif
71fafc7efc66d6d3214ee4cb3b3226b9
032d56737573111a3a1fb6dbc0254461df82feb1
18062 F20110113_AADBIR viswanath_v_Page_031.QC.jpg
f47865c2c3d234c71f949e23a559b7df
68e277c2ec2aed1280341c1961c2c3561399874e
53740 F20110113_AACYSW viswanath_v_Page_407.jpg
aa8d66b1d60c53c05ddfefccc4e89335
fc0fdd5c0088e436616e557bc119a34ffb0191b5
9776 F20110113_AADAHO viswanath_v_Page_199.pro
e64464873f25daea6a5e8aaae93f27f9
abe396eadc3c958f5952ca48ea960b76bbc18b7d
16410 F20110113_AADCJT viswanath_v_Page_421.QC.jpg
ce3db32acda5d7ca1493a110a36802d4
5c74f66f6bce670548dc447d4ace6254809dc767
F20110113_AACZRB viswanath_v_Page_195.tif
98598acb653d77008dc19578f6ad5d5d
1ec4f05fd0d208f9cbdfafcdd8a130336d53958b
43241 F20110113_AACYSX viswanath_v_Page_408.jpg
7a2ed0fb57b897d8cf66c143a75bb4a3
391c607f7a1df65a59733078a368a4a6db26eef8
F20110113_AADAHP viswanath_v_Page_200.pro
7c992b4ce928c63c5c9f7ba47fa58579
227cfc1853e1078556e22ae271b5cc8592bd7921
5058 F20110113_AADCJU viswanath_v_Page_421thm.jpg
35a4081e984120cdb62a0b3a84748065
e94710e51c3cdbc58076861458ee3fb5f0c7e64f
5367 F20110113_AADBIS viswanath_v_Page_031thm.jpg
ccdefda620f735af1b032838c36ea12f
6a97691691d62cd9994fcf86d067d80822fdac5f
74435 F20110113_AACYQA viswanath_v_Page_323.jpg
df5b4d606eced3a47ee750fc3800db72
006c959ed30c630c20f6200907f74c6cf45f2777
48321 F20110113_AACYSY viswanath_v_Page_409.jpg
59e048e32db56c461160c82bb629403a
4ca1b9104b330c383f758bcea8bd692c6da604d2
49615 F20110113_AADAHQ viswanath_v_Page_201.pro
fb9bdbe0d03c2ada9c408baa7e9d4e26
effb4d62e086fcba5650bf8fab6d057f939fc690
16138 F20110113_AADCJV viswanath_v_Page_422.QC.jpg
8a71c4d686761bcf11d385c960ff1d51
f30d62b80ccc3976f94f680c0902f4b453e70631
F20110113_AACZRC viswanath_v_Page_196.tif
29ce0e049ffd984560bcd1fa897c776e
025f7cf5c878ba2d67d8b35380ec324c8f6dd9cb
16304 F20110113_AADBIT viswanath_v_Page_032.QC.jpg
8bafb4237f995b7221df6875b88265f8
5105487bbd30a9743f5e49dbe9f65dc35ed40688
22442 F20110113_AACYQB viswanath_v_Page_324.jpg
12b5afc1ffb530be0949459eb66efd0c
01bfb5090996b6a06d10f1363d93a2a52cc749c4
41358 F20110113_AACYSZ viswanath_v_Page_412.jpg
e06c63442d25532c3c6a10e8be8e525b
b444b23e0a3369790bb3e0a29caf4a0f514739f2
13177 F20110113_AADAHR viswanath_v_Page_202.pro
a7ce2f8e673441c7910027f28a005bb7
5d4e29cda091a263aae2c70c2190d6730410abe3
4718 F20110113_AADCJW viswanath_v_Page_422thm.jpg
dd09107118a66dc247e63a22b6838270
bcf8becfe1e1baf4e9d60d335a75b024b76dd93a
F20110113_AACZRD viswanath_v_Page_197.tif
f1791ba6501aa6b096367fe3feb5a04b
b965c6aa4fc487bebe19c7b3590019c98201f99c
4939 F20110113_AADBIU viswanath_v_Page_032thm.jpg
590acaa181249df4ea3d23eea193744d
15ca2f8fb491a221a7e33460cbc017a644aa3a16
17083 F20110113_AADCJX viswanath_v_Page_423.QC.jpg
7689d4937559e0cb661decb3beab05a1
b9aa6cccc33f6c0a854b787d74e476bc27e3d377
F20110113_AACZRE viswanath_v_Page_198.tif
7bf51b31f85824c89cf8331a494f69ea
5849dea4338556946b0ff1576f24856aadb43c70
17984 F20110113_AADBIV viswanath_v_Page_033.QC.jpg
b8812e1cfa5e94086658eb29e23dd2d7
43d796a1ce2e64ec0f82a260e5c76c88b448b294
44086 F20110113_AACYQC viswanath_v_Page_325.jpg
ec03a470601b63ab9688162aa2bdb69c
aef58a97803b3e511916a5b34033177b4a3f6974
15582 F20110113_AADCHA viswanath_v_Page_381.QC.jpg
a94ce063f3e5c2dd9dbacc6ba3b50e0f
2606a0862b450ce5c6e0bbdd91079f532de6af1a
11584 F20110113_AADAHS viswanath_v_Page_204.pro
e9d1121b38c9c70cc8a183cde91f790b
ce8280a753344b8e5657d8af448e9709b240a4c2
5137 F20110113_AADCJY viswanath_v_Page_423thm.jpg
ad1e12770ada1771a33e8697ee8e9a0e
6e7b5ee1f98e0ddad676438339b4780f9753ed85
F20110113_AACZRF viswanath_v_Page_199.tif
14fa9f017595a049aae7b16c13cdbd8a
98d944c8bfc3bc351c5d7f22cca4748906e9160c
5384 F20110113_AADBIW viswanath_v_Page_033thm.jpg
f28525e1237d5ac5f1845949c6baafce
c34736ab1f9645a64192fcd0a2f0431867fe6990
41240 F20110113_AACYQD viswanath_v_Page_326.jpg
5403970355707bd8391b2eb664b14761
fde68ae45945af6f4a3b8e96bfde43903a063be5
15957 F20110113_AADCHB viswanath_v_Page_382.QC.jpg
bf50ca0c47560ac100d7ba69b8d21ba0
0559f9c34b459e7283d807ef69efa51c77a0cd22
13757 F20110113_AADAHT viswanath_v_Page_205.pro
00be44fe72a505eba1294401937dfba4
0eb0d5b9eecfe2d70f4de951a77d4f31b6d815af
5040 F20110113_AADCJZ viswanath_v_Page_424thm.jpg
29a1e33629bf0fa409349e2e9adf522c
187fd00d12eaeeb003bc5360a504cc0805145a36
F20110113_AACZRG viswanath_v_Page_200.tif
e2acf7d0db8262ff1a20f868112b2f54
bdd2a2e70e724e8deed201e929a93340746f9af0
15510 F20110113_AADBIX viswanath_v_Page_034.QC.jpg
13fa2d498c934b7caed811e1d73c0a88
365b308791d801ab98f86a5b08869bbfada5a351
45886 F20110113_AACYQE viswanath_v_Page_327.jpg
eb1564cfad12a80f585b8e38c0ab4329
436b17194ad225ead7465f3efb7d692f4459270c
15011 F20110113_AADCHC viswanath_v_Page_383.QC.jpg
7fb7dd5ef138996f60a8a1de5da46515
ed6960b749900c0cb33c6cd13f7d9eba80efbe96
50645 F20110113_AADAHU viswanath_v_Page_206.pro
195e3ba5e0cc9a2a1a6127be1d57dec0
f9b7fdab27b01ce772156b5706a514348f8f0cf8
F20110113_AACZRH viswanath_v_Page_201.tif
c09d34abd4dfa59bc63b07e17b19a153
3d90a0e63366963d319e80c150874364f39ccdb6
4663 F20110113_AADBIY viswanath_v_Page_034thm.jpg
7910df168ab2813951c639554207b9c2
e3f67c85f159bf1484b78d7088f89ba735684d2b
71315 F20110113_AACYQF viswanath_v_Page_328.jpg
80412ebb24ce31c16dcc18c71785aad2
2abd1d7047ea38d05f3ee5d2f783775a9d82c14d
16596 F20110113_AADCHD viswanath_v_Page_384.QC.jpg
bc1fb56b04bbe6581e67f4bd196d6be6
85a424607dd1c46da23d37e10a3438df64a38756
15829 F20110113_AADAHV viswanath_v_Page_207.pro
7ebd92982ff8ebb91b3ee5c00a41de14
01253c96b503ca4a993907601c502d77f26b5a89
F20110113_AACZRI viswanath_v_Page_202.tif
c5ff19c8be3cd3a8249739ad7c079f52
d00da654f4ef72eb79aefba5065a43e0e52b3b81
1890 F20110113_AADBGA viswanath_v_Page_438.txt
7486efc5d7adcaecad84a69d9bae64c3
b2360e77214546fd1529f6a58249276a82139b95
21346 F20110113_AADBIZ viswanath_v_Page_035.QC.jpg
951cc16c6a10eaeb13b1f2dd4649bf43
901b39dbae03d21e3d5c06d96a28bf7b0e39254d
40506 F20110113_AACYQG viswanath_v_Page_330.jpg
e03642a2672ae7f316228d4f34124198
a1adf8c70b29109b26aa6d34ed7d2e0ef00aa2b4
5170 F20110113_AADCHE viswanath_v_Page_384thm.jpg
207c9a71bfbbb644d9c0588dd2cc0462
1d0100da901f26e771f32a9c1951e367d2fde4dd
11537 F20110113_AADAHW viswanath_v_Page_208.pro
d121517644b4a2742c96f757f52702f2
0180d1fa0b224250df58b87a4267d108fc2d480d
F20110113_AACZRJ viswanath_v_Page_203.tif
d87d79d93837fe2a0d4b410fbdc0ef72
3007dfc288a2a2973b002349f3dcdbe200a491bc
1312 F20110113_AADBGB viswanath_v_Page_439.txt
7eacd680ad870ffe28bf02aae6183279
14904c7d03f4adc01a8353c7abc336603230be28
41993 F20110113_AACYQH viswanath_v_Page_331.jpg
1322abb025380e611ba3911c6d3c090e
39d8b362954e728edc3ddefbc681de1fceeadfb3
5406 F20110113_AADCHF viswanath_v_Page_385thm.jpg
b111775e76c13ca6fad6ef48c8ebe546
cea361031de50055ff60af486c629949b8b4e1bc
9659 F20110113_AADAHX viswanath_v_Page_209.pro
7bfea0a2476622ee36da8103d61d554a
f6b5fd61a902e8e903c3ee81ad244d7b9ebe78cd
F20110113_AACZRK viswanath_v_Page_204.tif
b21e3ecaafc2a2a8bd123fc43726d352
e2ec9031ce81bdb5f6ed8ddf3561e24be75353ca
2167 F20110113_AADBGC viswanath_v_Page_440.txt
057282f82c505acc87319e1da9e9fffa
25844e22a5563f5ea6f3d6dac63ad0890bba6148
71480 F20110113_AACYQI viswanath_v_Page_333.jpg
4ba5417758151d000d45bac57769eb5c
aad1640c44362507ef75976de9f19092fb4a19e7
17816 F20110113_AADAFA viswanath_v_Page_130.pro
474f1e99aa60e003e830da8bcef24b8b
881f08f96d93339c705d448e15ca10cc1d6be04e
16366 F20110113_AADCHG viswanath_v_Page_386.QC.jpg
25d175d1d152c580c8c1467663f02819
4840418b421f84773c82e76b71cbab128f8b575f
15343 F20110113_AADAHY viswanath_v_Page_210.pro
00b3e174965dea31fe517a1be60f55bc
73c4446f495f323ae60c3e4e62ef897572aff6c3
F20110113_AACZRL viswanath_v_Page_205.tif
c1b228b4b1cfbbf2618f4c497937cd40
b36d32fd4d41ba299b483a78af5a78730d64d0d9
638 F20110113_AADBGD viswanath_v_Page_441.txt
b3c2a962d8d4503fe9792b317f8c4d3a
fc7342c4927a8b7a4584a045c783824be56460b1
29127 F20110113_AACYQJ viswanath_v_Page_334.jpg
8c7ffc338d91e839e60804dc21b46dbb
1a88d0a27d7dd4e1e990a2f8273a2f4c158c73cc
21876 F20110113_AADAFB viswanath_v_Page_131.pro
9f19557e15eefd8e5d9304063070bc8f
5d5cbae3d2aa847effdec5435e790d8fd1eeaa31
5253 F20110113_AADCHH viswanath_v_Page_386thm.jpg
c33fc6ff789eb5f6603a23bfd2efb122
84179f9dd0ec0480156d0ca209f3a8634f87e17d
49284 F20110113_AADAHZ viswanath_v_Page_211.pro
016109e16d85b36b6722f7c5a4dc80f0
7fceb006d40f574b0c7ba60cf058ed998a3586ec
F20110113_AACZRM viswanath_v_Page_206.tif
57aba5d5c3bf69e1ee2efc5da4fb7000
534bbc049dff0a3a829dbf1e283861a44b66196e
505 F20110113_AADBGE viswanath_v_Page_442.txt
942f510c379f6d66dd4cb80782c359fa
b997c2110820915e98827ef0e1c7135374e3f991
57451 F20110113_AACYQK viswanath_v_Page_335.jpg
ed54b61116e3a5c71f407b8d02a3028e
bcca57aa9517a2b92503d70c36486da684f8d5fe
17726 F20110113_AADAFC viswanath_v_Page_132.pro
3776942cb33a7f5407a99f1957e6d007
6a77731a261bf7c16810c9a049d3c3cd0470ee8f
15951 F20110113_AADCHI viswanath_v_Page_387.QC.jpg
38c74353fbfbc3351a6a73ba828da1fd
f0538f68a00b082050d1d3cfb3c9a0ac779407bd
F20110113_AACZRN viswanath_v_Page_207.tif
bb7c809e881c47f2d9e65758a81f7c44
48084ef12d00ae1f907d2d9b56d417d7487633af
1641 F20110113_AADBGF viswanath_v_Page_443.txt
bce3d9973154fcf7bd5598dce01ffaf9
3ddbf21c6f033ece437efce77424fd0918e64825
39198 F20110113_AACYQL viswanath_v_Page_336.jpg
94a50046cad3ac5977c15233aa9250ed
f52f1b4616e43fd0b2f7c078304bd900877144e1
9331 F20110113_AADAFD viswanath_v_Page_133.pro
a886bd1869dd4137fb82bde2fbda2b20
6ea18485de848815572929224d2db877d081d198
5135 F20110113_AADCHJ viswanath_v_Page_387thm.jpg
fbe46f5fb9107ca8157cc1019693614b
019acea0746e4692f5866d9411b2c85f62200231
F20110113_AACZRO viswanath_v_Page_208.tif
4e5d58c2bfefba4b30a9575d84b716be
36c3213af81d06510427b95062e984b539d28a15
2261 F20110113_AADBGG viswanath_v_Page_444.txt
7ccbd4d6db8b7ff9dd437162c7efd784
5ecc52475bdb960cf32cd2cffa517a2982867517
20978 F20110113_AACYQM viswanath_v_Page_337.jpg
c258eaa42994e86572a03536ac5fcdf8
95e40d14de64ae0ec5468ec985a3c2d6d141b5b1
10132 F20110113_AADAFE viswanath_v_Page_134.pro
53d2a8e1a69535847697ea95d2d7a7f1
a94f0499e73e96e908ea5c9fab3a5ca0b1211e80
17339 F20110113_AADCHK viswanath_v_Page_388.QC.jpg
113c5c9962da988800e041f8203616c1
38911f3a230a8b23eacd5e4a102cc4e800208d98
F20110113_AACZRP viswanath_v_Page_209.tif
ea70e874e59699a919961689537f4ec1
d151982bad1a782d007680686a723b8911f8ffd4
2189 F20110113_AADBGH viswanath_v_Page_445.txt
1b7e904957e4adb1d54f90f270efd6da
8c627b303bdf92b68d356e8ec7a1a77a4b6054be
71084 F20110113_AACYQN viswanath_v_Page_338.jpg
25c99b82e4b1fca5ef7e2d78a1f79e8a
6a4c50b4ba3dd0e284d981c9303d342a36f3ed0d
15913 F20110113_AADAFF viswanath_v_Page_135.pro
527c41271d9187de4e5db9cd6d24e834
ef065803c564ce89d87237d04326c8aa859f91e0
5261 F20110113_AADCHL viswanath_v_Page_388thm.jpg
c21ecde485d25b5198743fff1ae1f2f5
3878730ff835fb5694ad364b18b50e8858b4b3d8
F20110113_AACZRQ viswanath_v_Page_210.tif
9b93fc02196188908cd3c4e797788a1d
4d81a8537ce2ed5240b1a75494201cd4403c7c31
741 F20110113_AADBGI viswanath_v_Page_446.txt
e49b027af75de10991b214a76bf95789
3508617f512371b7f6c7eba431d700b618c21caa
59213 F20110113_AACYQO viswanath_v_Page_339.jpg
121a61bd1bfa2c819753e28e1ceccf0b
b195bbef4cd5ebfc90d7a55043d9523b3c6f0548
9347 F20110113_AADAFG viswanath_v_Page_136.pro
1139fcf3af6a7f21f9038abe9767d167
c2b2caf4758d1068b07b15da184ee7d8268ab2e7
17018 F20110113_AADCHM viswanath_v_Page_389.QC.jpg
1fa2e2c14a9264045225976d9408f3e2
004b65115603e7d5eaba24516dc8563bd685caac
F20110113_AACZRR viswanath_v_Page_212.tif
7237948b534dcb3bcaae862add5b1486
b7f28829b0915ff802726e9dfcdf7f7189286b85
646 F20110113_AADBGJ viswanath_v_Page_447.txt
0a62c27d65723f0f27b74a5f3f6fb450
0ebf23a012f6810e12c378a6f357435481823f5c
57945 F20110113_AACYQP viswanath_v_Page_340.jpg
cea5f5ada0bd01c8325214ce770868cb
03d425093e2a2d6179087b3196821490dc6c2177
10910 F20110113_AADAFH viswanath_v_Page_137.pro
57e6e65ed1c3711bb093b4a7238216b2
6762e586d8ac05456061536e29f64a48659b4de0
F20110113_AADCHN viswanath_v_Page_389thm.jpg
98daed0b8311ded724399b1c4d1b52fd
333fa420674f5c2431d25e9400a4cd3eb028e6ac
F20110113_AACZRS viswanath_v_Page_213.tif
e05aefad19efcce704eed005b0dd17a6
6f26643a1b39bac99fd32b7f08c4096704a7be4e
2062 F20110113_AADBGK viswanath_v_Page_448.txt
5d60ea494fd5725ea882e302e19904f3
0aa2d1e8d65d5a01d1fca0543f87730ee6363b9f
35935 F20110113_AACYQQ viswanath_v_Page_341.jpg
bb7d13d03e49f795db6521a306314c3c
c8695d4566b2338eeb2fd0049ea588df4657bf17
14921 F20110113_AADAFI viswanath_v_Page_138.pro
8b9a1737b2654a672b05d95b602474d1
6d0aa85a9d78b0afd69a2091eda2ac153e324e08
16599 F20110113_AADCHO viswanath_v_Page_390.QC.jpg
d0066cd27d1d2f49906e024420f58dc4
a9394963bf9ccf218ee7c7ade2ccb458d14408d5
F20110113_AACZRT viswanath_v_Page_214.tif
c520f56d76192a34a2c83fbe2c6e2319
fc4bcfbcdaae7170b53add18dacbf0ce9a309df1
2472 F20110113_AADBGL viswanath_v_Page_449.txt
c206aedd6d407a5230ba99673315ad05
08467cd939d0d992f1385d9df8bc7e3f27ec29d9
42352 F20110113_AACYQR viswanath_v_Page_342.jpg
a5b2adb90d8cc56ff25b8eb59e79e7ea
bd577d7da63e02e77cc148845c02b1cf5ddb848e
15973 F20110113_AADAFJ viswanath_v_Page_139.pro
50c38bc506e37b54be29d342199746be
75c7f047fd6e0ca659af402c9db600d10921af0e
5173 F20110113_AADCHP viswanath_v_Page_390thm.jpg
3f179536bd0dd552a8f98297414e835f
9785ee455112aa86191d80712f9cfa0f2e642358
F20110113_AACZRU viswanath_v_Page_215.tif
a4b02095367b9543f5b1786dbfbc2334
46e9f885f40e4f47d5dec7ce561d47ba4d306b9d
577 F20110113_AADBGM viswanath_v_Page_450.txt
3a8b9b472df1bea81c239297d05e373f
887b928948a44d780bdd2b3050edd8631728c3bd
72798 F20110113_AACYQS viswanath_v_Page_343.jpg
c00e5c216eccc1a4da7e681b1f1d692f
9892e331368afce5b27568bd9c8c207aba8d0cde
19063 F20110113_AADAFK viswanath_v_Page_140.pro
9dcde7969bfc6e1f88a9d8079144b9c7
83ed283ca0232fe372dbc81e7cc18f1daa0b59f5
F20110113_AACZRV viswanath_v_Page_216.tif
b99ae84881b21e30e75cb106c7488b92
c6056f07426996aa7474baa7329cc30cca8309d0
1673 F20110113_AADBGN viswanath_v_Page_451.txt
cc522af1ca64bd5921f9a0ba1515d4fa
8544cb86a1e3c54aa5226fa385f8b450d7eebbbf
23120 F20110113_AACYQT viswanath_v_Page_344.jpg
38f7d75cbe2c11f74c85aedb91d38dc3
189bb11af5f88a044194ae31b440bef0a936c6e7
13899 F20110113_AADAFL viswanath_v_Page_141.pro
ec3ae288c523b5f86164b7cf90ed288e
08135fb3173537504ecda0df038ff8a80dbb8172
13434 F20110113_AADCHQ viswanath_v_Page_391.QC.jpg
dbba91d14b6ca603f8916cb79db6f557
0eaa2b1f2f0f88c409104124c51d5b7f91a4b20a
F20110113_AACZRW viswanath_v_Page_217.tif
3e7ad52508a187386123fe6e0350c011
c7324000d597bedf491001ba42e56443b07fb3d9
7313 F20110113_AADBGO viswanath_v_Page_001.QC.jpg
f80c593481497d4b43d6db285d6507a9
98ee631f79409fed0721359c6d9352a4abb12b61
58283 F20110113_AACYQU viswanath_v_Page_345.jpg
e852055f5d7a2625c4d356b8013781f9
2f767a42f21d9374d99e63bfa047caf7788a89f4
10702 F20110113_AADAFM viswanath_v_Page_142.pro
8cf2e31aab1c1d7f196655d03a275321
ed9d988700bc48ac7e3c4fa149bdf3b822f825e1
4452 F20110113_AADCHR viswanath_v_Page_391thm.jpg
3e02a9e5568fa39e4d431f37d53caef6
29e860929bddca8db0d7f3fa8c38c2d9d611d153
F20110113_AACZRX viswanath_v_Page_218.tif
69eadf15529af420d6c11e47e6a94a99
99682c2adc66d4f731758b12809a0f61040ac207
2344 F20110113_AADBGP viswanath_v_Page_001thm.jpg
99a88ea39a053363245dccd4508daf32
8e9d5fd8360d234472b7bc3647a55890a228cf76
37568 F20110113_AACYQV viswanath_v_Page_346.jpg
911cea1830972e0f6a3f3368bd02f516
31344ecb135912c841b9aa817b519458b4ef488f
16394 F20110113_AADAFN viswanath_v_Page_143.pro
050fc53598cfd8eea30190614bf65fb0
4a7e5e77a74c7ab558424e3c2775cf2152c686d4
16504 F20110113_AADCHS viswanath_v_Page_392.QC.jpg
e0e2fdd2ddd415994d4ca4200fe5ef54
1840ab9cf0d9fdd1adcd8ca93b25f1e3b1b845ba
F20110113_AACZRY viswanath_v_Page_219.tif
47a287832072ffafdab711aca374dbe4
9e8eef4c2a8603dd1752e6ab27d6990c0959b0ef
71920 F20110113_AACYQW viswanath_v_Page_348.jpg
8bdc0b04cc0dad36c77036cc5e463c73
22312ae922e2517daaa38441f35895f66023d6e7
15367 F20110113_AADAFO viswanath_v_Page_144.pro
3cf483ef44e3024f418f8670145be696
1126fe095860f73637ae0eb4bb58006d0e6ba677
F20110113_AADCHT viswanath_v_Page_392thm.jpg
d6d85170f98ba8225e707cd585d42499
42a8cdd6edcf905a90064a8dc4d4d7b42d2d73be
F20110113_AACZPA viswanath_v_Page_138.tif
bbe461c74ffcb45617cfa739873fe669
29112aa4d40f6918b938578af0fa8773c0a1df26
F20110113_AACZRZ viswanath_v_Page_220.tif
5990dcad252bc06af71a6d749a77fadc
091ca94bd8f3a4ac66586ed4aa40e542e292601f
3269 F20110113_AADBGQ viswanath_v_Page_002.QC.jpg
a233e31f23162fee62200a7859bb7b57
0c5270a507eb6315d59e9320e9f4089aaf18d91e
60831 F20110113_AACYQX viswanath_v_Page_349.jpg
90699401cda2f4df7ef0785b5e94a8c3
c6ddeb20dee101f7e5b7d59f95f9a67f75fba3d9
15012 F20110113_AADAFP viswanath_v_Page_145.pro
3bd2b4b68271b62b8c9b58a77a08392f
bc1e6558a4eb89989a49319af2987cbbf24bc8f2
5298 F20110113_AADCHU viswanath_v_Page_393thm.jpg
8058572a67f6c6c4cc2964110c3cdd65
73e15d0570ee5416f945f3dfd4effcc6c7842b62
F20110113_AACZPB viswanath_v_Page_140.tif
f20d505891b7002b40624ac66dfc5a21
f984fc9fb769fe9ec8df4489c704ceacaf37dc50
1379 F20110113_AADBGR viswanath_v_Page_002thm.jpg
9ca28643ec284da1d0de19769776253f
49ec484f44d9294cab128a826f8170b597f999a7
63395 F20110113_AACYQY viswanath_v_Page_350.jpg
c8fc77a7e123717717ed1f579668ccc3
8df5093b69977ec71ba8b25f32a2bddee18450cb
16439 F20110113_AADCHV viswanath_v_Page_394.QC.jpg
5a785a26955ba4e9656a1d2792553171
0307594ef868d97bb5cf313ff739b9973078ea73
F20110113_AACZPC viswanath_v_Page_141.tif
5403387850b8249499cddf44b9e1768b
053fc34f7d518031e69dd9d885a50c8bec3a419f
3513 F20110113_AADBGS viswanath_v_Page_003.QC.jpg
2943afe1182b1dafc57d9f47efb29d4a
b4dbd43a5488aeff177ac9a8d1c0b118caa62187
35796 F20110113_AACYQZ viswanath_v_Page_351.jpg
6773d3541a7b3dfbbbcb80179f4ba3e0
2194cb945bcf7630717a1a3b0cfb6600041c7c92
13046 F20110113_AADAFQ viswanath_v_Page_146.pro
0f5dfb25dca85b016a5c6570628d7d84
cb59291098992e21ecccc624dfe5f4fb4cb95e60
F20110113_AADCHW viswanath_v_Page_394thm.jpg
9de98623631fe28da1bb2792b1c4fa6a
770cde539955aacf00c75788234c05db05ae5f56
F20110113_AACZPD viswanath_v_Page_142.tif
14809ee872c1b6deeaaea70a90fdd583
bb9f22c2b56d5a7954a50ac8cc693bb2fe76a948
1465 F20110113_AADBGT viswanath_v_Page_003thm.jpg
4f4fe606e6c43522450912b94ea2da4b
831d1cc59b1bf2b0bbf8831cb0a58ae506b1415e
27804 F20110113_AACYOA viswanath_v_Page_261.jpg
a14df3d7fac8ecc80266e34ef1419f1e
4013cdf1f904f3c0afaecf82385c372378e70d9f
16014 F20110113_AADAFR viswanath_v_Page_147.pro
854d47c671e4b1a6ea63dd336fcee7b6
e02d101883652f18c612854d05b2335dae8034a3
16910 F20110113_AADCHX viswanath_v_Page_395.QC.jpg
15f93a7f438d6ee51a29941d6054d0f4
530b21bca07cda124e84ae5fd3148bac61949fcc
F20110113_AACZPE viswanath_v_Page_143.tif
e597f7a810d00ed579c56944ac9fe991
bdf0a06b754658f39424312aff58a60f23cf4dfa
20219 F20110113_AADBGU viswanath_v_Page_004.QC.jpg
f26138faf45ee4608be16eb61a22dfa9
9688ba13b43c64e4e6ef4c53729f76a16a57ae23
62666 F20110113_AACYOB viswanath_v_Page_262.jpg
4c30af3850a7535ce379886b478c2571
6433497340081f9295f45f71c1be1858e8fdd06f
6106 F20110113_AADCFA viswanath_v_Page_350thm.jpg
4e078319e097102d40139675f1134090
97340939fb328164f8a686d82e070273c9ada892
15813 F20110113_AADAFS viswanath_v_Page_150.pro
25c9447e92cfe83747098b520067ce08
f70f6d0623e2f13c8ad8b943a7b52d8748c971f9
5339 F20110113_AADCHY viswanath_v_Page_395thm.jpg
62a2069440166d11c6c85b8a351fcfac
bc9f953ca926a1ffb0b7911d95e399891edcd4ab
F20110113_AACZPF viswanath_v_Page_144.tif
12c31252dfa81f86ad069a1b701c91f1
8945dfedf6cb84cec36d387826c4ee8d6aeb6005
18734 F20110113_AADBGV viswanath_v_Page_005.QC.jpg
a172111f48b20304b56d0e2aea8d1901
65bf9279067cf346ef901f59790cc063d3d3c704
47478 F20110113_AACYOC viswanath_v_Page_263.jpg
1fda141a2e436cb1c3a1eb7775359870
b7963db9ed1d15504e5c7ce2925efc5685b6a42e
3963 F20110113_AADCFB viswanath_v_Page_351thm.jpg
d47596dddda4fb3ee480bbf024892005
83da915e45b1e051b9c73c54ac0b59828ec8c39a
20808 F20110113_AADAFT viswanath_v_Page_151.pro
a8cfcc2b5e381dc70cb28b9208a93e39
a5696717919401662ee851cae4ab9222999b6d44
17695 F20110113_AADCHZ viswanath_v_Page_396.QC.jpg
5c366cf862719e8cd087db81a285b5f1
815c8d048f450dafea93eddff09fbe5ab9c9fc0d
F20110113_AACZPG viswanath_v_Page_145.tif
ebc31a7f74ea8c5df17620785feb23b5
6f4e374e5be968e48dd4f532acfc064a4bb240dd
4694 F20110113_AADBGW viswanath_v_Page_005thm.jpg
15e4509ab9c87ce8f986f2243b7d21c4
2a54d4b5d97ee70f2faf98316bed5d2b36854fa6
26056 F20110113_AACYOD viswanath_v_Page_264.jpg
e247ac1171228648373b779ee20c7cc4
0b93fd17f4c1ea8067e6b93a2e697557f7407977
14244 F20110113_AADCFC viswanath_v_Page_352.QC.jpg
a8104f1d1fa7bf84ef4adf436e2f9a44
6acb24048e9a95a56343d119e23d65d6c4db93ed
19482 F20110113_AADAFU viswanath_v_Page_152.pro
c644be421b9558dab6cf18470fcf3646
7d3e23a9f8ba5d31def1734942e6fc11721c51b9
F20110113_AACZPH viswanath_v_Page_146.tif
ef7d0530f15b59182a20ea3d4b6e7e85
62a2f6fadae56074c49b8ccb9065c00bc298fee2
27779 F20110113_AADBGX viswanath_v_Page_006.QC.jpg
285391612e28c25dbd95013510942c4a
04b18769061119277343a239800514e47ba1cebf
14939 F20110113_AACYOE viswanath_v_Page_266.jpg
b8429eb8fe0a8cd21699d90d816f8f9c
2b6888b815ed5738a647c79cae0ae7a947282ad6
4525 F20110113_AADCFD viswanath_v_Page_352thm.jpg
d39e9349f9e9c7efb36fe524ba94d1b4
093c74e3e2021ef3e59972ece6492efd84309390
21199 F20110113_AADAFV viswanath_v_Page_153.pro
d77567d6ea7291fd668097bd4bb9da8c
96f9b926ffa4ab48e5ab7822b8a9db5e1af39a95
F20110113_AACZPI viswanath_v_Page_147.tif
92f6818eea39ab69a9aad543fb4f3c8e
ff666ad713f8ff7a0e84d7f1193e8c892d368c24
613 F20110113_AADBEA viswanath_v_Page_381.txt
5a38ccaee821fdf022d8103eb64a92ac
12b750a47df8bc46a6ead2640ba47aa8e1923d0b
6557 F20110113_AADBGY viswanath_v_Page_006thm.jpg
255433887c4ce6258f034e941adebbba
0107defa6246c61585fdd5cbf6ad95208bb99f98
64440 F20110113_AACYOF viswanath_v_Page_267.jpg
a8a8414aad74e5b46c2885a57af6a0f8
8ff426d60197eb56e8085ce80fd3fc939f1de2ac
22597 F20110113_AADCFE viswanath_v_Page_353.QC.jpg
528e012c1463794e3680d678cc18c4c6
3c81e7a9e13858bf99828fd1a737ee87ef4397c0
9856 F20110113_AADAFW viswanath_v_Page_154.pro
ccd27f7f9d8b471ac639a66fa3712c94
f171dcefdcf215e2df2113a2cc21cf4a29ed8325
F20110113_AACZPJ viswanath_v_Page_148.tif
63272511e6212716811cdeeafea4f182
6c3e552a68700329fa96e6558fe4ff95412e32b6
518 F20110113_AADBEB viswanath_v_Page_382.txt
28d47ebcd1a38eb70e133266f24268ef
a451617f3394740359978e22c817f2af21dcd6c4
14826 F20110113_AADBGZ viswanath_v_Page_007.QC.jpg
ff3cd52a904639838649d47e8d25f8e1
bf5869b0bc8c6488fe39f3e9eaa438c9178b1ddc
41453 F20110113_AACYOG viswanath_v_Page_268.jpg
8ebc2266dbfaa95f86f13b1659380a47
f5e4cd44a872b5e2d04e77236550a135c644779b
6229 F20110113_AADCFF viswanath_v_Page_353thm.jpg
8ff5d441818666b5eacc4a28ba1fc365
d4f93dacf8867af2ea8cc6070a9a699b93f51e1a
19448 F20110113_AADAFX viswanath_v_Page_155.pro
8ceb760b42bddb8dbe4c31f94f292b1e
f3143ad7ae88b4fa924c3d02e8c8b6ecb0d0843e
F20110113_AACZPK viswanath_v_Page_149.tif
bb6c34fda74bd9c8541e5e52cc7669fe
42bab7bfa154b59e2d07e8670b77bce88a7b1cab
472 F20110113_AADBEC viswanath_v_Page_384.txt
59c6adced74ce4be62a39fdd630b6cea
a9a47dcb1d070384d848efc523404c04f9595d1b
46792 F20110113_AACYOH viswanath_v_Page_269.jpg
64ea4fdbabc8ad5b64bfc441333600da
0fc7220002dd27407b672ce5ccbe83eb86542725
4674 F20110113_AADCFG viswanath_v_Page_354.QC.jpg
b4f956cc45db604e144c74be7fed4100
dc7282d4a04c796180b2972afc9d7a5ec23ed320
20570 F20110113_AADAFY viswanath_v_Page_156.pro
cf781cda32d8fce5ed4a314125271c41
786ded2020c1a30bae7f7fa6ddabc596b29995b7
F20110113_AACZPL viswanath_v_Page_150.tif
c47daf6caf6d5c5ebd45312391d2ce68
0a5334438ad5f61a695f7400ff26d20281397bdf
557 F20110113_AADBED viswanath_v_Page_385.txt
b8d54590caa4345463196151a610ad5e
3fa69de2d83c1b57c4f4b2d4f5661b3da7f01227
70700 F20110113_AACYOI viswanath_v_Page_270.jpg
37b52445e2a56790c3668c20f9286216
7d9f9f67255c53d5779d7eb3fa2fe939331f76f6
3499 F20110113_AADADA viswanath_v_Page_075.pro
4512f5afccdb3ce539f1fc2f18e126dd
15be6ec438c18e58ab69d7af65d1ba37db69ef5c
13905 F20110113_AADCFH viswanath_v_Page_355.QC.jpg
02a471f8125fff600372a97cc0453c51
10bf49895381f03ea6444f254a9ba88f41623956
16753 F20110113_AADAFZ viswanath_v_Page_157.pro
70cbdc3e3824eb4840de7903242adfe1
400dad0317bf18bfc333ef67a56ad0fbfaf19066
F20110113_AACZPM viswanath_v_Page_151.tif
82538660a343506060fb0b42519e2771
667e1a1a356a48293f3721f42b3fb3b4aa9a24e9
610 F20110113_AADBEE viswanath_v_Page_386.txt
534f5d58531b5b7437e882c998e5888a
1df812bb71eb36dd46bafc9d1bc69e22de086117
45148 F20110113_AACYOJ viswanath_v_Page_271.jpg
4b6f3ddc096e2c44fc7b195807bcf982
b7a929529e6d0100b0606c980fda0f49b1b1b7cf
4579 F20110113_AADADB viswanath_v_Page_076.pro
8f34cd36b323e2c665678458a28c9695
1fb249347777fd19ff53fcccfcb8ae606ff05dec
4255 F20110113_AADCFI viswanath_v_Page_355thm.jpg
da243e95fdb89e8ded167f81cbbdc88e
dc8d072f8342729bafd4cfff991b314afe28f625
F20110113_AACZPN viswanath_v_Page_152.tif
e6002589b32ff9067105bb36037521f3
b04bd1b3054226a7a8becda9670690d2ef0e0ba6
607 F20110113_AADBEF viswanath_v_Page_387.txt
270de5ce3df41eb5add2825cc0e2f044
4065ff4f424d6e5174e52a615e62a2060e7c4da6
53712 F20110113_AACYOK viswanath_v_Page_272.jpg
a00fbf49e95271bd96e094c58b632ef8
369a5aacb4d97bcedffe8ac29498bdd609200ca4
37670 F20110113_AADADC viswanath_v_Page_077.pro
c9a93b2977f8036863d149e313359b11
f02dede619dff7991e9364d5302801bfffeff6fa
13659 F20110113_AADCFJ viswanath_v_Page_356.QC.jpg
841736885fd7674e1410db577a2d14ce
a5a3476790edb653fe910485cc39651a9fa58e72
F20110113_AACZPO viswanath_v_Page_153.tif
df51372f82723e63346b65393b9174bc
f0877bafb709914bd2997f265d4784d93e861b56
736 F20110113_AADBEG viswanath_v_Page_388.txt
c6c63bf2ee3a3373c210bfb2faf68a31
6fb8cc4474ba9ac4ffa85df067675ec30827424c
72081 F20110113_AACYOL viswanath_v_Page_275.jpg
2c96db929fe7edcdc9ef7e18a5d5274e
24b6c75a05ce4a7b87cec930de99a40a6338d22c
53567 F20110113_AADADD viswanath_v_Page_078.pro
f353ab8dd0c21a12e1127fdc52908659
1df9d43d1bb208968888d639606d842ad30c47a1
4472 F20110113_AADCFK viswanath_v_Page_356thm.jpg
95216a46932c7df200f9918a9edc1dd6
e091d7082782693255f42629b1283e5c8b53b61f
F20110113_AACZPP viswanath_v_Page_154.tif
5780f7871fc77a2fe239d8c796db9d13
84a88d1e706bc9f12b65c59ae2e7858e10f9a3cd
551 F20110113_AADBEH viswanath_v_Page_389.txt
f01514987166e46d08b83b6bd6cc7154
f6d6547ba232907df4133978df5a0dd2671f0f03
24411 F20110113_AACYOM viswanath_v_Page_276.jpg
90cd7699a9f99f3e24d5684c5b81028f
448fbd265f946b955eb752eef7e0421aed38f196
47640 F20110113_AADADE viswanath_v_Page_079.pro
bad7120c41ba8b7dd3c7af8ee52352d2
c6fa4d3c4c78d3fef7262734e2534886237009c4
23781 F20110113_AADCFL viswanath_v_Page_357.QC.jpg
74568dead5eda91a190986335839b4a7
1b902032ff06004033ad70a9588e478b682daf54
F20110113_AACZPQ viswanath_v_Page_155.tif
bbef4aea4f99715031cabe7961402ae2
c732431e86b850d37c648a22ff5209b053e8ef51
665 F20110113_AADBEI viswanath_v_Page_390.txt
1a0cd6fe7b8806b0c2b6477f9b7e72be
89d06ac245e0304c8219951adc7b3d9068c51215
37530 F20110113_AACYON viswanath_v_Page_278.jpg
3bf0625cc377aed6d00d3f2ad4803b8c
f3602df7866e530e9abe211cc8d4cddb93e55dc9
48008 F20110113_AADADF viswanath_v_Page_080.pro
ca5b3a04365dc79df42c33f10a76739e
e8dcc441a6fd1c0c3e96ddb03cc5ec2a88bea6b8
6771 F20110113_AADCFM viswanath_v_Page_357thm.jpg
454780ec63891d8c157c5cf24b2f2ba8
9aad6f89f1ac7c1b8780a297caa05a611dbad874
F20110113_AACZPR viswanath_v_Page_156.tif
72e72cb53b5761146dca762023ecb47f
da181e88cfa1b75895e37118db5de2eecb650bf4
421 F20110113_AADBEJ viswanath_v_Page_391.txt
4e4573c9b104545ba4cb51634b60bf81
a9b42f96566376946f8d7530d700f470f6b2b258
75183 F20110113_AACYOO viswanath_v_Page_280.jpg
fd9373aefe6b58d9df83f811db88df55
ad01a8f2cd10344ad72d44200e0a5623f4fc6a33
54804 F20110113_AADADG viswanath_v_Page_081.pro
376bacaa201a043517a23382d99464d8
a56122017a2cdacd649d96e7f34aab23a24183a1
5676 F20110113_AADCFN viswanath_v_Page_358.QC.jpg
bdb34f238f84d871a94f28c2739d079f
9f703671c137d76807d52e0428c8a06476b4cf1a
F20110113_AACZPS viswanath_v_Page_157.tif
3354c85b4fba765cad92aebfaaa89be4
c54b928215905dbc9b98d4c17b358685028d3551
687 F20110113_AADBEK viswanath_v_Page_392.txt
482083865dde3b57972ba50e45c34c93
d621ac8356cfb10a152ea02c3de42e52fa521d44
27083 F20110113_AACYOP viswanath_v_Page_281.jpg
68503b1818d4c07b137a3768fc8f146c
cae72772b4de3de71ac5b636e031b274caa6d494
52888 F20110113_AADADH viswanath_v_Page_082.pro
d63b7a028e1c920776704dbda981725e
fe44420e13a4a4b60767b1dcaa746fe3065c8258
F20110113_AACZPT viswanath_v_Page_158.tif
7da1421b55a61e7466c002e968eb2afd
650d72cb177ad21605df9587885fadac32473fd7
536 F20110113_AADBEL viswanath_v_Page_393.txt
7271b0efa30a821c1b238c3834f1d28e
1adc2619ff521bcf979b9daee1eda1d2a23b59f9
60534 F20110113_AACYOQ viswanath_v_Page_282.jpg
38afd336a7ec2c49988acd85c0350efa
d7a463a621ed7268eb76d9932b9a026442113ae2
53844 F20110113_AADADI viswanath_v_Page_083.pro
bdcb2423f787b1c7468ab7dbb80c3609
32dac1f173752972ed42a9c0e1c8cfa9d71f5aa6
2012 F20110113_AADCFO viswanath_v_Page_358thm.jpg
e0070b3fad5f50526564cc788b81019d
959533a8a83af6a5edbdb2b5c177e488226d3a9f
F20110113_AACZPU viswanath_v_Page_159.tif
668a92bb56bd12ecc45133dba73a853f
750cd359c53e538ba9366dfd6fd8fb4e4d245285
462 F20110113_AADBEM viswanath_v_Page_394.txt
15b88895af3f58503900e30f07f57bf2
2c15f9ec7a1a9dc4041feabbe6ec36289149f484
40217 F20110113_AACYOR viswanath_v_Page_283.jpg
471beb660331f426da5eec1a53797241
0ff7d6aa73ea05ab798ce8efa042358b98faeb4a
40969 F20110113_AADADJ viswanath_v_Page_084.pro
763be1297013d0f161609127d4151cf9
788c653e291897b907e1bcfd6b419e8f2f206321
13341 F20110113_AADCFP viswanath_v_Page_359.QC.jpg
fdda5f7e76cb75cb893aa70fb3aea69f
be6a3c9080972b2cc1292386b4f4f2b71cbb3596
F20110113_AACZPV viswanath_v_Page_160.tif
d5a9e9a9a71c084d4a62acdc2c7e85df
ddc9e8db8f6f0111833734ad959923dab542f0eb
493 F20110113_AADBEN viswanath_v_Page_395.txt
b0b5f7d989f3dd918488b0cc43fdcbef
580bf159ab26dea41bc77c205ea01963c587ee75
64774 F20110113_AACYOS viswanath_v_Page_285.jpg
5c6facc4a60370531adbfdced90070ec
c2314146516ce696c906e94716a20fd96e4e91fa
51261 F20110113_AADADK viswanath_v_Page_085.pro
056c17658252e1a53d67655ef1d506ff
532b2548f7a72bf54937b93574b6248cfa009584
13193 F20110113_AADCFQ viswanath_v_Page_360.QC.jpg
df31f2d8190a2fcce606c7c562a0047d
f63b154f0e6a313401180102161d20a960153d9a
F20110113_AACZPW viswanath_v_Page_161.tif
d9f765ff969f93b588c336cd55ca19af
c7f5e6fadb39acb7e95730d9652b93fa8669be2b
54292 F20110113_AACYOT viswanath_v_Page_286.jpg
2536f00da17b3a8e0dcd8d0a79757037
2d0ec71dbc141d9e312940469b2ae057ed0de318
52735 F20110113_AADADL viswanath_v_Page_087.pro
0aeb0353f6ad596a890c0198e00efa06
051c593e8d359bbb11743d1ba264c68f74fe5195
4103 F20110113_AADCFR viswanath_v_Page_360thm.jpg
a04cf37ca6a1ceee98c4abb2908d1ce1
5e3a7926070a2940cc3031ab612e0e3aa89db2bd
F20110113_AACZPX viswanath_v_Page_162.tif
0ef7077d492e06d682096828084fd540
332bf4366c9448d351c90db3b8a22ce73f794083
F20110113_AADBEO viswanath_v_Page_396.txt
cd39398fb630104c13bee345d998b5a4
7d8946004cf62ddf1be2fa05beebf68cb1e2d50f
38574 F20110113_AACYOU viswanath_v_Page_287.jpg
35ced2ebdf617e59bbd20c8b6ddd8c51
4cd9ac1e46794367816a2922412cff04480669c9
55398 F20110113_AADADM viswanath_v_Page_088.pro
e3023d124e29b7805291a9b090dd5684
356127948d507606071e951a5cd9d7fbd03a9fc1
14312 F20110113_AADCFS viswanath_v_Page_361.QC.jpg
b4ba51d18dee7839efaac20fa4873c38
dc88f198112a4d1e1303990927abb3d24989f0e6
F20110113_AACZPY viswanath_v_Page_163.tif
b28fc11abda890d6c265f23495c15c07
d5bc49f649515279b838ce0df174a4ba24e69f79
614 F20110113_AADBEP viswanath_v_Page_397.txt
e7f1aa58208d7b0c0dc5a82782e6bd2b
90b970d854d749269a8a085d0eb5703eb06cc4ae
24431 F20110113_AACYOV viswanath_v_Page_288.jpg
5e86b75bc59d6b4b5a572db370e91a11
45a4675b4eaa3f7252ae626236a1c3a60883ce57
55777 F20110113_AADADN viswanath_v_Page_089.pro
fcd5ee2e785c5836f5f8f45677cf3619
7898b2048b4a0235322c47d54c2e0830fef56aaf
4522 F20110113_AADCFT viswanath_v_Page_361thm.jpg
66829b5f7801c1464290425926b89f4d
ce38213b97e79f1fe3fa8865299bfdda03886da5
F20110113_AACZNA viswanath_v_Page_081.tif
7908847d76a27b582294b50bbbb4a797
e14463956d7c6cafa14b9142fb0a21c7e2c70c52
F20110113_AACZPZ viswanath_v_Page_164.tif
f72cfe506e6982ef53650dd9dd3ee246
e02c695e91ca4ed12139df850af2dc8a1839e3fc
575 F20110113_AADBEQ viswanath_v_Page_399.txt
a0c91b8f0d3f31eac24677a800eea22e
4c192a5c076f6242df1527d92162bcb8c5d0fee1
73712 F20110113_AACYOW viswanath_v_Page_289.jpg
487807d1be8a8cd783f0e573b8118a95
9fa8e2f475129925d158aba6a7261e7c7c9fea78
23310 F20110113_AADCFU viswanath_v_Page_362.QC.jpg
c89036172ada309304d88f5f059a5fc7
edf648c30536b4b63e2c0d29fc5e8a07c2d0579f
F20110113_AACZNB viswanath_v_Page_083.tif
afe44fcee67cc158d5d8dda30ca0eb60
48129d61640b8b4a6702a3474a05fac85b23387f
F20110113_AADBER viswanath_v_Page_400.txt
69f8bd05a5fdeecf53ce51e4933ef355
927f067d230dc48454c5faae2d859c9d7cc12d0a
59829 F20110113_AACYOX viswanath_v_Page_290.jpg
31770b2eab725ef5744eab6d7a891339
e0ea4454bc2ea6362d3212a4386faf77d7d79ef9
55032 F20110113_AADADO viswanath_v_Page_090.pro
2f6e4a3916b66199a42ad2286ffedf1c
ee9e0c6435af502a7259a53da34c80f52df2858e
6385 F20110113_AADCFV viswanath_v_Page_362thm.jpg
69ce6c2dfc06f8740c4ebaa0e636f439
d67015eb6dc79d7a16b98e26154b64eb5d76a543
F20110113_AACZNC viswanath_v_Page_084.tif
d2d1e471e20e04a29a035145fc7920cf
06b673c3d91f6e26a4e5ab36c40aec59e391999e
662 F20110113_AADBES viswanath_v_Page_402.txt
3aaae9504670494138e976b34f746bf4
becb311c75fce1ebb681eb709edbdd13e60af6bf
39237 F20110113_AACYOY viswanath_v_Page_291.jpg
3ff1a049f441315fcf5afcde0c9c8a18
812e15213cd316a42dd250897f71223e5b792c48
54817 F20110113_AADADP viswanath_v_Page_091.pro
4be62056b23ae24a6e265b7173b2c46b
a85cb71ea11251b657b0292435b62efbcb6ca35b
12402 F20110113_AADCFW viswanath_v_Page_363.QC.jpg
adacdc873b1f6c2b08d3ca870860c7cd
cc631d83056ef19882b18f4df1f1af091a44225f
F20110113_AACZND viswanath_v_Page_085.tif
0764a20fbe308f0a2372ca9d87876b3e
112f3378b11a956bbdeb04de61b9fa49a4750c0a
F20110113_AADBET viswanath_v_Page_403.txt
835b2d637c01bb1fbbd4c7ffb194a5d8
1d6938d52c39294ea1eb2754843204469b9a9a5d
24997 F20110113_AACYMA viswanath_v_Page_202.jpg
837a7dd9079eabec8c1399d1a09a258d
0afad443ccef7962aba8776c40784bd9f24743a1
44722 F20110113_AACYOZ viswanath_v_Page_292.jpg
47da169f2a5075c492b33077253224db
f74327c5061c14a64c27110d5e323ac9aefccd3e
47007 F20110113_AADADQ viswanath_v_Page_092.pro
f7978cf5e6360e212f9631bd0426609e
e73e72d385710f69a7328f6648472415e44ed3d7
3532 F20110113_AADCFX viswanath_v_Page_363thm.jpg
820442ace0cb2f73f332bb28b996cfdd
109f8bde0ee9b4d7861ab4a1d5b1e68d060b312f
F20110113_AACZNE viswanath_v_Page_086.tif
c9786f7cae94028700dd20cbf96939ee
01700c01e11dd286ab466a94bf14385b177a3411
594 F20110113_AADBEU viswanath_v_Page_404.txt
ebab6bd1f0e5f2bcd79423085fab9ffa
439ec82061869ccdf9fab766490700c040718316
49096 F20110113_AACYMB viswanath_v_Page_203.jpg
83ff2f88436adf92e2adad08f0deb374
6bfc93c6c1e99a62b973e9cfe6fe5fa5852616d4
52843 F20110113_AADADR viswanath_v_Page_093.pro
8b26c20af13552edc5110341a6146041
7637d9b23700369462c7009989a06fbd1fb3f612
15338 F20110113_AADCFY viswanath_v_Page_364.QC.jpg
c81f4716d3fb90ba1fcf6570bc0396e7
db33fefb54566ae594b5048d37ab137143c030f8
F20110113_AACZNF viswanath_v_Page_087.tif
fb91aa3d21055522de20db7c645b313e
58b8ba272c302b3635333d9a03549c27123bfc0c
576 F20110113_AADBEV viswanath_v_Page_405.txt
3d96a73cd1f5fe2c78a6d67a7085e792
c46a3d3df5ccda35877d65067c819bad941aa3e4
39541 F20110113_AACYMC viswanath_v_Page_204.jpg
468b5cbc6b74c863206be37df9521ca2
89392ca78f42e49f16f37373b1fc82ebac0cb786
16379 F20110113_AADCDA viswanath_v_Page_322.QC.jpg
a93b16cbc3e4db539354f43cff6d5917
e70b4b0ea9532fa48746d31414ec34478c144cab
47586 F20110113_AADADS viswanath_v_Page_094.pro
1c8b7b709d6610ad9e663de870dd7f78
5733fc04a83a2f27e8ae59fafbac6d2beeceb0a1
5032 F20110113_AADCFZ viswanath_v_Page_364thm.jpg
a5ea951231d8a97b69986ce6b5d49da5
992919a48a5d43bd8af0443da35d50bbd2470e7f
F20110113_AACZNG viswanath_v_Page_088.tif
de3532a1b703f6f658adda328fd9cd84
133e460e9174e8fabbc9c76b6c3bdc89c9fdba4f
814 F20110113_AADBEW viswanath_v_Page_406.txt
3629d32a441587d964a90b30a1690d41
ae0572e07c3e193d510f6555b1e27c66e225accd
41852 F20110113_AACYMD viswanath_v_Page_205.jpg
f4babb83c6728a0b30caa0b85bb1ace3
f6811f92c2f9288a56dd7b43ffef3c5660595dc0
5112 F20110113_AADCDB viswanath_v_Page_322thm.jpg
f1ca6c0f072ff865e5bedbc65d0c9a9a
ad3768ea920e894361f4c3a08399f24eda0fc2d2
77512 F20110113_AADADT viswanath_v_Page_095.pro
4887de283fa83ad805020431fe55750d
f41f66d537a16cc3205481188b1914c67c4e8d42
F20110113_AACZNH viswanath_v_Page_089.tif
a3f38f76a4fe384cc9c4c219010d3f0b
e73fe6bea91e1e724bfa13ba7dc7488ca6f21145
548 F20110113_AADBEX viswanath_v_Page_407.txt
5f03be90acc976d97852d4c3885424fa
c7b3118f8b89e7a798d0796535f4bb0878b8d36a
72052 F20110113_AACYME viswanath_v_Page_206.jpg
e10650a648b11a32ccbc04397792e208
3184dac5549ac44dfa8ee801d35cae38ed6b5152
24206 F20110113_AADCDC viswanath_v_Page_323.QC.jpg
7e3fbc82798653321c17bbc7b58c4eba
ca5011f2ecaed68b7ba2f104249b89082b68c4ba
67602 F20110113_AADADU viswanath_v_Page_096.pro
abdcd0a66494931b999f9b5d862366a2
e2aa57a139b758a0ef3a53f4c4cbdd4b3bf545be
F20110113_AACZNI viswanath_v_Page_090.tif
faa3d089d7661f04e2977278fa62ff3f
fab9aff42f84bb1182a32ba52c83f1beaf9defc3
898 F20110113_AADBCA viswanath_v_Page_326.txt
06fc66b9c6f273a45b57ce8621d16833
8bdc3e3ffb5ec5f2af4182f4f26956a84e15f0d7
424 F20110113_AADBEY viswanath_v_Page_408.txt
bc96999cf607850fe5f7bae40c10d7aa
8511871909fa093d2b74ddfa6ee8d2f28783c2af
28205 F20110113_AACYMF viswanath_v_Page_207.jpg
b36986b82f6c91aa21126f514e2708f0
f82108e69e069b37922a7b116cd4cb2c75e3fce8
7456 F20110113_AADCDD viswanath_v_Page_324.QC.jpg
0537c801a27259fca361ca937a77866c
2dedf494aa4962a61db78ea35d0f0b60073ca298
51568 F20110113_AADADV viswanath_v_Page_097.pro
85557798fcbaeba5d451c26231c57d29
83afe47b8f1266dab04abea5fd3d745cde6490fa
F20110113_AACZNJ viswanath_v_Page_091.tif
46fa72fc545aaddea9276e1e7ee73e0a
fb5f404f6b9a8ffd1f3fd27f7c80f9262a3e9f48
825 F20110113_AADBCB viswanath_v_Page_327.txt
9336d6bef6e39bcf3f46b58107a2427b
08126c137ce2f54c9903e0bcebf0680b6c9be492
502 F20110113_AADBEZ viswanath_v_Page_409.txt
3b7daa76db39e25c4de512891159632c
cf94a36a785e87c27db57b3e691bce44e975caba
50239 F20110113_AACYMG viswanath_v_Page_208.jpg
dc1afc18ca8fa3014e897958baf71a9a
c269fca1647db643e6146929d295621100fb5bac
2334 F20110113_AADCDE viswanath_v_Page_324thm.jpg
ee28fb8d432503da8828b6f34f753d3b
c38c1ff26ffb486b21086fbc5c6ff5c2d630217e
65803 F20110113_AADADW viswanath_v_Page_098.pro
ed4ef64ab4b61ac13f78ad96793bf01b
9518c111f6c2f4870764c8d1d35d653b8226ed33
F20110113_AACZNK viswanath_v_Page_092.tif
4f5ac9ffe34d85c9ec19ab038581d2e1
6f641d5245a915b3e7f83a021c3732aaf6193733
2016 F20110113_AADBCC viswanath_v_Page_328.txt
b9529abb5a227722e56ef8472a4b367a
fbaf9c70100d70538fb7b5ef01b131ca5e9cfbda
39833 F20110113_AACYMH viswanath_v_Page_209.jpg
e7ba4dc35849bcd0763af4a47980de49
1c0c6d2a95d2d30068a5f8046c78562936b20ff7
F20110113_AADCDF viswanath_v_Page_325.QC.jpg
a6e2dbf863c18fae1b065c0e2e9b2856
8373e9ac62df2208c713bd68cdadae0ac9d44fd2
55001 F20110113_AADADX viswanath_v_Page_099.pro
f714f3f1fd1ad249d83cc01f3067f339
7460277e6aa4d97db0257fedb869288d22b5100d
F20110113_AACZNL viswanath_v_Page_093.tif
0f064a9c21a34b8d050dd1be2463bf20
77dcfbfe7926b8516402e3ee0a8573b3de404c17
F20110113_AADBCD viswanath_v_Page_329.txt
ff3af966fe1e9b65ace707ac6e29860b
617817633d700ad379eebb70a759f5a580190d90
43925 F20110113_AACYMI viswanath_v_Page_210.jpg
61b79d89652db04dace62329f8b07a1c
8f96afbfd4c850a7ab571af42e611807a2819705
24694 F20110113_AADABA viswanath_v_Page_015.pro
48609aba6336d5414d3145b6cf317d4f
29567cc3cde6ae1dfe36024c16cefd7c639ddd40
4239 F20110113_AADCDG viswanath_v_Page_325thm.jpg
bfff814c5b46b15553ee563e1c79cee3
f8e64d3b22a40912b99cde5551386b26d59fbe52
56126 F20110113_AADADY viswanath_v_Page_101.pro
7f50fbb6d8d6f74f8a16ba3e653accb6
c83a595457a3c8fa08ca23fce5949e6388982099
F20110113_AACZNM viswanath_v_Page_094.tif
848a7c2a3c2e00328f7359d95f2d7c38
9f24411b917ffab3e5f7bea19dc6e1c61aaae0e0
676 F20110113_AADBCE viswanath_v_Page_331.txt
7fab28cbdd20edac53c56f14f7859cd4
3f8cae2a476feb237ce1de6ce3af59424ed1351d
71224 F20110113_AACYMJ viswanath_v_Page_211.jpg
b4c58e0d2dada0fac20a9a1b2e7b6290
76d683ec60d91fb985905460dc55ac53941b23aa
39707 F20110113_AADABB viswanath_v_Page_016.pro
0ffb169eb69231d4ca5e7373e16cdd9e
ca484b356a6a7160d22f4242e8a02bbb0cf5c8fa
14057 F20110113_AADCDH viswanath_v_Page_326.QC.jpg
d07a49acc67af4ac3d65d1dbbf9745d8
e9297de917a45b0f5d92b0ba087a5afb98d6fdea
49453 F20110113_AADADZ viswanath_v_Page_102.pro
46d1f6e80ea5d4bf212c71f42a4932bc
4eca787886ba80ae58277a77037de3305055ead3
F20110113_AACZNN viswanath_v_Page_095.tif
3b10227ba969278c48596f1b5bc577d4
675c84ab5dff3854290128a42037c50b0895589b
979 F20110113_AADBCF viswanath_v_Page_332.txt
d3969b5325fd0b5d941954bb65c528d5
4626d83a27f52cfbb8a2078a2afe6bca220bd195
36699 F20110113_AACYMK viswanath_v_Page_212.jpg
e62e43449d67885d9f1c3206faad6b37
22f1256a28c364e2dc2dafe055298ea98ac10336
19041 F20110113_AADABC viswanath_v_Page_017.pro
919fb3940f03f474eb771263f82319d4
01d82163c090854c68fe5178a1bd282819e1313a
4389 F20110113_AADCDI viswanath_v_Page_326thm.jpg
ee6551fedaa64b663df183893eeedcbb
7e33a06e0f99a45d2d0e67573c8b7a548adcd928
F20110113_AACZNO viswanath_v_Page_096.tif
4063a2aed16e6de12579da333dc24115
0aefcbbdbb141e9c50db20ec242acb312825e6c2
1988 F20110113_AADBCG viswanath_v_Page_333.txt
12f3e61017fc4508b779daec6195ee68
bec6e267d4522b8f53fd3727050411ea7d374dbd
63067 F20110113_AACYML viswanath_v_Page_213.jpg
5afa0db074bf91b930be320171c2520a
65bcfb967a9f799066fbfb9b3520f06623f3299b
43198 F20110113_AADABD viswanath_v_Page_018.pro
7a96f34a36706097e709b2551155c430
22f640566ace598d8ff701528531ea650e614e98
15437 F20110113_AADCDJ viswanath_v_Page_327.QC.jpg
9166e52e8fcf9a922c7542861b26f04d
bd2aac26b2d23905e502d265e33f40182e7e90ac
F20110113_AACZNP viswanath_v_Page_097.tif
6fc180924b8cb979010ec2ab76323465
ac6e51752aa30d6fa7f4ca1d3de8f8337ab0d545
675 F20110113_AADBCH viswanath_v_Page_334.txt
ea3b0f5d3bf6af32025d52538c395afa
79e367d26c988104fc9fad445c695336dbadb444
43244 F20110113_AACYMM viswanath_v_Page_214.jpg
c69ba8a5da9887b7344a328b44e91bc9
4bdd027fdeda1b3b0733e1d4ce275f49491a1007
49091 F20110113_AADABE viswanath_v_Page_019.pro
6de1eb95171c4298ec08b8041bd5dfc9
86038dd9944f2d22d49720d3feb3be24e847a4f9
4826 F20110113_AADCDK viswanath_v_Page_327thm.jpg
31d453b8e2e7f24f0329ddb2442bdca8
5320be1173b5917b79502ebff829c8d002b84d0a
F20110113_AACZNQ viswanath_v_Page_098.tif
28711d8076e3e657873d1d5ab90692bf
b2fc54fa4dc0fe79d09be9d7722acc6c01dd818b
F20110113_AADBCI viswanath_v_Page_335.txt
a132fe721cdc212cb97d1c0339a14874
30d10ff8450d88077ca1e7ad549535fe5b5f5c3d
40787 F20110113_AACYMN viswanath_v_Page_215.jpg
3ab0f111aceee2f7dce21c141e4362dd
15340e78b765224697318ac6f0610b9e65490d01
54941 F20110113_AADABF viswanath_v_Page_020.pro
b4aaf63fd55e8dbc3a995a31850f7edf
23f3deb67f483897c80370fa8f1c1273a40fb990
23218 F20110113_AADCDL viswanath_v_Page_328.QC.jpg
ecf518d4f72772379b60af8276d16916
4de683a6324460c0ee425645d7b24f3946449a51
F20110113_AACZNR viswanath_v_Page_100.tif
dc11b7052d0a9cdb611b961a4570b0c8
f9ffa335ce11014392a0271a90cc0f75fa446fa8
924 F20110113_AADBCJ viswanath_v_Page_336.txt
251df8adf7ae02e5656c871afe5e0daa
b5b1394bca1d55b6abdb7a49fe438cc2b9dd17ea
F20110113_AACYMO viswanath_v_Page_216.jpg
1a942152da78cd73facceedb4edfff26
e9aec8869999a713c0a65e2cab663957079d4b50
54904 F20110113_AADABG viswanath_v_Page_021.pro
bf9213a1f11c6cf797d1ccfa322d8de9
aa30561b4328a39587f1b701c0212e799f60fc99
F20110113_AACZNS viswanath_v_Page_101.tif
416174992f75d5743a99a47f7c48406d
f039817db75f13f083a50072699f824f34823a88
595 F20110113_AADBCK viswanath_v_Page_337.txt
1183d2a852d61b807479dc1cf32b1298
92601fc9a2b72ac11105c24e2a6c180b40fb6c43
60792 F20110113_AACYMP viswanath_v_Page_218.jpg
581c6e4d1363fc10a853269a07642402
50e2953231f110e799217261418b3ee2ecfe54bc
15157 F20110113_AADABH viswanath_v_Page_022.pro
5633e4904ad860e43ab69d56e4e24a94
bbc2e6570db221c3d0f48253fc9c49eea26e12b1
6570 F20110113_AADCDM viswanath_v_Page_328thm.jpg
79e78807410252336b20dc529c2170ae
7fc5c6f5c1c7dea5839112ae6a7cd72e9bdeb10c
F20110113_AACZNT viswanath_v_Page_102.tif
60eb7974529a3838bae917a878793c47
4c51bdbbccc8dcc007df3af6859251d5dde587a8
1982 F20110113_AADBCL viswanath_v_Page_338.txt
f8c8890aa8642d2df70497f2020c7489
ad751bb36a38f9ec13bc7d4fa179e70ec879bcd3
42237 F20110113_AACYMQ viswanath_v_Page_219.jpg
703e290ea94f26e1c0440ce4fa50405b
641e1ab911a5f9b7df7cbd588bb38d1b8923ae46
41505 F20110113_AADABI viswanath_v_Page_023.pro
c4b92a8cc4fe5286bdf120aa316b26a1
249a0ae1d7213dcafe68a18b0aa51a705a34b8dc
8900 F20110113_AADCDN viswanath_v_Page_329.QC.jpg
4606afea9b3892a22c971f82d5cf9f05
23accd48ed0658f4afa735d7df0600f187776a4a
F20110113_AACZNU viswanath_v_Page_103.tif
0c786535251df81545926bb2f53d2350
978597bc5064556464686fb15fe12683a8cec3f0
44441 F20110113_AACYMR viswanath_v_Page_220.jpg
119e31a82917b66df023cf6c28162057
1fd0042c17745264b217b07043dce3a99146ec95
36572 F20110113_AADABJ viswanath_v_Page_024.pro
7dda770411baae6ad18ba176b9289242
918457d14a1f9e3993c0408f560d9324ffa34a05
2861 F20110113_AADCDO viswanath_v_Page_329thm.jpg
f8c6df9af958c6c2d49e5969f425d6ad
ce6cf7660887876ae62b68c4658f46ddb950e611
F20110113_AACZNV viswanath_v_Page_104.tif
c4970207508e616b327befdf440fee5e
57837a4e124016fb47ea66acda3771ef99670d53
500 F20110113_AADBCM viswanath_v_Page_340.txt
da57a6e60a8c178e1c3aeb30d979cb14
4b89e6993ff88b845c86b6cfca4e86af9c6630a0
62146 F20110113_AACYMS viswanath_v_Page_221.jpg
1b6af70f9d0148ce5473a85c05abc5b4
c9bfac44807aedb0498f37eb23ecab43c6589635
39684 F20110113_AADABK viswanath_v_Page_025.pro
b6a3e859687ee8e5d18cbe737ec29050
8fe9ae9da13267c91a789593ffab04b09ea095c7
12801 F20110113_AADCDP viswanath_v_Page_330.QC.jpg
c6ae600b61a70c36d6fe801d1fe59faf
5642e98bc39b5edb6ae26c5ff850d1b96ab76349
F20110113_AACZNW viswanath_v_Page_105.tif
65c774cdc34c32c66a9e297f52725aae
c8056fde85bce3b48ddce06dc13444a5584c6cbe
1035 F20110113_AADBCN viswanath_v_Page_341.txt
2f0898a4c4c5a5cb99a310fb75523eb7
10656f110cb2da2e0e6d7af945b0b02deda7c9e8
53500 F20110113_AACYMT viswanath_v_Page_222.jpg
00f0aaf6203e7c424219a86f53aca1dc
b77f75bcdcbe439eede61dd7c27a8eb45f71a5c7
39742 F20110113_AADABL viswanath_v_Page_026.pro
61da592a791dacc90c81e286197f22a3
4ee099a1a589a6a376748e9d5d22c6cf121637f8
3995 F20110113_AADCDQ viswanath_v_Page_330thm.jpg
d0f38d2fa2cf6aa79bb7bcec0ae5355d
c26f36e5b44721acb429add98f9d5bbcec1fcf79
F20110113_AACZNX viswanath_v_Page_106.tif
e7dd3bd3b0fa81beea96bbb7e10bc031
72cc8eaae0286eaf8f46ca4fa69d77070dac0762
808 F20110113_AADBCO viswanath_v_Page_342.txt
ad804ffe8d5874e729daf92ce48d4627
cfbb6b2ac8998975f52b1fc6b06faef7252a8147
26520 F20110113_AACYMU viswanath_v_Page_224.jpg
e4ab63fe36ac206a39f92489c43bb493
2fe829a7f204e76636d8441035bd967cdbe5b312
14377 F20110113_AADCDR viswanath_v_Page_331.QC.jpg
18f6b1422dc992f3791b9d86365a711b
0034667c7246ae8d20def939f3e7acd8e12c3e67
F20110113_AACZNY viswanath_v_Page_107.tif
13e3cc305fde63aad034b0d1cacd66f5
7e407b032df2183637382ed633311016b9ce33f4
2023 F20110113_AADBCP viswanath_v_Page_343.txt
e478f738f95fdeb4382d781afc338c52
5c1983ceacffd2fc17ef22cd30b3d133a2517ac4
68716 F20110113_AACYMV viswanath_v_Page_225.jpg
87966866a7c35c657722636798382611
a817842ba3f73c64c902c0bb1ce2fa7926cc6870
34322 F20110113_AADABM viswanath_v_Page_027.pro
ef1b7d4e119ca3a6441b23f332f496b9
caa8bc0929c85f04506773f85e299ad6f0ddc7f0
4622 F20110113_AADCDS viswanath_v_Page_331thm.jpg
339ae7bf28433735395a6b70773fe1c9
6355318a2fc0fe1651069c21a92d6a126763de7c
F20110113_AACZNZ viswanath_v_Page_109.tif
1f733bd6b9b20061b6920571aa1707b0
8715414c4b8f8d978146aa580bbd4be5d40c9cf4
517 F20110113_AADBCQ viswanath_v_Page_344.txt
5cf3c4d65b2d8534cf853a380757b611
ec6f5791015db8d5fa06ad0acaa16b1a2a32cb93
14638 F20110113_AACYMW viswanath_v_Page_226.jpg
868bf1bc57f33c9cb8c59f6884b54dbc
7441d67685fe62b64a291eb1be997bc2ad8068f8
47963 F20110113_AADABN viswanath_v_Page_028.pro
8ee51ce5979860dd9d1ab4dbd97058f7
cb35cf5312a39853acde1049b402971dbf9ee57a
4874 F20110113_AADCDT viswanath_v_Page_332thm.jpg
f1b6c5e4da3594651c09b58e2736a0dc
70c3f08f95807458b074a039b53b4b125e725a9d
F20110113_AACZLA viswanath_v_Page_026.tif
9bfb06e3a88efc62192d634f920cb274
47eb9f482b7b97a1589e1608256bde89576ec474
516 F20110113_AADBCR viswanath_v_Page_345.txt
f6303c3ac8565686311c096110568214
8cc6c2b62b740ba8d93f65e38cea1158986d9d52
52183 F20110113_AACYMX viswanath_v_Page_227.jpg
298e3a1e1c1cb7769726d6b6c64352f6
50820716f253d7531f674d0948ecf65c6af436a9
31950 F20110113_AADABO viswanath_v_Page_029.pro
97112934c9adcc289b24d830c23b719e
1205ec103db4ed367db498b2d50cd69c7f8365c1
23178 F20110113_AADCDU viswanath_v_Page_333.QC.jpg
0d5d14f080661aad0df43a2888dd3e77
633db768365f0a5cea5f0503be8f84dc60703ec9
F20110113_AACZLB viswanath_v_Page_027.tif
7218c5845a0e0b2852b490d96671ac82
71595ddd0eca4fc28ed5cdf422b153a6ffd3485f
999 F20110113_AADBCS viswanath_v_Page_346.txt
aac300adff2c4d1ef7bc6a1f496aeb20
a58dc4e9129d8cef3e4cedc40013e6debffe8641
43021 F20110113_AACYMY viswanath_v_Page_228.jpg
9363a08a5d39f5094203ed7cf94bc8d0
2cece9998cfd74dd6862c9fdd2f711ae225499fe
49734 F20110113_AADABP viswanath_v_Page_030.pro
3ad67bdc07a834751e21e92ea517123b
4f0cc8981582e40df55e09ffbe7e18861fe0cb3a
6420 F20110113_AADCDV viswanath_v_Page_333thm.jpg
e6c9a5ef5ea4613f760520e20fc8fd42
b013d393c56f0af56cf0388674d94685e71a2251
F20110113_AACZLC viswanath_v_Page_028.tif
e41f198502e25b227507d575e8aab353
836e3dafce70b1b54595d5bbf4671fa3686a1f74
1005 F20110113_AADBCT viswanath_v_Page_347.txt
03325a5d7e4d6ccb15fd22ef1ed6fbb0
518d5762b48de80c3f95216aa0a91403ff0d0e5f
41228 F20110113_AACYKA viswanath_v_Page_145.jpg
51c9ef07bc1a2608c96c96872015f5cb
ef238a2b2abf55d712b336e21f2e26dcbae617ab
45370 F20110113_AACYMZ viswanath_v_Page_229.jpg
77af427427743879198a5129ab0101ae
65a8d1df97234a6b86bea561c4f950043673ce10
38623 F20110113_AADABQ viswanath_v_Page_031.pro
649ed02cd584924925376f1fa68a94b1
4049161fbbd693eb7707691c3f8f52f960846e93
9661 F20110113_AADCDW viswanath_v_Page_334.QC.jpg
8e35679d5ba72bd60713935ad9572634
91317057c6dcbafa7809124c6146f90bc8a0b2a4
F20110113_AACZLD viswanath_v_Page_029.tif
ef336d620731f4f0173799d7cfd6d9e3
6acf2c2148c7b25b9d94bbf88b2846c1a536c172
1996 F20110113_AADBCU viswanath_v_Page_348.txt
44ac479141dcb867773475cd24462e77
3cbf0d51fed64d9bb50c05f96304d210ec54b91d
37115 F20110113_AACYKB viswanath_v_Page_146.jpg
8a9d92a47973c516560632488af67e9b
95fa00ce866121c456f8a15f385d7f4dd3fba943
34874 F20110113_AADABR viswanath_v_Page_032.pro
ad1bc03423d8cf03d97bfbbe51ead409
856cefa203830db4bda294bc565df46309dbbb01
17700 F20110113_AADCDX viswanath_v_Page_335.QC.jpg
bf5eeab765a8d7be44feec28f08de0ac
80a3a8e6418d44cb96d20e9e185363e06d457f14
F20110113_AACZLE viswanath_v_Page_030.tif
b279b09bc0f616480e40d504f99a5ebc
354b24a1f31d357ee9104503c50eeb562338bf7f
1657 F20110113_AADBCV viswanath_v_Page_349.txt
a0dac9a52fe95a7becb82fa9cb6b6a88
60c10d54b4e738f4a8b8e40626a6f9acddfe82d9
42867 F20110113_AACYKC viswanath_v_Page_147.jpg
166aa697d054acc063bab74f634ea98c
01356acf5bb977145556f1fc8fd5991688aec28f
6569 F20110113_AADCBA viswanath_v_Page_289thm.jpg
a2085054d9e19374079c8ec3b3ad52fc
f8e5e631bf3a9586799412d2c1d9f7f092f25104
38046 F20110113_AADABS viswanath_v_Page_033.pro
0b3165cd5fe0c3e5168e51c7db3b5ee7
68cda1bee44f63131f7574c2374d8ff7105eb659
5449 F20110113_AADCDY viswanath_v_Page_335thm.jpg
58506a10e53381fdea936a9e94c66d9b
f5e468b3108178b2073e2fc3d209b0a9d3df29d8
F20110113_AACZLF viswanath_v_Page_031.tif
a8241836568846a92c32f77d6d38bc08
d0b6e52f2b90f04bcba48b079b7b6aeee07886f2
569 F20110113_AADBCW viswanath_v_Page_350.txt
bfd67eab241f6b8e3efe03cb4c486339
dcd8c781d9faed5721afea40db903afedde83afc
44094 F20110113_AACYKD viswanath_v_Page_148.jpg
b093970581f1a8a4ce0248d4e7dcdce9
36bae84ce55ee797d89272bb6c9d3ee211abba1a
5809 F20110113_AADCBB viswanath_v_Page_290thm.jpg
303eb8088fd22ede694257482f22d61f
bfb6fe2413573f644fa412c290ffcd787dfb74de
31319 F20110113_AADABT viswanath_v_Page_034.pro
5c8eaae6a070940586b6e7d84dc42865
c32fe5db3c1bca0cbc053b43202924be7aabbc3c
13236 F20110113_AADCDZ viswanath_v_Page_336.QC.jpg
8c5ce8387074a048ec70edef34a85bd0
a864902675a75a0b6af26be09cdcf3851767e3e0
F20110113_AACZLG viswanath_v_Page_032.tif
f380e1788f465c77889e94bb55b00f6a
562b578fb000b57bd5cac39976c4f38252220359
703 F20110113_AADBCX viswanath_v_Page_351.txt
bc38606a814163fec783a8f81060d0d5
cfcb28e9bc523946b31177682af3b664cd57a6d0
37320 F20110113_AACYKE viswanath_v_Page_149.jpg
38f4a8c6abacc484d4793f4a4d32e8e1
28c8023d6f76d1c2b7cd08ad7ea14ab95f98f056
4259 F20110113_AADCBC viswanath_v_Page_291thm.jpg
832bc88c8da0cf9dd7e9e039e6f9e6bd
51ed664a8648f21a1bdefcfc38e915e2b52aa770
46777 F20110113_AADABU viswanath_v_Page_035.pro
e72b7ff9beadb976d0fa0ac724117dcf
5468c30facab8ad37921bdb259ee007ffa3ff163
F20110113_AACZLH viswanath_v_Page_033.tif
f801426a45c44a585284bfa4208519b6
f648eb05453a9bbb9ef87a08ee55042a1edb351f
835 F20110113_AADBCY viswanath_v_Page_352.txt
b9a126a77340995e386b84fa3a631773
5891f720d3479f06a6c2345930dd5775f74e4f2b
61225 F20110113_AACYKF viswanath_v_Page_150.jpg
de7ce4938baf382db0e2617bedd7159a
bea29672b1204bb320c759a64b11c3e9a3d3a15d
15241 F20110113_AADCBD viswanath_v_Page_292.QC.jpg
92d75e14e5e5b43d7e04a80f5b6d71c9
b109da260ddaa9896b5cca8cb5e9df6d70ad848b
51968 F20110113_AADABV viswanath_v_Page_036.pro
9a83ab135b77d27280df9c8500108d99
90f322d19242b0d87ad2b15ab79276b1cb1d7962
F20110113_AACZLI viswanath_v_Page_034.tif
f8d49fc42916eb48ff231658c6b9466d
ade3542bb49cff88bd08afc262d154628824ea06
876 F20110113_AADBAA viswanath_v_Page_273.txt
ab0fb5a1e9cf4486ae3db6cbd526fdb8
48cf9081a5c68917ad03ac021b01e0c08486473b
1940 F20110113_AADBCZ viswanath_v_Page_353.txt
d3fa3e576b9086458d798dd1a8b92279
b11d5584705bcf3d4612f5356a430156224611eb
54691 F20110113_AACYKG viswanath_v_Page_152.jpg
f95ebd31bbb57021f99f1b6f262f6752
a1be655975e1201b6a502eb566b451a064b2705a
4713 F20110113_AADCBE viswanath_v_Page_292thm.jpg
f6e8b553e30a1495b92fee9253f2fc31
735be4a1d42c49cee1e14903bb1be6ba0af7e911
38129 F20110113_AADABW viswanath_v_Page_038.pro
30039eb9ad6b1391b4dccb732f531966
aea8fa3c59cf4891f722ab2d4defdc3aff6c104a
F20110113_AACZLJ viswanath_v_Page_035.tif
04c062c45a216f784210f5b82e3991a9
e9dca6c4eff9792de585d705607c5719c8b378ef
903 F20110113_AADBAB viswanath_v_Page_274.txt
037d15e640057dc1c201171dc2c13f66
930ecb8289c8eaad5f2266ab11e06a51eb94c643
56275 F20110113_AACYKH viswanath_v_Page_153.jpg
236ddc268f76feb751e1b6af33a2a4ec
2ef882ac8ec3186898222c9b955cc6e9f47bb235
F20110113_AADCBF viswanath_v_Page_293.QC.jpg
e2f8edc2c14671bb90503d1f9554d3cb
d6f6ef9fd009e38f5f44e35c1cedbceaefbd3aae
34062 F20110113_AADABX viswanath_v_Page_039.pro
25dd9b18e4592d59fb447d2ead50544d
8c5342c48f15373b070c060abee652ac66fe6b5a
F20110113_AACZLK viswanath_v_Page_036.tif
f09fc97c830634ffc918ec941bc5c322
720f35dcc05f7fb521a7e09da6ffc19f0f7a4da1
2010 F20110113_AADBAC viswanath_v_Page_275.txt
71896bbce2ab3103f6d2c5fb6ab7ff3c
a711d12ebded7a1139c50e8057d228d9fcaa3171
33459 F20110113_AACYKI viswanath_v_Page_154.jpg
6473e440ae9e54198a44a6833340cf4b
bdf070b4bff283ed6fd6a7e6d1c119ca5ce87fe9
6655 F20110113_AADCBG viswanath_v_Page_293thm.jpg
7c61c89b3f9e3bc94fd5ba8428ab47ca
3ba8d5f74f6c06c95a9784512bbdae27123acf3b
36501 F20110113_AADABY viswanath_v_Page_040.pro
0bf66fea5f650c17ec53dcd8235b72f1
87d1aa123b80f664bdadb29f2fda4d2bfaabc4ed
F20110113_AACZLL viswanath_v_Page_037.tif
345c8ea26391eaf92b5b8ef451d04150
73bc1d403009dd021c877a925c624c9db4533771
571 F20110113_AADBAD viswanath_v_Page_276.txt
b91604c34a5c1850f3dfd082404bc1e2
5c2ab32fd82cb3fb7699677665935641ae0c8aa8
61324 F20110113_AACYKJ viswanath_v_Page_155.jpg
aed3d88ec0a598e087ba5e1f7a4a042a
688754682030257dea5924bf6774de1969929c64
15013 F20110113_AADCBH viswanath_v_Page_294.QC.jpg
8a839d0759e1c159342d4eb126c19644
9f76a35029b33dfb0e206d53b8d37ab5398e1690
31360 F20110113_AADABZ viswanath_v_Page_041.pro
74a7c212b2af025f2d617c6aaab19f39
865e2e140a0e3e62c431e244f5ad168979612ac0
F20110113_AACZLM viswanath_v_Page_038.tif
353b1504045bc29ba19d58ba1e72b921
ea15b41fcca0802a8a74d3068a2cca747075ceef
F20110113_AADBAE viswanath_v_Page_277.txt
da6f4597a549a0ddfc376e6cd8cc0aa9
105ce719c78620b31d73ac976b5472797cf9ce5b
52773 F20110113_AACYKK viswanath_v_Page_156.jpg
302cc1f9a9fc540348ac17984641e216
b7651710640961ec93094ab2ef22fbce75198c4d
4395 F20110113_AADCBI viswanath_v_Page_294thm.jpg
7503208b1d85308656adde4aa3cd75ec
87cad1b35891f99b889dd65d6acf21bfd4eb046a
F20110113_AACZLN viswanath_v_Page_039.tif
005986f215da74c4a9795afe4619dca6
e83f6d0a972b675b364bf96ca79796bd1c707b21
790 F20110113_AADBAF viswanath_v_Page_278.txt
d20fc6c9f2ba55227e73d0ad0993d879
0b07836eee3b5c548d829be964db134a6abe9415
50241 F20110113_AACYKL viswanath_v_Page_157.jpg
87bacc4dfce5b8767f1c41c03bc07892
511c0ee44cf7495dc2a1afa617c764c167b29fb7
19818 F20110113_AADCBJ viswanath_v_Page_295.QC.jpg
27440c8ba885bbec4d481a89bb90c7d6
e876ebc8ae6913d354f619dff2af4e2f6d45aa44
F20110113_AACZLO viswanath_v_Page_040.tif
51139ba136c3a5ad8fa2a2966987b8d6
77edd71adbcd937669f8759c6c3dcc485e213a57
2119 F20110113_AADBAG viswanath_v_Page_280.txt
438451040b3e3960c99e82fe4c7e20a9
605b6126d52e7cbc19c49205650cf6222569de82
50952 F20110113_AACYKM viswanath_v_Page_158.jpg
25c1d2193ae7ab7f400899f21c2e2b69
f8206516473c8dd712bcc920776001380b54d7c6
F20110113_AACZLP viswanath_v_Page_041.tif
574d28d1e55ad2a3f6370ebb73d175ce
f8a7b592947bd28f5c0ab5a9b7411000c6fe8d3e
670 F20110113_AADBAH viswanath_v_Page_281.txt
d1b431b7ef9b2938e1179d9fa32da158
0f995df121f1923b5a31703ac67004699830d97c
50359 F20110113_AACYKN viswanath_v_Page_159.jpg
e0b2ee9080dd3cfee89c82a5776fb579
319c739c606a068e0752c4da409a71053598ade4
6270 F20110113_AADCBK viswanath_v_Page_295thm.jpg
89ad3b7faf464e34b7a916676312b5b2
fad10ca6559a6395a2b1b646eeac5aa01070c393
F20110113_AACZLQ viswanath_v_Page_042.tif
4a342095aa07fa7077785dc234f20f23
01dc040553132b29ba2f9a9e03d1a784bba80220
F20110113_AADBAI viswanath_v_Page_282.txt
21b71f376105a9d7613205f55b1ce668
7939f7cb6845baecb5ac66e80be209661610acd1
47037 F20110113_AACYKO viswanath_v_Page_160.jpg
8a2d8f4a8e71030e1e0e2c3fbc43e305
594362b0cf2e48efc07304d4560493cec26b9cd3
13346 F20110113_AADCBL viswanath_v_Page_296.QC.jpg
c21c2f9ee8e2798bb2d67f6536626a7d
a668370bf7eef8a20c1873adcdb7f92994c797df
F20110113_AACZLR viswanath_v_Page_043.tif
b3a1d07d241eaa1ce7506855efe3b83f
de9824cabbd5f10454b714b781f2ab0809039cb0
1247 F20110113_AADBAJ viswanath_v_Page_283.txt
2df343bed702530f3af9b408ae7a57f2
cb040c1d19396961abd605e3fb7cb0b55a5bdc62
49097 F20110113_AACYKP viswanath_v_Page_161.jpg
7f74b4b06cf3b8a5e9ddee78b8c2f6fc
6c61ada4d80d801d69d822cb762376d7beff07cb
15373 F20110113_AADCBM viswanath_v_Page_297.QC.jpg
c4750a01b4727cc7580c5cb16d6af863
0b7aaddf6be1c74864240a33cedff04ca4e3841f
F20110113_AACZLS viswanath_v_Page_044.tif
c0fb5eb61fbd65c6cf77c46e225775c6
24651f86e18ef4c9a4a420610adb8d545267d665
50802 F20110113_AACYKQ viswanath_v_Page_162.jpg
e4c530c73ea9391e690fdf56bab87804
1fb38c944c6e99f40d8a89ff9035f65c1345a6eb
4837 F20110113_AADCBN viswanath_v_Page_297thm.jpg
6508bc67e4a2880ff1b1d7a4f702c5e7
771eda64992faea3c2303b4f90476e81c73f4709
F20110113_AACZLT viswanath_v_Page_045.tif
5214aa628c1232343e081143dc859e9e
8a96fd07ee1fc03f503386bde627a87efa799aeb
444 F20110113_AADBAK viswanath_v_Page_284.txt
46c3acdf72aa4d1e294565f735822de2
42658a8345b028a95a44b864690a28e39f46d593
65224 F20110113_AACYKR viswanath_v_Page_163.jpg
bbbd1b866f675f549ce66ddd02308ec2
228654d0f83f3db84db1e76838ea4dcc0778e355
24045 F20110113_AADCBO viswanath_v_Page_298.QC.jpg
04b0ec6601d960f0e46e8677a5b5456a
c4283aa95af5f847baf57de01e105f6e632401e5
F20110113_AACZLU viswanath_v_Page_046.tif
949f4c4b1ac01ccace3417281023659e
7ca82db34c1a6286ec558f14344e354c7966dee3
1796 F20110113_AADBAL viswanath_v_Page_285.txt
3f8ef0a080c9af0a94c49dd731592d12
a01c7ec1efbe9d488d66ceeb4dd01b3720b5f62b
69267 F20110113_AACYKS viswanath_v_Page_164.jpg
3f91011585a56a91a33045e194503214
074d61173070752a127679a030c9c33c10d9117e
6754 F20110113_AADCBP viswanath_v_Page_298thm.jpg
628a2225e2a2926fb377a3c848628eb3
0abb1ea2143314396326d2a8b16effecc794fafc
F20110113_AACZLV viswanath_v_Page_047.tif
376cfa9d4915a5e3654efb6421e63a50
1296e4ef5d6f674bf9f7559cdd1abb2a4f18c502
479 F20110113_AADBAM viswanath_v_Page_286.txt
62a1eb590268335fd7e667ac0c496740
b8a619a1e3cff9b5696f7c1b30ae1d94fc07ff6b
72162 F20110113_AACYKT viswanath_v_Page_165.jpg
1556b2cad217d602beb2353394e027c0
bec428b23393609c34b341c125ed257af8825639
21210 F20110113_AADCBQ viswanath_v_Page_299.QC.jpg
7dece427b992ac1312d05c6b0f39cc70
4f6444deba91a477838e885511ee750301e7e5c0
F20110113_AACZLW viswanath_v_Page_048.tif
e6fa0b56b9f480323339cb66263bbc11
20de1da0e2c20dcc9d2c141f974916503866d398
1204 F20110113_AADBAN viswanath_v_Page_287.txt
47a67b769d0ca1eb939b525a4d4062ab
43a2c6db9901b311e849af5a06e8dbb11dcd21f3
52733 F20110113_AACYKU viswanath_v_Page_166.jpg
c3332e14dcab5bd26e5046444db7929f
74629aba7d827a24a7a100b70f5c278119263ffe
5938 F20110113_AADCBR viswanath_v_Page_299thm.jpg
b77bf6e75cfa4a60e40515b06d8d6aaa
ec4e2864e88dae3c754d6b6a3cab223196537cd8
F20110113_AACZLX viswanath_v_Page_049.tif
1369a0d1044ebf5741d5cd0c32f3996e
b904bcf9b094b6b9bb49f30cc246e729a142e66a
393 F20110113_AADBAO viswanath_v_Page_288.txt
db2285c3b276ab30d7839ce75acf5144
d5c200c644aff2428513896c5e62316fe675d0dc
59936 F20110113_AACYKV viswanath_v_Page_167.jpg
0eebf80ba3d86e8b9b4582adcb2ee8d7
168cc0763ce582ff740c61505185b4923c9d66b0
19835 F20110113_AADCBS viswanath_v_Page_300.QC.jpg
0236d397c62abae513e81870b153f7e8
1373d37544d5ecc470a362c99980d9fe81015ce6
F20110113_AACZLY viswanath_v_Page_050.tif
ffa02d6a2fb29f83a9317fe1fc0e3de3
6a16fb230fb2a06675e04ce430687c47c9f8792c
2052 F20110113_AADBAP viswanath_v_Page_289.txt
85d3b88a092964ea53118af56f30e5c4
b2446a79ce1d00f2bc029b968e9ab7ce812039e7
67506 F20110113_AACYKW viswanath_v_Page_168.jpg
b10b5b0faa146d50e3a4abdd94af9808
2d49aa8c5889a07be9d4dba3c1f337f54bb21213
6123 F20110113_AADCBT viswanath_v_Page_300thm.jpg
7c7a54f38a1317dff00b3da0dcd4102a
dc8e1e752ef6de1440b6d14f7d040560776f428a
1051982 F20110113_AACZJA viswanath_v_Page_424.jp2
481caf4a51d16215828c425ff298b001
11e344391b33b5bec65ad91fbe0d71ac00c4632e
F20110113_AACZLZ viswanath_v_Page_051.tif
2b1381a70cf09f3a9b7c6df99eaee651
a2a8f0e4521cf4738936192cdb093e8384263ca9
573 F20110113_AADBAQ viswanath_v_Page_290.txt
ec22cec7560d9da1abbe779e05910e14
1392b1755cfa20e66117f14c505d26419265d461
68671 F20110113_AACYKX viswanath_v_Page_169.jpg
3a2a4ea965ebc276cba590ed0c55f0fd
5a39bf47df963fb06f775274e86740dbd5b42c0f
13933 F20110113_AADCBU viswanath_v_Page_301.QC.jpg
bac3dcefbc842459ec57d6cdcaf9df64
1f8ed5e911e3a228569e5ab4cbd3d4dbfcaa44bf
52613 F20110113_AACZJB viswanath_v_Page_425.jp2
56025422b98ec67aa79dc9cfd37e7a84
9779651df40634e1418b3df47473d0ee614f9ce8
813 F20110113_AADBAR viswanath_v_Page_291.txt
4fae27d7541e3fc5a8772d66e46d7bf1
4b936a7a16a1fd0e6f4c36b0890a543ae1837d3e
65013 F20110113_AACYKY viswanath_v_Page_170.jpg
ebad114c157c889ba43cb9649a787eb9
73766b0e351f0430a1576053839c23e645e2219f
4614 F20110113_AADCBV viswanath_v_Page_301thm.jpg
b335539b1be19726b6a72c9296c5b11c
458f8bf1d3ae0d01c6313af563d3d35472efa1e4
949208 F20110113_AACZJC viswanath_v_Page_426.jp2
cdcde4b9ccf902067c31d905239c1ad1
6362a33c64c0d3faab033cc9e443f9f427b7108a
743 F20110113_AADBAS viswanath_v_Page_292.txt
4be8db67a5b2a02d64b0f699ed727ed2
fbade6871369fe9ce1d20f8ff3a00270aeed3d6e
78322 F20110113_AACYIA viswanath_v_Page_088.jpg
bb73c7d3dc1fe4d6caac867d033f151c
430f098abe41c09f0cfb0be9e184f972567f69f6
62932 F20110113_AACYKZ viswanath_v_Page_171.jpg
ed361616769cd0ab34629c85e65c3c2b
70b765ed954fc2cd3d1503591d471a98d0c30bf3
15423 F20110113_AADCBW viswanath_v_Page_302.QC.jpg
e4201685b5a46b31ce5c677333286b47
fae78bea5ac7e711c08710f0a3199cb6a06110e5
62407 F20110113_AACZJD viswanath_v_Page_427.jp2
dc41f3e3478f96b081fe24e7d2a30036
e49f19bd2e38dddabfc0f2f2eedfb5fd3605a889
2104 F20110113_AADBAT viswanath_v_Page_293.txt
e2224244989cbe690f2f7855fc55957d
0863337690a12d9206e63142d7f90a80bbb9e125
78498 F20110113_AACYIB viswanath_v_Page_090.jpg
c57609ad06893f62f012228dde616b96
6e5cbc3a88a0ba5172cdca9fbcf4c488d7661e87
4693 F20110113_AADCBX viswanath_v_Page_302thm.jpg
612999f2a8ed0e2eff979d945bbb9397
635dabf2dc41a69784d53e62c43778596591a196
523593 F20110113_AACZJE viswanath_v_Page_428.jp2
c1e2b314da6d14d0db9efcc982bee7fb
ca16963c4aaab427ba58961247d748f91458dbbc
1168 F20110113_AADBAU viswanath_v_Page_294.txt
62371450065e12f9c051c69d970fa682
9617f36c550db94a4e64b199128a027d0aaf89e8
75991 F20110113_AACYIC viswanath_v_Page_091.jpg
cc22c56125d048f4663945c17ce409c1
e21f00c07500dd7df324c482391631f9a6bd2cca
23909 F20110113_AADCBY viswanath_v_Page_303.QC.jpg
14c3aa015546b4715a4476333b348067
23df30f8a5ab3361ef36ea030d5cc60bf51ea405
510254 F20110113_AACZJF viswanath_v_Page_429.jp2
40042eff6fc3af6b2269668f75ad4f35
fd9421470f7dc91613cae9c67998ee227f67adaf
435 F20110113_AADBAV viswanath_v_Page_295.txt
525978635f96ba4336bc3bc2ee5c5038
eb3cacd6eb04cd8ab19f7b2706672f9f05f57aed
66487 F20110113_AACYID viswanath_v_Page_092.jpg
5fd58938615f2993afaa5b4e43f022e9
8d35bb86f80c1dd989da94e7a0a7681256bdc5dd
6683 F20110113_AADCBZ viswanath_v_Page_303thm.jpg
c1bd92303df8e2e55be4fd3de81dc5d8
c008017a8c7ccd2facbb9b83ee3c4d67b87103bf
881586 F20110113_AACZJG viswanath_v_Page_430.jp2
0ca7da599dbcbeaff6e5d58291e840ee
efd3c7d163544acce6205b59ea3e6e7ed02b8d8d
F20110113_AADBAW viswanath_v_Page_296.txt
4ecd041f585246d0a7a72005c72088aa
be9a5a571e39b9a1d2f4f14473347ee6ea7e5bb5
74562 F20110113_AACYIE viswanath_v_Page_093.jpg
bee1111f67a8124b80bcf3e54c50fe97
eaae1346db96f966b0bb61105febcc31167abd08
800040 F20110113_AACZJH viswanath_v_Page_431.jp2
e48bcede3b2931fca0b03073d942361a
53b17bd7af9b225acd873c0b40d99632357dc023
916 F20110113_AADBAX viswanath_v_Page_297.txt
3ada8638cd0cc415ec5ff554e43daad5
c14e57b11780552f54cbc27c50f709ab2628e998
68490 F20110113_AACYIF viswanath_v_Page_094.jpg
841ca5d5754d49b936220d76436d2e7b
46c3458c7e2dcf97bf095f544691e61c6c2d0fc4
849672 F20110113_AACZJI viswanath_v_Page_432.jp2
62443f826501bdf34f2e6314ac4b2463
08b42909f5453f912f54fce22aeaa7ef9aa4b7ff
2093 F20110113_AADBAY viswanath_v_Page_298.txt
ac42106d4dee86d3c776527b4a148387
b63869b682e5131466adcee7f1e64b6c6000cb0a
104793 F20110113_AACYIG viswanath_v_Page_095.jpg
4088803f753153f6a7056230c6a7fe63
edff3bbc3ff3fcf187fd08d49c25c41b870af489
854178 F20110113_AACZJJ viswanath_v_Page_433.jp2
5775c1bb5833a8467a091a09f434ec24
ceeac3de40097d46d8000e64e6d89f092e5f73ad
1716 F20110113_AADBAZ viswanath_v_Page_299.txt
ecb7ec040af82c8dadd3dc0b0ff62201
94f5060f0b0d1acd9540fe4428d71357fe2b08ff
90688 F20110113_AACYIH viswanath_v_Page_096.jpg
d26aa4c655ac54af6b19f274feb29314
7f826c21042190b4844262f2ed36769f52e8415f
954690 F20110113_AACZJK viswanath_v_Page_434.jp2
0c7bdbaa98d55a8b6251ccbf4fa65064
4b55f4be0b2169cf5a1a64f6bff877dc97856817
84806 F20110113_AACYII viswanath_v_Page_098.jpg
dc59a31e9689cc18232b9f4063eaf447
7633810f1608476ae62f6d7d1b38c6afaaf3f631
865297 F20110113_AACZJL viswanath_v_Page_435.jp2
e6742fcf5201a9e41bf362379e6a0e73
fd50bce7b67418448bdd0490ef614f6a725b4432
76659 F20110113_AACYIJ viswanath_v_Page_099.jpg
4dc3cbdde4d03a547db35386a4e0acd9
2d105427579a5467acf0d58c51244e23ab36520f
513934 F20110113_AACZJM viswanath_v_Page_437.jp2
2575600e1a0d75053761705315ba3250
b04133a2a09c2b1d11111dd08eae458eb07ac519
77854 F20110113_AACYIK viswanath_v_Page_100.jpg
17a3e6ea2e491e09cb659e43a0e2dbd4
6902d34e5aa8bbc2beffbae4b30752fd251d421c
624536 F20110113_AACZJN viswanath_v_Page_438.jp2
72aa1ffe963d187d922b7957bc6ed726
32faa77d8c0f03175179b8b61656339d6f6b202c
78936 F20110113_AACYIL viswanath_v_Page_101.jpg
4660199d720801b8a3c3a1edb95b213a
61a33a5cb3d2aba5a7618705e7b22c29edd0cf9e
687177 F20110113_AACZJO viswanath_v_Page_439.jp2
e092e031a40d09619539c1566ca0f904
ffb4f2d71426f7465025ddaf61e033b964630706
85249 F20110113_AACZJP viswanath_v_Page_440.jp2
b4e4c931c8d831cbb099147181aa6b89
e63300e9981ca8d4d26a66a5b5114c604ff275fb
70920 F20110113_AACYIM viswanath_v_Page_102.jpg
80856eab68d6468c5fda23cbb93e8003
0018395c361d0ea379009ad50b59a6a1853ebe03
390537 F20110113_AACZJQ viswanath_v_Page_441.jp2
d6f6ba09e131a855a7ac54126749c3ca
8db9224ed31e9dc317865e32cc6a08a1de934d68
34342 F20110113_AACYIN viswanath_v_Page_103.jpg
68a7677bad8d72846245b3efdbdac581
90cca402f2ac696d60548351326148ca157fea8d
209505 F20110113_AACZJR viswanath_v_Page_442.jp2
871c53b04129e7a87fff55e90d75356f
42fca44f540a4a5eb5dcb583a450e99e1ba5a0b8
34574 F20110113_AACYIO viswanath_v_Page_104.jpg
876694d2cc10c125924e548e4e99c405
dbe893b628613256fb7702960868fd69c799f802
56004 F20110113_AACZJS viswanath_v_Page_443.jp2
e31de8ae174a76a53b560ffc841431e1
d153f4e6417e600db198bc1fe969c0606586b27e
60994 F20110113_AACYIP viswanath_v_Page_106.jpg
b966d13a25e356fa272a6f3f5628d37d
c92985723dfe103e65e3a6d59f38c7e1757f5662
674290 F20110113_AACZJT viswanath_v_Page_444.jp2
8e66a14dfc7cf55fe5d531e946dac27c
d97dfb31dfe318b2d9b28205184e9f91064b939d
47428 F20110113_AACYIQ viswanath_v_Page_107.jpg
4cd54c7624c534f15b28e10bb725cb7f
b9141683492a3eac7a8769f2803c3760d1c9fd22
769844 F20110113_AACZJU viswanath_v_Page_445.jp2
9175344ef637237b00822198ac605f62
1d169e05fd0e46926a828fcee768bcb12c5daa5c
63464 F20110113_AACYIR viswanath_v_Page_108.jpg
b36fb11cf4e6a75f1f2c2452a28f3f6c
089548e9c7dc03a173c67b1c22ed1997162be0fc
303502 F20110113_AACZJV viswanath_v_Page_446.jp2
67d32322ad4cc6c4d0dc10be493aa270
44942c93cd5351e745a9f74ae2bf503890684a05
114175 F20110113_AACYIS viswanath_v_Page_109.jpg
51879617179552fac122986bb09586c5
48cd41dc85e0a6674f0885a64fba9a9deb24ed45
166221 F20110113_AACZJW viswanath_v_Page_447.jp2
6207b674061597080a94862090dfed65
8509eb59c5f1a8983228c14af4a31f197ce9e65d
107367 F20110113_AACYIT viswanath_v_Page_110.jpg
8e8e8ca9e3587ea7cd0612495544432d
7a18215080026e775414c0c299b4990e0f053b60
110782 F20110113_AACZJX viswanath_v_Page_448.jp2
7ebd7a9e8cbca144d7cbd165ea9409f5
46ba0377f5d7545555dc135aedb9df75a23022ee
109256 F20110113_AACYIU viswanath_v_Page_111.jpg
2792dfb5bc346b45d92fb995c1c8b554
595b5491202e5e74f6293cfd17b93907b564344e
133243 F20110113_AACZJY viswanath_v_Page_449.jp2
4e52dbeb39844fe70eee80fcdfad9f4f
40d074bdc14025f69f807bc764bfb6a62095f4b8
58212 F20110113_AACYIV viswanath_v_Page_112.jpg
b64db4e8c3bf1434039966f7320010a7
5610c8c2ad2f7481a54e44f33b25de04d0fec23c
738566 F20110113_AACZHA viswanath_v_Page_365.jp2
31a25580dbd5e455b587bfaee371260c
28bf08db0d45f23a7cf67fb80955ebcb1bd24a98
31536 F20110113_AACZJZ viswanath_v_Page_450.jp2
ad767bc5f41beabf75eb37782c09e8be
81de32fbc11150d02d0786d395795877b5ad67bf
63127 F20110113_AACYIW viswanath_v_Page_113.jpg
39e0fea419ccfe57431cae9c31186570
a5a34f07c92a61a6dca3a7841082a6b73dff3344
543721 F20110113_AACZHB viswanath_v_Page_366.jp2
d11603ed5bea003f8bac59dea72286f5
d03d3a18ef0e371f80da334f6bc61000321aca73
58683 F20110113_AACYIX viswanath_v_Page_114.jpg
844efe3e559837fc000c76a1055d6aea
23b35571a12d7e1be89c559aaeeb8fe635da56d0
98645 F20110113_AACZHC viswanath_v_Page_367.jp2
352190fc8052997a8a2c8f043a3ad056
5672c38d0967bcf57c2c138432bf4d7e4c757c8c
50145 F20110113_AACYIY viswanath_v_Page_115.jpg
6e00f841ef459751c5c6a489a47d7145
754b7557831a2081b7836de1e538413156954998
22611 F20110113_AACZHD viswanath_v_Page_368.jp2
6487c36c1ca7ca0d17fece88492843f4
e7e6dd9f1b0398027016653280c5b8c518ab61ca
50702 F20110113_AACYGA viswanath_v_Page_032.jpg
9ba354b3b2926221acf4a50acd05ab36
89366c2b276968fef00a9803ff815039a2515584
36108 F20110113_AACYIZ viswanath_v_Page_116.jpg
dc3f2fafa05972c2dfbc92fa4608ce18
38fd466790c7417076b2c5fc721d3e179b031eb9
641974 F20110113_AACZHE viswanath_v_Page_369.jp2
b4aaffcf08f5f8c4e8ddf0c0cc497d92
af3d1bb01f7555613075f51ac806d5a626be8db7
53591 F20110113_AACYGB viswanath_v_Page_033.jpg
7387ff91aa832318ebf24391010786d6
35244bab6f6dec91c8ce6dd06778fdfb1bd101b5
693352 F20110113_AACZHF viswanath_v_Page_370.jp2
055f88a68407fb0e8d7d88ecdbf47d68
9582021e2665d8938f98bf1bf6162a9280dced22
46602 F20110113_AACYGC viswanath_v_Page_034.jpg
c22425e45946107986de8ba22f5b84b7
16764853d4cf1066faf649cc13e929feefb9474a
522547 F20110113_AACZHG viswanath_v_Page_371.jp2
86100b0749f588b69b50da66ea21aaec
2ecc3a055b444431faf64bcb8e7ac7116552fc13
65983 F20110113_AACYGD viswanath_v_Page_035.jpg
4cb8d5d7535905a99fad594c424f7171
dcacf47f37baf9486df8275635b5cb7981d2ec44
69958 F20110113_AACZHH viswanath_v_Page_372.jp2
12a2357fd84faff2ffbb38b814d71084
6d7c2e05fabf42282c4676502635e7aa6c7174ef
74927 F20110113_AACYGE viswanath_v_Page_036.jpg
2fff582b4f1c31e20f1b071812da5f3b
be11d229ecbe96c1896c5a9466d6c04ef546fa03
1051851 F20110113_AACZHI viswanath_v_Page_373.jp2
b1297f209cfe63771aa5a9c385416220
89a2a186d5e0472a0285226e1057455cd474c025
66239 F20110113_AACYGF viswanath_v_Page_037.jpg
efd91163a141a8857b76f5dcdb63399e
9ebb0f08f5f9b386cce04488bfafff05d7a565e7
927270 F20110113_AACZHJ viswanath_v_Page_374.jp2
ceacd2324df611713d10a8c0624e91dd
9a960693addaaaf8b2733e86909bab6f71ab9c6a
54119 F20110113_AACYGG viswanath_v_Page_038.jpg
9f80e52fd3842367dd04098a5cb46f1f
67d6e51d3da904ddc11d986d34b9599d40565092
1051975 F20110113_AACZHK viswanath_v_Page_375.jp2
44a449c24c4e20f567afe13c33d8114c
9664f7d09ac24b87481a67fc026be3024a9a62f0
47451 F20110113_AACYGH viswanath_v_Page_039.jpg
5a505ea4bede89a3b3554d636be30c30
4e745381dbc3925993d05e564930a6e5729f0388
1051936 F20110113_AACZHL viswanath_v_Page_376.jp2
081eb3af4da55cdc055d6aaf6581c651
eb650757ec39d28c9980c2bafb7e6b2791b7a4a9
52035 F20110113_AACYGI viswanath_v_Page_040.jpg
a2c3c97ada6ad6640b125866d3f857a6
c5bb2e73a67fff35a18e7acbe4de5874284439f8
1051891 F20110113_AACZHM viswanath_v_Page_377.jp2
ca0be79901709dd3fa1ceeb26b880be7
330ae91fa1bc3e44b86341a9bc28d86bb9061d90
35694 F20110113_AACYGJ viswanath_v_Page_042.jpg
1e0ef2d96d9425ac42fff9d8916615ec
b7a7e05d6210240ccb5ba747fe459af72692f4d9
F20110113_AACZHN viswanath_v_Page_378.jp2
e9a673f417aa92a5f8b6c84f0dec29a6
aab3f2f77d4427ef7b68efa12297bd5abd80fcd6
34952 F20110113_AACYGK viswanath_v_Page_043.jpg
a8ce3fc679994c34f4dddef3247489e5
e04240e7bee4781df7133345cf93d77b7581e7e4
1051985 F20110113_AACZHO viswanath_v_Page_379.jp2
816a3ced146af1e29b6e9ec517cecf70
3623607397118b6c1e4256a9cda6e6fa5e7d7f88
33278 F20110113_AACYGL viswanath_v_Page_044.jpg
cd19aae28db5f0b3079d64856794300d
ca1b88f582380de5ba5e7cbfa5d7e16ab0617b59
965932 F20110113_AACZHP viswanath_v_Page_380.jp2
a74cd390ea48b736cb602f75a86881b9
513330cd58a79278843d96e7f357d66db6ef938c
49575 F20110113_AACYGM viswanath_v_Page_045.jpg
6f26df8470f7b568cc10a7dc14bc8242
6cb3cb85303478f86856e5347cd8cadd342c05f0
1051980 F20110113_AACZHQ viswanath_v_Page_381.jp2
0ca3f1f218bc2b8494d5a25cc3aef4e1
23c59418275ad013507c6ef9029e80e99873823e
34598 F20110113_AACYGN viswanath_v_Page_046.jpg
d1a0f72eb4dcd8a69cf37b723092e5e3
b0fbbd5aa3945434a3b9ebcc9fc2268c8d6271c1
948102 F20110113_AACZHR viswanath_v_Page_383.jp2
7256d05d2d3e2d936e1a2c5041ef924c
87d00c9ae0adf1b2449e83b161742d0f07cc5b11
40088 F20110113_AACYGO viswanath_v_Page_047.jpg
7cdb7de3bd33c914e78d98b6be50f277
32ac9143155657de44af0bb5f2244cc1ab064f5d
1051978 F20110113_AACZHS viswanath_v_Page_384.jp2
89a22d665e7c93c7c1a0f4f753f87a92
78d6ee9b39a5f106dfa7a20bb3d345ecb0704ff8
42992 F20110113_AACYGP viswanath_v_Page_049.jpg
ea1ce1e26f89b2cd9d0dc2d618d7b0ff
064fbcb9c99cb8f63c0b70c107e2234d50badfe2
1051927 F20110113_AACZHT viswanath_v_Page_386.jp2
051ac4c3b806626cdfa2d6ac25261eb8
6253cd7aa42602fbc2eaeb8180a9c51f6c475f97
60541 F20110113_AACYGQ viswanath_v_Page_050.jpg
e68e1168282def67cf8d09f10f594ea8
c747f32e253dd831b8ac3cfdb073ba108b05c3ff
1051981 F20110113_AACZHU viswanath_v_Page_387.jp2
7d7ddc00ae2fc24e58922a7272b5a92e
02511b8a45c87bd91ba288a18bc49c6fd42cb5e6
64035 F20110113_AACYGR viswanath_v_Page_051.jpg
8a99a89f7ffb5960d6d83d54288c9a67
f940bea29e8fb3d849d98b3e69a13e1fe612b918
1051972 F20110113_AACZHV viswanath_v_Page_389.jp2
53cbf0748baf132fb438a797eb6e6441
11d71afc1d8da5d4e714e06202c5a5423be23fea
66569 F20110113_AACYGS viswanath_v_Page_052.jpg
b4e60da55828f9160e024b8a81ea55c3
3851d9a6dc5df4338c0d3d5b2dac2c9a8d1ca9a1
F20110113_AACZHW viswanath_v_Page_390.jp2
3ae6a77722947c5bb68138996a3e4cb6
ee425b6c32db26576ba1ce3c8c967cf286c356cf
70296 F20110113_AACYGT viswanath_v_Page_053.jpg
9e6a947e118bedc8f15eb1b4b3c92bb0
a7a590df3a3a323dbdfb698833e9f66e280b46f6
731469 F20110113_AACZHX viswanath_v_Page_391.jp2
dc807a280fabf038e66cd7e9f651be2a
26e9b7c9b3617ea1a7b9239805e2189b20966065
66625 F20110113_AACYGU viswanath_v_Page_054.jpg
e18b37f8155200dd52e7e573dd32ff60
283895283b7b3375d05fef775e172213c0071e51
70901 F20110113_AACYGV viswanath_v_Page_055.jpg
4c56728f8270cda5f45a27cd9cf39d65
f1cfe26d24d71cd0f30e1de9574b70de05a7e918
472680 F20110113_AACZFA viswanath_v_Page_307.jp2
611ee8e45721e1c0e0253335aaee187f
4c015b467c0802ed0a211043adbf00133f8599d7
1051983 F20110113_AACZHY viswanath_v_Page_392.jp2
a3a0450ce7e45d75e033eab95deb03c5
b8ccf5f6c0a3f3f4963d9297ad37008808e60174
76233 F20110113_AACYGW viswanath_v_Page_056.jpg
1355973aee1a64cf7d1b0dc665b25d83
85259f6860b7eace7f469cb505ef921e58f18bfa
108680 F20110113_AACZFB viswanath_v_Page_308.jp2
864fef4717d59b20886d94aca9e30058
f974f181d0372c6d9afdc13e34accdda8b90240f
F20110113_AACZHZ viswanath_v_Page_393.jp2
93471f64ebc03d178925f9076c91b561
e75f0f5fcdf817e6334d491bb0ca24c276d480b7
66542 F20110113_AACYGX viswanath_v_Page_057.jpg
6defcefcf610fe03fabeb67ad154839c
233f4303ab6e8a12669107acfee279db73bbc900
17398 F20110113_AACZFC viswanath_v_Page_309.jp2
2d0a4ce9b98225b6ab9d5587ef8dea3d
fb8abedb6d774ce7b945c1a7f587033041c1b5d0
1051761 F20110113_AACZFD viswanath_v_Page_310.jp2
f95b35cdc364e84e689864231c2d9585
68a9c63a266d45dc967152e8dc0f4c86c9e9eba3
10604 F20110113_AACYEA viswanath_v_Page_257.pro
3cb442b9ef7708bc539d5fb20a097866
40d6db484e4fa6395d865722cb55b80dea5bb0ee
62343 F20110113_AACYGY viswanath_v_Page_058.jpg
c03c70b240b2886bd05134a0f36c0621
2f061424565d0bad98a88ea0e1fe951fb3ac8c87
530381 F20110113_AACZFE viswanath_v_Page_311.jp2
93b27c3d1833ee576f83c06b7c1937f0
7d2ce32ddcf8e65cdb1e485aeb0b21831e97c3f1
67826 F20110113_AACYEB viswanath_v_Page_174.jp2
c3304371f0f745f2622738230db421a7
4df49ec8b27c3788ce74ccfb4febe4c31f09500f
76813 F20110113_AACYGZ viswanath_v_Page_059.jpg
79f9d9e55db483fd94eb4787b08ab5c9
c0b595e9c79423ca2d18ad23637483813164e7f5
45706 F20110113_AACYEC viswanath_v_Page_332.jpg
88a56c589a1ef19171b20deec0f43c06
465e93eebdfa315f7802ea424a39cf8db598a83b
255482 F20110113_AACZFF viswanath_v_Page_312.jp2
4a8a93a7a81e933af6f2e7b7901a6959
eaca4dab4c5704c7998e25f52e53c8ea9249ac14
1815 F20110113_AACYED viswanath_v_Page_026.txt
6b70290da8165e6d63243c82269b73f2
7cdf87a0d9662db056d29cf50f7272f8f909405d
102612 F20110113_AACZFG viswanath_v_Page_313.jp2
f48418d6b095ed6e56e1bc2a11fb6c33
8a9447929350618cd3ca82ebabe538c106bd338e
7162 F20110113_AACYEE viswanath_v_Page_244.pro
bbb2f8d3b90afed0a5f0b9afaef50624
df159e4b64b086e9a177a63b567ec62fc1fe0502
42327 F20110113_AACZFH viswanath_v_Page_314.jp2
e093ebc3a174bb4e85d0e16347a0e87b
817b6e2ab6c8c66f6bbab9a7077fa0490a5dfb91
17748 F20110113_AACYEF viswanath_v_Page_038.QC.jpg
a6a344d313dc51c62a3a25182d3e2904
5cb2ae69eb7ce4a447798159dff8f3f0e81ff897
502081 F20110113_AACZFI viswanath_v_Page_316.jp2
71a8770c26d492b10a3f6a15e8282a34
cc333d307f13578c302f5d06365325d02fbe23fc
12920 F20110113_AACYEG viswanath_v_Page_209.QC.jpg
980b2c4fa581678388aea29a1d49d374
a92c7a457ea308fd4f0cfe5b1149a36d13a52335
553384 F20110113_AACZFJ viswanath_v_Page_317.jp2
98b02ba7ca6184a81dca7d0c356bf9c0
37386c662fea0ad71d76e368408c4f73ed9c95dc
114541 F20110113_AACYEH viswanath_v_Page_006.jpg
e5e4df535c8f70f13b6512c7983b739c
90362a2e25b41269f8e44071c5a1d6563aed00f7
111888 F20110113_AACZFK viswanath_v_Page_318.jp2
64f777b60d6619d2acdbdb6de45e8b58
3c5f69334a76217f7c70531381e7669de48a93d7
4905 F20110113_AACYEI viswanath_v_Page_383thm.jpg
f23fe18de1f8317f3d537a97a5fa5f20
e7ad3680efd51f13a5378c7e37c71719f1d54381
50908 F20110113_AACZFL viswanath_v_Page_319.jp2
269e111a7762180b9594da7f75de0999
f21efc7447aa355b6e30099d1768751cbd22c3e6
12022 F20110113_AACYEJ viswanath_v_Page_441.pro
99cf69a83e90019d682aa5732fb0cfa4
41e34af7af935e387c56c0bb7f75fc1bc8b88307
1051827 F20110113_AACZFM viswanath_v_Page_320.jp2
b5e3bf71d1b4226aea9fa7ee901b9917
4161484e82c076ca0a27f05bea38d128e4874b5d
F20110113_AACYEK viswanath_v_Page_382.tif
78c51a2a6c4ad9d670630a5d449a0914
6e4ac08472fb035295dc2d71467481d3e289ffc6
561014 F20110113_AACZFN viswanath_v_Page_321.jp2
e0e870dfb3547f240295c9ffc985bb97
76c04b24db55c16ef1db71ef57a1f4bfa5857aef
16649 F20110113_AACYEL viswanath_v_Page_393.QC.jpg
2853beddeffff14bba88c41957dc375e
dbd43ec4841b2c068b0104b4c88fef157f10cf2b
573484 F20110113_AACZFO viswanath_v_Page_322.jp2
c941e9aa0b3cc432599c099a6774246f
dbf22b9d6e9958bef866a893ce07850a9908ae6a
52032 F20110113_AACYEM viswanath_v_Page_315.jpg
7e61c69532ec7b8c1f2e738e153ea494
da67b265f669757b6a036c6cb4806b7f90a8fe87
27438 F20110113_AACZFP viswanath_v_Page_324.jp2
6eda625477ae695a5a2f046325c0748a
9e319e9907c12c1fb95a994a78435eabb7645e08
4115 F20110113_AACYEN viswanath_v_Page_359thm.jpg
9e53334a05e5c4a40e0606a2696ce504
8fddf0c0d795081d9743645bae4c0ca600d82dce
1051919 F20110113_AACZFQ viswanath_v_Page_325.jp2
e4533ee0561ba0dbf0adbe109043a994
627effefc3714bafb93286630b419856f77a8a91
F20110113_AACYEO viswanath_v_Page_372.tif
dcf3214b3f2c26a072e3cdf5af7aa2f4
d0b7cea9505e1a50fa0dfc5ebad9d28c60985062
509274 F20110113_AACZFR viswanath_v_Page_326.jp2
ee1dfa96dbb7e49d758af456e5547db1
c8ea03fa39293c7f53045c402c93ce1521e360ad
14789 F20110113_AACYEP viswanath_v_Page_352.pro
0dd9a1294d762f4b337ba48571a84a0b
eeb71529f3679c2690bbeb22b5a3f8330cca746d
106706 F20110113_AACZFS viswanath_v_Page_328.jp2
15e5b112b616576dbe878a86a1e1b306
53b94cba0f11978614ae97acfaa542b62b1c25fd
55577 F20110113_AACYEQ viswanath_v_Page_031.jpg
4ec62153fd23c4cb11563f6a60db9230
4654806df2acf16af1e3f6591e86cfcfee5628d1
F20110113_AACZFT viswanath_v_Page_330.jp2
99819cb88e17a02e082699b752ff647e
846fa55bc49cb598e763265f244207355247aef8
44163 F20110113_AACYER viswanath_v_Page_182.jpg
bd2e1f85153faedb79cd1a803e7a4bd5
699f2bf63120abb257d674536f2658246fcc8ac6
538674 F20110113_AACZFU viswanath_v_Page_332.jp2
799819fa440e458708eeb63d32961da5
972e59f1f0400add991649cf8db6a0a56dc66a6a
F20110113_AACYES viswanath_v_Page_387.tif
bde976c333e75d890ac42d7e4315f742
378f1d1becacbd1a9e83d80a9eeb2cf7fd0f4e5c
39314 F20110113_AACZFV viswanath_v_Page_334.jp2
cdea9afdf9ab30f7109189411eea6192
b42f6de1f7e82224f0d65785dd0f077713224db9
F20110113_AACYET viswanath_v_Page_082.tif
c8b611170a0813b32a2bfd58738c0f0f
5e54d51efe7a60da8c6b1e3c561cbe5dace0b868
5033 F20110113_AACYEU viswanath_v_Page_397thm.jpg
7b034b2d8ef5cafc8f146853f6609768
890b1f6da2e933c6378884ee0ba0cbc0bf3c6923
1003635 F20110113_AACZFW viswanath_v_Page_335.jp2
6a2a76fe073074e1c9b91131bcf37bb3
47175d79d4feaf6b15545714effb97d64193bc46
676081 F20110113_AACYEV UFE0007014_00001.xml
1c7b93e1dc1b761cf0a4d626602b448e
06a3158ef387e86fb252ec419c43574399e5e8aa
650972 F20110113_AACZFX viswanath_v_Page_336.jp2
41fd9a96792b6908024cbfb41f18b6af
41b1157eca29c693804dfa6df173d5c31b08eae6
724032 F20110113_AACZDA viswanath_v_Page_248.jp2
07eecbb29b119394fccb59589622b16a
6dd841348f58025e3ee196ffcd33ae99392e5146
226866 F20110113_AACZFY viswanath_v_Page_337.jp2
32ddc022e1ebfe5254f5a4616bb86672
34b854e70660281620302919b74bf2ef82c5eec3
735010 F20110113_AACZDB viswanath_v_Page_249.jp2
d74adb63c388ae02104cf1ab41422434
40a322bd86dd6d8013434e7215217fde58f8d2c8
105507 F20110113_AACZFZ viswanath_v_Page_338.jp2
77e9f3209e09dded134383eb55f7aeb5
caef6cdd70db2ecc2a0cc1ea11bfb01bab2bdd54
109998 F20110113_AACZDC viswanath_v_Page_250.jp2
acbd284c9bcec893d61bdec2cccd7343
6fac77ac3a99ab4f70558c99b51e89149c133fb5
1294 F20110113_AACYCA viswanath_v_Page_194.txt
4739c09cdd347cd67f6db5006cd4de06
34787d59732a1682b002a9a8cc8d4400af5bcb5b
23553 F20110113_AACYEY viswanath_v_Page_001.jpg
934cfd452bdd2dfcc877693d4c2c48f5
54662b3d46f91667ed1c951fbda7b7b52f513248
96238 F20110113_AACZDD viswanath_v_Page_251.jp2
1a9fef2827e5ef555315476d944d2dac
52b1bb069e987cdd934e3d2d424671f1837e5981
47390 F20110113_AACYCB viswanath_v_Page_322.jpg
01b71be9dce38a6e6b0bf77ed9e435f8
485ccb636839b32105783bd36e4d7a228157f83c
10305 F20110113_AACYEZ viswanath_v_Page_002.jpg
9fa028bd06eada858b579e2763f0450c
f129cc335d5f047936ad73cccffb49dea1acfe56
F20110113_AACZDE viswanath_v_Page_252.jp2
62d2eb11ab589251e44afd26123bb726
e4ce9c03999d438645eb295efba9d7fd1503cada
4662 F20110113_AACYCC viswanath_v_Page_320thm.jpg
a88b3f42739eb21567212648f45685ea
e8469a783d08b0995c1bc966a6ae383185328325
552599 F20110113_AACZDF viswanath_v_Page_253.jp2
e0826acbf8d2381741254e88b8e5b7c0
29b51907d92d55317d3e98571749f67859565b21
69621 F20110113_AACYCD viswanath_v_Page_265.jpg
a074802164f2002864c1abef276585a7
48871b727b9ac5738a8f22e30fbeb954cbc62f52
538255 F20110113_AACZDG viswanath_v_Page_254.jp2
722bc024e118275f080f1d567e837ec5
8d6f4bea10f2a2d826f49d8ad4e78b315a4bfdb4
12103 F20110113_AACYCE viswanath_v_Page_319.QC.jpg
e9e158d015c86f9f78c91771a637d246
f32459bb010f9bc6bb838c19ffeaaaa57989ef77
104312 F20110113_AACZDH viswanath_v_Page_255.jp2
bc7d7b50cc6ac0dbadf40d1b680fc36a
15393df938a0da54018b7056e60e1440f3fd4369
F20110113_AACYCF viswanath_v_Page_279.pro
4b791d855e9dd46998d4e4a7cb022e0d
b69e5295997161ffec1ad29a055c1a56b49cb273
77947 F20110113_AACZDI viswanath_v_Page_256.jp2
9e7e004f3ea5524408ea625cbd5090df
dc8a596e8e95fb16fb3c4c7546e2080d5541cffa
6605 F20110113_AACYCG viswanath_v_Page_053thm.jpg
417c58d3f21ec4e31050d05656617dd4
8cc6808727315044cd400655a0272b258ef8d8f7
1051971 F20110113_AACZDJ viswanath_v_Page_257.jp2
e0bf945e3e3ab32ded15aad423d61dab
3ad7bd0efc65491c7d580b993256e28be682dae1
2059 F20110113_AACYCH viswanath_v_Page_169.txt
20c15e1b654f239441e7da4615e6b61b
9394914aaab8f816ce7112a3aabc7faf245bd87b
798363 F20110113_AACZDK viswanath_v_Page_258.jp2
fd4e0025097f40faf3b7c858789c36e3
5bce6386082a65a44c7f6ff12e966a0e9e211d36
24372 F20110113_AACYCI viswanath_v_Page_284.jpg
dbb6dad954be1693ee23c9c13586f2a7
feeb621e9c5eeded7fefb35e6fa4e506b01af401
702925 F20110113_AACZDL viswanath_v_Page_259.jp2
f59a7cf17c75245cd694dc694839f072
4711a7ba541d0c08a80d581db377322eeb5a55e5
234354 F20110113_AACYCJ viswanath_v_Page_195.jp2
6b4f065d63498627658b2542613ba7ad
c9be5c5cddbe1b7a8a19e6322e56fe34c7fc407d
107660 F20110113_AACZDM viswanath_v_Page_260.jp2
0506ff30687c6b59775df0287fe121b7
b8a975cfbfa3e18c953aeedfe32fd165ff6b263a
52929 F20110113_AACYCK viswanath_v_Page_421.jpg
67af4bc34cf7f2380705bcb2289fc06a
ae2336e2d14c7676848e16885cb11ee2ac76b61f
36615 F20110113_AACZDN viswanath_v_Page_261.jp2
df141bf3da500dcca8b7077e15c32edc
91bd7ddb3680fc939d7840ef5ef16e10389a7973
39613 F20110113_AACYCL viswanath_v_Page_238.jpg
228bf5a0518954f1909bac861c68c13f
b35140c5299be9eddfbf8c4b5f260edce915d96f
F20110113_AACZDO viswanath_v_Page_262.jp2
3e11d846b9b16d9403d4977df75a44bc
03bcee0da8b59de3a53823ed2763a9c990fa3215
5160 F20110113_AACYCM viswanath_v_Page_382thm.jpg
06c1d3b0c39747b822c6c1b0ea32f472
2f5cf6ee38f77da41fe025d05662c9d4c4c5db80
577673 F20110113_AACZDP viswanath_v_Page_263.jp2
0382d84dea67dd96a5d02a947669d89f
10a5815645e3c1a7639bdf23e52c77063ef38887
94137 F20110113_AACYCN viswanath_v_Page_299.jp2
8ee0378ac641a00fe24283772a12f77c
c78c0cdef4e15c26aa2d4c9d7c8ce3148de13f7c
224123 F20110113_AACZDQ viswanath_v_Page_264.jp2
c85292228bc4d649c5682ccee46073fb
40a5c09197a031dbb6a163f1e95c774d9b4176f7
16501 F20110113_AACYCO viswanath_v_Page_222.QC.jpg
924ace2725b3061729ec7a9093111aae
c62e2cf134c835c0102a286b2af25e4aaa0b077d
104269 F20110113_AACZDR viswanath_v_Page_265.jp2
3faffc6f87254e6e879ef0fa1d76baae
5b473be8aaeba564d6c47aac5a133b2d3f5a36aa
6660 F20110113_AACYCP viswanath_v_Page_097thm.jpg
fe2e52c010bae6ac7a353608dc2fed79
572adc58f02755de23f836c3cc043de59109fdee
14264 F20110113_AACZDS viswanath_v_Page_266.jp2
dfe035e7359fa9a393a44dadef81fc43
8d732c6eefc9cf7ad2a1d0664e8520bf4f4bb170
115186 F20110113_AACYCQ viswanath_v_Page_087.jp2
2c3bb12859b30d0e8eb26326e83fa857
040dbdd42052a140fbb87da82d9d3a5e4c69fe4b
554013 F20110113_AACZDT viswanath_v_Page_268.jp2
419ff7aaab882575a2d57bce43814162
6b5ee70b7c3536296333f7a0861f280c5f2a1ad5
6351 F20110113_AACYCR viswanath_v_Page_092thm.jpg
7b31edd8f572996dc610a2c3b44df195
3ccd40a5b717572f0fd36109de2e72b869bd9745
6885 F20110113_AACYCS viswanath_v_Page_093thm.jpg
b6dba4f3cec3cc8831866192a66b09c1
15f09d96b5d5e78a5c3b4914d9732bb1080d388b
518281 F20110113_AACZDU viswanath_v_Page_269.jp2
334bbac0742da7ba890eea71d5ca8349
585d44fe7c544cbb1f8420d07ae4469fe6d3d422
12703 F20110113_AACYCT viswanath_v_Page_233.pro
f87696ee8db801b28f371d40a03ef464
3c1e0d4b1a73d888d00d2c51b63921c2f5f37d44
105686 F20110113_AACZDV viswanath_v_Page_270.jp2
2ce56a40d645288a3e662af510e89802
358945a729f7b9aad211276cf93c48218acdb900
65128 F20110113_AACZDW viswanath_v_Page_271.jp2
1def07a2d3bd125d0f332e29d7132919
2780b545f477b7d722efdd92e9f943df0728b4e2
F20110113_AACYCU viswanath_v_Page_139.tif
fd9562ae4579731b092fe47ecf0a0c2d
ba5edec78085350b1626284df873e5024dd1f7cc
1051801 F20110113_AACZDX viswanath_v_Page_272.jp2
416851fc737897a5dfb371351abe8fb9
285712700a7a6434d8ff073f146be63fbd048451
F20110113_AACYCV viswanath_v_Page_315.jp2
2516678754e1291c6636f8a5b784efe2
eb8152431e8e0be5edd1844efbeafb191aece7ac
37681 F20110113_AACZBA viswanath_v_Page_192.jp2
f058673d971659961c9c43ec8f3450d8
92d0028f83785b3b02051b8ae6833c7d6b04f816
517217 F20110113_AACZDY viswanath_v_Page_273.jp2
f6849a70edd98d69967d787d5e0f7b67
30ae9e2ffc8283422a46837b758ba74e89054b1f
7093 F20110113_AACYCW viswanath_v_Page_264.pro
0ae6826fa0bde2c295605cc6d27cddff
1f850f626cc2021d9823a2a97dab7f5882767052
F20110113_AACZBB viswanath_v_Page_193.jp2
d0c148920babd14e38cd316588a614ed
708ec18aebee8dfe39f17f01c45129d906cf025c
483181 F20110113_AACZDZ viswanath_v_Page_274.jp2
444726144f25f0a4acc67d9a9a631c92
e419ed8dc126d63a3a835976d93d606796bf9360
1349 F20110113_AACYCX viswanath_v_Page_153.txt
ef3f7553c2f840d9e95d1fe4d8138036
20ecf077e8489d06e6cdc1cf80d0dae2856cf03d
697780 F20110113_AACZBC viswanath_v_Page_194.jp2
55c28cb39c6c0db59ada903b586a9f85
f7058c17a930bcdb304eb9a0b73f799f77afee67
107903 F20110113_AACYCY viswanath_v_Page_275.jp2
c5d3523cee6d6d8afa4e9e19024999cc
2370e6ae471133bb1b1f465f6524ca024367027b
113000 F20110113_AACZBD viswanath_v_Page_196.jp2
e1c0dbf3c6666014f05b663c24909435
8f9582d83a765e1b848c0e3e947ca7e28f20adbd
22654 F20110113_AACYAA viswanath_v_Page_019.QC.jpg
fdcf220510c669aad3bc4d826c6c4632
ac8e6e12ac72afb0eca4e85dcebdce22c68e2331
F20110113_AACYCZ viswanath_v_Page_382.jp2
e0482ef72a9609a9979c0d2fde20120a
bd00c974c86aa7474b0c93ada548c86459116887
50717 F20110113_AACZBE viswanath_v_Page_197.jp2
ba0fcc3d287ed0f82d92f71ba473d3dd
048534d66e6a915f5642bb568c4666b807519a11
151909 F20110113_AACYAB viswanath_v_Page_095.jp2
73cb8ce583a18afa3a35d255fff518e6
f1d1129dce97448e6d684504f5cd583dcff5d328
1051968 F20110113_AACZBF viswanath_v_Page_198.jp2
dffad6903c8e05c90e68a954866d6e80
97e823f9c7c55c1e6aa2acdcb1592334cfd046ab
7080 F20110113_AACYAC viswanath_v_Page_100thm.jpg
b24d64c2715e8e0234b1d3345b9e5802
9fd8e2b01bb3766c26a2f3504602b8368dcf1c40
759124 F20110113_AACZBG viswanath_v_Page_199.jp2
a4ac6bfd9e210d039b09fdeba360647b
4d3c35c6e7d98cfa4e7cd8137e1e01451e8043b2
21163 F20110113_AACYAD viswanath_v_Page_367.QC.jpg
505cefe3162f3116787d0c6a5afbcae0
f2616bb89643a4d31a3d0b79b44cbc8556151ad3
105486 F20110113_AACZBH viswanath_v_Page_201.jp2
a1c0c7a7ad32921353f15e5869bdd381
0f06202f6865eb25bbb892ac72eae0c6f79a1387
15214 F20110113_AACYAE viswanath_v_Page_329.pro
958ef7d7ebbfab9d2d11322b099075b7
68c2f8ff07b9168068fcd36d255519fa45f8dccc
31567 F20110113_AACZBI viswanath_v_Page_202.jp2
315247477b1aff6da997ef95cdc9432b
7a170d743b3c4f3d451c96e2a612eaf358aa9631
39387 F20110113_AACYAF viswanath_v_Page_347.jpg
e4da967aee80aca685c860052bb0fee9
b3a9605f87ae01c3cde4cdd0b1da365e8ba9c128
1051872 F20110113_AACZBJ viswanath_v_Page_203.jp2
58e4e27b41a02357479d9502c0cce298
63be9e5371dc52fe5c8ad3c78fb069c451473fa2
F20110113_AACYAG viswanath_v_Page_325.tif
1346c824a490f64fe39851770f0f9030
65ea104ef7f7656fc5370a253cfe9e48366bc2f4
479199 F20110113_AACZBK viswanath_v_Page_204.jp2
a2b4050df326d63f3af1e7eb25f2a609
167fa4241e833bd88a7ee041f4885e73cd1f19e1
F20110113_AACYAH viswanath_v_Page_341.pro
1c095107ad72ec577e147ce7fd20878b
5b0d2d451438ddee399b4ffa30702d158d45ddc9
480263 F20110113_AACZBL viswanath_v_Page_205.jp2
29a6e6b2fe3f069490a3e6f611b62325
a3b2cd751a06778c48caecce686939f294fa25a7
39967 F20110113_AACYAI viswanath_v_Page_050.pro
3c523604ba1b7815cd7cd76aa63bc181
fc04561209651ba219c87d25ff731241e85bdac6
108046 F20110113_AACZBM viswanath_v_Page_206.jp2
5d98f4877c19b3329827708d2da1e3de
1f66d8b409f2c3a540c4d9ff741827d19742091d
42160 F20110113_AACYAJ viswanath_v_Page_361.jpg
30fffc6a5292fe8bdde0e2a6a08ccbad
3e1216f7c6a8a4406bbbb68db0eaa029c71af5e9
37119 F20110113_AACZBN viswanath_v_Page_207.jp2
15f0ff2e8b52704417b4541bee4e36f3
8a81c3f8746d478d0aed84cd2ee4fb5c54a6f602
15170 F20110113_AACYAK viswanath_v_Page_208.QC.jpg
169ac062f1e6a76dd011ede7bfd7a31e
26189371e3423c558143710ead2235c805fbf4d2
1051964 F20110113_AACZBO viswanath_v_Page_208.jp2
a06efc06784b2e646bced97ee8b007f1
50cea3ea57a288ccb46d3e060e82d02160473d69
11650 F20110113_AACYAL viswanath_v_Page_149.pro
5ea47970200cfa3c59c823f89c3b6a8a
f191e7c76ea579f59651bc2cb1567871e5472374
486580 F20110113_AACZBP viswanath_v_Page_209.jp2
1c8c168a9aa58d5d126ca78a3730d23c
083bbe3c81e5441a34c88ba1c01467d572ff21fd
51813 F20110113_AACYAM viswanath_v_Page_063.pro
047fbbf20bd5c4b96e69f23c22ca2db7
22f4e7bc3397b38a61f7466e9a8f2a766563780f
480413 F20110113_AACZBQ viswanath_v_Page_210.jp2
42053234b146c94a49fca975bd905efe
be4baae6fd4b4ab95ddbd8b677b93d3cd58bbbc2
1051934 F20110113_AACYAN viswanath_v_Page_282.jp2
765fc1aca20b81b787d6d012366ed463
edbd5ae64636bbcd4a11fe4ed89c737fc1b99f5a
105584 F20110113_AACZBR viswanath_v_Page_211.jp2
02e5d5dea4527dcb7e4df7302ac6bbfe
943a991f429886e1559770b2dd00ba8e1eab4f22
11781 F20110113_AACYAO viswanath_v_Page_345.pro
16796b7c6671250c2c47dce0406a55de
0210c7c3c2cc6f610891456bf0b6d07a493b9fac
4466 F20110113_AACYAP viswanath_v_Page_073thm.jpg
0a59a82e3585395749cac3e516fe8059
333267e8f932260d1157e9d8c220a60f40933b1d
50757 F20110113_AACZBS viswanath_v_Page_212.jp2
626b73e3d56926930d6b0d5273c6a160
ea1716a3249cb34a17c4ac194a10fcf6553771e4
F20110113_AACYAQ viswanath_v_Page_398.txt
715b1e61df8345a2efa2ad814dcf0990
6864c8c21978ea05c441d5ba726e510db2b01955
1051825 F20110113_AACZBT viswanath_v_Page_213.jp2
8ac09a7c280d48ff8e1843f984155162
0afeacd7feca0c2b4ae1ab6e014e9c460203404e
1054428 F20110113_AACYAR viswanath_v_Page_065.tif
5e871a0d6c1d8ad5a060a45fba237881
b3a43ae7ac8611096b545f9a1e814312692b089b
826927 F20110113_AACZBU viswanath_v_Page_214.jp2
a889186f91e053c7b0930657a12deefc
1b75be675cb24235318b8f59c18f743be80be525
518794 F20110113_AACZBV viswanath_v_Page_215.jp2
ed820ebca341ee14c31e38ed9260e460
5d3a6d8818cc94001daf4dc056a95c5511ec0294
1051843 F20110113_AACYAS viswanath_v_Page_411.jp2
c7d5cbcfa44da58d7a551ffa50e5caac
76bb410bb989f75626e2f53a4131d55332413c36
106977 F20110113_AACZBW viswanath_v_Page_216.jp2
8c916e65f5cb0564ad8723cf670e36d4
4825a4cb65cae0d7d0781ca26ed25c186fe5e8be
13952 F20110113_AACYAT viswanath_v_Page_302.pro
d8218736e0a883d674893a31affb6676
da46ddf012d37de84ad5136a49c99df8e04cd238
108788 F20110113_AACZBX viswanath_v_Page_217.jp2
ca5ef6d70104f55bcfc667ffcb9d7e08
526095ed9845047039481c6cc6e89964e7ff9da6
6624 F20110113_AACYAU viswanath_v_Page_318thm.jpg
21c07e03f1c1b6047ff01fea5b497808
0a7b94cd9a4c5239938c6de4fe20d7f06e8269aa
1051924 F20110113_AACZBY viswanath_v_Page_218.jp2
c31d2aa7e0d846b2b5afcc8891dc35fe
f0cac0489685da9a38ec50d216a0e8a380a1fd89
532440 F20110113_AACYAV viswanath_v_Page_327.jp2
ea0713185d8cf7b2a7318f99646f2fd2
f775a784cb935833a5a1b1110102b6b0eaaa945b
760773 F20110113_AACZBZ viswanath_v_Page_219.jp2
279836f759cbfdb0ba619965c8cb00b9
ebedfa2eee76fddba6cb70e46d16a6078b2dae5f
4731 F20110113_AACYAW viswanath_v_Page_269thm.jpg
72033bdfbd457f280704f6c3d705e91e
40aa92cb411162d8a6f64ff4db5cddbb4d366d5e
F20110113_AACYAX viswanath_v_Page_059.tif
454d53353965212f9da49960a901c011
4734d98c71727592e0d00d336c7364d308e0e2f1
45527 F20110113_AACYAY viswanath_v_Page_037.pro
001c3166ee729b018f1de3e0deed23cb
3fc2a88e3a22fea31181cf02d888b68ccfed9e9e
59650 F20110113_AACYAZ viswanath_v_Page_305.jpg
da0f55b0e915f5741d2f23041cb80e63
cf8f874fa61b8ce606771147d3eedcaf36de387b
6609 F20110113_AADBZA viswanath_v_Page_260thm.jpg
a2b1699744f86114679dc36f175153a9
c988b229721f14a63a0c8082f7c8e6f73a9abba8
9215 F20110113_AADBZB viswanath_v_Page_261.QC.jpg
e52f525c46bf3fb0d68e8a1e3bb3bd55
fcacdcefe972fef5e59f1bbedc566bd039ddd299
3044 F20110113_AADBZC viswanath_v_Page_261thm.jpg
ba64ce4fba8f3b8f0ffe5abfc77801cc
c5a241c5d1fcea1dfe76fc93275a1ab065be93cd
2014 F20110113_AADAYA viswanath_v_Page_217.txt
42770436dce4f2a7d70ad2deeddab72d
efa37dc4a54ecdc41854e1e6d82ee777828bb61c
514 F20110113_AADAYB viswanath_v_Page_218.txt
90f4ac90a8148b6aac36d1baf8ae8457
9e9f698e615296fc439f6556734b6c34f42cf38a
5822 F20110113_AADBZD viswanath_v_Page_262thm.jpg
7a58d64a6b744bf27db022f37ffb07a1
d81f9693381f66977fa70fb4b94ea47cd11127dc
818 F20110113_AADAYC viswanath_v_Page_219.txt
f0d231f44098e6bce8d0c7a4a87295c2
1e80427340890df7033723c213e86f3416f0c0cc
8453 F20110113_AADBZE viswanath_v_Page_264.QC.jpg
b6bd05667ff8a2a28d189acd0abcc599
a03fb6c0f410680744980fd737abf33b2f9878d5
F20110113_AADBZF viswanath_v_Page_264thm.jpg
f79393282e9ef3c439cf68a0681fd978
29178b8082f2f5bacbdf025a122ad6c8a05b353a
775 F20110113_AADAYD viswanath_v_Page_220.txt
bbc620cfa9a1b6bff02e486c833436f1
88a204f6d9d9ae7ccc464db04a024b8497b4f4c1
21908 F20110113_AADBZG viswanath_v_Page_265.QC.jpg
81d72fe9b5d3302eb4af6bec3d431d7f
d74a4db603fc75a3dcc5ae74578522df2264634f
488 F20110113_AADAYE viswanath_v_Page_222.txt
9c6bc98ea4e0645fba45a3de3708b4f5
919484fdd0160dcde47a97bb5c9b00c83c713e8a
6434 F20110113_AADBZH viswanath_v_Page_265thm.jpg
9e86e14cd63e99eb8c64e1e5061af320
e3a25129c4e2f35e53943380026e9aa2ee5cad17
1187 F20110113_AADAYF viswanath_v_Page_223.txt
b994a94fd2ed853e3f9dd7677ddf9cd7
1880dcdc33423363ba80503d1b22267d6281dcc0
5207 F20110113_AADBZI viswanath_v_Page_266.QC.jpg
c04233e05722ff41edff7a838e4e7c15
910fb356f0d5797f2bd4ed8503d66f68383bc41d
356 F20110113_AADAYG viswanath_v_Page_224.txt
6d925234e02600dd80ad577a46c58394
98c9ff276efa739d61b8e3532d9b812cd805af7d
1834 F20110113_AADBZJ viswanath_v_Page_266thm.jpg
7c228b2c36159025106e5969fc346ef3
ab7f45d5c13596a49a0eebdd066c805c3f94b2fb
1935 F20110113_AADAYH viswanath_v_Page_225.txt
9b46fefbc18489da4c06ee067ba36f54
61bf2f11bdfb8763c6926ad4e15bb04bffac8ff8
19682 F20110113_AADBZK viswanath_v_Page_267.QC.jpg
231baa8b226311a8eed6551241413776
29a0cb3e13182518279ceaef49c4204a6efd671f
242 F20110113_AADAYI viswanath_v_Page_226.txt
215ac6d68644c733fb3c1c7f3ec16405
881ba673258c59029bd50bb00b3ce02b3abc7a11
6171 F20110113_AADBZL viswanath_v_Page_267thm.jpg
f4f680a5921cf44ee23948ae758e2f59
04482cb51491a09ce81d5d623d7a97b2ac346d85
470 F20110113_AADAYJ viswanath_v_Page_227.txt
ca2d88e388ddfaa61ade53364ba4222b
f9faa6d2137c46537bff07241d6515c5bc86a5fa
13589 F20110113_AADBZM viswanath_v_Page_268.QC.jpg
c30ec35d708a6d3a1fc1b5381bd908a8
2c7c3e30fb0ab9bfe7a00a97a8c199a6a590990d
982 F20110113_AADAYK viswanath_v_Page_228.txt
e42108617a3bee9fd18a8114354630d7
2fee4859a9be6769756e8f67f277c2af60e312d0
4273 F20110113_AADBZN viswanath_v_Page_268thm.jpg
bc4218b85c21f78088e0956c2367a6df
aa1e33fa211188a29b784e7299a1ad4265c8e55c
948 F20110113_AADAYL viswanath_v_Page_229.txt
a946bdf29b7a4b53f341aad5b1e85b03
57d627662c845a328fd744b9b5aa48ab8af5d3a0
15371 F20110113_AADBZO viswanath_v_Page_269.QC.jpg
370645b7a0905fa52c6d060914bdd00b
707c69d3f8d725817bb838c38eed85e08e4e79a6
2162 F20110113_AADAYM viswanath_v_Page_230.txt
4d2299118a07286adeb2960ddc245585
e0bb69ca631e49fa276ebaee9b7155abefad1ffc
22995 F20110113_AADBZP viswanath_v_Page_270.QC.jpg
97417913b6c7c6e595293750a81766aa
f1acd32ad34fd65422a59236175cba323c4bb830
394 F20110113_AADAYN viswanath_v_Page_231.txt
12a912015d32121c2dc16c4d4a154a0c
346ce993c985baa325f095ef4fa360e309772a84
6453 F20110113_AADBZQ viswanath_v_Page_270thm.jpg
39fbff05acbb4c9b38c4f1113bacf2e3
8e518f2b85a505960b386b1d0263bf223856f796
452 F20110113_AADAYO viswanath_v_Page_232.txt
ee0ff2300ec6a80404ba464e46bf8dfc
38cb0673fdade2925a11d15af75ed6fa15499569
15071 F20110113_AADBZR viswanath_v_Page_271.QC.jpg
28689f20e43638115168f495fd012081
4db1aeef0ded1d5b92d0b9ce619e27bae8b20107
1022 F20110113_AADAYP viswanath_v_Page_234.txt
ce8890324871f69a8f8ca04916369ac3
20ab10aa9105bad5346ef5102556fbf0b959f60f
4461 F20110113_AADBZS viswanath_v_Page_271thm.jpg
eca49f8aea7ef004d41dc910a21144fc
9bebda0e3e52ea5568c87e4aa6b0f427c8870b78
F20110113_AADAYQ viswanath_v_Page_235.txt
b6708523792217480dd8ddcc4e7a4020
c99ccb658154bbb8b50caf0cfc2155b8dd99a72e
16482 F20110113_AADBZT viswanath_v_Page_272.QC.jpg
b2ae2898d837afa11c4ede8fbcb78796
5cff7b25b5e693c0c79a5a4469683de82a80b630
1188 F20110113_AADAYR viswanath_v_Page_236.txt
130b3329d772ee52bcbc137f2617c60b
294d03614da80798422deca0fbb19ea51828dc82
5194 F20110113_AADBZU viswanath_v_Page_272thm.jpg
3d57c9032a2075c827613c0f206478d6
760c1167b171f0b2ac4e36ebc9292085df879792
F20110113_AADAYS viswanath_v_Page_237.txt
423e9dfb8f4d390241da0e72eec20120
c273a86c39668a6713cb2cb57dcf2affed6e67a1
13108 F20110113_AADBZV viswanath_v_Page_273.QC.jpg
633f1d6de4fb0716638be86c0e8507e7
2c762e557968e6e01bb81ddbd7dfe227dad001d2
672 F20110113_AADAYT viswanath_v_Page_238.txt
f30d6afe5b1612f6dda67123da95d4f6
dea00409f17a6df738a7b45346d960b55308a68c
4282 F20110113_AADBZW viswanath_v_Page_273thm.jpg
38f47078a3413f8386b4dbd93ac1574a
854f59b70213cea6d4888114fc8da3f0a595c373
980 F20110113_AADAYU viswanath_v_Page_239.txt
fb147fe93ee44275f9691f179956d8e9
33cbe7e1b1c5e0711737d6eb509a48fd6995cecc
4446 F20110113_AADBZX viswanath_v_Page_274thm.jpg
026ff9244772a39a35798249aee24a20
464dde40cb176347e63b8167e8b0c36d4d0f803f
2042 F20110113_AADAYV viswanath_v_Page_240.txt
253276a7c080121f20329167a1f40569
489926f755a4947ed893837dc5064df5430eac3e
4469 F20110113_AADBXA viswanath_v_Page_233thm.jpg
328e831105667ad504c22d3182b3c607
6ee2fe8839ddb13a95b81e233bf59b2678a3ee0f
23391 F20110113_AADBZY viswanath_v_Page_275.QC.jpg
08a4c80fd6ad5537080b13bafff0af4d
5d5f67608847095282a55a7f8fa4fa8187070e10
1178 F20110113_AADAYW viswanath_v_Page_241.txt
8b6b6b29d6afac90f07f781262d071ed
55341d821c2fe5e887a1394faee2abf6863a56f7
6454 F20110113_AADBZZ viswanath_v_Page_275thm.jpg
2c9f8a2ffc7e976f5ee7cede7c722f98
2fa8b330d823e8a8460b56bf5b5b881d003bb6af
515 F20110113_AADAYX viswanath_v_Page_242.txt
f8fa61e153e41edfa8a916d41a36315c
a074e0d6d6b8d8fc7e3299657c57c2a459d4595d
13536 F20110113_AADBXB viswanath_v_Page_234.QC.jpg
de45e7b447fb9fa3bc0345bd11179eed
7539edf1baf87a2a4f75d076a03f2b878255a644
386 F20110113_AADAYY viswanath_v_Page_244.txt
99031aad810c28469c1991086533fe06
61ab8e564d14b6739a085896ecf39533fe43eab8
4248 F20110113_AADBXC viswanath_v_Page_234thm.jpg
88b62966be4497ab7a6b0982e899c366
a614760d52885da3838ba1e102967c2669d84cdf
1116 F20110113_AADAWA viswanath_v_Page_159.txt
46af5caeb42f2e4a2930fdbe04fe453a
c0dcd231d8118207006b52dcc61f3f676239fefd
2034 F20110113_AADAYZ viswanath_v_Page_245.txt
346182ebb3bc1f839aac2b6b8a3f65ba
10ea0cffe896f12b60a44f8b0511f4cf83548e41
23577 F20110113_AADBXD viswanath_v_Page_235.QC.jpg
2224e819e7086979ca0fa3eee95db327
a2b8d153819baa58a5b6b0bb63fa2e702ec70e9b
6712 F20110113_AADBXE viswanath_v_Page_235thm.jpg
e8b30934a35b0b07e40de8cdc6d3ddbf
94264b8540c03de789c91004bdeded2b65919fa8
1311 F20110113_AADAWB viswanath_v_Page_160.txt
95aba4bc72d209dd11f2830aed401a19
b80e903fc61998bb7d903ec8609c727a1a5de6c6
4342 F20110113_AADBXF viswanath_v_Page_236thm.jpg
f78ccd0cbe86fc4547dd07cc09b09e74
7eeafbdde377bccf5ffea5b6495a0e3708501323
1507 F20110113_AADAWC viswanath_v_Page_161.txt
44c52684d36eb3df07fd532895f5fa5e
ca247518124b852cde0a67e6d3fccb99256bc0ec
17877 F20110113_AADBXG viswanath_v_Page_237.QC.jpg
cef2e5e40d3e27cd74b4b1104159f967
f7ff7d4d535ccc6a05ab2ca80f5bc7bc95d83712
1303 F20110113_AADAWD viswanath_v_Page_162.txt
4a3a327dab70d0fb67410f480966588f
ec215c3c96ae78820bd6f300f99bbe002c80e25b
5749 F20110113_AADBXH viswanath_v_Page_237thm.jpg
8b5966f015194c62947d11e156ccc793
28f11b78fc0518fa18100f13eb824a9b41f72062
1852 F20110113_AADAWE viswanath_v_Page_163.txt
229c783da95dd90b8e946d8c6116345b
6ef6ab4a841cc5fe6034e2ca59f341323c5d103c
12858 F20110113_AADBXI viswanath_v_Page_238.QC.jpg
f8b91f2cdffefd7c64468129d8957b46
6be0201c942588b496e0eaced4ad242e0dedb2fe
1911 F20110113_AADAWF viswanath_v_Page_164.txt
cb1a53009c794608e855765059dee5be
81c69e4a6619fa57bd74b43ec749a160f10283d6
4311 F20110113_AADBXJ viswanath_v_Page_238thm.jpg
b5a5c69eeb20a05414f0cd5b9d6870b4
dd85d7e103aa950c9b061ac2ebccba631b37768d
2002 F20110113_AADAWG viswanath_v_Page_165.txt
0bba35ee7bb4d27126c3389cae30c8e1
9fe23a2bb8e0f0421b3c1b15b8af566e8599ed04
14551 F20110113_AADBXK viswanath_v_Page_239.QC.jpg
130eb3114ba3ec1660a9c8dd222fac2a
670d97257c3aebaf8effae690268d27550526344
F20110113_AADAWH viswanath_v_Page_166.txt
8b846ea91f80d83bb5103ede1e852636
38375f713d36f533815d121a94076f8ada78807a
4702 F20110113_AADBXL viswanath_v_Page_239thm.jpg
99510c89531fd0aea3d375e88301ad4a
e3018ceb2071e162bbf11848968a18bd73f421a8
1909 F20110113_AADAWI viswanath_v_Page_167.txt
ed5b828503399070d8dc338e688f258b
d58144536bc9b197e3122b26c576b49aed496b36
23314 F20110113_AADBXM viswanath_v_Page_240.QC.jpg
06e4d0311bd1ff42da57ebacc30c5eb4
a6ef2dbed592e7a8066554ac685ebe00e20c3d14
1861 F20110113_AADAWJ viswanath_v_Page_168.txt
ccda1e1aa704fd73dea3eb012f0adb0f
e818cb0faf3556b828f210de5194c81c2099b531
6549 F20110113_AADBXN viswanath_v_Page_240thm.jpg
3d1b0ba3d6493b6cd178eb0af50f5e03
11f1eba9ac9217fbc4f460db32ab9d71f5445749
2005 F20110113_AADAWK viswanath_v_Page_171.txt
e1c78556024c28fa9831ad3b76bc35de
744bf5395cf89e707261fd2f0df3aa97703d77d8
15060 F20110113_AADBXO viswanath_v_Page_241.QC.jpg
dd21e0b09b944ea3d046213a78c7949c
b8403196ba562cd9fc8038305404bf601d67d75a
1028 F20110113_AADAWL viswanath_v_Page_172.txt
f81d9f9f21d703496548031dbc7ae927
f65d1217bb7e9e4c4588c9accbd36d776434a279
4364 F20110113_AADBXP viswanath_v_Page_241thm.jpg
3bdfd75c606bb685248e84a20af780f0
a2f3e73deefb739d0a7256eef7ac5cf0abbb2eb9
2058 F20110113_AADAWM viswanath_v_Page_173.txt
48f8a34ef3e3473bacec485d4501bb00
833011ca6355b3ebfa57a115f4261aa9c6499e34
17259 F20110113_AADBXQ viswanath_v_Page_242.QC.jpg
1cbec9ec0fdb4b6e3167e55ee8b0d6c1
244951140cbbfc1074759036f514d4e01ed04c88
1809 F20110113_AADAWN viswanath_v_Page_174.txt
aa291e2ddbfe43096ae5db72aa40c395
e41088c11b453789d596b9dc8b2549e43124ca1b
5519 F20110113_AADBXR viswanath_v_Page_242thm.jpg
7f6914b72169394e8ac94b8e2588e754
277f4b4313392848da0f3e45eba06cc02700b08a
1552 F20110113_AADAWO viswanath_v_Page_175.txt
b0f0da1c02bde34afe11e601fcd47e93
cd3970eda485490b305ecdd6913ecd68039b5f59
14905 F20110113_AADBXS viswanath_v_Page_243.QC.jpg
78e8c92eb5488f30a6ec73ba126b8957
b7d9e0d69ad88d625a7a9bb839d80ff2c895c86b
2057 F20110113_AADAWP viswanath_v_Page_176.txt
3e53299e59a4fc3a4e41f83984b128f5
2eb3f2c9fb99e16884e46ce334aad5bd09d737d9
F20110113_AADBXT viswanath_v_Page_243thm.jpg
2a2fc252ec124c319d482c105a2f97ee
34216f731fd0729bd4a9ce024c8031376c68e7cb
2148 F20110113_AADAWQ viswanath_v_Page_177.txt
ad78e99f4b64a9a350b54b8dafbf0ab5
3892b44a90c500de606003540f97634dcbb491c0
8229 F20110113_AADBXU viswanath_v_Page_244.QC.jpg
1254aaf3bae8767b6639506a367c489a
3d5b3c92697ef7547c70d7db011995d9645d345f
2258 F20110113_AADAWR viswanath_v_Page_178.txt
a0a1e24cd989976a2e8dad5005de8f70
4f653b09ce7219ddad519e381f42c8a6fa910fe8
2852 F20110113_AADBXV viswanath_v_Page_244thm.jpg
579bdc00cebb1e8ea3bcd2d5b177dc2e
faba3b6197b451f475d46efebfab066c621e525b
2142 F20110113_AADAWS viswanath_v_Page_180.txt
abd18413e517cb1b9c5d43ff6d5078c3
927ebfebe213b7b3cef0b6b8c06b4477021868c5
22994 F20110113_AADBXW viswanath_v_Page_245.QC.jpg
51b81e84902768599b378f26d389f2a2
6afb23172dbe1a0d224b797306506a74a1f14d7d
1234 F20110113_AADAWT viswanath_v_Page_182.txt
a3b81e52b50ce6b5393883130a1fbdde
013ebce7852a9a2656bdff9af28253560f42a86d
F20110113_AADBXX viswanath_v_Page_245thm.jpg
a12041481f28e17e864de6b08a5bf024
4cc60620ba45136c8bfd1f82215fe2558a462aee
816 F20110113_AADAWU viswanath_v_Page_183.txt
501399554f0d422d50651701a3ecf9f1
c38693da3d803a18f3f93aef7421e9033b6ec706
16358 F20110113_AADBXY viswanath_v_Page_246.QC.jpg
7f6b6c57829b9bae27759cc4a1c75ccc
a12dac0912493f6a01898a5b9445636ed6693a12
F20110113_AADAWV viswanath_v_Page_184.txt
96e526779e7c9c19829f348e684f271b
d2d79fc9aa5dd759933a81d4e8391f6945124d0b
4194 F20110113_AADBVA viswanath_v_Page_204thm.jpg
eecd4a2183b501f058231b7ffc0a88eb
18c9e6deb215c742e461f117c2868527e1b956e0
18082 F20110113_AADBXZ viswanath_v_Page_247.QC.jpg
ce408053cf610c8c67ddbdccee9817b9
8a3c049e59009840af6d83bb06076ff6b600ca9a
3228 F20110113_AADAWW viswanath_v_Page_185.txt
c17ee1cbcf798397be9d646ebf95bca2
f5992199b9ace636d48e3051c183449b3d275123
13770 F20110113_AADBVB viswanath_v_Page_205.QC.jpg
bd8ff5e0e3bdd31c4ac61620fdc3b7a4
dd8cda44d08e99104e505f0fe9dc44046739d7ce
3434 F20110113_AADAWX viswanath_v_Page_186.txt
623c0e3f1bed21a9ffa46bb0c3f0fa12
54795acc3f01669b54e44e44a98dd9c56f1b5995
F20110113_AADBVC viswanath_v_Page_205thm.jpg
29532a9291b32d09535e0a7073b2773e
a78a4bfdb091abf70dec4b1af07e1b5d1385e4a5
1538 F20110113_AADAWY viswanath_v_Page_187.txt
f367b04cc0fe40f29f450ab4e81d5168
cd352e266549c65a6e0c2dd7beba274727aa2074
23171 F20110113_AADBVD viswanath_v_Page_206.QC.jpg
66fdf9eb7901d6b45051a7925e0f9129
8fbcd17f58e2e23aa8380fd7eb5de70aa7cff34b
1654 F20110113_AADAUA viswanath_v_Page_105.txt
49ddff1949be4fc865d35657d856f7ad
0d8d9e44118557c7c510c502d632a9a3197545b7
789 F20110113_AADAWZ viswanath_v_Page_188.txt
860c47e1219e13aad31516184995544c
307ae25eea6a1116cd2a51dd087999cebc1127bd
2956 F20110113_AADBVE viswanath_v_Page_207thm.jpg
f7bf76723d5abe9c6b25a747af933445
1965be06cd21d64a199c2ce7dc5870ffc663675e
2140 F20110113_AADAUB viswanath_v_Page_106.txt
eada83acdfad92e6935a326c9ef69851
953fd259e0101983baed9db459dc7a78ce461df3
F20110113_AADBVF viswanath_v_Page_208thm.jpg
8e4ace15e96fbe7f661246b8f6ff1976
f503f8c23f295d826bf2997edef4a3b375ab9649
2270 F20110113_AADAUC viswanath_v_Page_107.txt
c80a2575413818d2bc648b440f2e08d8
ca8cb940313c476d66ebc16d0f1104c2eb137a60
14814 F20110113_AADBVG viswanath_v_Page_210.QC.jpg
829a012881d8e5b839945261b1720090
f330e71fe3743917b29e8bd7d0da4cf4f4eb306b
3493 F20110113_AADAUD viswanath_v_Page_108.txt
2b5d4556a3ce5674871778aa8f98e52e
1a4e924c0b9f89e5b08f30e2c9923d12af43efa4
4447 F20110113_AADBVH viswanath_v_Page_210thm.jpg
cf4ecef1f24ca6b32f2cce53847bff73
49b12953f8e8bc86b64b69312c4eedc29dd7548f
3812 F20110113_AADAUE viswanath_v_Page_109.txt
9f056055f10f85e8eda762cebafef884
f68c96e64e07dd53bf518218b5d5fc36e6509555
23253 F20110113_AADBVI viswanath_v_Page_211.QC.jpg
e5b84a515c8d393d67f93b4e1fd84752
9985ae8e13c17adcedc71f0ba1f0f0ccf164ed33
3355 F20110113_AADAUF viswanath_v_Page_110.txt
885598fc24ae76e71eb62df31810f90d
228a75e904476403393c26060616ee346dca42a9
6427 F20110113_AADBVJ viswanath_v_Page_211thm.jpg
2cf8637382dd8ae10c4d71edf47093a0
8aa3562ecee52479dea9bac5c2f9bd8b32fe48d5
3221 F20110113_AADAUG viswanath_v_Page_111.txt
aba00e90b3f9bb7f6db7db644ecb92c7
6f917e0cb5dec9fbe20b144dcc035cf6290274c6
11977 F20110113_AADBVK viswanath_v_Page_212.QC.jpg
49ae93f9097a84fb815af8c9ad652285
7fb884e72196c89d0358b3fe0f04d45c4b66ff2a
2862 F20110113_AADAUH viswanath_v_Page_112.txt
e6ad76bce6aa6e3b5a14043f4f6d105c
d24387f6ed5f31e092a799fd294895c86a096c37
3740 F20110113_AADBVL viswanath_v_Page_212thm.jpg
c214e2bb3524ebbb23f6b1a559e2fa99
86c619acc8088d821a703512c185b65104c187a6
3006 F20110113_AADAUI viswanath_v_Page_113.txt
d09d15b62671dd6ad5e84e309db69ba2
67df810e1f3343fa89e74bb05d28dc7666d462ad
20203 F20110113_AADBVM viswanath_v_Page_213.QC.jpg
71d8213bfc0026ca9422f129a13ea9ec
0ec7450986dc079c5b4a494afdbb462643ad8e9d
2871 F20110113_AADAUJ viswanath_v_Page_114.txt
e6a1cc9ddac269562d1882b2f8802b43
6cb2e088f068d98191bfb0a915f3f66efd2a4d20
6460 F20110113_AADBVN viswanath_v_Page_213thm.jpg
5679c59b11f5194aef0de34f15d920bf
33c8f51223d9d47f52ba0d4e8ea70905bb2c4a63
2464 F20110113_AADAUK viswanath_v_Page_115.txt
41cc80511fa984adbf90e0e5b99e4aee
833a07bcdf35ea9b5fdb738f7d5c726971338a38
14242 F20110113_AADBVO viswanath_v_Page_214.QC.jpg
bb0217fe88ecde68a048a156ec60ce3c
2ca291d30dd1466482864e5df98159a1c7d90254
1759 F20110113_AADAUL viswanath_v_Page_116.txt
4bb5e31e1544eebabc2955f256d6a1ea
f99fbeb4db26f0b7bb863a112cf598ced7d998a0
4618 F20110113_AADBVP viswanath_v_Page_214thm.jpg
774c2495b5a3b8fc2a98c0803cb9dd4c
649e6bf82d28bdf8e4bc0c1b1012d6d411b4777b
1047 F20110113_AADAUM viswanath_v_Page_117.txt
b8e1b347ca5063666b33f43bb5e85b61
b31132282d9394767af1b0cbbf31922b8b016de5
13189 F20110113_AADBVQ viswanath_v_Page_215.QC.jpg
415fc687a2955d9fdc3ed9abe171f576
1af2d0dd280532c46314e80612ce5f8ebdee13d1
3537 F20110113_AADAUN viswanath_v_Page_118.txt
6fdf60ba4b0b82bc5e0ed33c8616417d
bd7ff457e767e92a3a3f9831465199df6751e281
4367 F20110113_AADBVR viswanath_v_Page_215thm.jpg
9a1d5af986526b2364cb1173f2d83828
90eca3ed7bc2f5454d8dc7437b77ea7ad973f635
2244 F20110113_AADAUO viswanath_v_Page_119.txt
e5098b84e81ee9fbb472d34446748daa
9c4a2cf934e05fccc3297021159ffb9d2f767fa5
23452 F20110113_AADBVS viswanath_v_Page_216.QC.jpg
caa9e75805eb7590a56643923e1c3d02
6e55cca7a4dec7e802ae9e849928f6a84bdd6b41
2586 F20110113_AADAUP viswanath_v_Page_120.txt
dfbe37c4e9320844e71a6fe9fa888a4f
8ba608768e851fc850f03f0da299b7510f0e3104
6394 F20110113_AADBVT viswanath_v_Page_216thm.jpg
c48707430d3ce9eb952998b06671ef67
eefb5ae0965f1cdc57413de699faba53cab5ba87
3559 F20110113_AADAUQ viswanath_v_Page_121.txt
77dc0ce94733b15a2f448d5370c7a3f7
deac56213d1dfee82d52461909e22eebf7011bec
23616 F20110113_AADBVU viswanath_v_Page_217.QC.jpg
8892a4ec79493483aeb5b3f7a4ce08b8
bc2fb6da82955108abe313b16dac33316f04d2d9
2298 F20110113_AADAUR viswanath_v_Page_122.txt
3aae6bddd36348df2d2b707c66332d9c
b75a78992a968bde496ceb0d7f8bf8a6e665a010
6546 F20110113_AADBVV viswanath_v_Page_217thm.jpg
3002573931fc735d537de67671c7f69b
5c5f2b623a571ccfab3df7c6776b1c59b6a155d9
2050 F20110113_AADAUS viswanath_v_Page_123.txt
f21c46162787ab9e352e30d93513a0c7
fe605373b6e6908f9b95a83fdaf784a45a74547d
19494 F20110113_AADBVW viswanath_v_Page_218.QC.jpg
d0c85811b6bc3595f07fe6a1ff8ae7af
176d9e5bf517bfde46a3dd7f5504de180588e6e3
1500 F20110113_AADAUT viswanath_v_Page_124.txt
04833a9506ad76b88fac8c9dfc4ba3ff
e6894097a13329cb80d3816da4fb95288dee2d5c
6209 F20110113_AADBVX viswanath_v_Page_218thm.jpg
17717424052ccde87d0ea0c8ac25a816
011882129a43cc327245c4a965f6f2e05727c48f
1614 F20110113_AADAUU viswanath_v_Page_125.txt
ba81b940e673eb1accabb3c5755ac8b6
c64f0e6a081cd88fcc73100af98509dbc01251a1
14175 F20110113_AADBVY viswanath_v_Page_219.QC.jpg
f5719d7085ba30a7c5b149c896b5684b
2250f2fc1de6939ca738e217bf52fd2b0dc067a6
2337 F20110113_AADAUV viswanath_v_Page_126.txt
a36872c62ee99bfc64f66184f5ae5a29
7b46a182322bc53f0dab97428db09db151a1ff12
4351 F20110113_AADBVZ viswanath_v_Page_219thm.jpg
9a7e910f89938262be184ddb302cbf99
1e7781e096ae0eac317691078a14bf81bcae8ba3
2336 F20110113_AADAUW viswanath_v_Page_127.txt
70a7ce6c6bab6e990418c113e9f002c7
07ace8fe7c43e069796ce51a1515012075e37221
3573 F20110113_AADBTA viswanath_v_Page_176thm.jpg
9b7497fd5ec2b755a362872cb3456c3a
b5e9bb65f9f7db9b8ec7d2af7ce9e4715278c5e6
680 F20110113_AADAUX viswanath_v_Page_128.txt
23d271a08f66a14035214c6e9eed4498
e82e0972a3312e4671d5e9f16c2392d9dbb1efb4
14288 F20110113_AADBTB viswanath_v_Page_177.QC.jpg
b6a9bcc657137601de78b49588966be1
b054e3e2796310d39360ed8992cb182244e0993f
950 F20110113_AADAUY viswanath_v_Page_129.txt
5a0e667f6fc9a11fe2064e16ddf0dccf
70ef8d2f83b653d8f32e940f474c8e7f1cd559b5
3905 F20110113_AADBTC viswanath_v_Page_177thm.jpg
a5f33756620f7269887f426e66ae4d11
e2bebc0c1b26b07c7c702fe9c53659d680e47ae4
1702 F20110113_AADASA viswanath_v_Page_050.txt
14722d3b6c669db6500dd2c3f047fed1
95f343b8fb4b5c3182949b693c2b0c4a793f6989
1361 F20110113_AADAUZ viswanath_v_Page_131.txt
571b9d86fe088953c3ab2c6de63de27d
a6c34c70c221c2bb481eb60b1e4ca2882634e21d
F20110113_AADBTD viswanath_v_Page_178.QC.jpg
5a75552928fbbbfa5ff99df43c56c5ee
fd7428d56ab3457b2c86bd2735badcdeba89e367
1896 F20110113_AADASB viswanath_v_Page_051.txt
c3e782591f196b9e378afc17a27a57c7
226be4ba410886a21298352f8ceb5a354ba5c718
3637 F20110113_AADBTE viswanath_v_Page_178thm.jpg
756f31d7ab3c0c88c117dd645db1ae62
ad5268229f285caa1d272b5cd8759b4baa5b5fda
1901 F20110113_AADASC viswanath_v_Page_052.txt
7d7780abfeb2b27eeb60753e26279570
c87c690807497a0c316bf0aa8c41ca6c9c6e9ea1
13681 F20110113_AADBTF viswanath_v_Page_179.QC.jpg
174bb1b0e6fe513d8acdc3a9e15537ad
33a372066d2c42a747e8be6741d732d97b89f9a5
1961 F20110113_AADASD viswanath_v_Page_053.txt
c5039a1e9ff9beffe5a88af5db3cac56
046d128ea9889e1f034f8ab5ab38c1fd5c368ff8
3695 F20110113_AADBTG viswanath_v_Page_179thm.jpg
7857f6f6a13b6e4e77c4d15936184936
f91b7a9b8f483cf9be9e437070ba594355d896ff
1807 F20110113_AADASE viswanath_v_Page_054.txt
38514251ac11d0e8b15653414e98337b
1b656a340c31970ae2e19dd8f48c7475b4fd8ade
3790 F20110113_AADBTH viswanath_v_Page_180thm.jpg
589c08808ed5dca071839ace5016fb70
f70972d32683d1143031b0d093ab769e82d9ed7d
1955 F20110113_AADASF viswanath_v_Page_055.txt
92eb7e7af58efc749fe1cab180ab1afe
f200c5a7861940d0987cce585f58ae90ee55a63e
14160 F20110113_AADBTI viswanath_v_Page_181.QC.jpg
0427ed412aef3c3d853898691aeebd40
f80c3736495be164f575d0eaa707b70e6f7a22a4
2061 F20110113_AADASG viswanath_v_Page_056.txt
df478aedb46ab3e515ad19c452f617ba
bc1025363fa10755dded354c8f1ce786f026f355
3799 F20110113_AADBTJ viswanath_v_Page_181thm.jpg
dbf3d62e9efde076ba6af26a8e05492a
73fe99aa5fd575d929d6780804a4c3b0185cd6d7
1865 F20110113_AADASH viswanath_v_Page_057.txt
59898bea8569ca38b69351541c6caf6f
8aa49c3cdfb6c4397dfe5466210b08475050d392
14705 F20110113_AADBTK viswanath_v_Page_182.QC.jpg
dd81a0e710ac3ec3b0881834b2b74477
c5e6ea4ee987c1fadf8dcac046dcda51ecf4bf33
1661 F20110113_AADASI viswanath_v_Page_058.txt
77868d07923d5c60dea21fa3bdae1e74
c05125dc99a2dd7a5243ae96bb35ffe89e3f2b80
4368 F20110113_AADBTL viswanath_v_Page_182thm.jpg
68cb33b22a7d2d9efa1c1501615d7a72
c2c536a597bda8149dc6e73e7293f5c1d4882156
2127 F20110113_AADASJ viswanath_v_Page_059.txt
6ef98aea335c8b4ddc762910bfab7b3a
81d93d4723b7bcb8803aa0c6d29fd6932e3f306b
14816 F20110113_AADBTM viswanath_v_Page_183.QC.jpg
37f99875bf16b6e679e7308cd977b37d
a5ffe330e245c8ce0532042c40f5ceb4ae438a6e
2000 F20110113_AADASK viswanath_v_Page_060.txt
b869fe42694d3e778b4631581c5809dd
14f31892f443cfd429a01e7d38b03b2a118c1d06
4209 F20110113_AADBTN viswanath_v_Page_183thm.jpg
d60e3e6aadb2e1cf2849b31d13edf753
81295bcf5eb7e77703daf7decd0d67b6eca663d6
F20110113_AADASL viswanath_v_Page_061.txt
ffba9ad4c549e6f0cda002f0652ece0d
707a9493a66297ee7cf2aa4f8358c2fbb550ccb8
21851 F20110113_AADBTO viswanath_v_Page_184.QC.jpg
f62c6649563f73959054db844ae7874a
35bd39a7aa61bbeec171bca631252ecc52611e47
3281 F20110113_AADASM viswanath_v_Page_062.txt
5245b8cedb9ea516a641cd4374e666a0
25721926544cd1671216c8e21ec73a67a7284ceb
6054 F20110113_AADBTP viswanath_v_Page_184thm.jpg
477c7f2c5702639b71400a370df8b3ee
08d1ecd1bd952f5eefcb415b2609724a514b9a52
2455 F20110113_AADASN viswanath_v_Page_063.txt
98994a011848ade703f17220eb638993
79ee84f71403edb06b9245047ab089d4e1315443
6957 F20110113_AADBTQ viswanath_v_Page_185thm.jpg
ceabffae5a692db828c76591bdc4b738
41c1cfec8f8df49e35efaa31bc85d13b1c6d57db
2581 F20110113_AADASO viswanath_v_Page_064.txt
a6660d1a7253c9b6e19ec70e99d39bc1
a273029f5e8d24bb619921ebfaa6b26819711b52
29888 F20110113_AADBTR viswanath_v_Page_186.QC.jpg
bf03e385e718fec07141ca87fcd17d0d
68d064d0d4f2d9a161e57089157a2b6707502112
1630 F20110113_AADASP viswanath_v_Page_065.txt
6be4328788249c6c1a717528b7fb35bb
2f1f39af1f7ce8a81020ba6c6335ab7a67b6797c
7309 F20110113_AADBTS viswanath_v_Page_186thm.jpg
72b80b26ae586285295c986f70461c1a
b9d9a7f6f48f0fb86ca025dd161c8b8282047e24
2636 F20110113_AADASQ viswanath_v_Page_066.txt
fd16f913a2541c33d01f0004d13f6248
2ff0d289952513b80651147b41cfed1ed5972ca8
13636 F20110113_AADBTT viswanath_v_Page_187.QC.jpg
0d66be260a9efd205ff5c9dafef05d70
7a033ab7d5f50b0ad835874aaf91365ede07e9fb
2819 F20110113_AADASR viswanath_v_Page_067.txt
3a34971c677cf2cf88fe0af15b7175c9
b47b3218ac71c09803ebcff7828566ea4f557cc5
F20110113_AADBTU viswanath_v_Page_187thm.jpg
8d6d086b0c9e9eeaf490b54b21215d39
882addc8104805a263af03ff98cc4060175d1425
1029 F20110113_AADASS viswanath_v_Page_068.txt
9ea18abcbeefd275fe1968a81a52d3ae
183256dc5fa533e5ed2495f271d7dae2c7e080ba
9186 F20110113_AADBTV viswanath_v_Page_188.QC.jpg
2f015c1c8e0dac47ba60b0415ca79e50
3aca86bb1ed5f6a93976ef168e3191a454d2678a
F20110113_AADAST viswanath_v_Page_069.txt
21c54be8ee0b6f4c2bcfc2b02aed3255
ac4a3b395476b7a48d188929bb0102893aceaf26
2984 F20110113_AADBTW viswanath_v_Page_188thm.jpg
4c6c0935adae5d440fc3090cb263f9de
a91549b46c7ba1d4639866f205090b148654e3c5
F20110113_AADASU viswanath_v_Page_070.txt
a051a746f00e62e467916707f7a372dc
1970cbb3e04872a3ae89cac72efff2426818703f
4315 F20110113_AADBTX viswanath_v_Page_189thm.jpg
6e36aa8158d19915aeacff7ce114761c
0ba6182d165e31654ab3e988e6ece7895d4d716e
570 F20110113_AADASV viswanath_v_Page_071.txt
63793e7f8ab7442699696943e19fb8a6
a6f14afa31a1574d5893e295eae3aaf750d98a01
7882 F20110113_AADBTY viswanath_v_Page_190.QC.jpg
e446885fdae3e4525c80a4881bbb82ef
e3ecca66be1ceeccec7e6b84fcf04536b7a71fef
216 F20110113_AADASW viswanath_v_Page_072.txt
48c812159b93f23d0eb0df163bcfc39c
0dd1c5ab913152f99ff09b9de1c76eb2efb73e78
12796 F20110113_AADBRA viswanath_v_Page_149.QC.jpg
3d129527791b426c8b2c3a168f4530d4
54a80c26067f4df9ac59bc09321347b9da743bb1
2322 F20110113_AADBTZ viswanath_v_Page_190thm.jpg
e917744d6c5cf45cd50526edeaee954f
5e9a4b94c62587c64906857399c88e008e6b549e
422 F20110113_AADASX viswanath_v_Page_073.txt
12a70d92f8aa35a0631da6c45d9b15ea
d17b3e1fa91a27fe8146e815a8b6b3fd9da88def
4022 F20110113_AADBRB viswanath_v_Page_149thm.jpg
4d405ff95d7c549a14ace9ffd13518db
12359215bf92c015887ee0158db218489c33d83b
895 F20110113_AADASY viswanath_v_Page_074.txt
bc1dabdb23c5bc698a635e0613fc151d
495d4913de2d3a8065fd622862d1ddcd8c20e9cb
19075 F20110113_AADBRC viswanath_v_Page_150.QC.jpg
789f0be09ad62ac38f58cab4bf1b16c0
d264a04d614f715c349affbe1aced1fab3a9349b
189 F20110113_AADASZ viswanath_v_Page_075.txt
797edefe5285bdcada1b2bcc5c65a346
ecacd4323b4da2775f5d9dcbcd4616118ece7593
5739 F20110113_AADBRD viswanath_v_Page_150thm.jpg
9f67ad59cd76fe44c011a4c16c473cd9
2f105f6c37f81e6e3db4b45ab5effbb53a78ba03
6628 F20110113_AADAQA viswanath_v_Page_447.pro
1e7c32d2f7e8de6f0680134e36cb0c4e
2f95b220be3ff58286af4a7f4c4c221c474d10e1
17856 F20110113_AADBRE viswanath_v_Page_151.QC.jpg
5f0c7ed3494b137635e531a10fae247d
5ab3a1638b67ecd6d160465a7aee76dbdc1b0ad0
50536 F20110113_AADAQB viswanath_v_Page_448.pro
29657d5da4bd68a2ca8c02bd5dc06eb0
ff2bfd14ec2da8fc38d05b938992d9d50ca5d226
5495 F20110113_AADBRF viswanath_v_Page_151thm.jpg
b4bb832d4c81b5ade466e662eca5e1c8
6d3cfbebace09ca7b0e6b020e7a6d511ca1c4b2b
61689 F20110113_AADAQC viswanath_v_Page_449.pro
2cb3efb3a7235915c07d8bad94964d3f
abc5cfc651c9b844cc1ebf224bacf33392d7fe38
17530 F20110113_AADBRG viswanath_v_Page_152.QC.jpg
abee88e21a7ce9cd731da07c5f4696bf
519f8206e8035faf3981ca887db9147e7369e9ab
13140 F20110113_AADAQD viswanath_v_Page_450.pro
534e64941c84d01179ba8777b314f0df
b9ac4c66c21202b17cd0647ef5f3d7004308ee84
4949 F20110113_AADBRH viswanath_v_Page_152thm.jpg
fd4d82e6dcf2dfd40e2b7ab1a9d76792
f057197ae3c1bade9dbbdf9f6c6ba2e7327ce3df
41332 F20110113_AADAQE viswanath_v_Page_451.pro
158ddfd0c469120400c3884946293c7c
d47e8b73a45536b9319e74cb1129efaea7fbb39a
17864 F20110113_AADBRI viswanath_v_Page_153.QC.jpg
f6cd2e959872c203b48f80b9645525b0
8a9d5baf4100338aa52b780efc1347d2e4d80f6f
F20110113_AADAQF viswanath_v_Page_001.txt
308bf3fc22dfdaac8972d82ff685d7ec
9cc91d2666c52c257dd541d15ee767fe6ab44a37
5373 F20110113_AADBRJ viswanath_v_Page_153thm.jpg
fcb54bcae88c7f7bcc44712d4c611c6b
d9d7a7e9dd200d11dfe360af756f8ac9fef8a9e9
110 F20110113_AADAQG viswanath_v_Page_002.txt
6987719cd63ea6ad7518b61012f7bc61
f1ace58424c6a74b98f129947972c0d4a56b091f
10747 F20110113_AADBRK viswanath_v_Page_154.QC.jpg
c3944277aaed8aa7ee74d8ff65c47029
c639a85981f25c47e0a0a240057c8068bdffd7d5
137 F20110113_AADAQH viswanath_v_Page_003.txt
341f53fc2a50c80ea2153c85439ad726
6ae722e7d9cae1175125db076472e15a4471749d
3282 F20110113_AADBRL viswanath_v_Page_154thm.jpg
8abf27ad563c6da822171194cfcd12c5
6ca101aabe217b71793e14665af78e08219516dc
1680 F20110113_AADAQI viswanath_v_Page_004.txt
1effef02b972167c7140793d19ab4567
1775dc626354593c81b04e80e5e2c49b71f3a337
19372 F20110113_AADBRM viswanath_v_Page_155.QC.jpg
9411595181b7ed106567b53dffcf5b59
4f9fbb5e3ced14b6fc8af8ffb2251e2744f633cb
3157 F20110113_AADAQJ viswanath_v_Page_005.txt
65f7729fe35597c5c63a8ead3d121a4c
e7184f543bc7d4fddaabaa8a8d0d7312f81e8eca
5358 F20110113_AADBRN viswanath_v_Page_155thm.jpg
5c6a4203f5faa4e7d828176fe323bed0
021f5ac78cdb44eb6db860ac1ad5b896825d69dc
4210 F20110113_AADAQK viswanath_v_Page_006.txt
d67855743624f16e6e92fd96bab25a4d
0c68ba8c6b40970d0fd411cf8ca5b37c3b198a32
16913 F20110113_AADBRO viswanath_v_Page_156.QC.jpg
b55f804fe09ec5aba95186ac2dac53ec
b67b91e38c05b03e4bbd6b7c661c35569aff0ed1
1867 F20110113_AADAQL viswanath_v_Page_007.txt
ced37957ef5f005164fee7b3105e4734
8ef8a592e49ce74c8bf2b14ea29e724ef7ee6081
5097 F20110113_AADBRP viswanath_v_Page_156thm.jpg
cfb8f6aef5418d86527d287c0b4bbb67
6bb2956e2888d79e8371810354d6b96bf8d71bac
2137 F20110113_AADAQM viswanath_v_Page_008.txt
5052a807e1b80be0e81d950495d3223e
d4acc4ee0baf2405dd249c1733d82ebedaceaaa9
16342 F20110113_AADBRQ viswanath_v_Page_157.QC.jpg
aa8d80a2c39370c8c36d4dfe632a758c
1d654559715c9b244081e2a87f21ec8fdedc755e
1102 F20110113_AADAQN viswanath_v_Page_009.txt
cf288595563ec7edffbe7400352122e5
3219c6c03da598552669a8532c78095879daf02f
5246 F20110113_AADBRR viswanath_v_Page_157thm.jpg
89a504afb7d2d4bd3024dae3851f2cfb
3eb5df80ac0eb4fd658758fb0e42213e65f7af32
2358 F20110113_AADAQO viswanath_v_Page_010.txt
3e4fdbd964894cdf6cbd8a689548944b
690b8fea3295293b031b2fc14edf2e276eac5e37
5117 F20110113_AADBRS viswanath_v_Page_158thm.jpg
5131dd9211dbc7aa8d9fa7493df05c2f
90e56d2a2fcd8e6ab114ede49c5dc39633709d5d
2767 F20110113_AADAQP viswanath_v_Page_011.txt
96926f908cbd4c11de9a14c81fe572da
b79dd410a163cf56ac01167ce6b13c823e226d61
16765 F20110113_AADBRT viswanath_v_Page_159.QC.jpg
f3c5000d9645be6d49c3821b9361efb0
635cb7f582ba77d6dd5b3984b3e191c4d55e38b6
749274 F20110113_AACYZA viswanath_v_Page_135.jp2
df247d81f2fa41e1b7e3c4d93a7f7b1f
8768c787c00ffcd4c1ed6b2f6e62fe2e1f7826ba
2681 F20110113_AADAQQ viswanath_v_Page_012.txt
addd07189b12ca9079db60dab80e9b6b
3925750e0c42fe24842d2f846444b3223fe96357
4860 F20110113_AADBRU viswanath_v_Page_159thm.jpg
f6f06c41b02ee100640c20b256b83d34
9b5c27d7111c8d46c6f4e9fe1c06e25759de16db
627201 F20110113_AACYZB viswanath_v_Page_136.jp2
c50abc2ae2772bb8ebc53f2734c4e2f3
7e470e67053c58e17c124fcff61db220c12642c7
3215 F20110113_AADAQR viswanath_v_Page_013.txt
ec8becaccc4ca1ee67fdca51263b99ef
2890008066faa10f2062fb1ac3704eded6c52e8b
4692 F20110113_AADBRV viswanath_v_Page_160thm.jpg
4b6cd214da2177e8c2e9fe19a141e7d1
c78b832c4fddeedce25e34900eefa3249c71a67a
674667 F20110113_AACYZC viswanath_v_Page_137.jp2
a6c4672b17f9dc7117f87ea93e973106
cd0c9be977bdd5d3b1bba50e668bc703a9d956f5
996 F20110113_AADAQS viswanath_v_Page_015.txt
fec77e6661712e80bd57faebd02b908e
fab7864db18c7163817c6dac9c47b39dcbae1849
19120 F20110113_AACXYA viswanath_v_Page_262.QC.jpg
b32ee2cefe10953eb7d2edbc76955f2e
3a37f88f7819a7270bd7b7353b9a8cd3da237273
15782 F20110113_AADBRW viswanath_v_Page_161.QC.jpg
f6a80bcaebd8bed0f50bb81f2346b93f
aa8fa7a00bbba2021e1b00372ffbe4acbf4437ef
799757 F20110113_AACYZD viswanath_v_Page_138.jp2
718ea50dce19dcd5d4597224abb8bae3
f4e5ee7120b164c885ef8624e2effe699ee0d36f
1756 F20110113_AADAQT viswanath_v_Page_016.txt
86b16f3c5c0ae41a850d526fd03c5996
8b1ed5bf80100fed7f474a9a49733d711004c9b9
77954 F20110113_AACXYB viswanath_v_Page_089.jpg
5d7eefb659760b6fffb014a6b3e81903
200fa569dc299b23a46fd5c20c7f7d8ab2c672f1
4529 F20110113_AADBRX viswanath_v_Page_161thm.jpg
a93783d5547bd5aa71580cc4a0687766
c206bbf3462e80eb353c4ede32677ec388d02452
788341 F20110113_AACYZE viswanath_v_Page_139.jp2
ab28c40f155bff0fa6bfa16a336a4b91
22f1425a3d4ceefcddd541db91a9d4388ff34035
766 F20110113_AADAQU viswanath_v_Page_017.txt
90bbc6a8d5a4d89a5c8a22293c95db74
a3b4275ec9cc1dd651c13c7c783d6a1a2722ee6b
14425 F20110113_AACXYC viswanath_v_Page_180.QC.jpg
7fea62b5bcdbe68f942cf3753084a199
da166a32fb82774d131b36e2bf2ba6a611aad70f
15904 F20110113_AADBRY viswanath_v_Page_162.QC.jpg
b13e1b4815a5b90e89c99ef1f695a41f
214538fe444e1f73ebacf509cfab68e37abc4661
812998 F20110113_AACYZF viswanath_v_Page_140.jp2
a9ee18817d8a646771c1fb1690a7fe3d
c2935c40eccf4f70cae3e1ba8fe509f3d45e55cc
1854 F20110113_AADAQV viswanath_v_Page_018.txt
92a3239bb18048490eb0cbccb8ad94db
190f19dcd9822ffeaff4470c4d5f02104511176f
2289 F20110113_AACXYD viswanath_v_Page_179.txt
87c4312e0ac2c5c3ae9c6d3dcef91ce5
fecaa117f357629482cc9a3271a0e1d1c678427a
29686 F20110113_AADBPA viswanath_v_Page_121.QC.jpg
c016dcd8a52fd91eb401472626facb42
6ebc4fafa12f8b69ad9e501902d34deffd1eadd8
4779 F20110113_AADBRZ viswanath_v_Page_162thm.jpg
5dd5074fefa1931c74620824c6709bcb
9bf322534b85166244c27662d285dd661d857a51
616050 F20110113_AACYZG viswanath_v_Page_141.jp2
33a1c2a112ee24e99316e92654e487b9
2158c81f0005e11f36d7b90c87d4a737a9940d88
F20110113_AADAQW viswanath_v_Page_019.txt
b63c36c288ff906c36e40b82ddf8801c
43d469443d2f997ba111dd91e991280199676d79
18505 F20110113_AACXYE viswanath_v_Page_140.QC.jpg
89d298df1ffc865fefb7e5af3bec4f45
000f988c7cf2291837b5a86e59ce46776df8a83f
7085 F20110113_AADBPB viswanath_v_Page_121thm.jpg
621ea1d11f71a9f339acd5d50bbb7dfb
bfe8547795deb6942464d27b7263131448efd7f6
643876 F20110113_AACYZH viswanath_v_Page_142.jp2
4f3fbadf7dc6ee35ffb9d12804f3f80e
41334ca055810c188004e811d6452517df26a8d0
2268 F20110113_AADAQX viswanath_v_Page_020.txt
ec37056f87bd5ede5c7b043fa1a1a981
9aeb64e08205bda059441c8836968d836fb4b227
106277 F20110113_AACXYF viswanath_v_Page_169.jp2
7a78674e73ee1da0423383128ee44065
ff8c518cd78ff582b770a9f8497e65ab87034b11
13808 F20110113_AADBPC viswanath_v_Page_122.QC.jpg
c07eb1169f004b4e0832481d01e0f19f
2dce41d5cea186444f9084549cbf9ff398eddc03
434652 F20110113_AACYZI viswanath_v_Page_143.jp2
548a57f429dfff541c9851219e690bf7
4945f7ba013ec35c21bc556d94e837d0463464f1
2204 F20110113_AADAQY viswanath_v_Page_021.txt
b613b5581b1799c274543cf96e75d9f5
7684e9cbbbc7fc8a2c6c9ed4ce7b4faf0c24627f
6979 F20110113_AACXYG viswanath_v_Page_078thm.jpg
b1c11511ec61a0ca6e81dd14689c99a7
83d43f8e6276c281a8610432eee54143ca0d0996
3704 F20110113_AADBPD viswanath_v_Page_122thm.jpg
2c2eb0c82005ea29ec9413438e9b61ae
7f8986e286daed0eabcc3db9d534a885de9f6658
561951 F20110113_AACYZJ viswanath_v_Page_144.jp2
6be9e0bdaef41ccb5e3abe8bd258aedf
9e53d14f2affce7aeaef09c7f0d69ef99468a45e
11604 F20110113_AADAOA viswanath_v_Page_393.pro
ba0382c250d757a23c9cc4960b95811e
e4d968264729adfefb750d74dbe2f8d6556c7928
649 F20110113_AADAQZ viswanath_v_Page_022.txt
60675a09939f48d4eaa447a274e6c9b7
a2fe89e2b8c06cbf76ff22e3bd0e6c72df49c488
15742 F20110113_AACXYH viswanath_v_Page_160.QC.jpg
30c2dc18399911969c07c26c3e03198a
21650cff716659c037624728f6c270fc0e148a86
13158 F20110113_AADBPE viswanath_v_Page_123.QC.jpg
7efe8b89566e8031f7d3684e9b45aef0
90c37e0b538fe547d94608bdacc7068e75b49c81
497678 F20110113_AACYZK viswanath_v_Page_145.jp2
bfb4031803811070cbb62cb0db77242b
e03a5a78a45929c65716af6516d92da318f9bc9b
10262 F20110113_AADAOB viswanath_v_Page_394.pro
7a89deefb78ed40576bccf9bcaeef86f
6f6267dbcd965650ccff631bc71b330cd594888a
55623 F20110113_AACXYI viswanath_v_Page_277.jpg
250f016903ea84f9bb5dbe4b69ea7e60
749a5774e30df662b27d1ce0bad4526477c9872d
3654 F20110113_AADBPF viswanath_v_Page_123thm.jpg
a7e61d1431008bdb3fbb69bf67d9956d
58d4f5b45b2793bc7c01679089f16fc81723ceb9
10733 F20110113_AADAOC viswanath_v_Page_395.pro
b7cc02eedc734a49323aba9f17bf89ea
148c32b358324ca64dea85ddb186a4d2dd1a78ba
23430 F20110113_AACXYJ viswanath_v_Page_055.QC.jpg
c0e97254ffe8730c4084350f9396d753
59e99077a3c16f9b65dc1a7d58b85a6097836041
13064 F20110113_AADBPG viswanath_v_Page_124.QC.jpg
f011ff31454c76249b0ad6a9651eae7e
377535c298e75c6b4431c68cbdba0a34cbf4f50d
612450 F20110113_AACYZL viswanath_v_Page_146.jp2
f4af95a87afc8f25e57cce9eb1d15ede
e237d2642da5ff47d237b955acdc5131d7b004e7
11640 F20110113_AADAOD viswanath_v_Page_396.pro
ff9afd5d3112893cc5093e8aa276f016
3e35eb361af6a5db0c7997dc17b0e303ef1ed819
43788 F20110113_AACXYK viswanath_v_Page_051.pro
171e31d0636b3dd30ea97c8e51717d39
9032d3004f1447f5a212bef2a67ebfd97ba23dc2
13840 F20110113_AADBPH viswanath_v_Page_125.QC.jpg
7e139b066573fe69045e8f700b029d2c
6281db4591a58201e24e71af26388cd4e635de57
577848 F20110113_AACYZM viswanath_v_Page_147.jp2
df595240eabc5c00b0a83da6aa056153
6b95585c14329d5d7e472d42897279f8766526dd
13402 F20110113_AADAOE viswanath_v_Page_397.pro
ff2fdc28787752ad13ad2355e2e314ab
f4258575f6cafb77a9a4c76cf9f0a5edc879614a
3874 F20110113_AADBPI viswanath_v_Page_125thm.jpg
66016e1bfe7e8f96e4ec151ade8d3f28
b9146e217b68c1802890f3dcc8d2cd8905eebd23
527051 F20110113_AACYZN viswanath_v_Page_148.jp2
9033f7f14d3ce0c94fbb6f4dde2978a3
fe33fa1edc00730c1c7c5085d7d62266e544df24
10593 F20110113_AADAOF viswanath_v_Page_398.pro
fc119ca5d160d9a9ed68c20abdcc8b58
d2c40de7cfa8c52681a9c906347857e2f3b9067c
724 F20110113_AACXYL viswanath_v_Page_401.txt
1ff3e4adca5c11f070639de2fd89ec82
a83259f0dcf6e4588733a4a077a487426e3119d8
26038 F20110113_AADBPJ viswanath_v_Page_126.QC.jpg
8013608f4151a3127fef6f23e8a968d4
0f44b5f97b12feed4afb85d7ba900823473e6b6d
408762 F20110113_AACYZO viswanath_v_Page_149.jp2
f3ef601473ea10f5c99955748d35839d
d249aa2bca166bb24e22f05fabdd497bf66dbbc2
12137 F20110113_AADAOG viswanath_v_Page_399.pro
c8cac8aecb5edd1a9c91079809669e13
d723b30726b3803087fb544fb0334c78b4b5b131
46004 F20110113_AACXYM viswanath_v_Page_274.jpg
ce78f903130e2e34e1cb6ad17ef2f2db
7796e7e326e6fdc0771e78ca8779d50a69f5515b
6259 F20110113_AADBPK viswanath_v_Page_126thm.jpg
8aa27da8f1e49ac9721d1a08bdbf5539
70998379ac2d8f18c9d60800166da003358528b0
780822 F20110113_AACYZP viswanath_v_Page_151.jp2
b311862c47741a2fd9a329105fec8875
588597461dbb101a49eb49d0b58ff8175fecf34a
13230 F20110113_AADAOH viswanath_v_Page_400.pro
1e8a1ab826b2d34469536ef2215b793c
0a74b25a536a797049352b43c7d397f5ecd53bdf
61474 F20110113_AACXYN viswanath_v_Page_257.jpg
8ae56330b7ffdef4516c908bd86dca6e
418659138db208c24db9637d398e28dc9e5bda70
25391 F20110113_AADBPL viswanath_v_Page_127.QC.jpg
f9b897a4020b45121507fa71fc35ee15
4bbb5dde217c65139d615c633780e7a0d94f59f2
792566 F20110113_AACYZQ viswanath_v_Page_152.jp2
9eef2466f202bedef3f98c8738a9ca15
ec21d8e8850be4f540cf75748bad559b23bfc0c5
12431 F20110113_AADAOI viswanath_v_Page_401.pro
39a45bfd873fc260087d3c4b112f09e1
bcea5e143e0789baeeee958224375fc705f85376
2245 F20110113_AACXYO viswanath_v_Page_447thm.jpg
b5d875cdc35efcff7967c2c577892977
56228b1f0ccf2997d8c05a80474b1182ed7f747e
6234 F20110113_AADBPM viswanath_v_Page_127thm.jpg
2e680b704b0ca556aa6e96fd8fe6f536
f44f9e656502726614c4d56a8d1aea72651a09f8
824737 F20110113_AACYZR viswanath_v_Page_153.jp2
5dd8c8bfdf29c950161fd96f5c236c55
5d0423d99726e40a6df119bda778a4219bb3b740
13455 F20110113_AADAOJ viswanath_v_Page_402.pro
e85459ffc8be33798ca2f6c8ae2f8334
80a5903aba43c65574df52b84fdbcb45c9a1b51a
1616 F20110113_AACXYP viswanath_v_Page_339.txt
f104aa4c31a09418a9020fba9e47775c
b46c73dad840c86491a027f3f340173967333081
15798 F20110113_AADBPN viswanath_v_Page_128.QC.jpg
46512726acdf1979f4a59b1ee8ecc3cc
409b08e891e7371e338008ddca99e7ffc138cd04
455927 F20110113_AACYZS viswanath_v_Page_154.jp2
6d9ca9539a752a86084fed3f8bf53d66
8f22a59ba5e18bc1d3d7c2529682b24b8fbbb11d
14066 F20110113_AADAOK viswanath_v_Page_403.pro
eacad81633571e5ab4d05046c89cb4d4
b5ea4ca0ffbfdce129a9b4710e7c7c52f703fcb3
44377 F20110113_AACXYQ viswanath_v_Page_142.jpg
69ac2ab5e58e32b56c61e3a556aab65e
3b1517d8bf2cd23147e22c71050a6a9ed9f093f8
4810 F20110113_AADBPO viswanath_v_Page_128thm.jpg
39350dc437691147eccf88308a5840d0
76f71b35c1c80b65b57c89ae7bcd56cb51552444
1008262 F20110113_AACYZT viswanath_v_Page_155.jp2
6e20a88255b919bb2e1432094920173b
ef9ee0b0316479a132ee3673056b42b744c3dce7
12042 F20110113_AADAOL viswanath_v_Page_405.pro
90961282d7597cc89f39c25c843c356e
be16bbc5f6b4cdacc61bf4270222a80a8b9df50e
72902 F20110113_AACXYR viswanath_v_Page_097.jpg
1f7f1634926c9fa06187c1095f6b8408
5de40e0d3cd95e0d8cf518ceae0df7dc55bec73a
16016 F20110113_AADBPP viswanath_v_Page_129.QC.jpg
bf964a0ba567e905d49de38a8a7f6816
6b7c668b883d53a4bd930199c5e57762d3a7a96c
772084 F20110113_AACYZU viswanath_v_Page_157.jp2
4c4b0911ca16b522f7d941409a474b69
eae7be7ffe0e8601767265906a1a1b8fcd2ffc95
12623 F20110113_AADAOM viswanath_v_Page_406.pro
d5a047d41dd5445d807bb201ef47c3e1
24270cf326c7f5d36362a90900b03df88e3917e3
57661 F20110113_AACXYS viswanath_v_Page_105.jpg
9f900c52a5fe076cf34f5d4fa485066e
947167a18c83af6b8778b67f3ee48e9e3b6d1364
4848 F20110113_AADBPQ viswanath_v_Page_129thm.jpg
73a4b99fe561a8f727f5e4abdceb5447
9fe3f33a997303a3a7e137d887456b680ae2daa3
759210 F20110113_AACYZV viswanath_v_Page_158.jp2
480ebbf4672809315290608587ef5152
714318c462ac231369e7571363ee05315996833d
11532 F20110113_AADAON viswanath_v_Page_407.pro
68bb4455cd62a6076bc9d0bb22e07813
65036dbab7080918606a27d70a14a27631624404
F20110113_AACZYA viswanath_v_Page_380.tif
342d39b3f74332f6c3107b3169d6657d
f2e065384fba4c18e051d13a418258f4d0ab3a26
18261 F20110113_AACXYT viswanath_v_Page_314.pro
539211980d4f135fca0e998a9786ae43
f22e95a3adb9e0d980107f284b4f549f0d9d5f3b
17331 F20110113_AADBPR viswanath_v_Page_130.QC.jpg
4eefab7abaef0510e4eec2c4bfb13195
843beaa7d109dcd428e8efa8f2a80a2ff74f2f37
659116 F20110113_AACYZW viswanath_v_Page_159.jp2
834caddb5db0deb206a09962b39dc505
4b314315237af3a63ee9e670b8977fab2a4445ae
8956 F20110113_AADAOO viswanath_v_Page_408.pro
4826e4387efd91228f28f599afc42c8b
471e6f44190004f3f96e5e427e8c82213304088c
F20110113_AACZYB viswanath_v_Page_381.tif
073c4377bf9d54b69bf4ca3d32589272
6b3449e022f0daaa837990513e046962725553e8
16390 F20110113_AACXYU viswanath_v_Page_415.QC.jpg
c1163cc15a3b4ae11f47cdf7a058fb00
2e03e041d8289e6e46a21e5baa7dcd6f9309452f
5322 F20110113_AADBPS viswanath_v_Page_130thm.jpg
a4004f10884cfaffa0d683de4fc43ff6
7db9fa68ef07df5d4e7301382bc95d303dca19b8
544309 F20110113_AACYZX viswanath_v_Page_160.jp2
3e55b56f25eefe2dd24cfe522588a7d9
276f0c4a80c3da95cd85e85ea342ca73f5db6235
10415 F20110113_AADAOP viswanath_v_Page_409.pro
8615cf4ea98e2d1e0d106908aa0eec4e
a6a1527535cd2b15905e8623a8b6bf50b71fe635
F20110113_AACZYC viswanath_v_Page_383.tif
cff8b41948b92086904d6c98e1c5ec04
018ce27aba988071d0e9df9f3ec3a56ac060bb3e
13061 F20110113_AACXYV viswanath_v_Page_291.QC.jpg
1f0e3a645482cd510b12559343ef6afa
f6c0b8264d43fc4d960d7f115b7a5040ba026105
17063 F20110113_AADBPT viswanath_v_Page_131.QC.jpg
d4d1d8b393b009b1f7d50eb3c4df1a22
d695743ba7e004310ea54a6b8d239bccacbacdd5
1051850 F20110113_AACYXA viswanath_v_Page_076.jp2
88b179c6cce2fb806e4e7a12317f85fb
bd3be5dcda94ccdbf1e647c8f6c818490129bc96
582798 F20110113_AACYZY viswanath_v_Page_161.jp2
68cb6c472e667ae4e0a561d5cb8eb775
2c06aeae33cedce3f837a0fafb6424288b440565
9956 F20110113_AADAOQ viswanath_v_Page_410.pro
9e7cd4a66720440c332b4cbf610a97c6
6a45483a2ae5e93ccd0b37010fbc2d866d403077
F20110113_AACZYD viswanath_v_Page_384.tif
51f8258d1c7253ec45d3a372c1ecf2d0
f5b25b743f85550c030b1f79f8082ebe9011732b
114798 F20110113_AACXYW viswanath_v_Page_078.jp2
89b54bbf19a622b6b5cd0fa66a382da4
b85466ae116d4068ef36a406cf2733ada139ccc3
5378 F20110113_AADBPU viswanath_v_Page_131thm.jpg
ec2e08ad4ca96c72e12af0b504f405df
dce08e02aa5b4b268c95f1e63935de1ff9a8bfb8
83498 F20110113_AACYXB viswanath_v_Page_077.jp2
344740e2c111d63ee4fc988d8a40a729
1e9ed0c8561760cb8473a0535b6533a0aa03a9af
774025 F20110113_AACYZZ viswanath_v_Page_162.jp2
81f9ec773948a56dd79841c9b315efa3
4f8c0bb9ea03424880db70775bf1dd443c9677c4
13143 F20110113_AADAOR viswanath_v_Page_411.pro
1142642df2616e14c985f48ab90888f5
10936b6553476855cd8ef5ad961a7284eb278fa5
F20110113_AACZYE viswanath_v_Page_385.tif
d4041fe795bea9dc0c12181807dbd029
b1d9be66fdc75048530ea07804defe82d46fb72a
54385 F20110113_AACXYX viswanath_v_Page_100.pro
00a3b18745b4fbf13d77c80750f769f9
0496135b2db7d9a8d77b648403288be99fb565a1
5454 F20110113_AADBPV viswanath_v_Page_132thm.jpg
9a4df5fa72c0c4c19d52b96f5b68e3d0
8caddda752a1036c07c64e506564667c2df14925
100275 F20110113_AACYXC viswanath_v_Page_079.jp2
7334199354d304ed121415676e146582
289d7c89b890615bfb04c22c08c211565c2b0c2c
10136 F20110113_AADAOS viswanath_v_Page_412.pro
63ff33f9569a2218093b2e8aae8f9145
b54118438c7467c9c29a66678b5408b1840b8fd4
F20110113_AACZYF viswanath_v_Page_386.tif
23f77fa62397f32588ee4eba8124c666
513b83d777aa7738607da076e186f79efcdc431c
F20110113_AACXYY viswanath_v_Page_423.tif
27c9fe9e7ecd18674e7bfd9861348b54
62fbfeae4f95ce48231f34d9fb2ed9a68a52f938
16939 F20110113_AADBPW viswanath_v_Page_133.QC.jpg
1d6e13610b577577e63e3c8b97f2e0c3
8daeba5843377901275f986ec097602cf1f767b0
107899 F20110113_AACYXD viswanath_v_Page_080.jp2
aed9e7358f0dc49cda8eadcd4eec5704
bf7e8837e60274742165e1792e94ad0309ebba51
12078 F20110113_AADAOT viswanath_v_Page_413.pro
ee09a1cbb87cc6490fbda7be84f29ef7
d49a3129dae27fec9ea4538304a0e2b98aa3c5b2
25333 F20110113_AACXWA viswanath_v_Page_087.QC.jpg
fd85deba7b5a5d8fd7d149af65d3aaee
24ad66b3dff8ad7202f60e8b409f4bff0b11d31c
F20110113_AACZYG viswanath_v_Page_388.tif
4d7320cff5159fddf7a7b41aeb014788
428b4ac32c0730c5247bc655ca80af42689784d5
F20110113_AACXYZ viswanath_v_Page_448.tif
34ca1ef7a4309121176a51fb5ca1f009
9176b6282c9e766310e8d8326b0d245dc10b4249
5234 F20110113_AADBPX viswanath_v_Page_133thm.jpg
316de832f27346dea1128cb67b22a06b
b71db8f9f9e351459ce76006aecd4594db917d7d
118268 F20110113_AACYXE viswanath_v_Page_081.jp2
11fa1686c26bb1739fb070c296619e73
cf0ef1dfddd3f594ded2e1a580c2763d3c3b434a
12356 F20110113_AADAOU viswanath_v_Page_414.pro
9a9790364f0e94e458a4bd3b3675a178
09db919caabd5339de4d68417705f1ca94bf818d
50583 F20110113_AACXWB viswanath_v_Page_376.jpg
a645ecb24ba4f2a29b77f9c80fa00b70
45ee4de2b390ea118f91d2bfbe8d24a9cdb64e48
F20110113_AACZYH viswanath_v_Page_389.tif
6f3226476bdfd6b88fa52e0731950fb4
0fa516d739238a03848ac5f6745d4822ce422f6c
4863 F20110113_AADBPY viswanath_v_Page_134thm.jpg
dfb7b2407469241d99622dadba395006
df779ba78ed8d1d7d63e21d914559ac971ef9bed
113290 F20110113_AACYXF viswanath_v_Page_082.jp2
f6abff0e770fd67ac0a5b4a10dfdedbc
990c65a10d6aceb08d61c4583eaca7a1bbcba3a8
11801 F20110113_AADAOV viswanath_v_Page_415.pro
5c4bcececa7ef1cd3a77cc4b247149a1
5e6dc014cb10eed66a34a754381bfb258ea5391a
72041 F20110113_AACXWC viswanath_v_Page_436.jp2
ccf2d26b469f8ddb495b07d96855894b
cc9028ddfc4618487c6fe289e66387b1aab3e0ec
F20110113_AACZYI viswanath_v_Page_391.tif
f8b57fe47f1a21c58c39e46a51bb253b
a1090ff849426782a9e43eb4cc03f3657eb87ae3
115561 F20110113_AACYXG viswanath_v_Page_083.jp2
97818da6027bab8a8d5d6cdae444b3c9
5273b2116fb70588c98c13bf61859db299100861
10847 F20110113_AADAOW viswanath_v_Page_416.pro
5349f869a1269f03d097a32649be210b
029d27418166d86c42cc42ea52aca765b4173c52
4430 F20110113_AACXWD viswanath_v_Page_209thm.jpg
99cc9f31cdc7688c67daff47c6ecb7ef
50792214bc15f4f37a3ee1818a342e3790c66493
24211 F20110113_AADBNA viswanath_v_Page_093.QC.jpg
53cbe6c9dee8acbd653c7034860c8255
911facbfd2af673a32839454484b88125492b989
16762 F20110113_AADBPZ viswanath_v_Page_135.QC.jpg
76e98e0c5bf9f427d919defd0e0be9da
813115b07d44bd93b97fb3cc0c32f2c87b81989e
88378 F20110113_AACYXH viswanath_v_Page_084.jp2
aa3e3717c03fda7ee7282f680e7a2895
0438e74a6de1409f44967b4156162ed3e4cba6cf
10643 F20110113_AADAOX viswanath_v_Page_417.pro
af88f64d7668dd4f6c0a445ccaac36a5
ba86732f07fa22cc6f7d7ca14b42dc1544c55ec7
12088 F20110113_AACXWE viswanath_v_Page_387.pro
78e3054ff7a9a6cb0339f8e6c0e687ef
5f3b00d1d9b73c2048a0e3e66ceb01e60da6c66e
F20110113_AACZYJ viswanath_v_Page_392.tif
4c7f5888c07d8a75cba26f93896548e6
97103db112408b3a25692febed08ecd3f4029680
23187 F20110113_AADBNB viswanath_v_Page_094.QC.jpg
f91688295ec26f9e93aab62375ac0bfd
7d8260e6ee8308d6d5e6315caec71744340fc641
109107 F20110113_AACYXI viswanath_v_Page_085.jp2
1c909d543260b71ef3634c9b23d7331a
f5342e84db6b07cbffb334ab6cee39af4b286ec4
11917 F20110113_AADAOY viswanath_v_Page_418.pro
7cf3a4be38deb15d5856e8ae3c1ce553
323ac236af16a9a1908d2543325b02d171d7b514
48918 F20110113_AACXWF viswanath_v_Page_053.pro
05ec48938b4194af0de9904b51235f3f
6c5cc5d548e863f0f2900b8ca6be3ce63b40d883
F20110113_AACZYK viswanath_v_Page_393.tif
06dc29057ef692df7a3a7d5132b90567
4e78129e9ece7bf279a18f76e3425373b5476588
6267 F20110113_AADBNC viswanath_v_Page_094thm.jpg
4a3f906341a9a75a84e27d79433cad3c
4510804dca25e53fd09e180bc223fe1e9ea7b9d8
11135 F20110113_AADAMA viswanath_v_Page_335.pro
c5bf081fdf58c35e507c0d1e330b5702
566395255fd82df5b81f787481624aa1c0d84819
61466 F20110113_AACXWG viswanath_v_Page_062.pro
dfff7bedbd7bd25c0f75fd064b2be16f
4ffc9ffc8c9bac2e01f694df233819172b59a1f2
F20110113_AACZYL viswanath_v_Page_394.tif
f34f50a4eebd7fc7eef2d7fdb197e105
9cbcb1084e672618c936520886fde1856566d58b
30142 F20110113_AADBND viswanath_v_Page_095.QC.jpg
290edb484ed1079752f311a8eba0a151
4eab0897f210dfcc0b92d564231335dd4e0ce7d9
116693 F20110113_AACYXJ viswanath_v_Page_086.jp2
7a2117abba6b029ede99ea3b3dc1a646
60c55c48cab34aa4943791d46efdb6269bfc818d
15972 F20110113_AADAMB viswanath_v_Page_336.pro
e3a165297da2b02f561c23b737f408ab
1f58bd5aa31ac87915931bbca32b9eea67f3ce99
10343 F20110113_AADAOZ viswanath_v_Page_419.pro
b02397dc19bf12d77b48a871a7020fc0
b4ca1317b8cc280d1e4319ce52b0a871902e02ba
43642 F20110113_AACXWH viswanath_v_Page_223.jpg
6cc06e32b5be48f7947d59977be36ca2
ca2e6e24deae43ad6c2078261000505454d93245
F20110113_AACZYM viswanath_v_Page_395.tif
1a1fb25b0ddf57eb3786131dc0824c08
91500d7005565e1eb2f9c1b91af3a19dfa2c689a
7458 F20110113_AADBNE viswanath_v_Page_095thm.jpg
e5c22583a2c5cf4b883b23aa5d32a1cc
f2ec5460262338e109ed8376b89fd23a6e42bc80
118965 F20110113_AACYXK viswanath_v_Page_088.jp2
e1103670123c7e54032d29c5bf429f8d
40cbecbe43a6529356625aa7f9b80412b826753b
9838 F20110113_AADAMC viswanath_v_Page_337.pro
0bfba2920158de845be93fb056ae0d75
a1d77872d7249b1ea578e3f5585377dda14a7202
16479 F20110113_AACXWI viswanath_v_Page_315.QC.jpg
b2296535dae28560d6fe276b9e022649
a6271681809140f11781847d08e6c88098b9920d
F20110113_AACZYN viswanath_v_Page_396.tif
932b4f9f25d50fec82ff80710ecb2795
b87179f9302ed568da5c592e858caaf22ac56c77
26993 F20110113_AADBNF viswanath_v_Page_096.QC.jpg
c9905bf2289c1d659bf63f58bd645eec
0e3592701adc3d8af22ab641ff6c62ebae2834ec
119081 F20110113_AACYXL viswanath_v_Page_089.jp2
f0621fca8066884c8a948190a09308be
b797f81ad2c05dcd89c1f28d7c79ef8ff7d82cca
49399 F20110113_AADAMD viswanath_v_Page_338.pro
65a6d8072df4e7c3168a80560c540a00
5733f74bff090c63c828a570c46777d8ffd468d0
F20110113_AACZYO viswanath_v_Page_397.tif
3b08785b9d0061c7cd9f6b481eeee464
b93be9b7286ef2a6970a88ff63dffbb6ee970fd4
7112 F20110113_AADBNG viswanath_v_Page_096thm.jpg
8f9be93d25975c51ee119f5236d9f9e7
097e84a8f7af96e9d0e792b24f941af5f240141a
118199 F20110113_AACYXM viswanath_v_Page_090.jp2
8459bfa7952b867d0aeff420ed8d1777
53c3efaefa84b0efb4cadd1c1ac5bf05539e9217
12439 F20110113_AADAME viswanath_v_Page_340.pro
ecb91cbd2f97c11534f70643cc2a26d9
321f46c76dbc06115d838c7db24f873f19554a0c
2594 F20110113_AACXWJ viswanath_v_Page_276thm.jpg
b106bd02b891d1ca0d493b7c97546128
bf839161a87ee054f72d431edce046dbf7ad4149
F20110113_AACZYP viswanath_v_Page_398.tif
996b62edc04c1a80dd2db6306db1eb37
2456a8e1950d75f75365896cb66e13587098e803
24569 F20110113_AADBNH viswanath_v_Page_097.QC.jpg
3e5149d503130b85b0d6d7ef98bb5b66
cd79572533371e5d5da0e09ddb4c2f13b797118e
114925 F20110113_AACYXN viswanath_v_Page_091.jp2
3ad4aaa5f0082ee9e6c02fed4fb3d157
c147bbb6ec451876bffaaa306386dabe112e2057
14391 F20110113_AADAMF viswanath_v_Page_342.pro
b9a91b2126efcb23a8e0fcc760efe279
b404545cdc5aa4415afa3b02c80156a9dbe5cf72
5604 F20110113_AACXWK viswanath_v_Page_004thm.jpg
0f2e9f5466064fb0f7d10ebe3a67cab7
6a775cb14753b3e00397b0bb2d9db53df4b9991f
F20110113_AACZYQ viswanath_v_Page_399.tif
0f1b30bb9d7e4481d1bf0fea952c6d8c
6921fba77a036be2b254d92cf0b4cb739fd3bbc5
24580 F20110113_AADBNI viswanath_v_Page_098.QC.jpg
fc21efc652b4ff82023025f0b71f6d9e
49caa85ba6f0661e4f1627b30df5bc494ca51055
100073 F20110113_AACYXO viswanath_v_Page_092.jp2
ad6dfb611e92dc66973ec075b1ce247f
3adb11fd2b60c312f9829e6ef93add86aca2e5d4
50513 F20110113_AADAMG viswanath_v_Page_343.pro
3171f0e0a508387c45dbc79f4fc7c1f0
91f756c589e2573ccaf92fc3729b6a695ca92b1b
49208 F20110113_AACXWL viswanath_v_Page_055.pro
6ea607ff87a1e8dc2679c0a2c30253ec
bb42e69d4803b37a0275fda1ccbe66580b985015
F20110113_AACZYR viswanath_v_Page_400.tif
87c78ce89d1eadf3141a7efae2ca9abb
e4827b8672b5548590c70bf530c40c54364454ea
6674 F20110113_AADBNJ viswanath_v_Page_098thm.jpg
a7d110a0609ad7ce7721ba6d9d8c9a3c
6c108f8f085ca5f1be5dc19427a9bb91bc570179
109963 F20110113_AACYXP viswanath_v_Page_093.jp2
0265a0c0338e2be529bb6ba6ce96694e
e236ce78b24a9b6253c804af9866287fad6545ed
11816 F20110113_AADAMH viswanath_v_Page_344.pro
9b2173caf6367e3d64e413ab0ecf24b1
62c71f1b5342008a765dc17451eef66fa451bc93
76815 F20110113_AACXWM viswanath_v_Page_106.jp2
bafcefdd6c660ccb8d9d76cf60d2843b
5348efb739653fb95e3861d3d07b792b68bc5e85
F20110113_AACZYS viswanath_v_Page_401.tif
637e5991caf5979533366a713031792c
902bb22f65d609b4641d69101cd2f2c683f0bc92
25338 F20110113_AADBNK viswanath_v_Page_099.QC.jpg
6f70ffcc50a463c6a227cd87f64dff4c
7f89241f695b46c0e2ab43270819971d0d7b41df
102210 F20110113_AACYXQ viswanath_v_Page_094.jp2
57efed4059007c13a0a546b91266a7c7
c07957ed708da69382c8ac123dd3534021efe789
15277 F20110113_AADAMI viswanath_v_Page_346.pro
3b01f073f6906112d51cd8052a64c854
10bc590957a14b65c264052ffaa6f6c1b189938d
1718 F20110113_AACXWN viswanath_v_Page_354thm.jpg
67d9d8a88787b993b957e7abb39a1812
e4c79059f8af0d05400fd316c74df16d5ed40b52
F20110113_AACZYT viswanath_v_Page_402.tif
d5aff58558034075d1d6f7d5c2b9c203
16e15dfeeab3348a7219580b22bafe9a7f6e2706
6810 F20110113_AADBNL viswanath_v_Page_099thm.jpg
84468ba4e8969b034c1a82fb5cf7f588
9a9296a63110415860e726286201136fcd910e36
136337 F20110113_AACYXR viswanath_v_Page_096.jp2
b85ec23b9d4f9afbe54e152c04bd9b5c
d4b5052b613f5abf09458310242f2be0bb1a01cd
17205 F20110113_AADAMJ viswanath_v_Page_347.pro
aedb9c1180ef3883803116d1d76709b3
981c7b94c373cbe2d7ae4690da22c0cb8ac61d71
12608 F20110113_AACXWO viswanath_v_Page_404.pro
0f900d60996c29b0e0f5a077cd9c73af
4937f5dc6bb966a24121491409b65c8776abd2fc
F20110113_AACZYU viswanath_v_Page_404.tif
6709c5e51ca5ba302132295e7502131d
685e1dbb1e8ed408814e8e97dc02c32656adc9a1
25995 F20110113_AADBNM viswanath_v_Page_100.QC.jpg
6f7d0e7cabd921b80d7b3e4c6dfec9e1
932869984c2556e3c713dd0afebb428e86963b43
109833 F20110113_AACYXS viswanath_v_Page_097.jp2
a336669a4c0d75ccd770d9712aff6338
6606c721e98ecd387a5de1173deb73c5805929de
49671 F20110113_AADAMK viswanath_v_Page_348.pro
5cd260ae6536e6c6b105dfd4d3c0b281
d435130bb1e88b011a965e2906e075c61ebafd05
16126 F20110113_AACXWP viswanath_v_Page_274.pro
bcc4fd4172eff6f07275b8f0c1445c03
bcb0bf55bfedd54110c354e6134a1d3619010a44
F20110113_AACZYV viswanath_v_Page_405.tif
1029ddd3907d911904a15722e1a1756f
624e46d45b78ea816ecb2b5da9b340a5f25bd24e
25900 F20110113_AADBNN viswanath_v_Page_101.QC.jpg
7d287b2a154c825b786343814444bb16
12b83e960dd8c96eb9bbfcc577c62c0f58d5a6e1
132714 F20110113_AACYXT viswanath_v_Page_098.jp2
b91d71b344b4ec86e6e133732b4d2d8b
5f5e05794ab9a3778a05051cf6887c57e5bc6cfd
41424 F20110113_AADAML viswanath_v_Page_349.pro
3ea911957799d80cc7c74a87701a5d75
6fc0ce5ccbf14491a2e984db7ff6ef39c60b7525
40481 F20110113_AACXWQ viswanath_v_Page_339.pro
1bee3a57b85ba29e029b973c96eb5c7b
36d33ac21ec40a714582641571f69e041bda10e1
F20110113_AACZYW viswanath_v_Page_406.tif
c109e7890fe3a5b47cb251d57651f388
de501eecf34ffff3ea73e1c598a86f9d270ee4b4
7020 F20110113_AADBNO viswanath_v_Page_101thm.jpg
deeb57f37686567b18ef064d479ae5d8
a91dcfb484685b46790f96a5ede6047be8fe42ee
115631 F20110113_AACYXU viswanath_v_Page_099.jp2
907aee6c8a201d4daec2e3b53d6ac325
48853d329f0cc8fad59532a9f0fb02133f55c401
12351 F20110113_AADAMM viswanath_v_Page_350.pro
238f20cd97f9cf3be7879b709d5d45b3
65164542de9914cfbd743f2a837ec255ee91412c
F20110113_AACXWR viswanath_v_Page_403.tif
07b59c90cba29e0c1eb1730ab7bbf3b5
75079a2695665e3465dd5f000f7c001e55fafa2a
F20110113_AACZYX viswanath_v_Page_407.tif
152bcdf00ed5c320d8cd97595ba8b009
c991b8f0ea7373bb8faced35b0ce4a5b63269f6b
23192 F20110113_AADBNP viswanath_v_Page_102.QC.jpg
b08e40c6c1793157956be8326482b815
8532077193e49f6d6e41635c1c55d40535c6a658
118649 F20110113_AACYXV viswanath_v_Page_100.jp2
6f1efafb6be687f13ea2835071eb739a
af585728a9a5c22954ac22de20f8db3fb98c8308
13347 F20110113_AADAMN viswanath_v_Page_351.pro
da808a002df3528ddd06b8c006bd593b
df3f214113ae12ff4ad5dcffabb5707ce4c744c2
F20110113_AACZWA viswanath_v_Page_326.tif
daf8c2a277013337c768254ae135c265
00c164d41a785ed0736adaecf6a8db3634e78b9b
11853 F20110113_AACXWS viswanath_v_Page_203.pro
dc4caff55bab696224163cd7c2da577c
5fc6cd075d96ce84f1af3301ac684222695e7bc1
F20110113_AACZYY viswanath_v_Page_408.tif
fb7c892892a8c333edb13c7296bc5670
0ecf46f02d2ea5ab51166383f6226e403424c0c4
6514 F20110113_AADBNQ viswanath_v_Page_102thm.jpg
60bf539240c354369cf517077458f617
48360aa156bd84c0c05b685742fe03153424b3f4
119599 F20110113_AACYXW viswanath_v_Page_101.jp2
60b3f6e9d92e568e2614b0e332c20ad9
96913b6c85f3b9efc01475bd59020e4db4a4b55d
48188 F20110113_AADAMO viswanath_v_Page_353.pro
f2c7ebd84eff51a9c9ee87d6b0d0a5f6
4e4f03db1f9e1f8f2d5bd399ed8b753929cfd171
F20110113_AACZWB viswanath_v_Page_327.tif
de834f5be676658017c20ba2738af48f
1732f22be42a3edb2d30ead220f8c87e79cefee6
13737 F20110113_AACXWT viswanath_v_Page_347.QC.jpg
c5abd3c9eae4b33723904489c8536c2b
45538dda98e2e27670d52afce2e10c6fb7acb487
F20110113_AACZYZ viswanath_v_Page_409.tif
f1338d2a75e95f1f309f0fcfe41e4bd6
3d9438f10b05257f25c4fc284f32db6d297065da
11159 F20110113_AADBNR viswanath_v_Page_103.QC.jpg
3e027e3eb43c234f3f532c82e3bed876
b320c21bc7b49d7625bc77cde8ce9c1e38f51e71
31410 F20110113_AACYXX viswanath_v_Page_103.jp2
f7d2d162e2344658332e500b5edac9c1
3380230e0a6521ac79603a2d4188e53c49689eca
4262 F20110113_AADAMP viswanath_v_Page_354.pro
ad85c719786777b60d46f4ddffca320b
b913993128551e4c7a6f0b151f75a3541e7097dc
F20110113_AACZWC viswanath_v_Page_328.tif
936537d1447130e1e57351822070e3a4
c90953af4a9859717f7864c44b063ffb1592fefc
1051965 F20110113_AACXWU viswanath_v_Page_012.jp2
80032dd22de43025b4c398d6b17bfd66
619452435899ab56f04e334d6fe6ebd555fe4c28
11200 F20110113_AADBNS viswanath_v_Page_104.QC.jpg
8c05df72b1b383c0ca4b4f4e1d629c76
c5ca5677f3dc7a89541e2f69653ce91edad3f1e4
114748 F20110113_AACYVA viswanath_v_Page_020.jp2
058dde591658bce9e8d429d024046e90
b1257a78a35c9b9d1123e26dc68f7c2eb4661668
62222 F20110113_AACYXY viswanath_v_Page_105.jp2
0ab0b04e733254be065fc297794d189b
6ecd59fa8bfa80d695b45bc6dd062e5f68246129
13436 F20110113_AADAMQ viswanath_v_Page_355.pro
054da3760a71ff3bc0c24938bfc3eec8
5faa71da8c577bc4972788c9094dd88565e3dba3
F20110113_AACZWD viswanath_v_Page_329.tif
c046d44e9228bb2e584cb8105b7e8d6a
0efa05831061495e13639b26eb29aabd8e6af76e
6636 F20110113_AACXWV viswanath_v_Page_011thm.jpg
12b7271e406dbe7370a51e90ddd5e3d6
33ec95daf811bd2d7de189edab2dbd2d41e95a98
3231 F20110113_AADBNT viswanath_v_Page_104thm.jpg
7da499188d31c2d86c2c86808b9b8fd3
6e9151eda1eed9245fb24115d66226cc08b51afd
115778 F20110113_AACYVB viswanath_v_Page_021.jp2
183d3a5f0704b089f6c5260ecc838be5
67188922776e2cff83e03d7b941cf99aebcb2a79
886118 F20110113_AACYXZ viswanath_v_Page_107.jp2
8bc7f5febcf7899239f8ec93f335450d
e287140ae54dbf8f38e9a3cb29adddeee3d02662
18267 F20110113_AADAMR viswanath_v_Page_356.pro
8f1b7fe3e2cb30a07d7c2074eb538409
6e2f9718fb23ee2f9b1f51b1c315b949ca6ea3e6
F20110113_AACZWE viswanath_v_Page_330.tif
097a3a2c24ae00ef486afddc489f5f76
9c65b8935de1c2bbba8106b12d6a66eadbe5e955
4912 F20110113_AACXWW viswanath_v_Page_027thm.jpg
4ea1c012ea953605aa745a42915d24d0
ad0da99c0261c402bf02440f855d0105571a3952
19171 F20110113_AADBNU viswanath_v_Page_105.QC.jpg
2eabb21aeae323c63ae2c3fca310e927
656371cb0e964cedd9ad537e2da3c49f389262af
37160 F20110113_AACYVC viswanath_v_Page_022.jp2
8540863c021b8c131ea047d4b412f00b
7e4b3cdab80412ac69c814692d025190e5177066
51656 F20110113_AADAMS viswanath_v_Page_357.pro
7014364de36715f94ef14c02a135fb01
3c7f0d06f802ae5e382afa9d6b487cf453addc33
F20110113_AACZWF viswanath_v_Page_331.tif
664620d0de911d70ed844f6d96176112
f8048beb53be8b678afd8058556fe32af6682a21
28557 F20110113_AACXWX viswanath_v_Page_446.jpg
14228f5accd3231e25ef781af49c8dfd
153b9ad68be9ee25bbcabc5287ba3746d136790f
5103 F20110113_AADBNV viswanath_v_Page_105thm.jpg
e4a44ddafed96e1b21d9828ebd7d2ce2
4974515201e7ce7fa5018c0a5d9d99533e70b90e
90357 F20110113_AACYVD viswanath_v_Page_023.jp2
afcc2f85a26fecea9f2f018ceb432fa8
a64218d84347b81f11e53bed042f996ae0b9a2ac
6435 F20110113_AADAMT viswanath_v_Page_358.pro
4004365dd6f746c973492f288c88f6c9
d722d24dd382076de34e931400f4f38d6a35cc2d
F20110113_AACZWG viswanath_v_Page_332.tif
b02ec96e83a7a7928c8865b37c1bbf82
fc19a894bf37e7a0a603828be6e6f494272bdc47
F20110113_AACXWY viswanath_v_Page_247.jp2
d5482fd07a5593f8bf351c5eabf4509f
6d1679b75c2d1d7d3fd927c0c82197d35dffd8b9
18441 F20110113_AADBNW viswanath_v_Page_106.QC.jpg
39135b36cb9ab03344e06fbbafc1e719
6fda6b9c611398541ab4e1347d163f1d83c21602
79784 F20110113_AACYVE viswanath_v_Page_024.jp2
96ba2d91e87b75e93e99055629c8847c
0736dc17063aacbdfba005530b260275a02c6904
7962 F20110113_AADAMU viswanath_v_Page_359.pro
120da700fb7dffd8c811a434bca05885
34aaa1321cdab3d5963c3d7e1b642567289887fc
951 F20110113_AACXWZ viswanath_v_Page_356.txt
3a537aa1fcc0c2e7eb5ee7d416e0749d
2fab3ba5ab6a122011539903d3b5f868595a8cbd
81810 F20110113_AACYVF viswanath_v_Page_025.jp2
8d125f8b7afb2a0c2e753f669dc965ed
52d8d3e53188931ed0b8176de224004045f6af0b
15731 F20110113_AADAMV viswanath_v_Page_360.pro
fc08ce7a5647ca6e51161c9693f8d22f
106b4f33972856842006631c6f95baed78342051
F20110113_AACZWH viswanath_v_Page_333.tif
44466d8009dd7555333825b2dcdcab22
4e9a44aae3ff8055cb7f47dc4f22dcef5346f3d8
4934 F20110113_AADBNX viswanath_v_Page_106thm.jpg
18afcc5fe44f27f70c01a0ce6461b105
294a6ce9a1f3bb68e103080ffa267f9d116b61a0
83662 F20110113_AACYVG viswanath_v_Page_026.jp2
64fca0c4e54d36072a540caa6a434f0e
fb69e0ede8efea4717621b06f1ee7aa92aa33f3a
15784 F20110113_AADAMW viswanath_v_Page_361.pro
1978e65ddf61cff7dd436d165f0a3d19
6306027d87c429dec48f6b190b76cd5a538d2db5
F20110113_AACZWI viswanath_v_Page_334.tif
a45e05d76bc5b052e53a209b9195e23c
7f4140ecef0ae1a21f8c715613b673c92cd30dae
15734 F20110113_AADBLA viswanath_v_Page_064.QC.jpg
ce18525d5def2d020f16f081aeac0b6f
4f35409c3b965d071e7c6897bd45eea616d88266
13302 F20110113_AADBNY viswanath_v_Page_107.QC.jpg
2ffc24cc3fc9533ba53fb10929e8a42a
070458a1555d7107579789a49a1cae5b24442a05
F20110113_AACZWJ viswanath_v_Page_335.tif
fbebe38ecf29a3033368ee7c1e74c113
1fac7e50a05e0e9a5a0cb1da6ab425ee215bccb3
3953 F20110113_AADBLB viswanath_v_Page_064thm.jpg
ad474e9f0987caa69d0e9ede96ff492b
455c0c0c391a4f7845e72de8c689a35b8b2bbba0
3457 F20110113_AADBNZ viswanath_v_Page_107thm.jpg
e826fd0be803a0c20b2310a145baea2c
7dc0bb724e7b7cd66440257f957c7e3e3d143fd2
71952 F20110113_AACYVH viswanath_v_Page_027.jp2
b8895c52e2adc1f11892688cbf225cbe
c2658debfba6b32b86e754f990fe119637a8b62f
50281 F20110113_AADAMX viswanath_v_Page_362.pro
ad17d1ef12caddeb879b9ce51b325da6
41c4c5f3b9194e4ac1fd680450640d5b33f8d229
F20110113_AACZWK viswanath_v_Page_336.tif
09b5ad4a4b532c9af739181334d75d9d
e276da9b3905fd06da6bf29d736f379e95b033d5
10469 F20110113_AADBLC viswanath_v_Page_065.QC.jpg
47a9ad5779db03c9697bc4aa6b146c38
2937c7d0db5ec896b3686f8c5f111865a1a9faf3
107297 F20110113_AACYVI viswanath_v_Page_028.jp2
daf6140f805ac6f9887a7b2b9192baac
c41d5ed31f50505df0cbdd0e735c6d911d669a78
29345 F20110113_AADAKA viswanath_v_Page_271.pro
3eb71e95f5c2d9c807f34c42516e7667
342eebdd9a32a359ad8b66d24d5b2333029c5d0a
22712 F20110113_AADAMY viswanath_v_Page_363.pro
141d172ed8ad98019855e883e05c4ee7
843b7a46dc241521a2de5f26b0f745b43146f19a
F20110113_AACZWL viswanath_v_Page_337.tif
2cf0d6836b726ad8d746b08689f1bdb2
6405793681216a55a71fbe3f38ccbc9e816c80ee
2913 F20110113_AADBLD viswanath_v_Page_065thm.jpg
0ec3956db66955eaf45863f6956b09da
300444c12e393edadd12497b6767836da3fd894e
67327 F20110113_AACYVJ viswanath_v_Page_029.jp2
a2c7b0370ce18c0573601d4795bb09df
a8d846566aa34e45fef4d43d0d13aca6d4044d96
9532 F20110113_AADAKB viswanath_v_Page_272.pro
7abbb2cd8292d43bc28ef807a610d972
e8a0409972c321e0c142190a568a934da34944bf
10366 F20110113_AADAMZ viswanath_v_Page_364.pro
d00e9c6ada4c95532d88d75b1ce1fea7
d3d2fbbf3ecb2cff96c9d305799ed983ca8b187a
F20110113_AACZWM viswanath_v_Page_338.tif
61fe8022eb8a760701e6cad00899c779
f9ee5e483b3f6a5f90865a486aafe333f0e04652
21305 F20110113_AADBLE viswanath_v_Page_066.QC.jpg
e713234ba2397df24225def3e8c84580
a72ca64cd39bf5d0351c727d41ed1f9a1abd75f4
105811 F20110113_AACYVK viswanath_v_Page_030.jp2
c64101de5481bc19822fc2e50af4cff6
aa76343b4f78d5655412edaf7a77079c734878e4
50022 F20110113_AADAKC viswanath_v_Page_275.pro
78c35cea8cc68ddd0766b9023aadacc6
a98922079a43d04b91ae54a3b9deb89bedd968d9
F20110113_AACZWN viswanath_v_Page_339.tif
8a664145f632220238430c0cd36e403f
1e473c73413f5a7fbb47f966fcc5023da05a4dfd
5250 F20110113_AADBLF viswanath_v_Page_066thm.jpg
5194308101457e7848205aea44633c98
81b7278bdfa8bbc24909c8365d20679aedc2a100
79151 F20110113_AACYVL viswanath_v_Page_031.jp2
e9cf426b3a57e42733581b666564632b
f1e2cac2559ade44b60b4d7a39cbb15247700527
F20110113_AADAKD viswanath_v_Page_276.pro
a755cf01d0f82f34efee2f9cafd39024
c6ac4542f6251c280a969405da5813236ce93894
F20110113_AACZWO viswanath_v_Page_340.tif
4756da4e1ce6b60c1b1c9c228bea82aa
01d744d83d779283df4d8866ecd9553ed83e8247
16155 F20110113_AADBLG viswanath_v_Page_067.QC.jpg
063e53e4ab9d2c3591ea6bcfbbc7f226
21f13acef31f1046257d224b6f085f4b7b0659c8
73188 F20110113_AACYVM viswanath_v_Page_032.jp2
67692884d8ebfa85cc53cb1619f288e7
ec76590840fc1260cccba9ec3c7e61650502318d
11870 F20110113_AADAKE viswanath_v_Page_277.pro
9a738983f9fc77ef0571f9e71891de77
db8795c5b6f9bdeb4811b7e978964cb11f56a697
F20110113_AACZWP viswanath_v_Page_341.tif
740462563a5c0fdf74cd3c3171cc475a
c9ad28922bd053ad5039cb6c7cc10b1ef69c0603
4233 F20110113_AADBLH viswanath_v_Page_067thm.jpg
eaf3a7006fe169f725bc825d53518127
ad6ffbc91dc302392d6171e98d93cf947c87356d
81384 F20110113_AACYVN viswanath_v_Page_033.jp2
1bd4d74cd3210b7c740f83cbffeddcdd
dfbaa7eda7930c95993aa1c2a8a33072a4d644d1
52935 F20110113_AADAKF viswanath_v_Page_280.pro
b5ad32d2ee86d698f02c7a985d0c228b
11a884f1634de05ccad5f173ec5ec7c5263bf863
48099 F20110113_AACXUK viswanath_v_Page_246.jpg
0b3742e19e10901400e293f32ae5dacd
889f38e12ae5f4b914cd6f0227d7a45051b1b68b
F20110113_AACZWQ viswanath_v_Page_342.tif
a6246b1a442647c0b6d3926c857e4626
1b3e1793a7ddcb2cb6a79a1a2b69ce0b9fef2d59
16474 F20110113_AADBLI viswanath_v_Page_068.QC.jpg
bea3324c3350ad644ced07789c2604c4
b06837f23c84f44aa19d772fd9d9ffc9ab097981
67343 F20110113_AACYVO viswanath_v_Page_034.jp2
2f5d1f53d079d843b0027d1a77e56906
fbb47f2a35186643907dd4e528915f0345ee8c86
15662 F20110113_AADAKG viswanath_v_Page_281.pro
600a22a78642e8a753affb074e7ed5e0
9433286cd4d402a6d2c259094a814317e0945b52
2158 F20110113_AACXUL viswanath_v_Page_090.txt
d353cd4911afc2c5d1d2689735859493
a48e0718f20583c984d476a73b9c375671dbdea9
F20110113_AACZWR viswanath_v_Page_343.tif
c8b8ea2d4956bd4fd29becb77b1f7a15
6d878fe532ddb23de2cbd9c12af1d949a50452ac
F20110113_AADBLJ viswanath_v_Page_069.QC.jpg
f0e4b7d9ade51eba68af9cc884ba8b3b
a98767076927400f497dcf608f2a19cbddfd1ce6
99609 F20110113_AACYVP viswanath_v_Page_035.jp2
db5a4737f1ce6274e3ea4ebcbaa61cba
cd6e44bd21d47e4d7f92e98500abb3e07b6c191a
12090 F20110113_AADAKH viswanath_v_Page_282.pro
6df76a3f6a9827a53afc3c32070be19e
1f6f50e181f403d740e0c1bcc3c41092ee69a434
41511 F20110113_AACXUM viswanath_v_Page_356.jpg
a97febcc39db21ba5a9adfc70c174008
d2bb6310f46c6a9ebc0b64d0e110583853632821
F20110113_AACZWS viswanath_v_Page_344.tif
1d6757fb16d54bfba3a0795683f76043
b4fa1e7f59e5fc6ed5b20bbe77a55b20e0e185ed
4122 F20110113_AADBLK viswanath_v_Page_069thm.jpg
602b04fdb4cb8f886c7d379f7dabfb83
7078d224d3094a52c3b83cc6f2aaf9f28f6a35a8
112416 F20110113_AACYVQ viswanath_v_Page_036.jp2
bdb8934befa11c6f22cab8ff4dc64f89
2915017acaf74cab8cac931d2b66742d7daff239
17556 F20110113_AADAKI viswanath_v_Page_283.pro
8530af857a53c2478f530e9419312266
371ae7f543cdeb775e964d6811991c041bf5a2a3
4894 F20110113_AACXUN viswanath_v_Page_068thm.jpg
e43ec047e7ac0076e09fb0d321bbdc2d
aacaea5d19901ad3f8eccd41d25aa0483474775b
F20110113_AACZWT viswanath_v_Page_345.tif
c61a9a1a9201bfe07568382a3ad0e027
0d810a6b464749f41811552e48236d36180a5dc1
18478 F20110113_AADBLL viswanath_v_Page_070.QC.jpg
9713d0ece8b476f2e5632f00bcf46113
25cf886f8ddde0116a5aa3f920a8233984a80077
99171 F20110113_AACYVR viswanath_v_Page_037.jp2
92eba122d5c195e3021583b10de0bf50
04fb8f4552d373d71e03dc971d34993dea9811f6
7603 F20110113_AADAKJ viswanath_v_Page_284.pro
1050ebe0cae390f8cc51623206e6236c
44a49f5e963ce16a51a5e7accbbea1557e2de340
14643 F20110113_AACXUO viswanath_v_Page_254.pro
37c1ee18f217cf1130b53c8c503e8997
caf4370bbbcb67d9299223947d9f9b7713505318
F20110113_AACZWU viswanath_v_Page_346.tif
8b70682e440cc1a3647b51a39403dca6
3a483337057ecc3396f589339260224222b189f0
5549 F20110113_AADBLM viswanath_v_Page_070thm.jpg
c194a6342a8c5f6baebb8ffdeeee7aa3
bc1dd9a30a40e5eb73d2b76efd1685a3cb308cbb
81276 F20110113_AACYVS viswanath_v_Page_038.jp2
536496617d1a2a03e10a3f917a419c54
953bdf0ccbe0e4503be641e9fb73be4517e0561d
44144 F20110113_AADAKK viswanath_v_Page_285.pro
4f9c3f3387d2d7b7cfc4843be465a64e
43a1d87fdeb0a8a5ba80d596e403deb7feb9e811
106468 F20110113_AACXUP viswanath_v_Page_102.jp2
e189b36ce59c3933ed8d38740cd94e67
b3506c1a9fd0c255adb66cbb88ddc058ccec909f
F20110113_AACZWV viswanath_v_Page_347.tif
f1075db872dee65615284db6e17327cd
7d0d8d0c06349d090968bfc60378db833c129d5f
15480 F20110113_AADBLN viswanath_v_Page_071.QC.jpg
32af8b9324214648861d95e7e8568c42
62b64fb36582f255715eb73299a574ced08a5de3
69314 F20110113_AACYVT viswanath_v_Page_039.jp2
af0b4fbe0df2f0d22a71eeb7b866157e
6af60ba27bb9c78c8bf6df094b3c002909a82bb1
11255 F20110113_AADAKL viswanath_v_Page_286.pro
9b11dda8d3f38887c5094605b35a5cd4
a222073a48bae3f1ba6093b24c227a6d5856bb53
3203 F20110113_AACXUQ viswanath_v_Page_103thm.jpg
7f71d1e42612a6f555d990ffba090e22
594654d4771469990797a03577cb9dd258b4b743
F20110113_AACZWW viswanath_v_Page_348.tif
5aee35592c6c32c32f101ff1890154b9
9638b36746310bb84c4df97c27125f6530d88c3b
5088 F20110113_AADBLO viswanath_v_Page_071thm.jpg
5a7dfaaca4db4057220226515bdbcd31
c1ea914d991164d369c77837d373152070111107
77200 F20110113_AACYVU viswanath_v_Page_040.jp2
2691a955210bfec7addbeb16219e938f
373d2ae5275997c7006587dbbf4768d4fdfb8944
18784 F20110113_AADAKM viswanath_v_Page_287.pro
42a0fede68f98564e28ba6ae217a6845
1d66f3a0b773073840c7c3d0f3bbf87d70844729
1993 F20110113_AACXUR viswanath_v_Page_170.txt
1986856db04d6dca34a9754382aef128
d957af5a06bc6156acb71b8a670cc22961e3c0dc
F20110113_AACZWX viswanath_v_Page_349.tif
90d7c39d1d863ee8f935f5f3ca7d5003
227d1913def78d447907a39f188f7f1082988dd0
12021 F20110113_AADBLP viswanath_v_Page_072.QC.jpg
6f0fb10f038dba5c51c4bb13b42d89a2
4c56e3164c1399e1be880b891c0f94b8dcbdcc30
66963 F20110113_AACYVV viswanath_v_Page_041.jp2
307edef1380a6db98cc0debe6269c2a4
66fe7ca2fc332d3a455ecd95d763fc880b4b8410
7070 F20110113_AADAKN viswanath_v_Page_288.pro
7c0d5b1ed67a017aa74fb3c77f2e1614
b3c0af8634f8c6122c04ff68605fe9c04c5f9f78
F20110113_AACZUA viswanath_v_Page_273.tif
e812ec1c85a34d306749580d2a45b045
ac8022c677fb1f5944df54505981c7e14ab606e2
37096 F20110113_AACXUS viswanath_v_Page_319.jpg
383463c6ab16c486f61b52bc864197c1
77786ef78843cc1eddae8f6e934bd9dda55f32f8
F20110113_AACZWY viswanath_v_Page_350.tif
eba59b397259e02dc046c921bf92c19f
b4aae60c310370b10218fffe0c7d97bcef32192a
3985 F20110113_AADBLQ viswanath_v_Page_072thm.jpg
2d6670191614c094d966675423691426
5c1009b31b0d5844c28b44127ad1f6cf793e8e60
49619 F20110113_AACYVW viswanath_v_Page_042.jp2
14464ad98ae2a1553bfbf0602b6cc8f6
8f07278600528c37b8dbe17725cced71b8f54c6d
51372 F20110113_AADAKO viswanath_v_Page_289.pro
d994a820048a4a118b467b41ef14b5e3
63f10c3cb285b72673f30896f9b7660ade22b2c4
F20110113_AACZUB viswanath_v_Page_274.tif
919b2b3188b41f624d0e6bda96cf7875
5d73b6b5a1c5e36bd70d999481aee5b711b3937f
F20110113_AACXUT viswanath_v_Page_079.txt
268348ac602943f54417864cf7820637
9ff2c73d90cf470135d015e0270de09bb122f7db
F20110113_AACZWZ viswanath_v_Page_351.tif
001060148f87c179ff50d1f9789d4cc5
66ca3a7c7c79f783bf196832f4c177537b170f5c
14687 F20110113_AADBLR viswanath_v_Page_073.QC.jpg
19e1de858216939aebd27ca7d8183c9c
8a3ddc5a64a55b94f26390b5cd483d11ba96402e
11967 F20110113_AADAKP viswanath_v_Page_290.pro
95baba6de51e8c9a5af045e38f99e860
b154fef067f1e994720c66083826ee4ac963abdd
F20110113_AACZUC viswanath_v_Page_275.tif
b2f1578c550afe8f155be45a6dc52cd6
668c85e9649114affc3fd9923b1731f9bb95c1a1
16665 F20110113_AACXUU viswanath_v_Page_424.QC.jpg
404a977ee4fffc8911886b17f46a594a
74facb41a528b55830b8334536d8e89d0510887e
14444 F20110113_AADBLS viswanath_v_Page_074.QC.jpg
1062f1e47792e348c05188910dcd7a39
ca3601eed58e89b151ec9908a5d80fd219a31650
354365 F20110113_AACYVX viswanath_v_Page_043.jp2
bc7643bea69fd6b413fefa07821e5b96
fac57c20ade5bd61eaf21c9ba7bdf7534eb0a758
11716 F20110113_AADAKQ viswanath_v_Page_291.pro
b92b27f341ec997f5ad2490775878b46
62774b8dee08ab4226ae228a8848a44cb199fde9
F20110113_AACZUD viswanath_v_Page_276.tif
b843aef0b7083230a203cfd69eef9185
0db65af34edfb21418e96a31855a890142edd828
F20110113_AACXUV viswanath_v_Page_181.txt
68b2452fdc8a26ae356d3b07d83777fe
01b831c7a2080a2dd1075e6e216bcc09dd57fed7
4372 F20110113_AADBLT viswanath_v_Page_074thm.jpg
fb1b68460bd61b3d5066cd1fa81aca6f
c4b2b6fc0511ab462005d4313b7a28c5651ca756
53646 F20110113_AACYTA viswanath_v_Page_413.jpg
e958a0deda7668918ada2eb8d4483739
ae6d6f4a25d0184314cc43b3229efe4c3cde9765
749725 F20110113_AACYVY viswanath_v_Page_045.jp2
67e2e6a85c9eb9ed28fa9cae4529650f
7da399746a03ff39a0c996ebbaa6082c509f9fad
52704 F20110113_AADAKR viswanath_v_Page_293.pro
f3e1e9aeab1f63ede73d64bff32b61d3
8b628a5b2b6b27ab8eaf2cc68ca7a47e317dcb35
F20110113_AACZUE viswanath_v_Page_277.tif
b31e2a082ffc38e292d8d2f56708c6d9
dcf3331436fe31f05c1d82f2889ce54d907462df
18278 F20110113_AACXUW viswanath_v_Page_290.QC.jpg
255c1612c8d206e18362aa27fa29a1b2
dfd8f80ef66b7e43eb781410ce7d1a4ada7c3f6a
16232 F20110113_AADBLU viswanath_v_Page_075.QC.jpg
0f9c9204181218e86ba05e5a83e911bb
a0547fb44781cf100f7be38c819c8bdaade7e7f4
52723 F20110113_AACYTB viswanath_v_Page_414.jpg
0859d6bac967ddb8d5071d1c541c803c
5b7176c15cb2a9faa87dc82768f9515bbca84eac
471347 F20110113_AACYVZ viswanath_v_Page_046.jp2
2216377d5588a2a08ef0ef04342bec45
3573e4dbea8f8fb03d2decc6301de539621b7905
29241 F20110113_AADAKS viswanath_v_Page_294.pro
0b65886e36063c23f72ac393ebd16b76
f6abe1e7250329b11479c2dea5ebd2e0ddee47d5
53018 F20110113_AACXUX viswanath_v_Page_075.jpg
628deb1c24449d59e0c5771134516415
f7c53c6b9211cfcda40686173768809bcfaa06b6
52331 F20110113_AACYTC viswanath_v_Page_415.jpg
e643db339e04d276285fd556d50c7f0f
7bf6b35fb409948990304c0a212fc8d063513d53
10021 F20110113_AADAKT viswanath_v_Page_295.pro
b453d53000a464bbd70cf02e2884cf29
02477ccf94929d11627b50422655ab29e8e1ab78
F20110113_AACZUF viswanath_v_Page_278.tif
a235ada2b63b31fb9077fe5ae4bea9f5
0178b696f2a4df2db6f6e8136d79a6a7faeabbe5
F20110113_AACXUY viswanath_v_Page_182.tif
571d3cddd7087919b9e7bbecddcc250e
d726ee9438780aa56b9b4de4067c5ae32cd27ce0
5027 F20110113_AADBLV viswanath_v_Page_075thm.jpg
d8938eec521343f750fecf658e0710ae
183fb09307f5d032b837efc85dd59e02af683142
42786 F20110113_AACYTD viswanath_v_Page_416.jpg
51e90e5dc649f96bff190b6d18c1b1e1
bcaf7c6e5c9e4dff07cf8b56fa234e0ef6e672f9
F20110113_AADCKA viswanath_v_Page_425.QC.jpg
41df2041418a211cdd8ac625cbf69e4b
1033b41cb46af014b4c40e8d0320dec5b74406d0
11753 F20110113_AADAKU viswanath_v_Page_296.pro
9be276b24bc5bc83136783979eb782da
2d8da406b013bb4e6f253b8d35ee9da731838e91
F20110113_AACZUG viswanath_v_Page_279.tif
f0777cc5bee36c47efa2f4df85c31fb4
1fbd480a1aa6e9b940338978a36d4cf94f8b94ef
5122 F20110113_AACXUZ viswanath_v_Page_411thm.jpg
03671cc2bd8e6d6a15d6db49c4114344
4ec7392b397ad9954472d61d440d9d5d8b9b5f77
17945 F20110113_AADBLW viswanath_v_Page_076.QC.jpg
c65b85be9941ba561a8226db144efe56
ad7305e6353493f6daa708a97986386c9dff449a
41528 F20110113_AACYTE viswanath_v_Page_417.jpg
60ab94c52c543adf326b7551ca5c2f0a
b7882d9bf49e72a71ac7281c527c1de75482ad3e
3155 F20110113_AADCKB viswanath_v_Page_425thm.jpg
2615548a0e77d3c43ae6174e92844b42
feabc1f1feece2c80ddf38f31d71f44a32f4820d
F20110113_AACZUH viswanath_v_Page_280.tif
fac0dd8e8a0eb768dd31d2e438ba5796
67052287238c3e3eb7c34a77df6c55bc91f3fb29
F20110113_AADBLX viswanath_v_Page_076thm.jpg
3732a9d85707c2e816da0e7e4b3d23e5
b4dd1b4561d6b2f1d3b1199c607f0df38f24c489
18326 F20110113_AADCKC viswanath_v_Page_426.QC.jpg
e519cdfdb5774718465015a53c8b8b97
024f8a578396f12c5cf714a7a6e8693a8b05ffd3
52298 F20110113_AADAKV viswanath_v_Page_298.pro
e989ccc576e97effb66341c892f4e59e
3b4b95f6ef6f834eddaa40030a6c6b6a63142c02
F20110113_AACZUI viswanath_v_Page_281.tif
9fc6198644b14e0a2599f736019917fd
bba401208dfe41b0ba1d989e6bc8429a0bd05a5b
5957 F20110113_AADBJA viswanath_v_Page_035thm.jpg
456ac0c9829a8f16b9ad9fab550e420e
75763eda41218b2634333459f05791221bc20cb5
F20110113_AADBLY viswanath_v_Page_077.QC.jpg
f60940e374843c4f5a433149832ff39e
5adbe3e31ae4db7769e28719bece2e9026448982
42480 F20110113_AACYTF viswanath_v_Page_418.jpg
aac558ceaffd4b5c5b840fd21f9e2c36
27113821d0f8b3fd0b677aa7aec2e967362519b1
5127 F20110113_AADCKD viswanath_v_Page_426thm.jpg
fb4e465c2624c2596ede58822914cd2a
78c9e50404120ffdf10c933b8992ed8a8e625a9a
43035 F20110113_AADAKW viswanath_v_Page_299.pro
48d3ea506da2121ce781c534bc2c1724
3a3c234173a02c3d7e392d49842dfef8b345abd4
F20110113_AACZUJ viswanath_v_Page_282.tif
d06d00c99e9bbb8a30e49a9c97cfd4d1
740cb819eab73b3db815f27ea63671645c4efe98
24631 F20110113_AADBJB viswanath_v_Page_036.QC.jpg
a496f1a906a58a1020662a6dacd438f6
22f5fa714d1d461072355e9d5afa2b551d4e8152
5294 F20110113_AADBLZ viswanath_v_Page_077thm.jpg
54eb8283c1770073036d91104677a3c4
f83058e4e16f4fdfb6e01496ad3da76c7765fcab
52520 F20110113_AACYTG viswanath_v_Page_419.jpg
e6f336e062dab1b2ac7afd290444304b
1e8f30a62fb7d84980e4d7454cb699b3f9d3fd30
4598 F20110113_AADCKE viswanath_v_Page_427thm.jpg
11bd9a6948ba3dadc0570710a984c68a
e50ded558615ef709ebbac0b0a7b1a73d84ccd27
10972 F20110113_AADAKX viswanath_v_Page_300.pro
40263afe60151e789bc4fd041919fa7f
c8e74dfbaca74550d788ed0f78d3538e542c8b2a
F20110113_AACZUK viswanath_v_Page_283.tif
55aeaa3a9fceb3b2addaab96f84e5bea
99ca5a6e7aee3890d3dba7a0a066475753c12c92
6792 F20110113_AADBJC viswanath_v_Page_036thm.jpg
1092d5b26a4ff50d3f129d19010dfef9
4e89c21b899ad82c6098cde7bedd87708744aee6
41386 F20110113_AACYTH viswanath_v_Page_420.jpg
8bbeeb18d5bfecf88c87dfbec61ac824
cb888c0f5ab79aea05f8ed5c0ff9603b28fb054d
13545 F20110113_AADCKF viswanath_v_Page_428.QC.jpg
eeb8875ceaa371ea133f8ebd547c003f
6d0a9e2c211b493ade1e72d20732a114ec74ba8b
10866 F20110113_AADAKY viswanath_v_Page_301.pro
62d20779035cfa5d801a6db3de4c2c86
22ac4dfd3a3d26d9c0ac0a43bb58658ae706e98c
F20110113_AACZUL viswanath_v_Page_284.tif
6077e25b299405272f5f4d6f239da5a5
753dfaf629a69acd96478244f23f37157f12c421
21515 F20110113_AADBJD viswanath_v_Page_037.QC.jpg
0fcb282e6efdc49f04375ea4765355d2
57e335cba4ad742b7de4e4c3ea1b8be7b8fa38db
54180 F20110113_AACYTI viswanath_v_Page_422.jpg
7837b705a86da442b308f66c9b0dff26
537589ba8a32c95303fa66b33ff0e9c68dfdd291
22655 F20110113_AADAIA viswanath_v_Page_212.pro
50aa15968661cf1189d1c31ed9cfa90a
94021e460548b2134b6c6030856995608fc34187
4302 F20110113_AADCKG viswanath_v_Page_428thm.jpg
d9dbca1f2481104d95797823c35b1def
f0d9bdaa7961aa6caa623e0ada5a7b379d14b194
51648 F20110113_AADAKZ viswanath_v_Page_303.pro
cd677382fdf125125654a0dca389195b
4b863295da47868fc131d0089b118b423acfe6ee
F20110113_AACZUM viswanath_v_Page_285.tif
72943e0af3a56220ee989cd95fc68c2a
3829cd708167c4dac530e244e6d3a004d09538e0
6115 F20110113_AADBJE viswanath_v_Page_037thm.jpg
905857e4da7d7597dfe5c13a2ced1030
1301bbbfe5ab6dbe9e2aafab28ba3b9a27cba608
57119 F20110113_AACYTJ viswanath_v_Page_423.jpg
4a87ceabde865a74e5f292bb08d36c92
7d26acd7e43d2a80079e27c4d46d269998447e12
13304 F20110113_AADAIB viswanath_v_Page_213.pro
79f766cd20751235813ab561dacedb25
39c05076854afbdb501958eab2c0e8e1aa4d3f35
12628 F20110113_AADCKH viswanath_v_Page_429.QC.jpg
65c9686e8b08d960428815bd8621760c
72f1a0801f999c701c3b1af897004cc84fcded7a
F20110113_AACZUN viswanath_v_Page_286.tif
2dbd8c179bde027c2ec57cd4955aabbb
43fa2c899ad3261b518508b083efeae6eb95c84f
5425 F20110113_AADBJF viswanath_v_Page_038thm.jpg
490e53201de363eeac98bc54470a40bb
8f4f7a9210d7ad98fece5d4cefa6424dbb8fd57b
56569 F20110113_AACYTK viswanath_v_Page_424.jpg
a1de24851b5c3797af08eea14b1e888a
90ea230a204ba5c4b67b6b44396a7adf4003899d
14358 F20110113_AADAIC viswanath_v_Page_214.pro
8e41a4fdc70e79545a36ef0d467692d2
7f677a7c9360987ed93c79f70bfba2528ec5f294
4220 F20110113_AADCKI viswanath_v_Page_429thm.jpg
edbe20c420a300ccde591afda37aa795
527d65ca14bf922b34453d64d670e7424f56af02
F20110113_AACZUO viswanath_v_Page_287.tif
a0ab1decb9bbca9f48117c3ab9e8722e
0fe2206cf0f1a312963592be98126b87ffffa2b0
15952 F20110113_AADBJG viswanath_v_Page_039.QC.jpg
d37e71257bee10914e6129dbd6ca3576
8258efc1aa235dec6177a987ed75b557126e488a
39094 F20110113_AACYTL viswanath_v_Page_425.jpg
7e9e6eb686a7467a24b9a19dd891ea3e
4128466ab51af262e2a4fbf52a3629bc5c56c5ac
14008 F20110113_AADAID viswanath_v_Page_215.pro
48e679bc9deaf6633b5c76b78f64f3bf
f21b44ec0ece51548498b8688a60767932887234
14953 F20110113_AADCKJ viswanath_v_Page_430.QC.jpg
54bba9117d41a42d6474cb1853fdfd38
1ece3db21e924ce3b784585fd129d659a77d4ad0
F20110113_AACZUP viswanath_v_Page_288.tif
3997f513f05c3a61e26e6a600874d3ab
6cbad3269f88dc236346dbdf9efa9602f40b64f0
4952 F20110113_AADBJH viswanath_v_Page_039thm.jpg
5ec0d26fde5e25cde6b5549c650aea4c
8a52c496000a7dfe93d30907dd0e96bd19a46bb8
61601 F20110113_AACYTM viswanath_v_Page_426.jpg
b680a0db44fb33ccb7738d9a7cd23412
fb458fe53dacbea471853de4b8b90ae409816c36
49745 F20110113_AADAIE viswanath_v_Page_216.pro
7b9afd45617e74ab5303f4209a5e561f
47889e7dba3ba79d4c063baa37adc37165c18efb
4455 F20110113_AADCKK viswanath_v_Page_430thm.jpg
56690861d06fab654ba4c0e85a40cf78
ab5f3788a71e7aa3a6714b1ab1f4a0d5535c7dfe
F20110113_AACZUQ viswanath_v_Page_289.tif
620b08094bb9db988ee58dab045009fd
7c9acddfbce7070fc5998ebb20328748e81eb5f5
17175 F20110113_AADBJI viswanath_v_Page_040.QC.jpg
2d5d85f2c4c40ee9fdf3b2166fea6374
08613b0b1b3b4749f580d12efb10ef8d7bb58fb0
45078 F20110113_AACYTN viswanath_v_Page_427.jpg
e5c2e725b29ac183b5a35dd1f586b137
d77a2efd9b1f702204a78085c77b29491be37bcd
51139 F20110113_AADAIF viswanath_v_Page_217.pro
c578679890676983645c1d9a736d197a
4e047c8405567a537c97b32855ea3d26e0d0f0a4
13973 F20110113_AADCKL viswanath_v_Page_431.QC.jpg
ec3b237b1d0d0956bdb64063415f6251
51e4ea9a69e85d356eb3315a4b53cb0fd0fc7459
F20110113_AACZUR viswanath_v_Page_290.tif
637ad57afa12afcd3b20ee01b69256a5
baae21a3f5a143705e674d49e5fd3b40a9bad4bc
5271 F20110113_AADBJJ viswanath_v_Page_040thm.jpg
4dbee29a7172786876b97b4167517c76
7dbc72f84d16c4a8036c9aab35891eea6f53a50e
43611 F20110113_AACYTO viswanath_v_Page_428.jpg
e64e11cdfbeb0689e2df968af95d9bbf
b4ff795347b87bf25e0361f058689d2347004b34
11074 F20110113_AADAIG viswanath_v_Page_218.pro
cfb860217a608408e945b123c18c69d1
0ceeea1163a17952562752da5a57751df022331d
4374 F20110113_AADCKM viswanath_v_Page_431thm.jpg
bccc90f81525bfd0977186551d7848ed
1f4cf2bf102ba97a0fa2fda8d2d6be087dc19c95
F20110113_AACZUS viswanath_v_Page_291.tif
887a1b104121d27fa4992fbcc9c43150
85fa44f1a90f25b691bd86d851f751a5035bb9cb
15714 F20110113_AADBJK viswanath_v_Page_041.QC.jpg
b3f642d7a3f6aa85f3c40d30c09f7d86
618137e5e1be3b9ccf5122057bf3c0baa63bc679
41662 F20110113_AACYTP viswanath_v_Page_429.jpg
2073e9b49deb728884c36fe46fdeb8d1
b00569642d763e70ba7232f66657d721d683c456
12602 F20110113_AADAIH viswanath_v_Page_219.pro
1a3f18332ee1c33835f89cc17c24ebac
37876e665e0ad6f13c687bf14eb1a67c81db5c53
15096 F20110113_AADCKN viswanath_v_Page_432.QC.jpg
10262c683181d42dd044f4eee76c14de
9c6c774f6522c19f7bce4f4c5f945db6ecd184a4
F20110113_AACZUT viswanath_v_Page_292.tif
84e3e75f01ede5a7fdc7fb8b2851c15a
b8154cc24c67edb5e55d37387cb726f0a151657d
F20110113_AADBJL viswanath_v_Page_041thm.jpg
6d232539c88630108a2e09373c4686a5
786cb61fbdaea094f9eb5d46ed369858547cf366
51346 F20110113_AACYTQ viswanath_v_Page_430.jpg
bb253f8ed6966df608d9d953609a9029
2fba4c380536ddab3c4aefa1ff3cb024b1f8204e
13842 F20110113_AADAII viswanath_v_Page_220.pro
440e609f3aa49719a469b7ca3c09338b
57bbe9eda6b95ef014e56f024e3fd214349019aa
4449 F20110113_AADCKO viswanath_v_Page_432thm.jpg
d2fd52609f2240c1ce5bf9c07c04a5f8
51bcda61fc331c72267fdf6414d090a51f9856bf
F20110113_AACZUU viswanath_v_Page_293.tif
7faebc070c180b704e72679dfaec0948
95317ef78909d69d5d9198292e2807aeb50cadbb
12363 F20110113_AADBJM viswanath_v_Page_042.QC.jpg
dc40cf2645b64e758541b1da26fc05b8
610717994b50b051e09840f778dc634c01198031
46178 F20110113_AACYTR viswanath_v_Page_431.jpg
1280df163e4af90314eb246b6730fa07
3cb48f4ba0cebf47fa4d0e3797eafaa24bb73488
41082 F20110113_AADAIJ viswanath_v_Page_221.pro
ad3c7f2546110a63c51886d3d4dbc32a
2e0098ddcd7522a21ba04a39206e93a0f123345e
15717 F20110113_AADCKP viswanath_v_Page_433.QC.jpg
376a663d72c872d63989aba30a615f6a
1faebfc51e2ad5d9e48f404a3a3722e7d93b3d3a
4588 F20110113_AADCKQ viswanath_v_Page_433thm.jpg
44f9ce387021ca3aaadbe45111e6704c
97f3949f3442579556c010c8772e30abb75fc92b
F20110113_AACZUV viswanath_v_Page_294.tif
cccb195ac2ca7ab6dbddfcb3ac0c529e
a10cb62594de8202fde9e441edb57a22b375c759
3756 F20110113_AADBJN viswanath_v_Page_042thm.jpg
c8c79af51df5f24eab296e8eb811e451
1c5be171414f266c4be54e3cd5a64cdf1827ecff
50455 F20110113_AACYTS viswanath_v_Page_432.jpg
69368eae7c89a576f84566f45f3bfa21
7ce133482df8124cf1a57320bb6a0e4717563073
10379 F20110113_AADAIK viswanath_v_Page_222.pro
cfcb32ff85a4be34f37a91c770f9c448
0956f4158e8c8fc8cba9638856b9f3c2368d9a57
18856 F20110113_AADCKR viswanath_v_Page_434.QC.jpg
5ff6117c06ac9176b5f0f60010f56729
f3eb1e8e855058ab805aa2f02a420b3cfe848d17
F20110113_AACZUW viswanath_v_Page_295.tif
7e2d00a893f2b82be1b1f3677d114b8b
d69dc4da9344bbe474506d241959143af4fa1dca
F20110113_AADBJO viswanath_v_Page_043.QC.jpg
61b45cdec4e1f6d97cfbe99f60ba1b44
ba915c07d23e97ec9e55ae6007480c98382874c8
51118 F20110113_AACYTT viswanath_v_Page_433.jpg
2d435ec939ef96dfa896dd78b7e43a42
ef356fa266f8a965fd33544c95817ed181f0ad90
16398 F20110113_AADAIL viswanath_v_Page_223.pro
3cd7c0eb6399fcd79c0ecf3d2fbcda8a
225a65c9d69bc81e4d36d3e226326dccec063ca3
F20110113_AADCKS viswanath_v_Page_434thm.jpg
9dd13b2dc5db96e4085fd8277322d5b7
aa4d28b86c727ba7ef442efb73b4398c0f6c4814
F20110113_AACZUX viswanath_v_Page_296.tif
7d4c0455be85763e52787263998ee8ee
a7ab8a2144e222ef3db11177d4ce9a70e86c77d5
3700 F20110113_AADBJP viswanath_v_Page_043thm.jpg
c54b3225c57f96add190d9d44a864200
bb874425920deafce44214db69c7b462fef6c3dc
63365 F20110113_AACYTU viswanath_v_Page_434.jpg
80ebd24ec6d7f84cdf43cceaa28adb17
040434c8fde1dbdc15d6d67f315eb5ff517ae391
6464 F20110113_AADAIM viswanath_v_Page_224.pro
4d09c9d12095d37b7925cc7ccaa8f024
129a5b653a9f1949acd289176c4bb30d6effa3ac
F20110113_AACZSA viswanath_v_Page_221.tif
11930e2def0ccc089eb7b3aa6de4c70c
9cc5942bc6af97f422bbe17cca0a191902cf183e
F20110113_AACZUY viswanath_v_Page_297.tif
057ebfd014c92d028f09f5a3d3677e02
8675b607cab2c92cf08b7e16a3806c48c57e95e7
11191 F20110113_AADBJQ viswanath_v_Page_044.QC.jpg
628412e4b029afe3bb647b36e55d9b0f
68c51f764745384e1e36d195965517b289dce248
51593 F20110113_AACYTV viswanath_v_Page_435.jpg
cd426bb1e8e9c6fdc5078e077307cc96
2c280e3b2a0a1e7e5f3f6bf4356a5b42de49ad69
47870 F20110113_AADAIN viswanath_v_Page_225.pro
29be3e9859e6ab11077c407eb530af68
81b2787ad8371bab996bbdd152fe074c657c38e0
15832 F20110113_AADCKT viswanath_v_Page_435.QC.jpg
c2bf6d378f27d797ae502fa169abb43f
1ff4cc9b008aa6ccff010ea5215a68c1910ff166
F20110113_AACZSB viswanath_v_Page_222.tif
b2a5df2d3b2e0c77e4c92cc83bcf773e
660a066a95ed4a625e113b602bb562d56320b926
F20110113_AACZUZ viswanath_v_Page_298.tif
33597c1d4751420600ffe4d6c97d29ac
6701ee1783569515db32ee98d6f43799c5ce5800
3580 F20110113_AADBJR viswanath_v_Page_044thm.jpg
dc6f06f5b7f5241d55419080825bfad9
0e7b580e61bc3727db5a6f3870eff0545a835276
46755 F20110113_AACYTW viswanath_v_Page_436.jpg
127f3028eaaf63301d706c95eee69499
9460eb301d481b46e6cc6d52fda5b121c0934c6f
4849 F20110113_AADAIO viswanath_v_Page_226.pro
2633a94ed7ecaa38f204a2f27ed6554f
7618fc2c68abbf7b5b886a540b7df16ee15a81e7
4616 F20110113_AADCKU viswanath_v_Page_435thm.jpg
36cfe8f91ee4c1ec5c5c384fd1b906f7
68bee14e9106f4138cf55dae4851a9830ad9f0a4
F20110113_AACZSC viswanath_v_Page_223.tif
1241fff1a2ffa0a3ff6a80135d6dbcef
402d64f4caddb9f4049a817237da4d26864e406d
16238 F20110113_AADBJS viswanath_v_Page_045.QC.jpg
db5d009f4f3b3aa9cab56dc444b888b8
5e736c0b602f4be46083f714575bb3f73cb6f0bd
41564 F20110113_AACYTX viswanath_v_Page_437.jpg
b4b07b5c793eea50ddac25d8df1286a0
58a35adfe8ae08f935dd1ed1d06e2b88e2757ca1
11029 F20110113_AADAIP viswanath_v_Page_227.pro
3e6f24172fbcf0e6390743a198680f76
a55fee25891d0551f18a27919ef971c57502c3d2
15533 F20110113_AADCKV viswanath_v_Page_436.QC.jpg
4a9c5bb5cb3331b5dbb29c698486ede0
369b9384dc1fd103988217d9b7f9d02f21e11556
41149 F20110113_AACYRA viswanath_v_Page_352.jpg
ce4b4365cc2aa407f24a2b9cfc23b3c9
4599a5684912f360ef19b96b6144a4d2cf86eab6
45712 F20110113_AACYTY viswanath_v_Page_438.jpg
d8132080015e33cf66cced747b7fba47
a0bc35b0e0afda954d030f38ab2ab7b593f6be9e
13819 F20110113_AADAIQ viswanath_v_Page_228.pro
948e6f58b133a26f1a261d5a7a827f33
a94846532b775758691e94c4a30aa7e8bec1332e
4605 F20110113_AADCKW viswanath_v_Page_436thm.jpg
2ba5361fd5788bf4d026d0b713101230
443bd79087fdd0e27759666f8c92fb697eed6a42
F20110113_AACZSD viswanath_v_Page_224.tif
b608765a76f0a6e98fb2c8f754ca9817
afd9e92004f785583979eacbeff59003b6bbb631
4628 F20110113_AADBJT viswanath_v_Page_045thm.jpg
e7c12dc5966f13a5835d28d522abdcef
702d6988b70d4642effce52d1ad41092d9d32cda
69901 F20110113_AACYRB viswanath_v_Page_353.jpg
6340ca573014fddc66bf8696d5b75648
0e02aab751b4ce02459d374636ffc0def2f423fc
45070 F20110113_AACYTZ viswanath_v_Page_439.jpg
b317772e753aed5bf6f11617a7bf0498
76f51a36fe9b4c45c24f6ceef07d5f7e8c167266
F20110113_AADAIR viswanath_v_Page_229.pro
aef6813a285169e581f4f904ad763453
ce8d8eb6e989df78b1364e8ee1c5e2f355610b77
F20110113_AADCKX viswanath_v_Page_437.QC.jpg
4bf0aa7079af3dbc76e083f51423fea5
3a63c8dfd7684600af9c69a9588d905c521d3543
F20110113_AACZSE viswanath_v_Page_225.tif
3793dfb72ce3dde8f5247885ccbf933b
127629ae661b0e9bf1b11e7b407c082ea5226745
3962 F20110113_AADBJU viswanath_v_Page_046thm.jpg
36791b3c7a61575a0faf5427149a11d7
b9b6c5fd3f7123568ed65776b18d0f653af6c51e
13748 F20110113_AACYRC viswanath_v_Page_354.jpg
74cddcd6ae1d06af953c5e8be0930fa9
ebc99297804685930a781945c4a943dd2021ad77
54111 F20110113_AADAIS viswanath_v_Page_230.pro
927f1e783ed4f9d3adae6317ace4d6f5
45b0b642dfca3092447f658b8de908a7b35820f5
3942 F20110113_AADCKY viswanath_v_Page_437thm.jpg
08d265b59e853d634bd43f384b6686d3
749ee9f2bdafaa85ca9bc7da13dc091c8b35bceb
F20110113_AACZSF viswanath_v_Page_226.tif
a7760f2e5386bb46bd2a0e65815de1a5
f5d7944bb2502c6beac96a74bb119e9a7dbd5638
12740 F20110113_AADBJV viswanath_v_Page_047.QC.jpg
2bb8022ab6a8813a6a4371aedac45d63
b47cc83b698e167c562e763c89ac78f0acf0be46
5309 F20110113_AADCIA viswanath_v_Page_396thm.jpg
f51dcb9fea157b41c8108bb06137b9b0
381002c5acde6edb9f21048b753a9afbb865f6aa
14462 F20110113_AADCKZ viswanath_v_Page_438.QC.jpg
e2d3598cb1dc9ed8f2354decf9ae565d
aa93f30403d64d00f0be6fabaa88b5e3667be038
F20110113_AACZSG viswanath_v_Page_227.tif
02eda5b14df36229ef04acec739e0a35
904a8af48ef98f3a1a2654c6e2ded17b0f5e1a01
4017 F20110113_AADBJW viswanath_v_Page_047thm.jpg
d967349cb32de9d2840677c3d6a1ddde
be9ed5d341bee4793f997dca3cfb4499ab1f8b4a
43171 F20110113_AACYRD viswanath_v_Page_355.jpg
867c407571aaac18e39a59d1f1f6327f
bd257831a1bcc8b7027a07ddbdc324314f34bed6
17092 F20110113_AADCIB viswanath_v_Page_397.QC.jpg
14aeee97b4335fab641873cdf02e7f2c
d67ad0eb48f329080350f20b62f44225c85d73e9
8894 F20110113_AADAIT viswanath_v_Page_231.pro
75f1c70552d10157adb39c361ab311cc
ef083af5aba88752e67e06e35a2fbdd93433569f
F20110113_AACZSH viswanath_v_Page_228.tif
eee9fe1a7b9e231118ce1eb2fe3148c8
a99f1b27c2d050e39c66530c13ce9116d3866a08
14372 F20110113_AADBJX viswanath_v_Page_048.QC.jpg
54640a8fa852e46d623001c976f5d9c3
ff8da5bd6f92b90695eece4ebd7678f35d4cbffa
73676 F20110113_AACYRE viswanath_v_Page_357.jpg
0d1aa2ec3b059b0ae268fc53c59fc671
78a97027c2a84fca839bd8e3136cdcac18b48dac
16121 F20110113_AADCIC viswanath_v_Page_398.QC.jpg
e7c1ad7ab03bc728b8ac7ae815e9a701
92ba018a6ce5d532fb823cd4abeb86cafa58a946
11068 F20110113_AADAIU viswanath_v_Page_232.pro
88842330cbc2fbddae5ce86d5befc86f
0ccb0c89a8a53c93cdd8e593fb0a656dfb1deb4c
F20110113_AACZSI viswanath_v_Page_229.tif
4ddaef80f19b70694819bdcf13c5d2ee
720691ced06a09685acf0b103727fed524b27f44
4186 F20110113_AADBHA viswanath_v_Page_007thm.jpg
e795df7107e7ef9dfb7b0d1d596a4c2c
b4cac05316d7973ea0d0d0cc063de1f35a56f72a
4740 F20110113_AADBJY viswanath_v_Page_048thm.jpg
49ea218b03d3bcbc33ac49c52a634e54
d5b26a6265eca28bcb20ad65e989a4533b84a2c2
16319 F20110113_AACYRF viswanath_v_Page_358.jpg
34b6aaf5d2388548c31f8d0d6f9c7781
e7ae22c927860cfaeb417269ae90d0198b55e68b
5028 F20110113_AADCID viswanath_v_Page_398thm.jpg
11192e7f57fb7dac049c6fd881be281d
954f8f2254b362fbda96376d4f01b546b0591414
18314 F20110113_AADAIV viswanath_v_Page_234.pro
4f0975e6f67898e4f89260688bd02255
2f5fe46deea9b1f15ab68ba929a3d8c8af9d8dd7
F20110113_AACZSJ viswanath_v_Page_230.tif
7eb683022479d232414cc96d136eb7d6
e48399dfba001ecd81fbd1f17207e6b8557f6b03
21739 F20110113_AADBHB viswanath_v_Page_008.QC.jpg
ad18d0e260fe6e8bebc5ddbc44ac1922
94c399df43a31d35ca4630bfd68341f61916b4e8
15058 F20110113_AADBJZ viswanath_v_Page_049.QC.jpg
29754d479c7f393394c6b35f8a3330ce
bcc481bfedbd4deed94212deb082efee2dc98fd1
39380 F20110113_AACYRG viswanath_v_Page_360.jpg
fee20d1855837493940b11e31480f6ea
573f613be6ca47f53d99cd1017f0d4b29d255599
16248 F20110113_AADCIE viswanath_v_Page_399.QC.jpg
2a7db9b34a8fb9ce05bde436ea6d1ce9
a9e36b5ccbaf74ec6321da19552a6c398f6b9da7
51330 F20110113_AADAIW viswanath_v_Page_235.pro
528e4b2f802a4020e04ac87100b5a7c1
f206f6f5b15ba4ed1bfe88ba08a57bee97cf1651
F20110113_AACZSK viswanath_v_Page_231.tif
f2fb861680a64294214eeba36ae9686f
e2e3b562732fe9481aef941d3c200c2c00ed1c56
5828 F20110113_AADBHC viswanath_v_Page_008thm.jpg
e04ecc5938849162bde9bae16378cb74
22d334b6ddcec4337f93541eede7a598b91d021b
71018 F20110113_AACYRH viswanath_v_Page_362.jpg
bd019b13b15f6665a1920d2e26af2dce
f8e3ae8afe87cee4eac074cff8344f57cd9768c8
5031 F20110113_AADCIF viswanath_v_Page_399thm.jpg
8d133afcd5628fb86dc9a5a4657d8674
cd46a76a34d0c69d3987e77907dfab64d01ed192
29944 F20110113_AADAIX viswanath_v_Page_236.pro
ee857c016c9a752cb3543f632e42f81f
9555807640865fb0db65f206fbcfb8d6318d62ba
F20110113_AACZSL viswanath_v_Page_232.tif
0b733d8efbf356fa05419a4e114f7533
076b67a8f567d54bca5be5958f534daad6c12a78
12436 F20110113_AADBHD viswanath_v_Page_009.QC.jpg
954621512590169bc6e8285d8c441f28
b9f8a68726ccf9838be273859f80135e63634c3c
37598 F20110113_AACYRI viswanath_v_Page_363.jpg
772442e8cdc87b33750dc6c96141ac84
cf76d82ffb51905103abad1cdd031a4a9b2d6477
14301 F20110113_AADAGA viswanath_v_Page_158.pro
7f30c933e9099edbc72a2cc7fa375a43
24fb7b41bc8e4ab1e968934b36fbadcbf07ad74f
16899 F20110113_AADCIG viswanath_v_Page_400.QC.jpg
5cd9df1ef335ddeedc0c98a5d694bcab
352ae8cfbc9d564a980c4a9d6f8953d23bdbfab7
10828 F20110113_AADAIY viswanath_v_Page_237.pro
60be2a7d9ad894e53778f2af50fdeea1
c604679894cff2c7c8792a0fc220c122d8c01e20
F20110113_AACZSM viswanath_v_Page_233.tif
0cceaf966643a396778303cdf8b6345b
9920ef5206ceffdee65fa9d58cc86e7e66c86734
3650 F20110113_AADBHE viswanath_v_Page_009thm.jpg
f2ac2147906ca84e790c284a09fc04ea
cbb26368e5d115762ed0294a8f0ed3d22d49265c
49005 F20110113_AACYRJ viswanath_v_Page_364.jpg
71d5b7544742df99d0fd8be3f0816a3e
baa53e37ef10a52bd5fb9c5de6b8cc752e93dd22
21602 F20110113_AADAGB viswanath_v_Page_159.pro
3156e4177b2aaf5e06c48a388c00d780
7a6c45204b67f413f29aab01fc37ace1af0be2f1
5231 F20110113_AADCIH viswanath_v_Page_400thm.jpg
4dfb1035751d46e6fb23dab113f6797a
804232b05f10974d75dbf0f98fc90d0802f72433
11861 F20110113_AADAIZ viswanath_v_Page_238.pro
32c2cb849d25e0594beb4ff5440802d5
1246ea041ab872049dd5b7586feab7eb344ecd52
F20110113_AACZSN viswanath_v_Page_234.tif
6a940a8f4620a15dc37f3ceca6681a0f
ac63cf128b14f64651183e52b1a3c752edd5df03
19720 F20110113_AADBHF viswanath_v_Page_010.QC.jpg
f3a420cee20f90abeb940442849a89e7
2b5c6cbe0f5572ca4e787fcac1ff8c10b6d172f8
39544 F20110113_AACYRK viswanath_v_Page_365.jpg
0819468ace5ba5e4f0bc36517dcf4d72
6ff1db7ff6892192bf48daab1bf5d8772b390374
23648 F20110113_AADAGC viswanath_v_Page_160.pro
b08c973207a136e7953177284f80c1dd
338d763119d23825416fafaec18eea08c6827978
4973 F20110113_AADCII viswanath_v_Page_401thm.jpg
d200cae6bfae55f4a6344d4f16328fb2
83e1f46dfc183bf520c83807e7a99d41c8fcaa67
F20110113_AACZSO viswanath_v_Page_235.tif
6ab0a878834940443ee1238d52e149d2
c2ee2f1068229ad910995d302a3d3242563d2c67
F20110113_AADBHG viswanath_v_Page_010thm.jpg
b4eefd25d3968b818958bae6389e0a5e
3662a97bc60f8c85094ed077aead5dbe88c14ff9
42243 F20110113_AACYRL viswanath_v_Page_366.jpg
4c6091b8d9538fc22d447839e7fec3f3
72bd0dcf726acdb73c9ceb9f0fa6743e2c5b81e0
23463 F20110113_AADAGD viswanath_v_Page_161.pro
2f9e33bf64cbca5c3feb3a6c3fc1b4d0
c41db8b1fa46eb4f5cdfe28346f46aafd546357d
17913 F20110113_AADCIJ viswanath_v_Page_402.QC.jpg
b087594e2928f698b6469c3aefbec2ac
795abaa818dde4cc20f548b622c728c26b35a762
F20110113_AACZSP viswanath_v_Page_236.tif
f1d1b3aa732c57fffa3d8a77dde8dc91
67482482f5cd09f02adf0feee3676eda526abffb
24483 F20110113_AADBHH viswanath_v_Page_011.QC.jpg
df6bc018c3e65d8713fd8c796f8ff1b6
dc2ab6d2209e14845b5382cfc9152f287773184a
66513 F20110113_AACYRM viswanath_v_Page_367.jpg
9dc7e9780d14a45af97f31b04f90af62
577a57cdb6e344d84cb58a2f27735897105ef2cb
23732 F20110113_AADAGE viswanath_v_Page_162.pro
e492a724acc390df7adc3388e19175f4
d6de63054bde5ad9ac0b1bc8dfde243a007bb42a
5413 F20110113_AADCIK viswanath_v_Page_402thm.jpg
e16a91bc1919f435e9d747920b468f01
3f3774ccf288d5a4b7273b48c9e10e86327f16f5
26977 F20110113_AADBHI viswanath_v_Page_012.QC.jpg
1fcdfe893e492bf4d70c3960a4291971
99a5d7a931017758273557b45d995bd3d9cd9028
19988 F20110113_AACYRN viswanath_v_Page_368.jpg
14091795dcd15e164467289f614780d4
eb31a0147089aa6dc753bbcc23d27cdae24b43d0
45045 F20110113_AADAGF viswanath_v_Page_163.pro
ffa7b03fe09d6821b2ae73dc30e8b81d
fb71904568e86869d668207813e99ea7201cecea
17340 F20110113_AADCIL viswanath_v_Page_403.QC.jpg
bb17482efc849aaa4d318e6e58c4df13
ef920f9335c5e6fea32750f2431bf32292be6688
F20110113_AACZSQ viswanath_v_Page_237.tif
fedf6f1db549fc4157ebfd9b5817d2c2
36a72982322b71311e867fbc721aa0faeda8c883
6679 F20110113_AADBHJ viswanath_v_Page_012thm.jpg
33cc463a4b992ba1cc37760693f7b792
027ddb15aa32c1724ce984e157054592210e5035
42064 F20110113_AACYRO viswanath_v_Page_369.jpg
31d49d52f20a6b3d51c6cd531da50e90
339cf4c0056399fc58df0a7a03c828dcd4fd144c
48468 F20110113_AADAGG viswanath_v_Page_164.pro
6992a79374e81acfc0652bc16189aa1b
82ba99c23cb00a6a256892dcdc175392a4ae1682
5158 F20110113_AADCIM viswanath_v_Page_403thm.jpg
3fe299e9601b13af4335c50801b9c4e3
2faccd1738a678445d2487a38915559c67fc7e89
F20110113_AACZSR viswanath_v_Page_238.tif
ac653ec4fe6cfbbec588b4ba5feb64ce
b39b5061171f67512848d9eba995c403f5a9d96a
27020 F20110113_AADBHK viswanath_v_Page_013.QC.jpg
2829bf6880188928aa9ba898087e7000
2b243a385a040d14f9695f95e6ddaddc6f37346d
39574 F20110113_AACYRP viswanath_v_Page_370.jpg
197fc298da369b838cee98401accbc1d
ad365a6246a4c9cb818e04bace2350c69f5dda91
50124 F20110113_AADAGH viswanath_v_Page_165.pro
a65e3fd2a989f54da8393973a62280fb
ef4a2434a197ba5284f8cc16b70f40dc06c1e7db
17137 F20110113_AADCIN viswanath_v_Page_404.QC.jpg
5c7a5a45fddd1c3394f7cf90e550a3fd
ff18edf93943f277f3c2db9b8ad8b41456122ea5
F20110113_AACZSS viswanath_v_Page_239.tif
0ffb737e7c31f664e3068442b9445733
ab617d8d4b505fc047c21d5ed6df952d79aceb6c
27441 F20110113_AADBHL viswanath_v_Page_014.QC.jpg
176211093eb3fd48315af696f6b19c31
7809574ce95ab356b96e1462d3332964f5945146
44559 F20110113_AACYRQ viswanath_v_Page_371.jpg
feb445a4e84911f8c23c68178edc006c
92a2b7cd2a2438cc91e64b985133f4bf6f40995c
38286 F20110113_AADAGI viswanath_v_Page_166.pro
d7720bf661104567a040626deb2292a1
78e76ee474b890558b43169eaa9eabacb20a2595
5076 F20110113_AADCIO viswanath_v_Page_404thm.jpg
d3d6879804e08fc094322524e557aa9e
f624cbf54ec46c53357f40ee907d531989872e23
F20110113_AACZST viswanath_v_Page_240.tif
5cb427d433745b3d1cef38fb9bbb7c32
dc1c799ed78561c1a412905a1c50698efae9a167
6958 F20110113_AADBHM viswanath_v_Page_014thm.jpg
e7483da9e20b2c07936f66dc8b35f1eb
1c575afae932596b0941ad0fd0d1732e06170ea3
49471 F20110113_AACYRR viswanath_v_Page_372.jpg
3a47661c1f9e7f06d9eae6f1b83c313f
675aff168b0fc6a8ca233a456f383f2135c23279
42623 F20110113_AADAGJ viswanath_v_Page_167.pro
e4256180c718a0742127eb61c94087d2
40355d70b93fd5a36674b0baddeea684e7562bb5
17011 F20110113_AADCIP viswanath_v_Page_405.QC.jpg
25024a58dfdc48640d0b96825c091a52
438412ce2e80636a14f3e5168eea4c12d37d5832
F20110113_AACZSU viswanath_v_Page_241.tif
d86f10aa21047bbcf67d054dc8099faa
5c1df2683828eb8062e7af419b48b28f00f69c8d
11483 F20110113_AADBHN viswanath_v_Page_015.QC.jpg
44fc478c33cd512de342ea99061fa571
67d94ba107feffb6206ea509c6dfc9925b15726f
54082 F20110113_AACYRS viswanath_v_Page_373.jpg
b4fd57a9a0549b121586b98305b08d66
39a70802fa56a5be7608e688ea19559d4c18c0bd
47146 F20110113_AADAGK viswanath_v_Page_168.pro
a7798e90f02c4ff979841162ff73dc5a
93edcdf6a28e5dc55ae323ebe4c3c69945770f2f
F20110113_AADCIQ viswanath_v_Page_405thm.jpg
f67b50f87ea3a7fbf214ade9bb25fb38
059bc6f0e21d9de89c30bdfed6f117d58e9f0042
F20110113_AACZSV viswanath_v_Page_242.tif
4e8541d9dc9ddbc980a75351ef5e7bf3
67392b4f79406cd86b79d702a8ff2ab0e81e7868
3375 F20110113_AADBHO viswanath_v_Page_015thm.jpg
5f734fd740e2af341b54c0a22161b1a7
7c7b0f3ab8f1ec88af7bf90a795e5fe7c41461c9
47684 F20110113_AACYRT viswanath_v_Page_374.jpg
bc36ea34a50ce0d36345c6afe84570eb
b883e9a69856123fcd0e5439ab4220ef66b575ec
50437 F20110113_AADAGL viswanath_v_Page_169.pro
f00a3d9352e7fba3c99d8a97a546387a
873df342b76f5bab1ce414c3d281735eed41111d
F20110113_AACZSW viswanath_v_Page_243.tif
327dfaf26eb7c3440c795c5e5db23b8f
8220c55d77bbd99010a9354b497da1788749b5be
19310 F20110113_AADBHP viswanath_v_Page_016.QC.jpg
d012614a3060317c2f9d94215c2e38cd
fca9b4e1c14c8712f4acfa72e83f4c1672505f83
54485 F20110113_AACYRU viswanath_v_Page_377.jpg
08b12c455f9487c77bc10f70245db8ce
4fcbd32225f9f68c7dbcd68e646e814854f6ed56
46306 F20110113_AADAGM viswanath_v_Page_170.pro
db70a5ccfb10e87499a56defeddb9958
d8ce3eb369aea2eb229b5d6ab3b6350aeb7a8063
18515 F20110113_AADCIR viswanath_v_Page_406.QC.jpg
97c1cbeef722849bf1973283c3aeccd4
b0fb84561fc7d1cf989723632e3b355f836b9e19
F20110113_AACZSX viswanath_v_Page_244.tif
5bbe8fbcd1a5f4e3975e219c422b337c
5b1c9caf5f967d33d2fd92b2ed776ca3cc78388a
F20110113_AADBHQ viswanath_v_Page_016thm.jpg
416baef11d5fdc425cc6a2acded4d08d
41dad4559dcabacc43cf57863b34aecc2d83edf0
52829 F20110113_AACYRV viswanath_v_Page_378.jpg
851d4721455572ce3c5dae44f9ad5bee
eb14439b9cf0702fc977347552e41d3cb2b53719
44569 F20110113_AADAGN viswanath_v_Page_171.pro
495182b92ff53f7da1617c2e8faeb018
e8f96956ef86aaf9883180c733801d2a62d61662
5444 F20110113_AADCIS viswanath_v_Page_406thm.jpg
24ac7b94be43ab2da304fe20dd50742e
a39d5a356b1732c0c81f36fb253230b69148c2df
F20110113_AACZQA viswanath_v_Page_165.tif
a2ddee3ffc20dd33a19fc3853b9d3e54
1d6dddb3c2df8ec2c26ab388c4e64e8f33c82a93
F20110113_AACZSY viswanath_v_Page_245.tif
50fe53f1983e09f1b37532fdc29daabf
46cd63e239c0bda31e1e94ce7c480071c5950960
52155 F20110113_AACYRW viswanath_v_Page_379.jpg
2e4ff0b2fde3c9d50beea35a31a1f26b
4c2cd515d65822315e8ee1ff6d8eedb22329575e
20179 F20110113_AADAGO viswanath_v_Page_172.pro
701b518f1aad6f3566685180a0326992
b37399335eac61218f9f68c08055586ca7a3f347
17212 F20110113_AADCIT viswanath_v_Page_407.QC.jpg
0f6cddf45fc6128975f0495fdca6c70b
35a9b97bca7ee41a29084869c99bfb023258d30b
F20110113_AACZSZ viswanath_v_Page_246.tif
cb3598b2fd642ad24d4f4fd820edb0a7
4e9d687b169f61b08de4fa3ae90a8580f7d51ccb
10774 F20110113_AADBHR viswanath_v_Page_017.QC.jpg
b4445413050e36b7094f6dbc2e28f1ee
fad9476d3e11e3b55f0a1d3a71ef005deccb1682
50636 F20110113_AACYRX viswanath_v_Page_382.jpg
4d560165fc99411f6cbe460f8217bb85
50203e85facb979ef1b238cf0528c493bba22032
31798 F20110113_AADAGP viswanath_v_Page_174.pro
705571ab6f404a2e18b569c1f14e6c33
af1d7507f69bdf0d838e5626fb3438a66dc5593a
5408 F20110113_AADCIU viswanath_v_Page_407thm.jpg
cfd1d0d809e6bb308ff07519f6be3df0
25a9af81c9be5ab7bc32829b6b44815bbda61cd5
F20110113_AACZQB viswanath_v_Page_166.tif
988493606937ff7976c800bb018eacf7
18c44a330c31a4867208c8d977315c897e6671fa
3463 F20110113_AADBHS viswanath_v_Page_017thm.jpg
71c799aafce386597d971f5946222d61
a7757fa36286495840fc63dff6efed13d841699c
75145 F20110113_AACYPA viswanath_v_Page_293.jpg
e260a8388171b369638e796b8722f405
0a1a6879576073fe16e1118f27f386b8bfe866d1
47195 F20110113_AACYRY viswanath_v_Page_383.jpg
e919e5398c68858c0c8b146477f26d55
9d3bb68f8f06ca0d6c3c4dc63a7a5d75d19b53f6
28788 F20110113_AADAGQ viswanath_v_Page_175.pro
8bf7a574eb089eab6559e7ecb9c83fc4
3d4ad57aa8e8707cae46218acac9adf054c04908
13624 F20110113_AADCIV viswanath_v_Page_408.QC.jpg
a2f4f918f96e52da3c078eab7760da96
569ff5bc44f8f0b8644853d03d92022f5a478449
F20110113_AACZQC viswanath_v_Page_167.tif
6a1e25453736bc2acabea62fb610b022
e4ee64a412e6b5d88f3bc609a43fa283309e8524
20548 F20110113_AADBHT viswanath_v_Page_018.QC.jpg
855809346706395efb438be8bf09f5e9
a7c5b0aca448419f8e0d9bb3062a46b1763d8eda
52284 F20110113_AACYRZ viswanath_v_Page_384.jpg
9be9ea80700a957f94cbb06e57674b3e
7271e9e931f38871d24d36a5f8744341a8a196a5
4488 F20110113_AADCIW viswanath_v_Page_408thm.jpg
a16ced827085985d292e83e6c53b5094
1974a114f547b815086b1e3160edab40725ff9a0
F20110113_AACZQD viswanath_v_Page_169.tif
5fa411cb3b652bc1c7a7d31ae273aea7
0cf5ff9bc96759b5fdb3a232f00446e4221dc06e
F20110113_AADBHU viswanath_v_Page_018thm.jpg
545b6e287b933e7cf169cfcddc65be99
49676e8f494ccfffcd4d0b49d4b642b054852e18
45626 F20110113_AACYPB viswanath_v_Page_294.jpg
38217c61abdedfd7fa41616cd50cacfc
60095a8a0a4648d6c8a2504fcd5e13df47842e0f
35967 F20110113_AADAGR viswanath_v_Page_176.pro
a15cff32d4e8b6e9bce5a63e5a5b200a
9631f42422d096eb27536786a1de7c0c22fe33ef
15758 F20110113_AADCIX viswanath_v_Page_409.QC.jpg
2e21945019043b24c6df699a44b549f0
4bef992e6fb0a2e329d074cae64c784b4518d146
F20110113_AACZQE viswanath_v_Page_170.tif
2148cd865f5cfb76aff28e4d3d5ce6ab
61423fc22c9943b48fdeb858901fb59e03bd38cc
6196 F20110113_AADBHV viswanath_v_Page_019thm.jpg
a84616e62ed128a80a764c4a0400a78b
69964aafd088b3b61164cd5b31909c86191bc4f3
67080 F20110113_AACYPC viswanath_v_Page_295.jpg
8b5c2415ba143baeb0b568b79efe43f2
9b5e7345893f7a29e15c7407a5a5fe5944e95a1b
4281 F20110113_AADCGA viswanath_v_Page_365thm.jpg
5f4078dbe091e099fdde7dff4027bf7f
af8b93c888be9d2de0d7d94faa09d9477833c917
38199 F20110113_AADAGS viswanath_v_Page_177.pro
d85be80a7b6c496fc50ff60479d1a86e
99b0f5933a0c52341a8b4514120d68e78da16a44
4896 F20110113_AADCIY viswanath_v_Page_409thm.jpg
865c5866320e409c4fbb0ddab2f584d9
9bb18003c8cdd8b179accc0120bea089f90c03f4
F20110113_AACZQF viswanath_v_Page_171.tif
ebff4f0b0207ee24885eab88f11329d0
9e353b14d9b13ebc267da0e3eea7b54fcf857c18
40111 F20110113_AACYPD viswanath_v_Page_296.jpg
fa5cf69beefbf3d2791a78dd6cf0cfb1
00fca2fe0fd6b87c8724d5450428d178934d1e18
14442 F20110113_AADCGB viswanath_v_Page_366.QC.jpg
554d6f745ee08e11ee11ecb7a0c1524a
47230e212b9c772ce35f5be26ee840930c5660dd
41265 F20110113_AADAGT viswanath_v_Page_178.pro
38409af6806baa683a86375fd90a004d
65451bb7a101347558130cc09592ea3fd96a68f2
16608 F20110113_AADCIZ viswanath_v_Page_410.QC.jpg
439f261b7c083bb241170edd021ddc76
19af664f9480079ca8d105617fe47de0cf4b5049
F20110113_AACZQG viswanath_v_Page_172.tif
d390cd6a27cb94fc412e29c30f23025e
a4295f52c6a8ae825dca1e843d87a0fd3c1ca84b
22763 F20110113_AADBHW viswanath_v_Page_020.QC.jpg
f7fb272f8342dcb4d7ca6b493868f4b3
cf2d9ffe26456631442e1d08becffc534f2305b0
45384 F20110113_AACYPE viswanath_v_Page_297.jpg
89d93e47acc95544ed049a1d3e85b6de
fe2a389a17ce1881d8b722f08ff48e6b77f7a74f
4504 F20110113_AADCGC viswanath_v_Page_366thm.jpg
8c5d5033aa772b27dcf29eaaa90cc7f0
b85c394ec56e19b5053f5d7edecfe2991f886859
42709 F20110113_AADAGU viswanath_v_Page_179.pro
93cd5ff13cd686e10b9f3567adda1285
ce8be4b71bf3bc33b85854b10ec8d0b66c097f1c
F20110113_AACZQH viswanath_v_Page_173.tif
5148f5c212ad0f3b24f5b01f2ba4c17b
461af6e0dba67db55d15d219c0f1a29bc8cb7f9c
6316 F20110113_AADBHX viswanath_v_Page_020thm.jpg
bcf1a6027b6da30d63f77a45348c3989
40374fe6db0a1d3af8bc67ed43cba7bbd50e48be
75181 F20110113_AACYPF viswanath_v_Page_298.jpg
ffa1acf509f404b9eaeb3de79a2f6230
eca528bae08d4b368bbd70aba8f025b0aa80ab48
6230 F20110113_AADCGD viswanath_v_Page_367thm.jpg
8a6452aa4a7abcb493ad231e3f8dcc4f
4b7135bb678c5135e83fd1d5c04a35b01cd90a3c
36130 F20110113_AADAGV viswanath_v_Page_180.pro
b92bde0451b3ef5a91c65c2a41f74820
5126c556d371e5f1555d43facdfa70dd7ca674ab
F20110113_AACZQI viswanath_v_Page_174.tif
37267b29afae84048b5775cccd8e30ed
d842d91d4cba1f4a5e984ca73e55bd0b7ef0c61c
455 F20110113_AADBFA viswanath_v_Page_410.txt
982092f6025bb0705b5c2b8c9487684b
f383c199ac73c1014176a4db4065873cb46b6b74
23965 F20110113_AADBHY viswanath_v_Page_021.QC.jpg
50f6a3fe4d374fe620967e6fc1e6ca67
69e0f9323a97fc6dd69fca0a1620cb2808033b4c
63974 F20110113_AACYPG viswanath_v_Page_299.jpg
f88dacbb66d6170efef42110094028d5
0d482b73b6418c1de6785f7d04c79aafff9a6da7
6446 F20110113_AADCGE viswanath_v_Page_368.QC.jpg
6d54574e549e2fa31da81999acb39353
1742e6bd0144c97017b6ad3a9bb1f1350e821011
42948 F20110113_AADAGW viswanath_v_Page_181.pro
c36a32e2117cada4c75e308e4895b63e
bf3959e26fcbce50b2ec0246e962f9cac563729e
F20110113_AACZQJ viswanath_v_Page_175.tif
08a04b1ed67ee50e8d72f6665f7d4474
f5d1773c434893b7ceab4a838c74d6f0ae5dbacb
636 F20110113_AADBFB viswanath_v_Page_411.txt
d80e9e990b2ef5a1b4a1e8f81833be9b
30fc7b1a52a84b125c1a3879f83020a23ffb61e7
6437 F20110113_AADBHZ viswanath_v_Page_021thm.jpg
79a9881636c57b65b0f93fd9e5efe574
55e42949b77d296122f825de489174e93c3bd458
65085 F20110113_AACYPH viswanath_v_Page_300.jpg
17d9815eba68ec4c0dc713a0b6029a3b
c9b8d0250aacc6972293dcdb3ca500e22829126a
F20110113_AADCGF viswanath_v_Page_368thm.jpg
0235cdfb23548f6be5a2c401d4007cf0
3a15f7bd1a05b7eacdcc71b42be34cc86dffedbb
19086 F20110113_AADAGX viswanath_v_Page_182.pro
a4a741c1865a8511e9721a13173d3ea3
de348ccb5967eff0fa73e9b3054a91272a365f8a
F20110113_AACZQK viswanath_v_Page_176.tif
1da4213635c82811dcb6b5740ae0e3ac
3dd9f728009fb4cb2e1db70c4e9782eb4b75ffd3
508 F20110113_AADBFC viswanath_v_Page_412.txt
208b1d6a1a407e5ff250c7969df911e2
b388d29f4b43dc67f32363309f3dadb4cbf5473f
42353 F20110113_AACYPI viswanath_v_Page_301.jpg
870c06b6e6a32ed155754a4d5a8d5056
35d42c769d71b69334ac056d7d5cc3285084c271
14801 F20110113_AADAEA viswanath_v_Page_103.pro
5f432160a6e2b518323aebe89e817b45
e9e486991fc49044d02c1dc5c53f966c1d4bbf07
12666 F20110113_AADCGG viswanath_v_Page_369.QC.jpg
49019fe6bcd8a1adbc151067f4057bd4
a9665458c0971a8991bc5ad5ddad55a8796c357d
14482 F20110113_AADAGY viswanath_v_Page_183.pro
1ecaf9dd3458a47660d1934f5a88c462
c0911aeb2bba4819106a70f01a2006a51a9cb86e
F20110113_AACZQL viswanath_v_Page_177.tif
10463a56a1745d2ebed40762a09efd34
1a49f378442f9a69afb6007644c748dada0bf609
546 F20110113_AADBFD viswanath_v_Page_413.txt
7b15a6976f7319013ad79e4bf16eac14
edd48624966ce018960f4bb298cabe816ef839ed
45989 F20110113_AACYPJ viswanath_v_Page_302.jpg
470f7a4f43f4139c6857e7f096ca7d01
74ffb60a0e4c5b79290b93d548bffc78a8a353a6
16030 F20110113_AADAEB viswanath_v_Page_104.pro
84dec8fa86f8cb3dd5cf8febbc78fbe0
510dd2dc4d776583c88c26fe66319921a89d8785
3903 F20110113_AADCGH viswanath_v_Page_369thm.jpg
1fe2fd33a75a3a1e77b7bf379f939529
9729c8d6b0f0d0a0038db5a3ec9113dc8141c6f1
45414 F20110113_AADAGZ viswanath_v_Page_184.pro
a57d20789280f7b93a42f177bb78f473
af0a0e7d708b5b4484f0779e6835c28af0c47dd5
F20110113_AACZQM viswanath_v_Page_178.tif
473431707660e50ec17fbeeffdc8226e
a215af34367f8d0a373841d0166914136a634713
F20110113_AADBFE viswanath_v_Page_414.txt
bac5ce419f777261c3de44af5103b786
1dc770307461caf3fd35eed6027b0b18bd65a8db
73924 F20110113_AACYPK viswanath_v_Page_303.jpg
4f1857e38e9a1f485700809d3ae02a20
2f20292b95ad4ad1ed5f5577655f3852bc65db5d
33711 F20110113_AADAEC viswanath_v_Page_105.pro
0886807f4d8669cc5b1fd0b3dda2237f
128802746f509b46b3d5afaffecc5b1f4b6a3210
13276 F20110113_AADCGI viswanath_v_Page_370.QC.jpg
a67f904c6f28b5072921ea8d4400ddca
66cbe4f7bbe312ad101e2705cb0bcb60ff9bd3ae
F20110113_AACZQN viswanath_v_Page_179.tif
0dc6af18d96cdee5f8d1c9783c180ec6
7faa8ede0a399e64c02cb2579ba2131f32c7958e
769 F20110113_AADBFF viswanath_v_Page_415.txt
2759cf252ba75e4a92d900c18104ab2a
ff3997dbaf25cfccd54b09426d31160c43566f39
41276 F20110113_AACYPL viswanath_v_Page_304.jpg
a329e197e3c9b60efba2b7fc5f970b49
a081eea73ffef73b1852deb5686573a4e575b869
36702 F20110113_AADAED viswanath_v_Page_106.pro
9879f8f01ae5bb19e18d7ac4205fa280
228b0645a603f014d8fc54e916622ba29776e605
15192 F20110113_AADCGJ viswanath_v_Page_371.QC.jpg
07b1e60fd5bb91897b2ce163ac5d2c63
1f96af9a052ac8169d7c64faebf1bc89f0e5f8db
F20110113_AACZQO viswanath_v_Page_180.tif
e1d720e6c115706e07776b7c53869163
bcc2e5d815fa05e7b58844537e8fd55f1e1f3608
510 F20110113_AADBFG viswanath_v_Page_416.txt
17e98df7374d074cfcb7f3623f5a369f
c5e1c3f2bb83179122dd71d556b290f9ca40b36c
37676 F20110113_AACYPM viswanath_v_Page_306.jpg
18b06c8b6f4e0b97e03234d335f087f4
f728647c392a7244d159d318bd5841d59838c817
42423 F20110113_AADAEE viswanath_v_Page_107.pro
d14a00abdb8c8d884f905ef0acabbc92
b1c7f8ee906457a1dcf9e184576480ed0ffc18ca
4728 F20110113_AADCGK viswanath_v_Page_371thm.jpg
ecfbc43828ecf8ec5c1bca1accb81bc3
bc4c7ca4249bc3f755d1e5103f8c997442a9f8f5
F20110113_AACZQP viswanath_v_Page_181.tif
5aac3cee43fb98490fe00cf776f98e07
51ec26f63c687bc19239394ebd843d9947b271eb
520 F20110113_AADBFH viswanath_v_Page_417.txt
76e15425caebffe1bfeb7c499587c4a6
5ba732f8bd3ceb2573d53492c9a89d455999bfb1
43891 F20110113_AACYPN viswanath_v_Page_307.jpg
43686adb3ae55b4c341dfe1b79e7ffc2
15e7505f2320df3636cdc9ea33e797c6d3b79547
62944 F20110113_AADAEF viswanath_v_Page_108.pro
b8acb7d1e8cd8475a8809536b1cd37a7
c369ddda30d1541f34e627c3bfa459da7c9322d3
16332 F20110113_AADCGL viswanath_v_Page_372.QC.jpg
c6ed0a4bcbc2815c9096ffeaa46d1b8b
21a9c5b8d05b18155fb4d978a108894483401352
F20110113_AACZQQ viswanath_v_Page_183.tif
ad1a900d7661931acd5f38889a7ab8fb
736ca8ae5e60bc731a7b85054a898a964717c64b
586 F20110113_AADBFI viswanath_v_Page_418.txt
04b763edddb09d95cb65bf864f637170
1a1bd900a14decfaf33d0e2b4eaa1475af63e3d1
72332 F20110113_AACYPO viswanath_v_Page_308.jpg
6b2623532a8ab39f575c30ecf397ee69
6319d38a537b4dc7d329ec32e9f0ef6dacd555d7
72524 F20110113_AADAEG viswanath_v_Page_109.pro
a3749c4b99f631edbeafa9abb832891b
9e98e6e83017ea8334f475c7cb4bcd241a0c3819
15771 F20110113_AADCGM viswanath_v_Page_373.QC.jpg
34cf3b81f8f5ae3643a979675f333b1d
66b15cefcf633522cfdb43b3c9f4947c8a7d4701
F20110113_AACZQR viswanath_v_Page_184.tif
dc619a7e0f6d689b5544809c7d1dd92d
fbbd2f4cdff296eee71008a8b9a46bc0f003dd3f
F20110113_AADBFJ viswanath_v_Page_419.txt
f47f1784d45ded3aca3d45b3213015cd
09e7e3d56d09e39370f4723f13621ef83a1b0f1b
16634 F20110113_AACYPP viswanath_v_Page_309.jpg
134d832874d6cb8fbf4a70c3b32149c3
89e78bf78a903806481accf4e0cfc64910cf0999
64319 F20110113_AADAEH viswanath_v_Page_110.pro
eae6ee892a107d50c49024c63b28a9b9
c438deed4f0c5ab7dde66bbea53403488ba3c519
5074 F20110113_AADCGN viswanath_v_Page_373thm.jpg
9d89b4bc187246835c584517d2ff8a54
efdb3bb80f8b85e1dbc6e2fcd00e38fecca7f0c7
F20110113_AACZQS viswanath_v_Page_185.tif
364f92a686ba8267364217b88f9247ab
d2e957dd902836100d78fc93cac67149cb92725e
420 F20110113_AADBFK viswanath_v_Page_420.txt
3995ea2c4d6959cb22375665ec0b0c57
1e726d246e382e0223ac6281f8f30e188a1a819c
61639 F20110113_AACYPQ viswanath_v_Page_310.jpg
8608a8d33fde44bd1f47e65eef5c6ab2
dcc143b3a5260fafc825bd6bbf65acb9787d147c
64068 F20110113_AADAEI viswanath_v_Page_111.pro
e41ffa4660c67a3866d94c26cca982ae
a134479cf727acdb7a097585343bdf88543e479a
4854 F20110113_AADCGO viswanath_v_Page_374thm.jpg
8043786f8930b88882df2dacfe71c832
75a9fd2a1e183bb9b16336c06201bc437a8c8de2
F20110113_AACZQT viswanath_v_Page_186.tif
197108b59faf10158974dd1f56529dec
486e823b38b6542d854954ea00ed47ad60e98c79
F20110113_AADBFL viswanath_v_Page_421.txt
912dfcbc9f495366257228dbdc26add8
c4ee203e1c8a41e6f594cb77fe7d873def17a893
45151 F20110113_AACYPR viswanath_v_Page_311.jpg
868a462723c4f089a292fdfa26a9a2bd
5fb5e70fddfc41d66456a308993159cd0d20046f
52927 F20110113_AADAEJ viswanath_v_Page_112.pro
7a5ae931ef17934169997b65a180a53d
8303f9caff78901670393e17f9e88894465171dc
F20110113_AACZQU viswanath_v_Page_187.tif
e9fc42570a162550c32a0bea413fbaf7
0b81fd8ddc2a0816085fe65555e3279ff3c0096d
550 F20110113_AADBFM viswanath_v_Page_422.txt
4798e1b35a80edf335bdf5a4887f63d2
5e47e18b4c68c78d32bf2c60201e3b49cacadecc
26655 F20110113_AACYPS viswanath_v_Page_312.jpg
3dfc8d361c01610618b2c4fb29527c91
48c15b37c2aabe0f462617fd4f90dce68184f19e
56656 F20110113_AADAEK viswanath_v_Page_113.pro
c238de60fbc5035e0843c45ca8dbcd35
b38b6bb6e73304c8a7471ba351dc1e93b857f87d
5399 F20110113_AADCGP viswanath_v_Page_375thm.jpg
dac0597b7dad62cef95488d4a9f925f8
9ce9eb400d0a1d8ea94819d77cdbdf54fd8db868
F20110113_AACZQV viswanath_v_Page_188.tif
e66293ed8b598e0d090011ce601fe364
9a935623496580d1b445d5466731e79cfa8ae755
F20110113_AADBFN viswanath_v_Page_423.txt
e9144ef74e4f313f0f9577a471215b0a
1c4dd568f7a77541d6a4cb54aa08a2e9576d4fa1
69070 F20110113_AACYPT viswanath_v_Page_313.jpg
e179f15069af8b72974c62b899eba144
8cf437dd394798706e86d1e74e7350f4fbc12487
52220 F20110113_AADAEL viswanath_v_Page_114.pro
81cfde272918aae390697519f1601526
0735a8a10d01220030c921c40a9571376644bf6d
16202 F20110113_AADCGQ viswanath_v_Page_376.QC.jpg
270be18b64c2ad9897b822767320bee1
847614f7b0a61a6962f12bf90c4f586409ca6dd3
F20110113_AACZQW viswanath_v_Page_189.tif
6183b60615591cb91b8d67f6c977f039
7c8002a0d0f46552d37380c977502285621b73fb
F20110113_AADBFO viswanath_v_Page_424.txt
eaf8fbe53aeab7538987244b2d3786fb
0386b8a5ebc89a7c8b4ff06dcc2aa870e81c9f82
31745 F20110113_AACYPU viswanath_v_Page_314.jpg
c9c2efde329976a1f949fcaa37083e7f
875c2384b2641fa2d3b20aea7b733570edd90bf7
46136 F20110113_AADAEM viswanath_v_Page_115.pro
5c30bb012c6a0baeafc77546c79f4380
d526e022819319d200c3e471e04144c30f3cf0e5
F20110113_AADCGR viswanath_v_Page_376thm.jpg
6d8ae066a1f11d4405d08e34ad81254a
31b58f78f6c013adb3c1806422456babc7b0276a
F20110113_AACZQX viswanath_v_Page_190.tif
eabf6a8fb4bc196f1f3867c9a357a663
94b6aeb5733caf1d344b3123d7dc866fa78396f1
41189 F20110113_AACYPV viswanath_v_Page_316.jpg
cd755e657b613f08da05ae86a8e15366
43c7137fca662c9c8d9755566f6421769ed8bf82
32137 F20110113_AADAEN viswanath_v_Page_116.pro
3dce5f7b3f87854924ab64d0496a6a06
b554adf741eb75afcf51603aca5fb937dd6d65ef
F20110113_AADCGS viswanath_v_Page_377.QC.jpg
32ce2f6ba24250b4305ea3fcfb96773d
031da3df5cc26c91002f659c1ac89f18c4376d15
F20110113_AACZQY viswanath_v_Page_192.tif
725921f2db1ef2f8a0982d74fc5d4251
ae57a151965287aa11ecdb11ee0aff0d31e8d5b5
1075 F20110113_AADBFP viswanath_v_Page_425.txt
d2b4cc5a544a54799a12eeb409d36b0a
76c2b527f4b0896150a676368b0a23c612e7b40d
45163 F20110113_AACYPW viswanath_v_Page_317.jpg
343aed2cb1bd0d22c3c7b7a91768cac8
2ae08d2907822f41fc59eb7a7a934c818dc09fa2
18352 F20110113_AADAEO viswanath_v_Page_117.pro
6cdddf6020411e97884c478b887703c1
620a5ea5ee4ff76ff655b2a9008aad00132deb63
F20110113_AADCGT viswanath_v_Page_377thm.jpg
67a10529d650cf68e032dbf0b8ec39ca
f1c5c7fecf2cb4c95394db6f0b103d37bcd33cad
8423998 F20110113_AACZOA viswanath_v_Page_110.tif
c7bccb6be031e621bb467a1a9d6bcca9
4f598c1b73c705411f24798bc6af5b17d36ce1aa
F20110113_AACZQZ viswanath_v_Page_193.tif
1d5376a3d74aef4a8b019cc5df28592b
843ca7f9d57716baa1db827fa53e2c0b06145dd6
2500 F20110113_AADBFQ viswanath_v_Page_426.txt
10506a3aaf725d5f0727d342061e5e78
e9f1e39c583f8fc4cb65a2c5edc6c084779f65dd
75019 F20110113_AACYPX viswanath_v_Page_318.jpg
102b5d51464a943ef0f77a16a140ea46
342bd27f0cb6fa183968718039106725fa354c21
16352 F20110113_AADCGU viswanath_v_Page_378.QC.jpg
a3a286a70710f27ea5f444b0e83d71f0
154287b458f122da174cbd51bfafcabcbd5c6cb9
F20110113_AACZOB viswanath_v_Page_111.tif
b94eead39ab1301482f9921ca6cbb7bf
6ce565990d67338ca6e783ea5d7984486ba851d9
2370 F20110113_AADBFR viswanath_v_Page_427.txt
4aa9890fb2a90451024de8cb93186179
cca263fb6cc4ff122dfb13ddb7804bcb2921eccb
49094 F20110113_AACYPY viswanath_v_Page_320.jpg
d662a453c42e71b245f0bb433a5e2f6d
6098594f0e58fe7f475daa5fba5f93f1a80218ea
59135 F20110113_AADAEP viswanath_v_Page_118.pro
d91425896648920c2b0feaadf7cfcaa1
1a4e8c29a500bf75ba3d7a43439a474627203ffc
5066 F20110113_AADCGV viswanath_v_Page_378thm.jpg
08bd2481ee54e8b95db82aa11db12549
8bb74ff091d1a66dbe3d7ec1f10668a1704a4361
F20110113_AACZOC viswanath_v_Page_112.tif
45f681e05ae135e183921f0abf27b2ad
05891ba5513cb6d88c654e9a0f90e39fdf3deffd
1787 F20110113_AADBFS viswanath_v_Page_428.txt
ce2ad2a748732eed9709c914eba58afd
54f6a5b08d13222b0375b07b888c795b2060c256
41826 F20110113_AACYPZ viswanath_v_Page_321.jpg
2914bdafa2fb2a9a7bd4947d9b704f28
8012e3c3c01e95d83afd146e919ab55e01bbfde3
38313 F20110113_AADAEQ viswanath_v_Page_119.pro
a5199279d06b00a0a7758b8ff683890b
300b769cbaa483e0f28e751f8afc0b5d313609e2
F20110113_AADCGW viswanath_v_Page_379.QC.jpg
ba4c475be3a97a82cef60a6413826784
e4df817805ff3f013ae3cc5d2d7694b965cd96dd
F20110113_AACZOD viswanath_v_Page_113.tif
2ce5b1b96037f8194b053c04bc26be0d
5c7f47f9d0b984bb9a2e6bd6f9fd5ef70462de72
2438 F20110113_AADBFT viswanath_v_Page_430.txt
0c2b9de15c0a4299ff7f4315761d900f
f3d1614af1a505c37992ece2e5a3eb4f69f92463
76612 F20110113_AACYNA viswanath_v_Page_230.jpg
05a8c42887d03942af89a9587ea13569
d5e74919d9f45feed537741a5c4eab70ef7d7dcb
48331 F20110113_AADAER viswanath_v_Page_120.pro
9f1163c9db66ad6adfcb023580f96230
8d63c993344ee766c89610d8a1873181903840b2
5203 F20110113_AADCGX viswanath_v_Page_379thm.jpg
b71b29d6722d75b052f4dd472215f8ac
98fe0edc89f53eb0f215cddc596fe43508dc2f17
F20110113_AACZOE viswanath_v_Page_115.tif
4e1e2e62201da53c83b1d161002993b5
42ebe2e90251a79fcf9ba71effdbdf13aaa973ab
1750 F20110113_AADBFU viswanath_v_Page_431.txt
ceec2c705a3de9352d609bccc7c197e3
754b3d674418e4fab3b709f7c98340c85c01c65f
19742 F20110113_AACYNB viswanath_v_Page_231.jpg
4854e36d378f6edc315a6c8a4671f329
8469c773d50f940e6674a98553b307e56ab933dd
4266 F20110113_AADCEA viswanath_v_Page_336thm.jpg
4a5c92242388f0aed31227140b3b14d8
b8f68870dd30f8ee14935b695ea0533b261e91bb
59098 F20110113_AADAES viswanath_v_Page_121.pro
fbef053700cf0b68104391ecd331b9b2
82878155d335ed960b7196b920363d6b84efa97c
16067 F20110113_AADCGY viswanath_v_Page_380.QC.jpg
256182c6064a2985760fb200cf02ebcb
816ae26311ab4cfa21221ef903d7de082566e40e
F20110113_AACZOF viswanath_v_Page_116.tif
d897016d281511bfd264bd442575c0ff
d46d04e54ce3c5c3b95637e4b1f7176fd9c1a17a
1963 F20110113_AADBFV viswanath_v_Page_433.txt
7b7259bdb6d7558b9bfcff366fb2efd2
7feac548f55e7b046a521b7614e0c6579eda64cd
55636 F20110113_AACYNC viswanath_v_Page_232.jpg
8cc6585097c18a85198a7cb4ae8ed9d2
5d003b11de170f2aaf238e9b45547515a855e420
7122 F20110113_AADCEB viswanath_v_Page_337.QC.jpg
52d437978312e6bd30fe2f16bb730081
07fdb54ce3e3631fdce663b413cc01b4e6891aa0
39761 F20110113_AADAET viswanath_v_Page_122.pro
ca6fe2246aea2ff8712be13805eea5b6
f7f89788ff6b721785916f8e7905bab48f8aa0d6
5115 F20110113_AADCGZ viswanath_v_Page_380thm.jpg
e7d78d459980dab0de46c62d5261a449
b13bcc355342bc09609effa21d735caba799c0b0
F20110113_AACZOG viswanath_v_Page_117.tif
528eded307cda282f888fd4c1a2176ac
b54d4e4d5430abeb585375c1136a0acacb060ded
2480 F20110113_AADBFW viswanath_v_Page_434.txt
c7bd71382f305c17cb0d1481e8277b1e
60029b9adc54bf521253187aeae86620e6689f46
40948 F20110113_AACYND viswanath_v_Page_233.jpg
4399e2054ef3f1076a0105e66ffc7298
d0165af796191b7650b198f9b7be6dcb9f9a148e
2499 F20110113_AADCEC viswanath_v_Page_337thm.jpg
830b938b1147d935a352d3446f2979f9
65e0a1f02266c57ae693176941a6c4e0cd21d9f1
36550 F20110113_AADAEU viswanath_v_Page_123.pro
c7dbb5dbe8b8925f0978793f66200e52
93c251ad15d541cc4835a980dae73b8409e8da83
F20110113_AACZOH viswanath_v_Page_118.tif
666942aed5b8345db6899a4bec5151e7
7666673175f4212c94430bbcd4894e48976c11c1
1952 F20110113_AADBFX viswanath_v_Page_435.txt
802868c938b1b821e3608f908f0bd4b7
f2dce19c36142251342a9847aa525879d055428a
40997 F20110113_AACYNE viswanath_v_Page_234.jpg
e4847ed17a254f84624b188b0479961a
19bc040021b594c7492174272580d087a7dd1204
22695 F20110113_AADCED viswanath_v_Page_338.QC.jpg
7793e0f7d6c450c7a2ca2129145c5a4e
c75af7cd7430c21b585d5af6e2c5e798d2a75676
16130 F20110113_AADAEV viswanath_v_Page_125.pro
d106fa63de4b2227bc770d76473908b3
3ef087f3fe4e45196bfd89d092fa944796846609
F20110113_AACZOI viswanath_v_Page_119.tif
dd2435b82595da6809cec4a7eba42ea4
6e671ad144aab15bb1b405f64b7701d2b4719b99
211 F20110113_AADBDA viswanath_v_Page_354.txt
5e775f69e44d1929e01f8b3a54e3c627
5bb243f02109d2584497efd674d3dd906b6f8388
1894 F20110113_AADBFY viswanath_v_Page_436.txt
ceb02723e7448cfe56c71bed196f3708
b21117096e7c2f623fa3d892370bdac0ec3eab97
73715 F20110113_AACYNF viswanath_v_Page_235.jpg
ddb7aa858bd4eebe48b8ba860f87050d
abc6f2d8c96db8dc056d9d987cba89d756257111
6455 F20110113_AADCEE viswanath_v_Page_338thm.jpg
b7109c9d749a330f9d8a60244a2ab37e
b37b382839cbda9f02c8d856a9b475f4d8395bb0
46529 F20110113_AADAEW viswanath_v_Page_126.pro
53067bf489c11663a2217b99272d701c
83ec6d45907e197a3babf9c8f4e40a46a69d850f
F20110113_AACZOJ viswanath_v_Page_120.tif
becfda606d3abfb0a308a17ab8e96a24
d896fec43e34c091bbcd2fd6acd23bd1ce8a90c1
732 F20110113_AADBDB viswanath_v_Page_355.txt
377a35320f4439c77875a78f1ff369c4
9d6669858d840641177ee08ea2dfe3140f7f82f9
1533 F20110113_AADBFZ viswanath_v_Page_437.txt
019b7d51421a7c2d74ad6f486ae17f7b
92c21690bdc9290a736de637a8fc9ec548d413bb
46352 F20110113_AACYNG viswanath_v_Page_236.jpg
7e91ec009c711a00264cbcde46ea3306
932c49aed75c944876e200161cdd578a04d42d45
19348 F20110113_AADCEF viswanath_v_Page_339.QC.jpg
2478538c70a9c2ae4cd65932686beeb3
463090b43970463f5560644a35fb7a6a0cf1ff92
46961 F20110113_AADAEX viswanath_v_Page_127.pro
5cd8d4c6f0149c5bfd87c24c6de1b47e
a3d58a730341299b68186870c2868ec0eaf1344e
F20110113_AACZOK viswanath_v_Page_121.tif
ecda640648bbbd03788a28fbac7846bf
5519d4e19f5a68ca1909b58095af0d1ca5ba5e0a
2064 F20110113_AADBDC viswanath_v_Page_357.txt
199d9b94f362fc83fa58e0ae13e19039
a4b5f152751e7c42d3000acbfe2586cee11a8f9b
58180 F20110113_AACYNH viswanath_v_Page_237.jpg
8d6e4fb68673c378a3f421d35ac73531
48900281627baacb05eb5d72fe9f4d64cd73be5a
5453 F20110113_AADCEG viswanath_v_Page_339thm.jpg
2446ae49a75422e063224f3bf0d16ff2
0f35e1a5ea57380dffdc92617d50651bac5d38de
12715 F20110113_AADAEY viswanath_v_Page_128.pro
4de309309fd64501897f7258ba31dacf
ce30a1172948ac052d7fabe6843fc68d038ad14e
F20110113_AACZOL viswanath_v_Page_122.tif
8abf70356fa6fb1a413839ea8f0ce55b
2368380ff8187ef61e3db3eaa97d11c079944479
296 F20110113_AADBDD viswanath_v_Page_358.txt
6b69cff824208bab8420436bb4456981
8b13f5e68d0eafdd6b74071d60eac6eff61f4033
71768 F20110113_AACYNI viswanath_v_Page_240.jpg
c2debe932d1dec81f588a6fe07c8f122
c3b5df394cff7e6a61b1ff0def4f8360efc37fa8
22584 F20110113_AADACA viswanath_v_Page_042.pro
a32593eb13f36bc630aaf9e541188550
82b53786ea5d61180de38ce398dc1af70c0acb91
17976 F20110113_AADCEH viswanath_v_Page_340.QC.jpg
53863f205e0724208aa65999777ac274
60851ee657b245eccc140062e7fc28379482b3a4
16087 F20110113_AADAEZ viswanath_v_Page_129.pro
df0fee8fb06c61af6120e0c3e5bf8c09
cecb2a7ad29ac41b9e9b16386c66d15b2ff09dff
F20110113_AACZOM viswanath_v_Page_123.tif
128efc07b995e769279918bc29083a09
161ebb1ac1fea4d79ee0c19d8fcbc4321da3b994
357 F20110113_AADBDE viswanath_v_Page_359.txt
9fcb13ce7cde9e6ce6e6043c1e71f24b
e0362c8ec323e6b949269eb58dc71587fc65d6a3
45621 F20110113_AACYNJ viswanath_v_Page_241.jpg
5290254a304b6c66195fbcb72acc07c4
4a832fe55a962b7b9298255bf06c2bbca381ae4a
14839 F20110113_AADACB viswanath_v_Page_043.pro
0a5f0972b9e8d0d2a449e7312ae5125f
d0e971e951c14d8aeef55e5638667e756e65c6ed
5720 F20110113_AADCEI viswanath_v_Page_340thm.jpg
a5290129fc1ba73688bd13ee54abc3f6
940f5b2acb1d54b118f156995234a47756ad6dfa
F20110113_AACZON viswanath_v_Page_124.tif
850badee1ca6c46d9478b3d3c4647568
9c5b7ed75643b918f119e8568ea9d0bfeab2e4a9
1103 F20110113_AADBDF viswanath_v_Page_360.txt
96c762d637aa035affc88cdc63faa36d
d94d0d38dd85dc4b2d257864b8593c6c5d62808c
F20110113_AACYNK viswanath_v_Page_242.jpg
8dd86f36e111f0da0c7eeb212366208b
b0dedb62d5910bde8353e164284375e97487a8a1
11222 F20110113_AADACC viswanath_v_Page_044.pro
824967ac74abb0848f0926df8b5dd507
06addadaade03c9e690a3dc2e4a122953fbf9b44
12378 F20110113_AADCEJ viswanath_v_Page_341.QC.jpg
963bc1d9082372cb46d556dcf3010392
eed2340ed601cb8c94b5a43cae419610773a85fc
F20110113_AACZOO viswanath_v_Page_125.tif
c837092d1d765f224ec413b45cb7b6d2
823a38ec5a9f6756aec3e23a9019981ed87159bc
846 F20110113_AADBDG viswanath_v_Page_361.txt
ac1ce3f996c5db13f9deb110feb7acd7
ad9ca1a014e9686df374ba1655d46f794746ba09
45899 F20110113_AACYNL viswanath_v_Page_243.jpg
f3d7a427c6e9fc24b3db67b0164e7fc1
3a3600301c3ce455f6570884454def9310d503b1
13717 F20110113_AADACD viswanath_v_Page_045.pro
b048fd0b370da091e0cc80134ac08627
06f1dc8650a2a07379c0001008bd5e8d45736269
3924 F20110113_AADCEK viswanath_v_Page_341thm.jpg
4b08c6dfd1bef3862a8b5154ff3bda22
70d063f0e03cfeab394bb8bb36e11c8fdbd4af49
F20110113_AACZOP viswanath_v_Page_126.tif
40db385df4231326f57f3c9cb2b7e3ec
8b559822d99880c9d0301117b6aad778fa2e6732
2017 F20110113_AADBDH viswanath_v_Page_362.txt
31e034753264cab8b80441eb61909c03
828c0344b62639ed2ced60c262e182f8f18ddbf8
25578 F20110113_AACYNM viswanath_v_Page_244.jpg
8741ccbf1ba6b5745d1a0cc1e66c24c2
a62e8b578a71f758f0897dff5c3fc7d86eba3282
8550 F20110113_AADACE viswanath_v_Page_046.pro
79429cb3137c77d56601c49c4b4984a7
01c6420c351c7d28cd9dddc14b04dd395fd1ab63
14064 F20110113_AADCEL viswanath_v_Page_342.QC.jpg
75c0c3b2c91a283f3366be4c9a1d0943
0ba629b47d75258f1f77278d83bd8226fa056806
F20110113_AACZOQ viswanath_v_Page_128.tif
7786fd4f031fb7400fccc5b3d1fff211
c436543007b5f7e0e83bcdebe2e77af575abb38f
911 F20110113_AADBDI viswanath_v_Page_363.txt
dad0f7870b42b41c4802cffca310aa60
d127967f12c1e4cce6cf2d9f9261b8f9024a1214
72175 F20110113_AACYNN viswanath_v_Page_245.jpg
340426f7e1331ee69a9dd64d6d372d5e
55a74ef4285b863f95b079614e3ebbbf995517ba
8120 F20110113_AADACF viswanath_v_Page_047.pro
a0ad1617f07bb72360298f9874148bc2
5b7be735f22323cff8fd73402ed110471ce18097
4519 F20110113_AADCEM viswanath_v_Page_342thm.jpg
148f3618a4c7488cbb999b78b84ad4c0
dac4ed261cd5742549d2a499ab05b81796afc602
F20110113_AACZOR viswanath_v_Page_129.tif
c0cf903f17d1e2615488632c310b3f9f
fc8dc78b5488b40278f752d880f78af43486c788
485 F20110113_AADBDJ viswanath_v_Page_364.txt
4a5bee45384842fed51ba327ea0928a5
a38271bfb9cc2167c250a4d080df0c22ce24a685
59614 F20110113_AACYNO viswanath_v_Page_247.jpg
9d1a98d4509ea3b568b50891f6e9cd61
fec99696c7d6ef95c02d5ad1b0dd7ccde26fc871
12640 F20110113_AADACG viswanath_v_Page_048.pro
f56509cc081fe1d0ee393896751735a7
39272d93c960666173cb582f73a140e55622990c
F20110113_AACZOS viswanath_v_Page_130.tif
53522a27ff14007a4093eaa0693f883f
f297e63d66b5890ccc1f02e252ff4ce6a07de836
975 F20110113_AADBDK viswanath_v_Page_365.txt
2ef2b02ef3af34404a48fe26c4b2084a
e2890ac85d316c9e427972a3d34a66a3e2efa053
41654 F20110113_AACYNP viswanath_v_Page_248.jpg
661140c2ec7c402feff3d57eac518ff5
71d9ef12a10de2d20e2f206510dfa95e374daca6
14690 F20110113_AADACH viswanath_v_Page_049.pro
2bb3b7dc638e4a7aa66e4586ab49112b
62283fc8547b9240e606169a23e53a6ba4196a30
23346 F20110113_AADCEN viswanath_v_Page_343.QC.jpg
a550ea23c594527c6fc0aef1d5e73df8
d21f55a9987ef0f9453f4efb438f98282d7cd9ee
F20110113_AACZOT viswanath_v_Page_131.tif
c924d1be0363267b80827648e395bd23
f7800649789889318dee1e9c752de124da34c672
829 F20110113_AADBDL viswanath_v_Page_366.txt
5e26497c38647a41c1754870e147baa1
c60237c21aad45512bdec51b5743835f7a317fcb
48680 F20110113_AACYNQ viswanath_v_Page_249.jpg
599233d632f3048736e7d783017748f8
1ca928715ef688be2e954761a3e6c09ff85a9b71
45984 F20110113_AADACI viswanath_v_Page_052.pro
895cede95df381117f86aa280e4f99b3
57446fc0140272c68018afb6a7339a5d3d12cba8
F20110113_AADCEO viswanath_v_Page_343thm.jpg
b85050b270645197985cf96c033c60ff
cf18797c1182ec03a63bc8a6e5ed197b7591c7c3
F20110113_AACZOU viswanath_v_Page_132.tif
fccccee8b86191ff63a83cb9598ebf04
c1cf6198f88efcd183f21f89f750367062047930
1850 F20110113_AADBDM viswanath_v_Page_367.txt
92512a792a20d0f8d71631466c938318
6b9f6a67cac6d2fd9ea658b9a128f4b28a3fb129
73862 F20110113_AACYNR viswanath_v_Page_250.jpg
f855d1729eee73a1d8b6f6b75fe91b46
99f9f6c9c699feef7591a75a10b3f4bbaaf203ab
45734 F20110113_AADACJ viswanath_v_Page_054.pro
4f12a2fbd507469bd1a1c205d498c341
6a8b42d4fce777334fdde77c10d7f642cf1e7977
F20110113_AACZOV viswanath_v_Page_133.tif
ba116c1a31906dce7be29b4339863bcc
b0ad55af5af23f525d661b5d08fa4a5cec584331
64833 F20110113_AACYNS viswanath_v_Page_251.jpg
27cb62adf88e6178c8d393753a44667e
7b26986223cddef461d5f450ffedf9bbf43cfe71
52509 F20110113_AADACK viswanath_v_Page_056.pro
270ba9213ed97db55e973947784f325b
b5ccc3e9dc71de239fff1d4db01fa6b30b9e85c0
7659 F20110113_AADCEP viswanath_v_Page_344.QC.jpg
396787106e668328bc91e5fbdc7dc23c
d3d63ae305affa3e7ade2847b123fd40d94933f1
F20110113_AACZOW viswanath_v_Page_134.tif
53bba1935506804455c2d7dce6f5ee89
2fbf83f9435ab0747857fab133a01386fd766aa4
407 F20110113_AADBDN viswanath_v_Page_368.txt
d0df9fb8edec44cc40a2021248579fef
d7be26b8de95249462fc124b6923fb3d081856e1
57445 F20110113_AACYNT viswanath_v_Page_252.jpg
5539ac84dc140c867d0d37c99ac6bd7c
f7640697efac2294d6ccaed93ef1cc4f3790aa37
44967 F20110113_AADACL viswanath_v_Page_057.pro
8c683bd22ad1957a05b8c894efbde9b9
bbb5f06af8dd25cd57257940c671a18342845fd0
2414 F20110113_AADCEQ viswanath_v_Page_344thm.jpg
10a9a49ffdce0511beecdc89df6a9d4d
bc826431c155cbc0b8e6841f6aaee2e86c0481ea
F20110113_AACZOX viswanath_v_Page_135.tif
fd6b3a6b60ceaf6b0853c8542951ab24
309e17d8bb4bca195c9d5e5b94aa43dbddf3908d
372 F20110113_AADBDO viswanath_v_Page_369.txt
d35b766fb39d06f69362b25e5e5bfd02
f26310ee40b4c9bea8d09af22f3ea881eb356fcc
43982 F20110113_AACYNU viswanath_v_Page_253.jpg
0c2a80a4d536cbae644e3062cbbbae76
758fdd85233c6fc97217dd163aa38e7004c3ace7
40740 F20110113_AADACM viswanath_v_Page_058.pro
129d9ff14fbd7ff31e570e8e0b5bae3e
7e7092bbd7c1c2ae8a5c9aacebb63e6762a5215b
18616 F20110113_AADCER viswanath_v_Page_345.QC.jpg
16bef9c20d149bda2016f5ea7fd334ff
5794a503da2c9ed4fb0ee6d1302e1ea78735d823
F20110113_AACZOY viswanath_v_Page_136.tif
c2839c5c43bb020fee539d5a0c822550
e8be68e2b4263e7d5c9b74496643b4d7aedf4e8e
843 F20110113_AADBDP viswanath_v_Page_370.txt
ca1bcded71d8030e4d3f031b2250aeba
bc296b3bf4d7e592cc0fa235593efced0c04470d
49164 F20110113_AACYNV viswanath_v_Page_254.jpg
a60f1b4628121ded879dc28dcb0578ee
a809d6f7467ab81a9446ab053268369fde7ae75d
6157 F20110113_AADCES viswanath_v_Page_345thm.jpg
63c25be1aea3634328dfce02b963ac8a
c554f474e94018281bbef8ef025bea652fe784f1
F20110113_AACZMA viswanath_v_Page_052.tif
a7d8e62f000fc66398e0a4ad8c5e1202
6b4767d39da1a5f3c784f3e965b7b2525be5c085
F20110113_AACZOZ viswanath_v_Page_137.tif
a93fae699b04a5a21729b4e180240508
14810fe672bb79d58c49bca08aaeb3d8c951a053
957 F20110113_AADBDQ viswanath_v_Page_371.txt
8308b9f799cfb0bde95a45db70c91452
bf06b3f7a86b1f71190a4ce771643c6bd7ed6b74
70141 F20110113_AACYNW viswanath_v_Page_255.jpg
566be1699bebcb06bd5b43dfabead5b8
8cc4dc2c15324f48348a083315e0c9a4edce7924
54391 F20110113_AADACN viswanath_v_Page_059.pro
3e89115607434eaa9389d8b0b9a25a1d
c6f1cea2696e17ad80b25c903150c4564a9abd9e
12884 F20110113_AADCET viswanath_v_Page_346.QC.jpg
39ccd6ba62f3913d2258c503d58173bc
1fdd111b4303f031625d978631c0bf24582e6cf4
F20110113_AACZMB viswanath_v_Page_053.tif
beacfbfd6d092153bafedfc7b6839b9e
c991b5c098c5d4f18a836f74507fe5c63c652cca
1317 F20110113_AADBDR viswanath_v_Page_372.txt
65c88671f35e2277e2b16541e9239745
db4e71d414a83cc91cbb27aca7a6b8e0c54b0dae
53678 F20110113_AACYNX viswanath_v_Page_256.jpg
4f172675eeb262d5c3a2e4b372658588
58a40bb9ffc8ef04099705571ab0b4cd54ea033d
50686 F20110113_AADACO viswanath_v_Page_060.pro
c6173d371b64b63304f2e9ff557e8180
1470dfd2c4c6d220852389ac1b2db2bf2c4fdb39
4385 F20110113_AADCEU viswanath_v_Page_347thm.jpg
8d0bab7309afce021f24add8a5140adb
b10e73d0ceb9746bda659125cde5623296dee8cb
F20110113_AACZMC viswanath_v_Page_054.tif
b9293554cf16434985e2e56a6a4eead3
427a014649099b2e8077fc462af3851d442c8b2c
F20110113_AADBDS viswanath_v_Page_373.txt
be1b46c7b29711ab76b87a6d6ea282e8
df698d5315a026ffb49a64c91a7f3a41d9f48cce
43680 F20110113_AACYNY viswanath_v_Page_258.jpg
1875ed5c79103654c500efe56b4ddd43
6a0b92572e2eca5e4485b3bd9e335155226be69d
38609 F20110113_AADACP viswanath_v_Page_061.pro
4d99a3b6d4a190624c8041648922767e
1d946f86cab9a47e155a660fe1364145789aed3a
F20110113_AADCEV viswanath_v_Page_348.QC.jpg
ac0168f1da90b25fb6938763ba4dd353
b81753688822f69f2edd770d3de632d5c9dd30ea
F20110113_AACZMD viswanath_v_Page_055.tif
459625a6cf4b8102530fd66691daef57
cdfac23c7bd43411b06e89f34400200325c56a99
439 F20110113_AADBDT viswanath_v_Page_374.txt
a6a422eb5831af11bf60a4dfb52d282a
8b8acb172fd6c0defbb56511a93e2a96e6ca1fec
32952 F20110113_AACYLA viswanath_v_Page_172.jpg
f84f47d0b8839423b0d55887040561c2
139b4d736d9f3869142da758b92142e7044e378b
47030 F20110113_AACYNZ viswanath_v_Page_259.jpg
0b606e5be0baf2463bca8ae2199d670e
5bdf381e436b36efafba41db5898e4bb418f5c19
54420 F20110113_AADACQ viswanath_v_Page_064.pro
05cc940ccc5b8b131a2ad262e8e88551
1f6c5c4a3f90aaaa1179d8791dc7b58498b2eb1a
6495 F20110113_AADCEW viswanath_v_Page_348thm.jpg
816abb39f28b191b09c799e28304e12f
a6bd00608284f0bb592d1b52ce422b7bee85d65c
F20110113_AACZME viswanath_v_Page_056.tif
30ab98fda83847318a89438545acf641
577d1621c43ec92afe68c38aae5b4fab8e1654c7
F20110113_AADBDU viswanath_v_Page_375.txt
22a43f822127f28e915dcce730625923
3c9a8acc9fc8fbc89f1902f2f5e9aaaee4b5ba37
45526 F20110113_AACYLB viswanath_v_Page_173.jpg
a0f4389ad76c0c06b11905d741f1ddae
23d04561a8591646f6c5aa876a172aaf7a0accf0
33843 F20110113_AADACR viswanath_v_Page_065.pro
33e964a742ab49a998bd764cc1130567
1b99403cbe1b941b5678314484f10927d2e1df50
20297 F20110113_AADCEX viswanath_v_Page_349.QC.jpg
095aa0b0be7e8b861ff600cdcf0c69b6
e8691531cbcbd8ec5cabfc8797acea8f4d6e1543
F20110113_AACZMF viswanath_v_Page_057.tif
6e9b33712ec244e9e937874f2db8d5a9
a3103d5c5c4c9073b81c079233b0eb25a23eae6e
464 F20110113_AADBDV viswanath_v_Page_376.txt
4f2a743fcce25d36c7d761f134b06ad9
cb939448e18fb662b7da7da10d95c17288049663
42654 F20110113_AACYLC viswanath_v_Page_174.jpg
bbf91207a656412cfd78775d2b254c51
db91e5a2a82f3f006b5292540077d0b221e53ef9
13931 F20110113_AADCCA viswanath_v_Page_304.QC.jpg
de9392b614047e1b07db67fac32b17d5
ab80341eff8fb2864c8b042dd97169b3d172c1b9
41334 F20110113_AADACS viswanath_v_Page_066.pro
44628c11501c2c93993f7f977600442e
2f06925dad85f96d9e8b5bc825a14c9f15e03e98
5903 F20110113_AADCEY viswanath_v_Page_349thm.jpg
f303eb40b9ae36b399faeffc06d76bdc
ab9a48907f7b6ea4fdafca651e93cb7187d54d82
F20110113_AACZMG viswanath_v_Page_058.tif
bb5625d05635ddad18119fb4e4835765
dd984cec522b837f9e13ee5728e2923f74dd3cd3
441 F20110113_AADBDW viswanath_v_Page_377.txt
12b7ab771de38f3c6a1c6045a8683d40
3fb4cc80e8dd2e94fb71b62c3656c26abdea811b
41667 F20110113_AACYLD viswanath_v_Page_175.jpg
3bd4a7dcb992ce124772629ab45a4059
61a2824d4e2ba2687ae9a150c78569bce855d675
3975 F20110113_AADCCB viswanath_v_Page_304thm.jpg
05b365d487d7dc5d465f490eaa049fde
a05fcd455873ee0f2796829206d0e07934763ab8
20244 F20110113_AADACT viswanath_v_Page_068.pro
fbbaaf78337715bcd3f23a5c82a633bf
b444ef3fc06fe42d54883e84194756f6bfd1f1c7
19128 F20110113_AADCEZ viswanath_v_Page_350.QC.jpg
3e8c9f9efd188812574ea05f6ad7d4b1
c64c1c58a26e8ef37a6dcf98c3160e72336c6dab
F20110113_AACZMH viswanath_v_Page_060.tif
1a59dab1042cd6722ffc3e80fbda3b26
20883f2890cf71f9441e6d72fdd195b85891b430
507 F20110113_AADBDX viswanath_v_Page_378.txt
0052ecd4597debd77d3e40f90a9c977d
8d14d1263c31f22fc186a7f2dda18ee1ceb6707e
45368 F20110113_AACYLE viswanath_v_Page_176.jpg
ddd54f2631be98cd8563a4d4e1d64b51
f8dca6f527f2377c3e58efb61fbb3bbc832624ce
18050 F20110113_AADCCC viswanath_v_Page_305.QC.jpg
3ff47eef3c1a388ead7ad9d6fe962ea3
706ccd4f5236cb5f2fa865a396fa070e164e78d2
9206 F20110113_AADACU viswanath_v_Page_069.pro
9d051c9a2d64d2eae2d9a78e5aaa118e
390c4905b7ae1671d790647229b2dcbd3c515466
F20110113_AACZMI viswanath_v_Page_061.tif
33c51df7fce87106b989c4b46bee07f2
56395b4c625f019e6098a55d2011cbfa18c62f50
476 F20110113_AADBBA viswanath_v_Page_300.txt
7c5648310e3eb13e071cfb0afd9ddb80
e19f05e493492d2e8195a2589795d554062f05f9
425 F20110113_AADBDY viswanath_v_Page_379.txt
5aefa176369b082e2719a602ae930ffa
75031a5b41fe0588f669d527f884d79c8523cec6
49268 F20110113_AACYLF viswanath_v_Page_177.jpg
a6076110875b5ad436ff071860d34c5d
4f39fe69070365cd474445199f57ccabc5007c28
5876 F20110113_AADCCD viswanath_v_Page_305thm.jpg
427b6db4d51db8a4c1b8e6a6be4c21b7
fb92b19705f8e05c1f455dfcee0a05186d8fbe14
19280 F20110113_AADACV viswanath_v_Page_070.pro
681e78cd54b1ccd463a3d2391df6dddf
9169f3b9cc2bb97178e3a4cd5229709642d8cce7
F20110113_AACZMJ viswanath_v_Page_063.tif
2a9905adc81dc4efdd6d9982f455d03e
ee3a5cac2d0c755a1eee83e31e874a91e9a0d38c
653 F20110113_AADBBB viswanath_v_Page_301.txt
801d8fe027d8a47b5a9d6eb623a0eefe
dac4a3883d0e624821e946418bd23ad055faa004
F20110113_AADBDZ viswanath_v_Page_380.txt
6fc4401cac269d6abd33a31b88669d30
27eafb743bfe71f6654e6dd5615f3fef2c52ce81
48161 F20110113_AACYLG viswanath_v_Page_178.jpg
90b1a4eedca59d3bb9c703edd932c39f
1ff5ff5a6b00a83f384bf242556c4ee54aca6acf
4016 F20110113_AADCCE viswanath_v_Page_306thm.jpg
9ceaf20a28f81bd7d89edb9094de52a1
aca7472f8420dace8e748eb3deb11e69199701f5
13607 F20110113_AADACW viswanath_v_Page_071.pro
dd2154d3776483b7b380a252932599e4
955c862f20e8e49502769e62c0bc9d5ccbc4ca8f
F20110113_AACZMK viswanath_v_Page_064.tif
67a4544de1d13d979b2289bc7ca58dc8
794db4a0c2159172c184d3ac5863dd9d237d82a2
F20110113_AADBBC viswanath_v_Page_302.txt
912585889f8ea2bf6a466c823950050d
999ab40f796ae5a2f0c56ee0e82b9875f66238c1
47541 F20110113_AACYLH viswanath_v_Page_179.jpg
6582cc3de77561f775597b279db84130
2a4b29d9f715fc745cff8828fc0723e1bc0d5045
15099 F20110113_AADCCF viswanath_v_Page_307.QC.jpg
412f3c5bfca2de026dad8ed7ee402357
60cefe58b3eaf503a85b32294225b0a702dc4b53
4261 F20110113_AADACX viswanath_v_Page_072.pro
06622f693821dbbbc453b2936587f7a1
8acb5dc2aaf495935dbb73167dd9fc2d8c975636
F20110113_AACZML viswanath_v_Page_066.tif
cee091c5c583b6e5028a2c7aa0072e94
92d5344d200b4663dc87b972e28e6ca0cfc7b3c3
2065 F20110113_AADBBD viswanath_v_Page_303.txt
2bf655c23c23665e831feb48bcea3a8d
0727a91e4b52e80b61eb317b06b5066cc92daf18
46333 F20110113_AACYLI viswanath_v_Page_180.jpg
5e639cc25c0c7761ac85b77e248c1e81
5ccb42faf4d210e8f4ee2122e55c50e144836ec2
F20110113_AADAAA viswanath_v_Page_439.tif
17418fb6a9188a4b88bf2b75ce33373e
5cd44eea9c5da3d7cf16d4613218e2d805580efb
4710 F20110113_AADCCG viswanath_v_Page_307thm.jpg
dc15e6bfc7a184599e42fae47eae5987
eda648883ba4a131e1a20d1dc842888b77b8cbf1
7255 F20110113_AADACY viswanath_v_Page_073.pro
9f0d94f40dcceb0af9429400781e3faf
8126cfe556617ae00a3bf2c233739bd6949a7518
F20110113_AACZMM viswanath_v_Page_067.tif
1257d402dacbecc142f76fed665be379
8a7c3cb9aa1791260b6008d1261cc9726666cb8a
1039 F20110113_AADBBE viswanath_v_Page_304.txt
dff674ce499bf8dc64cf98c2619ac1b4
a4928f40bc7c6f945ea99be389b1f9303a88113f
46773 F20110113_AACYLJ viswanath_v_Page_181.jpg
03425bc5127f8fcc7bf24594680c3648
07dd5b9a1f033a16570bdf75a4bb8f12b049e34f
F20110113_AADAAB viswanath_v_Page_440.tif
04a3bed93bfc8972e348859b61c49d9b
a632eb025127838af9ec82bd31e0ada5c094ad52
23386 F20110113_AADCCH viswanath_v_Page_308.QC.jpg
4c036eb6f03c912f4a6c48e78c657526
9a5e54b4e89b4edf2726cb62b61d3e6267ddc896
13040 F20110113_AADACZ viswanath_v_Page_074.pro
f5788fd76ae604d15c49d62ba75be174
887612726d810ed250817efe4a1e8987939ef3bb
F20110113_AACZMN viswanath_v_Page_068.tif
6e8b6a13f4f809ee674d19dc5b909025
6f0d37f423c9b498ae282de6c1063506a4e57f84
501 F20110113_AADBBF viswanath_v_Page_305.txt
22388db51c587d9494d8f0c32a1abc4b
f09b0b39f420aff1212910677d08c7f381d37150
43835 F20110113_AACYLK viswanath_v_Page_183.jpg
a4e8e3761ade974a15bc4c5299f5e9da
16c153982a75951db58b37a0cd21f4bf3371ea81
F20110113_AADAAC viswanath_v_Page_441.tif
3dde5f4346228dc9b7c72772483c190b
b116ed006ff5eb6c5cfc668138a39106c74cf32b
5705 F20110113_AADCCI viswanath_v_Page_309.QC.jpg
ca33cfd2b47646d84835f3b2cad6ecb6
ba71e8d0a2ec954eb287851e468edf1c7e8c8684
F20110113_AACZMO viswanath_v_Page_069.tif
908683710d46b604d3703a7ebe02212d
1f9dd8a80b7f2a7dc7891309f7263c4c58ff286f
519 F20110113_AADBBG viswanath_v_Page_306.txt
b841a96aba106e06e34669cb004f8af2
45f46d2e704a3e47e57364484268702f0bb2f7ef
67941 F20110113_AACYLL viswanath_v_Page_184.jpg
12466f8eac24a8590a26bc795933e707
676b5320ca72d1e2e90e07c8814b65e36ee7eeac
F20110113_AADAAD viswanath_v_Page_442.tif
cb95d4eb40a8cc0b94955614b66afe7b
b1f451f573d52c7dc1c4abbb934dd72715148b37
1991 F20110113_AADCCJ viswanath_v_Page_309thm.jpg
f253873d7e8c7712366db62abd6c64a3
409bf029092ec2b7580b0e98bc82fd15474b975f
F20110113_AACZMP viswanath_v_Page_070.tif
8237e1e6eade271b3ffeb3426e59692e
ba50a4e7ceea4b5b0b8b189c109b670f0be1378e
869 F20110113_AADBBH viswanath_v_Page_307.txt
a3f0d6ad6d6f9e81b95df696413aa7ed
c5d818e87d8f94dabb9992b39a31edcd85e1f96d
101570 F20110113_AACYLM viswanath_v_Page_185.jpg
4b586c6efaa51c20e12e2a5259d48dd3
4878dcb47e0d839dc06d7264a0d4e8f6d8d31bb0
F20110113_AADAAE viswanath_v_Page_443.tif
e0c8f81805621ac7ed45a03d5edc00f8
7af7a5097658bce885d999676997f544b42a06e5
6042 F20110113_AADCCK viswanath_v_Page_310thm.jpg
bcd7f9b406dcb2f71f76f15ef0e40c33
df882339abc0d2d083f3b4440f79a508aebe13ed
F20110113_AACZMQ viswanath_v_Page_071.tif
bdf3695ca03a1379e9fcc23fa1f1bf96
15c79549a8f4d4daab5459d160443a52a5428d95
2041 F20110113_AADBBI viswanath_v_Page_308.txt
5a306f21acb6ccc1926b0bcb75f3a327
91b6bdff5813ed5ea5bf61d79f09b76d8e42233c
112005 F20110113_AACYLN viswanath_v_Page_186.jpg
229598da78b5a48d3c90ec763c3055a9
6bed72c7e6ee3049cfb54e66ffd1ce76f6c22f4a
F20110113_AADAAF viswanath_v_Page_444.tif
9d899fc12e1545c24462f74741f72572
9be3fe63f6193d7c771eaa9ca906c73f33665d67
F20110113_AACZMR viswanath_v_Page_072.tif
c4c8b1084fbefe6f534b34737713c190
4d0f4f16a84c7e2a719df4a0249b59ffa325e99d
312 F20110113_AADBBJ viswanath_v_Page_309.txt
2df880604a26ec4da6d0ca21d2415ab1
2fad041b5c78626da61f5566ac74bb65ef9db997
43208 F20110113_AACYLO viswanath_v_Page_187.jpg
3dd9ee5b55672f02eab9a44a2907b34b
eb2ab60960018dbaf35c96dc45f1d92cb42c1bea
F20110113_AADAAG viswanath_v_Page_445.tif
15d5f6e626596cf47d54bf6a003cd277
d25abc4b573c6bdd5eea992c2d24ed8d21314a66
14866 F20110113_AADCCL viswanath_v_Page_311.QC.jpg
425b812907159eb5e3df5bca30a844ec
eb20dc9a90afc723d6703052b18dceaee8096901
F20110113_AACZMS viswanath_v_Page_073.tif
962a99174f1fe6272b253437b7815887
fa8e4ae3335e131bd3aa51a6136415833824e1e7
F20110113_AADBBK viswanath_v_Page_310.txt
f5ba7b5f4e7c54067443cbc74fb96366
090481ab06f570ee153afdd2cadb43ceabf344bd
47987 F20110113_AACYLP viswanath_v_Page_189.jpg
e6308bad34c89cf85fe771dff84de726
3c694f0e10ef96d43d987688cf64dc5e91903d68
F20110113_AADAAH viswanath_v_Page_446.tif
51bf049413f87da92ffd308ae436a8a4
1bed6d33cbe67900b1c0aea483409031596b66f3
4876 F20110113_AADCCM viswanath_v_Page_311thm.jpg
76587da43952a11492c47d55b10ff277
907cb46dd5e48f78e6f7ab49039ee5fe73a406c5
F20110113_AACZMT viswanath_v_Page_074.tif
c398d98ab7c9bb29607f111da341b999
0b62041adf7b52ebb0ebfc5a14845d575fe251e4
25888 F20110113_AACYLQ viswanath_v_Page_190.jpg
b0a549a03f2642a837f342989fe6e4ca
a2f7e77bced6ded31055d22ce663c7c6962d6ef2
F20110113_AADAAI viswanath_v_Page_447.tif
46a3963841f3bbab4c5fb70b166aa7be
425a5030f0ab00aeefa821f08791178fef3616a9
8533 F20110113_AADCCN viswanath_v_Page_312.QC.jpg
5e318e726d55c8af0e2a6188614a142e
f7561f8c7fb90724bb87b4156721304f4bcb00bc
F20110113_AACZMU viswanath_v_Page_075.tif
15f43e56c5d5f8b001dd623496a4dc78
d1cd694e6708614d1faa6c7cf40dda44790b9cda
978 F20110113_AADBBL viswanath_v_Page_311.txt
d68d50d2ac933dca4c57331ba68f43fd
ea9d4764f6e17f3b9c21b5caa5bac0c32447b614
28275 F20110113_AACYLR viswanath_v_Page_192.jpg
70eb28c6076a7300357bf6c11a3cc273
b95c0409914c51ac8a23bdf7eacdab09cbe756be
F20110113_AADAAJ viswanath_v_Page_449.tif
e94f57abdbf1c31bb6153a35c4c7d0a9
943a1c239522752d3a1fc976ecf6a859770ebd6a
3108 F20110113_AADCCO viswanath_v_Page_312thm.jpg
a5397fd7875368682752d307783edc85
cdfb1ac62f743741893c805e7f61a5a31ae0027c
F20110113_AACZMV viswanath_v_Page_076.tif
87242ac5068bcf6021a523584b1bd151
1ac52cfa7bfe428c4aef7d59646193e7e4605467
F20110113_AADBBM viswanath_v_Page_312.txt
2c1059440021141caf3e2d83ffaf3a5c
c25fc702212b374a059b64cf3a716a160969b241
55923 F20110113_AACYLS viswanath_v_Page_193.jpg
fbb0eadf675ce88e331fa7f24f450a6c
7a640895bd5108d6057c9d82c783b515eb7f1a28
F20110113_AADAAK viswanath_v_Page_450.tif
6012c1ad6c3d45a81737a24a004debec
f0a4a96c099af03ae3f1e310da650860293207e7
22026 F20110113_AADCCP viswanath_v_Page_313.QC.jpg
f630af3a8cfa5ebc28ce74425ff30e11
7e2044195cdb80a42d1a7db9e2ba11892d62bec8
F20110113_AACZMW viswanath_v_Page_077.tif
8a326edc822978557ef3e9582f30241a
3def742cb4f85a08cac337a697281057688479ce
1912 F20110113_AADBBN viswanath_v_Page_313.txt
53d6bfe1019a2f47060067fb6de3ed43
7030dbb3c6df8536d362ba4519696707f641a68b
43386 F20110113_AACYLT viswanath_v_Page_194.jpg
35162586057104c099d99fc00b7b67dd
c18c741cdc5d1ad54749bc3d3e1a5ccd7b1f66b5
6153 F20110113_AADCCQ viswanath_v_Page_313thm.jpg
a0202320691fd6f19f684f830233a2e0
7b79b6fa685d9441311097d5c035190a67dbeb59
F20110113_AACZMX viswanath_v_Page_078.tif
3d459e9ab16c3b8348f83e657522b24d
0c252bee20f20c5728602c680bb3aa22b74e022b
742 F20110113_AADBBO viswanath_v_Page_314.txt
cabdbdeaaa4ae00d1a1338388cf062b9
32de77562bd8d2a22c5d0300a9086a1a7097c930
21897 F20110113_AACYLU viswanath_v_Page_195.jpg
30d6ee212b922c1d516d879ddc5b901d
2195f03105ddb86898e43a9e1542badedfbe38a5
F20110113_AADAAL viswanath_v_Page_451.tif
469f87efb617c23dfb391b33e8003ab3
5838d9a975235d0e05e4317f4d3128756b95ca99
3166 F20110113_AADCCR viswanath_v_Page_314thm.jpg
6d4067ad81485214935989d709dd86f6
1801392d9774ddb50c58284d4d548c741ce317a3
F20110113_AACZMY viswanath_v_Page_079.tif
62a770eb58caf015b0cf6f303938a03c
226ab64ed08b0d2bd12030a9ffa5f54b64f069ca
459 F20110113_AADBBP viswanath_v_Page_315.txt
19713bb22dec0bb24fe62b62a313d167
57955b9d9fc8229336e559d8afd41234267336a4
75365 F20110113_AACYLV viswanath_v_Page_196.jpg
4bea6442c806934b741df7e649ce950b
719d02cbed2c39f29ae7f1f82b3446be07f52e2f
8214 F20110113_AADAAM viswanath_v_Page_001.pro
debfedd43359ec0cfe124ecd54affe87
bf46d8be3b606176b4fb1b599f2348423cb544d4
F20110113_AADCCS viswanath_v_Page_315thm.jpg
5b5311458ec44566e9253467e0c294cf
ec2cd52a71cc03a75ff5ac8764bacf174e82028b
F20110113_AACZMZ viswanath_v_Page_080.tif
182fde24c8e10b0acac9721461a8173c
2e5adf43db9c6ada787df1e6d3b6f13086b84ca9
810 F20110113_AADBBQ viswanath_v_Page_316.txt
2f990bb87aaddbe442414a1aa9755388
85b7de29fce61d0cabfe025f922deeeb67c350a9
36643 F20110113_AACYLW viswanath_v_Page_197.jpg
4ec440a7841b27e97a1c573a13aaad9f
64a90221ac27ef09b3abf56d47e0d94f3e391d0c
1177 F20110113_AADAAN viswanath_v_Page_002.pro
cda34f72a34394d5674a1306e52be63f
0f4bd74600b6bde90ebb9503b24ca6e68a899292
14376 F20110113_AADCCT viswanath_v_Page_316.QC.jpg
54f8bc1a2551009b7b0ed38761121e2b
4c599818cee391d8c05478ee426e2ee595e10d00
92539 F20110113_AACZKA viswanath_v_Page_451.jp2
8f428df9703d9ca332ec928345fcdc2f
55a4667b6b3fa20a3dfe1c48864f8f8b7e6d7bba
F20110113_AADBBR viswanath_v_Page_317.txt
a2d9f74dfd0ad32c67edb8812c3874e0
144a7e56803ac65a65e856b8cb8d5aac2cde2fdc
47251 F20110113_AACYLX viswanath_v_Page_198.jpg
92861baf30efc097233cf1dcf7e27cea
b20198cdee207b967956e123a0aae9d38aa3c9cb
2213 F20110113_AADAAO viswanath_v_Page_003.pro
274a7689a28b69e9018032e1c4e3d534
19a7f5f10eb52b393f3a08e79ea19996a3473c5f
4742 F20110113_AADCCU viswanath_v_Page_316thm.jpg
be14d57f850c073bfae92aeac62ee8d5
8681743590e97c1bd443e65a237ff8e376048f68
F20110113_AACZKB viswanath_v_Page_001.tif
e2758c56ea771247541170493157b536
10081f017f8fcb5d3b3f275bbb76e57e526c3b1c
2109 F20110113_AADBBS viswanath_v_Page_318.txt
062fd736c90f45f7bb86e8676259b6c8
2306c153012aaf438c597ad1c3212dba11907021
45906 F20110113_AACYLY viswanath_v_Page_200.jpg
425666411672c8cbbefb09bf56e55c1c
208a42b77f363d9f694b4c36b0b2eafa4be43e43
41255 F20110113_AADAAP viswanath_v_Page_004.pro
8ddb2004f718cb19e077ebdaead4fe42
b89aba215040b298352fc8f243850800048cb1ef
4804 F20110113_AADCCV viswanath_v_Page_317thm.jpg
1ed77022cfa3ac0b162df606dd4ee62d
236b356b6a5141401501308b2455357e3dd49da3
F20110113_AACZKC viswanath_v_Page_002.tif
fb463f4a3e950bdad28fcd637d0a199c
3af3b5444d9d2198d67d358d3c7e4c42038a6ed4
884 F20110113_AADBBT viswanath_v_Page_319.txt
456f025e8a6133956fe74a3c42d369d9
ae1ee14159cfdbf0aded1c0eb0a7a02d57449a7b
41859 F20110113_AACYJA viswanath_v_Page_117.jpg
415bef58b2adbceafb6662f988981d82
857cd789974f20a1864a7e6569f819c864f8c511
70905 F20110113_AACYLZ viswanath_v_Page_201.jpg
3fa6c59006e4232ce9e3a8654563d198
7fa91edcf7e85f36d1b59a4e5478e856e86d79f0
77103 F20110113_AADAAQ viswanath_v_Page_005.pro
8d8c40f15dcdf28b49097a0b746494dc
fca164d7416fc0313c23765b174a5fb7f01a1410
24137 F20110113_AADCCW viswanath_v_Page_318.QC.jpg
ab033de36296478585db506734fddc29
a5913f17ba5904ef68c4baa670307d8b14db8ba6
F20110113_AACZKD viswanath_v_Page_003.tif
a85ecb978984e01fa61da4570abbfb39
5233e00bacc61e2dd7d2b8aecb44a89f7af63ed6
367 F20110113_AADBBU viswanath_v_Page_320.txt
b596d7fa4f86c3eb56e9042946053838
1b0eb31765363dcd908afa51fb3a7d8e75d98a81
106136 F20110113_AACYJB viswanath_v_Page_118.jpg
ebc75c294bccb902ca121a5d5dd2addd
7dea8dc353fe1afabc606b5bcaee5146a3c8b10a
102026 F20110113_AADAAR viswanath_v_Page_006.pro
a7ef06db2583f48c39292503deaa30e7
478cdfcd9aeb7b70f210f3d6b04c6868e4635956
14303 F20110113_AADCCX viswanath_v_Page_320.QC.jpg
7f9b6340effd5337b46a06f7861291d6
29059bddfff84797b0ce37093bbde4fc08d6d59b
F20110113_AACZKE viswanath_v_Page_004.tif
1ca89d9ef2fa4a1a998dae55fcf2ff7b
c14bd66834a771a15ff1f7c1e940dc3fb8a212a3
585 F20110113_AADBBV viswanath_v_Page_321.txt
61057307d905fada372245ed4770e172
2b3e521491c55a0c5e96f01e0c988bb58ddb2a4b
42394 F20110113_AACYJC viswanath_v_Page_119.jpg
fe465c662434e1104335c4211cf291ea
fa2a676c92a20f3ae2fefac49c28b734f11b7699
8083 F20110113_AADCAA viswanath_v_Page_276.QC.jpg
5ba937d9dbffc75e5f6aeca8d79ab1fa
e9505a41bef8db2db6e7f647eb3091571abbfed2
45882 F20110113_AADAAS viswanath_v_Page_007.pro
0abc9241376c3a2a829cec4f3f3ca228
a82e439a46c02cb8ff5e201204f1aab05a517abe
14029 F20110113_AADCCY viswanath_v_Page_321.QC.jpg
4cf84bef79601fe0e4fd0b91884650c9
955a17a8dfa96352f39ce747021b62f85b7c858d
F20110113_AACZKF viswanath_v_Page_005.tif
722c8503791a3101cac9bda72056a548
b3e24ea649a250207679e6d20af80e410d992b68
992 F20110113_AADBBW viswanath_v_Page_322.txt
e12b4a965618ef8d49b92e51568d99c7
170b4893fd792a59e7cb6ed025c891061e16fb23
55022 F20110113_AACYJD viswanath_v_Page_120.jpg
fa3e33dc2e3d3467860f104aad7dc2b1
853d46fb545fb0de90501d95e60ebb4bc56e8518
16153 F20110113_AADCAB viswanath_v_Page_277.QC.jpg
c45601aba84691da2e20bdcf6d8b3e69
dbcec0da52c500ebfc38024d6771f4ced65c4550
54002 F20110113_AADAAT viswanath_v_Page_008.pro
efe71af860b7c9f11f57cb728ad60267
fe13f9d1b1c285d368c981eda5454a6eabdcf976
4450 F20110113_AADCCZ viswanath_v_Page_321thm.jpg
515c7a15c96db6e4ec0cbacd26b0795a
13097bb2580eea38ea92b024c1e6a421c82301a3
F20110113_AACZKG viswanath_v_Page_006.tif
7cf60beed90c4cb4b331aba278d1a147
fa7c4e4bed10d8d0287fba676b609aec15d17403
2098 F20110113_AADBBX viswanath_v_Page_323.txt
0210a38f1dddd768800440994e55f159
391501e45903d7845c595088e412f98555fe8b81
103493 F20110113_AACYJE viswanath_v_Page_121.jpg
5a24de4eb707ba989ca83809196946f4
222d86feeedb7d2d3397ed49caff19aa66ab98b5
5320 F20110113_AADCAC viswanath_v_Page_277thm.jpg
740ef93233b131b4ac2ca669c97ef90d
27d148a714eecaa2dca940d8870c86324d2fb3cd
27792 F20110113_AADAAU viswanath_v_Page_009.pro
75d8ad12eb0d676b99e1264c817ac4d3
a218aa2be381f6a22daeb61a0b0d64a277893041
F20110113_AACZKH viswanath_v_Page_007.tif
82a2e3562ae398ef58f5a7e69bdad42f
f0ac99b234e0060c00dc88de942b62cef26b67da
499 F20110113_AADBBY viswanath_v_Page_324.txt
aa98af5e9fab7f9855395707e9ee851d
6da13d5cadef74cb9a7fdcf0bb646c321a6d8fba
46860 F20110113_AACYJF viswanath_v_Page_122.jpg
dfc2984761d3a9b63effe3dbe83c9354
3ad573a81da58a71554aef958c602c061d085617
12642 F20110113_AADCAD viswanath_v_Page_278.QC.jpg
93d21f9cd0711548ffa9a559627b5bf1
000ce9f127bb623fef60f866284b2d706822b3a5
59489 F20110113_AADAAV viswanath_v_Page_010.pro
b30f16422322d0420fc4d2138739ce19
fb8fa8a68459323a262face5f80c325dfed8ff06
F20110113_AACZKI viswanath_v_Page_008.tif
3a97658a3c50500a9c273086bf5859e5
44d2d0af7dcf998412df5d549001014d8a7b8227
341 F20110113_AADBBZ viswanath_v_Page_325.txt
14e23ac3fb2c29adc01d226326addf79
331671e0a653c28669b225f01205080a5e8f8d4a
43900 F20110113_AACYJG viswanath_v_Page_123.jpg
e2c3b626519d03a9df3928c6b42ea72d
0235112b94d281aa5af7c980a7b6eabeca16a689
4085 F20110113_AADCAE viswanath_v_Page_278thm.jpg
92c96b7aae74caa36d2c9622fcc9e8eb
deb297a89959f833852e5ea0d07032d189717ebb
69993 F20110113_AADAAW viswanath_v_Page_011.pro
3cf8221915199090585dbb326144fbab
682574ef5373e6fa3dedef9e7c1be42712427ff0
F20110113_AACZKJ viswanath_v_Page_009.tif
afddabe3101e166f893f47adc92d2509
b7ff0713c84dfc024612bc7eb3c61331bd3c04e2
40620 F20110113_AACYJH viswanath_v_Page_124.jpg
5ada05859d876119791c476946a7ae46
e10ca0b3a7d3a4bc0675619b7362afce134a0271
13747 F20110113_AADCAF viswanath_v_Page_279.QC.jpg
04b326515cf3c9be2cd2a5794ff93c1f
94d2a486e973baec4c9c2c199206e81f08bca66b
67986 F20110113_AADAAX viswanath_v_Page_012.pro
19abad87360d45b93f5631056d73d4b2
b022c7d2802a6dadffeae1324e54e6051fd17e0f
F20110113_AACZKK viswanath_v_Page_010.tif
4efab3de9ff43cbfa3f81c2f10fe094f
a19ca5e08d14d97e03d84dade7caa74e2e66cb4a
43415 F20110113_AACYJI viswanath_v_Page_125.jpg
02fee840c331842b9cb6025164a1b84d
c0118b65f2a50a969341388f07ec9b153a155833
4406 F20110113_AADCAG viswanath_v_Page_279thm.jpg
d55e787a77a5fd5a75263bba2620aa43
7505e8bd22053133e951f969eaefa2e4a763c54c
81093 F20110113_AADAAY viswanath_v_Page_013.pro
37006a667d2694b51adcddfcfc65c2f8
4f853079364111cc98d518fc42878a4bd0d73f4e
F20110113_AACZKL viswanath_v_Page_011.tif
bb86ecad9d1ee4d3460e0b9dd6bdae9e
8cfeb5a8225a181e932de43f113a0d7778e4b907
88625 F20110113_AACYJJ viswanath_v_Page_126.jpg
ab04afb206d83ca47b3afd40a5ced64a
213f2902561c581dd23f75ed3ab2d54fa690ad98
24381 F20110113_AADCAH viswanath_v_Page_280.QC.jpg
9b290693f5ace3ba56ce04c28c00e63d
15e008fbae285911e02092ce9bdf48064afa4a5e
72878 F20110113_AADAAZ viswanath_v_Page_014.pro
6006e934634047e9c6765fa460e68553
c308751773f526a71a8837f61033bbe16e363bfa
F20110113_AACZKM viswanath_v_Page_012.tif
e1cef1903134ace0b95c32bec8068a3f
91e0d808ac4663e3b1ba0d4d17d2c44d429fb9c0
88353 F20110113_AACYJK viswanath_v_Page_127.jpg
16712b0489cdd119ed0a099477dee7c0
641b13eb48dd4884be7e55204acdcd3e45d4e4e5
6639 F20110113_AADCAI viswanath_v_Page_280thm.jpg
94b67deaadfb3e9f6403342479d83f62
8df519f6b3fe42be2b85c5c1601414c687a25d18
F20110113_AACZKN viswanath_v_Page_013.tif
23973a9da98598671aca9b696f399de6
92434e2a241c4a4ef154f2ea6a50310742126320
49968 F20110113_AACYJL viswanath_v_Page_128.jpg
c1916a40579a31b2446dea65e5c282f1
10dfb34d79e3ead9b6ed4fa899ed7fcdfc8f0395
F20110113_AACZKO viswanath_v_Page_014.tif
f406c8e2640d14ca4f636bacb6fb8da4
60cdcd0c8080990273d5bfc6a7c29e6f88d57571
49817 F20110113_AACYJM viswanath_v_Page_129.jpg
95e2c3730acfeb45cebd893c1bb1b1b2
8f0d2c59953be0239230a129e8f459a81d812142
9049 F20110113_AADCAJ viswanath_v_Page_281.QC.jpg
51cc527ee039f3caf1cf10a2200548bc
df32e0f9048b0b2f5debe75e72a177dc3291a59f
F20110113_AACZKP viswanath_v_Page_015.tif
3a32f19ac5def4c3aef6ea2262b9b17a
78044d55a5d46980bfb64bc0152402670da1a4e1
54169 F20110113_AACYJN viswanath_v_Page_130.jpg
4470cd04e78223ab3c21d83587524d0f
74b03fa61611fb7a91d493f1f158ee5c8625f07e
2813 F20110113_AADCAK viswanath_v_Page_281thm.jpg
a0ada9d66492f2f5bd84856d76e30bce
d391fdd89b42d3a811abc768acce068c59ec0a44
F20110113_AACZKQ viswanath_v_Page_016.tif
3ccb4fa688398cd6f181abf9b2afef73
2a5283e4e7b573097c0e3ed4d9c9138aee03f4f6
53523 F20110113_AACYJO viswanath_v_Page_131.jpg
f1cc7637ddd32f7bc0a4b534f9b3f59e
c22d0f1078a8a551f1c7c35361177facac112080
19240 F20110113_AADCAL viswanath_v_Page_282.QC.jpg
3fc3e99632b17d1368f1498076ad5dfa
e18332a1a436f2d2391682a386b028785705e0b0
F20110113_AACZKR viswanath_v_Page_017.tif
2758e9867b33547fad5a56925e639921
8ccbc29ebceb698d7592c28c733f0bb243e1de58
56876 F20110113_AACYJP viswanath_v_Page_132.jpg
d71c56fdd6a320349788facf9832dba3
b2da38297f75ae3d757c156349e04220b3b32424
6018 F20110113_AADCAM viswanath_v_Page_282thm.jpg
3394256fd6901922994c1cc7c276abea
76dd6c0f1b5d8cf6df8efcd0ba7b10211a7ee784
F20110113_AACZKS viswanath_v_Page_018.tif
cf677abbcc8eb9a01fb3ba5e912c1a6e
512acb287ada12200e4eae9e6b022fbfc1fe56e1
49746 F20110113_AACYJQ viswanath_v_Page_133.jpg
720e71d870495c37efa2666bba659906
0977c9382ae251c713b8cd42b1ac3d9819060f81
13616 F20110113_AADCAN viswanath_v_Page_283.QC.jpg
35d0ded335c6294600d6581adfcc261e
d4bc6193b9f42cceb5c6692a61f826f0ca3e9b06
F20110113_AACZKT viswanath_v_Page_019.tif
fa741ad37f1c72555964dc0243ce47b3
ea2f22a83e982130bc2ddc8ff5f89dbeeda639b0
50233 F20110113_AACYJR viswanath_v_Page_134.jpg
679f2a337a236f3c9964414a5733bfb3
9b13d1b41f4de7c9d38ebbfdb9c1c9a19ac7df2d
4197 F20110113_AADCAO viswanath_v_Page_283thm.jpg
8093c29e223c073e6d33a614a333dbba
d35e6151d9e3c4b3fe59c915519962c8b4fe99fa
F20110113_AACZKU viswanath_v_Page_020.tif
2ec2b8d53a2ab369107d9156db1b8669
eac398f8182079f7f2872ac88e73660c08f42646
53692 F20110113_AACYJS viswanath_v_Page_135.jpg
fe629314e2baa3c64b8dc979955347f3
576587e1f582157776481887146523b0b1a6fcf3
8428 F20110113_AADCAP viswanath_v_Page_284.QC.jpg
6940c66eb9dbd9984a481bc10c30eaed
1a11a05e1e8718939ced41b59f3a4759e394b0be
F20110113_AACZKV viswanath_v_Page_021.tif
92d4e9f07e536b88edd4ede33a3be252
cbd83fd8793a834a5eaa404502cea0f24ca5900b
45576 F20110113_AACYJT viswanath_v_Page_136.jpg
0f99abac41bd10e2874b85d06b32a645
61f20f85b0981d88fffd148ca9c0d8f31928beec
2851 F20110113_AADCAQ viswanath_v_Page_284thm.jpg
d1842b9ce098d64565b22fb2c9392dc4
8ce4029a3f8948d470aa1e23152f8197e1e62a7f
F20110113_AACZKW viswanath_v_Page_022.tif
797313cb49821843a173dd1362c22e95
445d349f6cb01e7aaef4128f1acc13d2fd76a9aa
51080 F20110113_AACYJU viswanath_v_Page_137.jpg
8addbbbbacc8544b19fbbdde79b3af12
85e32c6582f5b1a529abba13dd7c8a00c6b0808d
20922 F20110113_AADCAR viswanath_v_Page_285.QC.jpg
fa37a7e915044f154e5a4d6dad8783b6
cafeb6e285e77d75440c29c364b67866626d70f5
F20110113_AACZKX viswanath_v_Page_023.tif
8fe0a2f850bcad0808b14dc39c3ea54b
0e151d3380babe73426cc952c97b699ec771a7c3
57109 F20110113_AACYJV viswanath_v_Page_138.jpg
5f6fad8a1a64afd9ea6b5c5fd65bf72b
55fa0735f35f22d71ecece13a01c77b390ad6d62
5886 F20110113_AADCAS viswanath_v_Page_285thm.jpg
76a7f77bce3b04a1b19ad83db2862b32
798b3976913436d5a4f59fcbde62277a1523898b
F20110113_AACZKY viswanath_v_Page_024.tif
7689ba8363c4a2d26c7d69005664cc4d
9663d59bbafe5540e66d7b03447e205216a5a43a
56661 F20110113_AACYJW viswanath_v_Page_139.jpg
e01613ce520329bcf75f93cdc160b4b8
f844bd323d5957600e81351b1fdc11f12bbb461f
17068 F20110113_AADCAT viswanath_v_Page_286.QC.jpg
513f783ef2748beb62122f8c7c2cea1a
c329a5061483314702163290a0918afa5c06ff82
F20110113_AACZIA viswanath_v_Page_394.jp2
3d3208e175dc3d6ae66479fe99816ac3
3d09705cb96bc8cfa62e5620f53093cb0aa7b391
F20110113_AACZKZ viswanath_v_Page_025.tif
96a2d6dcbf2307ca2ed1023827e98c18
2f46284c44d3dc6379e40d153501df946edef1fa
56361 F20110113_AACYJX viswanath_v_Page_140.jpg
b92b7321896d43d6665a25d8a3727b2b
94a1886cb1a33892ccf59a926c88f3497ba0c4e7
5626 F20110113_AADCAU viswanath_v_Page_286thm.jpg
a86c2acd02559d021223408e463b3fd4
fafb23aceba1cf78012b65c1e9b590aa5891deeb
1051810 F20110113_AACZIB viswanath_v_Page_395.jp2
6ab59d9666029cfe445c914d0af182c5
0a245f08bf9965e130f9fbce8cd9328cec20ff12
47244 F20110113_AACYJY viswanath_v_Page_141.jpg
7d41ecf9bcdf4dbea54e499ffc1b2341
35a231ed7cf028467f110e0d069aad20ce0a6471
12895 F20110113_AADCAV viswanath_v_Page_287.QC.jpg
dfe982a4dfbe95020afcb32d264bfe49
4a1f9b613dd75caafb9f2245754332a40b738316
1051962 F20110113_AACZIC viswanath_v_Page_396.jp2
f09adcb88759e6a05f3c871af634438a
ef4594101d277da44fbde4860eecd3e0c82a73b1
40317 F20110113_AACYJZ viswanath_v_Page_143.jpg
12d9f785dc217c3a8a0b3e9c4ea631ca
6d313568ef1b0ac6c56605d667b0cefc96a988a1
4254 F20110113_AADCAW viswanath_v_Page_287thm.jpg
4dd8990376bd254ad2a536f1352f2ddd
04b5b27dddea9bdc076a2e6d2758ecc8ff32e9c3
1051849 F20110113_AACZID viswanath_v_Page_397.jp2
0cbebd353b96cb3031f1609a86efcae2
de72728d5e1422230b69db60ac5c222090efe13b
71779 F20110113_AACYHA viswanath_v_Page_060.jpg
db17b866a519c9d13417785822b072d4
5e51e885cc9eaedad5253ef0c982f14b04af9e85
8332 F20110113_AADCAX viswanath_v_Page_288.QC.jpg
7e242829a6886432d7c050f44270fb2e
2092ffe7172953194fd8b711cd4f28b77d3a616a
F20110113_AACZIE viswanath_v_Page_399.jp2
c4cca3fb565c84f2fdc11a58cdc0c342
69196ae47f17a16245c0c8326ebd9f919fe8c876
57472 F20110113_AACYHB viswanath_v_Page_061.jpg
a94af948fc36c810d83afb40227e87af
5315a3fc5a2063752cba985e3f7396ee631d370f
2881 F20110113_AADCAY viswanath_v_Page_288thm.jpg
5584368ce559ce4b9399eb2e846f6eb8
c58d9f1b1f56d41558f978cdb0f52366ee5a78b1
F20110113_AACZIF viswanath_v_Page_400.jp2
ee99846451586122b8114b4e9eae3790
3a85242bae9a816c195e23ff54e395bf80e38416
98055 F20110113_AACYHC viswanath_v_Page_062.jpg
d5b244aedb064355d6934bc69250434b
9aca195472c6b5e6dc6f3110268f1b334028aafa
24088 F20110113_AADCAZ viswanath_v_Page_289.QC.jpg
6da6c63e066194169f1b9b1e082672f1
be8d02a5d9d7ae60e52d1782085e8b9a0e7e4d08
1051967 F20110113_AACZIG viswanath_v_Page_402.jp2
43b46e7d2d7376e621ffe59f5f4cb7e6
0eec82a52b96a90dde386d52b10fe9b3865a07e3
56957 F20110113_AACYHD viswanath_v_Page_063.jpg
b3d4c44807a9a4669e07520f3c0e71d1
24104c36785ba27e4a2a7abc8d587313eb5747ff
1051945 F20110113_AACZIH viswanath_v_Page_403.jp2
6d9036d5ea873d7f4a243baa99984d84
38dbe02ec6e0b5733d448796d8abfb5070c3c2fc
60097 F20110113_AACYHE viswanath_v_Page_064.jpg
3181edb33909121d058d95d9dbed4f9d
3135b340248b7354f54112f2ba445a83a6a392a5
984838 F20110113_AACZII viswanath_v_Page_404.jp2
ed15da7253b8f339654c501557e511ba
5cf0f9a18020a33bd48f51fc7e906ccf87296794
38533 F20110113_AACYHF viswanath_v_Page_065.jpg
f279d45babb474e5c8c146cdfb4b014d
a4e02caca7e1eab77be5d30a6bd8b9087fb904d9
1028966 F20110113_AACZIJ viswanath_v_Page_405.jp2
fddd02eab28f4069599df8e45c96d605
8382bf7fd832477739457b63eef62d2e6fa696c2
71861 F20110113_AACYHG viswanath_v_Page_066.jpg
26eb84ee201ffd397a04bf12a0264456
c94d5dbc0e4e29b1722e9c1d56e3b94f1c629e43
F20110113_AACZIK viswanath_v_Page_406.jp2
e84ea2e841dcb73ea743b298c5105e09
0c7aad2459059c7a162704dbcb04827e89c3c595
61129 F20110113_AACYHH viswanath_v_Page_067.jpg
1b9b1d3fc663b2f1225357f459c2de6c
0c9c8996009669ef242fb4f996fda27098a72acd
F20110113_AACZIL viswanath_v_Page_407.jp2
2b2acd4bdc693b7019489507f7b5f5b1
d4c349a45d123608ee3a6135ed40d132b197472b
49360 F20110113_AACYHI viswanath_v_Page_068.jpg
16c30f329f491adaadf8c85f10a5e1bf
14727927fb775733b92bdd4d0af32e9438f1a37b
851694 F20110113_AACZIM viswanath_v_Page_408.jp2
ecacc30f3f3f5aa7274adc3c1b2f90e3
b0dec866205f7946130b870e078e8eb97d69a4e4
36869 F20110113_AACYHJ viswanath_v_Page_069.jpg
04a7fce2a749ae957a4f6b0cfdabe99e
412ea7ffdf320107132875236b14c4391fa78cf6
F20110113_AACZIN viswanath_v_Page_409.jp2
455e32b12f62eed1a614846ec6b4f0e2
03c233b6e3adc8b747b362b6aab86b567e1eaacd
57403 F20110113_AACYHK viswanath_v_Page_070.jpg
6cff4415e324f6ea2d56413189accdf8
68f006b938423b340236297a27344b39bb1d82ba
1051969 F20110113_AACZIO viswanath_v_Page_410.jp2
8cad8f583ca019f79697b3e7b390425d
299e75a1790cdd7fbe7c30fd70b007fab1291dd6
49160 F20110113_AACYHL viswanath_v_Page_071.jpg
8ee94728b95c8106709b80c75e747941
94b30fdd6a8c9021fbe134fe8ffb1ee3ad17f561
696510 F20110113_AACZIP viswanath_v_Page_412.jp2
4a923ed54122367f20ff89dfce4f6749
24e8c591e4e3bd70cf81a8bf73afe812eb49359e
38864 F20110113_AACYHM viswanath_v_Page_072.jpg
ca9abd9dae03763ed30fe793c46e0cba
2cf4da194f13f39e559bc64d1dd55fdbe3213380
1051959 F20110113_AACZIQ viswanath_v_Page_413.jp2
c9e445bd51bc50b388946e097963c3a0
d0759e36b9145096d6b4cb920d7fa3a3c44fa196
46533 F20110113_AACYHN viswanath_v_Page_074.jpg
ff414a16fa2d83c17aa4c985e67e7f46
c2ba03bf882e2be8666678c53ff1b29537416b33
F20110113_AACZIR viswanath_v_Page_414.jp2
9a70376e53a47c7491a5666b8ced0bb4
1d25e861072aaae6f924ec0d5169c465d8934209
58516 F20110113_AACYHO viswanath_v_Page_076.jpg
5fd5c874c8edc55ee3d18a818155d318
4d95f7dbe3c01640016d6f1a74c59ddc2b41b9c9
1051955 F20110113_AACZIS viswanath_v_Page_415.jp2
0ee587e7a2bdacefd81ccc65f6bc43eb
56cd5a8a9f60dfb3c31979e799dcfb490b3542db
56785 F20110113_AACYHP viswanath_v_Page_077.jpg
408eb0c098438ee54bc9c6a05597bc37
31e62161647ff16af9fefe06b062a04935fd92ff
772790 F20110113_AACZIT viswanath_v_Page_416.jp2
6fe0d5a0f55ac1ca64ba3246da16e92c
263f7239294fe2cf7c468038ee50abb79a8250b2
74384 F20110113_AACYHQ viswanath_v_Page_078.jpg
00995377508d8f04b37784a323409e5b
62a4bb968d62e0f8e2db143fccf2f146ab23f03b
702624 F20110113_AACZIU viswanath_v_Page_418.jp2
d4bb00e23bc3be94219ac3abec4f4bc3
929abf4ca97bf675334c75ad580c1f6387b5cc27
65873 F20110113_AACYHR viswanath_v_Page_079.jpg
bfaec44e424062b5c73567a378e4bf8a
fd0047e8f4d937a7918c11394485a2e4ed0a1742
F20110113_AACZIV viswanath_v_Page_419.jp2
2e612a77aef15bc2d7108bf07f150e24
c31ca69a0c66410b9ecb1077e247adb1cb73c74e
70994 F20110113_AACYHS viswanath_v_Page_080.jpg
212f481d64a37775b253997707c97f5d
3c6a0e5abf781a648a7913abe8834fceb001a405
672369 F20110113_AACZIW viswanath_v_Page_420.jp2
5e02bba3f7beb0ca92a66d6f08ebf6e3
ecd3249137e199ec65b887f32cc848b42fc5b90b
78036 F20110113_AACYHT viswanath_v_Page_081.jpg
757b14e91cb2ff6d1739332d0d4a7bd8
ea75bd72ca2b4301ebf41e4f23377a447f2c3e02
1051935 F20110113_AACZIX viswanath_v_Page_421.jp2
45600183bb69ffc5d48bb0550a615b6b
07514d3174e2d96c1aa72bc74ae8d4a72d08c533
74231 F20110113_AACYHU viswanath_v_Page_082.jpg
5778f6a8fb71ffe05b352fbd6e6bfbd7
a94fbc943ff464aca4c591bb91eb232d4b64d164
F20110113_AACZIY viswanath_v_Page_422.jp2
a3b62e479daddf3abee4b4450a8c6efd
7bae4abe62a6ecee77ee1d041cb9b630060b3bcb
76006 F20110113_AACYHV viswanath_v_Page_083.jpg
52d3c3d0a847920c3640e1ffcef79431
13dc6b35a2aafe2075f2e98b112f9e17a943adcc
87221 F20110113_AACZGA viswanath_v_Page_339.jp2
3726732e8cc86e73f6a1f6a2c576f713
c270c1a37a7b8fd1dafc17ecddf4809818bdd726
58910 F20110113_AACYHW viswanath_v_Page_084.jpg
8f8f797db97191bca0f8f6a3f15ff998
79a187252254c6539c9c2d8587595481bebfc634
1029489 F20110113_AACZGB viswanath_v_Page_340.jp2
dcbae4042e960ca069ba19c2228e9a45
f5d7a572d77aa01de74d696854abf5c8c9e9ff58
1051781 F20110113_AACZIZ viswanath_v_Page_423.jp2
82e04e6205c67fc16c9bc68f5f9851f9
87f6ad56b8f510e98e232b74e8658ae27f0b0cc3
72960 F20110113_AACYHX viswanath_v_Page_085.jpg
bc6690fb3d6ba84adf3c8f7d5862cdbb
f0c0a8b0862ff379229da6f1120b991eeef2fa82
618439 F20110113_AACZGC viswanath_v_Page_341.jp2
db03eb055fc093956d1f79a4d7757753
defd40306047e5e27ad44df3f3a2bb773984fd02
77250 F20110113_AACYHY viswanath_v_Page_086.jpg
75722856bb6b8b4905afd21b1d3032b8
32a0a0ac738adbaaf8169c354e694b99db5507aa
479173 F20110113_AACZGD viswanath_v_Page_342.jp2
13c3c2c86bd5af9c225d3f88dd004744
98a6df46abd965c6afce9049c3dad5069520c54f
11828 F20110113_AACYFA viswanath_v_Page_003.jpg
b070bb1b5092e5d0866da5577b078d0b
c2d7fef11d07e320b915336a4ead0b38f68dc530
108579 F20110113_AACZGE viswanath_v_Page_343.jp2
16612365cae92a951b84df4f7dad218f
ac9e205369bf75aceee26a4288f66f2c24f986fc
60550 F20110113_AACYFB viswanath_v_Page_004.jpg
b9297b3fb2f0e372d67093009599be89
3b07ce1d9117301cbe857924235bef61273d6442
76641 F20110113_AACYHZ viswanath_v_Page_087.jpg
ea2a56d5edf88e8903b9ee55058e8331
24875b9cfb6015857cc48033fd1d824b9b1e2f84
28479 F20110113_AACZGF viswanath_v_Page_344.jp2
876f4cc4eefbbd6f1a23fba6145967f2
a0af109e8059dd34e4d547a9bb9e39801a765615
71810 F20110113_AACYFC viswanath_v_Page_005.jpg
99707e15b00a5af83dd424f9d5e2dae5
12839b12e92f6785b122487217545724f5d98bd5
1049015 F20110113_AACZGG viswanath_v_Page_345.jp2
1d7e351223e30eaf781d88e701c258a3
bbd4b0efb55df435def105a9bea2b5ed4233eaea
56166 F20110113_AACYFD viswanath_v_Page_007.jpg
d39f74a1aee605a153af52c6ce3a826d
e40572b9d3997820add17f9dc504093dee299905
634933 F20110113_AACZGH viswanath_v_Page_346.jp2
33d919578591fbcf84494affe3b521b5
6715320633938f1fcfd854baabb1abb4c15c44f5
73116 F20110113_AACYFE viswanath_v_Page_008.jpg
69b534e1879c599db4984809a8e98b5d
2903ac615d3d2db19839bd14ba4f880f28d21e20
473774 F20110113_AACZGI viswanath_v_Page_347.jp2
927fb9767256a757f0bbbf5dda627069
b1a2da183432bbbce0696548f96376e7ae2f724a
67163 F20110113_AACYFF viswanath_v_Page_010.jpg
a742ca5afbb885b84fe852686ab1c97b
8b34034fe7208bcd8760b34f665264f001b5fb77
107605 F20110113_AACZGJ viswanath_v_Page_348.jp2
d6dae120545c1c093a30cc00d907c0fb
85d17a48a9bcbde9e8753dd15c79626982f9e674
87204 F20110113_AACYFG viswanath_v_Page_011.jpg
87b9585233585d432228138416b579cb
fd4650ecf8ec12935e4efd8109a0f5af7e6ef53d
90188 F20110113_AACZGK viswanath_v_Page_349.jp2
efdf2c7e4f478cb454bd2afede0f323c
b67a8c9cb9996be6a8c0d26d797134281391bbcf
95911 F20110113_AACYFH viswanath_v_Page_012.jpg
3b7f2383666d1ad2ad81435a031e17cd
b70ff6527015564089adbee7cdc35021bbbf1f4f
F20110113_AACZGL viswanath_v_Page_350.jp2
3fc74fb95f3bcb48c9dedf6c5004edc7
f820480dbaec84e51bfa0ac623e6c9ae7d0dc313
98399 F20110113_AACYFI viswanath_v_Page_013.jpg
c8aae5deb335dcff74d857348a1b2b94
97ffc5393caeab4dfa91c941efba2ce26c1dd03a
619185 F20110113_AACZGM viswanath_v_Page_351.jp2
51396c1058d356c7cc355b9ad82285a7
1a9925a803d541c885688bf0e08f237c885686a2
98962 F20110113_AACYFJ viswanath_v_Page_014.jpg
6c04ae725ec64cfc1e2c67497456ac00
abfb540f5208275017d3b862573a15741cbbd9cc
476220 F20110113_AACZGN viswanath_v_Page_352.jp2
bfcccf0537942d857fb9beac90b0b134
0b0140cb3b410b4426c1db0a49d299c81810df8b
40628 F20110113_AACYFK viswanath_v_Page_015.jpg
5ffe77db206eae23f3cd229ce93ccb59
c494c3ffbaf4eb4849afb2d5c4cfba7cdf77dc2f
104120 F20110113_AACZGO viswanath_v_Page_353.jp2
a7e41d424defcd6388a295688fb840da
30ca7282868bb9dac3bccdeeaa9c35efd0e3aa94
60884 F20110113_AACYFL viswanath_v_Page_016.jpg
091df732352d61f3be603d7ff56f0752
ae7fc7bef700f7ceff4068db6e4aff574fd97d1d
12546 F20110113_AACZGP viswanath_v_Page_354.jp2
14b36642b1d311ab601a888cc4b59813
fdd8f29aa3f66d717e6756a1e471405da9781110
32994 F20110113_AACYFM viswanath_v_Page_017.jpg
9265d8075a5fceea0dfb42ec4d042f7b
8a17062b925df36910eb70f012053591b96262c8
923923 F20110113_AACZGQ viswanath_v_Page_355.jp2
5a85f542a702200606517145af65b9b5
00859fa2642cbec473dd7d97a356e902717dfca2
61617 F20110113_AACYFN viswanath_v_Page_018.jpg
78afc4e4b08b3efe131d93ca2278b89c
59046bb639ecccb669eec984fead40877ca10c3b
791049 F20110113_AACZGR viswanath_v_Page_356.jp2
8998b165c7435153c1cc1c80a8cd3ae0
fc5aba92d42d025512dc4563c154e62f44a1e6d6
70235 F20110113_AACYFO viswanath_v_Page_019.jpg
f62f97bd00f0c12c72336db2e8592234
96e3234bad70b44f78d06de4d5ecdd3209bcfe32
110032 F20110113_AACZGS viswanath_v_Page_357.jp2
8b6e16716b6a3cd10036394c749de20d
1d17ec4c9b05d2b21f1aeb743e5c514f29f8e69c
75107 F20110113_AACYFP viswanath_v_Page_020.jpg
0b27212f21f32a7036dfb7acbb3b1d45
e463417ffccf1acc7316955afd777f7d0f29b528
F20110113_AACZGT viswanath_v_Page_358.jp2
154021960010167bd5d9dd19555532d8
451c16ad5615898bb28eb3aa31dcd0a74ca3f2c1
75870 F20110113_AACYFQ viswanath_v_Page_021.jpg
1625e4259f5ad2c4b20cae43e29f1861
57bb2da083ec4d9406e3a2467f292d2e05fd4da7
705429 F20110113_AACZGU viswanath_v_Page_359.jp2
70c518ff458aaf91a0c934d7323a2db6
109d0bf79e424db4c0d4fdbc9daa1c9393144728
27434 F20110113_AACYFR viswanath_v_Page_022.jpg
3ae462df7c42b3a4bcfc4f6bfd6f8aae
c97422556daa39450307dd880ea18d02f416d52c
678226 F20110113_AACZGV viswanath_v_Page_360.jp2
d1e6f428ab68aba09d7ea454c7ffb76c
907300018a1be12dbf0b97aa52503dae7ccf3e79
61182 F20110113_AACYFS viswanath_v_Page_023.jpg
fe7585625e86db3d8aaeaf2051dfc431
d6b98c798fb3961d3d862ba0beb09292f5b39537
539486 F20110113_AACZGW viswanath_v_Page_361.jp2
76e656a94b91e51e0435a39d10a326f6
fb228894eaa6c3d290e4e2dc68ddbfb7355dadce
53670 F20110113_AACYFT viswanath_v_Page_024.jpg
d08d92585ce1b18a62155e36e6ad3714
8c26d6e44ac50244ef6951b925b493b1e0ee35b6
54626 F20110113_AACYFU viswanath_v_Page_025.jpg
0492ceb6cfdebd13d2f12c268906b162
ce886a55dca58f92182860bf0ac04b662eac33cf
106799 F20110113_AACZGX viswanath_v_Page_362.jp2
7f0f8e633b4b846b73e2872d52c45498
626ec250e8b5f7a9ee241b2eb1794ac2320f3af0
58010 F20110113_AACYFV viswanath_v_Page_026.jpg
450f26f086c7ff6fa2bc82c51fea944b
5df18232d32acf8d48a173ecfa5271031c9db518
51896 F20110113_AACZGY viswanath_v_Page_363.jp2
cbbfc0df25c3319064b23f89e5d5128a
7692c08a753d76af028e9941c0f77bf585ef419d
48804 F20110113_AACYFW viswanath_v_Page_027.jpg
60a961cf16d95b2b94f31654eb5111ae
7e9967266b8347ca4ba13f8d976e3d55b05d1584
F20110113_AACZEA viswanath_v_Page_276.jp2
472fd8f4f54268287567163c17fb0df8
2ac7ac4d9c1d8ec370698c778d983e605cd7705a
837089 F20110113_AACZGZ viswanath_v_Page_364.jp2
960f3eb93562bfea14faeafd6b2482f3
a5bd45f65d4ed8db2b3270b0b0617e8fe4924113
1051717 F20110113_AACZEB viswanath_v_Page_277.jp2
1abadb703062a1ddecc9553927ca58fd
0d3ce8d4a50cf89444dea9755f15637d613b9747
69681 F20110113_AACYFX viswanath_v_Page_028.jpg
2bc6ba345de359c920d0b6e227dbc5fc
9cbb9a09592fb3c061dce5e52ec5d7dc3cbde3c0
726846 F20110113_AACZEC viswanath_v_Page_278.jp2
654cd479c624095c619e0006f4ab6062
6e2cdc57dc7b2c733137d3479b71a3de034e8d73
71937 F20110113_AACYDA viswanath_v_Page_260.jpg
ddd1f2619b496f4c88bd51b7f0606451
95a37539348763a47bdcc5759e33de199e202724
46928 F20110113_AACYFY viswanath_v_Page_029.jpg
4f78c9b5053c36cc4da06c2f752ec387
f60c6196bcb41f776fadca5e1df88ee04c310386
459513 F20110113_AACZED viswanath_v_Page_279.jp2
52b9784f7d6f015e4e02df9f8ff02ea1
a42f0a4beb3901fb544c14c8e42aef78fed28308
16785 F20110113_AACYDB viswanath_v_Page_385.QC.jpg
bd5fd6688d2752b8144e36f387db2800
fca297aefbbd34ee9bd920810276c9bee3fdb51e
71701 F20110113_AACYFZ viswanath_v_Page_030.jpg
f7bfc5d2b40e495841510c530b7d5a1d
1f74e26fbd1677301d1b0a72015a6e35593ae014
111461 F20110113_AACZEE viswanath_v_Page_280.jp2
618fbdd8ccba72f81a75c8e98b033cbe
4dfd5df7367c0abf444bc144d5090e562b9875e8
27134 F20110113_AACYDC viswanath_v_Page_188.jpg
d5d1f46d81b452fda0d73d824bf8f75c
618eebf576c46354093d725f26555b81dbd727c0
36796 F20110113_AACZEF viswanath_v_Page_281.jp2
9da7bf825dd55358ce1ee6028f6e74e5
4ec497c076fa6f5c0db99b78494d05e87f3b094f
9551 F20110113_AACYDD viswanath_v_Page_207.QC.jpg
5d920ed7be102322ae50d7a69462cc93
fd3a156e69ec05bb9de882fccfb879f233586605
496739 F20110113_AACZEG viswanath_v_Page_283.jp2
8bd72018109e2b6b824af0a9eaa13fa4
64cc34611456b03c26e34aa2c17dd4328a4b880f
13252 F20110113_AACYDE viswanath_v_Page_176.QC.jpg
d98fec144ab0dbe700179aa7a6a37012
04dbcf1047f78b97d30f349756f7978d5b107128
237160 F20110113_AACZEH viswanath_v_Page_284.jp2
7e5aea43155b7162e40a0c7b2a753682
53e3a18f2fc73f252b06844689433ac09e706317
39843 F20110113_AACYDF viswanath_v_Page_273.jpg
e77f006b377f86a800bd00416def2cb2
763ff9a534af00cd4877166bdbc024db3e48392e
1051913 F20110113_AACZEI viswanath_v_Page_286.jp2
ff03c7678bdebd270a1c515926cee77b
85ba4abb1460bafad04a5d2aa7ffdc4298f5c80d
106896 F20110113_AACYDG viswanath_v_Page_333.jp2
014466c69a53801d768ea9ea08e93689
971afc5b2697d81cb88346c117ce70ac6da9e26b
490041 F20110113_AACZEJ viswanath_v_Page_287.jp2
0f8c002b7b652c369909701874e017fa
1e575338f24f003bdf7440bdb94c71eea5967250
384 F20110113_AACYDH viswanath_v_Page_264.txt
fa37185da95f9373a0899b84f89c9ec4
42bda028323cda9b7bc5b0d2d0cbb559f53a023f
225869 F20110113_AACZEK viswanath_v_Page_288.jp2
edeeb63267e7c77726e6c097696e2f27
1cae1f44f15cb1a38627e9f2aa739c7d99440691
14712 F20110113_AACYDI viswanath_v_Page_274.QC.jpg
d9e8cb5282a9740cf285609cb784d118
f0ea4a355c04fd917fafe5623d6069ebafe16eba
110517 F20110113_AACZEL viswanath_v_Page_289.jp2
48bfef996f496cc14a3c1604ad8eac56
1200f5159ccc78366b3db56e424a463bf6fb67c8
F20110113_AACYDJ viswanath_v_Page_094.txt
81381298bde847da0cd95ed867d21687
3d019a8ff46319e01cb6e657ae6c5cadbf87138f
F20110113_AACZEM viswanath_v_Page_290.jp2
b925dbcfb02c4cfbd576a1f4adfe9d6e
681cb0c4486bce060667cba6917f99b356d7a460
14754 F20110113_AACYDK viswanath_v_Page_148.pro
7e809feb730a6e91d70c93df404dae9c
ced0c357ae3f7061f8bf43ed0a35677643a2b36b
461264 F20110113_AACZEN viswanath_v_Page_291.jp2
2d1caf91c7b5a219a94bd206a5e20f91
5ecea64d1aef6b1d57ac509ce8076e2bb9124898
3854 F20110113_AACYDL viswanath_v_Page_124thm.jpg
90888cee82d3dc4b37782ff443e0cf48
93137766372f4aafe30a76eeefb0ec580f47242a
112953 F20110113_AACZEO viswanath_v_Page_293.jp2
bdca00d320230087ae27962e8f6f4341
47410791479b2c47f279b873b4291aa4487bd812
8681 F20110113_AACYDM viswanath_v_Page_202.QC.jpg
04146f4f7e09f0f4ace04d7b729cb761
ce9e186155439f61cf58281438ed92f372d772c1
64687 F20110113_AACZEP viswanath_v_Page_294.jp2
c0a0fae08031a3941b9791a537e3c694
242405cfb37d4cf8fc1f3e5fd13c4c6e96b8b889
F20110113_AACYDN viswanath_v_Page_114.tif
543039affac65605ae8a5b1ed371da15
660c91bf19c8bd108bbf87e79e3ffa0268006842
F20110113_AACZEQ viswanath_v_Page_295.jp2
e281ba03484ff05f44b332050c1fa8d4
0cfa1448ed6490e1952b5850a6dcffc1e9b2c980
14766 F20110113_AACYDO viswanath_v_Page_124.pro
78dc1c804b296b6e0bf92727f160926f
758474d9f82907517f22f17a17e4bf269a8e65db
496490 F20110113_AACZER viswanath_v_Page_296.jp2
a1e15033b9c84fa82e698be364450ea3
76d1bbe504f313e137f9f473c10d7d5c68106757
1036 F20110113_AACYDP viswanath_v_Page_243.txt
5ce5edbd121bd428a5237a2d0263dab9
53bc729d49eccac28b11b43b0cd4d2a73814ee4f
111768 F20110113_AACZES viswanath_v_Page_298.jp2
b1fe1260e4ba282582275cc5364d3517
f93496e9f033aab7e55a5ab156a7a6e332526428
19111 F20110113_AACYDQ viswanath_v_Page_310.QC.jpg
209b0cbb7bb4344ba256965e3841f5b6
8639aea6d3124bbc63d54c5f16e16f4a19a8f094
F20110113_AACZET viswanath_v_Page_300.jp2
5a535a1c50633f88b45d19cdc1f77904
360df01ad41190ee4c6a25cfe1c72391a5eb8515
2903 F20110113_AACYDR viswanath_v_Page_014.txt
98ced6b2f29965d903d7d62041aeb4ba
74b988f3fc5563ef70872fad3042c234ed969a06
507523 F20110113_AACZEU viswanath_v_Page_301.jp2
fc2c4778936de4eb5a0da21c97a77bd9
6985d20a74092d7d5d691da3841a50b9020a5e3d
15159 F20110113_AACYDS viswanath_v_Page_278.pro
664f983a84f8b61240e6260723bb7f73
93c8540f1693b2ebc2158e71fc7b78fd85ca16d6
3926 F20110113_AACYDT viswanath_v_Page_346thm.jpg
f5cd7801b8a2590551b37ffcb8ab810f
a883c6266ffe881aaf207343e5514dcf857aa237
503041 F20110113_AACZEV viswanath_v_Page_302.jp2
be08f02da07aedd042d5c155ad3ac054
9684a6b75eed60a20ebb0eeb381446137135a6d3
F20110113_AACYDU viswanath_v_Page_390.tif
4349473b61e6d9b30bf50e449d68ab18
e87d935ff8d68cd64c44d4e59d3dcbc79afdba20
110948 F20110113_AACZEW viswanath_v_Page_303.jp2
27c0828ca1b097e51b7cebcb0214475c
75f809ffe208a35d6b381c723717e8e4b4a53140
58150 F20110113_AACZEX viswanath_v_Page_304.jp2
bcb64347cfe647fd00a69c1af85250ea
c0691c34ae724d07573043535b0eafb40a20b425
11151 F20110113_AACYDV viswanath_v_Page_267.pro
ca1ea25af7cfeef4587cb225b5ed7249
298bb2ff2995755afba09bf025611c58011c8d0d
515283 F20110113_AACZCA viswanath_v_Page_220.jp2
af3cd786a1a54571c329fc9e17e0628f
3cd1b617bf52c7b1f3218f3ed35cd26fe44a59f7
F20110113_AACZEY viswanath_v_Page_305.jp2
d4aec86940a2185324f36138c472ff9c
2e380ef7192d5b812b3ce297007cffdaae12bf4c
6622 F20110113_AACYDW viswanath_v_Page_323thm.jpg
93e91ea8da5fff500039fab05e76406e
b85778e03af66463f23fb48d9d3bff2682e01a38
89845 F20110113_AACZCB viswanath_v_Page_221.jp2
eec48bb079ea403806b88bc61ceb42d2
9a4394c688c6d0eb690b84fd67d7d47abceeb417
479799 F20110113_AACZEZ viswanath_v_Page_306.jp2
de6d41363c704e06f462163f4dbd67c2
6e9bf1d9f4b7ae799171986fca4810a68d161f7a
55776 F20110113_AACYDX viswanath_v_Page_067.pro
1b803dec9fc6b4a2bf2ac170f36f65aa
d29c716d417c4eb052f74fc46fa019b84793852a
F20110113_AACZCC viswanath_v_Page_222.jp2
c5d6d53e3a0f863a39c66c2476d3c6d2
a153e7398e158f13ae442cf6f78a15796a62319a
14448 F20110113_AACYDY viswanath_v_Page_427.QC.jpg
62990f9be7b9c8da9c1cac817140cee6
be4be80948a53291e51c22fc2eb76f3b8c20844a
483385 F20110113_AACZCD viswanath_v_Page_223.jp2
91ea7371d05859b1a6328fd4175de2c3
ad414afbd2f8706c3b573092eca367d62d173463
652 F20110113_AACYBA viswanath_v_Page_190.txt
1cc6706081a08c428e1b11f9670bb835
a55008516e30d70f4bf19f9e752ced415a730003
113599 F20110113_AACYDZ viswanath_v_Page_056.jp2
a638b753bbc245c804236ff291d492a6
9ea13f7816ad4f1a48ea129eb587c7a37fefb430
243594 F20110113_AACZCE viswanath_v_Page_224.jp2
8ee95b9ad07645e30a81871060e0cd49
c3c76cd979f215e97ad5dd2af6dee85ca8a20069
15211 F20110113_AACYBB viswanath_v_Page_317.QC.jpg
3797757196aaa7d460ee36518ebebcec
57b3ea7decb828ea2b14df98dddde63c99900ba8
13501 F20110113_AACZCF viswanath_v_Page_226.jp2
be3c6565d0fb83e682591efef25fc536
728b920a93bf3f8efdca91e5002f76381809b297
5558 F20110113_AACYBC viswanath_v_Page_002.jp2
5d9e338c6251837eaa6908ee05e4b117
4ceb5a49fd958bb9e16f85792935e68c318843bf
1051925 F20110113_AACZCG viswanath_v_Page_227.jp2
4ef29829d8abedd27c9d3a86dad4a6f8
c1ba40b4c24c529618ccc4603474977987441f08
12718 F20110113_AACYBD viswanath_v_Page_273.pro
c61dd7382b0db5f83bde675ecef20052
a466c4023bf14e2acd75a5f7d9fbb0f852040bad
511579 F20110113_AACZCH viswanath_v_Page_228.jp2
e691aab10c66da6e0eb71e5279596b6d
a0df11da6383240188caf34260bc853feb59f04a
6677 F20110113_AACYBE viswanath_v_Page_206thm.jpg
a533992ee5a357eb5d6201c43162dab7
a7a4ee6de8a3ce346718f2145d8dd37442e9c682
625535 F20110113_AACZCI viswanath_v_Page_229.jp2
424dfcf2d100e76a862fe371150214ed
04febe5ffe6acb7dcb3019a8c4a5f768723ab1b4
712 F20110113_AACYBF viswanath_v_Page_233.txt
8a139531e4ddf370ecbe089bf9c74adf
7a3bbe1d44106777c05605b3602c69ba1866f13e
114407 F20110113_AACZCJ viswanath_v_Page_230.jp2
5b8a4e1b4a364cc49a2042648e108977
94d01cd8d177e42c9f1293bf87688544d18bd2f0
103193 F20110113_AACYBG viswanath_v_Page_127.jp2
4b1611ee7ae74b0efa148bb878a759f1
6ad2a7c7cf57054130d6a465ee14d0d97bc5bac5
21882 F20110113_AACZCK viswanath_v_Page_231.jp2
db4cb098dc0311c080d7164ac1a439d9
36eaa0ad5564c2190dfb0dd78b40ec7ca71edf5a
4707 F20110113_AACYBH viswanath_v_Page_372thm.jpg
cde83d1f6d8d65810ee06ad59c97b909
0b3b1ec7a7d2f0179a181bf59eff9cf915146749
F20110113_AACZCL viswanath_v_Page_232.jp2
f17decba734182e5dc8c6376e2919a75
eba7bcffcbf7c55bebaf3288997c5799b8684e8c
42959 F20110113_AACYBI viswanath_v_Page_199.jpg
7b42c1b60afaf97f10f8f844b2ef3260
0af0e727c9b3e38d5e4c0482eed5d6bbfb2976d1
495478 F20110113_AACZCM viswanath_v_Page_233.jp2
978de467c64c4d7f828048b1671ba060
383bc599a5f530daa1153b3de35cf54d672dda51
4999 F20110113_AACYBJ viswanath_v_Page_381thm.jpg
67f739eb613a43feed7b7d4a3b9f3245
26eee47cdf30abc019bcf02a8cf08772138a0ba6
546084 F20110113_AACZCN viswanath_v_Page_234.jp2
070c6a846af885a4c2918e103850012d
406f057eba5ba27ad6daf732e17ddb0ce3db3485
F20110113_AACYBK viswanath_v_Page_211.tif
b634a9200a8cbb192ca90f6f1669c4ff
82914ce8b9dcecd61dc988baa06b42ff56db44bd
108811 F20110113_AACZCO viswanath_v_Page_235.jp2
fb4e24d15f76a76eb1cf03c2bea95853
dfdbf09542fbd3ffbade0d23e961cf6aac05681b
27098 F20110113_AACYBL viswanath_v_Page_329.jpg
13081b39e94d1f8595b0efb82f1df6c5
7b03e0e29821f3050b0b02f09526418cb4b531aa
65327 F20110113_AACZCP viswanath_v_Page_236.jp2
8b2b2757cd36b0cc5dd2ebe6dee297de
8a597676e5b04467291f84026ceeacc70c9e25d5
15208 F20110113_AACYBM viswanath_v_Page_236.QC.jpg
26124d1d71a1173d6c05d2a9d7b37c6f
ec7df19a0925849b0b88c3ce28ca2c3a0e649a77
F20110113_AACZCQ viswanath_v_Page_237.jp2
a6c23943adb6e5573e032fde8b68165e
8175bc720bbfa678d909668dc42d3f5d7b13740c
11184 F20110113_AACYBN viswanath_v_Page_321.pro
12289b994727a4bdbe7ce1ad7fe98580
9eb120884e70ddc5c63383c0cc029f1d3ae795d5
513789 F20110113_AACZCR viswanath_v_Page_238.jp2
e7018d48ce5a1c0c6136a1773a278e72
663bea4ca7f5a81f3692889aa0a229d050065a87
43723 F20110113_AACYBO viswanath_v_Page_048.jpg
dad28fbe8174ec282831a154becd5822
2c27b5a19f3bc51dca890666fc1a3ea304eda6d0
508613 F20110113_AACZCS viswanath_v_Page_239.jp2
f3fdb4768469a08fb53e98d159bfbad4
389a02a2baec418d20b4f6849a9ce0be2f93dc14
45914 F20110113_AACYBP viswanath_v_Page_239.jpg
da9ff1e909e525a1e3a48c9e6fb05b74
0d2bd09e7d86ef2308e0a0da772f70ce8eddc4d3
54301 F20110113_AACYBQ viswanath_v_Page_410.jpg
d48cfa87534cbc7f30a49b5aa40a7237
ac6d4f40b75aaf154b9d596f36cef0ad7603c1a8
107649 F20110113_AACZCT viswanath_v_Page_240.jp2
a61d9e5404b9e321ce0c6a6269b1f73b
7523e3b3d531014d16eaabe634d8ad3d4ed82e3a
454184 F20110113_AACYBR viswanath_v_Page_044.jp2
7901af4a91ea4d3d8b843dfab0212999
24c7345e04bf2a09c47856749a8dfc4ce66f330f
65706 F20110113_AACZCU viswanath_v_Page_241.jp2
36d5d9a269e56e4d42f16cbe3a010671
964b56516799b3c7ecf3731f0078bd81fd93119b
37479 F20110113_AACYBS viswanath_v_Page_173.pro
1994d14eabaf78326d1bec7285937ec2
1e6268a54610209bc5d86014f0788390649d4a5b
F20110113_AACZCV viswanath_v_Page_242.jp2
6e2f7c2a9c5a2882849f364eb6289e09
e1b3d18f88f3e1465e06c99e8d5448d8d4028fb5
527986 F20110113_AACZCW viswanath_v_Page_243.jp2
3288ff7fb6bb8939ff811c45a28c9d90
bf4158d9c3c093772f784e17ac53310610042923
3020 F20110113_AACYBT viswanath_v_Page_334thm.jpg
2f71c938f6c98363cdfc7f60a8060df5
8ba27d885dbf614038ce6bcc2f7ed80afa90a3b5
244052 F20110113_AACZCX viswanath_v_Page_244.jp2
0ddb1a0360943b05e000b5202be5f70c
f7961295fb73c4999dfabcdaf8bb2c4394b30c4e
12597 F20110113_AACYBU viswanath_v_Page_386.pro
50dfeb8c88ac6a55b35b7ae4b13c866f
d7fc288dc6798c2457d315fdf60bca819e17dcf0
97973 F20110113_AACZAA viswanath_v_Page_163.jp2
f33b54db02dff9198f2ac5a6dfdda2d9
f155a28ff51ec31fb44d1781539205f5599fcc81
107635 F20110113_AACZCY viswanath_v_Page_245.jp2
487f65cb93ee60fba8d180f249e92670
cb42e5b2baef9ab4bd318f7b7895c25d40f801cb
28121 F20110113_AACYBV viswanath_v_Page_185.QC.jpg
4be4e560cbaf028aee7ce7e27ff9491c
661dd480416c84da4904836efbf20bae5ea9f807
104475 F20110113_AACZAB viswanath_v_Page_164.jp2
2ea5e1424a11bf59850e04a5dd3f973e
9964cf2a8d94d36e5eef64f7ce1e0a9b3b4185c9
69154 F20110113_AACZCZ viswanath_v_Page_246.jp2
64fe677a2c8c540bd23ff62a8a139df4
4cda2013d52bd222ff6e825ed969ace9a7ec0ebc
F20110113_AACYBW viswanath_v_Page_246thm.jpg
183bda18f0066b8a87529a1a03c30b39
109557d65b82028c428ad8ceb37f91aa2da9ae45
106502 F20110113_AACZAC viswanath_v_Page_165.jp2
c15189e0c6a8f1951e369377dde1aeab
7cd11b6fe7e45976e9b911f0fcee3b52f89f1f95
11281 F20110113_AACYBX viswanath_v_Page_310.pro
1f30a1c1f30d929e6f433c85166fa868
3518fa944b075b864c55ec2a0d2d3c3b4a2a8a8f
76646 F20110113_AACZAD viswanath_v_Page_166.jp2
51af3053f07a71e8f21f6f16a8591115
123d4f0689dac3d513543c54acf75c99ce5d521b
4703 F20110113_AACYBY viswanath_v_Page_444thm.jpg
d622dce83579143628112aee9472a7ca
c4bb21bc0c67ffeecbc9ab15798dd85c21251cb5
89159 F20110113_AACZAE viswanath_v_Page_167.jp2
5977276d3bc5ab97061f0ad712adc8b5
e4a86c1435aa2c9c42736bac70667914af8bee41
F20110113_AACYBZ viswanath_v_Page_263thm.jpg
76a128a5e94c4c973d55b07e917be27f
f20fc9a8e2914c57e81a5b20d4f833d1a22133c3
101257 F20110113_AACZAF viswanath_v_Page_168.jp2
a464fa7c5f6d4e99af7a651014617d83
36961519abd5bacdeff65557d23e27f7fe3361a4
96908 F20110113_AACZAG viswanath_v_Page_170.jp2
a11e96b69fbefb64cfd69582b8a4e9cf
09cd8b8eda51116e19de2c77648ce0a665fb711d
93425 F20110113_AACZAH viswanath_v_Page_171.jp2
63591bfd75464e8b50aafccef83c9f7c
c0d503cd5469dff83f3e0944917150eab6d5fe2d
44740 F20110113_AACZAI viswanath_v_Page_172.jp2
1c3886d921a9db98a1210e3839bad361
689d56f98c271ffb54de5fcbf710070be26e5bb6
84268 F20110113_AACZAJ viswanath_v_Page_173.jp2
d5d1024978fcd288aac12513e23227d0
013756f63b1a53b31a2e8fabfa359d7aeedb066f
63832 F20110113_AACZAK viswanath_v_Page_175.jp2
e760df8ce3f54a7eef3e7ba852a11373
5dab5705b8730b2b4e67b820c9e55ec4240a8498
68304 F20110113_AACZAL viswanath_v_Page_176.jp2
15940c3514e83be7e96c2b6d5290671f
f3c8810b568d770ccc8df632ff4c3649aa197c85
76266 F20110113_AACZAM viswanath_v_Page_177.jp2
65e2833a7a1e4a105095f516e65c9dab
00abb9d7a86d85e481458b0e39b16c288b811096
76874 F20110113_AACZAN viswanath_v_Page_178.jp2
470096f2906c92446cfa4c960465503b
de99611227a941dfd1487a7c78e80b44028f314d
79285 F20110113_AACZAO viswanath_v_Page_179.jp2
c9e9e19c2cdcd6551cef238b1b8ace33
7948b91e0c92e56f664a13ee6b0a61fbc351bfaa
66192 F20110113_AACZAP viswanath_v_Page_180.jp2
84f88c1cb1eaccbee19ef4adec7c09ee
f86e44c18a7733710aa0b129886abc879c1d56ea
71188 F20110113_AACZAQ viswanath_v_Page_181.jp2
895289314cae8f2679ae8137d016dca7
af777143577476d8c429ac41fbe4314b2d0cd440
509304 F20110113_AACZAR viswanath_v_Page_182.jp2
3662683f3a330582a515834018d6d1e4
37f88a69da801d1ba93c8e6193366d756604042c
494611 F20110113_AACZAS viswanath_v_Page_183.jp2
a12d15f107f68d21835eec0a972ca711
490041b2f06f0d270e6d2ab212f93940f174dbbf
154931 F20110113_AACZAT viswanath_v_Page_185.jp2
1056fe1a6c9eb09bec386947da6be030
4ec62dd249840fdfd59259cdb954b9ffc5dce9c8
165951 F20110113_AACZAU viswanath_v_Page_186.jp2
d6c5f29f492f4b446b953ebb21275f68
6c741b03ae045db4db5393777dbee42b3e1ce9da
60670 F20110113_AACZAV viswanath_v_Page_187.jp2
170a1ca5b0e75955dfc15dd656c2eaf8
69138ab09cf1ab840c152478d351774ca7a16365
35862 F20110113_AACZAW viswanath_v_Page_188.jp2
c47c5384adbdf858cb9488eba5bce46b
7a1a555dae931c07cfd898d1bc581e9ba844914f
70158 F20110113_AACZAX viswanath_v_Page_189.jp2
9d3e7a60d6f3f3192995218bed67231c
734c8de81fdcae56065bf99f5164e72adc25575d
33338 F20110113_AACZAY viswanath_v_Page_190.jp2
44df23ac0e08a2d2f8c8d677e74f327a
469cadd4ab253715b4766ea362a21f89c4dc58f8
104180 F20110113_AACZAZ viswanath_v_Page_191.jp2
b1265839d2587738ccbbd99418786322
16adbe6ec252a8aca136b961852249ff12134f60
1260 F20110113_AADAZA viswanath_v_Page_246.txt
2201c356b8372a4f69311804dea64812
8c22471cf531f936769966328617b6b2c472a78d
554 F20110113_AADAZB viswanath_v_Page_247.txt
f1631f224d780ef7b36d7a3936d4dff5
a690c6732947b2130e8cfa94139c17b962f57c35
774 F20110113_AADAZC viswanath_v_Page_248.txt
7efc9dcdfb6a9df3451fe3934bb9d50e
0cfeda8dd5d1cf0ca0852b7d1e6df14225f523d9
981 F20110113_AADAZD viswanath_v_Page_249.txt
e1965762ca318d5518632a41b8ba8235
ea9d9516868507b02dac6db3e9b24477d541758d
2080 F20110113_AADAZE viswanath_v_Page_250.txt
a3c196a7feadd06f5a19b350099c335b
d076725a8542e01c849760e2e1ff09c9c25fe213
1761 F20110113_AADAZF viswanath_v_Page_251.txt
cf7edbd6d9891a8b4588e86ecece1efa
d22121682e4790f61e0491720bece6c9c4675e26
469 F20110113_AADAZG viswanath_v_Page_252.txt
1e612b5ee4c5072ea38789d38aa0e4b2
2140cb6cf8e1d07876838788f1f1c8630475dee7
642 F20110113_AADAZH viswanath_v_Page_253.txt
3a2bda4cc2cea4357061018d7612a118
96afe6b58d45734885823c2006df924217d09e3c
812 F20110113_AADAZI viswanath_v_Page_254.txt
e857e23c098bd7299ff54887db0da875
9350c9f1821ce71c74a66840042c4f11fc7eee43
F20110113_AADAZJ viswanath_v_Page_255.txt
467e6aac9a110e22e2b5cea3a4e410d9
99d37c6b6ddcee6c9a32be1966b1dab80d5b27b3
1419 F20110113_AADAZK viswanath_v_Page_256.txt
4dab39acc0408b7986f5b6355b45a7e1
34296ec580711a9ba1ae222931c04c728e30bd88
F20110113_AADAZL viswanath_v_Page_257.txt
17cc520aa2ff61dfc569ab2641e901ee
ecdbe2cac39c5b59b43d6413bfc8eea613fd02ef
677 F20110113_AADAZM viswanath_v_Page_258.txt
e5dedec17d04c5029f8bb5367af7074e
554383e6961a005d1bc259fa56159b9cfc73ae63
723 F20110113_AADAZN viswanath_v_Page_259.txt
f0379eb9336d25a9dd4cb4f67598c86e
0cc1a3ad47a5ef865b9a1c39d45a22debca51ea8
2021 F20110113_AADAZO viswanath_v_Page_260.txt
1342b1587904bb583cd979d638650e68
8fce23e4808f5c190b9fc0bf58b2ba3eeb933137
617 F20110113_AADAZP viswanath_v_Page_261.txt
a46c6f958a9d9ef9e01309a6fdc31984
023575af0e9c6b246f269dc534ffcd566b1b3bb5
532 F20110113_AADAZQ viswanath_v_Page_262.txt
328c8dfc42c228c768fd199b23047bb6
9c6374c2952b719740fa4e437f18ea7a92f8a6fb
1041 F20110113_AADAZR viswanath_v_Page_263.txt
f3b06643cb3adc869613d25bf753b75e
44812d14d1c91eb00d0425a9b58297aee651f5c6
1959 F20110113_AADAZS viswanath_v_Page_265.txt
76b922f75f407eeed68c30406c0c66ef
0ea57a06445277e037a5ce99ad09ace2bb1ac64f
251 F20110113_AADAZT viswanath_v_Page_266.txt
119b2f91c4aa1ed0f8f122d246b73ff8
4e3f1cb07a4409a2de9b0ea5bc28d708aaa775e2
427 F20110113_AADAZU viswanath_v_Page_267.txt
462a152a6cae77e7711980c29f991b49
03381fc9721b113bfbb53bd167b4aeb523636513
F20110113_AADAZV viswanath_v_Page_268.txt
acedc5785b4f528ee4862d1eeb157b59
aa33d1719b98ddbd5b748aa794fdd3cfc8d5ae04
6032 F20110113_AADBYA viswanath_v_Page_247thm.jpg
873b0253f8fcebf0e415bd7c44cc5f80
49d90116c590135db765355d98d0d16f3f4bf415
840 F20110113_AADAZW viswanath_v_Page_269.txt
a323201c9bc3cc36411de6a5fa7e09c9
bc79a64c2b1f22d35135544dee8b67e288ef73d7
14238 F20110113_AADBYB viswanath_v_Page_248.QC.jpg
fa3b9b72245e1b491f7e22d1de61d408
0b91ab5afaba82a687b1a165ed75aebfee431323
1978 F20110113_AADAZX viswanath_v_Page_270.txt
ac0f2e719e3c86e78cd4d4deefa0fc6b
8df9095772375fd95c7ad163d872d6add8840113
1446 F20110113_AADAXA viswanath_v_Page_189.txt
9f5f093981dc7a9ca26f97ae52199b20
b9c0f899e0951d8d48525b36267d77af574b09bb
F20110113_AADAZY viswanath_v_Page_271.txt
c632de2201c52675c62989c18af14436
a530f6c437a7ae788905fff16baecef2130e4109
4354 F20110113_AADBYC viswanath_v_Page_248thm.jpg
e74b7edce848bb428a701cb91f6762be
6d62bc62a86c9581db3149820a6ca6583720fd7c
1949 F20110113_AADAXB viswanath_v_Page_191.txt
62b565e0582a3509063ef90d249cd468
f848c8056f9b33f0153571c67c6dc40de858caed
411 F20110113_AADAZZ viswanath_v_Page_272.txt
3966452fab7f748afaaf7fca6faffa43
beb10d134041c42a685df85deab76b5c8d9bf223
15227 F20110113_AADBYD viswanath_v_Page_249.QC.jpg
8324d25c7cb277db80fe0fbd8315eb4d
49260fadb880fc101680301f1359a83afd9a73aa
4821 F20110113_AADBYE viswanath_v_Page_249thm.jpg
d6e15a79aac325920b248b22541446f6
93e84cf2360d0f4b2817e3dbb9133fd6a394bda4
699 F20110113_AADAXC viswanath_v_Page_192.txt
67ba4094a13c32304bc7b75c365663d6
856cf6f84c4bf0aa581d62957803a69668235cf1
23609 F20110113_AADBYF viswanath_v_Page_250.QC.jpg
993782cb16a6ff81672c36b36c5671a7
22215753c9075f90a7c67274c0b99da09773a80d
503 F20110113_AADAXD viswanath_v_Page_193.txt
ddb1a823c9b6ae567aabdaf22efb2629
11cba2c20c6ba51b86a1ce0d765fac2ead4e9d63
6491 F20110113_AADBYG viswanath_v_Page_250thm.jpg
accd03d007269705987eea72ca0987fe
2038a1351ee55597f41d72444b6a7b21eecf7fc2
541 F20110113_AADAXE viswanath_v_Page_195.txt
513bfdf69dad017a7b1e44781caa5e9c
cb9f56b1e6a29042c0927886ddaf30cfc360e381
20889 F20110113_AADBYH viswanath_v_Page_251.QC.jpg
eba61fe4254222d779d2f096996383c9
d915cc23c402c22cdd4316179c4ba20aa8ca3bf4
2124 F20110113_AADAXF viswanath_v_Page_196.txt
96a421eacbfc86fac90f6639e882c6e4
56c46011b27a6d90111c0ca682ec18d3ad059a98
6206 F20110113_AADBYI viswanath_v_Page_251thm.jpg
64da640e9f0ef7c594a29ec2c51c6504
50e588833226ca722a9ee9328f4eb4592778c404
897 F20110113_AADAXG viswanath_v_Page_197.txt
967da2ca97ebf1bf1ffc5d7ed8874afb
2461cbfcd126c81a1f8ee795239d59c80e2b3e9a
17545 F20110113_AADBYJ viswanath_v_Page_252.QC.jpg
8ba2b853bc16c81ebdf0af1be4535ef1
364b97d0c9c5b5a5b59a4fda1a5f194a85c6dde2
409 F20110113_AADAXH viswanath_v_Page_198.txt
5b0825875dd2366a8ff331112bc06937
f3c033febcf2d3fc96a2299763b7ab8a539afd31
F20110113_AADBYK viswanath_v_Page_252thm.jpg
396ddcf75e49615fd15268e6132df3c1
e8573a3a27a40aed5cd41c9dfe4ba052576cd6d0
F20110113_AADAXI viswanath_v_Page_199.txt
0752b56dde64852f44d8cfaccbd7c752
df3267c88d041008072ee23080bde14d358ebbf2
F20110113_AADBYL viswanath_v_Page_253.QC.jpg
f734ca2fcb41196ada5688f17c419e61
20a07c64955e0f4d520e2970004b25562f5edfc1
596 F20110113_AADAXJ viswanath_v_Page_200.txt
59ec72e45049c3b119dcf8d5e9307cd5
d41e7d4452d851adffa183fb8de84ef8dccc2987
4520 F20110113_AADBYM viswanath_v_Page_253thm.jpg
bad73ba522fa824cb7bb2de2bccda9b0
2a1cb0a5837bf154c20165a733f11e31945fbc05
F20110113_AADAXK viswanath_v_Page_201.txt
310c431b53e3260bb917b9f48e1bffa6
669ce8637e643492e42d04fe95b8e0c2db1fad18
16156 F20110113_AADBYN viswanath_v_Page_254.QC.jpg
a70c942778bee6805dad0a09b45eef1d
d249ec42adbece0b566658aade240e8e655cf77b
578 F20110113_AADAXL viswanath_v_Page_202.txt
a8beb3fd79fa9fc260a27d949074354e
7b2782e4b287841d30f88101fc0035ad095f2966
4771 F20110113_AADBYO viswanath_v_Page_254thm.jpg
7095bc46c9ea4619efd56d4fa6b52f60
ee8407ad44af2bfb8d808d718efc92bb4775da48
545 F20110113_AADAXM viswanath_v_Page_203.txt
7ec9931cec41ffbfb8a4cfb3807fe007
cdf1f6e27ee09eed069c802fa8cad8de75faf8ae
22413 F20110113_AADBYP viswanath_v_Page_255.QC.jpg
2eeec2bf4b57140db55e4970f50b5e97
5b9c16b3519bb1014657066e64f46be061d23b3e
657 F20110113_AADAXN viswanath_v_Page_204.txt
0264a8ba384671e2d3f15603d9157cfa
d17017ab787bc46bd0f1b87fa201a3b33a8b063e
6411 F20110113_AADBYQ viswanath_v_Page_255thm.jpg
d23bcfec3899b0c52aaf99e6a1352169
3ea562e4cfc979a634c7718b30026a3abccf8597
695 F20110113_AADAXO viswanath_v_Page_205.txt
020e5750385f125fe37ba2c9721f5a4f
df71eedb670c2704d2ca3dbb5edd7c7df8e9737e
18031 F20110113_AADBYR viswanath_v_Page_256.QC.jpg
452a686bf8bdb06c8ca4c57bd6bdb9cc
814481566329648d0fc2cbcc9204d4e25368377e
2040 F20110113_AADAXP viswanath_v_Page_206.txt
4a7cc6fdf431439634a472131ee1c147
924038eec1813030c7cc164455743ec0e6d62924
5109 F20110113_AADBYS viswanath_v_Page_256thm.jpg
94d4c03f50b53d937bbd32813bab32ed
8cceb21d16a1e810ee9f8fc262245a0d82a674cf
668 F20110113_AADAXQ viswanath_v_Page_207.txt
eacedac60b947cc9e916e112cf3069f1
1e0b8a0cb6fdc57467f541bb507c5490ffecf90d
18310 F20110113_AADBYT viswanath_v_Page_257.QC.jpg
931fa9fe9ea47683f7e235774b3d34ad
875506408cf3b7d40386bfbdfeaebede116e224a
513 F20110113_AADAXR viswanath_v_Page_208.txt
74dcc39d22d0322d4d074d87c316fe67
1653ece3f90778d81dec172ee318d6073b24f7c6
5815 F20110113_AADBYU viswanath_v_Page_257thm.jpg
7783ffdceb557a9e49395a71514ab8a2
5741515485f8be6a098f63871a3a86c790e35a00
473 F20110113_AADAXS viswanath_v_Page_209.txt
6f3a50db6d1a940b40069cb4bd9c3486
fecd5c31ce4a9f524e0e085d12442b5f943e79cb
13859 F20110113_AADBYV viswanath_v_Page_258.QC.jpg
b61ff8852a9581eaf181ab1ee5b91e86
3b3e06f17e7c8a08083ba1272822826ebacb652f
861 F20110113_AADAXT viswanath_v_Page_210.txt
021b411a758f65a21bfcd13958d43c82
9fa6577de46360e60c97275f6f50ad51a92cd446
4627 F20110113_AADBYW viswanath_v_Page_258thm.jpg
cb8e419dc578f015c6a272e0dc2c105c
9d4019b0732c16d63fcf5af7ed5442a8b116e20e
1980 F20110113_AADAXU viswanath_v_Page_211.txt
e9a37e2480b60325081fc61efe9003bd
a941285da6513f07ec69181764c7902516dd2f64
15449 F20110113_AADBYX viswanath_v_Page_259.QC.jpg
954eddd96b103a4f29c2f93ed3bdf4b1
ce23139c9e09f5ca756dae0bd7db6111fc405308
905 F20110113_AADAXV viswanath_v_Page_212.txt
6048f45581ea6b0cb0fa5f8fa5921d86
52d635dcaa2a6826073e0a22612ff7cfa887fc1c
4580 F20110113_AADBYY viswanath_v_Page_259thm.jpg
0d75a29962ee61887fb738a595d84c15
230e90a1e9a4b80cec6ee8894a62dcc050319967
627 F20110113_AADAXW viswanath_v_Page_213.txt
e65e502371c5a686b12aad9f9491fefa
a1ce4efc7469c38c525552e324863ced1ee63f62
F20110113_AADBWA viswanath_v_Page_220.QC.jpg
fb00d5b45053b5128961b5eea9d22f8a
529a3295689d28b62dd8b028deeb4066aac8a496
23557 F20110113_AADBYZ viswanath_v_Page_260.QC.jpg
e54818e06e99bbc02a3ed4dc3db7ea0a
9b63a991a97064047ab2ac4d94b5555f9fe98430
771 F20110113_AADAXX viswanath_v_Page_214.txt
95430be3494f96d7604a07fa5c7935e6
04e4936a7345f19b5ee1e0368c1a724a3e93b4f6
4523 F20110113_AADBWB viswanath_v_Page_220thm.jpg
8831aae2499c5abf72bfb13738a92ec7
38ebfb52f8e8edf3654bebd6d84fd17148c8d981
784 F20110113_AADAXY viswanath_v_Page_215.txt
d8de3c16a6478667f54af91ecc28f012
ba0249001c436b9bb1a05ae03a18f23dd0230ee4
20036 F20110113_AADBWC viswanath_v_Page_221.QC.jpg
606088adfabd1e7b975ad66676ca249b
c61f93e332cf89adc5b90ff263d65448cdda6908
1999 F20110113_AADAXZ viswanath_v_Page_216.txt
9180aeb1b4b8327a388e0b7c11074768
b5f6a7713db8997de7e158be78ecbc5bf0113be4
5640 F20110113_AADBWD viswanath_v_Page_221thm.jpg
f62a6102abf77efc1c12aea4164ed8eb
8fa5beb2b19e8b0c487cb7b876ec71f13de376b1
F20110113_AADAVA viswanath_v_Page_132.txt
492d81660e0d915e7ecc83ee96926984
844a639b9286c68e08a027c6f46db7634fe7b953
F20110113_AADBWE viswanath_v_Page_222thm.jpg
6a690521d2aee86142b9cdf1abde8a5b
5705d8a77b272b7277dd2d14612c401abd6088ab
474 F20110113_AADAVB viswanath_v_Page_133.txt
2c06e59ed5fb272539f182dc82ce3deb
86d6115bab016654611a96505357667a00b2244e
13688 F20110113_AADBWF viswanath_v_Page_223.QC.jpg
f6e56905773ff6d9ace211d6e69865b2
35cabf3aebc4d13cca22ec6b29ccaa13bada1a7f
574 F20110113_AADAVC viswanath_v_Page_134.txt
d4750a265fd5ddc015a0e72dd87f3515
e6fafcd316bdfbe668cf81ce1c4d1ab30dea09b8
4405 F20110113_AADBWG viswanath_v_Page_223thm.jpg
cff6a323555cc67399f0da80cf2f00e3
d9588369b37ddb24ff63da5f82989798cb33fe85
F20110113_AADAVD viswanath_v_Page_135.txt
d177448dc47308751762cfc116fcef63
7f74b4e314781d5ea0316fbaa4cc87f880471868
9029 F20110113_AADBWH viswanath_v_Page_224.QC.jpg
30bbc0641328b28659fe83e87ae97655
e07681ecb805374e4766f07f5083d74639800e82
460 F20110113_AADAVE viswanath_v_Page_136.txt
45649f6046eff1fe96f11e4ccc0a412d
c882784f3cec95fd9b1a8a4b8bb41b1d911dd31a
3079 F20110113_AADBWI viswanath_v_Page_224thm.jpg
88ca42777cd32bee76840c202117c858
31261c9d53bae357e0f26d612d5f3dfa7dbf74c0
579 F20110113_AADAVF viswanath_v_Page_137.txt
282880925ce7f3eb04254f1b23969cea
685c09565b7d405ab448b0992fd9fcac6200dcc2
22167 F20110113_AADBWJ viswanath_v_Page_225.QC.jpg
ae273086a5cf78982d680ec083605a12
6690fb95f75f1df1a4a1786038730b5684cd22aa
F20110113_AADAVG viswanath_v_Page_138.txt
81a442be554677cafc5c0ea7d732cd1a
b6abd249140b320dad7325450608126ca71b2931
6076 F20110113_AADBWK viswanath_v_Page_225thm.jpg
6d50f2ecdb9369d9a91e905a0cc9ff36
83e7090ccc2b5eb5bfeacba84c2b837fefd0ab82
932 F20110113_AADAVH viswanath_v_Page_139.txt
b168f2fdcf3d4a9eed434268d0a17ea6
1dc0840cd0ca880522cfafe52789691199116a8d
5069 F20110113_AADBWL viswanath_v_Page_226.QC.jpg
f69874bb6f0f6dbb4dbe5775dde00e2e
ea87d21c4519d822d86895448c72ba7b12099a92
1126 F20110113_AADAVI viswanath_v_Page_140.txt
154fe5d317d42475af02a58f1dd7885c
c66568261c4482dcc85e9d52c780924519f1b3c8
1798 F20110113_AADBWM viswanath_v_Page_226thm.jpg
b33eb23a6785cd18e70d23ddbc84316f
15a5f74d244ce3a408944789d4a25176ea11ac59
798 F20110113_AADAVJ viswanath_v_Page_141.txt
6c1729b569a73ad64e8ce3039832641a
4a02c22f24e01c02501cb35e99b5a999c663138a
16623 F20110113_AADBWN viswanath_v_Page_227.QC.jpg
9b08d7bbb1609a57536c2a684066bc29
28fa5d885c16ca93502553a2c1232740de9cb203
590 F20110113_AADAVK viswanath_v_Page_142.txt
1c0ecabdd425f0aef17572c624fc907f
dde20889a9039e737be4d135d9643af40ced03e4
5496 F20110113_AADBWO viswanath_v_Page_227thm.jpg
f4fdd1bc7bc8ea74555c99937d1185ca
6ee3d9049058f82c95f03ab53a4aa22adcbc1909
1070 F20110113_AADAVL viswanath_v_Page_143.txt
1788abd03cc7ad092dcb07bf47bdcd6c
fe8a5890de2a73e83b2f131faccedaf105bfb056
14133 F20110113_AADBWP viswanath_v_Page_228.QC.jpg
c3c99e12413cf192149558bbbdcea100
1d858d3ff301a65f2e0fb3dcc0fb2a1a55d560f2
920 F20110113_AADAVM viswanath_v_Page_144.txt
f46fb7af2f2dde63764c1007ef8068a2
ad303b1ed451d521942a04253ca727287f4a4262
4562 F20110113_AADBWQ viswanath_v_Page_228thm.jpg
b13b48e3e5785f75f666da5322bc9144
32b378fd5e0d54d7c7826f8c922525cdaf35d937
912 F20110113_AADAVN viswanath_v_Page_145.txt
8973c5513dd9e8ee084c36f1e30f1b39
76abfb9896b030f077f5af2551f73ea29aa03ccd
14740 F20110113_AADBWR viswanath_v_Page_229.QC.jpg
89afc723e49aec346a3c3a954b07ba09
fe43340b56c649e8ae8bd43698e10f2a109885bc
713 F20110113_AADAVO viswanath_v_Page_146.txt
ed23e1067b690958b98ff5750d94366b
ce185198eb0c40e79dec0782b861e12d86da7bab
4657 F20110113_AADBWS viswanath_v_Page_229thm.jpg
33f6994c8ba4892fcde094bb63f932ae
0cc3ee7c61e17f7507ba25ee19a641e00d2740e7
1223 F20110113_AADAVP viswanath_v_Page_147.txt
826a7a0370d7534d6f90c5717a8c4a6c
14ac2f450e1df112cdde77e65958b784dd24f147
24725 F20110113_AADBWT viswanath_v_Page_230.QC.jpg
c7ec334ea0693c9526ad71332d50ebd9
e11cd18e163d37c21f4138bfbf1178468152276f
943 F20110113_AADAVQ viswanath_v_Page_148.txt
739bbc7a587ab9c662a525b6b29ebe32
c9336a62b692096159d07719f0dff87cad9ac253
6903 F20110113_AADBWU viswanath_v_Page_230thm.jpg
c10b9e36e7727383d4e08456a97c0e1d
78af06964e4c2afa1f7f196791c48b6c242d15ff
862 F20110113_AADAVR viswanath_v_Page_149.txt
639676b7f5732b82392fc53253181071
e1da068359ea4ea34bb08812d7f2c16badb35fc7
6502 F20110113_AADBWV viswanath_v_Page_231.QC.jpg
fe8e0ea12c9c8ba99818a22077da5dfa
15bc8d99396ea1eadfe6930e5cfce761f1bc059d
F20110113_AADAVS viswanath_v_Page_150.txt
71e8ec7a15cc43734e69e4654e798a67
e11d503035bf3d7c7ceaef38b76aaee748d268b0
2224 F20110113_AADBWW viswanath_v_Page_231thm.jpg
bfc0afb9480954ac60e052d1bf0dca21
e246729894561a0985e494fb585ff400d0e7c1c6
1185 F20110113_AADAVT viswanath_v_Page_151.txt
eacaf378fc5cea35464a20c8ade4d405
589b1c5b6cc34cf2ded50688a636b8d0594513d9
17285 F20110113_AADBWX viswanath_v_Page_232.QC.jpg
9a206e4da8ba230be6ca5a247bc41372
59a55f341af55f334b8f518435048eeb522ef8fb
1117 F20110113_AADAVU viswanath_v_Page_152.txt
38f05dc735436ccf3e01824e0d926440
9790185ab6eafeb1cf0224ef1a35bd5345aaf126
F20110113_AADBWY viswanath_v_Page_232thm.jpg
6d8d739b3981b3ee422c8f1c1a169491
7b7ab6dd23c46ec07d12cbd01827c4e270dce8ec
F20110113_AADAVV viswanath_v_Page_154.txt
851ddf81b0a288109ad1a37c5f07b3d3
2d8deeae89431a26ff74d5ceb5cee33f0f442415
22743 F20110113_AADBUA viswanath_v_Page_191.QC.jpg
90e25dd46d901ce1df93bbba4be7f5a8
7f6ff8f1d742722dd0ad85ea61bd879f26e4bd08
14365 F20110113_AADBWZ viswanath_v_Page_233.QC.jpg
870d97dba024d8e77d60d5e090a8db01
ccda9e1ceaf8ddafab49a27a137f5353cd2a74d0
1123 F20110113_AADAVW viswanath_v_Page_155.txt
c50d031a5e0ab0f4d71ac9f728edb2e8
be58b6e3b1bf2527498548d3f0156e6af15c3f11
6255 F20110113_AADBUB viswanath_v_Page_191thm.jpg
90c96b0b6b8ce269c39b78b63d67d9ab
b2ceffe5a3ecd6c46392e04b40c331b58fa26e1d
1193 F20110113_AADAVX viswanath_v_Page_156.txt
ec55d8f7e2e3a35e4b02916235560ace
313950ab6e058efbb588128632c0a0ee7db9b616
9492 F20110113_AADBUC viswanath_v_Page_192.QC.jpg
70c6dbf216ed6882df1ad5337b45f9ed
a157268cc9fae3a828730b0131f76db9ab772a9d
1002 F20110113_AADAVY viswanath_v_Page_157.txt
2df49fbdfa9d699604e9308624795cae
02632bc9775f6952429777c13b250ac6d5d7d9b5
2917 F20110113_AADBUD viswanath_v_Page_192thm.jpg
8ca98383feab7e4525f66aeee2f1b575
d81d9c06574febb39078b0e15839b0052a8d5c69
215 F20110113_AADATA viswanath_v_Page_076.txt
d7acb50fdf4b5c057c0b2d8de2abc2fb
f0b61516ab01b8387bdf2d86b278e7583cc84025
F20110113_AADAVZ viswanath_v_Page_158.txt
d964526835609e79c2bde07b48e8faf0
cbb27a982ec0ef5351a2fc80a3f91f73a93abe78
16708 F20110113_AADBUE viswanath_v_Page_193.QC.jpg
72b96fa3b290bee9385006b556c97add
0fde101a2d406b7e60ce9b8e275c7584dfdf6b34
1624 F20110113_AADATB viswanath_v_Page_077.txt
936cb160834d96d428f58de85186e90b
c2adecceb52e44777a2e7caf6b4a24fdc114d659
5289 F20110113_AADBUF viswanath_v_Page_193thm.jpg
e54cfacb16e4a171fda7614ae9eaf935
094f5559044489747d016dc006382c0ec9bb2d40
2117 F20110113_AADATC viswanath_v_Page_078.txt
a52135a322e07334c9f46cd5e4f9b0b4
f1924eb160308be2769cbf7b460d02dbd3c86ac3
14198 F20110113_AADBUG viswanath_v_Page_194.QC.jpg
7bbf506bcbb6de973c7c59acdef82d45
88717e87f664b896b0395abb8addabf15966e653
1944 F20110113_AADATD viswanath_v_Page_080.txt
76dfd7e4409ddc945ab0fe0b9a944380
9c8bc83e8b0faacc48483f57513c1c4be4074601
F20110113_AADBUH viswanath_v_Page_194thm.jpg
2c38ed58fb2b022210b2145b92283bf9
27bd1975591682e72f5913294aa98455d5decb4c
2146 F20110113_AADATE viswanath_v_Page_081.txt
ad07e64288aa50f7d397ca0d2bc7bb0f
5219e01ddd6e05a7d330df959b5e2fcd9bf12bf3
7189 F20110113_AADBUI viswanath_v_Page_195.QC.jpg
764b7043bb242b7246b566460e5e4985
2b08005968235622ed42e5ab152f727ff107ba56
2084 F20110113_AADATF viswanath_v_Page_082.txt
76e164a1761d371bb4f71d5ba3beb965
81986a720e35a4be107177358661eafc571dfa41
2426 F20110113_AADBUJ viswanath_v_Page_195thm.jpg
5831187e6dc61b3aa966522c06e57964
993b623f0a88e8aea783acc2c60ee3a8c49f34e8
2116 F20110113_AADATG viswanath_v_Page_083.txt
3d493cec44e7beec44b8eb46682f881e
aafbe7a8046cfa0bab19478355b11bd79cee24dd
24555 F20110113_AADBUK viswanath_v_Page_196.QC.jpg
7816b0130cc8a3c15cf35dfc714afa97
ceb6b02e573a214264d139fc080fab4b8c853e81
1805 F20110113_AADATH viswanath_v_Page_084.txt
38efc00107c3f4174c212a82d966da8b
33724e6ae5f6101f5c6fa99954bd2cd86bd30a79
F20110113_AADBUL viswanath_v_Page_196thm.jpg
2cd0fbd89d134af2e3a00160bc0a3aeb
8e4388491241e7809216404b7125515028aadd75
2029 F20110113_AADATI viswanath_v_Page_085.txt
c5246aabf911e001786b230db54f7e50
4ccf64182227771eb24bbef4703e41bd9597959d
12438 F20110113_AADBUM viswanath_v_Page_197.QC.jpg
2cded888fff3c841569c8aab0598ee88
a7598cf8d44aa0c3c758b033c182b0168ed7a307
2155 F20110113_AADATJ viswanath_v_Page_086.txt
c3cd5e34dcd7308e45d3a3ae0e896e43
8030a2732e2319af0a136e20cbffb75d115802d0
3765 F20110113_AADBUN viswanath_v_Page_197thm.jpg
2dda1630dc57b60019f0783edc8b0de3
1dd4fdde21b2e615c79366b0f04946555f819086
2074 F20110113_AADATK viswanath_v_Page_087.txt
d4848e41bf48c83319eeff7cc67aa94e
af907c801690d22494334f2ae395fdebb855dbc0
14138 F20110113_AADBUO viswanath_v_Page_198.QC.jpg
cdc42fd71ec1e756984bc10a1a1bd7bc
1c744b83b45c40dc2a84017a127c9b4f092d3984
2172 F20110113_AADATL viswanath_v_Page_088.txt
575e9a8a74ab3318750767faf2e18c19
80de85da92d28a3152369139bbc1df91ff6fb7d3
4678 F20110113_AADBUP viswanath_v_Page_198thm.jpg
89ce683ee16dcfd12f003944a30d703b
e1e4de3c8197d41edf235793176e1405d282bc7d
2186 F20110113_AADATM viswanath_v_Page_089.txt
c6ca364c8885b34c111dd47311f5aa84
d4ee3e0c4956416a928ced5184c17751c765aea8
13801 F20110113_AADBUQ viswanath_v_Page_199.QC.jpg
b5b7e363e3406f2998621bc575a037d5
98c9470a38bf4001599f9ef8de18ef14b0abe328
2149 F20110113_AADATN viswanath_v_Page_091.txt
9abec365d8411d613d33e874a88baf38
9a8ba0af8fe3153e51e2a7dc8bd768c2dee65170
4350 F20110113_AADBUR viswanath_v_Page_199thm.jpg
7e1d71591f51780faf67d1309fbbbc77
01991feef56ca17fb82ea62666bfc159f0c33563
1958 F20110113_AADATO viswanath_v_Page_092.txt
622d8b69f287da71430106714184efc0
9cf2992347393c55fc0c331a84540a40860566c6
14679 F20110113_AADBUS viswanath_v_Page_200.QC.jpg
51969359150494159629c6135734e792
e87d46eba6ffd9c190141c5d9c616235df6eb17f
2110 F20110113_AADATP viswanath_v_Page_093.txt
c73272695ec7556d061498cf9ad055a1
02594cdb5e7f4d526b468f71e99fee9b9ea89159
4747 F20110113_AADBUT viswanath_v_Page_200thm.jpg
46b9af82e209c2d12b8f77c6877d28f2
404b0ff0b31e43699ebd4c071b51d0255b8afddc
3127 F20110113_AADATQ viswanath_v_Page_095.txt
feebdf19918a8c37e489f8aacc3574d3
624eed53850509ca2faccd40f4b0177d01024c08
22784 F20110113_AADBUU viswanath_v_Page_201.QC.jpg
f5d6aa8c77b65636f860753a66e19e16
636229043a15a778c60cc4a54d592aa0a391264c
2744 F20110113_AADATR viswanath_v_Page_096.txt
9d3c19a71afcf053f8f90fd55899428e
f47f8d2a7105fc2d7e26007b6f230f155ade281e
6470 F20110113_AADBUV viswanath_v_Page_201thm.jpg
425a3752a5571439c36c06077d904b8b
eb1488dbada272bcf847485a4dd7511b06441520
2032 F20110113_AADATS viswanath_v_Page_097.txt
446b44930ba4b19d256a9c8c9e217507
15944ffc27247c63cc987881e11706a99d673a56
2692 F20110113_AADBUW viswanath_v_Page_202thm.jpg
81fa1844ed193739d32b2273ac9b390d
081cdff2849a3b2b942758dcec1203ee08d4eaf3
2706 F20110113_AADATT viswanath_v_Page_098.txt
e6fb7500d412d664e8f75cca742e25b7
1f1d263c657de0b5a8c77c3d8e07dbbd123fd93a
14436 F20110113_AADBUX viswanath_v_Page_203.QC.jpg
4b9bab357957ef75d962acb1b0d9eb27
37f02e063cc360cfb5a8e2cd7da39fb1625048d6
2187 F20110113_AADATU viswanath_v_Page_099.txt
4f2ab8f5b94819f95530c4929695e58f
286a933c3b1bbd3de45f23802998d79ecf87a43b
F20110113_AADBUY viswanath_v_Page_203thm.jpg
cb570389ddbed54675a724d230f59bd9
60e1860cf8fa1930c2ca00210ad6f4a62b7a4851
2156 F20110113_AADATV viswanath_v_Page_100.txt
65163c3ed0cfd5f7f7207d833e27a52f
3546b40d411b92a2edf440f643eee00a31883726
13223 F20110113_AADBUZ viswanath_v_Page_204.QC.jpg
eab2c6974e445b88af55b3532148d839
77560a0256582548439419d47d595190d9245a90
2197 F20110113_AADATW viswanath_v_Page_101.txt
e5d4cba3c48bcce1eb5c863d2ea54735
e4ac739ff4b9490dd5a4d96d3cf44e0207530e22
21135 F20110113_AADBSA viswanath_v_Page_163.QC.jpg
cf1e496e39a38a095361b4ef9381e2ed
0f021152603793c4a83a0bbbdbb91d4b104538db
F20110113_AADATX viswanath_v_Page_102.txt
534ed8643cfff41d22e9b7bb9c887506
fa668137058c1dff66af9a475ad8b423119642fe
6012 F20110113_AADBSB viswanath_v_Page_163thm.jpg
0f80e9cb916428c84df001a210ab1278
3fad7e72d657996b68d11f78312e07dabd0669e5
853 F20110113_AADATY viswanath_v_Page_103.txt
8ec5153fe82935501fa03466171c4efa
42bcefdc0b2acbc2554614ca2f892c9096590f65
22236 F20110113_AADBSC viswanath_v_Page_164.QC.jpg
f7f28af2768a81c25ff2edc81471edb3
6195c37d45885c661fd45a6218bda44c5ed65c7e
1752 F20110113_AADARA viswanath_v_Page_023.txt
72b8e35aa92a60e4f3cef088abbf14fe
0a4e4306663b7f88321225f4e40503ca446a99b9
988 F20110113_AADATZ viswanath_v_Page_104.txt
168486d4effb2c1229d6e3a827b2ebb8
e90a9835485accdca25d013efe1a9fc3efb0f9ca
F20110113_AADBSD viswanath_v_Page_164thm.jpg
f7a0e979b812dd720a60711f5346ee22
0360020d7b1f97d31413c8b96dc90869639b718e
1626 F20110113_AADARB viswanath_v_Page_024.txt
3c31f35895dec0c0d0c39334ee4ba0c3
511312188453666e927978d5db7d6fcf9ba3c177
23074 F20110113_AADBSE viswanath_v_Page_165.QC.jpg
b36c30f49567709d95d0bbaad075e982
017fa66b1a4eeee2b42339d1d75c94c8011c6ae4
1816 F20110113_AADARC viswanath_v_Page_025.txt
c24d14318b591ff1c045e32cd1ede165
9ab2c9f17d596273177d0331252cbea13a3d5723
6616 F20110113_AADBSF viswanath_v_Page_165thm.jpg
3ba92d4454fcadccd821524776a04d36
277274ebc59d2eabbc2d11d59b08fbff13373d18
1631 F20110113_AADARD viswanath_v_Page_027.txt
48e123504f5ff29338eb1368d7c9f3d9
1c948fae4c792a6a1d538b80db46a8becc1433de
15764 F20110113_AADBSG viswanath_v_Page_166.QC.jpg
7aa8910040a4e2e43db90d64dbc32cce
88c6a46c160fe67e695a79788c441abd09d8321e
1914 F20110113_AADARE viswanath_v_Page_028.txt
d35be26af62b6e56d3991671aa73bb40
610059648b2ebfe571481d2dac870cbcb71c6ae4
4963 F20110113_AADBSH viswanath_v_Page_166thm.jpg
dc086b92a51c98d145dfbfcf1f1f180f
504e08693edcfb2e68dfdc9f2b4bc7b35f5a8b9e
1601 F20110113_AADARF viswanath_v_Page_029.txt
66f3e90f13c2e35f81e287cc9452d7db
1e6ad0552b96739ac9b0f3d31f32aa9e1f5822da
19326 F20110113_AADBSI viswanath_v_Page_167.QC.jpg
07c6a62a84a36ada2103eed1eda1ab61
8981fa81fdce082efa6dfa508b2f8e2cb0c683f0
1966 F20110113_AADARG viswanath_v_Page_030.txt
25ffc7faab994a32257453c4685bb143
7a16655e1787113943aa4e3489bc37fe72ffaabf
5781 F20110113_AADBSJ viswanath_v_Page_167thm.jpg
3742f15e6c7a0e41e676c31a74b2b506
69ab256a9a28b8c88f6c007b8b171a432fcae2cc
1813 F20110113_AADARH viswanath_v_Page_031.txt
9137bf20ad1c342b71126097a5098a7b
c3fe424aa5a427937521ca6cf994fa9815a0bca2
21928 F20110113_AADBSK viswanath_v_Page_168.QC.jpg
5614134af8a4dacc80367cdaa20c5498
e0e6dcc63a6ba092ed178aa5802d013f7bbed061
1556 F20110113_AADARI viswanath_v_Page_032.txt
5528204cdc11211f741941fda333ccb9
864200a91d4b47ac5c77e745f77dc9f91310bffa
6244 F20110113_AADBSL viswanath_v_Page_168thm.jpg
3dad5557ea93c3a5e1af34ec6706514d
589d7155597301a2c1de87b8f166399a14422369
1797 F20110113_AADARJ viswanath_v_Page_033.txt
fe3b551e4d1a3cee05b4b138c8bdccf2
e8e53f150e54483e0cd5651dee6bb4ce647b2f3a
21591 F20110113_AADBSM viswanath_v_Page_169.QC.jpg
2611f9e14511e31ca61231881c4c0d08
5784aeacddf195f5508ede91bf859934e69b3f9e
1486 F20110113_AADARK viswanath_v_Page_034.txt
ef19a6ffcffef05a92032a7f3047f6e0
2872d9a5eb07152c282bfda28ac5b486dac5c316
6063 F20110113_AADBSN viswanath_v_Page_169thm.jpg
cc236d11d0418ab6587691707a1615e0
97c5e55d48024e27782d6b5dda75b2886aeece82
F20110113_AADARL viswanath_v_Page_035.txt
f0e9da96e3a3626c0fecf83ad9bccab2
0ee7fb9b589788d7c770e1615729c12a02b010ef
20866 F20110113_AADBSO viswanath_v_Page_170.QC.jpg
ae83e36219bbaf4072cb7d9ac5381bee
e41bc0cc5f8ae1778f29846255ecd5314243ea7f
2070 F20110113_AADARM viswanath_v_Page_036.txt
b5b79814018eb083b3853493da93108a
af4e83ffe81c6fbd71827ab8c327b9ab5ae01cdb
5979 F20110113_AADBSP viswanath_v_Page_170thm.jpg
5805cfcfd246051921998022a84a15ed
ab27f0976fb955e29295b20079845873aac659fe
1847 F20110113_AADARN viswanath_v_Page_037.txt
4227339465827c731190e80ef6426982
a5930883fef047f34e2ea2b3855d2927f29051d9
20306 F20110113_AADBSQ viswanath_v_Page_171.QC.jpg
441b44707b6766d892db2180faf20b19
ece397059abe76809f8fb0cd34b68f61893a1c15
1696 F20110113_AADARO viswanath_v_Page_038.txt
3e47f69846b7d73284f3c2df1d95ccc8
21c477d5768c7270c5886a85c13f91917999e6ec
5874 F20110113_AADBSR viswanath_v_Page_171thm.jpg
dd7f6995661844e59fe11f1ccb70ecf9
9dcec0d53146153822e3e2f8ce74cf36b36fe3d3
1634 F20110113_AADARP viswanath_v_Page_039.txt
48bfce5e27be58e5767eaaa784eed4df
fb09cefe27c608f00f619cffe3462784e212a3ca
10840 F20110113_AADBSS viswanath_v_Page_172.QC.jpg
095ec45dd3b2354ffee98ccc017e773d
b273b360972da2855d0ee3d05fab0fae409e3152
F20110113_AADARQ viswanath_v_Page_040.txt
e1180523aa0045ebf7231a9a2ce8d14b
7a5fcb5a1980549379ceece6b7515a184e38d87b
3538 F20110113_AADBST viswanath_v_Page_172thm.jpg
046bd6b0706648de18520f7ffe531e7d
d1122c5891c48765762b121234c671b6453e3282
1447 F20110113_AADARR viswanath_v_Page_041.txt
a7883d804b14c1ae52abeb97b1817244
8deab9b9f8559262aefdd9d77418e8aac1d0423e
13427 F20110113_AADBSU viswanath_v_Page_173.QC.jpg
82c779edaf33bdb8552a2d79a62dfcd2
9538d5ad6993b68c7e58fa98a60ed6cf7d3cf9e8
997 F20110113_AADARS viswanath_v_Page_042.txt
35ad9bf5bdb6c01893bc0264a78bd375
48477b3d76cab98cd4143461da059bf61680228c
3589 F20110113_AADBSV viswanath_v_Page_173thm.jpg
df9f91cdfffb0d8b46ad6bb387680276
06698c61fdc3b662a56107eae1b90a3ea344d477
1273 F20110113_AADART viswanath_v_Page_043.txt
b72cb1db91efc7a775dd20b832f41907
9e417b05b1a37cf0318311076275d70102874d85
1051782 F20110113_AACXZA viswanath_v_Page_388.jp2
91bf79cd942de2d6a9c0e1e4d2af1ea9
849d59ac6401e7364ed2f9f14f5378364c6cb9f7
13282 F20110113_AADBSW viswanath_v_Page_174.QC.jpg
8234861df25dc1b567bcdd960dfe7e66
c4a49b2ccec846c3daad7e42d5ff0dc389f360b7
894 F20110113_AADARU viswanath_v_Page_044.txt
edccb8f6c752b5f77cf94696d74d133f
4a6297672035d52dfdee81b35165fc8c79358a28
10100 F20110113_AACXZB viswanath_v_Page_314.QC.jpg
5743585c5d827ed46354561fa460f334
d3d1022b72f7df0ae47f7d2f2aa7755f76cd64d5
3702 F20110113_AADBSX viswanath_v_Page_174thm.jpg
18da9614a51bdcabbb73052678fdc008
f3e81987087a42cc9b4cac34c9940e4b81f8ba8a
F20110113_AADARV viswanath_v_Page_045.txt
049b8aa3848749432b7e3c8bbf81538f
037a30db85d0c328f028e75bc85b0e81898b0253
F20110113_AACXZC viswanath_v_Page_385.jp2
2398f8229e16e5c26257752d6b7bb808
e54651b2d95b2e7f621cb1c9011f00abd590cd4b
13050 F20110113_AADBSY viswanath_v_Page_175.QC.jpg
a50460c77921de2fc957d09377333c62
5b882cb3db45f1acf2d2339daeda415f4a7edf3b
631 F20110113_AADARW viswanath_v_Page_046.txt
ed962f7bcea0493784ec6f4a34ef1d1f
5a5728f728e2fe5124c74deccaee3086a468f342
F20110113_AACXZD viswanath_v_Page_413.tif
a6859fe2181461f1cf279e8885c1d924
ea136207bed332ba89a0804d050c4eff7c963c60
5179 F20110113_AADBQA viswanath_v_Page_135thm.jpg
b2af939e0e3f066b4796717771d3aa75
6f9f63b2fdc4b263a53f36da9ef5961fed5e5e4f
3603 F20110113_AADBSZ viswanath_v_Page_175thm.jpg
0365e96e4560348b6393ab78af93dd9b
e597fbc5aeb50e030b41bc16d3d2fe279a84fc91
398 F20110113_AADARX viswanath_v_Page_047.txt
b97f879d40aaaadbde2ea9ab4e3aa19a
9439beb0a4a9e8f25a230d718ea1efd22dc5e1d5
49813 F20110113_AACXZE viswanath_v_Page_380.jpg
d9c254655e76ea24ff933554679fe50d
0c5d49775ce32e4902278f0173ecf0381c44a9f9
15644 F20110113_AADBQB viswanath_v_Page_136.QC.jpg
c74c307a8deab32716c1d16e0664a111
9fabf14027448f22298dacc809dc8ef94d28e6be
993 F20110113_AADARY viswanath_v_Page_048.txt
d254541f909c947a0b0c3538a47731ed
16e08f7647070a5197bd96423911c7903912e6a4
41959 F20110113_AACXZF viswanath_v_Page_279.jpg
ae86fc6156753455ffebc818b58a9001
92792ab035c039aff4551196e80d8377a183ef57
4846 F20110113_AADBQC viswanath_v_Page_136thm.jpg
b3eae21ac0411f4be3513a193b7d01b6
42d9b30ac092c4616d7ae3f124664f5205eb3fe8
865 F20110113_AADARZ viswanath_v_Page_049.txt
3cfb0949962e9834263fcd33970008e4
1e4e2715441bfd5775be27d0a69e439fc0a2728b
15465 F20110113_AACXZG viswanath_v_Page_332.QC.jpg
105bdafea2ae2735f7186af1b116c6d1
df571c5986f53965ae05d3d8aa9d37b1dd97385d
F20110113_AADBQD viswanath_v_Page_137.QC.jpg
f6bfbc8f31254009e45e1954b94fecdb
6221bfaceb2f514685590e84725d77593c7c46bb
9069 F20110113_AADAPA viswanath_v_Page_420.pro
6d062a5036834d75d3c55931b49b446d
7f38c1fadaccc25b8af9281c5e6f1518bd7bd758
16853 F20110113_AACXZH viswanath_v_Page_158.QC.jpg
3272503ec6e694491427eea58ec6413a
3009e19bfdfe3992451c81a1aba50bd88aab17e5
4933 F20110113_AADBQE viswanath_v_Page_137thm.jpg
c3e507e574671a7bda74356f6f6fc53c
dea73b95e70b80cae080473c58f83e4e981f2dbb
12107 F20110113_AADAPB viswanath_v_Page_421.pro
aff1b2e807d1879e9c692d3531c90ecb
a2275eb1ad939661021c2342ba24dcd2f7437fd5
16640 F20110113_AACXZI viswanath_v_Page_375.QC.jpg
d405ed1d7d77851d5b77ab0e77d67f60
7a0cadbbe95b5eed727bf57c58766a70722d5647
18328 F20110113_AADBQF viswanath_v_Page_138.QC.jpg
59e7d5331bc068247013f2fe892bf9c5
5b7cae1aa54f0a81065204dfc033bb2f35d93368
11523 F20110113_AADAPC viswanath_v_Page_422.pro
69e5ef36c3d74e0e2c1d7973c0574e15
fccbf173b952c579a3c14b6e9fc44aad44c5d44e



PAGE 1

BRACING REQUIREMENTS OF COLD-FORMED STEEL CEE-STUDS SUBJECTED TO AXIAL COMPRESSION By VISWANATH URALA A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLOR IDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ENGINEERING UNIVERSITY OF FLORIDA 2004

PAGE 2

Copyright 2004 by Viswanath Urala

PAGE 3

This document is dedicated to my bel oved Mother and cherished Late Father.

PAGE 4

iv ACKNOWLEDGMENTS The author thanks his advisors, Dr. Pe rry S Green, and Dr. Thomas Sputo, for granting him an opportunity to work on this re search and for having guided till the end. The author holds due respect to his graduate committee for their assistance and immaculate guidance. The author is grat eful to the co-sponsors AISI and SSMA for financially supporting this research. It is the authors heartfelt gratitude to the Chairman, Department of Civil and Coastal Engineeri ng, University of Flor ida, for providing the facilities and resources for completing this thesis. The author appreciates the help offere d by Mr. Darin Shearer and Ms. Kimberly Lammert, who were his colleagues and all those who directly or indire ctly were part of this research. The author acknowledges th e contributions of Mr. Charles Broward and Mr. Danny for their assistance in the structures laboratory. The author thanks all friends and colleagues who assisted him at various levels by boosting his morale to see this project till its completion. Th is research would not have been a reality without the emotional support of the authors family for wh ich he is indebted. The author especially thanks Mr. Ratan Chand, Mr. Srinidhi Shar ma, and Mr. Sudhir Gurjar, without whose support this would not have been possible. Last but not the least the author thanks the United States of America for having accepted him as a student into their nation to fulfill his ambition to get the degree of Master of Engineering in Civil Engin eering at the University of Florida.

PAGE 5

v TABLE OF CONTENTS page ACKNOWLEDGMENTS.................................................................................................iv LIST OF TABLES...........................................................................................................viii LIST OF FIGURES.............................................................................................................x ABSTRACT.....................................................................................................................xv i CHAPTER 1 INTRODUCTION........................................................................................................1 1.1 General...............................................................................................................1 1.2 Objectives of Research......................................................................................1 1.3 Scope of Research..............................................................................................3 2 LITERATURE REVIEW.............................................................................................6 2.1 General...............................................................................................................6 2.2 Buckling of Columns.........................................................................................7 2.2.1 Elastic Buckling........................................................................................7 2.2.2 Inelastic Buckling.....................................................................................8 2.2.3 Local Buckling and Distortional Buckling...............................................9 2.3 Bracing Stiffness and Strength.........................................................................11 2.3.1 Column with Concentric Axial Load and an Immovable Point Support at Mid-height....................................................................................................12 2.3.2 Column with Concentric Axial Load and an Elastic Lateral Support at Mid-height........................................................................................................13 2.4 Long Column Tests..........................................................................................19 2.4 AISC-LRFD Specification...............................................................................20 2.5 AISI Specification for Cold-Formed Steel......................................................22 3 DESCRIPTION OF EXPERIMENTAL STUDY......................................................33 3.1 Introduction......................................................................................................33 3.2 Objectives of Experimental Tests....................................................................34 3.3 Material Properties of Test Specimens............................................................34 3.4 As-Built Dimensions of the Test Specimens...................................................35 3.5 Measured Geometric Imperfections of the Test Specimens............................36

PAGE 6

vi 3.5.1 Global Imperfections..............................................................................36 3.5.2 Cross-Sectional Imperfections................................................................37 3.6 Test Setup and Test Procedure for Single Column Axial Load Tests.............38 3.6.1 Test Specimens of Single Column Axial Load Tests.............................38 3.6.2 Test Frame for Single Column Axial Load Tests...................................38 3.6.3 Instrumentation for Single Column Axial Load Tests............................39 3.6.4 Test Procedure of Single Co lumn Axial Load Tests..............................39 3.7 Test Setup and Test Proc edure for Bridging Tests..........................................40 3.7.1 Test Specimens of Bridging Tests..........................................................40 3.7.2 Test Fixture for Bridging Tests...............................................................42 3.7.3 Instrumentation.......................................................................................43 3.7.4 Out-of-Plane Loading Test Procedure....................................................43 3.7.5 In-Plane Loading Test Procedure............................................................44 4 EXPERIMENTAL RESULTS AND EVALUATION...............................................60 4.1 Single Column Axial Load Test Results..........................................................60 4.1.1 Bracing Strength and Stiffness................................................................61 4.1.2 Evaluation of Experimental Observations..............................................63 4.1.2.1 Effect of brace stiffness on axial load capacity.............................67 4.1.2.2 Effect of brace stiffness on buckling type and mode....................70 4.1.2.3 Effect of cross-sectiona l dimensions of cee-studs.........................71 4.1.2.4 Effect of experimental load on the brace stiffness and strength...72 4.1.2.5 Effect of brace stiffness on lateral displacement...........................73 4.1.2.6 Effect of brace stiffness on e ffective length of columns...............73 4.1.2.7 Effect of brace strength on axial capacity.....................................74 4.1.2.8 Other effects..................................................................................74 4.2 Bridging Test Results.......................................................................................75 4.2.1 Bridging Connection Strength and Stiffness...........................................75 4.2.2 Observations of the Out-of-Plane Experimental Tests...........................77 4.2.3 Observations of the In-Plane Experimental Tests...................................79 4.2.4 Observed Bridging Connection Failures.................................................80 4.2.4.1 SS type connection........................................................................81 4.2.4.2 WW type connection.....................................................................81 4.2.4.3 DW type connection......................................................................81 4.3 Separation of Brace Forces in Flexural and Torsional Components...............82 4.4 Summary of Experimental Observations.........................................................83 5 ANALYTICAL EVALUATION..............................................................................146 5.1 Analytical Load Capacity of Unbraced and Fully Braced Studs...................146 5.2 Analytical Bridging Connection Sti ffness of a Flexible Bracing..................148 5.2.1 Initial Flexural Stiffness of the Bracing Connection............................148 5.2.1.1 SS type connection......................................................................150 5.2.1.2 WW type connection...................................................................151 5.2.1.3 DW type connection....................................................................151 5.2.2 Initial Torsional Stiffness of the Bracing Connection..........................152

PAGE 7

vii 5.3 Total Stiffness of the Bridging Connection...................................................153 5.3.1 Initial Flexural Stiffness........................................................................153 5.3.2 Initial Torsional Stiffness......................................................................154 6 CONCLUSIONS AND DESIGN RECOMMENDATIONS...................................167 6.1 General Conclusions and Recommendations.................................................167 6.2 Design Recommendations.............................................................................170 APPENDIX A TEST REPORTS OF SINGLE COLUMN AXIAL LOAD TESTS........................172 B TEST RESULTS ON BRIDGING CONNECTIONS..............................................355 C MATHCAD WORKSHEETS..................................................................................408 C.1 Axial Load Capacity of Unbraced Cee-Studs................................................409 C.1.1 362S125-33 with Pinned Ends.............................................................409 C.1.2 362S125-33 with Effective Length Factors based on Experimental Conditions......................................................................................................417 C.2 Initial Flexural Stiffness of the Connection from In-Plane Load tests..........419 C.2.1 SS Type Connection............................................................................419 C.2.2 WW Type Connection.........................................................................426 LIST OF REFERENCES.................................................................................................431 BIOGRAPHICAL SKETCH...........................................................................................434

PAGE 8

viii LIST OF TABLES Table page 3.1 As-built Material Properties from the Tension Coupon Tests.................................45 3.2 As-Built Cross-Sectional Dimensions of Test Specimens.......................................46 3.3 Initial Geometric Imperfections...............................................................................49 3.4 Average As-Built Geometric Dimensions of Each Stud Series...............................50 3.5 Average As-Built Geometric Dimensions of Each Stud Series...............................50 4.1 Proposed Test Matrix for the Si ngle Column Axial Load Tests..............................86 4.2 Actual Test Matrix of the Si ngle Column Axial Load Tests....................................87 4.3 Nominal Properties of the Test Specimens Using AISIWIN Program....................88 4.4 Average As-built Properties of the Test Specimens Using AISIWIN Program.......89 4.5 Calculated Brace Stiffness and Total Brace Stiffness of the Test Specimens..........90 4.6 Summary of Experimental Test Results for Test Specimens...................................92 4.7 Required Brace Stiffness Based on Pmax..................................................................93 4.8 Effective Length Factors Based on Pmax...................................................................94 4.9 Measured Values of Brace Force and Mid-height Displacement at Pmax.................95 4.10 Calculated Values of Brace Force and Mid-height Displacement at Pmax...............97 4.11 Proposed Test Matrix for Bridging Connection Tests...........................................100 4.12 Bridging Test Results for Out-of-Plane Loading...................................................101 4.13 Initial Torsional Stiffness of the Lowe r Bound Values of Out-of-Plane Tests......102 4.14 Bridging Test Results for In-Plane Loading..........................................................104 4.15 Initial Flexural Stiffness of the In-Plane Tests......................................................105

PAGE 9

ix 4.16 Experimental Initial Stiffness of the In-Plane Load Tests.....................................107 4.17 Experimental Initial Stiffness of the Out-of-Plane Load Tests..............................108 4.18 Maximum Flexural and Corre sponding Torsional Brace Force.............................109 4.19 Maximum Torsional and Corresponding Flexural Brace Force.............................110 5.1 Axial Load Capacities of Test Specimens Using AISI (1999) MathCAD Worksheets.............................................................................................................156 5.2 Comparison of Initial Flexural Stiffness of the In-Plane Tests..............................157 5.3 Comparison of Initial Torsional Stiffness of the In-Plane Tests............................158 5.4 Total Flexural Stiffness of the Bridging Connections............................................159 5.5 Calculated Brace Stiffness and Total Brace Stiffness of the Test Specimens........161 5.6 Total Torsional Stiffness of the Bridging Connections..........................................163

PAGE 10

x LIST OF FIGURES Figure page 2.1 Reduced Modulus Theory........................................................................................26 2.2 Imperfect Column with I mmovable Mid-height Bracing........................................26 2.3 Imperfect Column with El astic Mid-height Bracing................................................27 2.4 Critical Loads for Elastically Supported Columns...................................................27 2.5 Effect of Bracing Stiffness.......................................................................................28 2.6 Pcr/Pe versus L/Pe for a Discrete Bracing...............................................................29 2.7 Effect of Lateral restra int location on Brace behavior.............................................29 2.8 Bracing Connection Clips........................................................................................30 2.9 Wall Assembly test setup.........................................................................................30 2.10 Types of Bracing (a) Relative Bracing and (b) Nodal Bracing................................31 2.11 Effect of Initial Out-of-Plumbness...........................................................................31 2.12 Effective Length Factors for Concentrically Loaded Columns...............................32 3.1 Dimensions of a Typical Tension Coupon...............................................................51 3.2 Offset Method for Determining Yield Stress...........................................................51 3.3 Autographic Diagram Method fo r Determining Yield Stress..................................52 3.4 Typical Cross-Section of a Cee-Stud.......................................................................52 3.5 Connection of Cee-Stud and Track (a) at Top, (b) at Bottom..................................53 3.6 Plan View of Single Column Axial Test Setup in the Riehle Universal Testing Machine....................................................................................................................53 3.7 Schematic Mid-height Bracing a nd Instrumentation Locations on Test Specimens.........................................................................................................54

PAGE 11

xi 3.8 Close-up View of the Location of Br ace-Wires and Instrumentation at Mid-height of the Cee-Stud......................................................................................54 3.9 Types of Bridging Connections................................................................................55 3.10 Top View of the SS Type Bridging Connection......................................................55 3.11 Elevation Views of Bridging Connection Test Setup................................................56 3.12 Schematic Plan View of Bridging Connection Tests...............................................57 3.13 Overall View of the Out-of-Plane Bridging Tests....................................................58 3.14 Overall View of the In-Plane Bridging Tests...........................................................58 3.15 Out-of-Plane Loading Test Instrumentation.............................................................59 3.16 In-plane Loading Test Instrumentatio......................................................................59 4.1 Typical Bracing for the Singl e Column Axial Load Tests.....................................111 4.2 Axial Load vs. Axial Shortening for the Stud 362S125-33 with Varying Brace Stiffness.........................................................................................111 4.3 Axial Load vs. Axial Shortening for the Stud 362S162-43 with Varying Brace Stiffness.........................................................................................112 4.4 Axial Load vs. Axial Shortening for the Stud 362S162-68 with Varying Brace Stiffness.........................................................................................112 4.5 Axial Load vs. Axial Shortening for the Stud 600S125-33 with Varying Brace Stiffness.........................................................................................113 4.6 Axial Load vs. Axial Shortening for the Stud 600S162-43 with Varying Brace Stiffness.........................................................................................113 4.7 Axial Load vs. Axial Shortening for the Stud 600S162-97 with Varying Brace Stiffness.........................................................................................114 4.8 Axial Load vs. Axial Shortening for the Stud 800S162-43 with Varying Brace Stiffness.........................................................................................114 4.9 Axial Load vs. Axial Shortening for the Stud 800S162-97 with Varying Brace Stiffness.........................................................................................115 4.10 Schematic Diagram Showing the Various Buckling Shapes and Buckling Modes Observed in the Experimental Testing.......................................115 4.11 Comparison of Studs 362S125-33-0 and 600S125-33-0........................................116

PAGE 12

xii 4.12 Comparison of Studs 362S125-33-1 00 (1.7x) and 600S125-33-060 (1.3x)..........116 4.13 Comparison of Studs 362S125-33-2 00 (6.2x) and 600S125-33-200 (7.4x)..........117 4.14 Comparison of Studs 362S162-430, 600S162-43-0 and 800S162-43-0...............117 4.15 Comparison of Studs 362S162-43-2 00 (1.2x), 600S162-43-250 (1.6x) and 800S162-43-150 (1.3x)..........................................................................................118 4.16 Comparison of Studs 362S162-43-4 00 (2.5x), 600S162-43-500 (3.4x) and 800S162-43-300 (2.3x)..........................................................................................118 4.17 Comparison of Studs 600S162-97-0 and 800S162-97-0........................................119 4.18 Comparison of Studs 600S162-97-1 000 (1.7x) and 800S162-97-1000 (2.1x)......119 4.19 Comparison of Studs 600S162-97-1 500 (2.7x) and 800S162-97-2100 (4.3x)......120 4.20 Comparison of Studs 362S125-330, 362S162-43-0 and 362S162-68-0...............120 4.21 Comparison of Studs 362S125-33-1 00 (1.7x), 362S162-43-200 (1.2x) and 362S162-68-500 (1.8x)..........................................................................................121 4.22 Comparison of Studs 362S125-33-4 00 (6.2x), 362S162-43-800 (5.4x) and 362S162-68-1000 (3.3x)........................................................................................121 4.23 Comparison of Studs 600S125-330, 600S162-43-0 and 600S162-97-0...............122 4.24 Comparison of Studs 600S125-33-30 (0.2x), 600S162-43-75 (0.6x) and 600S162-97-160 (0.3x)..........................................................................................122 4.25 Comparison of Studs 600S125-33-60 (1.3x), 600S162-43-250 (1.6x) and 600S162-97-1000 (1.7x)........................................................................................123 4.26 Comparison of Studs 600S125-33-2 00 (7.4x), 600S162-43-500 (3.4x) and 600S162-97-1500 (2.7x)........................................................................................123 4.27 Comparison of Studs 800S162-43-0 and 800S162-97-0........................................124 4.28 Comparison of Studs 800S162-43150(1.3x) and 800S162-97-500 (1.2x)...........124 4.29 Comparison of Studs 800S162-43-3 00 (2.3x) and 800S162-97-2100 (4.3x)........125 4.30 Experimental Load vs. Target Brace Stiffness for 362 Series of Lipped Cee Studs...................................................................................................125 4.31 Experimental Load vs. Target Brace Stiffness for 600 Series of Lipped Cee Studs...................................................................................................126

PAGE 13

xiii 4.32 Experimental Load vs. Target Brace Stiffness for 800 Series of Lipped Cee Studs...................................................................................................126 4.33 Total Brace Stiffness vs. Weak Ax is Lateral Displacement for the 362 Series of Lipped Cee-Studs.............................................................................127 4.34 Total Brace Stiffness vs. Weak Axis Lateral Displacement for the 600 Series of Lipped Cee Studs....................................................................................127 4.35 Total Brace Stiffness vs. Target Brace Stiffness for the 800 Series Lipped Cee Studs...................................................................................................128 4.36 Effective Length Factor vs. Total Br ace Stiffness for 362S-125-33 Series of Lipped Cee Studs...................................................................................................128 4.37 Effective Length Factor vs. Total Br ace Stiffness for 362S-162-43 Series of Lipped Cee Studs...................................................................................................129 4.38 Effective Length Factor vs. Total Br ace Stiffness for 362S-162-68 Series of Lipped Cee Studs...................................................................................................129 4.39 Effective Length Factor vs. Total Br ace Stiffness for 600S-125-33 Series of Lipped Cee Studs...................................................................................................130 4.40 Effective Length Factor vs. Total Br ace Stiffness for 600S-162-43 Series of Lipped Cee Studs...................................................................................................130 4.41 Effective Length Factor vs. Total Br ace Stiffness for 600S-162-97 Series of Lipped Cee Studs...................................................................................................131 4.42 Effective Length Factor vs. Total Br ace Stiffness for 800S-162-43 Series of Lipped Cee Studs...................................................................................................131 4.43 Effective Length Factor vs. Total Br ace Stiffness for 800S-162-97 Series of Lipped Cee Studs...................................................................................................132 4.44 Location of Linear Potentiometers on the Bridging Connection...........................132 4.45 Plot of Applied Load vs. Calculated Rotation at the Center-line of the Web for the 362S Series of Studs...........................................................................133 4.46 Plot of Applied Load vs. Calculated Rotation at the Center-line of the Web for the 600S Series of Studs...........................................................................133 4.47 Plot of Applied Load vs. Calculated Rotation at the Center-line of the Web for the 800S Series of Studs with SS Connection..........................................134 4.48 Plot of Applied Load vs. Calculated Rotation at the Center-line of the Web for the 362S Series of Studs with WW Connection......................................134

PAGE 14

xiv 4.49 Plot of Applied Load vs. Calculated Rotation at the Center-line of the Web for the 600S Series of Studs with WW Connection......................................135 4.50 Plot of Applied Load vs. Calculated Rotation at the Center-line of the Web for the 800S Series of Studs with WW Connection......................................135 4.51 Plot of Applied Load vs. Calculated Rotation at the Center-line of the Web for the 362S Series of Studs with DW Connection.......................................136 4.52 Plot of Applied Load vs. Calculated Rotation at the Center-line of the Web for the 600S Series of Studs with DW Connection.......................................136 4.54 Plot of Applied Load vs. Calculated Rotation at the Center-line of the Web for the 362S Series of Studs...........................................................................138 4.55 Plot of Applied Load vs. Calculated Rotation at the Center-line of the Web for the 600S Series of Studs...........................................................................138 4.56 Plot of Applied Load vs. Calculated Rotation at the Center-line of the Web for the 800S Series of Studs...........................................................................139 4.57 Plot of Applied Load vs. Calculated Rotation at the Center-line of the Web for the 362S Series of Studs...........................................................................139 4.58 Plot of Applied Load vs. Calculated Rotation at the Center-line of the Web for the 600S Series of Studs...........................................................................140 4.59 Plot of Applied Load vs. Calculated Rotation at the Center-line of the Web for the 800S Series of Studs...........................................................................140 4.60 Plot of Applied Load vs. Calculated Rotation at the Center-line of the Web for the 362S Series of Studs...........................................................................141 4.61 Plot of Applied Load vs. Calculated Rotation at the Center-line of the Web for the 600S Series of Studs...........................................................................141 4.62 Plot of Applied Load vs. Calculated Rotation at the Center-line of the Web for the 800S Series of Studs...........................................................................142 4.63 Plot of Initial Torsional Stiffn ess vs. Effective Flat-width to Thickness Ratio for the Out-of-Plane loading Tests on SS-type Connection........142 4.64 Plot of Initial Torsional Stiffn ess vs. Effective Flat-width to Thickness Ratio for the Out-of-Plane loading Tests on WW-type Connection.....143 4.65 Plot of Initial Torsional Stiffn ess vs. Effective Flat-width to Thickness Ratio for the Out-of-Plane loading Tests on DW-type Connection......143

PAGE 15

xv 4.66 Plot of Initial Flexural Stiffn ess vs. Effective Flat-width to Thickness Ratio for the In-Plane load ing Tests on SS-type Connection...............144 4.67 Plot of Initial Flexural Stiffn ess vs. Effective Flat-width to Thickness Ratio for the In-Plane load ing Tests on WW-type Connection............144 4.68 Plot of Initial Flexural Stiffn ess vs. Effective Flat-width to Thickness Ratio for the In-Plane load ing Tests on DW-type Connection.............145 4.69 Brace Forces as a Resultant of Flexural and Torsional Components.....................145 5.1 Flexural Stiffness of the SS Type Connection.......................................................165 5.2 Flexural Stiffness of the WW Type Connection....................................................165 5.3 Flexural Stiffness of the DW Type Connection.....................................................166 5.4 Torsional Stiffness of the SS Type Connection.....................................................166

PAGE 16

xvi Abstract of Thesis Presen ted to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Master of Engineering BRACING REQUIREMENTS OF COLD-FORMED STEEL CEE-STUDS SUBJECTED TO AXIAL COMPRESSION By Viswanath Urala August 2004 Chair: Perry S Green Major Department: Civil and Coastal Engineering An experimental testing program was car ried out on single axially loaded coldformed lipped cee-studs to determine the required flexural and torsional bracing strength and stiffness requirements of the stud. C onventional bridging or nodal bracing has been simulated in the experiments using monofilament steel wires attached to the stud flanges at mid-height. A range of brace stiffness was simulated in the testing frame by using various diameters and lengths of monofilame nt wire. The brace stiffness that was achieved ranged from less than 30 lbs/in. to greater than 4000 lbs/in. Brace strength was determined from the cross-sectional area of the steel wire and its experimentally determined yield strength. The axial load, individual brace forces, axial shortening, and in-plane (weak-axis) and out-of-plane (strong-axis) lateral displacements were measured in each test. The required bracing stiffness was experimentally determined by varying the brace stiffness for a given stud size and wa s based on the ability of the stud to develop its nominal axial compressive capacity as predicted by the 1996 AISI Cold-Formed Steel

PAGE 17

xvii Specification including Supplemen t No. 1. The experimental results were compared to existing nodal bracing models, analytical prediction models, and the current column bracing provisions that are part of the 1999 AISC-LRFD Sp ecification for Structural Steel Buildings. Experimental testing has also been ca rried out on typical industry bridging configuration to measure bridging assembly strength and stiffness relationships for bridging subjected to in-plane and out-of-plane loadings. Load versus displacement measurements have been compiled for thes e assemblies for various stud web depths, flange widths, and thicknesses with the goa l of categorizing strength and stiffness for these various bridging assemblies.

PAGE 18

1 CHAPTER 1 INTRODUCTION The drive to create more cost effective co ld-formed steel structural systems, and the current move to designing axially loaded wa ll stud systems using an all-steel approach, has required an alternative to sheathing br aced design. This has resulted in wall stud systems that are more sensitive to global stab ility limit states than previous designs. Ensuring global stability of ax ially loaded steel studs requ ires that the bracing system possess adequate stiffness and strength to develop the predicted axial strength. 1.1 General Cold-formed steel has been widely used in structural and non-structural wall construction for more than 60 years, and ma y be found in many residential, commercial and industrial facilities bei ng built today. The lightweight property of cold-formed steel makes it easier and economical to transport a nd install than other construction materials such as masonry or hot-rolled steel. Other a dvantages include resist ance to pest attack, rapid construction, long service life and e fficiently recyclable. Cold-formed steel sections can be used in most parts of a building, including roofs, trusses, frames etc. 1.2 Objectives of Research Current North American structural steel de sign practice using the 3rd Edition of the American Institute of Steel ConstructionLoad and Resistance Factor Design Specification (AISC 1999) prescribes nodal brac ing strength and stiffness requirements, based on a model developed by Winter (1960) and modified by Yura (1995). However, the most recent cold-formed steel design sp ecification, the North American Specification

PAGE 19

2 by the American Iron and Steel Institute (A ISI 2001a) does not contain provisions for determining nodal brace strength and sti ffness requirements for axially loaded compression members. This research pr ogram was conducted to experimentally determine rational requirements for nodal brac ing strength and stiffness demand of lipped cee-studs by conducting single column axial co mpression tests, and bridging strength and stiffness tests. The experimental results we re used to formulate a rational methodology to be incorporated into the AISI Speci fication provisions for design purposes. The objectives of this resear ch included to determine: 1. the minimum bracing strength and stiffness required for cold-formed steel members subjected to axial loading; 2. the stiffness and strength of t ypical industry bridging systems; 3. the effective length factors based on unbraced length; 4. the effect of slenderness ratio on the buc kling behavior of the cold-formed steel members; 5. the limit state or the governing buckling mode of cold-formed steel members; 6. the effect of support fixity on global buc kling of cold-formed steel members. The strength and stiffness required for br acing hot-rolled steel sections has been investigated by numerous researchers (Win ter 1960, Yura 1995) based on experimental testing, analytical studies and feasible de sign considerations. Research has been conducted on the buckling phenomena of co ld-formed steel subjected to axial compression by many researchers including Wi nter (1959), Miller (1990), Kwon and Hancock (1991), Miller a nd Pekoz (1994), Young and Rasmussen (1999), Schafer (2000), Beshara and LaBoube (2001). The curre nt research has been directed towards establishing the strength and stiffness re quirements of the bracing and bridging requirements for cold-formed steel lipped cee-studs.

PAGE 20

3 1.3 Scope of Research The scope of this research is limited to determining the strength and stiffness requirements for cold-formed steel lipped ceestuds subjected to axial compression. The lipped cee-studs were tested to determine their axial load capacity in a manner consistent with a typical field installation. With this as a basis, the scope of the single column axial tests was: 1. Standard lipped cee-studs that are widely us ed in structural an d non-structural wall assemblies were tested. The sectio n nominal web depths were 3.625, 6.00, and 8.00 inches, the nominal thickness were 33, 43, 68 and 97 mil. The flange width of the 33 mil studs was 1.25 inches and the fl ange width of the other studs was 1.625 inches (1 mil = 1/1000 inches). 2. The lipped cee-studs were mounted in indus try standard shallow track and attached with #10 self-drilling screws. The lengths of the cee-studs were 8-0 for all the single column tests. 3. The number of nodal brace points was limite d to one, at the mid-height of the lipped cee-stud. 4. The support fixity was limited to a shallow track 1.25 inch deep and 12 inches long, attached to the stud with one self-dril ling screws on each flange. The track was loosely fixed to the loadi ng plates with two bolts. 5. The simulated bridging used in the single co lumn axial load tests was comprised of high strength steel wires attached to the each flange on both sides of the web. Four wires were used to brace the cee-stud so that for any global buckling at least two brace wires would be effective. The steel stud industry has employed the us e of several typical bridging details for a number of years. The strength of typical bridging has been studied and previously reported (Beshara and LaBoube 2001). Howeve r, there is little published information available regarding as-cons tructed bracing demand. Base d on previous testing, and because of the relatively low bracing force re quired to brace steel studs, bridging strength does not appear to be a significant concern. The most apparent crite ria for the bridging

PAGE 21

4 are the strength and stiffness of the connection of the bridging to the stud and the stiffness of the total bridging system. The scope of this experimental program involved: The bridging tests were limited to thr ee types of typical industry bridging connections, namely screwed-screwed, weld ed-welded and direct-welded. In the first two types, a standard clip angle was used to secure the channel bridging to the web of the cee-stud. In the third type, the channel bridging was directly welded to the web punchout. The bridging was tested for its in-plane strength and out-of-plane torsional stiffness for all the stud sizes used in the single co lumn axial tests. The load was applied with an actuator attached to the bridgi ng at a distance away from the bridging to stud connection to avoid localized effects of load application. While the stiffness required to develop the strength of the member will vary depending on whether the member is under ax ial compression or flexural loading, the actual physical stiffness of the bridging system is independent of the type of loading. Therefore, the stiffness of the bridging system (flexural or torsiona l stiffness) may be considered independently of the loading. A general test procedure was developed such that the results of this research may be extended to other types of stud cross-sections, to determ ine the requirements of any type of bridging. Conventiona l bridging or nodal bracing wa s simulated in the single column axial load tests using steel wires att ached to the stud flanges at mid-height. A range of brace stiffness, from less than 30 lbs/in. to greater than 4000 lbs/in., was simulated in the testing frame by using vari ous diameters and lengths of high strength steel wire. Brace strength was determined from the cross-sectional ar ea of the steel wire and the experimentally determined yield st rength. The axial load, individual brace forces, axial shortening, and in-plane (weak axis) and out-of-plane (strong axis) lateral displacements at mid-height of the ce e-stud were measured in each test.

PAGE 22

5 The required bracing stiffness was experime ntally determined by varying the brace stiffness for a given stud size and was based on the ability of the stud to develop the nominal axial compressive capacity as predic ted by the provisions of AISI Cold-Formed Steel Specification (AISI 1996) includ ing Supplement No. 1 (AISI 1999). The experimental results were compared to existing nodal bracing models, analytical prediction models, and the curr ent column bracing provision s that are part of the 1999 AISC-LRFD Specification for Struct ural Steel Buildings (AISC 1999).

PAGE 23

6 CHAPTER 2 LITERATURE REVIEW 2.1 General The use of cold-formed steel in building construction dates back to the 1850s, but cold-formed steel was not widely used unt il the 1940s (Yu 1991). It is used in constructing walls, slab-decks, beams, columns, storage-racks, and is typically found in small to medium rise structures. This wide application of cold-formed steel in building construction has required a comprehensive unde rstanding of its behavi or. The increased use of cold-formed steel as an alternative building material necessitated, in 1946, the first Specification for the Design of Light Gage St eel Structural Members Since then, there have been several revisions to the specification as well as design manuals with aids issued by American Iron and Steel Institute (A ISI). In 1991, Load and Resistance Factor Design (LRFD) was introduced into the co ld-formed steel speci fication. Today, the current specification edition is the North American Specification for Design of ColdFormed Steel Structural Members (AISI 2001a). While considerable research effort has b een directed at the problem of bracing hotrolled structural steel column s, little published information exists specifically addressing the bracing requirements for cold-formed steel columns. This chapter includes a comprehensive review of relevant work done in the field relati ng cold-formed steel members on lateral beam bracing, sheathed brac ing of wall studs, loca l and distortional buckling on channel sections, and eccentric loading on wall stud assemblies. Several

PAGE 24

7 analytical models formulated by past researchers to determ ine the bracing strength and stiffness requirements for axially loaded compression members are also reviewed. 2.2 Buckling of Columns The global buckling of columns has been studied since the 18th century. Even today, in spite of numerous investigations in past decades, research in this specialized field has by no means produced a comple te understanding. Based on length and slenderness ratios, columns can be classifi ed as long, intermediate and short. The slenderness ratio is a function of the ratio of effective length of the column and the radius of gyration of the column cross-section. 2.2.1 Elastic Buckling The history of column theory dates b ack to 1744 when the Swiss mathematician Leonard Euler published the equation for the cr itical load or the buckling load of an axially loaded prismatic column, assuming that the material is linear and elastic. It is given by (2.1) L I E P2 2 e where E = Elastic modulus I = Moment of inertia about th e axis orthogonal to buckling plane L = Unbraced length of the column This equation is valid for loads acting through the centroidal axis on a perfectly straight column whose ends ar e perfectly pinned. In practi ce, it is impossible to realize such conditions, hence the equation serves as an upper bound solution to the buckling problem.

PAGE 25

8 The above equation may be modified to cal culate the buckling load for other end conditions by introducing an effective lengt h factor (K). The modified equation is (2.2) L K I E P2 2 e where K L = effective length of the column (length between points of zero cu rvature of the buckled shape) Eq. 2.2 can be modified to calculate the critical buckling stress by dividing both sides by the cross-sectional ar ea A of the column and repl acing the moment of inertia (I) by the second moment of area ( A r2 ), where r is the radius of gyration corresponding to the axis about which the mo ment of inertia is being computed. The elastic critical buckling stress is thus given by the equation (2.3) r L K E 2 2 e where e = critical elastic buckling stress This equation is applicable when the va lue of E does not change before buckling occurs, meaning the material is completely elastic at the instant of buckling. 2.2.2 Inelastic Buckling In cases of intermediate and short columns, the elastic limit of the material is exceeded before buckling occurs. The modul us of elasticity E hence becomes a function of the critical buckling stress, and to solve this Engesser put forth the Tangent Modulus theory, in 1889. Instead of the el astic modulus E, the tangent modulus ET was substituted into Eq. 2.3 to calculate the critical buckling stress. This was called the Euler-Engesser Equation and is given by

PAGE 26

9 (2.4) r L K E 2 T 2 e However, Considre recognized that an axially loaded column stressed beyond the proportional limit starts to bend, and the stre sses on the concave side increase according to the compressive stress-str ain curve of the material, wh ereas the stresses on the convex side decrease proportionally to the strai n. In 1895, Engesser formulated the Double Modulus theory of buckling, with use of a reduced modulus ER in place of the tangent modulus in the Euler-Engesser Equation (see Fi gure 2.). The reduced modulus is given by (2.5) I I E I E E2 T 1 R where I1, I2, represent the moment of inertia of the cross-secti onal areas separated by the neutral axis as shown in Figure 2.1. 2.2.3 Local Buckling and Distortional Buckling In calculating the strengths of elastic and inelastic column s, the stability criteria are based on the column as a whole. Other than prismatic sections, columns are made up of plate elements, which are subjected to compre ssive stresses when the column is loaded. The effect of these compressive stresses on slender plate elements may cause them to buckle locally, which leads to a part of the cross-section to reach its critical buckling stress and become ineffective in carrying the applied load. In local buckling, the instability arises due to a change of crosssectional shape in a lo calized region and does not directly alter the overall configuration of the memb er as a whole (Shanley 1957).

PAGE 27

10 Local buckling of individual compression elements can be calculated by two different approaches to facili tate design one based on an effective width criterion, the other based on an average or reduced stress criterion. For each approach, the degree of the edge restraint influences the behavior. The cross-section elements are classified as edge-stiffened or unstiffened. An unstiffe ned compression element is one that is stiffened at only one edge parallel to the direction of applied stress. A stiffened compression element is stiffened at both edges parallel to the direc tion of applied stress (Galambos 1998). The effective width of locally buckled elements is given by (2.6) 0.22/ 1 b be where be = Effective width b = Flat width of plate element = ( e/ cr)1/2 e = Maximum elastic stress cr = Plate buckling stress defined by (2.7) b t ) 12(1 Ek 2 2 2 cr E = Elastic modulus of material k = Plate-buckling coefficient (k = 4 for stiffened elements, k = 0.425 for unstiffened elements) t = Plate thickness = Poissons ratio Distortional buckling, also called as stiffener buckling by Desmond, Pekoz and Winter in 1981, or local-torsional buck ling by Sridharan in 1982, is a mode

PAGE 28

11 characterized by rotation of the flanges at the flange/web j unction in members with edge stiffened elements. Formulae for computing th e elastic distortional buckling stress were provided by Lau and Hancock (1987). Strength tests of cold-formed channel sections, undergoing distortional buckling, were invest igated by Kwon and Hancock (1991). The distortional mode of buckling occurs at longer ha lf-wavelengths than local buckling and involves element displacements of the edge or intermediate st iffeners forming the section or of complete flanges (Gal ambos 1998). A historical re view of distortional buckling was compiled by Schafer and Hancock (Schafer 2000). Distortional buckling of coldformed steel columns was investigated by Schafer (2000) for a project sponsored by AISI. The investigation compares the design methods using the effective width approach and the direct strength approach and st ates design recomm endations for AISI Specification. Teng (2002) extended the axia lly loaded column i nvestigations by Lau and Hancock (1987) and examined distortional buckling of beam-columns. 2.3 Bracing Stiffness and Strength Zuk (1956) analytically derived the magnit udes of brace forces by solving the basic second order differential equa tion of equilibrium assuming elastic behavior of the compression member. It was determined by Zuk that the lateral force is a direct function of the initial crookedness and the critical buckling load. Eight different cases were considered with discrete or continuous lateral bracing on laterally loaded flexural members, axially loaded compression memb ers and eccentrically loaded compression members, all with either fixed or pinned s upport conditions. Out of these eight cases, the first two are relevant to the present investigation and are summarized below

PAGE 29

12 2.3.1 Column with Concentric Axial Load and an Immovable Point Support at Mid-height In Figure 2.2 (Zuk 1956), the centroidal axis of the column is shown as a straight line passing through the top and bottom pin ends. The init ial crookedness is defined by the following ) 8 2 ( L x sin a y0 where a = Maximum amplitude at the center and is represented by a dashed line in the figure. Due to the brace at mid-height, the colu mn assumes a buckled shape as shown by the continuous line, and is defined as a function of y1 and y2 in the upper and lower halves of the column respectively. The curves y1 and y2 represent the additional displacements due to the applied load P. When the applied compressive load on the column, with a fully effective brace, reaches the critical elastic buckling load, given by ) a 9 2 ( L B 4 P2 1 2 cr the maximum brace force, Fmax, is calculated from the second order differential equation of equilibrium, which reduces to ) b 9 2 ( L 3 a B 64 F3 1 2 max where B1 = Flexural rigidity = E I L = Length of column from the top pin end to the bottom pin end a = Amplitude of initial crookedness

PAGE 30

13 It can be seen here that an init ial crookedness of L/1000, shows that Fmax is 0.53% of the critical buckling load Pcr. As mentioned earlier, the equation for the brace force is a direct function of the in itial crookedness of the column. 2.3.2 Column with Concentric Axial Load and an Elastic Lateral Support at Midheight This case is the same as that derived by Winter (1947) and was included by Zuk for purpose of comparison. Winter analytically de termined that for a c oncentrically loaded pin-ended column with mid-height elastic br acing, the brace force is about 2% of the critical load, Pcr. Winter (1960) published the results of a si mple analytical model to calculate the required bracing stiffness and strength for bot h beams and columns. It was found that both bracing strength and stiffness contribu te to the critical buckling load of a compression member. Both forms of bracing, discrete and continuous, were considered in Winters investigation. For an axially loaded column (see Figure 2.3 (Winter 1960)), a nodal brace at mid-height can increase its ax ial load capacity only if the brace is stiff enough to restrain the column fr om flexural buckling or fle xural-torsional buckling. For a column with mid-height bracing, Winter considered that the unsupported length of the column to be half the overall length of the column. There is a minimum stiffness requirement to effectively brace a member la terally and this is defined as the ideal stiffness, and such bracing is called full bracing. If an axially loaded column has an initial crookedness do, the required strength of th e lateral brace increases with the magnitude of the imperfection, but the sti ffness demand does not likewise increase. For the column with mid-height bracing shown in Figure 2.3 (Winter 1960), Winter obtained the required bracing stiffne ss as given by the equation

PAGE 31

14 (2.10a) 1 d d L P 2 ko e req where L = Unbraced length of the column Pe = Eulers critical buckling load for a column of length, L do = Amplitude of initial crookedness d = Additional displacement due to buckling For an ideal column, do = 0, the above equation reduces to (2.10b) L P 2 ke ideal and the strength of the bracing is given by (2.11) d d L P 2 So e req Winter also developed the re quired stiffness and strength for two, three and four symmetric brace points along the length of a column. It was recommended to take the value of do = 1/500 or 1/1000 and that of d = L/2 50 or L/500, depending on the type of cross-section (e.g. wide flange). This is because d is the displacement at incipient failure and under design loads it would be less than half of the above values. Figure 2.4 (Winter 1960) shows the critical load s for elastically supported columns. Plaut (1993) mathematically derived relations for elastic translational springs at arbitrary points along the length of a column with a pin suppo rt at the base and with either a pin support or a brace at the top of the column. Both perfect and imperfect columns were considered and the effect of span length, bracing stiffness and initial imperfection were determined. Plaut stated that for imperfect columns the deflections and the bracing forces tend to increase with the applied load. If P = P then,

PAGE 32

15 (2.12) d d 1 k ko id where for this case 2 2 idL EI 16 k For P < P, and for a range of do/d ) 13 2 ( d d 1 L P 4 ko where L = Length of column P = Non-dimensional axial load as a fraction of P P = Dimensional axial load for an infinitely stiff brace do = Initial deflection at location of the brace d = Additional deflection at loca tion of the brace due to buckling = Dimensionless parameter When = 1.41, it gives the upper bound to the required stiffness. Figure 2.5(a), (b), (c) (Plaut 1993) shows the effect of bracing stiffness on the deflection ratio (do/d), load ratio (P/ P), and bracing force to axial load ratio (F1/P), respectively. Yura (1995) focused on simplicity and easy formulations for th e bracing strength and stiffness required for braci ng compression members. Rela tive, discrete, continuous, and lean-on bracing systems were considered in this work. Yura concluded that simply satisfying the strength requi rement of 2% of applied compressive load might be detrimental if the bracing is too flexible to restrain displacement. Stiffness of the bridging also affects the beha vior of the compression member. It was observed from column tests that the larger the stiffness of the bracing, the smaller was the measured

PAGE 33

16 brace force. Yura proposed th e ideal nodal brace stiffness, ideal, for an axially loaded column to be ) 14 2 ( L P n 2 4 b n ideal and the required brace strength, assuming an initial out-of-straightness of L/ 500 to be ) 15 2 ( P 02 0 Pn brace where Lb = Unbraced length Pbrace = Minimum required brace strength Pn = Nominal axial capacity when the assumed brace stiffness is greater than or equal to ideal n = Number of equally spaced intermediate brace locations ideal = Minimum required brace stiffness Yura made the following recommendations for design The brace stiffness should be equal to twice the ideal requirement to limit displacement; and The brace strength should be 1% of the nominal capacity of the compression member at the ideal bracing Figure 2.6 (Yura 1995) shows a plot of Pcr/Pe versus L/Pe for several discrete bracing systems. The recommendations made by Yura were later incorporated into the American Institute of Steel ConstructionLoad and Resistance Factor Design Specification (AISC 1999). Helwig and Yura (1999) conducted a finite element investigation of torsional buckling behavior of columns with lateral br acing located at different points on the crosssection. Their paper describes that ma ny column-bracing details employed in steel construction do not prevent twis t, and subsequently torsio nal buckling may control the

PAGE 34

17 column capacity. Equations were developed fo r strength and stiffness requirements of bracing to control tors ional buckling of doubly-symmetric sections. Connection details for torsional bracing were desc ribed and presented. For a doubly-symmetric section, the torsional buckling capacity of a compressi on member can be computed using Eq. 2.16 (Timoshenko and Gere 1961). (2.16) r r J G ) 4 / d ( P P2 y 2 x 2 ey T When the locations of intermediate lateral restraint are offset from the centroid of the cross-section, the torsional buckling capacity is given by Eq. 2.17 wh en the offset lies in the plane of the web, and Eq. 2.18 wh en the offset lies along the strong axis. (2.17) r r a J G ] a ) 4 / d [( P P2 y 2 x 2 2 2 ey T (2.18) r r b J G ] b ) I / I ( ) 4 / d [( P P2 y 2 x 2 2 y x 2 ey T where G = Shear modulus Ix = Strong axis moment of inertia Iy = Weak axis moment of inertia J = Torsional constant Pey = Elastic flexural buckling lo ad, based on a column length between points of zero twist (Eq. 2.19) a, b = Distances to an axis away from centroidal axis d = Distance between flange centroids rx, ry = Strong-axis and weak -axis radii of gyration

PAGE 35

18 (2.19) L I E P2 T y 2 ey E = elastic modulus LT = unbraced length for torsion Helwig used eight-node she ll elements to model a W16x26 wide flange section. Shell elements were also used to model the braces, which consisted of angle sections. Torsional stiffness of the brace was determin ed by separate analysis (of the brace) by determining the rotation caused by a con centrated moment. Eigenvalue buckling analyses were conducted on straight columns to determine the stiffness requirements of the bracing. Imperfect columns were also c onsidered in the analyses and were analyzed by accounting for the large displacements. Fi gure 2.7 (Helwig 1999) shows the effect of lateral restraint location on the brace behavior. It was determined that when the lateral bracing is at the centroid of the section and is adequate to control flexural buckling, the torsional bracing behavior is not sensitive to the lateral brace stiffness. Therefore, the recommended lateral brace stiffness is twice the ideal value when the la teral bracing is at the centroid and four times the ideal value when the lateral br acing is at the flange. The equations, formulated to determine the cap acity of a compression member, may be found elsewhere (Helwig 1999). Beshara and LaBoube (2001) conducted an experimental pilot study on lateral bracing of C-sections in fle xure. In this investigati on, typical industry bridging connections, along with two proprietary sy stems, were tested for the bracing requirements. It was found that the scre w attached typical in dustry clip and the SPAZZER 5400 spacer bar provided adequa te bracing to achieve the computed moment capacity for all the 3-5/8 and 6 d eep sections, but failed to provide adequate

PAGE 36

19 bracing for the 8 deep sections. The S TEEL Network BridgeClip provided adequate bracing to achieve the computed moment cap acity for all the 3-5/8 and 6-18 gauge sections, but failed to provide adequate br acing for the 6-16 gauge and 8 sections. Overall, it was found that the typical industry clip provided the highe st resistance against rotation followed by the SPAZZER 5400 a nd the STEEL Network BridgeClip. Figure 2.8 (Beshara and LaBoube 2001) shows the three connections tested in the investigation. The observed fa ilure was classified broadly as torsional-flexural buckling and individual tests indicate the actual mechanism of failure. 2.4 Long Column Tests Miller (1990) conducted a seri es of tests on cold-formed steel cee studs at Cornell University. Individual column tests with a length of 8'-0" were performed on studs with depths of 3-5/8 and 6. Load was app lied to the studs both concentrically and eccentrically with either pin end or fixed end conditions. Several of the studs were tested with one or more perforations in the web. Geometric imperfections were measured and considered when the experimental results were compared to the analytical results. No bridging or bracing was installed as part of the test set-up. Additionally, Miller conducted wall assemb ly axial tests on 8'-0" members, spaced (typically) at 24" on-center and having depths of 3-5/8" and 6" (s ee Figure 2.9 (Miller 1990)). Bracing was applied to the wall member s in one of three forms: continuous flat straps screwed to both flanges, conti nuous channel bridging installed through web perforations, and gypsum sheathing screwed to one of the flanges of the members. As in the individual long column test s, end conditions of the studs were either pin-ended or fixed. Miller noted that the use of flat strap braci ng and channel bridging resulted in similar ultimate axial loads, while the presen ce of mid-height bridging increased the load

PAGE 37

20 carrying capacity by at least 25% for 6 members and by at least 60% for 3-5/8 members, over those tested withou t any bridging or bracing. Miller (1993) presented the re sults of effectiveness of th e bracing for imperforated two stud wall assembly tests. The investig ation found that for 6 inch, 20 gage studs, the predicted capacities were about 20% higher than the experimental results, where the predicted capacity was based on the AISI Specifications Cold-Formed Steel Design, (AISI 1986). This was because the AISI Speci fication considered the load to act through the centroid, while Miller calcu lated the effect of eccentric load acting through the gross centroids and found that the pred icted loads were conservative in most cases. Individual long column and flat-ended stud tests were al so conducted. The flat-ended studs were fitted with short tracks on both th e ends, prior to testing. The effective length factors for the wall st uds with and without mid-height bracing were determined for flexure and torsion, and the recomme nded values by Miller (1993) are Unbraced: Kx = Ky = Kt = 0.65 Braced at mid-height: Kx = 0.65, Ky = Kt = 0.4 2.4 AISC-LRFD Specification The AISC-LRFD Specification, 3rd Edition (AISC 1999) contains provisions for the stability bracing of structural steel members and frames, in Chapter C3. There are two general types of bracing rela tive bracing and nodal bracing. The relative brace system shown in Figure 2.10(a) (Figure C-C3.1, AISC 1999) consists of a diagonal and a strut that control the movement at one end of the unbraced length, A, with respect to the other end of the unbraced length, B. A nodal br ace controls the m ovement only at the

PAGE 38

21 particular brace point, as shown in Figure 2. 10(b) (Figure C-C3.1, AISC 1999), without interaction with adjacent brace points. The minimum bracing requirements as gi ven in the AISC-LRFD Specification (AISC 1999), Chapter C3-3, for nodal bracing, are as follows Required brace strength (2.20) P 01 0 Pu br Brace stiffness: (2.21) L P 8 b u br where Pu = Required compressive strength of the column Lb = Distance between braces = 0.75 Recall that Winter (1958) recommended that the brace stiffness for frames, columns, beams be equal to twice the critic al stiffness and this same recommendation has been adopted by the AISC-LRFD Specification (1999). The = 0.75 specified for all brace stiffness requirements is consistent with the implied resistance factor for the Euler column buckling. i.e. 0.877 x c = 0.75. The initial displ acement also known as initial out-of-plumbness, o, for the relative or nodal bracing is defined with respect to the distance between adjacent braces, as shown in Figure 2.11 (Figure C-C3.3, AISC 1999). The brace strength recommendations for frames, columns, and beam lateral bracing are based on an assumed o = 0.002L, where L is the distance between adjacent brace points. The flexibility or ability of a brace connecti on to slip should be considered in the evaluation of the actual bracing system stiffness, act, as follows

PAGE 39

22 (2.22) 1 1 1brace conn act where conn = Stiffness of the Connection brace = Stiffness of the brace 2.5 AISI Specification for Cold-Formed Steel In case of concentrically lo aded compression members, there are three limit states namely, (1) yielding, (2) overall column buck ling (flexural, torsiona l, flexural-torsional buckling), and (3) local buckli ng of individual elements. Flexural buckling occurs in a slender, axially loaded colu mn about the either of the principal axes. The critical elastic buckling st ress for a column is given by Eq. 2.3, which is discussed earlier. The Commentary on North American Specification for Design of Cold-Formed Steel (AISI 2001b) gives the equati on for critical inelastic buckling stress as 23 2 F 4 F 1 F Fe cr y y cr where E = Elastic modulus of steel Fy = Yield stress of the material (Fcr)e = Critical elastic buckli ng stress, given by Eq. 2.24 24 2 r / KL E F2 2 e cr K L = Effective length of column r = Minimum radius of gyration In the above equation, the cr itical buckling stress is directly proportional to the yield strength of the steel. For cold-formed steel compression members with large width-

PAGE 40

23 to-thickness ratios, local buc kling of individual component plates may occur before the applied load reaches the nominal axial stre ngth determined by Eq. 4.4 (Section C4, AISI 2001) for locally stable columns 25 2 F A Pcr g n where Ag = Full cross-sectional area of the compression member Fcr = Critical buckling stress, either elastic or inelastic The interaction effect of the local and overall column buckling may result in a reduction of the overall column strength. In or der to reflect the effect of local buckling on the reduction of column st rength, the nominal axial strength is determined by the critical buckling stress a nd the effective area, Ae, instead of the full sectional area. The nominal axial strength of cold-formed stee l compression members can be determined by the following equation 26 2 F A Pcr e n where Ae = Effective area at Fcr Fcr = Critical buckling stress, either elastic or inelastic However, Eq. 2.26 is limited to its applicability in case of singly symmetric or point symmetric sections. The design equatio ns for calculating the inelastic and elastic flexural buckling stresses have been change d to those used in AISC-LRFD Specification (AISC 1999). The AISI Specification (2001a) gi ves the equations fo r critical buckling stress as For c 1.5 27 2 F 658 0 Fy n2 c

PAGE 41

24 For c > 1.5 28 2 F 877 0 Fy n2 c where Fn = Nominal flexural buckling stress c = e yF / F Fe = Elastic flexural buckling stress calculated using Eq. 2.24 Consequently, the nominal axial compressive strength is given by 29 2 F A Pn e n The effective length factor, K, accounts fo r influence of restraint against rotation and translation at the ends of a column on its load carrying capacity. For concentrically loaded compression members, the recommende d values of effectiv e length factors are given in Figure 2.12 (AISI 1996). For inelastic buckling, the critical torsi onal buckling stress is calculated according to Eqs. 2.27 and 2.28 by using t instead of Fe in calculation of c. In certain cold-formed steel cross-sections, the design strength is limited by the torsional buckling of columns. For relatively short members the elastic torsional buckling stress is given by, t, calculated as follows 30 2 L K C E J G r A 1 2 t t w 2 o t where A = Full cross-sectional area Cw = Torsional warping constant G = Shear modulus J = Saint Venants torsion c onstant of the cross-section Kt Lt = Effective length of twisting

PAGE 42

25 ro = Polar radius of gyration of the cross-section about the shear center In case of flexural-torsional buckling of a column, the column undergoes flexural buckling about one of the principal axes, w ith simultaneous torsional buckling about the shear center. This limit state is to be checked only when there is a chance of flexuraltorsional buckling to occur. The governing el astic flexural-torsional buckling stress of a column is given by 31 2 4 2 1 Ft ex 2 t ex t ex e where ex = 2 E / (Kx Lx / rx)2 is the flexural buckling stress about the x-axis t = torsional buckling stress = 1-(xo/ro)2 The flexural-torsional buckling stress is always lower than the Euler stress ex for flexural buckling about the axis of axis of symmetry. For inelastic buckling, the torsional buckling stress is given by Eq. 2.27.

PAGE 43

26 Figure 2.1 Reduced Modulus Theory Figure 2.2 Imperfect Column with Immovable Mid-height Bracing

PAGE 44

27 Figure 2.3 Imperfect Column w ith Elastic Mid-height Bracing Figure 2.4 Critical Loads for Elastically Supported Columns

PAGE 45

28 (a) Effect of Bracing Sti ffness on Deflection Ratio do/d (b) Effect of Bracing Sti ffness on Load Ratio P/P (c) Effect of Bracing Stiffness on Bracing Force as Percentage of Axial Load for given Load Ratio P/P Figure 2.5 Effect of Bracing Stiffness

PAGE 46

29 Figure 2.6 Pcr/Pe versus L/Pe for a Discrete Bracing Figure 2.7 Effect of Lateral re straint location on Brace behavior

PAGE 47

30 Figure 2.8 Bracing Connection Clips Figure 2.9 Wall Assembly test setup

PAGE 48

31 Figure 2.10 Types of Bracing (a) Re lative Bracing and (b) Nodal Bracing Figure 2.11 Effect of Initial Out-of-Plumbness

PAGE 49

32 Figure 2.12 Effective Length Factors for Concentrically Loaded Columns

PAGE 50

33 CHAPTER 3 DESCRIPTION OF EXPERIMENTAL STUDY The purpose of this chapter is to give a brief description of the objectives of the experimental program, the material properties and measured as-built geometry of the test specimens, the test setups, and the test procedures employed in the project. The experimental program consisted of two phases of testing: Phase-I: Axial Compression Tests Phase-II: Bridging Tests 3.1 Introduction Phase-I of the experimental program consis ted of examining the behavior of single axially loaded cee-studs, with and without midheight bracing (or bridging). In Phase-II, typical industry bridging was examined for its strength and stiffne ss by in-plane and outof-plane loading. Description of the test setups and the test procedures are given in Sections 3.6 and 3.7. Three types of typical industry bridging were tested: Type-1: Screwed-Screwed (SS), where th e bridging channel and clip angle are screwed to each other and to the web of the cee-stud. Type-2: Welded-Welded (WW), where the bridging channel and clip angle is fillet welded to each other and to the web of the cee-stud. Type-3: Direct-Welded (DW), where the brid ging channel is directly welded to the web of the cee-stud. The stud specimens tested had nominal web depths of 3.625, 6.00, and 8.00 inches with specified thicknesses ranging from 33 mils to 97 mils. The 33 mil, 43 mil, and 68 mil studs were manufactured by Steel Cons truction Systems, Orlando, FL and the 97 mil

PAGE 51

34 studs were manufactured at the Wildwood, FL plant of Dietrich Metal Framing Inc., Pittsburgh, PA. The mechanical properties of the stud material used to fabricate the test specimens were determined by tension coup on tests. The as-built dimensions and geometric imperfections of the fabricated test specimens were recorded and this data was utilized in the calculation of the re sistance properties of each specimen. 3.2 Objectives of Experimental Tests The main objectives of the experimental study are summarized as follows: To investigate the behavior of cold-for med steel cee-studs with and without midheight lateral bracing by testing a range of studs, subjected to axial compression while providing different braci ng stiffnesses and strengths To investigate the strength and stiffness of the lateral bridging over the same range of studs subjected to in-pla ne and out-of-plane loading To provide the experimental data for determining the minimum bracing requirements of cold-formed steel ceestuds subjected to axial compression 3.3 Material Properties of Test Specimens A series of standard 2 gage length ASTM tension tests were performed on coupons cut from the web material of the cee-s tuds. The dimensions of a typical tension coupon are shown in Figure 3.1. The nomenc lature used to identif y the group of cee-stud to which the coupon belonged was represented as: TC DDDS FFF-TT where TC = Tension coupon DDD = Overall stud depth (362 = 3.625, 600 = 6.000, and 800= 8.000) S = Lipped stud section FFF = Flange width (125 = 1.25, 162 = 1.625) TT = Nominal sheet thickness (mils, 1 mil = 0.001 inch)

PAGE 52

35 The tension tests were performed in accordance with ASTM E8-01e2 (ASTM 2001) on a 60 Kip capacity Tinius-Olsen testing machine. The applied load was measured through a load cell and the gage elongation of each coupon was measured using two extensometers, one fixed on the front and the other on the back of the tension coupon. The applied load and the correspond ing elongation data wa s used to plot the stress-strain relationship. From the stress-strain plot, the yield and ultimate stresses were determined as per ASTM E8-01e2 (ASTM 2001). The elastic modulus of the material was not determined by testing and was assu med to be equal to 29500 ksi (AISI 1996). For each cee-stud section, a minimum of three tests were performed. The average values of yield and ultimate stresses we re calculated based on either the 0.2% offset method for a continuously yielding material or the autographic diagram method for materials exhibiting discontinuous yielding. Figure 3.2 shows the 0.2% offset method for determination of the yield stress, and Figure 3.3 shows the autographic diagram method for determination of the yield stress. The te nsion coupon test result s are summarized in Table 3.1. 3.4 As-Built Dimensions of the Test Specimens For the single axial load tests, 8-0 lo ng cee-studs were cut from the as-delivered 20-6 long members. For the bridging tests, short 3-6 stubs were cut from the 20-6 long members. For the purposes of this study, each tested stud was identified using a modified Steel Stud Manufacturers Association (SSMA) nomenclature: DDD S FFF-TT-KKKK where DDD = Overall stud depth (362 = 3.62"; 600 = 6.00"; 800 = 8.00") S = Lipped stud section FFF = Flange width (125 = 1.25"; 162 = 1.62")

PAGE 53

36 TT = Nominal steel thickness (mils; 1 mil = 0.001") KKK = Axial stiffness of one br ace wire in pounds per inch For each specimen, the cross-section dimens ions were measured at three locations along the length of each 8-0 stud with a digital micrometer and tabulated in Table 3.2. The tables provide the stud designation and corresponding brace stiffness used in the testing along with the measured dime nsions A through F and thicknesses ta through te (see Figure 3.4) for each test specimen. Th e (+) and (-) symbols denote the direction of camber and sweep of the stud. The camber and sweep were measured as described in Section 3.5.1. 3.5 Measured Geometric Imperfecti ons of the Test Specimens The geometric imperfections of a stud can be categorized as a global imperfection and/or a local imperfection as described in Sections 3.5.1 and 3.5.2. 3.5.1 Global Imperfections The bow/sweep and camber of the studs were measured with a digital micrometer to a least count of 0.005. A nylon monofilament line was stretched from one end to the other end of a stud and then was clamped tight. The out-of-straightness of each flat surface of a stud was measured at mid-height. The distance from the string to the surface of the stud was the initial global imperfection for the stud and tabulated in Table 3.3. The measured out-of-straightness of each stud was found to be within the permissible values as stated, which is 1/32 inches per foot for both bow and camber. The permissible values are found in the Standard Sp ecifications for Load Bearing Steel Studs ASTM C955-01 (ASTM 2001) and for nonstructural stee l framing members ASTM C645-00 (ASTM 2000). The measured cambers were negligible in all the tested specimens except for the 600S162-43 series where it ranged from 0.0 to a maximum of 0.065 inches, or L/1500.

PAGE 54

37 The sweep measurements were more significant as these might directly influence the axial behavior of the cee-studs during testin g. The measured sweep ranged from 0.0 to 0.04 inches, or L/2400 for the 362S162-43 and 600S162-43 series; from 0.0 to 0.075 inches, or L/1300 for the 600S162-97 series; and from 0.0 to 0.14 inches, or L/700 for the 362S162-68 series. No geometric imperf ection measurements were made of the 800S162-97 series studs. In a few studs ther e was an initial twist over its length but it would disappear when the bottom end was plumbed with the top end while setting up for a compression test. A note was made of the initial twist, but the degree of twist was not measured. 3.5.2 Cross-Sectional Imperfections The as-built out-to-out measurements of th e cross-section of a stud showed that it was neither symmetric nor of uniform thickness. Also, the intersecting corners of the flange-lip and the web-flange junctions were typically right angular. However, the crosssection was considered to be mono-symmet ric and of uniform thickness for calculation purposes. It was observed that in some of the studs the punchout were offset from the web centerline by as much as 1/8, and this was documented along with the test data. The average cross-sectional measurements of eac h of the test specimen series are given in Tables 3.4 and 3.5. In order to calculate th e gross cross-section area, the radius of the bend was taken as the maximum of 3/32 or tw o times the base-metal thickness, based on the SSMA Manual (SSMA 2001). The studs were fabricated from galvanized steel. The base metal thickness was calculated by subtracting a thickness of two mils from the average of the measured values of thickness.

PAGE 55

38 3.6 Test Setup and Test Procedure for Single Column Axial Load Tests A total of 37 studs were tested in this ph ase of the experimental study. Each stud was tested in a 400 Kip, screw driven Riehle Universal Testing Machine. The test setup and test procedure for the single column axial load tests is described below. 3.6.1 Test Specimens of Single Column Axial Load Tests To simulate actual field installation cond itions, each stud was mounted in standard track of type T DDD 125-43 (where T = trac k, DDD = depth of stud 1-1/4 flange, 43 mil thickness). Figure 3.5 s hows a stud attached to the tr ack with a single #10 selfdrilling screw on each flange. The track was then mounted to end bearing plates with two 0.150" diameter bolts to simulate attachme nt to a concrete suppor t or other structural member using 0.144" diameter drive pins. Figure 3.5(a) shows the top of the stud attached to the end bearing plate being held in position against the movable crosshead of the Riehle Universal Testing Machine. Figure 3.5(b) shows the bottom of the stud attached to the other end bearing plate that sits just above anothe r plate holding a 150 Kip axial load cell in place and re sting on the fixed platen of the testing machine. 3.6.2 Test Frame for Single Column Axial Load Tests An adjustable frame attached to the Riehle testing machine was used to hold the flexural-torsional bracing system in place. Figu re 3.6 is an overall view of the test frame and its accompanying instrumentation. The mid-height lateral br acing was simulated using steel wires of varying diameters and lengt hs. As indicated in the figure, the wires were attached to the corners of the flanges of the test specimens using #10 screws. The brace wires terminated at the S-Beam load ce lls, which were used to measure the tension force in the brace wires during the testing.

PAGE 56

39 3.6.3 Instrumentation for Single Column Axial Load Tests Five load cells and six linear potentiometers were used to measure the loads and displacements for each single axial compression test for the braced stud specimens. Figure 3.7 shows the locations of the instru ments mounted on the test frame. Four SBeam load cells (Load Cells 1, 2, 3, 4) were used to measure the brace forces in the brace wires. A 150 kip capacity load cell (Load Cell 5) was used to measure the axial load at the base of the stud. The minor axis late ral displacement of a stud was measured by a complementary set of four linear potentiomete rs (LINEAR POTS 1, 2, 3, 4) positioned directly adjacent to the indivi dual brace wires that made up the lateral bracing system. The major axis lateral displacement was measured at mid-height, by a single linear potentiometer (LINEAR POT 5) located along th e minor axis attached to the south flange of a stud. Axial shortening of a stud was measured along the north flange of the test specimen parallel to the longitudinal axis of a stud (LINEAR POT 6). Figure 3.8 shows a close-up view of the stud cross-section at mi d-height that shows the attachment points of the bracing wires to their corresponding lo ad cells: A-NE BRACE (BF-1), B-SE BRACE (BF-2), C-NW BRACE (BF-3), and D-SW BRACE (BF-4). 3.6.4 Test Procedure of Single Column Axial Load Tests Each cee-stud was fixed in the Riehle Un iversal Testing Machine with the tracks bolted to the top crosshead and bottom base plate and was plumbed along both the strong and weak axis prior to testing. The measur ing instruments, described in Section 3.6.2 were connected to an electronic data acqui sition system to collect and display the runtime data. The tests were conducted under displacement control since the Riehle is a mechanically screw-driven testing machine, which allowed the studs to be loaded at a rate of approximately 5 to 20 lbs/sec to ensu re a static response to the applied load.

PAGE 57

40 Initially, each stud was loaded up to an axial load of 200 lbs to 500 lbs then unloaded. At this time all the instrumentation was checked and balanced. This preliminary loading and unloading cycle also ensured proper seating of the specimen in the Riehle UTM. During the continued loading, the buckling behavior of the stud was observed and photographs were taken at notable points an d at certain load levels. Fa ilure was considered to have occurred when the stud could no longer carry additional load or significant axial or crosssectional deformation of the stud was ob served and recorded. The stud was then unloaded and the test was then terminated. 3.7 Test Setup and Test Procedure for Bridging Tests A total of 54 specimens were tested in this phase of the experimental study to evaluate the strength and stiffness of typica l industry bridging. The tests were conducted on 3-6 long cee-stud sections. As previous ly stated, three types of typical industry bridging were tested. The specimens were di vided into two groups based on the direction of loading namely, in-plane loading and out-of-plane loading. Twenty-eight specimens were tested in the out-of-plane loading group while twenty-six specimens were tested in the in-plane loading group. 3.7.1 Test Specimens of Bridging Tests The 3-6 long cee-stud sections were cut fr om the 20-6 long studs such that the elevation to the center of the web punchout was maintained at 23 inches. The test specimens were identified using a modified SSMA nomenclature: DDD S FFF-TT-N CC where DDD = Overall stud depth (362 = 3.62"; 600 = 6.00"; 800 = 8.00") S = Lipped stud section FFF = Flange width (125 = 1.25"; 162 = 1.62")

PAGE 58

41 TT = Nominal steel thickness (mils; 1 mil = 0.001") N = Number of the test specimen in each series of stud CC = Bridging connection type ( SS, WW, DW) Figure 3.9(a) through (c) show the types of bridging connections tested and they are described below: 3.7.1.1 Screwed-Screwed (SS) Connection: The clip angle was first screwed to the bridging channel with tw o #10 self-drilling screws, as shown in Figure 3.9(a) and Figure 3.10. Position of the screws on the clip angle was marked and then it was centered on the centerline of the web at a height of 23 inches from the bottom. The clip angle was then screwed to the web of the st ud. This connection type was called ScrewedScrewed (SS). 3.7.1.2 Welded-Welded (WW) Connection: The bridging channel was welded at its flange-web junction to the clip, as show n in Figure 3.9(b). The clip angle was then positioned along the centerline of the web and fillet welded on the edges of the in-line leg. The bridging channel was slid through th e punch out and then f illet welded to the outstanding leg of the clip angle. The weld ing specifications used were Metal alloy: ER7056, Heat: 1026o F, Gas shielding: Argon-CO2 (7 5%-25%). This connection type was called Welded-Welded (WW). 3.7.1.3 Direct-Welded (DW) Connection: The bridging channel was slid through the web punchout and then the flanges were welded to the web of the stud, as shown in Figure 3.9(c). The weld specificati on used was same as in Type-2 connection. This connection type was called Direct Welded (DW).

PAGE 59

42 3.7.2 Test Fixture for Bridging Tests The test fixture used to secure the speci mens for the bridging tests is shown in Figure 3.11(a). Figure 3.12(a) and (b) are schematic plan views of the test fixture positioned for the out-of-plane and in-plane bridging tests, respectively, while Figure 3.13 and Figure 3.14 show an overall view of each experimental test setup. The fixture consists of a Specimen Mounting Frame (see Figure 3.11(a)) and an Actuator Armature (see Figure 3.11b). The load was applied to the bridging channel by a manually operated screw-driven actuator, fixed to the Actuator Armature (see Figure 3.11 through Figure 3.14). The Specimen Mounting Frame was used to secure the cee-stud in place and to isolate the web portion of the specimen (see Fi gure 3.11(a)). One e nd of the actuator was connected to an S-beam load cell, and the ot her end was connected to the vertical channel of the Actuator Armature by a 3/4" diameter SAE Grade 5 bolt. The Actuator Armature was bolted to the web of C8x11.5. The channe l section was welded to top flange of a W8x24 whose bottom flange was bolted to the te st fixture base plat e. A plate-coupler was introduced between the bridging and the S-beam load cell at Point A (see Figure 3.11 and Figure 3.12), that allowed the load to be transmitted to the bridging channel through the plate-coupler by a 3/8" diameter SAE Gr ade 8 bolt. The joint between the actuator and the vertical channel of the Actuator Ar mature was free to rotate horizontally, while the joint between the plate-coupler and the bri dging channel was free to rotate vertically. All members and connections were checked pr ior to the commencement of any testing to verify that the limit state of the loading sy stem would be at the bridging connection and not at any of the components of the test fixt ure. A shear test wa s performed on the 3/8" bolt, the design strength of the plate coupler was calculated based on its as-built measurements, and the weld strength used to fabricate the plate-coupler was checked.

PAGE 60

43 For the out-of-plane load tests, a 500 lb load cell was used and for the in-plane load tests, a 10 Kip load cell was used. This change wa s necessary since the st rength predictions for the in-plane tests were found to be beyond the safe working range of the 500 lb load cell. 3.7.3 Instrumentation The instruments used for the out-of-plane loading tests are shown in Figure 3.15 and for the in-plane loading tests in Figure 3.16. For both the loading conditions, three linear string type potentiometers were used to capture the spatial movement of Point A on the bridging where it is connected to the lo ad actuator, each measuring the X, Y and Z displacements, respectively. Five linear potentiometers were used to measure the displacement of the bridging connection and the stud web, tw o on the front side (LP-1, LP-2), two on the back side (LP-3, LP-4), an d an additional one on the back side (LP-5) located approximately one foot above the lo cation of the bridging connection to the stud web. For the SS type connection, LP-1 and LP-2 were attached to the screw heads to measure the pullout of the screws, while LP-3 and LP-4 were attached on the back to measure the movement of the web plate just below the screws. The measurements being recorded by LP-5 is to show that the web is completely isolated and is unaffected by the loading. For the WW type connection, LP-1 and LP-2 were attached at relatively the same location as in SS type connection, but to measure the horizontal movement of the vertical leg of the clip angle. For the DW type connection, LP-1 and LP-2 were attached at relatively the same location as in SS type connection, but to measure the horizontal movement of the stud web. 3.7.4 Out-of-Plane Loading Test Procedure The specimen mounting-frame and the Actuator Armature were aligned and anchored to the floor (see Figure 3.11). In this setup, the Actuator Armature was placed

PAGE 61

44 perpendicular to the centerline of the bridgi ng channel, with the armature centerline passing through Point A. The test specime n was placed in the specimen mounting-frame and aligned horizontally and vertically. Figure 3.13 shows an overall view of the specimen in the test fixture, and Figure 3. 15(a) shows a view of the connection between the bridging channel and the ac tuator. The specimen was secured on the front and on the back by four rigid hot-rolled steel members, to isolate the web for testing. To maintain the same spatial position of Po int A for all the tests, it was triangulated and the locations of the linear string type potent iometers were adjusted to achieve an orthogonal coordinate system to a reasonable accuracy of 0.10 inch. 3.7.5 In-Plane Loading Test Procedure The specimen mounting-frame and the Actuat or Armature were placed in line with the bridging channel of the stud specimen a nd anchored to the floor (see Figure 3.12). The test specimen was placed in the speci men mounting-frame and aligned horizontally and vertically. The specimen was then secured on the front and on the back by four rigid hot-rolled steel members, to isolate the web for testing. Figure 3.13 shows the overall view of a specimen in the test fixture, and a shows a view of the connection between the bridging channel and the load actuator. The cranking arm of the actuator was turned at approximately one-half a revolution per second until the bridging failed.

PAGE 62

45 Table 3.1 As-built Material Proper ties from the Tension Coupon Tests Specimen ID Yield Stress (0.2% offset) Upper Yield Stress Lower Yield Stress Ultimate Stress TC D S B t IDksi ksi ksi ksi TC 362 S 125 33 1 47.26 46.40 54.68 TC 362 S 125 33 2 48.51 49.17 48.59 55.88 TC 362 S 125 33 3 48.55 49.17 49.40 55.89 Average 48.53 48.53 48.13 55.48 TC 362 S 162 43 2 46.65 46.90 46.43 57.62 TC 362 S 162 43 3 46.73 46.84 46.13 57.64 TC 362 S 162 43 4 47.98 48.31 47.22 58.60 TC 362 S 162 43 5 46.80 47.83 47.25 58.94 Average 47.04 47.47 46.76 58.20 TC 362 S 162 68 2 50.12 51.91 51.72 66.62 TC 362 S 162 68 3 51.75 51.78 51.24 67.34 TC 362 S 162 68 4 54.15 54.35 53.96 69.43 Average 52.01 52.68 52.30 67.80 TC 600 S 125 33 1 23.82 45.22 TC 600 S 125 33 3 26.97 45.56 TC 600 S 125 33 5 26.73 44.93 TC 600 S 125 33 7 18.61 35.70 TC 600 S 125 33 8 36.88 Average 24.03 45.24 TC 600 S 162 43 2 45.12 45.48 44.06 53.03 TC 600 S 162 43 3 46.65 47.49 48.37 55.65 TC 600 S 162 43 4 46.75 47.28 45.86 55.65 TC 600 S 162 43 5 46.43 47.79 47.16 55.18 Average 46.24 47.01 46.36 54.88 TC 600 S 162 43 3a 50.27 50.81 50.63 59.21 TC 600 S 162 43 4a 50.34 51.58 51.24 59.56 Average 50.30 51.19 50.94 59.38 TC 600 S 162 97 3a 60.40 60.70 59.23 70.38 TC 600 S 162 97 3b61.10 62.05 59.31 70.28 TC 600 S 162 97 4 59.10 59.87 58.30 69.96 Average 60.20 60.87 58.94 70.21 TC 800 S 162 43 1 40.65 40.20 55.03 TC 800 S 162 43 3 40.50 40.20 54.47 TC 800 S 162 43 4 40.88 40.30 55.20 Average 40.68 40.23 54.90 TC 800 S 162 97 1 42.12 45.62 44.39 66.79 TC 800 S 162 97 3 43.32 44.55 44.51 68.00 TC 800 S 162 97 4 42.06 47.01 46.56 67.69 Average 42.50 45.73 45.15 67.49

PAGE 63

46Table 3.2 As-Built Cross-Sectional Dimensions of Test Specimens Average As-Built Measurements Lip FlangeWeb FlangeLip We b Lip FlangeWeb FlangeLip Stud Designation Target Brace Stiffness A B C D E F ta tb tc td te D S B t ID lbs/in. in. in. in. in. in. in. in. in. in. in. in. 362 S 125 33 1 200 0.252 1.317 3.613 1.259 0.209 3.589 0.033 0.039 0.034 0.034 0.032 362 S 125 33 2 400 0.252 1.316 3.613 1.258 0.205 3.584 0.036 0.035 0.033 0.035 0.032 362 S 125 33 3 100 0.251 1.321 3.616 1.258 0.206 3.603 0.036 0.036 0.034 0.036 0.034 362 S 125 33 4 100 0.253 1.318 3.616 1.259 0.208 3.593 0.034 0.035 0.033 0.035 0.032 362 S 125 33 5 0 0.251 1.319 3.612 1.256 0.203 3.589 0.031 0.036 0.034 0.035 0.032 362 S 125 33 6 100 0.250 1.318 3.612 1.256 0.204 3.597 0.032 0.035 0.034 0.035 0.031 362 S 125 33 0.252 1.318 3.613 1.258 0.206 3.590 0.033 0.036 0.034 0.035 0.032 362 S 162 43 1 0 0.541 1.637 3.562 1.603 0.531 3.547 0.044 0.042 0.042 0.042 0.044 362 S 162 43 2 200 0.530 1.606 3.563 1.642 0.538 3.541 0.045 0.043 0.043 0.043 0.043 362 S 162 43 3 800 0.536 1.640 3.563 1.607 0.534 3.540 0.044 0.042 0.042 0.043 0.044 362 S 162 43 4 400 0.528 1.602 3.569 1.639 0.538 3.541 0.042 0.042 0.042 0.042 0.042 362 S 162 43 0.534 1.621 3.564 1.623 0.535 3.542 0.044 0.042 0.042 0.043 0.043 362 S 162 68 2 1000 0.526 1.628 3.642 1.706 0.539 3.631 0.07170.070 0.070 0.070 0.072 362 S 162 68 3 500 0.546 1.701 3.638 1.629 0.524 3.633 0.074 0.070 0.070 0.070 0.072 362 S 162 68 4 750 0.542 1.705 3.635 1.630 0.536 3.635 --0.069 0.069 0.069 0.069 362 S 162 68 5 0 0.543 1.703 3.636 1.629 0.523 3.634 0.076 0.068 0.068 0.068 0.073 362 S 162 68 0.540 1.684 3.638 1.649 0.530 3.633 0.074 0.069 0.069 0.069 0.071

PAGE 64

47Table 3.2 (Continued) As-Built Cross-Sectional Dimensions of Test Specimens Average As-Built Measurements Lip FlangeWeb FlangeLip We b Lip FlangeWeb FlangeLip Stud Designation Target Brace Stiffness A B C D E F ta tb tc td te D S B t ID lbs/in. in. in. in. in. in. in. in. in. in. in. in. 600 S 125 33 1 200 0.206 1.243 6.022 1.307 0.243 5.999 0.032 0.032 0.030 0.032 0.032 600 S 125 33 2 0 0.205 1.247 6.019 1.309 0.245 6.004 0.031 0.030 0.031 0.030 0.031 600 S 125 33 3 60 0.208 1.247 6.019 1.305 0.246 6.008 0.031 0.030 0.030 0.031 0.031 600 S 125 33 4 30 0.210 1.248 6.019 1.308 0.242 6.008 0.032 --0.031 --0.033 600 S 125 33 0.207 1.246 6.020 1.307 0.244 6.005 0.032 0.031 0.031 0.031 0.032 600 S 162 43 1 250 0.531 1.603 5.994 1.592 0.536 5.993 0.041 0.044 0.044 0.044 0.042 600 S 162 43 2 75 0.526 1.612 6.017 1.596 0.534 6.041 0.042 0.044 0.044 0.044 0.042 600 S 162 43 4 500 0.533 1.595 6.036 1.616 0.530 6.068 0.044 0.045 0.044 0.044 0.042 600 S 162 43 5 30 0.531 1.596 6.026 1.612 0.529 6.052 0.044 0.044 0.044 0.044 0.042 600 S 162 43 6 0 0.528 1.616 6.034 1.598 0.535 6.066 0.043 0.044 0.044 0.044 0.043 600 S 162 43 6a 0 0.536 1.707 5.984 1.609 0.535 6.092 0.044 0.046 0.046 0.046 0.045 600 S 162 43 0.530 1.604 6.021 1.603 0.533 6.044 0.043 0.044 0.044 0.044 0.042 600 S 162 97 1 1000 0.544 1.652 6.069 1.675 0.610 --0.100 0.104 0.099 0.110 0.102 600 S 162 97 2 1500 0.533 1.665 6.065 1.671 0.562 --0.103 0.102 0.100 0.107 0.106 600 S 162 97 3 500 0.557 1.656 6.106 1.658 0.580 --0.099 0.102 0.101 0.103 0.099 600 S 162 97 4 160 0.527 1.649 6.077 1.673 0.576 6.063 0.100 0.104 0.100 0.105 0.105 600 S 162 97 5 0 0.542 1.648 6.091 1.683 0.584 6.106 0.100 0.101 0.101 0.101 0.102 600 S 162 97 0.541 1.654 6.082 1.672 0.582 6.084 0.100 0.103 0.100 0.105 0.103

PAGE 65

48Table 3.2 (Continued) As-Built Cross-Sectional Dimensions of Test Specimens Average As-Built Measurements Lip FlangeWeb FlangeLip We b Lip FlangeWeb FlangeLip Stud Designation Target Brace Stiffness A B C D E F ta tb tc td te D S B t ID lbs/in. in. in. in. in. in. in. in. in. in. in. in. 800 S 162 43 2 75 0.5371.597 7.9121.604 0.530 --0.0420.043 0.0430.043 0.042 800 S 162 43 3 150 0.5351.598 7.9251.605 0.533 --0.0420.043 0.0430.043 0.043 800 S 162 43 4 0 0.5331.597 7.9291.608 0.532 0.0430.043 0.0430.043 0.043 800 S 162 43 5 300 0.5281.606 7.9201.597 0.532 --0.0420.043 0.0440.044 0.041 800 S 162 43 0.5331.599 7.9211.603 0.532 --0.0420.043 0.0430.043 0.042 800 S 162 97 1 1000 0.5621.631 8.0531.670 0.659 --0.1010.102 0.1020.103 0.103 800 S 162 97 2 500 0.6511.649 8.0481.647 0.561 --0.1020.103 0.1030.103 0.102 800 S 162 97 3 0 0.5531.629 8.0411.650 0.661 --0.1010.103 0.1040.103 0.103 800 S 162 97 4 2100 0.6561.647 8.0331.632 0.556 --0.1000.105 0.1030.104 0.101 800 S 162 97 0.6051.639 8.0441.650 0.609 --0.1010.103 0.1030.103 0.102

PAGE 66

49 Table 3.3 Initial Geometric Imperfections Initial Imperfection Camber Sweep Stud Designation Target Brace Stiffness B D C D S B t IDlbs/in. in. in. in. 362 S 125331 200 0 0 0 362 S 125332 400 0 0 0 362 S 125333 100 0 0 0 362 S 125334 100 0 0 0 362 S 125335 0 0 0 0 362 S 125336 100 0 0 0 362 S 162431 0 0 0 0 362 S 162432 200 0 0 0 362 S 162433 800 0 0 0.01 362 S 162434 400 0.01 0.02 0 362 S 162682 1000 0 0 -0.187 362 S 162683 500 0 0 -0.155 362 S 162684 750 0 0 0.14 362 S 162685 0 0 0 0.1 600 S 125331 200 0 0 0.1 600 S 125332 0 0 0.07 0.13 600 S 125333 60 0 0 0.12 600 S 125334 30 0 0 0.075 600 S 162431 250 0 0 0.04 600 S 162432 75 0 0 0.03 600 S 162434 500 0.0550.0450 600 S 162435 30 0.0550.0530 600 S 162436 0 0.0650.0650 600 S 162436a 0 0 0 -0.036 600 S 162971 1000 ------600 S 162972 1500 ------600 S 162973 500 ------600 S 162974 160 0 0 0.075 600 S 162975 0 0 0 0.015 800 S 162432 75 0 0 0.09 800 S 162433 150 0 0 0.11 800 S 162434 0 0 0 0.11 800 S 162435 300 0 0.12 0 800 S 162971 1000 ------800 S 162972 500 ------800 S 162973 0 ------800 S 162974 2100 0 0 0.12

PAGE 67

50Table 3.4 Average As-Built Geometric Dimensions of Each Stud Series Clear O/O Dimensions Average Width Lip FlangeWeb FlangeLip Web Lip Flange Stud Designation A B C D E F D S B t in. in. in. in. in. in. in. in. 362 S 125 33 0.2515 1.3175 3.61311.2577 0.20583.59040.2287 1.2876 362 S 162 43 0.5335 1.6212 3.56431.6229 0.53523.54230.5344 1.6220 362 S 162 68 0.5396 1.6842 3.63771.6485 0.53043.63290.5350 1.6664 600 S 125 33 0.2071 1.2462 6.01971.3073 0.24396.00450.2255 1.2768 600 S 162 43 0.5298 1.6042 6.02131.6028 0.53286.04390.5313 1.6035 600 S 162 43a 0.5363 1.7070 5.98421.6092 0.53526.09200.5358 1.6581 600 S 162 97 0.5405 1.6539 6.08161.6717 0.58246.08430.5615 1.6628 800 S 162 43 0.5330 1.5994 7.92131.6033 0.5316--0.5323 1.6014 800 S 162 97 0.6053 1.6388 8.04361.6498 0.6091--0.6072 1.6443 Table 3.5 Average As-Built Geometric Dimensions of Each Stud Series Thickness Lip FlangeWeb FlangeLip Radius of Bend Base Metal Thickness Internal Radius Stud Designation ta tb tc td te tavg R tnet Rint D S B t in. in. in. in. in. in. in. in. in. 362 S 125 33 0.0333 0.0360 0.03360.0348 0.03180.03390.0938 0.0319 0.07781 362 S 162 43 0.0437 0.0424 0.04250.0425 0.04320.04290.0938 0.0409 0.07332 362 S 162 68 0.0735 0.0691 0.06910.0693 0.07140.07050.1409 0.0685 0.10669 600 S 125 33 0.0316 0.0307 0.03070.0308 0.03150.03100.0938 0.0290 0.07923 600 S 162 43 0.0427 0.0441 0.04420.0443 0.04230.04350.0938 0.0415 0.07299 600 S 162 43a 0.0442 0.0458 0.04600.0460 0.04470.04530.0938 0.0433 0.07209 600 S 162 97 0.1002 0.1027 0.10040.1053 0.10280.10230.2045 0.1003 0.15440 800 S 162 43 0.0421 0.0431 0.04310.0430 0.04220.04270.0938 0.0407 0.07340 800 S 162 97 0.1008 0.1031 0.10290.1031 0.10210.10240.2048 0.1004 0.15458 Note: Radius of Bend = max [(2 tavg) 3/32"], Clarks tables. Inte rnal Radii = (Radius of Bend tnet /2) Base Metal Thickness = [tavg 2 mils for galvanizing]

PAGE 68

51 Dimensions inches A Length of reduced section, min 2 1/4 B Length of grip section, min 2 C Width of grip section, min 2 D Diameter of hole for pin, min 1/2 E Edge distance from pin, approximate 1 1/2 F Distance from hole to fillet, min 1/2 G Gage Length 2.000 0.005 L Overall Length 8 T Thickness 5/8 R Radius of fillet, min 1/2 W Width 0.500 0.010 Figure 3.1 Dimensions of a Typical Tension Coupon Figure 3.2 Offset Method fo r Determining Yield Stress

PAGE 69

52 Figure 3.3 Autographic Diagram Me thod for Determining Yield Stress Figure 3.4 Typical Cross-Section of a Cee-Stud

PAGE 70

53 Figure 3.5 Connection of Cee-Stud a nd Track (a) at Top, (b) at Bottom Figure 3.6 Plan View of Single Column Axial Test Setup in the Riehle Universal Testing Machine

PAGE 71

54 Figure 3.7 Schematic Mid-height Bracing and Instrumentation Locations on Test Specimens Figure 3.8 Close-up View of the Location of Brace-Wires and Instrumentation at Midheight of the Cee-Stud. (Screws at the bottom are location of looped bracewires, and Screws at the top are loca tion of the Linear Potentiometers)

PAGE 72

55 (a) (b) (c) Figure 3.9 Types of Bridging Connections (a) SS (b) WW and (c) DW Figure 3.10 Top View of the SS Type Bridging Connection

PAGE 73

56 (a) Elevation View of the Specimen Mounting Frame (b) Loading Actuator Armature Figure 3.11 Elevation Views of Bridging Connection Test Setup

PAGE 74

57 (a) (b) Figure 3.12 Schematic Plan View of the (a)Out-of-Plane Bridging Test (b) In-Plane Bridging Test

PAGE 75

58 Figure 3.13 Overall View of the Out-of-Plane Bridging Tests Figure 3.14 Overall View of the In-Plane Bridging Tests

PAGE 76

59 Figure 3.15 Out-of-Plane Loading Test In strumentation on the (a) Front (b) Back (a) (b) Figure 3.16 In-plane Loading Test Instrumentation on the (a) Front (b) Back

PAGE 77

60 CHAPTER 4 EXPERIMENTAL RESULTS AND EVALUATION Experimental tests on single column specimens and bridging specimens were performed as per the test protocol s described in Chapter 3. The individual test reports for the single column tests are discussed in Appendix A and the results of the bridging tests are available in Appendix B. This chapter is divi ded into four sections, the first section deals with the results of the single column axial tests and discusses the effect of brace stiffness and strength on the load carrying capacity, mid-height lateral displacement and effective length of the braced columns. The seco nd section deals with the axia l pullout strength and torsional stiffness of the three bridging connections for eight series of cee-studs. The third section deals with the relationship between the flex ible bracing and the bridging strength and stiffness. The fourth section summa rizes the experimental evaluation. 4.1 Single Column Axial Load Test Results In the single column axial load tests a to tal of 37 studs were tested based on the following parameters: Cross-sections o 362S125-33, 362S162-43, 362S162-68 o 600S 125-33, 600S 162-43, 600S 162-97 o 800S 162-43, 800S 162-97 Unbraced Test Specimens versus Braced Test Specimens Bracing Stiffness o Under-Braced less than ideal bracing o Ideally-Braced equal to ideal bracing o Over-Braced greater than ideal bracing

PAGE 78

61 Table 4.1 provides the proposed test matrix for the 8-0 long si ngle column axially loaded cee-stud specimens. Due to certain expe rimental limitations, the actual test matrix is as given in Table 4.2, where the numbers in th e table represent the numb er of tests conducted at that brace stiffness. The specific reasons for the changes from the proposed test matrix compared to the actual test matrix are de scribed in the course of this chapter. 4.1.1 Bracing Strength and Stiffness Eight groups of cee-studs were tested with a total of 37 test specimens. The AISIWIN software program (AISIWIN 2000) was used to determine the nominal properties of the eight groups of test specimens, with appropriate no minal values of material yield and ultimate stress. Table 4.3 gives the ultimate and unfactor ed capacities of each of the stud groups. The target brace stiffness, for single nodal braci ng (n=1), was calculated using Eq. 2.14, as recommended by Yura (1995), where the unbrac ed length of the column was taken as the distance between the support and the point of bracing (Lb = 48.0 inches). The target bracing stiffness is also tabulated and provided in Table 4.3. The measured geometric dimensions and th e results of the material tension coupon tests for each group of cee-studs were then used to recalculate the ideal brace stiffness using AISIWIN (2002). Table 4.4 gives the values of the required ideal bracing stiffness for each of the studs. The single column axial load tests were conducted on cee-stud specimens with varying brace stiffnesses, which were lesser th an, equal to, or greater than the ideal brace stiffness. As discussed earlier at least one cee-stud per series was tested without any lateral (or torsional) bracing. The cee-studs were braced with four steel wi res attached at mid-height of the member to the flanges, as shown in Figure 4.1. By varying the length and diameter of the brace wires the brace stiffness was varied from one test sp ecimen to the other. The brace strength was

PAGE 79

62 calculated as the product of the cross-sectional area of the wire and its nominal tensile strength. The actual brace stiffness (kbr) was calculated as the av erage value of the brace stiffnesses of all four wires. The brace sti ffness of each wire was calculated using Eq.4.1a. ) a 1 4 ( L AE kbr br where: A = Cross-sectional area of the wire E = Youngs Modulus = 29,000,000 psi. Lbr = Length of brace wire At any time during the test only two brace wi res, out of the four, were effective in bracing the stud. If the stud buckled in a fle xural mode, the two brace wires on the same side of the web were effective, whereas if the stud buckled in a torsional mode, the two diagonally opposite brace wires were effective in bracing th e stud. Therefore, the total brace stiffness was taken as twice the average stiffness of the fo ur brace wires, and is given in Table 4.5. The ratio of the total brace stiffness provide d to the required ideal brace stiffness, ( provided/ required) is defined as the brace-factor. The brace-factor for each of the 37 test specimens is listed in Table 4.5, which was used to categorize the cee-studs as: under-braced, ideallybraced or over-braced (i.e. brace-factor <1.0, =1.0, or >1.0). The column effective length factors were ta ken from Table C-C4-1 of the Commentary to the North American Specification for Cold -Formed Steel (AISI 2000). For flexural buckling about the weak axis the effective length factor was taken as Ky=1.0 for the unbraced studs and Ky=0.5 for the braced studs. This effective length factor was assumed to be the same for all three categories of braced studs. For flexural buckling about the strong axis, it was considered that the track offered near fu ll base fixity, and hence the effective length

PAGE 80

63 factor was taken as Kx=0.5. Since the top and bottom su pports prevented the stud from twisting, and the effective length factor was taken as Kx=0.5. 4.1.2 Evaluation of Experimental Observations The evaluation of the experiments provided below will be based on a review of the test parameters such as the effect of cee-stud dimensions, the brace stiffness and the brace strength. The experimental results are compared to analytically calculated values of axial load capacity and the expected brace forces ba sed on the measured lateral displacements. The effect of brace stiffness on the axial load capacity has been studied and the graphically illustrated in Figure 4.2 to 4.9 and has been discussed in this section. Figure 4.10 gives the buckling modes and shapes of the experimental ob servations, which is explained later in this chapter. While keeping the brace-factor constant between two or more studs, the following parametric studies were performed ba sed on the cross-section dimensions: Web depth, keeping the brace -factor relatively the same. a. Comparing 362S125-33 and 600S125-33 (Figures 4.11 to 4.13) b. Comparing 362S162-43, 600S162-43 and 800S162-43 (Figures 4.14 to 4.16) c. Comparing 600S162-97 and 800S162-97 (Figures 4.17 to 4.19) Thickness, keeping the brace-factor relatively the same: a. Comparing 362S125-33, 362S162-43 and 362S125-68 (Figures 4.20 to 4.22) b. Comparing 600S125-33, 600S162-43 and 600S162-97 (Figures 4.23 to 4.26) c. Comparing 800S162-43 and 800S162-97 (Figures 4.27 to 4.29) Figures 4.11 through 4.29 have been normalized with respect to the analytical values of axial load and the correspondi ng axial shortening obtained from AISIWIN (2002) using the average as-built properties of each stud group. The effect of different material properties has

PAGE 81

64 been considered in the above normalization by including it in the AISIWIN program. With increasing web depth and flange width, the sl enderness ratio of the web and flange plate elements increases. This leads to a loss of el astic stiffness in the web and hence the load carrying capacity of the studs decreases and is evident in the comparisons described above. Figures 4.11 to 4.13 indicat e that the 600S125-33 studs ha ve undergone nearly twice the axial deformation compared to the 362S125-33 studs for nearly the same brace factor. Both, the unbraced 362S and 600S studs have attained almost a normalized load of 1.35 times than the analytical prediction, but their normalized axial deformations at the maximum load being 1.6 and 4.6, respectively. In Figure 4.12, the 362S and 600S studs with a brace factor of 1.7x and 1.3x, have attained nearly 1.0 and 1.4 tim es the analytical prediction for a mid-height braced stud, respectively. Comparing the 362S and 600S studs in Figure 4.13, with brace factors 6.2x and 7.4x, respectiv ely, shows that the normalized axial shortening being 1.25 and 3.3 at normalized axial loads of 1.25 and 1.15, respectively. Figures 4.14, 4.15 and 4.16 show the comparison of the 362S, 600S and 800S studs for the same plate thickness of 43 mils. The 36 2S, 600S and the 800S unbraced studs recorded a normalized axial load of 2.6, 1.4 and 2.0 at co rresponding normalized axial shortening of 2.6, 3.0 and 3.8, respectively. Comparing the 362S (1.2x), 600S (1.6x) and 800S (1.3x) studs in Figure 4.15 shows that normalized axial lo ads are 1.4, 1.05 and 0.85 for corresponding normalized axial shortening of 1.75, 2.2 an d 2.1 respectively. In the 800S162-43-150 stud the buckling mode was distortional hence the experimental maximum load was less than the analytical value. When the brace factor was grea ter than 2.0, as in the case of 362S (2.5x), 600S (3.4x) and 800S (2.3x) studs, the normaliz ed axial loads were 1.35, 1.0 and 1.0 with corresponding normalized axial shortening being 1.8, 2.0 and 1.0, respectively. It can be

PAGE 82

65 observed from all the three figures that the 362S studs not only ha ve the highest elastic stiffness but also have the highest load enhan cement. In Figure 4.16, due to strong axis buckling of the 800S162-43-300 stud, the axial shortening was neutra lized by the elongation in the north flange. However, the slope of latter part of the plot shows that this stud had an elastic stiffness that was less than the stiffn ess of the other two studs that are in the comparison. The comparison of the 600S and 800S studs with a plate thickne ss of 97 mils with varying brace stiffness is shown in Figures 4.17 to 4.19. It can be observed that the 800S (0x, 2.1x, and 4.3x) studs have lesser elastic stiffness and the maximum normalized axial loads attained are 2.5, 1.1, and 1.1 at corres ponding normalized axial shortening of 2.5, 2.7, and 2.15, respectively. On the other hand, th e 600S (0x, 1.7x, and 2.7x) studs have higher elastic stiffness and the normali zed axial loads attained are 2.8, 1.2 and 1.25 at corresponding normalized axial shortenings of 1.4, 1.65, an d 1.05. The 800S studs have a higher web-depth to thickness ratio than that of the 600S studs resulting in lesser elastic stiffness. Figures 4.20 to 4.22 (362S), Figures 4.23 to 4.26 (600S), and Figures 4.27 to 4.29 (800S) show the comparison of studs with constant web-depth while varying the thicknesses. The brace-factors are maintained approximat ely the same in these comparisons. Figure 4.20 compares the 362S unbraced studs with 33, 43 and 68 mil thicknesses. The failure modes were first mode flexural-tor sional for all the three studs, where as the maximum normalized axial loads were 1.25, 2.6 and 1.5 at corresponding normalized axial shortenings of 1.3, 2.6 and 6.6, respectively. For the 362S braced studs (see Figure 4.21) of thicknesses 33 mils, 43 mils and 68 mil, with respective brace factors of 1.7x, 1.2x, and 1.8x, the maximum normalized axial load were 1.0, 1.4 and 1.35 at corresponding normalized axial

PAGE 83

66 shortenings of 0.7, 1.75, and 1.7, respectively. In Figure 4.22, the studs had respective brace factors of 6.2x, 5.4x, and 3.3x with maximum no rmalized axial loads of 1.25, 1.25, and 1.5, at corresponding normalized axial shortenings of 1.2, 1.6, and 2.3, respectively. Figure 4.23 compares the 600S studs with th icknesses of 33, 43 and 97 mils. For the unbraced studs the maximum normalized axial loads were 1.3, 1.45, and 2.85, at corresponding normalized axial sh ortenings of 4.1, 3.0, and 1.5, respectively. For the braced studs (see Figure 4.24) with respective brace factors of 0.2x, 0.6x, and 0.3x, the maximum normalized axial loads were 1.05, 0.85, an d 1.2, at corresponding normalized axial shortenings of 3.4, 2.0, and 1.05, respectively. In Figure 4.25, the 600S studs with brace factors 1.3x, 1.6x, and 1.7x were compared, and the maximum normalized axial loads were 1.25, 1.05, and 1.25, at corresponding normalized axial shortenings of 3.1, 2.2, and 1.6, respectively. In Figure 4.26, the 600S studs with brace factors 7.4x, 3.4x, and 2.7x were compared, and the maximum normalized axial loads were 1.2, 1.05, and 1.25, at corresponding normalized axial shortenings of 3.3, 2.1, and 1.35, respectively. For the 800S studs with 43 and 97 mil th icknesses shown in Figure 4.27, with no bracing, the normalized axial load reached ma ximum values of 2.0 and 2.5 at corresponding normalized axial shortenings of 3.6 and 2.5, re spectively. For the braced studs with 1.3x and 1.2x, respective brace factors, the maximum normalized axial load was 0.85 and 1.05 at corresponding normalized axial shortenings of 2.1 and 1.4, respectivel y. Both, the 800S16243-150 and 800S162-97-500 studs failed in di stortional buckling mode. The distortional buckling prevented the stud to reach the analytic ally calculated fully braced capacity, in spite of the brace factor being greater than ideal bracing. When th e 800S studs with respective brace factors of 2.3x and 4.3x were compared (see Figure 4.29), the maximum normalized

PAGE 84

67 axial loads were 1.0 and 1.1 at corresponding no rmalized axial shortenings of 0.95 and 2.15, respectively. 4.1.2.1 Effect of brace stiffne ss on axial load capacity It can be observed from the combined plots of each series of the studs that there is a considerable enhancement in the load carrying ca pacity of a braced stud in comparison to an unbraced stud. Figures 4.2 to 4.9 indicate th at for brace stiffnesses higher than the ideal bracing requirement, the experimental maximum loads attained remain unchanged. Table 4.6 gives both, the experimental maximum load and the percentage in crease in the axial load, which clearly indicates th e load enhancement. Figure 4.2 to 4.9 also show that the in itial elastic stiffness (k) line, which was calculated using: ) b 1 4 ( L E A kg where Ag = Gross cross-sectional area of the cee-stud E = Youngs Modulus = 29,500,000 psi L = Length of an unbraced stud = 8-0 The 362S125-33 studs failed by flexural-tor sional buckling with flexural buckling occurring about the weak and st rong axes and torsional buckli ng occurring about the shear center. Due to the strong axis flexural buc kling, the north flange was elongating and the south flange was shortening, this in combina tion with the torsional buckling influenced the axial shortening and the studs hence exhibite d unanticipated behavior. Beyond the ultimate capacity, these studs seem to lose load gradua lly. Figure 4.2 shows th e plot of axial load versus axial shortening of the 362S125-33 series studs.

PAGE 85

68 It can be observed from Figure 4.3 that the load-deformation behavior of 362S162-43 studs have the same slope as that of the initial elastic stiffness line up to an axial load of approximately 5200 lbs at which the unbraced stud failed. Beyond this load, the plot indicates that the braced studs begin to lose stiffness, and on reaching the ultimate load the failure is instantaneous. In the case of 362S162-68 series studs, the load-deformation behavi or, shown in Figure 4.4, seem to have an initial stiffness that is almost comparable to the initial elastic stiffness up to their ultimate capacities. There is a substantial increase in the ultimate load capacity of the braced studs over the unbraced stud and the studs failed instantaneously on reaching the ultimate load. The 600S125-33 and 600S162-43 series stud s had lower stiffness than the calculated initial elastic stiffness, which can be observ ed in Figures 4.5 and 4.6. In the 600S125-33 series, the under-braced stud failed by first m ode flexural buckling and all the others failed by distortional buckling. In the 600S162-43 se ries, the unbraced stud failed in first mode flexure, and the remaining studs failed by di stortional buckling. In both the series, distortional buckling seems to affect the elasti c stiffness in comparison to the 362Sseries of studs that failed by global buckling. Th e load-deformation behavior of the 600S162-97 series of studs, shown in Figure 4.7, seems to have the same slope as the initial elastic stiffness line, and braced studs seem to have almost the same ultimate loads. The 800S162-43 series of studs did not exhi bit a very high load enhancement in spite of them being either ideally-braced or over-braced. Due to certain limitations in the experimental setup, two of the studs exhibited strong axis buckling that caused stretching of their north flange, which affected the measur ed axial shortening. When the axial load

PAGE 86

69 reached a value that was critical to weak axis buckling, the stud exhibited weak axis buckling and the slope of the load-deformation plot chan ged sharply, which is shown in Figure 4.8. The slope of the remaining plot indicates that the studs had lesser stiffness than the initial elastic stiffness. The ultimate capacities of these studs were comparable to the calculated axial capacities. This indicates that the top and bottom supports do not have any partial restraint and the supports act like a pinned conn ection. This clearly i ndicates the requirement of an independent study on the affect of support conditions on th e buckling of the cee-studs. In the case of 800S162-97 stud group, the ultim ate capacities of the braced studs are slightly greater than that of the unbraced st ud. Figure 4.9 shows that the cee-studs have a lower elastic stiffness than the initial elastic stiffness. The results of the experimental tests ar e tabulated in Table 4.6 which gives the maximum experimental load measured, observed failure modes and percentage increase in the axial capacity of the braced stud over the unb raced stud. It was generally observed that the maximum experimental loads are higher th an the predicted capacities from AISIWIN (2002). For all the unbraced studs the predic ted axial load capacity with nominal crosssection properties and nominal yield strength, in the AISIWI N (2002) program, was less than the measured maximum experimental loads. This is because the AISIWIN (2002) program considers a perfect pin-ended support condition fo r both flexural and torsional buckling. In the experimental investigation, th e cee-studs were seated in standard track at both ends that provided end-conditions of partial fixity for we ak axis flexural buckling and near full fixity for both strong axis flexural buckling and torsional buckling. These end restraints led to higher axial load capacities for the studs that fa iled by global buckling, i.e. flexural, flexuraltorsional or torsional buckling. The 600S12 5-33, 600S162-43 series of studs failed by a

PAGE 87

70 distortional buckling limit state at axial loads lower than those predicted by AISIWIN (2002) for a perfectly pin-ended column. This necessi tates the consideration of distortional buckling as a possible controlling and critical limit stat e for certain stud geometries. AISIWIN does not consider the distortional buckling limit stat e while predicting the axial capacity of coldformed lipped cee studs. The enhancement in the load carrying capacity of a stud is directly related to the type of buckling failure that occurred The percentage enhancement in the experimental load for the braced studs compared to an unbraced stud, w ithin the same series, is given in Table 4.6. The braced studs of the 362S125-33 series atta ined nearly 140% more load capacity than the unbraced stud, and the buckling was mainly global second mode flexural-torsional buckling. The braced studs of the 362S162-43, 362S162-6 8 series showed a load increase of about 35% and 115%, respectively. Though the 6 00S125-33 and 600S162-43 series studs failed by distortional buckling, they exhibited an aver age load increase of 87%, and 34%, respectively and the 600S162-97 showed an average load increase of about 38%. The 800S series studs, both 43 and 97 mils, showed only a slight lo ad enhancement as their experimental maximum capacities were in the range of the predicted axial capacities from AISIWIN. As discussed earlier, this indicates that the partial support fixi ty has reduced with incr easing column depth. 4.1.2.2 Effect of brace stiffness on buckling type and mode Figure 4.10 is a schematic diagram of th e observed buckling shapes and modes of the test specimens. The abbreviations in Table 4.6 and Figure 4.10 represent: F = Flexural Buckling, T = Torsional Buckling and the digit in brackets represents the number of half-sine waves or the order of buckling mode. This figu re does not include th e distortional buckling mode, which may or may not be associated with the global buckling modes.

PAGE 88

71 It was observed that with an increase in the brace stiffness the test specimens failed after attaining a higher order buckling mode. In some cases, under-braced studs failed at loads higher than the over-braced studs. Howeve r, in the former, the failure has been sudden and in the latter, the failure has been gradual. With increasing brace stiffness, the 362Sstuds exhibited flexural-torsional buckling changing from first mode to second mode. The 600S125-33 and the 600S162-43 studs failed by distortional buckling irrespective of the bracing stiffness, whereas the 600S162-97 stud s failed by flexural and/ or flexural-torsional buckling. The 800S studs failed by flexural, flexural-torsional and distortional buckling. Among the 33, 43 and 68 mil studs, irrespective of the total depth of the stud, local elastic buckling waves were observed in the web and distortional buckling wave s were observed in the flanges. The local elastic bu ckling is related to the flat-widths to thickness ratio of the web and the flanges. The reader is advised to refer to Appendix A for photographs of the buckling modes for various studs. 4.1.2.3 Effect of cross-sectiona l dimensions of cee-studs The 33, 43 and 68 mils studs underwent elastic local and distortional buckling at loads in the range of 10 to 25% of their ultimate cap acities. On the other hand, the 97 mil studs did not show the same elastic local buckling. However local buckling was observed near the punchout, at axial deformations beyond those corresponding to the ultimate capacities and was inelastic permanent deformations. The two types of inelastic local buckling generally observed in the 600S162-97 and the 800S162-97 series were local yielding of the lip-flange junction and local distortion around the web-punchouts. The sensitivity of the member to local buckling depends upon its width-to-thick ness ratio (Gotluru 2000). It has been experimentally shown by Young and Rasmusse n (1999) that local buckling does not induce overall bending of fixed-fixed singly symmetric columns, as it does for pin-ended singly

PAGE 89

72 symmetric columns. In the current research, the cee-studs were supported by the track at the top and bottom, and the degree of fixity offered by the track has to be ascertained. In a later section in this chapter, the effective length factor for each of the cee-studs is determined based on the analytical value of the load capacity that corresp onds to the maximum experimental load achieved for each of the test specimens. 4.1.2.4 Effect of experimental load on the brace stiffness and strength As discussed earlier, most of the unbraced studs failed at loads higher than the AISIWIN predicted capacities. The higher capa cities for the studs necessitated recalculating the ideal brace stiffness as per Eq. 2.14. Tabl e 4.7 gives the required ideal brace stiffness based on these higher load capaci ties of the unbraced studs. The higher load capacity would require a higher demand on the lateral bracing as given in Table 4.7. This higher demand on the bracing stiffness renders some of the braced cee-studs to fall into the category of underbraced cee-studs since the provided brace stiffne ss is now less than the new ideal bracing requirement. The bracing strength however re mained satisfactory since the brace wires were capable of carrying the increased brace force. It was observed in the plots of experimental load versus target brace stiffness in Figures 4.3 to 4.9 that by increasing the brace s tiffness there is a gradual increase in the axial capacity of the stud. Figures 4.30 to 4.32 show an increase in capacity of the columns with a corresponding increase in target brace stiffn ess. The axial load carrying capacity for the 362S125-33 studs increased by 162%, for the 362S162-43 studs increased by 25.0% and for the 362S162-68 studs it increased by 129.0% while varying the brace stiffness from an unbraced stud to an over braced stud. It can al so be observed in the fi gure that there is not much of an increase in the load carrying capaci ty from an ideally braced stud to an over braced stud. There was a similar increase in th e 600S series of studs, for the 33, 43 and 97

PAGE 90

73 mil thicknesses, with respective increases of 32%, 37%, and 40.0%. It must be made note of here that all the 33 and 43 mil studs failed by distortional buckling and that a few of them had lesser experimental maximum loads (see Table 4.6) compared to the analytical prediction of a mid-height braced stud. In the case of the 800S studs with 43 and 97 mils, there is a respective increase of 19.0% and 35% in the axial load carrying capacity. 4.1.2.5 Effect of brace stiffne ss on lateral displacement For any group of cee-studs, the mid-height lateral displacement of the weak axis decreased with increasing brace stiffness, as reported by Yura (1995), which was adopted by the latest edition of the AI SC-LRFD Specification (AISC 1999) The plots of axial load versus mid-height strong axis lateral displacement and weak axis lateral displacement for all the cee-studs are given in the individual test reports provided in Appendix A. Figs 4.33 to 4.35 plot the actual total bracing stiffness versus the mid-height weak axis lateral displacement for the 362s, 600s, and 800s series of studs. These plots show that with increasing brace stiffness, the mid-height lateral displacement of the weak axis decreases. In all the series of studs, there was a decrease in the mid-height lateral displacement by more than 75% from an unbraced stud to an over braced stud. 4.1.2.6 Effect of brace stiffness on effective length of columns Table 4.8 gives the effect of total brace sti ffness and the effective length factors for the cee-studs. The effective length factors we re determined using a MathCAD worksheet developed by Chen (1996) for the AISI Comm ittee on Specifications for the Design of ColdFormed Steel Structural Members. The effective length factors Kx, Ky and Kt were varied to arrive at a predicted load close to the experime ntal load capacity of each of the 37 cee-studs. It can be observed in Figures 4.36 to 4.43 that by increasing the total bracing stiffness, the effective length factor of the columns decrea se. The effective lengt h cannot be less than

PAGE 91

74 0.25, hence the plots have been truncated below the limiting value of 0.25. For a column with fully fixed ends, the effective length fact or is 0.5, and for such a column with fully effective mid-height bracing, the effective leng th factor reduces to 0.25. For most of the over-braced studs, the effective length factor was 0.25 in strong axis flexural buckling and torsional buckling. For weak axis buckling, the effective length factor is 0.5, assuming there is no partial rigidity at the supports. 4.1.2.7 Effect of brace strength on axial capacity The brace strength, which is dependent upon th e cross-sectional area of the wire and its yield stress, does not affect the buckling of the single axial column specimens because the brace forces that were generated during the tes ting were often less than the capacities of the brace wires. However, the yield strength of th e brace wires does affect the behavior of the stud only when the brace forces reach the yield load of the brace wires. In some preliminary tests, outside the scope of the test matrix, it was observed that mild steel brace wires did not provide enough brace strength. When the brace fo rce in the mild steel wire reached its yield capacity, the brace wire stretched at a constant brace force until failure, causing a non-linear lateral displacement. It was then decided to conduct the tests w ith high-strength steel wires. The steel wire had a tendency to coil and to keep it straight, a th reshold brace force of approximately 2 lbs was applied to each of the four braces prior to testing. 4.1.2.8 Other effects Among other effects are effects due to geom etric imperfections, mechanical properties of the stud material, track resistance and bear ing ends of the stud. The measured geometric imperfections of the test specimens are listed in Table 3.3. As per Winter (1960), the effect of initial imperfection is to increase the brace for ce, thus necessitating higher brace stiffness. It is stated that the stiffness required to atta in full bracing in an imperfect column (see Eq.

PAGE 92

75 2.3) exceeds that required for the ideal column (see Eq. 2.4), the more so the larger the imperfection do. Hence, the required brace stiffness is given by: 2 4 1 d / d o ideal req where ideal = ideal brace stiffness for perfect column do = measured imperfection in the stud d = deformation of the brace at the maximum brace force The total measured brace forces at the maximum axial load for all the studs are tabulated in Table 4.9. The measured weak axis lateral displacement at the maximum axial load for all the studs is tabulated in Table 4.10. It is observed that the calculated brace forces based on the measured displacements, given in Table 4.10, are higher than the corresponding values of the measured brace forces, given in Table 4.9. This is because of the initial seating, slipping of brace wires at the loops. Howeve r compared to the global effects and at full capacities, these initial limitations are negligible. Yura (1995) had proposed that the required brace strength to be 2.0% of the nominal axial capacity of the column, as discussed earlier in Chapter 2. Table 4.9 gives the measured brace for ces as a percentage of the ultimate load. It is observed that the percentage of measured brace forces ranges from as low as 0.08% to as high as 1.34% of the ultimate capacity of the cee-studs. 4.2 Bridging Test Results 4.2.1 Bridging Connection Strength and Stiffness In the bridging connection strength and stiffn ess tests, three types of typical industry bridging connection specimens were fabricat ed and tested. The connection types and specimen details are described under Section 3.7. 1 of this report. A total number of 54 specimens were tested, with 28 specimens subjected to out-of-plane loading and 26

PAGE 93

76 specimens subjected to in-plane loading. In the out-of-plane loading, the load was applied parallel to the web at a distance of 11 inches away on the bridging chan nel (see Figure 3.13). In the in-plane loading tests, the load was applie d perpendicular to the web at a distance of 11 inches away on the bridging channel (see Figure 3.14). Both the test protocols are described in Section 3.7.5 of this report. The proposed te st matrix is given in Table 4.11. The results of all the experimental tests are presented in Appendix B, which is divided into two sections, with the results of the out-of-plane loading test s in one section and the results of the in-plane loading tests in another section. The data co llected from the out-of-plane loading tests was used to plot (see Figures 3.11b, 3.12a, 3.15, and 4.44, for visualization): the applied load versus the X-dire ction displacement of Point A; the applied load versus the left screw disp lacement bearing on the adjacent web plate, and the applied load versus the right screw pull out displacement from the adjacent web plate. The data collected from the in-plane load tests were used to generate three plots (see Figures 3.11b, 3.12b, 3.16 and 4.44 for visualization): the plot of the applied load versus th e Y-direction displace ment of Point A, the plot of the applied load versus the le ft screw bearing displacement on the adjacent web plate, and the plot of the applied load versus the right screw pull out displacement from the adjacent web plate. Under both the series of tests, the ultimate load capacity of the connection was taken as the load at which there was a complete failure or at which there was sufficient deformation in the test specimen. Sufficient deformation was considered to have occurred when the measured deformation in the bridging tests, when compared to the single column axially loaded studs tests, would result in influenci ng the global limit states of the single column

PAGE 94

77 axially loaded studs. The torsional stiffness of the connection was calculated as a secant ratio defines as ratio of ultimate load to the rotation of the connection and the flexural stiffness was calculated as the ratio of the ultimate load to the measured in-plane displacement. The rotation angle for the torsional stiffness was th e angle between the initi al center-line and the final center-line of the bridging channel. The X-direction displacement was used to calculate the change in angle as the inverse tangent of ratio of the measured displacement and the distance to Point A from the web of stud. For the out-of-plane load test s, the right side displacement measured by LP-2 was used in calculating the torsional stiffness of the bridgi ng. For the in-plane load tests, the average of the displacements measured by LP-1 and LP-2 (see Figure 4.44) was used to calculate the flexural stiffness of the bridging. The obser ved failure modes of the bridging systems are described later in this chapter. As described in Chapter 3, the displacements of the clip angle and/or the web were measured using two linear potentiometers, LP-1 and LP-2, attached to the web as shown in Figure 4.44 and the displacemen ts of the back of the web we re measured using two linear potentiometers, LP-3 and LP-4. These measurements were common to both out-of-plane and in-plane loading directions and are given in Ta bles 4.12 and 4.14. Spatial displacement of Point A was measured, the purpose of which is described in Chapter 3. The experimental observations for each connection type and the failure mode are described in the following two sections. 4.2.2 Observations of the Out-o f-Plane Experimental Tests The observations of the out-of-plane loading tests for the three types of connections are as follows:

PAGE 95

78 SS type connection (Figure 3.9a): With the application of the out-of-plane load on the bridging channel, the eccentricity of the load created a moment on the connection. The center of rotation of the moment was at th e center-line of the st ud causing the right screw to pull out and the left-half of the clip -angle to bear against the web plate of the stud. The load capacity of the SS type co nnection increased with increasing thickness of the web as and is shown in the plots of applied load versus rotation about the centerline of the web in Figures 4.45 to 4.47. The clip-angles failed by forming multiple yield-lines. The increase in plate thickness resulted in proportional increase in the contact area of the screw and the stud cau sing the increase in pull out capacity. WW type connection (Figure 3.9b): On app lication of the out-ofplane load, the right half of the clip angle started to pull on th e stud web, developing tension in the weld, with the left half bearing on the web. In all the tests with WW type connections, failure occurred at the connection of the clip angle to the stud web. The observed failure types are described in a subsequent section in this chapter. The plot of the applied load versus the rotation about the ce nter-line of the web is shown in Figures 4.48 through 4.50. DW type connection (Figure 3.9c): In this connection type, the fla nge of the bridging channel was welded to the stud web at the punchout. This connection failed mainly by tearing of the weld. The plot of the applie d load versus the rota tion about the centerline of the web is shown in Figures 4.51 throug h 4.53. It can be seen from these plots, that the initial connection s tiffness is not dependent upon the depth of the stud. The effect of the varying web thickness on the connection stiffness cannot be determined, since only one thickness per depth of stud wa s tested with the DW type connection. The maximum loads attained and corresponding displacements measured by LP-1 are given in Table 4.12. The values of displacem ent given in the table were measured on the front and on the back, to the right half of th e centerline of the web. The final torsional stiffness of the connection was calculated as a ratio of the maximum load to the corresponding X-direction displacement at Point A. The initial torsional stiffness was calculated as the initial slope of the load versus rotation plots shown in Figures 4.45 through 4.53. Table 4.13 gives the initial torsional sti ffness of the out-of-plane loading tests, at 10% of the maximum load, calculated as the ratio of the load to the corresponding rotation. It was observed that within this load range, the ini tial slope of the plot was linear. For the three connection types, the plots of torsional stiffne ss versus the flat-width to thickness ratio are given in Figures 4.63 through 4.65. It can be observed in Figure 4.63 that for all the three

PAGE 96

79 groups of studs, the slope of the trend line is nearly equal and with the increase in the flatwidth to thickness ratio the stiffness of the c onnection drops. However, in Figure 4.64 for the WW-type connection, the stiffness increases with increase in the depth of stud, whereas the same trend is not true for the DW connection (see Figure 4.65). The DW connection has the least torsional stiffness, followed by SS type and the maximum torsional stiffness is observed in the WW type connection. 4.2.3 Observations of the In-Plane Experimental Tests The observations of the in-plane loading te sts for three types of connections were as follows: SS type connection (see Figure 3.9a): With the application of the in-plane load, the screws began to pull out. It was observe d that when the clip angle deformed by forming the yield-lines between the two screws attached to the web, there was tilting of the screws. This tilting of the screw cause d an increase in the pull out capacity and hence an increase in both, the connection streng th and stiffness. However, at this load the connection had undergone sufficient defo rmation and hence failure was considered to have occurred at the load at which this s tiffening effect was obs erved in the plot of the applied load versus the X-axis displacemen t. The plots of the applied load versus Y-direction displacement for the three groups of stud are shown in Figures 4.54 to 4.56. WW type connection (see Figure 3.9b): On application of the in-plane load, the load was transferred from the bridging channel to the clip angle and finally to the stud web through the connecting welds. In all the tests with WW type connection, the failure occurred at the connection of th e clip angle to the stud web, either at the weld or the base metal. The plot of applied load ve rsus Y-Direction displacement is given in Figures 4.57 to 4.59. DW type connection (see Figure 3.9c): In this connection type, the flanges of the bridging channel were welded to the web at the punchout. In this case too, the load path was from the bridging channel to the stud web across these small lengths of weld between the channel flanges. This type of connection was very strong due to the high stiffness of the stud webs and the capacity of the welds. The plot of applied load versus Y-Direction displacement is given in Figures 4.60 to 4.62. The maximum load and the corresponding di splacement of the connection measured on the front of the web by LP-1 and LP-2 are given in Table 4.14. The displacement values in

PAGE 97

80 the table were measured on the left and right sides on the front of the web. The final flexural stiffness of the connection was calculated as a ratio of the maximum load to the corresponding average displacements measured by LP-1 and LP-2. The initial flexural stiffness was calculated as the initial slope of the load versus displacement plots in Figures 4.54 through 4.62. Table 4.15 gives the initia l flexural stiffness at 10% of the maximum load, calculated as the ratio of the load to the corresponding Y-displacement. The 10% of the maximum load was taken since it wa s found that the plot of the load versus displacement was initially linear within this load range. The plots of flexural stiffness versus the flat-width to thickness ratio are given in Figures 4.66 through 4.68 for each connection type. It can be observed that the slopes of the linear fit trend lines in Figure 4.66 are not the same for the three groups of studs and with the increasing flat-width to thickness ratio, the flex ural stiffness decreases. In Figures 4.67 and 4.68 it can be observed that flexural stiffness decreases with an increas e in the depth of the stud for both WW type and DW type connectio ns. With increasing web thickness and for a constant web depth, the flexural stiffness of the SS type conn ection increases for a selected series of cee-stud. For a give n thickness the flexural stiffness decreases with the increase in web depth. On comparing the three connection types, the SS type has the least flexural stiffness, followed by the WW type with highest being for the DW type connection. 4.2.4 Observed Bridging Connection Failures The observed failure types in the out-of-pla ne loading tests and the in-plane loading tests for each of the three types of bridging connection are describe d below. The figures showing the failure types are given in Appe ndix B, and the failure types for each test specimen are given in Tables 4.12 and 4.14.

PAGE 98

81 4.2.4.1 SS type connection Single screw pull out without distortion of the clip angle: This occurred when the clip angle separated from the web plate without any bending deformation or cross-sectional distortion. Single screw pull out with either deformation or distortion of the clip angle: When the clip angle separated from the web plate by e ither bending deformation or by distorting. The bending deformation of the clip occurred in the out-of-plane tests, where the clip angle behaved as a cantilever beam subjected to a point load at the right screw, with the fixity at the left screw. For the in-plane tests, the cross-section distortion occurred when the clip angle formed a yield line in the angle leg connected to the stud web, at the level of the screws. Tensile failure of the screw connecting the clip angle to the stud web: The axial tension in the screws attached to the web exceeded the axial tension capacity of the screw, resulting in a sudden failure. These screws failed in the neck region. Shear failure of screw connecting the bridging ch annel to the clip angle: The failure of the connection occurred when the screw capacity in single shear of the screws attaching the clip angle to the bridging channel was exceeded. 4.2.4.2 WW type connection Weld failure without angle distortion: In this case, tearing of the weld material between the angle and the cee-stud was obser ved. Connection failure occurred when the weld strength was exceeded. This was the anticipated mode of failure. Angle tear along the leg welded to the cee-stud: In this case, the tearing strength of the clip angle was exceeded, whereas the weld remained intact. In a few specimens, the weld thickness was greater than the design weld, and in few other specimens there was a weld return at the root of the clip angle. Weld separation between the clip angle and the cee-stud: The weld remained intact and stripped off with the clip angle, which in dicates poor weld penetration. This is due to the galvanization of the stud, when the weld material cannot melt into the stud material. 4.2.4.3 DW type connection Tearing of weld between the bridging cha nnel and the cee-stud: This occurred when the load on the weld exceeded the weld strength and there was a good weld between the connected elements. Tearing of cee-stud web around the weld ma terial: This occurred when there was complete weld penetration and there wa s block tear out of the web plate.

PAGE 99

82 Weld separation between the bridging channel and the cee-stud: The weld remained intact and stripped off with the bridging channel, which indicates poor weld penetration. This is due to the galvanization of the stud. The summary of results for the out-of-plane load tests and in-plane load tests, giving the initial torsional stiffness and initial flexur al stiffness are given in Table 4.16 and 4.17, respectively. The initial stiffnesses have b een arranged based on the web depth and on the thickness of the cross-section. This table repr esents the same data discussed previously and is provided for convenience purposes. 4.3 Separation of Brace Forces in Flexural and Torsional Components The brace forces BF-1, BF-2, BF-3 and BF-4 were measured using load cells A, B, C, D (as shown in Figure 3.6) and are plotted against the axial load for all 36 stud tests, which are presented in Appendix A. The axially loaded braced cee-studs buckled either in flexural, torsional or flexural-torsional buckling. Du e to the aforementioned configuration of the brace wires, the center of torsional buckling shif ted from the shear center to the centroid of the brace forces. Flexural buckling of the st ud resulted in brace for ces in two brace wires on the same side of the minor axis of the stud cross-section. Torsional buckling resulted in brace forces in the brace wires that were on the diagonally opposite corners of the stud crosssection. In the case of flexural-torsional bu ckling there were both flexural and torsional brace forces. The total brace force was a re sultant of the flexural an d the torsional components, which can be resolved as shown in Figure 4. 69. The measured brace forces in the brace wires were the resultant brace force due to glob al buckling. At any axial load level, the measured brace force was separated into two components, namely flexural and torsional brace force components. The flexural brace fo rce component is the brace force in the two brace wires as shown in Figure 4.69(b), which ha ve the same magnitude and direction. The

PAGE 100

83 torsional brace force component is the brace fo rce in the two brace wires as shown in Figure 4.69(c), which have the same magnitude but opposite directions. The maximum magnitude of the flexural brace force component, th e corresponding torsional brace force component and the corresponding axial load are given in Table 4.18. Similarly, the maximum magnitude of the torsional brace force comp onent, the corresponding flexural component and the corresponding axial load are given in Table 4.19. In most specimens, the above maximum values did not occur at the same axial load, and depended upon the buckling shape and mode at the maximum axial load. The su m of maximum flexural brace force component and the corresponding torsional brace for ce component was compared to the sum of maximum torsional brace force component an d the corresponding flexural brace force component. The greater of the two values was considered as the total maximum brace force. The brace forces as a percentage of the axial load was computed and is given in Tables 4.18 and 4.19, and the magnitude of the brace factors are given in Table 4.5 for comparison. It is observed that from an under-braced st ud to an over-braced stud in the 362S125-33, 362S162-43, 600S162-97 and 800S162-43 series, the total maximum brace force increased with the increase in the brace factor. In the case of 6 00S125-33 and 600S162-43 series of studs, the observed failure was mainly due to distortional buckling, resulting in brace forces that did not bear any relation to the brace f actor. In the case of the 362S162-68 and 800S162-97 series, the provided brace factors were greater than the ideal requirement and hence the total maximum brace forces are almost the same. 4.4 Summary of Experimental Observations The axial capacities of the cee-studs were determined by the AISIWIN (2002) program by considering the nominal cross-section dimens ions and nominal yield stress of 33 ksi. and of 50 ksi. These values were used to calculate the ideal brace stiffness. The test matrix given

PAGE 101

84 in Table 4.1 was proposed for ta rget bracing stiffnesses less than, equal to and more than the ideal bracing stiffness, and the studs bei ng categorized as being under-braced, ideallybraced or over-braced. The nominal values from AISIWIN and the average as-built values of test specimen geometry and the material yield and ultimate strength are given in Tables 4.3 and 4.2B, respectively. The target brace sti ffness, the total brace stiffness and the bracefactor was determined for each stud, which is gi ven in Table 4.5. The single column axial load tests on the unbraced cee-studs showed th at the predicted axial capacities were lower than the experimental maximum loads. Since the bracing stiffness and strength are functions of the axial capacity, they increase with an increase in the axial capacity. This required recalculation of the brace stiffness and modification of the test matrix as given in Table 4.2. The required brace stiffnesses and the brace-factors were determined as given in Table 4.7. The observed failure types were broadly cla ssified as global or local. Figure 4.10 shows the global buckling types (flexural, tors ional and flexural-torsi onal) and modes (first and second). The local buckling types were el astic plate buckling and distortional buckling. Table 4.6 gives the buckling type and mode fo r each stud at failure. The bracing was not designed to prevent flexural buckling about the strong axis. The elastic waves in the web owing to local elastic plate buckling were obse rved in the 33, 43, 68 mils cee-studs at loads as low as 10% of the ultimate capacity. The elastic waves had a half wavelength equal to width of the web. In addition to the elastic wa ves, the 600S series (33, 43 mils) and the 800S series (43 mils) exhibited distor tional buckling in the flanges w ith a half wavelength of about 18 inches. The 600S series studs with a plate thickness of 33 and 43 mils, failed by distortional buckling of the flanges. The stre ngth prediction using AISIWIN (2002) does not consider the effect of distortio nal buckling, and in the case of the stud 600S125-43 with total

PAGE 102

85 brace stiffness of 148 lbs/in, the analytical va lue was greater than the experimental maximum load. The 600S and 800S series of studs with a plate thickness of 97 mils exhibited local inelastic plate buckling at loads beyond the ultimate capacity. These studs failed by global buckling in first mode, which indicates that the brace stiffness was inadequate to force the stud to buckle in a higher mode. This may be attributed to the decrease in the resistance offered by the support because of the lower fl ange-width to web-depth ratio than the 362S series of studs. Enhancement in the load carrying capacity of the cee-studs with increase in the bracing stiffness is observed in Figures 4.2 to 4.9 and in Figures 4.30 to 4.32. The mid-height lateral displacement of the weak axis decreases with increasing brace stiffness, and is shown in Figures 4.33 to 4.35, and the average of the meas ured value (north & south flange) as a factor of L/250, is given in Table 4.9. The column effective length factor s also decrease with increasing brace stiffness and is shown in Figures 4.36 to 4.43. Table 4.9 gives the total measured brace force as a percentage of the ultimate load, which ranged from 0.08% to 1.34%. In the bridging connection tests, for both out-of-plane loading and in-plane loading tests, the maximum load attained, corresponding displacements are give n in Table 4.12 and 4.14, respectively. The initial flexural sti ffness and the initial torsional stiffness were computed at 10% of the applied load and the corresponding displacement. These are given in Tables 4.13 and 4.15, respectively. Figures 4.63 through 4.68 give the initial torsional stiffness of each of the tested specimen. The summary of calculated initial stiffnesses from the bridging connection tests are given in Tables 4.16 and 4.17 for the in-plane and out-ofplane load tests.

PAGE 103

86 Table 4.1 Proposed Test Matrix for the Single Column Axial Load Tests Stud Designation Total Bracing Stiffness of Braced Studs Series D S B t Unbraced Studs < ideal ideal > ideal 1 362 S 125 33 X X X X 2 362 S 162 43 X X X X 3 362 S 162 68 X X X X 4 600 S 125 33 X X X X 5 600 S 162 43 X X X X 6 600 S 162 97 X X X X 7 800 S 162 43 X X X X 8 800 S 162 97 X X X X

PAGE 104

87 Table 4.2 Actual Test Matrix of the Single Column Axial Load Tests Stud Designation Total Bracing Stiffness of Braced Studs Series D S B t Unbraced Studs < ideal ideal 2 ideal > 2 ideal 1 362 S 125 33 1 0 1 2 2 2 362 S 162 43 1 0 1 1 1 3 362 S 162 68 1 0 0 1 2 4 600 S 125 33 1 1 1 0 1 5 600 S 162 43 2 2 0 1 1 6 600 S 162 97 1 2 0 1 1 7 800 S 162 43 1 1 1 1 0 8 800 S 162 97 1 0 1 1 1

PAGE 105

88 Table 4.3 Nominal Properties of the Test Specimens Using AISIWIN Program Nominal Values AISIWIN Yield Stres s Ultimat e Stress Ultimate Capacity (Pu) Unfactored Capacity (Pn) Target Ideal Brace Stiffnes s Stud Designation Fy Fu SSMA Sectio n Area Unbrace d MidPoint Brac e No Brac e MidPoint Brac e ideal, target D S B t ksi ksi in2 lbs lbs lbs lbs lb/in. 36 2 S 12 5 3 3 33.00 45.00 0.2275 746 2041 878 2401 100 36 2 S 16 2 4 3 33.00 45.00 0.3398 1775 4117 2088 4844 202 36 2 S 16 2 6 8 50.00 65.00 0.5237 3352 7974 3944 9381 391 60 0 S 12 5 3 3 33.00 45.00 0.3097 691 2052 813 2414 101 60 0 S 16 2 4 3 33.00 45.00 0.4469 2251 5079 2648 5975 249 60 0 S 16 2 9 7 50.00 65.00 0.9655 5677 1689 4 6679 1987 5 828 80 0 S 16 2 4 3 33.00 45.00 0.5371 2104 4965 2475 5841 243 80 0 S 16 2 9 7 50.00 65.00 1.1689 5903 1659 4 6945 1952 2 813

PAGE 106

89 Table 4.4 Average As-built Properties of the Test Specimens Using AISIWIN Program Tension Coupon Test Results AISIWIN Yield Stress Ultimate Stress As-Built Ultimate Capacity (Pu) As-Built Unfactored Capacity (Pn) Required Ideal Brace Stiffness Stud Designation Fy Fu AsBuilt Section Area Unbraced MidPoint Brace No Brace MidPoint Brace ideal D S B t ksi ksi in2 lbs lbs lbs lbs lb/in. 362 S 125 33 48.53 55.48 0.2028 704 1978 828 2327 97 362 S 162 43 47.04 58.20 0.3089 1688 4411 1986 5189 216 362 S 162 68 52.01 67.80 0.5154 3515 8448 4135 9939 414 600 S 125 33 24.03 45.24 0.2537 592 1548 696 1821 76 600 S 162 43 46.24 54.88 0.4135 2156 5832 2536 6861 286 600 S 162 43a 50.30 59.38 0.4346 2465 6721 2900 7907 329 600 S 162 97 60.20 70.21 0.9807 6277 19888 7385 23398 975 800 S 162 43 40.23 54.90 0.4829 1967 5180 2314 6094 254 800 S 162 97 42.50 67.49 1.1843 6686 17989 7866 21164 882 AISIWIN program was used to calculate the As-Built values of the test specimens Ideal Brace Stiffness was obtained usin g Yura's Bracing Equation 2.14 (Yura 1995) Design factor used in calculatin g the Unfactored Capacity is 0.85

PAGE 107

90Table 4.5 Calculated Brace Stiffness and Tota l Brace Stiffness of the Test Specimens Brace Factor Wire Total Brace Stiffness Ideal Brace Stiffnessprovided Stud Designation Target Brace Stiffness Dia. Area L Nos. Actual Stiffness per Wire AISIWIN Unfactored Load Pn providedideal D S B t ID lbs/in. in. in2 in lb/in lbs lb/in lbs/in ideal 362 S 125 33 1 200 0.016 0.00020156.50 2 206 2327 413 97 4.3 362 S 125 33 2 400 0.016 0.00020130.50 2 382 2327 765 97 7.9 362 S 125 33 3 100 0.016 0.00020160.75 1 96 2327 192 97 2.0 362 S 125 33 4 100 0.016 0.00020160.75 1 96 2327 192 97 2.0 362 S 125 33 5 0 0 0.0000000 0 0 828 Not Braced 362 S 125 33 6 100 0.016 0.00020158.00 1 101 2327 201 99 1.9 362 S 162 43 1 0 1986 Not Braced 362 S 162 43 2 200 0.024 0.00045270.75 1 185 5189 371 216 1.7 362 S 162 43 3 800 0.024 0.00045235.50 2 739 5189 1478 216 6.8 362 S 162 43 4 400 0.024 0.00045235.75 1 367 5189 734 216 3.4 362 S 162 68 2 1000 0.033 0.00085524.25 1 1023 9939 2046 414 4.9 362 S 162 68 3 500 0.033 0.00085548.50 1 511 9939 1023 414 2.5 362 S 162 68 4 750 0.033 0.00085532.25 1 769 9939 1538 414 3.7 362 S 162 68 5 0 0 4135 Not Braced

PAGE 108

91Table 4.5 (Continued) Calculated Brace Stiffness and Total Brace Stiffness of the Test Specimens Brace Factor Wire Total Brace Stiffness Ideal Brace Stiffnessprovided Stud Designation Target Brace Stiffness Dia. Area L Nos. Actual Stiffness per Wire AISIWIN Unfactored Load Pn providedideal D S B t ID lbs/in. in. in2 in lb/in lbs lb/in lbs/in ideal 600 S 125 33 1 200 0.016 0.00020129.00 1 201 1821 402 76 5.3 600 S 125 33 2 0 0 696 Not Braced 600 S 125 33 3 60 0.01 0.00007937.00 1 62 1821 123 76 1.6 600 S 125 33 4 30 0.01 0.00007975.00 1 30 1821 61 76 0.8 600 S 162 43 1 250 0.024 0.00045252.75 1 249 6861 497 286 1.7 600 S 162 43 2 75 0.016 0.00020179.00 1 74 6861 148 286 0.5 600 S 162 43 4 500 0.024 0.00045226.50 1 495 6861 990 286 3.5 600 S 162 43 5 30 0.01 0.00007975.25 1 30 6861 61 286 0.2 600 S 162 43 6 0 0 2536 Not Braced 600 S 162 43 6a 0 0 2900 Not Braced 600 S 162 97 1 1000 0.06250.00306886.00 1 1035 23398 2069 975 2.1 600 S 162 97 2 1500 0.06250.00306853.00 1 1679 23398 3357 975 3.4 600 S 162 97 3 500 0.03480.00095153.00 1 520 23398 1041 975 1.1 600 S 162 97 4 160 0.024 0.00045281.00 1 162 23398 324 975 0.3 600 S 162 97 5 0 0 7385 Not Braced 800 S 162 43 2 75 0.016 0.00020178.25 1 75 6094 149 254 0.6 800 S 162 43 3 150 0.016 0.00020139.00 1 150 6094 299 254 1.2 800 S 162 43 4 0 0 2314 Not Braced 800 S 162 43 5 300 0.016 0.00020138.75 2 301 6094 602 254 2.4 800 S 162 97 1 1000 0.06250.00306885.00 1 1047 21164 2093 882 2.4 800 S 162 97 2 500 0.03480.00095153.00 1 520 21164 1041 882 1.2 800 S 162 97 3 0 0 7866 Not Braced 800 S 162 97 4 2100 0.04750.00177224.50 1 2098 21164 4195 882 4.8

PAGE 109

92 Table 4.6 Summary of Experimental Test Results for Test Specimens Axial Capacity Analytical Stud Designation Target Brace Stiffness No Brace Mid-Pt Brace Experimental Load Observed Failure Mode Increase in Pmax of Braced over Unbraced Studs D B t ID lbs/in. Pn (lbs) Pn (lbs) Pmax (lbs) % 362 S 125 33 5 0 828 1127 F[1] T[1] 0.00 362 S 125 33 3 100 2327 2749 F[2] T[2] 143.80 362 S 125 33 4 100 2327 2306 F[2] T[2] 104.51 362 S 125 33 6 100 2327 2399 Distortional112.79 362 S 125 33 1 200 2327 3012 F[2] 167.17 362 S 125 33 2 400 2327 2959 F[2] T[2] 162.47 362 S 162 43 1 0 1986 5223 T[1] F[1] 0.00 362 S 162 43 2 200 5189 7268 F[1] T[2] 39.15 362 S 162 43 4 400 5189 7029 F[1] T[2] 34.58 362 S 162 43 3 800 5189 6557 T[2] 25.54 362 S 162 68 5 0 4135 6451 F[1] T[1] 0.00 362 S 162 68 3 500 9939 13384 T[1] F[1] 107.47 362 S 162 68 4 750 9939 14029 T[2] 117.47 362 S 162 68 2 1000 9939 14792 T[2] 129.30 600 S 125 33 2 0 696 984 Distortional0.00 600 S 125 33 4 30 1821 1951 F[1] 98.27 600 S 125 33 3 60 1821 2271 Distortional130.79 600 S 125 33 1 200 1821 1302 Distortional32.32 600 S 162 43 6 0 2536 5144 Distortional0.00 600 S 162 43 6a 0 2900 4258 F[1] 0.00 600 S 162 43 5 30 6861 7163 Distortional39.25 600 S 162 43 2 75 6861 6052 Distortional17.65 600 S 162 43 1 250 6861 7308 Distortional42.07 600 S 162 43 4 500 6861 7075 Distortional37.54 600 S 162 97 5 0 7385 21029 F[1] 0.00 600 S 162 97 4 160 23398 28306 F[1] T[1] 34.60 600 S 162 97 3 500 23398 30085 F[1] T[1] 43.06 600 S 162 97 1 1000 23398 28553 T[1] 35.78 600 S 162 97 2 1500 23398 29472 T[1] 40.15 800 S 162 43 4 0 2314 4591 F[1] 0.00 800 S 162 43 2 75 6094 4306 F[1] -6.21 800 S 162 43 3 150 6094 5333 Distortional16.16 800 S 162 43 5 300 6094 6213 F[2] 35.33 800 S 162 97 3 0 7866 19703 F[1] 0.00 800 S 162 97 2 500 21164 21626 Distortional9.76 800 S 162 97 1 1000 21164 23811 Distortional20.85 800 S 162 97 4 2100 21164 23537 T[1] 19.46

PAGE 110

93 Table 4.7 Required Brace Stiffness Based on Pmax Total Brace Stiffness Brace Factor AISIWIN Unfactored Load Experimental Load Required Total Stiffness Brace Factor Stud Designation provided providedPn Pmax required provided D S B t ID lbs/in. ideal lbs lbs lbs/in. required 362 S 125 33 5 0 828 1127 362 S 162 43 1 0 1986 5223 362 S 162 68 5 0 4135 6451 600 S 125 33 2 0 696 984 600 S 162 43 6 0 2536 5144 600 S 162 43 6a 0 2900 4258 600 S 162 97 5 0 7385 21029 800 S 162 43 4 0 2314 4591 800 S 162 97 3 0 7866 19703 600 S 125 33 4 61 0.8 1821 1951 81 0.7 600 S 162 43 5 61 0.2 6861 7163 298 0.2 600 S 162 43 2 148 0.5 6861 6052 252 0.6 600 S 162 97 4 324 0.3 23398 28306 1179 0.3 800 S 162 43 2 149 0.6 6094 4306 179 0.8 600 S 125 33 3 123 1.6 1821 2271 95 1.3 600 S 162 97 3 1041 1.1 23398 30085 1254 0.8 800 S 162 43 3 299 1.2 6094 5333 222 1.3 800 S 162 97 2 1041 1.2 21164 21626 901 1.2 362 S 125 33 3 192 2.0 2327 2749 115 1.7 362 S 125 33 4 192 2.0 2327 2306 96 2.0 362 S 125 33 6 201 1.9 2327 2399 100 2.0 362 S 162 43 2 371 1.7 5189 7268 303 1.2 362 S 162 68 3 1023 2.5 9939 13384 558 1.8 600 S 162 43 1 497 1.7 6861 7308 305 1.6 600 S 162 97 1 2069 2.1 23398 28553 1190 1.7 800 S 162 43 5 602 2.4 6094 6213 259 2.3 800 S 162 97 1 2093 2.4 21164 23811 992 2.1 362 S 125 33 1 413 4.3 2327 3012 126 3.3 362 S 125 33 2 765 7.9 2327 2959 123 6.2 362 S 162 43 4 734 3.4 5189 7029 293 2.5 362 S 162 43 3 1478 6.8 5189 6557 273 5.4 362 S 162 68 4 1538 3.7 9939 14029 585 2.6 362 S 162 68 2 2046 4.9 9939 14792 616 3.3 600 S 125 33 1 402 5.3 1821 1302 54 7.4 600 S 162 43 4 990 3.5 6861 7075 295 3.4 600 S 162 97 2 3357 3.4 23398 29472 1228 2.7 800 S 162 97 4 4195 4.8 21164 23537 981 4.3

PAGE 111

94 Table 4.8 Effective Length Factors Based on Pmax Total Brace Stiffness Effective Length Factors based on Pmax Stud Designation provided Kx Ky Kt Pmax D S B t ID lbs/in. Observed Failure Mode lbs 362 S 125 33 5 0 F[1] T[1] 0.50 0.67 0.64 1127 362 S 125 33 3 192 F[2] T[2] 0.50 0.25 0.25 2749 362 S 125 33 4 192 F[2] T[2] 0.50 0.36 0.34 2306 362 S 125 33 6 201 Distortional0.50 0.33 0.31 2399 362 S 125 33 1 413 F[2] 0.50 0.25 0.25 3012 362 S 125 33 2 765 F[2] T[2] 0.50 0.25 0.25 2959 362 S 162 43 1 0 T[1] F[1] 0.50 0.52 0.43 5223 362 S 162 43 2 371 F[1] T[2] 0.50 0.25 0.25 7268 362 S 162 43 4 734 F[1] T[2] 0.50 0.25 0.25 7029 362 S 162 43 3 1478 T[2] 0.50 0.25 0.25 6557 362 S 162 68 5 0 F[1] T[1] 0.50 0.69 0.62 6451 362 S 162 68 3 1023 T[1] F[1] 0.50 0.25 0.25 13384 362 S 162 68 4 1538 T[2] 0.50 0.25 0.25 14029 362 S 162 68 2 2046 T[2] 0.50 0.25 0.25 14792 600 S 125 33 2 0 Distortional0.50 0.80 0.96 984 600 S 125 33 4 61 F[1] 0.50 0.45 0.52 1951 600 S 125 33 3 123 Distortional0.50 0.32 0.37 2271 600 S 125 33 1 402 Distortional0.50 0.68 0.80 1302 600 S 162 43 6 0 Distortional0.50 0.65 0.70 5144 600 S 162 43 6a 0 F[1] 0.50 0.80 0.85 4258 600 S 162 43 5 61 Distortional0.50 0.47 0.49 7163 600 S 162 43 2 148 Distortional0.50 0.57 0.60 6052 600 S 162 43 1 497 Distortional0.50 0.46 0.47 7308 600 S 162 43 4 990 Distortional0.50 0.48 0.50 7075 600 S 162 97 5 0 F[1] 0.50 0.54 0.65 21029 600 S 162 97 4 324 F[1] T[1] 0.50 0.39 0.45 28306 600 S 162 97 3 1041 F[1] T[1] 0.50 0.35 0.40 30085 600 S 162 97 1 2069 T[1] 0.50 0.39 0.44 28553 600 S 162 97 2 3357 T[1] 0.50 0.37 0.41 29472 800 S 162 43 4 0 F[1] 0.50 0.66 0.77 4591 800 S 162 43 2 149 F[1] 0.50 0.69 0.80 4306 800 S 162 43 3 299 Distortional0.50 0.58 0.67 5333 800 S 162 43 5 602 F[2] 0.50 0.48 0.56 6213 800 S 162 97 3 0 F[1] 0.50 0.52 0.66 19703 800 S 162 97 2 1041 Distortional0.50 0.46 0.58 21626 800 S 162 97 1 2093 Distortional0.50 0.39 0.48 23811 800 S 162 97 4 4195 T[1] 0.50 0.40 0.49 23537

PAGE 112

95Table 4.9 Measured Values of Brace Fo rce and Mid-height Displacement at Pmax Measured Values at Pmax Experimental Load Brace Force Weak Axis Displacement, W Stud Designation Target Brace Stiffness Pmax Measured Initial Bow Pbr N-Flange SFlange Average Pbr as % of Pmax Average W in terms of L/250 D S B t ID lbs/in. lbs in. lbs in. in. in. % 362 S 125 33 5 0 1127 0.000 0.4065 0.8289 0.618 1.61 362 S 125 33 3 100 2749 0.000 9.55 0.0835 0.0661 0.075 0.35 0.19 362 S 125 33 4 100 2306 0.000 22.41 0.1577 0.0006 0.079 0.97 0.21 362 S 125 33 6 100 2399 0.000 14.47 0.0099 0.1561 0.083 0.60 0.22 362 S 125 33 1 200 3012 0.000 10.55 0.0173 0.0451 0.031 0.35 0.08 362 S 125 33 2 400 2959 0.000 32.43 0.0906 0.1925 0.142 1.10 0.37 362 S 162 43 1 0 5223 0.000 0.8281 0.0845 0.456 1.19 362 S 162 43 2 200 7268 0.000 19.37 0.1007 0.0411 0.071 0.27 0.18 362 S 162 43 4 400 7029 0.000 39.07 0.0815 0.0324 0.057 0.56 0.15 362 S 162 43 3 800 6557 0.010 34.67 0.0852 -0.0246 0.055 0.53 0.08 362 S 162 68 5 0 6451 0.100 2.8548 -0.2529 1.554 3.39 362 S 162 68 3 500 13384 -0.155 159.31 0.4032 -0.0366 0.220 1.19 0.48 362 S 162 68 4 750 14029 0.140 131.92 0.1315 0.0118 0.072 0.94 0.19 362 S 162 68 2 1000 14792 -0.187 144.26 0.0644 0.1814 0.123 0.98 0.32 600 S 125 33 2 0 984 0.130 0.7034 0.2548 0.479 1.25 600 S 125 33 4 30 1951 0.075 25.05 0.6312 0.2406 0.436 1.28 1.14 600 S 125 33 3 60 2271 0.120 11.86 -0.1936 -0.0529 0.123 0.52 -0.32 600 S 125 33 1 200 1302 0.100 1.10 -0.0146 -0.0208 0.018 0.08 -0.05

PAGE 113

96Table 4.9 (Continued) Measured Values of Brace Force and Mid-height Displacement at Pmax Measured Values at Pmax Experimental Load Brace Force Weak Axis Displacement Stud Designation Target Brace Stiffness Pmax Measured Initial Bow Pbr N-Flange S-FlangeAverage Pbr as Percentage of Pmax Average w in terms of L/250 D S B t ID lbs/in. lbs in. lbs in. in. in. % 600 S 162 43 6 0 5144 0.015 0.3305 0.2255 0.278 0.72 600 S 162 43 6a 0 4258 0.090 -1.0398 -0.9219 0.981 -2.55 600 S 162 43 5 30 7163 0.075 15.51 0.0298 -0.4001 0.215 0.22 -0.48 600 S 162 43 2 75 6052 57.49 1.0127 0.0393 0.526 0.95 1.37 600 S 162 43 1 250 7308 7.43 -0.0378 -0.0064 0.022 0.10 -0.06 600 S 162 43 4 500 7075 14.85 0.0238 0.0102 0.017 0.21 0.04 600 S 162 97 5 0 21029 -0.1614 -0.9538 0.558 -1.45 600 S 162 97 4 160 28306 45.23 0.0961 -0.1869 0.142 0.16 -0.12 600 S 162 97 3 500 30085 0.000 137.53-0.3179 0.0125 0.165 0.46 -0.40 600 S 162 97 1 1000 28553 0.110 171.51-0.3955 -0.0472 0.221 0.60 -0.58 600 S 162 97 2 1500 29472 0.110 154.42-0.0220 -0.2422 0.132 0.52 -0.34 800 S 162 43 4 0 4591 0.000 -0.4082 -0.8840 0.646 -1.68 800 S 162 43 2 75 4306 24.69 -0.0027 0.4608 0.232 0.57 0.60 800 S 162 43 3 150 5333 0.120 71.52 0.3110 -0.2260 0.269 1.34 0.11 800 S 162 43 5 300 6213 0.000 16.81 -0.0482 -0.0811 0.065 0.27 -0.17 800 S 162 97 3 0 19703 0.000 0.4080 0.3385 0.373 0.97 800 S 162 97 2 500 21626 0.000 85.60 0.1250 0.2550 0.190 0.40 0.49 800 S 162 97 1 1000 23811 0.000 115.450.2014 0.1889 0.195 0.48 0.51 800 S 162 97 4 2100 23537 0.000 69.64 0.2314 0.0723 0.152 0.30 0.40

PAGE 114

97Table 4.10 Calculated Values of Brace Force and Mid-height Displacement at Pmax Experimental Load Measured Weak Axis Displacement at Pmax Calculated Brace Force for Measured Weak Axis Displacement Stud Designation Target Brace Stiffness Pmax Measured Initial Bow N-Flange S-Flange N-Flange S-Flange Total Pbr as % of Pmax D S B t ID lbs/in. lbs in. in. in. lbs lbs lbs % 362 S 125 33 5 0 1127 0.000 0.4065 0.8289 362 S 125 33 3 100 2749 0.000 0.0835 0.0661 9.6 7.6 17.1 0.62 362 S 125 33 4 100 2306 0.000 0.1577 0.0006 15.2 0.1 15.2 0.66 362 S 125 33 6 100 2399 0.000 0.0099 0.1561 1.0 15.6 16.6 0.69 362 S 125 33 1 200 3012 0.000 0.0173 0.0451 2.2 5.7 7.8 0.26 362 S 125 33 2 400 2959 0.000 0.0906 0.1925 11.2 23.7 34.9 1.18 362 S 162 43 1 0 5223 0.000 0.8281 0.0845 362 S 162 43 2 200 7268 0.000 0.1007 0.0411 30.5 12.5 43.0 0.59 362 S 162 43 4 400 7029 0.000 0.0815 0.0324 23.9 9.5 33.4 0.47 362 S 162 43 3 800 6557 0.010 0.0852 -0.0246 26.0 4.0 30.0 0.46 362 S 162 68 5 0 6451 0.100 2.8548 -0.2529 362 S 162 68 3 500 13384 -0.155 0.4032 -0.0366 138.4 106.9 245.3 1.83 362 S 162 68 4 750 14029 0.140 0.1315 0.0118 158.7 88.8 247.5 1.76 362 S 162 68 2 1000 14792 -0.187 0.0644 0.1814 75.6 3.5 79.0 0.53 600 S 125 33 2 0 984 0.130 0.7034 0.2548 600 S 125 33 4 30 1951 0.075 0.6312 0.2406 57.4 25.7 83.1 4.26 600 S 125 33 3 60 2271 0.120 -0.1936 -0.0529 7.0 6.3 13.3 0.59 600 S 125 33 1 200 1302 0.100 -0.0146 -0.0208 4.6 4.3 8.9 0.69

PAGE 115

98Table 4.10 (Continued) Calculated Values of Brace Force and Mid-height Displacement at Pmax Experimental Load Measured Weak Axis Displacement at Pmax Calculated Brace Force for Measured Weak Axis Displacement Stud Designation Target Brace Stiffness Pmax Measured Initial Bow NFlange SFlange NFlange SFlange Total Pbr as % of Pmax D S B t ID lbs/in. lbs in. in. in. lbs lbs lbs % 600 S 125 33 2 0 984 0.130 0.7034 0.2548 600 S 125 33 4 30 1951 0.075 0.6312 0.2406 57.4 25.7 83.1 4.26 600 S 125 33 3 60 2271 0.120 -0.1936 -0.0529 7.0 6.3 13.3 0.59 600 S 125 33 1 200 1302 0.100 -0.0146 -0.0208 4.6 4.3 8.9 0.69 600 S 162 43 6 0 5144 0.000 0.3305 0.2255 600 S 162 43 6a 0 4258 -0.036 -1.0398 -0.9219 600 S 162 43 5 30 7163 0.000 0.0298 -0.4001 8.9 119.4 128.3 1.79 600 S 162 43 2 75 6052 0.030 1.0127 0.0393 262.9 17.5 280.4 4.63 600 S 162 43 1 250 7308 0.040 -0.0378 -0.0064 0.7 10.2 10.9 0.15 600 S 162 43 4 500 7075 0.000 0.0238 0.0102 7.0 3.0 10.0 0.14 600 S 162 97 5 0 21029 0.015 -0.1614 -0.9538 600 S 162 97 4 160 28306 0.075 0.0961 -0.1869 201.8 220.4 422.2 1.49 600 S 162 97 3 500 30085 -0.3179 0.0125 398.6 15.7 414.3 1.38 600 S 162 97 1 1000 28553 -0.3955 -0.0472 470.5 56.1 526.6 1.84 600 S 162 97 2 1500 29472 -0.0220 -0.2422 27.0 297.4 324.4 1.10

PAGE 116

99Table 4.10 (Continued) Calculated Values of Brace Force and Mid-height Displacement at Pmax Experimental Load Measured Weak Axis Displacement at Pmax Calculated Brace Force for Measured Weak Axis Displacement Stud Designation Target Brace Stiffness Pmax Measured Initial Bow NFlange SFlange NFlange SFlange Total Pbr as % of Pmax D S B t ID lbs/in. lbs in. in. in. lbs lbs lbs % 800 S 162 43 4 0 4591 0.110 -0.4082 -0.8840 800 S 162 43 2 75 4306 0.090 -0.0027 0.4608 15.7 82.7 98.3 2.28 800 S 162 43 3 150 5333 0.110 0.3110 -0.2260 93.5 25.8 119.3 2.24 800 S 162 43 5 300 6213 0.000 -0.0482 -0.0811 12.5 21.0 33.5 0.54 800 S 162 97 3 0 19703 0.4080 0.3385 800 S 162 97 2 500 21626 0.1250 0.2550 112.6 229.8 342.4 1.58 800 S 162 97 1 1000 23811 0.2014 0.1889 199.8 187.4 387.2 1.63 800 S 162 97 4 2100 23537 0.120 0.2314 0.0723 344.6 188.5 533.2 2.27

PAGE 117

100 Table 4.11 Proposed Test Matrix for Bridging Connection Tests Stud Designation Number of Tests Specimen Type D S B t NC Out-ofPlane In-Plane 1 362 S 125 33 1 SS 2 2 2 362 S 162 43 1 SS 2 2 3 362 S 162 68 1 SS 2 2 4 362 S 162 68 1 WW2 2 5 362 S 162 68 1 DW 2 2 6 600 S 125 33 1 SS 2 2 7 600 S 162 43 1 SS 2 2 8 600 S 162 97 3 SS 2 2 9 600 S 162 97 1 WW2 2 10 600 S 162 97 1 DW 2 2 11 800 S 162 43 1 SS 2 2 12 800 S 162 97 1 SS 2 2 13 800 S 162 97 1 WW2 2 14 800 S 162 97 1 DW 2 2

PAGE 118

101 Table 4.12 Bridging Test Results for Out-of-Plane Loading Displacement Applied Load RFRONTRBACKFinal Torsional Stiffness Stud Designation Tmax RB RF KT D S B t NC lbs. in. in. lbs./in. Failure Types 362 S 125 33 1 SS 57.37 0.184 -0.008311 Screw Pullout 362 S 125 33 2 SS 71.10 0.208 -0.005342 Screw Pullout 362 S 162 43 1 SS 69.19 0.073 0.014 945 Screw Pullout, Angle Distortion 362 S 162 43 2 SS 63.05 0.098 0.002 640 Screw Pullout, Angle Distortion 362 S 162 68 1 SS 128.91 0.067 0.003 1925 Screw Pullout, Angle Distortion 362 S 162 68 2 SS 102.39 0.059 -0.0021731 Screw Pullout, Angle Distortion 362 S 162 68 1 WW 138.81 0.028 0.009 4908 Angle Tear 362 S 162 68 2 WW 150.23 0.031 0.008 4917 Angle Tear 362 S 162 68 1 DW 166.15 0.04 0.027 4491 Weld Failure 362 S 162 68 2 DW 149.83 0.036 0.031 4149 Weld Failure 600 S 125 33 1 SS 113.91 0.31 0.024 370 Screw Pullout 600 S 125 33 2 SS 83.59 0.200 0.019 418 Screw Pullout 600 S 162 43 1 SS 66.09 0.109 -0.008605 Screw Pullout, Angle Distortion 600 S 162 43 2 SS 137.95 0.202 -0.009682 Screw Pullout 600 S 162 97 3 SS 280.33 0.061 0.001 4564 Screw Pullout 600 S 162 97 4 SS 272.34 0.067 0.002 4094 Screw Pullout 600 S 162 97 1 WW 380.67 0.044 0.014 8747 Angle Tear 600 S 162 97 2 WW 421.57 0.067 0.021 6276 Angle Tear 600 S 162 97 1 DW 199.59 0.047 0.041 4267 Weld Failure 600 S 162 97 2 DW 156.88 0.042 0.019 3753 Weld Failure 800 S 162 43 1 SS 161.23 0.150 0.002 1075 Screw Pullout, Angle Distortion 800 S 162 43 2 SS 145.14 0.129 0.000 1128 Screw Pullout, Angle Distortion 800 S 162 97 1 SS 255.75 0.029 0.004 8735 Screw Shear Failure 800 S 162 97 2 SS 273.51 0.039 0.003 7049 Screw Shear Failure 800 S 162 97 1 WW 291.13 0.015 0.002 20036 Weld Failure, Angle Distortion 800 S 162 97 2 WW 388.28 0.026 0.014 14797 Weld Failure, Angle Distortion 800 S 162 97 1 DW 207.52 0.038 0.030 5503 Weld Separation 800 S 162 97 2 DW 162.02 0.031 0.020 5272

PAGE 119

102Table 4.13 Initial Torsional Stiffness of the Lower Bound Va lues of Out-of-Plane Tests Stud Designation Initial Load at 10% of Tmax (T10) Experimental XDisplacement () Rotation (/la) Initial Slope (T10*la/) Flatwidth at Hole (wdh) Flat-width to Thickness Ratio Slenderness Factor ( ) D S B t N C lbs. in. rad. kip-in/ rad. in. (w-dh)/t (w-dh/t) (fy/E) 362 S 125 33 2 SS 7.18 0.294 0.027 2.95 1.90 57.71 2.34 362 S 125 33 1 SS 5.45 0.165 0.015 4.00 1.90 57.71 2.34 362 S 162 43 1 SS 7.31 0.166 0.015 5.33 1.89 44.06 1.76 362 S 162 43 2 SS 7.35 0.126 0.011 7.04 1.89 44.06 1.76 362 S 162 68 1 SS 12.79 0.112 0.010 13.88 1.79 26.25 1.10 362 S 162 68 2 SS 10.42 0.080 0.007 15.72 1.79 26.25 1.10 600 S 125 33 2 SS 8.86 0.153 0.014 7.02 4.28 129.83 3.71 600 S 125 33 1 SS 11.01 0.185 0.017 7.20 4.28 129.83 3.71 600 S 162 43 1 SS 6.81 0.039 0.004 21.04 4.27 99.41 3.94 600 S 162 43 2 SS 15.60 0.078 0.007 24.08 4.27 99.41 3.94 600 S 162 97 3 SS 32.91 0.127 0.012 31.38 4.02 41.44 1.87 600 S 162 97 4 SS 31.24 0.087 0.008 43.60 4.02 41.44 1.87

PAGE 120

103Table 4.13 (Continued) Initial Tors ional Stiffness of the Lower Bound Va lues from the Out-of-Plane Tests Stud Designation Initial Load at 10% of Tmax (T10) Experimental XDisplacement () Rotation (/la) Initial Slope (T10*la/) Flatwidth at Hole (w-dh) Flat-width to Thickness Ratio Slenderness Factor ( ) D S B t N C lbs. in. rad. kipin/rad. in. (w-dh)/t (w-dh/t) (fy/E) 800 S 162 43 2 SS 13.22 0.031 0.003 51.41 6.27 145.92 5.39 800 S 162 43 1 SS 31.77 0.064 0.006 60.32 6.27 145.92 5.39 800 S 162 97 2 SS 28.30 0.049 0.004 70.32 6.02 62.06 2.36 800 S 162 97 1 SS 29.99 0.046 0.004 78.95 6.02 62.06 2.36 362 S 162 68 1 WW 11.03 0.018 0.002 75.79 1.79 26.25 1.06 362 S 162 68 2 WW 13.51 0.016 0.001 99.27 1.79 26.25 1.06 600 S 162 97 2 WW 49.88 0.031 0.003 197.38 4.02 41.44 1.68 600 S 162 97 1 WW 41.71 0.024 0.002 211.10 4.02 41.44 1.68 800 S 162 97 2 WW 132.07 0.068 0.006 236.61 6.02 62.06 2.52 800 S 162 97 1 WW 144.52 0.056 0.005 314.45 6.02 62.06 2.52 362 S 162 68 2 DW 21.84 0.091 0.008 28.89 2.06 30.25 1.23 362 S 162 68 1 DW 21.40 0.080 0.007 32.40 2.06 30.25 1.23 600 S 162 97 2 DW 21.67 0.100 0.009 26.31 4.41 45.44 1.84 600 S 162 97 1 DW 22.02 0.100 0.009 26.72 4.41 45.44 1.84 800 S 162 97 2 DW 14.12 0.095 0.009 18.04 6.41 66.06 2.68 800 S 162 97 1 DW 21.26 0.093 0.008 27.58 6.41 66.06 2.68 Note: Elastic Modulus = 29500.0 ksi. Lever Arm for Moment = 11.0 in. Width of punchout = 1.5 in.

PAGE 121

104 Table 4.14 Bridging Test Results for In-Plane Loading Displacement of Applied Load LFRONTRFRONTFlexural Stiffness Stud Designation Fmax LF RF KF D S B t NC lbs. in. in. lbs./in. Failure Type 362 S 125 33 3 SS 391.94 0.219 0.229 1752 Screw Pullout 362 S 125 33 4 SS 431.48 0.321 0.174 1743 Screw Pullout 362 S 162 43 3 SS 545.56 0.130 0.088 5005 Screw Pullout, Angle Distortion 362 S 162 43 4 SS 448.67 0.100 0.089 4755 Screw Pullout, Angle Distortion 362 S 162 68 3 SS 937.28 0.087 0.092 10496 Angle Distortion 362 S 162 68 4 SS 889.78 0.092 0.054 12225 Angle Distortion, Screw Tension 362 S 162 68 3 WW 1503.76 0.118 0.127 12263 Weld Failure 362 S 162 68 4 WW 1462.17 0.121 0.127 11817 Angle Tear 362 S 162 68 3 DW 3064.03 0.31 0.307 9883 Block Shear Rupture of Web 362 S 162 68 4 DW 2642.63 0.349 0.401 7054 Block Shear Rupture of Web 600 S 125 33 3 SS 425.80 0.29 0.223 1658 Screw Pullout 600 S 125 33 4 SS 302.94 0.174 0.186 1684 Screw Pullout 600 S 162 43 4 SS 640.80 0.131 0.125 5001 Screw Pullout 600 S 162 43 5 SS 587.06 0.214 0.381 5001 Screw Pullout 600 S 162 97 1 SS 1514.38 0.131 0.147 10902 Angle Distortion, Screw Tension 600 S 162 97 2 SS 1172.38 0.105 0.130 9996 Angle Distortion, Screw Tension 600 S 162 97 3 WW 1169.53 0.163 0.200 6444 Weld Failure 600 S 162 97 4 WW 1653.71 0.212 0.230 7477 Angle Tear 600 S 162 97 3 DW 600 S 162 97 4 DW 3159.07 0.469 0.464 6772 800 S 162 43 3 SS 275.60 0.073 0.093 3307 Screw Pullout 800 S 162 43 4 SS 522.66 0.137 0.151 3632 Screw Tension 800 S 162 97 3 SS 1402.04 0.064 0.030 29965 Screw Tension 800 S 162 97 4 SS 1719.25 0.221 0.427 5303 Screw Tension 800 S 162 97 3 WW 1238.18 0.143 0.148 8493 Angle Tear 800 S 162 97 4 WW 1101.97 0.151 0.111 8417 Angle Tear 800 S 162 97 3 DW 2908.04 0.526 0.553 5390 Weld Failure 800 S 162 97 4 DW

PAGE 122

105Table 4.15 Initial Flexural Stiffness of the In-Plane Tests Stud Designation Initial Load at 10% of Fmax (F10) Experimental Y-Displacement (D) Initial Flexural Stiffness (F10/ ) Flat-width to Thickness Ratio Slenderness Factor ( ) D S B t N C lbs. in. kip/in. (w-dh)/t (w-dh/t) (fy/E) 362 S 125 33 4 SS 45.25 0.027 1.68 57.71 2.34 362 S 125 33 3 SS 46.65 0.023 2.07 57.71 2.34 362 S 162 43 3 SS 52.00 0.015 3.57 44.06 1.76 362 S 162 43 4 SS 44.26 0.011 4.20 44.06 1.76 362 S 162 68 3 SS 104.77 0.017 6.10 26.25 1.10 362 S 162 68 4 SS 104.83 0.013 7.94 26.25 1.10 600 S 125 33 4 SS 30.21 0.030 1.00 129.83 3.71 600 S 125 33 3 SS 44.59 0.039 1.14 129.83 3.71 600 S 162 43 4 SS 69.11 0.018 3.78 99.41 3.94 600 S 162 43 3 SS 58.36 0.015 3.82 99.41 3.94 600 S 162 97 1 SS 149.64 0.027 5.57 41.44 1.87 600 S 162 97 2 SS 370.12 0.054 6.86 41.44 1.87 800 S 162 43 4 SS 99.58 0.048 2.07 145.92 5.39 800 S 162 43 3 SS 156.23 0.063 2.46 145.92 5.39 800 S 162 97 3 SS 124.78 0.018 7.08 62.06 2.36

PAGE 123

106Table 4.15 (Continued) Initial Flexural Stiffness of the In-Plane Tests Stud Designation Initial Load at 10% of Fmax (F10) Experimental Y-Displacement (D) Initial Flexural Stiffness (F10/ ) Flat-width to Thickness Ratio Slenderness Factor ( ) D S B t N C lbs. in. kip/in. (w-dh)/t (w-dh/t) (fy/E) 800 S 162 97 4 SS 172.05 0.058 2.95 62.06 2.36 362 S 162 68 4 WW 137.82 0.005 30.42 26.25 1.06 362 S 162 68 3 WW 183.14 0.004 40.79 26.25 1.06 600 S 162 97 3 WW 109.88 0.007 16.52 41.44 1.68 600 S 162 97 4 WW 95.25 0.006 15.24 41.44 1.68 800 S 162 97 4 WW 114.06 0.011 10.51 62.06 2.52 800 S 162 97 3 WW 178.58 0.009 19.67 62.06 2.52 362 S 162 68 3 DW 378.77 0.008 45.36 30.25 1.23 362 S 162 68 4 DW 206.19 0.004 50.41 30.25 1.23 600 S 162 97 3 DW 363.78 0.044 8.26 45.44 1.84 600 S 162 97 4 DW 800 S 162 97 3 DW 364.75 0.152 2.40 66.06 2.68 800 S 162 97 4 DW Note: Elastic Modulus = 29500.0 ksi. Lever Arm for Moment = 11.0 in. Width of punchout = 1.5 in.

PAGE 124

107 Table 4.16 Experimental Initial Stiffness of the In-Plane Load Tests SS Type Connection Initial Stiffness in kip/in. D vs. T 33 43 68 97 362 1.68 3.57 6.10 2.07 4.20 7.94 600 1.00 3.78 5.57 1.14 3.82 6.86 800 2.07 7.08 2.46 2.95 WW Type Connection Initial Stiffness in kip/in. D vs. T 334368 97 362 30.42 40.79 600 16.52 15.24 800 10.51 19.67 DW Type Connection Initial Stiffness in kip/in. D vs. T 334368 97 362 45.36 50.41 600 8.26 800 2.40

PAGE 125

108 Table 4.17 Experimental Initial Stiffness of the Out-of-Plane Load Tests SS Type Connection Initial Stiffness in kip-in./rad. D vs. T 33 43 68 97 362 2.95 5.33 13.88 4.00 7.04 15.72 600 7.02 21.04 31.38 7.20 24.08 43.60 800 51.41 70.32 60.32 78.95 WW Type Connection Initial Stiffness in kip-in./rad. D vs. T 334368 97 362 75.79 99.27 600 197.38 211.10 800 236.61 314.45 DW Type Connection Initial Stiffness in kip-in./rad. D vs. T 334368 97 362 28.89 32.40 600 26.31 26.72 800 18.04 27.58

PAGE 126

109 Table 4.18 Maximum Flexural and Corresponding Torsional Brace Force Brace Force Stud Designation Target Brace Stiffness Maximum Flexural Corr. Torsional Corr. Axial Load Flexural BF as % of P D S B t ID lbs/in. lbs lbs lbs % 362 S 125 33 3 100 5.92 0.44 1866.86 0.32 362 S 125 33 4 100 11.28 2.42 2299.90 0.49 362 S 125 33 6 100 7.23 7.22 2398.96 0.30 362 S 125 33 1 200 5.28 1.78 3012.17 0.18 362 S 125 33 2 400 16.22 2.15 2959.05 0.55 362 S 162 43 2 200 13.31 3.09 6190.00 0.22 362 S 162 43 4 400 25.53 4.59 5197.30 0.49 362 S 162 43 3 800 18.97 7.23 4466.38 0.42 362 S 162 68 3 500 79.65 76.57 13384.46 0.60 362 S 162 68 4 750 67.63 49.63 13787.71 0.49 362 S 162 68 2 1000 73.35 50.17 14596.98 0.50 600 S 125 33 4 30 12.53 6.50 1951.03 0.64 600 S 125 33 3 60 6.86 4.77 2241.37 0.31 600 S 125 33 1 200 1.47 0.65 823.73 0.18 600 S 162 43 5 30 7.75 6.77 7163.83 0.11 600 S 162 43 2 75 28.74 27.45 6052.34 0.47 600 S 162 43 1 250 5.05 0.61 1310.44 0.39 600 S 162 43 4 500 10.78 3.74 4231.99 0.25 600 S 162 97 4 160 22.61 12.37 28306.23 0.08 600 S 162 97 3 500 68.77 62.12 30085.90 0.23 600 S 162 97 1 1000 85.76 45.83 28553.51 0.30 600 S 162 97 2 1500 77.21 48.38 29472.16 0.26 800 S 162 43 2 75 12.35 10.36 4306.04 0.29 800 S 162 43 3 150 35.76 9.92 5333.03 0.67 800 S 162 43 5 300 21.42 12.67 3917.25 0.55 800 S 162 97 2 500 37.05 16.85 21626.00 0.17 800 S 162 97 1 1000 53.18 2.34 23811.17 0.22 800 S 162 97 4 2100 34.82 25.29 23537.15 0.15

PAGE 127

110 Table 4.19 Maximum Torsional and Corresponding Flexural Brace Force Brace Force Stud Designation Target Brace Stiffness Corr. Flexural Maximum Torsional Corr. Axial Load Torsional BF as % of P D S B t ID lbs/in. lbs lbs lbs % 362 S 125 33 3 100 4.78 2.67 2748.51 0.10 362 S 125 33 4 100 7.48 5.53 2066.30 0.27 362 S 125 33 6 100 7.23 7.22 2398.96 0.30 362 S 125 33 1 200 5.28 1.78 3012.17 0.06 362 S 125 33 2 400 12.86 2.37 2940.58 0.08 362 S 162 43 2 200 9.69 5.77 7268.46 0.08 362 S 162 43 4 400 19.53 16.96 7029.71 0.24 362 S 162 43 3 800 13.50 14.53 6338.90 0.23 362 S 162 68 3 500 79.65 76.57 13384.46 0.57 362 S 162 68 4 750 65.96 59.11 14029.50 0.42 362 S 162 68 2 1000 72.13 54.23 14792.16 0.37 600 S 125 33 4 30 12.53 6.50 1951.03 0.33 600 S 125 33 3 60 6.85 4.77 2249.36 0.21 600 S 125 33 1 200 1.11 1.15 1566.29 0.07 600 S 162 43 5 30 7.75 6.77 7163.83 0.09 600 S 162 43 2 75 28.74 27.45 6052.34 0.45 600 S 162 43 1 250 3.37 3.96 7079.07 0.06 600 S 162 43 4 500 9.86 3.86 3954.20 0.10 600 S 162 97 4 160 22.61 12.37 28306.23 0.04 600 S 162 97 3 500 68.77 62.12 30085.90 0.21 600 S 162 97 1 1000 84.46 45.87 28549.18 0.16 600 S 162 97 2 1500 77.21 48.38 29472.16 0.16 800 S 162 43 2 75 12.35 10.36 4306.04 0.24 800 S 162 43 3 150 35.76 9.92 5333.03 0.19 800 S 162 43 5 300 21.10 12.84 4001.41 0.32 800 S 162 97 2 500 28.81 19.10 20549.82 0.09 800 S 162 97 1 1000 20.66 14.66 19679.07 0.07 800 S 162 97 4 2100 34.82 25.29 23537.15 0.11

PAGE 128

111 Figure 4.1 Typical Bracing for the Single Column Axial Load Tests Figure 4.2 Axial Load vs. Axial Shorteni ng for the Stud 362S125-33 with Varying Brace Stiffness

PAGE 129

112 Figure 4.3 Axial Load vs. Axial Shorteni ng for the Stud 362S162-43 with Varying Brace Stiffness Figure 4.4 Axial Load vs. Axial Shorteni ng for the Stud 362S162-68 with Varying Brace Stiffness

PAGE 130

113 Figure 4.5 Axial Load vs. Axial Shorteni ng for the Stud 600S125-33 with Varying Brace Stiffness Figure 4.6 Axial Load vs. Axial Shorteni ng for the Stud 600S162-43 with Varying Brace Stiffness

PAGE 131

114 Figure 4.7 Axial Load vs. Axial Shortening for the Stud 600S162-97 with Varying Brace Stiffness Figure 4.8 Axial Load vs. Axial Shorteni ng for the Stud 800S162-43 with Varying Brace Stiffness

PAGE 132

115 Figure 4.9 Axial Load vs. Axial Shorteni ng for the Stud 800S162-97 with Varying Brace Stiffness Figure 4.10 Schematic Diagram Showing the Various Buckling Shapes and Buckling Modes Observed in the Experimental Testing

PAGE 133

116 Figure 4.11 Comparison of Studs 362S125-33-0 and 600S125-33-0 Figure 4.12 Comparison of Studs 362S1 25-33-100 (1.7x) and 600S125-33-060 (1.3x)

PAGE 134

117 Figure 4.13 Comparison of Studs 362S1 25-33-200 (6.2x) and 600S125-33-200 (7.4x) Figure 4.14 Comparison of Studs 362S1 62-43-0, 600S162-43-0 and 800S162-43-0

PAGE 135

118 Figure 4.15 Comparison of Studs 362S162 -43-200 (1.2x), 600S162-43-250 (1.6x) and 800S162-43-150 (1.3x) Figure 4.16 Comparison of Studs 362S162 -43-400 (2.5x), 600S162-43-500 (3.4x) and 800S162-43-300 (2.3x)

PAGE 136

119 Figure 4.17 Comparison of Studs 600S162-97-0 and 800S162-97-0 Figure 4.18 Comparison of Studs 600 S162-97-1000 (1.7x) and 800S162-97-1000 (2.1x)

PAGE 137

120 Figure 4.19 Comparison of Studs 600 S162-97-1500 (2.7x) and 800S162-97-2100 (4.3x) Figure 4.20 Comparison of Studs 362S1 25-33-0, 362S162-43-0 and 362S162-68-0

PAGE 138

121 Figure 4.21 Comparison of Studs 362S125 -33-100 (1.7x), 362S162-43-200 (1.2x) and 362S162-68-500 (1.8x) Figure 4.22 Comparison of Studs 362S125 -33-400 (6.2x), 362S162-43-800 (5.4x) and 362S162-68-1000 (3.3x)

PAGE 139

122 Figure 4.23 Comparison of Studs 600S1 25-33-0, 600S162-43-0 and 600S162-97-0 Figure 4.24 Comparison of Studs 600S125 -33-30 (0.2x), 600S162-43-75 (0.6x) and 600S162-97-160 (0.3x)

PAGE 140

123 Figure 4.25 Comparison of Studs 600S12533-60 (1.3x), 600S162-43-250 (1.6x) and 600S162-97-1000 (1.7x) Figure 4.26 Comparison of Studs 600S125 -33-200 (7.4x), 600S162-43-500 (3.4x) and 600S162-97-1500 (2.7x)

PAGE 141

124 Figure 4.27 Comparison of Studs 800S162-43-0 and 800S162-97-0 Figure 4.28 Comparison of Studs 800 S162-43-150(1.3x) and 800S162-97-500 (1.2x)

PAGE 142

125 Figure 4.29 Comparison of Studs 800S1 62-43-300 (2.3x) and 800S162-97-2100 (4.3x) Figure 4.30 Experimental Load vs. Target Brace Stiffness for 362 Series of Lipped Cee Studs

PAGE 143

126 Figure 4.31 Experimental Load vs. Target Brace Stiffness for 600 Series of Lipped Cee Studs Figure 4.32 Experimental Load vs. Targ et Brace Stiffness for 800 Series of Lipped Cee Studs

PAGE 144

127 Figure 4.33 Total Brace Stiffness vs. W eak Axis Lateral Displacement for the 362 Series of Lipped Cee-Studs Figure 4.34 Total Brace Stiffness vs. W eak Axis Lateral Displacement for the 600 Series of Lipped Cee Studs

PAGE 145

128 Figure 4.35 Total Brace Stiffness vs. Target Brace Stiffness for the 800 Series Lipped Cee Studs Figure 4.36 Effective Length Factor vs. Total Brace Stiffness for 362S-125-33 Series of Lipped Cee Studs

PAGE 146

129 Figure 4.37 Effective Length Factor vs. Total Brace Stiffness for 362S-162-43 Series of Lipped Cee Studs Figure 4.38 Effective Length Factor vs. Total Brace Stiffness for 362S-162-68 Series of Lipped Cee Studs

PAGE 147

130 Figure 4.39 Effective Length Factor vs. Total Brace Stiffness for 600S-125-33 Series of Lipped Cee Studs Figure 4.40 Effective Length Factor vs. Total Brace Stiffness for 600S-162-43 Series of Lipped Cee Studs

PAGE 148

131 Figure 4.41 Effective Length Factor vs. Total Brace Stiffness for 600S-162-97 Series of Lipped Cee Studs Figure 4.42 Effective Length Factor vs. Total Brace Stiffness for 800S-162-43 Series of Lipped Cee Studs

PAGE 149

132 Figure 4.43 Effective Length Factor vs. Total Brace Stiffness for 800S-162-97 Series of Lipped Cee Studs Figure 4.44 Location of Linear Pote ntiometers on the Bridging Connection LP 1 LP 2 LP 3 LP 4 LP 5

PAGE 150

133 Figure 4.45 Plot of Applied Load vs. Calcul ated Rotation at the Center-line of the Web for the 362S Series of Studs Figure 4.46 Plot of Applied Load vs. Calcul ated Rotation at the Center-line of the Web for the 600S Series of Studs.

PAGE 151

134 Figure 4.47 Plot of Applied Load vs. Calcul ated Rotation at the Center-line of the Web for the 800S Series of Studs with SS Connection. Figure 4.48 Plot of Applied Load vs. Calcul ated Rotation at the Center-line of the Web for the 362S Series of Studs with WW Connection

PAGE 152

135 Figure 4.49 Plot of Applied Load vs. Calcul ated Rotation at the Center-line of the Web for the 600S Series of Studs with WW Connection Figure 4.50 Plot of Applied Load vs. Calcul ated Rotation at the Center-line of the Web for the 800S Series of Studs with WW Connection

PAGE 153

136 Figure 4.51 Plot of Applied Load vs. Calcul ated Rotation at the Center-line of the Web for the 362S Series of Studs with DW Connection Figure 4.52 Plot of Applied Load vs. Calcul ated Rotation at the Center-line of the Web for the 600S Series of Studs with DW Connection

PAGE 154

137 Figure 4.53. Plot of Applied Load vs. Calcul ated Rotation at the Center-line of the Web for the 800S Series of Studs with DW Connection

PAGE 155

138 Figure 4.54 Plot of Applied Load vs. Calcul ated Rotation at the Center-line of the Web for the 362S Series of Studs Figure 4.55 Plot of Applied Load vs. Calcul ated Rotation at the Center-line of the Web for the 600S Series of Studs

PAGE 156

139 Figure 4.56 Plot of Applied Load vs. Calcul ated Rotation at the Center-line of the Web for the 800S Series of Studs Figure 4.57 Plot of Applied Load vs. Calcul ated Rotation at the Center-line of the Web for the 362S Series of Studs

PAGE 157

140 Figure 4.58 Plot of Applied Load vs. Calcul ated Rotation at the Center-line of the Web for the 600S Series of Studs Figure 4.59 Plot of Applied Load vs. Calcul ated Rotation at the Center-line of the Web for the 800S Series of Studs

PAGE 158

141 Figure 4.60 Plot of Applied Load vs. Calcul ated Rotation at the Center-line of the Web for the 362S Series of Studs Figure 4.61 Plot of Applied Load vs. Calcul ated Rotation at the Center-line of the Web for the 600S Series of Studs

PAGE 159

142 Figure 4.62 Plot of Applied Load vs. Calcul ated Rotation at the Center-line of the Web for the 800S Series of Studs Figure 4.63 Plot of Initial Torsional Sti ffness vs. Effective Flat-width to Thickness Ratio for the Out-of-Plane loading Tests on SS-type Connection

PAGE 160

143 Figure 4.64 Plot of Initial Torsional Sti ffness vs. Effective Flat-width to Thickness Ratio for the Out-of-Plane loading Tests on WW-type Connection Figure 4.65 Plot of Initial Torsional Sti ffness vs. Effective Flat-width to Thickness Ratio for the Out-of-Plane loading Tests on DW-type Connection

PAGE 161

144 Figure 4.66 Plot of Initial Flexural Stiffness vs. Effective Flat-width to Thickness Ratio for the In-Plane loading Tests on SS-type Connection Figure 4.67 Plot of Initial Flexural Stiffness vs. Effective Flat-width to Thickness Ratio for the In-Plane loading Tests on WW-type Connection

PAGE 162

145 Figure 4.68 Plot of Initial Flexural Stiffness vs. Effective Flat-width to Thickness Ratio for the In-Plane loading Tests on DW-type Connection (a) Total Brace Force (b) Fl exural Components (c) Torsional Components Figure 4.69 Brace Forces as a Resultant of Flexural and Torsional Components

PAGE 163

146 CHAPTER 5 ANALYTICAL EVALUATION This chapter discusses the analytical me thods used to determine the axial load capacity of the cee-stud, initial flexural stiffness and initial torsional stiffness of the bracing connections. The calculations of the total connection stiffness from the experimental results are also presented. The axial capacity was calculated for each stud cross-section using the experimentally dete rmined mechanical properties of the eight groups of cee-studs. The flexural and torsiona l stiffness of the bracing connections were determined using basic structural mechanic s and applying the elas tic spring analogy to the connection components. 5.1 Analytical Load Capacity of Unbraced and Fully Braced Studs The axial load capacity of braced and unbraced studs was determined using MathCAD worksheets developed by Chen for AISI (1999). Table 5.1 gives the calculated axial load capacities based on two different effective lengt h factors. The end conditions of the stud were considered pinne d for weak axis flexur al buckling, fixed for strong axis flexural buckling and fixed for to rsional buckling about the shear center. The reasons for choosing these support conditions and the effects on stud behavior have been discussed in Chapter 4. The effective length factor for the case of an unbraced stud, for strong axis flexural buckling, Kx = 0.5, for weak axis flexural buckling, Ky = 1.0 and for torsional buckling, Kt = 0.5. The effective length factor for the case of a braced stud, for strong axis flexural buckling, Kx = 0.5, for weak axis flexural buckling, Ky = 0.5 and for torsional buckling, Kt = 0.25. The MathCAD worksheets accounts for the size of the

PAGE 164

147 punchouts and their locations. The axial load capacity is affected by the size of the punchout, the effect of which is in reduction of the axial lo ad capacity. The effective cross-sectional area is determined based on the effective width of the web across the punchout as per Section B2.2, AISI (1999). The critical buckling stress is computed as the minimum of the strong axis buckling st ress, the weak axis buckling stress or the torsional buckling stress. The axial loads predicted by the AISIWIN (2000) program whose results are given in Tables 4.3 and 4. 4 did not include the effect of punchouts and hence are greater than the values given in Ta ble 5.1 for the same cross-section of the ceestud. It may be observed that in both th e analytical determinations of axial load capacities fall below the actual experimental maximum load. This is because of the support restraint that is pr esent in the test specimens. These MathCAD worksheets were used to compare the results obtained from AISIWIN (2000). It can be observed that AI SIWIN gives a higher prediction of the axial load capacity than the MathCAD worksheets resu lts. It must be noted here that, using both these analytical methods, the axial cap acity was far conservative due to which the brace stiffness and demand happens to be less than the experimentally required value. This leads to a bracing requirement that is unconservative for all practical purposes. The reason being that the support conditions in th e standard industry practice, using standard tracks, offers far more rigidity than the id eal cases of pinned ends. The two analytical methods used to determine th e axial load capacities of th e cee-studs though have the option of specifying the effective lengths, it is a judgment call by th e practicing engineer to safely choose the effective lengths.

PAGE 165

148 5.2 Analytical Bridging Connection Stiffness of a Flexible Bracing The experimental values of initial connection stiffness have been determined in Chapter 4. Referring back to Table 4.13, th e initial torsional stiffness at 10% of the maximum load is calculated as the ratio of the applied load to th e corresponding rotation of the web. It was observed that within this load range, the initial slopes of the plots were nearly linear. Similarly, Table 4.15 gives th e initial flexural stiffness at 10% of the maximum load, calculated as the ratio of the applied load to the corresponding Ydisplacement of Point A, the point of application of the load on the channel bridging, measured by a string potentiometer. The total actual stiffness of the bridging system is calculated using Eq. 2.22, as described in Chapter 2. The total actual stiffness is the reciprocal of the sum of reciprocals of the connection stiffness a nd the brace stiffness, because the bridging connection is in series with the bracing syst em. The bridging connection is comprised of several connecting elements that are in seri es with one another and their equivalent connection stiffness determination is given in Appendix C. The total connection stiffness was determined from both the experimental results of the bridging tests and the analytical models developed for each connection type The comparisons of the calculated experimental stiffness with calculated analytic al stiffness are presented in Tables 5.2 and 5.3 for the initial flexural stiffness and the initial torsional stiffness, respectively. 5.2.1 Initial Flexural Stiffne ss of the Bracing Connection The following assumptions were made in finding the analytical value of initial flexural stiffness: The bridging channel was considered to be under tension due to the applied load and the deformation was computed using the following equation:

PAGE 166

149 1 5 E A L P The clip angle acts as a beam supported at two points, subjected to two point loads. The moment of inertia of the angle was take n about its horizontal leg. For the SS type connection, the angle was consider ed to be simply-supported between the screws, and for the WW type connection, the angle was considered to be fixed at the welds. The MathCAD worksheet for th is calculation is given in Appendix C and provides the calculations for this analytical determination. The web was considered as a rectangular plat e with either simple or fixed edges at the boundaries. The plate was considered to be subjected to co ncentrated loads at the location of the screws or the welds. The plate buckling equation (Roark 1985) for a rectangular plate subjected to a concentrated load is given as: 2 5 t E b a 1 C P3 2 where C = Support fixity coe fficient of the steel plate E = Elastic modulus of cold-formed steel P = Applied load a, b = Dimensions of the rectangular plate t = Thickness of the rectangular plate = Displacement due to applied load, P = Poissons ratio of steel, 0.3 The effective width of the web plate wa s calculated as per Section B2.2, AISI (1999) which is as follows: a 3 5 w d 8 0 22 0 1 w bh when > 0.673 or b 3 5 d w bh where dh = Diameter of the elongated circular punchout

PAGE 167

150 The slenderness factor is cal culated using the relation ) 4 5 ( E f t w k 052 1y where k = Plate buckling coefficient = 24.0 for simply-supported edges = 40.8 for fixed-fixed edges The effect of the length of the punchout wa s considered to be negligible since the web is assumed to be infinite in that direction while the predominant flexural displacement was along the shorter span dire ction between the flanges of the cee-stud cross-section. In all the cases, the stiffne ss and deformation of the screws or the welds was calculated and found that these components had little effect on the overall connection stiffness, and hence they were later neglected for simplicity. The flexural stiffness values are plotted in Figures 5.1, 5.2 and 5.3 against the slenderness factor of the stud web, determ ined using Eq. 5.4 for the three connection types (SS, WW and DW), respectively. Th e plots contain four different data sets representing the following cases of initial fle xural stiffness for the in-plane loading tests: Experimental lower bound values (LBV) Experimental upper bound values (UBV) Analytical value for a rectangular pl ate with four simply-supported edges Analytical value for a rectangula r plate with four fixed edges 5.2.1.1 SS type connection It can be observed that in Figure 5.1 for the SS Type connection the analytical calculation of the initial fle xural stiffness increases exponen tially with decr ease in the web slenderness factor ( ). It can also be observed that the analytical flexural stiffness

PAGE 168

151 values for the rectangular plate with either fixed edges or simply-supported edges form the upper and lower bounds to the experimental values of the initial flexural stiffness for the SS Type connection. For the eight groups of studs in the experimental program, the slenderness factor varied from 0.43 to 1.43 and the experiment al initial flexural stiffness varied from 7.92 to 2.46 kip/in., respectively. The analytical flexural stiffness for the lower slenderness factors show a greater differe nce for the type of support condition than the higher slenderness factors that show almost equal values for the different types of support conditions. 5.2.1.2 WW type connection The analytical initial flexural stiffness values, shown in Figure 5.2 for the WW Type connection, decrease linearly with increasing web slenderness factor ( ). It was clearly observed that the analytical flexural stiffness values for a rectangular plate with either fixed edges or simply-supported edge s form the upper and lower bounds to the experimental values of the initial flexural stiffness for the WW Type connection. For the three groups of studs in the experimental program, the slenderness varied from 0.43 to 0.63 and the corresponding experimental initia l flexural stiffness varied from 40.8 to 19.7 kip/in, respectively. 5.2.1.3 DW type connection The analytical initial flexural stiffness va lues shown in Figure 5.3 for the DW Type connection, decrease linearly with increasing web slenderness factor. ( ). Except for one value of experimental stiffness, the analytical values form the upper and lower bound values to the experimental initi al flexural stiffness values. For the three groups of studs in the experimental program, the slendern ess varied from 0.43 to 0.63 and the

PAGE 169

152 corresponding experimental initial flexural stiffness varied from 50.4 to 2.4 kip/in, respectively. From the above three figures, it can be ge neralized that the anal ytical determination of initial flexural stiffness values is close enough to the values determined from the experimental results. 5.2.2 Initial Torsional Stiffne ss of the Bracing Connection The following assumptions were made in determining the initial torsional stiffness of the bracing connection: The bridging channel was considered to be rigid enough to deform under the influence of the applied out-of-plane load. This assumption was verified and found to be true since all the torsional defo rmation was occurring at the stud web. The clip angles in case of the SS and WW Type connections were considered to be initially rigid compared to the stiffness of the web. The web was considered as a rectangular plate with fixed edges. The plate was considered to be subjected to two point loads. The first point load was a direct pull at the location of the screw or the weld. The second point load was the resultant of the bearing pressure of the clip angle on the web. For simplicity, the two point loads were considered to be of equal ma gnitude and equidistant from the vertical centerline of the web. The initial torsional stiffness values dete rmined using Eq. 5.4 are plotted in Figure 5.4 against the web slenderness factor for the SS Type connection. The plot contains four different data sets representing the following cases of initial torsional stiffness for the out-of-plane loading tests: Experimental lower bound values (LBV) Experimental upper bound values (UBV) Analytical value for a rectangula r plate with four fixed edges With calculations based on above assumptions the results obtained for the analytical initial torsional stiffness of the SS Type connection is not accurate or even in

PAGE 170

153 the same range as that of the values determ ined from the experimental tests and can be observed in Figure 5.4 and Table 5.3. This requires a further study and more exact model of the connection has to be developed. Th ere are several factors contributing to the torsional stiffness and the flexural stiffness of the clip angle and the bracing channel has to be converted to an equivalent torsional stiffness. The bearing of the clip angle is causes uniformly varying load on the web which has a resultant that is not at the same distance as the location of the connection point load. This causes an unsymmetrical load distribution about the vertical centerline of the web. This uniformly varying load is also affected by the presence of the web punchout causing a trapezoidal load on the loaded portion of the web. Based on some of the e xperimental observations during the test, the clip angle has been the cont rolling critically stiff elemen t and hence its stiffness is important in calculating the initial torsional st iffness of the connection. Further analysis is required to assess the initial torsional stiffness analytically. 5.3 Total Stiffness of the Bridging Connection The determination of the total stiffness of the bridging system has been discussed in detail in Chapter 4. The initial stiffne ss of the bridging conn ection is determined experimentally at an applied load of 10% of the maximum load attained during the bracing tests and is explained in Section 4.2 of this report. 5.3.1 Initial Flexural Stiffness The determination of the total flexural sti ffness of the bridging connection has been discussed in Chapter 2 and is give n by Eq. 2.2, which is given as: ) 22 2 ( 1 1 1brace conn act

PAGE 171

154 For each cee-stud any of the three connectio n types can be used to secure the midheight bracing. The stiffness of each connection type is given in Table 4.16 which is based on two test results per stud and c onnection type. Table 5.4 gives the total equivalent flexural stiffness of the bridgi ng connection for each of the 37 axially loaded studs. It is assumed that the bridging conn ection remains elastic when the axially loaded cee-stud has reached its full capacity. This is evident by the fact that the connection stiffness is greater than the brace stiffness. However the total actual stiffness is slightly lower than the total brace stiffness. Th is is because the c onnection itself undergoes deformations under the applied load. The connection stiffness given in Table 5.4 is obtained as the average value from the tw o tests for each stud and connection type. 5.3.2 Initial Torsional Stiffness The determination of the total torsional stiffness of the bridging connection has been discussed in Chapter 2 and is given by Eq. 2.2, as given above. For each cee-stud any of the three connection types can be used to secure the mid-height bracing. The torsional stiffness of the brace wire is dete rmined assuming that the torsional buckling occurs about the centroid of the gross-sectio n rather than the shear center. This is because the brace wires restrain the stud from strong axis displacement. If the force in the brace wire is P, the deformation of the brace is then the stiffness of the brace wire is given by: 5 5 L E A P If the cross-section rotates by an angle then for small angular deformations, 6 5 2 / D

PAGE 172

155 Substituting Eq. 5.5 in 5.6, we get the torsional stiffness of the bracing as: 7 5 2 D E A L P where A = Area of cross-section of brace wire E = Elastic modulus of steel wire = 29,000 ksi. D = Distance between the brace wires = depth of the cee-stud L = Length of brace wire P = Force in the brace wire Table 5.5 gives the calculated values of to rsional stiffness of the brace wire. Table 5.6 gives the total equivalent torsional stiffn ess of the bridging connection for each of the 36 axially loaded studs. The values of the e xperimental initial torsional stiffness for two test specimens per stud cross section and co nnection type has been previously given in Table 4.17 and the average value of those two is given in Table 5.6

PAGE 173

156Table 5.1 Axial Load Capacities of Test Specimens Using AI SI (1999) MathCAD Worksheets Tension Coupon Test Results AISI (1999) MathCAD worksheets Yield Stress Ultimate. Stress As-Built Ultimate Capacity (Pu) As-Built Unfactored Capacity (Pn) Required Ideal Brace Stiffness Stud Designation Fy Fu AsBuilt Section Area Unbraced MidPoint Brace No Brace MidPoint Brace ideal D S B t ksi Ksi in.2 lbs lbs lbs lbs lbs/in. 362 S 125 33 48.53 55.48 0.2028 429.13 1586.53 505 1867 78 362 S 162 43 47.04 58.20 0.3089 2221.17 6967.64 2613 8197 342 362 S 162 68 52.01 67.80 0.5154 3713.37 11548.774369 13587 566 600 S 125 33 24.03 45.24 0.2537 586.66 1541.69 690 1814 76 600 S 162 43 46.24 54.88 0.4135 2156.02 5832.46 2536 6862 286 600 S 162 43a 50.30 59.38 0.4346 2460.57 6715.21 2895 7900 329 600 S 162 97 60.20 70.21 0.9807 6286.86 19904.257396 23417 976 800 S 162 43 40.23 54.90 0.4829 1967.02 5155.93 2314 6066 253 800 S 162 97 42.50 67.49 1.1841 6694.4 17467.547876 20550 856 As-Built sectional properties were based on the experimentally measured dimensions Ideal Brace Stiffness was obtained using Yura's Bracing Equation 2.14 (Yura 1995) Design factor used in calculating the Unfactored Capacity was 0.85

PAGE 174

157Table 5.2 Comparison of Initial Flexural Stiffness of the In-Plane Tests Stud Designation Slenderness Factor Initial Stiffness Analytical Stiffness D S B t C Lower Upper Simple Fixed kip./in kip./in kip./in kip./in 362 S 125 33 SS 0.8984 1.683 2.068 0.65 1.34 362 S 162 43 SS 0.6768 3.574 4.200 1.45 2.97 362 S 162 68 SS 0.4343 6.102 7.942 6.25 12.64 600 S 125 33 SS 1.0733 1.000 1.143 0.17 0.35 600 S 162 43 SS 1.1406 3.785 3.822 0.38 0.78 600 S 162 97 SS 0.5493 5.571 6.860 4.78 9.62 800 S 162 43 SS 1.4328 2.066 2.463 0.19 0.39 800 S 162 97 SS 0.6296 2.947 7.082 2.34 4.71 362 S 162 68 WW 0.4343 30.423 40.788 25.82 49.78 600 S 162 97 WW 0.5493 15.241 16.524 14.13 27.63 800 S 162 97 WW 0.6296 10.512 19.668 7.29 14.40 362 S 162 68 DW 0.4343 45.361 50.412 15.70 31.09 600 S 162 97 DW 0.5493 8.260 8.260 7.55 15.25 800 S 162 97 DW 0.6296 2.401 2.401 3.23 6.60

PAGE 175

158Table 5.3 Comparison of Initial Torsional Stiffness of the In-Plane Tests Stud Designation Slenderness Factor Initial Stiffness Analytical Stiffness D S B t C Lower Upper Simple Fixed kip-in/rad. kip-in/rad. kip-in/rad. kip-in/rad. 362 S 125 33 SS 0.8984 2.955 3.998 0.51 362 S 162 43 SS 0.6768 5.334 7.043 1.12 362 S 162 68 SS 0.4343 13.876 15.718 4.13 600 S 125 33 SS 1.0733 7.019 7.200 0.62 600 S 162 43 SS 1.1406 21.040 24.077 1.37 600 S 162 97 SS 0.5493 31.376 43.597 14.25 800 S 162 43 SS 1.4328 51.413 60.318 1.73 800 S 162 97 SS 0.6296 70.320 78.946 18.44 362 S 162 68 WW 0.4343 75.788 99.267 600 S 162 97 WW 0.5493 197.375 211.103 800 S 162 97 WW 0.6296 236.610 314.449 362 S 162 68 DW 0.4343 28.888 32.404 600 S 162 97 DW 0.5493 26.307 26.725 800 S 162 97 DW 0.6296 18.044 27.576

PAGE 176

159Table 5.4 Total Flexural Stiffness of the Bridging Connections Total Brace Stiffness Experimental Initial Flexural Stiffness of the Bridging Connection Total Flexural Stiffness of the Bridging Connection Stud Designation providedSS Type WW Type DW Type SS Type WW Type DW Type D S B t ID lbs/in. lbs/in. lbs/in lbs/in. lbs/in. lbs/in. lbs/in. 362 S 125 33 5 0 0 362 S 125 33 3 192 1875 174 362 S 125 33 4 192 1875 174 362 S 125 33 6 201 1875 182 362 S 125 33 1 413 1875 338 362 S 125 33 2 765 1875 543 362 S 162 43 1 0 0 362 S 162 43 2 371 3885 339 362 S 162 43 4 734 3885 617 362 S 162 43 3 1478 3885 1071 362 S 162 68 5 0 0 362 S 162 68 3 1023 7020 35605 47885 893 994 1001 362 S 162 68 4 1538 7020 35605 47885 1262 1475 1490 362 S 162 68 2 2046 7020 35605 47885 1584 1935 1962 600 S 125 33 2 0 600 S 125 33 4 61 1070 57 600 S 125 33 3 123 1070 110 600 S 125 33 1 402 1070 292

PAGE 177

160Table 5.4 (Continued) Total Flexural Stiffness of the Bridging Connections Total Brace Stiffness Experimental Initial Flexural Stiffness of the Bridging Connection Total Flexural Stiffness of the Bridging Connection Stud Designation providedSS Type WW Type DW Type SS Type WW Type DW Type D S B t ID lbs/in. lbs/in. lbs/in lbs/in. lbs/in. lbs/in. lbs/in. 600 S 162 43 6 0 600 S 162 43 6a 0 600 S 162 43 5 61 3800 60 600 S 162 43 2 148 3800 142 600 S 162 43 1 497 3800 440 600 S 162 43 4 990 3800 785 600 S 162 97 5 0 600 S 162 97 4 324 6215 15880 8260 308 317 312 600 S 162 97 3 1041 6215 15880 8260 892 977 924 600 S 162 97 1 2069 6215 15880 8260 1552 1831 1655 600 S 162 97 2 3357 6215 15880 8260 2180 2771 2387 800 S 162 43 4 0 800 S 162 43 2 149 2265 140 800 S 162 43 3 299 2265 264 800 S 162 43 5 602 2265 476 800 S 162 97 3 0 800 S 162 97 2 1041 5015 15090 2400 862 974 726 800 S 162 97 1 2093 5015 15090 2400 1477 1838 1118 800 S 162 97 4 4195 5015 15090 2400 2284 3283 1527

PAGE 178

161Table 5.5 Calculated Brace Stiffness and Tota l Brace Stiffness of the Test Specimens Wire Stud Designation Target Brace Stiffness As-Built Depth of Stud Dia. Area L Nos. Torsional Stiffness of Wire D S B t ID lbs/in. in. in. in2 in. lbs-in/rad. 362 S 125 33 5 0 3.613 0 362 S 125 33 3 100 3.613 0.016 0.00020160.75 1 11 362 S 125 33 4 100 3.613 0.016 0.00020160.75 1 11 362 S 125 33 6 100 3.613 0.016 0.00020158 1 11 362 S 125 33 1 200 3.613 0.016 0.00020156.5 2 21 362 S 125 33 2 400 3.613 0.016 0.00020130.5 2 21 362 S 162 43 1 0 3.564 0 362 S 162 43 2 200 3.564 0.024 0.00045270.75 1 23 362 S 162 43 4 400 3.564 0.024 0.00045235.75 1 23 362 S 162 43 3 800 3.564 0.024 0.00045235.5 2 47 362 S 162 68 5 0 3.638 0 362 S 162 68 3 500 3.638 0.033 0.00085548.5 1 45 362 S 162 68 4 750 3.638 0.033 0.00085532.25 1 45 362 S 162 68 2 1000 3.638 0.033 0.00085524.25 1 45 600 S 125 33 2 0 6.020 0 600 S 125 33 4 30 6.020 0.01 0.00007975 1 7 600 S 125 33 3 60 6.020 0.01 0.00007937 1 7 600 S 125 33 1 200 6.020 0.016 0.00020129 1 18

PAGE 179

162Table 5.5 (Continued) Calculated Brace Stiffness and Total Brace Stiffness of the Test Specimens Wire Stud Designation Target Brace Stiffness As-Built Depth of Stud Dia. Area L Nos. Torsional Stiffness of Wire D S B t ID lbs/in. in. in. in2 in. lbs-in/rad. 600 S 162 43 6 0 6.021 0 600 S 162 43 6a 0 5.984 0 600 S 162 43 5 30 6.021 0.01 0.000079 75.25 1 7 600 S 162 43 2 75 6.021 0.016 0.000201 79 1 18 600 S 162 43 1 250 6.021 0.024 0.000452 52.75 1 39 600 S 162 43 4 500 6.021 0.024 0.000452 26.5 1 39 600 S 162 97 5 0 6.082 0 600 S 162 97 4 160 6.082 0.024 0.000452 81 1 40 600 S 162 97 3 500 6.082 0.03480.000951 53 1 84 600 S 162 97 1 1000 6.082 0.06250.003068 86 1 271 600 S 162 97 2 1500 6.082 0.06250.003068 53 1 271 800 S 162 43 4 0 7.921 0 800 S 162 43 2 75 7.921 0.016 0.000201 78.25 1 23 800 S 162 43 3 150 7.921 0.016 0.000201 39 1 23 800 S 162 43 5 300 7.921 0.016 0.000201 38.75 2 46 800 S 162 97 3 0 8.044 0 800 S 162 97 2 500 8.044 0.03480.000951 53 1 111 800 S 162 97 1 1000 8.044 0.06250.003068 85 1 358 800 S 162 97 4 2100 8.044 0.04750.001772 24.5 1 207

PAGE 180

163Table 5.6 Total Torsional Stiffness of the Bridging Connections Experimental Initial Flexural Stiffness of the Bridging Connection Total Flexural Stiffness of the Bridging Connection Stud Designation Torsional Stiffness of the Brace SS Type WW Type DW Type SS Type WW Type DW Type D S B t ID lbs-in/rad. lbs-in./ra d. lbs-in./rad. lbs-in./rad. lbsin./rad. lbs-in./rad. lbs-in./rad. 362 S 125 33 5 0 0 362 S 125 33 3 11 3475 11 362 S 125 33 4 11 3475 11 362 S 125 33 6 11 3475 11 362 S 125 33 1 21 3475 21 362 S 125 33 2 21 3475 21 362 S 162 43 1 0 0 362 S 162 43 2 23 6185 23 362 S 162 43 4 23 6185 23 362 S 162 43 3 47 6185 46 362 S 162 68 5 0 0 362 S 162 68 3 45 14800 87530 30645 45 45 45 362 S 162 68 4 45 14800 87530 30645 45 45 45 362 S 162 68 2 45 14800 87530 30645 45 45 45 600 S 125 33 2 0 0 600 S 125 33 4 7 7110 7 600 S 125 33 3 7 7110 7 600 S 125 33 1 18 7110 18

PAGE 181

164Table 5.6 (Continued) Total Torsional Stiffness of the Bridging Connections Experimental Initial Flexural Stiffness of the Bridging Connection Total Flexural Stiffness of the Bridging Connection Stud Designation Torsional Stiffness of the Brace SS Type WW Type DW Type SS Type WW Type DW Type D S B t ID lbs-in/rad. lbs-in./rad. lbs-in./rad. lb s-in./rad. lbs-in./rad. lb s-in./rad. lbs-in./rad. 600 S 162 43 6 0 0 600 S 162 43 6a 0 0 600 S 162 43 5 7 22560 7 600 S 162 43 2 18 22560 18 600 S 162 43 1 39 22560 39 600 S 162 43 4 39 22560 39 600 S 162 97 5 0 0 600 S 162 97 4 40 37490 204240 26515 40 40 40 600 S 162 97 3 84 37490 204240 26515 84 84 84 600 S 162 97 1 271 37490 204240 26515 269 270 268 600 S 162 97 2 271 37490 204240 26515 269 270 268 800 S 162 43 4 0 0 800 S 162 43 2 23 55865 23 800 S 162 43 3 23 55865 23 800 S 162 43 5 46 55865 46 800 S 162 97 3 0 0 800 S 162 97 2 111 74635 275530 22810 111 111 110 800 S 162 97 1 358 74635 275530 22810 356 357 352 800 S 162 97 4 207 74635 275530 22810 206 207 205

PAGE 182

165 Figure 5.1 Flexural Stiffness of the SS Type Connection Figure 5.2 Flexural Stiffness of the WW Type Connection

PAGE 183

166 Figure 5.3 Flexural Stiffness of the DW Type Connection Figure 5.4 Torsional Stiffness of the SS Type Connection

PAGE 184

167 CHAPTER 6 CONCLUSIONS AND DESIGN RECOMMENDATIONS The current provisions of the North Amer ican Cold-Formed Steel Specification do not specify the minimum requirements of the bracing strength and sti ffness for structural wall stud assembly systems. These load bear ing steel studs can also be used as standalone columns. The current provisions of the AISC-LRFD Specification (AISC 1999) have been discussed in Section 2.5 for ho t-rolled steel members, but there are no equivalent provisions in the current Nort h American Cold-Formed Steel Specification (2001). An experimental investigation wa s conducted at the Structures Laboratory, Department of Civil and Coastal Engineering, University of Florida, Gainesville, to ascertain the bracing strength and stiffness re quirements for single column axially loaded cee-studs with mid-height lateral bracing abou t the weak axis. The experimental results and analytical evaluations of this investigation have been provided in Chapters 3, 4 and 5. This chapter describes the proposed mi nimum bracing requirements based on the experimental results and analytical calcula tion that were performed. In addition, a standard test procedure for determining the bracing connection streng th and stiffness has been developed. 6.1 General Conclusions and Recommendations The following observations can be made ba sed on the results of this research through its experimental investig ation and analytical evaluation: 1. The compressive axial load capacity of a cold-formed cee-stud predicted by the current provisions of the AISI Speci fication (1999), under-p redicts the axial capacity owing to ideal support conditions that are non-exis tent in general practice.

PAGE 185

168 The bracing strength and stiffness is direc tly proportional to the axial load capacity leading to under-prediction of the actual ideal bracing requirement. 2. The mounting of the cee-stud in industry standard track offers partial base fixity and causes a reduction in the effective le ngth of the compression member, leading to higher axial load capacity of the cee-stud. This, in turn, leads to higher demand on the mid-height lateral bracing for flexur al and torsional buckling. The fixity factor varies for each stud cross-section and a separate study is recommended to ascertain these values. 3. The depth of the track and its connection ty pe surely affects the axial load capacity of the stud and hence a separate study is recommended to determine the effect of different track geometry on the support fixity. 4. The support fixities are different for different buckling modes that the monosymmetric cee-stud section is subjected to and hence the same effective length factors cannot be used for all the different buckling modes. An analytical tool must be developed for the practicing engineer to determine the effective length factor based on the stud cross-section and its length. 5. Based on the type of mid-height bracing, the stud is either forced into flexural buckling or flexural-torsional buckling ev en if the unbraced stud predominantly would fail by torsional buckling. This seriously affects the performance of the stud in a wall-stud panel system. The critical buckling stresses for each of the buckling modes has to be evaluated and the axial capacity needs to be determined based on the application of the stud. 6. The critical buckling stress, using the pr ovisions in the AISI Specification (1999), is a minimum of weak axis flexural bucklin g stress, strong axis buckling stress and torsional buckling stress. The bracing required to ideally brace the cee-stud must be meet the demands not only in flexural buckling but also in torsional buckling due to the any of the limiting critical buckling stress states. 7. The initial flexural stiffness of the three industry standard bracing connections has been predicted from basic structural mechanics. Based on the fixity of a rectangular web plate, two cases were de veloped that form the upper and lower bounds to the experimental results. A similar procedure to determine the initial torsional stiffness was also undertaken. 8. The stiffness and strength of the mid-height lateral bracing was drastically affected by the higher axial capacities in the expe riments. The tests showed more than a 50% increase in the axial capacity of the unbraced cee-stud due to non-ideal support conditions. This led to unconservative prediction of the ideal bracing requirement for the eight groups of cee-studs that were evaluated in the investigation. Thus, bracing strength and stiffness of a few studs, which were classified as over braced, were act ually under braced in the experiments.

PAGE 186

169 9. The braced studs reached axial capacitie s greater than the unbraced studs and exhibited higher stiffness. The brace fact or hence must be increased by a certain multiplier to account for this increased demand. 10. With increasing the brace stiffness for a particular cee-stud cross-section, the midheight lateral displacemen t decreased, however, the axial capacities remained nearly the same. For global stability in wall stud syst ems it is important that the mid-height lateral displacement be a mini mum, hence a stiffer brace is required. 11. The braced studs that failed by distortion al buckling did not attain their predicted axial capacity since the critical buckling st ress due to distortional buckling mode is less than that for the global buckling modes. It is necessary to consider distortional buckling as one of the limiting critical buckling modes for certain ranges of effective web depth-to-thickness ratios. 12. The effect of the size, shape and location of the web punchouts is critical for an analytical axial load capacity prediction. In the experiments, it was observed that maximum deformation occurred in the vicin ity of the punchouts at close to ultimate loads. This surely indicates that even a better prediction of the axial load considering the support fixity will be a ffected by the punchouts, and hence a separate study is required to determine these effects. 13. Three standard industry bracing connections were tested for their strength and initial stiffness. The SS Type and the WW Type performed equally well in both the out-of-plane load tests and in-plane load te sts. The WW Type had definitely higher stiffness when compared to the SS Type connection. The DW Type connection performed extremely well in the in-plane tests but was not good enough in the outof-plane tests. Based on the stud cross-section and its usage, a suitable connection type should be chosen for the purpose of mid-height lateral bracing of the cee-stud. 14. It was observed that in the WW Type and DW Type tests, the connections failed due to poor performance of the weld due to the effect of galvanization of the stud. It must be made sure that, before the weld ing, the base metal is exposed. However, this may not be a very critical requirem ent due to the reasons mentioned below. 15. In all the bracing connection tests the an alytical evaluation of the connection stiffness showed that the bracing stiffness is controlled by the stiffness of the stud web and the effects of other components are negligible. 16. Comparison of the experimental brace s tiffness to the experimental connection stiffness shows that the former values are less compared to the latter and hence the effect of the latter on the total system stiffness is negligible. The total actual stiffness is slightly less than the brace stiffness. A suitable stiffness reduction factor can be used based on the connection type to simplify the calculations. 17. Initial imperfections in the studs affect their axial load capacity and hence the maximum allowable imperfections must be as per the ASTM C645-00 (2000) for non-structural steel studs and ASTM C 955-01 (2001) for structural steel studs.

PAGE 187

170 6.2 Design Recommendations This section gives the minimum requirements of the mid-height lateral bracing for the cold-formed lipped cee-studs subjected to compressive axial loading. The equations given below are as per Yuras (1995) recomm endations. It must be made note of here that the out-of-straightness of the stud was taken at o = L / 384. The ideal brace stiffness is given by: b n ideal brace,L P n 2 4 The required brace stiffness is at least: ideal brace, required brace, 2 The ideal brace strength is given by: n ideal brace,P 004 0 P The minimum required brace strength is at least: n required brace,P 01 0 P where Lb = Unbraced length, or distan ce between the braces, inches. Pbrace, ideal = Ideal bracing of the cee-stud, kips. Pbrace, required = Minimum required brace strength, kips. Pn = Nominal axial capacity when the assumed brace stiffness is greater than or equal to ideal, kips. n = Number of equally spaced intermediate brace locations brace, ideal = Ideal brace stiffness brace, required = Minimum required brace stiffness

PAGE 188

171 The flexibility or ability of a brace connecti on to slip should be considered in the evaluation of the actual br acing system stiffness, act, as follows: (2.22) 1 1 1brace conn act where conn = Stiffness of the connection brace = Stiffness of the brace The flexural stiffness and torsional stiffness have to be determined separately and then the connection system employe d in bracing the cee-stud must be checked for the above minimum requirements. The unit for the initial flexural stiffness is (kip/in.) and that of the initial torsional stiffness is (kip-in/rad).

PAGE 189

172 APPENDIX A TEST REPORTS OF SINGLE CO LUMN AXIAL LOAD TESTS This appendix contains the individual te st reports of the 37 experimental tests conducted on single columns subjected to axia l compression. The reports describe the observations during each experiment the buckl ing modes developed at various stages of loading and proves the displacements and br ace forces at corresponding load levels. During each experiment, photographs were taken at the initial, inte rmediate and final stages of loading and some of the photogra phs are given in these test reports. The plots of applied load versus the 1) Axial Shortening, 2) Brace Forces, 3) Weakaxis Displacement, and 4) Strong-Axis Disp lacement are shown for each experiment. The test reports are arranged in the following order: Serial No Specimen Number 1 362S125-33-000 2 362S125-33-100(1) 3 362S125-33-100(2) 4 362S125-33-100(3) 5 362S125-33-200 6 362S125-33-400 7 362S162-43-000 8 362S162-43-200 9 362S162-43-400 10 362S162-43-800 11 362S162-68-0000 12 362S162-68-0500 13 362S162-68-0750 14 362S162-68-1000 15 600S125-33-000

PAGE 190

173 16 600S125-33-030 17 600S125-33-060 18 600S125-33-200 19 600S162-43-000(1) 20 600S162-43-000(2) 21 600S162-43-075 22 600S162-43-250 23 600S162-43-300 24 600S162-43-500 25 600S162-97-0000 26 600S162-97-0160 27 600S162-97-0500 28 600S162-97-1000 29 600S162-97-1500 30 800S162-43-000 31 800S162-43-075 32 800S162-43-150 33 800S162-43-300 34 800S162-97-0000 35 800S162-97-0500 36 800S162-97-1000 37 800S162-97-2100

PAGE 191

174 362S125-33-000 The test specimen, 362S125-33-000, was tested without mid-height lateral bracing. Figure A1.1 shows the cee stud specimen in the Riehle Universal Testing Machine prior to testing. To ensure static response of th e stud to the applied load, it was loaded at 5 lbs/sec during the entire test. The weak ax is lateral displacement was measured with linear potentiometers LP-1 & LP-3, attached to the north flange, and LP-2 & LP-4, attached to the south flange. The strong axis displacement was measured using LP-5, attached to the south flange. From an axial load of zero to 275 lbs, the north and sout h flanges laterally displaced to the east by 0.070 and 0.053 inches respectively, (see Figure A1.7). From zero up to 600 lbs, the axial compression of th e stud is comparable and parallel to the initial elastic stiffness line, as shown in Figur e A1.5. At this load level, there was no strong axis movement, as s hown in Figure A1.7, and the north and south flanges had moved by 0.074 inches and 0.13 inches, respecti vely. The mid-height differential lateral displacement of the two flanges indicates the flexural-torsion al buckling of the stud, as shown in Figure A1.2. From 600 lbs to 1000 lbs of axial load, strong axis buckling of the stud was observed and the lateral displacement of the mid-height section increased from 0.014 inches to 0.061 inches (see Figure A1 .7). The axial sh ortening due to the compressive load was equaled by the elongation of the north flange due to strong-axis flexural buckling of the stud. This resulted in no change in axial shortening as measured by LP-6, attached to the north flange. At 1000 lbs of axial load, th e north and the south flanges had moved east by 0.25 inches and 0.50 inches respectively, and the strong axis had moved north by 0.055 inches (see Figure A1.3).

PAGE 192

175 On further loading, the stud reached its maximum capacity at an axial load of approximately 1127 lbs. With the load being constant at this cri tical load, the axial shortening increased from 0.017 inches to 0.034 inches, causing the stud to buckle in first mode flexural-torsion. The axial load started to drop gr adually with the formation of a local buckle on the south flange-lip junction, at about 3 feet from the bottom end of the stud. Figures A1.4a and A1.4b show the partia l and overall views of the stud at failure. In these figures, the local buckle in the flange can be seen in the lower half of the stud.

PAGE 193

176 Figure A1.1 Overall View of Stud 362S125-33-000 in the Riehle UTM (Looking East) Figure A1.2 Elastic Flexural-Torsional Buckling of Stud 362S125-33-000 at an Axial Load of 500 lbs Figure A1.3 Elastic Flexural-Torsional Buckling of Stud 362S125-33-000 at an Axial Load of 1000 lbs (Looking North) (a) Local Buckle at 1-6 from Mid-Height (b) Overall View (Looking East) Figure A1.4 Final Buckled Shape of Stud 362S125-33-000

PAGE 194

177 Figure A1.5 Plot of Axial Load vs. Axial Shortening Figure A1.6 Plot of Axial Load vs. W eak Axis Displacement at Mid-Height

PAGE 195

178 Figure A1.7 Plot of Axial Load vs. St rong Axis Displacement at Mid-Height

PAGE 196

179 362S125-33-100(1) The stud 362S125-33-100(1) was braced with total brace stiffness of 192 lbs/in. The brace stiffness was 2 times the required idea l bracing, as described in Chapter 3. Figure A2.1 shows the stud in the Riehle Universal Testing Machine before the test. The mid-height displacement of the two flanges was measured by linear potentiometers LP-1 & LP-3 attached to the north flange and LP-2 & LP-4 attach ed to the south flange. The mid-height strong axis lateral displacement was measured with LP-5 attached to the south flange. The stud was loaded at 5 lbs/sec to ensu re static response to the applied loading. From zero to about 650 lbs of axial load, the strong axis displaced south by 0.015 inches, as shown in Figure A2.8. From an axial load of 650 lbs to the maximum load, there was predominant strong axis displacement towards the north. It can be observed in Figure A2.2 that there is a differential moveme nt in the two flanges at the top of the stud as compared to the movement at mid-height, indicating flexural-torsi onal buckling in the top-half of the stud. At an axial load of 2000 lbs, th e north and south flanges had displaced relatively by the same amount of 0.065 inches and 0.070 inches, respectively. Both the flanges were moving at the same ra te, without any torsi on of the mid-height cross-section, as can be observed in Figure A2.7. Figure A2.5 shows that, at 650 lbs of axial load, an axial shortening of 0.15 inches is measured on the north flange. From 650 lbs to 1350 lbs, the lin ear potentiometer did not record any axial shortening, which can be attributed to the begi nning of the flexural buckling about the strong axis. During this period of loading, the axial shortening was the same as the elongation due to flexural buckl ing. With increase in the axial load up to 2000 lbs, the elongation in the no rth flange was greater than the axial shortening, and the strong axis had displaced north by 0.14 inches Again, from 2000 lbs up to the maximum

PAGE 197

180 load, the effect of axial shor tening was neutralized by the el ongation of the north flange due to strong axis movement. At the maxi mum load, the strong axis had moved north by 0.25 inches, whereas the weak axis had move d east by the same amount of 0.08 inches on both the flanges. The brace forces, BF-3 and BF-4, were seen to increase linearly up an axial load of 1700 lbs, and at this load they measured 5 lb s and 6.6 lbs, respectively (see Figure A2.6). From 1700 lbs up to the maximum load of 2750 lbs, force in BF-4 dropped to 1.5 lbs, whereas force in BF-3 continued to increase and measured 7.7 lbs at the maximum load. There were no brace forces recorded in BF-1 and BF-2, indicating that the mid-height cross-section was under flexur al buckling about the weak axis in second mode, along with torsional buckling in the top half of stud.

PAGE 198

181 Figure A2.1 Overall View of Stud 362S125-33-100(1) in the Riehle Machine Figure A2.2 Flexural-torsion of the Top-half of the Stud 362S12533-100(1) Figure A2.3 Flexural-Torsional Buckling of the Stud 362S125-33100(1) at an Axial Load of 2500 lbs Figure A2.4 Overall View of Stud 362S125-33-100(1) at maximum load after Failure.

PAGE 199

182 Figure A2.5 Plot of Axial Load vs. Axial Shortening Figure A2.6 Plot of Axial Load vs. Brace Forces

PAGE 200

183 Figure A2.7 Plot of Axial Load vs. W eak Axis Displacement at Mid-Height Figure A2.8 Plot of Axial Load vs. St rong Axis Displacement at Mid-Height

PAGE 201

184 362S125-33-100(2) The cee stud specimen, 362S125-33-100(2), had a total effective brace stiffness of 192 lbs/in., which was twice the ideal bracing stiffness requirement. Figure A4.1 shows the stud in the Riehle Universal Testing Machin e before the test. The stud was loaded at 5 lbs/sec to 10 lbs/sec, to en sure static response of the stud. The weak axis lateral displacement at mid-height was measured with linear potentiometers LP-1 & LP-3 attached to the north flange, and LP-2 & LP -4 attached to the south flange. The midheight lateral displacement of the strong axis was measur ed with LP-5. The axial shortening was measured with LP-6, which was connected to the north flange. Initially, the slope of the load versus ax ial shortening was lesser than that of the initial elastic stiffness up to an axial load of about 400 lbs. At this point the stud started to undergo a multi mode buckling in strong axis flexural and torsional. This can be observed in Figure A3.8 with LP-5 measuri ng northward displacement. The brace forces up to this point measured zero and remained unchanged. From this load onwards to the ultimate load, there was strong axis flexural buckling which is evident in Figure A3.8. From an axial load of 400 lbs to 1400 lbs th ere was first mode torsional buckling of the stud as shown in Figure A3.2 in which there is clear differential movement of the north and south flanges. In Figure A3.6, the brace fo rces in BF-1 and BF-4 are increasing with increasing load, providing torsiona l restraint to buckling. At an axial load of 1000 lbs, the forces in BF-1 dropped off to zero, and for ce in BF-3 started to pick up, with force in BF-4 remaining mostly constant at 1.0 lbs. The strong axis had moved northward to 0.4 in. at this same load, whereas the displacemen t of the weak axis was insignificant and the axial shortening being 0.01 in.

PAGE 202

185 When the axial load reached 1800 lbs, the brace force in BF-4 reached zero, and that in BF-2 started to incr ease from a previous value of zero, whereas BF-3 measured 8.18 lbs. This indicates the torsional buckli ng, which can be observed in Figure A3.7 but the torsional buckling began at 1500 lbs. At the ultimate load of 2305 lbs, the stud had buckled in second mode flexural and second mode torsional buckling. Figure A3.4 shows the final buckl ed shape of the stud at the ultimate load.

PAGE 203

186 Figure A3.1 Overall View of Stud 362S125-33-100(2) in the Riehle Machine (Looking East) Figure A3.2 Beginni ng of FlexuralTorsional buckling of Stud 362S12533-100(2) at an axial load of 400 lbs Figure A3.3 Flexural Torsional buckling of Stud 362S125-33-100(3) at an Axial Load of 1800 lbs (Looking East) Figure A3.4 Flexural Torsional buckling of Stud 362S125-33-100(3) at an Axial Load of 1800 lbs (Looking East)

PAGE 204

187 Figure A3.5 Plot of Axial Load vs. Axial Shortening Figure A3.6 Plot of Axial Load vs. Brace Forces

PAGE 205

188 Figure A3.7 Plot of Axial Load vs. W eak Axis Displacement at Mid-Height Figure A3.8 Plot of Axial Load vs. St rong Axis Displacement at Mid-Height

PAGE 206

189 362S125-33-100(3) The cee stud specimen, 362S125-33-100(3), had a total effective brace stiffness of 201 lbs/in, which was twice the ideal bracing stiffness requirement. Figure A3.1 shows the stud in the Riehle Universal Testing Machin e before the test. The stud was loaded at 5 lbs/sec to 10lbs/sec, to ensure static re sponse of the stud. The weak axis lateral displacement at mid-height was measured with linear potentiometers LP-1 & LP-3 attached to the north flange, and LP-2 & LP -4 attached to the south flange. The midheight lateral displacement of the strong axis was measur ed with LP-5. The axial shortening was measured with LP-6, which was connected to the north flange. The axial shortening was nearly parallel to the initial stiffness line and is shown in Figure A3.5. From an axial load of zero to 1000 lbs, the lateral disp lacement of both, the strong and the weak axes, was slight, and at 1000 lbs both axes had displaced laterally by approximately 0.02 inches north and east, respec tively. At this load, the brace forces in both BF-3 and BF-4 were about 0.9 lb, as shown in Figure A3.6. When the axial load reached 1200 lbs, the two flanges exhibited differential movement, indicating torsional bu ckling of the mid-height secti on. At an axial load of about 1500 lbs, the bottom end of the stud deve loped an end-zone failure due to section distortion. The flanges were prevented from softening by th e vertical leg of the bottom track, as shown in Figure A3.2. From an ax ial load of 1450 lbs to 1650 lbs, the lateral displacement of the strong axis towards north changed from 0.052 inches to 0.090 inches (see Figure A3.8). The test specimen reached an initial peak load of about 2250 lbs, and then gradually lost stiffness and reached a maximum axial load of 2400 lbs. Up to 2250 lbs, the axial shortening was parallel to the initial stiffness line, and at that load level, it was

PAGE 207

190 0.03 inches and the brace forces in BF-3 & BF-4 were about 6 lbs and 2 lbs, respectively. At about 2300 lbs distortional buckling was obser ved at a punchout in the top-half of the cee stud, (see Figure A3.3). On reachi ng the maximum load, the axial shortening increased to 0.06 inches, the brace forces in BF-3 dropped to about 1.0 lb and that in BF4 reached 15 lbs. At this load, the sout h flange had moved east by 0.16 inches and the north flange had moved to the initial positi on (see Figure A3.7). Failure of the test specimen was due to the bottom endzone crumple (see Figure A3.4).

PAGE 208

191 Figure A3.1 Overall View of Stud 362S125-33-100(3) in the Riehle Machine (Looking East) Figure A3.2 Beginni ng of Distortion at Bottom of Stud 362S125-33-100(3) at an axial load of 1500 lbs Figure A3.3 Distortion at a Webperforation of Stud 362S125-33-100(3) at an Axial Load of 2300 lbs (Looking East) Figure A3.4 Bottom Track-Stud End failure of Stud 362S125-33-100(3) at an axial load of 2400 lbs

PAGE 209

192 Figure A3.5 Plot of Axial Load vs. Axial Shortening Figure A3.6 Plot of Axial Load vs. Brace Forces

PAGE 210

193 Figure A3.7 Plot of Axial Load vs. W eak Axis Displacement at Mid-Height Figure A3.8 Plot of Axial Load vs. St rong Axis Displacement at Mid-Height

PAGE 211

194 362S125-33-200 Figure A5.1 shows cee stud 362S125-33-200 in the Riehle Testing Machine. The stud was loaded at the rate of 5 to 15 lbs/sec and the axial load was measured with a 100 kip load cell mounted at the base. The weak axis lateral displacem ent was measured with linear potentiometers LP-1 & LP-3, attached to the north flange and LP-2 & LP-4 attached to the south flange. The strong axis displacement was measured using LP-5, attached to the south flange. Figure A5.5 shows the plot of axial load versus axial shortening of the stud. The brace forces were measured with four 150 lbs S-beam load cells and a plot of axial load verses brace forces is shown in Figure A5.6. From zero to an axial load of 500 lbs, th e forces in BF-1 & BF-2 reached 2.5 lbs each with a net change of 0.4 lbs, and can be associated with initial seating of the stud. On further loading these brace forces reduced to zero, at an axial load of about 1000 lbs. The forces in BF-3 and BF-4 showed a net incr ease of about 1.5 lb. At this load level, there was no axial shortening of the stud, the stud displaced about its strong axis and had moved north by 0.07 inches. When the axial load reached 1800 lbs, the stud had displaced about the strong axis and had m oved north by 0.12 inches, as shown in Figure A5.8. There was minimal weak axis movement with the increase in axial load, because the stud seemed to be buckling in second mode flexure. At this lo ad level, distortional buckling was observed above the bracing, as shown in Figure A5.2(a). With further increase in the load, the distortional buc kling was observed to progress from the midheight to both the top and bo ttom halves of the stud. From an axial load of 1800 lbs to 2300 lbs, the brace forces in BF-3 increased linearly by a net of 4.5 kips, BF-2 changed fr om 0.2 to 0.9 lb, with the other two brace

PAGE 212

195 wires recording zero. From this load level and up to the maximum load, the brace forces in BF-2 and BF-3 increase d linearly and measured about 4.0 lbs and 7.0 lbs. At an axial load of 2800 lbs, the distor tional waves were seen all along the length of the stud, as shown in Figure A5.2(b). When the load reached 3000 lbs, a local buckle started to form in the two flanges and the tw o lips causing the stud to gradually fail, as shown in Figure A5.3. This local buckle was located at about 2-0 from the top end of stud, and at this load level, the axial shorte ning of the stud increased from 0.02 inches to 0.03 inches. At failure, the studs strong ax is had moved north by 0.18 inches, and the weak axis had moved east by 0.018 inches. Fi gs. A5.4a and A5.4b show the top half and bottom half of the final buckled shape of the stud in second mode flexure.

PAGE 213

196 (a) Top-half (b) Bottom-half (Looking North) Figure A5.4 Final Vi ew of Stud 362S125-33200 (a) at 1800 lbs (b) at 2800 lbs (Looking East) Figure A5.2 Distortion Buckling of the Stud 362S125-33-200 at various Axial Load Figure A5.1 Overall View of Stud 362S125-33-200 in the Riehle Testing Machine (Looking East) Figure A5.3 Local Buckling of Stud 362S125-33-200 at an axial load of 3000 lbs (Looking East)

PAGE 214

197 Figure A5.5 Plot of Axial Load vs. Axial Shortening Figure A5.6 Plot of Axial Load vs. Brace Forces

PAGE 215

198 Figure A5.7 Plot of Axial Load vs. W eak Axis Displacement at Mid-Height Figure A5.8 Plot of Axial Load vs. St rong Axis Displacement at Mid-Height

PAGE 216

199 362S125-33-400 Figure A6.1 shows the overall view of the cee stud 362S125-33-400 in the Riehle Universal Testing Machine, prior to the test The cee stud specimen was loaded at 5 to 15 lbs/sec to ensure static response of the stud to the applied load. The weak axis movement was measured by the linear potentiometers LP-1 & LP-3 attached to the north flange and LP-2 & LP-4 attached to the s outh flange. The strong axis movement was measured by LP-5 attached to the south fla nge. These instruments were located at midheight of the stud. The initial loading and unloading to 200 lbs ensured that the stud was properly seated within the end tracks. The plot of th e axial load versus axial shortening is shown in Figure A6.5. From zero to about 1000 lbs, the axial shortening showed a linear increase. When the axial load reached 1000 lbs, the stud began to exhibit weak axis flexural-torsional buckling. The north a nd the south flanges had both moved east by 0.026 inches and by 0.045 inches, respectively (see Figure A6.7). At this load level, the strong axis movement was measured to be 0.45 inches towards the north by LP-5 (see Figure A6.8) and the brace forces BF-3 & BF -4 measured 3 lbs each (see Figure A6.6). From 1000 lbs to 1800 lbs, the top-half of the stud twisted anti-clockwise and bottom-half of the stud twisted clockwise. Up to an axial load of 1800 lbs, the plot of axial shortening is relatively li near, but steeper than the ini tial stiffness line (see Figure A6.5). At an axial load of 1800 lbs, a dist ortional buckle in the fl ange was visible at about one foot above the location of the brace -wires (see Figure A6.2(a )). At this load, the north flange had moved east by 0.034 in ches, the south flange had moved east by 0.075 inches, and the strong axis had moved north by 0.085 inches. The brace forces in both BF-3 & BF-4 measured 6.0 lbs.

PAGE 217

200 From 1800 to 2000 lbs there was no incremental axial shortening. At an axial load of 2000 lbs elastic buckling waves were seen in the web, along with distortional buckling in the flanges. With increase in the axial load from 2000 lbs to 2800 lbs, the plot of axial shortening is seen to be parallel to the initia l elastic stiffness line. When the axial load reached 2800 lbs, the distortional waves were seen along the full length of the stud on the flanges (see Figure A6.2(b)). At this load level, a local buckle on the south flange-lip was seen at about one foot above the braces (see Figure A6.3). With further increase in axial load it wa s seen that the east displacement of the north flange was greater than that the s outh flange causing a greater force in BF-3 compared to BF-4. Beyond this load level up to the maximum load, the incremental load carrying capacity of the stud occurred with mu ch larger axial deformation. The axial load increased gradually from 2800 lbs till it reached a maxi mum of 2960 lbs, with very large axial shortening owing to the flexural-t orsional buckling of the stud. During this load plateau, the north flange displaced from 0.09 to 0.13 inches, and the south flange displaced from 0.13 to 0.26 inches while the strong axis displaced from 0.18 inches to 0.26 inches towards the north. The measured brace forces in BF-3 and BF-4 were 17 lbs and 13 lbs at the maximum load, respectively. The axial load then gradually dropped off to 2600 lbs as the brace forces increased to 30 lbs in both BF-3 and BF-4. There was a sudden drop in the axial load fr om this level to about 2200 lbs, and at this new load level, the stud underwent a constant axial deforma tion at a constant load. The test was concluded when the axial deformation was si gnificant and measured 0.066 inches. The final buckled shape of the stud is shown in Figure A6.4 and can be measured as second max flexure-torsion.

PAGE 218

201 Figure A6.1 Overall View of Stud 362S125-33-400 in UTM (Looking East) (a) at 1800 lbs (b) at 2800 lbs Figure A6.2 Distortional Buckling at various Axial Loads of Stud 362S125-33-400 (a) Top-Half (b) Bottom-Half Figure A6.3 Local Buckling at an Axial load of 2800 lbs in the Stud 362S125-33-400 in Figure A6.4 Overall View of Stud 362S125-33-400 at maximum load (Looking North)

PAGE 219

202 Figure A6.5 Plot of Axial Load vs. Axial Shortening Figure A6.6 Plot of Axial Load vs. Brace Forces

PAGE 220

203 Figure A6.7 Plot of Axial Load vs. W eak Axis Displacement at Mid-height Figure A6.8 Plot of Axial Load vs. St rong Axis Displacement at Mid-Height

PAGE 221

204 362S162-43-000 The cee stud specimen 362S162-43-000 was tested with no bracings. It was loaded at the rate of 8 to 10 lbs/sec, to ensure stat ic response to the applied load. The overall view of the stud in the test frame is shown in Figure A7.1. The plot of the axial load versus the axial shortening, shown in Figure A7.5, is comparable and parallel to the initial elastic stiffness line for most of the test. Figure A7.6 shows the displacements of the mid-height cross-section w ith increasing ax ial load. Up to an axial load of 2500 lbs, first mode weak axis flexural buckling was observed. The linear potentiometers LP-1 & LP-3 and LP-2 & LP-4, attached to the north and south flanges, recorded a displacement of 0.25 inches each, respectively. At the same load, the strong axis had moved north by 0.08 inches (see Figure A7.7). From 2500 lbs to the maximum axial load, th e stud started to buckle in first mode flexural-torsion and the two fl anges exhibited differential movement towards the east. The mid-height cross-section twisted clockwise. Figure A7 .2 shows the stud at 4000 lbs and first mode flexural-torsional buckling is clearly observed. On reaching the maximum load of about 5250 lbs, the axial shortening was 0.05 inches, the north flange had moved east by 1.0 inch, and the south flange had move d back to 0.05 inches east. The strong axis had moved north by 0.5 inches. Figure A7.4 shows the stud at 5250 lbs with a local buckle in the south flange. Figure A7.4 shows the close-up view of the local buckle in the south flange-web junction.

PAGE 222

205 Figure A7.2 Flexural-torsion of the Stud 362S162-43-000 at an Axial Load of 4000 lbs (Looking East) Figure A7.3 Flexural-torsion of the Stud 362S162-43-000 at an Axial Load of 5250 lbs (Looking North) Figure A7.4 Final View of the Stud 362S162-43-000 at Failure (Looking North) Figure A7.1 Overall View of Stud 362S162-43-000 in the Riehle Machine (Looking East)

PAGE 223

206 Figure A7.5 Plot of Axial Load vs. Axial Shortening Figure A7.6 Plot of Axial Load vs. W eak Axis Displacement at Mid-Height

PAGE 224

207 Figure A7.7 Plot of Axial Load vs. St rong Axis Displacement at Mid-Height

PAGE 225

208 362S162-43-200 The cee stud specimen 362S162-43-200 was te sted with eff ective total brace stiffness of 371 lbs/in. The bracing provi ded was close to tw ice the ideal bracing requirement. To ensure static response of the stud to the applied load, it was loaded at the rate of 8 to 12 lbs/sec The overall view of the stud in the test frame is shown in Figure A8.1. The plot of the axial load ve rsus the axial shorte ning, shown in Figure A8.5, is comparable and parallel to the initial elastic stiffness line. From an axial load of zero to 2500 lbs, the mid-height displacement of the weak axis towards east indicates flexural buckling. At this load, the linear potentiometers LP-1 & LP-3 and LP-2 & LP-4, attach ed to the north and south fla nges, respectively, recorded a lateral displacement of 0.05 inches on both fl anges (see Figure A8.7). At this load level, the mid-height lateral displacement of the strong axis was 0.05 in ches to the north (see Figure A8.8). The brace forces in BF-3 and BF-4 measured 8 lb s in both the braces, and is shown in Figure A8.6. From 2500 lbs to the maximum axial load, the stud buckled in second mode flexural-torsion as differential lateral displacements were recorded between the two flanges (see Figure A8.7). The brace force in BF-3 continued to increase whereas the force in BF-4 remained constant at around 9 lb s. At an axial load of 4050 lbs, the crosssectional distortion was visi ble close to a web punchout, as shown in Figure A8.2. On reaching the maximum load of about 7250 lbs, the axial shortening was 0.09 inches, the north flange had moved by 0.1 in ch to the east, and the south flange had moved back to 0.03 inches from its initial position. At the maximum load level, there was a local buckle formation in the we b, and is shown in Figure A8.3.

PAGE 226

209 The strong axis lateral displacement was 0.15 inches to the north. At failure the stud had buckled in first mode flexure with second mode torsion as shown in Figure A8.4.

PAGE 227

210 Figure A8.2 Distortion at a Webperforation of the Stud 362S162-43-200 at an Axial Load of 4050 lbs Figure A8.3 Distortion of the Stud 362S162-43-200 at the Maximum Axial Load (Looking East) Figure A8.4 Final View of the Stud 362S162-43-200 beyond the Maximum Axial Load (Looking East) Figure A8.1 Overall View of Stud 362S162-43-200 in the Riehle Machine (Looking East)

PAGE 228

211 Figure A8.5 Plot of Axial Load vs. Axial Shortening Figure A8.6 Plot of Axial Load vs. Brace Forces

PAGE 229

212 Figure A8.7 Plot of Axial Load vs. W eak Axis Displacement at Mid-Height Figure A8.8 Plot of Axial Load vs. St rong Axis Displacement at Mid-Height

PAGE 230

213 362S162-43-400 The cee stud specimen 362S162-43-400 was tested with a total bracing stiffness of 734 lbs/in. It was loaded at th e rate of 10 to 15 lbs/sec, to ensure a static response. The overall view of the stud in the test frame is shown in Figure A9.1. The weak axis lateral displacement of the mid-height cross-section was measured by the linear potentiometers LP-1 & LP-3 and LP-2 & LP-4, attached to th e north and south flange s, respectively, and the strong axis lateral displacement was measur ed by LP-5 attached to the south flange. From zero to an axial load of 1400 lbs, th e flexural buckling of the stud caused the weak axis to move east. At this load le vel, the north and sout h flanges had laterally displaced to the east by 0.019 in ches, and the corresponding plot is shown in Figure A9.7. At this load level, the st rong axis had moved north by 0.043 inches as shown in Figure A9.8. During this loading phase, the brace fo rces in BF-3 and BF-4 increased with increasing axial load and at 1400 lbs both m easured about 7.0 lbs as shown in Figure A9.6. With further increase in axial load, th e relative change in the brace forces in BF-3 and BF-4 was different and at 2500 lbs, they measured 20.5 lbs and 8.2 lbs, respectively. From 1400 lbs to 4400 lbs of axial load, there was only a slight differential movement of the flanges that would be indicative of flexur al buckling of the stud while brace forces in BF-3 and BF-4 continued to increase and at 4400 lbs they measured 29 lbs and 18 lbs, respectively. At an axial load of 4400 lbs, a local buckl e was observed in the cross section in the vicinity of a web punchout and is shown in Figure A9.2. When the axial load increased to 5400lbs, the force in BF-4 had reached a peak value of 20 lbs and then had started to decrease, wh ereas the force in BF-3 remain ed constant at 30 lbs. On reaching the maximum axial load of 7029 lbs, the axial shortening was 0.09 inches, the north flange had moved by 0.08 inch to the ea st, and the south flange had moved back to

PAGE 231

214 0.03 inches from the initial position. The mi d-height section had la terally displaced to the north by 0.21 inches. At the maximum load level, the brace forces in BF-3 and BF-4 measured 37 lbs and 0 lbs, respectively. The final buckled shap e of the stud can be described as first mode flexure c oupled with second mode torsion.

PAGE 232

215 Figure A9.2 Distortion at a Webperforation of the Stud 362S162-43400 at an Axial Load of 4400 lbs Figure A9.3 Distortional wave in the flanges of Stud 362S16243-400 at 7000 lbs of Axial Load Figure A9.4 Final View of the Stud 362S162-43-400 beyond the Maximum Axial Load (Looking East) Figure A9.1 Overall View of Stud 362S162-43-400 in the Riehle Machine (Looking East)

PAGE 233

216 Figure A9.5 Plot of Axial Load vs. Axial Shortening Figure A9.6 Plot of Axial Load vs. Brace Forces

PAGE 234

217 Figure A9.7 Plot of Axial Load vs. W eak Axis Displacement at Mid-Height Figure A9.8 Plot of Axial Load vs. St rong Axis Displacement at Mid-Height

PAGE 235

218 362S162-43-800 The overall view of the test specimen, pr ior to testing, in the Riehle Universal Testing Machine is shown in Figure A10. 1. The stud 362S162-43-800 was braced with a total brace stiffness of 1478 lbs/in., whic h was about seven times the ideal bracing requirement. Axial load was applied at a rate of 10 lbs/sec, to ensu re static response of the stud. The weak axis latera l displacement, at the mid-height of the stud, was measured with linear potentiometers LP-1 & LP-3 att ached to the north flange, and LP-2 & LP-4 attached to the south flange. The strong axis lateral displacement was measured with LP5 attached to the south flange of the stud. From zero to an axial load of 1750 lbs, there was minimal strong and weak axis lateral displacement or any observable change in the geometry of the stud. During this loading phase, the stud was observed to be buc kling in first mode flexure, though small, by the lateral displacement of th e weak axis. From Figure A10.6, it is observed that from 1750 lbs onwards, there was a noticeable change in the measured brace forces in BF-3 and BF-4, indicating the inception of torsional bu ckling. At an axial load of 2000 lbs, the north and south flanges had moved east by 0.037 inches and 0.013 inches, respectively, with northward movement of the strong axis being 0.005 inches. At this same load, the brace forces in BF-3 and BF-4 measured 11.8 lbs and 7.92 lbs, respectively. The differential brace forces in BF-3 and BF-4 a nd the differential movement of the north and south flanges, as shown in Figs. A10.6 and A 10.7, indicate that to rsional buckling of the mid-height cross-section was occurring. The plot of axial load versus axial shortening of the stud was parallel to the initial elastic stiffness line up to an axial load of about 5000 lbs as shown in Figure A10.5. With increase in the axial load the stud seemed to rotate ab out the southeast corner with

PAGE 236

219 BF-3 preventing this ro tation. At an axial load of 5000 lbs, a local buckle was observed to initiate near the vicinity of a web punc hout, causing portion of a we b to be ineffective in carrying the compressive load. Figure A 10.2 shows the formation of the local buckle in the web at about 1.5 ft from the mid-height in the upper half of the stud specimen. When the axial load reached about 6400 lbs, the brace force in BF-4 measured zero and beyond this point, the force in BF-2 started to increase. At an axial load of about 6535 lbs, the stud failed by sec ond-mode torsional buckling. At this load, the force in BF-3 measured 30 lbs, and that in BF-2 was 5 lbs. The strong axis had moved north by 0.09 inches, and the weak axis movement wa s defined by the displacement of the north flange towards the east by 0.09 inches and the south flange towards the west by 0.03 inches. Figure A10.3 shows the overall vi ew of the stud at fa ilure and Figure A10.4 shows a close view of the local buckle formed in both the south flange and the web of the stud, at about 1.5 ft from mid-height of the stud in th e vicinity of a web punchout.

PAGE 237

220 Figure A10.1 Overall view of Stud 362S162-43-800 in the Riehle Testing Machine (Looking East) Figure A10.2 Local Buckling in the Web at an Axial Load of 5000 lbs, of the Stud 362S162-43-800 (Looking East) Figure A10.3 Final Buckled Shape of the Stud 362S162-43-800 (Looking East) Figure A10.4 Final Buckled Shape of the Stud 362S162-43-800 (Looking North)

PAGE 238

221 Figure A10.5 Plot of Axial Load vs. Axial Shortening Figure A10.6 Plot of Axial Load vs. Brace Force

PAGE 239

222 Figure A10.7 Plot of Axial Load vs. W eak Axis Displacement at Mid-Height Figure A10.8 Plot of Axial Load vs. St rong Axis Displacement at Mid-Height

PAGE 240

223 362S162-68-000 The stud 362S162-68-000 was tested without any bracing. The stud was loaded initially at 10 lbs/sec and then at 5 lbs/sec, to ensure stat ic response of the stud to the applied load. The overall view of the stud in the Riehle Testing Machin e, prior to testing, is shown in Figure A11.1. The weak axis lateral displacement at mid-height was measured with linear potentiometers LP-1 & LP-3 and LP-2 & LP-4, attached to the north and south flanges, resp ectively, and the strong axis was measured with LP-5 attached to the south flange. From the very beginning of the testing, the stud exhibited first mode flexuraltorsional buckling. The plot of the axial load versus average weak axis displacement shows that the north and south flanges were moving to the east due to combined first mode flexural buckling about weak axis and first mode to rsional buckling. Torsional buckling of the stud caused the two flanges to m ove at different rates with respect to the applied load. From zero to 1000 lbs of axial load, no ax ial shortening was recorded, since it was nullified by the eff ect of elongation of the north flange. From 1000 lbs to 3300 lbs, the axial shortening was nearly parallel to th e initial elastic stif fness line, and at 3300 lbs it was 0.02 inches (see Figure A11.5), equal to the computed value on the initial elastic stiffness line. At this load level, the north and the south flanges had moved east by 0.28 inches and 0.67 inches, respectively. On further loading of the stud, slight increments in the applied load caused excessive buckling of the stud, which caused higher axial shortening than the computed value of the initial elastic s tiffness as shown in Figure A 11.5. There was no appreciable strong axis buckling since the weak axis firs t mode flexure combined with first mode torsion was the controlling limit state. The pl ot of mid-height late ral displacement of the

PAGE 241

224 strong axis is shown in Figure A11.7, and at 5400 lbs, a significant change in the strong axis displacement was observed. At an axia l load of 5600 lbs, a distortional buckle was observed on the south flange cau sing the cross section become less effective in carrying the compressive load. At this load level, the lateral disp lacement of the north and south flanges to the east were 0.49 inches and 1.64 inches, respectively. Figure A11.3 shows a close-up view of the distortional buckle at 5800 lbs. The load then reached a maximum of approximately 6450 lbs, as part of the cr oss-section became ineff ective in carrying the compressive load. At this load level, the axial deformation and the mid-height lateral displacement were sufficiently large to cause failure of the stud. The axial shortening was 0.165 inches, the lateral displacement of the north and south flanges to the east were 0.91 and 2.87 inches, respectively, and the di splacement of the of strong axis was 0.47 inches to the north. The final buckled shape of the stud is shown in Figure A11.4, which is identified as first mode flexural-torsional buckling.

PAGE 242

225 Figure A11.2 Flexural-Torsional Buckling of the Stud 362S162-68-000 at an axial load of 4000 lbs Figure A11.3 Distortional buckling of the Stud 362S162-68-000 at 6100 lbs of axial load Figure A11.1 Overall View of Stud 362S162-68-000 in the Riehle Machine (Looking East) (a) Looking East (b) Looking North Figure A11.4 Final View of the Buckled Shape of the Stud 362S162-68-000

PAGE 243

226 FigureA11.5 Plot of Axial Load vs. Axial Shortening Figure A11.6 Plot of Axial Load vs. W eak Axis Displacement at Mid-Height

PAGE 244

227 Figure A11.7 Plot of Axial Load vs. St rong Axis Displacement at Mid-Height

PAGE 245

228 362S162-68-500 The test specimen 362S162-68500 was braced with a total stiffness of 1023 lbs/in., which was about 2.4 times the ideal bracing requ irement. To ensure static response of the stud to the applied load, it was loaded at the rate of 10 to 20 lbs/sec Figure A12.1 shows the overall view of the stud in the Riehle Testing Machine, prior to testing. The mid-height lateral displacement of the weak axis was measured with linear potentiometers LP-1 & LP-3 and LP-2 & LP-4, attached to the north and south flanges, respectively, and that of the strong axis by LP -5 attached to the s outh flange. The weak axis movement was in the East-West directi on and that of the str ong axis was in NorthSouth direction. Figure A12.5 shows the plot of axial load versus axia l shortening of the stud along with the initial elastic stiffness line. From an axial load of zero to 1500 lbs, the stud was buckling about the strong axis, causing an in itial elongation of the north flange. At 1500 lbs, the lateral displacement of the strong ax is was 0.08 inches to the north (see Figure A12.8). From the beginning of the test it was observed that there was differential movement of the two flanges, as shown in Figur e A12.7. Up to an axial load of 3800 lbs, the brace forces in BF-3 & BF-4 increased at the same rate and at that load level both measured about 20 lbs (see Figure A12.6). From 3800 lbs to 7500 lbs, the brace force in BF-3 increased at a higher rate than that of BF-4. The brace force in BF-4 increase d at an almost constant rate up to 6900 lbs, and gradually attained a constant value of 37 lbs at an axial lo ad of 7500 lbs. At this load level, the north and south flanges had move d east by 0.08 and 0.17 inches, respectively, and the strong axis had moved north by 0.11 in ches. The brace forces in BF-3 and BF-4 measured 58 lbs and 37 lbs, respectively. During this loading phase, the stud was

PAGE 246

229 flexural buckling in first mode about the weak axis, as well as tors ional buckling in first mode. When the axial load reached 10000 lbs, there was distortion in the web of the cross section close to a web-punc hout, as shown in Figure A12.2. From an axial load of 7500 lbs to 13250 lbs, the brace force in BF-4 dropped to zero while the brace force in BF-3 continue d to increase measuring 147 lbs at 13250 lbs of axial load. At this load level, BF-4 was no longer effective, but BF-2 was actively bracing the stud. This demonstrates that at any point in the tes ting two brace-wires are effective in bracing the stud. On reaching the maximum load of 13384.0 lbs, the stud had axially shortened by 0.10 inches, the north flange had moved eas t by 0.414 inches and the south flange had moved west by 0.056 inches. The brace forces in BF-2 and BF-3 measured 5.2 lbs and 159.8 lbs, respectively. The strong axis ha d moved north by 0.13 inches. Figure A12.3 shows a close-up view of the lo cal buckle that occurred in the bottom-half of the stud. Figure A12.4 shows the final buckled shape of the stud in first mode flexural buckling about the weak axis along with first-mode torsional buckling.

PAGE 247

230 Figure A12.2 Distor tional Buckling of the Stud 362S162-68-500 at an Axial Load of 10000 lbs (Looking East) Figure A12.3 Close-up View of a Local Buckle of the Stud 362S162-68-500 at failure (a) Top-Half (b) Bottom-Half (Looking East) Figure A12.4 Final View of the Buckled Shape in the Stud 362S162-68-500 Figure A12.1 Overall View of Stud 362S162-68-500 in the Riehle Machine (Looking East) (a) Looking North (b) Looking East

PAGE 248

231 Figure A12.5 Plot of Axial Load vs. Axial Shortening Figure A12.6 Plot of Axial Load vs. Brace Forces

PAGE 249

232 Figure A12.7 Plot of Axial Load vs. W eak Axis Displacement at Mid-Height Figure A12.8 Plot of Axial Load vs. St rong Axis Displacement at Mid-Height

PAGE 250

233 362S162-68-750 The cee stud specimen 362S162-68-750 was bra ced with a total brace stiffness of 1538 lbs/in., which was about 3.5 times the ideal bracing requirement. To ensure static response of the stud to the applied load, it was lo aded at the rate of 10 to 25 lbs/sec The overall view of the stud in the Riehle Tes ting Machine is shown in Figure A13.1. The weak axis lateral displacement was measured at mid-height by linear potentiometers LP-1 & LP-3 and LP-2 & LP-4, attached to the nor th and south flanges, respectively, and the strong axis displacement was measured with LP-5, attached to the south flange. The plot of axial load versus axial shortening of the stud is mostly parallel to the initial elastic stiffness line and is shown in Figure A13.5. From zero to an axial load of 1700 lbs, the stud was buckling in first-mode fle xure. At this load level, the strong axis had moved north by 0.012 inches, and the nor th and south flanges had moved east by 0.009 and 0.021 inches, respectively. During this loading phase, the brace forces in both BF-3 and BF-4 increased at the same rate a nd at 1700 lbs, both measured 11.0 lbs. With further increase in load, the brace forces in BF-3 and BF-4 increased at almost the same rate up to 5300 lbs, and at that load level th e measured brace forces were 33.5 lbs each. At this load level, the str ong axis had moved north by 0.09 inches and the weak axis had moved east, with the north and south flanges having moved by 0.03 inches and 0.07 inches, respectively. From an axial load of 5300 lbs to 7500 lb s, the brace force in BF-4 increased at approximately the same rate, whereas BF-3 increa sed at a higher rate than earlier. At an axial load of 7500 lbs, BF-3 and BF-4 measur ed 64.0 lbs and 42.5 lbs, respectively. The weak axis had moved east with the north fla nge at 0.064 inches and the south flange at 0.094 inches, from its initial position. From 7500 lbs to about 8500 lbs the rate of

PAGE 251

234 increase in brace force in BF-4 started to decrease and became constant measuring 43.6 lbs, whereas that in BF-3 measured 69.0 lb s and was increasing at an axial load of 8500 lbs. When the load reached 11200 lbs, the axia l shortening of the stud was 0.07 inches, and the brace forces in BF-3 and BF-4 measur ed 40.1 lbs and 85.5 lbs, respectively. At this load level, both the flanges had move d east by the same amount of 0.089 inches, and the strong axis had moved north by 0.14 inches At this time second mode torsional buckling of the stud was observed. At a bout 12000 lbs there was a local buckle had formed in the top-half of the stud and it is as shown in Figure A13.2 at an axial load of 13000 lbs. Up to 11500 lbs the stud was buckling pre dominantly in flexure, but from 11500 lbs to the maximum load of 14000 lbs, the m ode changed to torsional buckling This was observed by the top-half of the stud tw isting clockwise and bottom-half twisting counterclockwise. At the maximum load the north flange had moved east by 0.13 inches, whereas the south flange had moved back to its initial position, and the strong axis had moved north by 0.22 inches. Due to the local buckling of the web, the axial stiffness of the stud decreased causing it to fall below the initial elastic stiffness line. At the maximum load, the axial shortening measur ed 0.096 inches, whereas the initial elastic stiffness line would have given an axial shor tening of 0.0844 inches. Fig A13.3 shows a close-up view of the local buckle in the tophalf of the stud. Figure A13.4 shows the overall final buckled shape of the stud and th e observed failure was identified as secondmode torsion.

PAGE 252

235 Figure A13.2 Buckled Shape of Stud 362S162-68-750 at an axial load of 13000 lbs (Looking East) Figure A13.3 Close-up View of a Local Buckle of the Stud 362S162-68-750 at failure (a) Looking North (b) Looking East Figure A13.4 Final View of the Buckled Shape of the Stud 362S162-68-750 Figure A13.1 Overall View of Stud 362S162-68-750 in the Riehle Machine (Looking East)

PAGE 253

236 Figure A13.5 Plot of Axial Load vs. Axial Shortening Figure A13.6 Plot of Axial Load vs. Brace Forces

PAGE 254

237 Figure A13.7 Plot of Axial Load vs. W eak Axis Displacement at Mid-Height Figure A13.8 Plot of Axial Load vs. St rong Axis Displacement at Mid-Height

PAGE 255

238 362S162-68-1000 The cee stud 362S162-68-1000 was tested with total brace stiffness of 2046 lbs/in., which was 4.7 times the ideal bracing requirement The stud was loaded at the rate of 10 to 20 lbs/sec, to ensure a static response to the applied load. The overall view of the stud in the test frame is shown in Figure A14.1. The plot of the axial load versus the axial shortening and the initial stiffness line are s hown in Figure A14.5. The mid-height weak axis lateral displacement was measured with linear potentiometers LP -1 & LP-3 and LP-2 & LP-4, attached to the north and south flanges, respec tively, and the strong axis displacement was measured with LP-5. From zero to an axial load of 950 lbs, the plot of axial shortening was steeper than the initial stiffness line and at 950 lbs it was 0.005 inches. Weak axis flexural buckling was observed, as shown in Figure A14.5. Fr om 1000 lbs to 2500 lb s of axial load, the strong axis moved south by 0.036 inches at mi d-height, and is show n in Figure A14.8. During this loading phase, the axial shortening wa s slightly greater than the initial elastic stiffness line and at 2500 lbs it was 0.023 inch es. This was accompanied with flexural buckling about the weak axis, which had moved the stud to the east by 0.023 inches, as measured on each flange (see Fi gure A14.7). At this load level, the strong axis had moved south by 0.036 inches as can be observe d in Figure A14.8. The brace forces in BF-3 and BF-4 had progressively increased a nd measured about 15 lbs each, as shown in Figure A14.6. With further increase in the axia l load, the brace force in BF-4 continue to increase at the same rate, but the force in br ace in BF-3 increased at a lower rate than previously observed. This is an indication that the beginning of to rsional buckling of the stud has commenced.

PAGE 256

239 When the axial load reache d about 4000 lbs, the stud ha d buckled in second mode torsion with a slight first mode flexure, i ndicated by the weak axis movement of the two flanges in Figure A14.7. As the axial load increased, the brace forces in BF-3 and BF-4 continued to increase and at 7500 lbs they measured 45 lbs and 70 lbs, respectively. With further increase in the axial load, the force in BF-3 started to decr ease, whereas the force in BF-4 continue to increase at the same rate up to the maximum load. The stud buckled gradually in second mode torsion. At an ax ial load of 10000 lbs, a local buckle in the web was observed near a punchout, in the bottom-half of the stud. At this load level, the second mode torsional buckling of lower-half of the stud can be seen in Figure A14.2. On reaching the maximum load of about 14750 lbs, the axial shortening of the stud was 0.14 inches, the north and south flange s had moved east by 0.065 inches and 0.18 inches, respectively. The mi d-height strong axis displacem ent was 0.11 inches to the south. At this maximum load, the brace forces in BF-3 & BF-4 measured 15 lbs and 128 lbs, respectively. Figure A14.3 shows a clos e-up view of the local buckle in the bottomhalf of the stud and Figure A14.4 shows the overall final buckled shape of the stud as being predominantly second-mode torsion.

PAGE 257

240 Figure A14.2 Local Buckling at a Webperforation of the Stud 362S162-68-1000 at an Axial Load of 10000 lbs (East View) Figure A14.3 Close-up View of the Local Buckle of the Stud 362S162-68-1000 Figure A14.4 Final View of the Buckled Shape of the Stud 362S16268-1000 (East View) Figure A14.1 Overall View of Stud 362S162-68-1000 in the Riehle Machine (East View)

PAGE 258

241 Figure A14.5 Plot of Axial Load vs. Axial Shortening Figure A14.6 Plot of Axial Load vs. Brace Forces

PAGE 259

242 Figure 13.7 Plot of Axial Load vs. W eak Axis Displacement at Mid-Height Figure A14.8 Plot of Axial Load vs. St rong Axis Displacement at Mid-Height

PAGE 260

243 600S125-33-000 The stud 600S125-33-000 was tested without an y lateral bracing. The overall view of the stud in the Riehle Testing Machine is shown in Figure A15.1. The load acting on the stud was measured as a response to an a pplied axial displacement. The specimen was loaded between 5 to 10 lbs/sec to ensure a st atic response to the applied load. The midheight displacement was measured with linear potentiometers LP-1 & LP-3 and LP-2 & LP-4 attached to the north a nd south flanges, respectively. The strong axis displacement was measured with LP-5, attached to the south flange. The plot of axial load versus axial shortening of the stud is shown in Figure A15.5. From zero to 800 lbs, the response of the st ud was linear, and beyond this load it became non-linear. At 800 lbs, the weak axis displacement, as show n in Figure A15.6, indicates that the north and south flanges recorded differential movement towards the east, measuring 0.33 inches and 0.13 inches, respec tively. The overall buckling of the stud seemed to be in first mode flexural-torsion. Though both distortiona l waves were visible in the flanges, elastic buckling waves in the web were observed as shown in Figure A15.2. On further increasing the load, the stud c ontinued buckling in first mode flexuraltorsion as the north flange continued to move east at a rate more than that of the south flange. The non-linear axial shortening was due to a loss of cross-sectional stiffness because of the distortional buckling occurri ng in the flanges. At an axial load of approximately 984.4 lbs, the stud reached its maximum load carrying capacity. At this load level, the north and south flanges record ed lateral displacements of by 0.70 inches and 0.27 inches to the east, respectively and the axial shor tening was 0.044 inches. With continued axial displacement there were no further increases in the displacement

PAGE 261

244 response of the stud. The stud was considered to have reached fa ilure when there was considerable distortion of the mid-height cr oss-section of the stud, as shown in Figure A15.3. The stud was unloaded and except for some residual twist, the stud did not exhibit any other physical damage. The stud was relo aded at the same rate as shown in Figure A15.4, the stud reached a maximum load of 820 lb s, before the load started to decrease. The figure also shows the induced local buc kles caused as a resu lt of severity of distortional buckling waves in the flanges of the stud.

PAGE 262

245 Figure A15.1 Overall View of Stud 600S125-33-000 in Riehle Machine Prior to Testing Figure A15.2 Elastic buckling waves in the web of Stud 600S125-33-000 at an Axial Figure A15.3 Cross-Section Distortion of the Stud 600S125-33000 at an Axial Load of 980 lbs (a) Top-half (b) Bottom-half Figure A15.4 Local Buckle & Distortion of the Stud 600S125-33-000 on Reloading to 800 lbs of Axial Load

PAGE 263

246 Figure A15.5 Plot of Axial Load vs. Axial Shortening Figure A15.6 Plot of Axial Load vs. W eak Axis Displacement at Mid-Height

PAGE 264

247 Figure A15.7 Plot of Axial Load vs. St rong Axis Displacement at Mid-Height

PAGE 265

248 600S125-33-030 The stud 600S125-33-030 was braced at midheight with a total brace stiffness of 61 lbs/inch, which was about 0.8 times the requi red ideal bracing. The overall view of the stud in the Riehle Machine is shown in Fi gure A16.1. It was lo aded between 5 to 10 lbs/sec to ensure stat ic response of the stud to the app lied load. Figure A16.5 shows the plot of axial load vers us axial shortening. Initially, the stud exhibited predominantly first-mode flexural -torsional buckling, with some twisting being measured at the mi d-height cross-section, as shown in Figure A16.7. The brace forces being measured in th e four brace wires att ached to the stud are given in FigureA16.6. When the axial load on the stud reached 500 lbs, elastic buckling waves with a wavelength equal to the width of the stud, were seen running longitudinally in the web. On further loading, the amplitude of these el astic buckling waves increased. At an axial load of 1000 lbs, distortional buckling was obs erved in the flanges as the strong axis began to move north at this load level. Up to an axial load of a bout 1600 lbs, there were no significant changes in the stud, except the growth of th e distortional buckling of the flanges, as shown in Figure A16.2. From 1600 lbs to 1900 lbs of axial load, the amplitude of the distortional wave above th e braces was severe enough to cause a local buckle as shown in Figure A16.3. At appr oximately 1900 lbs, the strong axis had moved north by 0.15 inches, the north and south fl anges had moved east by 0.64 inches and 0.24 inches, respectively, and the brace forces in BF-3 and BF-4 measured 19.4 lbs and 6.4 lbs, respectively. The flanges of the stud were rendered ineffective in carrying the applied compressive load, after reaching a final ma ximum value of 2270 lbs the load on the stud

PAGE 266

249 started to decrease. The final failure was cons idered to be first mode flexural buckling. With a brace stiffness less than the ideal re quirement, this is the expected mode of buckling.

PAGE 267

250 (a) Looking East (b) Looking North Figure A16.4 Final View of the Top end of the Stud 600S125-33-060 (a) at 1600 lbs (b) at 1900 lbs Figure A16.3 Distortional Wave in the Flanges of the Stud 600S125-33-030 Figure A16.1 Overall View of Stud 600S125-33-030 in Riehle Machine Prior to Testing Figure A16.2 Elastic Distortional waves in Stud 600S125-33-030 at an Axial Load of 1600 lbs

PAGE 268

251 Figure A16.5 Plot of Axial Load vs. Axial Shortening Figure A16.6 Plot of Axial Load vs. Brace Forces

PAGE 269

252 Figure A16.7 Plot of Axial Load vs. Weak Axis Movement at Mid-Height Figure A16.8 Plot of Axial Load vs. Strong Axis movement at Mid-Height

PAGE 270

253 600S125-33-060 The cee stud specimen 600S125-33-060 was bra ced with a total brace stiffness of 123 lbs/inch, which was 1.6 times the required ideal bracing. The ove rall view of the stud in the Riehle Testing Machine is shown in Figure A17.1. It was loaded between 10 to 20 lbs/sec to ensure static response to the applied load. Figure A17.5 shows the plot of axial load versus axial sh ortening of the stud. From an axial load of zero to 500 lbs, first mode weak axis flexural buckling governed the response of the stud. At an axia l load of 500 lbs, the strong axis had moved south by 0.022 inches and the weak axis had moved west by 0.01 inches. Elastic buckling waves were observed in the web a nd distortional waves we re observed in the flanges. The brace forces in BF-3 and BF -4 seemed to increase initially but only measured 0.24 lbs and 0.71 lbs, re spectively at this load level. When the load was approximately 1250 lbs, the upper-half of the stud near the topend showed excessive distortion as shown in Figure A17.2. At this load, the north and south flanges had moved west by 0.05 inches and 0.005 inches, respectively, and the strong axis had moved south by 0.025 inches. Th e forces in BF-1 and BF-4 measured 2.4 lbs and 0.3 lbs, respectively. This indicates that the midheight section was experiencing a slight torsional buckling al ong with some overall flexural buckling. With further increase in the applied load, the amplitude of the elastic buckling waves continued to increase and at an axial load of 1700 lbs, distortional buckling became predominantly visible. When the load was about 1700 lbs, there was a snapping sound that caused sudden disturbance as can be seen in all the plots shown in Figures A17.5 through A17.8. On visual inspection it was concl uded that the snapping sound was due to an elastic buckling

PAGE 271

254 wave changing the direction and amplitude at a particular location close to the bracewires. At this load, the strong axis di splacement abruptly changed direction from southward and started to move north. With further loading, the amplitude of th e distortional waves in the flanges and the elastic buckling waves in the web still conti nued to increase and Figure A17.3 shows the overall appearance of the stud at an axial load of 2100 lbs. The brace force that had developed in BF-1 was preventing the movement of the north flange. The distortional wave, having its maximum amplitude at the top-end of the stud was causing the track to loose its stiffness and deform with increasing load. At an axial load of about 2250 lbs, the di stortional wave led to the formation of a local buckle, just below the top-track, which ul timately caused the failure of the stud. At this load the brace force in BF-1 measured about 11 lbs, and the north and south flanges had moved by 0.21 inches and 0.04 inches to the west, respectively. From these observations it was conclude d that the stud failed by distortional buckling.

PAGE 272

255 Figure A17.1 Overall View of Stud 600S125-33-060 in Riehle Machine Prior to Testing Figure A17.2 Distortion of Top end of Stud 600S125-33-060 at an Axial Load of 1250 lbs Figure A17.3 Elastic buckling waves in the Stud 600S 125-33-060 at an Axial Load of 2100 lbs Figure A17.4 Final View of the Topend of the Stud 600S125-33-060

PAGE 273

256 Figure A17.5 Plot of Axial Load vs. Axial Shortening Figure A17.6 Plot of Axial Load vs. Brace Forces

PAGE 274

257 Figure A17.7 Plot of Axial Load vs. Weak Axis Movement at Mid-Height Figure A17.8 Plot of Axial Load vs. Strong Axis movement at Mid-Height

PAGE 275

258 600S125-33-200 The test specimen 600S125-33-200 was braced with a total br ace stiffness of 402 lbs/inch, which was 5.3 times the required ideal bracing. The overall view of the stud in the Riehle Testing Machine, prior to testing, is shown in Figure A 18.1. It was loaded between 10 to 25 lbs/sec to en sure static response to the applied load. Figure A18.5 shows the plot of axial load versus axial shortening of the stud. The mid-height lateral displacement of the weak axis was measured with linear potentiometers LP-1 & LP-3 and LP-2 & LP-4 attached to th e north and south flanges, re spectively and the strong axis displacement was measured with LP-5 attached to the south flange. From zero to an axial load of 1000 lbs, there was no lateral displacement at midheight indicating that there was no flexural or torsional buck ling of the stud occurring. At an axial load of approximately 1000 lbs, distortional buckling wa s observed at the top end of the stud, as shown in Figure A18.2. It can be seen in the figure that the north flange has deformed. Also at this load level, there was still no late ral displacement of the weak axis, whereas the str ong axis had moved south by 0. 025 inches (see Figures A18.7 and A18.8). The measured brace forces in BF-3 and BF-4 were 0.6 lbs and 2.2 lbs, respectively, as shown in Fi gure A18.6. With further increase in the axial load, distortional buckling waves were seen all along the length of the stud. At an axial load of 1250 lbs, local elastic buckling waves were seen in the web and are clearly visible in Figure A18.3. As th e axial load was increased, the elastic buckling waves became more predominant and the dist ortional waves became more severe. When the applied axial load reached 1700 lbs a snappi ng sound was heard, which can be seen as a disturbance in Figures A18. 5 through A18.8. On visual inspection it was concluded

PAGE 276

259 that the snapping sound was due to an elas tic buckling wave changing direction and amplitude. At a load of approximately 2125 lbs, the t op of the stud failed as shown in Figure A18.4. The weak axis movement was about 0.02 inches towards west. The brace forces in all the brace-wires almost dropped to zero. The failure of the stud was neither due to flexural buckling nor torsiona l buckling, but because of th e distortional buckling of the cross-sectional elements especially the flanges.

PAGE 277

260 Figure A18.1 Overall View of Stud 600S125-33-200 in Riehle Machine Prior to Testing (Looking East) Figure A18.2 Distor tional Buckling of Stud 600S125-33-200 at an Axial Load of 1000 lbs (Looking East) Figure A18.3 Elastic buckling waves in the Stud 600S125-33-200 at an Axial Load of 1250 lbs (Looking East) Figure A18.4 Final View of the topend of the Stud 600S125-33-200

PAGE 278

261 Figure A18.5 Plot of Axial Load vs. Axial Shortening Figure A18.6 Plot of Axial Load vs. Brace Forces

PAGE 279

262 Figure A18.7 Plot of Axial Load vs. W eak Axis Displacement at Mid-Height Figure A18.8 Plot of Axial Load vs. St rong Axis Displacement at Mid-Height

PAGE 280

263 600S162-43-000(1) The cee stud specimen 600S162-43-000(1) was te sted without any lateral bracing. Figure A19.1 shows the stud in th e Riehle Machine prior to the test. The stud was loaded at the rate between 8 to 10 lbs/ sec, to ensure static response to the applied load. The weak axis lateral displacement at mid-heig ht of the stud was meas ured with the linear potentiometers LP-1 & 3 and 2 & 4, attached to the north and south flanges, respectively, and the strong axis displacement was measured with LP-5, attached to the south flange. The axial shortening of the stud was measur ed by LP-6 attached on the north flange. The plot of axial load versus axial shortening of the stud is shown in Figure A19.5. From zero up to an axial load of about 2500 lb s, the plot of the ax ial load versus axial shortening curve shows a negative value. In Figure A19.7 it can be observed that the stud is exhibiting strong ax is buckling all through th e duration of the test. Due to the strong axis flexural buckling, the north flange was continuously expanding causing LP-6 to record the negative axial shortening. In Fi gure A19.6 it can be observed that the north and south flanges are moving in opposite direct ion, indicating twistin g of the mid-height cross-section due to to rsional buckling of the stud. At an axial load of 2500 lbs, the measured displacement were 0.045 inches to th e west on the south flange, 0.18 inches to the east on the north flange, while the strong axis displacement was 0.12 inches to the north. At approximately this load level, el astic buckling waves were observed in the web for the first time as shown in Figure A19.2. Beyond this axial load, the stud exhibited fi rst mode weak axis flexural buckling, which is evidently seen in Figure A19.6. The slope of the curve in Figure A19.1 is almost the same as the initial elastic stiffness line. With further increase in the axial load up to the maximum load, the stud exhibited fl exural-torsional buckling. At loads just

PAGE 281

264 prior to the maximum load, di stortional buckling waves was observed in the flanges of the top-half of the cee-stud for the first time. On attaining the maximum load, the dist ortional buckling led to formation of a local buckle in the flange-lip junction as s hown in Figure A19.4(a). At this same load level, the axial shortening was 0.014 inches, the weak axis movement of the north and south flanges were 0.34 and 0.24 inches to th e east, respectively, while the strong axis displacement was 0.19 inches to the north. Figure A19.4(b) shows the final view of the cee-stud at failure.

PAGE 282

265 (a) (b) Figure A19.2 Elastic Buckling in the Stud 600S162-43-000(1) at an Axial Load 4500 lbs Figure A19.3 First mode Flexural Buckling in the Stud 600S162-43000 at an Axial Load of 5200 lbs Figure A19.4 Distortional Buckling of the Stud 600S162-43-000 at (a) prior to Maximum (b) at Maximum load Figure A19.1 Overall View of the Stud 600S162-43-000(1) in the Riehle Testing Machine prior to testing

PAGE 283

266 Figure A19.5 Plot of Axial Load vs. Axial Shortening Figure A19.6 Plot of Axial Load vs. W eak Axis Displacement at Mid-Height

PAGE 284

267 Figure A19.7 Plot of Axial Load vs. St rong Axis Displacement at Mid-Height

PAGE 285

268 600S162-43-000(2) The cee stud specimen 600S162-43-000 was test ed without any lateral bracing. Figure A20.1 shows the stud in th e Riehle Machine prior to the test. The stud was loaded at the rate between 8 to 12 lbs/ sec, to ensure static response to the applied load. The weak axis lateral displacement at mid-heig ht of the stud was meas ured with the linear potentiometers LP-1 & 3 and 2 & 4, attached to the north and south flanges, respectively, and the strong axis displacement was measured with LP-5, attached to the south flange. The plot of axial load versus axial shortening of the stud is shown in Figure A20.5. From zero up to an axial load of about 2500 lbs, the plot coincides wi th the initial elastic stiffness, shown as a dashed line in Figure A 20.5. At about 1000 lb s, the local elastic buckling waves were visible in the stud web, how ever their amplitude was very small. At an axial load of 2500 lbs, the axial shortening was 0.018 inches, the north and south flanges had moved west by 0.42 and 0.28 inches respectively, as s hown in Figure A20.6 and the strong axis had moved south by 0.032 in ches (see Figure A20.7). From 2500 lbs up to the maximum load, the effective crosssectional area reduced, and the stud started loosing its stiffness. Figures A20.2 and 20.3 show the weak axis flexural buckling and distortional buckling in the flanges th at was occurring at about 4000 lbs. The stud reached its axial load carrying cap acity at about 4250 lb s subsequently the load started to decrease as lo cal buckling in the flanges ha d occurred. Figures 20.3 and 20.4 clearly shows first mode flexural buckling which agrees with the plot shown in Figure 20.6.

PAGE 286

269 Figure A20.2 Flexural Buckling of Top-half of the Stud 600S162-43-000 at an Axial Load of 4000 lbs Figure A20.3 Distorti onal waves in the top-half of the Stud 600S162-43-000 at an Axial Load of 4000 lbs Figure A20.4 Final View of the Stud 600S162-43-000 at the maximum load Figure A20.1 Overall View of the Stud 600S162-43-000 in the Riehle Testing Machine at an axial load of

PAGE 287

270 Figure A20.5 Plot of Axial Load vs. Axial Shortening Figure A20.6 Plot of Axial Load vs. W eak Axis Displacement at Mid-Height

PAGE 288

271 Figure A20.7 Plot of Axial Load vs. St rong Axis Displacement at Mid-Height

PAGE 289

272 600S162-43-030 The cee stud specimen 600S162-43-030 was bra ced with a total brace stiffness of 61 lbs/inch which was equal to about 0.2 times the ideal bracing requirement. Figure A21.1 shows the stud in the Riehle Machine prior to the test. Figure A21.5 shows the plot of axial load versus axia l shortening of the stud. The mid-height weak axis lateral displacement was measured by linear potenti ometers LP-1 & LP-3 and LP-2 & LP-4, attached to the north and south flanges, resp ectively, and LP-5 recorded the strong axis lateral displacement. Figure A21.7 shows that the stud exhibited first mode flexural buckling up to an axial load of about 1100 lbs, and the corresponding displacements of the north and south flanges, were 0.88 inches on both, respectivel y, with the strong axis starting to move southwards. The brace forces in BF-3 and BF -4 measured about 3.0 lbs each. The first elastic buckling waves in the web were obser ved at about 400 lbs of axial load, which were clearly visible at about 4000 lbs of axial load. With this increase in the axial load, there was only a slight change in the m easured displacements, and the brace forces remained less than 5 lbs in both BF-3 and BF-4. When the load reached about 4500 lbs, the south flange started to move west and the strong axis started to move north with elastic distortional waves visi ble in the south flange along the top-half of the stud (see Figure A21.3). On reaching the maximum load of about 7150 lbs, the south flange had moved west by 0.40 inches, the north flange ha d remained at 0.02 inches to the east, and the strong axis had moved north by 0.13 inch es. The corresponding br ace force in BF-2 was about 15 lbs. The failure was considered to be distortional base d on the severity of the elastic buckling waves and the distorti onal waves present, which led to a sudden simultaneous local buckling of the web a nd flanges, as shown in Figure A21.4.

PAGE 290

273 (a) Looking West (b) Looking North Figure A21.4 Final View of the Stud 600S162-43-030 at the maximum load Figure A21.3 Distortional waves in the top-half of the Stud 600S162-43030 at an Axial Load of 5000 lbs Figure A21.2 Elastic buckling waves in the Web of Stud 600S162-43-030 at an Axial Load of 4000 lbs Figure A21.1 Overall View of the Stud 600S162-43-030 in the Riehle Testing Machine, prior to the Test

PAGE 291

274 Figure A21.5 Plot of Axial Load vs. Axial Shortening Figure A21.6 Plot of Axial Load vs. Brace Forces

PAGE 292

275 Figure A21.7 Plot of Axial Load vs. W eak Axis Displacement at Mid-Height Figure A21.8 Plot of Axial Load vs. St rong Axis Displacement at Mid-Height

PAGE 293

276 600S162-43-075 The cee stud specimen 600S162-43-075 was bra ced with a total brace stiffness of 148 lbs/inch which was equal to about 0.5 tim es the ideal bracing requirement. Figure A22.5 shows the plot of axial load versus ax ial shortening of the st ud. It was observed that, from the start of the axial loading the ax ial deformation of the stud deviated from its initial elastic stiffness line. The stud reach ed two peak load capaci ties at two different axial deformations, as can be observed from Figure A22.5. The weak axis displacement of the stud wa s measured by the linear potentiometers, LP-1 & LP-3 and LP-2 & LP-4, attached to the north and south fla nges, respectively. Figure A22.8 shows that there was no strong ax is displacement until the first peak load was reached as measured by linear pototentio meter LP-5. The differential movement of the flanges though, indicates th at the mid-height cross-s ection was twisting along with the weak axis movement prior to the peak being reached (see Figure A22.7). The overall view of the stud before starting the test is shown in Figure A22.1. The stud was loaded at approximately 6 lbs/sec, to ensure static respons e of the stud. From zero up to the first peak load the brace force in the BF-3 was increasing without much change in the other brace for ces. Initially, up to 1500 lbs of axial load, the force in BF-3 reached 7 lbs, owing to the eastward moveme nt of only the north flange, as shown in Figures A22.6 and A22.7. When the axial load reached approximately 2000 lbs, elastic buckling waves were observed in the web. These waves had a wavelength of about 6 inches across the web and 6 inches or more along the length of the stud, as shown in Figure A22.2. At about 4000 lbs, the elastic buckling waves were observed to decrease in wavelength. A close obser vation of Figure 22.3 shows the plate buckling of the studs web. At this load, the brace force in BF-3 m easured 9.75 lbs, the weak axis movement of

PAGE 294

277 the north flange was 0.13 inch and that of the south flange was 0.04 inch, both towards the east. At approximately 5000 lbs, distortio nal waves were observe d in the two flanges having a wavelength of about 24 inches. At the first peak axial load of 6025 lbs, the top track star ted to loose stiffness owing to the distortional buckling of th e flanges at the top of the stud, at an axial deformation of 0.1 inches. At about 24 inches from the t op distortional wave, a local buckle formed on the north flange-lip junction, as shown in Fi gure 20.4. Soon after the formation of this local buckle, the axial load dropped to 5300 lbs. A brace force of 30 lbs was measured in BF-3 with an eastward movement of the north flange by 0.5 inch. The axial load started to increase again and reached a second maxi mum of about 6050 lbs, with the brace force in BF-3 now measuring 58 lbs at an axial shortening of 0. 16 inches and a strong axis movement towards the north of 0.22 inches and a north flange movement of 1.0 inch towards the east. The failure of the stud is identified as distortional, as shown in Figure 20.4.

PAGE 295

278 Figure A22.1 Overall View of Stud 600S162-43-075 in Riehle Machine Prior to Testing Figure A22.2 Elastic buckling waves in the Web of Stud 600S162-43-075 at an Axial Load Figure A22.3 Elastic buckling waves in the Web of Stud 600S162-43-075 at an Axial Load Figure A22.4 Distortional Wave & Formation of a Local Buckle in the Stud 600S162-43-075.

PAGE 296

279 Figure A22.5 Plot of Axial Load vs. Axial Shortening Figure 20.6 Plot of Axial Load vs. Brace Forces

PAGE 297

280 Figure 20.7 Plot of Axial Load vs. W eak Axis Displacement at Mid-Height Figure A22.8 Plot of Axial Load vs. St rong Axis Displacement at Mid-Height

PAGE 298

281 600S162-43-250 The cee stud specimen 600S162-43-250 was braced with a total bracing stiffness of 497 lbs/in., which was about 1.7 times the ideal bracing requirement. To ensure static response to the applied load, the stud was load ed initially at a rate of 10 lbs/sec, which was subsequently reduced to about 2 to 5 lbs/ sec. The mid-height east-west displacement of the flanges was measured with two pairs of linear potentiomete rs LP-1 & LP-3 and LP-2 & LP-4 attached to the north and sout h flanges, respectively. The north-south displacement was measured with LP-5 attached to the sout h flange. Figure A23.1 shows the stud in the Riehle testi ng machine prior to testing. Elastic buckling waves in the stud web were observed at an axial load between 500 and 1300 lbs as seen in Figure A23.2. At th e 1300 lbs load level th ere was minimal weak axis lateral movement to th e east of only 0.018 and 0.021 in ches recorded on the north and south flanges, respectively. There was also a slight lateral movement to the south as measured by LP-5 of 0.022 inches (see Figure A23.8). The corresponding brace forces were also minimal, 4 lbs and 6 lbs at BF-3 and BF-4, respectively (see Figure A23.6). Above this nominal load level up to approxi mately the maximum axial capacity of the stud, there were only slight in creases in the lateral movement of the stud at mid-height and the brace forces as measured by BF-3 and BF-4 remained less than 10 lbs. The overall stud response from 1300 lbs up to 6500 lbs showed very little change with the axial stiffness stayi ng fairly linear though the elas tic buckling waves in the web had become more pronounced all along the leng th of the stud (see Figure A23.2). The recorded measurements at 6500 lbs of axial load were: weak axis movements of 0.037 inches (LP-1 & LP-3) to the west and 0.011 in ches (LP-2 & LP-4) to the east, strong axis movement of 0.078 inches to the south, and br ace forces in BF-1 and BF-4 of 7.0 lbs and

PAGE 299

282 1.0 lbs, respectively. Above 6500 lbs, the ax ial stiffness of the st ud began to gradually decrease, while the displacement measuremen ts and brace force measurements continued to show only slight changes. The stud reached its maximum load carrying cap acity at a load of 7308 lbs. At this load, the force in BF-1 was only 6 lbs while th e force in BF-2 was less than 2 lbs. The measured lateral movements of the stud at maximum load were 0.034 and 0.006 inches to the west measured on the north and south fla nges, respectively, and 0.083 inches to the south. After the maximum load was attained, there was an immediate drop in axial load being carried by the stud. When the axial lo ad had reduced to 6000 lbs, the force in the braces had again changed with BF-3 now measur ing 42 lbs and the force in brace BF-4 at 9.0 lbs. The measured lateral movements of th e stud also changed directions as the studs ability to carry axial load d ecreased. The lateral displacem ents at mid-height now read 0.138 inches (LP-1 & LP-3) and 0.020 inches (LP-2 & LP-4) to the east and 0.012 inches to the north (LP-5). Shortly thereafter, the test was concluded and the stud unloaded. The observed failure mode of the stud can be seen in Figure A23.4 that shows its final buckled shape. The overall failure mode can be described as distortional as the once elastic buckling waves in the web deepened and concentrated at the lowest punchout 12 inches above the bottom of the stud. Fi gure A23.3 shows a close up view of the distortional buckling failure that occurred in the web and progressed into the lipped flange of the stud adjace nt to the punchout.

PAGE 300

283 Figure A23.1 Overall View of Stud 600S162-43-250 in Riehle Machine Prior to Testing Figure A23.2 Elastic buckling waves in the Web of Stud 600S162-43-250 at an Axial Load Figure A23.3 Distortional Wave & Formation of Local Buckle in flanges of the Stud 600S162-43-250 (a) Looking East (b) Looking North Figure A23.4 Final Buckled shape of bottom-half of the Stud 600S162-43-250

PAGE 301

284 Figure A23.5 Plot of Axial Load vs. Axial Shortening Figure A23.6 Plot of Axial Load vs. Brace Forces

PAGE 302

285 Figure A23.7 Plot of Axial Load vs. W eak Axis Displacement at Mid-Height Figure A23.8 Plot of Axial Load vs. St rong Axis Displacement at Mid-Height

PAGE 303

286 600S162-43-500 The stud 600S162-43-500 was brac ed with a total stiffne ss of 990 lbs/in. which was about 3.5 times the ideal bracing requirement. The load was applied at a rate of 5 to 10 lbs/sec to ensure that there would be a static response to the applied load. The weak axis displacement at mid-height of the stud was measured with linear potentiometers LP-1 & LP-3 and LP-2 & LP-4 attached to the north and south flanges, respectively. The strong axis movement, in the north-south directi on, was measured with LP-5. Figure A24.1 shows the stud in the Riehle testing machine pr ior to testing. The axial deformation was measured with LP-6 attach ed along the north flange. Elastic buckling waves in the web were fi rst observed at an axial load of 1000 lbs as shown in Figure A24.2. At this load level the weak axis lateral displacement was 0.01 inches, on both flanges (see Figure A24.7). Th ere was also a slight lateral movement to the South, as measured by LP-5, of 0.012 inch es (see Figure A24.8). The brace forces in BF-3 and BF-4 were 4 lbs and 5 lbs, respec tively (see Figure A24.6). As the load was increased from 1000 lbs to 2500 lbs, there was not much change in the weak axis displacement, whereas at approximately 2500 lbs of axial load, the strong axis had moved south by 0.46 inches. The force in BF-3 dr opped to zero at 2000 lbs, and then increased to 3.0 lbs at 2500 lbs of axial lo ad, whereas the force in BF-4 st eadily increased to 10 lbs. When the load reached about 4500 lbs, the force in BF-4 measured 14 lbs and then started to drop; the force in BF-3 measured 7 lbs. Up to an axia l load of 7000 lbs, the axial shortening was relatively li near, as shown in Figure A24.5. As the axial load was increased from 7000 lbs to just prior to th e maximum load being reached, the axial stiffness began to gradually decrease. At these same load levels the lateral displacement measurements showed very small changes.

PAGE 304

287 At the maximum load of 7075 lbs, the brace force measurements in BF-3 and BF-4 were 12 lbs and 3 lbs, respectively. The measured lateral movements of the stud at maximum load were only 0.01 inches to th e east, and 0.047 inches to the south. Distortional buckling had devel oped in the stud at this load as can be seen in Figure A24.3. After attaining the maximum load, th ere was gradual drop in axial load carried by the stud to about 6000 lbs. The force in br aces BF-3 and BF-4 now measured 24.0 lbs and 0.0 lbs, respectively. Shortly thereaf ter, the test was concluded and the stud unloaded. The observed failure mode of the stud and its final buckled shape is shown in Figure A24.4. The overall failure mode is id entified as distortiona l buckling at about 12 inches from the bottom of the stud. Figur e A24.4 also shows a close up view of the distortional buckling failure that occurred in the web and progressed into the lipped flange of the stud adjace nt to the punchout.

PAGE 305

288 Figure A24.1 Overall View of Stud 600S162-43-500 in Riehle Machine Prior to Testing Figure A24.2 Elastic buckling waves in the Web of Stud 600S162-43-500 at an Axial Load Figure A24.3 Distortional Wave in the South flange of the Stud 600S162-43-500 (a) Looking East (b) Looking North Figure A24.4 Final Buckled shape of bottom-half of the Stud 600S162-43-500

PAGE 306

289 Figure A24.5 Plot of Axial Load vs. Axial Shortening Figure A24.6 Plot of Axial Load vs. Brace Forces

PAGE 307

290 Figure A24.7 Plot of Axial Load vs. W eak Axis Displacement at Mid-Height Figure A24.8 Plot of Axial Load vs. St rong Axis Displacement at Mid-Height

PAGE 308

291 600S162-97-000 The stud 600S162-97-000 was tested without any lateral bracing. The stud was loaded initially at a rate of about 10 lbs/sec up to 5000 lb s and then at about 90 lbs/sec up to the maximum load. Figure A25.1 shows the ove rall view of the stud in the test frame. The plot of axial load versus axial shortening, as shown in Figure A25.5, closely follows the initial elastic stiffness on ce the load exceeds 5000 lbs. Lateral displacement of the two flanges in the east-west direction was m easured with pairs of linear potentiometers LP-1 & LP-3 and LP-2 and LP-4, attached to the north and south flanges, respectively, at mid-height of the stud. The strong axis la teral displacement in th e north-south direction was measured by LP-5, which was attached to the south flange. Initially, up to 3000 lbs, the stud demonstrat ed flexural-torsional buckling about the weak axis, with the flanges moving in opposite directions, as shown in Figure A25.6, while the strong axis was moving towards north, as shown in Figure A25.7. At approximately 3000 lbs, the north flange had moved east by 0.028 inches, and by 5000 lbs, it had moved back to its initial positi on. Meanwhile, the sout h flange had moved by 0.198 inches west and the strong axis had moved north by 0.10 inches. As the axial load reached 18000 lbs, the north flange had moved west by 0.04 inches while the south flange continued to move west by 0.45 inches, and the strong axis had moved north by 0.18 inches. At this load level, elastic buckling waves were seen in the web, as shown in Figure A25. 2, close to the punchouts. At the maximum axial load of about 21000 lb s, a local buckle developed close to a web punchout, as shown in Figure A25.3. At th is load, the displacement of the north and south flanges increased to 0.18 inches and 1. 0 inch to the west, respectively, and the strong axis had moved 0.35 inch es towards the north.

PAGE 309

292 The failure of the stud was by flexural -torsional buckling, but predominantly flexural, with local buckling occurring as a result of the global buckling modes. An overall view of the stud along with a cl ose-up view is shown in Figure A25.4.

PAGE 310

293 Figure A25.1 Overall View of Stud 600S162-97-000 in Riehle Machine Prior to Testing Figure A25.2 Elastic Wave in the web of the Stud 600S162-97000 at an Axial Load of 19000 lbs Figure A25.3 Local Buckling in the Web of the Stud 600S162-97000 at an Axial Load of 19500 lbs (a) Looking North (b) Close-up View Figure A25.4 Buckled Shape of the Stud 600S162-97-000 at the Maximum Axial Load

PAGE 311

294 Figure A25.5 Plot of Axial Load vs. Axial Shortening Figure A25.6 Plot of Axial Load vs. W eak Axis Displacement at Mid-Height

PAGE 312

295 Figure A25.7 Plot of Axial Load vs. St rong Axis Displacement at Mid-Height

PAGE 313

296 600S162-97-160 The stud 600S162-97-160 was brac ed with a total stiffne ss of 324 lbs/in. that was 0.3 times the ideal bracing requirement. The stud was loaded initially at the rate of about 10 lbs/sec up to 5000 lbs and then at about 45 lbs/sec till the maximum load was reached. Figure A26.1 shows the overall view of the stud in the test frame. The plot of axial load versus axial shortening as shown in Figure A26.5 closely follows the initial elastic stiffness once the load exceeded 10,000 lbs. Lateral displacement of the two flanges in the east-west direction was measured with pairs of linear potentiometers LP-1 & LP-3 and LP-2 and LP-4, attached to the north and south flanges, re spectively, at mid-height of the stud. The strong axis lateral displacemen t in the north-south direction was measured by LP-5, which was attached to the south flange. From the beginning of the test, the stud de monstrated flexural-torsional buckling about the weak axis as shown in Figure A26.7. The plot of the axial load versus brace forces, shown in Figure A26.6, also indicat ed that the diagonally opposite brace wires BF-2 & BF-3 were preventing the mid-height cross-section from twisting and allowing torsional buckling to occur. However, th e bracing was not sti ff enough to prevent the twist. As the axial load was increased, th e strong axis was moving towards the north, as shown in Figure A26.8. As the axial load reached 25000 lbs, the br ace forces in BF-2 and BF-3 measured 20.0 lbs and 10.0 lbs, respectively. The north flange had moved east by 0.09 inches, the south flange had moved west by 0.10 inches and the strong axis had moved north by 0.15 inches. At this load level, elastic buc kling waves were observe d in the web close to the punchouts as shown in Figure A26.2.

PAGE 314

297 The stud reached its maximum load carryi ng capacity at an axial load of about 28000 lbs, when a local buckle developed cl ose to a web punchout as shown in Figure A26.3. At this load, the for ces in braces BF-2 and BF-3 m easured about 35 lbs and 9 lbs, respectively. The displacement of the north and south flanges were 0.08 inches to the east and 0.02 inches to the west, respectively, with the strong axis moving 0.2 inches towards the north. An overall view of the stud at its maximum load is shown in Figure A26.4. The failure of the stud was by first mode flexural-tor sional buckling but predominantly torsional, with local buckling as a result of the se vere twisting of the section.

PAGE 315

298 Figure A26.2 Elastic Wave in the web of the Stud 600S162-97160 at an Axial Load of 25000 lbs Figure A26.1 Overall View of Stud 600S162-97-160 in Riehle Machine Prior to Testing Figure A26.3 Local buckling in the web of the Stud 600S162-97-160 at an Axial Load of 28000 lbs Figure A26.4 Final View of Stud 600S162-97-160 at Maximum Load

PAGE 316

299 Figure A26.5 Plot of Axial Load vs. Axial Shortening Figure A26.6 Plot of Axial Load vs. Brace Forces

PAGE 317

300 Figure A26.7 Plot of Axial Load vs. W eak Axis Displacement at Mid-Height Figure A26.8 Plot of Axial Load vs. St rong Axis Displacement at Mid-Height

PAGE 318

301 600S162-97-500 The stud 600S162-97-500 was brac ed with a total bracing stiffness of 1041 lbs/in. that was close to the ideal bracing requirement The stud was loaded initially at the rate of about 20 lbs/sec up to 5000 lbs and then at about 125 lbs/sec till the maximum load was reached. Though this loading rate was highe r than the rate at which the rest of the studs were tested, it still can be considered as being static loading as the behavior of the stud was not impacted by the loading rate. Figure A27.1 shows the overall view of the stud in the test frame. The plot of axial lo ad versus axial shortening of the stud is shown in Figure A27.5 which closely follows the initial elastic stiffness line. Lateral displacement of the two flanges in the east-we st direction was meas ured with pairs of linear potentiometers LP-1 & LP-3 and LP-2 and LP-4, attached to the north and south flanges, respectively, at mid-height of the stud. The strong axis lateral displacement in the north-south direction was measured by LP-5, which was attached to the south flange. From the beginning of the test, the stud de monstrated flexural-torsional buckling about the weak axis as shown in Figure A27.7. The plot of the axial load versus brace forces, shown in Figure A27.6, also indicat ed that the diagonally opposite brace wires BF-1 and BF-4 were preventing the mid-hei ght cross section from twisting and allowing torsional buckling to occur. However, the bracing was not stiff enough to ultimately prevent torsion of the section. The strong axis was al so moving towards the south with increasing axial load, as shown in Figure A27.8. As the axial load was increased up to 25000 lbs, the brace forces in BF-1 and BF-4 increased and measured 64.0 lbs and 20.0 lbs, respectively. The north flange had moved west by 0.15 inches and the south flange had moved east by 0.04 inches and the strong axis had moved south by 0.085 inches. At an axial load of about 28000 lbs a local buckle

PAGE 319

302 developed close to a web punchout Figure A27.2 shows the local buckle at an axial load of 29000 lbs. When the load reached about 30000 lbs, brac e wire BF-1 broke and the stud almost instantaneously ch anged buckling modes from fi rst mode flexural-torsional buckling to first mode flexural buckling. During this sudden process causing the bracewire BF-2 also broke. Just before the wires snapped, the brace forces in BF-1 and BF-4 were 130 lbs and 6 lbs, respectively. Th e north and flange had moved west by 0.32 inches, whereas the south flange had moved b ack to initial positi on and the strong axis had moved south by 0.134 inches. The final buckled shape of the stud with the failed brace-wires is shown in Figure A27.3. However, the actual mode of failure would have been flexural-torsional buckling if the brace wires remained intact.

PAGE 320

303 Figure A27.1 Overall View of Stud 600S162-97-500 in Riehle Machine Prior to Testing Figure A27.2 Local buckling in the web of the Stud 600S162-97500 at an Axial Load of 29000 lbs Figure A27.3 Final Buckled Shape with the Broken Brace-wires of the Stud 600S162-97-500 at the Maximum Load

PAGE 321

304 Figure A27.5 Plot of Axial Load vs. Axial Shortening Figure A27.6 Plot of Axial Load vs. Brace Forces

PAGE 322

305 Figure A27.7 Plot of Axial Load vs. W eak Axis Displacement at Mid-Height Figure A27.8 Plot of Axial Load vs. St rong Axis Displacement at Mid-Height

PAGE 323

306 600S162-97-1000 The stud 600S162-97-1000 was bra ced with a total stiffness of 2069 lbs/in. and that was about 2.0 times the ideal bracing requireme nt. The stud was load ed initially at the rate of about 20 lbs/sec up to 5000 lbs and th en at about 125 lbs/sec till it reached the maximum load. Though this loading rate was hi gher than the rate at which rest of the studs were tested, it still can be considered st atic loading as it did not affect the behavior of the stud. Figure A28.1 shows the overall view of the stud in the test frame. The plot of axial load versus axial shortening is show n in Figure A28.5, whic h closely the initial elastic stiffness line. Lateral displacement of the two flanges in the east-west direction was measured with pairs of linear potentio meters LP-1 & LP-3 and LP-2 and LP-4, attached to the north and south flanges, resp ectively, at mid-height of the stud. The strong axis lateral displacement in the nor th-south direction was measured by LP-5, which was attached to the south flange. From zero to an axial load of 2250 lbs, th e behavior of the stud showed first mode flexural buckling about the weak axis as can be observed by the increasing brace forces in BF-1 and BF-2 given in Figure A28.6, a nd the eastward displacement of the flanges in Figure A28.7. The strong axis movement, as shown in Figure A28.8, was negligible at this load level. With further increase in th e applied load, the stud started to buckle in first mode flexural-torsion and the flanges began to exhibit differential displacement towards the west. Up to 7500 lbs, the brace forces in BF-1 and BF-2 measured 39.0 lbs and 11.0 lbs, respectively and at 25000 lbs they measured 88 lbs and 20 lbs, respectively. At the maximum load of about 28550 lbs, the brace fo rces in BF-1 and BF -2 measured 133 lbs and 41 lbs, and the north and south flange s had moved west by 0.39 inches and 0.05 inches, respectively, while the strong ax is had moved south by 0.15 inches.

PAGE 324

307 Figure A28.3 shows the local buckle developing in the web at the maximum load causing the load carrying capacity of the stud to decrease. The force in the brace BF-1 then began to decrease while the force in brace BF-2 continued to increase. The north flange displacement to the west increased rapi dly as the stud started to shed load. The final observed failure was identified as first mode flexural-torsional buckling.

PAGE 325

308 Figure A28.1 Overall View of Stud 600S162-97-1000 in the Riehle Machine Prior to Testing Figure A28.2 Flexural-Torsional Buckling of the Stud 600S162-971000 at an Axial Load of 28500 lbs Figure A28.3 Local buckling of the Stud 600S162-97-1000 at the Maximum Load

PAGE 326

309 Figure A28.5 Plot of Axial Load vs. Axial Shortening Figure A28.6 Plot of Axial Load vs. Brace Forces

PAGE 327

310 Figure A28.7 Plot of Axial Load vs. W eak Axis Displacement at Mid-Height Figure A28.8 Plot of Axial Load vs. St rong Axis Displacement at Mid-Height

PAGE 328

311 600S162-97-1500 The stud 600S162-97-1500 was braced with a total bracing stiffness of 3357 lbs/in. and that was about 3.4 times the ideal bracing requirement. The stud was loaded initially at the rate of about 20 lbs/ sec up to 5000 lbs and then at about 125 lbs/sec till the maximum load. Though this loading rate was hi gher than the rate at which rest of the studs were tested, it still can be considered as static loading as it does not affect the behavior of the stud. Figure A29.1 shows the overall view of the stud in the test frame. The plot of axial load versus axial shortening is shown in Figure A29.5, which closely follows the initial elastic stiffness line, once the loading exceeded 10,000 lbs. Five linear potentiometers were used to record the midheight lateral displacements, two on the north flange (LP-1 & LP-3) and two on the south flange (LP-2 & LP-4) for weak axis displacement, and one on the south flange (LP5) for strong axis displacement. The axial shortening of the stud was measured by linear potentiometer LP-6 attached at top and bottom of the north flange. From zero to an axial load of 7500 lbs, th e behavior of the stud showed first mode flexural-torsional buckling. From Figures A29.7 and A29.8 it can be observed that there is lateral displacement of both the weak axis and the strong axis. At 7500 lbs, the brace forces in BF-1 and BF-2 measured 9.0 lbs and 72.0 lbs, respectively. With further increase in the applied load, the stud started to buckle in first mode torsional buckling, as the lateral displacement of the weak axis indi cated a slight differential movement towards the west. At 25000 lbs, the brace forces in BF-1 and BF-2 measured 18 lbs and 98 lbs, respectively. At the maximum load of about 29500 lbs, the brace forces in BF-1 and BF2 measured 30 lbs and 125 lbs, respectively, while the north and south flanges had moved

PAGE 329

312 west by 0.02 inches and 0.25 inches, respectiv ely, and the strong axis had moved south by 0.17 inches. As the maximum load was being achieved a local buckle developed at a punchout in the bottom-half of the stud as can be seen in Figure A29.3. Afterwards, the stud began to unload as the brace force BF-1 continued to increase while the force in the brace BF-2 remained constant. Overall first mode torsional buckling was observed as the stud continued to twist as seen in the rapid west ward displacement of the south flange while the north flange movement was minimal.

PAGE 330

313 Figure A29.1 Overall View of Stud 600S162-97-1500 in Riehle Machine Prior to Testing Figure A29.2 Torsional Buckling of the Stud 600S162-97-1500 at an Axial Load of 29000 lbs Figure A29.3 Local buckling of the Stud 600S162-97-1500 at the Maximum Load of 29500 lbs

PAGE 331

314 Figure A29.5 Plot of Axial Load vs. Axial Shortening Figure A29.6 Plot of Axial Load vs. Brace Forces

PAGE 332

315 Figure A29.7 Plot of Axial Load vs. W eak Axis Displacement at Mid-Height Figure A29.8 Plot of Axial Load vs. St rong Axis Displacement at Mid-Height

PAGE 333

316 800S162-43-000 The cee stud specimen 800S162-43-000 was test ed without any lateral bracing, so that it serves as a benchmark for compar ison with other braced cee stud specimens. Figure A30.1 shows the stud in th e Riehle Machine prior to th e test. Figure A30.5 shows the plot of axial load versus axial shorteni ng of the stud. The mid-height weak axis lateral displacement was measured by pairs of linear potentiometers LP-1 & LP-3 and LP-2 & LP-4, attached to the north and sout h flanges respectively and the strong axis lateral displacement was measured by LP-5. The axial deformation was measured on the north flange by LP-6. The slope of the axial load versus axial shortening curve of the stud traced the initial elastic stiffness line as shown in Figure A30.5 up to 3865 lbs, when the stud began to exhibit first mode flexural buckling. Initia lly up to an axial load of 1000 lbs, the weak axis flexural displacement of both the fla nges was towards the eas t by 0.0129 inches, but with increasing axial load, the north flange st arted moving to the west as the south flange continued moving to the east. At an axial load of 1700 lbs the movement of the south flange to the east reached a maximum value of 0.0696 inches. Starting at about 1000 lbs, elastic buckling waves were seen in the web with amplitudes that continued to increase up to an axial load of 4000 lbs. When the axial load reached about 4000 lbs, distortional buckling waves were first observed in th e flanges as shown in Figure A30.3. The plot of axial load versus the mid-heig ht lateral displacement of the strong axis is shown in Figure A30.7. The figure indicates that ther e was no strong axis movement up to an axial load of approximately 3850 lbs. Between this load level and 4500 lbs of axial load, the elastic buckling waves in th e web and flanges cause d the stud to loose a

PAGE 334

317 portion of its axial stiffness. Appreciable strong axis flexur al movement ensued at about this load level and continued up to the maxi mum load carrying capac ity of the stud. At about 4500 lbs, the distortional buckling of the stud at mid-height increased in intensity to cause the failure of the stud at 4591 lbs. The weak axis lateral displacement measured 0.42 and 0.88 inches to the west on the north and south fl anges, respectively, while the strong axis had displa ced to the north by about 0.15 inches. The final failure of the stud was predominantly first mode flexur al buckling though dist ortional buckling was also present.

PAGE 335

318 Figure A30.2 Elastic buckling waves in the Web of Stud 800S16243-000 at an Axial Load 4000 lbs Figure A30.1 Overall View of the Stud 800S162-43-000 in the Riehle Testing Machine, prior to the Test (a) Overall view (b) Close up Figure A30.4 Final Vi ew of Stud 800S162-43000 at the Ultimate load Figure A30.3 Distortional Buckling in the Stud 800S162-43000 at an Axial Load at 4000 lbs

PAGE 336

319 Figure A30.5 Plot of Axial Load vs. Axial Shortening Figure A30.6 Plot of Axial Load vs. W eak Axis Displacement at Mid-Height

PAGE 337

320 Figure A30.7 Plot of Axial Load vs. St rong Axis Displacement at Mid-Height

PAGE 338

321 800S162-43-075 The cee stud specimen 800S162-43-075 was braced with a total bracing stiffness of 149 lbs/in. that was equal to 0.6 times the ideal bracing requ irement. Figure A31.1 shows the stud in the Riehle Machine pr ior to the test. Figure A31.5 shows the plot of axial load versus axial shortening of the stud. The mi d-height weak axis lateral displacement was measured by pairs of linear potentiometers LP -1 & LP-3 and LP-2 & LP-4, attached to the north and south flanges, respectively, and the strong axis lateral displacement was measured by LP-5. The axial shortening was measured by LP-6 attached to the north flange. Initially, the stud seemed to be buckling in first mode flexure up to an axial load of approximately 1000 lbs. Though the correspond ing lateral displacements of the north and south flanges were extremely sma ll, 0.0017 and 0.0192 in. towards the east, respectively, and the strong axis displacem ent was 0.0174 in. towards the north. The brace forces in BF-3 and BF-4 measured approx imately 1.2 lbs. At about this same load level, the weak axis movement of the stud st arted to change direct ion as the mid-height cross-section began to move in a westward direction. This change in direction caused the brace forces in BF-3 and BF-4 to drop and when they returned to zero at an axial load of approximately 1450 lbs, the other two braces, na mely BF-1 and BF-2, started to pick up the brace forces. Elastic buckling waves in the web were first observed at an axial load of approximately 400 lbs and were distinctly visibl e at an axial load of 4000 lbs as shown in Figure A31.2. At this same load, a local buckle began to develop at approximately 20from the top of the stud, on the south fla nge-lip junction as shown in Figure A31.3. The formation of this local buckle caused th e cross-section that elevation to loose a

PAGE 339

322 portion of its axial stiffness, cau sing the south flange to behave as an unstiffened element, which in turn allowed distortiona l buckling to occur in the flange s. At this load level, the measured brace forces in BF-1 and BF-2 were 11.2 and 6.3 lbs, respectively. Above this load, the stud reached an initial peak capacity of 4211 lbs at a corresponding axial shortening of 0.038 inch es with the two e ffective braces still preventing the stud from global buckling. S oon thereafter, the brace forces in both BF-1 and BF-2 started to drop. At this initial p eak load, the measured brace forces were 0.87 and 1.87 lbs, respectively. From Figure A 31.7 it can be observed that the mid-height cross-section started to move to the east after reaching th is initial peak load. The stud then reached its ultim ate axial load of 4306 lbs with a corresponding axial shortening of 0.080 inches. Between the 4211 lbs and 4306 lbs of axial load, the brace forces in BF-1 and BF-2 dropped to 0.0 lbs while the brace forc es in BF-3 and BF-4 started to increase. From the beginning of the test the stud was buckling about the strong axis until it reached the ultimate capacity, at which the measured lateral displacement was 0.036 in towards North. The observed first mode fl exural buckling was considered to be the failure mode of the stud at the ultimate load of 4306 lbs. The final deformed shape of the stud is shown in Figure A31.4 (a) and (b), showing the close-up of the local and distortional buckling and the overall vi ew of the stud, respectively.

PAGE 340

323 Figure A31.2 Elastic buckling waves in the Web of Stud 800S162-43-075 at an Axial Load Figure A31.1 Overall View of the Stud 800S162-43-075 in the Riehle Testing Machine, prior to the Test (a) Close-up of Local Buckle (b) Looking North Figure A31.4 Final View of the Stud 800S162-43-075 at the Maximum Load Figure A31.3 Local and Distortional Buckling in the top-half of the Stud 800S162-43-075 at an Axial Load of 4000 lbs

PAGE 341

324 Figure A31.5 Plot of Axial Load vs. Axial Shortening Figure A31.6 Plot of Axial Load vs. Brace Forces

PAGE 342

325 Figure A31.7 Plot of Axial Load vs. W eak Axis Displacement at Mid-Height Figure A31.8 Plot of Axial Load vs. St rong Axis Displacement at Mid-Height

PAGE 343

326 800S162-43-150 The cee stud specimen 800S162-43-150 was braced with a total bracing stiffness of 299 lbs/in. that was equal to about 1.2 times the ideal bracing requirement. Figure A32.1 shows the stud in the Riehle Machine prior to the test. Figure A32. 5 shows the plot of axial load versus axial shortening of the stud. The mid-height weak axis lateral displacement was measured by pairs of linear potentiometers LP-1 & LP-3 and LP-2 & LP-4, attached to the north and south flange s respectively, and the strong axis lateral displacement was measured by LP-5. The ax ial shortening was measured on the north flange by LP-6. Initially up to 2500 lbs, the slope of the ax ial load versus axia l shortening curve of the stud followed the initial elastic stiffness line, as shown in Figure A32.5. The brace forces in BF-1 and BF-4 were gradually chan ging, and at 1000 lbs, they measured 0.4 and 3.0 lbs, respectively. At this same load level, elastic buckling waves were first observed in the web. Figure A32.2(a) shows these elas tic buckling waves at an axial load of about 3500 lbs when the axial shortening was 0.029 in ches and the weak axis and strong axis displacements were negligible as shown in Figures A32.7 and A32.8, respectively. The amplitude of the elastic buckling waves conti nued to increase with increase in the axial load as can be seen in Figure A32.2(b). The br ace forces at this load level did not exhibit any appreciable change as BF-1 and BF-4 measured 0.0 lbs. Distortional buckling in the flanges was first s een at 4300 lbs (see Figure A32.3(a)). When the axial lo ad reached 5000 lbs, the distor tional buckling was so severe that the effect of the stiffeni ng of the lips and the flanges star ted to diminish and the axial load reached a maximum value of 5333 lbs. Figure A32.3(b) clearly shows the distortional buckling in the flanges at an axial load of 5000 lbs.

PAGE 344

327 From 4700 lbs to an axial load of ab out 5000 lbs, the cee stud exhibited second mode flexural buckling with second mode torsional buckl ing. Beyond this load, the distortional buckling governed mo st of the deformation the stud. The failure of the stud was hence identified as due to distortional buck ling. At this ultimate load, there were two local buckles in the flanges which rendered the flanges uns tiffened as shown in Figure A32.4.

PAGE 345

328 (a) at 3500 lbs (b) at 4000 lbs Figure A32.2 Elastic buckling waves in the Web of Stud 800S162-43-150 at various Loads Figure A32.1 Overall View of the Stud 800S162-43-150 in the Riehle Testing Machine, prior to the Test Figure A32.4 Final View of bottom-half of the Stud 800S16243-150 at the Maximum Load (a) at 4300 lbs (b) at 5000 lbs Figure A32.3 Distorti onal Buckling in the Stud 800S62-43-150 at various Axial Loads

PAGE 346

329 Figure A32.5 Plot of Axial Load vs. Axial Shortening Figure A32.6 Plot of Axial Load vs. Brace Forces

PAGE 347

330 Figure A32.7 Plot of Axial Load vs. W eak Axis Displacement at Mid-Height Figure A32.8 Plot of Axial Load vs. St rong Axis Displacement at Mid-Height

PAGE 348

331 800S162-43-300 The cee stud specimen 800S162-43-300 was braced with a total bracing stiffness of 602 lbs/in. that was equal to about 2.4 times the ideal bracing requirement. Figure A33.1 shows the stud in the Riehle Machine prior to the test. Figure A33. 5 shows the plot of axial load versus axial shortening of the stud. The mid-height weak axis lateral displacement was measured by linear potentiom eters LP-1 & LP-3 and LP-2 & LP-4 (see Figure A33.7), attached to th e north and south flanges resp ectively, and the strong axis lateral displacement was measured by LP-5. The axial shortening was measured by LP-6 attached on the north flange. Initially up to an axial load of 2000 lbs, the slope of the axia l load versus axial shortening curve of the stud deviated from the initial elastic stiffness line (see Figure A33.5). This was due to strong axis moveme nt of the stud (see Figure A33.8). The brace forces in BF-3 and BF-4 were gradually incr easing up to an axial load of about 1000 lbs, measuring 1.6 and 3.1 lbs, respectively. When the load reached 2000 lbs, elastic buckling waves were first observed in the we b. Figure A33.2(a) shows these elastic buckling waves at an axial load of about 3500 lbs, when the axial shortening was 0.029 inches the strong axis had di splaced to the north by 0.065 inches, and the weak axis displacement measured 0.033 and 0.135 inch es on the north and south flanges, respectively. The amplitude of the elasti c buckling waves continued to increase with increase in the axial load. Weak axis movement of the stud, initially to the east, reversed direction at about 1000 lbs, when it was noted that the mid-height cross-section was disp lacing to the west. The corresponding brace forces in BF-3 and BF-4 also started to decrease. At an axial load of about 1500 lbs, all th e brace forces measured approximately zero. As the

PAGE 349

332 westward movement of mid-he ight cross-section of the st ud continued with increasing load, the brace forces in BF-1 and BF-2 star ted to increase, and at about 4000 lbs, BF-1 and BF-2 measured 8.5 and 34 lbs, respectively. The weak axis displacement at this load level measured 0.16 and 0.034 inches to th e west on the north and south flanges, respectively. Just beyond this load level, the weak axis stopped displacing laterally at mid-height, however the strong ax is continued to displace north The brace forces in BF1 and BF-2 also started to decrease. The brace force in BF-1 which had started to drop at about 4000 lbs of axial load, again began to gradually increase up to the ultimate load. Figure A33.2(b) shows an overall view of the stud at an axial load of 6000 lbs, and sh ows the elastic buckling waves that were present in the web. With further increase in the axial load second mode flexural buckling became clearly visible and Figure A33.3 shows the shap e of the stud at an ax ial load of 6000 lbs. At this load level, the brace forces in BF-1 and BF-2 measured 10 and 15 lbs, respectively. The weak axis displacements on the north and south flanges were 0.05 and 0.10 inches to the west, respectively, and th e strong axis displacement was 0.08 inches to the north. The axial load reached a maximum valu e of 6213 lbs, when a local buckle developed in the web that led to the studs failure. Even though this local buckle was present, the primary failure mode of the stud is considered to be second mode flexural buckling as shown in Figure A33.4.

PAGE 350

333 (a) of 3500 lbs (b) of 6000 lbs Figure A33.2 Elastic buckling waves in the Web of Stud 800S162-43-300 at various Loads Figure A33.1 Overall View of the Stud 800S162-43-300 in the Riehle Testing Machine, prior to the Test (a) Looking North (b) Looking East Figure A33.4 Final View of Stud 800S162-43-150 at the Ultimate Load Figure A33.3 Second Mode Flexural Buckling of the Stud 800S162-43-300 at an Axial Load 6000 lbs (Looking North)

PAGE 351

334 Figure A33.5 Plot of Axial Load vs. Axial Shortening Figure A33.6 Plot of Axial Load vs. Brace Forces

PAGE 352

335 Figure A33.7 Plot of Axial Load vs. W eak Axis Displacement at Mid-Height Figure A33.8 Plot of Axial Load vs. St rong Axis Displacement at Mid-Height

PAGE 353

336 800S162-97-000 The cee stud specimen 800S162-97-000 was test ed without any lateral bracing, so that it serves as a benchmark for compar ison with other braced cee stud specimens. Figure A34.1 shows the stud in th e Riehle Machine prior to th e test. Figure A34.3 shows the plot of axial load versus axial shorteni ng of the stud. The mid-height weak axis lateral displacement was measured with pair s of linear potentiometers LP-1 & LP-3 and LP-2 & LP-4, attached to the north and sout h flanges respectively and the strong axis lateral displacement was measured with LP -5. The axial shortening of the stud was measured by LP-6, attached to the north flange. The axial load was applied in itially at the rate of 10 lb s/sec up to 5000 lbs of axial load and later increased to 40 lbs/sec till th e maximum load was reached. With Initially the stud exhibited strong axis buckling, with LP-5 measur ing 0.070 inches at 5000 lbs, beyond which there was no strong axis displaceme nt measured. Up to this load level, there was no axial shortening si nce the strong axis buc kling neutralized the effect of axial shortening. Along with strong axis buckling, the stud also exhibited weak axis buckling in first mode flexure as shown in Figure A34.4. Even though there was differential movement of the north and south flanges, th e buckling was predominan tly flexural rather than flexural-torsional. Ther e was neither elastic buckling waves observed in the web nor any distortional buckling obs erved in the flanges, at any point of time during the complete test. Figure A34.2 shows an overall final view of the stud at the maximum load. It can be observed in the figure that the stud is in first mode flexural buckl ing. At the ultimate load of 19703 lbs, the measured axial shorte ning was 0.051 inches, the weak axis lateral

PAGE 354

337 displacement were 0.41 and 0.36 inches on the north and south flange s, respectively, and the strong axis lateral displacement measured 0.059 inches.

PAGE 355

338 Figure A34.3 Plot of Axial Load vs. Axial Shortening Figure A34.2 Final View of the of Stud 800S162-97-000 at the Ultimate load of 19703 lbs Figure A34.1 Overall View of the Stud 800S162-97-000 in the Riehle Testing Machine, prior to the Test

PAGE 356

339 Figure A34.4 Plot of Axial Load vs. W eak Axis Displacement at Mid-Height Figure A34.5 Plot of Axial Load vs. St rong Axis Displacement at Mid-Height

PAGE 357

340 800S162-97-500 The cee stud specimen 800S162-97-500 was braced with a total bracing stiffness of 1041 lbs/in. that was equal to about 1.2 tim es the ideal bracing requirement. Figure A35.1 shows the stud in the Riehle Machine prior to the test. Figure A35.4 shows the plot of axial load versus axia l shortening of the stud. The mid-height weak axis lateral displacement was measured by linear potenti ometers LP-1 & LP-3 and LP-2 & LP-4, attached to the north and south flanges resp ectively, and LP-5 recorded the strong axis lateral displacement. The axial shortening wa s measured by LP-6, attached to the north flange. The actual initial elastic stiffness of the stud was lesser than the calculated value, which can be observed in Figure A35.4. When the axial load reached 6500 lbs, there was a slight strong axis displacement of 0.0335 inch es to the south, which moved back to the initial position with fu rther increase in the ax ial load. At an axia l load of 8000 lbs, the mid-height weak axis lateral displacement measured on the north and south flanges were 0.052 inches and 0.032 inches, respectively. When the axial load measured 15000 lbs, the weak axis displacement was zero on both the flanges (see Figure A35.6). Initially the brace force in BF-3 was increase d up to an axial load of approximately 7000 lbs and measured 17.87 lbs. The other brace wires did not de velop any forces. When the axial load reached 11000 lbs the brace force in BF-2 started to increase, and at the ultimate load of 21626 lbs it measured about 54 lbs. A similar trend was seen in BF-1 with the brace force changed from 0.0 lbs at an axial load of 17000 lb s to 19.46 lbs at the ultimate load of 21626 lbs. At the ultimate load the north and south flanges had moved east by 0.125 inches and 0.25 inches, respec tively, while the strong axis displacement was 0.038 inches to the south. At the ultim ate load, the stud had buckled in first mode

PAGE 358

341 flexural buckling as shown in Figure A35.3. There was a local buc kle at t punchout that led to the final failure of the stud, howeve r, the governing buckling mode is the global buckling mode, which was first mode flexural buckling.

PAGE 359

342 Figure A35.2 Deformation of the Top and Bottom Tracks, at an Axial Load of 10000 lbs Figure A35.1 Overall View of the Stud 800S162-97-500 in the Riehle Testing Machine, prior to the Test Figure A35.3 Final View of Stud 800S97-500 at the Ultimate Load of 21626 lbs (Looking North)

PAGE 360

343 Figure A35.4 Plot of Axial Load vs. Axial Shortening Figure A35.5 Plot of Axial Load vs. Brace Forces

PAGE 361

344 Figure A35.6 Plot of Axial Load vs. W eak Axis Displacement at Mid-Height Figure A35.7 Plot of Axial Load vs. St rong Axis Displacement at Mid-Height

PAGE 362

345 800S162-97-1000 The cee stud specimen 800S162-97-1000 was br aced with a total bracing stiffness of 2093 lbs/in. that was equal to about 2.4 tim es the ideal bracing requirement. Figure A36.1 shows the stud in the Riehle Machine prior to the test. Figure A36.5 shows the plot of axial load versus axia l shortening of the stud. The mid-height weak axis lateral displacement was measured by linear potenti ometers LP-1 & LP-3 and LP-2 & LP-4, attached to the north and south flanges resp ectively, and LP-5 recorded the strong axis lateral displacement. Initially the slope of the axial load versus axial shortening curve was lesser than the initial elastic stiffness line as shown in Figure A36.5, while the stud exhibited first mode flexural buckling with the mi d-height cross-section latera lly displacing to the east. Owing to the weak axis flexural buckling the brace forces in BF-3 and BF-4 increased almost linearly, up to an axial load of 5000 lbs, measuring 36.7 lbs and 29.5 lbs, respectively. Beyond this load, the brace force in BF-3 started to decrease gradually, and that in BF-4 increased gradually. The axial shortening measured at this load level was about 0.025 inches. There was no strong axis buckling up to an axial load of about 7500 lbs. From this load level to an axial load of 8500 lbs, there was no further lateral displacement of the mid-height cross-section and the measured weak axis movement at the new load level was 0.12 inches to the east. Just prior to reaching an ax ial load of 14617 lbs, the brace forces in BF-3 and BF-4 measured 17.44 and 41.23 lbs. At this load le vel, there was almost an instantaneous drop in the forces in braces BF-3 and BF-4, m easuring 0.67 lbs and 27.5 lbs, respectively. With further increase in the axial load, the brace forces again started to increase. The sudden drop may be due to slip in either of the two brace-wires.

PAGE 363

346 Elastic buckling waves were first observed in the web at about 15000 lbs. Figure A36.2s shows the elastic buckli ng waves at an axial load of 22500 lbs. Between this load and a new load level of 23780 lbs, the brace forc es in BF-3 and BF-4 measured 50 lbs, at which there could have been possible yielding of the bracewires. At approximately 23811 lbs, the ultimate load was attained, beyond which both the brace-wires BF-3 and BF-4 snapped. Just prior to the snapping of the brace wires, the stud exhibited second mode flexural buckling. After the snapping of th e brace-wires, the buck ling mode it the stud changed from second mode fle xural buckling to first mode flexural buckling. Figure A36.3 shows the snapped brace-wires. The failu re of the stud in first mode flexural buckling is shown in Figure A36.4, which is not the actual mode of failure.

PAGE 364

347 Figure A36.2 Elastic buckling waves in the Web of Stud 800S162-97-1000 at an Axial Load Figure A36.1 Overall View of the Stud 800S162-97-1000 in the Riehle Testing Machine, prior to the Test Figure A36.3 View of the Snapped Brace-wires of Stud 800S162-971000, beyond the Ultimate load Figure A36.4 Buckled Shape of Stud 800S162-97-1000, beyond the Ultimate load

PAGE 365

348 Figure A36.5 Plot of Axial Load vs. Axial Shortening Figure A36.6 Plot of Axial Load vs. Brace Forces

PAGE 366

349 Figure A36.7 Plot of Axial Load vs. W eak Axis Displacement at Mid-Height Figure A36.8 Plot of Axial Load vs. St rong Axis Displacement at Mid-Height

PAGE 367

350 800S162-97-2100 The cee stud specimen 800S162-97-2100 was br aced with a total bracing stiffness of 4195 lbs/in. that was equal to about 4.8 tim es the ideal bracing requirement. Figure A37.1 shows the stud in the Riehle Machine prior to the test. Figure A37.4 shows the plot of axial load versus axia l shortening of the stud. The mid-height weak axis lateral displacement was measured by linear potenti ometers LP-1 & LP-3 and LP-2 & LP-4, attached to the north and south flanges resp ectively, and LP-5 recorded the strong axis lateral displacement. The axial shortening wa s measured by LP-6, attached to the north flange. The stud was loaded initially at a rate of approximately 7 lbs/sec up to an axial load of 5000 lbs, and then at 45 lbs/sec, to make su re that the stud had a static response to the applied load. The slope of the axial load versus axial shortening curve of the stud was less than that of the initial elastic stiffness line as shown in Figure A 37.4. Initially up to an axial load of 7500 lbs, the br ace force in BF-1 gradually in creased to 16 lbs, and then began to decrease, while the forces in th e other brace wires remained unchanged. At approximately 14000 lbs, the brace for ce in BF-2 started to increase and measured 11 lbs at an axial load of 20000lbs On reaching the ultimate load, the brace force in BF-2 dropped to 0.0 lbs. There was no significant lateral movement of the weak axis up to an axial load of 23240 lbs. At the ultimate lo ad of 23537 lbs, the north and south flanges had moved 0.233 and 0.073 inches to the east, respectiv ely (see Figure A37.6). The strong axis displacement, which increased gradually, measur ed 0.050 inches at the ultimate load (see Figure A37.7).

PAGE 368

351 At about 20000 lbs, elastic buckling waves were first obs erved in the web, which were predominantly seen around the web-punchouts. With the stud attaining its maximum axial load capacity, the stud exhibi ted first mode torsional buckling. Figure A37.3 shows the torsion in top-half of the stud, which was the cause of studs failure.

PAGE 369

352 Figure A37.2Elastic buckling waves in the Web of Stud 800S162-97-2100 at an Axial Load Figure A37.1 Overall View of the Stud 800S162-97-2100 in the Riehle Testing Machine, prior to the Test Figure A37.3 Torsional Buckling in the top-half of the Stud 800S162-97-2100 at an Axial Load of 23000 lbs

PAGE 370

353 Figure A37.4 Plot of Axial Load vs. Axial Shortening Figure A37.5 Plot of Axial Load vs. Brace Forces

PAGE 371

354 Figure A37.6 Plot of Axial Load vs. W eak Axis Displacement at Mid-Height Figure A37.7 Plot of Axial Load vs. St rong Axis Displacement at Mid-Height

PAGE 372

355 APPENDIX B TEST RESULTS ON BRIDGING CONNECTIONS The bridging connection tests were conducted on 54 cee-stud specimens, respectively, which were subdivi ded into two groups based on the loading condition. As described in Chapter 3, three types of bri dging connections were te sted for strength and stiffness. Load was applied perpendicular to the major axis or out -of-plane and along the major-axis or in-plane. Appendix B is subdi vided into two sections based on the out-ofplane loading and in-pla ne loading conditions. The photographs show either the initial or the final overall view of the test specimen and a close up view of the failure mech anism. The plot of applied load versus displacement, either out-of -plane or in-plane is sh own for each of the bridging connections. Two test specimens were tested for each type of stud and connection. In the out-of-plane load tests, the plot of applied load versus displacement in the XDirection is shown, whereas for the in-plane lo ad tests, the plot of applied load versus displacement in the Y-Direct ion is shown for each of th e specimens. The observed failure mechanisms have been discusse d in Chapter 4 for both the loadings.

PAGE 373

356 Out-Of-Plane Load Test on 362S125-33-1SS (a) Final Right Front View Show ing Connection Deformation (b) Close-up View Showing Web Plate Deformation and Screw Pull Out (c) Plot of Applied Load vs. Displacement in X-Direction Figure B1.1

PAGE 374

357 Out-Of-Plane Load Test on 362S125-33-2SS (a) Final Right Front View Showing Screw Pull Out (b) Close-up Backside View Show ing Web Plate Deformation (c) Plot of Applied Load vs. Displacement in X-Direction Figure B1.2

PAGE 375

358 Out-Of-Plane Load Test on 362S162-43-2SS (a) Final Right Front View Show ing Connection Deformation (b) Close-up View Showing Web Plate Deformation (c) Plot of Applied Load vs. Displacement in X-Direction Figure B1.3

PAGE 376

359 Out-Of-Plane Load Test on 362S162-68-1SS (a) Right Front View Showing Clip Angle Deformation (b) Top View Showing Clip Angle Deformation (c) Plot of Applied Load vs. Displacement in X-Direction Figure B1.4

PAGE 377

360 Out-Of-Plane Load Test on 362S162-68-2SS (a) Final Front View Showi ng Connection Deformation (b) Close-up View Showing Web Plate Deformation (c) Plot of Applied Load vs. Displacement in X-Direction Figure B1.5

PAGE 378

361 Out-Of-Plane Load Test on 362S162-68-1WW (a) Final Front View Showi ng Connection Deformation (b) Close-up View Showi ng Clip Angle Tear (c) Plot of Applied Load vs. Displacement in X-Direction Figure B1.6

PAGE 379

362 Out-Of-Plane Load Test on 362S162-68-2WW (a) Final Front View Showi ng Connection Deformation (b) Close-up View Showing Weld Tear (c) Plot of Applied Load vs. Displacement in X-Direction Figure B1.7

PAGE 380

363 Out-Of-Plane Load Test on 362S162-68-1DW (a) Final Front View Showi ng Connection Deformation (b) Close-up View Showing Weld Tear (c) Plot of Applied Load vs. Displacement in X-Direction Figure B1.8

PAGE 381

364 Out-Of-Plane Load Test on 362S162-68-2DW (a) Final Front View Showi ng Connection Deformation (b) Close-up View Showing Weld Tear (c) Plot of Applied Load vs. Displacement in X-Direction Figure B1.9

PAGE 382

365 Out-Of-Plane Load Test on 600S125-33-1SS (a) Final Front View Showi ng Connection Deformation (b) Close-up View Showing Screw Pull Out (c) Plot of Applied Load vs. Displacement in X-Direction Figure B1.10

PAGE 383

366 Out-Of-Plane Load Test on 600S125-33-2SS (a) Front View Showing Co nnection Deformation (b) Close-up View Showing Screw Pull Out (c) Plot of Applied Load vs. Displacement in X-Direction Figure B1.11

PAGE 384

367 Out-Of-Plane Load Test on 600S162-43-1SS (a) Front View Showing Co nnection Deformation (b) Close-up View Showing Screw Pull Out (c) Plot of Applied Load vs. Displacement in X-Direction Figure B1.12

PAGE 385

368 Out-Of-Plane Load Test on 600S162-43-2SS (a) Front View Showing Connecti on Deformation in 600S162-43-2SS (b) Close-up View Showing Scre w Pull Out in 600S162-43-2SS (c) Plot of Applied Load vs. Displacement in X-Direction Figure B1.13

PAGE 386

369 Out-Of-Plane Load Test on 600S162-97-3SS (a) Front View Showing Connecti on Deformation in 600S162-97-3SS (b) Top Close-up View Showing Screw Pull Out in 600S162-97-3SS (c) Plot of Applied Load vs. Displacement in X-Direction Figure B1.14

PAGE 387

370 Out-Of-Plane Load Test on 600S162-97-4SS (a) Front View Showing Connecti on Deformation in 600S162-97-4SS (b) Top Close-up View Showing Screw Pull Out in 600S162-97-4SS (c) Plot of Applied Load vs. Displacement in X-Direction Figure B1.15

PAGE 388

371 Out-Of-Plane Load Test on 600S162-97-1WW (a) Front View Showing Connecti on Deformation in 600S162-97-1WW (b) Close-up View Showing Clip Angle Tear in 600S162-97-1WW (c) Plot of Applied Load vs. Displacement in X-Direction Figure B1.16

PAGE 389

372 Out-Of-Plane Load Test on 600S162-97-2WW (a) Front View Showing Connecti on Deformation in 600S162-97-2WW (b) Close-up View Showing Clip Angle T ear and Deformation in 600S162-97-2WW (c) Plot of Applied Load vs. Displacement in X-Direction Figure B1.17

PAGE 390

373 Out-Of-Plane Load Test on 600S162-97-1DW (a) Front View Showing Connecti on Deformation in 600S162-97-1DW (b) Back View Showing Weld Tear an d Plate Deformation in 600S162-97-1DW (c) Plot of Applied Load vs. Displacement in X-Direction Figure B1.18

PAGE 391

374 Out-Of-Plane Load Test on 600S162-97-2DW (a) Front View Showing Connecti on Deformation in 600S162-97-2DW (b) Plot of Applied Load vs. Displacement in X-Direction Figure B1.19

PAGE 392

375 Out-Of-Plane Load Test on 800162-43-1SS (a) Initial Front View of 800162-43-1SS (b) Final Left Front View Showing Screw Pu ll Out and Clip Angle Deformation in 800S162-43-1SS (c) Plot of Applied Load vs. Displacement in X-Direction Figure B1.20

PAGE 393

376 Out-Of-Plane Load Test on 800S162-43-2SS (a) Front View Showing Clip Angl e Deformation in 800S162-43-2SS (b) Top View Showing Screw Pull Out in 800S162-43-2SS (c) Plot of Applied Load vs. Displacement in X-Direction Figure B1.21

PAGE 394

377 Out-Of-Plane Load Test on 800S162-97-1SS (a) Front View Showing Connecti on Deformation in 800S162-97-1SS (b) Top View Showing Connection Deformation in 800S162-97-1SS (c) Plot of Applied Load vs. Displacement in X-Direction Figure B1.22

PAGE 395

378 Out-Of-Plane Load Test on 800S162-97-2SS (a) Top View Showing Connection Deformation in 800S162-97-2SS (b) Left Front View Showing Sc rew Shear in 800S162-97-2SS (c) Plot of Applied Load vs. Displacement in X-Direction Figure B1.23

PAGE 396

379 Out-Of-Plane Load Test on 800S162-97-1WW (a) Front View Showing Clip Angl e Deformation in 800S162-97-1WW (b) Top View Showing Connection Deformation in 800S162-97-1WW (c) Plot of Applied Load vs. Displacement in X-Direction Figure B1.24

PAGE 397

380 Out-Of-Plane Load Test on 800S162-97-2WW (a) Front View Showing Clip Angl e Deformation in 800S162-97-2WW (b) Close-up View Showing Clip Angle T ear and Deformation in 800S162-97-2WW (c) Plot of Applied Load vs. Displacement in X-Direction Figure B1.25

PAGE 398

381 Out-Of-Plane Load Test on 800S162-97-1DW (a) Front View Showing Connecti on Deformation in 800S162-97-1DW (b) Close-up View Showing We ld Tear in 800S162-97-1DW (c) Plot of Applied Load vs. Displacement in X-Direction Figure B1.26

PAGE 399

382 Out-Of-Plane Load Test on 800S162-97-2DW (a) Top View Showing Connection Deformation in 800S162-97-2DW (b) Close-up View Showing We ld Tear in 800S162-97-2DW (c) Plot of Applied Load vs. Displacement in X-Direction Figure B1.27

PAGE 400

383 In-Plane Load Test on 362S125-33-3SS (a) Initial View of 362S125-33-3SS (b) Final View Showing Clip Angle Defo rmation, Screw Pull Out of 362S125-333SS (c) Plot of Applied Load vs. Displacement in Y-Direction Figure B2.1

PAGE 401

384 In-Plane Load Test on 362S125-33-4SS (a) Initial View of 362S125-33-4SS (b) Final View Showing Clip Angle Defo rmation, Screw Pull Out of 362S125-334SS (c) Plot of Applied Load vs. Displacement in Y-Direction Figure B2.2

PAGE 402

385 In-Plane Load Test on 362S162-43-3SS (a) Final Front View Show ing Clip Angle Deformation of 362S162-43-3SS (b) Top View Showing Clip Angle Deformation, Screw Pull Out of 362S162-43-3SS (c) Plot of Applied Load vs. Displacement in Y-Direction Figure B2.3

PAGE 403

386 In-Plane Load Test on 362S162-43-4SS (a) Final Front View Show ing Clip Angle Deformation of 362S162-43-4SS (b) Top View Showing Clip Angle Deformation, Screw Pull Out of 362S162-43-4SS (c) Plot of Applied Load vs. Displacement in Y-Direction Figure B2.4

PAGE 404

387 In-Plane Load Test on 362S162-68-3SS (a) Final Top View Showing Clip A ngle Deformation of 362S162-68-3SS (b) Left Back View showing Sc rew Rotation of 362S162-68-3SS (c) Plot of Applied Load vs. Displacement in Y-Direction Figure B2.5

PAGE 405

388 In-Plane Load Test on 362S162-68-4SS (a) Final Left View Showing Clip A ngle Deformation of 362S162-68-4SS (b) Final Right View showing Sc rew Failure of 362S162-68-4SS (c) Plot of Applied Load vs. Displacement in Y-Direction Figure B2.6

PAGE 406

389 In-Plane Load Test on 362S162-68-3DW (a) Left-Front View Showing We ld Failure of 362S162-68-3DW (b) Right-Front View Showi ng Block Shear Rupture of Web of 362S162-68-3DW (c) Plot of Applied Load vs. Displacement in Y-Direction Figure B2.7

PAGE 407

390 In-Plane Load Test on 362S162-68-4DW (a) Left-Front View Showi ng Block Shear Rupture of Web of 362S162-68-4DW (b) Top View Showing the Conn ection Failure 362S162-68-4DW (c) Plot of Applied Load vs. Displacement in Y-Direction Figure B2.8

PAGE 408

391 In-Plane Load Test on 362S162-68-3WW (a) Final View Showing Weld Tear in 362S162-68-3WW (b) Plot of Applied Load vs. Displacement in Y-Direction Figure B2.9

PAGE 409

392 (a) In-Plane Load Test on 362S162-68-4WW (b) Final Views Showing Clip A ngle Tear in 362S162-68-4WW (c) Plot of Applied Load vs. Displacement in Y-Direction Figure B2.10

PAGE 410

393 In-Plane Load Test on 600S125-33-3SS (a) Front View Screw Pull Out in 600S125-33-3SS (b) Top View of Screw Pull Out in 600S125-33-3SS 600S 125-33-3 SS 0 250 500 750 1000 1250 1500 1750 2000 0.000.250.500.751. 001.251.501.752.00 Displacement in Y-Direction (inches)Applied Load (lbs) Y-Dir LBackRBack LFrontRFront X-Dir Z-Dir (c) Plot of Applied Load vs. Displacement in Y-Direction Figure B2.11

PAGE 411

394 In-Plane Load Test on 600S125-33-4SS (a) Front View of Screw Pull Out in 600S125-33-4SS (b) Top View of Screw Pull Out in 600S125-33-4SS 600S 125-33-4 SS 0 250 500 750 1000 1250 1500 1750 2000 0.000.250.500.751. 001.251.501.752.00 Displacement in Y-Direction (inches)Applied Load (lbs) Y-Dir LBackRBack LFrontRFront X-Dir Z-Dir (c) Plot of Applied Load vs. Displacement in Y-Direction Figure B2.12

PAGE 412

395 In-Plane Load Test on 600S162-43-3SS (a) Top View Showing Screw Pull Out of 600S162-43-3SS 600S 162-43-3 SS 0 250 500 750 1000 1250 1500 1750 2000 0.000.250.500.751. 001.251.501.752.00 Displacement in Y-Direction (inches)Applied Load (lbs) Y-Dir LBackRBack LFrontRFront X-Dir Z-Dir (b) Plot of Applied Load vs. Displacement in Y-Direction Figure B2.13

PAGE 413

396 In-Plane Load Test on 600S162-43-4SS (a) Front View of Screw Pull Out in 600S162-43-4SS (b) Top View of Screw Pull Out in 600S162-43-4SS 600S 162-43-4 SS 0 250 500 750 1000 1250 1500 1750 2000 0.000.250.500.751.0 01.251.501.752.00 Displacement in Y-Direction (inches)Applied Load (lbs) Y-Dir LBackRBack LFrontRFront X-Dir Z-Dir (c) Plot of Applied Load vs. Displacement in Y-Direction Figure B2.14

PAGE 414

397 In-Plane Load Test on 600S162-97-1SS (a) Left Front View Showing Tension Failure of Screw of 600S162-97-1SS (b) Front View Showing Clip Angl e Deformation of 600S162-97-1SS 600S 162-97-1 SS 0 250 500 750 1000 1250 1500 1750 2000 0.000.250.500.751. 001.251.501.752.00 Displacement in Y-Direction (inches)Applied Load (lbs) Y-Dir LBackRBack LFrontRFront X-Dir Z-Dir (c) Plot of Applied Load vs. Displacement in Y-Direction Figure B2.15

PAGE 415

398 In-Plane Load Test on 600S162-97-2SS (a) Final View Tension Failure of Screw in 600S162-97-2SS (b) Left Front View S howing in 600S162-97-2SS 600S 162-97-2 SS 0 250 500 750 1000 1250 1500 1750 2000 0.000.250.500.751. 001.251.501.752.00 Displacement in Y-Direction (inches)Applied Load (lbs) Y-Dir LBackRBack LFrontRFront X-Dir Z-Dir (c) Plot of Applied Load vs. Displacement in Y-Direction Figure B2.16

PAGE 416

399 In-Plane Load Test on 600S162-97-3WW (a) Left Front View Showing We ld Failure in 600S162-97-3WW 600S 162-97-3 WW 0 250 500 750 1000 1250 1500 1750 2000 -0.250.000.250.500.7 51.001.251.501.75 Displacement in Y-Direction (inches)Applied Load (lbs) Y-Dir LBackRBack LFrontRFront X-Dir Z-Dir (b) Plot of Applied Load vs. Displacement in Y-Direction Figure B2.17

PAGE 417

400 In-Plane Load Test on 600S162-97-4WW (a) Front View Showing Weld Failure in 600S162-97-4WW 600S 162-97-4 WW 0 250 500 750 1000 1250 1500 1750 2000 -0.250.000.250.500.7 51.001.251.501.75 Displacement in Y-Direction (inches)Applied Load (lbs) Y-Dir LBackRBack LFrontRFront X-Dir Z-Di r (b) Plot of Applied Load vs. Displacement in Y-Direction Figure B2.18

PAGE 418

401 In-Plane Load Test on 800S162-43-3SS (a) Top View Showing Screw Pull Out in 800S162-43-3SS 800S 162-43-3 SS 0 250 500 750 1000 1250 1500 1750 2000 0.000.250.500.751.0 01.251.501.752.00 Displacement in Y-Direction (inches)Applied Load (lbs) Y-Dir LBackRBack LFrontRFront X-Dir Z-Dir (b) Plot of Applied Load vs. Displacement in Y-Direction Figure B2.19

PAGE 419

402 In-Plane Load Test on 800S162-43-4SS (a) Front View Showing Tension Fa ilure of Screw in 800S162-43-4SS (b) Top View of 800S162-43-4SS 800S 162-43-4 SS 0 250 500 750 1000 1250 1500 1750 2000 0.000.250.500.751. 001.251.501.752.00 Displacement in Y-Direction (inches)Applied Load (lbs) Y-Dir LBackRBack LFrontRFront X-Dir Z-Dir (c) Plot of Applied Load vs. Displacement in Y-Direction Figure B2.20

PAGE 420

403 In-Plane Load Test on 800S162-97-3SS (a) Top View Showing Tension Failu re of Screw in 800S162-97-3SS 800S 162-97-3 SS 0 250 500 750 1000 1250 1500 1750 2000 0.000.250.500.751. 001.251.501.752.00 Displacement in Y-Direction (inches)Applied Load (lbs) Y-Dir LBackRBack LFrontRFront X-Dir Z-Dir (b) Plot of Applied Load vs. Displacement in Y-Direction Figure B2.21

PAGE 421

404 In-Plane Load Test on 800S162-97-4SS (a) Front View Showing Tension Fa ilure of Screw in 800S162-97-4SS (b) Top View Showing Clip Angl e Deformation in 800S162-97-4SS 800S 162-97-4 SS 0 250 500 750 1000 1250 1500 1750 2000 0.000.250.500.751. 001.251.501.752.00 Displacement in Y-Direction (inches)Applied Load (lbs) Y-Dir LBackRBack LFrontRFront X-Dir Z-Dir (c) Plot of Applied Load vs. Displacement in Y-Direction Figure B2.22

PAGE 422

405 In-Plane Load Test on 800S162-97-3WW (a) Clip Angle Deformation in 800S162-97-3WW (b) Angle Tear in 800S162-97-3WW 800S 162-97-3 WW 0 250 500 750 1000 1250 1500 1750 2000 -0.250.000.250.500.7 51.001.251.501.75 Displacement in Y-Direction (inches)Applied Load (lbs) Y-Dir LBackRBack LFrontRFront X-Dir Z-Dir (c) Plot of Applied Load vs. Displacement in Y-Direction Figure B2.23

PAGE 423

406 In-Plane Load Test on 800S162-97-4WW (a) Left Front View Showing Clip Angle Distortion in 800S162-97-4WW (b) Front View Showing Clip A ngle Tear in 800S162-97-4WW 800S 162-97-4 WW 0 250 500 750 1000 1250 1500 1750 2000 -0.250.000.250.500.751.001.251.501.75 Displacement in Y-Direction (inches)Applied Load (lbs) Y-Dir LBackRBack LFrontRFront X-Dir Z-Dir (c) Plot of Applied Load vs. Displacement in Y-Direction Figure B2.24

PAGE 424

407 In-Plane Load Test on 800S162-97-3DW (a) Front Views Showing Weld Separati on From the Web of 800S162-97-3DW 800S 162-97-3 DW 0 500 1000 1500 2000 2500 3000 3500 4000 0.000.250.500.751.0 01.251.501.752.00 Displacement in Y-Direction (inches)Applied Load (lbs) Y-Dir LBackRBack LFrontRFront X-Dir Z-Dir (b) Plot of Applied Load vs. Displacement in Y-Direction Figure B2.25

PAGE 425

408 APPENDIX C MATHCAD WORKSHEETS The MathCAD worksheets are organized into following topics: 1. Axial load capacity of braced cee-stud: The MathCAD worksheet developed by Chen for AISI (1999) has been modified for the purposes of this resear ch. One complete listing is provided for the 362S125-33 stud with no mid-he ight lateral brace. Input data and summary of results are provided for the 362S 125-33 stud with full bracing (Winter 1960). It is assumed that the effective length factor for an infinitely sti ff brace is 0.5 since the location of the brace acts as a pin support. 2. Initial Flexural Stiffness of the connecti on from the Out-Of-Pla ne tests: MathCAD worksheet has been developed from basic stru ctural mechanics to determine the initial flexural stiffness of the bracing connection. A complete source code listing is given for all the eight groups of cee-studs for the three connection types.

PAGE 426

409 C.1 Axial Load Capacity of Unbraced Cee-Studs C.1.1 362S125-33 with Pinned Ends KLxLKx KLx8ft Effective length of compression member for bending about y-axis KLyLKy KLy8ft Effective length of compression member for twisting KLtLKt KLt8ft Yield stress: Fy33.0ksi Elastic modulus: E29500ksi Shear modulus G11300ksi Lip angle as shown in the figures above: 90deg Always 90 deg. for hat section. Input perforation data. Enter zeros if no perforation exists. Hole shape: Enter 1 for circle and 2 for others. shape2 Hole depth (or diameter for circular hole): dh0in Hole width: bh0in Hole spacing: sh24in Distance between hole edge and end of member: send1.0625in Define Units: ksi1000psi kip1000lbf Gross Section Properties of Channel and Hat Sections:This example calculates channel or hat section gross section properties: area (A), moments of inertia (Ix, Iy), section modulus (Sx, Sy), torsional constant (J), warping constant (Cw), shear center location (x0), and parameter (j). Formulas used hereby are published in the AISI 1996 Cold-Formed Steel Design Manual All the formulas consider the sections' round corners except torsional properties x0, j and Cw.a. Input Data:Section designation: Designation"362S125-33" Enter capital "C" or "H" for channel or hat section, respectively: SectTyp"C" Member Length: L8ft Dimension A: A3.6131in Dimension B: B1.2876in Dimension C: C0.2287in Corner Inner radius: R 0.07781in Thickness: t0.0319in Effective Length Factors: Kx1.0 Ky1.0 Kt1.0 Effective length of compression member for bending about x-axis

PAGE 427

410 c Cr t 2 c0.119in Arc length: u r 2 u0.1473in Gross section properties: Gross area: Agta2b 2u 2c 2u () Ag0.2028in2 Moment of inertia about x-axis of channel section: Ix2t 0.0417a3 b a 2 r 2 u a 2 0.637r 2 0.149r3 0.0833c3 c 4 ac ()2 u a 2 0.637r 2 0.149r3 Ix0.4009in4 Section modulus about x-axis: SxIx0.5A Sx0.2219in3 Radius of gyration about x-axis: rxIxAg rx1.4059in Distance between centroid and web centerline: x_bar 2t Ag b b 2 r u0.363r () ub1.637r () cb2r () [] x_bar0.3162in Moment of inertia about y-axis: Iy2t b b 2 r 2 0.0833b3 0.356r3 cb2r ()2 ub1.637r ()2 0.149r3 Agx_bar2 Iy0.0391in4b. Gross Section Properties:Determine whether lips exist: 1C0 if 0otherwise Centerline dimensions without considering round corners: Centerline of dimension A: acAt ac3.5812in Centerline of dimension B: bcB t 2 t 2 bc1.2557in Centerline of dimension C: cc C t 2 cc0.2127in The flat widths of flanges and web, and centerline arc length: Centerline radius: rR t 2 r0.0938in Flat width of Dim. A: aA2r t () a3.3937in Flat width of Dim. B: bBr t 2 r t 2 b1.0682in Flat width of Dim. C:

PAGE 428

411 r01.692in St. Venant torsional constant: J t33 a2b 2u 2 cu () J0.0001in4 Warping constant: Cwac 2bc 2 t 12 2ac 3 bc 3ac 2 bc 2 48cc 4 112bc cc 3 8ac cc 3 48ac bc cc 2 12ac 2 cc 2 12ac 2 bc cc 6ac 3 cc 6ac 2 bc ac2 cc 3 24 ac cc 2 Cw0.1007in6 Parameter w, f, l: wtx_bar ac 3 12 tx_bar3 ac w0.0422 in5 ft 2 bcx_bar 4x_bar4 tac 2 4 bcx_bar 2x_bar2 f0.0923in5 l 2cc t bcx_bar 3 2 3 t bcx_bar ac2 3ac2 cc 3 l0.0475in5 Parameter j: j 1 2Iy wfl x0 j2.081in Distance between shear center and web centerline: m bc3ac 2 bc cc 6ac 2 8cc 2 ac 36ac 2 bc cc 8cc 2 12ac cc 6ac 2 m0.5165in Distance between centroid and shear center: x0x_barm () x00.8327 in (Note: Negative sign indicates x0 is measured in negative x-direction) Section modulus about y-axis: SylipIyBx_bar t 2 SywebIyx_bar t 2 Sylip0.0409in3 Syweb0.1177in3 Radius of gyration about y-axis: ryIyAg ry0.439in Polar radius of gyration: r0rx 2ry 2 x0 2

PAGE 429

412 1 x0r0 2 0.7578 (Eq. C4.2-3) Elastic lateral torsional buckling stress: Felt1 2 extext24 ext Felt6.6282ksi (Eq. C4.2-1) The critical elastic buckling stress will be the minimum stress of buckling about x or y axis, torsional buckling, and lateral-torsinal buckling: Femin exeytFelt Fe6.0895ksi cFyFe c2.3279 (Eq. C4-4) Fn0.658c 2 Fyc1.5 if 0.877 c 2 Fy otherwise (Eq. C4-2) Fn5.3405ksi (Eq. C4-3)Concentrically Loaded Compression Membersb. Axial Compression Strength:Elastic flexural buckling stress for bending about x-axis: ex2E KLxrx 2 ex62.447ksi (Eq. C3.1.2-8) Elastic flexural buckling stress for bending about y-axis: ey2E KLyry 2 ey6.0895ksi (Eq. C3.1.2-9) Polar radius of gyration about shear center: r0 rx 2ry 2 x0 2 r01.692in (Eq. C3.1.2-13) Elastic torsional buckling stress: t1 Agr0 2 GJ 2E Cw KLt2 t6.8189ksi (Eq.C3.1.2-10)

PAGE 430

413 beff_D4fw ()wsubwdh2 bsubEffective_widthwsubf 0.43 bbsub2 The following function determines effective width assuming the element with perforation consists of two unstiffened sub-elements, one on each side of the perforation (assume hole is centered on the element). It follows Section D4. (Eq. B2.2-2) (Eq. B2.2-1) (Eq. B2.1-4) beff_B2_2fw ()k4 1.052 k w t f E bwdh 0.675 if min w1 0.22 0.8dh w wdh otherwise The following function determines effective width of a stiffened element with a circular hole using Section B2.2. (Eq. B2.1-1,2) (Eq. B2.1-3) (Eq. B2.1-4) Effective_widthwf k () 1.052 k w t f E 1 0.22 bif 0.673 w w The following function determines the effective width based on given stress level and buckling coefficient (Section B2.1).c. Functions for Effective Width Calculation:fnFn Nominal uniform compressive stress on section: Is0in4 Isc3t sin 2 12 Stiffener moment of inertia:b. Section Geometries :This example calculates effective area of C-, Zor hat section members with/without perforations as shown in the figures below when the member is subjected to an axial load. AISI Specification Sections B2.2 and D4 are used to consider the perforation.Effective Area for Channel with/without Perforations

PAGE 431

414 The following function determines the effective width of uniformly compressed element with an edge stiffener (Section B4.2): bflange_lipwlipflip w f S1.28 E f dsEffective_widthwlipflip 0.43 bw w t S 3 if nif S 3 w t S 1 2 1 3 ku0.43 Ia399t4 w tS ku4 3 S 3 w t S if t4115 w tS 5 otherwise C2min IsIa 1 kamin5.255 C w 4.0 kC2 nkaku ku bEffective_widthwf k () dsC2Effective_widthwlipflip 0.43 otherwise bebdsT (Eq. B4-1) (Eq. B4.2-1) (Eq. B4.2-4) (Eq. B4.2-11) (Eq. B4.2-5) (Eq. B4.2-8) (Eq. B4.2-7) (Eq. B4.2-9)d. Check Perforation Limitations Set Forth in Section B2.2 or D4:The following function checks whether limitations given in Section B2.2 are satisfied. CondB2_2w ()Check1if0.50 dhw 0 w t 70 1 1 0 Check2ifshmax0.5w 3dh 1 0 condifCheck1Check2 shape 1 1 0 ()
PAGE 432

415 cPn 891.1099lbf (LRFD) c0.85 Compression Strength for LRFD: (Eq. C4-1) Pn1048.3646lbf PnFnAeff Aeff0.1963in2<--Calculate effective area <--be of Elem. A without hole. <-be of Elem. A satisfying D4 but not B2.2. <--be of Elem. A satisfying B2.2 <-be of Elems. B & C without lips. <--be of Elems. B & C with lips.Aeffbe_B_Cbflange_lipcfn b fn 0 if Effective_widthbfn 0.43 0Totherwise be_Abeff_B2_2fna CondB2_2a ()1 dh0 if beff_D4fna CondD41 dh0 CondB2_2a ()0 if Effective_widthafn 4 dh0 if 0in otherwise Aeffbe_B_C0 be_B_C1 2 be_A 2u u t e. Effective Area under Given Compressive Stress:<-Review this before going further Check"No hole exists. Chapter B is applicable." Check"No hole exists. Chapter B is applicable."dh0 if "Either Section B2.2 or D4 is applicable."CondB2_2a ()CondD4dh0 1 if "Specification is not applicable. Please revise the Section."otherwise Cond=1, indicates all the requirements given in Section B2.2 are satisfied. Otherwise, at least one of the conditions is not satisfied. CondD40 CondD4Check1ifsh24in 1 0 Check2ifdhmin0.5A 2.5in () () 1 0 Check3ifbh4.5in 1 0 Check4if A t 20 1 0 Check5ifsend10in 1 0 condifCheck1Check2 Check3 Check4 Check5 1 1 0 () The following function checks whether all the limitations given in Section D4 are satisfied.

PAGE 433

416 w0.0422 in5 f0.0923in5 l0.0475in5 Parameter j: j2.081in Check Applicability:CondB2_2a ()0 Cond=1, indicates all the requirements given in Section B2.2 are satisfied. Otherwise, at least one of the conditions is not satisfied. CondD40 Cond=1, indicates all the requirements given in Section B2.2 are satisfied. Otherwise, at least one of the conditions is not satisfied. Check"No hole exists. Chapter B is applicable." Result:Gross Area: Ag0.2028in2 Effective area: Aeff0.19631in2 Elastic flexural buckling stress for bending about x-axis: ex62.447ksi Elastic flexural buckling stress for bending about y-axis: ey6.0895ksi Elastic lateral torsional buckling stress: Felt6.6282ksi The critical elastic buckling stress will be the minimum stress of buckling about x or y axis, torsional buckling, and lateral-torsinal buckling: Fe6.0895ksi Fn5.3405ksi Pn1048.36lbf Compression Strength for LRFD: c0.85 PucPn Pu891.11lbf Summary Gross Section Properties:Effective Length Factors: Kx 1 Ky 1 Kt 1 Cross section area: Ag0.2028in2 Moment of inertia about x-axis: Ix0.40085in4 Moment of inertia about y-axis: Iy0.0391in4 Section modulus about x-axis: Sx0.2219in3 Section modulus about y-axis: Sylip0.0409in3 Syweb0.1177in3 Distance between shear center and centroid: x00.8327 in Radius of gyration about x-axis: rx1.4059in Radius of gyration about y-axis: ry0.439in Polar radius of gyration: r01.692in St. Venant torsional constant: J0.0001in4 Warping constant: Cw0.1007in6 Parameters w, f, l:

PAGE 434

417 C.1.2 362S125-33 with Effective Length Factor s based on Experimental Conditions KLxLKx KLx4ft Effective length of compression member for bending about y-axis KLyLKy KLy4ft Effective length of compression member for twisting KLtLKt KLt2ft Yield stress: Fy33.0ksi Elastic modulus: E29500ksi Shear modulus G11300ksi Lip angle as shown in the figures above: 90deg Always 90 deg. for hat section. Input perforation data. Enter zeros if no perforation exists. Hole shape: Enter 1 for circle and 2 for others. shape2 Hole depth (or diameter for circular hole): dh0in Hole width: bh0in Hole spacing: sh24in Distance between hole edge and end of member: send1.0625in Define Units: ksi1000psi kip1000lbf Gross Section Properties of Channel and Hat Sections:This example calculates channel or hat section gross section properties: area (A), moments of inertia (Ix, Iy), section modulus (Sx, Sy), torsional constant (J), warping constant (Cw), shear center location (x0), and parameter (j). Formulas used hereby are published in the AISI 1996 Cold-Formed Steel Design Manual. All the formulas consider the sections' round corners except torsional properties x0, j and Cw.a. Input Data:Section designation: Designation"362S125-33" Enter capital "C" or "H" for channel or hat section, respectively: SectTyp"C" Member Length: L8ft Dimension A: A3.6131in Dimension B: B1.2876in Dimension C: C0.2287in Corner Inner radius: R 0.07781in Thickness: t0.0319in Effective Length Factors: Kx0.5 Ky0.5 Kt0.25 Effective length of compression member for bending about x-axis

PAGE 435

418 w0.0422 in5 f0.0923in5 l0.0475in5 Parameter j: j2.081in Check Applicability:CondB2_2a ()0 Cond=1, indicates all the requirements given in Section B2.2 are satisfied. Otherwise, at least one of the conditions is not satisfied. CondD40 Cond=1, indicates all the requirements given in Section B2.2 are satisfied. Otherwise, at least one of the conditions is not satisfied. Check"No hole exists. Chapter B is applicable." Result:Gross Area: Ag0.2028in2 Effective area: Aeff0.15403in2 Elastic flexural buckling stress for bending about x-axis: ex249.788ksi Elastic flexural buckling stress for bending about y-axis: ey24.3578ksi Elastic lateral torsional buckling stress: Felt79.913ksi The critical elastic buckling stress will be the minimum stress of buckling about x or y axis, torsional buckling, and lateral-torsinal buckling: Fe24.3578ksi Fn18.7174ksi Pn2882.98lbf Compression Strength for LRFD: c0.85 PucPn Pu2450.53lbf Summary Gross Section Properties:Effective Length Factors: Kx 0.5 Ky 0.5 Kt 0.25 Cross section area: Ag0.2028in2 Moment of inertia about x-axis: Ix0.40085in4 Moment of inertia about y-axis: Iy0.0391in4 Section modulus about x-axis: Sx0.2219in3 Section modulus about y-axis: Sylip0.0409in3 Syweb0.1177in3 Distance between shear center and centroid: x00.8327 in Radius of gyration about x-axis: rx1.4059in Radius of gyration about y-axis: ry0.439in Polar radius of gyration: r01.692in St. Venant torsional constant: J0.0001in4 Warping constant: Cw0.1007in6 Parameters w, f, l:

PAGE 436

419 C.2 Initial Flexural Stif fness of the Connection fr om In-Plane Load tests C.2.1 SS Type Connection d h 1.5in Note: The 33 mil studs had smaller length punchouts BRIDGING PROPERTIES: Length of bridging L bridging 10.0in Thickness of bridging t bridging 0.054in Web depth of bridging D bridging 1.5in Area of bridging channel c/s A bridging D bridging t bridging 0.55int bridging 2 Material properties E bridging 29500ksi A bridging 0.1404in2 CLIP ANGLE PROPERTIES: Angle leg Leg angle 1.5in t angle 0.054in Thickness of angle Length of angle L angle D1.5in L angleT2.1252.1252.1254.54.54.56.56.5 ()in E angle 29500ksi Material properties The following mathcad worksheet is for Screwed-Screwed connection of Clip angle to the bridging and the stud-web and is used to determine the initial connection stiffness only, based on basic mechanics ORIGIN1 ksi1000psi kip1000lbf STUD PROPERTIES: Depth of studs D3.6253.6253.6256.0006.0006.0008.0008.000 ()Tin Thickness of studs t0.0330.0430.0680.0330.0430.0970.0430.097 ()Tin iORIGINlastD () Radius of bend r bent 0.0940.0940.1410.0940.0940.2050.0940.205 ()Tin Effective flat width of web wiDiti 2r benti w_by_tiwiti wT3.4043.3943.2755.7795.7695.4937.7697.493 ()in Material properties E studi29500.0 ksi 0.3 fy48.5347.0452.0124.0346.2460.240.2342.5 ()Tksi Punchout dimensions w hi4in w h11.5in w h41.5in

PAGE 437

420 2T5903.91635903.91635903.9163480.5355480.5355480.5355153.6899153.6899 ( ) kip in 2i anglei anglei1 inv anglei inv anglei1 E angle I angle 1 2 ai2 2 3 ai ai0.5 in ai0.5in 2 I angle I x aiL anglei1.0in 2 Clip angle: Considered as a simply supported beam subjected to two symmetic point loads due the screws connecting the channel. Supported at the screws connecting the stud-web 1T414.18414.18414.18414.18414.18414.18414.18414.18 () kip in 1i bridging bridging A bridgingE bridging L bridging P AE L Horizontal bridging channel: Subjected to direct tension Material properties E screw 29000.0 ksi A screw 0.0284in2 A screw 4 d screw2 Area of c/s of screw I screw 6.3971105 in4 I screw 64 d screw4 M.I of screw d screw 0.19in d screw 0.19in Diameter of screw SELF DRILLING SCREW PROPETIES I x 0.0576in4 I x Leg angle t angle3 12 Leg angle t angle34 Leg angle t angle 3t angle 12 Leg angle t angle Leg angle2 4 t angle Moment of inertia

PAGE 438

421 1T0.89840.67680.43431.07331.14060.54931.43280.6296 () biwi 1i 1 0.22 1i 0.8d h wi 1i0.673 if wid h Effective width of web 1i1.052 k1 b witi fyiE studi Slenderness factor: C ss 0.138 Plate fixity coefficients: k1 b 24 Plate buckling coefficient For a simply supported plate: The web plate was considered to be either simply supported or fixed on all four edges, and the plate stiffness equation from "Roark's formulas for stress and strain" was used which is as given below. In this equation, the width of the web was determined based on the Section B2.2 of the AISI-CFS Spec. a r 2 Plate aspect ratio Web plate: subjected to two point loads... 4T18901.9216953.2613479.2418901.9216953.2610890.5116953.2610890.51 ( ) kip in 4 screw2 screw2 2 A screwE screw L2 screw P AE L L2 screwit angle ti Screw in direct tension: considering the length of screw being the sum of thickness of connecting plate members (clip angle and stud-web)... 3T35344.53535344.53535344.53535344.53535344.53535344.53535344.53535344.535 ( ) kip in 3i screw1 screw1 2 12E screw I screw L1 screw3 P 12EI L3 L1 screw t angle t bridging Bending in screws connecting bridging channel and the horizontal leg of clip angle, considering fixed-fixed condtion...

PAGE 439

422 FF 1 2 3 4 5 FF SS 1 2 3 4 5 SS FF conn 1.3366 2.9685 12.6412 0.351 0.7782 9.6196 0.3935 4.7076 kip in SS conn 0.6501 1.4471 6.2465 0.1706 0.3785 4.7796 0.1914 2.3368 kip in expUBV 2.068 4.200 7.942 1.143 3.822 6.860 2.463 7.082 kip in expLBV 1.683 3.574 6.102 1.000 3.785 5.571 2.066 2.947 kip in FF conni1 inv FF conni inv FF conn 1 1 1 2 1 3 1 4 1 5 FF 5 FF FF web SS conni1 inv SS conni inv SS conn 1 1 1 2 1 3 1 4 1 5 SS 5 SS SS web FF webiE studiti3 C ff 1 2 biwia r 1 conn 1 1 1 2 1 3 1 4 1 5 2T0.68740.51780.33220.82120.87270.42031.09620.4817 () biwi 2i 1 0.22 2i 0.8d h wi 2i0.673 if wid h Effective width of web 2i1.052 k2 b witi fyiE studi Slenderness factor: C ff 0.067 Plate fixity coefficients: k2 b 41 Plate buckling coefficient For a fixed plate: SS webiE studiti3 C ss 1 2 biwia r P C1 2ab Et3

PAGE 440

423 SS 414.18 414.18 414.18 414.18 414.18 414.18 414.18 414.18 5903.9163 5903.9163 5903.9163 480.5355 480.5355 480.5355 153.6899 153.6899 35344.5353 35344.5353 35344.5353 35344.5353 35344.5353 35344.5353 35344.5353 35344.5353 18901.9158 16953.2647 13479.235 18901.9158 16953.2647 10890.5078 16953.2647 10890.5078 0.6513 1.4527 6.3531 0.1707 0.3792 4.8874 0.1917 2.3872 kip in FF 414.18 414.18 414.18 414.18 414.18 414.18 414.18 414.18 5903.9163 5903.9163 5903.9163 480.5355 480.5355 480.5355 153.6899 153.6899 35344.53
Permanent Link: http://ufdc.ufl.edu/UFE0007014/00001

Material Information

Title: Bracing Requirements of Cold-Formed Steel Cee-Studs Subjected to Axial Compression
Physical Description: Mixed Material
Copyright Date: 2008

Record Information

Source Institution: University of Florida
Holding Location: University of Florida
Rights Management: All rights reserved by the source institution and holding location.
System ID: UFE0007014:00001

Permanent Link: http://ufdc.ufl.edu/UFE0007014/00001

Material Information

Title: Bracing Requirements of Cold-Formed Steel Cee-Studs Subjected to Axial Compression
Physical Description: Mixed Material
Copyright Date: 2008

Record Information

Source Institution: University of Florida
Holding Location: University of Florida
Rights Management: All rights reserved by the source institution and holding location.
System ID: UFE0007014:00001


This item has the following downloads:


Full Text












BRACING REQUIREMENTS OF COLD-FORMED STEEL CEE-STUDS
SUBJECTED TO AXIAL COMPRESSION
















By

VISWANATH URALA


A THESIS PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF ENGINEERING

UNIVERSITY OF FLORIDA


2004

































Copyright 2004

by

Viswanath Urala
































This document is dedicated to my beloved Mother and cherished Late Father.















ACKNOWLEDGMENTS

The author thanks his advisors, Dr. Perry S Green, and Dr. Thomas Sputo, for

granting him an opportunity to work on this research and for having guided till the end.

The author holds due respect to his graduate committee for their assistance and

immaculate guidance. The author is grateful to the co-sponsors AISI and SSMA for

financially supporting this research. It is the author's heartfelt gratitude to the Chairman,

Department of Civil and Coastal Engineering, University of Florida, for providing the

facilities and resources for completing this thesis.

The author appreciates the help offered by Mr. Darin Shearer and Ms. Kimberly

Lammert, who were his colleagues and all those who directly or indirectly were part of

this research. The author acknowledges the contributions of Mr. Charles Broward and

Mr. Danny for their assistance in the structures laboratory. The author thanks all friends

and colleagues who assisted him at various levels by boosting his morale to see this

project till its completion. This research would not have been a reality without the

emotional support of the author's family for which he is indebted. The author especially

thanks Mr. Ratan Chand, Mr. Srinidhi Sharma, and Mr. Sudhir Gurjar, without whose

support this would not have been possible.

Last but not the least the author thanks the United States of America for having

accepted him as a student into their nation to fulfill his ambition to get the degree of

Master of Engineering in Civil Engineering at the University of Florida.
















TABLE OF CONTENTS
page

A C K N O W L E D G M E N T S ................................................................................................. iv

LIST OF TABLES .................................................... ........ .. .............. viii

LIST OF FIGURES ............................... ... ...... ... ................. .x

ABSTRACT ........ .............. ............. ...... ...................... xvi

CHAPTER

1 IN TR OD U CTION ............................................... .. ......................... ..

1.1 G general .................................................................. ..... ... ......1
1.2 O objectives of R research ............................................................................... .... 1
1.3 Scope of R research ......... ............................................................ ........ .. ...

2 LITERA TURE REVIEW .......................................................... ..............6

2 .1 G en eral ................................................................... .............................. . 6
2.2 B uckling of C olum ns ........................................................... ............... 7
2.2.1 Elastic Buckling .................. .................. ...................... ...........7
2.2.2 Inelastic Buckling ....................................... ... .......................... 8
2.2.3 Local Buckling and Distortional Buckling ............................................9
2.3 Bracing Stiffness and Strength...................... ....... .................11
2.3.1 Column with Concentric Axial Load and an Immovable Point Support
at M id-height ................. .......... ...... ...................... ........ ....................... 12
2.3.2 Column with Concentric Axial Load and an Elastic Lateral Support at
M id -h eig h t ....................................................................................... 13
2.4 L ong C olum n T ests........................................................................... ...... 19
2.4 AISC-LRFD Specification....................... ............................... 20
2.5 AISI Specification for Cold-Formed Steel ............................................... 22

3 DESCRIPTION OF EXPERIMENTAL STUDY ................................................ 33

3 .1 In tro d u ctio n .......... ................... ............................................. 3 3
3.2 Objectives of Experimental Tests ................... ......................................34
3.3 M material Properties of Test Specim ens ................................. ................ 34
3.4 As-Built Dimensions of the Test Specimens ............................................ 35
3.5 Measured Geometric Imperfections of the Test Specimens ............................36









3.5.1
3.5.2
3.6 Test
3.6.1
3.6.2
3.6.3
3.6.4
3.7 Test
3.7.1
3.7.2
3.7.3
3.7.4
3.7.5


G lobal Im perfections ........................................ ......................... 36
Cross-Sectional Im perfections......................................... .......... .......37
Setup and Test Procedure for Single Column Axial Load Tests .............38
Test Specimens of Single Column Axial Load Tests ...........................38
Test Frame for Single Column Axial Load Tests.............................. 38
Instrumentation for Single Column Axial Load Tests..........................39
Test Procedure of Single Column Axial Load Tests ...........................39
Setup and Test Procedure for Bridging Tests .......................................40
Test Specimens of Bridging Tests ................ .... .................40
Test Fixture for Bridging Tests..................................... ......... ......... 42
Instrum entation ...................... ...... ......... ................. .. .... .. 43
Out-of-Plane Loading Test Procedure ......................................... 43
In-Plane Loading Test Procedure........... ..... ..................44


4 EXPERIMENTAL RESULTS AND EVALUATION........................ ............60

4.1 Single Column Axial Load Test Results............................... ............... 60
4.1.1 Bracing Strength and Stiffness..................................... ............... 61
4.1.2 Evaluation of Experimental Observations ......... ............................... 63
4.1.2.1 Effect of brace stiffness on axial load capacity...........................67
4.1.2.2 Effect of brace stiffness on buckling type and mode ...................70
4.1.2.3 Effect of cross-sectional dimensions of cee-studs.........................71
4.1.2.4 Effect of experimental load on the brace stiffness and strength ...72
4.1.2.5 Effect of brace stiffness on lateral displacement...........................73
4.1.2.6 Effect of brace stiffness on effective length of columns...............73
4.1.2.7 Effect of brace strength on axial capacity ............................. 74
4.1.2.8 Other effects .............................. ......... .. .... .......... ....74
4 .2 B ridging T est R esults.................. .............................................. ...... ........75
4.2.1 Bridging Connection Strength and Stiffness..............................75
4.2.2 Observations of the Out-of-Plane Experimental Tests ...........................77
4.2.3 Observations of the In-Plane Experimental Tests...............................79
4.2.4 Observed Bridging Connection Failures............................ .................80
4.2.4.1 SS type connection .............................. ...............81
4.2.4.2 W W type connection ........... ................................................ 81
4.2.4.3 DW type connection................. ... ..........................81
4.3 Separation of Brace Forces in Flexural and Torsional Components ..............82
4.4 Summary of Experimental Observations .............. ....................................... 83

5 AN ALYTICAL EVALUATION ........................................................................146

5.1 Analytical Load Capacity of Unbraced and Fully Braced Studs ................. 146
5.2 Analytical Bridging Connection Stiffness of a Flexible Bracing ................148
5.2.1 Initial Flexural Stiffness of the Bracing Connection ............................148
5.2.1.1 SS type connection ............... ....... ......... .. .............. 150
5.2.1.2 WW type connection ........................................................151
5.2.1.3 DW type connection............... ...... ...............151
5.2.2 Initial Torsional Stiffness of the Bracing Connection ........................152









5.3 Total Stiffness of the Bridging Connection ...........................153
5.3.1 Initial Flexural Stiffness.................................... ........................ 153
5.3.2 Initial Torsional Stiffness.................................. ........................ 154

6 CONCLUSIONS AND DESIGN RECOMMENDATIONS ..................................167

6.1 General Conclusions and Recommendations ........... ............. ............... .167
6.2 D esign R ecom m endations ........................................ ......... ............... 170

APPENDIX

A TEST REPORTS OF SINGLE COLUMN AXIAL LOAD TESTS ......................172

B TEST RESULTS ON BRIDGING CONNECTIONS .............................................355

C M A TH CAD W O RK SH EETS ....................................................... .....................408

C.1 Axial Load Capacity of Unbraced Cee-Studs...........................................409
C.1.1 362S125-33 w ith Pinned Ends...........................................................409
C. 1.2 362S125-33 with Effective Length Factors based on Experimental
C conditions ..................................... ........... .... .... ..... .. .............. 4 17
C.2 Initial Flexural Stiffness of the Connection from In-Plane Load tests ..........419
C .2.1 SS Type C connection ........................................ ........................ 419
C .2.2 W W Type Connection ........................................ ...... ............... 426

L IST O F R EFER EN CE S ........................................................................... .............431

B IO G R A PH IC A L SK E T C H ........................................ ............................................434
















LIST OF TABLES


Table pge

3.1 As-built Material Properties from the Tension Coupon Tests ..............................45

3.2 As-Built Cross-Sectional Dimensions of Test Specimens ....................................46

3.3 Initial G eom etric Im perfections ........................................ .......................... 49

3.4 Average As-Built Geometric Dimensions of Each Stud Series ............................. 50

3.5 Average As-Built Geometric Dimensions of Each Stud Series ............................50

4.1 Proposed Test Matrix for the Single Column Axial Load Tests...........................86

4.2 Actual Test Matrix of the Single Column Axial Load Tests .................................87

4.3 Nominal Properties of the Test Specimens Using AISIWIN Program ....................88

4.4 Average As-built Properties of the Test Specimens Using AISIWIN Program....... 89

4.5 Calculated Brace Stiffness and Total Brace Stiffness of the Test Specimens..........90

4.6 Summary of Experimental Test Results for Test Specimens.............................92

4.7 Required Brace Stiffness Based on Pmax .............. .................. .............. 93

4.8 Effective Length Factors Based on Pmax.......................... ................ ...............94

4.9 Measured Values of Brace Force and Mid-height Displacement at Pmax ...............95

4.10 Calculated Values of Brace Force and Mid-height Displacement at Pmax ...............97

4.11 Proposed Test Matrix for Bridging Connection Tests .......................................100

4.12 Bridging Test Results for Out-of-Plane Loading ..................................................101

4.13 Initial Torsional Stiffness of the Lower Bound Values of Out-of-Plane Tests......102

4.14 Bridging Test Results for In-Plane Loading .................................. ............... 104

4.15 Initial Flexural Stiffness of the In-Plane Tests................... ................................... 105









4.16 Experimental Initial Stiffness of the In-Plane Load Tests ................................... 107

4.17 Experimental Initial Stiffness of the Out-of-Plane Load Tests.............................108

4.18 Maximum Flexural and Corresponding Torsional Brace Force...........................109

4.19 Maximum Torsional and Corresponding Flexural Brace Force.............................110

5.1 Axial Load Capacities of Test Specimens Using AISI (1999) MathCAD
W orksheets ............................................................... .. .... ......... 156

5.2 Comparison of Initial Flexural Stiffness of the In-Plane Tests.............................157

5.3 Comparison of Initial Torsional Stiffness of the In-Plane Tests............................158

5.4 Total Flexural Stiffness of the Bridging Connections ................. .. ...................159

5.5 Calculated Brace Stiffness and Total Brace Stiffness of the Test Specimens ........161

5.6 Total Torsional Stiffness of the Bridging Connections .............. .... ...............163
















LIST OF FIGURES


Figure page

2.1 R educed M odulus Theory ............................................... ............................. 26

2.2 Imperfect Column with Immovable Mid-height Bracing .....................................26

2.3 Imperfect Column with Elastic Mid-height Bracing ..........................................27

2.4 Critical Loads for Elastically Supported Columns............................................27

2.5 E effect of B racing Stiffness ........................................................................... ..... 28

2.6 Pcr/Pe versus PL/Pe for a Discrete Bracing .................................... ............... 29

2.7 Effect of Lateral restraint location on Brace behavior ...................................29

2.8 B racing C connection Clips ............................................... ............................. 30

2 .9 W all A ssem bly test setup ........................................ ...................... .....................30

2.10 Types of Bracing (a) Relative Bracing and (b) Nodal Bracing............................. 31

2.11 Effect of Initial Out-of-Plum bness............................................... ........ ....... 31

2.12 Effective Length Factors for Concentrically Loaded Columns ............................32

3.1 Dimensions of a Typical Tension Coupon..........................................................51

3.2 Offset Method for Determining Yield Stress .......................................................51

3.3 Autographic Diagram Method for Determining Yield Stress ................................52

3.4 Typical Cross-Section of a Cee-Stud ............................................ ............... 52

3.5 Connection of Cee-Stud and Track (a) at Top, (b) at Bottom..............................53

3.6 Plan View of Single Column Axial Test Setup in the Riehle Universal Testing
M a ch in e ................................. ......................................................... ............... 5 3

3.7 Schematic Mid-height Bracing and Instrumentation Locations on
T est Sp ecim en s................................................. ................ 54









3.8 Close-up View of the Location of Brace-Wires and Instrumentation at
Mid-height of the Cee-Stud ........... ... ......... .... ............... 54

3.9 Types of Bridging Connections................. ................ ............... 55

3.10 Top View of the SS Type Bridging Connection .............. .... .................55

3.11 Elevation Views of Bridging Connection Test Setup........................ .............56

3.12 Schematic Plan View of Bridging Connection Tests............... ....... ............57

3.13 Overall View of the Out-of-Plane Bridging Tests................................................. 58

3.14 Overall View of the In-Plane Bridging Tests................ ................. 58

3.15 Out-of-Plane Loading Test Instrumentation.................. ...............59

3.16 In-plane Loading Test Instrumentatio ................... ...........................59

4.1 Typical Bracing for the Single Column Axial Load Tests..................................111

4.2 Axial Load vs. Axial Shortening for the Stud 362S125-33 with
V arying B race Stiffness ................................................................................

4.3 Axial Load vs. Axial Shortening for the Stud 362S162-43 with
V arying B race Stiffness ............................................................................. 112

4.4 Axial Load vs. Axial Shortening for the Stud 362S162-68 with
V arying B race Stiffness ............................................................................. 112

4.5 Axial Load vs. Axial Shortening for the Stud 600S125-33 with
V arying B race Stiffness ............................................................................. 113

4.6 Axial Load vs. Axial Shortening for the Stud 600S162-43 with
V arying B race Stiffness ............................................................................. 113

4.7 Axial Load vs. Axial Shortening for the Stud 600S162-97 with
V arying B race Stiffness ............................................................................. 114

4.8 Axial Load vs. Axial Shortening for the Stud 800S 162-43 with
V arying B race Stiffness ............................................................................. 114

4.9 Axial Load vs. Axial Shortening for the Stud 800S162-97 with
V arying B race Stiffness ............................................................................. 115

4.10 Schematic Diagram Showing the Various Buckling Shapes and
Buckling Modes Observed in the Experimental Testing ............ ...................115

4.11 Comparison of Studs 362S125-33-0 and 600S125-33-0.............. ................ 116









4.12 Comparison of Studs 362S125-33-100 (1.7x) and 600S125-33-060 (1.3x) ..........116

4.13 Comparison of Studs 362S125-33-200 (6.2x) and 600S125-33-200 (7.4x) ..........117

4.14 Comparison of Studs 362S162-43-0, 600S162-43-0 and 800S162-43-0.............117

4.15 Comparison of Studs 362S162-43-200 (1.2x), 600S162-43-250 (1.6x) and
800S162-43-150 (1.3x) .................. ........................ ...... .. .. .......... .. 118

4.16 Comparison of Studs 362S162-43-400 (2.5x), 600S162-43-500 (3.4x) and
800S162-43-300 (2.3x) .................. ......................... ........... ............ 118

4.17 Comparison of Studs 600S162-97-0 and 800S162-97-0...................................119

4.18 Comparison of Studs 600S162-97-1000 (1.7x) and 800S162-97-1000 (2.1x) ......119

4.19 Comparison of Studs 600S162-97-1500 (2.7x) and 800S162-97-2100 (4.3x) ......120

4.20 Comparison of Studs 362S125-33-0, 362S162-43-0 and 362S162-68-0.............120

4.21 Comparison of Studs 362S125-33-100 (1.7x), 362S162-43-200 (1.2x) and
362S 162-68-500 (1.8x) ...................... ...................... ............ .. ............ .. 12 1

4.22 Comparison of Studs 362S125-33-400 (6.2x), 362S162-43-800 (5.4x) and
362S162-68-1000 (3.3x) ....................................... .............................. .. 121

4.23 Comparison of Studs 600S125-33-0, 600S162-43-0 and 600S162-97-0.............122

4.24 Comparison of Studs 600S125-33-30 (0.2x), 600S162-43-75 (0.6x) and
600S162-97-160 (0.3x) ...................... ...................... ............ .. ............ .. 122

4.25 Comparison of Studs 600S125-33-60 (1.3x), 600S162-43-250 (1.6x) and
600S 162-97-1000 (1.7x) ....................................... .............................. .. 123

4.26 Comparison of Studs 600S125-33-200 (7.4x), 600S162-43-500 (3.4x) and
600S 162-97-1500 (2.7x) .............................................. .............................. 123

4.27 Comparison of Studs 800S162-43-0 and 800S162-97-0...................................124

4.28 Comparison of Studs 800S162-43-150(1.3x) and 800S162-97-500 (1.2x) ...........124

4.29 Comparison of Studs 800S162-43-300 (2.3x) and 800S162-97-2100 (4.3x) ........125

4.30 Experimental Load vs. Target Brace Stiffness for 362 Series of
L ipped C ee Studs ....................... .. .... .................................... .. .... .......... 125

4.31 Experimental Load vs. Target Brace Stiffness for 600 Series of
L ipped C ee Studs ....................... .. .... .................................... .. .... .......... 126









4.32 Experimental Load vs. Target Brace Stiffness for 800 Series of
L ipped C ee Studs ....................... .. .... ........................ ...... ...... .... .......... 126

4.33 Total Brace Stiffness vs. Weak Axis Lateral Displacement for the
362 Series of Lipped Cee-Studs ................................ ........................ ......... 127

4.34 Total Brace Stiffness vs. Weak Axis Lateral Displacement for the 600
Series of Lipped Cee Studs .............................................................................. 127

4.35 Total Brace Stiffness vs. Target Brace Stiffness for the 800 Series
L ipped C ee Studs ....................... .. .... ........................ ...... ...... .... .......... 128

4.36 Effective Length Factor vs. Total Brace Stiffness for 362S-125-33 Series of
L ipped C ee Stu ds ....................... .. .... ........................ ...... ...... .... .......... 12 8

4.37 Effective Length Factor vs. Total Brace Stiffness for 362S-162-43 Series of
L ipped C ee Studs ....................... .. .... ........................ ...... ...... .... .......... 129

4.38 Effective Length Factor vs. Total Brace Stiffness for 362S-162-68 Series of
L ipped C ee Studs ....................... .. .... ........................ ...... ...... .... .......... 129

4.39 Effective Length Factor vs. Total Brace Stiffness for 600S-125-33 Series of
L ipped C ee Stu ds ....................... .. .... ........................ ...... ...... .... .......... 130

4.40 Effective Length Factor vs. Total Brace Stiffness for 600S-162-43 Series of
L ipped C ee Stu ds ....................... .. .... ........................ ...... ...... .... .......... 130

4.41 Effective Length Factor vs. Total Brace Stiffness for 600S-162-97 Series of
L ipped C ee Studs ........................... .... ........................ ...... ...... ........... ..13 1

4.42 Effective Length Factor vs. Total Brace Stiffness for 800S-162-43 Series of
L ipped C ee Studs ....................... .. .... ........................ ...... ...... ........... ..13 1

4.43 Effective Length Factor vs. Total Brace Stiffness for 800S-162-97 Series of
L ipped C ee Stu ds ....................... .. .... ........................ ...... ...... .... .......... 132

4.44 Location of Linear Potentiometers on the Bridging Connection ...........................132

4.45 Plot of Applied Load vs. Calculated Rotation at the Center-line of the
W eb for the 362S Series of Studs................................................ ........ ....... 133

4.46 Plot of Applied Load vs. Calculated Rotation at the Center-line of the
W eb for the 600S Series of Studs............................................... ......... ...... 133

4.47 Plot of Applied Load vs. Calculated Rotation at the Center-line of the
Web for the 800S Series of Studs with SS Connection.............................134

4.48 Plot of Applied Load vs. Calculated Rotation at the Center-line of the
Web for the 362S Series of Studs with WW Connection ...............................134









4.49 Plot of Applied Load vs. Calculated Rotation at the Center-line of the
Web for the 600S Series of Studs with WW Connection ...............................135

4.50 Plot of Applied Load vs. Calculated Rotation at the Center-line of the
Web for the 800S Series of Studs with WW Connection ...............................135

4.51 Plot of Applied Load vs. Calculated Rotation at the Center-line of the
Web for the 362S Series of Studs with DW Connection ...............................136

4.52 Plot of Applied Load vs. Calculated Rotation at the Center-line of the
Web for the 600S Series of Studs with DW Connection ...............................136

4.54 Plot of Applied Load vs. Calculated Rotation at the Center-line of the
W eb for the 362S Series of Studs................................................ ........ ....... 138

4.55 Plot of Applied Load vs. Calculated Rotation at the Center-line of the
W eb for the 600S Series of Studs............................................... ......... ...... 138

4.56 Plot of Applied Load vs. Calculated Rotation at the Center-line of the
W eb for the 800S Series of Studs................................................ ........ ....... 139

4.57 Plot of Applied Load vs. Calculated Rotation at the Center-line of the
W eb for the 362S Series of Studs............................................... ......... ...... 139

4.58 Plot of Applied Load vs. Calculated Rotation at the Center-line of the
W eb for the 600S Series of Studs................................................ ........ ....... 140

4.59 Plot of Applied Load vs. Calculated Rotation at the Center-line of the
W eb for the 800S Series of Studs............................................... ......... ...... 140

4.60 Plot of Applied Load vs. Calculated Rotation at the Center-line of the
W eb for the 362S Series of Studs................................... ...................... .. .......... 141

4.61 Plot of Applied Load vs. Calculated Rotation at the Center-line of the
W eb for the 600S Series of Studs............................................... ......... ...... 141

4.62 Plot of Applied Load vs. Calculated Rotation at the Center-line of the
W eb for the 800S Series of Studs................................................ ........ ....... 142

4.63 Plot of Initial Torsional Stiffness vs. Effective Flat-width to
Thickness Ratio for the Out-of-Plane loading Tests on SS-type Connection ........142

4.64 Plot of Initial Torsional Stiffness vs. Effective Flat-width to
Thickness Ratio for the Out-of-Plane loading Tests on WW-type Connection.....143

4.65 Plot of Initial Torsional Stiffness vs. Effective Flat-width to
Thickness Ratio for the Out-of-Plane loading Tests on DW-type Connection......143









4.66 Plot of Initial Flexural Stiffness vs. Effective Flat-width to
Thickness Ratio for the In-Plane loading Tests on SS-type Connection .............144

4.67 Plot of Initial Flexural Stiffness vs. Effective Flat-width to
Thickness Ratio for the In-Plane loading Tests on WW-type Connection ............144

4.68 Plot of Initial Flexural Stiffness vs. Effective Flat-width to
Thickness Ratio for the In-Plane loading Tests on DW-type Connection ............145

4.69 Brace Forces as a Resultant of Flexural and Torsional Components....................145

5.1 Flexural Stiffness of the SS Type Connection .................................. ................. 165

5.2 Flexural Stiffness of the WW Type Connection .............. .................165

5.3 Flexural Stiffness of the DW Type Connection.......... ..................... 166

5.4 Torsional Stiffness of the SS Type Connection ............................................. 166















Abstract of Thesis Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Master of Engineering

BRACING REQUIREMENTS OF COLD-FORMED STEEL CEE-STUDS
SUBJECTED TO AXIAL COMPRESSION

By

Viswanath Urala

August 2004

Chair: Perry S Green
Major Department: Civil and Coastal Engineering

An experimental testing program was carried out on single axially loaded cold-

formed lipped cee-studs to determine the required flexural and torsional bracing strength

and stiffness requirements of the stud. Conventional bridging or nodal bracing has been

simulated in the experiments using monofilament steel wires attached to the stud flanges

at mid-height. A range of brace stiffness was simulated in the testing frame by using

various diameters and lengths of monofilament wire. The brace stiffness that was

achieved ranged from less than 30 lbs/in. to greater than 4000 lbs/in. Brace strength was

determined from the cross-sectional area of the steel wire and its experimentally

determined yield strength. The axial load, individual brace forces, axial shortening, and

in-plane (weak-axis) and out-of-plane (strong-axis) lateral displacements were measured

in each test. The required bracing stiffness was experimentally determined by varying

the brace stiffness for a given stud size and was based on the ability of the stud to develop

its nominal axial compressive capacity as predicted by the 1996 AISI Cold-Formed Steel









Specification including Supplement No. 1. The experimental results were compared to

existing nodal bracing models, analytical prediction models, and the current column

bracing provisions that are part of the 1999 AISC-LRFD Specification for Structural

Steel Buildings.

Experimental testing has also been carried out on typical industry bridging

configuration to measure bridging assembly strength and stiffness relationships for

bridging subjected to in-plane and out-of-plane loadings. Load versus displacement

measurements have been compiled for these assemblies for various stud web depths,

flange widths, and thicknesses with the goal of categorizing strength and stiffness for

these various bridging assemblies.














CHAPTER 1
INTRODUCTION

The drive to create more cost effective cold-formed steel structural systems, and the

current move to designing axially loaded wall stud systems using an "all-steel" approach,

has required an alternative to sheathing braced design. This has resulted in wall stud

systems that are more sensitive to global stability limit states than previous designs.

Ensuring global stability of axially loaded steel studs requires that the bracing system

possess adequate stiffness and strength to develop the predicted axial strength.

1.1 General

Cold-formed steel has been widely used in structural and non-structural wall

construction for more than 60 years, and may be found in many residential, commercial

and industrial facilities being built today. The lightweight property of cold-formed steel

makes it easier and economical to transport and install than other construction materials

such as masonry or hot-rolled steel. Other advantages include resistance to pest attack,

rapid construction, long service life and efficiently recyclable. Cold-formed steel

sections can be used in most parts of a building, including roofs, trusses, frames etc.

1.2 Objectives of Research

Current North American structural steel design practice using the 3rd Edition of the

American Institute of Steel Construction- Load and Resistance Factor Design

Specification (AISC 1999) prescribes nodal bracing strength and stiffness requirements,

based on a model developed by Winter (1960) and modified by Yura (1995). However,

the most recent cold-formed steel design specification, the North American Specification









by the American Iron and Steel Institute (AISI 2001a) does not contain provisions for

determining nodal brace strength and stiffness requirements for axially loaded

compression members. This research program was conducted to experimentally

determine rational requirements for nodal bracing strength and stiffness demand of lipped

cee-studs by conducting single column axial compression tests, and bridging strength and

stiffness tests. The experimental results were used to formulate a rational methodology to

be incorporated into the AISI Specification provisions for design purposes.

The objectives of this research included to determine:

1. the minimum bracing strength and stiffness required for cold-formed steel members
subjected to axial loading;

2. the stiffness and strength of typical industry bridging systems;

3. the effective length factors based on unbraced length;

4. the effect of slenderness ratio on the buckling behavior of the cold-formed steel
members;

5. the limit state or the governing buckling mode of cold-formed steel members;

6. the effect of support fixity on global buckling of cold-formed steel members.

The strength and stiffness required for bracing hot-rolled steel sections has been

investigated by numerous researchers (Winter 1960, Yura 1995) based on experimental

testing, analytical studies and feasible design considerations. Research has been

conducted on the buckling phenomena of cold-formed steel subjected to axial

compression by many researchers including Winter (1959), Miller (1990), Kwon and

Hancock (1991), Miller and Pekoz (1994), Young and Rasmussen (1999), Schafer

(2000), Beshara and LaBoube (2001). The current research has been directed towards

establishing the strength and stiffness requirements of the bracing and bridging

requirements for cold-formed steel lipped cee-studs.









1.3 Scope of Research

The scope of this research is limited to determining the strength and stiffness

requirements for cold-formed steel lipped cee-studs subjected to axial compression. The

lipped cee-studs were tested to determine their axial load capacity in a manner consistent

with a typical field installation. With this as a basis, the scope of the single column axial

tests was:

1. Standard lipped cee-studs that are widely used in structural and non-structural wall
assemblies were tested. The section nominal web depths were 3.625, 6.00, and
8.00 inches, the nominal thickness were 33, 43, 68 and 97 mil. The flange width of
the 33 mil studs was 1.25 inches and the flange width of the other studs was 1.625
inches (1 mil = 1/1000 inches).

2. The lipped cee-studs were mounted in industry standard shallow track and attached
with #10 self-drilling screws. The lengths of the cee-studs were 8'-0" for all the
single column tests.

3. The number of nodal brace points was limited to one, at the mid-height of the
lipped cee-stud.

4. The support fixity was limited to a shallow track 1.25 inch deep and 12 inches long,
attached to the stud with one self-drilling screws on each flange. The track was
loosely fixed to the loading plates with two bolts.

5. The simulated bridging used in the single column axial load tests was comprised of
high strength steel wires attached to the each flange on both sides of the web. Four
wires were used to brace the cee-stud so that for any global buckling at least two
brace wires would be effective.

The steel stud industry has employed the use of several typical bridging details for

a number of years. The strength of typical bridging has been studied and previously

reported (Beshara and LaBoube 2001). However, there is little published information

available regarding as-constructed bracing demand. Based on previous testing, and

because of the relatively low bracing force required to brace steel studs, bridging strength

does not appear to be a significant concern. The most apparent criteria for the bridging









are the strength and stiffness of the connection of the bridging to the stud and the stiffness

of the total bridging system. The scope of this experimental program involved:

* The bridging tests were limited to three types of typical industry bridging
connections, namely screwed-screwed, welded-welded and direct-welded. In the
first two types, a standard clip angle was used to secure the channel bridging to the
web of the cee-stud. In the third type, the channel bridging was directly welded to
the web punchout.

* The bridging was tested for its in-plane strength and out-of-plane torsional stiffness
for all the stud sizes used in the single column axial tests. The load was applied
with an actuator attached to the bridging at a distance away from the bridging to
stud connection to avoid localized effects of load application.

While the stiffness required to develop the strength of the member will vary

depending on whether the member is under axial compression or flexural loading, the

actual physical stiffness of the bridging system is independent of the type of loading.

Therefore, the stiffness of the bridging system (flexural or torsional stiffness) may be

considered independently of the loading.

A general test procedure was developed such that the results of this research may

be extended to other types of stud cross-sections, to determine the requirements of any

type of bridging. Conventional bridging or nodal bracing was simulated in the single

column axial load tests using steel wires attached to the stud flanges at mid-height. A

range of brace stiffness, from less than 30 lbs/in. to greater than 4000 lbs/in., was

simulated in the testing frame by using various diameters and lengths of high strength

steel wire. Brace strength was determined from the cross-sectional area of the steel wire

and the experimentally determined yield strength. The axial load, individual brace

forces, axial shortening, and in-plane (weak axis) and out-of-plane (strong axis) lateral

displacements at mid-height of the cee-stud were measured in each test.






5


The required bracing stiffness was experimentally determined by varying the brace

stiffness for a given stud size and was based on the ability of the stud to develop the

nominal axial compressive capacity as predicted by the provisions of AISI Cold-Formed

Steel Specification (AISI 1996) including Supplement No. 1 (AISI 1999). The

experimental results were compared to existing nodal bracing models, analytical

prediction models, and the current column bracing provisions that are part of the 1999

AISC-LRFD Specification for Structural Steel Buildings (AISC 1999).














CHAPTER 2
LITERATURE REVIEW

2.1 General

The use of cold-formed steel in building construction dates back to the 1850s, but

cold-formed steel was not widely used until the 1940's (Yu 1991). It is used in

constructing walls, slab-decks, beams, columns, storage-racks, and is typically found in

small to medium rise structures. This wide application of cold-formed steel in building

construction has required a comprehensive understanding of its behavior. The increased

use of cold-formed steel as an alternative building material necessitated, in 1946, the first

"Specification for the Design of Light Gage Steel Structural Members". Since then, there

have been several revisions to the specification as well as design manuals with aids

issued by American Iron and Steel Institute (AISI). In 1991, Load and Resistance Factor

Design (LRFD) was introduced into the cold-formed steel specification. Today, the

current specification edition is the North American Specification for Design of Cold-

Formed Steel Structural Members (AISI 200 la).

While considerable research effort has been directed at the problem of bracing hot-

rolled structural steel columns, little published information exists specifically addressing

the bracing requirements for cold-formed steel columns. This chapter includes a

comprehensive review of relevant work done in the field relating cold-formed steel

members on lateral beam bracing, sheathed bracing of wall studs, local and distortional

buckling on channel sections, and eccentric loading on wall stud assemblies. Several









analytical models formulated by past researchers to determine the bracing strength and

stiffness requirements for axially loaded compression members are also reviewed.

2.2 Buckling of Columns

The global buckling of columns has been studied since the 18th century. Even

today, in spite of numerous investigations in past decades, research in this specialized

field has by no means produced a complete understanding. Based on length and

slenderness ratios, columns can be classified as long, intermediate and short. The

slenderness ratio is a function of the ratio of effective length of the column and the radius

of gyration of the column cross-section.

2.2.1 Elastic Buckling

The history of column theory dates back to 1744 when the Swiss mathematician

Leonard Euler published the equation for the critical load or the buckling load of an

axially loaded prismatic column, assuming that the material is linear and elastic. It is

given by

7 2EI
P= -(2.1)
S L2

where E = Elastic modulus

I = Moment of inertia about the axis orthogonal to buckling plane

L = Unbraced length of the column

This equation is valid for loads acting through the centroidal axis on a perfectly

straight column whose ends are perfectly pinned. In practice, it is impossible to realize

such conditions, hence the equation serves as an upper bound solution to the buckling

problem.









The above equation may be modified to calculate the buckling load for other end

conditions by introducing an effective length factor (K). The modified equation is

22EI
P= (2.2)
e (KL)2 (

where K L = effective length of the column

(length between points of zero curvature of the buckled shape)

Eq. 2.2 can be modified to calculate the critical buckling stress by dividing both

sides by the cross-sectional area 'A' of the column and replacing the moment of inertia

(I) by the second moment of area ( A r2 ), where 'r' is the radius of gyration

corresponding to the axis about which the moment of inertia is being computed. The

elastic critical buckling stress is thus given by the equation

X2E
Ce =7 (2.3)



where Ge = critical elastic buckling stress

This equation is applicable when the value of"E" does not change before buckling

occurs, meaning the material is completely elastic at the instant of buckling.

2.2.2 Inelastic Buckling

In cases of intermediate and short columns, the elastic limit of the material is

exceeded before buckling occurs. The modulus of elasticity 'E' hence becomes a

function of the critical buckling stress, and to solve this Engesser put forth the Tangent

Modulus theory, in 1889. Instead of the elastic modulus 'E', the tangent modulus 'ET'

was substituted into Eq. 2.3 to calculate the critical buckling stress. This was called the

Euler-Engesser Equation and is given by









X2E
C Ee (2.4)

(Kr

However, Considere recognized that an axially loaded column stressed beyond the

proportional limit starts to bend, and the stresses on the concave side increase according

to the compressive stress-strain curve of the material, whereas the stresses on the convex

side decrease proportionally to the strain. In 1895, Engesser formulated the Double

Modulus theory of buckling, with use of a reduced modulus 'ER' in place of the tangent

modulus in the Euler-Engesser Equation (see Figure 2.). The reduced modulus is given

by

E I, +E I2
ER = (2.5)
I

where Ii, Il, represent the moment of inertia of the cross-sectional areas separated by the

neutral axis as shown in Figure 2.1.

2.2.3 Local Buckling and Distortional Buckling

In calculating the strengths of elastic and inelastic columns, the stability criteria are

based on the column as a whole. Other than prismatic sections, columns are made up of

plate elements, which are subjected to compressive stresses when the column is loaded.

The effect of these compressive stresses on slender plate elements may cause them to

buckle locally, which leads to a part of the cross-section to reach its critical buckling

stress and become ineffective in carrying the applied load. In local buckling, the

instability arises due to a change of cross-sectional shape in a localized region and does

not directly alter the overall configuration of the member as a whole (Shanley 1957).









Local buckling of individual compression elements can be calculated by two

different approaches to facilitate design one based on an effective width criterion, the

other based on an average or reduced stress criterion. For each approach, the degree of

the edge restraint influences the behavior. The cross-section elements are classified as

edge-stiffened or unstiffened. An unstiffened compression element is one that is

stiffened at only one edge parallel to the direction of applied stress. A stiffened

compression element is stiffened at both edges parallel to the direction of applied stress

(Galambos 1998). The effective width of locally buckled elements is given by


be = -.22/ (2.6)


where be = Effective width

b = Flat width of plate element

X (Ge/Gcr)1/2

ce = Maximum elastic stress

acr = Plate buckling stress defined by

t2 Ek (t Y
cr = 12(1 v2) (2.7


E = Elastic modulus of material

k = Plate-buckling coefficient

(k = 4 for stiffened elements, k = 0.425 for unstiffened elements)

t = Plate thickness

v = Poisson's ratio

Distortional buckling, also called as "stiffener buckling" by Desmond, Pekoz and

Winter in 1981, or "local-torsional buckling" by Sridharan in 1982, is a mode









characterized by rotation of the flanges at the flange/web junction in members with edge

stiffened elements. Formulae for computing the elastic distortional buckling stress were

provided by Lau and Hancock (1987). Strength tests of cold-formed channel sections,

undergoing distortional buckling, were investigated by Kwon and Hancock (1991). The

distortional mode of buckling occurs at longer half-wavelengths than local buckling and

involves element displacements of the edge or intermediate stiffeners forming the section

or of complete flanges (Galambos 1998). A historical review of distortional buckling

was compiled by Schafer and Hancock (Schafer 2000). Distortional buckling of cold-

formed steel columns was investigated by Schafer (2000) for a project sponsored by

AISI. The investigation compares the design methods using the effective width approach

and the direct strength approach and states design recommendations for AISI

Specification. Teng (2002) extended the axially loaded column investigations by Lau

and Hancock (1987) and examined distortional buckling of beam-columns.

2.3 Bracing Stiffness and Strength

Zuk (1956) analytically derived the magnitudes of brace forces by solving the basic

second order differential equation of equilibrium assuming elastic behavior of the

compression member. It was determined by Zuk that the lateral force is a direct function

of the initial crookedness and the critical buckling load. Eight different cases were

considered with discrete or continuous lateral bracing on laterally loaded flexural

members, axially loaded compression members and eccentrically loaded compression

members, all with either fixed or pinned support conditions. Out of these eight cases, the

first two are relevant to the present investigation and are summarized below









2.3.1 Column with Concentric Axial Load and an Immovable Point Support at
Mid-height

In Figure 2.2 (Zuk 1956), the centroidal axis of the column is shown as a straight

line passing through the top and bottom pin ends. The initial crookedness is defined by

the following


y = a sin (2.8)


where a = Maximum amplitude at the center and is represented by a dashed

line in the figure.

Due to the brace at mid-height, the column assumes a buckled shape as shown by

the continuous line, and is defined as a function of 'yi' and 'y2' in the upper and lower

halves of the column respectively. The curves 'yi' and 'y2' represent the additional

displacements due to the applied load 'P'. When the applied compressive load on the

column, with a fully effective brace, reaches the critical elastic buckling load, given by

42
47r 2B
P (2.9a)


the maximum brace force, 'Fmax', is calculated from the second order differential

equation of equilibrium, which reduces to

64 2B, a
F ax 64 (2.9b)
3 L3

where B1 = Flexural rigidity = EI

L = Length of column from the top pin end to the bottom pin end

a = Amplitude of initial crookedness









It can be seen here that an initial crookedness of L/1000, shows that Fmax is 0.53%

of the critical buckling load 'Per'. As mentioned earlier, the equation for the brace force

is a direct function of the initial crookedness of the column.

2.3.2 Column with Concentric Axial Load and an Elastic Lateral Support at Mid-
height

This case is the same as that derived by Winter (1947) and was included by Zuk for

purpose of comparison. Winter analytically determined that for a concentrically loaded

pin-ended column with mid-height elastic bracing, the brace force is about 2% of the

critical load, 'Pcr'.

Winter (1960) published the results of a simple analytical model to calculate the

required bracing stiffness and strength for both beams and columns. It was found that

both bracing strength and stiffness contribute to the critical buckling load of a

compression member. Both forms of bracing, discrete and continuous, were considered

in Winter's investigation. For an axially loaded column (see Figure 2.3 (Winter 1960)), a

nodal brace at mid-height can increase its axial load capacity only if the brace is stiff

enough to restrain the column from flexural buckling or flexural-torsional buckling. For

a column with mid-height bracing, Winter considered that the unsupported length of the

column to be half the overall length of the column. There is a minimum stiffness

requirement to effectively brace a member laterally and this is defined as the ideal

stiffness, and such bracing is called "full bracing". If an axially loaded column has an

initial crookedness 'do', the required strength of the lateral brace increases with the

magnitude of the imperfection, but the stiffness demand does not likewise increase. For

the column with mid-height bracing shown in Figure 2.3 (Winter 1960), Winter obtained

the required bracing stiffness as given by the equation










kreq 2e (2.10a)


where L = Unbraced length of the column

Pe = Euler's critical buckling load for a column of length, L

do = Amplitude of initial crookedness

d = Additional displacement due to buckling

For an ideal column, do = 0, the above equation reduces to

2P
k deal -- (2.10b)
L

and the strength of the bracing is given by


Sreq 2 Pe (d + d) (2.11)
L

Winter also developed the required stiffness and strength for two, three and four

symmetric brace points along the length of a column. It was recommended to take the

value of do = 1/500 or 1/1000 and that of d = L/250 or L/500, depending on the type of

cross-section (e.g. wide flange). This is because 'd' is the displacement at incipient

failure and under design loads it would be less than half of the above values. Figure 2.4

(Winter 1960) shows the critical loads for elastically supported columns.

Plaut (1993) mathematically derived relations for elastic translational springs at

arbitrary points along the length of a column with a pin support at the base and with

either a pin support or a brace at the top of the column. Both perfect and imperfect

columns were considered and the effect of span length, bracing stiffness and initial

imperfection were determined. Plaut stated that for imperfect columns the deflections

and the bracing forces tend to increase with the applied load.

If P = Po then,










k = kld 1+l (2.12)


where for this case kd = 16r2 L2


For P < Po, and for a range of do/d


k = 4Pl i+ld (2.13)


where L = Length of column

P = Non-dimensional axial load as a fraction of Poo

Po = Dimensional axial load for an infinitely stiff brace

do = Initial deflection at location of the brace

d = Additional deflection at location of the brace due to buckling

Tr = Dimensionless parameter

When I = 1.41, it gives the upper bound to the required stiffness. Figure 2.5(a),

(b), (c) (Plaut 1993) shows the effect of bracing stiffness on the deflection ratio (do/d),

load ratio (P/ Pm), and bracing force to axial load ratio (F1/P), respectively.

Yura (1995) focused on simplicity and easy formulations for the bracing strength

and stiffness required for bracing compression members. Relative, discrete, continuous,

and lean-on bracing systems were considered in this work. Yura concluded that simply

satisfying the strength requirement of 2% of applied compressive load might be

detrimental if the bracing is too flexible to restrain displacement. Stiffness of the

bridging also affects the behavior of the compression member. It was observed from

column tests that the larger the stiffness of the bracing, the smaller was the measured









brace force. Yura proposed the ideal nodal brace stiffness, Pideal, for an axially loaded

column to be

[4 2/n]P,
Pldeal 2 (2.14)
Lb

and the required brace strength, assuming an initial out-of-straightness of L/ 500 to be

Pbrace = 0.02Pn (2.15)

where Lb Unbraced length

Pbrace = Minimum required brace strength

Pn = Nominal axial capacity when the assumed brace stiffness is greater

than or equal to Pideal

n = Number of equally spaced intermediate brace locations

Ideal = Minimum required brace stiffness

Yura made the following recommendations for design

The brace stiffness should be equal to twice the ideal requirement to limit
displacement; and

The brace strength should be 1% of the nominal capacity of the compression
member at the ideal bracing

Figure 2.6 (Yura 1995) shows a plot of Pcr/Pe versus 3L/Pe for several discrete

bracing systems. The recommendations made by Yura were later incorporated into the

American Institute of Steel Construction- Load and Resistance Factor Design

Specification (AISC 1999).

Helwig and Yura (1999) conducted a finite element investigation of torsional

buckling behavior of columns with lateral bracing located at different points on the cross-

section. Their paper describes that many column-bracing details employed in steel

construction do not prevent twist, and subsequently torsional buckling may control the









column capacity. Equations were developed for strength and stiffness requirements of

bracing to control torsional buckling of doubly-symmetric sections. Connection details

for torsional bracing were described and presented. For a doubly-symmetric section, the

torsional buckling capacity of a compression member can be computed using Eq. 2.16

(Timoshenko and Gere 1961).


Pey (d2/4)+GJ
S r + r2
x y


(2.16)


When the locations of intermediate lateral restraint are offset from the centroid of

the cross-section, the torsional buckling capacity is given by Eq. 2.17 when the offset lies

in the plane of the web, and Eq. 2.18 when the offset lies along the strong axis.

Pe [(d2 /4) + a 2] +GJ
PT 2 (2.17)
a + r, +ry2


Pey [(d2 /4) + (I /Iy)b2]+ GJ
2 2
b2 + r + r2
x y


(2.18)


where G

Ix

Iy

J

Pey



a, b

d

rx, ry


Shear modulus

Strong axis moment of inertia

Weak axis moment of inertia

Torsional constant

Elastic flexural buckling load, based on a column length

between points of zero twist (Eq. 2.19)

Distances to an axis away from centroidal axis

Distance between flange centroids

Strong-axis and weak-axis radii of gyration









'2EI
P = (2.19)
ey L2T

E = elastic modulus

LT = unbraced length for torsion

Helwig used eight-node shell elements to model a W16x26 wide flange section.

Shell elements were also used to model the braces, which consisted of angle sections.

Torsional stiffness of the brace was determined by separate analysis (of the brace) by

determining the rotation caused by a concentrated moment. Eigenvalue buckling

analyses were conducted on straight columns to determine the stiffness requirements of

the bracing. Imperfect columns were also considered in the analyses and were analyzed

by accounting for the large displacements. Figure 2.7 (Helwig 1999) shows the effect of

lateral restraint location on the brace behavior. It was determined that when the lateral

bracing is at the centroid of the section and is adequate to control flexural buckling, the

torsional bracing behavior is not sensitive to the lateral brace stiffness. Therefore, the

recommended lateral brace stiffness is twice the ideal value when the lateral bracing is at

the centroid and four times the ideal value when the lateral bracing is at the flange. The

equations, formulated to determine the capacity of a compression member, may be found

elsewhere (Helwig 1999).

Beshara and LaBoube (2001) conducted an experimental pilot study on lateral

bracing of C-sections in flexure. In this investigation, typical industry bridging

connections, along with two proprietary systems, were tested for the bracing

requirements. It was found that the screw attached typical industry clip and the

SPAZZER 5400TM spacer bar provided adequate bracing to achieve the computed

moment capacity for all the 3-5/8" and 6" deep sections, but failed to provide adequate









bracing for the 8" deep sections. The STEEL Network BridgeClipTM provided adequate

bracing to achieve the computed moment capacity for all the 3-5/8" and 6"-18 gauge

sections, but failed to provide adequate bracing for the 6"-16 gauge and 8" sections.

Overall, it was found that the typical industry clip provided the highest resistance against

rotation followed by the SPAZZER 5400TM and the STEEL Network BridgeClipTM.

Figure 2.8 (Beshara and LaBoube 2001) shows the three connections tested in the

investigation. The observed failure was classified broadly as torsional-flexural buckling

and individual tests indicate the actual mechanism of failure.

2.4 Long Column Tests

Miller (1990) conducted a series of tests on cold-formed steel cee studs at Cornell

University. Individual column tests with a length of 8'-0" were performed on studs with

depths of 3-5/8" and 6". Load was applied to the studs both concentrically and

eccentrically with either pin end or fixed end conditions. Several of the studs were tested

with one or more perforations in the web. Geometric imperfections were measured and

considered when the experimental results were compared to the analytical results. No

bridging or bracing was installed as part of the test set-up.

Additionally, Miller conducted wall assembly axial tests on 8'-0" members, spaced

(typically) at 24" on-center and having depths of 3-5/8" and 6" (see Figure 2.9 (Miller

1990)). Bracing was applied to the wall members in one of three forms: continuous flat

straps screwed to both flanges, continuous channel bridging installed through web

perforations, and gypsum sheathing screwed to one of the flanges of the members. As in

the individual long column tests, end conditions of the studs were either pin-ended or

fixed. Miller noted that the use of flat strap bracing and channel bridging resulted in

similar ultimate axial loads, while the presence of mid-height bridging increased the load









carrying capacity by at least 25% for 6" members and by at least 60% for 3-5/8"

members, over those tested without any bridging or bracing.

Miller (1993) presented the results of effectiveness of the bracing for imperforated

two stud wall assembly tests. The investigation found that for 6 inch, 20 gage studs, the

predicted capacities were about 20% higher than the experimental results, where the

predicted capacity was based on the AISI Specification's Cold-Formed Steel Design,

(AISI 1986). This was because the AISI Specification considered the load to act through

the centroid, while Miller calculated the effect of eccentric load acting through the gross

centroids and found that the predicted loads were conservative in most cases. Individual

long column and flat-ended stud tests were also conducted. The flat-ended studs were

fitted with short tracks on both the ends, prior to testing.

The effective length factors for the wall studs with and without mid-height bracing

were determined for flexure and torsion, and the recommended values by Miller (1993)

are

* Unbraced: Kx = Ky = Kt = 0.65

* Braced at mid-height: Kx = 0.65, Ky = Kt = 0.4

2.4 AISC-LRFD Specification

The AISC-LRFD Specification, 3rd Edition (AISC 1999) contains provisions for the

stability bracing of structural steel members and frames, in Chapter C3. There are two

general types of bracing relative bracing and nodal bracing. The relative brace system

shown in Figure 2.10(a) (Figure C-C3.1, AISC 1999) consists of a diagonal and a strut

that control the movement at one end of the unbraced length, A, with respect to the other

end of the unbraced length, B. A nodal brace controls the movement only at the









particular brace point, as shown in Figure 2.10(b) (Figure C-C3.1, AISC 1999), without

interaction with adjacent brace points.

The minimum bracing requirements as given in the AISC-LRFD Specification

(AISC 1999), Chapter C3-3, for nodal bracing, are as follows

Required brace strength

Pbr = 0.01P, (2.20)

Brace stiffness:

8P
Obr 8P (2.21)
(pLb

where Pu = Required compressive strength of the column

Lb = Distance between braces

) = 0.75

Recall that Winter (1958) recommended that the brace stiffness for frames,

columns, beams be equal to twice the critical stiffness and this same recommendation has

been adopted by the AISC-LRFD Specification (1999). The 4 = 0.75 specified for all

brace stiffness requirements is consistent with the implied resistance factor for the Euler

column buckling. i.e. 0.877 x <4 = 0.75. The initial displacement also known as initial

out-of-plumbness, Ao, for the relative or nodal bracing is defined with respect to the

distance between adjacent braces, as shown in Figure 2.11 (Figure C-C3.3, AISC 1999).

The brace strength recommendations for frames, columns, and beam lateral bracing are

based on an assumed Ao = 0.002L, where L is the distance between adjacent brace points.

The flexibility or ability of a brace connection to slip should be considered in the

evaluation of the actual bracing system stiffness, Pact, as follows









1 1 1
S + (2.22)
Sact conn brace

where Pconn = Stiffness of the Connection

Brace = Stiffness of the brace

2.5 AISI Specification for Cold-Formed Steel

In case of concentrically loaded compression members, there are three limit states

namely, (1) yielding, (2) overall column buckling (flexural, torsional, flexural-torsional

buckling), and (3) local buckling of individual elements.

Flexural buckling occurs in a slender, axially loaded column about the either of the

principal axes. The critical elastic buckling stress for a column is given by Eq. 2.3, which

is discussed earlier. The Commentary on North American Specification for Design of

Cold-Formed Steel (AISI 2001b) gives the equation for critical inelastic buckling stress

as


Fcr =F' 4(F- (2.23)


where E = Elastic modulus of steel

Fy = Yield stress of the material

(Fcr)e = Critical elastic buckling stress, given by Eq. 2.24


(Fcr)e = (Kr)2 (2.24)


K L = Effective length of column

r = Minimum radius of gyration

In the above equation, the critical buckling stress is directly proportional to the

yield strength of the steel. For cold-formed steel compression members with large width-









to-thickness ratios, local buckling of individual component plates may occur before the

applied load reaches the nominal axial strength determined by Eq. 4.4 (Section C4, AISI

2001) for locally stable columns

Pn =Ag Fr (2.25)

where Ag = Full cross-sectional area of the compression member

Fcr = Critical buckling stress, either elastic or inelastic

The interaction effect of the local and overall column buckling may result in a

reduction of the overall column strength. In order to reflect the effect of local buckling

on the reduction of column strength, the nominal axial strength is determined by the

critical buckling stress and the effective area, Ae, instead of the full sectional area. The

nominal axial strength of cold-formed steel compression members can be determined by

the following equation

Pn =Ae FC (2.26)

where Ae = Effective area at Fcr

Fcr = Critical buckling stress, either elastic or inelastic

However, Eq. 2.26 is limited to its applicability in case of singly symmetric or

point symmetric sections. The design equations for calculating the inelastic and elastic

flexural buckling stresses have been changed to those used in AISC-LRFD Specification

(AISC 1999). The AISI Specification (2001a) gives the equations for critical buckling

stress as


For < 1.5 F = (0.6582c F (2.27)










For X > 1.5


where Fn =

X=


=[0.877 F
Fn = 2 Y


Nominal flexural buckling stress

Fy/ Fe


Fe = Elastic flexural buckling stress calculated using Eq. 2.24

Consequently, the nominal axial compressive strength is given by

Pn =Ae F (2.29)

The effective length factor, K, accounts for influence of restraint against rotation

and translation at the ends of a column on its load carrying capacity. For concentrically

loaded compression members, the recommended values of effective length factors are

given in Figure 2.12 (AISI 1996).

For inelastic buckling, the critical torsional buckling stress is calculated according

to Eqs. 2.27 and 2.28 by using c instead of Fe in calculation of k. In certain cold-formed

steel cross-sections, the design strength is limited by the torsional buckling of columns.

For relatively short members the elastic torsional buckling stress is given by, ot,

calculated as follows


where A

Cw

G

J

Kt Lt


1 t2ECw
S=- GJ + 7
A ro (Kt Lt)2

Full cross-sectional area

Torsional warping constant

Shear modulus

Saint Venant's torsion constant of the cross-section

Effective length of twisting


(2.28)


(2.30)









ro = Polar radius of gyration of the cross-section about the shear center

In case of flexural-torsional buckling of a column, the column undergoes flexural

buckling about one of the principal axes, with simultaneous torsional buckling about the

shear center. This limit state is to be checked only when there is a chance of flexural-

torsional buckling to occur. The governing elastic flexural-torsional buckling stress of a

column is given by

Fe2 ex + )- (ex +t)2 -4pex Gt (2.31)


where cex = 2 E / (Kx Lx / rx)2 is the flexural buckling stress about the x-axis

ot = torsional buckling stress

p = 1-(xo/r)2

The flexural-torsional buckling stress is always lower than the Euler stress cex for

flexural buckling about the axis of axis of symmetry. For inelastic buckling, the torsional

buckling stress is given by Eq. 2.27.










I--- c2 ----- c,--I

Neutral
inside o is d, Outside
I" face dA foce
P
PI
P, Z Z
-- cr +Z (d)



L o, 1 i

S(a) (b)
Loadingg E1 Ii
governs Stresses
7-o-
b Unlooding eds
E governs

E ds ds

Strain e Deformations
(c) (e)


Figure 2.1 Reduced Modulus Theory








F IL
Y a L/2





Sa L/2
y,
F/2

P

V x-axis
Figure 2.2 Imperfect Column with Immovable Mid-height Bracing











F *"
2>

d L



do



F /
2


Figure 2.3 Imperfect Column with Elastic Mid-height Bracing






4 SU SPORTS


20 ...... n
| Id
,-" 5 3 SP3PUH I S.


/^ Q21^_ ^^-'*''OONTINUaSe SlUPPWT I
...-- .* Z SUPPO TF 5 -. ---- --'"


/,/., ""- I SUPPORT


W 0 150 200 30 33 40 4SO 500


Figure 2.4 Critical Loads for Elastically Supported Columns




























(a) Effect of Bracing Stiffness on Deflection Ratio do/d
1.0

0.9 do .
0.5
d 1.0
o.8 1.5

p 0.7 2.0
P
P1 0.6

0.5

0.4 -

0.3 -- _....JI
0 100 200 300 400 500 600

(b) Effect of Bracing Stiffness on Load Ratio P/P

(b) Effect of Bracing Stiffness on Load Ratio P/P.,


100 F1
P


(c) Effect of Bracing Stiffness on Bracing Force as Percentage of Axial Load for
given Load Ratio P/Po
Figure 2.5 Effect of Bracing Stiffness















__ E I







Figure 2.6 Pr/Pe versus L/Pe for a Discrete Bracing


1000

800,
40 /









Figue 26 P e v s LetLateral S

Torsio
200 -LLaeral Restrai W16x26
at Centmid L = 6.1 m.,
0Brace at Ir

0 10 20 30
Il (kN-mlrad)

Figure 2.7 Effect of Lateral restraint location on Brace behavior



















Industry Standard Clip


STEFL Network BridgeClipTM


SPAZZER 5400TM Spacer:Bridgirg bar

Figure 2.8 Bracing Connection Clips


Y Support Beams


Hydraulic Jacks/ Rollers


Hydraulic Line


Jack/Load Cell
within Reaction Beam
r I


Lag Bolts to Concrete Floor

Figure 2.9 Wall Assembly test setup









P ip P P
? brace


A C/
A K= 1.0 E

LB D

strut
t diagonal __

P P P P
Relative Nodal
Column Bracing

Figure 2.10 Types of Bracing (a) Relative Bracing and (b) Nodal Bracing

No sidesway K = 0.7


Pe
1 -- K= 1.0



0 1 2 3 4 5 6
t Brace Design f L/ PO


12
AT/Ao


Pbr (% Of P)


Figure 2.11 Effect of Initial Out-of-Plumbness
















Buckled shape of column
is shown by dashed line


(a)




1
I


I
I



t


(c)



I
I





t


(d)





I

I


(e)


t


Theoretical K value 0.5 0.7 1.0 1.0 2.0 2.0
Recommended K value
when ideal conditions 0.65 0.80 1.2 1.0 2.10 2.0
are approximated

f Rotation fixed, Translation fixed
d Rotation free, Translation fixed
End condition code *
S Rotation fixed, Translation free

T Rotation free, Translation free


Figure 2.12 Effective Length Factors for Concentrically Loaded Columns


I

I
1
1


_ _














CHAPTER 3
DESCRIPTION OF EXPERIMENTAL STUDY

The purpose of this chapter is to give a brief description of the objectives of the

experimental program, the material properties and measured as-built geometry of the test

specimens, the test setups, and the test procedures employed in the project. The

experimental program consisted of two phases of testing:

* Phase-I: Axial Compression Tests

* Phase-II: Bridging Tests

3.1 Introduction

Phase-I of the experimental program consisted of examining the behavior of single

axially loaded cee-studs, with and without mid-height bracing (or bridging). In Phase-II,

typical industry bridging was examined for its strength and stiffness by in-plane and out-

of-plane loading. Description of the test setups and the test procedures are given in

Sections 3.6 and 3.7. Three types of typical industry bridging were tested:

* Type-1: Screwed-Screwed (SS), where the bridging channel and clip angle are
screwed to each other and to the web of the cee-stud.

* Type-2: Welded-Welded (WW), where the bridging channel and clip angle is fillet
welded to each other and to the web of the cee-stud.

* Type-3: Direct-Welded (DW), where the bridging channel is directly welded to the
web of the cee-stud.

The stud specimens tested had nominal web depths of 3.625, 6.00, and 8.00 inches

with specified thicknesses ranging from 33 mils to 97 mils. The 33 mil, 43 mil, and 68

mil studs were manufactured by Steel Construction Systems, Orlando, FL and the 97 mil









studs were manufactured at the Wildwood, FL plant of Dietrich Metal Framing Inc.,

Pittsburgh, PA. The mechanical properties of the stud material used to fabricate the test

specimens were determined by tension coupon tests. The as-built dimensions and

geometric imperfections of the fabricated test specimens were recorded and this data was

utilized in the calculation of the resistance properties of each specimen.

3.2 Objectives of Experimental Tests

The main objectives of the experimental study are summarized as follows:

* To investigate the behavior of cold-formed steel cee-studs with and without mid-
height lateral bracing by testing a range of studs, subjected to axial compression
while providing different bracing stiffnesses and strengths

* To investigate the strength and stiffness of the lateral bridging over the same range
of studs subjected to in-plane and out-of-plane loading

* To provide the experimental data for determining the minimum bracing
requirements of cold-formed steel cee-studs subjected to axial compression

3.3 Material Properties of Test Specimens

A series of standard 2" gage length ASTM tension tests were performed on

coupons cut from the web material of the cee-studs. The dimensions of a typical tension

coupon are shown in Figure 3.1. The nomenclature used to identify the group of cee-stud

to which the coupon belonged was represented as:

TC DDDS FFF-TT

where TC = Tension coupon

DDD = Overall stud depth (362 = 3.625", 600 = 6.000", and 800= 8.000")

S = Lipped stud section

FFF = Flange width (125 = 1.25", 162 = 1.625")

TT = Nominal sheet thickness milss, 1 mil = 0.001 inch)









The tension tests were performed in accordance with ASTM E8-01e2 (ASTM

2001) on a 60 Kip capacity Tinius-Olsen testing machine. The applied load was

measured through a load cell and the gage elongation of each coupon was measured using

two extensometers, one fixed on the front and the other on the back of the tension

coupon. The applied load and the corresponding elongation data was used to plot the

stress-strain relationship. From the stress-strain plot, the yield and ultimate stresses were

determined as per ASTM E8-01e2 (ASTM 2001). The elastic modulus of the material

was not determined by testing and was assumed to be equal to 29500 ksi (AISI 1996).

For each cee-stud section, a minimum of three tests were performed. The average values

of yield and ultimate stresses were calculated based on either the 0.2% offset method for

a continuously yielding material or the autographic diagram method for materials

exhibiting discontinuous yielding. Figure 3.2 shows the 0.2% offset method for

determination of the yield stress, and Figure 3.3 shows the autographic diagram method

for determination of the yield stress. The tension coupon test results are summarized in

Table 3.1.

3.4 As-Built Dimensions of the Test Specimens

For the single axial load tests, 8'-0" long cee-studs were cut from the as-delivered

20'-6" long members. For the bridging tests, short 3'-6" stubs were cut from the 20'-6"

long members. For the purposes of this study, each tested stud was identified using a

modified Steel Stud Manufacturers Association (SSMA) nomenclature:

DDD S FFF-TT-KKKK

where DDD = Overall stud depth (362 = 3.62"; 600 = 6.00"; 800 = 8.00")

S = Lipped stud section

FFF = Flange width (125 = 1.25"; 162 = 1.62")









TT = Nominal steel thickness milss; 1 mil = 0.001")

KKK = Axial stiffness of one brace wire in pounds per inch

For each specimen, the cross-section dimensions were measured at three locations

along the length of each 8'-0" stud with a digital micrometer and tabulated in Table 3.2.

The tables provide the stud designation and corresponding brace stiffness used in the

testing along with the measured dimensions A through F and thicknesses 'ta' through 'te'

(see Figure 3.4) for each test specimen. The (+) and (-) symbols denote the direction of

camber and sweep of the stud. The camber and sweep were measured as described in

Section 3.5.1.

3.5 Measured Geometric Imperfections of the Test Specimens

The geometric imperfections of a stud can be categorized as a global imperfection

and/or a local imperfection as described in Sections 3.5.1 and 3.5.2.

3.5.1 Global Imperfections

The bow/sweep and camber of the studs were measured with a digital micrometer

to a least count of 0.005". A nylon monofilament line was stretched from one end to the

other end of a stud and then was clamped tight. The out-of-straightness of each flat

surface of a stud was measured at mid-height. The distance from the string to the surface

of the stud was the initial global imperfection for the stud and tabulated in Table 3.3. The

measured out-of-straightness of each stud was found to be within the permissible values

as stated, which is 1/32 inches per foot for both bow and camber. The permissible values

are found in the Standard Specifications for Load Bearing Steel Studs ASTM C955-01

(ASTM 2001) and for nonstructural steel framing members ASTM C645-00 (ASTM

2000). The measured cambers were negligible in all the tested specimens except for the

600S162-43 series where it ranged from 0.0 to a maximum of 0.065 inches, or L/1500.









The sweep measurements were more significant as these might directly influence the

axial behavior of the cee-studs during testing. The measured sweep ranged from 0.0 to

0.04 inches, or L/2400 for the 362S162-43 and 600S162-43 series; from 0.0 to 0.075

inches, or L/1300 for the 600S162-97 series; and from 0.0 to 0.14 inches, or L/700 for the

362S162-68 series. No geometric imperfection measurements were made of the

800S162-97 series studs. In a few studs there was an initial twist over its length but it

would disappear when the bottom end was plumbed with the top end while setting up for

a compression test. A note was made of the initial twist, but the degree of twist was not

measured.

3.5.2 Cross-Sectional Imperfections

The as-built out-to-out measurements of the cross-section of a stud showed that it

was neither symmetric nor of uniform thickness. Also, the intersecting covers of the

flange-lip and the web-flange junctions were typically right angular. However, the cross-

section was considered to be mono-symmetric and of uniform thickness for calculation

purposes. It was observed that in some of the studs the punchout were offset from the

web centerline by as much as 1/8", and this was documented along with the test data.

The average cross-sectional measurements of each of the test specimen series are given in

Tables 3.4 and 3.5. In order to calculate the gross cross-section area, the radius of the

bend was taken as the maximum of 3/32" or two times the base-metal thickness, based on

the SSMA Manual (SSMA 2001). The studs were fabricated from galvanized steel. The

base metal thickness was calculated by subtracting a thickness of two mils from the

average of the measured values of thickness.









3.6 Test Setup and Test Procedure for Single Column Axial Load Tests

A total of 37 studs were tested in this phase of the experimental study. Each stud

was tested in a 400 Kip, screw driven Riehle Universal Testing Machine. The test setup

and test procedure for the single column axial load tests is described below.

3.6.1 Test Specimens of Single Column Axial Load Tests

To simulate actual field installation conditions, each stud was mounted in standard

track of type "T DDD 125-43" (where T = track, DDD = depth of stud, 1-1/4" flange, 43

mil thickness). Figure 3.5 shows a stud attached to the track with a single #10 self-

drilling screw on each flange. The track was then mounted to end bearing plates with

two 0.150" diameter bolts to simulate attachment to a concrete support or other structural

member using 0.144" diameter drive pins. Figure 3.5(a) shows the top of the stud

attached to the end bearing plate being held in position against the movable crosshead of

the Riehle Universal Testing Machine. Figure 3.5(b) shows the bottom of the stud

attached to the other end bearing plate that sits just above another plate holding a 150 Kip

axial load cell in place and resting on the fixed platen of the testing machine.

3.6.2 Test Frame for Single Column Axial Load Tests

An adjustable frame attached to the Riehle testing machine was used to hold the

flexural-torsional bracing system in place. Figure 3.6 is an overall view of the test frame

and its accompanying instrumentation. The mid-height lateral bracing was simulated

using steel wires of varying diameters and lengths. As indicated in the figure, the wires

were attached to the corners of the flanges of the test specimens using #10 screws. The

brace wires terminated at the S-Beam load cells, which were used to measure the tension

force in the brace wires during the testing.









3.6.3 Instrumentation for Single Column Axial Load Tests

Five load cells and six linear potentiometers were used to measure the loads and

displacements for each single axial compression test for the braced stud specimens.

Figure 3.7 shows the locations of the instruments mounted on the test frame. Four S-

Beam load cells (Load Cells 1, 2, 3, 4) were used to measure the brace forces in the brace

wires. A 150 kip capacity load cell (Load Cell 5) was used to measure the axial load at

the base of the stud. The minor axis lateral displacement of a stud was measured by a

complementary set of four linear potentiometers (LINEAR POTS 1, 2, 3, 4) positioned

directly adjacent to the individual brace wires that made up the lateral bracing system.

The major axis lateral displacement was measured at mid-height, by a single linear

potentiometer (LINEAR POT 5) located along the minor axis attached to the south flange

of a stud. Axial shortening of a stud was measured along the north flange of the test

specimen parallel to the longitudinal axis of a stud (LINEAR POT 6). Figure 3.8 shows a

close-up view of the stud cross-section at mid-height that shows the attachment points of

the bracing wires to their corresponding load cells: A-NE BRACE (BF-1), B-SE BRACE

(BF-2), C-NW BRACE (BF-3), and D-SW BRACE (BF-4).

3.6.4 Test Procedure of Single Column Axial Load Tests

Each cee-stud was fixed in the Riehle Universal Testing Machine with the tracks

bolted to the top crosshead and bottom base plate and was plumbed along both the strong

and weak axis prior to testing. The measuring instruments, described in Section 3.6.2

were connected to an electronic data acquisition system to collect and display the run-

time data. The tests were conducted under displacement control since the Riehle is a

mechanically screw-driven testing machine, which allowed the studs to be loaded at a

rate of approximately 5 to 20 lbs/sec to ensure a static response to the applied load.









Initially, each stud was loaded up to an axial load of 200 lbs to 500 lbs then unloaded. At

this time all the instrumentation was checked and balanced. This preliminary loading and

unloading cycle also ensured proper seating of the specimen in the Riehle UTM. During

the continued loading, the buckling behavior of the stud was observed and photographs

were taken at notable points and at certain load levels. Failure was considered to have

occurred when the stud could no longer carry additional load or significant axial or cross-

sectional deformation of the stud was observed and recorded. The stud was then

unloaded and the test was then terminated.

3.7 Test Setup and Test Procedure for Bridging Tests

A total of 54 specimens were tested in this phase of the experimental study to

evaluate the strength and stiffness of typical industry bridging. The tests were conducted

on 3'-6" long cee-stud sections. As previously stated, three types of typical industry

bridging were tested. The specimens were divided into two groups based on the direction

of loading namely, in-plane loading and out-of-plane loading. Twenty-eight specimens

were tested in the out-of-plane loading group while twenty-six specimens were tested in

the in-plane loading group.

3.7.1 Test Specimens of Bridging Tests

The 3'-6" long cee-stud sections were cut from the 20'-6" long studs such that the

elevation to the center of the web punchout was maintained at 23 inches. The test

specimens were identified using a modified SSMA nomenclature:

DDD S FFF-TT-N CC

where DDD = Overall stud depth (362 = 3.62"; 600 = 6.00"; 800 = 8.00")

S = Lipped stud section

FFF = Flange width (125 = 1.25"; 162 = 1.62")









TT = Nominal steel thickness milss; 1 mil = 0.001")

N = Number of the test specimen in each series of stud

CC = Bridging connection type ( SS, WW, DW)

Figure 3.9(a) through (c) show the types of bridging connections tested and they

are described below:

3.7.1.1 Screwed-Screwed (SS) Connection: The clip angle was first screwed to

the bridging channel with two #10 self-drilling screws, as shown in Figure 3.9(a) and

Figure 3.10. Position of the screws on the clip angle was marked and then it was

centered on the centerline of the web at a height of 23 inches from the bottom. The clip

angle was then screwed to the web of the stud. This connection type was called Screwed-

Screwed (SS).

3.7.1.2 Welded-Welded (WW) Connection: The bridging channel was welded

at its flange-web junction to the clip, as shown in Figure 3.9(b). The clip angle was then

positioned along the centerline of the web and fillet welded on the edges of the in-line

leg. The bridging channel was slid through the punch out and then fillet welded to the

outstanding leg of the clip angle. The welding specifications used were Metal alloy:

ER7056, Heat: 10260 F, Gas shielding: Argon-C02 (75%-25%). This connection type

was called Welded-Welded (WW).

3.7.1.3 Direct-Welded (DW) Connection: The bridging channel was slid

through the web punchout and then the flanges were welded to the web of the stud, as

shown in Figure 3.9(c). The weld specification used was same as in Type-2 connection.

This connection type was called Direct Welded (DW).









3.7.2 Test Fixture for Bridging Tests

The test fixture used to secure the specimens for the bridging tests is shown in

Figure 3.11(a). Figure 3.12(a) and (b) are schematic plan views of the test fixture

positioned for the out-of-plane and in-plane bridging tests, respectively, while Figure

3.13 and Figure 3.14 show an overall view of each experimental test setup. The fixture

consists of a Specimen Mounting Frame (see Figure 3.1 l(a)) and an Actuator Armature

(see Figure 3.1 lb). The load was applied to the bridging channel by a manually operated

screw-driven actuator, fixed to the Actuator Armature (see Figure 3.11 through Figure

3.14). The Specimen Mounting Frame was used to secure the cee-stud in place and to

isolate the web portion of the specimen (see Figure 3.11(a)). One end of the actuator was

connected to an S-beam load cell, and the other end was connected to the vertical channel

of the Actuator Armature by a 3/4" diameter SAE Grade 5 bolt. The Actuator Armature

was bolted to the web of C8xl 1.5. The channel section was welded to top flange of a

W8x24 whose bottom flange was bolted to the test fixture base plate. A plate-coupler

was introduced between the bridging and the S-beam load cell at Point A (see Figure 3.11

and Figure 3.12), that allowed the load to be transmitted to the bridging channel through

the plate-coupler by a 3/8" diameter SAE Grade 8 bolt. The joint between the actuator

and the vertical channel of the Actuator Armature was free to rotate horizontally, while

the joint between the plate-coupler and the bridging channel was free to rotate vertically.

All members and connections were checked prior to the commencement of any testing to

verify that the limit state of the loading system would be at the bridging connection and

not at any of the components of the test fixture. A shear test was performed on the 3/8"

0 bolt, the design strength of the plate coupler was calculated based on its as-built

measurements, and the weld strength used to fabricate the plate-coupler was checked.









For the out-of-plane load tests, a 500 lb load cell was used and for the in-plane load tests,

a 10 Kip load cell was used. This change was necessary since the strength predictions for

the in-plane tests were found to be beyond the safe working range of the 500 lb load cell.

3.7.3 Instrumentation

The instruments used for the out-of-plane loading tests are shown in Figure 3.15

and for the in-plane loading tests in Figure 3.16. For both the loading conditions, three

linear string type potentiometers were used to capture the spatial movement of Point A on

the bridging where it is connected to the load actuator, each measuring the X, Y and Z

displacements, respectively. Five linear potentiometers were used to measure the

displacement of the bridging connection and the stud web, two on the front side (LP-1,

LP-2), two on the back side (LP-3, LP-4), and an additional one on the back side (LP-5)

located approximately one foot above the location of the bridging connection to the stud

web. For the SS type connection, LP-1 and LP-2 were attached to the screw heads to

measure the pullout of the screws, while LP-3 and LP-4 were attached on the back to

measure the movement of the web plate just below the screws. The measurements being

recorded by LP-5 is to show that the web is completely isolated and is unaffected by the

loading. For the WW type connection, LP-1 and LP-2 were attached at relatively the

same location as in SS type connection, but to measure the horizontal movement of the

vertical leg of the clip angle. For the DW type connection, LP-1 and LP-2 were attached

at relatively the same location as in SS type connection, but to measure the horizontal

movement of the stud web.

3.7.4 Out-of-Plane Loading Test Procedure

The specimen mounting-frame and the Actuator Armature were aligned and

anchored to the floor (see Figure 3.11). In this setup, the Actuator Armature was placed









perpendicular to the centerline of the bridging channel, with the armature centerline

passing through Point A. The test specimen was placed in the specimen mounting-frame

and aligned horizontally and vertically. Figure 3.13 shows an overall view of the

specimen in the test fixture, and Figure 3.15(a) shows a view of the connection between

the bridging channel and the actuator. The specimen was secured on the front and on the

back by four rigid hot-rolled steel members, to isolate the web for testing. To maintain

the same spatial position of Point A for all the tests, it was triangulated and the locations

of the linear string type potentiometers were adjusted to achieve an orthogonal coordinate

system to a reasonable accuracy of 0.10 inch.

3.7.5 In-Plane Loading Test Procedure

The specimen mounting-frame and the Actuator Armature were placed in line with

the bridging channel of the stud specimen and anchored to the floor (see Figure 3.12).

The test specimen was placed in the specimen mounting-frame and aligned horizontally

and vertically. The specimen was then secured on the front and on the back by four rigid

hot-rolled steel members, to isolate the web for testing. Figure 3.13 shows the overall

view of a specimen in the test fixture, and a shows a view of the connection between the

bridging channel and the load actuator. The cranking arm of the actuator was turned at

approximately one-half a revolution per second until the bridging failed.









Table 3.1 As-built Material Properties from the Tension Cou on Tests

Yield Stress Upper Lower Ultimate
Specimen ID Yield Yield
(0.2% offset) Stress Stress Stress
Stress Stress
TC D S B t ID ksi ksi ksi ksi
TC 362 S 125 33 1 47.26 46.40 54.68
TC 362 S 125 33 2 48.51 49.17 48.59 55.88
TC 362 S 125 33 3 48.55 49.17 49.40 55.89
Average 48.53 48.53 48.13 55.48
TC 362 S 162 43 2 46.65 46.90 46.43 57.62
TC 362 S 162 43 3 46.73 46.84 46.13 57.64
TC 362 S 162 43 4 47.98 48.31 47.22 58.60
TC 362 S 162 43 5 46.80 47.83 47.25 58.94
Average 47.04 47.47 46.76 58.20
TC 362 S 162 68 2 50.12 51.91 51.72 66.62
TC 362 S 162 68 3 51.75 51.78 51.24 67.34
TC 362 S 162 68 4 54.15 54.35 53.96 69.43
Average 52.01 52.68 52.30 67.80
TC 600 S 125 33 1 23.82 45.22
TC 600 S 125 33 3 26.97 45.56
TC 600 S 125 33 5 26.73 44.93
TC 600 S 125 33 7 18.61 35.70
TC 600 S 125 33 8 36.88
Average 24.03 45.24
TC 600 S 162 43 2 45.12 45.48 44.06 53.03
TC 600 S 162 43 3 46.65 47.49 48.37 55.65
TC 600 S 162 43 4 46.75 47.28 45.86 55.65
TC 600 S 162 43 5 46.43 47.79 47.16 55.18
Average 46.24 47.01 46.36 54.88
TC 600 S 162 43 3a 50.27 50.81 50.63 59.21
TC 600 S 162 43 4a 50.34 51.58 51.24 59.56
Average 50.30 51.19 50.94 59.38
TC 600 S 162 97 3a 60.40 60.70 59.23 70.38
TC 600 S 162 97 3b 61.10 62.05 59.31 70.28
TC 600 S 162 97 4 59.10 59.87 58.30 69.96
Average 60.20 60.87 58.94 70.21
TC 800 S 162 43 1 40.65 40.20 55.03
TC 800 S 162 43 3 40.50 40.20 54.47
TC 800 S 162 43 4 40.88 40.30 55.20
Average 40.68 40.23 54.90
TC 800 S 162 97 1 42.12 45.62 44.39 66.79
TC 800 S 162 97 3 43.32 44.55 44.51 68.00
TC 800 S 162 97 4 42.06 47.01 46.56 67.69
Average 42.50 45.73 45.15 67.49












Table 3.2 As-Built Cross-Sectional Dimensions of Test Specimens
Target Average As-Built Measurements
Stud Designation Brace Lip Flange Web Flange Lip Web Lip Flange Web Flange Lip
Stiffness A B C D E F ta tb tc td te
D S B t ID lbs/in. in. in. in. in. in. in. in. in. in. in. in.
362 S 125 33 1 200 0.252 1.317 3.613 1.259 0.209 3.589 0.033 0.039 0.034 0.034 0.032
362 S 125 33 2 400 0.252 1.316 3.613 1.258 0.205 3.584 0.036 0.035 0.033 0.035 0.032
362 S 125 33 3 100 0.251 1.321 3.616 1.258 0.206 3.603 0.036 0.036 0.034 0.036 0.034
362 S 125 33 4 100 0.253 1.318 3.616 1.259 0.208 3.593 0.034 0.035 0.033 0.035 0.032
362 S 125 33 5 0 0.251 1.319 3.612 1.256 0.203 3.589 0.031 0.036 0.034 0.035 0.032
362 S 125 33 6 100 0.250 1.318 3.612 1.256 0.204 3.597 0.032 0.035 0.034 0.035 0.031
362 S 125 33 0.252 1.318 3.613 1.258 0.206 3.590 0.033 0.036 0.034 0.035 0.032

362 S 162 43 1 0 0.541 1.637 3.562 1.603 0.531 3.547 0.044 0.042 0.042 0.042 0.044
362 S 162 43 2 200 0.530 1.606 3.563 1.642 0.538 3.541 0.045 0.043 0.043 0.043 0.043
362 S 162 43 3 800 0.536 1.640 3.563 1.607 0.534 3.540 0.044 0.042 0.042 0.043 0.044
362 S 162 43 4 400 0.528 1.602 3.569 1.639 0.538 3.541 0.042 0.042 0.042 0.042 0.042
362 S 162 43 0.534 1.621 3.564 1.623 0.535 3.542 0.044 0.042 0.042 0.043 0.043

362 S 162 68 2 1000 0.526 1.628 3.642 1.706 0.539 3.631 0.0717 0.070 0.070 0.070 0.072
362 S 162 68 3 500 0.546 1.701 3.638 1.629 0.524 3.633 0.074 0.070 0.070 0.070 0.072
362 S 162 68 4 750 0.542 1.705 3.635 1.630 0.536 3.635 --- 0.069 0.069 0.069 0.069
362 S 162 68 5 0 0.543 1.703 3.636 1.629 0.523 3.634 0.076 0.068 0.068 0.068 0.073
362 S 162 68 0.540 1.684 3.638 1.649 0.530 3.633 0.074 0.069 0.069 0.069 0.071












Table 3.2 (Continued) As-Built Cross-Sectional Dimensions of Test Specimens
Target Average As-Built Measurements
Stud Designation Brace Lip Flange Web Flange Lip Web Lip Flange Web Flange Lip
Stiffness A B C D E F ta tb tc td te
D S B t ID lbs/in. in. in. in. in. in. in. in. in. in. in. in.
600 S 125 33 1 200 0.206 1.243 6.022 1.307 0.243 5.999 0.032 0.032 0.030 0.032 0.032
600 S 125 33 2 0 0.205 1.247 6.019 1.309 0.245 6.004 0.031 0.030 0.031 0.030 0.031
600 S 125 33 3 60 0.208 1.247 6.019 1.305 0.246 6.008 0.031 0.030 0.030 0.031 0.031
600 S 125 33 4 30 0.210 1.248 6.019 1.308 0.242 6.008 0.032 --- 0.031 --- 0.033
600 S 125 33 0.207 1.246 6.020 1.307 0.244 6.005 0.032 0.031 0.031 0.031 0.032

600 S 162 43 1 250 0.531 1.603 5.994 1.592 0.536 5.993 0.041 0.044 0.044 0.044 0.042
600 S 162 43 2 75 0.526 1.612 6.017 1.596 0.534 6.041 0.042 0.044 0.044 0.044 0.042
600 S 162 43 4 500 0.533 1.595 6.036 1.616 0.530 6.068 0.044 0.045 0.044 0.044 0.042
600 S 162 43 5 30 0.531 1.596 6.026 1.612 0.529 6.052 0.044 0.044 0.044 0.044 0.042
600 S 162 43 6 0 0.528 1.616 6.034 1.598 0.535 6.066 0.043 0.044 0.044 0.044 0.043
600 S 162 43 6a 0 0.536 1.707 5.984 1.609 0.535 6.092 0.044 0.046 0.046 0.046 0.045
600 S 162 43 0.530 1.604 6.021 1.603 0.533 6.044 0.043 0.044 0.044 0.044 0.042

600 S 162 97 1 1000 0.544 1.652 6.069 1.675 0.610 --- 0.100 0.104 0.099 0.110 0.102
600 S 162 97 2 1500 0.533 1.665 6.065 1.671 0.562 --- 0.103 0.102 0.100 0.107 0.106
600 S 162 97 3 500 0.557 1.656 6.106 1.658 0.580 --- 0.099 0.102 0.101 0.103 0.099
600 S 162 97 4 160 0.527 1.649 6.077 1.673 0.576 6.063 0.100 0.104 0.100 0.105 0.105
600 S 162 97 5 0 0.542 1.648 6.091 1.683 0.584 6.106 0.100 0.101 0.101 0.101 0.102
600 S 162 97 0.541 1.654 6.082 1.672 0.582 6.084 0.100 0.103 0.100 0.105 0.103












Table 3.2 (Continued) As-Built Cross-Sectional Dimensions of Test Specimens
Target Average As-Built Measurements
Stud Designation Brace Lip Flange Web Flange Lip Web Lip Flange Web Flange Lip
Stiffness A B C D E F ta tb tc td te
D S B t ID lbs/in. in. in. in. in. in. in. in. in. in. in. in.
800 S 162 43 2 75 0.537 1.597 7.912 1.604 0.530 --- 0.042 0.043 0.043 0.043 0.042
800 S 162 43 3 150 0.535 1.598 7.925 1.605 0.533 --- 0.042 0.043 0.043 0.043 0.043
800 S 162 43 4 0 0.533 1.597 7.929 1.608 0.532 0.043 0.043 0.043 0.043 0.043
800 S 162 43 5 300 0.528 1.606 7.920 1.597 0.532 --- 0.042 0.043 0.044 0.044 0.041
800 S 162 43 0.533 1.599 7.921 1.603 0.532 --- 0.042 0.043 0.043 0.043 0.042

800 S 162 97 1 1000 0.562 1.631 8.053 1.670 0.659 --- 0.101 0.102 0.102 0.103 0.103
800 S 162 97 2 500 0.651 1.649 8.048 1.647 0.561 --- 0.102 0.103 0.103 0.103 0.102
800 S 162 97 3 0 0.553 1.629 8.041 1.650 0.661 --- 0.101 0.103 0.104 0.103 0.103
800 S 162 97 4 2100 0.656 1.647 8.033 1.632 0.556 --- 0.100 0.105 0.103 0.104 0.101
800 S 162 97 0.605 1.639 8.044 1.650 0.609 --- 0.101 0.103 0.103 0.103 0.102









Table 3.3 Initial Geometric Imperfections
Target Initial Imperfection
Stud Designation Brace Camber Sweep
Stiffness B D C
D S B t ID lbs/in. in. in. in.
362 S 125 33 1 200 0 0 0
362 S 125 33 2 400 0 0 0
362 S 125 33 3 100 0 0 0
362 S 125 33 4 100 0 0 0
362 S 125 33 5 0 0 0 0
362 S 125 33 6 100 0 0 0
362 S 162 43 1 0 0 0 0
362 S 162 43 2 200 0 0 0
362 S 162 43 3 800 0 0 0.01
362 S 162 43 4 400 0.01 0.02 0
362 S 162 68 2 1000 0 0 -0.187
362 S 162 68 3 500 0 0 -0.155
362 S 162 68 4 750 0 0 0.14
362 S 162 68 5 0 0 0 0.1
600 S 125 33 1 200 0 0 0.1
600 S 125 33 2 0 0 0.07 0.13
600 S 125 33 3 60 0 0 0.12
600 S 125 33 4 30 0 0 0.075
600 S 162 43 1 250 0 0 0.04
600 S 162 43 2 75 0 0 0.03
600 S 162 43 4 500 0.055 0.045 0
600 S 162 43 5 30 0.055 0.053 0
600 S 162 43 6 0 0.065 0.065 0
600 S 162 43 6a 0 0 0 -0.036
600 S 162 97 1 1000 --- --- ---
600 S 162 97 2 1500 --- ---
600 S 162 97 3 500 --- --- ---
600 S 162 97 4 160 0 0 0.075
600 S 162 97 5 0 0 0 0.015
800 S 162 43 2 75 0 0 0.09
800 S 162 43 3 150 0 0 0.11
800 S 162 43 4 0 0 0 0.11
800 S 162 43 5 300 0 0.12 0
800 S 162 97 1 1000 --- --- ---
800 S 162 97 2 500 --- ---
800 S 162 97 3 0 --- --- ---
800 S 162 97 4 2100 0 0 0.12










Table 3.4 Average As-Built Geometric Dimensions of Each Stud Series
Clear 0/0 Dimensions Average Width
Stud Designation Lip Flange Web Flange Lip Web Lip Flange
A B C D E F
D S B t in. in. in. in. in. in. in. in.
362 S 125 33 0.2515 1.3175 3.6131 1.2577 0.2058 3.5904 0.2287 1.2876
362 S 162 43 0.5335 1.6212 3.5643 1.6229 0.5352 3.5423 0.5344 1.6220
362 S 162 68 0.5396 1.6842 3.6377 1.6485 0.5304 3.6329 0.5350 1.6664
600 S 125 33 0.2071 1.2462 6.0197 1.3073 0.2439 6.0045 0.2255 1.2768
600 S 162 43 0.5298 1.6042 6.0213 1.6028 0.5328 6.0439 0.5313 1.6035
600 S 162 43a 0.5363 1.7070 5.9842 1.6092 0.5352 6.0920 0.5358 1.6581
600 S 162 97 0.5405 1.6539 6.0816 1.6717 0.5824 6.0843 0.5615 1.6628
800 S 162 43 0.5330 1.5994 7.9213 1.6033 0.5316 --- 0.5323 1.6014
800 S 162 97 0.6053 1.6388 8.0436 1.6498 0.6091 --- 0.6072 1.6443


Table 3.5


Average As-Built Geometric Dimensions of Each Stud Series


Thickness Radius Base
Internal
of Metal
Stud Designation Lip Flange Web Flange Lip Bed T es Radius
tav Bend Thickness
ta tb tc td te R tnet Rint
D S B t in. in. in. in. in. in. in. in. in.
362 S 125 33 0.0333 0.0360 0.0336 0.0348 0.0318 0.0339 0.0938 0.0319 0.07781
362 S 162 43 0.0437 0.0424 0.0425 0.0425 0.0432 0.0429 0.0938 0.0409 0.07332
362 S 162 68 0.0735 0.0691 0.0691 0.0693 0.0714 0.0705 0.1409 0.0685 0.10669
600 S 125 33 0.0316 0.0307 0.0307 0.0308 0.0315 0.0310 0.0938 0.0290 0.07923
600 S 162 43 0.0427 0.0441 0.0442 0.0443 0.0423 0.0435 0.0938 0.0415 0.07299
600 S 162 43a 0.0442 0.0458 0.0460 0.0460 0.0447 0.0453 0.0938 0.0433 0.07209
600 S 162 97 0.1002 0.1027 0.1004 0.1053 0.1028 0.1023 0.2045 0.1003 0.15440
800 S 162 43 0.0421 0.0431 0.0431 0.0430 0.0422 0.0427 0.0938 0.0407 0.07340
800 S 162 97 0.1008 0.1031 0.1029 0.1031 0.1021 0.1024 0.2048 0.1004 0.15458


Note:


Radius of Bend max [(2 tavg), 3/32
"
], Clark's tables. Internal Radii = (Radius of Bend tnet /
Base Metal Thickness [tavg 2 mils for galvanizing]




















Dimensions
A Length of reduced section, min
B Length of grip section, min
C Width of grip section, min
D Diameter of hole for pin, min
E Edge distance from pin, approximate
F Distance from hole to fillet, min
G Gage Length
L Overall Length
T Thickness
R Radius of fillet, min
W Width
Figure 3.1 Dimensions of a Typical Tension Coupon


70

60

50

40

- 30

20

10

0


I 1 1 1 1 1 1 1 I1 1 1 1 1 1 1 1 I1 1I1I1I1I II II II II I


0 5 10 15 20 25
Strain (%)


30 35 40 45 50


Figure 3.2 Offset Method for Determining Yield Stress


inches
2 1/4
2
2
1/2
1 1/2
1/2
2.000 + 0.005
8
5/8
1/2
0.500 + 0.010


TC600S 125-33-3
Yield Stress determined
'by 0.2% Offset Strain
using E=29500 ksi

,- -









70
TC 362S 125-33-2
Upper Yield
60 Point

50




|30 Yield Poit__
30

20

10

0
0 5 10 15 20 25 30 35 40
Strain (%)
Figure 3.3 Autographic Diagram Method for Determining Yield Stress






tc- -- tE-




tr- SWEEP
--mo -- --- MD


Figure 3.4 Typical Cross-Section of a Cee-Stud

























Figure 3.5 Connection of Cee-Stud and Track (a) at Top, (b) at Bottom

-81 -6' -4' -2' D' 2' 4- 6' 8'
fI lhi lllllblErH [ltTl.lTihITHhlrJ II Td l bblli dlJ, dII llJ h[ Ihb.L It ilildh HIl ,TiJT.TJi l Iilil rBIJ il laTlbldh Illld i


MAJOR
AXIS


VARIABLE _VARIABLE
DISTANCE DISTANCE
4x1/4-- -.RIEHL

3x4/4i Lj3x^ x


r rr"


I (a7 7


N
A


UTM


* I J *-A -J '1... S -15-4- .-.-F S J rK i1


T-1


CLAMP

LINEAR POT. &
BRACE WIRE


LOAD CELLS: (@ )


I


-L3x31/4

TEST SPECIMEN
OF CEE-STUD


LINEAR POTS.; O~@


Figure 3.6 Plan View of Single Column Axial Test Setup in the Riehle Universal Testing
Machine


-. -.


I I r








--NED (O)NE BRACE


MAJOR
AXIS


SW BRACE @



LINEAR POTS.: ()(3)@(
LOAD CELLS: @@(DO


N
A


-TEST SPECIMEN
OF CEE-STUD


()SE BRACE


Figure 3.7 Schematic Mid-height Bracing and Instrumentation Locations on Test
Specimens


Figure 3.8 Close-up View of the Location of Brace-Wires and Instrumentation at Mid-
height of the Cee-Stud. (Screws at the bottom are location of looped brace-
wires, and Screws at the top are location of the Linear Potentiometers)


NW BRACE



















Figure 3.9 Types of Bridging Connections (a) SS (b) WW and (c) DW
-b-7


Figure 3.10 Top View of the SS Type Bridging Connection


" r-


; _1











COLD-FORMED STEEL
CEE STUD
BRIDGING CLIP ANGLE
1 x 1% 54 MIL


(a) Elevation View of the Specimen Mounting Frame


C8x11. M1n UT
ACTU/












W8x24


(b) Loading Actuator Armature

Figure 3.11 Elevation Views of Bridging Connection Test Setup










STEEL


(a)I I


BASE PLATE COLD-F'1-MED
45x28x 1 STEEL CEE STUD
c.'3l..%;r,-X-T ./ 2 r % ^<,
L3x.3xY4 /,' ;4 ASTM-G5 BOLT
SW/ NUT & ',AEHER
POINT-A




PL RIE CIG CHANNEL
COUPLER .

MANUAL---
ACTUATOR\ S-BEAM
SP LOAD CELL

FOR ACTUATOR 2 4-


C8x11.5. T-



(b)

Figure 3.12 Schematic Plan View of the (a)Out-of-Plane Bridging Test (b) In-Plane
Bridging Test

































Figure 3.13 Overall View of the Out-of-Plane Bridging Tests


Figure 3.14 Overall View of the In-Plane Bridging Tests


























tlgure 3. 1 Uut-ot-Plane Loading lest Instrumentation on the (a) 1ront (b) Back


Figure 3.16 In-plane Loading Test Instrumentation on the (a) Front (b) Back














CHAPTER 4
EXPERIMENTAL RESULTS AND EVALUATION

Experimental tests on single column specimens and bridging specimens were

performed as per the test protocols described in Chapter 3. The individual test reports for the

single column tests are discussed in Appendix A and the results of the bridging tests are

available in Appendix B. This chapter is divided into four sections, the first section deals

with the results of the single column axial tests and discusses the effect of brace stiffness and

strength on the load carrying capacity, mid-height lateral displacement and effective length

of the braced columns. The second section deals with the axial pullout strength and torsional

stiffness of the three bridging connections for eight series of cee-studs. The third section

deals with the relationship between the flexible bracing and the bridging strength and

stiffness. The fourth section summarizes the experimental evaluation.

4.1 Single Column Axial Load Test Results

In the single column axial load tests a total of 37 studs were tested based on the

following parameters:

* Cross-sections
o 362S125-33, 362S162-43, 362S162-68
o 600S 125-33, 600S 162-43, 600S 162-97
o 800S 162-43, 800S 162-97
* Unbraced Test Specimens versus Braced Test Specimens
* Bracing Stiffness
o Under-Braced less than ideal bracing
o Ideally-Braced equal to ideal bracing
o Over-Braced greater than ideal bracing









Table 4.1 provides the proposed test matrix for the 8'-0" long single column axially

loaded cee-stud specimens. Due to certain experimental limitations, the actual test matrix is

as given in Table 4.2, where the numbers in the table represent the number of tests conducted

at that brace stiffness. The specific reasons for the changes from the proposed test matrix

compared to the actual test matrix are described in the course of this chapter.

4.1.1 Bracing Strength and Stiffness

Eight groups of cee-studs were tested with a total of 37 test specimens. The AISIWIN

software program (AISIWIN 2000) was used to determine the nominal properties of the eight

groups of test specimens, with appropriate nominal values of material yield and ultimate

stress. Table 4.3 gives the ultimate and unfactored capacities of each of the stud groups. The

target brace stiffness, for single nodal bracing (n=l), was calculated using Eq. 2.14, as

recommended by Yura (1995), where the unbraced length of the column was taken as the

distance between the support and the point of bracing (Lb = 48.0 inches). The target bracing

stiffness is also tabulated and provided in Table 4.3.

The measured geometric dimensions and the results of the material tension coupon

tests for each group of cee-studs were then used to recalculate the ideal brace stiffness using

AISIWIN (2002). Table 4.4 gives the values of the required ideal bracing stiffness for each

of the studs. The single column axial load tests were conducted on cee-stud specimens with

varying brace stiffnesses, which were lesser than, equal to, or greater than the ideal brace

stiffness. As discussed earlier, at least one cee-stud per series was tested without any lateral

(or torsional) bracing.

The cee-studs were braced with four steel wires attached at mid-height of the member

to the flanges, as shown in Figure 4.1. By varying the length and diameter of the brace wires

the brace stiffness was varied from one test specimen to the other. The brace strength was









calculated as the product of the cross-sectional area of the wire and its nominal tensile

strength. The actual brace stiffness (kbr) was calculated as the average value of the brace

stiffnesses of all four wires. The brace stiffness of each wire was calculated using Eq.4. la.

AE
kbr (4.la)
Lbr

where: A = Cross-sectional area of the wire

E = Young's Modulus = 29,000,000 psi.

Lbr = Length of brace wire

At any time during the test only two brace wires, out of the four, were effective in

bracing the stud. If the stud buckled in a flexural mode, the two brace wires on the same side

of the web were effective, whereas if the stud buckled in a torsional mode, the two diagonally

opposite brace wires were effective in bracing the stud. Therefore, the total brace stiffness

was taken as twice the average stiffness of the four brace wires, and is given in Table 4.5.

The ratio of the total brace stiffness provided to the required ideal brace stiffness, (Pprovided/

Required) is defined as the brace-factor. The brace-factor for each of the 37 test specimens is

listed in Table 4.5, which was used to categorize the cee-studs as: under-braced, ideally-

braced or over-braced (i.e. brace-factor <1.0, =1.0, or >1.0).

The column effective length factors were taken from Table C-C4-1 of the Commentary

to the North American Specification for Cold-Formed Steel (AISI 2000). For flexural

buckling about the weak axis the effective length factor was taken as Ky=1.0 for the unbraced

studs and Ky=0.5 for the braced studs. This effective length factor was assumed to be the

same for all three categories of braced studs. For flexural buckling about the strong axis, it

was considered that the track offered near full base fixity, and hence the effective length









factor was taken as Kx=0.5. Since the top and bottom supports prevented the stud from

twisting, and the effective length factor was taken as Kx=0.5.

4.1.2 Evaluation of Experimental Observations

The evaluation of the experiments provided below will be based on a review of the test

parameters such as the effect of cee-stud dimensions, the brace stiffness and the brace

strength. The experimental results are compared to analytically calculated values of axial

load capacity and the expected brace forces based on the measured lateral displacements.

The effect of brace stiffness on the axial load capacity has been studied and the graphically

illustrated in Figure 4.2 to 4.9 and has been discussed in this section. Figure 4.10 gives the

buckling modes and shapes of the experimental observations, which is explained later in this

chapter.

While keeping the brace-factor constant between two or more studs, the following

parametric studies were performed based on the cross-section dimensions:

* Web depth, keeping the brace-factor relatively the same.

a. Comparing 362S125-33 and 600S125-33 (Figures 4.11 to 4.13)

b. Comparing 362S162-43, 600S162-43 and 800S162-43 (Figures 4.14 to 4.16)

c. Comparing 600S162-97 and 800S162-97 (Figures 4.17 to 4.19)

* Thickness, keeping the brace-factor relatively the same:

a. Comparing 362S125-33, 362S162-43 and 362S125-68 (Figures 4.20 to 4.22)

b. Comparing 600S125-33, 600S162-43 and 600S162-97 (Figures 4.23 to 4.26)

c. Comparing 800S162-43 and 800S162-97 (Figures 4.27 to 4.29)

Figures 4.11 through 4.29 have been normalized with respect to the analytical values of

axial load and the corresponding axial shortening obtained from AISIWIN (2002) using the

average as-built properties of each stud group. The effect of different material properties has









been considered in the above normalization by including it in the AISIWIN program. With

increasing web depth and flange width, the slenderness ratio of the web and flange plate

elements increases. This leads to a loss of elastic stiffness in the web and hence the load

carrying capacity of the studs decreases and is evident in the comparisons described above.

Figures 4.11 to 4.13 indicate that the 600S125-33 studs have undergone nearly twice the

axial deformation compared to the 362S125-33 studs, for nearly the same brace factor. Both,

the unbraced 362S and 600S studs have attained almost a normalized load of 1.35 times than

the analytical prediction, but their normalized axial deformations at the maximum load being

1.6 and 4.6, respectively. In Figure 4.12, the 362S and 600S studs with a brace factor of 1.7x

and 1.3x, have attained nearly 1.0 and 1.4 times the analytical prediction for a mid-height

braced stud, respectively. Comparing the 362S and 600S studs in Figure 4.13, with brace

factors 6.2x and 7.4x, respectively, shows that the normalized axial shortening being 1.25

and 3.3 at normalized axial loads of 1.25 and 1.15, respectively.

Figures 4.14, 4.15 and 4.16 show the comparison of the 362S, 600S and 800S studs for

the same plate thickness of 43 mils. The 362S, 600S and the 800S unbraced studs recorded a

normalized axial load of 2.6, 1.4 and 2.0 at corresponding normalized axial shortening of 2.6,

3.0 and 3.8, respectively. Comparing the 362S (1.2x), 600S (1.6x) and 800S (1.3x) studs in

Figure 4.15 shows that normalized axial loads are 1.4, 1.05 and 0.85 for corresponding

normalized axial shortening of 1.75, 2.2 and 2.1 respectively. In the 800S162-43-150 stud

the buckling mode was distortional hence the experimental maximum load was less than the

analytical value. When the brace factor was greater than 2.0, as in the case of 362S (2.5x),

600S (3.4x) and 800S (2.3x) studs, the normalized axial loads were 1.35, 1.0 and 1.0 with

corresponding normalized axial shortening being 1.8, 2.0 and 1.0, respectively. It can be









observed from all the three figures that the 362S studs not only have the highest elastic

stiffness but also have the highest load enhancement. In Figure 4.16, due to strong axis

buckling of the 800S162-43-300 stud, the axial shortening was neutralized by the elongation

in the north flange. However, the slope of latter part of the plot shows that this stud had an

elastic stiffness that was less than the stiffness of the other two studs that are in the

comparison.

The comparison of the 600S and 800S studs with a plate thickness of 97 mils with

varying brace stiffness is shown in Figures 4.17 to 4.19. It can be observed that the 800S

(Ox, 2.1x, and 4.3x) studs have lesser elastic stiffness and the maximum normalized axial

loads attained are 2.5, 1.1, and 1.1 at corresponding normalized axial shortening of 2.5, 2.7,

and 2.15, respectively. On the other hand, the 600S (Ox, 1.7x, and 2.7x) studs have higher

elastic stiffness and the normalized axial loads attained are 2.8, 1.2 and 1.25 at corresponding

normalized axial shortenings of 1.4, 1.65, and 1.05. The 800S studs have a higher web-depth

to thickness ratio than that of the 600S studs resulting in lesser elastic stiffness.

Figures 4.20 to 4.22 (362S), Figures 4.23 to 4.26 (600S), and Figures 4.27 to 4.29

(800S) show the comparison of studs with constant web-depth while varying the thicknesses.

The brace-factors are maintained approximately the same in these comparisons.

Figure 4.20 compares the 362S unbraced studs with 33, 43 and 68 mil thicknesses.

The failure modes were first mode flexural-torsional for all the three studs, where as the

maximum normalized axial loads were 1.25, 2.6 and 1.5 at corresponding normalized axial

shortenings of 1.3, 2.6 and 6.6, respectively. For the 362S braced studs (see Figure 4.21) of

thicknesses 33 mils, 43 mils and 68 mil, with respective brace factors of 1.7x, 1.2x, and 1.8x,

the maximum normalized axial load were 1.0, 1.4 and 1.35 at corresponding normalized axial









shortenings of 0.7, 1.75, and 1.7, respectively. In Figure 4.22, the studs had respective brace

factors of 6.2x, 5.4x, and 3.3x with maximum normalized axial loads of 1.25, 1.25, and 1.5,

at corresponding normalized axial shortenings of 1.2, 1.6, and 2.3, respectively.

Figure 4.23 compares the 600S studs with thicknesses of 33, 43 and 97 mils. For the

unbraced studs the maximum normalized axial loads were 1.3, 1.45, and 2.85, at

corresponding normalized axial shortenings of 4.1, 3.0, and 1.5, respectively. For the braced

studs (see Figure 4.24) with respective brace factors of 0.2x, 0.6x, and 0.3x, the maximum

normalized axial loads were 1.05, 0.85, and 1.2, at corresponding normalized axial

shortenings of 3.4, 2.0, and 1.05, respectively. In Figure 4.25, the 600S studs with brace

factors 1.3x, 1.6x, and 1.7x were compared, and the maximum normalized axial loads were

1.25, 1.05, and 1.25, at corresponding normalized axial shortenings of 3.1, 2.2, and 1.6,

respectively. In Figure 4.26, the 600S studs with brace factors 7.4x, 3.4x, and 2.7x were

compared, and the maximum normalized axial loads were 1.2, 1.05, and 1.25, at

corresponding normalized axial shortenings of 3.3, 2.1, and 1.35, respectively.

For the 800S studs with 43 and 97 mil thicknesses shown in Figure 4.27, with no

bracing, the normalized axial load reached maximum values of 2.0 and 2.5 at corresponding

normalized axial shortenings of 3.6 and 2.5, respectively. For the braced studs with 1.3x and

1.2x, respective brace factors, the maximum normalized axial load was 0.85 and 1.05 at

corresponding normalized axial shortenings of 2.1 and 1.4, respectively. Both, the 800S162-

43-150 and 800S162-97-500 studs failed in distortional buckling mode. The distortional

buckling prevented the stud to reach the analytically calculated fully braced capacity, in spite

of the brace factor being greater than ideal bracing. When the 800S studs with respective

brace factors of 2.3x and 4.3x were compared (see Figure 4.29), the maximum normalized









axial loads were 1.0 and 1.1 at corresponding normalized axial shortenings of 0.95 and 2.15,

respectively.

4.1.2.1 Effect of brace stiffness on axial load capacity

It can be observed from the combined plots of each series of the studs that there is a

considerable enhancement in the load carrying capacity of a braced stud in comparison to an

unbraced stud. Figures 4.2 to 4.9 indicate that for brace stiffnesses higher than the ideal

bracing requirement, the experimental maximum loads attained remain unchanged. Table 4.6

gives both, the experimental maximum load and the percentage in crease in the axial load,

which clearly indicates the load enhancement.

Figure 4.2 to 4.9 also show that the initial elastic stiffness (k) line, which was

calculated using:

A E
k g (4.1b)
L

where Ag = Gross cross-sectional area of the cee-stud

E = Young's Modulus = 29,500,000 psi

L = Length of an unbraced stud = 8'-0"

The 362S125-33 studs failed by flexural-torsional buckling with flexural buckling

occurring about the weak and strong axes and torsional buckling occurring about the shear

center. Due to the strong axis flexural buckling, the north flange was elongating and the

south flange was shortening, this in combination with the torsional buckling influenced the

axial shortening and the studs hence exhibited unanticipated behavior. Beyond the ultimate

capacity, these studs seem to lose load gradually. Figure 4.2 shows the plot of axial load

versus axial shortening of the 362S125-33 series studs.









It can be observed from Figure 4.3 that the load-deformation behavior of 362S162-43

studs have the same slope as that of the initial elastic stiffness line up to an axial load of

approximately 5200 lbs at which the unbraced stud failed. Beyond this load, the plot

indicates that the braced studs begin to lose stiffness, and on reaching the ultimate load the

failure is instantaneous.

In the case of 362S162-68 series studs, the load-deformation behavior, shown in Figure

4.4, seem to have an initial stiffness that is almost comparable to the initial elastic stiffness

up to their ultimate capacities. There is a substantial increase in the ultimate load capacity of

the braced studs over the unbraced stud and the studs failed instantaneously on reaching the

ultimate load.

The 600S125-33 and 600S162-43 series studs had lower stiffness than the calculated

initial elastic stiffness, which can be observed in Figures 4.5 and 4.6. In the 600S125-33

series, the under-braced stud failed by first mode flexural buckling and all the others failed

by distortional buckling. In the 600S162-43 series, the unbraced stud failed in first mode

flexure, and the remaining studs failed by distortional buckling. In both the series,

distortional buckling seems to affect the elastic stiffness in comparison to the 362Sseries of

studs that failed by global buckling. The load-deformation behavior of the 600S 162-97

series of studs, shown in Figure 4.7, seems to have the same slope as the initial elastic

stiffness line, and braced studs seem to have almost the same ultimate loads.

The 800S162-43 series of studs did not exhibit a very high load enhancement in spite

of them being either ideally-braced or over-braced. Due to certain limitations in the

experimental setup, two of the studs exhibited strong axis buckling that caused stretching of

their north flange, which affected the measured axial shortening. When the axial load









reached a value that was critical to weak axis buckling, the stud exhibited weak axis buckling

and the slope of the load-deformation plot changed sharply, which is shown in Figure 4.8.

The slope of the remaining plot indicates that the studs had lesser stiffness than the initial

elastic stiffness. The ultimate capacities of these studs were comparable to the calculated

axial capacities. This indicates that the top and bottom supports do not have any partial

restraint and the supports act like a pinned connection. This clearly indicates the requirement

of an independent study on the affect of support conditions on the buckling of the cee-studs.

In the case of 800S162-97 stud group, the ultimate capacities of the braced studs are

slightly greater than that of the unbraced stud. Figure 4.9 shows that the cee-studs have a

lower elastic stiffness than the initial elastic stiffness.

The results of the experimental tests are tabulated in Table 4.6 which gives the

maximum experimental load measured, observed failure modes and percentage increase in

the axial capacity of the braced stud over the unbraced stud. It was generally observed that

the maximum experimental loads are higher than the predicted capacities from AISIWIN

(2002). For all the unbraced studs the predicted axial load capacity with nominal cross-

section properties and nominal yield strength, in the AISIWIN (2002) program, was less than

the measured maximum experimental loads. This is because the AISIWIN (2002) program

considers a perfect pin-ended support condition for both flexural and torsional buckling. In

the experimental investigation, the cee-studs were seated in standard track at both ends that

provided end-conditions of partial fixity for weak axis flexural buckling and near full fixity

for both strong axis flexural buckling and torsional buckling. These end restraints led to

higher axial load capacities for the studs that failed by global buckling, i.e. flexural, flexural-

torsional or torsional buckling. The 600S125-33, 600S162-43 series of studs failed by a









distortional buckling limit state at axial loads lower than those predicted by AISIWIN (2002)

for a perfectly pin-ended column. This necessitates the consideration of distortional buckling

as a possible controlling and critical limit state for certain stud geometries. AISIWIN does

not consider the distortional buckling limit state while predicting the axial capacity of cold-

formed lipped cee studs.

The enhancement in the load carrying capacity of a stud is directly related to the type

of buckling failure that occurred. The percentage enhancement in the experimental load for

the braced studs compared to an unbraced stud, within the same series, is given in Table 4.6.

The braced studs of the 362S125-33 series attained nearly 140% more load capacity than the

unbraced stud, and the buckling was mainly global second mode flexural-torsional buckling.

The braced studs of the 362S162-43, 362S162-68 series showed a load increase of about

35% and 115%, respectively. Though the 600S125-33 and 600S162-43 series studs failed by

distortional buckling, they exhibited an average load increase of 87%, and 34%, respectively

and the 600S162-97 showed an average load increase of about 38%. The 800S series studs,

both 43 and 97 mils, showed only a slight load enhancement as their experimental maximum

capacities were in the range of the predicted axial capacities from AISIWIN. As discussed

earlier, this indicates that the partial support fixity has reduced with increasing column depth.

4.1.2.2 Effect of brace stiffness on buckling type and mode

Figure 4.10 is a schematic diagram of the observed buckling shapes and modes of the

test specimens. The abbreviations in Table 4.6 and Figure 4.10 represent: F = Flexural

Buckling, T = Torsional Buckling and the digit in brackets represents the number of half-sine

waves or the order of buckling mode. This figure does not include the distortional buckling

mode, which may or may not be associated with the global buckling modes.









It was observed that with an increase in the brace stiffness the test specimens failed

after attaining a higher order buckling mode. In some cases, under-braced studs failed at

loads higher than the over-braced studs. However, in the former, the failure has been sudden

and in the latter, the failure has been gradual. With increasing brace stiffness, the 362Sstuds

exhibited flexural-torsional buckling changing from first mode to second mode. The

600S125-33 and the 600S162-43 studs failed by distortional buckling irrespective of the

bracing stiffness, whereas the 600S 162-97 studs failed by flexural and/or flexural-torsional

buckling. The 800S studs failed by flexural, flexural-torsional and distortional buckling.

Among the 33, 43 and 68 mil studs, irrespective of the total depth of the stud, local elastic

buckling waves were observed in the web and distortional buckling waves were observed in

the flanges. The local elastic buckling is related to the flat-widths to thickness ratio of the

web and the flanges. The reader is advised to refer to Appendix A for photographs of the

buckling modes for various studs.

4.1.2.3 Effect of cross-sectional dimensions of cee-studs

The 33, 43 and 68 mils studs underwent elastic local and distortional buckling at loads

in the range of 10 to 25% of their ultimate capacities. On the other hand, the 97 mil studs did

not show the same elastic local buckling. However local buckling was observed near the

punchout, at axial deformations beyond those corresponding to the ultimate capacities and

was inelastic permanent deformations. The two types of inelastic local buckling generally

observed in the 600S 162-97 and the 800S162-97 series were local yielding of the lip-flange

junction and local distortion around the web-punchouts. The sensitivity of the member to

local buckling depends upon its width-to-thickness ratio (Gotluru 2000). It has been

experimentally shown by Young and Rasmussen (1999) that local buckling does not induce

overall bending of fixed-fixed singly symmetric columns, as it does for pin-ended singly









symmetric columns. In the current research, the cee-studs were supported by the track at the

top and bottom, and the degree of fixity offered by the track has to be ascertained. In a later

section in this chapter, the effective length factor for each of the cee-studs is determined

based on the analytical value of the load capacity that corresponds to the maximum

experimental load achieved for each of the test specimens.

4.1.2.4 Effect of experimental load on the brace stiffness and strength

As discussed earlier, most of the unbraced studs failed at loads higher than the

AISIWIN predicted capacities. The higher capacities for the studs necessitated recalculating

the ideal brace stiffness as per Eq. 2.14. Table 4.7 gives the required ideal brace stiffness

based on these higher load capacities of the unbraced studs. The higher load capacity would

require a higher demand on the lateral bracing as given in Table 4.7. This higher demand on

the bracing stiffness renders some of the braced cee-studs to fall into the category of under-

braced cee-studs since the provided brace stiffness is now less than the new ideal bracing

requirement. The bracing strength however remained satisfactory since the brace wires were

capable of carrying the increased brace force.

It was observed in the plots of experimental load versus target brace stiffness in

Figures 4.3 to 4.9 that by increasing the brace stiffness there is a gradual increase in the axial

capacity of the stud. Figures 4.30 to 4.32 show an increase in capacity of the columns with a

corresponding increase in target brace stiffness. The axial load carrying capacity for the

362S125-33 studs increased by 162%, for the 362S162-43 studs increased by 25.0% and for

the 362S162-68 studs it increased by 129.0% while varying the brace stiffness from an

unbraced stud to an over braced stud. It can also be observed in the figure that there is not

much of an increase in the load carrying capacity from an ideally braced stud to an over

braced stud. There was a similar increase in the 600S series of studs, for the 33, 43 and 97









mil thicknesses, with respective increases of 32%, 37%, and 40.0%. It must be made note of

here that all the 33 and 43 mil studs failed by distortional buckling and that a few of them

had lesser experimental maximum loads (see Table 4.6) compared to the analytical prediction

of a mid-height braced stud. In the case of the 800S studs with 43 and 97 mils, there is a

respective increase of 19.0% and 35% in the axial load carrying capacity.

4.1.2.5 Effect of brace stiffness on lateral displacement

For any group of cee-studs, the mid-height lateral displacement of the weak axis

decreased with increasing brace stiffness, as reported by Yura (1995), which was adopted by

the latest edition of the AISC-LRFD Specification (AISC 1999). The plots of axial load

versus mid-height strong axis lateral displacement and weak axis lateral displacement for all

the cee-studs are given in the individual test reports provided in Appendix A. Figs 4.33 to

4.35 plot the actual total bracing stiffness versus the mid-height weak axis lateral

displacement for the 362s, 600s, and 800s series of studs. These plots show that with

increasing brace stiffness, the mid-height lateral displacement of the weak axis decreases. In

all the series of studs, there was a decrease in the mid-height lateral displacement by more

than 75% from an unbraced stud to an over braced stud.

4.1.2.6 Effect of brace stiffness on effective length of columns

Table 4.8 gives the effect of total brace stiffness and the effective length factors for the

cee-studs. The effective length factors were determined using a MathCAD worksheet

developed by Chen (1996) for the AISI Committee on Specifications for the Design of Cold-

Formed Steel Structural Members. The effective length factors Kx, Ky and Kt were varied to

arrive at a predicted load close to the experimental load capacity of each of the 37 cee-studs.

It can be observed in Figures 4.36 to 4.43 that by increasing the total bracing stiffness, the

effective length factor of the columns decrease. The effective length cannot be less than









0.25, hence the plots have been truncated below the limiting value of 0.25. For a column

with fully fixed ends, the effective length factor is 0.5, and for such a column with fully

effective mid-height bracing, the effective length factor reduces to 0.25. For most of the

over-braced studs, the effective length factor was 0.25 in strong axis flexural buckling and

torsional buckling. For weak axis buckling, the effective length factor is 0.5, assuming there

is no partial rigidity at the supports.

4.1.2.7 Effect of brace strength on axial capacity

The brace strength, which is dependent upon the cross-sectional area of the wire and its

yield stress, does not affect the buckling of the single axial column specimens because the

brace forces that were generated during the testing were often less than the capacities of the

brace wires. However, the yield strength of the brace wires does affect the behavior of the

stud only when the brace forces reach the yield load of the brace wires. In some preliminary

tests, outside the scope of the test matrix, it was observed that mild steel brace wires did not

provide enough brace strength. When the brace force in the mild steel wire reached its yield

capacity, the brace wire stretched at a constant brace force until failure, causing a non-linear

lateral displacement. It was then decided to conduct the tests with high-strength steel wires.

The steel wire had a tendency to coil and to keep it straight, a threshold brace force of

approximately 2 lbs was applied to each of the four braces prior to testing.

4.1.2.8 Other effects

Among other effects are effects due to geometric imperfections, mechanical properties

of the stud material, track resistance and bearing ends of the stud. The measured geometric

imperfections of the test specimens are listed in Table 3.3. As per Winter (1960), the effect

of initial imperfection is to increase the brace force, thus necessitating higher brace stiffness.

It is stated that the stiffness required to attain "full bracing" in an imperfect column (see Eq.









2.3) exceeds that required for the ideal column (see Eq. 2.4), the more so the larger the

imperfection 'do'. Hence, the required brace stiffness is given by:

Preq = Pdeal x(do/d + 1) (4.2)

where Pideal = ideal brace stiffness for perfect column

do = measured imperfection in the stud

d = deformation of the brace at the maximum brace force

The total measured brace forces at the maximum axial load for all the studs are

tabulated in Table 4.9. The measured weak axis lateral displacement at the maximum axial

load for all the studs is tabulated in Table 4.10. It is observed that the calculated brace forces

based on the measured displacements, given in Table 4.10, are higher than the corresponding

values of the measured brace forces, given in Table 4.9. This is because of the initial seating,

slipping of brace wires at the loops. However compared to the global effects and at full

capacities, these initial limitations are negligible. Yura (1995) had proposed that the required

brace strength to be 2.0% of the nominal axial capacity of the column, as discussed earlier in

Chapter 2. Table 4.9 gives the measured brace forces as a percentage of the ultimate load. It

is observed that the percentage of measured brace forces ranges from as low as 0.08% to as

high as 1.34% of the ultimate capacity of the cee-studs.

4.2 Bridging Test Results

4.2.1 Bridging Connection Strength and Stiffness

In the bridging connection strength and stiffness tests, three types of typical industry

bridging connection specimens were fabricated and tested. The connection types and

specimen details are described under Section 3.7.1 of this report. A total number of 54

specimens were tested, with 28 specimens subjected to out-of-plane loading and 26









specimens subjected to in-plane loading. In the out-of-plane loading, the load was applied

parallel to the web at a distance of 11 inches away on the bridging channel (see Figure 3.13).

In the in-plane loading tests, the load was applied perpendicular to the web at a distance of 11

inches away on the bridging channel (see Figure 3.14). Both the test protocols are described

in Section 3.7.5 of this report. The proposed test matrix is given in Table 4.11. The results

of all the experimental tests are presented in Appendix B, which is divided into two sections,

with the results of the out-of-plane loading tests in one section and the results of the in-plane

loading tests in another section. The data collected from the out-of-plane loading tests was

used to plot (see Figures 3.1 lb, 3.12a, 3.15, and 4.44, for visualization):

* the applied load versus the X-direction displacement of Point A;

* the applied load versus the left screw displacement bearing on the adjacent web plate,
and

* the applied load versus the right screw pull out displacement from the adjacent web
plate.

The data collected from the in-plane load tests were used to generate three plots (see

Figures 3.11lb, 3.12b, 3.16 and 4.44 for visualization):

* the plot of the applied load versus the Y-direction displacement of Point A,

* the plot of the applied load versus the left screw bearing displacement on the adjacent
web plate, and

* the plot of the applied load versus the right screw pull out displacement from the
adjacent web plate.

Under both the series of tests, the ultimate load capacity of the connection was taken as

the load at which there was a complete failure or at which there was sufficient deformation in

the test specimen. Sufficient deformation was considered to have occurred when the

measured deformation in the bridging tests, when compared to the single column axially

loaded studs tests, would result in influencing the global limit states of the single column









axially loaded studs. The torsional stiffness of the connection was calculated as a secant ratio

defines as ratio of ultimate load to the rotation of the connection and the flexural stiffness

was calculated as the ratio of the ultimate load to the measured in-plane displacement. The

rotation angle for the torsional stiffness was the angle between the initial center-line and the

final center-line of the bridging channel. The X-direction displacement was used to calculate

the change in angle as the inverse tangent of ratio of the measured displacement and the

distance to Point A from the web of stud.

For the out-of-plane load tests, the right side displacement measured by LP-2 was used

in calculating the torsional stiffness of the bridging. For the in-plane load tests, the average

of the displacements measured by LP-1 and LP-2 (see Figure 4.44) was used to calculate the

flexural stiffness of the bridging. The observed failure modes of the bridging systems are

described later in this chapter.

As described in Chapter 3, the displacements of the clip angle and/or the web were

measured using two linear potentiometers, LP-1 and LP-2, attached to the web as shown in

Figure 4.44 and the displacements of the back of the web were measured using two linear

potentiometers, LP-3 and LP-4. These measurements were common to both out-of-plane and

in-plane loading directions and are given in Tables 4.12 and 4.14. Spatial displacement of

Point A was measured, the purpose of which is described in Chapter 3. The experimental

observations for each connection type and the failure mode are described in the following

two sections.

4.2.2 Observations of the Out-of-Plane Experimental Tests

The observations of the out-of-plane loading tests for the three types of connections are

as follows:









* SS type connection (Figure 3.9a): With the application of the out-of-plane load on the
bridging channel, the eccentricity of the load created a moment on the connection. The
center of rotation of the moment was at the center-line of the stud causing the right
screw to pull out and the left-half of the clip-angle to bear against the web plate of the
stud. The load capacity of the SS type connection increased with increasing thickness
of the web as and is shown in the plots of applied load versus rotation about the center-
line of the web in Figures 4.45 to 4.47. The clip-angles failed by forming multiple
yield-lines. The increase in plate thickness resulted in proportional increase in the
contact area of the screw and the stud causing the increase in pull out capacity.

* WW type connection (Figure 3.9b): On application of the out-of-plane load, the right
half of the clip angle started to pull on the stud web, developing tension in the weld,
with the left half bearing on the web. In all the tests with WW type connections,
failure occurred at the connection of the clip angle to the stud web. The observed
failure types are described in a subsequent section in this chapter. The plot of the
applied load versus the rotation about the center-line of the web is shown in Figures
4.48 through 4.50.

* DW type connection (Figure 3.9c): In this connection type, the flange of the bridging
channel was welded to the stud web at the punchout. This connection failed mainly by
tearing of the weld. The plot of the applied load versus the rotation about the center-
line of the web is shown in Figures 4.51 through 4.53. It can be seen from these plots,
that the initial connection stiffness is not dependent upon the depth of the stud. The
effect of the varying web thickness on the connection stiffness cannot be determined,
since only one thickness per depth of stud was tested with the DW type connection.

The maximum loads attained and corresponding displacements measured by LP-1 are

given in Table 4.12. The values of displacement given in the table were measured on the

front and on the back, to the right half of the centerline of the web. The final torsional

stiffness of the connection was calculated as a ratio of the maximum load to the

corresponding X-direction displacement at Point A. The initial torsional stiffness was

calculated as the initial slope of the load versus rotation plots shown in Figures 4.45 through

4.53. Table 4.13 gives the initial torsional stiffness of the out-of-plane loading tests, at 10%

of the maximum load, calculated as the ratio of the load to the corresponding rotation. It was

observed that within this load range, the initial slope of the plot was linear. For the three

connection types, the plots of torsional stiffness versus the flat-width to thickness ratio are

given in Figures 4.63 through 4.65. It can be observed in Figure 4.63 that for all the three









groups of studs, the slope of the trend line is nearly equal and with the increase in the flat-

width to thickness ratio the stiffness of the connection drops. However, in Figure 4.64 for

the WW-type connection, the stiffness increases with increase in the depth of stud, whereas

the same trend is not true for the DW connection (see Figure 4.65). The DW connection has

the least torsional stiffness, followed by SS type and the maximum torsional stiffness is

observed in the WW type connection.

4.2.3 Observations of the In-Plane Experimental Tests

The observations of the in-plane loading tests for three types of connections were as

follows:

* SS type connection (see Figure 3.9a): With the application of the in-plane load, the
screws began to pull out. It was observed that when the clip angle deformed by
forming the yield-lines between the two screws attached to the web, there was tilting of
the screws. This tilting of the screw caused an increase in the pull out capacity and
hence an increase in both, the connection strength and stiffness. However, at this load
the connection had undergone sufficient deformation and hence failure was considered
to have occurred at the load at which this stiffening effect was observed in the plot of
the applied load versus the X-axis displacement. The plots of the applied load versus
Y-direction displacement for the three groups of stud are shown in Figures 4.54 to
4.56.

* WW type connection (see Figure 3.9b): On application of the in-plane load, the load
was transferred from the bridging channel to the clip angle and finally to the stud web
through the connecting welds. In all the tests with WW type connection, the failure
occurred at the connection of the clip angle to the stud web, either at the weld or the
base metal. The plot of applied load versus Y-Direction displacement is given in
Figures 4.57 to 4.59.

* DW type connection (see Figure 3.9c): In this connection type, the flanges of the
bridging channel were welded to the web at the punchout. In this case too, the load
path was from the bridging channel to the stud web across these small lengths of weld
between the channel flanges. This type of connection was very strong due to the high
stiffness of the stud webs and the capacity of the welds. The plot of applied load
versus Y-Direction displacement is given in Figures 4.60 to 4.62.

The maximum load and the corresponding displacement of the connection measured on

the front of the web by LP-1 and LP-2 are given in Table 4.14. The displacement values in









the table were measured on the left and right sides on the front of the web. The final flexural

stiffness of the connection was calculated as a ratio of the maximum load to the

corresponding average displacements measured by LP-1 and LP-2. The initial flexural

stiffness was calculated as the initial slope of the load versus displacement plots in Figures

4.54 through 4.62. Table 4.15 gives the initial flexural stiffness at 10% of the maximum

load, calculated as the ratio of the load to the corresponding Y-displacement. The 10% of the

maximum load was taken since it was found that the plot of the load versus displacement was

initially linear within this load range.

The plots of flexural stiffness versus the flat-width to thickness ratio are given in

Figures 4.66 through 4.68 for each connection type. It can be observed that the slopes of the

linear fit trend lines in Figure 4.66 are not the same for the three groups of studs and with the

increasing flat-width to thickness ratio, the flexural stiffness decreases. In Figures 4.67 and

4.68 it can be observed that flexural stiffness decreases with an increase in the depth of the

stud for both WW type and DW type connections. With increasing web thickness and for a

constant web depth, the flexural stiffness of the SS type connection increases for a selected

series of cee-stud. For a given thickness the flexural stiffness decreases with the increase in

web depth. On comparing the three connection types, the SS type has the least flexural

stiffness, followed by the WW type with highest being for the DW type connection.

4.2.4 Observed Bridging Connection Failures

The observed failure types in the out-of-plane loading tests and the in-plane loading

tests for each of the three types of bridging connection are described below. The figures

showing the failure types are given in Appendix B, and the failure types for each test

specimen are given in Tables 4.12 and 4.14.









4.2.4.1 SS type connection

* Single screw pull out without distortion of the clip angle: This occurred when the clip
angle separated from the web plate without any bending deformation or cross-sectional
distortion.

* Single screw pull out with either deformation or distortion of the clip angle: When the
clip angle separated from the web plate by either bending deformation or by distorting.
The bending deformation of the clip occurred in the out-of-plane tests, where the clip
angle behaved as a cantilever beam subjected to a point load at the right screw, with the
fixity at the left screw. For the in-plane tests, the cross-section distortion occurred
when the clip angle formed a yield line in the angle leg connected to the stud web, at
the level of the screws.

* Tensile failure of the screw connecting the clip angle to the stud web: The axial tension
in the screws attached to the web exceeded the axial tension capacity of the screw,
resulting in a sudden failure. These screws failed in the neck region.

* Shear failure of screw connecting the bridging channel to the clip angle: The failure of
the connection occurred when the screw capacity in single shear of the screws
attaching the clip angle to the bridging channel was exceeded.

4.2.4.2 WW type connection

* Weld failure without angle distortion: In this case, tearing of the weld material
between the angle and the cee-stud was observed. Connection failure occurred when
the weld strength was exceeded. This was the anticipated mode of failure.

* Angle tear along the leg welded to the cee-stud: In this case, the tearing strength of the
clip angle was exceeded, whereas the weld remained intact. In a few specimens, the
weld thickness was greater than the design weld, and in few other specimens there was
a weld return at the root of the clip angle.

* Weld separation between the clip angle and the cee-stud: The weld remained intact
and stripped off with the clip angle, which indicates poor weld penetration. This is due
to the galvanization of the stud, when the weld material cannot melt into the stud
material.

4.2.4.3 DW type connection

* Tearing of weld between the bridging channel and the cee-stud: This occurred when
the load on the weld exceeded the weld strength and there was a good weld between
the connected elements.

* Tearing of cee-stud web around the weld material: This occurred when there was
complete weld penetration and there was block tear out of the web plate.









* Weld separation between the bridging channel and the cee-stud: The weld remained
intact and stripped off with the bridging channel, which indicates poor weld
penetration. This is due to the galvanization of the stud.

The summary of results for the out-of-plane load tests and in-plane load tests, giving

the initial torsional stiffness and initial flexural stiffness are given in Table 4.16 and 4.17,

respectively. The initial stiffnesses have been arranged based on the web depth and on the

thickness of the cross-section. This table represents the same data discussed previously and

is provided for convenience purposes.

4.3 Separation of Brace Forces in Flexural and Torsional Components

The brace forces BF-1, BF-2, BF-3 and BF-4 were measured using load cells A, B, C,

D (as shown in Figure 3.6) and are plotted against the axial load for all 36 stud tests, which

are presented in Appendix A. The axially loaded braced cee-studs buckled either in flexural,

torsional or flexural-torsional buckling. Due to the aforementioned configuration of the

brace wires, the center of torsional buckling shifted from the shear center to the centroid of

the brace forces. Flexural buckling of the stud resulted in brace forces in two brace wires on

the same side of the minor axis of the stud cross-section. Torsional buckling resulted in

brace forces in the brace wires that were on the diagonally opposite corners of the stud cross-

section. In the case of flexural-torsional buckling there were both flexural and torsional

brace forces.

The total brace force was a resultant of the flexural and the torsional components,

which can be resolved as shown in Figure 4.69. The measured brace forces in the brace

wires were the resultant brace force due to global buckling. At any axial load level, the

measured brace force was separated into two components, namely flexural and torsional

brace force components. The flexural brace force component is the brace force in the two

brace wires as shown in Figure 4.69(b), which have the same magnitude and direction. The









torsional brace force component is the brace force in the two brace wires as shown in Figure

4.69(c), which have the same magnitude but opposite directions. The maximum magnitude

of the flexural brace force component, the corresponding torsional brace force component

and the corresponding axial load are given in Table 4.18. Similarly, the maximum

magnitude of the torsional brace force component, the corresponding flexural component and

the corresponding axial load are given in Table 4.19. In most specimens, the above

maximum values did not occur at the same axial load, and depended upon the buckling shape

and mode at the maximum axial load. The sum of maximum flexural brace force component

and the corresponding torsional brace force component was compared to the sum of

maximum torsional brace force component and the corresponding flexural brace force

component. The greater of the two values was considered as the total maximum brace force.

The brace forces as a percentage of the axial load was computed and is given in Tables

4.18 and 4.19, and the magnitude of the brace factors are given in Table 4.5 for comparison.

It is observed that from an under-braced stud to an over-braced stud in the 362S125-33,

362S162-43, 600S162-97 and 800S162-43 series, the total maximum brace force increased

with the increase in the brace factor. In the case of 600S125-33 and 600S162-43 series of

studs, the observed failure was mainly due to distortional buckling, resulting in brace forces

that did not bear any relation to the brace factor. In the case of the 362S162-68 and

800S162-97 series, the provided brace factors were greater than the ideal requirement and

hence the total maximum brace forces are almost the same.

4.4 Summary of Experimental Observations

The axial capacities of the cee-studs were determined by the AISIWIN (2002) program

by considering the nominal cross-section dimensions and nominal yield stress of 33 ksi. and

of 50 ksi. These values were used to calculate the ideal brace stiffness. The test matrix given