<%BANNER%>

Kinetic Parameter Estimation of Time-Temperature Integrators Intended for Use with Packaged Fresh Seafood


PAGE 1

KINETIC PARAMETER ESTIMATION OF TIME-TEMPERATURE INTEGRATORS IN TENDED FOR USE WITH PACKAGED FRESH SEAFOOD By TERESA FLORES MENDOZA A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLOR IDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2003

PAGE 2

Copyright 2003 by Teresa Flores Mendoza

PAGE 3

I dedicate this thesis to my mother, Imelda F. Mendoza.

PAGE 4

iv ACKNOWLEDGMENTS I extend my greatest appreciation to Dr. Br uce A. Welt who served as chair of my supervisory committee. Dr. Welt’s encouragem ent and support were invaluable in the development of this research project. I al so greatly appreciate Dr. Steve Otwell, for giving me the opportunity to work with Florida Sea Grant and the National Fisheries Institute. I thank Dr. Art Teixeira and Dr. Murat Balaban for their assistance and helpful suggestions regarding research. Lastly, I would like to thank my family for their encouragement and moral support during this study. Particular thanks go to Joseph N. Moore for his encouragement and support during my graduate studies.

PAGE 5

v TABLE OF CONTENTS Page ACKNOWLEDGMENTS.................................................................................................iv LIST OF TABLES............................................................................................................vii LIST OF FIGURES...........................................................................................................ix ABSTRACT....................................................................................................................... xi CHAPTER 1 JUSTIFICATION.........................................................................................................1 Vacuum-Packaged Fresh Seafood................................................................................1 Regulatory Impact on the Packag ed Fresh-Seafood Industry.......................................1 2 LITERATURE REVIEW.............................................................................................3 Reduced-Oxygen Packaging of Fresh Seafood............................................................3 Time-Temperature Integrators (TTI)............................................................................4 Choosing a TTI to Monitor Thermal History of a Perishable Product..................5 Skinner and Larkin Boundary...............................................................................6 Placement and Measurement of TTIs....................................................................8 Types of TTIs........................................................................................................8 Research with Various Time -Temperature Integrators................................................9 3 MATERIALS AND METHODS...............................................................................10 Time-Temperature Indicators.....................................................................................10 Vitsab TTIs..........................................................................................................10 Lifelines Fresh-Check TTIs.................................................................................11 Avery Dennison TTIs..........................................................................................12 Trials......................................................................................................................... ..13 Data Analysis..............................................................................................................16 Measuring Response of Vitsab TTIs...................................................................16 Measuring Response of Lifelines TTIs...............................................................19 Measuring Response of Avery Dennison TTIs...................................................20 Arrhenius Analysis of TTIs.................................................................................20

PAGE 6

vi 4 RESULTS AND DISCUSSION.................................................................................21 Results of Isothermal Trials........................................................................................21 Commercial TTIs.................................................................................................21 Prototype TTIs.....................................................................................................24 Arrhenius Response of TTIs.......................................................................................27 Commercial TTIs.................................................................................................27 Prototype TTIs.....................................................................................................29 Results of Dynamic Thermal Trials............................................................................30 Discussion...................................................................................................................30 Vitsab C2-10 and M2-10.....................................................................................30 Lifelines Fresh-Check TJ2..................................................................................37 Avery Dennison Prototype TTIs.........................................................................39 5 SUMMARY AND CONCLUSIONS.........................................................................40 APPENDIX RAW DATA.............................................................................................43 LIST OF REFERENCES...................................................................................................61 BIOGRAPHICAL SKETCH.............................................................................................64

PAGE 7

vii LIST OF TABLES Table page 3-1 Typical color scale readings for Vitsab TTIs occuring at the beginning of specific trends in color change..............................................................................................18 4-2 Arrhenius kinetic parameters of the Vitsab Checkpoint M2-10, Vitsab C2-10, and Lifelines TJ2 TTIs....................................................................................................22 4-1 Performance of the Avery Dennison T126(1), T126(2) and T126(4) TTIs during isothermal exposures of 0, 5, 10, and 15C..............................................................24 4-2 Arrhenius kinetic parameters of Av ery Dennison T126(1), T126(2) and T126(4) TTIs..........................................................................................................................2 5 A-1 Vitsab C2-10 0C color values.................................................................................43 A-2 Vitsab C2-10 5C color values.................................................................................44 A-3 Vitsab C2-10 10C color values...............................................................................44 A-4 Vitsab C2-10 15C color values...............................................................................44 A-5 Vitsab C2-10 first dynamic experiment color values...............................................45 A-6 Vitsab C2-10 second dynamic experiment color values..........................................45 A-7 Vitsab M2-10 0C color values................................................................................46 A-8 Vitsab M2-10 5C color values................................................................................46 A-9 Vitsab M2-10 10C color values..............................................................................47 A-10 Vitsab M2-10 15C color values..............................................................................47 A-11 Vitsab M2-10 first dynamic experiment color values..............................................47 A-12 Vitsab M2-10 second dynamic experiment color values.........................................48 A-13 Lifeline Fresh-Check TJ2 0C color values.............................................................49

PAGE 8

viii A-14 Lifeline Fresh-Check TJ2 5C color values.............................................................50 A-15 Lifeline Fresh-Check TJ2 10C color values...........................................................50 A-16 Lifeline Fresh-Check TJ2 15C color values...........................................................50 A-17 Lifeline Fresh-Check TJ2 first dynamic experiment color values...........................51 A-18 Lifeline Fresh-Check TJ2 second dy namic experiment color values.......................51 A-19 Avery-Dennison TT Sensor T126(1) 0C color values............................................52 A-20 Avery-Dennison TT Sensor T 126(1) 5C color values...........................................53 A-21 Avery-Dennison TT Sensor T126(1) 10C color values..........................................53 A-22 Avery-Dennison TT Sensor T126(1) 15C color values..........................................53 A-23 Avery-Dennison TT Sensor T126(1) first dynamic experiment color values..........54 A-24 Avery-Dennison TT Sensor T126(1) second dynamic experiment color values.....54 A-25 Avery-Dennison TT Sensor T126(2) 0C color values............................................55 A-26 Avery-Dennison TT Sensor T126(2) 5C color values............................................56 A-27 Avery-Dennison TT Sensor T126(2) 10C color values..........................................56 A-28 Avery-Dennison TT Sensor T 126(2) 15C color values.........................................56 A-29 Avery-Dennison TT Sensor T126(2) first dynamic experiment color values..........57 A-30 Avery-Dennison TT Sensor T126(2) second dynamic experiment color values.....57 A-31 Avery-Dennison TT Sensor T126(4) 0C color values............................................58 A-32 Avery-Dennison TT Sensor T126(4) 5C color values............................................59 A-33 Avery-Dennison TT Sensor T126(4) 10C color values..........................................59 A-34 Avery-Dennison TT Sensor T126(4) 15C color values..........................................59 A-35 Avery-Dennison TT Sensor T126(4) first dynamic experiment color values..........60 A-36 Avery-Dennison TT Sensor T126(4) second dynamic experiment color values.....60

PAGE 9

ix LIST OF FIGURES Figure page 1-1 Application scheme of TTIs as microbiological quality monitor..............................5 1-2 Boundary for Clostridium botulinum toxin liberation over a range of various storage temperatures as de fined by the Skinner and Larkin relationship (Eq. 1).......7 3-1 Expired Vitsab C2-10 TTI........................................................................................11 32 Fresh Vitsab M2-10 TTI..........................................................................................11 3-3 Expired Lifeline's Fresh-Check Indicator TTI.........................................................12 3-4 Inactive Avery Dennison prototype TT Sensor TTI................................................13 3-5 Environmental growth chambers capab le of precision temperature control............14 3-6 Time-temperature integrators mounted on laminated paper strips for isothermal experiments inside environmental growth chambers...............................................14 3-7 Color pictures were collected daily for TTIs subjected to 5oC isothermal conditions.................................................................................................................14 3-8 Hand-held spectrophotometer used to acquire L*a*b* readings.............................15 3-9 Time-temperature integrators mounted on aluminum discs for dynamic thermal exposures..................................................................................................................16 3-10 Dynamic thermal conditions for TTI exposure........................................................16 3-11 Three trends are exposed when angle di fferences of color change are plotted for Vitsab TTIs with 9o cutoff marking endpoint..........................................................18 4-1 Color response of the Vitsab M2 -10 TTI from activation to endpoint....................21 4-2 Color response of the Vitsab C2 -10 TTI from activation to endpoint.....................21 4-3 Color response of the Lifelines FreshCheck TTI from activation to endpoint.......21 4-4 Vitsab C2-10 isothermal result s for four TTIs at 15, 10, 5, and 0C.......................22

PAGE 10

x 4-5 Vitsab M2-10 isothermal result s for four TTIs at 15, 10, 5, and 0C.......................23 4-6 Lifelines Fresh-Check isothermal re sults for five TTIs at 15, 10, 5, and 0C..........23 4-7 Color response of the Avery Deni son T126(1) at 5C over 12 days........................24 4-8 Color response of the Avery Deni son T126(2) at 5C over 10 days........................24 4-9 Color response of the Avery Deni son T126(4) at 5C over 10 days........................24 4-10 Avery Dennison T126(1) isothermal resu lts for five TTIs at 15, 10, 5, and 0C.....26 4-11 Avery Dennison T126(2) isothermal resu lts for five TTIs at 15, 10, 5, and 0C.....26 4-12 Avery Dennison T126(4) isothermal resu lts for five TTIs at 15, 10, 5, and 0C.....27 4-13 Arrhenius plot of all TTIs against the Arrhenius modified Skinner and Larkin’s lag time.....................................................................................................................28 4-14 Arrhenius plot of first order Avery Dennison TTIs.................................................29 4-15 First dynamic thermal exposure with actual and predicted TTI performance relative to the Skinner an d Larkin lag time curve....................................................31 4-16 First dynamic thermal exposure with actual and predicted TTI performance relative to the Ski nner and Larkin lag time curve. ..................................................32 4-17 Second dynamic thermal exposure with actual and predicte d TTI performance relative to the Skinner an d Larkin lag time curve....................................................33 4-18 Second dynamic thermal exposure with actual and predicte d TTI performance relative to the Ski nner and Larkin lag time curve. ..................................................34 4-19 Second dynamic thermal exposure with actual and predicte d TTI performance relative to the Skinner an d Larkin lag time curve....................................................35 4-20 Illustration of method used to describe Vitsab TTI response in a three dimensional color space................................................................................................................36 4-21 Zero order versus first order response......................................................................37 4-22 Isothermal response of Lifelines Fres h-Check TJ2 TTIs exposed to direct light versus no light exposur e at 15, 10, 5, and 0C.........................................................38

PAGE 11

xi Abstract of Thesis Presen ted to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Master of Science KINETIC PARAMETER ESTIMATION OF TIME-TEMPERATURE INTEGRATORS IN TENDED FOR USE WITH PACKAGED FRESH SEAFOOD By Teresa Flores Mendoza December 2003 Chair: Bruce A. Welt Major Department: Agricultur al and Biological Engineering The United States Food and Drug Administ ration (FDA) is concerned about the possibility of Clostridium botulinum toxin liberation before detectable spoilage of reduced-oxygen packaged (ROP) fresh fis h. The FDA suggests that temperature conditions favorable to toxin formation are like ly to occur within th e distribution channel; therefore sufficient temperature monitoring is re quired in order to ensure safety. TimeTemperature Integrators (TTI) are proposed as one mean to control product safety. Six TTIs were tested for their suitability with ROP seafood. Three commercially available TTIs studied were Vitsab M2-10, V itsab C2-10, and Lifelines Fresh Check TJ2. Three prototype TTIs evaluated were th e Avery Dennison T126(1), T126(2), and T126(4). Methods to convert L*a*b* color read ings to response rates were developed or adopted for monitoring thermal resp onse of the respective TTIs.

PAGE 12

xii Accurate modeling of TTI color response exposed that the Vitsab C2-10 and M2-10 TTIs could be categorized as partial hi story indicators because of no apparent color change during an initial green trend be fore transitioning to yellow. It was also found that zero order kinetics could be used to model color response of the Lifelines Fresh Check TTIs by defining endpoint at the darkness of the TTI’s reference ring. Isothermal treatments at 0, 5, 10 and 15 C were used to determine kinetic parameters of all TTIs. Arrhenius kinetic parameters were used to model TTI response during dynamic thermal exposures. Kinetic pa rameters were validated by comparing predicted to actual readings under dynamic thermal conditions. The time-temperature integrators underwent two kinds of dynamic th ermal exposures. Results suggest that the Vitsab M2-10, Avery T126(2), and Avery T126(4) TTIs may be used to predict safety of fresh fish packaged in reduced-oxygen environments.

PAGE 13

1 CHAPTER 1 JUSTIFICATION Vacuum-Packaged Fresh Seafood Reduced-oxygen packaging (ROP) of fres h seafood fulfills a number of production and distribution needs. For seafood, ROP has been found to extend shelf life and to deter the onset of undesirable characteristics due to spoilage. This has attracted industry to adopt this method of packaging. However, for ROP seafood, a major food-safety concern involves the naturally occurring, pathogenic, anaerobic, nonproteo lytic bacterial spores of Clostridium botulinum type E. Regulatory Impact on the Pa ckaged Fresh-Seafood Industry In September 2001, the Food and Drug Admini stration (FDA) released import alert #16-125 authorizing “detention with out physical examination of refrigerated (not frozen) vacuum packaged or modified atmosphere p ackaged raw fish and fishery products due to the potential for Clostridium botulinum toxin production.” The FDA suggests that temperature conditions favorable to toxin formation are likely to occur within the distribution channel; therefor e sufficient temperature monitoring is required in order to ensure safety (FDA 2002). However, pr oper temperature control depends on human interaction and oversight during distributi on. Since conditions favorable to anaerobic toxin proliferation are possi ble, stringent monitoring pr ocedures are necessary. Monitoring will require greater integrati on among entities involved in manufacturing through consumption.

PAGE 14

2 The FDA specifically mentions time-temperat ure integrators (TTI) that can indicate exposure to abusive time-temperature combina tions, as a potential means to monitor and control product safety (FDA 2002). Therefore TTIs may provide a simple and potentially cost-effective method to monitor thermal histories of ROP seafood.

PAGE 15

3 CHAPTER 2 LITERATURE REVIEW Reduced-Oxygen Packaging of Fresh Seafood Vacuum packaging involves removal of gas; whereas modified atmosphere packaging (MAP) involves altering the gaseous atmosphere inside the package. Both practices are encompassed under reducedoxygen packaging (ROP). The Food and Drug Administration (FDA) uses ROP as a general te rm to describe any hermetically sealed package where oxygen levels fall below atmospheric levels (2002). The FDA recommends specific measures to en sure safety of ROP seafood. After vacuum packaging, the remaining gase ous environment inside of the package becomes deficient in oxygen due to bacteria l metabolism (Daniels et al. 1985). This proves beneficial for controlling product s poilage from aerobic microbial growth in seafood (Baker and Genigeorgis 1990; Ek lund 1982; Post et al 1985). Aerobic microorganisms cannot flourish in a reducedoxygen environment, eliminating a major cause of spoilage found in seafood. In some cases, increased levels of carbon dioxide may further inhibit microbial growth through the reduction of pH caused by carbon dioxide gas dissolving in moist foods and c onverting into carbonic acid (Reddy et al 1992). Thus, a variety of gas flush combinations have been found to extend the shelf life of fresh seafood (Eklund 1982; Post et al. 1985; Reddy et al. 1992). However, under reduced-oxygen conditions Clostridium botulinum an aerobic microorganism, may be able to grow a nd produce toxins, causing ROP products to become hazardous (Eklund 1982). Heat treatme nts may not be sufficient to inactivate

PAGE 16

4 spores (Skinner and Larkin 1998). If C. botulinum spores are present in vacuumpackaged seafood, toxins can be produced befo re sensory deterioration, if the product is exposed to temperatures above 3.3C (Bak er and Genigeorgis 1990; Cann et al. 1965; Eklund 1982; Post et al. 1985; Reddy et al. 1996 1997; Skinner and Larkin 1998). Since stringent temperature control has been show n to adequately ensure safety, the FDA currently requires temperature monitoring of fresh foods that are packaged in reducedoxygen environments, as part of seafood-pr ocessing and distribution plans (FDA 2002). Time-Temperature Integrators (TTI) A time-temperature integrat or is a type of “smart ” label indicating, through nonreversible visible changes, the nature of its thermal exposure. Typically, changes are expressed as a visual respons e through color development and/or color movement. Timetemperature integrators have been categorized into either partial hi story or full history indicators based on their response mechanis m (Wells and Singh 1985). Partial history TTIs respond to temperatures that exceed a predetermined threshold and are most effective to detect severe temperature abus e. Full history TTIs respond to a complete range of times and temperatures and offer a means to compare different temperature histories. A number of TTIs have been described in the literature (ASTM 1996; Byrne 1976; Kramer and Farquahar 1976; Riva et al 2001; Skinner and Larkin 1998; Taoukis and Labuza 1989a; Wells and Singh 1988a, b, c). Ti me-temperature integrators have been evaluated with a number of perishable foods, such as chilled fish (Taoukis et al. 1999; Otwell 1997), dairy products (Chen and Zall 1987; Fu et al. 1991; Grisius et al. 1987; Shellhammer and Singh 1991), frozen beef (Rodriguez and Zaritzky 1983; Wells and Singh 1985), frozen vegetables (Giannakour ou and Taoukis 2002), and a variety of

PAGE 17

5 perishable and semiperishable foods includ ing tomatoes, wrapped lettuce, and canned fruitcake (Wells and Singh 1988b, c). Use of TTIs for MAP chilled foods was reviewed by Fu and Labuza (1992). Choosing a TTI to Monitor Thermal History of a Perishable Product Time-temperature integrators show time-temperature-dependent changes correlating to specific changes of food quality and/or food safety attributes undergoing dynamic thermal exposure (Shimoni et al. 2001; Taoukis and Labuza 1989b). Selection of appropriate time-temperatu re integrators depends on the effective reaction rate of a product. Taoukis and Labuza (1989a) defined an application scheme developed for TTI use as a food-quality product monitor when la cking knowledge of thermal history (Figure 2-1). Figure 2-1. Application scheme of TTIs as microbiological quality monitor (modified from Taoukis and Labuza 1989a. Applicabil ity of time-temperature indicators as shelf life monitors of food produc ts. J. Food Sci. 54 (4): 783-788). The application scheme could be modified to predict microbial quality and/or shelf life by using growth models and the kinetic ch aracteristics of TTIs (Fu et al. 1991). The

PAGE 18

6 left side of Figure 2-1 indi cates that TTI kinetics are required, basically giving an effective temperature, Teff, for a variable temperature distribution (Taoukis and Labuza 1989a, b). This Teff value is then used on the right side of the scheme representing microbial growth kinetics, using the same temperature dependence model to predict extent of microbial growth. To apply the schematic approach, knowledge of the physical characteristics of type of TTI is required. Physical characteristics ca n be translated to a response function of TTI kinetics which is sufficient to characterize TTI response. However, TTI design focusing solely on matching effective temperature may be technically correct, yet TTI behavior may be diff icult to interpret if the order of TTI color response and quality attri bute response are different (Welt et al. 2002). Skinner and Larkin Boundary It is well known that C. botulinum toxin forms faster at hi gher temperatures. The locus of lag times that results from different thermal conditions may represent a region whose boundary separates danger from safety. Development of an equation representing these boundary conditions of toxin formati on was first done by Baker and Genigeorgis (1990). Derived from over 1,800 studies of C. botulinum toxin formation under various conditions, the Baker and Geni georgis (1990) equation conser vatively describes the lag time (LT) for C. botulinum toxin formation. Skinner and Larkin (1998) simplified the Baker and Genigeorgis (1990) relati onship resulting in Equation 2-1. T t LT Log 1 74 2 ) ( 525 0 65 0 ) ( (2-1) where LT represents lag time in days for C. botulinum toxigenesis to occur, and T is temperature in degrees Celsius. A plot of Equation 2-1 is shown in Figure 2-2 and is referred to here as the “Skinner and Larkin Curve.”

PAGE 19

7 0 5 10 15 20 25 30 35 40 45 50 0510152025303540Temperature [ oC ]Lag Time (LT) to Toxin [days] Danger Zone Safe Zone Figure 2-2. Boundary for Clostridium botulinum toxin liberation over a range of various storage temperatures as defined by the Skinner and Larkin relationship (Eq. 21). The zone below the curve (Figure 2-2) represents “safe” conditions where C. botulinum toxin liberation has not be en observed. The zone above the curve represents potentially “dangerous” conditions wh ich could result in liberation of C. botulinum toxin. Equation 2-1 describes a conservative bounda ry between safe and dangerous handling conditions. This curve may provide a useful target for specifying TTI performance (Welt et al. 2003). Defining a target for TTI performance is vital to achieving accurate predictions. An overly conservative TTI response woul d often instruct ha ndlers to discard good product early. An improperly specified TTI response could result in consumption of hazardous product. Such errors could also occur when TTIs are interpreted improperly.

PAGE 20

8 Placement and Measurement of TTIs TTI placement is also vital to accuracy of time-temperature exposure. Heat transfer limitations based on the mass and weight of a product has been studied by Malcata (1990) to address thermal diffusivity from center to surface of food products. The study revealed that the quality function of food calculated by a surface mounted indicator is considerably larger than the act ual value of the quality functio n. Malcata found that in all cases TTI response was faster than actual food quality loss. Therefore, for the case of ROP food safety, the error of prediction w ill lie on the conservative side and would contribute to a low overall error from studyi ng outside surface temperature of a product as opposed to the center. Types of TTIs Previously, three commercially availabl e non-electronic TTIs are described in literature, including the (I) 3M Monitor Mark (3M, St. Paul, MN), (II) Vitsab TTI labels (Cox Technologies, Belmont, NC), and (III) Lifelin es Technologies (Morris Plains, NJ). The 3M Monitor Mark operates through a time-temperature dependent diffusion of a dyed fatty acid ester through a porous wick (Taoukis and Labuza 1989a). A barrier film between the dye ester and wick is pulled off and diffusion starts. The measurable response of the TTI is the advancing diffusi on front along the wick. The Monitor Mark is not being manufactured and is not currently available commercially. The second type of commercially av ailable TTI is the Vitsab TTI (Cox Technologies, Belmont, NC), based on the tech nology of I-Point TTI labels (I-Point technologies, Malmo, Sweden). A precursor to Vitsab TTIs, th e I-Point had a color change from green to yellow to red whereas the Vitsab TTIs change from green to yellow. However, both TTIs operate thr ough a change of pH based on a controlled

PAGE 21

9 enzymatic hydrolysis of a lipid substrate. Before activation, a barrier separates the proprietary lipase enzyme and pH indi cating dye from the enzyme substrate (triglyceride). The barrier is broken when pressure is applied and time-temperature dependent color changes begin. The third commercially available TTI is manufactured by Lifelines Technologies (Morris Plains, NJ). The Freshness Monito r was described and studied by Taoukis and Labuza (1989a, b) and Wells and Singh (1988b). This type of TTI is based on solid state polymerization of an acetylenic monomer that changes to an opaque polymer. Darkness or reflectance may be used to measure res ponse of color change as TTI changes from light to dark. Lifelines TTI s are active upon manufacture, th erefore cold transport and storage at or below -24oC are imperative. Also, TTI polym erization is affected by ultraviolet light. Lifelines TTIs are covered with a coating to block specific wavelengths, however exposure to direct light has been observed to quicken reaction times. Known kinetic parameters of the three TTIs are summarized by Taoukis and Labuza (1989a). Activation energies (Ea) of indicators cover the range of most deteriorative reactions in food. Research with Various Time-Temperature Integrators The objectives of this study were to (1) develop a method to interpret TTI response with an industry-standard hand-held color me ter, (2) estimate thermal kinetic parameters of TTIs in order to be able to predict res ponse given arbitrary ther mal histories, and (3) evaluate potential TTI candidates for use with ROP fresh seafood.

PAGE 22

10 CHAPTER 3 MATERIALS AND METHODS Time-Temperature Indicators Commercially available TTIs evaluated in this study were th e Vitsab Checkpoint M2-10, C2-10 labels (Cox Technologies, Belmont, NC) and Lifelines Fresh-Check TJ2 (Lifelines Technologies, Morris Plains, NJ). Respective suppliers recommend the M2-10 and Fresh-Check TJ2 for packaged seafood and the C2-10 for beef and dairy products. Avery Dennison provided several versions of prototype TTIs, that represent an exciting new technology that could cont ribute to the TTI industry. Vitsab TTIs The “M2-10” designation implie s that the TTI expires in 10 days at 2C. The C210 offers a similar expiration period, but with a different sensitivity to temperature. Vitsab M2-10 (Figure 3-1) and C2-10 (Figur e 3-2) TTIs are inactive until pressure is applied to break a barrier between two “ampoul es” and contents are mixed together. One ampoule contains a proprietary lipase enzyme and pH indicating dye while the other ampoule contains an enzyme s ubstrate (triglyceride). A gr een to yellow color change occurs as pH is lowered via liberation of fatty acids from triglyceride by the lipase enzyme. Since excess enzyme is present, reaction rate is governed primarily by temperature. Concentrations of lipase enzyme and triglyceride can be manipulated during manufacture to yield targeted activ ation energies, Ea, providing TTI design flexibility.

PAGE 23

11 Figure 3-1. Expired Vitsab C2 -10 TTI. Actual size is 2.2cm x 3.6cm, with a thickness of ~0.8mm. Figure 32. Fresh Vitsab M2 -10 TTI. Actual size is 2.2cm x 3.6cm, with a thickness of ~0.8mm. Lifelines Fresh-Check TTIs The Fresh-Check TTIs operate on a solid state polymerization reaction where a colorless acetylenic monomer polymerizes and becomes opaque. Measurable color change is darkness and occurs as the monomer polymerizes. Fresh-Check TTIs are active

PAGE 24

12 upon manufacture, therefore stor age at -24C before application is imperative. The Fresh-Check TJ2 (Figure 3-3) is red with a dark reference ring surrounding a “bull’s eye” center. These TTIs are considered to be expi red when the bull’s eye center color matches the reference ring. A fresh TTI appears to have a “light” center, where a used FreshCheck TTI appears to have a “dark” center. Figure 3-3. Expired Lifeline's Fresh-Check I ndicator TTI. Actual dimensions are 2.2cm by 3.5cm. Avery Dennison TTIs Prototype TTIs evaluated in this st udy were the Avery Dennison TT Sensor indicator labels T126(1), T126(2), T126(4) and activator labels T80(20) (Avery Dennison, Paynesville, OH) (Figure 3-4) Avery Dennison TTIs operate through a diffusion based reaction where color change is sensitive to pH. The clear activator label supplies an acidic substance, which diffuse s into the indicator label, causing an irreversible color change. Avery Dennison TTI s are inactive until clear activation tape is applied and diffusion begins. A freshly activated TTI appears yellow, while a completely used TTI appears pink.

PAGE 25

13 Figure 3-4. Inactive Avery De nnison prototype TT Sensor TTI Actual dimensions are 2.5cm by 5.1cm. Trials All TTIs were tested for performance in re lation to the Skinner and Larkin Curve. Both Vitsab and Lifelines TTIs were delivered in cooled insulated cases, Lifelines TTIs were packed in dry ice and Vitsab TTIs were packed with freezer ge l packs. These TTIs were transferred to a –35F fr eezer at the University of Florida. For each experiment, TTIs were transported on ice in a cooler Inactivated TTIs from Avery Dennison are stable at room temperature, eliminating the n eed for cold storage and transport. Trials were conducted in programmable environmental chambers (Models 156A-E and 157, Environmental Growth Chambers, Chagrin Falls OH) (Figure 3-5a, b) Four Vitsab C210, four Vitsab M2-10, five Fresh-Check TJ 2 labels, and five each of Avery Dennison T126(1), T126(2), and T126(4) TTIs were mount ed on laminated paper strips (Figure 36) and exposed to isothermal conditions at 0, 5, 10, and 15C. A digital microscope (Figure 3-7) was used to capture pictures (ten times magnifica tion) of TTIs for reference. Hunter Gardner tristimulus (L *a*b*) color scale readings (Appendix) were collected

PAGE 26

14 periodically by a BYK Gardner ColorGuide hand-held spectrophotometer (BYK Gardner USA, Columbia, MD) (Figure 3-8). Figure 3-5. Environmental gr owth chambers capable of precision temperature control. A) One of six chambers used for isothermal and dynamic trials. B) Chamber display panel indicating temperature a nd relative humidity inside chamber. Figure 3-6. Time-temperature integrator s mounted on laminated paper strips for isothermal experiments inside of environmental growth chambers. Figure 3-7. Color pictures were coll ected daily for TTIs subjected to 5oC isothermal conditions. A B

PAGE 27

15 Figure 3-8. Hand-held spectrophotomete r used to acquire L*a*b* readings. Color change was converted to percent response versus time based on a method developed to determine color change designa ted as endpoints for all TTIs. Slopes of response trends provided isot hermal reaction rate consta nts, which were used to determine Arrhenius kinetic parameters. Time-temperature integrators were then exposed to dynamic thermal conditions in programmable environmental chambers. For dynamic thermal exposures TTIs were mounted on aluminum discs (Figure 3-9). Two dynamic thermal profiles (Figure 3-10) were used in which one chamber was programmed to rise in temperature from 1 to 9C and then back to 1C over a period of 150 h. Another chamber was programmed to rise in temperature from 3 to 11C and then back down to 3C, twice over a period of 120 h for Vitsab TTIs and twice over a period of 150 hrs for Lifelines TTIs. Dynamic th ermal profiles were based on equation 3-1: p a bT t T T t T2 sin ) (2 (3-1)

PAGE 28

16 where Tb is the base temperature, Ta the amplitude and Tp the period. Actual thermal histories of the environmental chambers were used in conjunction with Arrhenius parameters to compare predicted to actual TTI responses. Figure 3-9. Time-temperature integrator s mounted on aluminum discs for dynamic thermal exposures. 0 2 4 6 8 10 12 0255075100125150Time (hours)Temperature (oC) Dynamic Experiment 1 Dynamic Experiment 2 Figure 3-10. Dynamic thermal conditions for TTI exposure. Data Analysis Measuring Response of Vitsab TTIs While Vitsab TTIs were still green, L*a*b* color scale readings did not progress in a consistent manner to indicate accumulating re sponse. This rendered previous methods

PAGE 29

17 of evaluating such TTIs inapplicable. Ther efore a method was developed to determine the useful endpoint of the color change. Valu es of L*a*b* were plotted in 3-dimensional space with L*a*b* values corresponding to Cartesian xyz axis as follows: a x (green to red); b y (blue to yellow), L z (light to dark). Multiple measurements of TTIs were plotted throughout their useful ranges. Plots of L*a*b revealed expected paths of TTIs through 3-D color space. At each point of a TTI’s response, a vector was drawn from the origin to the point on the TTI curve. The angle between two vectors, such as the initial vector (Fresh TTI) and some other vector can be determined by using the dot product equation (Eq. 3-2). w v w v cos (3-2) where v and w are vectors, and is the angle between vectors v and w. Angles between initial and subsequent readings were comp ared to manufacturer specified endpoints in order to identify the angle that repr esented the end of a TTIs response. Plotting angle difference versus time expos es three trends that parallel visual observation of the TTIs color change (Figur e 3-11). Immediately following activation, TTIs exhibit a green trend where visual ch ange is minimal. A transition period immediately follows where a constant transi tion from green to yellow occurs. During this period, TTI color gradually becomes more yellow and less green. A final color trend follows when TTI color has reached a light ye llow color and slightly changes to a dark yellow color. Endpoints at this yellow stat e would be far beyond a useful time frame for ROP seafood. An endpoint that coincided with the manufacturer’ s M2-10 specification occurred during transition from green to yell ow. The angle between the initial vector (fresh TTI) and the vector co rresponding to the endpoint at a given condition was about 9

PAGE 30

18 degrees. Vitsab TTI L*a*b* values can be corresponded to angle of difference (Table 31). 0 3 6 9 12 15 18 21 0100200300400500Time [h]Angle Difference [ o ] Green Trend Transition Period Yellow Trend Figure 3-11. Three trends are exposed when a ngle differences of color change are plotted for Vitsab TTIs with 9o cutoff marking endpoint. Table 3-1. Typical color scale readings fo r Vitsab TTIs occuring at the beginning of specific trends in color change. OL*a*b*L*a*b* Green trend0.040.9-11.627.439.2-11.224.8 Transition period4.040.8-10.327.336.7-7.625.7 9o difference 9.044.8-7.234.544.4-6.035.3 Yellow trend15.051.4-2.146.541.9-2.037.3 Vitsab M2-10 C 0C Vitsab C2-10 B 0C Once the endpoint was established, TTI co lor change as percent response of lag time (LT) remaining, could be determined fo r kinetic parameter estimation. Taoukis and Labuza (1989a 1989b) observed a continuous co lor change with a colorimeter utilizing

PAGE 31

19 only the “a” value of the tris timulus reading, which descri bes colors ranging from green to red. However, in this st udy, all three tri-stimul us values were used. Linear distance between two L*a*b* readings is obtained by Equation 3-3. 2 2 1 2 2 1 2 2 1* * * b b a a L L E (3-3) where E is the total color distance between vector tips of vectors 1 and 2, and L, a, and b values are color values obtained from th e colorimeter. After determining endpoint through angle difference, each TTI reading can be converted into “accomplished distance” by dividing the current distance from the standing position by the overall distance. When plotted against time, this may be interpreted as “percent of total TTI response.” Measuring Response of Lifelines TTIs Literature describes Lifelines TTIs exhibi ting pseudo-first order kinetic parameters (Fu et al. 1991; Taoukis and Labuza 1989a, b). However, from application until time when center matches the preprinted referen ce ring, it was found that color change could be modeled using a pseudo-zero order kinetics. This proves useful to industry because TTI response rate can be correlated to visual change. Lifelines TTIs color change may be measured by degree of darkness. Equation 3-3 wa s adapted to describe light to dark color change of the L* value (Eq. 3-4). Percent of total response was calculated similarly to Vitsab TTIs with cutoff endpoint occurring wh en L* value of the center matched the TTIs reference ring. 2 2 1* L L E (3-4)

PAGE 32

20 Measuring Response of Avery Dennison TTIs Kinetic parameter estimation was done with methods for diffusion based TTIs established by Taoukis and Labuza (1989a). Ho wever, in this case diffusion was based on the normalized a* values instead of diffusion along a wick (Taoukis and Labuza 1989a). Arrhenius Analysis of TTIs Arrhenius kinetic parameters were estimated for each TTI using traditional isothermal experiments (Eq. 3-5). RT E oae k k (3-5) where k is the reaction rate constant, ko is the Arrhenius pre-exponential constant, Ea is activation energy, R is the ideal gas law c onstant, and T is absolute temperature. Reaction rate constants, k, for each isotherm al exposure were determined for all TTIs. Plotting ln(k) versus the inverse ab solute temperature provides the ko and Ea of each TTI where linear regression are de scribed by Eq. 3-6 and provide parameters to predict cumulative response to dynamic thermal trials. absolute a oT R E k k 1 ) ln( ) ln( (3-6.)

PAGE 33

21 CHAPTER 4 RESULTS AND DISCUSSION Results of Isothermal Trials Commercial TTIs Color response of the Vitsab M2-10, Vitsab C2-10 and Lifelines Fresh-Check are shown in Figure 4-1, 4-2 and 4-3, respectivel y. Results of isothermal experiments for commercial Vitsab and Lifelines TTIs at 0, 5, 10, and 15C are shown in Table 4-1. Arrhenius parameters based on isothermal experiments are shown in Table 4-2. Figure 4-1. Color response of the Vitsab M2-10 TTI from ac tivation to endpoint. Figure 4-2. Color response of the Vitsab C2-10 TTI from activation to endpoint. Figure 4-3. Color response of the Lifelines Fresh-Check TTI from activation to endpoint. Table 4-1. Performance of the Vitsab Chec kpoint M2-10 Vitsab C2-10, and Lifelines TJ2 TTIs during isothermal exposures of 0, 5, 10, and 15C [oC]k [hr-1]R2k [hr-1]R2k [hr-1]R20+-0.3340.3030.9840.4070.9810.2110.968 5+-0.6350.5610.7600.5900.9620.4730.977 10+-0.1101.3140.9041.0200.9140.9230.983 15+-0.1022.8400.9231.7060.9321.7880.980 Lifelines TJ2 SD[oC] TemperatureVitsab M2-10Vitsab C2-10

PAGE 34

22 Table 4-2. Arrhenius kinetic parameters of the Vitsab Checkpoint M2 -10, Vitsab C2-10, and Lifelines TJ2 TTIs. Ea Ea 95%CLkoko 95%CL R 2 Vitsab M2-1023.603[18.231-28.97 5]5.368E+19[3.479E+15-8.283E+23]0.994 Vitsab C2-1015.129[10.845-19.41 3]1.199E+13[5.476E+09-2.626E+16]0.991 Lifelines TJ222.881[19.815-24.47 9]1.144E+17[1.743E+15-7.509E+18]0.999 [Kcal/mol K][%LT/day] Response was plotted against time for each isothermal exposure for commercial TTIs: Vitsab M2-10 (Figure 4-4), Vitsab C2 -10 (Figure 4-5), and Lifelines Fresh-Check TJ2 (Figure 4-6). 0 20 40 60 80 100 050100150200250Time [h]Amount LT Remaining [%]0oC 5oC 10oC 15oC Figure 4-4: Vitsab C2-10 isotherm al results for four TTIs at 15 ( ), 10 ( ), 5 ( ), and 0C ( ).

PAGE 35

23 0 20 40 60 80 100 050100150200250Time [h]Amount LT Remaining [%]0oC 5oC 10oC 15oC Figure 4-5: Vitsab M2-10 isotherm al results for four TTIs at 15 ( ), 10 ( ), 5 ( ), and 0C ( ). 0 20 40 60 80 100 050100150200250300350400450Time [h]Amount LT Remaining (%)15oC 0oC 5oC 10oC Figure 4-6. Lifelines Fresh-Check isot hermal results for five TTIs at 15 ( ), 10 ( ), 5 ( ), and 0C ( ).

PAGE 36

24 Prototype TTIs Color response of the prototype Avery TTIs T126(1), T126(2) and T126(4) at 5C are shown in Figure 4-7, 4-8 a nd 4-9, respectively. Results of isothermal experiments for prototype Avery TTIs at 0, 5, 10, and 15C yielded rate constants at each temperature (Table 4-3). Arrhenius parameters based on isothermal experiments are shown in Table 4-3. Figure 4-7. Color response of the Aver y Denison T126(1) at 5C over 12 days. Figure 4-8. Color response of the Aver y Denison T126(2) at 5C over 10 days. Figure 4-9. Color response of the Aver y Denison T126(4) at 5C over 10 days. Table 4-1. Performance of the Avery De nnison T126(1), T126(2) and T126(4) TTIs during isothermal exposures of 0, 5, 10, and 15C. [oC]k [hr-1]R2k [hr-1]R2k [hr-1]R20+-0.3341.313E-030.9832.223E-030.9861.926E-030.974 5+-0.6353.772E-030.9816.260E-030.9776.304E-030.974 10 +0.1108.237E-030.9841.458E-020.9931.797E-020.996 15+-0.1028.237E-030.9844.307E-020.9924.498E-020.988 SD [oC] T126(2) TemperatureT126(1)T126(4)

PAGE 37

25 Table 4-2. Arrhenius kinetic parameters of Avery Dennison T126(1), T126(2) and T126(4) TTIs. Ea Ea 95%CLkoko 95%CL R 2 T126(1)32.883[20.337-45.429]2.525E+23[4.225E+13-1.510E+33]0.985 T126(2)30.449[25.682-35.215]5.093E+21[9.832E+17-2.638E+25]0.997 T126(4)32.864 [28.759-36.970]4.004E+23[2.532E+20-6.333E+26]0.998 [Kcal/mol K][%LT/day] Avery Dennison TTIs operate through a di ffusion based process. Equation 4-1 describes the diffusion process (Crank 1975) and was adapted by Taoukis and Labuza (1989a, b) for the study of another diffusion based TTI. 2 / 1 *2Dt X erf c ce o (4-1) where co is the original concentration at the origin, c* is the concentration at the visible distance X, t is the time X is meas ured, D is the diffusivity, and erfe is the complementary error function (Taoukis and Labuza 1989a). Taoukis a nd Labuza (1989a) rearranged equation 4-1 to give X as a function of time: 2 / 1 1 2 / 12 t c c erf D Xo e (4-2) where the term inside the bracket is consta nt for a constant temperature allowing the rewritten form: kt X X F 2) ( (4-3) Therefore plotting X2 over time provides a straight line. Response was plotted against time for each isothermal exposure for prototype TTIs: Avery Dennison T126(1) (Figure 4-4), Avery Dennison T126(2) (Figure 4-6), and Avery Dennison T126(4) (Figure 4-7).

PAGE 38

26 0.0 0.2 0.4 0.6 0.8 1.0 050100150200250300350400450Time [h]X20oC 15oC 10oC 5oC Figure 4-10. Avery Dennison T126(1) isot hermal results for five TTIs at 15 ( ), 10 ( ), 5 ( ), and 0C ( ). 0.0 0.2 0.4 0.6 0.8 1.0 050100150200250300350400450Time [h]X20oC 15oC 10oC 5oC Figure 4-11. Avery Dennison T126(2) isot hermal results for five TTIs at 15 ( ), 10 ( ), 5 ( ), and 0C ( ).

PAGE 39

27 0.0 0.2 0.4 0.6 0.8 1.0 050100150200250300350400450Time [h]X20oC 15oC 10oC 5oC Figure 4-12. Avery Dennison T126(4) isot hermal results for five TTIs at 15 ( ), 10 ( ), 5 ( ), and 0C ( ). Arrhenius Response of TTIs Commercial TTIs By converting the Skinner and Larkin curv e into the A rrhenius form (Welt et al. 2003), direct comparisons between TTI perfor mance and Skinner and Larkin Arrhenius curve may be made (Figure 4-13). Such comparisons provide a way to determine how well a TTI will perform relative to safety from botulinum toxin. Using the assumption that consumption of lag-time follows zeroorder kinetics, pseudo zero order TTI rate constants can be directly compared to rate loss of lag-time.

PAGE 40

28 -2 -1 0 1 2 3 4 53.473.523.573.623.671/T*1000 [1/K]ln (k) C2-10 M2-10 TJ2 S & L (1998) Figure 4-13. Arrhenius plot of all TTIs ag ainst the Arrhenius modified Skinner and Larkin’s lag time. Arrhenius plot of M2-10 ( ), C2-10( ), and TJ2 () against Skinner and Larkin's lag time to C. botulinum ( ) toxigenesis. Thus, when comparing rates of change points occurring below the Arrhenius modified Skinner and Larkin C. botulinum curve represent rates that are slower than consumption of lag-time (dangerous). Above th e curve, rates are faster than consumption of lag-time (conservative). Therefore, TTIs s hould have a faster rate of change than consumption of lag time, which means TTI pe rformance should approach the Skinner and Larkin’s C. botulinum curve from above (Welt et al. 2003). Figure 4-13 immediately shows that the Lifelines TTIs studied have a slower rate of change than Skinner and Larkin’s (1998) lag time, suggesting that th ey would not be suitable for ROP seafood. Figure 4-13 shows that both Vitsab TTIs tr ack fairly closely with the Skinner and Larkin Arrhenius curve. Add itionally, both Vitsab TTI curves crossed slightly below the Skinner and Larkin Arrhenius curve. The C2 -10 and M2-10 crossed at 6.3C and 7.1C, respectively. This suggests that these TTIs ma y fail to read conserva tively at conditions

PAGE 41

29 above these temperatures. However, this appare nt danger is mitigated by the fact that at such abusive conditions the difference in ti ming between the TTI reading and potential danger would be relatively short. Additionally, the Skinner and Larkin curve is recognized to be extremely conservative. Th erefore, it is likely that under “normal” handling conditions, the Vitsab M2-10 would likely serve as a succes sful indicator of botulinum safety in ROP seafood. Prototype TTIs Avery-Dennison TTI response was converted into the Arrhenius form (Figure 414). Figure 4-14 show similar slopes for a ll three TTIs indicating similar activation energies corresponding to Table 4-4. Rates of change are slowest for the T126(1) and faster for the T124(2) and T126(4). Howeve r, the Avery-Dennison T126(2) and T126(4) cross at 5C. Therefore rates of change are faster for the T126(4) than the T126(2) below 5C and faster for the T126(2) than the T126(4) above 5C. -7 -6 -5 -4 -3 -2 -1 0 3.473.523.573.623.671/T 1000 [1/K]ln(k) T126(1) T126(4) T126(2) Figure 4-14. Arrhenius plot of first order Avery Dennison TTIs: T126(1) ( ), T126(2) ( ), and T126(4) ( ).

PAGE 42

30 Results of Dynamic Thermal Trials Dynamic thermal trials revealed that Arrhenius parameters calculated from isothermal experiments were fairly good in predicting TTI performance (Figures 4-15, 416, 4-17, 4-18, and 4-19). Predictions for th e commercial TTIs were generally better than for the prototype TTIs. However, actual read ings tended to be more conservative than predictions. Dynamic thermal response of Lifelines Fresh-Check TJ2 supported kinetic parameter predictions that response rate woul d be slower than that of Vitsab TTIs and Skinner and Larkin predictions. Endpoints of actual TTI response for Vits ab M2-10, Avery Dennison T126(2) and T126(4) correlated well with endpoint of lag time for both dynamic thermal experiments and suggest safe use with MAP seafood products. Discussion Vitsab C2-10 and M2-10 It was found that the method developed to predict behavior of Vitsab M2-10 and C2-10 TTIs was flawed due to actual TTI be havior. Although isothermal response plots (Figures 4-4 and 4-5) show well behaved stra ight lines, Figure 4-20 clearly shows that it would be impossible for an observer to differe ntiate between a fres h TTI and one exposed at 5C for 150 hours. Taoukis and Labuza (1989a, b) observed a smooth sigmoidal function; however this method failed for a sim ilar reason. Trends in Figure 3-11 reveal that no significant accomplishment of angle diffe rence occurred during the initially green trend. This means that measurement at a ny given time before transition will not alert users as to what percent of lag time is remaining.

PAGE 43

31 0 2 4 6 8 10 12024487296120144Time [h]Temperature [oC ]0 20 40 60 80 100 Temperature LT C. Botulinum C2-10 Predicted C2-10 Actual M2-10 Predicted M2-10 Actual Fresh-Check Predicted Fresh-Check ActualAmount of LT Remaining [%]M2-10 C2-10 TJ2 Figure 4-15. First dynamic thermal exposure with actual and predic ted commercial TTI performance relative to the Skinner and Larkin lag time curve. Actual plot of M2-10 ( ), C2-10( ), and TJ2 () against Skinner and Larkin's lag time to C. botulinum ( ) toxigenesis, actual temperature response ( ), and predictions of M2-10 (), C2-10( ), and TJ2 ( – ) based on Arrhenius parameters.

PAGE 44

32 0 2 4 6 8 10 12 024487296120144 Time (hours)Temperature (oC)0 20 40 60 80 100Amount LT Remaining (%) Temperature LT C. Botulinum T126#1 Predicted T126#1 Actual T126#2 Predicted T126#2 Actual T126#4 Predicted T126#4 ActualT126(1) T126(2) T126(4) Figure 4-16 First dynamic thermal exposure with actual and predicted prototype TTI perf ormance relative to the Skinner and Lark in lag time curve. Actual plot of T126(1) ( ), T126(2) ( ),and T126(4) ( )against Skinner and Larkin's lag time to C. botulinum ( ) toxigenesis, actual temperature response ( ), and predictions of T126(1) ( ), T126(2) ( – ), and T126(4) ( ) based on Arrhenius parameters.

PAGE 45

33 0 2 4 6 8 10 12 024487296120Time [h]Temperature [oC ]0 20 40 60 80 100 Temperature LT C. Botulinum C2-10 Predicted C2-10 Actual M2-10 Predicted M2-10 ActualAmount of LT Remaining [%]M2-10 C2-10 Figure 4-17. Second dynamic thermal exposure w ith actual and predicted co mmercial Vitsab TTI performa nce relative to the Skinne r and Larkin lag time curve. Actual plot of M2-10 ( ) and C2-10( ) against Skinner and Larkin's lag time to C. botulinum ( ) toxigenesis, actual temperature response ( ), and predictions of M2-10 () and C2-10( ) based on Arrhenius parameters.

PAGE 46

34 0 2 4 6 8 10 12 050100Time [h]Temperature [oC ]0 20 40 60 80 100 Temperature LT C. Botulinum Lifelines Predicted Lifelines ActualAmount of LT Remainin g [%]TJ2 Figure 4-18. Second dynamic thermal exposur e with actual and predicted commercial Li feline TTI performance relative to the Skinner and Larkin lag time cu rve. Actual plot of TJ2 () against Skinner and Larkin's lag time to C. botulinum ( ) toxigenesis, actual te mperature response ( ), and prediction of TJ2 ( – ) based on Arrhenius parameters.

PAGE 47

35 0 2 4 6 8 10 12024487296120144Time (hours)Temperature (oC)0 20 40 60 80 100Amount LT Remaining (%) Temp LT C. Bot T126#1 Pred T126#1 Act T126#2 Pred T126#2 Act T126#4 Pred T126#4 Act T126(1) T126(2) T 126 ( 4 ) Figure 4-19. Second dynamic thermal exposure w ith actual and predicted pr ototype TTI performance relative to the Skinner and Larkin lag time curve. Actual plot of T126(1) ( ), T126(2) ( ),and T126(4) ( )against Skinner and Larkin's lag time to C. botulinum ( ) toxigenesis, actual temperature response ( ), and predictions of T126(1) ( ), T126(2) ( – ), and T126(4) ( ) based on Arrhenius parameters.

PAGE 48

36 Figure 4-20. Illustration of method used to describe Vitsab TTI response in a three dimensional color space. There is no apparent change in color during the initial green trend. Therefore use of an apparently successful, but failed approach to determine change of Vitsab TTIs was found to be inapplicab le. Ideally, measurements should progress consistently from start to finish. However, actual behavior suggests th at the initial vector “jumps around” during the green period result ing in accumulated distance, but no actual progress towards the final vector occurs. However, isothermal, Arrhenius, and dynamic parameters were calculated through Eq. 3-3 so response rates are correct because original endpoint of nine degrees of vector ch ange correlates w ith visual endpoint. Therefore it is recommended that Vitsab TTI s be considered as partial history, or go/no go indicators. Dynamic trials suggest that Vitsab C2-10 a nd M2-10 TTIs endpoint of visual color change are conservative to Skinner and Larkin’s (1998) lag time. However, color of TTI will not correlate to amount of lag time remaining.

PAGE 49

37 Lifelines Fresh-Check TJ2 Existing methods for measuring Lifelines TTI s involve an optical wand with a cyan filter provided by manufacturer. For this study, response was measured by a common hand-held spectrophotometer (BYK Garner Color Guide). Discussions with the manufacturer suggest TTI response proceeds beyond the darkness of the reference ring by about twenty-five percent. In previous studi es researchers used first order kinetics to model the Lifelines TTI (Fu et al. 1991; Taouki s and Labuza 1989a, b). In this study, the Lifelines TTIs were considered expired when the center color matched the reference ring. It is well known that first order proce sses may be modeled as zero order when considering partial response (Figure 4-21). This may explain observed pseudo-zero order behavior for this TTI in this study. Figure 4-21. Zero order vers us first order response.

PAGE 50

38 It is also important to note that exposure of Lifelines TTIs to sunlight or bright direct light tends to accelerate the po lymerization reaction which quickens reaction response kinetics. This may prove difficult fo r industry, because direct lighting is often essential in various practices of distribution and retail handl ing. Lifelines Technologies does apply a coating to protect from ultra-violet li ght exposure, however initial trials in this study exhibited accelerated responses fr om uncontrolled lighting in environmental chambers. Figure 4-22 shows isothermal resp onse of Lifelines TTIs under minimal and constant direct lighting conditi ons at 0 and 5C. Therefore, in this study, care was taken to minimize exposure of Lifelines TTIs to light. 0 20 40 60 80 100 050100150200250300350400450Time [h]Amount LT Remaining (%)0oC 5oC Figure 4-22. Isothermal response of Lifelines Fresh-Check TJ2 TTIs exposed to direct light (red) versus no light exposure (blue) at 5C ( ) and 0C ( ).

PAGE 51

39 Avery Dennison Prototype TTIs Avery Dennison prototype TTIs offer bene fits over Vitsab and Lifelines TTIs because of easy visual color perception and an insensitivity to temperature prior to activation. The distinct yellow to pink colo r change is continuous, thus visual response was found to be predictable through Taouki s and Labuza’s method for diffusion based TTIs (1989a, b). Since Avery Dennison TTIs start of reaction is controlled through application of activation tape, cold transpor t of TTIs prior to activation is elimated.

PAGE 52

40 CHAPTER 5 SUMMARY AND CONCLUSIONS Temperature control during stor age and distribution is a pr incipal factor influencing quality and safety of fresh seafood packed in reduced oxygen packaging (ROP). For ROP seafood, a major food safety concern i nvolves the naturally occurring anaerobic Clostridium botulinum type E. The United States Food and Drug Administration (FDA) suggests conditions favorable to toxin formation are likely to occur within the distribution channel, and recommends the use of time-t emperature integrators that can visually indicate exposure to abusive time-temperature combinations, as means to monitor and control product safety. A time-temperature integrator (TTI) is a t ype of “smart” label indicating the nature of its thermal exposure typi cally through nonreversible colo r development. Ideally, selected TTIs can show time-temperature de pendent changes correlating to changes of food quality and/or safety attributes unde rgoing dynamic thermal exposure. Six TTIs were tested for their suitability with ROP seafood. Three commercially available TTIs studied were Vitsab M2-10, Vitsab C2-10, and Lifelines Fresh Check TJ2. Three prototype TTIs evaluated were the Avery Dennison T126(1), T126(2), and T126(4). Methods to convert TTI read ings to response rates were developed or adopted for monitoring thermal response of TTIs. Once TTI response was accurately modeled, ki netic parameters were attained and if appropriate, compared to Skinner and Lark in’s (1998) equation for lag time until Clostridium botulinum toxigenesis. Isothermal experime nts at 0, 5, 10, and 15C for all

PAGE 53

41 TTIs provided isothermal rate constants, k. Rate constants were then converted to Arrhenius form to yield activation energies, Ea, and the Arrhenius pre-exponential constant, ko. Arrhenius parameters were then used to model predictions of TTI response and compared to dynamic thermal experiments. Computer modeling of TTI response corre lated fairly well with experimental observation. Actual readings of all TTIs tende d to be conservative to predicted responses based on Arrhenius parameters. Endpoints of actual TTI response for Vitsab M2-10, Avery Dennison T126(2) and T126(4) correlated well with endpoint of lag time for both dynamic thermal experiments and suggest safe use with ROP seafood products. The Vitsab C2-10 and M2-10 TTIs were found to be more appropriately categorized as partial histor y indicators. Color response of the Vitsab TTIs showed no apparent progress until just before transiti oning from green to yellow. This makes differentiating a freshly activated TTI and a TTI about to transition to yellow difficult. Although Vitsab TTIs expire in a predictable fashion, it is not necessarily possible to estimate time-to-expiration by observing the TTI. Therefore, thermal histories cannot be correlated to visual display of TTI. It was found that zero order kinetics coul d be used to model the Lifelines Fresh Check TTIs. Defining the endpoint as the darkness level of the TTI’s reference ring yields a zero order response. This provides the added benefit that a similar amount of progress may be expected in similar amounts of time under similar conditions. This is likely to be more desirable than a first or der response where increas ingly long periods are required to show a given amount of response. This is useful for industry because interpretation does not require prior knowledge of TTI kineti cs. However, a shortcoming

PAGE 54

42 of the Lifelines TTI is its sensitivity to light Inadvertent exposure to agricultural growth lamps during this study resulted in accelerated responses. Ultra violet protective coatings are applied to the TTI but may not be enough to prevent an acceler ated response in the advent of extreme exposure. Avery Dennison prototype TTIs are a new type of diffusion based TTI technology that are easily modeled by published methods (Taoukis and Labuza 1989a,b). Predictions during dynamic thermal exposure match fairly well, and color change is continuous throughout the useful range of the TTI. Thes e prototype TTIs have the advantage of being stable at ambient temperatures before activation, eliminating the need for cold storage or transport. In conclusion, TTIs can serve as a potentia l solution to regulator y concerns dealing with ROP seafood. Devices used to monitor time and temperature are just part of a solution to monitor thermal hist ories. Data collection, data sharing, chain of custody and ultimate responsibility for product safety ar e all important and related issues when dealing with time and temperature dependent safety issues.

PAGE 55

43 APPENDIX RAW DATA Raw data collected from the BYK Gardner Color Guide hand-held spectrophotometer. Data is presented by TTI, with time of acquisition and total time elapsed on the left. L*a*b* values are li sted for individual TTI reading for each isothermal and dynamic experiment. Time is measured in decimal hours. Highlighted data denotes endpoint achieved. Many m easurements are taken far beyond endpoint. Table A-1. Vitsab C2 -10 0C color values. 0oC RunDate/TimeTIMEL*a*b*L*a*b*L*a*b*L*a*b* 108/01/02 11:08:53a m 0.0043.88-11.6528.9740.94-11.6027.4439.86-12.1326.3641.18-11.4825.77 208/01/02 10:48:23p m 11.9337.32-12.3928.3541.34-11.4325.3838.94-12.3226.4843.35-11.7027.35 308/02/02 10:53:17a m 24.0238.74-11.8628.6041.67-12.1526.9339.63-12.9527.8641.37-12.8126.00 408/02/02 11:56:55p m 37.0039.16-10.9627.5241.14-11.0425.5341.85-12.5027.6938.67-12.9631.44 508/03/02 01:10:15p m 50.1042.61-11.8528.5941.97-11.9526.9441.89-11.9628.0940.29-11.2326.83 608/04/02 01:02:16a m 62.1039.46-11.3427.3138.69-11.6426.4141.46-12.0427.3543.06-12.2226.63 708/04/02 12:39:44p m 73.7237.62-11.5227.1241.98-11.9128.8444.35-13.0928.2439.80-11.2426.46 808/04/02 11:32:16p m 84.6238.58-11.1626.9040.66-11.8227.1738.99-11.5627.5838.76-11.4025.62 908/05/02 09:42:17a m 94.7844.71-12.2028.0945.93-11.4928.4444.94-12.7228.4244.24-11.5926.94 1008/05/02 11:01:17p m 108.0044.18-12.2730.0439.97-11.4227.2942.08-11.7627.1140.00-11.0626.76 1108/06/02 09:27:26a m 118.4843.38-12.0330.4641.28-12.0128.7940.20-12.2728.6140.57-10.9627.94 1208/07/02 01:17:16a m 134.3540.85-11.2728.1642.85-11.2727.1440.54-11.9529.3241.76-12.1128.27 1308/07/02 10:16:04a m 143.1541.84-11.0628.4744.35-10.9327.9143.05-11.7528.1941.26-11.4628.43 1408/08/02 01:00:48a m 158.0837.40-10.0923.6940.35-10.7325.6640.98-11.9527.4345.02-11.9328.54 1508/08/02 10:46:11a m 167.8037.44-10.2024.6143.06-11.2129.4841.32-11.9827.8841.76-10.9729.63 1608/08/02 10:05:57p m 179.1835.97-9.3523.8840.77-10.2627.2740.07-11.9129.1940.96-10.1330.31 1708/09/02 10:42:49a m 191.7745.04-10.4929.7043.14-10.9630.3542.96-11.6131.0043.32-9.4631.91 1808/09/02 10:23:24p m 203.4740.10-9.5828.5845.71-9.8730.3243.61-10.6630.3842.81-9.3431.06 1908/10/02 01:58:02p m 219.0339.49-9.6628.6045.57-9.6829.5945.11-9.5229.7838.09-7.2628.91 2008/10/02 11:52:25p m 228.9741.68-9.5233.1146.68-8.3634.2844.04-8.7932.3644.40-6.2037.06 2108/11/02 12:43:55p m 241.7741.25-8.3533.4143.54-6.7233.4045.75-7.8235.8046.64-4.3841.38 2208/11/02 09:32:47p m 250.6542.83-6.8034.8946.95-7.1838.4047.41-6.9936.6147.47-3.4041.32 2308/12/02 10:00:32a m 262.9744.63-4.7638.6149.04-5.9543.0149.81-4.4838.2450.27-1.1645.15 2408/12/02 09:40:18p m 274.7346.30-4.0143.3350.48-3.8943.9948.95-3.6143.8049.11-1.2945.39 2508/13/02 10:40:08a m 287.7250.22-1.5746.6651.44-2.1346.4643.80-0.7740.4444.640.1446.35 2608/13/02 10:37:06p m 299.6850.70-0.2550.5647.650.7850.1752.90-1.5347.9252.881.1148.82 2708/14/02 10:01:23a m 311.0751.170.7950.1751.201.3947.3452.74-1.2748.7153.042.0251.52 2808/14/02 10:14:49p m 323.2848.512.2954.8152.210.5652.9751.540.2548.1051.671.3654.83 2908/15/02 11:42:10a m 336.7856.991.2653.0959.02-2.0748.8658.89-2.0749.3258.82-0.9352.86 C2-10AC2-10BC2-10CC2-10D

PAGE 56

44 Table A-2. Vitsab C2 -10 5C color values. 5 o C RunDate/TimeTIMEL*a* b *L*a* b *L*a* b *L*a* b 108/12/02 02:27:27p m 0.0040.75-10.7827.7242.86-12.1130.7647.58-11.5229.6147.87-11.4129.95 208/12/02 09:42:09p m 7.4041.33-10.3326.1637.84-10.3325.9242.49-11.0727.7540.05-11.9729.76 308/13/02 10:41:39a m 20.4243.58-10.7628.5143.48-11.3729.7346.21-11.0428.2947.80-11.0829.07 408/13/02 10:38:31p m 32.3741.68-10.4129.3642.64-10.9730.8841.96-11.3731.3546.03-10.8529.36 508/14/02 10:02:43a m 43.7542.52-10.9730.4444.82-10.8930.3947.87-11.2030.4447.65-10.6129.61 608/14/02 10:16:27p m 55.9745.60-10.5230.4145.25-11.3131.7548.06-11.1531.6346.84-11.0331.87 708/15/02 11:46:43a m 69.4745.09-10.3030.5845.09-11.5034.0547.30-10.3030.5847.34-10.4031.63 808/15/02 09:45:52p m 79.5042.81-10.1131.5433.84-9.0628.4745.55-10.5233.0949.53-10.2832.46 908/16/02 10:44:21a m 92.4745.81-9.3431.7444.74-10.4334.3246.92-10.1333.7949.51-9.2832.86 1008/17/02 00:10:14a m 105.9244.28-8.8632.6142.41-7.9931.5343.25-8.9734.0645.59-8.0432.52 1108/17/02 11:56:20a m 117.6748.43-8.6533.5246.09-9.5034.4648.65-8.9736.4850.46-8.0735.90 1208/18/02 01:03:05a m 130.8049.02-8.2835.2349.57-8.9134.7750.27-7.8137.5052.74-7.0237.70 1308/18/02 02:00:28p m 143.5048.68-7.4636.2648.79-8.5235.5651.89-6.2238.9151.91-5.4941.00 1408/19/02 01:23:04a m 155.1351.74-5.9037.3949.49-7.6036.2153.20-4.3142.8755.41-3.6044.39 1508/19/02 03:39:48p m 169.1852.03-4.4641.7851.63-6.5637.3457.23-1.9845.6457.76-1.0445.70 1608/19/02 09:39:32p m 175.4054.18-3.3242.8450.08-5.9840.1356.40-1.0649.3257.19-0.1247.53 1708/20/02 12:09:22p m 189.8755.08-0.8947.4552.19-4.1843.4158.180.1149.3857.540.5650.66 1808/20/02 10:40:41p m 200.4353.131.0949.2755.11-2.6045.4558.000.1751.6959.190.3348.77 1908/21/02 10:18:12a m 212.0255.031.5548.5457.37-1.0746.1760.270.3150.4059.800.5449.55 C2-10D C2-10AC2-10BC2-10C Table A-3. Vitsab C2-10 10C color values. 10oC RunDate/TimeTIMEL*a* b *L*a* b *L*a* b *L*a* b 108/01/02 11:11:34a m 0.0038.11-11.6629.9441.72-12.1632.4244.64-11.9331.2544.21-11.7331.49 208/01/02 05:42:06p m 6.8339.76-10.7926.6047.87-11.5329.5546.31-11.7529.2644.69-11.3228.35 308/01/02 10:50:11p m 11.9338.81-10.9428.0244.74-11.5130.0943.52-11.4529.9443.48-11.9531.38 408/02/02 10:55:19a m 24.0239.50-11.7531.6845.98-11.7330.2644.48-11.4730.5344.80-11.5430.89 508/02/02 05:55:06p m 31.0734.37-10.9428.4044.60-11.5131.0447.28-10.6728.0745.94-11.0229.12 608/02/02 11:59:48p m 37.0038.45-11.3532.0343.87-11.4931.3944.62-11.1931.0046.26-11.0430.66 708/03/02 01:11:55p m 50.1038.96-10.5231.7645.86-10.6331.7446.33-10.6531.6246.59-10.5731.15 808/03/02 06:50:55p m 55.9044.55-10.6632.7548.20-9.9830.8547.29-10.4531.1747.42-10.2530.92 908/04/02 01:04:51a m 62.1040.31-10.2733.7548.43-9.7931.8446.17-10.1332.1343.93-10.0531.57 1008/04/02 12:41:18p m 73.7240.03-7.9236.5141.19-8.9934.5438.70-8.2232.1642.32-8.8934.97 1108/04/02 07:50:10p m 80.9050.53-5.8738.4551.19-7.5836.4750.07-7.7236.8049.76-7.2634.71 1208/04/02 11:33:52p m 84.6245.07-4.1843.6251.44-6.6437.9150.54-6.4939.6949.30-6.9039.23 1308/05/02 09:44:12a m 94.7850.360.3850.3953.39-3.0146.2753.84-2.4845.0953.39-3.0146.27 1408/05/02 06:17:33p m 102.1850.922.4851.5555.63-0.8647.8156.32-1.0548.9855.35-0.4549.30 1508/05/02 11:02:42p m 108.0047.533.6651.5454.540.5751.5556.07-0.2147.9155.300.2751.47 1608/06/02 09:28:44a m 118.4850.963.8452.8956.700.9650.9756.740.6951.8457.531.0351.69 1708/06/02 06:48:04p m 127.8756.352.5751.1856.571.7651.0256.661.7450.3559.221.0250.48 C2-10AC2-10BC2-10CC2-10D Table A-4. Vitsab C2-10 15C color values. 15oC RunDate/TimeTIMEL*a* b *L*a* b *L*a* b *L*a* b 108/01/02 11:13:46a m 0.0046.19-11.4330.4945.80-11.7231.8535.13-11.8230.7943.77-12.0932.32 208/01/02 05:40:52p m 6.8346.95-11.2430.1050.83-11.5730.2948.58-11.4029.9745.18-11.8531.68 308/01/02 10:52:10p m 11.9336.85-11.1229.9346.95-11.7729.9146.24-11.1429.7631.87-10.1727.03 408/02/02 10:57:22a m 24.0231.61-10.0729.2030.46-10.4927.6432.54-10.1827.6843.58-12.0234.59 508/02/02 05:56:55p m 31.0747.54-10.5631.5746.13-10.3630.3944.81-10.9431.7744.84-11.9335.43 608/03/02 00:02:07a m 37.0049.65-10.7233.0049.07-10.9934.1345.38-10.3733.2045.33-10.7234.51 708/03/02 01:13:49p m 50.1040.90-7.7637.2735.98-6.9234.1048.24-8.1535.7850.54-8.8537.37 808/03/02 06:52:57p m 55.9053.64-5.9439.4249.37-6.0642.7448.70-5.5538.6648.60-6.9041.20 908/04/02 01:07:15a m 62.1045.50-1.1146.8142.89-0.4946.1250.95-1.4244.8354.90-3.3047.61 1008/04/02 12:43:16p m 73.7257.900.6450.5157.611.9651.5452.621.8352.8653.761.7553.43 1108/04/02 07:51:42p m 80.9058.470.7252.0758.491.5054.3454.911.6149.9055.042.3053.37 C2-10AC2-10BC2-10CC2-10D

PAGE 57

45 Table A-5. Vitsab C2-10 first dynamic experiment color values. RunDate/TimeTimeL*a*b*L*a*b*L*a*b*L*a*b* 109/14/02 02:23:05pm0.0043.09-10.3926.5139.01-10.3225.9636.39-9.8325.2241.96-9.6523.97 209/14/02 09:58:36pm9.1045.38-9.9627.9944.19-9.4228.0933.92-8.7826.6935.04-7.8623.15 309/15/02 11:22:50am22.2844.13-9.4329.5733.61-8.2926.8634.88-8.3026.8135.65-7.5723.63 409/15/02 08:59:15pm31.9844.51-9.5029.7746.84-8.8027.2142.13-9.6729.4748.46-7.9624.64 509/16/02 10:32:54am45.4247.06-9.3729.8435.09-8.6628.2532.35-8.4228.1243.97-8.1425.25 609/16/02 03:30:41pm50.4546.91-9.3429.7849.07-9.3328.2932.75-8.7629.7936.97-7.3525.11 709/16/02 09:20:28pm56.3247.38-9.1729.8846.17-8.8627.7135.21-8.6829.1143.17-7.9426.10 809/17/02 11:55:22am70.8846.73-9.6232.7648.12-9.0530.0533.04-8.0230.8535.73-7.8126.65 909/17/02 04:57:49pm75.9543.15-8.8832.0745.57-8.5630.4434.45-7.5130.2739.31-7.0327.01 1009/17/02 09:00:01pm80.0044.95-8.1730.6839.88-8.2230.7444.33-8.8532.4845.02-7.3128.37 1109/18/02 11:24:57am94.3747.51-7.8633.6145.12-8.0732.8840.12-7.3133.1346.48-6.8429.79 1209/18/02 03:56:36pm98.9247.92-7.5432.7045.76-6.5231.7249.45-7.0931.1348.54-6.7329.81 1309/18/02 09:19:16pm104.3244.91-6.8834.3051.26-6.8731.2947.93-7.0732.9351.55-6.4529.70 1409/19/02 01:20:49pm120.2347.96-5.5235.9750.99-4.9835.4237.55-5.0836.2641.08-4.4932.71 1509/19/02 05:35:01pm124.5853.18-5.3434.0352.08-4.3535.6849.09-5.6935.0648.46-4.2732.46 1609/19/02 08:55:41pm128.0246.90-2.0039.7746.83-2.2840.2742.72-2.8536.8852.30-4.1533.12 1709/20/02 11:03:09am142.0053.60-2.5440.9752.46-4.0039.7439.74-1.1443.1952.38-2.6937.02 C2-10D C2-10AC2-10BC2-10C Dynamic Experiment 1 Table A-6. Vitsab C2-10 second dy namic experiment color values. RunDate/TimeTIMEL*a*b*L*a*b*L*a*b*L*a*b* 103/18/03 00:43:14a m 0.0039.19-10.7627.0432.59-11.2127.4541.20-11.9230.3842.41-11.4730.19 203/18/03 01:32:45p m 12.8039.53-10.7425.6339.21-11.0826.3040.75-11.1726.7843.67-11.1227.73 303/18/03 05:28:05p m 16.6535.75-10.9326.1433.26-11.0825.9740.70-11.7828.6242.57-11.1028.02 403/18/03 08:35:36p m 19.8036.28-10.2225.1439.43-11.1027.0644.09-11.9729.8541.11-11.6430.15 503/18/03 10:45:27p m 22.0234.83-10.4325.1136.19-11.0626.3340.01-11.2828.8743.78-11.4429.74 603/19/03 12:34:11p m 35.8338.87-10.5926.6040.37-10.4227.4739.35-11.9730.0039.13-11.0829.70 703/19/03 06:12:08p m 41.4741.35-10.5526.4037.40-9.9625.8841.73-11.6929.0243.05-11.2429.94 803/20/03 00:27:05a m 47.7339.49-10.1724.8439.33-10.5926.1642.46-10.6728.0143.85-10.6028.30 903/20/03 01:30:46p m 60.7739.30-9.3123.0939.74-9.6825.7341.22-10.1826.8043.88-10.2828.26 1003/20/03 05:44:49p m 64.9843.48-9.7527.4139.25-10.0026.1145.72-10.6728.3446.32-10.2928.99 1103/20/03 10:43:29p m 70.0042.43-10.1427.8439.09-9.3326.9744.19-10.7428.7846.67-9.9428.67 1203/21/03 02:37:26p m 85.8844.93-9.0630.9839.66-8.1132.7940.88-9.5931.7842.01-9.2533.02 1303/21/03 05:01:02p m 88.2843.07-8.1732.4640.45-8.1132.4039.35-9.1232.3045.19-9.8334.42 1403/22/03 02:45:50a m 98.0543.54-5.5232.1242.64-4.1436.2443.86-7.9935.3945.12-7.4733.99 1503/22/03 02:02:38p m 109.3243.95-2.5936.2338.970.4533.2745.36-4.8336.0946.47-4.3036.84 1603/22/03 05:11:00p m 112.4546.60-2.4638.5146.61-0.3539.5449.40-4.9337.7948.19-4.0438.50 1703/22/03 11:40:20p m 118.9549.83-1.6440.8646.540.5239.7549.18-2.4239.4250.14-3.0941.17 1803/23/03 12:15:00p m 131.5251.15-0.6341.2847.300.6943.0649.44-1.2045.5949.48-1.0945.09 1903/23/03 04:28:36p m 135.7748.330.3442.1946.181.9943.2649.36-0.1446.1051.18-0.4247.22 Dynamic Experiment 2C2-10AC2-10BC2-10CC2-10D

PAGE 58

46 Table A-7. Vitsab M2 -10 0C color values. 0oC RunDate/TimeTIMEL*a* b *L*a* b *L*a* b *L*a* b 108/01/02 11:10:20a m 0.0044.66-13.3232.0037.01-11.5128.2439.19-11.1624.8040.92-11.6829.44 208/01/02 10:49:33p m 11.9337.41-11.2925.6641.05-12.0529.1241.27-12.3227.2940.24-12.5629.14 308/02/02 10:54:20a m 24.0238.42-12.6630.7036.53-11.2426.7639.79-11.2226.0541.15-11.5928.88 408/02/02 11:58:58p m 37.0036.30-11.8628.0935.49-10.5925.5437.18-10.7525.7138.29-12.3229.38 508/03/02 01:11:18p m 50.1035.00-11.4526.9735.66-10.3224.7336.55-11.2825.2836.81-11.7728.32 608/04/02 01:03:32a m 62.1048.30-12.3728.3447.49-11.8828.8346.55-11.3527.0146.20-12.4331.05 708/04/02 12:40:35p m 73.7243.81-12.5029.6738.12-10.7227.0143.24-11.8128.0441.54-12.6732.53 808/04/02 11:33:13p m 84.6236.95-11.7427.5235.95-11.0927.4339.01-10.8525.7737.60-12.4931.69 908/05/02 09:43:17a m 94.7840.66-11.8227.7738.15-10.9627.5140.35-11.1927.6539.86-12.3031.71 1008/05/02 11:02:05p m 108.0035.48-10.9826.0235.26-10.2025.4838.02-10.7725.4335.80-12.0929.18 1108/06/02 09:28:05a m 118.4845.11-12.5329.8541.07-11.2228.6541.04-11.4627.6039.77-12.4932.55 1208/07/02 01:18:15a m 134.3536.53-10.9826.5835.51-10.2526.4937.28-10.5925.8337.32-12.0931.17 1308/07/02 10:16:59a m 143.1545.83-12.4030.1942.96-11.6330.4344.72-11.0928.7239.86-12.2832.01 1408/08/02 01:02:06a m 158.0837.87-11.0626.7936.34-10.2625.9438.66-10.3925.5738.77-11.9429.30 1508/08/02 10:47:05a m 167.8037.58-11.7729.5837.23-10.4928.4940.74-10.5927.9841.89-12.2732.95 1608/08/02 10:06:59p m 179.1838.26-11.1130.2038.20-10.3628.1136.85-9.9324.2336.05-11.6931.31 1708/09/02 10:43:48a m 191.7737.62-11.0230.8637.20-9.6628.6139.08-9.8226.2038.64-11.4733.80 1808/09/02 10:24:16p m 203.4740.88-11.8931.4137.64-9.4228.0736.32-9.6125.2237.75-11.2231.51 1908/10/02 01:58:47p m 219.0339.97-9.9827.7936.61-9.4427.3930.97-8.4422.1638.85-10.3129.88 2008/10/02 11:53:15p m 228.9738.78-9.6532.5230.62-7.1927.0036.71-7.6425.7030.87-9.0731.26 2108/11/02 12:44:44p m 241.7740.24-8.8934.8237.46-7.5031.7733.03-6.6824.8429.85-7.8930.71 2208/11/02 09:33:45p m 250.6532.65-10.4124.4737.07-8.3031.5037.11-7.7627.8732.91-9.0128.69 2308/12/02 10:01:24a m 262.9741.11-8.7135.2829.76-6.1524.4533.45-6.8226.0338.69-8.5331.27 2408/12/02 09:41:23p m 274.7342.64-8.3836.2639.20-8.3235.9539.85-8.0430.5042.04-8.8634.66 2508/13/02 10:40:57a m 287.7239.96-7.7934.9940.73-7.1632.1738.13-7.3428.9340.94-8.0933.17 2608/13/02 10:37:56p m 299.6841.95-8.2739.2239.38-7.3739.6341.07-7.4032.5240.02-7.9334.82 2708/14/02 10:02:09a m 311.0741.55-7.1438.2237.24-6.8936.7038.42-6.7030.0043.38-7.3935.16 2808/14/02 10:15:41p m 323.2842.51-7.2540.5340.23-6.1937.7939.83-6.3031.0642.31-7.5336.80 3008/15/02 09:45:16p m 346.8243.96-5.9441.1935.85-3.1432.2543.38-5.1134.7342.72-6.3636.84 3108/16/02 10:43:48a m 359.7844.68-4.9042.1238.49-3.3238.2939.03-3.2927.7144.00-5.7838.76 3208/17/02 00:09:46a m 373.2343.94-3.6039.7945.07-1.8342.6446.41-3.4937.6645.53-4.9640.01 3308/17/02 11:55:48a m 384.9846.89-3.2345.4346.73-2.3445.6341.93-2.0437.3444.03-4.9841.20 3408/18/02 01:02:29a m 398.1249.17-2.0347.8245.20-1.2345.5643.34-1.6837.7533.57-2.8735.91 3508/18/02 01:59:50p m 410.8248.12-1.4648.6739.341.0544.7838.550.8337.3539.71-2.2342.02 3608/19/02 01:22:30a m 422.4546.630.7250.0545.941.1549.2945.050.3941.0138.65-1.5640.58 3708/19/02 03:39:13p m 436.5042.042.9048.6939.763.2946.1541.142.7439.7541.860.0944.67 3808/19/02 09:38:59p m 442.7251.572.1250.1148.622.9051.8946.321.8443.6646.830.0147.68 M2-10AM2-10BM2-10CM2-10D Table A-8. Vitsab M2 -10 5C color values. 5oC RunDate/TimeTIMEL*a* b *L*a* b *L*a* b *L*a* b 108/12/02 02:27:27p m 0.0046.22-11.6030.5647.35-11.2930.3447.05-11.9731.7944.54-11.6731.26 208/12/02 09:42:09p m 7.4042.85-12.2631.3348.75-11.6830.9546.01-12.1131.7842.34-11.4630.65 308/13/02 10:41:39a m 20.4237.62-11.3830.4348.46-11.3431.8533.66-10.5228.2732.16-10.3629.71 408/13/02 10:39:24p m 32.3731.92-9.2028.3045.12-11.5632.1546.18-11.3932.6143.91-11.1531.83 508/14/02 10:03:48a m 43.7546.56-11.1330.9946.66-11.5633.1644.82-11.2232.8545.76-11.6833.81 608/14/02 10:17:11p m 55.9746.76-11.3632.3247.90-11.5234.0046.18-11.3434.0451.86-11.1832.68 708/15/02 11:47:56a m 69.4746.35-10.9433.1644.90-11.4134.5242.93-11.6836.3846.68-11.1035.46 808/15/02 09:46:40p m 79.5047.99-10.0033.3045.27-10.1334.6742.17-10.0935.5745.13-9.8335.87 908/16/02 10:45:09a m 92.4745.04-9.6037.0945.32-9.4037.3646.32-9.2537.1247.12-9.8338.32 1008/17/02 00:11:26a m 105.9241.79-8.7935.4345.62-9.1737.9447.10-8.7337.2547.42-8.8138.51 1108/17/02 11:57:11a m 117.6748.56-8.3537.2349.93-8.2636.8246.85-8.4538.6148.63-8.3538.94 1208/18/02 01:03:51a m 130.8047.64-7.9438.2352.36-8.2139.0051.89-7.7138.8048.85-7.9440.64 1308/18/02 02:01:14p m 143.5051.22-7.5439.1538.36-5.8533.7751.07-7.1040.2048.88-7.0841.43 1408/19/02 01:23:52a m 155.1351.56-6.4538.5752.86-6.7439.0051.36-6.8141.3448.28-6.4842.83 1608/19/02 09:40:23p m 175.4051.59-5.4940.4753.75-5.7940.5047.84-5.0844.2650.65-4.9043.16 1708/20/02 12:10:07p m 189.8752.17-5.0643.3954.87-5.1242.9049.39-4.1846.4253.08-4.2345.40 1808/20/02 10:41:47p m 200.4352.32-4.0346.5445.16-2.9246.2243.06-1.7943.2440.78-1.3245.62 1908/21/02 10:19:05a m 212.0254.92-2.4445.2356.48-2.7946.0256.19-1.5547.3653.47-1.1750.21 M2-10AM2-10BM2-10CM2-10D

PAGE 59

47 Table A-9. Vitsab M2-10 10C color values. 10oC RunDate/TimeTIMEL*a* b *L*a* b *L*a* b *L*a* b 108/01/02 11:12:30a m 0.0044.10-12.8534.2848.50-12.5932.6047.87-12.2332.6044.62-12.2633.64 208/01/02 05:42:55p m 6.8345.14-12.6832.5146.56-12.3232.5442.45-12.2732.8944.64-12.2932.34 308/01/02 10:51:05p m 11.9347.01-11.3829.8147.52-12.1832.4443.79-12.2433.0342.82-12.2733.36 408/02/02 10:56:08a m 24.0234.98-9.0927.4946.27-11.6232.7243.45-11.8633.3744.17-12.0334.75 508/02/02 05:55:55p m 31.0751.66-11.1229.7751.61-10.5130.0244.68-11.5933.6643.61-11.6434.29 608/03/02 00:00:41a m 37.0048.21-11.1732.9849.20-11.4233.8443.79-11.0633.8543.42-12.0035.96 708/03/02 01:12:36p m 50.1049.16-10.5534.1346.79-10.6336.0145.88-10.2636.0144.86-10.7437.05 808/03/02 06:51:45p m 55.9050.34-10.1034.4149.03-10.2936.7948.98-9.9136.8144.80-10.1337.80 908/04/02 01:05:47a m 62.1044.84-9.5238.5643.82-8.8238.7547.20-8.7739.3344.00-8.7039.95 1008/04/02 12:42:03p m 73.7248.16-7.8543.5047.67-5.8344.8849.66-5.5344.4748.37-5.1046.66 1108/04/02 07:51:06p m 80.9047.84-4.2247.4252.13-2.4650.0151.03-1.9249.6951.35-1.4252.07 1208/04/02 11:34:30p m 84.6252.65-3.1148.0156.39-1.1050.7354.12-0.4852.5753.280.5655.02 1308/05/02 09:45:08a m 94.7853.320.4254.3955.692.1857.0454.312.2056.3555.892.1058.29 M2-10AM2-10BM2-10CM2-10D Table A-10. Vitsab M2-10 15C color values. 15oC RunDate/TimeTIMEL*a* b *L*a* b *L*a* b *L*a* b 108/01/02 11:14:20a m 0.0035.24-11.0830.5431.08-11.4330.0533.24-11.2030.3732.20-11.2230.36 208/01/02 05:41:20p m 6.8333.67-11.4930.9029.03-10.8228.7928.74-10.5428.9040.54-12.1632.68 308/01/02 10:52:33p m 11.9344.23-11.8133.3045.27-12.1133.6646.42-11.9233.3945.10-12.0032.36 408/02/02 10:57:49a m 24.0235.08-10.0532.2345.62-10.6636.4647.41-10.3436.2947.43-10.8035.69 508/02/02 05:57:28p m 31.0742.07-6.7039.6050.93-8.4640.0649.10-7.0638.1345.47-9.1140.03 608/03/02 00:02:31a m 37.0042.370.7448.9137.12-0.6945.2850.41-1.0849.7049.63-4.2949.55 708/03/02 01:14:14p m 50.1047.245.2456.7644.085.7756.5256.073.0058.4656.612.8057.45 808/03/02 06:53:24p m 55.9048.095.0057.3546.645.0656.9655.744.2355.7858.702.1858.15 908/04/02 01:07:44a m 62.1046.174.9954.4646.355.5557.5052.794.7560.3760.512.2255.36 M2-10AM2-10BM2-10CM2-10D Table A-11. Vitsab M2-10 first dynamic experiment color values. RunDate/TimeTimeL*a*b*L*a*b*L*a*b*L*a*b* 109/14/02 02:24:13pm0.0046.42-9.9628.0946.44-11.4531.6743.31-10.9629.2132.08-9.5529.22 209/14/02 09:59:42pm9.1042.69-9.1931.0045.44-9.6232.8236.18-8.8429.9632.72-8.7530.24 309/15/02 11:23:40am22.2837.53-8.0127.4839.59-9.2535.0646.55-9.5533.6235.68-8.2532.29 409/15/02 09:00:15pm31.9848.14-8.9832.2847.79-9.0533.7332.60-7.9331.1650.08-9.1831.44 509/16/02 10:33:57am45.4233.07-8.1127.0741.18-9.0635.2746.50-9.0434.5735.19-7.9031.96 609/16/02 03:31:32pm50.4547.32-8.5133.1945.97-9.8136.7846.67-8.6633.7244.11-8.4033.00 709/16/02 09:21:30pm56.3249.42-8.7533.9748.80-8.5035.4148.96-7.9634.3550.40-8.2933.13 809/17/02 11:56:09am70.8842.38-8.3435.2046.16-8.6137.4846.17-8.0136.6155.41-7.3631.28 909/17/02 04:58:41pm75.9540.17-8.3434.4832.06-7.7832.0542.24-7.9836.6545.78-7.8434.28 1009/17/02 09:01:00pm80.0048.82-8.7437.6949.47-8.0338.1350.00-7.5536.4849.33-7.4034.89 1109/18/02 11:25:50am94.3746.34-7.8439.4846.86-6.4136.9247.23-6.4537.6150.17-6.6035.81 1209/18/02 03:57:42pm98.9251.68-6.9338.4947.20-6.9139.9447.85-6.3539.3949.55-6.5736.58 1309/18/02 09:20:10pm104.3248.93-6.3239.5252.32-6.2038.3449.55-5.8838.3838.96-5.7931.36 1409/19/02 01:21:38pm120.2334.08-2.9537.1449.53-5.0540.9049.88-4.4340.1550.95-5.1938.05 1509/19/02 05:35:53pm124.5836.19-3.5540.4440.04-3.8039.7851.02-4.2940.6253.17-4.6036.62 1609/19/02 08:56:47pm128.0247.75-3.9439.5150.64-4.3840.6554.26-4.3338.9651.54-4.5337.96 1709/20/02 11:20:54am142.0054.59-4.0343.6552.52-3.8743.7254.59-4.0343.6552.52-3.8743.72 M2-10D M2-10C M2-10B M2-10A Dynamic Experiment 1

PAGE 60

48 Table A-12. Vitsab M2-10 second dy namic experiment color values. RunDate/TimeTIMEL*a* b *L*a* b *L*a* b *L*a* b 103/18/03 00:44:11a m 0.0041.62-12.1232.9043.55-11.4731.7140.21-11.2830.8025.36-9.9926.96 203/18/03 01:33:43p m 12.8041.63-12.3830.9648.03-11.9228.4940.02-10.8527.6832.70-11.4829.08 308/01/02 10:51:05p m 16.6539.51-12.1031.5543.27-13.0832.0730.68-10.5727.3532.59-11.2229.03 403/18/03 08:36:46p m 19.8036.20-11.6229.7943.90-13.3631.4440.34-11.3829.7043.68-11.9931.77 503/18/03 10:46:25p m 22.0240.13-11.9031.2545.62-12.4030.9929.25-9.8424.7531.71-11.2729.09 603/19/03 12:35:16p m 35.8338.91-12.0932.7643.99-10.4929.3939.99-11.0830.6740.86-11.5831.10 703/19/03 06:12:58p m 41.4742.43-10.0930.0945.78-11.2730.0140.61-10.9830.7339.55-11.0929.16 803/20/03 00:28:30a m 47.7341.63-10.9632.3844.90-10.9329.7731.65-9.1827.1735.52-10.6529.85 903/20/03 01:31:38p m 60.7734.07-8.5024.2347.09-10.8830.8041.63-10.1629.2929.77-8.1921.27 1003/20/03 05:45:59p m 64.9844.46-10.2131.3447.70-10.0129.5746.96-9.7430.2844.24-10.4431.00 1103/20/03 10:44:42p m 70.0045.30-9.3731.4945.56-10.2530.3343.85-10.9632.7243.62-9.5630.94 1203/21/03 02:39:55p m 85.8844.44-9.9237.9036.74-7.9332.2734.11-7.8431.7132.37-8.6632.22 1303/21/03 05:02:09p m 88.2845.86-8.4935.3846.17-8.9337.8533.56-7.5131.6337.57-8.9635.80 1403/22/03 02:47:00a m 98.0546.57-6.1942.4250.34-5.8041.7644.76-5.1040.0244.18-6.1539.69 1503/22/03 02:04:00p m 109.3248.63-1.2344.8853.49-1.7445.3341.68-0.5241.1040.39-2.3238.05 1603/22/03 05:11:48p m 112.4550.01-0.7346.3153.24-1.0046.7551.67-0.9044.9841.46-0.9538.50 1703/22/03 11:41:27p m 118.9551.360.9845.6955.78-0.0647.1552.04-0.1347.8849.23-0.7344.20 1803/23/03 12:16:03p m 131.5251.252.8649.7254.501.0651.4543.122.5048.1541.932.4546.39 1903/23/03 04:29:40p m 135.7752.341.8452.5556.130.3750.7943.032.8648.9440.833.5548.93 M2-10D M2-10AM2-10BM2-10C Dynamic Experiment 2

PAGE 61

49 Table A-13. Lifeline Fresh-Ch eck TJ2 0C color values. 0oC RunDate/TimeTIMEL*a*b*L*a*b*L*a*b*L*a*b*L*a*b* 107/30/03 06:29:37p m 0.0039.4545.1145.2539.1744.8245.8438.7344.0644.5839.4145.3446.0539.4845.0445.62 207/31/03 03:04:11p m 19.9538.7745.1145.5838.2944.4844.6639.1244.5243.8738.8144.8445.7939.0444.8645.24 307/31/03 05:24:15p m 22.3038.5744.5044.9337.4444.0445.8138.6344.7545.8138.6244.3944.0938.3344.5245.24 407/31/03 11:05:04p m 27.9739.1245.3046.1839.8444.4142.8638.4243.8744.0338.6944.8445.3138.5144.3044.62 508/01/03 02:28:59p m 43.4338.9745.2646.5238.3344.2544.9338.9743.7043.4939.3844.5843.8937.7843.5743.44 608/02/03 01:49:30p m 66.7238.0243.8344.0136.6242.2842.7837.9540.7038.9938.2543.8143.4636.8542.3742.32 708/02/03 09:01:01p m 73.9037.8343.9044.7037.5843.3343.7338.2842.8642.6638.6943.5442.9837.5743.1343.12 808/03/03 05:35:11p m 94.4836.2941.5541.7736.3941.8241.7636.7642.0341.9936.1941.8042.3436.6341.8742.33 908/04/03 02:37:58a m 103.5236.6542.4342.7236.5742.1342.2935.0940.2140.2136.8342.7342.9736.5742.1342.29 1008/04/03 12:14:38p m 115.1236.6542.4342.7236.3441.9342.3935.4040.1940.5936.8142.4742.9537.7841.8141.23 1108/04/03 05:32:59p m 120.4336.2441.9342.5236.3341.6241.9636.0441.1240.9936.2542.0242.0636.5641.7542.00 1208/05/03 12:24:03p m 139.3036.1441.7043.1435.7641.0041.5135.9941.0541.0936.6342.0042.4436.6941.0940.63 1308/05/03 09:26:20p m 148.3336.7642.3543.5036.8440.7338.9936.2740.4939.8335.6340.9140.8835.9440.9140.69 1408/06/03 02:44:28p m 165.6335.4740.8340.5333.2738.0938.1034.9939.8139.2935.6141.0940.8734.4939.6639.89 1508/06/03 05:53:52p m 168.7835.2840.7541.5134.4939.7940.4335.1539.7239.4636.1940.8140.9835.6140.2239.76 1608/06/03 10:12:57p m 173.1035.9741.5042.7535.0039.9240.1836.2739.3838.7735.9940.8640.8535.4440.2540.01 1708/07/03 02:11:55p m 189.0835.1140.1340.0134.7339.7339.6334.1638.7738.7534.3539.8340.0934.9439.3239.71 1808/07/03 08:13:00p m 195.1234.8440.3241.6933.9639.0339.5733.9438.7339.0834.2139.5940.1034.9739.5839.74 1908/08/03 12:52:41p m 211.8234.6739.7339.9934.5139.3439.5835.2538.1036.7035.7739.9138.8134.6738.7638.40 2008/08/03 10:21:14p m 221.2334.7839.8040.7633.4738.3238.2833.7638.3337.9934.4139.3939.8134.3038.6238.62 2108/09/03 10:56:51p m 245.8534.1738.9139.6332.9037.0136.0932.6936.7837.1733.8038.6738.9833.6237.8938.07 2208/11/03 04:22:44p m 287.2733.1437.6437.7332.5436.6236.8533.1036.3035.9333.1937.7137.9532.9736.8036.66 2308/11/03 10:26:29p m 293.3033.0637.6238.1032.3436.4836.9432.6136.5536.3932.8737.4437.7533.1336.4535.84 2408/12/03 04:25:37p m 311.2833.2637.5337.6933.6835.7733.9932.6035.8035.1732.7637.1537.0332.0635.7135.33 2508/12/03 06:13:08p m 313.0732.5236.3035.4231.9035.9735.7132.0735.6335.5231.8636.1435.8832.2435.7635.95 2608/13/03 04:52:50p m 335.7332.6236.7236.9631.8335.3835.0331.7835.1134.8132.0136.2736.1831.9135.3235.38 2708/13/03 08:33:05p m 339.4232.0336.1036.0031.7035.3935.0831.9334.9134.3231.6535.9536.0231.9635.1634.93 2808/13/03 10:46:43p m 341.6232.2536.4237.1131.8435.2135.1031.7334.9834.8332.0036.1536.3732.5435.0833.66 2908/14/03 02:52:32p m 357.7232.1736.1136.6931.5535.0434.9831.8334.5034.0332.5535.8235.1231.2034.6534.07 3008/14/03 03:53:56p m 358.7332.2936.1936.3832.3134.3432.8831.3534.6234.1331.6935.6835.7030.9234.3934.22 3108/15/03 01:55:08p m 380.7731.8235.5836.1431.7733.6232.8532.3432.8631.6430.7134.4933.9529.1532.5631.95 3208/15/03 08:20:17p m 387.1831.3435.1034.8831.2834.0433.7132.4732.9931.0031.0534.9134.2531.0533.8533.21 3308/16/03 11:10:10a m 402.0231.0634.3633.9530.8233.8033.6031.2633.2532.7930.9534.4834.2130.8733.3532.30 3408/16/03 06:07:11p m 408.9731.2334.7134.9630.7433.5733.1832.0632.5530.0630.5834.2233.5230.4233.2932.63 3508/16/03 11:22:57p m 414.2231.0734.5434.8430.7633.4733.2731.7332.4030.8430.5334.0133.6830.2533.3532.29 3608/17/03 08:05:28p m 434.9330.5933.9834.0030.3532.8232.2031.4731.7629.8330.3433.5133.1330.3232.3131.69 3708/17/03 11:31:08p m 438.3730.6534.0334.4230.4032.6532.3331.4431.8329.9430.2733.6932.8830.0232.6031.83 3808/18/03 01:25:57p m 452.2730.2433.5533.5029.9732.4832.2130.9931.5329.9329.7732.9732.6129.9532.1431.35 3908/18/03 06:56:21p m 457.7730.4233.6633.7330.3331.9931.1831.0831.2528.6729.7432.9332.3729.9031.8631.41 4008/18/03 11:45:14p m 462.5730.3733.4033.5730.1231.8331.1831.1930.9628.2529.8532.8232.4929.9131.7430.65 4108/19/03 04:26:46p m 479.2729.6832.6832.4829.5531.7231.4230.8630.4627.8829.4232.3031.9929.5431.4530.62 4208/19/03 11:25:59p m 486.2530.0432.9232.9829.5931.3231.0530.7630.5628.2629.5432.2931.9629.4931.1130.22 4308/20/03 03:50:02p m 502.6729.9032.8732.8729.1731.0230.4330.6529.9527.5429.1231.7530.9328.9830.9930.37 LFLN E LFLN ALFLN BLFLN CLFLN D

PAGE 62

50 Table A-14. Lifeline Fresh-Ch eck TJ2 5C color values. 5oC RunDate/TimeTIMEL*a*b*L*a*b*L*a*b*L*a*b*L*a*b* 107/30/03 08:01:49p m 0.0038.0142.9843.5339.1944.6045.6539.2644.6245.0239.3544.6245.2239.2244.5345.13 207/31/03 03:06:30p m 19.9538.5243.5343.1738.7844.2243.8738.2344.0143.7138.1743.9344.1538.5544.2044.16 307/31/03 05:26:38p m 22.3037.8943.0842.6237.8843.5644.1038.4244.0644.2938.5244.1144.2337.3242.8843.05 407/31/03 11:07:24p m 27.9738.0443.2642.8238.0443.5643.8237.9943.5743.7438.4543.8543.7238.0343.4543.44 508/01/03 02:34:11p m 43.4335.7240.6140.6537.0542.1942.6736.8641.7842.2637.3942.5342.9837.1542.2142.21 608/02/03 01:51:56p m 66.7235.9740.7740.8635.3540.4840.7936.1241.1241.3035.6840.5640.7736.4041.1640.83 708/02/03 09:03:20p m 73.9036.6440.6139.4235.4340.5240.4735.5440.5040.3835.5440.5040.4035.9940.8540.88 808/03/03 05:37:29p m 94.4835.5639.0138.0434.6239.2339.1834.6439.1538.9434.4239.0738.8434.8439.3639.42 908/04/03 02:40:05a m 103.5234.7738.6437.9933.7738.3438.2434.3138.6638.3634.2638.7838.7134.6639.0739.03 1008/04/03 12:16:48p m 115.1233.1237.3837.2133.8638.2338.0633.9838.2438.0433.7838.0837.9434.0938.3938.39 1108/04/03 05:34:59p m 120.4333.9537.6837.1033.4337.6737.5733.9238.0237.7933.7137.8337.7534.1738.0937.74 1208/05/03 12:26:23p m 139.3033.2036.7636.0432.5736.4036.1332.5936.4936.2432.8836.6236.5233.1336.9736.66 1308/05/03 09:28:30p m 148.3332.4636.1336.1132.4636.1336.1132.4636.1036.1832.4636.0936.2132.7336.3936.19 1408/06/03 02:46:51p m 165.6331.5135.0334.8032.2535.3334.4532.1735.1034.2731.6835.2334.5131.9835.4535.11 1508/06/03 05:56:36p m 168.7830.9334.5034.5031.8235.1034.6832.2335.0434.2831.4834.8134.2531.9035.2734.92 1608/06/03 10:15:20p m 173.1031.0133.8934.0831.8034.7034.1032.0434.5534.1131.1034.5234.1831.8135.0434.63 1708/07/03 02:14:17p m 189.0830.0433.1833.6830.9433.9633.9231.5833.6833.0930.8333.8633.4231.1634.1533.77 1808/07/03 08:15:17p m 195.1230.2532.7432.8730.8733.7133.3330.8633.2332.8630.8333.2032.6430.8633.6433.70 1908/08/03 12:58:24p m 211.8230.8632.0430.6531.0932.4131.0630.0332.5532.0330.0232.6432.1330.1832.9332.61 2008/08/03 10:23:29p m 221.2330.2431.6830.7730.5931.7730.1929.7531.9331.4829.7032.1331.7530.0032.4132.34 2108/09/03 10:59:22p m 245.8529.3531.2130.7228.6930.8030.2729.0930.9830.5928.9931.1131.0029.5131.4131.26 2208/11/03 04:25:00p m 287.2727.6228.6128.1727.1128.5728.3026.9528.5328.2127.5428.6728.1727.6528.9128.15 2308/11/03 10:28:55p m 293.3026.7527.8728.1926.9528.0927.7128.4228.9328.1627.6928.6928.0427.7028.9128.35 LFLN E LFLN ALFLN BLFLN CLFLN D Table A-15. Lifeline Fresh-Ch eck TJ2 10C color values. 10oC RunDate/TimeTIMEL*a*b*L*a*b*L*a*b*L*a*b*L*a*b* 107/30/03 08:11:39p m 0.0039.8645.1145.7939.9345.3346.0739.7545.3646.2139.8545.2546.0340.1145.7246.48 207/31/03 03:08:56p m 19.9537.3842.7242.7337.1142.6043.0837.2042.8843.3237.5443.0243.0537.5543.1843.44 307/31/03 05:29:46p m 22.3036.4441.5241.6336.3841.6142.0136.7642.3442.8536.5441.7942.2336.9742.3242.64 407/31/03 11:09:44p m 27.9736.5241.5241.5636.7441.9242.1635.6041.1441.5636.2341.5642.0336.7942.0742.57 508/01/03 02:37:10p m 43.4335.1439.6339.6334.9839.6540.1134.9739.8340.2934.8539.5439.6234.9639.7639.88 608/02/03 01:54:43p m 66.7232.8636.6837.0833.3937.3837.5532.7536.8236.8532.5136.6136.8833.4537.6737.85 708/02/03 09:05:39p m 73.9032.4336.0836.0132.9136.6436.5732.3236.2236.1231.9835.8636.2932.8036.7936.76 808/03/03 05:40:22p m 94.4830.7533.4433.2330.9633.9134.1430.5533.7033.9230.5933.5533.7831.1934.3634.31 908/04/03 02:42:14a m 103.5230.1932.6832.3730.2132.9233.1230.0732.9332.8430.0532.7232.5830.5633.6033.74 1008/04/03 12:18:54p m 115.1229.3831.5231.2429.5732.1232.4329.7932.6733.0329.1531.5631.4929.7732.2932.05 1108/04/03 05:37:14p m 120.4329.1331.0330.7529.2231.3231.0629.0631.3030.9429.1931.3430.9929.1931.5431.56 1208/05/03 12:28:42p m 139.2828.5230.3530.1628.0529.6929.3427.7329.2828.9328.2030.1830.1827.9629.5229.28 LFLN E LFLN ALFLN BLFLN CLFLN D Table A-16. Lifeline Fresh-Ch eck TJ2 15C color values. 15oC RunDate/TimeTIMEL*a*b*L*a*b*L*a*b*L*a*b*L*a*b* 108/06/03 02:49:28p m 0.0038.9345.0946.1739.3445.6246.2939.1845.2646.6437.8344.2044.6938.5144.5745.24 208/06/03 05:58:56p m 3.1537.8443.5944.6338.8744.9945.6438.2544.0544.9737.6043.7244.5338.2644.1844.78 308/06/03 10:17:30p m 7.4737.6243.3943.7537.2443.1743.3935.4040.6041.2236.8642.7043.5836.8542.4342.95 408/07/03 02:16:23p m 23.4534.6839.3739.4034.0538.7739.0634.6139.1139.5534.1338.8739.1433.3037.5837.87 508/07/03 08:18:12p m 29.4833.4037.5737.7133.3237.7237.8633.5137.5338.2032.9037.2037.4432.7736.8736.99 608/08/03 01:00:23p m 46.1830.5833.3633.5630.8433.9034.0830.6333.3633.6030.1333.0333.1730.2333.1033.37 708/08/03 10:25:35p m 55.6029.1431.0030.7829.3531.5331.4829.3531.1231.4628.8631.0531.0628.8430.9731.13 808/09/03 11:02:06p m 80.2225.9425.7425.3326.1426.3125.9626.1126.1226.2625.9726.3226.2026.0026.0226.07 908/11/03 04:27:09p m 121.6322.0818.6918.8922.6320.2120.1722.7319.8020.1922.3019.7720.0622.0019.2819.57 LFLN E LFLN ALFLN BLFLN CLFLN D

PAGE 63

51 Table A-17. Lifeline Fresh-Check TJ2 fi rst dynamic experiment color values. Dynamic Experiment 1 RunDate/TimeTIMEL*a*b*L*a*b*L*a*b*L*a*b*L*a*b* 108/12/03 06:17:10p m 0.0038.9344.1844.6839.4644.8345.4639.5944.7845.2839.3444.7345.3939.4845.0245.47 208/13/03 04:56:09p m 22.6739.2743.0041.8639.6243.2341.2739.0042.4040.2639.0743.0041.6638.0742.9442.26 308/13/03 08:37:17p m 26.3538.9342.5740.3938.6742.4241.0439.6243.2341.5238.7643.0642.2038.6643.7743.19 408/13/03 10:49:54p m 28.5539.6243.4641.6239.5742.9140.6039.3743.2141.7538.7543.1942.5438.9444.1343.65 508/14/03 02:55:48p m 44.6538.0443.1742.9438.2543.0142.2437.8542.7142.2838.1142.5341.4737.9843.3943.17 608/14/03 03:55:52p m 45.6737.9443.0542.8638.5042.6641.0338.0242.7842.3037.8042.8642.6937.8543.3643.14 708/15/03 01:57:05p m 67.7035.5640.6940.6635.2040.4640.4135.5740.6540.8535.5340.4540.2435.6541.2341.09 808/15/03 08:22:32p m 74.1235.1340.0239.9334.8839.8639.4134.6739.6539.4334.6739.9639.6235.3340.7240.42 908/16/03 11:12:37a m 88.9534.1238.4638.0433.5538.4538.5133.2238.3338.7933.4138.3338.6233.7538.7138.80 1008/16/03 06:09:54p m 95.9033.0337.2837.3133.1937.6437.6932.6337.0236.9833.1137.3937.5332.8937.6937.58 1108/16/03 11:25:16p m 101.1533.1937.0436.5132.8236.9536.3032.9236.5936.1232.9736.9236.6933.0937.4637.09 1208/17/03 08:07:33p m 121.8733.0035.2933.9633.4435.3634.0033.1634.8733.4233.3035.1033.9733.4036.2735.26 1308/17/03 11:33:24p m 125.3032.9535.0534.2633.2135.2533.7033.0835.0333.7033.0435.8834.9833.0435.8834.98 1408/18/03 01:28:27p m 139.2032.3734.2832.9032.9534.6833.0332.7934.2932.8532.8934.6233.4032.8335.6534.87 1508/18/03 06:58:34p m 144.7032.8433.8832.5432.8634.2732.6033.0333.9032.1332.8034.3433.2732.6235.1434.18 1608/18/03 11:47:15p m 148.2532.7134.0732.8032.9234.0832.2532.8933.9432.2732.8133.8832.1032.8534.9933.68 1708/19/03 04:29:05p m 149.5030.0433.1833.6830.9433.9633.9231.5833.6833.0930.8333.8633.4231.1634.1533.77 1808/19/03 04:29:05p m 166.2032.4133.3531.2731.8133.7032.8132.0033.5932.3731.9633.5932.7932.1734.4233.87 LFLN E LFLN ALFLN BLFLN CLFLN D Table A-18. Lifeline Fresh-Check TJ2 s econd dynamic experiment color values. Dynamic Experiment 2 RunDate/TimeTIMEL*a*b*L*a*b*L*a*b*L*a*b*L*a*b* 108/14/03 04:05:35p m 0.0039.3242.3740.7440.0744.3243.1839.4943.8943.1039.4043.8843.4139.9344.5144.01 208/15/03 01:59:16p m 22.0338.4142.7042.4138.3343.4243.2737.8642.8142.4237.8542.9542.7337.9943.1842.89 308/15/03 08:24:51p m 28.4537.8342.4442.2337.7042.9842.8136.8442.1742.0937.1842.2342.6636.9142.2042.16 408/16/03 11:14:51a m 43.2835.4740.0140.2635.6640.7440.5535.2240.2140.3235.1439.9539.8235.2940.0039.86 508/16/03 06:12:40p m 50.2335.7038.7637.5135.0239.7339.5934.5439.1739.3434.2338.7338.7034.4638.8938.87 608/16/03 11:27:39p m 55.4836.4438.1335.4535.0438.9438.8834.2638.2437.9334.0638.1437.8734.3738.3938.05 708/17/03 08:09:34p m 76.2036.0935.4431.9535.8736.2033.2636.7935.4131.0634.8236.0734.4834.7036.7636.34 808/17/03 11:36:03p m 79.6336.7936.0032.2636.2035.5032.2536.6635.3431.2735.1235.5933.4735.0435.9834.60 908/18/03 01:31:15p m 93.5335.2336.1533.4433.5437.0536.7833.2336.7236.6033.0036.2435.8433.2336.4136.01 1008/18/03 07:00:44p m 99.0332.6835.6835.5432.9636.7536.6132.5035.9735.7732.5435.6935.2332.8936.0135.36 1108/18/03 11:49:09p m 103.8332.8035.9635.7032.6036.3035.7432.2735.5035.0232.1635.1834.4732.5535.5334.77 1208/19/03 04:31:05p m 120.5331.1434.1433.9630.9934.0633.7330.7133.5933.1930.4832.5731.5330.8533.0432.64 1308/19/03 11:27:57p m 121.9231.8832.2831.7631.0632.7331.8430.6032.3932.0230.4031.3130.4030.6532.1731.41 1408/20/03 03:52:04p m 126.5033.3530.1626.4032.3829.9527.2732.6729.1225.3930.5429.5228.7932.2729.1925.82 1508/20/03 08:08:51p m 144.2233.3629.5426.3932.7029.4625.5232.8228.5225.5432.0028.2224.5432.4828.7925.14 1608/20/03 10:13:15p m 148.2533.5629.5225.6032.7629.1425.1633.0828.4824.5132.1227.9524.1733.1228.2224.17 1708/21/03 05:08:42p m 153.3231.8328.6525.8830.8028.9027.1431.0927.8225.9329.9027.9026.9130.7528.2127.01 LFLN ALFLN BLFLN CLFLN DLFLN E

PAGE 64

52 Table A-19. Avery-Dennison TT Sens or T126(1) 0C color values. 0oC TIME RunDate/TimehoursL*a* b *L*a* b *L*a* b *L*a* b *L*a* b 107/30/03 06:30:21p m 0.0078.622.4647.0979.902.1547.7779.552.1748.3779.622.3047.9178.192.4048.84 207/31/03 03:04:49p m 19.9580.287.8544.6778.858.1442.9178.367.8843.8378.707.5343.4378.077.4845.13 307/31/03 05:24:56p m 22.3079.417.5542.9579.789.0843.6478.838.7644.2678.537.2844.3678.087.6944.79 407/31/03 11:05:41p m 27.9778.428.3642.9978.469.4042.0379.209.5444.1378.358.4243.0377.988.8843.69 508/01/03 02:29:27p m 43.4377.8710.0741.1877.6411.1740.1577.5510.5440.5377.759.6942.1577.7210.0243.60 608/02/03 01:50:09p m 66.7277.0712.2339.8176.9913.0638.3176.7413.0939.4677.7512.7740.1077.0512.0440.86 708/02/03 09:01:29p m 73.9076.8712.7238.8076.7114.0638.0676.5513.6638.8576.6312.7139.0676.4712.5240.68 808/03/03 05:35:43p m 94.4876.7315.0037.6476.8716.3137.1775.1615.6836.4675.9014.9037.3674.7314.5439.37 908/04/03 02:38:27a m 103.5275.9915.1237.2076.4816.8836.4675.9715.8837.1675.6414.6536.7975.6414.6536.79 1008/04/03 12:15:04p m 115.1276.0415.2236.6576.3917.5835.3976.3417.1236.7175.5615.2837.1375.5615.2837.13 1108/04/03 05:33:25p m 120.4375.7216.5036.4475.4517.3934.9675.3916.9835.9076.3314.7238.1275.3816.0836.76 1208/05/03 12:24:38p m 139.3075.3216.8235.5275.0818.3533.7875.0617.8935.1176.5116.8036.9574.9517.1136.14 1308/05/03 09:26:49p m 148.3375.1617.7434.6374.8219.3032.7274.6818.4534.3376.1018.1735.8774.4217.4535.18 1408/06/03 02:45:00p m 165.6375.0318.2133.9874.6419.9732.0875.1819.4833.8675.1720.4033.6274.4118.8134.59 1508/06/03 05:54:28p m 168.7874.4518.6233.5673.7119.9432.4773.2219.3033.3172.9218.3033.5274.1119.1735.26 1608/06/03 10:13:35p m 173.1074.5118.8532.9274.1020.8331.0374.3219.6833.1274.6018.4933.8272.9618.8434.87 1708/07/03 02:12:22p m 189.0872.3019.9632.3473.4121.4830.8472.6620.2132.8574.0219.1333.7274.5419.7434.94 1808/07/03 08:13:33p m 195.1274.6819.8732.7474.4122.3130.9873.8221.3431.6874.4219.2533.1672.9319.4833.89 1908/08/03 12:53:10p m 211.8273.8621.0631.5073.4422.8429.1173.5721.4131.3673.7122.0330.5773.9821.2332.63 2008/08/03 10:21:45p m 221.2373.8320.9231.1473.5723.2328.7073.6322.0830.7474.0820.2032.6573.6321.6331.80 2108/09/03 10:57:28p m 245.8573.2121.7429.7872.9924.3027.1873.2323.6828.5873.1620.9531.7372.7923.1330.63 2208/11/03 04:23:14p m 287.2773.4024.6228.5373.2026.4026.1371.9925.2827.1272.6225.1226.5871.7324.5529.07 2308/11/03 10:27:02p m 293.3072.8724.8727.5073.0527.0126.0672.4225.3827.2972.5624.9026.8572.1622.5931.49 2408/12/03 04:26:12p m 311.2872.7424.7827.1072.9928.0025.1972.6726.3327.1272.3125.6226.1472.0925.1527.41 2508/12/03 06:13:48p m 313.0772.3825.8326.3772.2827.5724.3073.0326.7327.3872.0424.6427.3972.1326.1327.27 2608/13/03 04:53:18p m 335.7371.9526.4825.3472.5528.9623.8972.5527.8025.8972.0225.5526.2772.0226.3326.89 2708/13/03 08:33:41p m 339.4270.6625.9726.0771.7228.3523.2971.6926.7925.3772.0425.9825.7872.3627.1627.53 2808/13/03 10:47:13p m 341.6271.8525.9625.9571.8628.2622.8671.7527.3525.1872.0826.7125.3271.1326.9326.35 2908/14/03 02:53:06p m 357.7272.0526.7725.0271.6329.0122.0871.7427.7824.4170.6325.8925.6570.1325.7727.45 3008/14/03 03:54:24p m 358.7371.8427.2125.1271.3728.5122.6172.5928.5824.2971.7627.4624.6771.6927.4725.15 3108/15/03 01:55:37p m 380.7771.0827.4024.5471.0829.4821.7971.1528.3723.8772.2427.5825.3771.2028.5524.63 3208/15/03 08:20:50p m 387.1871.2827.8924.0771.1429.9021.0471.4528.9322.7172.0827.7624.4371.5729.0923.71 3308/16/03 11:10:54a m 402.0271.4228.1223.5471.0730.5220.3970.5029.5422.7871.7428.3623.5371.2028.7424.43 3408/16/03 06:07:46p m 408.9770.5728.0123.7471.0130.2620.3570.3729.6222.4772.4928.1125.6571.2828.7124.29 3508/16/03 11:23:31p m 414.2270.1628.5823.5470.6730.3321.3071.0629.4822.4871.8929.1923.0271.7728.9024.29 3608/17/03 08:06:01p m 434.9371.0929.5422.1270.6831.5119.4470.9230.3121.5071.7629.4422.8070.9229.2123.83 3708/17/03 11:31:43p m 438.3771.2229.5821.4670.8631.1019.2870.9830.5621.1171.3029.9921.3470.6730.4022.26 3808/18/03 01:26:51p m 452.2770.9129.9721.6770.6331.6418.7670.7231.1520.0271.8930.1823.0471.2629.7323.13 3908/18/03 06:56:53p m 457.7771.0129.6721.7470.4532.2218.3370.7630.9320.8071.3730.1821.5670.6330.9921.58 4008/18/03 11:45:44p m 462.5769.9030.3020.9870.4932.1218.2470.7131.0520.3671.5630.4221.5070.7731.1721.04 4108/19/03 04:27:21p m 479.2770.8130.3821.0170.2532.7017.9470.5431.7319.3571.2031.4520.0271.3231.2821.19 4208/19/03 11:26:29p m 486.2570.5731.2720.2970.2532.7917.9170.5631.8719.5871.0531.0920.2671.0131.3321.13 4308/20/03 03:50:38p m 502.6770.8030.9019.7670.1533.3116.9070.3332.8118.4071.1831.8620.0670.4832.2919.62 4408/20/03 08:08:10p m 506.9770.7530.7919.7770.1133.4616.4670.4432.0419.4970.3033.2817.2770.9632.3319.76 4508/20/03 10:12:36p m 511.0370.7530.9619.4670.0933.3117.2870.3732.2319.1571.0031.9719.4070.6231.4920.78 4608/21/03 05:07:55p m 529.9570.5031.5919.1269.4333.8016.1270.2332.8418.2771.0432.2319.6170.8532.8219.31 4708/21/03 06:07:34p m 530.9570.4231.7218.6169.9434.6615.3070.2832.8417.6470.5032.6418.0371.0732.5819.59 4808/22/03 01:25:55p m 550.2569.6031.7018.2469.6734.7815.1370.0033.5817.0270.9132.7719.3669.6233.4718.64 4908/23/03 05:03:39p m 577.8869.0632.0918.2069.4234.7415.0569.5033.9016.4870.4733.9217.1369.9734.7216.67 5008/23/03 09:40:16p m 582.5068.9632.5917.0369.0935.0914.1969.5333.9616.8570.3133.8917.2069.5934.0917.51 5108/24/03 08:11:37p m 606.0269.3133.0116.4369.3935.9813.5968.8234.8714.9069.8934.5615.6169.3735.1016.05 5208/25/03 02:24:32p m 623.2368.0733.0516.7268.8436.0813.0168.7634.8814.9770.0834.8615.4269.7533.5818.20 5308/25/03 08:00:07p m 628.8369.8833.9115.5269.2436.4512.7369.5135.5314.8469.7835.9013.9770.4335.0216.55 5408/26/03 04:28:31p m 649.3069.6334.4215.2169.1437.2211.4469.4735.8713.9369.8435.7614.2169.4436.3014.54 5508/26/03 10:57:51p m 655.7869.5734.6215.3469.1337.3511.5369.4436.1813.3469.6236.3513.1569.1735.8115.53 5608/27/03 04:27:47p m 673.1269.3935.3314.4269.0137.5411.1569.1436.5213.2869.4136.6612.5069.7435.9515.01 5708/27/03 10:32:00p m 679.2069.5735.1813.7268.9337.5211.0669.1436.7312.8469.4936.1913.2969.6536.0914.73 5808/28/03 02:39:38p m 695.3269.0836.4213.1868.8938.0210.2769.1636.7912.9369.4537.3212.1569.2636.7513.61 5908/28/03 05:46:14p m 698.4369.4735.7612.8469.1237.6210.2969.1537.0212.4969.2037.5711.3169.6235.3916.02 6008/29/03 10:52:01a m 715.5369.0836.1513.2168.7238.4010.1469.0237.3112.0469.6036.9112.9169.0836.4214.30 6109/02/03 00:14:45a m 800.9068.7237.3311.5868.2939.957.5268.4438.809.7969.0439.729.2768.8737.3013.16 6209/02/03 01:57:53p m 814.6268.5838.4010.3168.2640.107.1468.3039.009.0969.1639.189.8468.1439.2710.58 6309/03/03 02:04:16p m 838.7368.7037.7610.3068.2240.387.2868.5139.299.3068.8039.328.9168.5239.379.86 6409/04/03 12:24:58p m 861.0768.6637.919.8168.2040.985.7868.4139.748.2668.6440.747.5768.3639.769.40 6509/05/03 01:39:16p m 886.3268.1739.828.6668.0341.165.4868.2940.018.3968.7540.587.7367.9740.498.51 6609/06/03 06:48:31p m 915.4768.3338.908.7066.9941.444.9169.0841.377.1568.4040.237.8367.8139.918.61 6709/07/03 05:33:48p m 938.2268.2639.158.2466.4741.445.1168.3441.206.6868.4040.867.0267.6640.158.33 6809/08/03 03:20:35p m 959.4367.3540.007.5767.0041.914.3368.0441.056.5268.3540.826.9268.0240.268.40 6909/08/03 07:52:57p m 963.9768.1339.528.0767.9642.304.3868.3741.536.1967.5040.177.9667.8739.829.03 7009/09/03 02:36:15p m 982.7068.3039.957.2767.7642.443.9468.5641.876.2067.8640.428.2167.6641.196.75 T126#1 AT126#1 BT126#1 CT126#1 DT126#1 E

PAGE 65

53 Table A-20. Avery-Dennison TT Sens or T126(1) 5C color values. 5oC TIME RunDate/TimehoursL*a* b *L*a* b *L*a* b *L*a* b *L*a* b 107/30/03 08:02:40p m 0.0080.253.2847.5679.962.8249.1679.933.7047.5980.663.1347.9380.763.7449.40 207/31/03 03:07:09p m 19.9577.3014.9138.2676.2313.6339.2475.9114.9737.5976.0213.4239.0775.9613.3539.63 307/31/03 05:27:16p m 22.3075.0714.9237.2274.7014.2939.4776.0615.1636.9776.5213.9538.6576.2314.3038.78 407/31/03 11:08:02p m 27.9775.5216.7536.2075.4815.8537.5776.3917.4236.7575.9416.2236.8475.2315.6238.02 508/01/03 02:35:07p m 43.4375.2120.3933.4074.0518.3234.1974.4219.7232.5074.6018.5134.1674.9517.7335.53 608/02/03 01:52:32p m 66.7272.8823.2028.8972.9822.2930.5773.2123.4328.5773.5722.2030.6574.2022.8732.66 708/02/03 09:03:52p m 73.9072.9224.0127.8272.4723.3729.0472.5224.6927.7272.6324.1327.9874.0822.7931.52 808/03/03 05:38:07p m 94.4871.5726.7025.3771.9525.8726.7271.9826.2224.9971.7125.5227.0672.3024.9027.49 908/04/03 02:40:35a m 103.5271.8127.4223.7571.7626.5225.8171.1927.8624.0671.9726.9025.4072.8325.8927.48 1008/04/03 12:17:14p m 115.1271.6628.6822.7071.4427.9823.9671.3728.5223.0772.1227.9024.7972.1126.2526.56 1108/04/03 05:35:32p m 120.4371.7129.1421.9271.3228.8723.1271.4929.5622.3471.6028.6823.2170.3827.8324.80 1208/05/03 12:27:01p m 139.3070.5130.7920.4971.0029.6921.7371.6531.7720.5471.8830.8522.0470.3328.9023.32 1308/05/03 09:29:17p m 148.3370.7531.6018.9670.6430.8720.1470.5131.5019.3770.7431.4119.5672.0930.2723.29 1408/06/03 02:47:23p m 165.6369.8732.4317.9270.7633.4118.9169.0832.5017.5169.1032.8017.1970.4130.6221.28 1508/06/03 05:57:12p m 168.7870.1432.9617.4570.1231.9319.3970.5433.5618.3270.0132.1618.5170.5131.0820.61 1608/06/03 10:15:52p m 173.1070.1532.9417.1169.7232.9117.8768.6233.4016.9669.2033.0517.4369.7832.2418.42 1708/07/03 02:14:49p m 189.0868.6434.0115.5668.9134.5516.2169.3034.7415.3869.8133.8416.4870.8932.6319.78 1808/07/03 08:16:07p m 195.1268.1434.1515.4969.3134.2215.7969.4234.5615.3269.6834.8814.7670.8534.3518.05 1908/08/03 12:58:53p m 211.8269.4635.9913.0969.0135.5913.8769.2635.9213.2869.5435.0614.7969.9834.8215.79 2008/08/03 10:24:01p m 221.2368.7336.1612.6868.7436.3213.2069.0936.9311.2569.0936.5512.5070.4934.8517.01 2108/09/03 10:59:56p m 245.8568.8737.7310.5069.0237.5811.5569.1438.639.3668.9237.6611.4968.2735.9914.23 2208/11/03 04:25:30p m 287.2769.3340.348.3769.2039.819.9768.1939.358.3767.8540.546.6767.7138.4611.00 2308/11/03 10:29:26p m 293.3067.9139.358.1267.7440.477.6168.8240.627.6969.1041.377.2768.5539.529.34 2408/12/03 04:28:31p m 311.2866.9839.687.1067.7640.356.8068.3740.407.0768.8940.467.9368.0239.669.39 2508/12/03 06:15:35p m 313.0768.1040.306.5566.3340.097.1568.9741.597.4268.1040.057.6368.4739.718.48 2608/13/03 04:55:19p m 335.7367.7341.624.2067.3541.884.1367.0841.704.6567.9042.134.0467.7141.066.31 2708/13/03 08:36:13p m 339.4267.1840.895.5567.2041.934.2867.7341.954.4267.4941.953.9766.1140.217.05 2808/13/03 10:48:54p m 341.6267.1941.234.7167.5342.054.2767.3541.045.2867.9741.934.0564.7539.906.69 2908/14/03 02:54:56p m 357.7266.9241.943.7667.2942.463.4268.6242.834.7668.1844.771.8155.0436.686.06 T126#1 E T126#1 AT126#1 BT126#1 CT126#1 D Table A-21. Avery-Dennison TT Sens or T126(1) 10C color values. 10oC TIME RunDate/TimehoursL*a*b*L*a*b*L*a*b*L*a*b*L*a*b* 107/02/03 05:11:25p m 0.0080.243.1747.4276.983.8747.6279.373.1448.3580.113.5849.4580.452.8547.28 207/02/03 10:15:25p m 5.0071.5510.8740.4770.2710.8040.4371.6411.6639.5671.6411.6639.5677.2010.9640.35 307/03/03 01:06:21p m 19.8372.8219.0132.7071.3819.7332.5272.3420.2232.8971.9320.7631.8673.3319.5931.88 407/03/03 04:08:10p m 22.8573.0219.0532.0471.8521.1131.0572.2921.2531.0872.2921.2531.0871.8521.1131.05 507/03/03 07:30:56p m 26.3372.7721.8830.0771.6421.3430.8671.7822.6329.3771.0722.5130.1672.4922.2828.92 607/03/03 11:12:13p m 30.0572.9421.4229.6371.2323.0128.9671.4623.8927.8270.8724.0428.4672.5322.4628.26 707/04/03 02:10:08p m 45.0071.0726.7023.9069.5227.1123.8269.8328.1022.5370.1628.6123.4171.0827.8423.06 807/04/03 08:19:44p m 51.0270.4827.0323.3269.6927.6023.5269.8029.4221.2270.1629.9421.6071.3027.7722.07 907/05/03 11:27:36a m 66.2068.2630.3119.7168.2630.3119.7168.8432.4417.2369.1031.4920.3670.4430.2818.81 1007/05/03 06:35:09p m 73.3068.9931.5518.0365.6831.9116.5968.4033.2616.4068.3832.2919.0367.1330.6816.96 1107/05/03 08:35:13p m 75.3069.4832.3617.2568.1432.0218.0968.6933.7315.9768.6133.0617.9370.0032.3016.36 1207/06/03 11:45:41a m 90.5069.0834.1714.1167.6633.7315.1267.5035.8712.1267.8535.7613.8469.6534.0113.97 1307/06/03 03:16:57p m 94.0868.8735.3312.7667.3834.2914.2167.9136.4412.0767.9636.1513.0369.2535.2512.72 1407/06/03 10:46:33p m 102.5568.8134.0513.6667.1035.4812.5967.2237.1210.6767.2536.8212.5768.3534.8312.41 1507/07/03 03:34:32p m 107.3568.8936.1410.6467.2037.799.5467.7339.507.4766.8539.098.6268.2037.479.01 1607/08/03 02:05:41p m 129.8866.3838.896.3565.5739.017.2766.6241.284.4166.5340.167.2567.7839.356.05 1707/08/03 08:02:02p m 135.8066.5539.205.7566.2439.386.3766.7741.534.4166.5140.366.4067.6640.794.38 1807/08/03 10:04:58p m 137.8366.8839.606.1866.3840.065.5866.2341.842.7867.0040.537.0767.7940.094.93 1907/09/03 01:12:44p m 152.9767.1940.854.5365.9041.133.6566.3643.031.2766.4341.964.2267.8340.433.93 2007/09/03 10:11:04p m 161.9567.4142.831.2566.9843.861.3966.9344.23-0.1266.9643.291.8867.3942.621.20 T126#1 AT126#1 BT126#1 CT126#1 DT126#1 E Table A-22. Avery-Dennison TT Sens or T126(1) 15C color values. 15oCTIME RunDate/TimehoursL*a* b *L*a* b *L*a* b *L*a* b *L*a* b 108/19/03 11:29:51p m 0.0076.974.1746.4575.933.6946.9576.744.2246.3877.744.4446.3277.743.9446.04 208/20/03 03:54:09p m 16.4267.9330.0419.8969.8530.0119.6967.9330.0419.8969.8530.0119.6969.3029.6519.76 308/20/03 06:25:40p m 18.9367.8632.3716.3168.0731.4118.1767.6631.5017.7868.4331.7117.9468.7730.6418.05 408/20/03 08:11:03p m 20.6868.2433.8114.7968.4633.2616.7667.8132.3917.0869.2631.9916.8369.0732.3416.75 508/20/03 09:44:23p m 22.2567.4834.2713.8867.2932.8415.8066.2833.0115.4468.8332.2616.5268.4932.3415.51 608/20/03 10:14:58p m 22.7567.5134.7613.4468.1833.2315.7767.4333.7814.8669.0633.0615.2368.6933.0515.13 708/21/03 05:10:33p m 41.6867.2539.565.7167.2539.265.6565.9439.626.2567.2539.565.7167.2539.265.65 808/21/03 06:14:00p m 42.7366.0641.193.1766.8140.405.6664.9040.054.9666.6338.786.4366.1839.675.89 T126#1 AT126#1 BT126#1 CT126#1 DT126#1 E

PAGE 66

54 Table A-23. Avery-Dennison TT Sensor T126(1) first dynamic experiment color values. TIME RunDate/TimehoursL*a* b *L*a* b *L*a* b *L*a* b *L*a* b 108/12/03 06:17:57p m 0.0081.764.0446.6580.244.8048.4880.124.2646.8179.703.4549.8680.703.5548.66 208/13/03 04:56:46p m 22.6778.5011.6740.7077.8513.2539.7177.1213.8437.7978.2010.0043.4278.1811.9740.60 308/13/03 08:37:52p m 26.3577.9712.6238.9277.3913.9838.7176.3314.8736.7777.9910.8242.4177.8811.6540.96 408/13/03 10:50:34p m 28.5577.2813.1138.6176.1814.4638.2676.2513.8437.4177.4811.5241.5977.4512.0940.16 508/14/03 02:56:34p m 44.6575.8716.8435.1874.8218.6234.4074.4419.7732.2675.9614.6538.2575.6716.5736.08 608/14/03 03:56:27p m 45.6775.8117.4934.4774.7518.3834.3174.4419.8032.6375.9014.9638.0075.4616.2836.34 708/15/03 01:57:05p m 67.7072.2923.2028.5671.7424.4228.4971.0125.4525.8172.2721.0631.3272.3222.4229.85 808/15/03 08:23:06p m 74.1272.3424.8626.7271.5625.7126.9571.1628.0123.6172.6222.5330.2272.3124.5427.98 908/16/03 11:13:09a m 88.9571.2427.9123.1069.6428.6323.5269.2430.5820.3870.0825.5526.3470.5327.2925.10 1008/16/03 06:10:27p m 95.9069.4428.6421.6669.3830.3620.4468.9531.4418.3070.1027.0225.3370.2628.4123.62 1108/16/03 11:25:49p m 101.1564.4627.4021.2663.0228.2721.2262.9529.7918.0063.3825.9023.4970.0829.1522.38 1208/17/03 08:08:03p m 121.8770.8231.2118.6970.0232.3517.5869.6833.4216.5170.6429.1422.2370.7031.1019.81 1308/17/03 11:33:53p m 125.3070.5931.0818.8169.8232.5017.9369.8632.8415.6170.7029.2522.2770.5530.5520.23 1408/18/03 01:29:07p m 139.2070.4431.2618.6369.7533.2117.0669.7834.0014.7870.6129.7721.8770.3831.6918.68 1508/18/03 06:59:15p m 144.7070.8530.5718.8869.7333.1617.3969.5734.3214.6170.2330.3421.5470.4431.2119.81 1608/18/03 11:47:45p m 149.5070.8531.6917.9469.4833.1417.0369.2833.9615.1970.1129.8020.8870.0830.9719.75 1708/19/03 04:29:32p m 166.2069.8531.8918.0369.6132.8818.2669.3135.0214.3470.2930.5320.5870.2131.9718.40 T126#1 DT126#1 E Dynamic Experiment 1T126#1 AT126#1 BT126#1 C Table A-24. Avery-Dennison TT Sensor T126(1) second dynamic experiment color values. TIME RunDate/TimehoursL*a* b *L*a* b *L*a* b *L*a* b *L*a* b 108/14/03 04:06:08p m 0.0080.863.5648.4080.243.1948.6380.393.6148.2680.083.8648.0980.404.2049.04 208/15/03 01:59:16p m 22.0375.7314.9937.7775.0517.4135.8175.1716.7837.5274.8716.5437.7075.4816.2937.39 308/15/03 08:25:24p m 28.4574.7518.3734.7664.7519.3032.9073.9920.3634.3273.7919.0235.3274.1419.3035.01 408/16/03 11:15:21a m 43.2871.4025.6426.2470.3327.9523.8970.8027.3726.3270.9926.6526.3971.1926.6226.42 508/16/03 06:13:08p m 50.2371.3228.2123.7169.9129.1222.0169.7329.4223.5270.3228.3023.8270.1328.2724.53 608/16/03 11:28:17p m 55.4871.7528.7622.9370.8530.7020.1170.8230.6822.3571.1429.3623.1871.7229.6422.79 708/17/03 08:10:07p m 76.2071.4630.6320.0270.5732.0418.2670.7731.9519.4671.0830.3021.7470.7031.0520.55 808/17/03 11:36:32p m 79.6371.2731.0519.9770.5232.2218.1770.5531.9521.0270.8930.7721.1271.1231.3020.56 908/18/03 01:31:47p m 93.5371.0430.8520.1869.8933.8216.1570.0933.1918.1070.3931.8020.0970.4232.0919.84 1008/18/03 07:01:14p m 99.0370.9730.9420.3069.7834.0515.7469.8833.7817.4570.1832.5219.0856.3928.6618.26 1108/18/03 11:49:34p m 103.8370.8232.5817.5769.9932.6317.8069.8634.0317.6269.9533.1818.1469.9833.5117.60 1208/19/03 04:31:42p m 120.5369.6436.0112.8368.8837.1511.1768.5738.1112.0969.1336.1013.8069.2136.5813.62 1308/19/03 11:28:31p m 127.4869.4737.5910.4468.5039.378.0468.5938.4810.7169.0936.6712.7369.2637.5412.11 1408/20/03 03:52:44p m 143.8869.8036.3111.9368.7539.357.1568.4839.269.9968.8937.8410.8769.3338.2110.27 1508/20/03 08:09:28p m 148.1769.5837.589.7468.8239.546.9168.6339.189.4969.6736.2011.9769.2737.8511.58 1608/20/03 10:13:46p m 150.2369.8536.3511.9668.9539.646.5268.6639.608.7169.1337.959.9769.5037.7010.94 1708/21/03 05:09:09p m 170.1569.4937.6410.0868.7738.658.3868.4240.237.7668.6938.819.5669.2339.408.82 T126#1 DT126#1 E Dynamic Experiment 2T126#1 AT126#1 BT126#1 C

PAGE 67

55 Table A-25. Avery-Dennison TT Sens or T126(2) 0C color values. 0oC TIME RunDate/TimehoursL*a*b*L*a*b*L*a*b*L*a*b*L*a*b* 107/30/03 06:30:55p m 0.0080.761.5148.3880.851.5048.5581.602.0649.7781.852.1748.5180.431.3948.18 207/31/03 03:05:13p m 19.9578.0815.6537.8377.2615.4137.0976.0715.8836.8177.0016.4135.3475.8915.4536.29 307/31/03 05:25:24p m 22.3076.3415.9136.0576.9015.5536.7376.4316.6736.0776.3116.3235.1576.5516.3935.43 407/31/03 11:06:07p m 27.9775.9017.0635.0875.8517.3835.3375.9117.5735.2476.3217.7733.9276.2117.2834.63 508/01/03 02:29:55p m 43.4376.7519.4634.6176.2718.5634.8375.7619.9333.5876.4220.0233.1575.2219.1532.86 608/02/03 01:50:35p m 66.7275.2321.0231.3175.7421.3832.3174.9421.9829.7374.3121.3330.9174.3121.3330.91 708/02/03 09:01:53p m 73.9074.5721.3631.2274.8621.0731.7974.8122.2730.5074.8722.1829.6574.8321.9730.70 808/03/03 05:36:08p m 94.4874.6523.1830.1574.3622.5030.8074.2523.8729.2774.5323.6928.2674.0823.2129.45 908/04/03 02:38:49a m 103.5274.1223.6229.8974.5723.0530.2774.8424.3230.2974.2024.4627.9174.4123.7328.50 1008/04/03 12:15:27p m 115.1274.3623.4229.6573.8124.0728.7774.6524.9929.3674.2725.1827.3573.5824.6727.62 1108/04/03 05:33:48p m 120.4374.1723.9728.7773.9624.2828.8974.0125.3628.0574.6725.8727.5273.5525.0727.66 1208/05/03 12:25:07p m 139.3073.6925.5727.3273.5125.7027.8273.2427.0225.7773.2826.5325.8574.1526.8627.13 1308/05/03 09:27:16p m 148.3373.5826.4426.7573.4526.0226.9773.1126.8126.0873.3327.0224.8173.9727.5725.99 1408/06/03 02:45:23p m 165.6373.3227.4926.1473.3127.5025.5572.4327.7625.6172.5728.3224.1372.5727.7824.94 1508/06/03 05:55:07p m 168.7872.6926.7325.8772.4227.6425.3072.6927.8925.2272.8828.3823.7873.2328.6425.28 1608/06/03 10:14:01p m 173.1072.5427.6725.2372.9227.6025.7572.6628.3925.1872.6228.7323.2973.5529.2124.19 1708/07/03 02:12:54p m 189.0872.2928.6524.0772.3929.1324.3872.4029.3524.2172.2329.7022.2572.8429.9523.15 1808/07/03 08:13:56p m 195.1271.4629.0823.9472.4629.1423.5672.0729.7423.2872.6329.9721.8672.5629.6423.18 1908/08/03 12:53:39p m 211.8272.4329.8522.7872.1430.0522.7972.0330.6822.2872.2430.8021.0572.4531.1421.89 2008/08/03 10:22:07p m 221.2372.1630.8522.0771.8830.7722.0071.7231.3021.8772.6431.8120.6671.9431.3920.42 2108/09/03 10:58:02p m 245.8571.7532.2020.1971.5432.1320.5871.2732.6220.1271.4732.6218.8971.9733.3619.74 2208/11/03 04:23:43p m 287.2770.6034.1318.1471.0534.0518.0570.7834.7517.2970.6634.4016.5071.5035.4517.53 2308/11/03 10:27:25p m 293.3070.9334.6917.2570.9434.4117.8070.6834.9117.0570.9535.0315.6170.7434.9217.09 2408/12/03 04:26:37p m 311.2870.7435.0016.8070.6635.1516.3471.0936.1817.0771.2436.0015.3370.0735.6915.72 2508/12/03 06:14:14p m 313.0770.8535.0316.6270.5435.2316.6570.3435.9215.6270.8235.7814.8270.7536.2915.45 2608/13/03 04:53:42p m 335.7370.5636.0315.3170.3236.1115.1270.1336.5814.8770.0836.6513.7570.5737.0314.49 2708/13/03 08:34:08p m 339.4270.4636.1814.5370.2936.4614.2770.7037.2514.5570.8237.0013.9470.0736.8713.95 2808/13/03 10:47:37p m 341.6270.5936.6114.3970.9437.0515.6069.5936.7114.8270.3436.6813.3770.0537.0113.85 2908/14/03 02:53:32p m 357.7270.2837.1513.0969.8436.9814.4769.8737.4613.8569.9437.1512.7170.7638.6312.39 3008/14/03 03:54:45p m 358.7370.1936.9314.1570.1237.0913.6169.8437.3913.6470.1137.2812.5870.1037.9412.42 3108/15/03 01:56:02p m 380.7769.7937.6113.1869.4037.5813.8469.6338.1213.0769.9838.0911.7770.0038.7312.41 3208/15/03 08:21:12p m 387.1869.6337.8212.6069.6438.1012.5169.5738.4812.2969.8438.4911.5470.0538.9111.71 3308/16/03 11:11:23a m 402.0269.5638.3911.9869.4538.4512.4269.1738.8311.5069.8638.7010.7669.8139.3211.30 3408/16/03 06:08:10p m 408.9769.5838.5012.0869.5438.8810.9469.2038.9911.8069.7539.0310.5569.6939.2410.89 3508/16/03 11:23:56p m 414.2269.5139.0610.8969.3938.6611.7969.3139.2811.3869.7439.1810.2569.5839.5911.02 3608/17/03 08:06:24p m 434.9369.4239.639.6869.4339.4210.5669.0939.7610.6069.4439.869.1569.8940.819.63 3708/17/03 11:32:11p m 438.3769.5439.4210.6269.3939.5910.8569.0839.9710.5469.4339.789.4769.5840.359.78 3808/18/03 01:27:16p m 452.2769.4840.039.8969.3240.089.6869.0340.379.6569.2640.378.4869.5440.918.94 3908/18/03 06:57:23p m 457.7769.3340.179.9069.2740.288.7668.9140.509.3369.2240.398.8669.7041.318.45 4008/18/03 11:46:09p m 462.5769.3440.209.5569.0940.259.9068.9440.519.6869.2540.478.1169.6341.488.57 4108/19/03 04:27:46p m 479.2769.3240.628.8469.1540.908.3368.8741.028.7769.1740.807.8469.6342.037.78 4208/19/03 11:26:52p m 486.2569.2040.778.1969.0841.107.3968.8441.188.3769.1741.027.5669.5942.167.77 4308/20/03 03:51:00p m 502.6769.2141.317.9769.0341.397.4768.7241.518.1569.0141.446.6269.1441.987.21 T126#2 E T126#2 AT126#2 BT126#2 CT126#2 D

PAGE 68

56 Table A-26. Avery-Dennison TT Sens or T126(2) 5C color values. 5oC TIME RunDate/TimehoursL*a*b*L*a*b*L*a*b*L*a*b*L*a*b* 107/30/03 08:03:08p m 0.0077.984.4344.5279.674.0044.0579.854.2243.9580.754.1543.6480.993.1739.66 207/31/03 03:07:41p m 19.9575.0120.8730.2074.7721.4328.8974.9822.0627.7575.8722.9028.2976.4319.0925.63 307/31/03 05:27:54p m 22.3074.9421.2529.6474.8221.8128.0074.5222.1027.5475.1423.1328.0374.9619.9425.13 407/31/03 11:08:32p m 27.9774.4322.3029.3374.3822.7627.1674.7624.2127.0775.1723.5927.3976.1221.4024.81 508/01/03 02:35:39p m 43.4374.3025.8526.6373.9125.9524.2073.0826.9023.0773.4327.3122.1473.3624.2620.36 608/02/03 01:53:00p m 66.7272.2029.2221.6572.0030.2518.7471.3930.5318.1572.0331.4518.4573.1728.8215.33 708/02/03 09:04:23p m 73.9071.8930.2820.5171.5231.4117.8271.2331.9316.6872.3832.7716.8172.8729.9413.99 808/03/03 05:38:37p m 94.4869.2832.6617.7870.5434.7714.2370.5634.9812.9670.9735.7613.6573.1133.5211.15 908/04/03 02:40:59a m 103.5270.3135.0314.3271.6336.1113.2570.4336.4811.6669.7036.0712.2171.7434.158.93 1008/04/03 12:17:44p m 115.1269.9635.9113.7870.0435.9911.7369.5637.3010.2770.2237.3910.8671.4435.128.86 1108/04/03 05:35:56p m 120.4369.8236.5212.9470.0037.1010.6169.4137.339.9070.1037.8710.0271.4535.676.97 1208/05/03 12:27:32p m 139.3069.2438.629.4569.1439.128.1770.1340.288.1270.4140.408.2270.0236.635.40 1308/05/03 09:29:41p m 148.3367.6338.549.3169.1740.176.7369.0840.116.1969.6040.076.4570.8338.624.38 1408/06/03 02:47:55p m 165.6368.6140.347.4968.7541.065.0069.2141.793.4369.6241.624.8071.0840.262.70 1508/06/03 05:57:39p m 168.7867.1340.067.5468.3140.895.0468.0641.344.0069.3341.734.3770.9640.221.87 1608/06/03 10:16:14p m 173.1069.5341.937.2069.1942.384.1868.8942.162.7768.7541.674.4068.5138.362.85 1708/07/03 02:15:16p m 189.0868.4942.204.9567.9742.442.2165.5941.422.8268.8643.092.6067.7839.660.98 1808/07/03 08:16:52p m 195.1268.6742.823.8068.6442.901.9668.4143.221.6268.7343.361.7767.7540.180.02 1908/08/03 12:59:18p m 211.8268.3043.543.0368.5343.700.7369.4744.97-0.4669.1644.440.1469.8642.10-2.16 2008/08/03 10:24:31p m 221.2368.1244.062.2768.5044.39-0.6367.0743.910.3768.5244.510.0369.3942.33-2.40 2108/09/03 11:00:22p m 245.8567.9945.28-0.7668.5345.21-1.8767.9545.52-2.9168.2045.63-1.5569.0142.79-2.92 2208/11/03 04:25:55p m 287.2767.8946.58-2.4367.9146.84-4.3167.9247.02-4.7767.7847.09-3.5569.7645.38-6.61 2308/11/03 10:29:51p m 293.3067.3446.38-1.6967.9446.47-4.2168.5247.38-4.4468.8147.79-4.3469.5044.74-6.46 T126#2 E T126#2 AT126#2 BT126#2 CT126#2 D Table A-27. Avery-Dennison TT Sens or T126(2) 10C color values. 10oC TIME RunDate/TimehoursL*a* b *L*a* b *L*a* b *L*a* b *L*a* b 108/21/03 06:11:18p m 0.0079.877.0744.1578.956.7543.7478.057.6344.2979.487.5043.8379.327.3544.32 208/21/03 06:48:22p m 0.6276.0211.7139.5478.0711.7738.8277.6012.5938.7076.8711.7040.1778.0211.7840.12 308/21/03 06:56:52p m 0.7776.8214.3737.7276.8214.3737.7275.5715.3837.0576.2615.2337.3176.2715.3138.17 408/21/03 06:58:07p m 0.7876.0815.1537.2276.4114.5237.4575.6515.4337.1675.6515.4337.1675.9915.5137.62 508/21/03 07:24:32p m 1.2376.0617.0836.0777.0416.2535.8375.7617.1735.6576.1617.1235.8575.7017.1436.32 608/22/03 01:26:57p m 19.2773.4725.3127.6074.3525.3926.8674.2025.6927.2674.1725.3827.9473.6024.6228.76 708/23/03 05:04:47p m 44.9070.0435.1915.7970.9235.0715.6470.2834.8916.5870.9934.8216.5570.2334.0118.19 808/23/03 06:42:00p m 46.5270.0335.8814.9270.1035.3115.5970.6235.8815.1670.0335.6714.9470.0134.6417.55 908/23/03 08:29:46p m 48.3270.2036.3914.0770.7636.0714.5370.6936.3214.7070.4335.6315.4370.2334.9416.67 1008/23/03 09:41:27p m 49.5269.3035.9914.8970.2636.3314.0369.7536.4914.3369.7535.7615.3669.7235.3316.39 1108/24/03 08:12:44p m 73.0368.0841.766.1368.3041.186.6768.1341.357.5268.2341.157.5368.4740.559.48 T126#2 E T126#2 AT126#2 BT126#2 CT126#2 D Table A-28. Avery-Dennison TT Sens or T126(2) 15C color values. 15oC TIME RunDate/TimehoursL*a*b*L*a*b*L*a*b*L*a*b*L*a*b* 106/14/03 02:04:26p m 0.0081.898.1145.5582.117.9545.0781.699.3044.4582.178.0244.2981.857.8745.58 206/14/03 03:47:53p m 1.6578.3418.1837.3178.6117.5536.1878.2119.3235.6878.3718.8034.6378.3017.3236.91 306/14/03 05:38:51p m 3.5277.7220.9435.1778.3520.2334.8377.4521.7033.3377.9121.2632.6177.7620.0234.98 406/14/03 07:56:39p m 5.8276.8623.7532.5377.2023.2731.7876.4524.4430.3177.0023.0732.8376.9823.0632.79 506/14/03 11:25:17p m 9.2875.5927.3327.7375.5928.2426.4075.0929.3625.3575.1728.7324.3675.4027.8327.02 606/15/03 12:21:20p m 22.2371.7539.0313.0471.8540.1310.6171.4740.5110.0271.7140.259.3171.1539.7111.15 706/15/03 02:19:18p m 24.1871.4540.6111.0471.3741.118.4870.9841.828.0371.3541.547.3871.1540.779.83 806/15/03 05:43:28p m 27.6070.9942.748.2670.8543.165.3470.7843.575.9270.7643.234.8870.5143.156.58 906/15/03 07:13:48p m 29.1070.4243.396.4070.5644.364.6870.0744.843.7870.3744.243.7170.2543.666.77 1006/15/03 10:10:07p m 30.8870.1544.924.9470.3945.262.3270.2445.882.2470.2345.471.4069.9345.383.53 1106/16/03 02:36:53p m 47.3269.3550.12-4.0069.5449.83-5.2769.4851.01-6.3369.5950.27-6.3469.2949.70-4.23 1206/16/03 05:50:19p m 50.5369.1751.04-5.3769.4550.92-6.8369.3451.67-7.3869.3850.85-8.7266.3548.89-4.67 1306/17/03 01:54:50p m 70.6068.6753.11-10.7569.0752.85-11.0869.0153.27-11.5969.3852.83-11.5468.6653.28-11.33 T126#2 E T126#2 AT126#2 BT126#2 CT126#2 D

PAGE 69

57 Table A-29. Avery-Dennison TT Sensor T126(2) first dynamic experiment color values. TIME RunDate/TimehoursL*a* b *L*a* b *L*a* b *L*a* b *L*a* b 108/12/03 06:18:29p m 0.0081.713.8344.7181.394.4246.5281.894.8743.9580.504.5645.9880.075.1443.93 208/13/03 04:57:18p m 22.6777.5613.4437.1077.5915.9835.7677.6016.5934.5276.6116.6436.5476.3915.2735.14 308/13/03 08:38:15p m 26.3576.8015.5135.8676.9917.2535.1276.0918.9233.3675.1318.9433.2475.7017.8432.90 408/13/03 10:51:00p m 28.5577.4014.9036.0676.9517.7134.4675.9219.4832.7275.5017.5534.9875.5417.7832.74 508/14/03 02:57:04p m 44.6575.6018.9232.0575.8520.4431.9275.2222.6930.1174.3921.5730.7374.3820.8729.78 608/14/03 03:56:51p m 45.6775.5918.8832.7575.8420.5331.2875.4322.0330.1574.2022.0530.2974.5421.6329.67 708/15/03 01:57:05p m 67.7072.7925.2026.3472.8724.7627.1873.9226.2325.4272.8026.2425.9772.4527.0924.59 808/15/03 08:23:35p m 74.1272.3327.4523.5372.4327.5025.7572.8628.7023.0572.1427.7724.9171.9228.5322.68 908/16/03 11:13:36a m 88.9570.1731.7519.0270.0831.1920.6471.5933.4518.1270.7632.2718.7670.3332.9917.50 1008/16/03 06:10:57p m 95.9069.5633.8215.8070.6531.7819.3070.5935.0615.6070.4432.3618.7970.0234.1915.06 1108/16/03 11:26:18p m 101.1569.7434.3114.9670.1332.8918.0168.1634.3614.8463.8632.6916.5563.8032.8815.24 1208/17/03 08:08:29p m 121.8770.3536.4411.6771.0735.7614.7870.0437.6611.6269.8536.0913.6069.4837.0611.12 1308/17/03 11:34:17p m 125.3070.2036.5911.5670.9935.6114.7870.0837.6911.6469.6836.5113.1969.4637.3910.56 1408/18/03 01:29:37p m 139.2070.0337.5410.6270.8036.1613.8169.9838.1510.7869.3437.7011.5669.5337.929.73 1508/18/03 06:59:39p m 144.7069.9837.2510.7071.0436.4613.5769.9038.5710.4469.4937.4711.6669.2238.1710.16 1608/18/03 11:48:08p m 149.5069.9537.3210.0370.9636.3313.4569.7738.1010.2369.2537.8711.1069.2438.059.41 1708/19/03 04:29:56p m 166.2069.7238.289.6070.5837.2212.6269.7239.329.5469.3337.8511.7769.0238.568.85 Dynamic Experiment 1 T126#2 E T126#2 AT126#2 BT126#2 CT126#2 D Table A-30. Avery-Dennison TT Sensor T126(2) second dynamic experiment color values. TIME RunDate/TimehoursL*a* b *L*a* b *L*a* b *L*a* b *L*a* b 108/14/03 04:06:30p m 0.0080.403.8948.3380.424.4248.2780.343.3649.1780.274.3948.0980.694.6548.65 208/15/03 01:59:16p m 22.0374.5422.2832.7374.1621.4533.4474.7921.3432.2874.5219.7634.0175.1921.6433.84 308/15/03 08:25:54p m 28.4573.5024.6929.7373.0924.0131.1873.4524.6629.5373.9922.7931.6174.0624.7630.62 408/16/03 11:15:54a m 43.2870.1732.4920.5869.5032.3421.6270.2730.2822.9769.6631.5021.2871.1432.2821.01 508/16/03 06:13:38p m 50.2369.9935.0317.0369.9034.1419.2971.8628.4622.5070.3933.8018.9270.6035.2518.06 608/16/03 11:28:44p m 55.4870.3636.1916.0770.1835.2218.1771.2031.1920.4470.2735.6016.5070.7036.1216.61 708/17/03 08:10:33p m 76.2069.7538.0413.1269.5437.8714.5870.9732.1319.7669.6837.0114.4570.0438.2414.59 808/17/03 11:36:58p m 79.6369.6538.1013.4169.3738.0014.3870.5334.0316.3869.7837.4814.1270.1138.0912.83 908/18/03 01:32:10p m 93.5369.2839.6611.6069.1039.2112.3670.1138.0912.8369.2738.6012.7469.6239.5811.65 1008/18/03 07:01:37p m 99.0369.0340.3010.2568.8840.0511.2869.8136.1114.6269.1639.5311.3169.5040.1010.58 1108/18/03 11:49:59p m 103.8368.8241.268.8468.6341.268.4769.8736.1313.2368.9540.329.9769.2141.279.02 1208/19/03 04:32:05p m 120.5368.0644.903.2267.7444.733.8868.3342.994.3268.0643.684.5768.4644.514.47 1308/19/03 11:28:53p m 127.4868.0145.271.6867.6645.482.2168.5741.206.7967.9644.443.4468.4045.202.50 1408/20/03 03:53:08p m 143.8867.8746.240.2767.6146.170.1868.3046.101.1767.6445.541.7468.3046.101.17 1508/20/03 08:09:49p m 148.1767.9146.350.3367.5546.200.0268.1643.572.6667.9245.331.6568.2345.990.76 1608/20/03 10:14:05p m 150.2367.9246.04-0.1767.5346.220.3367.5445.192.2368.4144.731.5068.3146.370.84 1708/21/03 05:09:30p m 170.1567.8146.58-0.9867.4447.02-0.5069.6939.018.1067.8846.160.2268.1946.83-0.52 Dynamic Experiment 2 T126#2 E T126#2 AT126#2 BT126#2 CT126#2 D

PAGE 70

58 Table A-31. Avery-Dennison TT Sens or T126(4) 0C color values. 0oCTIME RunDate/TimehoursL*a* b *L*a* b *L*a* b *L*a* b *L*a* b 107/30/03 06:30:55p m 0.0081.240.7741.2881.680.7541.4981.930.7941.7081.591.0141.3481.541.0741.36 207/31/03 03:05:13p m 19.9580.407.8135.3980.897.4435.5580.208.5835.1879.519.8234.0380.098.0335.77 307/31/03 05:25:24p m 22.3080.048.4334.9680.307.9835.3979.868.8235.0279.4910.0533.9479.908.6235.04 407/31/03 11:06:07p m 27.9779.749.5233.9280.119.0534.0679.4010.2833.6279.2510.6933.0178.919.5434.12 508/01/03 02:29:55p m 43.4379.0011.7032.1379.1911.1032.9778.6212.7531.3978.3313.0231.0278.6612.1531.81 608/02/03 01:50:35p m 66.7277.9814.3429.4478.5113.6929.9277.7715.2329.1777.5315.5328.8678.0314.4729.68 708/02/03 09:01:53p m 73.9077.7715.0029.1578.2914.2429.5177.4516.1528.3877.5016.0628.5077.9715.6429.45 808/03/03 05:36:08p m 94.4877.4817.2027.5877.7116.5127.8576.7817.3626.6276.1817.9526.4676.7117.1527.44 908/04/03 02:38:49a m 103.5276.9417.3426.8477.0016.7826.8276.6318.6325.5375.8619.0425.0376.4517.5326.63 1008/04/03 12:15:27p m 115.1276.8218.3026.0677.0317.4226.7676.3618.8625.6176.2319.2824.9575.8918.1126.14 1108/04/03 05:33:48p m 120.4375.9917.6525.5977.1817.9825.8375.7019.5924.6975.8120.7223.3476.1819.3125.02 1208/05/03 12:25:07p m 139.3076.9820.2525.0876.7819.8025.0276.4921.6723.8674.8922.0121.9976.1020.8823.64 1308/05/03 09:27:16p m 148.3376.0420.3123.6375.9720.1424.0575.6521.6922.5575.0621.7922.6076.0220.7423.48 1408/06/03 02:45:23p m 165.6375.1621.1723.0074.6520.2923.8674.6621.9822.0874.8123.0821.1275.3721.5722.88 1508/06/03 05:55:07p m 168.7875.4319.7823.5175.8420.7923.0874.9822.4721.9474.5723.6320.5775.3622.2022.05 1608/06/03 10:14:01p m 173.1075.2321.2522.5375.6421.4922.5175.1522.6821.4274.1723.7920.4675.0621.7922.60 1708/07/03 02:12:54p m 189.0875.4319.7823.5175.5422.2221.7174.9423.6420.3674.6024.7419.1774.9722.9021.16 1808/07/03 08:13:56p m 195.1274.7422.6721.2375.1822.6520.9874.8723.7920.1374.4424.4919.3674.9423.4520.65 1908/08/03 12:53:39p m 211.8274.3924.6919.4375.4023.4820.2574.3924.6919.4373.8926.1117.3874.8124.4219.55 2008/08/03 10:22:07p m 221.2373.5221.5021.2174.7823.8320.5374.5325.4818.6173.5126.5717.0974.5525.1718.74 2108/09/03 10:58:02p m 245.8573.2925.0518.5874.5525.0618.6074.0226.4717.2373.5228.0415.1974.1925.8317.88 2208/11/03 04:23:43p m 287.2773.1227.4016.0773.9827.0016.1673.5628.4614.8172.7830.0013.2773.5628.0515.42 2308/11/03 10:27:54p m 293.3073.8227.7415.5373.8627.1916.6173.5028.6114.7673.2629.5313.4773.5727.9315.39 2408/12/03 04:27:07p m 311.2870.8927.0516.2073.8228.0715.2473.3229.0314.0672.5930.5812.5673.6929.0414.96 2508/12/03 06:14:38p m 313.0773.3928.3714.9173.5428.0115.0372.5429.3513.7872.6629.7813.2172.3128.9414.21 2608/13/03 04:54:09p m 335.7373.2429.6713.2972.8228.8413.9872.7830.1312.7572.6431.5311.0673.2529.4513.61 2708/13/03 08:34:33p m 339.4273.2529.6913.1573.4329.1613.6572.7230.2012.7272.5431.6211.0773.1329.6013.39 2808/13/03 10:48:01p m 341.6272.6629.2313.4673.2829.1413.9672.9830.4112.0672.5631.7710.5873.1529.6813.17 2908/14/03 02:54:07p m 357.7272.8129.8113.2473.2929.9013.0473.1031.1412.1272.7331.7011.0172.8730.2412.89 3008/14/03 03:55:09p m 358.7373.3130.5812.5673.5630.4112.6173.4731.9011.9872.8632.9010.0673.0630.3212.58 3108/15/03 01:56:24p m 380.7772.2030.4312.2572.8230.6312.1571.6331.6011.2372.2332.509.8572.4431.4711.39 3208/15/03 08:21:42p m 387.1872.1830.7511.8672.6331.1311.6472.5331.9810.5171.7532.519.9472.4031.1111.75 3308/16/03 11:11:48a m 402.0271.2529.0513.3471.7030.9411.9671.7032.2710.3571.5433.049.3072.2731.9110.90 3408/16/03 06:09:00p m 408.9771.3330.3412.0372.5631.6210.9771.1132.169.9571.9633.079.0772.3031.9610.64 3508/16/03 11:24:23p m 414.2270.5830.6211.6371.5331.2511.0171.2132.479.9070.7933.059.1472.2131.9910.47 3608/17/03 08:06:47p m 434.9371.3232.579.3372.5332.679.3772.3133.528.2971.9334.167.5772.2032.829.33 3708/17/03 11:32:36p m 438.3771.0632.419.8672.5932.519.4372.2333.628.2371.5734.437.3672.2132.569.63 3808/18/03 01:27:41p m 452.2771.9431.3710.5372.4932.879.1272.1033.998.0271.0434.667.2172.2133.128.92 3908/18/03 06:57:47p m 457.7771.1233.089.0572.2733.228.6971.9734.168.0371.8734.666.9472.0233.168.88 4008/18/03 11:46:32p m 462.5772.0130.4210.8872.2133.667.9572.1134.117.5771.4335.016.3271.8933.728.28 4108/19/03 04:28:08p m 479.2770.9833.588.3872.1933.907.8871.9334.647.2171.3835.226.3971.9633.987.84 4208/19/03 11:27:14p m 486.2570.9733.288.4872.0233.478.3171.7534.647.3071.4635.126.4671.7934.357.64 4308/20/03 03:51:21p m 502.6771.1734.267.4272.1334.277.0671.8635.345.9371.5235.515.6271.7834.776.90 T126#4 AT126#4 BT126#4 CT126#4 DT126#4 E

PAGE 71

59 Table A-32. Avery-Dennison TT Sens or T126(4) 5C color values. 5oCTIME RunDate/TimehoursL*a*b*L*a*b*L*a*b*L*a*b*L*a*b* 107/30/03 08:03:37p m 0.0081.382.9640.1681.482.1541.2681.782.7740.3281.163.4639.9881.762.8139.69 207/31/03 03:08:08p m 19.9576.9617.1427.4777.0515.4629.5177.3917.7827.1577.7918.4027.6176.8516.7327.14 307/31/03 05:29:04p m 22.3076.2218.5026.0676.9016.2928.8576.6918.0526.9076.3018.2225.9877.2917.5327.16 407/31/03 11:08:57p m 27.9775.6120.0824.1376.3617.9527.0176.3820.4124.2776.7320.0925.0176.0918.9924.84 508/01/03 02:36:17p m 43.4375.1623.4821.0276.3321.6724.1474.0223.2520.9474.6723.6620.4273.4022.0021.61 608/02/03 01:53:27p m 66.7273.6926.1717.2574.1425.1418.8973.5227.8414.9873.0227.4216.1873.7326.5616.59 708/02/03 09:04:48p m 73.9073.7928.1115.4374.4926.8917.9272.4328.2215.0773.0428.6814.4073.5027.6615.12 808/03/03 05:39:10p m 94.4872.0130.5212.2273.8129.4615.2472.1331.1611.3171.6631.0111.5371.9029.8812.32 908/04/03 02:41:28a m 103.5272.2831.6310.4872.2929.8813.4572.5732.0610.5873.3232.6711.0472.1431.2610.65 1008/04/03 12:18:08p m 115.1271.8732.729.0573.1031.8811.6272.1933.448.5172.9734.168.8671.8232.049.73 1108/04/03 05:36:21p m 120.4372.6933.608.5572.7731.8411.2471.7133.717.6271.4433.528.0570.5132.078.83 1208/05/03 12:27:57p m 139.3071.5534.476.7371.6232.959.2271.4035.086.1272.1435.316.4571.5434.376.43 1308/05/03 09:30:14p m 148.3371.3135.864.6871.4534.217.6871.2135.725.1970.9936.184.6872.2735.735.94 1408/06/03 02:48:20p m 165.6370.8135.405.9472.0835.346.6071.0637.063.4869.6236.943.0869.7835.314.64 1508/06/03 05:58:05p m 168.7870.2236.124.5472.1836.526.1870.1636.923.4970.9037.772.0569.3435.414.30 1608/06/03 10:16:37p m 173.1070.7036.404.1471.8036.006.4470.6437.672.1669.9037.691.3870.8336.703.10 1708/07/03 02:15:40p m 189.0871.3537.972.1671.8037.604.3170.6338.251.6070.5538.111.5369.8536.982.10 1808/07/03 08:17:23p m 195.1270.6238.381.0470.5437.353.1569.9238.76-0.3269.9838.230.8770.2537.771.02 1908/08/03 12:59:41p m 211.8270.7138.820.2070.6938.141.6770.5739.75-0.8070.4239.71-0.8871.3039.150.45 2008/08/03 10:24:54p m 221.2370.0238.770.7670.5238.670.9970.4739.88-1.3070.7040.18-1.4271.2539.61-0.35 2108/09/03 11:00:50p m 245.8568.6940.21-2.1570.4639.320.0070.1241.05-2.8070.5441.15-3.3070.4240.48-2.40 2208/11/03 04:26:21p m 287.2770.1242.29-4.9270.1441.07-2.8769.4042.25-4.9969.9142.35-4.9970.2842.23-5.03 2308/11/03 10:30:33p m 293.3070.3542.03-4.3370.0140.97-2.8969.9242.17-5.2969.4042.45-5.7970.3642.13-5.16 T126#4 E T126#4 AT126#4 BT126#4 CT126#4 D Table A-33. Avery-Dennison TT Sens or T126(4) 10C color values. 10oCTIME RunDate/TimehoursL*a*b*L*a*b*L*a*b*L*a*b*L*a*b* 108/21/03 06:11:52p m 0.0080.682.3040.8280.682.3040.8281.743.1540.2480.682.3040.8281.743.1540.24 208/21/03 06:57:21p m 0.7780.437.1837.3680.286.6937.9680.237.3237.4080.187.3037.4280.108.0437.07 308/21/03 06:58:29p m 0.7880.227.5736.4879.936.9137.8879.887.5137.1079.917.2337.0980.108.4536.49 408/21/03 07:24:53p m 1.2380.238.7235.7380.078.7736.2779.949.4335.2979.899.0034.8579.8710.3534.13 508/22/03 01:27:17p m 19.2774.7923.8720.4774.8023.9420.5374.5424.2620.1274.5623.7920.8674.6624.6420.87 608/23/03 05:05:10p m 44.9072.3432.629.6071.7632.699.4371.7333.039.3271.8732.3810.1171.9433.339.97 708/23/03 06:42:45p m 46.5272.0233.109.0571.2632.839.5171.3032.909.6471.3132.4510.0871.6433.889.04 808/23/03 08:30:05p m 48.3272.4133.328.7071.9633.428.7171.8433.509.0371.8933.039.0372.3234.278.28 908/23/03 09:41:48p m 49.5272.0933.398.6371.1633.428.7371.2133.578.8671.2633.169.1571.6034.018.95 1008/24/03 08:13:05p m 73.0371.0537.253.2170.3637.183.2370.1737.103.4070.0736.644.2970.5338.242.66 T126#4 AT126#4 BT126#4 CT126#4 DT126#4 E Table A-34. Avery-Dennison TT Sens or T126(4) 15C color values. 15oCTIME RunDate/TimehoursL*a*b*L*a*b*L*a*b*L*a*b*L*a*b* 108/19/03 11:30:45p m 0.0081.063.5639.6181.113.8939.8480.513.5239.9880.754.7739.3181.174.2938.66 208/20/03 03:55:00p m 16.4272.2032.749.1572.0632.569.4471.6033.168.8271.1333.079.0071.5032.829.12 308/20/03 06:26:32p m 18.9371.9734.207.5171.3534.947.1571.1734.127.1570.7434.246.8771.4433.836.42 408/20/03 08:11:51p m 20.6871.4134.496.2270.4634.206.1670.4534.915.6270.5735.265.6771.1834.515.39 508/20/03 09:45:03p m 22.2571.0134.885.6371.2635.005.4470.8735.365.0470.6335.605.6171.5135.075.43 608/20/03 10:15:47p m 22.7571.1135.484.7670.7635.065.0570.4736.494.0670.4735.705.1170.6235.064.56 708/21/03 05:11:24p m 41.6870.2240.94-3.5169.6841.35-4.1169.3241.69-4.4969.5441.17-3.6570.0540.90-3.95 808/21/03 06:14:46p m 42.7370.1541.16-3.7069.5941.22-3.3368.6841.42-4.4669.2442.04-5.4069.5541.67-4.40 T126#4 AT126#4 BT126#4 CT126#4 DT126#4 E

PAGE 72

60 Table A-35. Avery-Dennison TT Sensor T126(4) first dynamic experiment color values. TIME RunDate/TimehoursL*a* b *L*a* b *L*a* b *L*a* b *L*a* b 108/12/03 06:19:03p m 0.0081.932.5641.0482.032.3141.8081.791.9041.2382.932.2442.2882.512.1840.95 208/13/03 04:58:15p m 22.6778.8311.7432.9179.1610.8534.6079.5210.2034.2480.0210.9634.7779.2612.2932.35 308/13/03 08:38:40p m 26.3578.4412.7431.9378.9511.5033.7379.0211.3533.2179.3611.8733.4079.0113.2530.80 408/13/03 10:51:25p m 28.5577.7013.9930.8478.7511.9233.5778.6012.0132.5378.9312.9732.4278.8613.6530.35 508/14/03 02:57:32p m 44.6576.2318.6126.0877.1416.5629.0677.1316.5328.1377.3816.8728.8677.2618.5025.22 608/14/03 03:57:21p m 45.6776.3118.7325.9076.9017.3327.9576.8617.1127.5577.3817.2028.3277.0718.8324.75 708/15/03 01:57:05p m 67.7073.1525.7118.1473.9324.3820.2874.1724.1019.8874.2024.2320.7374.5626.1616.54 808/15/03 08:24:05p m 74.1273.2827.8415.3773.7526.0218.8873.5826.3017.2974.1226.5717.9674.0727.6315.35 908/16/03 11:14:02a m 88.9571.6331.0511.2872.0529.4214.6071.7529.7312.8972.3830.0913.8072.9231.5010.19 1008/16/03 06:11:31p m 95.9071.2632.219.7571.7830.8312.1971.5931.0311.6371.8731.2512.5472.6232.568.60 1108/16/03 11:26:46p m 101.1564.7530.639.7265.2629.4312.1365.6929.4411.7672.0431.7111.3572.2233.088.00 1208/17/03 08:08:53p m 121.8771.7933.887.2672.1733.129.2172.2132.728.7672.2332.899.8072.4534.685.49 1308/17/03 11:34:42p m 125.3071.6034.466.5271.7634.517.1571.9133.318.4272.3733.708.6972.3734.855.34 1408/18/03 01:30:06p m 139.2071.7734.696.3071.9534.077.9172.0433.328.1072.2833.958.6672.2835.135.15 1508/18/03 07:00:04p m 144.7071.5634.656.6771.9533.828.5472.0333.457.8972.3234.248.1672.3035.174.75 1608/18/03 11:48:32p m 149.5071.6034.875.8571.7034.706.7871.9433.697.4672.0833.938.3272.1435.444.95 1708/19/03 04:30:20p m 166.2071.3035.555.2271.7834.347.9071.8034.197.0671.7534.118.8472.1835.514.42 T126#4 DT126#4 E Dynamic Experiment 1T126#4 AT126#4 BT126#4 C Table A-36. Avery-Dennison TT Sensor T126(4) second dynamic experiment color values. TIME RunDate/TimehoursL*a* b *L*a* b *L*a* b *L*a* b *L*a* b 108/14/03 04:06:56p m 0.0082.202.2441.7881.792.4241.9682.442.0742.3182.782.4342.2882.772.8042.74 208/15/03 01:59:16p m 22.0377.1817.8027.6876.8216.2629.8474.8923.5221.9177.0517.6228.4577.1318.9427.35 308/15/03 08:26:27p m 28.4575.7521.6423.7675.4420.1925.7773.5127.5516.7875.6821.3124.6076.0122.6323.17 408/16/03 11:16:22a m 43.2872.7229.0215.1172.2528.3016.1270.6634.667.9272.4528.7415.5273.2630.2013.78 508/16/03 06:14:11p m 50.2365.8329.0013.1564.7828.7013.8864.0634.056.9966.2328.9813.6272.9032.1512.05 608/16/03 11:29:13p m 55.4872.7132.0210.7272.3432.0010.6671.0137.862.7772.4231.9511.3472.8632.7811.14 708/17/03 08:11:01p m 76.2072.6333.199.0872.1633.448.6970.9439.350.2872.2233.189.7272.5234.408.45 808/17/03 11:37:20p m 79.6372.8933.478.5972.1734.207.8070.9439.300.4872.2633.379.3572.7034.088.96 908/18/03 01:32:34p m 93.5371.8834.907.5172.1532.729.0970.5340.03-0.4471.8034.368.1972.3335.446.96 1008/18/03 07:02:00p m 99.0371.8935.026.9671.9533.208.7070.4340.32-0.3971.7135.336.9572.1535.707.18 1108/18/03 11:50:27p m 103.8371.8635.965.3371.8034.836.2870.4740.80-1.3871.5835.596.4771.9736.515.65 1208/19/03 04:32:32p m 120.5371.2238.501.5971.1837.712.4470.1743.28-6.0071.0838.881.3871.3939.451.22 1308/19/03 11:29:14p m 127.4871.0539.050.7270.6139.170.4770.1443.23-5.7170.9139.130.8471.2539.820.54 1408/20/03 03:53:30p m 143.8871.2039.50-0.5870.9538.390.7470.2843.61-6.9370.9339.51-0.1971.2740.26-0.68 1508/20/03 08:10:10p m 148.1771.2739.50-0.8071.3137.940.6170.2943.78-7.4770.8739.77-0.4471.3840.50-1.12 1608/20/03 10:14:24p m 150.2371.2439.020.0471.2237.950.5670.2943.71-7.3570.9239.74-0.4571.3440.24-0.96 1708/21/03 05:09:54p m 170.1571.1239.76-1.0370.8539.11-0.3270.4844.08-7.4670.7640.47-1.2171.1641.33-2.00 Dynamic Experiment 2 T126#4 E T126#4 AT126#4 BT126#4 CT126#4 D

PAGE 73

61 LIST OF REFERENCES American Society for Testing and Materials. 1996. Standard Guide for Selection of TimeTemperature Indicators. ASTM, Penn sylvania, U.S.A. F1416-96: 1-4. Baker, D.A., and C.A. Genigeorgis. 1990. Pred icting the safe storage of fresh fish under modified atmospheres with respect to Clostridium botulinum toxigenisis by modeling length of the lag phase of gr owth. J. Food Prot. 53(2):131-140. Byrne, C.H. 1976. Temperature indicators – the state of the art. Food Technol. 30:66-68. Cann, D.C., Wilson, B.B., Hobbs, G., and Shewan, J.M. 1965. The growth and toxin production of Clostridium botulinum type E in certain vacuum packaged fish. J. Appl. Bacteriol. 28 (3): 431-436. Chen, J.H., and R.R. Zall. 1987. Packaged milk, cream and cottage cheese can be monitored for freshness using polymer indi cator labels. Dairy Food Sanit. 7:402404. Crank, J. 1975. “Mathematics of Diffusion.” 2nd ed. Oxford Univ. Press, London. Daniels, J. A., R. Krishnamurthi, and S. S. H. Rizvi. 1985. A review of carbon dioxide on microbial growth and food quality J. Food Prot. 48(6):532-537. Eklund, M.W. 1982. Significance of Clostridium botulinum in fishery products preserved short of sterilization. Fo od Technol. December 1982: 107-112,115. Food and Drug Administration. 2002. Fish and fisheries products hazards and controls guide. 1st ed. U.S. Food and Drug Administra tion, Department of Health and Human Services, Washington, D.C. Fu, B., and T.P. Labuza. 1992. Considerations for the application of time-temperature integrators in food distribution. J. Food Distrib. Res. 23(1):9-17. Fu, B., P.S. Taoukis, and T.P. Labuza. 1991. Predictive microbiology for monitoring spoilage of dairy products with time-tem perature indicators. J. Food Sci. 56(5):1209-1215. Giannakourou, M.S. and P.S. Taoukis. 2002. Systematic application of time-temperature integrators as tools for control of fro zen vegetable quality. J. Food Sci. 67(6):2221-2228.

PAGE 74

62 Grisius, R., J.H. Wells, E.L. Barrett, and R.P. Singh. 1987. Correlation of full-history time-temperature indicator response with micr obial spoilage in pasteurized milk. J. Food Process. Pres. 11(1987):309-324. Kramer, A., and J.W. Farquahar. 1976. Te sting of time-temperature indicating and defrost devices. Food Technol. 30(2): 50-53,56. Labuza, T.P., B. Fu and P.S. Taoukis. 1992. Prediction for shelf life and safety of minimally processed CAP/MAP chilled foods: a review. J. Food Prot. 55(9):741750. Otwell, S. 1997. Time, temperature, trav el – a quality balancing act. Seafood International. 57-61. Post, L.S., Lee, D.A., Solberg, M., Furgang, D., Specchio, J. and Graham, C. 1985. Development of botulinal t oxin and sensory deteriorati on during storage of vacuum and modified atmosphere packaged fish fillets. J. Food Sci. 50: 990-996. Reddy, N. R., D.J. Armstrong, E.J. Rhodehamel, and D.A. Kautter. 1992. Shelf-life extension and safety concerns about fresh fishery products packaged under modified atmospheres: a review. J. Food Saf. 12: 87-118. Reddy, N.R., Paradis, A., Roman, M.G., Solomon, H.M. and Rhodehamel, E.J. 1996. Toxin development by Clostridium botulinum in modified atmosphere-packaged fresh Tilapia fillets during storage. J. Food Sci. 61(3): 632-635. Reddy, N. R., Roman, M.G., Villanueva, M., Solomon, H.M., Kautter, D.A. and Rhodehamel, E.J. 1997. Shelf life and Clostridium botulinum toxin development during storage of modified atmosphere-pac kaged fresh Catfish fillets. J. Food Sci. 62(4): 878-883. Riva, M., Piergiovanni, L. and Schiraldi, A. 2001. Performances of time-temperature indicators in the study of temperature e xposure of packaged fresh foods. Packag. Technol. Sci. 14: 1-9. Rodriguez, N., and N.E. Zaritzky. 1983. De velopment of time-temperature indicator for frozen beef. J. Food Sci. 48:1526-1531. Shellhammer, T.H., and R.P. Singh.1991. Mon itoring chemical and microbial changes of cottage cheese using a full-history timetemperature indicator. J. Food Sci. 56(2):402-405,410 Shimoni, E., E.M. Anderson, and T.P. Labu za. 2001. Reliability of time-temperature indicators under temperature abuse. J. Food Sci. 66(9): 1337-1340. Skinner, G.E. and Larkin, J.W. 1998. Conservative prediction of time to Clostridium botulinum toxin formation for use with time-temperature indicators to ensure the safety of foods. J. Food Prot. 61(9): 1154-1160.

PAGE 75

63 Taoukis, P.S., K. Koutsoumanis, and G.J. E. Nychas. 1999. Use of time-temperature integrators and predictive modeling for shel f life control of chilled fish under dynamic storage conditions. Int. J. Food Microbiol. 53:21-31. Taoukis, P.S. and Labuza T.P. 1989a. Applicab ility of time-temperature indicators as shelf life monitors of food products. J. Food Sci. 54 (4): 783-788. Taoukis, P.S. and Labuza, T.P. 1989b. Reliabil ity of time-temperature indicators as food quality monitors under nonisothermal condi tions. J. Food Sci. 54(4): 789-792. Wells J.H. and Singh, R.P. 1988a. A kinetic approach to food quality prediction using full-history time-temperature indicato rs. J. Food Sci. 53(6): 1866-1870. Wells, J. H. and Singh, R. P. 1988b. Response characteristics of full-history timetemperature indicators suitabl e for perishable food handling. J. Food Process. Pres. 12: 207-218. Wells, J.H. and Singh, R.P. 1988c. Applicat ion of time-temperature indicators in monitoring changes in quality at tributes of perishable and semi perishable foods. J. Food Sci. 53(1): 148-152. Wells, J.H. and Singh, R.P. 1985. Use of timetemperature indicators to monitor quality of frozen hamburger. Food Technol. 39(12): 42-50. Welt, B.A., D.S. Sage, and K.L. Berger. 2003. Performance specification of timetemperature integrators designed to protect against botulism in refrigerated fresh foods. J. Food Sci. 68(1): 2-9.

PAGE 76

64 BIOGRAPHICAL SKETCH Teresa Flores Mendoza spent most of her childhood in West Palm Beach, Florida. She entered the University of Florida in the summer of 1996 and received her Bachelor of Science degree in agricultural operations management in August 2000. From August 2000 to August 2001, Teresa was en rolled as a graduate student at the University of Florida College of Libera l Arts and Science, studying Speech and Language Pathology. In August 2001, she chan ged graduate departments to become a part of the fledgling Packaging Science program at University of Florida’s Department of Agricultural and Biological Engineering. As a graduate student for the Packaging Science program, she was employed as a graduate research assistant on a grant provided by Florida Sea Grant and the National Fisheries Institute. Teresa graduated in December 2003 with a Master of Science Degree. Teresa is a member of the Institute of Food Technologist s, Institute of Packaging Professionals, and the American Society of Agricultural Engineers. Teresa plans to pursue a career in packaging development a nd design in the south eastern United States.


Permanent Link: http://ufdc.ufl.edu/UFE0002820/00001

Material Information

Title: Kinetic Parameter Estimation of Time-Temperature Integrators Intended for Use with Packaged Fresh Seafood
Physical Description: Mixed Material
Copyright Date: 2008

Record Information

Source Institution: University of Florida
Holding Location: University of Florida
Rights Management: All rights reserved by the source institution and holding location.
System ID: UFE0002820:00001

Permanent Link: http://ufdc.ufl.edu/UFE0002820/00001

Material Information

Title: Kinetic Parameter Estimation of Time-Temperature Integrators Intended for Use with Packaged Fresh Seafood
Physical Description: Mixed Material
Copyright Date: 2008

Record Information

Source Institution: University of Florida
Holding Location: University of Florida
Rights Management: All rights reserved by the source institution and holding location.
System ID: UFE0002820:00001


This item has the following downloads:


Full Text












KINETIC PARAMETER ESTIMATION OF
TIME-TEMPERATURE INTEGRATORS INTENDED FOR USE WITH PACKAGED
FRESH SEAFOOD


















By

TERESA FLORES MENDOZA


A THESIS PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

UNIVERSITY OF FLORIDA



































Copyright 2003

by

Teresa Flores Mendoza


































I dedicate this thesis to my mother, Imelda F. Mendoza.
















ACKNOWLEDGMENTS

I extend my greatest appreciation to Dr. Bruce A. Welt who served as chair of my

supervisory committee. Dr. Welt's encouragement and support were invaluable in the

development of this research project. I also greatly appreciate Dr. Steve Otwell, for

giving me the opportunity to work with Florida Sea Grant and the National Fisheries

Institute. I thank Dr. Art Teixeira and Dr. Murat Balaban for their assistance and helpful

suggestions regarding research.

Lastly, I would like to thank my family for their encouragement and moral support

during this study. Particular thanks go to Joseph N. Moore for his encouragement and

support during my graduate studies.

















TABLE OF CONTENTS
Page

A CK N O W LED G M EN TS ................................................................... .................... iv

L IST O F T A B L E S .................................... ................................................ .................... vii

LIST OF FIGURES .............................................................................. ix

ABSTRACT......... ......................... .... ...................... xi

CHAPTER

1 JU STIFIC A TIO N ......... ..................... .................. ........ ....... .......... .....

V acuum -Packaged Fresh Seafood ....................................................... ...................... 1
Regulatory Impact on the Packaged Fresh-Seafood Industry.....................................1

2 LITERA TU RE REV IEW ......... ...... .......... ................ ....................................3

Reduced-Oxygen Packaging of Fresh Seafood ....................................................3
Time-Temperature Integrators (TTI)............................................................ 4
Choosing a TTI to Monitor Thermal History of a Perishable Product................5
Skinner and Larkin Boundary ................................................. .................... 6
Placement and Measurement of TTIs ...................................... 8
Types of T T Is ............................................... ..... .... ...... ........... .. ........... 8
Research with Various Time-Temperature Integrators ...................... ....................9

3 M ATERIALS AND M ETHODS ................................................. .................... 10

Tim e-Temperature Indicators ..................... ................................................... 10
V itsab T T Is .......................... ........ .........................................................10
Lifelines Fresh-Check TTIs .................... .......................... ....................11
Avery D ennison TTIs .................................. ............ ............................. 12
Trials ........................... .......................... ...............13
D ata A n aly sis .................................. ... ............ ............................. ..............16
M easuring Response of Vitsab TTIs .......... ......... ........................................ 16
M easuring Response of Lifelines TTIs ............................................................. 19
Measuring Response of Avery Dennison TTIs .................................................20
A rrhenius A analysis of TTIs ............................................................................ 20










4 RESULTS AND DISCUSSION.......................... ..... .... ....................21

R results of Isotherm al T rials............................................................... .................... 21
Com m ercial TTIs..................... .................................. 21
Prototype TT Is ............................................................................................. 24
A rrhenius R response of TTIs .............................................................. .................... 27
Comm ercial TTIs..................... .................................. 27
Prototype TT Is ..................... .... ................................ ................. .. 29
Results of Dynamic Thermal Trials.................................................30
D iscu ssion .................................................................. 3 0
Vitsab C2-10 and M2-10................... ..............................30
Lifelines Fresh-Check TJ2 .................................................... ....................37
Avery D ennison Prototype TTIs ........................................... .................... 39

5 SUMMARY AND CONCLUSIONS................................................. ....................40

A PPEN D IX R A W D A TA ................................................................ ...................43

LIST O F REFEREN CES ......... ..................................... ..........................................61

BIO G RA PH ICA L SK ETCH ................................................................ ...................64
















LIST OF TABLES

Tableage


3-1 Typical color scale readings for Vitsab TTIs occurring at the beginning of specific
trends in color change. ................................................................. ....................18

4-2 Arrhenius kinetic parameters of the Vitsab Checkpoint M2-10, Vitsab C2-10, and
L ifelines T J2 T T Is. ..... ............ .. .................................................. .................... 22

4-1 Performance of the Avery Dennison T126(1), T126(2) and T126(4) TTIs during
isothermal exposures of 0, 5, 10, and 15C.......................... ...................24

4-2 Arrhenius kinetic parameters of Avery Dennison T126(1), T126(2) and T126(4)
TTIs...... .................... ....................... ....................25

A-1 Vitsab C2-10 0C color values. ........................................ ............................. 43

A -2 V itsab C2-10 50C color values. ........................................ ............................. 44

A -3 V itsab C2-10 100C color values. ............................................... .................... 44

A -4 V itsab C2-10 150C color values. ............................................... .................... 44

A-5 Vitsab C2-10 first dynamic experiment color values .............................................45

A-6 Vitsab C2-10 second dynamic experiment color values...................................... 45

A-7 Vitsab M 2-10 0C color values. ............................ ....... .........................46

A-8 Vitsab M 2-10 50C color values. ................................................ ....................46

A-9 Vitsab M 2-10 100C color values. .............................................. ....................47

A-10 Vitsab M 2-10 150C color values. .............................................. ....................47

A-11 Vitsab M2-10 first dynamic experiment color values...........................................47

A-12 Vitsab M2-10 second dynamic experiment color values......................................48

A-13 Lifeline Fresh-Check TJ2 0C color values. ...................................................49










Fresh-Check TJ2 50C color values. .......................................... ........50

Fresh-Check TJ2 10C color values. ..................................................50

Fresh-Check TJ2 150C color values. ..................................................50

Fresh-Check TJ2 first dynamic experiment color values..........................51

Fresh-Check TJ2 second dynamic experiment color values......................51


A-19 Avery-Dennison TT Sensor


Avery-Dennison

Avery-Dennison

Avery-Dennison

Avery-Dennison

Avery-Dennison

Avery-Dennison

Avery-Dennison

Avery-Dennison

Avery-Dennison

Avery-Dennison

Avery-Dennison

Avery-Dennison

Avery-Dennison

Avery-Dennison

Avery-Dennison

Avery-Dennison

Avery-Dennison


Sensor

Sensor

Sensor

Sensor

Sensor

Sensor

Sensor

Sensor

Sensor

Sensor

Sensor

Sensor

Sensor

Sensor

Sensor

Sensor

Sensor


T126(1)

T126(1)

T126(1)

T126(1)

T126(1)

T126(1)

T126(2)

T126(2)

T126(2)

T126(2)

T126(2)

T126(2)

T126(4)

T126(4)

T126(4)

T126(4)

T126(4)

T126(4)


0C color values. ....................................... 52

5C color values. ......................................... 53

100C color values......................................53

150C color values......................................53

first dynamic experiment color values..........54

second dynamic experiment color values.....54

0C color values. ....................................... 55

5C color values. ...................................... 56

100C color values......................................56

150C color values......................................56

first dynamic experiment color values..........57

second dynamic experiment color values.....57

0C color values. ....................................... 58

5C color values. ...................................... 59

100C color values......................................59

150C color values......................................59

first dynamic experiment color values..........60

second dynamic experiment color values.....60


Lifeline

Lifeline

Lifeline

Lifeline

Lifeline
















LIST OF FIGURES


Figur a

1-1 Application scheme of TTIs as microbiological quality monitor. ............................5

1-2 Boundary for Clostridium botuhnum toxin liberation over a range of various
storage temperatures as defined by the Skinner and Larkin relationship (Eq. 1).......7

3-1 Expired V itsab C2-10 TTI.................................... ..... ....................................... 11

3- 2 Fresh V itsab M 2-10 TTI. ............................................................ ....................11

3-3 Expired Lifeline's Fresh-Check Indicator TTI. ................................................12

3-4 Inactive Avery Dennison prototype TT Sensor TTI.. ..........................................13

3-5 Environmental growth chambers capable of precision temperature control............ 14

3-6 Time-temperature integrators mounted on laminated paper strips for isothermal
experiments inside environmental growth chambers..............................................14

3-7 Color pictures were collected daily for TTIs subjected to 50C isothermal
con d ition s. .................................................................. ...................... 14

3-8 Hand-held spectrophotometer used to acquire L*a*b* readings............................15

3-9 Time-temperature integrators mounted on aluminum discs for dynamic thermal
exp o sures. .................................................................. ...................... 16

3-10 Dynamic thermal conditions for TTI exposure............................. .....................16

3-11 Three trends are exposed when angle differences of color change are plotted for
Vitsab TTIs with 90 cutoff marking endpoint. ...................................................18

4-1 Color response of the Vitsab M2-10 TTI from activation to endpoint ..................21

4-2 Color response of the Vitsab C2-10 TTI from activation to endpoint ...................21

4-3 Color response of the Lifelines Fresh-Check TTI from activation to endpoint.......21

4-4 Vitsab C2-10 isothermal results for four TTIs at 15, 10, 5, and 0C. ....................22









4-5 Vitsab M2-10 isothermal results for four TTIs at 15, 10, 5, and 0C....................23

4-6 Lifelines Fresh-Check isothermal results for five TTIs at 15, 10, 5, and 0C..........23

4-7 Color response of the Avery Denison T126(1) at 50C over 12 days......................24

4-8 Color response of the Avery Denison T126(2) at 50C over 10 days......................24

4-9 Color response of the Avery Denison T126(4) at 50C over 10 days......................24

4-10 Avery Dennison T126(1) isothermal results for five TTIs at 15, 10, 5, and 0C.....26

4-11 Avery Dennison T126(2) isothermal results for five TTIs at 15, 10, 5, and 0C.....26

4-12 Avery Dennison T126(4) isothermal results for five TTIs at 15, 10, 5, and 0C.....27

4-13 Arrhenius plot of all TTIs against the Arrhenius modified Skinner and Larkin's
lag tim e. ....................................................... ...................... 2 8

4-14 Arrhenius plot of first order Avery Dennison TTIs. .............................................29

4-15 First dynamic thermal exposure with actual and predicted TTI performance
relative to the Skinner and Larkin lag time curve. .................................................31

4-16 First dynamic thermal exposure with actual and predicted TTI performance
relative to the Skinner and Larkin lag time curve. ................................................32

4-17 Second dynamic thermal exposure with actual and predicted TTI performance
relative to the Skinner and Larkin lag time curve. .................................................33

4-18 Second dynamic thermal exposure with actual and predicted TTI performance
relative to the Skinner and Larkin lag time curve. ................................................34

4-19 Second dynamic thermal exposure with actual and predicted TTI performance
relative to the Skinner and Larkin lag time curve. .................................................35

4-20 Illustration of method used to describe Vitsab TTI response in a three dimensional
co lor sp ace ........................................................................................3 6

4-21 Zero order versus first order response...................................... .................. 37

4-22 Isothermal response of Lifelines Fresh-Check TJ2 TTIs exposed to direct light
versus no light exposure at 15, 10, 5, and 0C. ................... ... ...............38
















Abstract of Thesis Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Master of Science

KINETIC PARAMETER ESTIMATION OF
TIME-TEMPERATURE INTEGRATORS INTENDED FOR USE WITH PACKAGED
FRESH SEAFOOD

By

Teresa Flores Mendoza

December 2003

Chair: Bruce A. Welt
Major Department: Agricultural and Biological Engineering

The United States Food and Drug Administration (FDA) is concerned about the

possibility of Clostridium botuhnum toxin liberation before detectable spoilage of

reduced-oxygen packaged (ROP) fresh fish. The FDA suggests that temperature

conditions favorable to toxin formation are likely to occur within the distribution channel;

therefore sufficient temperature monitoring is required in order to ensure safety. Time-

Temperature Integrators (TTI) are proposed as one mean to control product safety.

Six TTIs were tested for their suitability with ROP seafood. Three commercially

available TTIs studied were Vitsab M2-10, Vitsab C2-10, and Lifelines Fresh Check TJ2.

Three prototype TTIs evaluated were the Avery Dennison T126(1), T126(2), and

T126(4). Methods to convert L*a*b* color readings to response rates were developed or

adopted for monitoring thermal response of the respective TTIs.









Accurate modeling of TTI color response exposed that the Vitsab C2-10 and

M2-10 TTIs could be categorized as partial history indicators because of no apparent

color change during an initial green trend before transitioning to yellow. It was also

found that zero order kinetics could be used to model color response of the Lifelines

Fresh Check TTIs by defining endpoint at the darkness of the TTI's reference ring.

Isothermal treatments at 0, 5, 10 and 15C were used to determine kinetic

parameters of all TTIs. Arrhenius kinetic parameters were used to model TTI response

during dynamic thermal exposures. Kinetic parameters were validated by comparing

predicted to actual readings under dynamic thermal conditions. The time-temperature

integrators underwent two kinds of dynamic thermal exposures. Results suggest that the

Vitsab M2-10, Avery T126(2), and Avery T126(4) TTIs may be used to predict safety of

fresh fish packaged in reduced-oxygen environments.















CHAPTER 1
JUSTIFICATION

Vacuum-Packaged Fresh Seafood

Reduced-oxygen packaging (ROP) of fresh seafood fulfills a number of production

and distribution needs. For seafood, ROP has been found to extend shelf life and to deter

the onset of undesirable characteristics due to spoilage. This has attracted industry to

adopt this method of packaging. However, for ROP seafood, a major food-safety concern

involves the naturally occurring, pathogenic, anaerobic, nonproteolytic bacterial spores of

Clostrdium botuhnum type E.

Regulatory Impact on the Packaged Fresh-Seafood Industry

In September 2001, the Food and Drug Administration (FDA) released import alert

#16-125 authorizing "detention without physical examination of refrigerated (not frozen)

vacuum packaged or modified atmosphere packaged raw fish and fishery products due to

the potential for Clostrdium botulnum toxin production." The FDA suggests that

temperature conditions favorable to toxin formation are likely to occur within the

distribution channel; therefore sufficient temperature monitoring is required in order to

ensure safety (FDA 2002). However, proper temperature control depends on human

interaction and oversight during distribution. Since conditions favorable to anaerobic

toxin proliferation are possible, stringent monitoring procedures are necessary.

Monitoring will require greater integration among entities involved in manufacturing

through consumption.






2


The FDA specifically mentions time-temperature integrators (TTI) that can indicate

exposure to abusive time-temperature combinations, as a potential means to monitor and

control product safety (FDA 2002). Therefore TTIs may provide a simple and potentially

cost-effective method to monitor thermal histories of ROP seafood.















CHAPTER 2
LITERATURE REVIEW

Reduced-Oxygen Packaging of Fresh Seafood

Vacuum packaging involves removal of gas; whereas modified atmosphere

packaging (MAP) involves altering the gaseous atmosphere inside the package. Both

practices are encompassed under reduced-oxygen packaging (ROP). The Food and Drug

Administration (FDA) uses ROP as a general term to describe any hermetically sealed

package where oxygen levels fall below atmospheric levels (2002). The FDA

recommends specific measures to ensure safety of ROP seafood.

After vacuum packaging, the remaining gaseous environment inside of the package

becomes deficient in oxygen due to bacterial metabolism (Daniels et al. 1985). This

proves beneficial for controlling product spoilage from aerobic microbial growth in

seafood (Baker and Genigeorgis 1990; Eklund 1982; Post et al 1985). Aerobic

microorganisms cannot flourish in a reduced-oxygen environment, eliminating a major

cause of spoilage found in seafood. In some cases, increased levels of carbon dioxide

may further inhibit microbial growth through the reduction of pH caused by carbon

dioxide gas dissolving in moist foods and converting into carbonic acid (Reddy et al

1992). Thus, a variety of gas flush combinations have been found to extend the shelf life

of fresh seafood (Eklund 1982; Post et al. 1985; Reddy et al. 1992).

However, under reduced-oxygen conditions Clostrdium botuhnum, an aerobic

microorganism, may be able to grow and produce toxins, causing ROP products to

become hazardous (Eklund 1982). Heat treatments may not be sufficient to inactivate









spores (Skinner and Larkin 1998). If C. botuhnum spores are present in vacuum-

packaged seafood, toxins can be produced before sensory deterioration, if the product is

exposed to temperatures above 3.3C (Baker and Genigeorgis 1990; Cann et al. 1965;

Eklund 1982; Post et al. 1985; Reddy et al. 1996 1997; Skinner and Larkin 1998). Since

stringent temperature control has been shown to adequately ensure safety, the FDA

currently requires temperature monitoring of fresh foods that are packaged in reduced-

oxygen environments, as part of seafood-processing and distribution plans (FDA 2002).

Time-Temperature Integrators (TTI)

A time-temperature integrator is a type of "smart" label indicating, through

nonreversible visible changes, the nature of its thermal exposure. Typically, changes are

expressed as a visual response through color development and/or color movement. Time-

temperature integrators have been categorized into either partial history or full history

indicators based on their response mechanism (Wells and Singh 1985). Partial history

TTIs respond to temperatures that exceed a predetermined threshold and are most

effective to detect severe temperature abuse. Full history TTIs respond to a complete

range of times and temperatures and offer a means to compare different temperature

histories.

A number of TTIs have been described in the literature (ASTM 1996; Byrne 1976;

Kramer and Farquahar 1976; Riva et al. 2001; Skinner and Larkin 1998; Taoukis and

Labuza 1989a; Wells and Singh 1988a, b, c). Time-temperature integrators have been

evaluated with a number of perishable foods, such as chilled fish (Taoukis et al. 1999;

Otwell 1997), dairy products (Chen and Zall 1987; Fu et al. 1991; Grisius et al. 1987;

Shellhammer and Singh 1991), frozen beef (Rodriguez and Zaritzky 1983; Wells and

Singh 1985), frozen vegetables (Giannakourou and Taoukis 2002), and a variety of











fruitcake (Wells and Singh 1988b, c)


by Fu and Labuza (1992)

Choosing a TTI to Monitor Thermal History of a Perishable Product

Time-temperature integrators show time temperature-dependent changes

correlating to specific changes of food quality and/or food safety attributes undergoing


of appropriate time-temperature integrators depends on the effective reaction rate of a

product Taoukis and Labuza (1989a) defined an application scheme developed for TTI

use as a foodquality product monitor when lacking knowledge of thermal history (Figure

2-1)


-snirt l


Assumption


efl(TTI) Teff(T ood)


Figure 2-1 Application scheme of TTIs as microbiological quality monitor (modified
from Taouks and Labuza 1989a Applicability of time-temperature indicators


as shelf life monitors offood products J FoodSci


54 (4) 783-788)









left side of Figure 2-1 indicates that TTI kinetics are required, basically giving an

effective temperature, Teff, for a variable temperature distribution (Taoukis and Labuza

1989a, b). This Teff value is then used on the right side of the scheme representing

microbial growth kinetics, using the same temperature dependence model to predict

extent of microbial growth. To apply the schematic approach, knowledge of the physical

characteristics of type of TTI is required. Physical characteristics can be translated to a

response function of TTI kinetics which is sufficient to characterize TTI response.

However, TTI design focusing solely on matching effective temperature may be

technically correct, yet TTI behavior may be difficult to interpret if the order of TTI color

response and quality attribute response are different (Welt et al. 2002).

Skinner and Larkin Boundary

It is well known that C. botuhnum toxin forms faster at higher temperatures. The

locus of lag times that results from different thermal conditions may represent a region

whose boundary separates danger from safety. Development of an equation representing

these boundary conditions of toxin formation was first done by Baker and Genigeorgis

(1990). Derived from over 1,800 studies of C. botuhnum toxin formation under various

conditions, the Baker and Genigeorgis (1990) equation conservatively describes the lag

time (LT) for C. botuhnum toxin formation. Skinner and Larkin (1998) simplified the

Baker and Genigeorgis (1990) relationship resulting in Equation 2-1.


Log(LT) = 0.65- 0.525(t) + 2.74K- (2-1)


where LT represents lag time in days for C. botuhnum toxigenesis to occur, and T is

temperature in degrees Celsius. A plot of Equation 2-1 is shown in Figure 2-2 and is

referred to here as the "Skinner and Larkin Curve."










50

45

40

C 35

0
253

20




S25
.-I
20
I--






0-
0 5 10 15 20 25 30 35 40
Temperature [C ]

Figure 2-2. Boundary for Clostridum botulnum toxin liberation over a range of various
storage temperatures as defined by the Skinner and Larkin relationship (Eq. 2-
1).

The zone below the curve (Figure 2-2) represents "safe" conditions where C.

botulnum toxin liberation has not been observed. The zone above the curve represents

potentially "dangerous" conditions which could result in liberation of C. botulnum toxin.

Equation 2-1 describes a conservative boundary between safe and dangerous handling

conditions. This curve may provide a useful target for specifying TTI performance (Welt

et al. 2003).

Defining a target for TTI performance is vital to achieving accurate predictions.

An overly conservative TTI response would often instruct handlers to discard good

product early. An improperly specified TTI response could result in consumption of

hazardous product. Such errors could also occur when TTIs are interpreted improperly.









Placement and Measurement of TTIs

TTI placement is also vital to accuracy of time-temperature exposure. Heat transfer

limitations based on the mass and weight of a product has been studied by Malcata

(1990) to address thermal diffusivity from center to surface of food products. The study

revealed that the quality function of food calculated by a surface mounted indicator is

considerably larger than the actual value of the quality function. Malcata found that in all

cases TTI response was faster than actual food quality loss. Therefore, for the case of

ROP food safety, the error of prediction will lie on the conservative side and would

contribute to a low overall error from studying outside surface temperature of a product

as opposed to the center.

Types of TTIs

Previously, three commercially available non-electronic TTIs are described in

literature, including the (I) 3M Monitor Mark (3M, St. Paul, MN), (II) Vitsab TTI labels

(Cox Technologies, Belmont, NC), and (III) Lifelines Technologies (Morris Plains, NJ).

The 3M Monitor Mark operates through a time-temperature dependent diffusion of a

dyed fatty acid ester through a porous wick (Taoukis and Labuza 1989a). A barrier film

between the dye ester and wick is pulled off and diffusion starts. The measurable

response of the TTI is the advancing diffusion front along the wick. The Monitor Mark is

not being manufactured and is not currently available commercially.

The second type of commercially available TTI is the Vitsab TTI (Cox

Technologies, Belmont, NC), based on the technology of I-Point TTI labels (I-Point

technologies, Malmo, Sweden). A precursor to Vitsab TTIs, the I-Point had a color

change from green to yellow to red whereas the Vitsab TTIs change from green to

yellow. However, both TTIs operate through a change of pH based on a controlled









enzymatic hydrolysis of a lipid substrate. Before activation, a barrier separates the

proprietary lipase enzyme and pH indicating dye from the enzyme substrate

(triglyceride). The barrier is broken when pressure is applied and time-temperature

dependent color changes begin.

The third commercially available TTI is manufactured by Lifelines Technologies

(Morris Plains, NJ). The Freshness Monitor was described and studied by Taoukis and

Labuza (1989a, b) and Wells and Singh (1988b). This type of TTI is based on solid state

polymerization of an acetylenic monomer that changes to an opaque polymer. Darkness

or reflectance may be used to measure response of color change as TTI changes from

light to dark. Lifelines TTIs are active upon manufacture, therefore cold transport and

storage at or below -240C are imperative. Also, TTI polymerization is affected by ultra-

violet light. Lifelines TTIs are covered with a coating to block specific wavelengths,

however exposure to direct light has been observed to quicken reaction times. Known

kinetic parameters of the three TTIs are summarized by Taoukis and Labuza (1989a).

Activation energies (Ea) of indicators cover the range of most deteriorative reactions in

food.

Research with Various Time-Temperature Integrators

The objectives of this study were to (1) develop a method to interpret TTI response

with an industry-standard hand-held color meter, (2) estimate thermal kinetic parameters

of TTIs in order to be able to predict response given arbitrary thermal histories, and (3)

evaluate potential TTI candidates for use with ROP fresh seafood.















CHAPTER 3
MATERIALS AND METHODS

Time-Temperature Indicators

Commercially available TTIs evaluated in this study were the Vitsab Checkpoint

M2-10, C2-10 labels (Cox Technologies, Belmont, NC) and Lifelines Fresh-Check TJ2

(Lifelines Technologies, Morris Plains, NJ). Respective suppliers recommend the M2-10

and Fresh-Check TJ2 for packaged seafood and the C2-10 for beef and dairy products.

Avery Dennison provided several versions of prototype TTIs, that represent an exciting

new technology that could contribute to the TTI industry.

Vitsab TTIs

The "M2-10" designation implies that the TTI expires in 10 days at 20C. The C2-

10 offers a similar expiration period, but with a different sensitivity to temperature.

Vitsab M2-10 (Figure 3-1) and C2-10 (Figure 3-2) TTIs are inactive until pressure is

applied to break a barrier between two ampouless" and contents are mixed together. One

ampoule contains a proprietary lipase enzyme and pH indicating dye while the other

ampoule contains an enzyme substrate (triglyceride). A green to yellow color change

occurs as pH is lowered via liberation of fatty acids from triglyceride by the lipase

enzyme. Since excess enzyme is present, reaction rate is governed primarily by

temperature. Concentrations of lipase enzyme and triglyceride can be manipulated

during manufacture to yield targeted activation energies, Ea, providing TTI design

flexibility.





























Figure 3-1. Expired Vitsab C2-10 TTI. Actual size is 2.2cm x 3.6cm, with a thickness of
-0.8mm.


Figure 3- 2. Fresh Vitsab M2-10 TTI. Actual size is 2.2cm x 3.6cm, with a thickness of
-0.8mm.

Lifelines Fresh-Check TTIs

The Fresh-Check TTIs operate on a solid state polymerization reaction where a

colorless acetylenic monomer polymerizes and becomes opaque. Measurable color

change is darkness and occurs as the monomer polymerizes. Fresh-Check TTIs are active









upon manufacture, therefore storage at -240C before apphcation is imperative The

Fresh-Check TJ2 (Figure 3-3) is red with a dark reference ring surrounding a "bull's eye"

center These TTIs are considered to be expired when the bull's eye center color matches

the reference ring A fresh TTI appears to have a "light" center, where a used Fresh-

Check TTI appears to have a "dark" center



















Figure 3-3 Expired Lifeline's Fresh-Check Indicator TTI Actual dimensions are 2 2cm
by 3 5cm

Avery Dennison TTIs

Prototype TTIs evaluated in this study were the Avery Dennison TT Sensor

indicator labels T126(1), T126(2), T126(4), and activator labels T80(20) (Avery

Dennison, Paynesville, OH) (Figure 3-4) Avery Dennison TTIs operate through a

diffusion based reaction where color change is sensitive to pH The clear activator label

supplies an acidic substance, which diffuses into the indicator label, causing an

irreversible color change Avery Dennison TTIs are inactive until clear activation tape is

applied and diffusion begins A freshly activated TTI appears yellow, while a completely

used TTI appears pink










Sensor
If color of "ACTIVE" large circle
matches color of small circle.
TT Sensor" is expired.


IIII1111IIII = Expired
3545
Figure 3-4 Inactive Avery Dennison prototype TT Sensr TTI Actual dimensions are
25cmby5 1cm
Trials
All TTIs were tested for performance in relation to the Skinner and Larkin Curve
Both Vitsab and Lifelines TTIs were delivered in cooled insulated cases, Lifelines TTIs
were packed in dry ice and Vitsab TTIs were packed with freezer gel packs These TTIs
were transferred to a -35F freezer at the University of Florida For each experiment,
TTIs were transported on ice in a cooler Inactivated TTIs from Avery Dennison are
stable at room temperature, eliminating the need for cold storage and transport Trials
were conducted in programmable environmental chambers (Models 156A-E and 157,
Environmental Growth Chambers, Chagrin Falls, OH) (Figure 3-5a, b) Four Vitsab C2
10, four Vitsab M2-10, five Fresh-Check TJ2 labels, and five each of Avery Dennison
T126(1), T 126(2), and T126(4) TTIs were mounted on laminated paper strips (Figure 3
6) and exposed to isothermal conditions at 0, 5, 10, and 15C A digital microscope
(Figure 3-7) was used to capture pictures (ten times magnification) ofTTIs for reference
Hunter Gardner tnrstimulus (L*a*b*) color scale readings (Appendix) were collected






14


periodically by a BYK Gardner Color-Guide hand-held spectrophotometer (BYK

Gardner USA, Columbia, MD) (Figure 3-8).









A


Figure 3-5.


Environmental growth chambers capable of precision temperature control.


A) One of six chambers used for isothermal and dynamic trials.


B) Chamber


display panel indicating temperature and relative humidity inside chamber.


Figure 3-6. Time-temperature integrators mounted on laminated paper strips for
isothermal experiments inside of environmental growth chambers.


Figure 3-7. Color pictures were collected daily for TTIs subjected to 50C isothermal
conditions.


























Figure 3-8. Hand-held spectrophotometer used to acquire L*a*b* readings.

Color change was converted to percent response versus time based on a method

developed to determine color change designated as endpoints for all TTIs. Slopes of

response trends provided isothermal reaction rate constants, which were used to

determine Arrhenius kinetic parameters. Time-temperature integrators were then

exposed to dynamic thermal conditions in programmable environmental chambers. For

dynamic thermal exposures TTIs were mounted on aluminum discs (Figure 3-9). Two

dynamic thermal profiles (Figure 3-10) were used in which one chamber was

programmed to rise in temperature from 1 to 9C and then back to 1 C over a period of

150 h. Another chamber was programmed to rise in temperature from 3 to 11 C and then

back down to 3C, twice over a period of 120 h for Vitsab TTIs and twice over a period

of 150 hrs for Lifelines TTIs. Dynamic thermal profiles were based on equation 3-1:


T(t) T=T,+Tsin2 (3-1)
P p }










where Tb is the base temperature, Ta the amplitude and Tp the period. Actual thermal

histories of the environmental chambers were used in conjunction with Arrhenius

parameters to compare predicted to actual TTI responses.








Figure 3-9. Time-temperature integrators mounted on aluminum discs for dynamic
thermal exposures.


0 25 50 75 100 125
Time (hours)


150


Figure 3-10. Dynamic thermal conditions for TTI exposure.

Data Analysis

Measuring Response of Vitsab TTIs

While Vitsab TTIs were still green, L*a*b* color scale readings did not progress in

a consistent manner to indicate accumulating response. This rendered previous methods









of evaluating such TTIs inapplicable. Therefore a method was developed to determine

the useful endpoint of the color change. Values of L*a*b* were plotted in 3-dimensional

space with L*a*b* values corresponding to Cartesian xyz axis as follows: a x (green

to red); b y (blue to yellow), L z (light to dark). Multiple measurements of TTIs

were plotted throughout their useful ranges. Plots of L*a*b revealed expected paths of

TTIs through 3-D color space. At each point of a TTI's response, a vector was drawn

from the origin to the point on the TTI curve. The angle between two vectors, such as the

initial vector (Fresh TTI) and some other vector can be determined by using the dot

product equation (Eq. 3-2).

vow
cos 0 =- (3-2)


where v and w are vectors, and 0 is the angle between vectors v and w. Angles between

initial and subsequent readings were compared to manufacturer specified endpoints in

order to identify the angle that represented the end of a TTIs response.

Plotting angle difference versus time exposes three trends that parallel visual

observation of the TTIs color change (Figure 3-11). Immediately following activation,

TTIs exhibit a green trend where visual change is minimal. A transition period

immediately follows where a constant transition from green to yellow occurs. During

this period, TTI color gradually becomes more yellow and less green. A final color trend

follows when TTI color has reached a light yellow color and slightly changes to a dark

yellow color. Endpoints at this yellow state would be far beyond a useful time frame for

ROP seafood. An endpoint that coincided with the manufacturer's M2-10 specification

occurred during transition from green to yellow. The angle between the initial vector

(fresh TTI) and the vector corresponding to the endpoint at a given condition was about 9










degrees. Vitsab TTI L*a*b* values can be corresponded to angle of difference (Table 3-

1).


LI


18 ---Green Trend AA AAAA
0 Transition PeriodA A
0
15 A Yellow Trend -----------------
o O
12 ----------------------- 0--------------
S12 -
C




3e-p

0
3 -----------------------------------






0 100 200 300 400 500
Time [h]

Figure 3-11. Three trends are exposed when angle differences of color change are plotted
for Vitsab TTIs with 90 cutoff marking endpoint.

Table 3-1. Typical color scale readings for Vitsab TTIs occurring at the beginning of
specific trends in color change.
Vitsab C2-10 B O'C Vitsab M2-10 C 0C
I L* a* b* L* a* b*
Green trend 0.0 40.9 -11.6 27.4 39.2 -11.2 24.8
Transition period 4.0 40.8 -10.3 27.3 36.7 -7.6 25.7
90 difference 9.0 44.8 -7.2 34.5 44.4 -6.0 35.3
Yellow trend 15.0 51.4 -2.1 46.5 41.9 -2.0 37.3



Once the endpoint was established, TTI color change as percent response of lag

time (LT) remaining, could be determined for kinetic parameter estimation. Taoukis and

Labuza (1989a 1989b) observed a continuous color change with a colorimeter utilizing









only the "a" value of the tristimulus reading, which describes colors ranging from green

to red. However, in this study, all three tri-stimulus values were used. Linear distance

between two L*a*b* readings is obtained by Equation 3-3.

AE= (L -L *2 a*-a*)2 (b -b )2 (3-3)

where AE is the total color distance between vector tips of vectors 1 and 2, and L, a, and

b values are color values obtained from the colorimeter. After determining endpoint

through angle difference, each TTI reading can be converted into "accomplished

distance" by dividing the current distance from the standing position by the overall

distance. When plotted against time, this may be interpreted as "percent of total TTI

response."

Measuring Response of Lifelines TTIs

Literature describes Lifelines TTIs exhibiting pseudo-first order kinetic parameters

(Fu et al. 1991; Taoukis and Labuza 1989a, b). However, from application until time

when center matches the preprinted reference ring, it was found that color change could

be modeled using a pseudo-zero order kinetics. This proves useful to industry because

TTI response rate can be correlated to visual change. Lifelines TTIs color change may be

measured by degree of darkness. Equation 3-3 was adapted to describe light to dark color

change of the L* value (Eq. 3-4). Percent of total response was calculated similarly to

Vitsab TTIs with cutoff endpoint occurring when L* value of the center matched the

TTIs reference ring.

AE=(L*-L*)2 (3-4)









Measuring Response of Avery Dennison TTIs

Kinetic parameter estimation was done with methods for diffusion based TTIs

established by Taoukis and Labuza (1989a). However, in this case diffusion was based

on the normalized a* values instead of diffusion along a wick (Taoukis and Labuza

1989a).

Arrhenius Analysis of TTIs

Arrhenius kinetic parameters were estimated for each TTI using traditional

isothermal experiments (Eq. 3-5).


k= ke RT (3-5)

where k is the reaction rate constant, ko is the Arrhenius pre-exponential constant, Ea is

activation energy, R is the ideal gas law constant, and T is absolute temperature.

Reaction rate constants, k, for each isothermal exposure were determined for all TTIs.

Plotting ln(k) versus the inverse absolute temperature provides the ko and Ea of each TTI

where linear regression are described by Eq. 3-6 and provide parameters to predict

cumulative response to dynamic thermal trials.


ln(k)= ln(ko) (- 1(3-6.)
R ( Tabsolute )















RESULTS AND DISCUSSION

Results of IstheralTnals

Commemal TTIs

Color espse ofthe V'sab M2- 10, VtsabC2-10 and Lifelies Flesh-Check ae

shown inFgure 41g 42 and4-3, resecively Results of sothemal expenment fo

commercial V itsab and Lifelies TTIs at 0,5, 10, and 1 5 ade shown i Table 4-1

Arrhemus paaeters based onisothermal experiments ae shown in Table 4-2


Table Performance f the Vitsab Checkpot M2 10 VtsabC2-10, and Lfelnes
TJ2 TTIs ckunng isothemal exposMes of 0, 5, 10, and 15C

Tempea e VitsabM2-10 Vtsab C2-10 Lifelines TJ2
[C] SD[C] k1 [' ] R2 k [h ] R2 k [h D] IR
0 + 0334 0303 0 984 0407 0981 0211 0968
5 + 0635 0561 0760 0590 0962 0473 0977
10 + 0110 1 314 0904 1020 0914 0923 0983
15 +- 0102 2 40 0 9 0923706 932 1788 0980











Table 4-2. Arrhenius kinetic parameters of the Vitsab Checkpoint M2-10, Vitsab C2-10,
and Lifelines TJ2 TTIs.
[Kcal/mol K] [%LT/day]
Ea Ea 95%CL ko ko 95%CL R2
Vitsab M2-10 23 603 [18 231-28 975] 5 368E+19 [3 479E+15-8 283E+23] 0994
Vitsab C2-10 15 129 [10 845-19 413] 1 199E+13 [5 476E+09-2 626E+16] 0 991
Lifelines TJ2 22 881 [19 815-24 479] 1 144E+17 [1 743E+15-7 509E+18] 0999


Response was plotted against time for each isothermal exposure for commercial

TTIs: Vitsab M2-10 (Figure 4-4), Vitsab C2-10 (Figure 4-5), and Lifelines Fresh-Check

TJ2 (Figure 4-6).




100



80 5


0 *







40 0 10 2
020 -
E 10 0C c o


0 50 100 150 200 2
Time [h]
Figure 4-4: Vitsab C2-10 isothermal results for four TTIs at 15 (0), 10 (*), 5 (w), and 0C










100



80 A*o
A

-. A A
1C
C 60

E A
W 40
7-




020
E 100c
150C
0 50C
0 50 100 Time[h]150 200 250
Time [h]


Figure 4-5: Vitsab M2-10 isothermal results for four TTIs at 15 (0), 10 (*), 5 (w), and
O0C (A).


0 50 100 150 200 250 300 350 400 450
Time [h]


Figure 4-6. Lifelines Fresh-Check isothermal results for five TTIs at 15 (0), 10 (*), 5 (w),
and OC (A).









Prototype TTIs

Color response of the prototype Avery TTIs T126(1), T126(2) and T126(4) at 5C

are shown m Figure 4-7, 4-8 and 4-9, respectively Results of isothermal experiments for

prototype Avery TTIs at 0, 5, 10, and 15C yielded rate constants at each temperature

(Table 4-3) Arrhemus parameters based on isothermal experiments are shown in Table

4-3









Figure 4-7 Color response of the Avery Denson T126(1) at 5C over 12 days


Figure 4-8 Color response of the Avery Denison T1 26(2) at 50C over 10 days





Figure 4-9 Color response of the Avery Denison T 26(4) at 5C over 10 days


Table 4-1 Performance of the Avery Dennison T126(1), T126(2) and T126(4) TTIs
during isothermal exposures of 0, 5, 10, and 15C
Temperature T126(1) T126(2) T126(4)

[C] SD [C] k [hr-] R2 k [hr-1] R2 k [hr-1] R2
0 +- 0334 1 313E-03 0983 2 223E-03 0986 1 926E-03 0974
5 +-0 635 3 772E-03 0981 6 260E-03 0977 6 304E-03 0 974
10 +-0110 8 237E-03 0 984 1 458E-02 0 993 1 797E-02 0 996
15 +-0102 8 237E-03 0984 4 307E-02 0992 4 498E-02 0988











Table 4-2. Arrhenius kinetic parameters of Avery Dennison T126(1), T126(2) and
T126(4) TTIs.
[Kcal/mol K] [%LT/day]
Ea Ea 95%CL ko ko 95%CL R2
T126(1) 32.883 [20.337-45.429] 2.525E+23 [4.225E+13-1.510E+33] 0.985
T126(2) 30.449 [25.682-35.215] 5.093E+21 [9.832E+17-2.638E+25] 0.997
T126(4) 32.864 [28.759-36.970] 4.004E+23 [2.532E+20-6.333E+26] 0.998

Avery Dennison TTIs operate through a diffusion based process. Equation 4-1

describes the diffusion process (Crank 1975) and was adapted by Taoukis and Labuza

(1989a, b) for the study of another diffusion based TTI.


erf 1 t]l2 (4-1)


where Co is the original concentration at the origin, c is the concentration at the visible

distance X, t is the time X is measured, D is the diffusivity, and erfe is the complementary

error function (Taoukis and Labuza 1989a). Taoukis and Labuza (1989a) rearranged

equation 4-1 to give X as a function of time:


X = 2D1 /2erfl {j t1/2 (4-2)


where the term inside the bracket is constant for a constant temperature allowing the

rewritten form:

F(X)= X2 = kt (4-3)

Therefore plotting X2 over time provides a straight line.

Response was plotted against time for each isothermal exposure for prototype TTIs:

Avery Dennison T126(1) (Figure 4-4), Avery Dennison T126(2) (Figure 4-6), and Avery

Dennison T126(4) (Figure 4-7).










1.0

150C /
0.8















0 50 100 150 200 250 300 350 400 450
Time [h]


Figure 4-10. Avery Dennison T126(1) isothermal results for five TTIs at 15 (0), 10 (*), 5
(0), and OC (A).


0 50 100 150 200 250
Time [h]


300 350 400 450


Figure 4-11. Avery Dennison T126(2) isothermal results for five TTIs at 15 (0), 10 (*), 5
(0), and OC (A).













1.0
150C

U U XA



50C A
0. r A A

0.6


Ak A






0.0
0 50 100 150 200 250 300 350 400 450
Time [h]


Figure 4-12. Avery Dennison T126(4) isothermal results for five TTIs at 15 (0), 10 (*), 5
(0), and OC (A).






Arrhenius Response of TTIs

Commercial TTIs

By converting the Skinner and Larkin curve into the Arrhenius form (Welt et al.

2003), direct comparisons between TTI performance and Skinner and Larkin Arrhenius

curve may be made (Figure 4-13). Such comparisons provide a way to determine how

well a TTI will perform relative to safety from botulinum toxin. Using the assumption

that consumption of lag-time follows zero-order kinetics, pseudo zero order TTI rate

constants can be directly compared to rate loss of lag-time.










5

4,__-*0 *C2-10 A M2-10
4
3 -W TJ2 S&L(1998)



\ T-
2







-1
'*--.--\



-2
3.47 3.52 3.57 3.62 3.67
1/T*1000 [1/K]


Figure 4-13. Arrhenius plot of all TTIs against the Arrhenius modified Skinner and
Larkin's lag time. Arrhenius plot of M2-10 ( ), C2-10(*), and TJ2 (M)
against Skinner and Larkin's lag time to C. botuhnum (-) toxigenesis.

Thus, when comparing rates of change, points occurring below the Arrhenius

modified Skinner and Larkin C. botuhnum curve represent rates that are slower than

consumption of lag-time (dangerous). Above the curve, rates are faster than consumption

of lag-time (conservative). Therefore, TTIs should have a faster rate of change than

consumption of lag time, which means TTI performance should approach the Skinner and

Larkin's C. botulinum curve from above (Welt et al. 2003). Figure 4-13 immediately

shows that the Lifelines TTIs studied have a slower rate of change than Skinner and

Larkin's (1998) lag time, suggesting that they would not be suitable for ROP seafood.

Figure 4-13 shows that both Vitsab TTIs track fairly closely with the Skinner and

Larkin Arrhenius curve. Additionally, both Vitsab TTI curves crossed slightly below the

Skinner and Larkin Arrhenius curve. The C2-10 and M2-10 crossed at 6.30C and 7.1C,

respectively. This suggests that these TTIs may fail to read conservatively at conditions










above these temperatures. However, this apparent danger is mitigated by the fact that at

such abusive conditions the difference in timing between the TTI reading and potential

danger would be relatively short. Additionally, the Skinner and Larkin curve is

recognized to be extremely conservative. Therefore, it is likely that under "normal"

handling conditions, the Vitsab M2-10 would likely serve as a successful indicator of

botulinum safety in ROP seafood.

Prototype TTIs

Avery-Dennison TTI response was converted into the Arrhenius form (Figure 4-

14). Figure 4-14 show similar slopes for all three TTIs indicating similar activation

energies corresponding to Table 4-4. Rates of change are slowest for the T126(1) and

faster for the T124(2) and T126(4). However, the Avery-Dennison T126(2) and T126(4)

cross at 50C. Therefore rates of change are faster for the T126(4) than the T126(2) below

5C and faster for the T126(2) than the T126(4) above 5C.


0
0 -]-----1-----------1----
3.17 3.52 3.57 3.62 3. i7
-1


-2 T126(1) *T126(4) AT126(2)


-3





-
2-I-



-6

-7
1/T*1000 [1/K]


Figure 4-14. Arrhenius plot of first order Avery Dennison TTIs: T126(1) (),
T126(2) (A), and T126(4) (*).









Results of Dynamic Thermal Trials

Dynamic thermal trials revealed that Arrhenius parameters calculated from

isothermal experiments were fairly good in predicting TTI performance (Figures 4-15, 4-

16, 4-17, 4-18, and 4-19). Predictions for the commercial TTIs were generally better than

for the prototype TTIs. However, actual readings tended to be more conservative than

predictions.

Dynamic thermal response of Lifelines Fresh-Check TJ2 supported kinetic

parameter predictions that response rate would be slower than that of Vitsab TTIs and

Skinner and Larkin predictions.

Endpoints of actual TTI response for Vitsab M2-10, Avery Dennison T126(2) and

T126(4) correlated well with endpoint of lag time for both dynamic thermal experiments

and suggest safe use with MAP seafood products.

Discussion

Vitsab C2-10 and M2-10

It was found that the method developed to predict behavior of Vitsab M2-10 and

C2-10 TTIs was flawed due to actual TTI behavior. Although isothermal response plots

(Figures 4-4 and 4-5) show well behaved straight lines, Figure 4-20 clearly shows that it

would be impossible for an observer to differentiate between a fresh TTI and one exposed

at 50C for 150 hours. Taoukis and Labuza (1989a, b) observed a smooth sigmoidal

function; however this method failed for a similar reason. Trends in Figure 3-11 reveal

that no significant accomplishment of angle difference occurred during the initially green

trend. This means that measurement at any given time before transition will not alert

users as to what percent of lag time is remaining.














12 f-------------------.._.. ----- 100
12 1 -- Temperature LT C. Botulinum 100
C2-10 Predicted 0 C2-10 Actual
M2-10 Predicted A M2-10 Actual
S-* Fresh-Check Predicted U Fresh-Check Actual
10 80
8 80












M2-10' *
0



Ca
0 \ 0











0 24 48 72 96 120 144
6440
4--I



Larkin lag time curve. Actual plot of M2-10 ( ), C2-10(), and TJ2 () against Skinner and Larkin's lag time to C.
S 2 C2-10

2 20





0 24 48 72 [ 96 120 144
Time [h]


Figure 4-15. First dynamic thermal exposure with actual and predicted commercial TTI performance relative to the Skinner and
Larkin lag time curve. Actual plot of M2-10 ( ), C2-10(o(), and TJ2 (i) against Skinner and Larkin's lag time to C.
botulinum (-) toxigenesis, actual temperature response (-), and predictions of
M2-10 (- -), C2-10(- -), and TJ2 (- -) based on Arrhenius parameters.













12 I 100
Temperature LT C. Botulinum
ST126#1 Predicted i T126#1 Actual
S- T126#2 Predicted A T126#2 Actual
T126#4 Predicted T126#4 Actual
10 -
80




SL-60

6 []



o



0 40
4-




T T12642 O



0 24 48 72Time hours6 120 144


Figure 4-16 First dynamic thermal exposure with actual and predicted prototype TTI performance relative to the Skinner and Larkin
lag time curve. Actual plot of T126(1) ( ), T126(2) (A),and T126(4) againstt Skinner and Larkin's lag time to C.
botulinum (-) toxigenesis, actual temperature response (-), and predictions of T126(1) ( ), T126(2) (- -
and T126(4) ( --- ) based on Arrhenius parameters.















12 100




10
80



8 0

60
0

6 -







20
2 -
Temperature LTC. Botulinum C210
'C2-10 Predicted C2-10Actual
M2-10 Predicted A M2-10Actual
o i-i-i --- 0 o
0 24 48 Time [h] 72 96 120


Figure 4-17. Second dynamic thermal exposure with actual and predicted commercial Vitsab TTI performance relative to the Skinner
and Larkin lag time curve. Actual plot of M2-10 ( ) and C2-10(*) against Skinner and Larkin's lag time to C. botulinum
(-) toxigenesis, actual temperature response (-), and predictions of M2-10 (- -) and C2-10(- -) based on Arrhenius
parameters.














12 100









10
80





60

TJ2\
6- 1
I \-I


/ 40
4-4



20-
2 Temperature 2
mLT C. Botulinum i
,Lifelines Predicted "-- .
M Lifelines Actual
0 0
0 50 Time [h] 100


Figure 4-18. Second dynamic thermal exposure with actual and predicted commercial Lifeline TTI performance relative to the
Skinner and Larkin lag time curve. Actual plot of TJ2 (m) against Skinner and Larkin's lag time to C. botulinum (-)
toxigenesis, actual temperature response (-), and prediction of TJ2 (- -) based on Arrhenius parameters.













12 100



10--
\ V \ 80





6 7* \3



E 40'_

-Temp
LT C. Bot
\C rr








T126#1 Pred 20
2 O T126#1 Act T12\6(2)
T126#2 Pred
A T126#2 Act T 4-. g
T126#4 Pred T126(4)
0- -T 40








0 24 48 72Time (hours 6 120 144


Figure 4-19. Second dynamic thermal exposure with actual and predicted prototype TTI performance relative to the Skinner and
Larkin lag time curve. Actual plot of T126(1) ( ), T126(2) (A),and T126(4) (*)against Skinner and Larkin's lag time to C.
botulinum (-) toxigenesis, actual temperature response (), and predictions ofT126(1) T126(2)
and T126(4) ( -- ) based on Arrhenius parameters.
and T126(4) (- -- -) based on Arrhenius parameters.













L
21

18 --





15 ...
a a



0 100 200 300 400 500
Tme [h] -b




Figure 4-20 Illustration of method used to descnbe Vitsab TTI response in a three
dimensional color space There is no apparent change in color dunng the
initial green trend

Therefore use of an apparently successful, but failed approach to determine change

of Vitsab TTIs was found to be inapphcable Ideally, measurements should progress

consistently from start to finish However, actual behavior suggests that the initial vector

'jumps around" dunng the green penod resulting in accumulated distance, but no actual

progress towards the final vector occurs However, isothermal, Arrhemus, and dynamic

parameters were calculated through Eq 3-3 so response rates are correct because original

endpomt of nine degrees of vector change correlates with visual endpomt

Therefore it is recommended that Vitsab TTIs be considered as partial history, or

go/no go indicators Dynamic trials suggest that Vitsab C2-10 and M2-10 TTIs endpomt

of visual color change are conservative to Skinner and Larkan's (1998) lag time

However, color of TTI will not correlate to amount of lag time remaining









Lifelines Fresh-Check TJ2

Existing methods for measuring Lifelines TTIs involve an optical wand with a cyan

filter provided by manufacturer For this study, response was measured by a common

hand-held spectrophotometer (BYK Garner Color Guide) Discussions with the

manufacturer suggest TTI response proceeds beyond the darkness of the reference ring by

about twenty-five percent In previous studies researchers used first order kinetics to

model the Lifelines TTI (Fu et al 1991, Taoukis and Labuza 1989a, b) In this study, the

Lifelines TTIs were considered expired when the center color matched the reference ring

It is well known that first order processes may be modeled as zero order when

considering partial response (Figure 4-21) This may explain observed pseudo-zero order

behavior for this TTI in this study









S I90 O

80 -RO



40
3 0 -^ FIRST ORDER

< 20 \ -


50 100


150
Time (hours)


Figure 4-21 Zero order versus first order response









It is also important to note that exposure of Lifelines TTIs to sunlight or bright

direct light tends to accelerate the polymerization reaction which quickens reaction

response kinetics. This may prove difficult for industry, because direct lighting is often

essential in various practices of distribution and retail handling. Lifelines Technologies

does apply a coating to protect from ultra-violet light exposure, however initial trials in

this study exhibited accelerated responses from uncontrolled lighting in environmental

chambers. Figure 4-22 shows isothermal response of Lifelines TTIs under minimal and

constant direct lighting conditions at 0 and 5C. Therefore, in this study, care was taken

to minimize exposure of Lifelines TTIs to light.





100








8 40 A -
-J3





EI20 Pa NZt 4h
\l < A A


0 50 100 150 200 250
Time [h]


300 350 400 450


Figure 4-22. Isothermal response of Lifelines Fresh-Check TJ2 TTIs exposed to direct
light (red) versus no light exposure (blue) at 50C (w) and 0C (A).






39


Avery Dennison Prototype TTIs

Avery Dennison prototype TTIs offer benefits over Vitsab and Lifelines TTIs

because of easy visual color perception and an insensitivity to temperature prior to

activation. The distinct yellow to pink color change is continuous, thus visual response

was found to be predictable through Taoukis and Labuza's method for diffusion based

TTIs (1989a, b). Since Avery Dennison TTIs start of reaction is controlled through

application of activation tape, cold transport of TTIs prior to activation is elimated.















CHAPTER 5
SUMMARY AND CONCLUSIONS

Temperature control during storage and distribution is a principal factor influencing

quality and safety of fresh seafood packed in reduced oxygen packaging (ROP). For

ROP seafood, a major food safety concern involves the naturally occurring anaerobic

Clostrdium botuhnum type E. The United States Food and Drug Administration (FDA)

suggests conditions favorable to toxin formation are likely to occur within the distribution

channel, and recommends the use of time-temperature integrators that can visually

indicate exposure to abusive time-temperature combinations, as means to monitor and

control product safety.

A time-temperature integrator (TTI) is a type of "smart" label indicating the nature

of its thermal exposure typically through nonreversible color development. Ideally,

selected TTIs can show time-temperature dependent changes correlating to changes of

food quality and/or safety attributes undergoing dynamic thermal exposure. Six TTIs

were tested for their suitability with ROP seafood. Three commercially available TTIs

studied were Vitsab M2-10, Vitsab C2-10, and Lifelines Fresh Check TJ2. Three

prototype TTIs evaluated were the Avery Dennison T126(1), T126(2), and T126(4).

Methods to convert TTI readings to response rates were developed or adopted for

monitoring thermal response of TTIs.

Once TTI response was accurately modeled, kinetic parameters were attained and if

appropriate, compared to Skinner and Larkin's (1998) equation for lag time until

Clostrdium botuhnum toxigenesis. Isothermal experiments at 0, 5, 10, and 15C for all









TTIs provided isothermal rate constants, k. Rate constants were then converted to

Arrhenius form to yield activation energies, Ea, and the Arrhenius pre-exponential

constant, ko. Arrhenius parameters were then used to model predictions of TTI response

and compared to dynamic thermal experiments.

Computer modeling of TTI response correlated fairly well with experimental

observation. Actual readings of all TTIs tended to be conservative to predicted responses

based on Arrhenius parameters. Endpoints of actual TTI response for Vitsab M2-10,

Avery Dennison T126(2) and T126(4) correlated well with endpoint of lag time for both

dynamic thermal experiments and suggest safe use with ROP seafood products.

The Vitsab C2-10 and M2-10 TTIs were found to be more appropriately

categorized as partial history indicators. Color response of the Vitsab TTIs showed no

apparent progress until just before transitioning from green to yellow. This makes

differentiating a freshly activated TTI and a TTI about to transition to yellow difficult.

Although Vitsab TTIs expire in a predictable fashion, it is not necessarily possible to

estimate time-to-expiration by observing the TTI. Therefore, thermal histories cannot be

correlated to visual display of TTI.

It was found that zero order kinetics could be used to model the Lifelines Fresh

Check TTIs. Defining the endpoint as the darkness level of the TTI's reference ring

yields a zero order response. This provides the added benefit that a similar amount of

progress may be expected in similar amounts of time under similar conditions. This is

likely to be more desirable than a first order response where increasingly long periods are

required to show a given amount of response. This is useful for industry because

interpretation does not require prior knowledge of TTI kinetics. However, a shortcoming









of the Lifelines TTI is its sensitivity to light. Inadvertent exposure to agricultural growth

lamps during this study resulted in accelerated responses. Ultra violet protective coatings

are applied to the TTI but may not be enough to prevent an accelerated response in the

advent of extreme exposure.

Avery Dennison prototype TTIs are a new type of diffusion based TTI technology

that are easily modeled by published methods (Taoukis and Labuza 1989a,b). Predictions

during dynamic thermal exposure match fairly well, and color change is continuous

throughout the useful range of the TTI. These prototype TTIs have the advantage of

being stable at ambient temperatures before activation, eliminating the need for cold

storage or transport.

In conclusion, TTIs can serve as a potential solution to regulatory concerns dealing

with ROP seafood. Devices used to monitor time and temperature are just part of a

solution to monitor thermal histories. Data collection, data sharing, chain of custody and

ultimate responsibility for product safety are all important and related issues when

dealing with time and temperature dependent safety issues.



















APPENDIX
RAW DATA


Raw data collected from the BYK Gardner Color Guide hand-held


spectrophotometer. Data is presented by TTI, with time of acquisition and total time


elapsed on the left. L*a*b* values are listed for individual TTI reading for each


isothermal and dynamic experiment. Time is measured in decimal hours. Highlighted


data denotes endpoint achieved. Many measurements are taken far beyond endpoint.


Table A-1. Vitsab C2-10 0C color values.
00C C2-10A C2-10B C2-10C C2-10D
Run Date/Time TIME L* a* b* L* a* b* L* a* b* L* a* b*
1 08/01/02110853am 000 4388 -1165 2897 4094 -1160 2744 3986 -1213 2636 4118 -1148 2577
2 08/01/02 104823pm 1193 3732 -1239 2835 4134 -1143 2538 3894 -1232 2648 4335 -1170 2735
3 08/02/02 10 53 17am 2402 3874 -1186 2860 4167 -1215 2693 3963 -1295 2786 4137 -1281 2600
4 08/02/0211 5655pm 3700 3916 -1096 2752 4114 -1104 2553 4185 -1250 2769 3867 -1296 3144
5 08/03/0201 1015pm 5010 4261 -1185 2859 4197 -1195 2694 4189 -1196 2809 4029 -1123 2683
6 08/04/020102 16am 6210 3946 -1134 2731 3869 -1164 2641 4146 -1204 2735 4306 -1222 2663
7 08/04/02 123944pm 7372 3762 -1152 2712 4198 -1191 2884 4435 -1309 2824 3980 -1124 2646
8 08/04/02113216pm 8462 3858 -11 16 2690 4066 -1182 2717 3899 -1156 2758 3876 -1140 2562
9 08/05/02094217am 9478 4471 -1220 2809 4593 -1149 2844 4494 -1272 2842 4424 -1159 2694
10 08/05/02 11 01 17pm 10800 4418 -1227 3004 3997 -1142 2729 4208 -1176 2711 4000 -1106 2676
11 08/06/0209 27 26am 11848 4338 -1203 3046 4128 -1201 2879 4020 -1227 2861 4057 -1096 2794
12 08/07/0201 17 16am 13435 4085 -1127 2816 4285 -1127 2714 4054 -1195 2932 4176 -1211 2827
13 08/07/0210 1604am 14315 4184 -1106 2847 4435 -1093 2791 4305 -1175 2819 4126 -1146 2843
14 08/08/02010048am 15808 3740 -1009 2369 4035 -1073 2566 4098 -1195 2743 4502 -1193 2854
15 08/08/02 1046 11am 16780 3744 -1020 2461 4306 -1121 2948 4132 -1198 2788 4176 -1097 2963
16 08/08/02 1005 57pm 179 18 3597 -935 2388 4077 -1026 2727 4007 -1191 2919 4096 -1013 3031
17 08/09/02 104249am 19177 4504 -1049 2970 4314 -1096 3035 4296 -1161 3100 4332 -946 3191
18 08/09/02 1023 24pm 20347 4010 -958 2858 4571 -987 3032 4361 -1066 3038 4281 -934 3106
19 08/10/0201 58 02pm 21903 3949 -966 2860 4557 -968 2959 4511 -952 2978 3809 -726 2891
20 08/10/0211 5225pm 22897 4168 -952 3311 4668 -836 3428 4404 -879 3236 4440 -620 3706
21 08/11/02 1243 55pm 24177 4125 -835 3341 4354 -672 3340 4575 -782 3580 4664 -438 4138
22 08/11/0209 3247pm 25065 4283 -680 3489 4695 -718 3840 4741 -699 3661 4747 -340 4132
23 08/12/021000 32am 26297 4463 476 3861 4904 -595 4301 4981 -448 3824 5027 -116 4515
24 08/12/020940 18pm 27473 4630 401 4333 5048 -389 4399 4895 -361 4380 4911 -129 4539
25 08/13/02 10 40 08am287 72 5022 -157 4666 5144 -213 4646 4380 -077 4044 4464 014 4635
26 08/13/02 10 3706pm29968 5070 -025 5056 4765 078 5017 5290 -153 4792 5288 111 4882
27 08/14/02 10 01 23am 31107 5117 079 5017 5120 139 4734 5274 -127 4871 5304 202 5152
28 08/14/0210 14 49pm 32328 4851 229 5481 5221 056 5297 5154 025 48 10 5167 136 5483
29 08/15/02 11 42 10am33678 5699 126 5309 5902 -207 4886 5889 -207 4932 5882 -093 5286








44



Table A-2. Vitsab C2-10 50C color values.
50C C2-10A C2-10B C2-10C C2-10D
Run Date/Time TIME L* a* b* L* a* b* L* a* b* L* a* b*
1 08/12/02022727pm 000 4075 -1078 2772 4286 -1211 3076 4758 -1152 2961 4787 -1141 2995
2 08/12/02094209pm 740 4133 -1033 2616 3784 -1033 2592 4249 -1107 2775 4005 -1197 2976
3 08/13/021041 39am 2042 4358 -1076 2851 4348 -1137 2973 4621 -1104 2829 4780 -1108 2907
4 08/13/02103831pm 3237 4168 -1041 2936 4264 -1097 3088 4196 -1137 3135 4603 -1085 2936
5 08/14/0210 02 43am 4375 4252 -1097 3044 4482 -1089 3039 4787 -1120 3044 4765 -1061 2961
6 08/14/0210 1627pm 5597 4560 -1052 3041 4525 -1131 3175 4806 -1115 3163 4684 -1103 3187
7 08/15/02114643am 6947 4509 -1030 3058 4509 -1150 3405 4730 -1030 3058 4734 -1040 3163
8 08/15/02094552pm 7950 4281 -1011 3154 3384 -906 2847 4555 -1052 3309 4953 -1028 3246
9 08/16/02 104421am 9247 4581 -934 3174 4474 -1043 3432 4692 -1013 3379 4951 -928 3286
10 08/17/0200 10 14am 10592 4428 -886 3261 4241 -799 3153 4325 -897 3406 4559 -804 3252
11 08/17/02115620am 11767 4843 -865 3352 4609 -950 3446 4865 -897 3648 5046 -807 3590
12 08/18/0201 03 05am 13080 4902 -828 3523 4957 -891 3477 5027 -781 3750 5274 -702 3770
13 08/18/020200 28pm 14350 4868 -746 3626 4879 -852 3556 5189 -622 3891 5191 -549 4100
14 08/19/02012304am155 13 5174 -590 3739 4949 -760 3621 5320 -431 4287 5541 -360 4439
15 08/19/02033948pm 16918 5203 -446 4178 5163 -656 3734 5723 -198 4564 5776 -104 4570
16 08/19/020939 32pm 17540 5418 -332 4284 5008 -598 4013 5640 -106 4932 5719 -0 12 4753
17 08/20/021209 22pm 18987 5508 -089 4745 5219 -418 4341 5818 011 4938 5754 056 5066
18 08/20/02 1040 41pm 20043 5313 109 4927 5511 -260 4545 5800 017 5169 5919 033 4877
19 08/21/02 10 18 12am212 02 5503 155 4854 5737 -107 4617 6027 031 5040 5980 054 4955


Table A-3. Vitsab C2-10 100C color values.
10oC C2-10A C2-10B C2-10C C2-10D
Run Date/Time TIME L* a* b* L* a* b* L* a* b* L* a* b*
1 08/01/0211 11 34am 000 3811 -1166 2994 4172 -1216 3242 4464 -1193 3125 4421 -1173 3149
2 08/01/02054206pm 683 3976 -1079 2660 4787 -1153 2955 4631 -1175 2926 4469 -1132 2835
3 08/01/021050 11pm 1193 3881 -1094 2802 4474 -1151 3009 4352 -1145 2994 4348 -1195 3138
4 08/02/02 1055 19am 2402 3950 -1175 3168 4598 -1173 3026 4448 -1147 3053 4480 -1154 3089
5 08/02/02055506pm 3107 3437 -1094 2840 4460 -1151 3104 4728 -1067 2807 4594 -1102 2912
6 08/02/0211 5948pm 3700 3845 -1135 3203 4387 -1149 3139 4462 -1119 3100 4626 -1104 3066
7 08/03/0201 1155pm 5010 3896 -1052 3176 4586 -1063 3174 4633 -1065 3162 4659 -1057 3115
8 08/03/020650 55pm 5590 4455 -1066 3275 4820 -998 3085 4729 -1045 31 17 4742 -1025 3092
9 08/04/020104 51am 6210 4031 -1027 3375 4843 -979 3184 4617 -1013 3213 4393 -1005 3157
10 08/04/021241 18pm 7372 4003 -792 3651 4119 -899 3454 3870 -822 3216 4232 -889 3497
11 08/04/020750 10pm 8090 5053 -587 3845 5119 -758 3647 5007 -772 3680 4976 -726 3471
12 08/04/0211 3352pm 8462 4507 -4 18 4362 5144 -664 3791 50 54 -649 3969 4930 -690 3923
13 08/05/020944 12am 9478 5036 038 5039 5339 -301 4627 5384 -248 4509 5339 -301 4627
14 08/05/0206 1733pm 10218 5092 248 5155 5563 -086 4781 5632 -105 4898 5535 -045 4930
15 08/05/02110242pm 10800 4753 366 5154 5454 057 5155 5607 -021 4791 5530 027 5147
16 08/06/02092844am 11848 5096 384 5289 5670 096 5097 5674 069 5184 5753 103 5169
17 08/06/02 06 48 04pm 12787 5635 257 5118 5657 176 5102 5666 174 5035 5922 102 5048


Table A-4. Vitsab C2-10 150C color values.
150C C2-10A C2-10B C2-10C C2-10D
Run Date/Time TIME L* a* b* L* a* b* L* a* b* L* a* b*
1 08/01/0211 1346am 000 4619 -1143 3049 4580 -1172 3185 3513 -1182 3079 4377 -1209 3232
2 08/01/020540 52pm 683 4695 -1124 3010 5083 -1157 3029 4858 -1140 2997 4518 -1185 3168
3 08/01/02 105210pm 1193 3685 -1112 2993 4695 -1177 2991 4624 -1114 2976 3187 -1017 2703
4 08/02/0210 57 22am 2402 3161 -1007 2920 3046 -1049 2764 3254 -1018 2768 4358 -1202 3459
5 08/02/02055655pm 3107 4754 -1056 3157 4613 -1036 3039 4481 -1094 3177 4484 -1193 3543
6 08/03/0200 02 07am 3700 4965 -1072 3300 4907 -1099 3413 4538 -1037 3320 4533 -1072 3451
7 08/03/0201 1349pm 5010 4090 -776 3727 3598 -692 3410 4824 -815 3578 5054 -885 3737
8 08/03/02065257pm 5590 5364 -594 3942 4937 -606 4274 4870 -555 3866 4860 -690 4120
9 08/04/02010715am 6210 4550 -1 11 4681 4289 -049 4612 5095 -142 4483 5490 -330 4761
10 08/04/02 1243 16pm 7372 5790 064 5051 5761 196 5154 5262 183 5286 5376 175 5343
11 08/04/02075142pm 8090 5847 072 5207 5849 150 5434 5491 161 4990 5504 230 5337












Table A-5. Vitsab C2-10 first dynamic experiment color values.
Dynamic Experiment 1 C2-10A C2-10B C2-10C C2-10D
Run Date/Time Time L* a* b* L* a* b* L* a* b* L* a* b*
1 09/14/02 0223 05pm 000 4309 -1039 2651 3901 -1032 2596 3639 -983 2522 4196 -965 2397
2 09/14/02 09 58 36pm 910 4538 -996 2799 4419 -942 2809 3392 -878 2669 3504 -786 2315
3 09/15/02112250am 2228 4413 -943 2957 3361 -829 2686 3488 -830 2681 3565 -757 2363
4 09/15/020859 15pm 3198 4451 -950 2977 4684 -880 2721 4213 -967 2947 4846 -796 2464
5 09/16/02103254am 4542 4706 -937 2984 3509 -866 2825 3235 -842 2812 4397 -814 2525
6 09/16/02033041pm 5045 4691 -934 2978 4907 -933 2829 3275 -876 2979 3697 -735 2511
7 09/16/02092028pm 5632 4738 -917 2988 4617 -886 2771 3521 -868 2911 4317 -794 2610
8 09/17/0211 55 22am 7088 4673 -962 3276 4812 -905 3005 3304 -802 3085 3573 -781 2665
9 09/17/02045749pm 7595 4315 -888 3207 4557 -856 3044 3445 -751 3027 3931 -703 2701
10 09/17/02090001pm 8000 4495 -817 3068 3988 -822 3074 4433 -885 3248 4502 -731 2837
11 09/18/0211 2457am 9437 4751 -786 3361 4512 -807 3288 4012 -731 3313 4648 -684 2979
12 09/18/02035636pm 9892 4792 -754 3270 4576 -652 3172 4945 -709 3113 4854 -673 2981
13 09/18/02091916pm 10432 4491 -688 3430 5126 -687 3129 4793 -707 3293 5155 -645 2970
14 09/19/020120 49pm 12023 4796 -552 3597 5099 -498 3542 3755 -508 3626 4108 -449 3271
15 09/19/02 0535 Olpm 12458 53 18 -534 3403 5208 -435 3568 4909 -569 3506 4846 -427 3246
16 09/19/020855 41pm 12802 4690 -200 3977 4683 -228 4027 4272 -285 3688 5230 -415 3312
17 09/20/02110309am 14200 5360 -254 4097 5246 -400 3974 3974 -114 4319 5238 -269 3702


Table A-6. Vitsab C2-10 second dynamic experiment color values.
Dynamic Expernent 2 C2-10A C2-10B C2-10C C2-10D
Run Date/Time TIME L* a* b* L* a* b* L* a* b* L* a* b*
1 03/18/030043 14am 000 3919 -1076 2704 3259 -1121 2745 4120 -1192 3038 4241 -1147 3019
2 03/18/0301 3245pm 1280 3953 -1074 2563 3921 -1108 2630 4075 -1117 2678 4367 -1112 2773
3 03/18/03052805pm 1665 3575 -1093 2614 3326 -1108 2597 4070 -1178 2862 4257 -1110 2802
4 03/18/03083536pm 1980 3628 -1022 2514 3943 -1110 2706 4409 -1197 2985 4111 -1164 3015
5 03/18/03 104527pm 2202 3483 -1043 2511 3619 -1106 2633 4001 -1128 2887 4378 -1144 2974
6 03/19/031234 11pm 3583 3887 -1059 2660 4037 -1042 2747 3935 -1197 3000 3913 -1108 2970
7 03/19/0306 1208pm 4147 4135 -1055 2640 3740 -996 2588 4173 -1169 2902 4305 -1124 2994
8 03/20/03 00 27 05am 4773 3949 -1017 2484 3933 -1059 2616 4246 -1067 2801 4385 -1060 2830
9 03/20/0301 3046pm 6077 3930 -931 2309 3974 -968 2573 4122 -1018 2680 4388 -1028 2826
10 03/20/030544 49pm 6498 4348 -975 2741 3925 -1000 2611 4572 -1067 2834 4632 -1029 2899
11 03/20/03 1043 29pm 7000 4243 -1014 2784 3909 -933 2697 4419 -1074 2878 4667 -994 2867
12 03/21/03 023726pm 8588 4493 -906 3098 3966 -811 3279 4088 -959 3178 4201 -925 3302
13 03/21/030501 02pm 8828 4307 -817 3246 4045 -811 3240 3935 -912 3230 4519 -983 3442
14 03/22/03 0245 50am 9805 4354 -552 3212 4264 -414 3624 4386 -799 3539 4512 -747 3399
15 03/22/03 02 0238pm 10932 4395 -259 3623 3897 045 3327 4536 -483 3609 4647 -430 3684
16 03/22/0305 1100pm 11245 4660 -246 3851 4661 -035 3954 4940 -493 3779 4819 -404 3850
17 03/22/03 114020pm 11895 4983 -164 4086 4654 052 3975 4918 -242 3942 5014 -309 4117
18 03/23/03 121500pm 13152 5115 -063 4128 4730 069 4306 4944 -120 4559 4948 -109 4509
19 03/23/03042836pm 13577 4833 034 4219 4618 199 4326 4936 -014 4610 5118 -042 4722













Table A-7. Vitsab M2-10 0C color values.
00C M2-10A M2-10B M2-10C M2-10D
Run Date/Time TIME L* a* b* L* a* b* L* a* b* L* a* b*
1 08/01/0211 1020am 000 4466 -1332 3200 3701 -1151 2824 3919 -1116 2480 4092 -1168 2944
2 08/01/02 104933pm 1193 3741 -1129 2566 4105 -1205 2912 4127 -1232 2729 4024 -1256 2914
3 08/02/02 10 54 20am 2402 3842 -1266 3070 3653 -1124 2676 3979 -1122 2605 4115 -1159 2888
4 08/02/02 115858pm 3700 3630 -1186 2809 3549 -1059 2554 3718 -1075 2571 3829 -1232 2938
5 08/03/0201 11 18pm 5010 3500 -1145 2697 3566 -1032 2473 3655 -1128 2528 3681 -1177 2832
6 08/04/0201 0332am 6210 4830 -1237 2834 4749 -1188 2883 4655 -1135 2701 4620 -1243 3105
7 08/04/02 124035pm 7372 4381 -1250 2967 3812 -1072 2701 4324 -1181 2804 4154 -1267 3253
8 08/04/021133 13pm 8462 3695 -1174 2752 3595 -1109 2743 3901 -1085 2577 3760 -1249 3169
9 08/05/020943 17am 9478 4066 -1182 2777 3815 -1096 2751 4035 -1119 2765 3986 -1230 3171
10 08/05/02110205pm 10800 3548 -1098 2602 3526 -1020 2548 3802 -1077 2543 3580 -1209 2918
11 08/06/0209 28 05am 11848 4511 -1253 2985 4107 -1122 2865 4104 -1146 2760 3977 -1249 3255
12 08/07/0201 18 15am 13435 3653 -1098 2658 3551 -1025 2649 3728 -1059 2583 3732 -1209 3117
13 08/07/0210 1659am 14315 4583 -1240 3019 4296 -1163 3043 4472 -1109 2872 3986 -1228 3201
14 08/08/0201 0206am 15808 3787 -1106 2679 3634 -1026 2594 3866 -1039 2557 3877 -1194 2930
15 08/08/021047 05am 16780 3758 -1177 2958 3723 -1049 2849 4074 -1059 2798 4189 -1227 3295
16 08/08/02 1006 59pm 179 18 3826 -11 11 3020 3820 -1036 2811 3685 -993 2423 3605 -1169 3131
17 08/09/021043 48am 19177 3762 -1102 3086 3720 -966 2861 3908 -982 2620 3864 -1147 3380
18 08/09/021024 16pm20347 4088 -1189 3141 3764 -942 2807 3632 -961 2522 3775 -1122 3151
19 08/10/0201 58 47pm 21903 3997 -998 2779 3661 -944 2739 3097 -844 2216 3885 -1031 2988
20 08/10/021153 15pm 22897 3878 -965 3252 3062 -719 2700 3671 -764 2570 3087 -907 3126
21 08/11/02 12 44 44pm 24177 4024 -889 3482 3746 -750 3177 3303 -668 2484 2985 -789 3071
22 08/11/0209 3345pm 25065 3265 -1041 2447 3707 -830 3150 3711 -776 2787 3291 -901 2869
23 08/12/02100124am262 97 4111 -871 3528 2976 -615 2445 3345 -682 2603 3869 -853 3127
24 08/12/020941 23pm27473 4264 -838 3626 3920 -832 3595 3985 -804 3050 4204 -886 3466
25 08/13/02 10 40 57am287 72 3996 -779 3499 4073 -716 3217 3813 -734 2893 4094 -809 3317
26 08/13/02 1037 56pm 29968 4195 -827 3922 3938 -737 3963 4107 -740 3252 4002 -793 3482
27 08/14/02 100209am31107 4155 -714 3822 3724 -689 3670 3842 -670 3000 4338 -739 3516
28 08/14/0210 15 41pm 32328 4251 -725 4053 4023 -619 3779 3983 -630 3106 4231 -753 3680
30 08/15/020945 16pm 34682 4396 -594 4119 3585 -314 3225 4338 -511 3473 4272 -636 3684
31 08/16/02 104348am35978 4468 490 4212 3849 -332 3829 3903 -329 2771 4400 -578 3876
32 08/17/02000946am37323 4394 -360 3979 4507 -183 4264 4641 -349 3766 4553 -496 4001
33 08/17/02115548am38498 4689 -323 4543 4673 -234 4563 4193 -204 3734 4403 -498 4120
34 08/18/020102 29am398 12 4917 -203 4782 4520 -123 4556 4334 -168 3775 3357 -287 3591
35 08/18/0201 5950pm 41082 4812 -146 4867 3934 105 4478 3855 083 3735 3971 -223 4202
36 08/19/0201 2230am42245 4663 072 5005 4594 1 15 4929 45 05 039 4101 3865 -156 4058
37 08/19/020339 13pm 43650 4204 290 4869 3976 329 4615 41 14 274 3975 4186 009 4467
38 08/19/0209 3859pm 44272 5157 212 5011 4862 290 5189 4632 184 4366 4683 001 4768


Table A-8. Vitsab M2-10 50C color values.
5C M2-10A M2-10B M2-10C M2-10D
Run Date/Time TIME L* a* b* L* a* b* L* a* b* L* a* b*
1 08/12/02022727pm 000 4622 -1160 3056 4735 -1129 3034 4705 -1197 3179 4454 -1167 3126
2 08/12/02094209pm 740 4285 -1226 3133 4875 -1168 3095 4601 -1211 3178 4234 -1146 3065
3 08/13/021041 39am 2042 3762 -1138 3043 4846 -1134 3185 3366 -1052 2827 3216 -1036 2971
4 08/13/02 103924pm 3237 3192 -920 2830 4512 -1156 3215 4618 -1139 3261 4391 -1115 3183
5 08/14/021003 48am 4375 4656 -11 13 3099 4666 -1156 3316 4482 -1122 3285 4576 -1168 3381
6 08/14/0210 1711pm 5597 4676 -1136 3232 4790 -1152 3400 4618 -1134 3404 5186 -1118 3268
7 08/15/02114756am 6947 4635 -1094 3316 4490 -1141 3452 4293 -1168 3638 4668 -1110 3546
8 08/15/020946 40pm 7950 4799 -1000 3330 4527 -1013 3467 4217 -1009 3557 4513 -983 3587
9 08/16/02 104509am 9247 4504 -960 3709 4532 -940 3736 4632 -925 3712 4712 -983 3832
10 08/17/0200 1126am10592 4179 -879 3543 4562 -917 3794 4710 -873 3725 4742 -881 3851
11 08/17/02115711am 11767 4856 -835 3723 4993 -826 3682 4685 -845 3861 4863 -835 3894
12 08/18/02010351am 13080 4764 -794 3823 5236 -821 3900 51 89 -771 38 80 48 85 -794 4064
13 08/18/020201 14pm 14350 5122 -754 3915 3836 -585 3377 5107 -710 4020 4888 -708 4143
14 08/19/02012352am155 13 5156 -645 3857 5286 -674 3900 5136 -681 4134 4828 -648 4283
16 08/19/020940 23pm 17540 5159 -549 4047 5375 -579 4050 4784 -508 4426 5065 -490 4316
17 08/20/02 12 1007pm 18987 5217 -506 4339 5487 -512 4290 4939 -418 4642 5308 -423 4540
18 08/20/02 104147pm 20043 5232 403 4654 4516 -292 4622 4306 -179 4324 4078 -132 4562
19 08/21/02 10 19 05am212 02 5492 -244 4523 5648 -279 4602 5619 -155 4736 5347 -117 5021












Table A-9. Vitsab M2-10 100C color values.
10oC M2-10A M2-10B M2-10C M2-10D
Run Date/Time TIME L* a* b* L* a* b* L* a* b* L* a* b*
1 08/01/0211 1230am 000 4410 -1285 3428 4850 -1259 3260 4787 -1223 3260 4462 -1226 3364
2 08/01/020542 55pm 683 4514 -1268 3251 4656 -1232 3254 4245 -1227 3289 4464 -1229 3234
3 08/01/021051 05pm 1193 4701 -1138 2981 4752 -1218 3244 4379 -1224 3303 4282 -1227 3336
4 08/02/02 10 56 08am 24 02 3498 -909 2749 4627 -1162 3272 4345 -1186 3337 4417 -1203 3475
5 08/02/02055555pm31 07 5166 -1112 2977 5161 -1051 3002 4468 -1159 3366 4361 -1164 3429
6 08/03/020000 41am 3700 4821 -11 17 3298 4920 -1142 3384 4379 -1106 3385 4342 -1200 3596
7 08/03/0201 12 36pm 50 10 4916 -1055 3413 4679 -1063 3601 4588 -1026 3601 4486 -1074 3705
8 08/03/020651 45pm 5590 5034 -1010 3441 4903 -1029 3679 4898 -991 3681 4480 -1013 3780
9 08/04/020105 47am 6210 4484 -952 3856 4382 -882 3875 4720 -877 3933 4400 -870 3995
10 08/04/02 12 42 03pm 7372 4816 -785 4350 4767 -583 4488 4966 -553 4447 4837 -510 4666
11 08/04/020751 06pm 8090 4784 -422 4742 5213 -246 5001 5103 -192 4969 5135 -142 5207
12 08/04/0211 34 30pm 8462 5265 -311 4801 5639 -1 10 5073 5412 -048 5257 5328 056 5502
13 08/05/0209 4508am9478 5332 042 5439 5569 218 5704 5431 220 56 35 55 89 210 5829


Table A-10. Vitsab M2-10 150C color values.
15C M2-10A M2-10B M2-10C M2-10D
Run Date/Time TIME L* a* b* L* a* b* L* a* b* L* a* b*
1 08/01/0211 1420am 000 3524 -1108 3054 3108 -1143 3005 3324 -1120 3037 3220 -1122 3036
2 08/01/020541 20pm 683 3367 -1149 3090 2903 -1082 2879 2874 -1054 2890 4054 -1216 3268
3 08/01/021052 33pm 1193 4423 -1181 3330 4527 -1211 3366 4642 -1192 3339 4510 -1200 3236
4 08/02/0210 57 49am 24 02 3508 -1005 3223 4562 -1066 3646 4741 -1034 3629 4743 -1080 3569
5 08/02/0205 5728pm3107 4207 -670 3960 5093 -846 4006 4910 -706 3813 4547 -911 4003
6 08/03/02000231am3700 4237 074 4891 3712 -069 4528 5041 -108 4970 4963 -429 4955
7 08/03/0201 14 14pm 50 10 4724 524 5676 4408 577 5652 5607 300 5846 5661 280 5745
8 08/03/0206 5324pm5590 48 09 500 5735 4664 506 5696 5574 423 55 78 5870 218 58 15
9 08/04/020107 44am 6210 46 17 499 5446 4635 555 5750 5279 475 6037 6051 222 5536


Table A-11. Vitsab M2-10 first dynamic experiment color values.
Dynamic Experiment 1 M2-10A M2-10B M2-10C M2-10D
Run Date/Time Time L* a* b* L* a* b* L* a* b* L* a* b*
1 09/14/02 0224 13pm 000 4642 -996 2809 4644 -1145 3167 4331 -1096 2921 3208 -955 2922
2 09/14/02 09 59 42pm 910 4269 -919 3100 4544 -962 3282 3618 -884 2996 3272 -875 3024
3 09/15/021123 40am 2228 3753 -801 2748 3959 -925 3506 4655 -955 3362 3568 -825 3229
4 09/15/020900 15pm 3198 4814 -898 3228 4779 -905 3373 3260 -793 3116 5008 -918 3144
5 09/16/02103357am 4542 3307 -811 2707 41 18 -906 3527 4650 -904 3457 3519 -790 31 96
6 09/16/02033132pm 5045 4732 -851 3319 4597 -981 3678 4667 -866 3372 4411 -840 3300
7 09/16/02092130pm 5632 4942 -875 3397 4880 -850 3541 4896 -796 3435 5040 -829 3313
8 09/17/02 11 56 09am 7088 4238 -834 3520 4616 -861 3748 4617 -801 3661 5541 -736 3128
9 09/17/02045841pm 7595 4017 -834 3448 3206 -778 3205 4224 -798 3665 4578 -784 3428
10 09/17/020901 00pm 8000 4882 -874 3769 4947 -803 3813 5000 -755 3648 4933 -740 3489
11 09/18/02112550am 9437 4634 -784 3948 4686 -641 3692 4723 -645 3761 5017 -660 3581
12 09/18/02035742pm 9892 5168 -693 3849 4720 -691 3994 4785 -635 3939 4955 -657 3658
13 09/18/020920 10pm 10432 4893 -632 3952 5232 -620 3834 4955 -588 3838 3896 -579 3136
14 09/19/020121 38pm 12023 3408 -295 3714 4953 -505 4090 4988 -443 4015 5095 -519 3805
15 09/19/020535 53pm 12458 3619 -355 4044 4004 -380 3978 5102 -429 4062 5317 -460 3662
16 09/19/020856 47pm 12802 4775 -394 3951 5064 -438 4065 5426 -433 3896 5154 -453 3796
17 09/20/02112054am 14200 5459 -403 4365 5252 -387 4372 5459 -403 4365 5252 -387 4372












Table A-12. Vitsab M2-10 second dynamic experiment color values.
Dynamic Expenment 2 M2-10A M2-10B M2-10C M2-10D
Run Date/Time TIME L* a* b a b a* b* L* a* b* L* a* b*
1 03/18/030044 11am 000 4162 -1212 3290 4355 -1147 3171 4021 -1128 3080 2536 -999 2696
2 03/18/0301 3343pm 1280 4163 -1238 3096 4803 -1192 2849 4002 -1085 2768 3270 -1148 2908
3 08/01/02 105105pm 1665 3951 -1210 3155 4327 -1308 3207 3068 -1057 2735 3259 -1122 2903
4 03/18/03083646pm 1980 3620 -1162 2979 4390 -1336 3144 4034 -1138 2970 4368 -1199 3177
5 03/18/03 104625pm 2202 4013 -1190 3125 4562 -1240 3099 2925 -984 2475 3171 -1127 2909
6 03/19/03 1235 16pm 3583 3891 -1209 3276 4399 -1049 2939 3999 -1108 3067 4086 -1158 3110
7 03/19/0306 1258pm 4147 4243 -1009 3009 4578 -1127 3001 4061 -1098 3073 3955 -1109 2916
8 03/20/030028 30am 4773 4163 -1096 3238 4490 -1093 2977 3165 -918 2717 3552 -1065 2985
9 03/20/03013138pm 6077 3407 -850 2423 4709 -1088 3080 4163 -1016 2929 2977 -819 2127
10 03/20/03054559pm 6498 4446 -1021 3134 4770 -1001 2957 4696 -974 3028 4424 -1044 3100
11 03/20/03 1044 42pm 7000 4530 -937 3149 4556 -1025 3033 4385 -1096 3272 4362 -956 3094
12 03/21/03 023955pm 8588 4444 -992 3790 3674 -793 3227 3411 -784 3171 3237 -866 3222
13 03/21/0305 0209pm 8828 4586 -849 3538 4617 -893 3785 3356 -751 3163 3757 -896 3580
14 03/22/03 024700am 9805 4657 -619 4242 5034 -580 4176 4476 -510 4002 4418 -615 3969
15 03/22/03020400pm 10932 4863 -123 4488 5349 -174 4533 4168 -052 4110 4039 -232 3805
16 03/22/0305 1148pm 11245 5001 -073 4631 5324 -100 4675 5167 -090 4498 4146 -095 3850
17 03/22/03 114127pm 11895 5136 098 4569 5578 -006 4715 5204 -013 4788 4923 -073 4420
18 03/23/03 121603pm 13152 5125 286 4972 5450 106 5145 4312 250 4815 4193 245 4639
19 03/23/03 04 2940pm 13577 5234 184 5255 56 13 037 5079 43 03 286 48 94 4083 355 4893















Table A-13. Lifeline Fresh-Check TJ2 00C color values.
0C LFLN A LFLN B LFLN C LFLN D LFLN E
Run DateTime TIME L* a* b* L* a* b* L* a* b* L* a* b* L* a* b*
1 07/30/03 06 2937pm 000 39 45 45 11 4525 39 17 4482 45 84 3873 44 06 4458 39 41 45 34 46 05 39 48 45 04 45 62
2 07/31/030304 11pm 1995 3877 4511 4558 3829 4448 4466 3912 4452 4387 3881 4484 4579 3904 4486 4524
3 07/31/0305 24 15pm 2230 3857 4450 4493 3744 4404 4581 3863 4475 4581 3862 4439 4409 3833 4452 4524
4 07/31/0311 0504pm 2797 3912 4530 4618 3984 4441 4286 3842 4387 4403 3869 4484 4531 3851 4430 4462
5 08/01/0302 2859pm 4343 3897 4526 4652 3833 4425 4493 3897 4370 4349 3938 4458 4389 3778 4357 4344
6 08/02/03014930pm 6672 3802 4383 4401 3662 4228 4278 3795 4070 3899 3825 4381 4346 3685 4237 4232
7 08/02/03090101pm 7390 3783 4390 4470 3758 4333 4373 3828 4286 4266 3869 4354 4298 3757 4313 4312
8 08/03/03 0535 11pm 9448 3629 4155 4177 3639 4182 4176 3676 4203 4199 3619 4180 4234 3663 4187 4233
9 08/04/03023758am10352 3665 4243 4272 3657 4213 4229 3509 4021 4021 3683 4273 4297 3657 4213 4229
10 08/04/03121438pm115 12 3665 4243 4272 3634 4193 4239 3540 4019 4059 3681 4247 4295 3778 4181 4123
11 08/04/0305 32 59pm 12043 3624 4193 4252 3633 4162 4196 3604 4112 4099 3625 4202 4206 3656 4175 4200
12 08/05/031224 03pm13930 3614 4170 4314 3576 4100 4151 3599 4105 4109 3663 4200 4244 3669 4109 4063
13 08/05/030926 20pm14833 3676 4235 4350 3684 4073 3899 3627 4049 3983 3563 4091 4088 3594 4091 4069
14 08/06/030244 28pm165 63 3547 4083 4053 3327 3809 3810 3499 3981 3929 3561 4109 4087 3449 3966 3989
15 08/06/0305 53 52pm16878 3528 4075 4151 3449 3979 4043 3515 3972 3946 3619 4081 4098 3561 4022 3976
16 08/06/031012 57pm17310 3597 4150 4275 3500 3992 4018 3627 3938 3877 3599 4086 4085 3544 4025 4001
17 08/07/030211 55pm18908 3511 4013 4001 3473 3973 3963 3416 3877 3875 3435 3983 4009 3494 3932 3971
18 08/07/03081300pm195 12 3484 4032 4169 3396 3903 3957 3394 3873 3908 3421 3959 4010 3497 3958 3974
19 08/08/03125241pm211 82 3467 3973 3999 3451 3934 3958 3525 3810 3670 3577 3991 3881 3467 3876 3840
20 08/08/031021 14pm 22123 3478 3980 4076 3347 3832 3828 3376 3833 3799 3441 3939 3981 3430 3862 3862
21 08/09/031056 51pm245 85 3417 3891 3963 3290 3701 3609 3269 3678 3717 3380 3867 3898 3362 3789 3807
22 08/11/030422 44pm 28727 3314 3764 3773 3254 3662 3685 3310 3630 3593 3319 3771 3795 3297 3680 3666
23 08/11/031026 29pm 29330 3306 3762 3810 3234 3648 3694 3261 3655 3639 3287 3744 3775 3313 3645 3584
24 08/12/030425 37pm 31128 3326 3753 3769 3368 3577 3399 3260 3580 3517 3276 3715 3703 3206 3571 3533
25 08/12/030613 08pm31307 3252 3630 3542 3190 3597 3571 3207 3563 3552 3186 3614 3588 3224 3576 3595
26 08/13/030452 50pm335 73 3262 3672 3696 3183 3538 3503 3178 3511 3481 3201 3627 3618 3191 3532 3538
27 08/13/030833 05pm33942 3203 3610 3600 3170 3539 3508 3193 3491 3432 3165 3595 3602 3196 3516 3493
28 08/13/031046 43pm34162 3225 3642 3711 3184 3521 3510 3173 3498 3483 3200 3615 3637 3254 3508 3366
29 08/14/030252 32pm 35772 3217 3611 3669 3155 3504 3498 3183 3450 3403 3255 3582 3512 3120 3465 3407
30 08/14/030353 56pm 358 73 3229 3619 3638 3231 3434 3288 3135 3462 3413 3169 3568 3570 3092 3439 3422
31 08/15/030155 08pm38077 3182 3558 3614 3177 3362 3285 3234 3286 3164 3071 3449 3395 2915 3256 3195
32 08/15/030820 17pm38718 3134 3510 3488 3128 3404 3371 3247 3299 3100 3105 3491 3425 3105 3385 3321
33 08/16/0311 1010am40202 3106 3436 3395 3082 3380 3360 3126 3325 3279 3095 3448 3421 3087 3335 3230
34 08/16/030607 11pm40897 3123 3471 3496 3074 3357 3318 3206 3255 3006 3058 3422 3352 3042 3329 3263
35 08/16/031122 57pm 414 22 3107 3454 3484 3076 3347 3327 3173 3240 3084 3053 3401 3368 3025 3335 3229
36 08/17/030805 28pm 434 93 3059 3398 3400 3035 3282 3220 3147 3176 2983 3034 3351 3313 3032 3231 3169
37 08/17/031131 08pm43837 3065 3403 3442 3040 3265 3233 3144 3183 2994 3027 3369 3288 3002 3260 3183
38 08/18/030125 57pm 452 27 3024 3355 3350 2997 3248 3221 3099 3153 2993 2977 3297 3261 2995 3214 3135
39 08/18/030656 21pm 457 77 3042 3366 3373 3033 3199 3118 3108 3125 2867 2974 3293 3237 2990 3186 3141
40 08/18/031145 14pm46257 3037 3340 3357 3012 3183 3118 3119 3096 2825 2985 3282 3249 2991 3174 3065
41 08/19/030426 46pm 479 27 2968 3268 3248 2955 3172 3142 3086 3046 2788 2942 3230 3199 2954 3145 3062
42 08/19/031125 59pm48625 3004 3292 3298 2959 3132 3105 3076 3056 2826 2954 3229 3196 2949 3111 3022
43 08/20/030350 02m502 67 2990 3287 3287 2917 3102 3043 3065 2995 2754 2912 3175 3093 2898 3099 3037














Table A-14. Lifeline Fresh-Check TJ2 50C color values.
5C LFLN A LFLN B LFLN C LFLN D LFLN E
Run Date/Time TIME L* a* b* L* a* b* L* a* b* L* a* b* L* a* b*
1 07/30/03080149pm 000 3801 4298 4353 3919 4460 4565 3926 4462 4502 3935 4462 4522 3922 4453 4513
2 07/31/03030630pm 1995 3852 4353 4317 3878 4422 4387 3823 4401 4371 3817 4393 4415 3855 4420 4416
3 07/31/03052638pm 2230 3789 4308 4262 3788 4356 4410 3842 4406 4429 3852 4411 4423 3732 4288 4305
4 07/31/03110724pm 2797 3804 4326 4282 3804 4356 4382 3799 4357 4374 3845 4385 4372 3803 4345 4344
5 08/01/030234 11pm 4343 3572 4061 4065 3705 4219 4267 3686 4178 4226 3739 4253 4298 3715 4221 4221
6 08/02/03015156pm 6672 3597 4077 4086 3535 4048 4079 3612 4112 4130 3568 4056 4077 3640 4116 4083
7 08/02/03090320pm 7390 3664 4061 3942 3543 4052 4047 3554 4050 4038 3554 4050 4040 3599 4085 4088
8 08/03/03 053729pm 9448 3556 3901 3804 3462 3923 3918 3464 3915 3894 3442 3907 3884 3484 3936 3942
9 08/04/03024005am10352 3477 3864 3799 3377 3834 3824 3431 3866 3836 3426 3878 3871 3466 3907 3903
10 08/04/03121648pm115 12 3312 3738 3721 3386 3823 3806 3398 3824 3804 3378 3808 3794 3409 3839 3839
11 08/04/0305 34 59pm 12043 3395 3768 3710 3343 3767 3757 3392 3802 3779 3371 3783 3775 3417 3809 3774
12 08/05/031226 23pm13930 3320 3676 3604 3257 3640 3613 3259 3649 3624 3288 3662 3652 3313 3697 3666
13 08/05/030928 30pm14833 3246 3613 3611 3246 3613 3611 3246 3610 3618 3246 3609 3621 3273 3639 3619
14 08/06/030246 51pm165 63 3151 3503 3480 3225 3533 3445 3217 3510 3427 3168 3523 3451 3198 3545 3511
15 08/06/0305 56 36pm16878 3093 3450 3450 3182 3510 3468 3223 3504 3428 3148 3481 3425 3190 3527 3492
16 08/06/031015 20pm17310 3101 3389 3408 3180 3470 3410 3204 3455 3411 3110 3452 3418 3181 3504 3463
17 08/07/030214 17pm18908 3004 3318 3368 3094 3396 3392 3158 3368 3309 3083 3386 3342 3116 3415 3377
18 08/07/030815 17pm195 12 3025 3274 3287 3087 3371 3333 3086 3323 3286 3083 3320 3264 3086 3364 3370
19 08/08/03125824pm211 82 3086 3204 3065 3109 3241 3106 3003 3255 3203 3002 3264 3213 3018 3293 3261
20 08/08/031023 29pm 22123 3024 3168 3077 3059 3177 3019 2975 3193 3148 2970 3213 3175 3000 3241 3234
21 08/09/031059 22pm245 85 2935 3121 3072 2869 3080 3027 2909 3098 3059 2899 3111 3100 2951 3141 3126
22 08/11/030425 00pm28727 2762 2861 2817 2711 2857 2830 2695 2853 2821 2754 2867 2817 2765 2891 2815
23 08/11/031028 55pm 29330 2675 2787 2819 2695 2809 2771 2842 2893 2816 2769 2869 2804 2770 2891 2835



Table A-15. Lifeline Fresh-Check TJ2 100C color values.
10C LFLN A LFLN B LFLN C LFLN D LFLN E
Run Date/Time TIME L* a* b* L* a* b* L* a* b* L* a* b* L* a* b*
1 07/30/030811 39pm 000 3986 4511 4579 3993 4533 4607 3975 4536 4621 3985 4525 4603 4011 4572 4648
2 07/31/03030856pm 1995 3738 4272 4273 3711 4260 4308 3720 4288 4332 3754 4302 4305 3755 4318 4344
3 07/31/0305 2946pm 2230 3644 4152 4163 3638 4161 4201 3676 4234 4285 3654 4179 4223 3697 4232 4264
4 07/31/03110944pm 2797 3652 4152 4156 3674 4192 4216 3560 4114 4156 3623 4156 4203 3679 4207 4257
5 08/01/03 023710pm 4343 3514 3963 3963 3498 3965 4011 3497 3983 4029 3485 3954 3962 3496 3976 3988
6 08/02/03015443pm 6672 3286 3668 3708 3339 3738 3755 3275 3682 3685 3251 3661 3688 3345 3767 3785
7 08/02/03 09 05 39pm 7390 3243 3608 3601 3291 3664 3657 3232 3622 3612 3198 3586 3629 3280 3679 3676
8 08/03/0305 40 22pm 9448 3075 3344 3323 3096 3391 3414 3055 3370 3392 3059 3355 3378 3119 3436 3431
9 08/04/03024214am10352 3019 3268 3237 3021 3292 3312 3007 3293 3284 3005 3272 3258 3056 3360 3374
10 08/04/031218 54pm115 12 2938 3152 3124 2957 3212 3243 2979 3267 3303 2915 3156 3149 2977 3229 3205
11 08/04/03 05 37 14pm120 43 2913 3103 3075 2922 3132 3106 2906 3130 3094 2919 3134 3099 2919 3154 3156
12 08/05/0312 28 42pm 139 28 2852 3035 3016 2805 2969 2934 2773 2928 2893 2820 3018 3018 2796 2952 2928



Table A-16. Lifeline Fresh-Check TJ2 150C color values.
15C LFLN A LFLN B LFLN C LFLN D LFLN E
Run Date/Time TIME L* a* b* L* a* b* L* a* b* L* a* b* L* a* b*
1 08/06/03 02 49 28pm 000 3893 4509 4617 3934 4562 4629 3918 4526 4664 3783 4420 4469 3851 4457 4524
2 08/06/03 05 5856pm 315 3784 4359 4463 3887 4499 4564 3825 4405 4497 3760 4372 4453 3826 4418 4478
3 08/06/031017 30pm 747 3762 4339 4375 3724 4317 4339 3540 4060 4122 3686 4270 4358 3685 4243 4295
4 08/07/03 0216 23pm 2345 3468 3937 3940 3405 3877 3906 3461 3911 3955 3413 3887 3914 3330 3758 3787
5 08/07/03 0818 12pm 2948 3340 3757 3771 3332 3772 3786 3351 3753 3820 3290 3720 3744 3277 3687 3699
6 08/08/03010023pm 4618 3058 3336 3356 3084 3390 3408 3063 3336 3360 3013 3303 3317 3023 3310 3337
7 08/08/0310 25 35pm 5560 2914 3100 3078 2935 3153 3148 2935 3112 3146 2886 3105 3106 2884 3097 3113
8 08/09/031102 06pm 8022 2594 2574 2533 2614 2631 2596 2611 2612 2626 2597 2632 2620 2600 2602 2607
9 08/11/030427 09pm 12163 2208 1869 1889 2263 2021 2017 2273 1980 2019 2230 1977 2006 2200 1928 1957















Table A-17. Lifeline Fresh-Check TJ2 first dynamic experiment color values.
Dynamic Experiment 1 LFLN A LFLN B LFLN C LFLN D LFLN E
Run Date/Time TIME L* a* b* L* a* b* L* a* b* L* a* b* L* a* b*
1 08/12/03061710pm 000 3893 4418 4468 3946 4483 4546 3959 4478 4528 3934 4473 4539 3948 4502 4547
2 08/13/03045609pm 2267 3927 4300 4186 3962 4323 4127 3900 4240 4026 3907 4300 4166 3807 4294 4226
3 08/13/03083717pm 2635 3893 4257 4039 3867 4242 4104 3962 4323 4152 3876 4306 4220 3866 4377 4319
4 08/13/03104954pm 2855 3962 4346 4162 3957 4291 4060 3937 4321 4175 3875 4319 4254 3894 4413 4365
5 08/14/0302 5548pm 4465 3804 4317 4294 3825 4301 4224 3785 4271 4228 3811 4253 4147 3798 4339 4317
6 08/14/03035552pm 4567 3794 4305 4286 3850 4266 4103 3802 4278 4230 3780 4286 4269 3785 4336 4314
7 08/15/03015705pm 6770 3556 4069 4066 3520 4046 4041 3557 4065 4085 3553 4045 4024 3565 4123 4109
8 08/15/03082232pm 7412 3513 4002 3993 3488 3986 3941 3467 3965 3943 3467 3996 3962 3533 4072 4042
9 08/16/0311 1237am 8895 3412 3846 3804 3355 3845 3851 3322 3833 3879 3341 3833 3862 3375 3871 3880
10 08/16/03060954pm 9590 3303 3728 3731 3319 3764 3769 3263 3702 3698 3311 3739 3753 3289 3769 3758
11 08/16/031125 16pm101 15 3319 3704 3651 3282 3695 3630 3292 3659 3612 3297 3692 3669 3309 3746 3709
12 08/17/03080733pm121 87 3300 3529 3396 3344 3536 3400 3316 3487 3342 3330 3510 3397 3340 3627 3526
13 08/17/031133 24pm125 30 3295 3505 3426 3321 3525 3370 3308 3503 3370 3304 3588 3498 3304 3588 3498
14 08/18/030128 27pm13920 3237 3428 3290 3295 3468 3303 3279 3429 3285 3289 3462 3340 3283 3565 3487
15 08/18/030658 34pm14470 3284 3388 3254 3286 3427 3260 3303 3390 3213 3280 3434 3327 3262 3514 3418
16 08/18/031147 15pm 14825 3271 3407 3280 3292 3408 3225 3289 3394 3227 3281 3388 3210 3285 3499 3368
17 08/19/030429 05pm 14950 3004 3318 3368 3094 3396 3392 3158 3368 3309 3083 3386 3342 3116 3415 3377
18 08/19/030429 05pm16620 3241 3335 3127 3181 3370 3281 3200 3359 3237 3196 3359 3279 3217 3442 3387



Table A-18. Lifeline Fresh-Check TJ2 second dynamic experiment color values.
Dynamic Expernient 2 LFLN A LFLN B LFLN C LFLN D LFLN E
Run Date/Time TIME L* a* b* L* a* b* L* a* b* L* a* b* L* a* b*
1 08/14/030405 35pm 000 3932 4237 4074 4007 4432 4318 3949 4389 4310 3940 4388 4341 3993 4451 4401
2 08/15/03015916pm 2203 3841 4270 4241 3833 4342 4327 3786 4281 4242 3785 4295 4273 3799 4318 4289
3 08/15/03082451pm 2845 3783 4244 4223 3770 4298 4281 3684 4217 4209 3718 4223 4266 3691 4220 4216
4 08/16/0311 1451am 4328 3547 4001 4026 3566 4074 4055 3522 4021 4032 3514 3995 3982 3529 4000 3986
5 08/16/03061240pm 5023 3570 3876 3751 3502 3973 3959 3454 3917 3934 3423 3873 3870 3446 3889 3887
6 08/16/03112739pm 5548 3644 3813 3545 3504 3894 3888 3426 3824 3793 3406 3814 3787 3437 3839 3805
7 08/17/03080934pm 7620 3609 3544 3195 3587 3620 3326 3679 3541 3106 3482 3607 3448 3470 3676 3634
8 08/17/03113603pm 7963 3679 3600 3226 3620 3550 3225 3666 3534 3127 3512 3559 3347 3504 3598 3460
9 08/18/030131 15pm 9353 3523 3615 3344 3354 3705 3678 3323 3672 3660 3300 3624 3584 3323 3641 3601
10 08/18/03070044pm 9903 3268 3568 3554 3296 3675 3661 3250 3597 3577 3254 3569 3523 3289 3601 3536
11 08/18/031149 09pm103 83 3280 3596 3570 3260 3630 3574 3227 3550 3502 3216 3518 3447 3255 3553 3477
12 08/19/030431 05pm120 53 3114 3414 3396 3099 3406 3373 3071 3359 3319 3048 3257 3153 3085 3304 3264
13 08/19/031127 57pm 12192 3188 3228 3176 3106 3273 3184 3060 3239 3202 3040 3131 3040 3065 3217 3141
14 08/20/030352 04pm 12650 3335 3016 2640 3238 2995 2727 3267 2912 2539 3054 2952 2879 3227 2919 2582
15 08/20/030808 51pm14422 3336 2954 2639 3270 2946 2552 3282 2852 2554 3200 2822 2454 3248 2879 2514
16 08/20/031013 15pm148 25 3356 2952 2560 3276 2914 2516 3308 2848 2451 3212 2795 2417 3312 2822 2417
17 08/21/03 05 08 42pm153 32 3183 2865 2588 3080 2890 2714 3109 2782 2593 2990 2790 2691 3075 2821 2701















Table A-19. Avery-Dennison TT Sensor T126(1) 0C color values.


I


I


0C TIME
Run Date/Tine hours
1 07/30/03 06 30 21pm 000
2 07/31/03 03 04 49pm 19 95
3 07/31/03 05 24 56pm 22 30
4 07/31/03 11 05 41pm 27 97
5 08/01/03 02 29 27pm 43 43
6 08/02/03 01 50 09pm 6672
7 08/02/03 09 01 29pm 7390
8 08/03/03 05 35 43pm 94 48
9 08/04/0302 38 27am 103 52
10 08/04/0312 15 04pm115 12
11 08/04/03 05 33 25pm 120 43
12 08/05/03 12 24 38pm 139 30
13 08/05/03 09 26 49pm 148 33
14 08/06/03 02 45 00pm 165 63
15 08/06/0305 54 28pm 168 78
16 08/06/03 10 13 35pm 173 10
17 08/07/03 02 12 22pm 189 08
18 08/07/0308 13 33pm 195 12
19 08/08/0312 53 10pm211 82
20 08/08/03 10 21 45pm 221 23
21 08/09/03 10 57 28pm 245 85
22 08/11/0304 23 14pm287 27
23 08/11/03 10 27 02pm293 30
24 08/12/0304 26 12pm311 28
25 08/12/03 06 13 48pm313 07
26 08/13/03 04 53 18pm 335 73
27 08/13/0308 33 41pm 339 42
28 08/13/03 10 47 13pm 341 62
29 08/14/0302 53 06pm 357 72
30 08/14/0303 54 24pm 358 73
31 08/15/03 01 55 37pm 380 77
32 08/15/03 08 20 50pm387 18
33 08/16/0311 10 54am 402 02
34 08/16/0306 07 46pm 408 97
35 08/16/0311 23 31pm414 22
36 08/17/0308 06 Olpm 434 93
37 08/17/03 11 31 43pm 438 37
38 08/18/03 01 26 51pm452 27
39 08/18/0306 56 53pm457 77
40 08/18/03 11 45 44pm462 57
41 08/19/0304 27 21pm 479 27
42 08/19/03 11 26 29pm486 25
43 08/20/0303 50 38pm502 67
44 08/20/03 08 08 10pm506 97
45 08/20/03 10 12 36pm511 03
46 08/21/03 05 07 55pm529 95
47 08/21/0306 07 34pm530 95
48 08/22/0301 25 55pm550 25
49 08/23/03 05 03 39pm577 88
50 08/23/0309 40 16pm582 50
51 08/24/0308 11 37pm 606 02
52 08/25/0302 24 32pm 623 23
53 08/25/0308 00 07pm 628 83
54 08/26/03 04 28 31pm 649 30
55 08/26/03 10 57 51pm 655 78
56 08/27/0304 27 47pm 673 12
57 08/27/03 10 32 00pm 679 20
58 08/28/0302 39 38pm 695 32
59 08/28/03 05 46 14pm 698 43
60 08/29/03 10 52 Olam 715 53
61 09/02/0300 14 45am 800 90
62 09/02/0301 57 53pm 814 62
63 09/03/0302 04 16pm 838 73
64 09/04/03 12 24 58pm 86107
65 09/05/03 01 39 16pm 886 32
66 09/06/0306 48 31pm915 47
67 09/07/03 05 33 48pm 938 22
68 09/08/03 03 20 35pm 959 43
69 09/08/03 07 52 57pm 963 97
70 09/09/03 02 36 15pm 982 70


T126#1 D T126#1 E
b* L* a* b* L* a* b*


T126#1 A
L* a* b*
7862 246 4709
8028 785 4467
7941 755 42 95
7842 8 36 42 99
7787 1007 4118
7707 1223 3981
7687 1272 3880
7673 1500 3764
7599 15 12 3720
7604 1522 3665
7572 1650 3644
75 32 16 82 35 52
7516 1774 3463
7503 1821 3398
7445 1862 3356
7451 1885 3292
7230 1996 3234
7468 1987 3274
7386 2106 3150
7383 2092 3114
7321 2174 2978
7340 2462 2853
72 87 24 87 27 50
7274 2478 2710
7238 2583 2637
7195 2648 25 34
7066 2597 2607
7185 25 96 25 95
7205 2677 2502
7184 2721 25 12
7108 2740 2454
7128 27 89 2407
7142 2812 2354
7057 2801 2374
7016 2858 2354
7109 2954 2212
7122 2958 2146
7091 2997 2167
7101 2967 2174
6990 3030 2098
7081 3038 2101
7057 3127 2029
70 80 30 90 19 76
7075 30 79 19 77
7075 30 96 19 46
7050 3159 1912
7042 3172 1861
6960 3170 1824
6906 3209 1820
6896 3259 1703
6931 3301 1643
6807 3305 1672
6988 3391 1552
6963 3442 15 21
6957 3462 1534
6939 3533 1442
6957 3518 1372
6908 3642 1318
6947 35 76 12 84
6908 3615 1321
6872 3733 1158
6858 3840 1031
6870 3776 1030
6866 3791 981
6817 39 82 866
6833 38 90 870
6826 3915 824
6735 4000 757
6813 39 52 8 07
6830 39 95 727


T126#1 B
L* a*
7990 215
78 85 814
7978 908
7846 940
7764 1117
7699 1306
7671 1406
76 87 16 31
7648 1688
7639 1758
75 45 17 39
7508 1835
74 82 19 30
7464 1997
7371 1994
7410 20 83
7341 2148
7441 2231
7344 22 84
7357 2323
7299 2430
7320 2640
7305 27 01
7299 2800
7228 2757
7255 2896
7172 28 35
7186 28 26
7163 2901
7137 2851
7108 29 48
71 14 29 90
71 07 30 52
7101 3026
7067 3033
7068 3151
70 86 31 10
7063 31 64
7045 32 22
7049 32 12
7025 32 70
7025 32 79
7015 33 31
7011 3346
7009 3331
6943 33 80
6994 3466
6967 34 78
6942 3474
6909 35 09
6939 35 98
68 84 36 08
6924 36 45
6914 37 22
69 13 37 35
6901 3754
6893 3752
68 89 38 02
6912 37 62
6872 38 40
68 29 39 95
6826 4010
6822 4038
6820 4098
68 03 4116
66 99 4144
66 47 4144
67 00 4191
67 96 42 30
67 76 42 44


b*


T126#1 C
L* a*
79 55 2 17
78 36 7 88
78 83 8 76
79 20 9 54
7755 1054
7674 1309
7655 1366
7516 1568
75 97 15 88
7634 1712
7539 1698
75 06 17 89
7468 1845
7518 1948
7322 1930
7432 1968
7266 2021
73 82 2134
7357 2141
7363 2208
7323 2368
7199 25 28
72 42 25 38
7267 2633
7303 2673
72 55 27 80
7169 2679
71 75 2735
7174 2778
7259 2858
7115 2837
7145 2893
7050 2954
7037 2962
7106 2948
7092 3031
7098 3056
70 72 3115
7076 3093
70 71 31 05
70 54 3173
70 56 3187
70 33 32 81
70 44 32 04
7037 3223
70 23 32 84
70 28 32 84
7000 3358
69 50 3390
69 53 3396
68 82 34 87
68 76 34 88
6951 3553
69 47 35 87
69 44 3618
6914 3652
69 14 3673
69 16 3679
69 15 37 02
69 02 37 31
68 44 38 80
68 30 3900
6851 3929
68 41 39 74
68 29 40 01
69 08 41 37
68 34 41 20
68 04 41 05
68 37 4153
68 56 41 87















Table A-20. Avery-Dennison TT Sensor T126(1) 50C color values.
5"C TIME T126#1 A T126#1 B T126#1 C T126#1 D T126#1 E
Run Date/Tine hours L* a* b* L* a* b* L* a* b* L* a* b* L* a* b*
1 07/30/03 08 0240pm 000 8025 328 4756 7996 282 4916 7993 370 4759 8066 313 4793 8076 374 4940
2 07/31/03030709pm 1995 7730 1491 3826 7623 1363 3924 7591 1497 3759 7602 1342 3907 7596 1335 3963
3 07/31/03052716pm 2230 7507 1492 3722 7470 1429 3947 7606 1516 3697 7652 1395 3865 7623 1430 3878
4 07/31/03110802pm 2797 7552 1675 3620 7548 1585 3757 7639 1742 3675 7594 1622 3684 7523 1562 3802
5 08/01/03023507pm 4343 7521 2039 3340 7405 1832 3419 7442 1972 3250 7460 1851 3416 7495 1773 3553
6 08/02/03015232pm 6672 7288 2320 2889 7298 2229 3057 7321 2343 2857 7357 2220 3065 7420 2287 3266
7 08/02/03090352pm 7390 7292 2401 2782 7247 2337 2904 7252 2469 2772 7263 2413 2798 7408 2279 3152
8 08/03/03053807pm 9448 7157 2670 2537 7195 2587 2672 7198 2622 2499 7171 2552 2706 7230 2490 2749
9 08/04/03024035am10352 7181 2742 2375 7176 2652 2581 7119 2786 2406 7197 2690 2540 7283 2589 2748
10 08/04/0312 1714pm11512 7166 2868 2270 7144 2798 2396 7137 2852 2307 7212 2790 2479 7211 2625 2656
11 08/04/03053532pm12043 7171 2914 2192 7132 2887 2312 7149 2956 2234 7160 2868 2321 7038 2783 2480
12 08/05/03122701pm13930 7051 3079 2049 7100 2969 2173 7165 3177 2054 7188 3085 2204 7033 2890 2332
13 08/05/03092917pm14833 7075 3160 1896 7064 3087 2014 7051 3150 1937 7074 3141 1956 7209 3027 2329
14 08/06/03024723pm16563 6987 3243 1792 7076 3341 1891 6908 3250 1751 6910 3280 1719 7041 3062 2128
15 08/06/03055712pm16878 7014 3296 1745 7012 3193 1939 7054 3356 1832 7001 3216 1851 7051 3108 2061
16 08/06/0310 1552pm17310 7015 3294 1711 6972 3291 1787 6862 3340 1696 6920 3305 1743 6978 3224 1842
17 08/07/0302 1449pm18908 6864 3401 1556 6891 3455 1621 6930 3474 1538 6981 3384 1648 7089 3263 1978
18 08/07/03081607pm19512 6814 3415 1549 6931 3422 1579 6942 3456 1532 6968 3488 1476 7085 3435 1805
19 08/08/03125853pm21182 6946 3599 1309 6901 3559 1387 6926 3592 1328 6954 3506 1479 6998 3482 1579
20 08/08/03102401pm22123 6873 3616 1268 6874 3632 1320 6909 3693 1125 6909 3655 1250 7049 3485 1701
21 08/09/03105956pm245 85 6887 3773 1050 6902 3758 1155 6914 3863 936 6892 3766 1149 6827 3599 1423
22 08/11/0304 25 30pm28727 6933 4034 837 6920 3981 997 6819 3935 837 6785 4054 667 6771 3846 1100
23 08/11/0310 2926pm29330 6791 3935 812 6774 4047 761 6882 4062 769 6910 4137 727 6855 3952 934
24 08/12/0304 2831pm31128 6698 3968 710 6776 4035 680 6837 4040 707 6889 4046 793 6802 3966 939
25 08/12/0306 15 35pm31307 6810 4030 655 6633 4009 715 6897 4159 742 6810 4005 763 6847 3971 848
26 08/13/030455 19pm 33573 6773 4162 420 6735 4188 413 6708 4170 465 6790 4213 404 6771 4106 631
27 08/13/0308 3613pm 33942 6718 4089 555 6720 4193 428 6773 4195 442 6749 4195 397 6611 4021 705
28 08/13/0310 4854pm34162 6719 4123 471 6753 4205 427 6735 4104 528 6797 4193 405 6475 3990 669
29 08/14/0302 5456pm 35772 6692 4194 376 6729 4246 342 6862 4283 476 6818 4477 181 5504 3668 606



Table A-21. Avery-Dennison TT Sensor T126(1) 100C color values.
10C TIME T126#1 A T126#1 B T126#1 C T126#1 D T126#1 E
Run Date/Tine hours L* a* b* L* a* b* L* a* b* L* a* b* L* a* b*
1 07/02/0305 11 25pm 000 8024 317 4742 7698 387 4762 7937 314 4835 8011 358 4945 8045 285 4728
2 07/02/03101525pm 500 7155 1087 4047 7027 1080 4043 7164 1166 3956 7164 1166 3956 7720 1096 4035
3 07/03/03010621pm 1983 7282 1901 3270 7138 1973 3252 7234 2022 3289 7193 2076 3186 7333 1959 3188
4 07/03/03040810pm 2285 7302 1905 3204 7185 2111 3105 7229 2125 3108 7229 2125 3108 7185 2111 3105
5 07/03/03073056pm 2633 7277 2188 3007 7164 2134 3086 7178 2263 2937 7107 2251 3016 7249 2228 2892
6 07/03/0311 1213pm 3005 7294 2142 2963 7123 2301 2896 7146 2389 2782 7087 2404 2846 7253 2246 2826
7 07/04/03021008pm 4500 7107 2670 2390 6952 2711 2382 6983 2810 2253 7016 2861 2341 7108 2784 2306
8 07/04/03081944pm 5102 7048 2703 2332 6969 2760 2352 6980 2942 2122 7016 2994 2160 7130 2777 2207
9 07/05/03112736am 6620 6826 3031 1971 6826 3031 1971 6884 3244 1723 6910 3149 2036 7044 3028 1881
10 07/05/03063509pm 7330 6899 3155 1803 6568 3191 1659 6840 3326 1640 6838 3229 1903 6713 3068 1696
11 07/05/03083513pm 7530 6948 3236 1725 6814 3202 1809 6869 3373 1597 6861 3306 1793 7000 3230 1636
12 07/06/03114541am 9050 6908 3417 1411 6766 3373 1512 6750 3587 1212 6785 3576 1384 6965 3401 1397
13 07/06/0303 1657pm 9408 6887 3533 1276 6738 3429 1421 6791 3644 1207 6796 3615 1303 6925 3525 1272
14 07/06/03104633pm102 55 6881 3405 1366 6710 3548 1259 6722 3712 1067 6725 3682 1257 6835 3483 1241
15 07/07/03033432pm10735 6889 3614 1064 6720 3779 954 6773 3950 747 6685 3909 862 6820 3747 901
16 07/08/0302 05 41pm12988 6638 3889 635 6557 3901 727 6662 4128 441 6653 4016 725 6778 3935 605
17 07/08/03080202pm13580 6655 3920 575 6624 3938 637 6677 4153 441 6651 4036 640 6766 4079 438
18 07/08/03100458pm13783 6688 3960 618 6638 4006 558 6623 4184 278 6700 4053 707 6779 4009 493
19 07/09/0301 1244pm 15297 6719 4085 453 6590 4113 365 6636 4303 127 6643 4196 422 6783 4043 393
20 07/09/0310 1104pm16195 6741 4283 125 6698 4386 139 6693 4423 -012 6696 4329 188 6739 4262 120



Table A-22. Avery-Dennison TT Sensor T126(1) 150C color values.
15C TIME T126#1 A T126#1 B T126#1 C T126#1 D T126#1 E
Run Date/Tnie hours L* a* b* L* a* b* L* a* b* L* a* b* L* a* b*
1 08/19/0311 2951pm 000 7697 4 17 4645 75 93 369 4695 7674 422 4638 7774 444 4632 7774 394 4604
2 08/20/03035409pm 1642 6793 3004 1989 6985 3001 1969 6793 3004 1989 6985 3001 1969 6930 2965 1976
3 08/20/03062540pm 1893 6786 3237 1631 6807 3141 1817 6766 3150 1778 6843 3171 1794 6877 3064 1805
4 08/20/03081103pm 2068 6824 3381 1479 6846 3326 1676 6781 3239 1708 6926 3199 1683 6907 3234 1675
5 08/20/03094423pm 2225 6748 3427 1388 6729 3284 1580 6628 3301 1544 6883 3226 1652 6849 3234 1551
6 08/20/03101458pm 2275 6751 3476 1344 6818 3323 1577 6743 3378 1486 6906 3306 1523 6869 3305 1513
7 08/21/03051033pm 4168 6725 3956 571 6725 3926 565 6594 3962 625 6725 3956 571 6725 3926 5 65
8 08/21/03061400pm 4273 6606 4119 317 6681 4040 566 6490 4005 496 6663 3878 643 6618 3967 589














Table A-23. Avery-Dennison TT Sensor T126(1) first dynamic experiment color values.
Dynamic Expenrment 1 TIME T126#1 A T126#1 B T126#1 C T126#1 D T126#1 E
Run Date/Tine hours L* a* b* L* a* b* L* a* b* L* a* b* L* a* b*
1 08/12/03 06 1757pm 000 8176 404 4665 8024 480 4848 8012 426 4681 7970 345 4986 8070 355 4866
2 08/13/03045646pm 2267 7850 1167 4070 7785 1325 3971 7712 1384 3779 7820 1000 4342 7818 1197 4060
3 08/13/03083752pm 2635 7797 1262 3892 7739 1398 3871 7633 1487 3677 7799 1082 4241 7788 1165 4096
4 08/13/03105034pm 2855 7728 1311 3861 7618 1446 3826 7625 1384 3741 7748 1152 4159 7745 1209 4016
5 08/14/03025634pm 4465 7587 1684 3518 7482 1862 3440 7444 1977 3226 7596 1465 3825 7567 1657 3608
6 08/14/03035627pm 4567 7581 1749 3447 7475 1838 3431 7444 1980 3263 7590 1496 3800 7546 1628 3634
7 08/15/0301 5705pm 67 70 72 29 23 20 2856 7174 24 42 2849 7101 2545 25 81 72 27 21 06 3132 72 32 22 42 29 85
8 08/15/03082306pm 7412 7234 2486 2672 7156 2571 2695 7116 2801 2361 7262 2253 3022 7231 2454 2798
9 08/16/03111309am 8895 7124 2791 2310 6964 2863 2352 6924 3058 2038 7008 2555 2634 7053 2729 2510
10 08/16/03061027pm 9590 6944 2864 2166 6938 3036 2044 6895 3144 1830 7010 2702 2533 7026 2841 2362
11 08/16/03112549pm101 15 6446 2740 2126 6302 2827 2122 6295 2979 1800 6338 2590 2349 7008 2915 2238
12 08/17/03080803pm121 87 7082 3121 1869 7002 3235 1758 6968 3342 1651 7064 2914 2223 7070 3110 1981
13 08/17/0311 3353pm12530 7059 3108 1881 6982 3250 1793 6986 3284 1561 7070 2925 2227 7055 3055 2023
14 08/18/0301 2907pm13920 7044 3126 1863 6975 3321 1706 6978 3400 1478 7061 2977 2187 7038 3169 1868
15 08/18/03065915pm14470 7085 3057 1888 6973 3316 1739 6957 3432 1461 7023 3034 2154 7044 3121 1981
16 08/18/0311 4745pm14950 7085 3169 1794 6948 3314 1703 6928 3396 1519 7011 2980 2088 7008 3097 1975
17 08/19/03042932pm16620 6985 3189 1803 6961 3288 1826 6931 3502 1434 7029 3053 2058 7021 3197 1840



Table A-24. Avery-Dennison TT Sensor T126(1) second dynamic experiment color

values.
Dynamic Expenment 2 TIME T126#1 A T126#1 B T126#1 C T126#1 D T126#1 E
Run Date/Tine hours L* a* b* L* a* b* L* a* b* L* a* b* L* a* b*
1 08/14/03 04 0608pm 000 8086 356 4840 8024 319 4863 8039 361 4826 8008 386 4809 8040 420 4904
2 08/15/03015916pm 2203 7573 1499 3777 7505 1741 3581 7517 1678 3752 7487 1654 3770 7548 1629 3739
3 08/15/03082524pm 2845 7475 1837 3476 6475 1930 3290 7399 2036 3432 7379 1902 3532 7414 1930 3501
4 08/16/03111521am 4328 7140 2564 2624 7033 2795 2389 7080 2737 2632 7099 2665 2639 7119 2662 2642
5 08/16/0306 1308pm 5023 7132 2821 2371 6991 2912 2201 6973 2942 2352 7032 2830 2382 7013 2827 2453
6 08/16/03112817pm 5548 7175 2876 2293 7085 3070 2011 7082 3068 2235 7114 2936 2318 7172 2964 2279
7 08/17/03081007pm 7620 7146 3063 2002 7057 3204 1826 7077 3195 1946 7108 3030 2174 7070 3105 2055
8 08/17/03113632pm 7963 7127 3105 1997 7052 3222 1817 7055 3195 2102 7089 3077 2112 7112 3130 2056
9 08/18/03013147pm 9353 7104 3085 2018 6989 3382 1615 7009 3319 1810 7039 3180 2009 7042 3209 1984
10 08/18/03070114pm 9903 7097 3094 2030 6978 3405 1574 6988 3378 1745 7018 3252 1908 5639 2866 1826
11 08/18/0311 4934pm10383 7082 3258 1757 6999 3263 1780 6986 3403 1762 6995 3318 1814 6998 3351 1760
12 08/19/03043142pm12053 6964 3601 1283 6888 3715 1117 6857 3811 1209 6913 3610 1380 6921 3658 1362
13 08/19/0311 2831pm 12748 6947 3759 1044 6850 3937 804 6859 3848 1071 6909 3667 1273 6926 3754 1211
14 08/20/03035244pm14388 6980 3631 1193 6875 3935 715 6848 3926 999 6889 3784 1087 6933 3821 1027
15 08/20/03080928pm14817 6958 3758 974 6882 3954 691 6863 3918 949 6967 3620 1197 6927 3785 1158
16 08/20/0310 1346pm 15023 6985 3635 1196 6895 3964 652 6866 3960 871 6913 3795 997 6950 3770 1094
17 08/21/0305 0909pm17015 6949 3764 1008 6877 3865 838 6842 4023 776 6869 3881 956 6923 3940 882















Table A-25. Avery-Dennison TT Sensor T126(2) 0C color values.


0C TIME
Run Date/Tune hours
1 07/30/03 06 30 55pm 0 00
2 07/31/03 03 05 13pm 19 95
3 07/31/03 05 25 24pm 22 30
4 07/31/03 11 06 07pm 27 97
5 08/01/03 02 29 55pm 43 43
6 08/02/03 01 50 35pm 6672
7 08/02/03 09 01 53pm 7390
8 08/03/03 05 36 08pm 94 48
9 08/04/03 02 38 49am 103 52
10 08/04/0312 15 27pm115 12
11 08/04/03 05 33 48pm 120 43
12 08/05/03 12 25 07pm 139 30
13 08/05/03 09 27 16pm 148 33
14 08/06/03 02 45 23pm 165 63
15 08/06/03 05 55 07pm 168 78
16 08/06/03 10 14 Olpm 173 10
17 08/07/0302 12 54pm 189 08
18 08/07/0308 13 56pm195 12
19 08/08/03 12 53 39pm211 82
20 08/08/03 10 22 07pm 221 23
21 08/09/03 10 58 02pm 245 85
22 08/11/0304 23 43pm287 27
23 08/11/03 10 27 25pm293 30
24 08/12/0304 26 37pm311 28
25 08/12/03 06 14 14pm313 07
26 08/13/0304 53 42pm 335 73
27 08/13/0308 34 08pm 339 42
28 08/13/03 10 47 37pm 341 62
29 08/14/0302 53 32pm 357 72
30 08/14/03 03 54 45pm 358 73
31 08/15/03 01 56 02pm380 77
32 08/15/03 08 21 12pm387 18
33 08/16/03 11 11 23am 402 02
34 08/16/03 06 08 10pm 408 97
35 08/16/0311 23 56pm414 22
36 08/17/03 08 06 24pm 434 93
37 08/17/03 11 32 11pm43837
38 08/18/0301 27 16pm45227
39 08/18/03 06 57 23pm 457 77
40 08/18/03 11 46 09pm46257
41 08/19/03 04 27 46pm 479 27
42 08/19/03 11 26 52pm 486 25
43 08/20/03 03 51 OOm 502 67


a


T126#2 D T126#2 E
b* L* a* b* L* a* b*


b*


T126#2 A
L* a* b*
8076 151 4838
7808 1565 3783
7634 15 91 3605
7590 1706 3508
7675 1946 3461
7523 2102 3131
7457 2136 3122
7465 2318 3015
74 12 23 62 29 89
7436 2342 2965
7417 2397 2877
7369 2557 2732
7358 2644 2675
7332 2749 2614
7269 2673 25 87
7254 2767 2523
7229 2865 2407
7146 2908 2394
7243 2985 2278
7216 3085 2207
7175 3220 2019
7060 3413 1814
7093 3469 1725
7074 3500 1680
70 85 35 03 16 62
7056 3603 1531
7046 3618 1453
7059 3661 1439
7028 3715 1309
7019 3693 1415
6979 3761 1318
6963 3782 1260
6956 3839 1198
6958 3850 1208
6951 3906 1089
6942 3963 968
6954 3942 1062
6948 4003 989
6933 4017 990
6934 4020 955
6932 4062 884
6920 4077 819
6921 4131 797


T126#2 B
L* a*
80 85 150
77 26 15 41
76 90 15 55
7585 1738
7627 1856
75 74 2138
74 86 2107
7436 2250
74 57 23 05
7381 2407
7396 2428
7351 2570
73 45 2602
7331 2750
7242 2764
7292 2760
7239 2913
7246 2914
72 14 3005
7188 3077
7154 3213
71 05 3405
7094 3441
70 66 3515
70 54 35 23
7032 3611
7029 3646
70 94 3705
69 84 3698
70 12 37 09
6940 3758
69 64 38 10
69 45 3845
69 54 38 88
69 39 3866
6943 3942
69 39 3959
69 32 4008
69 27 40 28
69 09 4025
69 15 4090
69 08 4110
6903 4139


T126#2 C
L* a*
8160 2 06
76 07 15 88
76 43 16 67
7591 1757
75 76 19 93
74 94 2198
74 81 22 27
74 25 23 87
74 84 24 32
74 65 24 99
74 01 25 36
7324 2702
7311 26 81
7243 2776
72 69 27 89
72 66 28 39
72 40 29 35
7207 2974
72 03 30 68
7172 3130
7127 3262
70 78 34 75
70 68 34 91
7109 3618
70 34 35 92
7013 3658
70 70 37 25
69 59 36 71
69 87 37 46
69 84 37 39
69 63 3812
69 57 38 48
69 17 38 83
69 20 38 99
69 31 39 28
6909 3976
69 08 39 97
6903 4037
68 91 40 50
6894 4051
68 87 4102
68 84 4118
6872 4151














Table A-26. Avery-Dennison TT Sensor T126(2) 50C color values.
5C TIME T126#2 A T126#2 B T126#2 C T126#2 D T126#2 E
Run Date/Tine hours L* a* b* L* a* b* L* a* b* L* a* b* L* a* b*
1 07/30/03 08 0308pm 000 7798 443 4452 7967 400 4405 7985 422 4395 8075 415 4364 8099 317 3966
2 07/31/03030741pm 1995 7501 2087 3020 7477 2143 2889 7498 2206 2775 7587 2290 2829 7643 1909 2563
3 07/31/03052754pm 2230 7494 2125 2964 7482 2181 2800 7452 2210 2754 7514 2313 2803 7496 1994 2513
4 07/31/03110832pm 2797 7443 2230 2933 7438 2276 2716 7476 2421 2707 7517 2359 2739 7612 2140 2481
5 08/01/03023539pm 4343 7430 2585 2663 7391 2595 2420 7308 2690 2307 7343 2731 2214 7336 2426 2036
6 08/02/03015300pm 6672 7220 2922 2165 7200 3025 1874 7139 3053 1815 7203 3145 1845 7317 2882 1533
7 08/02/03090423pm 7390 7189 3028 2051 7152 3141 1782 7123 3193 1668 7238 3277 1681 7287 2994 1399
8 08/03/03053837pm 9448 6928 3266 1778 7054 3477 1423 7056 3498 1296 7097 3576 1365 7311 3352 1115
9 08/04/03024059am10352 7031 3503 1432 7163 3611 1325 7043 3648 1166 6970 3607 1221 7174 3415 893
10 08/04/0312 1744pm115 12 6996 3591 1378 7004 3599 1173 6956 3730 1027 7022 3739 1086 7144 3512 886
11 08/04/03053556pm12043 6982 3652 1294 7000 3710 1061 6941 3733 990 7010 3787 1002 7145 3567 697
12 08/05/03122732pm13930 6924 3862 945 6914 3912 817 7013 4028 812 7041 4040 822 7002 3663 540
13 08/05/03092941pm14833 6763 3854 931 6917 4017 673 6908 4011 619 6960 4007 645 7083 3862 438
14 08/06/03024755pm16563 6861 4034 749 6875 4106 500 6921 4179 343 6962 4162 480 7108 4026 270
15 08/06/03055739pm16878 6713 4006 754 6831 4089 504 6806 4134 400 6933 4173 437 7096 4022 187
16 08/06/0310 1614pm17310 6953 4193 720 6919 4238 418 6889 4216 277 6875 4167 440 6851 3836 285
17 08/07/0302 15 16pm18908 6849 4220 495 6797 4244 221 6559 4142 282 6886 4309 260 6778 3966 098
18 08/07/0308 1652pm19512 6867 4282 380 6864 4290 196 6841 4322 162 6873 4336 177 6775 4018 002
19 08/08/03125918pm211 82 6830 4354 303 6853 4370 073 6947 4497 -046 6916 4444 014 6986 4210 -216
20 08/08/0310 2431pm 22123 6812 4406 227 6850 4439 -063 6707 4391 037 6852 4451 003 6939 4233 -240
21 08/09/0311 0022pm 245 85 6799 4528 -076 6853 4521 -187 6795 4552 -291 6820 4563 -155 6901 4279 -292
22 08/11/0304 25 55pm28727 67 89 4658 -243 6791 46 84 -431 6792 4702 -477 6778 4709 -355 6976 45 38 -661
23 08/11/03 10 2951pm293 30 6734 4638 -169 6794 4647 -421 6852 4738 -444 68 81 4779 -434 6950 4474 -646



Table A-27. Avery-Dennison TT Sensor T126(2) 100C color values.
10C TIME T126#2 A T126#2 B T126#2 C T126#2 D T126#2 E
Run Date/Tine hours L* a* b* L* a* b* L* a* b* L* a* b* L* a* b*
1 08/21/0306 1118pm 000 7987 707 4415 7895 675 4374 7805 763 4429 7948 750 4383 7932 735 4432
2 08/21/03064822pm 062 7602 1171 3954 7807 1177 3882 7760 1259 3870 7687 1170 4017 7802 1178 4012
3 08/21/03065652pm 077 7682 1437 3772 7682 1437 3772 7557 1538 3705 7626 1523 3731 7627 1531 3817
4 08/21/03065807pm 078 7608 1515 3722 7641 1452 3745 7565 1543 3716 7565 1543 3716 7599 1551 3762
5 08/21/03072432pm 123 7606 1708 3607 7704 1625 3583 7576 1717 3565 7616 1712 3585 7570 1714 3632
6 08/22/03012657pm 1927 7347 2531 2760 7435 2539 2686 7420 2569 2726 7417 2538 2794 7360 2462 2876
7 08/23/03050447pm 4490 7004 3519 1579 7092 3507 1564 7028 3489 1658 7099 3482 1655 7023 3401 1819
8 08/23/03064200pm 4652 7003 3588 1492 7010 3531 1559 7062 3588 1516 7003 3567 1494 7001 3464 1755
9 08/23/03082946pm 4832 7020 3639 1407 7076 3607 1453 7069 3632 1470 7043 3563 1543 7023 3494 1667
10 08/23/03094127pm 4952 6930 3599 1489 7026 3633 1403 6975 3649 1433 6975 3576 1536 6972 3533 1639
11 08/24/03081244pm 7303 6808 4176 613 6830 4118 667 6813 4135 752 6823 4115 753 6847 4055 948



Table A-28. Avery-Dennison TT Sensor T126(2) 150C color values.
15"C TIME T126#2 A T126#2 B T126#2 C T126#2 D T126#2 E
Run Date/Tine hours L* a* b* L* a* b* L* a* b* L* a* b* L* a* b*
1 06/14/03 02 0426pm 000 8189 811 4555 8211 795 4507 8169 930 4445 8217 802 4429 8185 787 4558
2 06/14/03034753pm 165 7834 1818 3731 7861 1755 3618 7821 1932 3568 7837 1880 3463 7830 1732 3691
3 06/14/03053851pm 352 7772 2094 3517 7835 2023 3483 7745 2170 3333 7791 2126 3261 7776 2002 3498
4 06/14/03075639pm 582 7686 2375 3253 7720 2327 3178 7645 2444 3031 7700 2307 3283 7698 2306 3279
5 06/14/03112517pm 928 7559 2733 2773 7559 2824 2640 7509 2936 2535 7517 2873 2436 7540 2783 2702
6 06/15/03122120pm 2223 7175 3903 1304 7185 4013 1061 7147 4051 1002 7171 4025 931 7115 3971 1115
7 06/15/03021918pm 2418 7145 4061 1104 7137 4111 848 7098 4182 803 7135 4154 738 7115 4077 983
8 06/15/03 054328pm 2760 7099 4274 826 7085 4316 534 7078 4357 592 7076 4323 488 7051 4315 658
9 06/15/03071348pm 2910 7042 4339 640 7056 4436 468 7007 4484 378 7037 4424 371 7025 4366 677
10 06/15/03101007pm 3088 7015 4492 494 7039 4526 232 7024 4588 224 7023 4547 140 6993 4538 353
11 06/16/03023653pm 4732 6935 5012 -400 6954 4983 -527 6948 5101 -633 6959 5027 -634 6929 4970 -423
12 06/16/03055019pm 5053 6917 5104 -537 6945 5092 -683 6934 5167 -738 6938 5085 -872 6635 4889 -467
13 06/17/0301 54 50pm 7060 6867 5311 -1075 6907 5285 -1108 6901 5327 -1159 6938 5283 -1154 6866 5328 -1133














Table A-29. Avery-Dennison TT Sensor T126(2) first dynamic experiment color values.
Dynamic Expenment 1 TIME T126#2 A T126#2 B T126#2 C T126#2 D T126#2 E
Run Date/Tine hours L* a* b* L* a* b* L* a* b* L* a* b* L* a* b*
1 08/12/03 06 1829pm 000 8171 383 4471 8139 442 4652 8189 487 4395 8050 456 4598 8007 514 4393
2 08/13/03045718pm 2267 7756 1344 3710 7759 1598 3576 7760 1659 3452 7661 1664 3654 7639 1527 3514
3 08/13/03083815pm 2635 7680 1551 3586 7699 1725 3512 7609 1892 3336 7513 1894 3324 7570 1784 3290
4 08/13/03105100pm 2855 7740 1490 3606 7695 1771 3446 7592 1948 3272 7550 1755 3498 7554 1778 3274
5 08/14/03025704pm 4465 7560 1892 3205 7585 2044 3192 7522 2269 3011 7439 2157 3073 7438 2087 2978
6 08/14/03035651pm 4567 7559 1888 3275 7584 2053 3128 7543 2203 3015 7420 2205 3029 7454 2163 2967
7 08/15/03015705pm 6770 7279 2520 2634 7287 2476 2718 7392 2623 2542 7280 2624 2597 7245 2709 2459
8 08/15/03082335pm 7412 7233 2745 2353 7243 2750 2575 7286 2870 2305 7214 2777 2491 7192 2853 2268
9 08/16/03111336am 8895 7017 3175 1902 7008 3119 2064 7159 3345 1812 7076 3227 1876 7033 3299 1750
10 08/16/0306 1057pm 9590 6956 3382 1580 7065 3178 1930 7059 3506 1560 7044 3236 1879 7002 3419 1506
11 08/16/03112618pm101 15 6974 3431 1496 7013 3289 1801 6816 3436 1484 6386 3269 1655 6380 3288 1524
12 08/17/03080829pm121 87 7035 3644 1167 7107 3576 1478 7004 3766 1162 6985 3609 1360 6948 3706 1112
13 08/17/0311 3417pm12530 7020 3659 1156 7099 3561 1478 7008 3769 1164 6968 3651 1319 6946 3739 1056
14 08/18/0301 2937pm13920 7003 3754 1062 7080 3616 1381 6998 3815 1078 6934 3770 1156 6953 3792 973
15 08/18/03065939pm14470 6998 3725 1070 7104 3646 1357 6990 3857 1044 6949 3747 1166 6922 3817 1016
16 08/18/0311 4808pm14950 6995 3732 1003 7096 3633 1345 6977 3810 1023 6925 3787 1110 6924 3805 941
17 08/19/0304 2956pm 16620 6972 3828 960 7058 3722 1262 6972 3932 954 6933 37 85 1177 6902 3856 885



Table A-30. Avery-Dennison TT Sensor T126(2) second dynamic experiment color

values.
Dynamic Expenment 2 TIME T126#2 A T126#2 B T126#2 C T126#2 D T126#2 E
Run Date/Tine hours L* a* b* L* a* b* L* a* b* L* a* b* L* a* b*
1 08/14/03 04 0630pm 000 80 40 389 4833 80 42 442 4827 80 34 336 49 17 80 27 439 4809 80 69 465 4865
2 08/15/03015916pm 2203 7454 2228 3273 7416 2145 3344 7479 2134 3228 7452 1976 3401 7519 2164 3384
3 08/15/03082554pm 2845 7350 2469 2973 7309 2401 3118 7345 2466 2953 7399 2279 3161 7406 2476 3062
4 08/16/03111554am 4328 7017 3249 2058 6950 3234 2162 7027 3028 2297 6966 3150 2128 7114 3228 2101
5 08/16/0306 1338pm 5023 6999 3503 1703 6990 3414 1929 7186 2846 2250 7039 3380 1892 7060 3525 1806
6 08/16/03112844pm 5548 7036 3619 1607 7018 3522 1817 7120 3119 2044 7027 3560 1650 7070 3612 1661
7 08/17/03081033pm 7620 6975 3804 1312 6954 3787 1458 7097 3213 1976 6968 3701 1445 7004 3824 1459
8 08/17/03113658pm 7963 6965 3810 1341 6937 3800 1438 7053 3403 1638 6978 3748 1412 7011 3809 1283
9 08/18/03013210pm 9353 6928 3966 1160 6910 3921 1236 7011 3809 1283 6927 3860 1274 6962 3958 1165
10 08/18/03070137pm 9903 6903 4030 1025 6888 4005 1128 6981 3611 1462 6916 3953 1131 6950 4010 1058
11 08/18/0311 4959pm103 83 6882 4126 884 6863 4126 847 6987 3613 1323 6895 4032 997 6921 4127 902
12 08/19/0304 3205pm120 53 6806 4490 322 6774 4473 388 6833 4299 432 6806 4368 457 6846 4451 447
13 08/19/0311 2853pm 12748 6801 4527 168 6766 4548 221 6857 4120 679 6796 4444 344 6840 4520 250
14 08/20/03035308pm14388 6787 4624 027 6761 4617 018 6830 4610 117 6764 4554 174 6830 4610 117
15 08/20/03080949pm14817 6791 4635 033 6755 4620 002 6816 4357 266 6792 4533 165 6823 4599 076
16 08/20/03101405pm150 23 6792 4604 -017 6753 4622 033 6754 4519 223 6841 4473 150 6831 4637 084
17 08/21/0305 0930pm 17015 6781 4658 -098 6744 4702 -050 6969 3901 810 6788 4616 022 6819 4683 -052















Table A-31. Avery-Dennison TT Sensor T126(4) 0C color values.


I


C TIME
Run Date/Tine hours
1 07/30/03 06 30 55pm 0 00
2 07/31/03 03 05 13pm 19 95
3 07/31/03 05 25 24pm 22 30
4 07/31/03 11 06 07pm 27 97
5 08/01/03 02 29 55pm 43 43
6 08/02/03 01 50 35pm 66 72
7 08/02/03 09 01 53pm 7390
8 08/03/03 05 36 08pm 94 48
9 08/04/03 02 38 49am 103 52
10 08/04/0312 15 27pm115 12
11 08/04/03 05 33 48pm 120 43
12 08/05/03 12 25 07pm 139 30
13 08/05/03 09 27 16pm 148 33
14 08/06/03 02 45 23pm 165 63
15 08/06/03 05 55 07pm 168 78
16 08/06/03 10 14 Olpm 173 10
17 08/07/03 02 12 54pm 189 08
18 08/07/03 08 13 56pm195 12
19 08/08/03 12 53 39pm211 82
20 08/08/03 10 22 07pm 221 23
21 08/09/03 10 58 02pm 245 85
22 08/11/0304 23 43pm287 27
23 08/11/03 10 27 54pm 293 30
24 08/12/0304 27 07pm 311 28
25 08/12/03 06 14 38pm313 07
26 08/13/0304 54 09pm 335 73
27 08/13/0308 34 33pm 339 42
28 08/13/03 10 48 Olpm 341 62
29 08/14/0302 54 07pm 357 72
30 08/14/03 03 55 09pm 358 73
31 08/15/03 01 56 24pm380 77
32 08/15/0308 21 42pm387 18
33 08/16/0311 11 48am 402 02
34 08/16/03 06 09 00pm 408 97
35 08/16/03 11 24 23pm414 22
36 08/17/03 08 06 47pm 434 93
37 08/17/03 11 32 36pm 438 37
38 08/18/03 01 27 41pm452 27
39 08/18/0306 57 47pm457 77
40 08/18/03 11 46 32pm462 57
41 08/19/03 04 28 08pm 479 27
42 08/19/03 11 27 14pm48625
43 08/20/03 03 51 21pm 502 67


a


T126#4 D T126#4 E
b* L* a* b* L* a* b*


I


b*


T126#4 A
L* a* b*
81 24 077 41 28
80 40 7 81 35 39
80 04 8 43 34 96
79 74 9 52 33 92
7900 1170 3213
77 98 14 34 29 44
77 77 1500 2915
7748 1720 2758
76 94 17 34 26 84
7682 1830 2606
75 99 17 65 25 59
7698 20 25 25 08
7604 2031 2363
75 16 2117 2300
7543 1978 2351
75 23 21 25 22 53
7543 1978 2351
7474 2267 2123
7439 2469 1943
7352 2150 2121
7329 2505 1858
7312 2740 1607
73 82 27 74 15 53
70 89 2705 1620
73 39 28 37 14 91
7324 2967 1329
7325 2969 1315
7266 2923 1346
7281 2981 1324
73 31 30 58 12 56
72 20 30 43 12 25
7218 3075 1186
71 25 29 05 13 34
71 33 3034 1203
7058 3062 1163
71 32 32 57 933
7106 3241 986
7194 3137 1053
7112 3308 905
7201 3042 1088
7098 3358 838
7097 3328 848
7117 3426 742


T126#4 B
L* a*
81 68 0 75
80 89 7 44
80 30 7 98
8011 905
79 19 1110
7851 1369
7829 1424
7771 1651
7700 1678
7703 1742
7718 1798
76 78 19 80
75 97 20 14
74 65 2029
75 84 2079
75 64 2149
7554 2222
7518 2265
7540 2348
74 78 23 83
74 55 25 06
73 98 2700
73 86 27 19
73 82 2807
73 54 2801
72 82 28 84
7343 2916
73 28 2914
7329 2990
73 56 3041
72 82 3063
7263 3113
71 70 30 94
72 56 31 62
7153 3125
72 53 32 67
72 59 3251
72 49 32 87
7227 3322
7221 3366
72 19 33 90
7202 3347
72 13 3427


T126#4 C
L* a*
81 93 0 79
80 20 8 58
79 86 8 82
79 40 10 28
78 62 1275
77 77 15 23
7745 1615
7678 1736
7663 1863
7636 1886
7570 1959
7649 2167
75 65 21 69
7466 2198
7498 2247
7515 2268
7494 2364
74 87 2379
7439 2469
7453 2548
7402 2647
7356 2846
7350 2861
7332 2903
72 54 2935
7278 3013
7272 3020
7298 3041
7310 3114
7347 3190
7163 3160
7253 3198
7170 3227
7111 3216
7121 3247
72 31 33 52
72 23 33 62
7210 3399
7197 3416
7211 3411
71 93 34 64
7175 34 64
7186 35 34














Table A-32. Avery-Dennison TT Sensor T126(4) 50C color values.
5C TIME T126#4 A T126#4 B T126#4 C T126#4 D T126#4 E
Run Date/Tine hours L* a* b* L* a* b* L* a* b* L* a* b* L* a* b*
1 07/30/03 08 0337pm 000 8138 296 4016 8148 215 4126 8178 277 4032 8116 346 3998 8176 281 3969
2 07/31/03030808pm 1995 7696 1714 2747 7705 1546 2951 7739 1778 2715 7779 1840 2761 7685 1673 2714
3 07/31/03052904pm 2230 7622 1850 2606 7690 1629 2885 7669 1805 2690 7630 1822 2598 7729 1753 2716
4 07/31/03110857pm 2797 7561 2008 2413 7636 1795 2701 7638 2041 2427 7673 2009 2501 7609 1899 2484
5 08/01/03023617pm 4343 7516 2348 2102 7633 2167 2414 7402 2325 2094 7467 2366 2042 7340 2200 2161
6 08/02/03015327pm 6672 7369 2617 1725 7414 2514 1889 7352 2784 1498 7302 2742 1618 7373 2656 1659
7 08/02/03090448pm 7390 7379 2811 1543 7449 2689 1792 7243 2822 1507 7304 2868 1440 7350 2766 1512
8 08/03/03053910pm 9448 7201 3052 1222 7381 2946 1524 7213 3116 1131 7166 3101 1153 7190 2988 1232
9 08/04/03024128am10352 7228 3163 1048 7229 2988 1345 7257 3206 1058 7332 3267 1104 7214 3126 1065
10 08/04/0312 1808pm11512 7187 3272 905 7310 3188 1162 7219 3344 851 7297 3416 886 7182 3204 973
11 08/04/0305 3621pm12043 7269 3360 855 7277 3184 1124 7171 3371 762 7144 3352 805 7051 3207 883
12 08/05/03122757pm13930 7155 3447 673 7162 3295 922 7140 3508 612 7214 3531 645 7154 3437 643
13 08/05/03093014pm14833 7131 3586 468 7145 3421 768 7121 3572 519 7099 3618 468 7227 3573 594
14 08/06/03024820pm16563 7081 3540 594 7208 3534 660 7106 3706 348 6962 3694 308 6978 3531 464
15 08/06/0305 5805pm16878 7022 3612 454 7218 3652 618 7016 3692 349 7090 3777 205 6934 3541 430
16 08/06/0310 1637pm17310 7070 3640 414 7180 3600 644 7064 3767 216 6990 3769 138 7083 3670 310
17 08/07/0302 1540pm 18908 7135 3797 216 7180 3760 431 7063 3825 160 7055 3811 153 6985 3698 210
18 08/07/0308 1723pm195 12 7062 3838 104 7054 3735 315 6992 3876 -032 6998 3823 087 7025 3777 102
19 08/08/03125941pm 21182 7071 3882 020 7069 3814 167 7057 3975 -080 7042 3971 -088 7130 3915 045
20 08/08/0310 2454pm22123 7002 3877 076 7052 3867 099 7047 3988 -130 7070 4018 -142 7125 3961 -035
21 08/09/0311 00 50pm245 85 6869 4021 -2 15 7046 3932 000 7012 4105 -280 7054 4115 -330 7042 4048 -240
22 08/11/0304 2621pm28727 7012 4229 -492 7014 4107 -2 87 6940 4225 -499 6991 4235 -499 7028 4223 -5 03
23 08/11/0310 3033pm293 30 7035 4203 -433 7001 4097 -2 89 6992 4217 -5 29 6940 4245 -5 79 7036 4213 -516



Table A-33. Avery-Dennison TT Sensor T126(4) 100C color values.
10iC TIME T126#4 A T126#4 B T126#4 C T126#4 D T126#4 E
Run Date/Tine hours L* a* b* L* a* b* L* a* b* L* a* b* L* a* b*
1 08/21/03 06 1152pm 000 8068 230 4082 8068 230 4082 8174 315 4024 8068 230 4082 8174 315 4024
2 08/21/03 06 5721pm 077 8043 718 3736 8028 669 3796 8023 732 3740 8018 730 3742 8010 804 3707
3 08/21/03 06 5829pm 078 80 22 757 36 48 79 93 691 37 88 79 88 751 3710 79 91 723 37 09 8010 845 3649
4 08/21/03 07 2453pm 123 80 23 872 35 73 80 07 877 3627 79 94 943 3529 79 89 900 34 85 79 87 1035 34 13
5 08/22/03012717pm 1927 7479 2387 2047 7480 2394 2053 7454 2426 2012 7456 2379 2086 7466 2464 2087
6 08/23/03050510pm 4490 7234 3262 960 7176 3269 943 7173 3303 932 7187 3238 1011 7194 3333 997
7 08/23/03064245pm 4652 7202 3310 905 7126 3283 951 7130 3290 964 7131 3245 1008 7164 3388 904
8 08/23/03083005pm 4832 7241 3332 870 7196 3342 871 7184 3350 903 7189 3303 903 7232 3427 828
9 08/23/03094148pm 4952 7209 3339 863 7116 3342 873 7121 3357 886 7126 3316 915 7160 3401 895
10 08/24/03081305pm 7303 7105 3725 321 7036 3718 323 7017 3710 340 7007 3664 429 7053 3824 266



Table A-34. Avery-Dennison TT Sensor T126(4) 150C color values.
15SC TIME T126#4 A T126#4 B T126#4 C T126#4 D T126#4 E
Run Date/Tnie hours L* a* b* L* a* b* L* a* b* L* a* b* L* a* b*
1 08/19/0311 3045pm 000 8106 356 3961 8111 389 3984 8051 352 3998 8075 477 3931 8117 429 3866
2 08/20/03035500pm 1642 7220 3274 915 7206 3256 944 7160 3316 882 7113 3307 900 7150 3282 912
3 08/20/03062632pm 1893 7197 3420 751 7135 3494 715 7117 3412 715 7074 3424 687 7144 3383 642
4 08/20/03081151pm 2068 7141 3449 622 7046 3420 616 7045 3491 562 7057 3526 567 7118 3451 539
5 08/20/03 09 4503pm 22 25 7101 34 88 563 71 26 3500 544 70 87 35 36 504 70 63 35 60 561 7151 35 07 543
6 08/20/0310 1547pm 2275 7111 3548 476 7076 3506 505 7047 3649 406 7047 3570 511 7062 3506 456
7 08/21/0305 11 24pm 4168 7022 4094 -351 6968 4135 -411 6932 4169 -449 6954 4117 -365 7005 4090 -395
8 08/21/03061446pm 4273 7015 4116 -370 6959 4122 -333 6868 4142 -446 6924 4204 -540 6955 4167 -440














Table A-35. Avery-Dennison TT Sensor T126(4) first dynamic experiment color values.
Dynamic Expenrment 1 TIME T126#4 A T126#4 B T126#4 C T126#4 D T126#4 E
Run Date/Tnie hours L* a* b* L* a* b* L* a* b* L* a* b* L* a* b*
1 08/12/03 06 1903pm 000 8193 256 4104 8203 231 4180 8179 190 4123 8293 224 4228 8251 218 4095
2 08/13/03045815pm 2267 7883 1174 3291 7916 1085 3460 7952 1020 3424 8002 1096 3477 7926 1229 3235
3 08/13/03083840pm 2635 7844 1274 3193 7895 1150 3373 7902 1135 3321 7936 1187 3340 7901 1325 3080
4 08/13/03105125pm 2855 7770 1399 3084 7875 1192 3357 7860 1201 3253 7893 1297 3242 7886 1365 3035
5 08/14/03025732pm 4465 7623 1861 2608 7714 1656 2906 7713 1653 2813 7738 1687 2886 7726 1850 2522
6 08/14/03035721pm 4567 7631 1873 2590 7690 1733 2795 7686 1711 2755 7738 1720 2832 7707 1883 2475
7 08/15/03015705pm 6770 7315 2571 1814 7393 2438 2028 7417 2410 1988 7420 2423 2073 7456 2616 1654
8 08/15/03082405pm 7412 7328 2784 1537 7375 2602 1888 7358 2630 1729 7412 2657 1796 7407 2763 1535
9 08/16/0311 1402am 8895 7163 3105 1128 7205 2942 1460 7175 2973 1289 7238 3009 1380 7292 3150 1019
10 08/16/03061131pm 9590 7126 3221 975 7178 3083 1219 7159 3103 1163 7187 3125 1254 7262 3256 860
11 08/16/0311 2646pm101 15 6475 3063 972 6526 2943 1213 6569 2944 1176 7204 3171 1135 7222 3308 800
12 08/17/0308 0853pm 12187 7179 3388 726 7217 3312 921 7221 3272 876 7223 3289 980 7245 3468 549
13 08/17/0311 3442pm125 30 7160 3446 652 7176 3451 715 7191 3331 842 7237 3370 869 7237 3485 534
14 08/18/0301 3006pm13920 7177 3469 630 7195 3407 791 7204 3332 810 7228 3395 866 7228 3513 515
15 08/18/0307 0004pm14470 7156 3465 667 7195 3382 854 7203 3345 789 7232 3424 816 7230 3517 475
16 08/18/0311 4832pm14950 7160 3487 585 7170 3470 678 7194 3369 746 7208 3393 832 7214 3544 495
17 08/19/0304 3020pm16620 7130 3555 522 7178 3434 790 7180 3419 706 7175 3411 884 7218 3551 442



Table A-36. Avery-Dennison TT Sensor T126(4) second dynamic experiment color

values.
Dynamic Expenrment 2 TIME T126#4 A T126#4 B T126#4 C T126#4 D T126#4 E
Run Date/Tnie hours L* a* b* L* a* b* L* a* b* L* a* b* L* a* b*
1 08/14/03 04 0656pm 000 8220 224 4178 8179 242 4196 8244 207 4231 8278 243 4228 8277 280 4274
2 08/15/03015916pm 2203 7718 1780 2768 7682 1626 2984 7489 2352 2191 7705 1762 2845 7713 1894 2735
3 08/15/03082627pm 2845 7575 2164 2376 7544 2019 2577 7351 2755 1678 7568 2131 2460 7601 2263 2317
4 08/16/03111622am 4328 7272 2902 1511 7225 2830 1612 7066 3466 792 7245 2874 1552 7326 3020 1378
5 08/16/03061411pm 5023 6583 2900 1315 6478 2870 1388 6406 3405 699 6623 2898 1362 7290 3215 1205
6 08/16/03112913pm 5548 7271 3202 1072 7234 3200 1066 7101 3786 277 7242 3195 1134 7286 3278 1114
7 08/17/03081101pm 7620 7263 3319 908 7216 3344 869 7094 3935 028 7222 3318 972 7252 3440 845
8 08/17/03113720pm 7963 7289 3347 859 7217 3420 780 7094 3930 048 7226 3337 935 7270 3408 896
9 08/18/03013234pm 9353 7188 3490 751 7215 3272 909 7053 4003 -044 7180 3436 819 7233 3544 696
10 08/18/03070200pm 9903 7189 3502 696 7195 3320 870 7043 4032 -039 7171 3533 695 7215 3570 718
11 08/18/0311 50 27pm10383 7186 3596 533 7180 3483 628 7047 4080 -138 7158 3559 647 7197 3651 565
12 08/19/0304 3232pm120 53 7122 3850 159 7118 3771 244 7017 4328 -600 7108 3888 138 7139 3945 122
13 08/19/0311 2914pm 12748 7105 3905 072 7061 3917 047 7014 4323 -571 7091 3913 084 7125 3982 054
14 08/20/03035330pm14388 7120 3950 -058 7095 3839 074 7028 4361 -693 7093 3951 -019 7127 4026 -068
15 08/20/03081010pm14817 7127 3950 -080 7131 3794 061 7029 4378 -747 7087 3977 -044 7138 4050 -112
16 08/20/03101424pm 15023 7124 3902 004 7122 3795 056 7029 4371 -735 7092 3974 -045 7134 4024 -096
17 08/21/0305 0954pm 17015 7112 3976 -103 7085 3911 -032 7048 4408 -746 7076 4047 -121 7116 4133 -200
















LIST OF REFERENCES

American Society for Testing and Materials. 1996. Standard Guide for Selection of Time-
Temperature Indicators. ASTM, Pennsylvania, U.S.A. F1416-96: 1-4.

Baker, D.A., and C.A. Genigeorgis. 1990. Predicting the safe storage of fresh fish under
modified atmospheres with respect to Clostrdium botuhnum toxigenisis by
modeling length of the lag phase of growth. J. Food Prot. 53(2):131-140.

Byrne, C.H. 1976. Temperature indicators the state of the art. Food Technol. 30:66-68.

Cann, D.C., Wilson, B.B., Hobbs, G., and Shewan, J.M. 1965. The growth and toxin
production of Clostridium botuhnum type E in certain vacuum packaged fish. J.
Appl. Bacteriol. 28 (3): 431-436.

Chen, J.H., and R.R. Zall. 1987. Packaged milk, cream and cottage cheese can be
monitored for freshness using polymer indicator labels. Dairy Food Sanit. 7:402-
404.

Crank, J. 1975. "Mathematics of Diffusion." 2nd ed. Oxford Univ. Press, London.

Daniels, J. A., R. Krishnamurthi, and S. S. H. Rizvi. 1985. A review of carbon dioxide
on microbial growth and food quality. J. Food Prot. 48(6):532-537.

Eklund, M.W. 1982. Significance of Clostrdium botuhnum in fishery products
preserved short of sterilization. Food Technol. December 1982: 107-112,115.

Food and Drug Administration. 2002. Fish and fisheries products hazards and controls
guide. 1s ed. U.S. Food and Drug Administration, Department of Health and
Human Services, Washington, D.C.

Fu, B., and T.P. Labuza. 1992. Considerations for the application of time-temperature
integrators in food distribution. J. Food Distrib. Res. 23(1):9-17.

Fu, B., P.S. Taoukis, and T.P. Labuza. 1991. Predictive microbiology for monitoring
spoilage of dairy products with time-temperature indicators. J. Food Sci.
56(5):1209-1215.

Giannakourou, M.S. and P.S. Taoukis. 2002. Systematic application of time-temperature
integrators as tools for control of frozen vegetable quality. J. Food Sci.
67(6):2221-2228.









Grisius, R., J.H. Wells, E.L. Barrett, and R.P. Singh. 1987. Correlation of full-history
time-temperature indicator response with microbial spoilage in pasteurized milk. J.
Food Process. Pres. 11(1987):309-324.

Kramer, A., and J.W. Farquahar. 1976. Testing of time-temperature indicating and
defrost devices. Food Technol. 30(2): 50-53,56.

Labuza, T.P., B. Fu and P.S. Taoukis. 1992. Prediction for shelf life and safety of
minimally processed CAP/MAP chilled foods: a review. J. Food Prot. 55(9):741-
750.

Otwell, S. 1997. Time, temperature, travel -a quality balancing act. Seafood
International. 57-61.

Post, L.S., Lee, D.A., Solberg, M., Furgang, D., Specchio, J. and Graham, C. 1985.
Development of botulinal toxin and sensory deterioration during storage of vacuum
and modified atmosphere packaged fish fillets. J. Food Sci. 50: 990-996.

Reddy, N. R., D.J. Armstrong, E.J. Rhodehamel, and D.A. Kautter. 1992. Shelf-life
extension and safety concerns about fresh fishery products packaged under
modified atmospheres: a review. J. Food Saf. 12: 87-118.

Reddy, N.R., Paradis, A., Roman, M.G., Solomon, H.M. and Rhodehamel, E.J. 1996.
Toxin development by Clostridium botuhnum in modified atmosphere-packaged
fresh Tilapia fillets during storage. J. Food Sci. 61(3): 632-635.

Reddy, N. R., Roman, M.G., Villanueva, M., Solomon, H.M., Kautter, D.A. and
Rhodehamel, E.J. 1997. Shelf life and Clostridium botuhnum toxin development
during storage of modified atmosphere-packaged fresh Catfish fillets. J. Food Sci.
62(4): 878-883.

Riva, M., Piergiovanni, L. and Schiraldi, A. 2001. Performances of time-temperature
indicators in the study of temperature exposure of packaged fresh foods. Packag.
Technol. Sci. 14: 1-9.

Rodriguez, N., and N.E. Zaritzky. 1983. Development of time-temperature indicator for
frozen beef. J. Food Sci. 48:1526-1531.

Shellhammer, T.H., and R.P. Singh. 1991. Monitoring chemical and microbial changes of
cottage cheese using a full-history time-temperature indicator. J. Food Sci.
56(2):402-405,410

Shimoni, E., E.M. Anderson, and T.P. Labuza. 2001. Reliability of time-temperature
indicators under temperature abuse. J. Food Sci. 66(9): 1337-1340.

Skinner, G.E. and Larkin, J.W. 1998. Conservative prediction of time to Clostridlum
botulinum toxin formation for use with time-temperature indicators to ensure the
safety of foods. J. Food Prot. 61(9): 1154-1160.









Taoukis, P.S., K. Koutsoumanis, and G.J.E. Nychas. 1999. Use of time-temperature
integrators and predictive modeling for shelf life control of chilled fish under
dynamic storage conditions. Int. J. Food Microbiol. 53:21-31.

Taoukis, P.S. and Labuza T.P. 1989a. Applicability of time-temperature indicators as
shelf life monitors of food products. J. Food Sci. 54 (4): 783-788.

Taoukis, P.S. and Labuza, T.P. 1989b. Reliability of time-temperature indicators as food
quality monitors under nonisothermal conditions. J. Food Sci. 54(4): 789-792.

Wells J.H. and Singh, R.P. 1988a. A kinetic approach to food quality prediction using
full-history time-temperature indicators. J. Food Sci. 53(6): 1866-1870.

Wells, J. H. and Singh, R. P. 1988b. Response characteristics of full-history time-
temperature indicators suitable for perishable food handling. J. Food Process. Pres.
12: 207-218.

Wells, J.H. and Singh, R.P. 1988c. Application of time-temperature indicators in
monitoring changes in quality attributes of perishable and semi perishable foods. J.
Food Sci. 53(1): 148-152.

Wells, J.H. and Singh, R.P. 1985. Use of time-temperature indicators to monitor quality
of frozen hamburger. Food Technol. 39(12): 42-50.

Welt, B.A., D.S. Sage, and K.L. Berger. 2003. Performance specification of time-
temperature integrators designed to protect against botulism in refrigerated fresh
foods. J. Food Sci. 68(1): 2-9.
















BIOGRAPHICAL SKETCH

Teresa Flores Mendoza spent most of her childhood in West Palm Beach, Florida.

She entered the University of Florida in the summer of 1996 and received her Bachelor of

Science degree in agricultural operations management in August 2000.

From August 2000 to August 2001, Teresa was enrolled as a graduate student at the

University of Florida College of Liberal Arts and Science, studying Speech and

Language Pathology. In August 2001, she changed graduate departments to become a

part of the fledgling Packaging Science program at University of Florida's Department of

Agricultural and Biological Engineering. As a graduate student for the Packaging

Science program, she was employed as a graduate research assistant on a grant provided

by Florida Sea Grant and the National Fisheries Institute. Teresa graduated in December

2003 with a Master of Science Degree.

Teresa is a member of the Institute of Food Technologists, Institute of Packaging

Professionals, and the American Society of Agricultural Engineers. Teresa plans to

pursue a career in packaging development and design in the southeastern United States.