<%BANNER%>

Comparative Analysis of Vapor Compression and Hybrid Liquid Desiccant Dehumidification Systems


PAGE 1

COMPARATIVE ANALYSIS OF VAPOR COMPRESSION AND HYBRID LIQUID DESICCANT DEHUMIDIFICATION SYSTEMS By A. M. AL-JAAFARI A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLOR IDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2003

PAGE 2

ii ACKNOWLEDGMENTS I would like to thank my advisor Dr. Sh erif for his guidance and cooperation and for helping me successfully complete my degree requirements. I would like also to thank Dr. Ingley for his help and advice during the pr eparation of my thesis, and particularly in the use of the HAP 4.1 program. I would like also to thank Dr. Goswami for stimulating my interest in the subject of liquid desiccants. Special thanks are due to Robert N. Va n Der Like, Energy Management Specialist of Marion County Public Schools, for his help in providing informati on about the internal loads and building structure of the school model examined in th is thesis. Special thanks are also due to Yigal Laza rov, Regional Marketing Mana ger and Alon Landsman, Senior Application Engineer of DryKor for their help in providing technical data pertaining to their products.

PAGE 3

iii TABLE OF CONTENTS page ACKNOWLEDGMENTS..................................................................................................ii LIST OF TABLES...............................................................................................................v LIST OF FIGURES...........................................................................................................xi NOMENCLATURE.........................................................................................................xii ABSTRACT.....................................................................................................................xi v CHAPTER 1 INTRODUCTION........................................................................................................1 2 REVIEW OF LITERATURE.......................................................................................4 3 COOLING LOAD CALCULATIONS AND PSYCHROMETRIC ANALYSIS........8 3.1 Cooling Load Calculations....................................................................................8 3.1.1 Internal Loads..............................................................................................8 3.1.2 Indoor Design Conditions............................................................................9 3.1.3 Outdoor Conditions.....................................................................................9 3.2 Psychrometric Analysis.......................................................................................16 4 CYCLE DESCRIPTION AND THERMODY NAMIC ANALYSIS OF A HYBRID LIQUID DESICCANT (HLD) SYSTEM..................................................................18 4.1 System Description..............................................................................................18 4.2 Thermodynamic Analysis of the DryKor Cycle..................................................21 4.2.1. Thermodynamic Properties of Liquid Desiccants....................................21 4.2.2 Evaluating the COP of the DryKor HLD System.....................................23 4.2.3 HLD System COP.....................................................................................25 5 ENERGY ANALYSIS...............................................................................................27 5.1 Model I: Existing Air-Conditioning and Ventilation System.............................27 5.1.1 Energy Consumption of the Building Excluding the Ventilation Load....28 5.1.2 DX Outside-air Make-up Unit Process Description..................................28 5.1.3 Energy Consumption of the Outside-Air (OA) Make-Up Unit.................30

PAGE 4

iv 5.2 Model II: DryKor HLD Packaged System..........................................................32 5.3 Model III: Hybrid Solid Desiccant Cooling System...........................................34 6 RESULTS AND DISCUSSION.................................................................................36 6.1 Energy Consumption Summary...........................................................................36 6.1.1 Outside-Air Make-Up Unit Energy Consumption....................................36 6.1.2 Building Total Cooling Energy Consumption...........................................39 6.2 Cost Summary and Analysis................................................................................43 6.2.1 Cost of Electric Energy.............................................................................43 6.2.2 Capital and Other Costs.............................................................................45 7 CONCLUSIONS AND RECOMMENDATIONS.....................................................47 APPENDIX A PSYCHROMETRIC PR OPERTY TABLES.............................................................48 B AVERAGE ENERGY CONSUM PTION FOR MODEL I........................................84 C AVERAGE ENERGY CONSUM PTION FOR MODEL II....................................120 LIST OF REFERENCES.................................................................................................156 BIOGRAPHICAL SKETCH...........................................................................................158

PAGE 5

v LIST OF TABLES Table page 3.1 Cooling Spaces Internal Loads................................................................................9 3.2 Miami’s Weather Data from January-June............................................................10 3.3 Miami’s Weather Data from from July-December................................................11 3.4 Gainesville’s Weather Data from January-June....................................................12 3.5 Gainesville’s Weather Data from July-December.................................................13 3.6 Chicago’s Weather Data from January-June.........................................................14 3.7 Chicago’s Weather Data from July-December......................................................15 3.8 January Average Hourly Psychr ometric Properties for Miami..............................17 5.1 Cooling Energy Consumption by th e Building Excluding Ventilation.................28 5.2 Number of Working Days per Month....................................................................31 5.3 January Daily Average Energy Consumption for Model I, Miami.......................32 5.4 January Daily Average Energy Consumption for Model II, Miami......................34 5.5 Miami Energy Consumption for Model III............................................................35 5.6 Chicago Energy Consumption for Model III.........................................................35 6.1 Miami’s Monthly Energy Consumption for the Make-Up Unit............................36 6.2 Gainesville’s Monthly Energy Consumption for the Make-Up Unit.....................37 6.3 Chicago’s Monthly Energy Cons umption for the Make-Up Unit.........................37 6.4 Total Cooling Energy Consumption for the Miami Building................................40 6.5 Total Cooling Energy Consumpti on for the Gainesville Building........................41 6.6 Miami’s Energy Cost Summary.............................................................................43

PAGE 6

vi 6.7 Gainesville’s Energy Cost Summary.....................................................................44 6.8 Chicago’s Energy Cost Summary..........................................................................44 6.9 Operation and Capital Cost Summary...................................................................45 A.1 January Average Hourly Psyc hrometric Properties for Miami..............................48 A.2 February Average Hourly Psyc hrometric Properties for Miami............................49 A.3 March Average Hourly Psychr ometric Properties for Miami................................50 A.4 April Average Hourly Psychrometric Properties for Miami..................................51 A.5 May Average Hourly Psychr ometric Properties for Miami...................................52 A.6 June Average Hourly Psychr ometric Properties for Miami...................................53 A.7 July Average Hourly Psychr ometric Properties for Miami...................................54 A.8 August Average Hourly Psychr ometric Properties for Miami..............................55 A.9 September Average Hourly Psychrometric Properties for Miami.........................56 A.10 October Average Hourly Psyc hrometric Properties for Miami.............................57 A.11 November Average Hourly Psychrometric Properties for Miami.........................58 A.12 December Average Hourly Psyc hrometric Properties for Miami..........................59 A.13 January Average Hourly Psychrom etric Properties for Gainesville......................60 A.14 February Average Hourly Psychr ometric Properties for Gainesville....................61 A.15 March Average Hourly Psychrom etric Properties for Gainesville........................62 A.16 April Average Hourly Psychrom etric Properties for Gainesville..........................63 A.17 May Average Hourly Psychromet ric Properties for Gainesville...........................64 A.18 June Average Hourly Psychrom etric Properties for Gainesville...........................65 A.19 July Average Hourly Psychrom etric Properties for Gainesville............................66 A.20 August Average Hourly Psychrom etric Properties for Gainesville.......................67 A.21 September Average Hourly Psychrometric Properties for Gainesville.................68 A.22 October Average Hourly Psychrom etric Properties for Gainesville......................69

PAGE 7

vii A.23 November Average Hourly Psychrometric Properties for Gainesville..................70 A.24 December Average Hourly Psychrom etric Properties for Gainesville..................71 A.25 January Average Hourly Psychr ometric Properties for Chicago...........................72 A.26 February Average Hourly Psyc hrometric Properties for Chicago.........................73 A.27 March Average Hourly Psychr ometric Properties for Chicago.............................74 A.28 April Average Hourly Psychr ometric Properties for Chicago...............................75 A.29 May Average Hourly Psychrom etric Properties for Chicago................................76 A.30 June Average Hourly Psychr ometric Properties for Chicago................................77 A.31 July Average Hourly Psychr ometric Properties for Chicago.................................78 A.32 August Average Hourly Psychr ometric Properties for Chicago............................79 A.33 September Average Hourly Psychrometric Properties for Chicago......................80 A.34 October Average Hourly Psychrometric Properties for Chicago..........................81 A.35 November Average Hourly Psychrometric Properties for Chicago......................82 A.36 December Average Hourly Psychr ometric Properties for Chicago.......................83 B.1 January Daily Average Energy Consumption for Model I, Miami.......................84 B.2 February Daily Average Energy Consumption for Model I, Miami .....................85 B.3 March Daily Average Energy Consumption for Model I, Miami.........................86 B.4 April Daily Average Energy C onsumption for Model I, Miami...........................87 B.5 May Daily Average Energy Cons umption for Model I, Miami.............................88 B.6 June Daily Average Energy C onsumption for Model I, Miami.............................89 B.7 July Daily Average Energy Consumption for Model I, Miami.............................90 B.8 August Daily Average Energy Consumption for Model I, Miami........................91 B.9 September Daily Average Energy Consumption for Model I, Miami...................92 B.10 October Daily Average Energy C onsumption for Model I, Miami.......................93 B.11 November Daily Average Energy Consumption for Model I, Miami...................94

PAGE 8

viii B.12 December Daily Average Energy C onsumption for Model I, Miami...................95 B.13 January Daily Average Energy Consumption for Model I, Gainesville................96 B.14 February Daily Average Energy Cons umption for Model I, Gainesville..............97 B.15 March Daily Average Energy Consumption for Model I, Gainesville..................98 B.16 April Daily Average Energy Cons umption for Model I, Gainesville....................99 B.17 May Daily Average Energy Consum ption for Model I, Gainesville...................100 B.18 June Daily Average Energy Cons umption for Model I, Gainesville...................101 B.19 July Daily Average Energy Consum ption for Model I, Gainesville....................102 B.20 August Daily Average Energy Cons umption for Model I, Gainesville...............103 B.21 September Daily Average Energy Consumption for Model I, Gainesville.........104 B.22 October Daily Average Energy Cons umption for Model I, Gainesville.............105 B.23 November Daily Average Energy Consumption for Model I, Gainesville.........106 B.24 December Daily Average Energy Cons umption for Model I, Gainesville..........107 B.25 January Daily Average Energy Consumption for Model I, Chicago...................108 B.26 February Daily Average Energy C onsumption for Model I, Chicago.................109 B.27 March Daily Average Energy Consumption for Model I, Chicago.....................110 B.28 April Daily Average Energy Cons umption for Model I, Chicago.......................111 B.29 May Daily Average Energy Cons umption for Model I, Chicago........................112 B.30 June Daily Average Energy Cons umption for Model I, Chicago........................113 B.31 July Daily Average Energy Consumption for Model I, Chicago.........................114 B.32 August Daily Average Energy Consumption for Model I, Chicago....................115 B.33 September Daily Average Energy Consumption for Model I, Chicago..............116 B.34 October Daily Average Energy C onsumption for Model I, Chicago..................117 B.35 November Daily Average Energy Consumption for Model I, Chicago..............118 B.36 December Daily Average Energy C onsumption for Model I, Chicago...............119

PAGE 9

ix C.1 January Daily Average Energy Consumption for Model II, Miami....................120 C.2 February Daily Average Energy Consumption for Model II, Miami..................121 C.3 March Daily Average Energy Consumption for Model II, Miami......................122 C.4 April Daily Average Energy C onsumption for Model II, Miami........................123 C.5 May Daily Average Energy Consumption for Model II, Miami.........................124 C.6 June Daily Average Energy Consumption for Model II, Miami.........................125 C.7 July Daily Average Energy Consumption for Model II, Miami..........................126 C.8 August Daily Average Energy Consumption for Model II, Miami.....................127 C.9 September Daily Average Energy Consumption for Model II, Miami...............128 C.10 October Daily Average Energy C onsumption for Model II, Miami....................129 C.11 November Daily Average Energy Consumption for Model II, Miami................130 C.12 December Daily Average Energy C onsumption for Model II, Miami................131 C.13 January Daily Average Energy Consumption for Model II, Gainesville.............132 C.14 February Daily Average Energy C onsumption for Model II, Gainesville...........133 C.15 March Daily Average Energy Consumption for Model II, Gainesville...............134 C.16 April Daily Average Energy Consum ption for Model II, Gainesville.................135 C.17 May Daily Average Energy Consum ption for Model II, Gainesville..................136 C.18 June Daily Average Energy Consum ption for Model II, Gainesville..................137 C.19 July Daily Average Energy Consum ption for Model II, Gainesville..................138 C.20 August Daily Average Energy Consum ption for Model II, Gainesville.............139 C.21 September Daily Average Energy Consumption for Model II, Gainesville........140 C.22 October Daily Average Energy Cons umption for Model II, Gainesville............141 C.23 November Daily Average Energy Consumption for Model II, Gainesville........142 C.24 December Daily Average Energy Cons umption for Model II, Gainesville.........143 C.25. January Daily Average Energy Consumption for Model II, Chicago....................144

PAGE 10

x C.26 February Daily Average Energy C onsumption for Model II, Chicago...............145 C.27 March Daily Average Energy Consumption for Model II, Chicago...................146 C.28 April Daily Average Energy Cons umption for Model II, Chicago.....................147 C.29 May Daily Average Energy Consumption for Model II, Chicago.......................148 C.30 June Daily Average Energy C onsumption for Model II, Chicago.......................149 C.31 July Daily Average Energy Consumption for Model II, Chicago.......................150 C.32 August Daily Average Energy Consumption for Model II, Chicago..................151 C.33 September Daily Average Energy Consumption for Model II, Chicago.............152 C.34 October Daily Average Energy C onsumption for Model II, Chicago.................153 C.35 November Daily Average Energy Consumption for Model II, Chicago.............154 C.36 December Daily Average Energy C onsumption for Model II, Chicago.............155

PAGE 11

xi LIST OF FIGURES Figure page 3.1 Building layout.........................................................................................................8 4.1 Psychrometric depiction of the DryK or cooling and dehumidifying process........20 4.2 Schematic diagram of the DryKor system.............................................................21 4.3 Effect of temperature on the specific heat and density of LiCl at a 40% concentration..........................................................................................................22 4.4 Schematic diagram of the absorber/cooler chamber..............................................23 5.1 Cooling and dehumidifying process pe rformed by the vapor compression system....................................................................................................................29 5.2 Reheat system (Addison, 2002).............................................................................29 6.1A HLD and DX make-up unit’s electr ic energy consumption for Miami.................38 6.1B HLD and DX make-up unit’s electric energy consumption for Gainesville.........38 6.1C HLD and DX make-up unit’s electr ic energy consumption for Chicago..............39 6.2A Monthly energy consumption for the Miami building...........................................42 6.2B Monthly energy consumption for the Gainesville building...................................42 6.2C Monthly energy consumption for the Chicago building........................................43

PAGE 12

xii NOMENCLATURE Latin Symbols COP coefficient of performance COPHLD coefficient of performance of hybrid liquid desiccant system Cp specific heat, kJ/(kg K) h specific enthalpy, kJ/kg m mass flow rate, kg/s Patm atmospheric pressure, Pa Pw water vapor pressure, Pa Pws water vapor saturation pressure, Pa Q cooling rate, kW Ra gas constant for air, J/(kg K) T absolute temperature, K t temperature, oC t* wet-bulb temperature, oC v specific volume, m3/kg V volumetric flow rate, m3/s W humidity ratio, kgv /kga W electrical power, kW compW compressor electrical power

PAGE 13

xiii fW regeneration fan electrical power, kW P dW, liquid desiccant pump electrical power, kW Ws saturation humidity ratio, kgv /kga x percent concentration of liquid desiccant solution, kgd / kgs Greek Symbols relative humidity, dimensionless degree of saturation, dimensionless Subscripts a dry air atm atmospheric c condenser d desiccant e evaporator E entering L leaving m moist air P pump r refrigerant s solution or saturated v vapor w water

PAGE 14

xiv Abstract of Thesis Presen ted to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Master of Science COMPARATIVE ANALYSIS OF VAPOR COMPRESSION AND HYBRID LIQUID DESICCANT DEHUMIDIFICATION SYSTEMS By A. M. Al-Jaafari August, 2003 Chair: S. A. Sherif Major Department: Mechanic al and Aerospace Engineering The objective of this study was to evaluate the energy savings of a commercially available hybrid liquid desiccant (HLD) coolin g system relative to a conventional vapor compression system used for an existing school building where 100% outside air is used for ventilation. Psychrometric analysis a nd hour-by-hour simulations for three energy models were developed for three cities in th e United States using available weather data assuming normal operation and typical buildi ng occupancy. Energy calculation software such as the Carrier Hourly Analysis Pr ogram (HAP 4.1) and Desicalc along with generated spreadsheets was used to com pute the energy consumption for the models under study. Results of each model are summ arized and comparisons are made. The annual energy savings employing the HLD system were found to reach 46% for Chicago, 37% for Gainesville and 32% for Miami. Simp le cost analysis and associated payback periods were also performed.

PAGE 15

1 CHAPTER 1 INTRODUCTION Saving Energy is one of the main con cerns in the HVAC industry. A large percentage of the energy consumed for cooli ng (up to 50%) is directed towards removing the latent load. Dehumidification using a chemical s ubstance (desiccant) was proposed by researchers as a potentially good method to rem ove the latent load. While the widely used desiccant cooling methods in the HVA C market today utilize solid desiccants, recent research suggests that liquid desiccants are also promising. Compared to solid desiccant systems, liquid desiccant systems are more efficient, easy to install, and have low maintenance costs. In addition to its de humidification effect, liquid desiccants could also be used as efficient substances to wa sh air from suspended pa rticles. Since liquid desiccant cooling systems are still not wide ly commercialized, a relatively small number of investigations have discussed practical comparisons between hybrid liquid desiccant (HLD) cooling systems and vapor compression cooling systems. The market for liquid desiccant cooling system produc ts is growing, however not many clients are comfortable enough with the reliability and efficiency of th ese systems. In this thesis an existing school with 100% outside air ( OA) preconditioning with a dir ect expansion (DX) cooling unit (with hot gas reheat for temperature cont rol and hot gas bypass fo r capacity control) will be compared with a hybrid desiccant cooling system for the purpose of computing the energy savings resulting from the use of the latter. The expectation is that the use of liquid desiccant cooling would reduc e both capital and operating costs.

PAGE 16

2 The model will be studied using weather data for three locations (Gainesville, Miami, and Chicago) in the United States for the purpose of investigating the effect of the change in weather on the performance of the system as well as on the energy consumption. However, the model will be s hown to fit any other location where weather data are available. A Parametric study th at provides the coefficient of performance (COP) of the HLD cooling system will be demonstrated for the chosen cycle, however for energy calculation in this thesis, vendor so ftware will be used to compute the system COP. Economics of the system will be briefly discussed and will focus on the cost of energy. Recently developed software for en ergy calculation such as the Carrier Hourly Analysis Program (HAP 4.1, Carrier 2002) and De sicalc (Desicalc, 2002) will be used to compute the hourly energy consumption rate for conventional and solid desiccant systems, respectively. To date, analysis of liq uid desiccant systems is still not part of the software. For this purpose, a model capable of computing the hourly energy consumption along with internal loads will be developed. Internal load calculations to reflect the effect of seasonal variations on cooling loads will be computed by the HAP 4.1 (Carrier, 2002). This thesis is divided into seven (7) ch apters including the Introduction as Chapter 1. Chapter 2 reviews the literature for related studies. In Chapte r 3, the hourly space cooling load calculation of th e building under study and psyc hrometric analysis for the ambient air for the three cities will be performed. Chapter 4 presents thermodynamic analysis of the hybrid desiccant system cycle. Electric energy consumption for different energy models for the three cities will be evaluated in Chapter 5. Chapter 6 will

PAGE 17

3 summarize and discuss the energy consump tion results obtained in Chapter 5. Conclusions and recommendations for future work will be provided in Chapter 7.

PAGE 18

4 CHAPTER 2 REVIEW OF LITERATURE The idea of using a liquid chemical substa nce (desiccant) for dehumidification was first applied to industrial pro cesses in the early 1930s. Kath abar Inc., produced the first cooling and dehumidifying desiccant system in 1937 for a large central system used for an industrial plant (Kathabar, 2003). Later in 1953, Kathabar developed air-conditioning units providing dehumidification from 1100 cfm to 22,500 cfm. The development continued on to improve the efficiency of re generation to reduce the energy cost. In the early 1980s researchers investigated appl ying cheaper regeneration methods using renewable energy (solar), exhaust heat, and membrane separation regeneration to improve the COP of liquid desiccant air cond itioning systems. Research has generally concentrated on optimizing the performance of liquid desiccant systems and improving the regeneration process of the used desiccant to reduce energy cost. In order to optimize the desiccant cooling process, researchers extensively utilized thermodynamic modeling and parametric analysis. Different models and experimental verification were performed showing promising results. In the late 1990s DryKor produced the first liquid desiccant air-conditioning unit that utiliz es no external heat sources for regeneration. Based on their study, the COP of such units could reac h 4 and provide a cooling capacity that varies from 2000 cfm and 17.5 MBH to 2800 cfm and 37.8 MBH. The National Renewable Energy Laboratory (NREL) of the U. S. Department of Energy established a task force to assist the commercialization of liquid and solid desiccant systems. One of many studies and reports that they published is entitled

PAGE 19

5 Advanced Commercial Liquid-Desiccant T echnology Development Study (1998) which stated that liquid desiccant systems coul d produce as much as a 40% reduction in operating costs compared to solid de siccants (Lowensteien et al., 1998). Johannsen (1984) investigated the perf ormance of hybrid so lar air conditioning systems with liquid desiccants under different c limatic conditions for five cities in South Africa. His experimental set up used four solar collectors to heat the weak desiccant solution for regeneration. He also used a water-cooling tower to cool the dehumidified air through a heat exchanger. The achieved seasonal COP of the system ranged from 0.36 to 0.47 at that early time of exploring so lar liquid desiccant system performance. Johannsen (1984) found that his system c ould provide 1.91 to 2.90 kWh of cooling per square meter of collector area. Ahmed et al. (1996) performed an optimi zation study to find the optimum desiccant mass flow rate with the least irreversibility in a solar regenerator cycle where they used one solar collector to regenerate the weak de siccant solution exiting the absorber. Based on their analysis, the optimum mass fl ow rate was found to be 30 kg/(h m2) for an ambient temperature of 40 oC. They suggested that the abso rber irreversibili ty be treated in the same manner as that of the rege nerator since the components are similar. Khan and Martinez (1996) developed a mathematical model to study the performance of a liquid desiccant absorber under isothermal conditi ons. A partial load performance of the absorber was studied to illustrate the effect of variable dehumidification load. Annual energy savings were predicted by a simple model. Based on their analysis, the performance of the ab sorber was affected significantly by the desiccant inlet temperature.

PAGE 20

6 Ahmed et al. (1997) performed thermodyna mic property analysis for LiCl and CaCl using classical thermodynamic techniques Density, vapor pre ssure, and viscosity for LiCl, CaCl and their mixtur es at different concentrations were computed and plotted. Al-Rabghi et al. (1997) perf ormed a parametric study of the effect of outside ambient temperature and relative humidity on a proposed hybrid liquid desiccant system. A comparison between the coefficient of pe rformance of a liquid desiccant system (COP)HLD and that of a conventional system (COP)c was made. Results suggested that increasing the ambient temperature and latent -to-sensible heat ratio to certain limits improved the (COP)HLD/(COP)c ratio. Ahmed et al. (1999) studied regenerati on of a weak desiccant solution by a mechanical process instead of a thermal pro cess by means of osmotic pressure. Pressures required for regeneration for different soluti on concentrations for LiCl and CaCl were computed and plotted. An optimization study by Dhar et al. ( 2000) to minimize the lifetime cost of a liquid desiccant system was performed. Results of their program showed that waste heat availability would promote the liquid desicc ant system against conventional compression systems from operating and in itial cost points of view. Mago (2000) developed a simulation model and software for a liquid desiccant system with a solar collector regenerator and a vapor compression system performance using Fumo’s (1999) modified model. Effect of variation of different parameters such as the desiccant mass flow rate, inlet temperatur e, and concentration were computed and plotted. Cost analysis for selected vapor compression systems with an equivalent hybrid

PAGE 21

7 desiccant system was performed. The result showed savings of $3426/yr for electricity and a payback period of two years fo r a two-ton vapor compression system. Al-Frayedhi et al. (2002) performed an ev aluation of the heat and mass transfer coefficients in a gauze-type structured p acking liquid desiccant air dehumidifier. A theoretical model was develope d and values for different co ncentrations of LiCl, CaCl, and a mixture of both were computed and plotted. Dai et al. (2001) performed an experiment al comparative analysis between hybrid liquid desiccants and vapor compression cooli ng systems. The study showed that adding desiccant dehumidification improved the cycle COP and reduced compressor size as well as the electrical energy consumed.

PAGE 22

8 CHAPTER 3 COOLING LOAD CALCULATIONS AND PSYCHROMETRIC ANALYSIS 3.1 Cooling Load Calculations An existing school building (Figure 3.1) wa s used as a model to study the cooling load and energy analysis. The building was divi ded into thirteen (13) spaces assigned to nine (9) zones where each zone is assigne d to one heat pump (HP). To maximize the accuracy, the Carrier HAP 4.1 program was used to compute the hour-by-hour load. up up HP3.2&3 Library & Computer Lab HP3.5 (SPACE 2) HP3.6 (SPACE 3) HP3.7 (SPACE 4) HP3.8 (SPACE 6) HP3.1 (SPACE 5) HP3.9 HP3.4 (SPACE 5)HP3.2&3 Hall &E/W VESTMEN WC WOMEN WC North Figure 3.1. Building layout 3.1.1 Internal Loads Internal loads for each space are summarized in Table 3.1. Values provided by the American Society of Heating, Refrigerat ion, and Air-Conditioning Engineers [ASHRAE]

PAGE 23

9 (2001) for equipment sensible and latent load s considering moderate office work were used Table 3.1. Cooling Spaces Internal Loads Space 1 Space 2 Space 3 Space 4 Space 5 Space 6 Library & PC Lab Hall East Vest West Vest Counsel Men WC Women WC Floor Area m2 67.7 67.7 63.4 61.3 67.7 67.7 158 120 18.4 18.4 27.9 18 18.4 People (rounded adults) 16 16 16 16 16 16 3 1 Equipment (kW) 302 302 302 302 302 302 3550 7000 Lights (kW/m2) 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 Misc. (kW/m2) 280 3.1.2 Indoor Design Conditions The indoor design dry-bulb temperatur e (DBT) and wet-bulb temperature WBT used for all cooling load calculations in this study were assumed to be DBT=24oC and WBT=17oC. 3.1.3 Outdoor Conditions The design conditions for the three cities are summarized as follows: Summer Winter City DBT (oC) WBT ( oC) DBT (oC) WBT ( oC) Miami 32.8 25 7.8 3.7 Gainesville 34.4 25 -1.1 -3.7 Chicago 32.8 23.3 -21.1 -21.8 The average hourly dry-bulb and wet-bulb temperatures obtained from the HAP 4.1 program for Miami, Gainesville, and Ch icago are shown in Tables 3.2 through 3.7.

PAGE 24

10Table 3.2. Miami’s Weather Data from January-June Hr January February March April May June DBT (oC) WBT (oC) DBT (oC) WBT (oC) DBT (oC) WBT (oC) DBT (oC) WBT (oC) DBT (oC) WBT (oC) DBT (oC) WBT (oC) 0000 22.0 20.1 23.1 20.7 24.8 21.9 25.4 22.5 25.9 23.0 27.0 23.6 0100 21.7 20.0 22.8 20.6 24.5 21.8 25.0 22.4 25.6 23.0 26.7 23.5 0200 21.4 19.9 22.5 20.5 24.2 21.7 24.7 22.3 25.3 22.9 26.4 23.5 0300 21.1 19.8 22.3 20.4 23.9 21.6 24.5 22.2 25.0 22.8 26.1 23.4 0400 21.0 19.8 22.1 20.4 23.7 21.6 24.3 22.2 24.8 22.7 26.0 23.3 0500 20.9 19.8 22.0 20.3 23.7 21.5 24.2 22.1 24.8 22.7 25.9 23.3 0600 21.0 19.8 22.1 20.4 23.8 21.6 24.3 22.2 24.9 22.8 26.0 23.4 0700 21.3 19.9 22.4 20.5 24.1 21.7 24.7 22.3 25.2 22.9 26.3 23.4 0800 21.9 20.1 23.0 20.7 24.7 21.8 25.2 22.4 25.8 23.0 26.9 23.6 0900 22.7 20.3 23.8 20.9 25.5 22.1 26.1 22.7 26.6 23.2 27.7 23.8 1000 23.7 20.6 24.8 21.2 26.5 22.3 27.0 22.9 27.6 23.5 28.7 24.1 1100 24.8 20.9 25.9 21.5 27.5 22.6 28.1 23.2 28.6 23.8 29.8 24.4 1200 25.8 21.2 26.9 21.8 28.5 22.9 29.1 23.5 29.7 24.1 30.8 24.6 1300 26.5 21.5 27.6 22.0 29.3 23.1 29.9 23.7 30.4 24.3 31.5 24.8 1400 27.0 21.6 28.1 22.2 29.8 23.3 30.4 23.8 30.9 24.4 32.0 25.0 1500 27.2 21.7 28.3 22.2 30.0 23.3 30.6 23.9 31.1 24.4 32.2 25.0 1600 27.0 21.6 28.1 22.2 29.8 23.3 30.4 23.8 30.9 24.4 32.0 25.0 1700 26.6 21.5 27.7 22.0 29.4 23.2 29.9 23.7 30.5 24.3 31.6 24.8 1800 25.9 21.3 27.0 21.8 28.7 23.0 29.2 23.5 29.8 24.1 30.9 24.7 1900 25.1 21.0 26.2 21.6 27.8 22.7 28.4 23.3 29.0 23.9 30.1 24.4 2000 24.2 20.8 25.4 21.4 27.0 22.5 27.6 23.1 28.1 23.7 29.2 24.2 2100 23.5 20.6 24.7 21.2 26.3 22.3 26.9 22.9 27.4 23.5 28.5 24.0 2200 22.9 20.4 24.0 21.0 25.7 22.1 26.2 22.7 26.8 23.3 27.9 23.9 2300 22.4 20.2 23.5 20.8 25.2 22.0 25.7 22.6 26.3 23.2 27.4 23.7 (Carrier, 2002)

PAGE 25

11Table 3.3. Miami’s Weather Data from from July-December Hr July August September October November December DBT (oC) WBT (oC) DBT (oC) WBT (oC) DBT (oC) WBT (oC) DBT (oC) WBT (oC) DBT (oC) WBT (oC) DBT (oC) WBT (oC) 0000 27.6 23.6 27.6 23.6 26.5 23.0 25.4 22.5 23.7 21.9 22.6 20.7 0100 27.3 23.6 27.3 23.6 26.2 23.0 25.0 22.4 23.4 21.8 22.3 20.6 0200 27.0 23.5 27.0 23.5 25.8 22.9 24.7 22.3 23.1 21.7 22.0 20.5 0300 26.7 23.4 26.7 23.4 25.6 22.8 24.5 22.2 22.8 21.6 21.7 20.4 0400 26.5 23.3 26.5 23.3 25.4 22.7 24.3 22.2 22.6 21.6 21.5 20.4 0500 26.4 23.3 26.4 23.3 25.3 22.7 24.2 22.1 22.6 21.5 21.4 20.4 0600 26.6 23.4 26.6 23.4 25.5 22.8 24.3 22.2 22.7 21.6 21.6 20.4 0700 26.9 23.4 26.9 23.4 25.8 22.9 24.7 22.3 23.0 21.7 21.9 20.5 0800 27.5 23.6 27.5 23.6 26.3 23.0 25.2 22.4 23.6 21.8 22.5 20.7 0900 28.3 23.8 28.3 23.8 27.2 23.2 26.1 22.7 24.4 22.1 23.3 20.9 1000 29.2 24.1 29.2 24.1 28.1 23.5 27.0 22.9 25.3 22.3 24.2 21.2 1100 30.3 24.4 30.3 24.4 29.2 23.8 28.1 23.2 26.4 22.7 25.3 21.5 1200 31.3 24.6 31.3 24.6 30.2 24.1 29.1 23.5 27.4 22.9 26.3 21.8 1300 32.1 24.8 32.1 24.8 31.0 24.3 29.9 23.7 28.2 23.1 27.1 22.0 1400 32.6 25.0 32.6 25.0 31.5 24.4 30.4 23.8 28.7 23.3 27.6 22.2 1500 32.8 25.0 32.8 25.0 31.7 24.4 30.6 23.9 28.9 23.3 27.8 22.2 1600 32.6 25.0 32.6 25.0 31.5 24.4 30.4 23.8 28.7 23.3 27.6 22.2 1700 32.1 24.8 32.1 24.8 31.0 24.3 29.9 23.7 28.3 23.2 27.1 22.0 1800 31.4 24.7 31.4 24.7 30.3 24.1 29.2 23.5 27.6 23.0 26.4 21.8 1900 30.6 24.4 30.6 24.4 29.5 23.9 28.4 23.3 26.7 22.7 25.6 21.6 2000 29.8 24.2 29.8 24.2 28.7 23.7 27.6 23.1 25.9 22.5 24.8 21.4 2100 29.1 24.0 29.1 24.0 28.0 23.5 26.9 22.9 25.2 22.3 24.1 21.2 2200 28.5 23.9 28.5 23.9 27.4 23.3 26.2 22.7 24.6 22.1 23.5 21.0 2300 28.0 23.7 28.0 23.7 26.9 23.2 25.7 22.6 24.1 22.0 23.0 20.8 (Carrier, 2002)

PAGE 26

12Table 3.4. Gainesville’s Weather Data from January-June Hr January February March April May June DBT (oC) WBT (oC) DBT (oC) WBT (oC) DBT (oC) WBT (oC) DBT (oC) WBT (oC) DBT (oC) WBT (oC) DBT (oC) WBT (oC) 0000 16.3 15.0 17.4 16.1 20.0 18.7 21.6 20.1 23.8 21.5 25.4 22.7 0100 15.7 14.7 16.9 15.8 19.5 18.4 21.1 19.9 23.3 21.4 24.9 22.6 0200 15.2 14.5 16.3 15.6 19.0 18.2 20.6 19.7 22.8 21.2 24.3 22.4 0300 14.8 14.3 15.9 15.4 18.6 18.1 20.1 19.6 22.4 21.1 23.9 22.3 0400 14.5 14.2 15.6 15.3 18.3 17.9 19.8 19.5 22.0 21.0 23.6 22.2 0500 14.4 14.1 15.5 15.2 18.2 17.9 19.7 19.4 21.9 21.0 23.5 22.2 0600 14.6 14.2 15.7 15.3 18.4 18.0 19.9 19.5 22.2 21.0 23.7 22.3 0700 15.1 14.5 16.2 15.6 18.9 18.2 20.4 19.7 22.7 21.2 24.2 22.4 0800 16.1 14.9 17.2 16.0 19.8 18.6 21.4 20.0 23.6 21.5 25.2 22.7 0900 17.4 15.5 18.5 16.6 21.2 19.1 22.7 20.5 25.0 21.8 26.5 23.0 1000 19.0 16.2 20.1 17.3 22.7 19.7 24.3 21.0 26.5 22.3 28.1 23.5 1100 20.7 17.0 21.8 18.0 24.5 20.4 26.1 21.6 28.3 22.8 29.8 23.9 1200 22.4 17.7 23.5 18.7 26.2 21.0 27.7 22.1 29.9 23.2 31.5 24.4 1300 23.6 18.2 24.7 19.2 27.4 21.5 29.0 22.5 31.2 23.6 32.7 24.7 1400 24.5 18.5 25.6 19.5 28.2 21.8 29.8 22.8 32.0 23.8 33.6 24.9 1500 24.8 18.7 25.9 19.7 28.6 21.9 30.1 22.9 32.3 23.9 33.9 25.0 1600 24.5 18.5 25.6 19.5 28.2 21.8 29.8 22.8 32.0 23.8 33.6 24.9 1700 23.7 18.2 24.8 19.3 27.5 21.5 29.1 22.6 31.3 23.6 32.8 24.7 1800 22.6 17.8 23.7 18.8 26.4 21.1 27.9 22.2 30.2 23.3 31.7 24.4 1900 21.2 17.2 22.4 18.2 25.0 20.6 26.6 21.8 28.8 22.9 30.4 24.1 2000 19.9 16.6 21.0 17.7 23.7 20.1 25.2 21.3 27.5 22.6 29.0 23.7 2100 18.8 16.1 19.9 17.2 22.5 19.6 24.1 20.9 26.3 22.2 27.9 23.4 2200 17.7 15.7 18.8 16.7 21.5 19.2 23.0 20.6 25.3 21.9 26.8 23.1 2300 16.9 15.3 18.0 16.4 20.7 18.9 22.2 20.3 24.4 21.7 26.0 22.9 (Carrier, 2002)

PAGE 27

13Table 3.5. Gainesville’s Weather Data from July-December Hr July August September October November December DBT (oC) WBT (oC) DBT (oC) WBT (oC) DBT (oC) WBT (oC) DBT (oC) WBT (oC) DBT (oC) WBT (oC) DBT (oC) WBT (oC) 0000 25.9 22.7 25.9 22.7 24.8 22.1 22.7 20.9 19.5 18.2 16.8 15.7 0100 25.4 22.6 25.4 22.6 24.3 22.0 22.2 20.7 19.0 18.0 16.3 15.4 0200 24.9 22.4 24.9 22.4 23.8 21.8 21.7 20.6 18.4 17.7 15.8 15.1 0300 24.5 22.3 24.5 22.3 23.4 21.7 21.2 20.5 18.0 17.5 15.4 14.9 0400 24.2 22.2 24.2 22.2 23.0 21.6 20.9 20.4 17.7 17.4 15.0 14.7 0500 24.1 22.2 24.1 22.2 22.9 21.6 20.8 20.3 17.6 17.3 14.9 14.7 0600 24.3 22.3 24.3 22.3 23.2 21.6 21.0 20.4 17.8 17.4 15.2 14.8 0700 24.8 22.4 24.8 22.4 23.7 21.8 21.6 20.6 18.3 17.7 15.7 15.1 0800 25.7 22.7 25.7 22.7 24.6 22.1 22.5 20.8 19.3 18.1 16.6 15.6 0900 27.1 23.0 27.1 23.0 26.0 22.4 23.8 21.2 20.6 18.7 18.0 16.3 1000 28.6 23.5 28.6 23.5 27.5 22.9 25.4 21.7 22.2 19.4 19.5 17.0 1100 30.4 23.9 30.4 23.9 29.3 23.4 27.2 22.2 23.9 20.1 21.3 17.9 1200 32.1 24.4 32.1 24.4 30.9 23.8 28.8 22.7 25.6 20.8 22.9 18.7 1300 33.3 24.7 33.3 24.7 32.2 24.1 30.1 23.0 26.9 21.3 24.2 19.3 1400 34.1 24.9 34.1 24.9 33.0 24.4 30.9 23.3 27.7 21.7 25.0 19.6 1500 34.4 25.0 34.4 25.0 33.3 24.4 31.2 23.3 28.0 21.8 25.3 19.8 1600 34.1 24.9 34.1 24.9 33.0 24.4 30.9 23.3 27.7 21.7 25.0 19.6 1700 33.4 24.7 33.4 24.7 32.3 24.2 30.2 23.1 27.0 21.4 24.3 19.3 1800 32.3 24.4 32.3 24.4 31.2 23.9 29.0 22.7 25.8 20.9 23.2 18.8 1900 30.9 24.1 30.9 24.1 29.8 23.5 27.7 22.4 24.5 20.4 21.8 18.1 2000 29.6 23.7 29.6 23.7 28.5 23.1 26.3 22.0 23.1 19.8 20.5 17.5 2100 28.4 23.4 28.4 23.4 27.3 22.8 25.2 21.6 22.0 19.3 19.3 16.9 2200 27.4 23.1 27.4 23.1 26.3 22.5 24.2 21.3 20.9 18.8 18.3 16.4 2300 26.5 22.9 26.5 22.9 25.4 22.3 23.3 21.1 20.1 18.5 17.4 16.0 (Carrier, 2002)

PAGE 28

14Table 3.6. Chicago’s Weather Data from January-June Hr January February March April May June DBT (oC) WBT (oC) DBT (oC) WBT (oC) DBT (oC) WBT (oC) DBT (oC) WBT (oC) DBT (oC) WBT (oC) DBT (oC) WBT (oC) 0000 -1.2 -1.2 1.1 1.0 7.7 7.6 13.3 12.4 18.3 16.9 22.2 19.6 0100 -1.7 -1.8 0.5 0.4 7.2 7.0 12.7 12.0 17.7 16.7 21.6 19.4 0200 -2.2 -2.4 0.0 -0.2 6.6 6.4 12.2 11.7 17.2 16.4 21.1 19.3 0300 -2.7 -2.9 -0.5 -0.7 6.2 6.0 11.8 11.4 16.8 16.3 20.7 19.1 0400 -3.0 -3.3 -0.8 -1.0 5.9 5.6 11.4 11.1 16.4 16.1 20.3 19.0 0500 -3.1 -3.4 -0.9 -1.2 5.8 5.5 11.3 11.1 16.3 16.1 20.2 19.0 0600 -2.9 -3.1 -0.7 -0.9 6.0 5.7 11.6 11.2 16.6 16.2 20.4 19.0 0700 -2.3 -2.5 -0.1 -0.3 6.5 6.3 12.1 11.6 17.1 16.4 21.0 19.2 0800 -1.4 -1.5 0.9 0.8 7.5 7.4 13.1 12.2 18.1 16.8 22.0 19.5 0900 0.0 0.0 2.3 2.3 8.9 8.8 14.5 13.2 19.5 17.4 23.4 20.0 1000 1.7 1.7 3.9 3.9 10.6 10.4 16.1 14.2 21.1 18.1 25.0 20.5 1100 3.5 3.5 5.8 5.8 12.4 12.0 18.0 15.3 23.0 18.9 26.9 21.0 1200 5.3 5.3 7.5 7.5 14.2 13.5 19.7 16.4 24.7 19.6 28.6 21.5 1300 6.6 6.5 8.8 8.7 15.5 14.6 21.0 17.1 26.0 20.1 29.9 21.9 1400 7.5 7.2 9.7 9.4 16.3 15.3 21.9 17.6 26.9 20.4 30.8 22.1 1500 7.8 7.5 10.0 9.7 16.7 15.6 22.2 17.8 27.2 20.6 31.1 22.2 1600 7.5 7.2 9.7 9.4 16.3 15.3 21.9 17.6 26.9 20.4 30.8 22.1 1700 6.7 6.5 8.9 8.8 15.6 14.7 21.1 17.2 26.1 20.1 30.0 21.9 1800 5.5 5.5 7.7 7.7 14.4 13.7 19.9 16.5 24.9 19.7 28.8 21.6 1900 4.1 4.1 6.3 6.3 13.0 12.5 18.5 15.7 23.5 19.1 27.4 21.2 2000 2.7 2.7 4.9 4.9 11.5 11.3 17.1 14.8 22.1 18.5 26.0 20.7 2100 1.5 1.5 3.7 3.7 10.4 10.2 15.9 14.1 20.9 18.0 24.8 20.4 2200 0.4 0.4 2.6 2.6 9.3 9.1 14.8 13.4 19.8 17.6 23.7 20.1 2300 -0.5 -0.5 1.7 1.7 8.4 8.2 13.9 12.8 18.9 17.2 22.8 19.8 (Carrier, 2002)

PAGE 29

15Table 3.7. Chicago’s Weather Data from July-December Hr July August September October November December DBT (oC) WBT (oC) DBT (oC) WBT (oC) DBT (oC) WBT (oC) DBT (oC) WBT (oC) DBT (oC) WBT (oC) DBT (oC) WBT (oC) 0000 23.8 20.8 23.8 20.8 20.5 18.9 15.0 13.9 8.8 8.4 2.2 2.1 0100 23.3 20.7 23.3 20.7 20.0 18.7 14.4 13.6 8.3 7.9 1.6 1.5 0200 22.8 20.5 22.8 20.5 19.4 18.6 13.9 13.3 7.8 7.4 1.1 0.9 0300 22.3 20.4 22.3 20.4 19.0 18.4 13.4 13.0 7.3 7.0 0.7 0.4 0400 22.0 20.3 22.0 20.3 18.7 18.3 13.1 12.8 7.0 6.7 0.3 0.1 0500 21.9 20.2 21.9 20.2 18.6 18.3 13.0 12.7 6.9 6.6 0.2 -0.1 0600 22.1 20.3 22.1 20.3 18.8 18.4 13.2 12.9 7.1 6.8 0.4 0.2 0700 22.7 20.5 22.7 20.5 19.3 18.5 13.8 13.2 7.7 7.3 1.0 0.8 0800 23.6 20.8 23.6 20.8 20.3 18.9 14.7 13.8 8.6 8.2 2.0 1.9 0900 25.0 21.2 25.0 21.2 21.7 19.3 16.2 14.7 10.0 9.5 3.4 3.4 1000 26.7 21.6 26.7 21.6 23.3 19.8 17.8 15.6 11.7 10.9 5.0 5.0 1100 28.5 22.2 28.5 22.2 25.2 20.4 19.6 16.6 13.5 12.4 6.9 6.8 1200 30.3 22.7 30.3 22.7 26.9 20.9 21.4 17.6 15.3 13.7 8.6 8.4 1300 31.6 23.0 31.6 23.0 28.2 21.3 22.7 18.3 16.6 14.7 9.9 9.6 1400 32.5 23.3 32.5 23.3 29.1 21.6 23.6 18.7 17.5 15.3 10.8 10.3 1500 32.8 23.3 32.8 23.3 29.4 21.7 23.9 18.9 17.8 15.6 11.1 10.6 1600 32.5 23.3 32.5 23.3 29.1 21.6 23.6 18.7 17.5 15.3 10.8 10.3 1700 31.7 23.0 31.7 23.0 28.4 21.3 22.8 18.3 16.7 14.8 10.0 9.6 1800 30.5 22.7 30.5 22.7 27.2 21.0 21.6 17.7 15.5 13.9 8.8 8.6 1900 29.1 22.3 29.1 22.3 25.7 20.6 20.2 16.9 14.1 12.8 7.4 7.3 2000 27.7 21.9 27.7 21.9 24.3 20.1 18.8 16.2 12.7 11.7 6.0 6.0 2100 26.5 21.6 26.5 21.6 23.1 19.8 17.6 15.5 11.5 10.7 4.8 4.8 2200 25.4 21.3 25.4 21.3 22.0 19.4 16.5 14.9 10.4 9.8 3.7 3.7 2300 24.5 21.0 24.5 21.0 21.2 19.1 15.6 14.3 9.5 9.0 2.8 2.8 (Carrier, 2002)

PAGE 30

16 3.2 Psychrometric Analysis For the purpose of analyzing the hybrid liquid desiccant system it was necessary to have the psychrometric properties of ambien t air for each city under different weather conditions. In this study, the DBT and WBT were the basis to evaluate the remaining key properties from the psychrometric equations presented in ASHRAE (1989). These are summarized below as follows: Pws = Exp [C1/T + C2 + C3 T + C4 T2 + C5T3 + C6 ln(T)], for 0 < t <200 oC = Exp [C7/T + C8 + C9 T + C10 T2 + C11T3 + C12 T4 + C13 ln(T)], for -100
PAGE 31

17 where Ra is the gas constant for air a nd is equal to 287.055 J/(kg K) Patm is the atmospheric pressure and is equal to101325 Pa These equations were used to find the hour ly psychometric properties for the three cities, which were employed later to perfor m the energy calculations. Annual average hourly psychrometric properties obtained for Mi ami, Gainesville, and Chicago are shown in Appendix A. A sample table for Miami’ s average hourly psychrometric properties in January is shown below. Table 3.8. January Average Hourly Psychrometric Properties for Miami hour DBT (oC) WBT (oC) DPT (oC) Pws (Pa) Pws* (Pa) Ws Ws* W v (m3/kg) h (kJ/kg) Pw (Pa) 0 22.1 20.1 20.0 2770.49 2458.570.01748470.015470.0146540.840.840.8560 59.28742332.22 1 21.7 20.0 20.0 2714.68 2441.710.01712270.015360.0146380.850.860.8550 58.90562329.79 2 21.4 19.9 19.9 2659.86 2424.960.01676760.015250.0146230.870.880.8541 58.52562327.47 3 21.2 19.8 20.0 2623.85 2416.620.01653460.01520.0146390.890.890.8534 58.33822329.96 4 20.9 19.8 20.0 2588.27 2408.300.01630450.015140.0146550.900.900.8528 58.15112332.48 5 20.9 19.8 20.0 2579.44 2408.300.01624740.015140.0146780.900.910.8527 58.15302336.09 6 21.0 19.8 19.9 2597.12 2408.300.01636170.015140.0146320.890.900.8529 58.14922328.87 7 21.3 19.9 20.0 2650.82 2424.960.01670910.015250.0146460.880.880.8539 58.52752331.08 8 21.9 20.1 20.0 2742.46 2450.130.01730280.015410.0146460.850.850.8555 59.09632330.99 9 22.7 20.3 20.0 2885.13 2492.590.01822930.015690.0146870.810.810.8580 60.05602337.37 10 23.7 20.6 20.0 3054.61 2535.690.01933350.015960.0146860.760.770.8607 61.02252337.19 11 24.8 20.9 20.0 3265.08 2588.270.02070990.01630.0146990.710.720.8640 62.19762339.30 12 25.8 21.2 20.0 3465.21 2632.810.02202430.016590.0146840.670.670.8669 63.18632336.99 13 26.5 21.4 20.0 3616.32 2668.930.02302030.016830.0147080.640.650.8690 63.98832340.69 14 27.1 21.6 20.0 3736.44 2696.300.02381420.0170.0147220.620.630.8706 64.59402342.85 15 27.2 21.7 20.1 3773.15 2705.480.02405720.017060.0147350.610.620.8711 64.79762344.83 16 27.1 21.6 20.0 3736.44 2696.300.02381420.0170.0147220.620.630.8706 64.59402342.85 17 26.6 21.5 20.1 3640.07 2678.030.02317710.016890.0147430.640.640.8694 64.19252346.19 18 25.9 21.3 20.0 3488.10 2641.800.02217490.016650.0147190.660.670.8672 63.38872342.38 19 25.1 21.1 20.1 3319.64 2606.010.02106770.016420.0147440.700.710.8648 62.59622346.23 20 24.2 20.8 20.0 3158.32 2561.860.0200110.016130.0146920.730.740.8624 61.60812338.13 21 23.6 20.6 20.0 3034.23 2527.020.01920050.015910.0146530.760.770.8604 60.82562332.13 22 22.9 20.4 20.0 2914.43 2501.150.01841990.015740.0146950.800.800.8585 60.24922338.73 23 22.4 20.2 20.0 2827.30 2475.530.01785350.015580.014670.820.830.8570 59.67082334.74

PAGE 32

18 CHAPTER 4 CYCLE DESCRIPTION AND THERMODY NAMIC ANALYSIS OF A HYBRID LIQUID DESICCANT (HLD) SYSTEM 4.1 System Description Hybrid liquid desiccant (HLD) systems are c ooling systems where the latent load is removed by a liquid desiccant dehumidifier, while the sensible load is removed by a conventional air cooler (i.e. DX, chilled water, etc.). In some cases such as the DryKor packaged system, the conventional vapor co mpression cooler is used to cool the desiccant, then the latter cools the air. The desiccant dehumidifies the air by combining with water particles to form a weaker so lution. Dehumidifying the air reduces the required latent cooling load, which reduces the energy consumption, and hence improves the COP of the system. The weak solution is regenerated at cert ain temperatures and airflow to allow reuse of the liquid desiccan t. The heat required for regeneration is usually provided by outer sources like natural ga s or solar collectors. In DryKor systems, waste heat from the condenser is utilized for regeneration. In addition to its dehumidification effect liq uid desiccants could be used as efficient methods to wash air from suspended particle s and/or microorganisms. If the right mass flow rate is used with the rated capacity, th e amount of carryover LiCl will be in the order of 1 ppm. However, LiCl is environmentally safe and is not clas sified as a toxic, carcinogenic or hazardous material. HLD systems may be recommended to re place conventional vapor compression air conditioning systems for the following reasons:

PAGE 33

19 Cost effectiveness helps in complying with ventilation re quirements as per standards and building codes. Improvement of indoor air quality (IAQ) and prevention of the so called sick building syndrome. Prevention of mold and mildew growth. Reduction of corrosion to internal fixtures. HLD systems are more efficient in applica tions where the latent cooling load is high enough such as coo ling the ventilation air. According to market surveys performed by the author, DryKor and Kathabar are the only manufacturers that produce packaged units utilizing hybr id liquid desiccant cooling systems for dehumidification. The Kath abar system has been on the market since the early 1930s. However additional sources of heat for the regeneration process are still used in the system. The COP of the Kathabar unit is low compared to the DryKor system for small packaged units sin ce the latter makes use of th e condenser waste heat to regenerate the desiccant. Kathabar system s are more suitable for large cooling capacity installations (i.e. 20 tons of cooling and above). For the purpose of this study, the DryKor system will be considered for ener gy calculations and analysis. Based on the manufacturer’s data sheet, th e unit selected for this study is DryKor model UDT 7.5 with a rated energy efficiency ratio (EER) of 11.62 and a cooling capacity of 10 tons. DryKor systems cool and dehumidify at the same time. The desiccant is first cooled to about 10 oC then sprayed onto the fresh air entering the absorber. This eliminates the reheat process needed by the conventional evaporative cooler, which enhances the COP of the system. Figure 4.1 illustrates the psyc hrometric process for the DryKor cooling and dehumidifying system.

PAGE 34

20 E n t h a l p y LA EA Dry Bulb TemperatureHumidity Ratio ( hE A hL A) Figure 4.1. Psychrometric depiction of the DryKor cooling and dehumidifying process DryKor came up with an innovative idea that improved liquid desiccant regeneration efficiency of their system. Th e system makes use of the tendency of the weak salt solution at the absorber portion to be in equilibrium with the strong solution at the regenerator portion of the cycle. A concen tration sensor that gives a signal to control the valve that allows mixing of the two solutio ns helps maintain the concentration in the cooling chamber to about 40%. By doing s o, the amount of liquid desiccant requiring regeneration is reduced, whic h in turn reduces the require d heat. Figure 4.2. shows the simplified flow diagram of the system. At steady state, only wa ter would be flowing from the weak solution to the strong soluti on, which is the basic assumption used to analyze the COP of the cycle in the preceding section. In th is case, the amount of water flowing should be the same as the am ount collected from the moist air.

PAGE 35

21 Evaporator Condenser Fresh outside air Compressor com p W Regenerator Absorber/Cooler I-2 Supply air to space Regeneration air exhaust Figure 4.2. Schematic diagram of the DryKor system 4.2 Thermodynamic Analysis of the DryKor Cycle 4.2.1. Thermodynamic Propert ies of Liquid Desiccants Desiccants are chemical salts that have hi gh affinity for moisture due to the low vapor pressure of its solution in certain pressure and temperature ranges. The most famous liquid desiccants used in industry are lithium chloride (LiCl) and calcium chloride (CaCl). Lithium chloride is more popular because of its low vapor pressure compared to other desiccants. In this thesis LiCl is the liquid desiccant selected unless otherwise indicated. A significant amount of the work published in the open literature discussed how to obtain the thermodynamic propertie s of different types of liqui d desiccants. The density of the LiCl solutions was determined us ing the equation proposed by Berntsson and Wimby (1994)

PAGE 36

22 = a1+a2t+a3 t2+a4x+a5 x2+a6xt+a7 x2t+a8x t2+a9 x3+a10x4 Specific heat, vapor pressure, viscosity, and equilibrium mole fraction for LiCl were determined using the following polynomial (Aseyev and Zaytsev, 1992): Y= (b0 + b1t + b2t2) + (c0 + c1t + c2t2)x + (d0 + d1t + d2t2)x2 Where: Y= LiCl property (Cp, Pv, xi …etc) Values of the constants a, b, c, and d are listed below. a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 1002.8 -0.15582 -0.00288 6.1379 -0.0584520.0006065-0.0001250.000058 0.0026623 -0.000025941 b0 b1 b2 c0 c1 c2 d0 d1 d2 3.90446 0.01743 -0.00026 -3.57625 -0.09055 0.001391 0.26192 0.11345 -0.00174 To illustrate the effect of temperature on LiCl properties, the result of using the above equations to obtain the specific heat a nd density for LiCl at different temperatures and a fixed concentration of 40% are graphically represented in Figure 4.3. Temperature (oC) 51015202530354045 Cp (kJ/kgK) (kg/m3) 0 200 400 600 800 1000 1200 4 0 x Cp vs t vs t Figure 4.3. Effect of temperature on the spec ific heat and density of LiCl at a 40% concentration

PAGE 37

23 4.2.2 Evaluating the COP of the DryKor HLD System Evaporator dQ L d L L dm x t, ,, E m E a E E am P t, ,, , L m L a L L am P t, ,, , E d E E dm x t, ,, w wh m Compressor Expansion Valve compW rm rm p dW, E P d E P E P dm x h, , ,, Condenser rm rm rm cQ rm Figure 4.4. Schematic diagram of the absorber/cooler chamber Considering the cooling chamber shown in Figure 4.3, energy and mass balances can be expressed assuming an adiabatic wa ll, steady state, and constant properties a) Air mass balance: m m,E = m a,E + m v,E (1) m m,L= m a,L + m v,L (2) m a,E = m a,L (3) Subtracting Equation (1) from Equation (2) and substituting Equation (3), we get (m m,E m m,L) = (m v,E m v,L) (4)

PAGE 38

24 b) Liquid desiccant and water mass balances: m d,E = m d,L = m d,P,E = dm (5) m v,E + m d,E= m v,L + m d,L + wm (6) Substituting Equation (5) into Equation (6) and rearranging we get wm = (m v,E-m v,L) (7) c) Liquid desiccant energy Balance: m d hd,P,E = m d hd,E P dW, (8) Q d = m d hd,Lm d hd,P,E (9) Substituting Equation (8) into Equation (9) and rearranging we get dQ P dW, = dm (hd,L-hd,E) (10) Utilizing the approximation that the liquid en thalpy is equal to the product of the specific heat and the temperature, Equation (10) can be expressed as dQ = dm (Cp,d,Ltd,L-Cp,d,Etd,E) + p dW, (11) d) Absorber/cooler chamber energy balance: m m,E hm,E + m d hd,E = m m,L hm,L +m dhd,L +wm hw (12) By definition cooling rate aQ can be expressed as aQ = (m m,E hm,E -m m,L hm,L) (13) Rearranging Equation (12) (m m,Ehm,E -m m,L hm,L) = dm (hd,L-hd,E) +wm Cp,w tw (14) Substituting equation (10) and (13) into Equation (14) we get aQ = dQ + wm Cp,w tw P dW, (15)

PAGE 39

25 The temperature tw, in this case is approximately equal to td2 for steady state flow which along with td1 could obtained from experimental data or computed analytically by analyzing the absorber geometry as perfor med by Mago (2000). All other properties could be obtained from psychrometric tables developed in Chapter 3. According to manufacturer’s technical data, th e desiccant entering temperature (td,E), condenser temperature (tc) and liquid desiccant mass flow rate (dm ) are approximately 50 oF (10 oC), 130 oF (54.4 oC) and 0.75 kg/s, respectively. 4.2.3 HLD System COP COPHLD = Q a / totalW (16) totalW = compW +2P dW,+fW (17) The following example illustrates how to analytically obtain the coefficient of performance for the cycle at a given point. Assuming a temperature difference in the evaporator of te = 10 oF, a condensing temperature of tc = 130 oF (54.4 oC), and a desiccant inlet temperature of td,E= 50 oF (10 oC), then the evaporator temperature te = 5010 = 40 F (4.4 oC). Then from the manufacturer’s data sheet for a Copeland compressor model number ZR94KC, the corresponding input power (compW ) would be 8.23 kW while desiccant pump (p dW,) would be 0.19 kW and the regeneration fan would be 0.3 kW (DryKor, 2002). Consideri ng the cooling requirement Q a = 28.91 kW for Miami in June at 3:00 pm (Table5.6F), the COP may be eval uated using Equation ( 17) to yield a value of 8.91 kW for the total power consumed E quation (16) in turn gives a COP of 3.24. This is 1.7% smaller than the value obt ained from the DryKor software. The difference between the calculated values and the one provided by the manufacturer’s

PAGE 40

26 software is due to the approximate values used for td,E, te, and tc. Based on their experiments and technical data DryKor engineers had devel oped software to calculate the COP of their systems. To ensure accura cy of the energy analysis performed in the preceding chapter, COP calculations were performed using the DryKor software.

PAGE 41

27 CHAPTER 5 ENERGY ANALYSIS One of the main objectives of this resear ch is to compare the energy consumption of a hybrid liquid desiccant (HLD) system to a conventional vapor compression system. For the purpose of obtaining results with reasonable accuracy, an hour-by-hour energy analysis approach has been implemented. The HAP 4.1 program (carrier, 2002) was used to find the energy consumed by the building w ithout including ventilation air. Due to limitations of the program capabilities, the en ergy consumption by the outside-air (OA) make-up unit and the hybrid liquid desicc ant system was performed on an Excel spreadsheet generated for this purpose. Deta ils of the model equations and variables will be illustrated in the coming sections. Th e average monthly hour-by-hour temperatures for the three cities listed in Chapter 3 were the basis for computing outside air properties in this chapter. 5.1 Model I: Existing Air-Condi tioning and Ventilation System The existing air conditioning system cons ists of nine (9) heat pumps and one outside-air make-up unit for ventilation. The existing system was designed in such a way that the heat pumps supply the required intern al cooling load, while the outside-air make up unit provides the required cooling load for ventilation air. The HAP4.1 software (Carrier, 2002) was used to calculate the el ectrical energy consumption of the nine heat pumps. The electrical consumption by the out side-air make-up unit was calculated with the help of the Excel spreadsheet explained later in Section 5.1.3.

PAGE 42

28 5.1.1 Energy Consumption of the Buildin g Excluding the Ventilation Load The HAP 4.1 program was used to evaluate the load of the nine heat pumps for the three cities using the same internal load and weather conditions reported earlier in Chapter 3. Results for the three cities are summarized in Table 5.1. Table 5.1 Cooling Energy Consumption by the Building Excl uding Ventilation Heat Pumps 1-9 Energy Consumption (kWh) Month Miami GainesvilleChicago January 2147 1482 0 February1642 1348 0 March 2303 2061 64 April 2460 2362 652 May 2537 2536 1378 June 2511 2517 2228 July 2762 2764 2608 August 2579 2545 2350 September2556 2487 1880 October 2664 2549 574 November1956 1761 180 December2002 1424 5 Annual 28119 25836 11919 5.1.2 DX Outside-air Make-up Unit Process Description The cooling and dehumidifying process performed by the DX outside-air make-up unit is shown on the psychrometric chart of Figure 5.1. First, the equipment cools the entering air from Point EA approaching the ap paratus dew-point (ADP). Further cooling beyond saturation causes the moisture to conden se out of the air until the coil leaving air condition (LA) is reached. Then the unit reheat s the air at a constant humidity ratio till it reaches the required supply air (SA) temperat ure (Sherif, 2002). To improve the COP of such a system, usually the reheat makes use of the waste heat from the condenser (hot gas bypass) where the capacity is controlled by means of the reheat bypass arrangement shown in Figure 5.2.

PAGE 43

29 E n t h a l p y SA EA ADP Dry Bulb TemperatureHumidity Ratio hE A hL AhL A hA D Preheat LA C o o l i n g a n d D e h u m i d i f y i n g Figure 5.1. Cooling and dehumidifying pro cess performed by the vapor compression system In this study the existing outside-air make -up unit selected is the Addison model# PCA141E with a10-ton capacity. According to the manufacturer’s data sheet the rated energy efficiency ratio (EER) for the unit is 9.9 Watts/Btuh. Figure 5.2. Reheat system (Addison, 2002)

PAGE 44

30 5.1.3 Energy Consumption of the Ou tside-Air (OA) Make-Up Unit The model used to compute the ener gy consumption by the 100% OA vapor compression make-up unit is explained in the following steps: 1. The hourly average properties obtained fr om Chapter 3 for a designated city are used to find the enthalpy and speci fic volume at State EA in Figure 5.1. 2. For Point LA the following equations are used to compute hLA and vLA, respectively: hLA = tLA + WLA(2501+1.805 tLA) vLA = (Ra TLA/Patm)(1+1.6078 WLA) In this case WLA is the humidity ratio at Point LA and t is the corresponding DBT. Based on the manufacturer’s data sheet for the selected system, the average leaving air dry-bulb and wet-bulb temperatures are 15.1 oC and 15.1oC. Properties for Point LA are computed using the same model described in Chapter 3 and found to be: WLA = 0.01112 kgv/kga hLA = 43.1427 kJ/(kg K) vLA = 0.8309 m3/kg 3. Specific enthalpy for Point SA is obtained using the same equations in the previous step with WSA=WLA and tSA= 24 oC. This yields hSA to be equal to 52.2928 kJ/(kgK). 4. The difference between the specific enthalpi es at Points EA and LA is obtained in order to determine whether or not cooling is required. 5. The required cooling rate Q in kW is set to zero when (hEA-hLA) is less than or equal to zero, otherwiseQ is set equal to [(hEA / vEA) (hLA / vLA)] V Where: V is the volumetric flow rate, m3/s 6. The EER for the system is obtained from the manufacturer’s data sheet. 7. The electrical consumption per hour is then computed from the relationship EER = Q /W W = Q / EER

PAGE 45

31 8. The computed W in Step 7 is multiplied by a utilization factor f1 which is obtained from the information given by the building ow ner. This is equal to unity from 6:00 am-4:00 pm and equal to zero otherwise. 9. The figure obtained from Step 8 represents the electrical work per working day. To obtain the total electrical cons umption per month, the computed W from Step 8 is multiplied by the number of working days per month. Based on a typical calendar year, the number of working days per month is listed in Table 5.2. Table 5.2. Number of Working Days per Month Month Operating Days January 21 February 20 March 18 April 22 May 21 June 22 July 22 August 22 September 22 October 21 November 17 December 18 Using the above model, the energy consum ption by the Addison outside-air (OA) make-up unit can be computed for the three ci ties. Results obtained from the model for Miami, Gainesville, and Chicago are listed in Appendix B. A sample of the daily average energy consumption for Model I is shown on Table 5.3. The annual electric consumption and cost for the three cities will be summarized and discussed in Chapter 6.

PAGE 46

32 Table 5.3. January Daily Average Energy Consumption for Model I, Miami Hour of day vEA (m3/kg) hEA (kJ/kg) hSA (kJ/kg) hLA ((kJ/kg) vLA m w (kg/s) hEA hLA (kJ/kg) Q (kW) Input kWh 0 0.8560 59.2874 52.2928 43.1247 0.83090.0035216.162716.390 1 0.8550 58.9056 52.2928 43.1247 0.83790.003886.612816.040 2 0.8541 58.5256 52.2928 43.1247 0.83790.003876.232815.70 3 0.8534 58.3382 52.2928 43.1247 0.83790.003896.045415.540 4 0.8528 58.1511 52.2928 43.1247 0.83790.003915.858315.380 5 0.8527 58.1530 52.2928 43.1247 0.83790.003935.860215.390 6 0.8529 58.1492 52.2928 43.1247 0.83790.003885. 856415.365.298 7 0.8539 58.5275 52.2928 43.1247 0.83790.003896. 234715.715.417 8 0.8555 59.0963 52.2928 43.1247 0.83790.003886. 803516.215.591 9 0.8580 60.0560 52.2928 43.1247 0.83790.003927. 763217.085.891 10 0.8607 61.0225 52.2928 43.1247 0.83790.003918. 729717.936.184 11 0.8640 62.1976 52.2928 43.1247 0.83790.003919.904818.976.54 12 0.8669 63.1863 52.2928 43.1247 0.83790.0038810. 893519.826.833 13 0.8690 63.9883 52.2928 43.1247 0.83790.0038911. 695520.527.076 14 0.8706 64.5940 52.2928 43.1247 0.83790.0039012. 301221.057.257 15 0.8711 64.7976 52.2928 43.1247 0.83790.0039112. 504821.237.319 16 0.8706 64.5940 52.2928 43.1247 0.83790.0039012. 301221.057.257 17 0.8694 64.1925 52.2928 43.1247 0.83790.0039311.899720.710 18 0.8672 63.3887 52.2928 43.1247 0.83790.0039111.095920.010 19 0.8648 62.5962 52.2928 43.1247 0.83790.0039510.303419.330 20 0.8624 61.6081 52.2928 43.1247 0.83790.003909.315318.450 21 0.8604 60.8256 52.2928 43.1247 0.83790.003878.532817.740 22 0.8585 60.2492 52.2928 43.1247 0.83790.003937.956417.260 23 0.8570 59.6708 52.2928 43.1247 0.83790.003907.378016.730 5.2 Model II: DryKor HLD Packaged System In this section an hour-by-hour energy analysis of the DryKor hybrid liquid desiccant (HLD) system acting as an outside-air make-up unit is computed with the help of an Excel spreadsheet using the following model: 1. The hourly average properties obtained fr om Chapter 3 for a designated city are used to find the enthalpy and speci fic volume at State EA in Figure 4.1 2. The difference between the humidity ratio at Points EA and LA is obtained in order to determine whether or not dehumidification is required. 3. The difference between the specific enthalpi es at Points EA and LA is obtained in order to determine whether or not cooling is required.

PAGE 47

33 4. The required cooling rate Q in kW is set to zero when the quantity (hEA-hLA) is less than or equal to zero, otherwiseQ is equal to [(hEA / vEA) (hLA / vLA)] V 5. The monthly average EER for the system was obtained from the DryKor software (DryKor, 2002). 6. The electrical consumption in kWh is then computed from the relationship EER = Q /W W = Q / EER 7. The computed W in Step 6 is multiplied by a utilization factor f1 which is obtained from the information given by the bu ilding owner. This is equal to unity from 6:00 am – 4:00 pm and equal to zero otherwise. 8. The figure obtained from Step 8 represents the electrical work per working day. To obtain the total electrical cons umption per month, the computed W from Step 7 is multiplied by the number of working days per month. Based on a typical calendar year, the number of working days pe r each month is listed in Table 5.2. Using the above model, the energy consum ption by the DryKor outside-air (OA) make-up unit can be computed for the three ci ties. Results obtained from the model for Miami, Gainesville, and Chicago are listed in Appendix C. A sample of the daily average energy consumption for Model II is shown on Table 5.4. The annual electric consumption and cost for the three cities wi ll be summarized and discussed in Chapter 6.

PAGE 48

34 Table 5.4. January Daily Average Energy Consumption for Model II, Miami Hour of day vEA (m3/kg) hEA (kJ/kg) hLA ((kJ/kg) m w (kg/s) hEA hLA (kJ/kg) Q (kW) A verage COP Electric kWh 0 0.8560 59.287448.87670.0054 10.41 11.423.10 0.00 1 0.8550 58.905648.87670.0054 10.03 11.073.10 0.00 2 0.8541 58.525648.87670.0054 9.65 10.733.10 0.00 3 0.8534 58.338248.87670.0054 9.46 10.573.10 0.00 4 0.8528 58.151148.87670.0054 9.27 10.413.10 0.00 5 0.8527 58.153048.87670.0054 9.28 10.423.10 0.00 6 0.8529 58.149248.87670.0054 9.27 10.4 3.10 3.35 7 0.8539 58.527548.87670.0054 9.65 10.743.10 3.46 8 0.8555 59.096348.87670.0054 10.22 11.253.10 3.63 9 0.8580 60.056048.87670.0054 11.18 12.113.10 3.91 10 0.8607 61.022548.87670.0054 12.15 12.963.10 4.18 11 0.8640 62.197648.87670.0054 13.32 14.0 3.10 4.52 12 0.8669 63.186348.87670.0053 14.31 14.853.10 4.79 13 0.8690 63.988348.87670.0054 15.11 15.553.10 5.02 14 0.8706 64.594048.87670.0054 15.72 16.083.10 5.19 15 0.8711 64.797648.87670.0054 15.92 16.263.10 5.24 16 0.8706 64.594048.87670.0054 15.72 16.083.10 5.19 17 0.8694 64.192548.87670.0054 15.32 15.743.10 0.00 18 0.8672 63.388748.87670.0054 14.51 15.043.10 0.00 19 0.8648 62.596248.87670.0054 13.72 14.363.10 0.00 20 0.8624 61.608148.87670.0054 12.73 13.483.10 0.00 21 0.8604 60.825648.87670.0053 11.95 12.783.10 0.00 22 0.8585 60.249248.87670.0054 11.37 12.293.10 0.00 23 0.8570 59.670848.87670.0054 10.79 11.773.10 0.00 5.3 Model III: Hybrid Solid Desiccant Cooling System The latest solid desiccant system energy calculation software (Desicalc, 2002) was used to perform the analysis. Due to limitations in the database of the Desicalc software, Gainesville was not considered in this model. The software allows calculation of the total hour-by-hour energy consumption for a specific building enve lope including the energy consumed by lighting, equipment, and othe r electrical devices. For the purpose of this analysis, only resu lts of the energy consumed for cooling were considered from the output. One of the concerns about using Desi calc for energy calculati on is that it doesn’t

PAGE 49

35 allow customizing of the cooling equipment or internal loads, which affect the accuracy of the results. Results for Miami and Chicago are summarized in Tables 5.5 and 5.6, respectively. Table 5.5. Miami Energy Consumption for Model III Month Energy (kW) January 2391 February2274 March 3070 April 3821 May 5159 June 5227 July 5286 August 5534 September5221 October 4776 November3455 December2282 Total 48496 Table 5.6. Chicago Energy Consumption for Model III Month Energy (kW) January 117 February110 March 198 April 554 May 1916 June 3314 July 3752 August 3309 September2239 October 914 November249 December111 Total 16783 Results of the above three models for the three cities are summarized and discussed in the next chapter.

PAGE 50

36 CHAPTER 6 RESULTS AND DISCUSSION 6.1 Energy Consumption Summary The results obtained for the models describe d in Chapter 5 are summarized in this chapter for purposes of comparison and discussion. 6.1.1 Outside-Air Make-Up Unit Energy Consumption The energy consumed by the make-up unit fo r the three cities is summarized in Tables 6.1 through 6.3 and graphicall y represented in Figure 6.1. Table 6.1. Miami’s Monthly Energy Consumption for the Make-Up Unit Energy kWh Month DX HLD Savings Savings % January 1480 68080054.1 February 1560 81075048.2 March 1690 114055032.5 April 2260 167059026.0 May 2330 170063027.0 June 2620 194068026.0 July 2610 193068026.1 August 2610 205055621.3 September2430 177066027.1 October 2155 159056026.0 November1620 92569042.8 December1420 73068048.1 Annual 2479016960784031.6 From Tables 5.1 and 6.1 one may observe that the cooling required for the ventilation air costs more than 40% of the total energy input for building cooling in the three cities employing the existi ng system. It is also observe d that the energy input varies considerably with variations in the weather conditions.

PAGE 51

37 Table 6.2. Gainesville’s Monthly Ener gy Consumption for the Make-Up Unit Energy kWh Month DX HLDSavingsSavings % January 41819722253.0 February62129532652.5 March 111257453848.4 April 136070265748.4 May 1990117281841.1 June 2460167878231.8 July 2447184260524.7 August 2448184360524.7 September2269146480535.5 October 1824.66100482045.0 November990.1954344745.2 December532.127425848.4 Annual 1847011590688037.3 Table 6.3. Chicago’s M onthly Energy Consumption for the Make-Up Unit Energy kWh Month DX HLDSavings Savings % January 0000.0 February0000.0 March 180180.0 April 2506518574.2 May 87747740045.6 June 152082169845.9 July 1872112574739.9 August 1872112574739.9 September135767068750.7 October 41115126063.3 November150150.0 December0000.0 Annual 81904435375545.9

PAGE 52

38 Month JanFebMarAprMayJunJulAugSepOctNovDec Electric Energy Consumption (kWh) 500 1000 1500 2000 2500 3000 DX make-up unit HLD make-up unit tSA = 24 oC SA = 50% = 944 L/sV Figure 6.1A. HLD and DX make-up unit’s electric energy consumption for Miami Month JanFebMarAprMayJunJulAugSepOctNovDec Electric Energy Consumption (kWh) 0 500 1000 1500 2000 2500 3000 DX make-up unit HLD make-up unit tSA = 24 oC SA = 50% = 944 L/sV Figure 6.1B. HLD and DX make -up unit’s electric energy c onsumption for Gainesville

PAGE 53

39 Month JanFebMarAprMayJunJulAugSepOctNovDec Electric Energy Consumption (kWh) 0 500 1000 1500 2000 DX make-up unit HLD make-up unit tSA = 24 oC SA = 50% = 944 L/sV Figure 6.1C. HLD and DX make -up unit’s electric energy consumption for Chicago The annual electrical ener gy savings resulting from employing the hybrid liquid desiccant system (HLD) compared to th e DX system for Miami, Gainesville, and Chicago were found to be as much as 26% 28.5%, and 31.5%, respectively. However the amount of energy savings for Miami is 12% and 52% more than that of Gainesville and Chicago, respectively. It can be observe d that for summer the energy savings of the HLD system are higher than those for the wint er. In general, the COP of the HLD system is higher for hot and humi d entering-air conditions. 6.1.2 Building Total Cooling Energy Consumption The total cooling energy consumed by the building as computed by the three models described earlier for the three citi es in question are summarized in Tables 6.4 through 6.6. It is important to note that the re sults obtained in this study are for a specific application where constant flow of ventilation air is required for certain periods of time.

PAGE 54

40 The results are also represented graphical ly in Figure 6.2. The annual savings by employing the HLD system compared to the total energy consumption by existing cooling systems is found to be 15.0% for Mi ami and Gainesville, and 18.6% for Chicago. As mentioned earlier, Desicalc doesn’t prov ide enough flexibility to allow customizing the building internal load a nd HVAC equipment; therefore th e results obtained for solid desiccants systems are approximate values Since the energy consumption by solid desiccants is not the main obj ective of this study, the result ing accuracy is acceptable for illustration purposes. Table 6.4. Total Cooling Energy Cons umption for the Miami Building Energy kWh Month Model I Model II Model III January 363128282391 February320424522274 March 399634463070 April 471741303821 May 486842385159 June 513344515227 July 537246925286 August 518946335534 September498743285221 October 481942584776 November357228803455 December341727362282 Overall 529104507048500

PAGE 55

41 Table 6.5. Total Cooling Energy Consum ption for the Gainesville Building Energy kWh Month Model I Model II January 19001679 February19691643 March 31732635 April 37213064 May 45263708 June 49764195 July 52124607 August 49934388 September47563951 October 43743553 November27512304 December19561698 Overall 4430937425 Table 6.6. Total Cooling Energy Consumption for the Chicago Building Energy kWh Month Model I Model II Model III January 00117 February00110 March 8264198 April 902716554 May 225518551916 June 374730503314 July 448037343752 August 422234763309 September323725492239 October 985725914 November195180249 December55111 Overall 201101635416783

PAGE 56

42 Month JanFebMarAprMayJunJulAugSepOctNovDec Energy Consumption (kWh) 2000 2500 3000 3500 4000 4500 5000 5500 6000 Model I Model II Model III tSA = 24 oC SA = 50% Figure 6.2A. Monthly energy consumption for the Miami building Month JanFebMarAprMayJunJulAugSepOctNovDec Energy Consumption (kWh) 1000 2000 3000 4000 5000 6000 Model I Model II tSA = 24 oC SA = 50% Figure 6.2B. Monthly energy consumption for the Gainesville building

PAGE 57

43 Month JanFebMarAprMayJunJulAugSepOctNovDec Energy Consumption (kWh) 0 1000 2000 3000 4000 5000 Model I Model II Model III tSA = 24 oC SA = 50% Figure 6.2C. Monthly energy consum ption for the Chicago building 6.2 Cost Summary and Analysis 6.2.1 Cost of Electric Energy Assuming a cost of $0.08 per kWh of electrici ty for the three cities, the annual cost of the three models for th e three cities are summari zed in Tables 6.6 through 6.8. Table 6.6. Miami’s Energy Cost Summary Cost ($) Month Model I Model II Model III January 290226191 February256196182 March 320276246 April 377330306 May 389339413 June 411356418 July 430375423 August 415371443 September399346418 October 386341382 November286230276 December273219183 Annual 4,2403,6003,900

PAGE 58

44 Table 6.7. Gainesville’s Energy Cost Summary Cost ($) Month Model I Model II Model III January 152134N/A February158131 N/A March 254211 N/A April 298245 N/A May 362297 N/A June 398336 N/A July 417369 N/A August 399351 N/A September381316 N/A October 350284 N/A November220184 N/A December156136 N/A Annual 3,5503000 N/A Table 6.8. Chicago’s Energy Cost Summary Cost ($) Month Model I Model II Model III January 009 February009 March 7516 April 725744 May 180148153 June 300244265 July 358299300 August 338278265 September259204179 October 795873 November161420 December009 Annual 1,6001,3001,340 Based on the information provided in Tables 6.6 through 6.8, one can conclude that the annual operating cost savings resulting fr om employing the HLD system compared to the existing system for one unit in the bu ilding under study are $627/year for Miami, $551/year for Gainesville, and $301/year for Chicago.

PAGE 59

45 6.2.2 Capital and Other Costs From the manufacturer’s data and the calcu lated cost savings as described in the previous section, the costs of the conventiona l outside-air make-up uni t versus the hybrid liquid desiccant (HLD) unit for the three cities are summarized in Table 6.9. Table 6.9. Operation and Capital Cost Summary Miami DX HLD Savings Equipment cost ($) 7000 8000 -1000 Operating cost ($/year) 4,233 3,606 627.0 Maintenance cost ($/year)300 300 0 Gainesville DX HLD Savings Equipment cost ($) 7000 8000 -1000 Operating cost ($/year) 3,545 2,994 551.0 Maintenance cost ($/year)300 300 0 Chicago DX HLD Savings Equipment cost ($) 7000 8000 -1000 Operating cost ($/year) 1,609 1,308 301.0 Maintenance cost ($/year)300 300 0 From the above information the pay-back period for replacin g the conventional system with a hybrid liquid desiccant system in cluding the difference in initial cost is calculated to be 16 years for Miami, 18 years for Gainesville, and 30 years for Chicago. The payback period is high because of the ope rating time effect. For this study the airmake-up unit is operated less than 30% of th e time. If the operation time increased to 50% and above then the savings will yield reasonable payback periods. It can be observed that for Miami the period of recoveri ng the capital cost difference is almost 19 months. Based on electric consumption information for a typical school building in Florida where three outside-air make-up units are use d, the expected annual saving is about 4%

PAGE 60

46 of the building total electricity bill when conventional outside-air make-up units are replaced with hybrid liquid desiccant ones.

PAGE 61

47 CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS In this thesis a comparis on between a conventional air-c ooling system and a hybrid liquid desiccant (HLD) system used for cool ing ventilation air for an existing school building was performed. Energy models to calculate the ener gy consumption by both systems were generated. Models were examined for three cities in the United States in order to study the effect of weather changes on the system’s performance. The energy analysis results suggest a sa vings of more than 32% in electric consumption of the HLD system when compared to conventional air cool ers. Simple cost comparison suggested a payback period of 16 y ears if a conventional cooler is replaced with a hybrid liquid desiccant system in Miami. The pay back period is affected by the operating time of the equipment. In general for operating times above 50%, the savings yield reasonable payback pe riod. It was concluded that the HLD system provides significant energy savings when used to cool ventilation air in hot and humid climatic conditions. A further study should be carried out to reduce the initial cost of HLD system. Introducing a reheat by-pass arrangement to c ontrol the leaving air conditions is an interesting subject of further research. Optimization of the COP of the DryKor HLD system and studying the effect of varying valu es of the different parameters such as entering desiccant temperature, the mass flow rate of the desiccant solution, and the entering air flow rate on the system COP are also potential areas of further research.

PAGE 62

48 APPENDIX A PSYCHROMETRIC PR OPERTY TABLES Table A.1. January Average Hourly Psychrometric Properties for Miami hour DBT (oC) WBT (oC) DPT (oC) Pws (Pa) Pws* (Pa) Ws Ws* W v (m3/kg) h (kJ/kg) Pw (Pa) 0 22.1 20.1 20.0 2770.49 2458.570.01748470.015470.0146540.840.840.8560 59.28742332.22 1 21.7 20.0 20.0 2714.68 2441.710.01712270.015360.0146380.850.860.8550 58.90562329.79 2 21.4 19.9 19.9 2659.86 2424.960.01676760.015250.0146230.870.880.8541 58.52562327.47 3 21.2 19.8 20.0 2623.85 2416.620.01653460.01520.0146390.890.890.8534 58.33822329.96 4 20.9 19.8 20.0 2588.27 2408.300.01630450.015140.0146550.900.900.8528 58.15112332.48 5 20.9 19.8 20.0 2579.44 2408.300.01624740.015140.0146780.900.910.8527 58.15302336.09 6 21.0 19.8 19.9 2597.12 2408.300.01636170.015140.0146320.890.900.8529 58.14922328.87 7 21.3 19.9 20.0 2650.82 2424.960.01670910.015250.0146460.880.880.8539 58.52752331.08 8 21.9 20.1 20.0 2742.46 2450.130.01730280.015410.0146460.850.850.8555 59.09632330.99 9 22.7 20.3 20.0 2885.13 2492.590.01822930.015690.0146870.810.810.8580 60.05602337.37 10 23.7 20.6 20.0 3054.61 2535.690.01933350.015960.0146860.760.770.8607 61.02252337.19 11 24.8 20.9 20.0 3265.08 2588.270.02070990.01630.0146990.710.720.8640 62.19762339.30 12 25.8 21.2 20.0 3465.21 2632.810.02202430.016590.0146840.670.670.8669 63.18632336.99 13 26.5 21.4 20.0 3616.32 2668.930.02302030.016830.0147080.640.650.8690 63.98832340.69 14 27.1 21.6 20.0 3736.44 2696.300.02381420.0170.0147220.620.630.8706 64.59402342.85 15 27.2 21.7 20.1 3773.15 2705.480.02405720.017060.0147350.610.620.8711 64.79762344.83 16 27.1 21.6 20.0 3736.44 2696.300.02381420.0170.0147220.620.630.8706 64.59402342.85 17 26.6 21.5 20.1 3640.07 2678.030.02317710.016890.0147430.640.640.8694 64.19252346.19 18 25.9 21.3 20.0 3488.10 2641.800.02217490.016650.0147190.660.670.8672 63.38872342.38 19 25.1 21.1 20.1 3319.64 2606.010.02106770.016420.0147440.700.710.8648 62.59622346.23 20 24.2 20.8 20.0 3158.32 2561.860.0200110.016130.0146920.730.740.8624 61.60812338.13 21 23.6 20.6 20.0 3034.23 2527.020.01920050.015910.0146530.760.770.8604 60.82562332.13 22 22.9 20.4 20.0 2914.43 2501.150.01841990.015740.0146950.800.800.8585 60.24922338.73 23 22.4 20.2 20.0 2827.30 2475.530.01785350.015580.014670.820.830.8570 59.67082334.74

PAGE 63

49 Table A.2. February Average Hourly Psychrometric Properties for Miami hour DBT (oC) WBT (oC) DPT (oC) Pws (Pa) Pws* (Pa) Ws Ws* W v (m3/kg) h (kJ/kg) Pw (Pa) 0 23.2 20.7 20.4 2963.83 2553.110.01874160.016080.0150530.800.810.8598 61.44402394.32 1 22.8 20.6 20.4 2904.63 2535.690.01835620.015960.0150340.820.820.8588 61.05262391.32 2 22.5 20.5 20.4 2846.46 2518.370.0179780.015850.0150150.840.840.8578 60.66292388.43 3 22.3 20.4 20.4 2808.25 2509.750.01772980.01580.0150290.850.850.8572 60.47072390.63 4 22.1 20.4 20.4 2770.49 2501.150.01748470.015740.0150440.860.860.8565 60.27902392.86 5 22.0 20.3 20.3 2761.12 2492.590.01742390.015690.0149890.860.860.8563 60.08172384.29 6 22.1 20.4 20.4 2779.89 2501.150.01754560.015740.0150210.860.860.8567 60.27702389.25 7 22.4 20.5 20.4 2836.87 2518.370.01791560.015850.0150380.840.840.8577 60.66492392.04 8 23.0 20.7 20.4 2934.10 2544.390.0185480.016020.0150430.810.820.8593 61.24812392.80 9 23.8 20.9 20.4 3085.41 2579.440.01953450.016250.0150140.770.770.8617 62.02842388.19 10 24.8 21.2 20.4 3265.08 2623.850.02070990.016530.0150210.730.730.8644 63.01732389.34 11 25.9 21.5 20.4 3488.10 2678.030.02217490.016890.0150450.680.690.8677 64.21972393.06 12 26.9 21.8 20.4 3700.05 2723.920.02357340.017180.0150390.640.650.8706 65.23142392.13 13 27.6 22.0 20.4 3860.02 2761.120.0246330.017420.015070.610.620.8727 66.05222396.93 14 28.2 22.2 20.4 3987.14 2789.320.02547740.017610.0150890.590.600.8743 66.67222399.93 15 28.3 22.2 20.4 4025.98 2798.770.02573590.017670.0151040.590.600.8748 66.88052402.19 16 28.2 22.2 20.4 3987.14 2789.320.02547740.017610.0150890.590.600.8743 66.67222399.93 17 27.7 22.1 20.4 3885.15 2770.490.02479980.017480.0151070.610.620.8731 66.26122402.71 18 27.0 21.8 20.4 3724.27 2733.180.02373370.017240.0150760.640.640.8709 65.43862397.79 19 26.2 21.6 20.4 3545.88 2696.300.02255560.0170.0150930.670.680.8685 64.62762400.54 20 25.3 21.4 20.5 3374.98 2659.860.0214310.016770.0151140.710.710.8662 63.82402403.73 21 24.7 21.2 20.4 3243.48 2623.850.02056840.016530.0150680.730.740.8642 63.02142396.55 22 24.0 20.9 20.4 3116.47 2588.270.01973740.01630.0150240.760.770.8622 62.22612389.81 23 23.5 20.8 20.4 3024.09 2570.640.01913430.016190.0150730.790.790.8608 61.83722397.42

PAGE 64

50 Table A.3. March Average Hourly Psychrometric Properties for Miami hour DBT (oC) WBT (oC) DPT (oC) Pws (Pa) Pws* (Pa) Ws Ws* W v (m3/kg) h (kJ/kg) Pw (Pa) 0 24.8 21.9 21.4 3275.93 2742.460.02078110.01730.0160660.770.780.8660 65.73362551.30 1 24.5 21.8 21.4 3211.31 2723.920.02035770.017180.0160390.790.790.8650 65.32262547.17 2 24.2 21.7 21.4 3147.81 2705.480.01994230.017060.0160130.800.810.8640 64.91352543.15 3 23.9 21.6 21.4 3106.09 2696.300.01966960.0170.0160240.810.820.8634 64.71182544.79 4 23.7 21.6 21.4 3064.85 2687.150.01940030.016940.0160340.830.830.8627 64.51052546.45 5 23.7 21.6 21.4 3054.61 2687.150.01933350.016940.0160580.830.830.8626 64.51262550.06 6 23.8 21.6 21.4 3075.11 2687.150.01946730.016940.0160110.820.830.8629 64.50842542.84 7 24.1 21.7 21.4 3137.33 2705.480.01987380.017060.0160360.810.810.8639 64.91562546.75 8 24.7 21.8 21.4 3243.48 2733.180.02056840.017240.0160520.780.790.8655 65.52782549.22 9 25.5 22.1 21.4 3408.58 2770.490.02165180.017480.0160370.740.750.8679 66.34712546.90 10 26.4 22.3 21.4 3604.50 2817.760.02294220.017790.0160630.700.710.8707 67.38562550.95 11 27.6 22.7 21.5 3847.50 2875.420.024550.018170.016110.660.660.8740 68.64842558.21 12 28.6 22.9 21.5 4078.28 2924.250.02608420.018480.0161230.620.630.8769 69.71132560.26 13 29.3 23.2 21.5 4252.35 2963.830.02724640.018740.016170.590.600.8791 70.57372567.48 14 29.8 23.3 21.5 4390.62 2983.800.02817240.018870.0161130.570.580.8806 71.00002558.66 15 30.0 23.3 21.5 4432.86 2993.830.02845580.018940.0161310.570.580.8811 71.21842561.50 16 29.8 23.3 21.5 4390.62 2983.800.02817240.018870.0161130.570.580.8806 71.00002558.66 17 29.4 23.2 21.5 4279.70 2963.830.02742930.018740.0161240.590.600.8793 70.56922560.27 18 28.7 22.9 21.4 4104.65 2924.250.026260.018480.0160770.610.620.8772 69.70692553.05 19 27.8 22.7 21.4 3910.43 2885.130.02496760.018230.016080.640.650.8747 68.85692553.51 20 27.0 22.5 21.4 3724.27 2846.460.02373370.017980.0160860.680.690.8723 68.01482554.45 21 26.3 22.3 21.5 3580.95 2817.760.02278690.017790.016110.710.710.8704 67.38992558.16 22 25.7 22.1 21.4 3442.46 2779.890.02187460.017550.0160510.730.740.8684 66.55472549.09 23 25.2 22.0 21.4 3341.68 2761.120.02121240.017420.0160930.760.760.8670 66.14642555.55

PAGE 65

51 Table A.4. April Average Hourly Psychrometric Properties for Miami hour DBT (oC) WBT (oC) DPT (oC) Pws (Pa) Pws* (Pa) Ws Ws* W v (m3/kg) h (kJ/kg) Pw (Pa) 0 25.4 22.4 22.0 3386.15 2836.870.02150440.017920.0166760.780.780.8684 67.86082645.77 1 25.1 22.4 22.1 3319.64 2827.300.02106770.017850.0167310.790.800.8675 67.65672654.22 2 24.7 22.3 22.0 3254.27 2808.250.02063910.017730.0167010.810.810.8665 67.23692649.58 3 24.5 22.2 22.0 3211.31 2798.770.02035770.017670.016710.820.830.8659 67.02992650.91 4 24.3 22.2 22.1 3168.86 2789.320.02007990.017610.0167180.830.840.8653 66.82342652.27 5 24.2 22.1 22.0 3158.32 2779.890.0200110.017550.0166570.830.840.8650 66.61082642.84 6 24.3 22.2 22.0 3179.42 2789.320.0201490.017610.0166950.830.830.8654 66.82122648.66 7 24.7 22.3 22.1 3243.48 2808.250.02056840.017730.0167240.810.820.8664 67.23912653.19 8 25.2 22.4 22.1 3352.75 2836.870.0212850.017920.0167460.790.790.8681 67.86742656.58 9 26.1 22.7 22.1 3522.67 2875.420.02240260.018170.0167390.750.750.8705 68.70822655.51 10 27.0 22.9 22.1 3724.27 2924.250.02373370.018480.0167760.710.710.8733 69.77402661.13 11 28.1 23.2 22.1 3974.26 2973.800.02539180.018810.0167470.660.670.8765 70.84552656.70 12 29.1 23.5 22.1 4211.62 3024.090.02697410.019130.016770.620.630.8794 71.93402660.22 13 29.8 23.7 22.2 4390.62 3064.850.02817240.01940.0168240.600.610.8816 72.81722668.63 14 30.4 23.8 22.1 4532.78 3085.410.02912730.019530.0167710.580.590.8831 73.25382660.43 15 30.6 23.9 22.1 4576.20 3095.730.02941950.01960.0167920.570.580.8836 73.47752663.57 16 30.4 23.8 22.1 4532.78 3085.410.02912730.019530.0167710.580.590.8831 73.25382660.43 17 29.9 23.7 22.1 4418.74 3064.850.02836110.01940.0167780.590.600.8818 72.81262661.43 18 29.2 23.6 22.1 4238.74 3034.230.02715530.01920.0168120.620.630.8798 72.15692666.78 19 28.4 23.3 22.1 4039.00 2993.830.02582260.018940.0168070.650.660.8773 71.28442665.94 20 27.6 23.1 22.1 3847.50 2943.980.024550.018610.0167170.680.690.8748 70.19662652.06 21 26.9 22.9 22.1 3700.05 2914.430.02357340.018420.0167360.710.720.8729 69.55672654.90 22 26.2 22.7 22.1 3557.54 2885.130.02263240.018230.0167560.740.750.8710 68.92122658.01 23 25.7 22.6 22.0 3453.82 2856.090.02194930.018040.0167080.760.770.8695 68.28352650.58

PAGE 66

52 Table A.5. May Average Hourly Ps ychrometric Properties for Miami hour DBT (oC) WBT (oC) DPT (oC) Pws (Pa) Pws* (Pa) Ws Ws* W v (m3/kg) h (kJ/kg) Pw (Pa) 0 25.9 23.1 22.7 3499.59 2943.980.02225060.018610.0173940.780.790.8710 70.26202756.55 1 25.6 22.9 22.7 3431.13 2924.250.02180010.018480.017360.800.800.8700 69.83012751.22 2 25.3 22.9 22.7 3363.85 2914.430.02135790.018420.0174130.820.820.8691 69.62162759.41 3 25.1 22.8 22.6 3319.64 2894.860.02106770.018290.0173330.820.830.8684 69.18822747.05 4 24.8 22.7 22.6 3275.93 2885.130.02078110.018230.017340.830.840.8677 68.97682748.12 5 24.8 22.7 22.7 3265.08 2885.130.02070990.018230.0173630.840.840.8676 68.97902751.73 6 24.9 22.8 22.7 3286.81 2894.860.02085240.018290.0174030.830.840.8680 69.19492757.87 7 25.2 22.8 22.6 3352.75 2904.630.0212850.018360.0173490.820.820.8689 69.40242749.61 8 25.8 23.0 22.7 3465.21 2934.100.02202430.018550.0173770.790.790.8705 70.04582753.87 9 26.6 23.2 22.7 3640.07 2973.800.02317710.018810.0173770.750.760.8730 70.90672753.96 10 27.6 23.5 22.7 3847.50 3024.090.024550.019130.0174230.710.720.8758 71.99832761.06 11 28.7 23.8 22.7 4104.65 3075.110.026260.019470.0174040.660.670.8790 73.09562758.12 12 29.7 24.1 22.7 4348.74 3126.890.02789160.019810.0174370.630.640.8819 74.21062763.16 13 30.4 24.3 22.8 4532.78 3168.860.02912730.020080.01750.600.610.8841 75.11532772.80 14 30.9 24.4 22.7 4678.93 3190.020.03011190.020220.017450.580.590.8857 75.56252765.21 15 31.1 24.4 22.8 4723.56 3200.650.03041320.020290.0174730.570.590.8862 75.79172768.66 16 30.9 24.4 22.7 4678.93 3190.020.03011190.020220.017450.580.590.8857 75.56252765.21 17 30.5 24.3 22.7 4561.69 3168.860.02932180.020080.0174530.600.610.8844 75.11052765.60 18 29.8 24.1 22.8 4376.62 3137.330.02807850.019870.0174820.620.630.8823 74.43892770.02 19 28.9 23.9 22.8 4171.22 3095.730.02670420.01960.0174680.650.660.8799 73.54522767.97 20 28.1 23.7 22.7 3974.26 3054.610.02539180.019330.0174580.690.700.8774 72.65982766.41 21 27.4 23.4 22.7 3822.58 3013.970.02438470.019070.0173810.710.720.8754 71.77572754.54 22 26.8 23.3 22.7 3675.95 2983.800.02341420.018870.0173960.740.750.8735 71.12492756.76 23 26.3 23.2 22.7 3569.23 2963.830.02270950.018740.017430.770.770.8721 70.69582762.00

PAGE 67

53 Table A.6. June Average Hourly Psychrometric Properties for Miami hour DBT (oC) WBT (oC) DPT (oC) Pws (Pa) Pws* (Pa) Ws Ws* W v (m3/kg) h (kJ/kg) Pw (Pa) 0 27.1 23.6 23.1 3736.44 3044.410.02381420.019270.0178130.750.760.8748 72.47502821.02 1 26.7 23.6 23.1 3663.96 3034.230.02333490.01920.0178640.770.770.8739 72.26052828.85 2 26.4 23.4 23.1 3592.71 3013.970.02286440.019070.0178250.780.790.8729 71.81932822.99 3 26.2 23.4 23.1 3545.88 3003.880.02255560.0190.017830.790.800.8723 71.60182823.70 4 25.9 23.3 23.1 3499.59 2993.830.02225060.018940.0178350.800.810.8716 71.38482824.45 5 25.9 23.3 23.1 3488.10 2993.830.02217490.018940.0178580.810.810.8715 71.38712828.05 6 26.0 23.3 23.1 3511.11 2993.830.02232650.018940.0178120.800.800.8718 71.38252820.84 7 26.3 23.4 23.1 3580.95 3013.970.02278690.019070.0178490.780.790.8728 71.82162826.59 8 26.9 23.6 23.1 3700.05 3044.410.02357340.019270.0178830.760.770.8745 72.48192831.83 9 27.7 23.8 23.1 3885.15 3085.410.02479980.019530.0178920.720.730.8769 73.36562833.25 10 28.7 24.1 23.1 4104.65 3126.890.026260.019810.0178580.680.690.8796 74.25292827.96 11 29.8 24.3 23.1 4376.62 3179.420.02807850.020150.0178490.640.650.8828 75.37672826.57 12 30.8 24.6 23.1 4634.66 3232.730.02981340.02050.0178920.600.610.8858 76.51862833.17 13 31.5 24.8 23.2 4829.15 3275.930.03112710.020780.0179620.580.590.8880 77.44522844.07 14 32.1 24.9 23.2 4983.54 3297.720.03217370.020920.0179170.560.570.8896 77.90332837.12 15 32.2 25.0 23.2 5030.68 3308.660.0324940.0210.0179420.550.560.8901 78.13812840.89 16 32.1 24.9 23.2 4983.54 3297.720.03217370.020920.0179170.560.570.8896 77.90332837.12 17 31.6 24.8 23.2 4859.69 3275.930.03133380.020780.0179160.570.580.8883 77.44042836.87 18 30.9 24.7 23.2 4664.13 3243.480.03001210.020570.0179380.600.610.8862 76.75242840.34 19 30.1 24.4 23.2 4447.01 3200.650.02855090.020290.0179170.630.640.8837 75.83712837.03 20 29.2 24.2 23.1 4238.74 3158.320.02715530.020010.0178980.660.670.8813 74.93042834.23 21 28.6 24.1 23.1 4078.28 3126.890.02608420.019810.0179050.690.700.8793 74.25762835.16 22 27.9 23.9 23.2 3923.13 3095.730.0250520.01960.0179120.720.720.8774 73.58962836.38 23 27.4 23.7 23.1 3810.17 3064.850.02430240.01940.0178520.730.740.8759 72.91932827.07

PAGE 68

54 Table A.7. July Average Hourly Psychrometric Properties for Miami hour DBT (oC) WBT (oC) DPT (oC) Pws (Pa) Pws* (Pa) Ws Ws* W v (m3/kg) h (kJ/kg) Pw (Pa) 0 27.6 23.7 22.9 3860.02 3054.610.0246330.019330.0176690.720.730.8763 72.68062798.82 1 27.3 23.6 22.9 3785.45 3034.230.02413870.01920.017630.730.740.8752 72.23752792.83 2 26.9 23.4 22.9 3712.14 3013.970.02365340.019070.0175920.740.750.8742 71.79642786.96 3 26.7 23.4 22.9 3663.96 3003.880.02333490.0190.0175960.750.760.8736 71.57892787.67 4 26.5 23.3 22.9 3616.32 2993.830.02302030.018940.0176010.760.770.8729 71.36192788.42 5 26.4 23.3 22.9 3604.50 2993.830.02294220.018940.0176240.770.770.8728 71.36422792.02 6 26.6 23.3 22.9 3628.18 2993.830.02309860.018940.0175780.760.770.8731 71.35962784.81 7 26.9 23.4 22.9 3700.05 3013.970.02357340.019070.0176150.750.750.8741 71.79872790.56 8 27.4 23.6 22.9 3822.58 3044.410.02438470.019270.0176490.720.730.8758 72.45882795.81 9 28.3 23.8 22.9 4012.99 3085.410.02564950.019530.0176580.690.700.8782 73.34232797.24 10 29.2 24.1 22.9 4238.74 3126.890.02715530.019810.0176240.650.660.8809 74.22942791.96 11 30.3 24.3 22.9 4518.39 3179.420.02903050.020150.0176150.610.620.8841 75.35292790.58 12 31.3 24.6 22.9 4783.65 3232.730.03081930.02050.0176580.570.580.8871 76.49452797.19 13 32.1 24.8 23.0 4983.54 3275.930.03217370.020780.0177290.550.560.8893 77.42092808.10 14 32.6 24.9 23.0 5142.20 3297.720.03325280.020920.0176840.530.540.8909 77.87892801.16 15 32.8 25.0 23.0 5190.64 3308.660.0335830.0210.0177080.530.540.8914 78.11362804.93 16 32.6 24.9 23.0 5142.20 3297.720.03325280.020920.0176840.530.540.8909 77.87892801.16 17 32.2 24.8 22.9 5014.93 3275.930.03238690.020780.0176820.550.560.8896 77.41612800.91 18 31.4 24.7 23.0 4813.94 3243.480.03102410.020570.0177050.570.580.8875 76.72832804.37 19 30.6 24.4 22.9 4590.76 3200.650.02951760.020290.0176830.600.610.8850 75.81322801.04 20 29.8 24.2 22.9 4376.62 3158.320.02807850.020010.0176650.630.640.8826 74.90672798.23 21 29.1 24.1 22.9 4211.62 3126.890.02697410.019810.0176710.660.660.8806 74.23412799.16 22 28.4 23.9 22.9 4052.05 3095.730.02590950.01960.0176790.680.690.8787 73.56622800.37 23 27.9 23.7 22.9 3935.86 3064.850.02513650.01940.0176180.700.710.8772 72.89602791.06

PAGE 69

55 Table A.8. August Average Hourly Psychrometric Properties for Miami hour DBT (oC) WBT (oC) DPT (oC) Pws (Pa) Pws* (Pa) Ws Ws* W v (m3/kg) h (kJ/kg) Pw (Pa) 0 27.6 23.7 22.9 3860.02 3054.610.0246330.019330.0176690.720.730.8763 72.68062798.82 1 27.3 23.6 22.9 3785.45 3034.230.02413870.01920.017630.730.740.8752 72.23752792.83 2 26.9 23.4 22.9 3712.14 3013.970.02365340.019070.0175920.740.750.8742 71.79642786.96 3 26.7 23.4 22.9 3663.96 3003.880.02333490.0190.0175960.750.760.8736 71.57892787.67 4 26.5 23.3 22.9 3616.32 2993.830.02302030.018940.0176010.760.770.8729 71.36192788.42 5 26.4 23.3 22.9 3604.50 2993.830.02294220.018940.0176240.770.770.8728 71.36422792.02 6 26.6 23.3 22.9 3628.18 2993.830.02309860.018940.0175780.760.770.8731 71.35962784.81 7 26.9 23.4 22.9 3700.05 3013.970.02357340.019070.0176150.750.750.8741 71.79872790.56 8 27.4 23.6 22.9 3822.58 3044.410.02438470.019270.0176490.720.730.8758 72.45882795.81 9 28.3 23.8 22.9 4012.99 3085.410.02564950.019530.0176580.690.700.8782 73.34232797.24 10 29.2 24.1 22.9 4238.74 3126.890.02715530.019810.0176240.650.660.8809 74.22942791.96 11 30.3 24.3 22.9 4518.39 3179.420.02903050.020150.0176150.610.620.8841 75.35292790.58 12 31.3 24.6 22.9 4783.65 3232.730.03081930.02050.0176580.570.580.8871 76.49452797.19 13 32.1 24.8 23.0 4983.54 3275.930.03217370.020780.0177290.550.560.8893 77.42092808.10 14 32.6 24.9 23.0 5142.20 3297.720.03325280.020920.0176840.530.540.8909 77.87892801.16 15 32.8 25.0 23.0 5190.64 3308.660.0335830.0210.0177080.530.540.8914 78.11362804.93 16 32.6 24.9 23.0 5142.20 3297.720.03325280.020920.0176840.530.540.8909 77.87892801.16 17 32.2 24.8 22.9 5014.93 3275.930.03238690.020780.0176820.550.560.8896 77.41612800.91 18 31.4 24.7 23.0 4813.94 3243.480.03102410.020570.0177050.570.580.8875 76.72832804.37 19 30.6 24.4 22.9 4590.76 3200.650.02951760.020290.0176830.600.610.8850 75.81322801.04 20 29.8 24.2 22.9 4376.62 3158.320.02807850.020010.0176650.630.640.8826 74.90672798.23 21 29.1 24.1 22.9 4211.62 3126.890.02697410.019810.0176710.660.660.8806 74.23412799.16 22 28.4 23.9 22.9 4052.05 3095.730.02590950.01960.0176790.680.690.8787 73.56622800.37 23 27.9 23.7 22.9 3935.86 3064.850.02513650.01940.0176180.700.710.8772 72.89602791.06

PAGE 70

56 Table A.9. September Average Hourly Psychrometric Properties for Miami hour DBT (oC) WBT (oC) DPT (oC) Pws (Pa) Pws* (Pa) Ws Ws* W v (m3/kg) h (kJ/kg) Pw (Pa) 0 26.5 23.1 22.5 3616.32 2943.980.02302030.018610.0171610.750.750.8723 70.23942720.52 1 26.2 22.9 22.4 3545.88 2924.250.02255560.018480.0171260.760.770.8713 69.80762715.18 2 25.8 22.9 22.5 3476.64 2914.430.02209950.018420.0171790.780.780.8704 69.59922723.37 3 25.6 22.8 22.4 3431.13 2894.860.02180010.018290.0170990.780.790.8697 69.16602711.01 4 25.4 22.7 22.4 3386.15 2885.130.02150440.018230.0171060.800.800.8690 68.95452712.08 5 25.3 22.7 22.4 3374.98 2885.130.0214310.018230.0171290.800.800.8689 68.95682715.68 6 25.4 22.8 22.5 3397.35 2894.860.0215780.018290.0171690.800.800.8693 69.17262721.82 7 25.8 22.8 22.4 3465.21 2904.630.02202430.018360.0171160.780.780.8702 69.38012713.57 8 26.3 23.0 22.5 3580.95 2934.100.02278690.018550.0171430.750.760.8718 70.02332717.84 9 27.2 23.2 22.5 3760.88 2973.800.02397590.018810.0171440.720.720.8743 70.88402717.94 10 28.1 23.5 22.5 3974.26 3024.090.02539180.019130.017190.680.690.8771 71.97532725.05 11 29.2 23.8 22.5 4238.74 3075.110.02715530.019470.0171710.630.640.8803 73.07242722.12 12 30.2 24.1 22.5 4489.72 3126.890.02883780.019810.0172040.600.610.8832 74.18712727.17 13 30.9 24.3 22.6 4678.93 3168.860.03011190.020080.0172660.570.580.8854 75.09162736.81 14 31.5 24.4 22.5 4829.15 3190.020.03112710.020220.0172170.550.570.8870 75.53872729.23 15 31.7 24.4 22.5 4875.02 3200.650.03143770.020290.0172390.550.560.8875 75.76782732.68 16 31.5 24.4 22.5 4829.15 3190.020.03112710.020220.0172170.550.570.8870 75.53872729.23 17 31.1 24.3 22.5 4708.64 3168.860.03031250.020080.017220.570.580.8857 75.08682729.61 18 30.3 24.1 22.6 4518.39 3137.330.02903050.019870.0172480.590.610.8836 74.41532734.03 19 29.5 23.9 22.5 4307.20 3095.730.02761340.01960.0172350.620.630.8812 73.52182731.96 20 28.7 23.7 22.5 4104.65 3054.610.026260.019330.0172250.660.670.8787 72.63672730.40 21 28.0 23.4 22.5 3948.62 3013.970.02522140.019070.0171480.680.690.8767 71.75282718.52 22 27.3 23.3 22.5 3797.79 2983.800.02422040.018870.0171620.710.720.8748 71.10222720.74 23 26.8 23.2 22.5 3687.98 2963.830.02349370.018740.0171960.730.740.8734 70.67322725.97

PAGE 71

57 Table A.10. October Average Hourly Psychrometric Properties for Miami hour DBT (oC) WBT (oC) DPT (oC) Pws (Pa) Pws* (Pa) Ws Ws* W v (m3/kg) h (kJ/kg) Pw (Pa) 0 25.4 22.4 22.0 3386.15 2836.870.02150440.017920.0166760.780.780.8684 67.86082645.77 1 25.1 22.4 22.1 3319.64 2827.300.02106770.017850.0167310.790.800.8675 67.65672654.22 2 24.7 22.3 22.0 3254.27 2808.250.02063910.017730.0167010.810.810.8665 67.23692649.58 3 24.5 22.2 22.0 3211.31 2798.770.02035770.017670.016710.820.830.8659 67.02992650.91 4 24.3 22.2 22.1 3168.86 2789.320.02007990.017610.0167180.830.840.8653 66.82342652.27 5 24.2 22.1 22.0 3158.32 2779.890.0200110.017550.0166570.830.840.8650 66.61082642.84 6 24.3 22.2 22.0 3179.42 2789.320.0201490.017610.0166950.830.830.8654 66.82122648.66 7 24.7 22.3 22.1 3243.48 2808.250.02056840.017730.0167240.810.820.8664 67.23912653.19 8 25.2 22.4 22.1 3352.75 2836.870.0212850.017920.0167460.790.790.8681 67.86742656.58 9 26.1 22.7 22.1 3522.67 2875.420.02240260.018170.0167390.750.750.8705 68.70822655.51 10 27.0 22.9 22.1 3724.27 2924.250.02373370.018480.0167760.710.710.8733 69.77402661.13 11 28.1 23.2 22.1 3974.26 2973.800.02539180.018810.0167470.660.670.8765 70.84552656.70 12 29.1 23.5 22.1 4211.62 3024.090.02697410.019130.016770.620.630.8794 71.93402660.22 13 29.8 23.7 22.2 4390.62 3064.850.02817240.01940.0168240.600.610.8816 72.81722668.63 14 30.4 23.8 22.1 4532.78 3085.410.02912730.019530.0167710.580.590.8831 73.25382660.43 15 30.6 23.9 22.1 4576.20 3095.730.02941950.01960.0167920.570.580.8836 73.47752663.57 16 30.4 23.8 22.1 4532.78 3085.410.02912730.019530.0167710.580.590.8831 73.25382660.43 17 29.9 23.7 22.1 4418.74 3064.850.02836110.01940.0167780.590.600.8818 72.81262661.43 18 29.2 23.6 22.1 4238.74 3034.230.02715530.01920.0168120.620.630.8798 72.15692666.78 19 28.4 23.3 22.1 4039.00 2993.830.02582260.018940.0168070.650.660.8773 71.28442665.94 20 27.6 23.1 22.1 3847.50 2943.980.024550.018610.0167170.680.690.8748 70.19662652.06 21 26.9 22.9 22.1 3700.05 2914.430.02357340.018420.0167360.710.720.8729 69.55672654.90 22 26.2 22.7 22.1 3557.54 2885.130.02263240.018230.0167560.740.750.8710 68.92122658.01 23 25.7 22.6 22.0 3453.82 2856.090.02194930.018040.0167080.760.770.8695 68.28352650.58

PAGE 72

58 Table A.11. November Average Hourly Psychrometric Properties for Miami hour DBT (oC) WBT (oC) DPT (oC) Pws (Pa) Pws* (Pa) Ws Ws* W v (m3/kg) h (kJ/kg) Pw (Pa) 0 23.7 21.9 21.9 3064.85 2742.460.01940030.01730.0165320.850.860.8634 65.77632623.43 1 23.4 21.8 21.9 3003.88 2723.920.01900260.017180.0165050.870.870.8624 65.36512619.30 2 23.1 21.7 21.8 2943.98 2705.480.01861230.017060.0164790.890.890.8614 64.95582615.29 3 22.8 21.6 21.8 2904.63 2696.300.01835620.0170.016490.900.900.8608 64.75402616.93 4 22.6 21.6 21.8 2865.74 2687.150.01810320.016940.0165010.910.910.8601 64.55262618.60 5 22.6 21.6 21.9 2856.09 2687.150.01804050.016940.0165240.920.920.8600 64.55472622.21 6 22.7 21.6 21.8 2875.42 2687.150.01816620.016940.0164770.910.910.8603 64.55052614.99 7 23.0 21.7 21.8 2934.10 2705.480.0185480.017060.0165030.890.890.8613 64.95792618.89 8 23.6 21.8 21.9 3034.23 2733.180.01920050.017240.0165180.860.860.8629 65.57052621.35 9 24.4 22.1 21.8 3190.02 2770.490.02021840.017480.0165030.820.820.8653 66.39012619.01 10 25.3 22.3 21.9 3374.98 2817.760.0214310.017790.0165290.770.780.8681 67.42912623.04 11 26.4 22.7 21.9 3604.50 2875.420.02294220.018170.0165760.720.730.8714 68.69272630.28 12 27.4 22.9 21.9 3822.58 2924.250.02438470.018480.0165890.680.690.8743 69.75612632.31 13 28.2 23.2 22.0 3987.14 2963.830.02547740.018740.0166360.650.660.8765 70.61892639.51 14 28.7 23.3 21.9 4117.89 2983.800.02634830.018870.0165790.630.640.8780 71.04542630.69 15 28.9 23.3 21.9 4157.83 2993.830.02661480.018940.0165970.620.630.8785 71.26392633.53 16 28.7 23.3 21.9 4117.89 2983.800.02634830.018870.0165790.630.640.8780 71.04542630.69 17 28.3 23.2 21.9 4012.99 2963.830.02564950.018740.0165890.650.660.8767 70.61442632.31 18 27.6 22.9 21.9 3847.50 2924.250.024550.018480.0165430.670.680.8746 69.75162625.10 19 26.7 22.7 21.9 3663.96 2885.130.02333490.018230.0165460.710.720.8721 68.90132625.58 20 25.9 22.5 21.9 3488.10 2846.460.02217490.017980.0165520.750.750.8697 68.05872626.53 21 25.2 22.3 21.9 3352.75 2817.760.0212850.017790.0165760.780.780.8678 67.43352630.25 22 24.6 22.1 21.9 3222.00 2779.890.02042770.017550.0165170.810.810.8658 66.59782621.20 23 24.1 22.0 21.9 3126.89 2761.120.01980550.017420.0165590.840.840.8644 66.18932627.67

PAGE 73

59 Table A.12. December Average Hourly Psychrometric Properties for Miami hour DBT (oC) WBT (oC) DPT (oC) Pws (Pa) Pws* (Pa) Ws Ws* W v (m3/kg) h (kJ/kg) Pw (Pa) 0 22.6 20.7 20.6 2865.74 2553.110.01810320.016080.0152860.840.850.8585 61.46422430.40 1 22.3 20.6 20.6 2808.25 2535.690.01772980.015960.0152660.860.860.8575 61.07262427.41 2 21.9 20.5 20.6 2751.78 2518.370.01736330.015850.0152480.880.880.8565 60.68292424.52 3 21.7 20.4 20.6 2714.68 2509.750.01712270.01580.0152620.890.890.8559 60.49062426.73 4 21.5 20.4 20.6 2678.03 2501.150.01688520.015740.0152760.900.910.8552 60.29882428.96 5 21.4 20.3 20.6 2668.93 2492.590.01682630.015690.0152210.900.910.8550 60.10152420.39 6 21.6 20.4 20.6 2687.15 2501.150.01694430.015740.0152530.900.900.8554 60.29682425.35 7 21.9 20.5 20.6 2742.46 2518.370.01730280.015850.0152710.880.890.8564 60.68482428.13 8 22.4 20.7 20.6 2836.87 2544.390.01791560.016020.0152760.850.860.8580 61.26822428.89 9 23.3 20.9 20.6 2983.80 2579.440.01887170.016250.0152460.810.810.8604 62.04872424.27 10 24.2 21.2 20.6 3158.32 2623.850.0200110.016530.0152530.760.770.8631 63.03792425.41 11 25.3 21.5 20.6 3374.98 2678.030.0214310.016890.0152770.710.720.8664 64.24062429.12 12 26.3 21.8 20.6 3580.95 2723.920.02278690.017180.0152710.670.680.8693 65.25262428.18 13 27.1 22.0 20.7 3736.44 2761.120.02381420.017420.0153020.640.650.8714 66.07362432.98 14 27.6 22.2 20.7 3860.02 2789.320.0246330.017610.0153210.620.630.8730 66.69372435.97 15 27.8 22.2 20.7 3897.78 2798.770.02488360.017670.0153360.620.630.8736 66.90212438.23 16 27.6 22.2 20.7 3860.02 2789.320.0246330.017610.0153210.620.630.8730 66.69372435.97 17 27.2 22.1 20.7 3760.88 2770.490.02397590.017480.0153390.640.650.8718 66.28272438.75 18 26.4 21.8 20.7 3604.50 2733.180.02294220.017240.0153080.670.680.8696 65.45982433.84 19 25.6 21.6 20.7 3431.13 2696.300.02180010.0170.0153250.700.710.8672 64.64862436.59 20 24.8 21.4 20.7 3265.08 2659.860.02070990.016770.0153460.740.750.8649 63.84482439.80 21 24.1 21.2 20.6 3137.33 2623.850.01987380.016530.01530.770.780.8629 63.04202432.62 22 23.4 20.9 20.6 3013.97 2588.270.01906840.01630.0152560.800.800.8609 62.24652425.88 23 22.9 20.8 20.7 2924.25 2570.640.01848380.016190.0153060.830.830.8595 61.85752433.50

PAGE 74

60 Table A.13. January Average Hourly Ps ychrometric Properties for Gainesville hour DBT (oC) WBT (oC) DPT (oC) Pws (Pa) Pws* (Pa) Ws Ws* W v (m3/kg) h (kJ/kg) Pw (Pa) 0 16.3 15.0 15.0 1932.41 1780.490.01209270.01112490.01059670.880.880.8339 43.09151697.36 1 15.7 14.7 14.8 1865.01 1748.880.0116630.0109240.01051080.900.900.8322 42.30801683.83 2 15.2 14.5 14.8 1806.13 1723.960.01128810.01076560.01046730.930.930.8307 41.68851676.97 3 14.8 14.3 14.8 1755.17 1705.470.01096390.01064820.01046460.950.960.8294 41.22891676.55 4 14.5 14.2 14.7 1723.96 1687.150.01076560.01053190.01039430.970.970.8285 40.76811665.47 5 14.4 14.1 14.6 1711.61 1681.090.01068720.01049340.01037870.970.970.8282 40.61561663.01 6 14.6 14.2 14.7 1736.38 1693.240.01084460.01057050.01040990.960.960.8289 40.92091667.94 7 15.1 14.4 14.7 1793.27 1717.770.01120620.01072630.0104510.930.930.8304 41.53401674.40 8 16.1 14.9 14.9 1905.20 1767.790.01191910.01104420.0105620.890.890.8332 42.77711691.89 9 17.4 15.5 15.1 2073.65 1838.640.0129950.0114950.01071360.820.830.8373 44.51991715.77 10 18.9 16.2 15.4 2286.55 1925.580.014360.01204910.01092180.760.760.8420 46.63321748.53 11 20.7 17.0 15.7 2553.11 2023.220.01607730.01267250.01112930.690.700.8474 48.97301781.18 12 22.4 17.7 15.9 2827.30 2110.340.01785350.01322980.01127030.630.640.8524 51.03131803.33 13 23.6 18.2 16.2 3044.41 2185.440.01926690.01371090.01147280.600.600.8562 52.79351835.15 14 24.4 18.6 16.3 3200.65 2231.610.02028790.01400710.01156020.570.580.8588 53.86651848.87 15 24.8 18.7 16.3 3265.08 2247.190.02070990.01410710.01156750.560.570.8597 54.22551850.03 16 24.4 18.6 16.3 3200.65 2231.610.02028790.01400710.01156020.570.580.8588 53.86651848.87 17 23.7 18.2 16.1 3064.85 2185.440.01940030.01371090.01142680.590.600.8565 52.79001827.93 18 22.6 17.8 16.0 2865.74 2125.180.01810320.01332480.01131880.630.630.8531 51.38141810.96 19 21.2 17.2 15.8 2632.81 2051.900.01659260.01285590.0111970.670.680.8490 49.65481791.81 20 19.9 16.6 15.5 2424.96 1973.870.01525050.01235720.01099920.720.730.8449 47.79271760.71 21 18.8 16.1 15.3 2262.86 1911.970.01420780.01196230.01085820.760.770.8415 46.30221738.53 22 17.7 15.7 15.2 2117.75 1858.390.01327720.01162080.01077020.810.810.8383 45.00311724.68 23 16.9 15.3 15.0 2009.01 1812.590.01258170.01132920.01066290.850.850.8358 43.88191707.79

PAGE 75

61 Table A.14. February Average Hourly Ps ychrometric Properties for Gainesville Hou r DBT (oC) WBT (oC) DPT (oC) Pws (Pa) Pws* (Pa) Ws Ws* W v (m3/kg) h (kJ/kg) Pw (Pa) 0 17.4 16.1 16.0 2073.65 1905.200.0129950.01191910.01136660.870.880.8381 46.17361818.47 1 16.8 15.8 16.0 2001.94 1878.330.01253650.01174780.01133360.900.910.8365 45.52291813.28 2 16.3 15.6 15.9 1939.27 1851.790.01213640.01157870.01127960.930.930.8350 44.87621804.80 3 15.9 15.4 15.9 1885.01 1832.100.01179040.01145340.01126930.960.960.8337 44.39671803.18 4 15.6 15.3 15.8 1851.79 1812.590.01157870.01132920.01119120.970.970.8328 43.91571790.91 5 15.5 15.2 15.8 1838.64 1806.130.0114950.01128810.01117310.970.970.8324 43.75651788.06 6 15.7 15.3 15.8 1865.01 1819.070.0116630.01137040.01120950.960.960.8331 44.07521793.77 7 16.2 15.6 15.9 1925.58 1845.200.01204910.01153680.01126070.930.940.8346 44.71501801.83 8 17.2 16.0 16.1 2044.70 1898.450.01280980.01187610.01139270.890.890.8375 46.01271822.56 9 18.5 16.6 16.3 2223.85 1973.870.01395740.01235720.01157380.830.830.8416 47.83261851.02 10 20.1 17.3 16.5 2450.13 2059.130.01541270.01290210.01174890.760.770.8463 49.86481878.49 11 21.8 18.0 16.8 2733.18 2155.120.01724260.01351660.01192360.690.700.8517 52.12421905.91 12 23.5 18.7 17.1 3024.09 2255.010.01913430.01415740.01216970.640.640.8569 54.45251944.48 13 24.7 19.2 17.3 3254.27 2326.520.02063910.01461690.01232690.600.610.8606 56.10201969.12 14 25.6 19.6 17.4 3419.84 2375.290.02172580.01493070.01243130.570.580.8632 57.21961985.46 15 25.9 19.7 17.4 3488.10 2391.750.02217490.01503660.01244430.560.570.8641 57.59361987.50 16 25.6 19.6 17.4 3419.84 2375.290.02172580.01493070.01243130.570.580.8632 57.21961985.46 17 24.8 19.3 17.3 3275.93 2334.590.02078110.01466880.01235550.590.600.8610 56.28811973.59 18 23.7 18.8 17.1 3064.85 2262.860.01940030.01420780.01215070.630.630.8575 54.63131941.50 19 22.3 18.2 16.9 2817.76 2185.440.01779150.01371090.01200190.670.680.8533 52.83391918.18 20 21.0 17.7 16.7 2597.12 2110.340.01636170.01322980.01184520.720.730.8492 51.07391893.61 21 19.9 17.2 16.4 2424.96 2044.700.01525050.01280980.01167990.770.770.8458 49.51971867.67 22 18.8 16.7 16.3 2270.74 1987.860.01425840.01244660.01157090.810.810.8426 48.16551850.56 23 18.0 16.3 16.1 2155.12 1939.270.01351660.01213640.01144550.850.850.8400 46.99711830.86

PAGE 76

62 Table A.15. March Average Hourly Psyc hrometric Properties for Gainesville hour DBT (oC) WBT (oC) DPT (oC) Pws (Pa) Pws* (Pa) Ws Ws* W v (m3/kg) h (kJ/kg) Pw (Pa) 0 20.1 18.7 18.7 2450.13 2247.190.01541270.01410710.0135280.880.880.8487 54.37872156.89 1 19.5 18.4 18.6 2367.10 2216.120.0148780.01390780.01346770.910.910.8470 53.65682147.49 2 19.0 18.2 18.6 2294.50 2185.440.0144110.01371090.01338680.930.930.8455 52.93952134.86 3 18.6 18.1 18.5 2231.61 2162.660.01400710.0135650.01335660.950.950.8442 52.40792130.15 4 18.3 17.9 18.5 2193.07 2147.600.01375990.01346840.01332960.970.970.8433 52.05482125.92 5 18.2 17.9 18.5 2177.82 2140.100.01366210.01342040.01330470.970.970.8430 51.87802122.04 6 18.4 18.0 18.5 2208.42 2155.120.01385830.01351660.01335460.960.960.8437 52.23202129.83 7 18.9 18.2 18.5 2278.63 2177.820.01430910.01366210.01336120.930.940.8451 52.76082130.86 8 19.8 18.6 18.7 2416.62 2231.610.01519680.01400710.01347440.890.890.8480 54.01522148.53 9 21.2 19.1 18.9 2623.85 2310.460.01653460.01451360.01365590.830.830.8521 55.84182176.85 10 22.7 19.7 19.1 2885.13 2400.010.01822930.01508980.01383680.760.760.8569 57.89562205.06 11 24.5 20.4 19.3 3211.31 2501.150.02035770.01574180.01402310.690.700.8623 60.19182234.09 12 26.2 21.0 19.5 3545.88 2597.120.02255560.01636170.01419970.630.640.8673 62.35082261.60 13 27.4 21.5 19.7 3810.17 2678.030.02430240.01688520.01441890.590.600.8712 64.16332295.72 14 28.2 21.8 19.8 4000.05 2723.920.02556330.01718260.01448250.570.580.8737 65.18072305.62 15 28.6 21.9 19.8 4078.28 2742.460.02608420.01730280.01450920.560.570.8747 65.59092309.77 16 28.2 21.8 19.8 4000.05 2723.920.02556330.01718260.01448250.570.580.8737 65.18072305.62 17 27.5 21.5 19.7 3835.02 2678.030.02446720.01688520.01437250.590.600.8714 64.15912288.51 18 26.4 21.1 19.6 3592.71 2614.920.02286440.01647680.01426780.620.630.8681 62.75222272.20 19 25.0 20.6 19.4 3308.66 2535.690.02099570.01596480.01412910.670.680.8639 60.97452250.61 20 23.7 20.1 19.2 3054.61 2458.570.01933350.01546710.01398110.720.730.8598 59.23082227.56 21 22.6 19.7 19.1 2856.09 2391.750.01804050.01503660.01383010.770.770.8564 57.70762204.01 22 21.5 19.2 18.9 2678.03 2326.520.01688520.01461690.01366630.810.810.8531 56.20982178.47 23 20.7 18.9 18.8 2544.39 2278.630.01602090.01430910.01356750.850.850.8505 55.10522163.06

PAGE 77

63 Table A.16. April Average Hourly Psyc hrometric Properties for Gainesville hour DBT (oC) WBT (oC) DPT (oC) Pws (Pa) Pws* (Pa) Ws Ws* W v (m3/kg) h (kJ/kg) Pw (Pa) 0 20.1 18.7 18.7 2450.13 2247.190.01541270.01410710.0135280.880.880.8487 54.37872156.89 1 19.5 18.4 18.6 2367.10 2216.120.0148780.01390780.01346770.910.910.8470 53.65682147.49 2 19.0 18.2 18.6 2294.50 2185.440.0144110.01371090.01338680.930.930.8455 52.93952134.86 3 18.6 18.1 18.5 2231.61 2162.660.01400710.0135650.01335660.950.950.8442 52.40792130.15 4 18.3 17.9 18.5 2193.07 2147.600.01375990.01346840.01332960.970.970.8433 52.05482125.92 5 18.2 17.9 18.5 2177.82 2140.100.01366210.01342040.01330470.970.970.8430 51.87802122.04 6 18.4 18.0 18.5 2208.42 2155.120.01385830.01351660.01335460.960.960.8437 52.23202129.83 7 18.9 18.2 18.5 2278.63 2177.820.01430910.01366210.01336120.930.940.8451 52.76082130.86 8 19.8 18.6 18.7 2416.62 2231.610.01519680.01400710.01347440.890.890.8480 54.01522148.53 9 21.2 19.1 18.9 2623.85 2310.460.01653460.01451360.01365590.830.830.8521 55.84182176.85 10 22.7 19.7 19.1 2885.13 2400.010.01822930.01508980.01383680.760.760.8569 57.89562205.06 11 24.5 20.4 19.3 3211.31 2501.150.02035770.01574180.01402310.690.700.8623 60.19182234.09 12 26.2 21.0 19.5 3545.88 2597.120.02255560.01636170.01419970.630.640.8673 62.35082261.60 13 27.4 21.5 19.7 3810.17 2678.030.02430240.01688520.01441890.590.600.8712 64.16332295.72 14 28.2 21.8 19.8 4000.05 2723.920.02556330.01718260.01448250.570.580.8737 65.18072305.62 15 28.6 21.9 19.8 4078.28 2742.460.02608420.01730280.01450920.560.570.8747 65.59092309.77 16 28.2 21.8 19.8 4000.05 2723.920.02556330.01718260.01448250.570.580.8737 65.18072305.62 17 27.5 21.5 19.7 3835.02 2678.030.02446720.01688520.01437250.590.600.8714 64.15912288.51 18 26.4 21.1 19.6 3592.71 2614.920.02286440.01647680.01426780.620.630.8681 62.75222272.20 19 25.0 20.6 19.4 3308.66 2535.690.02099570.01596480.01412910.670.680.8639 60.97452250.61 20 23.7 20.1 19.2 3054.61 2458.570.01933350.01546710.01398110.720.730.8598 59.23082227.56 21 22.6 19.7 19.1 2856.09 2391.750.01804050.01503660.01383010.770.770.8564 57.70762204.01 22 21.5 19.2 18.9 2678.03 2326.520.01688520.01461690.01366630.810.810.8531 56.20982178.47 23 20.7 18.9 18.8 2544.39 2278.630.01602090.01430910.01356750.850.850.8505 55.10522163.06

PAGE 78

64 Table A.17. May Average Hourly Psyc hrometric Properties for Gainesville hour DBT (oC) WBT (oC) DPT (oC) Pws (Pa) Pws* (Pa) Ws Ws* W v (m3/kg) h (kJ/kg) Pw (Pa) 0 23.8 21.5 21.3 3085.41 2678.030.01953450.01688520.01590540.810.820.8629 64.29712526.50 1 23.3 21.4 21.3 2983.80 2659.860.01887170.01676760.01597440.850.850.8614 63.90102537.19 2 22.8 21.2 21.3 2894.86 2632.810.01829260.01659260.01593950.870.870.8599 63.29782531.78 3 22.3 21.1 21.3 2817.76 2614.920.01779150.01647680.01596370.900.900.8586 62.90212535.52 4 22.1 21.0 21.3 2770.49 2597.120.01748470.01636170.01591870.910.910.8577 62.50192528.56 5 21.9 20.9 21.2 2751.78 2588.270.01736330.01630450.01588480.910.920.8574 62.30162523.31 6 22.2 21.0 21.2 2789.32 2597.120.01760680.01636170.01587210.900.900.8580 62.49792521.34 7 22.7 21.2 21.3 2875.42 2623.850.01816620.01653460.01590490.880.880.8595 63.09562526.42 8 23.6 21.4 21.3 3044.41 2668.930.01926690.01682630.01591660.830.830.8622 64.09682528.22 9 24.9 21.8 21.3 3297.72 2733.180.02092390.01724260.01593570.760.770.8661 65.51722531.19 10 26.5 22.3 21.3 3616.32 2808.250.02302030.01772980.01595530.690.700.8707 67.16742534.22 11 28.3 22.8 21.3 4012.99 2894.860.02564950.01829260.01597990.620.630.8759 69.05932538.04 12 29.9 23.2 21.3 4418.74 2973.800.02836110.01880650.01597870.560.570.8807 70.77082537.84 13 31.2 23.6 21.4 4738.52 3044.410.03051430.01926690.01608670.530.540.8844 72.30442554.56 14 32.0 23.8 21.5 4967.91 3085.410.03206760.01953450.01609630.500.510.8869 73.18652556.05 15 32.3 23.9 21.4 5062.33 3095.730.03270910.01960190.01604690.490.500.8878 73.40302548.40 16 32.0 23.8 21.5 4967.91 3085.410.03206760.01953450.01609630.500.510.8869 73.18652556.05 17 31.3 23.6 21.4 4768.56 3044.410.03071730.01926690.01604020.520.530.8847 72.29982547.36 18 30.2 23.3 21.3 4475.44 2983.800.02874190.01887170.01597360.560.570.8814 70.98642537.06 19 28.8 22.9 21.4 4131.17 2924.250.02643690.01848380.01603040.610.620.8774 69.70242545.85 20 27.4 22.6 21.3 3822.58 2856.090.02438470.01804050.01598520.660.660.8735 68.21532538.85 21 26.3 22.2 21.3 3580.95 2798.770.02278690.01766820.01594060.700.710.8702 66.95832531.94 22 25.3 21.9 21.3 3363.85 2751.780.02135790.01736330.01596280.750.750.8671 65.92902535.38 23 24.4 21.7 21.3 3200.65 2714.680.02028790.01712270.01597920.790.790.8647 65.11362537.93

PAGE 79

65 Table A.18. June Average Hourly Psyc hrometric Properties for Gainesville hour DBT (oC) WBT (oC) DPT (oC) Pws (Pa) Pws* (Pa) Ws Ws* W v (m3/kg) h (kJ/kg) Pw (Pa) 0 25.4 22.7 22.4 3386.15 2885.130.02150440.01822930.01710590.800.800.8690 68.95452712.08 1 24.8 22.6 22.5 3275.93 2865.740.02078110.01810320.0171670.830.830.8675 68.53762721.52 2 24.3 22.4 22.4 3179.42 2836.870.0201490.01791560.017120.850.850.8660 67.90252714.26 3 23.9 22.3 22.4 3095.73 2817.760.01960190.01779150.01713640.870.880.8647 67.48592716.79 4 23.6 22.2 22.4 3044.41 2798.770.01926690.01766820.01708340.890.890.8638 67.06472708.61 5 23.5 22.2 22.4 3024.09 2798.770.01913430.01766820.01713010.900.900.8636 67.06902715.82 6 23.7 22.3 22.4 3064.85 2808.250.01940030.01772980.01712150.880.890.8642 67.27612714.49 7 24.2 22.4 22.4 3158.32 2827.300.0200110.01785350.01708140.850.860.8656 67.68952708.30 8 25.2 22.7 22.4 3341.68 2875.420.02121240.01816620.0171130.810.810.8684 68.74362713.18 9 26.5 23.1 22.5 3616.32 2943.980.02302030.01861230.01716060.750.750.8723 70.23942720.52 10 28.1 23.4 22.4 3961.43 3013.970.02530650.01906840.01712430.680.690.8768 71.75052714.92 11 29.8 23.9 22.5 4390.62 3106.090.02817240.01966960.01718530.610.620.8821 73.73922724.33 12 31.5 24.4 22.5 4829.15 3190.020.03112710.02021840.0172170.550.570.8870 75.53872729.23 13 32.7 24.7 22.6 5174.45 3254.270.03347260.02063910.01726120.520.530.8906 76.91202736.04 14 33.6 24.9 22.6 5421.99 3297.720.03516440.02092390.01728710.490.510.8931 77.83752740.03 15 33.9 25.0 22.5 5523.85 3308.660.03586310.02099570.01724160.480.490.8940 78.06482733.02 16 33.6 24.9 22.6 5421.99 3297.720.03516440.02092390.01728710.490.510.8931 77.83752740.03 17 32.8 24.7 22.5 5206.88 3254.270.03369370.02063910.01721450.510.520.8908 76.90712728.85 18 31.7 24.4 22.5 4890.40 3200.650.03154190.02028790.01721610.550.560.8876 75.76542729.08 19 30.3 24.1 22.6 4518.39 3137.330.02903050.01987380.01724820.590.610.8836 74.41532734.03 20 29.0 23.7 22.5 4184.65 3064.850.02679390.01940030.01717430.640.650.8796 72.85202722.64 21 27.9 23.4 22.4 3923.13 3003.880.0250520.01900260.01710550.680.690.8763 71.53092712.03 22 26.8 23.1 22.4 3687.98 2953.890.02349370.01867690.01710810.730.740.8732 70.44932712.42 23 26.0 22.9 22.4 3511.11 2914.430.02232650.01841990.0171090.770.770.8708 69.59252712.56

PAGE 80

66 Table A.19. July Average Hourly Psyc hrometric Properties for Gainesville hour DBT (oC) WBT (oC) DPT (oC) Pws (Pa) Pws* (Pa) Ws Ws* W v (m3/kg) h (kJ/kg) Pw (Pa) 0 27.6 23.7 22.9 3860.02 3054.610.0246330.019330.0176690.720.730.8763 72.68062798.82 1 27.3 23.6 22.9 3785.45 3034.230.02413870.01920.017630.730.740.8752 72.23752792.83 2 26.9 23.4 22.9 3712.14 3013.970.02365340.019070.0175920.740.750.8742 71.79642786.96 3 26.7 23.4 22.9 3663.96 3003.880.02333490.0190.0175960.750.760.8736 71.57892787.67 4 26.5 23.3 22.9 3616.32 2993.830.02302030.018940.0176010.760.770.8729 71.36192788.42 5 26.4 23.3 22.9 3604.50 2993.830.02294220.018940.0176240.770.770.8728 71.36422792.02 6 26.6 23.3 22.9 3628.18 2993.830.02309860.018940.0175780.760.770.8731 71.35962784.81 7 26.9 23.4 22.9 3700.05 3013.970.02357340.019070.0176150.750.750.8741 71.79872790.56 8 27.4 23.6 22.9 3822.58 3044.410.02438470.019270.0176490.720.730.8758 72.45882795.81 9 28.3 23.8 22.9 4012.99 3085.410.02564950.019530.0176580.690.700.8782 73.34232797.24 10 29.2 24.1 22.9 4238.74 3126.890.02715530.019810.0176240.650.660.8809 74.22942791.96 11 30.3 24.3 22.9 4518.39 3179.420.02903050.020150.0176150.610.620.8841 75.35292790.58 12 31.3 24.6 22.9 4783.65 3232.730.03081930.02050.0176580.570.580.8871 76.49452797.19 13 32.1 24.8 23.0 4983.54 3275.930.03217370.020780.0177290.550.560.8893 77.42092808.10 14 32.6 24.9 23.0 5142.20 3297.720.03325280.020920.0176840.530.540.8909 77.87892801.16 15 32.8 25.0 23.0 5190.64 3308.660.0335830.0210.0177080.530.540.8914 78.11362804.93 16 32.6 24.9 23.0 5142.20 3297.720.03325280.020920.0176840.530.540.8909 77.87892801.16 17 32.2 24.8 22.9 5014.93 3275.930.03238690.020780.0176820.550.560.8896 77.41612800.91 18 31.4 24.7 23.0 4813.94 3243.480.03102410.020570.0177050.570.580.8875 76.72832804.37 19 30.6 24.4 22.9 4590.76 3200.650.02951760.020290.0176830.600.610.8850 75.81322801.04 20 29.8 24.2 22.9 4376.62 3158.320.02807850.020010.0176650.630.640.8826 74.90672798.23 21 29.1 24.1 22.9 4211.62 3126.890.02697410.019810.0176710.660.660.8806 74.23412799.16 22 28.4 23.9 22.9 4052.05 3095.730.02590950.01960.0176790.680.690.8787 73.56622800.37 23 27.9 23.7 22.9 3935.86 3064.850.02513650.01940.0176180.700.710.8772 72.89602791.06

PAGE 81

67 Table A.20. August Average Hourly Psyc hrometric Properties for Gainesville hour DBT (oC) WBT (oC) DPT (oC) Pws (Pa) Pws* (Pa) Ws Ws* W v (m3/kg) h (kJ/kg) Pw (Pa) 0 25.9 22.7 22.2 3499.59 2885.130.02225060.01822930.01687240.760.760.8703 68.93232676.03 1 25.4 22.6 22.3 3386.15 2865.740.02150440.01810320.01693340.790.790.8688 68.51552685.47 2 24.9 22.4 22.2 3286.81 2836.870.02085240.01791560.01688650.810.810.8673 67.88052678.21 3 24.4 22.3 22.2 3200.65 2817.760.02028790.01779150.01690280.830.840.8660 67.46402680.73 4 24.2 22.2 22.2 3147.81 2798.770.01994230.01766820.01684980.840.850.8651 67.04292672.55 5 24.1 22.2 22.2 3126.89 2798.770.01980550.01766820.01689650.850.860.8649 67.04732679.76 6 24.3 22.3 22.2 3168.86 2808.250.02007990.01772980.01688780.840.850.8655 67.25432678.43 7 24.8 22.4 22.2 3265.08 2827.300.02070990.01785350.01684780.810.820.8669 67.66772672.25 8 25.7 22.7 22.2 3453.82 2875.420.02194930.01816620.01687950.770.780.8697 68.72142677.13 9 27.1 23.1 22.3 3736.44 2943.980.02381420.01861230.01692710.710.720.8736 70.21692684.49 10 28.6 23.4 22.2 4091.44 3013.970.0261720.01906840.01689090.650.650.8781 71.72762678.90 11 30.4 23.9 22.3 4532.78 3106.090.02912730.01966960.0169520.580.590.8834 73.71582688.34 12 32.1 24.4 22.3 4983.54 3190.020.03217370.02021840.01698390.530.540.8883 75.51492693.25 13 33.3 24.7 22.3 5338.36 3254.270.03459180.02063910.01702810.490.510.8919 76.88782700.08 14 34.1 24.9 22.4 5592.67 3297.720.0363360.02092390.0170540.470.480.8943 77.81322704.08 15 34.4 25.0 22.3 5697.30 3308.660.03705620.02099570.01700860.460.470.8952 78.04042697.07 16 34.1 24.9 22.4 5592.67 3297.720.0363360.02092390.0170540.470.480.8943 77.81322704.08 17 33.4 24.7 22.3 5371.68 3254.270.03481980.02063910.01698150.490.500.8921 76.88302692.88 18 32.3 24.4 22.3 5046.49 3200.650.03260140.02028790.01698290.520.530.8889 75.74162693.11 19 30.9 24.1 22.3 4664.13 3137.330.03001210.01987380.01701490.570.580.8849 74.39182698.04 20 29.6 23.7 22.3 4321.01 3064.850.02770590.01940030.0169410.610.620.8809 72.82882686.64 21 28.4 23.4 22.2 4052.05 3003.880.02590950.01900260.01687220.650.660.8776 71.50802676.01 22 27.4 23.1 22.2 3810.17 2953.890.02430240.01867690.01687470.690.700.8745 70.42672676.39 23 26.6 22.9 22.2 3628.18 2914.430.02309860.01841990.01687550.730.740.8721 69.57012676.52

PAGE 82

68 Table A.21. September Average Hourly Psychrometric Properties for Gainesville hour DBT (oC) WBT (oC) DPT (oC) Pws (Pa) Pws* (Pa) Ws Ws* W v (m3/kg) h (kJ/kg) Pw (Pa) 0 24.8 22.1 21.7 3275.93 2779.890.02078110.01754560.01640090.790.790.8665 66.58712603.18 1 24.3 21.9 21.7 3168.86 2751.780.02007990.01736330.01638220.820.820.8648 65.96762600.29 2 23.8 21.8 21.8 3075.11 2733.180.01946730.01724260.01642510.840.850.8634 65.56192606.92 3 23.3 21.7 21.8 2993.83 2714.680.0189370.01712270.01644540.870.870.8621 65.15602610.07 4 23.1 21.6 21.7 2943.98 2696.300.01861230.01700360.01639650.880.880.8613 64.74552602.50 5 22.9 21.6 21.7 2924.25 2687.150.01848380.01694430.01636060.890.890.8609 64.53992596.95 6 23.2 21.7 21.8 2963.83 2705.480.01874160.01706310.01643250.880.880.8616 64.95162608.07 7 23.7 21.8 21.7 3054.61 2723.920.01933350.01718260.01638850.850.850.8630 65.35452601.27 8 24.6 22.1 21.8 3232.73 2770.490.0204980.01748470.016410.800.810.8658 66.38152604.59 9 25.9 22.4 21.8 3499.59 2836.870.02225060.01791560.01644320.740.750.8697 67.83892609.72 10 27.5 22.9 21.8 3835.02 2914.430.02446720.01841990.01647910.670.680.8743 69.53212615.27 11 29.3 23.4 21.9 4252.35 3003.880.02724640.01900260.01652250.610.620.8795 71.47382621.99 12 30.9 23.8 21.9 4678.93 3085.410.03011190.01953450.01653830.550.560.8844 73.23062624.43 13 32.2 24.2 21.9 5014.93 3147.810.03238690.01994230.01657030.510.520.8880 74.57102629.37 14 33.0 24.4 21.9 5255.85 3190.020.03402790.02021840.01658790.490.500.8905 75.47452632.10 15 33.3 24.4 21.9 5355.00 3200.650.03470570.02028790.01654050.480.490.8914 75.69632624.76 16 33.0 24.4 21.9 5255.85 3190.020.03402790.02021840.01658790.490.500.8905 75.47452632.10 17 32.3 24.2 21.9 5046.49 3147.810.03260140.01994230.01652370.510.520.8883 74.56632622.17 18 31.2 23.9 21.9 4738.52 3095.730.03051430.01960190.01653540.540.550.8851 73.45192623.98 19 29.8 23.5 21.8 4376.62 3024.090.02807850.01913430.01649040.590.600.8810 71.90652617.01 20 28.4 23.2 21.9 4052.05 2963.830.02590950.01874160.01651940.640.650.8771 70.60762621.50 21 27.3 22.8 21.8 3797.79 2904.630.02422040.01835620.01646230.680.690.8738 69.31772612.67 22 26.3 22.6 21.8 3569.23 2856.090.02270950.01804050.01647430.730.730.8708 68.26152614.53 23 25.4 22.3 21.7 3397.35 2808.250.0215780.01772980.01639790.760.770.8682 67.20862602.71

PAGE 83

69 Table A.22. October Average Hourly Ps ychrometric Properties for Gainesville hour DBT (oC) WBT (oC) DPT (oC) Pws (Pa) Pws* (Pa) Ws Ws* W v (m3/kg) h (kJ/kg) Pw (Pa) 0 22.7 20.9 20.8 2885.13 2579.440.01822930.01624740.01547860.850.850.8591 62.06902460.35 1 22.2 20.7 20.8 2789.32 2553.110.01760680.01607730.01547170.880.880.8574 61.48032459.27 2 21.7 20.6 20.9 2705.48 2535.690.01706310.01596480.01552220.910.910.8561 61.09472467.11 3 21.2 20.4 20.8 2632.81 2509.750.01659260.01579730.01547130.930.930.8547 60.50852459.21 4 20.9 20.4 20.9 2588.27 2501.150.01630450.01574180.0155090.950.950.8539 60.31872465.05 5 20.8 20.3 20.8 2570.64 2492.590.01619050.01568650.0154770.960.960.8536 60.12322460.09 6 21.1 20.4 20.8 2606.01 2501.150.01641920.01574180.01546240.940.940.8542 60.31472457.83 7 21.6 20.6 20.8 2687.15 2527.020.01694430.01590880.01548950.910.920.8557 60.89752462.04 8 22.5 20.8 20.8 2846.46 2570.640.0179780.01619050.01549160.860.870.8584 61.87372462.37 9 23.8 21.2 20.9 3085.41 2632.810.01953450.01659260.01549720.790.800.8623 63.25852463.23 10 25.4 21.7 20.9 3386.15 2714.680.02150440.01712270.01558360.720.730.8670 65.07762476.63 11 27.2 22.2 20.9 3760.88 2798.770.02397590.01766820.01559160.650.660.8721 66.92592477.87 12 28.8 22.7 20.9 4144.48 2875.420.02652570.01816620.01557530.590.600.8769 68.59772475.34 13 30.1 23.0 20.9 4447.01 2934.100.02855090.0185480.01558260.550.560.8805 69.87302476.47 14 30.9 23.3 21.0 4664.13 2983.800.03001210.01887170.01567150.520.530.8830 70.95692490.25 15 31.2 23.3 21.0 4753.52 2993.830.03061560.0189370.01562010.510.520.8839 71.16842482.29 16 30.9 23.3 21.0 4664.13 2983.800.03001210.01887170.01567150.520.530.8830 70.95692490.25 17 30.2 23.1 21.0 4475.44 2943.980.02874190.01861230.01562320.540.550.8809 70.09102482.77 18 29.1 22.7 20.9 4198.11 2885.130.02688380.01822930.01556830.580.590.8776 68.80832474.25 19 27.7 22.3 20.9 3872.57 2817.760.02471630.01779150.01555150.630.640.8735 67.33772471.66 20 26.3 21.9 20.9 3580.95 2751.780.02278690.01736330.01552070.680.690.8696 65.88842466.88 21 25.2 21.7 20.9 3352.75 2705.480.0212850.01706310.01557070.730.740.8665 64.87342474.63 22 24.2 21.3 20.9 3147.81 2650.820.01994230.01670910.01552030.780.780.8633 63.66002466.82 23 23.3 21.1 20.9 2993.83 2614.920.0189370.01647680.01554460.820.830.8609 62.86502470.58

PAGE 84

70 Table A.23. November Average Hourly Psychrometric Properties for Gainesville hour DBT (oC) WBT (oC) DPT (oC) Pws (Pa) Pws* (Pa) Ws Ws* W v (m3/kg) h (kJ/kg) Pw (Pa) 0 19.5 18.2 18.2 2367.10 2177.820.0148780.01366210.01310680.880.880.8466 52.74142091.12 1 18.9 17.9 18.2 2286.55 2147.600.014360.01346840.01305210.910.910.8449 52.03402082.57 2 18.4 17.7 18.1 2216.12 2117.750.01390780.01327720.01297660.930.930.8433 51.33092070.78 3 18.0 17.6 18.0 2155.12 2095.590.01351660.01313540.01295050.960.960.8420 50.80982066.69 4 17.7 17.4 17.9 2117.75 2073.650.01327720.0129950.01285630.970.970.8411 50.28712051.97 5 17.6 17.3 17.9 2102.96 2066.380.01318250.01294840.01283290.970.970.8407 50.11412048.31 6 17.8 17.4 18.0 2132.63 2080.940.01337250.01304160.01287980.960.960.8414 50.46042055.65 7 18.3 17.7 18.0 2200.73 2110.340.0138090.01322980.01295230.940.940.8430 51.15572066.98 8 19.3 18.1 18.2 2334.59 2170.230.01466880.01361350.01312760.890.900.8459 52.56662094.37 9 20.6 18.7 18.5 2535.69 2255.010.01596480.01415740.01336990.840.840.8501 54.54662132.22 10 22.2 19.4 18.8 2789.32 2350.800.01760680.0147730.01361370.770.780.8549 56.75922170.26 11 23.9 20.1 19.1 3106.09 2458.570.01966960.01546710.01386540.700.710.8604 59.22102209.51 12 25.6 20.8 19.5 3431.13 2570.640.02180010.01619050.01419160.650.660.8657 61.76032260.34 13 26.8 21.3 19.7 3687.98 2650.820.02349370.01670910.0144060.610.620.8695 63.56052293.72 14 27.7 21.7 19.9 3872.57 2705.480.02471630.01706310.01454920.590.600.8722 64.78082315.99 15 28.0 21.8 19.9 3948.62 2723.920.02522140.01718260.01457520.580.590.8732 65.18922320.03 16 27.7 21.7 19.9 3872.57 2705.480.02471630.01706310.01454920.590.600.8722 64.78082315.99 17 26.9 21.4 19.7 3712.14 2659.860.02365340.01676760.0144410.610.620.8699 63.76372299.16 18 25.8 20.9 19.5 3476.64 2579.440.02209950.01624740.01417870.640.650.8663 61.95542258.33 19 24.4 20.3 19.2 3200.65 2492.590.02028790.01568650.0139680.690.700.8620 59.99482225.51 20 23.1 19.8 19.0 2953.89 2408.300.01867690.01514320.01375110.740.740.8579 58.07632191.70 21 22.0 19.3 18.7 2761.12 2334.590.01742390.01466880.01353290.780.780.8544 56.38322157.66 22 20.9 18.8 18.5 2588.27 2270.740.01630450.01425840.01337810.820.820.8511 54.90882133.50 23 20.1 18.4 18.4 2458.57 2216.120.01546710.01390780.01321330.850.860.8485 53.63722107.76

PAGE 85

71 Table A.24. December Average Hourly Ps ychrometric Properties for Gainesville hour DBT (oC) WBT (oC) DPT (oC) Pws (Pa) Pws* (Pa) Ws Ws* W v (m3/kg) h (kJ/kg) Pw (Pa) 0 16.8 15.7 15.7 2001.94 1858.390.01253650.01162080.01113770.890.890.8362 45.02721782.50 1 16.3 15.4 15.6 1932.41 1825.570.01209270.01141180.01104390.910.910.8345 44.22321767.75 2 15.8 15.1 15.4 1871.66 1793.270.01170530.01120620.01093050.930.930.8329 43.42611749.90 3 15.3 14.9 15.3 1819.07 1767.790.01137040.01104420.01086040.960.960.8315 42.79571738.87 4 15.1 14.7 15.2 1786.87 1748.880.01116550.0109240.01078620.970.970.8306 42.32501727.20 5 14.9 14.7 15.2 1774.13 1742.620.01108450.01088420.01076940.970.970.8303 42.16921724.55 6 15.2 14.8 15.2 1799.69 1755.170.01124710.01096390.01080320.960.960.8310 42.48111729.86 7 15.7 15.1 15.4 1858.39 1786.870.01162080.01116550.01091270.940.940.8326 43.26801747.11 8 16.6 15.6 15.7 1973.87 1845.200.01235720.01153680.01109980.900.900.8355 44.70461776.54 9 17.9 16.3 16.1 2147.60 1932.410.01346840.01209270.01140180.850.850.8398 46.82981824.01 10 19.5 17.1 16.5 2367.10 2030.360.0148780.01271810.01170360.790.790.8447 49.18271871.39 11 21.3 17.9 16.9 2641.80 2140.100.01665070.01342040.0120120.720.730.8502 51.78121919.77 12 22.9 18.7 17.3 2924.25 2247.190.01848380.01410710.0123270.670.670.8555 54.28491969.14 13 24.2 19.3 17.7 3147.81 2334.590.01994230.01466880.01263210.630.640.8594 56.31052016.89 14 25.0 19.6 17.8 3308.66 2383.510.02099570.01498350.01273740.610.610.8620 57.43102033.37 15 25.3 19.8 17.9 3374.98 2408.300.0214310.01514320.01282680.600.610.8630 57.99972047.36 16 25.0 19.6 17.8 3308.66 2383.510.02099570.01498350.01273740.610.610.8620 57.43102033.37 17 24.3 19.3 17.7 3168.86 2342.680.02007990.01472080.01266070.630.640.8598 56.49712021.38 18 23.2 18.8 17.3 2963.83 2262.860.01874160.01420780.01238110.660.670.8562 54.64951977.60 19 21.8 18.2 17.1 2723.92 2177.820.01718260.01366210.01216060.710.710.8519 52.66951943.06 20 20.4 17.5 16.7 2509.75 2088.260.01579730.01308840.01186550.750.760.8476 50.55801896.80 21 19.3 16.9 16.4 2342.68 2016.100.01472080.0126270.01163580.790.790.8441 48.84051860.74 22 18.3 16.4 16.1 2193.07 1946.150.01375990.01218030.01139730.830.830.8407 47.15841823.29 23 17.4 16.0 15.9 2080.94 1898.450.01304160.01187610.01127770.860.870.8382 46.00501804.49

PAGE 86

72 Table A.25. January Average Hourly Psychrometric Properties for Chicago hour DBT (oC) WBT (oC) DPT (oC) Pws (Pa) Pws* (Pa) Ws Ws* W v (m3/kg) h (kJ/kg) Pw (Pa) 0 -1.2 -1.2 -0.6 586.01 583.630.00361820.00360340.0035810.990.990.7750 7.7819580.03 1 -1.7 -1.8 -1.3 562.56 557.970.00347250.00344410.0033990.980.980.7732 6.7692550.78 2 -2.2 -2.4 -1.8 542.17 535.520.0033460.00330480.0032380.970.970.7715 5.8627524.74 3 -2.7 -2.9 -2.4 524.60 516.010.0032370.00318370.0030950.960.960.7701 5.0580501.64 4 -3.0 -3.3 -2.8 511.76 501.270.00315740.00309230.0029810.940.940.7690 4.4393483.31 5 -3.1 -3.4 -2.9 507.54 497.130.00313120.00306660.0029550.940.940.7687 4.2636479.17 6 -2.9 -3.1 -2.6 516.01 507.540.00318370.00313120.0030420.960.960.7694 4.7036493.17 7 -2.3 -2.5 -1.9 537.73 531.130.00331850.00327750.0032110.970.970.7712 5.6830520.35 8 -1.4 -1.4 -0.8 576.53 574.180.00355930.00354470.0035220.990.990.7743 7.4117570.59 9 0.1 0.0 0.5 640.69 638.110.00395790.00394180.0039190.990.990.7789 9.8585634.51 10 1.7 1.7 2.3 719.64 719.640.00444910.00444910.0044491.001.000.7841 12.8073719.64 11 3.6 3.6 4.2 823.10 823.100.00509390.00509390.0050941.001.000.7903 16.3282823.10 12 5.3 5.3 5.9 928.67 928.670.00575340.00575340.0057531.001.000.7961 19.7218928.67 13 6.6 6.4 7.0 1014.57 1006.830.00629090.00624240.0061970.990.990.8003 22.1281999.61 14 7.4 7.2 7.7 1078.38 1062.110.00669080.00658880.0064980.970.970.8032 23.78391047.67 15 7.8 7.5 7.9 1103.21 1082.490.00684660.00671660.0066030.960.960.8043 24.38551064.44 16 7.4 7.2 7.7 1078.38 1062.110.00669080.00658880.0064980.970.970.8032 23.78391047.67 17 6.7 6.6 7.1 1022.36 1014.570.00633970.00629090.0062460.990.990.8007 22.36221007.35 18 5.5 5.4 6.0 943.13 939.500.00584380.00582110.0057990.990.990.7968 20.0596935.89 19 4.1 4.1 4.7 852.60 852.600.0052780.0052780.0052781.001.000.7920 17.2946852.60 20 2.7 2.7 3.3 772.88 772.880.00478080.00478080.0047811.001.000.7874 14.6464772.88 21 1.4 1.4 2.0 708.26 708.260.00437830.00437830.0043781.001.000.7834 12.4059708.26 22 0.4 0.4 1.0 656.36 656.360.00405530.00405530.0040551.001.000.7800 10.5341656.36 23 -0.5 -0.6 0.0 615.30 612.810.00380010.00378460.0037620.990.990.7771 8.9060609.21

PAGE 87

73 Table A.26. February Average Hourly Psychrometric Properties for Chicago Hou r DBT (oC) WBT (oC) DPT (oC) Pws (Pa) Pws* (Pa) Ws Ws* W v (m3/kg) h (kJ/kg) Pw (Pa) 0 1.1 1.0 1.5 688.73 685.980.00425670.00423960.0042170.990.990.7821 11.6108682.38 1 0.5 0.4 0.8 661.66 656.360.00408830.00405530.0040110.980.980.7803 10.5340649.16 2 0.0 -0.2 0.0 638.11 627.880.00394180.00387820.0037890.960.960.7786 9.4758613.49 3 -0.4 -0.7 -0.4 617.80 607.860.00381560.00375380.0036640.960.960.7771 8.7174593.47 4 -0.8 -1.1 -0.8 602.94 590.810.00372330.00364790.0035360.950.950.7760 8.0614572.82 5 -0.9 -1.2 -0.9 598.06 586.010.0036930.00361820.0035070.950.950.7757 7.8753568.03 6 -0.7 -0.9 -0.7 607.86 595.640.00375380.00367790.0035660.950.950.7764 8.2482577.65 7 -0.1 -0.3 -0.1 632.97 622.820.00390990.00384680.0037570.960.960.7782 9.2853608.43 8 0.8 0.8 1.3 677.79 675.080.00418860.00417170.0041490.990.990.7814 11.2171671.48 9 2.3 2.3 2.9 751.78 751.780.00464920.00464920.0046491.001.000.7861 13.9247751.78 10 3.9 3.9 4.5 842.66 842.660.0052160.0052160.0052161.001.000.7914 16.9708842.66 11 5.8 5.8 6.4 961.49 961.490.00595860.00595860.0059591.001.000.7978 20.7424961.49 12 7.5 7.5 8.2 1082.49 1082.490.00671660.00671660.0067171.001.000.8037 24.38911082.49 13 8.8 8.7 9.2 1180.76 1171.910.00733350.00727790.0072330.990.990.8080 26.98091164.69 14 9.7 9.4 9.9 1253.68 1235.080.00779210.00767510.0075840.970.970.8110 28.76701220.63 15 10.0 9.7 10.2 1282.03 1258.360.00797050.00782150.0077080.970.970.8121 29.41651240.30 16 9.7 9.4 9.9 1253.68 1235.080.00779210.00767510.0075840.970.970.8110 28.76701220.63 17 8.9 8.8 9.4 1189.66 1180.760.00738950.00733350.0072880.990.990.8084 27.23331173.53 18 7.7 7.7 8.4 1099.04 1099.040.00682040.00682040.006821.001.000.8044 24.87511099.04 19 6.3 6.3 6.9 995.32 995.320.00617030.00617030.006171.001.000.7995 21.7797995.32 20 4.9 4.9 5.5 903.84 903.840.00559810.00559810.0055981.001.000.7948 18.9392903.84 21 3.7 3.7 4.3 829.57 829.570.00513430.00513430.0051341.001.000.7907 16.5416829.57 22 2.6 2.6 3.2 769.83 769.830.00476180.00476180.0047621.001.000.7872 14.5428769.83 23 1.7 1.7 2.3 722.51 722.510.0044670.0044670.0044671.001.000.7843 12.9080722.51

PAGE 88

74 Table A.27. March Average Hourly Ps ychrometric Properties for Chicago hour DBT (oC) WBT (oC) DPT (oC) Pws (Pa) Pws* (Pa) Ws Ws* W v (m3/kg) h (kJ/kg) Pw (Pa) 0 7.7 7.6 8.2 1099.04 1090.740.00682040.00676830.0067230.990.990.8043 24.63021083.52 1 7.2 7.0 7.5 1058.07 1046.050.00656350.00648810.006420.980.980.8023 23.30671035.22 2 6.7 6.4 6.9 1022.36 1006.830.00633970.00624240.0061520.970.970.8006 22.1269992.39 3 6.2 6.0 6.4 991.51 976.400.00614650.00605190.0059620.970.970.7991 21.1991961.96 4 5.9 5.6 6.0 968.92 950.440.00600510.00588950.0057770.960.960.7979 20.3977932.40 5 5.8 5.5 5.9 961.49 943.130.00595860.00584380.0057310.960.960.7975 20.1707925.09 6 6.0 5.7 6.1 976.40 957.790.00605190.00593550.0058230.960.960.7982 20.6254939.75 7 6.6 6.3 6.8 1014.57 999.140.00629090.00619430.0061040.970.970.8002 21.8937984.71 8 7.5 7.3 7.8 1082.49 1070.220.00671660.00663960.0065720.980.980.8035 24.02481059.39 9 8.9 8.8 9.3 1194.14 1180.760.00741760.00733350.0072650.980.980.8085 27.23251169.92 10 10.6 10.3 10.8 1330.54 1310.940.00827610.00815260.0080620.970.970.8142 30.87121296.49 11 12.4 12.1 12.5 1507.78 1469.680.00939530.00915430.0089940.960.960.8208 35.14171444.38 12 14.2 13.6 13.9 1687.15 1621.470.01053190.01011520.0098630.940.940.8269 39.08681581.71 13 15.4 14.6 14.8 1832.10 1736.380.01145340.01084460.01050.920.920.8314 41.99831682.17 14 16.3 15.3 15.4 1939.27 1812.590.01213640.01132920.0108920.900.900.8345 43.89661743.92 15 16.7 15.6 15.6 1980.85 1845.200.01240180.01153680.0110770.890.900.8357 44.70311772.92 16 16.3 15.3 15.4 1939.27 1812.590.01213640.01132920.0108920.900.900.8345 43.89661743.92 17 15.6 14.7 14.9 1845.20 1748.880.01153680.0109240.010580.920.920.8318 42.31231694.67 18 14.4 13.7 14.0 1711.61 1639.150.01068720.01022730.0099520.930.930.8276 39.53831595.78 19 12.9 12.5 12.9 1558.04 1513.290.00971330.00943010.0092470.950.950.8226 36.28801484.38 20 11.6 11.3 11.8 1421.94 1396.010.00885280.00868910.0085750.970.970.8177 33.18071377.94 21 10.3 10.2 10.7 1310.94 1296.410.00815260.00806110.0079930.980.980.8134 30.47261285.57 22 9.3 9.1 9.6 1221.30 1207.650.00758840.00750250.0074340.980.980.8097 27.99571196.81 23 8.4 8.2 8.7 1150.05 1137.100.00714060.00705930.0069910.980.980.8066 25.97991126.27

PAGE 89

75 Table A.28. April Average Hourly Ps ychrometric Properties for Chicago hour DBT (oC) WBT (oC) DPT (oC) Pws (Pa) Pws* (Pa) Ws Ws* W v (m3/kg) h (kJ/kg) Pw (Pa) 0 13.3 12.4 12.5 1592.36 1502.280.00993070.00936050.0089950.910.910.8232 35.98991444.46 1 12.7 12.1 12.3 1535.52 1469.680.00957080.00915430.008880.930.930.8214 35.13601426.31 2 12.2 11.7 12.0 1485.90 1432.430.00925690.0089190.0086910.940.940.8198 34.14981396.29 3 11.8 11.3 11.7 1442.98 1401.160.00898570.00872160.0085390.950.950.8183 33.31581372.25 4 11.4 11.1 11.6 1411.52 1380.650.0087870.00859220.0084550.960.960.8172 32.76611358.97 5 11.3 11.1 11.5 1401.16 1375.570.00872160.00856010.0084460.970.970.8169 32.62991357.50 6 11.6 11.2 11.7 1421.94 1390.880.00885280.00865670.008520.960.960.8176 33.04151369.19 7 12.1 11.6 11.9 1475.07 1427.170.00918840.00888580.008680.940.950.8194 34.01081394.65 8 13.1 12.2 12.3 1569.41 1485.900.00978530.00925690.0089140.910.910.8224 35.56041431.69 9 14.5 13.2 13.0 1723.96 1580.850.01076560.00985780.0093090.860.870.8271 38.02501494.11 10 16.1 14.2 13.8 1911.97 1693.240.01196230.01057050.0097910.820.820.8324 40.88411570.36 11 18.0 15.3 14.5 2155.12 1819.070.01351660.01137040.0102680.760.760.8384 44.01481645.62 12 19.7 16.4 15.2 2400.01 1946.150.01508980.01218030.01080.720.720.8441 47.11741729.36 13 21.0 17.1 15.7 2597.12 2037.520.01636170.01276390.0111510.680.690.8483 49.31231784.64 14 21.9 17.6 16.1 2742.46 2102.960.01730280.01318250.0114070.660.670.8512 50.86881824.83 15 22.2 17.8 16.2 2798.77 2125.180.01766820.01332480.011480.650.660.8522 51.39331836.23 16 21.9 17.6 16.1 2742.46 2102.960.01730280.01318250.0114070.660.670.8512 50.86881824.83 17 21.1 17.2 15.8 2614.92 2044.700.01647680.01280980.0111740.680.680.8486 49.48341788.22 18 19.9 16.5 15.3 2433.32 1959.960.01530440.01226850.0108420.710.710.8448 47.45031735.96 19 18.5 15.7 14.7 2223.85 1858.390.01395740.01162080.0104490.750.750.8401 44.98211674.10 20 17.1 14.8 14.2 2037.52 1761.470.01276390.0110040.0100630.790.790.8356 42.59051613.30 21 15.9 14.1 13.6 1885.01 1675.040.01179040.0104550.0096990.820.830.8316 40.42431555.78 22 14.8 13.4 13.2 1761.47 1603.950.0110040.01000410.0094090.860.860.8282 38.61771509.98 23 13.9 12.8 12.8 1663.00 1546.750.01037860.00964180.0091850.880.890.8254 37.14631474.47

PAGE 90

76 Table A.29. May Average Hourly Ps ychrometric Properties for Chicago hour DBT (oC) WBT (oC) DPT (oC) Pws (Pa) Pws* (Pa) Ws Ws* W v (m3/kg) h (kJ/kg) Pw (Pa) 0 18.3 16.9 17.0 2193.07 2016.100.01375990.0126270.0120730.880.880.8416 48.87161929.38 1 17.7 16.7 16.8 2117.75 1980.850.01327720.01240180.0119640.900.900.8399 48.02621912.20 2 17.2 16.4 16.7 2051.90 1953.040.01285590.01222430.0119020.930.930.8384 47.35811902.45 3 16.8 16.3 16.7 1994.89 1932.410.01249150.01209270.0118850.950.950.8371 46.86271899.89 4 16.4 16.1 16.6 1953.04 1911.970.01222430.01196230.0118240.970.970.8360 46.36741890.29 5 16.3 16.1 16.6 1939.27 1905.200.01213640.01191910.0118040.970.970.8357 46.20301887.13 6 16.6 16.2 16.7 1966.91 1918.760.01231280.01200560.0118440.960.960.8364 46.53211893.47 7 17.1 16.4 16.7 2037.52 1946.150.01276390.01218030.0118810.930.930.8380 47.19161899.17 8 18.1 16.8 16.9 2162.66 2001.940.0135650.01253650.0120290.890.890.8409 48.53231922.44 9 19.5 17.4 17.1 2367.10 2080.940.0148780.01304160.0121870.820.820.8453 50.40981947.27 10 21.1 18.1 17.3 2614.92 2170.230.01647680.01361350.0123660.750.760.8502 52.50881975.19 11 23.0 18.9 17.6 2934.10 2278.630.0185480.01430910.0125970.680.690.8560 55.02842011.43 12 24.7 19.6 17.9 3254.27 2383.510.02063910.01498350.0128530.620.630.8613 57.44042051.41 13 26.0 20.1 18.1 3511.11 2458.570.02232650.01546710.013010.580.590.8652 59.14902076.03 14 26.9 20.4 18.2 3700.05 2509.750.02357340.01579730.0131070.560.570.8679 60.30622091.19 15 27.2 20.6 18.2 3773.15 2527.020.02405720.01590880.0131260.550.550.8689 60.69412094.05 16 26.9 20.4 18.2 3700.05 2509.750.02357340.01579730.0131070.560.570.8679 60.30622091.19 17 26.1 20.2 18.1 3534.26 2467.030.0224790.01552170.0130410.580.590.8656 59.34212080.89 18 24.9 19.7 17.9 3297.72 2391.750.02092390.01503660.0128360.610.620.8619 57.62582048.83 19 23.5 19.1 17.7 3024.09 2310.460.01913430.01451360.0126850.660.670.8576 55.76412025.23 20 22.1 18.6 17.5 2779.89 2231.610.01754560.01400710.0125270.710.720.8533 53.94162000.48 21 20.9 18.1 17.3 2579.44 2162.660.01624740.0135650.0123870.760.770.8496 52.33461978.45 22 19.8 17.6 17.1 2416.62 2095.590.01519680.01313540.0121890.800.810.8463 50.75391947.48 23 18.9 17.2 17.0 2286.55 2051.900.014360.01285590.012140.850.850.8437 49.72281939.90

PAGE 91

77 Table A.30. June Average Hourly Ps ychrometric Properties for Chicago hour DBT (oC) WBT (oC) DPT (oC) Pws (Pa) Pws* (Pa) Ws Ws* W v (m3/kg) h (kJ/kg) Pw (Pa) 0 22.2 19.6 19.2 2789.32 2383.510.01760680.01498350.0139160.790.790.8554 57.52772217.43 1 21.6 19.4 19.2 2696.30 2358.940.01700360.01482540.0139210.820.820.8538 56.96952218.12 2 21.1 19.3 19.1 2614.92 2334.590.01647680.01466880.0139030.840.850.8523 56.41302215.42 3 20.7 19.1 19.1 2544.39 2310.460.01602090.01451360.0138640.870.870.8509 55.85842209.34 4 20.3 19.0 19.1 2492.59 2294.500.01568650.0144110.0138550.880.890.8500 55.49202207.82 5 20.2 19.0 19.1 2475.53 2294.500.01557650.0144110.0139010.890.890.8497 55.49572215.04 6 20.4 19.1 19.1 2509.75 2302.470.01579730.01446230.0138820.880.880.8503 55.67692212.18 7 21.0 19.2 19.1 2597.12 2326.520.01636170.01461690.0138750.850.850.8519 56.22652210.97 8 21.9 19.6 19.2 2751.78 2375.290.01736330.01493070.0139330.800.810.8547 57.34252220.04 9 23.4 19.9 19.1 3003.88 2433.320.01900260.01530440.0138650.730.740.8588 58.65152209.51 10 25.0 20.4 19.1 3308.66 2509.750.02099570.01579730.0138930.660.670.8635 60.37352213.83 11 26.9 21.0 19.1 3700.05 2597.120.02357340.01636170.0138990.590.600.8690 62.32442214.73 12 28.6 21.5 19.2 4091.44 2678.030.0261720.01688520.013910.530.540.8740 64.11752216.41 13 29.9 21.9 19.2 4404.66 2742.460.02826660.01730280.0139540.490.500.8778 65.54012223.29 14 30.8 22.1 19.2 4634.66 2779.890.02981340.01754560.0139170.470.480.8803 66.35712217.55 15 31.1 22.2 19.2 4723.56 2798.770.03041320.01766820.0139460.460.470.8813 66.77282222.06 16 30.8 22.1 19.2 4634.66 2779.890.02981340.01754560.0139170.470.480.8803 66.35712217.55 17 30.0 21.9 19.2 4432.86 2751.780.02845580.01736330.0139910.490.500.8781 65.74792229.02 18 28.8 21.6 19.1 4144.48 2687.150.02652570.01694430.0138990.520.530.8746 64.31782214.74 19 27.4 21.2 19.2 3810.17 2623.850.02430240.01653460.0139320.570.580.8705 62.92082219.85 20 26.0 20.7 19.1 3511.11 2553.110.02232650.01607730.0138710.620.630.8664 61.34142210.34 21 24.8 20.4 19.1 3265.08 2501.150.02070990.01574180.0139070.670.680.8629 60.18202216.05 22 23.7 20.1 19.1 3064.85 2450.130.01940030.01541270.0138810.720.720.8598 59.03212211.89 23 22.8 19.8 19.1 2904.63 2408.300.01835620.01514320.0138670.760.760.8572 58.08592209.74

PAGE 92

78 Table A.31. July Average Hourly Ps ychrometric Properties for Chicago hour DBT (oC) WBT (oC) DPT (oC) Pws (Pa) Pws* (Pa) Ws Ws* W v (m3/kg) h (kJ/kg) Pw (Pa) 0 23.8 20.8 20.3 3085.41 2570.640.01953450.01619050.0149340.760.770.8616 61.82512375.77 1 23.3 20.7 20.3 2983.80 2544.390.01887170.01602090.0149270.790.800.8599 61.23802374.76 2 22.8 20.5 20.2 2894.86 2518.370.01829260.01585290.0148990.810.820.8584 60.65292370.39 3 22.3 20.4 20.3 2817.76 2501.150.01779150.01574180.0149280.840.840.8572 60.26902374.82 4 22.0 20.3 20.2 2761.12 2484.040.01742390.01563140.014910.860.860.8562 59.88292372.14 5 21.9 20.2 20.2 2742.46 2475.530.01730280.01557650.0148790.860.860.8558 59.68852367.23 6 22.1 20.3 20.2 2779.89 2484.040.01754560.01563140.0148640.850.850.8565 59.87892364.92 7 22.7 20.4 20.2 2875.42 2509.750.01816620.01579730.0148670.820.820.8581 60.45682365.37 8 23.6 20.8 20.3 3044.41 2561.860.01926690.01613380.0149470.780.780.8609 61.63032377.81 9 25.1 21.2 20.2 3319.64 2623.850.02106770.01653460.0149050.710.710.8651 63.00702371.30 10 26.7 21.7 20.3 3652.00 2705.480.02325590.01706310.0149670.640.650.8698 64.81862380.88 11 28.6 22.2 20.3 4078.28 2789.320.02608420.01760680.0149270.570.580.8752 66.65712374.71 12 30.3 22.7 20.3 4504.03 2875.420.0289340.01816620.0149720.520.530.8803 68.54042381.68 13 31.6 23.0 20.3 4844.40 2934.100.03123030.0185480.0149560.480.490.8840 69.81272379.25 14 32.4 23.3 20.4 5094.15 2983.800.03292560.01887170.0150220.460.470.8867 70.89362389.45 15 32.8 23.3 20.3 5190.64 2993.830.0335830.0189370.0149710.450.460.8876 71.10502381.50 16 32.4 23.3 20.4 5094.15 2983.800.03292560.01887170.0150220.460.470.8867 70.89362389.45 17 31.7 23.1 20.3 4875.02 2943.980.03143770.01861230.0149970.480.490.8844 70.03062385.55 18 30.5 22.7 20.3 4561.69 2885.130.02932180.01822930.0149650.510.520.8809 68.75092380.60 19 29.1 22.3 20.3 4198.11 2817.760.02688380.01779150.0149710.560.570.8768 67.28342381.58 20 27.7 21.9 20.3 3872.57 2751.780.02471630.01736330.0149630.610.610.8727 65.83722380.37 21 26.4 21.6 20.2 3604.50 2687.150.02294220.01694430.0148950.650.660.8691 64.40772369.75 22 25.4 21.3 20.3 3386.15 2641.800.02150440.01665070.0149280.690.700.8661 63.40732374.84 23 24.5 21.0 20.2 3211.31 2597.120.02035770.01636170.0148950.730.740.8634 62.41202369.81

PAGE 93

79 Table A.32. August Average Hourly Ps ychrometric Properties for Chicago hour DBT (oC) WBT (oC) DPT (oC) Pws (Pa) Pws* (Pa) Ws Ws* W v (m3/kg) h (kJ/kg) Pw (Pa) 0 23.8 20.8 20.3 3085.41 2570.640.01953450.01619050.0149340.760.770.8616 61.82512375.77 1 23.3 20.7 20.3 2983.80 2544.390.01887170.01602090.0149270.790.800.8599 61.23802374.76 2 22.8 20.5 20.2 2894.86 2518.370.01829260.01585290.0148990.810.820.8584 60.65292370.39 3 22.3 20.4 20.3 2817.76 2501.150.01779150.01574180.0149280.840.840.8572 60.26902374.82 4 22.0 20.3 20.2 2761.12 2484.040.01742390.01563140.014910.860.860.8562 59.88292372.14 5 21.9 20.2 20.2 2742.46 2475.530.01730280.01557650.0148790.860.860.8558 59.68852367.23 6 22.1 20.3 20.2 2779.89 2484.040.01754560.01563140.0148640.850.850.8565 59.87892364.92 7 22.7 20.4 20.2 2875.42 2509.750.01816620.01579730.0148670.820.820.8581 60.45682365.37 8 23.6 20.8 20.3 3044.41 2561.860.01926690.01613380.0149470.780.780.8609 61.63032377.81 9 25.1 21.2 20.2 3319.64 2623.850.02106770.01653460.0149050.710.710.8651 63.00702371.30 10 26.7 21.7 20.3 3652.00 2705.480.02325590.01706310.0149670.640.650.8698 64.81862380.88 11 28.6 22.2 20.3 4078.28 2789.320.02608420.01760680.0149270.570.580.8752 66.65712374.71 12 30.3 22.7 20.3 4504.03 2875.420.0289340.01816620.0149720.520.530.8803 68.54042381.68 13 31.6 23.0 20.3 4844.40 2934.100.03123030.0185480.0149560.480.490.8840 69.81272379.25 14 32.4 23.3 20.4 5094.15 2983.800.03292560.01887170.0150220.460.470.8867 70.89362389.45 15 32.8 23.3 20.3 5190.64 2993.830.0335830.0189370.0149710.450.460.8876 71.10502381.50 16 32.4 23.3 20.4 5094.15 2983.800.03292560.01887170.0150220.460.470.8867 70.89362389.45 17 31.7 23.1 20.3 4875.02 2943.980.03143770.01861230.0149970.480.490.8844 70.03062385.55 18 30.5 22.7 20.3 4561.69 2885.130.02932180.01822930.0149650.510.520.8809 68.75092380.60 19 29.1 22.3 20.3 4198.11 2817.760.02688380.01779150.0149710.560.570.8768 67.28342381.58 20 27.7 21.9 20.3 3872.57 2751.780.02471630.01736330.0149630.610.610.8727 65.83722380.37 21 26.4 21.6 20.2 3604.50 2687.150.02294220.01694430.0148950.650.660.8691 64.40772369.75 22 25.4 21.3 20.3 3386.15 2641.800.02150440.01665070.0149280.690.700.8661 63.40732374.84 23 24.5 21.0 20.2 3211.31 2597.120.02035770.01636170.0148950.730.740.8634 62.41202369.81

PAGE 94

80 Table A.33. September Average Hourly Psychrometric Properties for Chicago hour DBT (oC) WBT (oC) DPT (oC) Pws (Pa) Pws* (Pa) Ws Ws* W v (m3/kg) h (kJ/kg) Pw (Pa) 0 20.5 18.9 18.9 2518.37 2286.550.01585290.014360.0137110.860.870.8503 55.29832185.43 1 19.9 18.7 18.9 2433.32 2255.010.01530440.01415740.0136480.890.890.8486 54.56832175.55 2 19.4 18.6 18.8 2358.94 2231.610.01482540.01400710.0136360.920.920.8471 54.02782173.81 3 19.0 18.4 18.9 2294.50 2216.120.0144110.01390780.0136760.950.950.8459 53.67292180.00 4 18.7 18.3 18.9 2247.19 2200.730.01410710.0138090.013670.970.970.8449 53.31602179.06 5 18.6 18.3 18.9 2231.61 2193.070.01400710.01375990.0136440.970.970.8445 53.13642175.01 6 18.8 18.3 18.8 2262.86 2200.730.01420780.0138090.0136240.960.960.8452 53.31252171.83 7 19.3 18.6 18.9 2342.68 2231.610.01472080.01400710.0136830.930.930.8468 54.03142181.04 8 20.3 18.8 18.9 2484.04 2270.740.01563140.01425840.0136560.870.880.8495 54.93072176.83 9 21.7 19.3 18.9 2714.68 2342.680.01712270.01472080.0137240.800.810.8538 56.58312187.41 10 23.3 19.8 19.0 2993.83 2416.620.0189370.01519680.0137350.730.730.8585 58.26312189.19 11 25.2 20.4 18.9 3352.75 2501.150.0212850.01574180.0137220.640.650.8639 60.16622187.19 12 26.9 20.9 19.0 3712.14 2588.270.02365340.01630450.0137960.580.590.8690 62.11842198.65 13 28.2 21.3 19.1 4000.05 2650.820.02556330.01670910.0138270.540.550.8728 63.50882203.59 14 29.1 21.6 19.0 4211.62 2687.150.02697410.01694430.0137830.510.520.8753 64.30742196.72 15 29.4 21.7 19.0 4293.43 2705.480.02752120.01706310.0138090.500.510.8763 64.71362200.66 16 29.1 21.6 19.0 4211.62 2687.150.02697410.01694430.0137830.510.520.8753 64.30742196.72 17 28.3 21.3 19.0 4025.98 2650.820.02573590.01670910.0137810.540.550.8730 63.50472196.38 18 27.2 21.0 19.0 3760.88 2597.120.02397590.01636170.0137830.570.580.8697 62.31422196.70 19 25.7 20.6 19.0 3453.82 2527.020.02194930.01590880.0137490.630.630.8654 60.74782191.43 20 24.3 20.1 18.9 3179.42 2458.570.0201490.01546710.0137030.680.690.8613 59.20742184.26 21 23.1 19.8 19.0 2953.89 2408.300.01867690.01514320.0137510.740.740.8579 58.07632191.70 22 22.1 19.4 18.9 2770.49 2350.800.01748470.0147730.013660.780.790.8547 56.76292177.48 23 21.2 19.1 18.9 2623.85 2310.460.01653460.01451360.0136560.830.830.8521 55.84182176.85

PAGE 95

81 Table A.34. October Average Hourly Psychrometric Properties for Chicago hour DBT (oC) WBT (oC) DPT (oC) Pws (Pa) Pws* (Pa) Ws Ws* W v (m3/kg) h (kJ/kg) Pw (Pa) 0 14.9 13.9 14.0 1774.13 1663.000.01108450.01037860.0099660.900.900.8293 40.13851597.95 1 14.4 13.6 13.8 1711.61 1627.340.01068720.01015250.0098320.920.920.8275 39.23351576.74 2 13.9 13.3 13.6 1657.01 1592.360.01034060.00993070.0096790.940.940.8258 38.33851552.60 3 13.4 13.0 13.4 1609.77 1563.710.0100410.00974930.0095660.950.950.8244 37.60171534.80 4 13.1 12.8 13.2 1575.12 1541.120.00982150.00960630.0094690.960.960.8233 37.01721519.44 5 13.0 12.7 13.2 1563.71 1535.520.00974930.00957080.0094560.970.970.8230 36.87251517.45 6 13.2 12.9 13.4 1586.59 1552.380.00989420.00967750.009540.960.960.8237 37.31011530.70 7 13.8 13.2 13.6 1645.09 1586.590.0102650.00989420.0096650.940.940.8255 38.19101550.45 8 14.7 13.8 14.0 1748.88 1651.040.0109240.01030270.0099360.910.910.8286 39.83651593.21 9 16.2 14.7 14.5 1918.76 1742.620.01200560.01088420.0102650.850.860.8332 42.13821645.04 10 17.8 15.6 15.1 2125.18 1851.790.01332480.01157870.0106820.800.810.8384 44.83721710.85 11 19.7 16.7 15.7 2391.75 1980.850.01503660.01240180.0111580.740.750.8444 47.97001785.75 12 21.4 17.6 16.4 2659.86 2102.960.01676760.01318250.0116140.690.700.8500 50.88401857.33 13 22.7 18.3 16.8 2875.42 2193.070.01816620.01375990.0119360.660.660.8541 53.00571907.77 14 23.6 18.7 17.0 3034.23 2255.010.01920050.01415740.0121470.630.640.8570 54.45071940.87 15 23.9 18.9 17.1 3095.73 2278.630.01960190.01430910.0122280.620.630.8581 54.99931953.68 16 23.6 18.7 17.0 3034.23 2255.010.01920050.01415740.0121470.630.640.8570 54.45071940.87 17 22.8 18.3 16.8 2894.86 2200.730.01829260.0138090.0119610.650.660.8545 53.18491911.82 18 21.6 17.7 16.4 2696.30 2117.750.01700360.01327720.0116620.690.690.8507 51.23341864.90 19 20.2 16.9 15.9 2467.03 2016.100.01552170.0126270.0112910.730.730.8461 48.81601806.56 20 18.8 16.2 15.4 2262.86 1918.760.01420780.01200560.0109240.770.770.8416 46.46991748.94 21 17.6 15.5 15.0 2095.59 1838.640.01313540.0114950.0106450.810.810.8377 44.51551704.93 22 16.5 14.8 14.5 1959.96 1761.470.01226850.0110040.0103150.840.840.8342 42.60621653.05 23 15.6 14.3 14.3 1851.79 1705.470.01157870.01064820.0101210.870.880.8314 41.20831622.34

PAGE 96

82 Table A.35. November Average Hourly Psychrometric Properties for Chicago hour DBT (oC) WBT (oC) DPT (oC) Pws (Pa) Pws* (Pa) Ws Ws* W v (m3/kg) h (kJ/kg) Pw (Pa) 0 8.8 8.4 8.8 1185.20 1154.390.00736140.00716780.0070090.950.950.8079 26.47491129.11 1 8.3 7.9 8.3 1141.40 1115.820.00708630.00692570.006790.960.960.8060 25.36031094.15 2 7.8 7.4 7.8 1103.21 1078.380.00684660.00669080.0065550.960.960.8043 24.26391056.72 3 7.3 7.1 7.5 1070.22 1050.040.00663960.00651310.00640.960.960.8028 23.42451031.99 4 7.0 6.7 7.1 1046.05 1026.270.00648810.00636420.0062510.960.960.8016 22.71311008.22 5 6.9 6.6 7.0 1038.10 1018.460.00643830.00631520.0062020.960.960.8013 22.47771000.41 6 7.1 6.8 7.2 1054.05 1034.140.00653830.00641350.00630.960.960.8020 22.94941016.09 7 7.7 7.3 7.7 1094.88 1070.220.00679430.00663960.0065040.960.960.8039 24.02281048.56 8 8.6 8.2 8.6 1167.51 1137.100.00725020.00705930.0069010.950.950.8071 25.97681111.83 9 10.1 9.5 9.7 1286.81 1239.710.00800060.00770420.0074770.930.940.8120 28.89121203.59 10 11.7 10.9 11.0 1432.43 1360.410.0089190.00846450.0081460.910.910.8175 32.21041309.83 11 13.6 12.4 12.3 1621.47 1502.280.01011520.00936050.0088810.880.880.8238 35.98391426.39 12 15.3 13.7 13.4 1812.59 1639.150.01132920.01022730.0095860.850.850.8297 39.51731537.96 13 16.6 14.7 14.3 1966.91 1748.880.01231280.0109240.0101670.830.830.8342 42.28681629.62 14 17.4 15.3 14.8 2080.94 1819.070.01304160.01137040.0104980.800.810.8372 44.02951681.75 15 17.8 15.6 15.0 2125.18 1845.200.01332480.01153680.0106180.800.800.8383 44.67321700.66 16 17.4 15.3 14.8 2080.94 1819.070.01304160.01137040.0104980.800.810.8372 44.02951681.75 17 16.7 14.8 14.3 1980.85 1755.170.01240180.01096390.0101840.820.820.8345 42.44281632.29 18 15.5 13.9 13.6 1838.64 1657.010.0114950.01034060.0096760.840.840.8305 39.97141552.21 19 14.1 12.8 12.7 1675.04 1546.750.0104550.00964180.0091390.870.880.8256 37.14391467.24 20 12.7 11.7 11.7 1529.94 1437.700.00953550.00895230.0085640.900.900.8209 34.28231376.27 21 11.4 10.7 10.9 1411.52 1345.400.0087870.00836980.0080740.920.920.8167 31.80391298.43 22 10.4 9.8 10.0 1315.82 1263.060.00818340.00785110.0076010.930.930.8131 29.54181223.33 23 9.5 9.0 9.3 1239.71 1198.630.00770420.00744580.0072420.940.940.8101 27.73521166.12

PAGE 97

83 Table A.36. December Average Hourly Psychrometric Properties for Chicago hour DBT (oC) WBT (oC) DPT (oC) Pws (Pa) Pws* (Pa) Ws Ws* W v (m3/kg) h (kJ/kg) Pw (Pa) 0 2.2 2.1 2.6 745.84 742.890.00461230.00459390.0045710.990.990.7857 13.6177739.29 1 1.6 1.6 2.1 716.78 713.930.00443130.00441360.0043910.990.990.7839 12.6061710.33 2 1.1 0.9 1.3 691.49 683.240.00427390.00422250.0041550.970.970.7822 11.5119672.44 3 0.7 0.4 0.7 669.68 659.010.00413820.00407180.0039820.960.960.7807 10.6310644.61 4 0.3 0.1 0.2 653.72 640.690.00403890.00395790.0038460.950.950.7796 9.9545622.69 5 0.2 -0.1 0.1 648.48 635.540.00400630.00392580.0038140.950.950.7792 9.7626617.54 6 0.4 0.2 0.3 659.01 645.870.00407180.00399010.0038780.950.950.7799 10.1470627.88 7 1.0 0.8 1.1 685.98 675.080.00423960.00417170.0040820.960.960.7818 11.2168660.68 8 1.9 1.9 2.4 734.10 731.180.00453910.0045210.0044990.990.990.7850 13.2111727.58 9 3.4 3.4 4.0 813.47 813.470.00503390.00503390.0050341.001.000.7898 16.0094813.47 10 5.0 5.0 5.6 910.88 910.880.00564210.00564210.0056421.001.000.7952 19.1618910.88 11 6.9 6.8 7.4 1038.10 1034.140.00643830.00641350.0063910.990.990.8015 22.95201030.53 12 8.6 8.4 8.9 1167.51 1150.050.00725020.00714060.007050.970.970.8073 26.35241135.60 13 9.9 9.6 10.0 1272.51 1244.350.00791060.00773340.0075970.960.960.8116 29.02461222.67 14 10.8 10.3 10.6 1350.39 1306.080.00840130.0081220.0079170.940.940.8146 30.73291273.57 15 11.1 10.6 10.8 1380.65 1330.540.00859220.00827610.0080480.940.940.8157 31.40181294.41 16 10.8 10.3 10.6 1350.39 1306.080.00840130.0081220.0079170.940.940.8146 30.73291273.57 17 10.0 9.7 10.1 1282.03 1253.680.00797050.00779210.0076560.960.960.8120 29.28501232.00 18 8.8 8.6 9.1 1185.20 1167.510.00736140.00725020.0071590.970.970.8081 26.85341153.06 19 7.4 7.3 7.9 1074.29 1070.220.00666520.00663960.0066170.990.990.8032 24.02621066.61 20 6.0 6.0 6.6 976.40 976.400.00605190.00605190.0060521.001.000.7985 21.2013976.40 21 4.8 4.8 5.4 896.86 896.860.00555450.00555450.0055541.001.000.7944 18.7174896.86 22 3.7 3.7 4.3 832.83 832.830.00515470.00515470.0051551.001.000.7909 16.6487832.83 23 2.8 2.8 3.4 782.08 782.080.00483810.00483810.0048381.001.000.7879 14.9583782.08

PAGE 98

84 APPENDIX B AVERAGE ENERGY CONSUMPTION FOR MODEL I Table B.1. January Daily Average Energy Consumption for Model I, Miami Hour of day vEA (m3/kg) hEA (kJ/kg) hSA (kJ/kg) hLA ((kJ/kg) vLA m w (kg/s) hEA hLA (kJ/kg) Q (kW) Input kWh 0 0.8560 59.2874 52.2928 43.1247 0.83090.0035216.162716.390 1 0.8550 58.9056 52.2928 43.1247 0.83790.003886.612816.040 2 0.8541 58.5256 52.2928 43.1247 0.83790.003876.232815.70 3 0.8534 58.3382 52.2928 43.1247 0.83790.003896.045415.540 4 0.8528 58.1511 52.2928 43.1247 0.83790.003915.858315.380 5 0.8527 58.1530 52.2928 43.1247 0.83790.003935.860215.390 6 0.8529 58.1492 52.2928 43.1247 0.83790.003885. 856415.365.298 7 0.8539 58.5275 52.2928 43.1247 0.83790.003896. 234715.715.417 8 0.8555 59.0963 52.2928 43.1247 0.83790.003886. 803516.215.591 9 0.8580 60.0560 52.2928 43.1247 0.83790.003927. 763217.085.891 10 0.8607 61.0225 52.2928 43.1247 0.83790.003918. 729717.936.184 11 0.8640 62.1976 52.2928 43.1247 0.83790.003919.904818.976.54 12 0.8669 63.1863 52.2928 43.1247 0.83790.0038810. 893519.826.833 13 0.8690 63.9883 52.2928 43.1247 0.83790.0038911. 695520.527.076 14 0.8706 64.5940 52.2928 43.1247 0.83790.0039012. 301221.057.257 15 0.8711 64.7976 52.2928 43.1247 0.83790.0039112. 504821.237.319 16 0.8706 64.5940 52.2928 43.1247 0.83790.0039012. 301221.057.257 17 0.8694 64.1925 52.2928 43.1247 0.83790.0039311.899720.710 18 0.8672 63.3887 52.2928 43.1247 0.83790.0039111.095920.010 19 0.8648 62.5962 52.2928 43.1247 0.83790.0039510.303419.330 20 0.8624 61.6081 52.2928 43.1247 0.83790.003909.315318.450 21 0.8604 60.8256 52.2928 43.1247 0.83790.003878.532817.740 22 0.8585 60.2492 52.2928 43.1247 0.83790.003937.956417.260 23 0.8570 59.6708 52.2928 43.1247 0.83790.003907.378016.730

PAGE 99

85 Table B.2. February Daily Average Energy Consumption for Model I, Miami Hour of day vEA (m3/kg) hEA (kJ/kg) hSA (kJ/kg) hLA ((kJ/kg) vLA m w (kg/s) hEA hLA (kJ/kg) Q (kW) Input kWh 0 0.8598 61.4440 52.2928 43.1247 0.83790.0043118.319318.470 1 0.8588 61.0526 52.2928 43.1247 0.83790.004308.759818.120 2 0.8578 60.6629 52.2928 43.1247 0.83790.004288.370117.770 3 0.8572 60.4707 52.2928 43.1247 0.83790.004308.177917.60 4 0.8565 60.2790 52.2928 43.1247 0.83790.004327.986217.440 5 0.8563 60.0817 52.2928 43.1247 0.83790.004267.788917.240 6 0.8567 60.2770 52.2928 43.1247 0.83790.004297.984217.436.01 7 0.8577 60.6649 52.2928 43.1247 0.83790.004318.372117.786.13 8 0.8593 61.2481 52.2928 43.1247 0.83790.004308. 955318.296.308 9 0.8617 62.0284 52.2928 43.1247 0.83790.004269. 735618.966.539 10 0.8644 63.0173 52.2928 43.1247 0.83790.0042510. 724519.836.837 11 0.8677 64.2197 52.2928 43.1247 0.83790.0042611. 926920.887.199 12 0.8706 65.2314 52.2928 43.1247 0.83790.0042412. 938621.747.497 13 0.8727 66.0522 52.2928 43.1247 0.83790.0042713. 759422.467.743 14 0.8743 66.6722 52.2928 43.1247 0.83790.0042814. 379422.997.928 15 0.8748 66.8805 52.2928 43.1247 0.83790.0042914. 587723.177.991 16 0.8743 66.6722 52.2928 43.1247 0.83790.0042814. 379422.997.928 17 0.8731 66.2612 52.2928 43.1247 0.83790.0043113.968422.650 18 0.8709 65.4386 52.2928 43.1247 0.83790.0042813.145821.940 19 0.8685 64.6276 52.2928 43.1247 0.83790.0043112.334821.250 20 0.8662 63.8240 52.2928 43.1247 0.83790.0043511.531220.570 21 0.8642 63.0214 52.2928 43.1247 0.83790.0043110.728619.850 22 0.8622 62.2261 52.2928 43.1247 0.83790.004279.933319.140 23 0.8608 61.8372 52.2928 43.1247 0.83790.004339.544418.820

PAGE 100

86 Table B.3. March Daily Average Energy Consumption for Model I, Miami Hour of day vEA (m3/kg) hEA (kJ/kg) hSA (kJ/kg) hLA ((kJ/kg) vLA m w (kg/s) hEA hLA (kJ/kg) Q (kW) Input kWh 0 0.8660 65.7336 52.2928 43.1247 0.83790.0053922.608822.660 1 0.8650 65.3226 52.2928 43.1247 0.83790.0053613.029822.30 2 0.8640 64.9135 52.2928 43.1247 0.83790.0053412.620721.930 3 0.8634 64.7118 52.2928 43.1247 0.83790.0053612.419021.760 4 0.8627 64.5105 52.2928 43.1247 0.83790.0053712.217721.60 5 0.8626 64.5126 52.2928 43.1247 0.83790.0054012.219821.610 6 0.8629 64.5084 52.2928 43.12470. 83790.0053512.215621.587.442 7 0.8639 64.9156 52.2928 43.12470. 83790.0053712.622821.957.567 8 0.8655 65.5278 52.2928 43.12470. 83790.0053713.235022.487.751 9 0.8679 66.3471 52.2928 43.12470. 83790.0053414.054323.177.99 10 0.8707 67.3856 52.2928 43.12470. 83790.0053515.092824.078.299 11 0.8740 68.6484 52.2928 43.12470. 83790.0053816.355625.168.675 12 0.8769 69.7113 52.2928 43.12470. 83790.0053817.418526.058.984 13 0.8791 70.5737 52.2928 43.12470. 83790.0054218.280926.799.24 14 0.8806 71.0000 52.2928 43.12470. 83790.0053518.707227.129.352 15 0.8811 71.2184 52.2928 43.12470. 83790.0053618.925627.319.417 16 0.8806 71.0000 52.2928 43.12470. 83790.0053518.707227.129.352 17 0.8793 70.5692 52.2928 43.1247 0.83790.0053718.276426.770 18 0.8772 69.7069 52.2928 43.1247 0.83790.0053317.414126.030 19 0.8747 68.8569 52.2928 43.1247 0.83790.0053516.564125.320 20 0.8723 68.0148 52.2928 43.1247 0.83790.0053715.722024.610 21 0.8704 67.3899 52.2928 43.1247 0.83790.0054115.097124.090 22 0.8684 66.5547 52.2928 43.1247 0.83790.0053614.261923.360 23 0.8670 66.1464 52.2928 43.1247 0.83790.0054113.853623.030

PAGE 101

87 Table B.4. April Daily Average Ener gy Consumption for Model I, Miami Hour of day vEA (m3/kg) hEA (kJ/kg) hSA (kJ/kg) hLA ((kJ/kg) vLA m w (kg/s) hEA hLA (kJ/kg) Q (kW) Input kWh 0 0.8684 67.8608 52.2928 43.1247 0.83790.0060324.736124.770 1 0.8675 67.6567 52.2928 43.1247 0.83790.0061015.363924.630 2 0.8665 67.2369 52.2928 43.1247 0.83790.0060714.944124.250 3 0.8659 67.0299 52.2928 43.1247 0.83790.0060914.737124.080 4 0.8653 66.8234 52.2928 43.1247 0.83790.0061014.530623.910 5 0.8650 66.6108 52.2928 43.1247 0.83790.0060414.318023.70 6 0.8654 66.8212 52.2928 43.12470. 83790.0060814.528423.98.241 7 0.8664 67.2391 52.2928 43.12470. 83790.0061014.946324.278.368 8 0.8681 67.8674 52.2928 43.12470. 83790.0061115.574624.818.556 9 0.8705 68.7082 52.2928 43.12470. 83790.0060916.415425.528.8 10 0.8733 69.7740 52.2928 43.12470. 83790.0061117.481226.439.115 11 0.8765 70.8455 52.2928 43.12470. 83790.0060618.552727.319.418 12 0.8794 71.9340 52.2928 43.12470. 83790.0060619.641228.239.733 13 0.8816 72.8172 52.2928 43.12470. 83790.0061020.524428.989.993 14 0.8831 73.2538 52.2928 43.12470. 83790.0060420.961029.3110.11 15 0.8836 73.4775 52.2928 43.12470. 83790.0060521.184729.510.17 16 0.8831 73.2538 52.2928 43.12470. 83790.0060420.961029.3110.11 17 0.8818 72.8126 52.2928 43.1247 0.83790.0060520.519828.950 18 0.8798 72.1569 52.2928 43.1247 0.83790.0061019.864128.430 19 0.8773 71.2844 52.2928 43.1247 0.83790.0061118.991627.710 20 0.8748 70.1966 52.2928 43.1247 0.83790.0060317.903826.760 21 0.8729 69.5567 52.2928 43.1247 0.83790.0060717.263926.230 22 0.8710 68.9212 52.2928 43.1247 0.83790.0061016.628425.710 23 0.8695 68.2835 52.2928 43.1247 0.83790.0060615.990725.150

PAGE 102

88 Table B.5. May Daily Average Ener gy Consumption for Model I, Miami Hour of day vEA (m3/kg) hEA (kJ/kg) hSA (kJ/kg) hLA ((kJ/kg) vLA m w (kg/s) hEA hLA (kJ/kg) Q (kW) Input kWh 0 0.8710 70.2620 52.2928 43.1247 0.83790.0067927.137227.150 1 0.8700 69.8301 52.2928 43.1247 0.83790.0067617.537326.780 2 0.8691 69.6216 52.2928 43.1247 0.83790.0068317.328826.630 3 0.8684 69.1882 52.2928 43.1247 0.83790.0067516.895426.220 4 0.8677 68.9768 52.2928 43.1247 0.83790.0067616.684026.050 5 0.8676 68.9790 52.2928 43.1247 0.83790.0067916.686226.060 6 0.8680 69.1949 52.2928 43.12470. 83790.0068316.902126.269.056 7 0.8689 69.4024 52.2928 43.12470. 83790.0067617.109626.419.107 8 0.8705 70.0458 52.2928 43.12470. 83790.0067817.753026.979.298 9 0.8730 70.9067 52.2928 43.12470. 83790.0067618.613927.689.546 10 0.8758 71.9983 52.2928 43.12470. 83790.0067919.705528.629.867 11 0.8790 73.0956 52.2928 43.12470. 83790.0067420.802829.5110.18 12 0.8819 74.2106 52.2928 43.12470. 83790.0067621.917830.4410.5 13 0.8841 75.1153 52.2928 43.12470. 83790.0068122.822531.2110.76 14 0.8857 75.5625 52.2928 43.12470. 83790.0067423.269731.5510.88 15 0.8862 75.7917 52.2928 43.12470. 83790.0067623.498931.7410.95 16 0.8857 75.5625 52.2928 43.12470. 83790.0067423.269731.5510.88 17 0.8844 75.1105 52.2928 43.1247 0.83790.0067522.817731.180 18 0.8823 74.4389 52.2928 43.1247 0.83790.0068022.146130.650 19 0.8799 73.5452 52.2928 43.1247 0.83790.0068121.252429.910 20 0.8774 72.6598 52.2928 43.1247 0.83790.0068120.367029.180 21 0.8754 71.7757 52.2928 43.1247 0.83790.0067519.482928.410 22 0.8735 71.1249 52.2928 43.1247 0.83790.0067818.832127.880 23 0.8721 70.6958 52.2928 43.1247 0.83790.0068218.403027.540

PAGE 103

89 Table B.6. June Daily Average Energy Consumption for Model I, Miami Hour of day vEA (m3/kg) hEA (kJ/kg) hSA (kJ/kg) hLA ((kJ/kg) vLA m w (kg/s) hEA hLA (kJ/kg) Q (kW) Input kWh 0 0.8748 72.4750 52.2928 43.1247 0.83790.0072229.350329.210 1 0.8739 72.2605 52.2928 43.1247 0.83790.0072819.967729.060 2 0.8729 71.8193 52.2928 43.1247 0.83790.0072519.526528.670 3 0.8723 71.6018 52.2928 43.1247 0.83790.0072619.309028.50 4 0.8716 71.3848 52.2928 43.1247 0.83790.0072719.092028.320 5 0.8715 71.3871 52.2928 43.1247 0.83790.0072919.094328.330 6 0.8718 71.3825 52.2928 43.12470. 83790.0072419.089728.39.76 7 0.8728 71.8216 52.2928 43.12470. 83790.0072719.528828.699.893 8 0.8745 72.4819 52.2928 43.12470. 83790.0073020.189129.2510.09 9 0.8769 73.3656 52.2928 43.12470. 83790.0072821.072829.9910.34 10 0.8796 74.2529 52.2928 43.12470. 83790.0072321.960130.710.59 11 0.8828 75.3767 52.2928 43.12470. 83790.0071923.083931.6110.9 12 0.8858 76.5186 52.2928 43.12470. 83790.0072124.225832.5511.23 13 0.8880 77.4452 52.2928 43.12470. 83790.0072725.152433.3411.5 14 0.8896 77.9033 52.2928 43.12470. 83790.0072125.610533.6811.61 15 0.8901 78.1381 52.2928 43.12470. 83790.0072325.845333.8811.68 16 0.8896 77.9033 52.2928 43.12470. 83790.0072125.610533.6811.61 17 0.8883 77.4404 52.2928 43.1247 0.83790.0072225.147633.310 18 0.8862 76.7524 52.2928 43.1247 0.83790.0072624.459632.770 19 0.8837 75.8371 52.2928 43.1247 0.83790.0072523.544332.020 20 0.8813 74.9304 52.2928 43.1247 0.83790.0072622.637631.270 21 0.8793 74.2576 52.2928 43.1247 0.83790.0072821.964830.730 22 0.8774 73.5896 52.2928 43.1247 0.83790.0073021.296830.180 23 0.8759 72.9193 52.2928 43.1247 0.83790.0072520.626529.60

PAGE 104

90 Table B.7. July Daily Average Energy Consumption for Model I, Miami Hour of day vEA (m3/kg) hEA (kJ/kg) hSA (kJ/kg) hLA ((kJ/kg) vLA m w (kg/s) hEA hLA (kJ/kg) Q (kW) Input kWh 0 0.8763 72.6806 52.2928 43.1247 0.83790.0070529.555929.310 1 0.8752 72.2375 52.2928 43.1247 0.83790.0070219.944728.920 2 0.8742 71.7964 52.2928 43.1247 0.83790.0069819.503628.530 3 0.8736 71.5789 52.2928 43.1247 0.83790.0069919.286128.360 4 0.8729 71.3619 52.2928 43.1247 0.83790.0070019.069128.180 5 0.8728 71.3642 52.2928 43.1247 0.83790.0070319.071428.190 6 0.8731 71.3596 52.2928 43.12470. 83790.0069819.066828.169.712 7 0.8741 71.7987 52.2928 43.12470. 83790.0070119.505928.559.844 8 0.8758 72.4588 52.2928 43.12470. 83790.0070320.166029.1110.04 9 0.8782 73.3423 52.2928 43.12470. 83790.0070221.049529.8510.29 10 0.8809 74.2294 52.2928 43.12470. 83790.0069621.936630.5510.54 11 0.8841 75.3529 52.2928 43.12470. 83790.0069323.060131.4610.85 12 0.8871 76.4945 52.2928 43.12470. 83790.0069524.201732.4111.18 13 0.8893 77.4209 52.2928 43.12470. 83790.0070125.128133.1911.45 14 0.8909 77.8789 52.2928 43.12470. 83790.0069525.586133.5311.56 15 0.8914 78.1136 52.2928 43.12470. 83790.0069725.820833.7311.63 16 0.8909 77.8789 52.2928 43.12470. 83790.0069525.586133.5311.56 17 0.8896 77.4161 52.2928 43.1247 0.83790.0069625.123333.160 18 0.8875 76.7283 52.2928 43.1247 0.83790.0070024.435532.620 19 0.8850 75.8132 52.2928 43.1247 0.83790.0069923.520431.870 20 0.8826 74.9067 52.2928 43.1247 0.83790.0069922.613931.130 21 0.8806 74.2341 52.2928 43.1247 0.83790.0070221.941330.580 22 0.8787 73.5662 52.2928 43.1247 0.83790.0070421.273430.040 23 0.8772 72.8960 52.2928 43.1247 0.83790.0069920.603229.460

PAGE 105

91 Table B.8. August Daily Average Energy Consumption for Model I, Miami Hour of day vEA (m3/kg) hEA (kJ/kg) hSA (kJ/kg) hLA ((kJ/kg) vLA m w (kg/s) hEA hLA (kJ/kg) Q (kW) Input kWh 0 0.8763 72.6806 52.2928 43.1247 0.83790.0070529.555929.310 1 0.8752 72.2375 52.2928 43.1247 0.83790.0070219.944728.920 2 0.8742 71.7964 52.2928 43.1247 0.83790.0069819.503628.530 3 0.8736 71.5789 52.2928 43.1247 0.83790.0069919.286128.360 4 0.8729 71.3619 52.2928 43.1247 0.83790.0070019.069128.180 5 0.8728 71.3642 52.2928 43.1247 0.83790.0070319.071428.190 6 0.8731 71.3596 52.2928 43.12470. 83790.0069819.066828.169.712 7 0.8741 71.7987 52.2928 43.12470. 83790.0070119.505928.559.844 8 0.8758 72.4588 52.2928 43.12470. 83790.0070320.166029.1110.04 9 0.8782 73.3423 52.2928 43.12470. 83790.0070221.049529.8510.29 10 0.8809 74.2294 52.2928 43.12470. 83790.0069621.936630.5510.54 11 0.8841 75.3529 52.2928 43.12470. 83790.0069323.060131.4610.85 12 0.8871 76.4945 52.2928 43.12470. 83790.0069524.201732.4111.18 13 0.8893 77.4209 52.2928 43.12470. 83790.0070125.128133.1911.45 14 0.8909 77.8789 52.2928 43.12470. 83790.0069525.586133.5311.56 15 0.8914 78.1136 52.2928 43.12470. 83790.0069725.820833.7311.63 16 0.8909 77.8789 52.2928 43.12470. 83790.0069525.586133.5311.56 17 0.8896 77.4161 52.2928 43.1247 0.83790.0069625.123333.160 18 0.8875 76.7283 52.2928 43.1247 0.83790.0070024.435532.620 19 0.8850 75.8132 52.2928 43.1247 0.83790.0069923.520431.870 20 0.8826 74.9067 52.2928 43.1247 0.83790.0069922.613931.130 21 0.8806 74.2341 52.2928 43.1247 0.83790.0070221.941330.580 22 0.8787 73.5662 52.2928 43.1247 0.83790.0070421.273430.040 23 0.8772 72.8960 52.2928 43.1247 0.83790.0069920.603229.460

PAGE 106

92 Table B.9. September Daily Average Energy Consumption for Model I, Miami Hour of day vEA (m3/kg) hEA (kJ/kg) hSA (kJ/kg) hLA ((kJ/kg) vLA m w (kg/s) hEA hLA (kJ/kg) Q (kW) Input kWh 0 0.8723 70.2394 52.2928 43.1247 0.83790.0065327.114727.020 1 0.8713 69.8076 52.2928 43.1247 0.83790.0065017.514826.640 2 0.8704 69.5992 52.2928 43.1247 0.83790.0065717.306426.490 3 0.8697 69.1660 52.2928 43.1247 0.83790.0064816.873226.090 4 0.8690 68.9545 52.2928 43.1247 0.83790.0065016.661725.910 5 0.8689 68.9568 52.2928 43.1247 0.83790.0065216.664025.920 6 0.8693 69.1726 52.2928 43.12470. 83790.0065616.879826.139.009 7 0.8702 69.3801 52.2928 43.12470. 83790.0065017.087326.279.06 8 0.8718 70.0233 52.2928 43.12470. 83790.0065217.730526.839.251 9 0.8743 70.8840 52.2928 43.12470. 83790.0065018.591227.559.499 10 0.8771 71.9753 52.2928 43.12470. 83790.0065319.682528.489.819 11 0.8803 73.0724 52.2928 43.12470. 83790.0064820.779629.3710.13 12 0.8832 74.1871 52.2928 43.12470. 83790.0065021.894330.310.45 13 0.8854 75.0916 52.2928 43.12470. 83790.0065522.798831.0710.71 14 0.8870 75.5387 52.2928 43.12470. 83790.0064823.245931.410.83 15 0.8875 75.7678 52.2928 43.12470. 83790.0065023.475031.610.9 16 0.8870 75.5387 52.2928 43.12470. 83790.0064823.245931.410.83 17 0.8857 75.0868 52.2928 43.1247 0.83790.0065022.794031.040 18 0.8836 74.4153 52.2928 43.1247 0.83790.0065422.122530.510 19 0.8812 73.5218 52.2928 43.1247 0.83790.0065521.229029.770 20 0.8787 72.6367 52.2928 43.1247 0.83790.0065520.343929.040 21 0.8767 71.7528 52.2928 43.1247 0.83790.0064919.460028.270 22 0.8748 71.1022 52.2928 43.1247 0.83790.0065118.809427.740 23 0.8734 70.6732 52.2928 43.1247 0.83790.0065618.380427.40

PAGE 107

93 Table B.10. October Daily Average En ergy Consumption for Model I, Miami Hour of day vEA (m3/kg) hEA (kJ/kg) hSA (kJ/kg) hLA ((kJ/kg) vLA m w (kg/s) hEA hLA (kJ/kg) Q (kW) Input kWh 0 0.8684 67.8608 52.2928 43.1247 0.83790.0060324.736124.770 1 0.8675 67.6567 52.2928 43.1247 0.83790.0061015.363924.630 2 0.8665 67.2369 52.2928 43.1247 0.83790.0060714.944124.250 3 0.8659 67.0299 52.2928 43.1247 0.83790.0060914.737124.080 4 0.8653 66.8234 52.2928 43.1247 0.83790.0061014.530623.910 5 0.8650 66.6108 52.2928 43.1247 0.83790.0060414.318023.70 6 0.8654 66.8212 52.2928 43.12470. 83790.0060814.528423.98.241 7 0.8664 67.2391 52.2928 43.12470. 83790.0061014.946324.278.368 8 0.8681 67.8674 52.2928 43.12470. 83790.0061115.574624.818.556 9 0.8705 68.7082 52.2928 43.12470. 83790.0060916.415425.528.8 10 0.8733 69.7740 52.2928 43.12470. 83790.0061117.481226.439.115 11 0.8765 70.8455 52.2928 43.12470. 83790.0060618.552727.319.418 12 0.8794 71.9340 52.2928 43.12470. 83790.0060619.641228.239.733 13 0.8816 72.8172 52.2928 43.12470. 83790.0061020.524428.989.993 14 0.8831 73.2538 52.2928 43.12470. 83790.0060420.961029.3110.11 15 0.8836 73.4775 52.2928 43.12470. 83790.0060521.184729.510.17 16 0.8831 73.2538 52.2928 43.12470. 83790.0060420.961029.3110.11 17 0.8818 72.8126 52.2928 43.1247 0.83790.0060520.519828.950 18 0.8798 72.1569 52.2928 43.1247 0.83790.0061019.864128.430 19 0.8773 71.2844 52.2928 43.1247 0.83790.0061118.991627.710 20 0.8748 70.1966 52.2928 43.1247 0.83790.0060317.903826.760 21 0.8729 69.5567 52.2928 43.1247 0.83790.0060717.263926.230 22 0.8710 68.9212 52.2928 43.1247 0.83790.0061016.628425.710 23 0.8695 68.2835 52.2928 43.1247 0.83790.0060615.990725.150

PAGE 108

94 Table B.11. November Daily Average Energy Consumption for Model I, Miami Hour of day vEA (m3/kg) hEA (kJ/kg) hSA (kJ/kg) hLA ((kJ/kg) vLA m w (kg/s) hEA hLA (kJ/kg) Q (kW) Input kWh 0 0.8634 65.7763 52.2928 43.1247 0.83790.0059122.651622.920 1 0.8624 65.3651 52.2928 43.1247 0.83790.0058913.072322.560 2 0.8614 64.9558 52.2928 43.1247 0.83790.0058712.663022.190 3 0.8608 64.7540 52.2928 43.1247 0.83790.0058812.461222.020 4 0.8601 64.5526 52.2928 43.1247 0.83790.0059012.259821.850 5 0.8600 64.5547 52.2928 43.1247 0.83790.0059312.261921.870 6 0.8603 64.5505 52.2928 43.12470. 83790.0058712.257721.847.532 7 0.8613 64.9579 52.2928 43.12470. 83790.0058912.665122.217.657 8 0.8629 65.5705 52.2928 43.12470. 83790.0059013.277722.747.842 9 0.8653 66.3901 52.2928 43.12470. 83790.0058714.097323.448.081 10 0.8681 67.4291 52.2928 43.12470. 83790.0058815.136324.338.391 11 0.8714 68.6927 52.2928 43.12470. 83790.0059116.399925.438.767 12 0.8743 69.7561 52.2928 43.12470. 83790.0059017.463326.329.077 13 0.8765 70.6189 52.2928 43.12470. 83790.0059418.326127.079.334 14 0.8780 71.0454 52.2928 43.12470. 83790.0058618.752627.399.446 15 0.8785 71.2639 52.2928 43.12470. 83790.0058818.971127.589.511 16 0.8780 71.0454 52.2928 43.12470. 83790.0058618.752627.399.446 17 0.8767 70.6144 52.2928 43.1247 0.83790.0058818.321627.040 18 0.8746 69.7516 52.2928 43.1247 0.83790.0058517.458826.30 19 0.8721 68.9013 52.2928 43.1247 0.83790.0058716.608525.590 20 0.8697 68.0587 52.2928 43.1247 0.83790.0058915.765924.880 21 0.8678 67.4335 52.2928 43.1247 0.83790.0059315.140724.360 22 0.8658 66.5978 52.2928 43.1247 0.83790.0058814.305023.620 23 0.8644 66.1893 52.2928 43.1247 0.83790.0059313.896523.290

PAGE 109

95 Table B.12. December Daily Average Energy Consumption for Model I, Miami Hour of day vEA (m3/kg) hEA (kJ/kg) hSA (kJ/kg) hLA ((kJ/kg) vLA m w (kg/s) hEA hLA (kJ/kg) Q (kW) Input kWh 0 0.8585 61.4642 52.2928 43.1247 0.83790.0045818.339518.590 1 0.8575 61.0726 52.2928 43.1247 0.83790.004568.779818.240 2 0.8565 60.6829 52.2928 43.1247 0.83790.004548.390117.890 3 0.8559 60.4906 52.2928 43.1247 0.83790.004568.197817.730 4 0.8552 60.2988 52.2928 43.1247 0.83790.004588.006017.560 5 0.8550 60.1015 52.2928 43.1247 0.83790.004527.808717.360 6 0.8554 60.2968 52.2928 43.12470. 83790.004568.004017.556.052 7 0.8564 60.6848 52.2928 43.12470. 83790.004578.392017.96.173 8 0.8580 61.2682 52.2928 43.12470. 83790.004578.975418.426.351 9 0.8604 62.0487 52.2928 43.12470. 83790.004529.755919.096.582 10 0.8631 63.0379 52.2928 43.12470. 83790.0045210.745119.956.88 11 0.8664 64.2406 52.2928 43.1247 0.83790.0045211.9478217.243 12 0.8693 65.2526 52.2928 43.12470. 83790.0045012.959821.877.541 13 0.8714 66.0736 52.2928 43.12470. 83790.0045313.780822.587.788 14 0.8730 66.6937 52.2928 43.12470. 83790.0045414.400923.127.973 15 0.8736 66.9021 52.2928 43.12470. 83790.0045514.609323.38.036 16 0.8730 66.6937 52.2928 43.12470. 83790.0045414.400923.127.973 17 0.8718 66.2827 52.2928 43.1247 0.83790.0045613.989922.780 18 0.8696 65.4598 52.2928 43.1247 0.83790.0045413.167022.060 19 0.8672 64.6486 52.2928 43.1247 0.83790.0045712.355821.380 20 0.8649 63.8448 52.2928 43.1247 0.83790.0046111.552020.690 21 0.8629 63.0420 52.2928 43.1247 0.83790.0045710.749219.980 22 0.8609 62.2465 52.2928 43.1247 0.83790.004539.953719.260 23 0.8595 61.8575 52.2928 43.1247 0.83790.004599.564718.950

PAGE 110

96 Table B.13. January Daily Average Energy Consumption for Model I, Gainesville Hour of day vEA (m3/kg) hEA (kJ/kg) hSA (kJ/kg) hLA ((kJ/kg) vLA m w (kg/s) hEA hLA (kJ/kg) Q (kW) Input kWh 0 0.8339 43.0915 52.2928 43.12470.83090.00000-0.033200 1 0.8322 42.3080 52.2928 43.12470.83790.00000-0.816700 2 0.8307 41.6885 52.2928 43.12470.83790.00000-1.436200 3 0.8294 41.2289 52.2928 43.12470.83790.00000-1.895800 4 0.8285 40.7681 52.2928 43.12470.83790.00000-2.356600 5 0.8282 40.6156 52.2928 43.12470.83790.00000-2.509100 6 0.8289 40.9209 52.2928 43.12470.83790.00000-2.203800 7 0.8304 41.5340 52.2928 43.12470.83790.00000-1.590700 8 0.8332 42.7771 52.2928 43.12470.83790.00000-0.347600 9 0.8373 44.5199 52.2928 43.12470. 83790.000001.39521.2020.414 10 0.8420 46.6332 52.2928 43.12470. 83790.000003.50853.2871.134 11 0.8474 48.9730 52.2928 43.12470. 83790.000005.84825.561.917 12 0.8524 51.0313 52.2928 43.12470. 83790.000167.90667.522.593 13 0.8562 52.7935 52.2928 43.12470. 83790.000389.66889.2123.177 14 0.8588 53.8665 52.2928 43.12470. 83790.0004810.741810.223.524 15 0.8597 54.2255 52.2928 43.12470. 83790.0004911.100810.553.637 16 0.8588 53.8665 52.2928 43.12470. 83790.0004810.741810.223.524 17 0.8565 52.7900 52.2928 43.1247 0.83790.000339.66539.1910 18 0.8531 51.3814 52.2928 43.1247 0.83790.000218.25677.8610 19 0.8490 49.6548 52.2928 43.1247 0.83790.000086.53016.220 20 0.8449 47.7927 52.2928 43.1247 0.83790.000004.66804.4080 21 0.8415 46.3022 52.2928 43.1247 0.83790.000003.17752.9510 22 0.8383 45.0031 52.2928 43.1247 0.83790.000001.87841.6840 23 0.8358 43.8819 52.2928 43.1247 0.83790.000000.75720.5720

PAGE 111

97 Table B.14. February Daily Average Ener gy Consumption for Model I, Gainesville Hour of day vEA (m3/kg) hEA (kJ/kg) hSA (kJ/kg) hLA ((kJ/kg) vLA m w (kg/s) hEA hLA (kJ/kg) Q (kW) Input kWh 0 0.8381 46.1736 52.2928 43.1247 0.83790.000273.04893.0130 1 0.8365 45.5229 52.2928 43.1247 0.83790.000242.39822.3810 2 0.8350 44.8762 52.2928 43.1247 0.83790.000171.75151.7430 3 0.8337 44.3967 52.2928 43.1247 0.83790.000161.27201.2780 4 0.8328 43.9157 52.2928 43.1247 0.83790.000080.79100.7880 5 0.8324 43.7565 52.2928 43.1247 0.83790.000050.63180.6280 6 0.8331 44.0752 52.2928 43.12470. 83790.000100.95050.9480.327 7 0.8346 44.7150 52.2928 43.12470. 83790.000151.59031.5810.545 8 0.8375 46.0127 52.2928 43.12470. 83790.000302.88802.8690.989 9 0.8416 47.8326 52.2928 43.12470. 83790.000504.70794.6581.606 10 0.8463 49.8648 52.2928 43.12470. 83790.000706.74016.6262.285 11 0.8517 52.1242 52.2928 43.12470. 83790.000898.99958.7793.027 12 0.8569 54.4525 52.2928 43.1247 0.83790.0011511.3278113.792 13 0.8606 56.1020 52.2928 43.12470. 83790.0013212.977312.554.326 14 0.8632 57.2196 52.2928 43.12470. 83790.0014314.094913.594.685 15 0.8641 57.5936 52.2928 43.12470. 83790.0014414.468813.924.801 16 0.8632 57.2196 52.2928 43.12470. 83790.0014314.094913.594.685 17 0.8610 56.2881 52.2928 43.1247 0.83790.0013513.163412.720 18 0.8575 54.6313 52.2928 43.1247 0.83790.0011311.506611.150 19 0.8533 52.8339 52.2928 43.1247 0.83790.000979.70929.460 20 0.8492 51.0739 52.2928 43.1247 0.83790.000807.94917.7830 21 0.8458 49.5197 52.2928 43.1247 0.83790.000626.39506.2780 22 0.8426 48.1655 52.2928 43.1247 0.83790.000505.04084.970 23 0.8400 46.9971 52.2928 43.1247 0.83790.000363.87243.8220

PAGE 112

98 Table B.15. March Daily Average Energy Consumption for Model I, Gainesville Hour of day vEA (m3/kg) hEA (kJ/kg) hSA (kJ/kg) hLA ((kJ/kg) vLA m w (kg/s) hEA hLA (kJ/kg) Q (kW) Input kWh 0 0.8487 54.3787 52.2928 43.1247 0.83790.0026711.254011.490 1 0.8470 53.6568 52.2928 43.1247 0.83790.0026110.532110.810 2 0.8455 52.9395 52.2928 43.1247 0.83790.002539.814810.120 3 0.8442 52.4079 52.2928 43.1247 0.83790.002509.28329.6140 4 0.8433 52.0548 52.2928 43.1247 0.83790.002478.93019.2770 5 0.8430 51.8780 52.2928 43.1247 0.83790.002448.75339.1040 6 0.8437 52.2320 52.2928 43.12470. 83790.002499.10739.4513.259 7 0.8451 52.7608 52.2928 43.12470. 83790.002509.63619.9413.428 8 0.8480 54.0152 52.2928 43.12470. 83790.0026210.890511.143.84 9 0.8521 55.8418 52.2928 43.12470. 83790.0028012.717112.874.438 10 0.8569 57.8956 52.2928 43.12470. 83790.0029914.770914.795.1 11 0.8623 60.1918 52.2928 43.12470. 83790.0031717.067116.915.829 12 0.8673 62.3508 52.2928 43.12470. 83790.0033519.226118.876.507 13 0.8712 64.1633 52.2928 43.12470. 83790.0035721.038620.537.081 14 0.8737 65.1807 52.2928 43.12470. 83790.0036322.056021.437.391 15 0.8747 65.5909 52.2928 43.12470. 83790.0036522.466221.87.516 16 0.8737 65.1807 52.2928 43.12470. 83790.0036322.056021.437.391 17 0.8714 64.1591 52.2928 43.1247 0.83790.0035221.034420.510 18 0.8681 62.7522 52.2928 43.1247 0.83790.0034219.627519.250 19 0.8639 60.9745 52.2928 43.1247 0.83790.0032817.849817.640 20 0.8598 59.2308 52.2928 43.1247 0.83790.0031416.106116.040 21 0.8564 57.7076 52.2928 43.1247 0.83790.0029814.582914.620 22 0.8531 56.2098 52.2928 43.1247 0.83790.0028113.085013.210 23 0.8505 55.1052 52.2928 43.1247 0.83790.0027111.980512.170

PAGE 113

99 Table B.16. April Daily Average Energy Consumption for Model I, Gainesville Hour of day vEA (m3/kg) hEA (kJ/kg) hSA (kJ/kg) hLA ((kJ/kg) vLA m w (kg/s) hEA hLA (kJ/kg) Q (kW) Input kWh 0 0.8487 54.3787 52.2928 43.1247 0.83790.0026711.254011.490 1 0.8470 53.6568 52.2928 43.1247 0.83790.0026110.532110.810 2 0.8455 52.9395 52.2928 43.1247 0.83790.002539.814810.120 3 0.8442 52.4079 52.2928 43.1247 0.83790.002509.28329.6140 4 0.8433 52.0548 52.2928 43.1247 0.83790.002478.93019.2770 5 0.8430 51.8780 52.2928 43.1247 0.83790.002448.75339.1040 6 0.8437 52.2320 52.2928 43.12470. 83790.002499.10739.4513.259 7 0.8451 52.7608 52.2928 43.12470. 83790.002509.63619.9413.428 8 0.8480 54.0152 52.2928 43.12470. 83790.0026210.890511.143.84 9 0.8521 55.8418 52.2928 43.12470. 83790.0028012.717112.874.438 10 0.8569 57.8956 52.2928 43.12470. 83790.0029914.770914.795.1 11 0.8623 60.1918 52.2928 43.12470. 83790.0031717.067116.915.829 12 0.8673 62.3508 52.2928 43.12470. 83790.0033519.226118.876.507 13 0.8712 64.1633 52.2928 43.12470. 83790.0035721.038620.537.081 14 0.8737 65.1807 52.2928 43.12470. 83790.0036322.056021.437.391 15 0.8747 65.5909 52.2928 43.12470. 83790.0036522.466221.87.516 16 0.8737 65.1807 52.2928 43.12470. 83790.0036322.056021.437.391 17 0.8714 64.1591 52.2928 43.1247 0.83790.0035221.034420.510 18 0.8681 62.7522 52.2928 43.1247 0.83790.0034219.627519.250 19 0.8639 60.9745 52.2928 43.1247 0.83790.0032817.849817.640 20 0.8598 59.2308 52.2928 43.1247 0.83790.0031416.106116.040 21 0.8564 57.7076 52.2928 43.1247 0.83790.0029814.582914.620 22 0.8531 56.2098 52.2928 43.1247 0.83790.0028113.085013.210 23 0.8505 55.1052 52.2928 43.1247 0.83790.0027111.980512.170

PAGE 114

100 Table B.17. May Daily Average Energy C onsumption for Model I, Gainesville Hour of day vEA (m3/kg) hEA (kJ/kg) hSA (kJ/kg) hLA ((kJ/kg) vLA m w (kg/s) hEA hLA (kJ/kg) Q (kW) Input kWh 0 0.8629 64.2971 52.2928 43.1247 0.83790.0052321.172421.350 1 0.8614 63.9010 52.2928 43.1247 0.83790.0053120.776321.040 2 0.8599 63.2978 52.2928 43.1247 0.83790.0052920.173120.50 3 0.8586 62.9021 52.2928 43.1247 0.83790.0053219.777420.170 4 0.8577 62.5019 52.2928 43.1247 0.83790.0052819.377219.80 5 0.8574 62.3016 52.2928 43.1247 0.83790.0052419.176819.60 6 0.8580 62.4979 52.2928 43.12470. 83790.0052219.373119.776.817 7 0.8595 63.0956 52.2928 43.12470. 83790.0052519.970920.317.003 8 0.8622 64.0968 52.2928 43.12470. 83790.0052520.972121.187.304 9 0.8661 65.5172 52.2928 43.12470. 83790.0052422.392522.417.729 10 0.8707 67.1674 52.2928 43.12470. 83790.0052424.042623.838.217 11 0.8759 69.0593 52.2928 43.12470. 83790.0052325.934625.448.771 12 0.8807 70.7708 52.2928 43.12470. 83790.0052027.646126.869.263 13 0.8844 72.3044 52.2928 43.12470. 83790.0053029.179728.189.718 14 0.8869 73.1865 52.2928 43.12470. 83790.0052930.061828.919.968 15 0.8878 73.4030 52.2928 43.12470. 83790.0052330.278329.0610.02 16 0.8869 73.1865 52.2928 43.12470. 83790.0052930.061828.919.968 17 0.8847 72.2998 52.2928 43.1247 0.83790.0052429.175128.150 18 0.8814 70.9864 52.2928 43.1247 0.83790.0051927.861727.040 19 0.8774 69.7024 52.2928 43.1247 0.83790.0052826.5777260 20 0.8735 68.2153 52.2928 43.1247 0.83790.0052525.090624.730 21 0.8702 66.9583 52.2928 43.1247 0.83790.0052223.833623.650 22 0.8671 65.9290 52.2928 43.1247 0.83790.0052722.804322.780 23 0.8647 65.1136 52.2928 43.1247 0.83790.0053021.988922.090

PAGE 115

101 Table B.18. June Daily Average Energy Consumption for Model I, Gainesville Hour of day vEA (m3/kg) hEA (kJ/kg) hSA (kJ/kg) hLA ((kJ/kg) vLA m w (kg/s) hEA hLA (kJ/kg) Q (kW) Input kWh 0 0.8690 68.9545 52.2928 43.1247 0.83790.0065025.829825.910 1 0.8675 68.5376 52.2928 43.1247 0.83790.0065725.412925.590 2 0.8660 67.9025 52.2928 43.1247 0.83790.0065424.777825.030 3 0.8647 67.4859 52.2928 43.1247 0.83790.0065624.361224.680 4 0.8638 67.0647 52.2928 43.1247 0.83790.0065123.939924.30 5 0.8636 67.0690 52.2928 43.1247 0.83790.0065623.944324.320 6 0.8642 67.2761 52.2928 43.12470. 83790.0065524.151424.58.447 7 0.8656 67.6895 52.2928 43.12470. 83790.0065024.564824.838.561 8 0.8684 68.7436 52.2928 43.12470. 83790.0065125.618925.748.875 9 0.8723 70.2394 52.2928 43.12470. 83790.0065327.114727.029.316 10 0.8768 71.7505 52.2928 43.12470. 83790.0064628.625828.269.743 11 0.8821 73.7392 52.2928 43.12470. 83790.0064930.614529.9210.32 12 0.8870 75.5387 52.2928 43.12470. 83790.0064832.414031.410.83 13 0.8906 76.9120 52.2928 43.12470. 83790.0065033.787232.5311.22 14 0.8931 77.8375 52.2928 43.12470. 83790.0065134.712833.2911.48 15 0.8940 78.0648 52.2928 43.12470. 83790.0064634.940133.4411.53 16 0.8931 77.8375 52.2928 43.12470. 83790.0065134.712833.2911.48 17 0.8908 76.9071 52.2928 43.1247 0.83790.0064533.782432.50 18 0.8876 75.7654 52.2928 43.1247 0.83790.0064832.640731.590 19 0.8836 74.4153 52.2928 43.1247 0.83790.0065431.290630.510 20 0.8796 72.8520 52.2928 43.1247 0.83790.0064929.727329.190 21 0.8763 71.5309 52.2928 43.1247 0.83790.0064428.406228.060 22 0.8732 70.4493 52.2928 43.1247 0.83790.0064727.324627.170 23 0.8708 69.5925 52.2928 43.1247 0.83790.0064926.467826.450

PAGE 116

102 Table B.19. July Daily Average Energy Consumption for Model I, Gainesville Hour of day vEA (m3/kg) hEA (kJ/kg) hSA (kJ/kg) hLA ((kJ/kg) vLA m w (kg/s) hEA hLA (kJ/kg) Q (kW) Input kWh 0 0.8703 68.9323 52.2928 43.1247 0.83790.0062325.807625.770 1 0.8688 68.5155 52.2928 43.1247 0.83790.0063125.390725.450 2 0.8673 67.8805 52.2928 43.1247 0.83790.0062724.755824.890 3 0.8660 67.4640 52.2928 43.1247 0.83790.0063024.339324.550 4 0.8651 67.0429 52.2928 43.1247 0.83790.0062523.918224.160 5 0.8649 67.0473 52.2928 43.1247 0.83790.0063023.922624.190 6 0.8655 67.2543 52.2928 43.12470. 83790.0062924.129624.368.401 7 0.8669 67.6677 52.2928 43.12470. 83790.0062324.543024.698.515 8 0.8697 68.7214 52.2928 43.12470. 83790.0062525.596725.68.828 9 0.8736 70.2169 52.2928 43.12470. 83790.0062727.092226.889.269 10 0.8781 71.7276 52.2928 43.12470. 83790.0062028.602928.129.696 11 0.8834 73.7158 52.2928 43.12470. 83790.0062330.591129.7810.27 12 0.8883 75.5149 52.2928 43.12470. 83790.0062332.390231.2610.78 13 0.8919 76.8878 52.2928 43.12470. 83790.0062533.763132.3911.17 14 0.8943 77.8132 52.2928 43.12470. 83790.0062634.688533.1411.43 15 0.8952 78.0404 52.2928 43.12470. 83790.0062034.915733.311.48 16 0.8943 77.8132 52.2928 43.12470. 83790.0062634.688533.1411.43 17 0.8921 76.8830 52.2928 43.1247 0.83790.0062033.758332.360 18 0.8889 75.7416 52.2928 43.1247 0.83790.0062232.616931.440 19 0.8849 74.3918 52.2928 43.1247 0.83790.0062831.267130.370 20 0.8809 72.8288 52.2928 43.1247 0.83790.0062329.704129.050 21 0.8776 71.5080 52.2928 43.1247 0.83790.0061828.383327.930 22 0.8745 70.4267 52.2928 43.1247 0.83790.0062127.302027.030 23 0.8721 69.5701 52.2928 43.1247 0.83790.0062226.445426.310

PAGE 117

103 Table B.20. August Daily Average Energy Consumption for Model I, Gainesville Hour of day vEA (m3/kg) hEA (kJ/kg) hSA (kJ/kg) hLA ((kJ/kg) vLA m w (kg/s) hEA hLA (kJ/kg) Q (kW) Input kWh 0 0.8703 68.9323 52.2928 43.1247 0.83790.0062325.807625.770 1 0.8688 68.5155 52.2928 43.1247 0.83790.0063125.390725.450 2 0.8673 67.8805 52.2928 43.1247 0.83790.0062724.755824.890 3 0.8660 67.4640 52.2928 43.1247 0.83790.0063024.339324.550 4 0.8651 67.0429 52.2928 43.1247 0.83790.0062523.918224.160 5 0.8649 67.0473 52.2928 43.1247 0.83790.0063023.922624.190 6 0.8655 67.2543 52.2928 43.12470. 83790.0062924.129624.368.401 7 0.8669 67.6677 52.2928 43.12470. 83790.0062324.543024.698.515 8 0.8697 68.7214 52.2928 43.12470. 83790.0062525.596725.68.828 9 0.8736 70.2169 52.2928 43.12470. 83790.0062727.092226.889.269 10 0.8781 71.7276 52.2928 43.12470. 83790.0062028.602928.129.696 11 0.8834 73.7158 52.2928 43.12470. 83790.0062330.591129.7810.27 12 0.8883 75.5149 52.2928 43.12470. 83790.0062332.390231.2610.78 13 0.8919 76.8878 52.2928 43.12470. 83790.0062533.763132.3911.17 14 0.8943 77.8132 52.2928 43.12470. 83790.0062634.688533.1411.43 15 0.8952 78.0404 52.2928 43.12470. 83790.0062034.915733.311.48 16 0.8943 77.8132 52.2928 43.12470. 83790.0062634.688533.1411.43 17 0.8921 76.8830 52.2928 43.1247 0.83790.0062033.758332.360 18 0.8889 75.7416 52.2928 43.1247 0.83790.0062232.616931.440 19 0.8849 74.3918 52.2928 43.1247 0.83790.0062831.267130.370 20 0.8809 72.8288 52.2928 43.1247 0.83790.0062329.704129.050 21 0.8776 71.5080 52.2928 43.1247 0.83790.0061828.383327.930 22 0.8745 70.4267 52.2928 43.1247 0.83790.0062127.302027.030 23 0.8721 69.5701 52.2928 43.1247 0.83790.0062226.445426.310

PAGE 118

104 Table B.21. September Daily Average Energy Consumption for Model I, Gainesville Hour of day vEA (m3/kg) hEA (kJ/kg) hSA (kJ/kg) hLA ((kJ/kg) vLA m w (kg/s) hEA hLA (kJ/kg) Q (kW) Input kWh 0 0.8665 66.5871 52.2928 43.1247 0.83790.0057523.462323.550 1 0.8648 65.9676 52.2928 43.1247 0.83790.0057422.842923.020 2 0.8634 65.5619 52.2928 43.1247 0.83790.0057922.437222.690 3 0.8621 65.1560 52.2928 43.1247 0.83790.0058322.031322.350 4 0.8613 64.7455 52.2928 43.1247 0.83790.0057821.620821.970 5 0.8609 64.5399 52.2928 43.1247 0.83790.0057421.415221.780 6 0.8616 64.9516 52.2928 43.12470. 83790.0058121.826922.177.644 7 0.8630 65.3545 52.2928 43.12470. 83790.0057622.229822.497.756 8 0.8658 66.3815 52.2928 43.12470. 83790.0057623.256823.388.063 9 0.8697 67.8389 52.2928 43.12470. 83790.0057724.714224.648.496 10 0.8743 69.5321 52.2928 43.12470. 83790.0057826.407426.088.994 11 0.8795 71.4738 52.2928 43.12470. 83790.0057928.349127.729.558 12 0.8844 73.2306 52.2928 43.12470. 83790.0057830.105929.1710.06 13 0.8880 74.5710 52.2928 43.12470. 83790.0057931.446330.2810.44 14 0.8905 75.4745 52.2928 43.12470. 83790.0057932.349831.0210.7 15 0.8914 75.6963 52.2928 43.12470. 83790.0057432.571631.1710.75 16 0.8905 75.4745 52.2928 43.12470. 83790.0057932.349831.0210.7 17 0.8883 74.5663 52.2928 43.1247 0.83790.0057431.441630.250 18 0.8851 73.4519 52.2928 43.1247 0.83790.0057730.327229.350 19 0.8810 71.9065 52.2928 43.1247 0.83790.0057528.781828.060 20 0.8771 70.6076 52.2928 43.1247 0.83790.0058127.4829270 21 0.8738 69.3177 52.2928 43.1247 0.83790.0057726.193025.890 22 0.8708 68.2615 52.2928 43.1247 0.83790.0058025.136825.010 23 0.8682 67.2086 52.2928 43.1247 0.83790.0057324.083924.080

PAGE 119

105 Table B.22. October Daily Average Energy Consumption for Model I, Gainesville Hour of day vEA (m3/kg) hEA (kJ/kg) hSA (kJ/kg) hLA ((kJ/kg) vLA m w (kg/s) hEA hLA (kJ/kg) Q (kW) Input kWh 0 0.8591 62.0690 52.2928 43.1247 0.83790.0047818.944319.210 1 0.8574 61.4803 52.2928 43.1247 0.83790.0047918.355618.690 2 0.8561 61.0947 52.2928 43.1247 0.83790.0048517.970018.380 3 0.8547 60.5085 52.2928 43.1247 0.83790.0048017.383817.840 4 0.8539 60.3187 52.2928 43.1247 0.83790.0048517.193917.690 5 0.8536 60.1232 52.2928 43.1247 0.83790.0048116.998517.50 6 0.8542 60.3147 52.2928 43.12470. 83790.0047917.190017.666.09 7 0.8557 60.8975 52.2928 43.12470. 83790.0048117.772818.196.272 8 0.8584 61.8737 52.2928 43.12470. 83790.0048018.749019.056.568 9 0.8623 63.2585 52.2928 43.12470. 83790.0047920.133820.266.985 10 0.8670 65.0776 52.2928 43.12470. 83790.0048521.952921.877.541 11 0.8721 66.9259 52.2928 43.12470. 83790.0048323.801223.458.086 12 0.8769 68.5977 52.2928 43.12470. 83790.0047925.473024.858.569 13 0.8805 69.8730 52.2928 43.12470. 83790.0047826.748325.928.938 14 0.8830 70.9569 52.2928 43.12470. 83790.0048627.832226.869.263 15 0.8839 71.1684 52.2928 43.12470. 83790.0048028.043727.019.314 16 0.8830 70.9569 52.2928 43.12470. 83790.0048627.832226.869.263 17 0.8809 70.0910 52.2928 43.1247 0.83790.0048226.966326.120 18 0.8776 68.8083 52.2928 43.1247 0.83790.0047825.683625.020 19 0.8735 67.3377 52.2928 43.1247 0.83790.0047824.213023.780 20 0.8696 65.8884 52.2928 43.1247 0.83790.0047722.763722.530 21 0.8665 64.8734 52.2928 43.1247 0.83790.0048421.748721.690 22 0.8633 63.6600 52.2928 43.1247 0.83790.0048120.535320.620 23 0.8609 62.8650 52.2928 43.1247 0.83790.0048519.740319.940

PAGE 120

106 Table B.23. November Daily Average Energy Consumption for Model I, Gainesville Hour of day vEA (m3/kg) hEA (kJ/kg) hSA (kJ/kg) hLA ((kJ/kg) vLA m w (kg/s) hEA hLA (kJ/kg) Q (kW) Input kWh 0 0.8466 52.7414 52.2928 43.1247 0.83790.002219.61679.820 1 0.8449 52.0340 52.2928 43.1247 0.83790.002158.90929.1460 2 0.8433 51.3309 52.2928 43.1247 0.83790.002078.20628.4660 3 0.8420 50.8098 52.2928 43.1247 0.83790.002057.68517.9720 4 0.8411 50.2871 52.2928 43.1247 0.83790.001947.16247.4480 5 0.8407 50.1141 52.2928 43.1247 0.83790.001926.98947.2770 6 0.8414 50.4604 52.2928 43.12470. 83790.001977.33577.6192.627 7 0.8430 51.1557 52.2928 43.12470. 83790.002058.03108.2942.86 8 0.8459 52.5666 52.2928 43.12470. 83790.002239.44199.6673.334 9 0.8501 54.5466 52.2928 43.12470. 83790.0024911.421911.583.992 10 0.8549 56.7592 52.2928 43.12470. 83790.0027513.634513.684.717 11 0.8604 59.2210 52.2928 43.12470. 83790.0030116.096315.985.51 12 0.8657 61.7603 52.2928 43.12470. 83790.0033418.635618.356.329 13 0.8695 63.5605 52.2928 43.12470. 83790.0035620.435820.016.9 14 0.8722 64.7808 52.2928 43.12470. 83790.0037121.656021.127.284 15 0.8732 65.1892 52.2928 43.12470. 83790.0037322.064521.497.409 16 0.8722 64.7808 52.2928 43.12470. 83790.0037121.656021.127.284 17 0.8699 63.7637 52.2928 43.1247 0.83790.0036020.639020.20 18 0.8663 61.9554 52.2928 43.1247 0.83790.0033318.830718.520 19 0.8620 59.9948 52.2928 43.1247 0.83790.0031116.870116.710 20 0.8579 58.0763 52.2928 43.1247 0.83790.0028914.951614.910 21 0.8544 56.3832 52.2928 43.1247 0.83790.0026613.258413.310 22 0.8511 54.9088 52.2928 43.1247 0.83790.0025011.784111.910 23 0.8485 53.6372 52.2928 43.1247 0.83790.0023210.512510.680

PAGE 121

107 Table B.24. December Daily Average Energy Consumption for Model I, Gainesville Hour of day vEA (m3/kg) hEA (kJ/kg) hSA (kJ/kg) hLA ((kJ/kg) vLA m w (kg/s) hEA hLA (kJ/kg) Q (kW) Input kWh 0 0.8362 45.0272 52.2928 43.1247 0.83790.000011.90251.8370 1 0.8345 44.2232 52.2928 43.1247 0.83790.000001.09851.0330 2 0.8329 43.4261 52.2928 43.1247 0.83790.000000.30140.2250 3 0.8315 42.7957 52.2928 43.12470.83790.00000-0.329000 4 0.8306 42.3250 52.2928 43.12470.83790.00000-0.799700 5 0.8303 42.1692 52.2928 43.12470.83790.00000-0.955500 6 0.8310 42.4811 52.2928 43.12470.83790.00000-0.643600 7 0.8326 43.2680 52.2928 43.12470. 83790.000000.14330.0660.023 8 0.8355 44.7046 52.2928 43.12470. 83790.000001.57991.5140.522 9 0.8398 46.8298 52.2928 43.12470. 83790.000313.70513.6481.258 10 0.8447 49.1827 52.2928 43.12470. 83790.000656.05805.9732.06 11 0.8502 51.7812 52.2928 43.12470. 83790.000988.65658.4992.931 12 0.8555 54.2849 52.2928 43.12470. 83790.0013311.160210.913.762 13 0.8594 56.3105 52.2928 43.12470. 83790.0016613.185812.864.435 14 0.8620 57.4310 52.2928 43.12470. 83790.0017714.306213.94.795 15 0.8630 57.9997 52.2928 43.12470. 83790.0018614.875014.454.982 16 0.8620 57.4310 52.2928 43.12470. 83790.0017714.306213.94.795 17 0.8598 56.4971 52.2928 43.1247 0.83790.0016913.372413.040 18 0.8562 54.6495 52.2928 43.1247 0.83790.0013811.524711.260 19 0.8519 52.6695 52.2928 43.1247 0.83790.001159.54489.3730 20 0.8476 50.5580 52.2928 43.1247 0.83790.000827.43337.3140 21 0.8441 48.8405 52.2928 43.1247 0.83790.000575.71585.6270 22 0.8407 47.1584 52.2928 43.1247 0.83790.000314.03373.9570 23 0.8382 46.0050 52.2928 43.1247 0.83790.000172.88032.820

PAGE 122

108 Table B.25. January Daily Average Ener gy Consumption for Model I, Chicago Hour of day vEA (m3/kg) hEA (kJ/kg) hSA (kJ/kg) hLA ((kJ/kg) vLA m w (kg/s) hEA hLA (kJ/kg) Q (kW) Input kWh 0 0.7750 7.7819 52.2928 43.12470.83090.00000-35.342800 1 0.7732 6.7692 52.2928 43.12470.83790.00000-36.355500 2 0.7715 5.8627 52.2928 43.12470.83790.00000-37.262000 3 0.7701 5.0580 52.2928 43.12470.83790.00000-38.066700 4 0.7690 4.4393 52.2928 43.12470.83790.00000-38.685400 5 0.7687 4.2636 52.2928 43.12470.83790.00000-38.861100 6 0.7694 4.7036 52.2928 43.12470.83790.00000-38.421100 7 0.7712 5.6830 52.2928 43.12470.83790.00000-37.441800 8 0.7743 7.4117 52.2928 43.12470.83790.00000-35.713000 9 0.7789 9.8585 52.2928 43.12470.83790.00000-33.266200 10 0.7841 12.8073 52.2928 43.1247 0.83790.00000-30.317400 11 0.7903 16.3282 52.2928 43.1247 0.83790.00000-26.796500 12 0.7961 19.7218 52.2928 43.1247 0.83790.00000-23.402900 13 0.8003 22.1281 52.2928 43.1247 0.83790.00000-20.996600 14 0.8032 23.7839 52.2928 43.1247 0.83790.00000-19.340800 15 0.8043 24.3855 52.2928 43.1247 0.83790.00000-18.739200 16 0.8032 23.7839 52.2928 43.1247 0.83790.00000-19.340800 17 0.8007 22.3622 52.2928 43.1247 0.83790.00000-20.762500 18 0.7968 20.0596 52.2928 43.1247 0.83790.00000-23.065100 19 0.7920 17.2946 52.2928 43.1247 0.83790.00000-25.830100 20 0.7874 14.6464 52.2928 43.1247 0.83790.00000-28.478300 21 0.7834 12.4059 52.2928 43.1247 0.83790.00000-30.718800 22 0.7800 10.5341 52.2928 43.1247 0.83790.00000-32.590600 23 0.7771 8.9060 52.2928 43.1247 0.83790.00000-34.218700

PAGE 123

109 Table B.26. February Daily Average En ergy Consumption for Model I, Chicago Hour of day vEA (m3/kg) hEA (kJ/kg) hSA (kJ/kg) hLA ((kJ/kg) vLA m w (kg/s) hEA hLA (kJ/kg) Q (kW) Input kWh 0 0.7821 11.6108 52.2928 43.1247 0.83790.00000-31.513900 1 0.7803 10.5340 52.2928 43.1247 0.83790.00000-32.590700 2 0.7786 9.4758 52.2928 43.12470.83790.00000-33.648900 3 0.7771 8.7174 52.2928 43.12470.83790.00000-34.407300 4 0.7760 8.0614 52.2928 43.12470.83790.00000-35.063300 5 0.7757 7.8753 52.2928 43.12470.83790.00000-35.249400 6 0.7764 8.2482 52.2928 43.12470.83790.00000-34.876500 7 0.7782 9.2853 52.2928 43.12470.83790.00000-33.839400 8 0.7814 11.2171 52.2928 43.1247 0.83790.00000-31.907600 9 0.7861 13.9247 52.2928 43.1247 0.83790.00000-29.200000 10 0.7914 16.9708 52.2928 43.1247 0.83790.00000-26.153900 11 0.7978 20.7424 52.2928 43.1247 0.83790.00000-22.382300 12 0.8037 24.3891 52.2928 43.1247 0.83790.00000-18.735600 13 0.8080 26.9809 52.2928 43.1247 0.83790.00000-16.143800 14 0.8110 28.7670 52.2928 43.1247 0.83790.00000-14.357700 15 0.8121 29.4165 52.2928 43.1247 0.83790.00000-13.708200 16 0.8110 28.7670 52.2928 43.1247 0.83790.00000-14.357700 17 0.8084 27.2333 52.2928 43.1247 0.83790.00000-15.891400 18 0.8044 24.8751 52.2928 43.1247 0.83790.00000-18.249600 19 0.7995 21.7797 52.2928 43.1247 0.83790.00000-21.345000 20 0.7948 18.9392 52.2928 43.1247 0.83790.00000-24.185500 21 0.7907 16.5416 52.2928 43.1247 0.83790.00000-26.583100 22 0.7872 14.5428 52.2928 43.1247 0.83790.00000-28.582000 23 0.7843 12.9080 52.2928 43.1247 0.83790.00000-30.216700

PAGE 124

110 Table B.27. March Daily Average Energy Consumption for Model I, Chicago Hour of day vEA (m3/kg) hEA (kJ/kg) hSA (kJ/kg) hLA ((kJ/kg) vLA m w (kg/s) hEA hLA (kJ/kg) Q (kW) Input kWh 0 0.8043 24.6302 52.2928 43.1247 0.83790.00000-18.494500 1 0.8023 23.3067 52.2928 43.1247 0.83790.00000-19.818000 2 0.8006 22.1269 52.2928 43.1247 0.83790.00000-20.997800 3 0.7991 21.1991 52.2928 43.1247 0.83790.00000-21.925600 4 0.7979 20.3977 52.2928 43.1247 0.83790.00000-22.727000 5 0.7975 20.1707 52.2928 43.1247 0.83790.00000-22.954000 6 0.7982 20.6254 52.2928 43.1247 0.83790.00000-22.499300 7 0.8002 21.8937 52.2928 43.1247 0.83790.00000-21.231000 8 0.8035 24.0248 52.2928 43.1247 0.83790.00000-19.099900 9 0.8085 27.2325 52.2928 43.1247 0.83790.00000-15.892200 10 0.8142 30.8712 52.2928 43.1247 0.83790.00000-12.253500 11 0.8208 35.1417 52.2928 43.1247 0.83790.00000-7.983000 12 0.8269 39.0868 52.2928 43.1247 0.83790.00000-4.037900 13 0.8314 41.9983 52.2928 43.1247 0.83790.00000-1.126400 14 0.8345 43.8966 52.2928 43.12470. 83790.000000.77190.6650.229 15 0.8357 44.7031 52.2928 43.12470. 83790.000001.57841.5050.519 16 0.8345 43.8966 52.2928 43.12470. 83790.000000.77190.6650.229 17 0.8318 42.3123 52.2928 43.1247 0.83790.00000-0.812500 18 0.8276 39.5383 52.2928 43.1247 0.83790.00000-3.586400 19 0.8226 36.2880 52.2928 43.1247 0.83790.00000-6.836800 20 0.8177 33.1807 52.2928 43.1247 0.83790.00000-9.944000 21 0.8134 30.4726 52.2928 43.1247 0.83790.00000-12.652100 22 0.8097 27.9957 52.2928 43.1247 0.83790.00000-15.129000 23 0.8066 25.9799 52.2928 43.1247 0.83790.00000-17.144800

PAGE 125

111 Table B.28. April Daily Average Ener gy Consumption for Model I, Chicago Hour of day vEA (m3/kg) hEA (kJ/kg) hSA (kJ/kg) hLA ((kJ/kg) vLA m w (kg/s) hEA hLA (kJ/kg) Q (kW) Input kWh 0 0.8232 35.9899 52.2928 43.12470.83790.00000-7.134900 1 0.8214 35.1360 52.2928 43.12470.83790.00000-7.988700 2 0.8198 34.1498 52.2928 43.12470.83790.00000-8.975000 3 0.8183 33.3158 52.2928 43.12470.83790.00000-9.808900 4 0.8172 32.7661 52.2928 43.1247 0.83790.00000-10.358600 5 0.8169 32.6299 52.2928 43.1247 0.83790.00000-10.494800 6 0.8176 33.0415 52.2928 43.1247 0.83790.00000-10.083200 7 0.8194 34.0108 52.2928 43.12470.83790.00000-9.113900 8 0.8224 35.5604 52.2928 43.12470.83790.00000-7.564300 9 0.8271 38.0250 52.2928 43.12470.83790.00000-5.099700 10 0.8324 40.8841 52.2928 43.1247 0.83790.00000-2.240600 11 0.8384 44.0148 52.2928 43.12470. 83790.000000.89010.5630.194 12 0.8441 47.1174 52.2928 43.12470. 83790.000003.99273.71.276 13 0.8483 49.3123 52.2928 43.12470. 83790.000036.18765.8852.029 14 0.8512 50.8688 52.2928 43.12470. 83790.000317.74417.4232.56 15 0.8522 51.3933 52.2928 43.12470. 83790.000398.26867.9342.736 16 0.8512 50.8688 52.2928 43.12470. 83790.000317.74417.4232.56 17 0.8486 49.4834 52.2928 43.1247 0.83790.000056.35876.0520 18 0.8448 47.4503 52.2928 43.1247 0.83790.000004.32564.0290 19 0.8401 44.9821 52.2928 43.1247 0.83790.000001.85731.5510 20 0.8356 42.5905 52.2928 43.1247 0.83790.00000-0.534200 21 0.8316 40.4243 52.2928 43.1247 0.83790.00000-2.700400 22 0.8282 38.6177 52.2928 43.1247 0.83790.00000-4.507000 23 0.8254 37.1463 52.2928 43.1247 0.83790.00000-5.978400

PAGE 126

112 Table B.29. May Daily Average Energy Consumption for Model I, Chicago Hour of day vEA (m3/kg) hEA (kJ/kg) hSA (kJ/kg) hLA ((kJ/kg) vLA m w (kg/s) hEA hLA (kJ/kg) Q (kW) Input kWh 0 0.8416 48.8716 52.2928 43.1247 0.83790.001065.74685.8220 1 0.8399 48.0262 52.2928 43.1247 0.83790.000944.90154.9860 2 0.8384 47.3581 52.2928 43.1247 0.83790.000874.23344.3320 3 0.8371 46.8627 52.2928 43.1247 0.83790.000863.73803.8570 4 0.8360 46.3674 52.2928 43.1247 0.83790.000793.24273.3630 5 0.8357 46.2030 52.2928 43.1247 0.83790.000773.07833.1990 6 0.8364 46.5321 52.2928 43.12470. 83790.000813.40743.5281.216 7 0.8380 47.1916 52.2928 43.12470. 83790.000854.06694.1671.437 8 0.8409 48.5323 52.2928 43.12470. 83790.001015.40765.4871.892 9 0.8453 50.4098 52.2928 43.12470. 83790.001197.28517.3012.518 10 0.8502 52.5088 52.2928 43.12470. 83790.001389.38419.3083.21 11 0.8560 55.0284 52.2928 43.12470. 83790.0016211.903711.694.032 12 0.8613 57.4404 52.2928 43.12470. 83790.0018914.315713.964.814 13 0.8652 59.1490 52.2928 43.12470. 83790.0020616.024315.545.359 14 0.8679 60.3062 52.2928 43.12470. 83790.0021617.181516.65.724 15 0.8689 60.6941 52.2928 43.12470. 83790.0021717.569416.955.843 16 0.8679 60.3062 52.2928 43.12470. 83790.0021617.181516.65.724 17 0.8656 59.3421 52.2928 43.1247 0.83790.0020916.217415.730 18 0.8619 57.6258 52.2928 43.1247 0.83790.0018714.501114.120 19 0.8576 55.7641 52.2928 43.1247 0.83790.0017212.639412.390 20 0.8533 53.9416 52.2928 43.1247 0.83790.0015510.816910.680 21 0.8496 52.3346 52.2928 43.1247 0.83790.001409.20999.1560 22 0.8463 50.7539 52.2928 43.1247 0.83790.001197.62927.6210 23 0.8437 49.7228 52.2928 43.1247 0.83790.001146.59816.6440

PAGE 127

113 Table B.30. June Daily Average Ener gy Consumption for Model I, Chicago Hour of day vEA (m3/kg) hEA (kJ/kg) hSA (kJ/kg) hLA ((kJ/kg) vLA m w (kg/s) hEA hLA (kJ/kg) Q (kW) Input kWh 0 0.8554 57.5277 52.2928 43.1247 0.83790.0030814.403014.50 1 0.8538 56.9695 52.2928 43.1247 0.83790.0030913.8448140 2 0.8523 56.4130 52.2928 43.1247 0.83790.0030813.288313.490 3 0.8509 55.8584 52.2928 43.1247 0.83790.0030412.733712.970 4 0.8500 55.4920 52.2928 43.1247 0.83790.0030312.367312.640 5 0.8497 55.4957 52.2928 43.1247 0.83790.0030812.371012.660 6 0.8503 55.6769 52.2928 43.12470. 83790.0030612.552212.824.42 7 0.8519 56.2265 52.2928 43.12470. 83790.0030513.101813.314.59 8 0.8547 57.3425 52.2928 43.12470. 83790.0031014.217814.344.944 9 0.8588 58.6515 52.2928 43.12470. 83790.0030115.526815.485.336 10 0.8635 60.3735 52.2928 43.12470. 83790.0030317.248817.015.864 11 0.8690 62.3244 52.2928 43.12470. 83790.0030119.199718.716.452 12 0.8740 64.1175 52.2928 43.12470. 83790.0030120.992820.266.986 13 0.8778 65.5401 52.2928 43.12470. 83790.0030422.415321.497.411 14 0.8803 66.3571 52.2928 43.12470. 83790.0029923.232422.177.644 15 0.8813 66.7728 52.2928 43.12470. 83790.0030223.648122.537.769 16 0.8803 66.3571 52.2928 43.12470. 83790.0029923.232422.177.644 17 0.8781 65.7479 52.2928 43.1247 0.83790.0030822.623221.690 18 0.8746 64.3178 52.2928 43.1247 0.83790.0029921.193120.430 19 0.8705 62.9208 52.2928 43.1247 0.83790.0030419.796119.240 20 0.8664 61.3414 52.2928 43.1247 0.83790.0029918.216717.840 21 0.8629 60.1820 52.2928 43.1247 0.83790.0030417.057316.850 22 0.8598 59.0321 52.2928 43.1247 0.83790.0030315.907415.820 23 0.8572 58.0859 52.2928 43.1247 0.83790.0030214.961114.970

PAGE 128

114 Table B.31. July Daily Average Ener gy Consumption for Model I, Chicago Hour of day vEA (m3/kg) hEA (kJ/kg) hSA (kJ/kg) hLA ((kJ/kg) vLA m w (kg/s) hEA hLA (kJ/kg) Q (kW) Input kWh 0 0.8616 61.8251 52.2928 43.1247 0.83790.0041718.700318.750 1 0.8599 61.2380 52.2928 43.1247 0.83790.0041718.113318.230 2 0.8584 60.6529 52.2928 43.1247 0.83790.0041517.528217.70 3 0.8572 60.2690 52.2928 43.1247 0.83790.0041917.144317.380 4 0.8562 59.8829 52.2928 43.1247 0.83790.0041716.758217.030 5 0.8558 59.6885 52.2928 43.1247 0.83790.0041416.563816.840 6 0.8565 59.8789 52.2928 43.12470. 83790.0041216.754217.015.864 7 0.8581 60.4568 52.2928 43.12470. 83790.0041217.332117.526.04 8 0.8609 61.6303 52.2928 43.12470. 83790.0041918.505618.586.408 9 0.8651 63.0070 52.2928 43.12470. 83790.0041219.882319.766.815 10 0.8698 64.8186 52.2928 43.12470. 83790.0041721.693921.357.363 11 0.8752 66.6571 52.2928 43.12470. 83790.0041023.532422.97.897 12 0.8803 68.5404 52.2928 43.12470. 83790.0041325.415724.518.451 13 0.8840 69.8127 52.2928 43.12470. 83790.0040926.688025.568.813 14 0.8867 70.8936 52.2928 43.12470. 83790.0041527.768926.499.133 15 0.8876 71.1050 52.2928 43.12470. 83790.0040927.980326.639.184 16 0.8867 70.8936 52.2928 43.12470. 83790.0041527.768926.499.133 17 0.8844 70.0306 52.2928 43.1247 0.83790.0041326.905925.760 18 0.8809 68.7509 52.2928 43.1247 0.83790.0041125.626224.680 19 0.8768 67.2834 52.2928 43.1247 0.83790.0041424.158723.450 20 0.8727 65.8372 52.2928 43.1247 0.83790.0041522.712522.220 21 0.8691 64.4077 52.2928 43.1247 0.83790.0040921.283020.970 22 0.8661 63.4073 52.2928 43.1247 0.83790.0041520.282620.120 23 0.8634 62.4120 52.2928 43.1247 0.83790.0041219.287319.240

PAGE 129

115 Table B.32. August Daily Average Ener gy Consumption for Model I, Chicago Hour of day vEA (m3/kg) hEA (kJ/kg) hSA (kJ/kg) hLA ((kJ/kg) vLA m w (kg/s) hEA hLA (kJ/kg) Q (kW) Input kWh 0 0.8616 61.8251 52.2928 43.1247 0.83790.0041718.700318.750 1 0.8599 61.2380 52.2928 43.1247 0.83790.0041718.113318.230 2 0.8584 60.6529 52.2928 43.1247 0.83790.0041517.528217.70 3 0.8572 60.2690 52.2928 43.1247 0.83790.0041917.144317.380 4 0.8562 59.8829 52.2928 43.1247 0.83790.0041716.758217.030 5 0.8558 59.6885 52.2928 43.1247 0.83790.0041416.563816.840 6 0.8565 59.8789 52.2928 43.12470. 83790.0041216.754217.015.864 7 0.8581 60.4568 52.2928 43.12470. 83790.0041217.332117.526.04 8 0.8609 61.6303 52.2928 43.12470. 83790.0041918.505618.586.408 9 0.8651 63.0070 52.2928 43.12470. 83790.0041219.882319.766.815 10 0.8698 64.8186 52.2928 43.12470. 83790.0041721.693921.357.363 11 0.8752 66.6571 52.2928 43.12470. 83790.0041023.532422.97.897 12 0.8803 68.5404 52.2928 43.12470. 83790.0041325.415724.518.451 13 0.8840 69.8127 52.2928 43.12470. 83790.0040926.688025.568.813 14 0.8867 70.8936 52.2928 43.12470. 83790.0041527.768926.499.133 15 0.8876 71.1050 52.2928 43.12470. 83790.0040927.980326.639.184 16 0.8867 70.8936 52.2928 43.12470. 83790.0041527.768926.499.133 17 0.8844 70.0306 52.2928 43.1247 0.83790.0041326.905925.760 18 0.8809 68.7509 52.2928 43.1247 0.83790.0041125.626224.680 19 0.8768 67.2834 52.2928 43.1247 0.83790.0041424.158723.450 20 0.8727 65.8372 52.2928 43.1247 0.83790.0041522.712522.220 21 0.8691 64.4077 52.2928 43.1247 0.83790.0040921.283020.970 22 0.8661 63.4073 52.2928 43.1247 0.83790.0041520.282620.120 23 0.8634 62.4120 52.2928 43.1247 0.83790.0041219.287319.240

PAGE 130

116 Table B.33. September Daily Average Energy Consumption for Model I, Chicago Hour of day vEA (m3/kg) hEA (kJ/kg) hSA (kJ/kg) hLA ((kJ/kg) vLA m w (kg/s) hEA hLA (kJ/kg) Q (kW) Input kWh 0 0.8503 55.2983 52.2928 43.1247 0.83790.0028712.173612.40 1 0.8486 54.5683 52.2928 43.1247 0.83790.0028111.443611.710 2 0.8471 54.0278 52.2928 43.1247 0.83790.0028010.903111.220 3 0.8459 53.6729 52.2928 43.1247 0.83790.0028510.548210.910 4 0.8449 53.3160 52.2928 43.1247 0.83790.0028410.191310.580 5 0.8445 53.1364 52.2928 43.1247 0.83790.0028210.011710.40 6 0.8452 53.3125 52.2928 43.12470. 83790.0027910.187810.563.64 7 0.8468 54.0314 52.2928 43.12470. 83790.0028510.906711.243.875 8 0.8495 54.9307 52.2928 43.12470. 83790.0028111.806012.054.154 9 0.8538 56.5831 52.2928 43.12470. 83790.0028713.458413.574.678 10 0.8585 58.2631 52.2928 43.12470. 83790.0028715.138415.075.198 11 0.8639 60.1662 52.2928 43.12470. 83790.0028417.041516.755.775 12 0.8690 62.1184 52.2928 43.12470. 83790.0029018.993718.486.374 13 0.8728 63.5088 52.2928 43.12470. 83790.0029220.384119.76.793 14 0.8753 64.3074 52.2928 43.12470. 83790.0028721.182720.367.022 15 0.8763 64.7136 52.2928 43.12470. 83790.0028921.588920.727.145 16 0.8753 64.3074 52.2928 43.12470. 83790.0028721.182720.367.022 17 0.8730 63.5047 52.2928 43.1247 0.83790.0028720.380019.670 18 0.8697 62.3142 52.2928 43.1247 0.83790.0028919.189518.650 19 0.8654 60.7478 52.2928 43.1247 0.83790.0028617.623117.270 20 0.8613 59.2074 52.2928 43.1247 0.83790.0028316.082715.90 21 0.8579 58.0763 52.2928 43.1247 0.83790.0028914.951614.910 22 0.8547 56.7629 52.2928 43.1247 0.83790.0028013.638213.70 23 0.8521 55.8418 52.2928 43.1247 0.83790.0028012.717112.870

PAGE 131

117 Table B.34. October Daily Average Ener gy Consumption for Model I, Chicago Hour of day vEA (m3/kg) hEA (kJ/kg) hSA (kJ/kg) hLA ((kJ/kg) vLA m w (kg/s) hEA hLA (kJ/kg) Q (kW) Input kWh 0 0.8293 40.1385 52.2928 43.12470.83790.00000-2.986200 1 0.8275 39.2335 52.2928 43.12470.83790.00000-3.891200 2 0.8258 38.3385 52.2928 43.12470.83790.00000-4.786200 3 0.8244 37.6017 52.2928 43.12470.83790.00000-5.523000 4 0.8233 37.0172 52.2928 43.12470.83790.00000-6.107500 5 0.8230 36.8725 52.2928 43.12470.83790.00000-6.252200 6 0.8237 37.3101 52.2928 43.12470.83790.00000-5.814600 7 0.8255 38.1910 52.2928 43.12470.83790.00000-4.933700 8 0.8286 39.8365 52.2928 43.12470.83790.00000-3.288200 9 0.8332 42.1382 52.2928 43.12470.83790.00000-0.986500 10 0.8384 44.8372 52.2928 43.12470. 83790.000001.71251.4940.515 11 0.8444 47.9700 52.2928 43.12470. 83790.000044.84534.6331.598 12 0.8500 50.8840 52.2928 43.12470. 83790.000547.75937.5182.592 13 0.8541 53.0057 52.2928 43.12470. 83790.000909.88109.593.307 14 0.8570 54.4507 52.2928 43.12470. 83790.0011311.326010.993.788 15 0.8581 54.9993 52.2928 43.12470. 83790.0012111.874611.523.971 16 0.8570 54.4507 52.2928 43.12470. 83790.0011311.326010.993.788 17 0.8545 53.1849 52.2928 43.1247 0.83790.0009210.06029.7630 18 0.8507 51.2334 52.2928 43.1247 0.83790.000608.10877.8580 19 0.8461 48.8160 52.2928 43.1247 0.83790.000195.69135.4750 20 0.8416 46.4699 52.2928 43.1247 0.83790.000003.34523.1340 21 0.8377 44.5155 52.2928 43.1247 0.83790.000001.39071.1730 22 0.8342 42.6062 52.2928 43.1247 0.83790.00000-0.518500 23 0.8314 41.2083 52.2928 43.1247 0.83790.00000-1.916400

PAGE 132

118 Table B.35. November Daily Average Energy Consumption for Model I, Chicago Hour of day vEA (m3/kg) hEA (kJ/kg) hSA (kJ/kg) hLA ((kJ/kg) vLA m w (kg/s) hEA hLA (kJ/kg) Q (kW) Input kWh 0 0.8079 26.4749 52.2928 43.1247 0.83790.00000-16.649800 1 0.8060 25.3603 52.2928 43.1247 0.83790.00000-17.764400 2 0.8043 24.2639 52.2928 43.1247 0.83790.00000-18.860800 3 0.8028 23.4245 52.2928 43.1247 0.83790.00000-19.700200 4 0.8016 22.7131 52.2928 43.1247 0.83790.00000-20.411600 5 0.8013 22.4777 52.2928 43.1247 0.83790.00000-20.647000 6 0.8020 22.9494 52.2928 43.1247 0.83790.00000-20.175300 7 0.8039 24.0228 52.2928 43.1247 0.83790.00000-19.102000 8 0.8071 25.9768 52.2928 43.1247 0.83790.00000-17.147900 9 0.8120 28.8912 52.2928 43.1247 0.83790.00000-14.233500 10 0.8175 32.2104 52.2928 43.1247 0.83790.00000-10.914300 11 0.8238 35.9839 52.2928 43.1247 0.83790.00000-7.140800 12 0.8297 39.5173 52.2928 43.1247 0.83790.00000-3.607400 13 0.8342 42.2868 52.2928 43.1247 0.83790.00000-0.837900 14 0.8372 44.0295 52.2928 43.12470. 83790.000000.90480.6560.226 15 0.8383 44.6732 52.2928 43.12470. 83790.000001.54851.3150.453 16 0.8372 44.0295 52.2928 43.12470. 83790.000000.90480.6560.226 17 0.8345 42.4428 52.2928 43.1247 0.83790.00000-0.681900 18 0.8305 39.9714 52.2928 43.1247 0.83790.00000-3.153300 19 0.8256 37.1439 52.2928 43.1247 0.83790.00000-5.980800 20 0.8209 34.2823 52.2928 43.1247 0.83790.00000-8.842400 21 0.8167 31.8039 52.2928 43.1247 0.83790.00000-11.320800 22 0.8131 29.5418 52.2928 43.1247 0.83790.00000-13.582900 23 0.8101 27.7352 52.2928 43.1247 0.83790.00000-15.389500

PAGE 133

119 Table B.36. December Daily Average Energy Consumption for Model I, Chicago Hour of day vEA (m3/kg) hEA (kJ/kg) hSA (kJ/kg) hLA ((kJ/kg) vLA m w (kg/s) hEA hLA (kJ/kg) Q (kW) Input kWh 0 0.7857 13.6177 52.2928 43.1247 0.83790.00000-29.507000 1 0.7839 12.6061 52.2928 43.1247 0.83790.00000-30.518600 2 0.7822 11.5119 52.2928 43.1247 0.83790.00000-31.612800 3 0.7807 10.6310 52.2928 43.1247 0.83790.00000-32.493700 4 0.7796 9.9545 52.2928 43.12470.83790.00000-33.170200 5 0.7792 9.7626 52.2928 43.12470.83790.00000-33.362100 6 0.7799 10.1470 52.2928 43.1247 0.83790.00000-32.977700 7 0.7818 11.2168 52.2928 43.1247 0.83790.00000-31.907900 8 0.7850 13.2111 52.2928 43.1247 0.83790.00000-29.913600 9 0.7898 16.0094 52.2928 43.1247 0.83790.00000-27.115300 10 0.7952 19.1618 52.2928 43.1247 0.83790.00000-23.962900 11 0.8015 22.9520 52.2928 43.1247 0.83790.00000-20.172800 12 0.8073 26.3524 52.2928 43.1247 0.83790.00000-16.772300 13 0.8116 29.0246 52.2928 43.1247 0.83790.00000-14.100100 14 0.8146 30.7329 52.2928 43.1247 0.83790.00000-12.391800 15 0.8157 31.4018 52.2928 43.1247 0.83790.00000-11.722900 16 0.8146 30.7329 52.2928 43.1247 0.83790.00000-12.391800 17 0.8120 29.2850 52.2928 43.1247 0.83790.00000-13.839700 18 0.8081 26.8534 52.2928 43.1247 0.83790.00000-16.271300 19 0.8032 24.0262 52.2928 43.1247 0.83790.00000-19.098500 20 0.7985 21.2013 52.2928 43.1247 0.83790.00000-21.923400 21 0.7944 18.7174 52.2928 43.1247 0.83790.00000-24.407300 22 0.7909 16.6487 52.2928 43.1247 0.83790.00000-26.476000 23 0.7879 14.9583 52.2928 43.1247 0.83790.00000-28.166400

PAGE 134

120 APPENDIX C AVERAGE ENERGY CONSUMPTION FOR MODEL II Table C.1. January Daily Average Energy Consumption for Model II, Miami Hour of day vEA (m3/kg) hEA (kJ/kg) hLA ((kJ/kg) m w (kg/s) hEA hLA (kJ/kg) Q (kW) A verage COP Electric kWh 0 0.8560 59.287448.87670.0054 10.41 11.423.10 0.00 1 0.8550 58.905648.87670.0054 10.03 11.073.10 0.00 2 0.8541 58.525648.87670.0054 9.65 10.733.10 0.00 3 0.8534 58.338248.87670.0054 9.46 10.573.10 0.00 4 0.8528 58.151148.87670.0054 9.27 10.413.10 0.00 5 0.8527 58.153048.87670.0054 9.28 10.423.10 0.00 6 0.8529 58.149248.87670.0054 9.27 10.4 3.10 3.35 7 0.8539 58.527548.87670.0054 9.65 10.743.10 3.46 8 0.8555 59.096348.87670.0054 10.22 11.253.10 3.63 9 0.8580 60.056048.87670.0054 11.18 12.113.10 3.91 10 0.8607 61.022548.87670.0054 12.15 12.963.10 4.18 11 0.8640 62.197648.87670.0054 13.32 14.0 3.10 4.52 12 0.8669 63.186348.87670.0053 14.31 14.853.10 4.79 13 0.8690 63.988348.87670.0054 15.11 15.553.10 5.02 14 0.8706 64.594048.87670.0054 15.72 16.083.10 5.19 15 0.8711 64.797648.87670.0054 15.92 16.263.10 5.24 16 0.8706 64.594048.87670.0054 15.72 16.083.10 5.19 17 0.8694 64.192548.87670.0054 15.32 15.743.10 0.00 18 0.8672 63.388748.87670.0054 14.51 15.043.10 0.00 19 0.8648 62.596248.87670.0054 13.72 14.363.10 0.00 20 0.8624 61.608148.87670.0054 12.73 13.483.10 0.00 21 0.8604 60.825648.87670.0053 11.95 12.783.10 0.00 22 0.8585 60.249248.87670.0054 11.37 12.293.10 0.00 23 0.8570 59.670848.87670.0054 10.79 11.773.10 0.00

PAGE 135

121 Table C.2. February Daily Average En ergy Consumption for Model II, Miami Hour of day vEA (m3/kg) hEA (kJ/kg) hLA ((kJ/kg) m w (kg/s) hEA hLA (kJ/kg) Q (kW) A verage COP Electric kWh 0 0.8598 61.444048.87670.0058 12.5713.5 3.10 0.00 1 0.8588 61.052648.87670.0058 12.1813.153.10 0.00 2 0.8578 60.662948.87670.0058 11.7912.8 3.10 0.00 3 0.8572 60.470748.87670.0058 11.5912.643.10 0.00 4 0.8565 60.279048.87670.0058 11.4012.473.10 0.00 5 0.8563 60.081748.87670.0057 11.2012.273.10 0.00 6 0.8567 60.277048.87670.0058 11.4012.463.10 4.02 7 0.8577 60.664948.87670.0058 11.7912.813.10 4.13 8 0.8593 61.248148.87670.0058 12.3713.333.10 4.30 9 0.8617 62.028448.87670.0057 13.1513.993.10 4.51 10 0.8644 63.017348.87670.0057 14.1414.863.10 4.79 11 0.8677 64.219748.87670.0057 15.3415.913.10 5.13 12 0.8706 65.231448.87670.0057 16.3516.773.10 5.41 13 0.8727 66.052248.87670.0057 17.1817.493.10 5.64 14 0.8743 66.672248.87670.0057 17.8018.023.10 5.81 15 0.8748 66.880548.87670.0057 18.0018.213.10 5.87 16 0.8743 66.672248.87670.0057 17.8018.023.10 5.81 17 0.8731 66.261248.87670.0058 17.3817.683.10 0.00 18 0.8709 65.438648.87670.0057 16.5616.973.10 0.00 19 0.8685 64.627648.87670.0058 15.7516.283.10 0.00 20 0.8662 63.824048.87670.0058 14.9515.6 3.10 0.00 21 0.8642 63.021448.87670.0058 14.1414.883.10 0.00 22 0.8622 62.226148.87670.0057 13.3514.173.10 0.00 23 0.8608 61.837248.87670.0058 12.9613.863.10 0.00

PAGE 136

122 Table C.3. March Daily Average Ener gy Consumption for Model II, Miami Hour of day vEA (m3/kg) hEA (kJ/kg) hLA ((kJ/kg) m w (kg/s) hEA hLA (kJ/kg) Q (kW) A verage COP Electric kWh 0 0.8660 65.733648.87670.0069 16.8617.693.20 0.00 1 0.8650 65.322648.87670.0068 16.4517.333.20 0.00 2 0.8640 64.913548.87670.0068 16.0416.963.20 0.00 3 0.8634 64.711848.87670.0068 15.8416.8 3.20 0.00 4 0.8627 64.510548.87670.0068 15.6316.633.20 0.00 5 0.8626 64.512648.87670.0069 15.6416.643.20 0.00 6 0.8629 64.508448.87670.0068 15.6316.613.20 5.19 7 0.8639 64.915648.87670.0068 16.0416.983.20 5.31 8 0.8655 65.527848.87670.0068 16.6517.513.20 5.47 9 0.8679 66.347148.87670.0068 17.4718.2 3.20 5.69 10 0.8707 67.385648.87670.0068 18.5119.1 3.20 5.97 11 0.8740 68.648448.87670.0068 19.7720.193.20 6.31 12 0.8769 69.711348.87670.0068 20.8321.093.20 6.59 13 0.8791 70.573748.87670.0069 21.7021.833.20 6.82 14 0.8806 71.000048.87670.0068 22.1222.153.20 6.92 15 0.8811 71.218448.87670.0068 22.3422.343.20 6.98 16 0.8806 71.000048.87670.0068 22.1222.153.20 6.92 17 0.8793 70.569248.87670.0068 21.6921.8 3.20 0.00 18 0.8772 69.706948.87670.0068 20.8321.063.20 0.00 19 0.8747 68.856948.87670.0068 19.9820.353.20 0.00 20 0.8723 68.014848.87670.0068 19.1419.643.20 0.00 21 0.8704 67.389948.87670.0069 18.5119.133.20 0.00 22 0.8684 66.554748.87670.0068 17.6818.393.20 0.00 23 0.8670 66.146448.87670.0069 17.2718.063.20 0.00

PAGE 137

123 Table C.4. April Daily Average Ener gy Consumption for Model II, Miami Hour of day vEA (m3/kg) hEA (kJ/kg) hLA ((kJ/kg) m w (kg/s) hEA hLA (kJ/kg) Q (kW) A verage COP Electric kWh 0 0.8684 67.860848.87670.0075 18.9819.8 3.20 0.00 1 0.8675 67.656748.87670.0076 18.7819.663.20 0.00 2 0.8665 67.236948.87670.0075 18.3619.293.20 0.00 3 0.8659 67.029948.87670.0076 18.1519.123.20 0.00 4 0.8653 66.823448.87670.0076 17.9518.943.20 0.00 5 0.8650 66.610848.87670.0075 17.7318.733.20 0.00 6 0.8654 66.821248.87670.0075 17.9418.933.20 5.92 7 0.8664 67.239148.87670.0076 18.3619.3 3.20 6.03 8 0.8681 67.867448.87670.0076 18.9919.843.20 6.20 9 0.8705 68.708248.87670.0076 19.8320.553.20 6.42 10 0.8733 69.774048.87670.0076 20.9021.473.20 6.71 11 0.8765 70.845548.87670.0075 21.9722.343.20 6.98 12 0.8794 71.934048.87670.0075 23.0623.263.20 7.27 13 0.8816 72.817248.87670.0075 23.9424.013.20 7.50 14 0.8831 73.253848.87670.0075 24.3824.343.20 7.61 15 0.8836 73.477548.87670.0075 24.6024.543.20 7.67 16 0.8831 73.253848.87670.0075 24.3824.343.20 7.61 17 0.8818 72.812648.87670.0075 23.9423.993.20 0.00 18 0.8798 72.156948.87670.0075 23.2823.463.20 0.00 19 0.8773 71.284448.87670.0076 22.4122.743.20 0.00 20 0.8748 70.196648.87670.0075 21.3221.793.20 0.00 21 0.8729 69.556748.87670.0075 20.6821.263.20 0.00 22 0.8710 68.921248.87670.0076 20.0420.743.20 0.00 23 0.8695 68.283548.87670.0075 19.4120.183.20 0.00

PAGE 138

124 Table C.5. May Daily Average Ener gy Consumption for Model II, Miami Hour of day vEA (m3/kg) hEA (kJ/kg) hLA ((kJ/kg) m w (kg/s) hEA hLA (kJ/kg) Q (kW) A verage COP Electric kWh 0 0.8710 70.262048.87670.0083 21.3922.193.30 0.00 1 0.8700 69.830148.87670.0082 20.9521.813.30 0.00 2 0.8691 69.621648.87670.0083 20.7421.663.30 0.00 3 0.8684 69.188248.87670.0082 20.3121.253.30 0.00 4 0.8677 68.976848.87670.0082 20.1021.083.30 0.00 5 0.8676 68.979048.87670.0083 20.1021.093.30 0.00 6 0.8680 69.194948.87670.0083 20.3221.3 3.30 6.45 7 0.8689 69.402448.87670.0082 20.5321.443.30 6.50 8 0.8705 70.045848.87670.0082 21.1722 3.30 6.67 9 0.8730 70.906748.87670.0082 22.0322.723.30 6.88 10 0.8758 71.998348.87670.0082 23.1223.653.30 7.17 11 0.8790 73.095648.87670.0082 24.2224.543.30 7.44 12 0.8819 74.210648.87670.0082 25.3325.473.30 7.72 13 0.8841 75.115348.87670.0082 26.2426.243.30 7.95 14 0.8857 75.562548.87670.0082 26.6926.583.30 8.05 15 0.8862 75.791748.87670.0082 26.9126.783.30 8.11 16 0.8857 75.562548.87670.0082 26.6926.583.30 8.05 17 0.8844 75.110548.87670.0082 26.2326.213.30 0.00 18 0.8823 74.438948.87670.0082 25.5625.683.30 0.00 19 0.8799 73.545248.87670.0083 24.6724.943.30 0.00 20 0.8774 72.659848.87670.0083 23.7824.213.30 0.00 21 0.8754 71.775748.87670.0082 22.9023.443.30 0.00 22 0.8735 71.124948.87670.0082 22.2522.913.30 0.00 23 0.8721 70.695848.87670.0083 21.8222.573.30 0.00

PAGE 139

125 Table C.6. June Daily Average Ener gy Consumption for Model II, Miami Hour of day vEA (m3/kg) hEA (kJ/kg) hLA ((kJ/kg) m w (kg/s) hEA hLA (kJ/kg) Q (kW) A verage COP Electric kWh 0 0.8748 72.475048.87670.0087 23.6024.243.30 0.00 1 0.8739 72.260548.87670.0087 23.3824.093.30 0.00 2 0.8729 71.819348.87670.0087 22.9423.713.30 0.00 3 0.8723 71.601848.87670.0087 22.7323.533.30 0.00 4 0.8716 71.384848.87670.0087 22.5123.353.30 0.00 5 0.8715 71.387148.87670.0088 22.5123.363.30 0.00 6 0.8718 71.382548.87670.0087 22.5123.343.30 7.07 7 0.8728 71.821648.87670.0087 22.9423.723.30 7.19 8 0.8745 72.481948.87670.0088 23.6124.293.30 7.36 9 0.8769 73.365648.87670.0087 24.4925.023.30 7.58 10 0.8796 74.252948.87670.0087 25.3825.733.30 7.80 11 0.8828 75.376748.87670.0086 26.5026.643.30 8.07 12 0.8858 76.518648.87670.0086 27.6427.593.30 8.36 13 0.8880 77.445248.87670.0087 28.5728.373.30 8.60 14 0.8896 77.903348.87670.0086 29.0328.713.30 8.70 15 0.8901 78.138148.87670.0087 29.2628.913.30 8.76 16 0.8896 77.903348.87670.0086 29.0328.713.30 8.70 17 0.8883 77.440448.87670.0086 28.5628.343.30 0.00 18 0.8862 76.752448.87670.0087 27.8827.8 3.30 0.00 19 0.8837 75.837148.87670.0087 26.9627.053.30 0.00 20 0.8813 74.930448.87670.0087 26.0526.3 3.30 0.00 21 0.8793 74.257648.87670.0087 25.3825.763.30 0.00 22 0.8774 73.589648.87670.0088 24.7125.213.30 0.00 23 0.8759 72.919348.87670.0087 24.0424.633.30 0.00

PAGE 140

126 Table C.7. July Daily Average Energy Consumption for Model II, Miami Hour of day vEA (m3/kg) hEA (kJ/kg) hLA ((kJ/kg) m w (kg/s) hEA hLA (kJ/kg) Q (kW) A verage COP Electric kWh 0 0.8763 72.680648.87670.0085 23.8024.343.30 0.00 1 0.8752 72.237548.87670.0085 23.3623.953.30 0.00 2 0.8742 71.796448.87670.0084 22.9223.573.30 0.00 3 0.8736 71.578948.87670.0084 22.7023.393.30 0.00 4 0.8729 71.361948.87670.0085 22.4923.213.30 0.00 5 0.8728 71.364248.87670.0085 22.4923.223.30 0.00 6 0.8731 71.359648.87670.0084 22.4823.2 3.30 7.03 7 0.8741 71.798748.87670.0085 22.9223.583.30 7.15 8 0.8758 72.458848.87670.0085 23.5824.153.30 7.32 9 0.8782 73.342348.87670.0085 24.4724.883.30 7.54 10 0.8809 74.229448.87670.0084 25.3525.593.30 7.75 11 0.8841 75.352948.87670.0084 26.4826.5 3.30 8.03 12 0.8871 76.494548.87670.0084 27.6227.443.30 8.32 13 0.8893 77.420948.87670.0084 28.5428.223.30 8.55 14 0.8909 77.878948.87670.0084 29.0028.563.30 8.66 15 0.8914 78.113648.87670.0084 29.2428.763.30 8.72 16 0.8909 77.878948.87670.0084 29.0028.563.30 8.66 17 0.8896 77.416148.87670.0084 28.5428.193.30 0.00 18 0.8875 76.728348.87670.0084 27.8527.653.30 0.00 19 0.8850 75.813248.87670.0084 26.9426.9 3.30 0.00 20 0.8826 74.906748.87670.0084 26.0326.163.30 0.00 21 0.8806 74.234148.87670.0085 25.3625.613.30 0.00 22 0.8787 73.566248.87670.0085 24.6925.073.30 0.00 23 0.8772 72.896048.87670.0084 24.0224.493.30 0.00

PAGE 141

127 Table C.8. August Daily Average Energy Consumption for Model II, Miami Hour of day vEA (m3/kg) hEA (kJ/kg) hLA ((kJ/kg) m w (kg/s) hEA hLA (kJ/kg) Q (kW) A verage COP Electric kWh 0 0.8763 72.680648.87670.0085 23.8024.343.10 0.00 1 0.8752 72.237548.87670.0085 23.3623.953.10 0.00 2 0.8742 71.796448.87670.0084 22.9223.573.10 0.00 3 0.8736 71.578948.87670.0084 22.7023.393.10 0.00 4 0.8729 71.361948.87670.0085 22.4923.213.10 0.00 5 0.8728 71.364248.87670.0085 22.4923.223.10 0.00 6 0.8731 71.359648.87670.0084 22.4823.2 3.10 7.48 7 0.8741 71.798748.87670.0085 22.9223.583.10 7.61 8 0.8758 72.458848.87670.0085 23.5824.153.10 7.79 9 0.8782 73.342348.87670.0085 24.4724.883.10 8.03 10 0.8809 74.229448.87670.0084 25.3525.593.10 8.25 11 0.8841 75.352948.87670.0084 26.4826.5 3.10 8.55 12 0.8871 76.494548.87670.0084 27.6227.443.10 8.85 13 0.8893 77.420948.87670.0084 28.5428.223.10 9.10 14 0.8909 77.878948.87670.0084 29.0028.563.10 9.21 15 0.8914 78.113648.87670.0084 29.2428.763.10 9.28 16 0.8909 77.878948.87670.0084 29.0028.563.10 9.21 17 0.8896 77.416148.87670.0084 28.5428.193.10 0.00 18 0.8875 76.728348.87670.0084 27.8527.653.10 0.00 19 0.8850 75.813248.87670.0084 26.9426.9 3.10 0.00 20 0.8826 74.906748.87670.0084 26.0326.163.10 0.00 21 0.8806 74.234148.87670.0085 25.3625.613.10 0.00 22 0.8787 73.566248.87670.0085 24.6925.073.10 0.00 23 0.8772 72.896048.87670.0084 24.0224.493.10 0.00

PAGE 142

128 Table C.9. September Daily Average Energy Consumption for Model II, Miami Hour of day vEA (m3/kg) hEA (kJ/kg) hLA ((kJ/kg) m w (kg/s) hEA hLA (kJ/kg) Q (kW) A verage COP Electric kWh 0 0.8723 70.239448.87670.0080 21.3622.053.30 0.00 1 0.8713 69.807648.87670.0080 20.9321.673.30 0.00 2 0.8704 69.599248.87670.0080 20.7221.523.30 0.00 3 0.8697 69.166048.87670.0079 20.2921.123.30 0.00 4 0.8690 68.954548.87670.0080 20.0820.943.30 0.00 5 0.8689 68.956848.87670.0080 20.0820.963.30 0.00 6 0.8693 69.172648.87670.0080 20.3021.163.30 6.41 7 0.8702 69.380148.87670.0080 20.5021.313.30 6.46 8 0.8718 70.023348.87670.0080 21.1521.863.30 6.62 9 0.8743 70.884048.87670.0080 22.0122.583.30 6.84 10 0.8771 71.975348.87670.0080 23.1023.513.30 7.12 11 0.8803 73.072448.87670.0079 24.2024.4 3.30 7.39 12 0.8832 74.187148.87670.0079 25.3125.333.30 7.68 13 0.8854 75.091648.87670.0080 26.2126.1 3.30 7.91 14 0.8870 75.538748.87670.0079 26.6626.443.30 8.01 15 0.8875 75.767848.87670.0079 26.8926.633.30 8.07 16 0.8870 75.538748.87670.0079 26.6626.443.30 8.01 17 0.8857 75.086848.87670.0079 26.2126.073.30 0.00 18 0.8836 74.415348.87670.0080 25.5425.543.30 0.00 19 0.8812 73.521848.87670.0080 24.6524.8 3.30 0.00 20 0.8787 72.636748.87670.0080 23.7624.073.30 0.00 21 0.8767 71.752848.87670.0079 22.8823.3 3.30 0.00 22 0.8748 71.102248.87670.0080 22.2322.773.30 0.00 23 0.8734 70.673248.87670.0080 21.8022.433.30 0.00

PAGE 143

129 Table C.10. October Daily Average En ergy Consumption for Model II, Miami Hour of day vEA (m3/kg) hEA (kJ/kg) hLA ((kJ/kg) m w (kg/s) hEA hLA (kJ/kg) Q (kW) A verage COP Electric kWh 0 0.8684 67.860848.87670.0075 18.9819.8 3.20 0.00 1 0.8675 67.656748.87670.0076 18.7819.663.20 0.00 2 0.8665 67.236948.87670.0075 18.3619.293.20 0.00 3 0.8659 67.029948.87670.0076 18.1519.123.20 0.00 4 0.8653 66.823448.87670.0076 17.9518.943.20 0.00 5 0.8650 66.610848.87670.0075 17.7318.733.20 0.00 6 0.8654 66.821248.87670.0075 17.9418.933.20 5.92 7 0.8664 67.239148.87670.0076 18.3619.3 3.20 6.03 8 0.8681 67.867448.87670.0076 18.9919.843.20 6.20 9 0.8705 68.708248.87670.0076 19.8320.553.20 6.42 10 0.8733 69.774048.87670.0076 20.9021.473.20 6.71 11 0.8765 70.845548.87670.0075 21.9722.343.20 6.98 12 0.8794 71.934048.87670.0075 23.0623.263.20 7.27 13 0.8816 72.817248.87670.0075 23.9424.013.20 7.50 14 0.8831 73.253848.87670.0075 24.3824.343.20 7.61 15 0.8836 73.477548.87670.0075 24.6024.543.20 7.67 16 0.8831 73.253848.87670.0075 24.3824.343.20 7.61 17 0.8818 72.812648.87670.0075 23.9423.993.20 0.00 18 0.8798 72.156948.87670.0075 23.2823.463.20 0.00 19 0.8773 71.284448.87670.0076 22.4122.743.20 0.00 20 0.8748 70.196648.87670.0075 21.3221.793.20 0.00 21 0.8729 69.556748.87670.0075 20.6821.263.20 0.00 22 0.8710 68.921248.87670.0076 20.0420.743.20 0.00 23 0.8695 68.283548.87670.0075 19.4120.183.20 0.00

PAGE 144

130 Table C.11. November Daily Average Energy Consumption for Model II, Miami Hour of day vEA (m3/kg) hEA (kJ/kg) hLA ((kJ/kg) m w (kg/s) hEA hLA (kJ/kg) Q (kW) A verage COP Electric kWh 0 0.8634 65.776348.87670.0074 16.9017.963.20 0.00 1 0.8624 65.365148.87670.0074 16.4917.593.20 0.00 2 0.8614 64.955848.87670.0073 16.0817.223.20 0.00 3 0.8608 64.754048.87670.0074 15.8817.063.20 0.00 4 0.8601 64.552648.87670.0074 15.6816.893.20 0.00 5 0.8600 64.554748.87670.0074 15.6816.9 3.20 0.00 6 0.8603 64.550548.87670.0074 15.6716.873.20 5.27 7 0.8613 64.957948.87670.0074 16.0817.243.20 5.39 8 0.8629 65.570548.87670.0074 16.6917.773.20 5.55 9 0.8653 66.390148.87670.0073 17.5118.473.20 5.77 10 0.8681 67.429148.87670.0073 18.5519.373.20 6.05 11 0.8714 68.692748.87670.0074 19.8220.463.20 6.39 12 0.8743 69.756148.87670.0074 20.8821.363.20 6.67 13 0.8765 70.618948.87670.0074 21.7422.1 3.20 6.91 14 0.8780 71.045448.87670.0073 22.1722.433.20 7.01 15 0.8785 71.263948.87670.0073 22.3922.623.20 7.07 16 0.8780 71.045448.87670.0073 22.1722.433.20 7.01 17 0.8767 70.614448.87670.0073 21.7422.073.20 0.00 18 0.8746 69.751648.87670.0073 20.8721.333.20 0.00 19 0.8721 68.901348.87670.0073 20.0220.623.20 0.00 20 0.8697 68.058748.87670.0074 19.1819.913.20 0.00 21 0.8678 67.433548.87670.0074 18.5619.393.20 0.00 22 0.8658 66.597848.87670.0073 17.7218.653.20 0.00 23 0.8644 66.189348.87670.0074 17.3118.323.20 0.00

PAGE 145

131 Table C.12. December Daily Average Energy Consumption for Model II, Miami Hour of day vEA (m3/kg) hEA (kJ/kg) hLA ((kJ/kg) m w (kg/s) hEA hLA (kJ/kg) Q (kW) A verage COP Electric kWh 0 0.8585 61.464248.87670.0061 12.5913.633.10 0.00 1 0.8575 61.072648.87670.0060 12.2013.273.10 0.00 2 0.8565 60.682948.87670.0060 11.8112.923.10 0.00 3 0.8559 60.490648.87670.0060 11.6112.763.10 0.00 4 0.8552 60.298848.87670.0061 11.4212.6 3.10 0.00 5 0.8550 60.101548.87670.0060 11.2212.4 3.10 0.00 6 0.8554 60.296848.87670.0060 11.4212.583.10 4.06 7 0.8564 60.684848.87670.0061 11.8112.933.10 4.17 8 0.8580 61.268248.87670.0060 12.3913.453.10 4.34 9 0.8604 62.048748.87670.0060 13.1714.123.10 4.55 10 0.8631 63.037948.87670.0060 14.1614.983.10 4.83 11 0.8664 64.240648.87670.0060 15.3616.043.10 5.17 12 0.8693 65.252648.87670.0060 16.3816.9 3.10 5.45 13 0.8714 66.073648.87670.0060 17.2017.623.10 5.68 14 0.8730 66.693748.87670.0060 17.8218.153.10 5.86 15 0.8736 66.902148.87670.0060 18.0318.343.10 5.92 16 0.8730 66.693748.87670.0060 17.8218.153.10 5.86 17 0.8718 66.282748.87670.0060 17.4117.813.10 0.00 18 0.8696 65.459848.87670.0060 16.5817.1 3.10 0.00 19 0.8672 64.648648.87670.0060 15.7716.413.10 0.00 20 0.8649 63.844848.87670.0061 14.9715.733.10 0.00 21 0.8629 63.042048.87670.0060 14.1715.013.10 0.00 22 0.8609 62.246548.87670.0060 13.3714.3 3.10 0.00 23 0.8595 61.857548.87670.0061 12.9813.983.10 0.00

PAGE 146

132 Table C.13. January Daily Average Energy Consumption for Model II, Gainesville Hour of day vEA (m3/kg) hEA (kJ/kg) hLA ((kJ/kg) m w (kg/s) hEA hLA (kJ/kg) Q (kW) A verage COP Electric kWh 0 0.8339 43.091548.87670.00093 -5.79 0 3.00 0 1 0.8322 42.308048.87670.00083 -6.57 0 3.00 0 2 0.8307 41.688548.87670.00078 -7.19 0 3.00 0 3 0.8294 41.228948.87670.00078 -7.65 0 3.00 0 4 0.8285 40.768148.87670.00070 -8.11 0 3.00 0 5 0.8282 40.615648.87670.00069 -8.26 0 3.00 0 6 0.8289 40.920948.87670.00072 -7.96 0 3.00 0 7 0.8304 41.534048.87670.00077 -7.34 0 3.00 0 8 0.8332 42.777148.87670.00089 -6.10 0 3.00 0 9 0.8373 44.519948.87670.00106 -4.36 0 3.00 0 10 0.8420 46.633248.87670.00128 -2.24 0 3.00 0 11 0.8474 48.973048.87670.00151 0.10 0.5933.00 0.198 12 0.8524 51.031348.87670.00165 2.15 2.5523.00 0.851 13 0.8562 52.793548.87670.00187 3.92 4.2443.00 1.415 14 0.8588 53.866548.87670.00196 4.99 5.2533.00 1.751 15 0.8597 54.225548.87670.00197 5.35 5.58 3.00 1.86 16 0.8588 53.866548.87670.00196 4.99 5.2533.00 1.751 17 0.8565 52.790048.87670.00182 3.91 4.2233.00 0 18 0.8531 51.381448.87670.00171 2.50 2.8933.00 0 19 0.8490 49.654848.87670.00158 0.78 1.2523.00 0 20 0.8449 47.792748.87670.00137 -1.08 0 3.00 0 21 0.8415 46.302248.87670.00121 -2.57 0 3.00 0 22 0.8383 45.003148.87670.00112 -3.87 0 3.00 0 23 0.8358 43.881948.87670.00100 -4.99 0 3.00 0

PAGE 147

133 Table C.14. February Daily Average Ener gy Consumption for Model II, Gainesville Hour of day vEA (m3/kg) hEA (kJ/kg) hLA ((kJ/kg) m w (kg/s) hEA hLA (kJ/kg) Q (kW) A verage COP Electric kWh 0 0.8381 46.173648.87670.00179 -2.70 0 3.00 0 1 0.8365 45.522948.87670.00176 -3.35 0 3.00 0 2 0.8350 44.876248.87670.00170 -4.00 0 3.00 0 3 0.8337 44.396748.87670.00169 -4.48 0 3.00 0 4 0.8328 43.915748.87670.00160 -4.96 0 3.00 0 5 0.8324 43.756548.87670.00158 -5.12 0 3.00 0 6 0.8331 44.075248.87670.00162 -4.80 0 3.00 0 7 0.8346 44.715048.87670.00168 -4.16 0 3.00 0 8 0.8375 46.012748.87670.00182 -2.86 0 3.00 0 9 0.8416 47.832648.87670.00201 -1.04 0 3.00 0 10 0.8463 49.864848.87670.00220 0.99 1.6583.00 0.553 11 0.8517 52.124248.87670.00238 3.25 3.8123.00 1.271 12 0.8569 54.452548.87670.00264 5.58 6.03 3.00 2.01 13 0.8606 56.102048.87670.00280 7.23 7.5783.00 2.526 14 0.8632 57.219648.87670.00290 8.34 8.6193.00 2.873 15 0.8641 57.593648.87670.00291 8.72 8.9563.00 2.985 16 0.8632 57.219648.87670.00290 8.34 8.6193.00 2.873 17 0.8610 56.288148.87670.00283 7.41 7.7573.00 0 18 0.8575 54.631348.87670.00261 5.75 6.1843.00 0 19 0.8533 52.833948.87670.00246 3.96 4.4923.00 0 20 0.8492 51.073948.87670.00230 2.20 2.8153.00 0 21 0.8458 49.519748.87670.00212 0.64 1.31 3.00 0 22 0.8426 48.165548.87670.00201 -0.71 0 3.00 0 23 0.8400 46.997148.87670.00187 -1.88 0 3.00 0

PAGE 148

134 Table C.15. March Daily Average Energy Consumption for Model II, Gainesville Hour of day vEA (m3/kg) hEA (kJ/kg) hLA ((kJ/kg) m w (kg/s) hEA hLA (kJ/kg) Q (kW) A verage COP Electric kWh 0 0.8487 54.378748.87670.00417 5.50 6.5233.10 0 1 0.8470 53.656848.87670.00411 4.78 5.8393.10 0 2 0.8455 52.939548.87670.00403 4.06 5.1483.10 0 3 0.8442 52.407948.87670.00400 3.53 4.6463.10 0 4 0.8433 52.054848.87670.00398 3.18 4.3093.10 0 5 0.8430 51.878048.87670.00395 3.00 4.1363.10 0 6 0.8437 52.232048.87670.00400 3.36 4.4833.10 1.446 7 0.8451 52.760848.87670.00400 3.88 4.9733.10 1.604 8 0.8480 54.015248.87670.00412 5.14 6.1693.10 1.99 9 0.8521 55.841848.87670.00430 6.97 7.9033.10 2.549 10 0.8569 57.895648.87670.00447 9.02 9.8233.10 3.169 11 0.8623 60.191848.87670.00465 11.3211.943.10 3.851 12 0.8673 62.350848.87670.00481 13.4713.9 3.10 4.485 13 0.8712 64.163348.87670.00503 15.2915.573.10 5.022 14 0.8737 65.180748.87670.00508 16.3016.473.10 5.312 15 0.8747 65.590948.87670.00511 16.7116.833.10 5.429 16 0.8737 65.180748.87670.00508 16.3016.473.10 5.312 17 0.8714 64.159148.87670.00498 15.2815.543.10 0 18 0.8681 62.752248.87670.00488 13.8814.283.10 0 19 0.8639 60.974548.87670.00476 12.1012.673.10 0 20 0.8598 59.230848.87670.00462 10.3511.073.10 0 21 0.8564 57.707648.87670.00447 8.83 9.6533.10 0 22 0.8531 56.209848.87670.00430 7.33 8.2393.10 0 23 0.8505 55.105248.87670.00421 6.23 7.2 3.10 0

PAGE 149

135 Table C.16. April Daily Average Energy Consumption for Model II, Gainesville Hour of day vEA (m3/kg) hEA (kJ/kg) hLA ((kJ/kg) m w (kg/s) hEA hLA (kJ/kg) Q (kW) A verage COP Electric kWh 0 0.8487 54.378748.87670.00417 5.50 6.5233.10 0 1 0.8470 53.656848.87670.00411 4.78 5.8393.10 0 2 0.8455 52.939548.87670.00403 4.06 5.1483.10 0 3 0.8442 52.407948.87670.00400 3.53 4.6463.10 0 4 0.8433 52.054848.87670.00398 3.18 4.3093.10 0 5 0.8430 51.878048.87670.00395 3.00 4.1363.10 0 6 0.8437 52.232048.87670.00400 3.36 4.4833.10 1.446 7 0.8451 52.760848.87670.00400 3.88 4.9733.10 1.604 8 0.8480 54.015248.87670.00412 5.14 6.1693.10 1.99 9 0.8521 55.841848.87670.00430 6.97 7.9033.10 2.549 10 0.8569 57.895648.87670.00447 9.02 9.8233.10 3.169 11 0.8623 60.191848.87670.00465 11.3211.943.10 3.851 12 0.8673 62.350848.87670.00481 13.4713.9 3.10 4.485 13 0.8712 64.163348.87670.00503 15.2915.573.10 5.022 14 0.8737 65.180748.87670.00508 16.3016.473.10 5.312 15 0.8747 65.590948.87670.00511 16.7116.833.10 5.429 16 0.8737 65.180748.87670.00508 16.3016.473.10 5.312 17 0.8714 64.159148.87670.00498 15.2815.543.10 0 18 0.8681 62.752248.87670.00488 13.8814.283.10 0 19 0.8639 60.974548.87670.00476 12.1012.673.10 0 20 0.8598 59.230848.87670.00462 10.3511.073.10 0 21 0.8564 57.707648.87670.00447 8.83 9.6533.10 0 22 0.8531 56.209848.87670.00430 7.33 8.2393.10 0 23 0.8505 55.105248.87670.00421 6.23 7.2 3.10 0

PAGE 150

136 Table C.17. May Daily Average Energy C onsumption for Model II, Gainesville Hour of day vEA (m3/kg) hEA (kJ/kg) hLA ((kJ/kg) m w (kg/s) hEA hLA (kJ/kg) Q (kW) A verage COP Electric kWh 0 0.8629 64.297148.87670.00670 15.4216.383.20 0 1 0.8614 63.901048.87670.00679 15.0216.073.20 0 2 0.8599 63.297848.87670.00677 14.4215.533.20 0 3 0.8586 62.902148.87670.00680 14.0315.2 3.20 0 4 0.8577 62.501948.87670.00676 13.6314.833.20 0 5 0.8574 62.301648.87670.00672 13.4214.643.20 0 6 0.8580 62.497948.87670.00671 13.6214.8 3.20 4.626 7 0.8595 63.095648.87670.00673 14.2215.343.20 4.794 8 0.8622 64.096848.87670.00672 15.2216.213.20 5.067 9 0.8661 65.517248.87670.00671 16.6417.453.20 5.452 10 0.8707 67.167448.87670.00670 18.2918.863.20 5.894 11 0.8759 69.059348.87670.00668 20.1820.473.20 6.397 12 0.8807 70.770848.87670.00665 21.8921.893.20 6.842 13 0.8844 72.304448.87670.00673 23.4323.213.20 7.254 14 0.8869 73.186548.87670.00673 24.3123.943.20 7.481 15 0.8878 73.403048.87670.00667 24.5324.093.20 7.529 16 0.8869 73.186548.87670.00673 24.3123.943.20 7.481 17 0.8847 72.299848.87670.00668 23.4223.193.20 0 18 0.8814 70.986448.87670.00664 22.1122.073.20 0 19 0.8774 69.702448.87670.00673 20.8321.033.20 0 20 0.8735 68.215348.87670.00671 19.3419.763.20 0 21 0.8702 66.958348.87670.00669 18.0818.683.20 0 22 0.8671 65.929048.87670.00673 17.0517.813.20 0 23 0.8647 65.113648.87670.00677 16.2417.123.20 0

PAGE 151

137 Table C.18. June Daily Average Energy Consumption for Model II, Gainesville Hour of day vEA (m3/kg) hEA (kJ/kg) hLA ((kJ/kg) m w (kg/s) hEA hLA (kJ/kg) Q (kW) A verage COP Electric kWh 0 0.8690 68.954548.87670.00796 20.0820.943.30 0 1 0.8675 68.537648.87670.00804 19.6620.623.30 0 2 0.8660 67.902548.87670.00800 19.0320.063.30 0 3 0.8647 67.485948.87670.00803 18.6119.713.30 0 4 0.8638 67.064748.87670.00798 18.1919.333.30 0 5 0.8636 67.069048.87670.00804 18.1919.363.30 0 6 0.8642 67.276148.87670.00802 18.4019.533.30 5.918 7 0.8656 67.689548.87670.00797 18.8119.863.30 6.018 8 0.8684 68.743648.87670.00797 19.8720.773.30 6.294 9 0.8723 70.239448.87670.00799 21.3622.053.30 6.682 10 0.8768 71.750548.87670.00791 22.8723.293.30 7.057 11 0.8821 73.739248.87670.00793 24.8624.963.30 7.562 12 0.8870 75.538748.87670.00792 26.6626.443.30 8.011 13 0.8906 76.912048.87670.00793 28.0427.563.30 8.353 14 0.8931 77.837548.87670.00794 28.9628.323.30 8.581 15 0.8940 78.064848.87670.00788 29.1928.473.30 8.629 16 0.8931 77.837548.87670.00794 28.9628.323.30 8.581 17 0.8908 76.907148.87670.00788 28.0327.543.30 0 18 0.8876 75.765448.87670.00791 26.8926.623.30 0 19 0.8836 74.415348.87670.00798 25.5425.543.30 0 20 0.8796 72.852048.87670.00794 23.9824.223.30 0 21 0.8763 71.530948.87670.00789 22.6523.1 3.30 0 22 0.8732 70.449348.87670.00792 21.5722.2 3.30 0 23 0.8708 69.592548.87670.00795 20.7221.483.30 0

PAGE 152

138 Table C.19. July Daily Average Energy Consumption for Model II, Gainesville Hour of day vEA (m3/kg) hEA (kJ/kg) hLA ((kJ/kg) m w (kg/s) hEA hLA (kJ/kg) Q (kW) A verage COP Electric kWh 0 0.8703 68.932348.87670.00770 20.0620.813.20 0 1 0.8688 68.515548.87670.00778 19.6420.493.20 0 2 0.8673 67.880548.87670.00774 19.0019.933.20 0 3 0.8660 67.464048.87670.00777 18.5919.583.20 0 4 0.8651 67.042948.87670.00772 18.1719.2 3.20 0 5 0.8649 67.047348.87670.00777 18.1719.223.20 0 6 0.8655 67.254348.87670.00776 18.3819.393.20 6.061 7 0.8669 67.667748.87670.00770 18.7919.733.20 6.164 8 0.8697 68.721448.87670.00771 19.8420.633.20 6.448 9 0.8736 70.216948.87670.00773 21.3421.913.20 6.848 10 0.8781 71.727648.87670.00765 22.8523.153.20 7.234 11 0.8834 73.715848.87670.00767 24.8424.813.20 7.755 12 0.8883 75.514948.87670.00766 26.6426.293.20 8.217 13 0.8919 76.887848.87670.00767 28.0127.423.20 8.569 14 0.8943 77.813248.87670.00768 28.9428.173.20 8.804 15 0.8952 78.040448.87670.00763 29.1628.333.20 8.853 16 0.8943 77.813248.87670.00768 28.9428.173.20 8.804 17 0.8921 76.883048.87670.00762 28.0127.393.20 0 18 0.8889 75.741648.87670.00765 26.8626.483.20 0 19 0.8849 74.391848.87670.00772 25.5225.4 3.20 0 20 0.8809 72.828848.87670.00768 23.9524.083.20 0 21 0.8776 71.508048.87670.00763 22.6322.963.20 0 22 0.8745 70.426748.87670.00766 21.5522.063.20 0 23 0.8721 69.570148.87670.00768 20.6921.343.20 0

PAGE 153

139 Table C.20. August Daily Average Energy Consumption for Model II, Gainesville Hour of day vEA (m3/kg) hEA (kJ/kg) hLA ((kJ/kg) m w (kg/s) hEA hLA (kJ/kg) Q (kW) A verage COP Electric kWh 0 0.8703 68.932348.87670.00770 20.0620.813.20 0 1 0.8688 68.515548.87670.00778 19.6420.493.20 0 2 0.8673 67.880548.87670.00774 19.0019.933.20 0 3 0.8660 67.464048.87670.00777 18.5919.583.20 0 4 0.8651 67.042948.87670.00772 18.1719.2 3.20 0 5 0.8649 67.047348.87670.00777 18.1719.223.20 0 6 0.8655 67.254348.87670.00776 18.3819.393.20 6.061 7 0.8669 67.667748.87670.00770 18.7919.733.20 6.164 8 0.8697 68.721448.87670.00771 19.8420.633.20 6.448 9 0.8736 70.216948.87670.00773 21.3421.913.20 6.848 10 0.8781 71.727648.87670.00765 22.8523.153.20 7.234 11 0.8834 73.715848.87670.00767 24.8424.813.20 7.755 12 0.8883 75.514948.87670.00766 26.6426.293.20 8.217 13 0.8919 76.887848.87670.00767 28.0127.423.20 8.569 14 0.8943 77.813248.87670.00768 28.9428.173.20 8.804 15 0.8952 78.040448.87670.00763 29.1628.333.20 8.853 16 0.8943 77.813248.87670.00768 28.9428.173.20 8.804 17 0.8921 76.883048.87670.00762 28.0127.393.20 0 18 0.8889 75.741648.87670.00765 26.8626.483.20 0 19 0.8849 74.391848.87670.00772 25.5225.4 3.20 0 20 0.8809 72.828848.87670.00768 23.9524.083.20 0 21 0.8776 71.508048.87670.00763 22.6322.963.20 0 22 0.8745 70.426748.87670.00766 21.5522.063.20 0 23 0.8721 69.570148.87670.00768 20.6921.343.20 0

PAGE 154

140 Table C.21. September Daily Average Energy Consumption for Model II, Gainesville Hour of day vEA (m3/kg) hEA (kJ/kg) hLA ((kJ/kg) m w (kg/s) hEA hLA (kJ/kg) Q (kW) Average COP Electric kWh 0 0.8665 66.587148.87670.00722 17.7118.593.20 0 1 0.8648 65.967648.87670.00721 17.0918.053.20 0 2 0.8634 65.561948.87670.00727 16.6917.723.20 0 3 0.8621 65.156048.87670.00730 16.2817.383.20 0 4 0.8613 64.745548.87670.00725 15.8717 3.20 0 5 0.8609 64.539948.87670.00722 15.6616.813.20 0 6 0.8616 64.951648.87670.00729 16.0717.2 3.20 5.375 7 0.8630 65.354548.87670.00723 16.4817.523.20 5.476 8 0.8658 66.381548.87670.00723 17.5018.423.20 5.755 9 0.8697 67.838948.87670.00723 18.9619.673.20 6.147 10 0.8743 69.532148.87670.00724 20.6621.113.20 6.598 11 0.8795 71.473848.87670.00724 22.6022.753.20 7.11 12 0.8844 73.230648.87670.00722 24.3524.2 3.20 7.564 13 0.8880 74.571048.87670.00722 25.6925.313.20 7.91 14 0.8905 75.474548.87670.00722 26.6026.053.20 8.141 15 0.8914 75.696348.87670.00716 26.8226.213.20 8.189 16 0.8905 75.474548.87670.00722 26.6026.053.20 8.141 17 0.8883 74.566348.87670.00717 25.6925.283.20 0 18 0.8851 73.451948.87670.00721 24.5824.383.20 0 19 0.8810 71.906548.87670.00719 23.0323.093.20 0 20 0.8771 70.607648.87670.00726 21.7322.033.20 0 21 0.8738 69.317748.87670.00722 20.4420.933.20 0 22 0.8708 68.261548.87670.00726 19.3820.043.20 0 23 0.8682 67.208648.87670.00720 18.3319.113.20 0

PAGE 155

141 Table C.22. October Daily Average Energy Consumption for Model II, Gainesville Hour of day vEA (m3/kg) hEA (kJ/kg) hLA ((kJ/kg) m w (kg/s) hEA hLA (kJ/kg) Q (kW) A verage COP Electric kWh 0 0.8591 62.069048.87670.00626 13.1914.243.10 0 1 0.8574 61.480348.87670.00627 12.6013.733.10 0 2 0.8561 61.094748.87670.00633 12.2213.413.10 0 3 0.8547 60.508548.87670.00629 11.6312.873.10 0 4 0.8539 60.318748.87670.00634 11.4412.723.10 0 5 0.8536 60.123248.87670.00630 11.2512.533.10 0 6 0.8542 60.314748.87670.00628 11.4412.693.10 4.095 7 0.8557 60.897548.87670.00630 12.0213.223.10 4.265 8 0.8584 61.873748.87670.00628 13.0014.083.10 4.542 9 0.8623 63.258548.87670.00626 14.3815.293.10 4.932 10 0.8670 65.077648.87670.00632 16.2016.9 3.10 5.452 11 0.8721 66.925948.87670.00629 18.0518.483.10 5.962 12 0.8769 68.597748.87670.00624 19.7219.883.10 6.414 13 0.8805 69.873048.87670.00622 21.0020.953.10 6.758 14 0.8830 70.956948.87670.00630 22.0821.893.10 7.063 15 0.8839 71.168448.87670.00624 22.2922.043.10 7.111 16 0.8830 70.956948.87670.00630 22.0821.893.10 7.063 17 0.8809 70.091048.87670.00626 21.2121.153.10 0 18 0.8776 68.808348.87670.00623 19.9320.063.10 0 19 0.8735 67.337748.87670.00624 18.4618.813.10 0 20 0.8696 65.888448.87670.00623 17.0117.563.10 0 21 0.8665 64.873448.87670.00631 16.0016.723.10 0 22 0.8633 63.660048.87670.00628 14.7815.653.10 0 23 0.8609 62.865048.87670.00632 13.9914.973.10 0

PAGE 156

142 Table C.23. November Daily Average Energy Consumption for Model II, Gainesville Hour of day vEA (m3/kg) hEA (kJ/kg) hLA ((kJ/kg) m w (kg/s) hEA hLA (kJ/kg) Q (kW) A verage COP Electric kWh 0 0.8466 52.741448.87670.00371 3.86 4.8523.00 0.8466 1 0.8449 52.034048.87670.00366 3.16 4.1793.00 0.8449 2 0.8433 51.330948.87670.00358 2.45 3.4983.00 0.8433 3 0.8420 50.809848.87670.00356 1.93 3.0043.00 0.8420 4 0.8411 50.287148.87670.00346 1.41 2.48 3.00 0.8411 5 0.8407 50.114148.87670.00343 1.24 2.31 3.00 0.8407 6 0.8414 50.460448.87670.00348 1.58 2.6513.00 0.8414 7 0.8430 51.155748.87670.00356 2.28 3.3263.00 0.8430 8 0.8459 52.566648.87670.00374 3.69 4.7 3.00 0.8459 9 0.8501 54.546648.87670.00399 5.67 6.61 3.00 0.8501 10 0.8549 56.759248.87670.00424 7.88 8.7113.00 0.8549 11 0.8604 59.221048.87670.00449 10.3411.013.00 0.8604 12 0.8657 61.760348.87670.00481 12.8813.393.00 0.8657 13 0.8695 63.560548.87670.00502 14.6815.043.00 0.8695 14 0.8722 64.780848.87670.00516 15.9016.163.00 0.8722 15 0.8732 65.189248.87670.00519 16.3116.523.00 0.8732 16 0.8722 64.780848.87670.00516 15.9016.163.00 0.8722 17 0.8699 63.763748.87670.00506 14.8915.233.00 0.8699 18 0.8663 61.955448.87670.00480 13.0813.553.00 0.8663 19 0.8620 59.994848.87670.00459 11.1211.743.00 0.8620 20 0.8579 58.076348.87670.00437 9.20 9.9473.00 0.8579 21 0.8544 56.383248.87670.00415 7.51 8.3393.00 0.8544 22 0.8511 54.908848.87670.00399 6.03 6.9423.00 0.8511 23 0.8485 53.637248.87670.00382 4.76 5.7163.00 0.8485

PAGE 157

143 Table C.24. December Daily Average Energy Consumption for Model II, Gainesville Hour of day vEA (m3/kg) hEA (kJ/kg) hLA ((kJ/kg) m w (kg/s) hEA hLA (kJ/kg) Q (kW) A verage COP Electric kWh 0 0.8362 45.027248.87670.00154 -3.85 0 3.00 0 1 0.8345 44.223248.87670.00143 -4.65 0 3.00 0 2 0.8329 43.426148.87670.00131 -5.45 0 3.00 0 3 0.8315 42.795748.87670.00123 -6.08 0 3.00 0 4 0.8306 42.325048.87670.00115 -6.55 0 3.00 0 5 0.8303 42.169248.87670.00113 -6.71 0 3.00 0 6 0.8310 42.481148.87670.00117 -6.40 0 3.00 0 7 0.8326 43.268048.87670.00129 -5.61 0 3.00 0 8 0.8355 44.704648.87670.00149 -4.17 0 3.00 0 9 0.8398 46.829848.87670.00183 -2.05 0 3.00 0 10 0.8447 49.182748.87670.00215 0.31 1.0053.00 0.335 11 0.8502 51.781248.87670.00248 2.90 3.5323.00 1.177 12 0.8555 54.284948.87670.00281 5.41 5.9433.00 1.981 13 0.8594 56.310548.87670.00314 7.43 7.8933.00 2.631 14 0.8620 57.431048.87670.00324 8.55 8.9373.00 2.979 15 0.8630 57.999748.87670.00334 9.12 9.48 3.00 3.16 16 0.8620 57.431048.87670.00324 8.55 8.9373.00 2.979 17 0.8598 56.497148.87670.00317 7.62 8.0723.00 0 18 0.8562 54.649548.87670.00287 5.77 6.2943.00 0 19 0.8519 52.669548.87670.00264 3.79 4.4053.00 0 20 0.8476 50.558048.87670.00233 1.68 2.3463.00 0 21 0.8441 48.840548.87670.00208 -0.04 0 3.00 0 22 0.8407 47.158448.87670.00182 -1.72 0 3.00 0 23 0.8382 46.005048.87670.00169 -2.87 0 3.00 0

PAGE 158

144 Table C.25. January Daily Average Energy Consumption for Model II, Chicago Hour of day vEA (m3/kg) hEA (kJ/kg) hLA ((kJ/kg) m w (kg/s) hEA hLA (kJ/kg) Q (kW) A verage COP Electric kWh 0 0.7750 7.781948.87670.0000 -41.09 0 N/A 0 1 0.7732 6.769248.87670.0000 -42.11 0 N/A 0 2 0.7715 5.862748.87670.0000 -43.01 0 N/A 0 3 0.7701 5.058048.87670.0000 -43.82 0 N/A 0 4 0.7690 4.439348.87670.0000 -44.44 0 N/A 0 5 0.7687 4.263648.87670.0000 -44.61 0 N/A 0 6 0.7694 4.703648.87670.0000 -44.17 0 N/A 0 7 0.7712 5.683048.87670.0000 -43.19 0 N/A 0 8 0.7743 7.411748.87670.0000 -41.47 0 N/A 0 9 0.7789 9.858548.87670.0000 -39.02 0 N/A 0 10 0.7841 12.807348.87670.0000 -36.07 0 N/A 0 11 0.7903 16.328248.87670.0000 -32.55 0 N/A 0 12 0.7961 19.721848.87670.0000 -29.15 0 N/A 0 13 0.8003 22.128148.87670.0000 -26.75 0 N/A 0 14 0.8032 23.783948.87670.0000 -25.09 0 N/A 0 15 0.8043 24.385548.87670.0000 -24.49 0 N/A 0 16 0.8032 23.783948.87670.0000 -25.09 0 N/A 0 17 0.8007 22.362248.87670.0000 -26.51 0 N/A 0 18 0.7968 20.059648.87670.0000 -28.82 0 N/A 0 19 0.7920 17.294648.87670.0000 -31.58 0 N/A 0 20 0.7874 14.646448.87670.0000 -34.23 0 N/A 0 21 0.7834 12.405948.87670.0000 -36.47 0 N/A 0 22 0.7800 10.534148.87670.0000 -38.34 0 N/A 0 23 0.7771 8.906048.87670.0000 -39.97 0 N/A 0

PAGE 159

145 Table C.26. February Daily Average En ergy Consumption for Model II, Chicago Hour of day vEA (m3/kg) hEA (kJ/kg) hLA ((kJ/kg) m w (kg/s) hEA hLA (kJ/kg) Q (kW) Average COP Electric kWh 0 0.7821 11.610848.87670.0000 -37.270 N/A 0 1 0.7803 10.534048.87670.0000 -38.340 N/A 0 2 0.7786 9.475848.87670.0000 -39.400 N/A 0 3 0.7771 8.717448.87670.0000 -40.160 N/A 0 4 0.7760 8.061448.87670.0000 -40.820 N/A 0 5 0.7757 7.875348.87670.0000 -41.000 N/A 0 6 0.7764 8.248248.87670.0000 -40.630 N/A 0 7 0.7782 9.285348.87670.0000 -39.590 N/A 0 8 0.7814 11.217148.87670.0000 -37.660 N/A 0 9 0.7861 13.924748.87670.0000 -34.950 N/A 0 10 0.7914 16.970848.87670.0000 -31.910 N/A 0 11 0.7978 20.742448.87670.0000 -28.130 N/A 0 12 0.8037 24.389148.87670.0000 -24.490 N/A 0 13 0.8080 26.980948.87670.0000 -21.900 N/A 0 14 0.8110 28.767048.87670.0000 -20.110 N/A 0 15 0.8121 29.416548.87670.0000 -19.460 N/A 0 16 0.8110 28.767048.87670.0000 -20.110 N/A 0 17 0.8084 27.233348.87670.0000 -21.640 N/A 0 18 0.8044 24.875148.87670.0000 -24.000 N/A 0 19 0.7995 21.779748.87670.0000 -27.100 N/A 0 20 0.7948 18.939248.87670.0000 -29.940 N/A 0 21 0.7907 16.541648.87670.0000 -32.340 N/A 0 22 0.7872 14.542848.87670.0000 -34.330 N/A 0 23 0.7843 12.908048.87670.0000 -35.970 N/A 0

PAGE 160

146 Table C.27. March Daily Average Energy Consumption for Model II, Chicago Hour of day vEA (m3/kg) hEA (kJ/kg) hLA ((kJ/kg) m w (kg/s) hEA hLA (kJ/kg) Q (kW) A verage COP Electric kWh 0 0.8043 24.630248.87670.0000 -24.250 N/A 0 1 0.8023 23.306748.87670.0000 -25.570 N/A 0 2 0.8006 22.126948.87670.0000 -26.750 N/A 0 3 0.7991 21.199148.87670.0000 -27.680 N/A 0 4 0.7979 20.397748.87670.0000 -28.480 N/A 0 5 0.7975 20.170748.87670.0000 -28.710 N/A 0 6 0.7982 20.625448.87670.0000 -28.250 N/A 0 7 0.8002 21.893748.87670.0000 -26.980 N/A 0 8 0.8035 24.024848.87670.0000 -24.850 N/A 0 9 0.8085 27.232548.87670.0000 -21.640 N/A 0 10 0.8142 30.871248.87670.0000 -18.010 N/A 0 11 0.8208 35.141748.87670.0000 -13.740 N/A 0 12 0.8269 39.086848.87670.0001 -9.79 0 N/A 0 13 0.8314 41.998348.87670.0008 -6.88 0 N/A 0 14 0.8345 43.896648.87670.0013 -4.98 0 N/A 0 15 0.8357 44.703148.87670.0015 -4.17 0 N/A 0 16 0.8345 43.896648.87670.0013 -4.98 0 N/A 0 17 0.8318 42.312348.87670.0009 -6.56 0 N/A 0 18 0.8276 39.538348.87670.0002 -9.34 0 N/A 0 19 0.8226 36.288048.87670.0000 -12.590 N/A 0 20 0.8177 33.180748.87670.0000 -15.700 N/A 0 21 0.8134 30.472648.87670.0000 -18.400 N/A 0 22 0.8097 27.995748.87670.0000 -20.880 N/A 0 23 0.8066 25.979948.87670.0000 -22.900 N/A 0

PAGE 161

147 Table C.28. April Daily Average Ener gy Consumption for Model II, Chicago Hour of day vEA (m3/kg) hEA (kJ/kg) hLA ((kJ/kg) m w (kg/s) hEA hLA (kJ/kg) Q (kW) A verage COP Electric kWh 0 0.8232 35.989948.87670.0000 -12.890 3.00 0 1 0.8214 35.136048.87670.0000 -13.740 3.00 0 2 0.8198 34.149848.87670.0000 -14.730 3.00 0 3 0.8183 33.315848.87670.0000 -15.560 3.00 0 4 0.8172 32.766148.87670.0000 -16.110 3.00 0 5 0.8169 32.629948.87670.0000 -16.250 3.00 0 6 0.8176 33.041548.87670.0000 -15.840 3.00 0 7 0.8194 34.010848.87670.0000 -14.870 3.00 0 8 0.8224 35.560448.87670.0000 -13.320 3.00 0 9 0.8271 38.025048.87670.0000 -10.850 3.00 0 10 0.8324 40.884148.87670.0000 -7.99 0 3.00 0 11 0.8384 44.014848.87670.0006 -4.86 0 3.00 0 12 0.8441 47.117448.87670.0011 -1.76 0 3.00 0 13 0.8483 49.312348.87670.0015 0.44 0.9173.00 0.306 14 0.8512 50.868848.87670.0018 1.99 2.4563.00 0.819 15 0.8522 51.393348.87670.0019 2.52 2.9663.00 0.989 16 0.8512 50.868848.87670.0018 1.99 2.4563.00 0.819 17 0.8486 49.483448.87670.0016 0.61 1.0843.00 0 18 0.8448 47.450348.87670.0012 -1.43 0 3.00 0 19 0.8401 44.982148.87670.0008 -3.89 0 3.00 0 20 0.8356 42.590548.87670.0003 -6.29 0 3.00 0 21 0.8316 40.424348.87670.0000 -8.45 0 3.00 0 22 0.8282 38.617748.87670.0000 -10.260 3.00 0 23 0.8254 37.146348.87670.0000 -11.730 3.00 0

PAGE 162

148 Table C.29. May Daily Average Energy Consumption for Model II, Chicago Hour of day vEA (m3/kg) hEA (kJ/kg) hLA ((kJ/kg) m w (kg/s) hEA hLA (kJ/kg) Q (kW) A verage COP Electric kWh 0 0.8416 48.871648.87670.0026 -0.01 0 3.00 0 1 0.8399 48.026248.87670.0025 -0.85 0 3.00 0 2 0.8384 47.358148.87670.0024 -1.52 0 3.00 0 3 0.8371 46.862748.87670.0024 -2.01 0 3.00 0 4 0.8360 46.367448.87670.0023 -2.51 0 3.00 0 5 0.8357 46.203048.87670.0023 -2.67 0 3.00 0 6 0.8364 46.532148.87670.0023 -2.34 0 3.00 0 7 0.8380 47.191648.87670.0024 -1.69 0 3.00 0 8 0.8409 48.532348.87670.0025 -0.34 0 3.00 0 9 0.8453 50.409848.87670.0027 1.53 2.3343.00 0.778 10 0.8502 52.508848.87670.0029 3.63 4.34 3.00 1.447 11 0.8560 55.028448.87670.0031 6.15 6.7263.00 2.242 12 0.8613 57.440448.87670.0034 8.56 8.9943.00 2.998 13 0.8652 59.149048.87670.0035 10.2710.573.00 3.525 14 0.8679 60.306248.87670.0036 11.4311.633.00 3.877 15 0.8689 60.694148.87670.0036 11.8211.983.00 3.993 16 0.8679 60.306248.87670.0036 11.4311.633.00 3.877 17 0.8656 59.342148.87670.0036 10.4710.763.00 0 18 0.8619 57.625848.87670.0034 8.75 9.1523.00 0 19 0.8576 55.764148.87670.0032 6.89 7.4253.00 0 20 0.8533 53.941648.87670.0030 5.06 5.7133.00 0 21 0.8496 52.334648.87670.0029 3.46 4.1893.00 0 22 0.8463 50.753948.87670.0027 1.88 2.6533.00 0 23 0.8437 49.722848.87670.0026 0.85 1.6763.00 0

PAGE 163

149 Table C.30. June Daily Average Ener gy Consumption for Model II, Chicago Hour of day vEA (m3/kg) hEA (kJ/kg) hLA ((kJ/kg) m w (kg/s) hEA hLA (kJ/kg) Q (kW) A verage COP Electric kWh 0 0.8554 57.527748.87670.0046 8.65 9.5293.10 0 1 0.8538 56.969548.87670.0046 8.09 9.0313.10 0 2 0.8523 56.413048.87670.0046 7.54 8.5243.10 0 3 0.8509 55.858448.87670.0045 6.98 8.0073.10 0 4 0.8500 55.492048.87670.0045 6.62 7.6713.10 0 5 0.8497 55.495748.87670.0046 6.62 7.6943.10 0 6 0.8503 55.676948.87670.0046 6.80 7.85 3.10 2.532 7 0.8519 56.226548.87670.0045 7.35 8.3433.10 2.691 8 0.8547 57.342548.87670.0046 8.47 9.3713.10 3.023 9 0.8588 58.651548.87670.0045 9.77 10.513.10 3.39 10 0.8635 60.373548.87670.0045 11.5012.043.10 3.884 11 0.8690 62.324448.87670.0045 13.4513.743.10 4.433 12 0.8740 64.117548.87670.0045 15.2415.293.10 4.933 13 0.8778 65.540148.87670.0045 16.6616.523.10 5.33 14 0.8803 66.357148.87670.0044 17.4817.2 3.10 5.548 15 0.8813 66.772848.87670.0045 17.9017.563.10 5.665 16 0.8803 66.357148.87670.0044 17.4817.2 3.10 5.548 17 0.8781 65.747948.87670.0045 16.8716.723.10 0 18 0.8746 64.317848.87670.0044 15.4415.463.10 0 19 0.8705 62.920848.87670.0045 14.0414.273.10 0 20 0.8664 61.341448.87670.0045 12.4612.883.10 0 21 0.8629 60.182048.87670.0045 11.3111.883.10 0 22 0.8598 59.032148.87670.0045 10.1610.853.10 0 23 0.8572 58.085948.87670.0045 9.21 10.013.10 0

PAGE 164

150 Table C.31. July Daily Average Energy Consumption for Model II, Chicago Hour of day vEA (m3/kg) hEA (kJ/kg) hLA ((kJ/kg) m w (kg/s) hEA hLA (kJ/kg) Q (kW) A verage COP Electric kWh 0 0.8616 61.825148.87670.0056 12.9513.783.10 0 1 0.8599 61.238048.87670.0057 12.3613.263.10 0 2 0.8584 60.652948.87670.0056 11.7812.743.10 0 3 0.8572 60.269048.87670.0057 11.3912.413.10 0 4 0.8562 59.882948.87670.0057 11.0112.063.10 0 5 0.8558 59.688548.87670.0056 10.8111.883.10 0 6 0.8565 59.878948.87670.0056 11.0012.043.10 3.883 7 0.8581 60.456848.87670.0056 11.5812.553.10 4.048 8 0.8609 61.630348.87670.0057 12.7513.623.10 4.392 9 0.8651 63.007048.87670.0056 14.1314.8 3.10 4.773 10 0.8698 64.818648.87670.0056 15.9416.393.10 5.286 11 0.8752 66.657148.87670.0056 17.7817.933.10 5.785 12 0.8803 68.540448.87670.0056 19.6619.543.10 6.303 13 0.8840 69.812748.87670.0055 20.9420.593.10 6.642 14 0.8867 70.893648.87670.0056 22.0221.523.10 6.941 15 0.8876 71.105048.87670.0055 22.2321.673.10 6.989 16 0.8867 70.893648.87670.0056 22.0221.523.10 6.941 17 0.8844 70.030648.87670.0056 21.1520.793.10 0 18 0.8809 68.750948.87670.0056 19.8719.713.10 0 19 0.8768 67.283448.87670.0056 18.4118.483.10 0 20 0.8727 65.837248.87670.0056 16.9617.253.10 0 21 0.8691 64.407748.87670.0056 15.5316 3.10 0 22 0.8661 63.407348.87670.0056 14.5315.153.10 0 23 0.8634 62.412048.87670.0056 13.5414.273.10 0

PAGE 165

151 Table C.32. August Daily Average Energy Consumption for Model II, Chicago Hour of day vEA (m3/kg) hEA (kJ/kg) hLA ((kJ/kg) m w (kg/s) hEA hLA (kJ/kg) Q (kW) A verage COP Electric kWh 0 0.8616 61.825148.87670.0056 12.9513.783.10 0 1 0.8599 61.238048.87670.0057 12.3613.263.10 0 2 0.8584 60.652948.87670.0056 11.7812.743.10 0 3 0.8572 60.269048.87670.0057 11.3912.413.10 0 4 0.8562 59.882948.87670.0057 11.0112.063.10 0 5 0.8558 59.688548.87670.0056 10.8111.883.10 0 6 0.8565 59.878948.87670.0056 11.0012.043.10 3.883 7 0.8581 60.456848.87670.0056 11.5812.553.10 4.048 8 0.8609 61.630348.87670.0057 12.7513.623.10 4.392 9 0.8651 63.007048.87670.0056 14.1314.8 3.10 4.773 10 0.8698 64.818648.87670.0056 15.9416.393.10 5.286 11 0.8752 66.657148.87670.0056 17.7817.933.10 5.785 12 0.8803 68.540448.87670.0056 19.6619.543.10 6.303 13 0.8840 69.812748.87670.0055 20.9420.593.10 6.642 14 0.8867 70.893648.87670.0056 22.0221.523.10 6.941 15 0.8876 71.105048.87670.0055 22.2321.673.10 6.989 16 0.8867 70.893648.87670.0056 22.0221.523.10 6.941 17 0.8844 70.030648.87670.0056 21.1520.793.10 0 18 0.8809 68.750948.87670.0056 19.8719.713.10 0 19 0.8768 67.283448.87670.0056 18.4118.483.10 0 20 0.8727 65.837248.87670.0056 16.9617.253.10 0 21 0.8691 64.407748.87670.0056 15.5316 3.10 0 22 0.8661 63.407348.87670.0056 14.5315.153.10 0 23 0.8634 62.412048.87670.0056 13.5414.273.10 0

PAGE 166

152 Table C.33. September Daily Average Energy Consumption for Model II, Chicago Hour of day vEA (m3/kg) hEA (kJ/kg) hLA ((kJ/kg) m w (kg/s) hEA hLA (kJ/kg) Q (kW) A verage COP Electric kWh 0 0.8503 55.298348.87670.0044 6.42 7.4353.10 0 1 0.8486 54.568348.87670.0043 5.69 6.7453.10 0 2 0.8471 54.027848.87670.0043 5.15 6.2483.10 0 3 0.8459 53.672948.87670.0044 4.80 5.94 3.10 0 4 0.8449 53.316048.87670.0043 4.44 5.61 3.10 0 5 0.8445 53.136448.87670.0043 4.26 5.4343.10 0 6 0.8452 53.312548.87670.0043 4.44 5.5873.10 1.802 7 0.8468 54.031448.87670.0044 5.15 6.27 3.10 2.023 8 0.8495 54.930748.87670.0043 6.05 7.0783.10 2.283 9 0.8538 56.583148.87670.0044 7.71 8.6 3.10 2.774 10 0.8585 58.263148.87670.0044 9.39 10.113.10 3.26 11 0.8639 60.166248.87670.0043 11.2911.783.10 3.8 12 0.8690 62.118448.87670.0044 13.2413.523.10 4.36 13 0.8728 63.508848.87670.0044 14.6314.733.10 4.752 14 0.8753 64.307448.87670.0043 15.4315.4 3.10 4.966 15 0.8763 64.713648.87670.0043 15.8415.753.10 5.082 16 0.8753 64.307448.87670.0043 15.4315.4 3.10 4.966 17 0.8730 63.504748.87670.0043 14.6314.713.10 0 18 0.8697 62.314248.87670.0043 13.4413.683.10 0 19 0.8654 60.747848.87670.0043 11.8712.3 3.10 0 20 0.8613 59.207448.87670.0043 10.3310.933.10 0 21 0.8579 58.076348.87670.0044 9.20 9.9473.10 0 22 0.8547 56.762948.87670.0043 7.89 8.7343.10 0 23 0.8521 55.841848.87670.0043 6.97 7.9033.10 0

PAGE 167

153 Table C.34. October Daily Average Ener gy Consumption for Model II, Chicago Hour of day vEA (m3/kg) hEA (kJ/kg) hLA ((kJ/kg) m w (kg/s) hEA hLA (kJ/kg) Q (kW) A verage COP Electric kWh 0 0.8293 40.138548.87670.0002 -8.74 0 3.00 0 1 0.8275 39.233548.87670.0001 -9.64 0 3.00 0 2 0.8258 38.338548.87670.0000 -10.540 3.00 0 3 0.8244 37.601748.87670.0000 -11.280 3.00 0 4 0.8233 37.017248.87670.0000 -11.860 3.00 0 5 0.8230 36.872548.87670.0000 -12.000 3.00 0 6 0.8237 37.310148.87670.0000 -11.570 3.00 0 7 0.8255 38.191048.87670.0000 -10.690 3.00 0 8 0.8286 39.836548.87670.0002 -9.04 0 3.00 0 9 0.8332 42.138248.87670.0006 -6.74 0 3.00 0 10 0.8384 44.837248.87670.0010 -4.04 0 3.00 0 11 0.8444 47.970048.87670.0015 -0.91 0 3.00 0 12 0.8500 50.884048.87670.0020 2.01 2.55 3.00 0.85 13 0.8541 53.005748.87670.0024 4.13 4.6223.00 1.541 14 0.8570 54.450748.87670.0026 5.57 6.0193.00 2.006 15 0.8581 54.999348.87670.0027 6.12 6.5473.00 2.182 16 0.8570 54.450748.87670.0026 5.57 6.0193.00 2.006 17 0.8545 53.184948.87670.0024 4.31 4.7963.00 0 18 0.8507 51.233448.87670.0021 2.36 2.8913.00 0 19 0.8461 48.816048.87670.0017 -0.06 0 3.00 0 20 0.8416 46.469948.87670.0013 -2.41 0 3.00 0 21 0.8377 44.515548.87670.0010 -4.36 0 3.00 0 22 0.8342 42.606248.87670.0006 -6.27 0 3.00 0 23 0.8314 41.208348.87670.0004 -7.67 0 3.00 0

PAGE 168

154 Table C.35. November Daily Average Energy Consumption for Model II, Chicago Hour of day vEA (m3/kg) hEA (kJ/kg) hLA ((kJ/kg) m w (kg/s) hEA hLA (kJ/kg) Q (kW) Average COP Electric kWh 0 0.8079 26.474948.87670.0000 -22.400 N/A 0 1 0.8060 25.360348.87670.0000 -23.520 N/A 0 2 0.8043 24.263948.87670.0000 -24.610 N/A 0 3 0.8028 23.424548.87670.0000 -25.450 N/A 0 4 0.8016 22.713148.87670.0000 -26.160 N/A 0 5 0.8013 22.477748.87670.0000 -26.400 N/A 0 6 0.8020 22.949448.87670.0000 -25.930 N/A 0 7 0.8039 24.022848.87670.0000 -24.850 N/A 0 8 0.8071 25.976848.87670.0000 -22.900 N/A 0 9 0.8120 28.891248.87670.0000 -19.990 N/A 0 10 0.8175 32.210448.87670.0000 -16.670 N/A 0 11 0.8238 35.983948.87670.0000 -12.890 N/A 0 12 0.8297 39.517348.87670.0000 -9.36 0 N/A 0 13 0.8342 42.286848.87670.0004 -6.59 0 N/A 0 14 0.8372 44.029548.87670.0008 -4.85 0 N/A 0 15 0.8383 44.673248.87670.0009 -4.20 0 N/A 0 16 0.8372 44.029548.87670.0008 -4.85 0 N/A 0 17 0.8345 42.442848.87670.0005 -6.43 0 N/A 0 18 0.8305 39.971448.87670.0000 -8.91 0 N/A 0 19 0.8256 37.143948.87670.0000 -11.730 N/A 0 20 0.8209 34.282348.87670.0000 -14.590 N/A 0 21 0.8167 31.803948.87670.0000 -17.070 N/A 0 22 0.8131 29.541848.87670.0000 -19.330 N/A 0 23 0.8101 27.735248.87670.0000 -21.140 N/A 0

PAGE 169

155 Table C.36. December Daily Average Energy Consumption for Model II, Chicago Hour of day vEA (m3/kg) hEA (kJ/kg) hLA ((kJ/kg) m w (kg/s) hEA hLA (kJ/kg) Q (kW) A verage COP Electric kWh 0 0.7857 13.617748.87670.0000 -35.260 N/A 0 1 0.7839 12.606148.87670.0000 -36.270 N/A 0 2 0.7822 11.511948.87670.0000 -37.360 N/A 0 3 0.7807 10.631048.87670.0000 -38.250 N/A 0 4 0.7796 9.954548.87670.0000 -38.920 N/A 0 5 0.7792 9.762648.87670.0000 -39.110 N/A 0 6 0.7799 10.147048.87670.0000 -38.730 N/A 0 7 0.7818 11.216848.87670.0000 -37.660 N/A 0 8 0.7850 13.211148.87670.0000 -35.670 N/A 0 9 0.7898 16.009448.87670.0000 -32.870 N/A 0 10 0.7952 19.161848.87670.0000 -29.710 N/A 0 11 0.8015 22.952048.87670.0000 -25.920 N/A 0 12 0.8073 26.352448.87670.0000 -22.520 N/A 0 13 0.8116 29.024648.87670.0000 -19.850 N/A 0 14 0.8146 30.732948.87670.0000 -18.140 N/A 0 15 0.8157 31.401848.87670.0000 -17.470 N/A 0 16 0.8146 30.732948.87670.0000 -18.140 N/A 0 17 0.8120 29.285048.87670.0000 -19.590 N/A 0 18 0.8081 26.853448.87670.0000 -22.020 N/A 0 19 0.8032 24.026248.87670.0000 -24.850 N/A 0 20 0.7985 21.201348.87670.0000 -27.680 N/A 0 21 0.7944 18.717448.87670.0000 -30.160 N/A 0 22 0.7909 16.648748.87670.0000 -32.230 N/A 0 23 0.7879 14.958348.87670.0000 -33.920 N/A 0

PAGE 170

156 LIST OF REFERENCES Addison, 2002, Addison Products Co mpany Specifications Manual Orlando, Florida Ahmed, C. S., Al-Frayedhi, A., Gandhidsan, P. and Zubair S., 1996,” Exergy Analysis of A Liquid-Desiccant Based Hybrid Air-conditioning System,” Energy Vol. 23, No.1, pp. 51-59. Ahmed, S. Y., Al-Frayedhi, A. and Gandhids an ,P., 1997,” Thermodynamic Analysis of Liquid Desiccants,” Solar Energy Vol. 62 No.1, pp. 11-18. Ahmed, S. Y., Al-Frayedhi, A. and Ga ndhidsan ,P.,1999,”Regeneration of Liquid Desiccants Using Membrane Technology,” Energy Conversion and Management, Vol. 40, pp. 1405-1411. Al-Frayedhi, A., Al-Mutairi, M. A. and Gandhi dsan P., 2002,” Evaluation of Heat and Mass Transfer Coefficient in Gauze-type Structured Packing Air Dehumidifier Operating with Liquid Desiccant,” International Journal of Refrigeration Vol. 25, pp. 330_339. Al-Rabghi, O. M., Elsayed M. M. and Ki nsara, A. A.,1997, ”Parametric Study of an Energy Efficient Air Conditioning System Using Liquid Desiccant,” Applied Thermal Engineering Vol. 18, No 5, pp. 327-335. Aseyev, G. G. and Zaytsev, I. D.,1992, Proper ties of Aqueous Solutions of Electrolytes CRC Press, Boca Raton. ASHRAE, 1989, ASHRAE HandbookFundamentals SI Edition, The American Society of Heating, Refrigerating and Air-Conditioni ng Engineers, Inc., Atlanta, Georgia. ASHRAE, 2001, ASHRAE HandbookFundamentals SI Edition, The American Society of Heating, Refrigerating and Air-Conditioni ng Engineers, Inc., Atlanta, Georgia. Berntsson, T. S. and Wimby, M. J., 1994, “Viscosity and Density of Aqueous Solutions of LiBr, LiCl, ZnBr2 CaCl2 and LiNO3,” Journal of Chemical and Engineering Data Vol. 39, No. 1, pp. 68-74. Dai, Y. J., Wang, R. Z., Yu, J. D. and Zhang H.F.,2001,” Use of Liquid Desiccant Cooling to Improve the Performance of Vapor Compression Air Conditioning,” Applied Thermal Engineering Vol. 21, pp. 1185-1202. Desicalc, 2002, Desicalc InterEnerg y Software, Batavia, Illinois.

PAGE 171

157 Dhar, P. L., Kaushik, S. C. and Sanjeev, J.,2000,” Optimal design of Liquid Desiccant Cooling Systems,” ASHRAE Transaction Vol. 106, pp. 79-86. DryKor, 2002, DryKor Reference Handbook and Software Fayetteville, Georgia. Carrier, 2002, Carrier Hourly Anal ysis Program (HAP4.1), Syracuse New York. Fumo, N.,1999, Performance of a Packed Towe r Absorber/Regenerator for an Aqueous Lithium Chloride Desiccant Dehumidification Systems, M.S. Thesis, University of Florida, Gainesville, Florida. Johannsen, A., 1984,”Performance Simulation of a Solar Air-conditi oning System with Liquid Desiccant,” Internationa l Journal of Ambient Energy 5(2), pp. 55-89. Kathabar, 2003, Kathabar Website, http://www.kathabar.com, April 30, 2003. Khan, A. Y. and Martinez, J. L., 1996, “Modeli ng and Parametric Analysis of Heat and Mass Transfer Performance of a Hybrid Liquid Desiccant Absorber,” Energy Conversion and Management Vol. 39, No 10, pp. 1095-1112. Lowensteien, A., Pesaran, A., Ryan, J. and Slayzak S., 1998,“Advanced Commercial Liquid-Desiccant Technology Development Study,” Report by National Renewable Energy Laboratory, Golden, Colorado. Mago, P., 2000, Performance of a Hybrid De siccant Cooling System Using Lithium Chloride and Its Application in Residen tial and Commercial Sector, M.S. Thesis, University of Florida, Gainesville. Sherif, S. A., 2002, “Overview of Psychometrics,” ASHRAE Journal Vol. 44, No. 7, pp. 33-40.

PAGE 172

158 BIOGRAPHICAL SKETCH A. M. Al-Jaafari was born on January 13, 1974 in AL-Hassa, Saudi Arabia, where he performed his studies until high school. In 1991 he moved to Dhahran, Saudi Arabia, where he completed his Bachelor in Mechani cal Engineering at King Fahd University of Petroleum and Minerals by January 1996. Afte r graduation he joined Saudi Aramco Oil Company in March 1996 working as a Mechanic al Design Engineer in the Project Design and Construction Department. Due to hi s high performance and high GPA at the bachelor’s degree he was granted a scholar ship by Saudi Aramco Oil Company to complete his master’s degree in mechanical e ngineering at the Univer sity of Florida in August 2001. After graduation he will be back to the Project Design and Construction Department of Saudi Aramco Oil Company to act as an HVAC design specialist for two years. After that he intends to star t a Ph.D. in mechanical engineering.


Permanent Link: http://ufdc.ufl.edu/UFE0000849/00001

Material Information

Title: Comparative Analysis of Vapor Compression and Hybrid Liquid Desiccant Dehumidification Systems
Physical Description: Mixed Material
Copyright Date: 2008

Record Information

Source Institution: University of Florida
Holding Location: University of Florida
Rights Management: All rights reserved by the source institution and holding location.
System ID: UFE0000849:00001

Permanent Link: http://ufdc.ufl.edu/UFE0000849/00001

Material Information

Title: Comparative Analysis of Vapor Compression and Hybrid Liquid Desiccant Dehumidification Systems
Physical Description: Mixed Material
Copyright Date: 2008

Record Information

Source Institution: University of Florida
Holding Location: University of Florida
Rights Management: All rights reserved by the source institution and holding location.
System ID: UFE0000849:00001


This item has the following downloads:


Full Text












COMPARATIVE ANALYSIS OF VAPOR COMPRESSION AND HYBRID LIQUID
DESICCANT DEHUMIDIFICATION SYSTEMS












By

A. M. AL-JAAFARI


A THESIS PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE



UNIVERSITY OF FLORIDA


2003















ACKNOWLEDGMENTS

I would like to thank my advisor Dr. Sherif for his guidance and cooperation and

for helping me successfully complete my degree requirements. I would like also to thank

Dr. Ingley for his help and advice during the preparation of my thesis, and particularly in

the use of the HAP 4.1 program. I would like also to thank Dr. Goswami for stimulating

my interest in the subject of liquid desiccants.

Special thanks are due to Robert N. Van Der Like, Energy Management Specialist

of Marion County Public Schools, for his help in providing information about the internal

loads and building structure of the school model examined in this thesis. Special thanks

are also due to Yigal Lazarov, Regional Marketing Manager and Alon Landsman, Senior

Application Engineer of DryKor, for their help in providing technical data pertaining to

their products.
















TABLE OF CONTENTS
page

A C K N O W L E D G M E N T S .................................................................................................. ii

LIST OF TABLES ..................................................................... .... .... v

LIST OF FIGURES ......... ........................................... ............ xi

N O M E N C L A T U R E ......................................................................................................... x ii

ABSTRACT ........ .............. ............. ...... ...................... xiv

CHAPTER

1 INTRODUCTION ............... ................. ........... ................. ... ..... 1

2 REVIEW OF LITERATURE ......................................................... .............. 4

3 COOLING LOAD CALCULATIONS AND PSYCHROMETRIC ANALYSIS........8

3.1 C ooling L oad C calculations ......................................................... .....................8
3.1.1 Internal Loads ........ ................ .. ........................... .8
3.1.2 Indoor Design Conditions............. .............. .. ......... .. ......... .... ..9
3.1.3 Outdoor Conditions .............................................................................. 9
3 .2 P sy chrom etric A naly sis ........................................ ........................................ 16

4 CYCLE DESCRIPTION AND THERMODYNAMIC ANALYSIS OF A HYBRID
LIQUID DESICCANT (HLD) SYSTEM ...................................... ............... 18

4.1 System Description .......... ..................... ........... .....18
4.2 Thermodynamic Analysis of the DryKor Cycle...............................................21
4.2.1. Thermodynamic Properties of Liquid Desiccants ............... .......... 21
4.2.2 Evaluating the COP of the DryKor HLD System ..................... ........ 23
4.2.3 HLD System COP .................................. .....................................25

5 E N E R G Y A N A L Y SIS ....................................................................... ..................27

5.1 Model I: Existing Air-Conditioning and Ventilation System...........................27
5.1.1 Energy Consumption of the Building Excluding the Ventilation Load ... 28
5.1.2 DX Outside-air Make-up Unit Process Description................................28
5.1.3 Energy Consumption of the Outside-Air (OA) Make-Up Unit.................30









5.2 M odel II: DryKor HLD Packaged System ............... ............ .....................32
5.3 Model III: Hybrid Solid Desiccant Cooling System ....................................34

6 RESULTS AND DISCU SSION ........................................... .......................... 36

6.1 Energy Consum ption Sum m ary.................... ................. ............... ... 36
6.1.1 Outside-Air Make-Up Unit Energy Consumption ..................................36
6.1.2 Building Total Cooling Energy Consumption.............................39
6.2 Cost Sum m ary and A nalysis.......................................... ........... ............... 43
6.2.1 Cost of Electric Energy ................. ........... ............... ... ............ 43
6.2.2 Capital and O their Costs....................................... .......................... 45

7 CONCLUSIONS AND RECOMMENDATIONS ............................................. 47

APPENDIX

A PSYCHROMETRIC PROPERTY TABLES ..........................................................48

B AVERAGE ENERGY CONSUMPTION FOR MODEL I......................................84

C AVERAGE ENERGY CONSUMPTION FOR MODEL II..................................120

L IST O F R E FE R E N C E S ......... .. ............ ............................................................ 156

B IO G R A PH ICA L SK ETCH .................................... ........... ................. .....................158
















LIST OF TABLES


Table p

3.1 C ooling Spaces Internal Loads ........................................... ......................... 9

3.2 M iami's W weather Data from January-June............. ...............................................10

3.3 Miami's Weather Data from from July-December.................... ... ............. 11

3.4 Gainesville's Weather Data from January-June ......................................... 12

3.5 Gainesville's Weather Data from July-December.......................... ..........13

3.6 Chicago's W weather Data from January-June ............................... ............... .14

3.7 Chicago's Weather Data from July-December .................................................15

3.8 January Average Hourly Psychrometric Properties for Miami.............................17

5.1 Cooling Energy Consumption by the Building Excluding Ventilation .................28

5.2 Number of Working Days per Month............................... ..............31

5.3 January Daily Average Energy Consumption for Model I, Miami .....................32

5.4 January Daily Average Energy Consumption for Model II, Miami ....................34

5.5 M iam i Energy Consum ption for M odel III..................................... ....................35

5.6 Chicago Energy Consumption for M odel III...... ........ ..................... ............... 35

6.1 Miami's Monthly Energy Consumption for the Make-Up Unit..........................36

6.2 Gainesville's Monthly Energy Consumption for the Make-Up Unit...................37

6.3 Chicago's Monthly Energy Consumption for the Make-Up Unit .......................37

6.4 Total Cooling Energy Consumption for the Miami Building............................40

6.5 Total Cooling Energy Consumption for the Gainesville Building ......................41

6.6 M iam i's Energy Cost Sum m ary....................................... .......................... 43









6.7 Gainesville's Energy Cost Sum m ary .................................. ........ ................... 44

6.8 Chicago's Energy Cost Sum m ary.................................................. ............... 44

6.9 Operation and Capital Cost Summary ....................................... ............... 45

A. 1 January Average Hourly Psychrometric Properties for Miami.............................48

A.2 February Average Hourly Psychrometric Properties for Miami............................49

A.3 March Average Hourly Psychrometric Properties for Miami.............................50

A.4 April Average Hourly Psychrometric Properties for Miami..............................51

A.5 May Average Hourly Psychrometric Properties for Miami...............................52

A.6 June Average Hourly Psychrometric Properties for Miami...............................53

A.7 July Average Hourly Psychrometric Properties for Miami .................................54

A.8 August Average Hourly Psychrometric Properties for Miami ...........................55

A.9 September Average Hourly Psychrometric Properties for Miami.........................56

A. 10 October Average Hourly Psychrometric Properties for Miami ...........................57

A. 11 November Average Hourly Psychrometric Properties for Miami .......................58

A. 12 December Average Hourly Psychrometric Properties for Miami..........................59

A. 13 January Average Hourly Psychrometric Properties for Gainesville...................60

A. 14 February Average Hourly Psychrometric Properties for Gainesville ..................61

A. 15 March Average Hourly Psychrometric Properties for Gainesville.....................62

A. 16 April Average Hourly Psychrometric Properties for Gainesville..........................63

A. 17 May Average Hourly Psychrometric Properties for Gainesville.......................64

A. 18 June Average Hourly Psychrometric Properties for Gainesville.......................65

A. 19 July Average Hourly Psychrometric Properties for Gainesville..........................66

A.20 August Average Hourly Psychrometric Properties for Gainesville.....................67

A.21 September Average Hourly Psychrometric Properties for Gainesville .................68

A.22 October Average Hourly Psychrometric Properties for Gainesville....................69









A.23 November Average Hourly Psychrometric Properties for Gainesville..................70

A.24 December Average Hourly Psychrometric Properties for Gainesville ...............71

A.25 January Average Hourly Psychrometric Properties for Chicago...........................72

A.26 February Average Hourly Psychrometric Properties for Chicago.........................73

A.27 March Average Hourly Psychrometric Properties for Chicago.............................74

A.28 April Average Hourly Psychrometric Properties for Chicago..............................75

A.29 May Average Hourly Psychrometric Properties for Chicago.............................76

A.30 June Average Hourly Psychrometric Properties for Chicago.............................77

A.31 July Average Hourly Psychrometric Properties for Chicago................................78

A.32 August Average Hourly Psychrometric Properties for Chicago............................79

A.33 September Average Hourly Psychrometric Properties for Chicago ....................80

A.34 October Average Hourly Psychrometric Properties for Chicago ..........................81

A.35 November Average Hourly Psychrometric Properties for Chicago ......................82

A.36 December Average Hourly Psychrometric Properties for Chicago .......................83

B. 1 January Daily Average Energy Consumption for Model I, Miami .......................84

B.2 February Daily Average Energy Consumption for Model I, Miami .....................85

B.3 March Daily Average Energy Consumption for Model I, Miami .........................86

B.4 April Daily Average Energy Consumption for Model I, Miami ...........................87

B.5 May Daily Average Energy Consumption for Model I, Miami ..........................88

B.6 June Daily Average Energy Consumption for Model I, Miami ...........................89

B.7 July Daily Average Energy Consumption for Model I, Miami ...........................90

B.8 August Daily Average Energy Consumption for Model I, Miami ......................91

B.9 September Daily Average Energy Consumption for Model I, Miami .................92

B.10 October Daily Average Energy Consumption for Model I, Miami.....................93

B.11 November Daily Average Energy Consumption for Model I, Miami...................94









B.12 December Daily Average Energy Consumption for Model I, Miami ...................95

B.13 January Daily Average Energy Consumption for Model I, Gainesville...............96

B.14 February Daily Average Energy Consumption for Model I, Gainesville..............97

B.15 March Daily Average Energy Consumption for Model I, Gainesville..................98

B.16 April Daily Average Energy Consumption for Model I, Gainesville....................99

B. 17 May Daily Average Energy Consumption for Model I, Gainesville................... 100

B. 18 June Daily Average Energy Consumption for Model I, Gainesville................... 101

B. 19 July Daily Average Energy Consumption for Model I, Gainesville....................102

B.20 August Daily Average Energy Consumption for Model I, Gainesville...............103

B.21 September Daily Average Energy Consumption for Model I, Gainesville .........104

B.22 October Daily Average Energy Consumption for Model I, Gainesville ............105

B.23 November Daily Average Energy Consumption for Model I, Gainesville .........106

B.24 December Daily Average Energy Consumption for Model I, Gainesville..........107

B.25 January Daily Average Energy Consumption for Model I, Chicago...................108

B.26 February Daily Average Energy Consumption for Model I, Chicago...............09

B.27 March Daily Average Energy Consumption for Model I, Chicago .................110

B.28 April Daily Average Energy Consumption for Model I, Chicago....................111

B.29 May Daily Average Energy Consumption for Model I, Chicago.....................112

B.30 June Daily Average Energy Consumption for Model I, Chicago.......................113

B.31 July Daily Average Energy Consumption for Model I, Chicago........................114

B.32 August Daily Average Energy Consumption for Model I, Chicago.................115

B.33 September Daily Average Energy Consumption for Model I, Chicago..............116

B.34 October Daily Average Energy Consumption for Model I, Chicago ................17

B.35 November Daily Average Energy Consumption for Model I, Chicago ............118

B.36 December Daily Average Energy Consumption for Model I, Chicago.............119









C.1 January Daily Average Energy Consumption for Model II, Miami ..................120

C.2 February Daily Average Energy Consumption for Model II, Miami ................121

C.3 March Daily Average Energy Consumption for Model II, Miami ....................122

C.4 April Daily Average Energy Consumption for Model II, Miami ......................123

C.5 May Daily Average Energy Consumption for Model II, Miami .......................124

C.6 June Daily Average Energy Consumption for Model II, Miami .......................125

C.7 July Daily Average Energy Consumption for Model II, Miami.......................126

C.8 August Daily Average Energy Consumption for Model II, Miami.....................127

C.9 September Daily Average Energy Consumption for Model II, Miami .............128

C.10 October Daily Average Energy Consumption for Model II, Miami....................129

C.11 November Daily Average Energy Consumption for Model II, Miami..............130

C.12 December Daily Average Energy Consumption for Model II, Miami ..............131

C. 13 January Daily Average Energy Consumption for Model II, Gainesville.............132

C.14 February Daily Average Energy Consumption for Model II, Gainesville...........133

C. 15 March Daily Average Energy Consumption for Model II, Gainesville.............134

C. 16 April Daily Average Energy Consumption for Model II, Gainesville...............135

C.17 May Daily Average Energy Consumption for Model II, Gainesville................136

C.18 June Daily Average Energy Consumption for Model II, Gainesville................137

C. 19 July Daily Average Energy Consumption for Model II, Gainesville ................138

C.20 August Daily Average Energy Consumption for Model II, Gainesville ............139

C.21 September Daily Average Energy Consumption for Model II, Gainesville........140

C.22 October Daily Average Energy Consumption for Model II, Gainesville ............141

C.23 November Daily Average Energy Consumption for Model II, Gainesville ........142

C.24 December Daily Average Energy Consumption for Model II, Gainesville.........143

C.25. January Daily Average Energy Consumption for Model II, Chicago....................144









C.26 February Daily Average Energy Consumption for Model II, Chicago .............145

C.27 March Daily Average Energy Consumption for Model II, Chicago .................146

C.28 April Daily Average Energy Consumption for Model II, Chicago ...................147

C.29 May Daily Average Energy Consumption for Model II, Chicago.....................148

C.30 June Daily Average Energy Consumption for Model II, Chicago.....................149

C.31 July Daily Average Energy Consumption for Model II, Chicago .....................150

C.32 August Daily Average Energy Consumption for Model II, Chicago ................151

C.33 September Daily Average Energy Consumption for Model II, Chicago.............152

C.34 October Daily Average Energy Consumption for Model II, Chicago...............53

C.35 November Daily Average Energy Consumption for Model II, Chicago............154

C.36 December Daily Average Energy Consumption for Model II, Chicago .............155
















LIST OF FIGURES


Figure pge

3.1 B building layout .......................................................................................... ..............

4.1 Psychrometric depiction of the DryKor cooling and dehumidifying process........20

4.2 Schem atic diagram of the DryKor system ........................... .. .....................21

4.3 Effect of temperature on the specific heat and density of LiCl at a 40%
concentration ............. ................ ................. .............. ... ..... 22

4.4 Schematic diagram of the absorber/cooler chamber................... ............... 23

5.1 Cooling and dehumidifying process performed by the vapor compression
sy stem ............................................................................. 2 9

5.2 Reheat system (A ddison, 2002) ........................................ ......................... 29

6.1A HLD and DX make-up unit's electric energy consumption for Miami ...............38

6.1B HLD and DX make-up unit's electric energy consumption for Gainesville .........38

6.1C HLD and DX make-up unit's electric energy consumption for Chicago ..............39

6.2A Monthly energy consumption for the Miami building........................................42

6.2B Monthly energy consumption for the Gainesville building ...............................42

6.2C Monthly energy consumption for the Chicago building ............... ..................43















NOMENCLATURE


Latin Symbols

COP coefficient of performance

COPHLD coefficient of performance of hybrid liquid desiccant system

Cp specific heat, kJ/(kg K)

h specific enthalpy, kJ/kg

Ih mass flow rate, kg/s

Patm atmospheric pressure, Pa

Pw water vapor pressure, Pa

Pws water vapor saturation pressure, Pa

Q cooling rate, kW

Ra gas constant for air, J/(kg K)

T absolute temperature, K

t temperature, C

t* wet-bulb temperature, C

v specific volume, m3/kg

V volumetric flow rate, m3/s

W humidity ratio, kgv/kga

W electrical power, kW

Wcomp compressor electrical power










Wf regeneration fan electrical power, kW

Wdp liquid desiccant pump electrical power, kW

Ws saturation humidity ratio, kgv/kga

x percent concentration of liquid desiccant solution, kgd/ kgs

Greek Symbols

S relative humidity, dimensionless

[t degree of saturation, dimensionless

Subscripts

a dry air

atm atmospheric

c condenser

d desiccant

e evaporator

E entering

L leaving

m moist air

P pump

r refrigerant

s solution or saturated

v vapor

w water













Abstract of Thesis Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Master of Science

COMPARATIVE ANALYSIS OF VAPOR COMPRESSION AND HYBRID LIQUID
DESICCANT DEHUMIDIFICATION SYSTEMS


By

A. M. Al-Jaafari

August, 2003

Chair: S. A. Sherif
Major Department: Mechanical and Aerospace Engineering

The objective of this study was to evaluate the energy savings of a commercially

available hybrid liquid desiccant (HLD) cooling system relative to a conventional vapor

compression system used for an existing school building where 100% outside air is used

for ventilation. Psychrometric analysis and hour-by-hour simulations for three energy

models were developed for three cities in the United States using available weather data

assuming normal operation and typical building occupancy. Energy calculation software

such as the Carrier Hourly Analysis Program (HAP 4.1) and Desicalc along with

generated spreadsheets was used to compute the energy consumption for the models

under study. Results of each model are summarized and comparisons are made. The

annual energy savings employing the HLD system were found to reach 46% for Chicago,

37% for Gainesville and 32% for Miami. Simple cost analysis and associated payback

periods were also performed.














CHAPTER 1
INTRODUCTION

Saving Energy is one of the main concerns in the HVAC industry. A large

percentage of the energy consumed for cooling (up to 50%) is directed towards removing

the latent load.

Dehumidification using a chemical substance (desiccant) was proposed by

researchers as a potentially good method to remove the latent load. While the widely

used desiccant cooling methods in the HVAC market today utilize solid desiccants,

recent research suggests that liquid desiccants are also promising. Compared to solid

desiccant systems, liquid desiccant systems are more efficient, easy to install, and have

low maintenance costs. In addition to its dehumidification effect, liquid desiccants could

also be used as efficient substances to wash air from suspended particles. Since liquid

desiccant cooling systems are still not widely commercialized, a relatively small number

of investigations have discussed practical comparisons between hybrid liquid desiccant

(HLD) cooling systems and vapor compression cooling systems. The market for liquid

desiccant cooling system products is growing, however not many clients are comfortable

enough with the reliability and efficiency of these systems. In this thesis an existing

school with 100% outside air (OA) preconditioning with a direct expansion (DX) cooling

unit (with hot gas reheat for temperature control and hot gas bypass for capacity control)

will be compared with a hybrid desiccant cooling system for the purpose of computing

the energy savings resulting from the use of the latter. The expectation is that the use of

liquid desiccant cooling would reduce both capital and operating costs.









The model will be studied using weather data for three locations (Gainesville,

Miami, and Chicago) in the United States for the purpose of investigating the effect of the

change in weather on the performance of the system as well as on the energy

consumption. However, the model will be shown to fit any other location where weather

data are available. A Parametric study that provides the coefficient of performance

(COP) of the HLD cooling system will be demonstrated for the chosen cycle, however

for energy calculation in this thesis, vendor software will be used to compute the system

COP.

Economics of the system will be briefly discussed and will focus on the cost of

energy. Recently developed software for energy calculation such as the Carrier Hourly

Analysis Program (HAP 4.1, Carrier 2002) and Desicalc (Desicalc, 2002) will be used to

compute the hourly energy consumption rate for conventional and solid desiccant

systems, respectively. To date, analysis of liquid desiccant systems is still not part of the

software. For this purpose, a model capable of computing the hourly energy

consumption along with internal loads will be developed. Internal load calculations to

reflect the effect of seasonal variations on cooling loads will be computed by the HAP 4.1

(Carrier, 2002).

This thesis is divided into seven (7) chapters including the Introduction as Chapter

1. Chapter 2 reviews the literature for related studies. In Chapter 3, the hourly space

cooling load calculation of the building under study and psychrometric analysis for the

ambient air for the three cities will be performed. Chapter 4 presents thermodynamic

analysis of the hybrid desiccant system cycle. Electric energy consumption for different

energy models for the three cities will be evaluated in Chapter 5. Chapter 6 will









summarize and discuss the energy consumption results obtained in Chapter 5.

Conclusions and recommendations for future work will be provided in Chapter 7.














CHAPTER 2
REVIEW OF LITERATURE

The idea of using a liquid chemical substance (desiccant) for dehumidification was

first applied to industrial processes in the early 1930s. Kathabar Inc., produced the first

cooling and dehumidifying desiccant system in 1937 for a large central system used for

an industrial plant (Kathabar, 2003). Later in 1953, Kathabar developed air-conditioning

units providing dehumidification from 1100 cfm to 22,500 cfm. The development

continued on to improve the efficiency of regeneration to reduce the energy cost. In the

early 1980s researchers investigated applying cheaper regeneration methods using

renewable energy (solar), exhaust heat, and membrane separation regeneration to

improve the COP of liquid desiccant air conditioning systems. Research has generally

concentrated on optimizing the performance of liquid desiccant systems and improving

the regeneration process of the used desiccant to reduce energy cost. In order to optimize

the desiccant cooling process, researchers extensively utilized thermodynamic modeling

and parametric analysis. Different models and experimental verification were performed

showing promising results. In the late 1990s, DryKor produced the first liquid desiccant

air-conditioning unit that utilizes no external heat sources for regeneration. Based on

their study, the COP of such units could reach 4 and provide a cooling capacity that

varies from 2000 cfm and 17.5 MBH to 2800 cfm and 37.8 MBH.

The National Renewable Energy Laboratory (NREL) of the U. S. Department of

Energy established a task force to assist the commercialization of liquid and solid

desiccant systems. One of many studies and reports that they published is entitled









Advanced Commercial Liquid-Desiccant Technology Development Study (1998) which

stated that liquid desiccant systems could produce as much as a 40% reduction in

operating costs compared to solid desiccants (Lowensteien et al., 1998).

Johannsen (1984) investigated the performance of hybrid solar air conditioning

systems with liquid desiccants under different climatic conditions for five cities in South

Africa. His experimental setup used four solar collectors to heat the weak desiccant

solution for regeneration. He also used a water-cooling tower to cool the dehumidified

air through a heat exchanger. The achieved seasonal COP of the system ranged from

0.36 to 0.47 at that early time of exploring solar liquid desiccant system performance.

Johannsen (1984) found that his system could provide 1.91 to 2.90 kWh of cooling per

square meter of collector area.

Ahmed et al. (1996) performed an optimization study to find the optimum desiccant

mass flow rate with the least irreversibility in a solar regenerator cycle where they used

one solar collector to regenerate the weak desiccant solution exiting the absorber. Based

on their analysis, the optimum mass flow rate was found to be 30 kg/(h m2) for an

ambient temperature of 40 C. They suggested that the absorber irreversibility be treated

in the same manner as that of the regenerator since the components are similar.

Khan and Martinez (1996) developed a mathematical model to study the

performance of a liquid desiccant absorber under isothermal conditions. A partial load

performance of the absorber was studied to illustrate the effect of variable

dehumidification load. Annual energy savings were predicted by a simple model. Based

on their analysis, the performance of the absorber was affected significantly by the

desiccant inlet temperature.









Ahmed et al. (1997) performed thermodynamic property analysis for LiCl and

CaCl using classical thermodynamic techniques. Density, vapor pressure, and viscosity

for LiC1, CaCl and their mixtures at different concentrations were computed and plotted.

Al-Rabghi et al. (1997) performed a parametric study of the effect of outside

ambient temperature and relative humidity on a proposed hybrid liquid desiccant system.

A comparison between the coefficient of performance of a liquid desiccant system

(COP)HLD and that of a conventional system (COP), was made. Results suggested that

increasing the ambient temperature and latent-to-sensible heat ratio to certain limits

improved the (COP)HLD/(COP)c ratio.

Ahmed et al. (1999) studied regeneration of a weak desiccant solution by a

mechanical process instead of a thermal process by means of osmotic pressure. Pressures

required for regeneration for different solution concentrations for LiCl and CaCl were

computed and plotted.

An optimization study by Dhar et al. (2000) to minimize the lifetime cost of a

liquid desiccant system was performed. Results of their program showed that waste heat

availability would promote the liquid desiccant system against conventional compression

systems from operating and initial cost points of view.

Mago (2000) developed a simulation model and software for a liquid desiccant

system with a solar collector regenerator and a vapor compression system performance

using Fumo's (1999) modified model. Effect of variation of different parameters such as

the desiccant mass flow rate, inlet temperature, and concentration were computed and

plotted. Cost analysis for selected vapor compression systems with an equivalent hybrid









desiccant system was performed. The result showed savings of $3426/yr for electricity

and a payback period of two years for a two-ton vapor compression system.

Al-Frayedhi et al. (2002) performed an evaluation of the heat and mass transfer

coefficients in a gauze-type structured packing liquid desiccant air dehumidifier. A

theoretical model was developed and values for different concentrations of LiC1, CaC1,

and a mixture of both were computed and plotted.

Dai et al. (2001) performed an experimental comparative analysis between hybrid

liquid desiccants and vapor compression cooling systems. The study showed that adding

desiccant dehumidification improved the cycle COP and reduced compressor size as well

as the electrical energy consumed.














CHAPTER 3
COOLING LOAD CALCULATIONS AND PSYCHROMETRIC ANALYSIS

3.1 Cooling Load Calculations

An existing school building (Figure 3.1) was used as a model to study the cooling

load and energy analysis. The building was divided into thirteen (13) spaces assigned to

nine (9) zones where each zone is assigned to one heat pump (HP). To maximize the

accuracy, the Carrier HAP 4.1 program was used to compute the hour-by-hour load.


Figure 3.1. Building layout

3.1.1 Internal Loads

Internal loads for each space are summarized in Table 3.1. Values provided by the

American Society of Heating, Refrigeration, and Air-Conditioning Engineers [ASHRAE]











(2001) for equipment sensible and latent loads considering moderate office work were

used

Table 3.1. Cooling S aces Internal Loads
Library
Space Space Space Space Space Space & PC East West Men Women
1 2 3 4 5 6 Lab Hall Vest Vest Counsel WC WC
Floor Area
m2 67.7 67.7 63.4 61.3 67.7 67.7 158 120 18.4 18.4 27.9 18 18.4
People
(rounded
adults) 16 16 16 16 16 16 3 1
Equipment
(kW) 302 302 302 302 302 302 3550 7000
Lights
(kW/m2) 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2
Misc.
(kW/m2) 280

3.1.2 Indoor Design Conditions

The indoor design dry-bulb temperature (DBT) and wet-bulb temperature WBT

used for all cooling load calculations in this study were assumed to be DBT=240C and

WBT=170C.

3.1.3 Outdoor Conditions

The design conditions for the three cities are summarized as follows:


Summer


Winter


City DBT (oC) WBT (oC) DBT (oC) WBT (C)
Miami 32.8 25 7.8 3.7
Gainesville 34.4 25 -1.1 -3.7
Chicago 32.8 23.3 -21.1 -21.8


The average hourly dry-bulb and wet-bulb temperatures obtained from the HAP 4.1

program for Miami, Gainesville, and Chicago are shown in Tables 3.2 through 3.7.












Table 3.2. Miami's Weather Data from January-June
Hr January February March April May June
DBT WBT DBT WBT DBT WBT DBT WBT DBT WBT DBT WBT
(C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C)
0000 22.0 20.1 23.1 20.7 24.8 21.9 25.4 22.5 25.9 23.0 27.0 23.6
0100 21.7 20.0 22.8 20.6 24.5 21.8 25.0 22.4 25.6 23.0 26.7 23.5
0200 21.4 19.9 22.5 20.5 24.2 21.7 24.7 22.3 25.3 22.9 26.4 23.5
0300 21.1 19.8 22.3 20.4 23.9 21.6 24.5 22.2 25.0 22.8 26.1 23.4
0400 21.0 19.8 22.1 20.4 23.7 21.6 24.3 22.2 24.8 22.7 26.0 23.3
0500 20.9 19.8 22.0 20.3 23.7 21.5 24.2 22.1 24.8 22.7 25.9 23.3
0600 21.0 19.8 22.1 20.4 23.8 21.6 24.3 22.2 24.9 22.8 26.0 23.4
0700 21.3 19.9 22.4 20.5 24.1 21.7 24.7 22.3 25.2 22.9 26.3 23.4
0800 21.9 20.1 23.0 20.7 24.7 21.8 25.2 22.4 25.8 23.0 26.9 23.6
0900 22.7 20.3 23.8 20.9 25.5 22.1 26.1 22.7 26.6 23.2 27.7 23.8
1000 23.7 20.6 24.8 21.2 26.5 22.3 27.0 22.9 27.6 23.5 28.7 24.1
1100 24.8 20.9 25.9 21.5 27.5 22.6 28.1 23.2 28.6 23.8 29.8 24.4
1200 25.8 21.2 26.9 21.8 28.5 22.9 29.1 23.5 29.7 24.1 30.8 24.6
1300 26.5 21.5 27.6 22.0 29.3 23.1 29.9 23.7 30.4 24.3 31.5 24.8
1400 27.0 21.6 28.1 22.2 29.8 23.3 30.4 23.8 30.9 24.4 32.0 25.0
1500 27.2 21.7 28.3 22.2 30.0 23.3 30.6 23.9 31.1 24.4 32.2 25.0
1600 27.0 21.6 28.1 22.2 29.8 23.3 30.4 23.8 30.9 24.4 32.0 25.0
1700 26.6 21.5 27.7 22.0 29.4 23.2 29.9 23.7 30.5 24.3 31.6 24.8
1800 25.9 21.3 27.0 21.8 28.7 23.0 29.2 23.5 29.8 24.1 30.9 24.7
1900 25.1 21.0 26.2 21.6 27.8 22.7 28.4 23.3 29.0 23.9 30.1 24.4
2000 24.2 20.8 25.4 21.4 27.0 22.5 27.6 23.1 28.1 23.7 29.2 24.2
2100 23.5 20.6 24.7 21.2 26.3 22.3 26.9 22.9 27.4 23.5 28.5 24.0
2200 22.9 20.4 24.0 21.0 25.7 22.1 26.2 22.7 26.8 23.3 27.9 23.9
2300 22.4 20.2 23.5 20.8 25.2 22.0 25.7 22.6 26.3 23.2 27.4 23.7
(Carrier, 2002)












Table 3.3. Miami's Weather Data from from July-December
Hr July August September October November December
DBT WBT DBT WBT DBT WBT DBT WBT DBT WBT DBT WBT
(C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C)
0000 27.6 23.6 27.6 23.6 26.5 23.0 25.4 22.5 23.7 21.9 22.6 20.7
0100 27.3 23.6 27.3 23.6 26.2 23.0 25.0 22.4 23.4 21.8 22.3 20.6
0200 27.0 23.5 27.0 23.5 25.8 22.9 24.7 22.3 23.1 21.7 22.0 20.5
0300 26.7 23.4 26.7 23.4 25.6 22.8 24.5 22.2 22.8 21.6 21.7 20.4
0400 26.5 23.3 26.5 23.3 25.4 22.7 24.3 22.2 22.6 21.6 21.5 20.4
0500 26.4 23.3 26.4 23.3 25.3 22.7 24.2 22.1 22.6 21.5 21.4 20.4
0600 26.6 23.4 26.6 23.4 25.5 22.8 24.3 22.2 22.7 21.6 21.6 20.4
0700 26.9 23.4 26.9 23.4 25.8 22.9 24.7 22.3 23.0 21.7 21.9 20.5
0800 27.5 23.6 27.5 23.6 26.3 23.0 25.2 22.4 23.6 21.8 22.5 20.7
0900 28.3 23.8 28.3 23.8 27.2 23.2 26.1 22.7 24.4 22.1 23.3 20.9
1000 29.2 24.1 29.2 24.1 28.1 23.5 27.0 22.9 25.3 22.3 24.2 21.2
1100 30.3 24.4 30.3 24.4 29.2 23.8 28.1 23.2 26.4 22.7 25.3 21.5
1200 31.3 24.6 31.3 24.6 30.2 24.1 29.1 23.5 27.4 22.9 26.3 21.8
1300 32.1 24.8 32.1 24.8 31.0 24.3 29.9 23.7 28.2 23.1 27.1 22.0
1400 32.6 25.0 32.6 25.0 31.5 24.4 30.4 23.8 28.7 23.3 27.6 22.2
1500 32.8 25.0 32.8 25.0 31.7 24.4 30.6 23.9 28.9 23.3 27.8 22.2
1600 32.6 25.0 32.6 25.0 31.5 24.4 30.4 23.8 28.7 23.3 27.6 22.2
1700 32.1 24.8 32.1 24.8 31.0 24.3 29.9 23.7 28.3 23.2 27.1 22.0
1800 31.4 24.7 31.4 24.7 30.3 24.1 29.2 23.5 27.6 23.0 26.4 21.8
1900 30.6 24.4 30.6 24.4 29.5 23.9 28.4 23.3 26.7 22.7 25.6 21.6
2000 29.8 24.2 29.8 24.2 28.7 23.7 27.6 23.1 25.9 22.5 24.8 21.4
2100 29.1 24.0 29.1 24.0 28.0 23.5 26.9 22.9 25.2 22.3 24.1 21.2
2200 28.5 23.9 28.5 23.9 27.4 23.3 26.2 22.7 24.6 22.1 23.5 21.0
2300 28.0 23.7 28.0 23.7 26.9 23.2 25.7 22.6 24.1 22.0 23.0 20.8
(Carrier, 2002)












Table 3.4. Gainesville's Weather Data from January-June
Hr January February March April May June
DBT WBT DBT WBT DBT WBT DBT WBT DBT WBT DBT WBT
(C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C)
0000 16.3 15.0 17.4 16.1 20.0 18.7 21.6 20.1 23.8 21.5 25.4 22.7
0100 15.7 14.7 16.9 15.8 19.5 18.4 21.1 19.9 23.3 21.4 24.9 22.6
0200 15.2 14.5 16.3 15.6 19.0 18.2 20.6 19.7 22.8 21.2 24.3 22.4
0300 14.8 14.3 15.9 15.4 18.6 18.1 20.1 19.6 22.4 21.1 23.9 22.3
0400 14.5 14.2 15.6 15.3 18.3 17.9 19.8 19.5 22.0 21.0 23.6 22.2
0500 14.4 14.1 15.5 15.2 18.2 17.9 19.7 19.4 21.9 21.0 23.5 22.2
0600 14.6 14.2 15.7 15.3 18.4 18.0 19.9 19.5 22.2 21.0 23.7 22.3
0700 15.1 14.5 16.2 15.6 18.9 18.2 20.4 19.7 22.7 21.2 24.2 22.4
0800 16.1 14.9 17.2 16.0 19.8 18.6 21.4 20.0 23.6 21.5 25.2 22.7
0900 17.4 15.5 18.5 16.6 21.2 19.1 22.7 20.5 25.0 21.8 26.5 23.0
1000 19.0 16.2 20.1 17.3 22.7 19.7 24.3 21.0 26.5 22.3 28.1 23.5
1100 20.7 17.0 21.8 18.0 24.5 20.4 26.1 21.6 28.3 22.8 29.8 23.9
1200 22.4 17.7 23.5 18.7 26.2 21.0 27.7 22.1 29.9 23.2 31.5 24.4
1300 23.6 18.2 24.7 19.2 27.4 21.5 29.0 22.5 31.2 23.6 32.7 24.7
1400 24.5 18.5 25.6 19.5 28.2 21.8 29.8 22.8 32.0 23.8 33.6 24.9
1500 24.8 18.7 25.9 19.7 28.6 21.9 30.1 22.9 32.3 23.9 33.9 25.0
1600 24.5 18.5 25.6 19.5 28.2 21.8 29.8 22.8 32.0 23.8 33.6 24.9
1700 23.7 18.2 24.8 19.3 27.5 21.5 29.1 22.6 31.3 23.6 32.8 24.7
1800 22.6 17.8 23.7 18.8 26.4 21.1 27.9 22.2 30.2 23.3 31.7 24.4
1900 21.2 17.2 22.4 18.2 25.0 20.6 26.6 21.8 28.8 22.9 30.4 24.1
2000 19.9 16.6 21.0 17.7 23.7 20.1 25.2 21.3 27.5 22.6 29.0 23.7
2100 18.8 16.1 19.9 17.2 22.5 19.6 24.1 20.9 26.3 22.2 27.9 23.4
2200 17.7 15.7 18.8 16.7 21.5 19.2 23.0 20.6 25.3 21.9 26.8 23.1
2300 16.9 15.3 18.0 16.4 20.7 18.9 22.2 20.3 24.4 21.7 26.0 22.9
(Carrier, 2002)












Table 3.5. Gainesville's Weather Data from July-December
Hr July August September October November December
DBT WBT DBT WBT DBT WBT DBT WBT DBT WBT DBT WBT
(C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C)
0000 25.9 22.7 25.9 22.7 24.8 22.1 22.7 20.9 19.5 18.2 16.8 15.7
0100 25.4 22.6 25.4 22.6 24.3 22.0 22.2 20.7 19.0 18.0 16.3 15.4
0200 24.9 22.4 24.9 22.4 23.8 21.8 21.7 20.6 18.4 17.7 15.8 15.1
0300 24.5 22.3 24.5 22.3 23.4 21.7 21.2 20.5 18.0 17.5 15.4 14.9
0400 24.2 22.2 24.2 22.2 23.0 21.6 20.9 20.4 17.7 17.4 15.0 14.7
0500 24.1 22.2 24.1 22.2 22.9 21.6 20.8 20.3 17.6 17.3 14.9 14.7
0600 24.3 22.3 24.3 22.3 23.2 21.6 21.0 20.4 17.8 17.4 15.2 14.8
0700 24.8 22.4 24.8 22.4 23.7 21.8 21.6 20.6 18.3 17.7 15.7 15.1
0800 25.7 22.7 25.7 22.7 24.6 22.1 22.5 20.8 19.3 18.1 16.6 15.6
0900 27.1 23.0 27.1 23.0 26.0 22.4 23.8 21.2 20.6 18.7 18.0 16.3
1000 28.6 23.5 28.6 23.5 27.5 22.9 25.4 21.7 22.2 19.4 19.5 17.0
1100 30.4 23.9 30.4 23.9 29.3 23.4 27.2 22.2 23.9 20.1 21.3 17.9
1200 32.1 24.4 32.1 24.4 30.9 23.8 28.8 22.7 25.6 20.8 22.9 18.7
1300 33.3 24.7 33.3 24.7 32.2 24.1 30.1 23.0 26.9 21.3 24.2 19.3
1400 34.1 24.9 34.1 24.9 33.0 24.4 30.9 23.3 27.7 21.7 25.0 19.6
1500 34.4 25.0 34.4 25.0 33.3 24.4 31.2 23.3 28.0 21.8 25.3 19.8
1600 34.1 24.9 34.1 24.9 33.0 24.4 30.9 23.3 27.7 21.7 25.0 19.6
1700 33.4 24.7 33.4 24.7 32.3 24.2 30.2 23.1 27.0 21.4 24.3 19.3
1800 32.3 24.4 32.3 24.4 31.2 23.9 29.0 22.7 25.8 20.9 23.2 18.8
1900 30.9 24.1 30.9 24.1 29.8 23.5 27.7 22.4 24.5 20.4 21.8 18.1
2000 29.6 23.7 29.6 23.7 28.5 23.1 26.3 22.0 23.1 19.8 20.5 17.5
2100 28.4 23.4 28.4 23.4 27.3 22.8 25.2 21.6 22.0 19.3 19.3 16.9
2200 27.4 23.1 27.4 23.1 26.3 22.5 24.2 21.3 20.9 18.8 18.3 16.4
2300 26.5 22.9 26.5 22.9 25.4 22.3 23.3 21.1 20.1 18.5 17.4 16.0
(Carrier, 2002)












Table 3.6. Chicago's Weather Data from January-June
Hr January February March April May June
DBT WBT DBT WBT DBT WBT DBT WBT DBT WBT DBT WBT
(C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C)
0000 -1.2 -1.2 1.1 1.0 7.7 7.6 13.3 12.4 18.3 16.9 22.2 19.6
0100 -1.7 -1.8 0.5 0.4 7.2 7.0 12.7 12.0 17.7 16.7 21.6 19.4
0200 -2.2 -2.4 0.0 -0.2 6.6 6.4 12.2 11.7 17.2 16.4 21.1 19.3
0300 -2.7 -2.9 -0.5 -0.7 6.2 6.0 11.8 11.4 16.8 16.3 20.7 19.1
0400 -3.0 -3.3 -0.8 -1.0 5.9 5.6 11.4 11.1 16.4 16.1 20.3 19.0
0500 -3.1 -3.4 -0.9 -1.2 5.8 5.5 11.3 11.1 16.3 16.1 20.2 19.0
0600 -2.9 -3.1 -0.7 -0.9 6.0 5.7 11.6 11.2 16.6 16.2 20.4 19.0
0700 -2.3 -2.5 -0.1 -0.3 6.5 6.3 12.1 11.6 17.1 16.4 21.0 19.2
0800 -1.4 -1.5 0.9 0.8 7.5 7.4 13.1 12.2 18.1 16.8 22.0 19.5
0900 0.0 0.0 2.3 2.3 8.9 8.8 14.5 13.2 19.5 17.4 23.4 20.0
1000 1.7 1.7 3.9 3.9 10.6 10.4 16.1 14.2 21.1 18.1 25.0 20.5
1100 3.5 3.5 5.8 5.8 12.4 12.0 18.0 15.3 23.0 18.9 26.9 21.0
1200 5.3 5.3 7.5 7.5 14.2 13.5 19.7 16.4 24.7 19.6 28.6 21.5
1300 6.6 6.5 8.8 8.7 15.5 14.6 21.0 17.1 26.0 20.1 29.9 21.9
1400 7.5 7.2 9.7 9.4 16.3 15.3 21.9 17.6 26.9 20.4 30.8 22.1
1500 7.8 7.5 10.0 9.7 16.7 15.6 22.2 17.8 27.2 20.6 31.1 22.2
1600 7.5 7.2 9.7 9.4 16.3 15.3 21.9 17.6 26.9 20.4 30.8 22.1
1700 6.7 6.5 8.9 8.8 15.6 14.7 21.1 17.2 26.1 20.1 30.0 21.9
1800 5.5 5.5 7.7 7.7 14.4 13.7 19.9 16.5 24.9 19.7 28.8 21.6
1900 4.1 4.1 6.3 6.3 13.0 12.5 18.5 15.7 23.5 19.1 27.4 21.2
2000 2.7 2.7 4.9 4.9 11.5 11.3 17.1 14.8 22.1 18.5 26.0 20.7
2100 1.5 1.5 3.7 3.7 10.4 10.2 15.9 14.1 20.9 18.0 24.8 20.4
2200 0.4 0.4 2.6 2.6 9.3 9.1 14.8 13.4 19.8 17.6 23.7 20.1
2300 -0.5 -0.5 1.7 1.7 8.4 8.2 13.9 12.8 18.9 17.2 22.8 19.8
(Carrier, 2002)












Table 3.7. Chicago's Weather Data from July-December
Hr July August September October November December
DBT WBT DBT WBT DBT WBT DBT WBT DBT WBT DBT WBT
(C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C)
0000 23.8 20.8 23.8 20.8 20.5 18.9 15.0 13.9 8.8 8.4 2.2 2.1
0100 23.3 20.7 23.3 20.7 20.0 18.7 14.4 13.6 8.3 7.9 1.6 1.5
0200 22.8 20.5 22.8 20.5 19.4 18.6 13.9 13.3 7.8 7.4 1.1 0.9
0300 22.3 20.4 22.3 20.4 19.0 18.4 13.4 13.0 7.3 7.0 0.7 0.4
0400 22.0 20.3 22.0 20.3 18.7 18.3 13.1 12.8 7.0 6.7 0.3 0.1
0500 21.9 20.2 21.9 20.2 18.6 18.3 13.0 12.7 6.9 6.6 0.2 -0.1
0600 22.1 20.3 22.1 20.3 18.8 18.4 13.2 12.9 7.1 6.8 0.4 0.2
0700 22.7 20.5 22.7 20.5 19.3 18.5 13.8 13.2 7.7 7.3 1.0 0.8
0800 23.6 20.8 23.6 20.8 20.3 18.9 14.7 13.8 8.6 8.2 2.0 1.9
0900 25.0 21.2 25.0 21.2 21.7 19.3 16.2 14.7 10.0 9.5 3.4 3.4
1000 26.7 21.6 26.7 21.6 23.3 19.8 17.8 15.6 11.7 10.9 5.0 5.0
1100 28.5 22.2 28.5 22.2 25.2 20.4 19.6 16.6 13.5 12.4 6.9 6.8
1200 30.3 22.7 30.3 22.7 26.9 20.9 21.4 17.6 15.3 13.7 8.6 8.4
1300 31.6 23.0 31.6 23.0 28.2 21.3 22.7 18.3 16.6 14.7 9.9 9.6
1400 32.5 23.3 32.5 23.3 29.1 21.6 23.6 18.7 17.5 15.3 10.8 10.3
1500 32.8 23.3 32.8 23.3 29.4 21.7 23.9 18.9 17.8 15.6 11.1 10.6
1600 32.5 23.3 32.5 23.3 29.1 21.6 23.6 18.7 17.5 15.3 10.8 10.3
1700 31.7 23.0 31.7 23.0 28.4 21.3 22.8 18.3 16.7 14.8 10.0 9.6
1800 30.5 22.7 30.5 22.7 27.2 21.0 21.6 17.7 15.5 13.9 8.8 8.6
1900 29.1 22.3 29.1 22.3 25.7 20.6 20.2 16.9 14.1 12.8 7.4 7.3
2000 27.7 21.9 27.7 21.9 24.3 20.1 18.8 16.2 12.7 11.7 6.0 6.0
2100 26.5 21.6 26.5 21.6 23.1 19.8 17.6 15.5 11.5 10.7 4.8 4.8
2200 25.4 21.3 25.4 21.3 22.0 19.4 16.5 14.9 10.4 9.8 3.7 3.7
2300 24.5 21.0 24.5 21.0 21.2 19.1 15.6 14.3 9.5 9.0 2.8 2.8
(Carrier, 2002)









3.2 Psychrometric Analysis

For the purpose of analyzing the hybrid liquid desiccant system it was necessary to

have the psychrometric properties of ambient air for each city under different weather

conditions. In this study, the DBT and WBT were the basis to evaluate the remaining key

properties from the psychrometric equations presented in ASHRAE (1989). These are

summarized below as follows:

Ps = Exp [C1/T + C2 + C3 T + C4 T2 + C5T3 + C6ln(T)], for 0 < t <200 C

= Exp [C7/T + C8 + C9 T + Clo T2 + C11T3 + C12 T4 + C13 ln(T)], for -100
C1 = -5.8002206 x03 C2 = 1.3914493, C3 = -4.8640239x10-2

C4= 4.1764768 x10-5, C5 = -1.4452093x10-8, C6= 6.54596738

C7= -5.6745359 x103, C8 = 6.3925247, C9= -9.677843 xl0-3

Clo= 6.22115701 x10-7' C1 = 2.0747825 x109, C12 = -9.484024 x10-13

C13 = 4.1635019

Ws =0.62198[Pw/( Patm -Pws)]

W = [(2501-2.381t*) Ws *- (t t*)]/(2501+1.805t-4.186t*)

t = W/Ws

t = /[1-(1- t)(Pws/Patm)]

v = (RaT/Patm)(1+1.6078 W)

h = t + W(2501+1.805t)

Pw = PatmW/(0.62198+W)







17


where


Rais the gas constant for air and is equal to 287.055 J/(kg K)


Patm is the atmospheric pressure and is equal tol01325 Pa


These equations were used to find the hourly psychometric properties for the three


cities, which were employed later to perform the energy calculations. Annual average


hourly psychrometric properties obtained for Miami, Gainesville, and Chicago are shown


in Appendix A. A sample table for Miami's average hourly psychrometric properties in


January is shown below.


Table 3.8. January Avrage Hourly Psychrometric Pro rties for Miami


DBTWBT DPT Pw Ps* v h Pw
hour (oC) (C) (oC) (Pa) (Pa) Ws W* W (m/kg) (kJ/kg) (Pa)
0 22.1 20.1 20.02770.49 2458.57 0.0174847 0.01547 0.014654 0.840.84 0.8560 59.28742332.22
1 21.7 20.0 20.02714.68 2441.71 0.0171227 0.01536 0.014638 0.850.86 0.8550 58.90562329.79
2 21.4 19.9 19.92659.86 2424.96 0.0167676 0.01525 0.014623 0.87 0.88 0.8541 58.52562327.47
3 21.2 19.8 20.02623.85 2416.62 0.0165346 0.0152 0.014639 0.890.89 0.8534 58.33822329.96
4 20.9 19.8 20.02588.27 2408.30 0.0163045 0.01514 0.014655 0.90 0.90 0.8528 58.1511 2332.48
5 20.9 19.8 20.02579.44 2408.30 0.0162474 0.01514 0.014678 0.90 0.91 0.8527 58.15302336.09
6 21.0 19.8 19.92597.12 2408.30 0.0163617 0.01514 0.014632 0.89 0.90 0.8529 58.14922328.87
7 21.3 19.9 20.02650.82 2424.96 0.0167091 0.01525 0.014646 0.88 0.88 0.8539 58.52752331.08
8 21.9 20.1 20.02742.46 2450.13 0.0173028 0.01541 0.014646 0.85 0.85 0.8555 59.09632330.99
9 22.7 20.3 20.02885.13 2492.59 0.0182293 0.01569 0.014687 0.81 0.81 0.8580 60.05602337.37
10 23.7 20.6 20.03054.61 2535.69 0.0193335 0.01596 0.014686 0. 0.77 0.8607 61.02252337.19
11 24.8 20.9 20.03265.08 2588.27 0.0207099 0.0163 0.014699 0.71 0.72 0.8640 62.19762339.30
12 25.8 21.2 20.03465.21 2632.81 0.0220243 0.01659 0.014684 0.670.67 0.8669 63.18632336.99
13 26.5 21.4 20.03616.32 2668.93 0.0230203 0.01683 0.014708 0.64 0.65 0.8690 63.98832340.69
14 27.1 21.6 20.0 3736.44 2696.30 0.0238142 0.017 0.014722 0.62 0.63 0.8706 64.5940 2342.85
15 27.2 21.7 20.1 3773.15 2705.48 0.0240572 0.01706 0.014735 0.61 0.62 0.8711 64.7976 2344.83
16 27.1 21.6 20.0 3736.44 2696.30 0.0238142 0.017 0.014722 0.62 0.63 0.8706 64.5940 2342.85
17 26.6 21.5 20.13640.07 2678.03 0.0231771 0.01689 0.014743 0.64 0.64 0.8694 64.1925 2346.19
18 25.9 21.3 20.03488.10 2641.80 0.0221749 0.01665 0.014719 0.66 0.67 0.8672 63.3887 2342.38
19 25.1 21.1 20.1 3319.64 2606.01 0.0210677 0.01642 0.014744 0.70 0.71 0.8648 62.5962 2346.23
20 24.2 20.8 20.03158.32 2561.86 0.020011 0.01613 0.014692 0.73 0.74 0.8624 61.6081 2338.13
21 23.6 20.6 20.03034.23 2527.02 0.0192005 0.01591 0.014653 0. 0.77 0.8604 60.8256 2332.13
22 22.9 20.4 20.02914.43 2501.15 0.0184199 0.01574 0.014695 0.80 0.80 0.8585 60.24922338.73
23 22.4 20.2 20.02827.30 2475.53 0.0178535 0.01558 0.01467 0.820.83 0.8570 59.6708 2334.74














CHAPTER 4
CYCLE DESCRIPTION AND THERMODYNAMIC ANALYSIS OF A HYBRID
LIQUID DESICCANT (HLD) SYSTEM

4.1 System Description

Hybrid liquid desiccant (HLD) systems are cooling systems where the latent load is

removed by a liquid desiccant dehumidifier, while the sensible load is removed by a

conventional air cooler (i.e. DX, chilled water, etc.). In some cases such as the DryKor

packaged system, the conventional vapor compression cooler is used to cool the

desiccant, then the latter cools the air. The desiccant dehumidifies the air by combining

with water particles to form a weaker solution. Dehumidifying the air reduces the

required latent cooling load, which reduces the energy consumption, and hence improves

the COP of the system. The weak solution is regenerated at certain temperatures and

airflow to allow reuse of the liquid desiccant. The heat required for regeneration is

usually provided by outer sources like natural gas or solar collectors. In DryKor systems,

waste heat from the condenser is utilized for regeneration.

In addition to its dehumidification effect liquid desiccants could be used as efficient

methods to wash air from suspended particles and/or microorganisms. If the right mass

flow rate is used with the rated capacity, the amount of carryover LiCl will be in the order

of 1 ppm. However, LiCl is environmentally safe and is not classified as a toxic,

carcinogenic or hazardous material.

HLD systems may be recommended to replace conventional vapor compression air

conditioning systems for the following reasons:









* Cost effectiveness helps in complying with ventilation requirements as per
standards and building codes.

* Improvement of indoor air quality (IAQ) and prevention of the so called sick
building syndrome.

* Prevention of mold and mildew growth.

* Reduction of corrosion to internal fixtures.

HLD systems are more efficient in applications where the latent cooling load is

high enough such as cooling the ventilation air.

According to market surveys performed by the author, DryKor and Kathabar are

the only manufacturers that produce packaged units utilizing hybrid liquid desiccant

cooling systems for dehumidification. The Kathabar system has been on the market since

the early 1930s. However additional sources of heat for the regeneration process are still

used in the system. The COP of the Kathabar unit is low compared to the DryKor system

for small packaged units since the latter makes use of the condenser waste heat to

regenerate the desiccant. Kathabar systems are more suitable for large cooling capacity

installations (i.e. 20 tons of cooling and above). For the purpose of this study, the

DryKor system will be considered for energy calculations and analysis. Based on the

manufacturer's data sheet, the unit selected for this study is DryKor model UDT 7.5 with

a rated energy efficiency ratio (EER) of 11.62 and a cooling capacity of 10 tons.

DryKor systems cool and dehumidify at the same time. The desiccant is first cooled

to about 10 C then sprayed onto the fresh air entering the absorber. This eliminates the

reheat process needed by the conventional evaporative cooler, which enhances the COP

of the system. Figure 4.1 illustrates the psychrometric process for the DryKor cooling

and dehumidifying system.























LA E




Dry Bulb Tem perature


Figure 4.1. Psychrometric depiction of the DryKor cooling and dehumidifying process

DryKor came up with an innovative idea that improved liquid desiccant

regeneration efficiency of their system. The system makes use of the tendency of the

weak salt solution at the absorber portion to be in equilibrium with the strong solution at

the regenerator portion of the cycle. A concentration sensor that gives a signal to control

the valve that allows mixing of the two solutions helps maintain the concentration in the

cooling chamber to about 40%. By doing so, the amount of liquid desiccant requiring

regeneration is reduced, which in turn reduces the required heat. Figure 4.2. shows the

simplified flow diagram of the system. At steady state, only water would be flowing

from the weak solution to the strong solution, which is the basic assumption used to

analyze the COP of the cycle in the preceding section. In this case, the amount of water

flowing should be the same as the amount collected from the moist air.









Fresh outside air Supply air to space
Regeneration air exhaust


bsorber/Cooler
Regenerator bsorber/Cooler







Condenser Evaporator



Compressor





Figure 4.2. Schematic diagram of the DryKor system

4.2 Thermodynamic Analysis of the DryKor Cycle

4.2.1. Thermodynamic Properties of Liquid Desiccants

Desiccants are chemical salts that have high affinity for moisture due to the low

vapor pressure of its solution in certain pressure and temperature ranges. The most

famous liquid desiccants used in industry are lithium chloride (LiC1) and calcium

chloride (CaC1). Lithium chloride is more popular because of its low vapor pressure

compared to other desiccants. In this thesis, LiCl is the liquid desiccant selected unless

otherwise indicated.

A significant amount of the work published in the open literature discussed how to

obtain the thermodynamic properties of different types of liquid desiccants. The density

of the LiCl solutions was determined using the equation proposed by Berntsson and

Wimby (1994)










p= al+a2t+a3 t2+a4x+a5 x2+a6xt+a7 x2t+a8x t2+a9 x3+alox4

Specific heat, vapor pressure, viscosity, and equilibrium mole fraction for LiCI

were determined using the following polynomial (Aseyev and Zaytsev, 1992):

Y= (bo + bit + b2t2) + (CO + cit + C2t2)x + (do + dit + d2t2)X2

Where: Y= LiCl property (Cp, p, Pv, xi...etc)

Values of the constants a, b, c, and d are listed below.

a a2 a3 a4 a5 a6 a7 a8 a9 ao10
1002.8 -0.15582 -0.00288 6.1379 -0.058452 0.0006065 -0.000125 0.000058 0.0026623 -0.000025941
bo b, b2 Co c1 c2 do di d2
3.90446 0.01743 -0.00026 -3.57625 -0.09055 0.001391 0.26192 0.11345 -0.00174

To illustrate the effect of temperature on LiCl properties, the result of using the

above equations to obtain the specific heat and density for LiCl at different temperatures

and a fixed concentration of 40% are graphically represented in Figure 4.3.



1200


1000


E 800
S- vst
px=0.4
,_, ........ p vs t
S 600 -


0 400


0 200


0-


5 10 15 20 25 30 35 40 45

Temperature (OC)
Figure 4.3. Effect of temperature on the specific heat and density of LiCl at a 40%
concentration










4.2.2 Evaluating the COP of the DryKor HLD System

t .' P,E m,E


/
tdE,XE, EhdE



uii,,h, td,L L ,lhd,L



Qi Evaporator



ondns Expansion Valve mi
Condenser
m,


LI, L I fil.,L


comp
Figure 4.4. Schematic diagram of the absorber/cooler chamber

Considering the cooling chamber shown in Figure 4.3, energy and mass balances

can be expressed assuming an adiabatic wall, steady state, and constant properties

a) Air mass balance:

th m,E= M a,E+ h2 v,E (1)

I2 m,L= Ih a,L+ 2 v,L (2)

/h a,E = /h a,L (3)

Subtracting Equation (1) from Equation (2) and substituting Equation (3), we get

(th m,E 2 m,L) = ( Iv,E /2 v,L) (4)









b) Liquid desiccant and water mass balances:

nh d,E= rh d,L= rh d,P,E = rnd (5)

il v,E + fi d,E= r v,L + rh d,L + (6)

Substituting Equation (5) into Equation (6) and rearranging we get

lh = ( v,E-m v,L) (7)

c) Liquid desiccant energy Balance:

h d hd,P,E = I d hd,E WdP (8)

Sd = rd hd,L- h d hd,P,E (9)

Substituting Equation (8) into Equation (9) and rearranging we get

Qd WdP = d (hd,L-hd,E) (10)

Utilizing the approximation that the liquid enthalpy is equal to the product of the

specific heat and the temperature, Equation (10) can be expressed as

Qd = pd (Cp,d,Ltd,L-Cp,d,Etd,E) + Wd, (11)

d) Absorber/cooler chamber energy balance:

in m,E hm,E + il dhd,E = rh m,L hm,L + dhd,L + ih hw (12)

By definition cooling rate Q0 can be expressed as

Q0 = ( m,E hm,E I m,Lhm,L) (13)

Rearranging Equation (12)

(rl m,Ehm,E /lm,L hm,L) = rld (hd,L-hd,E) + Ih Cp,w tw (14)

Substituting equation (10) and (13) into Equation (14) we get

a= d + d w Cpwtw Wd,p (15)









The temperature tw, in this case is approximately equal to td2 for steady state flow

which along with tdl could obtained from experimental data or computed analytically by

analyzing the absorber geometry as performed by Mago (2000). All other properties

could be obtained from psychrometric tables developed in Chapter 3. According to

manufacturer's technical data, the desiccant entering temperature (td,E), condenser

temperature (tQ) and liquid desiccant mass flow rate (lhd) are approximately 50 F (10

C), 130 F (54.4 C) and 0.75 kg/s, respectively.

4.2.3 HLD System COP

COPHLD = a / Wto, (16)

total = W,, +2 W,p + Wf (17)

The following example illustrates how to analytically obtain the coefficient of

performance for the cycle at a given point. Assuming a temperature difference in the

evaporator of Ate = 10 F, a condensing temperature of to = 130 F (54.4 C), and a

desiccant inlet temperature of td,E= 50 F (10 oC), then the evaporator temperature te = 50-

10 = 40 F (4.4 C). Then from the manufacturer's data sheet for a Copeland compressor

model number ZR94KC, the corresponding input power (Wcomp) would be 8.23 kW while

desiccant pump (Wd,p) would be 0.19 kW and the regeneration fan would be 0.3 kW

(DryKor, 2002). Considering the cooling requirement Q a= 28.91 kW for Miami in June

at 3:00 pm (Table5.6F), the COP may be evaluated using Equation (17) to yield a value

of 8.91 kW for the total power consumed Equation (16) in turn gives a COP of 3.24.

This is 1.7% smaller than the value obtained from the DryKor software. The

difference between the calculated values and the one provided by the manufacturer's






26


software is due to the approximate values used for td,E, Ate, and to. Based on their

experiments and technical data, DryKor engineers had developed software to calculate

the COP of their systems. To ensure accuracy of the energy analysis performed in the

preceding chapter, COP calculations were performed using the DryKor software.














CHAPTER 5
ENERGY ANALYSIS

One of the main objectives of this research is to compare the energy consumption

of a hybrid liquid desiccant (HLD) system to a conventional vapor compression system.

For the purpose of obtaining results with reasonable accuracy, an hour-by-hour energy

analysis approach has been implemented. The HAP 4.1 program (carrier, 2002) was used

to find the energy consumed by the building without including ventilation air. Due to

limitations of the program capabilities, the energy consumption by the outside-air (OA)

make-up unit and the hybrid liquid desiccant system was performed on an Excel

spreadsheet generated for this purpose. Details of the model equations and variables will

be illustrated in the coming sections. The average monthly hour-by-hour temperatures

for the three cities listed in Chapter 3 were the basis for computing outside air properties

in this chapter.

5.1 Model I: Existing Air-Conditioning and Ventilation System

The existing air conditioning system consists of nine (9) heat pumps and one

outside-air make-up unit for ventilation. The existing system was designed in such a way

that the heat pumps supply the required internal cooling load, while the outside-air make

up unit provides the required cooling load for ventilation air. The HAP4.1 software

(Carrier, 2002) was used to calculate the electrical energy consumption of the nine heat

pumps. The electrical consumption by the outside-air make-up unit was calculated with

the help of the Excel spreadsheet explained later in Section 5.1.3.










5.1.1 Energy Consumption of the Building Excluding the Ventilation Load

The HAP 4.1 program was used to evaluate the load of the nine heat pumps for the

three cities using the same internal load and weather conditions reported earlier in

Chapter 3. Results for the three cities are summarized in Table 5.1.

Table 5.1 Cooling Energy Consumption by the Building Excluding Ventilation
Heat Pumps 1-9 Energy
Consumption (kWh)
Month Miami Gainesville Chicago
January 2147 1482 0
February 1642 1348 0
March 2303 2061 64
April 2460 2362 652
May 2537 2536 1378
June 2511 2517 2228
July 2762 2764 2608
August 2579 2545 2350
September 2556 2487 1880
October 2664 2549 574
November 1956 1761 180
December 2002 1424 5
Annual 28119 25836 11919


5.1.2 DX Outside-air Make-up Unit Process Description

The cooling and dehumidifying process performed by the DX outside-air make-up

unit is shown on the psychrometric chart of Figure 5.1. First, the equipment cools the

entering air from Point EA approaching the apparatus dew-point (ADP). Further cooling

beyond saturation causes the moisture to condense out of the air until the coil leaving air

condition (LA) is reached. Then the unit reheats the air at a constant humidity ratio till it

reaches the required supply air (SA) temperature (Sherif, 2002). To improve the COP of

such a system, usually the reheat makes use of the waste heat from the condenser (hot gas

bypass) where the capacity is controlled by means of the reheat bypass arrangement

shown in Figure 5.2.
























SA .2
LA reheat
A D P^- ^ y\"P .
E







Dry Bulb Temperature


Figure 5.1. Cooling and dehumidifying process performed by the vapor compression
system

In this study the existing outside-air make-up unit selected is the Addison model#

PCA141E with alO-ton capacity. According to the manufacturer's data sheet the rated

energy efficiency ratio (EER) for the unit is 9.9 Watts/Btuh.

DIm rdalJ


6BP) (M.WuV)


Figure 5.2. Reheat system (Addison, 2002)









5.1.3 Energy Consumption of the Outside-Air (OA) Make-Up Unit

The model used to compute the energy consumption by the 100% OA vapor

compression make-up unit is explained in the following steps:

1. The hourly average properties obtained from Chapter 3 for a designated city are
used to find the enthalpy and specific volume at State EA in Figure 5.1.

2. For Point LA the following equations are used to compute hLA and VLA,
respectively:

hLA = tLA + WLA(2501+1.805 tLA)

VLA= (Ra TLA/Patm)(1+1.6078 WLA)

In this case WLA is the humidity ratio at Point LA and t is the corresponding DBT.
Based on the manufacturer's data sheet for the selected system, the average leaving
air dry-bulb and wet-bulb temperatures are 15.1 C and 15.1 C.

Properties for Point LA are computed using the same model described in Chapter 3

and found to be:

WLA = 0.01112 kgv/kga

hLA = 43.1427 kJ/(kg K)

vLA = 0.8309 m3/kg

3. Specific enthalpy for Point SA is obtained using the same equations in the previous
step with WSA=WLA and tSA= 24 C. This yields hsA to be equal to 52.2928
kJ/(kgK).

4. The difference between the specific enthalpies at Points EA and LA is obtained in
order to determine whether or not cooling is required.

5. The required cooling rate Q in kW is set to zero when (hEA-hLA) is less than or
equal to zero, otherwise is set equal to [(hEA/ VEA) (hLA/ VLA)] V

Where: V is the volumetric flow rate, m3/s

6. The EER for the system is obtained from the manufacturer's data sheet.

7. The electrical consumption per hour is then computed from the relationship

EER = Q/I W => W Q / EER









8. The computed Win Step 7 is multiplied by a utilization factor fl, which is obtained
from the information given by the building owner. This is equal to unity from 6:00
am-4:00 pm and equal to zero otherwise.

9. The figure obtained from Step 8 represents the electrical work per working day. To
obtain the total electrical consumption per month, the computed W from Step 8 is
multiplied by the number of working days per month. Based on a typical calendar
year, the number of working days per month is listed in Table 5.2.


Table 5.2. Number of Working Days per Month
Month Operating
Days
January 21
February 20
March 18
April 22
May 21
June 22
July 22
August 22
September 22
October 21
November 17
December 18


Using the above model, the energy consumption by the Addison outside-air (OA)

make-up unit can be computed for the three cities. Results obtained from the model for

Miami, Gainesville, and Chicago are listed in Appendix B. A sample of the daily average

energy consumption for Model I is shown on Table 5.3. The annual electric consumption

and cost for the three cities will be summarized and discussed in Chapter 6.










Table 5.3. January Daily Average Energy Consumption for Model I, Miami


Hour of VEA hEALAA hA w hEA hLA Input
day (m3/kg) (kJ/kg) (kJ/kg) ((kJ/kg) VLA (kg/s) (kJ/kg) (kW) kWh
0 0.8560 59.2874 52.2928 43.1247 0.8309 0.00352 16.1627 16.39 0
1 0.8550 58.9056 52.2928 43.1247 0.8379 0.00388 6.6128 16.04 0
2 0.8541 58.525652.292843.1247 0.83790.00387 6.2328 15.7 0
3 0.8534 58.3382 52.2928 43.1247 0.8379 0.00389 6.0454 15.54 0
4 0.852858.1511 52.292843.1247 0.83790.00391 5.8583 15.38 0
5 0.8527 58.1530 52.2928 43.1247 0.8379 0.00393 5.8602 15.39 0
6 0.8529 58.149252.2928 43.1247 0.83790.00388 5.8564 15.36 5.298
7 0.8539 58.5275 52.2928 43.1247 0.8379 0.00389 6.2347 15.71 5.417
8 0.8555 59.0963 52.2928 43.1247 0.8379 0.00388 6.8035 16.21 5.591
9 0.8580 60.0560 52.2928 43.1247 0.8379 0.00392 7.7632 17.08 5.891
10 0.860761.0225 52.292843.1247 0.8379 0.00391 8.7297 17.93 6.184
11 0.864062.197652.292843.1247 0.83790.00391 9.9048 18.97 6.54
12 0.8669 63.1863 52.2928 43.1247 0.8379 0.00388 10.8935 19.82 6.833
13 0.8690 63.9883 52.2928 43.1247 0.8379 0.00389 11.6955 20.52 7.076
14 0.8706 64.5940 52.2928 43.1247 0.8379 0.0039012.3012 21.05 7.257
15 0.871164.797652.292843.1247 0.83790.00391 12.5048 21.23 7.319
16 0.8706 64.5940 52.2928 43.1247 0.8379 0.00390 12.3012 21.05 7.257
17 0.8694 64.1925 52.2928 43.1247 0.8379 0.00393 11.8997 20.71 0
18 0.8672 63.388752.2928 43.1247 0.8379 0.00391 11.0959 20.01 0
19 0.8648 62.5962 52.2928 43.1247 0.8379 0.0039510.3034 19.33 0
20 0.862461.6081 52.292843.1247 0.83790.00390 9.3153 18.45 0
21 0.8604 60.8256 52.2928 43.1247 0.8379 0.00387 8.5328 17.74 0
22 0.8585 60.2492 52.2928 43.1247 0.8379 0.00393 7.9564 17.26 0
23 0.8570 59.670852.2928 43.1247 0.8379 0.00390 7.3780 16.73 0



5.2 Model II: DryKor HLD Packaged System

In this section an hour-by-hour energy analysis of the DryKor hybrid liquid

desiccant (HLD) system acting as an outside-air make-up unit is computed with the help

of an Excel spreadsheet using the following model:

1. The hourly average properties obtained from Chapter 3 for a designated city are
used to find the enthalpy and specific volume at State EA in Figure 4.1

2. The difference between the humidity ratio at Points EA and LA is obtained in order
to determine whether or not dehumidification is required.

3. The difference between the specific enthalpies at Points EA and LA is obtained in
order to determine whether or not cooling is required.









4. The required cooling rate Q in kW is set to zero when the quantity (hEA-hLA) is less
than or equal to zero, otherwise Q is equal to [(hEA/ VEA) (hLA/ VLA)] V

5. The monthly average EER for the system was obtained from the DryKor software
(DryKor, 2002).

6. The electrical consumption in kWh is then computed from the relationship

EER = Q/ W :> W = / EER

7. The computed W in Step 6 is multiplied by a utilization factor f which is
obtained from the information given by the building owner. This is equal to unity
from 6:00 am 4:00 pm and equal to zero otherwise.

8. The figure obtained from Step 8 represents the electrical work per working day. To
obtain the total electrical consumption per month, the computed W from Step 7 is
multiplied by the number of working days per month. Based on a typical calendar
year, the number of working days per each month is listed in Table 5.2.

Using the above model, the energy consumption by the DryKor outside-air (OA)

make-up unit can be computed for the three cities. Results obtained from the model for

Miami, Gainesville, and Chicago are listed in Appendix C. A sample of the daily average

energy consumption for Model II is shown on Table 5.4. The annual electric

consumption and cost for the three cities will be summarized and discussed in Chapter 6.











Table 5.4. January Daily Average Energy Consumption for Model II, Miami


Hour VEA hEA hLA m w hEA hLA Q Average Electric
of day (m3/kg) (kJ/kg) ((kJ/kg) (kg/s) (kJ/kg) (kW) COP kWh
0 0.8560 59.2874 48.8767 0.0054 10.41 11.42 3.10 0.00
1 0.8550 58.9056 48.8767 0.0054 10.03 11.07 3.10 0.00
2 0.8541 58.5256 48.8767 0.0054 9.65 10.73 3.10 0.00
3 0.8534 58.3382 48.8767 0.0054 9.46 10.57 3.10 0.00
4 0.8528 58.1511 48.8767 0.0054 9.27 10.41 3.10 0.00
5 0.8527 58.1530 48.8767 0.0054 9.28 10.42 3.10 0.00
6 0.8529 58.1492 48.8767 0.0054 9.27 10.4 3.10 3.35
7 0.8539 58.5275 48.8767 0.0054 9.65 10.74 3.10 3.46
8 0.8555 59.0963 48.8767 0.0054 10.22 11.25 3.10 3.63
9 0.8580 60.0560 48.8767 0.0054 11.18 12.11 3.10 3.91
10 0.8607 61.0225 48.8767 0.0054 12.15 12.96 3.10 4.18
11 0.8640 62.1976 48.8767 0.0054 13.32 14.0 3.10 4.52
12 0.8669 63.1863 48.8767 0.0053 14.31 14.85 3.10 4.79
13 0.8690 63.9883 48.8767 0.0054 15.11 15.55 3.10 5.02
14 0.8706 64.5940 48.8767 0.0054 15.72 16.08 3.10 5.19
15 0.8711 64.7976 48.8767 0.0054 15.92 16.26 3.10 5.24
16 0.8706 64.5940 48.8767 0.0054 15.72 16.08 3.10 5.19
17 0.8694 64.1925 48.8767 0.0054 15.32 15.74 3.10 0.00
18 0.8672 63.3887 48.8767 0.0054 14.51 15.04 3.10 0.00
19 0.8648 62.5962 48.8767 0.0054 13.72 14.36 3.10 0.00
20 0.8624 61.6081 48.8767 0.0054 12.73 13.48 3.10 0.00
21 0.8604 60.8256 48.8767 0.0053 11.95 12.78 3.10 0.00
22 0.8585 60.2492 48.8767 0.0054 11.37 12.29 3.10 0.00
23 0.8570 59.6708 48.8767 0.0054 10.79 11.77 3.10 0.00



5.3 Model III: Hybrid Solid Desiccant Cooling System

The latest solid desiccant system energy calculation software (Desicalc, 2002) was

used to perform the analysis. Due to limitations in the database of the Desicalc software,

Gainesville was not considered in this model. The software allows calculation of the

total hour-by-hour energy consumption for a specific building envelope including the

energy consumed by lighting, equipment, and other electrical devices. For the purpose of

this analysis, only results of the energy consumed for cooling were considered from the

output. One of the concerns about using Desicalc for energy calculation is that it doesn't










allow customizing of the cooling equipment or internal loads, which affect the accuracy

of the results. Results for Miami and Chicago are summarized in Tables 5.5 and 5.6,

respectively.

Table 5.5. Miami Energy Consumption for Model III
Energy
Month (kW)
January 2391
February 2274
March 3070
April 3821
May 5159
June 5227
July 5286
August 5534
September 5221
October 4776
November 3455
December 2282
Total 48496



Table 5.6. Chica o Energy Consum tion for Model III
Energy
Month (kW)
January 117
February 110
March 198
April 554
May 1916
June 3314
July 3752
August 3309
September 2239
October 914
November 249
December 111
Total 16783
Results of the above three models for the three cities are summarized and discussed

in the next chapter.















CHAPTER 6
RESULTS AND DISCUSSION

6.1 Energy Consumption Summary

The results obtained for the models described in Chapter 5 are summarized in this

chapter for purposes of comparison and discussion.

6.1.1 Outside-Air Make-Up Unit Energy Consumption

The energy consumed by the make-up unit for the three cities is summarized in

Tables 6.1 through 6.3 and graphically represented in Figure 6.1.

Table 6.1. Miami's Monthly Energy Consumption for the Make-Up Unit
Energy kWh
Month DX HLD Savings Savings %
January 1480 680 800 54.1
February 1560 810 750 48.2
March 1690 1140 550 32.5
April 2260 1670 590 26.0
May 2330 1700 630 27.0
June 2620 1940 680 26.0
July 2610 1930 680 26.1
August 2610 2050 556 21.3
September 2430 1770 660 27.1
October 2155 1590 560 26.0
November 1620 925 690 42.8
December 1420 730 680 48.1
Annual 24790 16960 7840 31.6


From Tables 5.1 and 6.1 one may observe that the cooling required for the

ventilation air costs more than 40% of the total energy input for building cooling in the

three cities employing the existing system. It is also observed that the energy input varies

considerably with variations in the weather conditions.










Table 6.2. Gainesville's Monthly Energy Consumption for the Make-Up Unit
Energy kWh
Month DX HLD Savings Savings %
January 418 197 222 53.0
February 621 295 326 52.5
March 1112 574 538 48.4
April 1360 702 657 48.4
May 1990 1172 818 41.1
June 2460 1678 782 31.8
July 2447 1842 605 24.7
August 2448 1843 605 24.7
September 2269 1464 805 35.5
October 1824.66 1004 820 45.0
November 990.19 543 447 45.2
December 532.1 274 258 48.4
Annual 18470 11590 6880 37.3


Table 6.3. Chicago's Monthly Energy Consumption for the Make-Up Unit
Energy kWh
Month DX HLD Savings Savings %
January 0 0 0 0.0
February 0 0 0 0.0
March 18 0 18 0.0
April 250 65 185 74.2
May 877 477 400 45.6
June 1520 821 698 45.9
July 1872 1125 747 39.9
August 1872 1125 747 39.9
September 1357 670 687 50.7
October 411 151 260 63.3
November 15 0 15 0.0
December 0 0 0 0.0
Annual 8190 4435 3755 45.9














3000



2500



2000



1500



1000


-- DX make-up unit
........ HLD make-up unit


tSA = 24 C
SA = 50%
V = 944 L/s


500 1 .. .. ..
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Month

Figure 6.1A. HLD and DX make-up unit's electric energy consumption for Miami


S DX make-up unit
........ HLD make-up unit


tSA = 24 C
4SA= 50%
V = 944 L/s


Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Month

Figure 6. lB. HLD and DX make-up unit's electric energy consumption for Gainesville


3000 -



2500 -



2000 -



1500 -



1000 -



500 -
n-













2000
tSA = 24 OC
DX make-up unit /SA = 50%
.... HLD make-up unit = 944 L/s
1500 -
o_
.L ...........
S 1000

C-)
O

500



0




Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month
Figure 6.1C. HLD and DX make-up unit's electric energy consumption for Chicago

The annual electrical energy savings resulting from employing the hybrid liquid

desiccant system (HLD) compared to the DX system for Miami, Gainesville, and

Chicago were found to be as much as 26%, 28.5%, and 31.5%, respectively. However

the amount of energy savings for Miami is 12% and 52% more than that of Gainesville

and Chicago, respectively. It can be observed that for summer the energy savings of the

HLD system are higher than those for the winter. In general, the COP of the HLD system

is higher for hot and humid entering-air conditions.

6.1.2 Building Total Cooling Energy Consumption

The total cooling energy consumed by the building as computed by the three

models described earlier for the three cities in question are summarized in Tables 6.4

through 6.6. It is important to note that the results obtained in this study are for a specific

application where constant flow of ventilation air is required for certain periods of time.









The results are also represented graphically in Figure 6.2. The annual savings by

employing the HLD system compared to the total energy consumption by existing

cooling systems is found to be 15.0% for Miami and Gainesville, and 18.6% for Chicago.

As mentioned earlier, Desicalc doesn't provide enough flexibility to allow customizing

the building internal load and HVAC equipment; therefore the results obtained for solid

desiccants systems are approximate values. Since the energy consumption by solid

desiccants is not the main objective of this study, the resulting accuracy is acceptable for

illustration purposes.

Table 6.4. Total Cooling Energy Consumption for the Miami Building
Energy kWh
Month Model I Model II Model Ill
January 3631 2828 2391
February 3204 2452 2274
March 3996 3446 3070
April 4717 4130 3821
May 4868 4238 5159
June 5133 4451 5227
July 5372 4692 5286
August 5189 4633 5534
September 4987 4328 5221
October 4819 4258 4776
November 3572 2880 3455
December 3417 2736 2282
Overall 52910 45070 48500










Table 6.5. Total Cooling Energy Consumption for the Gainesville Building
Energy kWh
Month Model I Model II
January 1900 1679
February 1969 1643
March 3173 2635
April 3721 3064
May 4526 3708
June 4976 4195
July 5212 4607
August 4993 4388
September 4756 3951
October 4374 3553
November 2751 2304
December 1956 1698
Overall 44309 37425


Table 6.6. Total Cooling Energy Consumption for the Chicago Building
Energy kWh
Month Model I Model II Model Ill
January 0 0 117
February 0 0 110
March 82 64 198
April 902 716 554
May 2255 1855 1916
June 3747 3050 3314
July 4480 3734 3752
August 4222 3476 3309
September 3237 2549 2239
October 985 725 914
November 195 180 249
December 5 5 111
Overall 20110 16354 16783
















6000


5500


S5000
-^

4500
0


CL
E
4000
0

0 3500-
--
0)

C 3000-
W

2500 -


onnn


Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Month

Figure 6.2A. Monthly energy consumption for the Miami building








6000

Model I tSA =24 OC
....... Model II SA= 50%

5000

-c-


.O 4000

E
Un
Co

O 3000

0)
c-,

2000




1000 1 1ii i i i i i i i
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Month

Figure 6.2B. Monthly energy consumption for the Gainesville building


tSA = 24 C
4SA = 50%


-


I
I"




/

/'


.2












5000


4000


3000


2000


1000


Model I
....... M odel II
-- Model III


tSA = 24 C
SA = 50%


Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month
Figure 6.2C. Monthly energy consumption for the Chicago building

6.2 Cost Summary and Analysis

6.2.1 Cost of Electric Energy

Assuming a cost of $0.08 per kWh of electricity for the three cities, the annual cost

of the three models for the three cities are summarized in Tables 6.6 through 6.8.


Table 6.6. Miami's Energy Cost Summary
Cost ($)
Month Model I Model II Model Ill
January 290 226 191
February 256 196 182
March 320 276 246
April 377 330 306
May 389 339 413
June 411 356 418
July 430 375 423
August 415 371 443
September 399 346 418
October 386 341 382
November 286 230 276
December 273 219 183
Annual 4,240 3,600 3,900










Table 6.7. Gainesville's Energy Cost Summary
Cost ($)
Month Model I Model II Model Ill
January 152 134 N/A
February 158 131 N/A
March 254 211 N/A
April 298 245 N/A
May 362 297 N/A
June 398 336 N/A
July 417 369 N/A
August 399 351 N/A
September 381 316 N/A
October 350 284 N/A
November 220 184 N/A
December 156 136 N/A
Annual 3,550 3000 N/A


Table 6.8. Chicago's Energy Cost I


summary


Cost ($)
Month Model I Model II Model Ill
January 0 0 9
February 0 0 9
March 7 5 16
April 72 57 44
May 180 148 153
June 300 244 265
July 358 299 300
August 338 278 265
September 259 204 179
October 79 58 73
November 16 14 20
December 0 0 9
Annual 1,600 1,300 1,340


Based on the information provided in Tables 6.6 through 6.8, one can conclude that

the annual operating cost savings resulting from employing the HLD system compared to

the existing system for one unit in the building under study are $627/year for Miami,


$55 I/year for Gainesville, and $301/year for Chicago.










6.2.2 Capital and Other Costs

From the manufacturer's data and the calculated cost savings as described in the

previous section, the costs of the conventional outside-air make-up unit versus the hybrid

liquid desiccant (HLD) unit for the three cities are summarized in Table 6.9.

Table 6.9. Operation and Capital Cost Summary
Miami
DX HLD Savings
Equipment cost ($) 000 8000 -1000
7000 8000 -1000
Operating cost ($/year) 4,233 3,606 627.0
Maintenance cost ($/year) 300 300 0
Gainesville
DX HLD Savings
Equipment cost ($) 7000 8000 -1
7000 8000 -1000
Operating cost ($/year) 3,545 2,994 551.0
Maintenance cost ($/year) 300 300 0
Chicago
DX HLD Savings
Equipment cost ($) 7000 8000 -1
7000 8000 -1000
Operating cost ($/year) 1,609 1,308 301.0
Maintenance cost ($/year) 300 300 0

From the above information the pay-back period for replacing the conventional

system with a hybrid liquid desiccant system including the difference in initial cost is

calculated to be 16 years for Miami, 18 years for Gainesville, and 30 years for Chicago.

The payback period is high because of the operating time effect. For this study the air-

make-up unit is operated less than 30% of the time. If the operation time increased to

50% and above then the savings will yield reasonable payback periods. It can be

observed that for Miami the period of recovering the capital cost difference is almost 19

months.

Based on electric consumption information for a typical school building in Florida

where three outside-air make-up units are used, the expected annual saving is about 4%






46


of the building total electricity bill when conventional outside-air make-up units are

replaced with hybrid liquid desiccant ones.














CHAPTER 7
CONCLUSIONS AND RECOMMENDATIONS

In this thesis a comparison between a conventional air-cooling system and a hybrid

liquid desiccant (HLD) system used for cooling ventilation air for an existing school

building was performed. Energy models to calculate the energy consumption by both

systems were generated. Models were examined for three cities in the United States in

order to study the effect of weather changes on the system's performance.

The energy analysis results suggest a savings of more than 32% in electric

consumption of the HLD system when compared to conventional air coolers. Simple cost

comparison suggested a payback period of 16 years if a conventional cooler is replaced

with a hybrid liquid desiccant system in Miami. The pay back period is affected by the

operating time of the equipment. In general for operating times above 50%, the savings

yield reasonable payback period. It was concluded that the HLD system provides

significant energy savings when used to cool ventilation air in hot and humid climatic

conditions.

A further study should be carried out to reduce the initial cost of HLD system.

Introducing a reheat by-pass arrangement to control the leaving air conditions is an

interesting subject of further research. Optimization of the COP of the DryKor HLD

system and studying the effect of varying values of the different parameters such as

entering desiccant temperature, the mass flow rate of the desiccant solution, and the

entering air flow rate on the system COP are also potential areas of further research.



















APPENDIX A
PSYCHROMETRIC PROPERTY TABLES


Table A. 1. January Average Hourly Psychrometric Properties for Miami


DBTWBT DPT Pws Pw* v h Pw
hour (C) (C) (C) (Pa) (Pa) Ws Ws* W ( (m3/kg) (kJ/kg) (Pa)
0 22.1 20.1 20.02770.49 2458.57 0.0174847 0.01547 0.014654 0.840.84 0.8560 59.28742332.22
1 21.7 20.0 20.02714.68 2441.71 0.0171227 0.01536 0.014638 0.850.86 0.8550 58.90562329.79
2 21.4 19.9 19.92659.86 2424.96 0.0167676 0.01525 0.014623 0.870.88 0.8541 58.52562327.47
3 21.2 19.8 20.02623.85 2416.62 0.0165346 0.0152 0.014639 0.890.89 0.8534 58.33822329.96
4 20.9 19.8 20.02588.27 2408.30 0.0163045 0.01514 0.014655 0.90 0.90 0.8528 58.1511 2332.48
5 20.9 19.8 20.02579.44 2408.30 0.0162474 0.01514 0.014678 0.90 0.91 0.8527 58.15302336.09
6 21.0 19.8 19.92597.12 2408.30 0.0163617 0.01514 0.014632 0.890.90 0.8529 58.14922328.87
7 21.3 19.9 20.02650.82 2424.96 0.0167091 0.01525 0.014646 0.88 0.88 0.8539 58.52752331.08
8 21.9 20.1 20.02742.46 2450.13 0.0173028 0.01541 0.014646 0.850.85 0.8555 59.09632330.99
9 22.7 20.3 20.02885.13 2492.59 0.0182293 0.01569 0.014687 0.81 0.81 0.8580 60.05602337.37
10 23.7 20.6 20.03054.61 2535.69 0.0193335 0.01596 0.014686 0. 0.77 0.8607 61.02252337.19
11 24.8 20.9 20.03265.08 2588.27 0.0207099 0.0163 0.014699 0.71 0.72 0.8640 62.19762339.30
12 25.8 21.2 20.03465.21 2632.81 0.0220243 0.01659 0.014684 0.670.67 0.8669 63.18632336.99
13 26.5 21.4 20.03616.32 2668.93 0.0230203 0.01683 0.014708 0.640.65 0.8690 63.98832340.69
14 27.1 21.6 20.0 3736.44 2696.30 0.0238142 0.017 0.014722 0.62 0.63 0.8706 64.5940 2342.85
15 27.2 21.7 20.1 3773.15 2705.48 0.0240572 0.01706 0.014735 0.61 0.62 0.8711 64.7976 2344.83
16 27.1 21.6 20.0 3736.44 2696.30 0.0238142 0.017 0.014722 0.62 0.63 0.8706 64.5940 2342.85
17 26.6 21.5 20.1 3640.07 2678.03 0.0231771 0.01689 0.014743 0.64 0.64 0.8694 64.1925 2346.19
18 25.9 21.3 20.03488.10 2641.80 0.0221749 0.01665 0.014719 0.66 0.67 0.8672 63.3887 2342.38
19 25.1 21.1 20.1 3319.64 2606.01 0.0210677 0.01642 0.014744 0.70 0.71 0.8648 62.5962 2346.23
20 24.2 20.8 20.03158.32 2561.86 0.020011 0.01613 0.014692 0.73 0.74 0.8624 61.6081 2338.13
21 23.6 20.6 20.03034.23 2527.02 0.0192005 0.01591 0.014653 0. 0.77 0.8604 60.8256 2332.13
22 22.9 20.4 20.02914.43 2501.15 0.0184199 0.01574 0.014695 0.80 0.80 0.8585 60.24922338.73
23 22.4 20.2 20.02827.30 2475.53 0.0178535 0.01558 0.01467 0.82 0.83 0.8570 59.6708 2334.74












Table A.2. February Average Hourly Pschrometric Properties for Miami


DBT WBT DPT Pws Pws* v h Pw
hour (C) (C) (C) (Pa) (Pa) Ws Ws* W (m3/kg) (kJ/kg) (Pa)
0 23.2 20.7 20.42963.83 2553.11 0.0187416 0.01608 0.015053 0.80 0.81 0.8598 61.44402394.32
1 22.8 20.6 20.42904.63 2535.69 0.0183562 0.01596 0.015034 0.82 0.82 0.8588 61.05262391.32
2 22.5 20.5 20.42846.46 2518.37 0.017978 0.01585 0.015015 0.84 0.84 0.8578 60.66292388.43
3 22.3 20.4 20.42808.25 2509.75 0.0177298 0.0158 0.015029 0.85 0.85 0.8572 60.4707 2390.63
4 22.1 20.4 20.42770.49 2501.15 0.0174847 0.01574 0.015044 0.86 0.86 0.8565 60.27902392.86
5 22.0 20.3 20.32761.12 2492.59 0.0174239 0.01569 0.014989 0.86 0.86 0.8563 60.08172384.29
6 22.1 20.4 20.42779.89 2501.15 0.0175456 0.01574 0.015021 0.86 0.86 0.8567 60.27702389.25
7 22.4 20.5 20.42836.87 2518.37 0.0179156 0.01585 0.015038 0.84 0.84 0.8577 60.66492392.04
8 23.0 20.7 20.42934.10 2544.39 0.018548 0.01602 0.015043 0.81 0.82 0.8593 61.2481 2392.80
9 23.8 20.9 20.43085.41 2579.44 0.0195345 0.01625 0.015014 0.77 0.77 0.8617 62.02842388.19
10 24.8 21.2 20.43265.08 2623.85 0.0207099 0.01653 0.015021 0.73 0.73 0.8644 63.01732389.34
11 25.9 21.5 20.43488.10 2678.03 0.0221749 0.01689 0.015045 0.68 0.69 0.8677 64.21972393.06
12 26.9 21.8 20.43700.05 2723.92 0.0235734 0.01718 0.015039 0.64 0.65 0.8706 65.23142392.13
13 27.6 22.0 20.43860.02 2761.12 0.024633 0.01742 0.01507 0.61 0.62 0.8727 66.05222396.93
14 28.2 22.2 20.43987.14 2789.32 0.0254774 0.01761 0.015089 0.59 0.60 0.8743 66.67222399.93
15 28.3 22.2 20.44025.98 2798.77 0.0257359 0.01767 0.015104 0.59 0.60 0.8748 66.88052402.19
16 28.2 22.2 20.43987.14 2789.32 0.0254774 0.01761 0.015089 0.59 0.60 0.8743 66.67222399.93
17 27.7 22.1 20.43885.15 2770.49 0.0247998 0.01748 0.015107 0.61 0.62 0.8731 66.26122402.71
18 27.0 21.8 20.43724.27 2733.18 0.0237337 0.01724 0.015076 0.64 0.64 0.8709 65.43862397.79
19 26.2 21.6 20.43545.88 2696.30 0.0225556 0.017 0.015093 0.67 0.68 0.8685 64.62762400.54
20 25.3 21.4 20.53374.98 2659.86 0.021431 0.01677 0.015114 0.71 0.71 0.8662 63.82402403.73
21 24.7 21.2 20.43243.48 2623.85 0.0205684 0.01653 0.015068 0.73 0.74 0.8642 63.02142396.55
22 24.0 20.9 20.43116.47 2588.27 0.0197374 0.0163 0.015024 0.76 0.77 0.8622 62.2261 2389.81
23 23.5 20.8 20.43024.09 2570.64 0.0191343 0.01619 0.015073 0.79 0.79 0.8608 61.83722397.42












Table A.3. March Average Hourly Psychrometric Properties for Miami


DBTWBT DPT Pw Ps* v h Pw
hour (C) (C) (C) (Pa) (Pa) W W* W (m3/kg) (kJ/kg) (Pa)
0 24.8 21.9 21.43275.93 2742.46 0.0207811 0.0173 0.016066 0.770.78 0.8660 65.73362551.30
1 24.5 21.8 21.43211.31 2723.92 0.0203577 0.01718 0.016039 0.790.79 0.8650 65.32262547.17
2 24.2 21.7 21.43147.81 2705.48 0.0199423 0.01706 0.016013 0.800.81 0.8640 64.91352543.15
3 23.9 21.6 21.43106.09 2696.30 0.0196696 0.017 0.016024 0.81 0.82 0.8634 64.71182544.79
4 23.7 21.6 21.43064.85 2687.15 0.0194003 0.01694 0.016034 0.830.83 0.8627 64.51052546.45
5 23.7 21.6 21.43054.61 2687.15 0.0193335 0.01694 0.016058 0.83 0.83 0.8626 64.5126 2550.06
6 23.8 21.6 21.43075.11 2687.15 0.0194673 0.01694 0.016011 0.820.83 0.8629 64.50842542.84
7 24.1 21.7 21.43137.33 2705.48 0.0198738 0.01706 0.016036 0.81 0.81 0.8639 64.91562546.75
8 24.7 21.8 21.43243.48 2733.18 0.0205684 0.01724 0.016052 0.780.79 0.8655 65.5278 2549.22
9 25.5 22.1 21.43408.58 2770.49 0.0216518 0.01748 0.016037 0 0. 0.75 0.8679 66.3471 2546.90
10 26.4 22.3 21.43604.50 2817.76 0.0229422 0.01779 0.016063 0.70 0.71 0.8707 67.38562550.95
11 27.6 22.7 21.53847.50 2875.42 0.02455 0.01817 0.01611 0.66 0.66 0.8740 68.64842558.21
12 28.6 22.9 21.54078.28 2924.25 0.0260842 0.01848 0.016123 0.620.63 0.8769 69.71132560.26
13 29.3 23.2 21.54252.35 2963.83 0.0272464 0.01874 0.01617 0.590.60 0.8791 70.57372567.48
14 29.8 23.3 21.54390.62 2983.80 0.0281724 0.01887 0.016113 0.570.58 0.8806 71.00002558.66
15 30.0 23.3 21.54432.86 2993.83 0.0284558 0.01894 0.016131 0.57 0.58 0.8811 71.21842561.50
16 29.8 23.3 21.54390.62 2983.80 0.0281724 0.01887 0.016113 0.570.58 0.8806 71.00002558.66
17 29.4 23.2 21.54279.70 2963.83 0.0274293 0.01874 0.016124 0.590.60 0.8793 70.5692 2560.27
18 28.7 22.9 21.44104.65 2924.25 0.02626 0.01848 0.016077 0.61 0.62 0.8772 69.70692553.05
19 27.8 22.7 21.43910.43 2885.13 0.0249676 0.01823 0.01608 0.640.65 0.8747 68.85692553.51
20 27.0 22.5 21.43724.27 2846.46 0.0237337 0.01798 0.016086 0.680.69 0.8723 68.01482554.45
21 26.3 22.3 21.53580.95 2817.76 0.0227869 0.01779 0.01611 0.71 0.71 0.8704 67.38992558.16
22 25.7 22.1 21.43442.46 2779.89 0.0218746 0.01755 0.016051 0.73 0.74 0.8684 66.55472549.09
23 25.2 22.0 21.43341.68 2761.12 0.0212124 0.01742 0.016093 0.76 0.76 0.8670 66.1464255.55












Table A.4. April Averae Hourly Psychrometric Properties for Miami


DBTWBT DPT Pw Ps* v h Pw
hour (C) (C) (C) (Pa) (Pa) Ws Ws* W Al () (m3/kg) (kJ/kg) (Pa)
0 25.4 22.4 22.0 3386.15 2836.87 0.0215044 0.01792 0.016676 0.78 0.78 0.8684 67.8608 2645.77
1 25.1 22.4 22.13319.64 2827.30 0.0210677 0.01785 0.016731 0.790.80 0.8675 67.65672654.22
2 24.7 22.3 22.03254.27 2808.25 0.0206391 0.01773 0.016701 0.81 0.81 0.8665 67.2369 2649.58
3 24.5 22.2 22.03211.31 2798.77 0.0203577 0.01767 0.01671 0.82 0.83 0.8659 67.0299 2650.91
4 24.3 22.2 22.13168.86 2789.32 0.0200799 0.01761 0.016718 0.830.84 0.8653 66.82342652.27
5 24.2 22.1 22.03158.32 2779.89 0.020011 0.01755 0.016657 0.830.84 0.8650 66.6108 2642.84
6 24.3 22.2 22.03179.42 2789.32 0.020149 0.01761 0.016695 0.830.83 0.8654 66.82122648.66
7 24.7 22.3 22.1 3243.48 2808.25 0.0205684 0.01773 0.016724 0.81 0.82 0.8664 67.2391 2653.19
8 25.2 22.4 22.13352.75 2836.87 0.021285 0.01792 0.016746 0.790.79 0.8681 67.86742656.58
9 26.1 22.7 22.13522.67 2875.42 0.0224026 0.01817 0.016739 0.75 0.75 0.8705 68.7082 2655.51
10 27.0 22.9 22.1 3724.27 2924.25 0.0237337 0.01848 0.016776 0.71 0.71 0.8733 69.7740 2661.13
11 28.1 23.2 22.13974.26 2973.80 0.0253918 0.01881 0.016747 0.66 0.67 0.8765 70.84552656.70
12 29.1 23.5 22.14211.62 3024.09 0.0269741 0.01913 0.01677 0.62 0.63 0.8794 71.93402660.22
13 29.8 23.7 22.24390.62 3064.85 0.0281724 0.0194 0.016824 0.6 0.61 0.8816 72.81722668.63
14 30.4 23.8 22.14532.78 3085.41 0.0291273 0.01953 0.016771 0.580.59 0.8831 73.25382660.43
15 30.6 23.9 22.14576.20 3095.73 0.0294195 0.0196 0.016792 0.57 0.58 0.8836 73.47752663.57
16 30.4 23.8 22.14532.78 3085.41 0.0291273 0.01953 0.016771 0.580.59 0.8831 73.25382660.43
17 29.9 23.7 22.1 4418.74 3064.85 0.0283611 0.0194 0.016778 0.59 0.60 0.8818 72.8126 2661.43
18 29.2 23.6 22.14238.74 3034.23 0.0271553 0.0192 0.016812 0.620.63 0.8798 72.15692666.78
19 28.4 23.3 22.14039.00 2993.83 0.0258226 0.01894 0.016807 0.65 0.66 0.8773 71.28442665.94
20 27.6 23.1 22.13847.50 2943.98 0.02455 0.01861 0.016717 0.680.69 0.8748 70.19662652.06
21 26.9 22.9 22.13700.05 2914.43 0.0235734 0.01842 0.016736 0.71 0.72 0.8729 69.5567 2654.90
22 26.2 22.7 22.13557.54 2885.13 0.0226324 0.01823 0.016756 0. 0.75 0.8710 68.9212 2658.01
23 25.7 22.6 22.03453.82 2856.09 0.0219493 0.01804 0.016708 0.76 0.77 0.8695 68.28352650.58












Table A.5. May Average Hourly Psychrometric Properties for Miami


DBTWBT DPT Pws Ps* v h Pw
hour (oC) (C) (oC) (Pa) (Pa) Ws W* W ( (m3/kg) (kJ/kg) (Pa)
0 25.9 23.1 22.73499.59 2943.98 0.0222506 0.01861 0.017394 0.780.79 0.8710 70.26202756.55
1 25.6 22.9 22.73431.13 2924.25 0.0218001 0.01848 0.01736 0.80 0.80 0.8700 69.8301 2751.22
2 25.3 22.9 22.73363.85 2914.43 0.0213579 0.01842 0.017413 0.820.82 0.8691 69.62162759.41
3 25.1 22.8 22.63319.64 2894.86 0.0210677 0.01829 0.017333 0.820.83 0.8684 69.18822747.05
4 24.8 22.7 22.63275.93 2885.13 0.0207811 0.01823 0.01734 0.830.84 0.8677 68.9768 2748.12
5 24.8 22.7 22.73265.08 2885.13 0.0207099 0.01823 0.017363 0.84 0.84 0.8676 68.9790 2751.73
6 24.9 22.8 22.73286.81 2894.86 0.0208524 0.01829 0.017403 0.830.84 0.8680 69.1949 2757.87
7 25.2 22.8 22.63352.75 2904.63 0.021285 0.01836 0.017349 0.820.82 0.8689 69.40242749.61
8 25.8 23.0 22.7 3465.21 2934.10 0.0220243 0.01855 0.017377 0.79 0.79 0.8705 70.0458 2753.87
9 26.6 23.2 22.73640.07 2973.80 0.0231771 0.01881 0.017377 0. 0.76 0.8730 70.9067 2753.96
10 27.6 23.5 22.73847.50 3024.09 0.02455 0.01913 0.017423 0.71 0.72 0.8758 71.99832761.06
11 28.7 23.8 22.74104.65 3075.11 0.02626 0.01947 0.017404 0.66 0.67 0.8790 73.09562758.12
12 29.7 24.1 22.74348.74 3126.89 0.0278916 0.01981 0.017437 0.630.64 0.8819 74.21062763.16
13 30.4 24.3 22.84532.78 3168.86 0.0291273 0.02008 0.0175 0.60 0.61 0.8841 75.11532772.80
14 30.9 24.4 22.74678.93 3190.02 0.0301119 0.02022 0.01745 0.58 0.59 0.8857 75.56252765.21
15 31.1 24.4 22.84723.56 3200.65 0.0304132 0.02029 0.017473 0.57 0.59 0.8862 75.7917 2768.66
16 30.9 24.4 22.74678.93 3190.02 0.0301119 0.02022 0.01745 0.58 0.59 0.8857 75.56252765.21
17 30.5 24.3 22.74561.69 3168.86 0.0293218 0.02008 0.017453 0.60 0.61 0.8844 75.11052765.60
18 29.8 24.1 22.84376.62 3137.33 0.0280785 0.01987 0.017482 0.620.63 0.8823 74.43892770.02
19 28.9 23.9 22.84171.22 3095.73 0.0267042 0.0196 0.017468 0.65 0.66 0.8799 73.5452 2767.97
20 28.1 23.7 22.73974.26 3054.61 0.0253918 0.01933 0.017458 0.690.70 0.8774 72.65982766.41
21 27.4 23.4 22.3822.58 3013.97 0.0243847 0.01907 0.017381 0.71 0.72 0.8754 71.7757 2754.54
22 26.8 23.3 22.73675.95 2983.80 0.0234142 0.01887 0.017396 0.740.75 0.8735 71.12492756.76
23 26.3 23.2 22.73569.23 2963.83 0.0227095 0.01874 0.01743 0.77 0.77 0.8721 70.6958 2762.00












Table A.6. June Average Hourly Psychrometric Properties for Miami


DBTWBT DPT Pws Ps* v h Pw
hour (oC) (C) (oC) (Pa) (Pa) Ws Ws* W I ( (m3/kg) (kJ/kg) (Pa)
0 27.1 23.6 23.1 3736.44 3044.41 0.0238142 0.01927 0.017813 0 0. 0.76 0.8748 72.4750 2821.02
1 26.7 23.6 23.1 3663.96 3034.23 0.0233349 0.0192 0.017864 0.77 0.77 0.8739 72.2605 2828.85
2 26.4 23.4 23.1 3592.71 3013.97 0.0228644 0.01907 0.017825 0. 0.79 0.8729 71.8193 2822.99
3 26.2 23.4 23.13545.88 3003.88 0.0225556 0.019 0.01783 0.79 0.80 0.8723 71.6018 2823.70
4 25.9 23.3 23.13499.59 2993.83 0.0222506 0.01894 0.017835 0.80 0.81 0.8716 71.3848 2824.45
5 25.9 23.3 23.1 3488.10 2993.83 0.0221749 0.01894 0.017858 0.81 0.81 0.8715 71.3871 2828.05
6 26.0 23.3 23.1 3511.11 2993.83 0.0223265 0.01894 0.017812 0.80 0.80 0.8718 71.38252820.84
7 26.3 23.4 23.13580.95 3013.97 0.0227869 0.01907 0.017849 0 0. 0.79 0.8728 71.8216 2826.59
8 26.9 23.6 23.1 3700.05 3044.41 0.0235734 0.01927 0.017883 0. 0.77 0.8745 72.4819 2831.83
9 27.7 23.8 23.1 3885.15 3085.41 0.0247998 0.01953 0.017892 0. 0.73 0.8769 73.3656 2833.25
10 28.7 24.1 23.1 4104.65 3126.89 0.02626 0.01981 0.017858 0.68 0.69 0.8796 74.2529 2827.96
11 29.8 24.3 23.1 4376.62 3179.42 0.0280785 0.02015 0.017849 0.64 0.65 0.8828 75.3767 2826.57
12 30.8 24.6 23.14634.66 3232.73 0.0298134 0.0205 0.017892 0.60 0.61 0.8858 76.5186 2833.17
13 31.5 24.8 23.24829.15 3275.93 0.0311271 0.02078 0.017962 0.58 0.59 0.8880 77.44522844.07
14 32.1 24.9 23.24983.54 3297.72 0.0321737 0.02092 0.017917 0.56 0.57 0.8896 77.90332837.12
15 32.2 25.0 23.25030.68 3308.66 0.032494 0.021 0.017942 0.55 0.56 0.8901 78.1381 2840.89
16 32.1 24.9 23.24983.54 3297.72 0.0321737 0.02092 0.017917 0.56 0.57 0.8896 77.90332837.12
17 31.6 24.8 23.24859.69 3275.93 0.0313338 0.02078 0.017916 0.57 0.58 0.8883 77.44042836.87
18 30.9 24.7 23.24664.13 3243.48 0.0300121 0.02057 0.017938 0.60 0.61 0.8862 76.75242840.34
19 30.1 24.4 23.24447.01 3200.65 0.0285509 0.02029 0.017917 0.63 0.64 0.8837 75.8371 2837.03
20 29.2 24.2 23.1 4238.74 3158.32 0.0271553 0.02001 0.017898 0.66 0.67 0.8813 74.9304 2834.23
21 28.6 24.1 23.1 4078.28 3126.89 0.0260842 0.01981 0.017905 0.69 0.70 0.8793 74.2576 2835.16
22 27.9 23.9 23.23923.13 3095.73 0.025052 0.0196 0.017912 0 0. 0.72 0.8774 73.5896 2836.38
23 27.4 23.7 23.1 3810.17 3064.85 0.0243024 0.0194 0.017852 0.73 0.74 0.8759 72.9193 2827.07












Table A.7. July Average Hourly Psychrometric Properties for Miami


DBTWBT DPT Pws Ps* v h Pw
hour (C) (C) (C) (Pa) (Pa) Ws W* W ( (m3/kg) (kJ/kg) (Pa)
0 27.6 23.7 22.93860.02 3054.61 0.024633 0.01933 0.017669 0. 0.73 0.8763 72.6806 2798.82
1 27.3 23.6 22.93785.45 3034.23 0.0241387 0.0192 0.01763 0.730.74 0.8752 72.23752792.83
2 26.9 23.4 22.93712.14 3013.97 0.0236534 0.01907 0.017592 0.740.75 0.8742 71.79642786.96
3 26.7 23.4 22.93663.96 3003.88 0.0233349 0.019 0.017596 0. 0.76 0.8736 71.5789 2787.67
4 26.5 23.3 22.93616.32 2993.83 0.0230203 0.01894 0.017601 0.76 0.77 0.8729 71.36192788.42
5 26.4 23.3 22.93604.50 2993.83 0.0229422 0.01894 0.017624 0.77 0.77 0.8728 71.3642 2792.02
6 26.6 23.3 22.93628.18 2993.83 0.0230986 0.01894 0.017578 0.760.77 0.8731 71.3596 2784.81
7 26.9 23.4 22.93700.05 3013.97 0.0235734 0.01907 0.017615 0 0. 0.75 0.8741 71.7987 2790.56
8 27.4 23.6 22.93822.58 3044.41 0.0243847 0.01927 0.017649 0 0. 0.73 0.8758 72.4588 2795.81
9 28.3 23.8 22.94012.99 3085.41 0.0256495 0.01953 0.017658 0.690.70 0.8782 73.3423 2797.24
10 29.2 24.1 22.94238.74 3126.89 0.0271553 0.01981 0.017624 0.650.66 0.8809 74.22942791.96
11 30.3 24.3 22.94518.39 3179.42 0.0290305 0.02015 0.017615 0.61 0.62 0.8841 75.35292790.58
12 31.3 24.6 22.94783.65 3232.73 0.0308193 0.0205 0.017658 0.57 0.58 0.8871 76.4945 2797.19
13 32.1 24.8 23.04983.54 3275.93 0.0321737 0.02078 0.017729 0.55 0.56 0.8893 77.4209 2808.10
14 32.6 24.9 23.05142.20 3297.72 0.0332528 0.02092 0.017684 0.530.54 0.8909 77.8789 2801.16
15 32.8 25.0 23.05190.64 3308.66 0.033583 0.021 0.017708 0.530.54 0.8914 78.11362804.93
16 32.6 24.9 23.05142.20 3297.72 0.0332528 0.02092 0.017684 0.530.54 0.8909 77.8789 2801.16
17 32.2 24.8 22.95014.93 3275.93 0.0323869 0.02078 0.017682 0.55 0.56 0.8896 77.4161 2800.91
18 31.4 24.7 23.04813.94 3243.48 0.0310241 0.02057 0.017705 0.57 0.58 0.8875 76.72832804.37
19 30.6 24.4 22.94590.76 3200.65 0.0295176 0.02029 0.017683 0.60 0.61 0.8850 75.8132 2801.04
20 29.8 24.2 22.94376.62 3158.32 0.0280785 0.02001 0.017665 0.630.64 0.8826 74.9067 2798.23
21 29.1 24.1 22.94211.62 3126.89 0.0269741 0.01981 0.017671 0.66 0.66 0.8806 74.2341 2799.16
22 28.4 23.9 22.94052.05 3095.73 0.0259095 0.0196 0.017679 0.68 0.69 0.8787 73.56622800.37
23 27.9 23.7 22.93935.86 3064.85 0.0251365 0.0194 0.017618 0.70 0.71 0.8772 72.89602791.06












Table A.8. August Average Hourly Psychrometric Prop rties for Miami


DBTWBT DPT Pws Ps* v h Pw
hour (C) (C) (C) (Pa) (Pa) Ws W* W ( (m3/kg) (kJ/kg) (Pa)
0 27.6 23.7 22.93860.02 3054.61 0.024633 0.01933 0.017669 0. 0.73 0.8763 72.6806 2798.82
1 27.3 23.6 22.93785.45 3034.23 0.0241387 0.0192 0.01763 0.730.74 0.8752 72.23752792.83
2 26.9 23.4 22.93712.14 3013.97 0.0236534 0.01907 0.017592 0.740.75 0.8742 71.79642786.96
3 26.7 23.4 22.93663.96 3003.88 0.0233349 0.019 0.017596 0. 0.76 0.8736 71.5789 2787.67
4 26.5 23.3 22.93616.32 2993.83 0.0230203 0.01894 0.017601 0.76 0.77 0.8729 71.36192788.42
5 26.4 23.3 22.93604.50 2993.83 0.0229422 0.01894 0.017624 0.77 0.77 0.8728 71.3642 2792.02
6 26.6 23.3 22.93628.18 2993.83 0.0230986 0.01894 0.017578 0.760.77 0.8731 71.3596 2784.81
7 26.9 23.4 22.93700.05 3013.97 0.0235734 0.01907 0.017615 0.75 0.75 0.8741 71.7987 2790.56
8 27.4 23.6 22.93822.58 3044.41 0.0243847 0.01927 0.017649 0 0. 0.73 0.8758 72.4588 2795.81
9 28.3 23.8 22.94012.99 3085.41 0.0256495 0.01953 0.017658 0.690.70 0.8782 73.3423 2797.24
10 29.2 24.1 22.94238.74 3126.89 0.0271553 0.01981 0.017624 0.650.66 0.8809 74.22942791.96
11 30.3 24.3 22.94518.39 3179.42 0.0290305 0.02015 0.017615 0.61 0.62 0.8841 75.35292790.58
12 31.3 24.6 22.94783.65 3232.73 0.0308193 0.0205 0.017658 0.57 0.58 0.8871 76.4945 2797.19
13 32.1 24.8 23.04983.54 3275.93 0.0321737 0.02078 0.017729 0.55 0.56 0.8893 77.4209 2808.10
14 32.6 24.9 23.05142.20 3297.72 0.0332528 0.02092 0.017684 0.530.54 0.8909 77.8789 2801.16
15 32.8 25.0 23.05190.64 3308.66 0.033583 0.021 0.017708 0.530.54 0.8914 78.11362804.93
16 32.6 24.9 23.05142.20 3297.72 0.0332528 0.02092 0.017684 0.530.54 0.8909 77.8789 2801.16
17 32.2 24.8 22.95014.93 3275.93 0.0323869 0.02078 0.017682 0.55 0.56 0.8896 77.4161 2800.91
18 31.4 24.7 23.04813.94 3243.48 0.0310241 0.02057 0.017705 0.57 0.58 0.8875 76.72832804.37
19 30.6 24.4 22.94590.76 3200.65 0.0295176 0.02029 0.017683 0.60 0.61 0.8850 75.8132 2801.04
20 29.8 24.2 22.94376.62 3158.32 0.0280785 0.02001 0.017665 0.630.64 0.8826 74.9067 2798.23
21 29.1 24.1 22.94211.62 3126.89 0.0269741 0.01981 0.017671 0.66 0.66 0.8806 74.2341 2799.16
22 28.4 23.9 22.94052.05 3095.73 0.0259095 0.0196 0.017679 0.68 0.69 0.8787 73.56622800.37
23 27.9 23.7 22.93935.86 3064.85 0.0251365 0.0194 0.017618 0.70 0.71 0.8772 72.89602791.06












Table A.9. September Average Hourly Psychrometric Properties for Miami


DBTWBT DPT Pws Ps* v h Pw
hour (C) (C) (C) (Pa) (Pa) Ws W* W ( (m3/kg) (kJ/kg) (Pa)
0 26.5 23.1 22.53616.32 2943.98 0.0230203 0.01861 0.017161 0.750.75 0.8723 70.23942720.52
1 26.2 22.9 22.43545.88 2924.25 0.0225556 0.01848 0.017126 0.760.77 0.8713 69.80762715.18
2 25.8 22.9 22.53476.64 2914.43 0.0220995 0.01842 0.017179 0.78 0.78 0.8704 69.5992 2723.37
3 25.6 22.8 22.43431.13 2894.86 0.0218001 0.01829 0.017099 0.780.79 0.8697 69.16602711.01
4 25.4 22.7 22.43386.15 2885.13 0.0215044 0.01823 0.017106 0.80 0.80 0.8690 68.95452712.08
5 25.3 22.7 22.43374.98 2885.13 0.021431 0.01823 0.017129 0.80 0.80 0.8689 68.95682715.68
6 25.4 22.8 22.53397.35 2894.86 0.021578 0.01829 0.017169 0.80 0.80 0.8693 69.17262721.82
7 25.8 22.8 22.43465.21 2904.63 0.0220243 0.01836 0.017116 0.78 0.78 0.8702 69.3801 2713.57
8 26.3 23.0 22.53580.95 2934.10 0.0227869 0.01855 0.017143 0.750.76 0.8718 70.02332717.84
9 27.2 23.2 22.53760.88 2973.80 0.0239759 0.01881 0.017144 0. 0.72 0.8743 70.8840 2717.94
10 28.1 23.5 22.53974.26 3024.09 0.0253918 0.01913 0.01719 0.68 0.69 0.8771 71.97532725.05
11 29.2 23.8 22.54238.74 3075.11 0.0271553 0.01947 0.017171 0.630.64 0.8803 73.07242722.12
12 30.2 24.1 22.54489.72 3126.89 0.0288378 0.01981 0.017204 0.60 0.61 0.8832 74.1871 2727.17
13 30.9 24.3 22.64678.93 3168.86 0.0301119 0.02008 0.017266 0.570.58 0.8854 75.09162736.81
14 31.5 24.4 22.54829.15 3190.02 0.0311271 0.02022 0.017217 0.55 0.57 0.8870 75.5387 2729.23
15 31.7 24.4 22.54875.02 3200.65 0.0314377 0.02029 0.017239 0.55 0.56 0.8875 75.7678 2732.68
16 31.5 24.4 22.54829.15 3190.02 0.0311271 0.02022 0.017217 0.55 0.57 0.8870 75.5387 2729.23
17 31.1 24.3 22.54708.64 3168.86 0.0303125 0.02008 0.01722 0.570.58 0.8857 75.08682729.61
18 30.3 24.1 22.64518.39 3137.33 0.0290305 0.01987 0.017248 0.590.61 0.8836 74.41532734.03
19 29.5 23.9 22.54307.20 3095.73 0.0276134 0.0196 0.017235 0.62 0.63 0.8812 73.5218 2731.96
20 28.7 23.7 22.54104.65 3054.61 0.02626 0.01933 0.017225 0.660.67 0.8787 72.6367 2730.40
21 28.0 23.4 22.53948.62 3013.97 0.0252214 0.01907 0.017148 0.680.69 0.8767 71.75282718.52
22 27.3 23.3 22.53797.79 2983.80 0.0242204 0.01887 0.017162 0.71 0.72 0.8748 71.10222720.74
23 26.8 23.2 22.53687.98 2963.83 0.0234937 0.01874 0.017196 0.730.74 0.8734 70.6732 2725.97












Table A. 10. October Average Hourly Psychrometric Properties for Miami


DBTWBT DPT Pws Ps* v h Pw
hour (C) (C) (C) (Pa) (Pa) Ws Ws* W () (m3/kg) (kJ/kg) (Pa)
0 25.4 22.4 22.0 3386.15 2836.87 0.0215044 0.01792 0.016676 0.78 0.78 0.8684 67.8608 2645.77
1 25.1 22.4 22.13319.64 2827.30 0.0210677 0.01785 0.016731 0.790.80 0.8675 67.65672654.22
2 24.7 22.3 22.03254.27 2808.25 0.0206391 0.01773 0.016701 0.81 0.81 0.8665 67.2369 2649.58
3 24.5 22.2 22.03211.31 2798.77 0.0203577 0.01767 0.01671 0.82 0.83 0.8659 67.0299 2650.91
4 24.3 22.2 22.13168.86 2789.32 0.0200799 0.01761 0.016718 0.830.84 0.8653 66.82342652.27
5 24.2 22.1 22.03158.32 2779.89 0.020011 0.01755 0.016657 0.830.84 0.8650 66.6108 2642.84
6 24.3 22.2 22.03179.42 2789.32 0.020149 0.01761 0.016695 0.830.83 0.8654 66.82122648.66
7 24.7 22.3 22.1 3243.48 2808.25 0.0205684 0.01773 0.016724 0.81 0.82 0.8664 67.2391 2653.19
8 25.2 22.4 22.13352.75 2836.87 0.021285 0.01792 0.016746 0.790.79 0.8681 67.86742656.58
9 26.1 22.7 22.13522.67 2875.42 0.0224026 0.01817 0.016739 0.75 0.75 0.8705 68.7082 2655.51
10 27.0 22.9 22.1 3724.27 2924.25 0.0237337 0.01848 0.016776 0.71 0.71 0.8733 69.7740 2661.13
11 28.1 23.2 22.13974.26 2973.80 0.0253918 0.01881 0.016747 0.66 0.67 0.8765 70.84552656.70
12 29.1 23.5 22.14211.62 3024.09 0.0269741 0.01913 0.01677 0.62 0.63 0.8794 71.93402660.22
13 29.8 23.7 22.24390.62 3064.85 0.0281724 0.0194 0.016824 0.6 0.61 0.8816 72.81722668.63
14 30.4 23.8 22.14532.78 3085.41 0.0291273 0.01953 0.016771 0.580.59 0.8831 73.25382660.43
15 30.6 23.9 22.14576.20 3095.73 0.0294195 0.0196 0.016792 0.57 0.58 0.8836 73.47752663.57
16 30.4 23.8 22.14532.78 3085.41 0.0291273 0.01953 0.016771 0.580.59 0.8831 73.25382660.43
17 29.9 23.7 22.1 4418.74 3064.85 0.0283611 0.0194 0.016778 0.59 0.60 0.8818 72.8126 2661.43
18 29.2 23.6 22.14238.74 3034.23 0.0271553 0.0192 0.016812 0.620.63 0.8798 72.15692666.78
19 28.4 23.3 22.14039.00 2993.83 0.0258226 0.01894 0.016807 0.65 0.66 0.8773 71.28442665.94
20 27.6 23.1 22.13847.50 2943.98 0.02455 0.01861 0.016717 0.680.69 0.8748 70.19662652.06
21 26.9 22.9 22.13700.05 2914.43 0.0235734 0.01842 0.016736 0.71 0.72 0.8729 69.5567 2654.90
22 26.2 22.7 22.13557.54 2885.13 0.0226324 0.01823 0.016756 0. 0.75 0.8710 68.9212 2658.01
23 25.7 22.6 22.03453.82 2856.09 0.0219493 0.01804 0.016708 0.760.77 0.8695 68.28352650.58












Table A. 11. November Average Hourly Psychrometric Properties for Miami


DBTWBT DPT Pws Ps* v h Pw
hour (C) (C) (C) (Pa) (Pa) Ws Ws* W (m3/kg) (kJ/kg) (Pa)
0 23.7 21.9 21.93064.85 2742.46 0.0194003 0.0173 0.016532 0.850.86 0.8634 65.7763 2623.43
1 23.4 21.8 21.93003.88 2723.92 0.0190026 0.01718 0.016505 0. 0.87 0.8624 65.3651 2619.30
2 23.1 21.7 21.82943.98 2705.48 0.0186123 0.01706 0.016479 0.890.89 0.8614 64.95582615.29
3 22.8 21.6 21.82904.63 2696.30 0.0183562 0.017 0.01649 0.90 0.90 0.8608 64.7540 2616.93
4 22.6 21.6 21.82865.74 2687.15 0.0181032 0.01694 0.016501 0.91 0.91 0.8601 64.55262618.60
5 22.6 21.6 21.92856.09 2687.15 0.0180405 0.01694 0.016524 0.92 0.92 0.8600 64.5547 2622.21
6 22.7 21.6 21.82875.42 2687.15 0.0181662 0.01694 0.016477 0.91 0.91 0.8603 64.55052614.99
7 23.0 21.7 21.82934.10 2705.48 0.018548 0.01706 0.016503 0.890.89 0.8613 64.95792618.89
8 23.6 21.8 21.93034.23 2733.18 0.0192005 0.01724 0.016518 0.86 0.86 0.8629 65.57052621.35
9 24.4 22.1 21.83190.02 2770.49 0.0202184 0.01748 0.016503 0.82 0.82 0.8653 66.3901 2619.01
10 25.3 22.3 21.93374.98 2817.76 0.021431 0.01779 0.016529 0.77 0.78 0.8681 67.4291 2623.04
11 26.4 22.7 21.93604.50 2875.42 0.0229422 0.01817 0.016576 0 0. 0.73 0.8714 68.6927 2630.28
12 27.4 22.9 21.93822.58 2924.25 0.0243847 0.01848 0.016589 0.68 0.69 0.8743 69.7561 2632.31
13 28.2 23.2 22.03987.14 2963.83 0.0254774 0.01874 0.016636 0.650.66 0.8765 70.6189 2639.51
14 28.7 23.3 21.94117.89 2983.80 0.0263483 0.01887 0.016579 0.630.64 0.8780 71.04542630.69
15 28.9 23.3 21.94157.83 2993.83 0.0266148 0.01894 0.016597 0.620.63 0.8785 71.26392633.53
16 28.7 23.3 21.94117.89 2983.80 0.0263483 0.01887 0.016579 0.630.64 0.8780 71.04542630.69
17 28.3 23.2 21.94012.99 2963.83 0.0256495 0.01874 0.016589 0.650.66 0.8767 70.61442632.31
18 27.6 22.9 21.93847.50 2924.25 0.02455 0.01848 0.016543 0.670.68 0.8746 69.75162625.10
19 26.7 22.7 21.93663.96 2885.13 0.0233349 0.01823 0.016546 0.71 0.72 0.8721 68.90132625.58
20 25.9 22.5 21.93488.10 2846.46 0.0221749 0.01798 0.016552 0.75 0.75 0.8697 68.0587 2626.53
21 25.2 22.3 21.93352.75 2817.76 0.021285 0.01779 0.016576 0.78 0.78 0.8678 67.43352630.25
22 24.6 22.1 21.93222.00 2779.89 0.0204277 0.01755 0.016517 0.81 0.81 0.8658 66.59782621.20
23 24.1 22.0 21.93126.89 2761.12 0.0198055 0.01742 0.016559 0.840.84 0.8644 66.18932627.67












Table A. 12. December Average Hourly Psychrometric Properties for Miami


DBTWBT DPT Pws Ps* v h Pw
hour (C) (C) (C) (Pa) (Pa) W Ws* W (m3/kg) (kJ/kg) (Pa)
0 22.6 20.7 20.62865.74 2553.11 0.0181032 0.01608 0.015286 0.840.85 0.8585 61.46422430.40
1 22.3 20.6 20.6 2808.25 2535.69 0.0177298 0.01596 0.015266 0.86 0.86 0.8575 61.0726 2427.41
2 21.9 20.5 20.62751.78 2518.37 0.0173633 0.01585 0.015248 0.88 0.88 0.8565 60.68292424.52
3 21.7 20.4 20.62714.68 2509.75 0.0171227 0.0158 0.015262 0.890.89 0.8559 60.49062426.73
4 21.5 20.4 20.62678.03 2501.15 0.0168852 0.01574 0.015276 0.90 0.91 0.8552 60.29882428.96
5 21.4 20.3 20.62668.93 2492.59 0.0168263 0.01569 0.015221 0.90 0.91 0.8550 60.10152420.39
6 21.6 20.4 20.62687.15 2501.15 0.0169443 0.01574 0.015253 0.90 0.90 0.8554 60.29682425.35
7 21.9 20.5 20.62742.46 2518.37 0.0173028 0.01585 0.015271 0.88 0.89 0.8564 60.6848 2428.13
8 22.4 20.7 20.62836.87 2544.39 0.0179156 0.01602 0.015276 0.85 0.86 0.8580 61.2682 2428.89
9 23.3 20.9 20.62983.80 2579.44 0.0188717 0.01625 0.015246 0.81 0.81 0.8604 62.04872424.27
10 24.2 21.2 20.63158.32 2623.85 0.020011 0.01653 0.015253 0.76 0.77 0.8631 63.0379 2425.41
11 25.3 21.5 20.63374.98 2678.03 0.021431 0.01689 0.015277 0.71 0.72 0.8664 64.24062429.12
12 26.3 21.8 20.63580.95 2723.92 0.0227869 0.01718 0.015271 0.67 0.68 0.8693 65.2526 2428.18
13 27.1 22.0 20.73736.44 2761.12 0.0238142 0.01742 0.015302 0.640.65 0.8714 66.07362432.98
14 27.6 22.2 20.73860.02 2789.32 0.024633 0.01761 0.015321 0.62 0.63 0.8730 66.6937 2435.97
15 27.8 22.2 20.7 3897.78 2798.77 0.0248836 0.01767 0.015336 0.62 0.63 0.8736 66.9021 2438.23
16 27.6 22.2 20.73860.02 2789.32 0.024633 0.01761 0.015321 0.62 0.63 0.8730 66.6937 2435.97
17 27.2 22.1 20.73760.88 2770.49 0.0239759 0.01748 0.015339 0.640.65 0.8718 66.28272438.75
18 26.4 21.8 20.73604.50 2733.18 0.0229422 0.01724 0.015308 0.67 0.68 0.8696 65.4598 2433.84
19 25.6 21.6 20.7 3431.13 2696.30 0.0218001 0.017 0.015325 0.70 0.71 0.8672 64.6486 2436.59
20 24.8 21.4 20.7 3265.08 2659.86 0.0207099 0.01677 0.015346 0. 0.75 0.8649 63.8448 2439.80
21 24.1 21.2 20.6 3137.33 2623.85 0.0198738 0.01653 0.0153 0.77 0.78 0.8629 63.0420 2432.62
22 23.4 20.9 20.63013.97 2588.27 0.0190684 0.0163 0.015256 0.80 0.80 0.8609 62.24652425.88
23 22.9 20.8 20.72924.25 2570.64 0.0184838 0.01619 0.015306 0.83 0.83 0.8595 61.85752433.50















Table A. 13. January Average Hourly Psychrometric Properties for Gainesville


DBTWBT DPT Pws Pw* v h Pw
hour (C) (C) (C) (Pa) (Pa) Ws Ws* W (m3/kg) (kJ/kg) (Pa)
0 16.3 15.0 15.01932.41 1780.49 0.01209270.0111249 0.0105967 0.880.88 0.8339 43.09151697.36
1 15.7 14.7 14.81865.01 1748.88 0.011663 0.010924 0.0105108 0.900.90 0.8322 42.30801683.83
2 15.2 14.5 14.81806.13 1723.96 0.0112881 0.0107656 0.0104673 0.93 0.93 0.8307 41.6885 1676.97
3 14.8 14.3 14.81755.17 1705.47 0.01096390.0106482 0.0104646 0.950.96 0.8294 41.2289 1676.55
4 14.5 14.2 14.71723.96 1687.15 0.01076560.0105319 0.0103943 0 0. 0.97 0.8285 40.7681 1665.47
5 14.4 14.1 14.61711.61 1681.09 0.01068720.0104934 0.0103787 0.97 0.97 0.8282 40.6156 1663.01
6 14.6 14.2 14.71736.38 1693.24 0.01084460.0105705 0.0104099 0.96 0.96 0.8289 40.92091667.94
7 15.1 14.4 14.71793.27 1717.77 0.01120620.0107263 0.010451 0.930.93 0.8304 41.5340 1674.40
8 16.1 14.9 14.91905.20 1767.79 0.0119191 0.0110442 0.010562 0.89 0.89 0.8332 42.7771 1691.89
9 17.4 15.5 15.12073.65 1838.64 0.012995 0.011495 0.0107136 0.820.83 0.8373 44.51991715.77
10 18.9 16.2 15.42286.55 1925.58 0.014360.0120491 0.0109218 0.76 0.76 0.8420 46.63321748.53
11 20.7 17.0 15.72553.11 2023.22 0.01607730.0126725 0.0111293 0.69 0.70 0.8474 48.9730 1781.18
12 22.4 17.7 15.92827.30 2110.34 0.01785350.0132298 0.0112703 0.63 0.64 0.8524 51.0313 1803.33
13 23.6 18.2 16.23044.41 2185.44 0.01926690.0137109 0.0114728 0.600.60 0.8562 52.7935 1835.15
14 24.4 18.6 16.33200.65 2231.61 0.02028790.0140071 0.0115602 0.57 0.58 0.8588 53.8665 1848.87
15 24.8 18.7 16.33265.08 2247.19 0.02070990.0141071 0.0115675 0.560.57 0.8597 54.22551850.03
16 24.4 18.6 16.33200.65 2231.61 0.02028790.0140071 0.0115602 0.57 0.58 0.8588 53.8665 1848.87
17 23.7 18.2 16.13064.85 2185.44 0.01940030.0137109 0.0114268 0.59 0.60 0.8565 52.7900 1827.93
18 22.6 17.8 16.02865.74 2125.18 0.01810320.0133248 0.0113188 0.63 0.63 0.8531 51.38141810.96
19 21.2 17.2 15.82632.81 2051.90 0.01659260.0128559 0.011197 0.67 0.68 0.8490 49.6548 1791.81
20 19.9 16.6 15.52424.96 1973.87 0.01525050.0123572 0.0109992 0. 0.73 0.8449 47.7927 1760.71
21 18.8 16.1 15.32262.86 1911.97 0.01420780.0119623 0.0108582 0. 0.77 0.8415 46.3022 1738.53
22 17.7 15.7 15.22117.75 1858.39 0.01327720.0116208 0.0107702 0.81 0.81 0.8383 45.0031 1724.68
23 16.9 15.3 15.02009.01 1812.59 0.01258170.0113292 0.0106629 0.850.85 0.8358 43.8819 1707.79












Table A. 14. February Average Hourly Psychrometric Properties for Gainesville


Hou DBTWBT DPT Pw Ps* v h Pw
r (C) (C) (C) (Pa) (Pa) Ws Ws* W (m3/kg) (kJ/kg) (Pa)
0 17.4 16.1 16.02073.65 1905.20 0.0129950.0119191 0.0113666 0.87 0.88 0.8381 46.17361818.47
1 16.8 15.8 16.02001.94 1878.33 0.01253650.0117478 0.0113336 0.90 0.91 0.8365 45.5229 1813.28
2 16.3 15.6 15.9 1939.27 1851.79 0.01213640.0115787 0.0112796 0.93 0.93 0.8350 44.8762 1804.80
3 15.9 15.4 15.91885.01 1832.10 0.01179040.0114534 0.0112693 0.96 0.96 0.8337 44.39671803.18
4 15.6 15.3 15.8 1851.79 1812.59 0.01157870.0113292 0.0111912 0.97 0.97 0.8328 43.9157 1790.91
5 15.5 15.2 15.8 1838.64 1806.13 0.0114950.0112881 0.0111731 0.97 0.97 0.8324 43.7565 1788.06
6 15.7 15.3 15.8 1865.01 1819.07 0.0116630.0113704 0.0112095 0.96 0.96 0.8331 44.0752 1793.77
7 16.2 15.6 15.9 1925.58 1845.20 0.0120491 0.0115368 0.0112607 0.930.94 0.8346 44.7150 1801.83
8 17.2 16.0 16.1 2044.70 1898.45 0.01280980.0118761 0.0113927 0.890.89 0.8375 46.01271822.56
9 18.5 16.6 16.32223.85 1973.87 0.01395740.0123572 0.0115738 0.83 0.83 0.8416 47.8326 1851.02
10 20.1 17.3 16.52450.13 2059.13 0.01541270.0129021 0.0117489 0.76 0.77 0.8463 49.86481878.49
11 21.8 18.0 16.82733.18 2155.12 0.01724260.0135166 0.0119236 0.69 0.70 0.8517 52.1242 1905.91
12 23.5 18.7 17.1 3024.09 2255.01 0.01913430.0141574 0.0121697 0.64 0.64 0.8569 54.4525 1944.48
13 24.7 19.2 17.33254.27 2326.52 0.0206391 0.0146169 0.0123269 0.60 0.61 0.8606 56.1020 1969.12
14 25.6 19.6 17.43419.84 2375.29 0.02172580.0149307 0.0124313 0.57 0.58 0.8632 57.21961985.46
15 25.9 19.7 17.43488.10 2391.75 0.02217490.0150366 0.0124443 0.56 0.57 0.8641 57.5936 1987.50
16 25.6 19.6 17.43419.84 2375.29 0.02172580.0149307 0.0124313 0.57 0.58 0.8632 57.2196 1985.46
17 24.8 19.3 17.33275.93 2334.59 0.0207811 0.0146688 0.0123555 0.59 0.60 0.8610 56.2881 1973.59
18 23.7 18.8 17.1 3064.85 2262.86 0.01940030.0142078 0.0121507 0.63 0.63 0.8575 54.63131941.50
19 22.3 18.2 16.92817.76 2185.44 0.01779150.0137109 0.0120019 0.67 0.68 0.8533 52.83391918.18
20 21.0 17.7 16.72597.12 2110.34 0.01636170.0132298 0.0118452 0.72 0.73 0.8492 51.07391893.61
21 19.9 17.2 16.4244.96 2044.70 0.01525050.0128098 0.0116799 0.77 0.77 0.8458 49.5197 1867.67
22 18.8 16.7 16.32270.74 1987.86 0.01425840.0124466 0.0115709 0.81 0.81 0.8426 48.1655 1850.56
23 18.0 16.3 16.1 2155.12 1939.27 0.01351660.0121364 0.0114455 0.85 0.85 0.8400 46.9971 1830.86












Table A. 15. March Average Hourly Psychrometric Properties for Gainesville


DBTWBT DPT Pw Pws* v h Pw
hour (C) (C) (C) (Pa) (Pa) Ws Ws* W (m3/kg) (kJ/kg) (Pa)
0 20.1 18.7 18.72450.13 2247.19 0.01541270.0141071 0.013528 0.880.88 0.8487 54.37872156.89
1 19.5 18.4 18.62367.10 2216.12 0.0148780.0139078 0.0134677 0.91 0.91 0.8470 53.65682147.49
2 19.0 18.2 18.62294.50 2185.44 0.014411 0.0137109 0.0133868 0.930.93 0.8455 52.93952134.86
3 18.6 18.1 18.52231.61 2162.66 0.0140071 0.013565 0.0133566 0.950.95 0.8442 52.40792130.15
4 18.3 17.9 18.52193.07 2147.60 0.01375990.0134684 0.0133296 0.970.97 0.8433 52.05482125.92
5 18.2 17.9 18.52177.82 2140.10 0.0136621 0.0134204 0.0133047 0.970.97 0.8430 51.87802122.04
6 18.4 18.0 18.52208.42 2155.12 0.01385830.0135166 0.0133546 0.960.96 0.8437 52.23202129.83
7 18.9 18.2 18.52278.63 2177.82 0.0143091 0.0136621 0.0133612 0.93 0.94 0.8451 52.76082130.86
8 19.8 18.6 18.72416.62 2231.61 0.01519680.0140071 0.0134744 0.890.89 0.8480 54.01522148.53
9 21.2 19.1 18.92623.85 2310.46 0.01653460.0145136 0.0136559 0.830.83 0.8521 55.84182176.85
10 22.7 19.7 19.12885.13 2400.01 0.01822930.0150898 0.0138368 0.760.76 0.8569 57.89562205.06
11 24.5 20.4 19.33211.31 2501.15 0.02035770.0157418 0.0140231 0.690.70 0.8623 60.19182234.09
12 26.2 21.0 19.53545.88 2597.12 0.02255560.0163617 0.0141997 0.630.64 0.8673 62.35082261.60
13 27.4 21.5 19.73810.17 2678.03 0.02430240.0168852 0.0144189 0.590.60 0.8712 64.16332295.72
14 28.2 21.8 19.84000.05 2723.92 0.02556330.0171826 0.0144825 0.570.58 0.8737 65.18072305.62
15 28.6 21.9 19.84078.28 2742.46 0.02608420.0173028 0.0145092 0.56 0.57 0.8747 65.59092309.77
16 28.2 21.8 19.84000.05 2723.92 0.02556330.0171826 0.0144825 0.570.58 0.8737 65.18072305.62
17 27.5 21.5 19.73835.02 2678.03 0.02446720.0168852 0.0143725 0.59 0.60 0.8714 64.1591 2288.51
18 26.4 21.1 19.63592.71 2614.92 0.02286440.0164768 0.0142678 0.620.63 0.8681 62.75222272.20
19 25.0 20.6 19.43308.66 2535.69 0.02099570.0159648 0.0141291 0.67 0.68 0.8639 60.97452250.61
20 23.7 20.1 19.23054.61 2458.57 0.01933350.0154671 0.0139811 0.72 0.73 0.8598 59.2308 2227.56
21 22.6 19.7 19.12856.09 2391.75 0.01804050.0150366 0.0138301 0.770.77 0.8564 57.70762204.01
22 21.5 19.2 18.92678.03 2326.52 0.01688520.0146169 0.0136663 0.81 0.81 0.8531 56.20982178.47
23 20.7 18.9 18.82544.39 2278.63 0.01602090.0143091 0.0135675 0.850.85 0.8505 55.10522163.06












Table A. 16. April Average Hourly Psychrometric Properties for Gainesville


DBTWBT DPT Pw Ps* v h Pw
hour (C) (C) (C) (Pa) (Pa) Ws W* W ( (m3/kg) (kJ/kg) (Pa)
0 20.1 18.7 18.72450.13 2247.19 0.01541270.0141071 0.013528 0.880.88 0.8487 54.37872156.89
1 19.5 18.4 18.62367.10 2216.12 0.0148780.0139078 0.0134677 0.91 0.91 0.8470 53.65682147.49
2 19.0 18.2 18.62294.50 2185.44 0.014411 0.0137109 0.0133868 0.930.93 0.8455 52.93952134.86
3 18.6 18.1 18.52231.61 2162.66 0.0140071 0.013565 0.0133566 0.950.95 0.8442 52.40792130.15
4 18.3 17.9 18.52193.07 2147.60 0.01375990.0134684 0.0133296 0.970.97 0.8433 52.05482125.92
5 18.2 17.9 18.52177.82 2140.10 0.0136621 0.0134204 0.0133047 0.970.97 0.8430 51.87802122.04
6 18.4 18.0 18.52208.42 2155.12 0.01385830.0135166 0.0133546 0.960.96 0.8437 52.23202129.83
7 18.9 18.2 18.52278.63 2177.82 0.0143091 0.0136621 0.0133612 0.93 0.94 0.8451 52.76082130.86
8 19.8 18.6 18.72416.62 2231.61 0.01519680.0140071 0.0134744 0.890.89 0.8480 54.01522148.53
9 21.2 19.1 18.92623.85 2310.46 0.01653460.0145136 0.0136559 0.830.83 0.8521 55.84182176.85
10 22.7 19.7 19.12885.13 2400.01 0.01822930.0150898 0.0138368 0.760.76 0.8569 57.89562205.06
11 24.5 20.4 19.33211.31 2501.15 0.02035770.0157418 0.0140231 0.690.70 0.8623 60.19182234.09
12 26.2 21.0 19.53545.88 2597.12 0.02255560.0163617 0.0141997 0.630.64 0.8673 62.35082261.60
13 27.4 21.5 19.73810.17 2678.03 0.02430240.0168852 0.0144189 0.590.60 0.8712 64.16332295.72
14 28.2 21.8 19.84000.05 2723.92 0.02556330.0171826 0.0144825 0.570.58 0.8737 65.18072305.62
15 28.6 21.9 19.84078.28 2742.46 0.02608420.0173028 0.0145092 0.56 0.57 0.8747 65.59092309.77
16 28.2 21.8 19.84000.05 2723.92 0.02556330.0171826 0.0144825 0.570.58 0.8737 65.18072305.62
17 27.5 21.5 19.73835.02 2678.03 0.02446720.0168852 0.0143725 0.59 0.60 0.8714 64.1591 2288.51
18 26.4 21.1 19.63592.71 2614.92 0.02286440.0164768 0.0142678 0.620.63 0.8681 62.75222272.20
19 25.0 20.6 19.43308.66 2535.69 0.02099570.0159648 0.0141291 0.67 0.68 0.8639 60.97452250.61
20 23.7 20.1 19.23054.61 2458.57 0.01933350.0154671 0.0139811 0.72 0.73 0.8598 59.2308 2227.56
21 22.6 19.7 19.12856.09 2391.75 0.01804050.0150366 0.0138301 0.770.77 0.8564 57.70762204.01
22 21.5 19.2 18.92678.03 2326.52 0.01688520.0146169 0.0136663 0.81 0.81 0.8531 56.20982178.47
23 20.7 18.9 18.82544.39 2278.63 0.01602090.0143091 0.0135675 0.850.85 0.8505 55.10522163.06












Table A. 17. Ma Average Hourly Psychrometric Properties for Gainesville


DBTWBT DPT Pw Ps* v h Pw
hour (C) (C) (C) (Pa) (Pa) Ws W* W ( (m3/kg) (kJ/kg) (Pa)
0 23.8 21.5 21.33085.41 2678.03 0.01953450.0168852 0.0159054 0.81 0.82 0.8629 64.2971 2526.50
1 23.3 21.4 21.32983.80 2659.86 0.01887170.0167676 0.0159744 0.850.85 0.8614 63.90102537.19
2 22.8 21.2 21.32894.86 2632.81 0.01829260.0165926 0.0159395 0.870.87 0.8599 63.29782531.78
3 22.3 21.1 21.32817.76 2614.92 0.01779150.0164768 0.0159637 0.90 0.90 0.8586 62.9021 2535.52
4 22.1 21.0 21.32770.49 2597.12 0.01748470.0163617 0.0159187 0.91 0.91 0.8577 62.50192528.56
5 21.9 20.9 21.22751.78 2588.27 0.01736330.0163045 0.0158848 0.91 0.92 0.8574 62.30162523.31
6 22.2 21.0 21.22789.32 2597.12 0.01760680.0163617 0.0158721 0.90 0.90 0.8580 62.49792521.34
7 22.7 21.2 21.32875.42 2623.85 0.01816620.0165346 0.0159049 0.880.88 0.8595 63.09562526.42
8 23.6 21.4 21.33044.41 2668.93 0.01926690.0168263 0.0159166 0.83 0.83 0.8622 64.0968 2528.22
9 24.9 21.8 21.33297.72 2733.18 0.02092390.0172426 0.0159357 0. 0.77 0.8661 65.51722531.19
10 26.5 22.3 21.33616.32 2808.25 0.02302030.0177298 0.0159553 0.690.70 0.8707 67.16742534.22
11 28.3 22.8 21.34012.99 2894.86 0.02564950.0182926 0.0159799 0.620.63 0.8759 69.05932538.04
12 29.9 23.2 21.34418.74 2973.80 0.0283611 0.0188065 0.0159787 0.560.57 0.8807 70.77082537.84
13 31.2 23.6 21.44738.52 3044.41 0.03051430.0192669 0.0160867 0.530.54 0.8844 72.30442554.56
14 32.0 23.8 21.54967.91 3085.41 0.03206760.0195345 0.0160963 0.50 0.51 0.8869 73.18652556.05
15 32.3 23.9 21.45062.33 3095.73 0.0327091 0.0196019 0.0160469 0.49 0.50 0.8878 73.4030 2548.40
16 32.0 23.8 21.54967.91 3085.41 0.03206760.0195345 0.0160963 0.50 0.51 0.8869 73.18652556.05
17 31.3 23.6 21.44768.56 3044.41 0.03071730.0192669 0.0160402 0. 0.53 0.8847 72.2998 2547.36
18 30.2 23.3 21.34475.44 2983.80 0.02874190.0188717 0.0159736 0.56 0.57 0.8814 70.98642537.06
19 28.8 22.9 21.44131.17 2924.25 0.02643690.0184838 0.0160304 0.61 0.62 0.8774 69.70242545.85
20 27.4 22.6 21.33822.58 2856.09 0.02438470.0180405 0.0159852 0.66 0.66 0.8735 68.21532538.85
21 26.3 22.2 21.33580.95 2798.77 0.02278690.0176682 0.0159406 0.70 0.71 0.8702 66.95832531.94
22 25.3 21.9 21.33363.85 2751.78 0.02135790.0173633 0.0159628 0.750.75 0.8671 65.92902535.38
23 24.4 21.7 21.33200.65 2714.68 0.02028790.0171227 0.0159792 0.79 0.79 0.8647 65.11362537.93












Table A. 18. June Average Hourly Psychrometric Properties for Gainesville


DBTWBT DPT Pw Ps* v h Pw
hour (C) (C) (C) (Pa) (Pa) Ws Ws* W (m3/kg) (kJ/kg) (Pa)
0 25.4 22.7 22.43386.15 2885.13 0.02150440.0182293 0.0171059 0.80 0.80 0.8690 68.95452712.08
1 24.8 22.6 22.53275.93 2865.74 0.0207811 0.0181032 0.017167 0.83 0.83 0.8675 68.5376 2721.52
2 24.3 22.4 22.43179.42 2836.87 0.0201490.0179156 0.01712 0.850.85 0.8660 67.90252714.26
3 23.9 22.3 22.43095.73 2817.76 0.01960190.0177915 0.0171364 0. 0.88 0.8647 67.48592716.79
4 23.6 22.2 22.43044.41 2798.77 0.01926690.0176682 0.0170834 0.89 0.89 0.8638 67.06472708.61
5 23.5 22.2 22.43024.09 2798.77 0.01913430.0176682 0.0171301 0.90 0.90 0.8636 67.06902715.82
6 23.7 22.3 22.43064.85 2808.25 0.01940030.0177298 0.0171215 0.88 0.89 0.8642 67.2761 2714.49
7 24.2 22.4 22.43158.32 2827.30 0.020011 0.0178535 0.0170814 0.850.86 0.8656 67.68952708.30
8 25.2 22.7 22.43341.68 2875.42 0.02121240.0181662 0.017113 0.81 0.81 0.8684 68.74362713.18
9 26.5 23.1 22.53616.32 2943.98 0.02302030.0186123 0.0171606 0.750.75 0.8723 70.23942720.52
10 28.1 23.4 22.43961.43 3013.97 0.02530650.0190684 0.0171243 0.68 0.69 0.8768 71.75052714.92
11 29.8 23.9 22.54390.62 3106.09 0.02817240.0196696 0.0171853 0.61 0.62 0.8821 73.73922724.33
12 31.5 24.4 22.54829.15 3190.02 0.0311271 0.0202184 0.017217 0.55 0.57 0.8870 75.5387 2729.23
13 32.7 24.7 22.65174.45 3254.27 0.03347260.0206391 0.0172612 0.520.53 0.8906 76.91202736.04
14 33.6 24.9 22.65421.99 3297.72 0.03516440.0209239 0.0172871 0.490.51 0.8931 77.83752740.03
15 33.9 25.0 22.55523.85 3308.66 0.0358631 0.0209957 0.0172416 0.480.49 0.8940 78.06482733.02
16 33.6 24.9 22.65421.99 3297.72 0.03516440.0209239 0.0172871 0.490.51 0.8931 77.83752740.03
17 32.8 24.7 22.55206.88 3254.27 0.03369370.0206391 0.0172145 0.51 0.52 0.8908 76.9071 2728.85
18 31.7 24.4 22.54890.40 3200.65 0.03154190.0202879 0.0172161 0.550.56 0.8876 75.76542729.08
19 30.3 24.1 22.64518.39 3137.33 0.02903050.0198738 0.0172482 0.590.61 0.8836 74.41532734.03
20 29.0 23.7 22.54184.65 3064.85 0.02679390.0194003 0.0171743 0.64 0.65 0.8796 72.85202722.64
21 27.9 23.4 22.43923.13 3003.88 0.0250520.0190026 0.0171055 0.68 0.69 0.8763 71.53092712.03
22 26.8 23.1 22.43687.98 2953.89 0.02349370.0186769 0.0171081 0.730.74 0.8732 70.44932712.42
23 26.0 22.9 22.43511.11 2914.43 0.02232650.0184199 0.017109 0.77 0.77 0.8708 69.59252712.56












Table A. 19. July Average Hurly Psychrometric Properties for Gainesville


DBTWBT DPT Pws Ps* v h Pw
hour (C) (C) (C) (Pa) (Pa) W W* W (m3/kg) (kJ/kg) (Pa)
0 27.6 23.7 22.93860.02 3054.61 0.024633 0.01933 0.017669 0. 0.73 0.8763 72.6806 2798.82
1 27.3 23.6 22.93785.45 3034.23 0.0241387 0.0192 0.01763 0.730.74 0.8752 72.23752792.83
2 26.9 23.4 22.93712.14 3013.97 0.0236534 0.01907 0.017592 0.740.75 0.8742 71.79642786.96
3 26.7 23.4 22.93663.96 3003.88 0.0233349 0.019 0.017596 0. 0.76 0.8736 71.5789 2787.67
4 26.5 23.3 22.93616.32 2993.83 0.0230203 0.01894 0.017601 0.76 0.77 0.8729 71.36192788.42
5 26.4 23.3 22.93604.50 2993.83 0.0229422 0.01894 0.017624 0.77 0.77 0.8728 71.3642 2792.02
6 26.6 23.3 22.93628.18 2993.83 0.0230986 0.01894 0.017578 0.760.77 0.8731 71.3596 2784.81
7 26.9 23.4 22.93700.05 3013.97 0.0235734 0.01907 0.017615 0.75 0.75 0.8741 71.7987 2790.56
8 27.4 23.6 22.93822.58 3044.41 0.0243847 0.01927 0.017649 0 0. 0.73 0.8758 72.4588 2795.81
9 28.3 23.8 22.94012.99 3085.41 0.0256495 0.01953 0.017658 0.690.70 0.8782 73.3423 2797.24
10 29.2 24.1 22.94238.74 3126.89 0.0271553 0.01981 0.017624 0.650.66 0.8809 74.22942791.96
11 30.3 24.3 22.94518.39 3179.42 0.0290305 0.02015 0.017615 0.61 0.62 0.8841 75.35292790.58
12 31.3 24.6 22.94783.65 3232.73 0.0308193 0.0205 0.017658 0.57 0.58 0.8871 76.4945 2797.19
13 32.1 24.8 23.04983.54 3275.93 0.0321737 0.02078 0.017729 0.55 0.56 0.8893 77.4209 2808.10
14 32.6 24.9 23.05142.20 3297.72 0.0332528 0.02092 0.017684 0.530.54 0.8909 77.8789 2801.16
15 32.8 25.0 23.05190.64 3308.66 0.033583 0.021 0.017708 0.530.54 0.8914 78.11362804.93
16 32.6 24.9 23.05142.20 3297.72 0.0332528 0.02092 0.017684 0.530.54 0.8909 77.8789 2801.16
17 32.2 24.8 22.95014.93 3275.93 0.0323869 0.02078 0.017682 0.55 0.56 0.8896 77.4161 2800.91
18 31.4 24.7 23.04813.94 3243.48 0.0310241 0.02057 0.017705 0.57 0.58 0.8875 76.72832804.37
19 30.6 24.4 22.94590.76 3200.65 0.0295176 0.02029 0.017683 0.60 0.61 0.8850 75.8132 2801.04
20 29.8 24.2 22.94376.62 3158.32 0.0280785 0.02001 0.017665 0.630.64 0.8826 74.9067 2798.23
21 29.1 24.1 22.94211.62 3126.89 0.0269741 0.01981 0.017671 0.66 0.66 0.8806 74.2341 2799.16
22 28.4 23.9 22.94052.05 3095.73 0.0259095 0.0196 0.017679 0.68 0.69 0.8787 73.56622800.37
23 27.9 23.7 22.93935.86 3064.85 0.0251365 0.0194 0.017618 0.70 0.71 0.8772 72.89602791.06












Table A.20. August Average Hourly Ps chrometric Pro erties for Gainesville


DBTWBT DPT Pw Ps* v h Pw
hour (C) (C) (C) (Pa) (Pa) Ws Ws* W (m3/kg) (kJ/kg) (Pa)
0 25.9 22.7 22.23499.59 2885.13 0.02225060.0182293 0.0168724 0.76 0.76 0.8703 68.93232676.03
1 25.4 22.6 22.33386.15 2865.74 0.02150440.0181032 0.0169334 0.790.79 0.8688 68.51552685.47
2 24.9 22.4 22.23286.81 2836.87 0.02085240.0179156 0.0168865 0.81 0.81 0.8673 67.88052678.21
3 24.4 22.3 22.23200.65 2817.76 0.02028790.0177915 0.0169028 0.83 0.84 0.8660 67.46402680.73
4 24.2 22.2 22.23147.81 2798.77 0.01994230.0176682 0.0168498 0.84 0.85 0.8651 67.04292672.55
5 24.1 22.2 22.23126.89 2798.77 0.01980550.0176682 0.0168965 0.85 0.86 0.8649 67.04732679.76
6 24.3 22.3 22.23168.86 2808.25 0.02007990.0177298 0.0168878 0.84 0.85 0.8655 67.25432678.43
7 24.8 22.4 22.23265.08 2827.30 0.02070990.0178535 0.0168478 0.81 0.82 0.8669 67.66772672.25
8 25.7 22.7 22.23453.82 2875.42 0.02194930.0181662 0.0168795 0.77 0.78 0.8697 68.72142677.13
9 27.1 23.1 22.33736.44 2943.98 0.02381420.0186123 0.0169271 0.71 0.72 0.8736 70.21692684.49
10 28.6 23.4 22.24091.44 3013.97 0.0261720.0190684 0.0168909 0.65 0.65 0.8781 71.72762678.90
11 30.4 23.9 22.34532.78 3106.09 0.02912730.0196696 0.016952 0.58 0.59 0.8834 73.71582688.34
12 32.1 24.4 22.34983.54 3190.02 0.03217370.0202184 0.0169839 0.53 0.54 0.8883 75.51492693.25
13 33.3 24.7 22.35338.36 3254.27 0.03459180.0206391 0.0170281 0.49 0.51 0.8919 76.88782700.08
14 34.1 24.9 22.45592.67 3297.72 0.0363360.0209239 0.017054 0. 0.48 0.8943 77.81322704.08
15 34.4 25.0 22.35697.30 3308.66 0.03705620.0209957 0.0170086 0.46 0.47 0.8952 78.04042697.07
16 34.1 24.9 22.45592.67 3297.72 0.0363360.0209239 0.017054 0. 0.48 0.8943 77.81322704.08
17 33.4 24.7 22.35371.68 3254.27 0.03481980.0206391 0.0169815 0.49 0.50 0.8921 76.88302692.88
18 32.3 24.4 22.35046.49 3200.65 0.03260140.0202879 0.0169829 0. 0.53 0.8889 75.74162693.11
19 30.9 24.1 22.34664.13 3137.33 0.0300121 0.0198738 0.0170149 0.57 0.58 0.8849 74.39182698.04
20 29.6 23.7 22.34321.01 3064.85 0.02770590.0194003 0.016941 0.61 0.62 0.8809 72.82882686.64
21 28.4 23.4 22.24052.05 3003.88 0.02590950.0190026 0.0168722 0.65 0.66 0.8776 71.50802676.01
22 27.4 23.1 22.23810.17 2953.89 0.02430240.0186769 0.0168747 0.69 0.70 0.8745 70.42672676.39
23 26.6 22.9 22.23628.18 2914.43 0.02309860.0184199 0.0168755 0.73 0.74 0.8721 69.5701 2676.52












Table A.21. September Average Hourl Psychrometric Properties for Gainesville


DBTWBT DPT Pw Ps* v h Pw
hour (C) (C) (C) (Pa) (Pa) W W* W (m3/kg) (kJ/kg) (Pa)
0 24.8 22.1 21.73275.93 2779.89 0.0207811 0.0175456 0.0164009 0.79 0.79 0.8665 66.5871 2603.18
1 24.3 21.9 21.73168.86 2751.78 0.02007990.0173633 0.0163822 0.820.82 0.8648 65.96762600.29
2 23.8 21.8 21.83075.11 2733.18 0.01946730.0172426 0.0164251 0.840.85 0.8634 65.56192606.92
3 23.3 21.7 21.82993.83 2714.68 0.0189370.0171227 0.0164454 0.870.87 0.8621 65.15602610.07
4 23.1 21.6 21.72943.98 2696.30 0.01861230.0170036 0.0163965 0.88 0.88 0.8613 64.74552602.50
5 22.9 21.6 21.72924.25 2687.15 0.01848380.0169443 0.0163606 0.890.89 0.8609 64.53992596.95
6 23.2 21.7 21.82963.83 2705.48 0.01874160.0170631 0.0164325 0.880.88 0.8616 64.95162608.07
7 23.7 21.8 21.73054.61 2723.92 0.01933350.0171826 0.0163885 0.85 0.85 0.8630 65.35452601.27
8 24.6 22.1 21.83232.73 2770.49 0.0204980.0174847 0.01641 0.80 0.81 0.8658 66.38152604.59
9 25.9 22.4 21.83499.59 2836.87 0.02225060.0179156 0.0164432 0.740.75 0.8697 67.83892609.72
10 27.5 22.9 21.83835.02 2914.43 0.02446720.0184199 0.0164791 0.67 0.68 0.8743 69.5321 2615.27
11 29.3 23.4 21.94252.35 3003.88 0.02724640.0190026 0.0165225 0.61 0.62 0.8795 71.47382621.99
12 30.9 23.8 21.94678.93 3085.41 0.03011190.0195345 0.0165383 0.55 0.56 0.8844 73.23062624.43
13 32.2 24.2 21.95014.93 3147.81 0.03238690.0199423 0.0165703 0.51 0.52 0.8880 74.57102629.37
14 33.0 24.4 21.95255.85 3190.02 0.03402790.0202184 0.0165879 0.490.50 0.8905 75.47452632.10
15 33.3 24.4 21.95355.00 3200.65 0.03470570.0202879 0.0165405 0.48 0.49 0.8914 75.69632624.76
16 33.0 24.4 21.95255.85 3190.02 0.03402790.0202184 0.0165879 0.490.50 0.8905 75.47452632.10
17 32.3 24.2 21.95046.49 3147.81 0.03260140.0199423 0.0165237 0.51 0.52 0.8883 74.56632622.17
18 31.2 23.9 21.94738.52 3095.73 0.03051430.0196019 0.0165354 0.540.55 0.8851 73.45192623.98
19 29.8 23.5 21.84376.62 3024.09 0.02807850.0191343 0.0164904 0.590.60 0.8810 71.90652617.01
20 28.4 23.2 21.94052.05 2963.83 0.02590950.0187416 0.0165194 0.64 0.65 0.8771 70.6076 2621.50
21 27.3 22.8 21.83797.79 2904.63 0.02422040.0183562 0.0164623 0.680.69 0.8738 69.31772612.67
22 26.3 22.6 21.83569.23 2856.09 0.02270950.0180405 0.0164743 0.730.73 0.8708 68.26152614.53
23 25.4 22.3 21.73397.35 2808.25 0.0215780.0177298 0.0163979 0.760.77 0.8682 67.20862602.71












Table A.22. October Average Hourly Psychrometric Properties for Gainesville


DBTWBT DPT Pw Ps* v h Pw
hour (C) (C) (C) (Pa) (Pa) Ws Ws* W (m3/kg) (kJ/kg) (Pa)
0 22.7 20.9 20.82885.13 2579.44 0.01822930.0162474 0.0154786 0.850.85 0.8591 62.06902460.35
1 22.2 20.7 20.82789.32 2553.11 0.01760680.0160773 0.0154717 0.88 0.88 0.8574 61.48032459.27
2 21.7 20.6 20.92705.48 2535.69 0.0170631 0.0159648 0.0155222 0.91 0.91 0.8561 61.09472467.11
3 21.2 20.4 20.82632.81 2509.75 0.01659260.0157973 0.0154713 0.930.93 0.8547 60.50852459.21
4 20.9 20.4 20.92588.27 2501.15 0.01630450.0157418 0.015509 0.95 0.95 0.8539 60.3187 2465.05
5 20.8 20.3 20.82570.64 2492.59 0.01619050.0156865 0.015477 0.96 0.96 0.8536 60.12322460.09
6 21.1 20.4 20.82606.01 2501.15 0.01641920.0157418 0.0154624 0.94 0.94 0.8542 60.31472457.83
7 21.6 20.6 20.82687.15 2527.02 0.01694430.0159088 0.0154895 0.91 0.92 0.8557 60.89752462.04
8 22.5 20.8 20.82846.46 2570.64 0.0179780.0161905 0.0154916 0.860.87 0.8584 61.87372462.37
9 23.8 21.2 20.93085.41 2632.81 0.01953450.0165926 0.0154972 0.79 0.80 0.8623 63.25852463.23
10 25.4 21.7 20.93386.15 2714.68 0.02150440.0171227 0.0155836 0.720.73 0.8670 65.07762476.63
11 27.2 22.2 20.93760.88 2798.77 0.02397590.0176682 0.0155916 0.650.66 0.8721 66.92592477.87
12 28.8 22.7 20.94144.48 2875.42 0.02652570.0181662 0.0155753 0.590.60 0.8769 68.59772475.34
13 30.1 23.0 20.94447.01 2934.10 0.0285509 0.018548 0.0155826 0.55 0.56 0.8805 69.8730 2476.47
14 30.9 23.3 21.04664.13 2983.80 0.0300121 0.0188717 0.0156715 0.520.53 0.8830 70.95692490.25
15 31.2 23.3 21.04753.52 2993.83 0.0306156 0.018937 0.0156201 0.51 0.52 0.8839 71.16842482.29
16 30.9 23.3 21.04664.13 2983.80 0.0300121 0.0188717 0.0156715 0.520.53 0.8830 70.95692490.25
17 30.2 23.1 21.04475.44 2943.98 0.02874190.0186123 0.0156232 0.540.55 0.8809 70.09102482.77
18 29.1 22.7 20.94198.11 2885.13 0.02688380.0182293 0.0155683 0.58 0.59 0.8776 68.80832474.25
19 27.7 22.3 20.93872.57 2817.76 0.02471630.0177915 0.0155515 0.63 0.64 0.8735 67.33772471.66
20 26.3 21.9 20.93580.95 2751.78 0.02278690.0173633 0.0155207 0.68 0.69 0.8696 65.88842466.88
21 25.2 21.7 20.93352.75 2705.48 0.0212850.0170631 0.0155707 0.730.74 0.8665 64.87342474.63
22 24.2 21.3 20.93147.81 2650.82 0.01994230.0167091 0.0155203 0.780.78 0.8633 63.66002466.82
23 23.3 21.1 20.92993.83 2614.92 0.0189370.0164768 0.0155446 0.820.83 0.8609 62.86502470.58












Table A.23. November Average Hourly Psychrometric Properties for Gainesville


DBTWBT DPT Pws Ps* v h Pw
hour (C) (C) (C) (Pa) (Pa) W W* W (m3/kg) (kJ/kg) (Pa)
0 19.5 18.2 18.22367.10 2177.82 0.0148780.0136621 0.0131068 0.88 0.88 0.8466 52.74142091.12
1 18.9 17.9 18.22286.55 2147.60 0.014360.0134684 0.0130521 0.91 0.91 0.8449 52.03402082.57
2 18.4 17.7 18.12216.12 2117.75 0.01390780.0132772 0.0129766 0.930.93 0.8433 51.33092070.78
3 18.0 17.6 18.02155.12 2095.59 0.01351660.0131354 0.0129505 0.960.96 0.8420 50.80982066.69
4 17.7 17.4 17.92117.75 2073.65 0.0132772 0.012995 0.0128563 0.97 0.97 0.8411 50.2871 2051.97
5 17.6 17.3 17.92102.96 2066.38 0.01318250.0129484 0.0128329 0.97 0.97 0.8407 50.1141 2048.31
6 17.8 17.4 18.02132.63 2080.94 0.01337250.0130416 0.0128798 0.96 0.96 0.8414 50.46042055.65
7 18.3 17.7 18.02200.73 2110.34 0.0138090.0132298 0.0129523 0.940.94 0.8430 51.15572066.98
8 19.3 18.1 18.22334.59 2170.23 0.01466880.0136135 0.0131276 0.890.90 0.8459 52.56662094.37
9 20.6 18.7 18.52535.69 2255.01 0.01596480.0141574 0.0133699 0.840.84 0.8501 54.54662132.22
10 22.2 19.4 18.82789.32 2350.80 0.0176068 0.014773 0.0136137 0.77 0.78 0.8549 56.75922170.26
11 23.9 20.1 19.13106.09 2458.57 0.01966960.0154671 0.0138654 0.70 0.71 0.8604 59.22102209.51
12 25.6 20.8 19.53431.13 2570.64 0.0218001 0.0161905 0.0141916 0.650.66 0.8657 61.76032260.34
13 26.8 21.3 19.73687.98 2650.82 0.02349370.0167091 0.014406 0.61 0.62 0.8695 63.56052293.72
14 27.7 21.7 19.93872.57 2705.48 0.02471630.0170631 0.0145492 0.59 0.60 0.8722 64.7808 2315.99
15 28.0 21.8 19.93948.62 2723.92 0.02522140.0171826 0.0145752 0.58 0.59 0.8732 65.18922320.03
16 27.7 21.7 19.93872.57 2705.48 0.02471630.0170631 0.0145492 0.59 0.60 0.8722 64.7808 2315.99
17 26.9 21.4 19.73712.14 2659.86 0.02365340.0167676 0.014441 0.61 0.62 0.8699 63.76372299.16
18 25.8 20.9 19.53476.64 2579.44 0.02209950.0162474 0.0141787 0.640.65 0.8663 61.95542258.33
19 24.4 20.3 19.23200.65 2492.59 0.02028790.0156865 0.013968 0.690.70 0.8620 59.99482225.51
20 23.1 19.8 19.02953.89 2408.30 0.01867690.0151432 0.0137511 0.740.74 0.8579 58.07632191.70
21 22.0 19.3 18.72761.12 2334.59 0.01742390.0146688 0.0135329 0. 0.78 0.8544 56.38322157.66
22 20.9 18.8 18.52588.27 2270.74 0.01630450.0142584 0.0133781 0.82 0.82 0.8511 54.90882133.50
23 20.1 18.4 18.42458.57 2216.12 0.0154671 0.0139078 0.0132133 0.850.86 0.8485 53.63722107.76












Table A.24. December Average Hourly Psychrometric Properties for Gainesville


DBTWBT DPT Pws Pws* v h Pw
hour (C) (C) (C) (Pa) (Pa) W Ws* W (m3/kg) (kJ/kg) (Pa)
0 16.8 15.7 15.72001.94 1858.39 0.01253650.0116208 0.0111377 0.890.89 0.8362 45.02721782.50
1 16.3 15.4 15.61932.41 1825.57 0.01209270.0114118 0.0110439 0.91 0.91 0.8345 44.22321767.75
2 15.8 15.1 15.41871.66 1793.27 0.01170530.0112062 0.0109305 0.93 0.93 0.8329 43.4261 1749.90
3 15.3 14.9 15.31819.07 1767.79 0.01137040.0110442 0.0108604 0.960.96 0.8315 42.79571738.87
4 15.1 14.7 15.21786.87 1748.88 0.0111655 0.010924 0.0107862 0.970.97 0.8306 42.32501727.20
5 14.9 14.7 15.21774.13 1742.62 0.01108450.0108842 0.0107694 0.970.97 0.8303 42.16921724.55
6 15.2 14.8 15.21799.69 1755.17 0.0112471 0.0109639 0.0108032 0.96 0.96 0.8310 42.4811 1729.86
7 15.7 15.1 15.41858.39 1786.87 0.01162080.0111655 0.0109127 0.940.94 0.8326 43.26801747.11
8 16.6 15.6 15.71973.87 1845.20 0.01235720.0115368 0.0110998 0.900.90 0.8355 44.70461776.54
9 17.9 16.3 16.1 2147.60 1932.41 0.01346840.0120927 0.0114018 0.85 0.85 0.8398 46.8298 1824.01
10 19.5 17.1 16.52367.10 2030.36 0.0148780.0127181 0.0117036 0.790.79 0.8447 49.18271871.39
11 21.3 17.9 16.92641.80 2140.10 0.01665070.0134204 0.012012 0.720.73 0.8502 51.78121919.77
12 22.9 18.7 17.32924.25 2247.19 0.01848380.0141071 0.012327 0 0. 0.67 0.8555 54.28491969.14
13 24.2 19.3 17.73147.81 2334.59 0.01994230.0146688 0.0126321 0.630.64 0.8594 56.31052016.89
14 25.0 19.6 17.83308.66 2383.51 0.02099570.0149835 0.0127374 0.61 0.61 0.8620 57.43102033.37
15 25.3 19.8 17.93374.98 2408.30 0.021431 0.0151432 0.0128268 0.60 0.61 0.8630 57.99972047.36
16 25.0 19.6 17.83308.66 2383.51 0.02099570.0149835 0.0127374 0.61 0.61 0.8620 57.43102033.37
17 24.3 19.3 17.73168.86 2342.68 0.02007990.0147208 0.0126607 0.63 0.64 0.8598 56.4971 2021.38
18 23.2 18.8 17.32963.83 2262.86 0.01874160.0142078 0.0123811 0.66 0.67 0.8562 54.64951977.60
19 21.8 18.2 17.12723.92 2177.82 0.01718260.0136621 0.0121606 0.71 0.71 0.8519 52.66951943.06
20 20.4 17.5 16.72509.75 2088.26 0.01579730.0130884 0.0118655 0.750.76 0.8476 50.55801896.80
21 19.3 16.9 16.42342.68 2016.10 0.0147208 0.012627 0.0116358 0.790.79 0.8441 48.84051860.74
22 18.3 16.4 16.12193.07 1946.15 0.01375990.0121803 0.0113973 0.830.83 0.8407 47.15841823.29
23 17.4 16.0 15.92080.94 1898.45 0.01304160.0118761 0.0112777 0.86 0.87 0.8382 46.00501804.49












Table A.25. January Average Hourly Psychrometric Properties for Chicago


DBTWBT DPT Pw Ps* v h Pw
hour (oC) (C) (oC) (Pa) (Pa) W W* W (m3/kg) (kJ/kg) (Pa)
0 -1.2 -1.2 -0.6 586.01 583.63 0.00361820.0036034 0.003581 0.99 0.99 0.7750 7.7819 580.03
1 -1.7 -1.8 -1.3 562.56 557.97 0.00347250.0034441 0.003399 0.98 0.98 0.7732 6.7692 550.78
2 -2.2 -2.4 -1.8 542.17 535.52 0.0033460.0033048 0.003238 0. 0.97 0.7715 5.8627 524.74
3 -2.7 -2.9 -2.4 524.60 516.01 0.003237 0.0031837 0.003095 0.96 0.96 0.7701 5.0580 501.64
4 -3.0 -3.3 -2.8 511.76 501.27 0.00315740.0030923 0.002981 0.94 0.94 0.7690 4.4393 483.31
5 -3.1 -3.4 -2.9 507.54 497.13 0.00313120.0030666 0.002955 0.94 0.94 0.7687 4.2636 479.17
6 -2.9 -3.1 -2.6 516.01 507.54 0.00318370.0031312 0.003042 0.96 0.96 0.7694 4.7036 493.17
7 -2.3 -2.5 -1.9 537.73 531.13 0.00331850.0032775 0.003211 0.97 0.97 0.7712 5.6830 520.35
8 -1.4 -1.4 -0.8 576.53 574.18 0.00355930.0035447 0.003522 0.99 0.99 0.7743 7.4117 570.59
9 0.1 0.0 0.5 640.69 638.11 0.00395790.0039418 0.003919 0.99 0.99 0.7789 9.8585 634.51
10 1.7 1.7 2.3 719.64 719.64 0.0044491 0.0044491 0.004449 1.00 1.00 0.7841 12.8073 719.64
11 3.6 3.6 4.2 823.10 823.10 0.00509390.0050939 0.005094 1.00 1.00 0.7903 16.3282 823.10
12 5.3 5.3 5.9 928.67 928.67 0.00575340.0057534 0.005753 1.00 1.00 0.7961 19.7218 928.67
13 6.6 6.4 7.01014.57 1006.83 0.00629090.0062424 0.006197 0.99 0.99 0.8003 22.1281 999.61
14 7.4 7.2 7.71078.38 1062.11 0.00669080.0065888 0.006498 0.97 0.97 0.8032 23.7839 1047.67
15 7.8 7.5 7.91103.21 1082.49 0.00684660.0067166 0.006603 0.96 0.96 0.8043 24.38551064.44
16 7.4 7.2 7.71078.38 1062.11 0.00669080.0065888 0.006498 0.97 0.97 0.8032 23.7839 1047.67
17 6.7 6.6 7.1 1022.36 1014.57 0.00633970.0062909 0.006246 0.990.99 0.8007 22.3622 1007.35
18 5.5 5.4 6.0 943.13 939.50 0.00584380.0058211 0.00579 0.990.99 0.7968 20.0596 935.89
19 4.1 4.1 4.7 852.60 852.60 0.005278 0.005278 0.005278 1.00 1.00 0.7920 17.2946 852.60
20 2.7 2.7 3.3 772.88 772.88 0.00478080.0047808 0.004781 1.00 1.00 0.7874 14.6464 772.88
21 1.4 1.4 2.0 708.26 708.26 0.00437830.0043783 0.004378 1.00 1.00 0.7834 12.4059 708.26
22 0.4 0.4 1.0 656.36 656.36 0.00405530.0040553 0.004055 1.00 1.00 0.7800 10.5341 656.36
23 -0.5 -0.6 0.0 615.30 612.81 0.0038001 0.0037846 0.003762 0.99 0.99 0.7771 8.9060 609.21












Table A.26. February Average Hourly Psychrometric Properties for Chicago


Hou DBTWBT DPT Ps Ps* v h Pw
r (C) (C) (C) (Pa) (Pa) Ws Ws* W (m3/kg) (kJ/kg) (Pa)
0 1.1 1.0 1.5 688.73 685.98 0.00425670.0042396 0.004217 0.990.99 0.7821 11.6108 682.38
1 0.5 0.4 0.8 661.66 656.36 0.00408830.0040553 0.004011 0.98 0.98 0.7803 10.5340 649.16
2 0.0 -0.2 0.0 638.11 627.88 0.00394180.0038782 0.003789 0.960.96 0.7786 9.4758 613.49
3 -0.4 -0.7 -0.4 617.80 607.86 0.00381560.0037538 0.003664 0.960.96 0.7771 8.7174 593.47
4 -0.8 -1.1 -0.8 602.94 590.81 0.00372330.0036479 0.003536 0.950.95 0.7760 8.0614 572.82
5 -0.9 -1.2 -0.9 598.06 586.01 0.0036930.0036182 0.003507 0.95 0.95 0.7757 7.8753 568.03
6 -0.7 -0.9 -0.7 607.86 595.64 0.00375380.0036779 0.003566 0.95 0.95 0.7764 8.2482 577.65
7 -0.1 -0.3 -0.1 632.97 622.82 0.00390990.0038468 0.003757 0.96 0.96 0.7782 9.2853 608.43
8 0.8 0.8 1.3 677.79 675.08 0.00418860.0041717 0.004149 0.990.99 0.7814 11.2171 671.48
9 2.3 2.3 2.9 751.78 751.78 0.00464920.0046492 0.004649 1.00 1.00 0.7861 13.9247 751.78
10 3.9 3.9 4.5 842.66 842.66 0.005216 0.005216 0.005216 1.00 1.00 0.7914 16.9708 842.66
11 5.8 5.8 6.4 961.49 961.49 0.00595860.0059586 0.005959 1.00 1.00 0.7978 20.7424 961.49
12 7.5 7.5 8.21082.49 1082.49 0.00671660.0067166 0.006717 1.00 1.00 0.8037 24.3891 1082.49
13 8.8 8.7 9.21180.76 1171.91 0.00733350.0072779 0.007233 0.99 0.99 0.8080 26.9809 1164.69
14 9.7 9.4 9.9 1253.68 1235.08 0.0077921 0.0076751 0.007584 0.970.97 0.8110 28.7670 1220.63
15 10.0 9.7 10.2 1282.03 1258.36 0.00797050.0078215 0.007708 0.97 0.97 0.8121 29.41651240.30
16 9.7 9.4 9.91253.68 1235.08 0.0077921 0.0076751 0.007584 0.970.97 0.8110 28.7670 1220.63
17 8.9 8.8 9.41189.66 1180.76 0.00738950.0073335 0.007288 0.99 0.99 0.8084 27.2333 1173.53
18 7.7 7.7 8.41099.04 1099.04 0.00682040.0068204 0.00682 1.00 1.00 0.8044 24.8751 1099.04
19 6.3 6.3 6.9 995.32 995.32 0.00617030.0061703 0.00617 1.00 1.00 0.7995 21.7797 995.32
20 4.9 4.9 5.5 903.84 903.84 0.0055981 0.0055981 0.005598 1.00 1.00 0.7948 18.9392 903.84
21 3.7 3.7 4.3 829.57 829.57 0.00513430.0051343 0.005134 1.00 1.00 0.7907 16.5416 829.57
22 2. 2.6 3.2 769.83 769.83 0.00476180.0047618 0.004762 1.00 1.00 0.7872 14.5428 769.83
23 1.7 1.7 2.3 722.51 722.51 0.0044 0.0047 0 0. 0.004467 1.00 1.00 0.7843 12.9080 722.51












Table A.27. March Average Hourly Psychrometric Properties for Chicago


DBTWBT DPT Pw Pws* v h Pw
hour (C) (C) (C) (Pa) (Pa) Ws Ws* W () (m3/kg) (kJ/kg) (Pa)
0 7.7 7.6 8.21099.04 1090.74 0.00682040.0067683 0.006723 0.990.99 0.8043 24.6302 1083.52
1 7.2 7.0 7.51058.07 1046.05 0.00656350.0064881 0.00642 0.98 0.98 0.8023 23.3067 1035.22
2 6.7 6.4 6.91022.36 1006.83 0.00633970.0062424 0.006152 0.97 0.97 0.8006 22.1269 992.39
3 6.2 6.0 6.4 991.51 976.40 0.00614650.0060519 0.005962 0.97 0.97 0.7991 21.1991 961.96
4 5.9 5.6 6.0 968.92 950.44 0.0060051 0.0058895 0.005777 0.96 0.96 0.7979 20.3977 932.40
5 5.8 5.5 5.9 961.49 943.13 0.00595860.0058438 0.005731 0.96 0.96 0.7975 20.1707 925.09
6 6.0 5.7 6.1 976.40 957.79 0.00605190.0059355 0.005823 0.96 0.96 0.7982 20.6254 939.75
7 6.6 6.3 6.81014.57 999.14 0.00629090.0061943 0.006104 0.97 0.97 0.8002 21.8937 984.71
8 7.5 7.3 7.81082.49 1070.22 0.00671660.0066396 0.006572 0.98 0.98 0.8035 24.0248 1059.39
9 8.9 8.8 9.31194.14 1180.76 0.00741760.0073335 0.007265 0.98 0.98 0.8085 27.2325 1169.92
10 10.6 10.3 10.81330.54 1310.94 0.0082761 0.0081526 0.008062 0.97 0.97 0.8142 30.8712 1296.49
11 12.4 12.1 12.51507.78 1469.68 0.00939530.0091543 0.008994 0.96 0.96 0.8208 35.1417 1444.38
12 14.2 13.6 13.91687.15 1621.47 0.01053190.0101152 0.009863 0.940.94 0.8269 39.0868 1581.71
13 15.4 14.6 14.81832.10 1736.38 0.01145340.0108446 0.0105 0.920.92 0.8314 41.99831682.17
14 16.3 15.3 15.41939.27 1812.59 0.01213640.0113292 0.010892 0.900.90 0.8345 43.8966 1743.92
15 16.7 15.6 15.61980.85 1845.20 0.01240180.0115368 0.011077 0.89 0.90 0.8357 44.7031 1772.92
16 16.3 15.3 15.41939.27 1812.59 0.01213640.0113292 0.010892 0.900.90 0.8345 43.8966 1743.92
17 15.6 14.7 14.91845.20 1748.88 0.0115368 0.010924 0.01058 0.920.92 0.8318 42.3123 1694.67
18 14.4 13.7 14.01711.61 1639.15 0.01068720.0102273 0.009952 0.93 0.93 0.8276 39.53831595.78
19 12.9 12.5 12.91558.04 1513.29 0.00971330.0094301 0.009247 0.95 0.95 0.8226 36.2880 1484.38
20 11.6 11.3 11.81421.94 1396.01 0.00885280.0086891 0.008575 0.970.97 0.8177 33.18071377.94
21 10.3 10.2 10.71310.94 1296.41 0.00815260.0080611 0.007993 0.980.98 0.8134 30.4726 1285.57
22 9.3 9.1 9.61221.30 1207.65 0.00758840.0075025 0.007434 0.980.98 0.8097 27.9957 1196.81
23 8.4 8.2 8.71150.05 1137.10 0.00714060.0070593 0.006991 0.980.98 0.8066 25.97991126.27












Table A.28. April Average Hourly Psychrometric Properties for Chicago


DBTWBT DPT Pw Ps* v h Pw
hour (C) (C) (C) (Pa) (Pa) Ws W* W ( (m3/kg) (kJ/kg) (Pa)
0 13.3 12.4 12.51592.36 1502.28 0.00993070.0093605 0.008995 0.91 0.91 0.8232 35.98991444.46
1 12.7 12.1 12.31535.52 1469.68 0.00957080.0091543 0.00888 0.930.93 0.8214 35.13601426.31
2 12.2 11.7 12.01485.90 1432.43 0.0092569 0.008919 0.008691 0.940.94 0.8198 34.14981396.29
3 11.8 11.3 11.71442.98 1401.16 0.00898570.0087216 0.008539 0.950.95 0.8183 33.31581372.25
4 11.4 11.1 11.61411.52 1380.65 0.0087870.0085922 0.008455 0.96 0.96 0.8172 32.7661 1358.97
5 11.3 11.1 11.51401.16 1375.57 0.00872160.0085601 0.008446 0.970.97 0.8169 32.62991357.50
6 11.6 11.2 11.71421.94 1390.88 0.00885280.0086567 0.00852 0.960.96 0.8176 33.04151369.19
7 12.1 11.6 11.91475.07 1427.17 0.00918840.0088858 0.00868 0.940.95 0.8194 34.0108 1394.65
8 13.1 12.2 12.31569.41 1485.90 0.00978530.0092569 0.008914 0.91 0.91 0.8224 35.56041431.69
9 14.5 13.2 13.01723.96 1580.85 0.01076560.0098578 0.009309 0.860.87 0.8271 38.02501494.11
10 16.1 14.2 13.81911.97 1693.24 0.01196230.0105705 0.009791 0.82 0.82 0.8324 40.8841 1570.36
11 18.0 15.3 14.52155.12 1819.07 0.01351660.0113704 0.010268 0.760.76 0.8384 44.01481645.62
12 19.7 16.4 15.22400.01 1946.15 0.01508980.0121803 0.0108 0.720.72 0.8441 47.11741729.36
13 21.0 17.1 15.72597.12 2037.52 0.01636170.0127639 0.011151 0.68 0.69 0.8483 49.31231784.64
14 21.9 17.6 16.12742.46 2102.96 0.01730280.0131825 0.011407 0.660.67 0.8512 50.86881824.83
15 22.2 17.8 16.22798.77 2125.18 0.01766820.0133248 0.01148 0.650.66 0.8522 51.39331836.23
16 21.9 17.6 16.12742.46 2102.96 0.01730280.0131825 0.011407 0.660.67 0.8512 50.86881824.83
17 21.1 17.2 15.82614.92 2044.70 0.01647680.0128098 0.011174 0.68 0.68 0.8486 49.48341788.22
18 19.9 16.5 15.32433.32 1959.96 0.01530440.0122685 0.010842 0.71 0.71 0.8448 47.45031735.96
19 18.5 15.7 14.72223.85 1858.39 0.01395740.0116208 0.010449 0.75 0.75 0.8401 44.9821 1674.10
20 17.1 14.8 14.22037.52 1761.47 0.0127639 0.011004 0.010063 0.790.79 0.8356 42.59051613.30
21 15.9 14.1 13.61885.01 1675.04 0.0117904 0.010455 0.009699 0.820.83 0.8316 40.42431555.78
22 14.8 13.4 13.21761.47 1603.95 0.0110040.0100041 0.009409 0.860.86 0.8282 38.61771509.98
23 13.9 12.8 12.81663.00 1546.75 0.01037860.0096418 0.009185 0.880.89 0.8254 37.14631474.47












Table A.29.Ma Average Hourly Psychrometric Properties for Chicago


DBTWBT DPT Pws Ps* v h Pw
hour (C) (C) (C) (Pa) (Pa) Ws W* W ( (m3/kg) (kJ/kg) (Pa)
0 18.3 16.9 17.02193.07 2016.10 0.0137599 0.012627 0.012073 0.880.88 0.8416 48.87161929.38
1 17.7 16.7 16.82117.75 1980.85 0.01327720.0124018 0.011964 0.90 0.90 0.8399 48.02621912.20
2 17.2 16.4 16.72051.90 1953.04 0.01285590.0122243 0.011902 0.93 0.93 0.8384 47.3581 1902.45
3 16.8 16.3 16.71994.89 1932.41 0.01249150.0120927 0.011885 0.950.95 0.8371 46.86271899.89
4 16.4 16.1 16.61953.04 1911.97 0.01222430.0119623 0.011824 0.97 0.97 0.8360 46.36741890.29
5 16.3 16.1 16.61939.27 1905.20 0.01213640.0119191 0.011804 0.970.97 0.8357 46.20301887.13
6 16.6 16.2 16.71966.91 1918.76 0.01231280.0120056 0.011844 0.96 0.96 0.8364 46.5321 1893.47
7 17.1 16.4 16.72037.52 1946.15 0.01276390.0121803 0.011881 0.930.93 0.8380 47.19161899.17
8 18.1 16.8 16.92162.66 2001.94 0.0135650.0125365 0.012029 0.890.89 0.8409 48.53231922.44
9 19.5 17.4 17.1 2367.10 2080.94 0.0148780.0130416 0.012187 0.82 0.82 0.8453 50.4098 1947.27
10 21.1 18.1 17.32614.92 2170.23 0.01647680.0136135 0.012366 0.75 0.76 0.8502 52.50881975.19
11 23.0 18.9 17.62934.10 2278.63 0.0185480.0143091 0.012597 0.68 0.69 0.8560 55.02842011.43
12 24.7 19.6 17.93254.27 2383.51 0.0206391 0.0149835 0.012853 0.620.63 0.8613 57.44042051.41
13 26.0 20.1 18.1 3511.11 2458.57 0.02232650.0154671 0.01301 0.58 0.59 0.8652 59.14902076.03
14 26.9 20.4 18.23700.05 2509.75 0.02357340.0157973 0.013107 0.56 0.57 0.8679 60.30622091.19
15 27.2 20.6 18.23773.15 2527.02 0.02405720.0159088 0.013126 0.55 0.55 0.8689 60.6941 2094.05
16 26.9 20.4 18.23700.05 2509.75 0.02357340.0157973 0.013107 0.56 0.57 0.8679 60.30622091.19
17 26.1 20.2 18.13534.26 2467.03 0.0224790.0155217 0.013041 0.58 0.59 0.8656 59.3421 2080.89
18 24.9 19.7 17.93297.72 2391.75 0.02092390.0150366 0.012836 0.61 0.62 0.8619 57.62582048.83
19 23.5 19.1 17.73024.09 2310.46 0.01913430.0145136 0.012685 0.66 0.67 0.8576 55.7641 2025.23
20 22.1 18.6 17.52779.89 2231.61 0.01754560.0140071 0.012527 0.71 0.72 0.8533 53.94162000.48
21 20.9 18.1 17.32579.44 2162.66 0.0162474 0.013565 0.012387 0.760.77 0.8496 52.33461978.45
22 19.8 17.6 17.12416.62 2095.59 0.01519680.0131354 0.012189 0.80 0.81 0.8463 50.75391947.48
23 18.9 17.2 17.02286.55 2051.90 0.014360.0128559 0.01214 0.850.85 0.8437 49.72281939.90












Table A.30. June Average Hourly Psychrometric Proerties for Chicago


DBTWBT DPT Pws Ps* v h Pw
hour (C) (C) (C) (Pa) (Pa) Ws Ws* W (m3/kg) (kJ/kg) (Pa)
0 22.2 19.6 19.22789.32 2383.51 0.01760680.0149835 0.013916 0.790.79 0.8554 57.52772217.43
1 21.6 19.4 19.22696.30 2358.94 0.01700360.0148254 0.013921 0.820.82 0.8538 56.96952218.12
2 21.1 19.3 19.1 2614.92 2334.59 0.01647680.0146688 0.013903 0.84 0.85 0.8523 56.4130 2215.42
3 20.7 19.1 19.12544.39 2310.46 0.01602090.0145136 0.013864 0.870.87 0.8509 55.85842209.34
4 20.3 19.0 19.1 2492.59 2294.50 0.0156865 0.014411 0.013855 0.88 0.89 0.8500 55.49202207.82
5 20.2 19.0 19.1 2475.53 2294.50 0.0155765 0.014411 0.013901 0.89 0.89 0.8497 55.49572215.04
6 20.4 19.1 19.12509.75 2302.47 0.01579730.0144623 0.013882 0.880.88 0.8503 55.67692212.18
7 21.0 19.2 19.12597.12 2326.52 0.01636170.0146169 0.013875 0.850.85 0.8519 56.22652210.97
8 21.9 19.6 19.22751.78 2375.29 0.01736330.0149307 0.013933 0.80 0.81 0.8547 57.34252220.04
9 23.4 19.9 19.13003.88 2433.32 0.01900260.0153044 0.013865 0.730.74 0.8588 58.65152209.51
10 25.0 20.4 19.13308.66 2509.75 0.02099570.0157973 0.013893 0.660.67 0.8635 60.37352213.83
11 26.9 21.0 19.13700.05 2597.12 0.02357340.0163617 0.013899 0.590.60 0.8690 62.32442214.73
12 28.6 21.5 19.24091.44 2678.03 0.0261720.0168852 0.01391 0.530.54 0.8740 64.11752216.41
13 29.9 21.9 19.24404.66 2742.46 0.02826660.0173028 0.013954 0.49 0.50 0.8778 65.5401 2223.29
14 30.8 22.1 19.24634.66 2779.89 0.02981340.0175456 0.013917 0 0. 0.48 0.8803 66.3571 2217.55
15 31.1 22.2 19.24723.56 2798.77 0.03041320.0176682 0.013946 0.460.47 0.8813 66.77282222.06
16 30.8 22.1 19.24634.66 2779.89 0.02981340.0175456 0.013917 0 0. 0.48 0.8803 66.3571 2217.55
17 30.0 21.9 19.24432.86 2751.78 0.02845580.0173633 0.013991 0.490.50 0.8781 65.74792229.02
18 28.8 21.6 19.1 4144.48 2687.15 0.02652570.0169443 0.013899 0. 0.53 0.8746 64.3178 2214.74
19 27.4 21.2 19.23810.17 2623.85 0.02430240.0165346 0.013932 0.570.58 0.8705 62.92082219.85
20 26.0 20.7 19.13511.11 2553.11 0.02232650.0160773 0.013871 0.620.63 0.8664 61.34142210.34
21 24.8 20.4 19.13265.08 2501.15 0.02070990.0157418 0.013907 0 0. 0.68 0.8629 60.18202216.05
22 23.7 20.1 19.13064.85 2450.13 0.01940030.0154127 0.013881 0.72 0.72 0.8598 59.0321 2211.89
23 22.8 19.8 19.12904.63 2408.30 0.01835620.0151432 0.013867 0.760.76 0.8572 58.08592209.74












Table A.31. July Average Hurly Psychrometric Properties for Cicago


DBTWBT DPT Pw Ps* v h Pw
hour (C) (C) (C) (Pa) (Pa) Ws Ws* W I ( (m3/kg) (kJ/kg) (Pa)
0 23.8 20.8 20.33085.41 2570.64 0.01953450.0161905 0.014934 0.76 0.77 0.8616 61.8251 2375.77
1 23.3 20.7 20.32983.80 2544.39 0.01887170.0160209 0.014927 0.790.80 0.8599 61.23802374.76
2 22.8 20.5 20.22894.86 2518.37 0.01829260.0158529 0.014899 0.81 0.82 0.8584 60.65292370.39
3 22.3 20.4 20.32817.76 2501.15 0.01779150.0157418 0.014928 0.84 0.84 0.8572 60.2690 2374.82
4 22.0 20.3 20.22761.12 2484.04 0.01742390.0156314 0.01491 0.86 0.86 0.8562 59.88292372.14
5 21.9 20.2 20.22742.46 2475.53 0.01730280.0155765 0.014879 0.86 0.86 0.8558 59.6885 2367.23
6 22.1 20.3 20.22779.89 2484.04 0.01754560.0156314 0.014864 0.850.85 0.8565 59.87892364.92
7 22.7 20.4 20.22875.42 2509.75 0.01816620.0157973 0.014867 0.82 0.82 0.8581 60.45682365.37
8 23.6 20.8 20.33044.41 2561.86 0.01926690.0161338 0.014947 0 0.70.78 0.8609 61.63032377.81
9 25.1 21.2 20.23319.64 2623.85 0.02106770.0165346 0.014905 0.71 0.71 0.8651 63.00702371.30
10 26.7 21.7 20.33652.00 2705.48 0.02325590.0170631 0.014967 0.640.65 0.8698 64.81862380.88
11 28.6 22.2 20.34078.28 2789.32 0.02608420.0176068 0.014927 0.57 0.58 0.8752 66.6571 2374.71
12 30.3 22.7 20.34504.03 2875.42 0.0289340.0181662 0.014972 0.520.53 0.8803 68.54042381.68
13 31.6 23.0 20.34844.40 2934.10 0.0312303 0.018548 0.014956 0.480.49 0.8840 69.81272379.25
14 32.4 23.3 20.45094.15 2983.80 0.03292560.0188717 0.015022 0.460.47 0.8867 70.89362389.45
15 32.8 23.3 20.35190.64 2993.83 0.033583 0.018937 0.014971 0.45 0.46 0.8876 71.1050 2381.50
16 32.4 23.3 20.45094.15 2983.80 0.03292560.0188717 0.015022 0.460.47 0.8867 70.89362389.45
17 31.7 23.1 20.34875.02 2943.98 0.03143770.0186123 0.014997 0.480.49 0.8844 70.03062385.55
18 30.5 22.7 20.34561.69 2885.13 0.02932180.0182293 0.014965 0.51 0.52 0.8809 68.75092380.60
19 29.1 22.3 20.34198.11 2817.76 0.02688380.0177915 0.014971 0.56 0.57 0.8768 67.28342381.58
20 27.7 21.9 20.33872.57 2751.78 0.02471630.0173633 0.014963 0.61 0.61 0.8727 65.83722380.37
21 26.4 21.6 20.23604.50 2687.15 0.02294220.0169443 0.014895 0.65 0.66 0.8691 64.4077 2369.75
22 25.4 21.3 20.33386.15 2641.80 0.02150440.0166507 0.014928 0.690.70 0.8661 63.40732374.84
23 24.5 21.0 20.23211.31 2597.12 0.02035770.0163617 0.014895 0.730.74 0.8634 62.41202369.81












Table A.32. August Average Hourly Ps chrometric Proerties for Chicago


DBTWBT DPT Pws Pws* v h Pw
hour (C) (C) (C) (Pa) (Pa) Ws Ws* W () (m3/kg) (kJ/kg) (Pa)
0 23.8 20.8 20.33085.41 2570.64 0.01953450.0161905 0.014934 0.76 0.77 0.8616 61.8251 2375.77
1 23.3 20.7 20.32983.80 2544.39 0.01887170.0160209 0.014927 0.79 0.80 0.8599 61.23802374.76
2 22.8 20.5 20.22894.86 2518.37 0.01829260.0158529 0.014899 0.81 0.82 0.8584 60.65292370.39
3 22.3 20.4 20.32817.76 2501.15 0.01779150.0157418 0.014928 0.840.84 0.8572 60.26902374.82
4 22.0 20.3 20.22761.12 2484.04 0.01742390.0156314 0.01491 0.86 0.86 0.8562 59.88292372.14
5 21.9 20.2 20.22742.46 2475.53 0.0173028 0.0155765 0.014879 0.86 0.86 0.8558 59.6885 2367.23
6 22.1 20.3 20.22779.89 2484.04 0.0175456 0.0156314 0.014864 0.85 0.85 0.8565 59.8789 2364.92
7 22.7 20.4 20.22875.42 2509.75 0.01816620.0157973 0.014867 0.82 0.82 0.8581 60.45682365.37
8 23.6 20.8 20.33044.41 2561.86 0.01926690.0161338 0.014947 0 0. 0.78 0.8609 61.63032377.81
9 25.1 21.2 20.23319.64 2623.85 0.02106770.0165346 0.014905 0.71 0.71 0.8651 63.00702371.30
10 26.7 21.7 20.33652.00 2705.48 0.02325590.0170631 0.014967 0.64 0.65 0.8698 64.81862380.88
11 28.6 22.2 20.34078.28 2789.32 0.02608420.0176068 0.014927 0.57 0.58 0.8752 66.6571 2374.71
12 30.3 22.7 20.34504.03 2875.42 0.0289340.0181662 0.014972 0 0. 0.53 0.8803 68.54042381.68
13 31.6 23.0 20.34844.40 2934.10 0.0312303 0.018548 0.014956 0.480.49 0.8840 69.81272379.25
14 32.4 23.3 20.45094.15 2983.80 0.03292560.0188717 0.015022 0.46 0.47 0.8867 70.89362389.45
15 32.8 23.3 20.35190.64 2993.83 0.033583 0.018937 0.014971 0.45 0.46 0.8876 71.10502381.50
16 32.4 23.3 20.45094.15 2983.80 0.03292560.0188717 0.015022 0.46 0.47 0.8867 70.89362389.45
17 31.7 23.1 20.34875.02 2943.98 0.03143770.0186123 0.014997 0.48 0.49 0.8844 70.03062385.55
18 30.5 22.7 20.34561.69 2885.13 0.02932180.0182293 0.014965 0.51 0.52 0.8809 68.75092380.60
19 29.1 22.3 20.34198.11 2817.76 0.02688380.0177915 0.014971 0.56 0.57 0.8768 67.28342381.58
20 27.7 21.9 20.33872.57 2751.78 0.02471630.0173633 0.014963 0.61 0.61 0.8727 65.83722380.37
21 26.4 21.6 20.23604.50 2687.15 0.02294220.0169443 0.014895 0.65 0.66 0.8691 64.4077 2369.75
22 25.4 21.3 20.33386.15 2641.80 0.02150440.0166507 0.014928 0.69 0.70 0.8661 63.40732374.84
23 24.5 21.0 20.23211.31 2597.12 0.02035770.0163617 0.014895 0.73 0.74 0.8634 62.41202369.81












Table A.33. September Average Hourl Psychrometric Properties for Chicago


DBTWBT DPT Pws Ps* v h Pw
hour (C) (C) (C) (Pa) (Pa) Ws W* W (m3/kg) (kJ/kg) (Pa)
0 20.5 18.9 18.92518.37 2286.55 0.0158529 0.01436 0.013711 0.86 0.87 0.8503 55.29832185.43
1 19.9 18.7 18.92433.32 2255.01 0.01530440.0141574 0.013648 0.890.89 0.8486 54.56832175.55
2 19.4 18.6 18.82358.94 2231.61 0.01482540.0140071 0.013636 0.920.92 0.8471 54.02782173.81
3 19.0 18.4 18.92294.50 2216.12 0.0144110.0139078 0.013676 0.950.95 0.8459 53.67292180.00
4 18.7 18.3 18.92247.19 2200.73 0.0141071 0.013809 0.01367 0.970.97 0.8449 53.31602179.06
5 18.6 18.3 18.92231.61 2193.07 0.0140071 0.0137599 0.013644 0.970.97 0.8445 53.13642175.01
6 18.8 18.3 18.82262.86 2200.73 0.0142078 0.013809 0.013624 0.96 0.96 0.8452 53.31252171.83
7 19.3 18.6 18.92342.68 2231.61 0.01472080.0140071 0.013683 0.930.93 0.8468 54.03142181.04
8 20.3 18.8 18.92484.04 2270.74 0.01563140.0142584 0.013656 0.870.88 0.8495 54.93072176.83
9 21.7 19.3 18.92714.68 2342.68 0.01712270.0147208 0.013724 0.80 0.81 0.8538 56.5831 2187.41
10 23.3 19.8 19.02993.83 2416.62 0.0189370.0151968 0.013735 0. 0.73 0.8585 58.2631 2189.19
11 25.2 20.4 18.93352.75 2501.15 0.0212850.0157418 0.013722 0.640.65 0.8639 60.16622187.19
12 26.9 20.9 19.03712.14 2588.27 0.02365340.0163045 0.013796 0.58 0.59 0.8690 62.11842198.65
13 28.2 21.3 19.14000.05 2650.82 0.02556330.0167091 0.013827 0.54 0.55 0.8728 63.5088 2203.59
14 29.1 21.6 19.04211.62 2687.15 0.0269741 0.0169443 0.013783 0.51 0.52 0.8753 64.30742196.72
15 29.4 21.7 19.04293.43 2705.48 0.02752120.0170631 0.013809 0.50 0.51 0.8763 64.71362200.66
16 29.1 21.6 19.04211.62 2687.15 0.0269741 0.0169443 0.013783 0.51 0.52 0.8753 64.30742196.72
17 28.3 21.3 19.04025.98 2650.82 0.02573590.0167091 0.013781 0.540.55 0.8730 63.50472196.38
18 27.2 21.0 19.03760.88 2597.12 0.02397590.0163617 0.013783 0.57 0.58 0.8697 62.31422196.70
19 25.7 20.6 19.03453.82 2527.02 0.02194930.0159088 0.013749 0.630.63 0.8654 60.74782191.43
20 24.3 20.1 18.93179.42 2458.57 0.0201490.0154671 0.013703 0.68 0.69 0.8613 59.20742184.26
21 23.1 19.8 19.02953.89 2408.30 0.01867690.0151432 0.013751 0.740.74 0.8579 58.07632191.70
22 22.1 19.4 18.92770.49 2350.80 0.0174847 0.014773 0.01366 0. 0.79 0.8547 56.76292177.48
23 21.2 19.1 18.92623.85 2310.46 0.01653460.0145136 0.013656 0.830.83 0.8521 55.84182176.85












Table A.34. October Average Hourly Psychrometric Properties for Chicago


DBTWBT DPT Pws Ps* v h Pw
hour (C) (C) (C) (Pa) (Pa) Ws Ws* W (m3/kg) (kJ/kg) (Pa)
0 14.9 13.9 14.01774.13 1663.00 0.01108450.0103786 0.009966 0.900.90 0.8293 40.13851597.95
1 14.4 13.6 13.81711.61 1627.34 0.01068720.0101525 0.009832 0.920.92 0.8275 39.23351576.74
2 13.9 13.3 13.61657.01 1592.36 0.01034060.0099307 0.009679 0.940.94 0.8258 38.33851552.60
3 13.4 13.0 13.41609.77 1563.71 0.010041 0.0097493 0.009566 0.95 0.95 0.8244 37.6017 1534.80
4 13.1 12.8 13.21575.12 1541.12 0.00982150.0096063 0.009469 0.960.96 0.8233 37.01721519.44
5 13.0 12.7 13.21563.71 1535.52 0.00974930.0095708 0.009456 0.97 0.97 0.8230 36.87251517.45
6 13.2 12.9 13.41586.59 1552.38 0.00989420.0096775 0.00954 0.96 0.96 0.8237 37.3101 1530.70
7 13.8 13.2 13.61645.09 1586.59 0.0102650.0098942 0.009665 0.940.94 0.8255 38.19101550.45
8 14.7 13.8 14.01748.88 1651.04 0.0109240.0103027 0.009936 0.91 0.91 0.8286 39.83651593.21
9 16.2 14.7 14.51918.76 1742.62 0.01200560.0108842 0.010265 0.850.86 0.8332 42.13821645.04
10 17.8 15.6 15.12125.18 1851.79 0.01332480.0115787 0.010682 0.800.81 0.8384 44.83721710.85
11 19.7 16.7 15.72391.75 1980.85 0.01503660.0124018 0.011158 0.74 0.75 0.8444 47.97001785.75
12 21.4 17.6 16.42659.86 2102.96 0.01676760.0131825 0.011614 0.69 0.70 0.8500 50.88401857.33
13 22.7 18.3 16.82875.42 2193.07 0.01816620.0137599 0.011936 0.66 0.66 0.8541 53.00571907.77
14 23.6 18.7 17.03034.23 2255.01 0.01920050.0141574 0.012147 0.63 0.64 0.8570 54.45071940.87
15 23.9 18.9 17.13095.73 2278.63 0.01960190.0143091 0.012228 0.62 0.63 0.8581 54.9993 1953.68
16 23.6 18.7 17.03034.23 2255.01 0.01920050.0141574 0.012147 0.63 0.64 0.8570 54.45071940.87
17 22.8 18.3 16.82894.86 2200.73 0.0182926 0.013809 0.011961 0.650.66 0.8545 53.18491911.82
18 21.6 17.7 16.42696.30 2117.75 0.01700360.0132772 0.011662 0.690.69 0.8507 51.23341864.90
19 20.2 16.9 15.92467.03 2016.10 0.0155217 0.012627 0.011291 0.730.73 0.8461 48.81601806.56
20 18.8 16.2 15.42262.86 1918.76 0.01420780.0120056 0.010924 0.77 0.77 0.8416 46.46991748.94
21 17.6 15.5 15.02095.59 1838.64 0.0131354 0.011495 0.010645 0.81 0.81 0.8377 44.51551704.93
22 16.5 14.8 14.51959.96 1761.47 0.0122685 0.011004 0.010315 0.840.84 0.8342 42.60621653.05
23 15.6 14.3 14.31851.79 1705.47 0.01157870.0106482 0.010121 0.87 0.88 0.8314 41.20831622.34












Table A.35. November Average Hourly Psychrometric Properties for Chicago


DBTWBT DPT Pws Ps* v h Pw
hour (C) (C) (C) (Pa) (Pa) Ws W* W (m3/kg) (kJ/kg) (Pa)
0 8.8 8.4 8.81185.20 1154.39 0.00736140.0071678 0.007009 0.950.95 0.8079 26.47491129.11
1 8.3 7.9 8.31141.40 1115.82 0.00708630.0069257 0.00679 0.96 0.96 0.8060 25.36031094.15
2 7.8 7.4 7.81103.21 1078.3866 00684660.0066908 0.006555 0.96 0.96 0.8043 24.2639 1056.72
3 7.3 7.1 7.51070.22 1050.04 0.00663960.0065131 0.0064 0.96 0.96 0.8028 23.42451031.99
4 7.0 6.7 7.1 1046.05 1026.27 0.0064881 0.0063642 0.006251 0.96 0.96 0.8016 22.7131 1008.22
5 6.9 6.6 7.01038.10 1018.46 0.00643830.0063152 0.006202 0.960.96 0.8013 22.47771000.41
6 7.1 6.8 7.21054.05 1034.14 0.00653830.0064135 0.0063 0.96 0.96 0.8020 22.94941016.09
7 7.7 7.3 7.71094.88 1070.22 0.00679430.0066396 0.006504 0.960.96 0.8039 24.0228 1048.56
8 8.6 8.2 8.61167.51 1137.10 0.00725020.0070593 0.006901 0.950.95 0.8071 25.97681111.83
9 10.1 9.5 9.71286.81 1239.71 0.00800060.0077042 0.007477 0.930.94 0.8120 28.89121203.59
10 11.7 10.9 11.01432.43 1360.41 0.0089190.0084645 0.008146 0.91 0.91 0.8175 32.21041309.83
11 13.6 12.4 12.31621.47 1502.28 0.01011520.0093605 0.008881 0.88 0.88 0.8238 35.98391426.39
12 15.3 13.7 13.41812.59 1639.15 0.01132920.0102273 0.009586 0.850.85 0.8297 39.51731537.96
13 16.6 14.7 14.31966.91 1748.88 0.0123128 0.010924 0.010167 0.830.83 0.8342 42.2868 1629.62
14 17.4 15.3 14.82080.94 1819.07 0.01304160.0113704 0.010498 0.80 0.81 0.8372 44.02951681.75
15 17.8 15.6 15.02125.18 1845.20 0.01332480.0115368 0.010618 0.80 0.80 0.8383 44.67321700.66
16 17.4 15.3 14.82080.94 1819.07 0.01304160.0113704 0.010498 0.80 0.81 0.8372 44.02951681.75
17 16.7 14.8 14.31980.85 1755.17 0.01240180.0109639 0.010184 0.820.82 0.8345 42.44281632.29
18 15.5 13.9 13.61838.64 1657.01 0.0114950.0103406 0.009676 0.840.84 0.8305 39.97141552.21
19 14.1 12.8 12.71675.04 1546.75 0.0104550.0096418 0.009139 0. 0.88 0.8256 37.14391467.24
20 12.7 11.7 11.71529.94 1437.70 0.00953550.0089523 0.008564 0.900.90 0.8209 34.28231376.27
21 11.4 10.7 10.91411.52 1345.40 0.0087870.0083698 0.008074 0.920.92 0.8167 31.80391298.43
22 10.4 9.8 10.01315.82 1263.06 0.00818340.0078511 0.007601 0.930.93 0.8131 29.54181223.33
23 9.5 9.0 9.31239.71 1198.63 0.00770420.0074458 0.007242 0.940.94 0.8101 27.73521166.12












Table A.36. December Average Hourly Psychrometric Properties for Chicago


DBTWBT DPT Pws Pws* v h Pw
hour (C) (C) (C) (Pa) (Pa) W Ws* W (m3/kg) (kJ/kg) (Pa)
0 2.2 2.1 2.6 745.84 742.89 0.00461230.0045939 0.004571 0.99 0.99 0.7857 13.6177 739.29
1 1.6 1.6 2.1 716.78 713.93 0.00443130.0044136 0.004391 0.990.99 0.7839 12.6061 710.33
2 1.1 0.9 1.3 691.49 683.24 0.00427390.0042225 0.004155 0.970.97 0.7822 11.5119 672.44
3 0.7 0.4 0.7 669.68 659.01 0.00413820.0040718 0.003982 0.96 0.96 0.7807 10.6310 644.61
4 0.3 0.1 0.2 653.72 640.69 0.00403890.0039579 0.003846 0.95 0.95 0.7796 9.9545 622.69
5 0.2 -0.1 0.1 648.48 635.54 0.00400630.0039258 0.003814 0.95 0.95 0.7792 9.7626 617.54
6 0.4 0.2 0.3 659.01 645.87 0.00407180.0039901 0.003878 0.95 0.95 0.7799 10.1470 627.88
7 1.0 0.8 1.1 685.98 675.08 0.00423960.0041717 0.004082 0.96 0.96 0.7818 11.2168 660.68
8 1.9 1.9 2.4 734.10 731.18 0.0045391 0.004521 0.004499 0.990.99 0.7850 13.2111 727.58
9 3.4 3.4 4.0 813.47 813.47 0.00503390.0050339 0.005034 1.00 1.00 0.7898 16.0094 813.47
10 5.0 5.0 5.6 910.88 910.88 0.0056421 0.0056421 0.005642 1.00 1.00 0.7952 19.1618 910.88
11 6.9 6.8 7.41038.10 1034.14 0.00643830.0064135 0.006391 0.990.99 0.8015 22.9520 1030.53
12 8.6 8.4 8.91167.51 1150.05 0.00725020.0071406 0.00705 0.970.97 0.8073 26.35241135.60
13 9.9 9.6 10.01272.51 1244.35 0.00791060.0077334 0.007597 0.960.96 0.8116 29.02461222.67
14 10.8 10.3 10.61350.39 1306.08 0.0084013 0.008122 0.007917 0.940.94 0.8146 30.73291273.57
15 11.1 10.6 10.81380.65 1330.54 0.00859220.0082761 0.008048 0.940.94 0.8157 31.40181294.41
16 10.8 10.3 10.61350.39 1306.08 0.0084013 0.008122 0.007917 0.940.94 0.8146 30.73291273.57
17 10.0 9.7 10.1 1282.03 1253.68 0.00797050.0077921 0.007656 0.960.96 0.8120 29.2850 1232.00
18 8.8 8.6 9.1 1185.20 1167.51 0.00736140.0072502 0.007159 0.970.97 0.8081 26.85341153.06
19 7.4 7.3 7.91074.29 1070.22 0.00666520.0066396 0.006617 0.990.99 0.8032 24.02621066.61
20 6.0 6.0 6.6 976.40 976.40 0.00605190.0060519 0.006052 1.00 1.00 0.7985 21.2013 976.40
21 4.8 4.8 5.4 896.86 896.86 0.00555450.0055545 0.005554 1.00 1.00 0.7944 18.7174 896.86
22 3.7 3.7 4.3 832.83 832.83 0.00515470.0051547 0.005155 1.00 1.00 0.7909 16.6487 832.83
23 2.8 2.8 3.4 782.08 782.08 0.0048381 0.0048381 0.004838 1.00 1.00 0.7879 14.9583 782.08

















APPENDIX B
AVERAGE ENERGY CONSUMPTION FOR MODEL I


Table B. 1. January Daily Average Energy Consumption for Model I, Miami


Hour of VEA hEA hsA hLA i w hEA hLA Q Input
day (m3/kg) (kJ/kg) (kJ/kg) ((kJ/kg) VLA (kg/s) (kJ/kg) (kW) kWh
0 0.8560 59.2874 52.2928 43.1247 0.8309 0.00352 16.1627 16.39 0
1 0.8550 58.9056 52.2928 43.1247 0.8379 0.00388 6.6128 16.04 0
2 0.8541 58.525652.292843.1247 0.83790.00387 6.2328 15.7 0
3 0.8534 58.3382 52.2928 43.1247 0.8379 0.00389 6.0454 15.54 0
4 0.852858.1511 52.292843.1247 0.83790.00391 5.8583 15.38 0
5 0.8527 58.1530 52.2928 43.1247 0.8379 0.00393 5.8602 15.39 0
6 0.8529 58.149252.2928 43.1247 0.8379 0.00388 5.8564 15.36 5.298
7 0.8539 58.5275 52.2928 43.1247 0.8379 0.00389 6.2347 15.71 5.417
8 0.8555 59.0963 52.2928 43.1247 0.8379 0.00388 6.8035 16.21 5.591
9 0.8580 60.0560 52.2928 43.1247 0.8379 0.00392 7.7632 17.08 5.891
10 0.8607 61.0225 52.2928 43.1247 0.83790.00391 8.7297 17.93 6.184
11 0.864062.197652.292843.1247 0.83790.00391 9.9048 18.97 6.54
12 0.866963.1863 52.2928 43.1247 0.8379 0.00388 10.8935 19.82 6.833
13 0.8690 63.9883 52.292843.1247 0.8379 0.00389 11.6955 20.52 7.076
14 0.8706 64.5940 52.2928 43.1247 0.8379 0.00390 12.3012 21.05 7.257
15 0.871164.797652.292843.1247 0.83790.00391 12.5048 21.23 7.319
16 0.8706 64.5940 52.2928 43.1247 0.8379 0.00390 12.3012 21.05 7.257
17 0.8694 64.1925 52.2928 43.1247 0.8379 0.00393 11.8997 20.71 0
18 0.8672 63.3887 52.2928 43.1247 0.8379 0.00391 11.0959 20.01 0
19 0.8648 62.5962 52.2928 43.1247 0.8379 0.00395 10.3034 19.33 0
20 0.862461.6081 52.292843.1247 0.83790.00390 9.3153 18.45 0
21 0.8604 60.8256 52.2928 43.1247 0.8379 0.00387 8.5328 17.74 0
22 0.8585 60.2492 52.2928 43.1247 0.8379 0.00393 7.9564 17.26 0
23 0.8570 59.6708 52.2928 43.1247 0.8379 0.00390 7.3780 16.73 0











Table B.2. February Daily Average Energ Consumption for Model I, Miami


Hour of VEA hEA hA hA w hEA hLA Q Input
day (m3/kg) (kJ/kg) (kJ/kg) ((kJ/kg) VLA (kg/s) (kJ/kg) (kW) kWh
0 0.859861.444052.292843.1247 0.83790.0043118.3193 18.47 0
1 0.858861.0526 52.292843.1247 0.8379 0.00430 8.7598 18.12 0
2 0.857860.6629 52.2928 43.1247 0.8379 0.00428 8.3701 17.77 0
3 0.857260.470752.292843.1247 0.83790.00430 8.1779 17.6 0
4 0.8565 60.2790 52.2928 43.1247 0.8379 0.00432 7.9862 17.44 0
5 0.8563 60.0817 52.2928 43.1247 0.8379 0.00426 7.7889 17.24 0
6 0.8567 60.2770 52.2928 43.1247 0.8379 0.00429 7.9842 17.43 6.01
7 0.8577 60.6649 52.2928 43.1247 0.8379 0.00431 8.3721 17.78 6.13
8 0.859361.2481 52.292843.1247 0.83790.00430 8.9553 18.29 6.308
9 0.8617 62.0284 52.2928 43.1247 0.8379 0.00426 9.7356 18.96 6.539
10 0.864463.0173 52.2928 43.1247 0.8379 0.00425 10.7245 19.83 6.837
11 0.867764.2197 52.292843.1247 0.8379 0.00426 11.9269 20.88 7.199
12 0.8706 65.2314 52.2928 43.1247 0.8379 0.00424 12.9386 21.74 7.497
13 0.8727 66.0522 52.2928 43.1247 0.8379 0.00427 13.7594 22.46 7.743
14 0.8743 66.6722 52.2928 43.1247 0.8379 0.00428 14.3794 22.99 7.928
15 0.8748 66.8805 52.2928 43.1247 0.8379 0.00429 14.5877 23.17 7.991
16 0.874366.6722 52.292843.1247 0.8379 0.00428 14.3794 22.99 7.928
17 0.873166.261252.292843.1247 0.83790.0043113.9684 22.65 0
18 0.870965.4386 52.2928 43.1247 0.8379 0.00428 13.1458 21.94 0
19 0.868564.627652.292843.1247 0.83790.0043112.3348 21.25 0
20 0.866263.8240 52.292843.1247 0.8379 0.00435 11.5312 20.57 0
21 0.864263.021452.292843.1247 0.83790.0043110.7286 19.85 0
22 0.862262.2261 52.292843.1247 0.83790.00427 9.9333 19.14 0
23 0.8608 61.8372 52.2928 43.1247 0.8379 0.00433 9.5444 18.82 0











Table B.3. March Daily Average Energy Consumption for Model I, Miami


Hour of VEA hEA hA hA w hEA hLA Q Input
day (m3/kg) (kJ/kg) (kJ/kg) ((kJ/kg) VLA (kg/s) (kJ/kg) (kW) kWh
0 0.8660 65.7336 52.2928 43.1247 0.8379 0.00539 22.6088 22.66 0
1 0.8650 65.3226 52.2928 43.1247 0.8379 0.00536 13.0298 22.3 0
2 0.8640 64.9135 52.2928 43.1247 0.8379 0.00534 12.6207 21.93 0
3 0.8634 64.7118 52.2928 43.1247 0.8379 0.00536 12.4190 21.76 0
4 0.8627 64.5105 52.2928 43.1247 0.8379 0.00537 12.2177 21.6 0
5 0.8626 64.5126 52.2928 43.1247 0.8379 0.00540 12.2198 21.61 0
6 0.8629 64.5084 52.2928 43.1247 0.8379 0.00535 12.2156 21.58 7.442
7 0.8639 64.9156 52.2928 43.1247 0.8379 0.00537 12.6228 21.95 7.567
8 0.8655 65.5278 52.2928 43.1247 0.8379 0.00537 13.2350 22.48 7.751
9 0.8679 66.3471 52.2928 43.1247 0.8379 0.00534 14.0543 23.17 7.99
10 0.8707 67.3856 52.2928 43.1247 0.8379 0.00535 15.0928 24.07 8.299
11 0.8740 68.6484 52.2928 43.1247 0.8379 0.00538 16.3556 25.16 8.675
12 0.8769 69.7113 52.2928 43.1247 0.8379 0.00538 17.4185 26.05 8.984
13 0.8791 70.5737 52.2928 43.1247 0.8379 0.00542 18.2809 26.79 9.24
14 0.8806 71.0000 52.2928 43.1247 0.8379 0.00535 18.7072 27.12 9.352
15 0.8811 71.2184 52.2928 43.1247 0.8379 0.00536 18.9256 27.31 9.417
16 0.8806 71.0000 52.2928 43.1247 0.8379 0.00535 18.7072 27.12 9.352
17 0.8793 70.5692 52.2928 43.1247 0.8379 0.00537 18.2764 26.77 0
18 0.8772 69.7069 52.2928 43.1247 0.8379 0.00533 17.4141 26.03 0
19 0.8747 68.8569 52.2928 43.1247 0.8379 0.00535 16.5641 25.32 0
20 0.8723 68.0148 52.2928 43.1247 0.8379 0.00537 15.7220 24.61 0
21 0.8704 67.3899 52.2928 43.1247 0.8379 0.00541 15.0971 24.09 0
22 0.8684 66.5547 52.2928 43.1247 0.8379 0.00536 14.2619 23.36 0
23 0.8670 66.1464 52.2928 43.1247 0.8379 0.00541 13.8536 23.03 0