<%BANNER%>

Determination of patient-specific functional axes through two-level optimizations

University of Florida Institutional Repository
xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID E20110109_AAAAXQ INGEST_TIME 2011-01-09T18:43:04Z PACKAGE UFE0000889_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES
FILE SIZE 1053954 DFID F20110109_AACAFB ORIGIN DEPOSITOR PATH UFE0000889_Page_39.tif GLOBAL false PRESERVATION BIT MESSAGE_DIGEST ALGORITHM MD5
994b750d89392d8b24e7cc36bddbbc34
SHA-1
5f473332c3d3d8c4cacd421da9fc4b78827fb198
932461 F20110109_AACAEN UFE0000889_Page_41.jp2
14a149330c11ddf12b2b879f789b4556
f918eb732afbe94ab96a681a994f4a313e9ffcaa
25271604 F20110109_AACADY UFE0000889_Page_32.tif
b31ef82c7eb26128358834fab5e86e12
8b7a66bc36bf4ed44ceeaad447e7e23ee35237bd
2029 F20110109_AACAFC UFE0000889_Page_19.txt
feecbdc0bb769aafcb1bdfe0d5b44bf4
7bbaa5b36eb5a97fa781312bbd3f1ea52f5a385b
51209 F20110109_AACAEO UFE0000889_Page_59.QC.jpg
8ca0510204d94a6f433f9a5f0180bd1d
95e07898ce066f2ead9a0cca49e23ca7920bcd1d
88607 F20110109_AACADZ UFE0000889_Page_04.jp2
4c5237bc84574a7296daa131cd1b6888
6cc26138494964cb820b66c9ec1130f2440af8e7
18980 F20110109_AACAFD UFE0000889_Page_18thm.jpg
a8d85eb9ffd8af640c921977ae7b8e07
fbca71a22fa6d6f7933312114029d9e7822a46fc
20987 F20110109_AACAEP UFE0000889_Page_96thm.jpg
30aeea53bf0557d26b02b84b43b81931
e804249b3fda30419d6d256ed6590299c2b0749f
520 F20110109_AACAFE UFE0000889_Page_12.txt
ae3048f4b9b28c2afcd58827441042e5
c77d2dbc60dccd0e2343e1de842d455305cfc0fd
1811 F20110109_AACAEQ UFE0000889_Page_63.txt
574d604f5d43be39caef4dc2957bfed8
822c81be222f475bab91b89c2abb2b218d377234
63040 F20110109_AACAER UFE0000889_Page_08.pro
e3666157993c2b1f0242504dd5d5dd4e
5d184fc2cf5dc03f45b9de3d8bed53cad7776d78
223364 F20110109_AACAFF UFE0000889_Page_96.jpg
eef951eb450d7951ff8372bb0f3c9b69
2e3b7c78c1d4f1e786dc8d2a8abeb7d62416c385
1007493 F20110109_AACAES UFE0000889_Page_21.jp2
ff2df6874960dc7dd3c21f352c5bf5d7
0c84f546cf23863163d5c5d82047f58a3b61ab15
266364 F20110109_AACAFG UFE0000889_Page_08.jpg
40a754a453d3517380d3ccda548b3fd8
006d3c422109b9f4c70c51e9728a4832dd9a3589
99235 F20110109_AACAET UFE0000889_Page_97.jp2
c48d9851ced22a96734ba7dad85f8df0
2a0cd59acda7dcf42ac20adee780ad3cd196f184
12183 F20110109_AACAFH UFE0000889_Page_69.pro
d0553c6a63eac6a67960f164f40313d7
c93b7b4b4a829d0c151240673f35d34b06e7b720
82478 F20110109_AACAEU UFE0000889_Page_83.jpg
83724fdf05cfbf9f738b794e00fcb3cd
8bcce8f7d29c1d71fbec45387b1750206abe3cb3
23912 F20110109_AACAFI UFE0000889_Page_72.QC.jpg
83ffa345c0135b8934fc24fe74029aeb
4d593732b000db7c3d19d0b42c28e47bc7828921
40912 F20110109_AACAFJ UFE0000889_Page_86.jp2
80bfb713528e5538a50136863667291a
dffe7f0c4c448b7e88295057667318174c87db37
38411 F20110109_AACAEV UFE0000889_Page_31.pro
afa9972456d6e831067ef7296fe76347
c99fd5a0112963c5d85ea99a1a6814e97c2220d8
46314 F20110109_AACAFK UFE0000889_Page_26.pro
622fcf7051246cf3ace471de84ece62a
d54bbb3cd26849f8ecc1ea6ea26cb50428f98d39
2009 F20110109_AACAEW UFE0000889_Page_23.txt
728d35e7f15e18ab0d3d38db670061b9
ca6341d1881c4a324ff6a2aa190eef1b77fe453a
42190 F20110109_AACAFL UFE0000889_Page_30thm.jpg
b94436bd00055b594f11c8eb1af6a449
3c5bdc63a2fb58d0b91225cf7317eba1ea8de288
F20110109_AACAEX UFE0000889_Page_65.tif
ca6d4bd9a6e7219486945310967637c8
6326a8defb5310694a37981956053515f3e64cde
67990 F20110109_AACAGA UFE0000889_Page_79.jpg
e512e07807cb82e0a212ef8d593db1d2
26aec4a4bc1fdb13bb508d71e4d839fe1d9854cc
543 F20110109_AACAFM UFE0000889_Page_49.txt
383e7de623bf87057c07baf882c80b7d
03f1c21ddc80c071c702e42a1ee00a8ebd2d2617
49531 F20110109_AACAEY UFE0000889_Page_24thm.jpg
3690d7c4ca7afdb00172b9144e172d1c
ad815aea5af55b26ceb17dd6d0d3ebc03583f3f8
F20110109_AACAGB UFE0000889_Page_57.tif
8f53a375dc33866ceb8c5c079680fa96
d1cb6b1d50e662a2efa468c57b51c348c284854b
76782 F20110109_AACAFN UFE0000889_Page_68.jpg
ec2b4fa6e71ef08e362b2fb7923ab578
a4ce0edb07511ae32c9e48ff31bc4d0c877f8778
1015384 F20110109_AACAEZ UFE0000889_Page_15.jp2
cd3cedbbd255507daf036894c9d2fe69
8365d91dfc6a51e29f3027c3685ab3f855722de7
F20110109_AACAGC UFE0000889_Page_17.tif
9bd411a849ca88dfcb203404063a6291
4486f2a86595f3b40112abd58ad35924ad38e8ec
F20110109_AACAFO UFE0000889_Page_81.tif
d23db558353add9f1035a378a9480113
f8bafa778407dd9693d7f9ea474ebf366a04c061
1051908 F20110109_AACAGD UFE0000889_Page_27.jp2
dcc66c342a5d75c3fb1c636eba912f24
cca324ea868249e5623a49c0857bed32183720e9
51473 F20110109_AACAFP UFE0000889_Page_20.QC.jpg
f50ec5b81b14277a00d347f01b01668e
bf9f7544b6ee89f649428d99774206f5896aea53
68522 F20110109_AACAGE UFE0000889_Page_73.jpg
63d74ea38f7cd9a9cfcc43744b6b7538
6e11641987da9bfa656e81c69babb3b0e99160b8
808 F20110109_AACAFQ UFE0000889_Page_41.txt
4e8429590f94434d0f6174114232f01b
5490904de64f475b6b90d6740cd67082ed3a7f54
138072 F20110109_AACAGF UFE0000889_Page_95.jp2
f099b8b37c207ae9ad0d91e1ff84d13b
bbbcc652402baf7763c64b009a8812484d353ea1
F20110109_AACAFR UFE0000889_Page_28.tif
b96cd5157cff23e8515dda453a37cf41
b7a89fb5f37819460e8d300e08953768e4b0772b
22163 F20110109_AACAGG UFE0000889_Page_40.pro
3e797e8af49a6ff81ec76e33fb6cd3c4
1e0873d5b8a9b14959056c7f0a3a485f0a2e59b9
137641 F20110109_AACAFS UFE0000889_Page_31.jpg
cb02c1391f388850b10aad85c006844f
d867b0ee7db5a3801cfed0ab061d053c11af1d88
43004 F20110109_AACAGH UFE0000889_Page_42thm.jpg
4ee712bafe020186910e2621b82f7d40
0714fe51fb7d49c75f0949f27dea3512fbf706ce
947304 F20110109_AACAFT UFE0000889_Page_43.jp2
5914e931028dc63d27556f5d434c8260
5b7320f29ee21de789e5739c79f70541e5d14ef1
28228 F20110109_AACAGI UFE0000889_Page_71.QC.jpg
eb5bdda49735128b967b621804b71e8b
fbc5468210479f551fbeab275dcfff561adb3fac
901 F20110109_AACAFU UFE0000889_Page_42.txt
110b324ca8a4cdda7880d7b85914dd39
752ae4cb7c2cbd59b0b56feb3ae4c7573f3c1928
64410 F20110109_AACAGJ UFE0000889_Page_32.QC.jpg
d82746f0bb7d3eea44109a4a56a15ce3
acf02ba0acba29c98b86c84087faff7f4fe01b0b
814 F20110109_AACAFV UFE0000889_Page_77.txt
cfe539c27d24736bcbd4f86819ef5ea6
b02568ab2d4f48d4cdb487f36a6c0ecdd9a72f8e
5913 F20110109_AACAGK UFE0000889_Page_02.QC.jpg
9e26faa575af674f49086238f4e6bae2
b9c90a8ab0703370c5dda038172f093d0234bff0
138171 F20110109_AACAGL UFE0000889_Page_34.jpg
c51b9b5be9b35f00a3616e7e05d9a812
b0a0af25f5e140913d1939c6470196a50b7f68f2
24380 F20110109_AACAFW UFE0000889_Page_47.QC.jpg
81864bd986ffcc808e69613935a9b780
2d1da1b92b30ea3793cea5e8bd60153dd68f75b6
661 F20110109_AACAHA UFE0000889_Page_70.txt
4ecae971ce0dee1fcce09b37f95d664e
471f585bd17266fdd02f752df823950e936c1593
212717 F20110109_AACAGM UFE0000889_Page_21.jpg
9aa0efcd1e91a6f1f81d7747e235caea
00b4ae9d0d1588ed416c672b18a27f0b31ee0206
34466 F20110109_AACAFX UFE0000889_Page_81.jp2
c52ee0878ca6a6cc90024ed99dabc82a
8f6a62240023d59a34ab882832f6c80590f634a6
732774 F20110109_AACAHB UFE0000889_Page_35.jp2
99bd23798fbe7c30c4c16122bd979cb9
47d6e4f9083a337729adca626d66fedcde8c386f
2171147 F20110109_AACAGN UFE0000889.pdf
3bcd768fe262c96aae2acdf293eb8422
37020d433fadccd1def7327ba76ced2713fa34fe
91391 F20110109_AACAFY UFE0000889_Page_60.jp2
db2d09710c407af485f9edb5b02489e4
c9c2780a497d4bb068ba4fe8c31b07fd829e33c6
31974 F20110109_AACAHC UFE0000889_Page_70.jp2
19d217f3f2a9b093f343f2797525685a
49dbf9c3a354d0e401e2095cf5c2c33d3cae34db
799 F20110109_AACAGO UFE0000889_Page_75.txt
e9d3c53875fb3c5c6b72375ff218e791
ab5b710832a3f318cc0e7915bf9031db3788e257
10961 F20110109_AACAFZ UFE0000889_Page_92thm.jpg
4b5d83a693b3be5b60656716416b4a94
e50b50ff7818ca567b06b3f99e1ba958ec5644ed
718111 F20110109_AACAHD UFE0000889_Page_07.jp2
473816ba3a45a70a3f033d454e7fb58f
732ac8b7fc4a7e90b38a7c83104be0e2fa9a704b
1051968 F20110109_AACAGP UFE0000889_Page_19.jp2
ced4ab724c864b43fde1e2068bf13cad
a096e76fbe78daef7a127120adf55bcb90d28a37
659 F20110109_AACAHE UFE0000889_Page_67.txt
020617f3e143c62e2fc15e76d3c360b3
bf3d0cdcdca7997a43dbb1fbd2047dbcba629927
1051980 F20110109_AACAGQ UFE0000889_Page_08.jp2
fbb0bdbd0b3c31b230ef76fa025bd512
289461e88c0c322940c79052f4d0bc9a3a977b8c
F20110109_AACAHF UFE0000889_Page_12.tif
83837f5d1f660dc2937ce1d65108a515
c2fc36a8c459c57ae547158e94c6cb757bd0fe8f
F20110109_AACAGR UFE0000889_Page_35.tif
6169686b550397fb4b908bf8327cda77
5986cdc7b0bb8b21e5823110ded6dd4ba63afb45
241126 F20110109_AACAHG UFE0000889_Page_05.jpg
385b5a5379686fca324ee1867b5b310e
3dc594a98d563d3cc1c0d13b110f5c8893274b05
25073 F20110109_AACAGS UFE0000889_Page_85.QC.jpg
34eae653b48a47418f96fcae1f277bbb
3a51e2e01e0b0f640db44d4562b2599bf66e4ddb
68772 F20110109_AACAHH UFE0000889_Page_29.QC.jpg
c9ce69673ee76d144ab09ca4797a659f
4cd8cd896ea506f39d3fb88e17143a617c0f2e49
173304 F20110109_AACAGT UFE0000889_Page_14.jpg
d1d07312eb8bda444e7ef25fd2bdb261
9426ca60ddf71abc6276d6cda560b2e2960e412b
F20110109_AACAHI UFE0000889_Page_54.tif
83b8558a3ee8cedada9536462bcb1237
a3e246a7d8d6085e5ba860ad1528de49a67516e3
597 F20110109_AACAGU UFE0000889_Page_47.txt
f32e97e5ac76c61c464efcac9422bdf3
ed671e8e81bd03b6adf4161cbec64e3a469ac939
F20110109_AACAHJ UFE0000889_Page_94.tif
616c085fafdb7b4dc32a526cb7d202c8
11e3e13df064cab5a1ce7c6dfc544c760d7cd373
F20110109_AACAGV UFE0000889_Page_69.tif
2fd10966d6ca71f0e52ffe366a2166b8
b5fc7a76a985bbb1c520ee1e496f2a5d00301934
90063 F20110109_AACAHK UFE0000889_Page_14.jp2
68385459ce18a114dbda9b350b1d23f6
d955a5ecbf7a7e3a8b7ac602278798925dafc8c4
63802 F20110109_AACAGW UFE0000889_Page_49.jpg
91f37473921eacfe91fc9567ea134fe1
a07c9191b93357bd5c316cf0f2601af442c93141
571405 F20110109_AACAHL UFE0000889_Page_32.jp2
c619ccf286661937f8270416d3fa6e91
70ac1af88f40b85aabcb3a5c63dfdc1d527e1f6a
32520 F20110109_AACAHM UFE0000889_Page_12thm.jpg
c4f03095bcefbbaf55e6f967b3425fdd
f585155e3676af834552e89f90c612b9b9b67d68
81346 F20110109_AACAGX UFE0000889_Page_77.jpg
2f92678282cb1a612354ceabfb186ba6
5b293481be352261433b56842844a17e00a6066b
60223 F20110109_AACAIA UFE0000889_Page_64.QC.jpg
1e78efddd261f97f5e9116b16a0d69cf
09ee151280a090067eab360ceaeab577c901037e
31825 F20110109_AACAHN UFE0000889_Page_37.jp2
e4bfefe38799bd5ad3918a0259c9bf37
6dc50ef34f03b7038cda185afdb369d383a7b163
50610 F20110109_AACAGY UFE0000889_Page_17thm.jpg
ffc270c60f5cb5de62e24ca9a2212c8b
462b7e456edb571b0bc68fdb9f79dc41a966c79f
1051972 F20110109_AACAIB UFE0000889_Page_44.jp2
dd29875cc8986a1c614fa73d4d43711c
0ac8958822cfab2ac5ef41c00b24e138a46aa5c3
1051903 F20110109_AACAHO UFE0000889_Page_22.jp2
9405653606c01b7875f5b26f4d01f5f0
2823c525a0a4ef930d3fb043bfb7cc3f58919957
77430 F20110109_AACAGZ UFE0000889_Page_09.pro
7bd20e6ecd8546a82dce8546f85a16b7
a53b2089036149feae1f0a33fa9290e24705e632
68039 F20110109_AACAIC UFE0000889_Page_37.jpg
f259c55fa90df1b7a4e1f80a89e1fe00
a4aeaa4cd64a7c1ac59413b46146c9292ae1e40d
333161 F20110109_AACAHP UFE0000889_Page_11.jpg
7ca72b21630e2d11589aa3d1aa9f3f71
bcdccdf59d553efd1185cb6cd8d435f606bf17c9
794 F20110109_AACAID UFE0000889_Page_46.txt
f9740a02da72ab79b7fb3eb898640c70
3adaca44af448a4312c7e0ef5ab7ac9da3cd12c1
233528 F20110109_AACAHQ UFE0000889_Page_44.jpg
c73e81dc0e4e3fca7e823d73e96daa78
7553ee236798fb9ba278be2b9920b30687a2e95b
8376 F20110109_AACAIE UFE0000889_Page_76thm.jpg
36d17183ba20ec9e94b60ce5e6429308
db807862eba7dbeffa60ea4a678868039649c8c1
1051984 F20110109_AACAHR UFE0000889_Page_11.jp2
9634bc7a62d9538c4bd9c12f94c1fde7
a964423c2fc9c804188ed2cf3ee28d83cf20b215
104267 F20110109_AACAIF UFE0000889_Page_19.QC.jpg
c977407a79d9702ad1129413fdb3fd13
ff13bed10f069066c26c46c5c2a61b6a92545b18
141625 F20110109_AACAHS UFE0000889_Page_30.jpg
ff5ed860a8562374849c0c13e6e8e716
3624019e8a7e3918b7f7682374be7b319f971e95
F20110109_AACAIG UFE0000889_Page_45.tif
6de76a7459c7f31e86d9de4918523fec
8b1ff792372199280e24c1dc8a238f0e92ee798a
574 F20110109_AACAHT UFE0000889_Page_56.txt
aec2d365917389f419e92e2774407777
a08b94eec907106bb392876e55799330e42ccf30
74244 F20110109_AACAIH UFE0000889_Page_42.QC.jpg
0748a1f5290dd021f967b14e169d50fe
3c3a8180d693721f4445cfd3b2b02160c0837f37
F20110109_AACAHU UFE0000889_Page_33.tif
cb77b978eeb94a725fdf9b8025356a0b
dc50665d6387975547a9e873dbac7bcd65865813
37249 F20110109_AACAII UFE0000889_Page_87.jp2
9508c0d347a26b83af530b958d18778d
164430d32c779f6dda6e8bb61f76d953f8f4ef93
3068 F20110109_AACAHV UFE0000889_Page_09.txt
0ccedfa11f80f128f5ceffa9a5d19fea
9c2beaa6040e28d7a434962361d7fe3ef8190098
69145 F20110109_AACAIJ UFE0000889_Page_82.jpg
00f22fc27cac8cce22deb69346026cc8
f5d0a57b9439a8ae6f557ef247c92d0e937e7772
8535 F20110109_AACAHW UFE0000889_Page_45thm.jpg
234365cd93fc0de7b4a756689a2bb552
aba025a6f2258eff499d84865c8a0d8ca5f68af4
1442 F20110109_AACAIK UFE0000889_Page_10.txt
378df4d7ce0edd4b6b585fae225026b2
b2594c56870e8ebca615cff2b72b8b74adcfc041
1020 F20110109_AACAHX UFE0000889_Page_39.txt
62518857c50ad5a3eff8a90c710e8a89
0b1528d7e55a8238e0ea04e039b205b3579e256a
231671 F20110109_AACAIL UFE0000889_Page_54.jpg
b5d4e41272fd5034ce985601fe7edc1d
078d19ea2541bf97136355dbc42b3ee5094504e1
15987 F20110109_AACAJA UFE0000889_Page_83.pro
9791b5efdf33196f72bf6416e4bdf986
a35ebb81edf3d6e4647ff5a66758b3c8712e893c
171683 F20110109_AACAIM UFE0000889_Page_41.jpg
27b2f0ffe4a071b3dd769df70143cb4f
44b267b868b886c6c279d610dbff0342d1c46f1e
46606 F20110109_AACAHY UFE0000889_Page_54.pro
2c558dd5194406341b92a0e2fe7694d3
c01013c6ce569f359d7c36d1fb8153269260079b
87457 F20110109_AACAJB UFE0000889_Page_43.QC.jpg
eb5ec1ec80d77f22783612e827138bf7
b3dc7599e998652e0cb161feeb6ffcdb58398878
56242 F20110109_AACAIN UFE0000889_Page_09thm.jpg
7cda39dcd1a930229ca90fd8b3ce6c44
2a485e8e8a8947311f0ce1860bfb53ed9b810263
1029 F20110109_AACAHZ UFE0000889_Page_34.txt
547a8f295db31b1cae992e204b91139b
97add4323c6a19d745439b28d94895948779370c
1978 F20110109_AACAJC UFE0000889_Page_16.txt
114a5bd36208059d4dc3c28aeccf7c8f
e78f8a270fff359e905d71b0bf321f4038ce70a6
F20110109_AACAIO UFE0000889_Page_05.jp2
16ca55f7bbace71f7e5e3e5892d43b81
305a85feaf7385fe60b324b01ff8230e271e1139
F20110109_AACAJD UFE0000889_Page_01.tif
203e11711208ff2edfab96d047370749
a57c41f4b5f636a23aa0e8e8526f22aff707e317
27850 F20110109_AACAIP UFE0000889_Page_87.QC.jpg
9c5b94e805f664cf517b80a22d1e934f
2df9681b20eff8586283834abf1b5f86def287e6
10078 F20110109_AACAJE UFE0000889_Page_68thm.jpg
1aa62cbc6e3a6efb1c8fffa6f34ea6a6
a584652c672fbdf8c242b57845ee0dc24c18fa93
612172 F20110109_AACAIQ UFE0000889_Page_36.jp2
9fab95b087196feb98e35cedaa4ea19b
5e23752d5c77bfefdb6611e8a803d63ae453d123
10360 F20110109_AACAJF UFE0000889_Page_39thm.jpg
e187bc244618323703291bf0b2e528e7
18b6be09c95e7cd41669aca6c18cb6ec1b6fb2ae
66319 F20110109_AACAIR UFE0000889_Page_62.QC.jpg
13d851dc1afe0996a9ad35a262fc623a
9dc23dbc30fac5fd00ad0dbd50093f77f41e2d73
F20110109_AACAJG UFE0000889_Page_05.tif
964a3dae706595c7df15790a4b0ba648
b61df10881c063fbe7dbcd7213d7948711874737
1918 F20110109_AACAIS UFE0000889_Page_27.txt
907bd0c6b595d103b74631b37db06b9a
a9da60158418cc565f8f2b90a434a173ced74a1a
15493 F20110109_AACAJH UFE0000889_Page_74.pro
c031ffc11e3e703141bf2ec81b4e7776
89249d2298044f127454d960d12400f456062912
38077 F20110109_AACAIT UFE0000889_Page_90.jp2
dbc740560add5fedf52346d03b4eb941
2b186d2c18ffe2fa03e2c378665c4fab7ab0d800
104711 F20110109_AACAJI UFE0000889_Page_94.QC.jpg
86d4d974ac93ebcaab90658b3719ec1d
aecd9e22135758b61742141fa9d4eb83a576e6a7
9076 F20110109_AACAIU UFE0000889_Page_88thm.jpg
d810dd775ee5edac0c84ca01e6662a54
2f00318912017f967f3d7db826ad31bf8ce31f56
35540 F20110109_AACAJJ UFE0000889_Page_10.pro
8cae1caa3910e6a8da042d4b2c47702b
85130f27d911ccad3e663e35ddaaa46fadbcee78
121624 F20110109_AACAIV UFE0000889_Page_11.QC.jpg
333a67b4fedc300c0712784ee4afa72d
427aa26078081716fcfb151118f6e1167a8dfb70
1182 F20110109_AACAJK UFE0000889_Page_36.txt
fd29aee61c19d20f2ed4839d612e4891
9e2dae49d3c106f6aa85e038676d6575ad5b0846
49743 F20110109_AACAIW UFE0000889_Page_16.pro
ca5e976974aa21d2f3d6ed7c10f14f15
82d85be93082c527048e03557e40c240f479b713
100318 F20110109_AACAJL UFE0000889_Page_54.QC.jpg
a3b8b9fbaa8cfe409d4e6ba5b74fce01
dd0274ad1bd187d527ac51c4034bd3545f001dbd
76127 F20110109_AACAIX UFE0000889_Page_59.jp2
aa49452fcf167a331633302ada3b4f4b
bf3188a0088429b7c0203b61954eba8afa8320f3
F20110109_AACAKA UFE0000889_Page_50.tif
e994542f55c54c7e4bd1788c4fdae10b
405a072ae10e47d17f226fdb3ccb4092ff76e2b4
194019 F20110109_AACAJM UFE0000889_Page_33.jpg
78810fb7ef98ebb751079c3fd0003c51
e2cd0ec5dd704e0ed7992a69e6d0ccc305fcbad3
200668 F20110109_AACAIY UFE0000889_Page_43.jpg
c49a971d3df9747c41a26c4740787c0a
fbc7113d8e6c383f648f0c628745b5f04b81e946
46231 F20110109_AACAKB UFE0000889_Page_39.jp2
3ca105d2a71ac5749f7847030ca46a44
6dda89e2fbaddf52fac0552d19042df2848d223c
1062 F20110109_AACAJN UFE0000889_Page_40.txt
3e0e6f738d615e469cae14db3113fd16
8c98ea044923b0db5a965d7b5de3599e76afab75
40762 F20110109_AACAJO UFE0000889_Page_80.jp2
a95aa21cce9c9fa0045de02baa27eac5
75ff7b1ecf9165a85ea6da53d8633362ea679f3e
32716 F20110109_AACAIZ UFE0000889_Page_67.jp2
f67128ec80e7e75c34741da9e58cc7a3
344d07e854f8925648b900e5ddd0b75a687e2fc4
F20110109_AACAKC UFE0000889_Page_91.tif
29f09696c297fa4bc8aff016e2ecce3a
96ad3ec32cb25aea08472ccdecad78838f84eb53
F20110109_AACAJP UFE0000889_Page_19.tif
a19b5a6716e7bfc4c307c1863aa4a726
c339ffb4197e374b7e28be2696026b9bcbd0a2b3
75292 F20110109_AACAKD UFE0000889_Page_40.QC.jpg
835e1390d580a35941b6621766aafab6
e3ec9e5c59094214cfed55fd023f56c72564225f
18787 F20110109_AACAJQ UFE0000889_Page_01.QC.jpg
a18026e8b1dca00282f650009f4c143f
a4ed15e6a1c2213330d734643070ed4c2a670def
51276 F20110109_AACAKE UFE0000889_Page_23thm.jpg
000eb520e177ee4da65e49b34dacc873
ce34c657f09cb303d8336b3a909ea935f20b2d0d
F20110109_AACAJR UFE0000889_Page_73.tif
100938c18e3e4e1102ce13a2b7f4906a
231e3990c1467ad5794b8cf2dbb36751f836911b
78574 F20110109_AACAKF UFE0000889_Page_05.pro
1ef416189b3ccb6640a24dbba668abd4
6084628f46493cc6b72b8063509c4bfc58f17d0a
F20110109_AACAJS UFE0000889_Page_06.tif
e20eef189a8614f35a6231cf7b319d4f
bb3c9ee95e7bbff6e4406450b08c1a10518f39b8
F20110109_AACAKG UFE0000889_Page_10.tif
9022a80c71e8c1ecec06f1923289a14e
c32dee436231e737c741f0ca804a4d9952a97d67
45531 F20110109_AACAJT UFE0000889_Page_97.pro
3f613ca67c227fc07a35c8151e8df005
a27f66fbf26bf1dc43bbeacaa5df5eb15f93898a
F20110109_AACAKH UFE0000889_Page_41.tif
b97ba6525cc7e9f3106ef85c58c468a9
40fbb8657acc40bf88795751179e01c29f9932cc
20126 F20110109_AACAJU UFE0000889_Page_62thm.jpg
4846207ae6fb63521ef8b4801127ade6
4a11e12a5cb12b47c72292b37eb64ec4e269d5da
38159 F20110109_AACAKI UFE0000889_Page_71.jp2
1cdf073d63dfb9459564b845b887f13e
f6e2c5d0e25a8231c71173eb9964b8faf6280b9f
F20110109_AACAJV UFE0000889_Page_66.tif
66419129329af287d455fc9d604f3e09
1729fdb4fe2da8b8748a0a6467d1140e40b8158a
68431 F20110109_AACAKJ UFE0000889_Page_38.QC.jpg
993d85a6ae1fda12c49cb202a432f376
7c4a757f21cbb1a3238c05f4ad276b93989e1480
15909 F20110109_AACAJW UFE0000889_Page_86.pro
d880cf7a896b8ffc06dd887131cb5dda
ecc9c65062c05c491b93f27ac5f5cc9c05e669fc
F20110109_AACAKK UFE0000889_Page_59.tif
af8dd79b21c21ab080d25bb779448818
898eb032692133bb5719319ef03aa20871b8922c
196833 F20110109_AACAJX UFE0000889_Page_61.jpg
db3299de4489f303d349622eb66456cd
7551ba4e64880067f0436f7ef99d61973be23e0e
45162 F20110109_AACAKL UFE0000889_Page_63.pro
0736b33a261bf4a5f6cdc5f81864ee96
f3598c925e8906229342ce454b17f6d5f9139f87
1051924 F20110109_AACAJY UFE0000889_Page_53.jp2
0af0a31aecf2b930813cdbeac709391e
9fd4e994ff3d6a7caf41a23e7534ff356ad76446
9865 F20110109_AACALA UFE0000889_Page_74thm.jpg
820e6fb80cb5e2bb3186da5d45d7d939
cb229b294b60cde262cd8e18486f97fc96c37f05
50892 F20110109_AACAKM UFE0000889_Page_26thm.jpg
65a4a21db9d0fe03353f087ab0de6149
363cd08e49f56dcd11c64de5ca6e46f68245f9e8
41439 F20110109_AACAJZ UFE0000889_Page_50.pro
61771deb473fa4727ed51cd6cb6711e8
fae336a840a1143242afb8c897d24d1aa5f93572
20290 F20110109_AACALB UFE0000889_Page_56.QC.jpg
0d8676bffe96d480c5c5ad2f2ab01a49
a06ee270a59763fb467ff1a6915eb29a605e6c3f
50904 F20110109_AACAKN UFE0000889_Page_23.pro
d7882020f51f9f7a5fce1269876c38e8
c36d94ac497ac6f75fe15c9ff31667b0a9f0e3be
470356 F20110109_AACALC UFE0000889_Page_12.jp2
4dd2c5ea9c1511e1a1e5f16039ccabeb
d0eb25030828b25b1011fc8a7b19b68ab7e00608
249552 F20110109_AACAKO UFE0000889_Page_16.jpg
d5379896c3d51fafcc124b8a7765ff46
650cba8dc6995be89c3bd53f96e61a5c1d60d36d
F20110109_AACALD UFE0000889_Page_85.tif
847be8609e0da011a7209ca63de7b7ed
e01b9774912421e58b377dae1f2c2f9e1bb61ad4
14998 F20110109_AACAKP UFE0000889_Page_02.jpg
64564428e94368a04f7d252637576029
415ecf2e7a37282c1443ff05909d26749d5a1f9d
12499 F20110109_AACALE UFE0000889_Page_79.pro
49b4797e0ae5370ef32ecfdb16c35540
4d30e1e82dfbe2ea6b9c926cd8c5f53e7eedae54
11989 F20110109_AACAKQ UFE0000889_Page_66.pro
83bed0d07e9a2411193a0371937833df
e6466bc98ea12ee871399f553ced2c983096a3e0
F20110109_AACALF UFE0000889_Page_62.jp2
1f40b98f110a5901b7c4525f113ad615
f65165775f4e49243209a369a287196a103dbfb3
42781 F20110109_AACAKR UFE0000889_Page_60.pro
c5d98d2c7d44b59403b8ddd97a5b6b32
dedd207b9347658b6f435498508bddf0f9709177
1950 F20110109_AACALG UFE0000889_Page_22.txt
2346d8a5a9b0db61c2caeb781c078e86
6261c1e9bdae47d2983d53e55818c47c3a44ea0e
F20110109_AACAKS UFE0000889_Page_88.tif
c1d054154812f58f9553029832e7de8e
cafd5a00e447b1327f35edf26d92954d20d9cfd8
647 F20110109_AACALH UFE0000889_Page_76.txt
2ca1224a777aaf79489cbdc714a5b0ff
49a200615dd331034b1233fb2e6e434e2a2a1814
229082 F20110109_AACAKT UFE0000889_Page_53.jpg
6b6553ba6208a45d4cabf3c9ac8e42d5
7e3c3da2677abdadfafc9485270210c523f9b59d
F20110109_AACALI UFE0000889_Page_90.tif
0cba27e230d9d92310aeae9b95f1225f
45e02157ce899cc4eb62aded2f346c4a730f68b0
80108 F20110109_AACAKU UFE0000889_Page_91.jpg
b05a7eed161a35423e10863e6eefd583
96e728b7f699b1ffafd9da99d4c21fbdf195a646
105094 F20110109_AACALJ UFE0000889_Page_23.QC.jpg
68884d74e6ddb61192e9db6aabc92ab1
d9d1eaaff0c116366f244a8426b0781d01fb4624
1649 F20110109_AACAKV UFE0000889_Page_14.txt
145099c2983278891bf9e04595cb025d
7b1ac9e3575a16d8cdfb3b96a8a5e51322a089aa
16041 F20110109_AACALK UFE0000889_Page_07.pro
10d9c56cb4dbec5fc3a9558ab0492027
f84255ebc3b865a23e3cd8bff6b72183d194f588
41582 F20110109_AACAKW UFE0000889_Page_83.jp2
6e6365d27acb6ee2e089231155a19a5b
abae24df601cb8c9ccdd80aae42958d3265f4060
646 F20110109_AACALL UFE0000889_Page_33.txt
447fdfd68802b02f1c266d1ccd3faf7f
420779b6a108c92f61dc3cd760c62480e45c5cf1
2686 F20110109_AACAKX UFE0000889_Page_95.txt
ee9689aff63d572add78bf7542d7b5a1
055d78564f353a1ff910091e8091ad84b5346628
1910 F20110109_AACAMA UFE0000889_Page_44.txt
372333e1885f6d3f0663419c7b6951e2
76bd900d3d52acecf28590b36b89fcbd8ab8a888
32519 F20110109_AACALM UFE0000889_Page_79.jp2
f19d255e0ee4904919d66e80413e5910
1d4b535de40185c66376e32cb02e0d0cecbe0bb8
46070 F20110109_AACAKY UFE0000889_Page_25.pro
985d90a1455120a677e9a1e2184ad194
958aea085fc2a5fd66c103d61bd6d1efe08f60a2
222441 F20110109_AACAMB UFE0000889_Page_25.jpg
9c2b6984ef6e40d691aba039676e7ecc
c1d1ad41451b0af58756b9b91d2b0dee0a5919c9
F20110109_AACALN UFE0000889_Page_71.tif
1562cf33d972bb231f6cf72511a94b6b
dd1ebcc5e0c824b55a9c96337a889360f256169f
170629 F20110109_AACAKZ UFE0000889_Page_04.jpg
8564a1de8178a2dd0bce13c8d07f45e1
a397f8b537ca1257f1fbf0b22104ae781d5de80a
92187 F20110109_AACAMC UFE0000889_Page_15.QC.jpg
8619d12ed8e6b31a41cd52aed0ac58fe
4bb0820de0c9b6c2b73b73318f93b46e6ba0db91
756730 F20110109_AACALO UFE0000889_Page_38.jp2
12fc2da3d0fcc9f35577815f4f346ef9
12a8e3757af251d5581532f426c3f981a5caf27b
351700 F20110109_AACAMD UFE0000889_Page_20.jp2
305e45ec9db86937bfe4bdcf0aa9fd4e
6f4fff8ef0bbccebbba3b2b39e7ba13742fdbb92
10844 F20110109_AACALP UFE0000889_Page_89thm.jpg
c72741e81baeb0f0b01074fea36c3d8e
8c03d07aa92694a9ab3dca0c56fc72a47a877b09
722593 F20110109_AACAME UFE0000889_Page_40.jp2
1e9e23853ea5b2ae73925f21c5048988
c8342cc91ea4843b43a34002531aa0fdfd3f961d
102487 F20110109_AACALQ UFE0000889_Page_51.QC.jpg
906d7690f812c23e759d189275889dda
08024acaafc8900dccb601fb381c7ea2946bd739
40715 F20110109_AACAMF UFE0000889_Page_77.jp2
63cd641f27040bb7bb149e6f736188a3
f15e059787e361d25178b1b4fe05204743a7f3c8
47603 F20110109_AACALR UFE0000889_Page_50thm.jpg
4eccb6d40d47f111934cf303ab7f79f3
c99cb414886d7dd503a30a3ea024af0fa4591e4c
49851 F20110109_AACAMG UFE0000889_Page_19thm.jpg
b135759a96bdf34251780cd828a43809
57ab220c33cb8aebcba2152c6f5390bf9c418302
F20110109_AACALS UFE0000889_Page_43.tif
74a7c735c13bd1c19d6a3ef66ebe0679
839faf653a221c71d0a837d902e82a08dbacdace
23512 F20110109_AACAMH UFE0000889_Page_01.jp2
c6e4d1c12cab351645344adf4aa94aea
60985de622b37a8d942e236f797205e5380a87cf
2557 F20110109_AACALT UFE0000889_Page_08.txt
d2307b5c8a65dc32d288b559a7d8c842
1f769e759d094a4eb1dca5dd75154bfcb2e0baf5
845 F20110109_AACAMI UFE0000889_Page_80.txt
da67406e595356009e4e82f315c3196a
5806a1204a95d29e8fe45888b14d1b969d1c7f33
9012 F20110109_AACALU UFE0000889_Page_91thm.jpg
5b38363b5afcddc50b9f087216790976
b44617a6626fe356d37b14a8a89a8a0512d332ef
39929 F20110109_AACAMJ UFE0000889_Page_38thm.jpg
b4667125e78e52a23e4dc72022824d0c
07054d79fa7a72b370abf59710ef3d4cb4de0c3f
103335 F20110109_AACALV UFE0000889_Page_22.QC.jpg
507abb6c365f05faf546626572fb6145
2df6212b05c7baeff412be37fc587ec72454c732
22576 F20110109_AACAMK UFE0000889_Page_97thm.jpg
f714eee6e507666139e1dc6c5ee3d782
d27913e76d80dfdf8df93359370e503e1fee2579
68085 F20110109_AACALW UFE0000889_Page_31.jp2
8b9e2fa897ceb8d14a4fde9ff7048c70
66db71a4334f412b3525b756cee610a1756d5e7e
25154 F20110109_AACAML UFE0000889_Page_55.QC.jpg
8bc9cc7825e54932331056de0e4ccdc4
99d407580a8eb79150b23792244c6f9dfe78f25e
117 F20110109_AACALX UFE0000889_Page_02.txt
8c1d81e2c3ca2ac46793a020f930a31d
ed9772b3640d41cfacc8bf2cb83d1ee501159f69
58227 F20110109_AACAMM UFE0000889_Page_63.QC.jpg
9189ecb0c21178b70b15fcdf65e4f438
d89dcfe6e68566cd557706c88cdf2c33082986ac
1051977 F20110109_AACALY UFE0000889_Page_16.jp2
4bf63ced1e1804af8745444602904cf8
7d9d2329ce5bb7f25ec532af2c8f383b60ef5e1b
846 F20110109_AACANA UFE0000889_Page_86.txt
024cca214e6e26473199d23aae83a323
3e634fe059fd646a54f83cdb8e07d7e203a2c429
2357 F20110109_AACAMN UFE0000889_Page_94.txt
9cb2f9976f4570e70e941dcd372ce9ad
2142369aad707dbd9cd4e35b5baae16e2b1f93ce
49824 F20110109_AACALZ UFE0000889_Page_22thm.jpg
32c8523c89e375f5bd27fdab1ab7ea94
6d6cce164e972dd81c340457ef229c92987085a2
688 F20110109_AACANB UFE0000889_Page_85.txt
1b59124fef4a381e1b0c6e2f7568bfef
28be7159fbd135374d1bae74edbbd9211a068d5a
10344 F20110109_AACAMO UFE0000889_Page_86thm.jpg
63bcb97082954f89533b548cef47b29e
7e6240c0ca55149c8d50cb08d567bc57686aa092
1051983 F20110109_AACANC UFE0000889_Page_51.jp2
a5f74a42f8b7f5a65cb9761c7affd13b
0e5560a3cbd6d576e122f8474d326bb9bf335a49
8187 F20110109_AACAMP UFE0000889_Page_01.pro
7419aa95da3ac6e028db8a664ec5b530
ef24a2cf0dfd1d3c0233752b5e182472059b5996
49234 F20110109_AACAND UFE0000889_Page_17.pro
3c1d8d5725e0ea0b3cfc3f6be398956c
f6fae967cb447b99040c051c53bf3d5404900714
F20110109_AACAMQ UFE0000889_Page_04.tif
570864bb142fce713ba3c09876f508b4
b7e83a2a5530484589b8c9971a2cb74725e3c7b1
69186 F20110109_AACANE UFE0000889_Page_75.jpg
c6bb42c010f6097b555ab3d07f7fe8f0
775d0fb1b3cd93f10534255379cb3a5ffe817b24
13294 F20110109_AACAMR UFE0000889_Page_47.pro
a419c7b6433c7fb7af02e34f4924a62c
1b68c64f416861e5120b62d0fe3349194a245e94
1051978 F20110109_AACANF UFE0000889_Page_28.jp2
41168aa9275fa48ec07734ead5f38be2
8a539a390aaf21916550b935d5f3d1726edc2542
F20110109_AACAMS UFE0000889_Page_93.tif
63521a725715d0e8cc91fd0128d9ed96
0991cb98fe063af5998fb0789467ad5c78560c0d
102024 F20110109_AACANG UFE0000889_Page_61.jp2
70fbe2837a3f56be707c20cf53cd3a6f
d71a3069c80fde03c7dc59976cafcc2b9f7a533e
20354 F20110109_AACAMT UFE0000889_Page_14thm.jpg
73b7ff980613987b2a7db32bb02797b9
a9403f312dd7e2b2b7779ceeee0c0e2ce6c50d7c
1051965 F20110109_AACANH UFE0000889_Page_10.jp2
d1f4e5606ff9ef782dd0555f5373bba2
503739891b76269d5906822d10e0253b9f8616e3
81778 F20110109_AACAMU UFE0000889_Page_74.jpg
d3eabded04c8dfd317ac33bebc98f11f
befa3dc1a667e1cadc98438789a3123d8df9a83a
229993 F20110109_AACANI UFE0000889_Page_93.jpg
e670d712a6cfcc88d726d563a181088d
38ed1afa201cce7710da0d2d8f96603a84eb3f52
15224 F20110109_AACAMV UFE0000889_Page_45.pro
4395907c087cdb9c341311d299a073f8
e64e963b8e5a5169802ab7fa1a07984a046d844c
F20110109_AACANJ UFE0000889_Page_24.tif
1c13f7fb38539313b1c64e46c6b938c6
ccf9e229dcf60bcf005654d9f785b707e1faa7a7
8480 F20110109_AACAMW UFE0000889_Page_47thm.jpg
46078cf3b5e9fe64cbd717395da97be1
78680f05925f2a05f225d2f986e959efb980f988
1051981 F20110109_AACANK UFE0000889_Page_06.jp2
71e24e6ec50c4537716764f96de67e76
f620305541584ff1baa5c1919ecf26ebc013b4cf
226248 F20110109_AACAMX UFE0000889_Page_26.jpg
a2393bae9a108766b2674dbaa8203e49
6b0168b2a70435b7293a56b59d2b77877b22adc7
232216 F20110109_AACANL UFE0000889_Page_22.jpg
cf0d3a4ecd22bb43d0eac1d52f3f2243
20777d11874426918dee5e03613b93c5c6181149
771 F20110109_AACAMY UFE0000889_Page_91.txt
c6320bd6033e9b06fd5fd12eb24aff01
57dc696015cc6336d0347e0cdec2a72780a11cf2
13763 F20110109_AACAOA UFE0000889_Page_20.pro
9f8157f178a53bd72cb75974190f862a
baeb6e023a74cd4a835e3672b5bd04abfeec7646
F20110109_AACANM UFE0000889_Page_78.tif
60c2d908cb9ed6d4e2be86c03e7f88cc
933c6c6b9a07fccd9f1f74f08239969792201ab0
F20110109_AACAMZ UFE0000889_Page_21.tif
a1278f5a3c53e369248b43e5205c4d5d
ee5e21525a16811ef3dc03d80442c90cee920e9e
32509 F20110109_AACAOB UFE0000889_Page_75.jp2
f1fcad92b666d8a9e01fd9640cd50d73
5cde8d4b99ffc4a78f06b0312227d1d882880791
9916 F20110109_AACANN UFE0000889_Page_77thm.jpg
da446825405d85872b10f64a987df22f
92d2039045e248f345780a7ed538b7d229016b8b
23950 F20110109_AACAOC UFE0000889_Page_66.QC.jpg
6cd3c2714cbcd011ede160c6322e915f
4f386935fcf6e3c4620d80bfc54484a5bf9912ba
18114 F20110109_AACANO UFE0000889_Page_89.pro
17d257e6850bf58a74213c1811ea8fa5
6b6051efecb157668aa2e927e52d0994ddf50c6a
67273 F20110109_AACAOD UFE0000889_Page_14.QC.jpg
ac546e861b6a9f10e34e9631907d22ac
c79f2d35be3e10d4e7789a2e7f67bcebcfa90745
66089 F20110109_AACANP UFE0000889_Page_47.jpg
7c3533ddd932aeeabdf73e34d271bc39
ef48bdadff3bb95bc3a765371ffdc5f500352796
37066 F20110109_AACAOE UFE0000889_Page_13.pro
ec1487d04b1a8ed25df6fa17d32d7c63
ee649ccfd850c3ed66778ea3da03bbbd6b4912e6
56418 F20110109_AACANQ UFE0000889_Page_18.QC.jpg
7553df3c15743638b7323795a89c6b96
b5c5d7cae29b204e9d200c1693863e3f6b18f9e7
600 F20110109_AACAOF UFE0000889_Page_55.txt
96537fc6a42bdf0131d32ffbda5603c1
55abbb9ebf8c8c866da695d5b8271965557002cc
812 F20110109_AACANR UFE0000889_Page_68.txt
fd974fa0d6ffdda38c5dadffac32e252
44d2aed75104e0dc297bc3e976e8c1f068f91641
45541 F20110109_AACAOG UFE0000889_Page_05thm.jpg
029427cced46f6631bbd7c577f74dec6
01013c8fe463c2a8c4b3af541c147f9f5f98dd36
F20110109_AACANS UFE0000889_Page_77.tif
0bbd095b6789308144ba64d12bfef5d1
8751a4657f91d90faa97f135932d89c084ed3ff1
79381 F20110109_AACAOH UFE0000889_Page_88.jpg
c8f225a7b51327031d95c4404682ce5f
bee22f6f66c4f3a7760ee42f10ea4995dd8784fc
24607 F20110109_AACANT UFE0000889_Page_79.QC.jpg
6fd5de1771fde1fbbc623d5f1927b8ae
ac92898a08057c5de9b62d86ff5f4a278b2f8a53
233363 F20110109_AACAOI UFE0000889_Page_27.jpg
5467a7c890ac91b698bceb034e70ba21
1041d8de361027840c361797454034f9c25bd441
69385 F20110109_AACANU UFE0000889_Page_85.jpg
a8e3b976ee8ae7b9e2a3edcbca710d70
ea8b786105d0c0e635bc819e0fe91db73a9c1000
F20110109_AACAOJ UFE0000889_Page_55.tif
a23e0be0cc5d026eff494a6546cbe62f
662b71f4acccc78049abded5fcb54b3f57a1fbe7
88761 F20110109_AACANV UFE0000889_Page_95.QC.jpg
7010cd96551d6b291cc520efccc3f4e7
918c6f3135b8f39489320800446a5b71c3bba922
39388 F20110109_AACAOK UFE0000889_Page_32thm.jpg
e68cf27535ae9e786757dab5f023f062
91e3142202a105346b211c259c784426c3e99b26
94046 F20110109_AACANW UFE0000889_Page_63.jp2
003690411daa279195294b0e4f9e717e
bd9fe656eca5ac8165156a32fdebaa8485dde81f
207858 F20110109_AACAOL UFE0000889_Page_57.jpg
6e1e7b83ffe77d0faa8233892608cc5a
84e585bd212bd3b8fb9f5a138a5f5a7e24819890
18481 F20110109_AACANX UFE0000889_Page_13thm.jpg
5ec7f18bfdaf5487c455d9e82ac9ecbd
7d6435b2b64de24dc1fc4936ab339a6c11bac2ea
141770 F20110109_AACAOM UFE0000889_Page_59.jpg
edbd24ad3468b7c7fb85838c120c6661
a60eaef519a3b66adae745c1965181efc9120982
238765 F20110109_AACANY UFE0000889_Page_19.jpg
a6e6263193cea8fd1e57319722b1f5f6
e9d994ae58ffc16d20e2e1d7ce23cbf3b0d8c4b4
1966 F20110109_AACAPA UFE0000889_Page_52.txt
dc25ae153427a8b8bfeb8c75ff741e62
98e7ebfcc6b9b9e28af00297cb1fe25bcdab4587
6397 F20110109_AACAON UFE0000889_Page_03.jp2
e6e86fb9592dbf2a5cee92f213dd0c11
407480401f0372f0fc4bec8fb71b7f639326f1f5
193789 F20110109_AACANZ UFE0000889_Page_97.jpg
dabb578004657ab95c5eea1e7b77cc82
a45660b69973b3482b7f7425a9dd01accc16bd74
72850 F20110109_AACAPB UFE0000889_Page_58.jp2
d85993de7d09302db774086455cac506
73919cda43a93e035cee58790e6ac1a29d8c779b
F20110109_AACAOO UFE0000889_Page_80.tif
44b1644560d575d0fa54cae2cae822de
530715992a97e23b236f73eb6af181a1656b14ac
1653 F20110109_AACAPC UFE0000889_Page_13.txt
fe5afc1fbaf75721c608dc2bb7954f0d
988f149c6778b1d6ac0d5694dd64c50a5a636758
52589 F20110109_AACAOP UFE0000889_Page_11thm.jpg
2c2ff6c720ea842879e617bde76f5d58
aef89d72c6f6d1c57bd82005c9ec562c2d7a9e8b
71513 F20110109_AACAPD UFE0000889_Page_55.jpg
8dc7a3aa1436ac61a78ae4ece6b4b8ce
804aef12ea02906be8d001bf578a642c47d34a87
66282 F20110109_AACAOQ UFE0000889_Page_95.pro
6f7b3d6711f547326421101ee999be40
b8e6eef7ef99138a8389c07b0369daf45668fd6b
50389 F20110109_AACAPE UFE0000889_Page_44thm.jpg
904fcd9384d005eca391e84d1f6a5eb7
efac82cc1eb1bd0562ec1495d22ca6634f0bc265
2691 F20110109_AACAOR UFE0000889_Page_11.txt
03c78743b3ff97fc353f1388b4fdd6f0
5f023005ffb819c4cb595feecfd7ad825c41c84d
751 F20110109_AACAPF UFE0000889_Page_90.txt
4bcf12ef8c7f3cdd3a5b1cf2e739dc20
75c9ee02096e2cfce36ee30b9d6f733fbb094293
F20110109_AACAOS UFE0000889_Page_79.tif
d029dc49b6b4eec7eda0d610d35d4961
f4aba4236ccb07d6a9d65806514ae06205c52e67
20381 F20110109_AACAPG UFE0000889_Page_61thm.jpg
fe28800f60149e1caea1f3966a17eb72
b897abf2f79b7daf97629b8948abc57221091fea
9601 F20110109_AACAOT UFE0000889_Page_30.pro
41b5ca4ef449037337c834052050fd5d
e9cc71249e38ab74f6d41d0ca84a1c4f2406b401
27116 F20110109_AACAPH UFE0000889_Page_56.jp2
5adf025c7cdebfb73aded1bb0dc1e400
818d7332c31d6987cab04ce5c82749d7b7441147
63563 F20110109_AACAOU UFE0000889_Page_61.QC.jpg
c7897263d20c2959b4013b6de84154df
7735df4848bf27dcca5f45d8cc143e6b2cbe0f66
3135 F20110109_AACAPI UFE0000889_Page_02thm.jpg
ceb3f13762b2fa31fa7696f4b007494b
9ecaa1721bb33407c28204e896b0f32df8175637
F20110109_AACAOV UFE0000889_Page_22.tif
55614cdacdddcad3905c02bcf8d45e1f
1d4a7d5ec473079eb1c220f901d61a0a9395edbf
1742 F20110109_AACAPJ UFE0000889_Page_60.txt
1ca8f65e8e3c74e4f85da71d378974e4
c2a724feecc0826c214fbaf8f51946065178e8ad
49305 F20110109_AACAOW UFE0000889_Page_25thm.jpg
94b9ef3e67ce08566db42218d6b8f6d1
24da6efd9e3d05092c85d659b7993b5da8acd4ea
92775 F20110109_AACAPK UFE0000889_Page_50.QC.jpg
d9a170a334cc2148cf3830d74702d95e
c2cf772a7c20690c7a4e8393f54eb45265913282
70885 F20110109_AACAOX UFE0000889_Page_78.jpg
7d31cab00f3660310e645b15e96eaec2
03272a7d8555fd3ceea8430eb32767ac649086ad
9896 F20110109_AACAQA UFE0000889_Page_78thm.jpg
fcaf89551503e19899817441c333814c
e9a30c3170d979f32f7ce9c6861f3b9af2a6d46c
1051951 F20110109_AACAPL UFE0000889_Page_26.jp2
451038246b4129c6231f67ff454f2712
a43a2eec3b8edd45510f2a996e21b74d00d41f14
72798 F20110109_AACAOY UFE0000889_Page_97.QC.jpg
cb8c1409f4490d6c3caec993e77980a2
213e11c9c1beae1e65f18102e5d35f2bcf659960
399461 F20110109_AACAPM UFE0000889_Page_48.jp2
1be3e1b0a303e39651b8de752cc00f2d
774bd99bff0badffee62b9fef466753c01e0220a
1051911 F20110109_AACAOZ UFE0000889_Page_54.jp2
8b04b069507df204b0fce617b854f8aa
1fe0234652c6b7254000140c2e81a80ba244a43c
1965 F20110109_AACAQB UFE0000889_Page_61.txt
45960198e36c1f7da318c92d85b6f585
14ba4938adc2b91e2a164923a6a13a5f390930bb
7078 F20110109_AACAPN UFE0000889_Page_01thm.jpg
b945b36d0468b26fabce19ea4a1e6ad7
69813224233af19f0df3b86297e67adec108c9b8
121265 F20110109_AACAQC UFE0000889_Page_07.jpg
807a5eb1619a93d3e2ceacde4910e6d6
7a43c8f8d14ef457b5c7fcaa7b7b0376f56e4b73
16247 F20110109_AACAPO UFE0000889_Page_31thm.jpg
66b1d34b7359751b2116b45166248a2c
61e7e43c9edbc7ddc755bee3bb211917b0989346
47131 F20110109_AACAQD UFE0000889_Page_57thm.jpg
e4db7b19f9c5c7bb95947921805af2c6
66179fe61dc61237868bffae643625e4e26686c0
32546 F20110109_AACAPP UFE0000889_Page_69.jp2
c7ff2bf0fb3067f06c1a7c6efcdd51ac
412a370c82e1e0b2021c04227398c570052fceaa
F20110109_AACAQE UFE0000889_Page_23.tif
cd150346bce218fe2589fa320bcf41b5
ed58cea4514cdc76cded49444d4be81c8d101e8f
52112 F20110109_AACAPQ UFE0000889_Page_31.QC.jpg
2a3a2eb46a51b49eaa789814b2bce2fc
752372549446cebd23aa0ad4553a42d43dac43dd
1565 F20110109_AACAQF UFE0000889_Page_65.txt
b93373dd92861fca90080eca0340492d
729598fd64205c5e112ebb5d544a46e6e7365d9d
80359 F20110109_AACAPR UFE0000889_Page_87.jpg
d9da2aa7a9b7de33bee143b56d2983c4
82f23f9fb1f444196eb61c8a5e21015279a001f0
14972 F20110109_AACAQG UFE0000889_Page_71.pro
fe5577b3fe4a72744e1022ec5b8038b5
c587d889a978747f2bb1f319e246e0bc32db24d4
19886 F20110109_AACAPS UFE0000889_Page_34.pro
c28803d641f04071c92dd62240c09f70
8420196333187a6d7af35ea15e9229e526407863
F20110109_AACAQH UFE0000889_Page_56.tif
a0006b46104111257d59153b09d656a7
38bc8c471e3e8053470dad3e3cbe1e54c06063a8
29946 F20110109_AACAPT UFE0000889_Page_80.QC.jpg
5e5741b7fb0296970968b2c67f08bab8
b5589d3cfcb4e4edc59c49cd70f2192613be3b85
1888 F20110109_AACAQI UFE0000889_Page_26.txt
6a8acf5273a7290765cd3b90b45a30fa
41b6d236dfe922a05e2d58038914caa056d9daa0
25844 F20110109_AACAPU UFE0000889_Page_95thm.jpg
97e35762e0dbba4a91ad69cddfc265df
c5bd2fc2a282bec7b9be40f9e3492bd3ba007626
77260 F20110109_AACAQJ UFE0000889_Page_41.QC.jpg
cc8febce6ba3b9959c688aafe9d308ec
0ee4b40290aa4d451629f9acaca90415c40121d4
14864 F20110109_AACAPV UFE0000889_Page_68.pro
04c938ea27088e40a99b5b5049eaf970
285df1be93fb5cd77db6929af5366a2bb83d8c16
101037 F20110109_AACAQK UFE0000889_Page_26.QC.jpg
d0ff9c83f54bbcd8d71381cc3cab2ead
845dd9362ee3697ea908431da339a9323fa6ab16
33104 F20110109_AACAPW UFE0000889_Page_72.jp2
ea32cf219edb900945aae6d1f325f2c6
9a59ef9a4b58d208970166323975ea4239a2cdc6
18091 F20110109_AACARA UFE0000889_Page_38.pro
c41ba7d30f646929d7012a2860653eab
5c017727aa4a45f3f7b4fdd34a842fa78cdc8f06
F20110109_AACAQL UFE0000889_Page_86.tif
8197a3512d05cf32d0dc8fafec5990fa
45043542f5699f82aea749a295651fab7bb83c28
39585 F20110109_AACAPX UFE0000889_Page_29thm.jpg
75c572de422e569dd24fae39a4c20674
21bc26de5430dc386664832d95807466634d8374
113697 F20110109_AACARB UFE0000889_00001.mets FULL
4ed2365470e2c40742e6b0a412785c51
dc5b80cc749624042d89aca7c92d78b02c4d6782
F20110109_AACAQM UFE0000889_Page_75.tif
a575fcc60617675b861627a37013a417
b2a17a060b6e4c3ad1e7c151943f1ad7d51b4cee
48471 F20110109_AACAPY UFE0000889_Page_44.pro
a7ba073f2f6640bd8acbbec154f21b12
f304089eee6844568523ac8c8f0a8355f6337e4c
38681 F20110109_AACAQN UFE0000889_Page_68.jp2
47d2e2d66bfd405a9ec491bc7d026576
d5d280bbc4682736799872c1ee79245facfeadd9
165831 F20110109_AACAPZ UFE0000889_Page_13.jpg
a73ae8c279e4498bc74bfbc62e7c405a
40f3a202fd068a24c37403c24b527fdc2210adeb
92268 F20110109_AACAQO UFE0000889_Page_21.QC.jpg
379bfd8db4685cefcb940854a8372cc1
d203447752e8196ed14ae841a6f6a514dad24e7d
49184 F20110109_AACAQP UFE0000889_Page_61.pro
4c92bc26409aad9009560d2d316aaa29
b1a8a26cf134126c4cb31d9f35efb1b4eae87e23
54434 F20110109_AACARE UFE0000889_Page_01.jpg
1af5964855f4d08784c05dc473e0741b
d36290524d4a3136425cea1f5f94c0df0c2a61ad
1660 F20110109_AACAQQ UFE0000889_Page_04.txt
520afdc82dcf930c3065ad304d694ddc
2817f41578c5cb1e6f688e5d2f542831ae1da6d8
311942 F20110109_AACARF UFE0000889_Page_06.jpg
30413e002a810c511641136d1bb07430
49572960eda9ca6d78501b0acebf7df0fe29a1ea
100111 F20110109_AACAQR UFE0000889_Page_24.QC.jpg
77faae7710667f200002acee72ecc58e
f2de514122d26d4062999cb0191b8d7356da9cc8
333390 F20110109_AACARG UFE0000889_Page_09.jpg
035eccd3e5511e0dcd4494df90fd25f5
502c8be564c96caf5fe883d3ec55ca602411e441
18068 F20110109_AACAQS UFE0000889_Page_92.pro
1ecbb3816bf76a7830c8d41675ce87cf
3108e023a66478c2b79ccec78c457cc1096bc0cf
166936 F20110109_AACARH UFE0000889_Page_10.jpg
dd7909ca1b410694106db7699b829891
7085df84015ac756b4a3dd89e9a39e4440267a5e
F20110109_AACAQT UFE0000889_Page_53.tif
2c9865ad8fa1043f4b9f7f0fa5530cf2
a37f7678ccaf1c9337690ddfce0b6e7b40d5653b
85478 F20110109_AACARI UFE0000889_Page_12.jpg
0069b0bb2f9aa6087873183e4ba87abb
042ce0136ea0bddc84267fb0fc387e9487f444b3
24415 F20110109_AACAQU UFE0000889_Page_78.QC.jpg
f8b07cdb33632b8a7982099c6ed3cf8c
98117f17415a2ae4fa7529257c9e1934c03a2d0e
215311 F20110109_AACARJ UFE0000889_Page_15.jpg
f63f681bafd802d67d5d553602fcc780
765f09415c992c815730afb20a27b688b7031458
1051982 F20110109_AACAQV UFE0000889_Page_57.jp2
5fbd90005b9e02b43e1a13440f40dd67
b704ec85441c797c635829eb3fbe07bf6bbbd618
91240 F20110109_AACARK UFE0000889_Page_20.jpg
460fb475357ecb1b35a523692b1c9a37
21ba4ecf5c5802f4fd829cc88410b8ccdb761410
F20110109_AACAQW UFE0000889_Page_68.tif
063f93ad12d5b3877f17a2d35f936c76
145f63944f5d86c133ca7853fe70c4564deef214
240320 F20110109_AACARL UFE0000889_Page_23.jpg
a2476bab8f663ce17d2a66b7bc0ec328
8c815beefef6c978c1806430ca030ee5b4589d3b
73854 F20110109_AACAQX UFE0000889_Page_81.jpg
df9a03ce93b60982865dbf379cb1efd1
b9874ac784bf527e78f945d9df99a54b3f01e1a3
199299 F20110109_AACASA UFE0000889_Page_62.jpg
e0f21ea4a9a182c2a9d9e527033de9bf
8c0187c065fd995d0923f3be20b73307077be498
231337 F20110109_AACARM UFE0000889_Page_24.jpg
a127f3ed12b51ab01be521c8ec64775e
46bd9c5cfce5b87eb3c925805948d78afa504d23
8615 F20110109_AACAQY UFE0000889_Page_85thm.jpg
1f8a52050a28dc25fa031b77dbd3e55b
5526277446ccd7661178fd4fe6c873bdc5cc7d37
176685 F20110109_AACASB UFE0000889_Page_64.jpg
f0b5f5f15c4a67955922a7f14251e618
15a6513153ea92af76a182bb5cbf40854e274c84
135797 F20110109_AACARN UFE0000889_Page_29.jpg
05a23621644b3f4a6080033a31db4246
7dd42bec7895ff3c3f702bc3abfab69a4f1064ba
33012 F20110109_AACAQZ UFE0000889_Page_89.QC.jpg
221378cf351495864951b690e93f2f95
d8c88529d762622d6ca9d94196ea1db963e09199
68586 F20110109_AACASC UFE0000889_Page_66.jpg
8c7b45f9dc12794297a776adce97f0e8
f4d1d7d427d29e5cf9e3a4fe79d923ab6d7ab2b4
127866 F20110109_AACARO UFE0000889_Page_35.jpg
341643579eca9a39575fa839f8443738
e6a531d3b0a55fff3337692e3d209aeae2e5ba49
123862 F20110109_AACARP UFE0000889_Page_36.jpg
8c5247565c5e3d1995756d4f8a05be3a
eb418994fac8d0a80b3dbf590ded1ddbc9f2a26e
66533 F20110109_AACASD UFE0000889_Page_67.jpg
727d44eac61d4a27cc8f7af71507c5c8
eee17be47999fb71df34753058facc2bf48e307f
146389 F20110109_AACARQ UFE0000889_Page_38.jpg
2cced6b0ed33af8833154df3975274cf
320832f3013ac3d39080b1e0d6c26739c6fe2853
69358 F20110109_AACASE UFE0000889_Page_69.jpg
2366416191acc127eff3fc21f49a746b
18ce4523802f13c6e8b6198c093e1dae4410231a
94088 F20110109_AACARR UFE0000889_Page_39.jpg
afee7e2151cae5f0c8345817f33f2700
8232bd8074f531e0d1263294c907ba39eac0cd9b
66758 F20110109_AACASF UFE0000889_Page_70.jpg
b282dc6e11dd5233727338b8cf6a90cd
eb2601153c5bc6309b3fbcf4e5854819e410692e
167457 F20110109_AACARS UFE0000889_Page_40.jpg
fb6159ac7afb5ba3373c56194987080e
fc4509b061affaa967023741f9a1b403426bc9ed
F20110109_AACASG UFE0000889_Page_71.jpg
aca009fe1afba821e3f4595020fdfc8d
eeb4261c7a27735c598f29abf5d867823fa6579d
164194 F20110109_AACART UFE0000889_Page_42.jpg
8ce4184b67bc34f1f4f258ba934bf703
4c2f519189a91cf25dda0d1c9980f1167d9712b1
69748 F20110109_AACASH UFE0000889_Page_72.jpg
ab7d569a043f2608ed395930c7ee8019
c2ffb68b5f384cc098ec6218ecc5e8f6a955be89
110102 F20110109_AACARU UFE0000889_Page_46.jpg
1ac55005a0b5f203129cb5d2ae487420
54e98c9cab3f9e998eb4d04a1ce2cb80ac24cd0b
82754 F20110109_AACASI UFE0000889_Page_80.jpg
4832471ab418f217ceda0e7c0fcc74ba
ec009a2a13e9580bb262d208bbe42d2bd64b5626
102799 F20110109_AACARV UFE0000889_Page_48.jpg
69a52748322c2685294cc9d59c6a7f7c
fa7cbf5887049182427418e2a94041250f191384
91768 F20110109_AACASJ UFE0000889_Page_89.jpg
ae59d6791ff9a3284ea8084f8481a005
d88e0b80dc2f0f0be8b8ed439c32b621ebdf6cdc
206852 F20110109_AACARW UFE0000889_Page_50.jpg
da672895dd3d7f42f1c8633af68a0b60
01334dd560d53051a6a955571ab305e2bf9d0eed
81136 F20110109_AACASK UFE0000889_Page_90.jpg
07377b0d93af69ccdaeb1dd9500bf5c1
2ea02c478b717a43ebd6f14dd6126effff927488
228561 F20110109_AACARX UFE0000889_Page_51.jpg
79481bd869fc92f8ceaee50078adc164
9ccc88e641f8d6a38a3471dfe0b67b480fbc58ed
107536 F20110109_AACATA UFE0000889_Page_52.jp2
a1d2c9f98c3c2e1abdb698e100b58e44
5484aac8bfb7e6d47d5bb80e7e26b297ea3a57ed
91977 F20110109_AACASL UFE0000889_Page_92.jpg
8cbc22c155d4353761b7951edf599eab
30000d836937e742ce665c37ec74e816028c1b36
33637 F20110109_AACATB UFE0000889_Page_55.jp2
7e012bf34848a7043e05245b01c97a02
2b89b81cfd4e4df9cb730f2b92b20fe40211e531
276971 F20110109_AACASM UFE0000889_Page_94.jpg
cd914de7a3484195aa58b57a8c10a3aa
b083bb786d3a62f18b4187e51452f37457051f76
206976 F20110109_AACARY UFE0000889_Page_52.jpg
c3e70125dceb386a6dd7d8efc69910b3
40187a72f38660cf065099e7f40fdc728d606925
82809 F20110109_AACATC UFE0000889_Page_65.jp2
df005339e7b521190ce8b0d065370009
f765dd09d402959ee54424b0ba855b191b79b059
277336 F20110109_AACASN UFE0000889_Page_95.jpg
1049d788b62ecf2447ac36395e069489
6df9e0fb17e311828c7e83536c34728d1d7a6530
136211 F20110109_AACARZ UFE0000889_Page_58.jpg
1eeb675beb51cdae8bab786ceec8676c
7ed7dae5156f328c6155514253c5b3a207560442
32983 F20110109_AACATD UFE0000889_Page_73.jp2
2ceffd54386a97f19d43043c2eda86dd
8c10b5cc55ab3f9eb8ed98e3bd0dd788d8f8f1d8
5808 F20110109_AACASO UFE0000889_Page_02.jp2
ee2f42da133d07e72393e339f9ed26d9
d3bfcc22d14726c0c84ec89cec4e476488e488e0
1051975 F20110109_AACASP UFE0000889_Page_09.jp2
4ed0c0b1c34323d061c94301ad998f1d
54eeaeb973031161f3770ca0dd7ccc6a3f825212
32780 F20110109_AACATE UFE0000889_Page_76.jp2
c263d7f92d56b85dae1288dfd831d14b
4a373d4c6f023d7a9923df506c6538f54fbaa217
1051963 F20110109_AACASQ UFE0000889_Page_17.jp2
5c5857229c8399db5dfea5179962e0bb
6d75627fb0ca6b7a8b13a8b0a96da27c087dd3b7
33307 F20110109_AACATF UFE0000889_Page_78.jp2
15747b81ce6e20889ce7e4357fe5394d
a63fa83b16a81f29363c9b324976349b7e497869
82000 F20110109_AACASR UFE0000889_Page_18.jp2
d37bffb3550c3743bebc5b5fdfc322f9
ee6c19af8fe9fa3b65bd1b3a60c80bb40bcc890a
33316 F20110109_AACATG UFE0000889_Page_82.jp2
5edc06fe7b20494040a2a2fa75406e90
a54ac572c0e70078bbe96ee914965e5ebf7234d2
1051961 F20110109_AACASS UFE0000889_Page_24.jp2
ccf77710bf48c408e1e806537cfca17a
c8cc6f365feee327dc6835b72bac5e368560a666
33068 F20110109_AACATH UFE0000889_Page_85.jp2
8fdbca56c884703707b3168f9deb2dea
6a5e3cd8ef981cec415dc0adf06ad490922661a9
1051955 F20110109_AACAST UFE0000889_Page_25.jp2
205f7e69922e8f594fb4e981211d5526
66db59697b167b7d5cece865cbb8a0452f42b3c6
38192 F20110109_AACATI UFE0000889_Page_88.jp2
a38063eee3fbd77db3fa696201df7b7b
36f9c2b97202083429a9e46260c253896a04206b
F20110109_AACASU UFE0000889_Page_33.jp2
eed05fc9356779b69b4d7ce7ef9d56cd
64bc81055411d9b32c89e726d69a879bd1a37fb2
46137 F20110109_AACATJ UFE0000889_Page_92.jp2
fa542b4e4715b0734e51001647726081
3aa933bca017f89a8be6dd5e074e6dbf1fe77ef3
634880 F20110109_AACASV UFE0000889_Page_34.jp2
449c57a016e7cd54346eedc6743953b5
99d3df663e02c2a406c30e4377a033df8beab186
1051976 F20110109_AACATK UFE0000889_Page_94.jp2
8ad266c9d92d83aefc72515441fb2d9f
d351452108e8205ce149d9f453716f54b0bc8ffc
946311 F20110109_AACASW UFE0000889_Page_42.jp2
f0b4539c2c6d90920c5bb1a4773f3de9
feb0b9a4862f55e228f0db51b4dfc5c37d52f039
114891 F20110109_AACATL UFE0000889_Page_96.jp2
ca1e21bec153ca9bc9dd3d8a79bacfa5
cc4c0480bd8ad774709c629d5097c46932804889
34015 F20110109_AACASX UFE0000889_Page_45.jp2
a294eb76135e6f65a90b877a1f7c1a2a
4d7e2bb5bc48a8534b3ecf2ff7439229216d5666
F20110109_AACAUA UFE0000889_Page_42.tif
14923d3307c75855d31177924a7d84d3
d23356c1c1168e1c41de484ff6c5e39e9e1ec5f2
F20110109_AACATM UFE0000889_Page_07.tif
ff2cb8e87dc84131f511c19c02334ca2
4739b078f1feec4c66836a385f21180352cbc713
28806 F20110109_AACASY UFE0000889_Page_49.jp2
b3b2bd44c9b310c8fcb9f6f2a463d29d
8f7de97e1995fc388e81ceb7e5d19f2359c72fac
F20110109_AACAUB UFE0000889_Page_44.tif
5acf0746721b98cc23bcefb05655b722
04d8fbebf4f35e6ae9db4c752921bf285f18d204
F20110109_AACATN UFE0000889_Page_08.tif
c275627fc11152bc6e6e9610595166b0
67a0e88a5900ddd5501fa583fde8212a484007f8
1003383 F20110109_AACASZ UFE0000889_Page_50.jp2
5289abddc71dbc431ec295f0acf0cd31
9d090b3506e89b4dd1823c04dcb6cee1ae65feee
F20110109_AACAUC UFE0000889_Page_46.tif
2da8c14de31d090c9d63de609a52c3a3
b4e3169aab4c60c674a5089f3aa0397a2d036db7
F20110109_AACATO UFE0000889_Page_09.tif
71cca19263f801d9c3f07202122dab23
0fb3a0adec4763dc236b0da54c92d92e1d220db3
F20110109_AACAUD UFE0000889_Page_49.tif
1cef5af0653219fccfb3fa6c820697b8
2fc3ceb2b64a6525d66d86216a553082c8bd1a1a
F20110109_AACATP UFE0000889_Page_13.tif
06ddc058d1655a4cb01929e336c086b1
f8d4cc25589f41e36bdccda4d2a85bd47d746eed
F20110109_AACAUE UFE0000889_Page_52.tif
fcf2cd7dfdae7a918e9ceea0c26d984f
cceac1a4828dbaba98893bea0a274380c15eec91
F20110109_AACATQ UFE0000889_Page_15.tif
415e90c9ebe6cf20890a5a0579645cc2
56462e8ed0ac1a07a7c425cb926d5d2c571586e1
F20110109_AACATR UFE0000889_Page_16.tif
51fce8e84dab6c9df980732abf47c7f0
055409ba7134fdb781aa1c84ca2c121e21a5e18d
40005 F20110109_AACBAA UFE0000889_Page_34thm.jpg
0f03be53438c9ab1262a1897138ed4fb
0a6052e3fbeafd6f3626e75a63db13910ce7584b
F20110109_AACAUF UFE0000889_Page_58.tif
b665ca5e7173cbd4795facca408c20ff
d43bc9ea0916b2847af4ed66eeca99efcda24a28
F20110109_AACATS UFE0000889_Page_18.tif
7c1c036ab99c72fe04c3a853f71239b9
18c8e33103bdfd2eafb8e113e6c35810e7a0da91
38244 F20110109_AACBAB UFE0000889_Page_35thm.jpg
4169bc4c44ce5b8aef232d8d9d033f88
d9321abfa25ce5bc938d81257d57be0333b44314
F20110109_AACAUG UFE0000889_Page_60.tif
8241d925ee709ea540ff70d4a109ec40
2a6a3f44f55a482c00a4a53b030263e37585a0b3
F20110109_AACATT UFE0000889_Page_25.tif
87de6801f4646405b5a4157e7d792298
97c5d00b8c639ff7fdad7e9d9d2a683da3dff93c
60125 F20110109_AACBAC UFE0000889_Page_36.QC.jpg
c9b499b1cf473b15f53a361c9098fd56
e7595ce6f0978908f792fcf8c54cb022ca60aec6
F20110109_AACAUH UFE0000889_Page_61.tif
d413421c021af9383da4bbaa086fe17b
e5d6b2e1cb0eb15f27d19a87d96ee179ee95bcc7
F20110109_AACATU UFE0000889_Page_27.tif
bfedea0c361fe5d17c6d6f7741e751ec
02b41afae778b6bf0251cbbe9b202b54ccae9486
25028 F20110109_AACBAD UFE0000889_Page_37.QC.jpg
2514a85f0b2eaa8d45f02c8b9e4b852f
49769e3f76f3c907ea32f957ed2e732ca8c57be1
F20110109_AACAUI UFE0000889_Page_62.tif
4fc7a8fb52f197235ed95525b0826f30
2d3113fc899fcaf08b78772139a431e35dbdc02b
F20110109_AACATV UFE0000889_Page_30.tif
848947edfa596783791fffd71cbca96e
8a920978a41a17eb266a6bc1ce135e16ed6a0152
76665 F20110109_AACBAE UFE0000889_Page_52.QC.jpg
53b3772a04322f9c129e97c9523a1c51
85937eb1cc8364229e9498caa2662a325400ac4c
F20110109_AACAUJ UFE0000889_Page_63.tif
3931cf3a66e858f2c007fc49b55008af
04b3045975d9de86aef9f4e62b8c56b02b77321e
F20110109_AACATW UFE0000889_Page_31.tif
5564dd3b448bfe88ee025b85cd2506f7
6b32b5f3124ec68027f5a58423620949d3e4be19
7900 F20110109_AACBAF UFE0000889_Page_56thm.jpg
f1270a391a6e20ad9c954f93b51d3a42
8b95eb07b87d5f3d23b56f660e1cf14b22d01a71
F20110109_AACAUK UFE0000889_Page_70.tif
d6b58455f8ad83fab08f8d241de6fb6f
21693359536447f727f76988552bec2ac38d8303
F20110109_AACATX UFE0000889_Page_34.tif
f05996a7d92b0b8e0ba9c7936eb824c7
e5a94ef1bfb59f97caa2191a299c4e9ac626d108
17314 F20110109_AACBAG UFE0000889_Page_59thm.jpg
bcf2606bf073ed95e79d16bc0c75b398
02fc0a757d9485b5069df7e88f214fbc8a3fee72
48949 F20110109_AACAVA UFE0000889_Page_24.pro
e58ddb3fd0ec8a2bc334c58ee6ad69cb
0f3c8600982c2bd32d2b0c89835dc34d928afa70
F20110109_AACAUL UFE0000889_Page_72.tif
bbfc52f0601694c976aca1c02f6e3e87
868854eadfc293e57f3979f99327ccc5b9e899c2
F20110109_AACATY UFE0000889_Page_36.tif
20debe4c00291a449295125b181ac13b
616ff57018e1f175c2edf6e41d18fcd29a9f82ba
20064 F20110109_AACBAH UFE0000889_Page_60thm.jpg
1c86c9ffb0e70ee777fba1130b8034cc
03af4462c0fc56c1b85852cfe0fc56aa6d9ed402
49312 F20110109_AACAVB UFE0000889_Page_28.pro
79f9f3f29b7d090c8bcc0a65094f0bcd
f5cd505b3c371e98ee46f27926c843a3d3719d46
F20110109_AACAUM UFE0000889_Page_74.tif
258213104358f63bc65a22625f4d41a2
41714ff5e86c936afe6acb4635d868e6354d3957
F20110109_AACATZ UFE0000889_Page_37.tif
8d51b2b37460089fa0328c9d3eec6538
c2e5157fa0b0c02ba132dfb3b58aac14d7f5306e
53891 F20110109_AACBAI UFE0000889_Page_65.QC.jpg
19cb11b064841a9b983115345769ad7c
18c435e1c83efa610b64e3ef2ff0038897d3d073
4686 F20110109_AACAVC UFE0000889_Page_32.pro
3c6f00296c640c5b8ab0efc1e6991820
53fc39598802512bb9824e0da7831f3981f6f82b
F20110109_AACAUN UFE0000889_Page_82.tif
8a7268b2e06172386ddb4505044063b2
e4b6a331126c27f1ab6090978b8ab0cabd798afa
18640 F20110109_AACBAJ UFE0000889_Page_65thm.jpg
c1ffae30fd103aad778d6dca1b0e733b
b3804b5e17a57d50ba135363caf151895fac3c73
11214 F20110109_AACAVD UFE0000889_Page_33.pro
f268279c0f37c8f3c84c3dfee2effab5
d822169f9a0eaa3a4d16a097b5a0150668f514fb
F20110109_AACAUO UFE0000889_Page_87.tif
ef066ce54a571ebc39bb2c705827d677
94a8069834bfd8fecc0f958940b657b6b78f1b4c
28445 F20110109_AACBAK UFE0000889_Page_68.QC.jpg
67f98d724d89790d4a13cf707c5a8eed
eaefe9b9822fe5381301e8101b746285474461a4
4674 F20110109_AACAVE UFE0000889_Page_35.pro
7660d8101ab1cac05e5fccf4904de0c0
ca4b548b4a264fe20afc8e5461bba507ad9ee39e
F20110109_AACAUP UFE0000889_Page_89.tif
169518d12844d70f6d835ee5858c30d2
e6b8a5c52583fd50b44fd3c1c2374ffb238f0d61
9099 F20110109_AACBAL UFE0000889_Page_72thm.jpg
a58b498da0369db1222e2ed3111726cd
0cf7e61bc817e938c749a192d3d34d566e71033e
12331 F20110109_AACAVF UFE0000889_Page_36.pro
5c81da4ecd643c1a52deb5eadb01ede6
bf9a38fc32b4536c17364d54b73ea7862067f5ac
F20110109_AACAUQ UFE0000889_Page_95.tif
843c480a26475a967a9d186107303740
544a6cf0d20f3c4f8ab7a93b6d4bbb077a0e94ac
8817 F20110109_AACBAM UFE0000889_Page_79thm.jpg
e2a1e568b0315d694e1b0b396cfce753
d65478bfd98109e3f5835fd8f5cb8826cb3d9fa0
F20110109_AACAUR UFE0000889_Page_97.tif
52c6862a132ee25baf31c4f1d22b6c5d
3ce8cd1c0b77818954458132561c37467c28166c
8841 F20110109_AACBAN UFE0000889_Page_82thm.jpg
342e48b0d86ad155bd8211621fda4f71
5ae9bad9af03c36b2c55bf106796e6a13189830f
13644 F20110109_AACAVG UFE0000889_Page_37.pro
fbaccd36f3198553d25f29b70bdc3c62
c5dce1e4f3e1bf8b6171bcc449ea967f9b933e2f
1280 F20110109_AACAUS UFE0000889_Page_02.pro
03ecc93a9b0baeb899530da327aeaa57
be66adc25255ce36bbe9c63f4b66136cf9aea008
28155 F20110109_AACBAO UFE0000889_Page_90.QC.jpg
9ee6790ddecac09795a11c68472f8392
ce7efdb318969dacdf60ee2630e622886ee26ea9
21200 F20110109_AACAVH UFE0000889_Page_39.pro
7a8c30ca0271bf3678299fca6fe7ea69
5ba8dde098bfdf7026d1cda75b065a81b8daa46b
40398 F20110109_AACAUT UFE0000889_Page_04.pro
2d01e7c4a381091c18a7274fcf5244ec
579f7a99181dc85bf4c2a47319c2a3930e85a42e
32536 F20110109_AACBAP UFE0000889_Page_92.QC.jpg
81489b5656fded8984eca36b422397d1
c2751fd182536fb433b614b67e2bd5d0c67a4ea9
9605 F20110109_AACAVI UFE0000889_Page_41.pro
3e66912bc69d0f8d508d1351fe59ee4f
bc0ccf3092bfc62741458aac54046e02576eeabe
76098 F20110109_AACAUU UFE0000889_Page_06.pro
e254190e0019e4b614c9eb62ad8e47fc
2a72c97fbc93fc723e01cec794bb0ae9a8698894
11529 F20110109_AACAVJ UFE0000889_Page_49.pro
87617f89eee1a9e0b4cfd7b38f460b9c
098ec52e612868514895c86ab01fa92544e0ae97
65965 F20110109_AACAUV UFE0000889_Page_11.pro
851a3423d6c2e2e6717fc3c830834ce8
16c69c7b467fbbd76ffb209d48974286f21a0653
50026 F20110109_AACAVK UFE0000889_Page_52.pro
317a67b289ad6b449019c1728a0a6e04
294134d8f5a735bef87462d3d4707452e67284ed
41240 F20110109_AACAUW UFE0000889_Page_14.pro
707530177f117b1245efdff00bc0403a
cbeb9f026b11b70d792145fd1f32e428339bdfd6
53602 F20110109_AACAWA UFE0000889_Page_93.pro
f42592d09ceb48f3ab9681917e6ada92
3926c4776acf878ade85696b14e9c7fd148afd3f
47069 F20110109_AACAVL UFE0000889_Page_53.pro
0d6cdec5f467ecc4dfce4dd43ec90f6f
4b353d5cab44fcf0b15ce13dcd22068caded7e4a
36790 F20110109_AACAUX UFE0000889_Page_18.pro
044d5a2ae2f26135d3363e45f308b048
36a0b3bb91f44af5be56e34fba5b1c0af1267e7f
119 F20110109_AACAWB UFE0000889_Page_03.txt
94148856a55430c8664f3326fbca5c3b
059585fbb523e2472de1d985cfb83b489c352d4d
13835 F20110109_AACAVM UFE0000889_Page_55.pro
8cae3363794a3689eddd727ee86e0682
1a66a923db6aa01d477bf2bae94fad426a6a0341
49188 F20110109_AACAUY UFE0000889_Page_19.pro
3c423dfc78bdbe6bcae880ec763d30b3
996a558ff64f965088293d11bdc6d4d71214e589
3217 F20110109_AACAWC UFE0000889_Page_05.txt
c9951b68a6866f64146393439bc77205
30378160ba45dc6a44a6220dd56c74541759c9aa
11356 F20110109_AACAVN UFE0000889_Page_56.pro
f38168cd50a5547cf5f6c60114f83513
798b571cb308ee0b3e9ff092535b7c8af8fb1ef2
49201 F20110109_AACAUZ UFE0000889_Page_22.pro
f313ef5fb968cb14eeb8f52e1c526513
a7ef13cae61d7fbbe1303a422d04d8b4ce4e772a
3062 F20110109_AACAWD UFE0000889_Page_06.txt
300213f5576975fe816541b0a7afb66a
1f7cd30e21072249bad51148b4e1c4ab3dffaa5a
39477 F20110109_AACAVO UFE0000889_Page_57.pro
38b5d8f2a4d40d9b4da20a058c6edb67
2d07ed8a7b13200baa381055eeea5962cd55c0e7
644 F20110109_AACAWE UFE0000889_Page_07.txt
a5ec104b5354cdb711f700c255ce68f7
be0c76dbabf5806d94a2b96de91fb9a902cd2cdb
31740 F20110109_AACAVP UFE0000889_Page_58.pro
c1e58d1d5ead792d2c4e57d5eafbd9e4
361cfd42084d7a50c650ab76ccf1c442362774b9
1826 F20110109_AACAWF UFE0000889_Page_15.txt
b186136d2aef57ab5899c41affa58996
61d4a6d5de8cc6079537f04b98f17cc531f30e68
34763 F20110109_AACAVQ UFE0000889_Page_59.pro
f63e64d59b122275b4c2589b9a02f9f8
5c8ecf048aed4285f6a238d5469fc0b4d5f6c5ac
1967 F20110109_AACAWG UFE0000889_Page_17.txt
507384e4d539825d5e57503eb7af74b3
b0d876b4f4dac42305ec1f50b69ff62537f33503
38875 F20110109_AACAVR UFE0000889_Page_65.pro
8eb39e9658035f20ee8b294da63b6c70
0f8a411861e4ce1ab6131878c4c65e24eed0cb37
12369 F20110109_AACAVS UFE0000889_Page_73.pro
4b95b32cf70391f5d6ed2f2d45ddafe0
81fec474196cb0d3cea33b3bc413fef1c7b8a4d2
1605 F20110109_AACAWH UFE0000889_Page_18.txt
827d791f8f49565396a8ca9a3e74b0d4
5738291dea1cc13ad43916b2082bd60c2f136365
14726 F20110109_AACAVT UFE0000889_Page_75.pro
15758bcba3845bacd6d8c53b8a501f1f
e4ce77dba6dc051618ce4ce446fdd13f21eafc4d
586 F20110109_AACAWI UFE0000889_Page_20.txt
30cc538573044b4832f88624fb240875
98be0a81c92366fc78c958129373cbf97f6ddf70
12301 F20110109_AACAVU UFE0000889_Page_76.pro
3310fd456ca203c85c5241a4c35f92c4
6541d72a9a8ad67fd029cc0f6cdb4bda6a4bc502
1775 F20110109_AACAWJ UFE0000889_Page_21.txt
5df44bf84789a8af24432f12166222ff
2fe467d1edcbcd8443188e50d32924c311b185c9
12733 F20110109_AACAVV UFE0000889_Page_82.pro
1120bc8f8fd2275886bb1c93a4b83fdb
8f3611b297766a29a6159aa04b39597abef67df4
1934 F20110109_AACAWK UFE0000889_Page_24.txt
30fd972704f8f4ea5fb22b43cf6ff514
a164ad91dcfa5924663b762266d331dca2645bfa
12977 F20110109_AACAVW UFE0000889_Page_84.pro
15af9cab9832feb653614aae61015bf2
637be8f30781592bbef5f9c7ec6dc667fa42894d
1873 F20110109_AACAWL UFE0000889_Page_25.txt
04003025f7dffdbfd68377cb54ffce42
a3f9864db4d6fdbe29ee92696a816351fdaf1e61
12759 F20110109_AACAVX UFE0000889_Page_85.pro
ce33cb74f809526188177c0e2d6840f8
7dccb41d22b3ac10ed959084028eed1fbc2236ae
1431 F20110109_AACAXA UFE0000889_Page_59.txt
d793f4c611640fd6bad2dfd58863f527
c165e02fb6e6c058aae620b70fcd26a99fd6bb0b
1008 F20110109_AACAWM UFE0000889_Page_29.txt
52dced49cb30241886837a6ebbd4f091
e2fbb05144f51d8977ad706143e38b9c894beb36
14969 F20110109_AACAVY UFE0000889_Page_88.pro
9564c4856bdbd59ac321dfd1957389b1
e7a6e95f73f5fadaafbe91cf64db42982abb6778
2006 F20110109_AACAXB UFE0000889_Page_62.txt
86f5f20c66e3748e2c487671154bbb65
f4451ffe81cea829728671a2f77d46a27af97bef
622 F20110109_AACAWN UFE0000889_Page_30.txt
61b9174e3b406f4008be98f33aa20ded
f5fba1629e453085db65bc4bdbec1c5ba016e27e
14593 F20110109_AACAVZ UFE0000889_Page_90.pro
7642498ec09fe328873778a9cfc0e67d
aae6e6757db45fc5a667af9383bbbd5bfdf83eba
645 F20110109_AACAXC UFE0000889_Page_66.txt
136ed48251f13ce029be89e0ab4ef4c1
c77f1f74c3aca8d78f4e561e61059260bc452ed2
2035 F20110109_AACAWO UFE0000889_Page_31.txt
d720a938fb16cc69c5d5fe87ac705291
a6d49bd5919a653e02f91bf347eece6118e40101
815 F20110109_AACAXD UFE0000889_Page_71.txt
4fa2eed7fdb038c4f2dbf3c976e72bd7
a3b0340d0b2e6bcd0057f058852fb119f4582745
273 F20110109_AACAWP UFE0000889_Page_32.txt
bd2794ecf920d1d90ac1d10e928bedf6
8c280867019b0a7f226fa70dd65a7234086d39c7
804 F20110109_AACAXE UFE0000889_Page_72.txt
00c54eda034a3bb34fc623bf1c76719d
c3907f5df60c70ae8b3c7aa96c9e37ba8ffe87b4
187 F20110109_AACAWQ UFE0000889_Page_35.txt
870c4865737a49b4e7b2c5cf72995f44
d0a1eef0da854d0597aedf1dd763aa3ed84b1d44
F20110109_AACAXF UFE0000889_Page_73.txt
1fb3cc96d3ed524ac4300ab47d9567fd
8ba8b3d6f66df498ff235537d23288cdd946cbea
689 F20110109_AACAWR UFE0000889_Page_37.txt
e2a828d62cbcffb0f14732bf864ebd37
7c0ade83ecca894ab904b539fa6baaa6d6e75cb1
656 F20110109_AACAXG UFE0000889_Page_78.txt
9641b5adf59be4baef5c5f2e0008caff
c9452653095eede1ff04498c974e8ffcdf5cab04
1506 F20110109_AACAWS UFE0000889_Page_38.txt
c72c785f290e89380c9208ba1be01fec
cdbb41a461805d8ca3c445346830a896053c10b3
672 F20110109_AACAXH UFE0000889_Page_79.txt
52a3a5f57e7c9bd0ca24cddd2b8ca4d1
19ea69807b5e0ff7cb581caa54c651691a0f4f79
1745 F20110109_AACAWT UFE0000889_Page_43.txt
f258b734c1a8527a638185ef0804afdf
e7f0d84a768b14ad94236ef0d6c13c1fd8f71466
730 F20110109_AACAWU UFE0000889_Page_45.txt
d4c8d5dc5200005a85f67d4923e50de8
35cad27e68ae150d3fdb7275f725dee72dc5b37f
669 F20110109_AACAXI UFE0000889_Page_81.txt
86511e49059535836a5718b851d8ae95
cf444f84565a19c32d4a05aded91b5feda7145b6
687 F20110109_AACAXJ UFE0000889_Page_82.txt
8c8ef64e73c8f3308b4205ee544a4139
49f36d04cf46a9caa0bab0cb579bb7cce32569d0
698 F20110109_AACAWV UFE0000889_Page_48.txt
7c1eef263e89de54e5390eea4a74ac94
ce12cd3266abbf2b983078d819a9fc36d31d8ae3
848 F20110109_AACAXK UFE0000889_Page_83.txt
a7d29d994169d22e73c2f64b4b16e1ed
0fb0158fbc1afcbf1465daf05671eee964bc1b12
1731 F20110109_AACAWW UFE0000889_Page_50.txt
5178a8575c2c93818a08ab62f3db4f72
efd04418d7f4c89fb0b853e15409525ce75b8774
10124 F20110109_AACAYA UFE0000889_Page_80thm.jpg
69761aa54b6ac6da4272bc4c76194064
0af8a0673d13b4ef6dfa94acb2dbb7d10d6036fe
679 F20110109_AACAXL UFE0000889_Page_84.txt
2d7d09538c75436f1243258f05f80346
4f329bb8c346ecb1dcb92e04eedb408544d75a8b
1858 F20110109_AACAWX UFE0000889_Page_53.txt
39ac864adb16d7686b93b54921582eda
e1a7e4e2c34345e5e478862b682f5b3781c6c88d
8186 F20110109_AACAYB UFE0000889_Page_49thm.jpg
c5e567128467c448969a76445f173e75
e863b685719a922c96a8b78b18a5651f5540a641
741 F20110109_AACAXM UFE0000889_Page_87.txt
34842f8ed074defdd9c6204ef9b8f487
d973cb7bdcf660848336a61433c5a167084c0b34
1864 F20110109_AACAWY UFE0000889_Page_54.txt
a1d9840832633be5df957c406851159e
58fa16ad458137c58574ee8b1e8991f7fa54682f
44902 F20110109_AACAAG UFE0000889_Page_33thm.jpg
100aadc842b44f9e0257c58e94fd0add
b3d1a72c432e37f921594997fba3bae734a368aa
24229 F20110109_AACAYC UFE0000889_Page_69.QC.jpg
5bded55d66e1475cab6b3941cc9ac683
54387edfd6f282b6f5ab91c0f9d43c7b12d02ae7
759 F20110109_AACAXN UFE0000889_Page_88.txt
9afb951d1c11f07f54748fa64f019cc7
1bb2527393d6bfd8e17006fa764c9338767db8a9
1275 F20110109_AACAWZ UFE0000889_Page_58.txt
d0ad67d62c7b1c5c3fbe8d700b89688d
6257d1db365ad65ccfa5bcec78da8bc3689b1852
10252 F20110109_AACAAH UFE0000889_Page_87thm.jpg
32b806ce8428911d3bcb273025b366b1
2445ca67a35750515160d0a53e9623c1457acf35
9485 F20110109_AACAYD UFE0000889_Page_66thm.jpg
c71b2516cdb23f0cd0d4956ecfff8306
9d0b63bdb0103150814a87a47a41bd07c9f33b58
2185 F20110109_AACAXO UFE0000889_Page_93.txt
28f734abc504a0bc485fd03a953c9111
6c75804056fdfdba6c9006ad9c81fa4cb0f49ae9
29861 F20110109_AACAYE UFE0000889_Page_77.QC.jpg
48b50b071009c79f003695c4c1d9d1e1
4265735ea7951bcdf30b67ccac8f305e49f05650
2162 F20110109_AACAXP UFE0000889_Page_96.txt
9605f0b38bfde6695bd105df526ea129
7412317d8e33a8df4ffb533eeefc730ba2abbe45
182750 F20110109_AACAAI UFE0000889_Page_63.jpg
d63a23bce7571d31099c69831927af32
cb075c69c916f5977930529d380a80ad4ec0fefa
56335 F20110109_AACAYF UFE0000889_Page_46.QC.jpg
c4a05412a9d1c0e144e50e074fdb6e5c
143d4f06cc6771c108a316128782c1ba11c1d2f9
1825 F20110109_AACAXQ UFE0000889_Page_97.txt
625d5a1cfeb4e523e32841437aacd683
67426cb7dae2364d08cf6667a66e6918a2d92684
114818 F20110109_AACAAJ UFE0000889_Page_93.jp2
bb1f115e098fc1e587f29e9420e2ef85
f4a4834b3ba5d4c9574b1cfb2d2c45f3492e8112
51904 F20110109_AACAYG UFE0000889_Page_58.QC.jpg
82c909ddef6d61c651fcda7be459780d
53788b22ed475411a78907214b1f9ee6e9b182f8
5495329 F20110109_AACAXR reinbolt_j.pdf
f03a9c493309bf9350c44f53b8a9de9c
969ab9ea64f22d49b2c064e595bb30b8f802c27d
1937 F20110109_AACAAK UFE0000889_Page_28.txt
26f69bddd38c5918c57f42e8f9dc36a3
5525742ea1d153f8efff638844924741f944ae86
21865 F20110109_AACAYH UFE0000889_Page_93thm.jpg
335ef823947d02e2f10e0ae1b686cddd
5ba305aade355541ae9818593d656ff4b50dddec
24142 F20110109_AACAXS UFE0000889_Page_52thm.jpg
c4e8305b7082f7cadd93f42b550cde6a
b710cd5f4aadf89353bab2464bfd596b6b333688
F20110109_AACAAL UFE0000889_Page_48.tif
7b34c5107fe6c7ec2dd3c245020d12d9
800d99ff69db7a62b73be465a1723612c10a67a9
25446 F20110109_AACAYI UFE0000889_Page_81.QC.jpg
35a0a9be377f9e2f833134c328c11882
0cc7c7b5c83fff1460a7bb7a628dfb4122641654
91164 F20110109_AACAXT UFE0000889_Page_57.QC.jpg
c816e9f8ebae0cbc84cb66d91c1369ed
6a86738bf51c948020b367d92affcd8c31511579
F20110109_AACABA UFE0000889_Page_03.tif
9f45936d0ef79e9e7dd3198fec126f23
f28b6b0676ad8ce0bc942053fbcecd8a0eb2e166
F20110109_AACAAM UFE0000889_Page_76.tif
2e4ae7fefcb963c7d38a3120cc9ba90f
2aaaf669f93c22ea16af0e3518cfe7acab6a67f5
8677 F20110109_AACAXU UFE0000889_Page_55thm.jpg
571333eb5a279bc5ac3b224256dd6d8a
e10b4a511bc419da87a429fb1340ccc5f7e8ee3f
42300 F20110109_AACABB UFE0000889_Page_21.pro
e67cff9d065ac2bae8a47aa18877353f
96a493392e12c6e989fa629236db89db5f1ecc77
15467 F20110109_AACAAN UFE0000889_Page_77.pro
623dd4256e6cacfabd06120e5d0c9a45
c4f73a9c4752ab61ecf42d8846da7a73bbd976d2
8207 F20110109_AACAYJ UFE0000889_Page_73thm.jpg
f6ee595b24fb060685b2b6a6edfa4cac
5cf94b0ffca7d7b368faab03a3eadcd0ec89ce41
24515 F20110109_AACAXV UFE0000889_Page_70.QC.jpg
608a19be2fa7ec76070910e1f669ba68
8eb26f3f9b00c36d568d55b3e4638038dab3d02f
12334 F20110109_AACABC UFE0000889_Page_46.pro
4933cc002fcff90c3a739e005967199c
e42657da08404da163278c02403ccf7555749310
74465 F20110109_AACAAO UFE0000889_Page_84.jpg
aaaef5e4c6efc802005ffbcff7d8aad2
417027e8907ebb4d8ec1c39908a3f10169e1287a
97366 F20110109_AACAYK UFE0000889_Page_25.QC.jpg
1998f8e0e60f0257b968bb695aa4d87b
5f3db2810edd02ee14c8bcc69609c9574c294ec0
8689 F20110109_AACAXW UFE0000889_Page_70thm.jpg
9c635d6035de514eefd3bed537ba3432
befa4ddc9af911f6d3f1f8e1c713ee2f4edbb734
34512 F20110109_AACABD UFE0000889_Page_47.jp2
86c1d7351064639f83847c53b4d95a8d
667ed2c71d2d4a5264a608dbda9f8c15d796b0b4
15649 F20110109_AACAAP UFE0000889_Page_80.pro
3a7e1fbd8dc37d04312525d273401269
2445e1923428849725f35971aaed581055dbb3a9
43020 F20110109_AACAYL UFE0000889_Page_41thm.jpg
41cf09729a386c1e0519f94f64878c50
3243c2316835921d70814a79743a04df8cfd48f9
30060 F20110109_AACAXX UFE0000889_Page_83.QC.jpg
70ffb52150c9a1487358579d11428a0f
edff16123204fe56cd4a7e255323b15833f96d45
48909 F20110109_AACABE UFE0000889_Page_51thm.jpg
5e65e2d1a6ce03cfa42641ea857d93c6
2ce0beb1906d7f12e9d017dc771dd011953026dd
933 F20110109_AACAAQ UFE0000889_Page_89.txt
0d18fe51636aa2ab146b9993816cb4de
8f49a45e49a70bec7fcdc4ac3bedb94814a1b389
6274 F20110109_AACAZA UFE0000889_Page_03.QC.jpg
3b23ab0fadcb1f7b63b11add76856407
fd3abfdd126e609d86f7dcae396d01782d198597
9948 F20110109_AACAYM UFE0000889_Page_81thm.jpg
2e7bff7e67fd120811600d9ea5d265a4
b3e898e51bea50438fbb92f453a940a276ecc9bc
55242 F20110109_AACAXY UFE0000889_Page_48.QC.jpg
1cbbe82b855d2d058fc6cc658f25b237
3175a9fc9d5389e5be761cf8e26dd22ed79b363d
236820 F20110109_AACABF UFE0000889_Page_28.jpg
fc823f8af4213c19ef3f02be55ba9b35
5eb65997e4a782a559e547fb168ce978008464db
9153 F20110109_AACAZB UFE0000889_Page_75thm.jpg
fb977b261c44d42132aaa53bf95a92f0
2782474dfbffd31012e71f10dc4c1572ecb97487
7719 F20110109_AACAYN UFE0000889_Page_37thm.jpg
f903876b80b2a9db04ce61f5c2560d6c
24ff24d0cb179d39b608608fdd6d3919f03daae2
103758 F20110109_AACAXZ UFE0000889_Page_44.QC.jpg
d9217e8f3c8bd12b139dcc27cdb54e39
f49a971187fcf9ade1f3ca4ca6ad818c70c5751a
1588 F20110109_AACABG UFE0000889_Page_03.pro
09f1a155a8f9d259cfa465e8ee9ffff0
0938b15950f5be37572fef28d2a4420b45a57072
107475 F20110109_AACAAR UFE0000889_Page_17.QC.jpg
2a2dfc5142a718580a31bffaec201372
5aed548ca72c3d9029fc6e81759298be80e8ba7c
46487 F20110109_AACAZC UFE0000889_Page_43thm.jpg
c145f0552e9035536e263d445a3d0a8b
0a1e55cae997333399d3aed81bc0a5809783fb1e
10174 F20110109_AACAYO UFE0000889_Page_71thm.jpg
5916a0ee98508459052c7d370b3fe453
9444490910855f3bcb478f40f39d00116d6f163d
32246 F20110109_AACABH UFE0000889_Page_66.jp2
50d99c604b8cb1ac03ec13d747710b74
b2a34445b874b19900525a92199fb0d15cecc8ee
440366 F20110109_AACAAS UFE0000889_Page_46.jp2
dd9ac03dd2aa64a0e8f9b2656d4e7fe5
8cb56f5ab11b8d539670e98898a689a304bf18ff
8588 F20110109_AACAZD UFE0000889_Page_67thm.jpg
58323a016deba798e2ae173288fce27a
a2bcac7c4780025b337c957f57aa3ef77d099c02
62171 F20110109_AACAYP UFE0000889_Page_35.QC.jpg
0a7ac10c8e404137dfc9781eba413e8e
1221948b78360a70e001c37e9c7b06ec15a49181
F20110109_AACABI UFE0000889_Page_83.tif
2e9985481a8ad669f584b6c4e2303522
df5a779f210c4520a9548025b461ad987f7b8457
172012 F20110109_AACAAT UFE0000889_Page_60.jpg
8d3aee8db3c7f4b60dfecd9135b10a64
622c7240e9bda88dfcff9e2da80c716f251e82b3
36988 F20110109_AACAZE UFE0000889_Page_46thm.jpg
523db132d830f8b071cd19a6bc3797ba
3e2d13fe6b8f67b5e6a23f610196a7c318c4f583
20421 F20110109_AACAYQ UFE0000889_Page_04thm.jpg
658a6a0a57bba338635675f13309b590
7072522b1d94ce50a0a9389635e44e46215a09ca
F20110109_AACABJ UFE0000889_Page_51.tif
e35657e676e54bbe80711cb89f0ff67d
7648f833fb0c067b5619e5890b36ead011db35f4
49819 F20110109_AACAAU UFE0000889_Page_53thm.jpg
b664cdc707e9d9bcec7e6b6c690cfc49
5c0c2911700d44117492a8a255a62a263437d536
9654 F20110109_AACAZF UFE0000889_Page_69thm.jpg
286ac5135c6d6f8a75d592f89494f84e
9e6e1da57af4136a8351c877851ede5731edf84b
50110 F20110109_AACAYR UFE0000889_Page_54thm.jpg
09aa9432b93df0e163e64346934d4ecd
dfd42a980548249919b73e2af2f2711e2c4d1572
67830 F20110109_AACABK UFE0000889_Page_76.jpg
e9289e7f41ed29675d2a798272d5c1ba
d517415312efc937ea78b1adde078da062111a7b
24509 F20110109_AACAAV UFE0000889_Page_67.QC.jpg
be697cf1e2c2bbf0a48d677ece707d45
ba7bd28163ed3f2927af047db8982095759eeded
49673 F20110109_AACAZG UFE0000889_Page_08thm.jpg
71282b162c1f048d2313341262b398d8
3f5a25a0e27a1ad5eb6bab635044fc589a3cd202
3102 F20110109_AACAYS UFE0000889_Page_03thm.jpg
280077f082f5e565379df6b566fb580a
b6e7c13517d8e52f69b2b7eb1f256234acc5229a
809 F20110109_AACABL UFE0000889_Page_74.txt
1d960099e82fac4162f6584782a41bbb
62b7cc487de7ba6101241315f21ef1036503e0c0
34534 F20110109_AACAAW UFE0000889_Page_39.QC.jpg
03faabc8fa15043b79e05916100154c8
708eed194e92f47bd43805eff46577259856a2de
104126 F20110109_AACAZH UFE0000889_Page_28.QC.jpg
4f33c569591f31cf6d69bec760fc6d08
bf14c6791b34bc49be72931e0af71320106d47ce
112972 F20110109_AACAYT UFE0000889_Page_06.QC.jpg
0911ddf351d79a61067f3527d58a78db
425b5644ce6eba6bbb9476831693fb34a766aa9c
F20110109_AACACA UFE0000889_Page_84.tif
8037e7f9b0a22daf7861ceb498392eea
87adafdf576535ef8214d3f5ebb54c6c279d7b9d
1814 F20110109_AACABM UFE0000889_Page_64.txt
d7c8fd86c1b4df358e03e5ee7a2fa139
5990ccfd9fdfb6c870ced8e87c50f2317069f4bb
94066 F20110109_AACAAX UFE0000889_Page_64.jp2
d5278512195cc0cab6ef70d4af5cf938
18b9b2676854ec48b7046cc65d16edc8ebdb95aa
130244 F20110109_AACAZI UFE0000889_Page_09.QC.jpg
f2e5b8aad67f752a01d333b518913ff2
decfd9017851db4166dbf3fcde88abc6db5d83b2
40078 F20110109_AACAYU UFE0000889_Page_10thm.jpg
876a3aa0eb4fec6f4ff84a1adb0bdf18
2d1d2a726fcd32bb2f8b1b88ffc1b86c20233cf5
82375 F20110109_AACACB UFE0000889_Page_86.jpg
ec27887383aa1ce9629c3fe6d5b4c46e
cbdf3d51e56c6ba17843b3d9d955a404bff53df4
F20110109_AACABN UFE0000889_Page_38.tif
2562859df4b32df379de77ab69f97823
0242667c63acba9429071ee2c55dc3e0210717ea
F20110109_AACAAY UFE0000889_Page_26.tif
6a6e9265cccb6d1d9878c5c99bc7b43b
facaf82e931c8c51723c008dafd95729e614c150
24057 F20110109_AACAZJ UFE0000889_Page_75.QC.jpg
a5292b82b29166de927dd09585ed981c
a0debdb5648ce47346db83e8105dcb4f814a442c
26721 F20110109_AACAYV UFE0000889_Page_45.QC.jpg
048d8b73d87fc8e58f264fd70271c0ab
0d03fb205119cdfa30ba1040002cf36f90c33b3c
F20110109_AACACC UFE0000889_Page_20.tif
6a803b93793e4f9365e53f37cf125201
88152d993a0dea0a212ba36329e17e2ba479ca44
48952 F20110109_AACABO UFE0000889_Page_51.pro
b46d3a3ded8fbd43064544ca3904fd84
bb02655003e4417c2132365ab3f96d4c13c2f945
46884 F20110109_AACAAZ UFE0000889_Page_21thm.jpg
2dac96fe6e90e76d990be95922b4e04f
34cfef4d0ef78e84bc097023a4380571079e2c07
30100 F20110109_AACAYW UFE0000889_Page_74.QC.jpg
d610174de672ae2fb432a54250bd4b87
219f19659791a2a051230c6daa0b1ac787f6057c
F20110109_AACACD UFE0000889_Page_11.tif
5739673ea186323f6cea313b49a81983
38cc7a1d4f519e11b568dce107b9101eef2fa0a5
F20110109_AACABP UFE0000889_Page_96.tif
6787d373c2b575118b8555afdbc2fd62
488110ba1023dd52f6f2a13c634a5e1603214ecd
23395 F20110109_AACAZK UFE0000889_Page_49.QC.jpg
019881e18552664fdf605fb1a7fcdeea
a122a1a5444d1e6bbad5efde5f6dd8a65dec31c2
18797 F20110109_AACAYX UFE0000889_Page_63thm.jpg
c189e77baa47bd1bf7aca101584add95
b38ccb7cd28ac8e9f056cbeef959390a632e65e1
40197 F20110109_AACACE UFE0000889_Page_43.pro
858db6926750083c053048e792abfe58
0624fedd0c7644588c03d0f270f44f1989bb5694
48102 F20110109_AACABQ UFE0000889_Page_27.pro
d5ee15eb4607a6f1ddcabc1ed1ac3fb5
7336834e3fe1ddb0bc097f2b5bdca4637d36e258
64114 F20110109_AACAZL UFE0000889_Page_04.QC.jpg
036a2a6675f8d297c249db17c234a7ae
6f41c68e4d72b7d131e9651f59a4db485918ef88
58080 F20110109_AACAYY UFE0000889_Page_13.QC.jpg
d046f2b0ed8d29c6af9676bd953e8dda
4da29392aec679880603341ce369ee7ad76a6fb8
59813 F20110109_AACACF UFE0000889_Page_60.QC.jpg
7df1f4edb69af0a80ba440e299afaf38
97e202690f5c32b2c716fade28af05548f0b2e9a
9655 F20110109_AACABR UFE0000889_Page_48.pro
d8e0db21f9cbe3779bf684f4a51ae9ae
9821b1c8eb487ae2203849027459c2c92f22990b
71688 F20110109_AACAZM UFE0000889_Page_96.QC.jpg
6f4a27c542a12538010176a2277203dc
09546e7ff7caf0a4da9dead70b20e20b3ff6a366
2959420 F20110109_AACAYZ UFE0000889.xps
e2302aafc5f4922c3434da9abd76a150
ace5aebd33ee80f546a785f4e540c36e2fd14142
12109 F20110109_AACACG UFE0000889_Page_70.pro
9229afe9b6845e29a4aa20391eabff74
393d32b1ba641c4864ca3349b7404fd35aebbe88
41877 F20110109_AACAZN UFE0000889_Page_40thm.jpg
fb08e5f7ff9cf5f1839c244ed316bc5a
9f2a3f3db8ec58f032731010ea3be395eb4f1ba5
52594 F20110109_AACACH UFE0000889_Page_96.pro
627b28c7bf118431d0c89c03f3b9a1ef
e8af33df38b77c061c325497389bdc6e0f0f7901
16729 F20110109_AACABS UFE0000889_Page_58thm.jpg
2726366d629c94c70f049d349d5fac54
e6cd84ccd3d464394ee947787af542a2e27d7c3e
34017 F20110109_AACAZO UFE0000889_Page_20thm.jpg
daac2bb87c17768c1af6edd0fda05d0a
38a2fbaec09fd35b9a838b75e24b4f0eb8445486
50940 F20110109_AACACI UFE0000889_Page_28thm.jpg
24c523354d82b07b90798d53e73b130f
b1c6b9f3897fd3e1a9b6b4e5c95d566917d7fe87
43752 F20110109_AACABT UFE0000889_Page_15.pro
c730ec55d774bf3760751068d9c68566
8c281c88a2bcca2fa69fe32f8503ded629dbd8b8
36692 F20110109_AACAZP UFE0000889_Page_48thm.jpg
b3ddb6d9fd0ce1631133c819e5f33edf
f9c5fd332f36490d166b39e762439075b85ddf6b
F20110109_AACACJ UFE0000889_Page_29.tif
e25f14cc0d255e1fad5c1d66b19bf22e
e90ca414f55dd3848baad3d6c2fe296ebf224496
25206 F20110109_AACABU UFE0000889_Page_29.pro
22a52069d6b37fb40f8b8cab5705a62b
d34d9df8c79343972f8041e1876480bed5f73116
67069 F20110109_AACAZQ UFE0000889_Page_34.QC.jpg
996149aad4e46d8dd8e3d7e40e6b296f
d3678b8ab65f14b55015908afb710000930c435d
44412 F20110109_AACACK UFE0000889_Page_12.QC.jpg
aea7bfa49ea5d8bf4f74577c39218184
4a2e711d8c2cb7a67b0c01adb3a3d02b879d03cf
447 F20110109_AACABV UFE0000889_Page_01.txt
2485a42dd64bd2609b6dfe74dec50564
045cb83d6dac29b68e9e3c5608ec91880d2b1cc5
25656 F20110109_AACAZR UFE0000889_Page_84.QC.jpg
3968152fa6acf1cd6452a5cd2fcc9937
e83e0c2c384a22299f5dbad995310eaa8b161c00
14489 F20110109_AACACL UFE0000889_Page_87.pro
a13b76c9811055bb6b4b06e87679564d
d0d9db177f2a606194e109f896c789424bc31862
F20110109_AACABW UFE0000889_Page_64.tif
b99857504cb7bf0fcd09203f9c4dec4c
3692b6ce22e3b742a0bffc92b43f7a4cbd2f5ace
147508 F20110109_AACAZS UFE0000889_00001.xml
d3f8fe2a9090e9b4e55d7d17cf27c68d
7b9ce1690681a751ff997a0b84cc0a51ac6801e2
1685 F20110109_AACACM UFE0000889_Page_57.txt
c86564572e16a1d38daee937fef1c946
9ee6224b7d686a1727962e90d665d4b71a1afd66
128230 F20110109_AACABX UFE0000889_Page_32.jpg
0fc246eabd7d3e1c2665cce6dacf548f
071e1348d8d1aeb0d1abd1ad0fee962fa8c662f7
51641 F20110109_AACAZT UFE0000889_Page_06thm.jpg
c9e5be7e54c2215b6742b3e66de2c913
aa3fef2fbd890e837428cbf5f26930965fe72ddf
12060 F20110109_AACADA UFE0000889_Page_67.pro
592abfdac31c847b7dfde39e12ba81ec
a284a91ddc5ea3c6b975c34b2c178597758b5227
82231 F20110109_AACACN UFE0000889_Page_33.QC.jpg
94d492e61d0695c4061c9bebe45756a5
bfa9c27f24c040a0d2af587d255e21e4ff84a801
46473 F20110109_AACABY UFE0000889_Page_89.jp2
b7f4e0a540beb6ffcc3912068440e59b
af6481c2a52e8f57ba65b25178881adb2c01fcfa
54986 F20110109_AACAZU UFE0000889_Page_07.QC.jpg
5dce5bb636029ab73a0edbc4ec322e58
f17d9c066b920e5d101682513fc811fa2ec18236
20564 F20110109_AACADB UFE0000889_Page_64thm.jpg
c7706734360b13d44ec64723df562a6c
0f9b2d29cf1b4e5eda8ebb68e9430063ec874410
34845 F20110109_AACACO UFE0000889_Page_84.jp2
4be3b1d33a36816d125139b3fbad46b6
e5b01afbfaab6bbe9b0bdd686d3b4f4bf75bfc56
28000 F20110109_AACABZ UFE0000889_Page_91.QC.jpg
f562a1021f43f1c668844bc14911b14a
df4de288afbb4d5854626b0e3933d541cc15287e
34954 F20110109_AACAZV UFE0000889_Page_07thm.jpg
5af6bb360a456674f52ad73ad44cfb24
1ea44d11194be5956c5d7eab59c530ff36b02a10
73047 F20110109_AACADC UFE0000889_Page_45.jpg
90c7b75991762957a39a7f1481116fb5
4b71b59a528ec1b817c91fa153d73824b0fe87d7
F20110109_AACACP UFE0000889_Page_14.tif
c863b1615d52962d5e9757c0d0f607f2
0ab4fddd43b0d42e9fb37e37b25d9eacac7d0837
108172 F20110109_AACAZW UFE0000889_Page_16.QC.jpg
f8b48c81960553e5aee1d2fca8bbbdd3
28606dc9aeb965091ea2cd82b3bab39fb7153c14
12431 F20110109_AACADD UFE0000889_Page_78.pro
565ff17cd60311a19c8bdb3ef8e25ca8
10dd20d33f021794c26ef332e419d79dd710fd8f
49133 F20110109_AACACQ UFE0000889_Page_94thm.jpg
e5091d036d8124c7d2b6d2a258dd3cfc
69ffcff9b83af48c22c838da35508edc098bdc98
52193 F20110109_AACAZX UFE0000889_Page_16thm.jpg
19c22d01dbad2b260859e66c71f66d2e
b0daf80fb685b8a9a8aae1d4b85c7082ed0b1b1e
54789 F20110109_AACADE UFE0000889_Page_56.jpg
eb63c1623730074eb05834ec3222f449
85fa43c26c5fa7f2eed7962e5e2d25dc5792966e
14895 F20110109_AACACR UFE0000889_Page_91.pro
d19dc155b3c7e39bf8d48f62153e878c
857cd4ad4410afe5027480d589e57f8ffec8f274
102576 F20110109_AACAZY UFE0000889_Page_27.QC.jpg
7b80c8f03445d35e5b06b5701660a02c
de1fca63ebffbff0978fc3883f18768dc4286b8e
649 F20110109_AACADF UFE0000889_Page_69.txt
89faeb72f11b5d5b495a1400b079ca83
f7fc442978f3c107b5286248be5f9a9f956f890e
72981 F20110109_AACACS UFE0000889_Page_10.QC.jpg
0d3731952f07685023ccd51e505518fd
3cf5f2dadf948e5a107d9fe25ccee5429f3ecf59
69209 F20110109_AACAZZ UFE0000889_Page_30.QC.jpg
20ccdfbf7b99627efae42068e6207df9
1b7e936e31f398df96f9e6a9c3535b3b63aea7c4
753451 F20110109_AACADG UFE0000889_Page_30.jp2
07222ef091f45a6111b961fba2f0b780
e0f14a9a14b084acba7cb0745308eee1ecc9f53d
38105 F20110109_AACADH UFE0000889_Page_91.jp2
0b23c00a202c90687b67f3c67cb021b8
69a6f53c47b12e16d6903a50786cf864dc8a2fc5
14749 F20110109_AACACT UFE0000889_Page_03.jpg
2098f6ec82e2932f4b5f5d29a70f51cb
ad2beaea320c11514293a0981410954b27e52eff
47874 F20110109_AACADI UFE0000889_Page_15thm.jpg
ae1ed54263d91c123722a39e4726922c
89b37c9f2533525a6fbb49c93b9975f531bcea1a
F20110109_AACACU UFE0000889_Page_47.tif
96b3d06d44985521f27e68bfa36940cb
225475ff3d328c4230b6acfb846b0a4276665382
10018 F20110109_AACADJ UFE0000889_Page_84thm.jpg
6e6c1011a32b89a177df47f38e4ca817
ce33d0df8cfc2701077e3281bd6532c366b0926e
41066 F20110109_AACACV UFE0000889_Page_74.jp2
f43b4bd2d06aaf6071cbf44dc4fc1c5f
3ac015b9b65f06f768611aed66661265b0576c7e
1926 F20110109_AACADK UFE0000889_Page_51.txt
8f9a3686f1e805870c7bec680a0ed60e
b66bca33195f3e111174657916672a014d8b5fff
576615 F20110109_AACACW UFE0000889_Page_29.jp2
a19369abef7d5df3a258f4e5cfd645aa
0564f5d345d889068ec9bb228c1ca8e3c54ae1ef
50715 F20110109_AACADL UFE0000889_Page_62.pro
7c530a493ff4c43f0541cd56e7c81319
54351880c01842660ae4ae57b5c419ceb696efbe
F20110109_AACACX UFE0000889_Page_67.tif
1759eb5cc7140b1249627e453b3874c1
b0101ffc5a02bfb507e4db7bb6635c1a01153c35
82444 F20110109_AACAEA UFE0000889_Page_13.jp2
68ec70c6f4570ea5e8bef01402637199
dc00c6b7320758d067fde98646cdecf7e2b14058
37924 F20110109_AACADM UFE0000889_Page_36thm.jpg
b6d541d3a11352ae78571ff79c2063e1
d3844546dff5c7be5d924175c9ccae7482496073
87658 F20110109_AACACY UFE0000889_Page_05.QC.jpg
e6d0bd02464573b28f5779dcbc6352c8
682b8b8192d88abc79e5209b3df4e1206fd360c0
101082 F20110109_AACAEB UFE0000889_Page_53.QC.jpg
9ae3be4c85795579cbbd6a52ebc206b2
8f7ceb96e9294c721e4bf54872064358a6c91b7a
12580 F20110109_AACADN UFE0000889_Page_12.pro
427e3888e7aa000f57c6f20aa754a47d
c71b42df483d79c3c936d938d5cdd32612646f4b
30152 F20110109_AACACZ UFE0000889_Page_86.QC.jpg
153ead1b5bad6d57c13fac596a72148e
20d3e62ee825269561bedf2b93e84f561b440b55
108228 F20110109_AACAEC UFE0000889_Page_08.QC.jpg
93c9b5085c286e2e9d46e25a855fec2f
95ed6a4e89f418517c31b288c765a1dd2f94655c
F20110109_AACADO UFE0000889_Page_92.tif
815276f495699bdbe5f0fa2f08925f2a
4bdeb4d5e8cec4be3758d0fb2b92ad2d47960834
157974 F20110109_AACAED UFE0000889_Page_18.jpg
51c1b7c5d39b887c7935dcc277e2e8a3
efc02c8166e5d75e00a3b6e14a39ae91ed69d057
12899 F20110109_AACADP UFE0000889_Page_81.pro
8e98ada8c9bd5f2e9a95c37d352ae9a8
5c0d368102915b416e15ab5135b3501399703a24
49729 F20110109_AACAEE UFE0000889_Page_27thm.jpg
3cc4139f870b9a27f4cbdccb063b967e
b03cfe2e4c8d66c482d8a7e221cbe1d04753f9c9
24944 F20110109_AACADQ UFE0000889_Page_73.QC.jpg
cba50e632a43283fe8d7a878f96980c4
2ba958b20e3e3a65cb0be5858794fad3a87a0e7f
10181 F20110109_AACAEF UFE0000889_Page_83thm.jpg
90eaf7ae978c64607a9763849ecb5b32
cf4ef3785a917ba64d553e91b8d9b2ac530304c2
241765 F20110109_AACADR UFE0000889_Page_17.jpg
b2666a76bd6ee3971daf86e5d0044032
3ddfe8eaf5529d53165e1b9ece81a95bae7217a7
24704 F20110109_AACAEG UFE0000889_Page_76.QC.jpg
61f3d8d9d370fd726485461bac4a209d
6d1d3e68da46430275ae1a880842885a98044ef5
27959 F20110109_AACADS UFE0000889_Page_88.QC.jpg
d0e08ab2547eae63e00e96108d9a8534
b3cf850c8d03db49dadf902693e9b60c6cdc9cfc
F20110109_AACAEH UFE0000889_Page_02.tif
0e6e89120a246eb52c9e8574d99f3af5
9c68860a187323a741c70b729b8608571f5a82e8
71555 F20110109_AACADT UFE0000889_Page_93.QC.jpg
b448060c4d8f3204a547165d254a1e25
5b2900000ae0fcb96b6b5981e1a7739e127c9f86
44723 F20110109_AACAEI UFE0000889_Page_64.pro
cdf436cfe9ce415a5594e1bbef35fe79
d80c6a1330540d780cd1a50d22795ff0ddf62309
21603 F20110109_AACAEJ UFE0000889_Page_42.pro
a0886be7b4ce00521aaacae13089bc2f
37b98231978be57169ac13b3207c90abe8f402eb
24895 F20110109_AACADU UFE0000889_Page_82.QC.jpg
19bec6cb3428395f68a32c71a2503ed7
d921ea6130ef2e1ee19e0dd19d12ea44a10bce3c
156619 F20110109_AACAEK UFE0000889_Page_65.jpg
2345ae96c8220d831ecb5e57b29e5d6a
084163f015b086cadbd8f9a094e087d78deead56
945 F20110109_AACADV UFE0000889_Page_92.txt
a75e01a9bd0fa60c764ebdd03da3bb06
63fe61afa9448ff497d5caf3225c4bc87e15d20e
14881 F20110109_AACAEL UFE0000889_Page_72.pro
95ee81ab469eff70f57e4a6199b6ae7e
44213db76f6e7dd3402fb143679ddfc71bb085e9
F20110109_AACADW UFE0000889_Page_40.tif
46c4770dff8428db8488fe743fab81b7
578670e9e6ff5ae69d8e877481ba5352fce4253f
57689 F20110109_AACAFA UFE0000889_Page_94.pro
73076437749b9192396ac39a5e0cba41
1af1d3f48ccf8c47062627c292e8eaf07628a6d0
1051945 F20110109_AACAEM UFE0000889_Page_23.jp2
ca90f39f4a3b9f0ac7414f9318e56aff
88a2039f83f61394412ea17a1ca06bb889320540
10491 F20110109_AACADX UFE0000889_Page_90thm.jpg
da967c67b013062811c9f19fdd1e65ad
eee1c85726f36cfd4ef444fddf6b0921069b9dcf



PAGE 1

DETERMINATION OF PATIENT-SPE CIFIC FUNCTIONAL AXES THROUGH TWO-LEVEL OPTIMIZATION By JEFFREY A. REINBOLT A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLOR IDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2003

PAGE 2

Copyright 2003 by Jeffrey A. Reinbolt

PAGE 3

This thesis is dedicated to my loving wife, Karen.

PAGE 4

ACKNOWLEDGMENTS I sincerely thank Dr. B. J. Fregly for his support and leadership throughout our research endeavors; moreover, I truly recognize the value of his honest, straightforward, and experience-based advice. My life has been genuinely influenced by Dr. Freglys expectations, confidence, and trust in me. I also extend gratitude to Dr. Raphael Haftka and Dr. Roger Tran-Son-Tay for their dedication, knowledge, and instruction in the classroom. For these reasons, each was selected to serve on my supervisory committee. I express thanks to both individuals for their time, contribution, and fulfillment of their committee responsibilities. I recognize Jaco for his assistance, collaboration, and suggestions. His dedication and professionalism have allowed my graduate work to be both enjoyable and rewarding. I collectively show appreciation for my family and friends. Unconditionally, they have provided me with encouragement, support, and interest in my graduate studies and research activities. My wife, Karen, has done more for me than any person could desire. On several occasions, she has taken a leap of faith with me; more importantly, she has been directly beside me. Words or actions cannot adequately express my gratefulness and adoration toward her. I honestly hope that I can provide her as much as she has given to me. I thank God for my excellent health, inquisitive mind, strong faith, valuable experiences, encouraging teachers, loving family, supportive friends, and wonderful wife. iv

PAGE 5

TABLE OF CONTENTS Page ACKNOWLEDGMENTS.................................................................................................iv TABLE OF CONTENTS.....................................................................................................v LIST OF TABLES...........................................................................................................viii LIST OF FIGURES...........................................................................................................xi ABSTRACT.....................................................................................................................xiii CHAPTER 1 INTRODUCTION........................................................................................................1 Arthritis: The Nations Leading Cause of Disability...................................................1 Need for Accurate Patient-Specific Models.................................................................2 Benefits of Two-Level Optimization............................................................................3 2 BACKGROUND..........................................................................................................4 Motion Capture.............................................................................................................4 Biomechanical Models.................................................................................................4 Kinematics and Dynamics............................................................................................5 Optimization.................................................................................................................5 Limitations of Previous Methods..................................................................................5 3 METHODS...................................................................................................................7 Parametric Model Structure..........................................................................................7 Hip Joint................................................................................................................8 Knee Joint..............................................................................................................8 Ankle Joint...........................................................................................................10 Two-Level Optimization Approach............................................................................11 Why Two Levels of Optimization Are Necessary..............................................11 Inner-Level Optimization....................................................................................11 Outer-Level Optimization...................................................................................12 Two-Level Optimization Evaluation..........................................................................13 Synthetic Marker Data without Noise.................................................................13 v

PAGE 6

Synthetic Marker Data with Noise......................................................................13 Experimental Marker Data..................................................................................14 4 RESULTS...................................................................................................................29 Synthetic Marker Data without Noise........................................................................29 Synthetic Marker Data with Noise.............................................................................29 Experimental Marker Data.........................................................................................29 5 DISCUSSION.............................................................................................................36 Assumptions, Limitations, and Future Work..............................................................36 Joint Model Selection..........................................................................................36 Design Variable Constraints................................................................................36 Objective Function Formulation..........................................................................37 Optimization Time and Parallel Computing........................................................37 Multi-Cycle and One-Half-Cycle Joint Motions.................................................38 Range of Motion and Loading Conditions..........................................................39 Optimization Using Gait Motion.........................................................................39 Comparison of Experimental Results with Literature................................................40 6 CONCLUSION...........................................................................................................43 Rationale for New Approach......................................................................................43 Synthesis of Current Work and Literature..................................................................43 GLOSSARY......................................................................................................................45 APPENDIX A NOMINAL JOINT PARAMETERS & OPTIMIZATION BOUNDS FOR SYNTHETIC MARKER DATA................................................................................52 B NOMINAL JOINT PARAMETERS & OPTIMIZATION BOUNDS FOR EXPERIMENTAL MARKER DATA.......................................................................55 C NOMINAL & OPTIMUM JOINT PARAMETERS FOR SYNTHETIC MARKER DATA WITHOUT NOISE.........................................................................................58 D NOMINAL & OPTIMUM JOINT PARAMETERS FOR SYNTHETIC MARKER DATA WITH NOISE.................................................................................................61 E NOMINAL & OPTIMUM JOINT PARAMETERS FOR MULTI-CYCLE EXPERIMENTAL MARKER DATA.......................................................................64 F NOMINAL & OPTIMUM JOINT PARAMETERS FOR FIRST ONE-HALF-CYCLE EXPERIMENTAL MARKER DATA....................................67 vi

PAGE 7

G NOMINAL & OPTIMUM JOINT PARAMETERS FOR SECOND ONE-HALF-CYCLE EXPERIMENTAL MARKER DATA....................................70 H OPTIMUM JOINT PARAMETERS FOR MULTI-CYCLE & FIRST ONE-HALF-CYCLE EXPERIMENTAL MARKER DATA....................................73 I OPTIMUM JOINT PARAMETERS FOR MULTI-CYCLE & SECOND ONE-HALF-CYCLE EXPERIMENTAL MARKER DATA....................................76 LIST OF REFERENCES...................................................................................................79 BIOGRAPHICAL SKETCH.............................................................................................83 vii

PAGE 8

LIST OF TABLES Table Page 3-1 Model degrees of freedom........................................................................................17 3-2 Hip joint parameters.................................................................................................20 3-3 Knee joint parameters...............................................................................................23 3-4 Ankle joint parameters.............................................................................................25 4-1 Two-level optimization results for synthetic marker data with random continuous numerical noise to simulate skin movement artifacts with maximum amplitude of 1 cm.............................................................................................................................31 4-2 Mean marker distance errors for nominal values and the two-level optimization results for multi-cycle experimental marker data.....................................................33 4-3 Mean marker distance errors for the two-level optimization results using first and second halves of the joint cycle motion for experimental marker data....................35 5-1 Mean marker distance errors for the inner-level objective function consisting of marker coordinate errors versus marker distance errors for multi-cycle experimental marker data...............................................................................................................41 5-2 Execution times for the inner-level objective function consisting of marker coordinate errors versus marker distance errors for multi-cycle experimental marker data...........................................................................................................................42 A-1 Nominal right hip joint parameters and optimization bounds for synthetic marker data...........................................................................................................................52 A-2 Nominal right knee joint parameters and optimization bounds for synthetic marker data...........................................................................................................................53 A-3 Nominal right ankle joint parameters and optimization bounds for synthetic marker data...........................................................................................................................54 B-1 Nominal right hip joint parameters and optimization bounds for experimental marker data...............................................................................................................55 viii

PAGE 9

B-2 Nominal right knee joint parameters and optimization bounds for experimental marker data...............................................................................................................56 B-3 Nominal right ankle joint parameters and optimization bounds for experimental marker data...............................................................................................................57 C-1 Nominal and optimum right hip joint parameters for synthetic marker data without noise.........................................................................................................................58 C-2 Nominal and optimum right knee joint parameters for synthetic marker data without noise............................................................................................................59 C-3 Nominal and optimum right ankle joint parameters for synthetic marker data without noise............................................................................................................60 D-1 Nominal and optimum right hip joint parameters for synthetic marker data with noise.........................................................................................................................61 D-2 Nominal and optimum right knee joint parameters for synthetic marker data with noise.........................................................................................................................62 D-3 Nominal and optimum right ankle joint parameters for synthetic marker data with noise.........................................................................................................................63 E-1 Nominal and optimum right hip joint parameters for multi-cycle experimental marker data...............................................................................................................64 E-2 Nominal and optimum right knee joint parameters for multi-cycle experimental marker data...............................................................................................................65 E-3 Nominal and optimum right ankle joint parameters for multi-cycle experimental marker data...............................................................................................................66 F-1 Nominal and optimum right hip joint parameters for first one-half-cycle experimental marker data.........................................................................................67 F-2 Nominal and optimum right knee joint parameters for first one-half-cycle experimental marker data.........................................................................................68 F-3 Nominal and optimum right ankle joint parameters for first one-half-cycle experimental marker data.........................................................................................69 G-1 Nominal and optimum right hip joint parameters for second one-half-cycle experimental marker data.........................................................................................70 G-2 Nominal and optimum right knee joint parameters for second one-half-cycle experimental marker data.........................................................................................71 ix

PAGE 10

G-3 Nominal and optimum right ankle joint parameters for second one-half-cycle experimental marker data.........................................................................................72 H-1 Optimum right hip joint parameters for multi-cycle and first one-half-cycle experimental marker data.........................................................................................73 H-2 Optimum right knee joint parameters for multi-cycle and first one-half-cycle experimental marker data.........................................................................................74 H-3 Optimum right ankle joint parameters for multi-cycle and first one-half-cycle experimental marker data.........................................................................................75 I-1 Optimum right hip joint parameters for multi-cycle and second one-half-cycle experimental marker data.........................................................................................76 I-2 Optimum right knee joint parameters for multi-cycle and second one-half-cycle experimental marker data.........................................................................................77 I-3 Optimum right ankle joint parameters for multi-cycle and second one-half-cycle experimental marker data.........................................................................................78 x

PAGE 11

LIST OF FIGURES Figure Page 3-1 The 3D, 14 segment, 27 DOF full-body kinematic model linkage joined by a set of gimbal, universal, and pin joints..............................................................................16 3-2 A 1 DOF joint axis simultaneously defined in two adjacent body segments and the geometric constraints on the optimization of each of the 9 model parameters........18 3-3 Modified Cleveland Clinic marker set used during static and dynamic motion-capture trials................................................................................................19 3-4 The 3 DOF right hip joint center simultaneously defined in the pelvis and right femur segments and the 6 translational model parameters optimized to determine the functional hip joint center location.....................................................................20 3-5 Geometric constraints on the optimization of translational and rotational model parameters for the hip, knee, and ankle joints..........................................................21 3-6 The 1 DOF right knee joint simultaneously defined in the right femur and right tibia segments and the 4 rotational and 5 translational model parameters optimized to determine the knee joint location and orientation................................................22 3-7 The 2 DOF right ankle joint complex simultaneously defined in the right tibia, talus, and foot segments and the 5 rotational and 7 translational model parameters optimized to determine the joint locations and orientations....................................24 3-8 Two-level optimization technique minimizing the 3D marker coordinate errors between the kinematic model markers and experimental marker data to determine functional joint axes for each lower-extremity joint................................................26 3-9 Inner-level optimization convergence illustration series for the knee joint, where synthetic markers are blue and model markers are red............................................27 3-10 Two-level optimization approach minimizing the 3D marker coordinate errors between the kinematic model markers and experimental marker data to determine functional joint axes.................................................................................................28 4-1 Outer-level optimization objective function fitness value convergence for synthetic marker data with random continuous numerical noise to simulate skin movement xi

PAGE 12

artifacts with maximum amplitude of 1 cm, where the best fitness value among all nodes is given for each iteration...............................................................................32 4-2 Outer-level optimization objective function fitness value convergence for multi-cycle experimental marker data, where the best fitness value among all nodes is given for each iteration.........................................................................................34 xii

PAGE 13

Abstract of Thesis Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Master of Science DETERMINATION OF PATIENT-SPECIFIC FUNCTIONAL AXES THROUGH TWO-LEVEL OPTIMIZATION By Jeffrey A. Reinbolt August 2003 Chair: Benjamin J. Fregly Major Department: Biomedical Engineering An innovative patient-specific dynamic model would be useful for evaluating and enhancing corrective surgical procedures. This thesis presents a nested (or two-level) system identification optimization approach to determine patient-specific model parameters that best fit a three-dimensional (3D), 18 degree-of-freedom (DOF) lower-body model to an individuals movement data. The whole body was modeled as a 3D, 14 segment, 27 DOF linkage joined by a set of gimbal, universal, and pin joints. For a given set of model parameters, the inner-level optimization uses a nonlinear least squares algorithm that adjusts each generalized coordinate of the lower-body model to minimize 3D marker coordinate errors between the model and motion data for each time instance. The outer-level optimization implements a parallel particle swarm algorithm that modifies each model parameter to minimize the sum of the squares of 3D marker coordinate errors computed by the inner-level optimization throughout all time instances (or the entire motion). xiii

PAGE 14

At the termination of each two-level optimization using synthetic marker data without noise, original marker trajectories were precisely recovered to within an arbitrarily tight tolerance (on the order of 1e-13 cm) using double precision computations. At the termination of each two-level optimization using synthetic marker data with noise representative of skin and soft tissue movement artifacts, the mean marker distance error for each joint complex was as follows: ankle = 0.51 + 0.23 cm; knee = 0.39 + 0.15 cm; and hip = 0.47 + 0.20 cm. Mean marker distance errors are approximately one-half of the 1 cm maximum amplitude specified for the noise model. At the termination of each two-level optimization using experimental marker data from one subject, the mean marker distance error for each joint complex was less than or equal to the following: ankle = 0.38 + 0.19 cm; knee = 0.55 + 0.27 cm; and hip = 0.36 + 0.20 cm. Experimental mean marker distance error results are comparable to the results of the synthetic data with noise. The two-level optimization method effectively determines patient-specific model parameters defining a 3D lower-extremity model that is well suited to a particular subject. When compared to previous values in the literature, experimental results show reasonable agreement and demonstrate the necessity for the new approach. By minimizing fitness errors between the patient-specific model and experimental motion data, the resulting kinematic model provides an accurate foundation for future dynamic analyses and optimizations. xiv

PAGE 15

CHAPTER 1 INTRODUCTION Arthritis: The Nations Leading Cause of Disability In 1997, the Centers for Disease Control and Prevention (CDC) reported that 43 million (or 1 in 6) Americans suffered with arthritis. A 2002 CDC study showed that 70 million (a 63% increase in 5 years; or 1 in 3) Americans have arthritis ( CDC, 2003 ). Approximately two-thirds of individuals with arthritis are under 65 years old. As the population ages, the number of people with arthritis is likely to increase significantly. The most common forms of arthritis are osteoarthritis, rheumatoid arthritis, fibromyalgia, and gout. Osteoarthritis of the knee joint accounts for roughly 30% ($25 billion) of the $82 billion total arthritis costs per year in the United States. Knee osteoarthritis symptoms of pain and dysfunction are the primary reasons for total knee replacement (TKR). This procedure involves a resurfacing of bones surrounding the knee joint. The end of the femur is removed and covered with a metal implant. The end of the tibia is removed and substituted by a plastic implant. Smooth metal and plastic articulation replaces the irregular and painful arthritic surfaces. Approximately 100,000 Medicare patients alone endure TKR procedures each year ( Heck et al., 1998 ). Hospital charges for unilateral TKR are more than $30,000 and the cost of bilateral TKR is over $50,000 ( Lane et al., 1997 ). An alternative to TKR is a more conservative (both economically and surgically) corrective procedure known as high tibial osteotomy (HTO). By changing the frontal plane alignment of the tibia with a wedge of bone, a HTO shifts the weight-bearing axis 1

PAGE 16

2 of the leg, and thus the mechanical stresses, from the diseased portion to the healthy section of the knee compartment. By transferring the location of mechanical stresses, the degenerative disease process may be slowed or possibly reversed. The advantages of HTO are appealing to younger and active patients who receive recommendations to avoid TKR. Need for Accurate Patient-Specific Models Innovative patient-specific models and simulations would be valuable for addressing problems in orthopedics and sports medicine, as well as for evaluating and enhancing corrective surgical procedures ( Arnold et al., 2000 ; Arnold and Delp, 2001 ; Chao et al., 1993 ; Chao and Sim, 1995 ; Delp et al., 1998 ; Delp et al., 1996 ; Delp et al., 1990 ; Pandy, 2001 ). For example, a patient-specific dynamic model may be useful for planning intended surgical parameters and predicting the outcome of HTO. The main motivation for developing a patient-specific computational model and a two-level optimization method to enhance the lower-extremity portion is to predict the post-surgery peak knee adduction moment in HTO patients. Conventional surgical planning techniques for HTO involve choosing the amount of necessary tibial angulation from standing radiographs (or x-rays). Unfortunately, alignment correction estimates from static x-rays do not accurately predict long-term clinical outcome after HTO ( Andriacchi, 1994 ; Tetsworth and Paley, 1994 ). Researchers have identified the peak external knee adduction moment as an indicator of clinical outcome while investigating the gait of HTO patients ( Andriacchi, 1994 ; Bryan et al., 1997 ; Hurwitz et al., 1998 ; Prodromos et al., 1985 ; Wang et al., 1990 ). Currently, no movement simulations (or other methods for that matter) allow surgeons to choose HTO surgical parameters to achieve a chosen post-surgery knee adduction moment.

PAGE 17

3 Movement simulations consist of models involving skeletal structure, muscle paths, musculotendon actuation, muscle excitation-contraction coupling, and a motor task goal ( Pandy, 2001 ). Development of an accurate inverse dynamic model of the skeletal structure is a significant first step toward creating a predictive patient-specific forward dynamic model to perform movement simulations. The precision of dynamic analyses is fundamentally associated with the accuracy of kinematic model parameters such as segment lengths, joint positions, and joint orientations ( Andriacchi and Strickland, 1985 ; Challis and Kerwin, 1996 ; Cappozzo et al., 1975 ; Davis, 1992 ; Holden and Stanhope, 1998 ; Holden and Stanhope, 2000 ; Stagni et al., 2000 ). Understandably, a model constructed of rigid links within a multi-link chain and simple mechanical approximations of joints will not precisely match the human anatomy and kinematics. The model should provide the best possible agreement to experimental motion data within the bounds of the joint models selected ( Sommer and Miller, 1980 ). Benefits of Two-Level Optimization This thesis presents a nested (or two-level) system identification optimization approach to determine patient-specific joint parameters that best fit a three-dimensional (3D), 18 degree-of-freedom (DOF) lower-body model to an individuals movement data. The two-level technique combines the advantages of using optimization to determine both the position of model segments from marker data and the anatomical joint axes linking adjacent segments. By formulating a two-level objective function to minimize marker coordinate errors, the resulting optimum model more accurately represents experimental marker data (or a specific patient and his or her motion) when compared to a nominal model defined by joint axes prediction methods.

PAGE 18

CHAPTER 2 BACKGROUND Motion Capture Motion capture is the use of external devices to capture the movement of a real object. One type of motion-capture technology is based on a passive optical technique. Passive refers to markers, which are simply spheres covered in reflective tape, placed on the object. Optical refers to the technology used to provide 3D data, which involves high-speed, high-resolution video cameras. By placing passive markers on an object, special hardware records the position of those markers in time and it generates a set of motion data (or marker data). Often motion capture is used to create synthetic actors by capturing the motions of real humans. Special effects companies have used this technique to produce incredibly realistic animations in movies such as Star Wars Episode I & II, Titanic, Batman, and Terminator 2. Biomechanical Models Researchers use motion-capture technology to construct biomechanical models of the human structure. The position of external markers may be used to estimate the position of internal landmarks such as joint centers. The markers also enable the creation of individual segment reference frames that define the position and orientation of each body segment within a Newtonian laboratory reference frame. Marker data collected from an individual are used to prescribe the motion of the biomechanical model. 4

PAGE 19

5 Kinematics and Dynamics Human kinematics is the study of the positions, angles, velocities, and accelerations of body segments and joints during motion. With kinematic data and mass-distribution data, one can study the forces and torques required to produce the recorded motion data. Errors between the biomechanical model and the recorded motion data will inevitably propagate to errors in the force and torque results of dynamic analyses. Optimization Optimization involves searching for the minimum or maximum of an objective function by adjusting a set of design variables. For example, the objective function may be the errors between the biomechanical model and the recorded motion data. These errors are a function of the models generalized coordinates and the models kinematic parameters such as segment lengths, joint positions, and joint orientations. Optimization may be used to modify the design variables of the model to minimize the overall fitness errors and identify a structure that matches the experimental data very well. Limitations of Previous Methods The literature contains a number of examples that use techniques, with or without optimization, to assist in the development of subject-specific joint models within a larger computational model. Several authors have presented methodologies to predict joint locations and orientations from external landmarks without using optimization ( Bell et al., 1990 ; Inman, 1976 ; Vaughan et al., 1992 ). However, a regression model based solely upon population studies may not accurately portray an individual patient. Another study demonstrated an optimization method to determine the position and orientation of a 3 link, 6 DOF model by minimizing the distances between model-determined and experimental marker positions ( Lu and OConnor, 1999 ). A model optimally positioned

PAGE 20

6 without adjusting its joint parameters may not properly correspond to a certain patient. Earlier studies described optimization methods to determine a set of model parameters for a 3D, 2 DOF model by decreasing the error between the motion of the model and experimental data ( Sommer and Miller, 1980 ; Bogert et al., 1994 ). A model defined by optimal joint parameters without optimizing its segment positions may not accurately describe the motion of a patient within the bounds of the chosen joint approximations.

PAGE 21

CHAPTER 3 METHODS Parametric Model Structure A generic, parametric 3D full-body kinematic model was constructed with Autolev (Online Dynamics, Inc., Sunnyvale, CA) as a 14 segment, 27 DOF linkage joined by a set of gimbal, universal, and pin joints ( Figure 3-1 Table 3-1 ). Comparable to Pandy's ( 2001 ) model structure, 3 translational degrees of freedom (DOFs) (q1, q2, and q3) and 3 rotational DOFs (q4, q5, and q6) express the movement of the pelvis in 3D space and the remaining 13 body segments comprise four open chains branching from the pelvis segment. The locations and orientations of the joints within corresponding body segments are described by 98 patient-specific model parameters. In other words, the patient-specific model parameters designate the geometry of the model containing the following joints types: 3 DOF hip, 1 DOF knee, 2 DOF ankle, 3 DOF back, 2 DOF shoulder, and 1 DOF elbow. Each joint is defined in two adjacent body segments and provides a mechanical approximation connecting those segments ( Figure 3-2 ). For example, the knee joint axis is simultaneously established in the femur coordinate system and the tibia coordinate system. A modified version of the Cleveland Clinic marker set ( Figure 3-3 ) and a static motion-capture trial is used to create segment coordinate systems and define static and dynamic marker locations in these coordinate systems. Institutional review board approval and proper informed consent were obtained before human involvement in the experiments. The marker data collection system was a HiRes Expert Vision System 7

PAGE 22

8 (Motion Analysis Corp., Santa Rosa, CA), including six HSC-180 cameras, EVa 5.11 software, and two AMTI force plates (Advanced Management Technology, Inc., Arlington, VA). Marker data were collected at 180 Hz during 3 seconds for static trials and 6 seconds for individual joint trials. The raw data were filtered using a fourth-order, zero phase-shift, low pass Butterworth Filter with a cutoff frequency set at 6 Hz. Hip Joint There are 6 translational model parameters that must be adjusted to establish a functional hip joint center for a particular patient ( Figure 3-4 Table 3-2 ). Markers placed over the left anterior superior iliac spine (ASIS), right ASIS, and superior sacrum define the pelvis segment coordinate system. From percentages of the inter-ASIS distance, a predicted (or nominal) hip joint center location within the pelvis segment is 19.3% posterior (p1), 30.4% inferior (p2), and 35.9% medial-lateral (p3) ( Bell et al., 1990 ). This nominal hip joint center is the origin of the femur coordinate system, which is subsequently defined by markers placed over the medial and lateral femoral epicondyles. An additional 3 translational model parameters (p4, p5, and p6), described in the femur coordinate system, complete the structure of the nominal hip joint center. Given the physical hip joint center is located within the pelvic region lateral to the midsagittal plane, a cube with side lengths equal to 75% of the inter-ASIS distance and its anterior-superior-medial vertex positioned at the midpoint of the inter-ASIS line provides the geometric constraints for the optimization of each model parameter ( Figure 3-5 Table A-1 Table B-1 ). Knee Joint There are 9 model parameters (5 translational and 4 rotational) that must be tailored to identify a patient-specific functional knee joint axis ( Figure 3-6 Table 3-3 ). The

PAGE 23

9 femoral transepicondylar axis is a good approximation of a fixed knee joint axis ( Churchill et al., 1998 ). The line (or nominal) knee joint axis, connecting the medial and lateral knee markers is defined in the femur and tibia coordinate systems ( Vaughan et al., 1992 ). Given the line passes through the midsagittal plane (x-y plane) of the femur segment, the nominal knee joint axis is positioned within the femur via 2 translational model parameters (p5 and p6) and 2 rotational model parameters (p1 and p2). The tibia coordinate system originates at the midpoint of the knee markers and is defined by additional markers located on the medial and lateral malleoli. The distal description of the nominal knee joint axis is comprised of 3 translational model parameters (p7, p8, and p9) and 2 rotational model parameters (p3 and p4) in the tibia segment. Given the anatomical knee joint DOFs are situated within the articular capsule, a cube with side lengths equal to the distance between knee markers and its center located at the midpoint of the nominal knee joint axis provides the geometric constraints for the optimization of each translational model parameter. The rotational model parameters are constrained within a circular cone defined by the 360 revolution of the nominal knee joint axis perturbed by + 30 ( Figure 3-5 Table A-2 Table B-2 ). It is not a trivial notion to eliminate a potential medial-lateral translational model parameter in the femur segment. This model parameter is considered redundant, as the knee joint axis passes through the midsagittal plane of the femur, and its inclusion may lead to possible optimization convergence problems, similar to the redundant ankle model parameter discussion of Bogert et al. ( 1994 ). By including redundant model parameters, there are an infinite number of optimum solutions within the constraints of corresponding superfluous model parameters.

PAGE 24

10 Ankle Joint There are 12 patient-specific model parameters (7 translational and 5 rotational) that must be customized to determine a pair of patient-specific functional ankle joint axes ( Figure 3-7 Table 3-4 ). Comparable to Bogert et al. ( 1994 ), the talocrural and subtalar joints connect the tibia, talus, and foot segments. Within the tibia segment, 3 translational model parameters (p6, p7, and p8) and 2 rotational model parameters (p1 and p2) position the nominal talocrural joint axis. The talus origin corresponds to the talocrural joint center; therefore, it is not necessary to prescribe model parameters defining the talocrural joint axis in the talus segment. The talus coordinate system is created where the y-axis extends along the line perpendicular to both the talocrural joint axis and the subtalar joint axis. The heel and toe markers, in combination with the tibia y-axis, define the foot coordinate system. There are 3 translational model parameters (p10, p11, and p12) and 2 rotational model parameters (p4 and p5) ( Inman, 1976 ) that place the nominal subtalar joint axis in the foot coordinate system. Given the anatomical ankle joint DOFs are found within the articular capsule, a cube with side lengths equal to the distance between ankle markers and its center located at the midpoint of the nominal talocrural joint axis provides the geometric constraints for the optimization of each translational model parameter. The rotational model parameters of the talocrural joint axis are restricted within a circular cone defined by the 360 revolution of the nominal talocrural joint axis varied by + 30. The rotational model parameters of the subtalar joint axis are confined within a circular cone defined by the 360 revolution of the nominal subtalar joint axis altered by + 30 ( Figure 3-5 Table A-3 Table B-3 ).

PAGE 25

11 Two-Level Optimization Approach Why Two Levels of Optimization Are Necessary Optimization may be used to identify a system (or determine patient-specific joint parameters) that best fit a 3D, 18 DOF lower-body model to an individuals movement data. One level of optimization is necessary to establish the models geometry. Given a defined model, another level of optimization is required to position and orientate the models body segments. By formulating a two-level objective function to minimize 3D marker coordinate errors, the two-level optimization results describe a lower-body model that accurately represents experimental data. Inner-Level Optimization Given marker trajectory data, md, and a constant set of patient-specific model parameters, p, the inner-level optimization ( Figure 3-8 inner boxes) minimizes the 3D marker coordinate errors, ec, between the model markers, m m and the marker movement data, md, ( Equation 3-1 ) using a nonlinear least squares algorithm that adjusts the generalized coordinates, q, of the model at each instance in time, t, ( Figure 3-9 ), similar to Lu and OConnor ( 1999 ). In other words, the pose of the model is revised to match the marker movement data at each time frame of the entire motion. (q, p, t) m(t) m (q, p, t) emdc min (3-1) At the first time instance, the algorithm is seeded with exact values for the 6 generalized coordinates of the pelvis, since the marker locations directly identify the position and orientation of the pelvis coordinate system, and all remaining generalized coordinates are seeded with values equal to zero. Given the joint motion is continuous, each optimal generalized coordinate solution, including the pelvis generalized

PAGE 26

12 coordinates, at one time instance is used as the algorithms seed for the next time instance. Matlab 6.1 (The MathWorks, Inc., Natick, MA), in conjunction with the Matlab Optimization Toolbox and Matlab C/C++ Compiler, was used to develop the inner-level optimization program. Outer-Level Optimization The outer-level global optimization ( Figure 3-8 outer boxes) minimizes the sum of the squares, ess, of the 3D marker coordinate errors, ec, ( Equation 3-1 ) computed by the inner-level algorithm throughout all time instances, n, ( Equation 3-2 ) by modifying the patient-specific model parameters, p. In other words, the geometric structure of the model is varied to best fit the marker movement data for the entire motion. ntcTcss(q, p, t)e(q, p, t)e (q, p, n) e1 min (3-2) The outer-level optimization is adapted from the population-based Particle Swarm Optimizer (PSO) ( Kennedy and Eberhart, 1995 ). The PSO algorithm was chosen over gradient-based optimizers for its suitability to be parallelized and its ability to solve global optimization problems. It is particularly effective in the determination of joint positions and orientations of biomechanical systems ( Schutte et al., 2003 ). The work of Schutte et al. ( 2003 ) contrasted the PSO to a gradient-based optimizer (i.e., Broyden-Fletcher-Goldfarb-Shanno) that is commonly used in system identification problems involving biomechanical models. The PSO very reliably converged to the global minimum and it was insensitive to both design variable scaling and initial seeds ( Schutte et al., 2003 ). To manage computational requirements, the outer-level optimization uses a parallel version of the PSO operating on a cluster of 20 Linux-based 1.33 GHz Athlon PCs on a

PAGE 27

13 100 Mbps switched Fast Ethernet network. Each machine is separately seeded with a random set of initial patient-specific model parameter values. The outer-level optimization program was implemented in C on the Linux operating system with the Message Passing Interface (MPI) parallel computation libraries. Two-Level Optimization Evaluation Synthetic Marker Data without Noise To evaluate the ability of the two-level optimization approach ( Figure 3-10 ) to calibrate the generic, parametric kinematic model, synthetic movement data was generated for the ankle, knee, and hip joints based on estimated in vivo model parameters and experimental movement data. For each generated motion, the distal segment moved within the physiological range of motion and exercised each DOF for the joint. There were 50 time frames and approximately 3.5 cycles of a circumductive hip motion consisting of concurrent flexion-extension and abduction-adduction. Flexion-extension comprised 50 time frames and roughly 4 cycles of knee motion. The ankle motion involved 50 time frames and nearly 2.75 cycles of circumduction of the toe tip, where plantarflexion-dorsiflexion and inversion-eversion occurred simultaneously. The ability of the two-level optimization to recover the original model parameters used when generating the synthetic motions was assessed. Synthetic Marker Data with Noise To evaluate the ability of the two-level optimization method ( Figure 3-10 ) to calibrate the generic kinematic model to a synthetic patient, skin movement artifacts were introduced into the synthetic movement data for the ankle, knee, and hip joints. The relative movement between skin and underlying bone occurs in a continuous rather than a random fashion ( Cappozzo et al., 1993 ). Comparable to the simulated skin movement

PAGE 28

14 artifacts of Lu and OConnor ( 1999 ), a continuous numerical noise model of the form tA sin was used and the equation variables were randomly generated within the following bounds: amplitude (0 A 1 cm), frequency (0 25 rad/s), and phase angle (0 2) ( Chze et al., 1995 ). Noise was separately generated for each 3D coordinate of the marker trajectories. Again, the two-level optimization was tested for its ability to reproduce the original model parameters. Experimental Marker Data To verify the ability of the two-level optimization technique ( Figure 3-10 ) to calibrate the generic kinematic model to a particular patient, multi-cycle experimental marker trajectory data was collected from one subject. For each joint motion, the distal segment moved within the physiological range of motion and exercised each DOF for the joint. Analogous to Bogert et al. ( 1994 ), the original data were resampled non-equidistantly to eliminate weighting the data set with many data points occurring during acceleration and deceleration at the limits of the range of motion. In other words, regardless of changes in velocity during joint movements, the data was equally distributed over the entire joint range of motion. The time frames of original tracked marker data sets (right hip = 1015, right knee = 840, and right ankle = 707) were reduced to 50 time frames. The resampled data allowed a fixed amount of marker movement between frames to arrive at the number of time frames chosen, given that 50 time frames is analogous to Lu and OConnor ( 1999 ). There were nearly 2 cycles of flexion-extension and abduction-adduction involved in the hip motion. Similar to Leardini et al. ( 1999 ), internal-external rotation of the hip was avoided to reduce the effects of skin and soft tissue movement artifacts. Approximately 2 cycles of knee

PAGE 29

15 motion included flexion-extension. Simultaneous plantarflexion-dorsiflexion and inversion-eversion comprised roughly 2 cycles of ankle motion. Without knowledge of original model parameters, the marker coordinate errors are the only means of measuring the effectiveness of the two-level optimization. To verify the ability of the two-level optimization procedure ( Figure 3-10 ) to calibrate the generic kinematic model to a particular patient using a smaller portion of the joint motion cycle, the resampled multi-cycle experimental marker trajectory data described above was divided into the first and second halves of the individual hip, knee, and ankle joint motion cycles. The number of time frames comprising each one-half-cycle of the joint motion was as follows: ankle = 13, knee = 13, and hip = 19. Again, the two-level optimization was tested for its ability to reduce the marker coordinate errors and obtain an optimal set of model parameters.

PAGE 30

16 3-1. The 3D, 14 segment, 27 DOF full-body kinematic model linkage joined by a set of gimbal, universal, and pin joints. Figure

PAGE 31

17 3-1. Model degrees of freedom. Table DOF Description q1 Pelvis anterior-posterior position q2 Pelvis superior-inferior position q3 Pelvis medial-lateral position q4 Pelvis anterior-posterior tilt angle q5 Pelvis elevation-depression angle q6 Pelvis internal-external rotation angle q7 Right hip flexion-extension angle q8 Right hip adduction-abduction angle q9 Right hip internal-external rotation angle q10 Right knee flexion-extension angle q11 Right ankle plantarflexion-dorsiflexion angle q12 Right ankle inversion-eversion angle q13 Left hip flexion-extension angle q14 Left hip adduction-abduction angle q15 Left hip internal-external rotation angle q16 Left knee flexion-extension angle q17 Left ankle plantarflexion-dorsiflexion angle q18 Left ankle inversion-eversion angle q19 Trunk anterior-posterior tilt angle q20 Trunk elevation-depression angle q21 Trunk internal-external rotation angle q22 Right shoulder flexion-extension angle q23 Right shoulder adduction-abduction angle q24 Right elbow flexion angle q25 Left shoulder flexion-extension angle q26 Left shoulder adduction-abduction angle q27 Left elbow flexion angle

PAGE 32

18 3-2. A 1 DOF joint axis simultaneously defined in two adjacent body segments and the geometric constraints on the optimization of each of the 9 model parameters. Figure

PAGE 33

19 3-3. Modified Cleveland Clinic marker set used during static and dynamic motion-capture trials. Note: the background femur and knee markers have been omitted for clarity and the medial and lateral markers for the knee and ankle are removed following the static trial. Figure

PAGE 34

20 3-4. The 3 DOF right hip joint center simultaneously defined in the pelvis and right femur segments and the 6 translational model parameters optimized to determine the functional hip joint center location. Figure 3-2. Hip joint parameters. Table Hip Joint Parameter Description p1 Anterior-posterior location in pelvis segment p2 Superior-inferior location in pelvis segment p3 Medial-lateral location in pelvis segment p4 Anterior-posterior location in femur segment p5 Superior-inferior location in femur segment p6 Medial-lateral location in femur segment

PAGE 35

21 3-5. Geometric constraints on the optimization of translational and rotational model parameters for the hip, knee, and ankle joints. Figure

PAGE 36

22 3-6. The 1 DOF right knee joint simultaneously defined in the right femur and right tibia segments and the 4 rotational and 5 translational model parameters optimized to determine the knee joint location and orientation. Figure

PAGE 37

23 3-3. Knee joint parameters. Table Knee Joint Parameter Description p1 Adduction-abduction rotation in femur segment p2 Internal-external rotation in femur segment p3 Adduction-abduction rotation in tibia segment p4 Internal-external rotation in tibia segment p5 Anterior-posterior location in femur segment p6 Superior-inferior location in femur segment p7 Anterior-posterior location in tibia segment p8 Superior-inferior location in tibia segment p9 Medial-lateral location in tibia segment

PAGE 38

24 3-7. The 2 DOF right ankle joint complex simultaneously defined in the right tibia, talus, and foot segments and the 5 rotational and 7 translational model parameters optimized to determine the joint locations and orientations. Figure

PAGE 39

25 3-4. Ankle joint parameters. Table Ankle Joint Parameter Description p1 Adduction-abduction rotation of talocrural in tibia segment p2 Internal-external rotation of talocrural in tibia segment p3 Internal-external rotation of subtalar in talus segment p4 Internal-external rotation of subtalar in foot segment p5 Dorsi-plantar rotation of subtalar in foot segment p6 Anterior-posterior location of talocrural in tibia segment p7 Superior-inferior location of talocrural in tibia segment p8 Medial-lateral location of talocrural in tibia segment p9 Superior-inferior location of subtalar in talus segment p10 Anterior-posterior location of subtalar in foot segment p11 Superior-inferior location of subtalar in foot segment p12 Medial-lateral location of subtalar in foot segment

PAGE 40

26 3-8. Two-level optimization technique minimizing the 3D marker coordinate errors between the kinematic model markers and experimental marker data to determine functional joint axes for each lower-extremity joint. Figure

PAGE 41

27 3-9. Inner-level optimization convergence illustration series for the knee joint, where synthetic markers are blue and model markers are red. Given synthetic marker data without noise, optimized outer-level design variables, and a synthetic knee flexion angle = 90, A) is the initial model knee flexion = 0, B) is the model knee flexion = 30, C) is the model knee flexion = 60, and D) is the final model knee flexion = 90. Figure

PAGE 42

28 3-10. Two-level optimization approach minimizing the 3D marker coordinate errors between the kinematic model markers and experimental marker data to determine functional joint axes. Figure

PAGE 43

CHAPTER 4 RESULTS Synthetic Marker Data without Noise For synthetic motions without noise, each two-level optimization precisely recovered the original marker trajectories to within an arbitrarily tight tolerance (on the order of 1e-13 cm), as illustrated in Figure 3-9 At the termination of each optimization, the optimum model parameters for the hip, knee, and ankle were recovered with mean rotational errors less than or equal to 0.045 and mean translational errors less than or equal to 0.0077 cm ( Appendix C ). Synthetic Marker Data with Noise For synthetic motions with noise, the two-level optimization of the hip, knee, and ankle resulted in mean marker distance errors equal to 0.46 cm, which is of the same order of magnitude as the selected random continuous noise model ( Table 4-1 ). The two-level approach determined the original model parameters with mean rotational errors less than or equal to 3.73 and mean translational errors less than or equal to 0.92 cm ( Appendix D ). The outer-level fitness history converged rapidly ( Figure 4-1 ) and the hip, knee, and ankle optimizations terminated with a mean wall clock time of 41.02 hours. Experimental Marker Data For multi-cycle experimental motions, the mean marker distance error of the optimal hip, knee, and ankle solutions was 0.41 cm, which is a 0.43 cm improvement over the mean nominal error of 0.84 cm ( Table 4-2 ). For each joint complex, the optimum model parameters improved upon the nominal parameter data (or values found 29

PAGE 44

30 in the literature) by mean rotational values less than or equal to 6.18 and mean translational values less than or equal to 1.05 cm ( Appendix E ). When compared to the synthetic data with noise, the outer-level fitness history of the multi-cycle experimental data optimization converged at approximately the same rate and resulted in an improved final solution for both the ankle and the hip ( Figure 4-2 ). On the contrary, the higher objective function values for the knee are evidence of the inability of the fixed pin joint to represent the screw-home motion ( Blankevoort et al., 1988 ) of the multi-cycle experimental knee data. The multi-cycle hip, knee, and ankle optimizations terminated with a mean wall clock time of 35.94 hours. For one-half-cycle experimental motions, the mean marker distance error of the optimal hip, knee, and ankle solutions was 0.30 cm for the first half and 0.30 cm for the second half ( Table 4-3 ). The fitness of both the ankle and the hip were comparable to the multi-cycle joint motion results. However, the knee fitness values were improved due to the reduced influence (i.e., 1 time frame of data as opposed to 9) of the screw-home motion of the knee. For each joint complex, the optimum model parameters improved upon the nominal parameter data (or values found in the literature) by mean rotational values less than or equal to 11.08 and mean translational values less than or equal to 2.78 cm ( Appendix F Appendix G ). In addition, the optimum model parameters for one-half-cycle motion differed from those for the multi-cycle motion by mean rotational values less than or equal to 15.77 and mean translational values less than or equal to 2.95 cm ( Appendix H Appendix I ). The one-half-cycle hip, knee, and ankle optimizations terminated with a mean wall clock time of 11.77 hours.

PAGE 45

31 4-1. Two-level optimization results for synthetic marker data with random continuous numerical noise to simulate skin movement artifacts with maximum amplitude of 1 cm. Table Synthetic Data with Noise Hip Knee Ankle Mean marker distance error (cm) 0.474603 + 0.202248 0.392331 + 0.145929 0.514485 + 0.233956 Mean rotational parameter error () n/a 2.158878 + 1.288703 3.732191 + 3.394553 Mean translational parameter error (cm) 0.161318 + 0.039449 0.321930 + 0.127997 0.923724 + 0.471443

PAGE 46

32 4-1. Outer-level optimization objective function fitness value convergence for synthetic marker data with random continuous numerical noise to simulate skin movement artifacts with maximum amplitude of 1 cm, where the best fitness value among all nodes is given for each iteration. Figure

PAGE 47

33 4-2. Mean marker distance errors for nominal values and the two-level optimization results for multi-cycle experimental marker data. Table Experimental Data Hip Knee Ankle Nominal mean marker distance error (cm) 0.499889 + 0.177947 1.139884 + 0.618567 0.885437 + 0.478530 Optimum mean marker distance error (cm) 0.342262 + 0.167079 0.547787 + 0.269726 0.356279 + 0.126559 Mean marker distance error attenuation (cm) 0.157627 + 0.166236 0.592097 + 0.443680 0.529158 + 0.438157

PAGE 48

34 4-2. Outer-level optimization objective function fitness value convergence for multi-cycle experimental marker data, where the best fitness value among all nodes is given for each iteration. Figure

PAGE 49

35 4-3. Mean marker distance errors for the two-level optimization results using first and second halves of the joint cycle motion for experimental marker data. Table Experimental Data Hip Knee Ankle First half: mean marker distance error (cm) 0.335644 + 0.163370 0.189551 + 0.072996 0.384786 + 0.193149 Second half: mean marker distance error (cm) 0.361179 + 0.200774 0.202413 + 0.101063 0.338886 + 0.128596

PAGE 50

CHAPTER 5 DISCUSSION Assumptions, Limitations, and Future Work Joint Model Selection If the current model cannot adequately reproduce future experimental motions, the chosen joint models may be modified. For example, the flexion-extension of the knee is not truly represented by a fixed pin joint ( Churchill et al., 1998 ). When comparing the fitness of the optimum knee joint model to multi-cycle experimental marker data, the agreement was quite good for all knee flexion angles with the exception of those approaching full extension. By eliminating knee flexion angles less than 20, which comprised 18% of the flexion-extension data, the mean marker distance error was reduced to 0.48 + 0.23 cm (11.89% decrease) using the optimum model parameters from the full data set. A pin joint knee may be sufficiently accurate for many modeling applications. A 2 DOF knee model ( Hollister et al., 1993 ) may account for the screw-home motion of the knee joint occurring between 0 and 20 ( Blankevoort et al., 1988 ). If greater fidelity to actual bone motion is necessary, a 6 DOF knee joint may be implemented with kinematics determined from fluoroscopy ( Rahman et al., 2003 ). Design Variable Constraints Certain joint parameters must be constrained to zero with the purpose of preventing the unnecessary optimization of redundant parameters. Case in point, the medial-lateral translational model parameter placing the knee joint center in the femur segment must be constrained to zero. On the other hand, this model parameter may be used as a design 36

PAGE 51

37 variable, granted the medial-lateral translational model parameter placing the knee joint center in the tibia segment is constrained to zero. If both medial-lateral translational model parameters are used as redundant design variables, the outer-level optimization has an infinite number of solutions within the constraints of both parameters. Through the elimination (i.e., constraining to zero) of redundant model parameters, the outer-level optimization encounters less convergence problems in globally minimizing the objective function. Objective Function Formulation The inner-level optimization objective function should be comprised of marker coordinate errors rather than marker distance errors. A substantial amount of information (i.e., of the number of errors) describing the fitness value is lost with computation of marker distance errors. In other words, a marker distance error provides only the radius of a sphere surrounding an experimental marker and it does not afford the location of a model marker on the surface of the sphere. However, a set of three marker coordinate errors describes both the magnitude and direction of an error vector between an experimental marker and a model marker. By using marker coordinate errors, the inner-level optimization has improved convergence ( Table 5-1 ) and shorter execution time ( Table 5-2 ). Optimization Time and Parallel Computing To reduce the computation time, it is necessary to use an outer-level optimization algorithm in a parallel environment on a network cluster of processors. The PSO algorithm was chosen over gradient-based optimizers for its suitability to be parallelized and its ability to solve global optimization problems. The large computation time is a result of the random set of initial values used to seed each node of the parallel algorithm.

PAGE 52

38 By seeding one of the nodes with a relatively optimal set of initial values, the computation time may be significantly decreased. By doubling the number of parallel processors, the computation time declines nearly 50%. Decreasing the number of time frames of marker data additionally reduces the computation time. For example, the mean optimization time using experimental data for 50 time frames equals 35.94 hours, 19 time frames equals 12.82 hours, and 13 time frames equals 11.24 hours. Further study is necessary to establish the minimum number of marker data time frames required to effectively determine joint axes parameters. Multi-Cycle and One-Half-Cycle Joint Motions The two-level optimization results vary depending on whether marker data time frames consist of multi-cycle or one-half-cycle joint motions. In other words, the determination of patient-specific model parameters is significantly influenced by the marker trajectories contained within the chosen set of data. Given a set of marker data, the two-level optimization establishes invariable model parameters that best fit the mathematical model to the measured experimental motion. Understandably, a model constructed from one marker data set may not adequately represent a considerably different marker data set. To perform accurate dynamic analyses, joint motions used to generate the model should be consistent with those motions that will be used in the analyses. The small differences between sets of two-level optimization results for the hip and knee joint motions indicate the reliability of the model parameter values. Much larger differences occurred between sets of model parameters determined for the ankle joint. Two major factors contributing to these differences are the rotational ankle model parameters p1 and p3. On one hand, the model parameters may truly vary throughout the

PAGE 53

39 ankle motion and may not be represented by constant values. On the other hand, the objective function may be insensitive to changes in these model parameters indicating a design space that does not permit the reasonable determination of certain design variables. Future study is necessary to investigate the sensitivity of 3D marker coordinate errors to particular model parameters. Range of Motion and Loading Conditions To provide the largest range of motion, all experimental data was collected with each joint unloaded and freely exercising all DOFs; however, the same two-level optimization may be performed on loaded data as well. The patient-specific model parameters may change under loaded conditions ( Bogert et al., 1994 ). Moreover, loaded conditions limit the range of motion for several DOFs. Several authors ( Bell et al., 1990 ; Bogert et al., 1994 ) report inaccuracies in determining functional axes from limited motion, but a subsequent study ( Piazza et al., 2001 ) found the hip joint may be determined from motions as small as 15. Piazza et al. ( 2001 ) suggest future studies are necessary to explore the use of normal gait motions, rather than special joint motions, to determine functional axes. Optimization Using Gait Motion The two-level optimization approach and synthetic data evaluation method may be used to investigate the use of gait motion to determine functional joint axes. Each set of joint parameters may be established separately or collectively (i.e., entire single leg or both legs at once). Additional investigation is necessary to assess the differences in joint parameters obtained through individual optimizations and simultaneous whole leg optimizations. Furthermore, the joint parameters determined from gait motions may be

PAGE 54

40 compared to those parameters obtained from special joint motions with larger amounts of movement. Authors ( Bogert et al., 1994 ; Chze et al., 1995 ; Lu and OConnor, 1999 ) have set precedence for performing numerical (or synthetic data) simulations to evaluate a new technique. Although it is not a necessary task, there is additional benefit in supporting the numerical findings with data from one human subject. With the additional data, the joint parameters computed from unloaded joint motions may be measured against those parameters attained from unloaded (i.e., swing phase) and loaded (i.e., stance phase) gait motions. To expand upon the evaluation of the new technique and show general applicability, future work is necessary to study more than one human subject. Comparison of Experimental Results with Literature The two-level optimization determined patient-specific joint axes locations and orientations similar to previous works. The optimum hip joint center location of 7.52 cm (27.89% posterior), 9.27 cm (34.38% inferior), and 8.86 cm (32.85% lateral) are respectively comparable to 19.3%, 30.4%, and 35.9% ( Bell et al., 1990 ). The optimum femur length (40.46 cm) and tibia length (40.88 cm) are similar to 42.22 cm and 43.40 cm, respectively ( de Leva, 1996 ). The optimum coronal plane rotation (73.36) of the talocrural joint correlates to 82.7 + 3.7 (range 74 to 94) ( Inman, 1976 ). The optimum distance (2.14 cm) between the talocrural joint and the subtalar joint is analogous to 1.24 + 0.29 cm ( Bogert et al., 1994 ). The optimum transverse plane rotation (13.19) and sagittal plane rotation (45.26) of the subtalar joint corresponds to 23 + 11 (range 4 to 47) and 42 + 9 (range 20.5 to 68.5), respectively ( Inman, 1976 ).

PAGE 55

41 5-1. Mean marker distance errors for the inner-level objective function consisting of marker coordinate errors versus marker distance errors for multi-cycle experimental marker data. Table Experimental Data Hip Knee Ankle Marker distance objective function: mean marker distance error (cm) 0.863941 + 0.328794 1.043909 + 0.465186 0.674187 + 0.278451 Marker coordinate objective function: mean marker distance error (cm) 0.342262 + 0.167079 0.547787 + 0.269726 0.356279 + 0.126559

PAGE 56

42 5-2. Execution times for the inner-level objective function consisting of marker coordinate errors versus marker distance errors for multi-cycle experimental marker data. Table Experimental Data Hip Knee Ankle Marker distance objective function: execution time (s) 464.377 406.205 308.293 Marker coordinate objective function: execution time (s) 120.414 106.003 98.992

PAGE 57

CHAPTER 6 CONCLUSION Rationale for New Approach The main motivation for developing a 27 DOF patient-specific computational model and a two-level optimization method to enhance the lower-extremity portion is to predict the post-surgery peak knee adduction moment in HTO patients, which has been identified as an indicator of clinical outcome ( Andriacchi, 1994 ; Bryan et al., 1997 ; Hurwitz et al., 1998 ; Prodromos et al., 1985 ; Wang et al., 1990 ). The accuracy of prospective dynamic analyses made for a unique patient is determined in part by the fitness of the underlying kinematic model ( Andriacchi and Strickland, 1985 ; Challis and Kerwin, 1996 ; Cappozzo et al., 1975 ; Davis, 1992 ; Holden and Stanhope, 1998 ; Holden and Stanhope, 2000 ; Stagni et al., 2000 ). Development of an accurate kinematic model tailored to a specific patient forms the groundwork toward creating a predictive patient-specific dynamic simulation. Synthesis of Current Work and Literature The two-level optimization method satisfactorily determines patient-specific model parameters defining a 3D lower-extremity model that is well suited to a particular patient. Two conclusions may be drawn from comparing and contrasting the two-level optimization results to previous values found in the literature. The similarities between numbers suggest the results are reasonable and show the extent of agreement with past studies. The differences between values indicate the two-level optimization is necessary 43

PAGE 58

44 and demonstrate the degree of inaccuracy inherent when the new approach is not implemented. Through the enhancement of model parameter values found in the literature, the two-level optimization approach successfully reduces the fitness errors between the patient-specific model and the experimental motion data. More specifically, to quantify the improvement of the current results compared to previous values found in the literature, the mean marker distance errors were reduced by 31.53% (hip), 51.94% (knee), and 59.76% (ankle). The precision of dynamic analyses made for a particular patient depends on the accuracy of the patient-specific kinematic parameters chosen for the dynamic model. Without expensive medical images, model parameters are only estimated from external landmarks that have been identified in previous studies. The estimated (or nominal) values may be improved by formulating an optimization problem using motion-capture data. By using a two-level optimization technique, researchers may build more accurate biomechanical models of the individual human structure. As a result, the optimal models will provide reliable foundations for future dynamic analyses and optimizations.

PAGE 59

GLOSSARY Abduction Movement away from the midline of the body in the coronal plane. Acceleration The time rate of change of velocity. Active markers Joint and segment markers used during motion capture that emit a signal. Adduction Movement towards the midline of the body in the coronal plane. Ankle inversion-eversion Motion of the long axis of the foot within the coronal plane as seen by an observer positioned along the anterior-posterior axis of the shank. Ankle motion The ankle angles reflect the motion of the foot segment relative to the shank segment. Ankle plantarflexion-dorsiflexion Motion of the plantar aspect of the foot within the sagittal plane as seen by an observer positioned along the medial-lateral axis of the shank. Anterior The front or before, also referred to as ventral. Circumduction Movement of the distal tip of a segment described by a circle. Coccyx The tailbone located at the distal end of the sacrum. Constraint functions Specific limits that must be satisfied by the optimal design. Coronal plane The plane that divides the body or body segment into anterior and posterior parts. Couple A set of force vectors whose resultant is equal to zero. Two force vectors with equal magnitudes and opposite directions is an example of a simple couple. 45

PAGE 60

46 Degree of freedom (DOF) A single coordinate of relative motion between two bodies. Such a coordinate responds without constraint or imposed motion to externally applied forces or torques. For translational motion, a DOF is a linear coordinate along a single direction. For rotational motion, a DOF is an angular coordinate about a single, fixed axis. Design variables Variables that change to optimize the design. Distal Away from the point of attachment or origin. Dorsiflexion Movement of the foot towards the anterior part of the tibia in the sagittal plane. Epicondyle Process that develops proximal to an articulation and provides additional surface area for muscle attachment. Eversion A turning outward. Extension Movement that rotates the bones comprising a joint away from each other in the sagittal plane. External (lateral) rotation Movement that rotates the distal segment laterally in relation to the proximal segment in the transverse plane, or places the anterior surface of a segment away from the longitudinal axis of the body. External moment The load applied to the human body due to the ground reaction forces, gravity and external forces. Femur The longest and heaviest bone in the body. It is located between the hip joint and the knee joint. Flexion Movement that rotates the bones comprising a joint towards each other in the sagittal plane. Fluoroscopy Examination of body structures using an X-ray machine that combines an X-ray source and a fluorescent screen to enable real-time observation. Force A push or a pull and is produced when one object acts on another.

PAGE 61

47 Force plate A transducer that is set in the floor to measure about some specified point, the force and torque applied by the foot to the ground. These devices provide measures of the three components of the resultant ground reaction force vector and the three components of the resultant torque vector. Forward dynamics Analysis to determine the motion of a mechanical system, given the topology of how bodies are connected, the applied forces and torques, the mass properties, and the initial condition of all degrees of freedom. Gait A manner of walking or moving on foot. Generalized coordinates A set of coordinates (or parameters) that uniquely describes the geometric position and orientation of a body or system of bodies. Any set of coordinates that are used to describe the motion of a physical system. High tibial osteotomy (HTO) Surgical procedure that involves adding or removing a wedge of bone to or from the tibia and changing the frontal plane limb alignment. The realignment shifts the weight-bearing axis from the diseased medial compartment to the healthy lateral compartment of the knee. Hip abduction-adduction Motion of a long axis of the thigh within the coronal plane as seen by an observer positioned along the anterior-posterior axis of the pelvis. Hip flexion-extension Motion of the long axis of the thigh within the sagittal plane as seen by an observer positioned along the medial-lateral axis of the pelvis. Hip internal-external rotation Motion of the medial-lateral axis of the thigh with respect to the medial-lateral axis of the pelvis within the transverse plane as seen by an observer positioned along the longitudinal axis of the thigh. Hip motion The hip angles reflect the motion of the thigh segment relative to the pelvis. Inferior Below or at a lower level (towards the feet).

PAGE 62

48 Inter-ASIS distance The length of measure between the left anterior superior iliac spine (ASIS) and the right ASIS. Internal (medial) rotation Movement that rotates the distal segment medially in relation to the proximal segment in the transverse plane, or places the anterior surface of a segment towards the longitudinal axis of the body. Internal joint moments The net result of all the internal forces acting about the joint which include moments due to muscles, ligaments, joint friction and structural constraints. The joint moment is usually calculated around a joint center. Inverse dynamics Analysis to determine the forces and torques necessary to produce the motion of a mechanical system, given the topology of how bodies are connected, the kinematics, the mass properties, and the initial condition of all degrees of freedom. Inversion A turning inward. Kinematics Those parameters that are used in the description of movement without consideration for the cause of movement abnormalities. These typically include parameters such as linear and angular displacements, velocities and accelerations. Kinetics General term given to the forces that cause movement. Both internal (muscle activity, ligaments or friction in muscles and joints) and external (ground or external loads) forces are included. The moment of force produced by muscles crossing a joint, the mechanical power flowing to and from those same muscles, and the energy changes of the body that result from this power flow are the most common kinetic parameters used. Knee abduction-adduction Motion of the long axis of the shank within the coronal plane as seen by an observer positioned along the anterior-posterior axis of the thigh. Knee flexion-extension Motion of the long axis of the shank within the sagittal plane as seen by an observer positioned along the medial-lateral axis of the thigh.

PAGE 63

49 Knee internal-external rotation Motion of the medial-lateral axis of the shank with respect to the medial-lateral axis of the thigh within the transverse plane as viewed by an observer positioned along the longitudinal axis of the shank. Knee motion The knee angles reflect the motion of the shank segment relative to the thigh segment. Lateral Away from the bodys longitudinal axis, or away from the midsagittal plane. Malleolus Broadened distal portion of the tibia and fibula providing lateral stability to the ankle. Markers Active or passive objects (balls, hemispheres or disks) aligned with respect to specific bony landmarks used to help determine segment and joint position in motion capture. Medial Toward the bodys longitudinal axis, or toward the midsagittal plane. Midsagittal plane The plane that passes through the midline and divides the body or body segment into the right and left halves. Model parameters A set of coordinates that uniquely describes the model segments lengths, joint locations, and joint orientations, also referred to as joint parameters. Any set of coordinates that are used to describe the geometry of a model system. Moment of force The moment of force is calculated about a point and is the cross product of a position vector from the point to the line of action for the force and the force. In two-dimensions, the moment of force about a point is the product of a force and the perpendicular distance from the line of action of the force to the point. Typically, moments of force are calculated about the center of rotation of a joint. Motion capture Interpretation of computerized data that documents an individual's motion.

PAGE 64

50 Non-equidistant The opposite of equal amounts of distance between two or more points, or not equally distanced. Objective functions Figures of merit to be minimized or maximized. Parametric Of or relating to or in terms of parameters, or factors that define a system. Passive markers Joint and segment markers used during motion capture that reflect visible or infrared light. Pelvis Consists of the two hip bones, the sacrum, and the coccyx. It is located between the proximal spine and the hip joints. Pelvis anterior-posterior tilt Motion of the long axis of the pelvis within the sagittal plane as seen by an observer positioned along the medial-lateral axis of the laboratory. Pelvis elevation-depression Motion of the medial-lateral axis of the pelvis within the coronal plane as seen by an observer positioned along the anterior-posterior axis of the laboratory. Pelvis internal-external rotation Motion of the medial-lateral or anterior-posterior axis of the pelvis within the transverse plane as seen by an observer positioned along the longitudinal axis of the laboratory. Pelvis motion The position of the pelvis as defined by a marker set (for example, plane formed by the markers on the right and left anterior superior iliac spine (ASIS) and a marker between the 5th lumbar vertebrae and the sacrum) relative to a laboratory coordinate system. Plantarflexion Movement of the foot away from the anterior part of the tibia in the sagittal plane. Posterior The back or behind, also referred to as dorsal. Proximal Toward the point of attachment or origin. Range of motion Indicates joint motion excursion from the maximum angle to the minimum angle.

PAGE 65

51 Sacrum Consists of the fused components of five sacral vertebrae located between the 5th lumbar vertebra and the coccyx. It attaches the axial skeleton to the pelvic girdle of the appendicular skeleton via paired articulations. Sagittal plane The plane that divides the body or body segment into the right and left parts. Skin movement artifacts The relative movement between skin and underlying bone. Stance phase The period of time when the foot is in contact with the ground. Subtalar joint Located between the distal talus and proximal calcaneous, also known as the talocalcaneal joint. Superior Above or at a higher level (towards the head). Synthetic markers Computational representations of passive markers located on the kinematic model. Swing phase The period of time when the foot is not in contact with the ground. Talocrural joint Located between the distal tibia and proximal talus, also known as the tibial-talar joint. Talus The largest bone of the ankle transmitting weight from the tibia to the rest of the foot. Tibia The large medial bone of the lower leg, also known as the shinbone. It is located between the knee joint and the talocrural joint. Transepicondylar The line between the medial and lateral epicondyles. Transverse plane The plane at right angles to the coronal and sagittal planes that divides the body into superior and inferior parts. Velocity The time rate of change of displacement.

PAGE 66

APPENDIX A NOMINAL JOINT PARAMETERS & OPTIMIZATION BOUNDS FOR SYNTHETIC MARKER DATA A-1. Nominal right hip joint parameters and optimization bounds for synthetic marker data. Table Right Hip Joint Parameter Nominal Lower Bound Upper Bound p1 (cm) -6.022205 -20.530245 0 p2 (cm) -9.307044 -20.530245 0 p3 (cm) 8.759571 0 20.530245 p4 (cm) 0 -14.508040 6.022205 p5 (cm) 0 -11.223200 9.307044 p6 (cm) 0 -8.759571 11.770674 52

PAGE 67

53 A-2. Nominal right knee joint parameters and optimization bounds for synthetic marker data. Table Right Knee Joint Parameter Nominal Lower Bound Upper Bound p1 () 0 -30 30 p2 () 0 -30 30 p3 () -5.079507 -35.079507 24.920493 p4 () 16.301928 -13.698072 46.301928 p5 (cm) 0 -7.836299 7.836299 p6 (cm) -37.600828 -45.437127 -29.764528 p7 (cm) 0 -7.836299 7.836299 p8 (cm) 0 -7.836299 7.836299 p9 (cm) 0 -7.836299 7.836299

PAGE 68

54 A-3. Nominal right ankle joint parameters and optimization bounds for synthetic marker data. Table Right Ankle Joint Parameter Nominal Lower Bound Upper Bound p1 () 18.366935 -11.633065 48.366935 p2 () 0 -30 30 p3 () 40.230969 10.230969 70.230969 p4 () 23 -7 53 p5 () 42 12 72 p6 (cm) 0 -6.270881 6.270881 p7 (cm) -39.973202 -46.244082 -33.702321 p8 (cm) 0 -6.270881 6.270881 p9 (cm) -1 -6.270881 0 p10 (cm) 8.995334 2.724454 15.266215 p11 (cm) 4.147543 -2.123338 10.418424 p12 (cm) 0.617217 -5.653664 6.888097

PAGE 69

APPENDIX B NOMINAL JOINT PARAMETERS & OPTIMIZATION BOUNDS FOR EXPERIMENTAL MARKER DATA B-1. Nominal right hip joint parameters and optimization bounds for experimental marker data. Table Right Hip Joint Parameter Nominal Lower Bound Upper Bound p1 (cm) -5.931423 -20.220759 0 p2 (cm) -9.166744 -20.220759 0 p3 (cm) 8.627524 0 20.220759 p4 (cm) 0 -14.289337 5.931423 p5 (cm) 0 -11.054015 9.166744 p6 (cm) 0 -8.627524 11.593235 55

PAGE 70

56 B-2. Nominal right knee joint parameters and optimization bounds for experimental marker data. Table Right Knee Joint Parameter Nominal Lower Bound Upper Bound p1 () 0 -30 30 p2 () 0 -30 30 p3 () -4.070601 -34.070601 25.929399 p4 () 1.541414 -28.458586 31.541414 p5 (cm) 0 -7.356876 7.356876 p6 (cm) -39.211319 -46.568195 -31.854442 p7 (cm) 0 -7.356876 7.356876 p8 (cm) 0 -7.356876 7.356876 p9 (cm) 0 -7.356876 7.356876

PAGE 71

57 B-3. Nominal right ankle joint parameters and optimization bounds for experimental marker data. Table Right Ankle Joint Parameter Nominal Lower Bound Upper Bound p1 () 8.814964 -21.185036 38.814964 p2 () 0 -30 30 p3 () 26.890791 -3.109209 56.890791 p4 () 23 -7 53 p5 () 42 12 72 p6 (cm) 0 -5.662309 5.662309 p7 (cm) -41.131554 -46.793862 -35.469245 p8 (cm) 0 -5.662309 5.662309 p9 (cm) -1 -5.662309 0 p10 (cm) 9.113839 3.451530 14.776147 p11 (cm) 3.900829 -1.761479 9.563138 p12 (cm) 1.116905 -4.545403 6.779214

PAGE 72

APPENDIX C NOMINAL & OPTIMUM JOINT PARAMETERS FOR SYNTHETIC MARKER DATA WITHOUT NOISE C-1. Nominal and optimum right hip joint parameters for synthetic marker data without noise. Table Right Hip Joint Parameter Nominal Optimized Error p1 (cm) -6.022205 -6.022205 0.000000 p2 (cm) -9.307044 -9.307041 0.000003 p3 (cm) 8.759571 8.759578 0.000007 p4 (cm) 0 0.000004 0.000004 p5 (cm) 0 0.000015 0.000015 p6 (cm) 0 -0.000008 0.000008 58

PAGE 73

59 C-2. Nominal and optimum right knee joint parameters for synthetic marker data without noise. Table Right Knee Joint Parameter Nominal Optimized Error p1 () 0 -0.040222 0.040222 p2 () 0 -0.051509 0.051509 p3 () -5.079507 -5.050744 0.028763 p4 () 16.301928 16.242914 0.059015 p5 (cm) 0 -0.009360 0.009360 p6 (cm) -37.600828 -37.589068 0.011760 p7 (cm) 0 -0.014814 0.014814 p8 (cm) 0 -0.002142 0.002142 p9 (cm) 0 -0.000189 0.000189

PAGE 74

60 C-3. Nominal and optimum right ankle joint parameters for synthetic marker data without noise. Table Right Ankle Joint Parameter Nominal Optimized Error p1 () 18.366935 18.364964 0.001971 p2 () 0 -0.011809 0.011809 p3 () 40.230969 40.259663 0.028694 p4 () 23 23.027088 0.027088 p5 () 42 42.002080 0.002080 p6 (cm) 0 0.000270 0.000270 p7 (cm) -39.973202 -39.972852 0.000350 p8 (cm) 0 -0.000287 0.000287 p9 (cm) -1 -1.000741 0.000741 p10 (cm) 8.995334 8.995874 0.000540 p11 (cm) 4.147543 4.147353 0.000190 p12 (cm) 0.617217 0.616947 0.000270

PAGE 75

APPENDIX D NOMINAL & OPTIMUM JOINT PARAMETERS FOR SYNTHETIC MARKER DATA WITH NOISE D-1. Nominal and optimum right hip joint parameters for synthetic marker data with noise. Table Right Hip Joint Parameter Nominal Optimized Error p1 (cm) -6.022205 -5.854080 0.168125 p2 (cm) -9.307044 -9.434820 0.127776 p3 (cm) 8.759571 8.967520 0.207949 p4 (cm) 0 0.092480 0.092480 p5 (cm) 0 -0.180530 0.180530 p6 (cm) 0 0.191050 0.191050 61

PAGE 76

62 D-2. Nominal and optimum right knee joint parameters for synthetic marker data with noise. Table Right Knee Joint Parameter Nominal Optimized Error p1 () 0 -3.295650 3.295650 p2 () 0 -1.277120 1.277120 p3 () -5.079507 -5.604100 0.524593 p4 () 16.301928 12.763780 3.538148 p5 (cm) 0 0.375600 0.375600 p6 (cm) -37.600828 -37.996910 0.396082 p7 (cm) 0 0.489510 0.489510 p8 (cm) 0 0.144040 0.144040 p9 (cm) 0 -0.204420 0.204420

PAGE 77

63 D-3. Nominal and optimum right ankle joint parameters for synthetic marker data with noise. Table Right Ankle Joint Parameter Nominal Optimized Error p1 () 18.366935 15.130096 3.236838 p2 () 0 8.007498 8.007498 p3 () 40.230969 32.975096 7.255873 p4 () 23 23.122015 0.122015 p5 () 42 42.038733 0.038733 p6 (cm) 0 -0.398360 0.398360 p7 (cm) -39.973202 -39.614220 0.358982 p8 (cm) 0 -0.755127 0.755127 p9 (cm) -1 -2.816943 1.816943 p10 (cm) 8.995334 10.210540 1.215206 p11 (cm) 4.147543 3.033673 1.113870 p12 (cm) 0.617217 -0.190367 0.807584

PAGE 78

APPENDIX E NOMINAL & OPTIMUM JOINT PARAMETERS FOR MULTI-CYCLE EXPERIMENTAL MARKER DATA E-1. Nominal and optimum right hip joint parameters for multi-cycle experimental marker data. Table Right Hip Joint Parameter Nominal Optimized Improvement p1 (cm) -5.931423 -7.518819 1.587396 p2 (cm) -9.166744 -9.268741 0.101997 p3 (cm) 8.627524 8.857706 0.230182 p4 (cm) 0 -2.123433 2.123433 p5 (cm) 0 0.814089 0.814089 p6 (cm) 0 1.438188 1.438188 64

PAGE 79

65 E-2. Nominal and optimum right knee joint parameters for multi-cycle experimental marker data. Table Right Knee Joint Parameter Nominal Optimized Improvement p1 () 0 -0.586205 0.586205 p2 () 0 14.854951 14.854951 p3 () -4.070601 -2.724374 1.346227 p4 () 1.541414 2.404475 0.863061 p5 (cm) 0 -1.422101 1.422101 p6 (cm) -39.211319 -39.611720 0.400401 p7 (cm) 0 -0.250043 0.250043 p8 (cm) 0 -0.457104 0.457104 p9 (cm) 0 1.471656 1.471656

PAGE 80

66 E-3. Nominal and optimum right ankle joint parameters for multi-cycle experimental marker data. Table Right Ankle Joint Parameter Nominal Optimized Improvement p1 () 8.814964 16.640499 7.825535 p2 () 0 9.543288 9.543288 p3 () 26.890791 27.359342 0.468551 p4 () 23 13.197304 9.802696 p5 () 42 45.259512 3.259512 p6 (cm) 0 1.650689 1.650689 p7 (cm) -41.131554 -41.185800 0.054246 p8 (cm) 0 -1.510034 1.510034 p9 (cm) -1 -2.141939 1.141939 p10 (cm) 9.113839 11.244080 2.130241 p11 (cm) 3.900829 3.851262 0.049567 p12 (cm) 1.116905 0.283095 0.833810

PAGE 81

APPENDIX F NOMINAL & OPTIMUM JOINT PARAMETERS FOR FIRST ONE-HALF-CYCLE EXPERIMENTAL MARKER DATA F-1. Nominal and optimum right hip joint parameters for first one-half-cycle experimental marker data. Table Right Hip Joint Parameter Nominal Optimized Improvement p1 (cm) -5.931423 -7.377948 1.446525 p2 (cm) -9.166744 -9.257734 0.090990 p3 (cm) 8.627524 8.124560 0.502964 p4 (cm) 0 -2.050133 2.050133 p5 (cm) 0 0.813034 0.813034 p6 (cm) 0 0.656323 0.656323 67

PAGE 82

68 F-2. Nominal and optimum right knee joint parameters for first one-half-cycle experimental marker data. Table Right Knee Joint Parameter Nominal Optimized Improvement p1 () 0 7.621903 7.621903 p2 () 0 12.823259 12.823259 p3 () -4.070601 -0.642569 3.428032 p4 () 1.541414 11.252668 9.711254 p5 (cm) 0 -1.217316 1.217316 p6 (cm) -39.211319 -38.611100 0.600219 p7 (cm) 0 -1.252732 1.252732 p8 (cm) 0 -0.003903 0.003903 p9 (cm) 0 1.480035 1.480035

PAGE 83

69 F-3. Nominal and optimum right ankle joint parameters for first one-half-cycle experimental marker data. Table Right Ankle Joint Parameter Nominal Optimized Improvement p1 () 8.814964 -15.959751 24.774715 p2 () 0 -4.522393 4.522393 p3 () 26.890791 18.986137 7.904654 p4 () 23 28.588479 5.588479 p5 () 42 36.840527 5.159473 p6 (cm) 0 3.624386 3.624386 p7 (cm) -41.131554 -43.537980 2.406426 p8 (cm) 0 -3.370814 3.370814 p9 (cm) -1 -2.246233 1.246233 p10 (cm) 9.113839 12.155750 3.041911 p11 (cm) 3.900829 0.488739 3.412090 p12 (cm) 1.116905 -1.207070 2.323975

PAGE 84

APPENDIX G NOMINAL & OPTIMUM JOINT PARAMETERS FOR SECOND ONE-HALF-CYCLE EXPERIMENTAL MARKER DATA G-1. Nominal and optimum right hip joint parameters for second one-half-cycle experimental marker data. Table Right Hip Joint Parameter Nominal Optimized Improvement p1 (cm) -5.931423 -7.884120 1.952697 p2 (cm) -9.166744 -10.160573 0.993829 p3 (cm) 8.627524 9.216565 0.589041 p4 (cm) 0 -2.935484 2.935484 p5 (cm) 0 0.313918 0.313918 p6 (cm) 0 1.936742 1.936742 70

PAGE 85

71 G-2. Nominal and optimum right knee joint parameters for second one-half-cycle experimental marker data. Table Right Knee Joint Parameter Nominal Optimized Improvement p1 () 0 7.216444 7.216444 p2 () 0 12.986174 12.986174 p3 () -4.070601 -0.228411 3.842190 p4 () 1.541414 10.970612 9.429198 p5 (cm) 0 -1.300621 1.300621 p6 (cm) -39.211319 -38.785646 0.425673 p7 (cm) 0 -1.190227 1.190227 p8 (cm) 0 -0.130610 0.130610 p9 (cm) 0 1.293016 1.293016

PAGE 86

72 G-3. Nominal and optimum right ankle joint parameters for second one-half-cycle experimental marker data. Table Right Ankle Joint Parameter Nominal Optimized Improvement p1 () 8.814964 31.399921 22.584957 p2 () 0 1.211118 1.21112 p3 () 26.890791 51.518589 24.627798 p4 () 23 26.945919 3.945919 p5 () 42 45.021534 3.021534 p6 (cm) 0 -3.971358 3.971358 p7 (cm) -41.131554 -36.976040 4.155514 p8 (cm) 0 -0.154441 0.154441 p9 (cm) -1 -3.345873 2.345873 p10 (cm) 9.113839 7.552444 1.561395 p11 (cm) 3.900829 7.561219 3.660390 p12 (cm) 1.116905 1.108033 0.008872

PAGE 87

APPENDIX H OPTIMUM JOINT PARAMETERS FOR MULTI-CYCLE & FIRST ONE-HALF-CYCLE EXPERIMENTAL MARKER DATA H-1. Optimum right hip joint parameters for multi-cycle and first one-half-cycle experimental marker data. Table Right Hip Joint Parameter Multi-Cycle Optimized First-Half-Cycle Optimized Difference p1 (cm) -7.518819 -7.377948 0.140871 p2 (cm) -9.268741 -9.257734 0.011007 p3 (cm) 8.857706 8.124560 0.733146 p4 (cm) -2.123433 -2.050133 0.073300 p5 (cm) 0.814089 0.813034 0.001055 p6 (cm) 1.438188 0.656323 0.781865 73

PAGE 88

74 H-2. Optimum right knee joint parameters for multi-cycle and first one-half-cycle experimental marker data. Table Right Knee Joint Parameter Multi-Cycle Optimized First-Half-Cycle Optimized Difference p1 () -0.586205 7.621903 8.208108 p2 () 14.854951 12.823259 2.031692 p3 () -2.724374 -0.642569 2.081805 p4 () 2.404475 11.252668 8.848193 p5 (cm) -1.422101 -1.217316 0.204785 p6 (cm) -39.611720 -38.611100 1.000620 p7 (cm) -0.250043 -1.252732 1.002689 p8 (cm) -0.457104 -0.003903 0.453201 p9 (cm) 1.471656 1.480035 0.008379

PAGE 89

75 H-3. Optimum right ankle joint parameters for multi-cycle and first one-half-cycle experimental marker data. Table Right Ankle Joint Parameter Multi-Cycle Optimized First-Half-Cycle Optimized Difference p1 () 16.640499 -15.959751 32.600250 p2 () 9.543288 -4.522393 14.065681 p3 () 27.359342 18.986137 8.373205 p4 () 13.197304 28.588479 15.391175 p5 () 45.259512 36.840527 8.418985 p6 (cm) 1.650689 3.624386 1.973697 p7 (cm) -41.185800 -43.537980 2.352180 p8 (cm) -1.510034 -3.370814 1.860780 p9 (cm) -2.141939 -2.246233 0.104294 p10 (cm) 11.244080 12.155750 0.911670 p11 (cm) 3.851262 0.488739 3.362523 p12 (cm) 0.283095 -1.207070 1.490165

PAGE 90

APPENDIX I OPTIMUM JOINT PARAMETERS FOR MULTI-CYCLE & SECOND ONE-HALF-CYCLE EXPERIMENTAL MARKER DATA I-1. Optimum right hip joint parameters for multi-cycle and second one-half-cycle experimental marker data. Table Right Hip Joint Parameter Multi-Cycle Optimized Second-Half-Cycle Optimized Difference p1 (cm) -7.518819 -7.884120 0.365301 p2 (cm) -9.268741 -10.160573 0.891832 p3 (cm) 8.857706 9.216565 0.358859 p4 (cm) -2.123433 -2.935484 0.812051 p5 (cm) 0.814089 0.313918 0.500171 p6 (cm) 1.438188 1.936742 0.498554 76

PAGE 91

77 I-2. Optimum right knee joint parameters for multi-cycle and second one-half-cycle experimental marker data. Table Right Knee Joint Parameter Multi-Cycle Optimized Second-Half-Cycle Optimized Difference p1 () -0.586205 7.216444 7.802649 p2 () 14.854951 12.986174 1.868777 p3 () -2.724374 -0.228411 2.495963 p4 () 2.404475 10.970612 8.566137 p5 (cm) -1.422101 -1.300621 0.121480 p6 (cm) -39.611720 -38.785646 0.826074 p7 (cm) -0.250043 -1.190227 0.940184 p8 (cm) -0.457104 -0.130610 0.326494 p9 (cm) 1.471656 1.293016 0.178640

PAGE 92

78 I-3. Optimum right ankle joint parameters for multi-cycle and second one-half-cycle experimental marker data. Table Right Ankle Joint Parameter Multi-Cycle Optimized Second-Half-Cycle Optimized Difference p1 () 16.640499 31.399921 14.759422 p2 () 9.543288 1.211118 8.332170 p3 () 27.359342 51.518589 24.159247 p4 () 13.197304 26.945919 13.748615 p5 () 45.259512 45.021534 0.237978 p6 (cm) 1.650689 -3.971358 5.622047 p7 (cm) -41.185800 -36.976040 4.209760 p8 (cm) -1.510034 -0.154441 1.355593 p9 (cm) -2.141939 -3.345873 1.203934 p10 (cm) 11.244080 7.552444 3.691636 p11 (cm) 3.851262 7.561219 3.709957 p12 (cm) 0.283095 1.108033 0.824938

PAGE 93

LIST OF REFERENCES Andriacchi, T.P., 1994. Dynamics of Knee Malalignment. Orthopedic Clinics of North America, Volume 25, Number 3, Pages 395-403. Andriacchi, T.P. and Strickland, A.B., 1985. Gait Analysis as a Tool to Assess Joint Kinetics. In: Berme, N., Engin, A.E., Correia da Silva, K.M. (Editors), Biomechanics of Normal and Pathological Human Articulating Joints. Martinus Nijhoff Publishers, Dordrecht, The Netherlands, Pages 83-102. Arnold, A.S, Asakawa, D.J, and Delp, S.L., 2000. Do the Hamstrings and Adductors Contribute to Excessive Internal Rotation of the Hip in Persons with Cerebral Palsy? Gait & Posture, Volume 11, Number 3, Pages 181-190. Arnold, A.S. and Delp, S.L., 2001. Rotational Moment Arms of the Hamstrings and Adductors Vary with Femoral Geometry and Limb Position: Implications for the Treatment of Internally-Rotated Gait. Journal of Biomechanics, Volume 34, Number 4, Pages 437-447. Bell, A.L., Pedersen, D.R., and Brand, R.A., 1990. A Comparison of the Accuracy of Several Hip Center Location Prediction Methods. Journal of Biomechanics, Volume 23, Number 6, Pages 617-621. Blankevoort, L., Huiskes, A., and de Lange, A., 1988. "The Envelope of Passive Knee-Joint Motion." Journal of Biomechanics, Volume 21, Number 9, Pages 705-720. Bogert, A.J. van den, Smith, G.D., and Nigg, B.M., 1994. In Vivo Determination of the Anatomical Axes of the Ankle Joint Complex: An Optimization Approach. Journal of Biomechanics, Volume 27, Number 12, Pages 1477-1488. Bryan, J.M., Hurwitz, D.E., Bach, B.R., Bittar, T., and Andriacchi, T.P., 1997. A Predictive Model of Outcome in High Tibial Osteotomy. In Proceedings of the 43rd Annual Meeting of the Orthopaedic Research Society, San Francisco, California, February 9-13, Volume 22, Paper 718. Cappozzo, A., Catani, F., and Leardini, A., 1993. Skin Movement Artifacts in Human Movement Photogrammetry. In Proceedings of the XIVth Congress of the International Society of Biomechanics, Paris, France, July 4-8, Pages 238-239. 79

PAGE 94

80 Cappozzo, A., Leo, T., and Pedotti, A., 1975. A General Computing Method for the Analysis of Human Locomotion. Journal of Biomechanics, Volume 8, Number 5, Pages 307-320. CDC, 2003. Targeting Arthritis: The Nations Leading Cause of Disability. Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Atlanta, Georgia. Accessed: http://www.cdc.gov/nccdphp/ aag/pdf/aag_arthritis2003.pdf February, 2003. Challis, J.H. and Kerwin, D.G., 1996. Quantification of the Uncertainties in Resultant Joint Moments Computed in a Dynamic Activity. Journal of Sports Sciences, Volume 14, Number 3, Pages 219-231. Chao, E.Y. and Sim, F.H., 1995. Computer-Aided Pre-Operative Planning in Knee Osteotomy. Iowa Orthopedic Journal, Volume 15, Pages 4-18. Chao, E.Y.S., Lynch, J.D., and Vanderploeg, M.J., 1993. Simulation and Animation of Musculoskeletal Joint System. Journal of Biomechanical Engineering, Volume 115, Number 4, Pages 562-568. Churchill, D.L., Incavo, S.J., Johnson, C.C., and Beynnon, B.D., 1998. The Transepicondylar Axis Approximates the Optimal Flexion Axis of the Knee. Clinical Orthopaedics and Related Research, Volume 356, Number 1, Pages 111-118. Chze, L., Fregly, B.J., and Dimnet, J., 1995. A Solidification Procedure to Facilitate Kinematic Analyses Based on Video System Data. Journal of Biomechanics, Volume 28, Number 7, Pages 879-884. Davis, B.L., 1992. Uncertainty in Calculating Joint Moments During Gait. In Proceedings of the 8th Meeting of European Society of Biomechanics, Rome, Italy, June 21-24, Page 276. de Leva, P., 1996. Adjustments to Zatsiorsky-Seluyanovs Segment Inertia Parameters. Journal of Biomechanics, Volume 29, Number 9, Pages 1223-1230. Delp, S.L., Arnold, A.S., and Piazza, S.J., 1998. Graphics-Based Modeling and Analysis of Gait Abnormalities. Bio-Medical Materials and Engineering, Volume 8, Number 3/4, Pages 227-240. Delp, S.L., Arnold, A.S., Speers, R.A., and Moore, C.A., 1996. Hamstrings and Psoas Lengths During Normal and Crouch Gait: Implications for Muscle-Tendon Surgery. Journal of Orthopaedic Research, Volume 14, Number 1, Pages 144-151.

PAGE 95

81 Delp, S.L., Loan, J.P., Hoy, M.G., Zajac, F.E., Topp, E.L., and Rosen, J.M., 1990. An Interactive Graphics-Based Model of the Lower Extremity to Study Orthopaedic Surgical Procedures. IEEE Transactions on Biomedical Engineering, Volume 37, Number 8, Pages 757-767. Heck, D.A., Melfi, C.A., Mamlin, L.A., Katz, B.P., Arthur, D.S., Dittus, R.S., and Freund, D.A., 1998. "Revision Rates Following Knee Replacement in the United States." Medical Care, Volume 36, Number 5, Pages 661-689. Holden, J.P. and Stanhope, S.J., 1998. The Effect of Variation in Knee Center Location Estimates on Net Knee Joint Moments. Gait & Posture, Volume 7, Number 1, Pages 1-6. Holden, J.P. and Stanhope, S.J., 2000. The Effect of Uncertainty in Hip Center Location Estimates on Hip Joint Moments During Walking at Different Speeds. Gait & Posture, Volume 11, Number 2, Pages 120-121. Hollister, A.M., Jatana, S., Singh, A.K., Sullivan, W.W., and Lupichuk, A.G., 1993. The Axes of Rotation of the Knee. Clinical Orthopaedics and Related Research, Volume 290, Number 1, Pages 259-268. Hurwitz, D.E., Sumner, D.R., Andriacchi, T.P., and Sugar, D.A., 1998. Dynamic Knee Loads During Gait Predict Proximal Tibial Bone Distribution. Journal of Biomechanics, Volume 31, Number 5, Pages 423-430. Inman, V.T., 1976. The Joints of the Ankle. Williams and Wilkins Company, Baltimore, Maryland. Kennedy, J. and Eberhart, R.C., 1995. Particle Swarm Optimization. In Proceedings of the 1995 IEEE International Conference on Neural Networks, Perth, Australia, November 27 December 1, Volume 4, Pages 1942-1948. Lane, G.J., Hozack, W.J., Shah, S., Rothman, R.H., Booth, R.E. Jr., Eng, K., Smith, P., 1997. Simultaneous Bilateral Versus Unilateral Total Knee Arthroplasty. Outcomes Analysis. Clinical Orthopaedics and Related Research, Volume 345, Number 1, Pages 106-112. Leardini, A., Cappozzo, A., Catani, F., Toksvig-Larsen, S., Petitto, A., Sforza, V., Cassanelli, G., and Giannini, S., 1999. Validation of a Functional Method for the Estimation of Hip Joint Centre Location. Journal of Biomechanics, Volume 32, Number 1, Pages 99-103. Lu, T.-W. and OConnor, J.J., 1999. Bone Position Estimation from Skin Marker Coordinates Using Global Optimisation with Joint Constraints. Journal of Biomechanics, Volume 32, Number 2, Pages 129-134. Pandy, M.G., 2001. Computer Modeling and Simulation of Human Movement. Annual Reviews in Biomedical Engineering, Volume 3, Number 1, Pages 245-273.

PAGE 96

82 Piazza, S.J., Okita, N., and Cavanagh, P.R., 2001. Accuracy of the Functional Method of Hip Joint Center Location: Effects of Limited Motion and Varied Implementation. Journal of Biomechanics, Volume 34, Number 7, Pages 967-973. Prodromos, C.C., Andriacchi, T.P., and Galante, J.O., 1985. A Relationship Between Gait and Clinical Changes Following High Tibial Osteotomy. Journal of Bone Joint Surgery (American), Volume 67, Number 8, Pages 1188-1194. Rahman, H., Fregly, B.J., and Banks, S.A., 2003. Accurate Measurement of Three-Dimensional Natural Knee Kinematics Using Single-Plane Fluoroscopy. In Proceedings of the 2003 Summer Bionengineering Conference, The American Society of Mechanical Engineers, Key Biscayne, Florida, June 25-29. Schutte, J.F., Koh, B., Reinbolt, J.A., Haftka, R.T., George, A.D., and Fregly, B.J., 2003. Scale-Independent Biomechanical Optimization. In Proceedings of the 2003 Summer Bioengineering Conference, The American Society of Mechanical Engineers, Key Biscayne, Florida, June 25-29. Sommer III, H.J. and Miller, N.R., 1980. A Technique for Kinematic Modeling of Anatomical Joints. Journal of Biomechanical Engineering, Volume 102, Number 4, Pages 311-317. Stagni, R., Leardini, A., Benedetti, M.G., Cappozzo, A., and Cappello, A., 2000. Effects of Hip Joint Centre Mislocation on Gait Analysis Results. Journal of Biomechanics, Volume 33, Number 11, Pages 1479-1487. Tetsworth, K. and Paley, D., 1994. Accuracy of Correction of Complex Lower-Extremity Deformities by the Ilizarov Method. Clinical Orthopaedics and Related Research, Volume 301, Number 1, Pages 102-110. Vaughan, C.L., Davis, B.L., and OConnor, J.C., 1992. Dynamics of Human Gait. Human Kinetics Publishers, Champaign, Illinois, Page 26. Wang, J.-W., Kuo, K.N., Andriacchi, T.P., and Galante, J.O., 1990. The Influence of Walking Mechanics and Time on the Results of Proximal Tibial Osteotomy. Journal of Bone and Joint Surgery (American), Volume 72, Number 6, Pages 905-913.

PAGE 97

BIOGRAPHICAL SKETCH Jeffrey A. Reinbolt was born on May 6, 1974 in Bradenton, Florida. His parents are Charles and Joan Reinbolt. He has an older brother, Douglas, and an older sister, Melissa. In 1992, Jeff graduated salutatorian from Southeast High School, Bradenton, Florida. After completing his secondary education, he enrolled at the University of Florida supported by the Florida Undergraduate Scholarship and full-time employment at a local business. He earned a traditional 5-year engineering degree in only 4 years. In 1996, Jeff graduated with honors receiving a Bachelor of Science degree in engineering science with a concentration in biomedical engineering. He used this foundation to assist in the medical device development and clinical research programs of Computer Motion, Inc., Santa Barbara, California. In this role, Jeff was Clinical Development Site Manager for the Southeastern United States and he traveled extensively throughout the United States, Europe, and Asia collaborating with surgeons and fellow medical researchers. In 1998, Jeff married Karen, a student he met during his undergraduate studies. After more than 4 years in the medical device industry, he decided to continue his academic career at the University of Florida. In 2001, Jeff began his graduate studies in Biomedical Engineering and he was appointed a graduate research assistantship in the Computational Biomechanics Laboratory. He plans to continue his graduate education and research activities through the pursuit of a Doctor of Philosophy in mechanical engineering. Jeff would like to further his creative involvement in problem solving and the design of solutions to overcome healthcare challenges. 83



PAGE 1

DETERMINATION OF PATIENT-SPECIFIC FUNCTIONAL AXES THROUGH TWO-LEVEL OPTIMIZATION By JEFFREY A. REINBOLT A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2003

PAGE 2

Copyright 2003 by Jeffrey A. Reinbolt

PAGE 3

This thesis is dedicated to my loving wife, Karen.

PAGE 4

ACKNOWLEDGMENTS I sincerely thank Dr. B. J. Fregly for his support and leadership throughout our research endeavors; moreover, I truly recognize the value of his honest, straightforward, and experience-based advice. My life has been genuinely influenced by Dr. Freglys expectations, confidence, and trust in me. I also extend gratitude to Dr. Raphael Haftka and Dr. Roger Tran-Son-Tay for their dedication, knowledge, and instruction in the classroom. For these reasons, each was selected to serve on my supervisory committee. I express thanks to both individuals for their time, contribution, and fulfillment of their committee responsibilities. I recognize Jaco for his assistance, collaboration, and suggestions. His dedication and professionalism have allowed my graduate work to be both enjoyable and rewarding. I collectively show appreciation for my family and friends. Unconditionally, they have provided me with encouragement, support, and interest in my graduate studies and research activities. My wife, Karen, has done more for me than any person could desire. On several occasions, she has taken a leap of faith with me; more importantly, she has been directly beside me. Words or actions cannot adequately express my gratefulness and adoration toward her. I honestly hope that I can provide her as much as she has given to me. I thank God for my excellent health, inquisitive mind, strong faith, valuable experiences, encouraging teachers, loving family, supportive friends, and wonderful wife. iv

PAGE 5

TABLE OF CONTENTS Page ACKNOWLEDGMENTS.................................................................................................iv TABLE OF CONTENTS.....................................................................................................v LIST OF TABLES...........................................................................................................viii LIST OF FIGURES...........................................................................................................xi ABSTRACT.....................................................................................................................xiii CHAPTER 1 INTRODUCTION........................................................................................................1 Arthritis: Th e Nations Lead ing Cause of Disability...................................................1 Need for Accurate Patient-Specific Models.................................................................2 Benefits of Two-Level Optimization............................................................................3 2 BACKGROUND..........................................................................................................4 Motion Capture.............................................................................................................4 Biomechanical Models.................................................................................................4 Kinematics and Dynamics............................................................................................5 Optimization.................................................................................................................5 Limitations of Previous Methods..................................................................................5 3 METHODS...................................................................................................................7 Parametric Model Structure..........................................................................................7 Hip Joint................................................................................................................8 Knee Joint..............................................................................................................8 Ankle Joint...........................................................................................................10 Two-Level Optimization Approach............................................................................11 Why Two Levels of Optimization Are Necessary..............................................11 Inner-Level Optimization....................................................................................11 Outer-Level Optimization...................................................................................12 Two-Level Optimization Evaluation..........................................................................13 Synthetic Marker Data without Noise.................................................................13 v

PAGE 6

Synthetic Marker Data with Noise......................................................................13 Experimental Marker Data..................................................................................14 4 RESULTS...................................................................................................................29 Synthetic Marker Data without Noise........................................................................29 Synthetic Marker Data with Noise.............................................................................29 Experimental Marker Data.........................................................................................29 5 DISCUSSION.............................................................................................................36 Assumptions, Limitations, and Future Work..............................................................36 Joint Model Selection..........................................................................................36 Design Variable Constraints................................................................................36 Objective Function Formulation..........................................................................37 Optimization Time and Parallel Computing........................................................37 Multi-Cycle and One-Half-Cycle Joint Motions.................................................38 Range of Motion and Loading Conditions..........................................................39 Optimization Using Gait Motion.........................................................................39 Comparison of Experimental Results with Literature................................................40 6 CONCLUSION...........................................................................................................43 Rationale for New Approach......................................................................................43 Synthesis of Current Work and Literature..................................................................43 GLOSSARY......................................................................................................................45 APPENDIX A NOMINAL JOINT PARAMETERS & OPTIMIZATION BOUNDS FOR SYNTHETIC MARKER DATA................................................................................52 B NOMINAL JOINT PARAMETERS & OPTIMIZATION BOUNDS FOR EXPERIMENTAL MARKER DATA.......................................................................55 C NOMINAL & OPTIMUM JOINT PARAMETERS FOR SYNTHETIC MARKER DATA WITHOUT NOISE.........................................................................................58 D NOMINAL & OPTIMUM JOINT PARAMETERS FOR SYNTHETIC MARKER DATA WITH NOISE.................................................................................................61 E NOMINAL & OPTIMUM JOINT PARAMETERS FOR MULTI-CYCLE EXPERIMENTAL MARKER DATA.......................................................................64 F NOMINAL & OPTIMUM JOINT PARAMETERS FOR FIRST ONE-HALF-CYCLE EXPERIMENTAL MARKER DATA....................................67 vi

PAGE 7

G NOMINAL & OPTIMUM JOINT PARAMETERS FOR SECOND ONE-HALF-CYCLE EXPERIMENTAL MARKER DATA....................................70 H OPTIMUM JOINT PARAMETERS FOR MULTI-CYCLE & FIRST ONE-HALF-CYCLE EXPERIMENTAL MARKER DATA....................................73 I OPTIMUM JOINT PARAMETERS FOR MULTI-CYCLE & SECOND ONE-HALF-CYCLE EXPERIMENTAL MARKER DATA....................................76 LIST OF REFERENCES...................................................................................................79 BIOGRAPHICAL SKETCH.............................................................................................83 vii

PAGE 8

LIST OF TABLES Table Page 3-1 Model degrees of freedom........................................................................................17 3-2 Hip joint parameters.................................................................................................20 3-3 Knee joint parameters...............................................................................................23 3-4 Ankle joint parameters.............................................................................................25 4-1 Two-level optimization results for synthetic marker data with random continuous numerical noise to simulate skin movement artifacts with maximum amplitude of 1 cm.............................................................................................................................31 4-2 Mean marker distance errors for nominal values and the two-level optimization results for multi-cycle experimental marker data.....................................................33 4-3 Mean marker distance errors for the two-level optimization results using first and second halves of the joint cycle motion for experimental marker data....................35 5-1 Mean marker distance errors for the inner-level objective function consisting of marker coordinate errors versus marker distance errors for multi-cycle experimental marker data...............................................................................................................41 5-2 Execution times for the inner-level objective function consisting of marker coordinate errors versus marker distance errors for multi-cycle experimental marker data...........................................................................................................................42 A-1 Nominal right hip joint parameters and optimization bounds for synthetic marker data...........................................................................................................................52 A-2 Nominal right knee joint parameters and optimization bounds for synthetic marker data...........................................................................................................................53 A-3 Nominal right ankle joint parameters and optimization bounds for synthetic marker data...........................................................................................................................54 B-1 Nominal right hip joint parameters and optimization bounds for experimental marker data...............................................................................................................55 viii

PAGE 9

B-2 Nominal right knee joint parameters and optimization bounds for experimental marker data...............................................................................................................56 B-3 Nominal right ankle joint parameters and optimization bounds for experimental marker data...............................................................................................................57 C-1 Nominal and optimum right hip joint parameters for synthetic marker data without noise.........................................................................................................................58 C-2 Nominal and optimum right knee joint parameters for synthetic marker data without noise............................................................................................................59 C-3 Nominal and optimum right ankle joint parameters for synthetic marker data without noise............................................................................................................60 D-1 Nominal and optimum right hip joint parameters for synthetic marker data with noise.........................................................................................................................61 D-2 Nominal and optimum right knee joint parameters for synthetic marker data with noise.........................................................................................................................62 D-3 Nominal and optimum right ankle joint parameters for synthetic marker data with noise.........................................................................................................................63 E-1 Nominal and optimum right hip joint parameters for multi-cycle experimental marker data...............................................................................................................64 E-2 Nominal and optimum right knee joint parameters for multi-cycle experimental marker data...............................................................................................................65 E-3 Nominal and optimum right ankle joint parameters for multi-cycle experimental marker data...............................................................................................................66 F-1 Nominal and optimum right hip joint parameters for first one-half-cycle experimental marker data.........................................................................................67 F-2 Nominal and optimum right knee joint parameters for first one-half-cycle experimental marker data.........................................................................................68 F-3 Nominal and optimum right ankle joint parameters for first one-half-cycle experimental marker data.........................................................................................69 G-1 Nominal and optimum right hip joint parameters for second one-half-cycle experimental marker data.........................................................................................70 G-2 Nominal and optimum right knee joint parameters for second one-half-cycle experimental marker data.........................................................................................71 ix

PAGE 10

G-3 Nominal and optimum right ankle joint parameters for second one-half-cycle experimental marker data.........................................................................................72 H-1 Optimum right hip joint parameters for multi-cycle and first one-half-cycle experimental marker data.........................................................................................73 H-2 Optimum right knee joint parameters for multi-cycle and first one-half-cycle experimental marker data.........................................................................................74 H-3 Optimum right ankle joint parameters for multi-cycle and first one-half-cycle experimental marker data.........................................................................................75 I-1 Optimum right hip joint parameters for multi-cycle and second one-half-cycle experimental marker data.........................................................................................76 I-2 Optimum right knee joint parameters for multi-cycle and second one-half-cycle experimental marker data.........................................................................................77 I-3 Optimum right ankle joint parameters for multi-cycle and second one-half-cycle experimental marker data.........................................................................................78 x

PAGE 11

LIST OF FIGURES Figure Page 3-1 The 3D, 14 segment, 27 DOF full-body kinematic model linkage joined by a set of gimbal, universal, and pin joints..............................................................................16 3-2 A 1 DOF joint axis simultaneously defined in two adjacent body segments and the geometric constraints on the optimization of each of the 9 model parameters........18 3-3 Modified Cleveland Clinic marker set used during static and dynamic motion-capture trials................................................................................................19 3-4 The 3 DOF right hip joint center simultaneously defined in the pelvis and right femur segments and the 6 translational model parameters optimized to determine the functional hip joint center location.....................................................................20 3-5 Geometric constraints on the optimization of translational and rotational model parameters for the hip, knee, and ankle joints..........................................................21 3-6 The 1 DOF right knee joint simultaneously defined in the right femur and right tibia segments and the 4 rotational and 5 translational model parameters optimized to determine the knee joint location and orientation................................................22 3-7 The 2 DOF right ankle joint complex simultaneously defined in the right tibia, talus, and foot segments and the 5 rotational and 7 translational model parameters optimized to determine the joint locations and orientations....................................24 3-8 Two-level optimization technique minimizing the 3D marker coordinate errors between the kinematic model markers and experimental marker data to determine functional joint axes for each lower-extremity joint................................................26 3-9 Inner-level optimization convergence illustration series for the knee joint, where synthetic markers are blue and model markers are red............................................27 3-10 Two-level optimization approach minimizing the 3D marker coordinate errors between the kinematic model markers and experimental marker data to determine functional joint axes.................................................................................................28 4-1 Outer-level optimization objective function fitness value convergence for synthetic marker data with random continuous numerical noise to simulate skin movement xi

PAGE 12

artifacts with maximum amplitude of 1 cm, where the best fitness value among all nodes is given for each iteration...............................................................................32 4-2 Outer-level optimization objective function fitness value convergence for multi-cycle experimental marker data, where the best fitness value among all nodes is given for each iteration.........................................................................................34 xii

PAGE 13

Abstract of Thesis Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Master of Science DETERMINATION OF PATIENT-SPECIFIC FUNCTIONAL AXES THROUGH TWO-LEVEL OPTIMIZATION By Jeffrey A. Reinbolt 2003 Chair: Benjamin J. Fregly Major Department: Biomedical Engineering An innovative patient-specific dynamic model would be useful for evaluating and enhancing corrective surgical procedures. This thesis presents a nested (or two-level) system identification optimization approach to determine patient-specific model parameters that best fit a three-dimensional (3D), 18 degree-of-freedom (DOF) lower-body model to an indi viduals move ment data. The whole body was modeled as a 3D, 14 segment, 27 DOF linkage joined by a set of gimbal, universal, and pin joints. For a given set of model parameters, the inner-level optimization uses a nonlinear least squares algorithm that adjusts each generalized coordinate of the lower-body model to minimize 3D marker coordinate errors between the model and motion data for each time instance. The outer-level optimization implements a parallel particle swarm algorithm that modifies each model parameter to minimize the sum of the squares of 3D marker coordinate errors computed by the inner-level optimization throughout all time instances (or the entire motion). xiii

PAGE 14

At the termination of each two-level optimization using synthetic marker data without noise, original marker trajectories were precisely recovered to within an arbitrarily tight tolerance (on the order of 1e-13 cm) using double precision computations. At the termination of each two-level optimization using synthetic marker data with noise representative of skin and soft tissue movement artifacts, the mean marker distance error for each joint complex was as follows: ankle = 0.51 + 0.23 cm; knee = 0.39 + 0.15 cm; and hip = 0.47 + 0.20 cm. Mean marker distance errors are approximately one-half of the 1 cm maximum amplitude specified for the noise model. At the termination of each two-level optimization using experimental marker data from one subject, the mean marker distance error for each joint complex was less than or equal to the following: ankle = 0.38 + 0.19 cm; knee = 0.55 + 0.27 cm; and hip = 0.36 + 0.20 cm. Experimental mean marker distance error results are comparable to the results of the synthetic data with noise. The two-level optimization method effectively determines patient-specific model parameters defining a 3D lower-extremity model that is well suited to a particular subject. When compared to previous values in the literature, experimental results show reasonable agreement and demonstrate the necessity for the new approach. By minimizing fitness errors between the patient-specific model and experimental motion data, the resulting kinematic model provides an accurate foundation for future dynamic analyses and optimizations. xiv

PAGE 15

CHAPTER 1 INTRODUCTION Arthritis: The Nations Leading Cause of Disability In 1997, the Centers for Disease Control and Prevention (CDC) reported that 43 million (or 1 in 6) Americans suffered with arthritis. A 2002 CDC study showed that 70 million (a 63% increase in 5 years; or 1 in 3) Americans have arthritis ( CDC, 2003 ). Approximately two-thirds of individuals with arthritis are under 65 years old. As the population ages, the number of people with arthritis is likely to increase significantly. The most common forms of arthritis are osteoarthritis, rheumatoid arthritis, fibromyalgia, and gout. Osteoarthritis of the knee joint accounts for roughly 30% ($25 billion) of the $82 billion total arthritis costs per year in the United States. Knee osteoarthritis symptoms of pain and dysfunction are the primary reasons for total knee replacement (TKR). This procedure involves a resurfacing of bones surrounding the knee joint. The end of the femur is removed and covered with a metal implant. The end of the tibia is removed and substituted by a plastic implant. Smooth metal and plastic articulation replaces the irregular and painful arthritic surfaces. Approximately 100,000 Medicare patients alone endure TKR procedures each year ( Heck et al., 1998 ). Hospital charges for unilateral TKR are more than $30,000 and the cost of bilateral TKR is over $50,000 ( Lane et al., 1997 ). An alternative to TKR is a more conservative (both economically and surgically) corrective procedure known as high tibial osteotomy (HTO). By changing the frontal plane alignment of the tibia with a wedge of bone, a HTO shifts the weight-bearing axis 1

PAGE 16

2 of the leg, and thus the mechanical stresses, from the diseased portion to the healthy section of the knee compartment. By transferring the location of mechanical stresses, the degenerative disease process may be slowed or possibly reversed. The advantages of HTO are appealing to younger and active patients who receive recommendations to avoid TKR. Need for Accurate Patient-Specific Models Innovative patient-specific models and simulations would be valuable for addressing problems in orthopedics and sports medicine, as well as for evaluating and enhancing corrective surgical procedures ( Arnold et al., 2000 ; Arnold and Delp, 2001 ; Chao et al., 1993 ; Chao and Sim, 1995 ; Delp et al., 1998 ; Delp et al., 1996 ; Delp et al., 1990 ; Pandy, 2001 ). For example, a patient-specific dynamic model may be useful for planning intended surgical parameters and predicting the outcome of HTO. The main motivation for developing a patient-specific computational model and a two-level optimization method to enhance the lower-extremity portion is to predict the post-surgery peak knee adduction moment in HTO patients. Conventional surgical planning techniques for HTO involve choosing the amount of necessary tibial angulation from standing radiographs (or x-rays). Unfortunately, alignment correction estimates from static x-rays do not accurately predict long-term clinical outcome after HTO ( Andriacchi, 1994 ; Tetsworth and Paley, 1994 ). Researchers have identified the peak external knee adduction moment as an indicator of clinical outcome while investigating the gait of HTO patients ( Andriacchi, 1994 ; Bryan et al., 1997; Hurwitz et al., 1998 ; Prodromos et al., 1985 ; Wang et al., 1990 ). Currently, no movement simulations (or other methods for that matter) allow surgeons to choose HTO surgical parameters to achieve a chosen post-surgery knee adduction moment.

PAGE 17

3 Movement simulations consist of models involving skeletal structure, muscle paths, musculotendon actuation, muscle excitation-contraction coupling, and a motor task goal ( Pandy, 2001 ). Development of an accurate inverse dynamic model of the skeletal structure is a significant first step toward creating a predictive patient-specific forward dynamic model to perform movement simulations. The precision of dynamic analyses is fundamentally associated with the accuracy of kinematic model parameters such as segment lengths, joint positions, and joint orientations ( Andriacchi and Strickland, 1985 ; Challis and Kerwin, 1996 ; Cappozzo et al., 1975 ; Davis, 1992 ; Holden and Stanhope, 1998 ; Holden and Stanhope, 2000 ; Stagni et al., 2000 ). Understandably, a model constructed of rigid links within a multi-link chain and simple mechanical approximations of joints will not precisely match the human anatomy and kinematics. The model should provide the best possible agreement to experimental motion data within the bounds of the joint models selected ( Sommer and Miller, 1980 ). Benefits of Two-Level Optimization This thesis presents a nested (or two-level) system identification optimization approach to determine patient-specific joint parameters that best fit a three-dimensional (3D), 18 degree-of-freedom (DOF) lower-body model to an indi viduals move ment data. The two-level technique combines the advantages of using optimization to determine both the position of model segments from marker data and the anatomical joint axes linking adjacent segments. By formulating a two-level objective function to minimize marker coordinate errors, the resulting optimum model more accurately represents experimental marker data (or a specific patient and his or her motion) when compared to a nominal model defined by joint axes prediction methods.

PAGE 18

CHAPTER 2 BACKGROUND Motion Capture Motion capture is the use of external devices to capture the movement of a real object. One type of motion-capture technology is based on a passive optical technique. Passive refers to markers, which are simply spheres covered in reflective tape, placed on the object. Optical refers to the technology used to provide 3D data, which involves high-speed, high-resolution video cameras. By placing passive markers on an object, special hardware records the position of those markers in time and it generates a set of motion data (or marker data). Often motion capture is used to create synthetic actors by capturing the motions of real humans. Special effects companies have used this technique to produce incredibly realistic animations in movies such as Star Wars Episode I & II, Titanic, Batman, and Terminator 2. Biomechanical Models Researchers use motion-capture technology to construct biomechanical models of the human structure. The position of external markers may be used to estimate the position of internal landmarks such as joint centers. The markers also enable the creation of individual segment reference frames that define the position and orientation of each body segment within a Newtonian laboratory reference frame. Marker data collected from an individual are used to prescribe the motion of the biomechanical model. 4

PAGE 19

5 Kinematics and Dynamics Human kinematics is the study of the positions, angles, velocities, and accelerations of body segments and joints during motion. With kinematic data and mass-distribution data, one can study the forces and torques required to produce the recorded motion data. Errors between the biomechanical model and the recorded motion data will inevitably propagate to errors in the force and torque results of dynamic analyses. Optimization Optimization involves searching for the minimum or maximum of an objective function by adjusting a set of design variables. For example, the objective function may be the errors between the biomechanical model and the recorded motion data. These errors are a function of the m odels genera lized coordinates and the m odels kinem atic parameters such as segment lengths, joint positions, and joint orientations. Optimization may be used to modify the design variables of the model to minimize the overall fitness errors and identify a structure that matches the experimental data very well. Limitations of Previous Methods The literature contains a number of examples that use techniques, with or without optimization, to assist in the development of subject-specific joint models within a larger computational model. Several authors have presented methodologies to predict joint locations and orientations from external landmarks without using optimization ( Bell et al., 1990 ; Inman, 1976 ; Vaughan et al., 1992 ). However, a regression model based solely upon population studies may not accurately portray an individual patient. Another study demonstrated an optimization method to determine the position and orientation of a 3 link, 6 DOF model by minimizing the distances between model-determined and experimental marker positions ( Lu and OConnor, 1999 ). A model optimally positioned

PAGE 20

6 without adjusting its joint parameters may not properly correspond to a certain patient. Earlier studies described optimization methods to determine a set of model parameters for a 3D, 2 DOF model by decreasing the error between the motion of the model and experimental data ( Sommer and Miller, 1980 ; Bogert et al., 1994 ). A model defined by optimal joint parameters without optimizing its segment positions may not accurately describe the motion of a patient within the bounds of the chosen joint approximations.

PAGE 21

CHAPTER 3 METHODS Parametric Model Structure A generic, parametric 3D full-body kinematic model was constructed with Autolev (Online Dynam ics, Inc., Sunnyvale, CA) as a 14 segment, 27 DOF linkage joined by a set of gimbal, universal, and pin joints ( Figure 3-1 Table 3-1 ). Comparable to Pandy's ( 2001 ) model structure, 3 translational degrees of freedom (DOFs) (q1, q2, and q3) and 3 rotational DOFs (q4, q5, and q6) express the movement of the pelvis in 3D space and the remaining 13 body segments comprise four open chains branching from the pelvis segment. The locations and orientations of the joints within corresponding body segments are described by 98 patient-specific model parameters. In other words, the patient-specific model parameters designate the geometry of the model containing the following joints types: 3 DOF hip, 1 DOF knee, 2 DOF ankle, 3 DOF back, 2 DOF shoulder, and 1 DOF elbow. Each joint is defined in two adjacent body segments and provides a mechanical approximation connecting those segments ( Figure 3-2 ). For example, the knee joint axis is simultaneously established in the femur coordinate system and the tibia coordinate system. A modified version of the Cleveland Clinic marker set ( Figure 3-3 ) and a static motion-capture trial is used to create segment coordinate systems and define static and dynamic marker locations in these coordinate systems. Institutional review board approval and proper informed consent were obtained before human involvement in the experiments. The marker data collection system was a HiRes Expert Vision System 7

PAGE 22

8 (Motion Analysis Corp., Santa Rosa, CA), including six HSC-180 cameras, EVa 5.11 software, and two AMTI force plates (Advanced Management Technology, Inc., Arlington, VA). Marker data were collected at 180 Hz during 3 seconds for static trials and 6 seconds for individual joint trials. The raw data were filtered using a fourth-order, zero phase-shift, low pass Butterworth Filter with a cutoff frequency set at 6 Hz. Hip Joint There are 6 translational model parameters that must be adjusted to establish a functional hip joint center for a particular patient ( Figure 3-4 Table 3-2 ). Markers placed over the left anterior superior iliac spine (ASIS), right ASIS, and superior sacrum define the pelvis segment coordinate system. From percentages of the inter-ASIS distance, a predicted (or nominal) hip joint center location within the pelvis segment is 19.3% posterior (p1), 30.4% inferior (p2), and 35.9% medial-lateral (p3) ( Bell et al., 1990 ). This nominal hip joint center is the origin of the femur coordinate system, which is subsequently defined by markers placed over the medial and lateral femoral epicondyles. An additional 3 translational model parameters (p4, p5, and p6), described in the femur coordinate system, complete the structure of the nominal hip joint center. Given the physical hip joint center is located within the pelvic region lateral to the midsagittal plane, a cube with side lengths equal to 75% of the inter-ASIS distance and its anterior-superior-medial vertex positioned at the midpoint of the inter-ASIS line provides the geometric constraints for the optimization of each model parameter ( Figure 3-5 Table A-1 Table B-1 ). Knee Joint There are 9 model parameters (5 translational and 4 rotational) that must be tailored to identify a patient-specific functional knee joint axis ( Figure 3-6 Table 3-3 ). The

PAGE 23

9 femoral transepicondylar axis is a good approximation of a fixed knee joint axis ( Churchill et al., 1998 ). The line (or nominal) knee joint axis, connecting the medial and lateral knee markers is defined in the femur and tibia coordinate systems ( Vaughan et al., 1992 ). Given the line passes through the midsagittal plane (x-y plane) of the femur segment, the nominal knee joint axis is positioned within the femur via 2 translational model parameters (p5 and p6) and 2 rotational model parameters (p1 and p2). The tibia coordinate system originates at the midpoint of the knee markers and is defined by additional markers located on the medial and lateral malleoli. The distal description of the nominal knee joint axis is comprised of 3 translational model parameters (p7, p8, and p9) and 2 rotational model parameters (p3 and p4) in the tibia segment. Given the anatomical knee joint DOFs are situated within the articular capsule, a cube with side lengths equal to the distance between knee markers and its center located at the midpoint of the nominal knee joint axis provides the geometric constraints for the optimization of each translational model parameter. The rotational model parameters are constrained within a circular cone defined by the 360 revolution of the nominal knee joint axis perturbed by + 30 ( Figure 3-5 Table A-2, Table B-2 ). It is not a trivial notion to eliminate a potential medial-lateral translational model parameter in the femur segment. This model parameter is considered redundant, as the knee joint axis passes through the midsagittal plane of the femur, and its inclusion may lead to possible optimization convergence problems, similar to the redundant ankle model parameter discussion of Bogert et al. ( 1994 ). By including redundant model parameters, there are an infinite number of optimum solutions within the constraints of corresponding superfluous model parameters.

PAGE 24

10 Ankle Joint There are 12 patient-specific model parameters (7 translational and 5 rotational) that must be customized to determine a pair of patient-specific functional ankle joint axes ( Figure 3-7 Table 3-4 ). Comparable to Bogert et al. ( 1994 ), the talocrural and subtalar joints connect the tibia, talus, and foot segments. Within the tibia segment, 3 translational model parameters (p6, p7, and p8) and 2 rotational model parameters (p1 and p2) position the nominal talocrural joint axis. The talus origin corresponds to the talocrural joint center; therefore, it is not necessary to prescribe model parameters defining the talocrural joint axis in the talus segment. The talus coordinate system is created where the y-axis extends along the line perpendicular to both the talocrural joint axis and the subtalar joint axis. The heel and toe markers, in combination with the tibia y-axis, define the foot coordinate system. There are 3 translational model parameters (p10, p11, and p12) and 2 rotational model parameters (p4 and p5) ( Inman, 1976 ) that place the nominal subtalar joint axis in the foot coordinate system. Given the anatomical ankle joint DOFs are found within the articular capsule, a cube with side lengths equal to the distance between ankle markers and its center located at the midpoint of the nominal talocrural joint axis provides the geometric constraints for the optimization of each translational model parameter. The rotational model parameters of the talocrural joint axis are restricted within a circular cone defined by the 360 revolution of the nominal talocrural joint axis varied by + 30. The rotational model parameters of the subtalar joint axis are confined within a circular cone defined by the 360 revolution of the nominal subtalar joint axis altered by + 30 ( Figure 3-5 Table A-3, Table B-3 ).

PAGE 25

11 Two-Level Optimization Approach Why Two Levels of Optimization Are Necessary Optimization may be used to identify a system (or determine patient-specific joint parameters) that best fit a 3D, 18 DOF lower-body m odel to an individuals m ovement data. One level of optimization is necessary to establish the models geom etry. Given a defined model, another level of optimization is required to position and orientate the models body segm ents. By formulating a two-level objective function to minimize 3D marker coordinate errors, the two-level optimization results describe a lower-body model that accurately represents experimental data. Inner-Level Optimization Given marker trajectory data, md, and a constant set of patient-specific model parameters, p the inner-level optimization ( Figure 3-8 inner boxes) minimizes the 3D marker coordinate errors, ec, between the model markers, mm, and the marker movement data, md, ( Equation 3-1 ) using a nonlinear least squares algorithm that adjusts the generalized coordinates, q of the model at each instance in time, t ( Figure 3-9 ), similar to Lu and OConnor ( 1999 ). In other words, the pose of the model is revised to match the marker movement data at each time frame of the entire motion. (q, p, t) m (t) m (q, p, t) em d c min(3-1) At the first time instance, the algorithm is seeded with exact values for the 6 generalized coordinates of the pelvis, since the marker locations directly identify the position and orientation of the pelvis coordinate system, and all remaining generalized coordinates are seeded with values equal to zero. Given the joint motion is continuous, each optimal generalized coordinate solution, including the pelvis generalized

PAGE 26

12 coordinates, at one time instance is used as the algorithm s seed for the next time instance. Matlab 6.1 (The MathWorks, Inc., Natick, MA), in conjunction with the Matlab Optimization Toolbox and Matlab C/C++ Compiler, was used to develop the inner-level optimization program. Outer-Level Optimization The outer-level global optimization ( Figure 3-8 outer boxes) minimizes the sum of the squares, ess, of the 3D marker coordinate errors, ec, ( Equation 3-1 ) computed by the inner-level algorithm throughout all time instances, n ( Equation 3-2 ) by modifying the patient-specific model parameters, p In other words, the geometric structure of the model is varied to best fit the marker movement data for the entire motion. n t c T c ss(q, p, t) e (q, p, t) e (q, p, n) e1 min (3-2) The outer-level optimization is adapted from the population-based Particle Swarm Optimizer (PSO) ( Kennedy and Eberhart, 1995 ). The PSO algorithm was chosen over gradient-based optimizers for its suitability to be parallelized and its ability to solve global optimization problems. It is particularly effective in the determination of joint positions and orientations of biomechanical systems ( Schutte et al., 2003 ). The work of Schutte et al. ( 2003 ) contrasted the PSO to a gradient-based optimizer (i.e., Broyden-Fletcher-Goldfarb-Shanno) that is commonly used in system identification problems involving biomechanical models. The PSO very reliably converged to the global minimum and it was insensitive to both design variable scaling and initial seeds ( Schutte et al., 2003 ). To manage computational requirements, the outer-level optimization uses a parallel version of the PSO operating on a cluster of 20 Linux-based 1.33 GHz Athlon PCs on a

PAGE 27

13 100 Mbps switched Fast Ethernet network. Each machine is separately seeded with a random set of initial patient-specific model parameter values. The outer-level optimization program was implemented in C on the Linux operating system with the Message Passing Interface (MPI) parallel computation libraries. Two-Level Optimization Evaluation Synthetic Marker Data without Noise To evaluate the ability of the two-level optimization approach ( Figure 3-10 ) to calibrate the generic, parametric kinematic model, synthetic movement data was generated for the ankle, knee, and hip joints based on estimated in vivo model parameters and experimental movement data. For each generated motion, the distal segment moved within the physiological range of motion and exercised each DOF for the joint. There were 50 time frames and approximately 3.5 cycles of a circumductive hip motion consisting of concurrent flexion-extension and abduction-adduction. Flexion-extension comprised 50 time frames and roughly 4 cycles of knee motion. The ankle motion involved 50 time frames and nearly 2.75 cycles of circumduction of the toe tip, where plantarflexion-dorsiflexion and inversion-eversion occurred simultaneously. The ability of the two-level optimization to recover the original model parameters used when generating the synthetic motions was assessed. Synthetic Marker Data with Noise To evaluate the ability of the two-level optimization method ( Figure 3-10 ) to calibrate the generic kinematic model to a synthetic patient, skin movement artifacts were introduced into the synthetic movement data for the ankle, knee, and hip joints. The relative movement between skin and underlying bone occurs in a continuous rather than a random fashion ( Cappozzo et al., 1993 ). Comparable to the simulated skin movement

PAGE 28

14 artifacts of Lu and OConnor ( 1999 ), a continuous numerical noise model of the form t A sin was used and the equation variables were randomly generated within the following bounds: amplitude (0 A 1 cm), frequency (0 25 rad/s), and phase angle (0 2 ) ( Chze et al., 1995 ). Noise was separately generated for each 3D coordinate of the marker trajectories. Again, the two-level optimization was tested for its ability to reproduce the original model parameters. Experimental Marker Data To verify the ability of the two-level optimization technique ( Figure 3-10 ) to calibrate the generic kinematic model to a particular patient, multi-cycle experimental marker trajectory data was collected from one subject. For each joint motion, the distal segment moved within the physiological range of motion and exercised each DOF for the joint. Analogous to Bogert et al. ( 1994 ), the original data were resampled non-equidistantly to eliminate weighting the data set with many data points occurring during acceleration and deceleration at the limits of the range of motion. In other words, regardless of changes in velocity during joint movements, the data was equally distributed over the entire joint range of motion. The time frames of original tracked marker data sets (right hip = 1015, right knee = 840, and right ankle = 707) were reduced to 50 time frames. The resampled data allowed a fixed amount of marker movement between frames to arrive at the number of time frames chosen, given that 50 time frames is analogous to Lu and OConnor ( 1999 ). There were nearly 2 cycles of flexion-extension and abduction-adduction involved in the hip motion. Similar to Leardini et al. ( 1999 ), internal-external rotation of the hip was avoided to reduce the effects of skin and soft tissue movement artifacts. Approximately 2 cycles of knee

PAGE 29

15 motion included flexion-extension. Simultaneous plantarflexion-dorsiflexion and inversion-eversion comprised roughly 2 cycles of ankle motion. Without knowledge of original model parameters, the marker coordinate errors are the only means of measuring the effectiveness of the two-level optimization. To verify the ability of the two-level optimization procedure ( Figure 3-10 ) to calibrate the generic kinematic model to a particular patient using a smaller portion of the joint motion cycle, the resampled multi-cycle experimental marker trajectory data described above was divided into the first and second halves of the individual hip, knee, and ankle joint motion cycles. The number of time frames comprising each one-half-cycle of the joint motion was as follows: ankle = 13, knee = 13, and hip = 19. Again, the two-level optimization was tested for its ability to reduce the marker coordinate errors and obtain an optimal set of model parameters.

PAGE 30

16 3-1. The 3D, 14 segment, 27 DOF full-body kinematic model linkage joined by a set of gimbal, universal, and pin joints. Figure

PAGE 31

17 3-1. Model degrees of freedom. Table DOF Description q1 Pelvis anterior-posterior position q2 Pelvis superior-inferior position q3 Pelvis medial-lateral position q4 Pelvis anterior-posterior tilt angle q5 Pelvis elevation-depression angle q6 Pelvis internal-external rotation angle q7 Right hip flexion-extension angle q8 Right hip adduction-abduction angle q9 Right hip internal-external rotation angle q10 Right knee flexion-extension angle q11 Right ankle plantarflexion-dorsiflexion angle q12 Right ankle inversion-eversion angle q13 Left hip flexion-extension angle q14 Left hip adduction-abduction angle q15 Left hip internal-external rotation angle q16 Left knee flexion-extension angle q17 Left ankle plantarflexion-dorsiflexion angle q18 Left ankle inversion-eversion angle q19 Trunk anterior-posterior tilt angle q20 Trunk elevation-depression angle q21 Trunk internal-external rotation angle q22 Right shoulder flexion-extension angle q23 Right shoulder adduction-abduction angle q24 Right elbow flexion angle q25 Left shoulder flexion-extension angle q26 Left shoulder adduction-abduction angle q27 Left elbow flexion angle

PAGE 32

18 3-2. A 1 DOF joint axis simultaneously defined in two adjacent body segments and the geometric constraints on the optimization of each of the 9 model parameters. Figure

PAGE 33

19 3-3. Modified Cleveland Clinic marker set used during static and dynamic motion-capture trials. Note: the background femur and knee markers have been omitted for clarity and the medial and lateral markers for the knee and ankle are removed following the static trial. Figure

PAGE 34

20 3-4. The 3 DOF right hip joint center simultaneously defined in the pelvis and right femur segments and the 6 translational model parameters optimized to determine the functional hip joint center location. Figure 3-2. Hip joint parameters. Table Hip Joint Parameter Description p1 Anterior-posterior location in pelvis segment p2 Superior-inferior location in pelvis segment p3 Medial-lateral location in pelvis segment p4 Anterior-posterior location in femur segment p5 Superior-inferior location in femur segment p6 Medial-lateral location in femur segment

PAGE 35

21 3-5. Geometric constraints on the optimization of translational and rotational model parameters for the hip, knee, and ankle joints. Figure

PAGE 36

22 3-6. The 1 DOF right knee joint simultaneously defined in the right femur and right tibia segments and the 4 rotational and 5 translational model parameters optimized to determine the knee joint location and orientation. Figure

PAGE 37

23 3-3. Knee joint parameters. Table Knee Joint Parameter Description p1 Adduction-abduction rotation in femur segment p2 Internal-external rotation in femur segment p3 Adduction-abduction rotation in tibia segment p4 Internal-external rotation in tibia segment p5 Anterior-posterior location in femur segment p6 Superior-inferior location in femur segment p7 Anterior-posterior location in tibia segment p8 Superior-inferior location in tibia segment p9 Medial-lateral location in tibia segment

PAGE 38

24 3-7. The 2 DOF right ankle joint complex simultaneously defined in the right tibia, talus, and foot segments and the 5 rotational and 7 translational model parameters optimized to determine the joint locations and orientations. Figure

PAGE 39

25 3-4. Ankle joint parameters. Table Ankle Joint Parameter Description p1 Adduction-abduction rotation of talocrural in tibia segment p2 Internal-external rotation of talocrural in tibia segment p3 Internal-external rotation of subtalar in talus segment p4 Internal-external rotation of subtalar in foot segment p5 Dorsi-plantar rotation of subtalar in foot segment p6 Anterior-posterior location of talocrural in tibia segment p7 Superior-inferior location of talocrural in tibia segment p8 Medial-lateral location of talocrural in tibia segment p9 Superior-inferior location of subtalar in talus segment p10 Anterior-posterior location of subtalar in foot segment p11 Superior-inferior location of subtalar in foot segment p12 Medial-lateral location of subtalar in foot segment

PAGE 40

26 3-8. Two-level optimization technique minimizing the 3D marker coordinate errors between the kinematic model markers and experimental marker data to determine functional joint axes for each lower-extremity joint. Figure

PAGE 41

27 3-9. Inner-level optim ization convergence il lustration series for the knee joint, where synthetic m a rkers are blue and m odel m a rkers are red. Given synthetic m a rker data without noise, optim ized outer-level design variables, and a synthetic knee flexion angle = 90, A) is the initial m odel knee flexion = 0, B) is the m odel knee flexion = 30, C) is the m odel knee flexion = 60, and D) is the final m o del knee flexion = 90. Figure

PAGE 42

28 3-10. Two-level optimization approach minimizing the 3D marker coordinate errors between the kinematic model markers and experimental marker data to determine functional joint axes. Figure

PAGE 43

CHAPTER 4 RESULTS Synthetic Marker Data without Noise For synthetic motions without noise, each two-level optimization precisely recovered the original marker trajectories to within an arbitrarily tight tolerance (on the order of 1e-13 cm), as illustrated in Figure 3-9 At the termination of each optimization, the optimum model parameters for the hip, knee, and ankle were recovered with mean rotational errors less than or equal to 0.045 and mean translational errors less than or equal to 0.0077 cm ( Appendix C ). Synthetic Marker Data with Noise For synthetic motions with noise, the two-level optimization of the hip, knee, and ankle resulted in mean marker distance errors equal to 0.46 cm, which is of the same order of magnitude as the selected random continuous noise model ( Table 4-1) The two-level approach determined the original model parameters with mean rotational errors less than or equal to 3.73 and mean translational errors less than or equal to 0.92 cm ( Appendix D ). The outer-level fitness history converged rapidly ( Figure 4-1 ) and the hip, knee, and ankle optimizations terminated with a mean wall clock time of 41.02 hours. Experimental Marker Data For multi-cycle experimental motions, the mean marker distance error of the optimal hip, knee, and ankle solutions was 0.41 cm, which is a 0.43 cm improvement over the mean nominal error of 0.84 cm ( Table 4-2 ). For each joint complex, the optimum model parameters improved upon the nominal parameter data (or values found 29

PAGE 44

30 in the literature) by mean rotational values less than or equal to 6.18 and mean translational values less than or equal to 1.05 cm ( Appendix E ). When compared to the synthetic data with noise, the outer-level fitness history of the multi-cycle experimental data optimization converged at approximately the same rate and resulted in an improved final solution for both the ankle and the hip ( Figure 4-2 ). On the contrary, the higher objective function values for the knee are evidence of the inability of the fixed pin joint to represent the screw-home motion ( Blankevoort et al., 1988 ) of the multi-cycle experimental knee data. The multi-cycle hip, knee, and ankle optimizations terminated with a mean wall clock time of 35.94 hours. For one-half-cycle experimental motions, the mean marker distance error of the optimal hip, knee, and ankle solutions was 0.30 cm for the first half and 0.30 cm for the second half ( Table 4-3 ). The fitness of both the ankle and the hip were comparable to the multi-cycle joint motion results. However, the knee fitness values were improved due to the reduced influence (i.e., 1 time frame of data as opposed to 9) of the screw-home motion of the knee. For each joint complex, the optimum model parameters improved upon the nominal parameter data (or values found in the literature) by mean rotational values less than or equal to 11.08 and mean translational values less than or equal to 2.78 cm ( Appendix F Appendix G ). In addition, the optimum model parameters for one-half-cycle motion differed from those for the multi-cycle motion by mean rotational values less than or equal to 15.77 and mean translational values less than or equal to 2.95 cm ( Appendix H Appendix I ). The one-half-cycle hip, knee, and ankle optimizations terminated with a mean wall clock time of 11.77 hours.

PAGE 45

31 4-1. Two-level optimization results for synthetic marker data with random continuous numerical noise to simulate skin movement artifacts with maximum amplitude of 1 cm. Table Synthetic Data with Noise Hip Knee Ankle Mean marker distance error (cm) 0.474603 + 0.2022480.392331 + 0.1459290.514485 + 0.233956 Mean rotational parameter error () n/a 2.158878 + 1.2887033.732191 + 3.394553 Mean translational parameter error (cm) 0.161318 + 0.0394490.321930 + 0.1279970.923724 + 0.471443

PAGE 46

32 4-1. Outer-level optimization objective function fitness value convergence for synthetic marker data with random continuous numerical noise to simulate skin movement artifacts with maximum amplitude of 1 cm, where the best fitness value among all nodes is given for each iteration. Figure

PAGE 47

33 4-2. Mean marker distance errors for nominal values and the two-level optimization results for multi-cycle experimental marker data. Table Experimental Data Hip Knee Ankle Nominal mean marker distance error (cm) 0.499889 + 0.1779471.139884 + 0.6185670.885437 + 0.478530 Optimum mean marker distance error (cm) 0.342262 + 0.1670790.547787 + 0.2697260.356279 + 0.126559 Mean marker distance error attenuation (cm) 0.157627 + 0.1662360.592097 + 0.4436800.529158 + 0.438157

PAGE 48

34 4-2. Outer-level optimization objective function fitness value convergence for multi-cycle experimental marker data, where the best fitness value among all nodes is given for each iteration. Figure

PAGE 49

35 4-3. Mean marker distance errors for the two-level optimization results using first and second halves of the joint cycle motion for experimental marker data. Table Experimental Data Hip Knee Ankle First half: mean marker distance error (cm) 0.335644 + 0.1633700.189551 + 0.0729960.384786 + 0.193149 Second half: mean marker distance error (cm) 0.361179 + 0.2007740.202413 + 0.1010630.338886 + 0.128596

PAGE 50

CHAPTER 5 DISCUSSION Assumptions, Limitations, and Future Work Joint Model Selection If the current model cannot adequately reproduce future experimental motions, the chosen joint models may be modified. For example, the flexion-extension of the knee is not truly represented by a fixed pin joint ( Churchill et al., 1998 ). When comparing the fitness of the optimum knee joint model to multi-cycle experimental marker data, the agreement was quite good for all knee flexion angles with the exception of those approaching full extension. By eliminating knee flexion angles less than 20, which comprised 18% of the flexion-extension data, the mean marker distance error was reduced to 0.48 + 0.23 cm (11.89% decrease) using the optimum model parameters from the full data set. A pin joint knee may be sufficiently accurate for many modeling applications. A 2 DOF knee model ( Hollister et al., 1993 ) may account for the screw-home motion of the knee joint occurring between 0 and 20 ( Blankevoort et al., 1988 ). If greater fidelity to actual bone motion is necessary, a 6 DOF knee joint may be implemented with kinematics determined from fluoroscopy ( Rahman et al., 2003 ). Design Variable Constraints Certain joint parameters must be constrained to zero with the purpose of preventing the unnecessary optimization of redundant parameters. Case in point, the medial-lateral translational model parameter placing the knee joint center in the femur segment must be constrained to zero. On the other hand, this model parameter may be used as a design 36

PAGE 51

37 variable, granted the medial-lateral translational model parameter placing the knee joint center in the tibia segment is constrained to zero. If both medial-lateral translational model parameters are used as redundant design variables, the outer-level optimization has an infinite number of solutions within the constraints of both parameters. Through the elimination (i.e., constraining to zero) of redundant model parameters, the outer-level optimization encounters less convergence problems in globally minimizing the objective function. Objective Function Formulation The inner-level optimization objective function should be comprised of marker coordinate errors rather than marker distance errors. A substantial amount of information (i.e., of the number of errors) describing the fitness value is lost with computation of marker distance errors. In other words, a marker distance error provides only the radius of a sphere surrounding an experimental marker and it does not afford the location of a model marker on the surface of the sphere. However, a set of three marker coordinate errors describes both the magnitude and direction of an error vector between an experimental marker and a model marker. By using marker coordinate errors, the inner-level optimization has improved convergence ( Table 5-1 ) and shorter execution time ( Table 5-2 ). Optimization Time and Parallel Computing To reduce the computation time, it is necessary to use an outer-level optimization algorithm in a parallel environment on a network cluster of processors. The PSO algorithm was chosen over gradient-based optimizers for its suitability to be parallelized and its ability to solve global optimization problems. The large computation time is a result of the random set of initial values used to seed each node of the parallel algorithm.

PAGE 52

38 By seeding one of the nodes with a relatively optimal set of initial values, the computation time may be significantly decreased. By doubling the number of parallel processors, the computation time declines nearly 50%. Decreasing the number of time frames of marker data additionally reduces the computation time. For example, the mean optimization time using experimental data for 50 time frames equals 35.94 hours, 19 time frames equals 12.82 hours, and 13 time frames equals 11.24 hours. Further study is necessary to establish the minimum number of marker data time frames required to effectively determine joint axes parameters. Multi-Cycle and One-Half-Cycle Joint Motions The two-level optimization results vary depending on whether marker data time frames consist of multi-cycle or one-half-cycle joint motions. In other words, the determination of patient-specific model parameters is significantly influenced by the marker trajectories contained within the chosen set of data. Given a set of marker data, the two-level optimization establishes invariable model parameters that best fit the mathematical model to the measured experimental motion. Understandably, a model constructed from one marker data set may not adequately represent a considerably different marker data set. To perform accurate dynamic analyses, joint motions used to generate the model should be consistent with those motions that will be used in the analyses. The small differences between sets of two-level optimization results for the hip and knee joint motions indicate the reliability of the model parameter values. Much larger differences occurred between sets of model parameters determined for the ankle joint. Two major factors contributing to these differences are the rotational ankle model parameters p1 and p3. On one hand, the model parameters may truly vary throughout the

PAGE 53

39 ankle motion and may not be represented by constant values. On the other hand, the objective function may be insensitive to changes in these model parameters indicating a design space that does not permit the reasonable determination of certain design variables. Future study is necessary to investigate the sensitivity of 3D marker coordinate errors to particular model parameters. Range of Motion and Loading Conditions To provide the largest range of motion, all experimental data was collected with each joint unloaded and freely exercising all DOFs; however, the same two-level optimization may be performed on loaded data as well. The patient-specific model parameters may change under loaded conditions ( Bogert et al., 1994 ). Moreover, loaded conditions limit the range of motion for several DOFs. Several authors ( Bell et al., 1990 ; Bogert et al., 1994 ) report inaccuracies in determining functional axes from limited motion, but a subsequent study ( Piazza et al., 2001 ) found the hip joint may be determined from motions as small as 15. Piazza et al. ( 2001 ) suggest future studies are necessary to explore the use of normal gait motions, rather than special joint motions, to determine functional axes. Optimization Using Gait Motion The two-level optimization approach and synthetic data evaluation method may be used to investigate the use of gait motion to determine functional joint axes. Each set of joint parameters may be established separately or collectively (i.e., entire single leg or both legs at once). Additional investigation is necessary to assess the differences in joint parameters obtained through individual optimizations and simultaneous whole leg optimizations. Furthermore, the joint parameters determined from gait motions may be

PAGE 54

40 compared to those parameters obtained from special joint motions with larger amounts of movement. Authors ( Bogert et al., 1994 ; Chze et al., 1995 ; Lu and OConnor, 1999 ) have set precedence for performing numerical (or synthetic data) simulations to evaluate a new technique. Although it is not a necessary task, there is additional benefit in supporting the numerical findings with data from one human subject. With the additional data, the joint parameters computed from unloaded joint motions may be measured against those parameters attained from unloaded (i.e., swing phase) and loaded (i.e., stance phase) gait motions. To expand upon the evaluation of the new technique and show general applicability, future work is necessary to study more than one human subject. Comparison of Experimental Results with Literature The two-level optimization determined patient-specific joint axes locations and orientations similar to previous works. The optimum hip joint center location of 7.52 cm (27.89% posterior), 9.27 cm (34.38% inferior), and 8.86 cm (32.85% lateral) are respectively comparable to 19.3%, 30.4%, and 35.9% ( Bell et al., 1990 ). The optimum femur length (40.46 cm) and tibia length (40.88 cm) are similar to 42.22 cm and 43.40 cm, respectively ( de Leva, 1996 ). The optimum coronal plane rotation (73.36) of the talocrural joint correlates to 82.7 + 3.7 (range 74 to 94) ( Inman, 1976 ). The optimum distance (2.14 cm) between the talocrural joint and the subtalar joint is analogous to 1.24 + 0.29 cm ( Bogert et al., 1994 ). The optimum transverse plane rotation (13.19) and sagittal plane rotation (45.26) of the subtalar joint corresponds to 23 + 11 (range 4 to 47) and 42 + 9 (range 20.5 to 68.5), respectively ( Inman, 1976 ).

PAGE 55

41 5-1. Mean marker distance errors for the inner-level objective function consisting of marker coordinate errors versus marker distance errors for multi-cycle experimental marker data. Table Experimental Data Hip Knee Ankle Marker distance objective function: mean marker distance error (cm) 0.863941 + 0.3287941.043909 + 0.4651860.674187 + 0.278451 Marker coordinate objective function: mean marker distance error (cm) 0.342262 + 0.1670790.547787 + 0.2697260.356279 + 0.126559

PAGE 56

42 5-2. Execution times for the inner-level objective function consisting of marker coordinate errors versus marker distance errors for multi-cycle experimental marker data. Table Experimental Data Hip Knee Ankle Marker distance objective function: execution time (s) 464.377 406.205 308.293 Marker coordinate objective function: execution time (s) 120.414 106.003 98.992

PAGE 57

CHAPTER 6 CONCLUSION Rationale for New Approach The main motivation for developing a 27 DOF patient-specific computational model and a two-level optimization method to enhance the lower-extremity portion is to predict the post-surgery peak knee adduction moment in HTO patients, which has been identified as an indicator of clinical outcome ( Andriacchi, 1994 ; Bryan et al., 1997 ; Hurwitz et al., 1998 ; Prodromos et al., 1985 ; Wang et al., 1990 ). The accuracy of prospective dynamic analyses made for a unique patient is determined in part by the fitness of the underlying kinematic model ( Andriacchi and Strickland, 1985 ; Challis and Kerwin, 1996 ; Cappozzo et al., 1975; Davis, 1992 ; Holden and Stanhope, 1998 ; Holden and Stanhope, 2000 ; Stagni et al., 2000 ). Development of an accurate kinematic model tailored to a specific patient forms the groundwork toward creating a predictive patient-specific dynamic simulation. Synthesis of Current Work and Literature The two-level optimization method satisfactorily determines patient-specific model parameters defining a 3D lower-extremity model that is well suited to a particular patient. Two conclusions may be drawn from comparing and contrasting the two-level optimization results to previous values found in the literature. The similarities between numbers suggest the results are reasonable and show the extent of agreement with past studies. The differences between values indicate the two-level optimization is necessary 43

PAGE 58

44 and demonstrate the degree of inaccuracy inherent when the new approach is not implemented. Through the enhancement of model parameter values found in the literature, the two-level optimization approach successfully reduces the fitness errors between the patient-specific model and the experimental motion data. More specifically, to quantify the improvement of the current results compared to previous values found in the literature, the mean marker distance errors were reduced by 31.53% (hip), 51.94% (knee), and 59.76% (ankle). The precision of dynamic analyses made for a particular patient depends on the accuracy of the patient-specific kinematic parameters chosen for the dynamic model. Without expensive medical images, model parameters are only estimated from external landmarks that have been identified in previous studies. The estimated (or nominal) values may be improved by formulating an optimization problem using motion-capture data. By using a two-level optimization technique, researchers may build more accurate biomechanical models of the individual human structure. As a result, the optimal models will provide reliable foundations for future dynamic analyses and optimizations.

PAGE 59

GLOSSARY Abduction Movement away from the midline of the body in the coronal plane. Acceleration The time rate of change of velocity. Active markers Joint and segment markers used during motion capture that emit a signal. Adduction Movement towards the midline of the body in the coronal plane. Ankle inversion-eversion Motion of the long axis of the foot within the coronal plane as seen by an observer positioned along the anterior-posterior axis of the shank. Ankle motion The ankle angles reflect the motion of the foot segment relative to the shank segment. Ankle plantarflexion-dorsiflexion Motion of the plantar aspect of the foot within the sagittal plane as seen by an observer positioned along the medial-lateral axis of the shank. Anterior The front or before, also referred to as ventral. Circumduction Movement of the distal tip of a segment described by a circle. Coccyx The tailbone located at the distal end of the sacrum. Constraint functions Specific limits that must be satisfied by the optimal design. Coronal plane The plane that divides the body or body segment into anterior and posterior parts. Couple A set of force vectors whose resultant is equal to zero. Two force vectors with equal magnitudes and opposite directions is an example of a simple couple. 45

PAGE 60

46 Degree of freedom (DOF) A single coordinate of relative motion between two bodies. Such a coordinate responds without constraint or imposed motion to externally applied forces or torques. For translational motion, a DOF is a linear coordinate along a single direction. For rotational motion, a DOF is an angular coordinate about a single, fixed axis. Design variables Variables that change to optimize the design. Distal Away from the point of attachment or origin. Dorsiflexion Movement of the foot towards the anterior part of the tibia in the sagittal plane. Epicondyle Process that develops proximal to an articulation and provides additional surface area for muscle attachment. Eversion A turning outward. Extension Movement that rotates the bones comprising a joint away from each other in the sagittal plane. External (lateral) rotation Movement that rotates the distal segment laterally in relation to the proximal segment in the transverse plane, or places the anterior surface of a segment away from the longitudinal axis of the body. External moment The load applied to the human body due to the ground reaction forces, gravity and external forces. Femur The longest and heaviest bone in the body. It is located between the hip joint and the knee joint. Flexion Movement that rotates the bones comprising a joint towards each other in the sagittal plane. Fluoroscopy Examination of body structures using an X-ray machine that combines an X-ray source and a fluorescent screen to enable real-time observation. Force A push or a pull and is produced when one object acts on another.

PAGE 61

47 Force plate A transducer that is set in the floor to measure about some specified point, the force and torque applied by the foot to the ground. These devices provide measures of the three components of the resultant ground reaction force vector and the three components of the resultant torque vector. Forward dynamics Analysis to determine the motion of a mechanical system, given the topology of how bodies are connected, the applied forces and torques, the mass properties, and the initial condition of all degrees of freedom. Gait A manner of walking or moving on foot. Generalized coordinates A set of coordinates (or parameters) that uniquely describes the geometric position and orientation of a body or system of bodies. Any set of coordinates that are used to describe the motion of a physical system. High tibial osteotomy (HTO) Surgical procedure that involves adding or removing a wedge of bone to or from the tibia and changing the frontal plane limb alignment. The realignment shifts the weight-bearing axis from the diseased medial compartment to the healthy lateral compartment of the knee. Hip abduction-adduction Motion of a long axis of the thigh within the coronal plane as seen by an observer positioned along the anterior-posterior axis of the pelvis. Hip flexion-extension Motion of the long axis of the thigh within the sagittal plane as seen by an observer positioned along the medial-lateral axis of the pelvis. Hip internal-external rotation Motion of the medial-lateral axis of the thigh with respect to the medial-lateral axis of the pelvis within the transverse plane as seen by an observer positioned along the longitudinal axis of the thigh. Hip motion The hip angles reflect the motion of the thigh segment relative to the pelvis. Inferior Below or at a lower level (towards the feet).

PAGE 62

48 Inter-ASIS distance The length of measure between the left anterior superior iliac spine (ASIS) and the right ASIS. Internal (medial) rotation Movement that rotates the distal segment medially in relation to the proximal segment in the transverse plane, or places the anterior surface of a segment towards the longitudinal axis of the body. Internal joint moments The net result of all the internal forces acting about the joint which include moments due to muscles, ligaments, joint friction and structural constraints. The joint moment is usually calculated around a joint center. Inverse dynamics Analysis to determine the forces and torques necessary to produce the motion of a mechanical system, given the topology of how bodies are connected, the kinematics, the mass properties, and the initial condition of all degrees of freedom. Inversion A turning inward. Kinematics Those parameters that are used in the description of movement without consideration for the cause of movement abnormalities. These typically include parameters such as linear and angular displacements, velocities and accelerations. Kinetics General term given to the forces that cause movement. Both internal (muscle activity, ligaments or friction in muscles and joints) and external (ground or external loads) forces are included. The moment of force produced by muscles crossing a joint, the mechanical power flowing to and from those same muscles, and the energy changes of the body that result from this power flow are the most common kinetic parameters used. Knee abduction-adduction Motion of the long axis of the shank within the coronal plane as seen by an observer positioned along the anterior-posterior axis of the thigh. Knee flexion-extension Motion of the long axis of the shank within the sagittal plane as seen by an observer positioned along the medial-lateral axis of the thigh.

PAGE 63

49 Knee internal-external rotation Motion of the medial-lateral axis of the shank with respect to the medial-lateral axis of the thigh within the transverse plane as viewed by an observer positioned along the longitudinal axis of the shank. Knee motion The knee angles reflect the motion of the shank segment relative to the thigh segment. Lateral Away from th e bodys longitudinal axis, or away from the midsagittal plane. Malleolus Broadened distal portion of the tibia and fibula providing lateral stability to the ankle. Markers Active or passive objects (balls, hemispheres or disks) aligned with respect to specific bony landmarks used to help determine segment and joint position in motion capture. Medial Toward the bodys longitudinal axis, or toward the midsagittal plane. Midsagittal plane The plane that passes through the midline and divides the body or body segment into the right and left halves. Model parameters A set of coordinates that uniquely describes the model segments lengths, joint locations, and joint orientations, also referred to as joint parameters. Any set of coordinates that are used to describe the geometry of a model system. Moment of force The moment of force is calculated about a point and is the cross product of a position vector from the point to the line of action for the force and the force. In two-dimensions, the moment of force about a point is the product of a force and the perpendicular distance from the line of action of the force to the point. Typically, moments of force are calculated about the center of rotation of a joint. Motion capture Interpretation of computerized data that documents an individual's motion.

PAGE 64

50 Non-equidistant The opposite of equal amounts of distance between two or more points, or not equally distanced. Objective functions Figures of merit to be minimized or maximized. Parametric Of or relating to or in terms of parameters, or factors that define a system. Passive markers Joint and segment markers used during motion capture that reflect visible or infrared light. Pelvis Consists of the two hip bones, the sacrum, and the coccyx. It is located between the proximal spine and the hip joints. Pelvis anterior-posterior tilt Motion of the long axis of the pelvis within the sagittal plane as seen by an observer positioned along the medial-lateral axis of the laboratory. Pelvis elevation-depression Motion of the medial-lateral axis of the pelvis within the coronal plane as seen by an observer positioned along the anterior-posterior axis of the laboratory. Pelvis internal-external rotation Motion of the medial-lateral or anterior-posterior axis of the pelvis within the transverse plane as seen by an observer positioned along the longitudinal axis of the laboratory. Pelvis motion The position of the pelvis as defined by a marker set (for example, plane formed by the markers on the right and left anterior superior iliac spine (ASIS) and a marker between the 5th lumbar vertebrae and the sacrum) relative to a laboratory coordinate system. Plantarflexion Movement of the foot away from the anterior part of the tibia in the sagittal plane. Posterior The back or behind, also referred to as dorsal. Proximal Toward the point of attachment or origin. Range of motion Indicates joint motion excursion from the maximum angle to the minimum angle.

PAGE 65

51 Sacrum Consists of the fused components of five sacral vertebrae located between the 5th lumbar vertebra and the coccyx. It attaches the axial skeleton to the pelvic girdle of the appendicular skeleton via paired articulations. Sagittal plane The plane that divides the body or body segment into the right and left parts. Skin movement artifacts The relative movement between skin and underlying bone. Stance phase The period of time when the foot is in contact with the ground. Subtalar joint Located between the distal talus and proximal calcaneous, also known as the talocalcaneal joint. Superior Above or at a higher level (towards the head). Synthetic markers Computational representations of passive markers located on the kinematic model. Swing phase The period of time when the foot is not in contact with the ground. Talocrural joint Located between the distal tibia and proximal talus, also known as the tibial-talar joint. Talus The largest bone of the ankle transmitting weight from the tibia to the rest of the foot. Tibia The large medial bone of the lower leg, also known as the shinbone. It is located between the knee joint and the talocrural joint. Transepicondylar The line between the medial and lateral epicondyles. Transverse plane The plane at right angles to the coronal and sagittal planes that divides the body into superior and inferior parts. Velocity The time rate of change of displacement.

PAGE 66

APPENDIX A NOMINAL JOINT PARAMETERS & OPTIMIZATION BOUNDS FOR SYNTHETIC MARKER DATA A-1. Nominal right hip joint parameters and optimization bounds for synthetic marker data. Table Right Hip Joint Parameter Nominal Lower Bound Upper Bound p1 (cm) -6.022205 -20.530245 0 p2 (cm) -9.307044 -20.530245 0 p3 (cm) 8.759571 0 20.530245 p4 (cm) 0 -14.508040 6.022205 p5 (cm) 0 -11.223200 9.307044 p6 (cm) 0 -8.759571 11.770674 52

PAGE 67

53 A-2. Nominal right knee joint parameters and optimization bounds for synthetic marker data. Table Right Knee Joint Parameter Nominal Lower Bound Upper Bound p1 () 0 -30 30 p2 () 0 -30 30 p3 () -5.079507 -35.079507 24.920493 p4 () 16.301928 -13.698072 46.301928 p5 (cm) 0 -7.836299 7.836299 p6 (cm) -37.600828 -45.437127 -29.764528 p7 (cm) 0 -7.836299 7.836299 p8 (cm) 0 -7.836299 7.836299 p9 (cm) 0 -7.836299 7.836299

PAGE 68

54 A-3. Nominal right ankle joint parameters and optimization bounds for synthetic marker data. Table Right Ankle Joint Parameter Nominal Lower Bound Upper Bound p1 () 18.366935 -11.633065 48.366935 p2 () 0 -30 30 p3 () 40.230969 10.230969 70.230969 p4 () 23 -7 53 p5 () 42 12 72 p6 (cm) 0 -6.270881 6.270881 p7 (cm) -39.973202 -46.244082 -33.702321 p8 (cm) 0 -6.270881 6.270881 p9 (cm) -1 -6.270881 0 p10 (cm) 8.995334 2.724454 15.266215 p11 (cm) 4.147543 -2.123338 10.418424 p12 (cm) 0.617217 -5.653664 6.888097

PAGE 69

APPENDIX B NOMINAL JOINT PARAMETERS & OPTIMIZATION BOUNDS FOR EXPERIMENTAL MARKER DATA B-1. Nominal right hip joint parameters and optimization bounds for experimental marker data. Table Right Hip Joint Parameter Nominal Lower Bound Upper Bound p1 (cm) -5.931423 -20.220759 0 p2 (cm) -9.166744 -20.220759 0 p3 (cm) 8.627524 0 20.220759 p4 (cm) 0 -14.289337 5.931423 p5 (cm) 0 -11.054015 9.166744 p6 (cm) 0 -8.627524 11.593235 55

PAGE 70

56 B-2. Nominal right knee joint parameters and optimization bounds for experimental marker data. Table Right Knee Joint Parameter Nominal Lower Bound Upper Bound p1 () 0 -30 30 p2 () 0 -30 30 p3 () -4.070601 -34.070601 25.929399 p4 () 1.541414 -28.458586 31.541414 p5 (cm) 0 -7.356876 7.356876 p6 (cm) -39.211319 -46.568195 -31.854442 p7 (cm) 0 -7.356876 7.356876 p8 (cm) 0 -7.356876 7.356876 p9 (cm) 0 -7.356876 7.356876

PAGE 71

57 B-3. Nominal right ankle joint parameters and optimization bounds for experimental marker data. Table Right Ankle Joint Parameter Nominal Lower Bound Upper Bound p1 () 8.814964 -21.185036 38.814964 p2 () 0 -30 30 p3 () 26.890791 -3.109209 56.890791 p4 () 23 -7 53 p5 () 42 12 72 p6 (cm) 0 -5.662309 5.662309 p7 (cm) -41.131554 -46.793862 -35.469245 p8 (cm) 0 -5.662309 5.662309 p9 (cm) -1 -5.662309 0 p10 (cm) 9.113839 3.451530 14.776147 p11 (cm) 3.900829 -1.761479 9.563138 p12 (cm) 1.116905 -4.545403 6.779214

PAGE 72

APPENDIX C NOMINAL & OPTIMUM JOINT PARAMETERS FOR SYNTHETIC MARKER DATA WITHOUT NOISE C-1. Nominal and optimum right hip joint parameters for synthetic marker data without noise. Table Right Hip Joint Parameter Nominal Optimized Error p1 (cm) -6.022205 -6.022205 0.000000 p2 (cm) -9.307044 -9.307041 0.000003 p3 (cm) 8.759571 8.759578 0.000007 p4 (cm) 0 0.000004 0.000004 p5 (cm) 0 0.000015 0.000015 p6 (cm) 0 -0.000008 0.000008 58

PAGE 73

59 C-2. Nominal and optimum right knee joint parameters for synthetic marker data without noise. Table Right Knee Joint Parameter Nominal Optimized Error p1 () 0 -0.040222 0.040222 p2 () 0 -0.051509 0.051509 p3 () -5.079507 -5.050744 0.028763 p4 () 16.301928 16.242914 0.059015 p5 (cm) 0 -0.009360 0.009360 p6 (cm) -37.600828 -37.589068 0.011760 p7 (cm) 0 -0.014814 0.014814 p8 (cm) 0 -0.002142 0.002142 p9 (cm) 0 -0.000189 0.000189

PAGE 74

60 C-3. Nominal and optimum right ankle joint parameters for synthetic marker data without noise. Table Right Ankle Joint Parameter Nominal Optimized Error p1 () 18.366935 18.364964 0.001971 p2 () 0 -0.011809 0.011809 p3 () 40.230969 40.259663 0.028694 p4 () 23 23.027088 0.027088 p5 () 42 42.002080 0.002080 p6 (cm) 0 0.000270 0.000270 p7 (cm) -39.973202 -39.972852 0.000350 p8 (cm) 0 -0.000287 0.000287 p9 (cm) -1 -1.000741 0.000741 p10 (cm) 8.995334 8.995874 0.000540 p11 (cm) 4.147543 4.147353 0.000190 p12 (cm) 0.617217 0.616947 0.000270

PAGE 75

APPENDIX D NOMINAL & OPTIMUM JOINT PARAMETERS FOR SYNTHETIC MARKER DATA WITH NOISE D-1. Nominal and optimum right hip joint parameters for synthetic marker data with noise. Table Right Hip Joint Parameter Nominal Optimized Error p1 (cm) -6.022205 -5.854080 0.168125 p2 (cm) -9.307044 -9.434820 0.127776 p3 (cm) 8.759571 8.967520 0.207949 p4 (cm) 0 0.092480 0.092480 p5 (cm) 0 -0.180530 0.180530 p6 (cm) 0 0.191050 0.191050 61

PAGE 76

62 D-2. Nominal and optimum right knee joint parameters for synthetic marker data with noise. Table Right Knee Joint Parameter Nominal Optimized Error p1 () 0 -3.295650 3.295650 p2 () 0 -1.277120 1.277120 p3 () -5.079507 -5.604100 0.524593 p4 () 16.301928 12.763780 3.538148 p5 (cm) 0 0.375600 0.375600 p6 (cm) -37.600828 -37.996910 0.396082 p7 (cm) 0 0.489510 0.489510 p8 (cm) 0 0.144040 0.144040 p9 (cm) 0 -0.204420 0.204420

PAGE 77

63 D-3. Nominal and optimum right ankle joint parameters for synthetic marker data with noise. Table Right Ankle Joint Parameter Nominal Optimized Error p1 () 18.366935 15.130096 3.236838 p2 () 0 8.007498 8.007498 p3 () 40.230969 32.975096 7.255873 p4 () 23 23.122015 0.122015 p5 () 42 42.038733 0.038733 p6 (cm) 0 -0.398360 0.398360 p7 (cm) -39.973202 -39.614220 0.358982 p8 (cm) 0 -0.755127 0.755127 p9 (cm) -1 -2.816943 1.816943 p10 (cm) 8.995334 10.210540 1.215206 p11 (cm) 4.147543 3.033673 1.113870 p12 (cm) 0.617217 -0.190367 0.807584

PAGE 78

APPENDIX E NOMINAL & OPTIMUM JOINT PARAMETERS FOR MULTI-CYCLE EXPERIMENTAL MARKER DATA E-1. Nominal and optimum right hip joint parameters for multi-cycle experimental marker data. Table Right Hip Joint Parameter Nominal Optimized Improvement p1 (cm) -5.931423 -7.518819 1.587396 p2 (cm) -9.166744 -9.268741 0.101997 p3 (cm) 8.627524 8.857706 0.230182 p4 (cm) 0 -2.123433 2.123433 p5 (cm) 0 0.814089 0.814089 p6 (cm) 0 1.438188 1.438188 64

PAGE 79

65 E-2. Nominal and optimum right knee joint parameters for multi-cycle experimental marker data. Table Right Knee Joint Parameter Nominal Optimized Improvement p1 () 0 -0.586205 0.586205 p2 () 0 14.854951 14.854951 p3 () -4.070601 -2.724374 1.346227 p4 () 1.541414 2.404475 0.863061 p5 (cm) 0 -1.422101 1.422101 p6 (cm) -39.211319 -39.611720 0.400401 p7 (cm) 0 -0.250043 0.250043 p8 (cm) 0 -0.457104 0.457104 p9 (cm) 0 1.471656 1.471656

PAGE 80

66 E-3. Nominal and optimum right ankle joint parameters for multi-cycle experimental marker data. Table Right Ankle Joint Parameter Nominal Optimized Improvement p1 () 8.814964 16.640499 7.825535 p2 () 0 9.543288 9.543288 p3 () 26.890791 27.359342 0.468551 p4 () 23 13.197304 9.802696 p5 () 42 45.259512 3.259512 p6 (cm) 0 1.650689 1.650689 p7 (cm) -41.131554 -41.185800 0.054246 p8 (cm) 0 -1.510034 1.510034 p9 (cm) -1 -2.141939 1.141939 p10 (cm) 9.113839 11.244080 2.130241 p11 (cm) 3.900829 3.851262 0.049567 p12 (cm) 1.116905 0.283095 0.833810

PAGE 81

APPENDIX F NOMINAL & OPTIMUM JOINT PARAMETERS FOR FIRST ONE-HALF-CYCLE EXPERIMENTAL MARKER DATA F-1. Nominal and optimum right hip joint parameters for first one-half-cycle experimental marker data. Table Right Hip Joint Parameter Nominal Optimized Improvement p1 (cm) -5.931423 -7.377948 1.446525 p2 (cm) -9.166744 -9.257734 0.090990 p3 (cm) 8.627524 8.124560 0.502964 p4 (cm) 0 -2.050133 2.050133 p5 (cm) 0 0.813034 0.813034 p6 (cm) 0 0.656323 0.656323 67

PAGE 82

68 F-2. Nominal and optimum right knee joint parameters for first one-half-cycle experimental marker data. Table Right Knee Joint Parameter Nominal Optimized Improvement p1 () 0 7.621903 7.621903 p2 () 0 12.823259 12.823259 p3 () -4.070601 -0.642569 3.428032 p4 () 1.541414 11.252668 9.711254 p5 (cm) 0 -1.217316 1.217316 p6 (cm) -39.211319 -38.611100 0.600219 p7 (cm) 0 -1.252732 1.252732 p8 (cm) 0 -0.003903 0.003903 p9 (cm) 0 1.480035 1.480035

PAGE 83

69 F-3. Nominal and optimum right ankle joint parameters for first one-half-cycle experimental marker data. Table Right Ankle Joint Parameter Nominal Optimized Improvement p1 () 8.814964 -15.959751 24.774715 p2 () 0 -4.522393 4.522393 p3 () 26.890791 18.986137 7.904654 p4 () 23 28.588479 5.588479 p5 () 42 36.840527 5.159473 p6 (cm) 0 3.624386 3.624386 p7 (cm) -41.131554 -43.537980 2.406426 p8 (cm) 0 -3.370814 3.370814 p9 (cm) -1 -2.246233 1.246233 p10 (cm) 9.113839 12.155750 3.041911 p11 (cm) 3.900829 0.488739 3.412090 p12 (cm) 1.116905 -1.207070 2.323975

PAGE 84

APPENDIX G NOMINAL & OPTIMUM JOINT PARAMETERS FOR SECOND ONE-HALF-CYCLE EXPERIMENTAL MARKER DATA G-1. Nominal and optimum right hip joint parameters for second one-half-cycle experimental marker data. Table Right Hip Joint Parameter Nominal Optimized Improvement p1 (cm) -5.931423 -7.884120 1.952697 p2 (cm) -9.166744 -10.160573 0.993829 p3 (cm) 8.627524 9.216565 0.589041 p4 (cm) 0 -2.935484 2.935484 p5 (cm) 0 0.313918 0.313918 p6 (cm) 0 1.936742 1.936742 70

PAGE 85

71 G-2. Nominal and optimum right knee joint parameters for second one-half-cycle experimental marker data. Table Right Knee Joint Parameter Nominal Optimized Improvement p1 () 0 7.216444 7.216444 p2 () 0 12.986174 12.986174 p3 () -4.070601 -0.228411 3.842190 p4 () 1.541414 10.970612 9.429198 p5 (cm) 0 -1.300621 1.300621 p6 (cm) -39.211319 -38.785646 0.425673 p7 (cm) 0 -1.190227 1.190227 p8 (cm) 0 -0.130610 0.130610 p9 (cm) 0 1.293016 1.293016

PAGE 86

72 G-3. Nominal and optimum right ankle joint parameters for second one-half-cycle experimental marker data. Table Right Ankle Joint Parameter Nominal Optimized Improvement p1 () 8.814964 31.399921 22.584957 p2 () 0 1.211118 1.21112 p3 () 26.890791 51.518589 24.627798 p4 () 23 26.945919 3.945919 p5 () 42 45.021534 3.021534 p6 (cm) 0 -3.971358 3.971358 p7 (cm) -41.131554 -36.976040 4.155514 p8 (cm) 0 -0.154441 0.154441 p9 (cm) -1 -3.345873 2.345873 p10 (cm) 9.113839 7.552444 1.561395 p11 (cm) 3.900829 7.561219 3.660390 p12 (cm) 1.116905 1.108033 0.008872

PAGE 87

APPENDIX H OPTIMUM JOINT PARAMETERS FOR MULTI-CYCLE & FIRST ONE-HALF-CYCLE EXPERIMENTAL MARKER DATA H-1. Optimum right hip joint parameters for multi-cycle and first one-half-cycle experimental marker data. Table Right Hip Joint Parameter Multi-Cycle Optimized First-Half-Cycle Optimized Difference p1 (cm) -7.518819 -7.377948 0.140871 p2 (cm) -9.268741 -9.257734 0.011007 p3 (cm) 8.857706 8.124560 0.733146 p4 (cm) -2.123433 -2.050133 0.073300 p5 (cm) 0.814089 0.813034 0.001055 p6 (cm) 1.438188 0.656323 0.781865 73

PAGE 88

74 H-2. Optimum right knee joint parameters for multi-cycle and first one-half-cycle experimental marker data. Table Right Knee Joint Parameter Multi-Cycle Optimized First-Half-Cycle Optimized Difference p1 () -0.586205 7.621903 8.208108 p2 () 14.854951 12.823259 2.031692 p3 () -2.724374 -0.642569 2.081805 p4 () 2.404475 11.252668 8.848193 p5 (cm) -1.422101 -1.217316 0.204785 p6 (cm) -39.611720 -38.611100 1.000620 p7 (cm) -0.250043 -1.252732 1.002689 p8 (cm) -0.457104 -0.003903 0.453201 p9 (cm) 1.471656 1.480035 0.008379

PAGE 89

75 H-3. Optimum right ankle joint parameters for multi-cycle and first one-half-cycle experimental marker data. Table Right Ankle Joint Parameter Multi-Cycle Optimized First-Half-Cycle Optimized Difference p1 () 16.640499 -15.959751 32.600250 p2 () 9.543288 -4.522393 14.065681 p3 () 27.359342 18.986137 8.373205 p4 () 13.197304 28.588479 15.391175 p5 () 45.259512 36.840527 8.418985 p6 (cm) 1.650689 3.624386 1.973697 p7 (cm) -41.185800 -43.537980 2.352180 p8 (cm) -1.510034 -3.370814 1.860780 p9 (cm) -2.141939 -2.246233 0.104294 p10 (cm) 11.244080 12.155750 0.911670 p11 (cm) 3.851262 0.488739 3.362523 p12 (cm) 0.283095 -1.207070 1.490165

PAGE 90

APPENDIX I OPTIMUM JOINT PARAMETERS FOR MULTI-CYCLE & SECOND ONE-HALF-CYCLE EXPERIMENTAL MARKER DATA I-1. Optimum right hip joint parameters for multi-cycle and second one-half-cycle experimental marker data. Table Right Hip Joint Parameter Multi-Cycle Optimized Second-Half-Cycle Optimized Difference p1 (cm) -7.518819 -7.884120 0.365301 p2 (cm) -9.268741 -10.160573 0.891832 p3 (cm) 8.857706 9.216565 0.358859 p4 (cm) -2.123433 -2.935484 0.812051 p5 (cm) 0.814089 0.313918 0.500171 p6 (cm) 1.438188 1.936742 0.498554 76

PAGE 91

77 I-2. Optimum right knee joint parameters for multi-cycle and second one-half-cycle experimental marker data. Table Right Knee Joint Parameter Multi-Cycle Optimized Second-Half-Cycle Optimized Difference p1 () -0.586205 7.216444 7.802649 p2 () 14.854951 12.986174 1.868777 p3 () -2.724374 -0.228411 2.495963 p4 () 2.404475 10.970612 8.566137 p5 (cm) -1.422101 -1.300621 0.121480 p6 (cm) -39.611720 -38.785646 0.826074 p7 (cm) -0.250043 -1.190227 0.940184 p8 (cm) -0.457104 -0.130610 0.326494 p9 (cm) 1.471656 1.293016 0.178640

PAGE 92

78 I-3. Optimum right ankle joint parameters for multi-cycle and second one-half-cycle experimental marker data. Table Right Ankle Joint Parameter Multi-Cycle Optimized Second-Half-Cycle Optimized Difference p1 () 16.640499 31.399921 14.759422 p2 () 9.543288 1.211118 8.332170 p3 () 27.359342 51.518589 24.159247 p4 () 13.197304 26.945919 13.748615 p5 () 45.259512 45.021534 0.237978 p6 (cm) 1.650689 -3.971358 5.622047 p7 (cm) -41.185800 -36.976040 4.209760 p8 (cm) -1.510034 -0.154441 1.355593 p9 (cm) -2.141939 -3.345873 1.203934 p10 (cm) 11.244080 7.552444 3.691636 p11 (cm) 3.851262 7.561219 3.709957 p12 (cm) 0.283095 1.108033 0.824938

PAGE 93

LIST OF REFERENCES Andriacch i, T.P., 1994. Dyna mics of Knee Malalignm ent. Orthopedic Clinics of North America Volume 25, Number 3, Pages 395-403. Andriacch i, T.P. and Strickland, A.B., 1985. G ait Analysis as a Tool to Assess Joint Kinetics. In: Berm e, N., Engin, A.E., Correia da Silva, K.M. (Editors), Biomechanics of Normal and Pathological Human Articulating Joints Martinus Nijhoff Publishers, Dordrecht, The Netherlands, Pages 83-102. Arnold, A.S, Asakawa, D.J, and Delp, S.L ., 2000. Do the Ha mstrings and Adductors Contribute to Excessive Internal Rotation of the Hip in Persons with Cerebral Palsy? Gait & Posture Volume 11, Number 3, Pages 181-190. Arnold, A.S. and Delp, S.L., 2001. Rotationa l Moment Arms of the Hamstrings and Adductors Vary with Femoral Geometry and Limb Position: Implications for the Treatme nt of Internally-Rotated Gait. Journal of Biomechanics Volume 34, Number 4, Pages 437-447. Bell, A.L., Pedersen, D.R., and Brand, R.A., 1990. A Comparison of the Accuracy of Several Hip Center Locati on Prediction Methods. Journal of Biomechanics Volume 23, Number 6, Pages 617-621. Blankevoort, L., Huiskes, A., and de Lange, A., 1988. "The Envelope of Passive Knee-Joint Motion." Journal of Biomechanics Volume 21, Number 9, Pages 705-720. Bogert, A.J. van den, Smith, G.D., and Nigg, B.M., 1994. In Vivo Determ ination of the Anatomical Axes of the Ankle Joint Complex: An Optimi zation Approach. Journal of Biomechanics Volume 27, Number 12, Pages 1477-1488. Bryan, J.M., Hurwitz, D.E., Bach, B.R., Bittar, T., and Andriacchi, T.P., 1 997. A Predictive Model of Outcome in High Tibial Osteotom y. In Proceedings of the 43rd Annual Meeting of the Orthopaedic Research Society San Francisco, California, February 9-13, Volume 22, Paper 718. Cappozzo, A., Catani, F., and Leardini, A ., 1993. Skin Movem ent Artifacts in Human Movement Photogramme try. In Proceedings of the XIVth Congress of the International Society of Biomechanics Paris, France, July 4-8, Pages 238-239. 79

PAGE 94

80 Cappozzo, A., Leo, T., and Pedotti, A., 1975. A General Com puting Method for the Analysis of Human Locomo tion. Journal of Biomechanics Volume 8, Number 5, Pages 307-320. CDC, 2003. Targeting Ar thritis: The Nations Leading Cause of Disability Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Atlanta, Georgia. Accessed: http://www.cdc.gov/nccdphp/ aag/pdf/aag_arthritis2003.pdf February, 2003. Challis, J.H. and Kerwin, D.G., 1996. Quantif ication of the Uncertainties in Resultant Joint Moments Computed in a Dynami c Activity. Journal of Sports Sciences Volume 14, Number 3, Pages 219-231. Chao, E.Y. and Sim, F.H., 1995. Com puter-Aided Pre-Operative Planning in Knee Osteotomy. Iowa Orthopedic Journal Volume 15, Pages 4-18. Chao, E.Y.S., Lynch, J.D., and Vanderploeg, M.J., 1993. Sim ulation and Animation of Musculoskeletal Joint System. Journal of Biomechanical Engineering Volume 115, Number 4, Pages 562-568. Churchill, D.L., Incavo, S.J., Johnson, C.C., and Beynnon, B.D., 1998. The Transepicondylar Axis Approximates the Optimal Flex ion Axis of the Knee. Clinical Orthopaedics and Related Research Volume 356, Number 1, Pages 111-118. Chze, L., Fregly, B.J., and Dimnet, J., 1995. A Solidification Procedure to Facilitate Kinematic Analyses Based on Video System Da ta. Journal of Biomechanics Volume 28, Number 7, Pages 879-884. Davis, B.L., 1992. Uncertainty in Calcul ating Joint Mome nts During Gait. In Proceedings of the 8th Meeting of European Society of Biomechanics Rome, Italy, June 21-24, Page 276. de Leva, P., 1996. Adjustm ents to Zatsiorsky-Se luyanovs Segm ent Inertia Parameters. Journal of Biomechanics Volume 29, Number 9, Pages 1223-1230. Delp, S.L., Arnold, A.S., and Piazza, S.J., 1998. Graphics-Based Modeling and Analysis of Gait Abnorma lities. Bio-Medical Materials and Engineering Volume 8, Number 3/4, Pages 227-240. Delp, S.L., Arnold, A.S., Speers, R.A., and Moore, C.A., 1996. Ha mstrings and Psoas Lengths During Normal and Crouch Gait: Implications for Muscle-Tendon Surgery. Journal of Orthopaedic Research Volume 14, Number 1, Pages 144-151.

PAGE 95

81 Delp, S.L., Loan, J.P., Hoy, M.G., Zajac, F.E., Topp E.L., and Rosen, J.M., 1990. An Interactive Graphics-Based Model of the Lower Extremity to Study Orthopaedic Surgical Procedures. IEEE Transactions on Biomedical Engineering Volume 37, Number 8, Pages 757-767. Heck, D.A., Melfi, C.A., Mamlin, L.A., Katz, B.P., Arthur, D.S., Dittus, R.S., and Freund, D.A., 1998. "Revision Rates Following Knee Replacement in the United States." Medical Care Volume 36, Number 5, Pages 661-689. Holden, J.P. and Stanhope, S.J., 1998. The Ef fect of Variation in Knee Center Location Estimates on Net Knee Joint Mome nts. Gait & Posture Volume 7, Number 1, Pages 1-6. Holden, J.P. and Stanhope, S.J., 2000. The Ef fect of Uncertainty in Hip Center Location Estimates on Hip Joint Moments During Wa lking at Different Speeds. Gait & Posture Volume 11, Number 2, Pages 120-121. Hollister, A.M., Jatana, S., Singh, A.K., Sullivan, W.W. and Lupichuk, A.G., 1993. The Axes of Rota tion of the Knee. Clinical Orthopaedics and Related Research Volume 290, Number 1, Pages 259-268. Hurwitz, D.E., Sumner, D.R., Andriacchi, T. P., and Sugar, D.A., 1998. Dyna mic Knee Loads During Gait Predict Proxima l Tibial Bone Distribution. Journal of Biomechanics Volume 31, Number 5, Pages 423-430. Inma n, V.T., 1976. The Joints of the Ankle. W illiams and Wilkins Company, Baltimore, Maryland. Kennedy, J. and Eberhart, R.C., 1995. P article Swarm Optimization. In Proceedings of the 1995 IEEE International Conference on Neural Networks Perth, Australia, November 27 December 1, Volume 4, Pages 1942-1948. Lane, G.J., Hozack, W.J., Shah, S., Rothman, R.H., Booth, R.E. Jr., Eng, K., Smith, P., 1997. Simultaneous Bilate ral Versus Unilateral Total Knee Arthroplasty. Outcom es Analysis. Clinical Orthopaedics and Related Research Volume 345, Number 1, Pages 106-112. Leardini, A., Cappozzo, A., Catani, F., Toksvig-Larsen, S., Petitto, A., Sforza, V., Cassanelli, G., and Giannini, S., 1999. V alidation of a Functional Method for the Estim ation of Hip Joint Centre Location. Journal of Biomechanics Volume 32, Number 1, Pages 99-103. Lu, T.-W and OConnor, J.J., 1999. Bone Position Estimation from Skin Marker Coordinates Using Global Optimisat ion with Joint Constraints. Journal of Biomechanics Volume 32, Number 2, Pages 129-134. Pandy, M.G., 2001. Computer Modeling and Simulation of Human Moveme nt. Annual Reviews in Biomedical Engineering Volume 3, Number 1, Pages 245-273.

PAGE 96

82 Piazza, S.J., Okita, N., and Cavanagh, P.R., 2001. Accuracy of the Functional Meth od of Hip Joint Center Location: Effects of Limited Motion and Varied Implem entation. Journal of Biomechanics Volume 34, Number 7, Pages 967-973. Prodromos, C.C., Andriacchi, T.P., and Gala nte, J.O., 1985. A Relation ship Between Gait and Clinical Changes Following High Tibial Osteotom y. Journal of Bone Joint Surgery (American) Volume 67, Number 8, Pages 1188-1194. Rahman, H., Fregly, B.J., and Banks, S.A., 2003. Accurate Measurem ent of Three-Dimensional Natural Knee Kinematics Using Single-Pl ane Fluoroscopy. In Proceedings of the 2003 Summer Bionengineering Conference The American Society of Mechanical Engineers, Key Biscayne, Florida, June 25-29. Schutte, J.F., Koh, B., Reinbolt, J.A., Haftka, R.T., George, A.D., and Fregly, B.J., 2003. Scale-Independent Biom echanical Optim ization. In Proceedings of the 2003 Summer Bioengineering Conference The American Society of Mechanical Engineers, Key Biscayne, Florida, June 25-29. Sommer III, H.J. and Miller, N.R., 1980. A Technique for Kinem atic Modeling of Anatom ical Joints. Journal of Biomechanical Engineering Volume 102, Number 4, Pages 311-317. Stagni, R., Leardini, A., Benedetti, M.G., Cappozzo, A., and Cappello, A., 2000. Effects of Hip Joint Centre Mislocation on Gait Analysis Results. Journal of Biomechanics Volume 33, Number 11, Pages 1479-1487. Tetsworth, K. and Paley, D., 1994. A ccuracy of Correction of Complex Lower-Extremity Deformities by the Ilizarov Me thod. Clinical Orthopaedics and Related Research Volume 301, Number 1, Pages 102-110. Vaughan, C.L., Davis, B.L., and OConnor, J.C., 1992. Dynamics of Human Gait Human Kinetics Publishers, Champaign, Illinois, Page 26. Wang, J.-W., Kuo, K.N., Andriacchi, T.P., and Galante, J.O., 1990. The Influence of Walking Mechanics and Time on the Results of Proxima l Tibial Osteotomy. Journal of Bone and Joint Surgery (American), Volume 72, Number 6, Pages 905-913.

PAGE 97

BIOGRAPHICAL SKETCH Jeffrey A. Reinbolt was born on May 6, 1974 in Bradenton, Florida. His parents are Charles and Joan Reinbolt. He has an older brother, Douglas, and an older sister, Melissa. In 1992, Jeff graduated salutatorian from Southeast High School, Bradenton, Florida. After completing his secondary education, he enrolled at the University of Florida supported by the Florida Undergraduate Scholarship and full-time employment at a local business. He earned a traditional 5-year engineering degree in only 4 years. In 1996, Jeff graduated with honors receiving a Bachelor of Science degree in engineering science with a concentration in biomedical engineering. He used this foundation to assist in the medical device development and clinical research programs of Computer Motion, Inc., Santa Barbara, California. In this role, Jeff was Clinical Development Site Manager for the Southeastern United States and he traveled extensively throughout the United States, Europe, and Asia collaborating with surgeons and fellow medical researchers. In 1998, Jeff married Karen, a student he met during his undergraduate studies. After more than 4 years in the medical device industry, he decided to continue his academic career at the University of Florida. In 2001, Jeff began his graduate studies in Biomedical Engineering and he was appointed a graduate research assistantship in the Computational Biomechanics Laboratory. He plans to continue his graduate education and research activities through the pursuit of a Doctor of Philosophy in mechanical engineering. Jeff would like to further his creative involvement in problem solving and the design of solutions to overcome healthcare challenges. 83


Permanent Link: http://ufdc.ufl.edu/UFE0000889/00001

Material Information

Title: Determination of patient-specific functional axes through two-level optimizations
Physical Description: Mixed Material
Creator: Reinbolt, Jeffrey A. ( Author, Primary )
Publication Date: 2003
Copyright Date: 2003

Record Information

Source Institution: University of Florida
Holding Location: University of Florida
Rights Management: All rights reserved by the source institution and holding location.
System ID: UFE0000889:00001

Permanent Link: http://ufdc.ufl.edu/UFE0000889/00001

Material Information

Title: Determination of patient-specific functional axes through two-level optimizations
Physical Description: Mixed Material
Creator: Reinbolt, Jeffrey A. ( Author, Primary )
Publication Date: 2003
Copyright Date: 2003

Record Information

Source Institution: University of Florida
Holding Location: University of Florida
Rights Management: All rights reserved by the source institution and holding location.
System ID: UFE0000889:00001


This item has the following downloads:


Full Text












DETERMINATION OF PATIENT-SPECIFIC FUNCTIONAL AXES
THROUGH TWO-LEVEL OPTIMIZATION
















By

JEFFREY A. REINBOLT


A THESIS PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

UNIVERSITY OF FLORIDA


2003

































Copyright 2003

by

Jeffrey A. Reinbolt



































This thesis is dedicated to my loving wife, Karen.















ACKNOWLEDGMENTS

I sincerely thank Dr. B. J. Fregly for his support and leadership throughout our

research endeavors; moreover, I truly recognize the value of his honest, straightforward,

and experience-based advice. My life has been genuinely influenced by Dr. Fregly's

expectations, confidence, and trust in me.

I also extend gratitude to Dr. Raphael Haftka and Dr. Roger Tran-Son-Tay for their

dedication, knowledge, and instruction in the classroom. For these reasons, each was

selected to serve on my supervisory committee. I express thanks to both individuals for

their time, contribution, and fulfillment of their committee responsibilities.

I recognize Jaco for his assistance, collaboration, and suggestions. His dedication

and professionalism have allowed my graduate work to be both enjoyable and rewarding.

I collectively show appreciation for my family and friends. Unconditionally, they

have provided me with encouragement, support, and interest in my graduate studies and

research activities.

My wife, Karen, has done more for me than any person could desire. On several

occasions, she has taken a leap of faith with me; more importantly, she has been directly

beside me. Words or actions cannot adequately express my gratefulness and adoration

toward her. I honestly hope that I can provide her as much as she has given to me.

I thank God for my excellent health, inquisitive mind, strong faith, valuable

experiences, encouraging teachers, loving family, supportive friends, and wonderful wife.
















TABLE OF CONTENTS

Page

A C K N O W L E D G M E N T S ................................................................................................. iv

TA B LE O F C O N TEN T S................................................................... ......................... v

LIST OF TABLES ........................................................ ............. viii

L IST O F F IG U R E S .......................................................... .... .. ..... .. .. .. ........... xi

A B S T R A C T ...................................................................................................... x iii

CHAPTER

1 IN TR O D U C TIO N ............................................................. .. ...... .. ............

Arthritis: The Nation's Leading Cause of Disability ..........................................1
Need for Accurate Patient-Specific Models ...................................... ............... 2
Benefits of Tw o-Level Optim ization....................................... ......................... 3

2 B A CK G R O U N D ................................................. .................... .... ........

M option C aptu re ................................................................................ 4
B iom mechanical M models .................................. ............................ .. .......... .... ....
K inem atics and D ynam ics .......................................................... ............. 5
O p tim iz atio n .......................................................... ................ 5
Lim stations of Previous M ethods.................................... ....................................... ...5

3 M E T H O D S ...................................... ........... .................... ................ 7

P aram etric M odel Structure ............................................................... .....................7
H ip J o in t ................................................................................................................8
K n e e Jo in t ...................................... ............................... ................ 8
A n k le Joint .................. ................................................. ................ 10
Two-Level Optimization Approach................ ...................................................... 11
Why Two Levels of Optimization Are Necessary ..............................................11
Inner-Level O ptim ization ................................................... ........................ 11
Outer-Level Optim ization ............................................................................12
Two-Level Optimization Evaluation .......................................................................13
Synthetic Marker Data without Noise .... .......... .......................................13









Synthetic M arker Data with N oise ............................ ................................... 13
Experimental M arker Data .................... ................ ........... 14

4 R E S U L T S .....................................................................................................2 9

Synthetic M arker Data without N oise ............................................. ............... 29
Synthetic M arker D ata w ith N oise ........................................ ........................ 29
E xperim ental M arker D ata .............................................................. .....................29

5 D ISC U S SIO N ............... ................................................................................ 36

Assumptions, Limitations, and Future W ork................................... ............... 36
Joint M odel Selection ............... ........... .. ...... ....... ................... 36
Design Variable Constraints........ ........... ... ............. .... ..... .......... 36
Objective Function Formulation.................................................................... 37
Optimization Time and Parallel Computing............................................ 37
M ulti-Cycle and One-Half-Cycle Joint M otions..............................................38
Range of Motion and Loading Conditions .................................39
Optimization Using Gait Motion...... .................................... 39
Comparison of Experimental Results with Literature ............................. .............40

6 CONCLUSION ........... ................ .... .. ... ......... ...... .............. 43

Rationale for New Approach ............... ......... ..................... 43
Synthesis of Current W ork and Literature........................................ ....... ............ 43

G L O S SA R Y ...................................................................4 5

APPENDIX

A NOMINAL JOINT PARAMETERS & OPTIMIZATION BOUNDS FOR
SYN TH ETIC M ARK ER D A TA ................................................... ............... ............52

B NOMINAL JOINT PARAMETERS & OPTIMIZATION BOUNDS FOR
EXPERIMENTAL M ARKER DATA ............................................ ............... 55

C NOMINAL & OPTIMUM JOINT PARAMETERS FOR SYNTHETIC MARKER
D A TA W ITH OU T N OISE .............................................. ..... ........................ 58

D NOMINAL & OPTIMUM JOINT PARAMETERS FOR SYNTHETIC MARKER
D A TA W ITH N O ISE ........................................................................... .............61

E NOMINAL & OPTIMUM JOINT PARAMETERS FOR MULTI-CYCLE
EXPERIMENTAL MARKER DATA ............................... .......................... 64

F NOMINAL & OPTIMUM JOINT PARAMETERS FOR FIRST
ONE-HALF-CYCLE EXPERIMENTAL MARKER DATA...............................67









G NOMINAL & OPTIMUM JOINT PARAMETERS FOR SECOND
ONE-HALF-CYCLE EXPERIMENTAL MARKER DATA...............................70

H OPTIMUM JOINT PARAMETERS FOR MULTI-CYCLE & FIRST
ONE-HALF-CYCLE EXPERIMENTAL MARKER DATA...............................73

I OPTIMUM JOINT PARAMETERS FOR MULTI-CYCLE & SECOND
ONE-HALF-CYCLE EXPERIMENTAL MARKER DATA...............................76

L IST O F R E FE R E N C E S ....................................................................... ... ................... 79

BIOGRAPHICAL SKETCH ............................................................................ 83
















LIST OF TABLES


Table Page

3-1 M odel degrees of freedom ...................................................................... 17

3-2 H ip joint param eters. .......................................................... .. ............ 20

3-3 K nee joint param eters............................................ .................. ............... 23

3-4 A nkle joint param eters. ............................................................................ ....... 25

4-1 Two-level optimization results for synthetic marker data with random continuous
numerical noise to simulate skin movement artifacts with maximum amplitude of 1
c m .................................................................................... . 3 1

4-2 Mean marker distance errors for nominal values and the two-level optimization
results for multi-cycle experimental marker data ................................................33

4-3 Mean marker distance errors for the two-level optimization results using first and
second halves of the joint cycle motion for experimental marker data ................ 35

5-1 Mean marker distance errors for the inner-level objective function consisting of
marker coordinate errors versus marker distance errors for multi-cycle experimental
m arker data. ...........................................................................4 1

5-2 Execution times for the inner-level objective function consisting of marker
coordinate errors versus marker distance errors for multi-cycle experimental marker
data .................................................................................42

A-i Nominal right hip joint parameters and optimization bounds for synthetic marker
data .................................................................................52

A-2 Nominal right knee joint parameters and optimization bounds for synthetic marker
data .................................................................................53

A-3 Nominal right ankle joint parameters and optimization bounds for synthetic marker
data .................................................................................54

B-l Nominal right hip joint parameters and optimization bounds for experimental
m arker data. ...........................................................................55









B-2 Nominal right knee joint parameters and optimization bounds for experimental
m arker data. ........................................... ........................... 56

B-3 Nominal right ankle joint parameters and optimization bounds for experimental
m arker data. ........................................... ........................... 57

C-l Nominal and optimum right hip joint parameters for synthetic marker data without
n oise. ............................................................................... 5 8

C-2 Nominal and optimum right knee joint parameters for synthetic marker data
w without noise. ...................................................... ................. 59

C-3 Nominal and optimum right ankle joint parameters for synthetic marker data
w without noise. ...................................................... ................. 60

D-1 Nominal and optimum right hip joint parameters for synthetic marker data with
n o ise ............................................................................... 6 1

D-2 Nominal and optimum right knee joint parameters for synthetic marker data with
n oise. ............................................................................... 62

D-3 Nominal and optimum right ankle joint parameters for synthetic marker data with
n oise. ............................................................................... 6 3

E-1 Nominal and optimum right hip joint parameters for multi-cycle experimental
m arker data. ........................................... ........................... 64

E-2 Nominal and optimum right knee joint parameters for multi-cycle experimental
m arker data. ........................................... ........................... 65

E-3 Nominal and optimum right ankle joint parameters for multi-cycle experimental
m arker data. ........................................... ........................... 66

F-l Nominal and optimum right hip joint parameters for first one-half-cycle
experim ental m arker data. ........................................... ........................................67

F-2 Nominal and optimum right knee joint parameters for first one-half-cycle
experim ental m arker data. ........................................... ........................................68

F-3 Nominal and optimum right ankle joint parameters for first one-half-cycle
experim ental m arker data. ........................................... ........................................69

G-l Nominal and optimum right hip joint parameters for second one-half-cycle
experim ental m arker data. ........................................... ........................................70

G-2 Nominal and optimum right knee joint parameters for second one-half-cycle
experim ental m arker data. ............................................................................. 71









G-3 Nominal and optimum right ankle joint parameters for second one-half-cycle
experim ental m arker data. .............................................. ............................... 72

H-1 Optimum right hip joint parameters for multi-cycle and first one-half-cycle
experim ental m arker data. .............................................. ............................... 73

H-2 Optimum right knee joint parameters for multi-cycle and first one-half-cycle
experim ental m arker data. .............................................. ............................... 74

H-3 Optimum right ankle joint parameters for multi-cycle and first one-half-cycle
experim ental m arker data. .............................................. ............................... 75

I-1 Optimum right hip joint parameters for multi-cycle and second one-half-cycle
experim ental m arker data. .............................................. ............................... 76

I-2 Optimum right knee joint parameters for multi-cycle and second one-half-cycle
experim ental m arker data. .............................................. ............................... 77

1-3 Optimum right ankle joint parameters for multi-cycle and second one-half-cycle
experim ental m arker data. .............................................. ............................... 78















LIST OF FIGURES


Figure Page

3-1 The 3D, 14 segment, 27 DOF full-body kinematic model linkage joined by a set of
gim bal, universal, and pin joints. ..................................... ........................... ........ 16

3-2 A 1 DOF joint axis simultaneously defined in two adjacent body segments and the
geometric constraints on the optimization of each of the 9 model parameters........18

3-3 Modified Cleveland Clinic marker set used during static and dynamic
m otion-capture trials. ..................................... ...... ... ...... ....... ............19

3-4 The 3 DOF right hip joint center simultaneously defined in the pelvis and right
femur segments and the 6 translational model parameters optimized to determine
the functional hip joint center location............................................................20

3-5 Geometric constraints on the optimization of translational and rotational model
parameters for the hip, knee, and ankle joints .......................................................21

3-6 The 1 DOF right knee joint simultaneously defined in the right femur and right
tibia segments and the 4 rotational and 5 translational model parameters optimized
to determine the knee joint location and orientation. ....................... ................22

3-7 The 2 DOF right ankle joint complex simultaneously defined in the right tibia,
talus, and foot segments and the 5 rotational and 7 translational model parameters
optimized to determine the joint locations and orientations. ..................................24

3-8 Two-level optimization technique minimizing the 3D marker coordinate errors
between the kinematic model markers and experimental marker data to determine
functional joint axes for each lower-extremity joint. ....................... ................26

3-9 Inner-level optimization convergence illustration series for the knee joint, where
synthetic markers are blue and model markers are red. ........................................27

3-10 Two-level optimization approach minimizing the 3D marker coordinate errors
between the kinematic model markers and experimental marker data to determine
functional joint axes. ............................................ ............... .. .... ...... 28

4-1 Outer-level optimization objective function fitness value convergence for synthetic
marker data with random continuous numerical noise to simulate skin movement









artifacts with maximum amplitude of 1 cm, where the best fitness value among all
nodes is given for each iteration .................................................................... ..... 32

4-2 Outer-level optimization objective function fitness value convergence for
multi-cycle experimental marker data, where the best fitness value among all nodes
is given for each iteration. ............................................... .............................. 34















Abstract of Thesis Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Master of Science

DETERMINATION OF PATIENT-SPECIFIC FUNCTIONAL AXES
THROUGH TWO-LEVEL OPTIMIZATION

By

Jeffrey A. Reinbolt

August 2003

Chair: Benjamin J. Fregly
Major Department: Biomedical Engineering

An innovative patient-specific dynamic model would be useful for evaluating and

enhancing corrective surgical procedures. This thesis presents a nested (or two-level)

system identification optimization approach to determine patient-specific model

parameters that best fit a three-dimensional (3D), 18 degree-of-freedom (DOF)

lower-body model to an individual's movement data.

The whole body was modeled as a 3D, 14 segment, 27 DOF linkage joined by a set

of gimbal, universal, and pin joints. For a given set of model parameters, the inner-level

optimization uses a nonlinear least squares algorithm that adjusts each generalized

coordinate of the lower-body model to minimize 3D marker coordinate errors between

the model and motion data for each time instance. The outer-level optimization

implements a parallel particle swarm algorithm that modifies each model parameter to

minimize the sum of the squares of 3D marker coordinate errors computed by the

inner-level optimization throughout all time instances (or the entire motion).









At the termination of each two-level optimization using synthetic marker data

without noise, original marker trajectories were precisely recovered to within an

arbitrarily tight tolerance (on the order of le-13 cm) using double precision

computations. At the termination of each two-level optimization using synthetic marker

data with noise representative of skin and soft tissue movement artifacts, the mean

marker distance error for each joint complex was as follows: ankle = 0.51 + 0.23 cm;

knee = 0.39 + 0.15 cm; and hip = 0.47 + 0.20 cm. Mean marker distance errors are

approximately one-half of the 1 cm maximum amplitude specified for the noise model.

At the termination of each two-level optimization using experimental marker data from

one subject, the mean marker distance error for each joint complex was less than or equal

to the following: ankle = 0.38 + 0.19 cm; knee = 0.55 + 0.27 cm; and hip = 0.36 + 0.20

cm. Experimental mean marker distance error results are comparable to the results of the

synthetic data with noise.

The two-level optimization method effectively determines patient-specific model

parameters defining a 3D lower-extremity model that is well suited to a particular subject.

When compared to previous values in the literature, experimental results show reasonable

agreement and demonstrate the necessity for the new approach. By minimizing fitness

errors between the patient-specific model and experimental motion data, the resulting

kinematic model provides an accurate foundation for future dynamic analyses and

optimizations.














CHAPTER 1
INTRODUCTION

Arthritis: The Nation's Leading Cause of Disability

In 1997, the Centers for Disease Control and Prevention (CDC) reported that 43

million (or 1 in 6) Americans suffered with arthritis. A 2002 CDC study showed that 70

million (a 63% increase in 5 years; or 1 in 3) Americans have arthritis (CDC, 2003).

Approximately two-thirds of individuals with arthritis are under 65 years old. As the

population ages, the number of people with arthritis is likely to increase significantly.

The most common forms of arthritis are osteoarthritis, rheumatoid arthritis, fibromyalgia,

and gout. Osteoarthritis of the knee joint accounts for roughly 30% ($25 billion) of the

$82 billion total arthritis costs per year in the United States.

Knee osteoarthritis symptoms of pain and dysfunction are the primary reasons for

total knee replacement (TKR). This procedure involves a resurfacing of bones

surrounding the knee joint. The end of the femur is removed and covered with a metal

implant. The end of the tibia is removed and substituted by a plastic implant. Smooth

metal and plastic articulation replaces the irregular and painful arthritic surfaces.

Approximately 100,000 Medicare patients alone endure TKR procedures each year (Heck

et al., 1998). Hospital charges for unilateral TKR are more than $30,000 and the cost of

bilateral TKR is over $50,000 (Lane et al., 1997).

An alternative to TKR is a more conservative (both economically and surgically)

corrective procedure known as high tibial osteotomy (HTO). By changing the frontal

plane alignment of the tibia with a wedge of bone, a HTO shifts the weight-bearing axis









of the leg, and thus the mechanical stresses, from the diseased portion to the healthy

section of the knee compartment. By transferring the location of mechanical stresses, the

degenerative disease process may be slowed or possibly reversed. The advantages of

HTO are appealing to younger and active patients who receive recommendations to avoid

TKR.

Need for Accurate Patient-Specific Models

Innovative patient-specific models and simulations would be valuable for

addressing problems in orthopedics and sports medicine, as well as for evaluating and

enhancing corrective surgical procedures (Arnold et al., 2000; Arnold and Delp, 2001;

Chao et al., 1993; Chao and Sim, 1995; Delp et al., 1998; Delp et al., 1996; Delp et al.,

1990; Pandy, 2001). For example, a patient-specific dynamic model may be useful for

planning intended surgical parameters and predicting the outcome of HTO.

The main motivation for developing a patient-specific computational model and a

two-level optimization method to enhance the lower-extremity portion is to predict the

post-surgery peak knee adduction moment in HTO patients. Conventional surgical

planning techniques for HTO involve choosing the amount of necessary tibial angulation

from standing radiographs (or x-rays). Unfortunately, alignment correction estimates

from static x-rays do not accurately predict long-term clinical outcome after HTO

(Andriacchi, 1994; Tetsworth and Paley, 1994). Researchers have identified the peak

external knee adduction moment as an indicator of clinical outcome while investigating

the gait of HTO patients (Andriacchi, 1994; Bryan et al., 1997; Hurwitz et al., 1998;

Prodromos et al., 1985; Wang et al., 1990). Currently, no movement simulations (or

other methods for that matter) allow surgeons to choose HTO surgical parameters to

achieve a chosen post-surgery knee adduction moment.









Movement simulations consist of models involving skeletal structure, muscle paths,

musculotendon actuation, muscle excitation-contraction coupling, and a motor task goal

(Pandy, 2001). Development of an accurate inverse dynamic model of the skeletal

structure is a significant first step toward creating a predictive patient-specific forward

dynamic model to perform movement simulations.

The precision of dynamic analyses is fundamentally associated with the accuracy of

kinematic model parameters such as segment lengths, joint positions, and joint

orientations (Andriacchi and Strickland, 1985; Challis and Kerwin, 1996; Cappozzo et

al., 1975; Davis, 1992; Holden and Stanhope, 1998; Holden and Stanhope, 2000; Stagni

et al., 2000). Understandably, a model constructed of rigid links within a multi-link chain

and simple mechanical approximations of joints will not precisely match the human

anatomy and kinematics. The model should provide the best possible agreement to

experimental motion data within the bounds of the joint models selected (Sommer and

Miller, 1980).

Benefits of Two-Level Optimization

This thesis presents a nested (or two-level) system identification optimization

approach to determine patient-specific joint parameters that best fit a three-dimensional

(3D), 18 degree-of-freedom (DOF) lower-body model to an individual's movement data.

The two-level technique combines the advantages of using optimization to determine

both the position of model segments from marker data and the anatomical joint axes

linking adjacent segments. By formulating a two-level objective function to minimize

marker coordinate errors, the resulting optimum model more accurately represents

experimental marker data (or a specific patient and his or her motion) when compared to

a nominal model defined by joint axes prediction methods.














CHAPTER 2
BACKGROUND

Motion Capture

Motion capture is the use of external devices to capture the movement of a real

object. One type of motion-capture technology is based on a passive optical technique.

Passive refers to markers, which are simply spheres covered in reflective tape, placed on

the object. Optical refers to the technology used to provide 3D data, which involves

high-speed, high-resolution video cameras. By placing passive markers on an object,

special hardware records the position of those markers in time and it generates a set of

motion data (or marker data).

Often motion capture is used to create synthetic actors by capturing the motions of

real humans. Special effects companies have used this technique to produce incredibly

realistic animations in movies such as Star Wars Episode I & II, Titanic, Batman, and

Terminator 2.

Biomechanical Models

Researchers use motion-capture technology to construct biomechanical models of

the human structure. The position of external markers may be used to estimate the

position of internal landmarks such as joint centers. The markers also enable the creation

of individual segment reference frames that define the position and orientation of each

body segment within a Newtonian laboratory reference frame. Marker data collected

from an individual are used to prescribe the motion of the biomechanical model.









Kinematics and Dynamics

Human kinematics is the study of the positions, angles, velocities, and accelerations

of body segments and joints during motion. With kinematic data and mass-distribution

data, one can study the forces and torques required to produce the recorded motion data.

Errors between the biomechanical model and the recorded motion data will inevitably

propagate to errors in the force and torque results of dynamic analyses.

Optimization

Optimization involves searching for the minimum or maximum of an objective

function by adjusting a set of design variables. For example, the objective function may

be the errors between the biomechanical model and the recorded motion data. These

errors are a function of the model's generalized coordinates and the model's kinematic

parameters such as segment lengths, joint positions, and joint orientations. Optimization

may be used to modify the design variables of the model to minimize the overall fitness

errors and identify a structure that matches the experimental data very well.

Limitations of Previous Methods

The literature contains a number of examples that use techniques, with or without

optimization, to assist in the development of subject-specific joint models within a larger

computational model. Several authors have presented methodologies to predict joint

locations and orientations from external landmarks without using optimization (Bell et

al., 1990; Inman, 1976; Vaughan et al., 1992). However, a regression model based solely

upon population studies may not accurately portray an individual patient. Another study

demonstrated an optimization method to determine the position and orientation of a 3

link, 6 DOF model by minimizing the distances between model-determined and

experimental marker positions (Lu and O'Connor, 1999). A model optimally positioned






6


without adjusting its joint parameters may not properly correspond to a certain patient.

Earlier studies described optimization methods to determine a set of model parameters for

a 3D, 2 DOF model by decreasing the error between the motion of the model and

experimental data (Sommer and Miller, 1980; Bogert et al., 1994). A model defined by

optimal joint parameters without optimizing its segment positions may not accurately

describe the motion of a patient within the bounds of the chosen joint approximations.














CHAPTER 3
METHODS

Parametric Model Structure

A generic, parametric 3D full-body kinematic model was constructed with

AutolevTM (Online Dynamics, Inc., Sunnyvale, CA) as a 14 segment, 27 DOF linkage

joined by a set of gimbal, universal, and pin joints (Figure 3-1, Table 3-1). Comparable

to Pandy's (2001) model structure, 3 translational degrees of freedom (DOFs) (qi, q2, and

q3) and 3 rotational DOFs (q4, q5, and q6) express the movement of the pelvis in 3D space

and the remaining 13 body segments comprise four open chains branching from the

pelvis segment. The locations and orientations of the joints within corresponding body

segments are described by 98 patient-specific model parameters. In other words, the

patient-specific model parameters designate the geometry of the model containing the

following joints types: 3 DOF hip, 1 DOF knee, 2 DOF ankle, 3 DOF back, 2 DOF

shoulder, and 1 DOF elbow. Each joint is defined in two adjacent body segments and

provides a mechanical approximation connecting those segments (Figure 3-2). For

example, the knee joint axis is simultaneously established in the femur coordinate system

and the tibia coordinate system.

A modified version of the Cleveland Clinic marker set (Figure 3-3) and a static

motion-capture trial is used to create segment coordinate systems and define static and

dynamic marker locations in these coordinate systems. Institutional review board

approval and proper informed consent were obtained before human involvement in the

experiments. The marker data collection system was a HiRes Expert Vision System









(Motion Analysis Corp., Santa Rosa, CA), including six HSC-180 cameras, EVa 5.11

software, and two AMTI force plates (Advanced Management Technology, Inc.,

Arlington, VA). Marker data were collected at 180 Hz during 3 seconds for static trials

and 6 seconds for individual joint trials. The raw data were filtered using a fourth-order,

zero phase-shift, low pass Butterworth Filter with a cutoff frequency set at 6 Hz.

Hip Joint

There are 6 translational model parameters that must be adjusted to establish a

functional hip joint center for a particular patient (Figure 3-4, Table 3-2). Markers placed

over the left anterior superior iliac spine (ASIS), right ASIS, and superior sacrum define

the pelvis segment coordinate system. From percentages of the inter-ASIS distance, a

predicted (or nominal) hip joint center location within the pelvis segment is 19.3%

posterior (pi), 30.4% inferior (p2), and 35.9% medial-lateral (p3) (Bell et al., 1990). This

nominal hip joint center is the origin of the femur coordinate system, which is

subsequently defined by markers placed over the medial and lateral femoral epicondyles.

An additional 3 translational model parameters (p4, p5, and p6), described in the femur

coordinate system, complete the structure of the nominal hip joint center.

Given the physical hip joint center is located within the pelvic region lateral to the

midsagittal plane, a cube with side lengths equal to 75% of the inter-ASIS distance and

its anterior-superior-medial vertex positioned at the midpoint of the inter-ASIS line

provides the geometric constraints for the optimization of each model parameter (Figure

3-5, Table A-i, Table B-l).

Knee Joint

There are 9 model parameters (5 translational and 4 rotational) that must be tailored

to identify a patient-specific functional knee joint axis (Figure 3-6, Table 3-3). The









femoral transepicondylar axis is a good approximation of a fixed knee joint axis

(Churchill et al., 1998). The line (or nominal) knee joint axis, connecting the medial and

lateral knee markers is defined in the femur and tibia coordinate systems (Vaughan et al.,

1992). Given the line passes through the midsagittal plane (x-y plane) of the femur

segment, the nominal knee joint axis is positioned within the femur via 2 translational

model parameters (p5 and p6) and 2 rotational model parameters (pl and p2). The tibia

coordinate system originates at the midpoint of the knee markers and is defined by

additional markers located on the medial and lateral malleoli. The distal description of

the nominal knee joint axis is comprised of 3 translational model parameters (p7, ps, and

p9) and 2 rotational model parameters (p3 and p4) in the tibia segment.

Given the anatomical knee joint DOFs are situated within the articular capsule, a

cube with side lengths equal to the distance between knee markers and its center located

at the midpoint of the nominal knee joint axis provides the geometric constraints for the

optimization of each translational model parameter. The rotational model parameters are

constrained within a circular cone defined by the 3600 revolution of the nominal knee

joint axis perturbed by + 30 (Figure 3-5, Table A-2, Table B-2).

It is not a trivial notion to eliminate a potential medial-lateral translational model

parameter in the femur segment. This model parameter is considered redundant, as the

knee joint axis passes through the midsagittal plane of the femur, and its inclusion may

lead to possible optimization convergence problems, similar to the redundant ankle model

parameter discussion of Bogert et al. (1994). By including redundant model parameters,

there are an infinite number of optimum solutions within the constraints of corresponding

superfluous model parameters.









Ankle Joint

There are 12 patient-specific model parameters (7 translational and 5 rotational)

that must be customized to determine a pair of patient-specific functional ankle joint axes

(Figure 3-7, Table 3-4). Comparable to Bogert et al. (1994), the talocrural and subtalar

joints connect the tibia, talus, and foot segments. Within the tibia segment, 3

translational model parameters (p6, P7, and ps) and 2 rotational model parameters (pl and

p2) position the nominal talocrural joint axis. The talus origin corresponds to the

talocrural joint center; therefore, it is not necessary to prescribe model parameters

defining the talocrural joint axis in the talus segment. The talus coordinate system is

created where the y-axis extends along the line perpendicular to both the talocrural joint

axis and the subtalar joint axis. The heel and toe markers, in combination with the tibia

y-axis, define the foot coordinate system. There are 3 translational model parameters

(plo, p11, and p12) and 2 rotational model parameters (p4 and ps) (Inman, 1976) that place

the nominal subtalar joint axis in the foot coordinate system.

Given the anatomical ankle joint DOFs are found within the articular capsule, a

cube with side lengths equal to the distance between ankle markers and its center located

at the midpoint of the nominal talocrural joint axis provides the geometric constraints for

the optimization of each translational model parameter. The rotational model parameters

of the talocrural joint axis are restricted within a circular cone defined by the 3600

revolution of the nominal talocrural joint axis varied by + 300. The rotational model

parameters of the subtalar joint axis are confined within a circular cone defined by the

3600 revolution of the nominal subtalar joint axis altered by + 300 (Figure 3-5, Table A-3,

Table B-3).









Two-Level Optimization Approach

Why Two Levels of Optimization Are Necessary

Optimization may be used to identify a system (or determine patient-specific joint

parameters) that best fit a 3D, 18 DOF lower-body model to an individual's movement

data. One level of optimization is necessary to establish the model's geometry. Given a

defined model, another level of optimization is required to position and orientate the

model's body segments. By formulating a two-level objective function to minimize 3D

marker coordinate errors, the two-level optimization results describe a lower-body model

that accurately represents experimental data.

Inner-Level Optimization

Given marker trajectory data, md, and a constant set of patient-specific model

parameters, p, the inner-level optimization (Figure 3-8, inner boxes) minimizes the 3D

marker coordinate errors, ec, between the model markers, mm, and the marker movement

data, md, (Equation 3-1) using a nonlinear least squares algorithm that adjusts the

generalized coordinates, q, of the model at each instance in time, t, (Figure 3-9), similar

to Lu and O'Connor (1999). In other words, the pose of the model is revised to match the

marker movement data at each time frame of the entire motion.

min e(q, p, t) = md(t) mm(q,p, t) (3-1)


At the first time instance, the algorithm is seeded with exact values for the 6

generalized coordinates of the pelvis, since the marker locations directly identify the

position and orientation of the pelvis coordinate system, and all remaining generalized

coordinates are seeded with values equal to zero. Given the joint motion is continuous,

each optimal generalized coordinate solution, including the pelvis generalized









coordinates, at one time instance is used as the algorithm's seed for the next time

instance. Matlab 6.1 (The MathWorks, Inc., Natick, MA), in conjunction with the Matlab

Optimization Toolbox and Matlab C/C++ Compiler, was used to develop the inner-level

optimization program.

Outer-Level Optimization

The outer-level global optimization (Figure 3-8, outer boxes) minimizes the sum of

the squares, ess, of the 3D marker coordinate errors, ec, (Equation 3-1) computed by the

inner-level algorithm throughout all time instances, n, (Equation 3-2) by modifying the

patient-specific model parameters, p. In other words, the geometric structure of the

model is varied to best fit the marker movement data for the entire motion.


min e(q,p, n) = [ec(q,p, tj [e(q, p, t)] (3-2)
t=1

The outer-level optimization is adapted from the population-based Particle Swarm

Optimizer (PSO) (Kennedy and Eberhart, 1995). The PSO algorithm was chosen over

gradient-based optimizers for its suitability to be parallelized and its ability to solve

global optimization problems. It is particularly effective in the determination of joint

positions and orientations of biomechanical systems (Schutte et al., 2003). The work of

Schutte et al. (2003) contrasted the PSO to a gradient-based optimizer (i.e.,

Broyden-Fletcher-Goldfarb-Shanno) that is commonly used in system identification

problems involving biomechanical models. The PSO very reliably converged to the

global minimum and it was insensitive to both design variable scaling and initial seeds

(Schutte et al., 2003).

To manage computational requirements, the outer-level optimization uses a parallel

version of the PSO operating on a cluster of 20 Linux-based 1.33 GHz Athlon PC's on a









100 Mbps switched Fast Ethernet network. Each machine is separately seeded with a

random set of initial patient-specific model parameter values. The outer-level

optimization program was implemented in C on the Linux operating system with the

Message Passing Interface (MPI) parallel computation libraries.

Two-Level Optimization Evaluation

Synthetic Marker Data without Noise

To evaluate the ability of the two-level optimization approach (Figure 3-10) to

calibrate the generic, parametric kinematic model, synthetic movement data was

generated for the ankle, knee, and hip joints based on estimated in vivo model parameters

and experimental movement data. For each generated motion, the distal segment moved

within the physiological range of motion and exercised each DOF for the joint. There

were 50 time frames and approximately 3.5 cycles of a circumductive hip motion

consisting of concurrent flexion-extension and abduction-adduction. Flexion-extension

comprised 50 time frames and roughly 4 cycles of knee motion. The ankle motion

involved 50 time frames and nearly 2.75 cycles of circumduction of the toe tip, where

plantarflexion-dorsiflexion and inversion-eversion occurred simultaneously. The ability

of the two-level optimization to recover the original model parameters used when

generating the synthetic motions was assessed.

Synthetic Marker Data with Noise

To evaluate the ability of the two-level optimization method (Figure 3-10) to

calibrate the generic kinematic model to a synthetic patient, skin movement artifacts were

introduced into the synthetic movement data for the ankle, knee, and hip joints. The

relative movement between skin and underlying bone occurs in a continuous rather than a

random fashion (Cappozzo et al., 1993). Comparable to the simulated skin movement









artifacts of Lu and O'Connor (1999), a continuous numerical noise model of the form

A sin(co t + p) was used and the equation variables were randomly generated within the

following bounds: amplitude (0
angle (0 < (p < 22) (Cheze et al., 1995). Noise was separately generated for each 3D

coordinate of the marker trajectories. Again, the two-level optimization was tested for its

ability to reproduce the original model parameters.

Experimental Marker Data

To verify the ability of the two-level optimization technique (Figure 3-10) to

calibrate the generic kinematic model to a particular patient, multi-cycle experimental

marker trajectory data was collected from one subject. For each joint motion, the distal

segment moved within the physiological range of motion and exercised each DOF for the

joint. Analogous to Bogert et al. (1994), the original data were resampled

non-equidistantly to eliminate weighting the data set with many data points occurring

during acceleration and deceleration at the limits of the range of motion. In other words,

regardless of changes in velocity during joint movements, the data was equally

distributed over the entire joint range of motion. The time frames of original tracked

marker data sets (right hip = 1015, right knee = 840, and right ankle = 707) were reduced

to 50 time frames. The resampled data allowed a fixed amount of marker movement

between frames to arrive at the number of time frames chosen, given that 50 time frames

is analogous to Lu and O'Connor (1999). There were nearly 2 cycles of

flexion-extension and abduction-adduction involved in the hip motion. Similar to

Leardini et al. (1999), internal-external rotation of the hip was avoided to reduce the

effects of skin and soft tissue movement artifacts. Approximately 2 cycles of knee









motion included flexion-extension. Simultaneous plantarflexion-dorsiflexion and

inversion-eversion comprised roughly 2 cycles of ankle motion. Without knowledge of

original model parameters, the marker coordinate errors are the only means of measuring

the effectiveness of the two-level optimization.

To verify the ability of the two-level optimization procedure (Figure 3-10) to

calibrate the generic kinematic model to a particular patient using a smaller portion of the

joint motion cycle, the resampled multi-cycle experimental marker trajectory data

described above was divided into the first and second halves of the individual hip, knee,

and ankle joint motion cycles. The number of time frames comprising each

one-half-cycle of the joint motion was as follows: ankle = 13, knee = 13, and hip = 19.

Again, the two-level optimization was tested for its ability to reduce the marker

coordinate errors and obtain an optimal set of model parameters.















q 23








q24


q'



II S"f


q 7


Si






q10








qil
q12


q27






q1"4


L .4


-,k




q2





q3
L---------.


q16










i17


% (superior)
Sq18
q, .. .


Figure 3-1. The 3D, 14 segment, 27 DOF full-body kinematic model linkage joined by a
set of gimbal, universal, and pin joints.


Joint Types


Pin


Universal





Gimbal


Z
(lateral)


(anterior)










Table 3-1. Model degrees of freedom.

DOF Description

qi Pelvis anterior-posterior position
q2 Pelvis superior-inferior position
q3 Pelvis medial-lateral position
q4 Pelvis anterior-posterior tilt angle
q5 Pelvis elevation-depression angle
q6 Pelvis internal-external rotation angle
q7 Right hip flexion-extension angle
q8 Right hip adduction-abduction angle
q9 Right hip internal-external rotation angle

qio Right knee flexion-extension angle
qii Right ankle plantarflexion-dorsiflexion angle

q12 Right ankle inversion-eversion angle
q13 Left hip flexion-extension angle
q14 Left hip adduction-abduction angle
q15 Left hip internal-external rotation angle
q16 Left knee flexion-extension angle
q17 Left ankle plantarflexion-dorsiflexion angle
q18 Left ankle inversion-eversion angle
q19 Trunk anterior-posterior tilt angle
q20 Trunk elevation-depression angle
q21 Trunk internal-external rotation angle
q22 Right shoulder flexion-extension angle
q23 Right shoulder adduction-abduction angle
q24 Right elbow flexion angle
q25 Left shoulder flexion-extension angle
q26 Left shoulder adduction-abduction angle
q27 Left elbow flexion angle










































Figure 3-2. A 1 DOF joint axis simultaneously defined in two adjacent body segments
and the geometric constraints on the optimization of each of the 9 model
parameters.






























OK
1C -


r


I,,


/


0,
It
/[
/



a i
/'



,'


A -


















'O
.
b '''


Figure 3-3. Modified Cleveland Clinic marker set used during static and dynamic
motion-capture trials. Note: the background femur and knee markers have
been omitted for clarity and the medial and lateral markers for the knee and
ankle are removed following the static trial.


*19










sire


It


'c1o


1
*i
.h













Pelvis


Optimized
Hip Joint
SCenter \

F--X
\ P5 P1

Femur x


\I'
"J ;


Sw


It.;
J"


Y
(superior)


Z a
(lateral)


Sx
(anterior)


Figure 3-4. The 3 DOF right hip joint center simultaneously defined in the pelvis and
right femur segments and the 6 translational model parameters optimized to
determine the functional hip joint center location.


Table 3-2. Hip joint parameters.

Hip Joint
Parameter

pi

P2

P3

P4

P5

P6


Description


Anterior-posterior location in pelvis segment

Superior-inferior location in pelvis segment

Medial-lateral location in pelvis segment

Anterior-posterior location in femur segment

Superior-inferior location in femur segment

Medial-lateral location in femur segment








ct.mt


LJ --


Figure 3-5. Geometric constraints on the optimization of translational and rotational
model parameters for the hip, knee, and ankle joints.
















ZP5




\P



p2




p4

Optimized P3
Knee Joint
Center Y p8
f Y P7
Optimized
Knee Joint
Axis Tibia -' P
Z X





Y I
(superior)





z x i
(lateral) Lab (anterior)





Figure 3-6. The 1 DOF right knee joint simultaneously defined in the right femur and
right tibia segments and the 4 rotational and 5 translational model parameters
optimized to determine the knee joint location and orientation.












Table 3-3. Knee joint paramete

Knee Joint
Parameter

pi

P2

P3

P4

P5

P6

P7

P8

P9


:rs.


Description


Adduction-abduction rotation in femur segment

Internal-external rotation in femur segment

Adduction-abduction rotation in tibia segment

Internal-external rotation in tibia segment

Anterior-posterior location in femur segment

Superior-inferior location in femur segment

Anterior-posterior location in tibia segment

Superior-inferior location in tibia segment

Medial-lateral location in tibia segment














Tibia
Z- -
P6



r Pg



P7





Optimized
Talocrural Joint
-' Center



Talus
Optimized Z
Talocrural Joint Optimized
Axis Ps Subtalar Joint
P3 Center




P4



Optimized
Subtalar Joint Y
Axis (superior)
Y /L / P11


SFoot P12 -- P10

Z Z X
--" (lateral) Lab (anterior)



Figure 3-7. The 2 DOF right ankle joint complex simultaneously defined in the right tibia,
talus, and foot segments and the 5 rotational and 7 translational model
parameters optimized to determine the joint locations and orientations.












Table 3-4. Ankle joint pa

Ankle Joint
Parameter

pi

P2

P3

P4

P5

P6

P7

P8

P9

Pio

Pll

P12


rameters.


Description


Adduction-abduction rotation of talocrural in tibia segment

Internal-external rotation of talocrural in tibia segment

Internal-external rotation of subtalar in talus segment

Internal-external rotation of subtalar in foot segment

Dorsi-plantar rotation of subtalar in foot segment

Anterior-posterior location of talocrural in tibia segment

Superior-inferior location of talocrural in tibia segment

Medial-lateral location of talocrural in tibia segment

Superior-inferior location of subtalar in talus segment

Anterior-posterior location of subtalar in foot segment

Superior-inferior location of subtalar in foot segment

Medial-lateral location of subtalar in foot segment












Joint Axes
Experiments Hip


Outer Optimization
Parallel Particle Swarm


Knee


Outer Optimization
SParallel Particle Swarm


izalion
squares
I II


nation
uares
2


Figure 3-8. Two-level optimization technique minimizing the 3D marker coordinate
errors between the kinematic model markers and experimental marker data to
determine functional joint axes for each lower-extremity joint.


Ankle Outer Optimization
-' Parallel Particle Swarm



Processor # 20 Inner Optimizalion
SNonlinear Least Squares

SProcessor # Opiz Inner Optimization L
SNonlinear Least Squares

Processor f 2 Inner Optimization /
T Nonlinear Least Squares

Processor # 1 Inner Optimization
Nonlinear Least Squares


V


Error Time j
Error Time J f /
a Error Time n/
Error Time #2
Frame #1


a


111





































71<


.,9)


U


E


C +
(V
og
+ +1





b LU
II :E





Ca


II II

$ (D
c S

(D ir

a0m


*U




c)
.* ** 8





aQ)
Sf


E

o

m(
* .
2
0I I


@7 ;

0I


"r6

/


JoiJedns


JOaedns


A -~


jouadns


-A
--a


S ;-


jouadns


o C
-e


a -


a E0



0Sct





OO



mo
*- j a)













aa
Co











O co
C > II












oa a
-oc
^^ 0























0o0
Ct0
C o










So\.








0i b
.












Initialize outer-level
parallel particle
swarm optimization

f
Minimize outer-level
objective function (i.e.,
3D marker coordinate
errors for all time
frames of inner-level
optimization)


Adjust outer-level
design variables (i.e.,
model parameters)


False


Initialize inner-level
non-linear least
squares optimization


False

Minimize inner-level
objective function (i.e.,
3D marker coordinate
errors for current time
frame i)


Terminate inner-level
non-linear least
squares optimization


True

Terminate outer-level
parallel particle
swarm optimization


Figure 3-10. Two-level optimization approach minimizing the 3D marker coordinate
errors between the kinematic model markers and experimental marker data
to determine functional joint axes.














CHAPTER 4
RESULTS

Synthetic Marker Data without Noise

For synthetic motions without noise, each two-level optimization precisely

recovered the original marker trajectories to within an arbitrarily tight tolerance (on the

order of le-13 cm), as illustrated in Figure 3-9. At the termination of each optimization,

the optimum model parameters for the hip, knee, and ankle were recovered with mean

rotational errors less than or equal to 0.0450 and mean translational errors less than or

equal to 0.0077 cm (Appendix C).

Synthetic Marker Data with Noise

For synthetic motions with noise, the two-level optimization of the hip, knee, and

ankle resulted in mean marker distance errors equal to 0.46 cm, which is of the same

order of magnitude as the selected random continuous noise model (Table 4-1). The

two-level approach determined the original model parameters with mean rotational errors

less than or equal to 3.730 and mean translational errors less than or equal to 0.92 cm

(Appendix D). The outer-level fitness history converged rapidly (Figure 4-1) and the hip,

knee, and ankle optimizations terminated with a mean wall clock time of 41.02 hours.

Experimental Marker Data

For multi-cycle experimental motions, the mean marker distance error of the

optimal hip, knee, and ankle solutions was 0.41 cm, which is a 0.43 cm improvement

over the mean nominal error of 0.84 cm (Table 4-2). For each joint complex, the

optimum model parameters improved upon the nominal parameter data (or values found









in the literature) by mean rotational values less than or equal to 6.180 and mean

translational values less than or equal to 1.05 cm (Appendix E). When compared to the

synthetic data with noise, the outer-level fitness history of the multi-cycle experimental

data optimization converged at approximately the same rate and resulted in an improved

final solution for both the ankle and the hip (Figure 4-2). On the contrary, the higher

objective function values for the knee are evidence of the inability of the fixed pin joint to

represent the screw-home motion (Blankevoort et al., 1988) of the multi-cycle

experimental knee data. The multi-cycle hip, knee, and ankle optimizations terminated

with a mean wall clock time of 35.94 hours.

For one-half-cycle experimental motions, the mean marker distance error of the

optimal hip, knee, and ankle solutions was 0.30 cm for the first half and 0.30 cm for the

second half (Table 4-3). The fitness of both the ankle and the hip were comparable to the

multi-cycle joint motion results. However, the knee fitness values were improved due to

the reduced influence (i.e., 1 time frame of data as opposed to 9) of the screw-home

motion of the knee. For each joint complex, the optimum model parameters improved

upon the nominal parameter data (or values found in the literature) by mean rotational

values less than or equal to 11.080 and mean translational values less than or equal to

2.78 cm (Appendix F, Appendix G). In addition, the optimum model parameters for

one-half-cycle motion differed from those for the multi-cycle motion by mean rotational

values less than or equal to 15.770 and mean translational values less than or equal to

2.95 cm (Appendix H, Appendix I). The one-half-cycle hip, knee, and ankle

optimizations terminated with a mean wall clock time of 11.77 hours.










Table 4-1. Two-level optimization results for synthetic marker data with random
continuous numerical noise to simulate skin movement artifacts with
maximum amplitude of 1 cm.

Synthetic Data Hip Knee Ankle
with Noise

Mean marker
Mean marker 0.474603 + 0.202248 0.392331 + 0.145929 0.514485 + 0.233956
distance error (cm)

Mean rotational
n/a 2.158878 + 1.288703 3.732191 + 3.394553
parameter error () -

Mean translational
0.Mean translational 161318 + 0.039449 0.321930 + 0.127997 0.923724 + 0.471443
parameter error (cm)











500

-Hip
Knee
400 -Ankle



"E
u 300




S200
U.



100




0
0 5000 10000 15000 20000 25000
Function Evaluations

Figure 4-1. Outer-level optimization objective function fitness value convergence for
synthetic marker data with random continuous numerical noise to simulate
skin movement artifacts with maximum amplitude of 1 cm, where the best
fitness value among all nodes is given for each iteration.












Table 4-2. Mean marker distance errors for nominal values and the two-level
optimization results for multi-cycle experimental marker data.

Experimental Data Hip Knee Ankle

Nominal mean
marker distance 0.499889 + 0.177947 1.139884 + 0.618567 0.885437 + 0.478530
error (cm)

Optimum mean
marker distance 0.342262 + 0.167079 0.547787 + 0.269726 0.356279 + 0.126559
error (cm)

Mean marker
distance error 0.157627 + 0.166236 0.592097 + 0.443680 0.529158 + 0.438157
attenuation (cm)












600

-Hip

500 -Knee
-Ankle


400
N


* 300



200



100



0
0 5000 10000 15000 20000 25000
Function Evaluations

Figure 4-2. Outer-level optimization objective function fitness value convergence for
multi-cycle experimental marker data, where the best fitness value among all
nodes is given for each iteration.






35



Table 4-3. Mean marker distance errors for the two-level optimization results using first
and second halves of the joint cycle motion for experimental marker data.

Experimental Data Hip Knee Ankle

First half: mean
marker distance 0.335644 + 0.163370 0.189551 + 0.072996 0.384786 + 0.193149
error (cm)

Second half: mean
marker distance 0.361179 + 0.200774 0.202413 + 0.101063 0.338886 + 0.128596
error (cm)














CHAPTER 5
DISCUSSION

Assumptions, Limitations, and Future Work

Joint Model Selection

If the current model cannot adequately reproduce future experimental motions, the

chosen joint models may be modified. For example, the flexion-extension of the knee is

not truly represented by a fixed pin joint (Churchill et al., 1998). When comparing the

fitness of the optimum knee joint model to multi-cycle experimental marker data, the

agreement was quite good for all knee flexion angles with the exception of those

approaching full extension. By eliminating knee flexion angles less than 200, which

comprised 18% of the flexion-extension data, the mean marker distance error was

reduced to 0.48 + 0.23 cm (11.89% decrease) using the optimum model parameters from

the full data set. A pin joint knee may be sufficiently accurate for many modeling

applications. A 2 DOF knee model (Hollister et al., 1993) may account for the

screw-home motion of the knee joint occurring between 00 and 200 (Blankevoort et al.,

1988). If greater fidelity to actual bone motion is necessary, a 6 DOF knee joint may be

implemented with kinematics determined from fluoroscopy (Rahman et al., 2003).

Design Variable Constraints

Certain joint parameters must be constrained to zero with the purpose of preventing

the unnecessary optimization of redundant parameters. Case in point, the medial-lateral

translational model parameter placing the knee joint center in the femur segment must be

constrained to zero. On the other hand, this model parameter may be used as a design









variable, granted the medial-lateral translational model parameter placing the knee joint

center in the tibia segment is constrained to zero. If both medial-lateral translational

model parameters are used as redundant design variables, the outer-level optimization has

an infinite number of solutions within the constraints of both parameters. Through the

elimination (i.e., constraining to zero) of redundant model parameters, the outer-level

optimization encounters less convergence problems in globally minimizing the objective

function.

Objective Function Formulation

The inner-level optimization objective function should be comprised of marker

coordinate errors rather than marker distance errors. A substantial amount of information

(i.e., % of the number of errors) describing the fitness value is lost with computation of

marker distance errors. In other words, a marker distance error provides only the radius

of a sphere surrounding an experimental marker and it does not afford the location of a

model marker on the surface of the sphere. However, a set of three marker coordinate

errors describes both the magnitude and direction of an error vector between an

experimental marker and a model marker. By using marker coordinate errors, the

inner-level optimization has improved convergence (Table 5-1) and shorter execution

time (Table 5-2).

Optimization Time and Parallel Computing

To reduce the computation time, it is necessary to use an outer-level optimization

algorithm in a parallel environment on a network cluster of processors. The PSO

algorithm was chosen over gradient-based optimizers for its suitability to be parallelized

and its ability to solve global optimization problems. The large computation time is a

result of the random set of initial values used to seed each node of the parallel algorithm.









By seeding one of the nodes with a relatively optimal set of initial values, the

computation time may be significantly decreased. By doubling the number of parallel

processors, the computation time declines nearly 50%. Decreasing the number of time

frames of marker data additionally reduces the computation time. For example, the mean

optimization time using experimental data for 50 time frames equals 35.94 hours, 19 time

frames equals 12.82 hours, and 13 time frames equals 11.24 hours. Further study is

necessary to establish the minimum number of marker data time frames required to

effectively determine joint axes parameters.

Multi-Cycle and One-Half-Cycle Joint Motions

The two-level optimization results vary depending on whether marker data time

frames consist of multi-cycle or one-half-cycle joint motions. In other words, the

determination of patient-specific model parameters is significantly influenced by the

marker trajectories contained within the chosen set of data. Given a set of marker data,

the two-level optimization establishes invariable model parameters that best fit the

mathematical model to the measured experimental motion. Understandably, a model

constructed from one marker data set may not adequately represent a considerably

different marker data set. To perform accurate dynamic analyses, joint motions used to

generate the model should be consistent with those motions that will be used in the

analyses.

The small differences between sets of two-level optimization results for the hip and

knee joint motions indicate the reliability of the model parameter values. Much larger

differences occurred between sets of model parameters determined for the ankle joint.

Two major factors contributing to these differences are the rotational ankle model

parameters pi and p3. On one hand, the model parameters may truly vary throughout the









ankle motion and may not be represented by constant values. On the other hand, the

objective function may be insensitive to changes in these model parameters indicating a

design space that does not permit the reasonable determination of certain design

variables. Future study is necessary to investigate the sensitivity of 3D marker coordinate

errors to particular model parameters.

Range of Motion and Loading Conditions

To provide the largest range of motion, all experimental data was collected with

each joint unloaded and freely exercising all DOFs; however, the same two-level

optimization may be performed on loaded data as well. The patient-specific model

parameters may change under loaded conditions (Bogert et al., 1994). Moreover, loaded

conditions limit the range of motion for several DOFs. Several authors (Bell et al., 1990;

Bogert et al., 1994) report inaccuracies in determining functional axes from limited

motion, but a subsequent study (Piazza et al., 2001) found the hip joint may be

determined from motions as small as 150. Piazza et al. (2001) suggest future studies are

necessary to explore the use of normal gait motions, rather than special joint motions, to

determine functional axes.

Optimization Using Gait Motion

The two-level optimization approach and synthetic data evaluation method may be

used to investigate the use of gait motion to determine functional joint axes. Each set of

joint parameters may be established separately or collectively (i.e., entire single leg or

both legs at once). Additional investigation is necessary to assess the differences in joint

parameters obtained through individual optimizations and simultaneous whole leg

optimizations. Furthermore, the joint parameters determined from gait motions may be









compared to those parameters obtained from special joint motions with larger amounts of

movement.

Authors (Bogert et al., 1994; Cheze et al., 1995; Lu and O'Connor, 1999) have set

precedence for performing numerical (or synthetic data) simulations to evaluate a new

technique. Although it is not a necessary task, there is additional benefit in supporting

the numerical findings with data from one human subject. With the additional data, the

joint parameters computed from unloaded joint motions may be measured against those

parameters attained from unloaded (i.e., swing phase) and loaded (i.e., stance phase) gait

motions. To expand upon the evaluation of the new technique and show general

applicability, future work is necessary to study more than one human subject.

Comparison of Experimental Results with Literature

The two-level optimization determined patient-specific joint axes locations and

orientations similar to previous works. The optimum hip joint center location of 7.52 cm

(27.89% posterior), 9.27 cm (34.38% inferior), and 8.86 cm (32.85% lateral) are

respectively comparable to 19.3%, 30.4%, and 35.9% (Bell et al., 1990). The optimum

femur length (40.46 cm) and tibia length (40.88 cm) are similar to 42.22 cm and 43.40

cm, respectively (de Leva, 1996). The optimum coronal plane rotation (73.360) of the

talocrural joint correlates to 82.7 + 3.7 (range 740 to 940) (Inman, 1976). The optimum

distance (2.14 cm) between the talocrural joint and the subtalar joint is analogous to 1.24

+ 0.29 cm (Bogert et al., 1994). The optimum transverse plane rotation (13.190) and

sagittal plane rotation (45.260) of the subtalar joint corresponds to 23 + 11 (range 40 to

47) and 42 + 90 (range 20.50 to 68.50), respectively (Inman, 1976).











Table 5-1. Mean marker distance errors for the inner-level objective function consisting
of marker coordinate errors versus marker distance errors for multi-cycle
experimental marker data.


Experimental Data


Hip


Knee


Ankle


Marker distance
objective function
0oece fn n .863941 + 0.328794 1.043909 + 0.465186 0.674187 + 0.278451
mean marker
distance error (cm)

Marker coordinate
objective function
0oece fncn .342262 + 0.167079 0.547787 + 0.269726 0.356279 + 0.126559
mean marker
distance error (cm)






42



Table 5-2. Execution times for the inner-level objective function consisting of marker
coordinate errors versus marker distance errors for multi-cycle experimental
marker data.

Experimental Data Hip Knee Ankle

Marker distance
objective function: 464.377 406.205 308.293
execution time (s)

Marker coordinate
objective function: 120.414 106.003 98.992
execution time (s)














CHAPTER 6
CONCLUSION

Rationale for New Approach

The main motivation for developing a 27 DOF patient-specific computational

model and a two-level optimization method to enhance the lower-extremity portion is to

predict the post-surgery peak knee adduction moment in HTO patients, which has been

identified as an indicator of clinical outcome (Andriacchi, 1994; Bryan et al., 1997;

Hurwitz et al., 1998; Prodromos et al., 1985; Wang et al., 1990). The accuracy of

prospective dynamic analyses made for a unique patient is determined in part by the

fitness of the underlying kinematic model (Andriacchi and Strickland, 1985; Challis and

Kerwin, 1996; Cappozzo et al., 1975; Davis, 1992; Holden and Stanhope, 1998; Holden

and Stanhope, 2000; Stagni et al., 2000). Development of an accurate kinematic model

tailored to a specific patient forms the groundwork toward creating a predictive

patient-specific dynamic simulation.

Synthesis of Current Work and Literature

The two-level optimization method satisfactorily determines patient-specific model

parameters defining a 3D lower-extremity model that is well suited to a particular patient.

Two conclusions may be drawn from comparing and contrasting the two-level

optimization results to previous values found in the literature. The similarities between

numbers suggest the results are reasonable and show the extent of agreement with past

studies. The differences between values indicate the two-level optimization is necessary









and demonstrate the degree of inaccuracy inherent when the new approach is not

implemented.

Through the enhancement of model parameter values found in the literature, the

two-level optimization approach successfully reduces the fitness errors between the

patient-specific model and the experimental motion data. More specifically, to quantify

the improvement of the current results compared to previous values found in the

literature, the mean marker distance errors were reduced by 31.53% (hip), 51.94% (knee),

and 59.76% (ankle).

The precision of dynamic analyses made for a particular patient depends on the

accuracy of the patient-specific kinematic parameters chosen for the dynamic model.

Without expensive medical images, model parameters are only estimated from external

landmarks that have been identified in previous studies. The estimated (or nominal)

values may be improved by formulating an optimization problem using motion-capture

data. By using a two-level optimization technique, researchers may build more accurate

biomechanical models of the individual human structure. As a result, the optimal models

will provide reliable foundations for future dynamic analyses and optimizations.


















Abduction


Acceleration

Active markers


Adduction


Ankle inversion-eversion



Ankle motion


Ankle plantarflexion-dorsiflexion



Anterior

Circumduction


Coccyx

Constraint functions


Coronal plane


Couple


GLOSSARY

Movement away from the midline of the body in the
coronal plane.

The time rate of change of velocity.

Joint and segment markers used during motion
capture that emit a signal.

Movement towards the midline of the body in the
coronal plane.

Motion of the long axis of the foot within the
coronal plane as seen by an observer positioned
along the anterior-posterior axis of the shank.

The ankle angles reflect the motion of the foot
segment relative to the shank segment.

Motion of the plantar aspect of the foot within the
sagittal plane as seen by an observer positioned
along the medial-lateral axis of the shank.

The front or before, also referred to as ventral.

Movement of the distal tip of a segment described
by a circle.

The tailbone located at the distal end of the sacrum.

Specific limits that must be satisfied by the optimal
design.

The plane that divides the body or body segment
into anterior and posterior parts.

A set of force vectors whose resultant is equal to
zero. Two force vectors with equal magnitudes and
opposite directions is an example of a simple
couple.










Degree of freedom (DOF)








Design variables

Distal

Dorsiflexion


Epicondyle



Version

Extension


External (lateral) rotation




External moment


Femur


Flexion


Fluoroscopy



Force


A single coordinate of relative motion between two
bodies. Such a coordinate responds without
constraint or imposed motion to externally applied
forces or torques. For translational motion, a DOF
is a linear coordinate along a single direction. For
rotational motion, a DOF is an angular coordinate
about a single, fixed axis.

Variables that change to optimize the design.

Away from the point of attachment or origin.

Movement of the foot towards the anterior part of
the tibia in the sagittal plane.

Process that develops proximal to an articulation
and provides additional surface area for muscle
attachment.

A turning outward.

Movement that rotates the bones comprising a joint
away from each other in the sagittal plane.

Movement that rotates the distal segment laterally
in relation to the proximal segment in the transverse
plane, or places the anterior surface of a segment
away from the longitudinal axis of the body.

The load applied to the human body due to the
ground reaction forces, gravity and external forces.

The longest and heaviest bone in the body. It is
located between the hip joint and the knee joint.

Movement that rotates the bones comprising ajoint
towards each other in the sagittal plane.

Examination of body structures using an X-ray
machine that combines an X-ray source and a
fluorescent screen to enable real-time observation.

A push or a pull and is produced when one object
acts on another.









Force plate


Forward dynamics


Gait


A transducer that is set in the floor to measure about
some specified point, the force and torque applied
by the foot to the ground. These devices provide
measures of the three components of the resultant
ground reaction force vector and the three
components of the resultant torque vector.

Analysis to determine the motion of a mechanical
system, given the topology of how bodies are
connected, the applied forces and torques, the mass
properties, and the initial condition of all degrees of
freedom.


A manner of walking or moving on foot.


Generalized coordinates





High tibial osteotomy (HTO)






Hip abduction-adduction



Hip flexion-extension



Hip internal-external rotation




Hip motion


Inferior


A set of coordinates (or parameters) that uniquely
describes the geometric position and orientation of a
body or system of bodies. Any set of coordinates
that are used to describe the motion of a physical
system.

Surgical procedure that involves adding or
removing a wedge of bone to or from the tibia and
changing the frontal plane limb alignment. The
realignment shifts the weight-bearing axis from the
diseased medial compartment to the healthy lateral
compartment of the knee.

Motion of a long axis of the thigh within the coronal
plane as seen by an observer positioned along the
anterior-posterior axis of the pelvis.

Motion of the long axis of the thigh within the
sagittal plane as seen by an observer positioned
along the medial-lateral axis of the pelvis.

Motion of the medial-lateral axis of the thigh with
respect to the medial-lateral axis of the pelvis within
the transverse plane as seen by an observer
positioned along the longitudinal axis of the thigh.

The hip angles reflect the motion of the thigh
segment relative to the pelvis.

Below or at a lower level (towards the feet).









Inter-ASIS distance


Internal (medial) rotation




Internal joint moments





Inverse dynamics





Inversion


Kinematics


Kinetics


Knee abduction-adduction


Knee flexion-extension


The length of measure between the left anterior
superior iliac spine (ASIS) and the right ASIS.

Movement that rotates the distal segment medially
in relation to the proximal segment in the transverse
plane, or places the anterior surface of a segment
towards the longitudinal axis of the body.

The net result of all the internal forces acting about
the joint which include moments due to muscles,
ligaments, joint friction and structural constraints.
The joint moment is usually calculated around a
joint center.

Analysis to determine the forces and torques
necessary to produce the motion of a mechanical
system, given the topology of how bodies are
connected, the kinematics, the mass properties, and
the initial condition of all degrees of freedom.

A turning inward.

Those parameters that are used in the description of
movement without consideration for the cause of
movement abnormalities. These typically include
parameters such as linear and angular
displacements, velocities and accelerations.

General term given to the forces that cause
movement. Both internal (muscle activity,
ligaments or friction in muscles and joints) and
external (ground or external loads) forces are
included. The moment of force produced by
muscles crossing a joint, the mechanical power
flowing to and from those same muscles, and the
energy changes of the body that result from this
power flow are the most common kinetic
parameters used.

Motion of the long axis of the shank within the
coronal plane as seen by an observer positioned
along the anterior-posterior axis of the thigh.

Motion of the long axis of the shank within the
sagittal plane as seen by an observer positioned
along the medial-lateral axis of the thigh.










Knee internal-external rotation


Knee motion


Lateral


Malleolus


Markers


Medial


Midsagittal plane



Model parameters





Moment of force









Motion capture


Motion of the medial-lateral axis of the shank with
respect to the medial-lateral axis of the thigh within
the transverse plane as viewed by an observer
positioned along the longitudinal axis of the shank.

The knee angles reflect the motion of the shank
segment relative to the thigh segment.

Away from the body's longitudinal axis, or away
from the midsagittal plane.

Broadened distal portion of the tibia and fibula
providing lateral stability to the ankle.

Active or passive objects (balls, hemispheres or
disks) aligned with respect to specific bony
landmarks used to help determine segment and joint
position in motion capture.

Toward the body's longitudinal axis, or toward the
midsagittal plane.

The plane that passes through the midline and
divides the body or body segment into the right and
left halves.

A set of coordinates that uniquely describes the
model segments lengths, joint locations, and joint
orientations, also referred to as joint parameters.
Any set of coordinates that are used to describe the
geometry of a model system.

The moment of force is calculated about a point and
is the cross product of a position vector from the
point to the line of action for the force and the force.
In two-dimensions, the moment of force about a
point is the product of a force and the perpendicular
distance from the line of action of the force to the
point. Typically, moments of force are calculated
about the center of rotation of a joint.

Interpretation of computerized data that documents
an individual's motion.









Non-equidistant


Objective functions

Parametric


Passive markers


Pelvis


Pelvis anterior-posterior tilt



Pelvis elevation-depression




Pelvis internal-external rotation




Pelvis motion







Plantarflexion


Posterior

Proximal


Range of motion


The opposite of equal amounts of distance between
two or more points, or not equally distanced.

Figures of merit to be minimized or maximized.

Of or relating to or in terms of parameters, or
factors that define a system.

Joint and segment markers used during motion
capture that reflect visible or infrared light.

Consists of the two hip bones, the sacrum, and the
coccyx. It is located between the proximal spine
and the hip joints.

Motion of the long axis of the pelvis within the
sagittal plane as seen by an observer positioned
along the medial-lateral axis of the laboratory.

Motion of the medial-lateral axis of the pelvis
within the coronal plane as seen by an observer
positioned along the anterior-posterior axis of the
laboratory.

Motion of the medial-lateral or anterior-posterior
axis of the pelvis within the transverse plane as seen
by an observer positioned along the longitudinal
axis of the laboratory.

The position of the pelvis as defined by a marker set
(for example, plane formed by the markers on the
right and left anterior superior iliac spine (ASIS)
and a marker between the 5th lumbar vertebrae and
the sacrum) relative to a laboratory coordinate
system.

Movement of the foot away from the anterior part
of the tibia in the sagittal plane.

The back or behind, also referred to as dorsal.

Toward the point of attachment or origin.

Indicates joint motion excursion from the maximum
angle to the minimum angle.









Sacrum


Sagittal plane


Skin movement artifacts


Stance phase


Subtalar joint


Superior


Synthetic markers


Swing phase


Talocrural joint


Talus


Tibia


Transepicondylar


Transverse plane


Consists of the fused components of five sacral
vertebrae located between the 5th lumbar vertebra
and the coccyx. It attaches the axial skeleton to the
pelvic girdle of the appendicular skeleton via paired
articulations.

The plane that divides the body or body segment
into the right and left parts.

The relative movement between skin and
underlying bone.

The period of time when the foot is in contact with
the ground.

Located between the distal talus and proximal
calcaneous, also known as the talocalcaneal joint.

Above or at a higher level (towards the head).

Computational representations of passive markers
located on the kinematic model.

The period of time when the foot is not in contact
with the ground.

Located between the distal tibia and proximal talus,
also known as the tibial-talar joint.

The largest bone of the ankle transmitting weight
from the tibia to the rest of the foot.

The large medial bone of the lower leg, also known
as the shinbone. It is located between the knee joint
and the talocrural joint.

The line between the medial and lateral
epicondyles.

The plane at right angles to the coronal and sagittal
planes that divides the body into superior and
inferior parts.


The time rate of change of displacement.


Velocity















APPENDIX A
NOMINAL JOINT PARAMETERS & OPTIMIZATION BOUNDS
FOR SYNTHETIC MARKER DATA


Table A-1. Nominal right hip joint parameters and optimization bounds for synthetic
marker data.


Right Hip Joint
Parameter

pi (cm)

p2 (cm)

p3 (cm)

p4 (cm)

p5 (cm)

p6 (cm)


Nominal

-6.022205

-9.307044

8.759571

0

0

0


Lower Bound

-20.530245

-20.530245

0

-14.508040

-11.223200

-8.759571


Upper Bound

0

0

20.530245

6.022205

9.307044

11.770674











Table A-2. Nominal right knee joint parameters and optimization bounds for synthetic
marker data.


Right Knee Joint
Parameter

pi ()

P2 ()

P3 ()

P4()

P5 (cm)

P6 (cm)

P7 (cm)

P8 (cm)

P9 (cm)


Nominal

0

0

-5.079507

16.301928

0

-37.600828

0

0

0


Lower Bound

-30

-30

-35.079507

-13.698072

-7.836299

-45.437127

-7.836299

-7.836299

-7.836299


Upper Bound

30

30

24.920493

46.301928

7.836299

-29.764528

7.836299

7.836299

7.836299











Table A-3. Nominal right ankle joint parameters and optimization bounds for synthetic
marker data.


Right Ankle Joint
Parameter

pi ()

P2 (o)

P3 (o)

P4()

P5 (0)

P6 (cm)

P7 (cm)

P8 (cm)

P9 (cm)

Pio (cm)

Pll (cm)

P12 (cm)


Nominal

18.366935

0

40.230969

23

42

0

-39.973202

0

-1

8.995334

4.147543

0.617217


Lower Bound

-11.633065

-30

10.230969

-7

12

-6.270881

-46.244082

-6.270881

-6.270881

2.724454

-2.123338

-5.653664


Upper Bound

48.366935

30

70.230969

53

72

6.270881

-33.702321

6.270881

0

15.266215

10.418424

6.888097















APPENDIX B
NOMINAL JOINT PARAMETERS & OPTIMIZATION BOUNDS
FOR EXPERIMENTAL MARKER DATA


Table B-1. Nominal right hip joint parameters and optimization bounds for experimental
marker data.


Right Hip Joint
Parameter

pi (cm)

p2 (cm)

p3 (cm)

p4 (cm)

p5 (cm)

p6 (cm)


Nominal

-5.931423

-9.166744

8.627524

0

0

0


Lower Bound

-20.220759

-20.220759

0

-14.289337

-11.054015

-8.627524


Upper Bound

0

0

20.220759

5.931423

9.166744

11.593235











Table B-2. Nominal right knee joint parameters and optimization bounds for
experimental marker data.


Right Knee Joint
Parameter

pi ()

P2 ()

P3 ()

P4()

P5 (cm)

P6 (cm)

P7 (cm)

P8 (cm)

P9 (cm)


Nominal

0

0

-4.070601

1.541414

0

-39.211319

0

0

0


Lower Bound

-30

-30

-34.070601

-28.458586

-7.356876

-46.568195

-7.356876

-7.356876

-7.356876


Upper Bound

30

30

25.929399

31.541414

7.356876

-31.854442

7.356876

7.356876

7.356876











Table B-3. Nominal right ankle joint parameters and optimization bounds for
experimental marker data.


Right Ankle Joint
Parameter

pi ()

P2 (o)

P3 (o)

P4()

P5 (0)

P6 (cm)

P7 (cm)

P8 (cm)

P9 (cm)

Pio (cm)

Pll (cm)

P12 (cm)


Nominal

8.814964

0

26.890791

23

42

0

-41.131554

0

-1

9.113839

3.900829

1.116905


Lower Bound

-21.185036

-30

-3.109209

-7

12

-5.662309

-46.793862

-5.662309

-5.662309

3.451530

-1.761479

-4.545403


Upper Bound

38.814964

30

56.890791

53

72

5.662309

-35.469245

5.662309

0

14.776147

9.563138

6.779214















APPENDIX C
NOMINAL & OPTIMUM JOINT PARAMETERS FOR SYNTHETIC MARKER
DATA WITHOUT NOISE


Table C-1. Nominal and optimum right hip joint parameters for synthetic marker data
without noise.

Right Hip Joint .
SNominal Optimized Error
Parameter

pl (cm) -6.022205 -6.022205 0.000000

p2 (cm) -9.307044 -9.307041 0.000003

p3 (cm) 8.759571 8.759578 0.000007

p4 (cm) 0 0.000004 0.000004
p5 (cm) 0 0.000015 0.000015

p6 (cm) 0 -0.000008 0.000008











Table C-2. Nominal and optimum right knee joint parameters for synthetic marker data
without noise.


Right Knee Joint
Parameter

pi ()

P2 ()

P3 ()

P4()

P5 (cm)

P6 (cm)

P7 (cm)

P8 (cm)

P9 (cm)


Nominal

0

0

-5.079507

16.301928

0

-37.600828

0

0

0


Optimized

-0.040222

-0.051509

-5.050744

16.242914

-0.009360

-37.589068

-0.014814

-0.002142

-0.000189


Error

0.040222

0.051509

0.028763

0.059015

0.009360

0.011760

0.014814

0.002142

0.000189











Table C-3. Nominal and optimum right ankle joint parameters for synthetic marker data
without noise.


Right Ankle Joint
Parameter

pi(0)

P2 (o)

P3 (o)

P4()

P5 (0)

P6 (cm)

P7 (cm)

P8 (cm)

P9 (cm)

Pio (cm)

Pll (cm)

P12 (cm)


Nominal

18.366935

0

40.230969

23

42

0

-39.973202

0

-1

8.995334

4.147543

0.617217


Optimized

18.364964

-0.011809

40.259663

23.027088

42.002080

0.000270

-39.972852

-0.000287

-1.000741

8.995874

4.147353

0.616947


Error

0.001971

0.011809

0.028694

0.027088

0.002080

0.000270

0.000350

0.000287

0.000741

0.000540

0.000190

0.000270















APPENDIX D
NOMINAL & OPTIMUM JOINT PARAMETERS FOR SYNTHETIC MARKER
DATA WITH NOISE


Table D-1. Nominal and optimum right hip joint parameters for synthetic marker data
with noise.

Right Hip Joint .
SNominal Optimized Error
Parameter

pi (cm) -6.022205 -5.854080 0.168125
p2 (cm) -9.307044 -9.434820 0.127776

p3 (cm) 8.759571 8.967520 0.207949
p4 (cm) 0 0.092480 0.092480

p5 (cm) 0 -0.180530 0.180530

p6 (cm) 0 0.191050 0.191050











Table D-2. Nominal and optimum right knee joint parameters for synthetic marker data
with noise.


Right Knee Joint
Parameter

pi ()

P2 ()

P3 ()

P4()

P5 (cm)

P6 (cm)

P7 (cm)

P8 (cm)

P9 (cm)


Nominal

0

0

-5.079507

16.301928

0

-37.600828

0

0

0


Optimized

-3.295650

-1.277120

-5.604100

12.763780

0.375600

-37.996910

0.489510

0.144040

-0.204420


Error

3.295650

1.277120

0.524593

3.538148

0.375600

0.396082

0.489510

0.144040

0.204420











Table D-3. Nominal and optimum right ankle joint parameters for synthetic marker data
with noise.


Right Ankle Joint
Parameter

pi(0)

P2 (o)

P3 (o)

P4()

P5 (0)

P6 (cm)

P7 (cm)

P8 (cm)

P9 (cm)

Pio (cm)

Pll (cm)

P12 (cm)


Nominal

18.366935

0

40.230969

23

42

0

-39.973202

0

-1

8.995334

4.147543

0.617217


Optimized

15.130096

8.007498

32.975096

23.122015

42.038733

-0.398360

-39.614220

-0.755127

-2.816943

10.210540

3.033673

-0.190367


Error

3.236838

8.007498

7.255873

0.122015

0.038733

0.398360

0.358982

0.755127

1.816943

1.215206

1.113870

0.807584















APPENDIX E
NOMINAL & OPTIMUM JOINT PARAMETERS FOR MULTI-CYCLE
EXPERIMENTAL MARKER DATA


Table E-1. Nominal and optimum right hip joint parameters for multi-cycle experimental
marker data.


Right Hip Joint
Parameter

pi (cm)

p2 (cm)

p3 (cm)

p4 (cm)

p5 (cm)

p6 (cm)


Nominal

-5.931423

-9.166744

8.627524

0

0

0


Optimized

-7.518819

-9.268741

8.857706

-2.123433

0.814089

1.438188


Improvement

1.587396

0.101997

0.230182

2.123433

0.814089

1.438188











Table E-2. Nominal and optimum right knee joint parameters for multi-cycle
experimental marker data.


Right Knee Joint
Parameter

pi ()

P2 ()

P3 ()

P4()

P5 (cm)

P6 (cm)

P7 (cm)

P8 (cm)

P9 (cm)


Nominal

0

0

-4.070601

1.541414

0

-39.211319

0

0

0


Optimized

-0.586205

14.854951

-2.724374

2.404475

-1.422101

-39.611720

-0.250043

-0.457104

1.471656


Improvement

0.586205

14.854951

1.346227

0.863061

1.422101

0.400401

0.250043

0.457104

1.471656











Table E-3. Nominal and optimum right ankle joint parameters for multi-cycle
experimental marker data.


Right Ankle Joint
Parameter

pi(0)

P2 (o)

P3 (o)

P4()

P5 (0)

P6 (cm)

P7 (cm)

P8 (cm)

P9 (cm)

Pio (cm)

Pll (cm)

P12 (cm)


Nominal

8.814964

0

26.890791

23

42

0

-41.131554

0

-1

9.113839

3.900829

1.116905


Optimized

16.640499

9.543288

27.359342

13.197304

45.259512

1.650689

-41.185800

-1.510034

-2.141939

11.244080

3.851262

0.283095


Improvement

7.825535

9.543288

0.468551

9.802696

3.259512

1.650689

0.054246

1.510034

1.141939

2.130241

0.049567

0.833810















APPENDIX F
NOMINAL & OPTIMUM JOINT PARAMETERS FOR FIRST ONE-HALF-CYCLE
EXPERIMENTAL MARKER DATA


Table F-1. Nominal and optimum right hip joint parameters for first one-half-cycle
experimental marker data.


Right Hip Joint
Parameter

pi (cm)

p2 (cm)

p3 (cm)

p4 (cm)

p5 (cm)

p6 (cm)


Nominal

-5.931423

-9.166744

8.627524

0

0

0


Optimized

-7.377948

-9.257734

8.124560

-2.050133

0.813034

0.656323


Improvement

1.446525

0.090990

0.502964

2.050133

0.813034

0.656323











Table F-2. Nominal and optimum right knee joint parameters for first one-half-cycle
experimental marker data.


Right Knee Joint
Parameter

pi ()

P2 ()

P3 ()

P4()

P5 (cm)

P6 (cm)

P7 (cm)

P8 (cm)

P9 (cm)


Nominal

0

0

-4.070601

1.541414

0

-39.211319

0

0

0


Optimized

7.621903

12.823259

-0.642569

11.252668

-1.217316

-38.611100

-1.252732

-0.003903

1.480035


Improvement

7.621903

12.823259

3.428032

9.711254

1.217316

0.600219

1.252732

0.003903

1.480035











Table F-3. Nominal and optimum right ankle joint parameters for first one-half-cycle
experimental marker data.


Right Ankle Joint
Parameter

pi(0)

P2 (o)

P3 (o)

P4()

P5 (0)

P6 (cm)

P7 (cm)

P8 (cm)

P9 (cm)

Pio (cm)

Pll (cm)

P12 (cm)


Nominal

8.814964

0

26.890791

23

42

0

-41.131554

0

-1

9.113839

3.900829

1.116905


Optimized

-15.959751

-4.522393

18.986137

28.588479

36.840527

3.624386

-43.537980

-3.370814

-2.246233

12.155750

0.488739

-1.207070


Improvement

24.774715

4.522393

7.904654

5.588479

5.159473

3.624386

2.406426

3.370814

1.246233

3.041911

3.412090

2.323975















APPENDIX G
NOMINAL & OPTIMUM JOINT PARAMETERS FOR SECOND ONE-HALF-CYCLE
EXPERIMENTAL MARKER DATA


Table G-1. Nominal and optimum right hip joint parameters for second one-half-cycle
experimental marker data.


Right Hip Joint
Parameter

pi (cm)

p2 (cm)

p3 (cm)

p4 (cm)

p5 (cm)

p6 (cm)


Nominal

-5.931423

-9.166744

8.627524

0

0

0


Optimized

-7.884120

-10.160573

9.216565

-2.935484

0.313918

1.936742


Improvement

1.952697

0.993829

0.589041

2.935484

0.313918

1.936742











Table G-2. Nominal and optimum right knee joint parameters for second one-half-cycle
experimental marker data.


Right Knee Joint
Parameter

pi ()

P2 ()

P3 ()

P4()

P5 (cm)

P6 (cm)

P7 (cm)

P8 (cm)

P9 (cm)


Nominal

0

0

-4.070601

1.541414

0

-39.211319

0

0

0


Optimized

7.216444

12.986174

-0.228411

10.970612

-1.300621

-38.785646

-1.190227

-0.130610

1.293016


Improvement

7.216444

12.986174

3.842190

9.429198

1.300621

0.425673

1.190227

0.130610

1.293016











Table G-3. Nominal and optimum right ankle joint parameters for second one-half-cycle
experimental marker data.


Right Ankle Joint
Parameter

pi(0)

P2 (o)

P3 (o)

P4()

P5 (0)

P6 (cm)

P7 (cm)

P8 (cm)

P9 (cm)

Pio (cm)

Pl (cm)

P12 (cm)


Nominal

8.814964

0

26.890791

23

42

0

-41.131554

0

-1

9.113839

3.900829

1.116905


Optimized

31.399921

1.211118

51.518589

26.945919

45.021534

-3.971358

-36.976040

-0.154441

-3.345873

7.552444

7.561219

1.108033


Improvement

22.584957

1.21112

24.627798

3.945919

3.021534

3.971358

4.155514

0.154441

2.345873

1.561395

3.660390

0.008872















APPENDIX H
OPTIMUM JOINT PARAMETERS FOR MULTI-CYCLE & FIRST
ONE-HALF-CYCLE EXPERIMENTAL MARKER DATA


Table H-1. Optimum right hip joint parameters for multi-cycle and first one-half-cycle
experimental marker data.


Right Hip Joint
Parameter

pi (cm)

p2 (cm)

p3 (cm)

p4 (cm)

p5 (cm)

p6 (cm)


Multi-Cycle
Optimized

-7.518819

-9.268741

8.857706

-2.123433

0.814089

1.438188


First-Half-Cycle
Optimized

-7.377948

-9.257734

8.124560

-2.050133

0.813034

0.656323


Difference

0.140871

0.011007

0.733146

0.073300

0.001055

0.781865











Table H-2. Optimum right knee joint parameters for multi-cycle and first one-half-cycle
experimental marker data.


Right Knee Joint
Parameter

pi ()

P2 ()

P3 ()

P4()

P5 (cm)

P6 (cm)

P7 (cm)

P8 (cm)

P9 (cm)


Multi-Cycle
Optimized

-0.586205

14.854951

-2.724374

2.404475

-1.422101

-39.611720

-0.250043

-0.457104

1.471656


First-Half-Cycle
Optimized

7.621903

12.823259

-0.642569

11.252668

-1.217316

-38.611100

-1.252732

-0.003903

1.480035


Difference

8.208108

2.031692

2.081805

8.848193

0.204785

1.000620

1.002689

0.453201

0.008379











Table H-3. Optimum right ankle joint parameters for multi-cycle and first one-half-cycle
experimental marker data.


Right Ankle Joint
Parameter

pi ()

P2 (o)

P3 (o)

P4()

P5 (0)

P6 (cm)

P7 (cm)

P8 (cm)

P9 (cm)

Pio (cm)

Pl (cm)

P12 (cm)


Multi-Cycle
Optimized

16.640499

9.543288

27.359342

13.197304

45.259512

1.650689

-41.185800

-1.510034

-2.141939

11.244080

3.851262

0.283095


First-Half-Cycle
Optimized

-15.959751

-4.522393

18.986137

28.588479

36.840527

3.624386

-43.537980

-3.370814

-2.246233

12.155750

0.488739

-1.207070


Difference

32.600250

14.065681

8.373205

15.391175

8.418985

1.973697

2.352180

1.860780

0.104294

0.911670

3.362523

1.490165















APPENDIX I
OPTIMUM JOINT PARAMETERS FOR MULTI-CYCLE & SECOND
ONE-HALF-CYCLE EXPERIMENTAL MARKER DATA


Table I-1. Optimum right hip joint parameters for multi-cycle and second one-half-cycle
experimental marker data.


Right Hip Joint
Parameter

pi (cm)

p2 (cm)

p3 (cm)

p4 (cm)

p5 (cm)

p6 (cm)


Multi-Cycle
Optimized

-7.518819

-9.268741

8.857706

-2.123433

0.814089

1.438188


Second-Half-Cycle
Optimized

-7.884120

-10.160573

9.216565

-2.935484

0.313918

1.936742


Difference

0.365301

0.891832

0.358859

0.812051

0.500171

0.498554











Table 1-2. Optimum right knee joint parameters for multi-cycle and second
one-half-cycle experimental marker data.


Right Knee Joint
Parameter

pi ()

P2 ()

P3 ()

P4()

P5 (cm)

P6 (cm)

P7 (cm)

P8 (cm)

P9 (cm)


Multi-Cycle
Optimized

-0.586205

14.854951

-2.724374

2.404475

-1.422101

-39.611720

-0.250043

-0.457104

1.471656


Second-Half-Cycle
Optimized

7.216444

12.986174

-0.228411

10.970612

-1.300621

-38.785646

-1.190227

-0.130610

1.293016


Difference

7.802649

1.868777

2.495963

8.566137

0.121480

0.826074

0.940184

0.326494

0.178640











Table 1-3. Optimum right ankle joint parameters for multi-cycle and second
one-half-cycle experimental marker data.


Right Ankle Joint
Parameter

pi ()

P2 (o)

P3 (o)

P4()

P5 (0)

P6 (cm)

P7 (cm)

P8 (cm)

P9 (cm)

Pio (cm)

Pl (cm)

P12 (cm)


Multi-Cycle
Optimized

16.640499

9.543288

27.359342

13.197304

45.259512

1.650689

-41.185800

-1.510034

-2.141939

11.244080

3.851262

0.283095


Second-Half-Cycle
Optimized

31.399921

1.211118

51.518589

26.945919

45.021534

-3.971358

-36.976040

-0.154441

-3.345873

7.552444

7.561219

1.108033


Difference

14.759422

8.332170

24.159247

13.748615

0.237978

5.622047

4.209760

1.355593

1.203934

3.691636

3.709957

0.824938















LIST OF REFERENCES


Andriacchi, T.P., 1994. "Dynamics of Knee Malalignment." Orthopedic Clinics of
North America, Volume 25, Number 3, Pages 395-403.

Andriacchi, T.P. and Strickland, A.B., 1985. "Gait Analysis as a Tool to Assess Joint
Kinetics." In: Berme, N., Engin, A.E., Correia da Silva, K.M. (Editors),
Biomechanics of Normal and Pathological Human Articulating Joints. Martinus
Nijhoff Publishers, Dordrecht, The Netherlands, Pages 83-102.

Arnold, A.S, Asakawa, D.J, and Delp, S.L., 2000. "Do the Hamstrings and Adductors
Contribute to Excessive Internal Rotation of the Hip in Persons with Cerebral
Palsy?" Gait & Posture, Volume 11, Number 3, Pages 181-190.

Arnold, A.S. and Delp, S.L., 2001. "Rotational Moment Arms of the Hamstrings and
Adductors Vary with Femoral Geometry and Limb Position: Implications for the
Treatment of Internally-Rotated Gait." Journal ofBiomechanics, Volume 34,
Number 4, Pages 437-447.

Bell, A.L., Pedersen, D.R., and Brand, R.A., 1990. "A Comparison of the Accuracy of
Several Hip Center Location Prediction Methods." Journal ofBiomechanics,
Volume 23, Number 6, Pages 617-621.

Blankevoort, L., Huiskes, A., and de Lange, A., 1988. "The Envelope of Passive
Knee-Joint Motion." Journal ofBiomechanics, Volume 21, Number 9, Pages
705-720.

Bogert, A.J. van den, Smith, G.D., and Nigg, B.M., 1994. "In Vivo Determination of the
Anatomical Axes of the Ankle Joint Complex: An Optimization Approach."
Journal ofBiomechanics, Volume 27, Number 12, Pages 1477-1488.

Bryan, J.M., Hurwitz, D.E., Bach, B.R., Bittar, T., and Andriacchi, T.P., 1997. "A
Predictive Model of Outcome in High Tibial Osteotomy." In Proceedings of the
43rd Annual Meeting of the Orthopaedic Research Society, San Francisco,
California, February 9-13, Volume 22, Paper 718.

Cappozzo, A., Catani, F., and Leardini, A., 1993. "Skin Movement Artifacts in Human
Movement Photogrammetry." In Proceedings of the XIth Congress of the
International Society ofBiomechanics, Paris, France, July 4-8, Pages 238-239.









Cappozzo, A., Leo, T., and Pedotti, A., 1975. "A General Computing Method for the
Analysis of Human Locomotion." Journal ofBiomechanics, Volume 8, Number 5,
Pages 307-320.

CDC, 2003. Targeting At tli iti The Nation's Leading Cause of Disability. Centers for
Disease Control and Prevention, National Center for Chronic Disease Prevention
and Health Promotion, Atlanta, Georgia. Accessed: http://www.cdc.gov/nccdphp/
aag/pdf/aag_arthritis2003.pdf, February, 2003.

Challis, J.H. and Kerwin, D.G., 1996. "Quantification of the Uncertainties in Resultant
Joint Moments Computed in a Dynamic Activity." Journal of Sports Sciences,
Volume 14, Number 3, Pages 219-231.

Chao, E.Y. and Sim, F.H., 1995. "Computer-Aided Pre-Operative Planning in Knee
Osteotomy." Iowa Orthopedic Journal, Volume 15, Pages 4-18.

Chao, E.Y.S., Lynch, J.D., and Vanderploeg, M.J., 1993. "Simulation and Animation of
Musculoskeletal Joint System. Journal ofBiomechanical Engineering, Volume
115, Number 4, Pages 562-568.

Churchill, D.L., Incavo, S.J., Johnson, C.C., and Beynnon, B.D., 1998. "The
Transepicondylar Axis Approximates the Optimal Flexion Axis of the Knee."
Clinical 01 thIop/vi 1, i and Related Research, Volume 356, Number 1, Pages
111-118.

Cheze, L., Fregly, B.J., and Dimnet, J., 1995. "A Solidification Procedure to Facilitate
Kinematic Analyses Based on Video System Data." Journal ofBiomechanics,
Volume 28, Number 7, Pages 879-884.

Davis, B.L., 1992. "Uncertainty in Calculating Joint Moments During Gait." In
Proceedings of the 8th Meeting ofEuropean Society ofBiomechanics, Rome, Italy,
June 21-24, Page 276.

de Leva, P., 1996. "Adjustments to Zatsiorsky-Seluyanov's Segment Inertia
Parameters." Journal ofBiomechanics, Volume 29, Number 9, Pages 1223-1230.

Delp, S.L., Arnold, A.S., and Piazza, S.J., 1998. "Graphics-Based Modeling and
Analysis of Gait Abnormalities." Bio-MedicalMaterials and Engineering, Volume
8, Number 3/4, Pages 227-240.

Delp, S.L., Arnold, A.S., Speers, R.A., and Moore, C.A., 1996. "Hamstrings and Psoas
Lengths During Normal and Crouch Gait: Implications for Muscle-Tendon
Surgery." Journal of Orthopaedic Research, Volume 14, Number 1, Pages
144-151.









Delp, S.L., Loan, J.P., Hoy, M.G., Zajac, F.E., Topp, E.L., and Rosen, J.M., 1990. "An
Interactive Graphics-Based Model of the Lower Extremity to Study Orthopaedic
Surgical Procedures." IEEE Transactions on Biomedical Engineering, Volume 37,
Number 8, Pages 757-767.

Heck, D.A., Melfi, C.A., Mamlin, L.A., Katz, B.P., Arthur, D.S., Dittus, R.S., and
Freund, D.A., 1998. "Revision Rates Following Knee Replacement in the United
States." Medical Care, Volume 36, Number 5, Pages 661-689.

Holden, J.P. and Stanhope, S.J., 1998. "The Effect of Variation in Knee Center Location
Estimates on Net Knee Joint Moments." Gait & Posture, Volume 7, Number 1,
Pages 1-6.

Holden, J.P. and Stanhope, S.J., 2000. "The Effect of Uncertainty in Hip Center Location
Estimates on Hip Joint Moments During Walking at Different Speeds." Gait &
Posture, Volume 11, Number 2, Pages 120-121.

Hollister, A.M., Jatana, S., Singh, A.K., Sullivan, W.W., and Lupichuk, A.G., 1993. "The
Axes of Rotation of the Knee." Clinical 01i I/ithe idk l and Related Research,
Volume 290, Number 1, Pages 259-268.

Hurwitz, D.E., Sumner, D.R., Andriacchi, T.P., and Sugar, D.A., 1998. "Dynamic Knee
Loads During Gait Predict Proximal Tibial Bone Distribution." Journal of
Biomechanics, Volume 31, Number 5, Pages 423-430.

Inman, V.T., 1976. "The Joints of the Ankle." Williams and Wilkins Company,
Baltimore, Maryland.

Kennedy, J. and Eberhart, R.C., 1995. "Particle Swarm Optimization." In Proceedings
of the 1995 IEEE International Conference on Neural Networks, Perth, Australia,
November 27 December 1, Volume 4, Pages 1942-1948.

Lane, G.J., Hozack, W.J., Shah, S., Rothman, R.H., Booth, R.E. Jr., Eng, K., Smith, P.,
1997. "Simultaneous Bilateral Versus Unilateral Total Knee Arthroplasty.
Outcomes Analysis." Clinical 01i ith1l,, 'Jli % and Related Research, Volume 345,
Number 1, Pages 106-112.

Leardini, A., Cappozzo, A., Catani, F., Toksvig-Larsen, S., Petitto, A., Sforza, V.,
Cassanelli, G., and Giannini, S., 1999. "Validation of a Functional Method for the
Estimation of Hip Joint Centre Location." Journal ofBiomechanics, Volume 32,
Number 1, Pages 99-103.

Lu, T.-W. and O'Connor, J.J., 1999. "Bone Position Estimation from Skin Marker
Coordinates Using Global Optimisation with Joint Constraints." Journal of
Biomechanics, Volume 32, Number 2, Pages 129-134.

Pandy, M.G., 2001. "Computer Modeling and Simulation of Human Movement."
Annual Reviews in Biomedical Engineering, Volume 3, Number 1, Pages 245-273.









Piazza, S.J., Okita, N., and Cavanagh, P.R., 2001. "Accuracy of the Functional Method
of Hip Joint Center Location: Effects of Limited Motion and Varied
Implementation." Journal ofBiomechanics, Volume 34, Number 7, Pages
967-973.

Prodromos, C.C., Andriacchi, T.P., and Galante, J.O., 1985. "A Relationship Between
Gait and Clinical Changes Following High Tibial Osteotomy." Journal of Bone
Joint Surgery (American), Volume 67, Number 8, Pages 1188-1194.

Rahman, H., Fregly, B.J., and Banks, S.A., 2003. "Accurate Measurement of
Three-Dimensional Natural Knee Kinematics Using Single-Plane Fluoroscopy." In
Proceedings of the 2003 Summer Bionengineering Conference, The American
Society of Mechanical Engineers, Key Biscayne, Florida, June 25-29.

Schutte, J.F., Koh, B., Reinbolt, J.A., Haftka, R.T., George, A.D., and Fregly, B.J., 2003.
"Scale-Independent Biomechanical Optimization." In Proceedings of the 2003
Summer Bioengineering Conference, The American Society of Mechanical
Engineers, Key Biscayne, Florida, June 25-29.

Sommer III, H.J. and Miller, N.R., 1980. "A Technique for Kinematic Modeling of
Anatomical Joints." Journal ofBiomechanical Engineering, Volume 102, Number
4, Pages 311-317.

Stagni, R., Leardini, A., Benedetti, M.G., Cappozzo, A., and Cappello, A., 2000.
"Effects of Hip Joint Centre Mislocation on Gait Analysis Results." Journal of
Biomechanics, Volume 33, Number 11, Pages 1479-1487.

Tetsworth, K. and Paley, D., 1994. "Accuracy of Correction of Complex
Lower-Extremity Deformities by the Ilizarov Method." Clinical 0i Idi q,,ici \ and
Related Research, Volume 301, Number 1, Pages 102-110.

Vaughan, C.L., Davis, B.L., and O'Connor, J.C., 1992. Dynamics ofHuman Gait.
Human Kinetics Publishers, Champaign, Illinois, Page 26.

Wang, J.-W., Kuo, K.N., Andriacchi, T.P., and Galante, J.O., 1990. "The Influence of
Walking Mechanics and Time on the Results of Proximal Tibial Osteotomy."
Journal of Bone and Joint Surgery (American), Volume 72, Number 6, Pages
905-913.















BIOGRAPHICAL SKETCH

Jeffrey A. Reinbolt was born on May 6, 1974 in Bradenton, Florida. His parents

are Charles and Joan Reinbolt. He has an older brother, Douglas, and an older sister,

Melissa. In 1992, Jeff graduated salutatorian from Southeast High School, Bradenton,

Florida. After completing his secondary education, he enrolled at the University of

Florida supported by the Florida Undergraduate Scholarship and full-time employment at

a local business. He earned a traditional 5-year engineering degree in only 4 years. In

1996, Jeff graduated with honors receiving a Bachelor of Science degree in engineering

science with a concentration in biomedical engineering. He used this foundation to assist

in the medical device development and clinical research programs of Computer Motion,

Inc., Santa Barbara, California. In this role, Jeff was Clinical Development Site Manager

for the Southeastern United States and he traveled extensively throughout the United

States, Europe, and Asia collaborating with surgeons and fellow medical researchers. In

1998, Jeff married Karen, a student he met during his undergraduate studies. After more

than 4 years in the medical device industry, he decided to continue his academic career at

the University of Florida. In 2001, Jeff began his graduate studies in Biomedical

Engineering and he was appointed a graduate research assistantship in the Computational

Biomechanics Laboratory. He plans to continue his graduate education and research

activities through the pursuit of a Doctor of Philosophy in mechanical engineering. Jeff

would like to further his creative involvement in problem solving and the design of

solutions to overcome healthcare challenges.