<%BANNER%>

Phylogenetic Systematics of the Neotropical Electric Fish Sternopygus (Gymnotiformes: Sternopygidae)

Permanent Link: http://ufdc.ufl.edu/UFE0003901/00001

Material Information

Title: Phylogenetic Systematics of the Neotropical Electric Fish Sternopygus (Gymnotiformes: Sternopygidae)
Physical Description: Mixed Material
Copyright Date: 2008

Record Information

Source Institution: University of Florida
Holding Location: University of Florida
Rights Management: All rights reserved by the source institution and holding location.
System ID: UFE0003901:00001

Permanent Link: http://ufdc.ufl.edu/UFE0003901/00001

Material Information

Title: Phylogenetic Systematics of the Neotropical Electric Fish Sternopygus (Gymnotiformes: Sternopygidae)
Physical Description: Mixed Material
Copyright Date: 2008

Record Information

Source Institution: University of Florida
Holding Location: University of Florida
Rights Management: All rights reserved by the source institution and holding location.
System ID: UFE0003901:00001


This item has the following downloads:


Full Text

PAGE 1

PHYLOGENETIC SYSTEMATICS OF THE NEOTROPICAL ELECTRIC FISH Sternopygus (GYMNOTIFORMES: STERNOPYGIDAE) By KEVIN G. HULEN A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2004

PAGE 2

Copyright 2004 by Kevin G. Hulen

PAGE 3

This document is dedicated to my wife and family.

PAGE 4

iv ACKNOWLEDGMENTS I thank J.S. Albert, W.G.R. Crampton, S.J. Walsh, and L.J. Chapman for their assistance on various aspects of my research. I acknowledge the following people for access to specimens and information: S. Schaefer, American Museum of Natural History, New York (AMNH); J. Lundberg and M. Sabaj, Academy of Natural Sciences, Philadelphia (ANSP); J. Armbruster, Auburn University, Department of ZoologyEntomology, Museum (AUM); O. Crimmen and D. Siebert, British Museum of Natural History (BMNH); D. Catania and W. Eschmeyer, California Academy of Science (CAS); L. Page and R. Robins, Florida Museum of Natural History (FLMNH); B. Chernoff and M. Rogers, Field Museum of Natural History (FMNH); L. Rapp Y Daniel, Instituto Nacional de Pesquisas da Amaznia (INPA); A. Machado-Allison, F. Provenzano, and R. Royero, Universidad Central de Venezuela, Museo de Biologia (MBUCV); R. Reis, Museu de Ciencias, Laboratory of Ichthyology (MCP); K. Hartel, Museum of Comparative Zoology (MCZ); P. Buckup and R. Campos-da-Paz, Museu Nacional Setor de Ictiologia (MNRJ); H. Britski, M. de Pinna, J. Lima De Figueiredo, and O. Oyakawa, Museu de Zoologia (MZUSP); E. Ahlander, S. Kullander, and A. Silvergrip, Naturhistoriska Riksmuseet, (NRM); W. Fink and D. Nelson, University of Michigan Museum of Zoology (UMMZ); S. Jewett, L. Parenti and R. Vari, Smithsonian Institution, National Museum of Natural History, (USNM). I gratefully acknowledge Neodat project (NSF/AID DEB grant 90-24797) for collection information.

PAGE 5

v TABLE OF CONTENTS page ACKNOWLEDGMENTS.................................................................................................iv LIST OF TABLES............................................................................................................vii LIST OF FIGURES.........................................................................................................viii ABSTRACT....................................................................................................................... .x CHAPTER 1 INTRODUCTION........................................................................................................1 History of the Classification.........................................................................................2 Nomenclature................................................................................................................4 2 MATERIALS AND METHODS...............................................................................12 Data Acquisition.........................................................................................................12 Measurements of the Body..................................................................................13 Measurements of the Neurocranium...................................................................14 Skeletal and Scale Counts...................................................................................14 Phylogenetic Methods................................................................................................15 3 RESULTS...................................................................................................................23 Descriptive Morphology.............................................................................................23 Pigmentation........................................................................................................23 Body Proportions.................................................................................................23 Neurocranium......................................................................................................24 Oral Jaws.............................................................................................................25 Suspensorium......................................................................................................25 Pectoral Girdle.....................................................................................................26 Axial Skeleton.....................................................................................................27 Interrelationships of Sternopygus ...............................................................................27 Descriptive Biogeography..........................................................................................30 Key to the Adults of Sternopygus Species..................................................................30 4 DISCUSSION.............................................................................................................57

PAGE 6

vi APPENDIX A MATERIALS EXAMINED.......................................................................................59 B Sternopygus BRANCH LIST.....................................................................................68 LIST OF REFERENCES...................................................................................................71 BIOGRAPHICAL SKETCH.............................................................................................76

PAGE 7

vii LIST OF TABLES Table page 1-1. Geographic distributions of nine Sternopygus species...............................................8 1-2. Sternopygus species recognized in recent literature reports.......................................9 3-1. Morphometrics for 11 sternopygid species..............................................................32 3-2. Neurocranium measurements for 10 sternopygid species........................................36 3-3. Meristics for 11 sternopygid species........................................................................37 3-4. Matrix of 66 characters coded from eight Sternopygus species and five outgroup sternopygid taxa.......................................................................................................39 3-5. Clade names and support indices for Sternopygus species......................................41

PAGE 8

viii LIST OF FIGURES Figure page 1-1. Map of South America showing the distribution of Sternopygus ............................10 1-2. Shape differences in nine adult sternopygids...........................................................11 2-1. Allometric growth of relative head length in three species of Sternopygus .............17 2-2. Adult neurocranial outlines for nine sternopygids...................................................18 2-3. Juvenile neurocranial outlines for nine sternopygids...............................................19 2-4. Measurements used for morphometric analysis of sternopygid species..................20 2-5. Articulated suspensorium and pectoral girdle of S. macrurus (MCP 32254)..........21 2-6. Neurocranium of S. macrurus (MCP 32254)...........................................................22 3-1. Neurocranium of S. branco (MCP 32245)...............................................................42 3-2. Neurocranium of S. obtusirostris (MCP T-032)......................................................43 3-3. Neurocranium of S. astrabes (MCP 32235).............................................................44 3-4. Neurocranium of S. xingu (USNM 218830)............................................................45 3-5. Neurocranium of S. aequilabiatus (NRM 27746)....................................................46 3-6. Neurocranium of A. blax (INPA 18451)..................................................................47 3-7. Neurocranium of D. conirostris (MCP uncat.)........................................................48 3-8. Dorsal and ventral views of the premaxilla for seven Sternopygus species.............49 3-9. Maxilla for nine sternopygids..................................................................................50 3-10. Dentary, anguloarticular, and retroarticular for nine sternopygids..........................51 3-11. Quadrate, mesopterygoid, and metapterygoid for nine sternopygids.......................52 3-12. Hyomandibula for nine sternopygids.......................................................................53

PAGE 9

ix 3-13. Opercular series for nine sternopygids.....................................................................54 3-14. Pectoral girdle for nine sternopygids........................................................................55 3-15. Interrelationships of Sternopygus species................................................................56

PAGE 10

x Abstract of Thesis Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Master of Science PHYLOGENETIC SYSTEMATICS OF THE NEOTROPICAL ELECTRIC FISH Sternopygus (GYMNOTIFORMES: STERNOPYGIDAE) By Kevin G. Hulen May 2004 Chair: James S. Albert Major Department: Zoology Interrelationships among 10 extant species of the Neotropical electric fish Sternopygus are inferred from phylogenetic analysis of 66 morphological characters, including features of pigmentation, body proportions, meristics, and osteology. A total of 158 lots containing 299 specimens were examined. The important findings in this study are (1) Sternopygus branco is the most basal taxon and unique among congeners in being restricted to whitewater rivers in the Central Amazon Basin; (2) Sternopygus sp. “cau” from the Rio Caura of Venezuela is sister taxon to ( Sternopygus obtusirostris + Sternopygus astrabes ), (3) Sternopygus castroi is a junior synonym of S. astrabes ; (4) Sternopygus macrurus the most eurytopic gymnotiform species, is sister taxon to ( Sternopygus arenatus + Sternopygus xingu + Sternopygus aequilabiatus species group); and (5) S. arenatus from the Rio Guyaquil and Esmeraldas Basins of Ecuador is the sister taxon to ( S. xingu + S. aequilabiatus species group). A key to the adults of Sternopygus species is provided.

PAGE 11

xi Several features of S. astrabes previously thought to be plesiomorphic are now considered derived, including short body cavity, paedomorphic cranial osteology, and the unique restriction to terra firme streams. Sternopygus species assemblages in the Pacific (trans-Andean) and Atlantic (cis-Andean) slopes of northwestern South America are not monophyletic and do not result exclusively from local or regional radiations. As currently recognized, S. macrurus is the most eurytopic gymnotiform species. Other Sternopygus species have much more restricted geographic and ecological distributions. Perceptions of phylogenetic patterns in Sternopygus are shown to be highly sensitive to taxon sampling.

PAGE 12

1 CHAPTER 1 INTRODUCTION Gymnotiformes, a diverse group of ostariophysan fishes found throughout Neotropical freshwaters, are represented by at least 131 species belonging to 31 genera (Albert 2001, 2003; Albert and Crampton 2003). They are distinguished from other Neotropical fishes by their highly elongate eel-shaped body, anal fin with more than 100 rays (Albert 2001), absence of dorsal and pelvic fins, reduced eyes and central visual pathways, and the ability to generate and detect electric fields used in communication and navigation (Ellis 1913; Fink and Fink 1981; Albert 2001). The family name Sternopygidae was first coined by Cope (1871) to include all taxa recognized as Gymnotiformes. Mago-Leccia (1978) was the first to use the name Sternopygidae in its modern sense. It includes five genera: Sternopygus (Mller and Troschel 1849), Eigenmannia (Jordan and Evermann 1896), Rhabdolichops (Eigenmann and Allen 1942), Archolaemus (Korringa 1970), and Distocyclus (Mago-Leccia 1978). With other gymnotiform fishes, sternopygids share the following unique combination of characters: (1) multiple rows of small, villiform (brush-like) teeth on dentary, (2) relatively large eyes (diameter equal to or greater than distance between nares), (3) large bag-like infraorbital bones with expanded bony arches, (4) anterior nares located outside gape, (5) anal-fin origin at isthmus, (6) absence of urogenital papilla, (7) absence of caudal fin or dorsal organ (Albert 2001), and (8) a weak (less than one volt) tone-type electric organ discharge, characterized by a monophasic hyperpolarization from a negative baseline (Crampton 1998).

PAGE 13

2 Sternopygus is distributed throughout the Neotropics from Panama and the Pacific Slope of Colombia to the Paraguay-Paran basin of Paraguay (Table 1-1, Fig. 1-1). Members of this genus are medium to large size (range 81-520 mm TL) with a straight to rounded, or strongly concave snout (Fig. 1-2). Sternopygus is monophyletic and unambiguously diagnosed by the following unique combination of characters (modified from Albert 2001): (1) large gape (Mago-Leccia 1978), (2) large branchial opening (Mago-Leccia 1978), (3) long evenly-curved maxilla, (4) anterior process of maxilla extends as a narrow hook-like process (Lundberg and Mago-Leccia 1986), (5) dorsal portion of ventral ethmoid elongate (Albert and Fink 1996), (6) posttemporal fossa present between pterotic and epioccipital bones (Lundberg and Mago-Leccia 1986), (7) gill rakers composed of three bony elements, the middle one with 3-10 small teeth (Mago-Leccia 1978), (8) gill rakers not attached to branchial arches (Albert and Fink 1996), (9) gap between parapophyses of second vertebra (Albert 2001), (10) unossified post cleithrum (Albert and Fink 1996), (11) long body cavity, with 18-30 precaudal vertebrae (Albert and Fink 1996), (12) long anal fin with more than 220 rays (Albert and Fink 1996), (13) unbranched anal-fin rays (Fink and Fink 1981), (14) developmental origin of adult electric organ from both hypaxial and epaxial muscles (Unguez and Zakon 1998; Albert 2001), (15) absence of jamming avoidance response (Heiligenberg 1991; Albert 2001), and (16) presence of a medial cephalic fold (Triques 2000), a ridge of ectodermal tissue extending from the ventral limit of the opercular opening anteromedially to the branchial isthmus. History of the Classification Mller and Troschel (1849) established the genus Sternopygus to place species of “Gymnotini” with: “hackle-shaped (long and slender) teeth,” “head laterally

PAGE 14

3 compressed,” and “anterior nostrils on the upper side of the head.” Eigenmann and Ward (1905) later regarded Sternopygus as a junior synonym of Gymnotus based on several ambiguous characters. Sternopygus was reinstated by Ellis (1913) to group Gymnotiformes with a free orbital margin. The type locality of the type species S. macrurus (Bloch and Schneider 1801) is unknown, although the Linnean types were probably described from materials obtained from the Dutch colonies, in either Recife (Brazil) or Surinam (Lnnberg 1896; Wheeler 1991). As currently recognized, S. macrurus is the most widely distributed gymnotiform species, occurring west of the Andes from the Pacific Slope and Magdalena basin of Colombia, throughout the Amazon-Orinoco basins, in the arid northeast of Cear (Brazil), the Atlantic coast of southeast Brazil, and the Paraguay-Paran basin of Paraguay (Table 1-1, Fig. 1-1). Albert and Fink (1996) proposed the only previous hypothesis of phylogenetic interrelationships among Sternopygus recognizing four species (Table 1-2): (1) Sternopygus astrabes (Mago-Leccia 1994) from terra firme streams and rivers of Venezuela and Brazil (Table 1-1, Fig. 1-1), as the most basal taxon, (2) S. macrurus as sister taxon to remaining Sternopygus species, (3) Sternopygus xingu (Albert and Fink 1996) from the Rio Tocantins and Xingu basins of Brazil (Table 1-1, Fig. 1-1), and (4) Sternopygus aequilabiatus (Humboldt and Bonpland 1811) from the Magdalena basin (Table 1-1, Fig. 1-1). Sternopygus arenatus (Eydoux and Souleyet 1841) from the Rio Guyaquil and Esmeraldas basins of Ecuador (Table 1-1, Fig. 1-1), S. dariensis (Meek and Hildebrand 1916) from Panama and the Pacific slope of Colombia (Table 1-1, Fig. 1-1), and S. pejeraton (Schultz 1949) from the Maracaibo basin of Venezuela and Colombia (Table 1-1, Fig. 1-1) were considered junior synonyms of S. aequilabiatus Sternopygus

PAGE 15

4 obtusirostris (Steindachner 1881) from the central Amazon basin, Brazil (Table 1-1, Fig. 1-1) was synonymized with S. macrurus Albert (2001) recognized six species of Sternopygus (Table 1-2), maintained the synonymy of S. macrurus and S. obtusirostris and considered S. dariensis and S. pejeraton junior synonyms of S. aequilabiatus Albert (2003) recognized nine species of Sternopygus (Table 1-2). Nomenclature Nine valid species and one undescribed species of Sternopygus are recognized (Table 1-2), including S. branco (Crampton et al. in press), a new species described from the Amazon River between its confluences with the Rios Japur and Negro and the lower 100 km of the Rio Negro (Table 1-1, Fig. 1-1). The taxonomic status of S. aequilabiatus S. dariensis and S. pejeraton are not fully understood (Mago-Leccia 1994; Albert and Fink 1996; Albert 2001), so referred to here as the S. aequilabiatus species group. Examination of four specimens in the type series of S. castroi (Triques 2000) from the Rio Negro tributary of the Amazon basin shows they are indistinguishable from S. astrabes Triques (2000) diagnosed S. castroi by the simultaneous absence of an intraopercular fold and presence of a humeral spot. In the specimens examined for the present study neither of those features were determined to be diagnostic of S. castroi Like many features of soft surface anatomy, the intraopercular fold is highly variable in appearance within and among Sternopygus species depending on preservation quality and body size. The type specimens of S. castroi do possess a slightly darkened humeral region, but such a distorted pattern of enhanced pigmentation in the humeral region is also observed in specimens of S. astrabes and S. pejeraton The appearance of this slightly darkened patch is distinct from the dark humeral spot identified in this study as a

PAGE 16

5 well-defined black patch with sharp margins. In addition, the type specimens of S. castroi possess the principle diagnostic feature of S. astrabes (Mago-Leccia 1994 ) two broad dark wide vertical bands in adults (visible in Triques 2000, Fig. 1-1). The available meristic data (i.e., anal and pectoral fin rays) from the type specimens of S. castroi are well within the range observed in populations of S. astrabes from throughout the Guyana and Amazon basin. Two paratype specimens of S. astrabes from the Rio Caura in the Venezuelan state of Bolivar were discovered to have different morphometric and meristic values than those from other populations of S. astrabes including the holotype from near Porto Ayacucho in the Venezuelan state of Amazonas. Those two specimens are referred to here as S sp. “cau” an undescribed species. In comparison to S. astrabes they have a larger adult body size (mean 215 vs. 121 mm) and a non-overlapping higher range in pre-caudal vertebrae (mode 24 vs. 19). The Sternopygus species recognized in this phylogenetic review are listed below with synonyms. Square brackets contain modern or corrected spellings for river or place names. Sternopygus macrurus (Bloch and Schneider, 1801) o Gymnotus macrurus Bloch and Schneider, 1801: 522 (Brazil). o Sternopygus marcgravii Reinhardt, 1852: 146 (Rio das Velhas, Brazil). o Carapus sanguinolentus Castelnau, 1855: 85, 94, Pl. 46, Fig. 1. (Ro Urubamba, Upper Ro Ucayali, Peru). o Hildatia brasiliensis Fernndez-Ypez, 1968: no pagination, Fig. (unlabelled) (Sarapo, Piauhy [Piaui], Brazil). Sternopygus aequilabiatus (Humboldt and Bonpland, 1811)

PAGE 17

6 o Gymnotus aequilabiatus Humboldt, in Humboldt and Bonpland, 1811: 79, P. 10, Fig. 1 (Ro Magdalena, Colombia). Sternopygus arenatus Eydoux and Souleyet, 1841: 143, Pl. 8, Fig. 2 (Ro Guayaquil, Ecuador). Sternopygus obtusirostris Steindachner, 1881: 143, Pl. 2, Fig. 3 (Rio Amazonas [Solimes] at Teff [Tef], Lago Alexo [Aleixo] and Manacapouru [Manacapuru], Rio Puty [Poti], Rio Madeira, all from Thayer Expedition). Sternopygus dariensis Meek and Hildebrand, 1916: 309, Pl. 26, Fig. 21 (Marrigante, Ro Tuyra, Panama). Sternopygus pejeraton Schultz, 1949: 60-61, Pl. 1A (Ro Apn, Maracaibo basin, Venezuela). Sternopygus astrabes Mago-Leccia, 1994: 79-80, Pl. 87 (Cao Pozo Azul, Agua Linda, 23 km NE. Puerto Ayacucho, tributary of Ro Orinoco, Amazonas, Venezuela). Sternopygus castroi Triques, 2000: 19-26, Figs. 1-2 (Igarap Jarad, Rio Cueiras, tributary of Rio Negro, Brazil). Sternopygus xingu Albert and Fink, 1996: 85-102, Figs. 7-9 (Rio Batovi, Mato Grosso do Sul, Brazil). Sternopygus branco Crampton, Hulen and Albert, in press (Amazon River between its confluences of the Rio Japur and Rio Negro, Lower Rio Negro, Brazil). Sternopygus sp. "cau", undescribed (Rio Caura, Bolivar, Venezuela). The objective of this study was to present a new hypothesis of interrelationships among species of Sternopygus as inferred from maximum parsimony analysis of 66 characters coded from features or pigmentation, body proportions, meristics, and osteology. Terminal taxa include seven valid and one undescribed Sternopygus species, and five sternopygid outgroups. Taxa used in this phylogenetic analysis are represented by distinct species that are diagnosable by a unique combination of character states found in comparable individuals (Nixon and Wheeler 1990) and that follow a parental pattern of ancestry and descent as defined in the phylogenetic species concept (Cracraft 1989). In

PAGE 18

7 this paper I describe in detail data acquisition and phylogenetic methods used in the phylogenetic analysis, and propose a new hypothesis of interrelationships among species of Sternopygus

PAGE 19

8 Table 1-1. Geographic distributions of nine Sternopygus species. Hydrogeographic regions modified from Albert (2001). X, region of type locality; Y, specimens from other region(s). Abbreviations: EA, Amazon basin east of Purus Arch and tributaries below fall-line of Guyana Shield (2,985,000 km2); GO, Guyana-Orinoco basin, incl. island of Trinidad and Upper Negro drainages above fall line (1,843,000 km2); MA, Atlantic and Pacific slopes of Middle America from the Motagua to Tuyra basins (393,000 km2); NE, coastal drainages of northeast Brazil incl. Parnaba, Piaui, So Francisco, and Jequitinhonha basins (1,357,000 km2); NW, Northwestern South America including the Atrato, Magdalena and Maracaibo basins, and the north slope of Venezuela (471,000 km2); PA, Paraguay-Paran basin including Dulce-Sal and Salado basins of Argentina (3,185,000 km2); PS, Pacific slopes of Colombia and Ecuador, from Baud to Guayaquil basins (200,000 km2); SE, coastal drainages of southeast Brazil and Uruguay from the Doc to Lagoa Mirim basins (628,000 km2); WA, Amazon basin west of Purus Arch, below c. 500 m elevation (3,556,000 km2). Distribution data from Appendix A. Species MA PS NW GO WA EA NE SE PA S. aequilabeatus X S. arenatus X S. astrabes X Y Y S. branco X Y S. dariensis X Y Y S. macrurus Y Y Y Y Y Y Y Y S. obtusirostris X Y S. pejeraton X S. sp. "cau" Y S. xingu X Total 1 3 4 3 4 5 1 1 1

PAGE 20

9 Table 1-2. Sternopygus species recognized in recent literature reports. Albert & Fink Albert Hulen et al. Species 1996 2001 2003 S. aequilabiatus X X X X S. arenatus X X X S. astrabes X X X X S. branco X S. castroi X X S. dariensis X X S. macrurus X X X X S. obtusirostris X X S. pejeraton X X S. xingu X X X X

PAGE 21

10 Figure 1-1. Map of South America showing the distribution of Sternopygus constructed from 158 museum lots containing 299 specimens. S. macrurus (closed triangles), S. branco (closed circles, a = type locality), S. obtusirostris (open squares, b = type locality), S. astrabes (closed diamonds, c = type locality), S sp. “cau” (open diamonds, d), S. xingu (closed squares, e = type locality), S. arenatus (stars, f = type locality), S. dariensis (inverted open triangles, g = type locality), S. pejeraton (open triangles, h = type locality), S. aequilabiatus (inverted closed triangles, i = type locality).

PAGE 22

11 Figure 1-2. Shape differences in nine adult sternopygids. (a) S. branco (MCP 32451), (b) S. sp. “cau” (AMNH 58643), (c) S. obtusirostris (MCP 32262), (d) S. astrabes (MCP 32235), (e) S macrurus (ANSP 172171), (f) S. arenatus (MCZ 48804), (g) S. xingu (INPA 6425), (h) S. dariensis (UF 15451), (i) S. pejeraton (UMMZ 157671). Scale bars equal 10 mm.

PAGE 23

12 CHAPTER 2 MATERIALS AND METHODS Data Acquisition Sexual maturity and sex in Sternopygus can only be assessed through dissection of gonads. In mature specimens, testes are pinkish-white and ovaries are packed with yellow eggs. Immature specimens cannot be sexed reliably. Sexual dimorphism of external morphology has not been observed in Sternopygus A total of 158 lots containing 299 specimens were examined (Appendix A). Morphometric data are only reported for adults. Adult morphology was determined through the examination of bi-plots and neurocranial shape. Using bi-plots, specimens at or near asymptotic value were considered to have attained adult size (Fig. 2-1). Also, through examination of neurocranial shape, adults were distinguished from juveniles based on the convexity of the parasphenoid and frontal bone, with adults achieving straighter margins (Figs. 2-2, 2-3). Since specimens of S. aequilabiatus were not available, S. dariensis and S. pejeraton represent the S. aequilabiatus species group for comparisons of morphology. Morphometric techniques used to measure body proportions were adapted from Albert and Fink (1996). Digital calipers were used to measure point-to-point linear distances from standard landmarks to the nearest 0.1 mm (Fig. 2-4). Small adult specimens were measured using an ocular micrometer and an Olympus SZX12 dissecting microscope. Measurement accuracy and precision were evaluated by comparing the

PAGE 24

13 standard deviation of 10 repeated measures of each morphometric variable. All unilateral measurements were taken on the left side of the fish. Measurements of the Body 1. Length to the end of the anal fin (LEA), measured from the tip of snout (anterior margin of upper jaw at mid-axis of body) to end of anal fin where membrane posterior to last ray contacts the ventral surface of body 2. Anal-fin length (AFL), from origin of anal fin to posterior end of anal fin 3. Caudal appendage (CA), measured as the distance from the last anal-fin ray to the distal end of the caudal filament, is often damaged and not fully regenerated, so was selectively excluded from the analysis 4. Body depth (BD), vertical distance from origin of anal fin to dorsal body border 5. Body width (BW), maximum body width at origin of anal fin 6. Head length (HL), measured from posterior margin of the bony opercle to tip of snout (anterior margin of upper jaw at mid-axis of body) 7. Postorbital head length (PO), from posterior margin of the bony opercle to posterior margin of eye (at edge of the free orbital margin) 8. Preorbital head length (PR), from anterior margin of eye (at edge of the free orbital margin) to tip of snout (anterior margin of upper jaw at mid-axis of body) 9. Eye diameter (ED), horizontal distance between anterior and posterior margin of eye (at edge of free orbital margin) 10. Interorbital length (IO), between dorsomedial margins of eyes (at edge of free orbital margin) 11. Inter-narial distance (NN), from posterior margin of the anterior nares to the anterior margin of the posterior nares 12. Mouth width (MW), horizontal distance of gape at rictus 13. Branchial opening (BO), from posterodorsal to anteroventral extent of opercular fold along anterior margin 14. Head depth (HD), vertical distance at nape to ventral body border with lateral line held horizontal 15. Head width (HW), width at nape 16. Preanal distance (PA), from origin of anal fin to posterior margin of anus

PAGE 25

14 17. Pectoral-fin length (P1), from dorsal border of fin base where it contacts cleithrum to tip of the longest ray Neurocranium measurements and skeletal counts were obtained from radiographs developed on Kodak diagnostic film (Ektascan EM-1) and analyzed with an Olympus SZX12 dissecting microscope. Measurements of the neurocranium were obtained from 71 radiographs. Outlines of neurocranial bones were sketched using an Olympus SZX12 dissecting microscope equipped with a camera lucida and digitized using tpsDig 1.37 (Rohlf 2003). This software exports x-y coordinates from digitized landmarks identified from image files Six landmarks were digitized and distances between all unique pairs calculated. Only three of the possible 15 distances were found to be unique among species of Sternopygus Skeletal and scale counts were obtained from 146 radiographs. Measurements of the Neurocranium 18. Neurocranium length (NL), from ventro-posterior margin of basioccipital to anterior margin of mesethmoid 19. Neurocranium depth (ND), from dorso-posterior margin of supraoccipital to ventro-posterior margin of basioccipital 20. Basioccipital length (BaL), from ventro-posterior margin to ventro-anterior margin of basioccipital Skeletal and Scale Counts 21. Precaudal vertebrae (PCV), which include those of the Weberian apparatus (n=5) and are a good measure of body cavity length (Albert, 2001) 22. Anal-fin rays (AFR) 23. Pectoral-fin rays (P1R), including first pectoral radial 24. Lateral line scales (LLS), from posterior edge of opercle to end of tail 25. Scales above lateral line (SAL), from a point three times head length back from the tip of the snout at the lateral line to dorsomedial margin 26. Scales below lateral line (SBL), from same point as SAL to base of anal-fin pterygiophores

PAGE 26

15 27. Scales over pterygiophores (SOP), from same point as SAL at base of anal-fin pterygiophores to anal fin ventral border Osteological data were obtained from 33 cleared and stained specimens (approx. 23 per species) representing 19 lots of sternopygid species (Appendix A). One large and small adult specimen of each species was cleared and stained using the enzyme technique of Taylor and Van Dyke (1985) with reagent concentrations and reaction times adjusted for each specimen. The neurocranium, suspensorium, and pectoral girdle were removed from all specimens using standard methods for small teleosts (Weitzman 1974; Albert 2001). Outlines of articulated and disarticulated bones were sketched with the aid of an Olympus SZX12 dissecting microscope equipped with a camera lucida. Sketches were traced into FLASH MX (Macromedia) to create line art figures. Bone nomenclature follows Fink and Fink (1981) for the skeletal system (Fig. 2-5) and Patterson (1975) for bony elements of the skull (Fig. 2-6). Additionally, eight adult specimens of a single population of S. macrurus (LEA 203-298 mm) from the state of Apure, Venezuela were cleared and stained for information on population-level osteological variation. Osteology was not noticeably different in these specimens. Since, specimens of S. aequilabiatus were not available and specimens of S. pejeraton were not cleared and stained, S. dariensis represents the S. aequilabiatus species group for comparisons of osteology. Phylogenetic Methods Outgroup taxa selected include at least one species from each of the remaining four sternopygid genera, and one species from the sister family Apteronotidae. MacClade 4.03 (Maddison and Maddison 2000) was used to construct a matrix containing 66 characters, which include published (Albert and Fink 1996; Albert 2001), and new characters. Pigmentation characters apply to juveniles as well as adults in species

PAGE 27

16 paedomorphic for those characters. Osteological and morphometric characters apply to morphologically (as opposed to reproductively) mature specimens. Morphometric and meristic traits were examined as both continuous and discrete (coded) data. Relative mean, median or modal adult trait values were coded into multiple alternative character states. Osteological characters were constructed to represent only those conditions observed. Distocyclus conirostris Archolaemus. blax Rhabdolichops electrogrammus and all Sternopygus taxa were coded from cleared and stained specimens. Remaining outgroup taxa were coded from published illustrations. For all characters, the coding scheme that exhibited maximum congruence with the distributions of other characters in the data matrix was selected. The following options were employed in maximum parsimony (MP) analyses using PAUP 4.0b10 (Swofford 2003). Heuristic searches were used with options set to save all minimum length trees. Tree-bisection-reconnection (TBR) branch swapping was performed with and without the steepest descent option. Bremer decay values (Bremer 1994) were calculated using TreeRot (Sorenson 1999) to generate constraint files for PAUP. Three support indices ( sensu Wilkinson et al 2003) are reported for each internal node including branch lengths as character state changes (steps) of unambiguous optimization. Diagnoses were generated using the export branchlist option in the MacClade software with all characters optimized unambiguously on the single most parsimonious tree topology.

PAGE 28

17 Figure 2-1. Allometric growth of relative head length (HL%) in three species of Sternopygus showing method of estimating size of maturity. Plot of length to end of anal fin (LEA) and head length as a percentage of LEA for three Sternopygus species: (a) S. macrurus (closed triangles) and S. obtusirostris (open squares). (a, b) S. astrabes (closed diamonds). Dashed lines represent point where specimens, at or near asymptotic value of HL%, are considered to have attained adult size.

PAGE 29

18 Figure 2-2. Adult neurocranial outlines for nine sternopygids, superimposed in lateral view. (a) S. branco (n = 9), (b) S. obtusirostris (n = 10), (c) S. astrabes (n = 13), (d) S. macrurus (n = 11), (e) S. arenatus (n = 4), (f) S. xingu (n = 3), (g) S. aequilabiatus (n = 12), (h) S. sp. “cau” (n=2), (i) A. blax (n = 4), (j) D. conirostris (n = 3).

PAGE 30

19 Figure 2-3. Juvenile neurocranial outlines for nine sternopygids, superimposed in lateral view. (a) S. branco (n = 2), (b) S. obtusirostris (n = 4), (c) S. astrabes (n = 9), (d) S. macrurus (n = 10), (e) S. arenatus (n = 2), (f) S. aequilabiatus (n = 3), (g) A. blax (n = 2), (h) D. conirostris (n = 2).

PAGE 31

20 Figure 2-4. Measurements used for morphometric analysis of sternopygid species. Body proportions shown for S. macrurus (ANSP 172171). (a) Body, lateral view, (b) Head, lateral view, (c) Head, dorsal view, (d) Head, ventral view. Scale bars equal 10 mm.

PAGE 32

21 Figure 2-5. Articulated suspensorium and pectoral girdle of S. macrurus (MCP 32254), in lateral view. Cartilage represented by gray shading. (a) Suspensorium, (b) Pectoral girdle. Abbreviations: Max, maxilla; Den, dentary; Ang, anguloarticular; Ret, retroarticular; Mes, mesopterygoid; Met, metapterygoid; Sym, symplectic; Hyo, hyomandibula; Int, interopercle; Pre, preopercle; Sub, subopercle; Ope, opercle; Pos, posttemporal; Sup, supracleithrum; Cle, cleithrum; Cor, coracoid; Sca, scapula; FPr, first pectoral ray; PrR, proximal radials. Scale bar equals 10 mm.

PAGE 33

22 Figure 2-6. Neurocranium of S. macrurus (MCP 32254), in lateral view. Foraminae and other non-ossified areas represented by gray shading. Abbreviations: F. V2-3, foramen of some trigeminal and lateral line nerve rami; F. VII+LL, foramen of facial nerve and lateral line nerves; F. IX-X, foramen of glossopharyngeal and vagus nerves; SOC, supraorbital canal; MEt, mesethmoid; VEt, ventral ethmoid; LEt, lateral ethmoid; Vom, vomer; Fro, frontal; PaS, parasphenoid; OrS, orbitosphenoid; PtS, pterosphenoid; SpO, sphenotic; PrO, prootic; PtO, pterotic; Par, parietal; ExS, extrascapular; EpO, epioccipital; SuO, supraoccipital; ExO, exoccipital; BaO, basioccipital. Scale bar equals 5 mm.

PAGE 34

23 CHAPTER 3 RESULTS Descriptive Morphology Figures 1-2 – 2-4 and Tables 3-1 – 3-3 display body proportions and counts, and Figures 2-6 – 3-14 display osteology. A data matrix was constructed (Table 3-4) from 66 characters representing eight Sternopygus species and five outgroup sternopygid taxa. Characters of pigmentation are listed first, followed by those of body proportions, neurocranium, oral jaws, suspensorium, pectoral girdle, and axial skeleton. Abbreviations are referenced in Materials and Methods. Pigmentation 1. Body color. 0: dark, with saddles or pale lateral stripe. 1: uniformly pale, no saddles or pale lateral stripe. 2. Pale lateral stripe. 0: absent from ontogeny. 1: present in juveniles. 2: present in juveniles and adults. 3. Dark saddles. 0: absent. 1: present in juveniles. 4. Dark humeral region. 0: no dark pigments. 1: well defined black patch, sharp margins. Body Proportions 5. Body depth. 0: slender, mean BD 9-11% LEA. 1: deep, mean BD 12-15% LEA. 6. Head length. 0: short, mean HL 10-13% LEA. 1: long, mean HL 14-15% LEA. 2: very long, mean 16-17% LEA. 7. Head depth. 0: deep, mean HD 76-78% HL. 1: moderate, mean HD 69-75% HL. 2: slender, mean 60-67% HL. 8. Head width. 0: narrow, mean HW 37-41% HL. 1: wide, mean HW 42-47% HL.

PAGE 35

24 9. Preorbital length. 0: snout long, mean PR 36-47% HL. 1: snout short, mean PR 30-35% HL. 10. Snout profile dorsal margin. 0: straight or slightly convex (Fig. 1-2a – f). 1: strongly concave (Fig. 1-2g – i). 11. Interorbital distance. 0: narrow, mean IO 17-24% HL. 1: wide, mean IO 25-28% HL. 12. Internarial distance. 0: short, mean NN 4-13% HL. 1: moderate, mean NN 14-18%HL. 2: long, mean 18-23% HL. 13. Mouth width. 0: narrow, mean MW 11-14% HL. 1: broad, mean MW 16-19% HL. 14. Gape. 0: larger or equal to eye diameter. 1: smaller than eye. 15. Eye diameter. 0: small, mean ED 8-11% HL. 1: large, mean ED 12-16% HL. 16. Orbital margin. 0: covered by epidermis. 1: free. 17. Infraorbitals 3-4. 0: tube shaped. 1: enlarged, bony. 18. Infraorbital canals. 0: small and tubular. 1: large, open cylinders. 19. Branchial opening. 0: wide, mean BO 31-40% HL. 1: narrow, mean BO 16-30% HL. Neurocranium 20. Ethmoid region. 0: well ossified (Figs. 2-6, 3-1 – 3-5, 3-7). 1: less ossified (Fig. 3-6). 21. Ventral ethmoid. 0: short (Figs. 3-6,3-7). 1: long (Figs. 2-6, 3-1 – 3-5). 22. Mesethmoid. 0: gracile in lateral aspect (Figs. 3-6, 3-7). 1: robust (Figs. 2-6, 3-1 – 3-5). 23. Lateral ethmoid cartilage. 0: remote from maxilla. 1: contacting maxilla. 24. Lateral ethmoid ossification. 0: independent ossification (Figs. 2-6, 3-1 – 3-5. 1: co-ossified with frontal (Figs. 3-6, 3-7). 25. Lateral ethmoid anterior process. 0: short, not extending to dorsal margin of vomer (Fig. 3-6). 1: long, extending laterally to dorsal margin of vomer (Figs. 2-6, 3-1 – 3-5, 3-7). 26. Vomer. 0: short, broad, length less than five times width at midlength. 1: long, narrow, length more than five times width.

PAGE 36

25 27. Antorbital process of frontal. 0: absent. 1: present (Figs. 2-6, 3-1 – 3-7). 28. Frontal margin. 0: convex dorsal to lateral ethmoid (Figs. 2-6, 3-1 – 3-3). 1: straight dorsal to lateral ethmoid (Figs. 3-4 – 3-7). 29. Sphenotic spine. 0: absent (Figs. 2-6, 3-1 – 3-5). 1: present (Figs. 3-6, 3-7). 30. Neurocranium depth. 0: deep, mean ND 35-50% NL. 1: moderate, mean ND 30-35% NL. 2: slender, mean ND 25-30% NL. 31. Parasphenoid shape anterior portion. 0: ventral margin straight in adults. 1: ventral margin convexity retained in adults. 32. Parasphenoid width at prootic foramen. 0: narrower than PaS at PtS-OrS junction. 1: as wide or broader than PaS at PtS-OrS junction. 33. Basioccipital length. 0: Short, mean BaL 15-18% NL. 1: Long, mean BaL 18.1-22% HL. Oral jaws 34. Premaxillary teeth. 0: conical, arranged in 1-2 regular rows. 1: villiform, arranged in multiple irregular rows (Fig. 3-8a – g). 35. Premaxilla shape. 0: robust, rectangular in dorsal view (Fig. 3-8f). 1: gracile, triangular in dorsal view (Fig. 3-8a – e, g). 36. Maxilla width. 0: midlength as wide as broadest area near palatine articulation (Fig. 3-9a – e, h). 1: midlength half width of area near palatine articulation (Fig. 3-9f, g, i). 37. Meckel's cartilage ossification. 0: cartilaginous in adults. 1: dorsal margin ossified completely in adults. 38. Dentary teeth. 0: present (Fig. 3-10a – h). 1: absent (Fig. 3-10i). 39. Retroarticular anterior process. 0: present (Fig. 3-10a – c). 1: absent (Fig. 3-10d – i). 40. Anguloarticular ascending process. 0: elongate, extends to or beyond dorsal margin of anguloarticular (Fig. 3-10a – g). 1: truncate, does not extend beyond dorsal margin of anguloarticular (Fig. 3-10h, i). Suspensorium 41. Mesopterygoid process. 0: thin, not contacting neurocranium (Fig. 3-11i). 1: robust strut, contacting neurocranium (Fig. 3-11a – h). 42. Mesopterygoid dentition. 0: absent. 1: present.

PAGE 37

26 43. Hyomandibular trigeminal nerve. 0: preopercular-mandibular ramus of trigeminal nerve emerging from descending limb of hyomandibula (Fig. 3-12h, i). 1: preopercular-mandibular ramus emerging from anterior shelf of hyomandibula (Fig. 3-12a – g). 44. Hyomandibular lateral ridge. 0: long, extending close to ventral margin of hyomandibula (Fig. 3-12a, b, d – i). 1: short, remote from ventral margin of hyomandibula (Fig. 3-12c). 45. Opercle posterior margin. 0: convex, evenly rounded (Fig. 3-13d, e, h, i). 1: straight, incompletely ossified (Fig. 3-13a – c, f, g). 46. Opercle, dorsal margin. 0: long, 76-90% distance of anterio-ventral margin (Fig. 3-13e – i). 1: moderate, 70-75% distance of anterio-ventral margin (Fig. 3-13a, d). 2: short, 67-79% distance of anterio-ventral margin (Fig. 3-13b, c). 47. Interopercle ventral margin. 0: entire (Fig. 3-13a – c, e – i). 1: convex (3-13d). 48. Gill rakers. 0: simple, attached to gill arches. 1: complex (see text), separated by unmineralized tissue. Pectoral Girdle 49. Scapula foramen. 0: scapula small, foramen as notch in coracoid (Fig. 3-14a – g). 1: scapula large, with large foramen included (Fig. 3-14h, i). 50. Supracleithrum. 0: long and slender (Fig. 3-14b – h). 1: short and robust (Fig. 3-14a, i). 51. Posttemporal. 0: fused with supracleithrum (Fig. 3-14h, i). 1: not fused with supracleithrum (Fig. 3-14a – g). 52. Posttemporal length. 0: short, less than 50% length dorsoposterior margin of cleithrum (Fig. 3-14a – f, h, i). 1: long, greater than 75% length dorsoposterior margin of cleithrum (Fig. 3-14g). 53. Posttemporal and supracleithral canal bones. 0: small, canal and non-canal portions equal width (Fig. 3-14a, c – g). 1: expanded, canal portions wider than non-canal (Fig. 3-14b, h, i). 54. Pectoral distal radials. 0: 1-4 independent (Fig. 3-14a – c). 1: 3+4 fused (Fig. 3-14d – i). 55. Pectoral fin. 0: long, mean P1 61-101% HL. 1: short, mean P1 51-60% HL. 2: very short, mean P1 40-50% HL. 56. Pectoral fin rays. 0: many, mode 17-19. 1: few, mode 13-16.

PAGE 38

27 Axial Skeleton 57. Intermuscular bones. 0: slightly branched. 1: highly branched. 58. Dorsal myorhabdoid bones. 0: loosely packed and lightly ossified. 1: densely packed and heavily ossified. 59. Rib length. 0: 70-75% depth of body cavity. 1: 80-100% depth of body cavity. 60. Rib count. 0: mode 13-20. 1: mode 8-12. 2: mode 6-7. 61. Postcleithrae. 0: three. 1: one or two. 2: zero. 62. Body cavity. 0: moderately long, mode PCV 18-19. 1: long, mode PCV 21-29. 2: short, mode PCV 11-15. 63. Anterior vertebrae. 0: compressed. 1: not compressed (see text). 64. Anal-fin rays. 0: few, median AFR 200-240. 1: many, median AFR 250-320. 65. Anal-fin ray structure. 0: all or most rays branched about half way from base to tip. 1: all rays entirely unbranched from base to tip. 66. Caudal rod. 0: regenerates as unossified cartilage. 1: regenerates as ossified bar. Interrelationships of Sternopygus Interrelationships of Sternopygus inferred in this study are depicted in Figure 3-15, with Branch Lengths (BL) and Bremer Decay Indices (BDI) for all nodes provided in Table 3-5. Diagnoses for seven clades are provided in Appendix B. Sternopygus is diagnosed in having: (1) gape larger and sometimes equal to eye diameter (char. 14), (2) enlarged bony infraorbitals 3-4 (char. 17), (3) robust mesethmoid (char. 22), (4) long ventral ethmoid (char. 21), (5) lateral ethmoid cartilage contacting maxilla (char. 23), (6) anterior process of lateral ethmoid long, extending laterally to and sometimes beyond the dorsal margin of the vomer (char. 25), (7) neurocranium depth moderate, mean 30.1-34.9% NL (char. 30), (8) triangular premaxilla (char. 35), (9) dorsal margin of Meckel's cartilage completely ossified to anguloarticular (char. 37), (10) robust mesopterygoid process contacting the neurocranium (char. 41), (11) preopercular-

PAGE 39

28 mandibular ramus of trigeminal nerve emerging anterior to the hyomandibular shelf (char. 43), (12) length of opercle dorsal margin moderate, as measured point-to-point, 7075% distance of anterio-ventral margin (char. 46), (13) gill rakers separated from gill arches by unmineralized tissue, not attached to ceratobranchials and epibranchials of all four branchial arches, hypobranchials of first and second arches, and the pharyngobranchials of fourth arch (char. 48). Each raker formed from three separate ossifications, two large elongate lateral ossifications, and a smaller (ovoid) central ossification, (14) posttemporal and supracleithrum not fused (char. 51), (15) pectoral fin length short, mean 51-60% HL (char. 55), (16) few pectoral fin rays, mode 13-16 (char. 56), (17) anterior vertebrae not compressed (char. 63), and (18) anal-fin rays unbranched from base to tip (char. 65) (Appendix B: Clade A; Fig. 3-15). Sternopygus branco is sister taxon to all other species of Sternopygus (Appendix B; Fig. 3-15) and is distinct in having: (1) a uniformly pale body with no dark saddles or pale lateral stripe (char. 1), (2) a slender head, mean HD 60-67% HL (char. 7), and (3) a short and robust supracleithrum (char. 50). Sternopygus sp. “cau” is sister taxon to the clade containing S. astrabes and S. obtusirostris (Appendix B; Fig. 3-15) sharing with them the presence of dark saddles as juveniles (char. 3) and a large eye, mean ED 12-16% HL (char. 15). Sternopygus sp. “cau” is further distinguished by the presence of a well-defined dark humeral spot with sharp margins (char. 4). Sternopygus obtusirostris and S. astrabes are sister taxa (Appendix B: Clade D; Fig. 3-15) sharing the following characters: (1) short head, mean HL 10-13% LEA (char. 6), (2) moderate head depth, mean HD 69-75% HL (char. 7), (3) internarial distance long,

PAGE 40

29 mean NN 19-23% HL (char. 12), (4) broad mouth, mean MW 16-19% HL (Char. 13), and (5) short pectoral fin, mean P1 51-60% HL (char. 55). Sternopygus obtusirostris is distinguished from S. astrabes by not having a pale lateral stripe as a juvenile (char. 2). Sternopygus astrabes is distinguished from other Sternopygus species in having: (1) a moderately long body cavity, mode PCV 18-19 (char. 62), (2) short hyomandibular lateral ridge not descending to ventral margin of hyomandibula (char. 44), and (3) many anal-fin rays, median AFR 250-320 (char. 64). Sternopygus macrurus is the sister taxon to the clade containing the remaining species of Sternopygus (Appendix B; Fig. 3-15), sharing with them the following characters: (1) deep body, mean BD 12-15% LEA (char. 5), (2) long head, mean HL 1415% LEA (char. 6), (3) pectoral distal radials 3 and 4 fused (char. 54), and (4) very short pectoral fin, mean P1 40-50% HL (char. 55). Sternopygus macrurus is distinct in having: (1) a well-defined dark humeral spot with sharp margins (char. 4), (2) broad mouth, MW 16-19% HL (char. 13), and (3) ventral margin of interopercle convex (char. 47). Sternopygus arenatus is the sister taxon to the clade containing S. xingu and the S. aequilabiatus species group (Appendix B; Fig. 3-15), sharing with them the following characters: (1) long narrow vomer, length more than five times width (char. 26), (2) frontal margin straight at the point dorsal to lateral ethmoid (char. 28), and (3) dorsal margin of opercle long, 76-90% distance of anterio-ventral margin (char. 46). Sternopygus arenatus is distinct in having a long internarial distance, mean NN 18.1-23% HL (char. 12), and few anal-fin rays, median AFR 200-240 (char. 64). Sternopygus xingu and the S. aequilabiatus species group are sister taxa (Appendix B: Clade G; Fig. 3-15) sharing the following characters: (1) dorsal margin of the snout

PAGE 41

30 profile strongly concave (char. 10), (2) narrow interorbital distance, IO 17-24% HL (char. 11). (3) Moderate neurocranium depth, ND 30-35% NL (char. 30), (4) width of parasphenoid at a vertical with the anterior margin of the prootic foramen as broad or broader than width of parasphenoid at vertical with the pterosphenoid – orbitosphenoid junction (char. 32), and (5) width of maxilla at its midlength narrow, less than or equal to half the width of the maxillary at area near palatine articulation (char. 36). Sternopygus xingu is distinct in having: (1) a well-defined dark humeral spot with sharp margins (char. 4), (2) very long head, HL 16-17% LEA (char. 6), (3) broad mouth, MW 16-19% HL (char. 13), (4) lateral ethmoid co-ossified with frontal (char. 24), and (5) premaxilla rectangular and robust from dorsal view (char. 35). The S. aequilabiatus species group (incl. S. dariensis S. pejeraton S. aequilabiatus ) is distinguished in having: (1) a slender head, HD 60-70% HL (char. 7), (2) narrow head, HW 37-41% HL (char. 8), and (3) long post-temporal, greater than 75% dorso-posterior margin of cleithrum (char. 52). Descriptive Biogeography There are at least three independent trans-Andean Sternopygus clades each with a cis-Andean sister taxon: (1) S. arenatus, from the Rio Guayaquil of Ecuador, (2) the S. aequilabiatus species group with three allopatric populations (or species), including, S. aequilabiatus from the Magdalena basin, S. dariensis from the Tuyra, Atrato, and Baudo basins, and S pejeraton from the Maracaibo basin, and (3) S. macrurus from the Baudo and Magdalena basins (Fig. 3-15). The S. aequilabiatus species group and S. macrurus exhibit broadly sympatric geographic distributions. Key to the Adults of Sternopygus Species 1a. Dorsal margin of snout profile straight or convex ……..……………….…………… 2 1b. Dorsal margin of snout profile strongly concave ………………………….………… 6

PAGE 42

31 2a. Body uniformly colored with pigmentation; pale lateral stripe along the base of the anal fin pterygiophores; head depth (HD) 69-79% head length (HL) ..…………………...3 2b. Body color uniformly pale with no pigmentation or pale lateral stripe; HD 58-68% HL ………………………………………………………………………………. S. branco 3a. Eye diameter large, 12-16% HL; pectoral fin length (P1) 50-60% HL .….…………. 4 3b. Eye diameter small, 7-15% HL; P1 40-50% HL ……………...……………..……… 5 4a. Two to four dark vertical saddles on body of adults and juveniles; caudal appendage (CA) 23-43% length to end of anal fin (LEA); HL 12-15% LEA …………….. S. astrabes 4b. Dark vertical bands absent in adults only (LEA > 140 mm); CA 12-25% LEA; HL 10-13% LEA ……………………………………………….…….……… S. obtusirostris 5a. Distinct dark humeral spot; dorsal margin of snout profile slightly convex; branchial opening large (BO) 25-50% HL ………………………….….……….………. S. macrurus 5b. Dark humeral spot absent; dorsal margin of snout profile straight; BO small, 16-17% HL …………….……………………………………………………………….. S. arenatus 6a. Distinct dark humeral spot; P1 37-43% HL; HL 17-20% LEA; BO 35-51% HL ……………….……………………………………………..……………………... S. xingu 6b. Dark humeral spot absent or very diffuse; P1 44-53% HL; HL 13-16% LEA; BO 2028% HL …….……………………………..………………. S. aequilabiatus species group

PAGE 43

32 Table 3-1. Morphometrics for 11 sternopygid species. Abbreviations as follows: length to the end of the anal fin (LEA); anal-fin length (AFL); caudal appendage (CA); body depth (BD); body width (BW); head length (HL); postorbital head length (PO); preorbital head length (PR); eye diameter (ED); interorbital length (IO); inter-narial distance (NN); mouth width (MW); branchial opening (BO); head depth (HD); head width (HW); preanal distance (PA); pectoral-fin length (P1). All measurements expressed as a percent of head length, except HL%, BD %, BW %, and CA %, which are reported as a percent of LEA. LEA AFL CA % Species n range Mean n range mean n range mean A. blax 4 170 373 231 4 140 304 188 3 27.2 35.3 30.8 A. bonaparti 6 152 300 216 6 129 264 190 4 8.0 15.2 11.3 D. conirostris 5 150 224 197 4 139 195 173 3 31.4 44.7 37.5 S. aequilabiatus 16 160 390 228 16 134 335 189 12 11.0 29.0 17.8 S. arenatus 6 195 455 329 6 153 380 261 4 10.9 23.1 17.1 S. astrabes 22 81 177 121 22 64 148 102 16 23.4 43.2 34.0 S. branco 13 171 353 265 13 141 309 231 13 24.4 41.3 32.9 S. macrurus 76 140 455 265 66 114 405 224 47 10.6 28.7 18.5 S. obtusirostris 16 167 520 291 16 120 465 252 10 9.0 25.1 15.7 S. sp. "cau" 2 200 230 215 2 171 202 187 2 14.3 33.5 23.9 S. xingu 5 162 446 283 5 134 371 236 3 13.3 27.2 21.0 Total 171 160 117

PAGE 44

33 Table 3-1. Continued. BD % BW % HL % Species n range mean n range mean n range mean A. blax 4 10.3 12.2 11.2 4 5.0 7.3 6.3 4 14.5 16.7 15.5 A. bonaparti 6 10.1 12.3 10.9 6 4.4 5.4 5.0 6 12.6 14.7 13.9 D. conirostris 4 9.8 11.9 10.8 4 4.2 5.4 4.9 4 11.6 12.3 11.9 S. aequilabiatus 16 10.5 13.8 12.1 16 5.3 6.3 5.9 16 13.4 16.1 15.1 S. arenatus 2 12.4 13.3 12.9 2 5.8 5.9 5.9 6 13.2 16.8 14.6 S. astrabes 22 10.4 12.4 11.5 22 4.6 6.6 5.5 22 11.7 14.7 13.3 S. branco 13 8.3 10.9 9.3 13 4.2 6.4 4.5 13 11.4 14.3 12.6 S. macrurus 66 10.3 15.2 12.8 66 4.8 8.3 6.1 66 12.5 16.8 14.3 S. obtusirostris 16 9.5 12.2 10.6 16 3.9 6.0 4.7 16 10.4 12.7 11.7 S. sp. "cau" 2 9.4 9.8 9.6 2 4.4 4.8 4.6 2 10.3 11.3 10.8 S. xingu 5 13.4 16.1 14.4 5 6.2 8.2 6.8 5 16.2 19.6 17.2 Total 156 156 160 Table 3-1. Continued. HL PO % PR % Species n range mean n range mean n range mean A. blax 4 26.6 62.2 36.4 4 39.4 42.1 40.6 4 44.9 48.2 47.0 A. bonaparti 6 22.3 42.3 29.9 6 54.9 60.5 57.9 6 36.3 39.5 37.9 D. conirostris 4 17.4 26.5 23.2 4 56.8 58.6 57.3 4 32.8 36.2 33.7 S. aequilabiatus 16 23.5 55.8 34.2 16 55.9 60.0 58.7 16 30.6 36.0 33.1 S. arenatus 6 32.7 62.2 47.5 6 56.3 59.1 57.6 6 32.7 37.5 35.2 S. astrabes 22 11.2 23.4 16.0 22 48.2 59.5 54.2 22 28.9 35.5 32.7 S. branco 13 24.4 41.3 32.9 13 50.8 54.9 53.0 13 36.1 40.6 38.4 S. macrurus 66 18.2 63.0 37.8 66 51.6 60.8 56.5 66 30.8 39.3 36.1 S. obtusirostris 16 20.1 54.2 33.6 16 53.4 61.2 57.3 16 31.0 35.9 34.0 S. sp. "cau 2 22.5 23.8 23.2 2 52.9 53.8 53.3 2 35.1 35.3 35.2 S. xingu 5 26.3 75.6 49.3 5 54.7 59.3 56.7 5 31.9 33.9 33.0 Total 160 160 160

PAGE 45

34 Table 3-1. Continued. ED % IO % NN % Species n range mean n range mean n range mean A. blax 4 13.9 16.8 15.6 4 15.3 18.5 16.7 4 8.6 11.3 10.2 A. bonaparti 6 6.6 10.8 8.0 6 15.1 18.7 17.3 6 11.9 14.7 13.0 D. conirostris 4 9.1 12.1 10.2 4 21.1 23.8 22.1 4 3.4 4.0 3.7 S. aequilabiatus 16 6.8 9.8 8.6 16 14.4 21.7 17.5 16 10.2 14.4 12.2 S. arenatus 2 7.4 9.8 8.6 2 22.4 33.0 27.7 2 22.0 22.9 22.5 S. astrabes 22 13.8 19.5 15.5 22 23.8 30.4 26.1 17 14.5 19.8 17.3 S. branco 13 9.8 13.5 10.7 13 22.2 25.7 24.2 13 14.9 17.4 16.0 S. macrurus 66 7.5 14.6 10.3 66 17.6 31.7 25.5 66 8.3 17.9 13.9 S. obtusirostris 16 10.1 13.5 11.9 16 22.7 28.3 24.9 16 13.5 20.0 16.9 S. sp. "cau 2 12.0 12.2 12.1 2 24.8 24.9 24.8 2 14.3 18.7 16.5 S. xingu 5 6.7 12.2 9.4 5 16.7 22.4 19.2 5 11.4 15.6 13.3 Total 156 156 151 Table 3-1. Continued. MW % BO % HD % Species n range mean n range mean n range mean A. blax 4 8.6 12.4 10.8 4 17.1 30.9 22.5 4 56.3 62.0 59.8 A. bonaparti 6 13.1 21.3 16.5 6 19.7 24.0 21.7 6 73.1 79.4 75.5 D. conirostris 4 14.7 17.2 16.5 4 22.4 37.7 30.4 4 74.3 83.1 78.0 S. aequilabiatus 16 11.1 16.8 13.2 16 20.0 27.8 23.8 16 59.5 67.7 62.0 S. arenatus 2 11.0 13.8 12.4 2 15.7 16.5 16.1 2 68.8 73.4 71.1 S. astrabes 22 12.8 20.9 15.5 22 28.9 48.0 37.1 22 66.4 77.4 72.3 S. branco 13 12.3 13.9 12.9 13 25.9 31.1 28.2 13 57.8 68.4 64.7 S. macrurus 66 13.4 21.4 16.8 66 25.4 50.0 31.3 66 64.8 80.2 71.3 S. obtusirostris 16 14.4 17.6 15.8 16 25.4 45.3 36.9 16 68.6 79.5 73.8 S. sp. "cau 2 13.3 13.9 13.6 2 28.0 36.6 32.3 2 68.4 70.2 69.3 S. xingu 5 17.1 19.8 18.5 5 35.2 51.4 42.1 5 65.3 75.7 69.1 Total 156 156 156

PAGE 46

35 Table 3-1. Continued. HW % PA % P1 % Species n range mean n range mean n range mean A. blax 4 37.8 44.7 40.1 4 37.2 57.9 51.4 4 66.7 79.9 71.7 A. bonaparti 6 34.4 39.5 37.3 6 9.6 33.6 22.7 6 91.9 107.4 100.7 D. conirostris 4 42.7 45.4 43.9 4 29.3 59.8 48.4 4 78.9 87.7 83.1 S. aequilabiatus 16 35.9 44.6 38.8 16 40.1 56.3 47.0 16 43.7 53.3 48.8 S. arenatus 2 42.8 47.1 44.9 2 61.6 67.0 64.3 6 40.0 56.0 45.0 S. astrabes 22 37.5 51.9 46.4 22 14.3 52.6 39.4 22 43.6 67.8 58.0 S. branco 13 36.1 43.4 39.8 13 30.3 38.2 33.8 13 50.0 57.2 53.2 S. macrurus 66 33.5 59.4 46.7 66 32.7 65.1 47.6 64 37.8 64.7 48.6 S. obtusirostris 16 36.7 50.7 42.9 16 29.0 50.9 37.1 16 45.8 60.5 52.3 S. sp. "cau" 2 44.9 45.0 44.9 2 36.9 41.2 39.0 2 52.4 57.1 54.8 S. xingu 5 38.8 47.3 43.4 5 32.7 42.4 36.6 5 36.8 43.0 39.7 Total 156 156 158

PAGE 47

36 Table 3-2. Neurocranium measurements for 10 sternopygid species. Abbreviations as follows: neurocranium length (NL); neurocranium depth (ND); basioccipital length (BaL). Neurocranium depth and basioccipital length are expressed as a percent of neurocranium length. NL ND % BaL % Species n range mean range mean range mean A. blax 4 16.2 16.5 16.3 25.8 29.2 27.6 12.7 18.4 16.3 D. conirostris 3 16.5 16.6 16.6 27.6 29.9 28.6 19.4 23.8 21.6 S. aequilabiatus 12 16.0 16.8 16.5 29.9 35.1 32.8 12.7 18.9 15.6 S. arenatus 4 16.1 16.6 16.4 31.6 38.0 35.5 10.8 22.8 17.9 S. astrabes 13 16.0 16.8 16.6 33.5 39.1 35.7 16.3 23.6 19.5 S. branco 9 16.2 16.6 16.4 31.7 34.1 33.0 14.2 18.7 16.2 S. macrurus 11 16.3 16.9 16.5 32.4 38.3 36.4 13.9 18.2 15.8 S. obtusirostris 10 16.0 16.8 16.4 35.5 39.1 37.2 16.2 24.0 19.1 S. sp. "cau" 2 16.3 16.7 16.5 36.0 36.2 36.1 18.4 19.9 19.1 S. xingu 3 16.3 16.6 16.5 28.9 34.2 31.9 16.3 18.7 17.2 Total 71

PAGE 48

37 Table 3-3. Meristics for 11 sternopygid species. Abbreviations as follows: precaudal vertebrae (PCV); anal-fin rays (AFR); pectoral-fin rays (P1R); lateral line scales (LLS); scales above lateral line (SAL); scales below lateral line (SBL); scales over pterygiophores (SOP). PCV P1R AFR Species n Range mode n range mode n range med. A. blax 6 14 15 15 8 17 19 19 3 175 210 204 A. bonapartii NA NA NA NA 6 16 18 17 NA NA NA NA D. conirostris 5 14 14 14 5 16 18 17 NA NA NA NA S. aequilabiatus 16 23 25 24 20 14 17 17 16 228 310 284 S. arenatus 6 21 24 21 9 15 17 15 1 215 215 215 S. astrabes 29 18 19 19 23 15 17 16 19 170 298 200 S. branco 12 25 27 26 13 12 15 13 12 250 340 309 S. macrurus 52 24 28 26 95 13 17 15 44 195 300 256 S. obtusirostris 14 22 26 25 20 15 17 15 14 195 312 285 S. sp. "cau" 2 24 24 24 2 15 15 15 2 288 295 292 S. xingu 4 28 29 29 6 12 15 12 4 292 321 312 Total 146 207 115 Table 3-3. Continued. LLS SAL SBL Species n Range med. n range med. n range med. A. blax 4 116 156 137 4 10 15 14 4 5 9 7 A. bonapartii NA NA NA NA 5 6 7 6 5 12 14 13 D. conirostris NA NA NA NA 5 11 17 14 5 20 22 22 S. aequilabiatus 18 200 305 236 18 12 24 17 18 7 13 9 S. arenatus 5 179 245 221 6 15 16 16 6 7 9 8 S. astrabes 17 185 235 224 19 11 18 15 19 9 14 12 S. branco 10 280 340 299 10 17 26 19 10 13 17 16 S. macrurus 45 115 340 222 55 12 22 16 55 5 20 9 S. obtusirostris 18 190 280 240 18 15 21 18 18 7 13 11 S. sp. "cau" 2 285 316 301 2 17 19 18 2 10 10 10 S. xingu 3 155 205 192 3 14 16 15 3 6 8 7 Total 122 145 145

PAGE 49

38 Table 3-3. Continued. SOP Species n Range med. A. blax 4 8 15 11 A. bonapartii 5 4 6 4 D. conirostris 5 9 12 10 S. aequilabiatus 18 10 16 13 S. arenatus 6 15 16 16 S. astrabes 19 10 16 14 S. branco 10 13 20 17 S. macrurus 55 9 17 13 S. obtusirostris 18 14 19 17 S. sp. "cau" 2 14 16 15 S. xingu 3 14 19 18 Total 145

PAGE 50

39 Table 3-4. Matrix of 66 characters coded from eight Sternopygus species and five outgroup sternopygid taxa. Missing data indicated by “?.” Character descriptions are referenced in Descriptive Morphology. 1-10 11-20 21-30 31-40 41-50 51-60 61-66 Parapteronotus hasemani 0000000000 0101000010 0000000002 00100000?0 0000000000 0000000000 000100 Archolaemus blax 0000012000 0111110110 0001011112 1001000001 1100000010 0010001011 120001 Distocyclus conirostris 1000000111 0001000111 0000101112 0011010101 1000000011 0011001012 120101 Eigenmannia virescens 0000?00110 ???1000111 0000001010 0011000000 01?0010010 0011??1012 120001 Rhabdolichops electrogrammus 0000000110 ???1001111 0000001010 0011000001 1110110010 0001?11112 120101 Sternopygus branco 1000002000 0100011110 1110101001 0001101010 1110110101 1010110000 211111 Sternopygus sp."cau" 0211001110 110011??0? ???????0?0 ??1??????? ?????????? ????11??00 ?11111 Sternopygus obtusirostris 0010001110 1210111100 1110101000 1011101010 1110120100 1000110000 211111 Sternopygus astrabes 0210001110 1210111100 1110101000 1011101010 1111120100 1000110000 201011 Sternopygus macrurus 0201111100 1110011100 1110101000 0001101000 1110011100 1001210000 211111 Sternopygus arenatus 0200111110 1200011110 1110111100 0001101000 1110000100 1001210000 211011 Sternopygus xingu 0201121111 0110011100 1111111101 0101011000 1110100100 1001210000 211111 Sternopygus aequilabiatus group 0200112011 0100011110 1110111101 0101111000 1110100100 1101210000 211111

PAGE 51

40 Table 3-4. Continued. Eigenmannia virescens also coded from Eigenmannia sp., MBUCV 7509 (Mago-Leccia, 1978, Figs. 10-18). Parapteronotus hasemani coded from mature females and nonmature males. Parapteronotus hasemani : head length (HL%), A. bonaparti = 0; head width (HW%) juveniles and adults = 0; also A. bonaparti juveniles and adults; gape juveniles and adults = 0; also A. bonaparti juveniles and adults; vomer with no ascending process; basioccipital length (BaL) juveniles = 0; also A. bonaparti juveniles and adults. Rhabdolichops electrogrammus : head length (HL%), R. sp. 'nig' = 0; opercle ratio of long axes, R sp. “nig”'. Sternopygus macrurus also coded from MBUCV 7515 (Mago-Leccia, 1978, Figs. 24-28). Sternopygus xingu hyomandibular lateral ridge UMMZ 228961, c. 250 mm.

PAGE 52

41 Table 3-5. Clade names and support indices for Sternopygus species. Clade names from Fig. 3-15. Tree topology strict consensus of 70 EPT, each length=387 (CI, RC, RI). Steps calculated for polytomies assuming hard-polytomy option. BL, Branch length; BDI, Bremer Decay Index. Clade Name BL BDI A Sternopygus 17 15 B unnamed clade 4 2 C unnamed clade 2 2 D S. obtusirostris group 2 2 E unnamed clade 4 3 F unnamed clade 3 2 G S. aequilabiatus group 5 4

PAGE 53

42 Figure 3-1. Neurocranium of S. branco (MCP 32245), in lateral view. Scale bar equals 5 mm.

PAGE 54

43 Figure 3-2. Neurocranium of S. obtusirostris (MCP T-032), in lateral view. Scale bar equals 5 mm.

PAGE 55

44 Figure 3-3. Neurocranium of S. astrabes (MCP 32235), in lateral view. Scale bar equals 5 mm.

PAGE 56

45 Figure 3-4. Neurocranium of S. xingu (USNM 218830), in lateral view. Scale bar equals 5 mm.

PAGE 57

46 Figure 3-5. Neurocranium of S. aequilabiatus (NRM 27746), in lateral view. Scale bar equals 5 mm.

PAGE 58

47 Figure 3-6. Neurocranium of A. blax (INPA 18451), in lateral view. Scale bar equals 5 mm.

PAGE 59

48 Figure 3-7. Neurocranium of D. conirostris (MCP uncat.), in lateral view. Scale bar equals 5 mm.

PAGE 60

49 Figure 3-8. Dorsal (left) and ventral (right) views of the premaxilla for seven Sternopygus species. (a) S. branco (MCP 32243), (b) S. obtusirostris (MCP 32262), (c) S. astrabes (MCP 32235), (d) S. macrurus (MCP 32256), (e) S. arenatus (MCZ 58604), (f) S. xingu (UMMZ 228961), (g) S. aequilabiatus (NRM 27746). Scale bars equal 1 mm.

PAGE 61

50 Figure 3-9. Maxilla for nine sternopygids, in lateral view. (a) S. branco (MCP 32243), (b) S. obtusirostris (MCP 32262), (c) S. astrabes (MCP 32235), (d) S. macrurus (MCP 32256), (e) S. arenatus (MCZ 58604), (f) S. xingu (UMMZ 228961), (g) S. aequilabiatus (NRM 27746), (h) A. blax (INPA 18451), (i) D. conirostris (MCP uncat.). Scale bars equal 1 mm.

PAGE 62

51 Figure 3-10. Dentary, anguloarticular, and retroarticular for nine sternopygids, in lateral view. (a) S. branco (MCP 32243), (b) S. obtusirostris (MCP 32262), (c) S. astrabes (MCP 32235), (d) S. macrurus (MCP 32256), (e) S. arenatus (MCZ 58604), (f) S. xingu (UMMZ 228961), (g) S. aequilabiatus (NRM 27746), (h) A. blax (INPA 18451), (i) D. conirostris (MCP uncat.). Scale bars equal 1 mm.

PAGE 63

52 Figure 3-11. Quadrate, mesopterygoid, and metapterygoid for nine sternopygids, in lateral view. (a) S. branco (MCP 32243), (b) S. obtusirostris (MCP 32262), (c) S. astrabes (MCP 32235), (d) S. macrurus (MCP 32256), (e) S. arenatus (MCZ 58604), (f) S. xingu (UMMZ 228961), (g) S. aequilabiatus (NRM 27746), (h) A. blax (INPA 18451), (i) D. conirostris (MCP uncat.). Scale bars equal 5 mm.

PAGE 64

53 Figure 3-12. Hyomandibula for nine sternopygids, in lateral view. (a) S. branco (MCP 32243), (b) S. obtusirostris (MCP 32262), (c) S. astrabes (MCP 32235), (d) S. macrurus (MCP 32256), (e) S. arenatus (MCZ 58604), (f) S. xingu (UMMZ 228961), (g) S. aequilabiatus (NRM 27746), (h) A. blax (INPA 18451), (i) D. conirostris (MCP uncat.). Scale bars equal 1 mm.

PAGE 65

54 Figure 3-13. Opercular series for nine sternopygids, in lateral view. (a) S. branco (MCP 32243), (b) S. obtusirostris (MCP 32262), (c) S. astrabes (MCP 32235), (d) S. macrurus (MCP 32256), (e) S. arenatus (MCZ 58604), (f) S. xingu (UMMZ 228961), (g) S. aequilabiatus (NRM 27746), (h) A. blax (INPA 18451), (i) D. conirostris (MCP uncat.). Scale bars equal 5 mm.

PAGE 66

55 Figure 3-14. Pectoral girdle for nine sternopygids, in lateral view. (a) S. branco (MCP 32243), (b) S. obtusirostris (MCP 32262), (c) S. astrabes (MCP 32235), (d) S. macrurus (MCP 32256), (e) S. arenatus (MCZ 58604), (f) S. xingu (UMMZ 228961), (g) S. aequilabiatus (NRM 27746), (h) A. blax (INPA 18451), (i) D. conirostris (MCP uncat.). Scale bars equal 5 mm.

PAGE 67

56 Figure 3-15. Interrelationships of Sternopygus species inferred from maximum parsimony analysis of 66 characters coded from features or pigmentation, body proportions, meristics, and osteology. Terminal taxa include seven valid, one undescribed Sternopygus species, and five sternopygid outgroups. The topology is a single most parsimonious tree, with 127 steps, from data in Table 3-4 (CI = 0.58, RI = 0.70, RC = 0.41). Letters adjacent to nodes represent clades listed in Appendix B.

PAGE 68

57 CHAPTER 4 DISCUSSION Sternopygus branco is unique among its congeners in being entirely restricted to whitewater rivers in the central Amazon basin. The capacity to inhabit large and deep (up to 25 m) Amazonian river channels is a derived feature of the Sinusoidea, a clade of gymnotiform fishes represented by two families with a high frequency wave-type EOD, Apternotidae and Sternopygidae (Albert 2001). Habitat utilization of Amazonian river channels is associated with a suite of behavioral, physiological, and morphological traits. Many of these traits are observed in S. branco including reduced pigmentation and a streamlined body and head morphology (Crampton et al. in press). The utilization of Amazonian river channels in S. branco is inferred to be plesiomorphic. In a combined morphological and molecular analysis of all gymnotiform fishes (Albert 2001), S. astrabes was inferred to retain the most plesiomorphic set of character states among extant taxa, including (among other characters): small adult body size, relatively short body cavity with 18-19 precaudal vertebrae, and paedomorphic features of cranial osteology. Since, the diagnosis for S. castroi (Triques 2000) includes: morphometric data that falls within the range for S. astrabes inconclusive descriptions of soft anatomy, and no skeletal counts, it is considered here a junior synonym of S. astrabes which it most resembles in all of the above mentioned features. Here we recognize that the position of S. obtusirostris and S sp. “cau” as members of a clade including S. astrabes indicate the polarity of small body size, short body cavity length, and short anal fin length is derived. This fundamental change in perception of the

PAGE 69

58 evolution in Sternopygus highlights the sensitivity of both phylogenetic systematics and character-state reconstruction to taxon sampling. As currently recognized, S. macrurus is the most eurytopic gymnotiform species. Known from eight of nine hydrogeographical regions of tropical South America, including those as disparate as the Pacific Slope of the Andes, the arid northeast of Brazil, and the Pampas of Argentina. Populations of S. macurus are found in most lowland aquatic habitats, including: high conductivity whitewater river channels and floodplains (vrzea), low conductivity non-floodplain (terra firme) black and clearwater rivers and streams. Although populations of S. macrurus differ in mean or modal value of morphometric and meristic features, examination of 79 lots containing 151 specimens did not produce any significantly unambiguous diagnostic features to separate these populations. The conclusion that populations of S. macrurus from throughout the continent probably represent a single evolutionary lineage is based on Andes vicariance events estimated to have occurred between 9 and 12 mya, which may explain why lowland fishes in the Neotropics exhibit such disjunt ranges and widespread distributions (Vari and Weitzman 1990; Lundberg 1998). Future studies using molecular sequences, microsatellite DNA, and chromosome morphology might be used to test the hypothesis that all populations of S. macrurus represent a single evolutionary lineage.

PAGE 70

59 APPENDIX A MATERIALS EXAMINED Materials examined from 158 lots containing 299 specimens of sternopygid species. Data are arranged alphabetically by species, country, state, then by museum acronym and catalogue number, followed in parentheses by number of specimens, size (mean or range) in millimeters total length, but sometimes using length to the end of analfin (LEA) when caudal appendage of specimen was damaged, type-status (HT, holotype; PT, paratype), specimen status (C&S, cleared and stained), summary of locality, latitude, longitude, and date of capture when available. Institutional abbreviations follow (Leviton et al. 1985) with the addition of INPA (Instituto Nacional de Pesquisas da Amaznia, Manaus). Specimens of S. macrurus are arranged by region alphabetically (region abbreviations described in Table 1). Outgroup specimens Apteronotus sp. .Brazil: Amazonas: MCP uncat. (6, 152-300), Rio JapurSolimes confluence, 306'44"S, 6447'32"W, 1999.I.13. Archolaemus blax .Brazil: Amazonas: INPA 18451 (7, 93-242, 2 C&S), Tucurui, Rio Tocantins, 0425'S, 4932'W, 1984.X.22. Par: INPA 5064 (1, 245), Rio Trombetas, Rio Cachorro, 0104'59"S, 5701'59"W, 1985.IV.15. Distocyclus conirostris .Brazil: Amazonas: MCP uncat. (6, 252-348, 2 C&S), Rio Japur-Solimes confluence, 0306'44"S, 6447'32"W, 1999.I.26.

PAGE 71

60 Ingroup specimens Sternopygus arenatus .Ecuador: Esmeraldas: MCZ 54969 (4, 191-390), Rio Cayapas, 044'N, 7855'W, 1977.VI.29. MCZ 58604 (1, 160, C&S), Rio Cayapas, 0144'N, 7755'W, 1977.VI.29. Guayas: UMMZ 205390 (4, 56-145), Guayaquil, 0210'S, 7954'W. Los Rios: MCZ 48804 (1, 197), Quevedo, 059'S, 7927'W, 1971.XI.04. Sternopygus astrabes .Brazil: Amazonas: BMNH 1998.3.11.15a (1, 455), Rio Tef, Lago Tef, 0320'08"S, 6442'10"W, 1996.VII.27. INPA 09980 (2, 102-104), Rio Demini, 0023'18"S, 6251'55"W, 2000.X.29. INPA 9980 (1, 105), Lago Aman, 238'47"S, 6439'19"W, 1995.I.5. INPA 9981 (1, 104), Lago Aman, 238'47"S, 6439'19"W, 1995.I.5. MCP 32230 (1, 135), Rio Tef, Tef, 0324'28"S, 6444'10"W, 1998.XII.30. MCP 32231 (2, 63-70), Rio Tef, Tef, 0324'28"S, 6444'10"W, 1999.V III.24. MCP 32232 (1, 74, C&S), Rio Tef, Tef, 0324'28"S, 6444'10"W, 1999.IX.21. MCP 32233 (1, 86, C&S), Rio Tef, Tef, 0324'28"S, 6444'16"W, 2000. III.17. MCP 32234 (1, 90), Rio Tef, Tef, 0324'28"S, 6444'10"W, 2000.X.10. MCP 32235 (10, 50-143, 2 C&S), Rio Demini, 0023'18"S, 6251'55"W, 2000.X.29. MCP 32236 (4, 81-97), Rio Tef, Tef, 0324'28"S, 6444'10"W, 2002.X.16. MCP 32237 (1, 195), Rio Solimes, Alvares, 0316'05"S, 6447'42"W, 2002.XI.27. MCP 32238 (1, 75), Rio Tef, Tef, 0324'28"S, 6444'10"W, 2003.I.24. MCP 32239 (2, 75-78), Rio Tef, Tef, 0324'28"S, 6444'10"W, 2003.II.20. MCP 32240 (2, 81-107), Rio Tef, Tef, 0324'28"S, 6444'10"W, 2003.II.26. MZUSP 47987 (1, 70), Rio Cuieras, Igarap Jarad, 0270'S, 6040'W, 1977.I.30. MZUSP 48911 (1, 166), Rio Cuieras, Igarap Jarad, 0240'S, 6020'W, 1977.II.01. Venezuela: Amazonas: ANSP 162128 (1, 248, PT), Rio Orinoco, nr. Isla Temblador, 0304'N, 6628'W, 1987. III.10. ANSP 162663 (4, 195-411), Rio Autana, Raudal Peresa, 0446'N, 6719'W, 1985.XI.13.

PAGE 72

61 Sternopygus branco .Brazil: Amazonas: INPA 12370 (1, 137), Rio Negro, Lago do Prato, 0237'36"S, 6057'W, 1991.IX.18. INPA 15786 (1, 75, PT), Rio Japur, Paran Maiana, 0306'44"S, 6447'32"W, 1999.I.28. INPA 18236 (1, 76, PT), Rio SolimesJapur confluence, 0309'08"S, 6447'04"W, 2000.II.24. MCP 32241 (1, 253, PT), Rio Solimes-Japur confluence, 0309'08"S, 6447'04"W, 1999.II.08. MCP 32242 (3, 177492, PT, 2 C&S), Rio Solimes-Japur confluence, 0307'08"S, 6447'18"W, 1999.XII.07. MCP 32243 (1, 180, PT, C&S), Rio Japur, Paran Maiana, 0304'50"S, 6447'18"W, 2000.I.12. MCP 32244 (1, 208, PT), Rio Japur, Paran Maiana, 0306'44"S, 6447'32"W, 2000.II.22. MCP 32245 (2, 171-421, PT, C&S), Rio SolimesJapur confluence, 0309'08"S, 6447'04"W, 2000.II.24. MCP 32246 (3, 211-252, PT), Rio Solimes-Japur confluence, 0309'08"S, 6447'04"W, 2001.II.07. MCP 32451 (1, 251, HT), Rio Solimes-Japur confluence, 0309'08"S, 6447'04"W, 2001.II.07. MZUSP 56187 (1, 319), Rio Negro, Manaus, 030'S, 6024'W, 1993.XII.13. Sternopygus dariensis .Colombia: Antioquia: NRM 27742 (1, 200), Rio Atrato, Buchad, 0625'N, 7746'W, 1989.I.28. NRM 27745 (1, 230), Rio Atrato, Buchad, 0625'N, 7446'W, 1989.I.27. Choc: NRM 27746 (6, 117-353, 2 C&S), Rio Baud, Boca de Pep, 0504'N, 7703'W, 1989.II.22. Panama: Cocle: UF 27523 (5, 39-70), nr. El Valle, 0831'N, 8033'W, 1965.IV.24. Darien: UF 15451 (2, 70-75), Rio Pirri, El Real, 0807'59"N, 7743'59"W, 1967.VI. Herrera: UF 12978 (2, 58-63), nr. Chepo, 0743'59"N, 8048'69"W, 1965.IV.29. Sternopygus macrurus (EA).Brazil: Gois: MCP 18204 (1, 168), Rio Araguia, nr. Lis Alves, 1314'S, 5035'W. MNRJ 12189 (2, 183-205), Rio Maranho, Rio da Mula,

PAGE 73

62 1416'S, 4904'W, 1985.VII.10. MNRJ 12190 (2, 180-204), Rio Tocantins, Serra da Mesa, 1450'S, 4819'W, 1985.X.20. MNRJ 12191 (10, 118-251), Rio Tocantins, Crrego Barriguda, 1405'S, 4820'W, 1985.X.15. MNRJ 12208 (2, 142-220), Rio Tocantins, Crrego Lajeado, 1331'S, 4910'W, 1987.V.29. MNRJ 12209 (4, 227-361), Rio Tocantins, Crrego Lajeado, 1339'S, 4809'W, 1987.I.06. Sternopygus macrurus (GO).Brazil: Roraima: INPA 7417 (1, 164), Rio Branco, Igarap Juruaquim, 0322'N, 6019'W, 1992. III.27. Guyana: Essequibo: UMMZ 215834 (2, 177-180), tidal canal at Anna Regina, 0716'N, 5830'W, 1971.V III.27. Suriname: Marowijne: UF 16268 (1, 176), Marowijne River, 0530'N, 5403'W, 1967.VII. Venezuela: Apure: MCNG 3733 (10, 54-450, 8 C&S), Rio Apure, Munoz, 0728'30"N, 6930'50"W, 1981. III.19. UF 80888 (2, 33-235), Rio Apure, Munoz, 0725'20"N, 6935'40"W, 1979.II.13. Portuguesa: UF 80862 (2, 201-338), Laguna Chiriguare, 0848'N, 6830'W, 1984.IV.03. Sternopygus macrurus (NE).Brazil: Bahia: MCP 16730 (1, 166), Rio Tato, nr. Barra de Cocos, 1414'22"S, 4431'42"W, 1993.VII.16. Cear: MCZ 9418 (1, 243), Ceara, nr. Fortaleza, 0345'S, 3830'W, 1865.V III.05. Piaui: MCZ 46859 (1, 195), Rio Parnaiba, Lagoa Seca, 0311'S, 4150'W, 1968.V III.29. MCZ 9450 (3, 203-212), Rio Parnaiba, Rio Puty, 0505'S, 4249'W, 1865.XII. Minas Gerais: ANSP 172171 (2, 135166), Rio Verde Grande, nr. Janauba, 1639'01"S, 4342'49"W, 1993.VII.20. Sternopygus macrurus (NW).Colombia: Magdalena: UF 17210 (1, 250), Rio Magdalena, Cartagena, 1101'N, 7415'W, 1969.V III.18. Sternopygus macrurus (PA).Paraguay: Canendiyu: UMMZ 206424 (1, 112), Rio Paraguay, Canendiyu, 2402'12"S, 5419'W, 1979.VII.13. Concepcion: NRM 23196 (1,

PAGE 74

63 76), Rio Paraguay, Concepcion, 2348'S, 5617'W, 1993.V III.18. UMMZ 206765 (1, 113), Rio Aquidaban, Parque Cerro Cora, 2238'12"S, 5603'W, 1979.VII.25. UMMZ 206794 (1, 110), Rio Apa, nr. Bella Vista, 2206'30"S, 5630'W, 1979.VII.27. UMMZ 208004 (1, 104), Rio Paraguay, Concepcion, 2315'18"S, 5630'W, 1979.IX.11. Sternopygus macrurus (PS).Colombia: Choc: NRM 27740 (4, 115-126), Rio Baud, Boca de Pep, 0504'N, 7703'W, 1989.II.22. Sternopygus macrurus (SE).Brazil: Rio de Janeiro: MCZ 45096 (1, 130), Rio Paraiba do Sul, nr. Rio de Janeiro, 2253'S, 4317'W, 1872.II. Sternopygus macrurus (WA).Brazil: Amazonas: BMNH 1998.3.11.02 (1, 122), Rio Solimes, nr. Alvares, 0306'17"S, 6455'07"W, 2003.V III.29. BMNH 1998.3.11.03 (1, 88), Rio Solimes, nr. Alvares, 0306'17"S, 6455'07"W, 2003.V III.29. BMNH 1998.3.11.04 (1, 85), Rio Solimes, nr. Alvares, 0306'17"S, 6455'07"W, 2003.V III.29. BMNH 1998.3.11.05 (1, 88), Rio Solimes, nr. Alvares, 0306'17"S, 6455'07"W, 2003.V III.29. BMNH 1998.3.11.06 (1, 111), Rio Solimes-Japur Confluence, 0254'46"S, 6454'26"W, 1993.IX.16. BMNH 1998.3.11.07 (1, 101), Rio Solimes, nr. Tef, 0316'05"S, 6441'21"W, 1993.IX.05. BMNH 1998.3.11.10 (1, 115), Lago Tef, 0320'08"S, 6442'10"W, 1996.VII.27. BMNH 1998.3.11.11 (1, 119), Lago Tef, 0320'08"S, 6442'10"W, 1996.VII.27. BMNH 1998.3.11.12 (1, 122), Lago Tef, 0320'08"S, 6442'10"W, 1996.VII.27. BMNH 1998.3.11.13 (1, 113), Rio Tef, Igarap Curupira, 0326'01"S, 6443'47"W, 1995.II.04. INPA 15783 (1, 161), Lago Aman, 0228'54"S, 6442'48"W, 1998.XI.30. INPA 15802 (2, 383-476), Rio Solimes-Japur Confluence, 0307'08"S, 6447'18"W, 1999.X.15. INPA 18165 (1, 305), Rio SolimesJapur Confluence, 0309'08"S, 6447'04"W, 1999.XII.08. INPA 18166 (3, 232-283), Rio

PAGE 75

64 Japur, Paran Maiana, 0304'50"S, 6447'18"W, 1999.X.15. INPA 18188 (3, 88-492), Lago Tef, 0334'35"S, 6459'19"W, 1999.VI.22. INPA 18190 (4, 187-418), Rio Japur, Paran Maiana, 0304'50"S, 6447'18"W, 1999.I.13. INPA 18233 (1, 345), Rio Tef, 0346'49"S, 6459'29"W, 2000.VI.01. INPA 18234 (1, 221), Rio Solimes-Japur Confluence, 0309'08"S, 6447'04"W, 1999.XII.08. INPA 18235 (1, 177), Rio SolimesJapur Confluence, 0309'08"S, 6447'04"W, 2000.II.24. INPA 18238 (1, 43), Lago Caiamb, 0335'34"S, 6426'37"W, 1998.XII.28. INPA 18316 (1, 286), Rio Japur, Paran Maiana, 0306'44"S, 6447'32"W, 1999.XII.05. INPA 18317 (1, 172), Rio Tef, Igarap Curupira, 0326'01"S, 6443'47"W, 2000.II.07. MCP 32247 (1, 157), Rio Solimes, nr. Alvares, 0306'18"S, 6455'07"W, 2003.V III.29. MCP 32248 (2, 173-178), Rio Japur, Nova Colmbia, 0254'47"S, 6454'26"W, 1993.IX.16. MCP 32249 (8, 48264), Lago Caiamb, 0335'34"S, 6426'37"W, 1998.XII.28. MCP 32250 (1, 185), Rio Solimes-Japur Confluence, 0307'08"S, 6447'18"W, 1999.I.19. MCP 32251 (3, 157204), Rio Solimes-Japur Confluence, 0306'44"S, 6447'32"W, 1999.I.26. MCP 32252 (1, 184), Lago Tef, 0334'35"S, 6459'19"W, 1999.VI.22. MCP 32253 (4, 234-256), Lago Tef, 0334'35"S, 6459'19"W, 1999.VI.22. MCP 32254 (3, 162-257, 1 C&S), Rio Tef, 0346'49"S, 6459'29"W, 1999.VII.13. MCP 32255 (1, 147), Rio Tef, Igarap Repartimento, 0324'28"S, 6444'10"W, 1999.VII.29. MCP 32256 (1, 230, C&S), Rio Tef, 0347'19"S, 6459'55"W, 1999.X.22. MCP 32257 (1, 152), Rio Tef, Tef, 0324'28"S, 6444'10"W, 1999.XII.22. MCP 32258 (1, 167), Rio Solimes-Japur Confluence, 0309'08"S, 6447'04"W, 2001.II.07. MCP uncat.(1, 228), Rio Solimes, Tef, 0346'S, 7315'W. Par: MCZ 25708 (1, 342), Rio Xingu, Porto de Moz, 0145'S, 5210'W, 1865.IX. MCZ 45193 (6, 268-320), Ilha do Maraj, Cachoeira do Arari,

PAGE 76

65 0111'S, 4845'W, 1965.VII. MCZ 60047 (1, 270), Rio Xingu, Porto de Moz, 0145'S, 5210'W, 1865.V III.23. MCZ 9409 (1, 350), Ilha do Maraj, Lago Arari, 0020'S, 4910'W, 1866. III.01. MCZ 9412 (2, 303-455), Rio Par, nr. Belm, 0127'S, 4829'W, 1865.V III.10. MCZ 9442 (2, 401-415), Rio Par, nr. Belm, 0127'S, 4829'W, 1865.V III.10. MCZ 9456 (5, 350-400), Rio Par, nr. Belm, 0127'S, 4829'W, 1865.V III.10. MCZ 9829 (2, 300-448), Rio Xingu, Porto de Moz, 0145'S, 5210'W, 1865.IX. Ecuador: Napo: FMNH 103297 (1, 150), Rio Payamino, 0026'S, 772'12"W, 1981.IX.20. FMNH 103299 (3, 132-157), Rio Sardinas, 0006'S, 7712'30"W, 1981.IX.29. FMNH 103300 (2, 137-163), Rio Napo, 0023'24"S, 7637'06"W, 1981.X.04. Peru: Loreto: UF 116550 (1, 420), Rio Nanay, Mixana, 0352'46"S, 7329'33"W, 2001. III.26. UF 117121 (2, 325-370), Rio Nanay, Mixana, 0352'46"S, 7329'33"W, 2001. III.26. UF 122829 (1, 143), nr. Iquitos, 0346'S, 7315'W, 2002.V.2028. UF 122830 (1, 263), nr. Iquitos, 0346'S, 7315'W, 2002.V.20-28. UF 122831 (1, 423), nr. Iquitos, 0346'S, 7315'W, 2002.V.20-28. UF 122832 (1, 93), nr. Iquitos, 0346'S, 7315'W, 2002.V.20-28. UF 122835 (1, 161), nr. Iquitos, 0346'S, 7315'W, 2002.V.20-28. UF 122838 (1, 107), nr. Iquitos, 0346'S, 7315'W, 2002.V.20-28. Sternopygus obtusirostris .Brazil: Amazonas: BMNH 1998.3.11.14 (1, 206), Rio Tef, Lago Tef, 0320'08"S, 6442'10"W, 1996.VII.27. BMNH 1998.3.11.15 (1, 208), Rio Tef, Lago Tef, 0320'08"S, 6442'10"W, 1996.VII.27. BMNH 1998.3.11.16 (1, 288), Rio Tef, Lago Tef, 0334'35"S, 6459'19"W, 1996.V III.10. BMNH 1998.3.11.17 (1, 295), Rio Tef, Lago Tef, 0334'35"S, 6459'19"W, 1996.V III.10. INPA 15787 (1, 445), Rio Tef, Lago Tef, 0320'08"S, 6442'10"W, 1996.V.05. INPA 15797 (2, 180422), Rio Tef, Lago Tef, 0334'35"S, 6459'19"W, 1999.V III.28. INPA 16579 (2, 296-

PAGE 77

66 356), Rio Jauaperi, Igarap Cambeua, 0125'59"S, 6135'W, 2000.XII.01. INPA 18155 (2, 180-195), Rio Tef, 0347'19"S, 6491'55"W, 1999.X.23. INPA 18232 (1, 393), Lago Aman, 0239'46"S, 6439'09"W, 1994.V.01. INPA 18237 (1, 520), Lago Aman, 0232'31"S, 6441'30"W, 1998.XI.24. INPA 6430 (1, 387), Rio Solimes, Ilha do Careiro, 0312'S, 5945'W, 1987. III.31. INPA 9072 (1, 380), Rio Negro, Anavilhanas, 0242'S, 6045'W, 1976. III.06. MCP 32259 (1, 180), Rio Tef, Lago Tef, 0320'08"S, 6442'10"W, 1996.V.04. MCP 32260 (1, 200), Rio Tef, Lago Tef, 0320'08"S, 6442'10"W, 1996.V.05. MCP 32261 (1, 437), Rio Tef, Ilha Martelo, 0346'49"S, 6459'29"W, 1999.VII.26. MCP 32262 (6, 123-524, 1 C&S), Rio Tef, 0347'S, 6459'55"W, 1999.X.25. MCP 32263 (1, 174), Rio Tef, Ilha Martelo, 0346'49"S, 6459'29"W, 2000.VI.14. MCP 32264 (1, 270), Rio Tef, Lago Tef, Igarap Repartimento, 0324'28"S, 6417'10"W, 2003.II.02. MCP T-032 (1, 523, C&S), Rio Tef, Toco Preto, 0347'19"S, 6459'55"W, 1999.X.24. MCZ 9411 (1, 446), Rio Amazonas, nr. Parintins, 0240'S, 5645'W, 1865.V III.30. MCZ 9413 (1, 353, ST), Rio Tef, Lago Tef, 0324'19"S, 6445'W, 1865.X. MCZ 9425 (1, 455, ST), Rio Maes, Maes, 0322'S, 5738'W, 1865.XII.15. MCZ 9453 (1, 485, ST), Rio Negro, Lago Aleixo, 0305'S, 5953'W, 1865.XII.06. MZUSP 6100 (1, 190), Rio Puraquequara, 0302'59"S, 5946'W, 1967.IV.17. Par: MCZ 2768 (1, 354), Rio Amazonas, "bidos, 0152'S, 5530'W, 1865.XII. Sternopygus pejeraton .Venezuela: Zulia: MCZ 37222 (1, PT), Rio Motatan, 0928'N, 7037'W, 1942. III.17. UF 25447 (1, 90), Rio Catatumbo, 0922'59"N, 7143'59"W, 1974.VI.17. UMMZ 157671 (2, 109-115, PT), Rio Palmar, 1011'N, 7152'W, 1942.II.21.

PAGE 78

67 Sternopygus sp. “cau”.Venezuela: Bolivar: AMNH 58643 (2, 263-267), Rio Caura, 738'N 6453'W, 1985.XI.22. Sternopygus xingu .Brazil: Mato Grosso: UMMZ 228961 (3, 212-224, PT, 1 C&S), Rio Batovi, 13#'S, 5330'W, 1964.V III. Par: INPA 6418 (1, 150), Rio Tocantins, Tucuru, 0342'S, 4942'W, 1980.X.31. INPA 6420 (1, 143), Rio Tocantins, Itupiranga, 0508'05"S, 4919'36"W, 1982.VII.29. INPA 6425 (1, 178), Rio Tocantins, Breu Branco, 0401'59"S, 4940'W, 1982.VII.11. INPA 6426 (1, 373), Rio Tocantins, Lago Taua, 0342'S, 4942'W, 1980.X.31. INPA 6427 (1, 185), Rio Tocantins, Lago Grande, 0509'S, 4920'W, 1981.XI.21. INPA 6918 (1, 202), Rio Tocantins, 0501'S, 5040'W.

PAGE 79

68 APPENDIX B Sternopygus BRANCH LIST Sternopygus branch list (strict tree). Steps in parentheses are unambiguous character-state changes on tree topology of Figure 3-15. Clade A-G named in Table 3-5. Abbreviations are listed in materials and methods. Additional abbreviations include: consistency index (CI), rescaled index (RI), and rescaled consistency (RC). Clade A: (17 steps) 14. Gape: larger or equal to eye diameter (CI: 1.00, RI: 1.00, RC: 1.00) 17. Infraorbitals 3-4: enlarged, bony (CI: 0.50, RI: 0.67, RC: 0.33) 21. Ventral ethmoid: long (CI: 1.00, RI: 1.00, RC: 1.00) 22. Mesethmoid: robust (CI: 1.00, RI: 1.00, RC: 1.00) 23. Lateral ethmoid cartilage: contacting maxilla (CI: 1.00, RI: 1.00, RC: 1.00) 25. Lateral ethmoid anterior process: long, extending lateral to dorsal margin of vomer (CI: 0.50, RI: 0.67, RC: 0.33) 30. Neurocranium depth: moderate, mean 30.1-34.9% NL (CI: 0.40, RI: 0.57, RC: 0.23) 35. Premaxilla shape: gracile, triangular in dorsal view (CI: 0.50, RI: 0.80, RC: 0.40) 37. Meckel's cartilage ossification: dorsal margin ossified completely in adults (CI: 1.00, RI: 1.00, RC: 1.00) 43. Hyomandibular PM opening: emerging from anterior shelf (CI: 0.50, RI: 0.50, RC: 0.25) 46. Opercle, ratio of long axes: dorsal margin moderate, mean 70-75% distance of anterio-ventral margin (CI: 0.50, RI: 0.67, RC: 0.33)

PAGE 80

69 48. Gill rakers: complex (see text), separated by unmineralized tissue (CI: 1.00, RI: 1.00, RC: 1.00) 51. Posttemporal: not fused with supracleithrum (CI: 1.00, RI: 1.00, RC: 1.00) 55. Pectoral fin length: short, mean P1 51-60% HL (CI: 1.00, RI: 1.00, RC: 1.00) 56. Pectoral fin rays: few, mode P1R 13-16 (CI: 0.50, RI: 0.50, RC: 0.25) 63. Anterior vertebrae: not compressed (see text) (CI: 1.00, RI: 1.00, RC: 1.00) 65. Anal-fin ray structure: unbranched (CI: 1.00, RI: 1.00, RC: 1.00) Clade B: (4 steps) 2. Pale lateral stripe: present in juveniles and adults (CI: 0.50, RI: 0.80, RC: 0.40). 8. Head: wide, mean HW 42-47% HL (CI: 0.33, RI: 0.33, RC: 0.11). 11. Interorbital distance: wide, mean IO 25-28% HL (CI: 0.50, RI: 0.75, RC: 0.38). 30. Neurocranium: deep, mean HD 35-50% NL (CI: 0.40, RI: 0.57, RC: 0.23). Clade C: (2 steps) 3. Dark bars: present in juveniles (CI: 1.00, RI: 1.00, RC: 1.00). 15. Eye: large, mean ED 12-16% HL (CI: 0.50, RI: 0.67, RC: 0.33). Clade D: (2 steps) 12. Internarial distance: long, NN 19-23% HL (CI: 0.67, RI: 0.50, RC: 0.33). 13. Mouth: broad; mean MW16-19% HL (CI: 0.25, RI: 0.25, RC: 0.06). Clade E: (3 steps) 5. Body: deep, BD 12-15% LEA (CI: 1.00, RI: 1.00, RC: 1.00). 6. Head: long, HL 14-15% LEA (CI: 0.67, RI: 0.75, RC: 0.50). 54. Pectoral distal radials: 3 and 4 fused (CI: 0.50, RI: 0.75, RC: 0.38) 55. Pectoral fin: very short, P1 40-50% HL (CI: 1.00, RI: 1.00, RC: 1.00).

PAGE 81

70 Clade F: (3 steps) 26. Vomer: long, narrow, length more than five times width (CI: 0.50, RI: 0.67, RC: 0.33). 28. Frontal margin: straight dorsal to lateral ethmoid (CI: 0.50, RI: 0.67, RC: 0.33). 46. Opercle, ratio of long axes: dorsal margin long, mean 76-90% distance of anterioventral margin (CI: 0.50, RI: 0.67, RC: 0.33). Clade G: (5 steps) 10. Snout profile: dorsal margin strongly concave (CI: 0.50, RI: 0.50, RC: 0.25). 11. Interorbital: narrow, IO 17-24% HL (CI: 0.50, RI: 0.75, RC: 0.38). 30. Neurocranium: moderate, ND 30-34.9% NL (CI: 0.40, RI: 0.57, RC: 0.23). 32. Parasphenoid width at prootic foramen: as wide or broader than (PaS) at (PtS)-(OrS) junction (CI: 1.00, RI: 1.00, RC: 1.00). 36. Maxilla width: midlength half width of area near palatine articulation (CI: 0.50, RI: 0.50, RC: 0.25).

PAGE 82

71 LIST OF REFERENCES ALBERT, J.S. 2001. Species diversity and phylogenetic systematics of American knifefishes (Gymnotiformes, Teleostei). Miscellaneous Publications Museum of Zoology University of Michigan 190 1-127. ALBERT, J.S. 2003. Family Sternopygidae. In: Checklist of the Freshwater Fishes of South and Central America REIS, R.E., KULLANDER, S.O. AND FERRARIS, C.J., JR., Eds, pp. 493-497. Edipucrs, Porto Alegre. ALBERT, J.S. AND CRAMPTON, W.G.R. 2003. Seven new species of the Neotropical electric fish Gymnotus (Teleostei, Gymnotiformes) with a redescription of G. carapo (Linnaeus). Zootaxa 287 1-54. ALBERT, J.S. AND FINK, W.L. 1996. Sternopygus xingu a new species of electric fish from Brazil (Teleostei: Gymnotoidei), with comments on the phylogenetic position of Sternopygus Copeia 1996 85-102. BLOCH, M.E. AND SCHNEIDER, J.G. 1801. Systema Ichthyologiae iconibus cx illustratum. Post obitum auctoris opus unchoatum absolvit, correxit, interpolavit Jo. Gottlob Schneider, Saxo. Berolini. Sumtibus Austoris Impressum et Bibliopolio Sanderiano Commissum. I-lx + 1 -584, pls. 1-110. BREMER, K. 1994. Branch support and tree stability. Cladistics-The International Journal of the Willi Hennig Society 10 295-304. BULLOCK, T.H., BEHREND, K. AND HEILIGENBERG, W. 1975. Comparison of jamming avoidance responses in gymnotid and gymnarchid electric fish Case of convergent evolution of behavior and its sensory basis. Journal of Comparative Physiology 103 97-121. CASTELNAU, F. 1855. Poissons nouveaux ou rares rcueillem pendant l'Expedition dans les parties centrales de l'Amrique du Sud, de Rio de Janeiro a Lima, et de Lima au Par. Chez P. Bertrand, Libraire-Editeur, Paris, 112 pp. COPE, E.D. 1871. Recent reptiles and fishes. Report on the reptiles and fishes obtained by the naturalists of the expedition. U.S. Geological Survey Wyoming & Contiguous Territories Part 4 (art. 8): 432-442.

PAGE 83

72 CRACRAFT, J. 1989. Speciation and its ontology: the empirical consequences of alternative species concepts for understanding patterns and processes of differentiation, p. mybook. In: Speciation and its consequences D. OTTE AND J. A. ENDLER (eds.), Sinauer Associates, Sunderland, Mass. CRAMPTON, W.G.R. 1998. Effects of anoxia on the distribution, respiratory strategies and electric signal diversity of gymnotiform fishes. Journal of Fish Biology 53 307-330. CRAMPTON, W.G.R., HULEN, K.G. AND Albert, J.S. in press. Sternopygus branco a new species of Neotropical electric fish (Gymnotiformes: Sternopygidae) from the lowland Amazon Basin, with descriptions of osteology, ecology and electric organ discharges. Copeia EIGENMANN, C.H. AND ALLEN, W.R. 1942. Fishes of Western South America. University of Kentucky, Lexington. EIGENMANN, C.H. AND WARD, D.P. 1905. The Gymnotidae. Proceedings of the National Academy of Sciences 7 157-185. ELLIS, M.M. 1913. The gymnotid eels of tropical America. Memoirs of the Carnegie Museum 6 109-195. EYDOUX, J.F.T. AND SOULEYET, F.L.A. 1841. Poissons. In: Voyage Autour du Monde Execute Pendant less Annees 1836 et 1837 sur le Corvette La Bonite 1 155-216. FERNNDEZ-YPEZ, A. 1968. Contribucin al conocimiento de los peces Gymnotiformes. Evencias No. 20, no pagination, 5 pp. with figures. FINK, S.V. AND FINK, W.L. 1981. Interrelationships of the ostariophysan fishes (Teleostei). Zoological Journal of the Linnean Society 72 297-353. HEILIGENBERG, W. F. 1991. Neural Nets in Electric Fish. MIT Press, Cambridge. HOPKINS, C.D. 1972. Sex differences in electric signaling in an electric fish. Science 176 1035-1037. HUMBOLDT, A.V., AND BONPLAND, A. 1811. Poissons, p. 17-25,46-92+plate 10. In: Recueil d'Observations de Zoologie et d'Anatomie Comparee Vol. 1. F. Schoell Libraire et G. Dufour et Cie. Paris. JORDAN, D.S. AND EVERMANN, B.W. 1896. The fishes of North and Middle America. Bulletin U.S. National Museum 47 (1):i-lx, 1-954. KAUP, J.J. 1856. Family Gymnotidae. In: Catalogue of Apodal Fishes KAUP, J.J., Ed., pp. 124-142.

PAGE 84

73 KORRINGA, M. 1970. A new gymnotoid fish from the Rio Tocantins, Brazil. Proceedings of the California Academy of Science 38 265-271. LEVITON, A.E., GIBBS, R.H., JR., HEAL, E. AND DAWSON, C.E. 1985. Standards in herpetology and ichthyology: Part 1. Standard symbolic codes for institutional resource collections in herpetology and ichthyology. Copeia 1985 802-832. LISSMANN, H.W. 1958. On the function and evolution of electric organs in fish. Journal of Experimental Biology 35 156-191. LNNBERG, E. 1896. Linnean type-specimens of birds, reptiles, batrachians and fishes in the Zoological Museum of the R. University in Upsala. Bihang Kongl. Svenska Vet.-Akad. Handl 22 1-45. LUNDBERG, J.G. 1998. The temporal context for the diversification of Neotropical fishes. In: Phylogeny and Classification of Neotropical Fishes MALABARBA, L., REIS, R.E., VARI, R.P., DE LUCENA, C.A.S., AND DE LUCENA, Z.M.S., Eds., Museu de Cincias e Tecnologia, Porto Alegre, pp. 49-68. LUNDBERG, J.G. AND MAGO-LECCIA, F. 1986. A Review of Rhabdolichops (Gymnotiformes Sternopygidae) a genus of South American freshwater fishes with descriptions of four new species. Proceedings of the Academy of Natural Sciences of Philadelphia 138 53-85. MADDISON, W.P. AND MADDISON, D.R. 2000. MacClade, Analysis of Phylogeny and Character Evolution 4.05. Sunderland Associates, Inc., Sunderland, Massachusetts. MAGO-LECCIA, F. 1978. Los Peces de la Familia Sternopygidae de Venezuela. Acta Cientifica Venezolana 29 1-51. MAGO-LECCIA, F. 1994. Electric Fishes of the Continental Waters of America. Biblioteca de la Academia de Ciencias Fisicas, Matematicas, y Naturales 29 1-206. MAGO-LECCIA, F., LUNDBERG, J.G. AND BASKIN, J.N. 1985. Systematics of the South American freshwater genus Adontosternarchus (Gymnotiformes, Apteronotidae). Contributions in Science Natural History Museum Los Angeles County 358 1-19. MEEK, S.E. AND HILDEBRAND, S.F. 1916. The fishes of the fresh-water of Panama. Field Museum of Natural History Publication 191, Zoological Series. 10 217-374. MEYER, J.H. 1983. Steroid influences upon the discharge frequencies of a weakly electric fish Sternopygus-dariensis Journal of Comparative Physiology A Sensory Neural and Behavioral Physiology 153 29-38. MLLER, J. AND TROSCHEL, F.H. 1849. Horae Ichthyologicae Beschreibung und Abbildung neuer Fische. Drittes Heft. Berlin.

PAGE 85

74 NIXON, K. C., AND WHEELER, Q. D. 1990. An amplification of the phylogenetic species concept. Cladistics 6:211-223. PATTERSON, C. 1975. The braincase of pholidophorid and leptolepid fishes, with a review of the actinopterygian braincase. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 269 275-279. REINHARDT, J. 1852. Om Svommeblaeren hos Familien Gymnotini. Vidensk. Meddel. fra den Naturhistoriske Forening i Kjobenhavn 9 :135-149. ROHLF, J.F. 2003. tpsDIG Ecology and Evolution, SUNY at Stoney Brook, New York. SCHULTZ, L.P. 1949. A further contribution to the ichthyology of Venezuela. Proceedings of the U.S. National Museum 99 1-211. SORENSON, M.D. 1999. TreeRot version 2. Boston University, Boston, MA. STEINDACHNER, F. 1881. Beitrage zur Kenntniss der Flussfische Sudamerikas, III. Denkschr. Akad. Wiss. Wien. 44 103-146. SWOFFORD, D. 2003. PAUP* Version 4.0 Phylogenetic Analysis Using Parsimony Sinauer Associates, Inc. Washington, D.C. TAYLOR, W.R. AND VAN DYKE, G.C. 1985. Revised procedures for staining and clearing small fishes and other vertebrates for bone and cartilage study. Cybium 9 107-119. TRIQUES, M.L. 2000. Sternopygus castroi a new species of Neotropical freshwater electric fish, with new synapomorphies to the genus (Sternopygidae : Gymnotiformes : Teleostei). Studies on Neotropical Fauna and Environment 35 19-26. UNGUEZ, G.A. AND ZAKON, H.H. 1998. Phenotypic conversion of distinct muscle fiber populations to electrocytes in a weakly electric fish. Journal of Comparative Neurology 399 20-34. VARI, R.P. AND WEITZMAN, S.H. 1990. A review of the phylogenetic biogeography of the freshwater fishes of South America. In: Vertebrates in the Tropics PETERS, G., AND HUTTERER, R., Eds., Museum Alexander Koenig, Bonn, pp. 381-393. WEITZMAN, S.H. 1974. Osteology and evolutionary relationships of the Sternoptychidae, with a new classification of stomiatoid families. American Museum of Natural History Bulletin 153 327-478. WHEELER, A. 1991. The Linnaean fish collection in the Zoological Museum of the University of Uppsala. Zoological Journal Linnean Society 103 145-195.

PAGE 86

75 WILKINSON M., LAPOINTE, F.J. AND GOWER, D.J. 2003. Branch lengths and support. Systematic Biology 52 127-130.

PAGE 87

76 BIOGRAPHICAL SKETCH Kevin Hulen was born in Lawrence, Kansas, on September 24, 1974. He attended elementary school in Indonesia, middle school in Colorado, and high school in Florida. In December of 1998, he received a bachelor’s degree in Wildlife Ecology and Conservation from the College of Agriculture, University of Florida. After graduation he managed careers as consultant for a hi-tech software developer, and a fisheries biologist with the Department of the Interior. He joined the Department of Zoology at the University of Florida in 2001.