<%BANNER%>

Preliminary Design and Nonlinear Numerical Analysis of an Inflatable Open-Ocean Aquaculture Cage

xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID E20110113_AAAACP INGEST_TIME 2011-01-13T17:00:50Z PACKAGE UFE0005442_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES
FILE SIZE 11334 DFID F20110113_AABUQO ORIGIN DEPOSITOR PATH suhey_j_Page_111thm.jpg GLOBAL false PRESERVATION BIT MESSAGE_DIGEST ALGORITHM MD5
f48af68baaae3f1f7c066555be4c60f8
SHA-1
3c3c38e4d13fdf1222a468af06ee8fd4493acfb6
162738 F20110113_AABTMY suhey_j_Page_065.jpg
6dd2b6fcbae14b835b2f1238f164c571
9747fbdb8762108d031e253b10a16106e0380592
7552 F20110113_AABTOB suhey_j_Page_105thm.jpg
26a98d74b3d31248b3c53fbca2642bc7
cb92e18623d56110d4400c72195a956d64b24c27
1518 F20110113_AABTNM suhey_j_Page_076.txt
4d23e26f4681ce59a27baf8fc68b88c9
c6796a9f83cb08408861ad5de35a3fd4a15e5788
36217 F20110113_AABUQP suhey_j_Page_111.QC.jpg
0bbd85670cb91e06de8961e0ae958c11
6ca93684d865ca0095b3994df08b55ceb35dda40
52711 F20110113_AABTMZ suhey_j_Page_101.QC.jpg
2d2da5f6109a97f1fc7089b843aec998
a71862d3d5b042fce8bc340840a828b82f487b1a
127639 F20110113_AABTOC suhey_j_Page_075.jpg
d2295d9282865839b38b10c126d41951
f7f657d21737b4d722577fd184e13c216440758f
25690 F20110113_AABTNN suhey_j_Page_105.QC.jpg
750dbdfdc9fe50b04b56f38da475bb4f
473719d249d1fc5da9b4a705c3f4d2664d868261
38174 F20110113_AABUQQ suhey_j_Page_112.QC.jpg
4e108303fc7ae12e4d904e7125a22da7
96bcc70af157da384c0e6bd9a61351b35f9a97e2
3306 F20110113_AABTOD suhey_j_Page_116.txt
28016c802107548fb8d921f57a0c8ae0
9634b51a8d96791d4ea13daaa731038020c709d2
613194 F20110113_AABTNO suhey_j_Page_074.jp2
70b0724c84c108a0c925101294bd88cd
796e77bc017aa580a6eec310a3bd4834f12efeca
5437 F20110113_AABUQR suhey_j_Page_114thm.jpg
3fe9908785095d05e2ebeb709a4397da
bd252efd5c7640085e24403cd41d3c9325a20e22
1053954 F20110113_AABTNP suhey_j_Page_001.tif
fae941cfcf9bf304e086be66efde6fd1
be477607e0b2fa9f283015060c22fd0c0dd4b384
16314 F20110113_AABUQS suhey_j_Page_114.QC.jpg
5e2a82df39b6649c8a9a412390bbbd5c
e517d15c50067ecf49475a63e0ff0e1c4dad07e9
92804 F20110113_AABTOE suhey_j_Page_014.jp2
8e92a2d8a9bef59576cd8dfcdc36bcca
855344d0063a2456af09d7944f1d41a1cc2f2ac4
188916 F20110113_AABTNQ suhey_j_Page_050.jpg
fdbed0d84533025cd3bffc146954d8ce
921a8ffaad7d586faedc3589b0348d863931ae7a
14532 F20110113_AABUQT suhey_j_Page_115thm.jpg
42900f48af172e2ae6b473b6ca62d7d2
90797018924e1e63f35f96643b24fc1ebb7879ea
36074 F20110113_AABTOF suhey_j_Page_029.QC.jpg
67116c63949a1e307b9e72d4ae163978
beee8f9067cad322d2c2c326790d0107a025d5e5
F20110113_AABTNR suhey_j_Page_033.tif
1c12b302f4e5d18fed34d52c4453b0c8
e02850a0b71167eebaba45fddc93d57f1c91746b
39172 F20110113_AABUQU suhey_j_Page_116.QC.jpg
8f0cc63d8edfeeeda5e2afa260a75ddf
b637a73e1529b931a9cd36c8da6a5dbaec17d9f6
44700 F20110113_AABTOG suhey_j_Page_067thm.jpg
700b118de3f5ba0ad621a5271910afc1
fab9efd9497607ea2d7e2bb7459830f9ba85063e
25271604 F20110113_AABTNS suhey_j_Page_048.tif
2b3648dd085c17445dc0e4afc35ea529
7aead05d3dc4ba66ec3bf7e61b2b8af63186a916
20432 F20110113_AABUQV suhey_j_Page_117thm.jpg
198700d8ce1be210cd19e72b4462b8a1
e5caa665302e06f1b9fa8558b5e37b9d77d6c89a
1678 F20110113_AABTOH suhey_j_Page_067.txt
3280f8025c223d89610cbd3a78a10300
02a668fa7050464f03dc5733acbfbd57b1e300a1
308050 F20110113_AABTNT suhey_j_Page_009.jpg
dbb5f43fe6d98092044e646ff8a1c8fc
e170077a280e7a47b6f9cc006dede012a7118456
13181 F20110113_AABUQW suhey_j_Page_119thm.jpg
5ad25881abc88fca37ce7b3c7d5d05f6
657d5313428e6e91daa1b2d3b02b8e663c8da1c3
702758 F20110113_AABTOI suhey_j_Page_056.jp2
856c8ffa1fb63fcd5093e83268070325
7e20d854c5cdd0e149ad92c71cca9d19303d2ad5
17242 F20110113_AABTNU suhey_j_Page_089.pro
29b1bac00d0c99ca7dde38a384efcfb3
e9ed47a8840e7c6fe7717518ca3da80be35f78cd
137343 F20110113_AABUQX UFE0005442_00001.mets FULL
e6b488678152082829b4578b3c415ca9
17492b4bfd8a2dfc3a724ed098362dc95e2d4d9e
137892 F20110113_AABTOJ suhey_j_Page_093.jpg
cdd323e0a4d12fa35bd09eaf2ba1f4cc
0cab0c31b3d948c5e6a976841264d59d86e96c12
1784 F20110113_AABTNV suhey_j_Page_014.txt
5fe804c05804124383e330795c57d4c4
3caa7464891d1469ecad030cee66dec8d791ab4a
7338 F20110113_AABTOK suhey_j_Page_003.jp2
0b28cc3e80fd23ba58f4a808eb104bea
f6e29f93b98aafc19409c87616e430411159082a
833793 F20110113_AABTNW suhey_j_Page_083.jp2
33f7cf27afb1933c66be963adc363034
333bc0001b8e06ccd5c44aa2462b8f700f2ed668
F20110113_AABTPA suhey_j_Page_100.tif
31c48331035c6e6d889f1fc71901b1f8
a9bb2fbf477ae6c7f61734e5bb8f0fce144cdfe4
7153 F20110113_AABTOL suhey_j_Page_022.pro
78fbcb116be913b46ce6d6cbcfe9b0f0
b5ca27c48187c6d75c10a41c53ad675a6e38f390
33419 F20110113_AABTNX suhey_j_Page_110.QC.jpg
7814fbbfc00f8f62d0346875d0848761
c5e7b1dc5357035027f2489cb053f6dc775e01ad
33388 F20110113_AABTOM suhey_j_Page_110.pro
597b2c6124e7dac21406cf175f2e78bb
58cc20f52c45307b4586a288e587e4be7b6fc2ae
F20110113_AABTNY suhey_j_Page_085.tif
f362b3792147262ab35f3921151fd8ea
eed4bdc658dc54ebf0d517a5b5d3e95209c37e04
F20110113_AABTPB suhey_j_Page_054.tif
714f782bc5e46ac06a653d4b2930c096
8fb808fa1207ecf2dd05e45df4f8423b95a31a97
48253 F20110113_AABTON suhey_j_Page_046.pro
e723727aadfdffe342d20826ef658ef1
e905ea0a746c07df47b5780aea75597917b45041
68379 F20110113_AABTNZ suhey_j_Page_095.jp2
5d519b5b36f390d6fc5f5c13993f4866
921ec4c5902294da508968ddcca9b03a3d2521d0
100056 F20110113_AABTPC suhey_j_Page_046.jp2
8ce357c698941f44c8a5cb1ca83c0f10
0f4e693086779bf077eac8c4704b5c1f2e8d9dc7
33402 F20110113_AABTOO suhey_j_Page_088.pro
e3f1b3e428296ecb6991a444b3bfd119
b2cbe0c8fdb8c3d97adcbd12046c4827acd879ff
F20110113_AABTPD suhey_j_Page_065.tif
7d224552a71c70ce11ae18826d4ac85c
ee963cae5651241ef6f5578c9582d45245bcc0be
168583 F20110113_AABTOP suhey_j_Page_088.jpg
78e29a7d41451ec79e2955e66c3a3312
2bd1ecf65b75a4446df9344aaa30fac1b4a50bc8
52817 F20110113_AABTPE suhey_j_Page_118.QC.jpg
384385bda0b3034e5e780c8d58b31a73
0d325c6146c05968c7e82a50b2bdd27cada6175d
233102 F20110113_AABTOQ suhey_j_Page_087.jpg
c9dd8455e8a351c39dec3b355273a7ae
b26f5f2551d7d7ed46f8352cce094bb2acc598b8
14495 F20110113_AABTOR suhey_j_Page_039thm.jpg
5d8c3255bc8b65228a79c69b0f81c255
8d7a0f8d0b48cd586d682410db742e498f9daa23
95367 F20110113_AABTPF suhey_j_Page_098.jpg
b369f425ef7311c92cef352c774c9171
b3637d06b860f3805e7a5ba178c55024908acfa7
94892 F20110113_AABTOS suhey_j_Page_050.jp2
515453bb2d065095d265a7083d1d752a
6b05797d89ae2d9c9b7d682f773b6b28f177b268
91267 F20110113_AABTPG suhey_j_Page_070.QC.jpg
95b58908987b8b92f1581d0f6ef8f98c
2dcca3d71e80f5fc0ade1315ac95bf8eca8680c2
774094 F20110113_AABTOT suhey_j_Page_045.jp2
c31103a818bf31e53db728c214be96a1
686ae12b70322d4d9fac4976c4423785ab1e6b70
3199398 F20110113_AABTPH suhey_j.pdf
1fc5489f331b6e2883d27017d9a32c7b
2374f1590246d8e35933060482b0b28f50667883
42283 F20110113_AABTOU suhey_j_Page_014.pro
ed4af9888c45af122d77cb5804554b9e
f1adc97015415b1121958f0a906078078b09192b
53728 F20110113_AABTPI suhey_j_Page_031.jp2
863ab4ff40f19bbc34fad07995bf14f1
d9838c024c5d185dfc6db6e86b4f4d28dc5c7ea0
458214 F20110113_AABTOV suhey_j_Page_060.jp2
9e83861ae9cf174bb75b69ecf440b623
e2868ab39ad9a069d13a8b28e8b2465a8606df81
48641 F20110113_AABTPJ suhey_j_Page_078.pro
ff2d665712ad3e12aba96d7ddacbeb4f
e0fe14380d00704cbb83cc86c55c417efc9f696c
28421 F20110113_AABTOW suhey_j_Page_097.pro
d3a4a2ce4e72b6b5f1f2455c85a807e4
5216976db18a1641988c5312d8238340265bb306
50585 F20110113_AABTPK suhey_j_Page_011thm.jpg
7c0497192decbdf511a7bb87d56f9fca
65f6db9fa30e0549fb10405abe8020dba20a0bb4
27362 F20110113_AABTOX suhey_j_Page_109.QC.jpg
c13e230c8c16582d96ccc3941bd8c691
731cbd3ebe4ad10cdde816c42fc8878b9248e508
123143 F20110113_AABTQA suhey_j_Page_009.QC.jpg
33ebc15e1440377bc0322e7613f4bedf
3906938188797e50ecfde0b6409eab21ba98952b
75396 F20110113_AABTPL suhey_j_Page_086.QC.jpg
57664cedce72101421944080bc701b82
b7fa80f1a2b0450f38cf47abbdfab6fecc472f0c
1417 F20110113_AABTOY suhey_j_Page_058.txt
0493f91b6c8cf50a301597d3dcdf47cd
1d3f0a9504e785382414ecdc2715ac1fa690a6e6
105093 F20110113_AABTQB suhey_j_Page_028.jp2
bbf613a6f390bac510e0723441ac63d9
47d75f19cc297aa08fae31f04770084f4ae37359
F20110113_AABTPM suhey_j_Page_099.tif
49451ef45dba19c047b6751727ed2e8d
ebed68109af70b2e75fd209ada2d57d6a1bbba77
F20110113_AABTOZ suhey_j_Page_093.tif
ee15af315fda6182513804988f06fd1e
a7f1d09afd292ec5e746f6562fe258ff00b18fa8
91497 F20110113_AABTQC suhey_j_Page_066.QC.jpg
dafaed2d2a11971f066c4bacf3e0c678
a22a637a8c4c9940235829a3812382976c087694
12270 F20110113_AABTPN suhey_j_Page_114.pro
cb2ad3a4fc9a6975a935f474c15a84a7
3016b25e72bf26a63180bc694ee33c854e605d87
10438 F20110113_AABTQD suhey_j_Page_085.pro
f3b82f520815fa0fa513f362c0f4564f
1075eb295f5fe55c59545415e2f610616dcbe563
2001 F20110113_AABTPO suhey_j_Page_003.pro
992e84b944dce5a7e252697a5952361b
f51e846f4283166e112983a34e0860f1391d06b6
114136 F20110113_AABTQE suhey_j_Page_031.jpg
253ca266ec66aa5133718fb284fc999f
11c3d772589f4277a06a3abeb73d0921c1173d16
55771 F20110113_AABTPP suhey_j_Page_010thm.jpg
f350ce392dccb79c8de53644a90fade2
1c8fa1263667c4552acc156d9e6254a1b2388008
138799 F20110113_AABTQF suhey_j_Page_083.jpg
e70744db7ea0b0cb502f4512b9c725cc
617bd149174c364bef97c117055d17802ca2e903
9334 F20110113_AABTPQ suhey_j_Page_099thm.jpg
c9d741ccdb79623a3ff25b5645076053
ebec77d97250d67865b0070befacbba43c8d2ad7
205890 F20110113_AABTPR suhey_j_Page_070.jpg
580e6a7ea462672f62d56ea6e07cbe73
f099cdcf1332aed27e1173950ad85343dfcaf282
829 F20110113_AABTQG suhey_j_Page_029.txt
903fd7983a1ab638d9c3252adaae4af9
2d1c97fbdb6bb052e275effe742570d133eeb3de
40976 F20110113_AABTPS suhey_j_Page_074thm.jpg
46ae7d19a2d682f987a316781f7186d8
cf82a2c5f4a44426399f3ff6aed536fbdda4dc02
7303 F20110113_AABTQH suhey_j_Page_001thm.jpg
047c24d84b33771e6ba38ce4341a750c
70cb2f76a2f350a81477429cc1f7644c4532b80a
8218 F20110113_AABTPT suhey_j_Page_001.pro
2c89affa45c74ec145f6b11c23492928
0ea7ce392d58239f9645e428d8b98568423569be
11838 F20110113_AABTQI suhey_j_Page_016.pro
9271edeb273c2cc064e20e9a6a19ab09
9848965ba89585f521f4babe1e34faf6973fb1c9
16457 F20110113_AABTPU suhey_j_Page_063.pro
33036085a57ebc495ec5b3244c97c96c
b05b7768d0795bc6ce8c1ea090c19fb363bae736
58166 F20110113_AABTQJ suhey_j_Page_072.QC.jpg
363790884c2619b78adc2ed22228ee2f
c502f7f0a2317eb39e005f933c2ec8184cdd892a
182019 F20110113_AABTPV suhey_j_Page_067.jpg
a7842bb7b2db40b652e411b9f80b9e42
33ae40070637a885a0b2a8f8bbe267a468fc7c95
77730 F20110113_AABTQK suhey_j_Page_087.QC.jpg
1b201d90c91c2539d25196beca5d40f0
abd1c42a219811fc035c24fef52eb07d6d12bcdb
6034 F20110113_AABTPW suhey_j_Page_003.QC.jpg
f0a139be369aa2851fc321106870f691
e04fabd578f868ea29574c55dcb3fa29a003c8ea
57006 F20110113_AABTRA suhey_j_Page_116.pro
6f2a9386669bd0281854789bb96b69c3
140488fa937304655b2b6a7fe515387f626e578e
18140 F20110113_AABTQL suhey_j_Page_003.jpg
919c7fb938205b0cf578feaf5343801f
068bd5bb994dbf42a9dab810c30d2a066100fa37
45325 F20110113_AABTPX suhey_j_Page_005thm.jpg
8a260b3185cabe1c742cd81f0e04f8b2
ad0af42b332c1975448c61b724fc97913d4194bf
73408 F20110113_AABTRB suhey_j_Page_027.QC.jpg
91c6feef83379ba0aa1fc00effd0c0d4
2470c4a6ac3eaba3946d414152a1373c17c9329a
32533 F20110113_AABTQM suhey_j_Page_033.pro
6013c684080e84e466193959a2d777ef
20e19783de9dc62b96f801a23dfc1cb958d4e97b
1051972 F20110113_AABTPY suhey_j_Page_005.jp2
35ef277c6fcc02e770b369c0fd4d857c
46c912cb44b119651a99345574041e7bce6b9978
49015 F20110113_AABTRC suhey_j_Page_028.pro
1a06ea3a8b3e40b4cb3ba68e78892681
afa20dc54cb86c09955930b1014f1c88cd98ac40
109 F20110113_AABTQN suhey_j_Page_002.txt
82536ca61f7f774b9b1290f32002a1d3
6e3b32882c789af838110a70cf142620ff872bce
F20110113_AABTPZ suhey_j_Page_115.tif
3721933ee27fcab4e8d048365730cb85
80bbeba9e3a08cc3be01e05710b140f7c81a6ad7
89792 F20110113_AABTRD suhey_j_Page_005.QC.jpg
b471e95ecc928114fca1a194a7e3700f
caf25c53453a9e9843931d0ff9d3a855149fbf9a
F20110113_AABTQO suhey_j_Page_014.tif
a43489f31fc0ecbf3ad37ca5d485f87f
7531690fed96f51c731584a3282e170f6a1df1e1
85480 F20110113_AABTRE suhey_j_Page_100.jpg
c207062fd132a671c401428e36388c54
0a3efe206997b39b386ec0a2e64cbda48a88cdcb
1842 F20110113_AABTQP suhey_j_Page_069.txt
bccaea06013fdc2e6a000faea21270f4
054a7dd5e5c0b1f63a4a37f7810c6070944e511e
F20110113_AABTRF suhey_j_Page_077.tif
ae2f474d77f3988d41b081337f4955fa
b341c1eb2636765589497c8624c9bd06ca1b47e1
45049 F20110113_AABTQQ suhey_j_Page_093.QC.jpg
e38a759a6abb24b609d0a3299524c8e3
91609f96304bb72d3d60cffa670ffdf4bf032e5f
42880 F20110113_AABTRG suhey_j_Page_117.pro
4f6865d75e2a232b606fbd45b7268db4
36e85e2e561dbd5e7aa33ac282d5e4ed72502c13
1313 F20110113_AABTQR suhey_j_Page_111.txt
4c50f1865a476afd76f600cdddccb890
22b6f5306e90a5e457e88da6bee20fe0a8376073
45585 F20110113_AABTQS suhey_j_Page_039.QC.jpg
52fd0c86c5453dc1ecc7bf7163ba58a5
20de1abdaea895aba56e95ab53ad192fd6fbc8bd
38896 F20110113_AABTRH suhey_j_Page_051thm.jpg
11ad8de34053f2d1a596729a6834ca15
7a98c3ee20a2c8cf9ff40c684d4a210f2c9f2cd5
48156 F20110113_AABTQT suhey_j_Page_036.QC.jpg
e4b7c51bae0b135e418f92ef91f86bc4
88460f83268e221ffe87c3eced6b5fe4deb5d1e5
68026 F20110113_AABTRI suhey_j_Page_112.jp2
4b5a73f96f1bf084a0b30f5cf29b945b
f9be1e5740621bdcd6f65f0a1944a00287d5bdf0
14215 F20110113_AABTQU suhey_j_Page_035.pro
3e9eb55cbfcef2e3185f3d5a56dcb639
95220a43567023cc5114678b52cc70e4c9188968
367 F20110113_AABTRJ suhey_j_Page_022.txt
622a71d88ccf19afd4954815536255c8
86cd6b1127a773a9f3cd4aa9e55f25cd0762e3dd
F20110113_AABTQV suhey_j_Page_025.tif
67f43c5a608da68834302e45ca30f48c
e351a52563d56ed72e2a201e1da1d41d5d087489
30243 F20110113_AABTRK suhey_j_Page_106.QC.jpg
0e1a8ac4f82b35253543d8744551de9c
9b892dadce8716e9de6acf10c54e6ab86f86fdbf
42456 F20110113_AABTQW suhey_j_Page_086thm.jpg
9ccb2a975699ab2baef63bd065e02d3b
6f1a6572f057646d7d3b86cb2034c6cf74af06a5
863 F20110113_AABTRL suhey_j_Page_054.txt
26df4cda32eca427317d4b922a31682b
f624de0c934f22e8cc952900f38652452b37bf36
20601 F20110113_AABTQX suhey_j_Page_034thm.jpg
892f552b1715b24831600fea0f6506ee
1110844efd1bc30f6cfb1bcc9cceee205b17cc4e
25492 F20110113_AABTSA suhey_j_Page_056.pro
9ef56a8a157a42d68571b9385f311abf
0a2c5d79128153ea72268d557ea48c014eb122c7
F20110113_AABTRM suhey_j_Page_073.tif
b9fcd741bd7f41ba22b19a1c7c6e0de9
66f6ec17a08690131794ce4e98e9dbaccb6670e5
52984 F20110113_AABTQY suhey_j_Page_102.QC.jpg
14c21de7b4c57ee47aa1fb314ded81cc
180df22688f7122465572072d636b1925ac327ce
F20110113_AABTSB suhey_j_Page_012.tif
d3ee4888b8b935659f5dcfee0ce5ca1e
4b5a537f0594b4815ef38a4f51907da413c70a2c
70545 F20110113_AABTRN suhey_j_Page_116.jp2
46dd37ffe4ea6633648847e835f2ad9a
015733b26d867e81cddab17fc35eb532b58cfb75
18259 F20110113_AABTQZ suhey_j_Page_092thm.jpg
a01ce80f60f1126888301457b22da5e4
8725a938ed3c64e6045d5e2af3f9b432019ade70
92072 F20110113_AABTSC suhey_j_Page_102.jp2
ec0d27cc84141d6ed3ae5ec98b04db2e
1b7e8891dd3dfb9ad12bf2e4bc3436962380a1d1
F20110113_AABTRO suhey_j_Page_006.tif
51dc596acc49a4bc3b52bb3c3c6e40f8
d16bef28cdca43af80018dae4d7066cb1e3d449e
40286 F20110113_AABTSD suhey_j_Page_060thm.jpg
dcfe1e153140d8e44c642d44d6a21286
5827716ab5cee59716e36fcc72f534bb728c6f1f
147395 F20110113_AABTRP suhey_j_Page_016.jpg
50908a455f5d47a41deaad38e11e0d99
972c37d69d6d104c7c65cd89efa9e4ed324b4dc3
35987 F20110113_AABTSE suhey_j_Page_067.pro
5cd0cf83d4c6c1d7d24f7a4c85f723f6
54a23ddad1f45515f449d0a9808db887e9bfa78a
F20110113_AABTRQ suhey_j_Page_108.tif
2fc53d5dd72e72b43139ad6787f83d4d
7de1e45638519e78ed7bfc51f3745c3ec5b701ec
227003 F20110113_AABTSF suhey_j_Page_054.jpg
5e6daf7bfb5635dea4068475a4b64253
85f6c4a5c97c2a87dc494219547d98c8e197ed7c
2482 F20110113_AABTRR suhey_j_Page_008.txt
c1dfb6412c3f7f6dc90d05c1c5609fc0
77b3a03a5fabc646e76a17ed239f237d0e125440
159494 F20110113_AABTSG suhey_j_Page_034.jpg
d34bb32053fbccb91033efb6bdb8fb19
f7252b9d2557a0712a8d4867715d71cf78463376
11655 F20110113_AABTRS suhey_j_Page_095thm.jpg
c7f06de9906eba54ff01ad1791b44467
502d34bec7c5d5201d8ad9e050225f5929a73a69
F20110113_AABTSH suhey_j_Page_013.tif
377cc9efac0588ae35e54e69f412707a
44962c8b2970ae0ccb3304facbe95d615379be5e
82748 F20110113_AABTRT suhey_j_Page_052.QC.jpg
dafb1e32557af3792aaa6d36f513cb69
4ff32d6d194eac3e15be4164cd2d43364f7f7933
34872 F20110113_AABTRU suhey_j_Page_018.pro
25af9e58ac4c80d5a1024dee26aa0bc7
40b9fb68c01c5d1b0dbd07668c1fed722502cd45
1001547 F20110113_AABTSI suhey_j_Page_066.jp2
27249b6e48b5b34ee271b1502310e943
775365d94a8254e294e5f3991ee6b8f49d90b2ef
402636 F20110113_AABTRV suhey_j_Page_063.jp2
4ac54b70af4d165b2997cacaae1784df
24346a298b8faf30cd27533cbd18cb50febe4029
316025 F20110113_AABTSJ suhey_j_Page_010.jpg
85a54ff4241ae92d592cff6b5ae22a1f
31836ee26eaf6e8c0d77474acd543c649acaef93
96390 F20110113_AABTRW suhey_j_Page_094.jp2
04e02afc689232364e22422a4a33ae12
4008b39de76dd3c43a9cee7cc5a2c509b347c7e3
35839 F20110113_AABTSK suhey_j_Page_085thm.jpg
04eab3498321416a5df7bbbecea1bf2d
fee384045810d4bc9fa9ebcbb5444f8f87cbd324
1392 F20110113_AABTRX suhey_j_Page_018.txt
17a4671488370504e49e3f0f81dd6e10
490c731b07572895511886bc77a725a99d2e73bb
F20110113_AABTTA suhey_j_Page_066.tif
319ae2960b6e99034548cda158765203
cbb9dbaa5b228ad6fb0555e380cb60c12efe4acf
2940 F20110113_AABTSL suhey_j_Page_005.txt
732d0e67c2d1ea6e921a44082ec8f4a4
bdd2eb46b973d5b4e44b72377fad7486cffcd1c7
53868 F20110113_AABTRY suhey_j_Page_026.pro
686821d61673d6fe933f989122a3976f
527ae0dc2613904f1e41859506cadc92631817c0
14302 F20110113_AABTTB suhey_j_Page_002.jpg
e9389b40cc3702f5dea559e007fbfe2d
31f5f1d2a1361fb48e8f660ca0af0f046317a248
71049 F20110113_AABTSM suhey_j_Page_093.jp2
870c69c7b23a474b06f510f2240b15b2
27601dd2c37c1206baa45f9b2481d7d85427e6b4
9315 F20110113_AABTTC suhey_j_Page_100thm.jpg
23c0da9e614700acf781d4480c5e29f7
5e25b9ceb57dcce40dba1ad71e8500f336835894
F20110113_AABTSN suhey_j_Page_110.tif
14ecc7e3ccd9bfcf8c4b3b4a3dd9fa34
635e3bdb14dc1cd6de5dc5bbf0ac72469b6ce944
38682 F20110113_AABTRZ suhey_j_Page_113.pro
7f04fd7d6c9ff6437b338153e201a019
9634835f604136f174b45fd33bf1aba22339bc7f
24733 F20110113_AABTTD suhey_j_Page_071thm.jpg
ac1983aa812f5973cf511ade8ac40c07
8c6de136348ec855003daf9858569f1b9be6f0d7
79651 F20110113_AABTSO suhey_j_Page_079.QC.jpg
8fb11783d87de6231bc9ac3a14cedaee
1362edd3aa82447e8ee3c1f51ebf2a67af6ce32b
1707 F20110113_AABTTE suhey_j_Page_084.txt
e7728f3a38c98fd167cc7adfb0029a67
fc58420084cdc818ffdbfe8b7bd7983cb60ee409
32031 F20110113_AABTSP suhey_j_Page_098.QC.jpg
e35f2c62e6a4f9f421b44a22921fbdac
52da5f7d071a6b2d4017facf706629af9bdafe7a
F20110113_AABTTF suhey_j_Page_059.tif
871b18c908e038e408cad12c50909d0b
c07fd89fc920d61605c6405536b8f68feedfd745
201142 F20110113_AABTSQ suhey_j_Page_046.jpg
eb8291e171aeeb7bb1a3abbd0b27a3c9
371b7659d71c701a7ea4c6c1577ab2f66f792d3a
3061 F20110113_AABTTG suhey_j_Page_002thm.jpg
bebfc921a53a5bfb93215848db0f0664
80f70701a03233ea04f0e2d1ed234ff6967cb234
39302 F20110113_AABTSR suhey_j_Page_075thm.jpg
a8eb2d2a05e8dd3e2207277d04e92712
2655e2e08f12cd1ff2d9265ac2f877b54117f3d9
56791 F20110113_AABTTH suhey_j_Page_110.jp2
82fc58f9756461640ee548cf31399a03
0ebcf6a0419e20edac0f4ad364fcec57b05fd568
226605 F20110113_AABTSS suhey_j_Page_026.jpg
f527d24a1193d6bc0ac781865cca314f
8885a35448c663a8245508024ebb6034d227633b
988 F20110113_AABTTI suhey_j_Page_060.txt
e264c25e85528de4ae1fad36bbd245ab
634b281a9e8b64ca2c4f9de4c73766ba4ba80f0b
52677 F20110113_AABTST suhey_j_Page_092.QC.jpg
ef7f25953d44af0eebd6bd4241a9b6af
b170759ddb26316e458a6003a169ce75db01bdbe
3214 F20110113_AABTSU suhey_j_Page_003thm.jpg
2fe426ef841d3a81bb56ebc87bd1d3bd
74f2292995dc13ff5c0c8edd16a5f8a689872afc
5958 F20110113_AABTTJ suhey_j_Page_073.pro
c0d3b0b5b64ac0567fa253b45ba73b1b
b50f04a3c542fc9f2e878d65ab322dfb97fad82b
48080 F20110113_AABTSV suhey_j_Page_006thm.jpg
7a0806f218a0fd80fc498d6600a6c8b1
f6a54547e1de70ec2acfa4dfc13811e57de245e8
F20110113_AABTTK suhey_j_Page_105.tif
5983aa63cd5f7ce83e5c0dc15698816f
993bf0edc79753390cb237a1dd451afebdf51650
16085 F20110113_AABTSW suhey_j_Page_059.pro
fa42d12d9f83adbbe9f25563d595281d
cd0512b016962ce55831cfd7aaa34c2007d0234d
25532 F20110113_AABTTL suhey_j_Page_026thm.jpg
f79ed3edc3f19b3a75c0e20ba4db7ba9
2addbb58571636167695d8248fe2485e68cbbba8
98051 F20110113_AABTSX suhey_j_Page_057.QC.jpg
f2c2e524597f8f097260d00c650948bb
b538cd5589ad5bd8d9df807c3af51256832639fe
F20110113_AABTUA suhey_j_Page_111.tif
f5ceda8072067402eee1781591bb2747
d1b996673bd68e718fac09dfd5c5a7eb9e0e0f4e
9810 F20110113_AABTTM suhey_j_Page_081.pro
fa694edbc104bbdf5048f8114400c5c3
1218a28b7774d1c9151396368cc483e17f2de806
79642 F20110113_AABTSY suhey_j_Page_105.jpg
a1d871e2038517e6395fdba5a033f622
2e0d2478944c1fa65506101d78a27b6e042652c8
149089 F20110113_AABTUB suhey_j_Page_115.jpg
e6eaa0d57402c9dc09cac1e913f6b0d4
fce59040a98aebbe73de4baf3b179753dc53a25b
48281 F20110113_AABTTN suhey_j_Page_053thm.jpg
5e624cd1dd817c66346942ea0e70eeac
7669249eca4d827574686df88eb70eae7d1e582d
335 F20110113_AABTSZ suhey_j_Page_075.txt
5d9f5727db196a3965e0f474d0169667
e784a6d979bfb98abe02f59807faef6eddbd293a
1036 F20110113_AABTUC suhey_j_Page_104.txt
c0edd596b48400bcc06897e311b67338
ed83a588d6d7244ec7468021188a0fe105da8d58
38505 F20110113_AABTTO suhey_j_Page_064thm.jpg
ff55a9a2bedd97a59d12454ae9988d45
bbfa0685797d18d835873fbbe9e22474cb4d309c
225554 F20110113_AABTUD suhey_j_Page_057.jpg
037e8ade73bf08e1d58237dac4eb36dd
8e23ec1a523b5478c64d1284795737f42cff3f4e
1385 F20110113_AABTTP suhey_j_Page_086.txt
c2f612cd870788a42f4b97fef44adba1
a5729d55dccaab3e216a11e8a947997c80147ee0
F20110113_AABTUE suhey_j_Page_024.tif
1e1015fd2f30a1e12af207bd543a29d3
d6efbc414d2dfee175af3498fd0643e9a8e8cb8d
1913 F20110113_AABTTQ suhey_j_Page_041.txt
9000497ac72e3422ff3ca83643c653a2
203109a9097916794b1e056ddbfb34f5ce13a1f6
964 F20110113_AABTUF suhey_j_Page_109.txt
aded05a65d487e543d4e507a95598845
52185f8c71722e60e414ca72bcf7e4c8cbf7b4e2
137796 F20110113_AABTTR suhey_j_Page_055.jpg
dda3c4730cb51396e97307b6fc26ec84
12bcfac6fcbdce48f5c011eb7d3115c8f14f81ee
690960 F20110113_AABUAA suhey_j_Page_065.jp2
0809d17d7019a1aeaadd8c7e997f2bd2
a8b4c8bd70dc3c7c7ebc29c6f1ba87618cb8a344
1017 F20110113_AABTUG suhey_j_Page_025.txt
c34160fa1cfcc9919e6e876199c00d87
e12267dd1fcfe58e5e7e34eaee176f004e484cd3
734882 F20110113_AABTTS suhey_j_Page_079.jp2
ab1a7c8bde27f92ad3c8bb7037d3808c
03e079b492413ef38c105e7f0b4ac2e4e8c165f6
32933 F20110113_AABUAB suhey_j_Page_092.pro
390bdc90e0393a46537f23d58651adf6
adb338b9ee6a99343dc76c5f1341031c73b9f7ab
1218 F20110113_AABTUH suhey_j_Page_031.txt
3a5b1c9c3441b906b9f2f0ac866ff9e4
8fa450c9325aae8ac052ef0804bae6439acd8f30
1051975 F20110113_AABTTT suhey_j_Page_009.jp2
c996e1d8cd717b2c268ac2493263c619
394f3f2a58cc57be40a14a20cd66d0140453e3cd
77716 F20110113_AABUAC suhey_j_Page_012.jp2
f94f6f14a389a79a392765ef7356cba3
686e2c576f64c20aefbfba6de4337a2591557e6b
84921 F20110113_AABTUI suhey_j_Page_030.jp2
b73b6e0517dac35be23fa91956b57515
afe3e319acfea257d2e2ce2b95bbc743e981955c
F20110113_AABTTU suhey_j_Page_090.tif
b33e0ca486f2c59ce744d7736f5da973
01d68ab320ee3a5378f806c571d14489b87901b3
79687 F20110113_AABUAD suhey_j_Page_015.QC.jpg
4e24350952d3d8aa42c2d1e0487f32c1
5541b6ac9d0dac347975b38755b50b51637faa0f
33993 F20110113_AABTUJ suhey_j_Page_066.pro
6f6549fa2e1e86d29701f33892f7ce33
25538b426d71cf78576eb0fa197c64d6d92aed9f
100446 F20110113_AABTTV suhey_j_Page_069.jp2
c0a46ae2bba408868e81ec2f0a8e40b5
a94913171dacfeec7331970221d5e6cc5a72511b
F20110113_AABUAE suhey_j_Page_097.tif
b69f6aa5a59c9169515f03120da36a11
713645e06c9a315d0167a2ca424f593a27067ca5
F20110113_AABTTW suhey_j_Page_069.tif
03040150f92462ab7f9701f321c12308
0e73148bba4519f55b9236f7a84e5b3f25b0392e
42878 F20110113_AABUAF suhey_j_Page_056thm.jpg
30d16dacd54de1f0315b308036f88e1d
d5b5b0bee8a049af4fd43b9c40708e3685b6cfe7
F20110113_AABTUK suhey_j_Page_030.tif
45c8777bf602504860cdd235c07ea3d3
439371a19764f3efee4935c53d00cf59312276bc
244168 F20110113_AABTTX suhey_j_Page_077.jpg
886614051fda0566709220e970f75360
c945c196936001a1d3c4847a1a971e8605a38ebc
852 F20110113_AABUAG suhey_j_Page_063.txt
06ff22569533abe560b7955b7861a3a7
2bec9d100ca04b567fc2efaf8f921ebe6cb11584
26960 F20110113_AABTVA suhey_j_Page_062.pro
08926c6a2eeeaf9fc8c90daf80497fe5
c7daf5ffb9d2be8607161d84714ec707ebee4574
69222 F20110113_AABTUL suhey_j_Page_091.QC.jpg
f16aa98febbb383a8c87be73b876ec1e
13e565b55cea508bc567b85bdfb7762919ec2b62
1981 F20110113_AABTTY suhey_j_Page_046.txt
57b0a07e660169d74dac29d720227362
b3d3e8a1d2264e50030f87675dc83cfd061464dd
85449 F20110113_AABUAH suhey_j_Page_068.QC.jpg
efc3351d499c131f7d4664f58c665572
54e8861e4755ff64a636f09d291fad923815cd39
44466 F20110113_AABTVB suhey_j_Page_068thm.jpg
5eb38a8d832b53180d7f062c78377603
3180b7606ac6d2f80be9771b6ef559576bcbda1a
9499 F20110113_AABTUM suhey_j_Page_097thm.jpg
a6efa7b27f58ba2940b0581f5538d13d
52af2c060d6e1f4dafa7728c2a2f55b623817e52
169914 F20110113_AABTTZ suhey_j_Page_094.jpg
f11e01ac8df7dafeb09d6e33cd0f9c29
f1a399a9719b0ae83fa84082f86c8480968a9ed5
1423 F20110113_AABUAI suhey_j_Page_079.txt
3cfde6ddc4731d01f6823919ada67aac
af23825a24a819decafddad5976f9d327853fb00
24400 F20110113_AABTVC suhey_j_Page_068.pro
dbf7d90a0dd87f68b065df98a3621744
618172a9d51ca7104b6398337c11ffdaf4a9e310
54648 F20110113_AABTUN suhey_j_Page_076.QC.jpg
524b0804246c095ad78dd03808c1b73a
6ebeffaa51f7ccfbe1292e583a2a138a4e7b07be
98555 F20110113_AABUAJ suhey_j_Page_006.pro
472ca9d6ba937f17e9d6086009c49572
065a9ff0fe34cf6d5d8ea7521f8f1e84ee10edf2
F20110113_AABTVD suhey_j_Page_057.tif
33cc375678f8dfe085cbe6e721b819e9
f3f0c3dd293c080ba825014c999c0232ff19ac57
536958 F20110113_AABTUO suhey_j_Page_048.jp2
64d5c21d7b1329dceb64733beb696a3f
a2a503c1f5f4de10e23ecf617fe228b50f48b6a2
56363 F20110113_AABUAK suhey_j_Page_096.jp2
d9c2aba6ac7407aeb67ebbd100d85247
87d3e1848f30e9d4670132aabfd7d1d7e7bf1cea
F20110113_AABTVE suhey_j_Page_005.tif
33a7acc643bc3934ba3f2d6f113726f0
6b66504c48afe4044054325a03420a97d58c2f23
52877 F20110113_AABTUP suhey_j_Page_098.jp2
3ab9fe5a7f172608154d6f463d907332
0727ed1367e21efd247015b82d651522cafaec93
45997 F20110113_AABUAL suhey_j_Page_061thm.jpg
e81699b57e785db0fd53dcafa96c26e0
7760dcb78046875b6adf164dd9ef3bca47c9e299
1440 F20110113_AABTVF suhey_j_Page_032.txt
fb86423fea24cd359e7b9086168ad3f7
a7bb27cf41d24b01d944a905510d708cb5065dca
F20110113_AABTUQ suhey_j_Page_044.tif
5b20f7d2cf25fc0bbf49f89b060cdea9
0ac6a24fe0344a7d8e793e3aca1ba107e64352f6
77976 F20110113_AABUAM suhey_j_Page_018.jp2
43449bead870d7f1079bf51f5f7e003b
1bf71b6ecb7536b27f060a60f998b107f6f8ca15
187068 F20110113_AABTVG suhey_j_Page_068.jpg
64a84e73cfe9d9b9b251afff2e3bc3a1
bcef415750452056e87d0fa003a19babec1e4f11
119419 F20110113_AABTUR suhey_j_Page_038.jpg
f7c1ca7faeb561ef6960a18437ce3cdc
688eed4aea4432b73f22e2fe6efb788f8c05eb84
F20110113_AABUBA suhey_j_Page_081.tif
c78c88b44512af26dd464c906fe287b5
236b3b1b9fd49ffb669700e79fa42dd4eb6aa429
127247 F20110113_AABUAN suhey_j_Page_095.jpg
c3fbac1953ebebf9873c7e0810fd4da8
6947e550bf455fd505f580d21d6d5a5ebefc34a7
78562 F20110113_AABTVH suhey_j_Page_058.jp2
13b95c73e4e48bf1a9fd651ad4ef1bc7
fd98b5df0ebe6aeafa6d19ce47bfddb1df1351be
820 F20110113_AABTUS suhey_j_Page_085.txt
a0784a2edf4ad1f4da11cba5188fc5a8
9c2a429d7e17ac31b0d890e05f7b5d341a7d4a5e
636126 F20110113_AABUBB suhey_j_Page_044.jp2
5dc5bc2e6456acddf11eec959d81a8f8
0541affc35aa58e3151757b192414829f5303fcf
58255 F20110113_AABUAO suhey_j_Page_034.QC.jpg
fdcc92f8a29cd4c77d9ce16ed8da39f0
1e42d673757537dd11e0864c4c24413ae93464cd
819671 F20110113_AABTVI suhey_j_Page_067.jp2
d2374942739f3de8af149f9c92f1170d
e60b5080ab00413a8897d7aaff6f4af71334ce27
37169 F20110113_AABTUT suhey_j_Page_072thm.jpg
c8cfa01cce843e81a0ac3092a31f7cae
40b79d68eb7f4e973d1770c91c3572bbbeeb69fc
513 F20110113_AABUBC suhey_j_Page_020.txt
f93a54906ede618a911a305cbcbba36d
39cc93452cbb8fdd1b7da7ab35a89c8a60eee360
22768 F20110113_AABUAP suhey_j_Page_114.jp2
2e08d613b083cc23a7d143a2294f387a
ef41448d0428aee09a96c238d1c249ab179fffbf
41923 F20110113_AABTVJ suhey_j_Page_081thm.jpg
c580663ab55d5d913c48cce0b3fc416b
77006a3a9ff854bfa51c9cdfa40ecee90a515e78
184546 F20110113_AABTUU suhey_j_Page_117.jpg
3103dabc2d17fb024c95760219ec6112
6bdca4b2d83fe5ce892f22a318e444b828a91a6b
53357 F20110113_AABUBD suhey_j_Page_009thm.jpg
4842648b14bd05abe189419cc4ea6bf1
bed5798e15f57b1865f7fc9efef1d4edb301a8b3
2113 F20110113_AABUAQ suhey_j_Page_026.txt
601f8b4d3a6d8e3c2c8e4d226413c39d
5f291ce9d083758b0fadda7b55fc92660864deb0
624 F20110113_AABTVK suhey_j_Page_007.txt
d3cecec3e09d0188fe7e50850b79a354
a5609a08cb07257c51e7e2b79d8babbc173fb4a0
120540 F20110113_AABTUV suhey_j_Page_087.jp2
a4ff08ef9e6da1ce777a30e7ff3be2c9
13279af121a6ca082281988f5e8386b245b489db
389856 F20110113_AABUBE suhey_j_Page_059.jp2
eb5641258be3bf9a8b13a4f1090b40fe
ea47e00dfb746033b9eed9903c7155c20194a993
1864 F20110113_AABUAR suhey_j_Page_091.txt
123df1cd5e2aba5e73e545ae10cecb74
78f099d51ead3a7c7568d7e71415e286cb248373
105195 F20110113_AABTUW suhey_j_Page_078.jp2
f79eb8c7f3ad874674073a55444b6c27
15966e1e6055c43278c9c6ed342b3f71adb7c10f
52939 F20110113_AABUBF suhey_j_Page_004.jp2
195d5f137b6127eae2a6d62907d6b365
671190f430c44227a84ccf8e0da452c7533a2881
1051 F20110113_AABTWA suhey_j_Page_106.txt
7de7b372565238ec28d5fd64e1189504
174e418a01d976e09a9040c5dd2f79db5f8477f8
116028 F20110113_AABUAS suhey_j_Page_063.jpg
fe524ce621cb665fbd14dc1b6f8bd2c8
88ed24130ef0b8339bf5fa02fa9920e2866f3ebb
62342 F20110113_AABTVL suhey_j_Page_117.QC.jpg
92b0b88338c0a259bf3be1bf577fb4c2
cd3780dbf363e0894f2785f115c2c8ba4feb50a1
102926 F20110113_AABTUX suhey_j_Page_110.jpg
0e25fa5958a9a6a6c81592ec092c6bf9
fa1b1ea57e9a4c309c36b47c358f4eeb49263846
768568 F20110113_AABUBG suhey_j_Page_024.jp2
e9c6d8e9535c5d142063cacc9bed53f0
182e2c3f62a9ce10a91aa61025f707699d198997
49160 F20110113_AABTWB suhey_j_Page_057thm.jpg
e647e1962ead2baebb5d59937433232b
43e7507533758e16685dce3715d065c35635ccc3
59386 F20110113_AABUAT suhey_j_Page_103.jp2
9e780a8c0b6b0b64efb123f087c4012c
674aaf59848891d9b6ed5e7e84f637ccc6ef5fdd
81008 F20110113_AABTVM suhey_j_Page_034.jp2
69109f0bfe7c6d420a7afec3c5f0785a
97ad5a065a9ed70226d5fad948707814e3e44262
1416 F20110113_AABTUY suhey_j_Page_042.txt
5436b457006d7bcff0cdca2e7d5d11f7
1a57d047716b78bbcf1b4c03a90309a7b8a71f35
63598 F20110113_AABUBH suhey_j_Page_047.jp2
873dda8e7dbabc138decf1aafa520743
bb3b38920abdaab9210b225e7097dc12aadab353
106977 F20110113_AABTWC suhey_j_Page_119.jpg
9af27213d185398d0b5e1b9554c018f9
8ccd2fb4e0e86188fd5d097ed383769e3066afb4
28642 F20110113_AABUAU suhey_j_Page_036.pro
d8d9fa312dff59fccf6161cd8dbc934c
9a6e47a9c28fec19744b884119301a8967c7c284
39167 F20110113_AABTVN suhey_j_Page_030.pro
dc9e87df5fd359994f361125374844a6
0e4e5b8299677ac4dfc6a2e71a70fa53bbcc6016
34850 F20110113_AABTUZ suhey_j_Page_070.pro
8570a4096466c42bad678a36e10786ae
961d877dd0e6ed3f63b67aa275bcb943d765a62b
95030 F20110113_AABUBI suhey_j_Page_090.jpg
c4db53a896acab139766b2914b57cbdc
12ce03f57fcd0ad78eee35ebf80c3960e723c70d
77495 F20110113_AABTWD suhey_j_Page_087.pro
8993695f2c9dd00971b6640d7eb2c93d
72ca7c4b9298fc0f13c0e980c5f23238cf7c4ad9
45838 F20110113_AABTVO suhey_j_Page_027.pro
79b339ac56b5fd7a9f81954003004d4d
00f5920936825242c17b480c59a0d71eebea9e55
F20110113_AABUBJ suhey_j_Page_034.tif
ac55269410a76e2635a369795601c8f4
48bcc36687d2f5b1562d187ab7373b52c5ea6476
F20110113_AABTWE suhey_j_Page_090.txt
32f3be33d64e22383a72154cfb825b7f
8f457360f34a75f22604581aa6b93bf9c5ff0b1b
153165 F20110113_AABUAV suhey_j_Page_012.jpg
3281b01a4994a1b835d3f41fd2ce3117
2a07a3e21810b858bbe0560c7afc8acf4bce49d0
73836 F20110113_AABTVP suhey_j_Page_046.QC.jpg
e27b348dfa73dc2b4538654dbad1d993
61a84c5ca2c8ce3a6097f45555f9f9b3b18a450d
192000 F20110113_AABUBK suhey_j_Page_069.jpg
640834a7ee372d24933de8a0156b15d3
c1bcad405dd78186d6ce50556ecfe6d6d595eb51
47594 F20110113_AABTWF suhey_j_Page_100.jp2
b1c734f253c4c32ed711afbd4f339fdc
c8bd24fadcb866b7285cea8fa6be24bf0085cf32
30867 F20110113_AABUAW suhey_j_Page_079.pro
ddd76c4294193b7cad45dd9cde2e97c5
871576e87c3a8b08b64bb2322787b5f650134c82
73534 F20110113_AABTVQ suhey_j_Page_041.QC.jpg
f3559dc78282a8d2f4c6f8a0eaf9e49d
13746379e0b89f682ac655e4768854a37c3c01fc
1294 F20110113_AABUBL suhey_j_Page_068.txt
1714aa73e42d55193f2ac775b26bc05b
239827b6888c80bd0ed12760bbbb970d49f9f367
F20110113_AABTWG suhey_j_Page_118.tif
5641a4e9adca94d297ac3489a6573bd5
780a15e37d28fcdaffb9e2da0a2684ccf03d3946
47814 F20110113_AABUAX suhey_j_Page_066thm.jpg
a81e848302a2ac69d416b0808e35e422
3f04dee48a51c86d23b7658c9e27c543f55d3c4e
15620 F20110113_AABTVR suhey_j_Page_094thm.jpg
2e2a39ba6131ae02ce60556c389d8df6
d7fe07745c49d8ae02a371ca21f36b3340e38336
47724 F20110113_AABUCA suhey_j_Page_029.jp2
0382e5e2f7ce198d3c62a3abfb562f3c
3006871302b276993e506e8717c0d7c5ef4b49a2
49786 F20110113_AABUBM suhey_j_Page_071.pro
0182c3fc5ea886c12852c36ed96123f0
541d906f49b0cf51f2436174a707046745d61a58
44448 F20110113_AABTWH suhey_j_Page_017thm.jpg
b56ba469b767caf0e3042d24679a0e6f
b05ba644252d1542c2c3888b36031155a5668f0e
83483 F20110113_AABUAY suhey_j_Page_061.QC.jpg
f0585c858d37340a216d49e8cab23d9b
55272cdcaac7a7258f1bdde34cc71c6a96ee9dfd
75539 F20110113_AABTVS suhey_j_Page_028.QC.jpg
2d020bf12ead1048458f276414c34c2c
f868413fc3a2f9548799c74eef9408c708776db5
1149 F20110113_AABUCB suhey_j_Page_097.txt
35274ecdfb1d35e20636d9c370b0b125
9b18e736d2583bb7b2146584142dd4763e0cd6bb
40595 F20110113_AABUBN suhey_j_Page_083thm.jpg
f8cfc585b60c1fba7ef3178caac7ed12
43ebd764fd910082366066253fc330af6ffe8531
78939 F20110113_AABTWI suhey_j_Page_071.QC.jpg
795539371c238aed6254f42cf4f64436
df8b3355364bc09de0658df7911c9c6d3916dca7
41050 F20110113_AABUAZ suhey_j_Page_119.QC.jpg
e1570c14095428072dea9b5e70c94e1c
f0f6c2db039f6742bb47bca54133827225293169
44585 F20110113_AABTVT suhey_j_Page_065thm.jpg
198838e790ab3d2b107a3773424c9ad8
bdf59e2e6efac065eeae643dfe51ecf1611a4010
58973 F20110113_AABUCC suhey_j_Page_039.jp2
2a5ecf59acd79d25db899b33d80f95a4
f888dc7c1f985286fe052d8f0adb0dc5a2906626
954 F20110113_AABUBO suhey_j_Page_004.txt
1fb3c33a266a5f400bf8fa671e2d6a9c
af685bd0726f505ea6205d0825b6b25ebd4b461a
1963 F20110113_AABTWJ suhey_j_Page_102.txt
5c1431ef73c61563f8707874d3e18a09
77401a58daa76165352cc2184d095ae77c745640
41207 F20110113_AABTVU suhey_j_Page_095.QC.jpg
9b3fcf5d941cdd303c6f9c7217aa8a4a
169949c66ab2d50cf40e9c9e557cb017d28ac70d
99371 F20110113_AABUCD suhey_j_Page_027.jp2
feaade2d0ffa8d3ad6d3b728e261b0fd
9a6297a393cfff305737ab27c7b248d0ebe963da
248195 F20110113_AABUBP suhey_j_Page_005.jpg
5d99ff50dc51069a083a3307bfb27d2c
3ef36ce67f53a41653203559774e874a7ac6b8b2
38874 F20110113_AABTWK suhey_j_Page_063thm.jpg
91c650e49a50c36910b6b085da121085
4cf4d6cc2374d05291e9ff887da3c0798ec46a46
28323 F20110113_AABTVV suhey_j_Page_100.QC.jpg
bb703e901bcd7fcf592d107274af5a62
b743c891fc17670a9d5330a589c811faa1df69e7
955598 F20110113_AABUCE suhey_j_Page_070.jp2
cc34cfcee625afaa7eacacfca0dfea94
ce226c0cfe623afadf0095870496eeb25c8b97ea
11584 F20110113_AABUBQ suhey_j_Page_116thm.jpg
a6b93ab0f44e75da005a1e3f067aba31
9f1422f5a922b8067eaf272d520bcccb2bcb3242
22785 F20110113_AABTWL suhey_j_Page_004.pro
66bab9897c64bd0692d16255b679db8e
10184b653845abac87d9fe9616201b052be484a6
70208 F20110113_AABTVW suhey_j_Page_113.jp2
e586a99e5b8cd24b228d1d79a5c489d8
57a0b3f4b0a6a70937640f63cd9dbe7777588fd7
5645 F20110113_AABUCF suhey_j_Page_021.pro
11ebf67f9042d13f917c2618fcb49f40
7dea446d154cc1dde2240da18cdb8dace7043a20
33589 F20110113_AABUBR suhey_j_Page_103.QC.jpg
86d581c1e29bf9b35a9feb073a592357
412506b6f8cc1b8c7b178432efea81169df13f83
F20110113_AABTVX suhey_j_Page_075.tif
e6f633f6f0995e1e535d3430d060b97b
55c482f347202cea4d7efbe7d094f6832b35c9e5
59497 F20110113_AABUCG suhey_j_Page_011.pro
7d30f9fc87b44f74f01e177e985ecb8b
364519156d1434ec04c1e37020da933ae87bdd9c
1079 F20110113_AABTXA suhey_j_Page_062.txt
6312517596296214d420de390184bd5e
1626f95396ce9281a211b6335948c863efdb6110
F20110113_AABUBS suhey_j_Page_047.tif
1c50e4dbb1dbc7f439f6ed4a74b887d3
0022611444c13fcc53f7e13e5f5c850f2b8452d8
978 F20110113_AABTWM suhey_j_Page_105.txt
35ec5425dd73dbabb5303bf2e94cd35e
fdc484b390ac86678197d297833cfb120108091c
122022 F20110113_AABTVY suhey_j_Page_049.jpg
1accf4adaa3150195a95e4a68e8ac239
37277cac30bcb4ec5475952e394a28a5782d7309
11902 F20110113_AABUCH suhey_j_Page_113thm.jpg
32fa9c898755174c82c81e89cd533e8e
c68051240f270277dd7e8d849dd26fb8fd24002a
106406 F20110113_AABTXB suhey_j_Page_072.jpg
7b55f092e38c3031ae43403505572e5b
d418112c5e98a2f1d5c4bfc801dc98a226e0fc38
1051979 F20110113_AABUBT suhey_j_Page_008.jp2
abc9b6b0b200bbd31f8636fa1612fada
31a7368a6991c4b0b369599d8821c9f25eab22c3
49461 F20110113_AABTWN suhey_j_Page_099.jp2
03306b4a228a2309b6b04309354eeadb
63c5f14627b8d2978cd63b7dbb7ff7e4bfafd5e5
F20110113_AABTVZ suhey_j_Page_071.tif
fc18c9051e10920c461725517449ad84
8f31e4f6083b9e30ce1e0b46c2d4eb11dccdc3ba
1909 F20110113_AABUCI suhey_j_Page_101.txt
69abf39262aaf8aaeeb86c50cd4da409
b506201870ab21088d09ada00bf8febc71c78bfa
14513 F20110113_AABTXC suhey_j_Page_048.pro
1f30d5a74e89bf330cd9c35b6ed76382
87d894dca5767bc6b2733a480305f58a99844cfc
17300 F20110113_AABUBU suhey_j_Page_037thm.jpg
874189a88657964f457ce808b42e0e5c
2e57e1cf533a5ddb74301146f01de9387fbfd587
F20110113_AABTWO suhey_j_Page_086.tif
f42e1cd91e782bc53913b36ec9af9a28
f2054fc2ed0c6ef99f5953a2983264666638480f
1001087 F20110113_AABUCJ suhey_j_Page_023.jp2
011dc8b9c65042b7c58ea73a2004747b
27e22fc25af68204fcb9742b89a33060ef8b1854
51808 F20110113_AABTXD suhey_j_Page_097.jp2
983bbb9630b5f2b8000ebcb1d65726ad
ff7ff14306fdc50e05c60a16931be67a850db1cb
1104 F20110113_AABUBV suhey_j_Page_100.txt
681fb326b34f99da36f2996a2d4adaa5
22c69ff194ebdec897ee1695d8be020aca9630ab
1447 F20110113_AABTWP suhey_j_Page_095.txt
e66a6ebef46d904ba1acddc9bd7d43d4
9097d64643d4df167aec46064e59a819c566bf21
1051978 F20110113_AABUCK suhey_j_Page_010.jp2
0c53adfa9c399c4d14d541bd293ca7e1
473e47a19ca15b8c67af0f95f33d4797cb62d97e
15828 F20110113_AABTXE suhey_j_Page_064.pro
0ff18680184229abd9623d9acc1c62b5
e62f256ad020ee98e0d4ae01180d08bc64e30c28
68817 F20110113_AABTWQ suhey_j_Page_048.QC.jpg
d6c2b9c8c4969191c3510924d1413a3f
9f351261c4a63f8e153ef0d8ebd00217fccd8d0e
96879 F20110113_AABUCL suhey_j_Page_091.jp2
debe7e4a07981d009082085785790ff5
a867ce880dfe5c8826c0aeebd478846f75c8a4b3
69842 F20110113_AABTXF suhey_j_Page_089.QC.jpg
744d3b343eff7236df24e6b13ce364c2
af350dea4a9354cae431aea753ae90eff6f792e1
1024021 F20110113_AABUBW suhey_j_Page_025.jp2
a4cf93bf6a1249fb5ee202659ca55762
39422e1584551f6e9bd21413c11a4261497a3b85
F20110113_AABTWR suhey_j_Page_113.tif
f2629b65a821641e73a6ee90a37a5e47
2aef08a7964433614d0c59f1a6f69f0bdc87a7d9
83185 F20110113_AABUDA suhey_j_Page_104.jpg
5ef2c1401505abd529ec301390fb624e
0d2c6722a8db372b4b10393e04336361b3e4e658
F20110113_AABUCM suhey_j_Page_103.tif
1c11e19200b551b78f3e8f49cd434e61
bd6db5b023247388defc085829f178ee552c3e2b
25921 F20110113_AABTXG suhey_j_Page_106.pro
468fc24600db96a04d6ac3334764b4e8
6632d72ad5dda0e3cb0414bc550c4ddb227fed42
185787 F20110113_AABUBX suhey_j_Page_043.jpg
2c06cf6b2e750da69f3af34a49a8fa57
e99575c2e66e79285b430717555752c364a87c77
24729 F20110113_AABTWS suhey_j_Page_039.pro
2e98759d16276756e765c6425c8aa22f
1b88ef0431cce1ef0d602c6f816f0f17de254894
37808 F20110113_AABUDB suhey_j_Page_034.pro
d9cac017ae46860c46a02e28989d0e18
dc42d9a94541fa4f55e9f0c6a473495c5f7b1e76
F20110113_AABUCN suhey_j_Page_011.tif
518c4821ec5b4858b232bd4699a8ee6a
accc81a446b61359f0703f0180f2aea91c92f131
187324 F20110113_AABTXH suhey_j_Page_091.jpg
ad8619b531cdda03904529b65b9b8a69
f5dcf4a205761eb99e20a0a3bc1e852b77918312
1940 F20110113_AABUBY suhey_j_Page_050.txt
5eda27fd7efbf459af81665e5f50e7c7
939d67fb4d0ed4db382dec4c3840e59554ccb145
F20110113_AABTWT suhey_j_Page_095.tif
2264095b868dba768f97775891c78668
e32dcc18a0c23b6595773c676db0bae1c0a209f7
6131 F20110113_AABUDC suhey_j_Page_023.pro
d99a0533c19323a5a571214372861596
34ed5653d5157a499f847bf6ac5a8afea4515a79
543806 F20110113_AABUCO suhey_j_Page_007.jp2
cd1181664baf9b4e4db6094a8c69e643
dc2a46d72125371ff2ed23f3b6d80cd3936252f1
53023 F20110113_AABTXI suhey_j_Page_094.pro
a954b3f0e7754cace63f9173d801a4d7
2d22520727f78c6ee119cb592849d14b46a165e6
9942 F20110113_AABUBZ suhey_j_Page_103thm.jpg
87c8827f759778bc44005a42a5e14957
a533075680c333c9f02ad1db4ad80b7115885dd8
F20110113_AABTWU suhey_j_Page_022.tif
82f403507abae82094662cea10fd7a29
6352fbd80c06469ae1777d10cfa1d34c09218b56
12818 F20110113_AABUDD suhey_j_Page_049.pro
25211e7073c3e290a6fe0eab4a5dfcdd
dc9acf9456574f1cd7ac36d4b818e41ac683df4f
66761 F20110113_AABUCP suhey_j_Page_055.QC.jpg
2f275f71adb49b50da46e28d17f497ff
56aae89e7c5687b1482b90824955e1edcc76d8d2
684819 F20110113_AABTXJ suhey_j_Page_086.jp2
4a40cd32f3a784b0df1a42d4e6d61f46
cb00ba47538c5d1ceca3badbb026b909a9653eba
11808 F20110113_AABTWV suhey_j_Page_020.pro
45009681905bbe5494cbb866111405b3
9ac616300cdb916996bc8e3c3efb504482ff06d3
1051913 F20110113_AABUDE suhey_j_Page_053.jp2
e35673137c8630f23eb421a9e8a5a09a
d63ac8eb7598dfb6fe5ef267a9ae205b68ccb177
F20110113_AABUCQ suhey_j_Page_098.tif
bd0a3e07e4fda9579880b388ac2886e6
7edd271097bef602577d4d4f475a0cc645594599
17007 F20110113_AABTXK suhey_j_Page_036thm.jpg
38d9cda1bbf390d3e4b785983b315055
2a1f2fb64772f6ecb53a63e3ffa849addd9b06ae
202342 F20110113_AABUDF suhey_j_Page_040.jpg
4e2ab1288945648bda5b112fe65a2692
2a72eb7f77a2336f6d96530dfb1d0aec212732f2
980 F20110113_AABUCR suhey_j_Page_119.txt
39a1e41f01acc9136c22c4dad4ae8ddc
5072ef555e6215778748e8fbca4d047712ce3b5b
18408 F20110113_AABTXL suhey_j_Page_013.pro
47fb27b37ceae77bf1b82754285d48ed
bed3ba7a3ab4c035082c06f8ef0d6efa60efa85e
F20110113_AABTWW suhey_j_Page_008.tif
7711138a43b5e152639eff436da90c9b
41041eb7a6c6f50b657db7eb8eb4427b8ce0fbb8
61206 F20110113_AABUDG suhey_j_Page_064.QC.jpg
6002469f366913531a5b0b117e1abebe
905be90b6b348bfe8f2ce3b0e1ebd098b115bf9e
107468 F20110113_AABTYA suhey_j_Page_111.jpg
e5c81ea9885362ca581aa371ee00e9ad
a46409b8c8d2283c5a116a00a3fe6e3971b16055
38849 F20110113_AABUCS suhey_j_Page_049thm.jpg
2172432d1c2e11c786ea4b261658dd78
a7949f7c770af114911e555a6e1d01e7b8b9c828
202148 F20110113_AABTXM suhey_j_Page_028.jpg
0e049db1d56af8a2f55c62c23c3d77ac
a1ef3e97c329d6b9b95808fe5b1a5c7acaf8b940
126332 F20110113_AABTWX suhey_j_Page_051.jpg
cd7ce41f6352b1d2efaf1a1015c71cbf
43522da9f7afcfda4cb06c9f7da220ba6d7f9189
36737 F20110113_AABUDH suhey_j_Page_095.pro
d6a9e80bbab004ba5b68073cd4e5cb25
558de7b58dd21b68ee9a51ea4c4973a208b31a81
15050 F20110113_AABTYB suhey_j_Page_102thm.jpg
309df2d4bb013ee19718e12f8e9ed8dd
6605233366af478ad137251867ae3f7344d2c540
18072 F20110113_AABUCT suhey_j_Page_018thm.jpg
6676524ab1306ee210c505a459af0912
028a3161851a1bba6550524651d8ea9432ef1acf
17906 F20110113_AABTWY suhey_j_Page_032thm.jpg
7aafb7d1709257323ca02888bcc4efe3
6a4bca00928666690d40fb290b769967adbb13a1
899 F20110113_AABUDI suhey_j_Page_055.txt
bd66f6b3ee32d6739765707a41d58220
5745c3b2119a31d3bfaa54113657897376804a42
1757 F20110113_AABTYC suhey_j_Page_033.txt
95541f641de37ff27371090023e7b023
6a39b78298109f61fc40230b423048ba538ebb05
46117 F20110113_AABUCU suhey_j_Page_037.QC.jpg
431f6edead09c334591513f8b5e04452
350aee7cf0d2d9062ef2a5d02e277d79d16dc6e5
1468 F20110113_AABTXN suhey_j_Page_043.txt
c870825ff9fd2ca18bd84f1ac2e8777e
5d279a28032bebcb7e7853bcdea296530d5ece7b
75348 F20110113_AABTWZ suhey_j_Page_065.QC.jpg
a30644db6d3998ac70955fdeee6d32fa
37342e4475f3144c12375091da1cd539d6599929
95576 F20110113_AABUDJ suhey_j_Page_117.jp2
42a59e0ef7d2427cd7a92ecb358a811e
2dcb5c6cc9f3d613d97a52a645fe12b7eadd0c65
F20110113_AABTYD suhey_j_Page_050.tif
df3c0595db2f312fbcc684f7e8a21b17
bcefcd33a58175cda960b46e05aad8cc03636a9b
40783 F20110113_AABUCV suhey_j_Page_113.QC.jpg
b22e92e1dca8aa7ce49414967ebbfc55
da78a7171382684b82d44b0f830aedaf4522b171
23291 F20110113_AABTXO suhey_j_Page_025.pro
5cafe99dd2efde42ebeb7baadcb2c2c8
5747185eb35e3d7382acebee9a5426ba00c897d7
10554 F20110113_AABUDK suhey_j_Page_013thm.jpg
0ff61f54f303bd54fdbd9f365b03206a
2cc49363f7657ab9880c370ebc1fc1c6a1c2696c
332 F20110113_AABTYE suhey_j_Page_019.txt
b690992b3ad47d7504c679486bb62e85
6cd53b1cd1ed71daee92e5ea377bdf2ba86558dc
763353 F20110113_AABUCW suhey_j_Page_081.jp2
67be8b70557997efa89d327ce7736167
6982b60d2df656bfde0cfceb61ea7cca6133e40a
75877 F20110113_AABTXP suhey_j_Page_022.QC.jpg
7f71be6084c1a472e69c93f783a03d44
2b68e1ccdbfc32c68bde37ef5f8e6c08f78d8c4d
F20110113_AABUDL suhey_j_Page_052.tif
bb829b85d3f77d7805a2e6ea93501c28
b123ec6cf578f89d63537caf2f6d0182bed6ad16
F20110113_AABTYF suhey_j_Page_027.tif
6b92430fd3ada49c5e43d6c4aa6bff6f
b618f1a4311436e6634b1b1f84f29152fde43bf6
318 F20110113_AABTXQ suhey_j_Page_023.txt
7ce14420e98e8001f6d624c99ab97f02
3f0444bbd021a5bbc787932bf1b52bac78fa7226
5653 F20110113_AABUDM suhey_j_Page_002.QC.jpg
8c22587b1e40c27b4af981ffcac03b4c
877a4a892671580014f3f1652e2818ed6676c7c9
F20110113_AABTYG suhey_j_Page_062.tif
43bbacdf1f27e8a72220d651dbeccdc0
c994ea814b0bdb97da626934943ba628c68100b7
12093 F20110113_AABUCX suhey_j_Page_112thm.jpg
55ac69d34528c8de2eadcb76aa3ffd16
f086ac3317a4aa080793ffe323bf8929097daeeb
55485 F20110113_AABTXR suhey_j_Page_107.jp2
b355207b46792be141c578646638414d
38b157921c2920e68b0d23058d46bd7492960266
28052 F20110113_AABUEA suhey_j_Page_099.pro
1b25539c91d19b692f9e4ff14b0d0bd7
13a1de2557dddd0615985489d3f62a4b7560d5b9
217489 F20110113_AABUDN suhey_j_Page_020.jpg
c2c19df6903d97cfeeaada665a3a0f94
8f6762e005ce2c46c14afae59030611f1c2380b4
50965 F20110113_AABTYH suhey_j_Page_085.QC.jpg
4c8828dc68d9e7bd4eb97b59dbb0fdce
35e676bfb1ffe553aa61bde573d36ffbc91b4e86
67699 F20110113_AABUCY suhey_j_Page_032.jp2
3843bec22033cdc54778b1050e30b572
beaf875748b8f712b01b19fca9cb2f1bfe1c53ff
F20110113_AABTXS suhey_j_Page_045.txt
f6d9b77bcc120d43026aaf58a0790f22
10daca5cc7024305ea877ac997c3cba4bc5bac5f
61193 F20110113_AABUEB suhey_j_Page_082.QC.jpg
6be659f7b86d0db8d9963eae1e4a0c26
3170a970afef1051a819b51be45634aa3b7f5d3a
1586 F20110113_AABUDO suhey_j_Page_057.txt
7c7498dadd1bbbaaae39866ce240bc99
1cec2ec70a56a5ba4d9d5a0198839e030196ef9f
165089 F20110113_AABTYI suhey_j_Page_056.jpg
05ba7646559c5a833df72dd6db4e1d8d
9dc2be20425d0d6290fd888d64516dd71838d26c
124020 F20110113_AABUCZ suhey_j_Page_113.jpg
c87d1479b07536c68a941c45c3938d10
a5e674a7d1fe6d98bc3ba9c368029ec911add0e9
F20110113_AABTXT suhey_j_Page_004.tif
3ee61e9d3580d2e3c51563f8db7c6c2f
d40653776a14a1e4a71450461ede97472698a2e8
45652 F20110113_AABUEC suhey_j_Page_038.QC.jpg
f4f36dc18bca998bd68481c68f86c4df
09324bb4c6f9150f6b65b2234a125c9e5bd42c98
10620 F20110113_AABUDP suhey_j_Page_035thm.jpg
7d8375525f60b0948283ad9dd48607b9
c6a7332e6b6bb8fb690536664191ca5d7d50e18d
24184 F20110113_AABTYJ suhey_j_Page_046thm.jpg
b81e0b2a39137db4f3b181066aa721cc
d08fc794645c654c299b63d2b9fa350a912f6389
48361 F20110113_AABTXU suhey_j_Page_041.pro
711e540426304dfe8f643102e869437b
e9884dffd34debfdb51a107ee3244c83340df329
28258 F20110113_AABUED suhey_j_Page_098.pro
fbf5fe8cd2e3c5cdf5ff1454ea2fb90f
8dfb2aa01c78ba5ef9312541823ff8de47084389
47216 F20110113_AABUDQ suhey_j_Page_054thm.jpg
ea4f97d6290c0fd37a319ca789c4dbb7
5548f35cf39f875cd1e598b5d4181c32d0cf5847
69298 F20110113_AABTYK suhey_j_Page_005.pro
7edf8671986654415d3da5a4e351008a
6ce083ff93a4e5f83e314060e635a3b164f5d587
71459 F20110113_AABTXV suhey_j_Page_021.QC.jpg
2acf7ae01f077d284a24144354aa8ead
e0011d2dc3bc82393761e177708d1727e12ccbee
64073 F20110113_AABUEE suhey_j_Page_036.jp2
ae1c2345a2481588b713665718c94c02
6adca157775560086d44270dd1a4dd8ea32da479
103065 F20110113_AABUDR suhey_j_Page_041.jp2
910c9364762bb621a550253b53d67047
ff4f32d6081d980cadad6f66d0f3cc9215bd1939
19533 F20110113_AABTYL suhey_j_Page_052.pro
4ec500be29c2a66e600f6a9f5e03130b
705fb21c985aa02e4764c8827b76b2b2a166c588
36038 F20110113_AABTXW suhey_j_Page_093.pro
6b90d8cdb1628af0e51328914463a8b0
8ccf64adc3da070d7860df95427015d0ef1d50f7
20598 F20110113_AABUEF suhey_j_Page_054.pro
bc10762a2424821d299e31d4a5bb3b0a
267dde8862f2d37108afc0a168718cd77b3d3011
31651 F20110113_AABUDS suhey_j_Page_013.QC.jpg
4d85213c00c051e4b7b0a86bab40a62d
5dee7ac6d26185e52a9bdafd7aa7225bdd3f817e
153 F20110113_AABTYM suhey_j_Page_074.txt
565c74408b535a4324eb0e1d9955cfec
28ebef5b1f9c812aa02d24c78bdf761ee1c06146
22962 F20110113_AABTXX suhey_j_Page_050thm.jpg
01394c8213343528cf83805c150c7a20
77b7bf96ad883e0f375fb73a3bb3da1750539873
F20110113_AABUEG suhey_j_Page_055.tif
7cba6139f212e8f9ec62d4daac540006
face2687bd420152b5c7a8d39942180b16cdd402
10668 F20110113_AABTZA suhey_j_Page_107thm.jpg
043f4be842b0a3f0112b8de9c32fbc20
4a6e59a48714ac907001b5cafe0ca3750f557e23
329 F20110113_AABUDT suhey_j_Page_073.txt
d4c022c52aa188f3152ff6270823abec
29ce48e203709a2a961a64be146d109090ed64e2
56629 F20110113_AABTYN suhey_j_Page_044.QC.jpg
b560bfd83777dab7f5969765b822c0ee
dbd5725262b26f3cbac1b672580f0163a08e957a
1564 F20110113_AABTXY suhey_j_Page_113.txt
62c1afc363cbc218c8f63220eee6d049
2cddeb2b61b4803c8d15b00d926291e7a5bd0b3e
F20110113_AABUEH suhey_j_Page_112.tif
d38d9acc3df805f09638bbe3eaaf5bd7
d6d748a2094ca15f37b8c11bb7bae116e5c611fb
F20110113_AABTZB suhey_j_Page_107.tif
2268cd0a2d49bb4a3419502e66ae503b
0b43acb30e89edfcce86222880a7c8bf0b057bac
136635 F20110113_AABTXZ suhey_j_Page_033.jpg
71b602192e28de20031be706a53ae8f9
e3895aae76d643d43c77ead848b90f8eebb1feb3
14301 F20110113_AABUEI suhey_j_Page_093thm.jpg
2a7ebf7a0eb8e18b741f3cbb4aefa384
9d51ed17c394936df9d409d76b4f7b2586fe95bd
2380 F20110113_AABTZC suhey_j_Page_011.txt
7da7e2d6b86bb9ea1207e2f51c73fc7f
4623519aa57032d1c488048e98a854aace115e17
1142 F20110113_AABUDU suhey_j_Page_098.txt
0689c86263bc6e7d52a064a4889b1d5b
773269b693768a920d7c26b8ad4d35419e498086
F20110113_AABTYO suhey_j_Page_053.tif
e9c86a12c5b890bfcb2b6f098c036250
fe6a55dff796b7db71ecb7a41a6dd93c8e766079
130464 F20110113_AABUEJ suhey_j_Page_032.jpg
1c5d0aa12196c37954bed4f4a9a8511c
6b01ab2ad241c00009f4bd0f0a11a6ca93d531c8
F20110113_AABTZD suhey_j_Page_104.tif
25f6ac592d14d8474c49ec41b3c1c9e6
2546a384ac3c33d7aa573177cac2072c2d957267
166991 F20110113_AABUDV suhey_j_Page_079.jpg
5ec2d7afb4cb4a29ce91317354f01dfc
9c16531225137a0e44708a622cdde81c864d198e
1051925 F20110113_AABTYP suhey_j_Page_077.jp2
422b935c86d7308b3934a1706e2d95ce
0f047c5d358404752be758a56be192fe0a37aa87
137363 F20110113_AABUEK suhey_j_Page_092.jpg
2759a8d84be95961ad8a59943491a9f3
def4798eefe30c98fa7b5f2900332a59e495e203
49609 F20110113_AABTZE suhey_j_Page_015.pro
7b7da2543c4f46751b8525e352195f22
470ef44185df43e02408e88d01e519c2aee95087
18661 F20110113_AABUDW suhey_j_Page_058thm.jpg
42e55c5f849743cb6a53877fcdc1aacf
f3016403fc965a23a48756aa404c215be4366db7
25946 F20110113_AABTYQ suhey_j_Page_045.pro
0ba063488afa0f057b7f17985f3f4e10
649eb0efdc17d1945d65d5592a0931fa69099c5a
1471 F20110113_AABUEL suhey_j_Page_065.txt
ecf945125cc7945d0748bbbb1410edae
9e55f623da33b9a79d90c5c667fee9e9a124496b
26468 F20110113_AABTZF suhey_j_Page_032.pro
71302221872e40819b1889a56bea614d
562f847eb1fcb8b94da3540bff1636ad0f5e2cd0
192017 F20110113_AABUDX suhey_j_Page_023.jpg
e7babfbc024335b7c34d6366f3cc624e
fe64936972d00699a341c51222b24ed0ce0dcb49
17051 F20110113_AABTYR suhey_j_Page_076thm.jpg
cfac60ac4cea09ed65d60bfef05664a1
5abf137678d4ec7466e51835732dfbc4897fa873
125681 F20110113_AABUFA suhey_j_Page_036.jpg
730f51387a570f1bcb14efab5707699f
ed0e3735068c2d6fe049a452847974baef451fc3
1051980 F20110113_AABUEM suhey_j_Page_006.jp2
0826635adcdf52a5a57e38c149efc48b
dce64561985efe2d060fa10f4a1a49e660170a2e
54169 F20110113_AABTZG suhey_j_Page_077.pro
96dfad8018b341aca47bdcadc176b78c
38d0725da0ef9c531dccee167b709b1fe48ab29f
50354 F20110113_AABTYS suhey_j_Page_102.pro
9b66cdaa7407aa7619f92e5f1b0fb5df
1b13810d4c76d19b1e1d12745cf620f9b41fa7dd
178019 F20110113_AABUFB UFE0005442_00001.xml
9e6d41a4687a956dab7819809cef4d33
1c2fedac0ce24eecc6ba2ae5389117983afd237e
60482 F20110113_AABUEN suhey_j_Page_062.jp2
d63e3b14d93737882af4a58bcae60a6a
7366b718c185c98fe281dc604e724cad6ffa92ed
F20110113_AABTZH suhey_j_Page_067.tif
06bb8ef60a19c71e822e3eb44fd3533c
d8c4c354c5305c20b0c228a2a33ebde90a9492cb
32567 F20110113_AABUDY suhey_j_Page_096.QC.jpg
18b1f9b5eadcb131af1494b284314d7b
e072a55133a33a2acb49a182fdcaf89d09ded048
548742 F20110113_AABTYT suhey_j_Page_089.jp2
b5b3f6291f9b7f1ed8e255c1587335f3
868933f0fe6a108109d487f78ca6ed048331d51d
360 F20110113_AABUEO suhey_j_Page_082.txt
0dfd3475f0cfa411a90bb727c6750096
020c1bb8b84d4111995484a2fa2ebcb9a159a751
2724 F20110113_AABTZI suhey_j_Page_010.txt
cb99e2aaab6456d6e8855699fde24819
1a321ef560eca9f3f0ec7f86a20536962a084bbc
116137 F20110113_AABUDZ suhey_j_Page_044.jpg
e9e62ea928a05f81c11534a7ff085430
4fd22d76612f5c5df776d2c7f2be72c5c890380c
2524 F20110113_AABTYU suhey_j_Page_115.txt
03a5a18b0ff2dfaf5fecf345d5958b58
94b3fda20ec83c4540fde3088df1578f6f1c4c3d
43124 F20110113_AABUEP suhey_j_Page_105.jp2
10f398e18618b12b501ef9d252817e9b
f004c93e43ce84f053f91fea802d927d0e5f5c45
37622 F20110113_AABTZJ suhey_j_Page_035.jp2
64d68e9a4e324ef6f3ff70e98533a9fa
ce2a38fe6da619a9128afa947a9e04f8df6f187d
145233 F20110113_AABTYV suhey_j_Page_089.jpg
98c6340a1c132c6b0116d9947df24fee
07b863843fc524113dfafd92e32e10b5dd34d239
55969 F20110113_AABUFE suhey_j_Page_001.jpg
6ea41256d66e075d62dd5abdb06aed5f
56673fa8e2273794eb04aa22c7bb0b9b58c86479
34077 F20110113_AABUEQ suhey_j_Page_107.QC.jpg
5bd213cb9a1f4d49ea7b0d38d254727e
f5aca202d35e38dd32e0662a735f16fc386c8dca
1206 F20110113_AABTZK suhey_j_Page_107.txt
2ad4cb77e695903464ecfbc61c226061
3dd57c040da6a602f7033381b3616b646f5ccc59
166199 F20110113_AABTYW suhey_j_Page_045.jpg
44cb1bf36e3f77819deac4d27088236e
f21d05e516f19800dea3ca07918728ce68755467
104200 F20110113_AABUFF suhey_j_Page_004.jpg
63aa1deac2a344fd4233ae4b009fec96
8ec86955e06ee39005763b0ee16195524400391b
1051934 F20110113_AABUER suhey_j_Page_052.jp2
8c4c1e452cf7705731d0c9b05cad0e59
ee7f0273b13a31f6c4fdf0a3f62c39032969f8d2
29751 F20110113_AABTZL suhey_j_Page_037.pro
fedaf044349998aa15fef00262be41fa
a3f6b553db86c62f55ff641dc5ea51ff62c5b90b
10940 F20110113_AABTYX suhey_j_Page_072.pro
afbcb98732d03b54f312aaeeb90b54b3
a00774b207a27e94d406ed5a24ec0e81b6169e3f
304902 F20110113_AABUFG suhey_j_Page_006.jpg
027dc6b4130c102fd2a48c4677371ea2
3890a61a317bb4124d2695445fd6f598fc86129b
3966 F20110113_AABUES suhey_j_Page_006.txt
2716726cdb0e9cff367a0dce5a5ccae0
b0c53000a79e948a5caa66342fadd728a972c944
632714 F20110113_AABTZM suhey_j_Page_051.jp2
50f4679e2ec6dcca5f30210fbac2ac2c
a897e52a562cfa0cc8b49a1db05d14bfa018e760
120557 F20110113_AABTYY suhey_j_Page_010.QC.jpg
7f3644e73737c445d2b4d719455aa640
b2542dde78ab29d2ab1d94d1ce1c1e6c45cb49c9
94407 F20110113_AABUFH suhey_j_Page_007.jpg
392383b0281a240295cc3f92166a2b93
1dabed878f640aee0d0bd8c98c342affe857814b
99952 F20110113_AABUET suhey_j_Page_053.QC.jpg
73d1f21bc1b2b41b4d4c03f988b5cc69
d2354e83edba5bd663a6670d1e0c20ae0253cce8
69961 F20110113_AABTZN suhey_j_Page_083.QC.jpg
cf5bccfee195bb62ebd4593c6150dc1e
eb87b74669b0a22e93e33860f592f9c413585051
20727 F20110113_AABTYZ suhey_j_Page_090.pro
4d4cac103606b0043d0f7e0be972754f
5efbb9c34e7a7645270b312c21d3ad4032a6ea1b
283518 F20110113_AABUFI suhey_j_Page_011.jpg
53cfa7e483c5419e33bb946326d9ecdd
12e0172bcb8639d93a4d64a237933a95fc37a059
1051933 F20110113_AABUEU suhey_j_Page_073.jp2
a6725e9c5de24b0b0467a82fdb371168
d42e73d2212099b3dbb9634a3c8eca8f9eff6f4b
115504 F20110113_AABTZO suhey_j_Page_112.jpg
b66315438a0532d441e2223513eed854
2ffebb3a584a87d536903a30394e8b6ce731be18
82050 F20110113_AABUFJ suhey_j_Page_013.jpg
f52e2737bba548f65344c868d8b8853d
ede327a59e0dcab8b53fd285e54d0b5592c4b530
119127 F20110113_AABUEV suhey_j_Page_062.jpg
f64102377be2dd79b9b01d19c662a603
70ccb6093953fa8cde184747c3886abae9950d16
179827 F20110113_AABUFK suhey_j_Page_014.jpg
5d269be0fd9663c46df4a27de29576f1
f4ec47b1df88f1fe6d70c696f76a6105e6271078
F20110113_AABUEW suhey_j_Page_064.tif
9261f668bf90061a088b74df530237aa
de7e6f2ca356e6fcb0948220c1fd9b65d6159705
69133 F20110113_AABTZP suhey_j_Page_010.pro
829d29cb1c66d7094ad43447e6bedf0f
505ae6e005c6731e0eee9026258e625d881fce4e
209553 F20110113_AABUFL suhey_j_Page_015.jpg
04c6f7cc0c6ebbe13b60b953bee0aa15
2b72fefc1c5d5ed25cd3799d730044697050dc7f
45246 F20110113_AABUEX suhey_j_Page_043thm.jpg
932b8964c17cc652830f78252e028ed3
267c150893c90cb79b13f621cae0ec398640931a
351 F20110113_AABTZQ suhey_j_Page_083.txt
c23fd919af75df94df9e2ff0130718d9
a2a8cfebb538b5e4bfb629849498d0e6a5cd0c56
196582 F20110113_AABUFM suhey_j_Page_017.jpg
685fa778f02337c20ea72bd4f94f81bf
fbcbb0e9e8adfac66af826ddf798b76f829d585e
58188 F20110113_AABUEY suhey_j_Page_059.QC.jpg
310ec5223ce5191e423e1db2aae7307a
219a113eb573f27b3996da4f2c1934b3d7ca8de5
12485 F20110113_AABTZR suhey_j_Page_029thm.jpg
2c7484977f0bd3cdfc4c763bd960adf9
93ff15ea5493abed2a9b014588a0b269e52f2109
243819 F20110113_AABUGA suhey_j_Page_053.jpg
6d73574eb270d0f3321363fc359ba4fe
ed2e6fc9e01ffd74bb37ff7c6fd18f6e35c7bb6b
147282 F20110113_AABUFN suhey_j_Page_018.jpg
ce8194c32a238a1d2a6982fc042fd97f
04a0740cd397c782d0f77a2282f4fe111cf77ea2
48262 F20110113_AABTZS suhey_j_Page_106.jp2
3adf703314f124afebabcf42475af587
efccd29f94e99fbe9a5a2c7a1bc5f426e5161324
151512 F20110113_AABUGB suhey_j_Page_058.jpg
8fb345d03d6694a6c09d62779c8d43a7
fda119d3f0a49ba5eb8682e74063784c0f86c295
190639 F20110113_AABUFO suhey_j_Page_019.jpg
4d06a009e8fe1211ae1a4a53e5f91c1e
8f171431797b8193cff58ed0d809aa9dca67af5c
40871 F20110113_AABUEZ suhey_j_Page_055thm.jpg
dc0d8c72b939684b8caaea84ed5d18f1
aac2922af7f6b7b0663a1b900ab282dc5d717ff9
1038 F20110113_AABTZT suhey_j_Page_056.txt
d9c68659792c2b95ce1be65b36e5a113
5ab3e13a10d4485d491552c818d47982ad6fd95f
108977 F20110113_AABUGC suhey_j_Page_059.jpg
09e0468797043f58023b7cfd4aeabb22
5a199a816fbb6aa1a344844e508b99842308f800
162320 F20110113_AABUFP suhey_j_Page_021.jpg
d2a8120e3e3e36d58b072391f2a99d54
152ed141d12ab23eea950ce07b564256d61cadc2
208162 F20110113_AABTZU suhey_j_Page_071.jpg
5c41f653086abd107d5900ac1971baf7
c22e28917a71ab96d4fec2126b10e382a30524f0
130040 F20110113_AABUGD suhey_j_Page_060.jpg
b63188e31ffa6d1ee54561acc22e829b
107cb3d900f48c907ac70c0a4684aa460933ea62
172695 F20110113_AABUFQ suhey_j_Page_022.jpg
543c0a9dab17debd952d59bba7ddb938
81a909189478a72c68a28901219f95e0023886ab
30873 F20110113_AABTZV suhey_j_Page_099.QC.jpg
6bf6a503a9b444d3222325b06fd7804c
3a98c9c86bbddd632354792be419e77e1665edef
112178 F20110113_AABUGE suhey_j_Page_064.jpg
deb4807594dc4850f2c6a2c0170cf47b
e035793f8032fe1ca22747c7fa30f35ba6e4e428
156586 F20110113_AABUFR suhey_j_Page_024.jpg
1aa8b7243d1b367e08701df531c5a1d9
8bdc3f6832796eeb23f525be0734f3a01b340680
85695 F20110113_AABTZW suhey_j_Page_043.QC.jpg
6019be501c5d26bb2999ea15cf03a46c
eab7fca14f4e8f5c4ff7a81d382c1e5e9f4a50ba
204144 F20110113_AABUGF suhey_j_Page_066.jpg
a75369aab08f3942547602b001c97cd8
aed21ea89116f3c3b97ad2197a74e98d7c862de1
204313 F20110113_AABUFS suhey_j_Page_025.jpg
8e944369ba4c94ba4715b5674e6a60c0
9d11e6413d12df326771b968e111f292d858032f
70371 F20110113_AABTZX suhey_j_Page_033.jp2
3b08bb194310b594abc5c27b4be721eb
f20c40edf15cc6253a8d4e3e0442b16fab612a48
177561 F20110113_AABUGG suhey_j_Page_073.jpg
db27aedcd42e18a0b995f20a64075cb1
9b39a34fc7f685724f276de73d5dd0c3fca24feb
92415 F20110113_AABUFT suhey_j_Page_029.jpg
acb7d847d4272888da979c7ac58fb767
7cbe69d720a58a689c7556663babc63a2f2a1d14
24274 F20110113_AABTZY suhey_j_Page_053.pro
95b6bc93e8c6ef8093d018563cbfc63f
b05016d51c8682e3766d6f7db59936894ef963b7
151713 F20110113_AABUGH suhey_j_Page_076.jpg
55a20648bf75fa50f3c7a60a8ff1f789
98a22bb18514d44c94a6df9faaf46637ae9072b2
165534 F20110113_AABUFU suhey_j_Page_030.jpg
8e954770fe2368d710071eff61d39813
8d3f0a5707b161b1addb71d1b923a536c3f027c9
107161 F20110113_AABTZZ suhey_j_Page_077.QC.jpg
bbaf69a24f53e0e539de7ca372309b95
e11541c1cc7dcc84450130765379157ed24f7a99
200027 F20110113_AABUGI suhey_j_Page_078.jpg
bf85ad16a3fbd839f9cd6afcbfd68292
f6f0480543e622f60b023e546f7d8187380142d0
119768 F20110113_AABUFV suhey_j_Page_037.jpg
2cbb2edfb554ff2aa0a2be84241445df
fe4fbbf6986e091363a3840d9d2647941f139e64
150782 F20110113_AABUGJ suhey_j_Page_081.jpg
254cbd58445781d13ac989943779138c
509a6e1be20176f45909fb528ab1b680ab509bc2
117377 F20110113_AABUFW suhey_j_Page_039.jpg
e69167488cade122215ba3e0a616031f
1892e7e594a53db489bb2c9bc76e25da43d057d6
121715 F20110113_AABUGK suhey_j_Page_082.jpg
56fddb7bb613b8587f4c81579bbbbed3
bfad2c765d72010f8d542431d59d3f22f05ad283
201620 F20110113_AABUFX suhey_j_Page_041.jpg
0924b5e6d2886821deb1a68e14731b31
8265aad6a098aa8dea82bdb060a3ec1f87f03402
183171 F20110113_AABUGL suhey_j_Page_084.jpg
b81cc8192afa901d4d2cd7d2c293f780
8e2e46ba90f13b1442e0d9a4243ace9d91dac748
125022 F20110113_AABUFY suhey_j_Page_047.jpg
96e31016ed8de37afefc5e3d8843c526
7d5b00cccfe48a41b84b58329747e8f6f344a984
155182 F20110113_AABUHA suhey_j_Page_118.jpg
b9088d7e0b068bcba144aaeacff6e7c5
343e51f8398ce7dcc2cbc884d698d1a28626d04e
90865 F20110113_AABUGM suhey_j_Page_085.jpg
01599cc22034693d3e979add3ab34f58
857134186eb025c7b42ca3c550a433dab7e98881
134569 F20110113_AABUFZ suhey_j_Page_048.jpg
fa3fcc3e8ae1242d777583c25912ccd3
dccd467cfeca37e03437eeefb7c12f37b07c92e5
24230 F20110113_AABUHB suhey_j_Page_001.jp2
adc676e575c5976446b14d7c7474139a
cea6b979b8dc2201630c0a1a611fb0b96a285316
162131 F20110113_AABUGN suhey_j_Page_086.jpg
d4962992ac302fe2c59bfc99eedfe222
fd504a8c3ef3ad3ddfb144bc5d5d1880526d9fef
5489 F20110113_AABUHC suhey_j_Page_002.jp2
2f2ac4373d2cff5bda4ad23f7eaff9c6
9fe00b1c30a0bea58ef6412de5b83f0896cbf7ae
105087 F20110113_AABUGO suhey_j_Page_096.jpg
42a211b6d2d49426ba372eb2544da098
f17b782c1074825f8429be6d95f6f62eeb328b70
1051984 F20110113_AABUHD suhey_j_Page_011.jp2
2f7cbb5a8cfafce80f98e3a5c31c9866
e2ecaf2add0f78afa3932315443693cad82057ff
98838 F20110113_AABUGP suhey_j_Page_097.jpg
b77160a46f2af5655c26ba91b1cb7638
23400edd57133b820e206f6ebc9a868aff2b2c8e
42644 F20110113_AABUHE suhey_j_Page_013.jp2
9dc15ec323134cdca5edb8ffee655894
830df3504ae058d96d91dac3774001d26f3f87aa
90895 F20110113_AABUGQ suhey_j_Page_099.jpg
781b038a7824fbebcc14a2a93e078009
0aaf27e912cde2ff2c6fc7a715ca22168ae5f497
898710 F20110113_AABUHF suhey_j_Page_016.jp2
31411207bb635a41ef1ba079c611aa71
48e092ec8e4cad672b8692237a76b17c9ea48c2b
162348 F20110113_AABUGR suhey_j_Page_101.jpg
0fb5c40799a245319b96a5402d3b19ed
d52ad79991efa10c5d20f8141054edc111cd5ba0
F20110113_AABUHG suhey_j_Page_019.jp2
2186d77d9aae26bbe5ceeb5fad4b896f
c983c13d75cea347496e9cfe4a5553ad64e16b4d
167923 F20110113_AABUGS suhey_j_Page_102.jpg
98acdcbc23ddf94bd560935bc6d095a6
2a2f83479ba32d1be1075c03440772877f46fd15
1051922 F20110113_AABUHH suhey_j_Page_020.jp2
d8957635211e8b319a939776ebc069b8
4a214a6307cc5b669654fdb742c00bb8f1d36bef
110859 F20110113_AABUGT suhey_j_Page_103.jpg
ddcb4a5f4d0a3eb9084cd7f931ade3ec
ae69655d2f8fa9bfb8da2df2b18644ab2519045f
880217 F20110113_AABUHI suhey_j_Page_021.jp2
bc04ae596ef073faa345a5ad32be010b
94c4b6f1854a65272c535f3143a3b4015f533fef
88741 F20110113_AABUGU suhey_j_Page_106.jpg
c6194f01975331da53abf786efa8d320
3d6e1ce184ce2fe7ffc85533ecaac213a408c2b7
115362 F20110113_AABUHJ suhey_j_Page_026.jp2
e0750bfe32caf509e1236132d3224ec4
5ef1cfd1b351942f2cf28464dd40adb2b24bfe56
98945 F20110113_AABUGV suhey_j_Page_107.jpg
279ef66c7bdbd5a33554ef0336e520cc
0f35b780b5cc1418f774885f2d086aec076c5074
63642 F20110113_AABUHK suhey_j_Page_037.jp2
eddb094f9d678ce817ce945ca3d36178
bf77e7e2e5a1e5c9f20b607d45bc0eab24103204
118945 F20110113_AABUGW suhey_j_Page_108.jpg
881df212d86991d79c304cfe0542f73e
cd8b720a0a509f5fb1c88f69a49ebb4d3ef2b5fe
62691 F20110113_AABUHL suhey_j_Page_038.jp2
175a1fdf6e9f2ca05dd5797ddc085547
4645564d1ec5d60e34868412302428ced9bfecce
82351 F20110113_AABUGX suhey_j_Page_109.jpg
7a6dedd8314d8dd386fa720abd6fd8b3
0f2c0f1500050cc90b1d2ae6f4252f2b0eb1bf13
48915 F20110113_AABUIA suhey_j_Page_090.jp2
7687c20e1068081720d1c80aa69ff609
fbb7c54741a401b0288dbaed7546ac2c7c6ceb7a
1051961 F20110113_AABUHM suhey_j_Page_040.jp2
ef1ff3c6a6782a7cb6e8a8ee893b3661
00ff935aaeba53a0ade0627a736255e8a2b005a7
46392 F20110113_AABUGY suhey_j_Page_114.jpg
c0079462aa4dfb27dd3cfef85ef0bdba
77a3d70165cbda8a529065b09969cda03d1faf96
72824 F20110113_AABUIB suhey_j_Page_092.jp2
92a3b34a623c0e728e1261d48ca0f9e4
32c9c864b45621e3eebcbbc5f51044b372690a90
935803 F20110113_AABUHN suhey_j_Page_043.jp2
1e3b83555573bac3a9630468588e1b50
8e561e9060a50434db4af362a60469d9bc201bd5
135896 F20110113_AABUGZ suhey_j_Page_116.jpg
f7299eb3327bc12b10acb70b6257c2de
ed3b70609589d18d39f44ecffa6b770eeab7d7c8
42202 F20110113_AABUIC suhey_j_Page_104.jp2
3537c676fe81b9142322d010aa8c37f9
238768168f388ede518e99e98480fb7f32d42514
436267 F20110113_AABUHO suhey_j_Page_049.jp2
c066701ebb054ef8d430555eff9f33db
99cebef77cbb52516edef88ac523d4a485dd42aa
65576 F20110113_AABUID suhey_j_Page_108.jp2
049e36c232622e4b9076cf8887999bb4
c3e51bf5c14786cb0411c598cb64159248afd383
499020 F20110113_AABUHP suhey_j_Page_055.jp2
c9ac467c842dfc176d9009f9be3457e6
a581026eeb4130c0832a6ce3d9c6018ffd748f29
43497 F20110113_AABUIE suhey_j_Page_109.jp2
a1019c8fd8d87b6f10b9d6de91a0d849
be72254d81df51762aef55513c9fb1f939ed0cc0
1051981 F20110113_AABUHQ suhey_j_Page_057.jp2
0e46749220182e952f21d0c201613a04
8a1235080da23e5f489139fa79380c5e54fb2349
58318 F20110113_AABUIF suhey_j_Page_111.jp2
d924a4e0299ef31bb7fad7a507735e38
0e9da88c691af069ac9e4f0a914e296058f14b1b
804801 F20110113_AABUHR suhey_j_Page_061.jp2
409592365ced547277f1ed0f5ffca2b7
e33627243781f4355c8e7aff9ca61395cd52ad1f
74698 F20110113_AABUIG suhey_j_Page_115.jp2
0b9566b822ba30c405e8600403cc5e37
f9ee2b8e50738d028344de824ec4330608df73d2
382577 F20110113_AABUHS suhey_j_Page_064.jp2
dbe48470fb15cda3902c1ad83d8982f1
6b67f478381630aea8691cbded15c826912688dd
79467 F20110113_AABUIH suhey_j_Page_118.jp2
48e8c05b26ebe90b3fa3cf06f4e35d85
a87e78f78fcd679215874572133067bf072290aa
F20110113_AABUHT suhey_j_Page_068.jp2
0881c2e344d6cea90bd634e60aaefd04
5d1572aa9bf987f1f78accc18536efe7e3f16b66
54147 F20110113_AABUII suhey_j_Page_119.jp2
429fb7370f429b0c0f3973a851c04676
649679dbaa30e5d9df3b2a8c074641910dc7320d
107827 F20110113_AABUHU suhey_j_Page_071.jp2
7940f80490e45778776814c950c60152
4c0ba010a035e89d7094878ceccc24eec65f1011
F20110113_AABUIJ suhey_j_Page_002.tif
c4955ee962062f97b3263e134ac0a080
04b10995cea7bb6dbfec39e41739b2e8509e840c
567736 F20110113_AABUHV suhey_j_Page_072.jp2
79724bcda75a624e78579c552ffa0e22
10e6b747cce1fc3d387e97c41fea5c647d86cc05
F20110113_AABUIK suhey_j_Page_003.tif
4d99607852a493986765018ff89716f7
7d327bac2d88ffe75d7ecd4bbf7bdf93ab46318e
859976 F20110113_AABUHW suhey_j_Page_080.jp2
0e84e96ef3906477650f0fcadab991dd
5ad0ed63053efe99aef4ffb6f40511fc6f4ebbf4
F20110113_AABUIL suhey_j_Page_007.tif
f6e2a37ecaba4f7a404e1f0ff45c4929
0ae394cec17e8d281b686330d079cb6823925ae8
586691 F20110113_AABUHX suhey_j_Page_082.jp2
855256885c61027fcc668e53c8374532
7da11a6e8348849f882085094b98ec38cef53627
F20110113_AABUIM suhey_j_Page_009.tif
21a8ca5d0d475bc2ffb247d4b9313274
cf818be82abf73508545b0c41e0e7d7cb27d9fe2
264874 F20110113_AABUHY suhey_j_Page_085.jp2
7a4848070838970dcecc3ca7a56ddc7b
a587ed18bc9b6e0a9e58f64fc24a164baf43f0c3
F20110113_AABUJA suhey_j_Page_036.tif
3f923cdb9e8e75d14f8b62510e9e3f9f
70334ad05a6b0988f27f367bb3327389976341f1
F20110113_AABUIN suhey_j_Page_010.tif
b9918754e94f7e8434b963d72a308653
a2807896141847a3ff9f94f4226ca08e099c281b
728402 F20110113_AABUHZ suhey_j_Page_088.jp2
b96031e27ab40abb8efea88e77209d64
ba21b5b1e268e24d63c173936d27b2b4fcf135c5
F20110113_AABUJB suhey_j_Page_037.tif
1e0134c0d838c34ffb169a7c97fd148b
3f1ab2a7c232e4ff5f85ef394f4ca7055fc84941
F20110113_AABUIO suhey_j_Page_015.tif
4b129dcfd198f458a723321ae0fdadbc
cad26f22a85d0e32d1fc776b6966a562390d4f94
F20110113_AABUJC suhey_j_Page_038.tif
7ea85eb12473e1a721c449ecd634f8d7
ef3605ec3ede5f28d8bad9ac07dc13b0174b639a
F20110113_AABUIP suhey_j_Page_016.tif
6a0fec10523d8b07f09d722e7eacd2dc
7a35541bbf950a3c79bbf794f997ed309b104916
F20110113_AABUJD suhey_j_Page_039.tif
ff7486b5d269ade173589783c01bf389
5c9ec0d7052e9e349e98f868ba6db66e51a149c0
F20110113_AABUIQ suhey_j_Page_018.tif
d54ad5619f991dd5c74ffb8298d707f7
eb05f9d47c4ffe9cd402475e2ef7a7fc399ba02d
F20110113_AABUJE suhey_j_Page_040.tif
fdc69723d120cc621000e72911d51247
b7a8540f5b7945349961bfe86a11c44f1b14e7e1
F20110113_AABUJF suhey_j_Page_041.tif
c625ac95474cf0d8441a6e00e1f8c9d8
7520539df400f105bdd2d820a20c2cc493ca77ab
F20110113_AABUIR suhey_j_Page_019.tif
9317e602b6e2f263c5c4c8e9ea9d9efa
6a705b99fbb704b7b1f0b1b6b491e68fbe4ba470
F20110113_AABUJG suhey_j_Page_042.tif
e8fb7c0901826366b25259b9bae8c7fc
d2ab3f293b8eeb7c350427dbd73a1c050bad4bc1
F20110113_AABUIS suhey_j_Page_020.tif
e32285431600e92a24e975e5c9d042bf
c29bc25624f6eb8d989669eab2fa98bbdfc4c0f4
F20110113_AABUJH suhey_j_Page_043.tif
98a017602ee64def02da86294c66de7b
db27cb9ae812e81ac540448d9ed9b07c88783cfb
F20110113_AABUIT suhey_j_Page_021.tif
a48e0497446836973e65ee75f8a3188d
ccf99e8083eb470cc8de2c68da63384984e52608
F20110113_AABUJI suhey_j_Page_045.tif
580009c2c0aab2e0ba51a5107b9354ab
575db81a36eb1d33f659ec18a19b74d7dbe99b45
F20110113_AABUIU suhey_j_Page_023.tif
bb1f515bc94816b98921fc51b662ea49
b3b33549dbdc1a9ea2e84dc60188bb2bcac958a3
F20110113_AABUJJ suhey_j_Page_046.tif
d08b08f021303bc3af5d365614015811
415b10b0e665f0da6fdbc844944b8bcca97a0d22
F20110113_AABUIV suhey_j_Page_028.tif
da46f5b51224965b5f01feab1c708871
fdd2035748f06fa5d0a6b151db20f710b66f9ca3
F20110113_AABUJK suhey_j_Page_051.tif
c0e957cccf82361a292093d1de4773bb
98c15fec2ad33f275ea739a1c5c3110ddba0797b
F20110113_AABUIW suhey_j_Page_029.tif
88e25aa45f44c98d8c0afdd383094fb4
1420333e108fd8a4c90223002cc8ff0cd7ec532b
F20110113_AABUJL suhey_j_Page_056.tif
b7ceffc62d6001e77c7d37049a8c97bf
3925077576298551bbf10f44fc3ee0300c60d745
F20110113_AABUIX suhey_j_Page_031.tif
cd297e06e0c3e668f22ad63525a61ce2
a3e1da5dc5e05f1b7f8c1d73687ede7b9e58cc0f
F20110113_AABUKA suhey_j_Page_089.tif
da4004323be503786c470758c39bc1d8
1d6e6b757cb281f59385125a8608d28e2649066f
F20110113_AABUJM suhey_j_Page_058.tif
63d0656e3f2767daf081a0901c2811b3
a2e2113019d46a014f4f239b15d7c901ea079467
F20110113_AABUIY suhey_j_Page_032.tif
3e6d2c6599c7228de6d1c1cc807a70ad
c000c09f9ab4691fd4560d6cb584ae146f00d825
F20110113_AABUKB suhey_j_Page_091.tif
bcd7c1e9e376585beab6bee3d6aafd5d
dd14a3f9c8365ca761919a1ed3acf05e937fa04e
F20110113_AABUJN suhey_j_Page_060.tif
52c83627eff18b5b41150ecaa57a8bb0
92ac2504b8cd5ac659ab9877e99d64f54bb6345f
F20110113_AABUIZ suhey_j_Page_035.tif
41b88afe01ef1b72deebe0d2c2a74796
30e6628262945f2b9ba8b73001cce8348440b623
F20110113_AABUKC suhey_j_Page_092.tif
42210a5c1ec4c7fe0bece0f1d281131b
74f389515551c46e339472ccd175abf8582fc771
F20110113_AABUJO suhey_j_Page_061.tif
fa78a8a99fe076f2049e8d02645e4e2a
5d8c840d09b7530e83a50a863d12fcc1b2631f7a
F20110113_AABUKD suhey_j_Page_094.tif
ea9ca163cf91dd32e5d01432e3ef15a7
d193790abd45252d6b1c8c353a349519c927eaae
F20110113_AABUJP suhey_j_Page_063.tif
d17746f6b848640bd482457049ad431c
1151c326ab9c8b73af7408fe9fda5e6721faf5e9
F20110113_AABUKE suhey_j_Page_101.tif
7819407d6c96a7105538e18789f1f9a9
72d30bd09947d0ec3bf8fd740be2905daeb84a9e
F20110113_AABUJQ suhey_j_Page_068.tif
7faac584274da408e176f3471ca9927d
9ea042805d983acfc4c839c9b27142c6bd39b1f6
F20110113_AABUKF suhey_j_Page_106.tif
3a33b5f37956b4813977e721489f5187
0a3579916dbb07015b1cc7e28556d18868fb850b
F20110113_AABUJR suhey_j_Page_072.tif
473a0f05892bbef30e3a5a96539cb435
82479bdb04d13aa58a3f090735becc171f0a575f
F20110113_AABUKG suhey_j_Page_116.tif
1f098eb07b3e8b364da702516ce390d4
8da99f707dd543fa506565433d221b071774c016
F20110113_AABUJS suhey_j_Page_074.tif
4a6f198aa51d27b8ca7eefd1a8bd2ca4
e0045df5cb027f38c5dd2efd0fd7337e9f451f57
F20110113_AABUKH suhey_j_Page_117.tif
c07b010810e7f9f6bda8abdf05b10683
829efcff0dfe8f1912c8e970fb8e60e6c4d9ab6d
F20110113_AABUJT suhey_j_Page_076.tif
efeb874f994262a6ae5372454039ab77
9ce6c284beda91e70a22fe98e2ce2212116a59a2
14550 F20110113_AABUKI suhey_j_Page_007.pro
225f983ef14a77f9877f504399a63aee
f637368e782876cefc6844a60b535299c844657f
F20110113_AABUJU suhey_j_Page_078.tif
f2710925261f1aede09356d15cfea7c2
7e9ffbcaae8eb02b60a3f3a86037b1083c89dd16
70798 F20110113_AABUKJ suhey_j_Page_009.pro
e7819b6fbfdef4aa9c24189cad49beb5
1fb5c69f1893dbe46ec6630f9080f16bf89455d4
F20110113_AABUJV suhey_j_Page_079.tif
a48dc025ee242b459a1edc08f5843d54
a57db5912e0147885bc4397600198f4d089bc59d
34298 F20110113_AABUKK suhey_j_Page_012.pro
5afcf5357e50230b49f41c712a540f48
edd3fed318fcd8277561933872e50c8559683b83
F20110113_AABUJW suhey_j_Page_080.tif
753716c6437e2b76f896f65d8eeca978
ebcfeff0319a38d27f2a5ebeac57ea8c89f7ff20
6860 F20110113_AABUKL suhey_j_Page_019.pro
2c50133c81e77b799e66b199834ed4c4
42fa12e9ebb4cf3c911a73e5e9b9b40133707921
F20110113_AABUJX suhey_j_Page_082.tif
494b073060673a69a11519b7aeee03b2
a88ce8828dacd244175376d0816b6c35f6549090
22963 F20110113_AABUKM suhey_j_Page_031.pro
c2d97a346ce51f6c2bbb5b00ad1e4bd3
ed53b240d8c41ccc5675fab5bc50d1d33b04ffe9
F20110113_AABUJY suhey_j_Page_084.tif
840f91c9a9a1112061728db40271c809
b6b90e0e29241613f86eeea512403d4f2dbcc89d
34843 F20110113_AABULA suhey_j_Page_076.pro
f58279f26838151136a04b2c14a1e728
d0fccefc227f5e824dcbaf2aeb933c7e718d46a6
57272 F20110113_AABUKN suhey_j_Page_040.pro
0dd299290f807a3a653d9c00fb8fa032
98714215fe2c0b9c858950fc5ecb9debfd0d5c5b
F20110113_AABUJZ suhey_j_Page_087.tif
0d9c9e6edf63dea4a29d254fe063430c
edf693093d45bb48ac3bf59b02a8b0bbfd520a7a
35390 F20110113_AABULB suhey_j_Page_080.pro
987f025308673e7a8bc129d4408d595b
aa1ada581f1f95c564d711c387b7a6312d3cf7d5
34125 F20110113_AABUKO suhey_j_Page_042.pro
cdb42e0b958b2ecaf0f92fcff5077825
0041f54d08f2c6abab7c9075746e521560490457
5219 F20110113_AABULC suhey_j_Page_082.pro
8fded2d3cb5033ddd2051900c82511b7
4cef7059989f162d9f7a31d2967becc1c0bb5223
33168 F20110113_AABUKP suhey_j_Page_043.pro
9a194725b8f5667710514155f4066109
84ab05ee02abc1c294b575b980f6e4203bc31108
42021 F20110113_AABULD suhey_j_Page_084.pro
fd71064816fe119c6606cd29d5e8c570
f88cbd954efaacb1e7947d1a4bbd08e8bf5a8652
5381 F20110113_AABUKQ suhey_j_Page_044.pro
5fa33fa97e4b5f49e76d51f4f4d0ead1
7824d6a6da66e836832489aa3922ec810303f79a
29616 F20110113_AABULE suhey_j_Page_086.pro
177fdca2f772112fda959dda88f4a4b4
3b7b52beedf5dfd7acb618d562820793b8fa8827
28873 F20110113_AABUKR suhey_j_Page_047.pro
7976e427d79a5111085ce2d553eb4722
9597f0f4a14781a162583796a7a14866ada980d6
45248 F20110113_AABULF suhey_j_Page_091.pro
a30f8e4e6af70f99800520609f7461b8
891d6b5dbfce6d5444affdc0fa1465dff2b45280
45273 F20110113_AABUKS suhey_j_Page_050.pro
00ebedced9cfb2fff49e63de7ab2484a
4c0f6f8175cfcc0fa25c08214dae4e6cdb8f0e85
33306 F20110113_AABULG suhey_j_Page_096.pro
fbe462b329fe578bc1bf200025013a76
47d75bab561a282086a6fb31249f6ad4562094fd
10534 F20110113_AABUKT suhey_j_Page_051.pro
6a13c7aba0761d75b9c11c9bfba0a6fd
6db22261fb313c2e0e3b99491c4441b4bc47a75c
26172 F20110113_AABULH suhey_j_Page_100.pro
8ebb99a330487c23922feccb981463e0
24b5ca041b1963d542f4e4232c9d717933d83100
38220 F20110113_AABUKU suhey_j_Page_057.pro
8bdb1741b9f5059440da59a4d677010d
7b09bca8c7f1e90fb4f26c63ade73c1578938f3b
48814 F20110113_AABULI suhey_j_Page_101.pro
a5aaab1f7c13dcf3b46f2e1cc508b621
e99f34320ccd86d0a3c749d05746c813d26daaba
35585 F20110113_AABUKV suhey_j_Page_058.pro
463950700c4c1d1fd6a14dfa73242bf1
e94db97481fbf822010184b7eed5005493b7a5c5
33710 F20110113_AABULJ suhey_j_Page_103.pro
d92c4618ba1c21a7005de1754e87384b
dddd1bdded4669181af48de91ea7810a03152512
38775 F20110113_AABUKW suhey_j_Page_061.pro
f1cc335e7cde72aafdb975de1820d1e4
0bcb668b0404aa422239549bdb107393aa9c4410
25449 F20110113_AABULK suhey_j_Page_104.pro
bd69e32174024d1d3536a326782a6c37
7ca409dc1f4e39d960cd53a2b7b152b1354c070e
30779 F20110113_AABUKX suhey_j_Page_065.pro
98d1fe9af589ea3309790c06afecd316
68e2f12600673293d819c3e1888b1b170b28ae5b
1667 F20110113_AABUMA suhey_j_Page_030.txt
20615d76a889165eff809afb6eeccfdb
117eeffc335e185039f428b750084fd2d94074b2
24067 F20110113_AABULL suhey_j_Page_105.pro
58e1903c9b19b4a2c8d3ed59c482d9d2
7944d9e592acc1ebefaa34e434054bf926680d02
3312 F20110113_AABUKY suhey_j_Page_074.pro
baf66ed1d251c7b9c6183ebb923d887b
7ac33798ae55a11b6dd5d7cf8fcaa20fcb47024f
29816 F20110113_AABULM suhey_j_Page_107.pro
ba65cae9520412e1c18328d698a3e3c2
04175564ebed1182523bc6ae4bf30ce673ce6ecc
7005 F20110113_AABUKZ suhey_j_Page_075.pro
47858eb22ee32936453594e333654ad1
6f66fc0104891f33c648fd385d0240c29700ac1a
1260 F20110113_AABUMB suhey_j_Page_035.txt
56ed8917be25fac4003d3a116e341e70
17cbcf5391ee19331d092f4bec6f8f0eed797509
36392 F20110113_AABULN suhey_j_Page_108.pro
aa1e5b5e0eff8065cb5ae8b37b94b22f
66f6043838ba68850d04dc89e45166b6482a130b
1691 F20110113_AABUMC suhey_j_Page_037.txt
2c5e000965a1d05b7a1b568e0713a547
9fc6ae33a5e67eab273c4da4cca3d44e0f351653
44808 F20110113_AABULO suhey_j_Page_115.pro
7f93d76446a41ca0e2428bf26cb57b3e
64f77b08f8e6064a5b0379cf47c239c55168ac77
1255 F20110113_AABUMD suhey_j_Page_038.txt
240a1eade735e93c377f64d72ee52621
bcf9bc6a313370005270b396a4e48d603c0d2c88
23383 F20110113_AABULP suhey_j_Page_119.pro
ad9cd0cf8ab4fed791a271a5a59d4d6c
3536ae535908a7ab622d2e03f11ff1c90b6b9881
1212 F20110113_AABUME suhey_j_Page_039.txt
4f96f7e784b318a1f8b1081d886f9280
f742381f72f854da6aa019ab868f213e90959fd1
131 F20110113_AABULQ suhey_j_Page_003.txt
230b7a5e032675348cad338f7e463184
c88fad6f3eb6b7f8492fbc3b53fd40b64c8c7c66
2577 F20110113_AABUMF suhey_j_Page_040.txt
8c3873bab41cdd7be69b85ca4dee5ad2
64cfa8a9b9efda4139d7f79b97c6f49669e394c7
2762 F20110113_AABULR suhey_j_Page_009.txt
e8157d6455efdb150c946a67b8b03c53
35d4387c1621f661cb0cdd1701b06f8f708e2804
217 F20110113_AABUMG suhey_j_Page_044.txt
5677359c3141a2fa72c77cbbde964487
56baab45b34c3cce3e414da685a17ddbd31bc1bf
1561 F20110113_AABULS suhey_j_Page_012.txt
5a23c1913da0e127355cc45b7cfaf73c
d15c696709bf792c5c128dab6c02523aa76cd6bd
1155 F20110113_AABUMH suhey_j_Page_047.txt
0fd328c00c643ba14f200c5b125a1478
0c8748083d36c7b6198a89f8d81b0182ae68c238
737 F20110113_AABULT suhey_j_Page_013.txt
8b7d0653683dc05a7c35d0ce1b551cc0
d9ba858bb49135ccef88276990336dfdda57acbc
736 F20110113_AABUMI suhey_j_Page_048.txt
b0ee0a065c6681bfb4feafcd54fde197
a095b8146e736bf83188d659561bcf70e8644371
F20110113_AABULU suhey_j_Page_015.txt
f9f847c24ded21e01de75e4c62352ada
8387f1123491e2a13d0c9b1fb65c16e44e41713e
654 F20110113_AABUMJ suhey_j_Page_049.txt
6ce4878d51448abf2bb1dac34971954d
2cfbb2dd48adb2c7a98922aad3655bd9ee15496d
631 F20110113_AABULV suhey_j_Page_016.txt
0fa20af5a69cbf5c747a3398b51f7a1e
4c1050a37f4a0d236b41b9dd87a0c6a5bd61b7ea
515 F20110113_AABUMK suhey_j_Page_051.txt
47410774f57906ba6e6df9958cf5b61a
017c962f86f72c81b90f6cc24c83659434941ba3
990 F20110113_AABULW suhey_j_Page_017.txt
a3be8f83fa1d72e810117c85db4a1c1f
99fb934ab56ba0a99d2c25f41b83dcecc7140a86
2070 F20110113_AABUNA suhey_j_Page_094.txt
eecf221a537b94d49977c5a044b46249
38002da4f1070caf0436600c9ff25a75a1a71caa
853 F20110113_AABUML suhey_j_Page_052.txt
9218107f828ac30a79d1806673231929
b4bed91ff835eaa2bdaeb8894fbb5bb91b824152
330 F20110113_AABULX suhey_j_Page_024.txt
fa467c6b1f597acbc3af71c914b22ccf
1214b7259acc2a903f46d12d783b25d7ec525ac1
1299 F20110113_AABUNB suhey_j_Page_096.txt
58db87ef124a09597200297b25012d59
79ca9406f22c5f8f161c00369307c71f0d19d462
1124 F20110113_AABUMM suhey_j_Page_053.txt
9049568770f74320f81eb30532e40c0b
a48f463231b2285aa2810e8d2f48126cae8b49ba
1817 F20110113_AABULY suhey_j_Page_027.txt
555a76637c8052935ebe930d42822d33
75aa3df6ec1526ad1f76a3b3ae3208c8eac0fda0
813 F20110113_AABUMN suhey_j_Page_059.txt
2228204b531a64f7880c26aa4bfec358
d77916d2414f44d4b98e1f9fa8afc609a1051d6f
1942 F20110113_AABULZ suhey_j_Page_028.txt
1ee4c666343bc2f91a6c256bfe6b7d37
6cd3bbc4e2b41a52404a4de88e347a5b438afe39
1100 F20110113_AABUNC suhey_j_Page_099.txt
efc3cdbd977a2e6413d8964a9c3427f7
c4ce4ad5855d46473dc12be87739785761024722
1802 F20110113_AABUMO suhey_j_Page_061.txt
7547efa033defaf8cca09c7f56920f99
2d57aeeb161ae288f0dccccdf0bdc52c853a77a6
1418 F20110113_AABUND suhey_j_Page_108.txt
7e9f121d2bfa98bbc11c1257933cbc47
3efbd102522ae9ed39540fe4bde1abf73d7e301d
889 F20110113_AABUMP suhey_j_Page_064.txt
ab75cc015303179f682e7d12a7185a06
fbfede9c53affab1bcee01fd5afd24a0b0f59e73
1467 F20110113_AABUNE suhey_j_Page_112.txt
f3262e6d4aa5b300af0a602c44a524c5
f3e3dd06ed04e83373d8e742d146ca538eb59333
1974 F20110113_AABUMQ suhey_j_Page_071.txt
0c89d409499a002bb00fe5109f35dbf3
8eb30e3d6250bd107022fea6850d48fc496907bf
493 F20110113_AABUNF suhey_j_Page_114.txt
47b1daa8c84d18fa530d639b45d38053
1d4f35b94e7f84ff2988a144f7ec8e5512fb83c6
437 F20110113_AABUMR suhey_j_Page_072.txt
412cecf43f40ea99f99e330650bfb9e9
e3040bb960d547de696bac05570b2034267517f9
1683 F20110113_AABUNG suhey_j_Page_117.txt
550a43fa082573dc82cb05f204f1a3a0
137c2b231f6e755029e07e0e46985646f051f428
2365 F20110113_AABUMS suhey_j_Page_077.txt
60a42c5e43b723ef7acb8c0d2b942ce2
de820949809ab671b89c198853ec569aefc591bf
1391 F20110113_AABUNH suhey_j_Page_118.txt
d37d7436a7c124a3acdf75de50edc6d1
46bdc08abb55cca283e5077167dd9c7c7f98c26c
1922 F20110113_AABUMT suhey_j_Page_078.txt
ab5c77eeab4be24d2c8449a2884bf08f
b90edc89f56bf42da053135486f582c0f378b2fd
20341 F20110113_AABUNI suhey_j_Page_001.QC.jpg
00d26e78b29a22bddd3a9dc1a1a29388
0f0adcfbd83176c18d747dbc6fef822268291a33
1827 F20110113_AABUMU suhey_j_Page_080.txt
9d8039cf1b2d7f4157998b54d483999c
3b1c4ffcd5445da5139e2820d08ec16f65ed57ae
13710 F20110113_AABUNJ suhey_j_Page_004thm.jpg
f91d5ca9142df955ef86e11d3508fd4c
f73ac064fb2ceade02709978b689005379655324
388 F20110113_AABUMV suhey_j_Page_081.txt
3c03a35684f72c558880448dc7f06a48
685f61e3b51fe33648ad5eec77ae62e12582560e
40692 F20110113_AABUNK suhey_j_Page_004.QC.jpg
5b278f7207d19b46024180bddc2a0f01
189263c2b14a321c341eb95e744f9eeffdfad8c7
1583 F20110113_AABUMW suhey_j_Page_088.txt
7114ee3162d23543c8c065d7e134919f
a01390924e9d5a3dacb2104e31f527d30798d416
33606 F20110113_AABUNL suhey_j_Page_007thm.jpg
b0bbb9b5b5ad05119d151961ffb48365
1d28e59dbafcf09a40658c9721f588b49f91dd1d
1031 F20110113_AABUMX suhey_j_Page_089.txt
c9853d1b447331ed4bbc6c3a6142af53
5fd1c3e9f688000c51084429610b89e80115ab17
40964 F20110113_AABUOA suhey_j_Page_021thm.jpg
08063d29b8d5aa4ffa654bbd529f03d3
54c1b0b489dbdaa6339bc65dbee03d5aad391d3f
51063 F20110113_AABUNM suhey_j_Page_008thm.jpg
92eb0fa8d139e14a6c62125bcd5abbbd
5ce108e682496a0b307dc78c5849385ad966e8ff
1321 F20110113_AABUMY suhey_j_Page_092.txt
64a37479c77f6e5a0706c442df80b39a
d33edb1b86f21967cd7054330bd5b6ffd7d80954
43703 F20110113_AABUOB suhey_j_Page_023thm.jpg
0e5cd810bf1b18abf4d5a9d072df3e2f
2f5c1b511d3e55914b33aeea32f80e77427406d3
113254 F20110113_AABUNN suhey_j_Page_008.QC.jpg
45bd02c2b8e1ee9cd788609c9db461d2
6658d3c62eba42767761d0a1f0d5480956fafbc8
1731 F20110113_AABUMZ suhey_j_Page_093.txt
87a7f5a79d5d21a346262ad4e397847b
e11d119ecca1b6cf89474e2bc25c77795657d836
23621 F20110113_AABTLA suhey_j_Page_017.pro
22a7d42512cb55cd15b9b44a5bbac55d
94c48f16cf8551565d20d254c0921e74b4b48c1d
84752 F20110113_AABUOC suhey_j_Page_023.QC.jpg
35d6b3a2a7f78101d504af4e095a9ed9
04b2c1040cf5e0a1b3905d777b281d960a24dfde
107787 F20110113_AABUNO suhey_j_Page_011.QC.jpg
d91cd07e2fd76473ed74d372bfa51cd9
66ff8e8e63feb6d29cf2ffe7e474c74c5265993c
23732 F20110113_AABTLB suhey_j_Page_109.pro
93cb71aa3da6af3c75a2f3769cec44fe
757ad41461be7a6e23c41fe7df07a080ed72071f
39173 F20110113_AABUOD suhey_j_Page_024thm.jpg
80b5c8bce398a7797a5a524a1c8faf68
7016b784cfa989e421fe32a8424d00dc5b8bf46a
53611 F20110113_AABUNP suhey_j_Page_012.QC.jpg
a2c7e989458c9ef51acb6b7562873045
b06b381a9051390bacbad1c5b788f9c26792222f
1033424 F20110113_AABTLC suhey_j_Page_042.jp2
28e8d64615b5a1624f7fecbad0881470
21edd1ec545f37f61f9c484d860cbfb7b58b14d7
68331 F20110113_AABUOE suhey_j_Page_024.QC.jpg
959083893aca43c53050e232b4769206
15169c14c9d0705489928ca8523dc096d13df1a6
21921 F20110113_AABUNQ suhey_j_Page_014thm.jpg
3efbbc2f285f7b6fd81becf3047ebe3c
2e95dcdbeff4fe086a14b57b5ed0b47f2a395e7f
44279 F20110113_AABTLD suhey_j_Page_073thm.jpg
d251ff28913d227d8f851dd526e1aebe
d566721b990ac83ee712b309eec19b44a4952b19
47157 F20110113_AABUOF suhey_j_Page_025thm.jpg
fe9c9d0183195db5ce37262c654cbe81
1dd2b2a075d7bd99073db7a32b1322ff400f3f06
63008 F20110113_AABUNR suhey_j_Page_014.QC.jpg
0659e7e02641ed28e9c830aadbabbbac
f19a98d0120094bfd49f9b59c52cbcc2ab980b23
77204 F20110113_AABTLE suhey_j_Page_076.jp2
ea359c4dfae86ffe69eed6dd0505fe85
f93291c77636680386aea57ed2be24c9d7bca055
89365 F20110113_AABUOG suhey_j_Page_025.QC.jpg
56e8c23b41b78394842a930639dce22c
cfd2dc9a068b77a930af6b94ddbe4f9754612eca
24633 F20110113_AABUNS suhey_j_Page_015thm.jpg
a1e6575ea68ebd744212e1cc64fc243d
5301d82214640ab86bfebfaee38adaba8a2ab05a
F20110113_AABTLF suhey_j_Page_119.tif
8a91fb6fd8f94196fc3ad51db7e61bbf
4b8655cdf4ea1bf642457b4f64b842798e8ec13d
82064 F20110113_AABUOH suhey_j_Page_026.QC.jpg
23d2535542ca30e897574280feb1b07b
e96017f636d5e47662fe9178a7ae2f19a6b19596
38090 F20110113_AABUNT suhey_j_Page_016thm.jpg
155f592cadf8b8f65233ac4cace8fdf1
21ae45f9fcc6c098cb7c91aedc4c77778b150e92
46995 F20110113_AABTLG suhey_j_Page_115.QC.jpg
cf8e1b14f5140f787ca52cd78e33b53d
d8d83494909a99739e55d5ef8bd7e5a7add3d711
22976 F20110113_AABUOI suhey_j_Page_027thm.jpg
a75d5cf3e306b73a5d71d67c3a445504
1785565590fda866037a3e75200be914cc8f3923
128265 F20110113_AABTKS suhey_j_Page_074.jpg
6983db3135052e8bac9e9ee1a91bbdfa
8d3b5218ae80fe7da7c356b5b1628fabfbe443a7
64893 F20110113_AABUNU suhey_j_Page_016.QC.jpg
262582921ade287486160881d6563da8
aca210b8c9821e8a804d534a69ffe9542af2af58
6986 F20110113_AABTLH suhey_j_Page_024.pro
00562c65aac2f34660e243c1b56ce50a
bb30cf366c12d86406f598be55b87a257a331b94
20162 F20110113_AABUOJ suhey_j_Page_030thm.jpg
574a3f693b27ff864acc9f3b15735f21
e3cfc24fdb4f88a3aa4f8a859d43563182bfb608
34985 F20110113_AABTKT suhey_j_Page_090.QC.jpg
dc97d5eba74998b95f4b286350b4848e
6ee8e057c1b87cc1f973de166051e62debba2e69
85342 F20110113_AABUNV suhey_j_Page_017.QC.jpg
77cf295ce795ea2eec8cb6d9cff49b5d
73de897d8de03eb1d4673054e4371fa6888f5e00
F20110113_AABTLI suhey_j_Page_026.tif
d34e0dbacad31a5421cbb2bdb4c3eb33
74372ed959a48103e1df80ff2a46a509ac4602f9
59622 F20110113_AABUOK suhey_j_Page_030.QC.jpg
52de8a9eec58c21e6c77580facfdb35e
ab578ff63834045dbf89e87c7388ac741a5cea1f
41859 F20110113_AABTKU suhey_j_Page_022thm.jpg
628d374a92c0086fdd19b7b5d0609d1e
38b9b999795f5d32f7d56ab93c09fb924e2ebd46
57717 F20110113_AABUNW suhey_j_Page_018.QC.jpg
23555564e5041076a3f1b17b45094ae8
61469fe25dfc7ac7e7aabfecc495dcfdc0cf6494
45828 F20110113_AABUPA suhey_j_Page_047.QC.jpg
9f6eec1569b7ec54c500729d0edab9eb
6f56002a510591288a57b57298062c418b04c3d5
103164 F20110113_AABTLJ suhey_j_Page_006.QC.jpg
ef750ddb1280abcefa4de00653adc6e0
9d0c9f5374ad26874cc81fc601df6a383600039f
14852 F20110113_AABUOL suhey_j_Page_031thm.jpg
64b77628c6e9b419d233a24690e98a91
72bee935c853245e058bc9cc0ad5ffe25cb8fb50
1619 F20110113_AABTKV suhey_j_Page_070.txt
cd085b85c2150c444413a8a02a4ec0b7
eacef7981a0df76fd2639832d50f5a918d046723
42372 F20110113_AABUNX suhey_j_Page_019thm.jpg
05bad16531966fbdb45b196062e521af
fae23fbfc6f2c235ca3d5be2e092131a5a079e63
39831 F20110113_AABUPB suhey_j_Page_048thm.jpg
22683f517a2152ea4521b814ff8d8a84
0ec148102149fd4cdf76fabc3a5cf65899385975
1315 F20110113_AABTLK suhey_j_Page_103.txt
e61105621925fb1fa5a19e00137a490c
7655968d3dcda7f49fed833534a7aa7176ffabb9
42918 F20110113_AABUOM suhey_j_Page_031.QC.jpg
a5a9722c61b26b1eaf601e1571c6b876
b5867dd4e9b3fb7f61522fabae04e7758af59b65
1734 F20110113_AABTKW suhey_j_Page_034.txt
b30570225be081932772a67774fb895d
fadd0939e910771385aae96e726b940835a736df
80392 F20110113_AABUNY suhey_j_Page_019.QC.jpg
8f0eb05749a5c0e83ab0fb7e8ca2364c
a3c7e4d4d4f12f3e50375cac463f4b66c452ac81
61757 F20110113_AABUPC suhey_j_Page_049.QC.jpg
72a7f1045a0e34a7c179645393b424f3
e71f37d2af20746fb13561ed0ace5d9a5ae3f848
20612 F20110113_AABTMA suhey_j_Page_029.pro
37502c3d13462b227328be75fe8adc3c
83f49e5339a717e0a9382b11c73b14fe5928067a
47298 F20110113_AABTLL suhey_j_Page_020thm.jpg
fd78afdfcdf6f3a16d9abd6bf3675e4e
de444be2e07bb05940040d1fd324b9ee17b432a9
51361 F20110113_AABUON suhey_j_Page_032.QC.jpg
9ca1c6d9c2506c93c434c3ca00c29a50
fb2232bbfd8ff9d0945d7e6ffa0dcf848cf52632
207181 F20110113_AABTKX suhey_j_Page_042.jpg
8c4ec8acc1cdd6ef3568b0c186a26163
9ec1083205b0b9f0a0ed1d9375b7cd212016b222
92007 F20110113_AABUNZ suhey_j_Page_020.QC.jpg
8e9f6ac3d35aaacee21d89573b662dd1
147b11603117786f368c18ab778706b3fe4c2517
70316 F20110113_AABUPD suhey_j_Page_050.QC.jpg
7b1ae694a5e631ea3916d1bdfa9600dc
5e395836ca3050eb1444d79ed0b3b6ff70a797ef
F20110113_AABTMB suhey_j_Page_109.tif
9bac27e24dfb736af46f19f64193da60
692d18b9dc9a7c00b915eeb6a5fe4263b88b2e7e
63726 F20110113_AABTLM suhey_j_Page_060.QC.jpg
c50e4787efb63ada5a9124c1ab30a84d
6c8a1d29630c307cf4339726de3f84d92edbbb4d
17778 F20110113_AABUOO suhey_j_Page_033thm.jpg
1d8b3835dd17b23abaed2759c98a5dd7
951471cf26c25020ba7e47ebf135389d46e06ada
1042235 F20110113_AABTKY suhey_j_Page_017.jp2
a65072bc8f160818023c72ceaf82e9c0
b74caf4e7b488350e5ec85899d3208b09a310cf9
698540 F20110113_AABTLN suhey_j_Page_075.jp2
b1f3542ddc3fc3e9bd40f472aaf8c82f
63732dc429f363544bfbdb1e803c8b178a5b42b7
54713 F20110113_AABUOP suhey_j_Page_033.QC.jpg
c4c2cd95f1a84aabd31d1040849c2e69
288b7c569c601a1b8ff907d597b983454fbb9d91
3754 F20110113_AABTKZ suhey_j_Page_087.txt
4d3724b6457ac2829f538d7eb8fa300a
4d7093a7e84a9cc81b2084f85a3b61a185c6b0dd
62184 F20110113_AABUPE suhey_j_Page_051.QC.jpg
4da99cdb8e43bfbb94420de780938191
1cb282d9008fd396d21074b0ca7edf03e4abecc9
19683 F20110113_AABTMC suhey_j_Page_055.pro
00dcddca1c6ce554f3c91a33f8100fa7
24fd5ad48a7d88e61d847cbe4195e1ceb71dc80d
5939 F20110113_AABTLO suhey_j_Page_083.pro
d678ed47326b6b0eb41dd5999abfc7c4
00f9a908b541a7401e9b77a4d33a5ec8418d3d8e
27192 F20110113_AABUOQ suhey_j_Page_035.QC.jpg
0f854b4478f4b2943aab2cf91e69301b
e9a69508afff6b4624dad5245849800727ab2367
43961 F20110113_AABUPF suhey_j_Page_052thm.jpg
a3926ad337d00dbeca95a6fbab804cdb
ddc79d5bbc795c907e924c06870ad84c91cc9823
37703 F20110113_AABTMD suhey_j_Page_112.pro
39888822d7c392cd0034b28c70188295
16a3c32a3ba437766141a6dd7916b9f5478bee12
91016 F20110113_AABTLP suhey_j_Page_101.jp2
c628f582da777a6921ba5a0ba0bd6e1c
b83adbb7db754d6c0a5440d1857425aa1aadc9e9
16025 F20110113_AABUOR suhey_j_Page_038thm.jpg
c27eb23f3662c7776d94a1369c8073ef
c6564c1f7efab8cc2282a1fbc55b93f1d072696b
93716 F20110113_AABUPG suhey_j_Page_054.QC.jpg
e6d2b8266d3ce113f0b2696b2d76a278
06f48c6e2cb9a1f5b75f94f64aa3722d0622c13a
F20110113_AABTME suhey_j_Page_049.tif
0d341e70b8f01265496f93d45467bf22
83d15c2df346499ad483c7aa00d488e02a4b0231
F20110113_AABTLQ suhey_j_Page_102.tif
f9ad3658d7eea8b3b3a85e18f0a47417
c9880c887f5a7f0b81cd776e376e405415afd932
45249 F20110113_AABUOS suhey_j_Page_040thm.jpg
e160b37ce88c3e39063a031253199782
8ba23275ebeb7b3185df7f091293d4261529b167
78449 F20110113_AABUPH suhey_j_Page_056.QC.jpg
118c676f7f1c29174d9f43e3ad694e6e
93cbd6aae025c927aefc81367a67f4b2d10ff2db
24378 F20110113_AABTMF suhey_j_Page_078thm.jpg
2342d1ccb1deb26be8fd681523c4a13d
781247f2e710c7c319a0232cd3a8216de2830865
1370 F20110113_AABTLR suhey_j_Page_110.txt
019e0d102247969e07edeac4d6c8f35a
ff9f4ef9f11fa540295a8ab93c6c1d143c46d025
88521 F20110113_AABUOT suhey_j_Page_040.QC.jpg
ed8a1d468fc662bcd8755b70448f1f95
2cb0d766115c2a69713b756d247f545c6f0a8048
14266 F20110113_AABUPI suhey_j_Page_062thm.jpg
48bd88de503b8b71912e9840c1991db2
67a0d60b0a90bda46811f711a04af2ea797d9fbd
9216 F20110113_AABTMG suhey_j_Page_096thm.jpg
e2289d0e5bbf74520c8ef9bc8aab0ff8
b348910b1d60cfc02f0dc78138440b452db636a1
206135 F20110113_AABTLS suhey_j_Page_052.jpg
a40fa71fe24360bd508bb4a57e331759
a1cb1625a4fe2f7723b0982f23f5ac0e018de52a
24265 F20110113_AABUOU suhey_j_Page_041thm.jpg
f14b182cd05cbc037f09394cab1c97ea
4c76569a6f652bcba49ebd4c939a4da2100b2c78
45224 F20110113_AABUPJ suhey_j_Page_062.QC.jpg
ef3a6447d88f099a6baee2b7b878ecc7
d0fad1757d7239334bb7e4fec3cb5e0ad7c0eb27
37343 F20110113_AABTMH suhey_j_Page_059thm.jpg
c9432a0903cb20dd7a2ea7008e9c71de
058e33da9f35483cbeb46c0e7323c0fd976248e6
51787 F20110113_AABTLT suhey_j_Page_007.QC.jpg
d9409674ec12b9e88e43598f3485586f
312846f19bf593f9b826b8acc5860a2f1760dbf3
48293 F20110113_AABUOV suhey_j_Page_042thm.jpg
6e41d952a363f1038b676f5cf9f7cc7d
67bbaabda067d0192b46511d9d39d7e0975bcdf6
57713 F20110113_AABUPK suhey_j_Page_063.QC.jpg
e756a37a76e0440dfb0f094b66fc5fb6
6011d7d7f02b1ce9ebdea2148b66746832928cd9
61671 F20110113_AABTMI suhey_j_Page_008.pro
3e5ceb5a25e8fa227a8c5849329c9497
0a6b23e0e2bfae135df837cab45203c05f94907b
65944 F20110113_AABTLU suhey_j_Page_084.QC.jpg
6309bdd584f75d5bd13b9c0d55e857b4
0bfefa4df899601638a5ec772ed9309724f971e1
36938 F20110113_AABUOW suhey_j_Page_044thm.jpg
e7252ebfae378192e0ac9ce5836b4066
1ce27d353b9d39e733a0864c85f4490d8cf3348b
80393 F20110113_AABUQA suhey_j_Page_088.QC.jpg
627f1006d01e0282c13a9871687d5882
dfdafe98113900c4b449c0c4429914f05e35cf20
84207 F20110113_AABUPL suhey_j_Page_067.QC.jpg
6ac4f19afa5ab09fee6630dbc8bc7c4f
5764c8eea94403901490f6e4acbb0260b198481d
F20110113_AABTMJ suhey_j_Page_054.jp2
9299b84944f015d2dde8376202bf5aee
469bf98e647675e88074b707c851b87a18ab24d0
325 F20110113_AABTLV suhey_j_Page_021.txt
a5fd8eec89799ae777e89fa66e626602
2b738537c508e360896132c1e646f58c5776df00
41928 F20110113_AABUOX suhey_j_Page_045thm.jpg
d1252239610e0d93e4969bc44760d9f1
53689bd43831733767d28acc50eaaf703c8e3eea
42302 F20110113_AABUQB suhey_j_Page_089thm.jpg
7e9433336a8aec9bbfe5997c3a2084eb
001fd854d7adec60377de228f3c53fd850bff613
23070 F20110113_AABUPM suhey_j_Page_069thm.jpg
7cee23f635b39601cb2a0a186fdf88b4
a20eedb84d96a369db80a01a66f8cbd108d2e6a2
77518 F20110113_AABUOY suhey_j_Page_045.QC.jpg
6a3e1fb7ab3f0034fdeb11c57e603d42
6c1456d00d395e31b78df77225f03a1952df1296
33634 F20110113_AABTMK suhey_j_Page_111.pro
d1107f008ce18f682b9572ac045f27f1
1f5708dcffe6ad1fa53ed1fe6addecff4ff63367
F20110113_AABTLW suhey_j_Page_096.tif
ed35667bd38811fa664a44da8f976136
5afc39f558c112ecc4fbc45c2c8da5829ba0a618
11870 F20110113_AABUQC suhey_j_Page_090thm.jpg
3682b0db951a5d5bf8c2e17f3d1565cc
ce752e716b34c9b65e064a787c6da56c16814ab2
73564 F20110113_AABUPN suhey_j_Page_069.QC.jpg
dc405a5cfb041d94709d100df1f159c8
bcf2ab0f034d7eae99827d9827ad6719b00f5edd
15680 F20110113_AABUOZ suhey_j_Page_047thm.jpg
282782d86d6bc5f5e34fc12dd3af0623
39893f936d95fe9d61d2b57bc9cf9520a9bcb3ec
109319 F20110113_AABTML suhey_j_Page_015.jp2
f0d86d7ebbcf0aa947f00be79e1cbb9c
fca1dcdc1214730234a8ca24e79a4562286ae8b7
1121 F20110113_AABTLX suhey_j_Page_002.pro
9055b8a09a70577e8d0428d9b6b208d5
602d75769fdf749878c37b88cb9e376af43988ea
24521 F20110113_AABTNA suhey_j_Page_028thm.jpg
237e8576b242b14a327919ce9c03ed1f
9c2847c1c4fa165edd257d21418a52838b8492a0
22007 F20110113_AABUQD suhey_j_Page_091thm.jpg
1d38ac0f1af6efd097129c20640d2cc5
b7df3201fec8b1e4a88fce026fd7ae978fb2df22
47279 F20110113_AABUPO suhey_j_Page_070thm.jpg
4e1157d58ca25b2c4a1694cbe4774f0d
a914b772e946fb317fc71f9c61e1aac58f153da1
18409 F20110113_AABTMM suhey_j_Page_060.pro
22b926a6dd7b75a849ff3bbd2eab77e5
228871fb516ed8b0af2ec09ce590c3e6edc1ddee
58363 F20110113_AABTLY suhey_j_Page_058.QC.jpg
9bda1be4b6dc742132727bfdcc444af8
e35e13d7d9badbe56c6f7ab1981549294ba48351
F20110113_AABTNB suhey_j_Page_017.tif
4469a5c7bea8e34f62deb1fba00ba58c
77bf335eaf3b3ad2400f8313ed7d8e66cde14b18
53415 F20110113_AABUQE suhey_j_Page_094.QC.jpg
0c1c47abcab395729dbf5d68afbdf0dd
1004f0859793185135f01203f19fa8d635f36201
82122 F20110113_AABUPP suhey_j_Page_073.QC.jpg
05e77f3fe1d6c72df19b7205869b9310
68f8d64887562de96cd34283b84c70ce01670206
93719 F20110113_AABTMN suhey_j_Page_084.jp2
3de4707cf5f9a9e9cce723370d0ba96f
6092bb46f94c4dd66daf9a492ce6d36793d434d1
15042 F20110113_AABTLZ suhey_j_Page_101thm.jpg
9cbdbaa6586f4b6f1964bc2e4be0f40f
2589c526472ef244897ecfab3af566634b0a9e6d
465 F20110113_AABTNC suhey_j_Page_001.txt
ccd7256b461cf5b41eaffad05dfb985b
819d618048f94d73d1029890e60232b8650f0e9c
67351 F20110113_AABUPQ suhey_j_Page_074.QC.jpg
f32077c44875e3de802933350aa9830b
a6f9a36e5abe8502f728f6cb46a28530f1d29d8f
F20110113_AABTMO suhey_j_Page_083.tif
f2ef392e221a030a8b816b191df6a705
447804835f981a781246bdcf39b017640b48c6a0
31450 F20110113_AABUQF suhey_j_Page_097.QC.jpg
a4dd9a297d914b5a8bf78a6a45b2b8bb
131531c4dc44e7741dd3b4c1c3d83084872a5cbe
62916 F20110113_AABUPR suhey_j_Page_075.QC.jpg
1bdedb145e7572e103d95178898084fe
f5e340caa14331ed33e361006c39552524f7abae
288841 F20110113_AABTMP suhey_j_Page_008.jpg
78feab4d26d8cf90ee3778ab9e964f6e
d7a87985b39c40bb2463bac3b837ac9d82bb29d6
91615 F20110113_AABTND suhey_j_Page_042.QC.jpg
e021e7fa8cdf60c4d9b4c9c516f3e5be
cc96ce2e255c229268bded3e3e3748cfeb419a7d
10101 F20110113_AABUQG suhey_j_Page_098thm.jpg
eef3950f62c1ee1997580a4ee6312aef
6bb01e8fdb0f7c5763a899faf0a295bec4cbdae0
51242 F20110113_AABUPS suhey_j_Page_077thm.jpg
1f81700f6cfd27de7e647cdbd6cd388b
b3617012c5e2d2fb8be0d610fbe8320fa4001cb4
27917 F20110113_AABTMQ suhey_j_Page_038.pro
4f09e0439b4a2f54f3c20931afe96d41
d6b8ad11c967dacd0bc6e405e5171d57b9aa66f9
1473 F20110113_AABTNE suhey_j_Page_066.txt
c81d414e17d5c0e1dd50db42c89a0dd7
ad2c52a67cc380bc18b98f08ecb726e988e83b8c
7084 F20110113_AABUQH suhey_j_Page_104thm.jpg
962f5ac0b1fbe98645bfe22149afc44e
a026bfc012b2152ee332781ade08aef315b0b363
76771 F20110113_AABUPT suhey_j_Page_078.QC.jpg
793fbda26814f9726c9c3e13da1dd373
f0bd60fbd59c688e18d3d669dc9eb42c5cb23bac
46235 F20110113_AABTMR suhey_j_Page_080thm.jpg
184364c7b78c261c96cfbffdc983cdf4
aafbf3957c09d78b12713aaa1458303dcdf2cc90
194394 F20110113_AABTNF suhey_j_Page_027.jpg
7c7db5a7e9aa891363243a9cb54a1b3c
18aac3c832769cc793dac98298d06e36d9b72d4f
25140 F20110113_AABUQI suhey_j_Page_104.QC.jpg
d7ef7f3a1ecce4413893da592b44a19c
594725221eefb9db64e7fa6a453af8b0b38b6547
43751 F20110113_AABUPU suhey_j_Page_079thm.jpg
a5e6a0442b7eadaaac46269569ecd6a9
4bab0c4e09a24ceec2bf75ce858d0712b3f2d965
949491 F20110113_AABTMS suhey_j_Page_022.jp2
bf40a2ee8ac8e59e06f7015ba4225e77
7cf4d247388c5e6cb912b13ee733cb4d2007bf4b
F20110113_AABTNG suhey_j_Page_114.tif
8d0948b5a3f2f0c2b4a052e8777db783
4c1beac5235f9a58d7ea9ad4e4b9ad83e2d63dbe
9178 F20110113_AABUQJ suhey_j_Page_106thm.jpg
ac5a949e571095adebf4ddc0b542e19e
199b1c071ed692a4cfbcac46168abce5268d27e5
89398 F20110113_AABUPV suhey_j_Page_080.QC.jpg
0eb9257b70832896bbb0d6d1e44fec39
200c6cc026daedd97b27704cb2b9b5deb93e98bb
193646 F20110113_AABTMT suhey_j_Page_080.jpg
05d500a5cfeb516800f9cf6b8659d0ee
4f8c6d52dbae6b334b6436f5ae5598b1f544b1c8
1398 F20110113_AABTNH suhey_j_Page_036.txt
90c4506e8cbac10aff8669901a473f94
44af975f9c33def241c36f6ea77598f96264e1ac
12480 F20110113_AABUQK suhey_j_Page_108thm.jpg
95b2f9a2e386c47635f4e636e47346ef
b135ac63e18869027126658cc71a17dbb1881e5a
71674 F20110113_AABUPW suhey_j_Page_081.QC.jpg
84afd33106f9c1a2e57f0272278853d7
b944b8980c3c2c9a9125b863056c177db9de9255
73778 F20110113_AABTMU suhey_j_Page_035.jpg
9fec0f7693f8e3c529c71b2c2c517f39
2673e16611334771dfbafb0013552bc98440abcb
182131 F20110113_AABTNI suhey_j_Page_061.jpg
96b93db6e5b8c242cddaa7d37aee4cff
58f8dd829fdb833af0d422b49e30dc200df6568e
39550 F20110113_AABUQL suhey_j_Page_108.QC.jpg
b4479b389b4b95f102f836639ae10751
f226cb18a15533e870d9ca21ffcb225b27715143
37668 F20110113_AABUPX suhey_j_Page_082thm.jpg
0955a58fb44b5851ec5e7ae5f5f9c743
a9eb27668cc06df53cfc2c4834420488211ee9b6
F20110113_AABTMV suhey_j_Page_070.tif
66829a32c5064a0910332af762f19b69
94c84726edf8a97a98d38e4f9d309ca2e747100c
25138 F20110113_AABTNJ suhey_j_Page_087thm.jpg
258564093a223101732f6b95e720662d
406002ca4606a6dd5013ba52b1f0b2fc66aacb86
8158 F20110113_AABUQM suhey_j_Page_109thm.jpg
94f17efd27376c0d505b4919ee36770c
c497eff0ddbe424f252d5965ee9302468e7431d0
21077 F20110113_AABUPY suhey_j_Page_084thm.jpg
84063f322119370bf6c5a78b5db0969f
847a7f2687140b1c351198d4c0a680fdd48734bc
F20110113_AABTMW suhey_j_Page_088.tif
cc5e42bb224b78d1189d112c263692fa
1c4f0e2abad6179021564e27379e5489a98ed06b
17080 F20110113_AABTNK suhey_j_Page_118thm.jpg
0f3a58e063857cb47d9b99f1f3709ac5
77a64a9912a4eeccb313adfcb9288fed12ffc6d0
10567 F20110113_AABUQN suhey_j_Page_110thm.jpg
a92c05299cd6be8a938b9c8ec5c95039
05d2eb080577dca58facba4cb3949bab1841d8fb
43457 F20110113_AABUPZ suhey_j_Page_088thm.jpg
0e94fc023ea37173cd2f0a922ddb35b3
b8e206077fa6b35ef179e34ae029987f56fc63ef
46426 F20110113_AABTMX suhey_j_Page_069.pro
585cd9b989b8e0b6fe443bc2904a0d4c
46f80fb77ffac702d642b88793c7ec11e36a9797
17522 F20110113_AABTOA suhey_j_Page_012thm.jpg
5a15b03149b3cea508b326c576fbe646
5173fcd79555988e3989f0d92f6ee03d3fabc181
35322 F20110113_AABTNL suhey_j_Page_118.pro
85f0047499fed81378a1b3158eb299df
d5beebd85b08fc0bebaf0ac5fad0fe80268336f5



PAGE 1

PRELIMINARY DESIGN AND NONLINEAR NUMERICAL ANALYSIS OF AN INFLATABLE OPEN-OCEAN AQUACULTURE CAGE By JEFFREY SUHEY A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2004

PAGE 2

Copyright 2004 by Jeffrey Suhey

PAGE 3

This work is dedicated to anyone who strives to challenge himself.

PAGE 4

ACKNOWLEDGMENTS I would like to express my gratitude to my advisor, Dr. Christopher Niezrecki, for his guidance and wisdom. Working on this project has provided me with an opportunity to advance my education and potential. My sincerest thanks go out to Dr. Nam-Ho Kim for his enthusiasm and expertise. I would also like to thank Dr. Ashok Kumar for serving on my defense committee. My thanks go to Dr. Ifju and the members of the Experimental Stress Analysis Lab for their assistance. Srikant Ranjan, Vann Chesney, and Jeff Leismer were a great help with my ANSYS installation and licensing issues. I also owe a debt of gratitude to Anne Baumstarck, the Baumstarck family, and Erik Mueller for providing me with temporary lodgings while in Gainesville. And special thanks go to God, my family, and all my friends for their continued support and encouragement. iv

PAGE 5

TABLE OF CONTENTS page ACKNOWLEDGMENTS.................................................................................................iv LIST OF TABLES............................................................................................................vii LIST OF FIGURES.........................................................................................................viii ABSTRACT......................................................................................................................xii CHAPTER 1 INTRODUCTION........................................................................................................1 1.1 Aquaculture Introduction........................................................................................1 1.2 Inflatable Structure Introduction.............................................................................4 1.3 Inflatable Structure Analyses................................................................................12 1.3.1 Modified Conventional Beam Theory Approach......................................13 1.3.2 Nonlinear Approach...................................................................................14 1.3.3 Linear Shell Method...................................................................................14 1.3.4 Finite Element Analysis Approach.............................................................15 1.3.5 Selected Approach......................................................................................16 2 THEORETICAL DEVELOPMENT..........................................................................17 2.1 Fluid Analysis.......................................................................................................17 2.2 Non-wrinkled Inflatable Theory...........................................................................19 2.3 Case Specific Non-wrinkled Inflatable Theory....................................................21 2.3.1 Bending Moment........................................................................................21 2.3.2 Vertical Deflection.....................................................................................22 2.3.3 Wrinkle Length...........................................................................................23 2.4 Conclusion............................................................................................................25 3 EXPERIMENTAL PROCEDURE AND RESULTS.................................................26 3.1 Experimental Setup and Procedure.......................................................................27 3.1.1 Test Sample Orientation.............................................................................27 3.1.2 Sample Shapes and Correction for Fiber Discontinuity............................28 3.1.3 Experimental Procedure............................................................................29 v

PAGE 6

3.2 Sample Shape Choice...........................................................................................32 3.3 Data Analysis and Results....................................................................................33 4 SIMULATION DEVELOPMENT.............................................................................39 4.1 Verification Model Development and Results.....................................................40 4.1.1 Applied Loading Conditions......................................................................41 4.1.2 Water Current Drag....................................................................................42 4.1.3 Element Selection and Properties...............................................................44 4.1.4 Verification Model Results.........................................................................48 4.1.5 Verification Model Conclusion..................................................................52 4.2 Cage Simulation Process......................................................................................52 4.2.1 Flow Design Models...................................................................................53 4.2.2 Element Choice..........................................................................................53 4.2.3 Loading Conditions....................................................................................53 4.3 Top-Down Flow Cage Model...............................................................................55 4.3.1 Applied Loading Conditions......................................................................56 4.3.2 Boundary Conditions..................................................................................56 4.4 Side-Flow Cage Model.........................................................................................57 4.4.1 Applied Loading Conditions......................................................................58 4.4.2 Boundary Conditions..................................................................................58 5 SIMULATION RESULTS.........................................................................................63 5.1 Simulation Strategy..............................................................................................63 5.2 Failure Criteria......................................................................................................64 5.3 Stress Results........................................................................................................66 5.4 Geometry Deformation Results............................................................................67 5.5 Simulation Deflection Results..............................................................................71 5.5.1 Qualitative Deflection Results....................................................................71 5.5.2 Maximum Deflection Results.....................................................................73 5.6 Cage Size Results.................................................................................................74 5.7 Velocity Results....................................................................................................77 6 CONCLUSION...........................................................................................................78 APPENDIX A ANSYS SCRIPT CODE.............................................................................................80 B EXPERIMENTAL DATA........................................................................................102 LIST OF REFERENCES.................................................................................................104 BIOGRAPHICAL SKETCH...........................................................................................106 vi

PAGE 7

LIST OF TABLES Table page 3.1 Experimental elastic modulus results for three test sample shapes..........................33 3.2 Summary of experimental and adjusted material properties....................................37 5.1 Manufacturer data for Vinyl-Flow commercial drainage tubing.............................64 5.2 Maximum cage deflections for the top-flow orientation..........................................74 5.3 Maximum cage deflections for the side-flow orientation........................................74 vii

PAGE 8

LIST OF FIGURES Figure page 1.1 Example of a class 1 cage design (Loverich and Forster, 2000)................................3 1.2 Example of a class 2 cage design (Loverich and Forster, 2000)................................3 1.3 Example of a class 3 cage design (Loverich and Forster, 2000)................................4 1.4 Example of a class 4 cage design (Loverich and Forster, 2000)................................4 1.5 Millennium Arches in Stockholm, Sweden: entirely self-supporting inflated structure. (Lindstrand, 2000).....................................................................................6 1.6 Millennium Arches alternate view (Lindstrand, 2000)...........................................6 1.7 Section of Millennium Arches before installation (Lindstrand, 2000)....................7 1.8 Hawkmoor self-supporting inflated Temprodome: shown with three units linked together, each with dimensions (6 x 4 x 2.8m). (Hawkmoor, 2003).........................7 1.9 Exterior of Court TV inflated dome. 20 ft tall by 40 ft diameter. For scale, note the person in the doorway. (Promotional Design Group, 2001)................................7 1.10 Interior of Court TV dome showing inflated arch columns. (Promotional Design Group, 2001)..............................................................................................................8 1.11 Thin-film inflated torus used as a support structure for optical reflector (SRS, 2000)................................................................................................................8 1.12 Inflated thin film with reflective coating to be used as a light-weight deployable antenna, 5 meter diameter (SRS, 2000)......................................................................9 1.13 Inflatable Antenna Experiemnt (IAE): 14 meter diameter deployed antenna with inflated support beams (Dornheim, 1999)..................................................................9 1.14 IAE Antenna during inflation. Stowed volume is one-tenth of deployed volume. (Dornheim, 1999).....................................................................................................10 1.15 IAE Reflector (14m diameter). For scale, note the person circled in the upper right (LGarde, 1996)...............................................................................................10 viii

PAGE 9

1.16 Goodyear Corporation inflatable truss radar antenna (Jenkins, 2001).....................11 1.17 LGarde inflatable solar array (Jenkins, 2001).........................................................11 1.18 ILC Dover, Inc. modular split blanket solar array. Shown deployed and stowed (Jenkins, 2001).........................................................................................................11 1.19 Planar deployment solar shade (Jenkins, 2001).......................................................12 1.20 Inflatable Goodyear Inflatoplane (Jenkins, 2001).................................................12 2.1 Flow on a vertical tube.............................................................................................18 2.2 Flow on an inclined tube..........................................................................................18 2.4 Drag loading assumed as a distributed force............................................................22 2.5 Free body diagram of beam section.........................................................................22 3.1 Vinyl-Flow internal fiber layer orientations.............................................................26 3.2 Manufacturer information for Kuriyama Vinyl-Flow series....................................27 3.3 Test sample orientations with respect to continuous tubing....................................27 3.4 Sample shape B (shown flat and folded)..................................................................29 3.5 Sample shape C........................................................................................................29 3.6 Test equipment: MTI screw-drive tensile test machine (MTI, 2004).....................31 3.7 Test equipment: Interface 1220AF-25k load cell....................................................31 3.8 Test equipment: Curtis 30k self-cinching grip........................................................31 3.9 Example of sample locked in grips before pull test.................................................32 3.10 Experimental data: five hoop orientation pull samples...........................................35 3.11 Experimental data: five longitudinal orientation pull samples................................35 3.12 Experimental data: Five hoop-orientation pull samples grouped together.............36 3.13 Experimental data: Five longitudinal-orientation pull samples grouped together..36 3.14 Tested sample with grip slip marks..........................................................................38 4.1 Cage prototype inflated to ~12ft diameter, 9ft height..............................................39 4.2 Cage prototype deflated to ~70cm...........................................................................40 ix

PAGE 10

4.3 Tubing union to PVC connector...............................................................................40 4.5 Detail of boundary conditions for verification model..............................................41 4.6 Steps in representing internal pressure as pre-tension forces...................................42 4.7 Representative projected area around one surface node..........................................43 4.9 Verification model parameter study: EFS effect on beam deflection.....................46 4.10 Verification model parameter study: Added stiffness effect on beam deflection...46 4.11 Verification model parameter study: Added stiffness effect on longitudinal beam stress.........................................................................................................................47 4.12 Verification model parameter study: Poissons ratio effect on beam deflection....47 4.13 Verification model parameter study: Poissons ratio effect on longitudinal beam stress.........................................................................................................................48 4.14 Deflection results for the verification model with length of 5m..............................50 4.15 Deflection results for the verification model with length of 10m length.................50 4.16 Deflection results for verification model with 0.5 m/s flow velocity......................51 4.17 Deviation in deflection results for verification model with 0.5 m/s flow velocity..51 4.18 Longitudinal bending stress results for verification model with 0.5 m/s flow velocity.....................................................................................................................52 4.19 Two cage simulation flow orientations....................................................................53 4.20 Control volume analysis around a rigid 45-connector containing pressurized internal fluid.............................................................................................................54 4.21 Free body diagram of rigid cap with algebraically summed pretension force components...............................................................................................................55 4.22 Force components applied to finite element model of rigid connector....................55 4.23 Top-flow boundary condition locations...................................................................57 4.24 Cage center tube components...................................................................................59 4.25 Expanded view of representative internal cable connections...................................60 4.26 Expanded View of representative mooring cable connections................................60 x

PAGE 11

4.27 Dimensions of anchor location.................................................................................61 4.28 Side-flow applied loading locations.........................................................................61 4.29 Side-flow boundary condition locations..................................................................62 4.30 Expanded view of center tube boundary conditions................................................62 5.3 Maximum stresses in each simulation and ultimate material strength.....................67 5.4 Top-Flow deformed geometry at the wrinkle point: View 1...................................68 5.5 Top-Flow deformed geometry at the wrinkle point: View 2...................................68 5.6 Top-Flow deformed geometry at the wrinkle point: View 3...................................69 5.7 Side-Flow deformed geometry at the wrinkle point: View 1..................................69 5.8 Side-Flow deformed geometry at the wrinkle point: View 2..................................70 5.9 Representative rotational effect occurring in side-flow simulation.........................70 5.10 Cage x-diameter net deflection for VF-800 tested at flow speed of 1 knot, top-flow....................................................................................................................72 5.11 Maximum z-deflection for VF-800 cage tested at flow speed of 1 knot, top-flow....................................................................................................................72 5.12 Cage y-diameter net deflection for VF-500 tested at flow speed of 1 knot, side-flow...................................................................................................................73 5.13 Top-flow maximum cage diameters for each tubing material grouped by internal pressure.....................................................................................................................75 5.14 Side-flow maximum cage diameters for each tubing material grouped by internal pressure.....................................................................................................................76 5.15 Summary of maximum possible cage size for each material in two flow cases subject to one knot flow velocity VF Series number corresponds to diameter, working pressure, and thickness in Table 5.1..........................................................76 xi

PAGE 12

Abstract of Thesis Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Master of Science PRELIMINARY DESIGN AND NONLINEAR ANALYSIS OF AN OPEN-OCEAN AQUACULTURE CAGE By Jeffrey Suhey August 2004 Chair: Dr. Christopher Niezrecki Major Department: Mechanical and Aerospace Engineering A nonlinear finite element analysis is used to predict the static performance of a novel aquaculture cage constructed from inflated-beam members. Simulations are performed to determine the cage maximum deflections, stresses in the inflated components, and ultimately the maximum possible cage size. Experimental tests are performed on a commercially available anisotropic fabric material to determine longitudinal and hoop elastic moduli. Fluid drag forces on the cage are applied to the inflated members as a constant distributed force that is dependent on the flow speed of the current. Simulations are performed up to 1.6 knots of water current. Two flow cases based on the orientation of the cage with respect to water current are considered. Drag on the surrounding cage nets is excluded from the preliminary design analysis. Within this study, cage members were pressurized from 30 to 80 psi, depending on the material. xii

PAGE 13

Important results include successfully merging a linear and nonlinear element to represent tension-only behavior of an inflated fabric tube. Verification was performed by comparing a simply-supported distributed-load inflated beam finite element model with a modified traditional beam analysis. Maximum possible cage sizes are found at constant flow velocity for different materials with varying internal pressure, wall thickness, and tube diameter. Effects of changing flow velocity are found for a specific material case in both flow directions. The results indicate that the largest sized cage for a 1 knot (0.51 m/s) current has a cage diameter of 39 m for the material used in this study. xiii

PAGE 14

CHAPTER 1 INTRODUCTION The current trend in new inflated structure applications lends itself to studying an underwater application. In this case, a preliminary engineering design analysis of an open-ocean aquaculture cage is presented. This chapter provides a brief introduction to aquaculture and describes recent developments in inflatable structures. 1.1 Aquaculture Introduction Aquaculture can be described using the following definition: Aquaculture is defined as the propagation and rearing of aquatic organisms in controlled or selected aquatic environments for any commercial, recreational, or public purpose (Department of Commerce, 2002). Aquaculture is an agricultural approach that provides an alternative to the other two common methods of obtaining fish; commercial fishing and fish farming with large permanent structures in the ocean or on land (Loverich and Forster, 2000). Aquaculture is expected to play an increasingly important role in meeting the global demand for fisheries products as the world population continues to expand and fish stocks approach their biological limits (Fredriksson et al., 2000). The problem is making the use of aquaculture cages economical. A growing need for improved cage designs will hopefully stimulate engineering research to overcome the obstacles now facing aquaculture. Several factors comprise aquaculture cage design. Costs of manufacturing, installation and maintenance, cage stability, durability, and predictability, all play an important role in the design process. One aspect specifically important to aquaculture 1

PAGE 15

2 cage design is the divergence volume. This can be defined as a maximum potential geometric deformation of the cage. Large divergence volumes can cause high fish mortality rates and decrease diver safety. These problems can lead to large economic drawbacks, making the divergence volume a key factor on which to base a design. A variety of cages have been designed to accommodate individual design advantages and disadvantages. These designs have been grouped into four classes that are in current use throughout the aquaculture community. The class 1 cage is the most common in use today and is based on forces due to gravity; weight and buoyancy. The cage typically comprises a floating frame with a weighted net hanging below. This simple design has several problems, including unpredictable failures and high fish mortality. The major disadvantage to this cage design is the large divergence volume. Figure 1.1 shows a typical class 1 cage design. The class 2 cage has anchored rigid truss members used to hold the shape of the netting. Due to the taught netting, there is a significant improvement in the divergence volume compared to the class 1 cage. Similarly, class 3 cages maintain taught netting for this same improvement. Class 3 cages generally have a central truss with a rigid ring connected by ropes and covered in netting. This design allows the cage to maintain its shape without relying on anchors. The deformation of the class 3 cage is governed by the rigidity of its components. It achieves a smaller divergence volume than the class 1 and 2 by providing more supports over the span of the net. Figures 1.2 and 1.3 show examples of typical class 2 and 3 cages, respectively. The Class 4 cage is a completely rigid self-supported frame covered in netting. Although seemingly ideal due to the very low divergence volume, the costs of material,

PAGE 16

3 construction, and installation labor are much higher than of the previous three classes of cage design. Figure 1.4 shows an example of a typical class 4 cage design. Figure 1.1 Example of a class 1 cage design (Loverich and Forster, 2000) Figure 1.2 Example of a class 2 cage design (Loverich and Forster, 2000)

PAGE 17

4 Figure 1.3 Example of a class 3 cage design (Loverich and Forster, 2000) Figure 1.4 Example of a class 4 cage design (Loverich and Forster, 2000) 1.2 Inflatable Structure Introduction Several applications exist for inflatable structures. Applications for inflatable structures have been used successfully in the past. Some familiar applications that are still in use include vehicle tires, surface watercraft (inflated boats, pontoons, hovercraft, etc), and aircraft (blimps, balloons, etc). Within the past few decades, new inflatable applications are being explored and gaining acceptance. Inflatable land structures are completely self-supported, requiring no solid structural members. These are currently in use in military and architectural designs for tents, hangars, roofs, and small buildings. These applications take advantage of the

PAGE 18

5 convenience of inflatable structures to save assembly time and travel weight. today, its well within the bounds of possibility to find a 300 ft long building housing a concert venue, exhibition hall, museum, or space-age science display, with not a solid supporting member in sight (Lindstrand, 2000). Figures 1.5 through 1.10 show examples of inflated land structures, with no rigid support members, supported only by internal pressure. The [Millennium Arches] whole building is 328ft(100m) long 59ft(18m) wide, and 56ft(17m) high. The main arches are 38ft(11.5m) high, and 59ft(18m) wide while the end arches are 41ft(12.5m) long and the center arch is 164ft(50m) long (Lindstrand, 2000). The aerospace field is working with inflatables in gossamer structures for space applications such as sunshields, antennas, solar sails, habitats, and structural booms. Space applications take advantage of several features of inflatable structures. They [inflatable structures] offer large potential reductions in stowed volume, cost, and often weight.Giant space structures such as 1,000-ft. antennas or solar sails may not even be possible with mechanical deployment, but may be doable with inflatable design (Dornheim, 1999). Figures 1.11 through 1.15 show examples of space applications of inflatable structures.

PAGE 19

6 Figure 1.5 Millennium Arches in Stockholm, Sweden: entirely self-supporting inflated structure. (Lindstrand, 2000) Figure 1.6 Millennium Arches alternate view (Lindstrand, 2000)

PAGE 20

7 Figure 1.7 Section of Millennium Arches before installation (Lindstrand, 2000) Figure 1.8 Hawkmoor self-supporting inflated Temprodome: shown with three units linked together, each with dimensions (6 x 4 x 2.8m). (Hawkmoor, 2003) Figure 1.9 Exterior of Court TV inflated dome. 20 ft tall by 40 ft diameter. For scale, note the person in the doorway. (Promotional Design Group, 2001)

PAGE 21

8 Figure 1.10 Interior of Court TV dome showing inflated arch columns. (Promotional Design Group, 2001) Figure 1.11 Thin-film inflated torus used as a support structure for optical reflector (SRS, 2000)

PAGE 22

9 Figure 1.12 Inflated thin film with reflective coating to be used as a light-weight deployable antenna, 5 meter diameter (SRS, 2000) Figure 1.13 Inflatable Antenna Experiemnt (IAE): 14 meter diameter deployed antenna with inflated support beams (Dornheim, 1999)

PAGE 23

10 Figure 1.14 IAE Antenna during inflation. Stowed volume is one-tenth of deployed volume. (Dornheim, 1999) Figure 1.15 IAE Reflector (14m diameter). For scale, note the person circled in the upper right (LGarde, 1996)

PAGE 24

11 Figure 1.16 Goodyear Corporation inflatable truss radar antenna (Jenkins, 2001) Figure 1.17 LGarde inflatable solar array (Jenkins, 2001) Figure 1.18 ILC Dover, Inc. modular split blanket solar array. Shown deployed and stowed (Jenkins, 2001)

PAGE 25

12 Figure 1.19 Planar deployment solar shade (Jenkins, 2001) Figure 1.20 Inflatable Goodyear Inflatoplane (Jenkins, 2001) 1.3 Inflatable Structure Analyses This section describes various forms of modeling inflatable structures. A specific emphasis is placed on determining deflection and internal stress behavior of inflatable structures subject to cantilever bending. Also of interest is analysis of the application of fabrics for the inflated material. The basic concept of an inflatable structure is a closed end pressure vessel subject to some applied loading. The internal pressure translates to a force applied over the capped end in the axial direction. This force then creates an axial stress that is able to resist bending and axial stress caused by the applied loading conditions. Chapter 2 more fully explains the derivation of the inflatable theory.

PAGE 26

13 1.3.1 Modified Conventional Beam Theory Approach Experimental data has shown that inflatable beams do not behave according to traditional beam theory. With modification to the traditional beam theory, an accurate model can be made. One study analyzed inflatable beam deflections and stresses for loads between incipient buckling, where bending stress equals axial stress due to pressure, and final collapse. It was shown that initially bending occurred with no wrinkling. When wrinkling occurred, a slack region and a taught region were present. A formulation for the stress was developed showing zero axial stress in the slack region and a portion of the max stress carried in the taught region. By equating expressions for maximum axial stress, a formulation for the relationship between internal pressure and applied tip force was determined. The curvature was determined and integrated twice to find the deflection due to bending. The deflection due to shear was also determined noting that it is negligible when the length of the beam is much larger than the radius of the cross section. The total deflection was then determined as the algebraic sum of the deflections due to bending and shear. Similar results were obtained for a beam subject to distributed load bending (Comer & Levy, 1963). This analysis shows when wrinkles begin to form and where they form. The wrinkled membrane is shown to have some rigidity. The effect of the wrinkling on the bending strength of the beam is determined. Another study applies the modified traditional beam theory approach from Comer and Levy for fabric materials. An experimentally determined modulus of membrane of the fabric material was used in place of Youngs modulus. This modulus of membrane is defined as the slope of the experimental stress resultant vs. engineering strain plot, where stress resultant is the force per width of a pull-test sample. Using an approach similar to that of Comer and Levy, the curvature was integrated numerically to determine tip

PAGE 27

14 deflection behavior. Experimental results agreed for aspect ratios of l/d>6 (Main et al., 1994). 1.3.2 Nonlinear Approach Since inflatable beams behave nonlinearly, a nonlinear approach, although complex, is the most logical method. Douglas uses the theory of incremental deformations to find the Cauchy-Green deformation tensors which can be related to determine the Lagrangian and Eulerian Strains. These lead to a stress-deformation relation. This is all then applied to an inflated beam incorporating the pressure in as a stress. The variation in beam stiffness is plotted as a function of changing internal pressure. Unlike a linear approach, this thorough method takes into account the changes in geometry and changes in material properties (Douglas, 1968). Another study included an explanation of the geometry of fabrics and the interaction between fibers. The general relationship between stress and strain for a fabric material is ultimately shown to be a nonlinear trend (Bulson, 1973). 1.3.3 Linear Shell Method Another method for analyzing inflatable structures is to use a linear shell approach. One study develops a free body diagram of a width of flexed strip of the loaded material. Static equilibrium of forces is then applied, including the applied load and the skin tensions on the width of the material. First, a vertical force summation is made with the application of a small angle approximation. Then, a horizontal force summation is developed and combined with the vertical summation canceling the skin tension terms. The result is an expression analogous to the equation for shearing angular deflection of a solid beam. By comparing these two equations, the internal pressure is found to be

PAGE 28

15 analogous to an effective shear modulus. This is used to determine the effect of pressure on the shearing deflection (Topping, 1964). Another source applies continuum mechanics to membranes to obtain several general relations. It defines the kinematics, deformation, strain, strain rate, and stress for membranes. Balance laws are used to derive general mass balance, momentum balance, and energy balance relations (Jenkins, 2000, pp. 49-64). To model wrinkling in beams, a tension field model is developed with an approach for application to linear finite element method (Jenkins, 2000, pp 103-105). 1.3.4 Finite Element Analysis Approach Another approach is to apply finite element analysis to inflated structures. Finite element analysis can yield accurate results for problems with complex analytical solutions. One study compares results from the modified traditional beam theory with finite element results. An assumption of Braziers effect is used here. This states that as the tube deforms due to bending and the cross-section becomes flatter, the bending stiffness of the entire beam decreases. This is most likely due to geometry changes that affect the area moment of inertia. This study formulates finite elements of geometrically nonlinear motion of membrane. These allow for changes in length of the elements to account for stretching of the material in the ends but not in the cylinder. Triangle elements are used to model the circular end caps and quad elements are used to model the cylindrical tubing. A pressure relationship is used to apply a force to each element. FEA results match theoretical results from the modified traditional beam approach. An analysis of tubes containing multiple pockets is conducted as well. The behavior of these multi-cellular inflated beams is shown graphically. By increasing the

PAGE 29

16 number of cells, the pressure can be varied throughout the length of the tube and thereby optimize the design (Sakamoto and Natori, 2001). 1.3.5 Selected Approach The modified traditional beam theory will be used in conjunction with a nonlinear finite element model for future analysis. The finite element approach solves complex geometries and provides a visualization of deformed behavior. The modified traditional beam theory will be used to verify the behavior of a simple finite element model. Following verification, the finite element approach will then be used to model complex cage geometries and interactions. Further theoretical development of the modified traditional beam theory is presented in Chapter 2 and the finite element approach is described in Chapter 4.

PAGE 30

CHAPTER 2 THEORETICAL DEVELOPMENT The development of the theory applied to analytical solutions used in later chapters is described in Chapter 2. A standard fluid flow analysis is first presented, followed by the traditional beam method applied to inflatable theory, which is chosen from the methods presented in Chapter 1. The theory presented focuses on inflated beams before and at the point of wrinkling. The model used for derivation is an internally pressurized circular-cylindrical closed-end fabric tube. The internal pressure acting over the surface area of the end caps translates to pretension forces in the fabric tube. The essence of the inflatable theory is that bending causes a compressive stress on the underside of the tube opposing the tensile stress caused by the pretension forces. Wrinkling occurs when the compressive portion of bending stress exceeds the pretension stress. In some cases, stress resultant, *, is used to replace axial stress, throughout the analysis, as described in Mains theory, to more accurately model fabric behavior (Main et al., 1994). This also leads to using a resultant elastic modulus, E*, with units of force per unit length. 2.1 Fluid Analysis The fluid analysis is used to determine the total drag force acting on a cylinder for a given external flow condition. The following assumptions are made for the fluid analysis: Smooth cylinder surface Constant temperature fluid and material properties at 20C 17

PAGE 31

18 Steady state flow Constant cross-sectional area In this case, the drag force is caused by friction of fluid current flowing over the tube. The drag force is a function of tube cross-sectional area, A, drag coefficient, C D external fluid density, and external flow velocity, V. Equation 2.1 defines the drag force, F drag on a cylinder based on applicable assumptions. 221VACFDdrag (2.1) The cross-sectional area perpendicular to the flow direction is defined,, with tube diameter, D, and cross-sectional length perpendicular to flow, h. Figures 2.1 and 2.2 define h for a vertical tube and a tube inclined by angle, from the horizontal, respectively. DhA Lh Flow Direction Figure 2.1 Flow on a vertical tube sinLh Flow Direction Figure 2.2 Flow on an inclined tube

PAGE 32

19 The coefficient of drag, C D is determined using the dimensionless parameter, Re, and the approximated range taken from documented experimental data. Equations 2.2 and 2.3 show the Reynolds number relation and the approximated value of C D based on the expected flow velocity range. VDeR (2.2) 1 DC for 10 000,200Re000, (2.3) D represents the diameter of the tube. Fluid properties of the flowing current including density and absolute viscosity, are determined from documented values at a temperature of 20 C (Fox & McDonald, 1999). 2.2 Non-wrinkled Inflatable Theory Figure 2.3 shows the assumed stress distribution for a non-wrinkled inflated beam subject to a bending moment. 0 m o Figure 2.3 Stress distribution in tube subject to bending moment Comer & Levy (1963) defined the stress distribution in this unwrinkled inflated circular-cylindrical beam using Equation 2.4. 2)cos1(2)cos1(0 m (2.4)

PAGE 33

20 As shown in Figure 2.3, m and 0 are the maximum and minimum longitudinal stresses in the circumferential stress distribution, respectively. Equation 2.4 can be rewritten as in Equation 2.5, by diving through by the material thickness. Stress, is replaced with stress resultant *. 2)cos1(2)cos1(**0*m (2.5) Equation 2.6 describes the bending moment, M(x), as a product of the tensile forces, F(), and the distance, h(), from the neutral axis of bending. Force is then replaced with the product of stress and area. The area is defined by integrating the fabric thickness, t, over the tube circumference using tube radius, r, and angle, from 02. (2.6) 2020)()()()()(drthhFxM Defining height, cos)(rh and stress resultant, Equation 2.6 can be rewritten using symmetry as Equation 2.7. t)()(* (2.7) 02*cos2)(drxM Substituting Equation 2.5 into Equation 2.7 and integrating yields Equation 2.8. 2*0*)(2 r xMm (2.8) According to Main (1994), the unwrinkled curvature, c is given by Equation 2.9, where E* is the resultant elastic modulus. **0*21rEmc (2.9)

PAGE 34

21 Substituting Equation 2.8 into Equation 2.9 and approximating curvature as 22dxyd where x and y are coordinates, yields Equation 2.10. 22*3)(1dxydErxMc (2.10) This leads to the final relationship, Equation 2.11, which corresponds to the traditional beam bending relation with I* representing the resultant area moment of inertia. Note the units of resultant area moment of inertia are cubic which corresponds to using the stress resultant, *, and resultant elastic modulus, E*. **22)( I E xMdxyd where by association (2.11) 3*rI This differential equation describes the bending behavior of an inflated circular tube. It will be integrated to determine deflection, y, for a specific set of boundary conditions. This theoretical deflection solution is then used to verify simulation deflection results in Chapter 4. 2.3 Case Specific Non-wrinkled Inflatable Theory 2.3.1 Bending Moment Figure 2.4 shows the assumed drag force loading, w, and model boundary conditions, with L representing the tube length. The specific bending moment, M(x), for this situation is derived from free body diagrams of a cut section of the beam as shown in Figure 2.5. Shear, V, and moment, M are shown as reaction forces. Variable x is used as a local coordinate along the tube length. Equations 2.12 and 2.13 show the sum of moments about point A assuming static equilibrium.

PAGE 35

22 Internal pressure, P LFwdrag Figure 2.4 Drag loading assumed as a distributed force wx M V A 2wL 2x 2x Figure 2.5 Free body diagram of beam section 02)()2( MxwxxwLMA (2.12) )(2)(2xLxwxM (2.13) 2.3.2 Vertical Deflection To solve for beam deflections, the specific moment equation, Equation 2.13, is substituted into Equation 2.11 and integrated twice, yielding Equations 2.14 through 2.16. )(223*22xLx r E wdxyd (2.14)

PAGE 36

23 )32(21323*CxLx r E wdxdy (2.15) )126(221433*CxCxLx r E wy (2.16) With boundary conditions at x = 0, y = 0, and at x = L, y = 0, constants of integration, C 1 and C 2 are found to be Equations 2.17 and 2.18 01 C (2.17) 1232LC (2.18) Substituting Equations 2.17 and 2.18 into Equation 2.16 yields the vertical deflection solution shown as Equation 2.19. )12126(23433*LxLx r E wy (2.19) 2.3.3 Wrinkle Length Wrinkle length is the length of the tube at which wrinkling first occurs. This length depends on the moment necessary to initiate wrinkling. Comer and Levy first determine the moment necessary to initiate wrinkling by equating expressions for m (Comer & Levy, 1963). Equation 2.20 describes a force balance between the internal pressure acting over the area of the circular end-plate and the longitudinal stress integrated over the circumference of the tube. (2.20) 0*22drrp Substituting Equation 2.5 into Equation 2.20 and integrating yields Equation 2.21, the first expression for m

PAGE 37

24 ]cos)([sin2)cos1(0000 tprm (2.21) Substituting Equation 2.5 into the balance of moments, Equation 2.7, yields the second expression for m )2sin22()cos1(20020 trMm (2.22) Combining Equations 2.21 and 2.22 by eliminating m and setting 0 = 0, yields Equation 2.23, the moment necessary to initiate wrinkling. 23rpM (2.23) Equating the moment to initiate wrinkling, Equation 2.23, with the value of the maximum moment in Equation 2.13 yields Equation 2.24. 28)2(32maxrpwLLMM (2.24) Solving for L and setting the load, LFw gives the general expression for wrinkle length, Equation 2.25. The wrinkle length is the length at which wrinkling first occurs in an inflated tube subject to bending, for a given pressure and flow rate. FrpLwr34 (2.25) As expected, the wrinkle length will be reduced for high loading force, F, and proportional to the internal pressure and the tube radius. Tube radius, r, is the largest contributing factor to wrinkle length for these conditions.

PAGE 38

25 For this specific application, the loading force, F, is the drag force, F drag Since drag force is a function of tube length, Equation 2.25 is further expanded using Equations 2.1 and 2.3 to obtain Equation 2.26. 224VrpLwr (2.26) Equation 2.26 now shows the wrinkle length as a function of the core contributing variables for this application; internal pressure, tube radius, and external fluid velocity. The wrinkle lengths in Equations 2.25 and 2.26 also depend on the boundary conditions and are derived for the simply-supported conditions shown in Figure 2.4. 2.4 Conclusion The equations derived in this chapter provide a theory for an inflated beam subject to bending. The solution for vertical deflection, Equation 2.19, is used to verify the finite element model developed in Chapters 4 and 5. The wrinkle length is used to verify the final results of a verification model. Verifying a simple model is necessary to justify extending the computer analysis to more complex geometries, not easily solved with traditional analysis.

PAGE 39

CHAPTER 3 EXPERIMENTAL PROCEDURE AND RESULTS The setup, procedure, and results of the experiments performed to determine the orthotropic material properties of a specific commercial drainage tubing is presented in chapter 3. The Kuriyama Vinyl-Flow series is a composite comprised of a combination of molded PVC layers and synthetic fibers. One fiber layer runs in the longitudinal direction while two other layers are oriented at approximately +30 and -30 from the longitudinal direction as shown in Figure 3.1. Figure 3.2 shows specifications given by the Kuriyama for the different size models of Vinyl Flow. For this application, the desired material properties are the elastic modulus and Poissons ratio. These material properties are determined experimentally and to be used in a numerical simulation as described in Chapter 4. Longitudinal Direction +30 -30 Figure 3.1 Vinyl-Flow internal fiber layer orientations 26

PAGE 40

27 Figure 3.2 Manufacturer information for Kuriyama Vinyl-Flow series 3.1 Experimental Setup and Procedure 3.1.1 Test Sample Orientation Due to the orthotropic fiber orientation, a value for elastic modulus in both the longitudinal and hoop directions is desired. To achieve this, samples were made to have the fibers aligned in a specific orientation. Figure 3.3 shows the convenient coordinate system chosen and the orientation of each sample. Also shown are Fx and Fy, the tensile forces applied to each orientation sample. Longitudinal, y Hoop, x Longitudinally Oriented Sample Hoop Oriented Sample Tubing Coordinate System Fy Fx Figure 3.3 Test sample orientations with respect to continuous tubing

PAGE 41

28 3.1.2 Sample Shapes and Correction for Fiber Discontinuity In order to accurately model the materials performance, a tensile test sample shape was needed. It was desired to simply use a continuous tube sample but it was not possible to achieve this shape in the hoop direction. It was also inconvenient to test a continuous tube for the large diameter tubes due to the grip size of the tensile test machine. Since all the samples contain discontinuous fibers, it is necessary to determine the numerical effect on elastic modulus. To do this, three different sample shapes are tested and compared to see how the width and continuity of the fibers affect the elastic modulus. The first sample, shape A, is a completely continuous length of tubing with a rectangular shape. The second sample, shape B, is the same as shape A, but differs only with a single longitudinal cut running the entire length of the specimen. The cut severs the continuity of the 30 cross fibers. Figure 3.4 shows the longitudinal cut on the circular cross-section, representing shape B. In order to fit the sample completely within the width of the test grips, samples A and B are folded twice along the longitudinal direction as shown in Figure 3.4. The third sample, shape C, is cut from a template with a shape mimicking a tensile test sample. The ends are designed to fit the width of the grips of the testing device. The center section is designed to taper from the grips to a narrow strip to control break location. Care was taken to keep the tapering smooth to avoid stress concentrations in sharp corners. Figure 3.5 shows an example of shape C. All samples are 23 cm long. Sample C is 2 cm wide at the narrowest section and samples A and B have the same width when folded. Figures are shown with the same standard 5 pen for scale.

PAGE 42

29 Figure 3.4 Sample shape B (shown flat and folded) Figure 3.5 Sample shape C 3.1.3 Experimental Procedure An MTI 25k screw-driving tensile test machine was used with Curtis 30k self-cinching jaw grips to perform the tensile tests. An Interface 1220AF-25k load cell was used in conjunction with MTI software to measure force. After observing preliminary tests, a test speed of 0.10 in/min was considered reasonable and chosen for all tests. Figure 3.6 through 3.8 show examples of the test equipment. Figure 3.9 shows an example of a specimen locked in the grips before pulling. A sample is closed in the test grips and pulled at a constant velocity to the initial breaking point. Two marks were made in the middle region of the sample oriented perpendicular to the length. The length between marks and width (width for sample shape C) were measured and recorded intermittently throughout the pull test with digital calipers. The pull force on the specimen is measured and recorded simultaneously with the length and width measurements. The instantaneous axial stress is calculated at each point by dividing the force by the cross-sectional area. The cross-sectional area is calculated as the product of the width and the thickness of the test strip. The material

PAGE 43

30 width and thickness is assumed to be constant in Samples A and B. Only the thickness is assumed constant in Sample C since the varying width was recorded. The instantaneous axial strain, is calculated at each point using Equation 3.1. 00 (3.1) The variable, represents the recorded distance between marks and 0 represents the original distance between marks. This references strain calculations to the original unstressed length. An attempt was made to experimentally determine the material Poissons ratio by using measurements of the strain in the width and the strain in the length during the uniaxial pull tests. It was discovered, however, that since the cut samples do not have stiffness in compression, and the width decreases with the sample under tension, the width strain is not a valid measure to be used in determining Poissons ratio. To accurately describe Poissons ratio, the material must be loaded in two directions at once. Two possible solutions are to use a pull tester capable of pulling in two directions, or to internally pressurize a uniaxial test specimen. Given the complexity of these tests, Poissons ratio is instead determined in chapter 4, using a parameter study in an ANSYS simulation.

PAGE 44

31 Figure 3.6 Test equipment: MTI screw-drive tensile test machine (MTI, 2004) Figure 3.7 Test equipment: Interface 1220AF-25k load cell Figure 3.8 Test equipment: Curtis 30k self-cinching grip

PAGE 45

32 Figure 3.9 Example of sample locked in grips before pull test 3.2 Sample Shape Choice Using the analysis described in section 3.3, data from the sample shape tests is used to determine material elastic modulus. Five specimens were tested for each sample shape. Table 3.1 shows a summary of the experimentally determined elastic moduli for each sample shape. It can be concluded that neither sample B nor sample C closely represent the full tube structure. This is due to the breakage of the continuous hoop fibers that form the structure of the fabric. Since breaking these fibers is unavoidable in hoop orientation tests, the assumption was made to apply a multiplicative correction factor to all tests made from cut samples. The correction factor is determined from a ratio of the elastic modulus of the continuous tube, sample A, to the elastic modulus of the cut tube, sample B. This correction factor of 1.29 is applied to all future experimental results,

PAGE 46

33 including both the longitudinal and hoop oriented samples. Sample shape C is used for all future testing for convenience and predictability. Table 3.1 Experimental elastic modulus results for three test sample shapes Sample Shape and Description Orientation Elastic Modulus (psi) A Folded Continuous Tube Longitudinal 49009 B Folded Cut Tube Longitudinal 38148 C Strip from Template Longitudinal 36098 3.3 Data Analysis and Results This section describes the analysis of the data collected and its application towards the orthotropic material properties. Figures 3.10 and 3.11 show plots of axial stress and axial length-strain for VF-600 material in hoop and longitudinal orientations, respectively. Five samples per orientation were tested and are plotted with distinct linear trends. In order to interpret one linear trend from all five tests, all the tests are grouped together with one trend as shown in Figures 3.12 and 3.13. Combining five distinct trends is justified by looking at the slope and y-intercepts of the trends. The trend from each test has a distinct slope, but they are all close enough to consider within experimental error. The y-intercepts between tests, however, are largely different. The y-intercept of each trend line indicates an initial load present on the sample before any length-strain is recorded. This is explained by the observed behavior of the test grips during the test. The self-cinching grips initially sink in and tighten around the soft material for a brief period of time before a length-strain is present in the entire sample. This settling period is interpreted as a pre-loading on the sample by the load cell, resulting in the y-intercept in the data trend. The presence of the y-intercept is a result of

PAGE 47

34 the specific sample and test apparatus, so it is therefore assumed inconsequential to the experimental material properties. Since the slope is the only valid material property obtained from the data, all five groups can be justifiably analyzed with one trend. The slope of the trend represents the elastic modulus for the corresponding sample orientation. Table 3.2 shows a summary of the experimental material property results. Shown are the experimental and adjusted orthotropic elastic moduli for the hoop and longitudinal orientations. Adjusted elastic moduli are based on the correction factor for breaking the continuity of the fibers, determined in section 3.2. It is interesting to note that the elastic modulus for the longitudinal orientation is much larger than for the hoop orientation since the hoop stress is generally larger than the longitudinal stress. This is best attributed to the fiber layer present in the longitudinal orientation. The material was most likely not designed to be optimized as a pressure vessel, but rather designed for ease of the manufacturing process.

PAGE 48

35 0200400600800100012001400160018000.00000.05000.10000.15000.20000.2500Length Strain (in/in)Axial Stress (psi) Test 1 Test 2 Test 3 Test 4 Test 5 Figure 3.10 Experimental data: five hoop orientation pull samples 0500100015002000250030003500400045000.00000.02000.04000.06000.08000.10000.1200Length Strain (in/in)Axial Stress (psi) Test 6 Test 7 Test 8 Test 9 Test 10 Figure 3.11 Experimental data: five longitudinal orientation pull samples

PAGE 49

36 y = 5798.4x + 477.20200400600800100012001400160018000.00000.05000.10000.15000.20000.2500Length Strain (in./in.)Axial Stress (psi) Figure 3.12 Experimental data: Five hoop-orientation pull samples grouped together y = 36098x + 248.180500100015002000250030003500400045000.00000.02000.04000.06000.08000.10000.1200Length strain (in/in)Axial Stress (psi) Figure 3.13 Experimental data: Five longitudinal-orientation pull samples grouped together

PAGE 50

37 Table 3.2 Summary of experimental and adjusted material properties Material / Orientation Experimental Elastic Modulus (psi) Adjusted Elastic Modulus (psi) VF-600 / Hoop 5798.4 7479.9 VF-600 / Longitudinal 36098.0 46566.4 3.5 Errors and Accuracy Unavoidable experimental errors occurred in all the tests. Due to the nature of the cross-hatched fabric material, in-plane and out-of-plane shape distortions occurred in samples when loaded under tension. The in-plane distortions can be described as uneven shifting of the material in the pull direction. The strain measurements were largely affected by the in-plane distortion because the measurement lines did not remain perpendicular to the sample length. The out-of-plane distortions can be described as cupping of the flat, rectangular cross-sectional area. This largely affects the width and, in some cases, thickness measurements. Tiny slip marks were observed on some tested samples where the self-cinching grips cut through or slipped on the slick outer material. This would contribute additional error to the strain measurements. Figure 3.14 shows an example of the lines visible on a tested pull sample that indicate slipping. In some cases, manufacturing inconsistencies in the material were exposed when material samples visibly broke in a location other than the expected thinnest portion of the sample. Human error in preparing samples, taking length measurements, and reading the force gage also contributed to experimental error. The wide scattering of the data points in the stress-strain curve can also be attributed to the settling period described in section 3.3.

PAGE 51

38 These experimental errors all contribute to the wide scattering of the data points in the stress-strain curve. Due to the nature of the composite, flexible material and the test equipment used, the experimental values are considered a valid representation of the material. Pull Direction Grip slippageNormal Grip Wear Figure 3.14 Tested sample with grip slip marks

PAGE 52

CHAPTER 4 SIMULATION DEVELOPMENT The process of developing a finite element model to represent an actual prototype cage is described in Chapter 4. A simple verification model is first made to explore and verify finite element membrane analysis for an inflatable tube subject to bending. A full cage is then modeled to explore the interaction of all the components. Two flow direction cases are modeled to see the effect of flow direction on stress and deflection in the cage members. Figures 4.1 and 4.2 show a prototype cage inflated and deflated, respectively. Figure 4.3 shows an example of the union between the tubing and a PVC connector using a hose clamp. Figure 4.1 Cage prototype inflated to ~12ft diameter, 9ft height 39

PAGE 53

40 Figure 4.2 Cage prototype deflated to ~70cm PVC connector Hose clamp Flexible tubing Figure 4.3 Tubing union to PVC connector 4.1 Verification Model Development and Results A verification model is designed to establish a basis for further simulations. The verification model is a simply supported tubular beam with a distributed load on top. Figure 4.4 shows the conceptual beam model and distributed loading. The hose clamps are modeled by fixing the x and y displacements of all the nodes along the circumference of each end. In order to avoid rigid body motion in the analysis, the tube is constrained in the z direction. To avoid artificial boundary stress concentrations at the ends, the z-displacements of only 2 nodes on the neutral axis of bending are fixed. Figure 4.5 shows the applied boundary conditions and the coordinate system used.

PAGE 54

41 x z Figure 4.4 Conceptual boundary conditions and loading for the verification model Dz = 0 (one end of tube only) Nodes from outer ring falling on neutral axis of bending Dx = Dy = 0 (Both ends of tube) All nodes on the outer ring. X Y Z Figure 4.5 Detail of boundary conditions for verification model 4.1.1 Applied Loading Conditions The internal pressure is broken up into pressure acting in the radial direction and pressure acting longitudinally. The radial pressure is applied normal to the interior tube surface. The longitudinal pressure is converted to nodal forces, F i using steps shown in Figure 4.6. Figures 4.6-A and 4.6-B show the internal pressure, P i applied over the area of the circular cap, A cap Assuming the cap is rigid, the applied pressure translates into an

PAGE 55

42 equivalent total axial force, F eq acting on the cap as shown in Equation 4.2 and Figure 4.6-C. This total force is then distributed equally and applied directly to the number of nodes, n, on the outer circular edge at the end of the tube as shown in Equation 4.3 and Figure 4.6-D. capieqAPF (4.1) (4.2) niieqFF1 nFFeqi (4.3) Rigid Cap Fabric Tube Rigid Cap Pi Feq niiF1 Acap = r2 (A) (B) (C) (D) Pi Figure 4.6 Steps in representing internal pressure as pre-tension forces 4.1.2 Water Current Drag Water flowing over the outer surface of the tube creates a drag force. Fluid assumptions and equations are derived in Chapter 2. A programming do-loop was

PAGE 56

43 initially implemented into a script file to approximate a parabolic pressure flow distribution by applying individual forces to nodes. Forces are determined from the product of the local pressure and the projected area around the node. Figure 4.7 shows a representative projected area for one node. Applying the pressure distribution to the tension-only membrane tube in this manner yielded numeric instability. This numeric instability and a need for only global effects of the drag leads to the assumption that local pressure effects of the flow on the tube can be neglected. This simplifies the model by approximating the total drag as an equally distributed load. Figure 4.8 shows an example of the total drag force divided equally and applied to all the nodes along the length of a typical tube. All nodal drag forces are applied in the same global coordinate direction. Figure 4.7 Representative projected area around one surface node

PAGE 57

44 Forces applied at each node around circumference. Equal forces applied at each node around circumference Figure 4.8 Representative application of forces to nodes around circumference 4.1.3 Element Selection and Properties The geometry is created in ANSYS by extruding a circle along a linear path. This area is then meshed with rectangular shell elements. The material to be modeled is a thin fabric with orthotropic material properties. Since fabrics have tensile stiffness, but very little compressive stiffness, a thin shell element with optional compressive stiffness is the best choice. The Shell41 element with Keyopt(1) = 2 meets these requirements. It was determined that the zero compressive stiffness caused a numerical instability in the solution of a pressurized beam in drag which resulted in spikes in the deformed shape. Initially, a small elastic foundation stiffness (EFS) was added to the Shell41 elements to attempt to fix the instability. Successive ANSYS simulations varying the EFS showed a large change in mean deflection, shown in Figure 4.9. This large deflection makes choosing a small EFS value unacceptable and eliminates the use of the EFS in all models. In another attempt to remedy the instability, equivalent-geometry Shell63 elements with small elastic modulus were merged to the Shell41 elements to add a small compressive stiffness to the elements. Successive ANSYS simulations varying the added

PAGE 58

45 stiffness of the shell63 elements showed an acceptable change in deflection and stress as shown in Figures 4.10 and 4.11. A value of 10,000 Pa is chosen for the added stiffness. Merging the shell63 elements is a preferable choice to fix the instability because the added stiffness has a less interfering effect on the desired results. Implementing this choice eliminates the spikes and smoothes out the deformed shape. The isotropic material properties needed to solve for stress and deflection are elastic modulus and Poissons ratio. Since the material is orthotropic, hoop elastic modulus, longitudinal elastic modulus, shear modulus, and Poissons ratio are required. Values for elastic modulus in the hoop and longitudinal directions are found experimentally in Chapter 3. Since Poissons ratio is not experimentally determined, a value is chosen based on finite element model results. Simulations showed that varying Poissons ratio had negligible effect on longitudinal stress and deflection. Figure 4.12 shows maximum deflection plotted for various Poissons ratios determined in an ANSYS model of a cantilevered tube loaded with an end force. Figure 4.13 shows a similar plot for maximum longitudinal stress using the same model. The small variation in stress and deflection justifies assuming a reasonable value of 0.4 for Poissons ratio.

PAGE 59

46 -1.40000E-02-1.20000E-02-1.00000E-02-8.00000E-03-6.00000E-03-4.00000E-03-2.00000E-030.00000E+00020000400006000080000100000120000140000EFS Value (Pa)Mean Deflection (m) Figure 4.9 Verification model parameter study: EFS effect on beam deflection -8.00E-03-7.00E-03-6.00E-03-5.00E-03-4.00E-03-3.00E-03-2.00E-03-1.00E-030.00E+00020000400006000080000100000120000140000Added Compressive Stiffness to Shell41 Elements (Pa)Mean Deflection (m) Figure 4.10 Verification model parameter study: Added stiffness effect on beam deflection

PAGE 60

47 0.00E+001.00E+062.00E+063.00E+064.00E+065.00E+066.00E+067.00E+06020000400006000080000100000120000140000Added Compressive Stiffness to Shell41 ElementsLongitudinal Stress (Pa) Maximum Stress Minimum Stress Figure 4.11 Verification model parameter study: Added stiffness effect on longitudinal beam stress 00.00250.0050.00750.010.01250.0150.01750.020.02250.02500.050.10.150.20.250.30.350.40.45Poisson's Ratio, vxy (v_hoop-longitudinal)Maximum Vertical Deflection of Free End (m) Figure 4.12 Verification model parameter study: Poissons ratio effect on beam deflection

PAGE 61

48 0.00E+001.00E+062.00E+063.00E+064.00E+065.00E+066.00E+0600.050.10.150.20.250.30.350.4Poisson's Ratio, vxy (v_hoop-longitudinal)Longitudinal Stress (Pa) Maximum Stress Minimum Stress Figure 4.13 Verification model parameter study: Poissons ratio effect on longitudinal beam stress 4.1.4 Verification Model Results To verify the model, simulation results are compared to the stress and deflection theoretical solutions derived in Chapter 2. Since flow velocity is proportional to the drag force acting on the beam, flow velocity is used to compare models. The simulations are conducted until the beam reaches failure. A study is done for 5m and 10m tubes. Results from the 5m long tube are shown in Figure 4.14 which correspond to a constant average deviation of 3.22% between theoretical and simulation. Figure 4.15 shows similar results for a 10m tube with a constant average deviation between theoretical and simulation to be 0.567%. These results show that the deflection results between theoretical and simulation stay below an acceptable 5% deviation. Results also show that the deviation decreases as tube length increases. A length study was also performed to see how maximum deflection changed with length. Simulations are performed up to an approximately 10% deflection:length ratio.

PAGE 62

49 Figure 4.16 shows a parabolic trend in the simulation and theoretical results. Figure 4.17 plots the deviation between simulation and theoretical results, showing deviation decreasing exponentially as length increases. Deviation drops below 10% above a tube length of approximately 3.5m. The large deviation occurring in tubes shorter than 3.5m is believed to be due to the Saint-Venants principle (Hibbeler, 1997), applicable at the fixed end boundary condition. In this case, the simulated cap restricts radial expansion in the fabric tube, which affects the maximum deflection. A stress simulation is also performed to verify the model behavior. Figure 4.18 shows longitudinal stress results for the verification model. The maximum stress increases, while the minimum stress decreases as expected in bending. A rigid body motion error is received when the minimum longitudinal stress decreases to approximately zero, verifying the tension-only behavior of the model. This defines failure by wrinkling in this model.

PAGE 63

50 -5.00E-01-4.50E-01-4.00E-01-3.50E-01-3.00E-01-2.50E-01-2.00E-01-1.50E-01-1.00E-01-5.00E-020.00E+0000.511.522.53Flowing Water Speed (mph)Average Y-Deflection (m) Simulation Theoretical Figure 4.14 Deflection results for the verification model with length of 5m -1.80E+00-1.60E+00-1.40E+00-1.20E+00-1.00E+00-8.00E-01-6.00E-01-4.00E-01-2.00E-010.00E+0000.20.40.60.811.21.41.6Flowing Water Speed (mph)Average Y-Deflection (m) Simulation Theoretical Figure 4.15 Deflection results for the verification model with length of 10m length

PAGE 64

51 -1.00E+00-9.00E-01-8.00E-01-7.00E-01-6.00E-01-5.00E-01-4.00E-01-3.00E-01-2.00E-01-1.00E-010.00E+00012345678910Tube Length (m)Mean y-deflection (m) Simulation Theoretical Figure 4.16 Deflection results for verification model with 0.5 m/s flow velocity 0.00%20.00%40.00%60.00%80.00%100.00%120.00%140.00%012345678910Tube Length (m)% Difference in Deflection Figure 4.17 Deviation in deflection results for verification model with 0.5 m/s flow velocity

PAGE 65

52 -2.00E+060.00E+002.00E+064.00E+066.00E+068.00E+061.00E+071.20E+071.40E+0702468101214Tube Length (m)Longitudinal Stress (Pa) Maximum Stress Minimum Stress Figure 4.18 Longitudinal bending stress results for verification model with 0.5 m/s flow velocity 4.1.5 Verification Model Conclusion The results from the verification model show the merged shell41 and shell63 elements acceptably model the tension-only tubing material. The Saint-Venants principle effect is specific to the boundary conditions and geometry of the verification model and is not applied elsewhere. The drag loading and boundary condition applications are acceptable and accurately model the actual conditions. 4.2 Cage Simulation Process The actual tubes, when assembled as a cage, have rigid end caps with hose clamps constraining each end. Based on the geometry of the cage, the tube can flex and extend longitudinally. Internally, the tube contains pressurized air to maintain inflation. The external loading on the tube is a distributed drag force caused by a cross-flowing water current.

PAGE 66

53 4.2.1 Flow Design Models With infinite possible current flow-directions for an underwater cage, the number of modeled choices is limited to cages subject to top-down flow and side-flow. Figure 4.19 defines the global coordinate system with side-flow in the positive x-direction and top-flow in the negative y-direction. Modeling the entire cage was necessary because unlike the single beam verification model, the boundary conditions that exist at the end of each tube in the full cage structure are complex and interactive among the cage members. Figure 4.19 Two cage simulation flow orientations 4.2.2 Element Choice All tubes are meshed with merged tension-only shell41 and shell63 elements in the same stacked element configuration as the verification model determined in Section 4.1.3. The tubular connectors in the cage are rigid relative to the tubing, so shell63 elements are used. Link10 elements model the tension-only cables that tie together certain connectors throughout the cage. 4.2.3 Loading Conditions Internal pressure in the fabric tubes acts in the radial and longitudinal directions. Pressure acting in the radial direction is applied using the surface element pressure

PAGE 67

54 command (sfe) to only the shell41 elements making up the fabric tubes. Since the tubes are not actually capped, as in the verification model, a control volume analysis of the fluid in the rigid connector is used to determine the net effect of the longitudinal pressure in each tube. Figure 4.20 shows a control volume of fluid inside a typical 45-connector. Longitudinal pressure from each tube acts over the entrance area to the connector. The product of the pressure and area is treated as an equivalent force, F cap similarly to Equation 4.1 in the analysis of the verification model. Assuming the compressibility of the fluid is negligible, and the fluid is static, the fluid and the connector are approximated as one rigid body. Figure 4.21 shows Figure 4.20 translated into a free body diagram of a typical 45-connector modeled as a rigid body with net x and y component forces. Figure 4.22 shows a finite element model of the same typical 45-connector with the net component cap forces divided and applied to all the nodes around the circumference of the center of the connector. The same analysis and nodal force application is used for each connector. Figure 4.20 Control volume analysis around a rigid 45-connector containing pressurized internal fluid

PAGE 68

55 Figure 4.21 Free body diagram of rigid cap with algebraically summed pretension force components Figure 4.22 Force components applied to finite element model of rigid connector 4.3 Top-Down Flow Cage Model In the top-down flow model, the center tube is anchored at the top of the cage with flow in the opposite direction. Small frictional drag occurring along the center tube is neglected because it lies in the direction of flow. To save on computing time, the center tube is eliminated from the model and replaced with a single node at the top and bottom of the cage. Although not immediately obvious, symmetry could be not be used to simplify the top-down flow cage model analysis. Dividing the cage along the x, y, or both the x and y axes does not work because the state of bending makes the z-direction boundary

PAGE 69

56 conditions along the axis of symmetry unknown. The z-direction boundary conditions also make it impossible to use an axis of symmetry along an axis 45 degrees from the x or y axis. The cable element controlling the z-direction boundary condition lies along this axis of symmetry and can not be split. 4.3.1 Applied Loading Conditions Since external fluid flows over the entire cage, the total fluid drag force on the cage is calculated based on its total cross-sectional area perpendicular to the direction of flow. The total force is then divided equally and applied to all nodes of the eight caps and eight tubes. Referring to the coordinate system defined in Figure 4.23, all drag forces act in the negative z-direction for the top-down flow model. 4.3.2 Boundary Conditions Boundary conditions are applied to simulate the conditions acting on the cage as simply as possible while minimizing solution time. The two locations labeled A in Figure 4.23 describe two single nodes at the top and bottom of the cage. These points are placed to obtain a cage diameter-to-height ratio of 8:5. Both points are constrained to zero deflection in the x,y, and z directions. Cables on the underside of the cage are slack and do not affect the system, but were included for aesthetics along with the fixed node at the bottom of the cage. Locations labeled B and C in Figure 4.23 describe all nodes around the circumference of a tube at the center of its length. Nodes at location B are constrained to zero deflection in the y-direction. Nodes at location C are constrained to zero deflection in the x-direction. Constraining locations B and C prevents rotational rigid body motion while allowing the individual tubes and cage to expand symmetrically.

PAGE 70

57 Figure 4.23 Top-flow boundary condition locations 4.4 Side-Flow Cage Model The side-flow cage starts with the same octagon model as the top-down flow model but includes a model of the center tube, all the cables, and a different anchoring system. Z-direction pretension forces from internal pressure are additionally included at the ends of the center tube in this model. The rigid connectors are pressurized to the same internal pressure as the connecting tubing because successive analysis showed an improvement in the smoothness of the deformation solution around the connections. Symmetry could also not be used in the side-flow cage model analysis. The x-axis would be the best choice for axis of symmetry, but the center tube, lying in the z-direction, would have to be split longitudinally. Also, the x-direction boundary conditions are unknown on the tubes along the axis of symmetry because the drag flow is causing bending at those points. Figure 4.24 shows the components of the center tube as two flexible membranes and three straight, rigid connectors. The total center tube length is determined by the 8:5 cage diameter-to-height ratio. Figure 4.25 shows link10 elements connecting nodes in

PAGE 71

58 the top, bottom, and center connectors of the center tube to nodes in the top and bottom of the 45-degree connectors in the octagon. Cable elements are merged to single nodes on the rigid connector symmetrically as shown. Four tension-only cables anchor the cage from a single external point. Figure 4.26 shows an example of the link10 mooring cable elements merged to one top and bottom node of a 45-degree connector. Figure 4.27 shows the anchor point location in the global coordinate system, where L is the length of an individual tube in the octagon. Setting the anchor point x-location as a function of tube length maintains an anchor distance from the cage as the cage size is increased. This location is chosen to be reasonably close, while minimizing the y-tension component in the anchor cables, which affects the deformation of the cage. 4.4.1 Applied Loading Conditions Drag flow for the side-flow case is approximated as a series of forces applied to specific cage members. Locations A, B, and C in Figure 4.28 describe flexible membrane tubes to which drag is applied. The magnitude of drag on locations A, B, and C is individually based on the respective cross-sectional area. Small frictional drag is neglected along location D in Figure 4.28 because the members are parallel to the flow direction. The total drag force for each individual member is divided equally and applied to the nodes corresponding to the respective location. Referring to the coordinate system defined in Figure 4.23, all drag forces act in the positive x-direction for the side-flow model. 4.4.2 Boundary Conditions The location labeled A in Figure 4.29 describes the single-node anchor point fixed to zero deflection in the x, y and z directions. To allow symmetric expansion and prevent rotational rigid body motion, constraints are placed in two more locations in the cage.

PAGE 72

59 Locations labeled B and C in Figure 4.29 describe all nodes around the circumference of a tube at the center of its length. The nodes at location B are constrained to zero deflection in the y-direction, while nodes at location C, further illustrated in Figure 4.30, are fixed to zero deflection in the z-direction. Flexible Membrane Tubing Rigid Connectors Figure 4.24 Cage center tube components

PAGE 73

60 Figure 4.25 Expanded view of representative internal cable connections Mooring cables Rigid connector Flexible membrane tubing Figure 4.26 Expanded View of representative mooring cable connections

PAGE 74

61 +X +Y 3.4L L/2 L/2 Figure 4.27 Dimensions of anchor location Figure 4.28 Side-flow applied loading locations

PAGE 75

62 B B A C Figure 4.29 Side-flow boundary condition locations Flexible membrane tubing Rigid connector Displacement boundary conditions (nodes of entire circumference) Figure 4.30 Expanded view of center tube boundary conditions

PAGE 76

CHAPTER 5 SIMULATION RESULTS The design criteria and results from the ANSYS cage simulations are presented in Chapter 5. The goal of the study is to determine the maximum cage size possible before failure. Twelve commercially available flexible tubes are tested under top and side flow conditions. The material yielding the largest cage is chosen and subject to an additional velocity simulation. 5.1 Simulation Strategy ANSYS script files are used to parameterize the variables involved in the construction and analysis of each cage. Independent variables were kept constant for all analyses run in this chapter. Independent variables include: External fluid temperature, viscosity, density Flexible membrane orthotropic elastic modulii Rigid connector elastic modulus Flexible membrane and rigid connector Poissons ratios Flexible membrane shear modulus Cable constant, EA Rigid Connector geometry Cable length is defined by the cage geometry. Flexible membrane material properties are explained in Chapter 3, while reasonable values are chosen for external fluid, connector, and cable properties. Dependent variables affecting the cage geometry and loading are: Flexible membrane internal pressure Flexible membrane tube length Flexible membrane tube diameter 63

PAGE 77

64 Flexible membrane thickness External fluid velocity Internal pressure causes the pretension forces in the flexible membrane tubes. The pretension forces are also based on the area of the tube opening and so are functions of the tube diameter. Drag on a given member is a direct function of tube length and tube diameter. Drag is also a function of the flowing fluid velocity squared. Three of the five independent variables are combined using data from commercially available materials. Table 5.1 presents Vinyl-Flow data including tube diameter, thickness, and working pressure for a given series number. Simulation results make convenient the grouping of VF-Series by pressure to show approximately constant pressure trends. The three pressure range groups are indicated in Table 5.1. The following simulations vary Vinyl-Flow series number, tube length, and external fluid velocity to determine effects on cage performance. Table 5.1 Manufacturer data for Vinyl-Flow commercial drainage tubing 5.2 Failure Criteria The failure criteria for both flow cases are the points when wrinkling occurs anywhere in the fabric tubing and when stress exceeds the ultimate strength of the

PAGE 78

65 material. Wrinkling is defined here as a compressive stress. Cage wrinkle diameter is defined as the maximum cage diameter before any flexible tube wrinkles due to a compressive stress less than or equal to zero. It is important to consider both the longitudinal and hoop stresses in the analysis. Wrinkling is expected to occur in the longitudinal direction because the combined loading of internal pressure and bending affect the longitudinal stress. Tubes are not expected to wrinkle in the hoop direction because the only loading affecting the hoop stress, internal pressure, creates a tensile hoop stress. The maximum stress will occur in the longitudinal direction because the combined loading of internal pressure and bending affect the longitudinal stress. The hoop stress is affected only by the internal pressure loading. Using the manufacturers recommended working pressure ensures the hoop stress will not exceed the ultimate strength of the material. Figure 5.2 illustrates a representative case of compressive failure behavior for VF-800 tested at a water speed of 1 knot in top-flow. Maximum and minimum longitudinal stresses are shown for various cage sizes. As cage size is increased, maximum stress increases, while minimum stress decreases. Pretension in the tubes keeps both stresses positive, meaning they are always in tension. When the cage size increases to the point that the minimum stress drops below zero, the model fails because the tension-only elements can not support compressive stress. This is then interpreted by the program as an unconstrained model and results in a rigid body motion error message. Note that the compressive stress could go very slightly negative without failure because of the small compressive strength provided by the merged shell63 elements comprising the tube.

PAGE 79

66 Subsequent top-flow simulation failures are judged by the rigid body motion error message. The side-flow simulations do not show a smooth trend in the longitudinal stress down to zero as in Figure 5.2, but show a sudden drop-off resulting in a rigid body motion error message. This behavior can be described as a buckling of the structural tubes. The stress behavior is due to changes in the higher order bending occurring in the tubes as cage size changes. Section 5.4 illustrates and further explains this behavior. The side-flow cage failure is therefore also determined by the rigid body motion error message in the simulation. 0.00E+002.00E+064.00E+066.00E+068.00E+061.00E+071.20E+07051015202530Cage Diameter (m)Longitududinal Tube Stress (Pa) Maximum Stress Minimum Stress Figure 5.2 Simulation results: Bending stresses in a VF-800 top-flow cage 5.3 Stress Results Figure 5.3 illustrates the maximum longitudinal stresses occurring in each simulation staying below the experimentally determined ultimate strength of the material, 2.6e7 Pa. This ensures the material strength is not exceeded in any simulation.

PAGE 80

67 0.00E+005.00E+061.00E+071.50E+072.00E+072.50E+073.00E+07VF 150VF 200VF 250VF 300VF 400VF 500VF 600VF 800VF 1000VF 1200VF 1400VF 1600Vinyl-Flow Series NumberLongitudinal Stress (Pa) Top-FlowMaximum Stress Side-FlowMaximum Stress Ultimate MaterialStrength Figure 5.3 Maximum stresses in each simulation and ultimate material strength 5.4 Geometry Deformation Results Figures 5.4 through 5.6 show various views of a typical deformed geometry of a cage subject to top-flow at the critical wrinkle point. All eight tubes bend in the negative z-direction with maximum z-deflection occurring at half the tube length. Bending plus the Poisson effect cause the cage diameter to decrease symmetrically throughout the cage. Figures 5.7 through 5.8 show two views of a typical deformed geometry of a cage subject to side-flow at the critical wrinkle point. Note that the net cage x-diameter increases, while the net cage y-diameter decreases. Internal reaction forces occurring through the cable connections cause internal bending moments around the corner connectors of the octagon. Deformation effects of these internal bending moments are visible in the deformed curvature around the connectors and account for multiple-mode bending visible in several of the beams. Figure 5.9 illustrates the rotational effect on a

PAGE 81

68 representative rigid connector. The different rotational effects occurring throughout the cage contribute to the multiple bending modes and subsequent buckling stress behavior leading to failure. Figure 5.4 Top-Flow deformed geometry at the wrinkle point: View 1 X Y Deformed Undeformed Figure 5.5 Top-Flow deformed geometry at the wrinkle point: View 2

PAGE 82

69 Deformed Undeformed Figure 5.6 Top-Flow deformed geometry at the wrinkle point: View 3 Deformed Undeformed Figure 5.7 Side-Flow deformed geometry at the wrinkle point: View 1

PAGE 83

70 Deformed Undeformed Figure 5.8 Side-Flow deformed geometry at the wrinkle point: View 2 Undeformed Deformed Note rotational effect Figure 5.9 Representative rotational effect occurring in side-flow simulation

PAGE 84

71 5.5 Simulation Deflection Results Deflection results are useful in predicting cage behavior. Presented here are qualitative results for a specific material case and maximum deflection results for each material case. Numeric sign associated with deflection is related to the previously defined cage coordinate system. For diameter changes, a negative change indicates a decrease in diameter, while a positive change indicates an increase. 5.5.1 Qualitative Deflection Results Figure 5.10 shows deflection data of the net cage x-diameter deflection for a representative case of the VF-800 tested in top-flow at a water speed of one knot at various cage diameters. Deflection results are identical for the cage y-diameter based on the symmetry of the geometry and loading. Cage diameter change has a qualitatively linear trend for the top-flow cage loading. Figure 5.11 shows data of the maximum z-deflection for the same representative case. The data represents the maximum bending deflection occurring in each tube and has an expected qualitatively decreasing parabolic trend as cage size is increased. Figure 5.12 shows cage y-diameter deflection data for the VF-500 representative case, but in side-flow. As seen in the geometry deformation of the side flow cage, the cage y-diameter decreases drastically. No clear trend is visible in the smaller x-diameter deflection. This is because the multiple bending modes largely affect the x-diameter cross members and occur differently in each cage size. X-diameter cage deflections must be considered on a case by case basis for side-flow.

PAGE 85

72 -2.5-2-1.5-1-0.50051015202530Cage Diameter (m)Net Cage x-diameter Deflection (m) Figure 5.10 Cage x-diameter net deflection for VF-800 tested at flow speed of 1 knot, top-flow -5-4-3-2-10051015202530Cage Diameter (m) Figure 5.11 Maximum z-deflection for VF-800 cage tested at flow speed of 1 knot, top-flow

PAGE 86

73 -3.0-2.5-2.0-1.5-1.0-0.50.005101520Cage Diameter (m)Net Cage y-diameter Deflection (m) Figure 5.12 Cage y-diameter net deflection for VF-500 tested at flow speed of 1 knot, side-flow 5.5.2 Maximum Deflection Results Two tables are shown to present deflection behavior with respect to the original cage size. Data are summarized in table format because in each case, the maximum deflections occur at different cage sizes which correspond to different drag loadings. With different drag loadings, each case can not be directly compared to determine a graphical trend. Tube diameter and working pressure are included in the tables for comparison between cases. Table 5.2 shows the maximum diameter change and maximum z-deflection with respect to original cage diameter for the top-flow case. Diameter deflections are between 4-10%, while z-deflections are between 10-18%. Table 5.3 shows the maximum change in the x and y diameters with respect to original cage diameter for the side-flow case. X-diameter deflections are small and between 2-4%, while y-deflections are much larger, at 14-22%.

PAGE 87

74 Table 5.2 Maximum cage deflections for the top-flow orientation Series numberTube diameter (in.)Working pressure (psi)Maximum cage diameter (m)Ratio of change in cage x-diameter to original cage diameterRatio of z-deflection to original cage diameterVF 1501.673807.2-4.93%-10.78%VF 2002.165809.6-6.49%-14.98%VF 2502.5988010.8-6.49%-13.53%VF 3003.1307013.2-7.02%-15.83%VF 4004.1347016.8-8.71%-18.78%VF 5005.0394014.4-5.80%-10.57%VF 6006.1815020.4-8.83%-17.37%VF 8008.1694526.4-8.75%-17.47%VF 100010.1183527.6-7.78%-13.82%VF 120012.1263030-7.60%-13.59%VF 140014.1343034.8-8.85%-15.76%VF 160016.1423039.6-10.10%-17.92% Table 5.3 Maximum cage deflections for the side-flow orientation Series numberTube diameter (in.)Working pressure (psi)Maximum cage diameter (m)Ratio of net x diameter change to original cage diameterRatio of net y diameter change to original cage diameterVF 1501.6738014.42.498%-17.346%VF 2002.16580182.600%-18.633%VF 2502.5988020.42.598%-18.216%VF 3003.1307021.62.681%-18.361%VF 4004.1347027.63.138%-21.377%VF 5005.03940182.569%-14.222%VF 6006.1815021.62.731%-17.667%VF 8008.1694525.23.150%-18.619%VF 100010.11835242.672%-15.442%VF 120012.1263025.22.779%-14.976%VF 140014.1343028.83.262%-17.278%VF 160016.1423032.43.760%-19.605% 5.6 Cage Size Results Maximum possible cage size is determined by the point at which the cage wrinkles. Figures 5.13 and 5.14 show the maximum cage diameter results by tube diameter for the top-flow and side-flow cases respectively. Slight pressure effects are noted between the pressure groups of the top-flow case, but are neglected to form one linear increasing trend. The trend generally shows that, independent of pressure, as diameter increases, the maximum possible cage diameter increases for top-flow conditions. The side-flow case, however, has significant pressure effects visible in Figure 5.14. Each pressure group is plotted with an increasing linear trend, but a distinct slope and y-intercept. Within each

PAGE 88

75 pressure group, as diameter increases, the maximum possible cage diameter increases. Also evident is that as pressure increases, the slope of the constant pressure trends becomes steeper. This indicates that for a given diameter, operating at higher pressures increases the maximum possible cage size. Since the flow situations are idealized and true water conditions vary no matter how the cage is anchored, choosing the material for the largest cage is based on the results of both flow cases. Figure 5.15 presents the data from figures 5.13 and 5.14 as a summary of the top-flow and side-flow maximum cage diameters possible for all the material models tested. The lesser cage maximum diameter of the two flow cases is the limiting factor for each material. Refer to Table 5.1 for model specific manufacturer data including tube diameter, thickness, and working pressure for each case. 051015202530354045024681012141618Tube Diameter (in)Maximum Cage Diameter (m) 70-80 psi 40-50 psi 30-35 psi slight pressure effectslight pressure effect Figure 5.13 Top-flow maximum cage diameters for each tubing material grouped by internal pressure

PAGE 89

76 05101520253035024681012141618Tube Diameter (in)Maximum Cage Diameter (m) 70-80 psi 40-50 psi 30-35 psi Figure 5.14 Side-flow maximum cage diameters for each tubing material grouped by internal pressure 051015202530354045VF 150VF 200VF 250VF 300VF 400VF 500VF 600VF 800VF 1000VF 1200VF 1400VF 1600Vinyl-Flow Series NumberMaximum Cage Diameter (m) Side-Flow Top-Flow Figure 5.15 Summary of maximum possible cage size for each material in two flow cases subject to one knot flow velocity VF Series number corresponds to diameter, working pressure, and thickness in Table 5.1

PAGE 90

77 5.7 Velocity Results VF-1600 is chosen because it has the largest limiting cage size of the materials tested. The maximum possible VF-1600 cage diameters for top-flow and side-flow are averaged and then divided by two to obtain a cage diameter able to withstand higher than one knot flow velocity. This cage diameter, 19.2 m, is used for a velocity test on the cage. The cage withstands the same maximum flow speed of 1.6 knots in both top and side flow cases before wrinkling occurs. In top-flow, cage diameter decreases 10.183%, while in side-flow, cage x-diameter increases 4.027%, and cage y-diameter decreases 17.792%. These deflections are reasonable for an inflated flexible membrane cage of this size and correspond to the expected deformation results shown in Section 5.4.

PAGE 91

CHAPTER 6 CONCLUSION The experimental work performed gave preliminary values of the orthotropic material properties. More advanced test equipment is necessary to model orthotropic fiber tubing to find the directional elastic moduli and Poissons ratio. Large-deformation strain gages would improve the accuracy in recording the strain used in determining the elastic modulus. A two direction tensile tester would be necessary to experimentally determine Poissons ratio for the inflated-tube loading case. The values determined were sufficient for the preliminary design and modeling of the orthotropic fiber material. The analysis presented here focused on the inflatable behavior of the structure. The simulation included the inflated tube members, rigid PVC connectors, and cable connectors. It is important to note that the fish netting is excluded from the simulation, but is necessary for a complete analysis. The simulation effectively models the nonlinear behavior of the orthotropic, fabric material by translating the inflatable theory into a finite element model. Preliminary simulations successfully show expected inflatable behavior in full-cage top and side flow models. Preliminary findings warrant further research that models the external netting. Net selection has several biological issues to be addressed such as net biofouling and biologically safe mesh size. Net analysis will potentially require dynamic analysis to model the hydrodynamic interaction between the structural element and the fluid (Tsukrov et al., 2000). Since the cage divergence volume is an important issue, future work should include at least an approximation of the nets. Further simulation work 78

PAGE 92

79 should also include optimizing the inflatable material. The cage materials size and stiffness is expected to offset the increased loading of the nets, making the inflatable aquaculture cage practical and economical. The side and top flow models behave differently, particularly with respect to divergence volume. The internal pressure and tube diameter play the largest role in deciding the maximum possible cage diameter prior to wrinkling. Instead of including a safety factor in the final results, the failure criterion was set to the point at which wrinkling occurred in any tube. Inflatable tubes do not actually fail at the point of wrinkling, but can continue past this point (Main et al., 1994). Future simulations may be able to push the failure criteria by modeling the stiffness behavior of the wrinkled material. This work successfully models one new application of inflatable structures. Nonlinear finite element modeling is shown to be an effective tool in analyzing the behavior of these structures. Inflatables in many applications have a great potential for improving cost, weight, and convenience. This effort adds one step to the progression of inflatable structures, and may encourage their further development and acceptance.

PAGE 93

APPENDIX A ANSYS SCRIPT CODE The following contains two ANSYS script files used in the design and analysis of the inflated cage. A top flow orientation script is first presented, followed by a side flow orientation script. Many variables used in the analysis are parameterized in the beginning of each script to account for changing conditions. Top-Flow /COM, this code has the link10 elements and uses knode command to /COM, connect them to the caps /PREP7 /COM, change colors to white background /RGB,INDEX,100,100,100, 0 /RGB,INDEX, 80, 80, 80,13 /RGB,INDEX, 60, 60, 60,14 /RGB,INDEX, 0, 0, 0,15 /COM, ******************************************* /COM, define geometric tube parameters /COM, ******************************************* /COM, inner diameter, units = inches ID = 8.169 /COM, material thickness, units = inches thicknessinch = 0.1063 /COM, units = m length = 8 /COM, end cap radius of curvature determines cap length caprad=ID/12 /COM, ************************************** /COM, define element parameters /COM, ************************************** /COM, number of nodes on quarter circumference n = 7 /COM, number of nodes along length m = 51 /COM, element depth edepth = length/(m-1) /COM, Elastic Modulus in the hoop direction (Pa) Ehoop = 5.157e7 /COM, Elastic Modulus in the longitudinal direction (Pa) 80

PAGE 94

81 Elong = 3.211e8 /COM, Major Poisson's Ratio (xy) poisson = 0.4 /COM, Shear Modulus, Gxy, G_HL, units? shearmod = 1.91e7 /COM, Elastic Modulus for Artificial stiffness (small) units=Pa smallmod = 10000 /COM, Elastic Modulus for Cap (large) units=Pa capmod=9e9 /COM,******************************************************* /COM,* define external fluid (water @20 C) parameters /COM,******************************************************* /COM, appendix A-3, external fluid absolute viscosity, kg/m-s visc = (1e-3) /COM, external fluid density, kg/m^3 dens = (998) /COM, *************************************** /COM, define loading /COM, *************************************** /COM, internal pressure, psi prespsi = 45 /COM, flowing fluid velocity m/s vel = (0.5144444) /COM, ********************************************** /COM, calculate dependant variables, units /COM, ********************************************** /COM, angles in degrees *afun,deg /COM, cap arc length (m) caplength=0.3 /COM, convert pressure units pressure = (6894.757*prespsi) /COM, convert diameter to radius in meters radius = (ID/2)*0.0254 diam=radius*2 /COM, convert to units = m thickness = thicknessinch*0.0254 /COM, cross-sectional area ONE tube, units = m^2 tubecsarea = 2*radius*length /COM, cross-sectional area ONE cap, units = m^2 capcsarea=((3.1417*caprad*diam)/4) /COM, cross-sectional area ENTIRE cage, units = m^2 totcsarea=((8*tubecsarea)+(8*capcsarea)) /COM, total number of nodes in the entire octagon (cap+tube) ntot=32*(n**2+m*n-m-3*n+2) /COM, Reynolds number, dimensionless Re = (dens*vel*2*radius)/visc /COM, coefficient of drag, found from Figure 9.13 based on Re cd = 1 /COM, total drag force, units = N drag = 0.5*cd*totcsarea*dens*(vel**2) /COM, force per node equivalent to the internal pressure... /COM, ...acting on the cap, units = N capForce = (pressure*3.1417*radius*radius) /COM,******************************************************* /COM,* Define Elements

PAGE 95

82 /COM,******************************************************* /COM, /COM, 1 Membrane Shell Element /COM, 2 Added Stiffness Membrane Shell Element /COM, 3 Cap Membrane Shell Element /COM, 4 Cable Element ET,1,SHELL41,2 ET,2,SHELL63 ET,3,SHELL63 ET,4,LINK10,,1,0 /COM, Real Constants R,1,thickness R,2,thickness R,3,thickness*10 R,4,0.5.0.3 /COM, Young's Modulus in the hoop direction MP,EX,1, Ehoop MP,EX,2, smallmod MP,EX,3, capmod MP,EX,4, 9e7 /COM, Young's Modulus in the longitudinal direction MP,EY,1, Elong /COM, Major Poisson's Ratio (xy) MP,PRXY,1,poisson MP,PRXY,2,poisson MP,PRXY,3,poisson /COM, Shear Modulus, Gxy, G_HL MP,GXY,1, shearmod /COM,******************************************************* /COM,* CAGE GEOMETRY /COM,******************************************************* /COM, generate one tube and two 45 degree caps (upper right corner) k,1,length/2,length/2+length*sin(45),0 k,2,length/2+length*cos(45),length/2,0 circle,1,caprad,,,,8 circle,2,caprad,,,,8 l,4,12 circle,4,radius,12 circle,12,radius,4 ADRAG,18,19,20,21,,,17 ADRAG,18,19,20,21,,,2 ADRAG,22,23,24,25,,,9 /COM, mesh one tube (upper right corner) lsel,s,line,,17 lsel,a,line,,27 lsel,a,line,,28 lsel,a,line,,30 lsel,a,line,,32 lesize,all,,,m-1 TYPE,1 MAT,1 REAL,1 amesh,1,4,1 /COM, mesh two caps (upper right corner) lsel,s,line,,18,25,1 lesize,all,,,n-1

PAGE 96

83 lsel,s,line,,35 lsel,a,line,,36 lsel,a,line,,38 lsel,a,line,,40 lsel,a,line,,43 lsel,a,line,,44 lsel,a,line,,46 lsel,a,line,,48 lesize,all,,,n-1 TYPE,3 MAT,3 REAL,3 amesh,5,12,1 /COM, reflect areas and mesh to create all four corners of octagon arsym,X,all arsym,y,all /COM, generate 2 vertical and 2 horizontal tube areas (sides) k,,length/2,length/2+length*sin(45)+caprad,0 k,,-length/2,length/2+length*sin(45)+caprad,0 k,,-length/2,-length/2-length*sin(45)-caprad,0 k,,length/2,-length/2-length*sin(45)-caprad,0 k,,length/2+length*cos(45)+caprad,length/2,0 k,,length/2+length*cos(45)+caprad,-length/2,0 k,,-length/2-length*cos(45)-caprad,length/2,0 k,,-length/2-length*cos(45)-caprad,-length/2,0 l,99,100 l,101,102 l,103,104 l,105,106 ADRAG,63,66,68,69,,,146 ADRAG,95,98,100,101,,,147 ADRAG,104,108,111,113,,,148 ADRAG,72,76,79,81,,,149 /COM, mesh four tubes (sides) lsel,s,line,,51 lsel,a,line,,53 lsel,a,line,,55 lsel,a,line,,58 lsel,a,line,,83 lsel,a,line,,85 lsel,a,line,,87 lsel,a,line,,90 lsel,a,line,,115 lsel,a,line,,117 lsel,a,line,,119 lsel,a,line,,122 lsel,a,line,,146 lsel,a,line,,147 lsel,a,line,,148 lsel,a,line,,149 lsel,a,line,,151 lsel,a,line,,152 lsel,a,line,,154 lsel,a,line,,156 lsel,a,line,,159 lsel,a,line,,160

PAGE 97

84 lsel,a,line,,162 lsel,a,line,,164 lsel,a,line,,167 lsel,a,line,,168 lsel,a,line,,170 lsel,a,line,,172 lsel,a,line,,175 lsel,a,line,,176 lsel,a,line,,178 lsel,a,line,,180 lesize,all,,,m-1 TYPE,1 MAT,1 REAL,1 amesh,49,64,1 /COM, re-generate tube areas (sides) and mesh with artificial stiffness lsel,all ADRAG,63,66,68,69,,,146 ADRAG,95,98,100,101,,,147 ADRAG,104,108,111,113,,,148 ADRAG,72,76,79,81,,,149 arsym,X,1,4,1,0,1,0 arsym,y,1,4,1,0,1,0 arsym,X,13,16,1,0,1,0 arsym,y,13,16,1,0,1,0 TYPE,2 MAT,2 REAL,2 amesh,65,96,1 /COM, merge all nodes, elements, and keypoints nsel,all esel,all nummrg, node, 1e-5 nummrg, kp nummrg, elem, 1e-5 /COM, apply total drag force / total # nodes nsel,all f,all,fz,-drag/ntot /COM, apply force boundary conditions esel,s,type,,1 sfe,all,,pres,,pressure /COM, create cage cables k,200,0,0,((2.4*length)*(5/16)) k,201,0,0,-((2.4*length)*(5/16)) TYPE,4 MAT,4 REAL,4 csys,1 nsel,s,loc,y,22.49999,22.50001 csys,0 f,all,fy,(capforce*(1-sin(45)))/(4*(n-1)) f,all,fx,(capforce*cos(45))/(4*(n-1)) csys,1 nsel,r,loc,z,radius knode,203,all l,203,200,1

PAGE 98

85 lmesh,26 nsel,s,loc,y,22.49999,22.50001 nsel,r,loc,z,-radius knode,204,all l,204,201,1 lmesh,29 csys,1 nsel,s,loc,y,67.49999, 67.50001 csys,0 f,all,fx,(capforce*(1-cos(45)))/(4*(n-1)) f,all,fy,(capforce*sin(45))/(4*(n-1)) csys,1 nsel,r,loc,z,radius knode,205,all l,205,200,1 lmesh,31 nsel,s,loc,y,67.49999, 67.50001 nsel,r,loc,z,-radius knode,206,all l,206,201,1 lmesh,33 csys,1 nsel,s,loc,y,112.49999, 112.50001 csys,0 f,all,fx,-(capforce*(1-cos(45)))/(4*(n-1)) f,all,fy,(capforce*sin(45))/(4*(n-1)) csys,1 nsel,r,loc,z,radius knode,207,all l,207,200,1 lmesh,70 nsel,s,loc,y,112.49999, 112.50001 nsel,r,loc,z,-radius knode,208,all l,208,201,1 lmesh,74 csys,1 nsel,s,loc,y,157.49999,157.50001 csys,0 f,all,fy,(capforce*(1-sin(45)))/(4*(n-1)) f,all,fx,-(capforce*cos(45))/(4*(n-1)) csys,1 nsel,r,loc,z,radius knode,209,all l,209,200,1 lmesh,77 nsel,s,loc,y,157.49999,157.50001 nsel,r,loc,z,-radius knode,210,all l,210,201,1 lmesh,80 csys,1 nsel,s,loc,y,-22.49999, -22.50001 csys,0 f,all,fy,-(capforce*(1-sin(45)))/(4*(n-1)) f,all,fx,(capforce*cos(45))/(4*(n-1))

PAGE 99

86 csys,1 nsel,r,loc,z,radius knode,211,all l,211,200,1 lmesh,102 nsel,s,loc,y,-22.49999,-22.50001 nsel,r,loc,z,-radius knode,212,all l,212,201,1 lmesh,106 csys,1 nsel,s,loc,y,-67.49999,-67.50001 csys,0 f,all,fx,(capforce*(1-sin(45)))/(4*(n-1)) f,all,fy,-(capforce*cos(45))/(4*(n-1)) csys,1 nsel,r,loc,z,radius knode,213,all l,213,200,1 lmesh,109 nsel,s,loc,y,-67.49999,-67.50001 nsel,r,loc,z,-radius knode,214,all l,214,201,1 lmesh,112 csys,1 nsel,s,loc,y,-112.49999,-112.50001 csys,0 f,all,fx,-(capforce*(1-sin(45)))/(4*(n-1)) f,all,fy,-(capforce*cos(45))/(4*(n-1)) csys,1 nsel,r,loc,z,radius knode,215,all l,215,200,1 lmesh,134 nsel,s,loc,y,-112.49999,-112.50001 nsel,r,loc,z,-radius knode,216,all l,216,201,1 lmesh,138 csys,1 nsel,s,loc,y,-157.49999,-157.50001 csys,0 f,all,fy,-(capforce*(1-sin(45)))/(4*(n-1)) f,all,fx,-(capforce*cos(45))/(4*(n-1)) csys,1 nsel,r,loc,z,radius knode,217,all l,217,200,1 lmesh,141 nsel,s,loc,y,-157.49999,-157.50001 nsel,r,loc,z,-radius knode,218,all l,218,201,1 lmesh,144 csys,0

PAGE 100

87 nsel,s,loc,x,0 d,all,ux,0 nsel,s,loc,y,0 d,all,uy,0 dk,200,ux,0 dk,200,uy,0 dk,200,uz,0 dk,201,ux,0 dk,201,uy,0 dk,201,uz,0 nsel,all esel,all nummrg, node nummrg, elem nummrg, kp fini /COM, ************************************ /COM, Solution /COM, ************************************ /solve nsel,all esel,all autots,on deltim,1 solve /post1 cys,0 nsel,s,loc,x,-length/2,length/2 nsel,r,loc,y,0,length*5 esln,s,all esel,r,type,,1 plesol,s,x esel,all nsel,all plnsol,u,x esel,all nsel,all plnsol,u,z Side-Flow /PREP7 /COM, ******************************************* /COM, define geometric tube parameters /COM, ******************************************* /COM, change colors to white background /RGB,INDEX,100,100,100, 0 /RGB,INDEX, 80, 80, 80,13 /RGB,INDEX, 60, 60, 60,14 /RGB,INDEX, 0, 0, 0,15 /COM, inner diameter, units = inches ID = 16.142 /COM, material thickness, units = inches thicknessinch = .1181 /COM, units = m

PAGE 101

88 length = 8 /COM, end cap radius of curvature determines cap length caprad=ID/12 /COM, ************************************** /COM, define element parameters /COM, ************************************** /COM, number of nodes on quarter circumference n = 7 /COM, number of nodes along length m = 81 /COM, element depth edepth = length/(m-1) /COM, Elastic Modulus in the hoop direction (Pa) Ehoop = 5.157e7 /COM, Elastic Modulus in the longitudinal direction (Pa) Elong = 3.211e8 /COM, Major Poisson's Ratio (xy) poisson = 0.4 /COM, Shear Modulus, Gxy, G_HL, units? shearmod = 1.91e7 /COM, Elastic Modulus for Artificial stiffness (small) units=Pa smallmod = 10000 /COM, Elastic Modulus for Cap (large) units=Pa capmod=3e9 /COM,******************************************************* /COM,* define external fluid (water @20 C) parameters /COM,******************************************************* /COM, appendix A-3, external fluid absolute viscosity, kg/m-s visc = (1e-3) /COM, external fluid density, kg/m^3 dens = (998) /COM, *************************************** /COM, define loading /COM, *************************************** /COM, internal pressure, psi prespsi = 45 /COM, flowing fluid velocity m/s vel = (0.5144444) /COM, ********************************************** /COM, calculate dependant variables, units /COM, ********************************************** /COM, angles in degrees *afun,deg /COM, cap arc length (m) caplength=0.3 /COM, convert pressure units pressure = (6894.757*prespsi) /COM, convert diameter to radius in meters radius = (ID/2)*0.0254 diam=radius*2 /COM, convert to units = m thickness = thicknessinch*0.0254 /COM, cross-sectional area ONE tube, units = m^2 tubecsarea = 2*radius*length /COM, cross-sectional area ONE cap, units = m^2 capcsarea=((3.1417*caprad*diam)/4)

PAGE 102

89 /COM, cross-sectional area ENTIRE cage, units = m^2 totcsarea=((8*tubecsarea)+(8*capcsarea)) /COM, total number of nodes in the entire octagon (cap+tube) !ntot=32*(n**2+m*n-m-3*n+2) /COM, total number nodes in one tube ntot=((n-1)*m*4) /COM, Reynolds number, dimensionless Re = (dens*vel*2*radius)/visc /COM, coefficient of drag, found from Figure 9.13 based on Re cd = 1 /COM, total drag force on one tube, units = N drag = 0.5*cd*tubecsarea*dens*(vel**2) /COM, total drag force on half of the center tube, units = N dragcentertube = 0.5*cd*2*radius*(((2.4*length)*(5/16))-caplength/2)*dens*(vel**2) /COM, force per node equivalent to the internal pressure... /COM, ...acting on the cap, units = N !capForce = (pressure*3.1417*radius*radius)/(4*(n-1)) capForce = (pressure*3.1417*radius*radius) /COM,******************************************************* /COM,* Define Elements /COM,******************************************************* /COM, 1 Membrane Shell Element /COM, 2 Added Stiffness Membrane Shell Element /COM, 3 Cap Membrane Shell Element /COM, 4 Cable Element ET,1,SHELL41,2 !ET,1,SHELL63 ET,2,SHELL63 ET,3,SHELL63 ET,4,LINK10,,1,0 /COM, Real Constants R,1,thickness R,2,thickness R,3,thickness*3 R,4,0.5 /COM, Young's Modulus in the hoop direction MP,EX,1, Ehoop MP,EX,2, smallmod MP,EX,3, capmod MP,EX,4, 9e7 /COM, Young's Modulus in the longitudinal direction MP,EY,1, Elong /COM, Major Poisson's Ratio (xy) MP,PRXY,1,poisson MP,PRXY,2,poisson MP,PRXY,3,poisson /COM, Shear Modulus, Gxy, G_HL MP,GXY,1, shearmod /COM,******************************************************* /COM,* CAGE GEOMETRY /COM,******************************************************* /COM, generate one tube and two 45 degree caps (upper right corner) k,1,length/2,length/2+length*sin(45),0 k,2,length/2+length*cos(45),length/2,0 circle,1,caprad,,,,8 circle,2,caprad,,,,8

PAGE 103

90 l,4,12 circle,4,radius,12 circle,12,radius,4 ADRAG,18,19,20,21,,,17 ADRAG,18,19,20,21,,,2 ADRAG,22,23,24,25,,,9 /COM, mesh one tube (upper right corner) lsel,s,line,,17 lsel,a,line,,27 lsel,a,line,,28 lsel,a,line,,30 lsel,a,line,,32 lesize,all,,,m-1 TYPE,1 MAT,1 REAL,1 amesh,1,4,1 /COM, mesh two caps (upper right corner) lsel,s,line,,18,25,1 lesize,all,,,n-1 lsel,s,line,,35 lsel,a,line,,36 lsel,a,line,,38 lsel,a,line,,40 lsel,a,line,,43 lsel,a,line,,44 lsel,a,line,,46 lsel,a,line,,48 lesize,all,,,n-1 TYPE,3 MAT,3 REAL,3 amesh,5,12,1 /COM, reflect areas and mesh to create all four corners of octagon arsym,X,all arsym,y,all /COM, generate 2 vertical and 2 horizontal tube areas (sides) k,,length/2,length/2+length*sin(45)+caprad,0 k,,-length/2,length/2+length*sin(45)+caprad,0 k,,-length/2,-length/2-length*sin(45)-caprad,0 k,,length/2,-length/2-length*sin(45)-caprad,0 k,,length/2+length*cos(45)+caprad,length/2,0 k,,length/2+length*cos(45)+caprad,-length/2,0 k,,-length/2-length*cos(45)-caprad,length/2,0 k,,-length/2-length*cos(45)-caprad,-length/2,0 l,99,100 l,101,102 l,103,104 l,105,106 ADRAG,63,66,68,69,,,146 ADRAG,95,98,100,101,,,147 ADRAG,104,108,111,113,,,148 ADRAG,72,76,79,81,,,149 /COM, mesh four tubes (sides) lsel,s,line,,51 lsel,a,line,,53

PAGE 104

91 lsel,a,line,,55 lsel,a,line,,58 lsel,a,line,,83 lsel,a,line,,85 lsel,a,line,,87 lsel,a,line,,90 lsel,a,line,,115 lsel,a,line,,117 lsel,a,line,,119 lsel,a,line,,122 lsel,a,line,,146 lsel,a,line,,147 lsel,a,line,,148 lsel,a,line,,149 lsel,a,line,,151 lsel,a,line,,152 lsel,a,line,,154 lsel,a,line,,156 lsel,a,line,,159 lsel,a,line,,160 lsel,a,line,,162 lsel,a,line,,164 lsel,a,line,,167 lsel,a,line,,168 lsel,a,line,,170 lsel,a,line,,172 lsel,a,line,,175 lsel,a,line,,176 lsel,a,line,,178 lsel,a,line,,180 lesize,all,,,m-1 asel,s,,,49,52,1 asel,a,,,53,56,1 asel,a,,,57,60,1 asel,a,,,61,64,1 TYPE,1 MAT,1 REAL,1 amesh,all /COM, re-generate tube areas (sides) and mesh with artificial stiffness lsel,all ADRAG,63,66,68,69,,,146 ADRAG,95,98,100,101,,,147 ADRAG,104,108,111,113,,,148 ADRAG,72,76,79,81,,,149 asel,s,,,1,4,1 arsym,X,all,,,,1 asel,s,,,1,4,1 arsym,y,all,,,,1 asel,s,,,13,16,1 arsym,X,all,,,,1 asel,s,,,13,16,1 arsym,y,all,,,,1 TYPE,2 MAT,2 REAL,2

PAGE 105

92 asel,s,,,65,96,1 amesh,all k,200,(-3.7*length) k,201,0,0,(((2.4*length)*(5/16))+caplength) k,202,0,0,((2.4*length)*(5/16)) k,203,0,0,caplength/2 k,204,0,0,0 l,201,202 l,202,203 l,203,204 circle,201,radius /com, center tube upper cap lsel,s,,,265,268,1 adrag,all,,,,,,262 lsel,s,line,,262 lsel,a,line,,270 lsel,a,line,,271 lsel,a,line,,273 lsel,a,line,,275 lesize,all,,,n-1 TYPE,3 MAT,3 REAL,3 asel,s,,,97,100,1 amesh,all /com, center tube circle,202,radius lsel,s,,,277,280,1 adrag,all,,,,,,263 lsel,s,line,,263 lsel,a,line,,282 lsel,a,line,,283 lsel,a,line,,285 lsel,a,line,,287 lesize,all,,,(m-1)/2 TYPE,1 MAT,1 REAL,1 asel,s,,,101,104,1 amesh,all circle,203,radius lsel,s,,,289,292,1 adrag,all,,,,,,263 lsel,s,line,,263 lsel,a,line,,294 lsel,a,line,,295 lsel,a,line,,297 lsel,a,line,,299 lesize,all,,,(m-1)/2 TYPE,2 MAT,2 REAL,2 amesh,105,108,1 circle,204,radius lsel,s,,,301,304,1 adrag,all,,,,,,264

PAGE 106

93 lsel,s,line,,264 lsel,a,line,,306 lsel,a,line,,307 lsel,a,line,,309 lsel,a,line,,311 lesize,all,,,(n-1)/2 TYPE,3 MAT,3 REAL,3 asel,s,,,109,112,1 amesh,all csys,0 asel,s,,,97,112,1 arsym,z,all csys,1 nsel,s,loc,y,22.49999,22.50001 csys,0 nsel,r,loc,y,radius*2,length*5 nsel,r,loc,z,radius knode,300,all csys,1 nsel,s,loc,y,22.49999,22.50001 csys,0 nsel,r,loc,y,radius*2,length*5 nsel,r,loc,z,-radius knode,301,all csys,1 nsel,s,loc,y,67.49999, 67.50001 csys,0 nsel,r,loc,y,radius*2,length*5 nsel,r,loc,z,radius knode,302,all csys,1 nsel,s,loc,y,67.49999, 67.50001 csys,0 nsel,r,loc,y,radius*2,length*5 nsel,r,loc,z,-radius knode,303,all csys,1 nsel,s,loc,y,112.49999, 112.50001 csys,0 nsel,r,loc,y,radius*2,length*5 nsel,r,loc,z,radius knode,304,all csys,1 nsel,s,loc,y,112.49999, 112.50001 csys,0 nsel,r,loc,y,radius*2,length*5 nsel,r,loc,z,-radius knode,305,all csys,1 nsel,s,loc,y,157.49999,157.50001 csys,0 nsel,r,loc,y,radius*2,length*5 nsel,r,loc,z,radius knode,306,all

PAGE 107

94 csys,1 nsel,s,loc,y,157.49999,157.50001 csys,0 nsel,r,loc,y,radius*2,length*5 nsel,r,loc,z,-radius knode,307,all csys,1 nsel,s,loc,y,-22.49999, -22.50001 csys,0 nsel,r,loc,y,-radius*2,-length*5 nsel,r,loc,z,radius knode,308,all csys,1 nsel,s,loc,y,-22.49999,-22.50001 csys,0 nsel,r,loc,y,-radius*2,-length*5 nsel,r,loc,z,-radius knode,309,all csys,1 nsel,s,loc,y,-67.49999,-67.50001 csys,0 nsel,r,loc,y,-radius*2,-length*5 nsel,r,loc,z,radius knode,310,all csys,1 nsel,s,loc,y,-67.49999,-67.50001 csys,0 nsel,r,loc,y,-radius*2,-length*5 nsel,r,loc,z,-radius knode,311,all csys,1 nsel,s,loc,y,-112.49999,-112.50001 csys,0 nsel,r,loc,y,-radius*2,-length*5 nsel,r,loc,z,radius knode,312,all csys,1 nsel,s,loc,y,-112.49999,-112.50001 csys,0 nsel,r,loc,y,-radius*2,-length*5 nsel,r,loc,z,-radius knode,313,all csys,1 nsel,s,loc,y,-157.49999,-157.50001 csys,0 nsel,r,loc,y,-radius*2,-length*5 nsel,r,loc,z,radius knode,314,all csys,1 nsel,s,loc,y,-157.49999,-157.50001 csys,0 nsel,r,loc,y,-radius*2,-length*5 nsel,r,loc,z,-radius knode,315,all /COM, ****************************************** /COM, create new keypoints

PAGE 108

95 /COM, ****************************************** /COM, center tube top csys,0 nsel,s,loc,x,radius nsel,r,loc,y,-radius*2,radius*2 nsel,r,loc,z,(((2.4*length)*(5/16))+(caplength/2)) knode,400,all csys,0 nsel,s,loc,x,-radius nsel,r,loc,y,-radius*2,radius*2 nsel,r,loc,z,(((2.4*length)*(5/16))+(caplength/2)) knode,401,all csys,0 nsel,s,loc,x,-radius*2,radius*2 nsel,r,loc,y,radius nsel,r,loc,z,(((2.4*length)*(5/16))+(caplength/2)) knode,402,all csys,0 nsel,s,loc,x,-radius*2,radius*2 nsel,r,loc,y,-radius nsel,r,loc,z,(((2.4*length)*(5/16))+(caplength/2)) knode,403,all /COM, center tube bottom csys,0 nsel,s,loc,x,radius nsel,r,loc,y,-radius*2,radius*2 nsel,r,loc,z,-(((2.4*length)*(5/16))+(caplength/2)) knode,600,all csys,0 nsel,s,loc,x,-radius nsel,r,loc,y,-radius*2,radius*2 nsel,r,loc,z,-(((2.4*length)*(5/16))+(caplength/2)) knode,601,all csys,0 nsel,s,loc,x,-radius*2,radius*2 nsel,r,loc,y,radius nsel,r,loc,z,-(((2.4*length)*(5/16))+(caplength/2)) knode,602,all csys,0 nsel,s,loc,x,-radius*2,radius*2 nsel,r,loc,y,-radius nsel,r,loc,z,-(((2.4*length)*(5/16))+(caplength/2)) knode,603,all /COM, center tube center csys,0 nsel,s,loc,x,radius nsel,r,loc,y,-radius*2,radius*2 nsel,r,loc,z,0 knode,500,all csys,0 nsel,s,loc,x,-radius nsel,r,loc,y,-radius*2,radius*2 nsel,r,loc,z,0 knode,501,all csys,0 nsel,s,loc,x,-radius*2,radius*2

PAGE 109

96 nsel,r,loc,y,radius nsel,r,loc,z,0 knode,502,all csys,0 nsel,s,loc,x,-radius*2,radius*2 nsel,r,loc,y,-radius nsel,r,loc,z,0 knode,503,all /COM, **************************************** /COM, create cable links /COM, **************************************** l,300,400,1 l,300,500,1 l,301,500,1 l,301,600,1 l,302,402,1 l,302,502,1 l,303,502,1 l,303,602,1 l,304,402,1 l,304,502,1 l,305,502,1 l,305,602,1 l,306,401,1 l,306,501,1 l,307,501,1 l,307,601,1 l,308,400,1 l,308,500,1 l,309,500,1 l,309,600,1 l,310,403,1 l,310,503,1 l,311,503,1 l,311,603,1 l,312,403,1 l,312,503,1 l,313,503,1 l,313,603,1 l,314,401,1 l,314,501,1 l,315,501,1 l,315,601,1 /com, tether support l,200,306,1 l,200,307,1 l,200,314,1 l,200,315,1 /com, select cage cables and mesh lsel,s,,,361,396,1 TYPE,4 MAT, 4 REAL,4 lmesh,all /com, merge nodes, elements, and keypoints in that order to increase accuracy nsel,all

PAGE 110

97 esel,all ksel,all nummrg,node,1e-5 nummrg,elem,1e-5 nummrg,kp,1e-5 ********************************************** ** ** ** apply boundary conditions ** ** ** ********************************************** nsel,all nplot esel,all eplot /com, apply internal pressure csys,0 nsel,s,loc,y,-1.2*radius,1.2*radius nsel,r,loc,x,-1.2*radius,1.2*radius esln,s esel,r,type,,1 sfe,all,,pres,,-pressure csys,0 nsel,s,loc,y,-1.2*radius,1.2*radius nsel,r,loc,x,-1.2*radius,1.2*radius nsel,inve esln,s esel,r,type,,1 sfe,all,,pres,,pressure csys,0 nsel,s,loc,y,-1.2*radius,1.2*radius nsel,r,loc,x,-1.2*radius,1.2*radius nsel,r,loc,z,0,-5*length esln,s esel,r,type,,3 sfe,all,,pres,,pressure csys,0 nsel,s,loc,y,-1.2*radius,1.2*radius nsel,r,loc,x,-1.2*radius,1.2*radius nsel,r,loc,z,0,5*length esln,s esel,r,type,,3 sfe,all,,pres,,pressure csys,0 nsel,s,loc,y,-1.2*radius,1.2*radius nsel,r,loc,x,-1.2*radius,1.2*radius nsel,inve esln,s esel,r,type,,3 sfe,all,,pres,,-pressure /com, apply drag csys,0 !nsel,s,loc,y,-length/2,length/2 nsel,s,loc,y,-((length/2)+(caprad*sin(22.5))),((length/2)+(caprad*sin(22.5))) nsel,r,loc,x,1.2*radius,5*length f,all,fx,(drag/ntot) csys,0

PAGE 111

98 !nsel,s,loc,y,-length/2,length/2 nsel,s,loc,y,-((length/2)+(caprad*sin(22.5))),((length/2)+(caprad*sin(22.5))) nsel,r,loc,x,-1.2*radius,-5*length f,all,fx,(drag/ntot) csys,1 nsel,s,loc,y,22.5,67.5 nsel,a,loc,y,112.5,157.5 !nsel,s,loc,y,30,60 !nsel,a,loc,y,120,150 csys,0 nsel,r,loc,y,1.2*radius,5*length !esln,s,all !esel,r,type,,1 !nsle,s,all f,all,fx,((drag*cos(45))/(ntot)) csys,1 nsel,s,loc,y,-22.5,-67.5 nsel,a,loc,y,-112.5,-157.5 !nsel,s,loc,y,-30,-60 !nsel,a,loc,y,-120,-150 csys,0 nsel,r,loc,y,-1.2*radius,-5*length f,all,fx,((drag*cos(45))/(ntot)) /com, fix X-displacement csys,1 nsel,s,loc,y,157.49999,157.50001 csys,0 nsel,r,loc,y,1.2*radius,5*length nsel,r,loc,z,radius !d,all,ux,0 csys,1 nsel,s,loc,y,157.49999,157.50001 csys,0 nsel,r,loc,y,1.2*radius,5*length nsel,r,loc,z,-radius csys,1 nsel,s,loc,y,-157.49999,-157.50001 csys,0 nsel,r,loc,y,-1.2*radius,-5*length nsel,r,loc,z,radius csys,1 nsel,s,loc,y,-157.49999,-157.50001 csys,0 nsel,r,loc,y,-1.2*radius,-5*length nsel,r,loc,z,-radius /com, fix Y-displacement csys,1 nsel,s,loc,y,-157.49999,-157.50001 csys,0 nsel,r,loc,y,-1.2*radius,-5*length nsel,r,loc,z,radius !d,all,uy,0 csys,1 nsel,s,loc,y,-157.49999,-157.50001 csys,0 nsel,r,loc,y,-1.2*radius,-5*length

PAGE 112

99 nsel,r,loc,z,-radius csys,1 nsel,s,loc,y,-22.49999,-22.50001 csys,0 nsel,r,loc,y,-1.2*radius,-5*length nsel,r,loc,z,radius csys,1 nsel,s,loc,y,-22.49999,-22.50001 csys,0 nsel,r,loc,y,-1.2*radius,-5*length nsel,r,loc,z,-radius csys,0 nsel,s,loc,y,0 nsel,r,loc,x,1.2*radius,5*length d,all,uy,0 csys,0 nsel,s,loc,y,0 nsel,r,loc,x,-1.2*radius,-5*length d,all,uy,0 ksel,s,,,200 nslk,s,all d,all,ux,0,,,,uy,uz /com, fix Z-displacement csys,0 nsel,s,loc,z,0 nsel,r,loc,y,-1.2*radius,1.2*radius nsel,r,loc,x,-1.2*radius,1.2*radius d,all,uz,0 2.49999,112.50001 /COM,****************************************************************** /COM,* apply cap forces and create keypoints /COM,****************************************************************** csys,1 nsel,s,loc,y,22.49999,22.50001 csys,0 nsel,r,loc,y,radius*2,length*5 f,all,fy,(capforce*(1-sin(45)))/(4*(n-1)) f,all,fx,(capforce*cos(45))/(4*(n-1)) csys,1 nsel,s,loc,y,67.49999, 67.50001 csys,0 nsel,r,loc,y,radius*2,length*5 f,all,fx,(capforce*(1-cos(45)))/(4*(n-1)) f,all,fy,(capforce*sin(45))/(4*(n-1)) csys,1 nsel,s,loc,y,112.49999, 112.50001 csys,0 nsel,r,loc,y,radius*2,length*5 f,all,fx,-(capforce*(1-cos(45)))/(4*(n-1)) f,all,fy,(capforce*sin(45))/(4*(n-1)) csys,1 nsel,s,loc,y,157.49999,157.50001 csys,0 nsel,r,loc,y,radius*2,length*5 f,all,fy,(capforce*(1-sin(45)))/(4*(n-1)) f,all,fx,-(capforce*cos(45))/(4*(n-1))

PAGE 113

100 csys,1 nsel,s,loc,y,-22.49999, -22.50001 csys,0 nsel,r,loc,y,-radius*2,-length*5 f,all,fy,-(capforce*(1-sin(45)))/(4*(n-1)) f,all,fx,(capforce*cos(45))/(4*(n-1)) csys,1 nsel,s,loc,y,-67.49999,-67.50001 csys,0 nsel,r,loc,y,-radius*2,-length*5 f,all,fx,(capforce*(1-sin(45)))/(4*(n-1)) f,all,fy,-(capforce*cos(45))/(4*(n-1)) csys,1 nsel,s,loc,y,-112.49999,-112.50001 csys,0 nsel,r,loc,y,-radius*2,-length*5 f,all,fx,-(capforce*(1-sin(45)))/(4*(n-1)) f,all,fy,-(capforce*cos(45))/(4*(n-1)) csys,1 nsel,s,loc,y,-157.49999,-157.50001 csys,0 nsel,r,loc,y,-radius*2,-length*5 f,all,fy,-(capforce*(1-sin(45)))/(4*(n-1)) f,all,fx,-(capforce*cos(45))/(4*(n-1)) /COM, center tube forces csys,0 nsel,s,loc,x,-radius*2,radius*2 nsel,r,loc,y,-radius*2,radius*2 nsel,r,loc,z,(((2.4*length)*(5/16))+caplength) f,all,fz,(capforce/(4*(n-1))) csys,0 nsel,s,loc,x,-radius*2,radius*2 nsel,r,loc,y,-radius*2,radius*2 nsel,r,loc,z,-(((2.4*length)*(5/16))+caplength) f,all,fz,-(capforce/(4*(n-1))) csys,0 nsel,s,loc,x,-radius*2,radius*2 nsel,r,loc,y,-radius*2,radius*2 nsel,r,loc,z,caplength/2,(((2.4*length)*(5/16))) esln,s,all esel,r,type,,1 nsle,s,all f,all,fx,dragcentertube/ntot csys,0 nsel,s,loc,x,-radius*2,radius*2 nsel,r,loc,y,-radius*2,radius*2 nsel,r,loc,z,-caplength/2,-(((2.4*length)*(5/16))) esln,s,all esel,r,type,,1 nsle,s,all f,all,fx,dragcentertube/ntot fini /COM, ************************************ /COM, Solution /COM, ************************************ /solve

PAGE 114

101 nsel,all esel,all autots,on deltim,1 solve /post1 nsel,all esel,all esel,r,type,,1 nsle,s,all plnsol,s,2 nsel,s,loc,y,-length/2,length/2 nsel,r,loc,x,1.2*radius,length*5 esln,s,all plnsol,u,x nsel,s,loc,y,-length/2,length/2 nsel,r,loc,x,-1.2*radius,-length*5 esln,s,all plnsol,u,x esel,all nsel,all plnsol,u,y nsel,s,loc,x,-1.2*radius,1.2*radius nsel,r,loc,y,-1.2*radius,1.2*radius esln,s,all nsle,s,all plnsol,u,x LOCAL,27,CART,0,0,0,45,0,0

PAGE 115

APPENDIX B EXPERIMENTAL DATA Longitudinal Orientation Pull Tests ForceWidthWidth StrainLengthLength StrainF/WF/(w*t)(lb.)(in.)(in.)(in. / in.)(lb./in.)(lb./in^2)00.75000.7870550.7445-0.00730.82050.042673.88869.1186Test 111000.7435-0.00870.82150.0438134.501582.3411500.7430-0.00930.85150.0820201.882375.1092500.7385-0.01530.87000.1055338.523982.63600.74450.7935750.7430-0.00200.82300.0372100.941187.554Test 121250.7375-0.00940.84550.0655169.491994.0182000.7315-0.01750.85150.0731273.413216.5982500.7300-0.01950.86200.0863342.474029.00900.74950.8040500.7405-0.01200.81450.013167.52794.3758Test 131100.7375-0.01600.84750.0541149.151754.7361600.7360-0.01800.85950.0690217.392557.5452250.7335-0.02130.87600.0896306.753608.8052700.913500.71100.8150750.71250.00210.84850.0411105.261238.39Test 141500.7070-0.00560.85350.0472212.162496.0482200.7030-0.01130.88250.0828312.943681.72750.7015-0.013400.72250.8120500.7190-0.00480.81500.003769.54818.1298Test 151100.7165-0.00830.83300.0259153.521806.1661600.7140-0.01180.85550.0536224.092636.3492150.7100-0.01730.87500.0776302.823562.5522600.8720 102

PAGE 116

103 Hoop Orientation Pull Tests ForceWidthWidth StrainLengthLength StrainF/WF/(w*t)(lb.)(in.)(in.)(in. / in.)(lb./in.)(lb./in^2)00.80900.8055410.7610-0.05930.85650.063353.88633.8Test 1570.7345-0.09210.89000.104977.60913.0700.7135-0.11800.91650.137898.111154.2800.6845-0.15390.94450.1726116.871375.0900.6695-0.17240.96050.1924134.431581.500.80950.8140300.7790-0.03770.82600.014738.51453.1400.7550-0.06730.84340.036152.98623.3Test 2500.7320-0.09570.86000.056568.31803.6600.7165-0.11490.88500.087283.74985.2700.6930-0.14390.91050.1186101.011188.4800.6800-0.16000.94200.1572117.651384.100.81550.8235300.7795-0.04410.86650.052238.49452.8500.7490-0.08150.84100.021366.76785.4Test 3600.7220-0.11470.88450.074183.10977.7700.7050-0.13550.89050.081499.291168.1800.6780-0.16860.91650.1129117.991388.200.72450.8245300.7065-0.02480.82550.001242.46499.6400.6915-0.04550.83800.016457.85680.5Test 4500.6655-0.08140.86400.047975.13883.9600.6520-0.10010.90600.098892.021082.6700.6260-0.13600.91150.1055111.821315.5800.6185-0.14630.92600.1231129.351521.700.73900.8170300.7105-0.03860.82350.008042.22496.8Test 5400.6870-0.07040.86450.058158.22685.0500.6695-0.09400.89550.096174.68878.6600.6400-0.13400.92800.135993.751102.9

PAGE 117

LIST OF REFERENCES Bulson, P, 1973, Design principles of pneumatic structures. The Structural Engineer, Vol 51, No 6, pp 209-215. Comer, R, and Levy, S, 1963, Deflections of an inflated circular-cylindrical cantilever beam. AIAA Journal, Vol 1, No 7, pp 1652-1655. Department of Commerce, 2002, http://www.nmfs.noaa.gov/trade/newgrant.htm, last accessed April 10, 2004. Dornheim, M, 1999, Inflatable structures taking to flight. Aviation Week and Space Technology, pp 60-62, http://www.lgarde.com/programs/iaearticle/awarticle.html, last accessed May 10, 2004. Douglas, W, 1969, Bending stiffness of an inflated cylindrical cantilever beam. AIAA Journal, Vol 7, No 7, pp 1248-1253. Fox, R, and McDonald, A, 1998, Introduction to Fluid Mechanics. New York: John Wiley & Sons, Inc. Fredriksson, D, Swift, M, Muller, E, Baldwin, K, and Celikkol, B, 2000, Open ocean aquaculture engineering: system design and physical modeling. Marine Technology Society Journal, Vol 34, pp 41-52. Hawkmoor "Temprodome," 2003, http://www.hawkmoor.com/tempro_dome.htm, last accessed April 10, 2004. Hibbeler, R, 1997, Mechanics of Materials Englewood Cliffs, NJ: Prentice Hall. Jenkins, C, 2001, Gossamer Spacecraft: Membrane and Inflatable Structures Technology for Space Applications. Reston, VA: American Institute of Aeronautics and Astronautics. Kuriyama of America, Inc, 2003, http://www.kuriyama.com/, last accessed May 10, 2004. LGarde, 2004, http://www.lgarde.com/programs/iae.html, last accessed April 10, 2004. Lindstrand, 2000, http://www.lindstrand.co.uk/inflatablebuildings/, last accessed April 10, 2004. 104

PAGE 118

105 Loverich G, and Forster J, 2000, Advances in offshore cage design using spar buoys. Marine Technology Society Journal, Vol 34, pp 18-28. Main, J, Peterson, S, and Strauss, A, 1994, Load-deflection behavior of space-based inflatable fabric beams. Journal of Aerospace Engineering, Vol 7, No 2, pp 225-238. Main, J, Peterson, S, and Strauss, A, 1995, Beam-type bending of space-based inflated membrane structures. Journal of Aerospace Engineering, Vol 8, No 2, pp 120-125. Measurements Technology Inc (MTI), 2004, http://www.mti-atlanta.com, last accessed May 10, 2004. Promotional Design Group, 2001, http://www.promotionaldesigngroup.com/inflatable_tents.htm, last accessed April 10, 2004. Sakamoto, H, Natori, M, 2001, Deflection of multi-cellular inflatable tubes for redundant space structures. AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, 42nd, Seattle, WA, April 16-19. SRS Technologies, 2000, http://www.stg.srs.com/atd/antenna.htm, last accessed April 10, 2004. Topping, A, 1964, Shear deflections and buckling characteristics of inflated members. Journal of Aircraft, Vol 1, No 5, pp 289-293. Tsukrov, I, Ozbay, M, Fredriksson, D, Swift, M, Baldwin, K, Celikkol, B, 2000, Open ocean aquaculture engineering: numerical modeling. Marine Technology Society Journal, Vol 34, pp 29-40.

PAGE 119

BIOGRAPHICAL SKETCH Jeffrey Suhey was born in upstate New York in 1978 before he moved to Newtown, Pennsylvania, where he attended the Council Rock School District. In 1993, he moved to Jacksonville, Florida, where he attended Bishop Kenny High School. Following graduation, he enrolled in the University of Florida Department of Mechanical Engineering, where he obtained both a bachelors and masters degree, focusing on mechanical design. During the course of his studies, he has completed three internships in the Jacksonville area; first at Vistakon, Inc, a subsidiary of Johnson & Johnson that manufactures contact lenses, and later two internships at Unison Industries, a subsidiary of General Electric Engine Services, that designs and manufactures jet ignition leads and igniters. He plans to begin his career in the aerospace field as a design and stress analyst engineer. 106


Permanent Link: http://ufdc.ufl.edu/UFE0005442/00001

Material Information

Title: Preliminary Design and Nonlinear Numerical Analysis of an Inflatable Open-Ocean Aquaculture Cage
Physical Description: Mixed Material
Copyright Date: 2008

Record Information

Source Institution: University of Florida
Holding Location: University of Florida
Rights Management: All rights reserved by the source institution and holding location.
System ID: UFE0005442:00001

Permanent Link: http://ufdc.ufl.edu/UFE0005442/00001

Material Information

Title: Preliminary Design and Nonlinear Numerical Analysis of an Inflatable Open-Ocean Aquaculture Cage
Physical Description: Mixed Material
Copyright Date: 2008

Record Information

Source Institution: University of Florida
Holding Location: University of Florida
Rights Management: All rights reserved by the source institution and holding location.
System ID: UFE0005442:00001


This item has the following downloads:


Full Text












PRELIMINARY DESIGN AND NONLINEAR NUMERICAL ANALYSIS OF AN
INFLATABLE OPEN-OCEAN AQUACULTURE CAGE















By

JEFFREY SUHEY


A THESIS PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

UNIVERSITY OF FLORIDA


2004

































Copyright 2004

by

Jeffrey Suhey

































This work is dedicated to anyone who strives to challenge himself.















ACKNOWLEDGMENTS

I would like to express my gratitude to my advisor, Dr. Christopher Niezrecki, for

his guidance and wisdom. Working on this project has provided me with an opportunity

to advance my education and potential. My sincerest thanks go out to Dr. Nam-Ho Kim

for his enthusiasm and expertise. I would also like to thank Dr. Ashok Kumar for serving

on my defense committee. My thanks go to Dr. Ifju and the members of the

Experimental Stress Analysis Lab for their assistance. Srikant Ranj an, Vann Chesney,

and JeffLeismer were a great help with my ANSYS installation and licensing issues. I

also owe a debt of gratitude to Anne Baumstarck, the Baumstarck family, and Erik

Mueller for providing me with temporary lodgings while in Gainesville. And special

thanks go to God, my family, and all my friends for their continued support and

encouragement.
















TABLE OF CONTENTS

page

A C K N O W L E D G M E N T S ................................................................................................. iv

L IST O F T A B L E S ......... ............................. ......... ... .............. .. vii

LIST OF FIGURES ............. ........ .......... ..... ................... viii

ABSTRACT .............. ..................... .......... .............. xii

CHAPTER

1 IN TR OD U CTION ............................................... .. ......................... ..

1.1 A quaculture Introduction.. .............................................................. ............... 1
1.2 Inflatable Structure Introduction....................................... .......................... 4
1.3 Inflatable Structure Analyses..................... ............................. 12
1.3.1 Modified Conventional Beam Theory Approach............................... 13
1.3.2 N onlinear A approach ............................................................................14
1.3.3 L inear Shell M ethod ............................ ........................ .... ............... 14
1.3.4 Finite Element Analysis Approach........................ ... ............... 15
1.3.5 Selected A approach ............ .... ...................................... ........ .... ......... 16

2 THEORETICAL DEVELOPMENT ........................................ ...................... 17

2.1 Fluid A nalysis........................................17
2.2 Non-wrinkled Inflatable Theory ................ ... ...................... 19
2.3 Case Specific Non-wrinkled Inflatable Theory .......................................... 21
2.3.1 B ending M om ent ............................................. .. ........................... 21
2.3.2 V ertical D election .............................................................................. 22
2.3.3 W rinkle L ength ............ .... .................................... ...... .......................23
2.4 Conclusion ................................. ............................... ........ 25

3 EXPERIMENTAL PROCEDURE AND RESULTS........................ 26

3.1 Experim mental Setup and Procedure.................................... ....................... 27
3.1.1 Test Sam ple Orientation ....................................................................... 27
3.1.2 Sample Shapes and Correction for Fiber Discontinuity ..........................28
3.1.3 Experim ental Procedure ........................................ ........................ 29



v









3 .2 S am ple Sh ap e C h oice ........................................ ............................................32
3.3 D ata A analysis and Results ............................................................................. 33

4 SIMULATION DEVELOPMENT ................................... .................................... 39

4.1 Verification Model Development and Results ............................................. 40
4.1.1 A applied Loading Conditions ........................................... ............... 41
4.1.2 W ater C current D rag ................................................ ......... ............... 42
4.1.3 Element Selection and Properties...........................................................44
4.1.4 V erification M odel Results...................................................................... 48
4.1.5 V erification M odel Conclusion ...................................... ............... 52
4 .2 C age Sim ulation P process ........................................................... .....................52
4.2.1 Flow D esign M odels........................................................ ............... 53
4.2.2 Elem ent C choice .................................... ................. ......... 53
4.2.3 Loading Conditions ............................................................................. 53
4.3 Top-D ow n Flow C age M odel .........................................................................55
4.3.1 A applied L loading C conditions ........................................... .....................56
4 .3.2 B oundary C onditions...................................................................... .. .... 56
4 .4 Side-F low C age M odel .............................................................. .....................57
4.4.1 A applied L loading C conditions ........................................... .....................58
4.4.2 B oundary C onditions........................................................ ............... 58

5 SIM U L A TIO N R E SU L T S ........................................ ...................... .....................63

5.1 Sim ulation Strategy .......................................... ............ ...... ........63
5 .2 F ailu re C criteria .............................................................................. 6 4
5.3 Stress Results ................................................................... .........66
5.4 G eom etry D eform ation R results ........................................ ........................ 67
5.5 Sim ulation D election R results ........................................ ......................... 71
5.5.1 Qualitative D election Results................................................................. 71
5.5.2 Maximum Deflection Results ...................................... ...............73
5.6 C age Size R results .............................. .... ...................... .. ...... .... ..... ...... 74
5.7 V velocity R results ......... .. ................ .. .............. ........ .. ...... 77

6 C O N C L U SIO N ......... ......................................................................... ........ .. ..... .. 78

APPENDIX

A AN SY S SCRIPT COD E .................................................. ............................... 80

B EX PERIM EN TAL D A TA ......................................................................... .... .... 102

L IST O F R E FE R E N C E S ........................................................................ ................... 104

BIOGRAPHICAL SKETCH ........................................................... ........ 106
















LIST OF TABLES


Table pge

3.1 Experimental elastic modulus results for three test sample shapes..........................33

3.2 Summary of experimental and adjusted material properties...............................37

5.1 Manufacturer data for Vinyl-Flow commercial drainage tubing ...........................64

5.2 Maximum cage deflections for the top-flow orientation.............. ............ 74

5.3 Maximum cage deflections for the side-flow orientation .....................................74
















LIST OF FIGURES


Figure pge

1.1 Example of a class 1 cage design (Loverich and Forster, 2000).............................3

1.2 Example of a class 2 cage design (Loverich and Forster, 2000).............................3

1.3 Example of a class 3 cage design (Loverich and Forster, 2000).............................4

1.4 Example of a class 4 cage design (Loverich and Forster, 2000).............................4

1.5 'Millennium Arches' in Stockholm, Sweden: entirely self-supporting inflated
structure. (L indstrand, 2000) ........................................ ............... ............... 6

1.6 'Millennium Arches' alternate view (Lindstrand, 2000) .......................................6

1.7 Section of 'Millennium Arches' before installation (Lindstrand, 2000)....................7

1.8 Hawkmoor self-supporting inflated 'Temprodome': shown with three units linked
together, each with dimensions (6 x 4 x 2.8m). (Hawkmoor, 2003).....................7

1.9 Exterior of 'Court TV' inflated dome. 20 ft tall by 40 ft diameter. For scale, note
the person in the doorway. (Promotional Design Group, 2001) .............................7

1.10 Interior of 'Court TV' dome showing inflated arch columns. (Promotional Design
G ro u p 2 0 0 1) ..............................................................................................................8

1.11 Thin-film inflated torus used as a support structure for optical reflector
(S R S 2 0 0 0 ) ................................................................................................................8

1.12 Inflated thin film with reflective coating to be used as a light-weight deployable
antenna, 5 m eter diam eter (SRS, 2000)................................... ....................... 9

1.13 Inflatable Antenna Experiemnt (IAE): 14 meter diameter deployed antenna with
inflated support beams (Domheim, 1999) ....... ........ ................................... 9

1.14 IAE Antenna during inflation. Stowed volume is one-tenth of deployed volume.
(Domheim, 1999) .......................... ....................... 10

1.15 IAE Reflector (14m diameter). For scale, note the person circled in the upper
right (L'Garde, 1996) .............. .. ........ .. ...... ......... ......... 10









1.16 Goodyear Corporation inflatable truss radar antenna (Jenkins, 2001)...................11

1.17 L'Garde inflatable solar array (Jenkins, 2001).................................... ............... 11

1.18 ILC Dover, Inc. modular split blanket solar array. Shown deployed and stowed
(Jen k in s, 2 0 0 1) ......... ................................................ ............................... 1 1

1.19 Planar deployment solar shade (Jenkins, 2001) ...............................................12

1.20 Inflatable Goodyear Inflatoplane (Jenkins, 2001)..............................................12

2 .1 F low on a vertical tube ............................................................................. ..... .......18

2.2 Flow on an inclined tube ...................................................................... 18

2.4 Drag loading assumed as a distributed force .........................................................22

2.5 Free body diagram of beam section .............................................. ............... 22

3.1 Vinyl-Flow internal fiber layer orientations...................... ..................... 26

3.2 Manufacturer information for Kuriyama Vinyl-Flow series.................................27

3.3 Test sample orientations with respect to continuous tubing ..................................27

3.4 Sample shape B (shown flat and folded)........ ...................... .............. 29

3.5 Sam ple shape C .......................................................................29

3.6 Test equipment: MTI screw-drive tensile test machine (MTI, 2004) ...................31

3.7 Test equipment: Interface 1220AF-25k load cell............ .............................31

3.8 Test equipment: Curtis 30k self-cinching grip..................................................... 31

3.9 Example of sample locked in grips before pull test ...........................................32

3.10 Experimental data: five hoop orientation pull samples.......................................35

3.11 Experimental data: five longitudinal orientation pull samples.............................35

3.12 Experimental data: Five hoop-orientation pull samples grouped together ............36

3.13 Experimental data: Five longitudinal-orientation pull samples grouped together..36

3.14 Tested sam ple w ith grip slip m arks................................. ........................ .. ......... 38

4.1 Cage prototype inflated to -12ft diameter, 9ft height............................................39

4.2 Cage prototype deflated to ~70cm ........................................ ....................... 40









4.3 Tubing union to PV C connector........................................ ........................... 40

4.5 Detail of boundary conditions for verification model...........................................41

4.6 Steps in representing internal pressure as pre-tension forces................................42

4.7 Representative projected area around one surface node ........................................43

4.9 Verification model parameter study: EFS effect on beam deflection ...................46

4.10 Verification model parameter study: Added stiffness effect on beam deflection ...46

4.11 Verification model parameter study: Added stiffness effect on longitudinal beam
store ss ............ ............ .. .......... ...... .............................................. . 4 7

4.12 Verification model parameter study: Poisson's ratio effect on beam deflection ....47

4.13 Verification model parameter study: Poisson's ratio effect on longitudinal beam
store ss ............ ............ .. .......... ...... .............................................. . 4 8

4.14 Deflection results for the verification model with length of 5m...........................50

4.15 Deflection results for the verification model with length of 10m length.................50

4.16 Deflection results for verification model with 0.5 m/s flow velocity ....................51

4.17 Deviation in deflection results for verification model with 0.5 m/s flow velocity ..51

4.18 Longitudinal bending stress results for verification model with 0.5 m/s flow
v elo city ......... ..... ............. .................................... ...........................52

4.19 Two cage simulation flow orientations ........................................ ............... 53

4.20 Control volume analysis around a rigid 45'-connector containing pressurized
internal fluid ............. .......... .... ................... ............ ............ 54

4.21 Free body diagram of rigid cap with algebraically summed pretension force
components ............... ..... .. .......... ........ .. ........ ........ ......... 55

4.22 Force components applied to finite element model of rigid connector....................55

4.23 Top-flow boundary condition locations ....................................... ............... 57

4.24 Cage center tube components ........... .. ......... ................... 59

4.25 Expanded view of representative internal cable connections.............................60

4.26 Expanded View of representative mooring cable connections .............................60









4.27 D im tensions of anchor location........................................... .......................... 61

4.28 Side-flow applied loading locations...................................................................... 61

4.29 Side-flow boundary condition locations ...................................... ............... 62

4.30 Expanded view of center tube boundary conditions .............................................62

5.3 Maximum stresses in each simulation and ultimate material strength...................67

5.4 Top-Flow deformed geometry at the wrinkle point: View 1...............................68

5.5 Top-Flow deformed geometry at the wrinkle point: View 2..................................68

5.6 Top-Flow deformed geometry at the wrinkle point: View 3................................69

5.7 Side-Flow deformed geometry at the wrinkle point: View 1 ...............................69

5.8 Side-Flow deformed geometry at the wrinkle point: View 2...............................70

5.9 Representative rotational effect occurring in side-flow simulation .......................70

5.10 Cage x-diameter net deflection for VF-800 tested at flow speed of 1 knot,
top -flow ......... ..... ............. ..................................... ...........................72

5.11 Maximum z-deflection for VF-800 cage tested at flow speed of 1 knot,
top -flow ......... ..... ............. ..................................... ...........................72

5.12 Cage y-diameter net deflection for VF-500 tested at flow speed of 1 knot,
sid e -flo w ...................................................................... 7 3

5.13 Top-flow maximum cage diameters for each tubing material grouped by internal
pressure ................ ..................................... ........................... 75

5.14 Side-flow maximum cage diameters for each tubing material grouped by internal
pressure ................ ..................................... ........................... 76

5.15 Summary of maximum possible cage size for each material in two flow cases
subject to one knot flow velocity VF Series number corresponds to diameter,
working pressure, and thickness in Table 5.1 .................................. ............... 76















Abstract of Thesis Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Master of Science

PRELIMINARY DESIGN AND NONLINEAR ANALYSIS OF AN OPEN-OCEAN
AQUACULTURE CAGE

By

Jeffrey Suhey

August 2004

Chair: Dr. Christopher Niezrecki
Major Department: Mechanical and Aerospace Engineering

A nonlinear finite element analysis is used to predict the static performance of a

novel aquaculture cage constructed from inflated-beam members. Simulations are

performed to determine the cage maximum deflections, stresses in the inflated

components, and ultimately the maximum possible cage size. Experimental tests are

performed on a commercially available anisotropic fabric material to determine

longitudinal and hoop elastic moduli.

Fluid drag forces on the cage are applied to the inflated members as a constant

distributed force that is dependent on the flow speed of the current. Simulations are

performed up to 1.6 knots of water current. Two flow cases based on the orientation of

the cage with respect to water current are considered. Drag on the surrounding cage nets

is excluded from the preliminary design analysis. Within this study, cage members were

pressurized from 30 to 80 psi, depending on the material.









Important results include successfully merging a linear and nonlinear element to

represent tension-only behavior of an inflated fabric tube. Verification was performed by

comparing a simply-supported distributed-load inflated beam finite element model with a

modified traditional beam analysis. Maximum possible cage sizes are found at constant

flow velocity for different materials with varying internal pressure, wall thickness, and

tube diameter. Effects of changing flow velocity are found for a specific material case in

both flow directions. The results indicate that the largest sized cage for a 1 knot (0.51

m/s) current has a cage diameter of 39 m for the material used in this study.














CHAPTER 1
INTRODUCTION

The current trend in new inflated structure applications lends itself to studying an

underwater application. In this case, a preliminary engineering design analysis of an

open-ocean aquaculture cage is presented. This chapter provides a brief introduction to

aquaculture and describes recent developments in inflatable structures.

1.1 Aquaculture Introduction

Aquaculture can be described using the following definition: "Aquaculture is

defined as the propagation and rearing of aquatic organisms in controlled or selected

aquatic environments for any commercial, recreational, or public purpose" (Department

of Commerce, 2002). Aquaculture is an agricultural approach that provides an alternative

to the other two common methods of obtaining fish; commercial fishing and fish farming

with large permanent structures in the ocean or on land (Loverich and Forster, 2000).

"Aquaculture is expected to play an increasingly important role in meeting the global

demand for fisheries products as the world population continues to expand and fish

stocks approach their biological limits" (Fredriksson et al., 2000). The problem is

making the use of aquaculture cages economical. A growing need for improved cage

designs will hopefully stimulate engineering research to overcome the obstacles now

facing aquaculture.

Several factors comprise aquaculture cage design. Costs of manufacturing,

installation and maintenance, cage stability, durability, and predictability, all play an

important role in the design process. One aspect specifically important to aquaculture









cage design is the divergence volume. This can be defined as a maximum potential

geometric deformation of the cage. Large divergence volumes can cause high fish

mortality rates and decrease diver safety. These problems can lead to large economic

drawbacks, making the divergence volume a key factor on which to base a design. A

variety of cages have been designed to accommodate individual design advantages and

disadvantages. These designs have been grouped into four classes that are in current use

throughout the aquaculture community.

The class 1 cage is the most common in use today and is based on forces due to

gravity; weight and buoyancy. The cage typically comprises a floating frame with a

weighted net hanging below. This simple design has several problems, including

unpredictable failures and high fish mortality. The major disadvantage to this cage

design is the large divergence volume. Figure 1.1 shows a typical class 1 cage design.

The class 2 cage has anchored rigid truss members used to hold the shape of the

netting. Due to the taught netting, there is a significant improvement in the divergence

volume compared to the class 1 cage. Similarly, class 3 cages maintain taught netting for

this same improvement. Class 3 cages generally have a central truss with a rigid ring

connected by ropes and covered in netting. This design allows the cage to maintain its

shape without relying on anchors. The deformation of the class 3 cage is governed by the

rigidity of its components. It achieves a smaller divergence volume than the class 1 and 2

by providing more supports over the span of the net. Figures 1.2 and 1.3 show examples

of typical class 2 and 3 cages, respectively.

The Class 4 cage is a completely rigid self-supported frame covered in netting.

Although seemingly ideal due to the very low divergence volume, the costs of material,







3


construction, and installation labor are much higher than of the previous three classes of

cage design. Figure 1.4 shows an example of a typical class 4 cage design.






.Figue E a c 1 c i i a
:,. ?,, :.... ...... : ", : ... I.; .1 .. ,, .. :.,


^ 1~ .,'. I 1




Figure 1.1 Example of a class 1 cage design (Loverich and Forster, 2000)


Figure 1.2 Example of a class 2 cage design (Loverich and Forster, 2000)





















I.- .
N


Figure 1.3 Example of a class 3 cage design (Loverich and Forster, 2000)


Figure 1.4 Example of a class 4 cage design (Loverich and Forster, 2000)

1.2 Inflatable Structure Introduction

Several applications exist for inflatable structures. Applications for inflatable

structures have been used successfully in the past. Some familiar applications that are

still in use include vehicle tires, surface watercraft (inflated boats, pontoons, hovercraft,

etc), and aircraft (blimps, balloons, etc).

Within the past few decades, new inflatable applications are being explored and

gaining acceptance. Inflatable land structures are completely self-supported, requiring no

solid structural members. These are currently in use in military and architectural designs

for tents, hangars, roofs, and small buildings. These applications take advantage of the


^ ^-.









convenience of inflatable structures to save assembly time and travel weight. "...today,

it's well within the bounds of possibility to find a 300 ft long building housing a concert

venue, exhibition hall, museum, or space-age science display, with not a solid supporting

member in sight" (Lindstrand, 2000). Figures 1.5 through 1.10 show examples of

inflated land structures, with no rigid support members, supported only by internal

pressure. "The [Millennium Arches] whole building is 328ft(100m) long, 59ft(18m)

wide, and 56ft(17m) high. The main arches are 38ft(11.5m) high, and 59ft(18m) wide

while the end arches are 41ft(12.5m) long and the center arch is 164ft(50m) long"

(Lindstrand, 2000).

The aerospace field is working with inflatables in gossamer structures for space

applications such as sunshields, antennas, solar sails, habitats, and structural booms.

Space applications take advantage of several features of inflatable structures. "They

[inflatable structures] offer large potential reductions in stowed volume, cost, and often

weight.... Giant space structures such as 1,000-ft. antennas or solar sails may not even be

possible with mechanical deployment, but may be doable with inflatable design"

(Domheim, 1999). Figures 1.11 through 1.15 show examples of space applications of

inflatable structures.




























A1N W T.-. "2Ki,
Figure 1.5 'Millennium Arches' in Stockholm, Sweden: entirely self-supporting inflated
structure. (Lindstrand, 2000)


Figure 1.6 'Millennium Arches' alternate view (Lindstrand, 2000)























Figure 1.7 Section of 'Millennium Arches' before installation (Lindstrand, 2000)


.'... .I...
,n"


Figure 1.8 Hawkmoor self-supporting inflated 'Temprodome': shown with three units
linked together, each with dimensions (6 x 4 x 2.8m). (Hawkmoor, 2003)


Figure 1.9 Exterior of 'Court TV' inflated dome. 20 ft tall by 40 ft diameter. For scale,
note the person in the doorway. (Promotional Design Group, 2001)


'..'.'.'. .".



















Figure 1.10 Interior of 'Court TV' dome showing inflated arch columns. (Promotional
Design Group, 2001)


Figure 1.11 Thin-film inflated torus used as a support structure for optical reflector (SRS,
2000)





























Figure 1.12 Inflated thin film with reflective coating to be used as a light-weight
deployable antenna, 5 meter diameter (SRS, 2000)


Figure 1.13 Inflatable Antenna Experiemnt (IAE): 14 meter diameter deployed antenna
with inflated support beams (Domheim, 1999)































Figure 1.14 IAE Antenna during inflation.


Stowed volume is one-tenth of deployed
(Dornheim, 1999)


Figure 1.15 IAE Reflector (14m diameter). For scale, note the person circled in the upper
right (L'Garde, 1996)






















Figure 1.16 Goodyear Corporation inflatable truss radar antenna (Jenkins, 2001)


Figure 1.17 L'Garde inflatable solar array (Jenkins, 2001)


Figure 1.18 ILC Dover, Inc. modular split blanket solar array. Shown deployed and
stowed (Jenkins, 2001)























Figure 1.19 Planar deployment solar shade (Jenkins, 2001)











Figure 1.20 Inflatable Goodyear Inflatoplane (Jenkins, 2001)

1.3 Inflatable Structure Analyses

This section describes various forms of modeling inflatable structures. A specific

emphasis is placed on determining deflection and internal stress behavior of inflatable

structures subject to cantilever bending. Also of interest is analysis of the application of

fabrics for the inflated material. The basic concept of an inflatable structure is a closed

end pressure vessel subject to some applied loading. The internal pressure translates to a

force applied over the capped end in the axial direction. This force then creates an axial

stress that is able to resist bending and axial stress caused by the applied loading

conditions. Chapter 2 more fully explains the derivation of the inflatable theory.









1.3.1 Modified Conventional Beam Theory Approach

Experimental data has shown that inflatable beams do not behave according to

traditional beam theory. With modification to the traditional beam theory, an accurate

model can be made. One study analyzed inflatable beam deflections and stresses for

loads between incipient buckling, where bending stress equals axial stress due to

pressure, and final collapse. It was shown that initially bending occurred with no

wrinkling. When wrinkling occurred, a slack region and a taught region were present. A

formulation for the stress was developed showing zero axial stress in the slack region and

a portion of the max stress carried in the taught region. By equating expressions for

maximum axial stress, a formulation for the relationship between internal pressure and

applied tip force was determined. The curvature was determined and integrated twice to

find the deflection due to bending. The deflection due to shear was also determined

noting that it is negligible when the length of the beam is much larger than the radius of

the cross section. The total deflection was then determined as the algebraic sum of the

deflections due to bending and shear. Similar results were obtained for a beam subject to

distributed load bending (Comer & Levy, 1963). This analysis shows when wrinkles

begin to form and where they form. The wrinkled membrane is shown to have some

rigidity. The effect of the wrinkling on the bending strength of the beam is determined.

Another study applies the modified traditional beam theory approach from Comer

and Levy for fabric materials. An experimentally determined modulus of membrane of

the fabric material was used in place of Young's modulus. This modulus of membrane is

defined as the slope of the experimental stress resultant vs. engineering strain plot, where

stress resultant is the force per width of a pull-test sample. Using an approach similar to

that of Comer and Levy, the curvature was integrated numerically to determine tip









deflection behavior. Experimental results agreed for aspect ratios of l/d>6 (Main et al.,

1994).

1.3.2 Nonlinear Approach

Since inflatable beams behave nonlinearly, a nonlinear approach, although

complex, is the most logical method. Douglas uses the theory of incremental

deformations to find the Cauchy-Green deformation tensors which can be related to

determine the Lagrangian and Eulerian Strains. These lead to a stress-deformation

relation. This is all then applied to an inflated beam incorporating the pressure in as a

stress. The variation in beam stiffness is plotted as a function of changing internal

pressure. Unlike a linear approach, this thorough method takes into account the changes

in geometry and changes in material properties (Douglas, 1968).

Another study included an explanation of the geometry of fabrics and the

interaction between fibers. The general relationship between stress and strain for a fabric

material is ultimately shown to be a nonlinear trend (Bulson, 1973).

1.3.3 Linear Shell Method

Another method for analyzing inflatable structures is to use a linear shell approach.

One study develops a free body diagram of a width of flexed strip of the loaded material.

Static equilibrium of forces is then applied, including the applied load and the skin

tensions on the width of the material. First, a vertical force summation is made with the

application of a small angle approximation. Then, a horizontal force summation is

developed and combined with the vertical summation canceling the skin tension terms.

The result is an expression analogous to the equation for shearing angular deflection of a

solid beam. By comparing these two equations, the internal pressure is found to be









analogous to an effective shear modulus. This is used to determine the effect of pressure

on the shearing deflection (Topping, 1964).

Another source applies continuum mechanics to membranes to obtain several

general relations. It defines the kinematics, deformation, strain, strain rate, and stress for

membranes. Balance laws are used to derive general mass balance, momentum balance,

and energy balance relations (Jenkins, 2000, pp. 49-64). To model wrinkling in beams, a

tension field model is developed with an approach for application to linear finite element

method (Jenkins, 2000, pp 103-105).

1.3.4 Finite Element Analysis Approach

Another approach is to apply finite element analysis to inflated structures. Finite

element analysis can yield accurate results for problems with complex analytical

solutions. One study compares results from the modified traditional beam theory with

finite element results. An assumption of Brazier's effect is used here. This states that as

the tube deforms due to bending and the cross-section becomes flatter, the bending

stiffness of the entire beam decreases. This is most likely due to geometry changes that

affect the area moment of inertia.

This study formulates finite elements of geometrically nonlinear motion of

membrane. These allow for changes in length of the elements to account for stretching of

the material in the ends but not in the cylinder. Triangle elements are used to model the

circular end caps and quad elements are used to model the cylindrical tubing. A pressure

relationship is used to apply a force to each element. FEA results match theoretical

results from the modified traditional beam approach.

An analysis of tubes containing multiple pockets is conducted as well. The

behavior of these multi-cellular inflated beams is shown graphically. By increasing the









number of cells, the pressure can be varied throughout the length of the tube and thereby

optimize the design (Sakamoto and Natori, 2001).

1.3.5 Selected Approach

The modified traditional beam theory will be used in conjunction with a nonlinear

finite element model for future analysis. The finite element approach solves complex

geometries and provides a visualization of deformed behavior. The modified traditional

beam theory will be used to verify the behavior of a simple finite element model.

Following verification, the finite element approach will then be used to model complex

cage geometries and interactions. Further theoretical development of the modified

traditional beam theory is presented in Chapter 2 and the finite element approach is

described in Chapter 4.















CHAPTER 2
THEORETICAL DEVELOPMENT

The development of the theory applied to analytical solutions used in later chapters

is described in Chapter 2. A standard fluid flow analysis is first presented, followed by

the traditional beam method applied to inflatable theory, which is chosen from the

methods presented in Chapter 1. The theory presented focuses on inflated beams before

and at the point of wrinkling. The model used for derivation is an internally pressurized

circular-cylindrical closed-end fabric tube. The internal pressure acting over the surface

area of the end caps translates to pretension forces in the fabric tube. The essence of the

inflatable theory is that bending causes a compressive stress on the underside of the tube

opposing the tensile stress caused by the pretension forces. Wrinkling occurs when the

compressive portion of bending stress exceeds the pretension stress. In some cases, stress

resultant, c*, is used to replace axial stress, c, throughout the analysis, as described in

Main's theory, to more accurately model fabric behavior (Main et al., 1994). This also

leads to using a resultant elastic modulus, E*, with units of force per unit length.

2.1 Fluid Analysis

The fluid analysis is used to determine the total drag force acting on a cylinder for a

given external flow condition. The following assumptions are made for the fluid

analysis:

* Smooth cylinder surface

* Constant temperature fluid and material properties at 200C






18

* Steady state flow

* Constant cross-sectional area

In this case, the drag force is caused by friction of fluid current flowing over the

tube. The drag force is a function of tube cross-sectional area, A, drag coefficient, CD,

external fluid density, p, and external flow velocity, V. Equation 2.1 defines the drag

force, Fdrag, on a cylinder based on applicable assumptions.

Fdr = CApV2 (2.1)
2

The cross-sectional area perpendicular to the flow direction is defined, A = Dh, with tube

diameter, D, and cross-sectional length perpendicular to flow, h. Figures 2.1 and 2.2

define h for a vertical tube and a tube inclined by angle, p, from the horizontal,

respectively.




Flow Direction h=L
1



Figure 2.1 Flow on a vertical tube



Flow Direction h = L sin (p

---- ^ /^


Figure 2.2 Flow on an inclined tube









The coefficient of drag, CD, is determined using the dimensionless parameter, Re, and the

approximated range taken from documented experimental data. Equations 2.2 and 2.3

show the Reynold's number relation and the approximated value of CD based on the

expected flow velocity range.


Re pVD (2.2)


CD =1, for 10,000 < Re < 200,000 (2.3)

D represents the diameter of the tube. Fluid properties of the flowing current including

density and absolute viscosity, [t, are determined from documented values at a

temperature of 200 C (Fox & McDonald, 1999).

2.2 Non-wrinkled Inflatable Theory

Figure 2.3 shows the assumed stress distribution for a non-wrinkled inflated beam

subject to a bending moment.


Urn






-0


Figure 2.3 Stress distribution in tube subject to bending moment

Comer & Levy (1963) defined the stress distribution in this unwrinkled inflated circular-

cylindrical beam using Equation 2.4.

co (1 + cos ) O-m(1- cos 0)
S= (2.4)
2 2









As shown in Figure 2.3, Gm and ao are the maximum and minimum longitudinal stresses

in the circumferential stress distribution, respectively. Equation 2.4 can be rewritten as in

Equation 2.5, by diving through by the material thickness. Stress, C, is replaced with

stress resultant c*.

( (1+ cos0) o (1 cos))
a= + (2.5)
2 2

Equation 2.6 describes the bending moment, M(x), as a product of the tensile forces,

F(O), and the distance, h(O), from the neutral axis of bending. Force is then replaced with

the product of stress and area. The area is defined by integrating the fabric thickness, t,

over the tube circumference using tube radius, r, and angle, 0, from 0427n.


M(x) = F(O)h(O) = (O)h(O)rt dO (2.6)
8=0 o

Defining height, h(O) = r cosO, and stress resultant, u (0) = c(O)t, Equation 2.6 can be

rewritten using symmetry as Equation 2.7.


M(x)= -2J *r2 cos 0dO (2.7)
0

Substituting Equation 2.5 into Equation 2.7 and integrating yields Equation 2.8.

Sx 2M((x)28)
&,m O 0 (2.8)

According to Main (1994), the unwrinkled curvature, pc, is given by Equation 2.9, where

E* is the resultant elastic modulus.


(2.9)
Pc 2rE*









Substituting Equation 2.8 into Equation 2.9 and approximating curvature as d y/dx2,

where x and y are coordinates, yields Equation 2.10.

1 M(x) d2y
= (2.10)
pc itrE* dx2

This leads to the final relationship, Equation 2.11, which corresponds to the traditional

beam bending relation with I* representing the resultant area moment of inertia. Note the

units of resultant area moment of inertia are cubic which corresponds to using the stress

resultant, c*, and resultant elastic modulus, E*.

d y M(x) I*
d2y M (x) ,where I = r' by association (2.11)
dx2 E I

This differential equation describes the bending behavior of an inflated circular tube. It

will be integrated to determine deflection, y, for a specific set of boundary conditions.

This theoretical deflection solution is then used to verify simulation deflection results in

Chapter 4.

2.3 Case Specific Non-wrinkled Inflatable Theory

2.3.1 Bending Moment

Figure 2.4 shows the assumed drag force loading, w, and model boundary

conditions, with L representing the tube length. The specific bending moment, M(x), for

this situation is derived from free body diagrams of a cut section of the beam as shown in

Figure 2.5. Shear, V, and moment, M are shown as reaction forces. Variable x is used as

a local coordinate along the tube length. Equations 2.12 and 2.13 show the sum of

moments about point A assuming static equilibrium.









Fdrag
L


Internal pressure, P





Figure 2.4 Drag loading assumed as a distributed force


x x
2 2



wx
M
tA

4 V

wL
2

Figure 2.5 Free body diagram of beam section

+ MA = wL )x + (wx) +M = 0 (2.12)


M(x) = w(Lx- x2) (2.13)
2

2.3.2 Vertical Deflection

To solve for beam deflections, the specific moment equation, Equation 2.13, is

substituted into Equation 2.11 and integrated twice, yielding Equations 2.14 through 2.16.

d2y w
d y (Lx x2) (2.14)
dxC2 2E* mr3










dy w Lx2
dx 2E*Ir3 2

w Lx3 x4
2E*zr3 6 12

With boundary conditions at x = 0, y = 0, and at x

and C2, are found to be Equations 2.17 and 2.18

C, =0


+ C )


(2.15)



(2.16)


+ C C 2)


L, y = 0, constants of integration, Ci



(2.17)


(2.18)


Substituting Equations 2.17 and 2.18 into Equation 2.16 yields the vertical deflection

solution shown as Equation 2.19.


w Lx3 X4
y2E 6 12
2E* r3 6 12


SL3
12


(2.19)


2.3.3 Wrinkle Length

Wrinkle length is the length of the tube at which wrinkling first occurs. This

length depends on the moment necessary to initiate wrinkling. Comer and Levy first

determine the moment necessary to initiate wrinkling by equating expressions for om

(Comer & Levy, 1963). Equation 2.20 describes a force balance between the internal

pressure acting over the area of the circular end-plate and the longitudinal stress

integrated over the circumference of the tube.


pr2 = 2 o-*r dO


(2.20)


Substituting Equation 2.5 into Equation 2.20 and integrating yields Equation 2.21, the

first expression for om.









zpr(1 + cosO )
am co= (2.21)
2t[sin 00, + (r 0,)cos0 ]

Substituting Equation 2.5 into the balance of moments, Equation 2.7, yields the second

expression for om.

2M(1 + cos 0 )
"tr2 (2r 200 + sin 200 )

Combining Equations 2.21 and 2.22 by eliminating om and setting 00 = 0, yields Equation

2.23, the moment necessary to initiate wrinkling.


M = (2.23)
2

Equating the moment to initiate wrinkling, Equation 2.23, with the value of the maximum

moment in Equation 2.13 yields Equation 2.24.

L wL2 pair3
max M( )-w (2.24)
2 8 2

Solving for L and setting the load, w = F/L, gives the general expression for wrinkle

length, Equation 2.25. The wrinkle length is the length at which wrinkling first occurs in

an inflated tube subject to bending, for a given pressure and flow rate.


Lwr 4pR (2.25)
F

As expected, the wrinkle length will be reduced for high loading force, F, and

proportional to the internal pressure and the tube radius. Tube radius, r, is the largest

contributing factor to wrinkle length for these conditions.









For this specific application, the loading force, F, is the drag force, Fdrag. Since

drag force is a function of tube length, Equation 2.25 is further expanded using Equations

2.1 and 2.3 to obtain Equation 2.26.


Lw pr2 (2.26)
SpV2

Equation 2.26 now shows the wrinkle length as a function of the core contributing

variables for this application; internal pressure, tube radius, and external fluid velocity.

The wrinkle lengths in Equations 2.25 and 2.26 also depend on the boundary conditions

and are derived for the simply-supported conditions shown in Figure 2.4.

2.4 Conclusion

The equations derived in this chapter provide a theory for an inflated beam subject to

bending. The solution for vertical deflection, Equation 2.19, is used to verify the finite

element model developed in Chapters 4 and 5. The wrinkle length is used to verify the

final results of a verification model. Verifying a simple model is necessary to justify

extending the computer analysis to more complex geometries, not easily solved with

traditional analysis.















CHAPTER 3
EXPERIMENTAL PROCEDURE AND RESULTS

The setup, procedure, and results of the experiments performed to determine the

orthotropic material properties of a specific commercial drainage tubing is presented in

chapter 3. The Kuriyama Vinyl-Flow series is a composite comprised of a combination

of molded PVC layers and synthetic fibers. One fiber layer runs in the longitudinal

direction while two other layers are oriented at approximately +30 and -30O from the

longitudinal direction as shown in Figure 3.1. Figure 3.2 shows specifications given by

the Kuriyama for the different size models of Vinyl Flow. For this application, the

desired material properties are the elastic modulus and Poisson's ratio. These material

properties are determined experimentally and to be used in a numerical simulation as

described in Chapter 4.

+30



Longitudinal Direction



-30

Figure 3.1 Vinyl-Flow internal fiber layer orientations

















* P .*eri =l ip .,iS.e ihe .] 5:rnar.ei rnis featuring a bal-
anced polyester yarn spiral wrap, longitudinal strength
member, and homogeneous PVC tube and cover.
* Use for general purpose water discharge applications -
ideal for use as a drip irrigation supply line.
* Smooth tube provides low friction loss (see charts on
opposite side).
* Lays ; i ;iqr,I i n r ir rnr ii nj ; a I l ui ,-c r pressure.
* Hc.e ,Tia t.e u"ii,:r o e-, l nv r ji 'eaiirrg I.,r *.r,[. ii, -
tion applications.
* Homogeneous tube and cover construction eliminates
separation.
* Ultraviolet inhibitors reduce aging and weather checking.


Vinylflouw
general purpose water discharge hose
Nominal Hose Approximate Working Coil Approx.
Series Size ID Wall Thickness Pressure Length Weight
No. (in.) (in.) (in.) (psi) (ft) (Ibs.coil)
VF 150 11, 1.673 .0669 80 300 48
VF 200 2 2.165 .0669 80 300 69
VF 250 21/ 2.598 .0787 80 300 87
VF 300 3 3.130 .0787 70 300 117
VF 400 4 4.134 .0827 70 300 156
VF 500 5 5.039 .0866 40 300 204
VF 600 6 6.181 .0866 50 300 258
VF 800 8 8.169 .1063 45 100/300 130/390
VF 1000 10 10.118 .1181 35 100 181
VF 1200 12 12.126 .1181 30 100 195
VF 1400 14 14.134 .1181 30 100 262
VF 1600 16 16.142 .1181 30 100 310


Figure 3.2 Manufacturer information for Kuriyama Vinyl-Flow series



3.1 Experimental Setup and Procedure

3.1.1 Test Sample Orientation

Due to the orthotropic fiber orientation, a value for elastic modulus in both the


longitudinal and hoop directions is desired. To achieve this, samples were made to have


the fibers aligned in a specific orientation. Figure 3.3 shows the convenient coordinate

system chosen and the orientation of each sample. Also shown are Fx and Fy, the tensile


forces applied to each orientation sample.


Longitudinal, y Fy



Hoop,x K




Longitudinally Oriented Sample


Tubing Coordinate System


HoFx


Hoop Oriented Sample


Figure 3.3 Test sample orientations with respect to continuous tubing









3.1.2 Sample Shapes and Correction for Fiber Discontinuity

In order to accurately model the materials' performance, a tensile test sample shape

was needed. It was desired to simply use a continuous tube sample but it was not

possible to achieve this shape in the hoop direction. It was also inconvenient to test a

continuous tube for the large diameter tubes due to the grip size of the tensile test

machine. Since all the samples contain discontinuous fibers, it is necessary to determine

the numerical effect on elastic modulus. To do this, three different sample shapes are

tested and compared to see how the width and continuity of the fibers affect the elastic

modulus.

The first sample, shape A, is a completely continuous length of tubing with a

rectangular shape. The second sample, shape B, is the same as shape A, but differs only

with a single longitudinal cut running the entire length of the specimen. The cut severs

the continuity of the 30 cross fibers. Figure 3.4 shows the longitudinal cut on the

circular cross-section, representing shape B. In order to fit the sample completely within

the width of the test grips, samples A and B are folded twice along the longitudinal

direction as shown in Figure 3.4. The third sample, shape C, is cut from a template with

a shape mimicking a tensile test sample. The ends are designed to fit the width of the

grips of the testing device. The center section is designed to taper from the grips to a

narrow strip to control break location. Care was taken to keep the tapering smooth to

avoid stress concentrations in sharp covers. Figure 3.5 shows an example of shape C.

All samples are 23 cm long. Sample C is 2 cm wide at the narrowest section and samples

A and B have the same width when folded. Figures are shown with the same standard 5

34" pen for scale.

















Figure 3.4 Sample shape B (shown flat and folded)








Figure 3.5 Sample shape C

3.1.3 Experimental Procedure

An MTI 25k screw-driving tensile test machine was used with Curtis 30k self-

cinching jaw grips to perform the tensile tests. An Interface 1220AF-25k load cell was

used in conjunction with MTI software to measure force. After observing preliminary

tests, a test speed of 0.10 in/min was considered reasonable and chosen for all tests.

Figure 3.6 through 3.8 show examples of the test equipment. Figure 3.9 shows an

example of a specimen locked in the grips before pulling.

A sample is closed in the test grips and pulled at a constant velocity to the initial

breaking point. Two marks were made in the middle region of the sample oriented

perpendicular to the length. The length between marks and width (width for sample

shape C) were measured and recorded intermittently throughout the pull test with digital

calipers. The pull force on the specimen is measured and recorded simultaneously with

the length and width measurements. The instantaneous axial stress is calculated at each

point by dividing the force by the cross-sectional area. The cross-sectional area is

calculated as the product of the width and the thickness of the test strip. The material









width and thickness is assumed to be constant in Samples A and B. Only the thickness is

assumed constant in Sample C since the varying width was recorded. The instantaneous

axial strain, F, is calculated at each point using Equation 3.1.

s-s
c5- 5 (3.1)
80

The variable, 6, represents the recorded distance between marks and 60 represents the

original distance between marks. This references strain calculations to the original

unstressed length.

An attempt was made to experimentally determine the material Poisson's ratio by

using measurements of the strain in the width and the strain in the length during the

uniaxial pull tests. It was discovered, however, that since the cut samples do not have

stiffness in compression, and the width decreases with the sample under tension, the

width strain is not a valid measure to be used in determining Poisson's ratio. To

accurately describe Poisson's ratio, the material must be loaded in two directions at once.

Two possible solutions are to use a pull tester capable of pulling in two directions, or to

internally pressurize a uniaxial test specimen. Given the complexity of these tests,

Poisson's ratio is instead determined in chapter 4, using a parameter study in an ANSYS

simulation.









Figure 3.6 Test equipment: MTI screw-drive tensile test machine (MTI, 2004)


Figure 3.7 Test equipment: Interface 1220AF-25k load cell


Figure 3.8 Test equipment: Curtis 30k self-cinching grip
































Figure 3.9 Example of sample locked in grips before pull test

3.2 Sample Shape Choice

Using the analysis described in section 3.3, data from the sample shape tests is used

to determine material elastic modulus. Five specimens were tested for each sample

shape. Table 3.1 shows a summary of the experimentally determined elastic moduli for

each sample shape. It can be concluded that neither sample B nor sample C closely

represent the full tube structure. This is due to the breakage of the continuous hoop fibers

that form the structure of the fabric. Since breaking these fibers is unavoidable in hoop

orientation tests, the assumption was made to apply a multiplicative correction factor to

all tests made from cut samples. The correction factor is determined from a ratio of the

elastic modulus of the continuous tube, sample A, to the elastic modulus of the cut tube,

sample B. This correction factor of 1.29 is applied to all future experimental results,









including both the longitudinal and hoop oriented samples. Sample shape C is used for

all future testing for convenience and predictability.

Table 3.1 Experimental elastic modulus results for three test sample shapes

Sample Shape and Description Orientation Elastic Modulus (psi)


A Folded Continuous Tube Longitudinal 49009

B Folded Cut Tube Longitudinal 38148

C Strip from Template Longitudinal 36098


3.3 Data Analysis and Results

This section describes the analysis of the data collected and its application

towards the orthotropic material properties. Figures 3.10 and 3.11 show plots of axial

stress and axial length-strain for VF-600 material in hoop and longitudinal orientations,

respectively. Five samples per orientation were tested and are plotted with distinct linear

trends. In order to interpret one linear trend from all five tests, all the tests are grouped

together with one trend as shown in Figures 3.12 and 3.13. Combining five distinct

trends is justified by looking at the slope and y-intercepts of the trends. The trend from

each test has a distinct slope, but they are all close enough to consider within

experimental error. The y-intercepts between tests, however, are largely different. The

y-intercept of each trend line indicates an initial load present on the sample before any

length-strain is recorded. This is explained by the observed behavior of the test grips

during the test. The self-cinching grips initially sink in and tighten around the soft

material for a brief period of time before a length-strain is present in the entire sample.

This settling period is interpreted as a pre-loading on the sample by the load cell,

resulting in the y-intercept in the data trend. The presence of the y-intercept is a result of









the specific sample and test apparatus, so it is therefore assumed inconsequential to the

experimental material properties. Since the slope is the only valid material property

obtained from the data, all five groups can be justifiably analyzed with one trend. The

slope of the trend represents the elastic modulus for the corresponding sample

orientation.

Table 3.2 shows a summary of the experimental material property results. Shown

are the experimental and adjusted orthotropic elastic moduli for the hoop and longitudinal

orientations. Adjusted elastic moduli are based on the correction factor for breaking the

continuity of the fibers, determined in section 3.2. It is interesting to note that the elastic

modulus for the longitudinal orientation is much larger than for the hoop orientation since

the hoop stress is generally larger than the longitudinal stress. This is best attributed to

the fiber layer present in the longitudinal orientation. The material was most likely not

designed to be optimized as a pressure vessel, but rather designed for ease of the

manufacturing process.

















* Test 1
* Test 2
Test 3
Test 4
x Test 5


1800

1600

1400

1200

1000

800

600

400

200

0
O.C


4500

4000

3500

3000

2500

S2000

1500

1000

500

0
0.0000


0.0200 0.0400 0.0600 0.0800
Length Strain (inlin)


* Test 6
* Test 7
Test 8
Test 9
STest 10


0.1000 0.1200


Figure 3.11 Experimental data: five longitudinal orientation pull samples


000 0.0500 0.1000 0.1500 0.2000 0.250(
Length Strain (in/in)



Figure 3.10 Experimental data: five hoop orientation pull samples


------I


0


0












1800

1600

1400

1200

1000

800

600
-

400

200

0
0.0000


0.0500 0.1000 0.1500 0.2000
Length Strain (in./in.)


0.2500


Figure 3.12 Experimental data: Five hoop-orientation pull samples grouped together


0.0200 0.0400 0.0600
Length strain (inlin)


0.0800 0.1000 0.1200


Figure 3.13 Experimental data: Five longitudinal-orientation pull samples grouped
together


4500

4000

3500

3000

2500 -

2000 -

1500 -

1000 -

500

0
0.0000









Table 3.2 Summary of experimental and adjusted material properties

Matea / On Experimental Elastic Adjusted Elastic
Material/ Orientation .
Modulus (psi) Modulus (psi)

VF-600/ Hoop 5798.4 7479.9

VF-600 / Longitudinal 36098.0 46566.4



3.5 Errors and Accuracy

Unavoidable experimental errors occurred in all the tests. Due to the nature of the

cross-hatched fabric material, in-plane and out-of-plane shape distortions occurred in

samples when loaded under tension. The in-plane distortions can be described as uneven

shifting of the material in the pull direction. The strain measurements were largely

affected by the in-plane distortion because the measurement lines did not remain

perpendicular to the sample length. The out-of-plane distortions can be described as

cupping of the flat, rectangular cross-sectional area. This largely affects the width and, in

some cases, thickness measurements. Tiny slip marks were observed on some tested

samples where the self-cinching grips cut through or slipped on the slick outer material.

This would contribute additional error to the strain measurements. Figure 3.14 shows an

example of the lines visible on a tested pull sample that indicate slipping. In some cases,

manufacturing inconsistencies in the material were exposed when material samples

visibly broke in a location other than the expected thinnest portion of the sample. Human

error in preparing samples, taking length measurements, and reading the force gage also

contributed to experimental error. The wide scattering of the data points in the stress-

strain curve can also be attributed to the settling period described in section 3.3.









These experimental errors all contribute to the wide scattering of the data points

in the stress-strain curve. Due to the nature of the composite, flexible material and the

test equipment used, the experimental values are considered a valid representation of the

material.







Pull Direction


Grip slippage
Grip slippage


Normal Grip Wear


Figure 3.14 Tested sample with grip slip marks















CHAPTER 4
SIMULATION DEVELOPMENT

The process of developing a finite element model to represent an actual prototype

cage is described in Chapter 4. A simple verification model is first made to explore and

verify finite element membrane analysis for an inflatable tube subject to bending. A full

cage is then modeled to explore the interaction of all the components. Two flow

direction cases are modeled to see the effect of flow direction on stress and deflection in

the cage members. Figures 4.1 and 4.2 show a prototype cage inflated and deflated,

respectively. Figure 4.3 shows an example of the union between the tubing and a PVC

connector using a hose clamp.


Figure 4.1 Cage prototype inflated to -12ft diameter, 9ft height


























lgure 4.2 Cage prototype detlated to -/Ucm

4 Hose clamp
Flexible tubing PVC connector
o A


L I
Figure 4.3 Tubing union to PVC connector

4.1 Verification Model Development and Results

A verification model is designed to establish a basis for further simulations. The

verification model is a simply supported tubular beam with a distributed load on top.

Figure 4.4 shows the conceptual beam model and distributed loading. The hose clamps

are modeled by fixing the x and y displacements of all the nodes along the circumference

of each end. In order to avoid rigid body motion in the analysis, the tube is constrained in

the z direction. To avoid artificial boundary stress concentrations at the ends, the z-

displacements of only 2 nodes on the neutral axis of bending are fixed. Figure 4.5 shows

the applied boundary conditions and the coordinate system used.






















Figure 4.4 Conceptual boundary conditions and loading for the verification model


z-


Dz=
(one end of tube only)
Nodes from outer ring
falling on neutral axis
of bending


Figure 4.5 Detail of boundary conditions for verification model

4.1.1 Applied Loading Conditions

The internal pressure is broken up into pressure acting in the radial direction and

pressure acting longitudinally. The radial pressure is applied normal to the interior tube

surface. The longitudinal pressure is converted to nodal forces, Fi using steps shown in

Figure 4.6. Figures 4.6-A and 4.6-B show the internal pressure, Pi, applied over the area

of the circular cap, Acap. Assuming the cap is rigid, the applied pressure translates into an


I f I f 1 I I I f I









equivalent total axial force, Feq, acting on the cap as shown in Equation 4.2 and Figure

4.6-C. This total force is then distributed equally and applied directly to the number of

nodes, n, on the outer circular edge at the end of the tube as shown in Equation 4.3 and

Figure 4.6-D.


Feq = P, Acap

n
Feq = F,
1i=1

F, Feq
n


(4.1)


(4.2)


(4.3)


Rigid Cap



Acap =7r2




Pi




ntHF-


Fabric Tube


i=1 (D)

Figure 4.6 Steps in representing internal pressure as pre-tension forces

4.1.2 Water Current Drag

Water flowing over the outer surface of the tube creates a drag force. Fluid

assumptions and equations are derived in Chapter 2. A programming do-loop was


Rigid Cap


(A)


(C)









initially implemented into a script file to approximate a parabolic pressure flow

distribution by applying individual forces to nodes. Forces are determined from the

product of the local pressure and the projected area around the node. Figure 4.7 shows a

representative projected area for one node. Applying the pressure distribution to the

tension-only membrane tube in this manner yielded numeric instability. This numeric

instability and a need for only global effects of the drag leads to the assumption that local

pressure effects of the flow on the tube can be neglected. This simplifies the model by

approximating the total drag as an equally distributed load. Figure 4.8 shows an example

of the total drag force divided equally and applied to all the nodes along the length of a

typical tube. All nodal drag forces are applied in the same global coordinate direction.


Xi-1 Xi Xi+1
Figure 4.7 Representative projected area around one surface node














Equal forces_ _
applied at each
node around -
circumference







Figure 4.8 Representative application of forces to nodes around circumference

4.1.3 Element Selection and Properties

The geometry is created in ANSYS by extruding a circle along a linear path. This

area is then meshed with rectangular shell elements. The material to be modeled is a thin

fabric with orthotropic material properties. Since fabrics have tensile stiffness, but very

little compressive stiffness, a thin shell element with optional compressive stiffness is the

best choice. The Shell41 element with Keyopt(1) = 2 meets these requirements. It was

determined that the zero compressive stiffness caused a numerical instability in the

solution of a pressurized beam in drag which resulted in spikes in the deformed shape.

Initially, a small elastic foundation stiffness (EFS) was added to the Shell41 elements to

attempt to fix the instability. Successive ANSYS simulations varying the EFS showed a

large change in mean deflection, shown in Figure 4.9. This large deflection makes

choosing a small EFS value unacceptable and eliminates the use of the EFS in all models.

In another attempt to remedy the instability, equivalent-geometry Shell63

elements with small elastic modulus were merged to the Shell41 elements to add a small

compressive stiffness to the elements. Successive ANSYS simulations varying the added









stiffness of the shell63 elements showed an acceptable change in deflection and stress as

shown in Figures 4.10 and 4.11. A value of 10,000 Pa is chosen for the added stiffness.

Merging the shell63 elements is a preferable choice to fix the instability because the

added stiffness has a less interfering effect on the desired results. Implementing this

choice eliminates the spikes and smoothes out the deformed shape.

The isotropic material properties needed to solve for stress and deflection are

elastic modulus and Poisson's ratio. Since the material is orthotropic, hoop elastic

modulus, longitudinal elastic modulus, shear modulus, and Poisson's ratio are required.

Values for elastic modulus in the hoop and longitudinal directions are found

experimentally in Chapter 3. Since Poisson's ratio is not experimentally determined, a

value is chosen based on finite element model results. Simulations showed that varying

Poisson's ratio had negligible effect on longitudinal stress and deflection. Figure 4.12

shows maximum deflection plotted for various Poisson's ratios determined in an ANSYS

model of a cantilevered tube loaded with an end force. Figure 4.13 shows a similar plot

for maximum longitudinal stress using the same model. The small variation in stress and

deflection justifies assuming a reasonable value of 0.4 for Poisson's ratio.












0.00000E+00


-2.00000E-03


-4.00000E-03


-6.00000E-03


o -8.00000E-03


-1.00000E-02


-1.20000E-02


-1.40000E-02


0 20000 40000 60000 80000 100000 120000 1400
EFS Value (Pa)

Figure 4.9 Verification model parameter study: EFS effect on beam deflection


0.00E+00


-1.00E-03


-2.00E-03


-3.00E-03


-4.00E-03


-5.00E-03


-6.00E-03


-7.00E-03


-8.00E-03


Figure 4.10


0 20000 40000 60000 80000 100000 120000 140000

Added Compressive Stiffness to Shell41 Elements (Pa)

Verification model parameter study: Added stiffness effect on beam
deflection


00












7.00E+06


6.00E+06 *** *


a 5.00E+06


S4.00E+06



0
-.00E+06


o
-J
1.00E+06


0.00E+00


* Maximum Stress
* Minimum Stress


0 20000 40000 60000 80000 100000 120000 140000

Added Compressive Stiffness to Shell41 Elements

Figure 4.11 Verification model parameter study: Added stiffness effect on longitudinal
beam stress


0.025

0.0225

0.02

0.0175

0.015

0.0125

0.01

0.0075

0.005

0.0025

0


0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Poisson's Ratio, vxy (v_hoop-longitudinal)


Figure 4.12 Verification model parameter study: Poisson's ratio effect on beam
deflection


-c
LU

,LL
4-
I-
C.
o.

t?




E

x
E


* *







48



6.00E+06

5.00E+06
*

S4.00E+06
S* Maximum Stress
3.00E+06 m Minimum Stress


2.00E+06


S1.00E+06


0.00E+00
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Poisson's Ratio, vxy (v_hoop-longitudinal)

Figure 4.13 Verification model parameter study: Poisson's ratio effect on longitudinal
beam stress

4.1.4 Verification Model Results

To verify the model, simulation results are compared to the stress and deflection

theoretical solutions derived in Chapter 2. Since flow velocity is proportional to the drag

force acting on the beam, flow velocity is used to compare models. The simulations are

conducted until the beam reaches failure. A study is done for 5m and 10m tubes. Results

from the 5m long tube are shown in Figure 4.14 which correspond to a constant average

deviation of 3.22% between theoretical and simulation. Figure 4.15 shows similar results

for a 10m tube with a constant average deviation between theoretical and simulation to be

0.567%. These results show that the deflection results between theoretical and simulation

stay below an acceptable 5% deviation. Results also show that the deviation decreases as

tube length increases.

A length study was also performed to see how maximum deflection changed with

length. Simulations are performed up to an approximately 10% deflection:length ratio.









Figure 4.16 shows a parabolic trend in the simulation and theoretical results. Figure 4.17

plots the deviation between simulation and theoretical results, showing deviation

decreasing exponentially as length increases. Deviation drops below 10% above a tube

length of approximately 3.5m. The large deviation occurring in tubes shorter than 3.5m

is believed to be due to the Saint-Venant's principle (Hibbeler, 1997), applicable at the

fixed end boundary condition. In this case, the simulated cap restricts radial expansion in

the fabric tube, which affects the maximum deflection.

A stress simulation is also performed to verify the model behavior. Figure 4.18

shows longitudinal stress results for the verification model. The maximum stress

increases, while the minimum stress decreases as expected in bending. A rigid body

motion error is received when the minimum longitudinal stress decreases to

approximately zero, verifying the tension-only behavior of the model. This defines

failure by wrinkling in this model.













0.00E+00

-5.00E-02

-1.00E-01

E -1.50E-01
C
.2 -2.00E-01

4 -2.50E-01
a
S-3.00E-01

S-3.50E-01

-4.00E-01

-4.50E-01

-5.00E-01


Flowing Water Speed (mph)



Figure 4.14 Deflection results for the verification model with length of 5m


* Simulation
* Theoretical


0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
Flowing Water Speed (mph)


Figure 4.15 Deflection results for the verification model with length of 10m length


S







I


* Simulation
* Theoretical


S


0.00E+00

-2.00E-01

-4.00E-01

E
- -6.00E-01
C
a
0
o -8.00E-01

9 -1.00E+00
>-

2 -1.20E+00

-1.40E+00

-1.60E+00

-1.80E+00













0.00E+00

-1.00E-01

-2.00E-01

-3.00E-01

-4.00E-01

-5.00E-01

-6.00E-01

-7.00E-01

-8.00E-01

-9.00E-01

-1.00E+00


0 1 2 3 4 5 6

Tube Length (m)


II


7 8 9


Figure 4.16 Deflection results for verification model with 0.5 m/s flow velocity


140.00%


120.00%


= 100.00%
0


G 80.00%
c

S60.00%


O 40.00%


20.00%


0.00%


0 1 2 3 4 5 6
Tube Length (m)


7 8 9


Figure 4.17 Deviation in deflection results for verification model with 0.5 m/s flow
velocity


* Simulation
* Theoretical


A











A



A

A
A A A A AAA A A.. .











1.40E+07

1.20E+07

1.00E+07
0-
S8.00E+06

n Maximum Stress
S6.00E+06 -
~m Minimum Stress

a 4.00E+06

3 2.00E+06

0.OOE+00

-2.00E+06
0 2 4 6 8 10 12 14
Tube Length (m)

Figure 4.18 Longitudinal bending stress results for verification model with 0.5 m/s flow
velocity

4.1.5 Verification Model Conclusion

The results from the verification model show the merged shell41 and shell63

elements acceptably model the tension-only tubing material. The Saint-Venant's

principle effect is specific to the boundary conditions and geometry of the verification

model and is not applied elsewhere. The drag loading and boundary condition

applications are acceptable and accurately model the actual conditions.

4.2 Cage Simulation Process

The actual tubes, when assembled as a cage, have rigid end caps with hose clamps

constraining each end. Based on the geometry of the cage, the tube can flex and extend

longitudinally. Internally, the tube contains pressurized air to maintain inflation. The

external loading on the tube is a distributed drag force caused by a cross-flowing water

current.









4.2.1 Flow Design Models

With infinite possible current flow-directions for an underwater cage, the number

of modeled choices is limited to cages subject to top-down flow and side-flow. Figure

4.19 defines the global coordinate system with side-flow in the positive x-direction and

top-flow in the negative y-direction. Modeling the entire cage was necessary because

unlike the single beam verification model, the boundary conditions that exist at the end of

each tube in the full cage structure are complex and interactive among the cage members.










\ -, / \



Top-Flow Side-Flow
Figure 4.19 Two cage simulation flow orientations

4.2.2 Element Choice

All tubes are meshed with merged tension-only shell41 and shell63 elements in

the same stacked element configuration as the verification model determined in Section

4.1.3. The tubular connectors in the cage are rigid relative to the tubing, so shell63

elements are used. LinklO elements model the tension-only cables that tie together

certain connectors throughout the cage.

4.2.3 Loading Conditions

Internal pressure in the fabric tubes acts in the radial and longitudinal directions.

Pressure acting in the radial direction is applied using the surface element pressure









command (sfe) to only the shell41 elements making up the fabric tubes. Since the tubes

are not actually capped, as in the verification model, a control volume analysis of the

fluid in the rigid connector is used to determine the net effect of the longitudinal pressure

in each tube. Figure 4.20 shows a control volume of fluid inside a typical 45'-connector.

Longitudinal pressure from each tube acts over the entrance area to the connector. The

product of the pressure and area is treated as an equivalent force, Fcap, similarly to

Equation 4.1 in the analysis of the verification model. Assuming the compressibility of

the fluid is negligible, and the fluid is static, the fluid and the connector are approximated

as one rigid body. Figure 4.21 shows Figure 4.20 translated into a free body diagram of a

typical 45'-connector modeled as a rigid body with net x and y component forces. Figure

4.22 shows a finite element model of the same typical 45-connector with the net

component cap forces divided and applied to all the nodes around the circumference of

the center of the connector. The same analysis and nodal force application is used for

each connector.

r - -------



fluid F
f. _^ ~F cap

F o ,,_

SFaap-y


F
Fcap-x

Figure 4.20 Control volume analysis around a rigid 45-connector containing pressurized
internal fluid










Fcap (1 cos 45)





cap (sin 45)

Figure 4.21 Free body diagram of rigid cap with algebraically summed pretension force
components











Forces act on nodes
around entire
circumference



Figure 4.22 Force components applied to finite element model of rigid connector

4.3 Top-Down Flow Cage Model

In the top-down flow model, the center tube is anchored at the top of the cage

with flow in the opposite direction. Small frictional drag occurring along the center tube

is neglected because it lies in the direction of flow. To save on computing time, the

center tube is eliminated from the model and replaced with a single node at the top and

bottom of the cage.

Although not immediately obvious, symmetry could be not be used to simplify

the top-down flow cage model analysis. Dividing the cage along the x, y, or both the x

and y axes does not work because the state of bending makes the z-direction boundary









conditions along the axis of symmetry unknown. The z-direction boundary conditions

also make it impossible to use an axis of symmetry along an axis 45 degrees from the x or

y axis. The cable element controlling the z-direction boundary condition lies along this

axis of symmetry and can not be split.

4.3.1 Applied Loading Conditions

Since external fluid flows over the entire cage, the total fluid drag force on the

cage is calculated based on its total cross-sectional area perpendicular to the direction of

flow. The total force is then divided equally and applied to all nodes of the eight caps

and eight tubes. Referring to the coordinate system defined in Figure 4.23, all drag forces

act in the negative z-direction for the top-down flow model.

4.3.2 Boundary Conditions

Boundary conditions are applied to simulate the conditions acting on the cage as

simply as possible while minimizing solution time. The two locations labeled A in

Figure 4.23 describe two single nodes at the top and bottom of the cage. These points are

placed to obtain a cage diameter-to-height ratio of 8:5. Both points are constrained to

zero deflection in the x,y, and z directions. Cables on the underside of the cage are slack

and do not affect the system, but were included for aesthetics along with the fixed node at

the bottom of the cage.

Locations labeled B and C in Figure 4.23 describe all nodes around the

circumference of a tube at the center of its length. Nodes at location B are constrained to

zero deflection in the y-direction. Nodes at location C are constrained to zero deflection

in the x-direction. Constraining locations B and C prevents rotational rigid body motion

while allowing the individual tubes and cage to expand symmetrically.











Z x A C




B B


(

A C

Figure 4.23 Top-flow boundary condition locations

4.4 Side-Flow Cage Model

The side-flow cage starts with the same octagon model as the top-down flow

model but includes a model of the center tube, all the cables, and a different anchoring

system. Z-direction pretension forces from internal pressure are additionally included at

the ends of the center tube in this model. The rigid connectors are pressurized to the

same internal pressure as the connecting tubing because successive analysis showed an

improvement in the smoothness of the deformation solution around the connections.

Symmetry could also not be used in the side-flow cage model analysis. The x-

axis would be the best choice for axis of symmetry, but the center tube, lying in the z-

direction, would have to be split longitudinally. Also, the x-direction boundary

conditions are unknown on the tubes along the axis of symmetry because the drag flow is

causing bending at those points.

Figure 4.24 shows the components of the center tube as two flexible membranes

and three straight, rigid connectors. The total center tube length is determined by the 8:5

cage diameter-to-height ratio. Figure 4.25 shows linkl0 elements connecting nodes in









the top, bottom, and center connectors of the center tube to nodes in the top and bottom

of the 45-degree connectors in the octagon. Cable elements are merged to single nodes

on the rigid connector symmetrically as shown. Four tension-only cables anchor the cage

from a single external point. Figure 4.26 shows an example of the linkl0 mooring cable

elements merged to one top and bottom node of a 45-degree connector.

Figure 4.27 shows the anchor point location in the global coordinate system,

where L is the length of an individual tube in the octagon. Setting the anchor point x-

location as a function of tube length maintains an anchor distance from the cage as the

cage size is increased. This location is chosen to be reasonably close, while minimizing

the y-tension component in the anchor cables, which affects the deformation of the cage.

4.4.1 Applied Loading Conditions

Drag flow for the side-flow case is approximated as a series of forces applied to

specific cage members. Locations A, B, and C in Figure 4.28 describe flexible

membrane tubes to which drag is applied. The magnitude of drag on locations A, B, and

C is individually based on the respective cross-sectional area. Small frictional drag is

neglected along location D in Figure 4.28 because the members are parallel to the flow

direction. The total drag force for each individual member is divided equally and applied

to the nodes corresponding to the respective location. Referring to the coordinate system

defined in Figure 4.23, all drag forces act in the positive x-direction for the side-flow

model.

4.4.2 Boundary Conditions

The location labeled A in Figure 4.29 describes the single-node anchor point fixed

to zero deflection in the x, y and z directions. To allow symmetric expansion and prevent

rotational rigid body motion, constraints are placed in two more locations in the cage.









Locations labeled B and C in Figure 4.29 describe all nodes around the circumference of

a tube at the center of its length. The nodes at location B are constrained to zero

deflection in the y-direction, while nodes at location C, further illustrated in Figure 4.30,

are fixed to zero deflection in the z-direction.


Flexible Membrane Tubing


Rigid Connectors


Figure 4.24 Cage center tube components








































Figure 4.25 Expanded view of representative internal cable connections


Mooring cables


Flexible
membrane
Rigid tubing
connector


Figure 4.26 Expanded View of representative mooring cable connections











E 3.4L


Figure 4.27 Dimensions of anchor location


Figure 4.28 Side-flow applied loading locations


'NA
























Figure 4.29 Side-flow boundary condition locations


Flexible
membrane
tubing


Rigid
/ connector



Displacement
boundary conditions
(nodes of entire
circumference)


S I I e e
Figure 4.30 Expanded view of center tube boundary conditions















CHAPTER 5
SIMULATION RESULTS

The design criteria and results from the ANSYS cage simulations are presented in

Chapter 5. The goal of the study is to determine the maximum cage size possible before

failure. Twelve commercially available flexible tubes are tested under top and side flow

conditions. The material yielding the largest cage is chosen and subject to an additional

velocity simulation.

5.1 Simulation Strategy

ANSYS script files are used to parameterize the variables involved in the

construction and analysis of each cage. Independent variables were kept constant for all

analyses run in this chapter. Independent variables include:

* External fluid temperature, viscosity, density
* Flexible membrane orthotropic elastic modulii
* Rigid connector elastic modulus
* Flexible membrane and rigid connector Poisson's ratios
* Flexible membrane shear modulus
* Cable constant, EA
* Rigid Connector geometry

Cable length is defined by the cage geometry. Flexible membrane material

properties are explained in Chapter 3, while reasonable values are chosen for external

fluid, connector, and cable properties. Dependent variables affecting the cage geometry

and loading are:

* Flexible membrane internal pressure
* Flexible membrane tube length
* Flexible membrane tube diameter









* Flexible membrane thickness
* External fluid velocity

Internal pressure causes the pretension forces in the flexible membrane tubes. The

pretension forces are also based on the area of the tube opening and so are functions of

the tube diameter. Drag on a given member is a direct function of tube length and tube

diameter. Drag is also a function of the flowing fluid velocity squared. Three of the five

independent variables are combined using data from commercially available materials.

Table 5.1 presents Vinyl-Flow data including tube diameter, thickness, and working

pressure for a given series number. Simulation results make convenient the grouping of

VF-Series' by pressure to show approximately constant pressure trends. The three

pressure range groups are indicated in Table 5.1. The following simulations vary Vinyl-

Flow series number, tube length, and external fluid velocity to determine effects on cage

performance.

Table 5.1 Manufacturer data for Vinyl-Flow commercial drainage tubing

Nominal Hose Approximate Working Coil Approx. Pressure
Series Size ID Wall Thickness Pressure Length Weight Group
No. (in.) (in.) (in.) (psi) (ft.) (lbs.lcoil) (psi)
VF 150 111, 1.673 .0669 80 300 48
VF 200 2 2.165 .0669 80 300 69 70-80
VF 250 2'/ 2.598 .0787 80 300 87
VF 300 3 3.130 .0787 70 300 117
VF 400 4 4.134 .0827 70 300 156
VF 500 5 5.039 .0866 40 300 204
VF 600 6 6.181 .0866 50 300 258 40-50
VF 800 8 8.169 .1063 45 100/300 130/390
VF1000 10 10.118 .1181 35 100 181
VF1200 12 12.126 .1181 30 100 195 30-35
VF1400 14 14.134 .1181 30 100 262
VF1600 16 16.142 .1181 30 100 310

5.2 Failure Criteria

The failure criteria for both flow cases are the points when wrinkling occurs

anywhere in the fabric tubing and when stress exceeds the ultimate strength of the









material. Wrinkling is defined here as a compressive stress. Cage wrinkle diameter is

defined as the maximum cage diameter before any flexible tube wrinkles due to a

compressive stress less than or equal to zero. It is important to consider both the

longitudinal and hoop stresses in the analysis.

Wrinkling is expected to occur in the longitudinal direction because the combined

loading of internal pressure and bending affect the longitudinal stress. Tubes are not

expected to wrinkle in the hoop direction because the only loading affecting the hoop

stress, internal pressure, creates a tensile hoop stress.

The maximum stress will occur in the longitudinal direction because the combined

loading of internal pressure and bending affect the longitudinal stress. The hoop stress is

affected only by the internal pressure loading. Using the manufacturer's recommended

working pressure ensures the hoop stress will not exceed the ultimate strength of the

material.

Figure 5.2 illustrates a representative case of compressive failure behavior for VF-

800 tested at a water speed of 1 knot in top-flow. Maximum and minimum longitudinal

stresses are shown for various cage sizes. As cage size is increased, maximum stress

increases, while minimum stress decreases. Pretension in the tubes keeps both stresses

positive, meaning they are always in tension. When the cage size increases to the point

that the minimum stress drops below zero, the model fails because the tension-only

elements can not support compressive stress. This is then interpreted by the program as

an unconstrained model and results in a rigid body motion error message. Note that the

compressive stress could go very slightly negative without failure because of the small

compressive strength provided by the merged shell63 elements comprising the tube.









Subsequent top-flow simulation failures are judged by the rigid body motion error

message.

The side-flow simulations do not show a smooth trend in the longitudinal stress

down to zero as in Figure 5.2, but show a sudden drop-off resulting in a rigid body

motion error message. This behavior can be described as a buckling of the structural

tubes. The stress behavior is due to changes in the higher order bending occurring in the

tubes as cage size changes. Section 5.4 illustrates and further explains this behavior.

The side-flow cage failure is therefore also determined by the rigid body motion error

message in the simulation.


1.20E+07
Maximum Stress
1.00E+07 Minimum Stress

S8.00E+06

S6.00E+06

I 4.00E+06

3 2.00E+06


0.00E+00
0 5 10 15 20 25 30
Cage Diameter (m)

Figure 5.2 Simulation results: Bending stresses in a VF-800 top-flow cage

5.3 Stress Results

Figure 5.3 illustrates the maximum longitudinal stresses occurring in each

simulation staying below the experimentally determined ultimate strength of the material,

2.6e7 Pa. This ensures the material strength is not exceeded in any simulation.












3.00E+07


2.50E+07
STop-Flow
Maximum Stress
S2.00E+07
m Side-Flow
g Maximum Stress
c 1.50E+07
S-Ultimate Material
o Strength
o- 1.OOE+07
0
-J

5.00E+06


O.OOE+00



Vinyl-Flow Series Number

Figure 5.3 Maximum stresses in each simulation and ultimate material strength

5.4 Geometry Deformation Results

Figures 5.4 through 5.6 show various views of a typical deformed geometry of a


cage subject to top-flow at the critical wrinkle point. All eight tubes bend in the negative

z-direction with maximum z-deflection occurring at half the tube length. Bending plus


the Poisson effect cause the cage diameter to decrease symmetrically throughout the


cage.


Figures 5.7 through 5.8 show two views of a typical deformed geometry of a cage


subject to side-flow at the critical wrinkle point. Note that the net cage x-diameter


increases, while the net cage y-diameter decreases. Internal reaction forces occurring


through the cable connections cause internal bending moments around the corner


connectors of the octagon. Deformation effects of these internal bending moments are


visible in the deformed curvature around the connectors and account for multiple-mode


bending visible in several of the beams. Figure 5.9 illustrates the rotational effect on a









representative rigid connector. The different rotational effects occurring throughout the

cage contribute to the multiple bending modes and subsequent buckling stress behavior

leading to failure.


Figure 5.4 Top-Flow deformed geometry at the wrinkle point: View 1


Undeformed
Deformed


Figure 5.5 Top-Flow deformed geometry at the wrinkle point: View 2











Undeformed



Deformed



Figure 5.6 Top-Flow deformed geometry at the wrinkle point: View 3
Undeformed Deformed


Figure 5.7 Side-Flow deformed geometry at the wrinkle point: View 1


;;











Deformed


Figure 5.8 Side-Flow deformed geometry at the wrinkle point: View 2


Undeformed







Deformed






Note
rotational
effect


Figure 5.9 Representative rotational effect occurring in side-flow simulation









5.5 Simulation Deflection Results

Deflection results are useful in predicting cage behavior. Presented here are

qualitative results for a specific material case and maximum deflection results for each

material case. Numeric sign associated with deflection is related to the previously

defined cage coordinate system. For diameter changes, a negative change indicates a

decrease in diameter, while a positive change indicates an increase.

5.5.1 Qualitative Deflection Results

Figure 5.10 shows deflection data of the net cage x-diameter deflection for a

representative case of the VF-800 tested in top-flow at a water speed of one knot at

various cage diameters. Deflection results are identical for the cage y-diameter based on

the symmetry of the geometry and loading. Cage diameter change has a qualitatively

linear trend for the top-flow cage loading. Figure 5.11 shows data of the maximum z-

deflection for the same representative case. The data represents the maximum bending

deflection occurring in each tube and has an expected qualitatively decreasing parabolic

trend as cage size is increased.

Figure 5.12 shows cage y-diameter deflection data for the VF-500 representative

case, but in side-flow. As seen in the geometry deformation of the side flow cage, the

cage y-diameter decreases drastically. No clear trend is visible in the smaller x-diameter

deflection. This is because the multiple bending modes largely affect the x-diameter

cross members and occur differently in each cage size. X-diameter cage deflections must

be considered on a case by case basis for side-flow.

















S-0.5
0 C
,m


.




S-21
.)


-2.5
Ca



0 5 10 15 20 25 30

Cage Diameter (m)


Figure 5.10 Cage x-diameter net deflection for VF-800 tested at flow speed of 1 knot,
top-flow



0-



-1



-2 -



-3 -



-4



-5
0 5 10 15 20 25 30

Cage Diameter (m)


Figure 5.11 Maximum z-deflection for VF-800 cage tested at flow speed of 1 knot, top-
flow











0.0
S5 10 15

-0.5







E
-1.0 -






> -2.0
01


Z -2.5-


-3.0
Cage Diameter (m)

Figure 5.12 Cage y-diameter net deflection for VF-500 tested at flow speed of 1 knot,
side-flow

5.5.2 Maximum Deflection Results

Two tables are shown to present deflection behavior with respect to the original

cage size. Data are summarized in table format because in each case, the maximum

deflections occur at different cage sizes which correspond to different drag loadings.

With different drag loadings, each case can not be directly compared to determine a

graphical trend. Tube diameter and working pressure are included in the tables for

comparison between cases. Table 5.2 shows the maximum diameter change and

maximum z-deflection with respect to original cage diameter for the top-flow case.

Diameter deflections are between 4-10%, while z-deflections are between 10-18%. Table

5.3 shows the maximum change in the x and y diameters with respect to original cage

diameter for the side-flow case. X-diameter deflections are small and between 2-4%,

while y-deflections are much larger, at 14-22%.











Table 5.2 Maximum cage deflections for the top-flow orientation

Tube diameter Working Maximum cage Ratio of change in cage x- Ratio of z-deflection to
Series number diameter to original cage
(in.) pressure (psi) diameter (m) diameter original cage diameter
diameter

VF 150 1.673 80 7.2 -4.93% -10.78%
VF 200 2.165 80 9.6 -6.49% -14.98%
VF 250 2.598 80 10.8 -6.49% -13.53%
VF 300 3.130 70 13.2 -7.02% -15.83%
VF 400 4.134 70 16.8 -8.71% -18.78%
VF 500 5.039 40 14.4 -5.80% -10.57%
VF 600 6.181 50 20.4 -8.83% -17.37%
VF 800 8.169 45 26.4 -8.75% -17.47%
VF 1000 10.118 35 27.6 -7.78% -13.82%
VF 1200 12.126 30 30 -7.60% -13.59%
VF 1400 14.134 30 34.8 -8.85% -15.76%
VF 1600 16.142 30 39.6 -10.10% -17.92%


Table 5.3 Maximum ca e deflections for the side-flow orientation
Sers Te d r Working Ratio of net x diameter Ratio of net y diameter
Series Te dia r pressure aimmae change to original cage change to original cage
number (in.) diameter (m)
(psi) diameter diameter
VF 150 1.673 80 14.4 2.498% -17.346%
VF 200 2.165 80 18 2.600% -18.633%
VF 250 2.598 80 20.4 2.598% -18.216%
VF 300 3.130 70 21.6 2.681% -18.361%
VF 400 4.134 70 27.6 3.138% -21.377%
VF 500 5.039 40 18 2.569% -14.222%
VF 600 6.181 50 21.6 2.731% -17.667%
VF 800 8.169 45 25.2 3.150% -18.619%
VF 1000 10.118 35 24 2.672% -15.442%
VF 1200 12.126 30 25.2 2.779% -14.976%
VF 1400 14.134 30 28.8 3.262% -17.278%
VF 1600 16.142 30 32.4 3.760% -19.605%



5.6 Cage Size Results

Maximum possible cage size is determined by the point at which the cage wrinkles.


Figures 5.13 and 5.14 show the maximum cage diameter results by tube diameter for the


top-flow and side-flow cases respectively. Slight pressure effects are noted between the


pressure groups of the top-flow case, but are neglected to form one linear increasing


trend. The trend generally shows that, independent of pressure, as diameter increases, the


maximum possible cage diameter increases for top-flow conditions. The side-flow case,


however, has significant pressure effects visible in Figure 5.14. Each pressure group is


plotted with an increasing linear trend, but a distinct slope and y-intercept. Within each










pressure group, as diameter increases, the maximum possible cage diameter increases.

Also evident is that as pressure increases, the slope of the constant pressure trends

becomes steeper. This indicates that for a given diameter, operating at higher pressures

increases the maximum possible cage size.

Since the flow situations are idealized and true water conditions vary no matter

how the cage is anchored, choosing the material for the largest cage is based on the

results of both flow cases. Figure 5.15 presents the data from figures 5.13 and 5.14 as a

summary of the top-flow and side-flow maximum cage diameters possible for all the

material models tested. The lesser cage maximum diameter of the two flow cases is the

limiting factor for each material. Refer to Table 5.1 for model specific manufacturer data

including tube diameter, thickness, and working pressure for each case.


45

40

35

30
slight pressure effect
E



E
E 15 70-80 psi
m 40-50 psi
2 10 30-35 psi

5

0
0 2 4 6 8 10 12 14 16 18
Tube Diameter (in)

Figure 5.13 Top-flow maximum cage diameters for each tubing material grouped by
internal pressure

















25

20

S15 70-80 psi
E m 40-50 psi
0 10
E 30-35 psi
5 -
0 i i 15 -- ^------------- 70 8 p i --



0
0 2 4 6 8 10 12 14 16 18
Tube Diameter (in)

Figure 5.14 Side-flow maximum cage diameters for each tubing material grouped by
internal pressure


E
30

0 25
a
20
c 20
o
E
I 15
E

I 10


Vinyl-Flow Series Number


Figure 5.15 Summary of maximum possible cage size for each material in two flow cases
subject to one knot flow velocity VF Series number corresponds to
diameter, working pressure, and thickness in Table 5.1









5.7 Velocity Results

VF-1600 is chosen because it has the largest limiting cage size of the materials

tested. The maximum possible VF-1600 cage diameters for top-flow and side-flow are

averaged and then divided by two to obtain a cage diameter able to withstand higher than

one knot flow velocity. This cage diameter, 19.2 m, is used for a velocity test on the

cage. The cage withstands the same maximum flow speed of 1.6 knots in both top and

side flow cases before wrinkling occurs. In top-flow, cage diameter decreases 10.183%,

while in side-flow, cage x-diameter increases 4.027%, and cage y-diameter decreases

17.792%. These deflections are reasonable for an inflated flexible membrane cage of this

size and correspond to the expected deformation results shown in Section 5.4.














CHAPTER 6
CONCLUSION

The experimental work performed gave preliminary values of the orthotropic

material properties. More advanced test equipment is necessary to model orthotropic

fiber tubing to find the directional elastic moduli and Poisson's ratio. Large-deformation

strain gages would improve the accuracy in recording the strain used in determining the

elastic modulus. A two direction tensile tester would be necessary to experimentally

determine Poisson's ratio for the inflated-tube loading case. The values determined were

sufficient for the preliminary design and modeling of the orthotropic fiber material.

The analysis presented here focused on the inflatable behavior of the structure. The

simulation included the inflated tube members, rigid PVC connectors, and cable

connectors. It is important to note that the fish netting is excluded from the simulation,

but is necessary for a complete analysis. The simulation effectively models the nonlinear

behavior of the orthotropic, fabric material by translating the inflatable theory into a finite

element model. Preliminary simulations successfully show expected inflatable behavior

in full-cage top and side flow models.

Preliminary findings warrant further research that models the external netting. Net

selection has several biological issues to be addressed such as net biofouling and

biologically safe mesh size. Net analysis will potentially require dynamic analysis to

model the hydrodynamic interaction between the structural element and the fluid

(Tsukrov et al., 2000). Since the cage divergence volume is an important issue, future

work should include at least an approximation of the nets. Further simulation work









should also include optimizing the inflatable material. The cage material's size and

stiffness is expected to offset the increased loading of the nets, making the inflatable

aquaculture cage practical and economical.

The side and top flow models behave differently, particularly with respect to

divergence volume. The internal pressure and tube diameter play the largest role in

deciding the maximum possible cage diameter prior to wrinkling. Instead of including a

safety factor in the final results, the failure criterion was set to the point at which

wrinkling occurred in any tube. Inflatable tubes do not actually fail at the point of

wrinkling, but can continue past this point (Main et al., 1994). Future simulations may be

able to push the failure criteria by modeling the stiffness behavior of the wrinkled

material.

This work successfully models one new application of inflatable structures.

Nonlinear finite element modeling is shown to be an effective tool in analyzing the

behavior of these structures. Inflatables in many applications have a great potential for

improving cost, weight, and convenience. This effort adds one step to the progression of

inflatable structures, and may encourage their further development and acceptance.





















APPENDIX A
ANSYS SCRIPT CODE

The following contains two ANSYS script files used in the design and analysis of

the inflated cage. A top flow orientation script is first presented, followed by a side flow

orientation script. Many variables used in the analysis are parameterized in the beginning

of each script to account for changing conditions.

Top-Flow

/COM, this code has the link10 elements and uses knode command to
/COM, connect them to the caps
/PREP7
/COM, change colors to white background
/RGB,INDEX,100,100,100, 0
/RGB,INDEX, 80, 80, 80,13
/RGB,INDEX, 60, 60, 60,14
/RGB,INDEX, 0, 0, 0,15
/COM, *******************************************
/COM, define geometric tube parameters *
/COM, *******************************************
/COM, inner diameter, units = inches
ID = 8.169
/COM, material thickness, units = inches
thicknessinch = 0.1063
/COM, units = m
length = 8
/COM, end cap radius of curvature determines cap length
caprad=ID/12
/COM, **************************************
/COM, define element parameters *
/COM, **************************************
/COM, number of nodes on quarter circumference
n=7
/COM, number of nodes along length
m=51
/COM, element depth
edepth = length/(m-1)
/COM, Elastic Modulus in the hoop direction (Pa)
Ehoop = 5.157e7
/COM, Elastic Modulus in the longitudinal direction (Pa)










Elong = 3.211e8
/COM, Major Poisson's Ratio (xy)
poisson = 0.4
/COM, Shear Modulus, Gxy, G HL, units?
shearmod = 1.91e7
/COM, Elastic Modulus for Artificial stiffness (small) units=Pa
smallmod = 10000
/COM, Elastic Modulus for Cap (large) units=Pa
capmod=9e9
/COM,*******************************************************
/COM,* define external fluid (water (20 C) parameters *
/COM,*******************************************************
/COM, appendix A-3, external fluid absolute viscosity, kg/m-s
visc = (1e-3)
/COM, external fluid density, kg/m^3
dens = (998)
/COM, ***************************************
/COM, define loading *
/COM, ***************************************
/COM, internal pressure, psi
prespsi = 45
/COM, flowing fluid velocity m/s
vel= (0.5144444)
/COM, **********************************************
/COM, calculate dependant variables, units *
/COM, **********************************************
/COM, angles in degrees
*afundeg
/COM, cap arc length (m)
caplength=0.3
/COM, convert pressure units
pressure = (6894.757*prespsi)
/COM, convert diameter to radius in meters
radius = (ID/2)*0.0254
diam=radius*2
/COM, convert to units = m
thickness = thicknessinch*0.0254
/COM, cross-sectional area ONE tube, units = m^2
tubecsarea = 2*radius*length
/COM, cross-sectional area ONE cap, units = m^2
capcsarea=((3.1417*caprad*diam)/4)
/COM, cross-sectional area ENTIRE cage, units = m^2
totcsarea=((8*tubecsarea)+(8*capcsarea))
/COM, total number of nodes in the entire octagon (cap+tube)
ntot=32*(n**2+m*n-m-3*n+2)
/COM, Reynolds number, dimensionless
Re = (dens*vel*2*radius)/visc
/COM, coefficient of drag, found from Figure 9.13 based on Re
cd= 1
/COM, total drag force, units = N
drag = 0.5*cd*totcsarea*dens*(vel**2)
/COM, force per node equivalent to the internal pressure...
/COM, ...acting on the cap, units = N
capForce = (pressure*3.1417*radius*radius)
/COM,*******************************************************
/COM,* Define Elements *











/COM,*******************************************************
/COM,
/COM, 1 Membrane Shell Element
/COM, 2 Added Stiffness Membrane Shell Element
/COM, 3 Cap Membrane Shell Element
/COM, 4 Cable Element
ET,1,SHELL41,2
ET,2,SHELL63
ET,3,SHELL63
ET,4,LINK10,,1,0
/COM, Real Constants
R,1,thickness
R,2,thickness
R,3,thickness*10
R,4,0.5.0.3
/COM, Young's Modulus in the hoop direction
MP,EX,1, Ehoop
MP,EX,2, smallmod
MP,EX,3, capmod
MP,EX,4, 9e7
/COM, Young's Modulus in the longitudinal direction
MP,EY,1, Elong
/COM, Major Poisson's Ratio (xy)
MP,PRXY, 1,poisson
MP,PRXY,2,poisson
MP,PRXY,3,poisson
/COM, Shear Modulus, Gxy, G HL
MP,GXY,1, shearmod
/COM,*******************************************************
/COM,* CAGE GEOMETRY *
/COM,*******************************************************
/COM, generate one tube and two 45 degree caps (upper right comer)
k,l,length/2,length/2+length*sin(45),0
k,2,length/2+length*cos(45),length/2,0
circle,l,caprad,,,,8
circle,2,caprad,,,,8
1,4,12
circle,4,radius, 12
circle, 12,radius,4
ADRAG,18,19,20,21,,,17
ADRAG,18,19,20,21,,,2
ADRAG,22,23,24,25,,,9
/COM, mesh one tube (upper right comer)
lsel,s,line,,17
lsel,a,line,,27
lsel,a,line,,28
lcl a line 30
lsel,a,line,,32
lesize,all,,,m-1
TYPE,1
MAT,1
REAL,1
amesh, 1,4,1
/COM, mesh two caps (upper right comer)
lsel,s,line,, 18,25,1
lesize,all,,,n-1










lsel,s,line,,35
1scl a lile 36
sel a line 18
lsel,a,line,,40
lsel,a,line,,43
lsel,a,line,,44
lsel,a,line,,46
lsel,a,line,,48
lesize,all,,,n-1
TYPE,3
MAT,3
REAL,3
amesh,5,12,1
/COM, reflect areas and mesh to create all four covers of octagon
arsym,X,all
arsym,y,all
/COM, generate 2 vertical and 2 horizontal tube areas (sides)
k,,length/2,length/2+length*sin(45)+caprad,0
k,,-length/2,length/2+length*sin(45)+caprad,0
k,,-length/2,-length/2-length*sin(45)-caprad,0
k,,length/2,-length/2-length*sin(45)-caprad,0
k,,length/2+length*cos(45)+caprad,length/2,0
k,,length/2+length*cos(45)+caprad,-length/2,0
k,,-length/2-length*cos(45)-caprad,length/2,0
k,,-length/2-length*cos(45)-caprad,-length/2,0
1,99,100
1,101,102
1,103,104
1,105,106
ADRAG,63,66,68,69,,,146
ADRAG,95,98,100,101,,,147
ADRAG,104,108,111,113,,,148
ADRAG,72,76,79,81,,,149
/COM, mesh four tubes (sides)
lsel,s,line,,51
selaline, 5
lsel,a,line,,55
lsel,a,line,,58
lcl a liic S3
lsel,a,line,,85
lsel,a,line,,87
lsel,a,line,,90
lsel,a,line,,115
lsel,a,line,,117
lsel,a,line,,119
lsel,a,line,,122
lsel,a,line,,146
lsel,a,line,,147
lsel,a,line,,148
lsel,a,line,,149
lsel,a,line,,151
lsel,a,line,,152
lsel,a,line,,154
lsel,a,line,,156
lsel,a,line,,159
lsel,a,line,,160










lsel,a,line,,162
lsel,a,line,,164
lsel,a,line,,167
lsel,a,line,,168
lsel,a,line,,170
lsel,a,line,,172
lsel,a,line,,175
lsel,a,line,,176
lsel,a,line,,178
lsel,a,line,,180
lesize,all,,,m-1
TYPE,1
MAT,1
REAL,1
amesh,49,64,1
/COM, re-generate tube areas (sides) and mesh with artificial stiffness
lsel,all
ADRAG,63,66,68,69,,,146
ADRAG,95,98,100,101,,,147
ADRAG,104,108,111,113,,,148
ADRAG,72,76,79,81,,,149
arsym,X,1,4,1,0,1,0
arsym,y,l,4,1,0,1,0
arsym,X, 13,16,1,0,1,0
arsym,y,13,16,1,0,1,0
TYPE,2
MAT,2
REAL,2
amesh,65,96,1
/COM, merge all nodes, elements, and keypoints
nsel,all
esel,all
nummrg, node, le-5
nummrg, kp
nummrg, elem, le-5
/COM, apply total drag force / total # nodes
nsel,all
f,all,fz,-drag/ntot
/COM, apply force boundary conditions
esc1l i' pc 1
sfe,all,,pres,,pressure
/COM, create cage cables
k,200,0,0,((2.4*length)*(5/16))
k,201,0,0,-((2.4*length)*(5/16))
TYPE,4
MAT,4
REAL,4
csys,1
nsel,s,loc,y,22.49999,22.50001
csys,0
f,all,fy,(capforce*(1-sin(45)))/(4*(n-1))
f,all,fx,(capforce*cos(45))/(4*(n- 1))
csys,1
nsel,r,loc,z,radius
knode,203,all
1,203,200,1











lmesh,26
nsel,s,loc,y,22.49999,22.50001
nsel,r,loc,z,-radius
knode,204,all
1,204,201,1
lmesh,29
csys,1
nsel,s,loc,y,67.49999, 67.50001
csys,0
f,all,fx,(capforce*(1-cos(45)))/(4*(n-1))
f,all,fy,(capforce*sin(45))/(4*(n- 1))
csys,1
nsel,r,loc,z,radius
knode,205,all
1,205,200,1
lmesh,31
nsel,s,loc,y,67.49999, 67.50001
nsel,r,loc,z,-radius
knode,206,all
1,206,201,1
lmesh,33
csys,1
nsel,s,loc,y,112.49999, 112.50001
csys,0
f,all,fx,-(capforce*(1-cos(45)))/(4*(n-1))
f,all,fy,(capforce*sin(45))/(4*(n- 1))
csys,1
nsel,r,loc,z,radius
knode,207,all
1,207,200,1
lmesh,70
nsel,s,loc,y,112.49999, 112.50001
nsel,r,loc,z,-radius
knode,208,all
1,208,201,1
lmesh,74
csys,1
nsel,s,loc,y, 157.49999,157.50001
csys,0
f,all,fy,(capforce*(1-sin(45)))/(4*(n-1))
f,all,fx,-(capforce*cos(45))/(4*(n- 1))
csys,1
nsel,r,loc,z,radius
knode,209,all
1,209,200,1
lmesh,77
nsel,s,loc,y, 157.49999,157.50001
nsel,r,loc,z,-radius
knode,210,all
1,210,201,1
lmesh,80
csys,1
nsel,s,loc,y,-22.49999, -22.50001
csys,0
f,all,fy,-(capforce*(1-sin(45)))/(4*(n-1))
f,all,fx,(capforce*cos(45))/(4*(n- 1))











csys,1
nsel,r,loc,z,radius
knode,211,all
1,211,200,1
Imesh, 102
nsel,s,loc,y,-22.49999,-22.50001
nsel,r,loc,z,-radius
knode,212,all
1,212,201,1
Imesh, 106
csys,1
nsel,s,loc,y,-67.49999,-67.50001
csys,0
f,all,fx,(capforce*(1-sin(45)))/(4*(n- 1))
f,all,fy,-(capforce*cos(45))/(4*(n- 1))
csys,1
nsel,r,loc,z,radius
knode,213,all
1,213,200,1
Imesh, 109
nsel,s,loc,y,-67.49999,-67.50001
nsel,r,loc,z,-radius
knode,214,all
1,214,201,1
Imesh, 112
csys,1
nsel,s,loc,y,-l 12.49999,-112.50001
csys,0
f,all,fx,-(capforce*(1-sin(45)))/(4*(n-1))
f,all,fy,-(capforce*cos(45))/(4*(n-1))
csys,1
nsel,r,loc,z,radius
knode,215,all
1,215,200,1
Imesh,134
nsel,s,loc,y,-l 12.49999,-112.50001
nsel,r,loc,z,-radius
knode,216,all
1,216,201,1
Imesh, 138
csys,1
nsel,s,loc,y,-157.49999,-157.50001
csys,0
f,all,fy,-(capforce*(1-sin(45)))/(4*(n-1))
f,all,fx,-(capforce*cos(45))/(4*(n- 1))
csys,1
nsel,r,loc,z,radius
knode,217,all
1,217,200,1
Imesh, 141
nsel,s,loc,y,-157.49999,-157.50001
nsel,r,loc,z,-radius
knode,218,all
1,218,201,1
Imesh, 144
csys,0







87


nsel,s,loc,x,0
d,all,ux,0
nsel,s,loc,y,O
d,all,uy,0
dk,200,ux,0
dk,200,uy,0
dk,200,uz,0
dk,201,ux,0
dk,201,uy,0
dk,201,uz,0
nsel,all
esel,all
nummrg, node
nummrg, elem
nummrg, kp
fini
/COM, ************************************
/COM, Solution *
/COM, ************************************
/solve
nsel,all
esel,all
autots,on
deltim, 1
solve
postall
cys,0
nsel,s,loc,x,-length/2,length/2
nsel,r,loc,y,0,length*5
esln,s,all
escl I pi 1
plesol,s,x
esel,all
nsel,all
plnsol,u,x
esel,all
nsel,all
plnsol,u,z


Side-Flow

/PREP7
/COM, *******************************************
/COM, define geometric tube parameters *
/COM, *******************************************
/COM, change colors to white background
/RGB,INDEX,100,100,100, 0
/RGB,INDEX, 80, 80, 80,13
/RGB,INDEX, 60, 60, 60,14
/RGB,INDEX, 0, 0, 0,15
/COM, inner diameter, units = inches
ID = 16.142
/COM, material thickness, units = inches
thicknessinch = .1181
/COM, units = m