UFDC Home | myUFDC Home | Help |

REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd

INGEST IEID E20110109_AAAAXQ INGEST_TIME 2011-01-09T18:43:04Z PACKAGE UFE0000889_00001

AGREEMENT_INFO ACCOUNT UF PROJECT UFDC

FILES

FILE SIZE 1053954 DFID F20110109_AACAFB ORIGIN DEPOSITOR PATH UFE0000889_Page_39.tif GLOBAL false PRESERVATION BIT MESSAGE_DIGEST ALGORITHM MD5

994b750d89392d8b24e7cc36bddbbc34

SHA-1

5f473332c3d3d8c4cacd421da9fc4b78827fb198

932461 F20110109_AACAEN UFE0000889_Page_41.jp2

14a149330c11ddf12b2b879f789b4556

f918eb732afbe94ab96a681a994f4a313e9ffcaa

25271604 F20110109_AACADY UFE0000889_Page_32.tif

b31ef82c7eb26128358834fab5e86e12

8b7a66bc36bf4ed44ceeaad447e7e23ee35237bd

2029 F20110109_AACAFC UFE0000889_Page_19.txt

feecbdc0bb769aafcb1bdfe0d5b44bf4

7bbaa5b36eb5a97fa781312bbd3f1ea52f5a385b

51209 F20110109_AACAEO UFE0000889_Page_59.QC.jpg

8ca0510204d94a6f433f9a5f0180bd1d

95e07898ce066f2ead9a0cca49e23ca7920bcd1d

88607 F20110109_AACADZ UFE0000889_Page_04.jp2

4c5237bc84574a7296daa131cd1b6888

6cc26138494964cb820b66c9ec1130f2440af8e7

18980 F20110109_AACAFD UFE0000889_Page_18thm.jpg

a8d85eb9ffd8af640c921977ae7b8e07

fbca71a22fa6d6f7933312114029d9e7822a46fc

20987 F20110109_AACAEP UFE0000889_Page_96thm.jpg

30aeea53bf0557d26b02b84b43b81931

e804249b3fda30419d6d256ed6590299c2b0749f

520 F20110109_AACAFE UFE0000889_Page_12.txt

ae3048f4b9b28c2afcd58827441042e5

c77d2dbc60dccd0e2343e1de842d455305cfc0fd

1811 F20110109_AACAEQ UFE0000889_Page_63.txt

574d604f5d43be39caef4dc2957bfed8

822c81be222f475bab91b89c2abb2b218d377234

63040 F20110109_AACAER UFE0000889_Page_08.pro

e3666157993c2b1f0242504dd5d5dd4e

5d184fc2cf5dc03f45b9de3d8bed53cad7776d78

223364 F20110109_AACAFF UFE0000889_Page_96.jpg

eef951eb450d7951ff8372bb0f3c9b69

2e3b7c78c1d4f1e786dc8d2a8abeb7d62416c385

1007493 F20110109_AACAES UFE0000889_Page_21.jp2

ff2df6874960dc7dd3c21f352c5bf5d7

0c84f546cf23863163d5c5d82047f58a3b61ab15

266364 F20110109_AACAFG UFE0000889_Page_08.jpg

40a754a453d3517380d3ccda548b3fd8

006d3c422109b9f4c70c51e9728a4832dd9a3589

99235 F20110109_AACAET UFE0000889_Page_97.jp2

c48d9851ced22a96734ba7dad85f8df0

2a0cd59acda7dcf42ac20adee780ad3cd196f184

12183 F20110109_AACAFH UFE0000889_Page_69.pro

d0553c6a63eac6a67960f164f40313d7

c93b7b4b4a829d0c151240673f35d34b06e7b720

82478 F20110109_AACAEU UFE0000889_Page_83.jpg

83724fdf05cfbf9f738b794e00fcb3cd

8bcce8f7d29c1d71fbec45387b1750206abe3cb3

23912 F20110109_AACAFI UFE0000889_Page_72.QC.jpg

83ffa345c0135b8934fc24fe74029aeb

4d593732b000db7c3d19d0b42c28e47bc7828921

40912 F20110109_AACAFJ UFE0000889_Page_86.jp2

80bfb713528e5538a50136863667291a

dffe7f0c4c448b7e88295057667318174c87db37

38411 F20110109_AACAEV UFE0000889_Page_31.pro

afa9972456d6e831067ef7296fe76347

c99fd5a0112963c5d85ea99a1a6814e97c2220d8

46314 F20110109_AACAFK UFE0000889_Page_26.pro

622fcf7051246cf3ace471de84ece62a

d54bbb3cd26849f8ecc1ea6ea26cb50428f98d39

2009 F20110109_AACAEW UFE0000889_Page_23.txt

728d35e7f15e18ab0d3d38db670061b9

ca6341d1881c4a324ff6a2aa190eef1b77fe453a

42190 F20110109_AACAFL UFE0000889_Page_30thm.jpg

b94436bd00055b594f11c8eb1af6a449

3c5bdc63a2fb58d0b91225cf7317eba1ea8de288

F20110109_AACAEX UFE0000889_Page_65.tif

ca6d4bd9a6e7219486945310967637c8

6326a8defb5310694a37981956053515f3e64cde

67990 F20110109_AACAGA UFE0000889_Page_79.jpg

e512e07807cb82e0a212ef8d593db1d2

26aec4a4bc1fdb13bb508d71e4d839fe1d9854cc

543 F20110109_AACAFM UFE0000889_Page_49.txt

383e7de623bf87057c07baf882c80b7d

03f1c21ddc80c071c702e42a1ee00a8ebd2d2617

49531 F20110109_AACAEY UFE0000889_Page_24thm.jpg

3690d7c4ca7afdb00172b9144e172d1c

ad815aea5af55b26ceb17dd6d0d3ebc03583f3f8

F20110109_AACAGB UFE0000889_Page_57.tif

8f53a375dc33866ceb8c5c079680fa96

d1cb6b1d50e662a2efa468c57b51c348c284854b

76782 F20110109_AACAFN UFE0000889_Page_68.jpg

ec2b4fa6e71ef08e362b2fb7923ab578

a4ce0edb07511ae32c9e48ff31bc4d0c877f8778

1015384 F20110109_AACAEZ UFE0000889_Page_15.jp2

cd3cedbbd255507daf036894c9d2fe69

8365d91dfc6a51e29f3027c3685ab3f855722de7

F20110109_AACAGC UFE0000889_Page_17.tif

9bd411a849ca88dfcb203404063a6291

4486f2a86595f3b40112abd58ad35924ad38e8ec

F20110109_AACAFO UFE0000889_Page_81.tif

d23db558353add9f1035a378a9480113

f8bafa778407dd9693d7f9ea474ebf366a04c061

1051908 F20110109_AACAGD UFE0000889_Page_27.jp2

dcc66c342a5d75c3fb1c636eba912f24

cca324ea868249e5623a49c0857bed32183720e9

51473 F20110109_AACAFP UFE0000889_Page_20.QC.jpg

f50ec5b81b14277a00d347f01b01668e

bf9f7544b6ee89f649428d99774206f5896aea53

68522 F20110109_AACAGE UFE0000889_Page_73.jpg

63d74ea38f7cd9a9cfcc43744b6b7538

6e11641987da9bfa656e81c69babb3b0e99160b8

808 F20110109_AACAFQ UFE0000889_Page_41.txt

4e8429590f94434d0f6174114232f01b

5490904de64f475b6b90d6740cd67082ed3a7f54

138072 F20110109_AACAGF UFE0000889_Page_95.jp2

f099b8b37c207ae9ad0d91e1ff84d13b

bbbcc652402baf7763c64b009a8812484d353ea1

F20110109_AACAFR UFE0000889_Page_28.tif

b96cd5157cff23e8515dda453a37cf41

b7a89fb5f37819460e8d300e08953768e4b0772b

22163 F20110109_AACAGG UFE0000889_Page_40.pro

3e797e8af49a6ff81ec76e33fb6cd3c4

1e0873d5b8a9b14959056c7f0a3a485f0a2e59b9

137641 F20110109_AACAFS UFE0000889_Page_31.jpg

cb02c1391f388850b10aad85c006844f

d867b0ee7db5a3801cfed0ab061d053c11af1d88

43004 F20110109_AACAGH UFE0000889_Page_42thm.jpg

4ee712bafe020186910e2621b82f7d40

0714fe51fb7d49c75f0949f27dea3512fbf706ce

947304 F20110109_AACAFT UFE0000889_Page_43.jp2

5914e931028dc63d27556f5d434c8260

5b7320f29ee21de789e5739c79f70541e5d14ef1

28228 F20110109_AACAGI UFE0000889_Page_71.QC.jpg

eb5bdda49735128b967b621804b71e8b

fbc5468210479f551fbeab275dcfff561adb3fac

901 F20110109_AACAFU UFE0000889_Page_42.txt

110b324ca8a4cdda7880d7b85914dd39

752ae4cb7c2cbd59b0b56feb3ae4c7573f3c1928

64410 F20110109_AACAGJ UFE0000889_Page_32.QC.jpg

d82746f0bb7d3eea44109a4a56a15ce3

acf02ba0acba29c98b86c84087faff7f4fe01b0b

814 F20110109_AACAFV UFE0000889_Page_77.txt

cfe539c27d24736bcbd4f86819ef5ea6

b02568ab2d4f48d4cdb487f36a6c0ecdd9a72f8e

5913 F20110109_AACAGK UFE0000889_Page_02.QC.jpg

9e26faa575af674f49086238f4e6bae2

b9c90a8ab0703370c5dda038172f093d0234bff0

138171 F20110109_AACAGL UFE0000889_Page_34.jpg

c51b9b5be9b35f00a3616e7e05d9a812

b0a0af25f5e140913d1939c6470196a50b7f68f2

24380 F20110109_AACAFW UFE0000889_Page_47.QC.jpg

81864bd986ffcc808e69613935a9b780

2d1da1b92b30ea3793cea5e8bd60153dd68f75b6

661 F20110109_AACAHA UFE0000889_Page_70.txt

4ecae971ce0dee1fcce09b37f95d664e

471f585bd17266fdd02f752df823950e936c1593

212717 F20110109_AACAGM UFE0000889_Page_21.jpg

9aa0efcd1e91a6f1f81d7747e235caea

00b4ae9d0d1588ed416c672b18a27f0b31ee0206

34466 F20110109_AACAFX UFE0000889_Page_81.jp2

c52ee0878ca6a6cc90024ed99dabc82a

8f6a62240023d59a34ab882832f6c80590f634a6

732774 F20110109_AACAHB UFE0000889_Page_35.jp2

99bd23798fbe7c30c4c16122bd979cb9

47d6e4f9083a337729adca626d66fedcde8c386f

2171147 F20110109_AACAGN UFE0000889.pdf

3bcd768fe262c96aae2acdf293eb8422

37020d433fadccd1def7327ba76ced2713fa34fe

91391 F20110109_AACAFY UFE0000889_Page_60.jp2

db2d09710c407af485f9edb5b02489e4

c9c2780a497d4bb068ba4fe8c31b07fd829e33c6

31974 F20110109_AACAHC UFE0000889_Page_70.jp2

19d217f3f2a9b093f343f2797525685a

49dbf9c3a354d0e401e2095cf5c2c33d3cae34db

799 F20110109_AACAGO UFE0000889_Page_75.txt

e9d3c53875fb3c5c6b72375ff218e791

ab5b710832a3f318cc0e7915bf9031db3788e257

10961 F20110109_AACAFZ UFE0000889_Page_92thm.jpg

4b5d83a693b3be5b60656716416b4a94

e50b50ff7818ca567b06b3f99e1ba958ec5644ed

718111 F20110109_AACAHD UFE0000889_Page_07.jp2

473816ba3a45a70a3f033d454e7fb58f

732ac8b7fc4a7e90b38a7c83104be0e2fa9a704b

1051968 F20110109_AACAGP UFE0000889_Page_19.jp2

ced4ab724c864b43fde1e2068bf13cad

a096e76fbe78daef7a127120adf55bcb90d28a37

659 F20110109_AACAHE UFE0000889_Page_67.txt

020617f3e143c62e2fc15e76d3c360b3

bf3d0cdcdca7997a43dbb1fbd2047dbcba629927

1051980 F20110109_AACAGQ UFE0000889_Page_08.jp2

fbb0bdbd0b3c31b230ef76fa025bd512

289461e88c0c322940c79052f4d0bc9a3a977b8c

F20110109_AACAHF UFE0000889_Page_12.tif

83837f5d1f660dc2937ce1d65108a515

c2fc36a8c459c57ae547158e94c6cb757bd0fe8f

F20110109_AACAGR UFE0000889_Page_35.tif

6169686b550397fb4b908bf8327cda77

5986cdc7b0bb8b21e5823110ded6dd4ba63afb45

241126 F20110109_AACAHG UFE0000889_Page_05.jpg

385b5a5379686fca324ee1867b5b310e

3dc594a98d563d3cc1c0d13b110f5c8893274b05

25073 F20110109_AACAGS UFE0000889_Page_85.QC.jpg

34eae653b48a47418f96fcae1f277bbb

3a51e2e01e0b0f640db44d4562b2599bf66e4ddb

68772 F20110109_AACAHH UFE0000889_Page_29.QC.jpg

c9ce69673ee76d144ab09ca4797a659f

4cd8cd896ea506f39d3fb88e17143a617c0f2e49

173304 F20110109_AACAGT UFE0000889_Page_14.jpg

d1d07312eb8bda444e7ef25fd2bdb261

9426ca60ddf71abc6276d6cda560b2e2960e412b

F20110109_AACAHI UFE0000889_Page_54.tif

83b8558a3ee8cedada9536462bcb1237

a3e246a7d8d6085e5ba860ad1528de49a67516e3

597 F20110109_AACAGU UFE0000889_Page_47.txt

f32e97e5ac76c61c464efcac9422bdf3

ed671e8e81bd03b6adf4161cbec64e3a469ac939

F20110109_AACAHJ UFE0000889_Page_94.tif

616c085fafdb7b4dc32a526cb7d202c8

11e3e13df064cab5a1ce7c6dfc544c760d7cd373

F20110109_AACAGV UFE0000889_Page_69.tif

2fd10966d6ca71f0e52ffe366a2166b8

b5fc7a76a985bbb1c520ee1e496f2a5d00301934

90063 F20110109_AACAHK UFE0000889_Page_14.jp2

68385459ce18a114dbda9b350b1d23f6

d955a5ecbf7a7e3a8b7ac602278798925dafc8c4

63802 F20110109_AACAGW UFE0000889_Page_49.jpg

91f37473921eacfe91fc9567ea134fe1

a07c9191b93357bd5c316cf0f2601af442c93141

571405 F20110109_AACAHL UFE0000889_Page_32.jp2

c619ccf286661937f8270416d3fa6e91

70ac1af88f40b85aabcb3a5c63dfdc1d527e1f6a

32520 F20110109_AACAHM UFE0000889_Page_12thm.jpg

c4f03095bcefbbaf55e6f967b3425fdd

f585155e3676af834552e89f90c612b9b9b67d68

81346 F20110109_AACAGX UFE0000889_Page_77.jpg

2f92678282cb1a612354ceabfb186ba6

5b293481be352261433b56842844a17e00a6066b

60223 F20110109_AACAIA UFE0000889_Page_64.QC.jpg

1e78efddd261f97f5e9116b16a0d69cf

09ee151280a090067eab360ceaeab577c901037e

31825 F20110109_AACAHN UFE0000889_Page_37.jp2

e4bfefe38799bd5ad3918a0259c9bf37

6dc50ef34f03b7038cda185afdb369d383a7b163

50610 F20110109_AACAGY UFE0000889_Page_17thm.jpg

ffc270c60f5cb5de62e24ca9a2212c8b

462b7e456edb571b0bc68fdb9f79dc41a966c79f

1051972 F20110109_AACAIB UFE0000889_Page_44.jp2

dd29875cc8986a1c614fa73d4d43711c

0ac8958822cfab2ac5ef41c00b24e138a46aa5c3

1051903 F20110109_AACAHO UFE0000889_Page_22.jp2

9405653606c01b7875f5b26f4d01f5f0

2823c525a0a4ef930d3fb043bfb7cc3f58919957

77430 F20110109_AACAGZ UFE0000889_Page_09.pro

7bd20e6ecd8546a82dce8546f85a16b7

a53b2089036149feae1f0a33fa9290e24705e632

68039 F20110109_AACAIC UFE0000889_Page_37.jpg

f259c55fa90df1b7a4e1f80a89e1fe00

a4aeaa4cd64a7c1ac59413b46146c9292ae1e40d

333161 F20110109_AACAHP UFE0000889_Page_11.jpg

7ca72b21630e2d11589aa3d1aa9f3f71

bcdccdf59d553efd1185cb6cd8d435f606bf17c9

794 F20110109_AACAID UFE0000889_Page_46.txt

f9740a02da72ab79b7fb3eb898640c70

3adaca44af448a4312c7e0ef5ab7ac9da3cd12c1

233528 F20110109_AACAHQ UFE0000889_Page_44.jpg

c73e81dc0e4e3fca7e823d73e96daa78

7553ee236798fb9ba278be2b9920b30687a2e95b

8376 F20110109_AACAIE UFE0000889_Page_76thm.jpg

36d17183ba20ec9e94b60ce5e6429308

db807862eba7dbeffa60ea4a678868039649c8c1

1051984 F20110109_AACAHR UFE0000889_Page_11.jp2

9634bc7a62d9538c4bd9c12f94c1fde7

a964423c2fc9c804188ed2cf3ee28d83cf20b215

104267 F20110109_AACAIF UFE0000889_Page_19.QC.jpg

c977407a79d9702ad1129413fdb3fd13

ff13bed10f069066c26c46c5c2a61b6a92545b18

141625 F20110109_AACAHS UFE0000889_Page_30.jpg

ff5ed860a8562374849c0c13e6e8e716

3624019e8a7e3918b7f7682374be7b319f971e95

F20110109_AACAIG UFE0000889_Page_45.tif

6de76a7459c7f31e86d9de4918523fec

8b1ff792372199280e24c1dc8a238f0e92ee798a

574 F20110109_AACAHT UFE0000889_Page_56.txt

aec2d365917389f419e92e2774407777

a08b94eec907106bb392876e55799330e42ccf30

74244 F20110109_AACAIH UFE0000889_Page_42.QC.jpg

0748a1f5290dd021f967b14e169d50fe

3c3a8180d693721f4445cfd3b2b02160c0837f37

F20110109_AACAHU UFE0000889_Page_33.tif

cb77b978eeb94a725fdf9b8025356a0b

dc50665d6387975547a9e873dbac7bcd65865813

37249 F20110109_AACAII UFE0000889_Page_87.jp2

9508c0d347a26b83af530b958d18778d

164430d32c779f6dda6e8bb61f76d953f8f4ef93

3068 F20110109_AACAHV UFE0000889_Page_09.txt

0ccedfa11f80f128f5ceffa9a5d19fea

9c2beaa6040e28d7a434962361d7fe3ef8190098

69145 F20110109_AACAIJ UFE0000889_Page_82.jpg

00f22fc27cac8cce22deb69346026cc8

f5d0a57b9439a8ae6f557ef247c92d0e937e7772

8535 F20110109_AACAHW UFE0000889_Page_45thm.jpg

234365cd93fc0de7b4a756689a2bb552

aba025a6f2258eff499d84865c8a0d8ca5f68af4

1442 F20110109_AACAIK UFE0000889_Page_10.txt

378df4d7ce0edd4b6b585fae225026b2

b2594c56870e8ebca615cff2b72b8b74adcfc041

1020 F20110109_AACAHX UFE0000889_Page_39.txt

62518857c50ad5a3eff8a90c710e8a89

0b1528d7e55a8238e0ea04e039b205b3579e256a

231671 F20110109_AACAIL UFE0000889_Page_54.jpg

b5d4e41272fd5034ce985601fe7edc1d

078d19ea2541bf97136355dbc42b3ee5094504e1

15987 F20110109_AACAJA UFE0000889_Page_83.pro

9791b5efdf33196f72bf6416e4bdf986

a35ebb81edf3d6e4647ff5a66758b3c8712e893c

171683 F20110109_AACAIM UFE0000889_Page_41.jpg

27b2f0ffe4a071b3dd769df70143cb4f

44b267b868b886c6c279d610dbff0342d1c46f1e

46606 F20110109_AACAHY UFE0000889_Page_54.pro

2c558dd5194406341b92a0e2fe7694d3

c01013c6ce569f359d7c36d1fb8153269260079b

87457 F20110109_AACAJB UFE0000889_Page_43.QC.jpg

eb5ec1ec80d77f22783612e827138bf7

b3dc7599e998652e0cb161feeb6ffcdb58398878

56242 F20110109_AACAIN UFE0000889_Page_09thm.jpg

7cda39dcd1a930229ca90fd8b3ce6c44

2a485e8e8a8947311f0ce1860bfb53ed9b810263

1029 F20110109_AACAHZ UFE0000889_Page_34.txt

547a8f295db31b1cae992e204b91139b

97add4323c6a19d745439b28d94895948779370c

1978 F20110109_AACAJC UFE0000889_Page_16.txt

114a5bd36208059d4dc3c28aeccf7c8f

e78f8a270fff359e905d71b0bf321f4038ce70a6

F20110109_AACAIO UFE0000889_Page_05.jp2

16ca55f7bbace71f7e5e3e5892d43b81

305a85feaf7385fe60b324b01ff8230e271e1139

F20110109_AACAJD UFE0000889_Page_01.tif

203e11711208ff2edfab96d047370749

a57c41f4b5f636a23aa0e8e8526f22aff707e317

27850 F20110109_AACAIP UFE0000889_Page_87.QC.jpg

9c5b94e805f664cf517b80a22d1e934f

2df9681b20eff8586283834abf1b5f86def287e6

10078 F20110109_AACAJE UFE0000889_Page_68thm.jpg

1aa62cbc6e3a6efb1c8fffa6f34ea6a6

a584652c672fbdf8c242b57845ee0dc24c18fa93

612172 F20110109_AACAIQ UFE0000889_Page_36.jp2

9fab95b087196feb98e35cedaa4ea19b

5e23752d5c77bfefdb6611e8a803d63ae453d123

10360 F20110109_AACAJF UFE0000889_Page_39thm.jpg

e187bc244618323703291bf0b2e528e7

18b6be09c95e7cd41669aca6c18cb6ec1b6fb2ae

66319 F20110109_AACAIR UFE0000889_Page_62.QC.jpg

13d851dc1afe0996a9ad35a262fc623a

9dc23dbc30fac5fd00ad0dbd50093f77f41e2d73

F20110109_AACAJG UFE0000889_Page_05.tif

964a3dae706595c7df15790a4b0ba648

b61df10881c063fbe7dbcd7213d7948711874737

1918 F20110109_AACAIS UFE0000889_Page_27.txt

907bd0c6b595d103b74631b37db06b9a

a9da60158418cc565f8f2b90a434a173ced74a1a

15493 F20110109_AACAJH UFE0000889_Page_74.pro

c031ffc11e3e703141bf2ec81b4e7776

89249d2298044f127454d960d12400f456062912

38077 F20110109_AACAIT UFE0000889_Page_90.jp2

dbc740560add5fedf52346d03b4eb941

2b186d2c18ffe2fa03e2c378665c4fab7ab0d800

104711 F20110109_AACAJI UFE0000889_Page_94.QC.jpg

86d4d974ac93ebcaab90658b3719ec1d

aecd9e22135758b61742141fa9d4eb83a576e6a7

9076 F20110109_AACAIU UFE0000889_Page_88thm.jpg

d810dd775ee5edac0c84ca01e6662a54

2f00318912017f967f3d7db826ad31bf8ce31f56

35540 F20110109_AACAJJ UFE0000889_Page_10.pro

8cae1caa3910e6a8da042d4b2c47702b

85130f27d911ccad3e663e35ddaaa46fadbcee78

121624 F20110109_AACAIV UFE0000889_Page_11.QC.jpg

333a67b4fedc300c0712784ee4afa72d

427aa26078081716fcfb151118f6e1167a8dfb70

1182 F20110109_AACAJK UFE0000889_Page_36.txt

fd29aee61c19d20f2ed4839d612e4891

9e2dae49d3c106f6aa85e038676d6575ad5b0846

49743 F20110109_AACAIW UFE0000889_Page_16.pro

ca5e976974aa21d2f3d6ed7c10f14f15

82d85be93082c527048e03557e40c240f479b713

100318 F20110109_AACAJL UFE0000889_Page_54.QC.jpg

a3b8b9fbaa8cfe409d4e6ba5b74fce01

dd0274ad1bd187d527ac51c4034bd3545f001dbd

76127 F20110109_AACAIX UFE0000889_Page_59.jp2

aa49452fcf167a331633302ada3b4f4b

bf3188a0088429b7c0203b61954eba8afa8320f3

F20110109_AACAKA UFE0000889_Page_50.tif

e994542f55c54c7e4bd1788c4fdae10b

405a072ae10e47d17f226fdb3ccb4092ff76e2b4

194019 F20110109_AACAJM UFE0000889_Page_33.jpg

78810fb7ef98ebb751079c3fd0003c51

e2cd0ec5dd704e0ed7992a69e6d0ccc305fcbad3

200668 F20110109_AACAIY UFE0000889_Page_43.jpg

c49a971d3df9747c41a26c4740787c0a

fbc7113d8e6c383f648f0c628745b5f04b81e946

46231 F20110109_AACAKB UFE0000889_Page_39.jp2

3ca105d2a71ac5749f7847030ca46a44

6dda89e2fbaddf52fac0552d19042df2848d223c

1062 F20110109_AACAJN UFE0000889_Page_40.txt

3e0e6f738d615e469cae14db3113fd16

8c98ea044923b0db5a965d7b5de3599e76afab75

40762 F20110109_AACAJO UFE0000889_Page_80.jp2

a95aa21cce9c9fa0045de02baa27eac5

75ff7b1ecf9165a85ea6da53d8633362ea679f3e

32716 F20110109_AACAIZ UFE0000889_Page_67.jp2

f67128ec80e7e75c34741da9e58cc7a3

344d07e854f8925648b900e5ddd0b75a687e2fc4

F20110109_AACAKC UFE0000889_Page_91.tif

29f09696c297fa4bc8aff016e2ecce3a

96ad3ec32cb25aea08472ccdecad78838f84eb53

F20110109_AACAJP UFE0000889_Page_19.tif

a19b5a6716e7bfc4c307c1863aa4a726

c339ffb4197e374b7e28be2696026b9bcbd0a2b3

75292 F20110109_AACAKD UFE0000889_Page_40.QC.jpg

835e1390d580a35941b6621766aafab6

e3ec9e5c59094214cfed55fd023f56c72564225f

18787 F20110109_AACAJQ UFE0000889_Page_01.QC.jpg

a18026e8b1dca00282f650009f4c143f

a4ed15e6a1c2213330d734643070ed4c2a670def

51276 F20110109_AACAKE UFE0000889_Page_23thm.jpg

000eb520e177ee4da65e49b34dacc873

ce34c657f09cb303d8336b3a909ea935f20b2d0d

F20110109_AACAJR UFE0000889_Page_73.tif

100938c18e3e4e1102ce13a2b7f4906a

231e3990c1467ad5794b8cf2dbb36751f836911b

78574 F20110109_AACAKF UFE0000889_Page_05.pro

1ef416189b3ccb6640a24dbba668abd4

6084628f46493cc6b72b8063509c4bfc58f17d0a

F20110109_AACAJS UFE0000889_Page_06.tif

e20eef189a8614f35a6231cf7b319d4f

bb3c9ee95e7bbff6e4406450b08c1a10518f39b8

F20110109_AACAKG UFE0000889_Page_10.tif

9022a80c71e8c1ecec06f1923289a14e

c32dee436231e737c741f0ca804a4d9952a97d67

45531 F20110109_AACAJT UFE0000889_Page_97.pro

3f613ca67c227fc07a35c8151e8df005

a27f66fbf26bf1dc43bbeacaa5df5eb15f93898a

F20110109_AACAKH UFE0000889_Page_41.tif

b97ba6525cc7e9f3106ef85c58c468a9

40fbb8657acc40bf88795751179e01c29f9932cc

20126 F20110109_AACAJU UFE0000889_Page_62thm.jpg

4846207ae6fb63521ef8b4801127ade6

4a11e12a5cb12b47c72292b37eb64ec4e269d5da

38159 F20110109_AACAKI UFE0000889_Page_71.jp2

1cdf073d63dfb9459564b845b887f13e

f6e2c5d0e25a8231c71173eb9964b8faf6280b9f

F20110109_AACAJV UFE0000889_Page_66.tif

66419129329af287d455fc9d604f3e09

1729fdb4fe2da8b8748a0a6467d1140e40b8158a

68431 F20110109_AACAKJ UFE0000889_Page_38.QC.jpg

993d85a6ae1fda12c49cb202a432f376

7c4a757f21cbb1a3238c05f4ad276b93989e1480

15909 F20110109_AACAJW UFE0000889_Page_86.pro

d880cf7a896b8ffc06dd887131cb5dda

ecc9c65062c05c491b93f27ac5f5cc9c05e669fc

F20110109_AACAKK UFE0000889_Page_59.tif

af8dd79b21c21ab080d25bb779448818

898eb032692133bb5719319ef03aa20871b8922c

196833 F20110109_AACAJX UFE0000889_Page_61.jpg

db3299de4489f303d349622eb66456cd

7551ba4e64880067f0436f7ef99d61973be23e0e

45162 F20110109_AACAKL UFE0000889_Page_63.pro

0736b33a261bf4a5f6cdc5f81864ee96

f3598c925e8906229342ce454b17f6d5f9139f87

1051924 F20110109_AACAJY UFE0000889_Page_53.jp2

0af0a31aecf2b930813cdbeac709391e

9fd4e994ff3d6a7caf41a23e7534ff356ad76446

9865 F20110109_AACALA UFE0000889_Page_74thm.jpg

820e6fb80cb5e2bb3186da5d45d7d939

cb229b294b60cde262cd8e18486f97fc96c37f05

50892 F20110109_AACAKM UFE0000889_Page_26thm.jpg

65a4a21db9d0fe03353f087ab0de6149

363cd08e49f56dcd11c64de5ca6e46f68245f9e8

41439 F20110109_AACAJZ UFE0000889_Page_50.pro

61771deb473fa4727ed51cd6cb6711e8

fae336a840a1143242afb8c897d24d1aa5f93572

20290 F20110109_AACALB UFE0000889_Page_56.QC.jpg

0d8676bffe96d480c5c5ad2f2ab01a49

a06ee270a59763fb467ff1a6915eb29a605e6c3f

50904 F20110109_AACAKN UFE0000889_Page_23.pro

d7882020f51f9f7a5fce1269876c38e8

c36d94ac497ac6f75fe15c9ff31667b0a9f0e3be

470356 F20110109_AACALC UFE0000889_Page_12.jp2

4dd2c5ea9c1511e1a1e5f16039ccabeb

d0eb25030828b25b1011fc8a7b19b68ab7e00608

249552 F20110109_AACAKO UFE0000889_Page_16.jpg

d5379896c3d51fafcc124b8a7765ff46

650cba8dc6995be89c3bd53f96e61a5c1d60d36d

F20110109_AACALD UFE0000889_Page_85.tif

847be8609e0da011a7209ca63de7b7ed

e01b9774912421e58b377dae1f2c2f9e1bb61ad4

14998 F20110109_AACAKP UFE0000889_Page_02.jpg

64564428e94368a04f7d252637576029

415ecf2e7a37282c1443ff05909d26749d5a1f9d

12499 F20110109_AACALE UFE0000889_Page_79.pro

49b4797e0ae5370ef32ecfdb16c35540

4d30e1e82dfbe2ea6b9c926cd8c5f53e7eedae54

11989 F20110109_AACAKQ UFE0000889_Page_66.pro

83bed0d07e9a2411193a0371937833df

e6466bc98ea12ee871399f553ced2c983096a3e0

F20110109_AACALF UFE0000889_Page_62.jp2

1f40b98f110a5901b7c4525f113ad615

f65165775f4e49243209a369a287196a103dbfb3

42781 F20110109_AACAKR UFE0000889_Page_60.pro

c5d98d2c7d44b59403b8ddd97a5b6b32

dedd207b9347658b6f435498508bddf0f9709177

1950 F20110109_AACALG UFE0000889_Page_22.txt

2346d8a5a9b0db61c2caeb781c078e86

6261c1e9bdae47d2983d53e55818c47c3a44ea0e

F20110109_AACAKS UFE0000889_Page_88.tif

c1d054154812f58f9553029832e7de8e

cafd5a00e447b1327f35edf26d92954d20d9cfd8

647 F20110109_AACALH UFE0000889_Page_76.txt

2ca1224a777aaf79489cbdc714a5b0ff

49a200615dd331034b1233fb2e6e434e2a2a1814

229082 F20110109_AACAKT UFE0000889_Page_53.jpg

6b6553ba6208a45d4cabf3c9ac8e42d5

7e3c3da2677abdadfafc9485270210c523f9b59d

F20110109_AACALI UFE0000889_Page_90.tif

0cba27e230d9d92310aeae9b95f1225f

45e02157ce899cc4eb62aded2f346c4a730f68b0

80108 F20110109_AACAKU UFE0000889_Page_91.jpg

b05a7eed161a35423e10863e6eefd583

96e728b7f699b1ffafd9da99d4c21fbdf195a646

105094 F20110109_AACALJ UFE0000889_Page_23.QC.jpg

68884d74e6ddb61192e9db6aabc92ab1

d9d1eaaff0c116366f244a8426b0781d01fb4624

1649 F20110109_AACAKV UFE0000889_Page_14.txt

145099c2983278891bf9e04595cb025d

7b1ac9e3575a16d8cdfb3b96a8a5e51322a089aa

16041 F20110109_AACALK UFE0000889_Page_07.pro

10d9c56cb4dbec5fc3a9558ab0492027

f84255ebc3b865a23e3cd8bff6b72183d194f588

41582 F20110109_AACAKW UFE0000889_Page_83.jp2

6e6365d27acb6ee2e089231155a19a5b

abae24df601cb8c9ccdd80aae42958d3265f4060

646 F20110109_AACALL UFE0000889_Page_33.txt

447fdfd68802b02f1c266d1ccd3faf7f

420779b6a108c92f61dc3cd760c62480e45c5cf1

2686 F20110109_AACAKX UFE0000889_Page_95.txt

ee9689aff63d572add78bf7542d7b5a1

055d78564f353a1ff910091e8091ad84b5346628

1910 F20110109_AACAMA UFE0000889_Page_44.txt

372333e1885f6d3f0663419c7b6951e2

76bd900d3d52acecf28590b36b89fcbd8ab8a888

32519 F20110109_AACALM UFE0000889_Page_79.jp2

f19d255e0ee4904919d66e80413e5910

1d4b535de40185c66376e32cb02e0d0cecbe0bb8

46070 F20110109_AACAKY UFE0000889_Page_25.pro

985d90a1455120a677e9a1e2184ad194

958aea085fc2a5fd66c103d61bd6d1efe08f60a2

222441 F20110109_AACAMB UFE0000889_Page_25.jpg

9c2b6984ef6e40d691aba039676e7ecc

c1d1ad41451b0af58756b9b91d2b0dee0a5919c9

F20110109_AACALN UFE0000889_Page_71.tif

1562cf33d972bb231f6cf72511a94b6b

dd1ebcc5e0c824b55a9c96337a889360f256169f

170629 F20110109_AACAKZ UFE0000889_Page_04.jpg

8564a1de8178a2dd0bce13c8d07f45e1

a397f8b537ca1257f1fbf0b22104ae781d5de80a

92187 F20110109_AACAMC UFE0000889_Page_15.QC.jpg

8619d12ed8e6b31a41cd52aed0ac58fe

4bb0820de0c9b6c2b73b73318f93b46e6ba0db91

756730 F20110109_AACALO UFE0000889_Page_38.jp2

12fc2da3d0fcc9f35577815f4f346ef9

12a8e3757af251d5581532f426c3f981a5caf27b

351700 F20110109_AACAMD UFE0000889_Page_20.jp2

305e45ec9db86937bfe4bdcf0aa9fd4e

6f4fff8ef0bbccebbba3b2b39e7ba13742fdbb92

10844 F20110109_AACALP UFE0000889_Page_89thm.jpg

c72741e81baeb0f0b01074fea36c3d8e

8c03d07aa92694a9ab3dca0c56fc72a47a877b09

722593 F20110109_AACAME UFE0000889_Page_40.jp2

1e9e23853ea5b2ae73925f21c5048988

c8342cc91ea4843b43a34002531aa0fdfd3f961d

102487 F20110109_AACALQ UFE0000889_Page_51.QC.jpg

906d7690f812c23e759d189275889dda

08024acaafc8900dccb601fb381c7ea2946bd739

40715 F20110109_AACAMF UFE0000889_Page_77.jp2

63cd641f27040bb7bb149e6f736188a3

f15e059787e361d25178b1b4fe05204743a7f3c8

47603 F20110109_AACALR UFE0000889_Page_50thm.jpg

4eccb6d40d47f111934cf303ab7f79f3

c99cb414886d7dd503a30a3ea024af0fa4591e4c

49851 F20110109_AACAMG UFE0000889_Page_19thm.jpg

b135759a96bdf34251780cd828a43809

57ab220c33cb8aebcba2152c6f5390bf9c418302

F20110109_AACALS UFE0000889_Page_43.tif

74a7c735c13bd1c19d6a3ef66ebe0679

839faf653a221c71d0a837d902e82a08dbacdace

23512 F20110109_AACAMH UFE0000889_Page_01.jp2

c6e4d1c12cab351645344adf4aa94aea

60985de622b37a8d942e236f797205e5380a87cf

2557 F20110109_AACALT UFE0000889_Page_08.txt

d2307b5c8a65dc32d288b559a7d8c842

1f769e759d094a4eb1dca5dd75154bfcb2e0baf5

845 F20110109_AACAMI UFE0000889_Page_80.txt

da67406e595356009e4e82f315c3196a

5806a1204a95d29e8fe45888b14d1b969d1c7f33

9012 F20110109_AACALU UFE0000889_Page_91thm.jpg

5b38363b5afcddc50b9f087216790976

b44617a6626fe356d37b14a8a89a8a0512d332ef

39929 F20110109_AACAMJ UFE0000889_Page_38thm.jpg

b4667125e78e52a23e4dc72022824d0c

07054d79fa7a72b370abf59710ef3d4cb4de0c3f

103335 F20110109_AACALV UFE0000889_Page_22.QC.jpg

507abb6c365f05faf546626572fb6145

2df6212b05c7baeff412be37fc587ec72454c732

22576 F20110109_AACAMK UFE0000889_Page_97thm.jpg

f714eee6e507666139e1dc6c5ee3d782

d27913e76d80dfdf8df93359370e503e1fee2579

68085 F20110109_AACALW UFE0000889_Page_31.jp2

8b9e2fa897ceb8d14a4fde9ff7048c70

66db71a4334f412b3525b756cee610a1756d5e7e

25154 F20110109_AACAML UFE0000889_Page_55.QC.jpg

8bc9cc7825e54932331056de0e4ccdc4

99d407580a8eb79150b23792244c6f9dfe78f25e

117 F20110109_AACALX UFE0000889_Page_02.txt

8c1d81e2c3ca2ac46793a020f930a31d

ed9772b3640d41cfacc8bf2cb83d1ee501159f69

58227 F20110109_AACAMM UFE0000889_Page_63.QC.jpg

9189ecb0c21178b70b15fcdf65e4f438

d89dcfe6e68566cd557706c88cdf2c33082986ac

1051977 F20110109_AACALY UFE0000889_Page_16.jp2

4bf63ced1e1804af8745444602904cf8

7d9d2329ce5bb7f25ec532af2c8f383b60ef5e1b

846 F20110109_AACANA UFE0000889_Page_86.txt

024cca214e6e26473199d23aae83a323

3e634fe059fd646a54f83cdb8e07d7e203a2c429

2357 F20110109_AACAMN UFE0000889_Page_94.txt

9cb2f9976f4570e70e941dcd372ce9ad

2142369aad707dbd9cd4e35b5baae16e2b1f93ce

49824 F20110109_AACALZ UFE0000889_Page_22thm.jpg

32c8523c89e375f5bd27fdab1ab7ea94

6d6cce164e972dd81c340457ef229c92987085a2

688 F20110109_AACANB UFE0000889_Page_85.txt

1b59124fef4a381e1b0c6e2f7568bfef

28be7159fbd135374d1bae74edbbd9211a068d5a

10344 F20110109_AACAMO UFE0000889_Page_86thm.jpg

63bcb97082954f89533b548cef47b29e

7e6240c0ca55149c8d50cb08d567bc57686aa092

1051983 F20110109_AACANC UFE0000889_Page_51.jp2

a5f74a42f8b7f5a65cb9761c7affd13b

0e5560a3cbd6d576e122f8474d326bb9bf335a49

8187 F20110109_AACAMP UFE0000889_Page_01.pro

7419aa95da3ac6e028db8a664ec5b530

ef24a2cf0dfd1d3c0233752b5e182472059b5996

49234 F20110109_AACAND UFE0000889_Page_17.pro

3c1d8d5725e0ea0b3cfc3f6be398956c

f6fae967cb447b99040c051c53bf3d5404900714

F20110109_AACAMQ UFE0000889_Page_04.tif

570864bb142fce713ba3c09876f508b4

b7e83a2a5530484589b8c9971a2cb74725e3c7b1

69186 F20110109_AACANE UFE0000889_Page_75.jpg

c6bb42c010f6097b555ab3d07f7fe8f0

775d0fb1b3cd93f10534255379cb3a5ffe817b24

13294 F20110109_AACAMR UFE0000889_Page_47.pro

a419c7b6433c7fb7af02e34f4924a62c

1b68c64f416861e5120b62d0fe3349194a245e94

1051978 F20110109_AACANF UFE0000889_Page_28.jp2

41168aa9275fa48ec07734ead5f38be2

8a539a390aaf21916550b935d5f3d1726edc2542

F20110109_AACAMS UFE0000889_Page_93.tif

63521a725715d0e8cc91fd0128d9ed96

0991cb98fe063af5998fb0789467ad5c78560c0d

102024 F20110109_AACANG UFE0000889_Page_61.jp2

70fbe2837a3f56be707c20cf53cd3a6f

d71a3069c80fde03c7dc59976cafcc2b9f7a533e

20354 F20110109_AACAMT UFE0000889_Page_14thm.jpg

73b7ff980613987b2a7db32bb02797b9

a9403f312dd7e2b2b7779ceeee0c0e2ce6c50d7c

1051965 F20110109_AACANH UFE0000889_Page_10.jp2

d1f4e5606ff9ef782dd0555f5373bba2

503739891b76269d5906822d10e0253b9f8616e3

81778 F20110109_AACAMU UFE0000889_Page_74.jpg

d3eabded04c8dfd317ac33bebc98f11f

befa3dc1a667e1cadc98438789a3123d8df9a83a

229993 F20110109_AACANI UFE0000889_Page_93.jpg

e670d712a6cfcc88d726d563a181088d

38ed1afa201cce7710da0d2d8f96603a84eb3f52

15224 F20110109_AACAMV UFE0000889_Page_45.pro

4395907c087cdb9c341311d299a073f8

e64e963b8e5a5169802ab7fa1a07984a046d844c

F20110109_AACANJ UFE0000889_Page_24.tif

1c13f7fb38539313b1c64e46c6b938c6

ccf9e229dcf60bcf005654d9f785b707e1faa7a7

8480 F20110109_AACAMW UFE0000889_Page_47thm.jpg

46078cf3b5e9fe64cbd717395da97be1

78680f05925f2a05f225d2f986e959efb980f988

1051981 F20110109_AACANK UFE0000889_Page_06.jp2

71e24e6ec50c4537716764f96de67e76

f620305541584ff1baa5c1919ecf26ebc013b4cf

226248 F20110109_AACAMX UFE0000889_Page_26.jpg

a2393bae9a108766b2674dbaa8203e49

6b0168b2a70435b7293a56b59d2b77877b22adc7

232216 F20110109_AACANL UFE0000889_Page_22.jpg

cf0d3a4ecd22bb43d0eac1d52f3f2243

20777d11874426918dee5e03613b93c5c6181149

771 F20110109_AACAMY UFE0000889_Page_91.txt

c6320bd6033e9b06fd5fd12eb24aff01

57dc696015cc6336d0347e0cdec2a72780a11cf2

13763 F20110109_AACAOA UFE0000889_Page_20.pro

9f8157f178a53bd72cb75974190f862a

baeb6e023a74cd4a835e3672b5bd04abfeec7646

F20110109_AACANM UFE0000889_Page_78.tif

60c2d908cb9ed6d4e2be86c03e7f88cc

933c6c6b9a07fccd9f1f74f08239969792201ab0

F20110109_AACAMZ UFE0000889_Page_21.tif

a1278f5a3c53e369248b43e5205c4d5d

ee5e21525a16811ef3dc03d80442c90cee920e9e

32509 F20110109_AACAOB UFE0000889_Page_75.jp2

f1fcad92b666d8a9e01fd9640cd50d73

5cde8d4b99ffc4a78f06b0312227d1d882880791

9916 F20110109_AACANN UFE0000889_Page_77thm.jpg

da446825405d85872b10f64a987df22f

92d2039045e248f345780a7ed538b7d229016b8b

23950 F20110109_AACAOC UFE0000889_Page_66.QC.jpg

6cd3c2714cbcd011ede160c6322e915f

4f386935fcf6e3c4620d80bfc54484a5bf9912ba

18114 F20110109_AACANO UFE0000889_Page_89.pro

17d257e6850bf58a74213c1811ea8fa5

6b6051efecb157668aa2e927e52d0994ddf50c6a

67273 F20110109_AACAOD UFE0000889_Page_14.QC.jpg

ac546e861b6a9f10e34e9631907d22ac

c79f2d35be3e10d4e7789a2e7f67bcebcfa90745

66089 F20110109_AACANP UFE0000889_Page_47.jpg

7c3533ddd932aeeabdf73e34d271bc39

ef48bdadff3bb95bc3a765371ffdc5f500352796

37066 F20110109_AACAOE UFE0000889_Page_13.pro

ec1487d04b1a8ed25df6fa17d32d7c63

ee649ccfd850c3ed66778ea3da03bbbd6b4912e6

56418 F20110109_AACANQ UFE0000889_Page_18.QC.jpg

7553df3c15743638b7323795a89c6b96

b5c5d7cae29b204e9d200c1693863e3f6b18f9e7

600 F20110109_AACAOF UFE0000889_Page_55.txt

96537fc6a42bdf0131d32ffbda5603c1

55abbb9ebf8c8c866da695d5b8271965557002cc

812 F20110109_AACANR UFE0000889_Page_68.txt

fd974fa0d6ffdda38c5dadffac32e252

44d2aed75104e0dc297bc3e976e8c1f068f91641

45541 F20110109_AACAOG UFE0000889_Page_05thm.jpg

029427cced46f6631bbd7c577f74dec6

01013c8fe463c2a8c4b3af541c147f9f5f98dd36

F20110109_AACANS UFE0000889_Page_77.tif

0bbd095b6789308144ba64d12bfef5d1

8751a4657f91d90faa97f135932d89c084ed3ff1

79381 F20110109_AACAOH UFE0000889_Page_88.jpg

c8f225a7b51327031d95c4404682ce5f

bee22f6f66c4f3a7760ee42f10ea4995dd8784fc

24607 F20110109_AACANT UFE0000889_Page_79.QC.jpg

6fd5de1771fde1fbbc623d5f1927b8ae

ac92898a08057c5de9b62d86ff5f4a278b2f8a53

233363 F20110109_AACAOI UFE0000889_Page_27.jpg

5467a7c890ac91b698bceb034e70ba21

1041d8de361027840c361797454034f9c25bd441

69385 F20110109_AACANU UFE0000889_Page_85.jpg

a8e3b976ee8ae7b9e2a3edcbca710d70

ea8b786105d0c0e635bc819e0fe91db73a9c1000

F20110109_AACAOJ UFE0000889_Page_55.tif

a23e0be0cc5d026eff494a6546cbe62f

662b71f4acccc78049abded5fcb54b3f57a1fbe7

88761 F20110109_AACANV UFE0000889_Page_95.QC.jpg

7010cd96551d6b291cc520efccc3f4e7

918c6f3135b8f39489320800446a5b71c3bba922

39388 F20110109_AACAOK UFE0000889_Page_32thm.jpg

e68cf27535ae9e786757dab5f023f062

91e3142202a105346b211c259c784426c3e99b26

94046 F20110109_AACANW UFE0000889_Page_63.jp2

003690411daa279195294b0e4f9e717e

bd9fe656eca5ac8165156a32fdebaa8485dde81f

207858 F20110109_AACAOL UFE0000889_Page_57.jpg

6e1e7b83ffe77d0faa8233892608cc5a

84e585bd212bd3b8fb9f5a138a5f5a7e24819890

18481 F20110109_AACANX UFE0000889_Page_13thm.jpg

5ec7f18bfdaf5487c455d9e82ac9ecbd

7d6435b2b64de24dc1fc4936ab339a6c11bac2ea

141770 F20110109_AACAOM UFE0000889_Page_59.jpg

edbd24ad3468b7c7fb85838c120c6661

a60eaef519a3b66adae745c1965181efc9120982

238765 F20110109_AACANY UFE0000889_Page_19.jpg

a6e6263193cea8fd1e57319722b1f5f6

e9d994ae58ffc16d20e2e1d7ce23cbf3b0d8c4b4

1966 F20110109_AACAPA UFE0000889_Page_52.txt

dc25ae153427a8b8bfeb8c75ff741e62

98e7ebfcc6b9b9e28af00297cb1fe25bcdab4587

6397 F20110109_AACAON UFE0000889_Page_03.jp2

e6e86fb9592dbf2a5cee92f213dd0c11

407480401f0372f0fc4bec8fb71b7f639326f1f5

193789 F20110109_AACANZ UFE0000889_Page_97.jpg

dabb578004657ab95c5eea1e7b77cc82

a45660b69973b3482b7f7425a9dd01accc16bd74

72850 F20110109_AACAPB UFE0000889_Page_58.jp2

d85993de7d09302db774086455cac506

73919cda43a93e035cee58790e6ac1a29d8c779b

F20110109_AACAOO UFE0000889_Page_80.tif

44b1644560d575d0fa54cae2cae822de

530715992a97e23b236f73eb6af181a1656b14ac

1653 F20110109_AACAPC UFE0000889_Page_13.txt

fe5afc1fbaf75721c608dc2bb7954f0d

988f149c6778b1d6ac0d5694dd64c50a5a636758

52589 F20110109_AACAOP UFE0000889_Page_11thm.jpg

2c2ff6c720ea842879e617bde76f5d58

aef89d72c6f6d1c57bd82005c9ec562c2d7a9e8b

71513 F20110109_AACAPD UFE0000889_Page_55.jpg

8dc7a3aa1436ac61a78ae4ece6b4b8ce

804aef12ea02906be8d001bf578a642c47d34a87

66282 F20110109_AACAOQ UFE0000889_Page_95.pro

6f7b3d6711f547326421101ee999be40

b8e6eef7ef99138a8389c07b0369daf45668fd6b

50389 F20110109_AACAPE UFE0000889_Page_44thm.jpg

904fcd9384d005eca391e84d1f6a5eb7

efac82cc1eb1bd0562ec1495d22ca6634f0bc265

2691 F20110109_AACAOR UFE0000889_Page_11.txt

03c78743b3ff97fc353f1388b4fdd6f0

5f023005ffb819c4cb595feecfd7ad825c41c84d

751 F20110109_AACAPF UFE0000889_Page_90.txt

4bcf12ef8c7f3cdd3a5b1cf2e739dc20

75c9ee02096e2cfce36ee30b9d6f733fbb094293

F20110109_AACAOS UFE0000889_Page_79.tif

d029dc49b6b4eec7eda0d610d35d4961

f4aba4236ccb07d6a9d65806514ae06205c52e67

20381 F20110109_AACAPG UFE0000889_Page_61thm.jpg

fe28800f60149e1caea1f3966a17eb72

b897abf2f79b7daf97629b8948abc57221091fea

9601 F20110109_AACAOT UFE0000889_Page_30.pro

41b5ca4ef449037337c834052050fd5d

e9cc71249e38ab74f6d41d0ca84a1c4f2406b401

27116 F20110109_AACAPH UFE0000889_Page_56.jp2

5adf025c7cdebfb73aded1bb0dc1e400

818d7332c31d6987cab04ce5c82749d7b7441147

63563 F20110109_AACAOU UFE0000889_Page_61.QC.jpg

c7897263d20c2959b4013b6de84154df

7735df4848bf27dcca5f45d8cc143e6b2cbe0f66

3135 F20110109_AACAPI UFE0000889_Page_02thm.jpg

ceb3f13762b2fa31fa7696f4b007494b

9ecaa1721bb33407c28204e896b0f32df8175637

F20110109_AACAOV UFE0000889_Page_22.tif

55614cdacdddcad3905c02bcf8d45e1f

1d4a7d5ec473079eb1c220f901d61a0a9395edbf

1742 F20110109_AACAPJ UFE0000889_Page_60.txt

1ca8f65e8e3c74e4f85da71d378974e4

c2a724feecc0826c214fbaf8f51946065178e8ad

49305 F20110109_AACAOW UFE0000889_Page_25thm.jpg

94b9ef3e67ce08566db42218d6b8f6d1

24da6efd9e3d05092c85d659b7993b5da8acd4ea

92775 F20110109_AACAPK UFE0000889_Page_50.QC.jpg

d9a170a334cc2148cf3830d74702d95e

c2cf772a7c20690c7a4e8393f54eb45265913282

70885 F20110109_AACAOX UFE0000889_Page_78.jpg

7d31cab00f3660310e645b15e96eaec2

03272a7d8555fd3ceea8430eb32767ac649086ad

9896 F20110109_AACAQA UFE0000889_Page_78thm.jpg

fcaf89551503e19899817441c333814c

e9a30c3170d979f32f7ce9c6861f3b9af2a6d46c

1051951 F20110109_AACAPL UFE0000889_Page_26.jp2

451038246b4129c6231f67ff454f2712

a43a2eec3b8edd45510f2a996e21b74d00d41f14

72798 F20110109_AACAOY UFE0000889_Page_97.QC.jpg

cb8c1409f4490d6c3caec993e77980a2

213e11c9c1beae1e65f18102e5d35f2bcf659960

399461 F20110109_AACAPM UFE0000889_Page_48.jp2

1be3e1b0a303e39651b8de752cc00f2d

774bd99bff0badffee62b9fef466753c01e0220a

1051911 F20110109_AACAOZ UFE0000889_Page_54.jp2

8b04b069507df204b0fce617b854f8aa

1fe0234652c6b7254000140c2e81a80ba244a43c

1965 F20110109_AACAQB UFE0000889_Page_61.txt

45960198e36c1f7da318c92d85b6f585

14ba4938adc2b91e2a164923a6a13a5f390930bb

7078 F20110109_AACAPN UFE0000889_Page_01thm.jpg

b945b36d0468b26fabce19ea4a1e6ad7

69813224233af19f0df3b86297e67adec108c9b8

121265 F20110109_AACAQC UFE0000889_Page_07.jpg

807a5eb1619a93d3e2ceacde4910e6d6

7a43c8f8d14ef457b5c7fcaa7b7b0376f56e4b73

16247 F20110109_AACAPO UFE0000889_Page_31thm.jpg

66b1d34b7359751b2116b45166248a2c

61e7e43c9edbc7ddc755bee3bb211917b0989346

47131 F20110109_AACAQD UFE0000889_Page_57thm.jpg

e4db7b19f9c5c7bb95947921805af2c6

66179fe61dc61237868bffae643625e4e26686c0

32546 F20110109_AACAPP UFE0000889_Page_69.jp2

c7ff2bf0fb3067f06c1a7c6efcdd51ac

412a370c82e1e0b2021c04227398c570052fceaa

F20110109_AACAQE UFE0000889_Page_23.tif

cd150346bce218fe2589fa320bcf41b5

ed58cea4514cdc76cded49444d4be81c8d101e8f

52112 F20110109_AACAPQ UFE0000889_Page_31.QC.jpg

2a3a2eb46a51b49eaa789814b2bce2fc

752372549446cebd23aa0ad4553a42d43dac43dd

1565 F20110109_AACAQF UFE0000889_Page_65.txt

b93373dd92861fca90080eca0340492d

729598fd64205c5e112ebb5d544a46e6e7365d9d

80359 F20110109_AACAPR UFE0000889_Page_87.jpg

d9da2aa7a9b7de33bee143b56d2983c4

82f23f9fb1f444196eb61c8a5e21015279a001f0

14972 F20110109_AACAQG UFE0000889_Page_71.pro

fe5577b3fe4a72744e1022ec5b8038b5

c587d889a978747f2bb1f319e246e0bc32db24d4

19886 F20110109_AACAPS UFE0000889_Page_34.pro

c28803d641f04071c92dd62240c09f70

8420196333187a6d7af35ea15e9229e526407863

F20110109_AACAQH UFE0000889_Page_56.tif

a0006b46104111257d59153b09d656a7

38bc8c471e3e8053470dad3e3cbe1e54c06063a8

29946 F20110109_AACAPT UFE0000889_Page_80.QC.jpg

5e5741b7fb0296970968b2c67f08bab8

b5589d3cfcb4e4edc59c49cd70f2192613be3b85

1888 F20110109_AACAQI UFE0000889_Page_26.txt

6a8acf5273a7290765cd3b90b45a30fa

41b6d236dfe922a05e2d58038914caa056d9daa0

25844 F20110109_AACAPU UFE0000889_Page_95thm.jpg

97e35762e0dbba4a91ad69cddfc265df

c5bd2fc2a282bec7b9be40f9e3492bd3ba007626

77260 F20110109_AACAQJ UFE0000889_Page_41.QC.jpg

cc8febce6ba3b9959c688aafe9d308ec

0ee4b40290aa4d451629f9acaca90415c40121d4

14864 F20110109_AACAPV UFE0000889_Page_68.pro

04c938ea27088e40a99b5b5049eaf970

285df1be93fb5cd77db6929af5366a2bb83d8c16

101037 F20110109_AACAQK UFE0000889_Page_26.QC.jpg

d0ff9c83f54bbcd8d71381cc3cab2ead

845dd9362ee3697ea908431da339a9323fa6ab16

33104 F20110109_AACAPW UFE0000889_Page_72.jp2

ea32cf219edb900945aae6d1f325f2c6

9a59ef9a4b58d208970166323975ea4239a2cdc6

18091 F20110109_AACARA UFE0000889_Page_38.pro

c41ba7d30f646929d7012a2860653eab

5c017727aa4a45f3f7b4fdd34a842fa78cdc8f06

F20110109_AACAQL UFE0000889_Page_86.tif

8197a3512d05cf32d0dc8fafec5990fa

45043542f5699f82aea749a295651fab7bb83c28

39585 F20110109_AACAPX UFE0000889_Page_29thm.jpg

75c572de422e569dd24fae39a4c20674

21bc26de5430dc386664832d95807466634d8374

113697 F20110109_AACARB UFE0000889_00001.mets FULL

4ed2365470e2c40742e6b0a412785c51

dc5b80cc749624042d89aca7c92d78b02c4d6782

F20110109_AACAQM UFE0000889_Page_75.tif

a575fcc60617675b861627a37013a417

b2a17a060b6e4c3ad1e7c151943f1ad7d51b4cee

48471 F20110109_AACAPY UFE0000889_Page_44.pro

a7ba073f2f6640bd8acbbec154f21b12

f304089eee6844568523ac8c8f0a8355f6337e4c

38681 F20110109_AACAQN UFE0000889_Page_68.jp2

47d2e2d66bfd405a9ec491bc7d026576

d5d280bbc4682736799872c1ee79245facfeadd9

165831 F20110109_AACAPZ UFE0000889_Page_13.jpg

a73ae8c279e4498bc74bfbc62e7c405a

40f3a202fd068a24c37403c24b527fdc2210adeb

92268 F20110109_AACAQO UFE0000889_Page_21.QC.jpg

379bfd8db4685cefcb940854a8372cc1

d203447752e8196ed14ae841a6f6a514dad24e7d

49184 F20110109_AACAQP UFE0000889_Page_61.pro

4c92bc26409aad9009560d2d316aaa29

b1a8a26cf134126c4cb31d9f35efb1b4eae87e23

54434 F20110109_AACARE UFE0000889_Page_01.jpg

1af5964855f4d08784c05dc473e0741b

d36290524d4a3136425cea1f5f94c0df0c2a61ad

1660 F20110109_AACAQQ UFE0000889_Page_04.txt

520afdc82dcf930c3065ad304d694ddc

2817f41578c5cb1e6f688e5d2f542831ae1da6d8

311942 F20110109_AACARF UFE0000889_Page_06.jpg

30413e002a810c511641136d1bb07430

49572960eda9ca6d78501b0acebf7df0fe29a1ea

100111 F20110109_AACAQR UFE0000889_Page_24.QC.jpg

77faae7710667f200002acee72ecc58e

f2de514122d26d4062999cb0191b8d7356da9cc8

333390 F20110109_AACARG UFE0000889_Page_09.jpg

035eccd3e5511e0dcd4494df90fd25f5

502c8be564c96caf5fe883d3ec55ca602411e441

18068 F20110109_AACAQS UFE0000889_Page_92.pro

1ecbb3816bf76a7830c8d41675ce87cf

3108e023a66478c2b79ccec78c457cc1096bc0cf

166936 F20110109_AACARH UFE0000889_Page_10.jpg

dd7909ca1b410694106db7699b829891

7085df84015ac756b4a3dd89e9a39e4440267a5e

F20110109_AACAQT UFE0000889_Page_53.tif

2c9865ad8fa1043f4b9f7f0fa5530cf2

a37f7678ccaf1c9337690ddfce0b6e7b40d5653b

85478 F20110109_AACARI UFE0000889_Page_12.jpg

0069b0bb2f9aa6087873183e4ba87abb

042ce0136ea0bddc84267fb0fc387e9487f444b3

24415 F20110109_AACAQU UFE0000889_Page_78.QC.jpg

f8b07cdb33632b8a7982099c6ed3cf8c

98117f17415a2ae4fa7529257c9e1934c03a2d0e

215311 F20110109_AACARJ UFE0000889_Page_15.jpg

f63f681bafd802d67d5d553602fcc780

765f09415c992c815730afb20a27b688b7031458

1051982 F20110109_AACAQV UFE0000889_Page_57.jp2

5fbd90005b9e02b43e1a13440f40dd67

b704ec85441c797c635829eb3fbe07bf6bbbd618

91240 F20110109_AACARK UFE0000889_Page_20.jpg

460fb475357ecb1b35a523692b1c9a37

21ba4ecf5c5802f4fd829cc88410b8ccdb761410

F20110109_AACAQW UFE0000889_Page_68.tif

063f93ad12d5b3877f17a2d35f936c76

145f63944f5d86c133ca7853fe70c4564deef214

240320 F20110109_AACARL UFE0000889_Page_23.jpg

a2476bab8f663ce17d2a66b7bc0ec328

8c815beefef6c978c1806430ca030ee5b4589d3b

73854 F20110109_AACAQX UFE0000889_Page_81.jpg

df9a03ce93b60982865dbf379cb1efd1

b9874ac784bf527e78f945d9df99a54b3f01e1a3

199299 F20110109_AACASA UFE0000889_Page_62.jpg

e0f21ea4a9a182c2a9d9e527033de9bf

8c0187c065fd995d0923f3be20b73307077be498

231337 F20110109_AACARM UFE0000889_Page_24.jpg

a127f3ed12b51ab01be521c8ec64775e

46bd9c5cfce5b87eb3c925805948d78afa504d23

8615 F20110109_AACAQY UFE0000889_Page_85thm.jpg

1f8a52050a28dc25fa031b77dbd3e55b

5526277446ccd7661178fd4fe6c873bdc5cc7d37

176685 F20110109_AACASB UFE0000889_Page_64.jpg

f0b5f5f15c4a67955922a7f14251e618

15a6513153ea92af76a182bb5cbf40854e274c84

135797 F20110109_AACARN UFE0000889_Page_29.jpg

05a23621644b3f4a6080033a31db4246

7dd42bec7895ff3c3f702bc3abfab69a4f1064ba

33012 F20110109_AACAQZ UFE0000889_Page_89.QC.jpg

221378cf351495864951b690e93f2f95

d8c88529d762622d6ca9d94196ea1db963e09199

68586 F20110109_AACASC UFE0000889_Page_66.jpg

8c7b45f9dc12794297a776adce97f0e8

f4d1d7d427d29e5cf9e3a4fe79d923ab6d7ab2b4

127866 F20110109_AACARO UFE0000889_Page_35.jpg

341643579eca9a39575fa839f8443738

e6a531d3b0a55fff3337692e3d209aeae2e5ba49

123862 F20110109_AACARP UFE0000889_Page_36.jpg

8c5247565c5e3d1995756d4f8a05be3a

eb418994fac8d0a80b3dbf590ded1ddbc9f2a26e

66533 F20110109_AACASD UFE0000889_Page_67.jpg

727d44eac61d4a27cc8f7af71507c5c8

eee17be47999fb71df34753058facc2bf48e307f

146389 F20110109_AACARQ UFE0000889_Page_38.jpg

2cced6b0ed33af8833154df3975274cf

320832f3013ac3d39080b1e0d6c26739c6fe2853

69358 F20110109_AACASE UFE0000889_Page_69.jpg

2366416191acc127eff3fc21f49a746b

18ce4523802f13c6e8b6198c093e1dae4410231a

94088 F20110109_AACARR UFE0000889_Page_39.jpg

afee7e2151cae5f0c8345817f33f2700

8232bd8074f531e0d1263294c907ba39eac0cd9b

66758 F20110109_AACASF UFE0000889_Page_70.jpg

b282dc6e11dd5233727338b8cf6a90cd

eb2601153c5bc6309b3fbcf4e5854819e410692e

167457 F20110109_AACARS UFE0000889_Page_40.jpg

fb6159ac7afb5ba3373c56194987080e

fc4509b061affaa967023741f9a1b403426bc9ed

F20110109_AACASG UFE0000889_Page_71.jpg

aca009fe1afba821e3f4595020fdfc8d

eeb4261c7a27735c598f29abf5d867823fa6579d

164194 F20110109_AACART UFE0000889_Page_42.jpg

8ce4184b67bc34f1f4f258ba934bf703

4c2f519189a91cf25dda0d1c9980f1167d9712b1

69748 F20110109_AACASH UFE0000889_Page_72.jpg

ab7d569a043f2608ed395930c7ee8019

c2ffb68b5f384cc098ec6218ecc5e8f6a955be89

110102 F20110109_AACARU UFE0000889_Page_46.jpg

1ac55005a0b5f203129cb5d2ae487420

54e98c9cab3f9e998eb4d04a1ce2cb80ac24cd0b

82754 F20110109_AACASI UFE0000889_Page_80.jpg

4832471ab418f217ceda0e7c0fcc74ba

ec009a2a13e9580bb262d208bbe42d2bd64b5626

102799 F20110109_AACARV UFE0000889_Page_48.jpg

69a52748322c2685294cc9d59c6a7f7c

fa7cbf5887049182427418e2a94041250f191384

91768 F20110109_AACASJ UFE0000889_Page_89.jpg

ae59d6791ff9a3284ea8084f8481a005

d88e0b80dc2f0f0be8b8ed439c32b621ebdf6cdc

206852 F20110109_AACARW UFE0000889_Page_50.jpg

da672895dd3d7f42f1c8633af68a0b60

01334dd560d53051a6a955571ab305e2bf9d0eed

81136 F20110109_AACASK UFE0000889_Page_90.jpg

07377b0d93af69ccdaeb1dd9500bf5c1

2ea02c478b717a43ebd6f14dd6126effff927488

228561 F20110109_AACARX UFE0000889_Page_51.jpg

79481bd869fc92f8ceaee50078adc164

9ccc88e641f8d6a38a3471dfe0b67b480fbc58ed

107536 F20110109_AACATA UFE0000889_Page_52.jp2

a1d2c9f98c3c2e1abdb698e100b58e44

5484aac8bfb7e6d47d5bb80e7e26b297ea3a57ed

91977 F20110109_AACASL UFE0000889_Page_92.jpg

8cbc22c155d4353761b7951edf599eab

30000d836937e742ce665c37ec74e816028c1b36

33637 F20110109_AACATB UFE0000889_Page_55.jp2

7e012bf34848a7043e05245b01c97a02

2b89b81cfd4e4df9cb730f2b92b20fe40211e531

276971 F20110109_AACASM UFE0000889_Page_94.jpg

cd914de7a3484195aa58b57a8c10a3aa

b083bb786d3a62f18b4187e51452f37457051f76

206976 F20110109_AACARY UFE0000889_Page_52.jpg

c3e70125dceb386a6dd7d8efc69910b3

40187a72f38660cf065099e7f40fdc728d606925

82809 F20110109_AACATC UFE0000889_Page_65.jp2

df005339e7b521190ce8b0d065370009

f765dd09d402959ee54424b0ba855b191b79b059

277336 F20110109_AACASN UFE0000889_Page_95.jpg

1049d788b62ecf2447ac36395e069489

6df9e0fb17e311828c7e83536c34728d1d7a6530

136211 F20110109_AACARZ UFE0000889_Page_58.jpg

1eeb675beb51cdae8bab786ceec8676c

7ed7dae5156f328c6155514253c5b3a207560442

32983 F20110109_AACATD UFE0000889_Page_73.jp2

2ceffd54386a97f19d43043c2eda86dd

8c10b5cc55ab3f9eb8ed98e3bd0dd788d8f8f1d8

5808 F20110109_AACASO UFE0000889_Page_02.jp2

ee2f42da133d07e72393e339f9ed26d9

d3bfcc22d14726c0c84ec89cec4e476488e488e0

1051975 F20110109_AACASP UFE0000889_Page_09.jp2

4ed0c0b1c34323d061c94301ad998f1d

54eeaeb973031161f3770ca0dd7ccc6a3f825212

32780 F20110109_AACATE UFE0000889_Page_76.jp2

c263d7f92d56b85dae1288dfd831d14b

4a373d4c6f023d7a9923df506c6538f54fbaa217

1051963 F20110109_AACASQ UFE0000889_Page_17.jp2

5c5857229c8399db5dfea5179962e0bb

6d75627fb0ca6b7a8b13a8b0a96da27c087dd3b7

33307 F20110109_AACATF UFE0000889_Page_78.jp2

15747b81ce6e20889ce7e4357fe5394d

a63fa83b16a81f29363c9b324976349b7e497869

82000 F20110109_AACASR UFE0000889_Page_18.jp2

d37bffb3550c3743bebc5b5fdfc322f9

ee6c19af8fe9fa3b65bd1b3a60c80bb40bcc890a

33316 F20110109_AACATG UFE0000889_Page_82.jp2

5edc06fe7b20494040a2a2fa75406e90

a54ac572c0e70078bbe96ee914965e5ebf7234d2

1051961 F20110109_AACASS UFE0000889_Page_24.jp2

ccf77710bf48c408e1e806537cfca17a

c8cc6f365feee327dc6835b72bac5e368560a666

33068 F20110109_AACATH UFE0000889_Page_85.jp2

8fdbca56c884703707b3168f9deb2dea

6a5e3cd8ef981cec415dc0adf06ad490922661a9

1051955 F20110109_AACAST UFE0000889_Page_25.jp2

205f7e69922e8f594fb4e981211d5526

66db59697b167b7d5cece865cbb8a0452f42b3c6

38192 F20110109_AACATI UFE0000889_Page_88.jp2

a38063eee3fbd77db3fa696201df7b7b

36f9c2b97202083429a9e46260c253896a04206b

F20110109_AACASU UFE0000889_Page_33.jp2

eed05fc9356779b69b4d7ce7ef9d56cd

64bc81055411d9b32c89e726d69a879bd1a37fb2

46137 F20110109_AACATJ UFE0000889_Page_92.jp2

fa542b4e4715b0734e51001647726081

3aa933bca017f89a8be6dd5e074e6dbf1fe77ef3

634880 F20110109_AACASV UFE0000889_Page_34.jp2

449c57a016e7cd54346eedc6743953b5

99d3df663e02c2a406c30e4377a033df8beab186

1051976 F20110109_AACATK UFE0000889_Page_94.jp2

8ad266c9d92d83aefc72515441fb2d9f

d351452108e8205ce149d9f453716f54b0bc8ffc

946311 F20110109_AACASW UFE0000889_Page_42.jp2

f0b4539c2c6d90920c5bb1a4773f3de9

feb0b9a4862f55e228f0db51b4dfc5c37d52f039

114891 F20110109_AACATL UFE0000889_Page_96.jp2

ca1e21bec153ca9bc9dd3d8a79bacfa5

cc4c0480bd8ad774709c629d5097c46932804889

34015 F20110109_AACASX UFE0000889_Page_45.jp2

a294eb76135e6f65a90b877a1f7c1a2a

4d7e2bb5bc48a8534b3ecf2ff7439229216d5666

F20110109_AACAUA UFE0000889_Page_42.tif

14923d3307c75855d31177924a7d84d3

d23356c1c1168e1c41de484ff6c5e39e9e1ec5f2

F20110109_AACATM UFE0000889_Page_07.tif

ff2cb8e87dc84131f511c19c02334ca2

4739b078f1feec4c66836a385f21180352cbc713

28806 F20110109_AACASY UFE0000889_Page_49.jp2

b3b2bd44c9b310c8fcb9f6f2a463d29d

8f7de97e1995fc388e81ceb7e5d19f2359c72fac

F20110109_AACAUB UFE0000889_Page_44.tif

5acf0746721b98cc23bcefb05655b722

04d8fbebf4f35e6ae9db4c752921bf285f18d204

F20110109_AACATN UFE0000889_Page_08.tif

c275627fc11152bc6e6e9610595166b0

67a0e88a5900ddd5501fa583fde8212a484007f8

1003383 F20110109_AACASZ UFE0000889_Page_50.jp2

5289abddc71dbc431ec295f0acf0cd31

9d090b3506e89b4dd1823c04dcb6cee1ae65feee

F20110109_AACAUC UFE0000889_Page_46.tif

2da8c14de31d090c9d63de609a52c3a3

b4e3169aab4c60c674a5089f3aa0397a2d036db7

F20110109_AACATO UFE0000889_Page_09.tif

71cca19263f801d9c3f07202122dab23

0fb3a0adec4763dc236b0da54c92d92e1d220db3

F20110109_AACAUD UFE0000889_Page_49.tif

1cef5af0653219fccfb3fa6c820697b8

2fc3ceb2b64a6525d66d86216a553082c8bd1a1a

F20110109_AACATP UFE0000889_Page_13.tif

06ddc058d1655a4cb01929e336c086b1

f8d4cc25589f41e36bdccda4d2a85bd47d746eed

F20110109_AACAUE UFE0000889_Page_52.tif

fcf2cd7dfdae7a918e9ceea0c26d984f

cceac1a4828dbaba98893bea0a274380c15eec91

F20110109_AACATQ UFE0000889_Page_15.tif

415e90c9ebe6cf20890a5a0579645cc2

56462e8ed0ac1a07a7c425cb926d5d2c571586e1

F20110109_AACATR UFE0000889_Page_16.tif

51fce8e84dab6c9df980732abf47c7f0

055409ba7134fdb781aa1c84ca2c121e21a5e18d

40005 F20110109_AACBAA UFE0000889_Page_34thm.jpg

0f03be53438c9ab1262a1897138ed4fb

0a6052e3fbeafd6f3626e75a63db13910ce7584b

F20110109_AACAUF UFE0000889_Page_58.tif

b665ca5e7173cbd4795facca408c20ff

d43bc9ea0916b2847af4ed66eeca99efcda24a28

F20110109_AACATS UFE0000889_Page_18.tif

7c1c036ab99c72fe04c3a853f71239b9

18c8e33103bdfd2eafb8e113e6c35810e7a0da91

38244 F20110109_AACBAB UFE0000889_Page_35thm.jpg

4169bc4c44ce5b8aef232d8d9d033f88

d9321abfa25ce5bc938d81257d57be0333b44314

F20110109_AACAUG UFE0000889_Page_60.tif

8241d925ee709ea540ff70d4a109ec40

2a6a3f44f55a482c00a4a53b030263e37585a0b3

F20110109_AACATT UFE0000889_Page_25.tif

87de6801f4646405b5a4157e7d792298

97c5d00b8c639ff7fdad7e9d9d2a683da3dff93c

60125 F20110109_AACBAC UFE0000889_Page_36.QC.jpg

c9b499b1cf473b15f53a361c9098fd56

e7595ce6f0978908f792fcf8c54cb022ca60aec6

F20110109_AACAUH UFE0000889_Page_61.tif

d413421c021af9383da4bbaa086fe17b

e5d6b2e1cb0eb15f27d19a87d96ee179ee95bcc7

F20110109_AACATU UFE0000889_Page_27.tif

bfedea0c361fe5d17c6d6f7741e751ec

02b41afae778b6bf0251cbbe9b202b54ccae9486

25028 F20110109_AACBAD UFE0000889_Page_37.QC.jpg

2514a85f0b2eaa8d45f02c8b9e4b852f

49769e3f76f3c907ea32f957ed2e732ca8c57be1

F20110109_AACAUI UFE0000889_Page_62.tif

4fc7a8fb52f197235ed95525b0826f30

2d3113fc899fcaf08b78772139a431e35dbdc02b

F20110109_AACATV UFE0000889_Page_30.tif

848947edfa596783791fffd71cbca96e

8a920978a41a17eb266a6bc1ce135e16ed6a0152

76665 F20110109_AACBAE UFE0000889_Page_52.QC.jpg

53b3772a04322f9c129e97c9523a1c51

85937eb1cc8364229e9498caa2662a325400ac4c

F20110109_AACAUJ UFE0000889_Page_63.tif

3931cf3a66e858f2c007fc49b55008af

04b3045975d9de86aef9f4e62b8c56b02b77321e

F20110109_AACATW UFE0000889_Page_31.tif

5564dd3b448bfe88ee025b85cd2506f7

6b32b5f3124ec68027f5a58423620949d3e4be19

7900 F20110109_AACBAF UFE0000889_Page_56thm.jpg

f1270a391a6e20ad9c954f93b51d3a42

8b95eb07b87d5f3d23b56f660e1cf14b22d01a71

F20110109_AACAUK UFE0000889_Page_70.tif

d6b58455f8ad83fab08f8d241de6fb6f

21693359536447f727f76988552bec2ac38d8303

F20110109_AACATX UFE0000889_Page_34.tif

f05996a7d92b0b8e0ba9c7936eb824c7

e5a94ef1bfb59f97caa2191a299c4e9ac626d108

17314 F20110109_AACBAG UFE0000889_Page_59thm.jpg

bcf2606bf073ed95e79d16bc0c75b398

02fc0a757d9485b5069df7e88f214fbc8a3fee72

48949 F20110109_AACAVA UFE0000889_Page_24.pro

e58ddb3fd0ec8a2bc334c58ee6ad69cb

0f3c8600982c2bd32d2b0c89835dc34d928afa70

F20110109_AACAUL UFE0000889_Page_72.tif

bbfc52f0601694c976aca1c02f6e3e87

868854eadfc293e57f3979f99327ccc5b9e899c2

F20110109_AACATY UFE0000889_Page_36.tif

20debe4c00291a449295125b181ac13b

616ff57018e1f175c2edf6e41d18fcd29a9f82ba

20064 F20110109_AACBAH UFE0000889_Page_60thm.jpg

1c86c9ffb0e70ee777fba1130b8034cc

03af4462c0fc56c1b85852cfe0fc56aa6d9ed402

49312 F20110109_AACAVB UFE0000889_Page_28.pro

79f9f3f29b7d090c8bcc0a65094f0bcd

f5cd505b3c371e98ee46f27926c843a3d3719d46

F20110109_AACAUM UFE0000889_Page_74.tif

258213104358f63bc65a22625f4d41a2

41714ff5e86c936afe6acb4635d868e6354d3957

F20110109_AACATZ UFE0000889_Page_37.tif

8d51b2b37460089fa0328c9d3eec6538

c2e5157fa0b0c02ba132dfb3b58aac14d7f5306e

53891 F20110109_AACBAI UFE0000889_Page_65.QC.jpg

19cb11b064841a9b983115345769ad7c

18c435e1c83efa610b64e3ef2ff0038897d3d073

4686 F20110109_AACAVC UFE0000889_Page_32.pro

3c6f00296c640c5b8ab0efc1e6991820

53fc39598802512bb9824e0da7831f3981f6f82b

F20110109_AACAUN UFE0000889_Page_82.tif

8a7268b2e06172386ddb4505044063b2

e4b6a331126c27f1ab6090978b8ab0cabd798afa

18640 F20110109_AACBAJ UFE0000889_Page_65thm.jpg

c1ffae30fd103aad778d6dca1b0e733b

b3804b5e17a57d50ba135363caf151895fac3c73

11214 F20110109_AACAVD UFE0000889_Page_33.pro

f268279c0f37c8f3c84c3dfee2effab5

d822169f9a0eaa3a4d16a097b5a0150668f514fb

F20110109_AACAUO UFE0000889_Page_87.tif

ef066ce54a571ebc39bb2c705827d677

94a8069834bfd8fecc0f958940b657b6b78f1b4c

28445 F20110109_AACBAK UFE0000889_Page_68.QC.jpg

67f98d724d89790d4a13cf707c5a8eed

eaefe9b9822fe5381301e8101b746285474461a4

4674 F20110109_AACAVE UFE0000889_Page_35.pro

7660d8101ab1cac05e5fccf4904de0c0

ca4b548b4a264fe20afc8e5461bba507ad9ee39e

F20110109_AACAUP UFE0000889_Page_89.tif

169518d12844d70f6d835ee5858c30d2

e6b8a5c52583fd50b44fd3c1c2374ffb238f0d61

9099 F20110109_AACBAL UFE0000889_Page_72thm.jpg

a58b498da0369db1222e2ed3111726cd

0cf7e61bc817e938c749a192d3d34d566e71033e

12331 F20110109_AACAVF UFE0000889_Page_36.pro

5c81da4ecd643c1a52deb5eadb01ede6

bf9a38fc32b4536c17364d54b73ea7862067f5ac

F20110109_AACAUQ UFE0000889_Page_95.tif

843c480a26475a967a9d186107303740

544a6cf0d20f3c4f8ab7a93b6d4bbb077a0e94ac

8817 F20110109_AACBAM UFE0000889_Page_79thm.jpg

e2a1e568b0315d694e1b0b396cfce753

d65478bfd98109e3f5835fd8f5cb8826cb3d9fa0

F20110109_AACAUR UFE0000889_Page_97.tif

52c6862a132ee25baf31c4f1d22b6c5d

3ce8cd1c0b77818954458132561c37467c28166c

8841 F20110109_AACBAN UFE0000889_Page_82thm.jpg

342e48b0d86ad155bd8211621fda4f71

5ae9bad9af03c36b2c55bf106796e6a13189830f

13644 F20110109_AACAVG UFE0000889_Page_37.pro

fbaccd36f3198553d25f29b70bdc3c62

c5dce1e4f3e1bf8b6171bcc449ea967f9b933e2f

1280 F20110109_AACAUS UFE0000889_Page_02.pro

03ecc93a9b0baeb899530da327aeaa57

be66adc25255ce36bbe9c63f4b66136cf9aea008

28155 F20110109_AACBAO UFE0000889_Page_90.QC.jpg

9ee6790ddecac09795a11c68472f8392

ce7efdb318969dacdf60ee2630e622886ee26ea9

21200 F20110109_AACAVH UFE0000889_Page_39.pro

7a8c30ca0271bf3678299fca6fe7ea69

5ba8dde098bfdf7026d1cda75b065a81b8daa46b

40398 F20110109_AACAUT UFE0000889_Page_04.pro

2d01e7c4a381091c18a7274fcf5244ec

579f7a99181dc85bf4c2a47319c2a3930e85a42e

32536 F20110109_AACBAP UFE0000889_Page_92.QC.jpg

81489b5656fded8984eca36b422397d1

c2751fd182536fb433b614b67e2bd5d0c67a4ea9

9605 F20110109_AACAVI UFE0000889_Page_41.pro

3e66912bc69d0f8d508d1351fe59ee4f

bc0ccf3092bfc62741458aac54046e02576eeabe

76098 F20110109_AACAUU UFE0000889_Page_06.pro

e254190e0019e4b614c9eb62ad8e47fc

2a72c97fbc93fc723e01cec794bb0ae9a8698894

11529 F20110109_AACAVJ UFE0000889_Page_49.pro

87617f89eee1a9e0b4cfd7b38f460b9c

098ec52e612868514895c86ab01fa92544e0ae97

65965 F20110109_AACAUV UFE0000889_Page_11.pro

851a3423d6c2e2e6717fc3c830834ce8

16c69c7b467fbbd76ffb209d48974286f21a0653

50026 F20110109_AACAVK UFE0000889_Page_52.pro

317a67b289ad6b449019c1728a0a6e04

294134d8f5a735bef87462d3d4707452e67284ed

41240 F20110109_AACAUW UFE0000889_Page_14.pro

707530177f117b1245efdff00bc0403a

cbeb9f026b11b70d792145fd1f32e428339bdfd6

53602 F20110109_AACAWA UFE0000889_Page_93.pro

f42592d09ceb48f3ab9681917e6ada92

3926c4776acf878ade85696b14e9c7fd148afd3f

47069 F20110109_AACAVL UFE0000889_Page_53.pro

0d6cdec5f467ecc4dfce4dd43ec90f6f

4b353d5cab44fcf0b15ce13dcd22068caded7e4a

36790 F20110109_AACAUX UFE0000889_Page_18.pro

044d5a2ae2f26135d3363e45f308b048

36a0b3bb91f44af5be56e34fba5b1c0af1267e7f

119 F20110109_AACAWB UFE0000889_Page_03.txt

94148856a55430c8664f3326fbca5c3b

059585fbb523e2472de1d985cfb83b489c352d4d

13835 F20110109_AACAVM UFE0000889_Page_55.pro

8cae3363794a3689eddd727ee86e0682

1a66a923db6aa01d477bf2bae94fad426a6a0341

49188 F20110109_AACAUY UFE0000889_Page_19.pro

3c423dfc78bdbe6bcae880ec763d30b3

996a558ff64f965088293d11bdc6d4d71214e589

3217 F20110109_AACAWC UFE0000889_Page_05.txt

c9951b68a6866f64146393439bc77205

30378160ba45dc6a44a6220dd56c74541759c9aa

11356 F20110109_AACAVN UFE0000889_Page_56.pro

f38168cd50a5547cf5f6c60114f83513

798b571cb308ee0b3e9ff092535b7c8af8fb1ef2

49201 F20110109_AACAUZ UFE0000889_Page_22.pro

f313ef5fb968cb14eeb8f52e1c526513

a7ef13cae61d7fbbe1303a422d04d8b4ce4e772a

3062 F20110109_AACAWD UFE0000889_Page_06.txt

300213f5576975fe816541b0a7afb66a

1f7cd30e21072249bad51148b4e1c4ab3dffaa5a

39477 F20110109_AACAVO UFE0000889_Page_57.pro

38b5d8f2a4d40d9b4da20a058c6edb67

2d07ed8a7b13200baa381055eeea5962cd55c0e7

644 F20110109_AACAWE UFE0000889_Page_07.txt

a5ec104b5354cdb711f700c255ce68f7

be0c76dbabf5806d94a2b96de91fb9a902cd2cdb

31740 F20110109_AACAVP UFE0000889_Page_58.pro

c1e58d1d5ead792d2c4e57d5eafbd9e4

361cfd42084d7a50c650ab76ccf1c442362774b9

1826 F20110109_AACAWF UFE0000889_Page_15.txt

b186136d2aef57ab5899c41affa58996

61d4a6d5de8cc6079537f04b98f17cc531f30e68

34763 F20110109_AACAVQ UFE0000889_Page_59.pro

f63e64d59b122275b4c2589b9a02f9f8

5c8ecf048aed4285f6a238d5469fc0b4d5f6c5ac

1967 F20110109_AACAWG UFE0000889_Page_17.txt

507384e4d539825d5e57503eb7af74b3

b0d876b4f4dac42305ec1f50b69ff62537f33503

38875 F20110109_AACAVR UFE0000889_Page_65.pro

8eb39e9658035f20ee8b294da63b6c70

0f8a411861e4ce1ab6131878c4c65e24eed0cb37

12369 F20110109_AACAVS UFE0000889_Page_73.pro

4b95b32cf70391f5d6ed2f2d45ddafe0

81fec474196cb0d3cea33b3bc413fef1c7b8a4d2

1605 F20110109_AACAWH UFE0000889_Page_18.txt

827d791f8f49565396a8ca9a3e74b0d4

5738291dea1cc13ad43916b2082bd60c2f136365

14726 F20110109_AACAVT UFE0000889_Page_75.pro

15758bcba3845bacd6d8c53b8a501f1f

e4ce77dba6dc051618ce4ce446fdd13f21eafc4d

586 F20110109_AACAWI UFE0000889_Page_20.txt

30cc538573044b4832f88624fb240875

98be0a81c92366fc78c958129373cbf97f6ddf70

12301 F20110109_AACAVU UFE0000889_Page_76.pro

3310fd456ca203c85c5241a4c35f92c4

6541d72a9a8ad67fd029cc0f6cdb4bda6a4bc502

1775 F20110109_AACAWJ UFE0000889_Page_21.txt

5df44bf84789a8af24432f12166222ff

2fe467d1edcbcd8443188e50d32924c311b185c9

12733 F20110109_AACAVV UFE0000889_Page_82.pro

1120bc8f8fd2275886bb1c93a4b83fdb

8f3611b297766a29a6159aa04b39597abef67df4

1934 F20110109_AACAWK UFE0000889_Page_24.txt

30fd972704f8f4ea5fb22b43cf6ff514

a164ad91dcfa5924663b762266d331dca2645bfa

12977 F20110109_AACAVW UFE0000889_Page_84.pro

15af9cab9832feb653614aae61015bf2

637be8f30781592bbef5f9c7ec6dc667fa42894d

1873 F20110109_AACAWL UFE0000889_Page_25.txt

04003025f7dffdbfd68377cb54ffce42

a3f9864db4d6fdbe29ee92696a816351fdaf1e61

12759 F20110109_AACAVX UFE0000889_Page_85.pro

ce33cb74f809526188177c0e2d6840f8

7dccb41d22b3ac10ed959084028eed1fbc2236ae

1431 F20110109_AACAXA UFE0000889_Page_59.txt

d793f4c611640fd6bad2dfd58863f527

c165e02fb6e6c058aae620b70fcd26a99fd6bb0b

1008 F20110109_AACAWM UFE0000889_Page_29.txt

52dced49cb30241886837a6ebbd4f091

e2fbb05144f51d8977ad706143e38b9c894beb36

14969 F20110109_AACAVY UFE0000889_Page_88.pro

9564c4856bdbd59ac321dfd1957389b1

e7a6e95f73f5fadaafbe91cf64db42982abb6778

2006 F20110109_AACAXB UFE0000889_Page_62.txt

86f5f20c66e3748e2c487671154bbb65

f4451ffe81cea829728671a2f77d46a27af97bef

622 F20110109_AACAWN UFE0000889_Page_30.txt

61b9174e3b406f4008be98f33aa20ded

f5fba1629e453085db65bc4bdbec1c5ba016e27e

14593 F20110109_AACAVZ UFE0000889_Page_90.pro

7642498ec09fe328873778a9cfc0e67d

aae6e6757db45fc5a667af9383bbbd5bfdf83eba

645 F20110109_AACAXC UFE0000889_Page_66.txt

136ed48251f13ce029be89e0ab4ef4c1

c77f1f74c3aca8d78f4e561e61059260bc452ed2

2035 F20110109_AACAWO UFE0000889_Page_31.txt

d720a938fb16cc69c5d5fe87ac705291

a6d49bd5919a653e02f91bf347eece6118e40101

815 F20110109_AACAXD UFE0000889_Page_71.txt

4fa2eed7fdb038c4f2dbf3c976e72bd7

a3b0340d0b2e6bcd0057f058852fb119f4582745

273 F20110109_AACAWP UFE0000889_Page_32.txt

bd2794ecf920d1d90ac1d10e928bedf6

8c280867019b0a7f226fa70dd65a7234086d39c7

804 F20110109_AACAXE UFE0000889_Page_72.txt

00c54eda034a3bb34fc623bf1c76719d

c3907f5df60c70ae8b3c7aa96c9e37ba8ffe87b4

187 F20110109_AACAWQ UFE0000889_Page_35.txt

870c4865737a49b4e7b2c5cf72995f44

d0a1eef0da854d0597aedf1dd763aa3ed84b1d44

F20110109_AACAXF UFE0000889_Page_73.txt

1fb3cc96d3ed524ac4300ab47d9567fd

8ba8b3d6f66df498ff235537d23288cdd946cbea

689 F20110109_AACAWR UFE0000889_Page_37.txt

e2a828d62cbcffb0f14732bf864ebd37

7c0ade83ecca894ab904b539fa6baaa6d6e75cb1

656 F20110109_AACAXG UFE0000889_Page_78.txt

9641b5adf59be4baef5c5f2e0008caff

c9452653095eede1ff04498c974e8ffcdf5cab04

1506 F20110109_AACAWS UFE0000889_Page_38.txt

c72c785f290e89380c9208ba1be01fec

cdbb41a461805d8ca3c445346830a896053c10b3

672 F20110109_AACAXH UFE0000889_Page_79.txt

52a3a5f57e7c9bd0ca24cddd2b8ca4d1

19ea69807b5e0ff7cb581caa54c651691a0f4f79

1745 F20110109_AACAWT UFE0000889_Page_43.txt

f258b734c1a8527a638185ef0804afdf

e7f0d84a768b14ad94236ef0d6c13c1fd8f71466

730 F20110109_AACAWU UFE0000889_Page_45.txt

d4c8d5dc5200005a85f67d4923e50de8

35cad27e68ae150d3fdb7275f725dee72dc5b37f

669 F20110109_AACAXI UFE0000889_Page_81.txt

86511e49059535836a5718b851d8ae95

cf444f84565a19c32d4a05aded91b5feda7145b6

687 F20110109_AACAXJ UFE0000889_Page_82.txt

8c8ef64e73c8f3308b4205ee544a4139

49f36d04cf46a9caa0bab0cb579bb7cce32569d0

698 F20110109_AACAWV UFE0000889_Page_48.txt

7c1eef263e89de54e5390eea4a74ac94

ce12cd3266abbf2b983078d819a9fc36d31d8ae3

848 F20110109_AACAXK UFE0000889_Page_83.txt

a7d29d994169d22e73c2f64b4b16e1ed

0fb0158fbc1afcbf1465daf05671eee964bc1b12

1731 F20110109_AACAWW UFE0000889_Page_50.txt

5178a8575c2c93818a08ab62f3db4f72

efd04418d7f4c89fb0b853e15409525ce75b8774

10124 F20110109_AACAYA UFE0000889_Page_80thm.jpg

69761aa54b6ac6da4272bc4c76194064

0af8a0673d13b4ef6dfa94acb2dbb7d10d6036fe

679 F20110109_AACAXL UFE0000889_Page_84.txt

2d7d09538c75436f1243258f05f80346

4f329bb8c346ecb1dcb92e04eedb408544d75a8b

1858 F20110109_AACAWX UFE0000889_Page_53.txt

39ac864adb16d7686b93b54921582eda

e1a7e4e2c34345e5e478862b682f5b3781c6c88d

8186 F20110109_AACAYB UFE0000889_Page_49thm.jpg

c5e567128467c448969a76445f173e75

e863b685719a922c96a8b78b18a5651f5540a641

741 F20110109_AACAXM UFE0000889_Page_87.txt

34842f8ed074defdd9c6204ef9b8f487

d973cb7bdcf660848336a61433c5a167084c0b34

1864 F20110109_AACAWY UFE0000889_Page_54.txt

a1d9840832633be5df957c406851159e

58fa16ad458137c58574ee8b1e8991f7fa54682f

44902 F20110109_AACAAG UFE0000889_Page_33thm.jpg

100aadc842b44f9e0257c58e94fd0add

b3d1a72c432e37f921594997fba3bae734a368aa

24229 F20110109_AACAYC UFE0000889_Page_69.QC.jpg

5bded55d66e1475cab6b3941cc9ac683

54387edfd6f282b6f5ab91c0f9d43c7b12d02ae7

759 F20110109_AACAXN UFE0000889_Page_88.txt

9afb951d1c11f07f54748fa64f019cc7

1bb2527393d6bfd8e17006fa764c9338767db8a9

1275 F20110109_AACAWZ UFE0000889_Page_58.txt

d0ad67d62c7b1c5c3fbe8d700b89688d

6257d1db365ad65ccfa5bcec78da8bc3689b1852

10252 F20110109_AACAAH UFE0000889_Page_87thm.jpg

32b806ce8428911d3bcb273025b366b1

2445ca67a35750515160d0a53e9623c1457acf35

9485 F20110109_AACAYD UFE0000889_Page_66thm.jpg

c71b2516cdb23f0cd0d4956ecfff8306

9d0b63bdb0103150814a87a47a41bd07c9f33b58

2185 F20110109_AACAXO UFE0000889_Page_93.txt

28f734abc504a0bc485fd03a953c9111

6c75804056fdfdba6c9006ad9c81fa4cb0f49ae9

29861 F20110109_AACAYE UFE0000889_Page_77.QC.jpg

48b50b071009c79f003695c4c1d9d1e1

4265735ea7951bcdf30b67ccac8f305e49f05650

2162 F20110109_AACAXP UFE0000889_Page_96.txt

9605f0b38bfde6695bd105df526ea129

7412317d8e33a8df4ffb533eeefc730ba2abbe45

182750 F20110109_AACAAI UFE0000889_Page_63.jpg

d63a23bce7571d31099c69831927af32

cb075c69c916f5977930529d380a80ad4ec0fefa

56335 F20110109_AACAYF UFE0000889_Page_46.QC.jpg

c4a05412a9d1c0e144e50e074fdb6e5c

143d4f06cc6771c108a316128782c1ba11c1d2f9

1825 F20110109_AACAXQ UFE0000889_Page_97.txt

625d5a1cfeb4e523e32841437aacd683

67426cb7dae2364d08cf6667a66e6918a2d92684

114818 F20110109_AACAAJ UFE0000889_Page_93.jp2

bb1f115e098fc1e587f29e9420e2ef85

f4a4834b3ba5d4c9574b1cfb2d2c45f3492e8112

51904 F20110109_AACAYG UFE0000889_Page_58.QC.jpg

82c909ddef6d61c651fcda7be459780d

53788b22ed475411a78907214b1f9ee6e9b182f8

5495329 F20110109_AACAXR reinbolt_j.pdf

f03a9c493309bf9350c44f53b8a9de9c

969ab9ea64f22d49b2c064e595bb30b8f802c27d

1937 F20110109_AACAAK UFE0000889_Page_28.txt

26f69bddd38c5918c57f42e8f9dc36a3

5525742ea1d153f8efff638844924741f944ae86

21865 F20110109_AACAYH UFE0000889_Page_93thm.jpg

335ef823947d02e2f10e0ae1b686cddd

5ba305aade355541ae9818593d656ff4b50dddec

24142 F20110109_AACAXS UFE0000889_Page_52thm.jpg

c4e8305b7082f7cadd93f42b550cde6a

b710cd5f4aadf89353bab2464bfd596b6b333688

F20110109_AACAAL UFE0000889_Page_48.tif

7b34c5107fe6c7ec2dd3c245020d12d9

800d99ff69db7a62b73be465a1723612c10a67a9

25446 F20110109_AACAYI UFE0000889_Page_81.QC.jpg

35a0a9be377f9e2f833134c328c11882

0cc7c7b5c83fff1460a7bb7a628dfb4122641654

91164 F20110109_AACAXT UFE0000889_Page_57.QC.jpg

c816e9f8ebae0cbc84cb66d91c1369ed

6a86738bf51c948020b367d92affcd8c31511579

F20110109_AACABA UFE0000889_Page_03.tif

9f45936d0ef79e9e7dd3198fec126f23

f28b6b0676ad8ce0bc942053fbcecd8a0eb2e166

F20110109_AACAAM UFE0000889_Page_76.tif

2e4ae7fefcb963c7d38a3120cc9ba90f

2aaaf669f93c22ea16af0e3518cfe7acab6a67f5

8677 F20110109_AACAXU UFE0000889_Page_55thm.jpg

571333eb5a279bc5ac3b224256dd6d8a

e10b4a511bc419da87a429fb1340ccc5f7e8ee3f

42300 F20110109_AACABB UFE0000889_Page_21.pro

e67cff9d065ac2bae8a47aa18877353f

96a493392e12c6e989fa629236db89db5f1ecc77

15467 F20110109_AACAAN UFE0000889_Page_77.pro

623dd4256e6cacfabd06120e5d0c9a45

c4f73a9c4752ab61ecf42d8846da7a73bbd976d2

8207 F20110109_AACAYJ UFE0000889_Page_73thm.jpg

f6ee595b24fb060685b2b6a6edfa4cac

5cf94b0ffca7d7b368faab03a3eadcd0ec89ce41

24515 F20110109_AACAXV UFE0000889_Page_70.QC.jpg

608a19be2fa7ec76070910e1f669ba68

8eb26f3f9b00c36d568d55b3e4638038dab3d02f

12334 F20110109_AACABC UFE0000889_Page_46.pro

4933cc002fcff90c3a739e005967199c

e42657da08404da163278c02403ccf7555749310

74465 F20110109_AACAAO UFE0000889_Page_84.jpg

aaaef5e4c6efc802005ffbcff7d8aad2

417027e8907ebb4d8ec1c39908a3f10169e1287a

97366 F20110109_AACAYK UFE0000889_Page_25.QC.jpg

1998f8e0e60f0257b968bb695aa4d87b

5f3db2810edd02ee14c8bcc69609c9574c294ec0

8689 F20110109_AACAXW UFE0000889_Page_70thm.jpg

9c635d6035de514eefd3bed537ba3432

befa4ddc9af911f6d3f1f8e1c713ee2f4edbb734

34512 F20110109_AACABD UFE0000889_Page_47.jp2

86c1d7351064639f83847c53b4d95a8d

667ed2c71d2d4a5264a608dbda9f8c15d796b0b4

15649 F20110109_AACAAP UFE0000889_Page_80.pro

3a7e1fbd8dc37d04312525d273401269

2445e1923428849725f35971aaed581055dbb3a9

43020 F20110109_AACAYL UFE0000889_Page_41thm.jpg

41cf09729a386c1e0519f94f64878c50

3243c2316835921d70814a79743a04df8cfd48f9

30060 F20110109_AACAXX UFE0000889_Page_83.QC.jpg

70ffb52150c9a1487358579d11428a0f

edff16123204fe56cd4a7e255323b15833f96d45

48909 F20110109_AACABE UFE0000889_Page_51thm.jpg

5e65e2d1a6ce03cfa42641ea857d93c6

2ce0beb1906d7f12e9d017dc771dd011953026dd

933 F20110109_AACAAQ UFE0000889_Page_89.txt

0d18fe51636aa2ab146b9993816cb4de

8f49a45e49a70bec7fcdc4ac3bedb94814a1b389

6274 F20110109_AACAZA UFE0000889_Page_03.QC.jpg

3b23ab0fadcb1f7b63b11add76856407

fd3abfdd126e609d86f7dcae396d01782d198597

9948 F20110109_AACAYM UFE0000889_Page_81thm.jpg

2e7bff7e67fd120811600d9ea5d265a4

b3e898e51bea50438fbb92f453a940a276ecc9bc

55242 F20110109_AACAXY UFE0000889_Page_48.QC.jpg

1cbbe82b855d2d058fc6cc658f25b237

3175a9fc9d5389e5be761cf8e26dd22ed79b363d

236820 F20110109_AACABF UFE0000889_Page_28.jpg

fc823f8af4213c19ef3f02be55ba9b35

5eb65997e4a782a559e547fb168ce978008464db

9153 F20110109_AACAZB UFE0000889_Page_75thm.jpg

fb977b261c44d42132aaa53bf95a92f0

2782474dfbffd31012e71f10dc4c1572ecb97487

7719 F20110109_AACAYN UFE0000889_Page_37thm.jpg

f903876b80b2a9db04ce61f5c2560d6c

24ff24d0cb179d39b608608fdd6d3919f03daae2

103758 F20110109_AACAXZ UFE0000889_Page_44.QC.jpg

d9217e8f3c8bd12b139dcc27cdb54e39

f49a971187fcf9ade1f3ca4ca6ad818c70c5751a

1588 F20110109_AACABG UFE0000889_Page_03.pro

09f1a155a8f9d259cfa465e8ee9ffff0

0938b15950f5be37572fef28d2a4420b45a57072

107475 F20110109_AACAAR UFE0000889_Page_17.QC.jpg

2a2dfc5142a718580a31bffaec201372

5aed548ca72c3d9029fc6e81759298be80e8ba7c

46487 F20110109_AACAZC UFE0000889_Page_43thm.jpg

c145f0552e9035536e263d445a3d0a8b

0a1e55cae997333399d3aed81bc0a5809783fb1e

10174 F20110109_AACAYO UFE0000889_Page_71thm.jpg

5916a0ee98508459052c7d370b3fe453

9444490910855f3bcb478f40f39d00116d6f163d

32246 F20110109_AACABH UFE0000889_Page_66.jp2

50d99c604b8cb1ac03ec13d747710b74

b2a34445b874b19900525a92199fb0d15cecc8ee

440366 F20110109_AACAAS UFE0000889_Page_46.jp2

dd9ac03dd2aa64a0e8f9b2656d4e7fe5

8cb56f5ab11b8d539670e98898a689a304bf18ff

8588 F20110109_AACAZD UFE0000889_Page_67thm.jpg

58323a016deba798e2ae173288fce27a

a2bcac7c4780025b337c957f57aa3ef77d099c02

62171 F20110109_AACAYP UFE0000889_Page_35.QC.jpg

0a7ac10c8e404137dfc9781eba413e8e

1221948b78360a70e001c37e9c7b06ec15a49181

F20110109_AACABI UFE0000889_Page_83.tif

2e9985481a8ad669f584b6c4e2303522

df5a779f210c4520a9548025b461ad987f7b8457

172012 F20110109_AACAAT UFE0000889_Page_60.jpg

8d3aee8db3c7f4b60dfecd9135b10a64

622c7240e9bda88dfcff9e2da80c716f251e82b3

36988 F20110109_AACAZE UFE0000889_Page_46thm.jpg

523db132d830f8b071cd19a6bc3797ba

3e2d13fe6b8f67b5e6a23f610196a7c318c4f583

20421 F20110109_AACAYQ UFE0000889_Page_04thm.jpg

658a6a0a57bba338635675f13309b590

7072522b1d94ce50a0a9389635e44e46215a09ca

F20110109_AACABJ UFE0000889_Page_51.tif

e35657e676e54bbe80711cb89f0ff67d

7648f833fb0c067b5619e5890b36ead011db35f4

49819 F20110109_AACAAU UFE0000889_Page_53thm.jpg

b664cdc707e9d9bcec7e6b6c690cfc49

5c0c2911700d44117492a8a255a62a263437d536

9654 F20110109_AACAZF UFE0000889_Page_69thm.jpg

286ac5135c6d6f8a75d592f89494f84e

9e6e1da57af4136a8351c877851ede5731edf84b

50110 F20110109_AACAYR UFE0000889_Page_54thm.jpg

09aa9432b93df0e163e64346934d4ecd

dfd42a980548249919b73e2af2f2711e2c4d1572

67830 F20110109_AACABK UFE0000889_Page_76.jpg

e9289e7f41ed29675d2a798272d5c1ba

d517415312efc937ea78b1adde078da062111a7b

24509 F20110109_AACAAV UFE0000889_Page_67.QC.jpg

be697cf1e2c2bbf0a48d677ece707d45

ba7bd28163ed3f2927af047db8982095759eeded

49673 F20110109_AACAZG UFE0000889_Page_08thm.jpg

71282b162c1f048d2313341262b398d8

3f5a25a0e27a1ad5eb6bab635044fc589a3cd202

3102 F20110109_AACAYS UFE0000889_Page_03thm.jpg

280077f082f5e565379df6b566fb580a

b6e7c13517d8e52f69b2b7eb1f256234acc5229a

809 F20110109_AACABL UFE0000889_Page_74.txt

1d960099e82fac4162f6584782a41bbb

62b7cc487de7ba6101241315f21ef1036503e0c0

34534 F20110109_AACAAW UFE0000889_Page_39.QC.jpg

03faabc8fa15043b79e05916100154c8

708eed194e92f47bd43805eff46577259856a2de

104126 F20110109_AACAZH UFE0000889_Page_28.QC.jpg

4f33c569591f31cf6d69bec760fc6d08

bf14c6791b34bc49be72931e0af71320106d47ce

112972 F20110109_AACAYT UFE0000889_Page_06.QC.jpg

0911ddf351d79a61067f3527d58a78db

425b5644ce6eba6bbb9476831693fb34a766aa9c

F20110109_AACACA UFE0000889_Page_84.tif

8037e7f9b0a22daf7861ceb498392eea

87adafdf576535ef8214d3f5ebb54c6c279d7b9d

1814 F20110109_AACABM UFE0000889_Page_64.txt

d7c8fd86c1b4df358e03e5ee7a2fa139

5990ccfd9fdfb6c870ced8e87c50f2317069f4bb

94066 F20110109_AACAAX UFE0000889_Page_64.jp2

d5278512195cc0cab6ef70d4af5cf938

18b9b2676854ec48b7046cc65d16edc8ebdb95aa

130244 F20110109_AACAZI UFE0000889_Page_09.QC.jpg

f2e5b8aad67f752a01d333b518913ff2

decfd9017851db4166dbf3fcde88abc6db5d83b2

40078 F20110109_AACAYU UFE0000889_Page_10thm.jpg

876a3aa0eb4fec6f4ff84a1adb0bdf18

2d1d2a726fcd32bb2f8b1b88ffc1b86c20233cf5

82375 F20110109_AACACB UFE0000889_Page_86.jpg

ec27887383aa1ce9629c3fe6d5b4c46e

cbdf3d51e56c6ba17843b3d9d955a404bff53df4

F20110109_AACABN UFE0000889_Page_38.tif

2562859df4b32df379de77ab69f97823

0242667c63acba9429071ee2c55dc3e0210717ea

F20110109_AACAAY UFE0000889_Page_26.tif

6a6e9265cccb6d1d9878c5c99bc7b43b

facaf82e931c8c51723c008dafd95729e614c150

24057 F20110109_AACAZJ UFE0000889_Page_75.QC.jpg

a5292b82b29166de927dd09585ed981c

a0debdb5648ce47346db83e8105dcb4f814a442c

26721 F20110109_AACAYV UFE0000889_Page_45.QC.jpg

048d8b73d87fc8e58f264fd70271c0ab

0d03fb205119cdfa30ba1040002cf36f90c33b3c

F20110109_AACACC UFE0000889_Page_20.tif

6a803b93793e4f9365e53f37cf125201

88152d993a0dea0a212ba36329e17e2ba479ca44

48952 F20110109_AACABO UFE0000889_Page_51.pro

b46d3a3ded8fbd43064544ca3904fd84

bb02655003e4417c2132365ab3f96d4c13c2f945

46884 F20110109_AACAAZ UFE0000889_Page_21thm.jpg

2dac96fe6e90e76d990be95922b4e04f

34cfef4d0ef78e84bc097023a4380571079e2c07

30100 F20110109_AACAYW UFE0000889_Page_74.QC.jpg

d610174de672ae2fb432a54250bd4b87

219f19659791a2a051230c6daa0b1ac787f6057c

F20110109_AACACD UFE0000889_Page_11.tif

5739673ea186323f6cea313b49a81983

38cc7a1d4f519e11b568dce107b9101eef2fa0a5

F20110109_AACABP UFE0000889_Page_96.tif

6787d373c2b575118b8555afdbc2fd62

488110ba1023dd52f6f2a13c634a5e1603214ecd

23395 F20110109_AACAZK UFE0000889_Page_49.QC.jpg

019881e18552664fdf605fb1a7fcdeea

a122a1a5444d1e6bbad5efde5f6dd8a65dec31c2

18797 F20110109_AACAYX UFE0000889_Page_63thm.jpg

c189e77baa47bd1bf7aca101584add95

b38ccb7cd28ac8e9f056cbeef959390a632e65e1

40197 F20110109_AACACE UFE0000889_Page_43.pro

858db6926750083c053048e792abfe58

0624fedd0c7644588c03d0f270f44f1989bb5694

48102 F20110109_AACABQ UFE0000889_Page_27.pro

d5ee15eb4607a6f1ddcabc1ed1ac3fb5

7336834e3fe1ddb0bc097f2b5bdca4637d36e258

64114 F20110109_AACAZL UFE0000889_Page_04.QC.jpg

036a2a6675f8d297c249db17c234a7ae

6f41c68e4d72b7d131e9651f59a4db485918ef88

58080 F20110109_AACAYY UFE0000889_Page_13.QC.jpg

d046f2b0ed8d29c6af9676bd953e8dda

4da29392aec679880603341ce369ee7ad76a6fb8

59813 F20110109_AACACF UFE0000889_Page_60.QC.jpg

7df1f4edb69af0a80ba440e299afaf38

97e202690f5c32b2c716fade28af05548f0b2e9a

9655 F20110109_AACABR UFE0000889_Page_48.pro

d8e0db21f9cbe3779bf684f4a51ae9ae

9821b1c8eb487ae2203849027459c2c92f22990b

71688 F20110109_AACAZM UFE0000889_Page_96.QC.jpg

6f4a27c542a12538010176a2277203dc

09546e7ff7caf0a4da9dead70b20e20b3ff6a366

2959420 F20110109_AACAYZ UFE0000889.xps

e2302aafc5f4922c3434da9abd76a150

ace5aebd33ee80f546a785f4e540c36e2fd14142

12109 F20110109_AACACG UFE0000889_Page_70.pro

9229afe9b6845e29a4aa20391eabff74

393d32b1ba641c4864ca3349b7404fd35aebbe88

41877 F20110109_AACAZN UFE0000889_Page_40thm.jpg

fb08e5f7ff9cf5f1839c244ed316bc5a

9f2a3f3db8ec58f032731010ea3be395eb4f1ba5

52594 F20110109_AACACH UFE0000889_Page_96.pro

627b28c7bf118431d0c89c03f3b9a1ef

e8af33df38b77c061c325497389bdc6e0f0f7901

16729 F20110109_AACABS UFE0000889_Page_58thm.jpg

2726366d629c94c70f049d349d5fac54

e6cd84ccd3d464394ee947787af542a2e27d7c3e

34017 F20110109_AACAZO UFE0000889_Page_20thm.jpg

daac2bb87c17768c1af6edd0fda05d0a

38a2fbaec09fd35b9a838b75e24b4f0eb8445486

50940 F20110109_AACACI UFE0000889_Page_28thm.jpg

24c523354d82b07b90798d53e73b130f

b1c6b9f3897fd3e1a9b6b4e5c95d566917d7fe87

43752 F20110109_AACABT UFE0000889_Page_15.pro

c730ec55d774bf3760751068d9c68566

8c281c88a2bcca2fa69fe32f8503ded629dbd8b8

36692 F20110109_AACAZP UFE0000889_Page_48thm.jpg

b3ddb6d9fd0ce1631133c819e5f33edf

f9c5fd332f36490d166b39e762439075b85ddf6b

F20110109_AACACJ UFE0000889_Page_29.tif

e25f14cc0d255e1fad5c1d66b19bf22e

e90ca414f55dd3848baad3d6c2fe296ebf224496

25206 F20110109_AACABU UFE0000889_Page_29.pro

22a52069d6b37fb40f8b8cab5705a62b

d34d9df8c79343972f8041e1876480bed5f73116

67069 F20110109_AACAZQ UFE0000889_Page_34.QC.jpg

996149aad4e46d8dd8e3d7e40e6b296f

d3678b8ab65f14b55015908afb710000930c435d

44412 F20110109_AACACK UFE0000889_Page_12.QC.jpg

aea7bfa49ea5d8bf4f74577c39218184

4a2e711d8c2cb7a67b0c01adb3a3d02b879d03cf

447 F20110109_AACABV UFE0000889_Page_01.txt

2485a42dd64bd2609b6dfe74dec50564

045cb83d6dac29b68e9e3c5608ec91880d2b1cc5

25656 F20110109_AACAZR UFE0000889_Page_84.QC.jpg

3968152fa6acf1cd6452a5cd2fcc9937

e83e0c2c384a22299f5dbad995310eaa8b161c00

14489 F20110109_AACACL UFE0000889_Page_87.pro

a13b76c9811055bb6b4b06e87679564d

d0d9db177f2a606194e109f896c789424bc31862

F20110109_AACABW UFE0000889_Page_64.tif

b99857504cb7bf0fcd09203f9c4dec4c

3692b6ce22e3b742a0bffc92b43f7a4cbd2f5ace

147508 F20110109_AACAZS UFE0000889_00001.xml

d3f8fe2a9090e9b4e55d7d17cf27c68d

7b9ce1690681a751ff997a0b84cc0a51ac6801e2

1685 F20110109_AACACM UFE0000889_Page_57.txt

c86564572e16a1d38daee937fef1c946

9ee6224b7d686a1727962e90d665d4b71a1afd66

128230 F20110109_AACABX UFE0000889_Page_32.jpg

0fc246eabd7d3e1c2665cce6dacf548f

071e1348d8d1aeb0d1abd1ad0fee962fa8c662f7

51641 F20110109_AACAZT UFE0000889_Page_06thm.jpg

c9e5be7e54c2215b6742b3e66de2c913

aa3fef2fbd890e837428cbf5f26930965fe72ddf

12060 F20110109_AACADA UFE0000889_Page_67.pro

592abfdac31c847b7dfde39e12ba81ec

a284a91ddc5ea3c6b975c34b2c178597758b5227

82231 F20110109_AACACN UFE0000889_Page_33.QC.jpg

94d492e61d0695c4061c9bebe45756a5

bfa9c27f24c040a0d2af587d255e21e4ff84a801

46473 F20110109_AACABY UFE0000889_Page_89.jp2

b7f4e0a540beb6ffcc3912068440e59b

af6481c2a52e8f57ba65b25178881adb2c01fcfa

54986 F20110109_AACAZU UFE0000889_Page_07.QC.jpg

5dce5bb636029ab73a0edbc4ec322e58

f17d9c066b920e5d101682513fc811fa2ec18236

20564 F20110109_AACADB UFE0000889_Page_64thm.jpg

c7706734360b13d44ec64723df562a6c

0f9b2d29cf1b4e5eda8ebb68e9430063ec874410

34845 F20110109_AACACO UFE0000889_Page_84.jp2

4be3b1d33a36816d125139b3fbad46b6

e5b01afbfaab6bbe9b0bdd686d3b4f4bf75bfc56

28000 F20110109_AACABZ UFE0000889_Page_91.QC.jpg

f562a1021f43f1c668844bc14911b14a

df4de288afbb4d5854626b0e3933d541cc15287e

34954 F20110109_AACAZV UFE0000889_Page_07thm.jpg

5af6bb360a456674f52ad73ad44cfb24

1ea44d11194be5956c5d7eab59c530ff36b02a10

73047 F20110109_AACADC UFE0000889_Page_45.jpg

90c7b75991762957a39a7f1481116fb5

4b71b59a528ec1b817c91fa153d73824b0fe87d7

F20110109_AACACP UFE0000889_Page_14.tif

c863b1615d52962d5e9757c0d0f607f2

0ab4fddd43b0d42e9fb37e37b25d9eacac7d0837

108172 F20110109_AACAZW UFE0000889_Page_16.QC.jpg

f8b48c81960553e5aee1d2fca8bbbdd3

28606dc9aeb965091ea2cd82b3bab39fb7153c14

12431 F20110109_AACADD UFE0000889_Page_78.pro

565ff17cd60311a19c8bdb3ef8e25ca8

10dd20d33f021794c26ef332e419d79dd710fd8f

49133 F20110109_AACACQ UFE0000889_Page_94thm.jpg

e5091d036d8124c7d2b6d2a258dd3cfc

69ffcff9b83af48c22c838da35508edc098bdc98

52193 F20110109_AACAZX UFE0000889_Page_16thm.jpg

19c22d01dbad2b260859e66c71f66d2e

b0daf80fb685b8a9a8aae1d4b85c7082ed0b1b1e

54789 F20110109_AACADE UFE0000889_Page_56.jpg

eb63c1623730074eb05834ec3222f449

85fa43c26c5fa7f2eed7962e5e2d25dc5792966e

14895 F20110109_AACACR UFE0000889_Page_91.pro

d19dc155b3c7e39bf8d48f62153e878c

857cd4ad4410afe5027480d589e57f8ffec8f274

102576 F20110109_AACAZY UFE0000889_Page_27.QC.jpg

7b80c8f03445d35e5b06b5701660a02c

de1fca63ebffbff0978fc3883f18768dc4286b8e

649 F20110109_AACADF UFE0000889_Page_69.txt

89faeb72f11b5d5b495a1400b079ca83

f7fc442978f3c107b5286248be5f9a9f956f890e

72981 F20110109_AACACS UFE0000889_Page_10.QC.jpg

0d3731952f07685023ccd51e505518fd

3cf5f2dadf948e5a107d9fe25ccee5429f3ecf59

69209 F20110109_AACAZZ UFE0000889_Page_30.QC.jpg

20ccdfbf7b99627efae42068e6207df9

1b7e936e31f398df96f9e6a9c3535b3b63aea7c4

753451 F20110109_AACADG UFE0000889_Page_30.jp2

07222ef091f45a6111b961fba2f0b780

e0f14a9a14b084acba7cb0745308eee1ecc9f53d

38105 F20110109_AACADH UFE0000889_Page_91.jp2

0b23c00a202c90687b67f3c67cb021b8

69a6f53c47b12e16d6903a50786cf864dc8a2fc5

14749 F20110109_AACACT UFE0000889_Page_03.jpg

2098f6ec82e2932f4b5f5d29a70f51cb

ad2beaea320c11514293a0981410954b27e52eff

47874 F20110109_AACADI UFE0000889_Page_15thm.jpg

ae1ed54263d91c123722a39e4726922c

89b37c9f2533525a6fbb49c93b9975f531bcea1a

F20110109_AACACU UFE0000889_Page_47.tif

96b3d06d44985521f27e68bfa36940cb

225475ff3d328c4230b6acfb846b0a4276665382

10018 F20110109_AACADJ UFE0000889_Page_84thm.jpg

6e6c1011a32b89a177df47f38e4ca817

ce33d0df8cfc2701077e3281bd6532c366b0926e

41066 F20110109_AACACV UFE0000889_Page_74.jp2

f43b4bd2d06aaf6071cbf44dc4fc1c5f

3ac015b9b65f06f768611aed66661265b0576c7e

1926 F20110109_AACADK UFE0000889_Page_51.txt

8f9a3686f1e805870c7bec680a0ed60e

b66bca33195f3e111174657916672a014d8b5fff

576615 F20110109_AACACW UFE0000889_Page_29.jp2

a19369abef7d5df3a258f4e5cfd645aa

0564f5d345d889068ec9bb228c1ca8e3c54ae1ef

50715 F20110109_AACADL UFE0000889_Page_62.pro

7c530a493ff4c43f0541cd56e7c81319

54351880c01842660ae4ae57b5c419ceb696efbe

F20110109_AACACX UFE0000889_Page_67.tif

1759eb5cc7140b1249627e453b3874c1

b0101ffc5a02bfb507e4db7bb6635c1a01153c35

82444 F20110109_AACAEA UFE0000889_Page_13.jp2

68ec70c6f4570ea5e8bef01402637199

dc00c6b7320758d067fde98646cdecf7e2b14058

37924 F20110109_AACADM UFE0000889_Page_36thm.jpg

b6d541d3a11352ae78571ff79c2063e1

d3844546dff5c7be5d924175c9ccae7482496073

87658 F20110109_AACACY UFE0000889_Page_05.QC.jpg

e6d0bd02464573b28f5779dcbc6352c8

682b8b8192d88abc79e5209b3df4e1206fd360c0

101082 F20110109_AACAEB UFE0000889_Page_53.QC.jpg

9ae3be4c85795579cbbd6a52ebc206b2

8f7ceb96e9294c721e4bf54872064358a6c91b7a

12580 F20110109_AACADN UFE0000889_Page_12.pro

427e3888e7aa000f57c6f20aa754a47d

c71b42df483d79c3c936d938d5cdd32612646f4b

30152 F20110109_AACACZ UFE0000889_Page_86.QC.jpg

153ead1b5bad6d57c13fac596a72148e

20d3e62ee825269561bedf2b93e84f561b440b55

108228 F20110109_AACAEC UFE0000889_Page_08.QC.jpg

93c9b5085c286e2e9d46e25a855fec2f

95ed6a4e89f418517c31b288c765a1dd2f94655c

F20110109_AACADO UFE0000889_Page_92.tif

815276f495699bdbe5f0fa2f08925f2a

4bdeb4d5e8cec4be3758d0fb2b92ad2d47960834

157974 F20110109_AACAED UFE0000889_Page_18.jpg

51c1b7c5d39b887c7935dcc277e2e8a3

efc02c8166e5d75e00a3b6e14a39ae91ed69d057

12899 F20110109_AACADP UFE0000889_Page_81.pro

8e98ada8c9bd5f2e9a95c37d352ae9a8

5c0d368102915b416e15ab5135b3501399703a24

49729 F20110109_AACAEE UFE0000889_Page_27thm.jpg

3cc4139f870b9a27f4cbdccb063b967e

b03cfe2e4c8d66c482d8a7e221cbe1d04753f9c9

24944 F20110109_AACADQ UFE0000889_Page_73.QC.jpg

cba50e632a43283fe8d7a878f96980c4

2ba958b20e3e3a65cb0be5858794fad3a87a0e7f

10181 F20110109_AACAEF UFE0000889_Page_83thm.jpg

90eaf7ae978c64607a9763849ecb5b32

cf4ef3785a917ba64d553e91b8d9b2ac530304c2

241765 F20110109_AACADR UFE0000889_Page_17.jpg

b2666a76bd6ee3971daf86e5d0044032

3ddfe8eaf5529d53165e1b9ece81a95bae7217a7

24704 F20110109_AACAEG UFE0000889_Page_76.QC.jpg

61f3d8d9d370fd726485461bac4a209d

6d1d3e68da46430275ae1a880842885a98044ef5

27959 F20110109_AACADS UFE0000889_Page_88.QC.jpg

d0e08ab2547eae63e00e96108d9a8534

b3cf850c8d03db49dadf902693e9b60c6cdc9cfc

F20110109_AACAEH UFE0000889_Page_02.tif

0e6e89120a246eb52c9e8574d99f3af5

9c68860a187323a741c70b729b8608571f5a82e8

71555 F20110109_AACADT UFE0000889_Page_93.QC.jpg

b448060c4d8f3204a547165d254a1e25

5b2900000ae0fcb96b6b5981e1a7739e127c9f86

44723 F20110109_AACAEI UFE0000889_Page_64.pro

cdf436cfe9ce415a5594e1bbef35fe79

d80c6a1330540d780cd1a50d22795ff0ddf62309

21603 F20110109_AACAEJ UFE0000889_Page_42.pro

a0886be7b4ce00521aaacae13089bc2f

37b98231978be57169ac13b3207c90abe8f402eb

24895 F20110109_AACADU UFE0000889_Page_82.QC.jpg

19bec6cb3428395f68a32c71a2503ed7

d921ea6130ef2e1ee19e0dd19d12ea44a10bce3c

156619 F20110109_AACAEK UFE0000889_Page_65.jpg

2345ae96c8220d831ecb5e57b29e5d6a

084163f015b086cadbd8f9a094e087d78deead56

945 F20110109_AACADV UFE0000889_Page_92.txt

a75e01a9bd0fa60c764ebdd03da3bb06

63fe61afa9448ff497d5caf3225c4bc87e15d20e

14881 F20110109_AACAEL UFE0000889_Page_72.pro

95ee81ab469eff70f57e4a6199b6ae7e

44213db76f6e7dd3402fb143679ddfc71bb085e9

F20110109_AACADW UFE0000889_Page_40.tif

46c4770dff8428db8488fe743fab81b7

578670e9e6ff5ae69d8e877481ba5352fce4253f

57689 F20110109_AACAFA UFE0000889_Page_94.pro

73076437749b9192396ac39a5e0cba41

1af1d3f48ccf8c47062627c292e8eaf07628a6d0

1051945 F20110109_AACAEM UFE0000889_Page_23.jp2

ca90f39f4a3b9f0ac7414f9318e56aff

88a2039f83f61394412ea17a1ca06bb889320540

10491 F20110109_AACADX UFE0000889_Page_90thm.jpg

da967c67b013062811c9f19fdd1e65ad

eee1c85726f36cfd4ef444fddf6b0921069b9dcf

PAGE 1

DETERMINATION OF PATIENT-SPE CIFIC FUNCTIONAL AXES THROUGH TWO-LEVEL OPTIMIZATION By JEFFREY A. REINBOLT A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLOR IDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2003

PAGE 2

Copyright 2003 by Jeffrey A. Reinbolt

PAGE 3

This thesis is dedicated to my loving wife, Karen.

PAGE 4

ACKNOWLEDGMENTS I sincerely thank Dr. B. J. Fregly for his support and leadership throughout our research endeavors; moreover, I truly recognize the value of his honest, straightforward, and experience-based advice. My life has been genuinely influenced by Dr. Freglys expectations, confidence, and trust in me. I also extend gratitude to Dr. Raphael Haftka and Dr. Roger Tran-Son-Tay for their dedication, knowledge, and instruction in the classroom. For these reasons, each was selected to serve on my supervisory committee. I express thanks to both individuals for their time, contribution, and fulfillment of their committee responsibilities. I recognize Jaco for his assistance, collaboration, and suggestions. His dedication and professionalism have allowed my graduate work to be both enjoyable and rewarding. I collectively show appreciation for my family and friends. Unconditionally, they have provided me with encouragement, support, and interest in my graduate studies and research activities. My wife, Karen, has done more for me than any person could desire. On several occasions, she has taken a leap of faith with me; more importantly, she has been directly beside me. Words or actions cannot adequately express my gratefulness and adoration toward her. I honestly hope that I can provide her as much as she has given to me. I thank God for my excellent health, inquisitive mind, strong faith, valuable experiences, encouraging teachers, loving family, supportive friends, and wonderful wife. iv

PAGE 5

TABLE OF CONTENTS Page ACKNOWLEDGMENTS.................................................................................................iv TABLE OF CONTENTS.....................................................................................................v LIST OF TABLES...........................................................................................................viii LIST OF FIGURES...........................................................................................................xi ABSTRACT.....................................................................................................................xiii CHAPTER 1 INTRODUCTION........................................................................................................1 Arthritis: The Nations Leading Cause of Disability...................................................1 Need for Accurate Patient-Specific Models.................................................................2 Benefits of Two-Level Optimization............................................................................3 2 BACKGROUND..........................................................................................................4 Motion Capture.............................................................................................................4 Biomechanical Models.................................................................................................4 Kinematics and Dynamics............................................................................................5 Optimization.................................................................................................................5 Limitations of Previous Methods..................................................................................5 3 METHODS...................................................................................................................7 Parametric Model Structure..........................................................................................7 Hip Joint................................................................................................................8 Knee Joint..............................................................................................................8 Ankle Joint...........................................................................................................10 Two-Level Optimization Approach............................................................................11 Why Two Levels of Optimization Are Necessary..............................................11 Inner-Level Optimization....................................................................................11 Outer-Level Optimization...................................................................................12 Two-Level Optimization Evaluation..........................................................................13 Synthetic Marker Data without Noise.................................................................13 v

PAGE 6

Synthetic Marker Data with Noise......................................................................13 Experimental Marker Data..................................................................................14 4 RESULTS...................................................................................................................29 Synthetic Marker Data without Noise........................................................................29 Synthetic Marker Data with Noise.............................................................................29 Experimental Marker Data.........................................................................................29 5 DISCUSSION.............................................................................................................36 Assumptions, Limitations, and Future Work..............................................................36 Joint Model Selection..........................................................................................36 Design Variable Constraints................................................................................36 Objective Function Formulation..........................................................................37 Optimization Time and Parallel Computing........................................................37 Multi-Cycle and One-Half-Cycle Joint Motions.................................................38 Range of Motion and Loading Conditions..........................................................39 Optimization Using Gait Motion.........................................................................39 Comparison of Experimental Results with Literature................................................40 6 CONCLUSION...........................................................................................................43 Rationale for New Approach......................................................................................43 Synthesis of Current Work and Literature..................................................................43 GLOSSARY......................................................................................................................45 APPENDIX A NOMINAL JOINT PARAMETERS & OPTIMIZATION BOUNDS FOR SYNTHETIC MARKER DATA................................................................................52 B NOMINAL JOINT PARAMETERS & OPTIMIZATION BOUNDS FOR EXPERIMENTAL MARKER DATA.......................................................................55 C NOMINAL & OPTIMUM JOINT PARAMETERS FOR SYNTHETIC MARKER DATA WITHOUT NOISE.........................................................................................58 D NOMINAL & OPTIMUM JOINT PARAMETERS FOR SYNTHETIC MARKER DATA WITH NOISE.................................................................................................61 E NOMINAL & OPTIMUM JOINT PARAMETERS FOR MULTI-CYCLE EXPERIMENTAL MARKER DATA.......................................................................64 F NOMINAL & OPTIMUM JOINT PARAMETERS FOR FIRST ONE-HALF-CYCLE EXPERIMENTAL MARKER DATA....................................67 vi

PAGE 7

G NOMINAL & OPTIMUM JOINT PARAMETERS FOR SECOND ONE-HALF-CYCLE EXPERIMENTAL MARKER DATA....................................70 H OPTIMUM JOINT PARAMETERS FOR MULTI-CYCLE & FIRST ONE-HALF-CYCLE EXPERIMENTAL MARKER DATA....................................73 I OPTIMUM JOINT PARAMETERS FOR MULTI-CYCLE & SECOND ONE-HALF-CYCLE EXPERIMENTAL MARKER DATA....................................76 LIST OF REFERENCES...................................................................................................79 BIOGRAPHICAL SKETCH.............................................................................................83 vii

PAGE 8

LIST OF TABLES Table Page 3-1 Model degrees of freedom........................................................................................17 3-2 Hip joint parameters.................................................................................................20 3-3 Knee joint parameters...............................................................................................23 3-4 Ankle joint parameters.............................................................................................25 4-1 Two-level optimization results for synthetic marker data with random continuous numerical noise to simulate skin movement artifacts with maximum amplitude of 1 cm.............................................................................................................................31 4-2 Mean marker distance errors for nominal values and the two-level optimization results for multi-cycle experimental marker data.....................................................33 4-3 Mean marker distance errors for the two-level optimization results using first and second halves of the joint cycle motion for experimental marker data....................35 5-1 Mean marker distance errors for the inner-level objective function consisting of marker coordinate errors versus marker distance errors for multi-cycle experimental marker data...............................................................................................................41 5-2 Execution times for the inner-level objective function consisting of marker coordinate errors versus marker distance errors for multi-cycle experimental marker data...........................................................................................................................42 A-1 Nominal right hip joint parameters and optimization bounds for synthetic marker data...........................................................................................................................52 A-2 Nominal right knee joint parameters and optimization bounds for synthetic marker data...........................................................................................................................53 A-3 Nominal right ankle joint parameters and optimization bounds for synthetic marker data...........................................................................................................................54 B-1 Nominal right hip joint parameters and optimization bounds for experimental marker data...............................................................................................................55 viii

PAGE 9

B-2 Nominal right knee joint parameters and optimization bounds for experimental marker data...............................................................................................................56 B-3 Nominal right ankle joint parameters and optimization bounds for experimental marker data...............................................................................................................57 C-1 Nominal and optimum right hip joint parameters for synthetic marker data without noise.........................................................................................................................58 C-2 Nominal and optimum right knee joint parameters for synthetic marker data without noise............................................................................................................59 C-3 Nominal and optimum right ankle joint parameters for synthetic marker data without noise............................................................................................................60 D-1 Nominal and optimum right hip joint parameters for synthetic marker data with noise.........................................................................................................................61 D-2 Nominal and optimum right knee joint parameters for synthetic marker data with noise.........................................................................................................................62 D-3 Nominal and optimum right ankle joint parameters for synthetic marker data with noise.........................................................................................................................63 E-1 Nominal and optimum right hip joint parameters for multi-cycle experimental marker data...............................................................................................................64 E-2 Nominal and optimum right knee joint parameters for multi-cycle experimental marker data...............................................................................................................65 E-3 Nominal and optimum right ankle joint parameters for multi-cycle experimental marker data...............................................................................................................66 F-1 Nominal and optimum right hip joint parameters for first one-half-cycle experimental marker data.........................................................................................67 F-2 Nominal and optimum right knee joint parameters for first one-half-cycle experimental marker data.........................................................................................68 F-3 Nominal and optimum right ankle joint parameters for first one-half-cycle experimental marker data.........................................................................................69 G-1 Nominal and optimum right hip joint parameters for second one-half-cycle experimental marker data.........................................................................................70 G-2 Nominal and optimum right knee joint parameters for second one-half-cycle experimental marker data.........................................................................................71 ix

PAGE 10

G-3 Nominal and optimum right ankle joint parameters for second one-half-cycle experimental marker data.........................................................................................72 H-1 Optimum right hip joint parameters for multi-cycle and first one-half-cycle experimental marker data.........................................................................................73 H-2 Optimum right knee joint parameters for multi-cycle and first one-half-cycle experimental marker data.........................................................................................74 H-3 Optimum right ankle joint parameters for multi-cycle and first one-half-cycle experimental marker data.........................................................................................75 I-1 Optimum right hip joint parameters for multi-cycle and second one-half-cycle experimental marker data.........................................................................................76 I-2 Optimum right knee joint parameters for multi-cycle and second one-half-cycle experimental marker data.........................................................................................77 I-3 Optimum right ankle joint parameters for multi-cycle and second one-half-cycle experimental marker data.........................................................................................78 x

PAGE 11

LIST OF FIGURES Figure Page 3-1 The 3D, 14 segment, 27 DOF full-body kinematic model linkage joined by a set of gimbal, universal, and pin joints..............................................................................16 3-2 A 1 DOF joint axis simultaneously defined in two adjacent body segments and the geometric constraints on the optimization of each of the 9 model parameters........18 3-3 Modified Cleveland Clinic marker set used during static and dynamic motion-capture trials................................................................................................19 3-4 The 3 DOF right hip joint center simultaneously defined in the pelvis and right femur segments and the 6 translational model parameters optimized to determine the functional hip joint center location.....................................................................20 3-5 Geometric constraints on the optimization of translational and rotational model parameters for the hip, knee, and ankle joints..........................................................21 3-6 The 1 DOF right knee joint simultaneously defined in the right femur and right tibia segments and the 4 rotational and 5 translational model parameters optimized to determine the knee joint location and orientation................................................22 3-7 The 2 DOF right ankle joint complex simultaneously defined in the right tibia, talus, and foot segments and the 5 rotational and 7 translational model parameters optimized to determine the joint locations and orientations....................................24 3-8 Two-level optimization technique minimizing the 3D marker coordinate errors between the kinematic model markers and experimental marker data to determine functional joint axes for each lower-extremity joint................................................26 3-9 Inner-level optimization convergence illustration series for the knee joint, where synthetic markers are blue and model markers are red............................................27 3-10 Two-level optimization approach minimizing the 3D marker coordinate errors between the kinematic model markers and experimental marker data to determine functional joint axes.................................................................................................28 4-1 Outer-level optimization objective function fitness value convergence for synthetic marker data with random continuous numerical noise to simulate skin movement xi

PAGE 12

artifacts with maximum amplitude of 1 cm, where the best fitness value among all nodes is given for each iteration...............................................................................32 4-2 Outer-level optimization objective function fitness value convergence for multi-cycle experimental marker data, where the best fitness value among all nodes is given for each iteration.........................................................................................34 xii

PAGE 13

Abstract of Thesis Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Master of Science DETERMINATION OF PATIENT-SPECIFIC FUNCTIONAL AXES THROUGH TWO-LEVEL OPTIMIZATION By Jeffrey A. Reinbolt August 2003 Chair: Benjamin J. Fregly Major Department: Biomedical Engineering An innovative patient-specific dynamic model would be useful for evaluating and enhancing corrective surgical procedures. This thesis presents a nested (or two-level) system identification optimization approach to determine patient-specific model parameters that best fit a three-dimensional (3D), 18 degree-of-freedom (DOF) lower-body model to an individuals movement data. The whole body was modeled as a 3D, 14 segment, 27 DOF linkage joined by a set of gimbal, universal, and pin joints. For a given set of model parameters, the inner-level optimization uses a nonlinear least squares algorithm that adjusts each generalized coordinate of the lower-body model to minimize 3D marker coordinate errors between the model and motion data for each time instance. The outer-level optimization implements a parallel particle swarm algorithm that modifies each model parameter to minimize the sum of the squares of 3D marker coordinate errors computed by the inner-level optimization throughout all time instances (or the entire motion). xiii

PAGE 14

At the termination of each two-level optimization using synthetic marker data without noise, original marker trajectories were precisely recovered to within an arbitrarily tight tolerance (on the order of 1e-13 cm) using double precision computations. At the termination of each two-level optimization using synthetic marker data with noise representative of skin and soft tissue movement artifacts, the mean marker distance error for each joint complex was as follows: ankle = 0.51 + 0.23 cm; knee = 0.39 + 0.15 cm; and hip = 0.47 + 0.20 cm. Mean marker distance errors are approximately one-half of the 1 cm maximum amplitude specified for the noise model. At the termination of each two-level optimization using experimental marker data from one subject, the mean marker distance error for each joint complex was less than or equal to the following: ankle = 0.38 + 0.19 cm; knee = 0.55 + 0.27 cm; and hip = 0.36 + 0.20 cm. Experimental mean marker distance error results are comparable to the results of the synthetic data with noise. The two-level optimization method effectively determines patient-specific model parameters defining a 3D lower-extremity model that is well suited to a particular subject. When compared to previous values in the literature, experimental results show reasonable agreement and demonstrate the necessity for the new approach. By minimizing fitness errors between the patient-specific model and experimental motion data, the resulting kinematic model provides an accurate foundation for future dynamic analyses and optimizations. xiv

PAGE 15

CHAPTER 1 INTRODUCTION Arthritis: The Nations Leading Cause of Disability In 1997, the Centers for Disease Control and Prevention (CDC) reported that 43 million (or 1 in 6) Americans suffered with arthritis. A 2002 CDC study showed that 70 million (a 63% increase in 5 years; or 1 in 3) Americans have arthritis ( CDC, 2003 ). Approximately two-thirds of individuals with arthritis are under 65 years old. As the population ages, the number of people with arthritis is likely to increase significantly. The most common forms of arthritis are osteoarthritis, rheumatoid arthritis, fibromyalgia, and gout. Osteoarthritis of the knee joint accounts for roughly 30% ($25 billion) of the $82 billion total arthritis costs per year in the United States. Knee osteoarthritis symptoms of pain and dysfunction are the primary reasons for total knee replacement (TKR). This procedure involves a resurfacing of bones surrounding the knee joint. The end of the femur is removed and covered with a metal implant. The end of the tibia is removed and substituted by a plastic implant. Smooth metal and plastic articulation replaces the irregular and painful arthritic surfaces. Approximately 100,000 Medicare patients alone endure TKR procedures each year ( Heck et al., 1998 ). Hospital charges for unilateral TKR are more than $30,000 and the cost of bilateral TKR is over $50,000 ( Lane et al., 1997 ). An alternative to TKR is a more conservative (both economically and surgically) corrective procedure known as high tibial osteotomy (HTO). By changing the frontal plane alignment of the tibia with a wedge of bone, a HTO shifts the weight-bearing axis 1

PAGE 16

2 of the leg, and thus the mechanical stresses, from the diseased portion to the healthy section of the knee compartment. By transferring the location of mechanical stresses, the degenerative disease process may be slowed or possibly reversed. The advantages of HTO are appealing to younger and active patients who receive recommendations to avoid TKR. Need for Accurate Patient-Specific Models Innovative patient-specific models and simulations would be valuable for addressing problems in orthopedics and sports medicine, as well as for evaluating and enhancing corrective surgical procedures ( Arnold et al., 2000 ; Arnold and Delp, 2001 ; Chao et al., 1993 ; Chao and Sim, 1995 ; Delp et al., 1998 ; Delp et al., 1996 ; Delp et al., 1990 ; Pandy, 2001 ). For example, a patient-specific dynamic model may be useful for planning intended surgical parameters and predicting the outcome of HTO. The main motivation for developing a patient-specific computational model and a two-level optimization method to enhance the lower-extremity portion is to predict the post-surgery peak knee adduction moment in HTO patients. Conventional surgical planning techniques for HTO involve choosing the amount of necessary tibial angulation from standing radiographs (or x-rays). Unfortunately, alignment correction estimates from static x-rays do not accurately predict long-term clinical outcome after HTO ( Andriacchi, 1994 ; Tetsworth and Paley, 1994 ). Researchers have identified the peak external knee adduction moment as an indicator of clinical outcome while investigating the gait of HTO patients ( Andriacchi, 1994 ; Bryan et al., 1997 ; Hurwitz et al., 1998 ; Prodromos et al., 1985 ; Wang et al., 1990 ). Currently, no movement simulations (or other methods for that matter) allow surgeons to choose HTO surgical parameters to achieve a chosen post-surgery knee adduction moment.

PAGE 17

3 Movement simulations consist of models involving skeletal structure, muscle paths, musculotendon actuation, muscle excitation-contraction coupling, and a motor task goal ( Pandy, 2001 ). Development of an accurate inverse dynamic model of the skeletal structure is a significant first step toward creating a predictive patient-specific forward dynamic model to perform movement simulations. The precision of dynamic analyses is fundamentally associated with the accuracy of kinematic model parameters such as segment lengths, joint positions, and joint orientations ( Andriacchi and Strickland, 1985 ; Challis and Kerwin, 1996 ; Cappozzo et al., 1975 ; Davis, 1992 ; Holden and Stanhope, 1998 ; Holden and Stanhope, 2000 ; Stagni et al., 2000 ). Understandably, a model constructed of rigid links within a multi-link chain and simple mechanical approximations of joints will not precisely match the human anatomy and kinematics. The model should provide the best possible agreement to experimental motion data within the bounds of the joint models selected ( Sommer and Miller, 1980 ). Benefits of Two-Level Optimization This thesis presents a nested (or two-level) system identification optimization approach to determine patient-specific joint parameters that best fit a three-dimensional (3D), 18 degree-of-freedom (DOF) lower-body model to an individuals movement data. The two-level technique combines the advantages of using optimization to determine both the position of model segments from marker data and the anatomical joint axes linking adjacent segments. By formulating a two-level objective function to minimize marker coordinate errors, the resulting optimum model more accurately represents experimental marker data (or a specific patient and his or her motion) when compared to a nominal model defined by joint axes prediction methods.

PAGE 18

CHAPTER 2 BACKGROUND Motion Capture Motion capture is the use of external devices to capture the movement of a real object. One type of motion-capture technology is based on a passive optical technique. Passive refers to markers, which are simply spheres covered in reflective tape, placed on the object. Optical refers to the technology used to provide 3D data, which involves high-speed, high-resolution video cameras. By placing passive markers on an object, special hardware records the position of those markers in time and it generates a set of motion data (or marker data). Often motion capture is used to create synthetic actors by capturing the motions of real humans. Special effects companies have used this technique to produce incredibly realistic animations in movies such as Star Wars Episode I & II, Titanic, Batman, and Terminator 2. Biomechanical Models Researchers use motion-capture technology to construct biomechanical models of the human structure. The position of external markers may be used to estimate the position of internal landmarks such as joint centers. The markers also enable the creation of individual segment reference frames that define the position and orientation of each body segment within a Newtonian laboratory reference frame. Marker data collected from an individual are used to prescribe the motion of the biomechanical model. 4

PAGE 19

5 Kinematics and Dynamics Human kinematics is the study of the positions, angles, velocities, and accelerations of body segments and joints during motion. With kinematic data and mass-distribution data, one can study the forces and torques required to produce the recorded motion data. Errors between the biomechanical model and the recorded motion data will inevitably propagate to errors in the force and torque results of dynamic analyses. Optimization Optimization involves searching for the minimum or maximum of an objective function by adjusting a set of design variables. For example, the objective function may be the errors between the biomechanical model and the recorded motion data. These errors are a function of the models generalized coordinates and the models kinematic parameters such as segment lengths, joint positions, and joint orientations. Optimization may be used to modify the design variables of the model to minimize the overall fitness errors and identify a structure that matches the experimental data very well. Limitations of Previous Methods The literature contains a number of examples that use techniques, with or without optimization, to assist in the development of subject-specific joint models within a larger computational model. Several authors have presented methodologies to predict joint locations and orientations from external landmarks without using optimization ( Bell et al., 1990 ; Inman, 1976 ; Vaughan et al., 1992 ). However, a regression model based solely upon population studies may not accurately portray an individual patient. Another study demonstrated an optimization method to determine the position and orientation of a 3 link, 6 DOF model by minimizing the distances between model-determined and experimental marker positions ( Lu and OConnor, 1999 ). A model optimally positioned

PAGE 20

6 without adjusting its joint parameters may not properly correspond to a certain patient. Earlier studies described optimization methods to determine a set of model parameters for a 3D, 2 DOF model by decreasing the error between the motion of the model and experimental data ( Sommer and Miller, 1980 ; Bogert et al., 1994 ). A model defined by optimal joint parameters without optimizing its segment positions may not accurately describe the motion of a patient within the bounds of the chosen joint approximations.

PAGE 21

CHAPTER 3 METHODS Parametric Model Structure A generic, parametric 3D full-body kinematic model was constructed with Autolev (Online Dynamics, Inc., Sunnyvale, CA) as a 14 segment, 27 DOF linkage joined by a set of gimbal, universal, and pin joints ( Figure 3-1 Table 3-1 ). Comparable to Pandy's ( 2001 ) model structure, 3 translational degrees of freedom (DOFs) (q1, q2, and q3) and 3 rotational DOFs (q4, q5, and q6) express the movement of the pelvis in 3D space and the remaining 13 body segments comprise four open chains branching from the pelvis segment. The locations and orientations of the joints within corresponding body segments are described by 98 patient-specific model parameters. In other words, the patient-specific model parameters designate the geometry of the model containing the following joints types: 3 DOF hip, 1 DOF knee, 2 DOF ankle, 3 DOF back, 2 DOF shoulder, and 1 DOF elbow. Each joint is defined in two adjacent body segments and provides a mechanical approximation connecting those segments ( Figure 3-2 ). For example, the knee joint axis is simultaneously established in the femur coordinate system and the tibia coordinate system. A modified version of the Cleveland Clinic marker set ( Figure 3-3 ) and a static motion-capture trial is used to create segment coordinate systems and define static and dynamic marker locations in these coordinate systems. Institutional review board approval and proper informed consent were obtained before human involvement in the experiments. The marker data collection system was a HiRes Expert Vision System 7

PAGE 22

8 (Motion Analysis Corp., Santa Rosa, CA), including six HSC-180 cameras, EVa 5.11 software, and two AMTI force plates (Advanced Management Technology, Inc., Arlington, VA). Marker data were collected at 180 Hz during 3 seconds for static trials and 6 seconds for individual joint trials. The raw data were filtered using a fourth-order, zero phase-shift, low pass Butterworth Filter with a cutoff frequency set at 6 Hz. Hip Joint There are 6 translational model parameters that must be adjusted to establish a functional hip joint center for a particular patient ( Figure 3-4 Table 3-2 ). Markers placed over the left anterior superior iliac spine (ASIS), right ASIS, and superior sacrum define the pelvis segment coordinate system. From percentages of the inter-ASIS distance, a predicted (or nominal) hip joint center location within the pelvis segment is 19.3% posterior (p1), 30.4% inferior (p2), and 35.9% medial-lateral (p3) ( Bell et al., 1990 ). This nominal hip joint center is the origin of the femur coordinate system, which is subsequently defined by markers placed over the medial and lateral femoral epicondyles. An additional 3 translational model parameters (p4, p5, and p6), described in the femur coordinate system, complete the structure of the nominal hip joint center. Given the physical hip joint center is located within the pelvic region lateral to the midsagittal plane, a cube with side lengths equal to 75% of the inter-ASIS distance and its anterior-superior-medial vertex positioned at the midpoint of the inter-ASIS line provides the geometric constraints for the optimization of each model parameter ( Figure 3-5 Table A-1 Table B-1 ). Knee Joint There are 9 model parameters (5 translational and 4 rotational) that must be tailored to identify a patient-specific functional knee joint axis ( Figure 3-6 Table 3-3 ). The

PAGE 23

9 femoral transepicondylar axis is a good approximation of a fixed knee joint axis ( Churchill et al., 1998 ). The line (or nominal) knee joint axis, connecting the medial and lateral knee markers is defined in the femur and tibia coordinate systems ( Vaughan et al., 1992 ). Given the line passes through the midsagittal plane (x-y plane) of the femur segment, the nominal knee joint axis is positioned within the femur via 2 translational model parameters (p5 and p6) and 2 rotational model parameters (p1 and p2). The tibia coordinate system originates at the midpoint of the knee markers and is defined by additional markers located on the medial and lateral malleoli. The distal description of the nominal knee joint axis is comprised of 3 translational model parameters (p7, p8, and p9) and 2 rotational model parameters (p3 and p4) in the tibia segment. Given the anatomical knee joint DOFs are situated within the articular capsule, a cube with side lengths equal to the distance between knee markers and its center located at the midpoint of the nominal knee joint axis provides the geometric constraints for the optimization of each translational model parameter. The rotational model parameters are constrained within a circular cone defined by the 360 revolution of the nominal knee joint axis perturbed by + 30 ( Figure 3-5 Table A-2 Table B-2 ). It is not a trivial notion to eliminate a potential medial-lateral translational model parameter in the femur segment. This model parameter is considered redundant, as the knee joint axis passes through the midsagittal plane of the femur, and its inclusion may lead to possible optimization convergence problems, similar to the redundant ankle model parameter discussion of Bogert et al. ( 1994 ). By including redundant model parameters, there are an infinite number of optimum solutions within the constraints of corresponding superfluous model parameters.

PAGE 24

10 Ankle Joint There are 12 patient-specific model parameters (7 translational and 5 rotational) that must be customized to determine a pair of patient-specific functional ankle joint axes ( Figure 3-7 Table 3-4 ). Comparable to Bogert et al. ( 1994 ), the talocrural and subtalar joints connect the tibia, talus, and foot segments. Within the tibia segment, 3 translational model parameters (p6, p7, and p8) and 2 rotational model parameters (p1 and p2) position the nominal talocrural joint axis. The talus origin corresponds to the talocrural joint center; therefore, it is not necessary to prescribe model parameters defining the talocrural joint axis in the talus segment. The talus coordinate system is created where the y-axis extends along the line perpendicular to both the talocrural joint axis and the subtalar joint axis. The heel and toe markers, in combination with the tibia y-axis, define the foot coordinate system. There are 3 translational model parameters (p10, p11, and p12) and 2 rotational model parameters (p4 and p5) ( Inman, 1976 ) that place the nominal subtalar joint axis in the foot coordinate system. Given the anatomical ankle joint DOFs are found within the articular capsule, a cube with side lengths equal to the distance between ankle markers and its center located at the midpoint of the nominal talocrural joint axis provides the geometric constraints for the optimization of each translational model parameter. The rotational model parameters of the talocrural joint axis are restricted within a circular cone defined by the 360 revolution of the nominal talocrural joint axis varied by + 30. The rotational model parameters of the subtalar joint axis are confined within a circular cone defined by the 360 revolution of the nominal subtalar joint axis altered by + 30 ( Figure 3-5 Table A-3 Table B-3 ).

PAGE 25

11 Two-Level Optimization Approach Why Two Levels of Optimization Are Necessary Optimization may be used to identify a system (or determine patient-specific joint parameters) that best fit a 3D, 18 DOF lower-body model to an individuals movement data. One level of optimization is necessary to establish the models geometry. Given a defined model, another level of optimization is required to position and orientate the models body segments. By formulating a two-level objective function to minimize 3D marker coordinate errors, the two-level optimization results describe a lower-body model that accurately represents experimental data. Inner-Level Optimization Given marker trajectory data, md, and a constant set of patient-specific model parameters, p, the inner-level optimization ( Figure 3-8 inner boxes) minimizes the 3D marker coordinate errors, ec, between the model markers, m m and the marker movement data, md, ( Equation 3-1 ) using a nonlinear least squares algorithm that adjusts the generalized coordinates, q, of the model at each instance in time, t, ( Figure 3-9 ), similar to Lu and OConnor ( 1999 ). In other words, the pose of the model is revised to match the marker movement data at each time frame of the entire motion. (q, p, t) m(t) m (q, p, t) emdc min (3-1) At the first time instance, the algorithm is seeded with exact values for the 6 generalized coordinates of the pelvis, since the marker locations directly identify the position and orientation of the pelvis coordinate system, and all remaining generalized coordinates are seeded with values equal to zero. Given the joint motion is continuous, each optimal generalized coordinate solution, including the pelvis generalized

PAGE 26

12 coordinates, at one time instance is used as the algorithms seed for the next time instance. Matlab 6.1 (The MathWorks, Inc., Natick, MA), in conjunction with the Matlab Optimization Toolbox and Matlab C/C++ Compiler, was used to develop the inner-level optimization program. Outer-Level Optimization The outer-level global optimization ( Figure 3-8 outer boxes) minimizes the sum of the squares, ess, of the 3D marker coordinate errors, ec, ( Equation 3-1 ) computed by the inner-level algorithm throughout all time instances, n, ( Equation 3-2 ) by modifying the patient-specific model parameters, p. In other words, the geometric structure of the model is varied to best fit the marker movement data for the entire motion. ntcTcss(q, p, t)e(q, p, t)e (q, p, n) e1 min (3-2) The outer-level optimization is adapted from the population-based Particle Swarm Optimizer (PSO) ( Kennedy and Eberhart, 1995 ). The PSO algorithm was chosen over gradient-based optimizers for its suitability to be parallelized and its ability to solve global optimization problems. It is particularly effective in the determination of joint positions and orientations of biomechanical systems ( Schutte et al., 2003 ). The work of Schutte et al. ( 2003 ) contrasted the PSO to a gradient-based optimizer (i.e., Broyden-Fletcher-Goldfarb-Shanno) that is commonly used in system identification problems involving biomechanical models. The PSO very reliably converged to the global minimum and it was insensitive to both design variable scaling and initial seeds ( Schutte et al., 2003 ). To manage computational requirements, the outer-level optimization uses a parallel version of the PSO operating on a cluster of 20 Linux-based 1.33 GHz Athlon PCs on a

PAGE 27

13 100 Mbps switched Fast Ethernet network. Each machine is separately seeded with a random set of initial patient-specific model parameter values. The outer-level optimization program was implemented in C on the Linux operating system with the Message Passing Interface (MPI) parallel computation libraries. Two-Level Optimization Evaluation Synthetic Marker Data without Noise To evaluate the ability of the two-level optimization approach ( Figure 3-10 ) to calibrate the generic, parametric kinematic model, synthetic movement data was generated for the ankle, knee, and hip joints based on estimated in vivo model parameters and experimental movement data. For each generated motion, the distal segment moved within the physiological range of motion and exercised each DOF for the joint. There were 50 time frames and approximately 3.5 cycles of a circumductive hip motion consisting of concurrent flexion-extension and abduction-adduction. Flexion-extension comprised 50 time frames and roughly 4 cycles of knee motion. The ankle motion involved 50 time frames and nearly 2.75 cycles of circumduction of the toe tip, where plantarflexion-dorsiflexion and inversion-eversion occurred simultaneously. The ability of the two-level optimization to recover the original model parameters used when generating the synthetic motions was assessed. Synthetic Marker Data with Noise To evaluate the ability of the two-level optimization method ( Figure 3-10 ) to calibrate the generic kinematic model to a synthetic patient, skin movement artifacts were introduced into the synthetic movement data for the ankle, knee, and hip joints. The relative movement between skin and underlying bone occurs in a continuous rather than a random fashion ( Cappozzo et al., 1993 ). Comparable to the simulated skin movement

PAGE 28

14 artifacts of Lu and OConnor ( 1999 ), a continuous numerical noise model of the form tA sin was used and the equation variables were randomly generated within the following bounds: amplitude (0 A 1 cm), frequency (0 25 rad/s), and phase angle (0 2) ( Chze et al., 1995 ). Noise was separately generated for each 3D coordinate of the marker trajectories. Again, the two-level optimization was tested for its ability to reproduce the original model parameters. Experimental Marker Data To verify the ability of the two-level optimization technique ( Figure 3-10 ) to calibrate the generic kinematic model to a particular patient, multi-cycle experimental marker trajectory data was collected from one subject. For each joint motion, the distal segment moved within the physiological range of motion and exercised each DOF for the joint. Analogous to Bogert et al. ( 1994 ), the original data were resampled non-equidistantly to eliminate weighting the data set with many data points occurring during acceleration and deceleration at the limits of the range of motion. In other words, regardless of changes in velocity during joint movements, the data was equally distributed over the entire joint range of motion. The time frames of original tracked marker data sets (right hip = 1015, right knee = 840, and right ankle = 707) were reduced to 50 time frames. The resampled data allowed a fixed amount of marker movement between frames to arrive at the number of time frames chosen, given that 50 time frames is analogous to Lu and OConnor ( 1999 ). There were nearly 2 cycles of flexion-extension and abduction-adduction involved in the hip motion. Similar to Leardini et al. ( 1999 ), internal-external rotation of the hip was avoided to reduce the effects of skin and soft tissue movement artifacts. Approximately 2 cycles of knee

PAGE 29

15 motion included flexion-extension. Simultaneous plantarflexion-dorsiflexion and inversion-eversion comprised roughly 2 cycles of ankle motion. Without knowledge of original model parameters, the marker coordinate errors are the only means of measuring the effectiveness of the two-level optimization. To verify the ability of the two-level optimization procedure ( Figure 3-10 ) to calibrate the generic kinematic model to a particular patient using a smaller portion of the joint motion cycle, the resampled multi-cycle experimental marker trajectory data described above was divided into the first and second halves of the individual hip, knee, and ankle joint motion cycles. The number of time frames comprising each one-half-cycle of the joint motion was as follows: ankle = 13, knee = 13, and hip = 19. Again, the two-level optimization was tested for its ability to reduce the marker coordinate errors and obtain an optimal set of model parameters.

PAGE 30

16 3-1. The 3D, 14 segment, 27 DOF full-body kinematic model linkage joined by a set of gimbal, universal, and pin joints. Figure

PAGE 31

17 3-1. Model degrees of freedom. Table DOF Description q1 Pelvis anterior-posterior position q2 Pelvis superior-inferior position q3 Pelvis medial-lateral position q4 Pelvis anterior-posterior tilt angle q5 Pelvis elevation-depression angle q6 Pelvis internal-external rotation angle q7 Right hip flexion-extension angle q8 Right hip adduction-abduction angle q9 Right hip internal-external rotation angle q10 Right knee flexion-extension angle q11 Right ankle plantarflexion-dorsiflexion angle q12 Right ankle inversion-eversion angle q13 Left hip flexion-extension angle q14 Left hip adduction-abduction angle q15 Left hip internal-external rotation angle q16 Left knee flexion-extension angle q17 Left ankle plantarflexion-dorsiflexion angle q18 Left ankle inversion-eversion angle q19 Trunk anterior-posterior tilt angle q20 Trunk elevation-depression angle q21 Trunk internal-external rotation angle q22 Right shoulder flexion-extension angle q23 Right shoulder adduction-abduction angle q24 Right elbow flexion angle q25 Left shoulder flexion-extension angle q26 Left shoulder adduction-abduction angle q27 Left elbow flexion angle

PAGE 32

18 3-2. A 1 DOF joint axis simultaneously defined in two adjacent body segments and the geometric constraints on the optimization of each of the 9 model parameters. Figure

PAGE 33

19 3-3. Modified Cleveland Clinic marker set used during static and dynamic motion-capture trials. Note: the background femur and knee markers have been omitted for clarity and the medial and lateral markers for the knee and ankle are removed following the static trial. Figure

PAGE 34

20 3-4. The 3 DOF right hip joint center simultaneously defined in the pelvis and right femur segments and the 6 translational model parameters optimized to determine the functional hip joint center location. Figure 3-2. Hip joint parameters. Table Hip Joint Parameter Description p1 Anterior-posterior location in pelvis segment p2 Superior-inferior location in pelvis segment p3 Medial-lateral location in pelvis segment p4 Anterior-posterior location in femur segment p5 Superior-inferior location in femur segment p6 Medial-lateral location in femur segment

PAGE 35

21 3-5. Geometric constraints on the optimization of translational and rotational model parameters for the hip, knee, and ankle joints. Figure

PAGE 36

22 3-6. The 1 DOF right knee joint simultaneously defined in the right femur and right tibia segments and the 4 rotational and 5 translational model parameters optimized to determine the knee joint location and orientation. Figure

PAGE 37

23 3-3. Knee joint parameters. Table Knee Joint Parameter Description p1 Adduction-abduction rotation in femur segment p2 Internal-external rotation in femur segment p3 Adduction-abduction rotation in tibia segment p4 Internal-external rotation in tibia segment p5 Anterior-posterior location in femur segment p6 Superior-inferior location in femur segment p7 Anterior-posterior location in tibia segment p8 Superior-inferior location in tibia segment p9 Medial-lateral location in tibia segment

PAGE 38

24 3-7. The 2 DOF right ankle joint complex simultaneously defined in the right tibia, talus, and foot segments and the 5 rotational and 7 translational model parameters optimized to determine the joint locations and orientations. Figure

PAGE 39

25 3-4. Ankle joint parameters. Table Ankle Joint Parameter Description p1 Adduction-abduction rotation of talocrural in tibia segment p2 Internal-external rotation of talocrural in tibia segment p3 Internal-external rotation of subtalar in talus segment p4 Internal-external rotation of subtalar in foot segment p5 Dorsi-plantar rotation of subtalar in foot segment p6 Anterior-posterior location of talocrural in tibia segment p7 Superior-inferior location of talocrural in tibia segment p8 Medial-lateral location of talocrural in tibia segment p9 Superior-inferior location of subtalar in talus segment p10 Anterior-posterior location of subtalar in foot segment p11 Superior-inferior location of subtalar in foot segment p12 Medial-lateral location of subtalar in foot segment

PAGE 40

26 3-8. Two-level optimization technique minimizing the 3D marker coordinate errors between the kinematic model markers and experimental marker data to determine functional joint axes for each lower-extremity joint. Figure

PAGE 41

27 3-9. Inner-level optimization convergence illustration series for the knee joint, where synthetic markers are blue and model markers are red. Given synthetic marker data without noise, optimized outer-level design variables, and a synthetic knee flexion angle = 90, A) is the initial model knee flexion = 0, B) is the model knee flexion = 30, C) is the model knee flexion = 60, and D) is the final model knee flexion = 90. Figure

PAGE 42

28 3-10. Two-level optimization approach minimizing the 3D marker coordinate errors between the kinematic model markers and experimental marker data to determine functional joint axes. Figure

PAGE 43

CHAPTER 4 RESULTS Synthetic Marker Data without Noise For synthetic motions without noise, each two-level optimization precisely recovered the original marker trajectories to within an arbitrarily tight tolerance (on the order of 1e-13 cm), as illustrated in Figure 3-9 At the termination of each optimization, the optimum model parameters for the hip, knee, and ankle were recovered with mean rotational errors less than or equal to 0.045 and mean translational errors less than or equal to 0.0077 cm ( Appendix C ). Synthetic Marker Data with Noise For synthetic motions with noise, the two-level optimization of the hip, knee, and ankle resulted in mean marker distance errors equal to 0.46 cm, which is of the same order of magnitude as the selected random continuous noise model ( Table 4-1 ). The two-level approach determined the original model parameters with mean rotational errors less than or equal to 3.73 and mean translational errors less than or equal to 0.92 cm ( Appendix D ). The outer-level fitness history converged rapidly ( Figure 4-1 ) and the hip, knee, and ankle optimizations terminated with a mean wall clock time of 41.02 hours. Experimental Marker Data For multi-cycle experimental motions, the mean marker distance error of the optimal hip, knee, and ankle solutions was 0.41 cm, which is a 0.43 cm improvement over the mean nominal error of 0.84 cm ( Table 4-2 ). For each joint complex, the optimum model parameters improved upon the nominal parameter data (or values found 29

PAGE 44

30 in the literature) by mean rotational values less than or equal to 6.18 and mean translational values less than or equal to 1.05 cm ( Appendix E ). When compared to the synthetic data with noise, the outer-level fitness history of the multi-cycle experimental data optimization converged at approximately the same rate and resulted in an improved final solution for both the ankle and the hip ( Figure 4-2 ). On the contrary, the higher objective function values for the knee are evidence of the inability of the fixed pin joint to represent the screw-home motion ( Blankevoort et al., 1988 ) of the multi-cycle experimental knee data. The multi-cycle hip, knee, and ankle optimizations terminated with a mean wall clock time of 35.94 hours. For one-half-cycle experimental motions, the mean marker distance error of the optimal hip, knee, and ankle solutions was 0.30 cm for the first half and 0.30 cm for the second half ( Table 4-3 ). The fitness of both the ankle and the hip were comparable to the multi-cycle joint motion results. However, the knee fitness values were improved due to the reduced influence (i.e., 1 time frame of data as opposed to 9) of the screw-home motion of the knee. For each joint complex, the optimum model parameters improved upon the nominal parameter data (or values found in the literature) by mean rotational values less than or equal to 11.08 and mean translational values less than or equal to 2.78 cm ( Appendix F Appendix G ). In addition, the optimum model parameters for one-half-cycle motion differed from those for the multi-cycle motion by mean rotational values less than or equal to 15.77 and mean translational values less than or equal to 2.95 cm ( Appendix H Appendix I ). The one-half-cycle hip, knee, and ankle optimizations terminated with a mean wall clock time of 11.77 hours.

PAGE 45

31 4-1. Two-level optimization results for synthetic marker data with random continuous numerical noise to simulate skin movement artifacts with maximum amplitude of 1 cm. Table Synthetic Data with Noise Hip Knee Ankle Mean marker distance error (cm) 0.474603 + 0.202248 0.392331 + 0.145929 0.514485 + 0.233956 Mean rotational parameter error () n/a 2.158878 + 1.288703 3.732191 + 3.394553 Mean translational parameter error (cm) 0.161318 + 0.039449 0.321930 + 0.127997 0.923724 + 0.471443

PAGE 46

32 4-1. Outer-level optimization objective function fitness value convergence for synthetic marker data with random continuous numerical noise to simulate skin movement artifacts with maximum amplitude of 1 cm, where the best fitness value among all nodes is given for each iteration. Figure

PAGE 47

33 4-2. Mean marker distance errors for nominal values and the two-level optimization results for multi-cycle experimental marker data. Table Experimental Data Hip Knee Ankle Nominal mean marker distance error (cm) 0.499889 + 0.177947 1.139884 + 0.618567 0.885437 + 0.478530 Optimum mean marker distance error (cm) 0.342262 + 0.167079 0.547787 + 0.269726 0.356279 + 0.126559 Mean marker distance error attenuation (cm) 0.157627 + 0.166236 0.592097 + 0.443680 0.529158 + 0.438157

PAGE 48

34 4-2. Outer-level optimization objective function fitness value convergence for multi-cycle experimental marker data, where the best fitness value among all nodes is given for each iteration. Figure

PAGE 49

35 4-3. Mean marker distance errors for the two-level optimization results using first and second halves of the joint cycle motion for experimental marker data. Table Experimental Data Hip Knee Ankle First half: mean marker distance error (cm) 0.335644 + 0.163370 0.189551 + 0.072996 0.384786 + 0.193149 Second half: mean marker distance error (cm) 0.361179 + 0.200774 0.202413 + 0.101063 0.338886 + 0.128596

PAGE 50

CHAPTER 5 DISCUSSION Assumptions, Limitations, and Future Work Joint Model Selection If the current model cannot adequately reproduce future experimental motions, the chosen joint models may be modified. For example, the flexion-extension of the knee is not truly represented by a fixed pin joint ( Churchill et al., 1998 ). When comparing the fitness of the optimum knee joint model to multi-cycle experimental marker data, the agreement was quite good for all knee flexion angles with the exception of those approaching full extension. By eliminating knee flexion angles less than 20, which comprised 18% of the flexion-extension data, the mean marker distance error was reduced to 0.48 + 0.23 cm (11.89% decrease) using the optimum model parameters from the full data set. A pin joint knee may be sufficiently accurate for many modeling applications. A 2 DOF knee model ( Hollister et al., 1993 ) may account for the screw-home motion of the knee joint occurring between 0 and 20 ( Blankevoort et al., 1988 ). If greater fidelity to actual bone motion is necessary, a 6 DOF knee joint may be implemented with kinematics determined from fluoroscopy ( Rahman et al., 2003 ). Design Variable Constraints Certain joint parameters must be constrained to zero with the purpose of preventing the unnecessary optimization of redundant parameters. Case in point, the medial-lateral translational model parameter placing the knee joint center in the femur segment must be constrained to zero. On the other hand, this model parameter may be used as a design 36

PAGE 51

37 variable, granted the medial-lateral translational model parameter placing the knee joint center in the tibia segment is constrained to zero. If both medial-lateral translational model parameters are used as redundant design variables, the outer-level optimization has an infinite number of solutions within the constraints of both parameters. Through the elimination (i.e., constraining to zero) of redundant model parameters, the outer-level optimization encounters less convergence problems in globally minimizing the objective function. Objective Function Formulation The inner-level optimization objective function should be comprised of marker coordinate errors rather than marker distance errors. A substantial amount of information (i.e., of the number of errors) describing the fitness value is lost with computation of marker distance errors. In other words, a marker distance error provides only the radius of a sphere surrounding an experimental marker and it does not afford the location of a model marker on the surface of the sphere. However, a set of three marker coordinate errors describes both the magnitude and direction of an error vector between an experimental marker and a model marker. By using marker coordinate errors, the inner-level optimization has improved convergence ( Table 5-1 ) and shorter execution time ( Table 5-2 ). Optimization Time and Parallel Computing To reduce the computation time, it is necessary to use an outer-level optimization algorithm in a parallel environment on a network cluster of processors. The PSO algorithm was chosen over gradient-based optimizers for its suitability to be parallelized and its ability to solve global optimization problems. The large computation time is a result of the random set of initial values used to seed each node of the parallel algorithm.

PAGE 52

38 By seeding one of the nodes with a relatively optimal set of initial values, the computation time may be significantly decreased. By doubling the number of parallel processors, the computation time declines nearly 50%. Decreasing the number of time frames of marker data additionally reduces the computation time. For example, the mean optimization time using experimental data for 50 time frames equals 35.94 hours, 19 time frames equals 12.82 hours, and 13 time frames equals 11.24 hours. Further study is necessary to establish the minimum number of marker data time frames required to effectively determine joint axes parameters. Multi-Cycle and One-Half-Cycle Joint Motions The two-level optimization results vary depending on whether marker data time frames consist of multi-cycle or one-half-cycle joint motions. In other words, the determination of patient-specific model parameters is significantly influenced by the marker trajectories contained within the chosen set of data. Given a set of marker data, the two-level optimization establishes invariable model parameters that best fit the mathematical model to the measured experimental motion. Understandably, a model constructed from one marker data set may not adequately represent a considerably different marker data set. To perform accurate dynamic analyses, joint motions used to generate the model should be consistent with those motions that will be used in the analyses. The small differences between sets of two-level optimization results for the hip and knee joint motions indicate the reliability of the model parameter values. Much larger differences occurred between sets of model parameters determined for the ankle joint. Two major factors contributing to these differences are the rotational ankle model parameters p1 and p3. On one hand, the model parameters may truly vary throughout the

PAGE 53

39 ankle motion and may not be represented by constant values. On the other hand, the objective function may be insensitive to changes in these model parameters indicating a design space that does not permit the reasonable determination of certain design variables. Future study is necessary to investigate the sensitivity of 3D marker coordinate errors to particular model parameters. Range of Motion and Loading Conditions To provide the largest range of motion, all experimental data was collected with each joint unloaded and freely exercising all DOFs; however, the same two-level optimization may be performed on loaded data as well. The patient-specific model parameters may change under loaded conditions ( Bogert et al., 1994 ). Moreover, loaded conditions limit the range of motion for several DOFs. Several authors ( Bell et al., 1990 ; Bogert et al., 1994 ) report inaccuracies in determining functional axes from limited motion, but a subsequent study ( Piazza et al., 2001 ) found the hip joint may be determined from motions as small as 15. Piazza et al. ( 2001 ) suggest future studies are necessary to explore the use of normal gait motions, rather than special joint motions, to determine functional axes. Optimization Using Gait Motion The two-level optimization approach and synthetic data evaluation method may be used to investigate the use of gait motion to determine functional joint axes. Each set of joint parameters may be established separately or collectively (i.e., entire single leg or both legs at once). Additional investigation is necessary to assess the differences in joint parameters obtained through individual optimizations and simultaneous whole leg optimizations. Furthermore, the joint parameters determined from gait motions may be

PAGE 54

40 compared to those parameters obtained from special joint motions with larger amounts of movement. Authors ( Bogert et al., 1994 ; Chze et al., 1995 ; Lu and OConnor, 1999 ) have set precedence for performing numerical (or synthetic data) simulations to evaluate a new technique. Although it is not a necessary task, there is additional benefit in supporting the numerical findings with data from one human subject. With the additional data, the joint parameters computed from unloaded joint motions may be measured against those parameters attained from unloaded (i.e., swing phase) and loaded (i.e., stance phase) gait motions. To expand upon the evaluation of the new technique and show general applicability, future work is necessary to study more than one human subject. Comparison of Experimental Results with Literature The two-level optimization determined patient-specific joint axes locations and orientations similar to previous works. The optimum hip joint center location of 7.52 cm (27.89% posterior), 9.27 cm (34.38% inferior), and 8.86 cm (32.85% lateral) are respectively comparable to 19.3%, 30.4%, and 35.9% ( Bell et al., 1990 ). The optimum femur length (40.46 cm) and tibia length (40.88 cm) are similar to 42.22 cm and 43.40 cm, respectively ( de Leva, 1996 ). The optimum coronal plane rotation (73.36) of the talocrural joint correlates to 82.7 + 3.7 (range 74 to 94) ( Inman, 1976 ). The optimum distance (2.14 cm) between the talocrural joint and the subtalar joint is analogous to 1.24 + 0.29 cm ( Bogert et al., 1994 ). The optimum transverse plane rotation (13.19) and sagittal plane rotation (45.26) of the subtalar joint corresponds to 23 + 11 (range 4 to 47) and 42 + 9 (range 20.5 to 68.5), respectively ( Inman, 1976 ).

PAGE 55

41 5-1. Mean marker distance errors for the inner-level objective function consisting of marker coordinate errors versus marker distance errors for multi-cycle experimental marker data. Table Experimental Data Hip Knee Ankle Marker distance objective function: mean marker distance error (cm) 0.863941 + 0.328794 1.043909 + 0.465186 0.674187 + 0.278451 Marker coordinate objective function: mean marker distance error (cm) 0.342262 + 0.167079 0.547787 + 0.269726 0.356279 + 0.126559

PAGE 56

42 5-2. Execution times for the inner-level objective function consisting of marker coordinate errors versus marker distance errors for multi-cycle experimental marker data. Table Experimental Data Hip Knee Ankle Marker distance objective function: execution time (s) 464.377 406.205 308.293 Marker coordinate objective function: execution time (s) 120.414 106.003 98.992

PAGE 57

CHAPTER 6 CONCLUSION Rationale for New Approach The main motivation for developing a 27 DOF patient-specific computational model and a two-level optimization method to enhance the lower-extremity portion is to predict the post-surgery peak knee adduction moment in HTO patients, which has been identified as an indicator of clinical outcome ( Andriacchi, 1994 ; Bryan et al., 1997 ; Hurwitz et al., 1998 ; Prodromos et al., 1985 ; Wang et al., 1990 ). The accuracy of prospective dynamic analyses made for a unique patient is determined in part by the fitness of the underlying kinematic model ( Andriacchi and Strickland, 1985 ; Challis and Kerwin, 1996 ; Cappozzo et al., 1975 ; Davis, 1992 ; Holden and Stanhope, 1998 ; Holden and Stanhope, 2000 ; Stagni et al., 2000 ). Development of an accurate kinematic model tailored to a specific patient forms the groundwork toward creating a predictive patient-specific dynamic simulation. Synthesis of Current Work and Literature The two-level optimization method satisfactorily determines patient-specific model parameters defining a 3D lower-extremity model that is well suited to a particular patient. Two conclusions may be drawn from comparing and contrasting the two-level optimization results to previous values found in the literature. The similarities between numbers suggest the results are reasonable and show the extent of agreement with past studies. The differences between values indicate the two-level optimization is necessary 43

PAGE 58

44 and demonstrate the degree of inaccuracy inherent when the new approach is not implemented. Through the enhancement of model parameter values found in the literature, the two-level optimization approach successfully reduces the fitness errors between the patient-specific model and the experimental motion data. More specifically, to quantify the improvement of the current results compared to previous values found in the literature, the mean marker distance errors were reduced by 31.53% (hip), 51.94% (knee), and 59.76% (ankle). The precision of dynamic analyses made for a particular patient depends on the accuracy of the patient-specific kinematic parameters chosen for the dynamic model. Without expensive medical images, model parameters are only estimated from external landmarks that have been identified in previous studies. The estimated (or nominal) values may be improved by formulating an optimization problem using motion-capture data. By using a two-level optimization technique, researchers may build more accurate biomechanical models of the individual human structure. As a result, the optimal models will provide reliable foundations for future dynamic analyses and optimizations.

PAGE 59

GLOSSARY Abduction Movement away from the midline of the body in the coronal plane. Acceleration The time rate of change of velocity. Active markers Joint and segment markers used during motion capture that emit a signal. Adduction Movement towards the midline of the body in the coronal plane. Ankle inversion-eversion Motion of the long axis of the foot within the coronal plane as seen by an observer positioned along the anterior-posterior axis of the shank. Ankle motion The ankle angles reflect the motion of the foot segment relative to the shank segment. Ankle plantarflexion-dorsiflexion Motion of the plantar aspect of the foot within the sagittal plane as seen by an observer positioned along the medial-lateral axis of the shank. Anterior The front or before, also referred to as ventral. Circumduction Movement of the distal tip of a segment described by a circle. Coccyx The tailbone located at the distal end of the sacrum. Constraint functions Specific limits that must be satisfied by the optimal design. Coronal plane The plane that divides the body or body segment into anterior and posterior parts. Couple A set of force vectors whose resultant is equal to zero. Two force vectors with equal magnitudes and opposite directions is an example of a simple couple. 45

PAGE 60

46 Degree of freedom (DOF) A single coordinate of relative motion between two bodies. Such a coordinate responds without constraint or imposed motion to externally applied forces or torques. For translational motion, a DOF is a linear coordinate along a single direction. For rotational motion, a DOF is an angular coordinate about a single, fixed axis. Design variables Variables that change to optimize the design. Distal Away from the point of attachment or origin. Dorsiflexion Movement of the foot towards the anterior part of the tibia in the sagittal plane. Epicondyle Process that develops proximal to an articulation and provides additional surface area for muscle attachment. Eversion A turning outward. Extension Movement that rotates the bones comprising a joint away from each other in the sagittal plane. External (lateral) rotation Movement that rotates the distal segment laterally in relation to the proximal segment in the transverse plane, or places the anterior surface of a segment away from the longitudinal axis of the body. External moment The load applied to the human body due to the ground reaction forces, gravity and external forces. Femur The longest and heaviest bone in the body. It is located between the hip joint and the knee joint. Flexion Movement that rotates the bones comprising a joint towards each other in the sagittal plane. Fluoroscopy Examination of body structures using an X-ray machine that combines an X-ray source and a fluorescent screen to enable real-time observation. Force A push or a pull and is produced when one object acts on another.

PAGE 61

47 Force plate A transducer that is set in the floor to measure about some specified point, the force and torque applied by the foot to the ground. These devices provide measures of the three components of the resultant ground reaction force vector and the three components of the resultant torque vector. Forward dynamics Analysis to determine the motion of a mechanical system, given the topology of how bodies are connected, the applied forces and torques, the mass properties, and the initial condition of all degrees of freedom. Gait A manner of walking or moving on foot. Generalized coordinates A set of coordinates (or parameters) that uniquely describes the geometric position and orientation of a body or system of bodies. Any set of coordinates that are used to describe the motion of a physical system. High tibial osteotomy (HTO) Surgical procedure that involves adding or removing a wedge of bone to or from the tibia and changing the frontal plane limb alignment. The realignment shifts the weight-bearing axis from the diseased medial compartment to the healthy lateral compartment of the knee. Hip abduction-adduction Motion of a long axis of the thigh within the coronal plane as seen by an observer positioned along the anterior-posterior axis of the pelvis. Hip flexion-extension Motion of the long axis of the thigh within the sagittal plane as seen by an observer positioned along the medial-lateral axis of the pelvis. Hip internal-external rotation Motion of the medial-lateral axis of the thigh with respect to the medial-lateral axis of the pelvis within the transverse plane as seen by an observer positioned along the longitudinal axis of the thigh. Hip motion The hip angles reflect the motion of the thigh segment relative to the pelvis. Inferior Below or at a lower level (towards the feet).

PAGE 62

48 Inter-ASIS distance The length of measure between the left anterior superior iliac spine (ASIS) and the right ASIS. Internal (medial) rotation Movement that rotates the distal segment medially in relation to the proximal segment in the transverse plane, or places the anterior surface of a segment towards the longitudinal axis of the body. Internal joint moments The net result of all the internal forces acting about the joint which include moments due to muscles, ligaments, joint friction and structural constraints. The joint moment is usually calculated around a joint center. Inverse dynamics Analysis to determine the forces and torques necessary to produce the motion of a mechanical system, given the topology of how bodies are connected, the kinematics, the mass properties, and the initial condition of all degrees of freedom. Inversion A turning inward. Kinematics Those parameters that are used in the description of movement without consideration for the cause of movement abnormalities. These typically include parameters such as linear and angular displacements, velocities and accelerations. Kinetics General term given to the forces that cause movement. Both internal (muscle activity, ligaments or friction in muscles and joints) and external (ground or external loads) forces are included. The moment of force produced by muscles crossing a joint, the mechanical power flowing to and from those same muscles, and the energy changes of the body that result from this power flow are the most common kinetic parameters used. Knee abduction-adduction Motion of the long axis of the shank within the coronal plane as seen by an observer positioned along the anterior-posterior axis of the thigh. Knee flexion-extension Motion of the long axis of the shank within the sagittal plane as seen by an observer positioned along the medial-lateral axis of the thigh.

PAGE 63

49 Knee internal-external rotation Motion of the medial-lateral axis of the shank with respect to the medial-lateral axis of the thigh within the transverse plane as viewed by an observer positioned along the longitudinal axis of the shank. Knee motion The knee angles reflect the motion of the shank segment relative to the thigh segment. Lateral Away from the bodys longitudinal axis, or away from the midsagittal plane. Malleolus Broadened distal portion of the tibia and fibula providing lateral stability to the ankle. Markers Active or passive objects (balls, hemispheres or disks) aligned with respect to specific bony landmarks used to help determine segment and joint position in motion capture. Medial Toward the bodys longitudinal axis, or toward the midsagittal plane. Midsagittal plane The plane that passes through the midline and divides the body or body segment into the right and left halves. Model parameters A set of coordinates that uniquely describes the model segments lengths, joint locations, and joint orientations, also referred to as joint parameters. Any set of coordinates that are used to describe the geometry of a model system. Moment of force The moment of force is calculated about a point and is the cross product of a position vector from the point to the line of action for the force and the force. In two-dimensions, the moment of force about a point is the product of a force and the perpendicular distance from the line of action of the force to the point. Typically, moments of force are calculated about the center of rotation of a joint. Motion capture Interpretation of computerized data that documents an individual's motion.

PAGE 64

50 Non-equidistant The opposite of equal amounts of distance between two or more points, or not equally distanced. Objective functions Figures of merit to be minimized or maximized. Parametric Of or relating to or in terms of parameters, or factors that define a system. Passive markers Joint and segment markers used during motion capture that reflect visible or infrared light. Pelvis Consists of the two hip bones, the sacrum, and the coccyx. It is located between the proximal spine and the hip joints. Pelvis anterior-posterior tilt Motion of the long axis of the pelvis within the sagittal plane as seen by an observer positioned along the medial-lateral axis of the laboratory. Pelvis elevation-depression Motion of the medial-lateral axis of the pelvis within the coronal plane as seen by an observer positioned along the anterior-posterior axis of the laboratory. Pelvis internal-external rotation Motion of the medial-lateral or anterior-posterior axis of the pelvis within the transverse plane as seen by an observer positioned along the longitudinal axis of the laboratory. Pelvis motion The position of the pelvis as defined by a marker set (for example, plane formed by the markers on the right and left anterior superior iliac spine (ASIS) and a marker between the 5th lumbar vertebrae and the sacrum) relative to a laboratory coordinate system. Plantarflexion Movement of the foot away from the anterior part of the tibia in the sagittal plane. Posterior The back or behind, also referred to as dorsal. Proximal Toward the point of attachment or origin. Range of motion Indicates joint motion excursion from the maximum angle to the minimum angle.

PAGE 65

51 Sacrum Consists of the fused components of five sacral vertebrae located between the 5th lumbar vertebra and the coccyx. It attaches the axial skeleton to the pelvic girdle of the appendicular skeleton via paired articulations. Sagittal plane The plane that divides the body or body segment into the right and left parts. Skin movement artifacts The relative movement between skin and underlying bone. Stance phase The period of time when the foot is in contact with the ground. Subtalar joint Located between the distal talus and proximal calcaneous, also known as the talocalcaneal joint. Superior Above or at a higher level (towards the head). Synthetic markers Computational representations of passive markers located on the kinematic model. Swing phase The period of time when the foot is not in contact with the ground. Talocrural joint Located between the distal tibia and proximal talus, also known as the tibial-talar joint. Talus The largest bone of the ankle transmitting weight from the tibia to the rest of the foot. Tibia The large medial bone of the lower leg, also known as the shinbone. It is located between the knee joint and the talocrural joint. Transepicondylar The line between the medial and lateral epicondyles. Transverse plane The plane at right angles to the coronal and sagittal planes that divides the body into superior and inferior parts. Velocity The time rate of change of displacement.

PAGE 66

APPENDIX A NOMINAL JOINT PARAMETERS & OPTIMIZATION BOUNDS FOR SYNTHETIC MARKER DATA A-1. Nominal right hip joint parameters and optimization bounds for synthetic marker data. Table Right Hip Joint Parameter Nominal Lower Bound Upper Bound p1 (cm) -6.022205 -20.530245 0 p2 (cm) -9.307044 -20.530245 0 p3 (cm) 8.759571 0 20.530245 p4 (cm) 0 -14.508040 6.022205 p5 (cm) 0 -11.223200 9.307044 p6 (cm) 0 -8.759571 11.770674 52

PAGE 67

53 A-2. Nominal right knee joint parameters and optimization bounds for synthetic marker data. Table Right Knee Joint Parameter Nominal Lower Bound Upper Bound p1 () 0 -30 30 p2 () 0 -30 30 p3 () -5.079507 -35.079507 24.920493 p4 () 16.301928 -13.698072 46.301928 p5 (cm) 0 -7.836299 7.836299 p6 (cm) -37.600828 -45.437127 -29.764528 p7 (cm) 0 -7.836299 7.836299 p8 (cm) 0 -7.836299 7.836299 p9 (cm) 0 -7.836299 7.836299

PAGE 68

54 A-3. Nominal right ankle joint parameters and optimization bounds for synthetic marker data. Table Right Ankle Joint Parameter Nominal Lower Bound Upper Bound p1 () 18.366935 -11.633065 48.366935 p2 () 0 -30 30 p3 () 40.230969 10.230969 70.230969 p4 () 23 -7 53 p5 () 42 12 72 p6 (cm) 0 -6.270881 6.270881 p7 (cm) -39.973202 -46.244082 -33.702321 p8 (cm) 0 -6.270881 6.270881 p9 (cm) -1 -6.270881 0 p10 (cm) 8.995334 2.724454 15.266215 p11 (cm) 4.147543 -2.123338 10.418424 p12 (cm) 0.617217 -5.653664 6.888097

PAGE 69

APPENDIX B NOMINAL JOINT PARAMETERS & OPTIMIZATION BOUNDS FOR EXPERIMENTAL MARKER DATA B-1. Nominal right hip joint parameters and optimization bounds for experimental marker data. Table Right Hip Joint Parameter Nominal Lower Bound Upper Bound p1 (cm) -5.931423 -20.220759 0 p2 (cm) -9.166744 -20.220759 0 p3 (cm) 8.627524 0 20.220759 p4 (cm) 0 -14.289337 5.931423 p5 (cm) 0 -11.054015 9.166744 p6 (cm) 0 -8.627524 11.593235 55

PAGE 70

56 B-2. Nominal right knee joint parameters and optimization bounds for experimental marker data. Table Right Knee Joint Parameter Nominal Lower Bound Upper Bound p1 () 0 -30 30 p2 () 0 -30 30 p3 () -4.070601 -34.070601 25.929399 p4 () 1.541414 -28.458586 31.541414 p5 (cm) 0 -7.356876 7.356876 p6 (cm) -39.211319 -46.568195 -31.854442 p7 (cm) 0 -7.356876 7.356876 p8 (cm) 0 -7.356876 7.356876 p9 (cm) 0 -7.356876 7.356876

PAGE 71

57 B-3. Nominal right ankle joint parameters and optimization bounds for experimental marker data. Table Right Ankle Joint Parameter Nominal Lower Bound Upper Bound p1 () 8.814964 -21.185036 38.814964 p2 () 0 -30 30 p3 () 26.890791 -3.109209 56.890791 p4 () 23 -7 53 p5 () 42 12 72 p6 (cm) 0 -5.662309 5.662309 p7 (cm) -41.131554 -46.793862 -35.469245 p8 (cm) 0 -5.662309 5.662309 p9 (cm) -1 -5.662309 0 p10 (cm) 9.113839 3.451530 14.776147 p11 (cm) 3.900829 -1.761479 9.563138 p12 (cm) 1.116905 -4.545403 6.779214

PAGE 72

APPENDIX C NOMINAL & OPTIMUM JOINT PARAMETERS FOR SYNTHETIC MARKER DATA WITHOUT NOISE C-1. Nominal and optimum right hip joint parameters for synthetic marker data without noise. Table Right Hip Joint Parameter Nominal Optimized Error p1 (cm) -6.022205 -6.022205 0.000000 p2 (cm) -9.307044 -9.307041 0.000003 p3 (cm) 8.759571 8.759578 0.000007 p4 (cm) 0 0.000004 0.000004 p5 (cm) 0 0.000015 0.000015 p6 (cm) 0 -0.000008 0.000008 58

PAGE 73

59 C-2. Nominal and optimum right knee joint parameters for synthetic marker data without noise. Table Right Knee Joint Parameter Nominal Optimized Error p1 () 0 -0.040222 0.040222 p2 () 0 -0.051509 0.051509 p3 () -5.079507 -5.050744 0.028763 p4 () 16.301928 16.242914 0.059015 p5 (cm) 0 -0.009360 0.009360 p6 (cm) -37.600828 -37.589068 0.011760 p7 (cm) 0 -0.014814 0.014814 p8 (cm) 0 -0.002142 0.002142 p9 (cm) 0 -0.000189 0.000189

PAGE 74

60 C-3. Nominal and optimum right ankle joint parameters for synthetic marker data without noise. Table Right Ankle Joint Parameter Nominal Optimized Error p1 () 18.366935 18.364964 0.001971 p2 () 0 -0.011809 0.011809 p3 () 40.230969 40.259663 0.028694 p4 () 23 23.027088 0.027088 p5 () 42 42.002080 0.002080 p6 (cm) 0 0.000270 0.000270 p7 (cm) -39.973202 -39.972852 0.000350 p8 (cm) 0 -0.000287 0.000287 p9 (cm) -1 -1.000741 0.000741 p10 (cm) 8.995334 8.995874 0.000540 p11 (cm) 4.147543 4.147353 0.000190 p12 (cm) 0.617217 0.616947 0.000270

PAGE 75

APPENDIX D NOMINAL & OPTIMUM JOINT PARAMETERS FOR SYNTHETIC MARKER DATA WITH NOISE D-1. Nominal and optimum right hip joint parameters for synthetic marker data with noise. Table Right Hip Joint Parameter Nominal Optimized Error p1 (cm) -6.022205 -5.854080 0.168125 p2 (cm) -9.307044 -9.434820 0.127776 p3 (cm) 8.759571 8.967520 0.207949 p4 (cm) 0 0.092480 0.092480 p5 (cm) 0 -0.180530 0.180530 p6 (cm) 0 0.191050 0.191050 61

PAGE 76

62 D-2. Nominal and optimum right knee joint parameters for synthetic marker data with noise. Table Right Knee Joint Parameter Nominal Optimized Error p1 () 0 -3.295650 3.295650 p2 () 0 -1.277120 1.277120 p3 () -5.079507 -5.604100 0.524593 p4 () 16.301928 12.763780 3.538148 p5 (cm) 0 0.375600 0.375600 p6 (cm) -37.600828 -37.996910 0.396082 p7 (cm) 0 0.489510 0.489510 p8 (cm) 0 0.144040 0.144040 p9 (cm) 0 -0.204420 0.204420

PAGE 77

63 D-3. Nominal and optimum right ankle joint parameters for synthetic marker data with noise. Table Right Ankle Joint Parameter Nominal Optimized Error p1 () 18.366935 15.130096 3.236838 p2 () 0 8.007498 8.007498 p3 () 40.230969 32.975096 7.255873 p4 () 23 23.122015 0.122015 p5 () 42 42.038733 0.038733 p6 (cm) 0 -0.398360 0.398360 p7 (cm) -39.973202 -39.614220 0.358982 p8 (cm) 0 -0.755127 0.755127 p9 (cm) -1 -2.816943 1.816943 p10 (cm) 8.995334 10.210540 1.215206 p11 (cm) 4.147543 3.033673 1.113870 p12 (cm) 0.617217 -0.190367 0.807584

PAGE 78

APPENDIX E NOMINAL & OPTIMUM JOINT PARAMETERS FOR MULTI-CYCLE EXPERIMENTAL MARKER DATA E-1. Nominal and optimum right hip joint parameters for multi-cycle experimental marker data. Table Right Hip Joint Parameter Nominal Optimized Improvement p1 (cm) -5.931423 -7.518819 1.587396 p2 (cm) -9.166744 -9.268741 0.101997 p3 (cm) 8.627524 8.857706 0.230182 p4 (cm) 0 -2.123433 2.123433 p5 (cm) 0 0.814089 0.814089 p6 (cm) 0 1.438188 1.438188 64

PAGE 79

65 E-2. Nominal and optimum right knee joint parameters for multi-cycle experimental marker data. Table Right Knee Joint Parameter Nominal Optimized Improvement p1 () 0 -0.586205 0.586205 p2 () 0 14.854951 14.854951 p3 () -4.070601 -2.724374 1.346227 p4 () 1.541414 2.404475 0.863061 p5 (cm) 0 -1.422101 1.422101 p6 (cm) -39.211319 -39.611720 0.400401 p7 (cm) 0 -0.250043 0.250043 p8 (cm) 0 -0.457104 0.457104 p9 (cm) 0 1.471656 1.471656

PAGE 80

66 E-3. Nominal and optimum right ankle joint parameters for multi-cycle experimental marker data. Table Right Ankle Joint Parameter Nominal Optimized Improvement p1 () 8.814964 16.640499 7.825535 p2 () 0 9.543288 9.543288 p3 () 26.890791 27.359342 0.468551 p4 () 23 13.197304 9.802696 p5 () 42 45.259512 3.259512 p6 (cm) 0 1.650689 1.650689 p7 (cm) -41.131554 -41.185800 0.054246 p8 (cm) 0 -1.510034 1.510034 p9 (cm) -1 -2.141939 1.141939 p10 (cm) 9.113839 11.244080 2.130241 p11 (cm) 3.900829 3.851262 0.049567 p12 (cm) 1.116905 0.283095 0.833810

PAGE 81

APPENDIX F NOMINAL & OPTIMUM JOINT PARAMETERS FOR FIRST ONE-HALF-CYCLE EXPERIMENTAL MARKER DATA F-1. Nominal and optimum right hip joint parameters for first one-half-cycle experimental marker data. Table Right Hip Joint Parameter Nominal Optimized Improvement p1 (cm) -5.931423 -7.377948 1.446525 p2 (cm) -9.166744 -9.257734 0.090990 p3 (cm) 8.627524 8.124560 0.502964 p4 (cm) 0 -2.050133 2.050133 p5 (cm) 0 0.813034 0.813034 p6 (cm) 0 0.656323 0.656323 67

PAGE 82

68 F-2. Nominal and optimum right knee joint parameters for first one-half-cycle experimental marker data. Table Right Knee Joint Parameter Nominal Optimized Improvement p1 () 0 7.621903 7.621903 p2 () 0 12.823259 12.823259 p3 () -4.070601 -0.642569 3.428032 p4 () 1.541414 11.252668 9.711254 p5 (cm) 0 -1.217316 1.217316 p6 (cm) -39.211319 -38.611100 0.600219 p7 (cm) 0 -1.252732 1.252732 p8 (cm) 0 -0.003903 0.003903 p9 (cm) 0 1.480035 1.480035

PAGE 83

69 F-3. Nominal and optimum right ankle joint parameters for first one-half-cycle experimental marker data. Table Right Ankle Joint Parameter Nominal Optimized Improvement p1 () 8.814964 -15.959751 24.774715 p2 () 0 -4.522393 4.522393 p3 () 26.890791 18.986137 7.904654 p4 () 23 28.588479 5.588479 p5 () 42 36.840527 5.159473 p6 (cm) 0 3.624386 3.624386 p7 (cm) -41.131554 -43.537980 2.406426 p8 (cm) 0 -3.370814 3.370814 p9 (cm) -1 -2.246233 1.246233 p10 (cm) 9.113839 12.155750 3.041911 p11 (cm) 3.900829 0.488739 3.412090 p12 (cm) 1.116905 -1.207070 2.323975

PAGE 84

APPENDIX G NOMINAL & OPTIMUM JOINT PARAMETERS FOR SECOND ONE-HALF-CYCLE EXPERIMENTAL MARKER DATA G-1. Nominal and optimum right hip joint parameters for second one-half-cycle experimental marker data. Table Right Hip Joint Parameter Nominal Optimized Improvement p1 (cm) -5.931423 -7.884120 1.952697 p2 (cm) -9.166744 -10.160573 0.993829 p3 (cm) 8.627524 9.216565 0.589041 p4 (cm) 0 -2.935484 2.935484 p5 (cm) 0 0.313918 0.313918 p6 (cm) 0 1.936742 1.936742 70

PAGE 85

71 G-2. Nominal and optimum right knee joint parameters for second one-half-cycle experimental marker data. Table Right Knee Joint Parameter Nominal Optimized Improvement p1 () 0 7.216444 7.216444 p2 () 0 12.986174 12.986174 p3 () -4.070601 -0.228411 3.842190 p4 () 1.541414 10.970612 9.429198 p5 (cm) 0 -1.300621 1.300621 p6 (cm) -39.211319 -38.785646 0.425673 p7 (cm) 0 -1.190227 1.190227 p8 (cm) 0 -0.130610 0.130610 p9 (cm) 0 1.293016 1.293016

PAGE 86

72 G-3. Nominal and optimum right ankle joint parameters for second one-half-cycle experimental marker data. Table Right Ankle Joint Parameter Nominal Optimized Improvement p1 () 8.814964 31.399921 22.584957 p2 () 0 1.211118 1.21112 p3 () 26.890791 51.518589 24.627798 p4 () 23 26.945919 3.945919 p5 () 42 45.021534 3.021534 p6 (cm) 0 -3.971358 3.971358 p7 (cm) -41.131554 -36.976040 4.155514 p8 (cm) 0 -0.154441 0.154441 p9 (cm) -1 -3.345873 2.345873 p10 (cm) 9.113839 7.552444 1.561395 p11 (cm) 3.900829 7.561219 3.660390 p12 (cm) 1.116905 1.108033 0.008872

PAGE 87

APPENDIX H OPTIMUM JOINT PARAMETERS FOR MULTI-CYCLE & FIRST ONE-HALF-CYCLE EXPERIMENTAL MARKER DATA H-1. Optimum right hip joint parameters for multi-cycle and first one-half-cycle experimental marker data. Table Right Hip Joint Parameter Multi-Cycle Optimized First-Half-Cycle Optimized Difference p1 (cm) -7.518819 -7.377948 0.140871 p2 (cm) -9.268741 -9.257734 0.011007 p3 (cm) 8.857706 8.124560 0.733146 p4 (cm) -2.123433 -2.050133 0.073300 p5 (cm) 0.814089 0.813034 0.001055 p6 (cm) 1.438188 0.656323 0.781865 73

PAGE 88

74 H-2. Optimum right knee joint parameters for multi-cycle and first one-half-cycle experimental marker data. Table Right Knee Joint Parameter Multi-Cycle Optimized First-Half-Cycle Optimized Difference p1 () -0.586205 7.621903 8.208108 p2 () 14.854951 12.823259 2.031692 p3 () -2.724374 -0.642569 2.081805 p4 () 2.404475 11.252668 8.848193 p5 (cm) -1.422101 -1.217316 0.204785 p6 (cm) -39.611720 -38.611100 1.000620 p7 (cm) -0.250043 -1.252732 1.002689 p8 (cm) -0.457104 -0.003903 0.453201 p9 (cm) 1.471656 1.480035 0.008379

PAGE 89

75 H-3. Optimum right ankle joint parameters for multi-cycle and first one-half-cycle experimental marker data. Table Right Ankle Joint Parameter Multi-Cycle Optimized First-Half-Cycle Optimized Difference p1 () 16.640499 -15.959751 32.600250 p2 () 9.543288 -4.522393 14.065681 p3 () 27.359342 18.986137 8.373205 p4 () 13.197304 28.588479 15.391175 p5 () 45.259512 36.840527 8.418985 p6 (cm) 1.650689 3.624386 1.973697 p7 (cm) -41.185800 -43.537980 2.352180 p8 (cm) -1.510034 -3.370814 1.860780 p9 (cm) -2.141939 -2.246233 0.104294 p10 (cm) 11.244080 12.155750 0.911670 p11 (cm) 3.851262 0.488739 3.362523 p12 (cm) 0.283095 -1.207070 1.490165

PAGE 90

APPENDIX I OPTIMUM JOINT PARAMETERS FOR MULTI-CYCLE & SECOND ONE-HALF-CYCLE EXPERIMENTAL MARKER DATA I-1. Optimum right hip joint parameters for multi-cycle and second one-half-cycle experimental marker data. Table Right Hip Joint Parameter Multi-Cycle Optimized Second-Half-Cycle Optimized Difference p1 (cm) -7.518819 -7.884120 0.365301 p2 (cm) -9.268741 -10.160573 0.891832 p3 (cm) 8.857706 9.216565 0.358859 p4 (cm) -2.123433 -2.935484 0.812051 p5 (cm) 0.814089 0.313918 0.500171 p6 (cm) 1.438188 1.936742 0.498554 76

PAGE 91

77 I-2. Optimum right knee joint parameters for multi-cycle and second one-half-cycle experimental marker data. Table Right Knee Joint Parameter Multi-Cycle Optimized Second-Half-Cycle Optimized Difference p1 () -0.586205 7.216444 7.802649 p2 () 14.854951 12.986174 1.868777 p3 () -2.724374 -0.228411 2.495963 p4 () 2.404475 10.970612 8.566137 p5 (cm) -1.422101 -1.300621 0.121480 p6 (cm) -39.611720 -38.785646 0.826074 p7 (cm) -0.250043 -1.190227 0.940184 p8 (cm) -0.457104 -0.130610 0.326494 p9 (cm) 1.471656 1.293016 0.178640

PAGE 92

78 I-3. Optimum right ankle joint parameters for multi-cycle and second one-half-cycle experimental marker data. Table Right Ankle Joint Parameter Multi-Cycle Optimized Second-Half-Cycle Optimized Difference p1 () 16.640499 31.399921 14.759422 p2 () 9.543288 1.211118 8.332170 p3 () 27.359342 51.518589 24.159247 p4 () 13.197304 26.945919 13.748615 p5 () 45.259512 45.021534 0.237978 p6 (cm) 1.650689 -3.971358 5.622047 p7 (cm) -41.185800 -36.976040 4.209760 p8 (cm) -1.510034 -0.154441 1.355593 p9 (cm) -2.141939 -3.345873 1.203934 p10 (cm) 11.244080 7.552444 3.691636 p11 (cm) 3.851262 7.561219 3.709957 p12 (cm) 0.283095 1.108033 0.824938

PAGE 93

LIST OF REFERENCES Andriacchi, T.P., 1994. Dynamics of Knee Malalignment. Orthopedic Clinics of North America, Volume 25, Number 3, Pages 395-403. Andriacchi, T.P. and Strickland, A.B., 1985. Gait Analysis as a Tool to Assess Joint Kinetics. In: Berme, N., Engin, A.E., Correia da Silva, K.M. (Editors), Biomechanics of Normal and Pathological Human Articulating Joints. Martinus Nijhoff Publishers, Dordrecht, The Netherlands, Pages 83-102. Arnold, A.S, Asakawa, D.J, and Delp, S.L., 2000. Do the Hamstrings and Adductors Contribute to Excessive Internal Rotation of the Hip in Persons with Cerebral Palsy? Gait & Posture, Volume 11, Number 3, Pages 181-190. Arnold, A.S. and Delp, S.L., 2001. Rotational Moment Arms of the Hamstrings and Adductors Vary with Femoral Geometry and Limb Position: Implications for the Treatment of Internally-Rotated Gait. Journal of Biomechanics, Volume 34, Number 4, Pages 437-447. Bell, A.L., Pedersen, D.R., and Brand, R.A., 1990. A Comparison of the Accuracy of Several Hip Center Location Prediction Methods. Journal of Biomechanics, Volume 23, Number 6, Pages 617-621. Blankevoort, L., Huiskes, A., and de Lange, A., 1988. "The Envelope of Passive Knee-Joint Motion." Journal of Biomechanics, Volume 21, Number 9, Pages 705-720. Bogert, A.J. van den, Smith, G.D., and Nigg, B.M., 1994. In Vivo Determination of the Anatomical Axes of the Ankle Joint Complex: An Optimization Approach. Journal of Biomechanics, Volume 27, Number 12, Pages 1477-1488. Bryan, J.M., Hurwitz, D.E., Bach, B.R., Bittar, T., and Andriacchi, T.P., 1997. A Predictive Model of Outcome in High Tibial Osteotomy. In Proceedings of the 43rd Annual Meeting of the Orthopaedic Research Society, San Francisco, California, February 9-13, Volume 22, Paper 718. Cappozzo, A., Catani, F., and Leardini, A., 1993. Skin Movement Artifacts in Human Movement Photogrammetry. In Proceedings of the XIVth Congress of the International Society of Biomechanics, Paris, France, July 4-8, Pages 238-239. 79

PAGE 94

80 Cappozzo, A., Leo, T., and Pedotti, A., 1975. A General Computing Method for the Analysis of Human Locomotion. Journal of Biomechanics, Volume 8, Number 5, Pages 307-320. CDC, 2003. Targeting Arthritis: The Nations Leading Cause of Disability. Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Atlanta, Georgia. Accessed: http://www.cdc.gov/nccdphp/ aag/pdf/aag_arthritis2003.pdf February, 2003. Challis, J.H. and Kerwin, D.G., 1996. Quantification of the Uncertainties in Resultant Joint Moments Computed in a Dynamic Activity. Journal of Sports Sciences, Volume 14, Number 3, Pages 219-231. Chao, E.Y. and Sim, F.H., 1995. Computer-Aided Pre-Operative Planning in Knee Osteotomy. Iowa Orthopedic Journal, Volume 15, Pages 4-18. Chao, E.Y.S., Lynch, J.D., and Vanderploeg, M.J., 1993. Simulation and Animation of Musculoskeletal Joint System. Journal of Biomechanical Engineering, Volume 115, Number 4, Pages 562-568. Churchill, D.L., Incavo, S.J., Johnson, C.C., and Beynnon, B.D., 1998. The Transepicondylar Axis Approximates the Optimal Flexion Axis of the Knee. Clinical Orthopaedics and Related Research, Volume 356, Number 1, Pages 111-118. Chze, L., Fregly, B.J., and Dimnet, J., 1995. A Solidification Procedure to Facilitate Kinematic Analyses Based on Video System Data. Journal of Biomechanics, Volume 28, Number 7, Pages 879-884. Davis, B.L., 1992. Uncertainty in Calculating Joint Moments During Gait. In Proceedings of the 8th Meeting of European Society of Biomechanics, Rome, Italy, June 21-24, Page 276. de Leva, P., 1996. Adjustments to Zatsiorsky-Seluyanovs Segment Inertia Parameters. Journal of Biomechanics, Volume 29, Number 9, Pages 1223-1230. Delp, S.L., Arnold, A.S., and Piazza, S.J., 1998. Graphics-Based Modeling and Analysis of Gait Abnormalities. Bio-Medical Materials and Engineering, Volume 8, Number 3/4, Pages 227-240. Delp, S.L., Arnold, A.S., Speers, R.A., and Moore, C.A., 1996. Hamstrings and Psoas Lengths During Normal and Crouch Gait: Implications for Muscle-Tendon Surgery. Journal of Orthopaedic Research, Volume 14, Number 1, Pages 144-151.

PAGE 95

81 Delp, S.L., Loan, J.P., Hoy, M.G., Zajac, F.E., Topp, E.L., and Rosen, J.M., 1990. An Interactive Graphics-Based Model of the Lower Extremity to Study Orthopaedic Surgical Procedures. IEEE Transactions on Biomedical Engineering, Volume 37, Number 8, Pages 757-767. Heck, D.A., Melfi, C.A., Mamlin, L.A., Katz, B.P., Arthur, D.S., Dittus, R.S., and Freund, D.A., 1998. "Revision Rates Following Knee Replacement in the United States." Medical Care, Volume 36, Number 5, Pages 661-689. Holden, J.P. and Stanhope, S.J., 1998. The Effect of Variation in Knee Center Location Estimates on Net Knee Joint Moments. Gait & Posture, Volume 7, Number 1, Pages 1-6. Holden, J.P. and Stanhope, S.J., 2000. The Effect of Uncertainty in Hip Center Location Estimates on Hip Joint Moments During Walking at Different Speeds. Gait & Posture, Volume 11, Number 2, Pages 120-121. Hollister, A.M., Jatana, S., Singh, A.K., Sullivan, W.W., and Lupichuk, A.G., 1993. The Axes of Rotation of the Knee. Clinical Orthopaedics and Related Research, Volume 290, Number 1, Pages 259-268. Hurwitz, D.E., Sumner, D.R., Andriacchi, T.P., and Sugar, D.A., 1998. Dynamic Knee Loads During Gait Predict Proximal Tibial Bone Distribution. Journal of Biomechanics, Volume 31, Number 5, Pages 423-430. Inman, V.T., 1976. The Joints of the Ankle. Williams and Wilkins Company, Baltimore, Maryland. Kennedy, J. and Eberhart, R.C., 1995. Particle Swarm Optimization. In Proceedings of the 1995 IEEE International Conference on Neural Networks, Perth, Australia, November 27 December 1, Volume 4, Pages 1942-1948. Lane, G.J., Hozack, W.J., Shah, S., Rothman, R.H., Booth, R.E. Jr., Eng, K., Smith, P., 1997. Simultaneous Bilateral Versus Unilateral Total Knee Arthroplasty. Outcomes Analysis. Clinical Orthopaedics and Related Research, Volume 345, Number 1, Pages 106-112. Leardini, A., Cappozzo, A., Catani, F., Toksvig-Larsen, S., Petitto, A., Sforza, V., Cassanelli, G., and Giannini, S., 1999. Validation of a Functional Method for the Estimation of Hip Joint Centre Location. Journal of Biomechanics, Volume 32, Number 1, Pages 99-103. Lu, T.-W. and OConnor, J.J., 1999. Bone Position Estimation from Skin Marker Coordinates Using Global Optimisation with Joint Constraints. Journal of Biomechanics, Volume 32, Number 2, Pages 129-134. Pandy, M.G., 2001. Computer Modeling and Simulation of Human Movement. Annual Reviews in Biomedical Engineering, Volume 3, Number 1, Pages 245-273.

PAGE 96

82 Piazza, S.J., Okita, N., and Cavanagh, P.R., 2001. Accuracy of the Functional Method of Hip Joint Center Location: Effects of Limited Motion and Varied Implementation. Journal of Biomechanics, Volume 34, Number 7, Pages 967-973. Prodromos, C.C., Andriacchi, T.P., and Galante, J.O., 1985. A Relationship Between Gait and Clinical Changes Following High Tibial Osteotomy. Journal of Bone Joint Surgery (American), Volume 67, Number 8, Pages 1188-1194. Rahman, H., Fregly, B.J., and Banks, S.A., 2003. Accurate Measurement of Three-Dimensional Natural Knee Kinematics Using Single-Plane Fluoroscopy. In Proceedings of the 2003 Summer Bionengineering Conference, The American Society of Mechanical Engineers, Key Biscayne, Florida, June 25-29. Schutte, J.F., Koh, B., Reinbolt, J.A., Haftka, R.T., George, A.D., and Fregly, B.J., 2003. Scale-Independent Biomechanical Optimization. In Proceedings of the 2003 Summer Bioengineering Conference, The American Society of Mechanical Engineers, Key Biscayne, Florida, June 25-29. Sommer III, H.J. and Miller, N.R., 1980. A Technique for Kinematic Modeling of Anatomical Joints. Journal of Biomechanical Engineering, Volume 102, Number 4, Pages 311-317. Stagni, R., Leardini, A., Benedetti, M.G., Cappozzo, A., and Cappello, A., 2000. Effects of Hip Joint Centre Mislocation on Gait Analysis Results. Journal of Biomechanics, Volume 33, Number 11, Pages 1479-1487. Tetsworth, K. and Paley, D., 1994. Accuracy of Correction of Complex Lower-Extremity Deformities by the Ilizarov Method. Clinical Orthopaedics and Related Research, Volume 301, Number 1, Pages 102-110. Vaughan, C.L., Davis, B.L., and OConnor, J.C., 1992. Dynamics of Human Gait. Human Kinetics Publishers, Champaign, Illinois, Page 26. Wang, J.-W., Kuo, K.N., Andriacchi, T.P., and Galante, J.O., 1990. The Influence of Walking Mechanics and Time on the Results of Proximal Tibial Osteotomy. Journal of Bone and Joint Surgery (American), Volume 72, Number 6, Pages 905-913.

PAGE 97

BIOGRAPHICAL SKETCH Jeffrey A. Reinbolt was born on May 6, 1974 in Bradenton, Florida. His parents are Charles and Joan Reinbolt. He has an older brother, Douglas, and an older sister, Melissa. In 1992, Jeff graduated salutatorian from Southeast High School, Bradenton, Florida. After completing his secondary education, he enrolled at the University of Florida supported by the Florida Undergraduate Scholarship and full-time employment at a local business. He earned a traditional 5-year engineering degree in only 4 years. In 1996, Jeff graduated with honors receiving a Bachelor of Science degree in engineering science with a concentration in biomedical engineering. He used this foundation to assist in the medical device development and clinical research programs of Computer Motion, Inc., Santa Barbara, California. In this role, Jeff was Clinical Development Site Manager for the Southeastern United States and he traveled extensively throughout the United States, Europe, and Asia collaborating with surgeons and fellow medical researchers. In 1998, Jeff married Karen, a student he met during his undergraduate studies. After more than 4 years in the medical device industry, he decided to continue his academic career at the University of Florida. In 2001, Jeff began his graduate studies in Biomedical Engineering and he was appointed a graduate research assistantship in the Computational Biomechanics Laboratory. He plans to continue his graduate education and research activities through the pursuit of a Doctor of Philosophy in mechanical engineering. Jeff would like to further his creative involvement in problem solving and the design of solutions to overcome healthcare challenges. 83

PAGE 1

DETERMINATION OF PATIENT-SPECIFIC FUNCTIONAL AXES THROUGH TWO-LEVEL OPTIMIZATION By JEFFREY A. REINBOLT A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2003

PAGE 2

Copyright 2003 by Jeffrey A. Reinbolt

PAGE 3

This thesis is dedicated to my loving wife, Karen.

PAGE 4

ACKNOWLEDGMENTS I sincerely thank Dr. B. J. Fregly for his support and leadership throughout our research endeavors; moreover, I truly recognize the value of his honest, straightforward, and experience-based advice. My life has been genuinely influenced by Dr. Freglys expectations, confidence, and trust in me. I also extend gratitude to Dr. Raphael Haftka and Dr. Roger Tran-Son-Tay for their dedication, knowledge, and instruction in the classroom. For these reasons, each was selected to serve on my supervisory committee. I express thanks to both individuals for their time, contribution, and fulfillment of their committee responsibilities. I recognize Jaco for his assistance, collaboration, and suggestions. His dedication and professionalism have allowed my graduate work to be both enjoyable and rewarding. I collectively show appreciation for my family and friends. Unconditionally, they have provided me with encouragement, support, and interest in my graduate studies and research activities. My wife, Karen, has done more for me than any person could desire. On several occasions, she has taken a leap of faith with me; more importantly, she has been directly beside me. Words or actions cannot adequately express my gratefulness and adoration toward her. I honestly hope that I can provide her as much as she has given to me. I thank God for my excellent health, inquisitive mind, strong faith, valuable experiences, encouraging teachers, loving family, supportive friends, and wonderful wife. iv

PAGE 5

TABLE OF CONTENTS Page ACKNOWLEDGMENTS.................................................................................................iv TABLE OF CONTENTS.....................................................................................................v LIST OF TABLES...........................................................................................................viii LIST OF FIGURES...........................................................................................................xi ABSTRACT.....................................................................................................................xiii CHAPTER 1 INTRODUCTION........................................................................................................1 Arthritis: Th e Nations Lead ing Cause of Disability...................................................1 Need for Accurate Patient-Specific Models.................................................................2 Benefits of Two-Level Optimization............................................................................3 2 BACKGROUND..........................................................................................................4 Motion Capture.............................................................................................................4 Biomechanical Models.................................................................................................4 Kinematics and Dynamics............................................................................................5 Optimization.................................................................................................................5 Limitations of Previous Methods..................................................................................5 3 METHODS...................................................................................................................7 Parametric Model Structure..........................................................................................7 Hip Joint................................................................................................................8 Knee Joint..............................................................................................................8 Ankle Joint...........................................................................................................10 Two-Level Optimization Approach............................................................................11 Why Two Levels of Optimization Are Necessary..............................................11 Inner-Level Optimization....................................................................................11 Outer-Level Optimization...................................................................................12 Two-Level Optimization Evaluation..........................................................................13 Synthetic Marker Data without Noise.................................................................13 v

PAGE 6

Synthetic Marker Data with Noise......................................................................13 Experimental Marker Data..................................................................................14 4 RESULTS...................................................................................................................29 Synthetic Marker Data without Noise........................................................................29 Synthetic Marker Data with Noise.............................................................................29 Experimental Marker Data.........................................................................................29 5 DISCUSSION.............................................................................................................36 Assumptions, Limitations, and Future Work..............................................................36 Joint Model Selection..........................................................................................36 Design Variable Constraints................................................................................36 Objective Function Formulation..........................................................................37 Optimization Time and Parallel Computing........................................................37 Multi-Cycle and One-Half-Cycle Joint Motions.................................................38 Range of Motion and Loading Conditions..........................................................39 Optimization Using Gait Motion.........................................................................39 Comparison of Experimental Results with Literature................................................40 6 CONCLUSION...........................................................................................................43 Rationale for New Approach......................................................................................43 Synthesis of Current Work and Literature..................................................................43 GLOSSARY......................................................................................................................45 APPENDIX A NOMINAL JOINT PARAMETERS & OPTIMIZATION BOUNDS FOR SYNTHETIC MARKER DATA................................................................................52 B NOMINAL JOINT PARAMETERS & OPTIMIZATION BOUNDS FOR EXPERIMENTAL MARKER DATA.......................................................................55 C NOMINAL & OPTIMUM JOINT PARAMETERS FOR SYNTHETIC MARKER DATA WITHOUT NOISE.........................................................................................58 D NOMINAL & OPTIMUM JOINT PARAMETERS FOR SYNTHETIC MARKER DATA WITH NOISE.................................................................................................61 E NOMINAL & OPTIMUM JOINT PARAMETERS FOR MULTI-CYCLE EXPERIMENTAL MARKER DATA.......................................................................64 F NOMINAL & OPTIMUM JOINT PARAMETERS FOR FIRST ONE-HALF-CYCLE EXPERIMENTAL MARKER DATA....................................67 vi

PAGE 7

G NOMINAL & OPTIMUM JOINT PARAMETERS FOR SECOND ONE-HALF-CYCLE EXPERIMENTAL MARKER DATA....................................70 H OPTIMUM JOINT PARAMETERS FOR MULTI-CYCLE & FIRST ONE-HALF-CYCLE EXPERIMENTAL MARKER DATA....................................73 I OPTIMUM JOINT PARAMETERS FOR MULTI-CYCLE & SECOND ONE-HALF-CYCLE EXPERIMENTAL MARKER DATA....................................76 LIST OF REFERENCES...................................................................................................79 BIOGRAPHICAL SKETCH.............................................................................................83 vii

PAGE 8

LIST OF TABLES Table Page 3-1 Model degrees of freedom........................................................................................17 3-2 Hip joint parameters.................................................................................................20 3-3 Knee joint parameters...............................................................................................23 3-4 Ankle joint parameters.............................................................................................25 4-1 Two-level optimization results for synthetic marker data with random continuous numerical noise to simulate skin movement artifacts with maximum amplitude of 1 cm.............................................................................................................................31 4-2 Mean marker distance errors for nominal values and the two-level optimization results for multi-cycle experimental marker data.....................................................33 4-3 Mean marker distance errors for the two-level optimization results using first and second halves of the joint cycle motion for experimental marker data....................35 5-1 Mean marker distance errors for the inner-level objective function consisting of marker coordinate errors versus marker distance errors for multi-cycle experimental marker data...............................................................................................................41 5-2 Execution times for the inner-level objective function consisting of marker coordinate errors versus marker distance errors for multi-cycle experimental marker data...........................................................................................................................42 A-1 Nominal right hip joint parameters and optimization bounds for synthetic marker data...........................................................................................................................52 A-2 Nominal right knee joint parameters and optimization bounds for synthetic marker data...........................................................................................................................53 A-3 Nominal right ankle joint parameters and optimization bounds for synthetic marker data...........................................................................................................................54 B-1 Nominal right hip joint parameters and optimization bounds for experimental marker data...............................................................................................................55 viii

PAGE 9

B-2 Nominal right knee joint parameters and optimization bounds for experimental marker data...............................................................................................................56 B-3 Nominal right ankle joint parameters and optimization bounds for experimental marker data...............................................................................................................57 C-1 Nominal and optimum right hip joint parameters for synthetic marker data without noise.........................................................................................................................58 C-2 Nominal and optimum right knee joint parameters for synthetic marker data without noise............................................................................................................59 C-3 Nominal and optimum right ankle joint parameters for synthetic marker data without noise............................................................................................................60 D-1 Nominal and optimum right hip joint parameters for synthetic marker data with noise.........................................................................................................................61 D-2 Nominal and optimum right knee joint parameters for synthetic marker data with noise.........................................................................................................................62 D-3 Nominal and optimum right ankle joint parameters for synthetic marker data with noise.........................................................................................................................63 E-1 Nominal and optimum right hip joint parameters for multi-cycle experimental marker data...............................................................................................................64 E-2 Nominal and optimum right knee joint parameters for multi-cycle experimental marker data...............................................................................................................65 E-3 Nominal and optimum right ankle joint parameters for multi-cycle experimental marker data...............................................................................................................66 F-1 Nominal and optimum right hip joint parameters for first one-half-cycle experimental marker data.........................................................................................67 F-2 Nominal and optimum right knee joint parameters for first one-half-cycle experimental marker data.........................................................................................68 F-3 Nominal and optimum right ankle joint parameters for first one-half-cycle experimental marker data.........................................................................................69 G-1 Nominal and optimum right hip joint parameters for second one-half-cycle experimental marker data.........................................................................................70 G-2 Nominal and optimum right knee joint parameters for second one-half-cycle experimental marker data.........................................................................................71 ix

PAGE 10

G-3 Nominal and optimum right ankle joint parameters for second one-half-cycle experimental marker data.........................................................................................72 H-1 Optimum right hip joint parameters for multi-cycle and first one-half-cycle experimental marker data.........................................................................................73 H-2 Optimum right knee joint parameters for multi-cycle and first one-half-cycle experimental marker data.........................................................................................74 H-3 Optimum right ankle joint parameters for multi-cycle and first one-half-cycle experimental marker data.........................................................................................75 I-1 Optimum right hip joint parameters for multi-cycle and second one-half-cycle experimental marker data.........................................................................................76 I-2 Optimum right knee joint parameters for multi-cycle and second one-half-cycle experimental marker data.........................................................................................77 I-3 Optimum right ankle joint parameters for multi-cycle and second one-half-cycle experimental marker data.........................................................................................78 x

PAGE 11

LIST OF FIGURES Figure Page 3-1 The 3D, 14 segment, 27 DOF full-body kinematic model linkage joined by a set of gimbal, universal, and pin joints..............................................................................16 3-2 A 1 DOF joint axis simultaneously defined in two adjacent body segments and the geometric constraints on the optimization of each of the 9 model parameters........18 3-3 Modified Cleveland Clinic marker set used during static and dynamic motion-capture trials................................................................................................19 3-4 The 3 DOF right hip joint center simultaneously defined in the pelvis and right femur segments and the 6 translational model parameters optimized to determine the functional hip joint center location.....................................................................20 3-5 Geometric constraints on the optimization of translational and rotational model parameters for the hip, knee, and ankle joints..........................................................21 3-6 The 1 DOF right knee joint simultaneously defined in the right femur and right tibia segments and the 4 rotational and 5 translational model parameters optimized to determine the knee joint location and orientation................................................22 3-7 The 2 DOF right ankle joint complex simultaneously defined in the right tibia, talus, and foot segments and the 5 rotational and 7 translational model parameters optimized to determine the joint locations and orientations....................................24 3-8 Two-level optimization technique minimizing the 3D marker coordinate errors between the kinematic model markers and experimental marker data to determine functional joint axes for each lower-extremity joint................................................26 3-9 Inner-level optimization convergence illustration series for the knee joint, where synthetic markers are blue and model markers are red............................................27 3-10 Two-level optimization approach minimizing the 3D marker coordinate errors between the kinematic model markers and experimental marker data to determine functional joint axes.................................................................................................28 4-1 Outer-level optimization objective function fitness value convergence for synthetic marker data with random continuous numerical noise to simulate skin movement xi

PAGE 12

artifacts with maximum amplitude of 1 cm, where the best fitness value among all nodes is given for each iteration...............................................................................32 4-2 Outer-level optimization objective function fitness value convergence for multi-cycle experimental marker data, where the best fitness value among all nodes is given for each iteration.........................................................................................34 xii

PAGE 13

Abstract of Thesis Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Master of Science DETERMINATION OF PATIENT-SPECIFIC FUNCTIONAL AXES THROUGH TWO-LEVEL OPTIMIZATION By Jeffrey A. Reinbolt 2003 Chair: Benjamin J. Fregly Major Department: Biomedical Engineering An innovative patient-specific dynamic model would be useful for evaluating and enhancing corrective surgical procedures. This thesis presents a nested (or two-level) system identification optimization approach to determine patient-specific model parameters that best fit a three-dimensional (3D), 18 degree-of-freedom (DOF) lower-body model to an indi viduals move ment data. The whole body was modeled as a 3D, 14 segment, 27 DOF linkage joined by a set of gimbal, universal, and pin joints. For a given set of model parameters, the inner-level optimization uses a nonlinear least squares algorithm that adjusts each generalized coordinate of the lower-body model to minimize 3D marker coordinate errors between the model and motion data for each time instance. The outer-level optimization implements a parallel particle swarm algorithm that modifies each model parameter to minimize the sum of the squares of 3D marker coordinate errors computed by the inner-level optimization throughout all time instances (or the entire motion). xiii

PAGE 14

At the termination of each two-level optimization using synthetic marker data without noise, original marker trajectories were precisely recovered to within an arbitrarily tight tolerance (on the order of 1e-13 cm) using double precision computations. At the termination of each two-level optimization using synthetic marker data with noise representative of skin and soft tissue movement artifacts, the mean marker distance error for each joint complex was as follows: ankle = 0.51 + 0.23 cm; knee = 0.39 + 0.15 cm; and hip = 0.47 + 0.20 cm. Mean marker distance errors are approximately one-half of the 1 cm maximum amplitude specified for the noise model. At the termination of each two-level optimization using experimental marker data from one subject, the mean marker distance error for each joint complex was less than or equal to the following: ankle = 0.38 + 0.19 cm; knee = 0.55 + 0.27 cm; and hip = 0.36 + 0.20 cm. Experimental mean marker distance error results are comparable to the results of the synthetic data with noise. The two-level optimization method effectively determines patient-specific model parameters defining a 3D lower-extremity model that is well suited to a particular subject. When compared to previous values in the literature, experimental results show reasonable agreement and demonstrate the necessity for the new approach. By minimizing fitness errors between the patient-specific model and experimental motion data, the resulting kinematic model provides an accurate foundation for future dynamic analyses and optimizations. xiv

PAGE 15

CHAPTER 1 INTRODUCTION Arthritis: The Nations Leading Cause of Disability In 1997, the Centers for Disease Control and Prevention (CDC) reported that 43 million (or 1 in 6) Americans suffered with arthritis. A 2002 CDC study showed that 70 million (a 63% increase in 5 years; or 1 in 3) Americans have arthritis ( CDC, 2003 ). Approximately two-thirds of individuals with arthritis are under 65 years old. As the population ages, the number of people with arthritis is likely to increase significantly. The most common forms of arthritis are osteoarthritis, rheumatoid arthritis, fibromyalgia, and gout. Osteoarthritis of the knee joint accounts for roughly 30% ($25 billion) of the $82 billion total arthritis costs per year in the United States. Knee osteoarthritis symptoms of pain and dysfunction are the primary reasons for total knee replacement (TKR). This procedure involves a resurfacing of bones surrounding the knee joint. The end of the femur is removed and covered with a metal implant. The end of the tibia is removed and substituted by a plastic implant. Smooth metal and plastic articulation replaces the irregular and painful arthritic surfaces. Approximately 100,000 Medicare patients alone endure TKR procedures each year ( Heck et al., 1998 ). Hospital charges for unilateral TKR are more than $30,000 and the cost of bilateral TKR is over $50,000 ( Lane et al., 1997 ). An alternative to TKR is a more conservative (both economically and surgically) corrective procedure known as high tibial osteotomy (HTO). By changing the frontal plane alignment of the tibia with a wedge of bone, a HTO shifts the weight-bearing axis 1

PAGE 16

2 of the leg, and thus the mechanical stresses, from the diseased portion to the healthy section of the knee compartment. By transferring the location of mechanical stresses, the degenerative disease process may be slowed or possibly reversed. The advantages of HTO are appealing to younger and active patients who receive recommendations to avoid TKR. Need for Accurate Patient-Specific Models Innovative patient-specific models and simulations would be valuable for addressing problems in orthopedics and sports medicine, as well as for evaluating and enhancing corrective surgical procedures ( Arnold et al., 2000 ; Arnold and Delp, 2001 ; Chao et al., 1993 ; Chao and Sim, 1995 ; Delp et al., 1998 ; Delp et al., 1996 ; Delp et al., 1990 ; Pandy, 2001 ). For example, a patient-specific dynamic model may be useful for planning intended surgical parameters and predicting the outcome of HTO. The main motivation for developing a patient-specific computational model and a two-level optimization method to enhance the lower-extremity portion is to predict the post-surgery peak knee adduction moment in HTO patients. Conventional surgical planning techniques for HTO involve choosing the amount of necessary tibial angulation from standing radiographs (or x-rays). Unfortunately, alignment correction estimates from static x-rays do not accurately predict long-term clinical outcome after HTO ( Andriacchi, 1994 ; Tetsworth and Paley, 1994 ). Researchers have identified the peak external knee adduction moment as an indicator of clinical outcome while investigating the gait of HTO patients ( Andriacchi, 1994 ; Bryan et al., 1997; Hurwitz et al., 1998 ; Prodromos et al., 1985 ; Wang et al., 1990 ). Currently, no movement simulations (or other methods for that matter) allow surgeons to choose HTO surgical parameters to achieve a chosen post-surgery knee adduction moment.

PAGE 17

3 Movement simulations consist of models involving skeletal structure, muscle paths, musculotendon actuation, muscle excitation-contraction coupling, and a motor task goal ( Pandy, 2001 ). Development of an accurate inverse dynamic model of the skeletal structure is a significant first step toward creating a predictive patient-specific forward dynamic model to perform movement simulations. The precision of dynamic analyses is fundamentally associated with the accuracy of kinematic model parameters such as segment lengths, joint positions, and joint orientations ( Andriacchi and Strickland, 1985 ; Challis and Kerwin, 1996 ; Cappozzo et al., 1975 ; Davis, 1992 ; Holden and Stanhope, 1998 ; Holden and Stanhope, 2000 ; Stagni et al., 2000 ). Understandably, a model constructed of rigid links within a multi-link chain and simple mechanical approximations of joints will not precisely match the human anatomy and kinematics. The model should provide the best possible agreement to experimental motion data within the bounds of the joint models selected ( Sommer and Miller, 1980 ). Benefits of Two-Level Optimization This thesis presents a nested (or two-level) system identification optimization approach to determine patient-specific joint parameters that best fit a three-dimensional (3D), 18 degree-of-freedom (DOF) lower-body model to an indi viduals move ment data. The two-level technique combines the advantages of using optimization to determine both the position of model segments from marker data and the anatomical joint axes linking adjacent segments. By formulating a two-level objective function to minimize marker coordinate errors, the resulting optimum model more accurately represents experimental marker data (or a specific patient and his or her motion) when compared to a nominal model defined by joint axes prediction methods.

PAGE 18

CHAPTER 2 BACKGROUND Motion Capture Motion capture is the use of external devices to capture the movement of a real object. One type of motion-capture technology is based on a passive optical technique. Passive refers to markers, which are simply spheres covered in reflective tape, placed on the object. Optical refers to the technology used to provide 3D data, which involves high-speed, high-resolution video cameras. By placing passive markers on an object, special hardware records the position of those markers in time and it generates a set of motion data (or marker data). Often motion capture is used to create synthetic actors by capturing the motions of real humans. Special effects companies have used this technique to produce incredibly realistic animations in movies such as Star Wars Episode I & II, Titanic, Batman, and Terminator 2. Biomechanical Models Researchers use motion-capture technology to construct biomechanical models of the human structure. The position of external markers may be used to estimate the position of internal landmarks such as joint centers. The markers also enable the creation of individual segment reference frames that define the position and orientation of each body segment within a Newtonian laboratory reference frame. Marker data collected from an individual are used to prescribe the motion of the biomechanical model. 4

PAGE 19

5 Kinematics and Dynamics Human kinematics is the study of the positions, angles, velocities, and accelerations of body segments and joints during motion. With kinematic data and mass-distribution data, one can study the forces and torques required to produce the recorded motion data. Errors between the biomechanical model and the recorded motion data will inevitably propagate to errors in the force and torque results of dynamic analyses. Optimization Optimization involves searching for the minimum or maximum of an objective function by adjusting a set of design variables. For example, the objective function may be the errors between the biomechanical model and the recorded motion data. These errors are a function of the m odels genera lized coordinates and the m odels kinem atic parameters such as segment lengths, joint positions, and joint orientations. Optimization may be used to modify the design variables of the model to minimize the overall fitness errors and identify a structure that matches the experimental data very well. Limitations of Previous Methods The literature contains a number of examples that use techniques, with or without optimization, to assist in the development of subject-specific joint models within a larger computational model. Several authors have presented methodologies to predict joint locations and orientations from external landmarks without using optimization ( Bell et al., 1990 ; Inman, 1976 ; Vaughan et al., 1992 ). However, a regression model based solely upon population studies may not accurately portray an individual patient. Another study demonstrated an optimization method to determine the position and orientation of a 3 link, 6 DOF model by minimizing the distances between model-determined and experimental marker positions ( Lu and OConnor, 1999 ). A model optimally positioned

PAGE 20

6 without adjusting its joint parameters may not properly correspond to a certain patient. Earlier studies described optimization methods to determine a set of model parameters for a 3D, 2 DOF model by decreasing the error between the motion of the model and experimental data ( Sommer and Miller, 1980 ; Bogert et al., 1994 ). A model defined by optimal joint parameters without optimizing its segment positions may not accurately describe the motion of a patient within the bounds of the chosen joint approximations.

PAGE 21

CHAPTER 3 METHODS Parametric Model Structure A generic, parametric 3D full-body kinematic model was constructed with Autolev (Online Dynam ics, Inc., Sunnyvale, CA) as a 14 segment, 27 DOF linkage joined by a set of gimbal, universal, and pin joints ( Figure 3-1 Table 3-1 ). Comparable to Pandy's ( 2001 ) model structure, 3 translational degrees of freedom (DOFs) (q1, q2, and q3) and 3 rotational DOFs (q4, q5, and q6) express the movement of the pelvis in 3D space and the remaining 13 body segments comprise four open chains branching from the pelvis segment. The locations and orientations of the joints within corresponding body segments are described by 98 patient-specific model parameters. In other words, the patient-specific model parameters designate the geometry of the model containing the following joints types: 3 DOF hip, 1 DOF knee, 2 DOF ankle, 3 DOF back, 2 DOF shoulder, and 1 DOF elbow. Each joint is defined in two adjacent body segments and provides a mechanical approximation connecting those segments ( Figure 3-2 ). For example, the knee joint axis is simultaneously established in the femur coordinate system and the tibia coordinate system. A modified version of the Cleveland Clinic marker set ( Figure 3-3 ) and a static motion-capture trial is used to create segment coordinate systems and define static and dynamic marker locations in these coordinate systems. Institutional review board approval and proper informed consent were obtained before human involvement in the experiments. The marker data collection system was a HiRes Expert Vision System 7

PAGE 22

8 (Motion Analysis Corp., Santa Rosa, CA), including six HSC-180 cameras, EVa 5.11 software, and two AMTI force plates (Advanced Management Technology, Inc., Arlington, VA). Marker data were collected at 180 Hz during 3 seconds for static trials and 6 seconds for individual joint trials. The raw data were filtered using a fourth-order, zero phase-shift, low pass Butterworth Filter with a cutoff frequency set at 6 Hz. Hip Joint There are 6 translational model parameters that must be adjusted to establish a functional hip joint center for a particular patient ( Figure 3-4 Table 3-2 ). Markers placed over the left anterior superior iliac spine (ASIS), right ASIS, and superior sacrum define the pelvis segment coordinate system. From percentages of the inter-ASIS distance, a predicted (or nominal) hip joint center location within the pelvis segment is 19.3% posterior (p1), 30.4% inferior (p2), and 35.9% medial-lateral (p3) ( Bell et al., 1990 ). This nominal hip joint center is the origin of the femur coordinate system, which is subsequently defined by markers placed over the medial and lateral femoral epicondyles. An additional 3 translational model parameters (p4, p5, and p6), described in the femur coordinate system, complete the structure of the nominal hip joint center. Given the physical hip joint center is located within the pelvic region lateral to the midsagittal plane, a cube with side lengths equal to 75% of the inter-ASIS distance and its anterior-superior-medial vertex positioned at the midpoint of the inter-ASIS line provides the geometric constraints for the optimization of each model parameter ( Figure 3-5 Table A-1 Table B-1 ). Knee Joint There are 9 model parameters (5 translational and 4 rotational) that must be tailored to identify a patient-specific functional knee joint axis ( Figure 3-6 Table 3-3 ). The

PAGE 23

9 femoral transepicondylar axis is a good approximation of a fixed knee joint axis ( Churchill et al., 1998 ). The line (or nominal) knee joint axis, connecting the medial and lateral knee markers is defined in the femur and tibia coordinate systems ( Vaughan et al., 1992 ). Given the line passes through the midsagittal plane (x-y plane) of the femur segment, the nominal knee joint axis is positioned within the femur via 2 translational model parameters (p5 and p6) and 2 rotational model parameters (p1 and p2). The tibia coordinate system originates at the midpoint of the knee markers and is defined by additional markers located on the medial and lateral malleoli. The distal description of the nominal knee joint axis is comprised of 3 translational model parameters (p7, p8, and p9) and 2 rotational model parameters (p3 and p4) in the tibia segment. Given the anatomical knee joint DOFs are situated within the articular capsule, a cube with side lengths equal to the distance between knee markers and its center located at the midpoint of the nominal knee joint axis provides the geometric constraints for the optimization of each translational model parameter. The rotational model parameters are constrained within a circular cone defined by the 360 revolution of the nominal knee joint axis perturbed by + 30 ( Figure 3-5 Table A-2, Table B-2 ). It is not a trivial notion to eliminate a potential medial-lateral translational model parameter in the femur segment. This model parameter is considered redundant, as the knee joint axis passes through the midsagittal plane of the femur, and its inclusion may lead to possible optimization convergence problems, similar to the redundant ankle model parameter discussion of Bogert et al. ( 1994 ). By including redundant model parameters, there are an infinite number of optimum solutions within the constraints of corresponding superfluous model parameters.

PAGE 24

10 Ankle Joint There are 12 patient-specific model parameters (7 translational and 5 rotational) that must be customized to determine a pair of patient-specific functional ankle joint axes ( Figure 3-7 Table 3-4 ). Comparable to Bogert et al. ( 1994 ), the talocrural and subtalar joints connect the tibia, talus, and foot segments. Within the tibia segment, 3 translational model parameters (p6, p7, and p8) and 2 rotational model parameters (p1 and p2) position the nominal talocrural joint axis. The talus origin corresponds to the talocrural joint center; therefore, it is not necessary to prescribe model parameters defining the talocrural joint axis in the talus segment. The talus coordinate system is created where the y-axis extends along the line perpendicular to both the talocrural joint axis and the subtalar joint axis. The heel and toe markers, in combination with the tibia y-axis, define the foot coordinate system. There are 3 translational model parameters (p10, p11, and p12) and 2 rotational model parameters (p4 and p5) ( Inman, 1976 ) that place the nominal subtalar joint axis in the foot coordinate system. Given the anatomical ankle joint DOFs are found within the articular capsule, a cube with side lengths equal to the distance between ankle markers and its center located at the midpoint of the nominal talocrural joint axis provides the geometric constraints for the optimization of each translational model parameter. The rotational model parameters of the talocrural joint axis are restricted within a circular cone defined by the 360 revolution of the nominal talocrural joint axis varied by + 30. The rotational model parameters of the subtalar joint axis are confined within a circular cone defined by the 360 revolution of the nominal subtalar joint axis altered by + 30 ( Figure 3-5 Table A-3, Table B-3 ).

PAGE 25

11 Two-Level Optimization Approach Why Two Levels of Optimization Are Necessary Optimization may be used to identify a system (or determine patient-specific joint parameters) that best fit a 3D, 18 DOF lower-body m odel to an individuals m ovement data. One level of optimization is necessary to establish the models geom etry. Given a defined model, another level of optimization is required to position and orientate the models body segm ents. By formulating a two-level objective function to minimize 3D marker coordinate errors, the two-level optimization results describe a lower-body model that accurately represents experimental data. Inner-Level Optimization Given marker trajectory data, md, and a constant set of patient-specific model parameters, p the inner-level optimization ( Figure 3-8 inner boxes) minimizes the 3D marker coordinate errors, ec, between the model markers, mm, and the marker movement data, md, ( Equation 3-1 ) using a nonlinear least squares algorithm that adjusts the generalized coordinates, q of the model at each instance in time, t ( Figure 3-9 ), similar to Lu and OConnor ( 1999 ). In other words, the pose of the model is revised to match the marker movement data at each time frame of the entire motion. (q, p, t) m (t) m (q, p, t) em d c min(3-1) At the first time instance, the algorithm is seeded with exact values for the 6 generalized coordinates of the pelvis, since the marker locations directly identify the position and orientation of the pelvis coordinate system, and all remaining generalized coordinates are seeded with values equal to zero. Given the joint motion is continuous, each optimal generalized coordinate solution, including the pelvis generalized

PAGE 26

12 coordinates, at one time instance is used as the algorithm s seed for the next time instance. Matlab 6.1 (The MathWorks, Inc., Natick, MA), in conjunction with the Matlab Optimization Toolbox and Matlab C/C++ Compiler, was used to develop the inner-level optimization program. Outer-Level Optimization The outer-level global optimization ( Figure 3-8 outer boxes) minimizes the sum of the squares, ess, of the 3D marker coordinate errors, ec, ( Equation 3-1 ) computed by the inner-level algorithm throughout all time instances, n ( Equation 3-2 ) by modifying the patient-specific model parameters, p In other words, the geometric structure of the model is varied to best fit the marker movement data for the entire motion. n t c T c ss(q, p, t) e (q, p, t) e (q, p, n) e1 min (3-2) The outer-level optimization is adapted from the population-based Particle Swarm Optimizer (PSO) ( Kennedy and Eberhart, 1995 ). The PSO algorithm was chosen over gradient-based optimizers for its suitability to be parallelized and its ability to solve global optimization problems. It is particularly effective in the determination of joint positions and orientations of biomechanical systems ( Schutte et al., 2003 ). The work of Schutte et al. ( 2003 ) contrasted the PSO to a gradient-based optimizer (i.e., Broyden-Fletcher-Goldfarb-Shanno) that is commonly used in system identification problems involving biomechanical models. The PSO very reliably converged to the global minimum and it was insensitive to both design variable scaling and initial seeds ( Schutte et al., 2003 ). To manage computational requirements, the outer-level optimization uses a parallel version of the PSO operating on a cluster of 20 Linux-based 1.33 GHz Athlon PCs on a

PAGE 27

13 100 Mbps switched Fast Ethernet network. Each machine is separately seeded with a random set of initial patient-specific model parameter values. The outer-level optimization program was implemented in C on the Linux operating system with the Message Passing Interface (MPI) parallel computation libraries. Two-Level Optimization Evaluation Synthetic Marker Data without Noise To evaluate the ability of the two-level optimization approach ( Figure 3-10 ) to calibrate the generic, parametric kinematic model, synthetic movement data was generated for the ankle, knee, and hip joints based on estimated in vivo model parameters and experimental movement data. For each generated motion, the distal segment moved within the physiological range of motion and exercised each DOF for the joint. There were 50 time frames and approximately 3.5 cycles of a circumductive hip motion consisting of concurrent flexion-extension and abduction-adduction. Flexion-extension comprised 50 time frames and roughly 4 cycles of knee motion. The ankle motion involved 50 time frames and nearly 2.75 cycles of circumduction of the toe tip, where plantarflexion-dorsiflexion and inversion-eversion occurred simultaneously. The ability of the two-level optimization to recover the original model parameters used when generating the synthetic motions was assessed. Synthetic Marker Data with Noise To evaluate the ability of the two-level optimization method ( Figure 3-10 ) to calibrate the generic kinematic model to a synthetic patient, skin movement artifacts were introduced into the synthetic movement data for the ankle, knee, and hip joints. The relative movement between skin and underlying bone occurs in a continuous rather than a random fashion ( Cappozzo et al., 1993 ). Comparable to the simulated skin movement

PAGE 28

14 artifacts of Lu and OConnor ( 1999 ), a continuous numerical noise model of the form t A sin was used and the equation variables were randomly generated within the following bounds: amplitude (0 A 1 cm), frequency (0 25 rad/s), and phase angle (0 2 ) ( Chze et al., 1995 ). Noise was separately generated for each 3D coordinate of the marker trajectories. Again, the two-level optimization was tested for its ability to reproduce the original model parameters. Experimental Marker Data To verify the ability of the two-level optimization technique ( Figure 3-10 ) to calibrate the generic kinematic model to a particular patient, multi-cycle experimental marker trajectory data was collected from one subject. For each joint motion, the distal segment moved within the physiological range of motion and exercised each DOF for the joint. Analogous to Bogert et al. ( 1994 ), the original data were resampled non-equidistantly to eliminate weighting the data set with many data points occurring during acceleration and deceleration at the limits of the range of motion. In other words, regardless of changes in velocity during joint movements, the data was equally distributed over the entire joint range of motion. The time frames of original tracked marker data sets (right hip = 1015, right knee = 840, and right ankle = 707) were reduced to 50 time frames. The resampled data allowed a fixed amount of marker movement between frames to arrive at the number of time frames chosen, given that 50 time frames is analogous to Lu and OConnor ( 1999 ). There were nearly 2 cycles of flexion-extension and abduction-adduction involved in the hip motion. Similar to Leardini et al. ( 1999 ), internal-external rotation of the hip was avoided to reduce the effects of skin and soft tissue movement artifacts. Approximately 2 cycles of knee

PAGE 29

15 motion included flexion-extension. Simultaneous plantarflexion-dorsiflexion and inversion-eversion comprised roughly 2 cycles of ankle motion. Without knowledge of original model parameters, the marker coordinate errors are the only means of measuring the effectiveness of the two-level optimization. To verify the ability of the two-level optimization procedure ( Figure 3-10 ) to calibrate the generic kinematic model to a particular patient using a smaller portion of the joint motion cycle, the resampled multi-cycle experimental marker trajectory data described above was divided into the first and second halves of the individual hip, knee, and ankle joint motion cycles. The number of time frames comprising each one-half-cycle of the joint motion was as follows: ankle = 13, knee = 13, and hip = 19. Again, the two-level optimization was tested for its ability to reduce the marker coordinate errors and obtain an optimal set of model parameters.

PAGE 30

16 3-1. The 3D, 14 segment, 27 DOF full-body kinematic model linkage joined by a set of gimbal, universal, and pin joints. Figure

PAGE 31

17 3-1. Model degrees of freedom. Table DOF Description q1 Pelvis anterior-posterior position q2 Pelvis superior-inferior position q3 Pelvis medial-lateral position q4 Pelvis anterior-posterior tilt angle q5 Pelvis elevation-depression angle q6 Pelvis internal-external rotation angle q7 Right hip flexion-extension angle q8 Right hip adduction-abduction angle q9 Right hip internal-external rotation angle q10 Right knee flexion-extension angle q11 Right ankle plantarflexion-dorsiflexion angle q12 Right ankle inversion-eversion angle q13 Left hip flexion-extension angle q14 Left hip adduction-abduction angle q15 Left hip internal-external rotation angle q16 Left knee flexion-extension angle q17 Left ankle plantarflexion-dorsiflexion angle q18 Left ankle inversion-eversion angle q19 Trunk anterior-posterior tilt angle q20 Trunk elevation-depression angle q21 Trunk internal-external rotation angle q22 Right shoulder flexion-extension angle q23 Right shoulder adduction-abduction angle q24 Right elbow flexion angle q25 Left shoulder flexion-extension angle q26 Left shoulder adduction-abduction angle q27 Left elbow flexion angle

PAGE 32

18 3-2. A 1 DOF joint axis simultaneously defined in two adjacent body segments and the geometric constraints on the optimization of each of the 9 model parameters. Figure

PAGE 33

19 3-3. Modified Cleveland Clinic marker set used during static and dynamic motion-capture trials. Note: the background femur and knee markers have been omitted for clarity and the medial and lateral markers for the knee and ankle are removed following the static trial. Figure

PAGE 34

20 3-4. The 3 DOF right hip joint center simultaneously defined in the pelvis and right femur segments and the 6 translational model parameters optimized to determine the functional hip joint center location. Figure 3-2. Hip joint parameters. Table Hip Joint Parameter Description p1 Anterior-posterior location in pelvis segment p2 Superior-inferior location in pelvis segment p3 Medial-lateral location in pelvis segment p4 Anterior-posterior location in femur segment p5 Superior-inferior location in femur segment p6 Medial-lateral location in femur segment

PAGE 35

21 3-5. Geometric constraints on the optimization of translational and rotational model parameters for the hip, knee, and ankle joints. Figure

PAGE 36

22 3-6. The 1 DOF right knee joint simultaneously defined in the right femur and right tibia segments and the 4 rotational and 5 translational model parameters optimized to determine the knee joint location and orientation. Figure

PAGE 37

23 3-3. Knee joint parameters. Table Knee Joint Parameter Description p1 Adduction-abduction rotation in femur segment p2 Internal-external rotation in femur segment p3 Adduction-abduction rotation in tibia segment p4 Internal-external rotation in tibia segment p5 Anterior-posterior location in femur segment p6 Superior-inferior location in femur segment p7 Anterior-posterior location in tibia segment p8 Superior-inferior location in tibia segment p9 Medial-lateral location in tibia segment

PAGE 38

24 3-7. The 2 DOF right ankle joint complex simultaneously defined in the right tibia, talus, and foot segments and the 5 rotational and 7 translational model parameters optimized to determine the joint locations and orientations. Figure

PAGE 39

25 3-4. Ankle joint parameters. Table Ankle Joint Parameter Description p1 Adduction-abduction rotation of talocrural in tibia segment p2 Internal-external rotation of talocrural in tibia segment p3 Internal-external rotation of subtalar in talus segment p4 Internal-external rotation of subtalar in foot segment p5 Dorsi-plantar rotation of subtalar in foot segment p6 Anterior-posterior location of talocrural in tibia segment p7 Superior-inferior location of talocrural in tibia segment p8 Medial-lateral location of talocrural in tibia segment p9 Superior-inferior location of subtalar in talus segment p10 Anterior-posterior location of subtalar in foot segment p11 Superior-inferior location of subtalar in foot segment p12 Medial-lateral location of subtalar in foot segment

PAGE 40

26 3-8. Two-level optimization technique minimizing the 3D marker coordinate errors between the kinematic model markers and experimental marker data to determine functional joint axes for each lower-extremity joint. Figure

PAGE 41

27 3-9. Inner-level optim ization convergence il lustration series for the knee joint, where synthetic m a rkers are blue and m odel m a rkers are red. Given synthetic m a rker data without noise, optim ized outer-level design variables, and a synthetic knee flexion angle = 90, A) is the initial m odel knee flexion = 0, B) is the m odel knee flexion = 30, C) is the m odel knee flexion = 60, and D) is the final m o del knee flexion = 90. Figure

PAGE 42

28 3-10. Two-level optimization approach minimizing the 3D marker coordinate errors between the kinematic model markers and experimental marker data to determine functional joint axes. Figure

PAGE 43

CHAPTER 4 RESULTS Synthetic Marker Data without Noise For synthetic motions without noise, each two-level optimization precisely recovered the original marker trajectories to within an arbitrarily tight tolerance (on the order of 1e-13 cm), as illustrated in Figure 3-9 At the termination of each optimization, the optimum model parameters for the hip, knee, and ankle were recovered with mean rotational errors less than or equal to 0.045 and mean translational errors less than or equal to 0.0077 cm ( Appendix C ). Synthetic Marker Data with Noise For synthetic motions with noise, the two-level optimization of the hip, knee, and ankle resulted in mean marker distance errors equal to 0.46 cm, which is of the same order of magnitude as the selected random continuous noise model ( Table 4-1) The two-level approach determined the original model parameters with mean rotational errors less than or equal to 3.73 and mean translational errors less than or equal to 0.92 cm ( Appendix D ). The outer-level fitness history converged rapidly ( Figure 4-1 ) and the hip, knee, and ankle optimizations terminated with a mean wall clock time of 41.02 hours. Experimental Marker Data For multi-cycle experimental motions, the mean marker distance error of the optimal hip, knee, and ankle solutions was 0.41 cm, which is a 0.43 cm improvement over the mean nominal error of 0.84 cm ( Table 4-2 ). For each joint complex, the optimum model parameters improved upon the nominal parameter data (or values found 29

PAGE 44

30 in the literature) by mean rotational values less than or equal to 6.18 and mean translational values less than or equal to 1.05 cm ( Appendix E ). When compared to the synthetic data with noise, the outer-level fitness history of the multi-cycle experimental data optimization converged at approximately the same rate and resulted in an improved final solution for both the ankle and the hip ( Figure 4-2 ). On the contrary, the higher objective function values for the knee are evidence of the inability of the fixed pin joint to represent the screw-home motion ( Blankevoort et al., 1988 ) of the multi-cycle experimental knee data. The multi-cycle hip, knee, and ankle optimizations terminated with a mean wall clock time of 35.94 hours. For one-half-cycle experimental motions, the mean marker distance error of the optimal hip, knee, and ankle solutions was 0.30 cm for the first half and 0.30 cm for the second half ( Table 4-3 ). The fitness of both the ankle and the hip were comparable to the multi-cycle joint motion results. However, the knee fitness values were improved due to the reduced influence (i.e., 1 time frame of data as opposed to 9) of the screw-home motion of the knee. For each joint complex, the optimum model parameters improved upon the nominal parameter data (or values found in the literature) by mean rotational values less than or equal to 11.08 and mean translational values less than or equal to 2.78 cm ( Appendix F Appendix G ). In addition, the optimum model parameters for one-half-cycle motion differed from those for the multi-cycle motion by mean rotational values less than or equal to 15.77 and mean translational values less than or equal to 2.95 cm ( Appendix H Appendix I ). The one-half-cycle hip, knee, and ankle optimizations terminated with a mean wall clock time of 11.77 hours.

PAGE 45

31 4-1. Two-level optimization results for synthetic marker data with random continuous numerical noise to simulate skin movement artifacts with maximum amplitude of 1 cm. Table Synthetic Data with Noise Hip Knee Ankle Mean marker distance error (cm) 0.474603 + 0.2022480.392331 + 0.1459290.514485 + 0.233956 Mean rotational parameter error () n/a 2.158878 + 1.2887033.732191 + 3.394553 Mean translational parameter error (cm) 0.161318 + 0.0394490.321930 + 0.1279970.923724 + 0.471443

PAGE 46

32 4-1. Outer-level optimization objective function fitness value convergence for synthetic marker data with random continuous numerical noise to simulate skin movement artifacts with maximum amplitude of 1 cm, where the best fitness value among all nodes is given for each iteration. Figure

PAGE 47

33 4-2. Mean marker distance errors for nominal values and the two-level optimization results for multi-cycle experimental marker data. Table Experimental Data Hip Knee Ankle Nominal mean marker distance error (cm) 0.499889 + 0.1779471.139884 + 0.6185670.885437 + 0.478530 Optimum mean marker distance error (cm) 0.342262 + 0.1670790.547787 + 0.2697260.356279 + 0.126559 Mean marker distance error attenuation (cm) 0.157627 + 0.1662360.592097 + 0.4436800.529158 + 0.438157

PAGE 48

34 4-2. Outer-level optimization objective function fitness value convergence for multi-cycle experimental marker data, where the best fitness value among all nodes is given for each iteration. Figure

PAGE 49

35 4-3. Mean marker distance errors for the two-level optimization results using first and second halves of the joint cycle motion for experimental marker data. Table Experimental Data Hip Knee Ankle First half: mean marker distance error (cm) 0.335644 + 0.1633700.189551 + 0.0729960.384786 + 0.193149 Second half: mean marker distance error (cm) 0.361179 + 0.2007740.202413 + 0.1010630.338886 + 0.128596

PAGE 50

CHAPTER 5 DISCUSSION Assumptions, Limitations, and Future Work Joint Model Selection If the current model cannot adequately reproduce future experimental motions, the chosen joint models may be modified. For example, the flexion-extension of the knee is not truly represented by a fixed pin joint ( Churchill et al., 1998 ). When comparing the fitness of the optimum knee joint model to multi-cycle experimental marker data, the agreement was quite good for all knee flexion angles with the exception of those approaching full extension. By eliminating knee flexion angles less than 20, which comprised 18% of the flexion-extension data, the mean marker distance error was reduced to 0.48 + 0.23 cm (11.89% decrease) using the optimum model parameters from the full data set. A pin joint knee may be sufficiently accurate for many modeling applications. A 2 DOF knee model ( Hollister et al., 1993 ) may account for the screw-home motion of the knee joint occurring between 0 and 20 ( Blankevoort et al., 1988 ). If greater fidelity to actual bone motion is necessary, a 6 DOF knee joint may be implemented with kinematics determined from fluoroscopy ( Rahman et al., 2003 ). Design Variable Constraints Certain joint parameters must be constrained to zero with the purpose of preventing the unnecessary optimization of redundant parameters. Case in point, the medial-lateral translational model parameter placing the knee joint center in the femur segment must be constrained to zero. On the other hand, this model parameter may be used as a design 36

PAGE 51

37 variable, granted the medial-lateral translational model parameter placing the knee joint center in the tibia segment is constrained to zero. If both medial-lateral translational model parameters are used as redundant design variables, the outer-level optimization has an infinite number of solutions within the constraints of both parameters. Through the elimination (i.e., constraining to zero) of redundant model parameters, the outer-level optimization encounters less convergence problems in globally minimizing the objective function. Objective Function Formulation The inner-level optimization objective function should be comprised of marker coordinate errors rather than marker distance errors. A substantial amount of information (i.e., of the number of errors) describing the fitness value is lost with computation of marker distance errors. In other words, a marker distance error provides only the radius of a sphere surrounding an experimental marker and it does not afford the location of a model marker on the surface of the sphere. However, a set of three marker coordinate errors describes both the magnitude and direction of an error vector between an experimental marker and a model marker. By using marker coordinate errors, the inner-level optimization has improved convergence ( Table 5-1 ) and shorter execution time ( Table 5-2 ). Optimization Time and Parallel Computing To reduce the computation time, it is necessary to use an outer-level optimization algorithm in a parallel environment on a network cluster of processors. The PSO algorithm was chosen over gradient-based optimizers for its suitability to be parallelized and its ability to solve global optimization problems. The large computation time is a result of the random set of initial values used to seed each node of the parallel algorithm.

PAGE 52

38 By seeding one of the nodes with a relatively optimal set of initial values, the computation time may be significantly decreased. By doubling the number of parallel processors, the computation time declines nearly 50%. Decreasing the number of time frames of marker data additionally reduces the computation time. For example, the mean optimization time using experimental data for 50 time frames equals 35.94 hours, 19 time frames equals 12.82 hours, and 13 time frames equals 11.24 hours. Further study is necessary to establish the minimum number of marker data time frames required to effectively determine joint axes parameters. Multi-Cycle and One-Half-Cycle Joint Motions The two-level optimization results vary depending on whether marker data time frames consist of multi-cycle or one-half-cycle joint motions. In other words, the determination of patient-specific model parameters is significantly influenced by the marker trajectories contained within the chosen set of data. Given a set of marker data, the two-level optimization establishes invariable model parameters that best fit the mathematical model to the measured experimental motion. Understandably, a model constructed from one marker data set may not adequately represent a considerably different marker data set. To perform accurate dynamic analyses, joint motions used to generate the model should be consistent with those motions that will be used in the analyses. The small differences between sets of two-level optimization results for the hip and knee joint motions indicate the reliability of the model parameter values. Much larger differences occurred between sets of model parameters determined for the ankle joint. Two major factors contributing to these differences are the rotational ankle model parameters p1 and p3. On one hand, the model parameters may truly vary throughout the

PAGE 53

39 ankle motion and may not be represented by constant values. On the other hand, the objective function may be insensitive to changes in these model parameters indicating a design space that does not permit the reasonable determination of certain design variables. Future study is necessary to investigate the sensitivity of 3D marker coordinate errors to particular model parameters. Range of Motion and Loading Conditions To provide the largest range of motion, all experimental data was collected with each joint unloaded and freely exercising all DOFs; however, the same two-level optimization may be performed on loaded data as well. The patient-specific model parameters may change under loaded conditions ( Bogert et al., 1994 ). Moreover, loaded conditions limit the range of motion for several DOFs. Several authors ( Bell et al., 1990 ; Bogert et al., 1994 ) report inaccuracies in determining functional axes from limited motion, but a subsequent study ( Piazza et al., 2001 ) found the hip joint may be determined from motions as small as 15. Piazza et al. ( 2001 ) suggest future studies are necessary to explore the use of normal gait motions, rather than special joint motions, to determine functional axes. Optimization Using Gait Motion The two-level optimization approach and synthetic data evaluation method may be used to investigate the use of gait motion to determine functional joint axes. Each set of joint parameters may be established separately or collectively (i.e., entire single leg or both legs at once). Additional investigation is necessary to assess the differences in joint parameters obtained through individual optimizations and simultaneous whole leg optimizations. Furthermore, the joint parameters determined from gait motions may be

PAGE 54

40 compared to those parameters obtained from special joint motions with larger amounts of movement. Authors ( Bogert et al., 1994 ; Chze et al., 1995 ; Lu and OConnor, 1999 ) have set precedence for performing numerical (or synthetic data) simulations to evaluate a new technique. Although it is not a necessary task, there is additional benefit in supporting the numerical findings with data from one human subject. With the additional data, the joint parameters computed from unloaded joint motions may be measured against those parameters attained from unloaded (i.e., swing phase) and loaded (i.e., stance phase) gait motions. To expand upon the evaluation of the new technique and show general applicability, future work is necessary to study more than one human subject. Comparison of Experimental Results with Literature The two-level optimization determined patient-specific joint axes locations and orientations similar to previous works. The optimum hip joint center location of 7.52 cm (27.89% posterior), 9.27 cm (34.38% inferior), and 8.86 cm (32.85% lateral) are respectively comparable to 19.3%, 30.4%, and 35.9% ( Bell et al., 1990 ). The optimum femur length (40.46 cm) and tibia length (40.88 cm) are similar to 42.22 cm and 43.40 cm, respectively ( de Leva, 1996 ). The optimum coronal plane rotation (73.36) of the talocrural joint correlates to 82.7 + 3.7 (range 74 to 94) ( Inman, 1976 ). The optimum distance (2.14 cm) between the talocrural joint and the subtalar joint is analogous to 1.24 + 0.29 cm ( Bogert et al., 1994 ). The optimum transverse plane rotation (13.19) and sagittal plane rotation (45.26) of the subtalar joint corresponds to 23 + 11 (range 4 to 47) and 42 + 9 (range 20.5 to 68.5), respectively ( Inman, 1976 ).

PAGE 55

41 5-1. Mean marker distance errors for the inner-level objective function consisting of marker coordinate errors versus marker distance errors for multi-cycle experimental marker data. Table Experimental Data Hip Knee Ankle Marker distance objective function: mean marker distance error (cm) 0.863941 + 0.3287941.043909 + 0.4651860.674187 + 0.278451 Marker coordinate objective function: mean marker distance error (cm) 0.342262 + 0.1670790.547787 + 0.2697260.356279 + 0.126559

PAGE 56

42 5-2. Execution times for the inner-level objective function consisting of marker coordinate errors versus marker distance errors for multi-cycle experimental marker data. Table Experimental Data Hip Knee Ankle Marker distance objective function: execution time (s) 464.377 406.205 308.293 Marker coordinate objective function: execution time (s) 120.414 106.003 98.992

PAGE 57

CHAPTER 6 CONCLUSION Rationale for New Approach The main motivation for developing a 27 DOF patient-specific computational model and a two-level optimization method to enhance the lower-extremity portion is to predict the post-surgery peak knee adduction moment in HTO patients, which has been identified as an indicator of clinical outcome ( Andriacchi, 1994 ; Bryan et al., 1997 ; Hurwitz et al., 1998 ; Prodromos et al., 1985 ; Wang et al., 1990 ). The accuracy of prospective dynamic analyses made for a unique patient is determined in part by the fitness of the underlying kinematic model ( Andriacchi and Strickland, 1985 ; Challis and Kerwin, 1996 ; Cappozzo et al., 1975; Davis, 1992 ; Holden and Stanhope, 1998 ; Holden and Stanhope, 2000 ; Stagni et al., 2000 ). Development of an accurate kinematic model tailored to a specific patient forms the groundwork toward creating a predictive patient-specific dynamic simulation. Synthesis of Current Work and Literature The two-level optimization method satisfactorily determines patient-specific model parameters defining a 3D lower-extremity model that is well suited to a particular patient. Two conclusions may be drawn from comparing and contrasting the two-level optimization results to previous values found in the literature. The similarities between numbers suggest the results are reasonable and show the extent of agreement with past studies. The differences between values indicate the two-level optimization is necessary 43

PAGE 58

44 and demonstrate the degree of inaccuracy inherent when the new approach is not implemented. Through the enhancement of model parameter values found in the literature, the two-level optimization approach successfully reduces the fitness errors between the patient-specific model and the experimental motion data. More specifically, to quantify the improvement of the current results compared to previous values found in the literature, the mean marker distance errors were reduced by 31.53% (hip), 51.94% (knee), and 59.76% (ankle). The precision of dynamic analyses made for a particular patient depends on the accuracy of the patient-specific kinematic parameters chosen for the dynamic model. Without expensive medical images, model parameters are only estimated from external landmarks that have been identified in previous studies. The estimated (or nominal) values may be improved by formulating an optimization problem using motion-capture data. By using a two-level optimization technique, researchers may build more accurate biomechanical models of the individual human structure. As a result, the optimal models will provide reliable foundations for future dynamic analyses and optimizations.

PAGE 59

GLOSSARY Abduction Movement away from the midline of the body in the coronal plane. Acceleration The time rate of change of velocity. Active markers Joint and segment markers used during motion capture that emit a signal. Adduction Movement towards the midline of the body in the coronal plane. Ankle inversion-eversion Motion of the long axis of the foot within the coronal plane as seen by an observer positioned along the anterior-posterior axis of the shank. Ankle motion The ankle angles reflect the motion of the foot segment relative to the shank segment. Ankle plantarflexion-dorsiflexion Motion of the plantar aspect of the foot within the sagittal plane as seen by an observer positioned along the medial-lateral axis of the shank. Anterior The front or before, also referred to as ventral. Circumduction Movement of the distal tip of a segment described by a circle. Coccyx The tailbone located at the distal end of the sacrum. Constraint functions Specific limits that must be satisfied by the optimal design. Coronal plane The plane that divides the body or body segment into anterior and posterior parts. Couple A set of force vectors whose resultant is equal to zero. Two force vectors with equal magnitudes and opposite directions is an example of a simple couple. 45

PAGE 60

46 Degree of freedom (DOF) A single coordinate of relative motion between two bodies. Such a coordinate responds without constraint or imposed motion to externally applied forces or torques. For translational motion, a DOF is a linear coordinate along a single direction. For rotational motion, a DOF is an angular coordinate about a single, fixed axis. Design variables Variables that change to optimize the design. Distal Away from the point of attachment or origin. Dorsiflexion Movement of the foot towards the anterior part of the tibia in the sagittal plane. Epicondyle Process that develops proximal to an articulation and provides additional surface area for muscle attachment. Eversion A turning outward. Extension Movement that rotates the bones comprising a joint away from each other in the sagittal plane. External (lateral) rotation Movement that rotates the distal segment laterally in relation to the proximal segment in the transverse plane, or places the anterior surface of a segment away from the longitudinal axis of the body. External moment The load applied to the human body due to the ground reaction forces, gravity and external forces. Femur The longest and heaviest bone in the body. It is located between the hip joint and the knee joint. Flexion Movement that rotates the bones comprising a joint towards each other in the sagittal plane. Fluoroscopy Examination of body structures using an X-ray machine that combines an X-ray source and a fluorescent screen to enable real-time observation. Force A push or a pull and is produced when one object acts on another.

PAGE 61

47 Force plate A transducer that is set in the floor to measure about some specified point, the force and torque applied by the foot to the ground. These devices provide measures of the three components of the resultant ground reaction force vector and the three components of the resultant torque vector. Forward dynamics Analysis to determine the motion of a mechanical system, given the topology of how bodies are connected, the applied forces and torques, the mass properties, and the initial condition of all degrees of freedom. Gait A manner of walking or moving on foot. Generalized coordinates A set of coordinates (or parameters) that uniquely describes the geometric position and orientation of a body or system of bodies. Any set of coordinates that are used to describe the motion of a physical system. High tibial osteotomy (HTO) Surgical procedure that involves adding or removing a wedge of bone to or from the tibia and changing the frontal plane limb alignment. The realignment shifts the weight-bearing axis from the diseased medial compartment to the healthy lateral compartment of the knee. Hip abduction-adduction Motion of a long axis of the thigh within the coronal plane as seen by an observer positioned along the anterior-posterior axis of the pelvis. Hip flexion-extension Motion of the long axis of the thigh within the sagittal plane as seen by an observer positioned along the medial-lateral axis of the pelvis. Hip internal-external rotation Motion of the medial-lateral axis of the thigh with respect to the medial-lateral axis of the pelvis within the transverse plane as seen by an observer positioned along the longitudinal axis of the thigh. Hip motion The hip angles reflect the motion of the thigh segment relative to the pelvis. Inferior Below or at a lower level (towards the feet).

PAGE 62

48 Inter-ASIS distance The length of measure between the left anterior superior iliac spine (ASIS) and the right ASIS. Internal (medial) rotation Movement that rotates the distal segment medially in relation to the proximal segment in the transverse plane, or places the anterior surface of a segment towards the longitudinal axis of the body. Internal joint moments The net result of all the internal forces acting about the joint which include moments due to muscles, ligaments, joint friction and structural constraints. The joint moment is usually calculated around a joint center. Inverse dynamics Analysis to determine the forces and torques necessary to produce the motion of a mechanical system, given the topology of how bodies are connected, the kinematics, the mass properties, and the initial condition of all degrees of freedom. Inversion A turning inward. Kinematics Those parameters that are used in the description of movement without consideration for the cause of movement abnormalities. These typically include parameters such as linear and angular displacements, velocities and accelerations. Kinetics General term given to the forces that cause movement. Both internal (muscle activity, ligaments or friction in muscles and joints) and external (ground or external loads) forces are included. The moment of force produced by muscles crossing a joint, the mechanical power flowing to and from those same muscles, and the energy changes of the body that result from this power flow are the most common kinetic parameters used. Knee abduction-adduction Motion of the long axis of the shank within the coronal plane as seen by an observer positioned along the anterior-posterior axis of the thigh. Knee flexion-extension Motion of the long axis of the shank within the sagittal plane as seen by an observer positioned along the medial-lateral axis of the thigh.

PAGE 63

49 Knee internal-external rotation Motion of the medial-lateral axis of the shank with respect to the medial-lateral axis of the thigh within the transverse plane as viewed by an observer positioned along the longitudinal axis of the shank. Knee motion The knee angles reflect the motion of the shank segment relative to the thigh segment. Lateral Away from th e bodys longitudinal axis, or away from the midsagittal plane. Malleolus Broadened distal portion of the tibia and fibula providing lateral stability to the ankle. Markers Active or passive objects (balls, hemispheres or disks) aligned with respect to specific bony landmarks used to help determine segment and joint position in motion capture. Medial Toward the bodys longitudinal axis, or toward the midsagittal plane. Midsagittal plane The plane that passes through the midline and divides the body or body segment into the right and left halves. Model parameters A set of coordinates that uniquely describes the model segments lengths, joint locations, and joint orientations, also referred to as joint parameters. Any set of coordinates that are used to describe the geometry of a model system. Moment of force The moment of force is calculated about a point and is the cross product of a position vector from the point to the line of action for the force and the force. In two-dimensions, the moment of force about a point is the product of a force and the perpendicular distance from the line of action of the force to the point. Typically, moments of force are calculated about the center of rotation of a joint. Motion capture Interpretation of computerized data that documents an individual's motion.

PAGE 64

50 Non-equidistant The opposite of equal amounts of distance between two or more points, or not equally distanced. Objective functions Figures of merit to be minimized or maximized. Parametric Of or relating to or in terms of parameters, or factors that define a system. Passive markers Joint and segment markers used during motion capture that reflect visible or infrared light. Pelvis Consists of the two hip bones, the sacrum, and the coccyx. It is located between the proximal spine and the hip joints. Pelvis anterior-posterior tilt Motion of the long axis of the pelvis within the sagittal plane as seen by an observer positioned along the medial-lateral axis of the laboratory. Pelvis elevation-depression Motion of the medial-lateral axis of the pelvis within the coronal plane as seen by an observer positioned along the anterior-posterior axis of the laboratory. Pelvis internal-external rotation Motion of the medial-lateral or anterior-posterior axis of the pelvis within the transverse plane as seen by an observer positioned along the longitudinal axis of the laboratory. Pelvis motion The position of the pelvis as defined by a marker set (for example, plane formed by the markers on the right and left anterior superior iliac spine (ASIS) and a marker between the 5th lumbar vertebrae and the sacrum) relative to a laboratory coordinate system. Plantarflexion Movement of the foot away from the anterior part of the tibia in the sagittal plane. Posterior The back or behind, also referred to as dorsal. Proximal Toward the point of attachment or origin. Range of motion Indicates joint motion excursion from the maximum angle to the minimum angle.

PAGE 65

51 Sacrum Consists of the fused components of five sacral vertebrae located between the 5th lumbar vertebra and the coccyx. It attaches the axial skeleton to the pelvic girdle of the appendicular skeleton via paired articulations. Sagittal plane The plane that divides the body or body segment into the right and left parts. Skin movement artifacts The relative movement between skin and underlying bone. Stance phase The period of time when the foot is in contact with the ground. Subtalar joint Located between the distal talus and proximal calcaneous, also known as the talocalcaneal joint. Superior Above or at a higher level (towards the head). Synthetic markers Computational representations of passive markers located on the kinematic model. Swing phase The period of time when the foot is not in contact with the ground. Talocrural joint Located between the distal tibia and proximal talus, also known as the tibial-talar joint. Talus The largest bone of the ankle transmitting weight from the tibia to the rest of the foot. Tibia The large medial bone of the lower leg, also known as the shinbone. It is located between the knee joint and the talocrural joint. Transepicondylar The line between the medial and lateral epicondyles. Transverse plane The plane at right angles to the coronal and sagittal planes that divides the body into superior and inferior parts. Velocity The time rate of change of displacement.

PAGE 66

APPENDIX A NOMINAL JOINT PARAMETERS & OPTIMIZATION BOUNDS FOR SYNTHETIC MARKER DATA A-1. Nominal right hip joint parameters and optimization bounds for synthetic marker data. Table Right Hip Joint Parameter Nominal Lower Bound Upper Bound p1 (cm) -6.022205 -20.530245 0 p2 (cm) -9.307044 -20.530245 0 p3 (cm) 8.759571 0 20.530245 p4 (cm) 0 -14.508040 6.022205 p5 (cm) 0 -11.223200 9.307044 p6 (cm) 0 -8.759571 11.770674 52

PAGE 67

53 A-2. Nominal right knee joint parameters and optimization bounds for synthetic marker data. Table Right Knee Joint Parameter Nominal Lower Bound Upper Bound p1 () 0 -30 30 p2 () 0 -30 30 p3 () -5.079507 -35.079507 24.920493 p4 () 16.301928 -13.698072 46.301928 p5 (cm) 0 -7.836299 7.836299 p6 (cm) -37.600828 -45.437127 -29.764528 p7 (cm) 0 -7.836299 7.836299 p8 (cm) 0 -7.836299 7.836299 p9 (cm) 0 -7.836299 7.836299

PAGE 68

54 A-3. Nominal right ankle joint parameters and optimization bounds for synthetic marker data. Table Right Ankle Joint Parameter Nominal Lower Bound Upper Bound p1 () 18.366935 -11.633065 48.366935 p2 () 0 -30 30 p3 () 40.230969 10.230969 70.230969 p4 () 23 -7 53 p5 () 42 12 72 p6 (cm) 0 -6.270881 6.270881 p7 (cm) -39.973202 -46.244082 -33.702321 p8 (cm) 0 -6.270881 6.270881 p9 (cm) -1 -6.270881 0 p10 (cm) 8.995334 2.724454 15.266215 p11 (cm) 4.147543 -2.123338 10.418424 p12 (cm) 0.617217 -5.653664 6.888097

PAGE 69

APPENDIX B NOMINAL JOINT PARAMETERS & OPTIMIZATION BOUNDS FOR EXPERIMENTAL MARKER DATA B-1. Nominal right hip joint parameters and optimization bounds for experimental marker data. Table Right Hip Joint Parameter Nominal Lower Bound Upper Bound p1 (cm) -5.931423 -20.220759 0 p2 (cm) -9.166744 -20.220759 0 p3 (cm) 8.627524 0 20.220759 p4 (cm) 0 -14.289337 5.931423 p5 (cm) 0 -11.054015 9.166744 p6 (cm) 0 -8.627524 11.593235 55

PAGE 70

56 B-2. Nominal right knee joint parameters and optimization bounds for experimental marker data. Table Right Knee Joint Parameter Nominal Lower Bound Upper Bound p1 () 0 -30 30 p2 () 0 -30 30 p3 () -4.070601 -34.070601 25.929399 p4 () 1.541414 -28.458586 31.541414 p5 (cm) 0 -7.356876 7.356876 p6 (cm) -39.211319 -46.568195 -31.854442 p7 (cm) 0 -7.356876 7.356876 p8 (cm) 0 -7.356876 7.356876 p9 (cm) 0 -7.356876 7.356876

PAGE 71

57 B-3. Nominal right ankle joint parameters and optimization bounds for experimental marker data. Table Right Ankle Joint Parameter Nominal Lower Bound Upper Bound p1 () 8.814964 -21.185036 38.814964 p2 () 0 -30 30 p3 () 26.890791 -3.109209 56.890791 p4 () 23 -7 53 p5 () 42 12 72 p6 (cm) 0 -5.662309 5.662309 p7 (cm) -41.131554 -46.793862 -35.469245 p8 (cm) 0 -5.662309 5.662309 p9 (cm) -1 -5.662309 0 p10 (cm) 9.113839 3.451530 14.776147 p11 (cm) 3.900829 -1.761479 9.563138 p12 (cm) 1.116905 -4.545403 6.779214

PAGE 72

APPENDIX C NOMINAL & OPTIMUM JOINT PARAMETERS FOR SYNTHETIC MARKER DATA WITHOUT NOISE C-1. Nominal and optimum right hip joint parameters for synthetic marker data without noise. Table Right Hip Joint Parameter Nominal Optimized Error p1 (cm) -6.022205 -6.022205 0.000000 p2 (cm) -9.307044 -9.307041 0.000003 p3 (cm) 8.759571 8.759578 0.000007 p4 (cm) 0 0.000004 0.000004 p5 (cm) 0 0.000015 0.000015 p6 (cm) 0 -0.000008 0.000008 58

PAGE 73

59 C-2. Nominal and optimum right knee joint parameters for synthetic marker data without noise. Table Right Knee Joint Parameter Nominal Optimized Error p1 () 0 -0.040222 0.040222 p2 () 0 -0.051509 0.051509 p3 () -5.079507 -5.050744 0.028763 p4 () 16.301928 16.242914 0.059015 p5 (cm) 0 -0.009360 0.009360 p6 (cm) -37.600828 -37.589068 0.011760 p7 (cm) 0 -0.014814 0.014814 p8 (cm) 0 -0.002142 0.002142 p9 (cm) 0 -0.000189 0.000189

PAGE 74

60 C-3. Nominal and optimum right ankle joint parameters for synthetic marker data without noise. Table Right Ankle Joint Parameter Nominal Optimized Error p1 () 18.366935 18.364964 0.001971 p2 () 0 -0.011809 0.011809 p3 () 40.230969 40.259663 0.028694 p4 () 23 23.027088 0.027088 p5 () 42 42.002080 0.002080 p6 (cm) 0 0.000270 0.000270 p7 (cm) -39.973202 -39.972852 0.000350 p8 (cm) 0 -0.000287 0.000287 p9 (cm) -1 -1.000741 0.000741 p10 (cm) 8.995334 8.995874 0.000540 p11 (cm) 4.147543 4.147353 0.000190 p12 (cm) 0.617217 0.616947 0.000270

PAGE 75

APPENDIX D NOMINAL & OPTIMUM JOINT PARAMETERS FOR SYNTHETIC MARKER DATA WITH NOISE D-1. Nominal and optimum right hip joint parameters for synthetic marker data with noise. Table Right Hip Joint Parameter Nominal Optimized Error p1 (cm) -6.022205 -5.854080 0.168125 p2 (cm) -9.307044 -9.434820 0.127776 p3 (cm) 8.759571 8.967520 0.207949 p4 (cm) 0 0.092480 0.092480 p5 (cm) 0 -0.180530 0.180530 p6 (cm) 0 0.191050 0.191050 61

PAGE 76

62 D-2. Nominal and optimum right knee joint parameters for synthetic marker data with noise. Table Right Knee Joint Parameter Nominal Optimized Error p1 () 0 -3.295650 3.295650 p2 () 0 -1.277120 1.277120 p3 () -5.079507 -5.604100 0.524593 p4 () 16.301928 12.763780 3.538148 p5 (cm) 0 0.375600 0.375600 p6 (cm) -37.600828 -37.996910 0.396082 p7 (cm) 0 0.489510 0.489510 p8 (cm) 0 0.144040 0.144040 p9 (cm) 0 -0.204420 0.204420

PAGE 77

63 D-3. Nominal and optimum right ankle joint parameters for synthetic marker data with noise. Table Right Ankle Joint Parameter Nominal Optimized Error p1 () 18.366935 15.130096 3.236838 p2 () 0 8.007498 8.007498 p3 () 40.230969 32.975096 7.255873 p4 () 23 23.122015 0.122015 p5 () 42 42.038733 0.038733 p6 (cm) 0 -0.398360 0.398360 p7 (cm) -39.973202 -39.614220 0.358982 p8 (cm) 0 -0.755127 0.755127 p9 (cm) -1 -2.816943 1.816943 p10 (cm) 8.995334 10.210540 1.215206 p11 (cm) 4.147543 3.033673 1.113870 p12 (cm) 0.617217 -0.190367 0.807584

PAGE 78

APPENDIX E NOMINAL & OPTIMUM JOINT PARAMETERS FOR MULTI-CYCLE EXPERIMENTAL MARKER DATA E-1. Nominal and optimum right hip joint parameters for multi-cycle experimental marker data. Table Right Hip Joint Parameter Nominal Optimized Improvement p1 (cm) -5.931423 -7.518819 1.587396 p2 (cm) -9.166744 -9.268741 0.101997 p3 (cm) 8.627524 8.857706 0.230182 p4 (cm) 0 -2.123433 2.123433 p5 (cm) 0 0.814089 0.814089 p6 (cm) 0 1.438188 1.438188 64

PAGE 79

65 E-2. Nominal and optimum right knee joint parameters for multi-cycle experimental marker data. Table Right Knee Joint Parameter Nominal Optimized Improvement p1 () 0 -0.586205 0.586205 p2 () 0 14.854951 14.854951 p3 () -4.070601 -2.724374 1.346227 p4 () 1.541414 2.404475 0.863061 p5 (cm) 0 -1.422101 1.422101 p6 (cm) -39.211319 -39.611720 0.400401 p7 (cm) 0 -0.250043 0.250043 p8 (cm) 0 -0.457104 0.457104 p9 (cm) 0 1.471656 1.471656

PAGE 80

66 E-3. Nominal and optimum right ankle joint parameters for multi-cycle experimental marker data. Table Right Ankle Joint Parameter Nominal Optimized Improvement p1 () 8.814964 16.640499 7.825535 p2 () 0 9.543288 9.543288 p3 () 26.890791 27.359342 0.468551 p4 () 23 13.197304 9.802696 p5 () 42 45.259512 3.259512 p6 (cm) 0 1.650689 1.650689 p7 (cm) -41.131554 -41.185800 0.054246 p8 (cm) 0 -1.510034 1.510034 p9 (cm) -1 -2.141939 1.141939 p10 (cm) 9.113839 11.244080 2.130241 p11 (cm) 3.900829 3.851262 0.049567 p12 (cm) 1.116905 0.283095 0.833810

PAGE 81

APPENDIX F NOMINAL & OPTIMUM JOINT PARAMETERS FOR FIRST ONE-HALF-CYCLE EXPERIMENTAL MARKER DATA F-1. Nominal and optimum right hip joint parameters for first one-half-cycle experimental marker data. Table Right Hip Joint Parameter Nominal Optimized Improvement p1 (cm) -5.931423 -7.377948 1.446525 p2 (cm) -9.166744 -9.257734 0.090990 p3 (cm) 8.627524 8.124560 0.502964 p4 (cm) 0 -2.050133 2.050133 p5 (cm) 0 0.813034 0.813034 p6 (cm) 0 0.656323 0.656323 67

PAGE 82

68 F-2. Nominal and optimum right knee joint parameters for first one-half-cycle experimental marker data. Table Right Knee Joint Parameter Nominal Optimized Improvement p1 () 0 7.621903 7.621903 p2 () 0 12.823259 12.823259 p3 () -4.070601 -0.642569 3.428032 p4 () 1.541414 11.252668 9.711254 p5 (cm) 0 -1.217316 1.217316 p6 (cm) -39.211319 -38.611100 0.600219 p7 (cm) 0 -1.252732 1.252732 p8 (cm) 0 -0.003903 0.003903 p9 (cm) 0 1.480035 1.480035

PAGE 83

69 F-3. Nominal and optimum right ankle joint parameters for first one-half-cycle experimental marker data. Table Right Ankle Joint Parameter Nominal Optimized Improvement p1 () 8.814964 -15.959751 24.774715 p2 () 0 -4.522393 4.522393 p3 () 26.890791 18.986137 7.904654 p4 () 23 28.588479 5.588479 p5 () 42 36.840527 5.159473 p6 (cm) 0 3.624386 3.624386 p7 (cm) -41.131554 -43.537980 2.406426 p8 (cm) 0 -3.370814 3.370814 p9 (cm) -1 -2.246233 1.246233 p10 (cm) 9.113839 12.155750 3.041911 p11 (cm) 3.900829 0.488739 3.412090 p12 (cm) 1.116905 -1.207070 2.323975

PAGE 84

APPENDIX G NOMINAL & OPTIMUM JOINT PARAMETERS FOR SECOND ONE-HALF-CYCLE EXPERIMENTAL MARKER DATA G-1. Nominal and optimum right hip joint parameters for second one-half-cycle experimental marker data. Table Right Hip Joint Parameter Nominal Optimized Improvement p1 (cm) -5.931423 -7.884120 1.952697 p2 (cm) -9.166744 -10.160573 0.993829 p3 (cm) 8.627524 9.216565 0.589041 p4 (cm) 0 -2.935484 2.935484 p5 (cm) 0 0.313918 0.313918 p6 (cm) 0 1.936742 1.936742 70

PAGE 85

71 G-2. Nominal and optimum right knee joint parameters for second one-half-cycle experimental marker data. Table Right Knee Joint Parameter Nominal Optimized Improvement p1 () 0 7.216444 7.216444 p2 () 0 12.986174 12.986174 p3 () -4.070601 -0.228411 3.842190 p4 () 1.541414 10.970612 9.429198 p5 (cm) 0 -1.300621 1.300621 p6 (cm) -39.211319 -38.785646 0.425673 p7 (cm) 0 -1.190227 1.190227 p8 (cm) 0 -0.130610 0.130610 p9 (cm) 0 1.293016 1.293016

PAGE 86

72 G-3. Nominal and optimum right ankle joint parameters for second one-half-cycle experimental marker data. Table Right Ankle Joint Parameter Nominal Optimized Improvement p1 () 8.814964 31.399921 22.584957 p2 () 0 1.211118 1.21112 p3 () 26.890791 51.518589 24.627798 p4 () 23 26.945919 3.945919 p5 () 42 45.021534 3.021534 p6 (cm) 0 -3.971358 3.971358 p7 (cm) -41.131554 -36.976040 4.155514 p8 (cm) 0 -0.154441 0.154441 p9 (cm) -1 -3.345873 2.345873 p10 (cm) 9.113839 7.552444 1.561395 p11 (cm) 3.900829 7.561219 3.660390 p12 (cm) 1.116905 1.108033 0.008872

PAGE 87

APPENDIX H OPTIMUM JOINT PARAMETERS FOR MULTI-CYCLE & FIRST ONE-HALF-CYCLE EXPERIMENTAL MARKER DATA H-1. Optimum right hip joint parameters for multi-cycle and first one-half-cycle experimental marker data. Table Right Hip Joint Parameter Multi-Cycle Optimized First-Half-Cycle Optimized Difference p1 (cm) -7.518819 -7.377948 0.140871 p2 (cm) -9.268741 -9.257734 0.011007 p3 (cm) 8.857706 8.124560 0.733146 p4 (cm) -2.123433 -2.050133 0.073300 p5 (cm) 0.814089 0.813034 0.001055 p6 (cm) 1.438188 0.656323 0.781865 73

PAGE 88

74 H-2. Optimum right knee joint parameters for multi-cycle and first one-half-cycle experimental marker data. Table Right Knee Joint Parameter Multi-Cycle Optimized First-Half-Cycle Optimized Difference p1 () -0.586205 7.621903 8.208108 p2 () 14.854951 12.823259 2.031692 p3 () -2.724374 -0.642569 2.081805 p4 () 2.404475 11.252668 8.848193 p5 (cm) -1.422101 -1.217316 0.204785 p6 (cm) -39.611720 -38.611100 1.000620 p7 (cm) -0.250043 -1.252732 1.002689 p8 (cm) -0.457104 -0.003903 0.453201 p9 (cm) 1.471656 1.480035 0.008379

PAGE 89

75 H-3. Optimum right ankle joint parameters for multi-cycle and first one-half-cycle experimental marker data. Table Right Ankle Joint Parameter Multi-Cycle Optimized First-Half-Cycle Optimized Difference p1 () 16.640499 -15.959751 32.600250 p2 () 9.543288 -4.522393 14.065681 p3 () 27.359342 18.986137 8.373205 p4 () 13.197304 28.588479 15.391175 p5 () 45.259512 36.840527 8.418985 p6 (cm) 1.650689 3.624386 1.973697 p7 (cm) -41.185800 -43.537980 2.352180 p8 (cm) -1.510034 -3.370814 1.860780 p9 (cm) -2.141939 -2.246233 0.104294 p10 (cm) 11.244080 12.155750 0.911670 p11 (cm) 3.851262 0.488739 3.362523 p12 (cm) 0.283095 -1.207070 1.490165

PAGE 90

APPENDIX I OPTIMUM JOINT PARAMETERS FOR MULTI-CYCLE & SECOND ONE-HALF-CYCLE EXPERIMENTAL MARKER DATA I-1. Optimum right hip joint parameters for multi-cycle and second one-half-cycle experimental marker data. Table Right Hip Joint Parameter Multi-Cycle Optimized Second-Half-Cycle Optimized Difference p1 (cm) -7.518819 -7.884120 0.365301 p2 (cm) -9.268741 -10.160573 0.891832 p3 (cm) 8.857706 9.216565 0.358859 p4 (cm) -2.123433 -2.935484 0.812051 p5 (cm) 0.814089 0.313918 0.500171 p6 (cm) 1.438188 1.936742 0.498554 76

PAGE 91

77 I-2. Optimum right knee joint parameters for multi-cycle and second one-half-cycle experimental marker data. Table Right Knee Joint Parameter Multi-Cycle Optimized Second-Half-Cycle Optimized Difference p1 () -0.586205 7.216444 7.802649 p2 () 14.854951 12.986174 1.868777 p3 () -2.724374 -0.228411 2.495963 p4 () 2.404475 10.970612 8.566137 p5 (cm) -1.422101 -1.300621 0.121480 p6 (cm) -39.611720 -38.785646 0.826074 p7 (cm) -0.250043 -1.190227 0.940184 p8 (cm) -0.457104 -0.130610 0.326494 p9 (cm) 1.471656 1.293016 0.178640

PAGE 92

78 I-3. Optimum right ankle joint parameters for multi-cycle and second one-half-cycle experimental marker data. Table Right Ankle Joint Parameter Multi-Cycle Optimized Second-Half-Cycle Optimized Difference p1 () 16.640499 31.399921 14.759422 p2 () 9.543288 1.211118 8.332170 p3 () 27.359342 51.518589 24.159247 p4 () 13.197304 26.945919 13.748615 p5 () 45.259512 45.021534 0.237978 p6 (cm) 1.650689 -3.971358 5.622047 p7 (cm) -41.185800 -36.976040 4.209760 p8 (cm) -1.510034 -0.154441 1.355593 p9 (cm) -2.141939 -3.345873 1.203934 p10 (cm) 11.244080 7.552444 3.691636 p11 (cm) 3.851262 7.561219 3.709957 p12 (cm) 0.283095 1.108033 0.824938

PAGE 93

LIST OF REFERENCES Andriacch i, T.P., 1994. Dyna mics of Knee Malalignm ent. Orthopedic Clinics of North America Volume 25, Number 3, Pages 395-403. Andriacch i, T.P. and Strickland, A.B., 1985. G ait Analysis as a Tool to Assess Joint Kinetics. In: Berm e, N., Engin, A.E., Correia da Silva, K.M. (Editors), Biomechanics of Normal and Pathological Human Articulating Joints Martinus Nijhoff Publishers, Dordrecht, The Netherlands, Pages 83-102. Arnold, A.S, Asakawa, D.J, and Delp, S.L ., 2000. Do the Ha mstrings and Adductors Contribute to Excessive Internal Rotation of the Hip in Persons with Cerebral Palsy? Gait & Posture Volume 11, Number 3, Pages 181-190. Arnold, A.S. and Delp, S.L., 2001. Rotationa l Moment Arms of the Hamstrings and Adductors Vary with Femoral Geometry and Limb Position: Implications for the Treatme nt of Internally-Rotated Gait. Journal of Biomechanics Volume 34, Number 4, Pages 437-447. Bell, A.L., Pedersen, D.R., and Brand, R.A., 1990. A Comparison of the Accuracy of Several Hip Center Locati on Prediction Methods. Journal of Biomechanics Volume 23, Number 6, Pages 617-621. Blankevoort, L., Huiskes, A., and de Lange, A., 1988. "The Envelope of Passive Knee-Joint Motion." Journal of Biomechanics Volume 21, Number 9, Pages 705-720. Bogert, A.J. van den, Smith, G.D., and Nigg, B.M., 1994. In Vivo Determ ination of the Anatomical Axes of the Ankle Joint Complex: An Optimi zation Approach. Journal of Biomechanics Volume 27, Number 12, Pages 1477-1488. Bryan, J.M., Hurwitz, D.E., Bach, B.R., Bittar, T., and Andriacchi, T.P., 1 997. A Predictive Model of Outcome in High Tibial Osteotom y. In Proceedings of the 43rd Annual Meeting of the Orthopaedic Research Society San Francisco, California, February 9-13, Volume 22, Paper 718. Cappozzo, A., Catani, F., and Leardini, A ., 1993. Skin Movem ent Artifacts in Human Movement Photogramme try. In Proceedings of the XIVth Congress of the International Society of Biomechanics Paris, France, July 4-8, Pages 238-239. 79

PAGE 94

80 Cappozzo, A., Leo, T., and Pedotti, A., 1975. A General Com puting Method for the Analysis of Human Locomo tion. Journal of Biomechanics Volume 8, Number 5, Pages 307-320. CDC, 2003. Targeting Ar thritis: The Nations Leading Cause of Disability Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Atlanta, Georgia. Accessed: http://www.cdc.gov/nccdphp/ aag/pdf/aag_arthritis2003.pdf February, 2003. Challis, J.H. and Kerwin, D.G., 1996. Quantif ication of the Uncertainties in Resultant Joint Moments Computed in a Dynami c Activity. Journal of Sports Sciences Volume 14, Number 3, Pages 219-231. Chao, E.Y. and Sim, F.H., 1995. Com puter-Aided Pre-Operative Planning in Knee Osteotomy. Iowa Orthopedic Journal Volume 15, Pages 4-18. Chao, E.Y.S., Lynch, J.D., and Vanderploeg, M.J., 1993. Sim ulation and Animation of Musculoskeletal Joint System. Journal of Biomechanical Engineering Volume 115, Number 4, Pages 562-568. Churchill, D.L., Incavo, S.J., Johnson, C.C., and Beynnon, B.D., 1998. The Transepicondylar Axis Approximates the Optimal Flex ion Axis of the Knee. Clinical Orthopaedics and Related Research Volume 356, Number 1, Pages 111-118. Chze, L., Fregly, B.J., and Dimnet, J., 1995. A Solidification Procedure to Facilitate Kinematic Analyses Based on Video System Da ta. Journal of Biomechanics Volume 28, Number 7, Pages 879-884. Davis, B.L., 1992. Uncertainty in Calcul ating Joint Mome nts During Gait. In Proceedings of the 8th Meeting of European Society of Biomechanics Rome, Italy, June 21-24, Page 276. de Leva, P., 1996. Adjustm ents to Zatsiorsky-Se luyanovs Segm ent Inertia Parameters. Journal of Biomechanics Volume 29, Number 9, Pages 1223-1230. Delp, S.L., Arnold, A.S., and Piazza, S.J., 1998. Graphics-Based Modeling and Analysis of Gait Abnorma lities. Bio-Medical Materials and Engineering Volume 8, Number 3/4, Pages 227-240. Delp, S.L., Arnold, A.S., Speers, R.A., and Moore, C.A., 1996. Ha mstrings and Psoas Lengths During Normal and Crouch Gait: Implications for Muscle-Tendon Surgery. Journal of Orthopaedic Research Volume 14, Number 1, Pages 144-151.

PAGE 95

81 Delp, S.L., Loan, J.P., Hoy, M.G., Zajac, F.E., Topp E.L., and Rosen, J.M., 1990. An Interactive Graphics-Based Model of the Lower Extremity to Study Orthopaedic Surgical Procedures. IEEE Transactions on Biomedical Engineering Volume 37, Number 8, Pages 757-767. Heck, D.A., Melfi, C.A., Mamlin, L.A., Katz, B.P., Arthur, D.S., Dittus, R.S., and Freund, D.A., 1998. "Revision Rates Following Knee Replacement in the United States." Medical Care Volume 36, Number 5, Pages 661-689. Holden, J.P. and Stanhope, S.J., 1998. The Ef fect of Variation in Knee Center Location Estimates on Net Knee Joint Mome nts. Gait & Posture Volume 7, Number 1, Pages 1-6. Holden, J.P. and Stanhope, S.J., 2000. The Ef fect of Uncertainty in Hip Center Location Estimates on Hip Joint Moments During Wa lking at Different Speeds. Gait & Posture Volume 11, Number 2, Pages 120-121. Hollister, A.M., Jatana, S., Singh, A.K., Sullivan, W.W. and Lupichuk, A.G., 1993. The Axes of Rota tion of the Knee. Clinical Orthopaedics and Related Research Volume 290, Number 1, Pages 259-268. Hurwitz, D.E., Sumner, D.R., Andriacchi, T. P., and Sugar, D.A., 1998. Dyna mic Knee Loads During Gait Predict Proxima l Tibial Bone Distribution. Journal of Biomechanics Volume 31, Number 5, Pages 423-430. Inma n, V.T., 1976. The Joints of the Ankle. W illiams and Wilkins Company, Baltimore, Maryland. Kennedy, J. and Eberhart, R.C., 1995. P article Swarm Optimization. In Proceedings of the 1995 IEEE International Conference on Neural Networks Perth, Australia, November 27 December 1, Volume 4, Pages 1942-1948. Lane, G.J., Hozack, W.J., Shah, S., Rothman, R.H., Booth, R.E. Jr., Eng, K., Smith, P., 1997. Simultaneous Bilate ral Versus Unilateral Total Knee Arthroplasty. Outcom es Analysis. Clinical Orthopaedics and Related Research Volume 345, Number 1, Pages 106-112. Leardini, A., Cappozzo, A., Catani, F., Toksvig-Larsen, S., Petitto, A., Sforza, V., Cassanelli, G., and Giannini, S., 1999. V alidation of a Functional Method for the Estim ation of Hip Joint Centre Location. Journal of Biomechanics Volume 32, Number 1, Pages 99-103. Lu, T.-W and OConnor, J.J., 1999. Bone Position Estimation from Skin Marker Coordinates Using Global Optimisat ion with Joint Constraints. Journal of Biomechanics Volume 32, Number 2, Pages 129-134. Pandy, M.G., 2001. Computer Modeling and Simulation of Human Moveme nt. Annual Reviews in Biomedical Engineering Volume 3, Number 1, Pages 245-273.

PAGE 96

82 Piazza, S.J., Okita, N., and Cavanagh, P.R., 2001. Accuracy of the Functional Meth od of Hip Joint Center Location: Effects of Limited Motion and Varied Implem entation. Journal of Biomechanics Volume 34, Number 7, Pages 967-973. Prodromos, C.C., Andriacchi, T.P., and Gala nte, J.O., 1985. A Relation ship Between Gait and Clinical Changes Following High Tibial Osteotom y. Journal of Bone Joint Surgery (American) Volume 67, Number 8, Pages 1188-1194. Rahman, H., Fregly, B.J., and Banks, S.A., 2003. Accurate Measurem ent of Three-Dimensional Natural Knee Kinematics Using Single-Pl ane Fluoroscopy. In Proceedings of the 2003 Summer Bionengineering Conference The American Society of Mechanical Engineers, Key Biscayne, Florida, June 25-29. Schutte, J.F., Koh, B., Reinbolt, J.A., Haftka, R.T., George, A.D., and Fregly, B.J., 2003. Scale-Independent Biom echanical Optim ization. In Proceedings of the 2003 Summer Bioengineering Conference The American Society of Mechanical Engineers, Key Biscayne, Florida, June 25-29. Sommer III, H.J. and Miller, N.R., 1980. A Technique for Kinem atic Modeling of Anatom ical Joints. Journal of Biomechanical Engineering Volume 102, Number 4, Pages 311-317. Stagni, R., Leardini, A., Benedetti, M.G., Cappozzo, A., and Cappello, A., 2000. Effects of Hip Joint Centre Mislocation on Gait Analysis Results. Journal of Biomechanics Volume 33, Number 11, Pages 1479-1487. Tetsworth, K. and Paley, D., 1994. A ccuracy of Correction of Complex Lower-Extremity Deformities by the Ilizarov Me thod. Clinical Orthopaedics and Related Research Volume 301, Number 1, Pages 102-110. Vaughan, C.L., Davis, B.L., and OConnor, J.C., 1992. Dynamics of Human Gait Human Kinetics Publishers, Champaign, Illinois, Page 26. Wang, J.-W., Kuo, K.N., Andriacchi, T.P., and Galante, J.O., 1990. The Influence of Walking Mechanics and Time on the Results of Proxima l Tibial Osteotomy. Journal of Bone and Joint Surgery (American), Volume 72, Number 6, Pages 905-913.

PAGE 97

BIOGRAPHICAL SKETCH Jeffrey A. Reinbolt was born on May 6, 1974 in Bradenton, Florida. His parents are Charles and Joan Reinbolt. He has an older brother, Douglas, and an older sister, Melissa. In 1992, Jeff graduated salutatorian from Southeast High School, Bradenton, Florida. After completing his secondary education, he enrolled at the University of Florida supported by the Florida Undergraduate Scholarship and full-time employment at a local business. He earned a traditional 5-year engineering degree in only 4 years. In 1996, Jeff graduated with honors receiving a Bachelor of Science degree in engineering science with a concentration in biomedical engineering. He used this foundation to assist in the medical device development and clinical research programs of Computer Motion, Inc., Santa Barbara, California. In this role, Jeff was Clinical Development Site Manager for the Southeastern United States and he traveled extensively throughout the United States, Europe, and Asia collaborating with surgeons and fellow medical researchers. In 1998, Jeff married Karen, a student he met during his undergraduate studies. After more than 4 years in the medical device industry, he decided to continue his academic career at the University of Florida. In 2001, Jeff began his graduate studies in Biomedical Engineering and he was appointed a graduate research assistantship in the Computational Biomechanics Laboratory. He plans to continue his graduate education and research activities through the pursuit of a Doctor of Philosophy in mechanical engineering. Jeff would like to further his creative involvement in problem solving and the design of solutions to overcome healthcare challenges. 83