<%BANNER%>

Advanced polymeric burnable poison rod assemblies for pressurized water reactors

University of Florida Institutional Repository

PAGE 1

ADVANCED POLYMERIC BURNABLE POISON ROD ASSEMBLIES FOR PRESSURIZED WATER REACTORS By KENNETH S. ALLEN A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLOR IDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ENGINEERING UNIVERSITY OF FLORIDA 2003

PAGE 2

Copyright 2003 by Kenneth S. Allen

PAGE 3

To my best friend and companion Stepha nie and our wonderful boys Zachary and Nicholas. Your faithful support and encouragem ent has made this and every task easy to accomplish. Always – Ken.

PAGE 4

iv ACKNOWLEDGMENTS I would like to acknowledge th e United States Army and the United States Military Academy Department of Physics for providi ng me the scholarship and opportunity to attend the University of Florida in pursuit of this degree. The United States Department of Energy for funding the advanced burnable poison research proj ect. I would also like to acknowledge Professor Jim Tulenko for chairi ng my committee and providing excellent tutoring as my advisor. Additionally, I woul d like to thank Dr. Samim Anghaie and Dr. Ed Dugan for providing me countless hours of inst ruction in all areas from the basics of radiation interactions to the us e of the computer codes required to complete this work. I would like to recognize Dr. Ron Baney and Dr Daryl Butt and their graduate students from the Materials Sciences and Engineeri ng department who worked with Professor Tulenko and me on the burnable poison research committee. Their work and insight on the manufacture and chemical properties of th e various polymers we investigated added depth to the research performed. I want to thank my parents for their gu idance and belief that education is and always will be important. I would especia lly like to thank my family; Stephanie, Zachary, and Nicholas for their love and support.

PAGE 5

v TABLE OF CONTENTS page ACKNOWLEDGMENTS.................................................................................................iv LIST OF TABLES.............................................................................................................ix LIST OF FIGURES.............................................................................................................x KEY TO SYMBOLS AND ACRONYMS.......................................................................xii ABSTRACT.....................................................................................................................xi v CHAPTER 1 INTRODUCTION...........................................................................................................1 Background..................................................................................................................... 1 Rational for Use of Burnable Poisons.............................................................................2 Types of Burnable Poison Isotopes..........................................................................4 Carriers and Locations for Burnable Poisons...........................................................5 2 MATERIAL SELECTION............................................................................................12 Moderation Effectiveness and Benchmark Calculations..............................................13 Optimization of PACS Stru cture for Moderation.........................................................16 Calculation of the Weight Pe rcent of Each Element..............................................16 Average Epithermal Microscopic Cross Sections..................................................17 Calculation of the Number De nsity of Each Element............................................19 Macroscopic Cross Sections of Each Element.......................................................20 Average Logarithmic Energy Decrement for the Elements...................................20 Average Logarithmic Energy Decrement for the Material....................................21 Results of Permutations of PACS Formula............................................................22 Optimization of PACS for Absorption.........................................................................24 3 MODELING AND METHODOLOGY........................................................................27 Overview of Modeling..................................................................................................27 General Problem Description and Geometry.........................................................27 General Assumptions in Models............................................................................30 Codes Used for Modeling......................................................................................31 The CASMO-3 Code.......................................................................................31 The EASCYC Code.........................................................................................32

PAGE 6

vi The MCNP Code..............................................................................................33 The ORIGEN2 Code........................................................................................33 The MONTEBURNS Code.............................................................................34 Single Assembly Calculations......................................................................................35 Multiple 2-D Assembly Calculations............................................................................39 Core Modeling..............................................................................................................41 The EASCYC models............................................................................................41 The MCNP/MONTEBURNS models....................................................................43 Chemical Shim Models.................................................................................................47 4 THERMAL AND RADIATION PROPERTY CALCULATIONS..............................49 Maximum Expected Centerlin e Temperature in BPRA...............................................50 Maximum Coefficient of Thermal Expansion..............................................................54 Dose Delivered to BPRA during Cycle........................................................................57 5 RESULTS AND DISCUSSION....................................................................................58 Single Assembly Analysis............................................................................................58 Multiple Assembly Results...........................................................................................64 One-Eighth Core Results..............................................................................................67 Criticality vs. Time Results....................................................................................67 Power Peaking Results...........................................................................................70 Other Polymer Materials........................................................................................76 6 CONCLUSIONS AND RECOMME NDATIONS FOR FUTURE WORK..................79 Conclusions...................................................................................................................7 9 Recommendations for Future Work..............................................................................83 APPENDIX A CALCULATIONS OF MODERA TION EFFECTIVENESS OF PACS.....................86 B SINGLE ASSEMBLY CASMO AND MONTEBURNS FILES.................................93 The CAMSO Input File B4C/Al2O3 BPRAs.................................................................93 The CASMO Output File Water in Guide Tubes.........................................................94 The CASMO Input File B4C/Al2O3 BPRAs in Guide Tubes.......................................95 The CASMO Output File B4C/Al2O3 BPRAs in Guide Tubes.....................................96 The CASMO Input File B4C/Al2O3 WABAs in Guide Tubes......................................97 The CASMO Output File B4C/Al2O3 WABAs in Guide Tubes...................................98 The CASMO Input File L-Carbor ane BPRAs in Guide Tubes....................................99 The CASMO Output File L-Carborane BPRAs in Guide Tubes................................100 The MCNP Input File Water in Guide Tubes.............................................................101 The MONTEBURNS Input File Water in Guide Tubes.............................................102 The MONTEBURNS Output File Water in Guide Tubes..........................................103 The MCNP Input File B4C/Al2O3 BPRAs in Guide Tubes........................................107

PAGE 7

vii The MONTEBURNS Input File B4C/Al2O3 BPRAs in Guide Tubes........................108 The MONTEBURNS Output File B4C/Al2O3 BPRAs in Guide Tubes.....................110 The MCNP Input File B4C/Al2O3 WABAs in Guide Tubes.......................................115 The MONTEBURNS Input File B4C/Al2O3 WABAs in Guide Tubes......................116 The MONTEBURNS Output File B4C/Al2O3 WABAs in Guide Tubes....................118 The MCNP Input File L-Carborane BPRAs in Guide Tubes.....................................122 The MONTEBURNS Input File L-Car borane BPRAs in Guide Tubes.....................123 The MONTEBURNS Output File L-Carborane BPRAs in Guide Tubes..................125 C MULTIPLE ASSEMBLY (COLORSET) CASMO FILES........................................130 The 2x2 Colorset CAMSO Input File B4C/Al2O3 BPRAs.........................................130 The 2x2 Colorset CASMO Output File Water in Guide Tubes..................................132 The 2x2 Colorset CASMO Input File B4C/Al2O3 BPRAs in Guide Tubes................135 The 2x2 Colorset CASMO Output File B4C/Al2O3 BPRAs in Guide Tubes.............137 The 2x2 Colorset CASMO Input File B4C/Al2O3 WABAs in Guide Tubes..............140 The 2x2 Colorset CASMO Output File B4C/Al2O3 WABAs in Guide Tubes...........142 The 2x2 Colorset CASMO Input File LCarborane BPRAs in Guide Tubes.............145 The 2x2 Colorset CASMO Output File L-Carborane BPRAs in Guide Tubes..........147 D ONE-EIGHTH CORE EASCYC FILES....................................................................150 The 10A3 CASMO Input File.....................................................................................150 The 12A2 CASMO Input File.....................................................................................151 The 13AE CASMO Input File....................................................................................151 The 14AE CASMO Input File....................................................................................152 The EASY Output Fuel Cro ss Section Library File...................................................153 The EASYLIB Input File Reactor Geometry.............................................................159 The EASCYC Output File B4C/Al2O3 BPRAs...........................................................160 E ONE-EIGHTH CORE MCNP/MONTEBURNS FILES............................................181 The MCNP Input File 1/8th core B4C/Al2O3 BPRAs..................................................181 The MCNP Input File 1/8th core L-Carborane BPRAs...............................................187 The MCNP Input File 1/8th core J-Carborane BPRAs................................................193 The MONTEBURNS Input File 1/8th core B4C/Al2O3 BPRAs..................................199 The MONTEBURNS Input File 1/8th core L-Carborane BPRAs...............................200 The MONTEBURNS Input File 1/8th core J-Carborane BPRAs...............................201 The MONTEBURNS Output File 1/8th core B4C/Al2O3 BPRAs...............................202 The MONTEBURNS Output File 1/8th core L-Carborane BPRAs............................204 The MONTEBURNS Output File 1/8th core J-Carborane BPRAs.............................206 F ONE-EIGHTH CORE WITH CHEMIC AL SHIM MCNP/MONTEBURNS FILES208 The MCNP Input File Chem Shim Power Peak #4 B4C/Al2O3 BPRAs.....................208 The MCNP Input File Chem Shim Power Peak #12 B4C/Al2O3 BPRAs...................215 The MONTEBURNS Input File Chem Shim Power Peak #4 B4C/Al2O3 BPRAs.....222 The MONTEBURNS Input File Chem Shim Power Peak #12 B4C/Al2O3 BPRAs...223

PAGE 8

viii The MONTEBURNS Feed File Chem Shim Power Peak #4 B4C/Al2O3 BPRAs.....224 The MONTEBURNS Feed File Chem Shim Power Peak #12 B4C/Al2O3 BPRAs...225 The MONTEBURNS Output File Chem Shim Peak #4 B4C/Al2O3 BPRAs.............227 The MONTEBURNS Output File Chem Shim Peak #12 B4C/Al2O3 BPRAs...........229 The MONTEBURNS Output File Chem Shim Peak #4 L-Carborane BPRAs..........231 The MONTEBURNS Output File Chem Shim Peak #12 L-Carborane BPRAs........234 The MONTEBURNS Output File Chem Shim Peak #4 J-Carborane BPRAs...........236 The MONTEBURNS Output File Chem Shim Peak #12 J-Carborane BPRAs.........239 LIST OF REFERENCES.................................................................................................242 BIOGRAPHICAL SKETCH...........................................................................................244

PAGE 9

ix LIST OF TABLES Table page 1-1. Ideal properties of a burnable poison........................................................................3 1-2. Example reactivity worths of control elements in LWRs.........................................6 1-3. Properties of burnable poison systems....................................................................10 2-1. Scattering properties of various nuclei....................................................................14 2-2. Scattering propertie s of various moderators...........................................................15 2-3. Total atomic masses fo r each element and compound............................................17 2-4. Weight percents of each element............................................................................17 2-5. Average microscopic cross sections for carborane elements..................................19 2-6. Number densities for each element in carborane....................................................20 2-7. Macroscopic cross sections for each element of carborane....................................20 2-8. Calculated average logarithmic energy decrement for PACS elements.................21 2-9. Molecular properties of burnable poison materials.................................................25 3-1. Reactor and assembly characteri stics for the Crystal River 3 Reactor...................28 3-2. Fuel composition informa tion for Crystal River Cycle 12......................................29 3-3. Input description for EASLIB.................................................................................43 4-1. Evaluated data for centerline te mperature in various BPRA materials...................53 4-2. Coefficients of thermal expansion of various materials..........................................57 A-1. Calculations of moderator effectiveness for PACS molecule.................................86

PAGE 10

x LIST OF FIGURES Figure page 1-1. Microscopic cross sections of variou s isotopes of burnable poison materials..........5 1-2. The BPRA locations in a 15 x 15 Framatome Mark IVB assembly.........................8 1-3. The BPRA plan view and cross section....................................................................9 1-4. The WABA plan vi ew and cross section..................................................................9 2-1. Epithermal microscopic elastic sca ttering cross sections for PACS elements........18 2-2. Thermal microscopic absorption cross sections for PACS elements......................18 2-3. Moderator effectiveness vs. weight percent of H in carborane...............................22 2-4. Effectiveness to macroscopic cross section vs. weight pe rcent H in carborane.....23 2-5. Boron carbide alumina chemical structures............................................................24 2-6. The PACS chemical structure.................................................................................25 3-1. Map of 1/8th Crystal River Three Cycle 12 core.....................................................29 3-2. Example of a PWR core cross section....................................................................30 3-3. Interaction of MONTEB URNS with MCNP and ORIGEN2.................................35 3-4. A SABRINA plot of top portion of Mark IV assembly model in MCNP..............36 3-5. Example of CASMO input file for a single assembly............................................37 3-6. Example of MCNP input file for single assembly..................................................38 3-7. Example of MONTEBURNS i nput file for single assembly..................................39 3-8. A CASMO 2 x 2 colorset array model....................................................................39 3-9. Example of CASMO input file for a 2 x 2 colorset................................................40 3-10. Example of EASLIB input file................................................................................42

PAGE 11

xi 3-11. Multiple SABRINA plots of full core reactor MCNP model.................................45 3-12. Multiple SABRINA plots of 1/8th core reactor MCNP model................................46 3-13. Example of single assembly MONTEBURNS feed file.........................................47 4-1. Cross section diagram of a BPRA...........................................................................54 4-2. Thermal expansion of a metal washer.....................................................................55 5-1. Single assembly k-infinity vs. ti me for various BPRAs using CASMO.................59 5-2. Single assembly pin power peakin g for various burnable absorbers......................60 5-3. Number of B-10 atoms present vs. burnup for various burnable absorbers............61 5-4. K-infinity for different carboran e compounds with vary ing amounts of H............62 5-5. K-infinity vs. burnup comparison of CASMO and MCNP/MONTEBURNS. .....63 5-6. Thermal flux vs. burnup inside BPRA for various burnable poison materials.......64 5-7. CASMO 2 X 2 colorset comparison k-infinity vs. burnup.....................................65 5-8. CASMO 2 X 2 colorset comparis on pin power peaking vs. burnup.......................66 5-9. K-infinity vs. time for various BPRA materials (1/8th core MONTEBURNS)......68 5-10. K-infinity vs. time for 1/8th core for BPRA materials including J-Carborane........69 5-11. Assembly number identification for 1/8th core model............................................70 5-12. Power distribution for 1/8th core with B4C/Al2O3 BPRAs at BOC.........................71 5-13. Power peaking vs. depletion time (average of assemblies by type)........................72 5-14. Power peaking for various BPRAs in Assembly 4 with no chemical shim............73 5-15. Power peaking for various BPRAs in Assembly 12 with no chemical shim..........74 5-16. Chemical shim vs. ti me for core models.................................................................74 5-17. Power peaking for various BPRAs in Assembly 4 with chemical shim.................75 5-18. Power peaking for various BPRAs in Assembly 12 with chemical shim...............76 5-19. Single assembly comparison of various absorbers to include polyethylene...........77

PAGE 12

xii KEY TO SYMBOLS AND ACRONYMS Acronym or Symbol Definition BOC Beginning of cycle BPRA Burnable poison rod assemblies BWR Boiling water reactor C Coefficient of thermal expansion CNP Cold-no-power ET Most probable thermal neutron energy EFPD Effective full power days ENDF/B-V Evaluated nuclear data files Brookhaven V EOC End of cycle HFP Hot-full-power HNP Hot-no-power IFBA Integral fuel burnable absorber k Neutron multiplication factor (a.k.a. criticality constant) k Infinite neutron multiplication factor keff Effective neutron multiplication factor LWR Light water reactor MCNP Monte Carlo Neutron Photon Transport code MWd/MTU Mega-watt days per metric ton uranium MWt Mega watts (thermal)

PAGE 13

xiii PACS Polyacetyleniccarboranosiloxane PNLThermal Probability of non-leakage for thermal neutrons PWR Pressurized water reactor RSICC Radiation Safety Information Computational Center TCl Centerline temperature vT Most probable thermal neutron velocity WABA Wet annular burnable assembly Average logarithmic energy decrement a Microscopic absorption cross section a Macroscopic absorption cross section

PAGE 14

xiv Abstract of Thesis Presen ted to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Master of Engineering ADVANCED POLYMERIC BURNABLE POISON ROD ASSEMBLIES FOR PRESSURIZED WATER REACTORS By Kenneth S. Allen May 2003 Chair: Professor James Tulenko Department: Nuclear and Radiological Engineering This study examines the use of a highhydrogen, boron-enriched polymer materials in burnable poison rod assemblies (BPRAs) in pressurized water reactors (PWRs). Polyacetyleniccarboranosiloxane “carbor ane” is a boron-containing, high-hydrogen polymer that is representative of these polymers. It is thermally stable and can be used to eliminate the water displacement penalty create d at end of cycle (EOC) by currently used boron-carbide burnable poisons. This material substitution is projected to result in higher burn ups and greater fuel use for fuels of equal enrichments. The polymer’s chemical composition can be tailored to achieve the desired amount of boron and hydrogen. This tailoring feature allows carborane to be produced with a high hydrogen content serving as a moderator at EOC, soften ing the reactor spectrum and eliminating the moderator displacement penalt y currently associated with boron carbide BPRAs and wet annular burna ble assemblies (WABAs).

PAGE 15

xv Once the desired components in the polymer were derived, a series of analyses were run comparing the polymer to boroncarbide BPRAs and WABAs. Each PWR assembly was modeled in CASMO-3, a 2-D noda l transport depletion code from Studsvik of America. Additionally, each assembly was modeled in MCNP and depleted using MONTEBURNS, a PERL code script from the Radiation Safety Information Computational Center (RSICC) that de pletes MCNP4C2 KCODE problems using ORIGEN2.1. The results from both codes de monstrated that the carborane material consistently had a lower k-infinity value at BOL, indicating a ha rder spectrum; and a higher k-infinity at EOC, indicating a lower amount of burnable ab sorber present and a larger thermal flux at EOC. The materials were also modeled in a simu lation of a core in accordance with the reload report for the Crystal River 3 reactor to determine the power peaking and expected core burn-ups in an actual PWR reload scen ario. The core was modeled in EASCYC, a diffusion theory nodal code, and in MCNP / MONTEBURNS. Each of the core modeling codes closely matched the predicted values in the reload report for the core parameters with the boron-carbide BPRAs. The carborane cores were found to have longer core lives and slightly high er power peaking indices at EOC .

PAGE 16

1 CHAPTER 1 INTRODUCTION Background The focus of this study is the developmen t of a polymeric burnable poison material that burns out more completely (reducing th e negative reactivity at end of cycle (EOC)) and eliminates the water displacement pena lty caused by burnable poison rod assemblies (BPRAs) occupying moderator space in the control rod guide tubes. Utilities and fuel vendors have made extens ive use of burnable poisons in the past decade, resulting in dramatic improvements in fuel utilization and depletion, or “burnup,” improved overall conversion of uranium-238 in to fissile plutonium, and reduction of leakage of thermal neutrons from the core. Ex tended lifetimes of fuel batches and higher burnups have made nuclear power extremely co st-competitive with other forms of energy production. In fact, based on fuel cycle cost s, nuclear energy is the least expensive alternative in terms of do llars per kilowatt-hour of el ectricity produced. Further improvements in burnable poisons could result in even greater fuel use and cost-reduction. This study examines the use of high-hydrogen and boron-enriched polymer materials for use in burnable poison rod a ssemblies (BPRAs) in pressurized water reactors (PWRs). The reason for using boroncontaining organic polymers is to provide moderating hydrogen atoms in the polyme r to replace the currently used B4C/Al2O3 inorganic system. A new material named polyacetyleniccarboranosiloxane (PACS), developed by Dr. Keller of the Naval Research Laboratory is typical of the material we

PAGE 17

2 are seeking [1] Keller’s PACS is a boron-contai ning, high-hydrogen polymer which has been shown to be stable up to 1000 C. It can be used in BPRAs to eliminate the water displacement penalty created at EOC by curre ntly used boron-carbide burnable poisons. Previous research predicts that this mate rial substitution results in higher burnups and greater fuel utilization for fuels of equal enrichments [2] The chemical formula for PACS or “carborane” is (B10H10C2)a((CH3)2SiO)b(C2)c. Its composition can be tailored for th e amount of boron and hydrogen present by adjusting the quantities of the components represented by th e subscripts a, b, and c in the formula. This tailoring feature allows carborane to be produced with a high hydrogen content which will serve as a moderator at EOC softening the reactor spectrum and eliminating the moderator displacement penalt y. The softer spectrum also increases the worth of the boron in the polymeric BPRA at BOC and enhances the consumption of plutonium in the core by providing more th ermal neutrons for conversion and fission at EOC. Rational for Use of Burnable Poisons The probability for any type of nuclear reaction, such as neutron absorption or scatter, within a particular material is re ferred to as the microscopic cross section ( ) of the material and is represented in units of area. The common unit of area used in nuclear engineering is the barn which equals 1 x 10-24 cm2. The product of the microscopic cross section and the material’s number density (a toms / volume) is called the macroscopic cross section ( ) of the material and is given in units of inverse length (cm-1). The macroscopic cross section is a more eff ective measure of the element or compound’s actual probability of reaction be cause it accounts for the nuclear probability of interaction and the physical probability of the target atoms being present in a particular region.

PAGE 18

3 A reactor must have excess reactivity in th e core in order to compensate for fuel depletion, fission product absorpti on, and temperature effects [3] High-absorption fission products (xenon and samarium) reach equilibrium within a few days after the reactor going critical and achieving full power. The temperature effects caused by changes in power can be compensated for w ith control rods and changes in chemical shim. Therefore, the primary purpose of a burnable poison is to offset the excess reactivity required to sustain the reactor over time, or fuel depletion and fission product build-up. A burnable poison performs this function by absorbing large amounts of thermal neutrons at BOC and progressively absorbing fewer neutrons as the absorber material changes to a daughter product or “b urns” until EOC when it is removed from the core. Some properties of an ideal bur nable poison are shown in Table 1-1. Table 1-1. Ideal proper ties of a burnable poison Desired Effect Property Max Cross section for thermal neutrons at beginning of cycle (BOC) of the fuel Max Burn-out at EOC resulting in maximum reactivity when desired Min Daughter product cross section (to a llow the poison to deplete or “burn”) Min Excess unwanted products (such as gases) produced during depletion Min Corrosive or other harmful inte ractions with reactor components Min Impact on amount of fuel or modera tor displaced in core (esp. at EOC) Min Impact on heat transfer between fuel and coolant and melting point of fuel Min Impact on power peaking over the cycle A burnable poison allows a higher amount of excess reactivity to be present at the beginning of cycle (BOC) in the reactor. Th is higher reactivity increases the amount of time the fuel can be used which is referred to as the burnup for the cycle. A longer time between cycle reloads and a higher burnup reduc es reactor downtime for reloads, reduces the amount of waste products (spent fuel assemblies), and reduces the frequency of purchasing new fuel.

PAGE 19

4 Burnable poisons also allow fresh fuel to be placed in the center of a reactor core in an “Ultra Low Leakage” design. The burnable poisons quench the hi gh reactivity of the new fuel and help maintain a constant power and flux within the reactor core that is below the maximum value allowed for the reacto r. This low-leakage core converts more fertile material to fissile ma terial allowing a greater proportio n of the fuel to be burned by the end of life. The low leakage design also helps eliminate damage to the pressure vessel due to neutrons escaping from the core [4] Types of Burnable Poison Isotopes Some of the burnable poison isotope s commonly used today are boron-10, gadolinium-157 and erbium-167. Boron is used both in ZrB2 coatings on fuel pellets and in B4C / Al2O3 fixed BPRAs. Gadolinium and erbium are used in mixed oxides (Gd2O3 and Er2O3) within the fuel pellet [3] These materials meet to some extent the eight optimum criteria in Table 1-1. Other isotopes with significant cross sections for thermal neutron absorption are europium, dyspro sium, and palladium. Figure 1-1 shows microscopic absorption cross sections and natural abundance for several isotopes of burnable poison materials generated using a NITAWL 238 group library that used source data from the Evaluated Nuclear Data Files from Brookhaven National Laboratories version five (ENDF/B-V) [5] The primary region of intere st for a burnable poison is the absorption of thermal neutrons. Thermal neut rons are those whose energies are located within a Maxwellian distribution function and are normally assumed to have a most probable energy (ET) and speed based on the temperature of the system. A temperature of 293K corresponds to ET = 0.025 eV and vT = 2200 m/s while a reactor operating temperature of 590 K results in ET = 0.051 eV and vT = 3100 m/s [6] A high natural abundance for a material is normally associated with a lower manufacturing cost. Not all

PAGE 20

5 of the natural isotopes are shown in Figur e 1-1. For instance, gadolinium has seven naturally occurring isotopes but only the most commonly used parent (GD-157) is shown to make the data easier to interpret. 1.00E-03 1.00E-02 1.00E-01 1.00E+00 1.00E+01 1.00E+02 1.00E+03 1.00E+04 1.00E+05 1.00E+06 1.00E+07 1.00E-051.00E-041.00E-031.00E-021.00E-011.00E+001.00E+011.00E+021.00E+031.00E+041.00E+051.00E+061.00E+071.00E+08Energy (ev)Barns (1 E -24 sq cm) GD 157 15.7% EU 151 47.8% B 10 20.0% DY 161 18.9% PD 105 22.2% % Natural Element Abundance Figure 1-1. Microscopic cross sections of variou s isotopes of burnable poison materials. Carriers and Locations for Burnable Poisons The primary difference with respect to control between a boiling water reactor (BWR) and a PWR is that a PWR uses boron in the water (chemical shim) to assist in the control of reactivity within the core while the BWR uses coolant flow control. Chemical shim is usually boric acid added in parts per million (ppm) to the reactor’s coolant water to offset excess reactivity. A PWR can us e chemical shim because the water does not boil in the core. A light water reactor (LWR ) has a negative void coefficient meaning that when the water is heated and decreases in density the moderation effect is reduced

PAGE 21

6 and the reactivity in the core is also reduced. However, with the use of chemical shim, the amount of control poison is also reduced w ith the increase in temperature resulting in a positive reactivity effect. This change in the void coefficient often limits the amount of chemical shim that can be added to a core [6] In a BWR the boiling water in the core is not suitable for the use of chemical shim to offset reactivity but the amount of water flowing through the core can be changed (flo w control) to change the amount of voids within the core. Table 1-2. Example reactivity wort hs of control elements in LWRs Reactivity ( k/k) PWR BWR Excess reactivity at 20 C at op. temp at eq. Xe and Sm 0.293 0.248 0.181 0.25 Total control rod worth† 0.07 0.17 ~ 60 clusters 140-185 cruciforms Fixed burnable poisons 0.12 Chemical shim worth — Shutdown margin Cold and clean Hot and eq. Xe and Sm 0.14 0.04 †Approximately half of the tota l control rod worth is dedicated for shutdown rods and is not used for power maneuvering or deplet ion compensation. Adapted from J. DUDERSTADT, L. HAMILTON, Nuclear Reactor Analysis, John Wiley and Sons Inc., New York 1976.pg. 539. Because of the chemical shim, the contro l requirements for the mechanical control rods are different between BWRs and PWRs. A PWR’s control rods must have enough negative reactivity to take the reactor from hot-full-power (HFP) to hot-no-power (HNP). A BWR’s control rods must be able to take the reactor from hot-full-power to cold-no-power (CNP). The PWR achieves CNP by using chemical shim. Chemical shim is not part of this study with the assumption th at it will continue to be used in the same manner as it is currently employed.

PAGE 22

7 Reactivity ( ) represents a ratio in the fractional change in a system from critical ( k/k). The unit of reactivity worth in a light water reactor (LWR) is the percent mill (pcm) where 1pcm = x 10-5 [7] Another unit of reactivity is the dollar which is the amount of reactivity required to make a reactor critical on the prompt neutrons alone, prompt critical, and varies as a function of th e type of fuel used. Prompt neutrons are those generated immediately from the fission pr ocess. Delayed neutrons are generated up to a couple of minutes following fission and are the product of fission fragment radioactive decay. Table 1-2 shows various worths of different control elements in typical BWR and PWR reactors [6] As shown in Table 1-2, a PWR has approxima tely 60 clusters of control rods fixed within the reactor’s geometry. Every fuel a ssembly must be designed to accept a control rod cluster because the assemblies are move d throughout the core during each reload. This “shuffle” allows for the fuel assemblies to be arranged in such a manner to produce the optimum lifetime for the core. Also it optimizes the power peaking and control requirements during the cycle. The reload de sign also attempts to place fresh fuel assemblies in locations without control rod cl usters to allow the BPRA assemblies to fill the empty control rod guide tubes in the new assembly. Figure 1-2 shows plan views of Framat ome Mark IVB 15 x 15 assemblies with various configurations of BPRAs. This pa rticular assembly was designed to accept up to 16 control rods in a cluster and can accept up to 16 BPRAs. Some reactor designs have as many as 20 control rod guide tubes. The center hole in the assembly is for in-core instrumentation and the triangle region illu strates the area of symmetry used by some computer codes to simplify calculations. Th e assembly shown in Figure 1-2 is the same

PAGE 23

8 assembly used in the Crystal River Three react or for the cycle 12 core reload. The reload report for the Crystal River Three reactor is the primary benchmark comparison for all of the calculations and mo dels within this study. Figure 1-2. The BPRA locations in a 15 x 15 Framatome Mark IVB assembly Some of the various fixed burnable pois on materials and carriers used today include the BPRA, the Integral Fuel Burn able Absorber (IFBA), gadolinia-urania burnable poison fuel rod, the erbia-urania burnable poison fuel rod, and the Wet Annular Burnable Absorber (WABA). The BPRA, illust rated in Figure 1-3, is a boron carbide aluminum oxide mixture used by Westinghouse and Framatome in PWRs. The IFBA is a fuel pellet that is coated with a layer of zirconium diboride used by Westinghouse. Gadolinia-urania fuel rods are used by Fr amatome in PWRs and General Electric in BWRs. The erbia-urania fuel rods are us ed by Combustion Engineering in PWRs. The WABA, in Figure 1-4, is a Westinghouse modifi cation to the typical BPRA that includes

PAGE 24

9 a hole, or annulus, in the middle of the BPRA to allow for less of a moderator penalty at EOC. However, this design is expensive to fabricate. Figure 1-3. The BPRA plan view and cross section Figure 1-4. The WABA plan view and cross section The moderator displacement penalty is ju st one of many design concerns that are considered when attempting to generate an improved burnable poison design. Just as

PAGE 25

10 there are numerous desirable properties of th e burnable poison material, shown in Table 1-1, each of the current designs for burnable absorbing systems have distinct advantages and disadvantages. Advantages and disadva ntages for each of these burnable poison systems are listed in Table 1-3. The central i ssue with this study is to take the desirable characteristics of a material and combine it with the most cost effective manufacturing process and generate an improved burnable po ison assembly. The improved assembly must not only be able to dem onstrate better performance but it must be able to withstand the harsh conditions within the reactor both in normal operations and in the event of an emergency as well as or bette r than the current BPRAs. Table 1-3. Properties of burnable poison systems. Type Advantages Disadvantages BPRA (B4C-Al2O3) Inexpensive and easy to manufacture Uniform boron distribution Low swelling Some residual reactivity at EOC Moderator displacement Separate assembly creates an additional waste product IFBA No moderator displacement penalty Helium gas produced by the burnup of boron adds to the fission gases inside the fuel rod and is a limiting criteria Gd2O3-UO2 Gadolinium has a very high thermal neutron cross section No moderator displacement penalty Reduces the melting point of uranium and thermal conductivity of the fuel Daughter products have moderate cross sections for absorption WABA Less excess reactivity because the annular design allows moderator to flow through the center of the rod enhancing boron burnup A 21% smaller moderator displacement penalty than a BPRA Cost of manufacture for the annular design Still results in some moderator displacement Separate assembly creates an additional waste product

PAGE 26

11 The overall differences be tween two burnable poison sy stems may only result in a change of one percent of burnup over the cycl e of a core. However, because of the enormous costs to a utility during a shutdown, one percent of a 2-year cycle could result in a savings of $6 million per reload to the util ity. It is therefore feasible to research a new material that could overcome some of th e disadvantages listed in Table 1-3 even if the differences are subtle.

PAGE 27

12 CHAPTER 2 MATERIAL SELECTION Chapter 1 showed some of the different types of burnable poisons used today and displayed their overall adva ntages and disadvantages in Table 1-3. This chapter examines the required nuclear reaction propert ies, specifically the moderation effect at EOC, of an advanced burnable poison material. It also es tablishes the benchmark criteria for an improved polymeric burnable absorber versus the standard boron carbide BPRA and WABA. The IFBA and Gd2O3/UO2 burnable absorbers are not discussed in this chapter because they do not directly relate to the st udy of an improved BPRA. Additionally, the benchmark requirements of the thermal mechanical properties, to include radiation effects, ar e discussed in Chapter 4. The first step in the development of a burnable poison polymer that has the moderation ability equal to or better than light water at EO C was to determine the amount of moderation materials require d in the PACS, or “carborane, ” polymer. As stated in Chapter 1, carborane ((B10H10C2)a((CH3)2SiO)b(C2)c) can be modified by adjusting the values of a, b, and c in the subscript of th e formula. By determining a measure of the moderation effectiveness of li ght water, a benchmark standa rd could be established and an estimate can be made of the minimum wei ght percent of moderati on materials that will be required for the burnable poison to offset the water displacement penalty at EOC. Although PACS is not the only advanced polymer ic burnable absorber considered within this study, it is characteristic of these polymer s. The method of determining the optimum

PAGE 28

13 material concentration in PA CS could be directly relate d to any advanced polymer by substitution of the appropriate elements and concentrations in the methodology. Moderation Effectiveness a nd Benchmark Calculations Neutrons produced in fission are “born” at energies between 1 to 2 MeV. In a thermal nuclear reactor, neutrons are slowed down, or moderated, to thermal energies (approximately 0.625 eV) by elastic and inelastic scattering with nuclei within the core in order to generate further fissions. Inelastic scatters occur primarily at energy ranges above 10 keV because there must be a thresh old energy in which the neutron excites the target nucleus [6] The primary moderation mechanis m is elastic scatter with the moderator in the lower part of the slowing-down region of the neutron energy spectrum [3] For the purpose of this research this se ction of the slowingdown region is referred to as the epithermal region of the neutron energy spectrum. A measure of a potential mode rator’s effectiveness at sl owing down neutrons is its average logarithmic energy decrement represented by Because this value uses the isotropic nature of the sca tter and integrates over all pos sible angles it provides a meaningful value of an element or compound’ s ability to moderate neutrons without respect to angle or energy. The average logarithmic energy decrement [7] is given in Eq. 2-1. 1 1 ln 2 1 1 cos cos ln ln2 1 1 1 1 2 1 2 1 A A A A d d E E E E (2-1) Using the relationship for the reduced mass = ((A-1/A+1)2) it is more commonly seen as Eq. 2-2.

PAGE 29

14 ln 1 1 (2-2) For a neutron born at Eb slowed down to Et the average number of collisions required to reach Et can be derived from the relationship given by Eq. 2-3. Average number of collisions = t bE Eln (2-3) Using Eb = 2 MeV and Et = 0.625 eV, Eq. 2-3 = 98 14 Table 2-1 shows common values for various nuclei scattering neutrons from 2 MeV to 0.625 eV. Table 2-1. Scattering pr operties of various nuclei Element Atomic Mass # # Colls. to 0.625 eV Hydrogen 1 0.000 1.000 15 Deuterium 2 0.111 0.726 20 Beryllium 9 0.640 0.207 70 Carbon 12 0.716 0.158 92 Oxygen 16 0.779 0.120 121 Uranium 238 0.983 0.0083 1700 Adapted from Glasstone S, Sesonske A. Nuclear Reactor Engineering. New York: Chapman & Hall, Inc; 1994. pg 169. A more relevant measure of a moderator’ s ability to slow down neutrons is a combination of its average logarithmic en ergy decrement and its cross section. A microscopic cross section ( ) is a measure of an element or compound’s probability of having a particular reaction w ith a given particle. Different elements and compound’s are more likely to scatter, absorb, or fission and th is relative probability is measured in area (typically in barns or 1 x 10-24 cm2). A macroscopic cross section ( ) is the combination of the microscopic cross section and the numbe r density (atoms/cc) of the material. The macroscopic cross section is given in units of cm-1 and is a measure of the true

PAGE 30

15 probability of the interaction of the material based on the physical conditions at the time of the interaction. For in stance, at a given energy, water always has the same microscopic cross section but the macroscopic cr oss section varies as the density of water changes under pressure and temperature differe ntials. For the case of a pressurized light water reactor, at a pressure of 13,790 kilopa scals and temperature of 583 C, the specific volume of saturated liquid water is 0.02565 ft3/lb or 1.6011 cm3/gm which yields a density of 0.715 gm/cm3 [8] Table 2-2 compares various moderating media to include the macroscopic elastic scattering cross section ( s) and the product of s and the average logarithmic energy decrement. It also includes the ratio of the macroscopic elastic scattering cross section to the macr oscopic absorption cross section multiplied by the average logarithmic energy decrement. Table 2-2. Scattering propert ies of various moderators Mod. Atomic Mass # Density (gm/cc) Epith. s (barns) # Dens (atm/cm3 x 1022) s (cm-1) s (cm-1) s / a H2O 18 0.93 0.715 42.0 2.389 1.003 0.93645 H2O 18 0.93 1.0 42.0 3.340 1.403 1.31063 D2O 20 0.51 1.10 10.5 3.320 0.35 0.17920,883 Be 9 0.207 1.85 6.1 12.400 0.75 0.155122 C 12 0.158 1.70 4.7 8.550 0.41 0.065216 The best moderator of th e compounds listed in Table 2-2 based on the product of the average logarithmic energy decrement (amo unt the neutron slows down in a collision) and the macroscopic cross section (probability that the neutron will have a collision) is light water at room temperature. However, because of water’s relatively high neutron absorption cross section, it absorbs therma l neutrons much greater than the other materials as indicated by th e product of the ratio of the scatting to absorption cross sections and the logarithmic energy decrement. For this study, the concern is for the

PAGE 31

16 improvement of a burnable poison in a light water reactor so the benchmark to use is that of light water. Of course, the reactor cannot produce power at room temperature so the benchmark standard for s for the advanced burnable poison assemblies should be 0.936 cm-1. Any burnable poison compound that has a higher s than 0.936 cm-1 at the end of cycle would be considered an increa se in moderator (above the standard for the coolant) and would be highly desirabl e. Additionally, the benchmark for s / a should be 45 and a burnable poison with a higher va lue than 45 would also be desirable. Optimization of PACS Structure for Moderation The next step in determining the optimu m burnable poison composition was to vary the compositions within carborane and determine its moderator effectiveness at EOC. This calculation for the moderator effectivene ss represents only one possible combination of elements. It accounts for varying pe rcentages of boron and hydrogen but does not consider the possible physical effects of changing the constituent materials such as possibly reducing the thermal st ability of the polymer. Again, this methodology could be used for any polymeric structure or compound. Appendix A contains a spreadsheet of permutations of these calculations. Calculation of the Weight Percent of Each Element First, the subscript coefficients for the PA CS molecular structure are selected to get the number of atoms in the molecule. Using th e first line of the sp readsheet in Appendix A as an example, the carborane molecule is: (B10H10C2) ((CH3)2SiO)12(C2)9. The number of atoms per molecu le and the calculation of the total atomic masses for the element and the carborane compound are given in Table 2-3. The calculation of the total weight percents of each elem ent are shown in Table 2-4.

PAGE 32

17 Table 2-3. Total atomic masses for each element and compound Element Number of atoms Atomic weight Total C 44 x 12.01 = 528.44 Si 12 x 28.09 = 337.08 O 5 x 15.99 = 79.95 B 10 x 10.81 = 108.10 H 82 x 1.01 = 82.82 Total 1136.39 Table 2-4. Weight percents of each element Element Atomic mass in material Total mass Weight Percent C 528.44 / 1136.39 = 46.50% Si 337.08 / 1136.39 = 29.66% O 79.95 / 1136.39 = 7.04% B 108.10 / 1136.39 = 9.51% H 82.82 / 1136.39 = 7.29% Average Epithermal Microscopic Cross Sections From the previous definition of epither mal (the lower end of the slowing down region of the spectrum) the region of intere st is from 2.0 eV to 100 eV. The average epithermal microscopic cross section for each of the materials was determined by taking the ENDF/B-V cross section values for elastic scattering from a 238-group NITAWL model and averaging the values from 2.0 eV to 100 eV (75 groups total shown in Figure 2-1) [5] The value for B was taken as a weighted average between the values of B10 and B11 to represent natural boron (20% B10 to 80% B11). The assumption is also made that the creation of lithium-7 and other isotopes dur ing the absorption or “burn” process will not significantly change the epithermal sc atting cross sections for the compound as a whole. The average thermal ab sorption cross section (Figure 2-2) was calculated in the same manner as the epithermal scattering cro ss section. Although depicted on the figure, the boron is assumed to be completely burne d out at EOC and will not significantly add to the total absorption cro ss section of the material.

PAGE 33

18 0.00E+00 5.00E+00 1.00E+01 1.50E+01 2.00E+01 2.50E+01 1.0000E+001.0000E+011.0000E+021.0000E+03 Energy (eV)Microscopic Elastic Scatter Cross Section (barns) H C B O Si Figure 2-1. Epithermal microscopic elastic s cattering cross sections for PACS elements. Cross section remains nearly cons tant as a function of energy. 1.00E-05 1.00E-04 1.00E-03 1.00E-02 1.00E-01 1.00E+00 1.00E+01 1.00E+02 1.00E+03 1.00E+04 1.00E+05 1.0000E-051.0000E-041.0000E-031.0000E-021.0000E011.0000E+001.0000E+011.0000E+021.0000E+03 Energy (eV)Microscopic Elastic Scatter Cross Section (barns) H C B O Si Figure 2-2. Thermal microscopic absorption cross sections for PACS elements. Cross sections are linear in this region.

PAGE 34

19 The results of the averaging gives averag e epithermal microscopic elastic scattering cross sections shown in Table 2-5. Note that the value of carbon closely matches the tabulated value from Appendix A in Glasstone and Sesonske [7] The values for the microscopic absorption cross section cannot be reasonably averaged for boron because of the extensive changes of cross section with energy. Additionally, the benchmark of s / a has little meaning at BOC because the c oncentrations of boron are high and the concern for this study is the moderation effectiv eness at EOC. For this purpose, the value of a for the benchmark does not include boron as suming that all of the boron has been depleted at EOC. This benchmark can be used when compar ing various compounds knowing that all of the boron will never actu ally be depleted. The results for the remaining elements give average microscopi c absorption cross section shown in Table 2-5. Table 2-5. Average microscopic cr oss sections for carborane elements Element microscopic cross section (barns) C Si O B H Epithermal Scatter ( s) 4.78 2.08 3.92 4.47 20.7 Absorption ( a) 3.40 x 10-31.60 x 10-19.43 x 10-6— 3.32 x 10-1 Calculation of the Number Density of Each Element The number densities for the elements can be determined using the same elemental composition for PACS that was used for the weight percent calcul ation and using an assumed mass density from previ ous research on the material [2] The number density of an element in a compound is given by Eq. 2-4. i AM N N (2-4) N = molecular atom density (atoms / cc) = mass density of the compound ( 0.9 gms/cm3)

PAGE 35

20 i iN 20 2310 7693 4 39 1136 10 022 6 9 0 M = molecular weight of the coumpound (1136.39) NA = Avagadro’s number (6.022 x 1023 atoms/mole) i = Number of atoms of i type in the material Therefore (2-5) The corresponding number densities (atoms/cm3) for each of the elements are shown in Table 2-6. Table 2-6. Number densities for each element in carborane Number density by element (atoms/cm3) C Si O B H 2.099 x 1022 5.723 x 1021 2.385 x 1021 4.769 x 1021 3.912 x 1022 Macroscopic Cross Sections of Each Element The epithermal macroscopic elasti c scattering cross sections ( s (cm-1)) and the macroscopic absorption cross sections ( a (cm-1)) are determined by multiplying the results of the microscopic cross sections (in cm2) from Table 2-5 and the number densities of the materials from Table 2-6. The results are shown in Table 2-7. Table 2-7. Macroscopic cross sec tions for each element of carborane Element macroscopic cross section (cm-1) C Si O B H Total s 1.00 x 10-1 1.19 x 10-2 9.35 x 10-3 2.13 x 10-2 8.10 x 10-1 9.35 x 10-1 a 7.13 x 10-5 9.16 x 10-4 2.25 x 10-8 — 1.30 x 10-2 1.40 x 10-2 Average Logarithmic Energy D ecrement for the Elements A common quantity related to the scatting nucleus mass is [7] which is given by Eq. 2-6. 21 1 A A (2-6) Using the relationship given by and Eq. 2-2 the average logarithmic energy decrement for the elements in the compound are given in Table 2-8. Note that again the value of

PAGE 36

21 carbon, hydrogen and oxygen match the tabulated va lues from Table 3.3 in Glasstone and Sesonske [7] (Table 2-1). Table 2-8. Calculated av erage logarithmic energy d ecrement for PACS elements. Element C 0.716 0.158 Si 0.751 0.136 O 0.779 0.120 B 0.444 0.351 H 0.0 1.0 Average Logarithmic Energy D ecrement for the Material For a molecule the average logarithmic energy decrement [7] is found by Eq. 2-7. ... ...) ( ) ( ) ( ) ( ) ( ) ( j s j i s i j j s j i i s i (2-7) Where i = Number of atoms of i or j type in the material. For our case this equation becomes Eq. 2-8. ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( H s H B s B O s O Si s Si C s C H H s H B B s B O O s O Si Si s Si C C s C (2-8) With substitution ) 7 20 )( 82 ( ) 47 4 )( 10 ( ) 92 3 )( 5 ( ) 08 2 )( 12 ( ) 78 4 )( 44 ( ) 0 1 )( 7 20 )( 82 ( ) 351 0 )( 47 4 )( 10 ( ) 230 0 )( 92 3 )( 5 ( ) 136 0 )( 08 2 )( 12 ( ) 158 0 )( 78 4 )( 44 ( 878426 0 The final product of the macroscopic elastic scattering cross secti on of the material and the average logarithmic energy decrement is simply The ratio of the macroscopic elastic scatting cross section to the macroscopic absorption cross section and the logarithmic energy decrement is This result is higher than th e value of 45 given as a be nchmark for light water at operating temperatures. However, it will be significantly reduced by any amount of 9 59 A SPRODUCT 837 0 SPRODUCT

PAGE 37

22 residual boron in the system at EOC. This va lue is most useful as a comparison between different polymeric materials. Results of Permutations of PACS Formula Numerous permutations of the above calcu lations on various combinations of the PACS polymer were conducted (Appendix A). It became evident that the overwhelming factor in the product of the logarithmic energy decrement and the macroscopic cross section, or the moderator effectiveness, wa s the weight percent of hydrogen within the molecule. 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 0.00%1.00%2.00%3.00%4.00%5.00%6.00%7.00%8.00%Weight Percent of H in "Carborane" MoleculeProduct Logarithmic Energy Decrement and Macroscopic Scattering Cross SectionLight Water Moderator Effectiveness at Density of 0.705 gm/cc Corresponding Number of H Atoms in the "Carborane" Molecule 10 20 26 30 34 46 58 70 84 Trend Equation: Moderator Effectiveness = 11.059 (W% H) + 0.0407 Figure 2-3. Moderator effectiveness vs. weight percent of H in carborane. Adjusting the concentrations of hydr ogen within carborane, the moderation effectiveness of the polymer at EOC can appro ach that of the light water in the moderator (Figure 2-3). The empirical li near formula on the figure serves as a guide for the desired weight percent of hydrogen needed when desi gning the polymer. The empirical formula

PAGE 38

23 also works on other hydrogen compounds such as water. Because of the overall dominance of hydrogen in the moderation pro cess, it is possible to conduct various simulations of the model using different we ight percents of hydrogen and determine the point at which the polymer would perfor m better than the BPRA or WABA in moderation at EOC. These simulations are explained in detail in Chapter 3 and the results of the simulations are shown in Chapter 5. 50.00 52.00 54.00 56.00 58.00 60.00 62.00 64.00 0.00%1.00%2.00%3.00%4.00%5.00%6.00%7.00%8.00%Weight Percent of H in "Carborane" MoleculeRatio Moderator Effectiveness to Macroscopic Absorption Cross SectionCorresponding Number of H Atoms in the "Carborane" Molecule 10 20 26 30 34 46 58 70 84 Figure 2-4. Effectiveness to macroscopi c cross section vs. weight percent H in carborane The ratio of the moderator effectivene ss to the macroscopic absorption cross section also varied as a function of wei ght percent hydrogen in the PACS material. Figure 2-4 shows that as the weight percent of hydrogen is increased, that between five and six weight percent the absorption effects of hydrogen begin to dominate the moderator effectiveness and start to pull the trend line down. All of the PACS values exceed that of light water but do not include the effects of resi dual boron in the BPRA.

PAGE 39

24 Optimization of PACS for Absorption The primary focus of this study is an improved replacement for boron carbide aluminum oxide (Figure 2-5) in BPRAs. In addition to the mode ration ability of the improved burnable poison, it must also perform as well or better than current BPRAs in absorbing neutrons and depleti ng as a function of time. Th e advantage of using a PACS model is that it is a boron based polymer that can be directly compared to boron carbide alumina without converting between absorpti on cross sections of different burnable poison isotopes. Figure 2-5. Boron carbide alumina chemical structures Polyacetyleniccarboranosiloxane (Figure 2-6) consists of a chain of acetylene and siloxane segments added to the B10H10C2 root structure. Prev ious research on carborane used a notional combination of the PACS stru cture that fixed the amount of boron within the carborane to match that of B4C/Al2O3 BPRAs used in the Crystal River Three reactor [2] The PACS structure was m odified by adding numerous s iloxane strings in the chain to dilute the amount of boron present in the polymer. It is believed that the additional siloxane strings will make the molecule w eak and unable to sustain the hydro-thermal B4C Al2O3

PAGE 40

25 stresses of the reactor environment. Howe ver, because this material does represent a direct relationship between the current BPRA an d in the interest of continuity of research, this material was used in several modeling ex periments in this study. The notional legacy polymer will be referred to as “L-Carborane” throughout this study. Si CH3 CH3 SiO CH3 CH3 Si CH3 CH3 CB10H10C Si CH3 CH3 O ) ( n [(B10H10C2)a((CH3)2SiO)b(C2)c]n C C C C Figure 2-6. The PACS chemical structure The Materials Sciences and Engineering de partment of the University of Florida has synthesized a polymer following the guidelin es of the original polymer created by Dr. Keller. This material (Figure 2-6) is not diluted so it has a much higher boron concentration that the current BPRA materials. This material also is used in several of the simulations within this study and it is referred to as “J-Carborane” throughout this report. The important molecular comparisons between the three compounds are given in Table 2-9. Table 2-9. Molecular propertie s of burnable poison materials. Material Density Number of atoms / moleculeWeight Percent g /cm3 C H B O Si Al CH B O Si Al B4C/AL2O3 3.1 10430210 3 45051 L-Carborane 0.9† 4484105120467 9 7300 J-Carborane 1.0† 143410240378 24 7250 †Density of carborane compounds are esti mated based on chemical composition. The weight percents in Tabl e 2-9 can be used with the density of the material to estimate the number of atoms/cm3 or, number density, of the boron in the materials. The J-Carborane has over twice the amount of na tural boron as either the L-Carborane or boron carbide alumina. Two primary concerns arise from the use of a burnable poison

PAGE 41

26 with a higher amount of boron than the current st andard. First, it is uncertain whether or not the boron will deplete completely by EOC and therefore, allow the maximum excess reactivity to be present when necessary. S econd, the additional concentration of poison within the core could cause power peaking problems in areas away from the burnable absorber. Chapters 5 and 6 discuss the resu lts and effects of an increased amount of boron within the burnable absorber. The materials used for all of the mode ling and throughout the remainder of this study are the B4C/Al2O3 as formulated in the Crystal River Unit Three reactor, L-Carborane, and J-Carborane. Any deviations to the material stru cture or densities will be clearly annotated. The procedures for m odeling and calculations can be applied to any elemental polymeric composition and this study does not assume that all possible combinations of PACS or similar polymers have been investigated. The benchmark methodology does provide an important proce ss in the elimination of undesirable properties of a polymer such as a material’s moderator effectiveness less than that of a WABA or a concentration of burnable absorber that is significantly less than the BPRA.

PAGE 42

27 CHAPTER 3 MODELING AND METHODOLOGY Overview of Modeling The modeling for this problem began with a single PWR assembly analysis between fresh fuel assemblies with boron carbide BPRAs, boron carbide WABAs, and PACS BPRAs. Once the single assembly an alysis was complete, the various BPRA assemblies were incorporated in a two by two array, called a colorset, which allowed for analysis of the different bur nable poison materials within a group of four different assemblies. The last modeling phase took an actual PWR reactor model and recreated all of the assemblies and absorbers and excha nged the boron carbide burnable poisons used in the reactor for the PACS BPRAs. General Problem Description and Geometry The Crystal River Unit Three reactor is a PWR operated by Florida Power Corporation. The cycle 12 reload repor t submitted to the Nuclear Regulatory Commission in August 1999 is the basis of a ll assembly and reactor fuel and geometry information. Cycle 12 was scheduled to begin in November 1999 and operate for 670 10 Effective Full Power Days (EFPD) at a ra ted power level of 2544 mega watts thermal (MWt). The general dimensions and characte ristics of the Crystal River assemblies and core are outlined in Table 3-1 [9] The pitch of the assemblies refers to the centerline distance between one fuel rod to the next ad jacent one. The water gap is a water filled separation between two adjacent assemblies. These dimensions were held constant in all

PAGE 43

28 of the models except in cases where a WABA rod is inserted and the geometry includes the center annulus as shown in Figure 1-4. Table 3-1. Reactor and assembly charac teristics for the Crystal River 3 Reactor Reactor Information Core Lifetime 670 10 EFPDs Rated Power 2544 MWt Water Pressure 15.67 MPa Number of Assemblies 177 Number of Control Rods 68 Assembly Information Number of Fuel Rods 208 Number of Guide Tubes 1 center 16 control Water Gap Thickness 0.33 cm Pitch 1.443 cm Height 358 cm Height of Primary Fuel (non-Gd rod) 326 cm Axial Blanket Height (top and bottom nonGd rod) 16 cm Height of Primary Fuel (Gd rod) 308 cm Axial Blanket Height (top and bottom Gd rod) 25 cm Radius Fuel / BPRA Pellet 0.4699 cm Radius Fuel / BPRA Gap 0.4788 cm Radius Fuel / BPRA Clad 0.5461 cm Radius Guide Tube Moderator 0.632 cm Radius Guide Tube Clad 0.6731 cm The materials in the fuel assemblies for each of the models also represented the Crystal River Three cycle 12 reload. The mo st notable exception would be the exchange of boron carbide for PACS material in the BPRAs. Table 3-2 gives composition information for the reload cycle [9] Figure 3-1 shows the locations for each of the fuel assemblies, the previous burn-up for used assemblies, the number of BPRAs and the location of BPRAs or cont rol rod assemblies for 1/8th of the core. The BPRAs in the assembly are located as shown in Figure 1-2. The core has 1/8th symmetry and the information is repeated for the remaining octants that comprise the core.

PAGE 44

29 Table 3-2. Fuel composition info rmation for Crystal River Cycle 12 Fuel Batch Number Number of Fuel Assemblies Wt% 235U Wt% Gd2O3 Number of Gd Fuel Rods 10A3 12 3.94 0.00 0 12A2 21 4.19/3.89† 0.00 0 13A 36 4.79/3.35‡ 6.00 8 13B 8 4.79/4.07‡ 3.00 4 13C 8 4.96 0.00 0 13D 12 4.96/3.35‡ 6.00 8 13E 8 4.96/4.07‡ 3.00 8 14A 24 4.52/3.16‡ 6.00 8 14B 8 4.66 0.00 0 14C 8 4.66/3.96‡ 3.00 4 14D 8 4.66/3.96‡ 3.00 8 14E 24 4.66/3.16‡ 6.00 8 † These assemblies are radially zone loaded with 16 rods having the lower enrichment. ‡ These assemblies have Gd rods with the Gd2O3 concentration indicated and the lower 235U enrichment. 12A2 13E 13A 14A 13E 14A 13D 12A2 38,784 24,686 28,930 0 24,537 0 28,395 40,206 C 8 C 8 C 13D 14E 13A 14A 13B 14D 12A2 27,702 0 28,425 0 22,646 0 37,045 C 8 C 8 C 13A 14A 13A 14E 14C 12A2 27,922 0 29,027 0 0 40,708 Fresh Fuel C 8 C 8 C Once Burned 13A 14E 13C 13A Twice Burned 27,932 0 21,198 28,866 Thrice Burned C 8 C 13D 14B 10A3 XXX Batch ID 27,665 0 38,450 XX,XXX Burnup MWd/mtU C X or C # BPRAs or Control 10A3 Rod Location "C" 38,519 C Figure 3-1. Map of 1/8th Crystal River Three Cycle 12 core From Figure 3-1 it is noted that in the actual reactor design only the 14A and 14E assemblies received BPRAs and that they only have eight BPRA rods located in the B-08 arrangement in Figure 1-2. The control rod locations are important in that a BPRA cannot go in those locations because the cont rol rods must occupy the guide rod space.

PAGE 45

30 Figure 3-2. Example of a PWR core cross section General Assumptions in Models Figure 3-2 is a PWR cross sectional view. Based on the fuel compositions and the characteristics of the reactor the assemblies a nd reactor, core can be modeled. The entire PWR shown in Figure 3-2 cannot be modele d and general assumptions are made to simplify the problem because of certain limitations in the computer codes.

PAGE 46

31 The following assumptions apply to the modeling simulations for the assemblies and core mock ups: Except for cases where chemical shim is e xpressly specified, ther e is no absorber in the moderator and it is assumed that excess reactivity in the core or assembly can be controlled by a combination of ch emical shim and control rods. For cases where chemical shim is specified all of the excess reactivity is controlled with chemical shim and the c ontrol rods are not modeled. It is assumed that 1/8th assembly symmetry and 1/8th core symmetry are always true. The probability of non-leakage for thermal neutrons (PNLThermal) is approximately 1.0 for a large reactor core. Th e reactor vessel is thereby not modeled and a reflected surface is the boundary of the ax ial and radial reactor reflec tors. The comparisons in this study are relative so errors caused by si mplification of the model are assumed to affect each BPRA system equally and will not affect the overall outcome of the study. The probability of non-leakage for thermal neutrons (PNLThermal) is constant. Therefore, the ratio of reactivity between the different cases is the same for k as it would be for keff. For codes not including a Zircalloy compos ite material, zirconium is assumed to neutronically model the cladding. Except where provided by a code, the spacer grids and fuel assembly top and bottom plates are not modeled and the difference in reactivity is assumed to be negligible. Codes Used for Modeling The various calculations and scenarios were completed using five principle computer codes. Where possible, similar problems were completed using two different codes to ensure accurate results. Additionally, the results for the 1/8th core simulations were compared to the results from the Crys tal River Three reload report to ensure consistency with the codes used by Framatome to model the core. The CASMO-3 Code The fuel assembly burnup program CASM O-3 is a commercial nuclear fuel analysis code from Studsvik of America Inc.

PAGE 47

32 CASMO is a multigroup, two-dimensional transport theory code for burnup calculations on BWR and PWR assemblies or simple pin cells. The code handles a geometry consisti ng of cylindrical fuel r ods of varying composition in a square pitch array with allowance for fuel rods loaded with gadolinium, burnable absorber rods, cluster control r ods, in-core instrument channels, water gaps, boron steel curtains and cruciform control rods in the regions separating fuel assemblies [10] The CASMO code is used in depletion comp arisons for single assembly calculations and two by two assembly models. The CASMO code is also used to generate depletion libraries for assemblies in other codes su ch as SIMULATE and EASCYC. Additionally, CASMO was used to derive the compositions of depleted fuel assemblies at the BOC for the MONTEBURNS simulations that used depleted assemblies. The EASCYC Code The EASCYC code is a two-dimensional di ffusion theory code for reactor fuel cycle analysis developed by Harvey W. Graves for Energy Analysis Software Services. EASCYC is a computational system fo r evaluation of fuel cycle loading requirements for pressurized water r eactors that has been specifically developed to take advantage of the char acteristics of desktop computers. It consists of a set of computational subrou tines for neutronic analysis coupled to a set of engineering rules for the ma nipulation and util ization of these subroutines. The computational subr outines are based on Nodal/Modal analysis, an extremely efficient and accurate technique for evaluation the neutron multiplication and power distribution for an array of fuel assemblies [11,12] The engineering rules are based on extensive experience in fuel cycles and reactor performance evaluation, as we ll as logic algorith ms based on fuel symmetry, core geometry, and fuel assembly design constraints [13] The EASCYC code is used primarily to analyze the power distribution of the core models and compare the core distribution over time. Ea ch of the various assemblies in the core is first modeled in CASMO and depleted to the required burnup and then EASY, a FORTRAN-77 routine, is run to extract the necessary cross section library information from the CASMO output for EASCYC. A dditionally, another FORTRAN-77 routine, EASYLIB is run to combine the geometry and burnable poison information for the

PAGE 48

33 particular PWR with the library in a binary file that is executable in EASCYC. The EASCYC code has several limitations particul arly concerning burnable poisons and is only used as a reference comparison for power peaking with other codes and the reload report. The MCNP Code Monte Carlo Neutron Photon Transport Code (MCNP) is a particle transport code for neutrons and photons crea ted by Los Alamos National La boratory and distributed by the Radiation Safety Information Comput ational Center (RSICC) in Oak Ridge, Tennessee. MCNP is a neutral particle transport code that uses the Monte Carlo technique. The Monte Carlo technique is a statis tical method in which estimates for system characteristics are obtained through multiple computer simulation of the behavior of individual particles in a system. A Monte Carlo code generates a statistical history for a particle based on random samples from probability distributions. Distributions are used in calculations to determine the type of interaction the particle undergoes at each point in its life, the resulting energy of the particle if it scatters, the number of particles that “leak” from the system because of geometry constraints, and the number of neutrons produced if the neutron causes a fission [14] The MCNP code is used in this study as a stand alone code for single step modeling of a single pin, assembly or, 1/8th core model to get a point in time analysis of flux, energy deposition, or criticality. The MCNP code is also used in conjunction with ORIGEN2 inside MONTEBURNS in depletion calcu lations of single assembly and 1/8th core models. The ORIGEN2 Code The ORIGEN2 code is another RSICC c ode package that computes decay and isotope depletion information for materials under irradiation. It is not used in this study as a stand alone program but rather part of the MONTEBURNS depletion package.

PAGE 49

34 ORIGEN2 inputs can be complicated to generate and the output difficult to interpret, but MONTEBURNS completes all of the r eading and writing of ORIGEN2 files. ORIGEN2 performs burnup calculations for MONTEBURNS using the matrix exponential method [15] ORIGEN2 considers time-dependent formulation, destruction, and decay concurrently [16]. These calculations require (1) the initial compositions and amounts of mate rial, (2) one-group microscopic crosssections for each isotope, (3) material f eed and removal rates (if desired), (4) the length of the irradiation period( s), and (5) the flux or power of the irradiation [17] The MONTEBURNS Code The MONTEBURNS code is a RSICC code that couples MCNP and ORIGEN2 to generate depletion and burnup calculations. MONTEBURNS consists of a PERL script file that frequently interacts with a FORTRAN77 program, monteb.f. It is designed to link the Monte Carlo transport code MCNP with the radio active decay and burnup code ORIGEN2. MONTEBURNS produces a large number of criticality and burnup results based on various material feed/removal specifications, power(s), and time intervals. The program processes input fr om the user that specifies the system geometry, initial material compositions, feed/removal specifications, and other code-specific parameters. Various re sults from MCNP, ORIGEN2, and other calculations are then output su ccessively as the code runs [14] Figure 3-3 illustrates how MONTEBURNS inte racts with the codes it controls. The MONTEBURNS code is used in this study for single assembly and 1/8th core depletion calculations to include criticality comparis ons, power peaking, and chemical shim models. The predictor-corrector step is the same methodology used in CASMO for depletion and burnup calculations. The user of MONTEBURNS has to generate three files to complete the depletion model, an MCNP input file, a M ONTEBURNS input file, and a feed rate input file. Models in MONTEBURNS are compared to CASMO and EASCYC and the reactor reload report when possible to ensure consistency and accuracy in the models.

PAGE 50

35 Figure 3-3. Interaction of MONTEBURNS with MCNP and ORIGEN2. Adapted from Figure 1. Poston DI, Trellue HR. User’s Manual, Version 2.0 for MONTEBURNS, Ver 1.0. Washi ngton, DC: Oak Ridge National Laboratory, Office of Nucl ear Material Safety and Safeguards. US Nuclear Regulatory Commi ssion; 2001. 4. Single Assembly Calculations Single assembly calculations were the core of the original re search conducted on this topic [2] In order to maintain consistency with previous research, the fresh fuel single assembly analysis used the Framatome Mark IVB fuel assembly (Figure 1-2) with 16 burnable poison rods and a fuel enrichment of 4.66 weight percent enriched uranium. Each of the different types of burnable poison assemblies, boron carbide BPRA, boron carbide WABA and L-Carborane BPRA was co mpared with a single assembly with only water in the guide tubes. Analysis wa s completed using CASMO and MONTEBURNS. Figure 3-4 shows a SABRINA plot of the uppe r portion of the MCNP model used in MCNP input file ORIGEN2 MCNP ORIGEN2 MONTEBURNS INITIAL MATERIAL COMPOSTIONS MATERIAL COMPOSTIONS (HALFWAY THROUGH STEP) CROSS SECTIONS AND FLUXES (HALFWAY THROUGH STEP) MATERIAL COMPOSTIONS AT END OF STEP PREDICTOR STEP CORRECTOR /NEXT STEP

PAGE 51

36 MONTEBURNS for the single assembly. Th e MCNP model of the assembly does not contain spacer grids or end pl ates (see problem assumptions). The single assembly model also does not include gadolinium oxide rods or axial blanket material. Figure 3-4. A SABRINA plot of top portion of Mark IV assembly model in MCNP. Red rods are BPRAs, grey are fuel ro ds, and the central instrument guide tube has no fuel or BPRA rod. Segm ents C and D are close-ups of the cutaway in Segment B. In order to model the assembly in CASM O, a single input deck file was written specifying the geometry, power, operating temperature and material compositions for the reactor. Figure 3-5 is an example of th e CASMO input deck for an assembly with B4C/Al2O3 BPRAs. Explanatory information concer ning each of the line s of input within the deck can be found in the comments (denot ed by an asterisk) be hind each input line. A B CD

PAGE 52

37 Also note that the geometry and material co mpositions match those required by Table 3-1 in the original problem mock-up. All subs equent CASMO input and output files for the single assembly case are included in Appendix B. Figure 3-5. Example of CASMO input file for a single assembly. Modeling the same problem in MONTEBURNS requires two separate input files, an MCNP criticality deck for the assembly (KCODE) and a MONTEBURNS input file. A feed file is not required for a continuous burn case. Figures 3-6 and 3-7 contain sample inputs for MCNP and MONTEBURNS for the same assembly. The explanatory comments for MCNP are denoted by a “C” or a “$” and by an “!” in MONTEBURNS. As shown in the figures, it takes significantly more work to model an assembly in MCNP / MONTEBURNS than in CASMO. However, MONTEBURNS is not constrained to the set configurations of a PWR or BWR. All of the MCNP/MONTEBURNS input and output files for the single assembly cases are in Appendix B. TIT TFU=990 TMO=583 BOR=0 *4.66% B4 W 15 X 15 *Crystal River-3 15x15 Assembly with B4C-AL2O2 in guide tubes *Fuel temp 990 deg K moderator temp 583 deg K no chem shim FUE 1 10.4/4.66 *FUEL COMP. #, DENSITY/ENRICHMENT PDE 33 *POWER DENSITY (W/Gm Uranium) MI2 3.1/5010=0.55 5011=2.22 6000=0.76 13000=51.04 8000=45.43 Mixture 2: B10, C, Al, O (BP Material) PIN 1 .4699 .4788 .5461/ '1' 'AIR' 'CAN' PIN 2 .4699 .4788 .5461 .632 .6731/ 'MI2' 'AIR' 'CAN' 'COO' 'CAN'/1,3,5 BPRA pin homogenized 'AIR+CAN' and 'COO+CAN' PIN 3 .632 .6731/ 'COO' 'CAN' *Center water hole PWR 15 1.443 21.81 PWR with pitch 1.443 LPI *Pin Layout in 1/8th of the assembly 3 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 DEP 0.5 2.5 5 10 15 20 25 30 35 40 *Depletion steps STA *Start END *End

PAGE 53

38 Figure 3-6. Example of MCNP i nput file for single assembly. RESEARCH 15 X 15 ASSEMBLY WITH B4CAL2O3 BPRA'S 4.66% ENRICH NO BORON 1 0 20 -21 22 -23 90 -91 FILL=1 VOL=1.712434E+05 2 1 -0.660 30 -31 32 -33 LAT=1 U=1 FILL=-7:7 -7:7 0:0 $ BOUNDRY OF ASSEMBLY 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 3 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 3 2 2 2 3 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 $PIN LAYOUT REPEATED LATTICE 2 2 2 2 2 2 2 4 2 2 2 2 2 2 2 $EACH UNIVERSE "U" NUMBER IS 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 $DIFFERENT TYPE OF UNIT CELL 2 2 3 2 2 3 2 2 2 3 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 3 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 1 -0.660 -4 U=4 $WATER HOLE VOL=257.8345 4 3 -6.503 4 -5 U=4 $INTERIOR CLAD VOL=77.57637 5 1 -0.660 5 -6 U=4 $GUIDE TUBE WATER RADIUS VOL=113.8173 6 3 -6.503 6 -7 U=4 $GUIDE TUBE CLAD RADIUS VOL=60.32794 7 1 -0.660 #3 #4 #5 #6 U=4 $UNIT CELL WATER VOL=235.8889 8 4 -3.1 -4 U=3 $BPRA MATERIAL VOL=257.8345 9 3 -6.503 4 -5 U=3 $INTERIOR CLAD VOL=77.57637 10 1 -0.660 5 -6 U=3 $GUIDE TUBE WATER RADIUS VOL=113.8173 11 3 -6.503 6 -7 U=3 $GUIDE TUBE CLAD RADIUS VOL=60.32794 12 1 -0.660 #8 #9 #10 #11 U=3 $UNIT CELL WATER VOL=235.8889 13 2 -10.201 -8 U=2 $UO2 FUEL PELLET VOL=248.3383 14 0 8 -4 U=2 $GAP RADIUS VOL=9.496242 15 3 -6.503 4 -5 U=2 $FUEL PIN CLAD VOL=77.57637 16 1 -0.660 #13 #14 #15 U=2 $UNIT CELL WATER VOL=410.0342 17 1 -0.660 (-20:21:-22:23:-90:91) -9 $OUTSIDE OF ASSMBLY VOL=3518.23905 99 0 9 $VOID REGION OUTSIDE ASSEMBLY 20 PX -10.8225 21 PX 10.8225 22 PY -10.8225 23 PY 10.8225 C OUTSIDE OF ASSEMBLY LATICE 30 PX -0.7215 31 PX 0.7215 32 PY -0.7215 33 PY 0.7215 C OUTSIDE OF UNIT CELL (1.443 PITCH) 4 CZ 0.4788 C CYLINDER BPRA / WATER HOLE / GAP RADIUS 5 CZ 0.5461 C CYLINDER INTERIOR CLAD RADIUS 6 CZ 0.6320 C CYLINDER WATER RADIUS GUIDE TUBE 7 CZ 0.6731 C CYLINDER CLAD RADIUS GUIDE TUBE 8 CZ 0.4699 C CYLINDER RADIUS OF FUEL PELLET *9 RPP -10.905 10.905 -10.905 10.905 -180 180 C RECT PARALLEL PIPED OUTSIDE OF ASSEMBLY 90 PZ -179 91 PZ 179 MODE N IMP:N 1.0 16R 0.0 KCODE 2000 1.3 5 55 500 KSRC 1.443 0.0 0.0 M1 8016.60C -8.88100E+01 1001.60C -1.11900E+01 MT1 LWTR.04T $H20 AT 600 K M2 92235.54C -4.10779E+00 92238.54C -8.40421623E+01 8016.54C -1.18500E+01 $UO2 4.66% at 881K EN M3 40000.60C 1.0 $ZIRCONIUM (APPROX. FOR ZIRCALLOY) M4 5010.50C -0.55 5011.56C -2.22 6000.60C -0.76 13027.60C -51.04 8016.54C -45.43 $B4CAL2O3 BP MATERIAL PRINT

PAGE 54

39 Figure 3-7. Example of MONTEBURNS input file for single assembly. Multiple 2-D Assembly Calculations The CASMO computer model allows for 2 x 2 arrays of assemblies called a colorset. The colorset allows for up to three di fferent types of fuels to be used. There are once-burned, twice-burned, and thrice-burned fuel assemblies in the array (Figure 3-8). Figure 3-8. A CASMO 2 x 2 colorset array model RESEARCH 15 X 15 ASSEMBLY WITH B4CAL2O3 BPRA'S 4.66% ENRICH NO BORON PC Type of Operating System 2 Two MCNP Materials to burn (fuel cells/BPRAs) 2 MCNP material number #2 (will burn all cells with this mat) 4 MCNP material number #4 (will burn all cells with this mat) 51654.376 Material #2 volume (cc) 4125.353 Material #4 volume (cc) 17.75 Power in MWt (for the entire system in MCNP) -180.88 Recov. energy/fis (MeV); if negative use for U235, ratio other isos 657.36 Total number of days burned (used if no feed) 10 Number of outer burn steps 100 Number of internal burn steps (multiple of 10) 1 Number of predictor steps (+1 on first step), 1 usually sufficient 0 Step number to restart after (0=beginning) PWRU50 number of default origen2 lib next line is origen2 lib location c:\Origen2\Libs .005 fractional importance (track isos with abs,fis,atom,mass fraction) 1 Intermediate keff calc. 0) No 1) Yes 2 Number of automatic tally isotopes, followed by list. 92235.54c 92238.54c 1 5010.50C

PAGE 55

40 Figure 3-9. Example of CASMO in put file for a 2 x 2 colorset TFU=990 TMO=583 BOR=0 FUE 1 10.4/4.66 *FUEL COMP. #, DENSITY/ENRICHMENT fresh fuel MI2 3.1/5010=0.55 6000=0.76 13000=51.04 8000=45.43 Mixture 2: B10, C, Al, O (BP Material) PIN 1 .4699 .4788 .5461/ '1' 'AIR' 'CAN' PIN 2 .4699 .4788 .5461 .632 .6731/ 'MI2' 'AIR' 'CAN' 'COO' 'CAN'/1,3,5 BPRA pin homogenized 'AIR+CAN' and 'COO+CAN' PIN 3 .632 .6731/ 'COO' 'CAN' *Center water hole / empty shroud tube PWR 15 1.443 21.81 PWR with pitch 1.443 LPI 3 1 1 *Common segment information 1 1 2 *Fresh fuel 1 1 1 1 *B4C-AL2O2 BPRAs 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 PDE 33 *POWER DENSITY (W/Gu) DEP 0.5 2.5 5 10 15 20 25 30 35 40 *Depletion steps * SEGMENT SPECIFIC INPUT SEG 1 *+DEPLETED FUEL 2.268% NO BPRAs FUE 1 10.4/2.268 LPI 3 1 1 *Segment information 1 1 3 *Low Enrich depleted fuel 1 1 1 1 *No BPRAs 1 1 1 1 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 SEG 2 *+LOW ENRICHED DEPELTED FUEL NO BPRAs SEG 3 *+MEDIUM ENRICHED DEPLETED FUEL NO BPRAs FUE 1 10.4/3.4 LPI 3 1 1 *Segment information 1 1 3 *Medium fuel 1 1 1 1 1 1 1 1 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 STA END

PAGE 56

41 The colorset input is simila r to the input for a single assembly except segments are required to describe the diffe rent fuel assemblies (Figure 3-9). The colorset output describes each of the individual fuel assemblie s by type and includes the combined effect of the different fuels. The colorset represents an infinite repeated structure meaning that the 2 x 2 structure has a boundary that causes the model to act as though the structure is repeated laterally over an over again. The co lorset is not a good s ubstitution for a core analysis but it does give more r ealistic results that take into account the fact that the entire core is not comprised of identical assemblies of fuel at one enrichment. Figure 3-9 is an example colorset input deck. All of the mu ltiple assembly CASMO input and output files are in Appendix C. Core Modeling The EASCYC models The EASCYC modeling process begins by modeling each of the individual assemblies throughout their lives in CASMO an d extracting their prope rties into a data library using EASY. Once created, the EASY cr oss section library file is combined with a geometry file using EASLIB to generate a bi nary input file for EASCYC. The last step is running the EASCYC program. Because EASCYC allows limited numbers of different assemblies, the assemblies from Table 3-2 were given combined weighted average 235U enrichment and Gd2O3 concentrations for batches 13A–13E and 14A–14E. The result was four types of fuel (10A3, 12A2, 13AE, and 14AE). Appendix D contains all of the CASMO input files for the various fu el assemblies used in the modeling of this problem and the EASY generated cross section library for the problem. Figure 3-10 is an example of the geometry file required for EASLIB and Table 3-3 contains general explanatory co mments about the input lines (detailed information for the

PAGE 57

42 input into EASLIB can be f ound in the EASLIB input manual [17] ). Within the burnable poison input line (Line 10) there ar e three self shielding factors (g0, a0 and a1). These three factors are fixes to the thermal flux depression created with in the middle of the burnable absorber rod. Based on a hom ogenous burnable poison rod the relationship between the three self shielding fact ors can be approximated by Eq. 3-1. ] / ) ( [ 1 ) (0 1N t N a a t go (3-1) In Eq. 3-1 N0 = the original number density for the burnable poison and ) ( t N is the volume average of the number density of th e burnable absorber as a function of time [18] The remainder of the burnable poison input line refers to the amount of burnable absorber and cross section and the amount of moderator displaced by the insertion of the BPRA. Figure 3-10. Example of EASLIB input file. 1. CRYSTAL RIVER RELOAD #12 CORE WITH CASMO LIB (B4CAL2) 2. crystal3.asc 3. crystal1.out 4. 3 1 0 0 1 1 0 1 3 5. 177 29 3 6 4 -4 -12 3 4 6. 8 7 6 4 3 1 7. 1 2 3 4 8. 2 3 3 4 3 4 3 2 3 4 3 4 3 4 2 3 4 3 4 4 2 3 4 3 3 3 4 1 1 9. 2568.0,360.17,21.81,800.0,0.7232,1.2,1.0,1.0,0.0 10. 1 B-20 16.190E-6 4.500E+1 2.050E+3 0.9480E-0 1.170E-0 0.616E-0 -9.29E-04 1 0.375E-3 -0.094E-6 0.00E-0 1.00E-0 1.000E+2 0.000E+0 4.394E-02 2 B-16 36.351E-6 4.500E+1 2.050E+3 0.9643E-0 0.959E-0 0.701E-0 -7.43E-04 2 0.300E-3 -0.075E-6 0.00E-0 1.00E-0 1.000E+2 0.000E+0 3.515E-02 3 B-12 9.710E-6 4.500E+1 2.050E+3 0.9480E-0 1.170E-0 0.616E-0 -5.57E-04 3 0.225E-3 -0.056E-6 0.00E-0 1.00E-0 1.000E+2 0.000E+0 2.636E-02 4 B-08 13.336E-6 4.500E+1 2.050E+3 0.9810E-0 0.979E-0 0.748E-0 -3.72E-04 4 0.150E-3 -0.375E-7 0.00E-0 1.00E-0 1.000E+2 0.000E+0 1.758E-02 11. 3,2,0.0 5,7,0.0 7,6,0.0 9,2,0.0 11,4,0.0 13,5,0.0 16,6,0.0 18,8,0.0 20,1,0.0 22,5,0.0 24,3,0.0 26,7,0.0 *BRN 12. 38.784 24.686 28.930 0.000 24.537 0.000 28.395 40.206 27.702 0.000 28.425 0.000 22.646 0.000 37.045 27.922 0.000 29.027 0.000 0.000 40.708 27.932 0.000 21.198 28.866 27.655 0.000 38.450 38.519 13. 3 0.0 2 10.0 1 20.0

PAGE 58

43 Table 3-3. Input de scription for EASLIB. Line Number Description 1 72 Character alphanumeric title 2 File name for ASCII Library input file 3 File name for printfile output 4 10 element problem option vector 5 10 element integer reac tor description vector 6 No. of assemblies in row I 7 Fuel type index assigned to each batch 8 Batch index of fuel in Ith assembly one line for each assembly row in the problem correspond s to line 6 and 7 9 8 element reactor oper ating condition vector 10 Burnable poison name and information (two lines per burnable poison type) 11 Group identification, and percent insertion for each control rod 12 Average burnup at BOC for each fuel assembly 13 Type/ burnup pair for each spare assembly Adapted from Table 2. Graves HW Jr. EA SLIB-C Binary Input File Generation for the EASCYC Fuel Cycle Analysis Program. Chevy Chase (MD): Energy Analysis Software Service; 1995. Because there is no way to change the vol ume fraction of moderator displaced over the core burnup as a function of time with in EASCYC it is im possible to show a significant reactivity gain between different burnable absorbers having similar amounts of boron. Therefore, the only core model fo r this research made using EASCYC is the B4C/Al2O3 BPRA system. The model is useful in determining relative power peaking factors and general core beha vior over a cycle and it gives comparative information for other models (MONTEBURNS). The EASCYC output file for the boron carbide BPRAs is located in Appendix D. The MCNP/MONTEBURNS models The concept for modeling the core in MCNP/MONTEBURNS is identical to the single assembly model expanded to the 1/8th core. In the 1/8th core model detail is added to the assemblies to more closely model the ch aracteristics of the core in Table 3-1. These details include an axia l blanket of two-pe rcent enriched uranium on the top and

PAGE 59

44 bottom, the modeling of Gd2O3/UO2 fuel rods where required, and the use of only eight BPRAs in the locations specified in Figure 3-1. The first step in modeling the core is to determine an approximation for the fuel in depleted fuel assemblies going into the curren t cycle. The fuel approximation is made using CASMO for each of the assemblies much like the process used in generating the EASCYC cross section librarie s. As with EASCYC, similar assemblies with similar depletion burnups and starting enrichments are combined to limit the number of fuels. However, additional simplifications to the problem are required because MONTEBURNS is limited to a maximum of 100 materials. Also, MONTEBURNS specifies a tally for each material depleted. These tallies can cause the dynamic storage allocation required for modeling all possible fuel elements (primary, blanket, and Gd2O3/UO2) for every fuel assembly for every bu rnup step to become unreasonably large an effectively prevent MCNP from getting a result. Ther efore, CASMO is used to deplete the fuel assembly to the appropriate burnup. Then a fresh fuel assembly is created with a lower enrichment derived from the remaining weight percent of fissile fuel (mostly 235U, 239Pu and 241Pu) and the percent of fission pr oducts (mostly Xe and Sm) at the EOC from the depleted assembly. The orig inal assembly is then burned an additional 10 mega-watt days per metric ton uranium (M Wd/MTU) to simulate the first 10 MWd in the new cycle. The lower enrichment fuel assembly is then checked in CASMO by depleting it from zero burnup to 10 MWd/MTU to see if it has the same reactivity at BOC and BOC + 10 as the original assembly. If it does, then it is assumed that it closely simulates the original depleted assembly for the next cycle. All of the assemblies are modeled in batches according to th eir enrichment and average burnup.

PAGE 60

45 Once the materials are specified, the reactor geometry is created using a repeated lattice within a cylinder and two planes to generate the 1/8th core. Figure 3-11 shows a full core model with a cut-out. Fi gure 3-12 shows the same model as a 1/8th core. Notice that in accordance with the stated a ssumptions, the models do not have a reactor vessel or control mechanisms but do have axial and radial water reflectors. Figure 3-11. Multiple SABRINA plots of full core reactor MCNP model. Segments B-D are close-ups of the cut-away and illustra te the different types of rods. Grey and orange fuel rods, green Gd rods, red BPRAs, and empty control rod and instrument guide tubes. A B C D

PAGE 61

46 Figure 3-12. Multiple SABRINA plots of 1/8th core reactor MCNP model. Segments BD are close-ups of the top of the reacto r and illustrate the different types of rods. Orange primary fuel, dark blue blanket fuel, red BPRAs, and empty control rod and instrument guide tubes. The core input files for MCNP and MONTEB URNS are similar to those in Figures 3-6 and 3-7 except that they repeat for multip le assemblies and multiple materials. The standard input file would have all of the similar assemblies having the same material number and the same universe number in the MCNP input. To get a single assembly’s information, (e.g. power distri bution), an additional universe and material must be added for that assembly. These models are referred to as power peak models in the remainder of this thesis and in the appendices. Becau se of the multiple materials, (up to 13 are depleted in MONTEBURNS for the 1/8th core power peak model versus the two for the A B C D

PAGE 62

47 single assembly calculation), th e process takes considerably more time to calculate. The complete input and output files for all of the 1/8th core MCNP/MONTEBURNS models are included in Appendix E. Chemical Shim Models All of the models up to th is point have used water as the moderator with no chemical shim with the exception of EA SCYC which calculates a critical boron concentration automatically. For the particul ar purpose of determining the power peak within the core for an assembly or to determine the power peak for a pin within a single assembly in the presence of chemical shim an additional model is required. This model is identical to the single assembly or 1/8th core MCNP/MONTEBURNS model discussed earlier except that the chemi cal shim (boron) is added to the water at BOC and smaller and smaller amounts of bor on are removed during the lifetime of the cycle. Figure 3-13. Example of single a ssembly MONTEBURNS feed file. This process of adding or removing materi als to the model during the depletion is achieved using a feed file in MONTEBURNS. The MONTEBURNS input file for the Time Days Power MBMat Feed Begin&EndRates Remov. Fraction F.P.Removed Step Burned Fract. # # grams/day Group# 1 13.086 1.000 1 1 0.697 0.691 0 0.000 2 52.342 1.000 1 1 -1.0 0.670 0 0.000 3 65.428 1.000 1 1 -1.0 0.643 0 0.000 4 130.856 1.000 1 1 -1.0 0.590 0 0.000 5 130.856 1.000 1 1 -1.0 0.537 0 0.000 6 130.856 1.000 1 1 -1.0 0.483 0 0.000 7 130.856 1.000 1 1 -1.0 0.430 0 0.000 8 130.856 1.000 1 1 -1.0 0.377 0 0.000 9 130.856 1.000 1 1 -1.0 0.323 0 0.000 10 130.856 1.000 1 1 -1.0 0.270 0 0.000 1 # of feed specs 1 # of isos in Feed #1 5010 1.0 0 # of removal groups

PAGE 63

48 continuous depletion case (Fi gure 3-10) had the total number of days burned and no feed file was used. For the chemical shim model, that parameter is set to zero and a feed file (Figure 3-13) details the type and amount of material added or taken away and at what time step during the depletion process. The f eed file can also be used for a continuous burnup model where uneven time steps are requested (i.e. 10, 20, 50, 100, 1000 days). All of the chemical sh im model inputs and outputs are in Appendix F.

PAGE 64

49 CHAPTER 4 THERMAL AND RADIATION PROPERTY CALCULATIONS Part of the material selection process not addressed in Chapter 2 involves the material’s ability to withstand the extreme heat and radiation environment for a cycle within a PWR. The maximum centerline temp erature within the BPRA is especially important for selection of a polymeric BPRA. Many polymers have ceiling temperatures above which they completely and rapidly reve rt back to their constituent species. As seen in Figure 2-2, the key component to moderation within the polymer is the weight percent of hydrogen present. Radiation envi ronments tend to drive hydrogen off of the polymer and create cross-linking within the st ructure. The amount of radiation exposure the BPRA receives is important to predict the amount of hydr ogen that will remain in the polymer at EOC. Also, hydrogen can hydrid e with the zirconium alloy cladding and cause the clad to become brittle and more susceptible to failure. The actual selection of the polymer ma terial based on radiation and thermal properties is not part of this thesis but is part of a joint research effort with the University of Florida’s Materials Scien ces and Engineering Department for the development and testing of advanced polymeric burnable poi sons. The maximum expected centerline temperature, maximum acceptable coefficien t of thermal expansion, and the maximum dose exposure are outlined in this research to present model-based calculations as benchmarks for selection of materials yet to be fully developed. Many of the values for the physical properties of the polymers are based on example polymers similar to the ones we are investigating.

PAGE 65

50 Maximum Expected Centerline Temperature in BPRA The calculation of the maximum exp ected centerline temperature (TCl) is based on several key assumptions. First, that the heat transfer in the axial direction is insignificant due to the length-to-radius ratio of the rod. Second, the spec ifications of the reactor are the same as those outlined in Chapter 3 (power, geometry etc.). And third, that the heat generated within the BPRA can be modeled using an MC NP energy deposition tally. The heat deposition tally for neutrons (F6:N) in MCNP uses Eq. 4-1 to determine the heating response H(E) as a measure of energy deposition averaged over a cell [19] i i out i avgE E Q E E E p E E Hi i) ( ) ( ) ( ) ( (4-1) E = incident neutron energy ) ( E pi= probability of reaction i ioutE = average exiting neutron energy for reaction i iQ = Q-value of reaction i iE= average energy of exiting gammas for reaction i. The heat deposition tally for photons (F6:P) in MCNP uses Eq. 4-2 to determine the heating response H(E) as a measure of energy deposition averaged over a cell [19] 3 1) ( ) ( ) (i out i avgE E E p E H (4-2) i = 1 incoherent (Compton) s cattering with form factors i = 2 pair production outE = 1.022016 = 2moc2 i = 3 photoelectric Energy transferred to electrons from gamma heating is assumed to be locally deposited. The combination of the heat deposition tal lies for neutrons and photons (F6:N,P) in MCNP for the BPRA cells gives the total expe cted heat generated within the BPRA. The heat transfer problem from the BPRA to the outside surface of the cladding is similar to the heat transfer model used for the therma l design of fuel rods. A common model for

PAGE 66

51 the two-dimensional heat transfer in fu el is given in Duderstadt and Hamilton [6] (Eq. 4-3). ) ( 1 2 2C F s F C C G F F F fl Clt r h r k t h k r r q T T (4-3) TCl = centerline temperatur e of the fuel element Tfl = temperature of the moderator q' = linear power density of the fuel element (W/cm) rF = radius of the fuel pellet (cm) Fk = average thermal conductivity of the fuel (W/cm K) hg = gap heat transfer coefficient (0.5 – 1.1 W/cm2 K) kC = thermal conductivity of the clad (W/cm K) hs = coefficient of convective h eat transfer (2.8 – 4.5 W/cm2 K) tC = thickness of the clad (cm). Using the above relationship and substituting values for the burnable poison instead of the fuel, the maximum centerline temperature of a burnable poison rod can be determined. All of the values for the equa tion are known properties of the system except the linear power density within the burnable poison rod. For hs and hg the smallest value in the range was used to get the maximum temp erature. The linear power density can be determined from MCNP using the energy deposition tally. From MCNP: Q for neutron and gamma heat ing = 1.6273E-26 jerks / gm /source particle 1 jerk = 109 joules, therefore, Q = 1.6273E-17 joules/gm/source particle For a total of 1.6273E-17 joules/gm/source particle. All MCNP tallies are based on the number of sources particles. MONTEBURNS translates the per source particle tally to an actual value for the system based on the power level specified by the user. Th e relationships MONTEBURNS uses for normalization of the flux to system pow er are derived in Eqs. 4-4 and 4-5 [14]

PAGE 67

52 Cn (4-4) = true value of the flux (normalized to system power) n = the MCNP flux (normalized to th e number of source particles) ave effQ k MeV J MW W P C ) / 10 602 1 ( / 1013 6 (4-5) = average number of neut rons produced per fission P = power defined by the user for the material in (MW) aveQ = average energy produced per fission (MeV) effk= effective multiplication factor obtained by MCNP. MONTEBURNS calculated the actual av erage total (fast and thermal) flux for neutrons at full power in the BPRA as 3.15E+14 neutrons/cm2-s. MCNP calculated the average total flux for neutrons in the BPRA as 2.439E-04 neutrons/cm2/source particle. By dividing the MONTEBURNS flux by the MC NP flux we get a nominal value for the number of source particles per second fo r one assembly at full power of 1.291E+18 which translates to 2.286E+20 n/s being produced from fission within the reactor at 2544 MWt. The total volumetric heat rate for the BPRA can be determined by using the number of source particles in the assembly and the results from the heating tally for the assembly. The total volumetric heating (q’’’) in the BPRA is given as: q’’’ = 1.6273E-17 joules/gm/source particle x 1.291E+18 source particles/s q’’’ = 21.01 W/gm. The linear heat rate can be determined us ing the radius of the BPRA pellet and the density of the BPRA material. For boron carbide, = 3.1 gm/cc and q’ = 44.29 W/cm which converts to 1.35 kw/ft heating rate a nd is comparable to a quoted example from

PAGE 68

53 Framatome Fuels for a larger system of 1.679 kw/ft. For carborane, = 1.0 gm/cc and q’ = 14.3 W/cm. The maximum centerline temperature is ca lculated by substituting known quantities for the other variables into Equation 4-3 and using valu es for polyethylene and high density polyethylene as example polymers (T able 4-1). In Table 4-1, the thermal conductivity values for the polymers were taken at room temperature. Thermal conductivity tends to decrease with time, so the resulting estimate is slightly lower than what would be expected. Also shown in the table is the value where the linear heat rate was changed in the calculation to match a quoted value from Framatome fuels for their BPRA estimates which are based on a differe nt reactor system and are 5 – 10% higher. Table 4-1. Evaluated data for centerline temperature in various BPRA materials. Thermal Conductivity† Max Difference between TMOD and TCL for BP rod Linear q' value from MCNP Linear q' value from Framatome W/cm K C TCl C TCl C High Density PE 0.0046 261.44 571.44 633.83 Polyethyline 0.0033 358.83 668.83 754.45 B4C/Al2O3 0.0200 295.87 605.87 676.48 Alumina 0.1180 73.99 383.99 401.65 † Callister WD Jr. Material Scie nce and Engineering Introduction 5th ed. New York: John Wiley and Sons Inc; 2000. The obvious implication from Table 4-1 is that the centerlin e temperature is strongly dependant on the thermal conductivity of the burnable poison material. This relationship corresponds to the relative importance of thermal conductivity in Eq. 4-3. A critical benchmark for the BPRA material depends on the thermal conductivity of the material. Materials with low thermal conduc tivity and low thermal stability would be unsuitable for this application. Un fortunately, many polymers have thermal conductivities and order of magnitude lower than those of ceramics.

PAGE 69

54 Maximum Coefficient of Thermal Expansion The calculation of the maximum coefficien t of thermal expansion is important because the integrity of the BPRA assembly depends on the burnable absorber remaining within the cladding. If the absorber expa nds too much it could r upture the cladding and be lost from the system causing unacceptable power shifts within the core. This calculation assumes that the expansion in the axial direction can be neglected because of the overall length-to-diameter ratio of the BPRA Additionally, it assumes that all of the dimensions and geometry are the same as the Crystal River Reactor modeled in Chapter 3. Figure 4-1 shows an example cross secti on of the BPRA with th e correct dimensions. BP MATERIAL R4.699 mm HELIUM R4.788 mm ZIRCALOY R5.461 mm WATER R6.3246 mm ZIRCALOY R6.7564 mm Figure 4-1. Cross section diagram of a BPRA Using Figure 4-1 as a standard for the dimensions of a BPRA the maximum coefficient of thermal expansion for a BP ma terial can be calculated by first determining the maximum amount the zircalloy cla dding will expand under normal temperature changes. The coefficient of thermal expansion for zircalloy is C = 7.0 x 10-6 K-1 [10] Thermal expansion for a homogenous object can be thought of as a magnification, or photographic enlargement, of the object when it is heated. Ignoring the axial

PAGE 70

55 expansion, the cladding acts like the washer in Figure 4-2 and all dimensions increase, including the radius of the hole [20] The inner radius is th e primary concern for this problem because the maximum expansion of the inner radius of the cladding is needed to determine the maximum allowable expansion of the BPRA before it interacts with the clad. Figure 4-2. Thermal expansion of a metal wa sher. All dimensions increase when it is heated. Adapted from Figure 19.9. Se rway RA. Physics for Scientists and Engineers with Modern Physics, Third Ed. Philadelphia: Saunders College Publishing; 1990. Pg 514. Using the inner radius for the BPRA zi rcalloy cladding (from Figure 4-1), C, and T = difference between room temperature a nd the temperature of the moderator (583K – 293K) the relationship for the maximum inner radius of the cladding after expansion is derived (Eq. 4-5). a b T T + T b + b a + a

PAGE 71

56 T C r r rMax (4-5) mm rMax798 4 290 ) 10 7 ( 788 4 788 46 The maximum coefficient of thermal expa nsion for the burnable poison material can be determined by working backwards and us ing the inner radius of the clad at full temperature as the maximum radius for the BP material. This calculation assumes the BP material replaces all of the gap area during expansion and assumes that the change in temperature across the BPRA is on the order of 380 K (2/3 of the maximum centerline temperature of 571 C minus room temperat ure 20 C converted to kelvin). The relationship for the maximum C for the BP ma terial is given in Eqs. 4-6 and 4-7. mm T C r rBPMAX BP BP798 4 (4-6) K mm mm T r r Co BP BP BPMAX/ 10 544 5 380 699 4 699 4 798 4 798 45 (4-7) The coefficient of thermal expansion for vari ous materials is listed in Table 4-2. Based on these values, the polymers have a high er coefficient of thermal expansion than the ceramics and are above the maximum allowable of 5.544 x 10-5 K-1 and may interfere with the cladding unless more gap is provided between the outer radius of the BPRA and the inner radius of the clad. Howe ver, the materials listed in Table 4-2 have not undergone radiation cross-linking and are no t entirely equivalent to the polymers that are being sought for this study. The propos ed burnable poison polymers will undergo cross-linking before entering the reactor and will be partially ceramic in nature and should have a much lower value of thermal e xpansion. The actual measured values for the coefficient of thermal expansion and th e centerline temperature should be applied before any practical applicati on of this material is made.

PAGE 72

57 Table 4-2. Coefficients of ther mal expansion of various materials Material Coefficient of Thermal Expansion† ( x 10-6) K-1 High Density Polyethylene 106 – 198 Polyethylene 145 – 180 Pyrex Glass 3.3 Alumna Oxide Al2O3 7.6 † Callister WD Jr. Material Scie nce and Engineering Introduction 5th ed. New York: John Wiley and Sons Inc; 2000. Dose Delivered to BPRA during Cycle Once the calculation of the amount of energy deposited within the BPRA is complete, the calculation of the total dose to the BPRA over one cycle is straightforward. Dose equals energy deposited per unit mass a nd is expressed in the unit Gray where 1 Gray = 1 joule/kg. Taking the volumetric heat rate of q’’’ = 21.01 W/gm = 21.01 joules/sec/gm the dose is calculated by multiply ing it by a time in seconds and converting gm to kg. Assuming the BPRA is in core for 18 months (4.7304E+7 seconds) the total dose is 9.939E+11 gray = 9.939E+13 rad = 90.39 Trad. The above value is an enormous dose to any object and a key concern for the use of polymers within the reactor. The primary advantage to the PACS, or carborane, polymers in this aspect is that they have been used as adhesives in high radiation environment and have been shown to be thermally stable up to 1000 C [2] What is unknown about PACS, or any other polymer, is how much hydroge n will be produced (i.e. released from the polymer) during the irradiation process at these high doses. Estimates of the remaining hydrogen at EOC need to be established in order to determine the true moderation benefit and predict the amount of hydrating to the zircalloy clad.

PAGE 73

58 CHAPTER 5 RESULTS AND DISCUSSION The purpose of the research is to demons trate that the incr eased hydrogen content at EOC in an advanced polymeric burnabl e poison rod provides sufficient additional moderation to increase the cy cle life of the core Ideally, the polym eric burnable poison rod would outperform not only the current bo ron carbide alumina BPRA but also the WABA. To prove this, several models of the PWR assemblies and cores were made in accordance with the procedures outlined in Chap ter 3. The process begins with a single assembly analysis and continues with a multi-assembly two-dimensional comparison and ends with a 1/8th core three-dimensional m odel of the core. At each step comparisons were made, where possible, between different codes and against th e actual cycle reload report provided for the core being modeled. Single Assembly Analysis Single assembly analysis was cond ucted using MCNP/MONTEBURNS and CASMO. The assemblies were depleted out to 40 MWd/kg in CASMO and the k-infinity vs. time values for the various burnable pois on cases were compared to a standard of no burnable absorber in the assembly. The results, shown in Figure 5-1, illustrate the effect of increased moderation at EOC. Each of these materials has the same amount of burnable absorber, but because of the wet annulus in the WABA, it has an increased reactivity over the B4C/Al2O3 BPRA throughout the cycle. Most importantly to this study, relative to the B4C/Al2O3 BPRA and the WABA, the L-Carborane polymer has a lower k-infinity value at BOC, meaning the bu rnable absorber is pe rforming better. Also,

PAGE 74

59 as shown in the inset of Figure 5-1, L-Ca rborane has a higher k-infinity than the B4C/Al2O3 BPRA (approximately 1%) at 40 MWd/kg illustrating that the increased hydrogen in the polymer offsets the wate r displacement penalty of the BPRA. 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 0510152025303540 Burn Up (MWD/kg)K-INF NO BPRAs B4C / AL2O3 WABAs B4C / AL2O3 BPRAs L-CARBORANE BPRAs 1.01 1.015 1.02 1.025 1.03 1.035 1.04 1.045 1.05 1.055 1.06 353637383940 Figure 5-1. Single assembly k-infinity vs. time for various BPRAs using CASMO. The inset of the graph represents an enlarg ement of the last five MWDs of the cycle. Whenever the reactivity shifts within a r eactor or assembly there is a subsequent shift of power. Of primary concern is the ratio of the power in one portion of the assembly or reactor to the average across the structure. This peak-to-average, or pinpeaking, factor is a major limiting factor in fuel design and core management because of structural safety limits to the materials within the core. The CASMO output of the single assembly analysis shown in Figure 5-1 also produced the pin power peaking results illustrated in Figure 5-2. From the pin power peaking results it can be seen that the L-Carborane BPRA has a lower peak-to-av erage pin power ratio at BOC than the

PAGE 75

60 B4C/Al2O3 BPRA and a higher pin power peaking at EOC. This is to be expected because of the increase in reactivity at EO C causes the power peaking to increase. However, an important fact is that the overall highest peak-to-average power ratio is lower in L-Carborane than for the boron car bide BPRA. The importance of the peak-to average power ratio also depends on where it occu rs within the cycle. In a real reactor situation the power peaking may occur later in the cycle and would have a much greater safety concern than at BOC. 1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2 0510152025303540 Burnup (MWD/kg)Pin Peak-to-Average Power Ratio NO BPRAs B4C / AL2O3 WABAs B4C / AL2O3 BPRAs L-CARBORANE BPRAs Figure 5-2. Single assembly pin power peakin g for various burnable absorbers. Results are from single assembly CASMO runs. One of the criteria for an optimum burnable absorber described in Chapter 1 is the property of the absorber to deplete, or burn, over time. Another useful comparison between the various burnable absorbers is the number of boron-10 atoms present over time. Ideally, at EOC no boron-10 would rema in so that the maximum reactivity would

PAGE 76

61 be present when the fuel is most depleted. Figure 5-3 shows that the L-Carborane has a lower amount of residual boron at EOC than either the B4C/Al2O3 BPRA or WABA. This adds to the desirability of the polymeric burnable absorber and lowers its negative reactivity worth at EOC. 1.00E+21 1.00E+22 1.00E+23 1.00E+24 1.00E+25 1.00E+26 051015202530354045 Burnup (MWD/kg)Number of Atoms Boron B4C / AL2O3 BPRAs L-CARBORANE BPRAs B4C / AL2O3 WABAs Figure 5-3. Number of B-10 atoms present vs. burnup for va rious burnable absorbers. Results are from multiple single assembly CASMO runs. As mentioned in Chapter 2 of this study, L-Carborane is a fictional material made by modifying the subscripts within the PACS formula to obtain a boron content equivalent to that of B4C/Al2O3. The L-Carborane structur e has approximately seven weight percent of hydrogen. Because this st udy incorporates the use of various polymers, the actual weight percent of hydrogen will va ry from the hypothetical L-Carborane. In order to ensure the material will perform better than the B4C/Al2O3 WABA the weight percent of hydrogen in L-Carbor ane was adjusted to determine at what point the benefit

PAGE 77

62 of the polymer over the current technol ogy is lost. Figure 5-4 shows that at approximately 4.5 weight percent hydrogen the L-Carborane material outperforms the B4C/Al2O3 WABA. 1.075 1.125 1.175 1.225 1.275 1.325 1.375 0510152025Burnup (MWD/kg)K-INF NO BPRAs B4C / AL2O3 BPRAs L-CARBORANE BPRAs B4C / AL2O3 WABAs CARBORANE H = 5 W% CARBORANE H = 2 W% 1.09 1.1 1.11 1.12 1.13 1.14 1.15 1.16 222324252627 Figure 5-4. K-infinity for different carborane compounds w ith varying amounts of H. Also includes results for B4C / AL2O 3 BPRAs and WABAs. The inset of the graph represents the last five days of the cycle. All results are from multiple single assembly CASMO runs. The MCNP/MONTEBURNS code has the uniq ue ability to capture virtually any data anywhere within a given structure with regards to flux, power, material generated and destroyed, or materials activated. To get additional information about the single assembly performance of the polymeric burna ble absorber vs. the standard BPRAs and WABAs, the assemblies were modeled in MCNP/MONTEBURNS. In order to ensure that the results from MCNP/MONTEBURNS were comparable to CASMO, care was taken to ensure that the same material co mpositions, geometry and power distributions

PAGE 78

63 were used in both codes. The results of th e k-infinity vs. time calculation for both codes are shown in Figure 5-5. K-INF vs. Burnup Comparison for 4.66% Enriched UO2 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 0510152025Burnup (MWD/kg)K-INF NO BPRAs B4C / AL2O3 BPRAs L-CARBORANE BPRAs B4C / AL2O3 WABAs NO BPRAs B4C / AL2O3 BPRAs L-CARBORANE BPRAs B4C / AL2O3 WABAs 0510152025 Burnup (MWD/kg)N Density B100.00E+00 3.00E+20 6.00E+20 9.00E+20 B10 N DENSITY MCNP B10 N DENSITY CASMOB10 Depetion vs. Burnup Comparison MCNP CASMO Figure 5-5. K-infinity vs. burnup comp arison of CASMO and MCNP/MONTEBURNS. Left side of the figure shows the si ngle assembly burnup results from both codes. Right side of figure shows th e relative boron depletion for the two codes. The proportional differences between the va rious burnable poisons are the same for either code. This means that the rela tive difference between L-Carborane and B4C/Al2O3 BPRA at BOC is the same in MONTEBURNS as it is to CASMO. However, the difference between the MONTEBURNS and CA SMO results gradually increases over time. The right side of Figure 5-5 shows that the k value decreases less rapidly in MONTEBURNS for cases other than the one without BPRAs because the boron content depletes faster in the code. The differences in values between the codes is not important here because this study is a relative comparis on between two materials and, therefore, the MONTEBURNS model can be used for further analysis. Additionally, the fact that the

PAGE 79

64 L-Carborane continued to perform better than the other burnable pois ons for the different codes adds to the validity of the argument for an advanced polymeric burnable absorber. 0.00E+00 1.00E+13 2.00E+13 3.00E+13 4.00E+13 5.00E+13 6.00E+13 7.00E+13 8.00E+13 9.00E+13 1.00E+14 0510152025Burnup (MWD/kg)Thermal Flux (n/cm^2-s) B4C / AL2O3 BPRAs L-CARBORANE BPRAs B4C / AL2O3 WABAs Figure 5-6. Thermal flux vs. burnup inside BPRA for various burnable poison materials. One of the unique tallies that can be obtained from MONTEBURNS is the flux in a particular region or material. The ther mal neutron flux within the BPRA shows a combination of the absorption effects of the BPRA and the moderation effects (if any) of the BPRA material. Figure 5-6 shows th ermal flux (< 1 eV) vs. burnup inside BPRAs and WABAs. This increase in moderation eliminates the water displacement penalty caused by BPRAs at EOC. Multiple Assembly Results The multiple assembly “colorset” models we re run in accordance with Chapter 3 of this study. As with the single assembly models, no chemical shim was added to the moderator and the boron concentration within all of the BPRAs was held constant. The

PAGE 80

65 major impact of having one fresh fuel assembly with 16 BPRAs and three other assemblies of lower enrichments and with no BPRAs to simulate depleted fuels was a general reduction of the effect of the BPRAs on the reactivity of the model. These results are predictable because the overall effect of the BPRAs is spread out over four assemblies, although the majority of the positiv e reactivity effect is located within the fresh assembly. This is important because this model more closely represents the actual conditions within the reactor where not al l fuel elements are fresh with BPRAs. 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 0510152025303540Burnup (MWD/kg)K-INF NO BPRAs B4C / AL2O3 WABAs B4C / AL2O3 BPRAs L-CARBORANE BPRAs 0.924 0.926 0.928 0.93 0.932 0.934 0.936 0.938 0.94 3838.53939.540 Figure 5-7. CASMO 2 X 2 colorset comparis on k-infinity vs. burnup. Graph inset shows last two days of the cycle. The results of the colorset comparison ar e shown in Figure 5-7. When compared with the single assembly results of Figur e 5-1, it becomes evident that the overall difference between the various BPRAs is signi ficantly less at 40 MWd/kg. However, it is possible to observe differences (approximately 1% increase in reactivity) at around 20-25

PAGE 81

66 MWd/kg. This corresponds to the normal single cycle burnup point for a fresh fuel assembly. A one percent increase in the length of a cycle is a considerable increase in reactivity when one considers the amount of money associated w ith a reactor’s downtime. Estimates of up to a million dollars a day for reactor down time in reload means that a one percent increase in a cycle could result in a six million dollar savings for an 24 month cycle. 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 051015202530354045Burnup (MWD/kg)Pin Peak-to-Average Power NO BPRAs B4C / AL2O3 BPRAs B4C / AL2O3 WABAs L-CARBORANE BPRAs Figure 5-8. CASMO 2 X 2 colorset co mparison pin power peaking vs. burnup. As with the single assembly calculation, the pin power peaking response is equally important in the multi-assembly model. Figure 5-8 shows that the relative pin power peaking results were the same for the colorset as observed in the single assembly (Figure 5-2). As with the single assembly, comp ared to the boron carbide BPRA, the polymer BPRA created a greater pin peaking at EOC indicating greater react ivity and generated a lower pin peaking at BOC indicating be tter performance at holding down excess

PAGE 82

67 reactivity when needed. A significantly lower reactivity at BOC could be taken advantage of by increasing the enrichment of the fresh fuel. Increasing the enrichment would allow an even longer fuel cycle lif e and higher burnup in addition to the longer core life given by the reduction in the mode rator displacement penalty. However, the increase in enrichment would also affect th e power peaking of the assembly and the stress induced to the materials. One-Eighth Core Results The single and multiple assembly results we re all based on an infinite array of similar assemblies. This means that a refl ected boundary on the assembly or colorset made the system act like it was in an infinite field of like assemblies. The actual reactor geometry is symmetric about a 1/8th core model described in Chapter 3. The consequence of dissimilar assemblies on the overall reactivity of the core is seen in the colorset and it is predicted that the same effect will be observed in the core model. Criticality vs. Time Results The accuracy of the model is important in order to determine the effectiveness of the various BPRAs. The PWR model used, ou tlined in Table 3-1, burned to 670 10 EFPDs in the Framatame NERO modeling co de.12 Any model that would closely resemble the Framatome model would have to burn to a similar duration and have similar power characteristics. This core was m odeled with boron carbide BPRAs as in the Framatome model in both EASCYC and MCNP/MOTEBURNS. The EASCYC model was only used for power peaking comparisons because it could not model the decrease in moderator displacement generated by the polym eric BPRA. EASCYC depletes the core to 22.8 MWD/kg at an operating power of 85.9% of 2990 MWt (approximately 2544 MWt). With 89,679 kg of uranium in the co re this equates to 684 EFPDs. From

PAGE 83

68 MONTEBURNS, using no chemical shim at the rated power of 2544 MWt the excess reactivity in the core is depleted at 670 EFPDs with k = 0.99753. This leads to the assumption that the models both provide simila r reactivity results to those of the NERO code. The k-infinity vs. time for the one-eight h core model in MONTEBURNS is shown in Figure 5-9. As expected from the colors et results, the L-Carborane shows little to no improvement over the standard B4C/Al2O3 BPRAs. This result is the combination of both the effect of the other depleted fuel a ssemblies and the fact that the core model depended on Gd2O3/UO2 burnable absorber fuels along w ith BPRAs and this reduced the number and the effect of the BP RAs on the core’s reactivity. 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 0100200300400500600700800 Effective Full Power Days (EFPD)K-Infinity B4C/AL2O3 BPRAs L-CARBORANE BPRAs Figure 5-9. K-infinity vs. time for various BPRA materials (1/8th core MONTEBURNS). The cycle length ends at approxima tely 670 EFPDs for both materials.

PAGE 84

69 As stated in Chapter 2, the L-Carbor ane material is a hypothetical molecule developed to have the same boron content as B4C/Al2O3 BPRAs. The actual composition of a PACS polymer synthesized was described in Chapter 2 as J-Carborane. Up to this point, no models contained the J-Carborane BPRAs because the emphasis has been on showing an increase in reactivity over time w ith a polymer of equal boron content. Now with a more realistic model of the core, th e actual polymer content can be introduced to see how its effectiveness compares to the standards. 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 0100200300400500600700800 Effective Full Power Days (EFPD)K-Infinity B4C/AL2O3 BPRAs J-CARBORANE BPRAs L-CARBORANE BPRAs Figure 5-10. K-infinity vs. time for 1/8th core for BPRA materials including J-Carborane. The J-Carborane extends the cycle length by approximately 6-10 EFPDs. The k-infinity vs. time for boron carbide a nd both L and J Carboranes is shown in Figure 5-10. As seen in the figure the JCarborane composition adds approximately one percent reactivity at EOC and holds down an ex tra one and one-half percent reactivity at BOC when compared to either the boron car bide alumina or the L-Carborane BPRAs.

PAGE 85

70 The combined effects at BOC and EOC make J-Ca rborane appear to be superior to either the standard boron carbide alumina or L-Car borane BPRAs. The primary concern for the use of J-Carborane is that its higher abso rption cross section ma y cause power peaking problems within the core. Further analysis of the power peaki ng for the core would determine if in fact the J-Carborane mate rial would be a viable alternative to B4C/Al2O3. Power Peaking Results The 1/8th core model can be mapped out so that each assembly is given a reference number as in Figure 5-11. When conducti ng power peaking calculations, the benchmark for the core was set as the BOC power ma p from the Crystal River Three Cycle 12 Reload Report. The power peaking was taken as the value of one assembly’s power to the average power across the core. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Fresh Fuel Once Burned Twice Burned 22 23 24 25 Thrice Burned 26 27 28 XX Assembly Number 29 Figure 5-11. Assembly numb er identification for 1/8th core model. The EASCYC code performed power peaki ng calculations for all the depletion steps for the lifetime of the cycle. Both EA SCYC and the reload re port indicated that

PAGE 86

71 Assemblies 4 and 12 consistently had the highe st peak-to-average values for the core cycle. From these results it is assumed th at they are the likely candidates for more complex modeling in MONTEBURNS which requi res a specific assembly to be modeled independent of the rest of the batch. 0.74 1.03 1.11 1.33 1.24 1.32 0.93 0.32 0.724 1.009 1.112 1.376 1.315 1.374 0.944 0.325 1.33 1.08 1.30 1.18 1.33 1.25 1.20 0.36 1.049 1.290 1.199 1.391 1.306 1.302 0.359 1.33 1.17 1.30 1.10 1.29 1.14 0.28 1.179 1.332 1.146 1.271 1.153 0.262 Fresh Fuel Once Burned 1.15 1.28 1.09 0.58 Twice Burned 1.142 1.226 1.025 0.555 Thrice Burned 1.06 1.06 0.27 X.XX RELOAD REPORT 0.973 0.938 0.240 X.XXX EASCYC X.XX MB 0.35 0.284 Figure 5-12. Power distribution for 1/8th core with B4C/Al2O3 BPRAs at BOC. The results of the three cases for the peak -to-average power in the core at BOC for B4C/Al2O3 BPRAs are shown in Figure 5-12. Although the results from MONTEBURNS appear to have no deviation from the reload report model for Assemblies 4 and 12, it should not be a ssumed that the MONTEBURNS model is precise, especially because no chemical shim wa s used in this power distribution model. The important function of the power map is to ensure that the codes are providing a reasonable distribution of power throughout the core, allowing a relative shift in power peaking to be observed between the different BPRA materials. For this study, the absolute accuracy of the core model is less important than noting the relative differences

PAGE 87

72 between BPRA materials, so that potentia l candidates can be pursued or eliminated without extensive testing. 1.25 1.30 1.35 1.40 1.45 1.50 1.55 0100200300400500600700 DaysRatio Peak-to-Average Power B4C AL2O3 TOTAL L-CARBORANE TOTAL J-CARBORANE TOTAL Figure 5-13. Power peaking vs. depletion time (average of assemblies by type). Multiple MONTEBURNS models for 1/8th core without the presence of chemical shim. Once the models for power peaking were established and the suspect high power assemblies were identified, the detailed co mparison of the power peaking throughout the cycle could be performed for the three BPRA materials. The first modeling case used a continuous burnup calculation in MONTEBURNS without chemical shim. The peak-toaverage power was calculated by taking a weight ed average of the batches for the various types of burnable absorbers (Figure 5-13). This model is a rough estimate because it assigns an average for each batch and takes a ratio between the batch averages to the core average. The results show an advantage for the J-Carborane at BOC on out until a

PAGE 88

73 burnup of about 500 days. Thereafter, the JCarborane yields a higher power peaking factor than the B4C/Al2O3 BPRA. The more detailed models of the indivi dual results for Assemblies 4 and 12 are shown in Figures 5-14 and 5-15. These results are more precise. From BOC out until about 420 days, the power peaking advantage goes to the J-Carbor ane (Figure 5-14). Thereafter, the J-Carborane has the highest power peaking factor. The J-Carborane has the lowest power peaking factor throughout th e cycle for Assembly 12 (Figure 5-15). These results, however, do not include the eff ects of chemical shim within the core and the overall power peaking response may be diff erent in the presence of borated water. 1.20 1.25 1.30 1.35 1.40 1.45 1.50 0100200300400500600700 DAYSPOWER PEAK / AVERAGE RATIO MB B4C MB L-CARB MB J-CARB VALUE = CYCLE 12 RELOAD REPORT AT BOC Figure 5-14. Power peaking for various BPRA s in Assembly 4 with no chemical shim. Multiple 1/8th core MONTEBURNS results indicate that the J-Carborane has a lower peak-to-average power ratio up to approximately 420 days. The MONTEBURNS result for the boron carbide matched the result from the reload report.

PAGE 89

74 1.20 1.25 1.30 1.35 1.40 1.45 1.50 0100200300400500600700 DAYSPOWER PEAK / AVERAGE RATIO MB B4C MB L-CARB MB J-CARB VALUE = CYCLE 12 RELOAD REPORT Figure 5-15. Power peaking for various BPRA s in Assembly 12 with no chemical shim. 0 2 4 6 8 10 12 14 16 18 0100200300400500600700 Daysgm/day B10 L-CARB B4C/AL2O3 J-CARB Figure 5-16. Chemical shim vs. time for core models.

PAGE 90

75 The final core peaking evaluation in this study continued the refinement process by evaluating the power peaking results for the core with chemical shim. For this case the chemical shim model as described in Chapter 3 was applied to keep the reactor at k = 1 throughout the life of the cycle. The chemi cal shim was added using the feed file described in Chapter 3. The boron carbid e and L-carborane had nearly identical reactivity vs. time responses and used th e same chemical shim let-down. The J-Carborane shim was adjusted for the differe nces in reactivity over time (Figure 5-16). The model used an initial loading of boron in the water so the let-down is not linear as it approaches zero time. 1.25 1.30 1.35 1.40 1.45 1.50 0100200300400500600700 DAYSPOWER PEAK / AVERAGE RATIO MB B4C CHEM SHIM MB L-CARB CHEM SHIM MB J-CARB CHEM SHIM Figure 5-17. Power peaking for various BP RAs in Assembly 4 with chemical shim. The results for this model are shown in Figures 5-17 and 5-18. Again, the JCarborane had superior power peaking results for Assemblies 4 and 12 out to about 420 days and a higher power peaking than the B4C/Al2O3 BPRAs thereafter. The J-Carborane

PAGE 91

76 advantage in the power peaking factor extends out to about 480 days for assembly 12 and thereafter is higher than the B4C/Al2O3 BPRAs (Figure 5-18). It is evident that the overall power peaking results vary from the case with no chemical shim in the water. The most significant difference is an increa se in the power peaking factor for the J-Carborane case in Assembly 12 above the boron carbide BPRA case in the chemical shim model after about 420 days that is not seen in the model without chemical shim. Additionally, there is a sinusoi dal decrease and subsequent increase in the power peaking factors for the J-Carborane case at about 400 days in the chemical shim model. 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55 0100200300400500600700 DAYSPOWER PEAK / AVERAGE RATI O MB B4C CHEM SHIM MB L-CARB CHEM SHIM MB J-CARB CHEM SHIM Figure 5-18. Power peaking for various BP RAs in Assembly 12 with chemical shim. Other Polymer Materials It should be noted that the relative compar ison for the different materials within the model parameters should allow for easy inve stigation of other pol ymer materials to eventually develop the advanced burnable poi son absorber desired. Because of the

PAGE 92

77 benchmarks set in Chapter 2 and 4 for hydr ogen composition and thermal and radioactive stability requirements, numerous materials can either be eliminated or sent forward for simulation calculations. One such proposal is a combination of high density polyethylene and boron carbide (B4C/CH2). The initial single assembly results with equal amounts of boron for this material are shown in Figure 5-19. From thes e results it can be predicted that the overall 1/8th core distribution would be slightly better than the L-Carborane model. From the carborane comparisons, it would be likely that the 1/8th core distribution would benefit from a higher boron concentration to more closely match that of J-Carborane. 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 0510152025303540Burn Up (MWD/kg)K-INF NO BPRAs B4C / AL2O3 BPRAs L-CARBORANE BPRAs B4C-CH2 1.01 1.015 1.02 1.025 1.03 1.035 1.04 1.045 1.05 1.055 1.06 1.065 353637383940 Figure 5-19. Single assembly comparison of va rious absorbers to include polyethylene. The polyethylene is doped with boron carbide to act as an absorber. Because of the benchmarking, the process of material selection and combinations thereof can become systematic. The materi al is first selected based on its nuclear

PAGE 93

78 properties and modeled within th e simulations and then physical ly tested to determine if it can withstand the radiation and thermal environment and then the core model is modified and the core is analyzed again.

PAGE 94

79 CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK Conclusions The purpose of this research was to examine the use of high hydrogen content boron carrying polymers for use as burnable po ison rods in pressuri zed water reactors. The premise of the use of a hydrogen based polymer is that it would eliminate the water displacement penalty at end of cycle crea ted by the current boron carbide alumina BPRAs and extend the lifetime of the reac tor core. One characteristic polymer, Polyacetyleniccarboranosiloxane (PACS), was described as thermally stable up to 1000 C and able to be tailore d to optimize the boron and hydrogen content within the polymer. The effects of variations in th e PACS structure on core performance were determined using various two-dimensional and three-dimensional transport nodal and Monte Carlo codes and compared to results obtained when using boron carbide alumina burnable poison rods and wet annular burnabl e poison rods. Performance criteria for each material was based on its ability to cont rol reactivity at beginning of cycle and the combination of its burnup, its reduction in mode rator displacement at end of cycle, and its power peaking response throughout the cycle. The study made specific calculations fo r the minimum required hydrogen content within the PACS polymer stru cture and developed an empiri cal equation that related the moderator effectiveness of a substance to its weight perc ent hydrogen. This formula works well for the PACS structure and a ppears to work for other hydrogen based materials. The benchmark from the PACS study places a minimum requirement of 4.5

PAGE 95

80 weight percent of hydrogen within the polymer in order to get a moderator displacement penalty that is less than the WABA and a higher reactivity at EOC. This 4.5 weight percent must be present at end of cycle to be effective. This means that if the polymer losses a significant amount of hydrogen due to radiation cross-linking during the fuel cycle it will have to start the cycle with a significantly highe r amount of hydrogen present. In addition to the hydrogen content calc ulations, benchmarks were set for the maximum centerline temperature and the maxi mum coefficient of thermal expansion for the polymer. The centerline temperature was shown to depend almost entirely on the thermal conductivity of the material. Using an estimate of volumetric heat rate from an MCNP simulation and a thermal conductivity from a similar polymer, the maximum centerline temperature was calcu lated to be between 571 63 3 C. Using 2/3 of 571 C and the known thermal expansion for the cla dding, the maximum coefficient for thermal expansion was calculated to be 5.544 x 10-5. Because most polymers have thermal expansion coefficients higher than this and that the actual coefficient will depend on the cross-linking of the polymer, it was concl uded that expansion of the PACS polymer should be measured to determine if it is a concern for this res earch. The centerline temperature may prove to be a problem or material performance because the ceiling temperatures for many polymer s are around 500 C and the polymer must remain intact throughout the core cycle. The radiation dose delivered to the BPRA throughout the life of the core was also calculated from the estimate of the volumetric heat rate. The value of 90.39 Trad is a tremendous amount of radiation and it is not known how a polymer will react over time

PAGE 96

81 to this amount of dose. The primary concern with respect to radia tion is the cross-linking and loss of hydrogen both from a loss of m oderation perspective but also for the hydrating of the zircalloy cl adding which could lead to failures within the BPRA elements. Notwithstanding the materials concerns, the simulations of the single assembly and multiple assembly models of various polymer ic BPRAs showed promise that the core cycles could be extended. The single assemb ly calculations suggest ed that a 1 – 1.5% increase in reactivity over time could be obt ained with the use of a polymeric BPRA with boron equivalent to the boron carbide alum ina BPRA. The multi-assembly models continued to show an advantage to the polym eric BPRA but the amount of the advantage was reduced due to the lower reactivity effect s of the other depleted fuel elements. The 1/8th core models used a slightly di fferent approach by ta king an actual PWR reload report and simulating the exchange of a standard BPRA for a polymeric BPRA with no other adjustments to the core. The results for the polymer with an equivalent boron content as the B4C/Al2O3 BPRA were uninspiring. The differences between the two over the life of the core were negligible at best. However, because the polymer depletes boron faster than boron carbide and be cause the boron content can be tailored in the polymer, another simulation was run with a polymer with more boron. This simulation not only extended the life of the co re by about one percent but also resulted in a lower reactivity at BOC, which leads to the proposal of a higher enrichment at BOC for an even longer cycle length. The primary concern with the higher boron based polymer was its effect on power peaking within the core. The critical assemblies in the core model were determined using

PAGE 97

82 a diffusion theory code and the reload report fo r the reactor. The critical assemblies were then analyzed in detail to determine their peak-to-average power distributions with the various burnable absorber BPRAs. This is important for reactor control and safety and adds validity to the premise that a polymeri c burnable poison rod is a viable option for a PWR. The final set of simulations used a feed of boron-10 to the water to model the presence of chemical shim. The addition of the chemical shim caused the power peaking models to vary from the m odels without chemical shim. However, as this study is focused on the relative differences between the materials, this rise was unilateral and did not change the conclusion that the advan ced BPRA did not negatively effect power peaking. The advanced polymeric burnable absorber concept is a method of increasing core burnups without having to increase enrich ments beyond the five weight percent enrichment maximum currently allowed. Increased burnups will save money and reduce waste production because of longer fuel cycles The increase in burnup will have to be analyzed as an effect on the reactor system as a whole. In particular, longer cycle burnups will lead to longer overall burnups fo r assemblies in a core. The extra days per cycle could result in extra weeks on a single assembly. The material sustainability for longer burnups is an important part of this research. The keys to the development of a viable polymer will be its ability to transfer heat, withstand radiation, and not create structural damage to the cladding. In genera l, the materials of the reactor constitute the biggest challenge for higher bur nups for all currently designed light water reactors. This research has established a basis from which a ny material could be quickly checked for the

PAGE 98

83 proper moderation, absorption, and thermal mechan ical properties. If the material passes the initial scrutiny, this research creates a framework by which any material can be analyzed in detail to determine if it w ill be the next generation of burnable poison assembly material. Recommendations for Future Work The future of this research lies in the test ing and analysis of many more materials. The example of polyethylene given in the e nd of Chapter 5 is just one of hundreds of possible candidates that can be examined. On ce a selection of a few polymers is decided, then the measured values of density, material composition, thermal conductivity, thermal and radiation stability and ceili ng temperature should be used to determine if the material can be expected to survive the environment of the reactor. These values will have to be introduced into the model to ensure that the results will not significantly change under realistic conditions. In addition to material design, alternative mechanical designs may have to be employed. For instance, other methods of heat transfer may have to be investigated (such as lateral pl ates or pipes within the polyme r) in order to ensure that the polymer does not surpass its ceiling temperatur e. These methods of heat transfer will increase manufacturing costs and may ul timately make the design unfeasible. The radiation environment within the r eactor poses its own problems with the hydrogen generation process. All of the re search in this study assumes no loss of hydrogen within the polymer during the cycle. A detailed prediction of hydrogen loss for any polymer used in a reactor will have to be calculated and backed by measurement. The loss of hydrogen will cause adjustments to be made to the reactor models and most likely will eliminate many polymers as unsui table alternatives. There may also be coupled effects of a change in thermal c onductivity or thermal expansion coefficient

PAGE 99

84 associated with additional cross-linking. These changes in material properties may be significant in the final determination of an advanced polymeric material. Once a good candidate for a polymeric burnable poison is determined, the core should be modeled in a three-dimensiona l nodal code such as SIMULATE. This modeling would confirm the MO NTEBURNS predictions of th e cycle lifetime and also provide detailed power peaking results that would be more reliable. The SIMULATE model could give a time dependent power peaking map for all of the assemblies and ensure that the safety limits were not exceed ed. Finally, the SIMULATE model could be optimized to use only advanced polymeric BPRAs and eliminate the Gd2O3/UO2 fuel elements and compare the results with vari ous combinations of 8, 12, and 16 BPRA assemblies. Ideally, an adva nced polymeric burnable poison rod could eliminate the need for the Gd2O3/UO2 fuel while still providing enough negative reactivity at BOC and no water displacement penalty at EOC. After successful modeling within a core analysis code, such as SIMULATE, the advanced burnable poison material should be tested within a react or that will produce power and heat similar to a commercial PWR. The material will have to be tested to ensure that the code predictions for bur nup and absorption are correct. Additionally, a final measurement of the hydrogen displaced du ring the irradiation pe riod will have to be made in order to accurately predict the moderation effectiveness of the material at EOC. The final analysis for the advanced burnable poison material will involve cost. The PACS carborane material could be cost prohi bitive to produce because of its processing steps and number of constituent elements. A ny polymeric material that would increase the core burnups would have to cost less to produce than the money saved by increasing

PAGE 100

85 the cycle length. It is not clear whether market demands will lower production costs for complex materials such as PACS. The best a lternative material may be a simple readily produced polymer that has high hydrogen cont ent and can be easily adapted to carry boron or some other burnable absorbing material.

PAGE 101

86 APPENDIX A CALCULATIONS OF MODERATION EFFECTIVENESS OF PACS The formula for PACS is (B10H10C2)a((CH3)2SiO)b(C2)c. The following Table shows 15 different combinations of the subscr ipts a, b, and c in the formula and the calculation of s(epithermal) and the product. Twelve additional molecules were added that had lower hydrogen values than the mo lecular structure would normally allow. Table A-1. Calculations of modera tor effectiveness for PACS molecule.

PAGE 102

87Table A-1. Calculations of modera tor effectiveness for PACS molecule. MOLECULE I Atoms per molecule a b c C Si O B H 1 12 9 44 12 5 10 82 1 10 9 40 10 4 10 70 1 8 9 36 8 3 10 58 1 6 9 32 6 2 10 46 1 4 9 28 4 1 10 34 28 4 1 10 30 28 4 1 10 26 28 4 1 10 20 MOLECULE II 28 4 1 10 10 a b c 1 12 8 42 12 5 10 82 1 10 8 38 10 4 10 70 1 8 8 34 8 3 10 58 1 6 8 30 6 2 10 46 1 4 8 26 4 1 10 34 26 4 1 10 30 26 4 1 10 26 26 4 1 10 20 MOLECULE III 26 4 1 10 10 a b c 1 12 7 40 12 5 10 82 1 10 7 36 10 4 10 70 1 8 7 32 8 3 10 58 1 6 7 28 6 2 10 46 1 4 7 24 4 1 10 34 24 4 1 10 30 24 4 1 10 26 24 4 1 10 20 24 4 1 10 10

PAGE 103

88Table A-1. Continued Atomic mass in molecule Weight % C Si O B H C Si O B H 528.44 337.08 79.95 108.1 82.82 46.50% 29.66% 7.04% 9.51% 7.29% 480.4 280.9 63.96 108.1 70.7 47.85% 27.98% 6.37% 10.77% 7.04% 432.36 224.72 47.97 108.1 58.58 49.60% 25.78% 5.50% 12.40% 6.72% 384.32 168.54 31.98 108.1 46.46 51.98% 22.79% 4.33% 14.62% 6.28% 336.28 112.36 15.99 108.1 34.34 55.39% 18.51% 2.63% 17.81% 5.66% 336.28 112.36 15.99 108.1 30.3 55.77% 18.63% 2.65% 17.93% 5.02% 336.28 112.36 15.99 108.1 26.26 56.14% 18.76% 2.67% 18.05% 4.38% 336.28 112.36 15.99 108.1 20.2 56.71% 18.95% 2.70% 18.23% 3.41% 336.28 112.36 15.99 108.1 10.1 57.70% 19.28% 2.74% 18.55% 1.73% 504.42 337.08 79.95 108.1 82.82 45.35% 30.30% 7.19% 9.72% 7.45% 456.38 280.9 63.96 108.1 70.7 46.57% 28.66% 6.53% 11.03% 7.21% 408.34 224.72 47.97 108.1 58.58 48.17% 26.51% 5.66% 12.75% 6.91% 360.3 168.54 31.98 108.1 46.46 50.36% 23.56% 4.47% 15.11% 6.49% 312.26 112.36 15.99 108.1 34.34 53.56% 19.27% 2.74% 18.54% 5.89% 312.26 112.36 15.99 108.1 30.3 53.93% 19.41% 2.76% 18.67% 5.23% 312.26 112.36 15.99 108.1 26.26 54.31% 19.54% 2.78% 18.80% 4.57% 312.26 112.36 15.99 108.1 20.2 54.89% 19.75% 2.81% 19.00% 3.55% 312.26 112.36 15.99 108.1 10.1 55.88% 20.11% 2.86% 19.34% 1.81% 480.4 337.08 79.95 108.1 82.82 44.14% 30.97% 7.35% 9.93% 7.61% 432.36 280.9 63.96 108.1 70.7 45.22% 29.38% 6.69% 11.31% 7.40% 384.32 224.72 47.97 108.1 58.58 46.66% 27.28% 5.82% 13.12% 7.11% 336.28 168.54 31.98 108.1 46.46 48.64% 24.38% 4.63% 15.64% 6.72% 288.24 112.36 15.99 108.1 34.34 51.56% 20.10% 2.86% 19.34% 6.14% 288.24 112.36 15.99 108.1 30.3 51.94% 20.25% 2.88% 19.48% 5.46% 288.24 112.36 15.99 108.1 26.26 52.32% 20.39% 2.90% 19.62% 4.77% 288.24 112.36 15.99 108.1 20.2 52.90% 20.62% 2.93% 19.84% 3.71% 288.24 112.36 15.99 108.1 10.1 53.90% 21.01% 2.99% 20.21% 1.89%

PAGE 104

89Table A-1. Continued Average epithermal s Average thermal a C Si O B H C Si O H 4.78E+00 2.08E+00 3.92E+00 4.47E+00 2.07E+01 3.40E-03 1.60E-01 9.43E-06 3.32E-01 4.78E+00 2.08E+00 3.92E+00 4.47E+00 2.07E+01 3.40E-03 1.60E-01 9.43E-06 3.32E-01 4.78E+00 2.08E+00 3.92E+00 4.47E+00 2.07E+01 3.40E-03 1.60E-01 9.43E-06 3.32E-01 4.78E+00 2.08E+00 3.92E+00 4.47E+00 2.07E+01 3.40E-03 1.60E-01 9.43E-06 3.32E-01 4.78E+00 2.08E+00 3.92E+00 4.47E+00 2.07E+01 3.40E-03 1.60E-01 9.43E-06 3.32E-01 4.78E+00 2.08E+00 3.92E+00 4.47E+00 2.07E+01 3.40E-03 1.60E-01 9.43E-06 3.32E-01 4.78E+00 2.08E+00 3.92E+00 4.47E+00 2.07E+01 3.40E-03 1.60E-01 9.43E-06 3.32E-01 4.78E+00 2.08E+00 3.92E+00 4.47E+00 2.07E+01 3.40E-03 1.60E-01 9.43E-06 3.32E-01 4.78E+00 2.08E+00 3.92E+00 4.47E+00 2.07E+01 3.40E-03 1.60E-01 9.43E-06 3.32E-01 4.78E+00 2.08E+00 3.92E+00 4.47E+00 2.07E+01 3.40E-03 1.60E-01 9.43E-06 3.32E-01 4.78E+00 2.08E+00 3.92E+00 4.47E+00 2.07E+01 3.40E-03 1.60E-01 9.43E-06 3.32E-01 4.78E+00 2.08E+00 3.92E+00 4.47E+00 2.07E+01 3.40E-03 1.60E-01 9.43E-06 3.32E-01 4.78E+00 2.08E+00 3.92E+00 4.47E+00 2.07E+01 3.40E-03 1.60E-01 9.43E-06 3.32E-01 4.78E+00 2.08E+00 3.92E+00 4.47E+00 2.07E+01 3.40E-03 1.60E-01 9.43E-06 3.32E-01 4.78E+00 2.08E+00 3.92E+00 4.47E+00 2.07E+01 3.40E-03 1.60E-01 9.43E-06 3.32E-01 4.78E+00 2.08E+00 3.92E+00 4.47E+00 2.07E+01 3.40E-03 1.60E-01 9.43E-06 3.32E-01 4.78E+00 2.08E+00 3.92E+00 4.47E+00 2.07E+01 3.40E-03 1.60E-01 9.43E-06 3.32E-01 4.78E+00 2.08E+00 3.92E+00 4.47E+00 2.07E+01 3.40E-03 1.60E-01 9.43E-06 3.32E-01 4.78E+00 2.08E+00 3.92E+00 4.47E+00 2.07E+01 3.40E-03 1.60E-01 9.43E-06 3.32E-01 4.78E+00 2.08E+00 3.92E+00 4.47E+00 2.07E+01 3.40E-03 1.60E-01 9.43E-06 3.32E-01 4.78E+00 2.08E+00 3.92E+00 4.47E+00 2.07E+01 3.40E-03 1.60E-01 9.43E-06 3.32E-01 4.78E+00 2.08E+00 3.92E+00 4.47E+00 2.07E+01 3.40E-03 1.60E-01 9.43E-06 3.32E-01 4.78E+00 2.08E+00 3.92E+00 4.47E+00 2.07E+01 3.40E-03 1.60E-01 9.43E-06 3.32E-01 4.78E+00 2.08E+00 3.92E+00 4.47E+00 2.07E+01 3.40E-03 1.60E-01 9.43E-06 3.32E-01 4.78E+00 2.08E+00 3.92E+00 4.47E+00 2.07E+01 3.40E-03 1.60E-01 9.43E-06 3.32E-01 4.78E+00 2.08E+00 3.92E+00 4.47E+00 2.07E+01 3.40E-03 1.60E-01 9.43E-06 3.32E-01 4.78E+00 2.08E+00 3.92E+00 4.47E+00 2.07E+01 3.40E-03 1.60E-01 9.43E-06 3.32E-01

PAGE 105

90 Table A-1. Continued N Density (atoms/cc) s C Si O B H C Si O B H 2.10E+22 5.72E+21 2.38E+21 4.77E+21 3.91E+22 1.00E-01 1.19E-02 9.35E-03 2.13E-02 8.10E-01 2.16E+22 5.40E+21 2.16E+21 5.40E+21 3.78E+22 1.03E-01 1.12E-02 8.46E-03 2.41E-02 7.82E-01 2.24E+22 4.97E+21 1.87E+21 6.22E+21 3.61E+22 1.07E-01 1.04E-02 7.31E-03 2.78E-02 7.47E-01 2.35E+22 4.40E+21 1.47E+21 7.33E+21 3.37E+22 1.12E-01 9.15E-03 5.75E-03 3.28E-02 6.98E-01 2.50E+22 3.57E+21 8.93E+20 8.93E+21 3.04E+22 1.19E-01 7.43E-03 3.50E-03 3.99E-02 6.29E-01 2.52E+22 3.60E+21 8.99E+20 8.99E+21 2.70E+22 1.20E-01 7.48E-03 3.52E-03 4.02E-02 5.58E-01 2.53E+22 3.62E+21 9.05E+20 9.05E+21 2.35E+22 1.21E-01 7.53E-03 3.55E-03 4.05E-02 4.87E-01 2.56E+22 3.66E+21 9.14E+20 9.14E+21 1.83E+22 1.22E-01 7.61E-03 3.58E-03 4.09E-02 3.79E-01 2.60E+22 3.72E+21 9.30E+20 9.30E+21 9.30E+21 1.24E-01 7.74E-03 3.65E-03 4.16E-02 1.93E-01 2.05E+22 5.85E+21 2.44E+21 4.87E+21 4.00E+22 9.78E-02 1.22E-02 9.55E-03 2.18E-02 8.27E-01 2.10E+22 5.53E+21 2.21E+21 5.53E+21 3.87E+22 1.00E-01 1.15E-02 8.67E-03 2.47E-02 8.02E-01 2.17E+22 5.11E+21 1.92E+21 6.39E+21 3.71E+22 1.04E-01 1.06E-02 7.52E-03 2.86E-02 7.68E-01 2.27E+22 4.55E+21 1.52E+21 7.58E+21 3.49E+22 1.09E-01 9.46E-03 5.94E-03 3.39E-02 7.22E-01 2.42E+22 3.72E+21 9.30E+20 9.30E+21 3.16E+22 1.15E-01 7.74E-03 3.64E-03 4.16E-02 6.55E-01 2.43E+22 3.74E+21 9.36E+20 9.36E+21 2.81E+22 1.16E-01 7.79E-03 3.67E-03 4.19E-02 5.82E-01 2.45E+22 3.77E+21 9.43E+20 9.43E+21 2.45E+22 1.17E-01 7.85E-03 3.70E-03 4.22E-02 5.08E-01 2.48E+22 3.81E+21 9.53E+20 9.53E+21 1.91E+22 1.18E-01 7.93E-03 3.73E-03 4.26E-02 3.95E-01 2.52E+22 3.88E+21 9.70E+20 9.70E+21 9.70E+21 1.20E-01 8.08E-03 3.80E-03 4.34E-02 2.01E-01 1.99E+22 5.98E+21 2.49E+21 4.98E+21 4.08E+22 9.52E-02 1.24E-02 9.76E-03 2.23E-02 8.46E-01 2.04E+22 5.67E+21 2.27E+21 5.67E+21 3.97E+22 9.75E-02 1.18E-02 8.89E-03 2.54E-02 8.22E-01 2.11E+22 5.26E+21 1.97E+21 6.58E+21 3.82E+22 1.01E-01 1.10E-02 7.74E-03 2.94E-02 7.90E-01 2.20E+22 4.70E+21 1.57E+21 7.84E+21 3.61E+22 1.05E-01 9.79E-03 6.15E-03 3.51E-02 7.47E-01 2.33E+22 3.88E+21 9.70E+20 9.70E+21 3.30E+22 1.11E-01 8.07E-03 3.80E-03 4.34E-02 6.83E-01 2.34E+22 3.91E+21 9.77E+20 9.77E+21 2.93E+22 1.12E-01 8.13E-03 3.83E-03 4.37E-02 6.07E-01 2.36E+22 3.93E+21 9.84E+20 9.84E+21 2.56E+22 1.13E-01 8.19E-03 3.86E-03 4.40E-02 5.30E-01 2.39E+22 3.98E+21 9.95E+20 9.95E+21 1.99E+22 1.14E-01 8.28E-03 3.90E-03 4.45E-02 4.12E-01 2.43E+22 4.05E+21 1.01E+21 1.01E+22 1.01E+22 1.16E-01 8.44E-03 3.97E-03 4.53E-02 2.10E-01

PAGE 106

91 Table A-1. Continued a Total C Si O H a C Si O B H 7.13E-05 9.16E-04 2.25E-08 1.30E-02 1.40E-02 0.15776899 0.136284194 0.119946651 0.351255827 1 7.34E-05 8.64E-04 2.04E-08 1.25E-02 1.35E-02 0.15776899 0.136284194 0.119946651 0.351255827 1 7.61E-05 7.96E-04 1.76E-08 1.20E-02 1.28E-02 0.15776899 0.136284194 0.119946651 0.351255827 1 7.98E-05 7.04E-04 1.38E-08 1.12E-02 1.20E-02 0.15776899 0.136284194 0.119946651 0.351255827 1 8.50E-05 5.71E-04 8.42E-09 1.01E-02 1.07E-02 0.15776899 0.136284194 0.119946651 0.351255827 1 8.56E-05 5.75E-04 8.48E-09 8.95E-03 9.61E-03 0.15776899 0.136284194 0.119946651 0.351255827 1 8.61E-05 5.79E-04 8.53E-09 7.81E-03 8.48E-03 0.15776899 0.136284194 0.119946651 0.351255827 1 8.70E-05 5.85E-04 8.62E-09 6.07E-03 6.74E-03 0.15776899 0.136284194 0.119946651 0.351255827 1 8.85E-05 5.95E-04 8.77E-09 3.09E-03 3.77E-03 0.15776899 0.136284194 0.119946651 0.351255827 1 6.96E-05 9.35E-04 2.30E-08 1.33E-02 1.43E-02 0.15776899 0.136284194 0.119946651 0.351255827 1 7.14E-05 8.85E-04 2.09E-08 1.29E-02 1.38E-02 0.15776899 0.136284194 0.119946651 0.351255827 1 7.39E-05 8.18E-04 1.81E-08 1.23E-02 1.32E-02 0.15776899 0.136284194 0.119946651 0.351255827 1 7.73E-05 7.27E-04 1.43E-08 1.16E-02 1.24E-02 0.15776899 0.136284194 0.119946651 0.351255827 1 8.22E-05 5.95E-04 8.77E-09 1.05E-02 1.12E-02 0.15776899 0.136284194 0.119946651 0.351255827 1 8.27E-05 5.99E-04 8.83E-09 9.32E-03 1.00E-02 0.15776899 0.136284194 0.119946651 0.351255827 1 8.33E-05 6.03E-04 8.89E-09 8.14E-03 8.82E-03 0.15776899 0.136284194 0.119946651 0.351255827 1 8.42E-05 6.10E-04 8.98E-09 6.33E-03 7.02E-03 0.15776899 0.136284194 0.119946651 0.351255827 1 8.57E-05 6.21E-04 9.15E-09 3.22E-03 3.93E-03 0.15776899 0.136284194 0.119946651 0.351255827 1 6.77E-05 9.56E-04 2.35E-08 1.36E-02 1.46E-02 0.15776899 0.136284194 0.119946651 0.351255827 1 6.94E-05 9.07E-04 2.14E-08 1.32E-02 1.42E-02 0.15776899 0.136284194 0.119946651 0.351255827 1 7.16E-05 8.42E-04 1.86E-08 1.27E-02 1.36E-02 0.15776899 0.136284194 0.119946651 0.351255827 1 7.46E-05 7.53E-04 1.48E-08 1.20E-02 1.28E-02 0.15776899 0.136284194 0.119946651 0.351255827 1 7.91E-05 6.20E-04 9.14E-09 1.09E-02 1.16E-02 0.15776899 0.136284194 0.119946651 0.351255827 1 7.97E-05 6.25E-04 9.21E-09 9.73E-03 1.04E-02 0.15776899 0.136284194 0.119946651 0.351255827 1 8.03E-05 6.30E-04 9.28E-09 8.49E-03 9.20E-03 0.15776899 0.136284194 0.119946651 0.351255827 1 8.12E-05 6.37E-04 9.38E-09 6.60E-03 7.32E-03 0.15776899 0.136284194 0.119946651 0.351255827 1 8.27E-05 6.49E-04 9.56E-09 3.36E-03 4.10E-03 0.15776899 0.136284194 0.119946651 0.351255827 1

PAGE 107

92Table A-1. Continued Average s s / a 8.77E-01 8.36E-01 5.98E+01 8.71E-01 8.10E-01 6.01E+01 8.63E-01 7.76E-01 6.04E+01 8.50E-01 7.29E-01 6.09E+01 8.30E-01 6.63E-01 6.18E+01 8.12E-01 5.93E-01 6.17E+01 7.91E-01 5.22E-01 6.16E+01 7.48E-01 4.14E-01 6.14E+01 6.17E-01 2.28E-01 6.05E+01 8.81E-01 8.53E-01 5.98E+01 8.75E-01 8.29E-01 6.00E+01 8.67E-01 7.97E-01 6.03E+01 8.56E-01 7.53E-01 6.08E+01 8.37E-01 6.89E-01 6.17E+01 8.20E-01 6.16E-01 6.16E+01 7.99E-01 5.42E-01 6.15E+01 7.58E-01 4.30E-01 6.12E+01 6.28E-01 2.37E-01 6.03E+01 8.84E-01 8.71E-01 5.98E+01 8.79E-01 8.49E-01 6.00E+01 8.72E-01 8.19E-01 6.03E+01 8.62E-01 7.78E-01 6.08E+01 8.44E-01 7.17E-01 6.16E+01 8.28E-01 6.41E-01 6.15E+01 8.08E-01 5.64E-01 6.13E+01 7.67E-01 4.47E-01 6.11E+01 6.40E-01 2.46E-01 6.00E+01

PAGE 108

93 APPENDIX B SINGLE ASSEMBLY CASMO AND MONTEBURNS FILES This appendix contains all of the inpu t and output files for the single assembly depletion calculations for CASMO and MC NP/MONTEBURNS. The output files for CASMO have been abbreviated to the final state point and final keff vs. burnup summary in order to save space. The CAMSO Input File B4C/Al2O3 BPRAs TIT TFU=881 TMO=600 BOR=0 *4.66% B4 W 15 X 15 *Crystal River-3 15x15 Assembly with WATER in guide tubes FUE 1 10.4/4.66 *FUEL COMP. #, DENSITY/ENRICHMENT PDE 32 *POWER DENSITY (W/Gu) PIN 1 .4699 .4788 .5461/ '1' 'AIR' 'CAN' PIN 3 .632 .6731/ 'COO' 'CAN' *Center water hole PWR 15 1.443 21.81 PWR with pitch 1.443 LPI 3 1 1 1 1 3 1 1 1 1 1 1 1 1 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 DEP 0.5 2.5 5 10 15 20 25 30 35 40 *Depletion steps STA END

PAGE 109

94The CASMO Output File Water in Guide Tubes 1* CASMO FLORIDA 01/09/17 STUDSVIK EXECUTION **/10/17 15:20:56 JOB=SUN STATE POINT NO = 11 PAGE = 50 4.66% B4 W 15 X 15 BURNUP = 40.001 V= 0.0 TF= 881.0 TM= 600.0 BOR= 0.0 0AVERAGED NUMBER DENSITIES OF BURNABLE NUCLIDES AT 40.001 MWD/KGU (PREDICTOR VALUES) 922353.30459E+20 922361.29998E+20 932371.33643E+19 942384.65240E+18 922382.10928E+22 942391.38552E+20 942405.28830E+19 942413.24917E+19 942429.72446E+18 952411.16014E+18 952421.79362E+16 952432.02872E+18 962424.04591E+17 962445.44768E+17 922344.99822E+18 922391.12573E+16 932391.60002E+18 360833.31589E+18 451032.41995E+19 451055.01086E+16 471093.03150E+18 541312.03627E+19 551335.37796E+19 551345.93952E+18 541359.42077E+15 551352.37123E+19 601433.94993E+19 601452.98650E+19 611477.16701E+18 621473.73346E+18 611483.54250E+16 612486.88233E+16 621491.19266E+17 621501.25681E+19 621516.53882E+17 621524.40811E+18 631534.80631E+18 631541.36880E+18 631557.80258E+17 4011.25402E+21 4022.69848E+20 531351.93342E+16 611494.49538E+16 641557.26774E+15 1* CASMO FLORIDA 01/09/17 STUDSVIK EXECUTION **/10/17 15:20:56 JOB=SUN STATE POINT NO = 12 PAGE = 51 4.66% B4 W 15 X 15 BURNUP = 40.001 V= 0.0 TF= 881.0 TM= 600.0 BOR= 0.0 END INPUT CARD 0RESTART FILE NO. 12 WRITTEN. IDENTIFICATION = EXPOSURE = 40.0010 TYPE OF FILE = 470 STATEP = 12 1 C A S M O FLORIDA 01/09/17 STUDSVIK EXECUTION **/10/17 15:20:56 JOB=SUN PAGE = 52 0 ** C A S M O -3 SUMMARY ** 0 4.66% B4 W 15 X 15 0 HVOI= 0.0 HTFU= 881.0 HTMO= 600.0 HBOR= 0.0 0 NO VOID TFU TMO BOR CRD BURNUP K-INF K-INF M2 PIN U-235 FISS PU TOT PU MWD/KG TWO-GROUP PEAK WT % WT % WT % 1 0.0 881.0 600.0 0.0 0.000 1.36768 1.36381 66.88 1.061 4.660 0.000 0.000 2 0.500 1.35525 1.35186 66.71 1.061 4.600 0.019 0.019 3 2.500 1.33121 1.32817 66.38 1.060 4.368 0.106 0.110 4 5.000 1.30315 1.30073 66.03 1.059 4.094 0.200 0.214 5 10.000 1.25016 1.24876 65.44 1.055 3.590 0.352 0.395 6 15.000 1.20327 1.20262 64.98 1.051 3.134 0.470 0.549 7 20.000 1.16089 1.16076 64.62 1.046 2.721 0.562 0.682 8 25.000 1.12148 1.12171 64.31 1.041 2.347 0.634 0.797 9 30.000 1.08416 1.08463 64.04 1.036 2.010 0.688 0.895 10 35.000 1.04846 1.04908 63.81 1.031 1.706 0.728 0.981 11 40.000 1.01414 1.01483 63.59 1.026 1.434 0.756 1.055 0NORMAL TERMINATION 0RUN STARTED (DATE,TIME): **/10/17 15:20:56 0RUN COMPLETED (DATE,TIME): **/10/17 15:21:04 Thu Oct 17 15:21:04 EDT 2002 Using executable --> /home/CMSCODES/C3/vUNIV/Solaris_2/c3.exe -rwxr-xr-x 1 122 1000 2891864 Sep 17 2001 /home/CMSCODES/C3/vUNIV/Solaris_2/c3.exe

PAGE 110

95 The CASMO Input File B4C/Al2O3 BPRAs in Guide Tubes TIT TFU=990 TMO=583 BOR=0 *4.66% W 15 X 15 *Crystal River-3 15x15 Assembly with B4C-AL2O3 in guide tubes FUE 1 10.4/4.66 *FUEL COMP. #, DENSITY/ENRICHMENT PDE 33 *POWER DENSITY (W/Gu) MI2 3.1/5010=0.55 5011=2.22 6000=0.76 13000=51.04 8000=45.43 Mixture 2: B4C, AL2O3 (BP Material) PIN 1 .4699 .4788 .5461/ '1' 'AIR' 'CAN' PIN 2 .4699 .4788 .5461 .632 .6731/ 'MI2' 'AIR' 'CAN' 'COO' 'CAN'/1,3,5 BPRA pin homogenized 'AIR+CAN' and 'COO+CAN' PIN 3 .632 .6731/ 'COO' 'CAN' *Center water hole PWR 15 1.443 21.81 PWR with pitch 1.443 LPI 3 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 DEP 0.5 2.5 5 10 15 20 25 30 35 40 *Depletion steps STA END

PAGE 111

96The CASMO Output File B4C/Al2O3 BPRAs in Guide Tubes 1* CASMO FLORIDA 01/09/17 STUDSVIK EXECUTION **/10/17 15:21:12 JOB=SUN STATE POINT NO = 11 PAGE = 50 4.66% W 15 X 15 BURNUP = 40.001 V= 0.0 TF= 990.0 TM= 583.0 BOR= 0.0 0AVERAGED NUMBER DENSITIES OF BURNABLE NUCLIDES AT 40.001 MWD/KGU (PREDICTOR VALUES) 922353.38395E+20 922361.29529E+20 932371.36062E+19 942384.78221E+18 922382.09984E+22 942391.44856E+20 942405.38837E+19 942413.39434E+19 942429.94680E+18 952411.20943E+18 952421.88044E+16 952432.08752E+18 962424.18442E+17 962445.63997E+17 922344.94141E+18 922391.15569E+16 932391.64438E+18 360833.30172E+18 451032.43528E+19 451055.17293E+16 471093.09587E+18 541312.03295E+19 551335.35389E+19 551345.95668E+18 541359.73151E+15 551352.38914E+19 601433.95859E+19 601452.96775E+19 611477.20507E+18 621473.60429E+18 611483.60476E+16 612487.00352E+16 621491.23624E+17 621501.26078E+19 621516.67084E+17 621524.41444E+18 631534.81895E+18 631541.38750E+18 631557.90027E+17 4011.25090E+21 4022.68875E+20 531351.98645E+16 611494.61385E+16 641557.34971E+15 0NUMBER DENSITIES AND WEIGHT PER CENTS OF BURNABLE ABSORBERS REGION = 18 5010 2.16377E+18 1.16047E-03 REGION = 26 5010 2.17615E+18 1.16711E-03 REGION = 33 5010 2.16933E+18 1.16345E-03 1* CASMO FLORIDA 01/09/17 STUDSVIK EXECUTION **/10/17 15:21:12 JOB=SUN STATE POINT NO = 12 PAGE = 51 4.66% W 15 X 15 BURNUP = 40.001 V= 0.0 TF= 990.0 TM= 583.0 BOR= 0.0 END INPUT CARD 0RESTART FILE NO. 12 WRITTEN. IDENTIFICATION = EXPOSURE = 40.0010 TYPE OF FILE = 470 STATEP = 12 1 C A S M O FLORIDA 01/09/17 STUDSVIK EXECUTION **/10/17 15:21:12 JOB=SUN PAGE = 52 0 ** C A S M O -3 SUMMARY ** 0 4.66% W 15 X 15 0 HVOI= 0.0 HTFU= 990.0 HTMO= 583.0 HBOR= 0.0 0 NO VOID TFU TMO BOR CRD BURNUP K-INF K-INF M2 PIN U-235 FISS PU TOT PU MWD/KG TWO-GROUP PEAK WT % WT % WT % 1 0.0 990.0 583.0 0.0 0.000 1.17578 1.17434 60.43 1.181 4.660 0.000 0.000 2 0.500 1.16864 1.16792 60.35 1.180 4.600 0.021 0.021 3 2.500 1.16169 1.16094 60.28 1.167 4.369 0.117 0.121 4 5.000 1.15374 1.15318 60.25 1.150 4.097 0.220 0.235 5 10.000 1.13789 1.13767 60.25 1.113 3.598 0.386 0.432 6 15.000 1.12763 1.12771 60.39 1.077 3.150 0.512 0.595 7 20.000 1.11715 1.11745 60.54 1.047 2.745 0.608 0.732 8 25.000 1.10053 1.10099 60.61 1.026 2.378 0.679 0.847 9 30.000 1.07586 1.07644 60.56 1.034 2.045 0.731 0.945 10 35.000 1.04589 1.04654 60.42 1.036 1.744 0.768 1.028 11 40.000 1.01400 1.01471 60.25 1.034 1.474 0.793 1.099 0NORMAL TERMINATION 0RUN STARTED (DATE,TIME): **/10/17 15:21:12 0RUN COMPLETED (DATE,TIME): **/10/17 15:21:22 Thu Oct 17 15:21:22 EDT 2002

PAGE 112

97 The CASMO Input File B4C/Al2O3 WABAs in Guide Tubes TIT TFU=881 TMO=600 BOR=0 *4.66% B4 W 15 X 15 *Crystal River-3 15x15 Assembly with B4C-AL2O2 WABA FUE 1 10.4/4.66 *FUEL COMP. #, DENSITY/ENRICHMENT PDE 33 *POWER DENSITY (W/Gu) MI2 17.8/5010=0.55 5011=2.22 6000=0.76 13000=51.04 8000=45.43 Mixture 2: B10, C, Al, O (BP Material) PIN 1 .4699 .4788 .5461/ '1' 'AIR' 'CAN' PIN 2 .28575 .33909 .35306 .40386 .41783 .48387 .632 .6731/ 'COO' 'CAN' 'AIR' 'MI2' 'AIR' 'CAN' 'COO' 'CAN'/3,4,8 WABA BPRA pin PIN 3 .632 .6731/ 'COO' 'CAN' *Center water hole PWR 15 1.443 21.81 PWR with pitch 1.443 LPI 3 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 DEP 0.5 2.5 5 10 15 20 25 30 35 40 *Depletion steps STA END

PAGE 113

98The CASMO Output File B4C/Al2O3 WABAs in Guide Tubes 1* CASMO FLORIDA 01/09/17 STUDSVIK EXECUTION **/05/26 10:24:32 JOB=SUN STATE POINT NO = 11 PAGE = 50 4.66% B4 W 15 X 15 BURNUP = 40.001 V= 0.0 TF= 881.0 TM= 600.0 BOR= 0.0 0AVERAGED NUMBER DENSITIES OF BURNABLE NUCLIDES AT 40.001 MWD/KGU (PREDICTOR VALUES) 922353.42592E+20 922361.30368E+20 932371.38516E+19 942384.96404E+18 922382.10674E+22 942391.46625E+20 942405.47323E+19 942413.45468E+19 942421.00040E+19 952411.22844E+18 952421.95653E+16 952432.15477E+18 962424.27586E+17 962445.94988E+17 922344.90979E+18 922391.16686E+16 932391.66056E+18 360833.30907E+18 451032.43628E+19 451055.20782E+16 471093.10410E+18 541312.02594E+19 551335.35358E+19 551346.09734E+18 541351.00056E+16 551352.43948E+19 601433.98479E+19 601452.96776E+19 611477.15349E+18 621473.56900E+18 611483.63167E+16 612487.09619E+16 621491.28383E+17 621501.27013E+19 621516.94417E+17 621524.38252E+18 631534.85879E+18 631541.42312E+18 631558.12991E+17 4011.25570E+21 4022.69616E+20 531351.99389E+16 611494.65411E+16 641557.89657E+15 0NUMBER DENSITIES AND WEIGHT PER CENTS OF BURNABLE ABSORBERS REGION = 54 5010 8.79955E+18 8.21914E-04 REGION = 62 5010 8.52727E+18 7.96482E-04 REGION = 69 5010 8.71919E+18 8.14408E-04 1* CASMO FLORIDA 01/09/17 STUDSVIK EXECUTION **/05/26 10:24:32 JOB=SUN STATE POINT NO = 12 PAGE = 51 4.66% B4 W 15 X 15 BURNUP = 40.001 V= 0.0 TF= 881.0 TM= 600.0 BOR= 0.0 END INPUT CARD 0RESTART FILE NO. 12 WRITTEN. IDENTIFICATION = EXPOSURE = 40.0010 TYPE OF FILE = 470 STATEP = 12 1 C A S M O FLORIDA 01/09/17 STUDSVIK EXECUTION **/05/26 10:24:32 JOB=SUN PAGE = 52 0 ** C A S M O -3 SUMMARY ** 0 4.66% B4 W 15 X 15 0 HVOI= 0.0 HTFU= 881.0 HTMO= 600.0 HBOR= 0.0 0 NO VOID TFU TMO BOR CRD BURNUP K-INF K-INF M2 PIN U-235 FISS PU TOT PU MWD/KG TWO-GROUP PEAK WT % WT % WT % 1 0.0 881.0 600.0 0.0 0.000 1.17404 1.17279 63.14 1.154 4.660 0.000 0.000 2 0.500 1.16686 1.16617 63.05 1.153 4.600 0.021 0.021 3 2.500 1.15893 1.15820 62.95 1.142 4.369 0.118 0.122 4 5.000 1.14995 1.14942 62.88 1.126 4.097 0.222 0.237 5 10.000 1.13309 1.13289 62.84 1.094 3.600 0.389 0.435 6 15.000 1.12299 1.12310 62.95 1.061 3.154 0.516 0.601 7 20.000 1.11357 1.11389 63.11 1.032 2.751 0.613 0.739 8 25.000 1.09792 1.09840 63.19 1.041 2.386 0.685 0.855 9 30.000 1.07344 1.07402 63.12 1.046 2.055 0.737 0.954 10 35.000 1.04337 1.04401 62.96 1.045 1.756 0.775 1.038 11 40.000 1.01159 1.01226 62.78 1.041 1.487 0.801 1.110 0NORMAL TERMINATION 0RUN STARTED (DATE,TIME): **/05/26 10:24:32 0RUN COMPLETED (DATE,TIME): **/05/26 10:24:41 Sun May 26 10:24:41 EDT 2002

PAGE 114

99 The CASMO Input File L-Carborane BPRAs in Guide Tubes TIT TFU=881 TMO=600 BOR=0 *4.66% B4 W 15 X 15 *Crystal River-3 15x15 Assembly with L-CARBORANE in guide tubes FUE 1 10.4/4.66 *FUEL COMP. #, DENSITY/ENRICHMENT PDE 33 *POWER DENSITY (W/Gu) MI2 0.9/6000=46.40 14000=29.60 8000=7.03 5010=1.90 1001=7.44 5011=7.63 Mixture 2: C, Si, O, B10, H (L-CARBORANE BP Material) PIN 1 .4699 .4788 .5461/ '1' 'AIR' 'CAN' PIN 2 .4699 .4788 .5461 .632 .6731/ 'MI2' 'AIR' 'CAN' 'COO' 'CAN'/1,3,5 BPRA pin homogenized 'AIR+CAN' and 'COO+CAN' PIN 3 .632 .6731/ 'COO' 'CAN' *Center water hole PWR 15 1.443 21.81 PWR with pitch 1.443 LPI 3 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 DEP 0.5 2.5 5 10 15 20 25 30 35 40 *Depletion steps STA END

PAGE 115

100The CASMO Output File L-Carborane BPRAs in Guide Tubes 1* CASMO FLORIDA 01/09/17 STUDSVIK EXECUTION **/10/17 15:21:32 JOB=SUN STATE POINT NO = 11 PAGE = 50 4.66% B4 W 15 X 15 BURNUP = 40.001 V= 0.0 TF= 881.0 TM= 600.0 BOR= 0.0 0AVERAGED NUMBER DENSITIES OF BURNABLE NUCLIDES AT 40.001 MWD/KGU (PREDICTOR VALUES) 922353.41740E+20 922361.30383E+20 932371.37804E+19 942384.91878E+18 922382.10706E+22 942391.44871E+20 942405.46151E+19 942413.41970E+19 942429.99274E+18 952411.21665E+18 952421.92596E+16 952432.13857E+18 962424.24837E+17 962445.86808E+17 922344.92222E+18 922391.16018E+16 932391.65054E+18 360833.31093E+18 451032.43809E+19 451055.19297E+16 471093.10162E+18 541312.03077E+19 551335.35975E+19 551346.05440E+18 541359.91692E+15 551352.43043E+19 601433.98045E+19 601452.97151E+19 611477.18344E+18 621473.58593E+18 611483.63080E+16 612487.07361E+16 621491.26699E+17 621501.26881E+19 621516.86910E+17 621524.40037E+18 631534.85200E+18 631541.41126E+18 631558.06217E+17 4011.25565E+21 4022.69675E+20 531351.99391E+16 611494.64922E+16 641557.73598E+15 0NUMBER DENSITIES AND WEIGHT PER CENTS OF BURNABLE ABSORBERS REGION = 18 5010 7.89642E+17 1.45873E-03 REGION = 26 5010 7.54460E+17 1.39373E-03 REGION = 33 5010 7.79906E+17 1.44074E-03 1* CASMO FLORIDA 01/09/17 STUDSVIK EXECUTION **/10/17 15:21:32 JOB=SUN STATE POINT NO = 12 PAGE = 51 4.66% B4 W 15 X 15 BURNUP = 40.001 V= 0.0 TF= 881.0 TM= 600.0 BOR= 0.0 END INPUT CARD 0RESTART FILE NO. 12 WRITTEN. IDENTIFICATION = EXPOSURE = 40.0010 TYPE OF FILE = 470 STATEP = 12 1 C A S M O FLORIDA 01/09/17 STUDSVIK EXECUTION **/10/17 15:21:32 JOB=SUN PAGE = 52 0 ** C A S M O -3 SUMMARY ** 0 4.66% B4 W 15 X 15 0 HVOI= 0.0 HTFU= 881.0 HTMO= 600.0 HBOR= 0.0 0 NO VOID TFU TMO BOR CRD BURNUP K-INF K-INF M2 PIN U-235 FISS PU TOT PU MWD/KG TWO-GROUP PEAK WT % WT % WT % 1 0.0 881.0 600.0 0.0 0.000 1.15867 1.15758 63.95 1.164 4.660 0.000 0.000 2 0.500 1.15226 1.15177 63.87 1.163 4.600 0.021 0.021 3 2.500 1.14731 1.14676 63.83 1.149 4.369 0.118 0.123 4 5.000 1.14216 1.14178 63.83 1.130 4.098 0.223 0.238 5 10.000 1.13254 1.13245 63.92 1.089 3.601 0.389 0.435 6 15.000 1.12936 1.12955 64.17 1.052 3.155 0.515 0.599 7 20.000 1.12330 1.12367 64.39 1.037 2.751 0.609 0.735 8 25.000 1.10629 1.10678 64.45 1.051 2.385 0.679 0.849 9 30.000 1.07901 1.07958 64.35 1.053 2.053 0.729 0.946 10 35.000 1.04715 1.04780 64.16 1.049 1.753 0.766 1.029 11 40.000 1.01448 1.01517 63.96 1.044 1.483 0.792 1.100 0NORMAL TERMINATION 0RUN STARTED (DATE,TIME): **/10/17 15:21:32 0RUN COMPLETED (DATE,TIME): **/10/17 15:21:42 Thu Oct 17 15:21:42 EDT 2002

PAGE 116

101 The MCNP Input File Water in Guide Tubes RESEARCH 15 X 15 ASSEMBLY WITH NO BPRA'S 4.66% ENRICH NO BORON 1 0 20 -21 22 -23 90 -91 FILL=1 VOL=1.712434E+05 2 1 -0.660 30 -31 32 -33 LAT=1 U=1 FILL=-7:7 -7:7 0:0 $ BOUNDRY OF ASSEMBLY 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 3 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 3 2 2 2 3 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 3 2 2 2 3 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 3 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 1 -0.660 -4 U=4 $WATER HOLE VOL=257.8345 4 3 -6.503 4 -5 U=4 $INTERIOR CLAD VOL=77.57637 5 1 -0.660 5 -6 U=4 $GUIDE TUBE WATER RADIUS VOL=113.8173 6 3 -6.503 6 -7 U=4 $GUIDE TUBE CLAD RADIUS VOL=60.32794 7 1 -0.660 #3 #4 #5 #6 U=4 $UNIT CELL WATER VOL=235.8889 8 4 -0.660 -4 U=3 $BPRA MATERIAL VOL=257.8345 9 3 -6.503 4 -5 U=3 $INTERIOR CLAD VOL=77.57637 10 1 -0.660 5 -6 U=3 $GUIDE TUBE WATER RADIUS VOL=113.8173 11 3 -6.503 6 -7 U=3 $GUIDE TUBE CLAD RADIUS VOL=60.32794 12 1 -0.660 #8 #9 #10 #11 U=3 $UNIT CELL WATER VOL=235.8889 13 2 -10.201 -8 U=2 $UO2 FUEL PELLET VOL=248.3383 14 0 8 -4 U=2 $GAP RADIUS VOL=9.496242 15 3 -6.503 4 -5 U=2 $FUEL PIN CLAD VOL=77.57637 16 1 -0.660 #13 #14 #15 U=2 $UNIT CELL WATER VOL=410.0342 17 1 -0.660 (-20:21:-22:23:-90:91) -9 $OUTSIDE OF ASSMBLY VOL=3518.23905 99 0 9 $VOID REGION OUTSIDE ASSEMBLY 20 PX -10.8225 21 PX 10.8225 22 PY -10.8225 23 PY 10.8225 C OUTSIDE OF ASSEMBLY LATICE 30 PX -0.7215 31 PX 0.7215 32 PY -0.7215 33 PY 0.7215 C OUTSIDE OF UNIT CELL (1.443 PITCH)

PAGE 117

102 4 CZ 0.4788 C CYLINDER BPRA / WATER HOLE / GAP RADIUS 5 CZ 0.5461 C CYLINDER INTERIOR CLAD RADIUS 6 CZ 0.6320 C CYLINDER WATER RADIUS GUIDE TUBE 7 CZ 0.6731 C CYLINDER CLAD RADIUS GUIDE TUBE 8 CZ 0.4699 C CYLINDER RADIUS OF FUEL PELLET *9 RPP -10.905 10.905 -10.905 10.905 -180 180 C RECT PARALLEL PIPED OUTSIDE OF ASSEMBLY 90 PZ -179 91 PZ 179 MODE N IMP:N 1.0 16R 0.0 KCODE 2000 1.3 5 55 500 KSRC 1.443 0.0 0.0 M1 8016.60C -8.88100E+01 1001.60C -1.11900E+01 MT1 LWTR.04T $H20 AT 600 K M2 92235.54C -4.10779E+00 92238.54C -8.40421623E+01 8016.54C -1.18500E+01 $UO2 4.66% at 881K EN M3 40000.60C 1.0 $ZIRCONIUM (APPROX. FOR ZIRCALLOY) M4 8016.60C -8.88100E+01 1001.60C -1.11900E+01 MT4 LWTR.04T $H20 AT 600 K PRINT The MONTEBURNS Input File Water in Guide Tubes RESEARCH 15 X 15 ASSEMBLY WITH NO BPRA'S 4.66% ENRICH NO BORON PC Type of Operating System 2 Two MCNP Materials to burn (fuel cells / BPRAs) 2 MCNP material number #2 (will burn all cells with this mat) 4 MCNP material number #4 (will burn all cells with this mat) 51654.38 Material #2 volume (cc) 4125.353 Material #4 volume (cc) 17.75 Power in MWt (for the entire system in MCNP) -180.88 Recov. energy/fis (MeV); if negative use for U235, ratio isos 657.36 Total number of days burned (used if no feed) 6 Number of outer burn steps 60 Number of internal burn steps (multiple of 10) 1 Number of predictor steps (+1 on first step), 1 usually sufficient 0 Step number to restart after (0=beginning) PWRU50 number of default origen2 lib next line is origen2 lib location c:\Origen2\Libs .005 fractional importance (track isos with abs,fis,atom,mass fraction) 1 Intermediate keff calc. 0) No 1) Yes 2 Number of automatic tally isotopes, followed by list. 92235.54c 92238.54c 2 8016.60C 1001.60C

PAGE 118

103The MONTEBURNS Output F ile Water in Guide Tubes RESEARCH 15 X 15 ASSEMBLY WITH NO BPRA'S 4.66% ENRICH NO BORON Total Power (MW) = 1.78E+01 Days = 6.57E+02 # outer steps = 6, # inner steps = 60, # predictor steps = 1 Importance Fraction = 0.0050 Monteburns MCNP k-eff Versus Time days k-eff rel err nu avQfis eta 0m 0.00 1.41023 0.00186 2.456 181.052 1.443 1m 54.78 1.34293 0.00172 2.482 181.479 1.357 1e 109.56 1.31922 0.00208 2.500 2m 164.34 1.29418 0.00160 2.525 182.160 1.304 2e 219.12 1.26789 0.00191 2.543 3m 273.90 1.24603 0.00204 2.557 182.749 1.251 3e 328.68 1.22871 0.00154 2.576 4m 383.46 1.21029 0.00232 2.586 183.251 1.207 4e 438.24 1.19009 0.00158 2.602 5m 493.02 1.17565 0.00191 2.613 183.726 1.170 5e 547.80 1.16014 0.00201 2.629 6m 602.58 1.14384 0.00188 2.639 184.160 1.139 6e 657.36 1.12101 0.00235 2.647 Monteburns Transport History Monteburns Transport History for material 1 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.052 2.92E+14 4.05E-02 1.77E+01 3.428E+02 0.000E+00 3.98E-01 5.94E-01 1.49E+00 1.50E-03 1.473 1.19E+00 1.78E+00 1.50E+00 4.51E-03 1.476 1 181.479 3.07E+14 3.85E-02 1.77E+01 3.430E+02 4.178E+00 4.38E-01 5.64E-01 1.29E+00 1.47E-03 1.400 1.22E+00 1.70E+00 1.39E+00 4.43E-03 1.448 2 182.160 3.21E+14 3.69E-02 1.79E+01 3.458E+02 8.392E+00 4.73E-01 5.40E-01 1.14E+00 1.58E-03 1.349 1.31E+00 1.63E+00 1.25E+00 4.76E-03 1.404 3 182.749 3.35E+14 3.48E-02 1.77E+01 3.422E+02 1.256E+01 4.99E-01 5.12E-01 1.03E+00 1.63E-03 1.298 1.35E+00 1.55E+00 1.14E+00 4.92E-03 1.368 4 183.251 3.48E+14 3.34E-02 1.77E+01 3.419E+02 1.673E+01 5.22E-01 4.92E-01 9.41E-01 1.59E-03 1.257 1.40E+00 1.49E+00 1.06E+00 4.83E-03 1.337 5 183.726 3.61E+14 3.23E-02 1.77E+01 3.435E+02 2.092E+01 5.43E-01 4.76E-01 8.75E-01 1.65E-03 1.223 1.44E+00 1.45E+00 1.00E+00 5.01E-03 1.313 6 184.160 3.75E+14 3.12E-02 1.79E+01 3.456E+02 2.513E+01 5.59E-01 4.60E-01 8.23E-01 1.70E-03 1.195 1.48E+00 1.41E+00 9.52E-01 5.18E-03 1.291 Monteburns Transport History for material 2 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 0.000 2.96E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 2.18E-02 0.00E+00 0.00E+00 0.00E+00 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 1 0.000 3.11E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 2.10E-02 0.00E+00 0.00E+00 0.00E+00 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 2 0.000 3.26E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 2.04E-02 0.00E+00 0.00E+00 0.00E+00 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 3 0.000 3.42E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 2.00E-02 0.00E+00 0.00E+00 0.00E+00 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 4 0.000 3.54E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 1.99E-02 0.00E+00 0.00E+00 0.00E+00 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 5 0.000 3.66E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 1.96E-02 0.00E+00 0.00E+00 0.00E+00 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 6 0.000 3.81E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 2.00E-02 0.00E+00 0.00E+00 0.00E+00 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 Monteburns Flux Spectrum Monteburns Flux Spectrum for material 1 <.1eV <1eV <100eV <100keV <1MeV <20MeV 0 4.02 8.29 11.39 26.36 25.79 24.15 1 3.72 7.93 11.50 26.53 25.96 24.36 2 3.66 7.51 11.55 26.70 26.03 24.55 3 3.55 7.20 11.48 26.93 26.07 24.76 4 3.57 7.06 11.49 26.89 26.17 24.82 5 3.61 6.97 11.53 26.96 26.13 24.80 6 3.71 6.95 11.43 26.96 26.12 24.84

PAGE 119

104 Monteburns Flux Spectrum for material 2 <.1eV <1eV <100eV <100keV <1MeV <20MeV 0 6.54 10.18 12.83 26.35 22.93 21.16 1 6.21 9.87 12.63 26.68 23.24 21.36 2 5.99 9.63 12.79 26.92 23.29 21.37 3 5.87 9.29 12.83 27.21 23.16 21.64 4 5.90 9.18 12.80 26.81 23.65 21.64 5 5.75 9.03 13.01 27.06 23.38 21.77 6 5.99 8.93 12.90 27.17 23.20 21.81 Monteburns 1-group n,gamma Cross Sections Monteburns 1-group n,gamma Cross Sections for material 1 92235.54c 92238.54c 0 8.38E+00 8.33E-01 1 8.09E+00 8.41E-01 2 7.96E+00 8.42E-01 3 7.79E+00 8.40E-01 4 7.78E+00 8.41E-01 5 7.86E+00 8.42E-01 6 7.92E+00 8.40E-01 Monteburns 1-group n,gamma Cross Sections for material 2 8016.60C 1001.60C 0 1.79E-05 3.11E-02 1 1.71E-05 2.98E-02 2 1.66E-05 2.89E-02 3 1.62E-05 2.83E-02 4 1.61E-05 2.81E-02 5 1.59E-05 2.76E-02 6 1.62E-05 2.82E-02 Monteburns 1-group Fission Cross Sections Monteburns 1-group Fission Cross Sections for material 1 92235.54c 92238.54c 0 3.57E+01 1.01E-01 1 3.39E+01 1.02E-01 2 3.31E+01 1.03E-01 3 3.21E+01 1.04E-01 4 3.19E+01 1.04E-01 5 3.21E+01 1.05E-01 6 3.26E+01 1.05E-01 Monteburns 1-group Fission Cross Sections for material 2 8016.60C 1001.60C 0 2.74E-06 0.00E+00 1 1.84E-06 0.00E+00 2 3.32E-06 0.00E+00 3 6.31E-06 0.00E+00 4 6.48E-06 0.00E+00 5 7.84E-06 0.00E+00 6 6.62E-06 0.00E+00 Monteburns Fission-to-Capture Ratio Monteburns Fission-to-Capture Ratio for material 1 92235.54c 92238.54c 0 4.2583 0.1216 1 4.1879 0.1216 2 4.1515 0.1226 3 4.1193 0.1243 4 4.1034 0.1240 5 4.0886 0.1243 6 4.1113 0.1251 Monteburns Fission-to-Capture Ratio for material 2 8016.60C 1001.60C 0 0.0000 0.0000 1 0.0000 0.0000 2 0.0000 0.0000 3 0.0000 0.0000 4 0.0000 0.0000 5 0.0000 0.0000 6 0.0000 0.0000 Monteburns Grams of Material at Beginning of Steps Monteburns Grams of Material at Begin. of Steps for material 1 92235.54c 92238.54c actinide 0 2.16E+04 4.43E+05 4.64E+05 1 2.16E+04 4.43E+05 4.64E+05 2 1.92E+04 4.42E+05 4.62E+05 3 1.69E+04 4.40E+05 4.60E+05 4 1.49E+04 4.39E+05 4.58E+05 5 1.31E+04 4.38E+05 4.55E+05 6 1.14E+04 4.36E+05 4.53E+05 Monteburns Grams of Material at Begin. of Steps for material 2 8016.60C 1001.60C actinide 0 2.42E+03 3.05E+02 0.00E+00 1 2.42E+03 3.05E+02 0.00E+00 2 2.42E+03 3.05E+02 0.00E+00 3 2.42E+03 3.05E+02 0.00E+00

PAGE 120

105 4 2.42E+03 3.05E+02 0.00E+00 5 2.42E+03 3.05E+02 0.00E+00 6 2.42E+03 3.05E+02 0.00E+00 Monteburns Grams of Material at End of Steps Monteburns Grams of Material at End of Steps for material 1 92235.54c 92238.54c actinide 0 2.16E+04 4.43E+05 4.64E+05 1 1.92E+04 4.42E+05 4.62E+05 2 1.69E+04 4.40E+05 4.60E+05 3 1.49E+04 4.39E+05 4.58E+05 4 1.31E+04 4.38E+05 4.55E+05 5 1.14E+04 4.36E+05 4.53E+05 6 9.87E+03 4.35E+05 4.51E+05 Monteburns Grams of Material at End of Steps for material 2 8016.60C 1001.60C actinide 0 2.42E+03 3.05E+02 0.00E+00 1 2.42E+03 3.05E+02 0.00E+00 2 2.42E+03 3.05E+02 0.00E+00 3 2.42E+03 3.05E+02 0.00E+00 4 2.42E+03 3.05E+02 0.00E+00 5 2.42E+03 3.05E+02 0.00E+00 6 2.42E+03 3.04E+02 0.00E+00 Monteburns Activity (Ci) of Material at End of Steps Monteburns Activities (Ci) for material 1 92235.54c 92238.54c actinide 0 4.68E-02 1.49E-01 1.96E-01 1 4.14E-02 1.48E-01 1.90E-01 2 3.66E-02 1.48E-01 1.85E-01 3 3.22E-02 1.48E-01 1.80E-01 4 2.83E-02 1.47E-01 1.75E-01 5 2.46E-02 1.47E-01 1.71E-01 6 2.13E-02 1.46E-01 1.67E-01 Monteburns Activities (Ci) for material 2 8016.60C 1001.60C actinide 0 0.00E+00 0.00E+00 1.96E-01 1 0.00E+00 0.00E+00 1.90E-01 2 0.00E+00 0.00E+00 1.85E-01 3 0.00E+00 0.00E+00 1.80E-01 4 0.00E+00 0.00E+00 1.75E-01 5 0.00E+00 0.00E+00 1.71E-01 6 0.00E+00 0.00E+00 1.67E-01 Monteburns Heatload (W) of Material at End of Steps Monteburns Heatloads (W) for material 1 92235.54c 92238.54c actinide 0 1.23E-03 3.78E-03 5.00E-03 1 1.08E-03 3.77E-03 4.85E-03 2 9.58E-04 3.76E-03 4.71E-03 3 8.44E-04 3.74E-03 4.59E-03 4 7.40E-04 3.73E-03 4.47E-03 5 6.45E-04 3.72E-03 4.37E-03 6 5.59E-04 3.71E-03 4.27E-03 Monteburns Heatloads (W) for material 2 8016.60C 1001.60C actinide 0 0.00E+00 0.00E+00 5.00E-03 1 0.00E+00 0.00E+00 4.85E-03 2 0.00E+00 0.00E+00 4.71E-03 3 0.00E+00 0.00E+00 4.59E-03 4 0.00E+00 0.00E+00 4.47E-03 5 0.00E+00 0.00E+00 4.37E-03 6 0.00E+00 0.00E+00 4.27E-03 Monteburns Inhalation Toxicity (m^3 air) of Material at End of Steps Monteburns Inhalation Toxicities (m^3 air) for material 1 92235.54c 92238.54c actinide 0 2.34E+09 4.96E+10 5.20E+10 1 2.07E+09 4.95E+10 5.16E+10 2 1.83E+09 4.93E+10 5.12E+10 3 1.61E+09 4.92E+10 5.08E+10 4 1.41E+09 4.90E+10 5.05E+10 5 1.23E+09 4.89E+10 5.01E+10 6 1.07E+09 4.87E+10 4.98E+10 Monteburns Inhalation Toxicities (m^3 air) for material 2 8016.60C 1001.60C actinide 0 0.00E+00 0.00E+00 5.20E+10 1 0.00E+00 0.00E+00 5.16E+10 2 0.00E+00 0.00E+00 5.12E+10 3 0.00E+00 0.00E+00 5.08E+10 4 0.00E+00 0.00E+00 5.05E+10 5 0.00E+00 0.00E+00 5.01E+10 6 0.00E+00 0.00E+00 4.98E+10 Monteburns Ingestion Toxicity (m^3 water) of Material at End of Steps Monteburns Ingestion Toxicities (m^3 water) for material 1

PAGE 121

106 92235.54c 92238.54c actinide 0 1.56E+03 3.72E+03 5.28E+03 1 1.38E+03 3.71E+03 5.09E+03 2 1.22E+03 3.70E+03 4.92E+03 3 1.07E+03 3.69E+03 4.76E+03 4 9.42E+02 3.68E+03 4.62E+03 5 8.21E+02 3.67E+03 4.49E+03 6 7.11E+02 3.65E+03 4.37E+03 Monteburns Ingestion Toxicities (m^3 water) for material 2 8016.60C 1001.60C actinide 0 0.00E+00 0.00E+00 5.28E+03 1 0.00E+00 0.00E+00 5.09E+03 2 0.00E+00 0.00E+00 4.92E+03 3 0.00E+00 0.00E+00 4.76E+03 4 0.00E+00 0.00E+00 4.62E+03 5 0.00E+00 0.00E+00 4.49E+03 6 0.00E+00 0.00E+00 4.37E+03 Monteburns Inventory Monteburns Grams of Feed per Step for material 1 mat # days 92235.54c 92238.54c actinide 1 109.56 0.00E+00 0.00E+00 0.00E+00 2 109.56 0.00E+00 0.00E+00 0.00E+00 3 109.56 0.00E+00 0.00E+00 0.00E+00 4 109.56 0.00E+00 0.00E+00 0.00E+00 5 109.56 0.00E+00 0.00E+00 0.00E+00 6 109.56 0.00E+00 0.00E+00 0.00E+00 tot 657.36 0.00E+00 0.00E+00 0.00E+00 Monteburns Grams Produced (or Destroyed) for material 1 92235.54c 92238.54c actinide 1 -2.48E+03 -1.21E+03 -2.24E+03 2 -2.25E+03 -1.29E+03 -2.28E+03 3 -2.01E+03 -1.33E+03 -2.24E+03 4 -1.83E+03 -1.38E+03 -2.23E+03 5 -1.67E+03 -1.43E+03 -2.23E+03 6 -1.53E+03 -1.48E+03 -2.24E+03 tot-1.53E+03 -1.48E+03 -2.24E+03 Summary of Inventory/Feed/Production for material 1 (MCNP Material Number 2) 92235.54c 92238.54c actinide ini 2.16E+04 4.43E+05 4.64E+05 fin 9.87E+03 4.35E+05 4.51E+05 fed 0.00E+00 0.00E+00 0.00E+00 net-1.53E+03 -1.48E+03 -2.24E+03 Monteburns Grams of Feed per Step for material 2 mat # days 8016.60C 1001.60C actinide 1 109.56 0.00E+00 0.00E+00 0.00E+00 2 109.56 0.00E+00 0.00E+00 0.00E+00 3 109.56 0.00E+00 0.00E+00 0.00E+00 4 109.56 0.00E+00 0.00E+00 0.00E+00 5 109.56 0.00E+00 0.00E+00 0.00E+00 6 109.56 0.00E+00 0.00E+00 0.00E+00 tot 657.36 0.00E+00 0.00E+00 0.00E+00 Monteburns Grams Produced (or Destroyed) for material 2 8016.60C 1001.60C actinide 1 0.00E+00 -3.00E-02 0.00E+00 2 0.00E+00 -3.00E-02 0.00E+00 3 0.00E+00 -3.00E-02 0.00E+00 4 0.00E+00 -3.00E-02 0.00E+00 5 0.00E+00 -3.00E-02 0.00E+00 6 0.00E+00 -3.00E-02 0.00E+00 tot 0.00E+00 -3.00E-02 0.00E+00 Summary of Inventory/Feed/Production for material 2 (MCNP Material Number 4) 8016.60C 1001.60C actinide ini 2.42E+03 3.05E+02 0.00E+00 fin 2.42E+03 3.04E+02 0.00E+00 fed 0.00E+00 0.00E+00 0.00E+00 net 0.00E+00 -3.00E-02 0.00E+00 Monteburns Inventory (cont.) Feed Rate (g/day) for material 1 (MCNP Material Number 2) 92235.54c 92238.54c actinide 1 0.00E+00 0.00E+00 0.00E+00 2 0.00E+00 0.00E+00 0.00E+00 3 0.00E+00 0.00E+00 0.00E+00 4 0.00E+00 0.00E+00 0.00E+00 5 0.00E+00 0.00E+00 0.00E+00 6 0.00E+00 0.00E+00 0.00E+00 Production/Destruction Rate (g/day) for material 1 (MCNP Material Number 2) 92235.54c 92238.54c actinide 1 -2.26E+01 -1.10E+01 -2.04E+01 2 -2.05E+01 -1.18E+01 -2.08E+01 3 -1.83E+01 -1.21E+01 -2.04E+01 4 -1.67E+01 -1.26E+01 -2.04E+01 5 -1.52E+01 -1.31E+01 -2.04E+01 6 -1.39E+01 -1.35E+01 -2.05E+01

PAGE 122

107 Feed Rate (g/day) for material 2 (MCNP Material Number 4) 8016.60C 1001.60C actinide 1 0.00E+00 0.00E+00 0.00E+00 2 0.00E+00 0.00E+00 0.00E+00 3 0.00E+00 0.00E+00 0.00E+00 4 0.00E+00 0.00E+00 0.00E+00 5 0.00E+00 0.00E+00 0.00E+00 6 0.00E+00 0.00E+00 0.00E+00 Production/Destruction Rate (g/day) for material 2 (MCNP Material Number 4) 8016.60C 1001.60C actinide 1 0.00E+00 -2.74E-04 0.00E+00 2 0.00E+00 -2.74E-04 0.00E+00 3 0.00E+00 -2.74E-04 0.00E+00 4 0.00E+00 -2.74E-04 0.00E+00 5 0.00E+00 -2.74E-04 0.00E+00 6 0.00E+00 -2.74E-04 0.00E+00 The MCNP Input File B4C/Al2O3 BPRAs in Guide Tubes RESEARCH 15 X 15 ASSEMBLY WITH B4CAL2O3 BPRA'S 4.66% ENRICH NO BORON 1 0 20 -21 22 -23 90 -91 FILL=1 VOL=1.712434E+05 2 1 -0.660 30 -31 32 -33 LAT=1 U=1 FILL=-7:7 -7:7 0:0 $ BOUNDRY OF ASSEMBLY 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 3 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 3 2 2 2 3 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 $PIN LAYOUT REPEATED LATTICE 2 2 2 2 2 2 2 4 2 2 2 2 2 2 2 $EACH UNIVERSE "U" NUMBER IS 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 $DIFFERENT TYPE OF UNIT CELL 2 2 3 2 2 3 2 2 2 3 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 3 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 1 -0.660 -4 U=4 $WATER HOLE VOL=257.8345 4 3 -6.503 4 -5 U=4 $INTERIOR CLAD VOL=77.57637 5 1 -0.660 5 -6 U=4 $GUIDE TUBE WATER RADIUS VOL=113.8173 6 3 -6.503 6 -7 U=4 $GUIDE TUBE CLAD RADIUS VOL=60.32794 7 1 -0.660 #3 #4 #5 #6 U=4 $UNIT CELL WATER VOL=235.8889 8 4 -3.1 -4 U=3 $BPRA MATERIAL VOL=257.8345 9 3 -6.503 4 -5 U=3 $INTERIOR CLAD VOL=77.57637 10 1 -0.660 5 -6 U=3 $GUIDE TUBE WATER RADIUS VOL=113.8173 11 3 -6.503 6 -7 U=3 $GUIDE TUBE CLAD RADIUS VOL=60.32794 12 1 -0.660 #8 #9 #10 #11 U=3 $UNIT CELL WATER VOL=235.8889 13 2 -10.201 -8 U=2 $UO2 FUEL PELLET VOL=248.3383 14 0 8 -4 U=2 $GAP RADIUS VOL=9.496242 15 3 -6.503 4 -5 U=2 $FUEL PIN CLAD VOL=77.57637 16 1 -0.660 #13 #14 #15 U=2 $UNIT CELL WATER VOL=410.0342

PAGE 123

108 17 1 -0.660 (-20:21:-22:23:-90:91) -9 $OUTSIDE OF ASSMBLY VOL=3518.23905 99 0 9 $VOID REGION OUTSIDE ASSEMBLY 20 PX -10.8225 21 PX 10.8225 22 PY -10.8225 23 PY 10.8225 C OUTSIDE OF ASSEMBLY LATICE 30 PX -0.7215 31 PX 0.7215 32 PY -0.7215 33 PY 0.7215 C OUTSIDE OF UNIT CELL (1.443 PITCH) 4 CZ 0.4788 C CYLINDER BPRA / WATER HOLE / GAP RADIUS 5 CZ 0.5461 C CYLINDER INTERIOR CLAD RADIUS 6 CZ 0.6320 C CYLINDER WATER RADIUS GUIDE TUBE 7 CZ 0.6731 C CYLINDER CLAD RADIUS GUIDE TUBE 8 CZ 0.4699 C CYLINDER RADIUS OF FUEL PELLET *9 RPP -10.905 10.905 -10.905 10.905 -180 180 C RECT PARALLEL PIPED OUTSIDE OF ASSEMBLY 90 PZ -179 91 PZ 179 MODE N IMP:N 1.0 16R 0.0 KCODE 2000 1.3 5 55 500 KSRC 1.443 0.0 0.0 M1 8016.60C -8.88100E+01 1001.60C -1.11900E+01 MT1 LWTR.04T $H20 AT 600 K M2 92235.54C -4.10779E+00 92238.54C -8.40421623E+01 8016.54C -1.18500E+01 $UO2 4.66% at 881K EN M3 40000.60C 1.0 $ZIRCONIUM (APPROX. FOR ZIRCALLOY) M4 5010.50C -0.55 5011.56C -2.22 6000.60C -0.76 13027.60C -51.04 8016.54C -45.43 $B4CAL2O3 BP MATERIAL PRINT The MONTEBURNS Input File B4C/Al2O3 BPRAs in Guide Tubes RESEARCH 15 X 15 ASSEMBLY WITH B4CAL2O3 BPRA'S 4.66% ENRICH NO BORON PC Type of Operating System 2 Two MCNP Materials to burn (fuel cells/BPRAs) 2 MCNP material number #2 (will burn all cells with this mat) 4 MCNP material number #4 (will burn all cells with this mat) 51654.376 Material #2 volume (cc) 4125.353 Material #4 volume (cc) 17.75 Power in MWt (for the entire system in MCNP) -180.88 Recov. energy/fis (MeV); if negative use for U235, ratio isos 657.36 Total number of days burned (used if no feed) 6 Number of outer burn steps 60 Number of internal burn steps (multiple of 10) 1 Number of predictor steps (+1 on first step), 1 usually sufficient 0 Step number to restart after (0=beginning) PWRU50 number of default origen2 lib next line is origen2 lib location c:\Origen2\Libs .005 fractional importance (track isos with abs,fis,atom,mass fraction) 1 Intermediate keff calc. 0) No 1) Yes

PAGE 124

109 2 Number of automatic tally isotopes, followed by list. 92235.54c 92238.54c 1 5010.50C

PAGE 125

110The MONTEBURNS Output File B4C/Al2O3 BPRAs in Guide Tubes RESEARCH 15 X 15 ASSEMBLY WITH B4CAL2O3 BPRA'S 4.66% ENRICH NO BORON Total Power (MW) = 1.78E+01 Days = 6.57E+02 # outer steps = 6, # inner steps = 60, # predictor steps = 1 Importance Fraction = 0.0050 Monteburns MCNP k-eff Versus Time days k-eff rel err nu avQfis eta 0m 0.00 1.18653 0.00220 2.463 181.087 1.397 1m 54.78 1.15113 0.00196 2.495 181.564 1.324 1e 109.56 1.15168 0.00228 2.511 2m 164.34 1.14744 0.00223 2.529 182.319 1.269 2e 219.12 1.14184 0.00219 2.554 3m 273.90 1.13869 0.00224 2.565 182.921 1.226 3e 328.68 1.14499 0.00206 2.588 4m 383.46 1.13572 0.00215 2.597 183.432 1.192 4e 438.24 1.13869 0.00217 2.610 5m 493.02 1.13326 0.00193 2.619 183.881 1.161 5e 547.80 1.12608 0.00228 2.639 6m 602.58 1.12037 0.00194 2.643 184.294 1.129 6e 657.36 1.10847 0.00225 2.655 Monteburns Transport History Monteburns Transport History for material 1 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.087 3.47E+14 3.41E-02 1.77E+01 3.436E+02 0.000E+00 3.78E-01 5.00E-01 1.32E+00 1.63E-03 1.405 1.13E+00 1.50E+00 1.33E+00 4.90E-03 1.408 1 181.564 3.59E+14 3.30E-02 1.78E+01 3.449E+02 4.202E+00 4.15E-01 4.83E-01 1.17E+00 1.55E-03 1.346 1.16E+00 1.45E+00 1.25E+00 4.66E-03 1.390 2 182.319 3.64E+14 3.22E-02 1.77E+01 3.428E+02 8.379E+00 4.50E-01 4.73E-01 1.05E+00 1.64E-03 1.300 1.25E+00 1.43E+00 1.14E+00 4.95E-03 1.351 3 182.921 3.72E+14 3.15E-02 1.77E+01 3.435E+02 1.256E+01 4.84E-01 4.63E-01 9.58E-01 1.51E-03 1.258 1.32E+00 1.40E+00 1.06E+00 4.56E-03 1.325 4 183.432 3.76E+14 3.10E-02 1.77E+01 3.430E+02 1.674E+01 5.09E-01 4.56E-01 8.96E-01 1.55E-03 1.230 1.37E+00 1.39E+00 1.01E+00 4.69E-03 1.307 5 183.881 3.81E+14 3.06E-02 1.77E+01 3.436E+02 2.093E+01 5.33E-01 4.51E-01 8.45E-01 1.60E-03 1.203 1.42E+00 1.38E+00 9.66E-01 4.88E-03 1.290 6 184.294 3.89E+14 2.98E-02 1.77E+01 3.423E+02 2.510E+01 5.51E-01 4.39E-01 7.97E-01 1.61E-03 1.175 1.47E+00 1.34E+00 9.17E-01 4.92E-03 1.268 Monteburns Transport History for material 2 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 0.000 3.15E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 1.26E+00 0.00E+00 0.00E+00 8.84E-07 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 1 0.000 3.31E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 1.12E+00 0.00E+00 0.00E+00 4.76E-07 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 2 0.000 3.41E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 8.75E-01 0.00E+00 0.00E+00 1.03E-06 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 3 0.000 3.56E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 6.12E-01 0.00E+00 0.00E+00 1.51E-07 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 4 0.000 3.68E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 3.95E-01 0.00E+00 0.00E+00 1.22E-06 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 5 0.000 3.77E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 2.25E-01 0.00E+00 0.00E+00 1.03E-06 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 6 0.000 3.89E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 1.08E-01 0.00E+00 0.00E+00 1.53E-06 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 Monteburns Flux Spectrum Monteburns Flux Spectrum for material 1 <.1eV <1eV <100eV <100keV <1MeV <20MeV 0 3.06 7.06 11.41 27.36 26.62 24.50 1 2.87 6.79 11.58 27.45 26.75 24.57 2 2.84 6.55 11.56 27.47 26.76 24.82 3 2.85 6.40 11.53 27.58 26.68 24.96 4 2.96 6.33 11.58 27.53 26.68 24.93 5 3.11 6.35 11.55 27.44 26.58 24.96 6 3.19 6.38 11.54 27.52 26.66 24.71

PAGE 126

111 Monteburns Flux Spectrum for material 2 <.1eV <1eV <100eV <100keV <1MeV <20MeV 0 1.23 4.56 11.84 30.36 27.69 24.32 1 1.33 4.86 12.20 30.09 27.51 24.01 2 1.72 5.38 12.50 29.48 27.05 23.89 3 2.18 6.02 12.66 28.92 26.48 23.73 4 2.87 6.57 12.59 28.72 26.13 23.12 5 3.57 7.08 12.81 28.13 25.57 22.83 6 4.18 7.23 12.58 28.18 25.42 22.39 Monteburns 1-group n,gamma Cross Sections Monteburns 1-group n,gamma Cross Sections for material 1 92235.54c 92238.54c 0 7.35E+00 8.21E-01 1 7.15E+00 8.22E-01 2 7.08E+00 8.24E-01 3 7.06E+00 8.30E-01 4 7.14E+00 8.29E-01 5 7.27E+00 8.32E-01 6 7.37E+00 8.34E-01 Monteburns 1-group n,gamma Cross Sections for material 2 5010.50C 0 1.50E-02 1 1.61E-02 2 1.85E-02 3 2.14E-02 4 2.50E-02 5 2.91E-02 6 3.18E-02 Monteburns 1-group Fission Cross Sections Monteburns 1-group Fission Cross Sections for material 1 92235.54c 92238.54c 0 2.97E+01 1.03E-01 1 2.85E+01 1.03E-01 2 2.80E+01 1.04E-01 3 2.78E+01 1.05E-01 4 2.82E+01 1.05E-01 5 2.89E+01 1.05E-01 6 2.94E+01 1.04E-01 Monteburns 1-group Fission Cross Sections for material 2 5010.50C 0 2.74E-03 1 2.72E-03 2 2.71E-03 3 2.68E-03 4 2.64E-03 5 2.61E-03 6 2.57E-03 Monteburns Fission-to-Capture Ratio Monteburns Fission-to-Capture Ratio for material 1 92235.54c 92238.54c 0 4.0380 0.1254 1 3.9795 0.1254 2 3.9508 0.1265 3 3.9428 0.1264 4 3.9494 0.1264 5 3.9758 0.1264 6 3.9837 0.1246 Monteburns Fission-to-Capture Ratio for material 2 5010.50C 0 0.0000 1 0.0000 2 0.0000 3 0.0000 4 0.0000 5 0.0000 6 0.0000 Monteburns Grams of Material at Beginning of Steps Monteburns Grams of Material at Begin. of Steps for material 1 92235.54c 92238.54c actinide 0 2.16E+04 4.43E+05 4.64E+05 1 2.16E+04 4.43E+05 4.64E+05 2 1.92E+04 4.41E+05 4.62E+05 3 1.70E+04 4.40E+05 4.60E+05 4 1.50E+04 4.39E+05 4.58E+05 5 1.33E+04 4.37E+05 4.55E+05 6 1.16E+04 4.36E+05 4.53E+05 Monteburns Grams of Material at Begin. of Steps for material 2 5010.50C actinide 0 7.03E+01 0.00E+00 1 7.03E+01 0.00E+00 2 4.77E+01 0.00E+00 3 3.02E+01 0.00E+00

PAGE 127

112 4 1.73E+01 0.00E+00 5 8.86E+00 0.00E+00 6 3.98E+00 0.00E+00 Monteburns Grams of Material at End of Steps Monteburns Grams of Material at End of Steps for material 1 92235.54c 92238.54c actinide 0 2.16E+04 4.43E+05 4.64E+05 1 1.92E+04 4.41E+05 4.62E+05 2 1.70E+04 4.40E+05 4.60E+05 3 1.50E+04 4.39E+05 4.58E+05 4 1.33E+04 4.37E+05 4.55E+05 5 1.16E+04 4.36E+05 4.53E+05 6 1.02E+04 4.34E+05 4.51E+05 Monteburns Grams of Material at End of Steps for material 2 5010.50C actinide 0 7.03E+01 0.00E+00 1 4.77E+01 0.00E+00 2 3.02E+01 0.00E+00 3 1.73E+01 0.00E+00 4 8.86E+00 0.00E+00 5 3.98E+00 0.00E+00 6 1.62E+00 0.00E+00 Monteburns Activity (Ci) of Material at End of Steps Monteburns Activities (Ci) for material 1 92235.54c 92238.54c actinide 0 4.68E-02 1.49E-01 1.96E-01 1 4.14E-02 1.48E-01 1.90E-01 2 3.67E-02 1.48E-01 1.85E-01 3 3.25E-02 1.47E-01 1.80E-01 4 2.86E-02 1.47E-01 1.76E-01 5 2.51E-02 1.46E-01 1.72E-01 6 2.20E-02 1.46E-01 1.68E-01 Monteburns Activities (Ci) for material 2 5010.50C actinide 0 0.00E+00 1.49E-01 1 0.00E+00 1.48E-01 2 0.00E+00 1.48E-01 3 0.00E+00 1.47E-01 4 0.00E+00 1.47E-01 5 0.00E+00 1.46E-01 6 0.00E+00 1.46E-01 Monteburns Heatload (W) of Material at End of Steps Monteburns Heatloads (W) for material 1 92235.54c 92238.54c actinide 0 1.23E-03 3.78E-03 5.00E-03 1 1.09E-03 3.76E-03 4.85E-03 2 9.62E-04 3.75E-03 4.71E-03 3 8.51E-04 3.74E-03 4.59E-03 4 7.50E-04 3.73E-03 4.48E-03 5 6.59E-04 3.71E-03 4.37E-03 6 5.75E-04 3.70E-03 4.28E-03 Monteburns Heatloads (W) for material 2 5010.50C actinide 0 0.00E+00 3.78E-03 1 0.00E+00 3.76E-03 2 0.00E+00 3.75E-03 3 0.00E+00 3.74E-03 4 0.00E+00 3.73E-03 5 0.00E+00 3.71E-03 6 0.00E+00 3.70E-03 Monteburns Inhalation Toxicity (m^3 air) of Material at End of Steps Monteburns Inhalation Toxicities (m^3 air) for material 1 92235.54c 92238.54c actinide 0 2.34E+09 4.96E+10 5.20E+10 1 2.07E+09 4.95E+10 5.15E+10 2 1.84E+09 4.93E+10 5.11E+10 3 1.62E+09 4.91E+10 5.08E+10 4 1.43E+09 4.90E+10 5.04E+10 5 1.26E+09 4.88E+10 5.01E+10 6 1.10E+09 4.86E+10 4.97E+10 Monteburns Inhalation Toxicities (m^3 air) for material 2 5010.50C actinide 0 0.00E+00 4.96E+10 1 0.00E+00 4.95E+10 2 0.00E+00 4.93E+10 3 0.00E+00 4.91E+10 4 0.00E+00 4.90E+10 5 0.00E+00 4.88E+10 6 0.00E+00 4.86E+10 Monteburns Ingestion Toxicity (m^3 water) of Material at End of Steps Monteburns Ingestion Toxicities (m^3 water) for material 1

PAGE 128

113 92235.54c 92238.54c actinide 0 1.56E+03 3.72E+03 5.28E+03 1 1.38E+03 3.71E+03 5.09E+03 2 1.22E+03 3.70E+03 4.92E+03 3 1.08E+03 3.69E+03 4.77E+03 4 9.55E+02 3.67E+03 4.63E+03 5 8.38E+02 3.66E+03 4.50E+03 6 7.32E+02 3.65E+03 4.38E+03 Monteburns Ingestion Toxicities (m^3 water) for material 2 5010.50C actinide 0 0.00E+00 3.72E+03 1 0.00E+00 3.71E+03 2 0.00E+00 3.70E+03 3 0.00E+00 3.69E+03 4 0.00E+00 3.67E+03 5 0.00E+00 3.66E+03 6 0.00E+00 3.65E+03 Monteburns Inventory Monteburns Grams of Feed per Step for material 1 mat # days 92235.54c 92238.54c actinide 1 109.56 0.00E+00 0.00E+00 0.00E+00 2 109.56 0.00E+00 0.00E+00 0.00E+00 3 109.56 0.00E+00 0.00E+00 0.00E+00 4 109.56 0.00E+00 0.00E+00 0.00E+00 5 109.56 0.00E+00 0.00E+00 0.00E+00 6 109.56 0.00E+00 0.00E+00 0.00E+00 tot 657.36 0.00E+00 0.00E+00 0.00E+00 Monteburns Grams Produced (or Destroyed) for material 1 92235.54c 92238.54c actinide 1 -2.47E+03 -1.40E+03 -2.26E+03 2 -2.18E+03 -1.43E+03 -2.25E+03 3 -1.96E+03 -1.45E+03 -2.24E+03 4 -1.78E+03 -1.48E+03 -2.24E+03 5 -1.62E+03 -1.48E+03 -2.22E+03 6 -1.47E+03 -1.50E+03 -2.20E+03 tot-1.47E+03 -1.50E+03 -2.20E+03 Summary of Inventory/Feed/Production for material 1 (MCNP Material Number 2) 92235.54c 92238.54c actinide ini 2.16E+04 4.43E+05 4.64E+05 fin 1.02E+04 4.34E+05 4.51E+05 fed 0.00E+00 0.00E+00 0.00E+00 net-1.47E+03 -1.50E+03 -2.20E+03 Monteburns Grams of Feed per Step for material 2 mat # days 5010.50C actinide 1 109.56 0.00E+00 0.00E+00 2 109.56 0.00E+00 0.00E+00 3 109.56 0.00E+00 0.00E+00 4 109.56 0.00E+00 0.00E+00 5 109.56 0.00E+00 0.00E+00 6 109.56 0.00E+00 0.00E+00 tot 657.36 0.00E+00 0.00E+00 Monteburns Grams Produced (or Destroyed) for material 2 5010.50C actinide 1 -2.26E+01 0.00E+00 2 -1.76E+01 0.00E+00 3 -1.28E+01 0.00E+00 4 -8.48E+00 0.00E+00 5 -4.88E+00 0.00E+00 6 -2.36E+00 0.00E+00 tot-2.36E+00 0.00E+00 Summary of Inventory/Feed/Production for material 2 (MCNP Material Number 4) 5010.50C actinide ini 7.03E+01 0.00E+00 fin 1.62E+00 0.00E+00 fed 0.00E+00 0.00E+00 net-2.36E+00 0.00E+00 Monteburns Inventory (cont.) Feed Rate (g/day) for material 1 (MCNP Material Number 2) 92235.54c 92238.54c actinide 1 0.00E+00 0.00E+00 0.00E+00 2 0.00E+00 0.00E+00 0.00E+00 3 0.00E+00 0.00E+00 0.00E+00 4 0.00E+00 0.00E+00 0.00E+00 5 0.00E+00 0.00E+00 0.00E+00 6 0.00E+00 0.00E+00 0.00E+00 Production/Destruction Rate (g/day) for material 1 (MCNP Material Number 2) 92235.54c 92238.54c actinide 1 -2.25E+01 -1.28E+01 -2.06E+01 2 -1.99E+01 -1.31E+01 -2.05E+01 3 -1.79E+01 -1.32E+01 -2.04E+01 4 -1.62E+01 -1.35E+01 -2.04E+01 5 -1.48E+01 -1.35E+01 -2.03E+01 6 -1.34E+01 -1.37E+01 -2.01E+01

PAGE 129

114 Feed Rate (g/day) for material 2 (MCNP Material Number 4) 5010.50C actinide 1 0.00E+00 0.00E+00 2 0.00E+00 0.00E+00 3 0.00E+00 0.00E+00 4 0.00E+00 0.00E+00 5 0.00E+00 0.00E+00 6 0.00E+00 0.00E+00 Production/Destruction Rate (g/day) for material 2 (MCNP Material Number 4) 5010.50C actinide 1 -2.06E-01 0.00E+00 2 -1.61E-01 0.00E+00 3 -1.17E-01 0.00E+00 4 -7.74E-02 0.00E+00 5 -4.45E-02 0.00E+00 6 -2.16E-02 0.00E+00 Time Days Power MBMat Feed Begin&EndRates Remov. Fraction F.P.Removed Step Burned Fract. # # grams/day Group# 1 13.086 1.000 1 1 0.697 0.691 0 0.000 2 52.342 1.000 1 1 -1.0 0.670 0 0.000 3 65.428 1.000 1 1 -1.0 0.643 0 0.000 4 130.856 1.000 1 1 -1.0 0.590 0 0.000 5 130.856 1.000 1 1 -1.0 0.537 0 0.000 6 130.856 1.000 1 1 -1.0 0.483 0 0.000 7 130.856 1.000 1 1 -1.0 0.430 0 0.000 8 130.856 1.000 1 1 -1.0 0.377 0 0.000 9 130.856 1.000 1 1 -1.0 0.323 0 0.000 10 130.856 1.000 1 1 -1.0 0.270 0 0.000 1 # of feed specs 1 # of isos in Feed #1 5010 1.0 0 # of removal groups

PAGE 130

115 The MCNP Input File B4C/Al2O3 WABAs in Guide Tubes RESEARCH 15 X 15 ASSEMBLY WITH B4CAL2O3 WABA'S 4.66% ENRICH NO BORON 1 0 20 -21 22 -23 90 -91 FILL=1 VOL=1.712434E+05 2 1 -0.660 30 -31 32 -33 LAT=1 U=1 FILL=-7:7 -7:7 0:0 $ BOUNDRY OF ASSEMBLY 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 3 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 3 2 2 2 3 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 3 2 2 2 3 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 3 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 1 -0.660 -4 U=4 $WATER HOLE VOL=257.835 4 3 -6.503 4 -5 U=4 $INTERIOR CLAD VOL=77.57637 5 1 -0.660 5 -6 U=4 $GUIDE TUBE WATER RADIUS VOL=113.8172 6 3 -6.503 6 -7 U=4 $GUIDE TUBE CLAD RADIUS VOL=60.32794 7 1 -0.660 #3 #4 #5 #6 U=4 $UNIT CELL WATER VOL=235.889 81 1 -0.660 -10 U=3 $WABA ANNULUS VOL=91.83439674 82 3 -6.503 10 -11 U=3 $ANNULUS CLAD VOL=37.48475999 83 0 11 -12 U=3 $ANNULUS GAP VOL=10.87500659 8 4 -17.8 12 -13 U=3 $BPRA MATERIAL VOL=43.24606456 84 0 13 -14 U=3 $WABA GAP VOL=12.91032892 9 3 -6.503 14 -15 U=3 $INTERIOR CLAD VOL=66.97335166 10 1 -0.660 15 -6 U=3 $GUIDE TUBE WATER RADIUS VOL=185.904338 11 3 -6.503 6 -7 U=3 $GUIDE TUBE CLAD RADIUS VOL=60.32794209 12 1 -0.660 #81 #82 #83 #84 #8 #9 #10 #11 U=3 $UNIT CELL WATER VOL=235.8889535 13 2 -10.201 -8 U=2 $UO2 FUEL PELLET VOL=248.3383489 14 0 8 -4 U=2 $GAP RADIUS VOL=9.496242722 15 3 -6.503 4 -5 U=2 $FUEL PIN CLAD VOL=77.57637049 16 1 -0.660 #13 #14 #15 U=2 $UNIT CELL WATER VOL=410.0341799 17 1 -0.660 (-20:21:-22:23:-90:91) -9 $OUTSIDE OF ASSMBLY VOL=3518.23905 99 0 9 $VOID REGION OUTSIDE ASSEMBLY 20 PX -10.8225 21 PX 10.8225

PAGE 131

116 22 PY -10.8225 23 PY 10.8225 C OUTSIDE OF ASSEMBLY LATICE 30 PX -0.7215 31 PX 0.7215 32 PY -0.7215 33 PY 0.7215 C OUTSIDE OF UNIT CELL (1.443 PITCH) 10 CZ 0.28575 C WABA CENTER WATER ANNULUS 11 CZ 0.33909 C WABA ANNULUS CLAD 12 CZ 0.35306 C WABA GAP 13 CZ 0.40386 C WABA BP 14 CZ 0.41783 C WABA GAP 15 CZ 0.48387 C WABA CLAD 4 CZ 0.4788 C CYLINDER FUEL GAP RADIUS 5 CZ 0.5461 C CYLINDER INTERIOR CLAD RADIUS 6 CZ 0.6320 C CYLINDER WATER RADIUS GUIDE TUBE 7 CZ 0.6731 C CYLINDER CLAD RADIUS GUIDE TUBE 8 CZ 0.4699 C CYLINDER RADIUS OF FUEL PELLET *9 RPP -10.905 10.905 -10.905 10.905 -180 180 C RECT PARALLEL PIPED OUTSIDE OF ASSEMBLY 90 PZ -179 91 PZ 179 MODE N IMP:N 1.0 20R 0.0 KCODE 2000 1.3 5 55 500 KSRC 1.443 0.0 0.0 M1 8016.60C -8.88100E+01 1001.60C -1.11900E+01 MT1 LWTR.04T $H20 AT 600 K M2 92235.54C -4.10779E+00 92238.54C -8.40421623E+01 8016.54C -1.18500E+01 $UO2 4.66% at 881K EN M3 40000.60C 1.0 $ZIRCONIUM (APPROX. FOR ZIRCALLOY) M4 5010.50C -0.55 5011.56C -2.22 6000.60C -0.76 13027.60C -51.04 8016.54C -45.43 $B4CAL2O3 BP MATERIAL PRINT The MONTEBURNS Input File B4C/Al2O3 WABAs in Guide Tubes RESEARCH 15 X 15 ASSEMBLY WITH B4CAL2O3 WABA'S 4.66% ENRICH NO BORON PC Type of Operating System 2 Two MCNP Materials to burn (fuel cells/BPRAs) 2 MCNP material number #2 (will burn all cells with this mat) 4 MCNP material number #4 (will burn all cells with this mat) 51654.376 Material #2 volume (cc) 691.937 Material #4 volume (cc) 17.75 Power in MWt (for the entire system in MCNP) -180.88 Recov. energy/fis (MeV); if negative use for U235, ratio isos 1095.6 Total number of days burned (used if no feed) 6 Number of outer burn steps 60 Number of internal burn steps (multiple of 10)

PAGE 132

117 1 Number of predictor steps (+1 on first step), 1 usually sufficient 0 Step number to restart after (0=beginning) PWRU50 number of default origen2 lib next line is origen2 lib location c:\Origen2\Libs .005 fractional importance (track isos with abs,fis,atom,mass fraction) 1 Intermediate keff calc. 0) No 1) Yes 2 Number of automatic tally isotopes, followed by list. 92235.54c 92238.54c 1 5010.50C

PAGE 133

118The MONTEBURNS Output File B4C/Al2O3 WABAs in Guide Tubes RESEARCH 15 X 15 ASSEMBLY WITH B4CAL2O3 WABA'S 4.66% ENRICH NO BORON Total Power (MW) = 1.78E+01 Days = 1.10E+03 # outer steps = 6, # inner steps = 60, # predictor steps = 1 Importance Fraction = 0.0050 Monteburns MCNP k-eff Versus Time days k-eff rel err nu avQfis eta 0m 0.00 1.19856 0.00183 2.465 181.081 1.374 1m 91.30 1.16363 0.00233 2.504 181.830 1.280 1e 182.60 1.15535 0.00197 2.538 2m 273.90 1.14174 0.00188 2.567 182.870 1.202 2e 365.20 1.14286 0.00210 2.588 3m 456.50 1.13365 0.00215 2.613 183.696 1.135 3e 547.80 1.13589 0.00187 2.628 4m 639.10 1.12301 0.00169 2.652 184.404 1.087 4e 730.40 1.10041 0.00175 2.665 5m 821.70 1.07796 0.00201 2.693 185.008 1.032 5e 913.00 1.05378 0.00209 2.703 6m 1004.30 1.03883 0.00212 2.720 185.597 0.986 6e 1095.60 1.00852 0.00225 2.735 Monteburns Transport History Monteburns Transport History for material 1 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.081 3.38E+14 3.51E-02 1.78E+01 3.443E+02 0.000E+00 3.84E-01 5.15E-01 1.34E+00 1.68E-03 1.415 1.15E+00 1.54E+00 1.35E+00 5.04E-03 1.418 1 181.830 3.51E+14 3.36E-02 1.77E+01 3.433E+02 6.971E+00 4.30E-01 4.92E-01 1.15E+00 1.62E-03 1.340 1.20E+00 1.48E+00 1.23E+00 4.87E-03 1.384 2 182.870 3.65E+14 3.23E-02 1.78E+01 3.452E+02 1.398E+01 4.86E-01 4.74E-01 9.77E-01 1.60E-03 1.272 1.33E+00 1.44E+00 1.08E+00 4.83E-03 1.338 3 183.696 3.73E+14 3.13E-02 1.78E+01 3.437E+02 2.096E+01 5.31E-01 4.61E-01 8.68E-01 1.49E-03 1.217 1.42E+00 1.40E+00 9.90E-01 4.54E-03 1.303 4 184.404 3.83E+14 3.05E-02 1.78E+01 3.453E+02 2.797E+01 5.62E-01 4.50E-01 8.00E-01 1.72E-03 1.182 1.49E+00 1.38E+00 9.26E-01 5.24E-03 1.279 5 185.008 4.06E+14 2.86E-02 1.78E+01 3.443E+02 3.496E+01 5.90E-01 4.22E-01 7.16E-01 1.67E-03 1.127 1.54E+00 1.30E+00 8.44E-01 5.13E-03 1.236 6 185.597 4.26E+14 2.72E-02 1.78E+01 3.441E+02 4.195E+01 6.09E-01 4.02E-01 6.60E-01 1.70E-03 1.085 1.58E+00 1.25E+00 7.89E-01 5.25E-03 1.203 Monteburns Transport History for material 2 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 0.000 3.01E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 1.31E+00 0.00E+00 0.00E+00 7.38E-07 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 1 0.000 3.20E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 1.05E+00 0.00E+00 0.00E+00 1.67E-06 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 2 0.000 3.47E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 6.97E-01 0.00E+00 0.00E+00 1.24E-06 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 3 0.000 3.65E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 3.06E-01 0.00E+00 0.00E+00 8.48E-08 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 4 0.000 3.87E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 8.84E-02 0.00E+00 0.00E+00 1.17E-07 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 5 0.000 4.13E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 2.25E-02 0.00E+00 0.00E+00 2.12E-07 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 6 0.000 4.36E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 1.08E-02 0.00E+00 0.00E+00 1.49E-07 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 Monteburns Flux Spectrum Monteburns Flux Spectrum for material 1 <.1eV <1eV <100eV <100keV <1MeV <20MeV 0 3.21 7.26 11.43 27.10 26.53 24.47 1 2.98 6.90 11.49 27.27 26.73 24.63 2 3.00 6.60 11.58 27.34 26.64 24.84 3 3.19 6.49 11.49 27.33 26.62 24.88 4 3.45 6.58 11.57 27.27 26.36 24.77 5 3.62 6.56 11.48 27.15 26.37 24.82 6 3.84 6.66 11.41 27.17 26.14 24.79

PAGE 134

119 Monteburns Flux Spectrum for material 2 <.1eV <1eV <100eV <100keV <1MeV <20MeV 0 1.32 4.57 12.18 30.45 27.61 23.87 1 1.55 5.07 12.41 30.05 27.30 23.63 2 2.43 6.23 12.90 29.14 26.07 23.23 3 3.66 7.35 12.94 28.31 25.27 22.46 4 4.77 8.11 12.69 27.72 24.64 22.07 5 5.44 8.28 12.70 27.42 24.30 21.86 6 5.48 8.34 12.86 27.45 24.29 21.59 Monteburns 1-group n,gamma Cross Sections Monteburns 1-group n,gamma Cross Sections for material 1 92235.54c 92238.54c 0 7.51E+00 8.32E-01 1 7.27E+00 8.25E-01 2 7.26E+00 8.31E-01 3 7.39E+00 8.39E-01 4 7.64E+00 8.41E-01 5 7.80E+00 8.49E-01 6 8.03E+00 8.47E-01 Monteburns 1-group n,gamma Cross Sections for material 2 5010.50C 0 1.56E-02 1 1.73E-02 2 2.28E-02 3 2.98E-02 4 3.59E-02 5 3.89E-02 6 3.92E-02 Monteburns 1-group Fission Cross Sections Monteburns 1-group Fission Cross Sections for material 1 92235.54c 92238.54c 0 3.07E+01 1.03E-01 1 2.91E+01 1.04E-01 2 2.88E+01 1.04E-01 3 2.95E+01 1.04E-01 4 3.09E+01 1.05E-01 5 3.16E+01 1.05E-01 6 3.29E+01 1.05E-01 Monteburns 1-group Fission Cross Sections for material 2 5010.50C 0 2.70E-03 1 2.65E-03 2 2.62E-03 3 2.54E-03 4 2.53E-03 5 2.50E-03 6 2.48E-03 Monteburns Fission-to-Capture Ratio Monteburns Fission-to-Capture Ratio for material 1 92235.54c 92238.54c 0 4.0832 0.1235 1 4.0017 0.1255 2 3.9663 0.1254 3 3.9946 0.1246 4 4.0416 0.1246 5 4.0530 0.1231 6 4.0922 0.1236 Monteburns Fission-to-Capture Ratio for material 2 5010.50C 0 0.0000 1 0.0000 2 0.0000 3 0.0000 4 0.0000 5 0.0000 6 0.0000 Monteburns Grams of Material at Beginning of Steps Monteburns Grams of Material at Begin. of Steps for material 1 92235.54c 92238.54c actinide 0 2.16E+04 4.43E+05 4.64E+05 1 2.16E+04 4.43E+05 4.64E+05 2 1.77E+04 4.41E+05 4.61E+05 3 1.44E+04 4.38E+05 4.57E+05 4 1.16E+04 4.36E+05 4.53E+05 5 9.17E+03 4.33E+05 4.50E+05 6 7.12E+03 4.31E+05 4.46E+05 Monteburns Grams of Material at Begin. of Steps for material 2 5010.50C actinide 0 6.77E+01 0.00E+00 1 6.77E+01 0.00E+00 2 3.45E+01 0.00E+00 3 1.32E+01 0.00E+00

PAGE 135

120 4 3.52E+00 0.00E+00 5 6.54E-01 0.00E+00 6 9.32E-02 0.00E+00 Monteburns Grams of Material at End of Steps Monteburns Grams of Material at End of Steps for material 1 92235.54c 92238.54c actinide 0 2.16E+04 4.43E+05 4.64E+05 1 1.77E+04 4.41E+05 4.61E+05 2 1.44E+04 4.38E+05 4.57E+05 3 1.16E+04 4.36E+05 4.53E+05 4 9.17E+03 4.33E+05 4.50E+05 5 7.12E+03 4.31E+05 4.46E+05 6 5.41E+03 4.28E+05 4.42E+05 Monteburns Grams of Material at End of Steps for material 2 5010.50C actinide 0 6.77E+01 0.00E+00 1 3.45E+01 0.00E+00 2 1.32E+01 0.00E+00 3 3.52E+00 0.00E+00 4 6.54E-01 0.00E+00 5 9.32E-02 0.00E+00 6 1.17E-02 0.00E+00 Monteburns Activity (Ci) of Material at End of Steps Monteburns Activities (Ci) for material 1 92235.54c 92238.54c actinide 0 4.68E-02 1.49E-01 1.96E-01 1 3.83E-02 1.48E-01 1.86E-01 2 3.11E-02 1.47E-01 1.78E-01 3 2.50E-02 1.46E-01 1.72E-01 4 1.98E-02 1.46E-01 1.65E-01 5 1.54E-02 1.45E-01 1.60E-01 6 1.17E-02 1.44E-01 1.56E-01 Monteburns Activities (Ci) for material 2 5010.50C actinide 0 0.00E+00 1.49E-01 1 0.00E+00 1.48E-01 2 0.00E+00 1.47E-01 3 0.00E+00 1.46E-01 4 0.00E+00 1.46E-01 5 0.00E+00 1.45E-01 6 0.00E+00 1.44E-01 Monteburns Heatload (W) of Material at End of Steps Monteburns Heatloads (W) for material 1 92235.54c 92238.54c actinide 0 1.23E-03 3.78E-03 5.00E-03 1 1.00E-03 3.76E-03 4.76E-03 2 8.14E-04 3.74E-03 4.55E-03 3 6.55E-04 3.72E-03 4.37E-03 4 5.19E-04 3.69E-03 4.21E-03 5 4.03E-04 3.67E-03 4.08E-03 6 3.06E-04 3.65E-03 3.95E-03 Monteburns Heatloads (W) for material 2 5010.50C actinide 0 0.00E+00 3.78E-03 1 0.00E+00 3.76E-03 2 0.00E+00 3.74E-03 3 0.00E+00 3.72E-03 4 0.00E+00 3.69E-03 5 0.00E+00 3.67E-03 6 0.00E+00 3.65E-03 Monteburns Inhalation Toxicity (m^3 air) of Material at End of Steps Monteburns Inhalation Toxicities (m^3 air) for material 1 92235.54c 92238.54c actinide 0 2.34E+09 4.96E+10 5.20E+10 1 1.91E+09 4.94E+10 5.13E+10 2 1.55E+09 4.91E+10 5.07E+10 3 1.25E+09 4.88E+10 5.01E+10 4 9.91E+08 4.86E+10 4.95E+10 5 7.70E+08 4.83E+10 4.90E+10 6 5.85E+08 4.79E+10 4.85E+10 Monteburns Inhalation Toxicities (m^3 air) for material 2 5010.50C actinide 0 0.00E+00 4.96E+10 1 0.00E+00 4.94E+10 2 0.00E+00 4.91E+10 3 0.00E+00 4.88E+10 4 0.00E+00 4.86E+10 5 0.00E+00 4.83E+10 6 0.00E+00 4.79E+10 Monteburns Ingestion Toxicity (m^3 water) of Material at End of Steps Monteburns Ingestion Toxicities (m^3 water) for material 1

PAGE 136

121 92235.54c 92238.54c actinide 0 1.56E+03 3.72E+03 5.28E+03 1 1.28E+03 3.70E+03 4.98E+03 2 1.04E+03 3.68E+03 4.72E+03 3 8.34E+02 3.66E+03 4.50E+03 4 6.61E+02 3.64E+03 4.30E+03 5 5.13E+02 3.62E+03 4.13E+03 6 3.90E+02 3.60E+03 3.99E+03 Monteburns Ingestion Toxicities (m^3 water) for material 2 5010.50C actinide 0 0.00E+00 3.72E+03 1 0.00E+00 3.70E+03 2 0.00E+00 3.68E+03 3 0.00E+00 3.66E+03 4 0.00E+00 3.64E+03 5 0.00E+00 3.62E+03 6 0.00E+00 3.60E+03 Monteburns Inventory Monteburns Grams of Feed per Step for material 1 mat # days 92235.54c 92238.54c actinide 1 182.60 0.00E+00 0.00E+00 0.00E+00 2 182.60 0.00E+00 0.00E+00 0.00E+00 3 182.60 0.00E+00 0.00E+00 0.00E+00 4 182.60 0.00E+00 0.00E+00 0.00E+00 5 182.60 0.00E+00 0.00E+00 0.00E+00 6 182.60 0.00E+00 0.00E+00 0.00E+00 tot 1095.60 0.00E+00 0.00E+00 0.00E+00 Monteburns Grams Produced (or Destroyed) for material 1 92235.54c 92238.54c actinide 1 -3.94E+03 -2.28E+03 -3.74E+03 2 -3.32E+03 -2.38E+03 -3.76E+03 3 -2.81E+03 -2.43E+03 -3.70E+03 4 -2.40E+03 -2.50E+03 -3.70E+03 5 -2.05E+03 -2.64E+03 -3.68E+03 6 -1.71E+03 -2.76E+03 -3.67E+03 tot-1.71E+03 -2.76E+03 -3.67E+03 Summary of Inventory/Feed/Production for material 1 (MCNP Material Number 2) 92235.54c 92238.54c actinide ini 2.16E+04 4.43E+05 4.64E+05 fin 5.41E+03 4.28E+05 4.42E+05 fed 0.00E+00 0.00E+00 0.00E+00 net-1.71E+03 -2.76E+03 -3.67E+03 Monteburns Grams of Feed per Step for material 2 mat # days 5010.50C actinide 1 182.60 0.00E+00 0.00E+00 2 182.60 0.00E+00 0.00E+00 3 182.60 0.00E+00 0.00E+00 4 182.60 0.00E+00 0.00E+00 5 182.60 0.00E+00 0.00E+00 6 182.60 0.00E+00 0.00E+00 tot 1095.60 0.00E+00 0.00E+00 Monteburns Grams Produced (or Destroyed) for material 2 5010.50C actinide 1 -3.32E+01 0.00E+00 2 -2.13E+01 0.00E+00 3 -9.71E+00 0.00E+00 4 -2.87E+00 0.00E+00 5 -5.61E-01 0.00E+00 6 -8.15E-02 0.00E+00 tot-8.15E-02 0.00E+00 Summary of Inventory/Feed/Production for material 2 (MCNP Material Number 4) 5010.50C actinide ini 6.77E+01 0.00E+00 fin 1.17E-02 0.00E+00 fed 0.00E+00 0.00E+00 net-8.15E-02 0.00E+00 Monteburns Inventory (cont.) Feed Rate (g/day) for material 1 (MCNP Material Number 2) 92235.54c 92238.54c actinide 1 0.00E+00 0.00E+00 0.00E+00 2 0.00E+00 0.00E+00 0.00E+00 3 0.00E+00 0.00E+00 0.00E+00 4 0.00E+00 0.00E+00 0.00E+00 5 0.00E+00 0.00E+00 0.00E+00 6 0.00E+00 0.00E+00 0.00E+00 Production/Destruction Rate (g/day) for material 1 (MCNP Material Number 2) 92235.54c 92238.54c actinide 1 -2.16E+01 -1.25E+01 -2.05E+01 2 -1.82E+01 -1.30E+01 -2.06E+01 3 -1.54E+01 -1.33E+01 -2.03E+01 4 -1.31E+01 -1.37E+01 -2.03E+01 5 -1.12E+01 -1.45E+01 -2.02E+01 6 -9.37E+00 -1.51E+01 -2.01E+01

PAGE 137

122 Feed Rate (g/day) for material 2 (MCNP Material Number 4) 5010.50C actinide 1 0.00E+00 0.00E+00 2 0.00E+00 0.00E+00 3 0.00E+00 0.00E+00 4 0.00E+00 0.00E+00 5 0.00E+00 0.00E+00 6 0.00E+00 0.00E+00 Production/Destruction Rate (g/day) for material 2 (MCNP Material Number 4) 5010.50C actinide 1 -1.82E-01 0.00E+00 2 -1.17E-01 0.00E+00 3 -5.32E-02 0.00E+00 4 -1.57E-02 0.00E+00 5 -3.07E-03 0.00E+00 6 -4.46E-04 0.00E+00 The MCNP Input File L-Carborane BPRAs in Guide Tubes RESEARCH 15 X 15 ASSEMBLY WITH L-CARBORANE 4.66% ENRICH NO BORON 1 0 20 -21 22 -23 90 -91 FILL=1 VOL=1.712434E+05 2 1 -0.660 30 -31 32 -33 LAT=1 U=1 FILL=-7:7 -7:7 0:0 $ BOUNDRY OF ASSEMBLY 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 3 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 3 2 2 2 3 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 3 2 2 2 3 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 3 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 1 -0.660 -4 U=4 $WATER HOLE VOL=257.8345 4 3 -6.503 4 -5 U=4 $INTERIOR CLAD VOL=77.57637 5 1 -0.660 5 -6 U=4 $GUIDE TUBE WATER RADIUS VOL=113.8173 6 3 -6.503 6 -7 U=4 $GUIDE TUBE CLAD RADIUS VOL=60.32794 7 1 -0.660 #3 #4 #5 #6 U=4 $UNIT CELL WATER VOL=235.8889 8 4 -0.9 -4 U=3 $BPRA MATERIAL VOL=257.8345 9 3 -6.503 4 -5 U=3 $INTERIOR CLAD VOL=77.57637 10 1 -0.660 5 -6 U=3 $GUIDE TUBE WATER RADIUS VOL=113.8173 11 3 -6.503 6 -7 U=3 $GUIDE TUBE CLAD RADIUS VOL=60.32794 12 1 -0.660 #8 #9 #10 #11 U=3 $UNIT CELL WATER VOL=235.8889 13 2 -10.201 -8 U=2 $UO2 FUEL PELLET VOL=248.3383 14 0 8 -4 U=2 $GAP RADIUS VOL=9.496242 15 3 -6.503 4 -5 U=2 $FUEL PIN CLAD VOL=77.57637 16 1 -0.660 #13 #14 #15 U=2 $UNIT CELL WATER VOL=410.0342

PAGE 138

123 17 1 -0.660 (-20:21:-22:23:-90:91) -9 $OUTSIDE OF ASSMBLY VOL=3518.23905 99 0 9 $VOID REGION OUTSIDE ASSEMBLY 20 PX -10.8225 21 PX 10.8225 22 PY -10.8225 23 PY 10.8225 C OUTSIDE OF ASSEMBLY LATICE 30 PX -0.7215 31 PX 0.7215 32 PY -0.7215 33 PY 0.7215 C OUTSIDE OF UNIT CELL (1.443 PITCH) 4 CZ 0.4788 C CYLINDER BPRA / WATER HOLE / GAP RADIUS 5 CZ 0.5461 C CYLINDER INTERIOR CLAD RADIUS 6 CZ 0.6320 C CYLINDER WATER RADIUS GUIDE TUBE 7 CZ 0.6731 C CYLINDER CLAD RADIUS GUIDE TUBE 8 CZ 0.4699 C CYLINDER RADIUS OF FUEL PELLET *9 RPP -10.905 10.905 -10.905 10.905 -180 180 C RECT PARALLEL PIPED OUTSIDE OF ASSEMBLY 90 PZ -179 91 PZ 179 MODE N IMP:N 1.0 16R 0.0 KCODE 2000 1.3 5 55 500 KSRC 1.443 0.0 0.0 M1 8016.60C -8.88100E+01 1001.60C -1.11900E+01 MT1 LWTR.04T $H20 AT 600 K M2 92235.54C -4.10779E+00 92238.54C -8.40421623E+01 8016.54C -1.18500E+01 $UO2 4.66% at 881K EN M3 40000.60C 1.0 $ZIRCONIUM (APPROX. FOR ZIRCALLOY) M4 6000.60C -46.40 14000.60C -29.60 8016.54C -7.03 5010.50C -1.90 5011.56C -7.63 1001.60C -7.44 $L-CARBORANE BP MATERIAL PRINT The MONTEBURNS Input File L-Carborane BPRAs in Guide Tubes RESEARCH 15 X 15 ASSEMBLY WITH L-CARBORANE 4.66% ENRICH NO BORON PC Type of Operating System 2 Two MCNP Materials to burn (fuel cells/BPRAs) 2 MCNP material number #2 (will burn all cells with this mat) 4 MCNP material number #4 (will burn all cells with this mat) 51654.376 Material #2 volume (cc) 4125.353 Material #4 volume (cc) 17.75 Power in MWt (for the entire system in MCNP) -180.88 Recov. energy/fis (MeV); if negative use for U235, ratio isos 657.36 Total number of days burned (used if no feed) 6 Number of outer burn steps 60 Number of internal burn steps (multiple of 10) 1 Number of predictor steps (+1 on first step), 1 usually sufficient 0 Step number to restart after (0=beginning) PWRU50 number of default origen2 lib next line is origen2 lib location c:\Origen2\Libs .005 fractional importance (track isos with abs,fis,atom,mass fraction) 1 Intermediate keff calc. 0) No 1) Yes

PAGE 139

124 2 Number of automatic tally isotopes, followed by list. 92235.54c 92238.54c 1 5010.50C

PAGE 140

125The MONTEBURNS Output File L-Ca rborane BPRAs in Guide Tubes RESEARCH 15 X 15 ASSEMBLY WITH L-CARBORANE 4.66% ENRICH NO BORON Total Power (MW) = 1.78E+01 Days = 6.57E+02 # outer steps = 6, # inner steps = 60, # predictor steps = 1 Importance Fraction = 0.0050 Monteburns MCNP k-eff Versus Time days k-eff rel err nu avQfis eta 0m 0.00 1.16843 0.00241 2.461 181.088 1.390 1m 54.78 1.14333 0.00159 2.491 181.565 1.320 1e 109.56 1.14679 0.00218 2.516 2m 164.34 1.14439 0.00201 2.533 182.306 1.273 2e 219.12 1.14328 0.00163 2.549 3m 273.90 1.14204 0.00217 2.575 182.896 1.235 3e 328.68 1.14701 0.00225 2.581 4m 383.46 1.15168 0.00198 2.596 183.390 1.197 4e 438.24 1.14953 0.00175 2.609 5m 493.02 1.15067 0.00188 2.617 183.827 1.166 5e 547.80 1.14722 0.00177 2.632 6m 602.58 1.13757 0.00208 2.638 184.214 1.133 6e 657.36 1.12390 0.00201 2.652 Monteburns Transport History Monteburns Transport History for material 1 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.088 3.44E+14 3.42E-02 1.76E+01 3.416E+02 0.000E+00 3.80E-01 5.01E-01 1.32E+00 1.55E-03 1.404 1.13E+00 1.50E+00 1.33E+00 4.66E-03 1.407 1 181.565 3.54E+14 3.34E-02 1.77E+01 3.434E+02 4.184E+00 4.17E-01 4.89E-01 1.17E+00 1.60E-03 1.348 1.17E+00 1.47E+00 1.26E+00 4.82E-03 1.392 2 182.306 3.58E+14 3.28E-02 1.77E+01 3.429E+02 8.361E+00 4.51E-01 4.82E-01 1.07E+00 1.77E-03 1.312 1.25E+00 1.45E+00 1.16E+00 5.34E-03 1.364 3 182.896 3.65E+14 3.23E-02 1.79E+01 3.457E+02 1.257E+01 4.87E-01 4.75E-01 9.76E-01 1.61E-03 1.275 1.33E+00 1.44E+00 1.09E+00 4.86E-03 1.343 4 183.390 3.64E+14 3.21E-02 1.77E+01 3.435E+02 1.676E+01 5.16E-01 4.73E-01 9.16E-01 1.62E-03 1.244 1.39E+00 1.44E+00 1.03E+00 4.91E-03 1.323 5 183.827 3.68E+14 3.16E-02 1.77E+01 3.422E+02 2.093E+01 5.37E-01 4.65E-01 8.66E-01 1.63E-03 1.218 1.43E+00 1.42E+00 9.92E-01 4.97E-03 1.307 6 184.214 3.75E+14 3.10E-02 1.77E+01 3.436E+02 2.512E+01 5.60E-01 4.57E-01 8.17E-01 1.61E-03 1.189 1.48E+00 1.40E+00 9.43E-01 4.91E-03 1.284 Monteburns Transport History for material 2 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 0.000 3.11E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 1.83E+00 0.00E+00 0.00E+00 7.01E-07 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 1 0.000 3.24E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 1.61E+00 0.00E+00 0.00E+00 7.68E-07 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 2 0.000 3.33E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 1.23E+00 0.00E+00 0.00E+00 7.28E-07 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 3 0.000 3.48E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 8.55E-01 0.00E+00 0.00E+00 9.25E-07 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 4 0.000 3.57E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 4.97E-01 0.00E+00 0.00E+00 9.19E-07 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 5 0.000 3.67E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 2.23E-01 0.00E+00 0.00E+00 8.79E-07 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 6 0.000 3.79E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 9.07E-02 0.00E+00 0.00E+00 1.08E-06 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 Monteburns Flux Spectrum Monteburns Flux Spectrum for material 1 <.1eV <1eV <100eV <100keV <1MeV <20MeV 0 3.10 7.07 11.47 27.03 26.61 24.73 1 2.91 6.92 11.55 27.10 26.51 25.02 2 2.92 6.68 11.59 27.19 26.68 24.94 3 2.99 6.56 11.55 27.22 26.56 25.12 4 3.18 6.58 11.50 27.18 26.53 25.03 5 3.36 6.56 11.47 27.19 26.43 24.99 6 3.55 6.62 11.49 27.12 26.32 24.89

PAGE 141

126 Monteburns Flux Spectrum for material 2 <.1eV <1eV <100eV <100keV <1MeV <20MeV 0 1.56 4.71 12.65 30.48 26.58 24.02 1 1.72 5.22 12.70 30.01 26.37 23.97 2 2.36 5.75 13.12 29.49 25.90 23.38 3 3.31 6.53 13.07 28.86 25.12 23.10 4 4.65 7.04 13.14 28.17 24.61 22.40 5 5.61 7.45 12.91 27.74 23.98 22.31 6 6.39 7.85 12.96 27.26 23.61 21.95 Monteburns 1-group n,gamma Cross Sections Monteburns 1-group n,gamma Cross Sections for material 1 92235.54c 92238.54c 0 7.37E+00 8.25E-01 1 7.20E+00 8.25E-01 2 7.17E+00 8.22E-01 3 7.20E+00 8.27E-01 4 7.37E+00 8.31E-01 5 7.50E+00 8.33E-01 6 7.69E+00 8.40E-01 Monteburns 1-group n,gamma Cross Sections for material 2 5010.50C 0 1.70E-02 1 1.85E-02 2 2.21E-02 3 2.75E-02 4 3.43E-02 5 3.96E-02 6 4.37E-02 Monteburns 1-group Fission Cross Sections Monteburns 1-group Fission Cross Sections for material 1 92235.54c 92238.54c 0 2.98E+01 1.04E-01 1 2.88E+01 1.05E-01 2 2.85E+01 1.05E-01 3 2.87E+01 1.06E-01 4 2.96E+01 1.05E-01 5 3.03E+01 1.05E-01 6 3.14E+01 1.05E-01 Monteburns 1-group Fission Cross Sections for material 2 5010.50C 0 2.71E-03 1 2.71E-03 2 2.64E-03 3 2.64E-03 4 2.57E-03 5 2.56E-03 6 2.54E-03 Monteburns Fission-to-Capture Ratio Monteburns Fission-to-Capture Ratio for material 1 92235.54c 92238.54c 0 4.0430 0.1258 1 4.0013 0.1274 2 3.9749 0.1277 3 3.9819 0.1282 4 4.0121 0.1269 5 4.0472 0.1262 6 4.0760 0.1244 Monteburns Fission-to-Capture Ratio for material 2 5010.50C 0 0.0000 1 0.0000 2 0.0000 3 0.0000 4 0.0000 5 0.0000 6 0.0000 Monteburns Grams of Material at Beginning of Steps Monteburns Grams of Material at Begin. of Steps for material 1 92235.54c 92238.54c actinide 0 2.16E+04 4.43E+05 4.64E+05 1 2.16E+04 4.43E+05 4.64E+05 2 1.92E+04 4.41E+05 4.62E+05 3 1.70E+04 4.40E+05 4.60E+05 4 1.50E+04 4.39E+05 4.58E+05 5 1.32E+04 4.37E+05 4.56E+05 6 1.16E+04 4.36E+05 4.53E+05 Monteburns Grams of Material at Begin. of Steps for material 2 5010.50C actinide 0 7.05E+01 0.00E+00 1 7.05E+01 0.00E+00 2 4.56E+01 0.00E+00 3 2.67E+01 0.00E+00

PAGE 142

127 4 1.33E+01 0.00E+00 5 5.46E+00 0.00E+00 6 1.90E+00 0.00E+00 Monteburns Grams of Material at End of Steps Monteburns Grams of Material at End of Steps for material 1 92235.54c 92238.54c actinide 0 2.16E+04 4.43E+05 4.64E+05 1 1.92E+04 4.41E+05 4.62E+05 2 1.70E+04 4.40E+05 4.60E+05 3 1.50E+04 4.39E+05 4.58E+05 4 1.32E+04 4.37E+05 4.56E+05 5 1.16E+04 4.36E+05 4.53E+05 6 1.01E+04 4.34E+05 4.51E+05 Monteburns Grams of Material at End of Steps for material 2 5010.50C actinide 0 7.05E+01 0.00E+00 1 4.56E+01 0.00E+00 2 2.67E+01 0.00E+00 3 1.33E+01 0.00E+00 4 5.46E+00 0.00E+00 5 1.90E+00 0.00E+00 6 5.70E-01 0.00E+00 Monteburns Activity (Ci) of Material at End of Steps Monteburns Activities (Ci) for material 1 92235.54c 92238.54c actinide 0 4.68E-02 1.49E-01 1.96E-01 1 4.15E-02 1.48E-01 1.90E-01 2 3.68E-02 1.48E-01 1.85E-01 3 3.25E-02 1.47E-01 1.80E-01 4 2.86E-02 1.47E-01 1.76E-01 5 2.51E-02 1.47E-01 1.72E-01 6 2.18E-02 1.46E-01 1.68E-01 Monteburns Activities (Ci) for material 2 5010.50C actinide 0 0.00E+00 1.49E-01 1 0.00E+00 1.48E-01 2 0.00E+00 1.48E-01 3 0.00E+00 1.47E-01 4 0.00E+00 1.47E-01 5 0.00E+00 1.47E-01 6 0.00E+00 1.46E-01 Monteburns Heatload (W) of Material at End of Steps Monteburns Heatloads (W) for material 1 92235.54c 92238.54c actinide 0 1.23E-03 3.78E-03 5.00E-03 1 1.09E-03 3.76E-03 4.85E-03 2 9.63E-04 3.75E-03 4.72E-03 3 8.50E-04 3.74E-03 4.59E-03 4 7.49E-04 3.73E-03 4.48E-03 5 6.56E-04 3.72E-03 4.37E-03 6 5.71E-04 3.70E-03 4.28E-03 Monteburns Heatloads (W) for material 2 5010.50C actinide 0 0.00E+00 3.78E-03 1 0.00E+00 3.76E-03 2 0.00E+00 3.75E-03 3 0.00E+00 3.74E-03 4 0.00E+00 3.73E-03 5 0.00E+00 3.72E-03 6 0.00E+00 3.70E-03 Monteburns Inhalation Toxicity (m^3 air) of Material at End of Steps Monteburns Inhalation Toxicities (m^3 air) for material 1 92235.54c 92238.54c actinide 0 2.34E+09 4.96E+10 5.20E+10 1 2.07E+09 4.95E+10 5.15E+10 2 1.84E+09 4.93E+10 5.12E+10 3 1.62E+09 4.92E+10 5.08E+10 4 1.43E+09 4.90E+10 5.04E+10 5 1.25E+09 4.88E+10 5.01E+10 6 1.09E+09 4.87E+10 4.98E+10 Monteburns Inhalation Toxicities (m^3 air) for material 2 5010.50C actinide 0 0.00E+00 4.96E+10 1 0.00E+00 4.95E+10 2 0.00E+00 4.93E+10 3 0.00E+00 4.92E+10 4 0.00E+00 4.90E+10 5 0.00E+00 4.88E+10 6 0.00E+00 4.87E+10 Monteburns Ingestion Toxicity (m^3 water) of Material at End of Steps Monteburns Ingestion Toxicities (m^3 water) for material 1

PAGE 143

128 92235.54c 92238.54c actinide 0 1.56E+03 3.72E+03 5.28E+03 1 1.38E+03 3.71E+03 5.09E+03 2 1.23E+03 3.70E+03 4.92E+03 3 1.08E+03 3.69E+03 4.77E+03 4 9.53E+02 3.67E+03 4.63E+03 5 8.36E+02 3.66E+03 4.50E+03 6 7.27E+02 3.65E+03 4.38E+03 Monteburns Ingestion Toxicities (m^3 water) for material 2 5010.50C actinide 0 0.00E+00 3.72E+03 1 0.00E+00 3.71E+03 2 0.00E+00 3.70E+03 3 0.00E+00 3.69E+03 4 0.00E+00 3.67E+03 5 0.00E+00 3.66E+03 6 0.00E+00 3.65E+03 Monteburns Inventory Monteburns Grams of Feed per Step for material 1 mat # days 92235.54c 92238.54c actinide 1 109.56 0.00E+00 0.00E+00 0.00E+00 2 109.56 0.00E+00 0.00E+00 0.00E+00 3 109.56 0.00E+00 0.00E+00 0.00E+00 4 109.56 0.00E+00 0.00E+00 0.00E+00 5 109.56 0.00E+00 0.00E+00 0.00E+00 6 109.56 0.00E+00 0.00E+00 0.00E+00 tot 657.36 0.00E+00 0.00E+00 0.00E+00 Monteburns Grams Produced (or Destroyed) for material 1 92235.54c 92238.54c actinide 1 -2.46E+03 -1.38E+03 -2.24E+03 2 -2.18E+03 -1.38E+03 -2.23E+03 3 -1.98E+03 -1.43E+03 -2.26E+03 4 -1.79E+03 -1.43E+03 -2.24E+03 5 -1.63E+03 -1.43E+03 -2.21E+03 6 -1.50E+03 -1.48E+03 -2.23E+03 tot-1.50E+03 -1.48E+03 -2.23E+03 Summary of Inventory/Feed/Production for material 1 (MCNP Material Number 2) 92235.54c 92238.54c actinide ini 2.16E+04 4.43E+05 4.64E+05 fin 1.01E+04 4.34E+05 4.51E+05 fed 0.00E+00 0.00E+00 0.00E+00 net-1.50E+03 -1.48E+03 -2.23E+03 Monteburns Grams of Feed per Step for material 2 mat # days 5010.50C actinide 1 109.56 0.00E+00 0.00E+00 2 109.56 0.00E+00 0.00E+00 3 109.56 0.00E+00 0.00E+00 4 109.56 0.00E+00 0.00E+00 5 109.56 0.00E+00 0.00E+00 6 109.56 0.00E+00 0.00E+00 tot 657.36 0.00E+00 0.00E+00 Monteburns Grams Produced (or Destroyed) for material 2 5010.50C actinide 1 -2.50E+01 0.00E+00 2 -1.89E+01 0.00E+00 3 -1.34E+01 0.00E+00 4 -7.85E+00 0.00E+00 5 -3.56E+00 0.00E+00 6 -1.33E+00 0.00E+00 tot-1.33E+00 0.00E+00 Summary of Inventory/Feed/Production for material 2 (MCNP Material Number 4) 5010.50C actinide ini 7.05E+01 0.00E+00 fin 5.70E-01 0.00E+00 fed 0.00E+00 0.00E+00 net-1.33E+00 0.00E+00 Monteburns Inventory (cont.) Feed Rate (g/day) for material 1 (MCNP Material Number 2) 92235.54c 92238.54c actinide 1 0.00E+00 0.00E+00 0.00E+00 2 0.00E+00 0.00E+00 0.00E+00 3 0.00E+00 0.00E+00 0.00E+00 4 0.00E+00 0.00E+00 0.00E+00 5 0.00E+00 0.00E+00 0.00E+00 6 0.00E+00 0.00E+00 0.00E+00 Production/Destruction Rate (g/day) for material 1 (MCNP Material Number 2) 92235.54c 92238.54c actinide 1 -2.25E+01 -1.26E+01 -2.04E+01 2 -1.99E+01 -1.26E+01 -2.04E+01 3 -1.81E+01 -1.31E+01 -2.06E+01 4 -1.63E+01 -1.31E+01 -2.04E+01 5 -1.49E+01 -1.31E+01 -2.02E+01 6 -1.37E+01 -1.35E+01 -2.04E+01

PAGE 144

129 Feed Rate (g/day) for material 2 (MCNP Material Number 4) 5010.50C actinide 1 0.00E+00 0.00E+00 2 0.00E+00 0.00E+00 3 0.00E+00 0.00E+00 4 0.00E+00 0.00E+00 5 0.00E+00 0.00E+00 6 0.00E+00 0.00E+00 Production/Destruction Rate (g/day) for material 2 (MCNP Material Number 4) 5010.50C actinide 1 -2.28E-01 0.00E+00 2 -1.73E-01 0.00E+00 3 -1.22E-01 0.00E+00 4 -7.17E-02 0.00E+00 5 -3.25E-02 0.00E+00 6 -1.21E-02 0.00E+00

PAGE 145

130 APPENDIX C MULTIPLE ASSEMBLY (COLORSET) CASMO FILES This appendix contains all of the input and output files for the multiple assembly depletion calculations for CASM O. The output files have been abbreviated to the final state point and final keff vs. burnup summary in or der to save space. The 2x2 Colorset CAMSO Input File B4C/Al2O3 BPRAs. TIT *Crystal River-3 15x15 Assembly with WATER in guide tubes *2 x 2 COLORSET BAS 3 0 *BASE 3 diagonal symmetry DEP and PDE refer to average TFU=990 TMO=583 BOR=0 FUE 1 10.4/4.66 *FUEL COMP. #, DENSITY/ENRICHMENT fresh fuel MI2 3.1/5010=0.55 6000=0.76 13000=51.04 8000=45.43 Mixture 2: B10, C, Al, O (BP Material) PIN 1 .4699 .4788 .5461/ '1' 'AIR' 'CAN' PIN 2 .4699 .4788 .5461 .632 .6731/ 'MI2' 'AIR' 'CAN' 'COO' 'CAN'/1,3,5 BPRA pin homogenized 'AIR+CAN' and 'COO+CAN' PIN 3 .632 .6731/ 'COO' 'CAN' *Center water hole / empty shroud tube PWR 15 1.443 21.81 PWR with pitch 1.443 LPI 3 1 1 *Common segment information 1 1 3 *Fresh fuel 1 1 1 1 *NO BPRAs 1 1 1 1 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 PDE 33 *POWER DENSITY (W/Gu) DEP 0.5 2.5 5 10 15 20 25 30 35 40 *Depletion steps * SEGMENT SPECIFIC INPUT

PAGE 146

131 SEG 1 *+DEPLETED FUEL 2.268% NO BPRAs FUE 1 10.4/2.268 LPI 3 1 1 *Segment information 1 1 3 *Low Enrich depleted fuel 1 1 1 1 *B4C-AL2O2 BPRAs 1 1 1 1 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 SEG 2 *+LOW ENRICHED DEPELTED FUEL NO BPRAs SEG 3 *+MEDIUM ENRICHED DEPLETED FUEL NO BPRAs FUE 1 10.4/3.4 LPI 3 1 1 *Segment information 1 1 3 *Medium fuel 1 1 1 1 1 1 1 1 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 STA END

PAGE 147

132The 2x2 Colorset CASMO Output File Water in Guide Tubes 1* CASMO FLORIDA 01/09/17 STUDSVIK EXECUTION **/04/15 20:38:09 JOB=SUN STATE POINT NO = 11 PAGE = 129 Crystal River-3 15x15 Assembly with WATER in guide tubes 0 S U M M A R Y O F 2 X 2 S E G M E N T C A L C U L A T I O N 0 Crystal River-3 15x15 Assembly with WATER in guide tubes SEGMENT 1 Crystal River-3 15x15 Assembly with WATER in guide tubes DEPLETED FUE SEGMENT 2 Crystal River-3 15x15 Assembly with WATER in guide tubes LOW ENRICHED SEGMENT 3 Crystal River-3 15x15 Assembly with WATER in guide tubes MEDIUM ENRIC 0 SEGMENT 1 2 3 4 AVERAGE E 35.768 47.044 41.421 35.768 40.000 V 0.000 0.000 0.000 0.000 0.000 TF 990.000 990.000 990.000 990.000 990.000 TM 583.000 583.000 583.000 583.000 583.000 BOR 0.000 0.000 0.000 0.000 0.000 CONTROL NUFISS/ABS 0.88354 0.96681 0.92198 0.88354 0.91526 2-GROUP K-INF 0.88834 0.95996 0.91899 0.88834 0.91391 2-GROUP M2 60.28 59.68 59.95 60.28 60.05 POWER FRAC 0.925 1.137 1.012 0.925 1.000 POWER DENS 0.925 1.137 1.012 0.925 1.000 0 TOTAL ABSORPTION 1.05797E+00 1.15918E+00 1.09524E+00 1.05797E+00 4.37036E+00 FISSION 3.33114E-01 4.11871E-01 3.65473E-01 3.33114E-01 1.44357E+00 NUFISSION 9.34752E-01 1.12071E+00 1.00979E+00 9.34752E-01 4.00000E+00 NORM. FACT 9.34752E-01 1.12071E+00 1.00979E+00 9.34752E-01 POWER DISTRIBUTION *W/CM* INCLUDING GAMMA SMEARING 0.000 1.023 1.009 1.006 1.004 1.002 0.998 1.004 | 0.921 0.907 0.908 0.907 0.908 0.911 0.927 0.000 1.023 1.025 1.023 1.015 1.014 1.017 1.007 1.005 | 0.922 0.917 0.925 0.918 0.919 0.927 0.929 0.927 1.009 1.023 0.000 1.024 1.023 0.000 1.015 1.007 | 0.924 0.927 0.000 0.931 0.931 0.000 0.928 0.912 1.006 1.015 1.024 1.028 1.032 1.028 1.010 1.006 | 0.924 0.920 0.939 0.942 0.935 0.932 0.921 0.911 1.004 1.014 1.023 1.032 0.000 1.019 1.000 1.005 | 0.923 0.910 0.930 0.000 0.944 0.935 0.922 0.912 1.002 1.017 0.000 1.028 1.019 1.009 0.997 1.005 | 0.922 0.908 0.920 0.932 0.943 0.000 0.931 0.914 0.998 1.007 1.015 1.010 1.000 0.997 0.995 1.006 | 0.925 0.910 0.911 0.915 0.927 0.935 0.926 0.916 1.004 1.005 1.007 1.006 1.005 1.005 1.006 1.015 | 0.939 0.928 0.928 0.931 0.934 0.935 0.934 0.933 ------------------------------------------------------------------------------------------------0.921 0.922 0.924 0.924 0.923 0.922 0.925 0.939 | 1.119 1.116 1.119 1.122 1.125 1.126 1.125 1.124 0.907 0.917 0.927 0.920 0.910 0.908 0.910 0.928 | 1.116 1.113 1.117 1.123 1.135 1.141 1.134 1.124 0.908 0.925 0.000 0.939 0.930 0.920 0.911 0.928 | 1.119 1.117 1.133 1.145 1.157 0.000 1.146 1.131 0.907 0.918 0.931 0.942 0.000 0.932 0.915 0.931 | 1.122 1.123 1.145 0.000 1.163 1.155 1.144 1.134 0.908 0.919 0.931 0.935 0.944 0.943 0.927 0.934 | 1.125 1.135 1.157 1.163 1.161 1.157 1.148 1.137

PAGE 148

133 0.911 0.927 0.000 0.932 0.935 0.000 0.935 0.935 | 1.126 1.141 0.000 1.155 1.157 0.000 1.156 1.143 0.927 0.929 0.928 0.921 0.922 0.931 0.926 0.934 | 1.125 1.134 1.146 1.144 1.148 1.156 1.160 1.158 0.000 0.927 0.912 0.911 0.912 0.914 0.916 0.933 | 1.124 1.124 1.131 1.134 1.137 1.143 1.158 0.000 0RESTART FILE NO. 12 WRITTEN. IDENTIFICATION = EXPOSURE = 35.7680 TYPE OF FILE = 470 STATEP = 12 0RESTART FILE NO. 12 WRITTEN. IDENTIFICATION = EXPOSURE = 47.0450 TYPE OF FILE = 470 STATEP = 12 0RESTART FILE NO. 12 WRITTEN. IDENTIFICATION = EXPOSURE = 41.4220 TYPE OF FILE = 470 STATEP = 12 1* CASMO FLORIDA 01/09/17 STUDSVIK EXECUTION **/04/15 20:38:09 JOB=SUN STATE POINT NO = 12 PAGE = 130 Crystal River-3 15x15 Assembly with WATER in guide tubes END INPUT CARD LIST OF WARNINGS ENCOUNTERED: ----------------------------ROUTINE TEXT ---------MIXS SUM OF WEIGHT PERCENTAGES LESS THAN 99.9 1 C A S M O FLORIDA 01/09/17 STUDSVIK EXECUTION **/04/15 20:38:09 JOB=SUN PAGE = 131 0 ** C A S M O -3 SUMMARY ** SEGMENT NO = 1 0 Crystal River-3 15x15 Assembly with WATER in guide tubes DEPLETED FUEL 2.268% 0 HVOI= 0.0 HTFU= 990.0 HTMO= 583.0 HBOR= 0.0 0 NO VOID TFU TMO BOR CRD BURNUP K-INF K-INF M2 PIN U-235 FISS PU TOT PU MWD/KG TWO-GROUP PEAK WT % WT % WT % 1 0.0 990.0 583.0 0.0 0.000 1.25396 1.26725 60.27 1.076 2.268 0.000 0.000 2 0.435 1.20264 1.21430 60.03 1.075 2.217 0.021 0.022 3 2.181 1.18341 1.19398 59.82 1.072 2.027 0.117 0.124 4 4.379 1.15464 1.16448 59.63 1.067 1.815 0.212 0.235 5 8.790 1.10033 1.10926 59.52 1.056 1.453 0.348 0.414 6 13.222 1.05358 1.06172 59.53 1.047 1.156 0.441 0.556 7 17.676 1.01196 1.01940 59.62 1.038 0.911 0.506 0.672 8 22.151 0.97441 0.98117 59.76 1.031 0.711 0.552 0.769 9 26.654 0.94050 0.94659 59.92 1.026 0.548 0.583 0.850 10 31.190 0.91017 0.91562 60.10 1.022 0.417 0.605 0.918 11 35.768 0.88354 0.88834 60.28 1.020 0.314 0.620 0.977 LIST OF WARNINGS ENCOUNTERED: ----------------------------ROUTINE TEXT ---------MIXS SUM OF WEIGHT PERCENTAGES LESS THAN 99.9 1 C A S M O FLORIDA 01/09/17 STUDSVIK EXECUTION **/04/15 20:38:09 JOB=SUN PAGE = 132 0 ** C A S M O -3 SUMMARY ** SEGMENT NO = 2 0 Crystal River-3 15x15 Assembly with WATER in guide tubes LOW ENRICHED DEPELTE 0 HVOI= 0.0 HTFU= 990.0 HTMO= 583.0 HBOR= 0.0

PAGE 149

1340 NO VOID TFU TMO BOR CRD BURNUP K-INF K-INF M2 PIN U-235 FISS PU TOT PU MWD/KG TWO-GROUP PEAK WT % WT % WT % 1 0.0 990.0 583.0 0.0 0.000 1.43413 1.41720 58.15 1.110 4.660 0.000 0.000 2 0.601 1.37493 1.36029 58.01 1.107 4.588 0.020 0.020 3 3.000 1.34590 1.33255 57.96 1.097 4.309 0.113 0.118 4 5.979 1.31201 1.29956 58.01 1.083 3.983 0.211 0.228 5 11.918 1.24940 1.23795 58.18 1.062 3.389 0.365 0.417 6 17.839 1.19408 1.18345 58.40 1.043 2.861 0.479 0.575 7 23.742 1.14352 1.13363 58.65 1.033 2.390 0.564 0.708 8 29.623 1.09600 1.08683 58.92 1.030 1.974 0.625 0.820 9 35.474 1.05077 1.04236 59.18 1.027 1.608 0.668 0.914 10 41.286 1.00768 1.00002 59.44 1.025 1.292 0.696 0.994 11 47.044 0.96681 0.95996 59.68 1.022 1.022 0.713 1.061 LIST OF WARNINGS ENCOUNTERED: ----------------------------ROUTINE TEXT ---------MIXS SUM OF WEIGHT PERCENTAGES LESS THAN 99.9 1 C A S M O FLORIDA 01/09/17 STUDSVIK EXECUTION **/04/15 20:38:09 JOB=SUN PAGE = 133 0 ** C A S M O -3 SUMMARY ** SEGMENT NO = 3 0 Crystal River-3 15x15 Assembly with WATER in guide tubes MEDIUM ENRICHED DEPL 0 HVOI= 0.0 HTFU= 990.0 HTMO= 583.0 HBOR= 0.0 0 NO VOID TFU TMO BOR CRD BURNUP K-INF K-INF M2 PIN U-235 FISS PU TOT PU MWD/KG TWO-GROUP PEAK WT % WT % WT % 1 0.0 990.0 583.0 0.0 0.000 1.36997 1.36090 59.06 1.048 3.400 0.000 0.000 2 0.528 1.31184 1.30385 58.88 1.047 3.337 0.020 0.021 3 2.637 1.28456 1.27741 58.75 1.042 3.098 0.114 0.120 4 5.264 1.25065 1.24403 58.70 1.040 2.823 0.209 0.229 5 10.503 1.18812 1.18214 58.75 1.038 2.336 0.353 0.412 6 15.717 1.13378 1.12835 58.89 1.035 1.917 0.455 0.560 7 20.907 1.08473 1.07979 59.07 1.032 1.557 0.528 0.683 8 26.075 1.03932 1.03488 59.28 1.028 1.249 0.580 0.785 9 31.218 0.99695 0.99301 59.50 1.025 0.989 0.615 0.871 10 36.333 0.95775 0.95428 59.73 1.022 0.772 0.638 0.943 11 41.421 0.92198 0.91899 59.95 1.020 0.594 0.653 1.004

PAGE 150

135 The 2x2 Colorset CASMO Input File B4C/Al2O3 BPRAs in Guide Tubes TIT *Crystal River-3 15x15 Assembly with B4C-AL2O2 in guide tubes *2 x 2 COLORSET BAS 3 0 *BASE 3 diagonal symmetry DEP and PDE refer to average TFU=990 TMO=583 BOR=0 FUE 1 10.4/4.66 *FUEL COMP. #, DENSITY/ENRICHMENT fresh fuel MI2 3.1/5010=0.55 6000=0.76 13000=51.04 8000=45.43 Mixture 2: B10, C, Al, O (BP Material) PIN 1 .4699 .4788 .5461/ '1' 'AIR' 'CAN' PIN 2 .4699 .4788 .5461 .632 .6731/ 'MI2' 'AIR' 'CAN' 'COO' 'CAN'/1,3,5 BPRA pin homogenized 'AIR+CAN' and 'COO+CAN' PIN 3 .632 .6731/ 'COO' 'CAN' *Center water hole / empty shroud tube PWR 15 1.443 21.81 PWR with pitch 1.443 LPI 3 1 1 *Common segment information 1 1 2 *Fresh fuel 1 1 1 1 *B4C-AL2O2 BPRAs 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 PDE 33 *POWER DENSITY (W/Gu) DEP 0.5 2.5 5 10 15 20 25 30 35 40 *Depletion steps * SEGMENT SPECIFIC INPUT SEG 1 *+DEPLETED FUEL 2.268% NO BPRAs FUE 1 10.4/2.268 LPI 3 1 1 *Segment information 1 1 3 *Low Enrich depleted fuel 1 1 1 1 *No BPRAs 1 1 1 1 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 SEG 2 *+LOW ENRICHED DEPELTED FUEL NO BPRAs

PAGE 151

136 SEG 3 *+MEDIUM ENRICHED DEPLETED FUEL NO BPRAs FUE 1 10.4/3.4 LPI 3 1 1 *Segment information 1 1 3 *Medium fuel 1 1 1 1 1 1 1 1 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 STA END

PAGE 152

137The 2x2 Colorset CASMO Output File B4C/Al2O3 BPRAs in Guide Tubes 1* CASMO FLORIDA 01/09/17 STUDSVIK EXECUTION **/04/15 20:37:12 JOB=SUN STATE POINT NO = 11 PAGE = 129 Crystal River-3 15x15 Assembly with B4C-AL2O2 in guide tubes 0 S U M M A R Y O F 2 X 2 S E G M E N T C A L C U L A T I O N 0 Crystal River-3 15x15 Assembly with B4C-AL2O2 in guide tubes SEGMENT 1 Crystal River-3 15x15 Assembly with B4C-AL2O2 in guide tubes DEPLETED SEGMENT 2 Crystal River-3 15x15 Assembly with B4C-AL2O2 in guide tubes LOW ENRI SEGMENT 3 Crystal River-3 15x15 Assembly with B4C-AL2O2 in guide tubes MEDIUM E 0 SEGMENT 1 2 3 4 AVERAGE E 36.610 44.002 42.779 36.610 40.000 V 0.000 0.000 0.000 0.000 0.000 TF 990.000 990.000 990.000 990.000 990.000 TM 583.000 583.000 583.000 583.000 583.000 BOR 0.000 0.000 0.000 0.000 0.000 CONTROL NUFISS/ABS 0.87906 0.98776 0.91301 0.87906 0.91611 2-GROUP K-INF 0.88463 0.97860 0.91004 0.88463 0.91448 2-GROUP M2 60.11 61.67 59.84 60.11 60.43 POWER FRAC 0.924 1.153 0.999 0.924 1.000 POWER DENS 0.924 1.153 0.999 0.924 1.000 0 TOTAL ABSORPTION 1.06301E+00 1.14682E+00 1.09345E+00 1.06301E+00 4.36628E+00 FISSION 3.32599E-01 4.18073E-01 3.60481E-01 3.32599E-01 1.44375E+00 NUFISSION 9.34446E-01 1.13278E+00 9.98327E-01 9.34446E-01 4.00000E+00 NORM. FACT 9.34444E-01 1.13278E+00 9.98327E-01 9.34444E-01 POWER DISTRIBUTION *W/CM* INCLUDING GAMMA SMEARING 0.000 1.005 0.992 0.990 0.988 0.988 0.984 0.991 | 0.915 0.902 0.903 0.903 0.905 0.908 0.924 0.000 1.005 1.008 1.005 0.999 0.998 1.002 0.993 0.992 | 0.916 0.911 0.920 0.914 0.915 0.924 0.925 0.924 0.992 1.005 0.000 1.008 1.007 0.000 1.001 0.994 | 0.918 0.922 0.000 0.927 0.928 0.000 0.926 0.910 0.990 0.999 1.008 1.012 1.016 1.014 0.997 0.995 | 0.919 0.916 0.936 0.939 0.933 0.930 0.920 0.909 0.988 0.998 1.007 1.016 0.000 1.005 0.988 0.995 | 0.919 0.907 0.928 0.000 0.943 0.934 0.922 0.912 0.988 1.002 0.000 1.014 1.005 0.997 0.987 0.996 | 0.920 0.907 0.919 0.932 0.944 0.000 0.933 0.916 0.984 0.993 1.001 0.997 0.988 0.987 0.987 0.998 | 0.923 0.909 0.912 0.917 0.929 0.938 0.929 0.919 0.991 0.992 0.994 0.995 0.995 0.996 0.998 1.010 | 0.939 0.929 0.930 0.934 0.937 0.940 0.939 0.938 ------------------------------------------------------------------------------------------------0.915 0.916 0.918 0.919 0.919 0.920 0.923 0.939 | 1.118 1.117 1.121 1.126 1.132 1.135 1.134 1.133 0.902 0.911 0.922 0.916 0.907 0.907 0.909 0.929 | 1.117 1.115 1.122 1.131 1.148 1.165 1.147 1.135 0.903 0.920 0.000 0.936 0.928 0.919 0.912 0.930 | 1.121 1.122 1.143 1.171 1.188 0.000 1.171 1.143 0.903 0.914 0.927 0.939 0.000 0.932 0.917 0.934 | 1.126 1.131 1.171 0.000 1.198 1.186 1.160 1.145 0.905 0.915 0.928 0.933 0.943 0.944 0.929 0.937 | 1.132 1.148 1.188 1.198 1.186 1.189 1.165 1.150

PAGE 153

138 0.908 0.924 0.000 0.930 0.934 0.000 0.938 0.940 | 1.135 1.165 0.000 1.186 1.189 0.000 1.186 1.160 0.924 0.925 0.926 0.920 0.922 0.933 0.929 0.939 | 1.134 1.147 1.171 1.160 1.165 1.186 1.182 1.181 0.000 0.924 0.910 0.909 0.912 0.916 0.919 0.938 | 1.133 1.135 1.143 1.145 1.150 1.160 1.181 0.000 0RESTART FILE NO. 12 WRITTEN. IDENTIFICATION = EXPOSURE = 36.6110 TYPE OF FILE = 470 STATEP = 12 0RESTART FILE NO. 12 WRITTEN. IDENTIFICATION = EXPOSURE = 44.0030 TYPE OF FILE = 470 STATEP = 12 0RESTART FILE NO. 12 WRITTEN. IDENTIFICATION = EXPOSURE = 42.7800 TYPE OF FILE = 470 STATEP = 12 1* CASMO FLORIDA 01/09/17 STUDSVIK EXECUTION **/04/15 20:37:12 JOB=SUN STATE POINT NO = 12 PAGE = 130 Crystal River-3 15x15 Assembly with B4C-AL2O2 in guide tubes END INPUT CARD LIST OF WARNINGS ENCOUNTERED: ----------------------------ROUTINE TEXT ---------MIXS SUM OF WEIGHT PERCENTAGES LESS THAN 99.9 1 C A S M O FLORIDA 01/09/17 STUDSVIK EXECUTION **/04/15 20:37:12 JOB=SUN PAGE = 131 0 ** C A S M O -3 SUMMARY ** SEGMENT NO = 1 0 Crystal River-3 15x15 Assembly with B4C-AL2O2 in guide tubes DEPLETED FUEL 2. 0 HVOI= 0.0 HTFU= 990.0 HTMO= 583.0 HBOR= 0.0 0 NO VOID TFU TMO BOR CRD BURNUP K-INF K-INF M2 PIN U-235 FISS PU TOT PU MWD/KG TWO-GROUP PEAK WT % WT % WT % 1 0.0 990.0 583.0 0.0 0.000 1.25229 1.26693 60.63 1.088 2.268 0.000 0.000 2 0.462 1.20023 1.21302 60.35 1.088 2.214 0.023 0.023 3 2.310 1.17977 1.19151 60.07 1.083 2.015 0.124 0.132 4 4.625 1.14953 1.16051 59.84 1.075 1.793 0.222 0.247 5 9.248 1.09376 1.10374 59.64 1.061 1.421 0.361 0.432 6 13.846 1.04649 1.05560 59.57 1.048 1.120 0.454 0.576 7 18.414 1.00494 1.01323 59.57 1.038 0.878 0.517 0.692 8 22.955 0.96781 0.97535 59.64 1.031 0.681 0.561 0.787 9 27.486 0.93453 0.94139 59.77 1.026 0.524 0.591 0.866 10 32.032 0.90500 0.91117 59.93 1.023 0.399 0.611 0.933 11 36.610 0.87906 0.88463 60.11 1.022 0.300 0.626 0.990 LIST OF WARNINGS ENCOUNTERED: ----------------------------ROUTINE TEXT ---------MIXS SUM OF WEIGHT PERCENTAGES LESS THAN 99.9 1 C A S M O FLORIDA 01/09/17 STUDSVIK EXECUTION **/04/15 20:37:12 JOB=SUN PAGE = 132 0 ** C A S M O -3 SUMMARY ** SEGMENT NO = 2 0 Crystal River-3 15x15 Assembly with B4C-AL2O2 in guide tubes LOW ENRICHED DEP 0 HVOI= 0.0 HTFU= 990.0 HTMO= 583.0 HBOR= 0.0

PAGE 154

1390 NO VOID TFU TMO BOR CRD BURNUP K-INF K-INF M2 PIN U-235 FISS PU TOT PU MWD/KG TWO-GROUP PEAK WT % WT % WT % 1 0.0 990.0 583.0 0.0 0.000 1.23846 1.21935 57.76 1.369 4.660 0.000 0.000 2 0.495 1.19765 1.18115 57.78 1.355 4.600 0.019 0.019 3 2.482 1.18613 1.17117 57.97 1.320 4.369 0.107 0.111 4 4.984 1.17383 1.15998 58.22 1.275 4.094 0.203 0.217 5 10.084 1.15140 1.13869 58.82 1.196 3.579 0.361 0.405 6 15.377 1.13572 1.12357 59.47 1.125 3.099 0.486 0.569 7 20.874 1.12041 1.10877 60.15 1.066 2.651 0.583 0.711 8 26.551 1.09772 1.08658 60.71 1.023 2.237 0.655 0.833 9 32.350 1.06490 1.05434 61.12 1.035 1.860 0.707 0.937 10 38.187 1.02659 1.01674 61.43 1.038 1.524 0.743 1.025 11 44.002 0.98776 0.97860 61.67 1.039 1.233 0.766 1.101 LIST OF WARNINGS ENCOUNTERED: ----------------------------ROUTINE TEXT ---------MIXS SUM OF WEIGHT PERCENTAGES LESS THAN 99.9 1 C A S M O FLORIDA 01/09/17 STUDSVIK EXECUTION **/04/15 20:37:12 JOB=SUN PAGE = 133 0 ** C A S M O -3 SUMMARY ** SEGMENT NO = 3 0 Crystal River-3 15x15 Assembly with B4C-AL2O2 in guide tubes MEDIUM ENRICHED 0 HVOI= 0.0 HTFU= 990.0 HTMO= 583.0 HBOR= 0.0 0 NO VOID TFU TMO BOR CRD BURNUP K-INF K-INF M2 PIN U-235 FISS PU TOT PU MWD/KG TWO-GROUP PEAK WT % WT % WT % 1 0.0 990.0 583.0 0.0 0.000 1.36875 1.36077 59.52 1.042 3.400 0.000 0.000 2 0.581 1.30890 1.30175 59.28 1.043 3.331 0.022 0.023 3 2.899 1.27952 1.27296 59.10 1.045 3.070 0.124 0.131 4 5.767 1.24277 1.23662 59.00 1.044 2.773 0.226 0.249 5 11.420 1.17714 1.17143 58.96 1.041 2.259 0.374 0.441 6 16.931 1.12146 1.11619 59.00 1.036 1.829 0.475 0.592 7 22.299 1.07220 1.06726 59.09 1.031 1.471 0.545 0.713 8 27.539 1.02717 1.02265 59.23 1.026 1.172 0.592 0.811 9 32.678 0.98567 0.98165 59.43 1.022 0.924 0.623 0.893 10 37.750 0.94749 0.94404 59.62 1.020 0.719 0.643 0.961 11 42.779 0.91301 0.91004 59.84 1.018 0.553 0.655 1.019

PAGE 155

140 The 2x2 Colorset CASMO Input File B4C/Al2O3 WABAs in Guide Tubes TIT *Crystal River-3 15x15 Assembly with B4C-AL2O3 WABA in guide tubes *2 x 2 COLORSET BAS 3 0 *BASE 3 diagonal symmetry DEP and PDE refer to average TFU=990 TMO=583 BOR=0 FUE 1 10.4/4.66 *FUEL COMP. #, DENSITY/ENRICHMENT fresh fuel MI2 17.8/5010=0.55 5011=2.22 6000=0.76 13000=51.04 8000=45.43 Mixture 2: B10, C, Al, O (BP Material) PIN 1 .4699 .4788 .5461/ '1' 'AIR' 'CAN' PIN 2 .28575 .33909 .35306 .40386 .41783 .48387 .632 .6731/ 'COO' 'CAN' 'AIR' 'MI2' 'AIR' 'CAN' 'COO' 'CAN'/3,4,8 WABA BPRA pin PIN 3 .632 .6731/ 'COO' 'CAN' *Center water hole / empty shroud tube PWR 15 1.443 21.81 PWR with pitch 1.443 LPI 3 1 1 *Common segment information 1 1 2 *Fresh fuel 1 1 1 1 *CARBORANE BPRAs 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 PDE 33 *POWER DENSITY (W/Gu) DEP 0.5 2.5 5 10 15 20 25 30 35 40 *Depletion steps * SEGMENT SPECIFIC INPUT SEG 1 *+DEPLETED FUEL 2.268% NO BPRAs FUE 1 10.4/2.268 LPI 3 1 1 *Segment information 1 1 3 *Low Enrich depleted fuel 1 1 1 1 *No BPRAs 1 1 1 1 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

PAGE 156

141 SEG 2 *+LOW ENRICHED DEPELTED FUEL NO BPRAs * SEG 3 *+MEDIUM ENRICHED DEPLETED FUEL NO BPRAs FUE 1 10.4/3.4 LPI 3 1 1 *Segment information 1 1 3 *Medium fuel 1 1 1 1 1 1 1 1 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 STA END

PAGE 157

142The 2x2 Colorset CASMO Output File B4C/Al2O3 WABAs in Guide Tubes 1* CASMO FLORIDA 01/09/17 STUDSVIK EXECUTION **/10/19 09:02:20 JOB=SUN STATE POINT NO = 11 PAGE = 129 Crystal River-3 15x15 Assembly with B4C-AL2O3 WABA in guide tubes 0 S U M M A R Y O F 2 X 2 S E G M E N T C A L C U L A T I O N 0 Crystal River-3 15x15 Assembly with B4C-AL2O3 WABA in guide tubes SEGMENT 1 Crystal River-3 15x15 Assembly with B4C-AL2O3 WABA in guide tubes SEGMENT 2 Crystal River-3 15x15 Assembly with B4C-AL2O3 WABA in guide tubes SEGMENT 3 Crystal River-3 15x15 Assembly with B4C-AL2O3 WABA in guide tubes 0 SEGMENT 1 2 3 4 AVERAGE E 36.428 44.603 42.542 36.428 40.000 V 0.000 0.000 0.000 0.000 0.000 TF 990.000 990.000 990.000 990.000 990.000 TM 583.000 583.000 583.000 583.000 583.000 BOR 0.000 0.000 0.000 0.000 0.000 CONTROL NUFISS/ABS 0.88008 0.98436 0.91459 0.88008 0.91640 2-GROUP K-INF 0.88538 0.97619 0.91158 0.88538 0.91463 2-GROUP M2 60.13 59.47 59.85 60.13 59.89 POWER FRAC 0.921 1.162 0.996 0.921 1.000 POWER DENS 0.921 1.162 0.996 0.921 1.000 0 TOTAL ABSORPTION 1.05816E+00 1.15986E+00 1.08872E+00 1.05816E+00 4.36491E+00 FISSION 3.31560E-01 4.21195E-01 3.59693E-01 3.31560E-01 1.44401E+00 NUFISSION 9.31272E-01 1.14173E+00 9.95731E-01 9.31272E-01 4.00000E+00 NORM. FACT 9.31271E-01 1.14173E+00 9.95730E-01 9.31271E-01 POWER DISTRIBUTION *W/CM* INCLUDING GAMMA SMEARING 0.000 1.003 0.990 0.987 0.986 0.985 0.982 0.989 | 0.912 0.898 0.900 0.900 0.901 0.905 0.920 0.000 1.003 1.006 1.003 0.997 0.996 0.999 0.991 0.990 | 0.913 0.908 0.917 0.911 0.912 0.921 0.922 0.921 0.990 1.003 0.000 1.005 1.005 0.000 0.999 0.992 | 0.915 0.919 0.000 0.924 0.924 0.000 0.922 0.907 0.987 0.997 1.005 1.009 1.014 1.011 0.994 0.992 | 0.916 0.913 0.932 0.936 0.929 0.927 0.916 0.906 0.986 0.996 1.005 1.014 0.000 1.003 0.986 0.992 | 0.916 0.904 0.925 0.000 0.940 0.931 0.919 0.908 0.985 0.999 0.000 1.011 1.003 0.994 0.984 0.993 | 0.916 0.904 0.916 0.929 0.941 0.000 0.930 0.913 0.982 0.991 0.999 0.994 0.986 0.984 0.984 0.995 | 0.920 0.906 0.909 0.914 0.926 0.935 0.926 0.917 0.989 0.990 0.992 0.992 0.992 0.993 0.995 1.007 | 0.936 0.926 0.928 0.931 0.935 0.938 0.937 0.936 ------------------------------------------------------------------------------------------------0.912 0.913 0.915 0.916 0.916 0.916 0.920 0.936 | 1.117 1.117 1.122 1.128 1.134 1.138 1.137 1.136 0.898 0.908 0.919 0.913 0.904 0.904 0.906 0.926 | 1.117 1.117 1.125 1.137 1.156 1.174 1.154 1.141 0.900 0.917 0.000 0.932 0.925 0.916 0.909 0.928 | 1.122 1.125 1.151 1.183 1.202 0.000 1.183 1.152 0.900 0.911 0.924 0.936 0.000 0.929 0.914 0.931 | 1.128 1.137 1.183 0.000 1.215 1.202 1.173 1.157 0.901 0.912 0.924 0.929 0.940 0.941 0.926 0.935 | 1.134 1.156 1.202 1.215 1.203 1.206 1.179 1.162

PAGE 158

143 0.905 0.921 0.000 0.927 0.931 0.000 0.935 0.938 | 1.138 1.174 0.000 1.202 1.206 0.000 1.201 1.171 0.920 0.922 0.922 0.916 0.919 0.930 0.926 0.937 | 1.137 1.154 1.183 1.173 1.179 1.201 1.194 1.189 0.000 0.921 0.907 0.906 0.908 0.913 0.917 0.936 | 1.136 1.141 1.152 1.157 1.162 1.171 1.189 0.000 0RESTART FILE NO. 12 WRITTEN. IDENTIFICATION = EXPOSURE = 36.4290 TYPE OF FILE = 470 STATEP = 12 0RESTART FILE NO. 12 WRITTEN. IDENTIFICATION = EXPOSURE = 44.6040 TYPE OF FILE = 470 STATEP = 12 0RESTART FILE NO. 12 WRITTEN. IDENTIFICATION = EXPOSURE = 42.5430 TYPE OF FILE = 470 STATEP = 12 1* CASMO FLORIDA 01/09/17 STUDSVIK EXECUTION **/10/19 09:02:20 JOB=SUN STATE POINT NO = 12 PAGE = 130 Crystal River-3 15x15 Assembly with B4C-AL2O3 WABA in guide tubes END INPUT CARD 1 C A S M O FLORIDA 01/09/17 STUDSVIK EXECUTION **/10/19 09:02:20 JOB=SUN PAGE = 131 0 ** C A S M O -3 SUMMARY ** SEGMENT NO = 1 0 Crystal River-3 15x15 Assembly with B4C-AL2O3 WABA in guide tubes DEPLETED 0 HVOI= 0.0 HTFU= 990.0 HTMO= 583.0 HBOR= 0.0 0 NO VOID TFU TMO BOR CRD BURNUP K-INF K-INF M2 PIN U-235 FISS PU TOT PU MWD/KG TWO-GROUP PEAK WT % WT % WT % 1 0.0 990.0 583.0 0.0 0.000 1.25252 1.26700 60.62 1.088 2.268 0.000 0.000 2 0.459 1.20053 1.21318 60.34 1.087 2.214 0.023 0.023 3 2.297 1.18018 1.19178 60.07 1.082 2.016 0.123 0.131 4 4.600 1.15009 1.16093 59.84 1.075 1.795 0.221 0.246 5 9.200 1.09451 1.10435 59.64 1.061 1.424 0.359 0.430 6 13.776 1.04736 1.05631 59.57 1.048 1.124 0.452 0.574 7 18.321 1.00593 1.01403 59.57 1.038 0.882 0.516 0.690 8 22.837 0.96891 0.97622 59.64 1.031 0.686 0.560 0.784 9 27.344 0.93568 0.94228 59.77 1.026 0.528 0.589 0.863 10 31.868 0.90610 0.91201 59.95 1.023 0.402 0.610 0.930 11 36.428 0.88008 0.88538 60.13 1.022 0.303 0.624 0.987 1 C A S M O FLORIDA 01/09/17 STUDSVIK EXECUTION **/10/19 09:02:20 JOB=SUN PAGE = 132 0 ** C A S M O -3 SUMMARY ** SEGMENT NO = 2 0 Crystal River-3 15x15 Assembly with B4C-AL2O3 WABA in guide tubes LOW ENRI 0 HVOI= 0.0 HTFU= 990.0 HTMO= 583.0 HBOR= 0.0 0 NO VOID TFU TMO BOR CRD BURNUP K-INF K-INF M2 PIN U-235 FISS PU TOT PU MWD/KG TWO-GROUP PEAK WT % WT % WT % 1 0.0 990.0 583.0 0.0 0.000 1.24423 1.22585 55.89 1.340 4.660 0.000 0.000 2 0.504 1.20235 1.18645 55.89 1.327 4.599 0.019 0.019 3 2.527 1.18978 1.17537 56.04 1.295 4.364 0.107 0.111 4 5.072 1.17634 1.16302 56.26 1.252 4.084 0.203 0.217 5 10.252 1.15235 1.14020 56.80 1.177 3.561 0.360 0.405 6 15.619 1.13657 1.12504 57.41 1.108 3.074 0.483 0.567 7 21.190 1.12227 1.11134 58.05 1.048 2.620 0.577 0.707 8 26.952 1.09962 1.08934 58.58 1.040 2.200 0.646 0.826 9 32.832 1.06494 1.05534 58.98 1.048 1.818 0.695 0.928 10 38.734 1.02469 1.01580 59.25 1.048 1.481 0.727 1.013 11 44.603 0.98436 0.97619 59.47 1.046 1.189 0.748 1.086

PAGE 159

1441 C A S M O FLORIDA 01/09/17 STUDSVIK EXECUTION **/10/19 09:02:20 JOB=SUN PAGE = 133 0 ** C A S M O -3 SUMMARY ** SEGMENT NO = 3 0 Crystal River-3 15x15 Assembly with B4C-AL2O3 WABA in guide tubes MEDIUM E 0 HVOI= 0.0 HTFU= 990.0 HTMO= 583.0 HBOR= 0.0 0 NO VOID TFU TMO BOR CRD BURNUP K-INF K-INF M2 PIN U-235 FISS PU TOT PU MWD/KG TWO-GROUP PEAK WT % WT % WT % 1 0.0 990.0 583.0 0.0 0.000 1.36886 1.36079 59.51 1.042 3.400 0.000 0.000 2 0.577 1.30910 1.30191 59.28 1.043 3.331 0.022 0.023 3 2.879 1.27990 1.27330 59.09 1.045 3.072 0.123 0.130 4 5.728 1.24337 1.23719 59.00 1.044 2.777 0.224 0.247 5 11.348 1.17801 1.17228 58.96 1.041 2.265 0.372 0.438 6 16.828 1.12251 1.11722 59.00 1.036 1.837 0.474 0.589 7 22.167 1.07341 1.06845 59.09 1.031 1.479 0.544 0.710 8 27.373 1.02864 1.02407 59.23 1.026 1.181 0.591 0.809 9 32.481 0.98728 0.98320 59.42 1.023 0.933 0.622 0.890 10 37.531 0.94911 0.94561 59.63 1.020 0.727 0.642 0.958 11 42.542 0.91459 0.91158 59.85 1.018 0.560 0.654 1.016

PAGE 160

145 The 2x2 Colorset CASMO Input File L-Carborane BPRAs in Guide Tubes TIT *Crystal River-3 15x15 Assembly with CARBORANE in guide tubes *2 x 2 COLORSET BAS 3 0 *BASE 3 diagonal symmetry DEP and PDE refer to average TFU=990 TMO=583 BOR=0 FUE 1 10.4/4.66 *FUEL COMP. #, DENSITY/ENRICHMENT fresh fuel MI2 0.9/6000=46.40 14000=29.60 8000=7.03 5010=1.90 1001=7.44 Mixture 2: C, Si, O, B10, H (CARBORANE BP Material) PIN 1 .4699 .4788 .5461/ '1' 'AIR' 'CAN' PIN 2 .4699 .4788 .5461 .632 .6731/ 'MI2' 'AIR' 'CAN' 'COO' 'CAN'/1,3,5 BPRA pin homogenized 'AIR+CAN' and 'COO+CAN' PIN 3 .632 .6731/ 'COO' 'CAN' *Center water hole / empty shroud tube PWR 15 1.443 21.81 PWR with pitch 1.443 LPI 3 1 1 *Common segment information 1 1 2 *Fresh fuel 1 1 1 1 *CARBORANE BPRAs 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 PDE 33 *POWER DENSITY (W/Gu) DEP 0.5 2.5 5 10 15 20 25 30 35 40 *Depletion steps * SEGMENT SPECIFIC INPUT SEG 1 *+DEPLETED FUEL 2.268% NO BPRAs FUE 1 10.4/2.268 LPI 3 1 1 *Segment information 1 1 3 *Low Enrich depleted fuel 1 1 1 1 *No BPRAs 1 1 1 1 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

PAGE 161

146 SEG 2 *+LOW ENRICHED DEPELTED FUEL NO BPRAs * SEG 3 *+MEDIUM ENRICHED DEPLETED FUEL NO BPRAs FUE 1 10.4/3.4 LPI 3 1 1 *Segment information 1 1 3 *Medium fuel 1 1 1 1 1 1 1 1 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 STA END

PAGE 162

147The 2x2 Colorset CASMO Output File L-Carborane BPRAs in Guide Tubes 1* CASMO FLORIDA 01/09/17 STUDSVIK EXECUTION **/04/15 20:38:54 JOB=SUN STATE POINT NO = 11 PAGE = 129 Crystal River-3 15x15 Assembly with CARBORANE in guide tubes 0 S U M M A R Y O F 2 X 2 S E G M E N T C A L C U L A T I O N 0 Crystal River-3 15x15 Assembly with CARBORANE in guide tubes SEGMENT 1 Crystal River-3 15x15 Assembly with CARBORANE in guide tubes DEPLETED SEGMENT 2 Crystal River-3 15x15 Assembly with CARBORANE in guide tubes LOW ENRI SEGMENT 3 Crystal River-3 15x15 Assembly with CARBORANE in guide tubes MEDIUM E 0 SEGMENT 1 2 3 4 AVERAGE E 36.396 44.703 42.505 36.396 40.000 V 0.000 0.000 0.000 0.000 0.000 TF 990.000 990.000 990.000 990.000 990.000 TM 583.000 583.000 583.000 583.000 583.000 BOR 0.000 0.000 0.000 0.000 0.000 CONTROL NUFISS/ABS 0.88031 0.98549 0.91483 0.88031 0.91692 2-GROUP K-INF 0.88555 0.97753 0.91183 0.88555 0.91511 2-GROUP M2 60.16 60.64 59.86 60.16 60.20 POWER FRAC 0.920 1.165 0.995 0.920 1.000 POWER DENS 0.920 1.165 0.995 0.920 1.000 0 TOTAL ABSORPTION 1.05691E+00 1.16141E+00 1.08721E+00 1.05691E+00 4.36245E+00 FISSION 3.31273E-01 4.22261E-01 3.59315E-01 3.31273E-01 1.44412E+00 NUFISSION 9.30414E-01 1.14455E+00 9.94617E-01 9.30414E-01 4.00000E+00 NORM. FACT 9.30413E-01 1.14455E+00 9.94616E-01 9.30413E-01 POWER DISTRIBUTION *W/CM* INCLUDING GAMMA SMEARING 0.000 1.002 0.989 0.986 0.985 0.984 0.981 0.988 | 0.911 0.897 0.899 0.899 0.900 0.903 0.919 0.000 1.002 1.005 1.002 0.996 0.995 0.998 0.990 0.989 | 0.912 0.907 0.916 0.910 0.911 0.919 0.921 0.920 0.989 1.002 0.000 1.004 1.004 0.000 0.997 0.991 | 0.914 0.918 0.000 0.923 0.923 0.000 0.921 0.906 0.986 0.996 1.004 1.008 1.013 1.010 0.993 0.991 | 0.915 0.912 0.931 0.935 0.928 0.926 0.915 0.905 0.985 0.995 1.004 1.013 0.000 1.002 0.985 0.991 | 0.915 0.903 0.924 0.000 0.939 0.930 0.918 0.908 0.984 0.998 0.000 1.010 1.002 0.993 0.983 0.992 | 0.916 0.903 0.915 0.928 0.940 0.000 0.929 0.912 0.981 0.990 0.997 0.993 0.985 0.983 0.983 0.995 | 0.919 0.906 0.908 0.913 0.926 0.935 0.926 0.916 0.988 0.989 0.991 0.991 0.991 0.992 0.995 1.006 | 0.935 0.925 0.927 0.931 0.935 0.938 0.937 0.936 ------------------------------------------------------------------------------------------------0.911 0.912 0.914 0.915 0.915 0.916 0.919 0.935 | 1.118 1.118 1.123 1.129 1.136 1.140 1.138 1.137 0.897 0.907 0.918 0.912 0.903 0.903 0.906 0.925 | 1.118 1.118 1.127 1.139 1.159 1.177 1.157 1.143 0.899 0.916 0.000 0.931 0.924 0.915 0.908 0.927 | 1.123 1.127 1.153 1.187 1.206 0.000 1.187 1.155 0.899 0.910 0.923 0.935 0.000 0.928 0.913 0.931 | 1.129 1.139 1.187 0.000 1.220 1.207 1.177 1.160 0.900 0.911 0.923 0.928 0.939 0.940 0.926 0.935 | 1.136 1.159 1.206 1.220 1.208 1.211 1.183 1.166

PAGE 163

148 0.903 0.919 0.000 0.926 0.930 0.000 0.935 0.938 | 1.140 1.177 0.000 1.207 1.211 0.000 1.205 1.175 0.919 0.921 0.921 0.915 0.918 0.929 0.926 0.937 | 1.138 1.157 1.187 1.177 1.183 1.205 1.197 1.192 0.000 0.920 0.906 0.905 0.908 0.912 0.916 0.936 | 1.137 1.143 1.155 1.160 1.166 1.175 1.192 0.000 0RESTART FILE NO. 12 WRITTEN. IDENTIFICATION = EXPOSURE = 36.3970 TYPE OF FILE = 470 STATEP = 12 0RESTART FILE NO. 12 WRITTEN. IDENTIFICATION = EXPOSURE = 44.7050 TYPE OF FILE = 470 STATEP = 12 0RESTART FILE NO. 12 WRITTEN. IDENTIFICATION = EXPOSURE = 42.5060 TYPE OF FILE = 470 STATEP = 12 1* CASMO FLORIDA 01/09/17 STUDSVIK EXECUTION **/04/15 20:38:54 JOB=SUN STATE POINT NO = 12 PAGE = 130 Crystal River-3 15x15 Assembly with CARBORANE in guide tubes END INPUT CARD LIST OF WARNINGS ENCOUNTERED: ----------------------------ROUTINE TEXT ---------MIXS SUM OF WEIGHT PERCENTAGES LESS THAN 99.9 1 C A S M O FLORIDA 01/09/17 STUDSVIK EXECUTION **/04/15 20:38:54 JOB=SUN PAGE = 131 0 ** C A S M O -3 SUMMARY ** SEGMENT NO = 1 0 Crystal River-3 15x15 Assembly with CARBORANE in guide tubes DEPLETED FUEL 2. 0 HVOI= 0.0 HTFU= 990.0 HTMO= 583.0 HBOR= 0.0 0 NO VOID TFU TMO BOR CRD BURNUP K-INF K-INF M2 PIN U-235 FISS PU TOT PU MWD/KG TWO-GROUP PEAK WT % WT % WT % 1 0.0 990.0 583.0 0.0 0.000 1.25249 1.26703 60.67 1.089 2.268 0.000 0.000 2 0.461 1.20045 1.21316 60.39 1.088 2.214 0.023 0.023 3 2.305 1.18005 1.19169 60.11 1.083 2.015 0.124 0.131 4 4.613 1.14991 1.16078 59.88 1.075 1.794 0.221 0.246 5 9.221 1.09432 1.10416 59.67 1.061 1.423 0.360 0.431 6 13.796 1.04727 1.05616 59.58 1.048 1.123 0.453 0.575 7 18.331 1.00599 1.01401 59.57 1.038 0.881 0.516 0.690 8 22.831 0.96908 0.97632 59.65 1.031 0.686 0.559 0.784 9 27.325 0.93591 0.94243 59.80 1.026 0.529 0.589 0.863 10 31.841 0.90633 0.91217 59.97 1.023 0.403 0.610 0.929 11 36.396 0.88031 0.88555 60.16 1.022 0.304 0.624 0.987 LIST OF WARNINGS ENCOUNTERED: ----------------------------ROUTINE TEXT ---------MIXS SUM OF WEIGHT PERCENTAGES LESS THAN 99.9 1 C A S M O FLORIDA 01/09/17 STUDSVIK EXECUTION **/04/15 20:38:54 JOB=SUN PAGE = 132 0 ** C A S M O -3 SUMMARY ** SEGMENT NO = 2 0 Crystal River-3 15x15 Assembly with CARBORANE in guide tubes LOW ENRICHED DEP 0 HVOI= 0.0 HTFU= 990.0 HTMO= 583.0 HBOR= 0.0

PAGE 164

1490 NO VOID TFU TMO BOR CRD BURNUP K-INF K-INF M2 PIN U-235 FISS PU TOT PU MWD/KG TWO-GROUP PEAK WT % WT % WT % 1 0.0 990.0 583.0 0.0 0.000 1.22905 1.21120 56.75 1.359 4.660 0.000 0.000 2 0.497 1.18871 1.17330 56.76 1.345 4.600 0.018 0.019 3 2.494 1.17857 1.16462 56.95 1.308 4.367 0.107 0.110 4 5.013 1.16835 1.15548 57.22 1.260 4.090 0.202 0.216 5 10.159 1.15095 1.13912 57.84 1.176 3.570 0.358 0.403 6 15.529 1.14182 1.13057 58.56 1.099 3.083 0.481 0.564 7 21.141 1.13095 1.12020 59.25 1.036 2.625 0.574 0.704 8 26.961 1.10602 1.09598 59.79 1.049 2.199 0.642 0.822 9 32.888 1.06823 1.05879 60.16 1.053 1.814 0.690 0.923 10 38.816 1.02645 1.01779 60.42 1.051 1.474 0.722 1.008 11 44.703 0.98549 0.97753 60.64 1.047 1.181 0.742 1.081 LIST OF WARNINGS ENCOUNTERED: ----------------------------ROUTINE TEXT ---------MIXS SUM OF WEIGHT PERCENTAGES LESS THAN 99.9 1 C A S M O FLORIDA 01/09/17 STUDSVIK EXECUTION **/04/15 20:38:54 JOB=SUN PAGE = 133 0 ** C A S M O -3 SUMMARY ** SEGMENT NO = 3 0 Crystal River-3 15x15 Assembly with CARBORANE in guide tubes MEDIUM ENRICHED 0 HVOI= 0.0 HTFU= 990.0 HTMO= 583.0 HBOR= 0.0 0 NO VOID TFU TMO BOR CRD BURNUP K-INF K-INF M2 PIN U-235 FISS PU TOT PU MWD/KG TWO-GROUP PEAK WT % WT % WT % 1 0.0 990.0 583.0 0.0 0.000 1.36877 1.36079 59.55 1.042 3.400 0.000 0.000 2 0.581 1.30889 1.30177 59.32 1.044 3.331 0.022 0.023 3 2.897 1.27955 1.27300 59.13 1.045 3.070 0.124 0.131 4 5.761 1.24289 1.23674 59.02 1.044 2.774 0.225 0.248 5 11.399 1.17740 1.17170 58.97 1.041 2.260 0.374 0.440 6 16.878 1.12210 1.11677 58.99 1.036 1.833 0.475 0.590 7 22.198 1.07319 1.06821 59.07 1.031 1.477 0.544 0.711 8 27.377 1.02868 1.02408 59.22 1.026 1.181 0.591 0.809 9 32.463 0.98737 0.98336 59.40 1.022 0.933 0.622 0.889 10 37.502 0.94936 0.94585 59.63 1.020 0.728 0.642 0.958 11 42.505 0.91483 0.91183 59.86 1.018 0.561 0.654 1.016

PAGE 165

150 APPENDIX D ONE-EIGHTH CORE EASCYC FILES This appendix contains all of th e input and output files for the 1/8th core EASCYC model. The first set of files are the CASMO input files used to generate the 10A3, 12A2, 13AE, and 14AE fuel cross section libraries. No CASMO output files are listed; instead, the appendix includes the ASCII file for th e cross section library made by EASY for EASLIB. All of the files use the B4C/Al2O3 BPRA. The 10A3 CASMO Input File TIT TFU=990 TMO=583 BOR=0 *4.66% B4 W 15 X 15 *Crystal River-3 15x15 10A3 Assembly with WATER in guide tubes FUE 1 10.4/3.94 *FUEL COMP. #, DENSITY/ENRICHMENT PDE 33 *POWER DENSITY (W/Gu) PIN 1 .4699 .4788 .5461/ '1' 'AIR' 'CAN' PIN 2 .632 .6731/ 'COO' 'CAN' *Center hole empty guide tube SPA 0 0 583 0.705/1001=11.19,8000=88.81 PWR 15 1.443 21.81 PWR with pitch 1.443 LPI 2 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 DEP 0 0.5 1 2 3 4 5 6 7 8 9 10 11 12 15 17.5 20 25 30 35 40 45 50 *Depletion steps STA END

PAGE 166

151 The 12A2 CASMO Input File TIT TFU=990 TMO=583 BOR=0 *4.66% B4 W 15 X 15 *Crystal River-3 15x15 12A2 Assembly with WATER in guide tubes FUE 1 10.4/4.19 *FUEL COMP. #, DENSITY/ENRICHMENT PDE 33 *POWER DENSITY (W/Gu) MI2 3.1/5010=0.55 5011=2.22 6000=0.76 13000=51.04 8000=45.43 Mixture 2: B10, C, Al, O (BP Material) PIN 1 .4699 .4788 .5461/ '1' 'AIR' 'CAN' PIN 2 .632 .6731/ 'COO' 'CAN' *Center water hole SPA 0 0 583 0.705/1001=11.19,8000=88.81 PWR 15 1.443 21.81 PWR with pitch 1.443 LPI 2 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 DEP 0 0.5 1 2 3 4 5 6 7 8 9 10 11 12 15 17.5 20 25 30 35 40 45 50 *Depletion steps STA END The 13AE CASMO Input File TIT TFU=990 TMO=583 BOR=0 *4.66% B4 W 15 X 15 *Crystal River-3 15x15 13AE Assembly with WATER in guide tubes FUE 1 10.4/4.856 *FUEL COMP. #, DENSITY/ENRICHMENT FUE 2 10.4/3.16 7300=6.0 *(GD ROD) PDE 33 *POWER DENSITY (W/Gu) MI2 3.1/5010=0.55 5011=2.22 6000=0.76 13000=51.04 8000=45.43 Mixture 2: B10, C, Al, O (BP Material) PIN 1 .4699 .4788 .5461/ '1' 'AIR' 'CAN' PIN 2 .632 .6731/ 'COO' 'CAN' *Center water hole PIN 3 .4699 .4788 .5461/ '2' 'AIR' 'CAN' SPA 0 0 583 0.705/1001=11.19,8000=88.81 PWR 15 1.443 21.81 PWR with pitch 1.443 LPI 2

PAGE 167

152 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 DEP 0 0.5 1 2 3 4 5 6 7 8 9 10 11 12 15 17.5 20 25 30 35 40 45 50 *Depletion steps STA END The 14AE CASMO Input File TIT TFU=990 TMO=583 BOR=0 *4.66% B4 W 15 X 15 *Crystal River-3 15x15 14AE Assembly with WATER in guide tubes FUE 1 10.4/4.613 *FUEL COMP. #, DENSITY/ENRICHMENT FUE 2 10.4/3.16 7300=6.0 *(GD ROD) PDE 33 *POWER DENSITY (W/Gu) PIN 1 .4699 .4788 .5461/ '1' 'AIR' 'CAN' PIN 2 .632 .6731/ 'COO' 'CAN' *Center water hole PIN 3 .4699 .4788 .5461/ '2' 'AIR' 'CAN' SPA 0 0 583 0.705/1001=11.19,8000=88.81 PWR 15 1.443 21.81 PWR with pitch 1.443 LPI 2 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 DEP 0 0.5 1 2 3 4 5 6 7 8 9 10 11 12 15 17.5 20 25 30 35 40 45 50 *Depletion steps STA END

PAGE 168

153 The EASY Output Fuel Cross Section Library File 10A3 23 .667100 16.89 .709800 463.60 200. .0394 .0 .0 10A3 1 3.56E-2 2.37E-2 6.64E-2 6.89E+10 5.16E+1 2.166E+3 2.8E-2 10A3 1 3.73E-1 1.22E+0 7.7E+0 5.9E+1 0.93E-3 10A3 1 .600E-3 2.88E-5 2.09E-5 1.09E-2 3.56E-6 10A3 1 .000000 0. 1.436700 .009548 .015191 .007794 .637527 10A3 1 .384600 .095045 .158900 12.996892 10A3 2 .500000 0. 1.436400 .009566 .015219 .007755 .632822 10A3 2 .384040 .096024 .158880 12.965562 10A3 3 1.000000 0. 1.436400 .009584 .015226 .007720 .628263 10A3 3 .383360 .096987 .159710 12.997233 10A3 4 2.000000 0. 1.436600 .009628 .015219 .007646 .619076 10A3 4 .382130 .098422 .161160 13.048864 10A3 5 3.000000 0. 1.436700 .009684 .015203 .007568 .609921 10A3 5 .381040 .099606 .162280 13.078659 10A3 6 4.000000 0. 1.436700 .009747 .015183 .007487 .600859 10A3 6 .380080 .100600 .163110 13.089640 10A3 7 5.000000 0. 1.436800 .009813 .015160 .007406 .591959 10A3 7 .379220 .101430 .163690 13.083686 10A3 8 6.000000 0. 1.436900 .009881 .015136 .007325 .583309 10A3 8 .378450 .102140 .164050 13.063386 10A3 9 7.000000 0. 1.436900 .009947 .015112 .007245 .574863 10A3 9 .377760 .102720 .164230 13.031024 10A3 10 8.000000 0. 1.437000 .010012 .015089 .007166 .566653 10A3 10 .377130 .103200 .164260 12.989087 10A3 11 9.000000 0. 1.437100 .010075 .015068 .007088 .558666 10A3 11 .376570 .103590 .164140 12.937653 10A3 12 10.000000 0. 1.437100 .010134 .015048 .007010 .550780 10A3 12 .376050 .103910 .163900 12.878639 10A3 13 11.000000 0. 1.437200 .010191 .015030 .006932 .543024 10A3 13 .375580 .104150 .163540 12.811594 10A3 14 12.000000 0. 1.437300 .010245 .015014 .006855 .535450 10A3 14 .375150 .104320 .163090 12.738918 10A3 15 15.000000 0. 1.437500 .010392 .014975 .006635 .514010 10A3 15 .374100 .104510 .161210 12.488670

PAGE 169

15410A3 16 17.500000 0. 1.437800 .010506 .014947 .006459 .497160 10A3 16 .373400 .104370 .159170 12.251385 10A3 17 20.000000 0. 1.438000 .010609 .014928 .006291 .481256 10A3 17 .372850 .104010 .156780 11.994492 10A3 18 25.000000 0. 1.438600 .010789 .014905 .005980 .452297 10A3 18 .372070 .102830 .151390 11.449423 10A3 19 30.000000 0. 1.439200 .010954 .014893 .005690 .425818 10A3 19 .371600 .101140 .145220 10.867320 10A3 20 35.000000 0. 1.439900 .011103 .014894 .005418 .401430 10A3 20 .371360 .099139 .138650 10.273414 10A3 21 40.000000 0. 1.440600 .011239 .014904 .005164 .379093 10A3 21 .371280 .096980 .131990 9.689117 10A3 22 45.000000 0. 1.441300 .011368 .014917 .004936 .359211 10A3 22 .371310 .094795 .125500 9.132919 10A3 23 50.000000 0. 1.442200 .011489 .014931 .004733 .341642 10A3 23 .371420 .092687 .119380 8.617939 12A2 23 .667100 16.89 .709800 463.60 200. .0419 .0 .0 12A2 1 3.56E-2 2.37E-2 6.64E-2 6.89E+10 5.16E+1 2.166E+3 2.8E-2 12A2 1 3.73E-1 1.22E+0 7.7E+0 5.9E+1 0.93E-3 12A2 1 .600E-3 2.88E-5 2.09E-5 1.09E-2 3.56E-6 12A2 1 .000000 0. 1.438000 .009696 .015044 .008091 .661811 12A2 1 .384130 .098876 .166750 13.638966 12A2 2 .500000 0. 1.437700 .009713 .015072 .008051 .657111 12A2 2 .383590 .099831 .166670 13.604048 12A2 3 1.000000 0. 1.437700 .009730 .015079 .008016 .652569 12A2 3 .382930 .100780 .167430 13.631035 12A2 4 2.000000 0. 1.437800 .009771 .015075 .007940 .643350 12A2 4 .381730 .102180 .168800 13.677430 12A2 5 3.000000 0. 1.437900 .009823 .015061 .007862 .634248 12A2 5 .380670 .103330 .169870 13.704720 12A2 6 4.000000 0. 1.438000 .009883 .015043 .007782 .625295 12A2 6 .379720 .104300 .170660 13.713138 12A2 7 5.000000 0. 1.438000 .009946 .015021 .007701 .616483 12A2 7 .378870 .105120 .171210 13.705572 12A2 8 6.000000 0. 1.438100 .010009 .014999 .007619 .607753 12A2 8 .378110 .105810 .171550 13.684043 12A2 9 7.000000 0. 1.438200 .010072 .014978 .007537 .599229 12A2 9 .377430 .106390 .171720 13.651866

PAGE 170

15512A2 10 8.000000 0. 1.438200 .010133 .014957 .007457 .590918 12A2 10 .376800 .106870 .171740 13.609636 12A2 11 9.000000 0. 1.438200 .010193 .014937 .007377 .582801 12A2 11 .376240 .107260 .171620 13.558224 12A2 12 10.000000 0. 1.438300 .010250 .014919 .007298 .574858 12A2 12 .375730 .107570 .171380 13.498740 12A2 13 11.000000 0. 1.438400 .010306 .014901 .007221 .567131 12A2 13 .375260 .107820 .171030 13.432554 12A2 14 12.000000 0. 1.438500 .010359 .014885 .007144 .559524 12A2 14 .374830 .108000 .170570 13.359179 12A2 15 15.000000 0. 1.438700 .010499 .014849 .006917 .537509 12A2 15 .373760 .108200 .168710 13.109799 12A2 16 17.500000 0. 1.438900 .010607 .014824 .006735 .520107 12A2 16 .373060 .108070 .166680 12.872533 12A2 17 20.000000 0. 1.439200 .010705 .014807 .006559 .503612 12A2 17 .372500 .107720 .164300 12.614688 12A2 18 25.000000 0. 1.439700 .010876 .014787 .006234 .473389 12A2 18 .371690 .106540 .158880 12.064239 12A2 19 30.000000 0. 1.440300 .011033 .014779 .005929 .445643 12A2 19 .371210 .104830 .152630 11.471196 12A2 20 35.000000 0. 1.440900 .011176 .014781 .005645 .420202 12A2 20 .370960 .102770 .145910 10.860843 12A2 21 40.000000 0. 1.441600 .011305 .014794 .005377 .396570 12A2 21 .370870 .100510 .139000 10.252250 12A2 22 45.000000 0. 1.442300 .011427 .014812 .005130 .375095 12A2 22 .370900 .098186 .132160 9.663644 12A2 23 50.000000 0. 1.443100 .011543 .014830 .004908 .355995 12A2 23 .371020 .095890 .125600 9.110031 13AE 23 .667100 16.89 .709800 463.60 200. .0486 .0 .0 13AE 1 3.56E-2 2.37E-2 6.64E-2 6.89E+10 5.16E+1 2.166E+3 2.8E-2 13AE 1 3.73E-1 1.22E+0 7.7E+0 5.9E+1 0.93E-3 13AE 1 .600E-3 2.88E-5 2.09E-5 1.09E-2 3.56E-6 13AE 1 .000000 0. 1.441100 .010088 .014671 .008874 .725893 13AE 1 .382720 .108680 .186860 15.284446 13AE 2 .500000 0. 1.440900 .010103 .014698 .008833 .721205 13AE 2 .382210 .109570 .186620 15.238017 13AE 3 1.000000 0. 1.440800 .010118 .014708 .008795 .716646 13AE 3 .381600 .110490 .187230 15.255439

PAGE 171

15613AE 4 2.000000 0. 1.440900 .010150 .014709 .008715 .707255 13AE 4 .380490 .111820 .188410 15.290537 13AE 5 3.000000 0. 1.440900 .010193 .014702 .008632 .697983 13AE 5 .379490 .112900 .189360 15.311098 13AE 6 4.000000 0. 1.441000 .010242 .014689 .008549 .688836 13AE 6 .378590 .113820 .190060 15.314451 13AE 7 5.000000 0. 1.441100 .010294 .014675 .008464 .679761 13AE 7 .377780 .114610 .190550 15.303992 13AE 8 6.000000 0. 1.441100 .010348 .014658 .008379 .670860 13AE 8 .377050 .115270 .190860 15.281637 13AE 9 7.000000 0. 1.441200 .010402 .014641 .008295 .662255 13AE 9 .376380 .115840 .191010 15.249082 13AE 10 8.000000 0. 1.441200 .010456 .014624 .008213 .653847 13AE 10 .375780 .116310 .191010 15.205987 13AE 11 9.000000 0. 1.441300 .010510 .014607 .008132 .645627 13AE 11 .375220 .116700 .190890 15.155413 13AE 12 10.000000 0. 1.441300 .010562 .014591 .008052 .637574 13AE 12 .374710 .117020 .190660 15.097597 13AE 13 11.000000 0. 1.441400 .010612 .014575 .007972 .629675 13AE 13 .374250 .117270 .190320 15.032582 13AE 14 12.000000 0. 1.441500 .010659 .014562 .007892 .621833 13AE 14 .373820 .117460 .189890 14.961393 13AE 15 15.000000 0. 1.441700 .010788 .014529 .007658 .599171 13AE 15 .372750 .117710 .188090 14.715800 13AE 16 17.500000 0. 1.441900 .010887 .014507 .007468 .581108 13AE 16 .372020 .117630 .186130 14.482571 13AE 17 20.000000 0. 1.442100 .010976 .014492 .007282 .563622 13AE 17 .371450 .117320 .183810 14.226780 13AE 18 25.000000 0. 1.442600 .011126 .014481 .006925 .530631 13AE 18 .370600 .116190 .178440 13.673039 13AE 19 30.000000 0. 1.443100 .011261 .014480 .006585 .499898 13AE 19 .370080 .114500 .172150 13.067901 13AE 20 35.000000 0. 1.443700 .011384 .014489 .006266 .471434 13AE 20 .369800 .112400 .165240 12.431538 13AE 21 40.000000 0. 1.444300 .011499 .014505 .005967 .445084 13AE 21 .369700 .110010 .157950 11.782038 13AE 22 45.000000 0. 1.444900 .011606 .014528 .005685 .420611 13AE 22 .369730 .107460 .150510 11.134867

PAGE 172

15713AE 23 50.000000 0. 1.445600 .011703 .014558 .005420 .397754 13AE 23 .369860 .104830 .143110 10.503101 14AE 23 .667100 16.89 .709800 463.60 200. .0461 .0 .0 14AE 1 3.56E-2 2.37E-2 6.64E-2 6.89E+10 5.16E+1 2.166E+3 2.8E-2 14AE 1 3.73E-1 1.22E+0 7.7E+0 5.9E+1 0.93E-3 14AE 1 .600E-3 2.88E-5 2.09E-5 1.09E-2 3.56E-6 14AE 1 .000000 0. 1.440000 .009946 .014804 .008590 .702671 14AE 1 .383260 .105170 .179650 14.694696 14AE 2 .500000 0. 1.439700 .009961 .014831 .008549 .697971 14AE 2 .382750 .106080 .179470 14.652406 14AE 3 1.000000 0. 1.439700 .009977 .014840 .008513 .693406 14AE 3 .382110 .107010 .180120 14.671934 14AE 4 2.000000 0. 1.439800 .010013 .014839 .008434 .684122 14AE 4 .380970 .108360 .181380 14.712252 14AE 5 3.000000 0. 1.439800 .010057 .014831 .008352 .674835 14AE 5 .379940 .109470 .182360 14.734376 14AE 6 4.000000 0. 1.439900 .010110 .014816 .008269 .665666 14AE 6 .379030 .110410 .183090 14.739172 14AE 7 5.000000 0. 1.440000 .010166 .014799 .008186 .656769 14AE 7 .378210 .111200 .183610 14.730635 14AE 8 6.000000 0. 1.440000 .010225 .014780 .008104 .648061 14AE 8 .377460 .111880 .183930 14.708517 14AE 9 7.000000 0. 1.440100 .010282 .014761 .008022 .639558 14AE 9 .376790 .112450 .184080 14.675330 14AE 10 8.000000 0. 1.440200 .010339 .014742 .007942 .631255 14AE 10 .376180 .112920 .184090 14.632964 14AE 11 9.000000 0. 1.440200 .010395 .014724 .007861 .623073 14AE 11 .375620 .113310 .183970 14.581699 14AE 12 10.000000 0. 1.440300 .010448 .014707 .007780 .614995 14AE 12 .375110 .113630 .183730 14.522963 14AE 13 11.000000 0. 1.440300 .010499 .014692 .007700 .607032 14AE 13 .374640 .113880 .183390 14.457803 14AE 14 12.000000 0. 1.440400 .010549 .014677 .007621 .599269 14AE 14 .374210 .114060 .182950 14.386255 14AE 15 15.000000 0. 1.440600 .010683 .014643 .007391 .576964 14AE 15 .373140 .114290 .181120 14.138402 14AE 16 17.500000 0. 1.440800 .010785 .014620 .007203 .559021 14AE 16 .372420 .114190 .179140 13.903527

PAGE 173

15814AE 17 20.000000 0. 1.441100 .010875 .014605 .007018 .541706 14AE 17 .371850 .113860 .176790 13.646469 14AE 18 25.000000 0. 1.441600 .011032 .014591 .006671 .509602 14AE 18 .371020 .112710 .171380 13.091437 14AE 19 30.000000 0. 1.442100 .011175 .014588 .006343 .479873 14AE 19 .370510 .111000 .165080 12.488558 14AE 20 35.000000 0. 1.442700 .011305 .014594 .006037 .452494 14AE 20 .370240 .108900 .158210 11.859376 14AE 21 40.000000 0. 1.443300 .011426 .014609 .005749 .427180 14AE 21 .370140 .106550 .151020 11.221161 14AE 22 45.000000 0. 1.443900 .011538 .014632 .005477 .403573 14AE 22 .370170 .104050 .143750 10.591269 14AE 23 50.000000 0. 1.444700 .011642 .014658 .005226 .381954 14AE 23 .370300 .101520 .136600 9.983920 1 .00450 .03440 -.0015 0.00 0.7 366. .05 2 .00450 .03440 -.0015 0.00 0.7 366. .05 3 .00450 .03440 -.0015 0.00 0.7 366. .05 4 .00450 .03440 -.0015 0.00 0.7 366. .05 5 .00450 .03440 -.0015 0.00 0.7 366. .05 6 .00450 .03440 -.0015 0.00 0.7 366. .05 7 .00450 .03440 -.0015 0.00 0.7 366. .05

PAGE 174

159The EASYLIB Input File Reactor Geometry CRYSTAL RIVER RELOAD #12 CORE WITH CASMO LIB (B4CAL2) crystal3.asc crystal1.out 3 1 0 0 1 1 0 1 3 177 29 3 6 4 -4 -12 3 4 8 7 6 4 3 1 1 2 3 4 2 3 3 4 3 4 3 2 3 4 3 4 3 4 2 3 4 3 4 4 2 3 4 3 3 3 4 1 1 2568.0,360.17,21.81,800.0,0.7232,1.2,1.0,1.0,0.0 1 B-20 16.190E-6 4.500E+1 2.050E+3 0.9480E-0 1.170E-0 0.616E-0 -9.29E-04 1 0.375E-3 -0.094E-6 0.00E-0 1.00E-0 1.000E+2 0.000E+0 4.394E-02 2 B-16 36.351E-6 4.500E+1 2.050E+3 0.9643E-0 0.959E-0 0.701E-0 -7.43E-04 2 0.300E-3 -0.075E-6 0.00E-0 1.00E-0 1.000E+2 0.000E+0 3.515E-02 3 B-12 9.710E-6 4.500E+1 2.050E+3 0.9480E-0 1.170E-0 0.616E-0 -5.57E-04 3 0.225E-3 -0.056E-6 0.00E-0 1.00E-0 1.000E+2 0.000E+0 2.636E-02 4 B-08 13.336E-6 4.500E+1 2.050E+3 0.9810E-0 0.979E-0 0.748E-0 -3.72E-04 4 0.150E-3 -0.375E-7 0.00E-0 1.00E-0 1.000E+2 0.000E+0 1.758E-02 3,2,0.0 5,7,0.0 7,6,0.0 9,2,0.0 11,4,0.0 13,5,0.0 16,6,0.0 18,8,0.0 20,1,0.0 22,5,0.0 24,3,0.0 26,7,0.0 *BRN 38.784 24.686 28.930 0.000 24.537 0.000 28.395 40.206 27.702 0.000 28.425 0.000 22.646 0.000 37.045 27.922 0.000 29.027 0.000 0.000 40.708 27.932 0.000 21.198 28.866 27.655 0.000 38.450 38.519 3,0.0 2,10.0 1,20.0

PAGE 175

160The EASCYC Output File B4C/Al2O3 BPRAs ***EASCYC*** A TWO DIMENSIONAL, TWO GROUP NODAL/MODAL ANALYSIS SYSTEM FOR THE EVALUATION AND OPTIMIZATION OF A SEQUENCE OF FUEL CYCLES COPYRIGHT 1985 HARVEY W. GRAVES JR. EMULATION VERSION T91-C02 (1/26/91) EASSI TUTORIAL FORMAT SERIAL NO. 7012 CRYSTAL RIVER RELOAD #12 CORE WITH CASMO LIB (B4CAL2) OLD G FACTORS 9/12/** (10:54) FUEL LIBRARY FILE CRYSTAL9.BIN OUTPUT PRINT FILE CRYSTAL9.OUT REACTOR DESCRIPTION RATED POWER LEVEL(MWT) 2990. OPERATING LEVEL (%) 85.9 TOTAL ASSEMBLIES 177 NUMBER OF FUEL TYPES 4 ASSEMBLIES IN EIGHTH CORE 29 ASSEMBLY PITCH(CM) 21.50 ASSBY. ROWS IN EIGHTH CORE 6 ASSEMBLY HEIGHT(CM) 366.00 RELOAD SPARE ASSEMBLIES 3 BORON CONC. (PPM) 800. AVAILABLE CR POSITIONS 12 COOLANT DENSITY (g/cc)0.72320 AXIAL BUCKLING(1/m-sq) 1.20 CONVERGENCE PARAMETERS ITERATION LIMIT 100 EIGENVALUE CONVERGENCE 0.000050 INITIAL DOMINANCE RATIO 0.65 BORON SEARCH CONVERGENCE (PPM) 5. ALLOWABLE ASSEMBLY BURNUP DELTA (MWD/KG) 0.100 REFERENCE FUEL PROPERTIES AT PROBLEM INITIATION WATER DENSITY ASSBY POWER BORON CONC G/CC MWT PPM ENRICHMENT REACTOR REFERENCE 0.72320 14.508 800.0 10A3 1 0.70980 16.890 0.0 0.0394 12A2 2 0.70980 16.890 0.0 0.0419 13AE 3 0.70980 16.890 0.0 0.0486 14AE 4 0.70980 16.890 0.0 0.0461 DATA LIBRARY NUCLEAR PROPERTIES FP DOPPLER FP XENON SHIM MICROS WATER MICROS FUEL FUEL WATER FUEL PEAK NAME NO. FRACTION MASS(KG) VALUE SLOPE YIELD SIG/LAM FABS TABS FABS TABS FREM FTR TTR SAMAR. 10A3 1 0.66710 463.60 0.0117 0.813 0.06640.689E+11 51.60 2166.0 0.02800 0.3730 1.220 7.700 59.00 0.930E-03 12A2 2 0.66710 463.60 0.0117 0.813 0.06640.689E+11 51.60 2166.0 0.02800 0.3730 1.220 7.700 59.00 0.930E-03 13AE 3 0.66710 463.60 0.0117 0.813 0.06640.689E+11 51.60 2166.0 0.02800 0.3730 1.220 7.700 59.00 0.930E-03 14AE 4 0.66710 463.60 0.0117 0.813 0.06640.689E+11 51.60 2166.0 0.02800 0.3730 1.220 7.700 59.00 0.930E-03

PAGE 176

161EASSI PROGRAM EASCYC (c)1988 CRYSTAL RIVER RELOAD #12 CORE WITH CASMO LIB (B4CAL2) OLD G FACTORS 9/12/** (10:54) PAGE 2 DATA LIBRARY TWO GROUP CONSTANTS FAST THERMAL FUEL NO. BURNUP BORON D COEFF SIGMA-A SIGMA-R NU-SIGF KAP-SIGF D COEFF SIGMA-A NU-SIGF KAP-SIGF 1 0.000 0.0 1.4367 0.009548 0.015191 0.007794 0.637527 0.38460 0.095045 0.158900 12.9969 1 0.500 0.0 1.4364 0.009566 0.015219 0.007755 0.632822 0.38404 0.096024 0.158880 12.9656 1 1.000 0.0 1.4364 0.009584 0.015226 0.007720 0.628263 0.38336 0.096987 0.159710 12.9972 1 2.000 0.0 1.4366 0.009628 0.015219 0.007646 0.619076 0.38213 0.098422 0.161160 13.0489 1 3.000 0.0 1.4367 0.009684 0.015203 0.007568 0.609921 0.38104 0.099606 0.162280 13.0787 1 4.000 0.0 1.4367 0.009747 0.015183 0.007487 0.600859 0.38008 0.100600 0.163110 13.0896 1 5.000 0.0 1.4368 0.009813 0.015160 0.007406 0.591959 0.37922 0.101430 0.163690 13.0837 1 6.000 0.0 1.4369 0.009881 0.015136 0.007325 0.583309 0.37845 0.102140 0.164050 13.0634 1 7.000 0.0 1.4369 0.009947 0.015112 0.007245 0.574863 0.37776 0.102720 0.164230 13.0310 1 8.000 0.0 1.4370 0.010012 0.015089 0.007166 0.566653 0.37713 0.103200 0.164260 12.9891 1 9.000 0.0 1.4371 0.010075 0.015068 0.007088 0.558666 0.37657 0.103590 0.164140 12.9377 1 10.000 0.0 1.4371 0.010134 0.015048 0.007010 0.550780 0.37605 0.103910 0.163900 12.8786 1 11.000 0.0 1.4372 0.010191 0.015030 0.006932 0.543024 0.37558 0.104150 0.163540 12.8116 1 12.000 0.0 1.4373 0.010245 0.015014 0.006855 0.535450 0.37515 0.104320 0.163090 12.7389 1 15.000 0.0 1.4375 0.010392 0.014975 0.006635 0.514010 0.37410 0.104510 0.161210 12.4887 1 17.500 0.0 1.4378 0.010506 0.014947 0.006459 0.497160 0.37340 0.104370 0.159170 12.2514 1 20.000 0.0 1.4380 0.010609 0.014928 0.006291 0.481256 0.37285 0.104010 0.156780 11.9945 1 25.000 0.0 1.4386 0.010789 0.014905 0.005980 0.452297 0.37207 0.102830 0.151390 11.4494 1 30.000 0.0 1.4392 0.010954 0.014893 0.005690 0.425818 0.37160 0.101140 0.145220 10.8673 1 35.000 0.0 1.4399 0.011103 0.014894 0.005418 0.401430 0.37136 0.099139 0.138650 10.2734 1 40.000 0.0 1.4406 0.011239 0.014904 0.005164 0.379093 0.37128 0.096980 0.131990 9.6891 1 45.000 0.0 1.4413 0.011368 0.014917 0.004936 0.359211 0.37131 0.094795 0.125500 9.1329 1 50.000 0.0 1.4422 0.011489 0.014931 0.004733 0.341642 0.37142 0.092687 0.119380 8.6179 2 0.000 0.0 1.4380 0.009696 0.015044 0.008091 0.661811 0.38413 0.098876 0.166750 13.6390 2 0.500 0.0 1.4377 0.009713 0.015072 0.008051 0.657111 0.38359 0.099831 0.166670 13.6040 2 1.000 0.0 1.4377 0.009730 0.015079 0.008016 0.652569 0.38293 0.100780 0.167430 13.6310 2 2.000 0.0 1.4378 0.009771 0.015075 0.007940 0.643350 0.38173 0.102180 0.168800 13.6774 2 3.000 0.0 1.4379 0.009823 0.015061 0.007862 0.634248 0.38067 0.103330 0.169870 13.7047 2 4.000 0.0 1.4380 0.009883 0.015043 0.007782 0.625295 0.37972 0.104300 0.170660 13.7131 2 5.000 0.0 1.4380 0.009946 0.015021 0.007701 0.616483 0.37887 0.105120 0.171210 13.7056 2 6.000 0.0 1.4381 0.010009 0.014999 0.007619 0.607753 0.37811 0.105810 0.171550 13.6840 2 7.000 0.0 1.4382 0.010072 0.014978 0.007537 0.599229 0.37743 0.106390 0.171720 13.6519 2 8.000 0.0 1.4382 0.010133 0.014957 0.007457 0.590918 0.37680 0.106870 0.171740 13.6096 2 9.000 0.0 1.4382 0.010193 0.014937 0.007377 0.582801 0.37624 0.107260 0.171620 13.5582 2 10.000 0.0 1.4383 0.010250 0.014919 0.007298 0.574858 0.37573 0.107570 0.171380 13.4987 2 11.000 0.0 1.4384 0.010306 0.014901 0.007221 0.567131 0.37526 0.107820 0.171030 13.4326 2 12.000 0.0 1.4385 0.010359 0.014885 0.007144 0.559524 0.37483 0.108000 0.170570 13.3592 2 15.000 0.0 1.4387 0.010499 0.014849 0.006917 0.537509 0.37376 0.108200 0.168710 13.1098 2 17.500 0.0 1.4389 0.010607 0.014824 0.006735 0.520107 0.37306 0.108070 0.166680 12.8725 2 20.000 0.0 1.4392 0.010705 0.014807 0.006559 0.503612 0.37250 0.107720 0.164300 12.6147 2 25.000 0.0 1.4397 0.010876 0.014787 0.006234 0.473389 0.37169 0.106540 0.158880 12.0642 2 30.000 0.0 1.4403 0.011033 0.014779 0.005929 0.445643 0.37121 0.104830 0.152630 11.4712 2 35.000 0.0 1.4409 0.011176 0.014781 0.005645 0.420202 0.37096 0.102770 0.145910 10.8608 2 40.000 0.0 1.4416 0.011305 0.014794 0.005377 0.396570 0.37087 0.100510 0.139000 10.2522 2 45.000 0.0 1.4423 0.011427 0.014812 0.005130 0.375095 0.37090 0.098186 0.132160 9.6636 2 50.000 0.0 1.4431 0.011543 0.014830 0.004908 0.355995 0.37102 0.095890 0.125600 9.1100

PAGE 177

162EASSI PROGRAM EASCYC (c)1988 CRYSTAL RIVER RELOAD #12 CORE WITH CASMO LIB (B4CAL2) OLD G FACTORS 9/12/** (10:54) PAGE 3 FAST THERMAL FUEL NO. BURNUP BORON D COEFF SIGMA-A SIGMA-R NU-SIGF KAP-SIGF D COEFF SIGMA-A NU-SIGF KAP-SIGF 3 0.000 0.0 1.4411 0.010088 0.014671 0.008874 0.725893 0.38272 0.108680 0.186860 15.2844 3 0.500 0.0 1.4409 0.010103 0.014698 0.008833 0.721205 0.38221 0.109570 0.186620 15.2380 3 1.000 0.0 1.4408 0.010118 0.014708 0.008795 0.716646 0.38160 0.110490 0.187230 15.2554 3 2.000 0.0 1.4409 0.010150 0.014709 0.008715 0.707255 0.38049 0.111820 0.188410 15.2905 3 3.000 0.0 1.4409 0.010193 0.014702 0.008632 0.697983 0.37949 0.112900 0.189360 15.3111 3 4.000 0.0 1.4410 0.010242 0.014689 0.008549 0.688836 0.37859 0.113820 0.190060 15.3145 3 5.000 0.0 1.4411 0.010294 0.014675 0.008464 0.679761 0.37778 0.114610 0.190550 15.3040 3 6.000 0.0 1.4411 0.010348 0.014658 0.008379 0.670860 0.37705 0.115270 0.190860 15.2816 3 7.000 0.0 1.4412 0.010402 0.014641 0.008295 0.662255 0.37638 0.115840 0.191010 15.2491 3 8.000 0.0 1.4412 0.010456 0.014624 0.008213 0.653847 0.37578 0.116310 0.191010 15.2060 3 9.000 0.0 1.4413 0.010510 0.014607 0.008132 0.645627 0.37522 0.116700 0.190890 15.1554 3 10.000 0.0 1.4413 0.010562 0.014591 0.008052 0.637574 0.37471 0.117020 0.190660 15.0976 3 11.000 0.0 1.4414 0.010612 0.014575 0.007972 0.629675 0.37425 0.117270 0.190320 15.0326 3 12.000 0.0 1.4415 0.010659 0.014562 0.007892 0.621833 0.37382 0.117460 0.189890 14.9614 3 15.000 0.0 1.4417 0.010788 0.014529 0.007658 0.599171 0.37275 0.117710 0.188090 14.7158 3 17.500 0.0 1.4419 0.010887 0.014507 0.007468 0.581108 0.37202 0.117630 0.186130 14.4826 3 20.000 0.0 1.4421 0.010976 0.014492 0.007282 0.563622 0.37145 0.117320 0.183810 14.2268 3 25.000 0.0 1.4426 0.011126 0.014481 0.006925 0.530631 0.37060 0.116190 0.178440 13.6730 3 30.000 0.0 1.4431 0.011261 0.014480 0.006585 0.499898 0.37008 0.114500 0.172150 13.0679 3 35.000 0.0 1.4437 0.011384 0.014489 0.006266 0.471434 0.36980 0.112400 0.165240 12.4315 3 40.000 0.0 1.4443 0.011499 0.014505 0.005967 0.445084 0.36970 0.110010 0.157950 11.7820 3 45.000 0.0 1.4449 0.011606 0.014528 0.005685 0.420611 0.36973 0.107460 0.150510 11.1349 3 50.000 0.0 1.4456 0.011703 0.014558 0.005420 0.397754 0.36986 0.104830 0.143110 10.5031 4 0.000 0.0 1.4400 0.009946 0.014804 0.008590 0.702671 0.38326 0.105170 0.179650 14.6947 4 0.500 0.0 1.4397 0.009961 0.014831 0.008549 0.697971 0.38275 0.106080 0.179470 14.6524 4 1.000 0.0 1.4397 0.009977 0.014840 0.008513 0.693406 0.38211 0.107010 0.180120 14.6719 4 2.000 0.0 1.4398 0.010013 0.014839 0.008434 0.684122 0.38097 0.108360 0.181380 14.7123 4 3.000 0.0 1.4398 0.010057 0.014831 0.008352 0.674835 0.37994 0.109470 0.182360 14.7344 4 4.000 0.0 1.4399 0.010110 0.014816 0.008269 0.665666 0.37903 0.110410 0.183090 14.7392 4 5.000 0.0 1.4400 0.010166 0.014799 0.008186 0.656769 0.37821 0.111200 0.183610 14.7306 4 6.000 0.0 1.4400 0.010225 0.014780 0.008104 0.648061 0.37746 0.111880 0.183930 14.7085 4 7.000 0.0 1.4401 0.010282 0.014761 0.008022 0.639558 0.37679 0.112450 0.184080 14.6753 4 8.000 0.0 1.4402 0.010339 0.014742 0.007942 0.631255 0.37618 0.112920 0.184090 14.6330 4 9.000 0.0 1.4402 0.010395 0.014724 0.007861 0.623073 0.37562 0.113310 0.183970 14.5817 4 10.000 0.0 1.4403 0.010448 0.014707 0.007780 0.614995 0.37511 0.113630 0.183730 14.5230 4 11.000 0.0 1.4403 0.010499 0.014692 0.007700 0.607032 0.37464 0.113880 0.183390 14.4578 4 12.000 0.0 1.4404 0.010549 0.014677 0.007621 0.599269 0.37421 0.114060 0.182950 14.3863 4 15.000 0.0 1.4406 0.010683 0.014643 0.007391 0.576964 0.37314 0.114290 0.181120 14.1384 4 17.500 0.0 1.4408 0.010785 0.014620 0.007203 0.559021 0.37242 0.114190 0.179140 13.9035 4 20.000 0.0 1.4411 0.010875 0.014605 0.007018 0.541706 0.37185 0.113860 0.176790 13.6465 4 25.000 0.0 1.4416 0.011032 0.014591 0.006671 0.509602 0.37102 0.112710 0.171380 13.0914 4 30.000 0.0 1.4421 0.011175 0.014588 0.006343 0.479873 0.37051 0.111000 0.165080 12.4886 4 35.000 0.0 1.4427 0.011305 0.014594 0.006037 0.452494 0.37024 0.108900 0.158210 11.8594 4 40.000 0.0 1.4433 0.011426 0.014609 0.005749 0.427180 0.37014 0.106550 0.151020 11.2212 4 45.000 0.0 1.4439 0.011538 0.014632 0.005477 0.403573 0.37017 0.104050 0.143750 10.5913 4 50.000 0.0 1.4447 0.011642 0.014658 0.005226 0.381954 0.37030 0.101520 0.136600 9.9839

PAGE 178

163EASSI PROGRAM EASCYC (c)1988 CRYSTAL RIVER RELOAD #12 CORE WITH CASMO LIB (B4CAL2) OLD G FACTORS 9/12/** (10:54) PAGE 4 MOVEABLE CONTROL ROD ARRANGEMENT GROUP CORE LOCATIONS 1 20 2 3 9 3 24 4 11 5 13 22 6 7 16 7 5 26 8 18 CONTROL ROD NUCLEAR PROPERTIES FUEL FAST THERM FAST S.H. CR COUP. VOL. TYPE SIGA SIGA SIGR FACTOR FACTOR LENGTH FRAC. 1 0.004500 0.034400 -0.001500 0.000 0.700 366.00 0.05000 2 0.004500 0.034400 -0.001500 0.000 0.700 366.00 0.05000 3 0.004500 0.034400 -0.001500 0.000 0.700 366.00 0.05000 4 0.004500 0.034400 -0.001500 0.000 0.700 366.00 0.05000 BURNABLE POISON SUMMARY INDEX BP ATOMS/CM MICRO SIGMAS SELF SHIELDING FIXED RESIDUAL S.H. CR COUP. GEOMETRY VOL. NO. NAME IN ASSBY FAST THERM G0 A1 A2 SIGMA-R SIGA-THERMAL FACTOR FACTOR LENGTH POSITION FRAC. 1 B-20 0.1619E-04 45.00 2050.0 0.948 1.170 0.616 -0.000929 0.000375(-.940E-07) 0.000 1.000 100.00 0.00 .04394 2 B-16 0.3635E-04 45.00 2050.0 0.964 0.959 0.701 -0.000743 0.000300(-.750E-07) 0.000 1.000 100.00 0.00 .03515 3 B-12 0.9710E-05 45.00 2050.0 0.948 1.170 0.616 -0.000557 0.000225(-.560E-07) 0.000 1.000 100.00 0.00 .02636 4 B-08 0.1334E-04 45.00 2050.0 0.981 0.979 0.748 -0.000372 0.000150(-.375E-07) 0.000 1.000 100.00 0.00 .01758 THERMAL NEUTRON INLEAKAGE CORRECTION MULTIPLICATION 0.000 IN CONTROLLED ASSEMBLIES ABSORPTION 0.000 FUEL BATCH ASSIGNMENTS BATCH INDEX 1 2 3 4 FUEL TYPE 1 2 3 4 SPARE FUEL ASSEMBLY TYPE AND BURNUP INDEX NO. 1 2 3 FUEL TYPE 3 2 1 BURNUP 0.00 10.00 20.00

PAGE 179

164EASSI PROGRAM EASCYC (c)1988 CRYSTAL RIVER RELOAD #12 CORE WITH CASMO LIB (B4CAL2) OLD G FACTORS 9/12/** (10:54) PAGE 5 FUEL INVENTORY SELECTION PHASE SUMMARY INITIAL FUEL AND BURNUP DISTRIBUTION 38.78(2) 24.69(3) 28.93(3) 0.00(4) 24.54(3) 0.00(4) 28.40(3) 40.21(2) 27.70(3) 0.00(4) 28.42(3) 0.00(4) 22.65(3) 0.00(4) 37.04(2) 27.92(3) 0.00(4) 29.03(3) 0.00(4) 0.00(4) 40.71(2) AVG BURNUP = 18.05 27.93(3) 0.00(4) 21.20(3) 28.87(3) 27.66(3) 0.00(4) 38.45(1) 38.52(1) FINAL FUEL AND BURNUP DISTRIBUTION 38.78(2) 24.69(3) 28.93(3) 0.00(4) 24.54(3) 0.00(4) 28.40(3) 40.21(2) 27.70(3) 0.00(4) 28.42(3) 0.00(4) 22.65(3) 0.00(4) 37.04(2) 27.92(3) 0.00(4) 29.03(3) 0.00(4) 0.00(4) 40.71(2) AVG BURNUP = 18.05 27.93(3) 0.00(4) 21.20(3) 28.87(3) 27.66(3) 0.00(4) 38.45(1) 38.52(1) BURNABLE POISON ASSEMBLY INVENTORY INDEX LOCATION NAME SIGAT 1 4 B-08 0.013621 2 6 B-08 0.013621 3 10 B-08 0.013621 4 12 B-08 0.013621 5 17 B-08 0.013621 6 19 B-08 0.013621 7 23 B-08 0.013621

PAGE 180

165EASSI PROGRAM EASCYC (c)1988 CRYSTAL RIVER RELOAD #12 CORE WITH CASMO LIB (B4CAL2) OLD G FACTORS 9/12/** (10:54) PAGE 6 NODAL MULTIPLICATION DIFFUSION AND CONTROL PROPERTIES 1820.2 PPM AND .7232 G/CC ASSB NAME BURNUP F-LSQ F-SIGT K-FAST P T-LSQ T-SIGA K-THERM K-INFIN K-NC CONTSIG 1 12A2 38.784 52.649 .027108 .20076 .560075 2.980 .122045 1.15270 0.846353 1.15270 0.000000 2 13AE 24.686 53.612 .026642 .26077 .558284 2.650 .137174 1.30328 0.988370 1.30328 0.000000 3 13AE 28.930 53.399 .026756 .24883 .555842 2.674 .135787 1.27771 0.959035 1.27771 0.000000 4 14AE 0.000 54.809 .026014 .33020 .569897 2.884 .130259 1.24862 1.041783 1.37918 0.013621 5 13AE 24.537 53.619 .026638 .26121 .558384 2.650 .137208 1.30413 0.989415 1.30413 0.000000 6 14AE 0.000 54.809 .026014 .33020 .569897 2.884 .130259 1.24862 1.041783 1.37918 0.013621 7 13AE 28.395 53.425 .026742 .25032 .556145 2.671 .135966 1.28097 0.962731 1.28097 0.000000 8 12A2 40.206 52.578 .027149 .19768 .559386 2.996 .121403 1.14263 0.836853 1.14263 0.000000 9 13AE 27.702 53.460 .026723 .25226 .556538 2.667 .136198 1.28519 0.967518 1.28519 0.000000 10 14AE 0.000 54.809 .026014 .33020 .569897 2.884 .130259 1.24862 1.041783 1.37918 0.013621 11 13AE 28.425 53.424 .026743 .25024 .556128 2.671 .135956 1.28079 0.962524 1.28079 0.000000 12 14AE 0.000 54.809 .026014 .33020 .569897 2.884 .130259 1.24862 1.041783 1.37918 0.013621 13 13AE 22.646 53.719 .026585 .26680 .559648 2.644 .137630 1.31489 1.002676 1.31489 0.000000 14 14AE 0.000 55.278 .025794 .33303 .589196 2.877 .130568 1.37591 1.143707 1.37591 0.000000 15 12A2 37.045 52.736 .027059 .20457 .560932 2.962 .122827 1.16493 0.858013 1.16493 0.000000 16 13AE 27.922 53.449 .026729 .25165 .556413 2.668 .136125 1.28385 0.965999 1.28385 0.000000 17 14AE 0.000 54.809 .026014 .33020 .569897 2.884 .130259 1.24862 1.041783 1.37918 0.013621 18 13AE 29.027 53.394 .026759 .24856 .555787 2.674 .135754 1.27712 0.958365 1.27712 0.000000 19 14AE 0.000 54.809 .026014 .33020 .569897 2.884 .130259 1.24862 1.041783 1.37918 0.013621 20 14AE 0.000 55.278 .025794 .33303 .589196 2.877 .130568 1.37591 1.143707 1.37591 0.000000 21 12A2 40.708 52.553 .027163 .19667 .559162 3.002 .121171 1.13915 0.833638 1.13915 0.000000 22 13AE 27.932 53.448 .026730 .25162 .556408 2.668 .136121 1.28379 0.965930 1.28379 0.000000 23 14AE 0.000 54.809 .026014 .33020 .569897 2.884 .130259 1.24862 1.041783 1.37918 0.013621 24 13AE 21.198 53.795 .026545 .27110 .560619 2.639 .137954 1.32308 1.012845 1.32308 0.000000 25 13AE 28.866 53.402 .026755 .24901 .555878 2.673 .135808 1.27810 0.959477 1.27810 0.000000 26 13AE 27.655 53.462 .026722 .25239 .556565 2.666 .136214 1.28548 0.967843 1.28548 0.000000 27 14AE 0.000 55.278 .025794 .33303 .589196 2.877 .130568 1.37591 1.143707 1.37591 0.000000 28 10A3 38.450 52.547 .027141 .19316 .563447 3.069 .118645 1.12988 0.829791 1.12988 0.000000 29 10A3 38.519 52.543 .027143 .19302 .563410 3.070 .118615 1.12939 0.829328 1.12939 0.000000

PAGE 181

166EASSI PROGRAM EASCYC (c)1988 CRYSTAL RIVER RELOAD #12 CORE WITH CASMO LIB (B4CAL2) OLD G FACTORS 9/12/** (10:54) PAGE 7 FUEL ARRANGEMENT OPTIMIZATION SUMMARY INITIAL POWER DISTRIBUTION +-------+-------+-------+-------+-------+-------+-------+-------+ | 0.722 | 1.009 | 1.113 | 1.378 | 1.316 | 1.372 | 0.943 | 0.324 | |2/38.8 |3/24.7 |3/28.9 |4/ 0.0 |3/24.5 |4/ 0.0 |3/28.4 |2/40.2 | +-------+-------+-------+-------+-------+-------+-------+-------+ | 1.049 | 1.290 | 1.201 | 1.392 | 1.306 | 1.302 | 0.358 | |3/27.7 |4/ 0.0 |3/28.4 |4/ 0.0 |3/22.6 |4/ 0.0 |2/37.0 | +-------+-------+-------+-------+-------+-------+-------+ | 1.181 | 1.333 | 1.147 | 1.269 | 1.152 | 0.261 | |3/27.9 |4/ 0.0 |3/29.0 |4/ 0.0 |4/ 0.0 |2/40.7 | +-------+-------+-------+-------+-------+-------+ | 1.144 | 1.226 | 1.024 | 0.554 | |3/27.9 |4/ 0.0 |3/21.2 |3/28.9 | +-------+-------+-------+-------+ | 0.972 | 0.937 | 0.240 | |3/27.7 |4/ 0.0 |1/38.5 | +-------+-------+-------+ EGV = 1.000015 | 0.284 | PMAX = 1.39 |1/38.5 | AT LOCATION 12 +-------+ FINAL POWER DISTRIBUTION +-------+-------+-------+-------+-------+-------+-------+-------+ | 0.722 | 1.009 | 1.113 | 1.378 | 1.316 | 1.372 | 0.943 | 0.324 | |2/38.8 |3/24.7 |3/28.9 |4/ 0.0 |3/24.5 |4/ 0.0 |3/28.4 |2/40.2 | +-------+-------+-------+-------+-------+-------+-------+-------+ | 1.049 | 1.290 | 1.201 | 1.392 | 1.306 | 1.302 | 0.358 | |3/27.7 |4/ 0.0 |3/28.4 |4/ 0.0 |3/22.6 |4/ 0.0 |2/37.0 | +-------+-------+-------+-------+-------+-------+-------+ | 1.181 | 1.333 | 1.147 | 1.269 | 1.152 | 0.261 | |3/27.9 |4/ 0.0 |3/29.0 |4/ 0.0 |4/ 0.0 |2/40.7 | +-------+-------+-------+-------+-------+-------+ | 1.144 | 1.226 | 1.024 | 0.554 | |3/27.9 |4/ 0.0 |3/21.2 |3/28.9 | +-------+-------+-------+-------+ | 0.972 | 0.937 | 0.240 | |3/27.7 |4/ 0.0 |1/38.5 | +-------+-------+-------+ EGV = 1.000015 | 0.284 | PMAX = 1.39 |1/38.5 | AT LOCATION 12 +-------+ ROD MOVEMENT/FUEL RELOCATION SUMMARY (1821.7 PPM) STEP GROUPS IN PEAK/AVG EGV INTERCHANGE 0 ( N O N E ) 1.392 1.000015

PAGE 182

167EASSI PROGRAM EASCYC (c)1988 CRYSTAL RIVER RELOAD #12 CORE WITH CASMO LIB (B4CAL2) OLD G FACTORS 9/12/** (10:54) PAGE 8 OPERATING DATA FOR DEPLETION STEP 1 CORE POWER LEVEL 85.9 % OF F.P. INPUT OPERATING VARIABLES AVG. FUEL BURNUP INITIAL 18.054 MWD/KG WATER DENSITY 0.7232 G/CC BASE AX. BUCKLING CORRECTION 1.20E-04 BORON CONCENTRATION 1821.7 PPM ITERATION SUMARY STAGE ITER EGV ERROR EPS ALPH/BET BORON B-WORTH INITIAL 3 0.999216 0.000168 .000300 1.68/0.13 1821.7 BORON SEARCH 7 0.999992 0.000053 .000100 1.59/0.07 1810.8 -138.4 FINAL 9 1.000001 0.000042 .000050 1.48/0.00 1810.8 +-------+-------+-------+-------+-------+-------+-------+-------+ | 0.724 | 1.009 | 1.112 | 1.376 | 1.315 | 1.374 | 0.944 | 0.325 | |2/38.8 |3/24.7 |3/28.9 |4/ 0.0 |3/24.5 |4/ 0.0 |3/28.4 |2/40.2 | +-------+-------+-------+-------+-------+-------+-------+-------+ | 1.049 | 1.290 | 1.199 | 1.391 | 1.306 | 1.302 | 0.359 | |3/27.7 |4/ 0.0 |3/28.4 |4/ 0.0 |3/22.6 |4/ 0.0 |2/37.0 | +-------+-------+-------+-------+-------+-------+-------+ | 1.179 | 1.332 | 1.146 | 1.271 | 1.153 | 0.262 | |3/27.9 |4/ 0.0 |3/29.0 |4/ 0.0 |4/ 0.0 |2/40.7 | +-------+-------+-------+-------+-------+-------+ | 1.142 | 1.226 | 1.025 | 0.555 | |3/27.9 |4/ 0.0 |3/21.2 |3/28.9 | +-------+-------+-------+-------+ | 0.973 | 0.938 | 0.240 | |3/27.7 |4/ 0.0 |1/38.5 | +-------+-------+-------+ EGV = 1.000001 | 0.284 | PMAX = 1.39 |1/38.5 | AT LOCATION 12 +-------+ NODAL MULTIPLICATION DIFFUSION AND CONTROL PROPERTIES 1810.8 PPM AND .7232 G/CC ASSB NAME BURNUP F-LSQ F-SIGT K-FAST P T-LSQ T-SIGA K-THERM K-INFIN K-NC CONTSIG BURPO 1 12A2 38.784 52.654 .027106 .20078 .560151 2.983 .121933 1.15375 0.847052 1.15375 0.000000 0.0000 2 13AE 24.686 53.617 .026640 .26079 .558362 2.652 .137061 1.30436 0.989098 1.30436 0.000000 0.0000 3 13AE 28.930 53.404 .026754 .24885 .555919 2.676 .135674 1.27877 0.959749 1.27877 0.000000 0.0000 4 14AE 0.000 54.798 .026019 .33014 .569820 2.877 .130558 1.24621 1.040257 1.37602 0.013599 1.0000 5 13AE 24.537 53.625 .026635 .26123 .558461 2.652 .137094 1.30521 0.990143 1.30521 0.000000 0.0000 6 14AE 0.000 54.798 .026019 .33014 .569820 2.877 .130558 1.24621 1.040257 1.37602 0.013599 1.0000 7 13AE 28.395 53.430 .026739 .25035 .556222 2.673 .135853 1.28204 0.963447 1.28204 0.000000 0.0000 8 12A2 40.206 52.583 .027146 .19770 .559462 2.999 .121291 1.14368 0.837547 1.14368 0.000000 0.0000 9 13AE 27.702 53.465 .026721 .25229 .556615 2.669 .136085 1.28626 0.968236 1.28626 0.000000 0.0000 10 14AE 0.000 54.798 .026019 .33014 .569820 2.877 .130558 1.24621 1.040257 1.37602 0.013599 1.0000 11 13AE 28.425 53.429 .026740 .25026 .556205 2.673 .135843 1.28186 0.963240 1.28186 0.000000 0.0000 12 14AE 0.000 54.798 .026019 .33014 .569820 2.877 .130558 1.24621 1.040257 1.37602 0.013599 1.0000 13 13AE 22.646 53.724 .026583 .26683 .559726 2.646 .137517 1.31597 1.003413 1.31597 0.000000 0.0000 14 14AE 0.000 55.283 .025791 .33306 .589285 2.877 .130555 1.37605 1.143948 1.37605 0.000000 0.0000 15 12A2 37.045 52.741 .027056 .20459 .561008 2.964 .122715 1.16599 0.858716 1.16599 0.000000 0.0000 16 13AE 27.922 53.454 .026727 .25167 .556490 2.670 .136012 1.28492 0.966716 1.28492 0.000000 0.0000 17 14AE 0.000 54.798 .026019 .33014 .569820 2.877 .130558 1.24621 1.040257 1.37602 0.013599 1.0000 18 13AE 29.027 53.399 .026756 .24858 .555864 2.677 .135641 1.27818 0.959078 1.27818 0.000000 0.0000 19 14AE 0.000 54.798 .026019 .33014 .569820 2.877 .130558 1.24621 1.040257 1.37602 0.013599 1.0000 20 14AE 0.000 55.283 .025791 .33306 .589285 2.877 .130555 1.37605 1.143948 1.37605 0.000000 0.0000 21 12A2 40.708 52.558 .027160 .19669 .559238 3.005 .121059 1.14020 0.834330 1.14020 0.000000 0.0000 22 13AE 27.932 53.453 .026727 .25164 .556485 2.670 .136008 1.28486 0.966647 1.28486 0.000000 0.0000 23 14AE 0.000 54.798 .026019 .33014 .569820 2.877 .130558 1.24621 1.040257 1.37602 0.013599 1.0000 24 13AE 21.198 53.800 .026543 .27113 .560698 2.641 .137840 1.32417 1.013586 1.32417 0.000000 0.0000 25 13AE 28.866 53.407 .026752 .24903 .555955 2.676 .135695 1.27917 0.960191 1.27917 0.000000 0.0000 26 13AE 27.655 53.467 .026720 .25242 .556642 2.669 .136101 1.28654 0.968561 1.28654 0.000000 0.0000 27 14AE 0.000 55.283 .025791 .33306 .589285 2.877 .130555 1.37605 1.143948 1.37605 0.000000 0.0000 28 10A3 38.450 52.552 .027139 .19318 .563524 3.072 .118534 1.13094 0.830494 1.13094 0.000000 0.0000 29 10A3 38.519 52.548 .027141 .19304 .563487 3.073 .118504 1.13045 0.830032 1.13045 0.000000 0.0000

PAGE 183

168EASSI PROGRAM EASCYC (c)1988 CRYSTAL RIVER RELOAD #12 CORE WITH CASMO LIB (B4CAL2) OLD G FACTORS 9/12/** (10:54) PAGE 9 OPERATING DATA FOR DEPLETION STEP 2 CORE POWER LEVEL 85.9 % OF F.P. INPUT OPERATING VARIABLES AVG. FUEL BURNUP INITIAL 20.054 MWD/KG WATER DENSITY 0.7232 G/CC BASE AX. BUCKLING CORRECTION 1.20E-04 BORON CONCENTRATION 1710.8 PPM ITERATION SUMARY STAGE ITER EGV ERROR EPS ALPH/BET BORON B-WORTH INITIAL 11 1.006299 0.000203 .000300 2.29/0.26 1710.8 BORON SEARCH 16 1.000188 0.000100 .000100 1.67/0.09 1796.1 -139.5 FINAL 20 1.000212 0.000035 .000050 1.59/0.07 1796.1 +-------+-------+-------+-------+-------+-------+-------+-------+ | 0.655 | 0.922 | 1.060 | 1.384 | 1.287 | 1.397 | 0.930 | 0.322 | |2/40.2 |3/26.7 |3/31.2 |4/ 2.8 |3/27.2 |4/ 2.7 |3/30.3 |2/40.9 | +-------+-------+-------+-------+-------+-------+-------+-------+ | 0.981 | 1.281 | 1.172 | 1.415 | 1.286 | 1.312 | 0.361 | |3/29.8 |4/ 2.6 |3/30.8 |4/ 2.8 |3/25.3 |4/ 2.6 |2/37.8 | +-------+-------+-------+-------+-------+-------+-------+ | 1.149 | 1.354 | 1.137 | 1.313 | 1.185 | 0.266 | |3/30.3 |4/ 2.7 |3/31.3 |4/ 2.5 |4/ 2.3 |2/41.2 | +-------+-------+-------+-------+-------+-------+ | 1.134 | 1.265 | 1.025 | 0.556 | |3/30.2 |4/ 2.5 |3/23.2 |3/30.0 | +-------+-------+-------+-------+ | 0.975 | 0.959 | 0.243 | |3/29.6 |4/ 1.9 |1/38.9 | +-------+-------+-------+ EGV = 1.000212 | 0.290 | PMAX = 1.41 |1/39.1 | AT LOCATION 12 +-------+ NODAL MULTIPLICATION DIFFUSION AND CONTROL PROPERTIES 1796.1 PPM AND .7232 G/CC ASSB NAME BURNUP F-LSQ F-SIGT K-FAST P T-LSQ T-SIGA K-THERM K-INFIN K-NC CONTSIG BURPO 1 12A2 40.232 52.589 .027143 .19768 .559531 3.003 .121110 1.14510 0.838396 1.14510 0.000000 0.0000 2 13AE 26.705 53.523 .026690 .25512 .557263 2.666 .136250 1.29390 0.976162 1.29390 0.000000 0.0000 3 13AE 31.154 53.303 .026809 .24288 .554840 2.695 .134664 1.26652 0.945594 1.26652 0.000000 0.0000 4 14AE 2.752 54.849 .025992 .32212 .571536 2.872 .129773 1.28797 1.058240 1.40335 0.011625 0.7468 5 13AE 27.166 53.500 .026702 .25382 .557001 2.669 .136096 1.29111 0.972974 1.29111 0.000000 0.0000 6 14AE 2.747 54.849 .025992 .32213 .571536 2.872 .129768 1.28796 1.058245 1.40337 0.011629 0.7472 7 13AE 30.283 53.345 .026786 .24517 .555259 2.688 .135028 1.27203 0.951470 1.27203 0.000000 0.0000 8 12A2 40.856 52.559 .027160 .19642 .559253 3.011 .120821 1.14077 0.834395 1.14077 0.000000 0.0000 9 13AE 29.800 53.368 .026773 .24647 .555508 2.685 .135213 1.27504 0.954760 1.27504 0.000000 0.0000 10 14AE 2.579 54.844 .025994 .32263 .571534 2.877 .129581 1.28735 1.058394 1.40412 0.011754 0.7614 11 13AE 30.823 53.319 .026800 .24375 .554999 2.692 .134803 1.26861 0.947827 1.26861 0.000000 0.0000 12 14AE 2.782 54.850 .025991 .32203 .571536 2.871 .129807 1.28808 1.058213 1.40321 0.011602 0.7443 13 13AE 25.258 53.596 .026651 .25918 .558087 2.658 .136736 1.30263 0.986160 1.30263 0.000000 0.0000 14 14AE 2.603 55.020 .025911 .32359 .587725 2.876 .129634 1.40373 1.148603 1.40373 0.000000 0.0000 15 12A2 37.763 52.713 .027073 .20304 .560735 2.976 .122223 1.16256 0.854934 1.16256 0.000000 0.0000 16 13AE 30.280 53.345 .026786 .24517 .555260 2.688 .135029 1.27204 0.951487 1.27204 0.000000 0.0000 17 14AE 2.664 54.846 .025993 .32238 .571536 2.875 .129675 1.28765 1.058319 1.40374 0.011691 0.7542 18 13AE 31.318 53.295 .026813 .24245 .554761 2.696 .134596 1.26548 0.944489 1.26548 0.000000 0.0000 19 14AE 2.542 54.843 .025995 .32274 .571534 2.879 .129540 1.28721 1.058427 1.40429 0.011782 0.7645 20 14AE 2.306 55.043 .025900 .32467 .588060 2.886 .129304 1.40506 1.150930 1.40506 0.000000 0.0000 21 12A2 41.232 52.540 .027171 .19566 .559086 3.015 .120648 1.13815 0.831981 1.13815 0.000000 0.0000 22 13AE 30.216 53.348 .026784 .24534 .555291 2.687 .135056 1.27245 0.951919 1.27245 0.000000 0.0000 23 14AE 2.453 54.840 .025996 .32301 .571532 2.882 .129441 1.28689 1.058506 1.40469 0.011848 0.7722 24 13AE 23.248 53.700 .026596 .26509 .559405 2.651 .137213 1.31417 1.000240 1.31417 0.000000 0.0000 25 13AE 29.975 53.360 .026778 .24598 .555409 2.686 .135154 1.27396 0.953546 1.27396 0.000000 0.0000 26 13AE 29.601 53.378 .026768 .24702 .555621 2.683 .135280 1.27626 0.956133 1.27626 0.000000 0.0000 27 14AE 1.875 55.075 .025885 .32621 .588510 2.901 .128796 1.40706 1.154277 1.40706 0.000000 0.0000 28 10A3 38.930 52.535 .027149 .19221 .563349 3.082 .118158 1.12912 0.828300 1.12912 0.000000 0.0000 29 10A3 39.088 52.527 .027153 .19189 .563265 3.084 .118091 1.12799 0.827243 1.12799 0.000000 0.0000

PAGE 184

169EASSI PROGRAM EASCYC (c)1988 CRYSTAL RIVER RELOAD #12 CORE WITH CASMO LIB (B4CAL2) OLD G FACTORS 9/12/** (10:54) PAGE 10 OPERATING DATA FOR DEPLETION STEP 3 CORE POWER LEVEL 85.9 % OF F.P. INPUT OPERATING VARIABLES AVG. FUEL BURNUP INITIAL 22.054 MWD/KG WATER DENSITY 0.7232 G/CC BASE AX. BUCKLING CORRECTION 1.20E-04 BORON CONCENTRATION 1781.3 PPM ITERATION SUMARY STAGE ITER EGV ERROR EPS ALPH/BET BORON B-WORTH INITIAL 10 0.989620 0.000256 .000300 2.16/0.22 1781.3 BORON SEARCH 17 0.999707 0.000079 .000100 1.66/0.08 1639.9 -140.2 FINAL 20 0.999702 0.000042 .000050 1.68/0.13 1639.9 +-------+-------+-------+-------+-------+-------+-------+-------+ | 0.667 | 0.930 | 1.070 | 1.404 | 1.272 | 1.387 | 0.908 | 0.320 | |2/41.5 |3/28.5 |3/33.3 |4/ 5.5 |3/29.7 |4/ 5.5 |3/32.1 |2/41.5 | +-------+-------+-------+-------+-------+-------+-------+-------+ | 0.993 | 1.309 | 1.175 | 1.424 | 1.257 | 1.262 | 0.358 | |3/31.8 |4/ 5.1 |3/33.2 |4/ 5.6 |3/27.8 |4/ 5.2 |2/38.5 | +-------+-------+-------+-------+-------+-------+-------+ | 1.158 | 1.379 | 1.137 | 1.315 | 1.153 | 0.265 | |3/32.6 |4/ 5.4 |3/33.6 |4/ 5.2 |4/ 4.7 |2/41.8 | +-------+-------+-------+-------+-------+-------+ | 1.142 | 1.287 | 1.024 | 0.558 | |3/32.5 |4/ 5.0 |3/25.3 |3/31.1 | +-------+-------+-------+-------+ | 0.981 | 0.960 | 0.249 | |3/31.6 |4/ 3.8 |1/39.4 | +-------+-------+-------+ EGV = 0.999702 | 0.297 | PMAX = 1.42 |1/39.7 | AT LOCATION 12 +-------+ NODAL MULTIPLICATION DIFFUSION AND CONTROL PROPERTIES 1639.9 PPM AND .7232 G/CC ASSB NAME BURNUP F-LSQ F-SIGT K-FAST P T-LSQ T-SIGA K-THERM K-INFIN K-NC CONTSIG BURPO 1 12A2 41.542 52.608 .027137 .19534 .559832 3.064 .118705 1.15320 0.840935 1.15320 0.000000 0.0000 2 13AE 28.548 53.517 .026697 .25036 .557111 2.713 .133834 1.29995 0.974573 1.29995 0.000000 0.0000 3 13AE 33.275 53.286 .026822 .23772 .554709 2.749 .131981 1.27006 0.942234 1.27006 0.000000 0.0000 4 14AE 5.521 54.985 .025931 .31404 .571173 2.840 .130403 1.31366 1.064362 1.40929 0.009494 0.5366 5 13AE 29.740 53.457 .026729 .24703 .556434 2.720 .133434 1.29260 0.966273 1.29260 0.000000 0.0000 6 14AE 5.541 54.985 .025931 .31397 .571159 2.840 .130417 1.31372 1.064316 1.40919 0.009478 0.5352 7 13AE 32.143 53.340 .026792 .24068 .555253 2.739 .132453 1.27735 0.949931 1.27735 0.000000 0.0000 8 12A2 41.500 52.610 .027135 .19542 .559851 3.064 .118725 1.15350 0.841211 1.15350 0.000000 0.0000 9 13AE 31.761 53.359 .026782 .24168 .555437 2.736 .132612 1.27979 0.952519 1.27979 0.000000 0.0000 10 14AE 5.142 54.984 .025932 .31523 .571439 2.848 .130145 1.31243 1.065199 1.41115 0.009790 0.5628 11 13AE 33.167 53.291 .026819 .23800 .554761 2.748 .132026 1.27076 0.942968 1.27076 0.000000 0.0000 12 14AE 5.612 54.985 .025931 .31375 .571108 2.839 .130466 1.31395 1.064157 1.40885 0.009422 0.5304 13 13AE 27.831 53.553 .026677 .25237 .557519 2.709 .134074 1.30434 0.979564 1.30434 0.000000 0.0000 14 14AE 5.227 54.906 .025968 .31452 .584897 2.847 .130160 1.41120 1.139924 1.41120 0.000000 0.0000 15 12A2 38.484 52.760 .027050 .20178 .561269 3.029 .120100 1.17482 0.861170 1.17482 0.000000 0.0000 16 13AE 32.577 53.320 .026804 .23954 .555044 2.743 .132272 1.27456 0.946976 1.27456 0.000000 0.0000 17 14AE 5.371 54.984 .025931 .31451 .571280 2.844 .130302 1.31317 1.064694 1.41003 0.009611 0.5468 18 13AE 33.592 53.271 .026830 .23689 .554557 2.751 .131849 1.26802 0.940077 1.26802 0.000000 0.0000 19 14AE 5.168 54.984 .025932 .31515 .571422 2.848 .130163 1.31251 1.065143 1.41103 0.009770 0.5610 20 14AE 4.675 54.951 .025947 .31653 .585767 2.860 .129749 1.41381 1.144699 1.41381 0.000000 0.0000 21 12A2 41.763 52.597 .027143 .19489 .559734 3.067 .118603 1.15164 0.839506 1.15164 0.000000 0.0000 22 13AE 32.484 53.324 .026801 .23978 .555089 2.742 .132311 1.27516 0.947610 1.27516 0.000000 0.0000 23 14AE 4.982 54.983 .025932 .31573 .571546 2.852 .130035 1.31190 1.065541 1.41194 0.009915 0.5741 24 13AE 25.297 53.680 .026609 .25949 .558965 2.694 .134923 1.31976 0.997184 1.31976 0.000000 0.0000 25 13AE 31.087 53.391 .026764 .24345 .555762 2.731 .132894 1.28410 0.957100 1.28410 0.000000 0.0000 26 13AE 31.552 53.369 .026777 .24223 .555538 2.735 .132700 1.28113 0.953942 1.28113 0.000000 0.0000 27 14AE 3.793 55.020 .025912 .31978 .587105 2.881 .129021 1.41790 1.152236 1.41790 0.000000 0.0000 28 10A3 39.417 52.593 .027120 .19150 .563981 3.135 .116150 1.14306 0.836168 1.14306 0.000000 0.0000 29 10A3 39.669 52.580 .027128 .19098 .563846 3.138 .116042 1.14123 0.834460 1.14123 0.000000 0.0000

PAGE 185

170EASSI PROGRAM EASCYC (c)1988 CRYSTAL RIVER RELOAD #12 CORE WITH CASMO LIB (B4CAL2) OLD G FACTORS 9/12/** (10:54) PAGE 11 OPERATING DATA FOR DEPLETION STEP 4 CORE POWER LEVEL 85.9 % OF F.P. INPUT OPERATING VARIABLES AVG. FUEL BURNUP INITIAL 24.054 MWD/KG WATER DENSITY 0.7232 G/CC BASE AX. BUCKLING CORRECTION 1.20E-04 BORON CONCENTRATION 1483.7 PPM ITERATION SUMARY STAGE ITER EGV ERROR EPS ALPH/BET BORON B-WORTH INITIAL 10 0.998840 0.000214 .000300 2.16/0.22 1483.7 BORON SEARCH 15 0.999967 0.000087 .000100 1.83/0.12 1468.3 -132.1 FINAL 19 0.999960 0.000045 .000050 1.59/0.07 1468.3 +-------+-------+-------+-------+-------+-------+-------+-------+ | 0.680 | 0.939 | 1.078 | 1.421 | 1.259 | 1.379 | 0.891 | 0.320 | |2/42.9 |3/30.4 |3/35.4 |4/ 8.3 |3/32.3 |4/ 8.3 |3/34.0 |2/42.1 | +-------+-------+-------+-------+-------+-------+-------+-------+ | 1.003 | 1.334 | 1.177 | 1.432 | 1.231 | 1.220 | 0.357 | |3/33.7 |4/ 7.8 |3/35.5 |4/ 8.5 |3/30.3 |4/ 7.7 |2/39.2 | +-------+-------+-------+-------+-------+-------+-------+ | 1.165 | 1.399 | 1.135 | 1.317 | 1.126 | 0.265 | |3/34.9 |4/ 8.1 |3/35.9 |4/ 7.8 |4/ 7.0 |2/42.3 | +-------+-------+-------+-------+-------+-------+ | 1.146 | 1.306 | 1.023 | 0.560 | |3/34.8 |4/ 7.6 |3/27.3 |3/32.2 | +-------+-------+-------+-------+ | 0.984 | 0.959 | 0.255 | |3/33.5 |4/ 5.7 |1/39.9 | +-------+-------+-------+ EGV = 0.999960 | 0.304 | PMAX = 1.43 |1/40.3 | AT LOCATION 12 +-------+ NODAL MULTIPLICATION DIFFUSION AND CONTROL PROPERTIES 1468.3 PPM AND .7232 G/CC ASSB NAME BURNUP F-LSQ F-SIGT K-FAST P T-LSQ T-SIGA K-THERM K-INFIN K-NC CONTSIG BURPO 1 12A2 42.876 52.633 .027127 .19298 .560201 3.133 .116115 1.16321 0.844609 1.16321 0.000000 0.0000 2 13AE 30.408 53.518 .026699 .24566 .557063 2.766 .131204 1.30779 0.974182 1.30779 0.000000 0.0000 3 13AE 35.414 53.277 .026831 .23261 .554671 2.810 .129091 1.27535 0.940009 1.27535 0.000000 0.0000 4 14AE 8.329 55.082 .025889 .30575 .570044 2.838 .129890 1.34152 1.070472 1.41698 0.007306 0.3664 5 13AE 32.284 53.427 .026749 .24073 .556155 2.782 .130421 1.29575 0.961370 1.29575 0.000000 0.0000 6 14AE 8.315 55.083 .025889 .30579 .570056 2.838 .129884 1.34148 1.070508 1.41705 0.007316 0.3671 7 13AE 33.959 53.347 .026793 .23635 .555347 2.796 .129722 1.28489 0.949907 1.28489 0.000000 0.0000 8 12A2 42.140 52.670 .027106 .19447 .560530 3.123 .116455 1.16846 0.849423 1.16846 0.000000 0.0000 9 13AE 33.747 53.357 .026787 .23690 .555449 2.795 .129811 1.28627 0.951361 1.28627 0.000000 0.0000 10 14AE 7.761 55.088 .025886 .30755 .570517 2.846 .129648 1.33987 1.071966 1.41990 0.007744 0.3973 11 13AE 35.517 53.272 .026834 .23236 .554627 2.811 .129043 1.27467 0.939325 1.27467 0.000000 0.0000 12 14AE 8.460 55.081 .025889 .30533 .569934 2.837 .129941 1.34189 1.070111 1.41629 0.007205 0.3595 13 13AE 30.344 53.521 .026698 .24583 .557094 2.766 .131230 1.30819 0.974613 1.30819 0.000000 0.0000 14 14AE 7.750 54.806 .026019 .30601 .581905 2.846 .129638 1.42001 1.132322 1.42001 0.000000 0.0000 15 12A2 39.199 52.816 .027024 .20056 .561885 3.088 .117805 1.18931 0.868819 1.18931 0.000000 0.0000 16 13AE 34.894 53.302 .026818 .23390 .554897 2.804 .129332 1.27877 0.943493 1.27877 0.000000 0.0000 17 14AE 8.128 55.085 .025887 .30639 .570210 2.841 .129811 1.34095 1.071013 1.41802 0.007460 0.3771 18 13AE 35.865 53.255 .026843 .23150 .554480 2.814 .128877 1.27237 0.937006 1.27237 0.000000 0.0000 19 14AE 7.798 55.088 .025886 .30743 .570485 2.845 .129666 1.33998 1.071871 1.41971 0.007715 0.3952 20 14AE 6.982 54.865 .025989 .30872 .583122 2.858 .129275 1.42392 1.139039 1.42392 0.000000 0.0000 21 12A2 42.292 52.662 .027111 .19416 .560462 3.125 .116385 1.16737 0.848426 1.16737 0.000000 0.0000 22 13AE 34.768 53.308 .026814 .23423 .554958 2.803 .129385 1.27960 0.944356 1.27960 0.000000 0.0000 23 14AE 7.557 55.089 .025885 .30819 .570685 2.849 .129552 1.33925 1.072477 1.42094 0.007902 0.4088 24 13AE 27.345 53.672 .026617 .25418 .558775 2.746 .132264 1.32682 0.995572 1.32682 0.000000 0.0000 25 13AE 32.202 53.431 .026747 .24095 .556195 2.781 .130455 1.29628 0.961933 1.29628 0.000000 0.0000 26 13AE 33.513 53.368 .026781 .23751 .555562 2.793 .129908 1.28779 0.952960 1.28779 0.000000 0.0000 27 14AE 5.712 54.965 .025941 .31331 .585154 2.881 .128518 1.43044 1.150343 1.43044 0.000000 0.0000 28 10A3 39.915 52.658 .027088 .19080 .564687 3.195 .113963 1.15918 0.845373 1.15918 0.000000 0.0000 29 10A3 40.264 52.641 .027098 .19013 .564511 3.199 .113812 1.15672 0.843106 1.15672 0.000000 0.0000

PAGE 186

171EASSI PROGRAM EASCYC (c)1988 CRYSTAL RIVER RELOAD #12 CORE WITH CASMO LIB (B4CAL2) OLD G FACTORS 9/12/** (10:54) PAGE 12 OPERATING DATA FOR DEPLETION STEP 5 CORE POWER LEVEL 85.9 % OF F.P. INPUT OPERATING VARIABLES AVG. FUEL BURNUP INITIAL 26.054 MWD/KG WATER DENSITY 0.7232 G/CC BASE AX. BUCKLING CORRECTION 1.20E-04 BORON CONCENTRATION 1296.8 PPM ITERATION SUMARY STAGE ITER EGV ERROR EPS ALPH/BET BORON B-WORTH INITIAL 9 1.000099 0.000245 .000300 2.07/0.19 1296.8 BORON SEARCH 14 0.999996 0.000088 .000100 2.22/0.24 1298.1 -129.1 FINAL 18 0.999995 0.000045 .000050 1.59/0.07 1298.1 +-------+-------+-------+-------+-------+-------+-------+-------+ | 0.691 | 0.945 | 1.082 | 1.431 | 1.245 | 1.373 | 0.879 | 0.322 | |2/44.2 |3/32.3 |3/37.6 |4/11.2 |3/34.8 |4/11.1 |3/35.7 |2/42.8 | +-------+-------+-------+-------+-------+-------+-------+-------+ | 1.010 | 1.353 | 1.175 | 1.435 | 1.210 | 1.187 | 0.358 | |3/35.8 |4/10.4 |3/37.9 |4/11.3 |3/32.8 |4/10.2 |2/39.9 | +-------+-------+-------+-------+-------+-------+-------+ | 1.167 | 1.413 | 1.133 | 1.321 | 1.105 | 0.266 | |3/37.2 |4/10.9 |3/38.1 |4/10.4 |4/ 9.2 |2/42.8 | +-------+-------+-------+-------+-------+-------+ | 1.149 | 1.323 | 1.023 | 0.564 | |3/37.1 |4/10.2 |3/29.4 |3/33.3 | +-------+-------+-------+-------+ | 0.987 | 0.960 | 0.261 | |3/35.5 |4/ 7.6 |1/40.4 | +-------+-------+-------+ EGV = 0.999995 | 0.311 | PMAX = 1.44 |1/40.9 | AT LOCATION 12 +-------+ NODAL MULTIPLICATION DIFFUSION AND CONTROL PROPERTIES 1298.1 PPM AND .7232 G/CC ASSB NAME BURNUP F-LSQ F-SIGT K-FAST P T-LSQ T-SIGA K-THERM K-INFIN K-NC CONTSIG BURPO 1 12A2 44.236 52.657 .027118 .19056 .560554 3.204 .113526 1.17334 0.848285 1.17334 0.000000 0.0000 2 13AE 32.285 53.521 .026702 .24115 .557123 2.825 .128462 1.31551 0.974049 1.31551 0.000000 0.0000 3 13AE 37.569 53.267 .026841 .22772 .554719 2.876 .126108 1.28060 0.938096 1.28060 0.000000 0.0000 4 14AE 11.171 55.132 .025867 .29715 .568699 2.852 .128793 1.36775 1.074993 1.42333 0.005233 0.2363 5 13AE 34.803 53.399 .026769 .23455 .555905 2.847 .127411 1.29904 0.956692 1.29904 0.000000 0.0000 6 14AE 11.074 55.134 .025866 .29746 .568781 2.852 .128775 1.36757 1.075311 1.42386 0.005300 0.2401 7 13AE 35.740 53.354 .026793 .23221 .555495 2.856 .126977 1.29284 0.950377 1.29284 0.000000 0.0000 8 12A2 42.780 52.729 .027077 .19351 .561206 3.185 .114200 1.18387 0.857900 1.18387 0.000000 0.0000 9 13AE 35.753 53.353 .026794 .23218 .555489 2.856 .126971 1.29275 0.950290 1.29275 0.000000 0.0000 10 14AE 10.430 55.150 .025859 .29954 .569319 2.858 .128618 1.36628 1.077386 1.42736 0.005749 0.2663 11 13AE 37.870 53.252 .026849 .22699 .554592 2.879 .125965 1.27858 0.936075 1.27858 0.000000 0.0000 12 14AE 11.324 55.129 .025869 .29666 .568570 2.851 .128821 1.36803 1.074483 1.42250 0.005130 0.2305 13 13AE 32.807 53.496 .026716 .23978 .556870 2.829 .128244 1.31211 0.970455 1.31211 0.000000 0.0000 14 14AE 10.189 54.719 .026062 .29793 .579285 2.860 .128558 1.42866 1.125534 1.42866 0.000000 0.0000 15 12A2 39.912 52.871 .026997 .19934 .562500 3.148 .115525 1.20425 0.876734 1.20425 0.000000 0.0000 16 13AE 37.223 53.283 .026832 .22857 .554866 2.872 .126273 1.28293 0.940428 1.28293 0.000000 0.0000 17 14AE 10.926 55.138 .025864 .29793 .568905 2.854 .128743 1.36729 1.075795 1.42466 0.005401 0.2459 18 13AE 38.136 53.240 .026856 .22634 .554479 2.882 .125839 1.27678 0.934283 1.27678 0.000000 0.0000 19 14AE 10.433 55.150 .025859 .29953 .569316 2.858 .128619 1.36629 1.077376 1.42734 0.005747 0.2661 20 14AE 9.234 54.789 .026028 .30129 .580662 2.870 .128264 1.43387 1.133885 1.43387 0.000000 0.0000 21 12A2 42.821 52.727 .027079 .19342 .561188 3.186 .114181 1.18357 0.857625 1.18357 0.000000 0.0000 22 13AE 37.061 53.291 .026828 .22897 .554935 2.870 .126350 1.28402 0.941516 1.28402 0.000000 0.0000 23 14AE 10.170 55.156 .025856 .30037 .569529 2.861 .128553 1.36571 1.078185 1.42877 0.005935 0.2774 24 13AE 29.391 53.663 .026625 .24887 .558581 2.801 .129619 1.33403 0.994041 1.33403 0.000000 0.0000 25 13AE 33.321 53.471 .026730 .23843 .556621 2.834 .128029 1.30876 0.966915 1.30876 0.000000 0.0000 26 13AE 35.481 53.366 .026786 .23285 .555605 2.854 .127100 1.29456 0.952111 1.29456 0.000000 0.0000 27 14AE 7.631 54.914 .025967 .30698 .583134 2.892 .127624 1.44241 1.148101 1.44241 0.000000 0.0000 28 10A3 40.424 52.723 .027056 .19015 .565401 3.257 .111782 1.17585 0.854977 1.17585 0.000000 0.0000 29 10A3 40.871 52.701 .027068 .18931 .565178 3.263 .111588 1.17270 0.852094 1.17270 0.000000 0.0000

PAGE 187

172EASSI PROGRAM EASCYC (c)1988 CRYSTAL RIVER RELOAD #12 CORE WITH CASMO LIB (B4CAL2) OLD G FACTORS 9/12/** (10:54) PAGE 13 OPERATING DATA FOR DEPLETION STEP 6 CORE POWER LEVEL 85.9 % OF F.P. INPUT OPERATING VARIABLES AVG. FUEL BURNUP INITIAL 28.054 MWD/KG WATER DENSITY 0.7232 G/CC BASE AX. BUCKLING CORRECTION 1.20E-04 BORON CONCENTRATION 1127.9 PPM ITERATION SUMARY STAGE ITER EGV ERROR EPS ALPH/BET BORON B-WORTH INITIAL 7 0.999886 0.000258 .000300 1.70/0.09 1127.9 BORON SEARCH 11 0.999999 0.000089 .000100 1.59/0.07 1126.4 -126.1 FINAL 14 1.000001 0.000047 .000050 1.68/0.13 1126.4 +-------+-------+-------+-------+-------+-------+-------+-------+ | 0.700 | 0.947 | 1.081 | 1.433 | 1.230 | 1.367 | 0.874 | 0.327 | |2/45.6 |3/34.2 |3/39.7 |4/14.0 |3/37.3 |4/13.8 |3/37.5 |2/43.4 | +-------+-------+-------+-------+-------+-------+-------+-------+ | 1.013 | 1.363 | 1.167 | 1.434 | 1.193 | 1.166 | 0.362 | |3/37.8 |4/13.1 |3/40.2 |4/14.2 |3/35.2 |4/12.6 |2/40.6 | +-------+-------+-------+-------+-------+-------+-------+ | 1.163 | 1.420 | 1.129 | 1.325 | 1.093 | 0.270 | |3/39.6 |4/13.8 |3/40.4 |4/13.1 |4/11.4 |2/43.4 | +-------+-------+-------+-------+-------+-------+ | 1.148 | 1.338 | 1.026 | 0.571 | |3/39.4 |4/12.8 |3/31.4 |3/34.4 | +-------+-------+-------+-------+ | 0.993 | 0.964 | 0.269 | |3/37.5 |4/ 9.6 |1/40.9 | +-------+-------+-------+ EGV = 1.000001 | 0.319 | PMAX = 1.43 |1/41.5 | AT LOCATION 12 +-------+ NODAL MULTIPLICATION DIFFUSION AND CONTROL PROPERTIES 1126.4 PPM AND .7232 G/CC ASSB NAME BURNUP F-LSQ F-SIGT K-FAST P T-LSQ T-SIGA K-THERM K-INFIN K-NC CONTSIG BURPO 1 12A2 45.617 52.682 .027109 .18822 .560922 3.280 .110915 1.18424 0.852492 1.18424 0.000000 0.0000 2 13AE 34.175 53.524 .026705 .23661 .557185 2.886 .125697 1.32366 0.974131 1.32366 0.000000 0.0000 3 13AE 39.734 53.257 .026851 .22282 .554772 2.946 .123104 1.28622 0.936379 1.28622 0.000000 0.0000 4 14AE 14.033 55.153 .025861 .28866 .567445 2.881 .127129 1.39130 1.078147 1.42933 0.003475 0.1437 5 13AE 37.292 53.374 .026787 .22880 .555808 2.918 .124264 1.30285 0.952940 1.30285 0.000000 0.0000 6 14AE 13.819 55.161 .025858 .28934 .567620 2.882 .127112 1.39124 1.079031 1.43055 0.003592 0.1494 7 13AE 37.498 53.364 .026792 .22830 .555720 2.921 .124166 1.30146 0.951546 1.30146 0.000000 0.0000 8 12A2 43.424 52.789 .027048 .19254 .561890 3.250 .111926 1.20005 0.866833 1.20005 0.000000 0.0000 9 13AE 37.774 53.351 .026799 .22762 .555603 2.924 .124035 1.29960 0.949680 1.29960 0.000000 0.0000 10 14AE 13.136 55.183 .025847 .29149 .568165 2.885 .127058 1.39085 1.081720 1.43444 0.003982 0.1688 11 13AE 40.219 53.234 .026864 .22166 .554579 2.951 .122866 1.28290 0.933131 1.28290 0.000000 0.0000 12 14AE 14.194 55.148 .025864 .28815 .567311 2.880 .127142 1.39133 1.077469 1.42842 0.003389 0.1395 13 13AE 35.228 53.473 .026733 .23388 .556688 2.896 .125245 1.31668 0.966867 1.31668 0.000000 0.0000 14 14AE 12.564 54.649 .026098 .29036 .577192 2.887 .127013 1.43770 1.120183 1.43770 0.000000 0.0000 15 12A2 40.628 52.928 .026970 .19822 .563151 3.213 .113219 1.22012 0.885331 1.22012 0.000000 0.0000 16 13AE 39.557 53.265 .026846 .22325 .554847 2.944 .123188 1.28744 0.937582 1.28744 0.000000 0.0000 17 14AE 13.753 55.163 .025857 .28954 .567674 2.882 .127107 1.39121 1.079299 1.43093 0.003628 0.1512 18 13AE 40.402 53.225 .026868 .22124 .554512 2.953 .122773 1.28165 0.931930 1.28165 0.000000 0.0000 19 14AE 13.074 55.184 .025846 .29168 .568213 2.885 .127053 1.39080 1.081953 1.43479 0.004018 0.1707 20 14AE 11.445 54.726 .026060 .29412 .578606 2.894 .126868 1.44398 1.129620 1.44398 0.000000 0.0000 21 12A2 43.354 52.792 .027046 .19268 .561922 3.249 .111958 1.20055 0.867298 1.20055 0.000000 0.0000 22 13AE 39.358 53.275 .026841 .22374 .554931 2.941 .123282 1.28880 0.938932 1.28880 0.000000 0.0000 23 14AE 12.816 55.192 .025842 .29249 .568412 2.886 .127033 1.39058 1.082911 1.43626 0.004173 0.1786 24 13AE 31.437 53.657 .026633 .24381 .558516 2.861 .126839 1.34157 0.993096 1.34157 0.000000 0.0000 25 13AE 34.449 53.510 .026712 .23589 .557052 2.888 .125583 1.32185 0.972229 1.32185 0.000000 0.0000 26 13AE 37.456 53.366 .026791 .22840 .555738 2.920 .124186 1.30175 0.951833 1.30175 0.000000 0.0000 27 14AE 9.551 54.865 .025992 .30072 .581246 2.912 .126391 1.45452 1.146151 1.45452 0.000000 0.0000 28 10A3 40.947 52.789 .027023 .18950 .566121 3.323 .109579 1.19330 0.865051 1.19330 0.000000 0.0000 29 10A3 41.493 52.761 .027039 .18847 .565848 3.330 .109341 1.18941 0.861493 1.18941 0.000000 0.0000

PAGE 188

173EASSI PROGRAM EASCYC (c)1988 CRYSTAL RIVER RELOAD #12 CORE WITH CASMO LIB (B4CAL2) OLD G FACTORS 9/12/** (10:54) PAGE 14 OPERATING DATA FOR DEPLETION STEP 7 CORE POWER LEVEL 85.9 % OF F.P. INPUT OPERATING VARIABLES AVG. FUEL BURNUP INITIAL 30.054 MWD/KG WATER DENSITY 0.7232 G/CC BASE AX. BUCKLING CORRECTION 1.20E-04 BORON CONCENTRATION 954.7 PPM ITERATION SUMARY STAGE ITER EGV ERROR EPS ALPH/BET BORON B-WORTH INITIAL 7 0.999645 0.000261 .000300 1.69/0.09 954.7 BORON SEARCH 13 1.000008 0.000078 .000100 1.94/0.15 950.4 -123.1 FINAL 16 1.000010 0.000049 .000050 1.68/0.13 950.4 +-------+-------+-------+-------+-------+-------+-------+-------+ | 0.709 | 0.950 | 1.077 | 1.424 | 1.212 | 1.359 | 0.874 | 0.335 | |2/47.0 |3/36.1 |3/41.9 |4/16.9 |3/39.8 |4/16.6 |3/39.2 |2/44.1 | +-------+-------+-------+-------+-------+-------+-------+-------+ | 1.013 | 1.364 | 1.157 | 1.424 | 1.180 | 1.154 | 0.371 | |3/39.8 |4/15.9 |3/42.6 |4/17.1 |3/37.6 |4/14.9 |2/41.4 | +-------+-------+-------+-------+-------+-------+-------+ | 1.156 | 1.417 | 1.124 | 1.330 | 1.088 | 0.277 | |3/41.9 |4/16.6 |3/42.7 |4/15.7 |4/13.6 |2/43.9 | +-------+-------+-------+-------+-------+-------+ | 1.145 | 1.348 | 1.032 | 0.581 | |3/41.7 |4/15.5 |3/33.5 |3/35.6 | +-------+-------+-------+-------+ | 0.999 | 0.973 | 0.279 | |3/39.4 |4/11.5 |1/41.5 | +-------+-------+-------+ EGV = 1.000010 | 0.330 | PMAX = 1.42 |1/42.1 | AT LOCATION 12 +-------+ NODAL MULTIPLICATION DIFFUSION AND CONTROL PROPERTIES 950.4 PPM AND .7232 G/CC ASSB NAME BURNUP F-LSQ F-SIGT K-FAST P T-LSQ T-SIGA K-THERM K-INFIN K-NC CONTSIG BURPO 1 12A2 47.017 52.711 .027098 .18601 .561326 3.361 .108249 1.19645 0.857604 1.19645 0.000000 0.0000 2 13AE 36.070 53.529 .026707 .23223 .557331 2.953 .122819 1.33270 0.974984 1.33270 0.000000 0.0000 3 13AE 41.895 53.251 .026859 .21818 .554957 3.022 .119989 1.29286 0.935666 1.29286 0.000000 0.0000 4 14AE 16.899 55.146 .025869 .28019 .566174 2.921 .125108 1.41135 1.079263 1.43568 0.002157 0.0826 5 13AE 39.752 53.352 .026803 .22318 .555760 2.995 .121069 1.30762 0.949898 1.30762 0.000000 0.0000 6 14AE 16.553 55.160 .025861 .28128 .566459 2.921 .125121 1.41186 1.081037 1.43772 0.002292 0.0885 7 13AE 39.247 53.376 .026790 .22442 .555975 2.989 .121309 1.31110 0.953355 1.31110 0.000000 0.0000 8 12A2 44.078 52.851 .027018 .19156 .562596 3.319 .109597 1.21738 0.876449 1.21738 0.000000 0.0000 9 13AE 39.801 53.350 .026804 .22306 .555739 2.996 .121046 1.30728 0.949564 1.30728 0.000000 0.0000 10 14AE 15.862 55.188 .025847 .28344 .567015 2.922 .125148 1.41265 1.084436 1.44180 0.002582 0.1015 11 13AE 42.554 53.220 .026876 .21666 .554716 3.031 .119655 1.28828 0.931293 1.28828 0.000000 0.0000 12 14AE 17.061 55.139 .025872 .27968 .566039 2.920 .125102 1.41109 1.078412 1.43473 0.002096 0.0799 13 13AE 37.614 53.455 .026747 .22843 .556670 2.970 .122085 1.32227 0.964493 1.32227 0.000000 0.0000 14 14AE 14.895 54.593 .026128 .28319 .575520 2.924 .125170 1.44750 1.116252 1.44750 0.000000 0.0000 15 12A2 41.353 52.986 .026942 .19710 .563828 3.281 .110858 1.23717 0.894644 1.23717 0.000000 0.0000 16 13AE 41.884 53.251 .026859 .21821 .554962 3.022 .119995 1.29294 0.935742 1.29294 0.000000 0.0000 17 14AE 16.593 55.159 .025862 .28115 .566426 2.921 .125120 1.41181 1.080836 1.43749 0.002276 0.0878 18 13AE 42.660 53.215 .026879 .21642 .554677 3.032 .119602 1.28754 0.930587 1.28754 0.000000 0.0000 19 14AE 15.725 55.194 .025845 .28387 .567123 2.922 .125153 1.41278 1.085086 1.44260 0.002642 0.1042 20 14AE 13.630 54.678 .026085 .28736 .577004 2.929 .125071 1.45482 1.126801 1.45482 0.000000 0.0000 21 12A2 43.894 52.860 .027013 .19193 .562679 3.316 .109682 1.21873 0.877684 1.21873 0.000000 0.0000 22 13AE 41.654 53.262 .026853 .21874 .555046 3.019 .120112 1.29454 0.937267 1.29454 0.000000 0.0000 23 14AE 15.491 55.203 .025840 .28460 .567305 2.922 .125162 1.41296 1.086177 1.44398 0.002749 0.1091 24 13AE 33.490 53.654 .026639 .23884 .558524 2.927 .123957 1.34988 0.992780 1.34988 0.000000 0.0000 25 13AE 35.590 53.552 .026694 .23341 .557536 2.948 .123047 1.33591 0.978232 1.33591 0.000000 0.0000 26 13AE 39.441 53.367 .026795 .22394 .555892 2.991 .121216 1.30976 0.952024 1.30976 0.000000 0.0000 27 14AE 11.479 54.825 .026013 .29455 .579629 2.941 .124848 1.46722 1.144995 1.46722 0.000000 0.0000 28 10A3 41.485 52.856 .026990 .18882 .566861 3.393 .107319 1.21193 0.875814 1.21193 0.000000 0.0000 29 10A3 42.132 52.824 .027009 .18760 .566537 3.402 .107037 1.20727 0.871560 1.20727 0.000000 0.0000

PAGE 189

174EASSI PROGRAM EASCYC (c)1988 CRYSTAL RIVER RELOAD #12 CORE WITH CASMO LIB (B4CAL2) OLD G FACTORS 9/12/** (10:54) PAGE 15 OPERATING DATA FOR DEPLETION STEP 8 CORE POWER LEVEL 85.9 % OF F.P. INPUT OPERATING VARIABLES AVG. FUEL BURNUP INITIAL 32.054 MWD/KG WATER DENSITY 0.7232 G/CC BASE AX. BUCKLING CORRECTION 1.20E-04 BORON CONCENTRATION 774.3 PPM ITERATION SUMARY STAGE ITER EGV ERROR EPS ALPH/BET BORON B-WORTH INITIAL 9 0.999604 0.000293 .000300 2.11/0.20 774.3 BORON SEARCH 15 1.000008 0.000085 .000100 1.94/0.16 769.6 -119.9 FINAL 19 1.000011 0.000046 .000050 1.59/0.07 769.6 +-------+-------+-------+-------+-------+-------+-------+-------+ | 0.719 | 0.951 | 1.069 | 1.405 | 1.194 | 1.350 | 0.881 | 0.347 | |2/48.4 |3/38.0 |3/44.0 |4/19.7 |3/42.2 |4/19.3 |3/41.0 |2/44.7 | +-------+-------+-------+-------+-------+-------+-------+-------+ | 1.012 | 1.356 | 1.142 | 1.407 | 1.169 | 1.151 | 0.383 | |3/41.8 |4/18.6 |3/44.9 |4/19.9 |3/40.0 |4/17.2 |2/42.1 | +-------+-------+-------+-------+-------+-------+-------+ | 1.144 | 1.404 | 1.118 | 1.333 | 1.091 | 0.286 | |3/44.2 |4/19.4 |3/44.9 |4/18.4 |4/15.8 |2/44.4 | +-------+-------+-------+-------+-------+-------+ | 1.139 | 1.355 | 1.042 | 0.596 | |3/43.9 |4/18.2 |3/35.6 |3/36.8 | +-------+-------+-------+-------+ | 1.010 | 0.988 | 0.291 | |3/41.4 |4/13.4 |1/42.0 | +-------+-------+-------+ EGV = 1.000011 | 0.344 | PMAX = 1.41 |1/42.8 | AT LOCATION 12 +-------+ NODAL MULTIPLICATION DIFFUSION AND CONTROL PROPERTIES 769.6 PPM AND .7232 G/CC ASSB NAME BURNUP F-LSQ F-SIGT K-FAST P T-LSQ T-SIGA K-THERM K-INFIN K-NC CONTSIG BURPO 1 12A2 48.436 52.742 .027087 .18376 .561749 3.448 .105519 1.20976 0.863340 1.20976 0.000000 0.0000 2 13AE 37.969 53.537 .026707 .22798 .557548 3.026 .119836 1.34277 0.976636 1.34277 0.000000 0.0000 3 13AE 44.048 53.247 .026865 .21361 .555188 3.104 .116816 1.30055 0.935661 1.30055 0.000000 0.0000 4 14AE 19.746 55.127 .025883 .27187 .565115 2.972 .122714 1.42776 1.078714 1.44261 0.001277 0.0452 5 13AE 42.175 53.336 .026817 .21794 .555877 3.079 .117766 1.31373 0.948206 1.31373 0.000000 0.0000 6 14AE 19.272 55.149 .025872 .27334 .565473 2.972 .122776 1.42926 1.081548 1.44552 0.001397 0.0501 7 13AE 40.995 53.392 .026786 .22067 .556312 3.063 .118365 1.32192 0.956070 1.32192 0.000000 0.0000 8 12A2 44.749 52.914 .026988 .19055 .563323 3.393 .107206 1.23597 0.886800 1.23597 0.000000 0.0000 9 13AE 41.827 53.352 .026808 .21874 .556005 3.074 .117943 1.31615 0.950528 1.31615 0.000000 0.0000 10 14AE 18.591 55.179 .025856 .27546 .565975 2.971 .122864 1.43120 1.085482 1.44969 0.001587 0.0580 11 13AE 44.867 53.209 .026887 .21172 .554887 3.115 .116401 1.29473 0.930150 1.29473 0.000000 0.0000 12 14AE 19.909 55.120 .025887 .27136 .564992 2.972 .122693 1.42721 1.077726 1.44161 0.001238 0.0436 13 13AE 39.973 53.440 .026759 .22305 .556691 3.050 .118883 1.32895 0.962860 1.32895 0.000000 0.0000 14 14AE 17.203 54.551 .026151 .27629 .574172 2.970 .123015 1.45816 1.113524 1.45816 0.000000 0.0000 15 12A2 42.094 53.047 .026913 .19595 .564526 3.354 .108434 1.25547 0.904690 1.25547 0.000000 0.0000 16 13AE 44.195 53.240 .026869 .21327 .555134 3.106 .116742 1.29951 0.934673 1.29951 0.000000 0.0000 17 14AE 19.427 55.142 .025875 .27286 .565356 2.972 .122756 1.42878 1.080631 1.44457 0.001357 0.0484 18 13AE 44.908 53.207 .026888 .21163 .554872 3.116 .116380 1.29443 0.929873 1.29443 0.000000 0.0000 19 14AE 18.385 55.188 .025852 .27610 .566125 2.970 .122891 1.43174 1.086637 1.45095 0.001649 0.0606 20 14AE 15.807 54.639 .026107 .28078 .575638 2.971 .123068 1.46652 1.124963 1.46652 0.000000 0.0000 21 12A2 44.447 52.929 .026979 .19116 .563460 3.389 .107345 1.23821 0.888841 1.23821 0.000000 0.0000 22 13AE 43.943 53.252 .026863 .21385 .555226 3.103 .116870 1.30130 0.936370 1.30130 0.000000 0.0000 23 14AE 18.188 55.197 .025847 .27671 .566267 2.970 .122916 1.43223 1.087729 1.45216 0.001711 0.0632 24 13AE 35.554 53.653 .026643 .23394 .558585 2.998 .120983 1.35913 0.993127 1.35913 0.000000 0.0000 25 13AE 36.753 53.595 .026675 .23097 .558070 3.012 .120413 1.35105 0.984951 1.35105 0.000000 0.0000 26 13AE 41.440 53.371 .026797 .21964 .556148 3.069 .118140 1.31884 0.953109 1.31884 0.000000 0.0000 27 14AE 13.425 54.797 .026029 .28859 .578340 2.980 .122974 1.48064 1.144907 1.48064 0.000000 0.0000 28 10A3 42.043 52.925 .026957 .18811 .567620 3.468 .104995 1.23185 0.887336 1.23185 0.000000 0.0000 29 10A3 42.792 52.887 .026978 .18670 .567243 3.479 .104669 1.22640 0.882361 1.22640 0.000000 0.0000

PAGE 190

175EASSI PROGRAM EASCYC (c)1988 CRYSTAL RIVER RELOAD #12 CORE WITH CASMO LIB (B4CAL2) OLD G FACTORS 9/12/** (10:54) PAGE 16 OPERATING DATA FOR DEPLETION STEP 9 CORE POWER LEVEL 85.9 % OF F.P. INPUT OPERATING VARIABLES AVG. FUEL BURNUP INITIAL 34.054 MWD/KG WATER DENSITY 0.7232 G/CC BASE AX. BUCKLING CORRECTION 1.20E-04 BORON CONCENTRATION 588.8 PPM ITERATION SUMARY STAGE ITER EGV ERROR EPS ALPH/BET BORON B-WORTH INITIAL 10 1.000103 0.000239 .000300 2.17/0.22 588.8 BORON SEARCH 15 1.000012 0.000087 .000100 2.42/0.31 590.0 -116.5 FINAL 19 1.000015 0.000048 .000050 1.59/0.07 590.0 +-------+-------+-------+-------+-------+-------+-------+-------+ | 0.729 | 0.953 | 1.061 | 1.385 | 1.177 | 1.342 | 0.891 | 0.361 | |2/49.9 |3/39.9 |3/46.2 |4/22.6 |3/44.6 |4/22.0 |3/42.8 |2/45.4 | +-------+-------+-------+-------+-------+-------+-------+-------+ | 1.009 | 1.343 | 1.128 | 1.390 | 1.162 | 1.154 | 0.397 | |3/43.9 |4/21.3 |3/47.2 |4/22.7 |3/42.3 |4/19.5 |2/42.9 | +-------+-------+-------+-------+-------+-------+-------+ | 1.131 | 1.388 | 1.112 | 1.333 | 1.097 | 0.297 | |3/46.5 |4/22.2 |3/47.1 |4/21.1 |4/18.0 |2/45.0 | +-------+-------+-------+-------+-------+-------+ | 1.131 | 1.355 | 1.051 | 0.612 | |3/46.2 |4/20.9 |3/37.6 |3/37.9 | +-------+-------+-------+-------+ | 1.018 | 1.004 | 0.304 | |3/43.5 |4/15.4 |1/42.6 | +-------+-------+-------+ EGV = 1.000015 | 0.358 | PMAX = 1.39 |1/43.5 | AT LOCATION 12 +-------+ NODAL MULTIPLICATION DIFFUSION AND CONTROL PROPERTIES 590.0 PPM AND .7232 G/CC ASSB NAME BURNUP F-LSQ F-SIGT K-FAST P T-LSQ T-SIGA K-THERM K-INFIN K-NC CONTSIG BURPO 1 12A2 49.875 52.771 .027076 .18147 .562157 3.540 .102794 1.22346 0.869249 1.22346 0.000000 0.0000 2 13AE 39.871 53.544 .026707 .22371 .557757 3.103 .116864 1.35317 0.978451 1.35317 0.000000 0.0000 3 13AE 46.186 53.246 .026871 .20923 .555493 3.191 .113646 1.30893 0.936332 1.30893 0.000000 0.0000 4 14AE 22.557 55.099 .025902 .26410 .564366 3.035 .120031 1.44087 1.077275 1.44982 0.000746 0.0237 5 13AE 44.563 53.321 .026829 .21281 .556014 3.167 .114488 1.32031 0.946922 1.32031 0.000000 0.0000 6 14AE 21.973 55.127 .025887 .26581 .564749 3.032 .120164 1.44345 1.081001 1.45348 0.000834 0.0271 7 13AE 42.757 53.406 .026782 .21699 .556680 3.142 .115405 1.33312 0.959112 1.33312 0.000000 0.0000 8 12A2 45.443 52.978 .026957 .18957 .564045 3.470 .104820 1.25528 0.897609 1.25528 0.000000 0.0000 9 13AE 43.851 53.355 .026811 .21446 .556276 3.157 .114849 1.32538 0.951736 1.32538 0.000000 0.0000 10 14AE 21.302 55.160 .025871 .26778 .565181 3.029 .120316 1.44625 1.085172 1.45766 0.000949 0.0317 11 13AE 47.152 53.203 .026895 .20713 .555201 3.206 .113140 1.30215 0.930091 1.30215 0.000000 0.0000 12 14AE 22.724 55.090 .025906 .26361 .564255 3.035 .119993 1.44011 1.076195 1.44878 0.000722 0.0227 13 13AE 42.312 53.428 .026771 .21802 .556845 3.136 .115630 1.33624 0.962100 1.33624 0.000000 0.0000 14 14AE 19.506 54.519 .026171 .26955 .573153 3.023 .120677 1.46883 1.111420 1.46883 0.000000 0.0000 15 12A2 42.860 53.106 .026885 .19474 .565208 3.431 .106013 1.27427 0.914968 1.27427 0.000000 0.0000 16 13AE 46.483 53.233 .026878 .20858 .555404 3.196 .113490 1.30686 0.934418 1.30686 0.000000 0.0000 17 14AE 22.235 55.114 .025894 .26504 .564577 3.033 .120104 1.44231 1.079337 1.45184 0.000793 0.0255 18 13AE 47.144 53.203 .026895 .20715 .555204 3.206 .113144 1.30221 0.930141 1.30221 0.000000 0.0000 19 14AE 21.051 55.172 .025865 .26852 .565341 3.028 .120374 1.44725 1.086706 1.45923 0.000997 0.0336 20 14AE 17.989 54.607 .026126 .27432 .574503 3.021 .120874 1.47824 1.123572 1.47824 0.000000 0.0000 21 12A2 45.019 52.998 .026946 .19035 .564227 3.464 .105014 1.25826 0.900297 1.25826 0.000000 0.0000 22 13AE 46.220 53.245 .026872 .20915 .555483 3.192 .113628 1.30869 0.936111 1.30869 0.000000 0.0000 23 14AE 20.897 55.179 .025861 .26897 .565439 3.027 .120409 1.44784 1.087633 1.46019 0.001027 0.0348 24 13AE 37.637 53.652 .026649 .22921 .558717 3.075 .117926 1.36861 0.993880 1.36861 0.000000 0.0000 25 13AE 37.946 53.637 .026657 .22845 .558584 3.079 .117779 1.36650 0.991756 1.36650 0.000000 0.0000 26 13AE 43.459 53.373 .026801 .21536 .556421 3.152 .115048 1.32816 0.954380 1.32816 0.000000 0.0000 27 14AE 15.401 54.768 .026045 .28262 .577150 3.023 .121016 1.49403 1.144899 1.49403 0.000000 0.0000 28 10A3 42.625 52.993 .026924 .18735 .568361 3.547 .102675 1.25233 0.899131 1.25233 0.000000 0.0000 29 10A3 43.479 52.949 .026948 .18574 .567931 3.559 .102303 1.24604 0.893406 1.24604 0.000000 0.0000

PAGE 191

176EASSI PROGRAM EASCYC (c)1988 CRYSTAL RIVER RELOAD #12 CORE WITH CASMO LIB (B4CAL2) OLD G FACTORS 9/12/** (10:54) PAGE 17 OPERATING DATA FOR DEPLETION STEP 10 CORE POWER LEVEL 85.9 % OF F.P. INPUT OPERATING VARIABLES AVG. FUEL BURNUP INITIAL 36.054 MWD/KG WATER DENSITY 0.7232 G/CC BASE AX. BUCKLING CORRECTION 1.20E-04 BORON CONCENTRATION 410.4 PPM NODE BURNUP EXCEEDS CROSS SECTION TABLE LIMITS AT 1 NODES EXTRAPOLATION USED TO COMPLETE CROSS SECTION TABLE FOR THIS TIME STEP ITERATION SUMARY STAGE ITER EGV ERROR EPS ALPH/BET BORON B-WORTH INITIAL 10 1.000046 0.000276 .000300 2.20/0.23 410.4 BORON SEARCH 16 1.000015 0.000071 .000100 2.36/0.29 410.9 -113.2 FINAL 19 1.000016 0.000047 .000050 1.68/0.13 410.9 +-------+-------+-------+-------+-------+-------+-------+-------+ | 0.741 | 0.957 | 1.053 | 1.360 | 1.161 | 1.331 | 0.904 | 0.378 | |2/51.3 |3/41.8 |3/48.3 |4/25.3 |3/46.9 |4/24.7 |3/44.5 |2/46.2 | +-------+-------+-------+-------+-------+-------+-------+-------+ | 1.008 | 1.327 | 1.113 | 1.368 | 1.156 | 1.162 | 0.413 | |3/45.9 |4/24.0 |3/49.4 |4/25.5 |3/44.6 |4/21.8 |2/43.7 | +-------+-------+-------+-------+-------+-------+-------+ | 1.117 | 1.366 | 1.104 | 1.331 | 1.106 | 0.309 | |3/48.7 |4/25.0 |3/49.4 |4/23.7 |4/20.2 |2/45.6 | +-------+-------+-------+-------+-------+-------+ | 1.123 | 1.352 | 1.060 | 0.630 | |3/48.5 |4/23.6 |3/39.7 |3/39.2 | +-------+-------+-------+-------+ | 1.027 | 1.021 | 0.318 | |3/45.5 |4/17.4 |1/43.2 | +-------+-------+-------+ EGV = 1.000016 | 0.373 | PMAX = 1.37 |1/44.2 | AT LOCATION 12 +-------+ NODAL MULTIPLICATION DIFFUSION AND CONTROL PROPERTIES 410.9 PPM AND .7232 G/CC ASSB NAME BURNUP F-LSQ F-SIGT K-FAST P T-LSQ T-SIGA K-THERM K-INFIN K-NC CONTSIG BURPO 1 12A2 51.333 52.799 .027066 .17915 .562554 3.637 .100066 1.23769 0.875415 1.23769 0.000000 0.0000 2 13AE 41.777 53.551 .026708 .21966 .558063 3.185 .113840 1.36424 0.980994 1.36424 0.000000 0.0000 3 13AE 48.308 53.248 .026876 .20501 .555862 3.283 .110474 1.31809 0.937683 1.31809 0.000000 0.0000 4 14AE 25.326 55.060 .025925 .25650 .563587 3.102 .117304 1.45191 1.074779 1.45749 0.000450 0.0120 5 13AE 46.917 53.311 .026840 .20802 .556284 3.261 .111202 1.32797 0.946748 1.32797 0.000000 0.0000 6 14AE 24.656 55.095 .025907 .25842 .564017 3.097 .117493 1.45552 1.079360 1.46181 0.000508 0.0142 7 13AE 44.538 53.420 .026780 .21326 .557039 3.225 .112440 1.34470 0.962309 1.34470 0.000000 0.0000 8 12A2 46.165 53.040 .026928 .18859 .564761 3.552 .102429 1.27534 0.908852 1.27534 0.000000 0.0000 9 13AE 45.870 53.358 .026814 .21030 .556603 3.245 .111750 1.33532 0.953544 1.33532 0.000000 0.0000 10 14AE 23.988 55.130 .025889 .26039 .564473 3.094 .117645 1.45895 1.083926 1.46606 0.000573 0.0167 11 13AE 49.409 53.198 .026904 .20262 .555529 3.301 .109898 1.31018 0.930466 1.31018 0.000000 0.0000 12 14AE 25.503 55.051 .025929 .25600 .563482 3.103 .117244 1.45093 1.073575 1.45633 0.000437 0.0114 13 13AE 44.636 53.415 .026782 .21303 .557003 3.227 .112390 1.34399 0.961642 1.34399 0.000000 0.0000 14 14AE 21.813 54.491 .026189 .26317 .572453 3.084 .118140 1.47984 1.110313 1.47984 0.000000 0.0000 15 12A2 43.653 53.163 .026859 .19348 .565876 3.512 .103584 1.29366 0.925528 1.29366 0.000000 0.0000 16 13AE 48.744 53.228 .026887 .20406 .555730 3.290 .110246 1.31496 0.934826 1.31496 0.000000 0.0000 17 14AE 25.011 55.077 .025916 .25738 .563774 3.099 .117411 1.45365 1.076905 1.45954 0.000476 0.0130 18 13AE 49.367 53.200 .026903 .20271 .555542 3.300 .109919 1.31048 0.930738 1.31048 0.000000 0.0000 19 14AE 23.718 55.144 .025882 .26118 .564657 3.093 .117706 1.46031 1.085755 1.46778 0.000603 0.0178 20 14AE 20.182 54.582 .026142 .26797 .573652 3.077 .118511 1.49010 1.122768 1.49010 0.000000 0.0000 21 12A2 45.612 53.066 .026913 .18961 .564998 3.543 .102682 1.27927 0.912389 1.27927 0.000000 0.0000 22 13AE 48.483 53.240 .026880 .20463 .555809 3.286 .110382 1.31683 0.936534 1.31683 0.000000 0.0000 23 14AE 23.608 55.150 .025879 .26150 .564731 3.093 .117731 1.46085 1.086491 1.46848 0.000615 0.0183 24 13AE 39.739 53.649 .026655 .22445 .558838 3.157 .114866 1.37839 0.994745 1.37839 0.000000 0.0000 25 13AE 39.170 53.676 .026640 .22585 .559083 3.149 .115137 1.38236 0.998704 1.38236 0.000000 0.0000 26 13AE 45.496 53.375 .026804 .21111 .556717 3.239 .111946 1.33793 0.955963 1.33793 0.000000 0.0000 27 14AE 17.409 54.744 .026059 .27667 .576114 3.072 .118880 1.50751 1.145166 1.50751 0.000000 0.0000 28 10A3 43.233 53.058 .026892 .18654 .569088 3.629 .100349 1.27349 0.911273 1.27349 0.000000 0.0000 29 10A3 44.194 53.009 .026919 .18473 .568603 3.644 .099931 1.26633 0.904768 1.26633 0.000000 0.0000

PAGE 192

177EASSI PROGRAM EASCYC (c)1988 CRYSTAL RIVER RELOAD #12 CORE WITH CASMO LIB (B4CAL2) OLD G FACTORS 9/12/** (10:54) PAGE 18 OPERATING DATA FOR DEPLETION STEP 11 CORE POWER LEVEL 85.9 % OF F.P. INPUT OPERATING VARIABLES AVG. FUEL BURNUP INITIAL 38.054 MWD/KG WATER DENSITY 0.7232 G/CC BASE AX. BUCKLING CORRECTION 1.20E-04 BORON CONCENTRATION 231.8 PPM NODE BURNUP EXCEEDS CROSS SECTION TABLE LIMITS AT 6 NODES EXTRAPOLATION USED TO COMPLETE CROSS SECTION TABLE FOR THIS TIME STEP ITERATION SUMARY STAGE ITER EGV ERROR EPS ALPH/BET BORON B-WORTH INITIAL 11 1.000338 0.000178 .000300 2.65/0.39 231.8 BORON SEARCH 16 1.000010 0.000070 .000100 2.47/0.33 235.5 -109.9 FINAL 19 1.000013 0.000048 .000050 1.68/0.13 235.5 +-------+-------+-------+-------+-------+-------+-------+-------+ | 0.752 | 0.960 | 1.044 | 1.334 | 1.146 | 1.322 | 0.920 | 0.396 | |2/52.8 |3/43.7 |3/50.4 |4/28.0 |3/49.2 |4/27.3 |3/46.3 |2/46.9 | +-------+-------+-------+-------+-------+-------+-------+-------+ | 1.005 | 1.307 | 1.097 | 1.347 | 1.152 | 1.173 | 0.432 | |3/47.9 |4/26.6 |3/51.6 |4/28.2 |3/46.9 |4/24.1 |2/44.5 | +-------+-------+-------+-------+-------+-------+-------+ | 1.101 | 1.343 | 1.095 | 1.328 | 1.118 | 0.324 | |3/51.0 |4/27.7 |3/51.6 |4/26.4 |4/22.4 |2/46.2 | +-------+-------+-------+-------+-------+-------+ | 1.112 | 1.344 | 1.069 | 0.649 | |3/50.7 |4/26.3 |3/41.9 |3/40.4 | +-------+-------+-------+-------+ | 1.035 | 1.039 | 0.333 | |3/47.5 |4/19.5 |1/43.9 | +-------+-------+-------+ EGV = 1.000013 | 0.389 | PMAX = 1.35 |1/44.9 | AT LOCATION 12 +-------+ NODAL MULTIPLICATION DIFFUSION AND CONTROL PROPERTIES 235.5 PPM AND .7232 G/CC ASSB NAME BURNUP F-LSQ F-SIGT K-FAST P T-LSQ T-SIGA K-THERM K-INFIN K-NC CONTSIG BURPO 1 12A2 52.815 52.824 .027058 .17677 .562920 3.738 .097370 1.25199 0.881540 1.25199 0.000000 0.0000 2 13AE 43.692 53.556 .026710 .21561 .558352 3.271 .110851 1.37533 0.983524 1.37533 0.000000 0.0000 3 13AE 50.413 53.248 .026881 .20081 .556215 3.379 .107353 1.32737 0.939118 1.32737 0.000000 0.0000 4 14AE 28.046 55.019 .025949 .24938 .562987 3.179 .114362 1.46124 1.072038 1.46502 0.000296 0.0058 5 13AE 49.239 53.301 .026851 .20335 .556572 3.360 .107968 1.33591 0.946885 1.33591 0.000000 0.0000 6 14AE 27.318 55.058 .025929 .25141 .563431 3.173 .114609 1.46565 1.077204 1.46986 0.000329 0.0071 7 13AE 46.345 53.433 .026778 .20964 .557454 3.313 .109483 1.35655 0.965852 1.35655 0.000000 0.0000 8 12A2 46.920 53.100 .026900 .18754 .565442 3.636 .100065 1.29556 0.920103 1.29556 0.000000 0.0000 9 13AE 47.885 53.362 .026817 .20629 .556984 3.337 .108677 1.34564 0.955790 1.34564 0.000000 0.0000 10 14AE 26.642 55.094 .025911 .25330 .563841 3.167 .114838 1.46967 1.081959 1.47435 0.000366 0.0085 11 13AE 51.635 53.193 .026912 .19818 .555845 3.400 .106714 1.31839 0.930994 1.31839 0.000000 0.0000 12 14AE 28.240 55.008 .025954 .24884 .562868 3.181 .114296 1.46004 1.070652 1.46372 0.000288 0.0055 13 13AE 46.947 53.405 .026793 .20833 .557270 3.322 .109168 1.35230 0.961926 1.35230 0.000000 0.0000 14 14AE 24.136 54.462 .026207 .25683 .571796 3.149 .115593 1.49070 1.109210 1.49070 0.000000 0.0000 15 12A2 44.480 53.217 .026834 .19214 .566508 3.595 .101184 1.31317 0.936059 1.31317 0.000000 0.0000 16 13AE 50.978 53.222 .026895 .19959 .556044 3.389 .107058 1.32323 0.935370 1.32323 0.000000 0.0000 17 14AE 27.743 55.035 .025941 .25023 .563172 3.177 .114465 1.46308 1.074192 1.46703 0.000309 0.0063 18 13AE 51.575 53.195 .026911 .19830 .555863 3.399 .106745 1.31883 0.931394 1.31883 0.000000 0.0000 19 14AE 26.380 55.107 .025904 .25403 .563999 3.165 .114927 1.47119 1.083779 1.47607 0.000381 0.0091 20 14AE 22.394 54.559 .026158 .26195 .573075 3.141 .115990 1.50186 1.122621 1.50186 0.000000 0.0000 21 12A2 46.231 53.132 .026881 .18881 .565739 3.624 .100380 1.30051 0.924554 1.30051 0.000000 0.0000 22 13AE 50.729 53.233 .026889 .20013 .556119 3.384 .107188 1.32506 0.937023 1.32506 0.000000 0.0000 23 14AE 26.312 55.111 .025902 .25422 .564041 3.164 .114950 1.47159 1.084257 1.47653 0.000386 0.0092 24 13AE 41.859 53.644 .026662 .21987 .559035 3.244 .111781 1.38828 0.995969 1.38828 0.000000 0.0000 25 13AE 40.430 53.713 .026625 .22321 .559571 3.223 .112506 1.39824 1.005621 1.39824 0.000000 0.0000 26 13AE 47.549 53.378 .026808 .20702 .557086 3.332 .108853 1.34803 0.957990 1.34803 0.000000 0.0000 27 14AE 19.452 54.725 .026073 .27073 .575330 3.128 .116605 1.52056 1.145549 1.52056 0.000000 0.0000 28 10A3 43.870 53.121 .026862 .18567 .569781 3.714 .098054 1.29487 0.923467 1.29487 0.000000 0.0000 29 10A3 44.940 53.066 .026892 .18365 .569240 3.732 .097588 1.28682 0.916155 1.28682 0.000000 0.0000

PAGE 193

178EASSI PROGRAM EASCYC (c)1988 CRYSTAL RIVER RELOAD #12 CORE WITH CASMO LIB (B4CAL2) OLD G FACTORS 9/12/** (10:54) PAGE 19 OPERATING DATA FOR DEPLETION STEP 12 CORE POWER LEVEL 85.9 % OF F.P. INPUT OPERATING VARIABLES AVG. FUEL BURNUP INITIAL 40.054 MWD/KG WATER DENSITY 0.7232 G/CC BASE AX. BUCKLING CORRECTION 1.20E-04 BORON CONCENTRATION 60.2 PPM NODE BURNUP EXCEEDS CROSS SECTION TABLE LIMITS AT 7 NODES EXTRAPOLATION USED TO COMPLETE CROSS SECTION TABLE FOR THIS TIME STEP ITERATION SUMARY STAGE ITER EGV ERROR EPS ALPH/BET BORON B-WORTH INITIAL 11 1.000335 0.000189 .000300 2.66/0.40 60.2 BORON SEARCH 16 1.000010 0.000076 .000100 2.49/0.33 63.7 -106.7 FINAL 20 1.000014 0.000044 .000050 1.59/0.07 63.7 +-------+-------+-------+-------+-------+-------+-------+-------+ | 0.763 | 0.964 | 1.034 | 1.309 | 1.131 | 1.312 | 0.937 | 0.416 | |2/54.3 |3/45.6 |3/52.5 |4/30.7 |3/51.5 |4/30.0 |3/48.2 |2/47.7 | +-------+-------+-------+-------+-------+-------+-------+-------+ | 1.003 | 1.286 | 1.081 | 1.325 | 1.148 | 1.185 | 0.452 | |3/49.9 |4/29.3 |3/53.8 |4/30.9 |3/49.3 |4/26.5 |2/45.3 | +-------+-------+-------+-------+-------+-------+-------+ | 1.085 | 1.318 | 1.085 | 1.322 | 1.130 | 0.339 | |3/53.2 |4/30.4 |3/53.8 |4/29.0 |4/24.6 |2/46.9 | +-------+-------+-------+-------+-------+-------+ | 1.100 | 1.334 | 1.078 | 0.669 | |3/53.0 |4/29.0 |3/44.0 |3/41.7 | +-------+-------+-------+-------+ | 1.043 | 1.059 | 0.349 | |3/49.6 |4/21.5 |1/44.5 | +-------+-------+-------+ EGV = 1.000014 | 0.406 | PMAX = 1.33 |1/45.7 | AT LOCATION 23 +-------+ NODAL MULTIPLICATION DIFFUSION AND CONTROL PROPERTIES 63.7 PPM AND .7232 G/CC ASSB NAME BURNUP F-LSQ F-SIGT K-FAST P T-LSQ T-SIGA K-THERM K-INFIN K-NC CONTSIG BURPO 1 12A2 54.319 52.846 .027051 .17435 .563256 3.843 .094705 1.26638 0.887644 1.26638 0.000000 0.0000 2 13AE 45.613 53.560 .026712 .21161 .558658 3.361 .107889 1.38663 0.986262 1.38663 0.000000 0.0000 3 13AE 52.501 53.247 .026887 .19665 .556553 3.479 .104284 1.33683 0.940670 1.33683 0.000000 0.0000 4 14AE 30.715 54.976 .025974 .24252 .562420 3.261 .111423 1.46983 1.069181 1.47274 0.000221 0.0028 5 13AE 51.531 53.291 .026862 .19875 .556848 3.462 .104791 1.34405 0.947178 1.34405 0.000000 0.0000 6 14AE 29.963 55.015 .025954 .24449 .562825 3.252 .111734 1.47471 1.074488 1.47785 0.000239 0.0034 7 13AE 48.185 53.443 .026777 .20600 .557868 3.404 .106543 1.36843 0.969404 1.36843 0.000000 0.0000 8 12A2 47.713 53.155 .026874 .18641 .566088 3.723 .097725 1.31594 0.931347 1.31594 0.000000 0.0000 9 13AE 49.896 53.365 .026821 .20229 .557346 3.434 .105647 1.35606 0.958083 1.35606 0.000000 0.0000 10 14AE 29.255 55.054 .025935 .24646 .563262 3.246 .111974 1.47923 1.079654 1.48264 0.000258 0.0042 11 13AE 53.829 53.187 .026921 .19379 .556150 3.503 .103588 1.32682 0.931705 1.32682 0.000000 0.0000 12 14AE 30.933 54.965 .025980 .24195 .562304 3.264 .111332 1.46840 1.067636 1.47125 0.000217 0.0026 13 13AE 49.252 53.394 .026804 .20368 .557542 3.423 .105985 1.36074 0.962357 1.36074 0.000000 0.0000 14 14AE 26.481 54.431 .026227 .25066 .571246 3.221 .112917 1.50122 1.108223 1.50122 0.000000 0.0000 15 12A2 45.344 53.268 .026810 .19077 .567113 3.682 .098809 1.33297 0.946719 1.33297 0.000000 0.0000 16 13AE 53.180 53.216 .026904 .19519 .556347 3.491 .103928 1.33172 0.936090 1.33172 0.000000 0.0000 17 14AE 30.429 54.991 .025967 .24327 .562573 3.258 .111543 1.47169 1.071198 1.47469 0.000227 0.0030 18 13AE 53.765 53.190 .026919 .19393 .556170 3.502 .103622 1.32731 0.932139 1.32731 0.000000 0.0000 19 14AE 29.036 55.066 .025929 .24707 .563398 3.244 .112049 1.48062 1.081250 1.48413 0.000265 0.0044 20 14AE 24.630 54.532 .026174 .25585 .572459 3.206 .113504 1.51343 1.122223 1.51343 0.000000 0.0000 21 12A2 46.878 53.195 .026851 .18795 .566449 3.708 .098107 1.32199 0.936782 1.32199 0.000000 0.0000 22 13AE 52.953 53.226 .026899 .19568 .556416 3.487 .104047 1.33343 0.937620 1.33343 0.000000 0.0000 23 14AE 28.999 55.067 .025928 .24717 .563420 3.244 .112061 1.48085 1.081517 1.48437 0.000266 0.0045 24 13AE 43.998 53.636 .026670 .21528 .559220 3.335 .108718 1.39811 0.997129 1.39811 0.000000 0.0000 25 13AE 41.727 53.745 .026611 .22057 .560071 3.300 .109871 1.41421 1.012626 1.41421 0.000000 0.0000 26 13AE 49.620 53.377 .026814 .20289 .557430 3.429 .105792 1.35807 0.959915 1.35807 0.000000 0.0000 27 14AE 21.530 54.706 .026086 .26496 .574742 3.191 .114209 1.53345 1.146303 1.53345 0.000000 0.0000 28 10A3 44.536 53.180 .026834 .18474 .570440 3.802 .095787 1.31649 0.935713 1.31649 0.000000 0.0000 29 10A3 45.717 53.123 .026866 .18264 .569868 3.822 .095284 1.30791 0.927974 1.30791 0.000000 0.0000

PAGE 194

179EASSI PROGRAM EASCYC (c)1988 CRYSTAL RIVER RELOAD #12 CORE WITH CASMO LIB (B4CAL2) OLD G FACTORS 9/12/** (10:54) PAGE 20 OPERATING DATA FOR DEPLETION STEP 13 CORE POWER LEVEL 85.9 % OF F.P. INPUT OPERATING VARIABLES AVG. FUEL BURNUP INITIAL 40.812 MWD/KG WATER DENSITY 0.7232 G/CC BASE AX. BUCKLING CORRECTION 1.20E-04 BORON CONCENTRATION 0.0 PPM NODE BURNUP EXCEEDS CROSS SECTION TABLE LIMITS AT 10 NODES EXTRAPOLATION USED TO COMPLETE CROSS SECTION TABLE FOR THIS TIME STEP ITERATION SUMARY STAGE ITER EGV ERROR EPS ALPH/BET BORON B-WORTH INITIAL 6 1.000021 0.000229 .000300 1.71/0.09 0.0 BORON SEARCH 12 1.000013 0.000085 .000100 2.57/0.37 0.2 -105.5 FINAL 16 1.000015 0.000045 .000050 1.59/0.07 0.2 +-------+-------+-------+-------+-------+-------+-------+-------+ | 0.768 | 0.967 | 1.031 | 1.301 | 1.126 | 1.309 | 0.943 | 0.424 | |2/54.9 |3/46.3 |3/53.3 |4/31.7 |3/52.4 |4/31.0 |3/48.9 |2/48.0 | +-------+-------+-------+-------+-------+-------+-------+-------+ | 1.003 | 1.280 | 1.075 | 1.317 | 1.147 | 1.189 | 0.460 | |3/50.7 |4/30.2 |3/54.6 |4/31.9 |3/50.1 |4/27.4 |2/45.7 | +-------+-------+-------+-------+-------+-------+-------+ | 1.080 | 1.310 | 1.081 | 1.319 | 1.134 | 0.344 | |3/54.0 |4/31.4 |3/54.6 |4/30.0 |4/25.5 |2/47.1 | +-------+-------+-------+-------+-------+-------+ | 1.096 | 1.329 | 1.080 | 0.676 | |3/53.8 |4/30.0 |3/44.8 |3/42.2 | +-------+-------+-------+-------+ | 1.045 | 1.065 | 0.355 | |3/50.4 |4/22.3 |1/44.8 | +-------+-------+-------+ EGV = 1.000015 | 0.412 | PMAX = 1.33 |1/46.0 | AT LOCATION 23 +-------+ NODAL MULTIPLICATION DIFFUSION AND CONTROL PROPERTIES 0.2 PPM AND .7232 G/CC ASSB NAME BURNUP F-LSQ F-SIGT K-FAST P T-LSQ T-SIGA K-THERM K-INFIN K-NC CONTSIG BURPO 1 12A2 54.898 52.853 .027049 .17341 .563371 3.884 .093710 1.27174 0.889870 1.27174 0.000000 0.0000 2 13AE 46.343 53.562 .026713 .21015 .558796 3.397 .106776 1.39097 0.987417 1.39097 0.000000 0.0000 3 13AE 53.284 53.246 .026890 .19509 .556674 3.518 .103142 1.34038 0.941245 1.34038 0.000000 0.0000 4 14AE 31.706 54.961 .025983 .24010 .562265 3.294 .110280 1.47293 1.068275 1.47566 0.000205 0.0021 5 13AE 52.387 53.286 .026867 .19703 .556947 3.502 .103612 1.34711 0.947296 1.34711 0.000000 0.0000 6 14AE 30.957 55.000 .025963 .24205 .562666 3.285 .110592 1.47788 1.073608 1.48080 0.000218 0.0026 7 13AE 48.895 53.445 .026778 .20459 .558013 3.440 .105440 1.37277 0.970617 1.37277 0.000000 0.0000 8 12A2 48.028 53.175 .026865 .18595 .566318 3.757 .096850 1.32356 0.935506 1.32356 0.000000 0.0000 9 13AE 50.656 53.365 .026823 .20077 .557475 3.471 .104519 1.35995 0.958909 1.35995 0.000000 0.0000 10 14AE 30.230 55.038 .025944 .24395 .563055 3.277 .110896 1.48263 1.078746 1.48575 0.000234 0.0032 11 13AE 54.648 53.184 .026924 .19216 .556261 3.543 .102429 1.33001 0.931991 1.33001 0.000000 0.0000 12 14AE 31.937 54.949 .025990 .23950 .562142 3.297 .110183 1.47139 1.066628 1.47408 0.000201 0.0019 13 13AE 50.122 53.389 .026809 .20193 .557638 3.462 .104798 1.36386 0.962469 1.36386 0.000000 0.0000 14 14AE 27.379 54.418 .026234 .24834 .571055 3.250 .111881 1.50501 1.107778 1.50501 0.000000 0.0000 15 12A2 45.686 53.286 .026802 .19027 .567331 3.715 .097921 1.34047 0.950754 1.34047 0.000000 0.0000 16 13AE 54.003 53.213 .026908 .19354 .556456 3.531 .102766 1.33493 0.936377 1.33493 0.000000 0.0000 17 14AE 31.428 54.976 .025976 .24082 .562414 3.291 .110396 1.47478 1.070261 1.47758 0.000209 0.0022 18 13AE 54.587 53.187 .026923 .19229 .556279 3.542 .102460 1.33048 0.932403 1.33048 0.000000 0.0000 19 14AE 30.038 55.048 .025939 .24445 .563157 3.274 .110976 1.48387 1.080100 1.48706 0.000239 0.0033 20 14AE 25.486 54.521 .026181 .25358 .572257 3.233 .112524 1.51761 1.122044 1.51761 0.000000 0.0000 21 12A2 47.134 53.217 .026841 .18760 .566704 3.741 .097259 1.33005 0.941342 1.33005 0.000000 0.0000 22 13AE 53.787 53.223 .026902 .19401 .556522 3.527 .102879 1.33657 0.937837 1.33657 0.000000 0.0000 23 14AE 30.010 55.050 .025938 .24452 .563172 3.274 .110988 1.48405 1.080297 1.48725 0.000239 0.0034 24 13AE 44.815 53.632 .026674 .21352 .559279 3.371 .107573 1.40170 0.997459 1.40170 0.000000 0.0000 25 13AE 42.234 53.756 .026607 .21953 .560246 3.330 .108883 1.42012 1.015145 1.42012 0.000000 0.0000 26 13AE 50.410 53.376 .026817 .20130 .557549 3.467 .104647 1.36175 0.960545 1.36175 0.000000 0.0000 27 14AE 22.333 54.697 .026091 .26277 .574532 3.215 .113296 1.53815 1.146490 1.53815 0.000000 0.0000 28 10A3 44.801 53.201 .026824 .18435 .570674 3.836 .094940 1.32461 0.940272 1.32461 0.000000 0.0000 29 10A3 46.025 53.143 .026857 .18224 .570091 3.857 .094424 1.31583 0.932382 1.31583 0.000000 0.0000

PAGE 195

180EASSI PROGRAM EASCYC (c)1988 CRYSTAL RIVER RELOAD #12 CORE WITH CASMO LIB (B4CAL2) OLD G FACTORS 9/12/** (10:54) PAGE 21 DEPLETION PHASE SUMMARY STEP BORON BURNUP ROD GROUPS NO. CONC. MWD/KG PK/AVG K-EFF INSERTED (PPM) START INCR. 1 1810.8 18.05 2.00 1.391 1.00000 2 1796.1 20.05 2.00 1.415 1.00021 3 1639.9 22.05 2.00 1.424 0.99970 4 1468.3 24.05 2.00 1.432 0.99996 5 1298.1 26.05 2.00 1.435 0.99999 6 1126.4 28.05 2.00 1.434 1.00000 7 950.4 30.05 2.00 1.424 1.00001 8 769.6 32.05 2.00 1.407 1.00001 9 590.0 34.05 2.00 1.390 1.00001 10 410.9 36.05 2.00 1.368 1.00002 11 235.5 38.05 2.00 1.347 1.00001 12 63.7 40.05 0.76 1.334 1.00001 13 0.2 40.81 0.00 1.329 1.00001 CYCLE BURNUP AT END OF STEP 13 = 22.8 MWD/KG FULL CORE FUEL INVENTORY SUMMARY (BORON = 0.2 PPM) BATCH BATCH BATCH BATCH BURNUP AVG SIZE NO. NAME ENR. AVG MAX K-INF CENTER 2 12A2 .0419 54.90 0.88987 12 1 10A3 .0394 45.21 46.02 0.93764 20 2 12A2 .0419 46.73 48.03 0.94394 72 3 13AE .0486 50.14 54.65 0.96218 72 4 14AE .0461 28.91 31.94 1.09148 TOTAL 40.81 54.90 1.01064

PAGE 196

181 APPENDIX E ONE-EIGHTH CORE MCNP/MONTEBURNS FILES This appendix contains all of th e input and output files for the 1/8th core MCNP/MONTEBURNS model. The CASMO input files used to generate the 10A3, 12A2, and 13A 13E depleted fuel appr oximate compositions for the primary, Gd2O3/UO2 mixed fuel, and blanket fuels are simila r to those used to generate the cross section libraries for EASCYC and are not incl uded in this appendix. No CASMO output files are listed instead the appendix includes th e fuel compositions in the material cards of the MCNP input files. All of th e MCNP input, MONTEBURNS input, and MONTEBURNS output files are listed for the B4C/Al2O3 BPRA, L-Carborane, and JCarborane models. The MONTEBURNS output files have been abbreviated to include only the k-effective vs. time and the transport history information. The MCNP Input File 1/8th core B4C/Al2O3 BPRAs RESEARCH 1/8th CORE WITH B4CAL2O3 BPRA'S C CRYSTAL RIVER REACTOR #1 C box -200 200 -200 200 -200 200 1 0 -1 13 -14 19 20 FILL=1 VOL=6333455.62 2 1 -0.660 9 -10 11 -12 LAT=1 U=1 FILL=-8:1 -8:1 0:0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 1 1 1 1 1 2 4 11 12 4 1 1 1 1 2 10 5 13 5 9 1 1 1 1 1 4 13 4 9 5 1 1 1 1 1 1 4 9 4 9 1 1 1 1 1 1 1 4 13 4 1 1 1 1 1 1 1 1 4 5 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 c 201 0 9 -10 11 -12 LAT=1 U=22 FILL=2 C 10A & 12A2 MARK-B4Z ASSMBLY WITH 0 GD AND 0 BPRAS (33 TOTAL) 200 1 -0.660 30 -31 32 -33 LAT=1 VOL=2581.227 U=2 FILL=-8:8 -8:8 0:0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 2 2 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 2 2 20 20 20 20 20 14 20 20 20 14 20 20 20 20 20 2 2 20 20 20 14 20 20 20 20 20 20 20 14 20 20 20 2 2 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 2 2 20 20 14 20 20 14 20 20 20 14 20 20 14 20 20 2 2 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 2

PAGE 197

182 182 2 20 20 20 20 20 20 20 14 20 20 20 20 20 20 20 2 2 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 2 2 20 20 14 20 20 14 20 20 20 14 20 20 14 20 20 2 2 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 2 2 20 20 20 14 20 20 20 20 20 20 20 14 20 20 20 2 2 20 20 20 20 20 14 20 20 20 14 20 20 20 20 20 2 2 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 2 2 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 C 13A 13D MARK-B10I ASSMBLY WITH 8 GD AND 0 BPRAS (48 TOTAL) 202 1 -0.660 30 -31 32 -33 LAT=1 U=4 VOL=2581.227 FILL=-8:8 -8:8 0:0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 4 4 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 4 4 40 40 40 40 40 14 40 40 40 14 40 40 40 40 40 4 4 40 40 40 14 40 40 40 40 40 40 40 14 40 40 40 4 4 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 4 4 40 40 14 40 40 14 40 40 40 14 40 40 14 40 40 4 4 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 4 4 40 40 40 40 40 40 40 14 40 40 40 40 40 40 40 4 4 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 4 4 40 40 14 40 40 14 40 40 40 14 40 40 14 40 40 4 4 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 4 4 40 40 40 14 40 40 40 40 40 40 40 14 40 40 40 4 4 40 40 40 40 40 14 40 40 40 14 40 40 40 40 40 4 4 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 4 4 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 C 13B C E MARK-B10I ASSMBLY WITH 8 GD AND 0 BPRAS (8 TOTAL) 203 1 -0.660 30 -31 32 -33 LAT=1 U=5 VOL=2581.227 FILL=-8:8 -8:8 0:0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 5 5 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 5 5 50 50 50 50 50 14 50 50 50 14 50 50 50 50 50 5 5 50 50 50 14 50 50 50 50 50 50 50 14 50 50 50 5 5 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 5 5 50 50 14 50 50 14 50 50 50 14 50 50 14 50 50 5 5 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 5 5 50 50 50 50 50 50 50 14 50 50 50 50 50 50 50 5 5 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 5 5 50 50 14 50 50 14 50 50 50 14 50 50 14 50 50 5 5 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 5 5 50 50 50 14 50 50 50 50 50 50 50 14 50 50 50 5 5 50 50 50 50 50 14 50 50 50 14 50 50 50 50 50 5 5 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 5 5 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 C 14A MARK-B10I ASSMBLY WITH 8 GD AND 8 BPRAS (24 TOTAL) 207 1 -0.660 30 -31 32 -33 LAT=1 U=9 VOL=2581.227 FILL=-8:8 -8:8 0:0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 9 9 90 90 90 91 90 90 90 90 90 90 90 91 90 90 90 9 9 90 90 90 90 90 15 90 90 90 15 90 90 90 90 90 9 9 90 91 90 14 90 90 90 90 90 90 90 14 90 91 90 9 9 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 9 9 90 90 15 90 90 14 90 90 90 14 90 90 15 90 90 9 9 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 9 9 90 90 90 90 90 90 90 14 90 90 90 90 90 90 90 9 9 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 9 9 90 90 15 90 90 14 90 90 90 14 90 90 15 90 90 9 9 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 9 9 90 91 90 14 90 90 90 90 90 90 90 14 90 91 90 9 9 90 90 90 90 90 15 90 90 90 15 90 90 90 90 90 9 9 90 90 90 91 90 90 90 90 90 90 90 91 90 90 90 9 9 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 C 14B MARK-B10I ASSMBLY WITH 0 GD AND 0 BPRAS (8 TOTAL) 208 1 -0.660 30 -31 32 -33 LAT=1 U=10 VOL=2581.227 FILL=-8:8 -8:8 0:0 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10 10 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10

PAGE 198

183 183 10 100 100 100 100 100 14 100 100 100 14 100 100 100 100 100 10 10 100 100 100 14 100 100 100 100 100 100 100 14 100 100 100 10 10 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10 10 100 100 14 100 100 14 100 100 100 14 100 100 14 100 100 10 10 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10 10 100 100 100 100 100 100 100 14 100 100 100 100 100 100 100 10 10 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10 10 100 100 14 100 100 14 100 100 100 14 100 100 14 100 100 10 10 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10 10 100 100 100 14 100 100 100 100 100 100 100 14 100 100 100 10 10 100 100 100 100 100 14 100 100 100 14 100 100 100 100 100 10 10 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10 10 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 C 14C MARK-B10I ASSMBLY WITH 4 GD AND 0 BPRAS (8 TOTAL) 209 1 -0.660 30 -31 32 -33 LAT=1 U=11 VOL=2581.227 FILL=-8:8 -8:8 0:0 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 11 11 100 111 100 100 100 100 100 100 100 100 100 100 100 111 100 11 11 100 100 100 100 100 14 100 100 100 14 100 100 100 100 100 11 11 100 100 100 14 100 100 100 100 100 100 100 14 100 100 100 11 11 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 11 11 100 100 14 100 100 14 100 100 100 14 100 100 14 100 100 11 11 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 11 11 100 100 100 100 100 100 100 14 100 100 100 100 100 100 100 11 11 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 11 11 100 100 14 100 100 14 100 100 100 14 100 100 14 100 100 11 11 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 11 11 100 100 100 14 100 100 100 100 100 100 100 14 100 100 100 11 11 100 100 100 100 100 14 100 100 100 14 100 100 100 100 100 11 11 100 111 100 100 100 100 100 100 100 100 100 100 100 111 100 11 11 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 C 14D MARK-B10I ASSMBLY WITH 8 GD AND 0 BPRAS (8 TOTAL) 210 1 -0.660 30 -31 32 -33 LAT=1 U=12 VOL=2581.227 FILL=-8:8 -8:8 0:0 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 12 12 100 100 100 111 100 100 100 100 100 100 100 111 100 100 100 12 12 100 100 100 100 100 14 100 100 100 14 100 100 100 100 100 12 12 100 111 100 14 100 100 100 100 100 100 100 14 100 111 100 12 12 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 12 12 100 100 14 100 100 14 100 100 100 14 100 100 14 100 100 12 12 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 12 12 100 100 100 100 100 100 100 14 100 100 100 100 100 100 100 12 12 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 12 12 100 100 14 100 100 14 100 100 100 14 100 100 14 100 100 12 12 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 12 12 100 111 100 14 100 100 100 100 100 100 100 14 100 111 100 12 12 100 100 100 100 100 14 100 100 100 14 100 100 100 100 100 12 12 100 100 100 111 100 100 100 100 100 100 100 111 100 100 100 12 12 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 C 14E MARK-B10I ASSMBLY WITH 8 GD AND 8 BPRAS (24 TOTAL) 211 1 -0.660 30 -31 32 -33 LAT=1 U=13 VOL=2581.227 FILL=-8:8 -8:8 0:0 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 13 13 100 100 100 91 100 100 100 100 100 100 100 91 100 100 100 13 13 100 100 100 100 100 15 100 100 100 15 100 100 100 100 100 13 13 100 91 100 14 100 100 100 100 100 100 100 14 100 91 100 13 13 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 13 13 100 100 15 100 100 14 100 100 100 14 100 100 15 100 100 13 13 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 13 13 100 100 100 100 100 100 100 14 100 100 100 100 100 100 100 13 13 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 13 13 100 100 15 100 100 14 100 100 100 14 100 100 15 100 100 13 13 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 13 13 100 91 100 14 100 100 100 100 100 100 100 14 100 91 100 13 13 100 100 100 100 100 15 100 100 100 15 100 100 100 100 100 13 13 100 100 100 91 100 100 100 100 100 100 100 91 100 100 100 13 13 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13

PAGE 199

184 184C UNIVERSE 14 EMPTY GUIDE TUBE 3 1 -0.660 -4 U=14 $WATER HOLE VOL=259.275 4 3 -6.503 4 -5 U=14 $INTERIOR CLAD VOL=78.0098 5 1 -0.660 5 -6 U=14 $GUIDE TUBE WATER RADIUS VOL=114.4531 6 3 -6.503 6 -7 U=14 $GUIDE TUBE CLAD RADIUS VOL=60.665 7 1 -0.660 #3 #4 #5 #6 U=14 $UNIT CELL WATER VOL=237.207 C UNIVERSE 15 BPRA 8 4 -3.1 -4 U=15 $BPRA MATERIAL VOL=259.275 9 3 -6.503 4 -5 U=15 $INTERIOR CLAD VOL=78.0098 10 1 -0.660 5 -6 U=15 $GUIDE TUBE WATER RADIUS VOL=114.453 11 3 -6.503 6 -7 U=15 $GUIDE TUBE CLAD RADIUS VOL=60.665 12 1 -0.660 #8 #9 #10 #11 U=15 $UNIT CELL WATER VOL=237.207 C UNIVERSE 20 FUEL FOR 10A3 &12A2 ASSEMBLY (PRIMARY) 13 26 -10.201 -8 15 -16 U=20 $UO2 FUEL PELLET (PRIMARY) VOL=228.638 14 34 -10.201 -8 -15 U=20 $UO2 FUEL PELLET (BLANKET) VOL=10.544 15 34 -10.201 -8 16 U=20 $UO2 FUEL PELLET (BLANKET) VOL=10.544 16 0 8 -4 U=20 $GAP RADIUS VOL=9.5493 17 3 -6.503 4 -5 U=20 $FUEL PIN CLAD VOL=78.00976 18 1 -0.660 #13 #14 #15 #16 #17 U=20 $UNIT CELL WATER VOL=412.3249 C UNIVERSE 40 FUEL FOR 13A & 13D ASSEMBLY (PRIMARY) 25 30 -10.201 -8 15 -16 U=40 $UO2 FUEL PELLET (PRIMARY) VOL=228.638 26 34 -10.201 -8 -15 U=40 $UO2 FUEL PELLET (BLANKET) VOL=10.544 27 34 -10.201 -8 16 U=40 $UO2 FUEL PELLET (BLANKET) VOL=10.544 28 0 8 -4 U=40 $GAP RADIUS VOL=9.5493 29 3 -6.503 4 -5 U=40 $FUEL PIN CLAD VOL=78.00976 30 1 -0.660 #25 #26 #27 #28 #29 U=40 $UNIT CELL WATER VOL=412.3249 C UNIVERSE 50 FUEL FOR 13B C E ASSEMBLY (PRIMARY) 37 33 -10.201 -8 15 -16 U=50 $UO2 FUEL PELLET (PRIMARY) VOL=228.638 38 34 -10.201 -8 -15 U=50 $UO2 FUEL PELLET (BLANKET) VOL=10.544 39 34 -10.201 -8 16 U=50 $UO2 FUEL PELLET (BLANKET) VOL=10.544 40 0 8 -4 U=50 $GAP RADIUS VOL=9.5493 41 3 -6.503 4 -5 U=50 $FUEL PIN CLAD VOL=78.00976 42 1 -0.660 #37 #38 #39 #40 #41 U=50 $UNIT CELL WATER VOL=412.3249 C UNIVERSE 90 FUEL FOR 14A ASSEMBLY (PRIMARY) 79 2 -10.201 -8 15 -16 U=90 $UO2 FUEL PELLET (PRIMARY) VOL=228.638 80 22 -10.201 -8 -15 U=90 $UO2 FUEL PELLET (BLANKET) VOL=10.544 81 22 -10.201 -8 16 U=90 $UO2 FUEL PELLET (BLANKET) VOL=10.544 82 0 8 -4 U=90 $GAP RADIUS VOL=9.5493 83 3 -6.503 4 -5 U=90 $FUEL PIN CLAD

PAGE 200

185 185 VOL=78.00976 84 1 -0.660 #79 #80 #81 #82 #83 U=90 $UNIT CELL WATER VOL=412.3249 C UNIVERSE 91 GD FUEL ROD FOR 14A AND 14E 85 25 -9.635 -8 17 -18 U=91 $UO2 GDO FUEL PELLET (PRIMARY) VOL=215.2219 86 22 -10.201 -8 -17 U=91 $UO2 FUEL PELLET (BLANKET) VOL=17.25188 87 22 -10.201 -8 18 U=91 $UO2 FUEL PELLET (BLANKET) VOL=17.25188 88 0 8 -4 U=91 $GAP RADIUS VOL=9.549294 89 3 -6.503 4 -5 U=91 $FUEL PIN CLAD VOL=78.00976 90 1 -0.660 #85 #86 #87 #88 #89 U=91 $UNIT CELL WATER VOL=412.3249 C UNIVERSE 100 FUEL FOR 14B 14C 14D 14E ASSEMBLIES 91 23 -10.201 -8 15 -16 U=100 $UO2 FUEL PELLET (PRIMARY) VOL=228.6378 92 22 -10.201 -8 -15 U=100 $UO2 FUEL PELLET (BLANKET) VOL=10.54397 93 22 -10.201 -8 16 U=100 $UO2 FUEL PELLET (BLANKET) VOL=10.54397 94 0 8 -4 U=100 $GAP RADIUS VOL=54929 95 3 -6.503 4 -5 U=100 $FUEL PIN CLAD VOL=78.00976 96 1 -0.660 #91 #92 #93 #94 #95 U=100 $UNIT CELL WATER VOL=412.3249 C UNIVERSE 111 GD FUEL ROD FOR 14C AND 14D 97 24 -9.635 -8 17 -18 U=111 $UO2 GDO FUEL PELLET (PRIMARY) VOL=215.2219 98 22 -10.201 -8 -17 U=111 $UO2 FUEL PELLET (BLANKET) VOL=17.25188 99 22 -10.201 -8 18 U=111 $UO2 FUEL PELLET (BLANKET) VOL=17.25188 100 0 8 -4 U=111 $GAP RADIUS VOL=9.549294 101 3 -6.503 4 -5 U=111 $FUEL PIN CLAD VOL=78.00976 102 1 -0.660 #97 #98 #99 #100 #101 U=111 $UNIT CELL WATER VOL=412.3249 C REACTOR BOUNDARY 997 1 -0.660 -1 -2 14 19 20 $AXIAL RELECTORS VOL=2035752.04 998 1 -0.660 -1 3 -13 19 20 VOL=2035752.04 999 0 1:-3:2:-19:-20 $VOID REGION OUTSIDE REACTOR VESSEL *1 CZ 180 $ REACTOR VESSEL *2 PZ 200 *3 PZ -200 30 PX -0.7215 31 PX 0.7215 32 PY -0.7215 33 PY 0.7215 C OUTSIDE OF UNIT CELL (1.443 PITCH) 4 CZ 0.4788 C CYLINDER BPRA / WATER HOLE / GAP RADIUS 5 CZ 0.5461 C CYLINDER INTERIOR CLAD RADIUS 6 CZ 0.6320 C CYLINDER WATER RADIUS GUIDE TUBE 7 CZ 0.6731 C CYLINDER CLAD RADIUS GUIDE TUBE 8 CZ 0.4699 C CYLINDER RADIUS OF FUEL PELLET 9 PX -10.905 10 PX 10.905 11 PY -10.905 12 PY 10.905

PAGE 201

186 18613 PZ -180 14 PZ 180 C PLANES OUTSIDE OF ASSEMBLY 15 PZ -164.8 16 PZ 164.8 17 PZ -155.13 18 PZ 155.13 *19 PX 0 *20 P 0 0 0 10.905 10.905 0 10.905 10.905 10.905 C PLANES FOR AXIAL BLANKET MODE N IMP:N 1.0 63R 0.0 KCODE 30000 1.5 10 50 5000 KSRC 1.443 2.886 0 1.443 21.8 0 20.357 21.8 0 1.443 43.6 0 20.357 43.6 0 42.157 43.6 0 1.443 65.4 0 20.357 65.4 0 42.157 65.4 0 63.957 65.4 0 1.443 87.2 0 20.357 87.2 0 42.157 87.2 0 63.957 87.2 0 85.757 87.2 0 1.443 109 0 20.357 109 0 42.157 109 0 63.957 109 0 85.757 109 0 107.557 109 0 1.443 130.8 0 20.357 130.8 0 42.157 130.8 0 63.957 130.8 0 85.757 130.8 0 1.443 152.6 0 20.357 152.6 0 42.157 152.6 0 M1 8016.60C -8.88100E+01 1001.60C -1.11900E+01 MT1 LWTR.04T $H20 AT 600 K C FUEL FOR 14A (PRIMARY) 0.0452 ENRICH M2 92235.54C 0.015066652 92238.54C 0.318266348 8016.54C 0.666666 C FUEL FOR 14A -E (BLANKET) 0.02 ENRICH M22 92235.54C 0.00666666 92238.54C 0.32666634 8016.54C 0.666666 C FUEL FOR 14B -E (PRIMARY) 0.0466 ENRICH M23 92235.54C 0.015533318 92238.54C 0.317799682 8016.54C 0.666666 C FUEL FOR 14C & D (GdO MIX) 0.0396 ENRICH 0.03 GdO M24 92235.54C 0.012804 92238.54C 0.310529333 8016.54C 0.664666667 64154.60C 0.000325035 64155.60C 0.00224584 64156.60C 0.00314201 64157.60C 0.00242074 64158.60C 0.003866374 C FUEL FOR 14A & E (GdO MIX) 0.0316 ENRICH 0.06 GdO M25 92235.54C 0.009901333 92238.54C 0.303432 8016.54C 0.662666667 64154.60C 0.000650071

PAGE 202

187 187 64155.60C 0.004491681 64156.60C 0.006284019 64157.60C 0.004841481 64158.60C 0.007732749 C FUEL FOR 10A3 13E (BLANKET) M34 92235.54C -0.0096 92236.60C -0.0187 92238.54C -0.965939 94239.15C -0.00525 94240.60C -0.00131 8016.54C -0.000799 C FUEL FOR 10A3 (PRIMARY) 0.01082 ENRICH M26 92235.54C 0.003606663 92238.54C 0.329726337 8016.54C 0.666666 C FUEL FOR 13D (PRIMARY) 0.0155 ENRICH M30 92235.54C 0.005166662 92238.54C 0.328166339 8016.54C 0.666666 C FUEL FOR 13E (PRIMARY) 0.01833 ENRICH M33 92235.54C 0.006109994 92238.54C 0.327223006 8016.54C 0.666666 M3 40000.60C 1.0 $ZIRCONIUM (APPROX. FOR ZIRCALLOY) M4 5010.50C -0.55 5011.56C -2.22 6000.60C -0.76 13027.60C -51.04 8016.54C -45.43 $B4CAL2O3 BP MATERIAL PRINT The MCNP Input File 1/8th core L-Carborane BPRAs RESEARCH 1/8th CORE WITH L-CARBORANE BPRA'S C CRYSTAL RIVER REACTOR #1 C box -200 200 -200 200 -200 200 1 0 -1 13 -14 19 20 FILL=1 VOL=6333455.62 2 1 -0.660 9 -10 11 -12 LAT=1 U=1 FILL=-8:1 -8:1 0:0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 1 1 1 1 1 2 4 11 12 4 1 1 1 1 2 10 5 13 5 9 1 1 1 1 1 4 13 4 9 5 1 1 1 1 1 1 4 9 4 9 1 1 1 1 1 1 1 4 13 4 1 1 1 1 1 1 1 1 4 5 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 c 201 0 9 -10 11 -12 LAT=1 U=22 FILL=2 C 10A & 12A2 MARK-B4Z ASSMBLY WITH 0 GD AND 0 BPRAS (33 TOTAL) 200 1 -0.660 30 -31 32 -33 LAT=1 VOL=2581.227 U=2 FILL=-8:8 -8:8 0:0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 2 2 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 2 2 20 20 20 20 20 14 20 20 20 14 20 20 20 20 20 2 2 20 20 20 14 20 20 20 20 20 20 20 14 20 20 20 2 2 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 2 2 20 20 14 20 20 14 20 20 20 14 20 20 14 20 20 2 2 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 2 2 20 20 20 20 20 20 20 14 20 20 20 20 20 20 20 2 2 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 2 2 20 20 14 20 20 14 20 20 20 14 20 20 14 20 20 2 2 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 2 2 20 20 20 14 20 20 20 20 20 20 20 14 20 20 20 2 2 20 20 20 20 20 14 20 20 20 14 20 20 20 20 20 2 2 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 2 2 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 C 13A 13D MARK-B10I ASSMBLY WITH 8 GD AND 0 BPRAS (48 TOTAL) 202 1 -0.660 30 -31 32 -33 LAT=1 U=4 VOL=2581.227 FILL=-8:8 -8:8 0:0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 4 4 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 4 4 40 40 40 40 40 14 40 40 40 14 40 40 40 40 40 4

PAGE 203

188 188 4 40 40 40 14 40 40 40 40 40 40 40 14 40 40 40 4 4 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 4 4 40 40 14 40 40 14 40 40 40 14 40 40 14 40 40 4 4 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 4 4 40 40 40 40 40 40 40 14 40 40 40 40 40 40 40 4 4 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 4 4 40 40 14 40 40 14 40 40 40 14 40 40 14 40 40 4 4 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 4 4 40 40 40 14 40 40 40 40 40 40 40 14 40 40 40 4 4 40 40 40 40 40 14 40 40 40 14 40 40 40 40 40 4 4 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 4 4 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 C 13B C E MARK-B10I ASSMBLY WITH 8 GD AND 0 BPRAS (8 TOTAL) 203 1 -0.660 30 -31 32 -33 LAT=1 U=5 VOL=2581.227 FILL=-8:8 -8:8 0:0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 5 5 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 5 5 50 50 50 50 50 14 50 50 50 14 50 50 50 50 50 5 5 50 50 50 14 50 50 50 50 50 50 50 14 50 50 50 5 5 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 5 5 50 50 14 50 50 14 50 50 50 14 50 50 14 50 50 5 5 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 5 5 50 50 50 50 50 50 50 14 50 50 50 50 50 50 50 5 5 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 5 5 50 50 14 50 50 14 50 50 50 14 50 50 14 50 50 5 5 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 5 5 50 50 50 14 50 50 50 50 50 50 50 14 50 50 50 5 5 50 50 50 50 50 14 50 50 50 14 50 50 50 50 50 5 5 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 5 5 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 C 14A MARK-B10I ASSMBLY WITH 8 GD AND 8 BPRAS (24 TOTAL) 207 1 -0.660 30 -31 32 -33 LAT=1 U=9 VOL=2581.227 FILL=-8:8 -8:8 0:0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 9 9 90 90 90 91 90 90 90 90 90 90 90 91 90 90 90 9 9 90 90 90 90 90 15 90 90 90 15 90 90 90 90 90 9 9 90 91 90 14 90 90 90 90 90 90 90 14 90 91 90 9 9 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 9 9 90 90 15 90 90 14 90 90 90 14 90 90 15 90 90 9 9 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 9 9 90 90 90 90 90 90 90 14 90 90 90 90 90 90 90 9 9 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 9 9 90 90 15 90 90 14 90 90 90 14 90 90 15 90 90 9 9 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 9 9 90 91 90 14 90 90 90 90 90 90 90 14 90 91 90 9 9 90 90 90 90 90 15 90 90 90 15 90 90 90 90 90 9 9 90 90 90 91 90 90 90 90 90 90 90 91 90 90 90 9 9 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 C 14B MARK-B10I ASSMBLY WITH 0 GD AND 0 BPRAS (8 TOTAL) 208 1 -0.660 30 -31 32 -33 LAT=1 U=10 VOL=2581.227 FILL=-8:8 -8:8 0:0 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10 10 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10 10 100 100 100 100 100 14 100 100 100 14 100 100 100 100 100 10 10 100 100 100 14 100 100 100 100 100 100 100 14 100 100 100 10 10 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10 10 100 100 14 100 100 14 100 100 100 14 100 100 14 100 100 10 10 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10 10 100 100 100 100 100 100 100 14 100 100 100 100 100 100 100 10 10 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10 10 100 100 14 100 100 14 100 100 100 14 100 100 14 100 100 10 10 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10 10 100 100 100 14 100 100 100 100 100 100 100 14 100 100 100 10 10 100 100 100 100 100 14 100 100 100 14 100 100 100 100 100 10 10 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10 10 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 C 14C MARK-B10I ASSMBLY WITH 4 GD AND 0 BPRAS (8 TOTAL)

PAGE 204

189 189209 1 -0.660 30 -31 32 -33 LAT=1 U=11 VOL=2581.227 FILL=-8:8 -8:8 0:0 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 11 11 100 111 100 100 100 100 100 100 100 100 100 100 100 111 100 11 11 100 100 100 100 100 14 100 100 100 14 100 100 100 100 100 11 11 100 100 100 14 100 100 100 100 100 100 100 14 100 100 100 11 11 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 11 11 100 100 14 100 100 14 100 100 100 14 100 100 14 100 100 11 11 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 11 11 100 100 100 100 100 100 100 14 100 100 100 100 100 100 100 11 11 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 11 11 100 100 14 100 100 14 100 100 100 14 100 100 14 100 100 11 11 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 11 11 100 100 100 14 100 100 100 100 100 100 100 14 100 100 100 11 11 100 100 100 100 100 14 100 100 100 14 100 100 100 100 100 11 11 100 111 100 100 100 100 100 100 100 100 100 100 100 111 100 11 11 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 C 14D MARK-B10I ASSMBLY WITH 8 GD AND 0 BPRAS (8 TOTAL) 210 1 -0.660 30 -31 32 -33 LAT=1 U=12 VOL=2581.227 FILL=-8:8 -8:8 0:0 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 12 12 100 100 100 111 100 100 100 100 100 100 100 111 100 100 100 12 12 100 100 100 100 100 14 100 100 100 14 100 100 100 100 100 12 12 100 111 100 14 100 100 100 100 100 100 100 14 100 111 100 12 12 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 12 12 100 100 14 100 100 14 100 100 100 14 100 100 14 100 100 12 12 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 12 12 100 100 100 100 100 100 100 14 100 100 100 100 100 100 100 12 12 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 12 12 100 100 14 100 100 14 100 100 100 14 100 100 14 100 100 12 12 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 12 12 100 111 100 14 100 100 100 100 100 100 100 14 100 111 100 12 12 100 100 100 100 100 14 100 100 100 14 100 100 100 100 100 12 12 100 100 100 111 100 100 100 100 100 100 100 111 100 100 100 12 12 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 C 14E MARK-B10I ASSMBLY WITH 8 GD AND 8 BPRAS (24 TOTAL) 211 1 -0.660 30 -31 32 -33 LAT=1 U=13 VOL=2581.227 FILL=-8:8 -8:8 0:0 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 13 13 100 100 100 91 100 100 100 100 100 100 100 91 100 100 100 13 13 100 100 100 100 100 15 100 100 100 15 100 100 100 100 100 13 13 100 91 100 14 100 100 100 100 100 100 100 14 100 91 100 13 13 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 13 13 100 100 15 100 100 14 100 100 100 14 100 100 15 100 100 13 13 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 13 13 100 100 100 100 100 100 100 14 100 100 100 100 100 100 100 13 13 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 13 13 100 100 15 100 100 14 100 100 100 14 100 100 15 100 100 13 13 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 13 13 100 91 100 14 100 100 100 100 100 100 100 14 100 91 100 13 13 100 100 100 100 100 15 100 100 100 15 100 100 100 100 100 13 13 100 100 100 91 100 100 100 100 100 100 100 91 100 100 100 13 13 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 C UNIVERSE 14 EMPTY GUIDE TUBE 3 1 -0.660 -4 U=14 $WATER HOLE VOL=259.275 4 3 -6.503 4 -5 U=14 $INTERIOR CLAD VOL=78.0098 5 1 -0.660 5 -6 U=14 $GUIDE TUBE WATER RADIUS VOL=114.4531 6 3 -6.503 6 -7 U=14 $GUIDE TUBE CLAD RADIUS VOL=60.665 7 1 -0.660 #3 #4 #5 #6 U=14 $UNIT CELL WATER VOL=237.207 C UNIVERSE 15 BPRA 8 4 -0.9 -4 U=15 $BPRA MATERIAL VOL=259.275 9 3 -6.503 4 -5 U=15 $INTERIOR CLAD

PAGE 205

190 190 VOL=78.0098 10 1 -0.660 5 -6 U=15 $GUIDE TUBE WATER RADIUS VOL=114.453 11 3 -6.503 6 -7 U=15 $GUIDE TUBE CLAD RADIUS VOL=60.665 12 1 -0.660 #8 #9 #10 #11 U=15 $UNIT CELL WATER VOL=237.207 C UNIVERSE 20 FUEL FOR 10A3 &12A2 ASSEMBLY (PRIMARY) 13 26 -10.201 -8 15 -16 U=20 $UO2 FUEL PELLET (PRIMARY) VOL=228.638 14 34 -10.201 -8 -15 U=20 $UO2 FUEL PELLET (BLANKET) VOL=10.544 15 34 -10.201 -8 16 U=20 $UO2 FUEL PELLET (BLANKET) VOL=10.544 16 0 8 -4 U=20 $GAP RADIUS VOL=9.5493 17 3 -6.503 4 -5 U=20 $FUEL PIN CLAD VOL=78.00976 18 1 -0.660 #13 #14 #15 #16 #17 U=20 $UNIT CELL WATER VOL=412.3249 C UNIVERSE 40 FUEL FOR 13A & 13D ASSEMBLY (PRIMARY) 25 30 -10.201 -8 15 -16 U=40 $UO2 FUEL PELLET (PRIMARY) VOL=228.638 26 34 -10.201 -8 -15 U=40 $UO2 FUEL PELLET (BLANKET) VOL=10.544 27 34 -10.201 -8 16 U=40 $UO2 FUEL PELLET (BLANKET) VOL=10.544 28 0 8 -4 U=40 $GAP RADIUS VOL=9.5493 29 3 -6.503 4 -5 U=40 $FUEL PIN CLAD VOL=78.00976 30 1 -0.660 #25 #26 #27 #28 #29 U=40 $UNIT CELL WATER VOL=412.3249 C UNIVERSE 50 FUEL FOR 13B C E ASSEMBLY (PRIMARY) 37 33 -10.201 -8 15 -16 U=50 $UO2 FUEL PELLET (PRIMARY) VOL=228.638 38 34 -10.201 -8 -15 U=50 $UO2 FUEL PELLET (BLANKET) VOL=10.544 39 34 -10.201 -8 16 U=50 $UO2 FUEL PELLET (BLANKET) VOL=10.544 40 0 8 -4 U=50 $GAP RADIUS VOL=9.5493 41 3 -6.503 4 -5 U=50 $FUEL PIN CLAD VOL=78.00976 42 1 -0.660 #37 #38 #39 #40 #41 U=50 $UNIT CELL WATER VOL=412.3249 C UNIVERSE 90 FUEL FOR 14A ASSEMBLY (PRIMARY) 79 2 -10.201 -8 15 -16 U=90 $UO2 FUEL PELLET (PRIMARY) VOL=228.638 80 22 -10.201 -8 -15 U=90 $UO2 FUEL PELLET (BLANKET) VOL=10.544 81 22 -10.201 -8 16 U=90 $UO2 FUEL PELLET (BLANKET) VOL=10.544 82 0 8 -4 U=90 $GAP RADIUS VOL=9.5493 83 3 -6.503 4 -5 U=90 $FUEL PIN CLAD VOL=78.00976 84 1 -0.660 #79 #80 #81 #82 #83 U=90 $UNIT CELL WATER VOL=412.3249 C UNIVERSE 91 GD FUEL ROD FOR 14A AND 14E 85 25 -9.635 -8 17 -18 U=91 $UO2 GDO FUEL PELLET (PRIMARY) VOL=215.2219 86 22 -10.201 -8 -17 U=91 $UO2 FUEL PELLET (BLANKET) VOL=17.25188 87 22 -10.201 -8 18 U=91 $UO2 FUEL PELLET (BLANKET) VOL=17.25188 88 0 8 -4 U=91 $GAP RADIUS VOL=9.549294 89 3 -6.503 4 -5 U=91 $FUEL PIN CLAD VOL=78.00976 90 1 -0.660 #85 #86 #87 #88 #89 U=91 $UNIT CELL WATER

PAGE 206

191 191 VOL=412.3249 C UNIVERSE 100 FUEL FOR 14B 14C 14D 14E ASSEMBLIES 91 23 -10.201 -8 15 -16 U=100 $UO2 FUEL PELLET (PRIMARY) VOL=228.6378 92 22 -10.201 -8 -15 U=100 $UO2 FUEL PELLET (BLANKET) VOL=10.54397 93 22 -10.201 -8 16 U=100 $UO2 FUEL PELLET (BLANKET) VOL=10.54397 94 0 8 -4 U=100 $GAP RADIUS VOL=54929 95 3 -6.503 4 -5 U=100 $FUEL PIN CLAD VOL=78.00976 96 1 -0.660 #91 #92 #93 #94 #95 U=100 $UNIT CELL WATER VOL=412.3249 C UNIVERSE 111 GD FUEL ROD FOR 14C AND 14D 97 24 -9.635 -8 17 -18 U=111 $UO2 GDO FUEL PELLET (PRIMARY) VOL=215.2219 98 22 -10.201 -8 -17 U=111 $UO2 FUEL PELLET (BLANKET) VOL=17.25188 99 22 -10.201 -8 18 U=111 $UO2 FUEL PELLET (BLANKET) VOL=17.25188 100 0 8 -4 U=111 $GAP RADIUS VOL=9.549294 101 3 -6.503 4 -5 U=111 $FUEL PIN CLAD VOL=78.00976 102 1 -0.660 #97 #98 #99 #100 #101 U=111 $UNIT CELL WATER VOL=412.3249 C REACTOR BOUNDARY 997 1 -0.660 -1 -2 14 19 20 $AXIAL RELECTORS VOL=2035752.04 998 1 -0.660 -1 3 -13 19 20 VOL=2035752.04 999 0 1:-3:2:-19:-20 $VOID REGION OUTSIDE REACTOR VESSEL *1 CZ 180 $ REACTOR VESSEL *2 PZ 200 *3 PZ -200 30 PX -0.7215 31 PX 0.7215 32 PY -0.7215 33 PY 0.7215 C OUTSIDE OF UNIT CELL (1.443 PITCH) 4 CZ 0.4788 C CYLINDER BPRA / WATER HOLE / GAP RADIUS 5 CZ 0.5461 C CYLINDER INTERIOR CLAD RADIUS 6 CZ 0.6320 C CYLINDER WATER RADIUS GUIDE TUBE 7 CZ 0.6731 C CYLINDER CLAD RADIUS GUIDE TUBE 8 CZ 0.4699 C CYLINDER RADIUS OF FUEL PELLET 9 PX -10.905 10 PX 10.905 11 PY -10.905 12 PY 10.905 13 PZ -180 14 PZ 180 C PLANES OUTSIDE OF ASSEMBLY 15 PZ -164.8 16 PZ 164.8 17 PZ -155.13 18 PZ 155.13 *19 PX 0 *20 P 0 0 0 10.905 10.905 0 10.905 10.905 10.905 C PLANES FOR AXIAL BLANKET MODE N IMP:N 1.0 63R 0.0 KCODE 30000 1.5 10 50 5000 KSRC 1.443 2.886 0

PAGE 207

192 192 1.443 21.8 0 20.357 21.8 0 1.443 43.6 0 20.357 43.6 0 42.157 43.6 0 1.443 65.4 0 20.357 65.4 0 42.157 65.4 0 63.957 65.4 0 1.443 87.2 0 20.357 87.2 0 42.157 87.2 0 63.957 87.2 0 85.757 87.2 0 1.443 109 0 20.357 109 0 42.157 109 0 63.957 109 0 85.757 109 0 107.557 109 0 1.443 130.8 0 20.357 130.8 0 42.157 130.8 0 63.957 130.8 0 85.757 130.8 0 1.443 152.6 0 20.357 152.6 0 42.157 152.6 0 M1 8016.60C -8.88100E+01 1001.60C -1.11900E+01 MT1 LWTR.04T $H20 AT 600 K C FUEL FOR 14A (PRIMARY) 0.0452 ENRICH M2 92235.54C 0.015066652 92238.54C 0.318266348 8016.54C 0.666666 C FUEL FOR 14A -E (BLANKET) 0.02 ENRICH M22 92235.54C 0.00666666 92238.54C 0.32666634 8016.54C 0.666666 C FUEL FOR 14B -E (PRIMARY) 0.0466 ENRICH M23 92235.54C 0.015533318 92238.54C 0.317799682 8016.54C 0.666666 C FUEL FOR 14C & D (GdO MIX) 0.0396 ENRICH 0.03 GdO M24 92235.54C 0.012804 92238.54C 0.310529333 8016.54C 0.664666667 64154.60C 0.000325035 64155.60C 0.00224584 64156.60C 0.00314201 64157.60C 0.00242074 64158.60C 0.003866374 C FUEL FOR 14A & E (GdO MIX) 0.0316 ENRICH 0.06 GdO M25 92235.54C 0.009901333 92238.54C 0.303432 8016.54C 0.662666667 64154.60C 0.000650071 64155.60C 0.004491681 64156.60C 0.006284019 64157.60C 0.004841481 64158.60C 0.007732749 C FUEL FOR 10A3 13E (BLANKET) M34 92235.54C -0.0096 92236.60C -0.0187 92238.54C -0.965939 94239.15C -0.00525 94240.60C -0.00131 8016.54C -0.000799 C FUEL FOR 10A3 (PRIMARY) 0.01082 ENRICH M26 92235.54C 0.003606663 92238.54C 0.329726337 8016.54C 0.666666

PAGE 208

193 193C FUEL FOR 13D (PRIMARY) 0.0155 ENRICH M30 92235.54C 0.005166662 92238.54C 0.328166339 8016.54C 0.666666 C FUEL FOR 13E (PRIMARY) 0.01833 ENRICH M33 92235.54C 0.006109994 92238.54C 0.327223006 8016.54C 0.666666 M3 40000.60C 1.0 $ZIRCONIUM (APPROX. FOR ZIRCALLOY) M4 6000.60C -46.40 14000.60C -29.60 8016.54C -7.03 5010.50C -1.90 5011.56C -7.63 1001.60C -7.44 $CARBORANE BP MATERIAL PRINT The MCNP Input File 1/8th core J-Carborane BPRAs RESEARCH 1/8th CORE WITH J-CARBORANE BPRA'S C CRYSTAL RIVER REACTOR #1 C box -200 200 -200 200 -200 200 1 0 -1 13 -14 19 20 FILL=1 VOL=6333455.62 2 1 -0.660 9 -10 11 -12 LAT=1 U=1 FILL=-8:1 -8:1 0:0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 1 1 1 1 1 2 4 11 12 4 1 1 1 1 2 10 5 13 5 9 1 1 1 1 1 4 13 4 9 5 1 1 1 1 1 1 4 9 4 9 1 1 1 1 1 1 1 4 13 4 1 1 1 1 1 1 1 1 4 5 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 c 201 0 9 -10 11 -12 LAT=1 U=22 FILL=2 C 10A & 12A2 MARK-B4Z ASSMBLY WITH 0 GD AND 0 BPRAS (33 TOTAL) 200 1 -0.660 30 -31 32 -33 LAT=1 VOL=2581.227 U=2 FILL=-8:8 -8:8 0:0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 2 2 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 2 2 20 20 20 20 20 14 20 20 20 14 20 20 20 20 20 2 2 20 20 20 14 20 20 20 20 20 20 20 14 20 20 20 2 2 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 2 2 20 20 14 20 20 14 20 20 20 14 20 20 14 20 20 2 2 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 2 2 20 20 20 20 20 20 20 14 20 20 20 20 20 20 20 2 2 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 2 2 20 20 14 20 20 14 20 20 20 14 20 20 14 20 20 2 2 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 2 2 20 20 20 14 20 20 20 20 20 20 20 14 20 20 20 2 2 20 20 20 20 20 14 20 20 20 14 20 20 20 20 20 2 2 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 2 2 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 C 13A 13D MARK-B10I ASSMBLY WITH 8 GD AND 0 BPRAS (48 TOTAL) 202 1 -0.660 30 -31 32 -33 LAT=1 U=4 VOL=2581.227 FILL=-8:8 -8:8 0:0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 4 4 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 4 4 40 40 40 40 40 14 40 40 40 14 40 40 40 40 40 4 4 40 40 40 14 40 40 40 40 40 40 40 14 40 40 40 4 4 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 4 4 40 40 14 40 40 14 40 40 40 14 40 40 14 40 40 4 4 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 4 4 40 40 40 40 40 40 40 14 40 40 40 40 40 40 40 4 4 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 4 4 40 40 14 40 40 14 40 40 40 14 40 40 14 40 40 4 4 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 4 4 40 40 40 14 40 40 40 40 40 40 40 14 40 40 40 4 4 40 40 40 40 40 14 40 40 40 14 40 40 40 40 40 4 4 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 4 4 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 C 13B C E MARK-B10I ASSMBLY WITH 8 GD AND 0 BPRAS (8 TOTAL) 203 1 -0.660 30 -31 32 -33 LAT=1 U=5 VOL=2581.227 FILL=-8:8 -8:8 0:0

PAGE 209

194 194 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 5 5 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 5 5 50 50 50 50 50 14 50 50 50 14 50 50 50 50 50 5 5 50 50 50 14 50 50 50 50 50 50 50 14 50 50 50 5 5 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 5 5 50 50 14 50 50 14 50 50 50 14 50 50 14 50 50 5 5 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 5 5 50 50 50 50 50 50 50 14 50 50 50 50 50 50 50 5 5 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 5 5 50 50 14 50 50 14 50 50 50 14 50 50 14 50 50 5 5 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 5 5 50 50 50 14 50 50 50 50 50 50 50 14 50 50 50 5 5 50 50 50 50 50 14 50 50 50 14 50 50 50 50 50 5 5 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 5 5 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 C 14A MARK-B10I ASSMBLY WITH 8 GD AND 8 BPRAS (24 TOTAL) 207 1 -0.660 30 -31 32 -33 LAT=1 U=9 VOL=2581.227 FILL=-8:8 -8:8 0:0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 9 9 90 90 90 91 90 90 90 90 90 90 90 91 90 90 90 9 9 90 90 90 90 90 15 90 90 90 15 90 90 90 90 90 9 9 90 91 90 14 90 90 90 90 90 90 90 14 90 91 90 9 9 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 9 9 90 90 15 90 90 14 90 90 90 14 90 90 15 90 90 9 9 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 9 9 90 90 90 90 90 90 90 14 90 90 90 90 90 90 90 9 9 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 9 9 90 90 15 90 90 14 90 90 90 14 90 90 15 90 90 9 9 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 9 9 90 91 90 14 90 90 90 90 90 90 90 14 90 91 90 9 9 90 90 90 90 90 15 90 90 90 15 90 90 90 90 90 9 9 90 90 90 91 90 90 90 90 90 90 90 91 90 90 90 9 9 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 C 14B MARK-B10I ASSMBLY WITH 0 GD AND 0 BPRAS (8 TOTAL) 208 1 -0.660 30 -31 32 -33 LAT=1 U=10 VOL=2581.227 FILL=-8:8 -8:8 0:0 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10 10 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10 10 100 100 100 100 100 14 100 100 100 14 100 100 100 100 100 10 10 100 100 100 14 100 100 100 100 100 100 100 14 100 100 100 10 10 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10 10 100 100 14 100 100 14 100 100 100 14 100 100 14 100 100 10 10 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10 10 100 100 100 100 100 100 100 14 100 100 100 100 100 100 100 10 10 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10 10 100 100 14 100 100 14 100 100 100 14 100 100 14 100 100 10 10 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10 10 100 100 100 14 100 100 100 100 100 100 100 14 100 100 100 10 10 100 100 100 100 100 14 100 100 100 14 100 100 100 100 100 10 10 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10 10 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 C 14C MARK-B10I ASSMBLY WITH 4 GD AND 0 BPRAS (8 TOTAL) 209 1 -0.660 30 -31 32 -33 LAT=1 U=11 VOL=2581.227 FILL=-8:8 -8:8 0:0 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 11 11 100 111 100 100 100 100 100 100 100 100 100 100 100 111 100 11 11 100 100 100 100 100 14 100 100 100 14 100 100 100 100 100 11 11 100 100 100 14 100 100 100 100 100 100 100 14 100 100 100 11 11 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 11 11 100 100 14 100 100 14 100 100 100 14 100 100 14 100 100 11 11 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 11 11 100 100 100 100 100 100 100 14 100 100 100 100 100 100 100 11 11 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 11 11 100 100 14 100 100 14 100 100 100 14 100 100 14 100 100 11 11 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 11 11 100 100 100 14 100 100 100 100 100 100 100 14 100 100 100 11 11 100 100 100 100 100 14 100 100 100 14 100 100 100 100 100 11

PAGE 210

195 195 11 100 111 100 100 100 100 100 100 100 100 100 100 100 111 100 11 11 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 C 14D MARK-B10I ASSMBLY WITH 8 GD AND 0 BPRAS (8 TOTAL) 210 1 -0.660 30 -31 32 -33 LAT=1 U=12 VOL=2581.227 FILL=-8:8 -8:8 0:0 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 12 12 100 100 100 111 100 100 100 100 100 100 100 111 100 100 100 12 12 100 100 100 100 100 14 100 100 100 14 100 100 100 100 100 12 12 100 111 100 14 100 100 100 100 100 100 100 14 100 111 100 12 12 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 12 12 100 100 14 100 100 14 100 100 100 14 100 100 14 100 100 12 12 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 12 12 100 100 100 100 100 100 100 14 100 100 100 100 100 100 100 12 12 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 12 12 100 100 14 100 100 14 100 100 100 14 100 100 14 100 100 12 12 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 12 12 100 111 100 14 100 100 100 100 100 100 100 14 100 111 100 12 12 100 100 100 100 100 14 100 100 100 14 100 100 100 100 100 12 12 100 100 100 111 100 100 100 100 100 100 100 111 100 100 100 12 12 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 C 14E MARK-B10I ASSMBLY WITH 8 GD AND 8 BPRAS (24 TOTAL) 211 1 -0.660 30 -31 32 -33 LAT=1 U=13 VOL=2581.227 FILL=-8:8 -8:8 0:0 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 13 13 100 100 100 91 100 100 100 100 100 100 100 91 100 100 100 13 13 100 100 100 100 100 15 100 100 100 15 100 100 100 100 100 13 13 100 91 100 14 100 100 100 100 100 100 100 14 100 91 100 13 13 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 13 13 100 100 15 100 100 14 100 100 100 14 100 100 15 100 100 13 13 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 13 13 100 100 100 100 100 100 100 14 100 100 100 100 100 100 100 13 13 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 13 13 100 100 15 100 100 14 100 100 100 14 100 100 15 100 100 13 13 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 13 13 100 91 100 14 100 100 100 100 100 100 100 14 100 91 100 13 13 100 100 100 100 100 15 100 100 100 15 100 100 100 100 100 13 13 100 100 100 91 100 100 100 100 100 100 100 91 100 100 100 13 13 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 C UNIVERSE 14 EMPTY GUIDE TUBE 3 1 -0.660 -4 U=14 $WATER HOLE VOL=259.275 4 3 -6.503 4 -5 U=14 $INTERIOR CLAD VOL=78.0098 5 1 -0.660 5 -6 U=14 $GUIDE TUBE WATER RADIUS VOL=114.4531 6 3 -6.503 6 -7 U=14 $GUIDE TUBE CLAD RADIUS VOL=60.665 7 1 -0.660 #3 #4 #5 #6 U=14 $UNIT CELL WATER VOL=237.207 C UNIVERSE 15 BPRA 8 4 -1.0 -4 U=15 $BPRA MATERIAL VOL=259.275 9 3 -6.503 4 -5 U=15 $INTERIOR CLAD VOL=78.0098 10 1 -0.660 5 -6 U=15 $GUIDE TUBE WATER RADIUS VOL=114.453 11 3 -6.503 6 -7 U=15 $GUIDE TUBE CLAD RADIUS VOL=60.665 12 1 -0.660 #8 #9 #10 #11 U=15 $UNIT CELL WATER VOL=237.207 C UNIVERSE 20 FUEL FOR 10A3 &12A2 ASSEMBLY (PRIMARY) 13 26 -10.201 -8 15 -16 U=20 $UO2 FUEL PELLET (PRIMARY) VOL=228.638 14 34 -10.201 -8 -15 U=20 $UO2 FUEL PELLET (BLANKET) VOL=10.544 15 34 -10.201 -8 16 U=20 $UO2 FUEL PELLET (BLANKET) VOL=10.544 16 0 8 -4 U=20 $GAP RADIUS

PAGE 211

196 196 VOL=9.5493 17 3 -6.503 4 -5 U=20 $FUEL PIN CLAD VOL=78.00976 18 1 -0.660 #13 #14 #15 #16 #17 U=20 $UNIT CELL WATER VOL=412.3249 C UNIVERSE 40 FUEL FOR 13A & 13D ASSEMBLY (PRIMARY) 25 30 -10.201 -8 15 -16 U=40 $UO2 FUEL PELLET (PRIMARY) VOL=228.638 26 34 -10.201 -8 -15 U=40 $UO2 FUEL PELLET (BLANKET) VOL=10.544 27 34 -10.201 -8 16 U=40 $UO2 FUEL PELLET (BLANKET) VOL=10.544 28 0 8 -4 U=40 $GAP RADIUS VOL=9.5493 29 3 -6.503 4 -5 U=40 $FUEL PIN CLAD VOL=78.00976 30 1 -0.660 #25 #26 #27 #28 #29 U=40 $UNIT CELL WATER VOL=412.3249 C UNIVERSE 50 FUEL FOR 13B C E ASSEMBLY (PRIMARY) 37 33 -10.201 -8 15 -16 U=50 $UO2 FUEL PELLET (PRIMARY) VOL=228.638 38 34 -10.201 -8 -15 U=50 $UO2 FUEL PELLET (BLANKET) VOL=10.544 39 34 -10.201 -8 16 U=50 $UO2 FUEL PELLET (BLANKET) VOL=10.544 40 0 8 -4 U=50 $GAP RADIUS VOL=9.5493 41 3 -6.503 4 -5 U=50 $FUEL PIN CLAD VOL=78.00976 42 1 -0.660 #37 #38 #39 #40 #41 U=50 $UNIT CELL WATER VOL=412.3249 C UNIVERSE 90 FUEL FOR 14A ASSEMBLY (PRIMARY) 79 2 -10.201 -8 15 -16 U=90 $UO2 FUEL PELLET (PRIMARY) VOL=228.638 80 22 -10.201 -8 -15 U=90 $UO2 FUEL PELLET (BLANKET) VOL=10.544 81 22 -10.201 -8 16 U=90 $UO2 FUEL PELLET (BLANKET) VOL=10.544 82 0 8 -4 U=90 $GAP RADIUS VOL=9.5493 83 3 -6.503 4 -5 U=90 $FUEL PIN CLAD VOL=78.00976 84 1 -0.660 #79 #80 #81 #82 #83 U=90 $UNIT CELL WATER VOL=412.3249 C UNIVERSE 91 GD FUEL ROD FOR 14A AND 14E 85 25 -9.635 -8 17 -18 U=91 $UO2 GDO FUEL PELLET (PRIMARY) VOL=215.2219 86 22 -10.201 -8 -17 U=91 $UO2 FUEL PELLET (BLANKET) VOL=17.25188 87 22 -10.201 -8 18 U=91 $UO2 FUEL PELLET (BLANKET) VOL=17.25188 88 0 8 -4 U=91 $GAP RADIUS VOL=9.549294 89 3 -6.503 4 -5 U=91 $FUEL PIN CLAD VOL=78.00976 90 1 -0.660 #85 #86 #87 #88 #89 U=91 $UNIT CELL WATER VOL=412.3249 C UNIVERSE 100 FUEL FOR 14B 14C 14D 14E ASSEMBLIES 91 23 -10.201 -8 15 -16 U=100 $UO2 FUEL PELLET (PRIMARY) VOL=228.6378 92 22 -10.201 -8 -15 U=100 $UO2 FUEL PELLET (BLANKET) VOL=10.54397 93 22 -10.201 -8 16 U=100 $UO2 FUEL PELLET (BLANKET) VOL=10.54397 94 0 8 -4 U=100 $GAP RADIUS VOL=54929 95 3 -6.503 4 -5 U=100 $FUEL PIN CLAD VOL=78.00976 96 1 -0.660 #91 #92 #93 #94 #95 U=100 $UNIT CELL WATER VOL=412.3249 C UNIVERSE 111 GD FUEL ROD FOR 14C AND 14D

PAGE 212

197 19797 24 -9.635 -8 17 -18 U=111 $UO2 GDO FUEL PELLET (PRIMARY) VOL=215.2219 98 22 -10.201 -8 -17 U=111 $UO2 FUEL PELLET (BLANKET) VOL=17.25188 99 22 -10.201 -8 18 U=111 $UO2 FUEL PELLET (BLANKET) VOL=17.25188 100 0 8 -4 U=111 $GAP RADIUS VOL=9.549294 101 3 -6.503 4 -5 U=111 $FUEL PIN CLAD VOL=78.00976 102 1 -0.660 #97 #98 #99 #100 #101 U=111 $UNIT CELL WATER VOL=412.3249 C REACTOR BOUNDARY 997 1 -0.660 -1 -2 14 19 20 $AXIAL RELECTORS VOL=2035752.04 998 1 -0.660 -1 3 -13 19 20 VOL=2035752.04 999 0 1:-3:2:-19:-20 $VOID REGION OUTSIDE REACTOR VESSEL *1 CZ 180 $ REACTOR VESSEL *2 PZ 200 *3 PZ -200 30 PX -0.7215 31 PX 0.7215 32 PY -0.7215 33 PY 0.7215 C OUTSIDE OF UNIT CELL (1.443 PITCH) 4 CZ 0.4788 C CYLINDER BPRA / WATER HOLE / GAP RADIUS 5 CZ 0.5461 C CYLINDER INTERIOR CLAD RADIUS 6 CZ 0.6320 C CYLINDER WATER RADIUS GUIDE TUBE 7 CZ 0.6731 C CYLINDER CLAD RADIUS GUIDE TUBE 8 CZ 0.4699 C CYLINDER RADIUS OF FUEL PELLET 9 PX -10.905 10 PX 10.905 11 PY -10.905 12 PY 10.905 13 PZ -180 14 PZ 180 C PLANES OUTSIDE OF ASSEMBLY 15 PZ -164.8 16 PZ 164.8 17 PZ -155.13 18 PZ 155.13 *19 PX 0 *20 P 0 0 0 10.905 10.905 0 10.905 10.905 10.905 C PLANES FOR AXIAL BLANKET MODE N IMP:N 1.0 63R 0.0 KCODE 30000 1.5 10 50 5000 KSRC 1.443 2.886 0 1.443 21.8 0 20.357 21.8 0 1.443 43.6 0 20.357 43.6 0 42.157 43.6 0 1.443 65.4 0 20.357 65.4 0 42.157 65.4 0 63.957 65.4 0 1.443 87.2 0 20.357 87.2 0 42.157 87.2 0 63.957 87.2 0 85.757 87.2 0 1.443 109 0

PAGE 213

198 198 20.357 109 0 42.157 109 0 63.957 109 0 85.757 109 0 107.557 109 0 1.443 130.8 0 20.357 130.8 0 42.157 130.8 0 63.957 130.8 0 85.757 130.8 0 1.443 152.6 0 20.357 152.6 0 42.157 152.6 0 M1 8016.60C -8.88100E+01 1001.60C -1.11900E+01 MT1 LWTR.04T $H20 AT 600 K C FUEL FOR 14A (PRIMARY) 0.0452 ENRICH M2 92235.54C 0.015066652 92238.54C 0.318266348 8016.54C 0.666666 C FUEL FOR 14A -E (BLANKET) 0.02 ENRICH M22 92235.54C 0.00666666 92238.54C 0.32666634 8016.54C 0.666666 C FUEL FOR 14B -E (PRIMARY) 0.0466 ENRICH M23 92235.54C 0.015533318 92238.54C 0.317799682 8016.54C 0.666666 C FUEL FOR 14C & D (GdO MIX) 0.0396 ENRICH 0.03 GdO M24 92235.54C 0.012804 92238.54C 0.310529333 8016.54C 0.664666667 64154.60C 0.000325035 64155.60C 0.00224584 64156.60C 0.00314201 64157.60C 0.00242074 64158.60C 0.003866374 C FUEL FOR 14A & E (GdO MIX) 0.0316 ENRICH 0.06 GdO M25 92235.54C 0.009901333 92238.54C 0.303432 8016.54C 0.662666667 64154.60C 0.000650071 64155.60C 0.004491681 64156.60C 0.006284019 64157.60C 0.004841481 64158.60C 0.007732749 C FUEL FOR 10A3 13E (BLANKET) M34 92235.54C -0.0096 92236.60C -0.0187 92238.54C -0.965939 94239.15C -0.00525 94240.60C -0.00131 8016.54C -0.000799 C FUEL FOR 10A3 (PRIMARY) 0.01082 ENRICH M26 92235.54C 0.003606663 92238.54C 0.329726337 8016.54C 0.666666 C FUEL FOR 13D (PRIMARY) 0.0155 ENRICH M30 92235.54C 0.005166662 92238.54C 0.328166339 8016.54C 0.666666 C FUEL FOR 13E (PRIMARY) 0.01833 ENRICH M33 92235.54C 0.006109994 92238.54C 0.327223006 8016.54C 0.666666 M3 40000.60C 1.0 $ZIRCONIUM (APPROX. FOR ZIRCALLOY) M4 6000.60C -0.37 14000.60C -0.25 8016.54C -0.07 5010.50C -0.048 5011.56C -0.192 1001.60C -0.08 $CARBORANE BP MATERIAL PRINT

PAGE 214

199 199The MONTEBURNS Input File 1/8th core B4C/Al2O3 BPRAs RESEARCH CRYSTAL RIVER 1/8 CORE WITH B4CAL2O3 BPRA'S 4.66% ENRICH NO BORON PC Type of Operating System 10 Number of MCNP Materials to burn (fuel cells/BPRAs) 2 MCNP material number #2 (will burn all cells with this mat) 22 MCNP material number #22 (will burn all cells with this mat) 23 24 25 34 26 30 33 4 142670 Material #2 volume (cc) 40285.32 !#22 277109.01 !#23 2582.664 !#24 10330.66 !#25 58380.164 !#34 196171.234 !#26 284696.016 !#30 142508.996 !#33 7259.7 Material #4 volume (cc) 318 Power in MWt (for the entire system in MCNP) -180.88 Recov. energy/fis (MeV); if negative use for U235, ratio other isos 670 Total number of days burned (used if no feed) 5 Number of outer burn steps 50 Number of internal burn steps (multiple of 10) 1 Number of predictor steps (+1 on first step), 1 usually sufficient 0 Step number to restart after (0=beginning) PWRU50 number of default origen2 lib next line is origen2 lib location c:\Origen2\Libs .005 fractional importance (track isos with abs,fis,atom,mass fraction) 1 Intermediate keff calc. 0) No 1) Yes 2 Number of automatic tally isotopes, followed by list. 92235.54c 92238.54c 2 92235.54c 92238.54c 2 92235.54c 92238.54c 2 92235.54c 92238.54c 2 92235.54c 92238.54c 2 92235.54c 92238.54c 2 92235.54c 92238.54c 2 92235.54c 92238.54c 2 92235.54c 92238.54c 1 5010.50C

PAGE 215

200 200The MONTEBURNS Input File 1/8th core L-Carborane BPRAs RESEARCH CRYSTAL RIVER 1/8 CORE WITH L-CARBORANE BPRA'S 4.66% ENRICH NO BORON PC Type of Operating System 10 Number of MCNP Materials to burn (fuel cells/BPRAs) 2 MCNP material number #2 (will burn all cells with this mat) 22 MCNP material number #22 (will burn all cells with this mat) 23 24 25 34 26 30 33 4 142670 Material #2 volume (cc) 40285.32 !#22 277109.01 !#23 2582.664 !#24 10330.66 !#25 58380.164 !#34 196171.234 !#26 284696.016 !#30 142508.996 !#33 7259.7 Material #4 volume (cc) 318 Power in MWt (for the entire system in MCNP) -180.88 Recov. energy/fis (MeV); if negative use for U235, ratio other isos 670 Total number of days burned (used if no feed) 5 Number of outer burn steps 50 Number of internal burn steps (multiple of 10) 1 Number of predictor steps (+1 on first step), 1 usually sufficient 0 Step number to restart after (0=beginning) PWRU50 number of default origen2 lib next line is origen2 lib location c:\Origen2\Libs .005 fractional importance (track isos with abs,fis,atom,mass fraction) 1 Intermediate keff calc. 0) No 1) Yes 2 Number of automatic tally isotopes, followed by list. 92235.54c 92238.54c 2 92235.54c 92238.54c 2 92235.54c 92238.54c 2 92235.54c 92238.54c 2 92235.54c 92238.54c 2 92235.54c 92238.54c 2 92235.54c 92238.54c 2 92235.54c 92238.54c 2 92235.54c 92238.54c 1 5010.50C

PAGE 216

201 201The MONTEBURNS Input File 1/8th core J-Carborane BPRAs RESEARCH CRYSTAL RIVER 1/8 CORE WITH J-CARBORANE BPRA'S 4.66% ENRICH NO BORON PC Type of Operating System 10 Number of MCNP Materials to burn (fuel cells/BPRAs) 2 MCNP material number #2 (will burn all cells with this mat) 22 MCNP material number #22 (will burn all cells with this mat) 23 24 25 34 26 30 33 4 142670 Material #2 volume (cc) 40285.32 !#22 277109.01 !#23 2582.664 !#24 10330.66 !#25 58380.164 !#34 196171.234 !#26 284696.016 !#30 142508.996 !#33 7259.7 Material #4 volume (cc) 318 Power in MWt (for the entire system in MCNP) -180.88 Recov. energy/fis (MeV); if negative use for U235, ratio other isos 670 Total number of days burned (used if no feed) 5 Number of outer burn steps 50 Number of internal burn steps (multiple of 10) 1 Number of predictor steps (+1 on first step), 1 usually sufficient 0 Step number to restart after (0=beginning) PWRU50 number of default origen2 lib next line is origen2 lib location c:\Origen2\Libs .005 fractional importance (track isos with abs,fis,atom,mass fraction) 1 Intermediate keff calc. 0) No 1) Yes 2 Number of automatic tally isotopes, followed by list. 92235.54c 92238.54c 2 92235.54c 92238.54c 2 92235.54c 92238.54c 2 92235.54c 92238.54c 2 92235.54c 92238.54c 2 92235.54c 92238.54c 2 92235.54c 92238.54c 2 92235.54c 92238.54c 2 92235.54c 92238.54c 1 5010.50C

PAGE 217

202The MONTEBURNS Output File 1/8th core B4C/Al2O3 BPRAs RESEARCH CRYSTAL RIVER 1/8 CORE WITH B4CAL2O3 BPRA'S 4.66% ENRICH NO BOR Total Power (MW) = 3.18E+02 Days = 6.70E+02 # outer steps = 5, # inner steps = 50, # predictor steps = 1 Importance Fraction = 0.0050 Monteburns MCNP k-eff Versus Time days k-eff rel err nu avQfis eta 0m 0.00 1.17163 0.00056 2.462 181.098 0.826 1m 67.00 1.13578 0.00050 2.522 182.118 0.897 1e 134.00 1.12883 0.00053 2.562 2m 201.00 1.11527 0.00056 2.594 183.381 1.032 2e 268.00 1.10591 0.00061 2.621 3m 335.00 1.09039 0.00059 2.642 184.236 1.155 3e 402.00 1.07364 0.00059 2.664 4m 469.00 1.05521 0.00065 2.685 184.934 1.146 4e 536.00 1.03353 0.00058 2.701 5m 603.00 1.01491 0.00056 2.718 185.529 1.112 5e 670.00 0.99753 0.00056 2.733 Monteburns Transport History Monteburns Transport History for material 1 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.065 3.73E+14 3.84E-02 5.93E+01 4.159E+02 0.000E+00 3.91E-01 5.63E-01 1.44E+00 1.59E-03 1.456 1.17E+00 1.69E+00 1.45E+00 4.77E-03 1.459 1 181.745 3.93E+14 3.65E-02 5.98E+01 4.189E+02 6.242E+00 4.40E-01 5.35E-01 1.22E+00 1.57E-03 1.387 1.22E+00 1.61E+00 1.32E+00 4.72E-03 1.437 2 182.675 4.30E+14 3.48E-02 6.26E+01 4.389E+02 1.278E+01 4.89E-01 5.11E-01 1.04E+00 1.66E-03 1.328 1.33E+00 1.54E+00 1.16E+00 5.03E-03 1.397 3 183.486 4.57E+14 3.33E-02 6.40E+01 4.487E+02 1.947E+01 5.29E-01 4.90E-01 9.25E-01 1.67E-03 1.273 1.41E+00 1.49E+00 1.06E+00 5.08E-03 1.360 4 184.204 4.81E+14 3.15E-02 6.40E+01 4.485E+02 2.615E+01 5.59E-01 4.64E-01 8.29E-01 1.71E-03 1.220 1.47E+00 1.42E+00 9.64E-01 5.22E-03 1.321 5 184.849 4.89E+14 2.94E-02 6.09E+01 4.269E+02 3.251E+01 5.91E-01 4.33E-01 7.33E-01 1.68E-03 1.153 1.54E+00 1.33E+00 8.68E-01 5.14E-03 1.267 Monteburns Transport History for material 2 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.104 1.85E+13 2.94E-02 6.36E-01 1.578E+01 0.000E+00 3.78E-01 4.31E-01 1.14E+00 1.76E-03 1.316 1.13E+00 1.29E+00 1.15E+00 5.29E-03 1.319 1 181.184 1.69E+13 2.94E-02 5.83E-01 1.446E+01 2.155E-01 4.02E-01 4.30E-01 1.07E+00 1.52E-03 1.307 1.17E+00 1.29E+00 1.10E+00 4.57E-03 1.324 2 181.322 1.89E+13 2.99E-02 6.69E-01 1.660E+01 4.629E-01 4.04E-01 4.38E-01 1.09E+00 1.36E-03 1.353 1.18E+00 1.32E+00 1.12E+00 4.09E-03 1.373 3 181.485 2.52E+13 3.05E-02 9.12E-01 2.264E+01 8.003E-01 4.18E-01 4.47E-01 1.07E+00 1.86E-03 1.370 1.21E+00 1.34E+00 1.10E+00 5.58E-03 1.391 4 181.717 2.65E+13 3.02E-02 9.53E-01 2.365E+01 1.153E+00 4.10E-01 4.42E-01 1.08E+00 1.52E-03 1.396 1.19E+00 1.33E+00 1.12E+00 4.58E-03 1.420 5 181.886 2.67E+13 3.05E-02 9.76E-01 2.424E+01 1.514E+00 4.08E-01 4.47E-01 1.09E+00 1.76E-03 1.424 1.18E+00 1.34E+00 1.14E+00 5.29E-03 1.450 Monteburns Transport History for material 3 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.059 3.44E+14 3.98E-02 1.10E+02 3.973E+02 0.000E+00 3.93E-01 5.83E-01 1.48E+00 1.58E-03 1.474 1.17E+00 1.75E+00 1.49E+00 4.75E-03 1.477 1 181.640 3.53E+14 3.78E-02 1.08E+02 3.889E+02 5.795E+00 4.39E-01 5.54E-01 1.26E+00 1.64E-03 1.411 1.22E+00 1.67E+00 1.37E+00 4.94E-03 1.461 2 182.502 3.59E+14 3.58E-02 1.04E+02 3.769E+02 1.141E+01 4.83E-01 5.25E-01 1.09E+00 1.59E-03 1.354 1.32E+00 1.59E+00 1.21E+00 4.81E-03 1.422 3 183.179 3.70E+14 3.43E-02 1.04E+02 3.750E+02 1.700E+01 5.20E-01 5.05E-01 9.72E-01 1.62E-03 1.305 1.39E+00 1.53E+00 1.10E+00 4.92E-03 1.389 4 183.786 3.85E+14 3.26E-02 1.03E+02 3.714E+02 2.253E+01 5.44E-01 4.80E-01 8.81E-01 1.69E-03 1.261 1.44E+00 1.46E+00 1.02E+00 5.15E-03 1.357 5 184.340 4.07E+14 3.08E-02 1.03E+02 3.731E+02 2.809E+01 5.67E-01 4.55E-01 8.01E-01 1.74E-03 1.213 1.49E+00 1.39E+00 9.37E-01 5.30E-03 1.319 Monteburns Transport History for material 4 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.349 2.84E+14 1.45E-02 3.08E-01 1.193E+02 0.000E+00 2.10E+00 2.24E-01 1.07E-01 1.70E-03 0.239 9.27E-01 6.91E-01 7.46E-01 5.13E-03 1.058 1 181.880 2.99E+14 1.90E-02 4.27E-01 1.654E+02 2.675E+00 1.54E+00 2.92E-01 1.89E-01 1.54E-03 0.403 1.01E+00 9.05E-01 8.98E-01 4.69E-03 1.198 2 182.545 3.23E+14 2.75E-02 6.75E-01 2.613E+02 6.901E+00 8.50E-01 4.25E-01 5.00E-01 1.65E-03 0.867 1.19E+00 1.32E+00 1.11E+00 5.08E-03 1.366 3 183.098 3.31E+14 3.06E-02 7.74E-01 2.996E+02 1.175E+01 5.35E-01 4.73E-01 8.85E-01 1.58E-03 1.244 1.37E+00 1.48E+00 1.08E+00 4.86E-03 1.375

PAGE 218

203 4 183.729 3.54E+14 3.02E-02 8.18E-01 3.168E+02 1.687E+01 5.51E-01 4.68E-01 8.50E-01 1.72E-03 1.237 1.43E+00 1.46E+00 1.03E+00 5.32E-03 1.363 5 184.240 3.65E+14 2.73E-02 7.65E-01 2.962E+02 2.166E+01 5.54E-01 4.23E-01 7.64E-01 1.67E-03 1.180 1.42E+00 1.33E+00 9.36E-01 5.17E-03 1.318 Monteburns Transport History for material 5 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.519 3.52E+14 1.05E-02 1.11E+00 1.077E+02 0.000E+00 2.32E+00 1.61E-01 6.96E-02 1.64E-03 0.162 9.11E-01 5.15E-01 5.65E-01 4.99E-03 0.896 1 182.382 3.82E+14 1.31E-02 1.50E+00 1.455E+02 2.414E+00 1.93E+00 2.00E-01 1.04E-01 1.53E-03 0.239 9.78E-01 6.39E-01 6.53E-01 4.73E-03 1.002 2 183.401 4.26E+14 1.90E-02 2.45E+00 2.376E+02 6.354E+00 1.35E+00 2.91E-01 2.15E-01 1.61E-03 0.461 1.16E+00 9.32E-01 8.06E-01 5.01E-03 1.162 3 183.946 4.73E+14 2.65E-02 3.82E+00 3.696E+02 1.248E+01 6.96E-01 4.07E-01 5.85E-01 1.58E-03 0.978 1.37E+00 1.31E+00 9.55E-01 4.95E-03 1.294 4 184.654 5.01E+14 2.65E-02 4.05E+00 3.924E+02 1.899E+01 5.82E-01 4.07E-01 6.99E-01 1.63E-03 1.108 1.46E+00 1.32E+00 9.05E-01 5.14E-03 1.279 5 185.252 5.21E+14 2.43E-02 3.89E+00 3.763E+02 2.523E+01 6.02E-01 3.75E-01 6.22E-01 1.63E-03 1.046 1.51E+00 1.22E+00 8.09E-01 5.18E-03 1.219 Monteburns Transport History for material 6 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 185.098 1.41E+13 3.41E-02 8.17E-01 1.400E+01 0.000E+00 1.50E+00 1.31E+00 8.70E-01 6.07E-03 1.150 1.52E+00 1.32E+00 8.70E-01 6.14E-03 1.150 1 185.141 1.43E+13 3.46E-02 8.43E-01 1.443E+01 1.897E-01 1.52E+00 1.33E+00 8.72E-01 6.50E-03 1.179 1.52E+00 1.34E+00 8.81E-01 6.58E-03 1.186 2 185.124 1.48E+13 3.29E-02 8.36E-01 1.432E+01 3.779E-01 1.53E+00 1.26E+00 8.19E-01 4.24E-03 1.171 1.52E+00 1.27E+00 8.36E-01 4.29E-03 1.184 3 185.166 1.87E+13 3.30E-02 1.07E+00 1.827E+01 6.180E-01 1.51E+00 1.27E+00 8.42E-01 5.92E-03 1.212 1.49E+00 1.28E+00 8.58E-01 6.00E-03 1.225 4 185.199 2.02E+13 3.21E-02 1.12E+00 1.920E+01 8.704E-01 1.51E+00 1.23E+00 8.14E-01 5.54E-03 1.209 1.50E+00 1.25E+00 8.32E-01 5.61E-03 1.223 5 185.235 1.97E+13 3.23E-02 1.10E+00 1.891E+01 1.119E+00 1.51E+00 1.24E+00 8.21E-01 6.39E-03 1.230 1.49E+00 1.25E+00 8.40E-01 6.47E-03 1.245 Monteburns Transport History for material 7 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.113 1.59E+14 2.44E-02 2.20E+01 1.123E+02 0.000E+00 4.00E-01 3.58E-01 8.94E-01 1.25E-03 1.165 1.20E+00 1.07E+00 8.97E-01 3.76E-03 1.168 1 182.192 1.62E+14 2.44E-02 2.26E+01 1.151E+02 1.715E+00 4.35E-01 3.58E-01 8.21E-01 1.37E-03 1.140 1.24E+00 1.07E+00 8.69E-01 4.10E-03 1.176 2 183.635 1.55E+14 2.44E-02 2.18E+01 1.111E+02 3.371E+00 4.70E-01 3.56E-01 7.57E-01 1.43E-03 1.122 1.34E+00 1.07E+00 8.00E-01 4.29E-03 1.157 3 184.558 1.56E+14 2.42E-02 2.18E+01 1.113E+02 5.030E+00 4.88E-01 3.55E-01 7.29E-01 1.46E-03 1.118 1.39E+00 1.07E+00 7.68E-01 4.40E-03 1.151 4 185.182 1.64E+14 2.38E-02 2.27E+01 1.158E+02 6.755E+00 5.10E-01 3.49E-01 6.85E-01 1.49E-03 1.095 1.44E+00 1.05E+00 7.32E-01 4.49E-03 1.139 5 185.740 1.78E+14 2.35E-02 2.43E+01 1.240E+02 8.603E+00 5.23E-01 3.45E-01 6.59E-01 1.58E-03 1.083 1.47E+00 1.04E+00 7.06E-01 4.78E-03 1.129 Monteburns Transport History for material 8 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.120 3.67E+14 2.57E-02 7.79E+01 2.738E+02 0.000E+00 3.86E-01 3.76E-01 9.76E-01 1.34E-03 1.220 1.15E+00 1.13E+00 9.80E-01 4.03E-03 1.222 1 182.743 3.83E+14 2.53E-02 8.04E+01 2.824E+02 4.209E+00 4.39E-01 3.70E-01 8.42E-01 1.42E-03 1.157 1.24E+00 1.11E+00 8.98E-01 4.28E-03 1.197 2 184.528 3.98E+14 2.44E-02 8.13E+01 2.854E+02 8.462E+00 4.86E-01 3.59E-01 7.39E-01 1.49E-03 1.106 1.37E+00 1.08E+00 7.90E-01 4.50E-03 1.148 3 185.609 4.06E+14 2.34E-02 7.98E+01 2.803E+02 1.264E+01 5.29E-01 3.43E-01 6.50E-01 1.55E-03 1.044 1.45E+00 1.04E+00 7.15E-01 4.68E-03 1.106 4 186.381 4.23E+14 2.26E-02 8.07E+01 2.834E+02 1.686E+01 5.57E-01 3.33E-01 5.97E-01 1.56E-03 1.007 1.50E+00 1.01E+00 6.73E-01 4.72E-03 1.084 5 186.962 4.43E+14 2.18E-02 8.19E+01 2.877E+02 2.115E+01 5.75E-01 3.21E-01 5.59E-01 1.62E-03 0.978 1.54E+00 9.80E-01 6.35E-01 4.94E-03 1.060 Monteburns Transport History for material 9 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.106 3.91E+14 2.80E-02 4.53E+01 3.175E+02 0.000E+00 3.86E-01 4.10E-01 1.06E+00 1.40E-03 1.272 1.15E+00 1.23E+00 1.07E+00 4.19E-03 1.275 1 182.558 3.98E+14 2.71E-02 4.48E+01 3.142E+02 4.683E+00 4.38E-01 3.96E-01 9.05E-01 1.49E-03 1.201 1.23E+00 1.19E+00 9.69E-01 4.47E-03 1.245 2 184.253 4.02E+14 2.57E-02 4.32E+01 3.032E+02 9.202E+00 4.88E-01 3.77E-01 7.73E-01 1.49E-03 1.134 1.37E+00 1.14E+00 8.28E-01 4.49E-03 1.179 3 185.311 4.05E+14 2.45E-02 4.18E+01 2.932E+02 1.357E+01 5.31E-01 3.60E-01 6.78E-01 1.52E-03 1.071 1.45E+00 1.09E+00 7.54E-01 4.59E-03 1.139 4 186.075 4.18E+14 2.36E-02 4.16E+01 2.918E+02 1.792E+01 5.58E-01 3.47E-01 6.22E-01 1.55E-03 1.033 1.50E+00 1.06E+00 7.04E-01 4.71E-03 1.112 5 186.680 4.34E+14 2.26E-02 4.15E+01 2.911E+02 2.226E+01 5.74E-01 3.32E-01 5.79E-01 1.58E-03 1.000 1.54E+00 1.02E+00 6.60E-01 4.82E-03 1.084 Monteburns Transport History for material 10 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 0.000 5.39E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 1.40E+00 0.00E+00 0.00E+00 1.16E-06 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 1 0.000 5.89E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 1.02E+00 0.00E+00 0.00E+00 7.17E-07 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 2 0.000 6.60E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 4.71E-01 0.00E+00 0.00E+00 1.08E-06 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 3 0.000 7.27E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 9.99E-02 0.00E+00 0.00E+00 9.60E-07 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 4 0.000 7.70E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 1.58E-02 0.00E+00 0.00E+00 8.07E-07 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 5 0.000 7.95E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 9.52E-03 0.00E+00 0.00E+00 5.24E-07 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000

PAGE 219

204The MONTEBURNS Output File 1/8th core L-Carborane BPRAs RESEARCH CRYSTAL RIVER 1/8 CORE WITH L-CARBORANE BPRA'S 4.66% ENRICH NO BO Total Power (MW) = 3.18E+02 Days = 6.70E+02 # outer steps = 5, # inner steps = 50, # predictor steps = 1 Importance Fraction = 0.0050 Monteburns MCNP k-eff Versus Time days k-eff rel err nu avQfis eta 0m 0.00 1.17026 0.00074 2.464 181.097 0.834 1m 67.00 1.13629 0.00063 2.524 182.111 0.898 1e 134.00 1.12974 0.00044 2.563 2m 201.00 1.11575 0.00051 2.593 183.369 1.035 2e 268.00 1.10959 0.00081 2.621 3m 335.00 1.09368 0.00066 2.642 184.227 1.157 3e 402.00 1.07498 0.00057 2.664 4m 469.00 1.05698 0.00049 2.682 184.925 1.144 4e 536.00 1.03438 0.00065 2.699 5m 603.00 1.01593 0.00058 2.716 185.518 1.112 5e 670.00 0.99816 0.00051 2.730 Monteburns Transport History Monteburns Transport History for material 1 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.063 3.78E+14 3.88E-02 6.08E+01 4.261E+02 0.000E+00 3.93E-01 5.68E-01 1.45E+00 1.57E-03 1.460 1.17E+00 1.71E+00 1.45E+00 4.70E-03 1.463 1 181.726 4.00E+14 3.69E-02 6.14E+01 4.302E+02 6.410E+00 4.39E-01 5.41E-01 1.23E+00 1.61E-03 1.396 1.22E+00 1.63E+00 1.34E+00 4.85E-03 1.447 2 182.678 4.30E+14 3.53E-02 6.37E+01 4.463E+02 1.306E+01 4.94E-01 5.19E-01 1.05E+00 1.65E-03 1.332 1.34E+00 1.57E+00 1.17E+00 4.99E-03 1.401 3 183.498 4.62E+14 3.37E-02 6.55E+01 4.594E+02 1.991E+01 5.36E-01 4.96E-01 9.25E-01 1.68E-03 1.273 1.42E+00 1.51E+00 1.06E+00 5.10E-03 1.365 4 184.228 4.75E+14 3.17E-02 6.37E+01 4.466E+02 2.657E+01 5.64E-01 4.67E-01 8.29E-01 1.70E-03 1.219 1.48E+00 1.43E+00 9.66E-01 5.20E-03 1.321 5 184.862 4.82E+14 2.95E-02 6.04E+01 4.232E+02 3.288E+01 5.93E-01 4.36E-01 7.34E-01 1.70E-03 1.153 1.54E+00 1.34E+00 8.71E-01 5.21E-03 1.268 Monteburns Transport History for material 2 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.103 1.65E+13 3.00E-02 5.77E-01 1.432E+01 0.000E+00 3.76E-01 4.39E-01 1.17E+00 1.46E-03 1.331 1.12E+00 1.32E+00 1.17E+00 4.38E-03 1.334 1 181.201 1.95E+13 2.94E-02 6.74E-01 1.674E+01 2.494E-01 3.95E-01 4.31E-01 1.09E+00 1.24E-03 1.320 1.15E+00 1.29E+00 1.12E+00 3.73E-03 1.338 2 181.351 1.99E+13 3.01E-02 7.10E-01 1.761E+01 5.119E-01 4.01E-01 4.41E-01 1.10E+00 1.45E-03 1.362 1.17E+00 1.32E+00 1.14E+00 4.34E-03 1.383 3 181.526 2.26E+13 3.06E-02 8.24E-01 2.045E+01 8.166E-01 4.03E-01 4.49E-01 1.12E+00 1.64E-03 1.397 1.17E+00 1.35E+00 1.15E+00 4.93E-03 1.420 4 181.696 2.43E+13 3.06E-02 8.88E-01 2.204E+01 1.145E+00 4.10E-01 4.48E-01 1.09E+00 1.59E-03 1.403 1.19E+00 1.34E+00 1.13E+00 4.77E-03 1.427 5 181.873 3.15E+13 3.08E-02 1.16E+00 2.881E+01 1.574E+00 4.15E-01 4.52E-01 1.09E+00 1.96E-03 1.420 1.20E+00 1.36E+00 1.13E+00 5.90E-03 1.445 Monteburns Transport History for material 3 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.059 3.40E+14 4.00E-02 1.09E+02 3.944E+02 0.000E+00 3.94E-01 5.85E-01 1.49E+00 1.60E-03 1.476 1.18E+00 1.76E+00 1.49E+00 4.81E-03 1.479 1 181.646 3.51E+14 3.79E-02 1.08E+02 3.883E+02 5.786E+00 4.40E-01 5.56E-01 1.26E+00 1.60E-03 1.413 1.22E+00 1.67E+00 1.37E+00 4.80E-03 1.464 2 182.492 3.56E+14 3.60E-02 1.04E+02 3.771E+02 1.140E+01 4.85E-01 5.29E-01 1.09E+00 1.63E-03 1.356 1.32E+00 1.60E+00 1.21E+00 4.92E-03 1.423 3 183.175 3.67E+14 3.45E-02 1.04E+02 3.739E+02 1.697E+01 5.21E-01 5.08E-01 9.75E-01 1.67E-03 1.308 1.39E+00 1.54E+00 1.11E+00 5.07E-03 1.392 4 183.775 3.84E+14 3.28E-02 1.03E+02 3.727E+02 2.252E+01 5.45E-01 4.82E-01 8.84E-01 1.66E-03 1.262 1.44E+00 1.47E+00 1.02E+00 5.07E-03 1.359 5 184.331 4.04E+14 3.09E-02 1.03E+02 3.715E+02 2.805E+01 5.68E-01 4.56E-01 8.03E-01 1.71E-03 1.213 1.49E+00 1.40E+00 9.40E-01 5.22E-03 1.320 Monteburns Transport History for material 4 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.352 2.92E+14 1.44E-02 3.16E-01 1.223E+02 0.000E+00 2.03E+00 2.23E-01 1.10E-01 1.66E-03 0.245 9.20E-01 6.89E-01 7.48E-01 5.03E-03 1.061 1 181.922 3.11E+14 1.92E-02 4.49E-01 1.740E+02 2.814E+00 1.54E+00 2.96E-01 1.92E-01 1.60E-03 0.409 1.03E+00 9.16E-01 8.88E-01 4.89E-03 1.192 2 182.620 3.18E+14 2.76E-02 6.65E-01 2.576E+02 6.981E+00 8.25E-01 4.26E-01 5.17E-01 1.71E-03 0.886 1.21E+00 1.32E+00 1.10E+00 5.23E-03 1.361 3 183.072 3.34E+14 3.09E-02 7.87E-01 3.047E+02 1.191E+01 5.38E-01 4.77E-01 8.87E-01 1.60E-03 1.245 1.37E+00 1.49E+00 1.09E+00 4.92E-03 1.379

PAGE 220

205 4 183.715 3.34E+14 2.88E-02 7.38E-01 2.857E+02 1.653E+01 5.54E-01 4.46E-01 8.06E-01 1.56E-03 1.200 1.43E+00 1.40E+00 9.81E-01 4.82E-03 1.332 5 184.246 3.67E+14 2.85E-02 8.03E-01 3.110E+02 2.156E+01 5.72E-01 4.42E-01 7.72E-01 1.77E-03 1.187 1.46E+00 1.39E+00 9.53E-01 5.51E-03 1.329 Monteburns Transport History for material 5 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.523 3.54E+14 1.04E-02 1.10E+00 1.067E+02 0.000E+00 2.31E+00 1.59E-01 6.89E-02 1.60E-03 0.160 9.17E-01 5.08E-01 5.54E-01 4.87E-03 0.885 1 182.351 3.81E+14 1.31E-02 1.50E+00 1.454E+02 2.411E+00 1.94E+00 2.00E-01 1.03E-01 1.61E-03 0.237 9.95E-01 6.39E-01 6.43E-01 4.95E-03 0.994 2 183.440 4.30E+14 1.93E-02 2.52E+00 2.437E+02 6.453E+00 1.38E+00 2.96E-01 2.15E-01 1.59E-03 0.460 1.17E+00 9.47E-01 8.09E-01 4.94E-03 1.164 3 183.969 4.78E+14 2.67E-02 3.90E+00 3.771E+02 1.271E+01 6.90E-01 4.11E-01 5.95E-01 1.66E-03 0.989 1.37E+00 1.32E+00 9.63E-01 5.20E-03 1.300 4 184.642 5.01E+14 2.65E-02 4.06E+00 3.931E+02 1.923E+01 5.83E-01 4.07E-01 6.99E-01 1.60E-03 1.106 1.46E+00 1.32E+00 9.03E-01 5.07E-03 1.276 5 185.307 5.16E+14 2.48E-02 3.93E+00 3.806E+02 2.554E+01 6.10E-01 3.82E-01 6.27E-01 1.73E-03 1.050 1.52E+00 1.24E+00 8.19E-01 5.48E-03 1.227 Monteburns Transport History for material 6 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 185.149 1.30E+13 3.49E-02 7.67E-01 1.314E+01 0.000E+00 1.54E+00 1.34E+00 8.67E-01 3.96E-03 1.147 1.56E+00 1.35E+00 8.67E-01 4.01E-03 1.147 1 185.151 1.58E+13 3.37E-02 9.07E-01 1.553E+01 2.041E-01 1.48E+00 1.29E+00 8.70E-01 4.18E-03 1.177 1.49E+00 1.31E+00 8.79E-01 4.23E-03 1.184 2 185.175 1.65E+13 3.34E-02 9.46E-01 1.621E+01 4.172E-01 1.53E+00 1.28E+00 8.34E-01 3.95E-03 1.182 1.52E+00 1.29E+00 8.53E-01 4.00E-03 1.196 3 185.154 1.75E+13 3.30E-02 9.93E-01 1.701E+01 6.408E-01 1.52E+00 1.26E+00 8.33E-01 5.37E-03 1.205 1.50E+00 1.28E+00 8.51E-01 5.44E-03 1.219 4 185.185 1.82E+13 3.22E-02 1.01E+00 1.736E+01 8.691E-01 1.48E+00 1.24E+00 8.33E-01 5.66E-03 1.224 1.47E+00 1.25E+00 8.52E-01 5.72E-03 1.238 5 185.204 2.43E+13 3.19E-02 1.34E+00 2.299E+01 1.171E+00 1.48E+00 1.22E+00 8.23E-01 5.25E-03 1.230 1.47E+00 1.24E+00 8.41E-01 5.31E-03 1.245 Monteburns Transport History for material 7 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.111 1.57E+14 2.44E-02 2.19E+01 1.114E+02 0.000E+00 4.01E-01 3.57E-01 8.90E-01 1.30E-03 1.164 1.20E+00 1.07E+00 8.94E-01 3.90E-03 1.166 1 182.227 1.59E+14 2.44E-02 2.23E+01 1.136E+02 1.693E+00 4.37E-01 3.58E-01 8.19E-01 1.28E-03 1.140 1.24E+00 1.07E+00 8.67E-01 3.83E-03 1.176 2 183.620 1.51E+14 2.44E-02 2.12E+01 1.079E+02 3.301E+00 4.70E-01 3.56E-01 7.57E-01 1.42E-03 1.120 1.34E+00 1.07E+00 7.99E-01 4.27E-03 1.155 3 184.519 1.51E+14 2.43E-02 2.12E+01 1.081E+02 4.911E+00 4.89E-01 3.56E-01 7.29E-01 1.44E-03 1.118 1.40E+00 1.07E+00 7.68E-01 4.34E-03 1.151 4 185.139 1.62E+14 2.40E-02 2.27E+01 1.156E+02 6.634E+00 5.07E-01 3.53E-01 6.95E-01 1.50E-03 1.103 1.44E+00 1.06E+00 7.36E-01 4.52E-03 1.141 5 185.694 1.80E+14 2.35E-02 2.46E+01 1.254E+02 8.502E+00 5.23E-01 3.44E-01 6.59E-01 1.47E-03 1.082 1.47E+00 1.04E+00 7.07E-01 4.43E-03 1.128 Monteburns Transport History for material 8 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.121 3.68E+14 2.57E-02 7.82E+01 2.747E+02 0.000E+00 3.86E-01 3.77E-01 9.78E-01 1.37E-03 1.222 1.15E+00 1.13E+00 9.82E-01 4.10E-03 1.224 1 182.726 3.80E+14 2.53E-02 7.99E+01 2.806E+02 4.181E+00 4.39E-01 3.70E-01 8.44E-01 1.45E-03 1.159 1.24E+00 1.11E+00 9.00E-01 4.35E-03 1.199 2 184.509 3.97E+14 2.44E-02 8.09E+01 2.843E+02 8.418E+00 4.86E-01 3.58E-01 7.36E-01 1.47E-03 1.103 1.37E+00 1.08E+00 7.87E-01 4.44E-03 1.145 3 185.609 4.05E+14 2.34E-02 7.96E+01 2.795E+02 1.258E+01 5.28E-01 3.44E-01 6.51E-01 1.55E-03 1.045 1.45E+00 1.04E+00 7.16E-01 4.70E-03 1.106 4 186.368 4.22E+14 2.26E-02 8.05E+01 2.827E+02 1.679E+01 5.57E-01 3.33E-01 5.98E-01 1.56E-03 1.007 1.50E+00 1.01E+00 6.74E-01 4.75E-03 1.084 5 186.954 4.38E+14 2.19E-02 8.10E+01 2.845E+02 2.103E+01 5.75E-01 3.22E-01 5.60E-01 1.61E-03 0.978 1.54E+00 9.82E-01 6.36E-01 4.91E-03 1.060 Monteburns Transport History for material 9 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.106 3.93E+14 2.80E-02 4.54E+01 3.185E+02 0.000E+00 3.87E-01 4.10E-01 1.06E+00 1.38E-03 1.271 1.16E+00 1.23E+00 1.06E+00 4.13E-03 1.273 1 182.550 3.96E+14 2.70E-02 4.45E+01 3.124E+02 4.656E+00 4.40E-01 3.95E-01 8.99E-01 1.49E-03 1.199 1.23E+00 1.19E+00 9.63E-01 4.47E-03 1.242 2 184.250 3.99E+14 2.58E-02 4.32E+01 3.028E+02 9.170E+00 4.89E-01 3.79E-01 7.75E-01 1.49E-03 1.135 1.38E+00 1.14E+00 8.31E-01 4.50E-03 1.180 3 185.293 4.00E+14 2.45E-02 4.11E+01 2.886E+02 1.347E+01 5.31E-01 3.59E-01 6.76E-01 1.54E-03 1.070 1.45E+00 1.09E+00 7.51E-01 4.66E-03 1.137 4 186.062 4.14E+14 2.36E-02 4.12E+01 2.889E+02 1.778E+01 5.55E-01 3.47E-01 6.24E-01 1.57E-03 1.034 1.49E+00 1.05E+00 7.06E-01 4.77E-03 1.114 5 186.660 4.34E+14 2.26E-02 4.16E+01 2.919E+02 2.213E+01 5.76E-01 3.33E-01 5.78E-01 1.66E-03 0.999 1.54E+00 1.02E+00 6.60E-01 5.06E-03 1.083 Monteburns Transport History for material 10 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 0.000 5.35E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 2.01E+00 0.00E+00 0.00E+00 7.99E-07 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 1 0.000 5.90E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 1.43E+00 0.00E+00 0.00E+00 7.61E-07 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 2 0.000 6.70E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 6.01E-01 0.00E+00 0.00E+00 8.68E-07 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 3 0.000 7.35E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 7.17E-02 0.00E+00 0.00E+00 9.06E-07 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 4 0.000 7.69E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 2.06E-02 0.00E+00 0.00E+00 9.88E-07 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 5 0.000 7.94E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 1.94E-02 0.00E+00 0.00E+00 9.66E-07 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000

PAGE 221

206The MONTEBURNS Output File 1/8th core J-Carborane BPRAs RESEARCH CRYSTAL RIVER 1/8 CORE WITH J-CARBORANE BPRA'S 4.66% ENRICH NO BO Total Power (MW) = 3.18E+02 Days = 6.70E+02 # outer steps = 5, # inner steps = 50, # predictor steps = 1 Importance Fraction = 0.0050 Monteburns MCNP k-eff Versus Time days k-eff rel err nu avQfis eta 0m 0.00 1.15523 0.00057 2.464 181.099 0.827 1m 67.00 1.11566 0.00057 2.522 182.130 0.900 1e 134.00 1.10479 0.00067 2.564 2m 201.00 1.08698 0.00057 2.596 183.406 1.041 2e 268.00 1.07932 0.00060 2.622 3m 335.00 1.06627 0.00062 2.645 184.259 1.143 3e 402.00 1.06143 0.00056 2.666 4m 469.00 1.04972 0.00069 2.683 184.945 1.138 4e 536.00 1.03869 0.00052 2.700 5m 603.00 1.02110 0.00060 2.717 185.528 1.108 5e 670.00 1.00189 0.00051 2.731 Monteburns Transport History Monteburns Transport History for material 1 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.067 3.37E+14 3.80E-02 5.30E+01 3.717E+02 0.000E+00 3.91E-01 5.57E-01 1.43E+00 1.59E-03 1.452 1.17E+00 1.67E+00 1.43E+00 4.78E-03 1.455 1 181.699 3.74E+14 3.59E-02 5.59E+01 3.920E+02 5.842E+00 4.35E-01 5.26E-01 1.21E+00 1.59E-03 1.385 1.21E+00 1.58E+00 1.31E+00 4.79E-03 1.434 2 182.620 3.98E+14 3.40E-02 5.68E+01 3.981E+02 1.177E+01 4.82E-01 4.99E-01 1.04E+00 1.66E-03 1.325 1.32E+00 1.51E+00 1.15E+00 5.01E-03 1.390 3 183.393 4.44E+14 3.30E-02 6.17E+01 4.325E+02 1.821E+01 5.20E-01 4.85E-01 9.34E-01 1.63E-03 1.281 1.39E+00 1.47E+00 1.06E+00 4.94E-03 1.364 4 184.092 4.78E+14 3.20E-02 6.45E+01 4.524E+02 2.495E+01 5.58E-01 4.71E-01 8.44E-01 1.66E-03 1.231 1.47E+00 1.44E+00 9.78E-01 5.06E-03 1.330 5 184.742 5.02E+14 3.02E-02 6.44E+01 4.514E+02 3.168E+01 5.87E-01 4.46E-01 7.60E-01 1.65E-03 1.176 1.53E+00 1.37E+00 9.00E-01 5.04E-03 1.290 Monteburns Transport History for material 2 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.102 1.73E+13 2.90E-02 5.87E-01 1.457E+01 0.000E+00 3.94E-01 4.25E-01 1.08E+00 1.26E-03 1.282 1.18E+00 1.28E+00 1.08E+00 3.79E-03 1.285 1 181.203 2.03E+13 2.78E-02 6.65E-01 1.650E+01 2.459E-01 3.93E-01 4.08E-01 1.04E+00 1.26E-03 1.287 1.15E+00 1.22E+00 1.06E+00 3.77E-03 1.303 2 181.375 2.04E+13 2.94E-02 7.11E-01 1.765E+01 5.089E-01 3.90E-01 4.31E-01 1.11E+00 1.44E-03 1.367 1.13E+00 1.29E+00 1.14E+00 4.31E-03 1.389 3 181.535 2.27E+13 3.00E-02 8.10E-01 2.010E+01 8.083E-01 4.04E-01 4.39E-01 1.09E+00 1.92E-03 1.381 1.17E+00 1.32E+00 1.12E+00 5.76E-03 1.403 4 181.719 2.77E+13 2.99E-02 9.88E-01 2.452E+01 1.174E+00 4.10E-01 4.38E-01 1.07E+00 1.64E-03 1.389 1.19E+00 1.32E+00 1.10E+00 4.92E-03 1.412 5 181.904 2.72E+13 3.01E-02 9.78E-01 2.429E+01 1.536E+00 4.22E-01 4.40E-01 1.04E+00 1.52E-03 1.391 1.22E+00 1.32E+00 1.08E+00 4.56E-03 1.416 Monteburns Transport History for material 3 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.060 3.59E+14 3.97E-02 1.14E+02 4.131E+02 0.000E+00 3.93E-01 5.81E-01 1.48E+00 1.57E-03 1.474 1.17E+00 1.74E+00 1.49E+00 4.71E-03 1.477 1 181.656 3.60E+14 3.73E-02 1.08E+02 3.910E+02 5.826E+00 4.37E-01 5.46E-01 1.25E+00 1.62E-03 1.405 1.21E+00 1.64E+00 1.36E+00 4.87E-03 1.455 2 182.524 3.72E+14 3.51E-02 1.06E+02 3.836E+02 1.154E+01 4.80E-01 5.15E-01 1.07E+00 1.65E-03 1.347 1.31E+00 1.56E+00 1.19E+00 4.98E-03 1.413 3 183.232 3.78E+14 3.37E-02 1.04E+02 3.768E+02 1.716E+01 5.18E-01 4.96E-01 9.58E-01 1.63E-03 1.298 1.39E+00 1.51E+00 1.09E+00 4.96E-03 1.381 4 183.829 3.82E+14 3.25E-02 1.02E+02 3.685E+02 2.265E+01 5.45E-01 4.79E-01 8.78E-01 1.70E-03 1.258 1.44E+00 1.46E+00 1.01E+00 5.17E-03 1.354 5 184.357 3.95E+14 3.11E-02 1.01E+02 3.649E+02 2.809E+01 5.69E-01 4.59E-01 8.06E-01 1.71E-03 1.215 1.49E+00 1.41E+00 9.43E-01 5.23E-03 1.322 Monteburns Transport History for material 4 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.348 3.21E+14 1.44E-02 3.47E-01 1.344E+02 0.000E+00 2.05E+00 2.22E-01 1.09E-01 1.51E-03 0.243 9.26E-01 6.88E-01 7.43E-01 4.58E-03 1.056 1 181.965 3.41E+14 1.97E-02 5.06E-01 1.958E+02 3.166E+00 1.44E+00 3.04E-01 2.11E-01 1.52E-03 0.441 1.06E+00 9.40E-01 8.90E-01 4.63E-03 1.192 2 182.698 3.73E+14 2.86E-02 8.10E-01 3.135E+02 8.236E+00 7.39E-01 4.42E-01 5.98E-01 1.84E-03 0.974 1.27E+00 1.37E+00 1.08E+00 5.66E-03 1.350 3 183.381 3.80E+14 3.05E-02 8.85E-01 3.427E+02 1.378E+01 5.49E-01 4.72E-01 8.60E-01 1.56E-03 1.226 1.41E+00 1.47E+00 1.04E+00 4.81E-03 1.355

PAGE 222

207 4 184.060 3.41E+14 2.82E-02 7.37E-01 2.854E+02 1.840E+01 5.70E-01 4.37E-01 7.67E-01 1.83E-03 1.168 1.47E+00 1.37E+00 9.33E-01 5.64E-03 1.299 5 184.495 3.44E+14 2.74E-02 7.23E-01 2.801E+02 2.293E+01 5.68E-01 4.25E-01 7.47E-01 1.69E-03 1.165 1.44E+00 1.34E+00 9.29E-01 5.25E-03 1.312 Monteburns Transport History for material 5 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.518 3.32E+14 1.04E-02 1.04E+00 1.006E+02 0.000E+00 2.31E+00 1.60E-01 6.94E-02 1.66E-03 0.161 9.17E-01 5.11E-01 5.57E-01 5.04E-03 0.888 1 182.316 3.69E+14 1.28E-02 1.42E+00 1.375E+02 2.280E+00 1.93E+00 1.95E-01 1.01E-01 1.57E-03 0.233 9.69E-01 6.24E-01 6.44E-01 4.83E-03 0.994 2 183.387 4.04E+14 1.83E-02 2.25E+00 2.176E+02 5.889E+00 1.39E+00 2.81E-01 2.02E-01 1.63E-03 0.439 1.16E+00 9.01E-01 7.78E-01 5.07E-03 1.141 3 183.915 4.60E+14 2.55E-02 3.57E+00 3.457E+02 1.162E+01 7.36E-01 3.91E-01 5.32E-01 1.54E-03 0.921 1.34E+00 1.26E+00 9.36E-01 4.84E-03 1.283 4 184.572 5.01E+14 2.68E-02 4.10E+00 3.972E+02 1.821E+01 5.80E-01 4.12E-01 7.09E-01 1.58E-03 1.117 1.45E+00 1.33E+00 9.19E-01 4.98E-03 1.289 5 185.211 5.27E+14 2.51E-02 4.06E+00 3.928E+02 2.472E+01 5.98E-01 3.86E-01 6.46E-01 1.66E-03 1.070 1.48E+00 1.26E+00 8.51E-01 5.24E-03 1.253 Monteburns Transport History for material 6 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 185.130 1.43E+13 3.39E-02 8.23E-01 1.409E+01 0.000E+00 1.50E+00 1.30E+00 8.69E-01 4.54E-03 1.149 1.51E+00 1.31E+00 8.69E-01 4.59E-03 1.149 1 185.117 1.71E+13 3.37E-02 9.81E-01 1.681E+01 2.210E-01 1.48E+00 1.29E+00 8.70E-01 6.19E-03 1.178 1.49E+00 1.31E+00 8.79E-01 6.26E-03 1.185 2 185.148 1.66E+13 3.33E-02 9.51E-01 1.629E+01 4.351E-01 1.50E+00 1.27E+00 8.46E-01 4.71E-03 1.193 1.49E+00 1.29E+00 8.66E-01 4.77E-03 1.208 3 185.147 1.84E+13 3.25E-02 1.03E+00 1.768E+01 6.675E-01 1.49E+00 1.25E+00 8.38E-01 5.35E-03 1.210 1.47E+00 1.26E+00 8.56E-01 5.41E-03 1.224 4 185.193 1.99E+13 3.23E-02 1.11E+00 1.908E+01 9.183E-01 1.48E+00 1.24E+00 8.39E-01 5.27E-03 1.228 1.46E+00 1.25E+00 8.58E-01 5.33E-03 1.243 5 185.236 2.07E+13 3.17E-02 1.14E+00 1.950E+01 1.175E+00 1.50E+00 1.22E+00 8.09E-01 5.35E-03 1.219 1.49E+00 1.23E+00 8.27E-01 5.41E-03 1.234 Monteburns Transport History for material 7 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.112 1.83E+14 2.44E-02 2.55E+01 1.299E+02 0.000E+00 4.01E-01 3.58E-01 8.92E-01 1.24E-03 1.165 1.20E+00 1.07E+00 8.95E-01 3.72E-03 1.167 1 182.359 1.77E+14 2.42E-02 2.45E+01 1.251E+02 1.864E+00 4.40E-01 3.55E-01 8.06E-01 1.37E-03 1.129 1.25E+00 1.07E+00 8.54E-01 4.12E-03 1.165 2 183.836 1.88E+14 2.43E-02 2.63E+01 1.342E+02 3.864E+00 4.71E-01 3.57E-01 7.58E-01 1.40E-03 1.123 1.34E+00 1.07E+00 8.01E-01 4.22E-03 1.158 3 184.809 1.78E+14 2.41E-02 2.49E+01 1.268E+02 5.754E+00 4.97E-01 3.54E-01 7.12E-01 1.45E-03 1.104 1.42E+00 1.07E+00 7.51E-01 4.37E-03 1.139 4 185.471 1.61E+14 2.37E-02 2.22E+01 1.131E+02 7.440E+00 5.18E-01 3.48E-01 6.72E-01 1.56E-03 1.082 1.46E+00 1.05E+00 7.20E-01 4.70E-03 1.127 5 185.914 1.63E+14 2.33E-02 2.22E+01 1.132E+02 9.126E+00 5.29E-01 3.42E-01 6.47E-01 1.48E-03 1.071 1.49E+00 1.03E+00 6.95E-01 4.48E-03 1.117 Monteburns Transport History for material 8 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.120 3.58E+14 2.58E-02 7.63E+01 2.680E+02 0.000E+00 3.85E-01 3.78E-01 9.80E-01 1.39E-03 1.224 1.15E+00 1.13E+00 9.85E-01 4.17E-03 1.226 1 182.701 3.80E+14 2.52E-02 7.96E+01 2.796E+02 4.166E+00 4.37E-01 3.69E-01 8.45E-01 1.42E-03 1.159 1.23E+00 1.11E+00 9.01E-01 4.27E-03 1.199 2 184.506 3.93E+14 2.43E-02 7.98E+01 2.803E+02 8.344E+00 4.84E-01 3.57E-01 7.37E-01 1.48E-03 1.105 1.37E+00 1.08E+00 7.88E-01 4.48E-03 1.147 3 185.581 4.04E+14 2.33E-02 7.91E+01 2.777E+02 1.248E+01 5.26E-01 3.43E-01 6.51E-01 1.51E-03 1.047 1.45E+00 1.04E+00 7.17E-01 4.57E-03 1.108 4 186.352 4.25E+14 2.26E-02 8.11E+01 2.848E+02 1.672E+01 5.56E-01 3.33E-01 5.98E-01 1.53E-03 1.008 1.50E+00 1.01E+00 6.74E-01 4.65E-03 1.084 5 186.950 4.44E+14 2.19E-02 8.23E+01 2.890E+02 2.103E+01 5.75E-01 3.23E-01 5.60E-01 1.59E-03 0.979 1.55E+00 9.84E-01 6.37E-01 4.84E-03 1.061 Monteburns Transport History for material 9 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.107 4.00E+14 2.79E-02 4.61E+01 3.238E+02 0.000E+00 3.85E-01 4.09E-01 1.06E+00 1.35E-03 1.273 1.15E+00 1.23E+00 1.07E+00 4.05E-03 1.276 1 182.602 4.12E+14 2.70E-02 4.62E+01 3.245E+02 4.837E+00 4.39E-01 3.95E-01 9.01E-01 1.42E-03 1.199 1.23E+00 1.19E+00 9.65E-01 4.28E-03 1.242 2 184.315 4.10E+14 2.54E-02 4.36E+01 3.060E+02 9.398E+00 4.92E-01 3.73E-01 7.58E-01 1.55E-03 1.123 1.37E+00 1.13E+00 8.23E-01 4.67E-03 1.176 3 185.349 4.12E+14 2.43E-02 4.20E+01 2.948E+02 1.379E+01 5.29E-01 3.57E-01 6.74E-01 1.55E-03 1.068 1.44E+00 1.08E+00 7.48E-01 4.69E-03 1.136 4 186.115 4.18E+14 2.35E-02 4.14E+01 2.906E+02 1.812E+01 5.59E-01 3.45E-01 6.18E-01 1.61E-03 1.028 1.50E+00 1.05E+00 6.99E-01 4.88E-03 1.108 5 186.715 4.34E+14 2.27E-02 4.17E+01 2.923E+02 2.248E+01 5.77E-01 3.34E-01 5.78E-01 1.56E-03 0.998 1.55E+00 1.02E+00 6.59E-01 4.75E-03 1.083 Monteburns Transport History for material 10 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 0.000 4.70E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 2.58E+00 0.00E+00 0.00E+00 7.68E-07 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 1 0.000 5.21E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 2.26E+00 0.00E+00 0.00E+00 6.94E-07 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 2 0.000 5.71E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 1.76E+00 0.00E+00 0.00E+00 1.18E-06 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 3 0.000 6.54E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 1.08E+00 0.00E+00 0.00E+00 9.61E-07 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 4 0.000 7.53E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 3.19E-01 0.00E+00 0.00E+00 1.04E-06 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 5 0.000 8.09E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 3.02E-02 0.00E+00 0.00E+00 9.30E-07 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000

PAGE 223

208 APPENDIX F ONE-EIGHTH CORE WITH CHEMICAL SHIM MCNP/MONTEBURNS FILES This appendix contains all of th e input and output files for the 1/8th core chemical shim MCNP/MONTEBURNS models. As w ith Appendix E, the CASMO input files used to generate the 10A3, 12A2, and 13A 13E depleted fuel approximate compositions for the primary, Gd2O3/UO2 mixed fuel, and blanket fuels are similar to those used to generate the cross section libraries for EASC YC and are not included in this appendix. No CASMO output files are list ed instead the appendix includes the fuel compositions in the material cards of the MCNP input file s. Only the the MCNP input, MONTEBURNS input, and MONTEBURNS feed file for the B4C/Al2O3 BPRA models are listed because the only difference for the other models is the BP material compositions which are the same as those in Appendix E. MONTEB URNS output files ar e listed for the B4C/Al2O3 BPRA, L-Carborane, and J-Carborane models The MONTEBURNS output files have been abbreviated to include only the k-e ffective vs. time and the transport history information. The MCNP Input File Chem Shim Power Peak #4 B4C/Al2O3 BPRAs RESEARCH 15 X 15 ASSEMBLY WITH B4CAL2O3 BPRA'S C CRYSTAL RIVER REACTOR #1 C box -200 200 -200 200 -200 200 1 0 -1 13 -14 19 20 FILL=1 VOL=6333455.62 2 1 -0.660 9 -10 11 -12 LAT=1 U=1 FILL=-8:1 -8:1 0:0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 1 1 1 1 1 2 4 11 12 4 1 1 1 1 2 10 5 13 5 9 1 1 1 1 1 4 13 4 9 5 1 1 1 1 1 1 4 9 4 3 1 1 1 1 1 1 1 4 13 4 1 1 1 1 1 1 1 1 4 5 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 C 10A & 12A2 MARK-B4Z ASSMBLY WITH 0 GD AND 0 BPRAS (33 TOTAL) 200 1 -0.660 30 -31 32 -33 LAT=1 VOL=2581.227 U=2 FILL=-8:8 -8:8 0:0

PAGE 224

209 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 2 2 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 2 2 20 20 20 20 20 14 20 20 20 14 20 20 20 20 20 2 2 20 20 20 14 20 20 20 20 20 20 20 14 20 20 20 2 2 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 2 2 20 20 14 20 20 14 20 20 20 14 20 20 14 20 20 2 2 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 2 2 20 20 20 20 20 20 20 14 20 20 20 20 20 20 20 2 2 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 2 2 20 20 14 20 20 14 20 20 20 14 20 20 14 20 20 2 2 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 2 2 20 20 20 14 20 20 20 20 20 20 20 14 20 20 20 2 2 20 20 20 20 20 14 20 20 20 14 20 20 20 20 20 2 2 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 2 2 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 C 14A MARK-B10I POWER PEAKING TEST ASSEMBLY 1 TOTAL 201 1 -0.660 30 -31 32 -33 LAT=1 U=3 VOL=2581.227 FILL=-8:8 -8:8 0:0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 3 3 30 30 30 31 30 30 30 30 30 30 30 31 30 30 30 3 3 30 30 30 30 30 15 30 30 30 15 30 30 30 30 30 3 3 30 31 30 14 30 30 30 30 30 30 30 14 30 31 30 3 3 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 3 3 30 30 15 30 30 14 30 30 30 14 30 30 15 30 30 3 3 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 3 3 30 30 30 30 30 30 30 14 30 30 30 30 30 30 30 3 3 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 3 3 30 30 15 30 30 14 30 30 30 14 30 30 15 30 30 3 3 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 3 3 30 31 30 14 30 30 30 30 30 30 30 14 30 31 30 3 3 30 30 30 30 30 15 30 30 30 15 30 30 30 30 30 3 3 30 30 30 31 30 30 30 30 30 30 30 31 30 30 30 3 3 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 C 13A 13D MARK-B10I ASSMBLY WITH 8 GD AND 0 BPRAS (48 TOTAL) 202 1 -0.660 30 -31 32 -33 LAT=1 U=4 VOL=2581.227 FILL=-8:8 -8:8 0:0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 4 4 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 4 4 40 40 40 40 40 14 40 40 40 14 40 40 40 40 40 4 4 40 40 40 14 40 40 40 40 40 40 40 14 40 40 40 4 4 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 4 4 40 40 14 40 40 14 40 40 40 14 40 40 14 40 40 4 4 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 4 4 40 40 40 40 40 40 40 14 40 40 40 40 40 40 40 4 4 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 4 4 40 40 14 40 40 14 40 40 40 14 40 40 14 40 40 4 4 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 4 4 40 40 40 14 40 40 40 40 40 40 40 14 40 40 40 4 4 40 40 40 40 40 14 40 40 40 14 40 40 40 40 40 4 4 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 4 4 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 C 13B C E MARK-B10I ASSMBLY WITH 8 GD AND 0 BPRAS (8 TOTAL) 203 1 -0.660 30 -31 32 -33 LAT=1 U=5 VOL=2581.227 FILL=-8:8 -8:8 0:0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 5 5 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 5 5 50 50 50 50 50 14 50 50 50 14 50 50 50 50 50 5 5 50 50 50 14 50 50 50 50 50 50 50 14 50 50 50 5 5 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 5 5 50 50 14 50 50 14 50 50 50 14 50 50 14 50 50 5 5 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 5 5 50 50 50 50 50 50 50 14 50 50 50 50 50 50 50 5 5 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 5 5 50 50 14 50 50 14 50 50 50 14 50 50 14 50 50 5 5 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 5 5 50 50 50 14 50 50 50 50 50 50 50 14 50 50 50 5 5 50 50 50 50 50 14 50 50 50 14 50 50 50 50 50 5

PAGE 225

210 5 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 5 5 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 C 14A MARK-B10I ASSMBLY WITH 8 GD AND 8 BPRAS (24 TOTAL) 207 1 -0.660 30 -31 32 -33 LAT=1 U=9 VOL=2581.227 FILL=-8:8 -8:8 0:0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 9 9 90 90 90 91 90 90 90 90 90 90 90 91 90 90 90 9 9 90 90 90 90 90 15 90 90 90 15 90 90 90 90 90 9 9 90 91 90 14 90 90 90 90 90 90 90 14 90 91 90 9 9 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 9 9 90 90 15 90 90 14 90 90 90 14 90 90 15 90 90 9 9 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 9 9 90 90 90 90 90 90 90 14 90 90 90 90 90 90 90 9 9 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 9 9 90 90 15 90 90 14 90 90 90 14 90 90 15 90 90 9 9 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 9 9 90 91 90 14 90 90 90 90 90 90 90 14 90 91 90 9 9 90 90 90 90 90 15 90 90 90 15 90 90 90 90 90 9 9 90 90 90 91 90 90 90 90 90 90 90 91 90 90 90 9 9 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 C 14B MARK-B10I ASSMBLY WITH 0 GD AND 0 BPRAS (8 TOTAL) 208 1 -0.660 30 -31 32 -33 LAT=1 U=10 VOL=2581.227 FILL=-8:8 -8:8 0:0 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10 10 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10 10 100 100 100 100 100 14 100 100 100 14 100 100 100 100 100 10 10 100 100 100 14 100 100 100 100 100 100 100 14 100 100 100 10 10 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10 10 100 100 14 100 100 14 100 100 100 14 100 100 14 100 100 10 10 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10 10 100 100 100 100 100 100 100 14 100 100 100 100 100 100 100 10 10 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10 10 100 100 14 100 100 14 100 100 100 14 100 100 14 100 100 10 10 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10 10 100 100 100 14 100 100 100 100 100 100 100 14 100 100 100 10 10 100 100 100 100 100 14 100 100 100 14 100 100 100 100 100 10 10 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10 10 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 C 14C MARK-B10I ASSMBLY WITH 4 GD AND 0 BPRAS (8 TOTAL) 209 1 -0.660 30 -31 32 -33 LAT=1 U=11 VOL=2581.227 FILL=-8:8 -8:8 0:0 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 11 11 100 111 100 100 100 100 100 100 100 100 100 100 100 111 100 11 11 100 100 100 100 100 14 100 100 100 14 100 100 100 100 100 11 11 100 100 100 14 100 100 100 100 100 100 100 14 100 100 100 11 11 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 11 11 100 100 14 100 100 14 100 100 100 14 100 100 14 100 100 11 11 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 11 11 100 100 100 100 100 100 100 14 100 100 100 100 100 100 100 11 11 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 11 11 100 100 14 100 100 14 100 100 100 14 100 100 14 100 100 11 11 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 11 11 100 100 100 14 100 100 100 100 100 100 100 14 100 100 100 11 11 100 100 100 100 100 14 100 100 100 14 100 100 100 100 100 11 11 100 111 100 100 100 100 100 100 100 100 100 100 100 111 100 11 11 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 C 14D MARK-B10I ASSMBLY WITH 8 GD AND 0 BPRAS (8 TOTAL) 210 1 -0.660 30 -31 32 -33 LAT=1 U=12 VOL=2581.227 FILL=-8:8 -8:8 0:0 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 12 12 100 100 100 111 100 100 100 100 100 100 100 111 100 100 100 12 12 100 100 100 100 100 14 100 100 100 14 100 100 100 100 100 12 12 100 111 100 14 100 100 100 100 100 100 100 14 100 111 100 12 12 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 12 12 100 100 14 100 100 14 100 100 100 14 100 100 14 100 100 12 12 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 12 12 100 100 100 100 100 100 100 14 100 100 100 100 100 100 100 12

PAGE 226

211 12 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 12 12 100 100 14 100 100 14 100 100 100 14 100 100 14 100 100 12 12 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 12 12 100 111 100 14 100 100 100 100 100 100 100 14 100 111 100 12 12 100 100 100 100 100 14 100 100 100 14 100 100 100 100 100 12 12 100 100 100 111 100 100 100 100 100 100 100 111 100 100 100 12 12 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 C 14E MARK-B10I ASSMBLY WITH 8 GD AND 8 BPRAS (24 TOTAL) 211 1 -0.660 30 -31 32 -33 LAT=1 U=13 VOL=2581.227 FILL=-8:8 -8:8 0:0 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 13 13 100 100 100 91 100 100 100 100 100 100 100 91 100 100 100 13 13 100 100 100 100 100 15 100 100 100 15 100 100 100 100 100 13 13 100 91 100 14 100 100 100 100 100 100 100 14 100 91 100 13 13 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 13 13 100 100 15 100 100 14 100 100 100 14 100 100 15 100 100 13 13 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 13 13 100 100 100 100 100 100 100 14 100 100 100 100 100 100 100 13 13 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 13 13 100 100 15 100 100 14 100 100 100 14 100 100 15 100 100 13 13 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 13 13 100 91 100 14 100 100 100 100 100 100 100 14 100 91 100 13 13 100 100 100 100 100 15 100 100 100 15 100 100 100 100 100 13 13 100 100 100 91 100 100 100 100 100 100 100 91 100 100 100 13 13 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 C UNIVERSE 14 EMPTY GUIDE TUBE 3 1 -0.660 -4 U=14 $WATER HOLE VOL=259.275 4 3 -6.503 4 -5 U=14 $INTERIOR CLAD VOL=78.0098 5 1 -0.660 5 -6 U=14 $GUIDE TUBE WATER RADIUS VOL=114.4531 6 3 -6.503 6 -7 U=14 $GUIDE TUBE CLAD RADIUS VOL=60.665 7 1 -0.660 #3 #4 #5 #6 U=14 $UNIT CELL WATER VOL=237.207 C UNIVERSE 15 BPRA 8 4 -3.1 -4 U=15 $BPRA MATERIAL VOL=259.275 9 3 -6.503 4 -5 U=15 $INTERIOR CLAD VOL=78.0098 10 1 -0.660 5 -6 U=15 $GUIDE TUBE WATER RADIUS VOL=114.453 11 3 -6.503 6 -7 U=15 $GUIDE TUBE CLAD RADIUS VOL=60.665 12 1 -0.660 #8 #9 #10 #11 U=15 $UNIT CELL WATER VOL=237.207 C UNIVERSE 20 FUEL FOR 10A3 &12A2 ASSEMBLY (PRIMARY) 13 26 -10.201 -8 15 -16 U=20 $UO2 FUEL PELLET (PRIMARY) VOL=228.638 14 34 -10.201 -8 -15 U=20 $UO2 FUEL PELLET (BLANKET) VOL=10.544 15 34 -10.201 -8 16 U=20 $UO2 FUEL PELLET (BLANKET) VOL=10.544 16 0 8 -4 U=20 $GAP RADIUS VOL=9.5493 17 3 -6.503 4 -5 U=20 $FUEL PIN CLAD VOL=78.00976 18 1 -0.660 #13 #14 #15 #16 #17 U=20 $UNIT CELL WATER VOL=412.3249 C UNIVERSE 30 FUEL FOR 14A PIN TEST ASSEMBLY (PRIMARY) 19 21 -10.201 -8 15 -16 U=30 $UO2 FUEL PELLET (PRIMARY) VOL=228.638 20 22 -10.201 -8 -15 U=30 $UO2 FUEL PELLET (BLANKET) VOL=10.544 21 22 -10.201 -8 16 U=30 $UO2 FUEL PELLET (BLANKET) VOL=10.544 22 0 8 -4 U=30 $GAP RADIUS VOL=9.5493

PAGE 227

212 23 3 -6.503 4 -5 U=30 $FUEL PIN CLAD VOL=78.00976 24 1 -0.660 #79 #80 #81 #82 #83 U=30 $UNIT CELL WATER VOL=412.3249 C UNIVERSE 31 GD FUEL ROD FOR PIN TEST 14A AND 14E 31 27 -9.635 -8 17 -18 U=31 $UO2 GDO FUEL PELLET (PRIMARY) VOL=215.2219 32 22 -10.201 -8 -17 U=31 $UO2 FUEL PELLET (BLANKET) VOL=17.25188 33 22 -10.201 -8 18 U=31 $UO2 FUEL PELLET (BLANKET) VOL=17.25188 34 0 8 -4 U=31 $GAP RADIUS VOL=9.549294 35 3 -6.503 4 -5 U=31 $FUEL PIN CLAD VOL=78.00976 36 1 -0.660 #85 #86 #87 #88 #89 U=31 $UNIT CELL WATER VOL=412.3249 C UNIVERSE 40 FUEL FOR 13A & 13D ASSEMBLY (PRIMARY) 25 30 -10.201 -8 15 -16 U=40 $UO2 FUEL PELLET (PRIMARY) VOL=228.638 26 34 -10.201 -8 -15 U=40 $UO2 FUEL PELLET (BLANKET) VOL=10.544 27 34 -10.201 -8 16 U=40 $UO2 FUEL PELLET (BLANKET) VOL=10.544 28 0 8 -4 U=40 $GAP RADIUS VOL=9.5493 29 3 -6.503 4 -5 U=40 $FUEL PIN CLAD VOL=78.00976 30 1 -0.660 #25 #26 #27 #28 #29 U=40 $UNIT CELL WATER VOL=412.3249 C UNIVERSE 50 FUEL FOR 13B C E ASSEMBLY (PRIMARY) 37 33 -10.201 -8 15 -16 U=50 $UO2 FUEL PELLET (PRIMARY) VOL=228.638 38 34 -10.201 -8 -15 U=50 $UO2 FUEL PELLET (BLANKET) VOL=10.544 39 34 -10.201 -8 16 U=50 $UO2 FUEL PELLET (BLANKET) VOL=10.544 40 0 8 -4 U=50 $GAP RADIUS VOL=9.5493 41 3 -6.503 4 -5 U=50 $FUEL PIN CLAD VOL=78.00976 42 1 -0.660 #37 #38 #39 #40 #41 U=50 $UNIT CELL WATER VOL=412.3249 C UNIVERSE 90 FUEL FOR 14A ASSEMBLY (PRIMARY) 79 2 -10.201 -8 15 -16 U=90 $UO2 FUEL PELLET (PRIMARY) VOL=228.638 80 22 -10.201 -8 -15 U=90 $UO2 FUEL PELLET (BLANKET) VOL=10.544 81 22 -10.201 -8 16 U=90 $UO2 FUEL PELLET (BLANKET) VOL=10.544 82 0 8 -4 U=90 $GAP RADIUS VOL=9.5493 83 3 -6.503 4 -5 U=90 $FUEL PIN CLAD VOL=78.00976 84 1 -0.660 #79 #80 #81 #82 #83 U=90 $UNIT CELL WATER VOL=412.3249 C UNIVERSE 91 GD FUEL ROD FOR 14A AND 14E 85 25 -9.635 -8 17 -18 U=91 $UO2 GDO FUEL PELLET (PRIMARY) VOL=215.2219 86 22 -10.201 -8 -17 U=91 $UO2 FUEL PELLET (BLANKET) VOL=17.25188 87 22 -10.201 -8 18 U=91 $UO2 FUEL PELLET (BLANKET) VOL=17.25188 88 0 8 -4 U=91 $GAP RADIUS VOL=9.549294 89 3 -6.503 4 -5 U=91 $FUEL PIN CLAD VOL=78.00976 90 1 -0.660 #85 #86 #87 #88 #89 U=91 $UNIT CELL WATER VOL=412.3249 C UNIVERSE 100 FUEL FOR 14B 14C 14D 14E ASSEMBLIES 91 23 -10.201 -8 15 -16 U=100 $UO2 FUEL PELLET (PRIMARY)

PAGE 228

213 VOL=228.6378 92 22 -10.201 -8 -15 U=100 $UO2 FUEL PELLET (BLANKET) VOL=10.54397 93 22 -10.201 -8 16 U=100 $UO2 FUEL PELLET (BLANKET) VOL=10.54397 94 0 8 -4 U=100 $GAP RADIUS VOL=54929 95 3 -6.503 4 -5 U=100 $FUEL PIN CLAD VOL=78.00976 96 1 -0.660 #91 #92 #93 #94 #95 U=100 $UNIT CELL WATER VOL=412.3249 C UNIVERSE 111 GD FUEL ROD FOR 14C AND 14D 97 24 -9.635 -8 17 -18 U=111 $UO2 GDO FUEL PELLET (PRIMARY) VOL=215.2219 98 22 -10.201 -8 -17 U=111 $UO2 FUEL PELLET (BLANKET) VOL=17.25188 99 22 -10.201 -8 18 U=111 $UO2 FUEL PELLET (BLANKET) VOL=17.25188 100 0 8 -4 U=111 $GAP RADIUS VOL=9.549294 101 3 -6.503 4 -5 U=111 $FUEL PIN CLAD VOL=78.00976 102 1 -0.660 #97 #98 #99 #100 #101 U=111 $UNIT CELL WATER VOL=412.3249 C REACTOR BOUNDARY 997 1 -0.660 -1 -2 14 19 20 $AXIAL RELECTORS VOL=2035752.04 998 1 -0.660 -1 3 -13 19 20 VOL=2035752.04 999 0 1:-3:2:-19:-20 $VOID REGION OUTSIDE REACTOR VESSEL *1 CZ 180 $ REACTOR VESSEL *2 PZ 200 *3 PZ -200 30 PX -0.7215 31 PX 0.7215 32 PY -0.7215 33 PY 0.7215 C OUTSIDE OF UNIT CELL (1.443 PITCH) 4 CZ 0.4788 C CYLINDER BPRA / WATER HOLE / GAP RADIUS 5 CZ 0.5461 C CYLINDER INTERIOR CLAD RADIUS 6 CZ 0.6320 C CYLINDER WATER RADIUS GUIDE TUBE 7 CZ 0.6731 C CYLINDER CLAD RADIUS GUIDE TUBE 8 CZ 0.4699 C CYLINDER RADIUS OF FUEL PELLET 9 PX -10.905 10 PX 10.905 11 PY -10.905 12 PY 10.905 13 PZ -180 14 PZ 180 C PLANES OUTSIDE OF ASSEMBLY 15 PZ -164.8 16 PZ 164.8 17 PZ -155.13 18 PZ 155.13 *19 PX 0 *20 P 0 0 0 10.905 10.905 0 10.905 10.905 10.905 C PLANES FOR AXIAL BLANKET MODE N IMP:N 1.0 76R 0.0 KCODE 30000 1.5 10 50 5000 KSRC 1.443 2.886 0 1.443 21.8 0 20.357 21.8 0 1.443 43.6 0

PAGE 229

214 20.357 43.6 0 42.157 43.6 0 1.443 65.4 0 20.357 65.4 0 42.157 65.4 0 63.957 65.4 0 1.443 87.2 0 20.357 87.2 0 42.157 87.2 0 63.957 87.2 0 85.757 87.2 0 1.443 109 0 20.357 109 0 42.157 109 0 63.957 109 0 85.757 109 0 107.557 109 0 1.443 130.8 0 20.357 130.8 0 42.157 130.8 0 63.957 130.8 0 85.757 130.8 0 1.443 152.6 0 20.357 152.6 0 42.157 152.6 0 M1 8016.60C 3.30E-01 1001.60C 6.65E-01 5010.50C 1.90E-04 5011.56C 4.82E-03 C water with boron MT1 LWTR.04T $H20 AT 600 K C FUEL FOR 14A (PRIMARY) 0.0452 ENRICH M2 92235.54C 0.015066652 92238.54C 0.318266348 8016.54C 0.666666 C FUEL FOR 14A PIN TEST (PRIMARY) 0.0452 ENRICH M21 92235.54C 0.015066652 92238.54C 0.318266348 8016.54C 0.666666 C FUEL FOR 14A -E (BLANKET) 0.02 ENRICH M22 92235.54C 0.00666666 92238.54C 0.32666634 8016.54C 0.666666 C FUEL FOR 14B -E (PRIMARY) 0.0466 ENRICH M23 92235.54C 0.015533318 92238.54C 0.317799682 8016.54C 0.666666 C FUEL FOR 14C & D (GdO MIX) 0.0396 ENRICH 0.03 GdO M24 92235.54C 0.012804 92238.54C 0.310529333 8016.54C 0.664666667 64154.60C 0.000325035 64155.60C 0.00224584 64156.60C 0.00314201 64157.60C 0.00242074 64158.60C 0.003866374 C FUEL FOR 14A & E (GdO MIX) 0.0316 ENRICH 0.06 GdO M25 92235.54C 0.009901333 92238.54C 0.303432 8016.54C 0.662666667 64154.60C 0.000650071 64155.60C 0.004491681 64156.60C 0.006284019 64157.60C 0.004841481 64158.60C 0.007732749 C FUEL FOR 14A & E PIN TEST (GdO MIX) 0.0316 ENRICH 0.06 GdO M27 92235.54C 0.009901333 92238.54C 0.303432 8016.54C 0.662666667 64154.60C 0.000650071 64155.60C 0.004491681 64156.60C 0.006284019 64157.60C 0.004841481

PAGE 230

215 64158.60C 0.007732749 C FUEL FOR 10A3 13E (BLANKET) M34 92235.54C -0.0096 92236.60C -0.0187 92238.54C -0.965939 94239.15C -0.00525 94240.60C -0.00131 8016.54C -0.000799 C FUEL FOR 10A3 (PRIMARY) 0.01082 ENRICH M26 92235.54C 0.003606663 92238.54C 0.329726337 8016.54C 0.666666 C FUEL FOR 13D (PRIMARY) 0.0155 ENRICH M30 92235.54C 0.005166662 92238.54C 0.328166339 8016.54C 0.666666 C FUEL FOR 13E (PRIMARY) 0.01833 ENRICH M33 92235.54C 0.006109994 92238.54C 0.327223006 8016.54C 0.666666 M3 40000.60C 1.0 $ZIRCONIUM (APPROX. FOR ZIRCALLOY) M4 5010.50C -0.55 5011.56C -2.22 6000.60C -0.76 13027.60C -51.04 8016.54C -45.43 $B4CAL2O3 BP MATERIAL PRINT The MCNP Input File Ch em Shim Power Peak #12 B4C/Al2O3 BPRAs RESEARCH 15 X 15 ASSEMBLY WITH B4CAL2O3 BPRA'S C CRYSTAL RIVER REACTOR #1 C box -200 200 -200 200 -200 200 1 0 -1 13 -14 19 20 FILL=1 VOL=6333455.62 2 1 -0.660 9 -10 11 -12 LAT=1 U=1 FILL=-8:1 -8:1 0:0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 1 1 1 1 1 2 4 11 12 4 1 1 1 1 2 10 5 13 5 9 1 1 1 1 1 4 13 4 3 5 1 1 1 1 1 1 4 9 4 9 1 1 1 1 1 1 1 4 13 4 1 1 1 1 1 1 1 1 4 5 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 C 10A & 12A2 MARK-B4Z ASSMBLY WITH 0 GD AND 0 BPRAS (33 TOTAL) 200 1 -0.660 30 -31 32 -33 LAT=1 VOL=2581.227 U=2 FILL=-8:8 -8:8 0:0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 2 2 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 2 2 20 20 20 20 20 14 20 20 20 14 20 20 20 20 20 2 2 20 20 20 14 20 20 20 20 20 20 20 14 20 20 20 2 2 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 2 2 20 20 14 20 20 14 20 20 20 14 20 20 14 20 20 2 2 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 2 2 20 20 20 20 20 20 20 14 20 20 20 20 20 20 20 2 2 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 2 2 20 20 14 20 20 14 20 20 20 14 20 20 14 20 20 2 2 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 2 2 20 20 20 14 20 20 20 20 20 20 20 14 20 20 20 2 2 20 20 20 20 20 14 20 20 20 14 20 20 20 20 20 2 2 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 2 2 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 C 14A MARK-B10I POWER PEAKING TEST ASSEMBLY 1 TOTAL 201 1 -0.660 30 -31 32 -33 LAT=1 U=3 VOL=2581.227 FILL=-8:8 -8:8 0:0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 3 3 30 30 30 31 30 30 30 30 30 30 30 31 30 30 30 3 3 30 30 30 30 30 15 30 30 30 15 30 30 30 30 30 3 3 30 31 30 14 30 30 30 30 30 30 30 14 30 31 30 3 3 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 3 3 30 30 15 30 30 14 30 30 30 14 30 30 15 30 30 3

PAGE 231

216 3 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 3 3 30 30 30 30 30 30 30 14 30 30 30 30 30 30 30 3 3 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 3 3 30 30 15 30 30 14 30 30 30 14 30 30 15 30 30 3 3 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 3 3 30 31 30 14 30 30 30 30 30 30 30 14 30 31 30 3 3 30 30 30 30 30 15 30 30 30 15 30 30 30 30 30 3 3 30 30 30 31 30 30 30 30 30 30 30 31 30 30 30 3 3 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 C 13A 13D MARK-B10I ASSMBLY WITH 8 GD AND 0 BPRAS (48 TOTAL) 202 1 -0.660 30 -31 32 -33 LAT=1 U=4 VOL=2581.227 FILL=-8:8 -8:8 0:0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 4 4 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 4 4 40 40 40 40 40 14 40 40 40 14 40 40 40 40 40 4 4 40 40 40 14 40 40 40 40 40 40 40 14 40 40 40 4 4 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 4 4 40 40 14 40 40 14 40 40 40 14 40 40 14 40 40 4 4 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 4 4 40 40 40 40 40 40 40 14 40 40 40 40 40 40 40 4 4 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 4 4 40 40 14 40 40 14 40 40 40 14 40 40 14 40 40 4 4 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 4 4 40 40 40 14 40 40 40 40 40 40 40 14 40 40 40 4 4 40 40 40 40 40 14 40 40 40 14 40 40 40 40 40 4 4 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 4 4 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 C 13B C E MARK-B10I ASSMBLY WITH 8 GD AND 0 BPRAS (8 TOTAL) 203 1 -0.660 30 -31 32 -33 LAT=1 U=5 VOL=2581.227 FILL=-8:8 -8:8 0:0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 5 5 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 5 5 50 50 50 50 50 14 50 50 50 14 50 50 50 50 50 5 5 50 50 50 14 50 50 50 50 50 50 50 14 50 50 50 5 5 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 5 5 50 50 14 50 50 14 50 50 50 14 50 50 14 50 50 5 5 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 5 5 50 50 50 50 50 50 50 14 50 50 50 50 50 50 50 5 5 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 5 5 50 50 14 50 50 14 50 50 50 14 50 50 14 50 50 5 5 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 5 5 50 50 50 14 50 50 50 50 50 50 50 14 50 50 50 5 5 50 50 50 50 50 14 50 50 50 14 50 50 50 50 50 5 5 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 5 5 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 C 14A MARK-B10I ASSMBLY WITH 8 GD AND 8 BPRAS (24 TOTAL) 207 1 -0.660 30 -31 32 -33 LAT=1 U=9 VOL=2581.227 FILL=-8:8 -8:8 0:0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 9 9 90 90 90 91 90 90 90 90 90 90 90 91 90 90 90 9 9 90 90 90 90 90 15 90 90 90 15 90 90 90 90 90 9 9 90 91 90 14 90 90 90 90 90 90 90 14 90 91 90 9 9 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 9 9 90 90 15 90 90 14 90 90 90 14 90 90 15 90 90 9 9 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 9 9 90 90 90 90 90 90 90 14 90 90 90 90 90 90 90 9 9 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 9 9 90 90 15 90 90 14 90 90 90 14 90 90 15 90 90 9 9 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 9 9 90 91 90 14 90 90 90 90 90 90 90 14 90 91 90 9 9 90 90 90 90 90 15 90 90 90 15 90 90 90 90 90 9 9 90 90 90 91 90 90 90 90 90 90 90 91 90 90 90 9 9 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 C 14B MARK-B10I ASSMBLY WITH 0 GD AND 0 BPRAS (8 TOTAL) 208 1 -0.660 30 -31 32 -33 LAT=1 U=10 VOL=2581.227 FILL=-8:8 -8:8 0:0 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10

PAGE 232

217 10 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10 10 100 100 100 100 100 14 100 100 100 14 100 100 100 100 100 10 10 100 100 100 14 100 100 100 100 100 100 100 14 100 100 100 10 10 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10 10 100 100 14 100 100 14 100 100 100 14 100 100 14 100 100 10 10 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10 10 100 100 100 100 100 100 100 14 100 100 100 100 100 100 100 10 10 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10 10 100 100 14 100 100 14 100 100 100 14 100 100 14 100 100 10 10 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10 10 100 100 100 14 100 100 100 100 100 100 100 14 100 100 100 10 10 100 100 100 100 100 14 100 100 100 14 100 100 100 100 100 10 10 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10 10 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 C 14C MARK-B10I ASSMBLY WITH 4 GD AND 0 BPRAS (8 TOTAL) 209 1 -0.660 30 -31 32 -33 LAT=1 U=11 VOL=2581.227 FILL=-8:8 -8:8 0:0 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 11 11 100 111 100 100 100 100 100 100 100 100 100 100 100 111 100 11 11 100 100 100 100 100 14 100 100 100 14 100 100 100 100 100 11 11 100 100 100 14 100 100 100 100 100 100 100 14 100 100 100 11 11 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 11 11 100 100 14 100 100 14 100 100 100 14 100 100 14 100 100 11 11 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 11 11 100 100 100 100 100 100 100 14 100 100 100 100 100 100 100 11 11 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 11 11 100 100 14 100 100 14 100 100 100 14 100 100 14 100 100 11 11 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 11 11 100 100 100 14 100 100 100 100 100 100 100 14 100 100 100 11 11 100 100 100 100 100 14 100 100 100 14 100 100 100 100 100 11 11 100 111 100 100 100 100 100 100 100 100 100 100 100 111 100 11 11 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 C 14D MARK-B10I ASSMBLY WITH 8 GD AND 0 BPRAS (8 TOTAL) 210 1 -0.660 30 -31 32 -33 LAT=1 U=12 VOL=2581.227 FILL=-8:8 -8:8 0:0 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 12 12 100 100 100 111 100 100 100 100 100 100 100 111 100 100 100 12 12 100 100 100 100 100 14 100 100 100 14 100 100 100 100 100 12 12 100 111 100 14 100 100 100 100 100 100 100 14 100 111 100 12 12 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 12 12 100 100 14 100 100 14 100 100 100 14 100 100 14 100 100 12 12 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 12 12 100 100 100 100 100 100 100 14 100 100 100 100 100 100 100 12 12 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 12 12 100 100 14 100 100 14 100 100 100 14 100 100 14 100 100 12 12 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 12 12 100 111 100 14 100 100 100 100 100 100 100 14 100 111 100 12 12 100 100 100 100 100 14 100 100 100 14 100 100 100 100 100 12 12 100 100 100 111 100 100 100 100 100 100 100 111 100 100 100 12 12 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 C 14E MARK-B10I ASSMBLY WITH 8 GD AND 8 BPRAS (24 TOTAL) 211 1 -0.660 30 -31 32 -33 LAT=1 U=13 VOL=2581.227 FILL=-8:8 -8:8 0:0 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 13 13 100 100 100 91 100 100 100 100 100 100 100 91 100 100 100 13 13 100 100 100 100 100 15 100 100 100 15 100 100 100 100 100 13 13 100 91 100 14 100 100 100 100 100 100 100 14 100 91 100 13 13 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 13 13 100 100 15 100 100 14 100 100 100 14 100 100 15 100 100 13 13 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 13 13 100 100 100 100 100 100 100 14 100 100 100 100 100 100 100 13 13 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 13 13 100 100 15 100 100 14 100 100 100 14 100 100 15 100 100 13 13 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 13 13 100 91 100 14 100 100 100 100 100 100 100 14 100 91 100 13 13 100 100 100 100 100 15 100 100 100 15 100 100 100 100 100 13 13 100 100 100 91 100 100 100 100 100 100 100 91 100 100 100 13 13 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 13

PAGE 233

218 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 C UNIVERSE 14 EMPTY GUIDE TUBE 3 1 -0.660 -4 U=14 $WATER HOLE VOL=259.275 4 3 -6.503 4 -5 U=14 $INTERIOR CLAD VOL=78.0098 5 1 -0.660 5 -6 U=14 $GUIDE TUBE WATER RADIUS VOL=114.4531 6 3 -6.503 6 -7 U=14 $GUIDE TUBE CLAD RADIUS VOL=60.665 7 1 -0.660 #3 #4 #5 #6 U=14 $UNIT CELL WATER VOL=237.207 C UNIVERSE 15 BPRA 8 4 -3.1 -4 U=15 $BPRA MATERIAL VOL=259.275 9 3 -6.503 4 -5 U=15 $INTERIOR CLAD VOL=78.0098 10 1 -0.660 5 -6 U=15 $GUIDE TUBE WATER RADIUS VOL=114.453 11 3 -6.503 6 -7 U=15 $GUIDE TUBE CLAD RADIUS VOL=60.665 12 1 -0.660 #8 #9 #10 #11 U=15 $UNIT CELL WATER VOL=237.207 C UNIVERSE 20 FUEL FOR 10A3 &12A2 ASSEMBLY (PRIMARY) 13 26 -10.201 -8 15 -16 U=20 $UO2 FUEL PELLET (PRIMARY) VOL=228.638 14 34 -10.201 -8 -15 U=20 $UO2 FUEL PELLET (BLANKET) VOL=10.544 15 34 -10.201 -8 16 U=20 $UO2 FUEL PELLET (BLANKET) VOL=10.544 16 0 8 -4 U=20 $GAP RADIUS VOL=9.5493 17 3 -6.503 4 -5 U=20 $FUEL PIN CLAD VOL=78.00976 18 1 -0.660 #13 #14 #15 #16 #17 U=20 $UNIT CELL WATER VOL=412.3249 C UNIVERSE 30 FUEL FOR 14A PIN TEST ASSEMBLY (PRIMARY) 19 21 -10.201 -8 15 -16 U=30 $UO2 FUEL PELLET (PRIMARY) VOL=228.638 20 22 -10.201 -8 -15 U=30 $UO2 FUEL PELLET (BLANKET) VOL=10.544 21 22 -10.201 -8 16 U=30 $UO2 FUEL PELLET (BLANKET) VOL=10.544 22 0 8 -4 U=30 $GAP RADIUS VOL=9.5493 23 3 -6.503 4 -5 U=30 $FUEL PIN CLAD VOL=78.00976 24 1 -0.660 #79 #80 #81 #82 #83 U=30 $UNIT CELL WATER VOL=412.3249 C UNIVERSE 31 GD FUEL ROD FOR PIN TEST 14A AND 14E 31 27 -9.635 -8 17 -18 U=31 $UO2 GDO FUEL PELLET (PRIMARY) VOL=215.2219 32 22 -10.201 -8 -17 U=31 $UO2 FUEL PELLET (BLANKET) VOL=17.25188 33 22 -10.201 -8 18 U=31 $UO2 FUEL PELLET (BLANKET) VOL=17.25188 34 0 8 -4 U=31 $GAP RADIUS VOL=9.549294 35 3 -6.503 4 -5 U=31 $FUEL PIN CLAD VOL=78.00976 36 1 -0.660 #85 #86 #87 #88 #89 U=31 $UNIT CELL WATER VOL=412.3249 C UNIVERSE 40 FUEL FOR 13A & 13D ASSEMBLY (PRIMARY) 25 30 -10.201 -8 15 -16 U=40 $UO2 FUEL PELLET (PRIMARY) VOL=228.638 26 34 -10.201 -8 -15 U=40 $UO2 FUEL PELLET (BLANKET) VOL=10.544 27 34 -10.201 -8 16 U=40 $UO2 FUEL PELLET (BLANKET) VOL=10.544 28 0 8 -4 U=40 $GAP RADIUS VOL=9.5493

PAGE 234

219 29 3 -6.503 4 -5 U=40 $FUEL PIN CLAD VOL=78.00976 30 1 -0.660 #25 #26 #27 #28 #29 U=40 $UNIT CELL WATER VOL=412.3249 C UNIVERSE 50 FUEL FOR 13B C E ASSEMBLY (PRIMARY) 37 33 -10.201 -8 15 -16 U=50 $UO2 FUEL PELLET (PRIMARY) VOL=228.638 38 34 -10.201 -8 -15 U=50 $UO2 FUEL PELLET (BLANKET) VOL=10.544 39 34 -10.201 -8 16 U=50 $UO2 FUEL PELLET (BLANKET) VOL=10.544 40 0 8 -4 U=50 $GAP RADIUS VOL=9.5493 41 3 -6.503 4 -5 U=50 $FUEL PIN CLAD VOL=78.00976 42 1 -0.660 #37 #38 #39 #40 #41 U=50 $UNIT CELL WATER VOL=412.3249 C UNIVERSE 90 FUEL FOR 14A ASSEMBLY (PRIMARY) 79 2 -10.201 -8 15 -16 U=90 $UO2 FUEL PELLET (PRIMARY) VOL=228.638 80 22 -10.201 -8 -15 U=90 $UO2 FUEL PELLET (BLANKET) VOL=10.544 81 22 -10.201 -8 16 U=90 $UO2 FUEL PELLET (BLANKET) VOL=10.544 82 0 8 -4 U=90 $GAP RADIUS VOL=9.5493 83 3 -6.503 4 -5 U=90 $FUEL PIN CLAD VOL=78.00976 84 1 -0.660 #79 #80 #81 #82 #83 U=90 $UNIT CELL WATER VOL=412.3249 C UNIVERSE 91 GD FUEL ROD FOR 14A AND 14E 85 25 -9.635 -8 17 -18 U=91 $UO2 GDO FUEL PELLET (PRIMARY) VOL=215.2219 86 22 -10.201 -8 -17 U=91 $UO2 FUEL PELLET (BLANKET) VOL=17.25188 87 22 -10.201 -8 18 U=91 $UO2 FUEL PELLET (BLANKET) VOL=17.25188 88 0 8 -4 U=91 $GAP RADIUS VOL=9.549294 89 3 -6.503 4 -5 U=91 $FUEL PIN CLAD VOL=78.00976 90 1 -0.660 #85 #86 #87 #88 #89 U=91 $UNIT CELL WATER VOL=412.3249 C UNIVERSE 100 FUEL FOR 14B 14C 14D 14E ASSEMBLIES 91 23 -10.201 -8 15 -16 U=100 $UO2 FUEL PELLET (PRIMARY) VOL=228.6378 92 22 -10.201 -8 -15 U=100 $UO2 FUEL PELLET (BLANKET) VOL=10.54397 93 22 -10.201 -8 16 U=100 $UO2 FUEL PELLET (BLANKET) VOL=10.54397 94 0 8 -4 U=100 $GAP RADIUS VOL=54929 95 3 -6.503 4 -5 U=100 $FUEL PIN CLAD VOL=78.00976 96 1 -0.660 #91 #92 #93 #94 #95 U=100 $UNIT CELL WATER VOL=412.3249 C UNIVERSE 111 GD FUEL ROD FOR 14C AND 14D 97 24 -9.635 -8 17 -18 U=111 $UO2 GDO FUEL PELLET (PRIMARY) VOL=215.2219 98 22 -10.201 -8 -17 U=111 $UO2 FUEL PELLET (BLANKET) VOL=17.25188 99 22 -10.201 -8 18 U=111 $UO2 FUEL PELLET (BLANKET) VOL=17.25188 100 0 8 -4 U=111 $GAP RADIUS VOL=9.549294 101 3 -6.503 4 -5 U=111 $FUEL PIN CLAD VOL=78.00976 102 1 -0.660 #97 #98 #99 #100 #101 U=111 $UNIT CELL WATER VOL=412.3249 C REACTOR BOUNDARY 997 1 -0.660 -1 -2 14 19 20 $AXIAL RELECTORS

PAGE 235

220 VOL=2035752.04 998 1 -0.660 -1 3 -13 19 20 VOL=2035752.04 999 0 1:-3:2:-19:-20 $VOID REGION OUTSIDE REACTOR VESSEL *1 CZ 180 $ REACTOR VESSEL *2 PZ 200 *3 PZ -200 30 PX -0.7215 31 PX 0.7215 32 PY -0.7215 33 PY 0.7215 C OUTSIDE OF UNIT CELL (1.443 PITCH) 4 CZ 0.4788 C CYLINDER BPRA / WATER HOLE / GAP RADIUS 5 CZ 0.5461 C CYLINDER INTERIOR CLAD RADIUS 6 CZ 0.6320 C CYLINDER WATER RADIUS GUIDE TUBE 7 CZ 0.6731 C CYLINDER CLAD RADIUS GUIDE TUBE 8 CZ 0.4699 C CYLINDER RADIUS OF FUEL PELLET 9 PX -10.905 10 PX 10.905 11 PY -10.905 12 PY 10.905 13 PZ -180 14 PZ 180 C PLANES OUTSIDE OF ASSEMBLY 15 PZ -164.8 16 PZ 164.8 17 PZ -155.13 18 PZ 155.13 *19 PX 0 *20 P 0 0 0 10.905 10.905 0 10.905 10.905 10.905 C PLANES FOR AXIAL BLANKET MODE N IMP:N 1.0 76R 0.0 KCODE 30000 1.5 10 50 5000 KSRC 1.443 2.886 0 1.443 21.8 0 20.357 21.8 0 1.443 43.6 0 20.357 43.6 0 42.157 43.6 0 1.443 65.4 0 20.357 65.4 0 42.157 65.4 0 63.957 65.4 0 1.443 87.2 0 20.357 87.2 0 42.157 87.2 0 63.957 87.2 0 85.757 87.2 0 1.443 109 0 20.357 109 0 42.157 109 0 63.957 109 0 85.757 109 0 107.557 109 0 1.443 130.8 0 20.357 130.8 0 42.157 130.8 0 63.957 130.8 0 85.757 130.8 0 1.443 152.6 0 20.357 152.6 0 42.157 152.6 0 M1 8016.60C 3.30E-01 1001.60C 6.65E-01

PAGE 236

221 5010.50C 1.90E-04 5011.56C 4.82E-03 C water with boron C FUEL FOR 14A (PRIMARY) 0.0452 ENRICH M2 92235.54C 0.015066652 92238.54C 0.318266348 8016.54C 0.666666 C FUEL FOR 14A PIN TEST (PRIMARY) 0.0452 ENRICH M21 92235.54C 0.015066652 92238.54C 0.318266348 8016.54C 0.666666 C FUEL FOR 14A -E (BLANKET) 0.02 ENRICH M22 92235.54C 0.00666666 92238.54C 0.32666634 8016.54C 0.666666 C FUEL FOR 14B -E (PRIMARY) 0.0466 ENRICH M23 92235.54C 0.015533318 92238.54C 0.317799682 8016.54C 0.666666 C FUEL FOR 14C & D (GdO MIX) 0.0396 ENRICH 0.03 GdO M24 92235.54C 0.012804 92238.54C 0.310529333 8016.54C 0.664666667 64154.60C 0.000325035 64155.60C 0.00224584 64156.60C 0.00314201 64157.60C 0.00242074 64158.60C 0.003866374 C FUEL FOR 14A & E (GdO MIX) 0.0316 ENRICH 0.06 GdO M25 92235.54C 0.009901333 92238.54C 0.303432 8016.54C 0.662666667 64154.60C 0.000650071 64155.60C 0.004491681 64156.60C 0.006284019 64157.60C 0.004841481 64158.60C 0.007732749 C FUEL FOR 14A & E PIN TEST (GdO MIX) 0.0316 ENRICH 0.06 GdO M27 92235.54C 0.009901333 92238.54C 0.303432 8016.54C 0.662666667 64154.60C 0.000650071 64155.60C 0.004491681 64156.60C 0.006284019 64157.60C 0.004841481 64158.60C 0.007732749 C FUEL FOR 10A3 13E (BLANKET) M34 92235.54C -0.0096 92236.60C -0.0187 92238.54C -0.965939 94239.15C -0.00525 94240.60C -0.00131 8016.54C -0.000799 C FUEL FOR 10A3 (PRIMARY) 0.01082 ENRICH M26 92235.54C 0.003606663 92238.54C 0.329726337 8016.54C 0.666666 C FUEL FOR 13D (PRIMARY) 0.0155 ENRICH M30 92235.54C 0.005166662 92238.54C 0.328166339 8016.54C 0.666666 C FUEL FOR 13E (PRIMARY) 0.01833 ENRICH M33 92235.54C 0.006109994 92238.54C 0.327223006 8016.54C 0.666666 M3 40000.60C 1.0 $ZIRCONIUM (APPROX. FOR ZIRCALLOY) M4 5010.50C -0.55 5011.56C -2.22 6000.60C -0.76 13027.60C -51.04 8016.54C -45.43 $B4CAL2O3 BP MATERIAL PRINT

PAGE 237

222 The MONTEBURNS Input File Chem Shim Power Peak #4 B4C/Al2O3 BPRAs RESEARCH CRYSTAL RIVER 1/8 CORE WITH B4CAL2O3 BPRA'S 4.66% ENRICH B let down PC Type of Operating System 13 Number of MCNP Materials to burn (fuel cells/BPRAs/chem shim) 1 MCNP material number 1 water and chem shim 2 MCNP material number #2 (will burn all cells with this mat) 21 22 MCNP material number #22 (will burn all cells with this mat) 23 24 25 27 34 26 30 33 4 3121196.0 volume of water 114318.98 Material #2 volume (cc) 22863.78 PIN TEST MATERIAL PRIMARY 40285.32 !#22 277109.01 !#23 2582.664 !#24 9469.7636 !#25 860.8876 !#27 PIN TEST MAT GD 58380.164 !#34 196171.234 !#26 284696.016 !#30 142508.996 !#33 7259.7 Material #4 volume (cc) 318 Power in MWt (for the entire system in MCNP) -180.88 Recov. energy/fis (MeV); if negative use for U235, ratio other isos 0 Total number of days burned (used if no feed) 5 Number of outer burn steps 50 Number of internal burn steps (multiple of 10) 1 Number of predictor steps (+1 on first step), 1 usually sufficient 0 Step number to restart after (0=beginning) PWRU50 number of default origen2 lib next line is origen2 lib location c:\Origen2\Libs .005 fractional importance (track isos with abs,fis,atom,mass fraction) 0 Intermediate keff calc. 0) No 1) Yes 1 Number of automatic tally isotopes, followed by list. 5010.50c 2 92235.54c 92238.54c 2 92235.54c 92238.54c 2 92235.54c 92238.54c 2 92235.54c 92238.54c 2 92235.54c 92238.54c 2 92235.54c 92238.54c 2 92235.54c 92238.54c 2 92235.54c 92238.54c 2 92235.54c

PAGE 238

223 92238.54c 2 92235.54c 92238.54c 2 92235.54c 92238.54c 1 5010.50C The MONTEBURNS Input File Chem Shim Power Peak #12 B4C/Al2O3 BPRAs RESEARCH CRYSTAL RIVER 1/8 CORE WITH B4CAL2O3 BPRA'S 4.66% ENRICH B let down PC Type of Operating System 13 Number of MCNP Materials to burn (fuel cells/BPRAs) 1 Water with chem shim 2 MCNP material number #2 (will burn all cells with this mat) 21 22 MCNP material number #22 (will burn all cells with this mat) 23 24 25 27 34 26 30 33 4 3121196.0 volume of water 91455.2 Material #2 volume (cc) 45727.56 PIN TEST MATERIAL PRIMARY 40285.32 !#22 277109.01 !#23 2582.664 !#24 9469.7636 !#25 860.8876 !#27 PIN TEST MAT GD 58380.164 !#34 196171.234 !#26 284696.016 !#30 142508.996 !#33 7259.7 Material #4 volume (cc) 318 Power in MWt (for the entire system in MCNP) -180.88 Recov. energy/fis (MeV); if negative use for U235, ratio other isos 0 Total number of days burned (used if no feed) 5 Number of outer burn steps 50 Number of internal burn steps (multiple of 10) 1 Number of predictor steps (+1 on first step), 1 usually sufficient 0 Step number to restart after (0=beginning) PWRU50 number of default origen2 lib next line is origen2 lib location c:\Origen2\Libs .005 fractional importance (track isos with abs,fis,atom,mass fraction) 0 Intermediate keff calc. 0) No 1) Yes 1 Number of automatic tally isotopes, followed by list. 5010.50c 2 92235.54c 92238.54c 2 92235.54c 92238.54c 2 92235.54c 92238.54c 2 92235.54c 92238.54c 2 92235.54c 92238.54c 2

PAGE 239

224 92235.54c 92238.54c 2 92235.54c 92238.54c 2 92235.54c 92238.54c 2 92235.54c 92238.54c 2 92235.54c 92238.54c 2 92235.54c 92238.54c 1 5010.50C The MONTEBURNS Feed File Chem Shim Power Peak #4 B4C/Al2O3 BPRAs Time Days Power MBMat Feed Begin&EndRates Remov. Fraction F.P.Removed Step Burned Fract. # # grams/day Group# 1 134 1.000 1 1 17.11 16.66 0 0.000 2 0 0.0 0.0 0 0.000 3 0 0.0 0.0 0 0.000 4 0 0.0 0.0 0 0.000 5 0 0.0 0.0 0 0.000 6 0 0.0 0.0 0 0.000 7 0 0.0 0.0 0 0.000 8 0 0.0 0.0 0 0.000 9 0 0.0 0.0 0 0.000 10 0 0.0 0.0 0 0.000 11 0 0.0 0.0 0 0.000 12 0 0.0 0.0 0 0.000 13 0 0.0 0.0 0 0.000 2 134 1.000 1 1 -1.0 13.88 0 0.000 2 0 0.0 0.0 0 0.000 3 0 0.0 0.0 0 0.000 4 0 0.0 0.0 0 0.000 5 0 0.0 0.0 0 0.000 6 0 0.0 0.0 0 0.000 7 0 0.0 0.0 0 0.000 8 0 0.0 0.0 0 0.000 9 0 0.0 0.0 0 0.000 10 0 0.0 0.0 0 0.000 11 0 0.0 0.0 0 0.000 12 0 0.0 0.0 0 0.000 13 0 0.0 0.0 0 0.000 3 134 1.000 1 1 -1.0 9.292 0 0.000 2 0 0.0 0.0 0 0.000 3 0 0.0 0.0 0 0.000 4 0 0.0 0.0 0 0.000 5 0 0.0 0.0 0 0.000 6 0 0.0 0.0 0 0.000 7 0 0.0 0.0 0 0.000 8 0 0.0 0.0 0 0.000 9 0 0.0 0.0 0 0.000 10 0 0.0 0.0 0 0.000 11 0 0.0 0.0 0 0.000 12 0 0.0 0.0 0 0.000 13 0 0.0 0.0 0 0.000 4 134 1.000 1 1 -1.0 4.819 0 0.000 2 0 0.0 0.0 0 0.000 3 0 0.0 0.0 0 0.000 4 0 0.0 0.0 0 0.000 5 0 0.0 0.0 0 0.000 6 0 0.0 0.0 0 0.000 7 0 0.0 0.0 0 0.000

PAGE 240

225 8 0 0.0 0.0 0 0.000 9 0 0.0 0.0 0 0.000 10 0 0.0 0.0 0 0.000 11 0 0.0 0.0 0 0.000 12 0 0.0 0.0 0 0.000 13 0 0.0 0.0 0 0.000 5 134 1.000 1 1 -1.0 0.000 0 0.000 2 0 0.0 0.0 0 0.000 3 0 0.0 0.0 0 0.000 4 0 0.0 0.0 0 0.000 5 0 0.0 0.0 0 0.000 6 0 0.0 0.0 0 0.000 7 0 0.0 0.0 0 0.000 8 0 0.0 0.0 0 0.000 9 0 0.0 0.0 0 0.000 10 0 0.0 0.0 0 0.000 11 0 0.0 0.0 0 0.000 12 0 0.0 0.0 0 0.000 13 0 0.0 0.0 0 0.000 1 # of feed specs 1 # of isos in Feed #1 5010 1.0 The MONTEBURNS Feed File Chem Shim Power Peak #12 B4C/Al2O3 BPRAs Time Days Power MBMat Feed Begin&EndRates Remov. Fraction F.P.Removed Step Burned Fract. # # grams/day Group# 1 134 1.000 1 1 17.11 16.66 0 0.000 2 0 0.0 0.0 0 0.000 3 0 0.0 0.0 0 0.000 4 0 0.0 0.0 0 0.000 5 0 0.0 0.0 0 0.000 6 0 0.0 0.0 0 0.000 7 0 0.0 0.0 0 0.000 8 0 0.0 0.0 0 0.000 9 0 0.0 0.0 0 0.000 10 0 0.0 0.0 0 0.000 11 0 0.0 0.0 0 0.000 12 0 0.0 0.0 0 0.000 13 0 0.0 0.0 0 0.000 2 134 1.000 1 1 -1.0 13.88 0 0.000 2 0 0.0 0.0 0 0.000 3 0 0.0 0.0 0 0.000 4 0 0.0 0.0 0 0.000 5 0 0.0 0.0 0 0.000 6 0 0.0 0.0 0 0.000 7 0 0.0 0.0 0 0.000 8 0 0.0 0.0 0 0.000 9 0 0.0 0.0 0 0.000 10 0 0.0 0.0 0 0.000 11 0 0.0 0.0 0 0.000 12 0 0.0 0.0 0 0.000 13 0 0.0 0.0 0 0.000 3 134 1.000 1 1 -1.0 9.292 0 0.000 2 0 0.0 0.0 0 0.000 3 0 0.0 0.0 0 0.000 4 0 0.0 0.0 0 0.000 5 0 0.0 0.0 0 0.000 6 0 0.0 0.0 0 0.000 7 0 0.0 0.0 0 0.000 8 0 0.0 0.0 0 0.000 9 0 0.0 0.0 0 0.000 10 0 0.0 0.0 0 0.000 11 0 0.0 0.0 0 0.000 12 0 0.0 0.0 0 0.000 13 0 0.0 0.0 0 0.000 4 134 1.000 1 1 -1.0 4.819 0 0.000 2 0 0.0 0.0 0 0.000 3 0 0.0 0.0 0 0.000 4 0 0.0 0.0 0 0.000

PAGE 241

226 5 0 0.0 0.0 0 0.000 6 0 0.0 0.0 0 0.000 7 0 0.0 0.0 0 0.000 8 0 0.0 0.0 0 0.000 9 0 0.0 0.0 0 0.000 10 0 0.0 0.0 0 0.000 11 0 0.0 0.0 0 0.000 12 0 0.0 0.0 0 0.000 13 0 0.0 0.0 0 0.000 5 134 1.000 1 1 -1.0 0.000 0 0.000 2 0 0.0 0.0 0 0.000 3 0 0.0 0.0 0 0.000 4 0 0.0 0.0 0 0.000 5 0 0.0 0.0 0 0.000 6 0 0.0 0.0 0 0.000 7 0 0.0 0.0 0 0.000 8 0 0.0 0.0 0 0.000 9 0 0.0 0.0 0 0.000 10 0 0.0 0.0 0 0.000 11 0 0.0 0.0 0 0.000 12 0 0.0 0.0 0 0.000 13 0 0.0 0.0 0 0.000 1 # of feed specs 1 # of isos in Feed #1 5010 1.0

PAGE 242

227The MONTEBURNS Output F ile Chem Shim Peak #4 B4C/Al2O3 BPRAs RESEARCH CRYSTAL RIVER 1/8 CORE WITH B4CAL2O3 BPRA'S 4.66% ENRICH B let Total Power (MW) = 3.18E+02 Days = 6.70E+02 # outer steps = 5, # inner steps = 50, # predictor steps = 1 Importance Fraction = 0.0050 Monteburns MCNP k-eff Versus Time days k-eff rel err nu avQfis eta 0m 0.00 0.99567 0.00069 2.469 181.133 0.734 1m 67.00 0.99777 0.00064 2.528 182.208 0.817 2m 201.00 0.99833 0.00064 2.604 183.524 0.965 3m 335.00 0.99795 0.00069 2.657 184.405 1.113 4m 469.00 0.99812 0.00064 2.693 185.088 1.109 5m 603.00 0.99844 0.00048 2.723 185.638 1.091 Monteburns Transport History Monteburns Transport History for material 1 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 0.000 1.07E+15 0.00E+00 0.00E+00 0.000E+00 0.000E+00 8.60E-02 0.00E+00 0.00E+00 3.00E-09 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 1 0.000 1.08E+15 0.00E+00 0.00E+00 0.000E+00 0.000E+00 7.33E-02 0.00E+00 0.00E+00 3.72E-09 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 2 0.000 1.10E+15 0.00E+00 0.00E+00 0.000E+00 0.000E+00 6.58E-02 0.00E+00 0.00E+00 3.75E-09 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 3 0.000 1.11E+15 0.00E+00 0.00E+00 0.000E+00 0.000E+00 5.72E-02 0.00E+00 0.00E+00 3.80E-09 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 4 0.000 1.13E+15 0.00E+00 0.00E+00 0.000E+00 0.000E+00 4.50E-02 0.00E+00 0.00E+00 3.71E-09 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 5 0.000 1.15E+15 0.00E+00 0.00E+00 0.000E+00 0.000E+00 3.17E-02 0.00E+00 0.00E+00 3.81E-09 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 Monteburns Transport History for material 2 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.092 4.90E+14 3.40E-02 5.53E+01 4.839E+02 0.000E+00 3.74E-01 4.98E-01 1.33E+00 1.61E-03 1.414 1.12E+00 1.50E+00 1.34E+00 4.84E-03 1.418 1 181.888 5.09E+14 3.28E-02 5.57E+01 4.877E+02 7.267E+00 4.27E-01 4.81E-01 1.13E+00 1.66E-03 1.343 1.19E+00 1.45E+00 1.21E+00 5.01E-03 1.390 2 182.998 5.20E+14 3.14E-02 5.49E+01 4.806E+02 1.443E+01 4.84E-01 4.62E-01 9.55E-01 1.67E-03 1.276 1.31E+00 1.40E+00 1.07E+00 5.04E-03 1.347 3 183.858 5.32E+14 3.06E-02 5.50E+01 4.807E+02 2.159E+01 5.27E-01 4.50E-01 8.54E-01 1.68E-03 1.227 1.40E+00 1.37E+00 9.80E-01 5.11E-03 1.318 4 184.559 5.09E+14 2.93E-02 5.05E+01 4.422E+02 2.818E+01 5.64E-01 4.32E-01 7.66E-01 1.68E-03 1.172 1.48E+00 1.33E+00 8.96E-01 5.12E-03 1.276 5 185.142 5.00E+14 2.85E-02 4.84E+01 4.237E+02 3.449E+01 5.91E-01 4.21E-01 7.13E-01 1.71E-03 1.136 1.54E+00 1.30E+00 8.41E-01 5.26E-03 1.248 Monteburns Transport History for material 3 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.092 4.97E+14 3.41E-02 1.13E+01 4.922E+02 0.000E+00 3.79E-01 5.00E-01 1.32E+00 1.53E-03 1.408 1.13E+00 1.50E+00 1.33E+00 4.58E-03 1.411 1 181.911 5.16E+14 3.27E-02 1.13E+01 4.921E+02 7.333E+00 4.24E-01 4.79E-01 1.13E+00 1.56E-03 1.344 1.18E+00 1.44E+00 1.22E+00 4.71E-03 1.392 2 183.003 5.41E+14 3.13E-02 1.14E+01 4.979E+02 1.475E+01 4.88E-01 4.60E-01 9.43E-01 1.65E-03 1.267 1.32E+00 1.39E+00 1.05E+00 4.98E-03 1.338 3 183.917 5.68E+14 3.03E-02 1.16E+01 5.094E+02 2.234E+01 5.33E-01 4.47E-01 8.37E-01 1.70E-03 1.214 1.42E+00 1.36E+00 9.60E-01 5.16E-03 1.305 4 184.704 5.38E+14 2.91E-02 1.06E+01 4.654E+02 2.927E+01 5.69E-01 4.30E-01 7.55E-01 1.73E-03 1.162 1.49E+00 1.32E+00 8.84E-01 5.30E-03 1.268 5 185.266 5.47E+14 2.85E-02 1.06E+01 4.631E+02 3.617E+01 5.96E-01 4.20E-01 7.05E-01 1.68E-03 1.129 1.56E+00 1.30E+00 8.35E-01 5.17E-03 1.242 Monteburns Transport History for material 4 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.151 1.55E+13 2.42E-02 4.39E-01 1.091E+01 0.000E+00 3.61E-01 3.55E-01 9.85E-01 1.30E-03 1.228 1.08E+00 1.07E+00 9.89E-01 3.89E-03 1.231 1 181.246 1.64E+13 2.38E-02 4.61E-01 1.143E+01 1.704E-01 3.62E-01 3.49E-01 9.65E-01 1.89E-03 1.247 1.07E+00 1.05E+00 9.80E-01 5.67E-03 1.256 2 181.360 2.01E+13 2.52E-02 6.01E-01 1.493E+01 3.928E-01 3.90E-01 3.70E-01 9.47E-01 2.05E-03 1.272 1.14E+00 1.11E+00 9.70E-01 6.14E-03 1.288 3 181.552 2.06E+13 2.56E-02 6.28E-01 1.559E+01 6.251E-01 3.84E-01 3.76E-01 9.79E-01 1.68E-03 1.318 1.12E+00 1.13E+00 1.01E+00 5.03E-03 1.337 4 181.687 1.94E+13 2.70E-02 6.27E-01 1.556E+01 8.569E-01 3.98E-01 3.96E-01 9.95E-01 1.72E-03 1.348 1.16E+00 1.19E+00 1.02E+00 5.15E-03 1.367 5 181.818 2.51E+13 2.94E-02 8.85E-01 2.196E+01 1.184E+00 3.97E-01 4.30E-01 1.08E+00 1.82E-03 1.421 1.15E+00 1.29E+00 1.12E+00 5.45E-03 1.443 Monteburns Transport History for material 5 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta

PAGE 243

228 (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.088 4.18E+14 3.50E-02 1.18E+02 4.250E+02 0.000E+00 3.76E-01 5.13E-01 1.36E+00 1.64E-03 1.428 1.12E+00 1.54E+00 1.37E+00 4.91E-03 1.431 1 181.737 4.05E+14 3.38E-02 1.11E+02 4.001E+02 5.963E+00 4.21E-01 4.96E-01 1.18E+00 1.66E-03 1.371 1.17E+00 1.49E+00 1.27E+00 5.01E-03 1.418 2 182.661 4.04E+14 3.25E-02 1.07E+02 3.864E+02 1.172E+01 4.69E-01 4.78E-01 1.02E+00 1.68E-03 1.317 1.29E+00 1.44E+00 1.12E+00 5.07E-03 1.381 3 183.376 4.05E+14 3.16E-02 1.05E+02 3.783E+02 1.736E+01 5.07E-01 4.65E-01 9.17E-01 1.74E-03 1.274 1.36E+00 1.41E+00 1.04E+00 5.27E-03 1.356 4 183.972 4.12E+14 3.09E-02 1.05E+02 3.781E+02 2.299E+01 5.35E-01 4.55E-01 8.51E-01 1.71E-03 1.242 1.42E+00 1.39E+00 9.80E-01 5.22E-03 1.337 5 184.487 4.11E+14 3.01E-02 1.02E+02 3.678E+02 2.847E+01 5.66E-01 4.43E-01 7.82E-01 1.76E-03 1.199 1.49E+00 1.36E+00 9.14E-01 5.38E-03 1.304 Monteburns Transport History for material 6 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.374 3.68E+14 1.41E-02 3.89E-01 1.505E+02 0.000E+00 1.83E+00 2.17E-01 1.19E-01 1.89E-03 0.264 9.29E-01 6.72E-01 7.24E-01 5.73E-03 1.044 1 182.029 3.56E+14 1.82E-02 4.88E-01 1.888E+02 3.054E+00 1.30E+00 2.80E-01 2.15E-01 1.53E-03 0.450 9.96E-01 8.67E-01 8.70E-01 4.67E-03 1.182 2 182.726 3.68E+14 2.50E-02 6.98E-01 2.704E+02 7.427E+00 7.47E-01 3.86E-01 5.17E-01 2.01E-03 0.891 1.18E+00 1.20E+00 1.02E+00 6.17E-03 1.319 3 183.316 3.48E+14 2.80E-02 7.44E-01 2.881E+02 1.209E+01 5.20E-01 4.33E-01 8.33E-01 1.55E-03 1.210 1.32E+00 1.35E+00 1.02E+00 4.76E-03 1.346 4 183.896 3.60E+14 2.70E-02 7.44E-01 2.882E+02 1.675E+01 5.42E-01 4.18E-01 7.71E-01 1.71E-03 1.176 1.42E+00 1.31E+00 9.24E-01 5.31E-03 1.298 5 184.408 3.58E+14 2.73E-02 7.50E-01 2.905E+02 2.145E+01 5.62E-01 4.22E-01 7.52E-01 1.94E-03 1.173 1.43E+00 1.33E+00 9.26E-01 6.00E-03 1.314 Monteburns Transport History for material 7 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.545 4.39E+14 1.00E-02 1.21E+00 1.278E+02 0.000E+00 2.01E+00 1.54E-01 7.66E-02 1.65E-03 0.177 9.04E-01 4.91E-01 5.43E-01 5.01E-03 0.876 1 182.462 4.65E+14 1.26E-02 1.61E+00 1.705E+02 2.828E+00 1.69E+00 1.92E-01 1.14E-01 1.64E-03 0.261 9.71E-01 6.15E-01 6.33E-01 5.07E-03 0.987 2 183.660 4.95E+14 1.82E-02 2.50E+00 2.645E+02 7.215E+00 1.19E+00 2.79E-01 2.34E-01 1.59E-03 0.496 1.16E+00 8.94E-01 7.72E-01 4.97E-03 1.139 3 184.269 5.34E+14 2.46E-02 3.67E+00 3.878E+02 1.365E+01 6.50E-01 3.78E-01 5.81E-01 1.59E-03 0.980 1.37E+00 1.22E+00 8.87E-01 4.98E-03 1.253 4 184.943 5.30E+14 2.53E-02 3.76E+00 3.969E+02 2.023E+01 5.90E-01 3.89E-01 6.59E-01 1.67E-03 1.074 1.47E+00 1.26E+00 8.57E-01 5.26E-03 1.247 5 185.512 5.24E+14 2.41E-02 3.56E+00 3.755E+02 2.646E+01 6.09E-01 3.71E-01 6.10E-01 1.65E-03 1.035 1.52E+00 1.21E+00 7.94E-01 5.24E-03 1.209 Monteburns Transport History for material 8 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.543 4.61E+14 1.01E-02 1.17E-01 1.354E+02 0.000E+00 2.12E+00 1.55E-01 7.33E-02 1.64E-03 0.170 9.37E-01 4.95E-01 5.29E-01 4.98E-03 0.861 1 182.511 4.96E+14 1.29E-02 1.61E-01 1.869E+02 3.100E+00 1.74E+00 1.98E-01 1.14E-01 1.61E-03 0.260 1.01E+00 6.31E-01 6.25E-01 4.97E-03 0.979 2 183.805 5.41E+14 1.94E-02 2.66E-01 3.088E+02 8.222E+00 1.20E+00 2.98E-01 2.48E-01 1.85E-03 0.520 1.25E+00 9.56E-01 7.67E-01 5.78E-03 1.136 3 184.496 5.82E+14 2.51E-02 3.72E-01 4.322E+02 1.539E+01 6.31E-01 3.87E-01 6.13E-01 1.73E-03 1.013 1.42E+00 1.25E+00 8.78E-01 5.45E-03 1.246 4 185.136 5.68E+14 2.50E-02 3.62E-01 4.209E+02 2.237E+01 5.94E-01 3.85E-01 6.48E-01 1.71E-03 1.062 1.47E+00 1.25E+00 8.49E-01 5.41E-03 1.241 5 185.703 5.81E+14 2.45E-02 3.65E-01 4.239E+02 2.940E+01 6.44E-01 3.78E-01 5.88E-01 1.67E-03 1.011 1.62E+00 1.23E+00 7.63E-01 5.27E-03 1.182 Monteburns Transport History for material 9 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 185.076 1.16E+13 2.85E-02 5.61E-01 9.610E+00 0.000E+00 1.39E+00 1.09E+00 7.87E-01 3.87E-03 1.090 1.40E+00 1.11E+00 7.87E-01 3.91E-03 1.090 1 185.156 1.24E+13 2.88E-02 6.07E-01 1.040E+01 1.368E-01 1.40E+00 1.10E+00 7.87E-01 4.28E-03 1.117 1.41E+00 1.12E+00 7.92E-01 4.33E-03 1.121 2 185.204 1.49E+13 2.87E-02 7.33E-01 1.256E+01 3.019E-01 1.43E+00 1.10E+00 7.66E-01 5.39E-03 1.134 1.43E+00 1.11E+00 7.77E-01 5.46E-03 1.143 3 185.177 1.55E+13 2.85E-02 7.64E-01 1.308E+01 4.738E-01 1.42E+00 1.09E+00 7.70E-01 5.87E-03 1.160 1.41E+00 1.11E+00 7.82E-01 5.94E-03 1.171 4 185.214 1.47E+13 2.93E-02 7.45E-01 1.276E+01 6.415E-01 1.45E+00 1.12E+00 7.76E-01 4.69E-03 1.180 1.44E+00 1.14E+00 7.90E-01 4.75E-03 1.192 5 185.210 1.99E+13 3.10E-02 1.07E+00 1.836E+01 8.828E-01 1.48E+00 1.19E+00 8.02E-01 5.62E-03 1.216 1.47E+00 1.20E+00 8.17E-01 5.69E-03 1.228 Monteburns Transport History for material 10 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.197 1.36E+14 1.92E-02 1.49E+01 7.599E+01 0.000E+00 3.76E-01 2.82E-01 7.51E-01 1.36E-03 1.063 1.12E+00 8.46E-01 7.54E-01 4.09E-03 1.065 1 182.143 1.33E+14 1.99E-02 1.52E+01 7.748E+01 1.155E+00 4.00E-01 2.92E-01 7.30E-01 1.45E-03 1.071 1.15E+00 8.76E-01 7.65E-01 4.35E-03 1.100 2 183.364 1.32E+14 2.07E-02 1.58E+01 8.077E+01 2.359E+00 4.30E-01 3.03E-01 7.06E-01 1.56E-03 1.082 1.23E+00 9.11E-01 7.39E-01 4.70E-03 1.111 3 184.194 1.31E+14 2.14E-02 1.63E+01 8.324E+01 3.600E+00 4.51E-01 3.15E-01 6.98E-01 1.63E-03 1.096 1.29E+00 9.46E-01 7.31E-01 4.90E-03 1.126 4 184.770 1.56E+14 2.24E-02 2.03E+01 1.035E+02 5.142E+00 4.69E-01 3.29E-01 7.01E-01 1.56E-03 1.114 1.35E+00 9.91E-01 7.35E-01 4.69E-03 1.145 5 185.339 1.71E+14 2.34E-02 2.33E+01 1.185E+02 6.909E+00 5.02E-01 3.43E-01 6.83E-01 1.55E-03 1.109 1.42E+00 1.03E+00 7.29E-01 4.66E-03 1.152 Monteburns Transport History for material 11 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.176 4.07E+14 2.17E-02 7.28E+01 2.559E+02 0.000E+00 3.66E-01 3.18E-01 8.67E-01 1.41E-03 1.151 1.09E+00 9.53E-01 8.71E-01 4.22E-03 1.154 1 182.862 4.20E+14 2.22E-02 7.77E+01 2.728E+02 4.065E+00 4.19E-01 3.25E-01 7.76E-01 1.46E-03 1.109 1.19E+00 9.78E-01 8.23E-01 4.40E-03 1.146

PAGE 244

229 2 184.661 4.33E+14 2.22E-02 8.03E+01 2.821E+02 8.269E+00 4.65E-01 3.26E-01 7.01E-01 1.61E-03 1.077 1.32E+00 9.83E-01 7.46E-01 4.86E-03 1.117 3 185.693 4.44E+14 2.20E-02 8.22E+01 2.887E+02 1.257E+01 5.13E-01 3.24E-01 6.31E-01 1.57E-03 1.032 1.41E+00 9.80E-01 6.95E-01 4.75E-03 1.093 4 186.432 4.47E+14 2.21E-02 8.34E+01 2.929E+02 1.694E+01 5.45E-01 3.25E-01 5.96E-01 1.59E-03 1.010 1.47E+00 9.88E-01 6.71E-01 4.83E-03 1.085 5 186.958 4.53E+14 2.21E-02 8.46E+01 2.972E+02 2.137E+01 5.71E-01 3.25E-01 5.69E-01 1.64E-03 0.991 1.53E+00 9.91E-01 6.46E-01 5.00E-03 1.073 Monteburns Transport History for material 12 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.157 4.40E+14 2.37E-02 4.32E+01 3.028E+02 0.000E+00 3.68E-01 3.47E-01 9.45E-01 1.44E-03 1.203 1.10E+00 1.04E+00 9.49E-01 4.33E-03 1.206 1 182.703 4.42E+14 2.39E-02 4.40E+01 3.090E+02 4.606E+00 4.21E-01 3.50E-01 8.31E-01 1.53E-03 1.151 1.19E+00 1.05E+00 8.85E-01 4.60E-03 1.191 2 184.419 4.40E+14 2.34E-02 4.32E+01 3.028E+02 9.120E+00 4.73E-01 3.44E-01 7.26E-01 1.53E-03 1.099 1.33E+00 1.04E+00 7.79E-01 4.62E-03 1.144 3 185.437 4.38E+14 2.30E-02 4.23E+01 2.970E+02 1.355E+01 5.14E-01 3.38E-01 6.57E-01 1.62E-03 1.057 1.41E+00 1.02E+00 7.26E-01 4.91E-03 1.121 4 186.154 4.40E+14 2.29E-02 4.26E+01 2.990E+02 1.801E+01 5.45E-01 3.37E-01 6.18E-01 1.58E-03 1.032 1.47E+00 1.03E+00 6.98E-01 4.81E-03 1.111 5 186.701 4.41E+14 2.29E-02 4.29E+01 3.010E+02 2.250E+01 5.73E-01 3.38E-01 5.89E-01 1.72E-03 1.014 1.53E+00 1.03E+00 6.72E-01 5.23E-03 1.099 Monteburns Transport History for material 13 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 0.000 6.82E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 1.25E+00 0.00E+00 0.00E+00 2.51E-07 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 1 0.000 7.16E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 8.96E-01 0.00E+00 0.00E+00 5.10E-07 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 2 0.000 7.72E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 3.70E-01 0.00E+00 0.00E+00 2.13E-07 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 3 0.000 8.20E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 6.54E-02 0.00E+00 0.00E+00 3.07E-07 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 4 0.000 8.08E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 1.28E-02 0.00E+00 0.00E+00 6.36E-07 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 5 0.000 8.00E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 9.09E-03 0.00E+00 0.00E+00 1.59E-06 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 The MONTEBURNS Output F ile Chem Shim Peak #12 B4C/Al2O3 BPRAs RESEARCH CRYSTAL RIVER 1/8 CORE WITH B4CAL2O3 BPRA'S 4.66% ENRICH B let Total Power (MW) = 3.18E+02 Days = 6.70E+02 # outer steps = 5, # inner steps = 50, # predictor steps = 1 Importance Fraction = 0.0050 Monteburns MCNP k-eff Versus Time days k-eff rel err nu avQfis eta 0m 0.00 1.00155 0.00054 2.468 181.130 0.757 1m 67.00 1.00410 0.00048 2.520 182.021 0.844 2m 201.00 1.00116 0.00078 2.592 183.269 1.006 3m 335.00 1.00383 0.00069 2.642 184.180 1.110 4m 469.00 1.00881 0.00073 2.681 184.891 1.118 5m 603.00 1.01047 0.00063 2.717 185.493 1.101 Monteburns Transport History Monteburns Transport History for material 1 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 0.000 1.03E+15 0.00E+00 0.00E+00 0.000E+00 0.000E+00 8.98E-02 0.00E+00 0.00E+00 2.25E-09 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 1 0.000 1.04E+15 0.00E+00 0.00E+00 0.000E+00 0.000E+00 7.72E-02 0.00E+00 0.00E+00 3.46E-09 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 2 0.000 1.07E+15 0.00E+00 0.00E+00 0.000E+00 0.000E+00 7.03E-02 0.00E+00 0.00E+00 2.94E-09 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 3 0.000 1.08E+15 0.00E+00 0.00E+00 0.000E+00 0.000E+00 6.07E-02 0.00E+00 0.00E+00 3.54E-09 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 4 0.000 1.09E+15 0.00E+00 0.00E+00 0.000E+00 0.000E+00 4.81E-02 0.00E+00 0.00E+00 4.67E-09 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 5 0.000 1.11E+15 0.00E+00 0.00E+00 0.000E+00 0.000E+00 3.48E-02 0.00E+00 0.00E+00 4.23E-09 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 Monteburns Transport History for material 2 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.091 4.70E+14 3.51E-02 4.38E+01 4.787E+02 0.000E+00 3.83E-01 5.14E-01 1.34E+00 1.67E-03 1.418 1.14E+00 1.54E+00 1.35E+00 5.00E-03 1.421 1 181.745 4.94E+14 3.40E-02 4.48E+01 4.901E+02 7.304E+00 4.27E-01 4.98E-01 1.17E+00 1.64E-03 1.360 1.19E+00 1.50E+00 1.26E+00 4.95E-03 1.410 2 182.767 4.99E+14 3.23E-02 4.33E+01 4.737E+02 1.436E+01 4.82E-01 4.75E-01 9.87E-01 1.70E-03 1.291 1.30E+00 1.44E+00 1.11E+00 5.13E-03 1.365 3 183.615 5.26E+14 3.14E-02 4.46E+01 4.879E+02 2.163E+01 5.20E-01 4.63E-01 8.89E-01 1.75E-03 1.247 1.37E+00 1.41E+00 1.03E+00 5.32E-03 1.342

PAGE 245

230 4 184.366 5.10E+14 3.03E-02 4.18E+01 4.574E+02 2.845E+01 5.57E-01 4.46E-01 8.02E-01 1.71E-03 1.197 1.45E+00 1.37E+00 9.45E-01 5.21E-03 1.306 5 185.011 4.98E+14 2.94E-02 3.97E+01 4.343E+02 3.492E+01 5.92E-01 4.34E-01 7.33E-01 1.73E-03 1.153 1.53E+00 1.34E+00 8.78E-01 5.30E-03 1.274 Monteburns Transport History for material 3 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.091 5.10E+14 3.49E-02 2.36E+01 5.167E+02 0.000E+00 3.79E-01 5.11E-01 1.35E+00 1.68E-03 1.421 1.13E+00 1.53E+00 1.36E+00 5.04E-03 1.424 1 181.775 5.25E+14 3.40E-02 2.38E+01 5.196E+02 7.743E+00 4.29E-01 4.97E-01 1.16E+00 1.62E-03 1.357 1.19E+00 1.50E+00 1.26E+00 4.89E-03 1.407 2 182.843 5.25E+14 3.23E-02 2.27E+01 4.973E+02 1.515E+01 4.81E-01 4.74E-01 9.87E-01 1.74E-03 1.291 1.29E+00 1.44E+00 1.11E+00 5.26E-03 1.367 3 183.706 5.23E+14 3.13E-02 2.21E+01 4.827E+02 2.234E+01 5.29E-01 4.61E-01 8.71E-01 1.65E-03 1.233 1.40E+00 1.40E+00 1.01E+00 5.01E-03 1.329 4 184.446 5.04E+14 3.01E-02 2.06E+01 4.497E+02 2.904E+01 5.61E-01 4.44E-01 7.91E-01 1.70E-03 1.187 1.46E+00 1.36E+00 9.33E-01 5.18E-03 1.297 5 185.066 4.75E+14 2.92E-02 1.89E+01 4.128E+02 3.519E+01 5.93E-01 4.32E-01 7.29E-01 1.74E-03 1.149 1.53E+00 1.33E+00 8.74E-01 5.34E-03 1.271 Monteburns Transport History for material 4 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.156 1.63E+13 2.60E-02 4.95E-01 1.229E+01 0.000E+00 3.77E-01 3.81E-01 1.01E+00 1.57E-03 1.245 1.13E+00 1.14E+00 1.02E+00 4.70E-03 1.248 1 181.211 1.80E+13 2.60E-02 5.49E-01 1.363E+01 2.031E-01 3.74E-01 3.80E-01 1.02E+00 1.27E-03 1.274 1.10E+00 1.14E+00 1.04E+00 3.81E-03 1.287 2 181.321 1.72E+13 2.69E-02 5.48E-01 1.359E+01 4.056E-01 4.03E-01 3.94E-01 9.78E-01 1.63E-03 1.286 1.18E+00 1.18E+00 1.00E+00 4.88E-03 1.302 3 181.424 1.94E+13 2.84E-02 6.55E-01 1.626E+01 6.479E-01 4.08E-01 4.16E-01 1.02E+00 1.47E-03 1.338 1.19E+00 1.25E+00 1.05E+00 4.41E-03 1.357 4 181.535 2.36E+13 2.96E-02 8.34E-01 2.069E+01 9.562E-01 4.09E-01 4.33E-01 1.06E+00 1.67E-03 1.383 1.19E+00 1.30E+00 1.09E+00 5.01E-03 1.404 5 181.669 2.88E+13 3.13E-02 1.08E+00 2.680E+01 1.356E+00 4.18E-01 4.58E-01 1.10E+00 1.53E-03 1.425 1.21E+00 1.38E+00 1.14E+00 4.60E-03 1.449 Monteburns Transport History for material 5 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.087 4.02E+14 3.60E-02 1.16E+02 4.201E+02 0.000E+00 3.82E-01 5.27E-01 1.38E+00 1.65E-03 1.435 1.14E+00 1.58E+00 1.39E+00 4.94E-03 1.438 1 181.618 3.90E+14 3.50E-02 1.10E+02 3.977E+02 5.925E+00 4.24E-01 5.13E-01 1.21E+00 1.65E-03 1.384 1.18E+00 1.54E+00 1.31E+00 4.95E-03 1.433 2 182.442 3.99E+14 3.35E-02 1.09E+02 3.932E+02 1.178E+01 4.65E-01 4.93E-01 1.06E+00 1.71E-03 1.337 1.27E+00 1.49E+00 1.18E+00 5.15E-03 1.404 3 183.151 3.97E+14 3.27E-02 1.06E+02 3.825E+02 1.748E+01 5.01E-01 4.80E-01 9.58E-01 1.74E-03 1.296 1.34E+00 1.46E+00 1.09E+00 5.28E-03 1.381 4 183.744 4.02E+14 3.20E-02 1.05E+02 3.805E+02 2.315E+01 5.31E-01 4.71E-01 8.87E-01 1.75E-03 1.264 1.40E+00 1.44E+00 1.03E+00 5.32E-03 1.364 5 184.301 4.01E+14 3.11E-02 1.03E+02 3.700E+02 2.866E+01 5.61E-01 4.58E-01 8.17E-01 1.71E-03 1.225 1.46E+00 1.41E+00 9.63E-01 5.21E-03 1.337 Monteburns Transport History for material 6 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.448 3.65E+14 1.22E-02 3.32E-01 1.286E+02 0.000E+00 1.73E+00 1.87E-01 1.08E-01 1.63E-03 0.243 9.54E-01 5.79E-01 6.07E-01 4.93E-03 0.939 1 181.933 3.39E+14 1.57E-02 4.01E-01 1.553E+02 2.511E+00 1.39E+00 2.42E-01 1.74E-01 1.38E-03 0.375 9.74E-01 7.49E-01 7.69E-01 4.20E-03 1.100 2 182.487 3.58E+14 2.50E-02 6.77E-01 2.622E+02 6.752E+00 8.52E-01 3.85E-01 4.52E-01 1.71E-03 0.810 1.19E+00 1.20E+00 1.01E+00 5.25E-03 1.304 3 183.105 3.48E+14 2.98E-02 7.91E-01 3.061E+02 1.170E+01 5.07E-01 4.61E-01 9.10E-01 1.58E-03 1.262 1.28E+00 1.44E+00 1.12E+00 4.89E-03 1.399 4 183.583 3.50E+14 2.89E-02 7.73E-01 2.991E+02 1.654E+01 5.40E-01 4.47E-01 8.28E-01 1.90E-03 1.218 1.38E+00 1.40E+00 1.01E+00 5.85E-03 1.354 5 184.115 3.65E+14 2.84E-02 7.94E-01 3.076E+02 2.151E+01 5.64E-01 4.40E-01 7.80E-01 1.89E-03 1.195 1.43E+00 1.38E+00 9.65E-01 5.84E-03 1.339 Monteburns Transport History for material 7 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.616 3.89E+14 9.27E-03 9.91E-01 1.046E+02 0.000E+00 1.93E+00 1.42E-01 7.38E-02 1.61E-03 0.171 8.97E-01 4.53E-01 5.05E-01 4.90E-03 0.836 1 182.307 4.09E+14 1.09E-02 1.23E+00 1.297E+02 2.152E+00 1.72E+00 1.67E-01 9.66E-02 1.65E-03 0.224 9.49E-01 5.33E-01 5.61E-01 5.08E-03 0.913 2 183.316 4.32E+14 1.50E-02 1.80E+00 1.905E+02 5.312E+00 1.40E+00 2.31E-01 1.65E-01 1.64E-03 0.369 1.09E+00 7.38E-01 6.80E-01 5.12E-03 1.055 3 183.812 4.68E+14 2.42E-02 3.16E+00 3.342E+02 1.085E+01 8.03E-01 3.72E-01 4.63E-01 1.67E-03 0.839 1.29E+00 1.19E+00 9.24E-01 5.23E-03 1.273 4 184.418 4.75E+14 2.69E-02 3.59E+00 3.791E+02 1.714E+01 5.77E-01 4.14E-01 7.18E-01 1.68E-03 1.124 1.42E+00 1.34E+00 9.41E-01 5.28E-03 1.304 5 185.012 4.66E+14 2.60E-02 3.41E+00 3.603E+02 2.312E+01 5.95E-01 4.01E-01 6.74E-01 1.69E-03 1.097 1.46E+00 1.30E+00 8.91E-01 5.35E-03 1.284 Monteburns Transport History for material 8 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.613 9.58E+14 9.35E-03 2.24E-01 2.602E+02 0.000E+00 1.98E+00 1.43E-01 7.25E-02 1.71E-03 0.168 9.33E-01 4.57E-01 4.90E-01 5.20E-03 0.819 1 182.950 1.04E+15 1.52E-02 3.94E-01 4.581E+02 7.599E+00 1.35E+00 2.32E-01 1.72E-01 1.66E-03 0.372 1.05E+00 7.42E-01 7.09E-01 5.16E-03 1.051 2 184.456 1.10E+15 2.60E-02 7.25E-01 8.425E+02 2.157E+01 6.26E-01 3.99E-01 6.38E-01 1.60E-03 1.013 1.34E+00 1.29E+00 9.58E-01 5.01E-03 1.272 3 185.773 1.08E+15 2.30E-02 6.30E-01 7.321E+02 3.371E+01 6.11E-01 3.55E-01 5.81E-01 1.72E-03 0.975 1.49E+00 1.16E+00 7.76E-01 5.47E-03 1.159 4 186.793 1.04E+15 2.22E-02 5.88E-01 6.827E+02 4.503E+01 6.63E-01 3.43E-01 5.18E-01 1.82E-03 0.918 1.60E+00 1.13E+00 7.07E-01 5.84E-03 1.115 5 187.455 9.84E+14 2.08E-02 5.24E-01 6.084E+02 5.512E+01 6.82E-01 3.22E-01 4.72E-01 1.53E-03 0.875 1.63E+00 1.07E+00 6.59E-01 4.96E-03 1.083

PAGE 246

231Monteburns Transport History for material 9 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 184.689 1.19E+13 2.81E-02 5.69E-01 9.753E+00 0.000E+00 1.40E+00 1.08E+00 7.71E-01 5.53E-03 1.079 1.42E+00 1.09E+00 7.71E-01 5.59E-03 1.079 1 184.693 1.38E+13 2.88E-02 6.78E-01 1.162E+01 1.527E-01 1.37E+00 1.10E+00 8.04E-01 5.02E-03 1.127 1.38E+00 1.12E+00 8.10E-01 5.08E-03 1.132 2 184.707 1.27E+13 2.88E-02 6.27E-01 1.075E+01 2.940E-01 1.38E+00 1.10E+00 7.97E-01 4.72E-03 1.153 1.38E+00 1.11E+00 8.10E-01 4.78E-03 1.163 3 184.700 1.43E+13 2.91E-02 7.17E-01 1.229E+01 4.555E-01 1.43E+00 1.11E+00 7.75E-01 5.31E-03 1.158 1.42E+00 1.12E+00 7.87E-01 5.37E-03 1.168 4 184.726 1.82E+13 3.03E-02 9.55E-01 1.636E+01 6.705E-01 1.44E+00 1.16E+00 8.05E-01 5.46E-03 1.200 1.43E+00 1.17E+00 8.20E-01 5.53E-03 1.212 5 184.754 2.19E+13 3.22E-02 1.22E+00 2.098E+01 9.463E-01 1.47E+00 1.24E+00 8.41E-01 4.45E-03 1.244 1.45E+00 1.25E+00 8.60E-01 4.50E-03 1.260 Monteburns Transport History for material 10 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.193 1.26E+14 2.06E-02 1.48E+01 7.533E+01 0.000E+00 3.91E-01 3.01E-01 7.71E-01 1.43E-03 1.079 1.17E+00 9.04E-01 7.75E-01 4.30E-03 1.082 1 181.932 1.22E+14 2.12E-02 1.48E+01 7.552E+01 1.125E+00 4.17E-01 3.10E-01 7.43E-01 1.48E-03 1.079 1.20E+00 9.31E-01 7.79E-01 4.44E-03 1.108 2 182.993 1.27E+14 2.16E-02 1.58E+01 8.073E+01 2.328E+00 4.37E-01 3.16E-01 7.24E-01 1.59E-03 1.093 1.25E+00 9.50E-01 7.59E-01 4.78E-03 1.122 3 183.844 1.27E+14 2.26E-02 1.66E+01 8.464E+01 3.589E+00 4.55E-01 3.31E-01 7.27E-01 1.57E-03 1.116 1.31E+00 9.95E-01 7.62E-01 4.71E-03 1.147 4 184.461 1.41E+14 2.34E-02 1.92E+01 9.764E+01 5.044E+00 4.74E-01 3.43E-01 7.23E-01 1.59E-03 1.129 1.36E+00 1.03E+00 7.59E-01 4.78E-03 1.161 5 185.038 1.66E+14 2.44E-02 2.36E+01 1.204E+02 6.838E+00 5.06E-01 3.58E-01 7.08E-01 1.57E-03 1.130 1.43E+00 1.08E+00 7.57E-01 4.75E-03 1.175 Monteburns Transport History for material 11 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.172 3.83E+14 2.29E-02 7.24E+01 2.544E+02 0.000E+00 3.78E-01 3.35E-01 8.87E-01 1.49E-03 1.164 1.13E+00 1.01E+00 8.91E-01 4.47E-03 1.167 1 182.574 4.05E+14 2.32E-02 7.78E+01 2.734E+02 4.074E+00 4.24E-01 3.39E-01 8.00E-01 1.50E-03 1.124 1.20E+00 1.02E+00 8.49E-01 4.51E-03 1.161 2 184.376 4.15E+14 2.28E-02 7.92E+01 2.780E+02 8.217E+00 4.67E-01 3.35E-01 7.18E-01 1.56E-03 1.087 1.32E+00 1.01E+00 7.66E-01 4.69E-03 1.128 3 185.503 4.29E+14 2.26E-02 8.13E+01 2.855E+02 1.247E+01 5.11E-01 3.31E-01 6.49E-01 1.68E-03 1.043 1.40E+00 1.00E+00 7.19E-01 5.06E-03 1.109 4 186.314 4.30E+14 2.26E-02 8.21E+01 2.883E+02 1.677E+01 5.43E-01 3.33E-01 6.13E-01 1.63E-03 1.022 1.46E+00 1.01E+00 6.92E-01 4.94E-03 1.101 5 186.901 4.34E+14 2.28E-02 8.37E+01 2.940E+02 2.115E+01 5.71E-01 3.35E-01 5.87E-01 1.68E-03 1.009 1.53E+00 1.02E+00 6.70E-01 5.12E-03 1.094 Monteburns Transport History for material 12 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.153 4.30E+14 2.50E-02 4.45E+01 3.122E+02 0.000E+00 3.78E-01 3.66E-01 9.69E-01 1.48E-03 1.218 1.13E+00 1.10E+00 9.73E-01 4.44E-03 1.221 1 182.445 4.28E+14 2.49E-02 4.44E+01 3.113E+02 4.640E+00 4.25E-01 3.65E-01 8.59E-01 1.54E-03 1.168 1.20E+00 1.10E+00 9.16E-01 4.64E-03 1.209 2 184.147 4.32E+14 2.41E-02 4.36E+01 3.058E+02 9.198E+00 4.73E-01 3.54E-01 7.48E-01 1.64E-03 1.113 1.33E+00 1.07E+00 8.05E-01 4.93E-03 1.160 3 185.269 4.19E+14 2.36E-02 4.16E+01 2.919E+02 1.355E+01 5.15E-01 3.47E-01 6.74E-01 1.63E-03 1.067 1.40E+00 1.05E+00 7.50E-01 4.92E-03 1.136 4 186.031 4.23E+14 2.35E-02 4.20E+01 2.949E+02 1.795E+01 5.46E-01 3.46E-01 6.34E-01 1.65E-03 1.044 1.46E+00 1.05E+00 7.19E-01 5.02E-03 1.126 5 186.643 4.29E+14 2.36E-02 4.29E+01 3.008E+02 2.243E+01 5.74E-01 3.47E-01 6.06E-01 1.70E-03 1.029 1.53E+00 1.06E+00 6.94E-01 5.17E-03 1.118 Monteburns Transport History for material 13 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 0.000 6.68E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 1.18E+00 0.00E+00 0.00E+00 3.38E-08 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 1 0.000 7.06E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 8.92E-01 0.00E+00 0.00E+00 1.35E-06 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 2 0.000 7.54E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 4.03E-01 0.00E+00 0.00E+00 5.54E-07 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 3 0.000 7.99E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 7.48E-02 0.00E+00 0.00E+00 8.41E-07 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 4 0.000 7.90E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 1.33E-02 0.00E+00 0.00E+00 1.50E-06 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 5 0.000 7.74E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 9.83E-03 0.00E+00 0.00E+00 5.94E-07 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 The MONTEBURNS Output File Chem Shim Peak #4 L-Carborane BPRAs Importance Fraction = 0.0050 Monteburns MCNP k-eff Versus Time days k-eff rel err nu avQfis eta 0m 0.00 0.99372 0.00046 2.469 181.133 0.738 1m 67.00 0.99884 0.00063 2.526 182.199 0.826 2m 201.00 0.99986 0.00075 2.604 183.508 0.964 3m 335.00 1.00138 0.00058 2.652 184.393 1.119

PAGE 247

232 4m 469.00 0.99984 0.00059 2.692 185.074 1.116 5m 603.00 0.99842 0.00062 2.725 185.624 1.092 Monteburns Transport History Monteburns Transport History for material 1 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 0.000 1.07E+15 0.00E+00 0.00E+00 0.000E+00 0.000E+00 8.65E-02 0.00E+00 0.00E+00 2.64E-09 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 1 0.000 1.08E+15 0.00E+00 0.00E+00 0.000E+00 0.000E+00 7.37E-02 0.00E+00 0.00E+00 3.64E-09 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 2 0.000 1.09E+15 0.00E+00 0.00E+00 0.000E+00 0.000E+00 6.63E-02 0.00E+00 0.00E+00 3.71E-09 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 3 0.000 1.11E+15 0.00E+00 0.00E+00 0.000E+00 0.000E+00 5.75E-02 0.00E+00 0.00E+00 3.66E-09 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 4 0.000 1.12E+15 0.00E+00 0.00E+00 0.000E+00 0.000E+00 4.51E-02 0.00E+00 0.00E+00 3.24E-09 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 5 0.000 1.15E+15 0.00E+00 0.00E+00 0.000E+00 0.000E+00 3.20E-02 0.00E+00 0.00E+00 5.12E-09 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 Monteburns Transport History for material 2 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.092 4.83E+14 3.44E-02 5.51E+01 4.819E+02 0.000E+00 3.75E-01 5.03E-01 1.34E+00 1.67E-03 1.419 1.12E+00 1.51E+00 1.35E+00 5.00E-03 1.422 1 181.881 4.96E+14 3.32E-02 5.49E+01 4.805E+02 7.160E+00 4.28E-01 4.86E-01 1.14E+00 1.68E-03 1.348 1.19E+00 1.46E+00 1.23E+00 5.06E-03 1.396 2 182.962 5.26E+14 3.20E-02 5.66E+01 4.950E+02 1.454E+01 4.87E-01 4.70E-01 9.64E-01 1.72E-03 1.282 1.32E+00 1.42E+00 1.08E+00 5.20E-03 1.354 3 183.847 5.32E+14 3.08E-02 5.53E+01 4.838E+02 2.175E+01 5.29E-01 4.54E-01 8.57E-01 1.71E-03 1.228 1.40E+00 1.38E+00 9.86E-01 5.19E-03 1.321 4 184.556 5.19E+14 2.98E-02 5.24E+01 4.581E+02 2.858E+01 5.66E-01 4.39E-01 7.76E-01 1.75E-03 1.180 1.48E+00 1.35E+00 9.08E-01 5.33E-03 1.285 5 185.150 4.99E+14 2.87E-02 4.87E+01 4.257E+02 3.492E+01 5.99E-01 4.23E-01 7.07E-01 1.72E-03 1.132 1.55E+00 1.31E+00 8.41E-01 5.27E-03 1.248 Monteburns Transport History for material 3 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.093 4.70E+14 3.42E-02 1.07E+01 4.664E+02 0.000E+00 3.76E-01 5.01E-01 1.33E+00 1.73E-03 1.415 1.12E+00 1.50E+00 1.34E+00 5.19E-03 1.418 1 181.914 4.96E+14 3.34E-02 1.11E+01 4.834E+02 7.203E+00 4.31E-01 4.88E-01 1.13E+00 1.58E-03 1.345 1.20E+00 1.47E+00 1.22E+00 4.76E-03 1.394 2 182.971 5.49E+14 3.19E-02 1.18E+01 5.159E+02 1.489E+01 4.87E-01 4.69E-01 9.63E-01 1.78E-03 1.281 1.32E+00 1.42E+00 1.07E+00 5.39E-03 1.353 3 183.897 5.62E+14 3.07E-02 1.17E+01 5.103E+02 2.249E+01 5.35E-01 4.52E-01 8.46E-01 1.67E-03 1.219 1.42E+00 1.38E+00 9.75E-01 5.08E-03 1.313 4 184.666 5.59E+14 2.94E-02 1.11E+01 4.869E+02 2.975E+01 5.72E-01 4.33E-01 7.57E-01 1.80E-03 1.164 1.49E+00 1.33E+00 8.90E-01 5.51E-03 1.272 5 185.292 5.37E+14 2.85E-02 1.04E+01 4.558E+02 3.654E+01 6.09E-01 4.21E-01 6.92E-01 1.66E-03 1.117 1.58E+00 1.30E+00 8.24E-01 5.09E-03 1.235 Monteburns Transport History for material 4 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.160 1.77E+13 2.41E-02 5.00E-01 1.242E+01 0.000E+00 3.68E-01 3.53E-01 9.61E-01 1.25E-03 1.213 1.10E+00 1.06E+00 9.65E-01 3.75E-03 1.216 1 181.228 1.74E+13 2.48E-02 5.06E-01 1.257E+01 1.873E-01 3.65E-01 3.63E-01 9.93E-01 1.56E-03 1.263 1.08E+00 1.09E+00 1.01E+00 4.69E-03 1.272 2 181.379 1.74E+13 2.53E-02 5.22E-01 1.296E+01 3.805E-01 3.84E-01 3.71E-01 9.66E-01 1.66E-03 1.284 1.12E+00 1.11E+00 9.92E-01 4.99E-03 1.301 3 181.509 1.88E+13 2.70E-02 6.04E-01 1.499E+01 6.038E-01 3.95E-01 3.96E-01 1.00E+00 1.57E-03 1.332 1.15E+00 1.19E+00 1.03E+00 4.70E-03 1.351 4 181.660 2.13E+13 2.73E-02 6.95E-01 1.724E+01 8.607E-01 3.78E-01 3.99E-01 1.06E+00 1.68E-03 1.388 1.10E+00 1.20E+00 1.09E+00 5.03E-03 1.408 5 181.791 2.73E+13 2.87E-02 9.40E-01 2.332E+01 1.208E+00 3.98E-01 4.20E-01 1.06E+00 1.73E-03 1.404 1.16E+00 1.26E+00 1.09E+00 5.20E-03 1.427 Monteburns Transport History for material 5 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.087 4.22E+14 3.52E-02 1.19E+02 4.303E+02 0.000E+00 3.77E-01 5.15E-01 1.37E+00 1.63E-03 1.429 1.12E+00 1.54E+00 1.37E+00 4.88E-03 1.432 1 181.733 4.09E+14 3.41E-02 1.13E+02 4.070E+02 6.065E+00 4.22E-01 5.00E-01 1.19E+00 1.64E-03 1.374 1.18E+00 1.50E+00 1.28E+00 4.93E-03 1.422 2 182.667 3.99E+14 3.28E-02 1.07E+02 3.852E+02 1.180E+01 4.72E-01 4.82E-01 1.02E+00 1.65E-03 1.319 1.29E+00 1.46E+00 1.13E+00 4.98E-03 1.384 3 183.365 3.99E+14 3.19E-02 1.04E+02 3.764E+02 1.741E+01 5.09E-01 4.69E-01 9.23E-01 1.66E-03 1.276 1.37E+00 1.43E+00 1.04E+00 5.03E-03 1.358 4 183.950 4.06E+14 3.11E-02 1.04E+02 3.742E+02 2.299E+01 5.37E-01 4.58E-01 8.53E-01 1.69E-03 1.242 1.42E+00 1.40E+00 9.82E-01 5.15E-03 1.337 5 184.477 4.10E+14 3.04E-02 1.03E+02 3.706E+02 2.851E+01 5.67E-01 4.48E-01 7.89E-01 1.76E-03 1.205 1.49E+00 1.37E+00 9.22E-01 5.36E-03 1.311 Monteburns Transport History for material 6 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.373 3.93E+14 1.38E-02 4.06E-01 1.574E+02 0.000E+00 1.74E+00 2.13E-01 1.22E-01 1.37E-03 0.270 9.38E-01 6.58E-01 7.01E-01 4.14E-03 1.023 1 182.008 3.68E+14 1.80E-02 4.99E-01 1.933E+02 3.126E+00 1.27E+00 2.78E-01 2.18E-01 1.60E-03 0.455 1.02E+00 8.60E-01 8.40E-01 4.88E-03 1.159 2 182.826 3.43E+14 2.60E-02 6.77E-01 2.622E+02 7.367E+00 7.99E-01 4.02E-01 5.03E-01 1.56E-03 0.874 1.27E+00 1.25E+00 9.82E-01 4.78E-03 1.294 3 183.403 3.53E+14 2.86E-02 7.68E-01 2.974E+02 1.218E+01 5.24E-01 4.41E-01 8.42E-01 1.38E-03 1.215 1.35E+00 1.38E+00 1.02E+00 4.26E-03 1.341 4 183.928 3.47E+14 2.81E-02 7.47E-01 2.893E+02 1.686E+01 5.45E-01 4.35E-01 7.99E-01 1.77E-03 1.200 1.40E+00 1.36E+00 9.76E-01 5.45E-03 1.334

PAGE 248

233 5 184.336 3.62E+14 2.74E-02 7.62E-01 2.951E+02 2.163E+01 5.63E-01 4.25E-01 7.54E-01 1.50E-03 1.175 1.44E+00 1.34E+00 9.30E-01 4.66E-03 1.316 Monteburns Transport History for material 7 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.552 4.33E+14 1.01E-02 1.21E+00 1.273E+02 0.000E+00 2.02E+00 1.55E-01 7.69E-02 1.77E-03 0.178 8.95E-01 4.95E-01 5.53E-01 5.38E-03 0.887 1 182.495 4.60E+14 1.26E-02 1.61E+00 1.695E+02 2.811E+00 1.69E+00 1.93E-01 1.15E-01 1.58E-03 0.262 9.79E-01 6.18E-01 6.31E-01 4.89E-03 0.984 2 183.654 5.00E+14 1.85E-02 2.57E+00 2.714E+02 7.313E+00 1.22E+00 2.83E-01 2.33E-01 1.65E-03 0.494 1.17E+00 9.08E-01 7.74E-01 5.15E-03 1.141 3 184.270 5.32E+14 2.51E-02 3.73E+00 3.942E+02 1.385E+01 6.48E-01 3.86E-01 5.95E-01 1.64E-03 0.993 1.37E+00 1.24E+00 9.06E-01 5.15E-03 1.265 4 184.929 5.34E+14 2.53E-02 3.79E+00 4.001E+02 2.049E+01 5.81E-01 3.89E-01 6.70E-01 1.69E-03 1.083 1.45E+00 1.26E+00 8.72E-01 5.34E-03 1.258 5 185.502 5.21E+14 2.42E-02 3.56E+00 3.759E+02 2.672E+01 6.05E-01 3.74E-01 6.18E-01 1.70E-03 1.044 1.50E+00 1.22E+00 8.09E-01 5.40E-03 1.223 Monteburns Transport History for material 8 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.539 4.32E+14 1.02E-02 1.10E-01 1.274E+02 0.000E+00 2.09E+00 1.56E-01 7.46E-02 2.15E-03 0.173 9.33E-01 4.97E-01 5.33E-01 6.51E-03 0.867 1 182.559 4.72E+14 1.30E-02 1.54E-01 1.793E+02 2.974E+00 1.67E+00 1.99E-01 1.20E-01 1.55E-03 0.272 9.78E-01 6.37E-01 6.52E-01 4.80E-03 1.003 2 183.631 5.48E+14 1.87E-02 2.59E-01 3.007E+02 7.961E+00 1.17E+00 2.86E-01 2.44E-01 1.93E-03 0.514 1.16E+00 9.18E-01 7.94E-01 6.00E-03 1.158 3 184.366 5.89E+14 2.62E-02 3.93E-01 4.566E+02 1.553E+01 6.31E-01 4.03E-01 6.39E-01 1.36E-03 1.037 1.41E+00 1.30E+00 9.23E-01 4.30E-03 1.276 4 185.054 5.82E+14 2.42E-02 3.59E-01 4.172E+02 2.245E+01 5.70E-01 3.72E-01 6.53E-01 1.69E-03 1.068 1.39E+00 1.21E+00 8.66E-01 5.34E-03 1.254 5 185.641 5.59E+14 2.35E-02 3.36E-01 3.903E+02 2.892E+01 6.11E-01 3.62E-01 5.92E-01 1.90E-03 1.017 1.53E+00 1.18E+00 7.72E-01 6.05E-03 1.192 Monteburns Transport History for material 9 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 185.221 1.23E+13 2.81E-02 5.87E-01 1.005E+01 0.000E+00 1.42E+00 1.07E+00 7.54E-01 5.24E-03 1.066 1.44E+00 1.09E+00 7.54E-01 5.30E-03 1.066 1 185.151 1.32E+13 2.86E-02 6.43E-01 1.102E+01 1.449E-01 1.41E+00 1.09E+00 7.77E-01 4.81E-03 1.108 1.42E+00 1.11E+00 7.81E-01 4.86E-03 1.112 2 185.131 1.24E+13 2.78E-02 5.93E-01 1.017E+01 2.785E-01 1.39E+00 1.06E+00 7.63E-01 5.47E-03 1.132 1.39E+00 1.08E+00 7.74E-01 5.54E-03 1.141 3 185.186 1.39E+13 2.85E-02 6.82E-01 1.168E+01 4.321E-01 1.42E+00 1.09E+00 7.70E-01 5.23E-03 1.158 1.42E+00 1.11E+00 7.81E-01 5.29E-03 1.167 4 185.213 1.56E+13 2.95E-02 7.94E-01 1.360E+01 6.109E-01 1.43E+00 1.13E+00 7.91E-01 6.23E-03 1.194 1.42E+00 1.14E+00 8.05E-01 6.30E-03 1.205 5 185.201 2.04E+13 3.09E-02 1.09E+00 1.874E+01 8.573E-01 1.47E+00 1.19E+00 8.08E-01 4.90E-03 1.222 1.46E+00 1.20E+00 8.24E-01 4.96E-03 1.234 Monteburns Transport History for material 10 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.198 1.42E+14 1.92E-02 1.55E+01 7.911E+01 0.000E+00 3.74E-01 2.81E-01 7.53E-01 1.41E-03 1.065 1.12E+00 8.44E-01 7.56E-01 4.23E-03 1.067 1 182.142 1.35E+14 1.99E-02 1.54E+01 7.873E+01 1.173E+00 4.03E-01 2.92E-01 7.26E-01 1.45E-03 1.067 1.15E+00 8.77E-01 7.60E-01 4.34E-03 1.095 2 183.394 1.27E+14 2.08E-02 1.52E+01 7.740E+01 2.326E+00 4.31E-01 3.04E-01 7.06E-01 1.52E-03 1.082 1.24E+00 9.15E-01 7.39E-01 4.57E-03 1.111 3 184.167 1.32E+14 2.14E-02 1.64E+01 8.346E+01 3.570E+00 4.49E-01 3.14E-01 7.00E-01 1.52E-03 1.096 1.29E+00 9.46E-01 7.32E-01 4.57E-03 1.125 4 184.760 1.43E+14 2.24E-02 1.86E+01 9.480E+01 4.983E+00 4.71E-01 3.28E-01 6.97E-01 1.55E-03 1.110 1.35E+00 9.88E-01 7.31E-01 4.66E-03 1.141 5 185.279 1.72E+14 2.34E-02 2.34E+01 1.194E+02 6.763E+00 4.99E-01 3.43E-01 6.88E-01 1.63E-03 1.115 1.41E+00 1.04E+00 7.34E-01 4.92E-03 1.157 Monteburns Transport History for material 11 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.175 3.98E+14 2.17E-02 7.14E+01 2.506E+02 0.000E+00 3.66E-01 3.18E-01 8.70E-01 1.44E-03 1.153 1.09E+00 9.55E-01 8.74E-01 4.33E-03 1.156 1 182.862 4.13E+14 2.22E-02 7.63E+01 2.679E+02 3.992E+00 4.19E-01 3.25E-01 7.76E-01 1.51E-03 1.108 1.19E+00 9.77E-01 8.23E-01 4.54E-03 1.145 2 184.625 4.36E+14 2.22E-02 8.10E+01 2.845E+02 8.232E+00 4.66E-01 3.26E-01 7.00E-01 1.56E-03 1.076 1.32E+00 9.83E-01 7.44E-01 4.72E-03 1.115 3 185.700 4.41E+14 2.20E-02 8.17E+01 2.870E+02 1.251E+01 5.11E-01 3.24E-01 6.34E-01 1.59E-03 1.033 1.41E+00 9.80E-01 6.94E-01 4.80E-03 1.090 4 186.422 4.50E+14 2.21E-02 8.40E+01 2.949E+02 1.691E+01 5.45E-01 3.25E-01 5.96E-01 1.63E-03 1.009 1.47E+00 9.88E-01 6.70E-01 4.95E-03 1.084 5 186.961 4.49E+14 2.21E-02 8.41E+01 2.953E+02 2.131E+01 5.71E-01 3.26E-01 5.70E-01 1.64E-03 0.993 1.53E+00 9.94E-01 6.48E-01 4.99E-03 1.075 Monteburns Transport History for material 12 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.155 4.44E+14 2.38E-02 4.37E+01 3.067E+02 0.000E+00 3.68E-01 3.48E-01 9.46E-01 1.50E-03 1.204 1.10E+00 1.04E+00 9.51E-01 4.49E-03 1.207 1 182.692 4.42E+14 2.39E-02 4.39E+01 3.081E+02 4.593E+00 4.20E-01 3.50E-01 8.32E-01 1.56E-03 1.152 1.19E+00 1.05E+00 8.86E-01 4.68E-03 1.191 2 184.414 4.34E+14 2.34E-02 4.26E+01 2.987E+02 9.045E+00 4.72E-01 3.44E-01 7.28E-01 1.57E-03 1.101 1.33E+00 1.04E+00 7.82E-01 4.73E-03 1.147 3 185.409 4.34E+14 2.30E-02 4.20E+01 2.950E+02 1.344E+01 5.14E-01 3.38E-01 6.58E-01 1.60E-03 1.056 1.41E+00 1.03E+00 7.27E-01 4.84E-03 1.120 4 186.133 4.34E+14 2.29E-02 4.21E+01 2.954E+02 1.784E+01 5.46E-01 3.37E-01 6.18E-01 1.60E-03 1.031 1.47E+00 1.03E+00 6.97E-01 4.86E-03 1.110 5 186.679 4.44E+14 2.29E-02 4.30E+01 3.018E+02 2.234E+01 5.70E-01 3.37E-01 5.91E-01 1.59E-03 1.016 1.53E+00 1.03E+00 6.74E-01 4.85E-03 1.101 Monteburns Transport History for material 13 total material for actinid e

PAGE 249

234 Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 0.000 6.60E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 1.83E+00 0.00E+00 0.00E+00 8.20E-07 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 1 0.000 7.07E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 1.25E+00 0.00E+00 0.00E+00 8.14E-07 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 2 0.000 7.86E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 4.40E-01 0.00E+00 0.00E+00 7.99E-07 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 3 0.000 8.20E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 4.65E-02 0.00E+00 0.00E+00 8.74E-07 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 4 0.000 8.24E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 1.86E-02 0.00E+00 0.00E+00 9.56E-07 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 5 0.000 8.07E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 1.82E-02 0.00E+00 0.00E+00 1.08E-06 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 The MONTEBURNS Output File Chem Shim Peak #12 L-Carborane BPRAs RESEARCH CRYSTAL RIVER 1/8 CORE WITH L-CARBORANE BPRA'S 4.66% ENRICH NO Total Power (MW) = 3.18E+02 Days = 6.70E+02 # outer steps = 5, # inner steps = 50, # predictor steps = 1 Importance Fraction = 0.0050 Monteburns MCNP k-eff Versus Time days k-eff rel err nu avQfis eta 0m 0.00 0.99351 0.00056 2.470 181.133 0.742 1m 67.00 0.99903 0.00057 2.528 182.204 0.856 2m 201.00 1.00173 0.00050 2.604 183.515 1.019 3m 335.00 0.99925 0.00051 2.654 184.389 1.103 4m 469.00 0.99949 0.00063 2.692 185.078 1.096 4m 469.00 0.99949 0.00063 2.692 185.078 1.096 Monteburns Transport History Monteburns Transport History for material 1 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 0.000 1.07E+15 0.00E+00 0.00E+00 0.000E+00 0.000E+00 8.65E-02 0.00E+00 0.00E+00 2.34E-09 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 1 0.000 1.08E+15 0.00E+00 0.00E+00 0.000E+00 0.000E+00 7.39E-02 0.00E+00 0.00E+00 4.31E-09 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 2 0.000 1.09E+15 0.00E+00 0.00E+00 0.000E+00 0.000E+00 6.62E-02 0.00E+00 0.00E+00 3.51E-09 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 3 0.000 1.11E+15 0.00E+00 0.00E+00 0.000E+00 0.000E+00 5.75E-02 0.00E+00 0.00E+00 4.37E-09 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 4 0.000 1.12E+15 0.00E+00 0.00E+00 0.000E+00 0.000E+00 4.51E-02 0.00E+00 0.00E+00 4.20E-09 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 4 0.000 1.12E+15 0.00E+00 0.00E+00 0.000E+00 0.000E+00 4.51E-02 0.00E+00 0.00E+00 4.20E-09 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 Monteburns Transport History for material 2 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.090 4.66E+14 3.44E-02 4.26E+01 4.655E+02 0.000E+00 3.77E-01 5.04E-01 1.34E+00 1.63E-03 1.417 1.12E+00 1.51E+00 1.34E+00 4.90E-03 1.420 1 181.879 5.00E+14 3.32E-02 4.44E+01 4.851E+02 7.229E+00 4.29E-01 4.86E-01 1.13E+00 1.62E-03 1.346 1.20E+00 1.46E+00 1.22E+00 4.86E-03 1.395 2 182.980 5.22E+14 3.20E-02 4.50E+01 4.919E+02 1.456E+01 4.86E-01 4.71E-01 9.68E-01 1.71E-03 1.285 1.32E+00 1.43E+00 1.08E+00 5.18E-03 1.357 3 183.844 5.30E+14 3.08E-02 4.41E+01 4.818E+02 2.174E+01 5.30E-01 4.53E-01 8.54E-01 1.74E-03 1.226 1.41E+00 1.38E+00 9.82E-01 5.30E-03 1.319 4 184.559 5.24E+14 2.98E-02 4.23E+01 4.623E+02 2.863E+01 5.67E-01 4.39E-01 7.74E-01 1.73E-03 1.178 1.49E+00 1.35E+00 9.06E-01 5.28E-03 1.284 4 184.559 5.24E+14 2.98E-02 4.23E+01 4.623E+02 2.863E+01 5.67E-01 4.39E-01 7.74E-01 1.73E-03 1.178 1.49E+00 1.35E+00 9.06E-01 5.28E-03 1.284 Monteburns Transport History for material 3 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.092 4.96E+14 3.41E-02 2.24E+01 4.905E+02 0.000E+00 3.76E-01 4.99E-01 1.33E+00 1.61E-03 1.413 1.12E+00 1.50E+00 1.33E+00 4.84E-03 1.416 1 181.900 5.25E+14 3.34E-02 2.34E+01 5.116E+02 7.623E+00 4.29E-01 4.89E-01 1.14E+00 1.59E-03 1.349 1.19E+00 1.47E+00 1.23E+00 4.78E-03 1.398 2 183.033 5.42E+14 3.21E-02 2.34E+01 5.118E+02 1.525E+01 4.92E-01 4.72E-01 9.59E-01 1.70E-03 1.279 1.33E+00 1.43E+00 1.07E+00 5.13E-03 1.352 3 183.930 5.28E+14 3.06E-02 2.18E+01 4.768E+02 2.235E+01 5.34E-01 4.50E-01 8.43E-01 1.75E-03 1.218 1.41E+00 1.37E+00 9.71E-01 5.32E-03 1.311 4 184.623 5.14E+14 2.97E-02 2.07E+01 4.522E+02 2.909E+01 5.66E-01 4.37E-01 7.73E-01 1.74E-03 1.177 1.48E+00 1.34E+00 9.06E-01 5.31E-03 1.283 4 184.623 5.14E+14 2.97E-02 2.07E+01 4.522E+02 2.909E+01 5.66E-01 4.37E-01 7.73E-01 1.74E-03 1.177 1.48E+00 1.34E+00 9.06E-01 5.31E-03 1.283 Monteburns Transport History for material 4 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta

PAGE 250

235 (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.166 1.64E+13 2.45E-02 4.70E-01 1.167E+01 0.000E+00 3.69E-01 3.58E-01 9.72E-01 1.41E-03 1.221 1.10E+00 1.07E+00 9.77E-01 4.22E-03 1.224 1 181.247 1.93E+13 2.44E-02 5.54E-01 1.376E+01 2.050E-01 3.66E-01 3.58E-01 9.76E-01 1.41E-03 1.253 1.07E+00 1.07E+00 1.00E+00 4.22E-03 1.268 2 181.394 1.87E+13 2.55E-02 5.65E-01 1.403E+01 4.140E-01 3.90E-01 3.74E-01 9.59E-01 1.59E-03 1.279 1.14E+00 1.12E+00 9.84E-01 4.79E-03 1.296 3 181.541 2.18E+13 2.70E-02 7.01E-01 1.740E+01 6.733E-01 3.92E-01 3.96E-01 1.01E+00 1.53E-03 1.337 1.14E+00 1.19E+00 1.04E+00 4.60E-03 1.356 4 181.716 2.11E+13 2.69E-02 6.79E-01 1.686E+01 9.245E-01 3.86E-01 3.95E-01 1.02E+00 1.88E-03 1.366 1.12E+00 1.19E+00 1.05E+00 5.66E-03 1.387 4 181.716 2.11E+13 2.69E-02 6.79E-01 1.686E+01 9.245E-01 3.86E-01 3.95E-01 1.02E+00 1.88E-03 1.366 1.12E+00 1.19E+00 1.05E+00 5.66E-03 1.387 Monteburns Transport History for material 5 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.088 4.24E+14 3.53E-02 1.20E+02 4.333E+02 0.000E+00 3.77E-01 5.16E-01 1.37E+00 1.62E-03 1.431 1.12E+00 1.55E+00 1.38E+00 4.87E-03 1.435 1 181.731 4.00E+14 3.41E-02 1.10E+02 3.981E+02 5.932E+00 4.22E-01 4.99E-01 1.18E+00 1.64E-03 1.374 1.18E+00 1.50E+00 1.28E+00 4.94E-03 1.422 2 182.647 3.98E+14 3.28E-02 1.06E+02 3.841E+02 1.166E+01 4.71E-01 4.82E-01 1.02E+00 1.70E-03 1.320 1.29E+00 1.46E+00 1.13E+00 5.13E-03 1.385 3 183.353 4.06E+14 3.19E-02 1.06E+02 3.827E+02 1.736E+01 5.08E-01 4.69E-01 9.23E-01 1.71E-03 1.277 1.37E+00 1.43E+00 1.04E+00 5.18E-03 1.358 4 183.960 4.06E+14 3.11E-02 1.04E+02 3.750E+02 2.295E+01 5.38E-01 4.58E-01 8.51E-01 1.68E-03 1.241 1.43E+00 1.40E+00 9.81E-01 5.11E-03 1.337 4 183.960 4.06E+14 3.11E-02 1.04E+02 3.750E+02 2.295E+01 5.38E-01 4.58E-01 8.51E-01 1.68E-03 1.241 1.43E+00 1.40E+00 9.81E-01 5.11E-03 1.337 Monteburns Transport History for material 6 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.380 3.84E+14 1.37E-02 3.95E-01 1.530E+02 0.000E+00 1.77E+00 2.12E-01 1.20E-01 1.51E-03 0.265 9.03E-01 6.54E-01 7.24E-01 4.56E-03 1.043 1 182.011 3.56E+14 1.82E-02 4.88E-01 1.889E+02 3.056E+00 1.30E+00 2.81E-01 2.16E-01 1.55E-03 0.452 1.01E+00 8.69E-01 8.60E-01 4.73E-03 1.174 2 182.740 3.54E+14 2.57E-02 6.92E-01 2.678E+02 7.387E+00 7.71E-01 3.97E-01 5.15E-01 1.74E-03 0.889 1.23E+00 1.23E+00 9.99E-01 5.34E-03 1.306 3 183.373 3.62E+14 2.84E-02 7.85E-01 3.041E+02 1.231E+01 5.17E-01 4.39E-01 8.50E-01 1.69E-03 1.223 1.31E+00 1.37E+00 1.04E+00 5.21E-03 1.358 4 183.902 3.38E+14 2.74E-02 7.11E-01 2.751E+02 1.676E+01 5.52E-01 4.25E-01 7.69E-01 1.68E-03 1.174 1.43E+00 1.33E+00 9.34E-01 5.18E-03 1.304 4 183.902 3.38E+14 2.74E-02 7.11E-01 2.751E+02 1.676E+01 5.52E-01 4.25E-01 7.69E-01 1.68E-03 1.174 1.43E+00 1.33E+00 9.34E-01 5.18E-03 1.304 Monteburns Transport History for material 7 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.540 3.87E+14 1.01E-02 1.07E+00 1.134E+02 0.000E+00 2.03E+00 1.55E-01 7.63E-02 1.59E-03 0.177 9.21E-01 4.94E-01 5.36E-01 4.85E-03 0.869 1 182.403 4.14E+14 1.24E-02 1.42E+00 1.495E+02 2.480E+00 1.75E+00 1.90E-01 1.09E-01 1.67E-03 0.249 9.62E-01 6.06E-01 6.30E-01 5.14E-03 0.983 2 183.502 4.46E+14 1.74E-02 2.16E+00 2.279E+02 6.259E+00 1.27E+00 2.67E-01 2.09E-01 1.62E-03 0.453 1.14E+00 8.54E-01 7.46E-01 5.04E-03 1.118 3 184.117 4.77E+14 2.42E-02 3.23E+00 3.406E+02 1.191E+01 7.29E-01 3.72E-01 5.10E-01 1.67E-03 0.899 1.32E+00 1.19E+00 9.02E-01 5.23E-03 1.262 4 184.704 4.91E+14 2.54E-02 3.49E+00 3.690E+02 1.803E+01 5.75E-01 3.90E-01 6.79E-01 1.57E-03 1.092 1.43E+00 1.26E+00 8.79E-01 4.95E-03 1.263 4 184.704 4.91E+14 2.54E-02 3.49E+00 3.690E+02 1.803E+01 5.75E-01 3.90E-01 6.79E-01 1.57E-03 1.092 1.43E+00 1.26E+00 8.79E-01 4.95E-03 1.263 Monteburns Transport History for material 8 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.547 9.18E+14 9.90E-03 2.27E-01 2.635E+02 0.000E+00 2.02E+00 1.52E-01 7.51E-02 1.55E-03 0.174 9.07E-01 4.84E-01 5.33E-01 4.71E-03 0.866 1 183.208 1.03E+15 1.77E-02 4.59E-01 5.333E+02 8.845E+00 1.28E+00 2.71E-01 2.11E-01 1.59E-03 0.443 1.13E+00 8.67E-01 7.69E-01 4.94E-03 1.104 2 184.798 1.12E+15 2.59E-02 7.36E-01 8.545E+02 2.302E+01 6.32E-01 3.98E-01 6.30E-01 1.64E-03 1.010 1.44E+00 1.29E+00 8.96E-01 5.18E-03 1.234 3 186.065 1.10E+15 2.27E-02 6.34E-01 7.362E+02 3.523E+01 6.13E-01 3.50E-01 5.70E-01 1.61E-03 0.967 1.52E+00 1.14E+00 7.55E-01 5.14E-03 1.145 4 186.881 1.07E+15 2.13E-02 5.85E-01 6.790E+02 4.649E+01 6.49E-01 3.29E-01 5.07E-01 1.67E-03 0.909 1.58E+00 1.09E+00 6.88E-01 5.34E-03 1.101 4 186.881 1.07E+15 2.13E-02 5.85E-01 6.790E+02 4.649E+01 6.49E-01 3.29E-01 5.07E-01 1.67E-03 0.909 1.58E+00 1.09E+00 6.88E-01 5.34E-03 1.101 Monteburns Transport History for material 9 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 185.125 1.23E+13 2.85E-02 5.92E-01 1.013E+01 0.000E+00 1.40E+00 1.09E+00 7.80E-01 4.91E-03 1.087 1.42E+00 1.10E+00 7.80E-01 4.97E-03 1.087 1 185.152 1.47E+13 2.87E-02 7.18E-01 1.229E+01 1.616E-01 1.42E+00 1.10E+00 7.72E-01 5.03E-03 1.105 1.43E+00 1.11E+00 7.77E-01 5.09E-03 1.110 2 185.171 1.31E+13 2.83E-02 6.38E-01 1.093E+01 3.052E-01 1.46E+00 1.08E+00 7.41E-01 5.92E-03 1.113 1.46E+00 1.10E+00 7.52E-01 5.99E-03 1.122 3 185.197 1.60E+13 2.91E-02 8.04E-01 1.378E+01 4.863E-01 1.42E+00 1.11E+00 7.87E-01 4.83E-03 1.173 1.41E+00 1.13E+00 8.00E-01 4.89E-03 1.183 4 185.195 1.53E+13 2.91E-02 7.70E-01 1.319E+01 6.596E-01 1.44E+00 1.12E+00 7.76E-01 5.51E-03 1.180 1.43E+00 1.13E+00 7.90E-01 5.57E-03 1.192 4 185.195 1.53E+13 2.91E-02 7.70E-01 1.319E+01 6.596E-01 1.44E+00 1.12E+00 7.76E-01 5.51E-03 1.180 1.43E+00 1.13E+00 7.90E-01 5.57E-03 1.192 Monteburns Transport History for material 10 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.196 1.44E+14 1.92E-02 1.57E+01 8.020E+01 0.000E+00 3.74E-01 2.82E-01 7.53E-01 1.32E-03 1.065 1.12E+00 8.45E-01 7.56E-01 3.95E-03 1.067 1 182.137 1.33E+14 2.00E-02 1.53E+01 7.808E+01 1.164E+00 4.00E-01 2.94E-01 7.34E-01 1.45E-03 1.074 1.15E+00 8.81E-01 7.69E-01 4.35E-03 1.103

PAGE 251

236 2 183.368 1.28E+14 2.07E-02 1.52E+01 7.763E+01 2.321E+00 4.30E-01 3.02E-01 7.03E-01 1.55E-03 1.079 1.23E+00 9.08E-01 7.36E-01 4.65E-03 1.108 3 184.163 1.34E+14 2.14E-02 1.66E+01 8.448E+01 3.580E+00 4.49E-01 3.13E-01 6.97E-01 1.48E-03 1.094 1.29E+00 9.43E-01 7.30E-01 4.46E-03 1.124 4 184.773 1.47E+14 2.23E-02 1.91E+01 9.750E+01 5.033E+00 4.71E-01 3.28E-01 6.96E-01 1.53E-03 1.108 1.35E+00 9.87E-01 7.29E-01 4.60E-03 1.139 4 184.773 1.47E+14 2.23E-02 1.91E+01 9.750E+01 5.033E+00 4.71E-01 3.28E-01 6.96E-01 1.53E-03 1.108 1.35E+00 9.87E-01 7.29E-01 4.60E-03 1.139 Monteburns Transport History for material 11 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.175 3.97E+14 2.17E-02 7.12E+01 2.501E+02 0.000E+00 3.66E-01 3.18E-01 8.70E-01 1.40E-03 1.153 1.09E+00 9.54E-01 8.74E-01 4.20E-03 1.156 1 182.859 4.19E+14 2.22E-02 7.74E+01 2.719E+02 4.051E+00 4.17E-01 3.25E-01 7.80E-01 1.50E-03 1.112 1.18E+00 9.78E-01 8.27E-01 4.51E-03 1.149 2 184.647 4.30E+14 2.22E-02 8.00E+01 2.809E+02 8.237E+00 4.66E-01 3.26E-01 7.00E-01 1.55E-03 1.076 1.32E+00 9.85E-01 7.44E-01 4.66E-03 1.116 3 185.689 4.36E+14 2.20E-02 8.06E+01 2.830E+02 1.245E+01 5.10E-01 3.23E-01 6.33E-01 1.59E-03 1.032 1.41E+00 9.77E-01 6.93E-01 4.81E-03 1.090 4 186.410 4.50E+14 2.21E-02 8.40E+01 2.951E+02 1.685E+01 5.44E-01 3.25E-01 5.98E-01 1.62E-03 1.011 1.47E+00 9.88E-01 6.72E-01 4.92E-03 1.086 4 186.410 4.50E+14 2.21E-02 8.40E+01 2.951E+02 1.685E+01 5.44E-01 3.25E-01 5.98E-01 1.62E-03 1.011 1.47E+00 9.88E-01 6.72E-01 4.92E-03 1.086 Monteburns Transport History for material 12 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.158 4.47E+14 2.37E-02 4.37E+01 3.069E+02 0.000E+00 3.67E-01 3.47E-01 9.46E-01 1.41E-03 1.205 1.09E+00 1.04E+00 9.50E-01 4.24E-03 1.208 1 182.698 4.41E+14 2.40E-02 4.39E+01 3.083E+02 4.595E+00 4.23E-01 3.51E-01 8.29E-01 1.50E-03 1.150 1.19E+00 1.05E+00 8.82E-01 4.51E-03 1.189 2 184.424 4.41E+14 2.34E-02 4.33E+01 3.037E+02 9.123E+00 4.72E-01 3.44E-01 7.28E-01 1.58E-03 1.101 1.33E+00 1.04E+00 7.81E-01 4.78E-03 1.146 3 185.438 4.40E+14 2.31E-02 4.28E+01 3.001E+02 1.360E+01 5.15E-01 3.39E-01 6.59E-01 1.61E-03 1.058 1.41E+00 1.03E+00 7.28E-01 4.88E-03 1.122 4 186.148 4.34E+14 2.28E-02 4.19E+01 2.938E+02 1.798E+01 5.45E-01 3.36E-01 6.16E-01 1.63E-03 1.030 1.47E+00 1.02E+00 6.96E-01 4.95E-03 1.109 4 186.148 4.34E+14 2.28E-02 4.19E+01 2.938E+02 1.798E+01 5.45E-01 3.36E-01 6.16E-01 1.63E-03 1.030 1.47E+00 1.02E+00 6.96E-01 4.95E-03 1.109 Monteburns Transport History for material 13 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 0.000 6.58E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 1.83E+00 0.00E+00 0.00E+00 7.61E-07 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 1 0.000 7.12E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 1.26E+00 0.00E+00 0.00E+00 8.17E-07 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 2 0.000 7.82E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 4.33E-01 0.00E+00 0.00E+00 9.79E-07 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 3 0.000 8.20E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 4.54E-02 0.00E+00 0.00E+00 1.00E-06 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 4 0.000 8.21E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 1.86E-02 0.00E+00 0.00E+00 8.59E-07 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 4 0.000 8.21E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 1.86E-02 0.00E+00 0.00E+00 8.59E-07 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 The MONTEBURNS Output File Chem Shim Peak #4 J-Carborane BPRAs RESEARCH CRYSTAL RIVER 1/8 CORE WITH J-CARBORANE BPRA'S 4.66% ENRICH NO Total Power (MW) = 3.18E+02 Days = 6.70E+02 # outer steps = 5, # inner steps = 50, # predictor steps = 1 Importance Fraction = 0.0050 Monteburns MCNP k-eff Versus Time days k-eff rel err nu avQfis eta 0m 0.00 0.99616 0.00062 2.466 181.133 0.733 1m 67.00 0.99600 0.00066 2.529 182.197 0.817 2m 201.00 0.99268 0.00066 2.605 183.521 0.962 3m 335.00 0.99956 0.00058 2.653 184.396 1.096 4m 469.00 1.00292 0.00062 2.692 185.066 1.106 5m 603.00 1.00225 0.00055 2.721 185.623 1.082 Monteburns Transport History Monteburns Transport History for material 1 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 0.000 1.07E+15 0.00E+00 0.00E+00 0.000E+00 0.000E+00 8.10E-02 0.00E+00 0.00E+00 3.31E-09 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 1 0.000 1.08E+15 0.00E+00 0.00E+00 0.000E+00 0.000E+00 6.81E-02 0.00E+00 0.00E+00 3.37E-09 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 2 0.000 1.10E+15 0.00E+00 0.00E+00 0.000E+00 0.000E+00 6.00E-02 0.00E+00 0.00E+00 2.96E-09 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 3 0.000 1.11E+15 0.00E+00 0.00E+00 0.000E+00 0.000E+00 5.12E-02 0.00E+00 0.00E+00 3.73E-09 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000

PAGE 252

237 4 0.000 1.12E+15 0.00E+00 0.00E+00 0.000E+00 0.000E+00 4.32E-02 0.00E+00 0.00E+00 4.50E-09 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 5 0.000 1.14E+15 0.00E+00 0.00E+00 0.000E+00 0.000E+00 3.03E-02 0.00E+00 0.00E+00 4.12E-09 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 Monteburns Transport History for material 2 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.094 4.57E+14 3.41E-02 5.16E+01 4.516E+02 0.000E+00 3.76E-01 4.99E-01 1.33E+00 1.67E-03 1.410 1.12E+00 1.50E+00 1.33E+00 5.00E-03 1.414 1 181.845 4.68E+14 3.29E-02 5.13E+01 4.487E+02 6.686E+00 4.22E-01 4.81E-01 1.14E+00 1.65E-03 1.351 1.18E+00 1.45E+00 1.23E+00 4.98E-03 1.399 2 182.889 4.92E+14 3.15E-02 5.20E+01 4.546E+02 1.346E+01 4.79E-01 4.62E-01 9.65E-01 1.67E-03 1.282 1.30E+00 1.40E+00 1.07E+00 5.04E-03 1.351 3 183.740 5.06E+14 3.08E-02 5.26E+01 4.604E+02 2.032E+01 5.23E-01 4.54E-01 8.67E-01 1.70E-03 1.235 1.39E+00 1.38E+00 9.92E-01 5.15E-03 1.325 4 184.422 5.32E+14 3.04E-02 5.47E+01 4.789E+02 2.746E+01 5.62E-01 4.47E-01 7.97E-01 1.74E-03 1.197 1.48E+00 1.37E+00 9.26E-01 5.30E-03 1.298 5 185.061 5.08E+14 2.89E-02 5.00E+01 4.373E+02 3.398E+01 5.94E-01 4.27E-01 7.20E-01 1.76E-03 1.142 1.54E+00 1.32E+00 8.54E-01 5.39E-03 1.257 Monteburns Transport History for material 3 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.097 4.37E+14 3.40E-02 9.87E+00 4.316E+02 0.000E+00 3.72E-01 4.98E-01 1.34E+00 1.66E-03 1.417 1.11E+00 1.50E+00 1.35E+00 4.98E-03 1.420 1 181.846 4.65E+14 3.27E-02 1.01E+01 4.436E+02 6.610E+00 4.26E-01 4.79E-01 1.12E+00 1.67E-03 1.342 1.19E+00 1.44E+00 1.21E+00 5.02E-03 1.389 2 182.881 5.31E+14 3.15E-02 1.13E+01 4.921E+02 1.394E+01 4.80E-01 4.63E-01 9.64E-01 1.81E-03 1.283 1.31E+00 1.40E+00 1.07E+00 5.45E-03 1.352 3 183.818 5.26E+14 3.06E-02 1.09E+01 4.755E+02 2.103E+01 5.28E-01 4.50E-01 8.52E-01 1.71E-03 1.224 1.40E+00 1.37E+00 9.77E-01 5.19E-03 1.315 4 184.523 5.59E+14 2.99E-02 1.13E+01 4.958E+02 2.842E+01 5.63E-01 4.41E-01 7.85E-01 1.83E-03 1.187 1.48E+00 1.35E+00 9.13E-01 5.58E-03 1.289 5 185.190 5.55E+14 2.89E-02 1.09E+01 4.768E+02 3.553E+01 5.97E-01 4.27E-01 7.14E-01 1.67E-03 1.137 1.55E+00 1.32E+00 8.50E-01 5.12E-03 1.254 Monteburns Transport History for material 4 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.147 1.63E+13 2.46E-02 4.68E-01 1.163E+01 0.000E+00 3.70E-01 3.61E-01 9.74E-01 2.22E-03 1.223 1.11E+00 1.08E+00 9.79E-01 6.66E-03 1.227 1 181.225 1.67E+13 2.49E-02 4.90E-01 1.216E+01 1.811E-01 3.91E-01 3.65E-01 9.34E-01 1.81E-03 1.226 1.15E+00 1.10E+00 9.54E-01 5.43E-03 1.240 2 181.390 1.95E+13 2.52E-02 5.82E-01 1.445E+01 3.964E-01 3.70E-01 3.70E-01 1.00E+00 1.97E-03 1.308 1.08E+00 1.11E+00 1.03E+00 5.92E-03 1.325 3 181.529 2.00E+13 2.65E-02 6.30E-01 1.564E+01 6.294E-01 3.87E-01 3.89E-01 1.01E+00 1.75E-03 1.335 1.13E+00 1.17E+00 1.04E+00 5.26E-03 1.354 4 181.676 2.58E+13 2.76E-02 8.50E-01 2.109E+01 9.437E-01 3.99E-01 4.05E-01 1.01E+00 1.72E-03 1.359 1.16E+00 1.21E+00 1.04E+00 5.17E-03 1.380 5 181.848 2.97E+13 2.91E-02 1.04E+00 2.570E+01 1.327E+00 4.09E-01 4.27E-01 1.04E+00 1.38E-03 1.393 1.19E+00 1.28E+00 1.08E+00 4.14E-03 1.416 Monteburns Transport History for material 5 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.087 4.23E+14 3.53E-02 1.20E+02 4.334E+02 0.000E+00 3.76E-01 5.17E-01 1.37E+00 1.65E-03 1.432 1.12E+00 1.55E+00 1.38E+00 4.94E-03 1.435 1 181.740 4.17E+14 3.40E-02 1.15E+02 4.143E+02 6.174E+00 4.22E-01 4.99E-01 1.18E+00 1.69E-03 1.374 1.18E+00 1.50E+00 1.28E+00 5.09E-03 1.421 2 182.696 4.06E+14 3.25E-02 1.07E+02 3.874E+02 1.195E+01 4.71E-01 4.77E-01 1.01E+00 1.70E-03 1.314 1.29E+00 1.44E+00 1.12E+00 5.13E-03 1.379 3 183.397 4.07E+14 3.18E-02 1.06E+02 3.825E+02 1.765E+01 5.09E-01 4.67E-01 9.19E-01 1.68E-03 1.274 1.37E+00 1.42E+00 1.04E+00 5.09E-03 1.356 4 183.986 3.98E+14 3.12E-02 1.02E+02 3.678E+02 2.313E+01 5.41E-01 4.59E-01 8.49E-01 1.71E-03 1.240 1.43E+00 1.40E+00 9.79E-01 5.22E-03 1.336 5 184.487 4.03E+14 3.04E-02 1.01E+02 3.649E+02 2.857E+01 5.70E-01 4.49E-01 7.87E-01 1.75E-03 1.202 1.50E+00 1.38E+00 9.20E-01 5.34E-03 1.308 Monteburns Transport History for material 6 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.384 3.91E+14 1.38E-02 4.04E-01 1.565E+02 0.000E+00 1.80E+00 2.13E-01 1.18E-01 1.74E-03 0.262 9.39E-01 6.58E-01 7.00E-01 5.26E-03 1.023 1 182.008 3.97E+14 1.87E-02 5.59E-01 2.164E+02 3.500E+00 1.28E+00 2.88E-01 2.25E-01 1.67E-03 0.467 1.04E+00 8.91E-01 8.56E-01 5.09E-03 1.172 2 182.898 3.91E+14 2.69E-02 7.99E-01 3.092E+02 8.501E+00 7.04E-01 4.15E-01 5.90E-01 1.53E-03 0.970 1.26E+00 1.29E+00 1.03E+00 4.72E-03 1.323 3 183.499 3.76E+14 2.79E-02 8.00E-01 3.097E+02 1.351E+01 5.19E-01 4.31E-01 8.30E-01 1.65E-03 1.207 1.34E+00 1.35E+00 1.01E+00 5.08E-03 1.334 4 184.061 3.42E+14 2.78E-02 7.29E-01 2.824E+02 1.808E+01 5.60E-01 4.31E-01 7.69E-01 1.70E-03 1.174 1.44E+00 1.35E+00 9.36E-01 5.26E-03 1.305 5 184.495 3.47E+14 2.72E-02 7.25E-01 2.808E+02 2.262E+01 5.78E-01 4.22E-01 7.30E-01 1.46E-03 1.151 1.47E+00 1.33E+00 9.02E-01 4.54E-03 1.293 Monteburns Transport History for material 7 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.542 4.19E+14 1.01E-02 1.17E+00 1.230E+02 0.000E+00 2.02E+00 1.55E-01 7.67E-02 1.64E-03 0.177 8.95E-01 4.95E-01 5.53E-01 5.01E-03 0.886 1 182.435 4.38E+14 1.24E-02 1.51E+00 1.592E+02 2.641E+00 1.70E+00 1.90E-01 1.12E-01 1.62E-03 0.257 9.71E-01 6.09E-01 6.27E-01 5.01E-03 0.981 2 183.596 4.73E+14 1.77E-02 2.34E+00 2.469E+02 6.736E+00 1.23E+00 2.72E-01 2.21E-01 1.60E-03 0.473 1.18E+00 8.72E-01 7.42E-01 4.99E-03 1.114 3 184.240 5.09E+14 2.49E-02 3.54E+00 3.742E+02 1.294E+01 7.01E-01 3.82E-01 5.46E-01 1.60E-03 0.939 1.34E+00 1.23E+00 9.17E-01 5.03E-03 1.273 4 184.814 5.35E+14 2.54E-02 3.82E+00 4.034E+02 1.963E+01 5.84E-01 3.91E-01 6.70E-01 1.76E-03 1.084 1.45E+00 1.27E+00 8.71E-01 5.55E-03 1.258 5 185.439 5.23E+14 2.44E-02 3.59E+00 3.789E+02 2.591E+01 6.05E-01 3.76E-01 6.21E-01 1.59E-03 1.046 1.51E+00 1.22E+00 8.09E-01 5.03E-03 1.221

PAGE 253

238Monteburns Transport History for material 8 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.523 4.08E+14 1.02E-02 1.04E-01 1.204E+02 0.000E+00 2.06E+00 1.56E-01 7.56E-02 1.30E-03 0.175 8.62E-01 4.97E-01 5.77E-01 3.95E-03 0.908 1 182.477 4.50E+14 1.28E-02 1.45E-01 1.685E+02 2.795E+00 1.71E+00 1.96E-01 1.15E-01 1.92E-03 0.262 9.38E-01 6.28E-01 6.70E-01 5.91E-03 1.022 2 183.580 5.30E+14 1.79E-02 2.40E-01 2.785E+02 7.415E+00 1.16E+00 2.74E-01 2.36E-01 1.77E-03 0.499 1.17E+00 8.79E-01 7.49E-01 5.50E-03 1.121 3 184.358 5.43E+14 2.45E-02 3.38E-01 3.928E+02 1.393E+01 6.76E-01 3.77E-01 5.58E-01 1.68E-03 0.953 1.38E+00 1.21E+00 8.76E-01 5.31E-03 1.242 4 185.000 5.82E+14 2.59E-02 3.84E-01 4.465E+02 2.134E+01 6.01E-01 3.98E-01 6.62E-01 1.74E-03 1.076 1.48E+00 1.29E+00 8.74E-01 5.48E-03 1.259 5 185.616 5.84E+14 2.49E-02 3.73E-01 4.329E+02 2.852E+01 6.12E-01 3.85E-01 6.28E-01 1.69E-03 1.053 1.52E+00 1.25E+00 8.28E-01 5.36E-03 1.236 Monteburns Transport History for material 9 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 185.157 1.24E+13 2.81E-02 5.88E-01 1.007E+01 0.000E+00 1.39E+00 1.08E+00 7.72E-01 4.92E-03 1.079 1.41E+00 1.09E+00 7.72E-01 4.98E-03 1.079 1 185.123 1.26E+13 2.89E-02 6.22E-01 1.066E+01 1.401E-01 1.40E+00 1.11E+00 7.88E-01 5.87E-03 1.120 1.41E+00 1.12E+00 7.94E-01 5.94E-03 1.124 2 185.165 1.51E+13 2.85E-02 7.36E-01 1.261E+01 3.059E-01 1.43E+00 1.09E+00 7.59E-01 5.17E-03 1.128 1.43E+00 1.10E+00 7.70E-01 5.23E-03 1.137 3 185.172 1.52E+13 2.86E-02 7.48E-01 1.281E+01 4.743E-01 1.41E+00 1.10E+00 7.77E-01 6.77E-03 1.165 1.40E+00 1.11E+00 7.90E-01 6.85E-03 1.176 4 185.192 1.82E+13 2.86E-02 8.99E-01 1.539E+01 6.766E-01 1.40E+00 1.10E+00 7.84E-01 4.62E-03 1.187 1.39E+00 1.11E+00 7.98E-01 4.67E-03 1.198 5 185.227 2.21E+13 3.07E-02 1.18E+00 2.016E+01 9.416E-01 1.45E+00 1.18E+00 8.13E-01 4.57E-03 1.224 1.43E+00 1.19E+00 8.30E-01 4.62E-03 1.238 Monteburns Transport History for material 10 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.190 1.56E+14 1.95E-02 1.74E+01 8.846E+01 0.000E+00 3.74E-01 2.86E-01 7.65E-01 1.40E-03 1.073 1.12E+00 8.58E-01 7.68E-01 4.20E-03 1.076 1 182.234 1.57E+14 2.05E-02 1.84E+01 9.402E+01 1.401E+00 4.07E-01 3.00E-01 7.37E-01 1.48E-03 1.077 1.16E+00 9.00E-01 7.74E-01 4.44E-03 1.108 2 183.608 1.51E+14 2.10E-02 1.83E+01 9.332E+01 2.792E+00 4.37E-01 3.07E-01 7.02E-01 1.51E-03 1.078 1.25E+00 9.22E-01 7.37E-01 4.53E-03 1.109 3 184.453 1.51E+14 2.20E-02 1.92E+01 9.800E+01 4.252E+00 4.61E-01 3.22E-01 6.99E-01 1.50E-03 1.095 1.32E+00 9.70E-01 7.33E-01 4.50E-03 1.126 4 185.050 1.45E+14 2.25E-02 1.90E+01 9.674E+01 5.694E+00 4.81E-01 3.31E-01 6.88E-01 1.59E-03 1.101 1.38E+00 9.96E-01 7.22E-01 4.79E-03 1.133 5 185.493 1.66E+14 2.34E-02 2.27E+01 1.155E+02 7.415E+00 5.08E-01 3.43E-01 6.76E-01 1.56E-03 1.101 1.44E+00 1.04E+00 7.21E-01 4.72E-03 1.144 Monteburns Transport History for material 11 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.172 3.98E+14 2.20E-02 7.23E+01 2.541E+02 0.000E+00 3.66E-01 3.22E-01 8.79E-01 1.44E-03 1.158 1.09E+00 9.66E-01 8.83E-01 4.31E-03 1.161 1 182.841 4.06E+14 2.25E-02 7.61E+01 2.673E+02 3.983E+00 4.20E-01 3.30E-01 7.85E-01 1.51E-03 1.116 1.19E+00 9.91E-01 8.33E-01 4.53E-03 1.154 2 184.598 4.30E+14 2.24E-02 8.07E+01 2.833E+02 8.205E+00 4.66E-01 3.29E-01 7.06E-01 1.63E-03 1.083 1.32E+00 9.93E-01 7.52E-01 4.91E-03 1.122 3 185.665 4.33E+14 2.22E-02 8.07E+01 2.835E+02 1.243E+01 5.11E-01 3.26E-01 6.37E-01 1.62E-03 1.036 1.41E+00 9.86E-01 6.98E-01 4.91E-03 1.095 4 186.393 4.49E+14 2.20E-02 8.34E+01 2.928E+02 1.679E+01 5.42E-01 3.24E-01 5.97E-01 1.64E-03 1.010 1.47E+00 9.84E-01 6.71E-01 4.98E-03 1.085 5 186.944 4.50E+14 2.21E-02 8.42E+01 2.957E+02 2.120E+01 5.72E-01 3.25E-01 5.68E-01 1.62E-03 0.989 1.54E+00 9.91E-01 6.45E-01 4.93E-03 1.071 Monteburns Transport History for material 12 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.154 4.40E+14 2.40E-02 4.38E+01 3.070E+02 0.000E+00 3.68E-01 3.52E-01 9.58E-01 1.48E-03 1.211 1.10E+00 1.06E+00 9.63E-01 4.44E-03 1.214 1 182.704 4.46E+14 2.42E-02 4.49E+01 3.150E+02 4.696E+00 4.23E-01 3.54E-01 8.37E-01 1.55E-03 1.156 1.19E+00 1.06E+00 8.91E-01 4.67E-03 1.196 2 184.436 4.46E+14 2.36E-02 4.41E+01 3.093E+02 9.307E+00 4.76E-01 3.46E-01 7.27E-01 1.53E-03 1.100 1.34E+00 1.04E+00 7.80E-01 4.62E-03 1.146 3 185.468 4.37E+14 2.31E-02 4.26E+01 2.987E+02 1.376E+01 5.15E-01 3.40E-01 6.60E-01 1.60E-03 1.058 1.41E+00 1.03E+00 7.30E-01 4.84E-03 1.124 4 186.168 4.30E+14 2.28E-02 4.15E+01 2.909E+02 1.810E+01 5.47E-01 3.36E-01 6.14E-01 1.66E-03 1.027 1.47E+00 1.02E+00 6.93E-01 5.04E-03 1.106 5 186.706 4.34E+14 2.28E-02 4.19E+01 2.942E+02 2.249E+01 5.74E-01 3.36E-01 5.85E-01 1.66E-03 1.008 1.54E+00 1.03E+00 6.67E-01 5.06E-03 1.092 Monteburns Transport History for material 13 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 0.000 5.97E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 2.53E+00 0.00E+00 0.00E+00 6.80E-07 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 1 0.000 6.27E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 2.17E+00 0.00E+00 0.00E+00 9.01E-07 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 2 0.000 6.89E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 1.55E+00 0.00E+00 0.00E+00 9.05E-07 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 3 0.000 7.48E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 7.64E-01 0.00E+00 0.00E+00 1.01E-06 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 4 0.000 8.22E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 1.27E-01 0.00E+00 0.00E+00 9.57E-07 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 5 0.000 8.15E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 2.10E-02 0.00E+00 0.00E+00 1.22E-06 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 Monteburns Transport History for material 14 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns)

PAGE 254

239 0 0.000 2.98E+13 0.00E+00 0.00E+00 0.000E+00 0.000E+00 9.94E-02 0.00E+00 0.00E+00 0.00E+00 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 1 0.000 7.52E+13 0.00E+00 0.00E+00 0.000E+00 0.000E+00 8.71E-02 0.00E+00 0.00E+00 0.00E+00 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 2 0.000 6.19E+13 0.00E+00 0.00E+00 0.000E+00 0.000E+00 9.67E-02 0.00E+00 0.00E+00 0.00E+00 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 3 0.000 6.16E+13 0.00E+00 0.00E+00 0.000E+00 0.000E+00 8.61E-02 0.00E+00 0.00E+00 0.00E+00 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 4 0.000 7.60E+13 0.00E+00 0.00E+00 0.000E+00 0.000E+00 7.64E-02 0.00E+00 0.00E+00 0.00E+00 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 5 0.000 1.13E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 1.11E-01 0.00E+00 0.00E+00 0.00E+00 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 The MONTEBURNS Output File Ch em Shim #12 J-Carborane BPRAs RESEARCH CRYSTAL RIVER 1/8 CORE WITH J-CARBORANE BPRA'S 4.66% ENRICH NO Total Power (MW) = 3.18E+02 Days = 6.70E+02 # outer steps = 5, # inner steps = 50, # predictor steps = 1 Importance Fraction = 0.0050 Monteburns MCNP k-eff Versus Time days k-eff rel err nu avQfis eta 0m 0.00 0.98065 0.00056 2.468 181.136 0.744 1m 67.00 0.99504 0.00041 2.531 182.201 0.858 2m 201.00 0.99501 0.00064 2.605 183.524 1.026 3m 335.00 0.99817 0.00046 2.653 184.398 1.098 3m 335.00 0.99817 0.00046 2.653 184.398 1.098 3m 335.00 0.99817 0.00046 2.653 184.398 1.098 Monteburns Transport History Monteburns Transport History for material 1 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 0.000 1.08E+15 0.00E+00 0.00E+00 0.000E+00 0.000E+00 8.61E-02 0.00E+00 0.00E+00 2.80E-09 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 1 0.000 1.08E+15 0.00E+00 0.00E+00 0.000E+00 0.000E+00 6.90E-02 0.00E+00 0.00E+00 3.17E-09 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 2 0.000 1.10E+15 0.00E+00 0.00E+00 0.000E+00 0.000E+00 6.01E-02 0.00E+00 0.00E+00 3.19E-09 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 3 0.000 1.11E+15 0.00E+00 0.00E+00 0.000E+00 0.000E+00 5.13E-02 0.00E+00 0.00E+00 4.60E-09 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 3 0.000 1.11E+15 0.00E+00 0.00E+00 0.000E+00 0.000E+00 5.13E-02 0.00E+00 0.00E+00 4.60E-09 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 3 0.000 1.11E+15 0.00E+00 0.00E+00 0.000E+00 0.000E+00 5.13E-02 0.00E+00 0.00E+00 4.60E-09 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 Monteburns Transport History for material 2 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.096 4.51E+14 3.37E-02 4.03E+01 4.404E+02 0.000E+00 3.73E-01 4.93E-01 1.32E+00 1.63E-03 1.409 1.11E+00 1.48E+00 1.33E+00 4.88E-03 1.412 1 181.845 4.59E+14 3.28E-02 4.01E+01 4.388E+02 6.539E+00 4.23E-01 4.80E-01 1.14E+00 1.65E-03 1.350 1.18E+00 1.45E+00 1.23E+00 4.98E-03 1.397 2 182.868 4.96E+14 3.15E-02 4.19E+01 4.586E+02 1.337E+01 4.77E-01 4.62E-01 9.69E-01 1.68E-03 1.285 1.30E+00 1.40E+00 1.08E+00 5.07E-03 1.354 3 183.727 5.07E+14 3.08E-02 4.22E+01 4.613E+02 2.024E+01 5.24E-01 4.53E-01 8.65E-01 1.72E-03 1.234 1.40E+00 1.38E+00 9.89E-01 5.22E-03 1.323 3 183.727 5.07E+14 3.08E-02 4.22E+01 4.613E+02 2.024E+01 5.24E-01 4.53E-01 8.65E-01 1.72E-03 1.234 1.40E+00 1.38E+00 9.89E-01 5.22E-03 1.323 3 183.727 5.07E+14 3.08E-02 4.22E+01 4.613E+02 2.024E+01 5.24E-01 4.53E-01 8.65E-01 1.72E-03 1.234 1.40E+00 1.38E+00 9.89E-01 5.22E-03 1.323 Monteburns Transport History for material 3 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.097 4.79E+14 3.35E-02 2.13E+01 4.661E+02 0.000E+00 3.74E-01 4.91E-01 1.31E+00 1.58E-03 1.404 1.12E+00 1.47E+00 1.32E+00 4.73E-03 1.407 1 181.871 4.77E+14 3.29E-02 2.09E+01 4.575E+02 6.817E+00 4.26E-01 4.81E-01 1.13E+00 1.65E-03 1.346 1.19E+00 1.45E+00 1.22E+00 4.97E-03 1.394 2 182.911 5.14E+14 3.16E-02 2.18E+01 4.777E+02 1.394E+01 4.82E-01 4.65E-01 9.64E-01 1.57E-03 1.282 1.31E+00 1.41E+00 1.07E+00 4.75E-03 1.351 3 183.812 5.12E+14 3.07E-02 2.13E+01 4.651E+02 2.087E+01 5.26E-01 4.52E-01 8.60E-01 1.72E-03 1.230 1.40E+00 1.38E+00 9.85E-01 5.22E-03 1.321 3 183.812 5.12E+14 3.07E-02 2.13E+01 4.651E+02 2.087E+01 5.26E-01 4.52E-01 8.60E-01 1.72E-03 1.230 1.40E+00 1.38E+00 9.85E-01 5.22E-03 1.321 3 183.812 5.12E+14 3.07E-02 2.13E+01 4.651E+02 2.087E+01 5.26E-01 4.52E-01 8.60E-01 1.72E-03 1.230 1.40E+00 1.38E+00 9.85E-01 5.22E-03 1.321 Monteburns Transport History for material 4 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.153 1.84E+13 2.47E-02 5.30E-01 1.314E+01 0.000E+00 3.65E-01 3.61E-01 9.89E-01 1.39E-03 1.231 1.09E+00 1.08E+00 9.94E-01 4.17E-03 1.234

PAGE 255

240 1 181.240 1.87E+13 2.51E-02 5.51E-01 1.368E+01 2.039E-01 3.77E-01 3.67E-01 9.75E-01 1.45E-03 1.253 1.11E+00 1.10E+00 9.96E-01 4.34E-03 1.267 2 181.389 2.08E+13 2.58E-02 6.35E-01 1.576E+01 4.388E-01 3.77E-01 3.77E-01 1.00E+00 1.37E-03 1.307 1.10E+00 1.13E+00 1.03E+00 4.12E-03 1.324 3 181.542 1.87E+13 2.67E-02 5.95E-01 1.477E+01 6.588E-01 3.78E-01 3.91E-01 1.04E+00 1.40E-03 1.353 1.10E+00 1.17E+00 1.07E+00 4.22E-03 1.374 3 181.542 1.87E+13 2.67E-02 5.95E-01 1.477E+01 6.588E-01 3.78E-01 3.91E-01 1.04E+00 1.40E-03 1.353 1.10E+00 1.17E+00 1.07E+00 4.22E-03 1.374 3 181.542 1.87E+13 2.67E-02 5.95E-01 1.477E+01 6.588E-01 3.78E-01 3.91E-01 1.04E+00 1.40E-03 1.353 1.10E+00 1.17E+00 1.07E+00 4.22E-03 1.374 Monteburns Transport History for material 5 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.090 4.35E+14 3.49E-02 1.22E+02 4.402E+02 0.000E+00 3.74E-01 5.11E-01 1.36E+00 1.66E-03 1.428 1.12E+00 1.53E+00 1.37E+00 4.98E-03 1.431 1 181.739 4.17E+14 3.40E-02 1.15E+02 4.138E+02 6.167E+00 4.23E-01 4.98E-01 1.18E+00 1.68E-03 1.372 1.18E+00 1.50E+00 1.27E+00 5.04E-03 1.420 2 182.700 4.03E+14 3.24E-02 1.06E+02 3.839E+02 1.189E+01 4.71E-01 4.76E-01 1.01E+00 1.71E-03 1.314 1.29E+00 1.44E+00 1.12E+00 5.15E-03 1.379 3 183.391 4.05E+14 3.18E-02 1.05E+02 3.803E+02 1.756E+01 5.08E-01 4.67E-01 9.19E-01 1.71E-03 1.274 1.37E+00 1.42E+00 1.04E+00 5.17E-03 1.356 3 183.391 4.05E+14 3.18E-02 1.05E+02 3.803E+02 1.756E+01 5.08E-01 4.67E-01 9.19E-01 1.71E-03 1.274 1.37E+00 1.42E+00 1.04E+00 5.17E-03 1.356 3 183.391 4.05E+14 3.18E-02 1.05E+02 3.803E+02 1.756E+01 5.08E-01 4.67E-01 9.19E-01 1.71E-03 1.274 1.37E+00 1.42E+00 1.04E+00 5.17E-03 1.356 Monteburns Transport History for material 6 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.380 4.19E+14 1.39E-02 4.37E-01 1.694E+02 0.000E+00 1.79E+00 2.15E-01 1.20E-01 1.77E-03 0.267 9.41E-01 6.65E-01 7.06E-01 5.33E-03 1.028 1 182.032 4.04E+14 1.93E-02 5.86E-01 2.269E+02 3.670E+00 1.27E+00 2.97E-01 2.35E-01 1.91E-03 0.483 1.02E+00 9.19E-01 9.05E-01 5.81E-03 1.208 2 182.869 4.02E+14 2.65E-02 8.10E-01 3.135E+02 8.740E+00 6.86E-01 4.09E-01 5.97E-01 1.64E-03 0.977 1.24E+00 1.27E+00 1.03E+00 5.04E-03 1.323 3 183.488 3.87E+14 2.82E-02 8.33E-01 3.227E+02 1.396E+01 5.31E-01 4.37E-01 8.23E-01 1.74E-03 1.201 1.35E+00 1.36E+00 1.01E+00 5.37E-03 1.338 3 183.488 3.87E+14 2.82E-02 8.33E-01 3.227E+02 1.396E+01 5.31E-01 4.37E-01 8.23E-01 1.74E-03 1.201 1.35E+00 1.36E+00 1.01E+00 5.37E-03 1.338 3 183.488 3.87E+14 2.82E-02 8.33E-01 3.227E+02 1.396E+01 5.31E-01 4.37E-01 8.23E-01 1.74E-03 1.201 1.35E+00 1.36E+00 1.01E+00 5.37E-03 1.338 Monteburns Transport History for material 7 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.551 3.79E+14 1.00E-02 1.05E+00 1.104E+02 0.000E+00 1.98E+00 1.54E-01 7.77E-02 1.60E-03 0.179 9.00E-01 4.91E-01 5.46E-01 4.86E-03 0.878 1 182.387 3.91E+14 1.23E-02 1.33E+00 1.404E+02 2.329E+00 1.74E+00 1.88E-01 1.08E-01 1.70E-03 0.249 9.62E-01 6.02E-01 6.26E-01 5.23E-03 0.981 2 183.457 4.25E+14 1.67E-02 1.98E+00 2.087E+02 5.791E+00 1.30E+00 2.56E-01 1.97E-01 1.62E-03 0.431 1.13E+00 8.21E-01 7.26E-01 5.05E-03 1.101 3 184.082 4.55E+14 2.34E-02 2.97E+00 3.139E+02 1.100E+01 7.91E-01 3.59E-01 4.54E-01 1.69E-03 0.832 1.31E+00 1.15E+00 8.81E-01 5.28E-03 1.247 3 184.082 4.55E+14 2.34E-02 2.97E+00 3.139E+02 1.100E+01 7.91E-01 3.59E-01 4.54E-01 1.69E-03 0.832 1.31E+00 1.15E+00 8.81E-01 5.28E-03 1.247 3 184.082 4.55E+14 2.34E-02 2.97E+00 3.139E+02 1.100E+01 7.91E-01 3.59E-01 4.54E-01 1.69E-03 0.832 1.31E+00 1.15E+00 8.81E-01 5.28E-03 1.247 Monteburns Transport History for material 8 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.551 8.94E+14 9.95E-03 2.22E-01 2.581E+02 0.000E+00 1.96E+00 1.53E-01 7.77E-02 1.49E-03 0.179 8.63E-01 4.87E-01 5.64E-01 4.58E-03 0.897 1 183.096 9.49E+14 1.69E-02 4.02E-01 4.668E+02 7.742E+00 1.32E+00 2.58E-01 1.94E-01 1.64E-03 0.414 1.10E+00 8.24E-01 7.49E-01 5.10E-03 1.089 2 184.611 1.07E+15 2.50E-02 6.79E-01 7.884E+02 2.082E+01 6.33E-01 3.85E-01 6.08E-01 1.51E-03 0.988 1.41E+00 1.24E+00 8.80E-01 4.76E-03 1.223 3 185.919 1.07E+15 2.39E-02 6.51E-01 7.560E+02 3.336E+01 6.22E-01 3.68E-01 5.92E-01 1.68E-03 0.990 1.53E+00 1.20E+00 7.84E-01 5.32E-03 1.170 3 185.919 1.07E+15 2.39E-02 6.51E-01 7.560E+02 3.336E+01 6.22E-01 3.68E-01 5.92E-01 1.68E-03 0.990 1.53E+00 1.20E+00 7.84E-01 5.32E-03 1.170 3 185.919 1.07E+15 2.39E-02 6.51E-01 7.560E+02 3.336E+01 6.22E-01 3.68E-01 5.92E-01 1.68E-03 0.990 1.53E+00 1.20E+00 7.84E-01 5.32E-03 1.170 Monteburns Transport History for material 9 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 185.153 1.32E+13 2.84E-02 6.35E-01 1.087E+01 0.000E+00 1.40E+00 1.09E+00 7.76E-01 4.49E-03 1.082 1.42E+00 1.10E+00 7.76E-01 4.54E-03 1.082 1 185.166 1.47E+13 2.97E-02 7.46E-01 1.277E+01 1.679E-01 1.46E+00 1.14E+00 7.80E-01 4.15E-03 1.112 1.46E+00 1.15E+00 7.85E-01 4.20E-03 1.116 2 185.166 1.52E+13 2.81E-02 7.34E-01 1.257E+01 3.331E-01 1.41E+00 1.07E+00 7.61E-01 5.59E-03 1.130 1.41E+00 1.09E+00 7.73E-01 5.66E-03 1.141 3 185.161 1.36E+13 2.89E-02 6.80E-01 1.165E+01 4.863E-01 1.42E+00 1.11E+00 7.82E-01 4.92E-03 1.169 1.41E+00 1.12E+00 7.96E-01 4.98E-03 1.180 3 185.161 1.36E+13 2.89E-02 6.80E-01 1.165E+01 4.863E-01 1.42E+00 1.11E+00 7.82E-01 4.92E-03 1.169 1.41E+00 1.12E+00 7.96E-01 4.98E-03 1.180 3 185.161 1.36E+13 2.89E-02 6.80E-01 1.165E+01 4.863E-01 1.42E+00 1.11E+00 7.82E-01 4.92E-03 1.169 1.41E+00 1.12E+00 7.96E-01 4.98E-03 1.180 Monteburns Transport History for material 10 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.198 1.57E+14 1.91E-02 1.70E+01 8.675E+01 0.000E+00 3.72E-01 2.80E-01 7.52E-01 1.44E-03 1.064 1.11E+00 8.39E-01 7.55E-01 4.33E-03 1.066 1 182.227 1.57E+14 2.03E-02 1.83E+01 9.314E+01 1.388E+00 4.06E-01 2.97E-01 7.32E-01 1.42E-03 1.073 1.16E+00 8.93E-01 7.68E-01 4.27E-03 1.103 2 183.612 1.52E+14 2.11E-02 1.85E+01 9.450E+01 2.796E+00 4.39E-01 3.09E-01 7.04E-01 1.60E-03 1.080 1.26E+00 9.29E-01 7.38E-01 4.81E-03 1.111 3 184.462 1.53E+14 2.19E-02 1.94E+01 9.901E+01 4.271E+00 4.60E-01 3.21E-01 6.99E-01 1.61E-03 1.095 1.32E+00 9.67E-01 7.33E-01 4.85E-03 1.127

PAGE 256

241 3 184.462 1.53E+14 2.19E-02 1.94E+01 9.901E+01 4.271E+00 4.60E-01 3.21E-01 6.99E-01 1.61E-03 1.095 1.32E+00 9.67E-01 7.33E-01 4.85E-03 1.127 3 184.462 1.53E+14 2.19E-02 1.94E+01 9.901E+01 4.271E+00 4.60E-01 3.21E-01 6.99E-01 1.61E-03 1.095 1.32E+00 9.67E-01 7.33E-01 4.85E-03 1.127 Monteburns Transport History for material 11 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.177 3.93E+14 2.16E-02 7.03E+01 2.468E+02 0.000E+00 3.65E-01 3.17E-01 8.68E-01 1.44E-03 1.151 1.09E+00 9.50E-01 8.72E-01 4.31E-03 1.154 1 182.828 4.08E+14 2.25E-02 7.63E+01 2.681E+02 3.996E+00 4.19E-01 3.30E-01 7.87E-01 1.45E-03 1.119 1.19E+00 9.91E-01 8.36E-01 4.37E-03 1.156 2 184.602 4.27E+14 2.25E-02 8.02E+01 2.816E+02 8.193E+00 4.66E-01 3.30E-01 7.08E-01 1.56E-03 1.084 1.32E+00 9.95E-01 7.53E-01 4.70E-03 1.123 3 185.655 4.34E+14 2.22E-02 8.08E+01 2.839E+02 1.242E+01 5.11E-01 3.26E-01 6.37E-01 1.59E-03 1.036 1.41E+00 9.86E-01 6.98E-01 4.82E-03 1.095 3 185.655 4.34E+14 2.22E-02 8.08E+01 2.839E+02 1.242E+01 5.11E-01 3.26E-01 6.37E-01 1.59E-03 1.036 1.41E+00 9.86E-01 6.98E-01 4.82E-03 1.095 3 185.655 4.34E+14 2.22E-02 8.08E+01 2.839E+02 1.242E+01 5.11E-01 3.26E-01 6.37E-01 1.59E-03 1.036 1.41E+00 9.86E-01 6.98E-01 4.82E-03 1.095 Monteburns Transport History for material 12 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 181.158 4.52E+14 2.36E-02 4.41E+01 3.093E+02 0.000E+00 3.67E-01 3.45E-01 9.41E-01 1.44E-03 1.201 1.10E+00 1.04E+00 9.45E-01 4.33E-03 1.204 1 182.721 4.49E+14 2.42E-02 4.52E+01 3.169E+02 4.724E+00 4.22E-01 3.53E-01 8.38E-01 1.48E-03 1.157 1.19E+00 1.06E+00 8.92E-01 4.44E-03 1.197 2 184.444 4.48E+14 2.36E-02 4.42E+01 3.105E+02 9.353E+00 4.74E-01 3.46E-01 7.30E-01 1.58E-03 1.103 1.33E+00 1.04E+00 7.84E-01 4.76E-03 1.149 3 185.464 4.42E+14 2.31E-02 4.31E+01 3.023E+02 1.386E+01 5.16E-01 3.40E-01 6.59E-01 1.60E-03 1.058 1.41E+00 1.03E+00 7.30E-01 4.86E-03 1.123 3 185.464 4.42E+14 2.31E-02 4.31E+01 3.023E+02 1.386E+01 5.16E-01 3.40E-01 6.59E-01 1.60E-03 1.058 1.41E+00 1.03E+00 7.30E-01 4.86E-03 1.123 3 185.464 4.42E+14 2.31E-02 4.31E+01 3.023E+02 1.386E+01 5.16E-01 3.40E-01 6.59E-01 1.60E-03 1.058 1.41E+00 1.03E+00 7.30E-01 4.86E-03 1.123 Monteburns Transport History for material 13 total material for actinid e Qfis Flux SigmaF Power Pow.Den. Burnup n,gamma n,fission fis/cap n2n eta n,gamma n ,fission fis/cap n2n eta (MeV) (n/cm^3) (1/cm) (MW) (W/cc) (GWd/MTU) (barns) (barns) (barns) (barns) ( barns) (barns) 0 0.000 6.08E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 2.51E+00 0.00E+00 0.00E+00 6.35E-07 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 1 0.000 6.26E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 2.20E+00 0.00E+00 0.00E+00 8.70E-07 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 2 0.000 6.86E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 1.54E+00 0.00E+00 0.00E+00 8.94E-07 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 3 0.000 7.48E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 7.62E-01 0.00E+00 0.00E+00 1.01E-06 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 3 0.000 7.48E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 7.62E-01 0.00E+00 0.00E+00 1.01E-06 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000 3 0.000 7.48E+14 0.00E+00 0.00E+00 0.000E+00 0.000E+00 7.62E-01 0.00E+00 0.00E+00 1.01E-06 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000

PAGE 257

242 LIST OF REFERENCES 1. Keller TM, Son DY. Linear “carborane” – (Siloxane or Silane) – Acetylene Based Co-Polymers. US Patent 5,780,569. 1998 Jul 14. 2. Pressley LM, Brickner J, Tulenko J. An Innovative Spectral Shift Burnable Poison Rod Assembly Design. ANS Transactions 2000; 83: 303-304. 3. Cochran RG, Tsoulfanidis N. The Nuclear Fuel Cycle: Analys is and Management. La Grange Park (IL): American Nuclear Society; 1990. 4. Lamarsh JR, Baratta AJ. Introduction to Nuclear Engineering. New Jersey: Prentice Hall; 2001. 5. Jordan WC. Scale Cross Section Libr aries. Washington, DC: Oak Ridge National Laboratory, Office of Nuclear Material Safety and Safeguards. US Nuclear Regulatory Commission; 1995. 6. Duderstadt J, Hamilton L. Nuclear Reactor Analysis. New York: John Wiley and Sons Inc; 1976. 7. Glasstone S, Sesonske A. Nuclear Reactor Engineering. New York: Chapman & Hall, Inc; 1994. 8. Cengel YA, Boles AB. Thermodynamics, an Engineering Approach. New York: McGraw Hill Inc; 1989. 9. Framatome Cogema Fuels. Crystal Ri ver Unit Three Cycle 12 Reload Report. Lynchburg (VA): Framatome; 1999. 10. Edenius M, Forssen BH. CASMO-3, A Fuel Assembly Burnup Program User’s Manual. Newton (MA): Studsvik of America Inc; 1989. 11. Graves HW Jr. Power-Reactor Pe rformance Evaluation Using Nodal/Modal Analysis. Annals of Nuclear Energy 1983; 10: 395. 12. Graves HW Jr. Evaluation of Coupli ng Coefficients in Nodal/Modal Analysis. Annals of Nuclear Energy 1984; 11: 213. 13. Graves HW Jr. EASCYC, An Interac tive Computational System For Reactor Fuel Cycle Analysis. Chevy Chase (MD): En ergy Analysis Software Service; 1995.

PAGE 258

243 14. Poston DI, Trellue HR. User’s Manual, Version 2.0 for MONTEBURNS, Ver 1.0. Washington, DC: Oak Ridge Nati onal Laboratory, Office of Nu clear Material Safety and Safeguards. US Nuclear Regulatory Commission; 2001. 15. RSICC Computer Code Co llection. ORIGEN2.1; Isotop e Generation and Depletion Code, Matrix Exponential Method. Oak Ri dge National Laboratory document CCC-371; Dec 1991. 16. RSICC Computer Code Collection. SCALE4.3: Modular Code System for Performing Standardized Com puter Analyses for Licensing Evaluation for Workstations and Personal Computers, Volume 2, Part 1. Oak Ridge National Laboratory document CCC-545; Dec 1991. F7.2.1-3. 17. Graves HW Jr. EASLIB-C Binary I nput File Generation for the EASCYC Fuel Cycle Analysis Program. Chevy Chase (MD): Energy Analysis Softwa re Service; 1995. 18. Graves HW Jr. Nuclear Manageme nt. New York: John Wiley and Sons; 1979. 19. RSICC Computer Code Collection. MC NP4C2 Monte Carlo N-Particle Transport Code System. Oak Ridge National La boratory document CCC-701; Jun 2001. 20. Serway RA. Physics for Scientists and Engineers with Modern Physics, Third Ed. Philadelphia: Saunders College Publishing; 1990.

PAGE 259

244 BIOGRAPHICAL SKETCH Kenneth Allen is a captain in the United States Army who attended high school in Goose Creek, SC. After high school, he was appointed as a cadet at the United States Military Academy at West Point, NY wh ere he studied civil engineering. Upon graduation from USMA, in 1993 he was comm issioned a second lieutenant in the Army Aviation Corps and he attended flight school at Fort Rucker Alabama where he became qualified to fly UH-1 Iroquois and UH-60 blackhawk helicopters. Ken served as a company commander of the U.S. Army’s helic opter company in Japan before attending the University of Florida. At the Univer sity of Florida he pursued a master of engineering degree in nuclear engineering. Ken and his wi fe Stephanie have two sons, Zachary and Nicholas.


Permanent Link: http://ufdc.ufl.edu/UFE0000628/00001

Material Information

Title: Advanced polymeric burnable poison rod assemblies for pressurized water reactors
Physical Description: Mixed Material
Language: English
Creator: Allen, Kenneth S. ( Dissertant )
Tulenko, James S. ( Thesis advisor )
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2003
Copyright Date: 2003

Subjects

Subjects / Keywords: Nuclear and Radiological Engineering thesis, M.S
Dissertations, Academic -- UF -- Nuclear and Radiological Engineering

Notes

Abstract: This study examines the use of a high-hydrogen, boron-enriched polymer materials in burnable poison rod assemblies (BPRAs) in pressurized water reactors (PWRs). Polyacetyleniccarboranosiloxane "carborane" is a boron-containing, high-hydrogen polymer that is representative of these polymers. It is thermally stable and can be used to eliminate the water displacement penalty created at end of cycle (EOC) by currently used boron-carbide burnable poisons. This material substitution is projected to result in higher burn ups and greater fuel use for fuels of equal enrichments. The polymer's chemical composition can be tailored to achieve the desired amount of boron and hydrogen. This tailoring feature allows carborane to be produced with a high hydrogen content serving as a moderator at EOC, softening the reactor spectrum and eliminating the moderator displacement penalty currently associated with boron carbide BPRAs and wet annular burnable assemblies (WABAs). Once the desired components in the polymer were derived, a series of analyses were run comparing the polymer to boron-carbide BPRAs and WABAs. Each PWR assembly was modeled in CASMO-3, a 2-D nodal transport depletion code from Studsvik of America. Additionally, each assembly was modeled in MCNP and depleted using MONTEBURNS, a PERL code script from the Radiation Safety Information Computational Center (RSICC) that depletes MCNP4C2 KCODE problems using ORIGEN2.1. The results from both codes demonstrated that the carborane material consistently had a lower k-infinity value at BOL, indicating a harder spectrum; and a higher k-infinity at EOC, indicating a lower amount of burnable absorber present and a larger thermal flux at EOC. The materials were also modeled in a simulation of a core in accordance with the reload report for the Crystal River 3 reactor to determine the power peaking and expected core burn-ups in an actual PWR reload scenario. The core was modeled in EASCYC, a diffusion theory nodal code, and in MCNP / MONTEBURNS. Each of the core modeling codes closely matched the predicted values in the reload report for the core parameters with the boron-carbide BPRAs. The carborane cores were found to have longer core lives and slightly higher power peaking indices at EOC.
General Note: Title from title page of source document.
General Note: Includes vita.
Thesis: Thesis (M.S.)--University of Florida, 2003.
Bibliography: Includes bibliographical references.
General Note: Text (Electronic thesis) in PDF format.

Record Information

Source Institution: University of Florida
Holding Location: University of Florida
Rights Management: All rights reserved by the source institution and holding location.
Resource Identifier: aleph - 002903364
System ID: UFE0000628:00001

Permanent Link: http://ufdc.ufl.edu/UFE0000628/00001

Material Information

Title: Advanced polymeric burnable poison rod assemblies for pressurized water reactors
Physical Description: Mixed Material
Language: English
Creator: Allen, Kenneth S. ( Dissertant )
Tulenko, James S. ( Thesis advisor )
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2003
Copyright Date: 2003

Subjects

Subjects / Keywords: Nuclear and Radiological Engineering thesis, M.S
Dissertations, Academic -- UF -- Nuclear and Radiological Engineering

Notes

Abstract: This study examines the use of a high-hydrogen, boron-enriched polymer materials in burnable poison rod assemblies (BPRAs) in pressurized water reactors (PWRs). Polyacetyleniccarboranosiloxane "carborane" is a boron-containing, high-hydrogen polymer that is representative of these polymers. It is thermally stable and can be used to eliminate the water displacement penalty created at end of cycle (EOC) by currently used boron-carbide burnable poisons. This material substitution is projected to result in higher burn ups and greater fuel use for fuels of equal enrichments. The polymer's chemical composition can be tailored to achieve the desired amount of boron and hydrogen. This tailoring feature allows carborane to be produced with a high hydrogen content serving as a moderator at EOC, softening the reactor spectrum and eliminating the moderator displacement penalty currently associated with boron carbide BPRAs and wet annular burnable assemblies (WABAs). Once the desired components in the polymer were derived, a series of analyses were run comparing the polymer to boron-carbide BPRAs and WABAs. Each PWR assembly was modeled in CASMO-3, a 2-D nodal transport depletion code from Studsvik of America. Additionally, each assembly was modeled in MCNP and depleted using MONTEBURNS, a PERL code script from the Radiation Safety Information Computational Center (RSICC) that depletes MCNP4C2 KCODE problems using ORIGEN2.1. The results from both codes demonstrated that the carborane material consistently had a lower k-infinity value at BOL, indicating a harder spectrum; and a higher k-infinity at EOC, indicating a lower amount of burnable absorber present and a larger thermal flux at EOC. The materials were also modeled in a simulation of a core in accordance with the reload report for the Crystal River 3 reactor to determine the power peaking and expected core burn-ups in an actual PWR reload scenario. The core was modeled in EASCYC, a diffusion theory nodal code, and in MCNP / MONTEBURNS. Each of the core modeling codes closely matched the predicted values in the reload report for the core parameters with the boron-carbide BPRAs. The carborane cores were found to have longer core lives and slightly higher power peaking indices at EOC.
General Note: Title from title page of source document.
General Note: Includes vita.
Thesis: Thesis (M.S.)--University of Florida, 2003.
Bibliography: Includes bibliographical references.
General Note: Text (Electronic thesis) in PDF format.

Record Information

Source Institution: University of Florida
Holding Location: University of Florida
Rights Management: All rights reserved by the source institution and holding location.
Resource Identifier: aleph - 002903364
System ID: UFE0000628:00001


This item has the following downloads:


Full Text











ADVANCED POLYMERIC BURNABLE POISON ROD
ASSEMBLIES FOR PRESSURIZED WATER REACTORS
















By

KENNETH S. ALLEN


A THESIS PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF ENGINEERING

UNIVERSITY OF FLORIDA


2003




























Copyright 2003

by

Kenneth S. Allen
































To my best friend and companion Stephanie and our wonderful boys Zachary and
Nicholas. Your faithful support and encouragement has made this and every task easy to
accomplish. Always Ken.















ACKNOWLEDGMENTS

I would like to acknowledge the United States Army and the United States Military

Academy Department of Physics for providing me the scholarship and opportunity to

attend the University of Florida in pursuit of this degree. The United States Department

of Energy for funding the advanced burnable poison research project. I would also like to

acknowledge Professor Jim Tulenko for chairing my committee and providing excellent

tutoring as my advisor. Additionally, I would like to thank Dr. Samim Anghaie and Dr.

Ed Dugan for providing me countless hours of instruction in all areas from the basics of

radiation interactions to the use of the computer codes required to complete this work. I

would like to recognize Dr. Ron Baney and Dr. Daryl Butt and their graduate students

from the Materials Sciences and Engineering department who worked with Professor

Tulenko and me on the burnable poison research committee. Their work and insight on

the manufacture and chemical properties of the various polymers we investigated added

depth to the research performed.

I want to thank my parents for their guidance and belief that education is and

always will be important. I would especially like to thank my family; Stephanie,

Zachary, and Nicholas for their love and support.
















TABLE OF CONTENTS
page

A C K N O W L E D G M E N T S ................................................................................................. iv

LIST OF TABLES ....................................................... ............ ....... ....... ix

LIST OF FIGURES ............................... ... ...... ... ................. .x

KEY TO SYMBOLS AND ACRONYMS ............... ..................... ........... xii

ABSTRACT ........ .............. ............. ...... ...................... xiv

CHAPTER

1 IN TR OD U CTION .................. ............................. ....... ...... .............. .

B background ............... ... .................... .......................... ... ........ ............. 1
Rational for U se of Burnable Poisons......................................................... ....... .. 2
Types of Burnable Poison Isotopes.................................... ................................... 4
Carriers and Locations for Burnable Poisons...................... ............... .............. 5

2 M A TERIAL SELECTION ............................................... ................................... 12

Moderation Effectiveness and Benchmark Calculations............................................ 13
Optimization of PACS Structure for Moderation................................................... 16
Calculation of the Weight Percent of Each Element............................................. 16
Average Epithermal Microscopic Cross Sections ............................................ 17
Calculation of the Number Density of Each Element.......................................... 19
M acroscopic Cross Sections of Each Element..................................................... 20
Average Logarithmic Energy Decrement for the Elements............................. 20
Average Logarithmic Energy Decrement for the Material .................................. 21
Results of Permutations of PACS Formula.......................................................... 22
Optim ization of PA CS for Absorption ................................. ..................................... 24

3 MODELING AND METHODOLOGY ............................................. ............... 27

O verview of M odeling ............... .. .................................. ...................................... 27
General Problem Description and Geometry ....................................................... 27
G general A ssum options in M odels ................................... ............................. ...... 30
C odes U sed for M odeling ............................................... ........................... 31
The C A SM O -3 C ode ............................................... ............................ 31
T h e E A S C Y C C ode .............................................................. .....................32









The MCNP Code.................................................... 33
The O R IG EN 2 C ode.............................................. .............................. 33
The M ON TEBURN S Code ........................................ ......... ............... 34
Single A ssem bly C calculations ............................................... ........................... 35
M multiple 2-D A ssem bly C alculations.................................................. ... ................. 39
C ore M modeling ................................................ 41
The EA SCY C m odels ...................................................................... ..... 41
The M CNP/M ON TEBURN S m odels.............................................. ... ... .............. 43
Chem ical Shim M odels.................... ............................................. ........... .............. 47

4 THERMAL AND RADIATION PROPERTY CALCULATIONS ...........................49

Maximum Expected Centerline Temperature in BPRA ............................................... 50
Maximum Coefficient of Thermal Expansion.................. ....... ................. 54
Dose Delivered to BPRA during Cycle ..................... ........... .............. 57

5 RESULTS AND DISCUSSION............................. ................... 58

Single A ssem b ly A n aly sis ............................................................................................ 58
Multiple Assembly Results ......... ....................................... 64
O ne-E eighth C ore R results .................................................. ........................... ..... 67
C riticality v s. T im e R esults.......................................................... ... ... .............. 67
Power Peaking Results......... ........ ........... ...... .............. 70
Other Polymer M materials .......... ................... ...... .............. 76

6 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK..................79

C o n c lu sio n s ................................................................................. 7 9
Recom m endations for Future W ork ..................... ................................ ........ ..... 83

APPENDIX

A CALCULATIONS OF MODERATION EFFECTIVENESS OF PAC S....... ........ 86

B SINGLE ASSEMBLY CASMO AND MONTEBURNS FILES ..............................93

The CAM SO Input File B4C/A1203 BPRAs ............................................. ................ 93
The CASMO Output File Water in Guide Tubes ................................ ............. 94
The CASMO Input File B4C/A1203 BPRAs in Guide Tubes .................................. 95
The CASMO Output File B4C/A1203 BPRAs in Guide Tubes................................ 96
The CASMO Input File B4C/A1203 WABAs in Guide Tubes................................ 97
The CASMO Output File B4C/A1203 WABAs in Guide Tubes.............................. 98
The CASMO Input File L-Carborane BPRAs in Guide Tubes ............................... 99
The CASMO Output File L-Carborane BPRAs in Guide Tubes............................ 100
The MCNP Input File Water in Guide Tubes...................................................... 101
The MONTEBURNS Input File Water in Guide Tubes.......................................... 102
The MONTEBURNS Output File Water in Guide Tubes............... .............. 103
The MCNP Input File B4C/A1203 BPRAs in Guide Tubes ...................................... 107









The MONTEBURNS Input File B4C/A1203 BPRAs in Guide Tubes ....................... 108
The MONTEBURNS Output File B4C/A1203 BPRAs in Guide Tubes ..................... 110
The MCNP Input File B4C/A1203 WABAs in Guide Tubes............................. 115
The MONTEBURNS Input File B4C/A1203 WABAs in Guide Tubes ...................... 116
The MONTEBURNS Output File B4C/A1203 WABAs in Guide Tubes.................... 118
The MCNP Input File L-Carborane BPRAs in Guide Tubes ................................... 122
The MONTEBURNS Input File L-Carborane BPRAs in Guide Tubes..................... 123
The MONTEBURNS Output File L-Carborane BPRAs in Guide Tubes ................ 125

C MULTIPLE ASSEMBLY (COLORSET) CASMO FILES..................................... 130

The 2x2 Colorset CAMSO Input File B4C/A1203 BPRAs. ........................................ 130
The 2x2 Colorset CASMO Output File Water in Guide Tubes................................ 132
The 2x2 Colorset CASMO Input File B4C/A1203 BPRAs in Guide Tubes.............. 135
The 2x2 Colorset CASMO Output File B4C/A1203 BPRAs in Guide Tubes ........... 137
The 2x2 Colorset CASMO Input File B4C/A1203 WABAs in Guide Tubes ............ 140
The 2x2 Colorset CASMO Output File B4C/A1203 WABAs in Guide Tubes .......... 142
The 2x2 Colorset CASMO Input File L-Carborane BPRAs in Guide Tubes............. 145
The 2x2 Colorset CASMO Output File L-Carborane BPRAs in Guide Tubes.......... 147

D ONE-EIGHTH CORE EASCYC FILES ..............................................................150

The 10A3 CA SM O Input File ........................................................ ........ .... 150
The 12A2 CA SM O Input File ......... .................... ................. ............. .............. 151
The 13AE CASMO Input File ................. ........ .. ..................... 151
The 14AE CASM O Input File .................... .... ..... .... ................. 152
The EASY Output Fuel Cross Section Library File ............................................... 153
The EASYLIB Input File Reactor Geometry .................................................... 159
The EASCYC Output File B4C/A1203 BPRAs............................ .... .............. .. 160

E ONE-EIGHTH CORE MCNP/MONTEBURNS FILES ........................................181

The MCNP Input File 1/8th core B4C/A1203 BPRAs............... ........... .......... 181
The M CNP Input File 1/8th core L-Carborane BPRAs.............................................. 187
The MCNP Input File 1/8th core J-Carborane BPRAs.................................... 193
The MONTEBURNS Input File 1/8th core B4C/A1203 BPRAs.................................. 199
The MONTEBURNS Input File 1/8th core L-Carborane BPRAs............................... 200
The MONTEBURNS Input File 1/8th core J-Carborane BPRAs ............................. 201
The MONTEBURNS Output File 1/8th core B4C/A1203 BPRAs ............................. 202
The MONTEBURNS Output File 1/8th core L-Carborane BPRAs............................ 204
The MONTEBURNS Output File 1/8th core J-Carborane BPRAs............................. 206

F ONE-EIGHTH CORE WITH CHEMICAL SHIM MCNP/MONTEBURNS FILES 208

The MCNP Input File Chem Shim Power Peak #4 B4C/A203 BPRAs..................... 208
The MCNP Input File Chem Shim Power Peak #12 B4C/A203 BPRAs.................. 215
The MONTEBURNS Input File Chem Shim Power Peak #4 B4C/A1203 BPRAs..... 222
The MONTEBURNS Input File Chem Shim Power Peak #12 B4C/A1203 BPRAs... 223









The MONTEBURNS Feed File Chem Shim Power Peak #4 B4C/A1203 BPRAs ..... 224
The MONTEBURNS Feed File Chem Shim Power Peak #12 B4C/A1203 BPRAs ... 225
The MONTEBURNS Output File Chem Shim Peak #4 B4C/A1203 BPRAs ........... 227
The MONTEBURNS Output File Chem Shim Peak #12 B4C/A1203 BPRAs ........... 229
The MONTEBURNS Output File Chem Shim Peak #4 L-Carborane BPRAs .......... 231
The MONTEBURNS Output File Chem Shim Peak #12 L-Carborane BPRAs........ 234
The MONTEBURNS Output File Chem Shim Peak #4 J-Carborane BPRAs........... 236
The MONTEBURNS Output File Chem Shim Peak #12 J-Carborane BPRAs......... 239

L IST O F R E FE R E N C E S ...................................... ................................... ..................... .....242

BIOGRAPH ICAL SKETCH ................................................ ............................... 244
















LIST OF TABLES


Table page

1-1. Ideal properties of a burnable poison ............................. ...................3

1-2. Example reactivity worths of control elements in LWRs ......................................6

1-3. Properties of burnable poison system s ................................................................... 10

2-1. Scattering properties of various nuclei ............ ............................... ............... 14

2-2. Scattering properties of various moderators .........................................................15

2-3. Total atomic masses for each element and compound................ .............. ....17

2-4. W eight percent of each elem ent ..................................... ........................ ......... 17

2-5. Average microscopic cross sections for carborane elements..............................19

2-6. Number densities for each element in carborane.............................................20

2-7. Macroscopic cross sections for each element of carborane ..................................20

2-8. Calculated average logarithmic energy decrement for PACS elements ...............21

2-9. M olecular properties of burnable poison materials ................................................25

3-1. Reactor and assembly characteristics for the Crystal River 3 Reactor ...................28

3-2. Fuel composition information for Crystal River Cycle 12...................................29

3-3. Input description for EA SLIB ...................................................... ..................43

4-1. Evaluated data for centerline temperature in various BPRA materials...................53

4-2. Coefficients of thermal expansion of various materials........................................57

A-1. Calculations of moderator effectiveness for PACS molecule.............................86
















LIST OF FIGURES


Figure p

1-1. Microscopic cross sections of various isotopes of burnable poison materials..........5

1-2. The BPRA locations in a 15 x 15 Framatome Mark IVB assembly .....................8

1-3. The BPRA plan view and cross section ........................................ ...............9

1-4. The W A BA plan view and cross section ........................................ .....................9

2-1. Epithermal microscopic elastic scattering cross sections for PACS elements........18

2-2. Thermal microscopic absorption cross sections for PACS elements...................18

2-3. Moderator effectiveness vs. weight percent of H in carborane..............................22

2-4. Effectiveness to macroscopic cross section vs. weight percent H in carborane .....23

2-5. Boron carbide alumina chemical structures............. ..............................................24

2-6. The PA CS chem ical structure ...................................................... ..................25

3-1. Map of 1/8th Crystal River Three Cycle 12 core..................................................29

3-2. Exam ple of a PW R core cross section ........................................ .....................30

3-3. Interaction of MONTEBURNS with MCNP and ORIGEN2...............................35

3-4. A SABRINA plot of top portion of Mark IV assembly model in MCNP. .............36

3-5. Example of CASMO input file for a single assembly. .........................................37

3-6. Example of MCNP input file for single assembly. .......... ............. ............... 38

3-7. Example of MONTEBURNS input file for single assembly..............................39

3-8. A CASMO 2 x 2 colorset array model................................. ..............39

3-9. Example of CASMO input file for a 2 x 2 colorset .............................................40

3-10. Example of EASLIB input file.................................................................... 42









3-11. Multiple SABRINA plots of full core reactor MCNP model. .............................45

3-12. Multiple SABRINA plots of 1/8th core reactor MCNP model.............................46

3-13. Example of single assembly MONTEBURNS feed file.........................................47

4-1. Cross section diagram of a BPRA ............ .................. .................. ......... ...... 54

4-2. Therm al expansion of a m etal w asher .................... ........... ....................55

5-1. Single assembly k-infinity vs. time for various BPRAs using CASMO ...............59

5-2. Single assembly pin power peaking for various burnable absorbers....................60

5-3. Number of B-10 atoms present vs. burnup for various burnable absorbers............61

5-4. K-infinity for different carborane compounds with varying amounts of H............62

5-5. K-infinity vs. burnup comparison of CASMO and MCNP/MONTEBURNS. .....63

5-6. Thermal flux vs. burnup inside BPRA for various burnable poison materials.......64

5-7. CASMO 2 X 2 colorset comparison k-infinity vs. burnup .............. ...............65

5-8. CASMO 2 X 2 colorset comparison pin power peaking vs. burnup .................66

5-9. K-infinity vs. time for various BPRA materials (1/8th core MONTEBURNS). .....68

5-10. K-infinity vs. time for 1/8th core for BPRA materials including J-Carborane........69

5-11. Assembly number identification for 1/8th core model. ........................................70

5-12. Power distribution for 1/8th core with B4C/A1203 BPRAs at BOC.......................71

5-13. Power peaking vs. depletion time (average of assemblies by type)......................72

5-14. Power peaking for various BPRAs in Assembly 4 with no chemical shim............73

5-15. Power peaking for various BPRAs in Assembly 12 with no chemical shim..........74

5-16. Chem ical shim vs. tim e for core m odels ...................................... ..................74

5-17. Power peaking for various BPRAs in Assembly 4 with chemical shim ...............75

5-18. Power peaking for various BPRAs in Assembly 12 with chemical shim ..............76

5-19. Single assembly comparison of various absorbers to include polyethylene...........77


















Acronym or Symbol

BOC

BPRA

BWR

C

CNP

ET

EFPD

ENDF/B-V

EOC

HFP

HNP

IFBA

k

kL

keff

LWR

MCNP

MWd/MTU

MWt


KEY TO SYMBOLS AND ACRONYMS

Definition

Beginning of cycle

Burnable poison rod assemblies

Boiling water reactor

Coefficient of thermal expansion

Cold-no-power

Most probable thermal neutron energy

Effective full power days

Evaluated nuclear data files Brookhaven V

End of cycle

Hot-full-power

Hot-no-power

Integral fuel burnable absorber

Neutron multiplication factor (a.k.a. criticality constant)

Infinite neutron multiplication factor

Effective neutron multiplication factor

Light water reactor

Monte Carlo Neutron Photon Transport code

Mega-watt days per metric ton uranium

Mega watts (thermal)









PACS Polyacetyleniccarboranosiloxane

PNLThermal Probability of non-leakage for thermal neutrons

PWR Pressurized water reactor

RSICC Radiation Safety Information Computational Center

Tc Centerline temperature

VT Most probable thermal neutron velocity

WABA Wet annular burnable assembly

SAverage logarithmic energy decrement

ca Microscopic absorption cross section

Ya Macroscopic absorption cross section















Abstract of Thesis Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Master of Engineering

ADVANCED POLYMERIC BURNABLE POISON ROD
ASSEMBLIES FOR PRESSURIZED WATER REACTORS

By

Kenneth S. Allen

May 2003

Chair: Professor James Tulenko
Department: Nuclear and Radiological Engineering

This study examines the use of a high-hydrogen, boron-enriched polymer materials

in burnable poison rod assemblies (BPRAs) in pressurized water reactors (PWRs).

Polyacetyleniccarboranosiloxane "carborane" is a boron-containing, high-hydrogen

polymer that is representative of these polymers. It is thermally stable and can be used to

eliminate the water displacement penalty created at end of cycle (EOC) by currently used

boron-carbide burnable poisons. This material substitution is projected to result in higher

burn ups and greater fuel use for fuels of equal enrichments.

The polymer's chemical composition can be tailored to achieve the desired amount

of boron and hydrogen. This tailoring feature allows carborane to be produced with a

high hydrogen content serving as a moderator at EOC, softening the reactor spectrum and

eliminating the moderator displacement penalty currently associated with boron carbide

BPRAs and wet annular burnable assemblies (WABAs).









Once the desired components in the polymer were derived, a series of analyses

were run comparing the polymer to boron-carbide BPRAs and WABAs. Each PWR

assembly was modeled in CASMO-3, a 2-D nodal transport depletion code from Studsvik

of America. Additionally, each assembly was modeled in MCNP and depleted using

MONTEBURNS, a PERL code script from the Radiation Safety Information

Computational Center (RSICC) that depletes MCNP4C2 KCODE problems using

ORIGEN2.1. The results from both codes demonstrated that the carborane material

consistently had a lower k-infinity value at BOL, indicating a harder spectrum; and a

higher k-infinity at EOC, indicating a lower amount of burnable absorber present and a

larger thermal flux at EOC.

The materials were also modeled in a simulation of a core in accordance with the

reload report for the Crystal River 3 reactor to determine the power peaking and expected

core bum-ups in an actual PWR reload scenario. The core was modeled in EASCYC, a

diffusion theory nodal code, and in MCNP / MONTEBURNS. Each of the core

modeling codes closely matched the predicted values in the reload report for the core

parameters with the boron-carbide BPRAs. The carborane cores were found to have

longer core lives and slightly higher power peaking indices at EOC .














CHAPTER 1
INTRODUCTION

Background

The focus of this study is the development of a polymeric burnable poison material

that bums out more completely (reducing the negative reactivity at end of cycle (EOC))

and eliminates the water displacement penalty caused by burnable poison rod assemblies

(BPRAs) occupying moderator space in the control rod guide tubes.

Utilities and fuel vendors have made extensive use of burnable poisons in the past

decade, resulting in dramatic improvements in fuel utilization and depletion, or "bumup,"

improved overall conversion ofuranium-238 into fissile plutonium, and reduction of

leakage of thermal neutrons from the core. Extended lifetimes of fuel batches and higher

burnups have made nuclear power extremely cost-competitive with other forms of energy

production. In fact, based on fuel cycle costs, nuclear energy is the least expensive

alternative in terms of dollars per kilowatt-hour of electricity produced. Further

improvements in burnable poisons could result in even greater fuel use and

cost-reduction.

This study examines the use of high-hydrogen and boron-enriched polymer

materials for use in burnable poison rod assemblies (BPRAs) in pressurized water

reactors (PWRs). The reason for using boron-containing organic polymers is to provide

moderating hydrogen atoms in the polymer to replace the currently used B4C/A1203

inorganic system. A new material named polyacetyleniccarboranosiloxane (PACS),

developed by Dr. Keller of the Naval Research Laboratory is typical of the material we









are seeking [1]. Keller's PACS is a boron-containing, high-hydrogen polymer which has

been shown to be stable up to 1000 OC. It can be used in BPRAs to eliminate the water

displacement penalty created at EOC by currently used boron-carbide burnable poisons.

Previous research predicts that this material substitution results in higher burnups and

greater fuel utilization for fuels of equal enrichments [2].

The chemical formula for PACS or "carborane" is (BioHioC2)a((CH3)2SiO)b(C2)c.

Its composition can be tailored for the amount of boron and hydrogen present by

adjusting the quantities of the components represented by the subscripts a, b, and c in the

formula. This tailoring feature allows carborane to be produced with a high hydrogen

content which will serve as a moderator at EOC softening the reactor spectrum and

eliminating the moderator displacement penalty. The softer spectrum also increases the

worth of the boron in the polymeric BPRA at BOC and enhances the consumption of

plutonium in the core by providing more thermal neutrons for conversion and fission at

EOC.

Rational for Use of Burnable Poisons

The probability for any type of nuclear reaction, such as neutron absorption or

scatter, within a particular material is referred to as the microscopic cross section (o) of

the material and is represented in units of area. The common unit of area used in nuclear

engineering is the barn which equals 1 x 10-24 cm2. The product of the microscopic cross

section and the material's number density (atoms / volume) is called the macroscopic

cross section (C) of the material and is given in units of inverse length (cm-1). The

macroscopic cross section is a more effective measure of the element or compound's

actual probability of reaction because it accounts for the nuclear probability of interaction

and the physical probability of the target atoms being present in a particular region.









A reactor must have excess reactivity in the core in order to compensate for fuel

depletion, fission product absorption, and temperature effects [3]. High-absorption

fission products (xenon and samarium) reach equilibrium within a few days after the

reactor going critical and achieving full power. The temperature effects caused by

changes in power can be compensated for with control rods and changes in chemical

shim. Therefore, the primary purpose of a burnable poison is to offset the excess

reactivity required to sustain the reactor over time, or fuel depletion and fission product

build-up. A burnable poison performs this function by absorbing large amounts of

thermal neutrons at BOC and progressively absorbing fewer neutrons as the absorber

material changes to a daughter product or "bums" until EOC when it is removed from the

core. Some properties of an ideal burnable poison are shown in Table 1-1.

Table 1-1. Ideal properties of a burnable poison
Desired
Effect Property
Max Cross section for thermal neutrons at beginning of cycle (BOC) of the fuel
Max Bum-out at EOC resulting in maximum reactivity when desired
Min Daughter product cross section (to allow the poison to deplete or "bum")
Min Excess unwanted products (such as gases) produced during depletion
Min Corrosive or other harmful interactions with reactor components
Min Impact on amount of fuel or moderator displaced in core (esp. at EOC)
Min Impact on heat transfer between fuel and coolant and melting point of fuel
Min Impact on power peaking over the cycle

A burnable poison allows a higher amount of excess reactivity to be present at the

beginning of cycle (BOC) in the reactor. This higher reactivity increases the amount of

time the fuel can be used which is referred to as the burnup for the cycle. A longer time

between cycle reloads and a higher burnup reduces reactor downtime for reloads, reduces

the amount of waste products (spent fuel assemblies), and reduces the frequency of

purchasing new fuel.









Burnable poisons also allow fresh fuel to be placed in the center of a reactor core in

an "Ultra Low Leakage" design. The burnable poisons quench the high reactivity of the

new fuel and help maintain a constant power and flux within the reactor core that is

below the maximum value allowed for the reactor. This low-leakage core converts more

fertile material to fissile material allowing a greater proportion of the fuel to be burned by

the end of life. The low leakage design also helps eliminate damage to the pressure

vessel due to neutrons escaping from the core [4].

Types of Burnable Poison Isotopes

Some of the burnable poison isotopes commonly used today are boron-10,

gadolinium-157 and erbium-167. Boron is used both in ZrB2 coatings on fuel pellets and

in B4C / A1203 fixed BPRAs. Gadolinium and erbium are used in mixed oxides (Gd203

and Er203) within the fuel pellet [3]. These materials meet to some extent the eight

optimum criteria in Table 1-1. Other isotopes with significant cross sections for thermal

neutron absorption are europium, dysprosium, and palladium. Figure 1-1 shows

microscopic absorption cross sections and natural abundance for several isotopes of

burnable poison materials generated using a NITAWL 238 group library that used source

data from the Evaluated Nuclear Data Files from Brookhaven National Laboratories

version five (ENDF/B-V) [5]. The primary region of interest for a burnable poison is the

absorption of thermal neutrons. Thermal neutrons are those whose energies are located

within a Maxwellian distribution function and are normally assumed to have a most

probable energy (ET) and speed based on the temperature of the system. A temperature

of 2930K corresponds to ET= 0.025 eV and VT = 2200 m/s while a reactor operating

temperature of 590 K results in ET = 0.051 eV and VT = 3100 m/s [6]. A high natural

abundance for a material is normally associated with a lower manufacturing cost. Not all












of the natural isotopes are shown in Figure 1-1. For instance, gadolinium has seven


naturally occurring isotopes but only the most commonly used parent (GD-157) is shown


to make the data easier to interpret.


1 OOE+07
% Natural
1 00E+06 Element Abundance
GD157 15.7%
1 00E+05
1 E+05 -- EU 151 47.8%
-- B 10 20.0%
1 00E+04
DY 161 18.9%

S1 00E+03 -- PD 105 22.2%









*1 OOE+02 ------------------------------------------
1 00E+02


S1 00E+01


1 00E+00


1 00E-01


1 00E-02


1 00E-03
1 00E-05 1 00E-04 1 00E-03 1 00E-02 1 00E-01 1 00E+00 1 00E+01 1 00E+02 1 00E+03 1 00E+04 1 00E+05 1 00E+06 1 00E+07 1 00E+08
Energy (ev)


Figure 1-1. Microscopic cross sections of various isotopes of burnable poison materials.


Carriers and Locations for Burnable Poisons


The primary difference with respect to control between a boiling water reactor


(BWR) and a PWR is that a PWR uses boron in the water (chemical shim) to assist in the


control of reactivity within the core while the BWR uses coolant flow control. Chemical


shim is usually boric acid added in parts per million (ppm) to the reactor's coolant water


to offset excess reactivity. A PWR can use chemical shim because the water does not


boil in the core. A light water reactor (LWR) has a negative void coefficient meaning


that when the water is heated and decreases in density the moderation effect is reduced









and the reactivity in the core is also reduced. However, with the use of chemical shim,

the amount of control poison is also reduced with the increase in temperature resulting in

a positive reactivity effect. This change in the void coefficient often limits the amount of

chemical shim that can be added to a core [6]. In a BWR the boiling water in the core is

not suitable for the use of chemical shim to offset reactivity but the amount of water

flowing through the core can be changed (flow control) to change the amount of voids

within the core.

Table 1-2. Example reactivity worths of control elements in LWRs
Reactivity (Ak/k) PWR BWR
Excess reactivity 0.25
at 200 C 0.293
at op. temp 0.248
at eq. Xe and Sm 0.181
Total control rod worth 0.07 0.17
~ 60 clusters 140-185 cruciforms
Fixed burnable poisons 0.12
Chemical shim worth
Shutdown margin 0.14 0.04
Cold and clean
Hot and eq. Xe and Sm
tApproximately half of the total control rod worth is dedicated for shutdown rods and is
not used for power maneuvering or depletion compensation. Adapted from J.
DUDERSTADT, L. HAMILTON, Nuclear Reactor Analysis, John Wiley and Sons Inc.,
New York 1976.pg. 539.

Because of the chemical shim, the control requirements for the mechanical control

rods are different between BWRs and PWRs. A PWR's control rods must have enough

negative reactivity to take the reactor from hot-full-power (HFP) to hot-no-power (HNP).

A BWR's control rods must be able to take the reactor from hot-full-power to

cold-no-power (CNP). The PWR achieves CNP by using chemical shim. Chemical shim

is not part of this study with the assumption that it will continue to be used in the same

manner as it is currently employed.









Reactivity (p) represents a ratio in the fractional change in a system from critical

(Ak/k). The unit of reactivity worth in a light water reactor (LWR) is the percent mill

(pcm) where Ipcm = p x 10-5 [7]. Another unit of reactivity is the dollar which is the

amount of reactivity required to make a reactor critical on the prompt neutrons alone,

prompt critical, and varies as a function of the type of fuel used. Prompt neutrons are

those generated immediately from the fission process. Delayed neutrons are generated up

to a couple of minutes following fission and are the product of fission fragment

radioactive decay. Table 1-2 shows various worths of different control elements in

typical BWR and PWR reactors [6].

As shown in Table 1-2, a PWR has approximately 60 clusters of control rods fixed

within the reactor's geometry. Every fuel assembly must be designed to accept a control

rod cluster because the assemblies are moved throughout the core during each reload.

This "shuffle" allows for the fuel assemblies to be arranged in such a manner to produce

the optimum lifetime for the core. Also it optimizes the power peaking and control

requirements during the cycle. The reload design also attempts to place fresh fuel

assemblies in locations without control rod clusters to allow the BPRA assemblies to fill

the empty control rod guide tubes in the new assembly.

Figure 1-2 shows plan views of Framatome Mark IVB 15 x 15 assemblies with

various configurations ofBPRAs. This particular assembly was designed to accept up to

16 control rods in a cluster and can accept up to 16 BPRAs. Some reactor designs have

as many as 20 control rod guide tubes. The center hole in the assembly is for in-core

instrumentation and the triangle region illustrates the area of symmetry used by some

computer codes to simplify calculations. The assembly shown in Figure 1-2 is the same










assembly used in the Crystal River Three reactor for the cycle 12 core reload. The reload

report for the Crystal River Three reactor is the primary benchmark comparison for all of

the calculations and models within this study.

rUO0 00 0 00 0 0000
ooooooooooo>ooo, ioooooooooooooooI













S* U2 Fuel Pins
,,O000000Central water hole I


empty guide tubes*
008010000 000000 0000B)0000006000
O00O00O000O00O00i lO'OO"OOOOOOOOOl
ooooooo6oooooo pooooooooooooi













*BPRA Locations
0000000 00000000, OO00000.000ooO








0 0Area of 1/8 Symmetry
OO00000(O OOOO iOO0 OO SO0OO
0000000q)OOO'0i i0000000 00)00








B-16 -12








Figure 1-2. The BPRA locations in a 15 x 15 Framatome Mark IVB assembly

Some of the various fixed burnable poison materials and carriers used today
include the BPRA, the Integral Fuel Burnable Absorber (IFBA), gadolinia-urania









burnable poison fuel rod, the erbia-urania burnable poison fuel rod, and the Wet Annular
Burnable Absorber (WABA). The BPRA, illustrated in Figurole 1-3, is a boron carbide











aluminum oxide mixture used by Westinghouse and Framatome in PWRs. The IFBA is a
fuel pellet that is coated with a layer of zirconium diboride used by Westinghouse.













Gadolinia-urania fuel rods are used by Framatome in PWRs and General Electric in

BWRs. The erbia-urania fuel rods are used by Combustion Engineering in PWRs. The
WABA, in Figure 1-4, is a Westinghouse modification to the typical BPRA that includes
iO000010( )Ol( O0OOi
OO0 OcOOOOOOcOW00cO [\ Area of 1/8 Symmetry

iO000000(POOS(00

B-08

Figure 1-2. The BPRA locations in a 15 x 15 Framatome Mark IVB assembly

Some of the various fixed burnable poison materials and carriers used today

include the BPRA, the Integral Fuel Burnable Absorber (IFBA), gadolinia-urania

burnable poison fuel rod, the erbia-urania burnable poison fuel rod, and the Wet Annular

Burnable Absorber (WABA). The BPRA, illustrated in Figure 1-3, is a boron carbide

aluminum oxide mixture used by Westinghouse and Framatome in PWRs. The IFBA is a

fuel pellet that is coated with a layer of zirconium diboride used by Westinghouse.

Gadolinia-urania fuel rods are used by Framatome in PWRs and General Electric in

BWRs. The erbia-urania fuel rods are used by Combustion Engineering in PWRs. The

WABA, in Figure 1-4, is a Westinghouse modification to the typical BPRA that includes












a hole, or annulus, in the middle of the BPRA to allow for less of a moderator penalty at


EOC. However, this design is expensive to fabricate.










BP MATERIAL R4 0386 mm -
HELIUM R41783mm -
ZIRCALOY R6 7564 mm














Figure 1-3. The BPRA plan view and cross section








VWATER R2 8575 mm -
ZIRCALOY R3 3909 mm
SHELIUM R4 183 mm
ZIRCALOYR6 7564 mm -














Figure 1-4. The WABA plan view and cross section


The moderator displacement penalty is just one of many design concerns that are


considered when attempting to generate an improved burnable poison design. Just as









there are numerous desirable properties of the burnable poison material, shown in Table

1-1, each of the current designs for burnable absorbing systems have distinct advantages

and disadvantages. Advantages and disadvantages for each of these burnable poison

systems are listed in Table 1-3. The central issue with this study is to take the desirable

characteristics of a material and combine it with the most cost effective manufacturing

process and generate an improved burnable poison assembly. The improved assembly

must not only be able to demonstrate better performance but it must be able to withstand

the harsh conditions within the reactor both in normal operations and in the event of an

emergency as well as or better than the current BPRAs.

Table 1-3. Properties of burnable poison systems.
Type Advantages Disadvantages
BPRA Inexpensive and easy to Some residual reactivity at EOC
(B4C-A1203) manufacture Moderator displacement
Uniform boron distribution Separate assembly creates an
Low swelling additional waste product

IFBA No moderator displacement Helium gas produced by the
penalty burnup of boron adds to the


Gd203-U02





WABA


* Gadolinium has a very high
thermal neutron cross section
. No moderator displacement
penalty


. Less excess reactivity because
the annular design allows
moderator to flow through the
center of the rod enhancing
boron burnup
. A 21% smaller moderator
displacement penalty than a
BPRA


fission gases inside the fuel rod
and is a limiting criteria

* Reduces the melting point of
uranium and thermal conductivity
of the fuel
* Daughter products have moderate
cross sections for absorption

* Cost of manufacture for the
annular design
* Still results in some moderator
displacement
. Separate assembly creates an
additional waste product






11


The overall differences between two burnable poison systems may only result in a

change of one percent of burnup over the cycle of a core. However, because of the

enormous costs to a utility during a shutdown, one percent of a 2-year cycle could result

in a savings of $6 million per reload to the utility. It is therefore feasible to research a

new material that could overcome some of the disadvantages listed in Table 1-3 even if

the differences are subtle.














CHAPTER 2
MATERIAL SELECTION

Chapter 1 showed some of the different types of burnable poisons used today and

displayed their overall advantages and disadvantages in Table 1-3. This chapter

examines the required nuclear reaction properties, specifically the moderation effect at

EOC, of an advanced burnable poison material. It also establishes the benchmark criteria

for an improved polymeric burnable absorber versus the standard boron carbide BPRA

and WABA. The IFBA and Gd203/UO2 burnable absorbers are not discussed in this

chapter because they do not directly relate to the study of an improved BPRA.

Additionally, the benchmark requirements of the thermal mechanical properties, to

include radiation effects, are discussed in Chapter 4.

The first step in the development of a burnable poison polymer that has the

moderation ability equal to or better than light water at EOC was to determine the amount

of moderation materials required in the PACS, or "carborane," polymer. As stated in

Chapter 1, carborane ((BioHioC2)a((CH3)2SiO)b(C2)c) can be modified by adjusting the

values of a, b, and c in the subscript of the formula. By determining a measure of the

moderation effectiveness of light water, a benchmark standard could be established and

an estimate can be made of the minimum weight percent of moderation materials that will

be required for the burnable poison to offset the water displacement penalty at EOC.

Although PACS is not the only advanced polymeric burnable absorber considered within

this study, it is characteristic of these polymers. The method of determining the optimum









material concentration in PACS could be directly related to any advanced polymer by

substitution of the appropriate elements and concentrations in the methodology.

Moderation Effectiveness and Benchmark Calculations

Neutrons produced in fission are "born" at energies between 1 to 2 MeV. In a

thermal nuclear reactor, neutrons are slowed down, or moderated, to thermal energies

(approximately 0.625 eV) by elastic and inelastic scattering with nuclei within the core in

order to generate further fissions. Inelastic scatters occur primarily at energy ranges

above 10 keV because there must be a threshold energy in which the neutron excites the

target nucleus [6]. The primary moderation mechanism is elastic scatter with the

moderator in the lower part of the slowing-down region of the neutron energy spectrum

[3]. For the purpose of this research this section of the slowing-down region is referred

to as the epithermal region of the neutron energy spectrum.

A measure of a potential moderator's effectiveness at slowing down neutrons is its

average logarithmic energy decrement represented by Because this value uses the

isotropic nature of the scatter and integrates over all possible angles it provides a

meaningful value of an element or compound's ability to moderate neutrons without

respect to angle or energy. The average logarithmic energy decrement [7] is given in Eq.

2-1.



SE1l E2 (A- 1) A -1
I- ln = 1+ In
E2 d(cs 2A A+1
f d(cos 0)
1 (2-1)

Using the relationship for the reduced mass a = ((A-1/A+1)2) it is more commonly

seen as Eq. 2-2.










=1+ aIna
1- a (2-2)

For a neutron born at Eb slowed down to Et the average number of collisions

required to reach Et can be derived from the relationship given by Eq. 2-3.



[E,
Average number of collisions = (2-3)


14.98
Using Eb = 2 MeV and Et = 0.625 eV, Eq. 2-3 = Table 2-1 shows common

values for various nuclei scattering neutrons from 2 MeV to 0.625 eV.

Table 2-1. Scattering properties of various nuclei
Atomic #Colls.
Element Mass # a to 0.625 eV
Hydrogen 1 0.000 1.000 15
Deuterium 2 0.111 0.726 20
Beryllium 9 0.640 0.207 70
Carbon 12 0.716 0.158 92
Oxygen 16 0.779 0.120 121
Uranium 238 0.983 0.0083 1700
Adapted from Glasstone S, Sesonske A. Nuclear Reactor Engineering. New York:
Chapman & Hall, Inc; 1994. pg 169.

A more relevant measure of a moderator's ability to slow down neutrons is a

combination of its average logarithmic energy decrement and its cross section. A

microscopic cross section (o) is a measure of an element or compound's probability of

having a particular reaction with a given particle. Different elements and compound's are

more likely to scatter, absorb, or fission and this relative probability is measured in area

(typically in barns or 1 x 10-24 cm2). A macroscopic cross section (C) is the combination

of the microscopic cross section and the number density (atoms/cc) of the material. The

macroscopic cross section is given in units of cm-1 and is a measure of the true









probability of the interaction of the material based on the physical conditions at the time

of the interaction. For instance, at a given energy, water always has the same

microscopic cross section but the macroscopic cross section varies as the density of water

changes under pressure and temperature differentials. For the case of a pressurized light

water reactor, at a pressure of 13,790 kilopascals and temperature of 583 C, the specific

volume of saturated liquid water is 0.02565 ft3/lb or 1.6011 cm3/gm which yields a

density of 0.715 gm/cm3 [8]. Table 2-2 compares various moderating media to include

the macroscopic elastic scattering cross section (Cs) and the product of Ys and the

average logarithmic energy decrement. It also includes the ratio of the macroscopic

elastic scattering cross section to the macroscopic absorption cross section multiplied by

the average logarithmic energy decrement.

Table 2-2. Scattering properties of various moderators
Mod. Atomic Density Epith. # Dens Cs /s s/
Mass # (gm/cc) os (atm/cm3 (cm1) (cm1) Za
(barns) x 1022)
H20 18 0.93 0.715 42.0 2.389 1.003 0.936 45
H20 18 0.93 1.0 42.0 3.340 1.403 1.310 63
D20 20 0.51 1.10 10.5 3.320 0.35 0.179 20,883
Be 9 0.207 1.85 6.1 12.400 0.75 0.155 122
C 12 0.158 1.70 4.7 8.550 0.41 0.065 216

The best moderator of the compounds listed in Table 2-2 based on the product of

the average logarithmic energy decrement (amount the neutron slows down in a collision)

and the macroscopic cross section (probability that the neutron will have a collision) is

light water at room temperature. However, because of water's relatively high neutron

absorption cross section, it absorbs thermal neutrons much greater than the other

materials as indicated by the product of the ratio of the scatting to absorption cross

sections and the logarithmic energy decrement. For this study, the concern is for the









improvement of a burnable poison in a light water reactor so the benchmark to use is that

of light water. Of course, the reactor cannot produce power at room temperature so the

benchmark standard for Is 5 for the advanced burnable poison assemblies should be

0.936 cm-1. Any burnable poison compound that has a higher Is 5 than 0.936 cm-1 at the

end of cycle would be considered an increase in moderator (above the standard for the

coolant) and would be highly desirable. Additionally, the benchmark for ,s / Za should

be 45 and a burnable poison with a higher value than 45 would also be desirable.

Optimization of PACS Structure for Moderation

The next step in determining the optimum burnable poison composition was to vary

the compositions within carborane and determine its moderator effectiveness at EOC.

This calculation for the moderator effectiveness represents only one possible combination

of elements. It accounts for varying percentages of boron and hydrogen but does not

consider the possible physical effects of changing the constituent materials such as

possibly reducing the thermal stability of the polymer. Again, this methodology could be

used for any polymeric structure or compound. Appendix A contains a spreadsheet of

permutations of these calculations.

Calculation of the Weight Percent of Each Element

First, the subscript coefficients for the PACS molecular structure are selected to get

the number of atoms in the molecule. Using the first line of the spreadsheet in Appendix

A as an example, the carborane molecule is:

(BioHloC2) ((CH3)2SiO)12(C2)9.

The number of atoms per molecule and the calculation of the total atomic masses for the

element and the carborane compound are given in Table 2-3. The calculation of the total

weight percent of each element are shown in Table 2-4.









Table 2-3. Total atomic masses for each element and compound
Number of Atomic
Element atoms weight Total
C 44 x 12.01 = 528.44
Si 12 x 28.09 = 337.08
0 5 x 15.99 = 79.95
B 10 x 10.81 = 108.10
H 82 x 1.01 = 82.82
Total 1136.39

Table 2-4. Weight percent of each element
Atomic mass Total Weight
Element in material mass Percent
C 528.44 / 1136.39 = 46.50%
Si 337.08 / 1136.39 = 29.66%
O 79.95 / 1136.39 = 7.04%
B 108.10 / 1136.39 = 9.51%
H 82.82 / 1136.39 = 7.29%

Average Epithermal Microscopic Cross Sections

From the previous definition of epithermal (the lower end of the slowing down

region of the spectrum) the region of interest is from 2.0 eV to 100 eV. The average

epithermal microscopic cross section for each of the materials was determined by taking

the ENDF/B-V cross section values for elastic scattering from a 238-group NITAWL

model and averaging the values from 2.0 eV to 100 eV (75 groups total shown in Figure

2-1) [5]. The value for B was taken as a weighted average between the values of Bio and

B11 to represent natural boron (20% B10 to 80% B1). The assumption is also made that

the creation of lithium-7 and other isotopes during the absorption or "bur" process will

not significantly change the epithermal scatting cross sections for the compound as a

whole. The average thermal absorption cross section (Figure 2-2) was calculated in the

same manner as the epithermal scattering cross section. Although depicted on the figure,

the boron is assumed to be completely burned out at EOC and will not significantly add

to the total absorption cross section of the material.














2 50E+01






2 00E+01



0



uV
1 50E+01
-








0.
51 OOE+01



0


5 OOE+00 -
-


0 00E+00 -
1 0000E+00


1 0000E+01


10000E+02


1 0000E+03


Energy (eV)


Figure 2-1.



1 00E+05


1 00E+04


1 0OE+03
n

S1 0OE+02

u
j 1 OOE+01


S1 OOE+00


1 0OE-01
uJ

S1 00E-02


1 00E-03


1 00E-04


1 00E-05
1 0000E-05


Epithermal microscopic elastic scattering cross sections for PACS elements.

Cross section remains nearly constant as a function of energy.


-H
-C
B
0
-SI






























1 0000E-04 1 0000E-03 1 0000E-02 1 0000E-01 1 0000E+00 1 0000E+01 1 0000E+02 1 0000E+03
Energy (eV)


Figure 2-2. Thermal microscopic absorption cross sections for PACS elements. Cross

sections are linear in this region.









The results of the averaging gives average epithermal microscopic elastic scattering

cross sections shown in Table 2-5. Note that the value of carbon closely matches the

tabulated value from Appendix A in Glasstone and Sesonske [7]. The values for the

microscopic absorption cross section cannot be reasonably averaged for boron because of

the extensive changes of cross section with energy. Additionally, the benchmark of Cs /

Za has little meaning at BOC because the concentrations of boron are high and the

concern for this study is the moderation effectiveness at EOC. For this purpose, the value

of Za for the benchmark does not include boron assuming that all of the boron has been

depleted at EOC. This benchmark can be used when comparing various compounds

knowing that all of the boron will never actually be depleted. The results for the

remaining elements give average microscopic absorption cross section shown in Table

2-5.

Table 2-5. Average microscopic cross sections for carborane elements
Element microscopic cross section (barns)
C Si O B H
Epithermal Scatter (as) 4.78 2.08 3.92 4.47 20.7
Absorption (Ga) 3.40 x 10-3 1.60 x 101 9.43 x 10-6 3.32 x 101

Calculation of the Number Density of Each Element

The number densities for the elements can be determined using the same elemental

composition for PACS that was used for the weight percent calculation and using an

assumed mass density from previous research on the material [2]. The number density of

an element in a compound is given by Eq. 2-4.


N= p AV
S) (2-4)

N = molecular atom density (atoms / cc)
p = mass density of the compound ( 0.9 gms/cm3)









M = molecular weight of the compound (1136.39)
NA = Avagadro's number (6.022 x 1023 atoms/mole)
vi = Number of atoms of i type in the material


Therefore N= .6.022 102 = 4.7693 x 1020 (2-5)
1136.39 )
The corresponding number densities (atoms/cm3) for each of the elements are

shown in Table 2-6.

Table 2-6. Number densities for each element in carborane
Number density by element (atoms/cm3)
C Si O B H
2.099 x 1022 5.723 x 1021 2.385 x 1021 4.769 x 1021 3.912 x 1022

Macroscopic Cross Sections of Each Element

The epithermal macroscopic elastic scattering cross sections (1s (cm-1)) and the

macroscopic absorption cross sections (Ca (cm-1)) are determined by multiplying the

results of the microscopic cross sections (in cm2) from Table 2-5 and the number

densities of the materials from Table 2-6. The results are shown in Table 2-7.

Table 2-7. Macroscopic cross sections for each element of carborane
Element macroscopic cross section (cm-1)
C Si O B H Total
s 1.00 x 10-1 1.19x 10-2 9.35 x 10-3 2.13 x 10-2 8.10x 10-1 9.35 x 10-1
La 7.13 x 105 9.16 x 10-4 2.25 x 10 1.30 x 10-2 1.40 x 10-2

Average Logarithmic Energy Decrement for the Elements

A common quantity related to the scatting nucleus mass is a [7] which is given by

Eq. 2-6.

A-1 2
A+ 1 (2-6)

Using the relationship given by a and Eq. 2-2 the average logarithmic energy decrement

for the elements in the compound are given in Table 2-8. Note that again the value of









carbon, hydrogen and oxygen match the tabulated values from Table 3.3 in Glasstone and

Sesonske [7] (Table 2-1).

Table 2-8. Calculated average logarithmic energy decrement for PACS elements.
Element a
C 0.716 0.158
Si 0.751 0.136
O 0.779 0.120
B 0.444 0.351
H 0.0 1.0

Average Logarithmic Energy Decrement for the Material

For a molecule the average logarithmic energy decrement [7] is found by Eq. 2-7.

V, + VJQ(J)(J) + .
Vu(') + VI/OS() + .. (2-7)


Where vi = Number of atoms of i or j type in the material.

For our case this equation becomes Eq. 2-8.

VC s(C)C) (C)+ VSi's(S)(Si) + V0s(0) (0) + VBQs(B) (B) + VH s(H) (H)
VC(s(c) + VSCs) + Vos(0) + VBC(B) + VH (H) (2-8)

With substitution

j (44)(4.78)(0.158) + (12:, 2 1,,,' 136) + (5)(3.c 2. 1.230) + (10)(4.47)(0.351) + (S2 ,, 2 7)(1.0)
(44)(4.78) + (12)(2.08) + (5)(3.92) + (10)(4.47) + "2,, 2).7)

= 0.878426

The final product of the macroscopic elastic scattering cross section of the material

and the average logarithmic energy decrement is simply PRODUCT= s = 0.837

The ratio of the macroscopic elastic scatting cross section to the macroscopic absorption

cross section and the logarithmic energy decrement is PRODUCT = = 59.9
CA
This result is higher than the value of 45 given as a benchmark for light water at

operating temperatures. However, it will be significantly reduced by any amount of











residual boron in the system at EOC. This value is most useful as a comparison between


different polymeric materials.


Results of Permutations of PACS Formula

Numerous permutations of the above calculations on various combinations of the


PACS polymer were conducted (Appendix A). It became evident that the overwhelming


factor in the product of the logarithmic energy decrement and the macroscopic cross


section, or the moderator effectiveness, was the weight percent of hydrogen within the


molecule.


1.00

0.90
Light Water Moderator Effectiveness at Density of 0 705 gm/cc
S0.80 84

0.70
A 2 34
>, 0.60
2) 30

S0.50 26
E Corresponding Number of H
0.40 Atoms in the "Carborane"
g 20 Molecule

0.30
0 U

0.20 10 Trend Equation
Moderator Effectiveness = 11 059 (W% H) + 0 0407

0.10

0.00
0.00% 1.00% 2.00% 3.00% 4.00% 5.00% 6.00% 7.00% 8.00%
Weight Percent of H in "Carborane" Molecule
Figure 2-3. Moderator effectiveness vs. weight percent of H in carborane.


Adjusting the concentrations of hydrogen within carborane, the moderation


effectiveness of the polymer at EOC can approach that of the light water in the moderator


(Figure 2-3). The empirical linear formula on the figure serves as a guide for the desired


weight percent of hydrogen needed when designing the polymer. The empirical formula











also works on other hydrogen compounds such as water. Because of the overall


dominance of hydrogen in the moderation process, it is possible to conduct various


simulations of the model using different weight percent of hydrogen and determine the


point at which the polymer would perform better than the BPRA or WABA in


moderation at EOC. These simulations are explained in detail in Chapter 3 and the


results of the simulations are shown in Chapter 5.


64.00


62.00

0026 ~~ 34
2 '6 -- 46
U 60.00 10
am 70
U Corresponding Number of H
., Atoms in the "Carborane"
0 Molecule
e 58.00
m .

S 56.00

0 U
o 54.00


52.00


50.00
0.00% 1.00% 2.00% 3.00% 4.00% 5.00% 6.00% 7.00% 8.00%
Weight Percent of H in "Carborane" Molecule
Figure 2-4. Effectiveness to macroscopic cross section vs. weight percent H in
carborane


The ratio of the moderator effectiveness to the macroscopic absorption cross


section also varied as a function of weight percent hydrogen in the PACS material.


Figure 2-4 shows that as the weight percent of hydrogen is increased, that between five


and six weight percent the absorption effects of hydrogen begin to dominate the


moderator effectiveness and start to pull the trend line down. All of the PACS values


exceed that of light water but do not include the effects of residual boron in the BPRA.










Optimization of PACS for Absorption

The primary focus of this study is an improved replacement for boron carbide

aluminum oxide (Figure 2-5) in BPRAs. In addition to the moderation ability of the

improved burnable poison, it must also perform as well or better than current BPRAs in

absorbing neutrons and depleting as a function of time. The advantage of using a PACS

model is that it is a boron based polymer that can be directly compared to boron carbide

alumina without converting between absorption cross sections of different burnable

poison isotopes.













B4C A1203

Figure 2-5. Boron carbide alumina chemical structures

Polyacetyleniccarboranosiloxane (Figure 2-6) consists of a chain of acetylene and

siloxane segments added to the B0oH0oC2 root structure. Previous research on carborane

used a notional combination of the PACS structure that fixed the amount of boron within

the carborane to match that of B4C/A1203 BPRAs used in the Crystal River Three reactor

[2]. The PACS structure was modified by adding numerous siloxane strings in the chain

to dilute the amount of boron present in the polymer. It is believed that the additional

siloxane strings will make the molecule weak and unable to sustain the hydro-thermal









stresses of the reactor environment. However, because this material does represent a

direct relationship between the current BPRA and in the interest of continuity of research,

this material was used in several modeling experiments in this study. The notional legacy

polymer will be referred to as "L-Carborane" throughout this study.

CH3 CH3 CH3 CH3
C-C-C-C i-OSiOSi-CBoHoC-Si-O-Si-
CH3 CH3 CH3 CH3


[(BloHloC2)a((CH3)2SiO)b(C2)c]n

Figure 2-6. The PACS chemical structure

The Materials Sciences and Engineering department of the University of Florida

has synthesized a polymer following the guidelines of the original polymer created by Dr.

Keller. This material (Figure 2-6) is not diluted so it has a much higher boron

concentration that the current BPRA materials. This material also is used in several of

the simulations within this study and it is referred to as "J-Carborane" throughout this

report. The important molecular comparisons between the three compounds are given in

Table 2-9.

Table 2-9. Molecular properties of burnable poison materials.
Material Density Number of atoms / molecule Weight Percent
g /cm3 C H B O Si Al C H B O Si Al
B4C/AL203 3.1 1 0 4 3 0 2 1 0 3 45 0 51
L-Carborane 0.9t 44 84 10 5 12 0 46 7 9 7 30 0
J-Carborane 1.0t 14 34 10 2 4 0 37 8 24 7 25 0
Density of carborane compounds are estimated based on chemical composition.

The weight percent in Table 2-9 can be used with the density of the material to

estimate the number of atoms/cm3 or, number density, of the boron in the materials. The

J-Carborane has over twice the amount of natural boron as either the L-Carborane or

boron carbide alumina. Two primary concerns arise from the use of a burnable poison









with a higher amount of boron than the current standard. First, it is uncertain whether or

not the boron will deplete completely by EOC and therefore, allow the maximum excess

reactivity to be present when necessary. Second, the additional concentration of poison

within the core could cause power peaking problems in areas away from the burnable

absorber. Chapters 5 and 6 discuss the results and effects of an increased amount of

boron within the burnable absorber.

The materials used for all of the modeling and throughout the remainder of this

study are the B4C/A1203 as formulated in the Crystal River Unit Three reactor,

L-Carborane, and J-Carborane. Any deviations to the material structure or densities will

be clearly annotated. The procedures for modeling and calculations can be applied to any

elemental polymeric composition and this study does not assume that all possible

combinations of PACS or similar polymers have been investigated. The benchmark

methodology does provide an important process in the elimination of undesirable

properties of a polymer such as a material's moderator effectiveness less than that of a

WABA or a concentration of burnable absorber that is significantly less than the BPRA.














CHAPTER 3
MODELING AND METHODOLOGY

Overview of Modeling

The modeling for this problem began with a single PWR assembly analysis

between fresh fuel assemblies with boron carbide BPRAs, boron carbide WABAs, and

PACS BPRAs. Once the single assembly analysis was complete, the various BPRA

assemblies were incorporated in a two by two array, called a colorset, which allowed for

analysis of the different burnable poison materials within a group of four different

assemblies. The last modeling phase took an actual PWR reactor model and recreated all

of the assemblies and absorbers and exchanged the boron carbide burnable poisons used

in the reactor for the PACS BPRAs.

General Problem Description and Geometry

The Crystal River Unit Three reactor is a PWR operated by Florida Power

Corporation. The cycle 12 reload report submitted to the Nuclear Regulatory

Commission in August 1999 is the basis of all assembly and reactor fuel and geometry

information. Cycle 12 was scheduled to begin in November 1999 and operate for 670

10 Effective Full Power Days (EFPD) at a rated power level of 2544 mega watts thermal

(MWt). The general dimensions and characteristics of the Crystal River assemblies and

core are outlined in Table 3-1 [9]. The pitch of the assemblies refers to the centerline

distance between one fuel rod to the next adjacent one. The water gap is a water filled

separation between two adjacent assemblies. These dimensions were held constant in all









of the models except in cases where a WABA rod is inserted and the geometry includes

the center annulus as shown in Figure 1-4.

Table 3-1. Reactor and assembly characteristics for the Crystal River 3 Reactor
Reactor Information
Core Lifetime 670 + 10 EFPDs
Rated Power 2544 MWt
Water Pressure 15.67 MPa
Number of Assemblies 177
Number of Control Rods 68

Assembly Information
Number of Fuel Rods 208
Number of Guide Tubes 1 center 16 control
Water Gap Thickness 0.33 cm
Pitch 1.443 cm
Height 358 cm
Height of Primary Fuel (non-Gd rod) 326 cm
Axial Blanket Height (top and bottom non- 16 cm
Gd rod)
Height of Primary Fuel (Gd rod) 308 cm
Axial Blanket Height (top and bottom Gd 25 cm
rod)
Radius Fuel / BPRA Pellet 0.4699 cm
Radius Fuel / BPRA Gap 0.4788 cm
Radius Fuel / BPRA Clad 0.5461 cm
Radius Guide Tube Moderator 0.632 cm
Radius Guide Tube Clad 0.6731 cm

The materials in the fuel assemblies for each of the models also represented the

Crystal River Three cycle 12 reload. The most notable exception would be the exchange

of boron carbide for PACS material in the BPRAs. Table 3-2 gives composition

information for the reload cycle [9]. Figure 3-1 shows the locations for each of the fuel

assemblies, the previous bum-up for used assemblies, the number of BPRAs and the

location of BPRAs or control rod assemblies for 1/8th of the core. The BPRAs in the

assembly are located as shown in Figure 1-2. The core has 1/8th symmetry and the

information is repeated for the remaining octants that comprise the core.









Table 3-2. Fuel composition information for Crystal River Cycle 12
Fuel Batch Number of Fuel Number of Gd
Number Assemblies Wt% 235U Wt% Gd203 Fuel Rods
10A3 12 3.94 0.00 0
12A2 21 4.19/3.89t 0.00 0
13A 36 4.79/3.35; 6.00 8
13B 8 4.79/4.07; 3.00 4
13C 8 4.96 0.00 0
13D 12 4.96/3.35; 6.00 8
13E 8 4.96/4.07; 3.00 8
14A 24 4.52/3.16; 6.00 8
14B 8 4.66 0.00 0
14C 8 4.66/3.96; 3.00 4
14D 8 4.66/3.96; 3.00 8
14E 24 4.66/3.16; 6.00 8
These assemblies are radially zone loaded, with 16 rods having the lower enrichment.
t These assemblies have Gd rods with the Gd203 concentration indicated and the lower
235U enrichment.

12A2 14A 14A 12A
38,784 0 0 40,2(
8 8
14E 14A 14D 12A
0 0 0 37,0h
8 8
14A 14E 14C 12A
0 0 0 40,7(
Fresh Fuel 8 8 C
Once Burned 14E
Twice Burned 0
Thrice Burned 8
14B 10A3
XXX Batch ID 0 38,450
XX,XXX Burnup MWd/mtU
X orC # BPRAs or Control 10A3
Rod Location "C" 38,519
C

Figure 3-1. Map of 1/8th Crystal River Three Cycle 12 core

From Figure 3-1 it is noted that in the actual reactor design only the 14A and 14E

assemblies received BPRAs and that they only have eight BPRA rods located in the B-08

arrangement in Figure 1-2. The control rod locations are important in that a BPRA

cannot go in those locations because the control rods must occupy the guide rod space.









Control rod
drive mechanism


JJ "---.i


Inlet nozzle, 290 deg. C -


Control rod
shroud tubes






Pressure vessel


Outlet nozzle, 325 deg. C


Figure 3-2. Example of a PWR core cross section

General Assumptions in Models

Figure 3-2 is a PWR cross sectional view. Based on the fuel compositions and the

characteristics of the reactor the assemblies and reactor, core can be modeled. The entire

PWR shown in Figure 3-2 cannot be modeled and general assumptions are made to

simplify the problem because of certain limitations in the computer codes.









The following assumptions apply to the modeling simulations for the assemblies

and core mock ups:

* Except for cases where chemical shim is expressly specified, there is no absorber in
the moderator and it is assumed that excess reactivity in the core or assembly can be
controlled by a combination of chemical shim and control rods.

* For cases where chemical shim is specified, all of the excess reactivity is controlled
with chemical shim and the control rods are not modeled.

* It is assumed that 1/8th assembly symmetry and 1/8th core symmetry are always true.

* The probability of non-leakage for thermal neutrons (PNL'nermal) is approximately 1.0
for a large reactor core. The reactor vessel is thereby not modeled and a reflected
surface is the boundary of the axial and radial reactor reflectors. The comparisons in
this study are relative so errors caused by simplification of the model are assumed to
affect each BPRA system equally and will not affect the overall outcome of the study.

* The probability of non-leakage for thermal neutrons (PNLermal) is constant.
Therefore, the ratio of reactivity between the different cases is the same for k, as it
would be for keff.

* For codes not including a Zircalloy composite material, zirconium is assumed to
neutronically model the cladding.

* Except where provided by a code, the spacer grids and fuel assembly top and bottom
plates are not modeled and the difference in reactivity is assumed to be negligible.


Codes Used for Modeling

The various calculations and scenarios were completed using five principle

computer codes. Where possible, similar problems were completed using two different

codes to ensure accurate results. Additionally, the results for the 1/8th core simulations

were compared to the results from the Crystal River Three reload report to ensure

consistency with the codes used by Framatome to model the core.

The CASMO-3 Code

The fuel assembly burnup program CASMO-3 is a commercial nuclear fuel


analysis code from Studsvik of America Inc.









CASMO is a multigroup, two-dimensional transport theory code for burnup
calculations on BWR and PWR assemblies or simple pin cells. The code
handles a geometry consisting of cylindrical fuel rods of varying composition
in a square pitch array with allowance for fuel rods loaded with gadolinium,
burnable absorber rods, cluster control rods, in-core instrument channels, water
gaps, boron steel curtains and cruciform control rods in the regions separating
fuel assemblies [10].

The CASMO code is used in depletion comparisons for single assembly calculations and

two by two assembly models. The CASMO code is also used to generate depletion

libraries for assemblies in other codes such as SIMULATE and EASCYC. Additionally,

CASMO was used to derive the compositions of depleted fuel assemblies at the BOC for

the MONTEBURNS simulations that used depleted assemblies.

The EASCYC Code

The EASCYC code is a two-dimensional diffusion theory code for reactor fuel

cycle analysis developed by Harvey W. Graves for Energy Analysis Software Services.

EASCYC is a computational system for evaluation of fuel cycle loading
requirements for pressurized water reactors that has been specifically
developed to take advantage of the characteristics of desktop computers. It
consists of a set of computational subroutines for neutronic analysis coupled to
a set of engineering rules for the manipulation and utilization of these
subroutines. The computational subroutines are based on Nodal/Modal
analysis, an extremely efficient and accurate technique for evaluation the
neutron multiplication and power distribution for an array of fuel assemblies
[11,12]. The engineering rules are based on extensive experience in fuel cycles
and reactor performance evaluation, as well as logic algorithms based on fuel
symmetry, core geometry, and fuel assembly design constraints [13].

The EASCYC code is used primarily to analyze the power distribution of the core models

and compare the core distribution over time. Each of the various assemblies in the core is

first modeled in CASMO and depleted to the required burnup and then EASY, a

FORTRAN-77 routine, is run to extract the necessary cross section library information

from the CASMO output for EASCYC. Additionally, another FORTRAN-77 routine,

EASYLIB is run to combine the geometry and burnable poison information for the









particular PWR with the library in a binary file that is executable in EASCYC. The

EASCYC code has several limitations particularly concerning burnable poisons and is

only used as a reference comparison for power peaking with other codes and the reload

report.

The MCNP Code

Monte Carlo Neutron Photon Transport Code (MCNP) is a particle transport code

for neutrons and photons created by Los Alamos National Laboratory and distributed by

the Radiation Safety Information Computational Center (RSICC) in Oak Ridge,

Tennessee.

MCNP is a neutral particle transport code that uses the Monte Carlo technique.
The Monte Carlo technique is a statistical method in which estimates for
system characteristics are obtained through multiple computer simulation of
the behavior of individual particles in a system. A Monte Carlo code generates
a statistical history for a particle based on random samples from probability
distributions. Distributions are used in calculations to determine the type of
interaction the particle undergoes at each point in its life, the resulting energy
of the particle if it scatters, the number of particles that "leak" from the system
because of geometry constraints, and the number of neutrons produced if the
neutron causes a fission [14].

The MCNP code is used in this study as a stand alone code for single step modeling of a

single pin, assembly or, 1/8th core model to get a point in time analysis of flux, energy

deposition, or criticality. The MCNP code is also used in conjunction with ORIGEN2

inside MONTEBURNS in depletion calculations of single assembly and 1/8th core

models.

The ORIGEN2 Code

The ORIGEN2 code is another RSICC code package that computes decay and

isotope depletion information for materials under irradiation. It is not used in this study

as a stand alone program but rather part of the MONTEBURNS depletion package.









ORIGEN2 inputs can be complicated to generate and the output difficult to interpret, but

MONTEBURNS completes all of the reading and writing of ORIGEN2 files.

ORIGEN2 performs burnup calculations for MONTEBURNS using the matrix
exponential method [15] ORIGEN2 considers time-dependent formulation,
destruction, and decay concurrently [16]. These calculations require (1) the
initial compositions and amounts of material, (2) one-group microscopic cross-
sections for each isotope, (3) material feed and removal rates (if desired), (4)
the length of the irradiation periodss, and (5) the flux or power of the
irradiation [17].

The MONTEBURNS Code

The MONTEBURNS code is a RSICC code that couples MCNP and ORIGEN2 to

generate depletion and burnup calculations.

MONTEBURNS consists of a PERL script file that frequently interacts with a
FORTRAN77 program, monteb.f. It is designed to link the Monte Carlo
transport code MCNP with the radioactive decay and burnup code ORIGEN2.
MONTEBURNS produces a large number of criticality and burnup results
based on various material feed/removal specifications, powerss, and time
intervals. The program processes input from the user that specifies the system
geometry, initial material compositions, feed/removal specifications, and other
code-specific parameters. Various results from MCNP, ORIGEN2, and other
calculations are then output successively as the code runs [14].

Figure 3-3 illustrates how MONTEBURNS interacts with the codes it controls. The

MONTEBURNS code is used in this study for single assembly and 1/8th core depletion

calculations to include criticality comparisons, power peaking, and chemical shim

models. The predictor-corrector step is the same methodology used in CASMO for

depletion and burnup calculations. The user of MONTEBURNS has to generate three

files to complete the depletion model, an MCNP input file, a MONTEBURNS input file,

and a feed rate input file. Models in MONTEBURNS are compared to CASMO and

EASCYC and the reactor reload report when possible to ensure consistency and accuracy

in the models.










MONTEBURNS

MCNP input file

INITIAL MATERIAL COMPOSITIONS



SORIGEN2
MATERIAL COMPOSITIONS
(HALFWAY THROUGH STEP)



MCNP CROSS SECTIONS AND FLUXES
(HALFWAY THROUGH STEP)
PREDICTOR STEP

MATERIAL COMPOSITIONS
ORIGEN2 AT END OF STEP


CORRECTOR/NEXT STEP

Figure 3-3. Interaction of MONTEBURNS with MCNP and ORIGEN2. Adapted from
Figure 1. Poston DI, Trellue HR. User's Manual, Version 2.0 for
MONTEBURNS, Ver 1.0. Washington, DC: Oak Ridge National
Laboratory, Office of Nuclear Material Safety and Safeguards. US Nuclear
Regulatory Commission; 2001. 4.

Single Assembly Calculations

Single assembly calculations were the core of the original research conducted on

this topic [2]. In order to maintain consistency with previous research, the fresh fuel

single assembly analysis used the Framatome Mark IVB fuel assembly (Figure 1-2) with

16 burnable poison rods and a fuel enrichment of 4.66 weight percent enriched uranium.

Each of the different types of burnable poison assemblies, boron carbide BPRA, boron

carbide WABA and L-Carborane BPRA was compared with a single assembly with only

water in the guide tubes. Analysis was completed using CASMO and MONTEBURNS.

Figure 3-4 shows a SABRINA plot of the upper portion of the MCNP model used in









MONTEBURNS for the single assembly. The MCNP model of the assembly does not

contain spacer grids or end plates (see problem assumptions). The single assembly model

also does not include gadolinium oxide rods or axial blanket material.













A B














C D

Figure 3-4. A SABRINA plot of top portion of Mark IV assembly model in MCNP.
Red rods are BPRAs, grey are fuel rods, and the central instrument guide
tube has no fuel or BPRA rod. Segments C and D are close-ups of the cut-
away in Segment B.

In order to model the assembly in CASMO, a single input deck file was written

specifying the geometry, power, operating temperature and material compositions for the

reactor. Figure 3-5 is an example of the CASMO input deck for an assembly with

B4C/A1203 BPRAs. Explanatory information concerning each of the lines of input within

the deck can be found in the comments (denoted by an asterisk) behind each input line.











Also note that the geometry and material compositions match those required by Table 3-1


in the original problem mock-up. All subsequent CASMO input and output files for the


single assembly case are included in Appendix B.



TIT TFU=990 TMO=583 BOR=0 *4.66% B4 W 15 X 15
*Crystal River-3 15x15 Assembly with B4C-AL202 in guide tubes
*Fuel temp 990 deg K moderator temp 583 deg K no chem shim
FUE 1 10.4/4.66 *FUEL COMP. #, DENSITY/ENRICHMENT
PDE 33 *POWER DENSITY (W/Gm Uranium)
MI2 3.1/5010=0.55 5011=2.22 6000=0.76 13000=51.04 8000=45.43
Mixture 2: B10, C, Al, O (BP Material)
PIN 1 .4699 .4788 .5461/ '1' 'AIR' 'CAN'
PIN 2 .4699 .4788 .5461 .632 .6731/ 'MI2' 'AIR' 'CAN' 'COO'
'CAN'/1,3,5
BPRA pin homogenized 'AIR+CAN' and 'COO+CAN'
PIN 3 .632 .6731/ 'COO' 'CAN' *Center water hole
PWR 15 1.443 21.81 PWR with pitch 1.443
LPI *Pin Layout in 1/8th of the assembly
3
11
112
1 1 1 1
1111

112111
1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1111111
11111111
DEP 0.5 2.5 5 10 15 20 25 30 35 40 *Depletion steps
STA *Start
END *End

Figure 3-5. Example of CASMO input file for a single assembly.


Modeling the same problem in MONTEBURNS requires two separate input files,


an MCNP criticality deck for the assembly (KCODE) and a MONTEBURNS input file.


A feed file is not required for a continuous burn case. Figures 3-6 and 3-7 contain sample


inputs for MCNP and MONTEBURNS for the same assembly. The explanatory


comments for MCNP are denoted by a "C" or a "$" and by an "!" in MONTEBURNS.


As shown in the figures, it takes significantly more work to model an assembly in MCNP


/ MONTEBURNS than in CASMO. However, MONTEBURNS is not constrained to the


set configurations of a PWR or BWR. All of the MCNP/MONTEBURNS input and


output files for the single assembly cases are in Appendix B.










38






RESEARCH 15 X 15 ASSEMBLY WITH B4CAL203 BPRA'S 4.66% ENRICH NO BORON
1 0 20 21 22 23 90 91 FILL 1 VOL 1.712434E+05
2 1 0.660 30 3132 33 LAT-1 U 1 FILL-7:7 7:7 0:0 $ BOUNDRI







2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 $PIN LAYOUT REPEATED LATTICE
2 2 2 2 2 2 2 4 2 2 2 2 2 2 2 $EACH UNIVERSE "U" NUMBER IS
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 $DIFFERENT TYPE OF UNIT CELL







3 1 0.660 4 U 4 $WATER HOLE
VOL6257.8345
4 3 -6.503 4 -5 U-4 $INTERIOR CLAD
VOL 77.57637
5 1 -0.660 5 6 U4 $GUIDE TUBE WATER RADIUS
VOL 113.8173
6 3 6.503 6 7 U-4 $GUIDE TUBE CLAD RADIUS
VOL660.32794
7 1 0.660 #3 #4 #5 #6 U-4 $UNIT CELL WATER
VOL235. 8889
8 4 3.1 4 UT3 $BPRA MATERIAL
VOL 257.8345
9 3 -6.503 4 -5 U3 INTERIOR CLAD
VOL 77.57637
10 1 0.660 5 6 U-3 GUIDE TUBE WATER RADIUS
VOL 113.8173
11 3 6.503 6 7 U-3 $GUIDE TUBE CLAD RADIUS
VOL-60.32794
12 1 0.660 #8 #9 #10 #11 U-3 $UNIT CELL WATER
VOL 235.8889
13 2 10.201 8 U 2 $UO2 FUEL PELLET
VOL 248.3383
14 0 8 4 U-2 $GAP RADIUS
VOL-9.496242
15 3 6.503 4 -5 U2 $FUEL PIN CLAD
VOL 77.57637
16 1 0.660 #13 #14 #15 U 2 $UNIT CELL WATER
VOL 410.0342
17 1 -0.660 (20:21: 22:23:-90:91) -9 $OUTSIDE OF ASSMBLY
VOL-3518.23905
99 0 9 $VOID REGION OUTSIDE ASSEMBLY

20 PX 10.8225
21 PX 10.8225
22PY 10.8225
23 PY 10.8225
C OUTSIDE OF ASSEMBLY LATICE
30 PX -0.7215
31 PX 0.7215

32 PY 0.7215
33 PY 0.7215
C OUTSIDE OF UNIT CELL (1.443 PITCH)
4 CZ 0.4788
C CYLINDER BPRA / WATER HOLE / GAP RADIUS
5 CZ 0.5461
C CYLINDER INTERIOR CLAD RADIUS
6 CZ 0.6320
C CYLINDER WATER RADIUS GUIDE TUBE
7 CZ 0.6731
C CYLINDER CLAD RADIUS GUIDE TUBE
8 CZ 0.4699
C CYLINDER RADIUS OF FUEL PELLET
,9 RPP 10.905 10.905 10.905 10.905 -180 180
C RECT PARALLEL PIPED OUTSIDE OF ASSEMBLY
90 PZ 179
91 PZ 179

MODE N
IMP:N 1.0 16R 0.0
KCODE 2000 1.3 5 55 500
KSRC 1.443 0.0 0.0
M1 8016.60C 8.88100E+01 1001.60C -1.11900E+01
MT1 LWTR.04T $H20 AT 600 K
M2 92235.54C -4.10779E+00 92238.54C -8.40421623E
8016.54C -1.18500E+01
$UO2 4.66% at 881K EN
M3 40000.60C 1.0 $ZIRCONIUM (APPROX. FOR ZIRCALLOY)
M4 5010.50C -0.55 5011.56C -2.22 6000.60C -0.76 13027.6(
-51.04 8016.54C -45.43 $B4CAL203 BP MATERIAL


Figure 3-6. Example of MCNP input file for single assembly.








































Figure 3-7. Example of MONTEBURNS input file for single assembly.


Multiple 2-D Assembly Calculations


The CASMO computer model allows for 2 x 2 arrays of assemblies called a


colorset. The colorset allows for up to three different types of fuels to be used. There are


once-burned, twice-burned, and thrice-burned fuel assemblies in the array (Figure 3-8).


DEPLETED FUEL ASSY
(2.68%) WITHOUT BPRAs


*



*o o o o



.o cooii. o3'cro


FRESH FUEL ASSY
I WITH BPRAs



', i ,


c ,O O o


*o O
\ OO ,


U02 Fuel Pins
1 Central water hole / Empty Guide Tubes
(1 BPRA Locations
0 Peak Pin Locations
[ Area of 1/8 Symmetry for CASMO
2- D Calculations (ISYM=8)


* ,on

*pOc)*


DEPLETED FUEL ASSY DEPLETED FUEL ASSY
(3.4%) WITHOUT BPRAs (2.68%) WITHOUT BPRAs

Figure 3-8. A CASMO 2 x 2 colorset array model


rial number #2 (will burn all cell
rial number #4 (will burn all cell
~2 volume (cc)
4 volume (cc)
IWt (for the entire system in MCNF
;rgy/fis (MeV); if negative use fo
)er of days burned (used if no fee
outer burn steps
internal burn steps (multiple of
predictor steps (+1 on first step
;r to restart after beginningi)
default origen2 lib next line i

Importance (track isos with abs,












TFU=990 TMO=583 BOR=0
FUE 1 10.4/4.66 *FUEL COMP. #, DENSITY/ENRICHMENT fresh fuel
MI2 3.1/5010=0.55 6000=0.76 13000=51.04 8000=45.43
* Mixture 2: B10, C, Al, O (BP Material)
PIN 1 .4699 .4788 .5461/ '1' 'AIR' 'CAN'
PIN 2 .4699 .4788 .5461 .632 .6731/ 'MI2' 'AIR' 'CAN' 'COO'
'CAN'/1,3,5
* BPRA pin homogenized 'AIR+CAN' and 'COO+CAN'
PIN 3 .632 .6731/ 'COO' 'CAN' *Center water hole / empty shroud
tube
PWR 15 1.443 21.81 PWR with pitch 1.443
LPI


1 2
1 1 1
1 1 1 1
1 1 1 1 1
33 *POWER DENSITY (W/Gu)
0.5 2.5 5 10 15 20 25 30 35


*Common segment information
*Fresh fuel
*B4C-AL202 BPRAs






40 *Depletion steps


* SEGMENT SPECIFIC INPUT
*


SEG
FUE
LPI


1 *+DEPLETED FUEL 2.268% NO BPRAs
1 10.4/2.268


*Segment information
*Low Enrich depleted fuel
*No BPRAs


1 3
1 1 1
1 1 1 1
1 1 1 1 1


SEG 2 *+LOW ENRICHED DEPELTED FUEL NO BPRAs
*


3 *+MEDIUM ENRICHED DEPLETED
1 10.4/3.4


FUEL NO BPRAs


*Segment information
*Medium fuel


1
1 3
111
1111
1 1 111
1 1 1 1 1


Figure 3-9. Example of CASMO input file for a 2 x 2 colorset


SEG
FUE
LPI
3
1 1
1 1
1 1
1 1
1 1
1 1
1 1
*
STA
rTTh









The colorset input is similar to the input for a single assembly except segments are

required to describe the different fuel assemblies (Figure 3-9). The colorset output

describes each of the individual fuel assemblies by type and includes the combined effect

of the different fuels. The colorset represents an infinite repeated structure meaning that

the 2 x 2 structure has a boundary that causes the model to act as though the structure is

repeated laterally over an over again. The colorset is not a good substitution for a core

analysis but it does give more realistic results that take into account the fact that the entire

core is not comprised of identical assemblies of fuel at one enrichment. Figure 3-9 is an

example colorset input deck. All of the multiple assembly CASMO input and output files

are in Appendix C.

Core Modeling

The EASCYC models

The EASCYC modeling process begins by modeling each of the individual

assemblies throughout their lives in CASMO and extracting their properties into a data

library using EASY. Once created, the EASY cross section library file is combined with

a geometry file using EASLIB to generate a binary input file for EASCYC. The last step

is running the EASCYC program. Because EASCYC allows limited numbers of

different assemblies, the assemblies from Table 3-2 were given combined weighted

average 235U enrichment and Gd203 concentrations for batches 13A-13E and 14A-14E.

The result was four types of fuel (10A3, 12A2, 13AE, and 14AE). Appendix D contains

all of the CASMO input files for the various fuel assemblies used in the modeling of this

problem and the EASY generated cross section library for the problem.

Figure 3-10 is an example of the geometry file required for EASLIB and Table 3-3

contains general explanatory comments about the input lines (detailed information for the












input into EASLIB can be found in the EASLIB input manual [17]). Within the burnable


poison input line (Line 10) there are three self shielding factors (go, ao and ai). These


three factors are fixes to the thermal flux depression created within the middle of the


burnable absorber rod. Based on a homogenous burnable poison rod the relationship


between the three self shielding factors can be approximated by Eq. 3-1.


g(t)


(3-1)


ao + a, [N(t)/ N ]


In Eq. 3-1 No = the original number density for the burnable poison and N(t) is the


volume average of the number density of the burnable absorber as a function of time [18].


The remainder of the burnable poison input line refers to the amount of burnable absorber


and cross section and the amount of moderator displaced by the insertion of the BPRA.


Figure 3-10. Example ofEASLIB input file.


0. 1 B-20 16.1
1 0.3
2 B-16 36.3
2 0.3
3 B-12 9.7
3 0.2
4 B-08 13.3
4 0.1
1. 3,2,0.0 5,7,0.
22,5,0.0 24,3,


OE-6 4.500E+1
5E-3 -0.094E-6
1E-6 4.500E+1
OE-3 -0.075E-6
OE-6 4.500E+1
5E-3 -0.056E-6
6E-6 4.500E+1
OE-3 -0.375E-7
7,6,0.0 9,2,0.
.0 26,7,0.0


)50E+3 0.9643E-0 0.95
OOE-0 1.00E-0 1.00
)50E+3 0.9480E-0 1.17
00E-0 1.00E-0 1.00
)50E+3 0.9810E-0 0.97
00E-0 1.00E-0 1.00
,4,0.0 13,5,0.0 16,6,


0.701
0.00C
0.61(
0.00C
0.74E
0.00C
,8,0.


r .









Table 3-3. Input description for EASLIB.
Line Number Description
1 72 Character alphanumeric title
2 File name for ASCII Library input file
3 File name for printfile output
4 10 element problem option vector
5 10 element integer reactor description vector
6 No. of assemblies in row I
7 Fuel type index assigned to each batch
8 Batch index of fuel in Ith assembly one line for each assembly row in
the problem corresponds to line 6 and 7
9 8 element reactor operating condition vector
10 Burnable poison name and information (two lines per burnable poison
type)
11 Group identification, and percent insertion for each control rod
12 Average burnup at BOC for each fuel assembly
13 Type/ burnup pair for each spare assembly
Adapted from Table 2. Graves HW Jr. EASLIB-C Binary Input File Generation for the
EASCYC Fuel Cycle Analysis Program. Chevy Chase (MD): Energy Analysis Software
Service; 1995.

Because there is no way to change the volume fraction of moderator displaced over

the core burnup as a function of time within EASCYC it is impossible to show a

significant reactivity gain between different burnable absorbers having similar amounts

of boron. Therefore, the only core model for this research made using EASCYC is the

B4C/A1203 BPRA system. The model is useful in determining relative power peaking

factors and general core behavior over a cycle and it gives comparative information for

other models (MONTEBURNS). The EASCYC output file for the boron carbide BPRAs

is located in Appendix D.

The MCNP/MONTEBURNS models

The concept for modeling the core in MCNP/MONTEBURNS is identical to the

single assembly model expanded to the 1/8th core. In the 1/8th core model detail is added

to the assemblies to more closely model the characteristics of the core in Table 3-1.

These details include an axial blanket of two-percent enriched uranium on the top and









bottom, the modeling of Gd203/UO2 fuel rods where required, and the use of only eight

BPRAs in the locations specified in Figure 3-1.

The first step in modeling the core is to determine an approximation for the fuel in

depleted fuel assemblies going into the current cycle. The fuel approximation is made

using CASMO for each of the assemblies much like the process used in generating the

EASCYC cross section libraries. As with EASCYC, similar assemblies with similar

depletion bumups and starting enrichments are combined to limit the number of fuels.

However, additional simplifications to the problem are required because

MONTEBURNS is limited to a maximum of 100 materials. Also, MONTEBURNS

specifies a tally for each material depleted. These tallies can cause the dynamic storage

allocation required for modeling all possible fuel elements (primary, blanket, and

Gd203/U02) for every fuel assembly for every burnup step to become unreasonably large

an effectively prevent MCNP from getting a result. Therefore, CASMO is used to

deplete the fuel assembly to the appropriate burnup. Then a fresh fuel assembly is

created with a lower enrichment derived from the remaining weight percent of fissile fuel

(mostly 235U, 239Pu and 241Pu) and the percent of fission products (mostly Xe and Sm) at

the EOC from the depleted assembly. The original assembly is then burned an additional

10 mega-watt days per metric ton uranium (MWd/MTU) to simulate the first 10 MWd in

the new cycle. The lower enrichment fuel assembly is then checked in CASMO by

depleting it from zero bumup to 10 MWd/MTU to see if it has the same reactivity at

BOC and BOC + 10 as the original assembly. If it does, then it is assumed that it closely

simulates the original depleted assembly for the next cycle. All of the assemblies are

modeled in batches according to their enrichment and average bumup.









Once the materials are specified, the reactor geometry is created using a repeated

lattice within a cylinder and two planes to generate the 1/8th core. Figure 3-11 shows a

full core model with a /4 cut-out. Figure 3-12 shows the same model as a 1/8th core.

Notice that in accordance with the stated assumptions, the models do not have a reactor

vessel or control mechanisms but do have axial and radial water reflectors.

















A B














C D

Figure 3-11. Multiple SABRINA plots of full core reactor MCNP model. Segments B-D
are close-ups of the cut-away and illustrate the different types of rods. Grey
and orange fuel rods, green Gd rods, red BPRAs, and empty control rod and
instrument guide tubes.


































C D

Figure 3-12. Multiple SABRINA plots of 1/8th core reactor MCNP model. Segments B-
D are close-ups of the top of the reactor and illustrate the different types of
rods. Orange primary fuel, dark blue blanket fuel, red BPRAs, and empty
control rod and instrument guide tubes.

The core input files for MCNP and MONTEBURNS are similar to those in Figures

3-6 and 3-7 except that they repeat for multiple assemblies and multiple materials. The

standard input file would have all of the similar assemblies having the same material

number and the same universe number in the MCNP input. To get a single assembly's

information, (e.g. power distribution), an additional universe and material must be added

for that assembly. These models are referred to as power peak models in the remainder

of this thesis and in the appendices. Because of the multiple materials, (up to 13 are

depleted in MONTEBURNS for the 1/8th core power peak model versus the two for the











single assembly calculation), the process takes considerably more time to calculate. The


complete input and output files for all of the 1/8th core MCNP/MONTEBURNS models

are included in Appendix E.

Chemical Shim Models

All of the models up to this point have used water as the moderator with no

chemical shim with the exception of EASCYC which calculates a critical boron

concentration automatically. For the particular purpose of determining the power peak

within the core for an assembly or to determine the power peak for a pin within a single

assembly in the presence of chemical shim an additional model is required. This model is

identical to the single assembly or 1/8th core MCNP/MONTEBURNS model discussed

earlier except that the chemical shim (boron) is added to the water at BOC and smaller

and smaller amounts of boron are removed during the lifetime of the cycle.


Time Days
F.P.Removed
Step Burned
1 13.086
2 52.342
3 65.428
4 130.856
5 130.856
6 130.856
7 130.856
8 130.856
9 130.856
10 130.856
1
1
5010 1.0
0


Power MBMat

Fract. #
1.000 1
1.000 1
1.000 1
1.000 1
1.000 1
1.000 1
1.000 1
1.000 1
1.000 1
1.000 1


Feed Begin&EndRates Remov. Fraction

# grams/day Group#
1 0.697 0.691 0 0.000
1 -1.0 0.670 0 0.000
1 -1.0 0.643 0 0.000
1 -1.0 0.590 0 0.000
1 -1.0 0.537 0 0.000
1 -1.0 0.483 0 0.000
1 -1.0 0.430 0 0.000
1 -1.0 0.377 0 0.000
1 -1.0 0.323 0 0.000
1 -1.0 0.270 0 0.000
# of feed specs
# of isos in Feed #1

# of removal groups


Figure 3-13. Example of single assembly MONTEBURNS feed file.

This process of adding or removing materials to the model during the depletion is

achieved using a feed file in MONTEBURNS. The MONTEBURNS input file for the






48


continuous depletion case (Figure 3-10) had the total number of days burned and no feed

file was used. For the chemical shim model, that parameter is set to zero and a feed file

(Figure 3-13) details the type and amount of material added or taken away and at what

time step during the depletion process. The feed file can also be used for a continuous

burnup model where uneven time steps are requested (i.e. 10, 20, 50, 100, 1000 days).

All of the chemical shim model inputs and outputs are in Appendix F.














CHAPTER 4
THERMAL AND RADIATION PROPERTY CALCULATIONS

Part of the material selection process not addressed in Chapter 2 involves the

material's ability to withstand the extreme heat and radiation environment for a cycle

within a PWR. The maximum centerline temperature within the BPRA is especially

important for selection of a polymeric BPRA. Many polymers have ceiling temperatures

above which they completely and rapidly revert back to their constituent species. As

seen in Figure 2-2, the key component to moderation within the polymer is the weight

percent of hydrogen present. Radiation environments tend to drive hydrogen off of the

polymer and create cross-linking within the structure. The amount of radiation exposure

the BPRA receives is important to predict the amount of hydrogen that will remain in the

polymer at EOC. Also, hydrogen can hydride with the zirconium alloy cladding and

cause the clad to become brittle and more susceptible to failure.

The actual selection of the polymer material based on radiation and thermal

properties is not part of this thesis but is part of a joint research effort with the University

of Florida's Materials Sciences and Engineering Department for the development and

testing of advanced polymeric burnable poisons. The maximum expected centerline

temperature, maximum acceptable coefficient of thermal expansion, and the maximum

dose exposure are outlined in this research to present model-based calculations as

benchmarks for selection of materials yet to be fully developed. Many of the values for

the physical properties of the polymers are based on example polymers similar to the

ones we are investigating.









Maximum Expected Centerline Temperature in BPRA

The calculation of the maximum expected centerline temperature (Tci) is based on

several key assumptions. First, that the heat transfer in the axial direction is insignificant

due to the length-to-radius ratio of the rod. Second, the specifications of the reactor are

the same as those outlined in Chapter 3 (power, geometry etc.). And third, that the heat

generated within the BPRA can be modeled using an MCNP energy deposition tally.

The heat deposition tally for neutrons (F6:N) in MCNP uses Eq. 4-1 to determine

the heating response H(E) as a measure of energy deposition averaged over a cell [19].

H, (E) E (E) E(E,, (E)- Q, +E (E) (4-1)


E = incident neutron energy
p, (E)= probability of reaction i
Eot, = average exiting neutron energy for reaction i
Q, = Q-value of reaction i
Ey, = average energy of exiting gammas for reaction i.

The heat deposition tally for photons (F6:P) in MCNP uses Eq. 4-2 to determine the

heating response H(E) as a measure of energy deposition averaged over a cell [19].

3
Hv (E)= p,(E) *(E-Eo,,) (4-2)
i=1

i = 1 incoherent (Compton) scattering with form factors
i= 2 pair production Eot = 1.022016 = 2moC2
i = 3 photoelectric

Energy transferred to electrons from gamma heating is assumed to be locally deposited.

The combination of the heat deposition tallies for neutrons and photons (F6:N,P) in

MCNP for the BPRA cells gives the total expected heat generated within the BPRA. The

heat transfer problem from the BPRA to the outside surface of the cladding is similar to

the heat transfer model used for the thermal design of fuel rods. A common model for









the two-dimensional heat transfer in fuel is given in Duderstadt and Hamilton [6] (Eq.

4-3).


Tc T=q' rF. +1 +tc rtFF (4-3)
f 2zrF 2kF hG kc h,(r + tc)


Tcl = centerline temperature of the fuel element
Tf = temperature of the moderator
q' = linear power density of the fuel element (W/cm)
rF = radius of the fuel pellet (cm)
k = average thermal conductivity of the fuel (W/cm K)
hg = gap heat transfer coefficient (0.5 1.1 W/cm2 K)
kc = thermal conductivity of the clad (W/cm K)
hs = coefficient of convective heat transfer (2.8 4.5 W/cm2 K)
tc = thickness of the clad (cm).

Using the above relationship and substituting values for the burnable poison instead

of the fuel, the maximum centerline temperature of a burnable poison rod can be

determined. All of the values for the equation are known properties of the system except

the linear power density within the burnable poison rod. For hs and hg the smallest value

in the range was used to get the maximum temperature. The linear power density can be

determined from MCNP using the energy deposition tally.

From MCNP:

Q for neutron and gamma heating = 1.6273E-26 jerks / gm /source particle
1 jerk = 109 joules, therefore,
Q = 1.6273E-17 joules/gm/source particle

For a total of 1.6273E-17 joules/gm/source particle.

All MCNP tallies are based on the number of sources particles. MONTEBURNS

translates the per source particle tally to an actual value for the system based on the

power level specified by the user. The relationships MONTEBURNS uses for

normalization of the flux to system power are derived in Eqs. 4-4 and 4-5 [14].









( = (, C (4-4)

p = true value of the flux (normalized to system power)
,, = the MCNP flux (normalized to the number of source particles)

v-P-106W/MW
C = (4-5)
(1.602 x 10 lJ/MeV)-keff -Qa

v = average number of neutrons produced per fission
P = power defined by the user for the material in (MW)
Q,, = average energy produced per fission (MeV)
kff = effective multiplication factor obtained by MCNP.

MONTEBURNS calculated the actual average total (fast and thermal) flux for

neutrons at full power in the BPRA as 3.15E+14 neutrons/cm2-s. MCNP calculated the

average total flux for neutrons in the BPRA as 2.439E-04 neutrons/cm2/source particle.

By dividing the MONTEBURNS flux by the MCNP flux we get a nominal value for the

number of source particles per second for one assembly at full power of 1.291E+18

which translates to 2.286E+20 n/s being produced from fission within the reactor at 2544

MWt.

The total volumetric heat rate for the BPRA can be determined by using the

number of source particles in the assembly and the results from the heating tally for the

assembly. The total volumetric heating (q"') in the BPRA is given as:

q'" = 1.6273E-17 joules/gm/source particle x 1.291E+18 source particles/s

q'" =21.01 W/gm.

The linear heat rate can be determined using the radius of the BPRA pellet and the

density of the BPRA material. For boron carbide, p = 3.1 gm/cc and q' = 44.29 W/cm

which converts to 1.35 kw/ft heating rate and is comparable to a quoted example from









Framatome Fuels for a larger system of 1.679 kw/ft. For carborane, p = 1.0 gm/cc and q'

= 14.3 W/cm.

The maximum centerline temperature is calculated by substituting known quantities

for the other variables into Equation 4-3 and using values for polyethylene and high

density polyethylene as example polymers (Table 4-1). In Table 4-1, the thermal

conductivity values for the polymers were taken at room temperature. Thermal

conductivity tends to decrease with time, so the resulting estimate is slightly lower than

what would be expected. Also shown in the table is the value where the linear heat rate

was changed in the calculation to match a quoted value from Framatome fuels for their

BPRA estimates which are based on a different reactor system and are 5 10% higher.

Table 4-1. Evaluated data for centerline temperature in various BPRA materials.
Thermal Max Difference Linear q' value Linear q'
Conductivityt between TMOD and from value from
TCL for BP rod MCNP Framatome
W/cm K 0C TCl OC Tl CC
High Density PE 0.0046 261.44 571.44 633.83
Polyethyline 0.0033 358.83 668.83 754.45
B4C/A1203 0.0200 295.87 605.87 676.48
Alumina 0.1180 73.99 383.99 401.65
T Callister WD Jr. Material Science and Engineering Introduction 5th ed. New York: John
Wiley and Sons Inc; 2000.

The obvious implication from Table 4-1 is that the centerline temperature is

strongly dependant on the thermal conductivity of the burnable poison material. This

relationship corresponds to the relative importance of thermal conductivity in Eq. 4-3. A

critical benchmark for the BPRA material depends on the thermal conductivity of the

material. Materials with low thermal conductivity and low thermal stability would be

unsuitable for this application. Unfortunately, many polymers have thermal

conductivities and order of magnitude lower than those of ceramics.










Maximum Coefficient of Thermal Expansion

The calculation of the maximum coefficient of thermal expansion is important

because the integrity of the BPRA assembly depends on the burnable absorber remaining

within the cladding. If the absorber expands too much it could rupture the cladding and

be lost from the system causing unacceptable power shifts within the core. This

calculation assumes that the expansion in the axial direction can be neglected because of

the overall length-to-diameter ratio of the BPRA. Additionally, it assumes that all of the

dimensions and geometry are the same as the Crystal River Reactor modeled in Chapter

3. Figure 4-1 shows an example cross section of the BPRA with the correct dimensions.











BP MATERIAL R4 699 mm -
HELIUM R4 788 mm -
ZIRCALOY R5 461 mm -
WATER R6 3246 mm -
ZIRCALOY R6 7564 mm




Figure 4-1. Cross section diagram of a BPRA

Using Figure 4-1 as a standard for the dimensions of a BPRA the maximum

coefficient of thermal expansion for a BP material can be calculated by first determining

the maximum amount the zircalloy cladding will expand under normal temperature

changes. The coefficient of thermal expansion for zircalloy is C = 7.0 x 10-6 oK-1 [10].

Thermal expansion for a homogenous object can be thought of as a magnification,

or photographic enlargement, of the object when it is heated. Ignoring the axial









expansion, the cladding acts like the washer in Figure 4-2 and all dimensions increase,

including the radius of the hole [20]. The inner radius is the primary concern for this

problem because the maximum expansion of the inner radius of the cladding is needed to

determine the maximum allowable expansion of the BPRA before it interacts with the

clad.


b+Ab


A T+ T


Figure 4-2. Thermal expansion of a metal washer. All dimensions increase when it is
heated. Adapted from Figure 19.9. Serway RA. Physics for Scientists and
Engineers with Modern Physics, Third Ed. Philadelphia: Saunders College
Publishing; 1990. Pg 514.

Using the inner radius for the BPRA zircalloy cladding (from Figure 4-1), C, and

AT = difference between room temperature and the temperature of the moderator (583K

- 293 K) the relationship for the maximum inner radius of the cladding after expansion is

derived (Eq. 4-5).









rM =r+r.C-AT (4-5)

rMx = 4.788 + 4.788 .(7 x10 6) 290 = 4.798mm

The maximum coefficient of thermal expansion for the burnable poison material

can be determined by working backwards and using the inner radius of the clad at full

temperature as the maximum radius for the BP material. This calculation assumes the BP

material replaces all of the gap area during expansion and assumes that the change in

temperature across the BPRA is on the order of 380 K (2/3 of the maximum centerline

temperature of 571 C minus room temperature 20 C converted to kelvin). The

relationship for the maximum C for the BP material is given in Eqs. 4-6 and 4-7.

rBp + rBp CBP, AT < 4.798mm (4-6)

4.798 r 4.798 4.699
CBP 4798rB = 5.544x 105mm/mmoK (4-7)
rB AT 4.699-380

The coefficient of thermal expansion for various materials is listed in Table 4-2.

Based on these values, the polymers have a higher coefficient of thermal expansion than

the ceramics and are above the maximum allowable of 5.544 x 10-5 OK-1 and may

interfere with the cladding unless more gap is provided between the outer radius of the

BPRA and the inner radius of the clad. However, the materials listed in Table 4-2 have

not undergone radiation cross-linking and are not entirely equivalent to the polymers that

are being sought for this study. The proposed burnable poison polymers will undergo

cross-linking before entering the reactor and will be partially ceramic in nature and

should have a much lower value of thermal expansion. The actual measured values for

the coefficient of thermal expansion and the centerline temperature should be applied

before any practical application of this material is made.









Table 4-2. Coefficients of thermal expansion of various materials
Material Coefficient of Thermal ExpansionT
(x 10-6) OK-
High Density Polyethylene 106 198
Polyethylene 145 180
Pyrex Glass 3.3
Alumna Oxide A1203 7.6
SCallister WD Jr. Material Science and Engineering Introduction 5th ed. New York: John
Wiley and Sons Inc; 2000.

Dose Delivered to BPRA during Cycle

Once the calculation of the amount of energy deposited within the BPRA is

complete, the calculation of the total dose to the BPRA over one cycle is straightforward.

Dose equals energy deposited per unit mass and is expressed in the unit Gray where 1

Gray = 1 joule/kg. Taking the volumetric heat rate of q"' = 21.01 W/gm = 21.01

joules/sec/gm the dose is calculated by multiplying it by a time in seconds and converting

gm to kg. Assuming the BPRA is in core for 18 months (4.7304E+7 seconds) the total

dose is 9.939E+11 gray = 9.939E+13 rad = 90.39 Trad.

The above value is an enormous dose to any object and a key concern for the use of

polymers within the reactor. The primary advantage to the PACS, or carborane,

polymers in this aspect is that they have been used as adhesives in high radiation

environment and have been shown to be thermally stable up to 1000 oC [2]. What is

unknown about PACS, or any other polymer, is how much hydrogen will be produced

(i.e. released from the polymer) during the irradiation process at these high doses.

Estimates of the remaining hydrogen at EOC need to be established in order to determine

the true moderation benefit and predict the amount of hydrating to the zircalloy clad.














CHAPTER 5
RESULTS AND DISCUSSION

The purpose of the research is to demonstrate that the increased hydrogen content

at EOC in an advanced polymeric burnable poison rod provides sufficient additional

moderation to increase the cycle life of the core. Ideally, the polymeric burnable poison

rod would outperform not only the current boron carbide alumina BPRA but also the

WABA. To prove this, several models of the PWR assemblies and cores were made in

accordance with the procedures outlined in Chapter 3. The process begins with a single

assembly analysis and continues with a multi-assembly two-dimensional comparison and

ends with a 1/8th core three-dimensional model of the core. At each step comparisons

were made, where possible, between different codes and against the actual cycle reload

report provided for the core being modeled.

Single Assembly Analysis

Single assembly analysis was conducted using MCNP/MONTEBURNS and

CASMO. The assemblies were depleted out to 40 MWd/kg in CASMO and the k-infinity

vs. time values for the various burnable poison cases were compared to a standard of no

burnable absorber in the assembly. The results, shown in Figure 5-1, illustrate the effect

of increased moderation at EOC. Each of these materials has the same amount of

burnable absorber, but because of the wet annulus in the WABA, it has an increased

reactivity over the B4C/A1203 BPRA throughout the cycle. Most importantly to this

study, relative to the B4C/A1203 BPRA and the WABA, the L-Carborane polymer has a

lower k-infinity value at BOC, meaning the burnable absorber is performing better. Also,












as shown in the inset of Figure 5-1, L-Carborane has a higher k-infinity than the


B4C/A1203 BPRA (approximately 1%) at 40 MWd/kg illustrating that the increased


hydrogen in the polymer offsets the water displacement penalty of the BPRA.


1 45
1 06
1 055
14
4 105
1 045
135 1 04
1 035
1 03
1 3 1 025
1 02
1 015
1 25
u.1 01 ~1
z 335 36 37 38 39 40

12


1 15


1 1 -NO BPRAs

B4C / AL203 WABAs
1 05 B4C / AL203 BPRAs

--L-CARBORANE BPRAs

0 5 10 15 20 25 30 35 40
Burn Up (MWD/kg)

Figure 5-1. Single assembly k-infinity vs. time for various BPRAs using CASMO. The
inset of the graph represents an enlargement of the last five MWDs of the
cycle.


Whenever the reactivity shifts within a reactor or assembly there is a subsequent


shift of power. Of primary concern is the ratio of the power in one portion of the


assembly or reactor to the average across the structure. This peak-to-average, or pin-


peaking, factor is a major limiting factor in fuel design and core management because of


structural safety limits to the materials within the core. The CASMO output of the single


assembly analysis shown in Figure 5-1 also produced the pin power peaking results


illustrated in Figure 5-2. From the pin power peaking results it can be seen that the


L-Carborane BPRA has a lower peak-to-average pin power ratio at BOC than the











B4C/A1203 BPRA and a higher pin power peaking at EOC. This is to be expected


because of the increase in reactivity at EOC causes the power peaking to increase.


However, an important fact is that the overall highest peak-to-average power ratio is


lower in L-Carborane than for the boron carbide BPRA. The importance of the peak-to


average power ratio also depends on where it occurs within the cycle. In a real reactor


situation the power peaking may occur later in the cycle and would have a much greater


safety concern than at BOC.

12
-NO BPRAs
1 18 B4C / AL203 WABAs
--B4C / AL203 BPRAs
116 -L-CARBORANE BPRAs


o 114

1 12
0

11

1 08

1 06

1 04

1 02


0 5 10 15 20 25 30 35 40
Burnup (MWD/kg)

Figure 5-2. Single assembly pin power peaking for various burnable absorbers. Results
are from single assembly CASMO runs.


One of the criteria for an optimum burnable absorber described in Chapter 1 is the


property of the absorber to deplete, or burn, over time. Another useful comparison


between the various burnable absorbers is the number of boron-10 atoms present over


time. Ideally, at EOC no boron-10 would remain so that the maximum reactivity would











be present when the fuel is most depleted. Figure 5-3 shows that the L-Carborane has a

lower amount of residual boron at EOC than either the B4C/A1203 BPRA or WABA.

This adds to the desirability of the polymeric burnable absorber and lowers its negative

reactivity worth at EOC.

1 00E+26




1 00E+25 -B4C / AL203 BPRAs
--L-CARBORANE BPRAs
B4C / AL203 WABAs

5 1 00E+24

0


E 1 00E+23




1 00E+22




1 00E+21
0 5 10 15 20 25 30 35 40 45
Burnup (MWD/kg)
Figure 5-3. Number of B-10 atoms present vs. burnup for various burnable absorbers.
Results are from multiple single assembly CASMO runs.

As mentioned in Chapter 2 of this study, L-Carborane is a fictional material made

by modifying the subscripts within the PACS formula to obtain a boron content

equivalent to that of B4C/A1203. The L-Carborane structure has approximately seven

weight percent of hydrogen. Because this study incorporates the use of various polymers,

the actual weight percent of hydrogen will vary from the hypothetical L-Carborane. In

order to ensure the material will perform better than the B4C/A1203 WABA the weight

percent of hydrogen in L-Carborane was adjusted to determine at what point the benefit












of the polymer over the current technology is lost. Figure 5-4 shows that at


approximately 4.5 weight percent hydrogen the L-Carborane material outperforms the


B4C/A1203 WABA.





116
1 375
115
114
113
1 325
112


1 275 11
1 09
U. 22 23 24 25 26 27

1 225



1 175


-- NO BPRAs
1 125 B4C / AL203 BPRAs
-- L-CARBORANE BPRAs
B4C / AL203 WABAs
-CARBORANE H = 5 W%
--CARBORANE H = 2 W%
1 075
0 5 10 15 20 25
Burnup (MWD/kg)

Figure 5-4. K-infinity for different carborane compounds with varying amounts of H.
Also includes results for B4C / AL203 BPRAs and WABAs. The inset of
the graph represents the last five days of the cycle. All results are from
multiple single assembly CASMO runs.


The MCNP/MONTEBURNS code has the unique ability to capture virtually any


data anywhere within a given structure with regards to flux, power, material generated


and destroyed, or materials activated. To get additional information about the single


assembly performance of the polymeric burnable absorber vs. the standard BPRAs and


WABAs, the assemblies were modeled in MCNP/MONTEBURNS. In order to ensure


that the results from MCNP/MONTEBURNS were comparable to CASMO, care was


taken to ensure that the same material compositions, geometry and power distributions











were used in both codes. The results of the k-infinity vs. time calculation for both codes


are shown in Figure 5-5.


K-INF vs. Burnup Comparison for 4.66% Enriched U02 B10 Depetion vs. Burnup Comparison
1.45

MCNP x NO BPRAs
1.4 x B4C / AL203 BPRAs -B10 N DENSITY
x L-CARBORANE BPRAs
x B4C / AL203 WABAs --B10 N DENSITY
1.35 CASMO NO BPRAs CASMO 9 00E+20
B4C / AL203 BPRAs
L-CARBORANE BPRAs
1.3 B4C / AL203 WABAs

LL 6 00E+20
Z 1.25


1.2\\
z

1.15 x S x x \ 3 00E+20


1.1


1.05 0 00E+00
0 5 10 15 20 25 0 5 10 15 20 25
Burnup (MWD/kg) Burnup (MWD/kg)

Figure 5-5. K-infinity vs. burnup comparison of CASMO and MCNP/MONTEBURNS.
Left side of the figure shows the single assembly burnup results from both
codes. Right side of figure shows the relative boron depletion for the two
codes.


The proportional differences between the various burnable poisons are the same for


either code. This means that the relative difference between L-Carborane and B4C/A1203


BPRA at BOC is the same in MONTEBURNS as it is to CASMO. However, the


difference between the MONTEBURNS and CASMO results gradually increases over


time. The right side of Figure 5-5 shows that the k value decreases less rapidly in


MONTEBURNS for cases other than the one without BPRAs because the boron content


depletes faster in the code. The differences in values between the codes is not important


here because this study is a relative comparison between two materials and, therefore, the


MONTEBURNS model can be used for further analysis. Additionally, the fact that the







64



L-Carborane continued to perform better than the other burnable poisons for the different


codes adds to the validity of the argument for an advanced polymeric burnable absorber.


1.00E+14
B4C / AL203 BPRAs
9.00E+13
L-CARBORANE BPRAs
8.00E+13
B4C / AL203 WABAs

7.00E+13

6.00E+13

x 5.00E+13
-.2

S4.00E+13
I-
3.00E+13

2.00E+13

1.00E+13

0.00E+00
0 5 10 15 20 25
Burnup (MWD/kg)

Figure 5-6. Thermal flux vs. burnup inside BPRA for various burnable poison materials.


One of the unique tallies that can be obtained from MONTEBURNS is the flux in a


particular region or material. The thermal neutron flux within the BPRA shows a


combination of the absorption effects of the BPRA and the moderation effects (if any) of


the BPRA material. Figure 5-6 shows thermal flux (< 1 eV) vs. burnup inside BPRAs


and WABAs. This increase in moderation eliminates the water displacement penalty


caused by BPRAs at EOC.


Multiple Assembly Results

The multiple assembly "colorset" models were run in accordance with Chapter 3 of


this study. As with the single assembly models, no chemical shim was added to the


moderator and the boron concentration within all of the BPRAs was held constant. The












major impact of having one fresh fuel assembly with 16 BPRAs and three other


assemblies of lower enrichments and with no BPRAs to simulate depleted fuels was a


general reduction of the effect of the BPRAs on the reactivity of the model. These results


are predictable because the overall effect of the BPRAs is spread out over four


assemblies, although the majority of the positive reactivity effect is located within the


fresh assembly. This is important because this model more closely represents the actual


conditions within the reactor where not all fuel elements are fresh with BPRAs.


14
094
1 35 0938
0936
1 3^ 0934
0932
093
1 25
0928
0926
12
0 924
38 385 39 395 40
U-
115



-NO BPRAs
1 05 --B4C / AL203 WABAs

--B4C / AL203 BPRAs

--L-CARBORANE BPRAs

095


09
0 5 10 15 20 25 30 35 40
Burnup (MWD/kg)


Figure 5-7. CASMO 2 X 2 colorset comparison k-infinity vs. burnup. Graph inset shows
last two days of the cycle.


The results of the colorset comparison are shown in Figure 5-7. When compared


with the single assembly results of Figure 5-1, it becomes evident that the overall


difference between the various BPRAs is significantly less at 40 MWd/kg. However, it is


possible to observe differences (approximately 1% increase in reactivity) at around 20-25











MWd/kg. This corresponds to the normal single cycle burnup point for a fresh fuel


assembly. A one percent increase in the length of a cycle is a considerable increase in


reactivity when one considers the amount of money associated with a reactor's down-


time. Estimates of up to a million dollars a day for reactor down time in reload means


that a one percent increase in a cycle could result in a six million dollar savings for an 24


month cycle.


14

-NO BPRAs
1 35
B4C / AL203 BPRAs

--B4C / AL203 WABAs
13
--L-CARBORANE BPRAs

S1 25
0


S12


c. 115


11


1 05



0 5 10 15 20 25 30 35 40 45
Burnup (MWD/kg)

Figure 5-8. CASMO 2 X 2 colorset comparison pin power peaking vs. burnup.


As with the single assembly calculation, the pin power peaking response is equally


important in the multi-assembly model. Figure 5-8 shows that the relative pin power


peaking results were the same for the colorset as observed in the single assembly (Figure


5-2). As with the single assembly, compared to the boron carbide BPRA, the polymer


BPRA created a greater pin peaking at EOC indicating greater reactivity and generated a


lower pin peaking at BOC indicating better performance at holding down excess









reactivity when needed. A significantly lower reactivity at BOC could be taken

advantage of by increasing the enrichment of the fresh fuel. Increasing the enrichment

would allow an even longer fuel cycle life and higher burnup in addition to the longer

core life given by the reduction in the moderator displacement penalty. However, the

increase in enrichment would also affect the power peaking of the assembly and the stress

induced to the materials.

One-Eighth Core Results

The single and multiple assembly results were all based on an infinite array of

similar assemblies. This means that a reflected boundary on the assembly or colorset

made the system act like it was in an infinite field of like assemblies. The actual reactor

geometry is symmetric about a 1/8th core model described in Chapter 3. The

consequence of dissimilar assemblies on the overall reactivity of the core is seen in the

colorset and it is predicted that the same effect will be observed in the core model.

Criticality vs. Time Results

The accuracy of the model is important in order to determine the effectiveness of

the various BPRAs. The PWR model used, outlined in Table 3-1, burned to 670 + 10

EFPDs in the Framatame NERO modeling code. 12 Any model that would closely

resemble the Framatome model would have to burn to a similar duration and have similar

power characteristics. This core was modeled with boron carbide BPRAs as in the

Framatome model in both EASCYC and MCNP/MOTEBURNS. The EASCYC model

was only used for power peaking comparisons because it could not model the decrease in

moderator displacement generated by the polymeric BPRA. EASCYC depletes the core

to 22.8 MWD/kg at an operating power of 85.9% of 2990 MWt (approximately 2544

MWt). With 89,679 kg of uranium in the core this equates to 684 EFPDs. From










MONTEBURNS, using no chemical shim at the rated power of 2544 MWt the excess

reactivity in the core is depleted at 670 EFPDs with k = 0.99753. This leads to the

assumption that the models both provide similar reactivity results to those of the NERO

code.

The k-infinity vs. time for the one-eighth core model in MONTEBURNS is shown

in Figure 5-9. As expected from the colorset results, the L-Carborane shows little to no

improvement over the standard B4C/A1203 BPRAs. This result is the combination of

both the effect of the other depleted fuel assemblies and the fact that the core model

depended on Gd203/UO2 burnable absorber fuels along with BPRAs and this reduced the

number and the effect of the BPRAs on the core's reactivity.


0 100 200 300 400 500
Effective Full Power Days (EFPD)


600 700 800


Figure 5-9. K-infinity vs. time for various BPRA materials (1/8th core MONTEBURNS).
The cycle length ends at approximately 670 EFPDs for both materials.











As stated in Chapter 2, the L-Carborane material is a hypothetical molecule

developed to have the same boron content as B4C/A1203 BPRAs. The actual composition

of a PACS polymer synthesized was described in Chapter 2 as J-Carborane. Up to this

point, no models contained the J-Carborane BPRAs because the emphasis has been on

showing an increase in reactivity over time with a polymer of equal boron content. Now

with a more realistic model of the core, the actual polymer content can be introduced to

see how its effectiveness compares to the standards.


1.25
B4C/AL203 BPRAs

1.2 --J-CARBORANE BPRAs

A L-CARBORANE BPRAs
1.15


1.1


1.05






0.95


0.9
0 100 200 300 400 500 600 700 800
Effective Full Power Days (EFPD)

Figure 5-10. K-infinity vs. time for 1/8th core for BPRA materials including J-Carborane.
The J-Carborane extends the cycle length by approximately 6-10 EFPDs.

The k-infinity vs. time for boron carbide and both L and J Carboranes is shown in

Figure 5-10. As seen in the figure the J-Carborane composition adds approximately one

percent reactivity at EOC and holds down an extra one and one-half percent reactivity at

BOC when compared to either the boron carbide alumina or the L-Carborane BPRAs.









The combined effects at BOC and EOC make J-Carborane appear to be superior to either

the standard boron carbide alumina or L-Carborane BPRAs. The primary concern for the

use of J-Carborane is that its higher absorption cross section may cause power peaking

problems within the core. Further analysis of the power peaking for the core would

determine if in fact the J-Carborane material would be a viable alternative to B4C/A1203.

Power Peaking Results

The 1/8th core model can be mapped out so that each assembly is given a reference

number as in Figure 5-11. When conducting power peaking calculations, the benchmark

for the core was set as the BOC power map from the Crystal River Three Cycle 12

Reload Report. The power peaking was taken as the value of one assembly's power to

the average power across the core.


1 4 6 8


10 12 14 15


17 19 20 21
Fresh Fuel
Once Burned
Twice Burned 23
Thrice Burned

27 28
XX Assembly Number

29


Figure 5-11. Assembly number identification for 1/8th core model.

The EASCYC code performed power peaking calculations for all the depletion

steps for the lifetime of the cycle. Both EASCYC and the reload report indicated that










Assemblies 4 and 12 consistently had the highest peak-to-average values for the core

cycle. From these results it is assumed that they are the likely candidates for more

complex modeling in MONTEBURNS which requires a specific assembly to be modeled

independent of the rest of the batch.

0.74 1.33 1.32 0.32
0.724 1.376 1.374 0.325
1.33


1.20 0.36
1.302 0.359

1.29 1.14 0.28
1.271 1.153 0.262


Fresh Fuel
Once Burned
Twice Burned
Thrice Burned


1.28
1.226


1.06 0.27
X.XX RELOAD REPORT 0.938 0.240
X.XXX EASCYC
X.XX MB 0.35
0.284


Figure 5-12. Power distribution for 1/8th core with B4C/A1203 BPRAs at BOC.

The results of the three cases for the peak-to-average power in the core at BOC for

B4C/A1203 BPRAs are shown in Figure 5-12. Although the results from

MONTEBURNS appear to have no deviation from the reload report model for

Assemblies 4 and 12, it should not be assumed that the MONTEBURNS model is

precise, especially because no chemical shim was used in this power distribution model.

The important function of the power map is to ensure that the codes are providing a

reasonable distribution of power throughout the core, allowing a relative shift in power

peaking to be observed between the different BPRA materials. For this study, the

absolute accuracy of the core model is less important than noting the relative differences











between BPRA materials, so that potential candidates can be pursued or eliminated


without extensive testing.


1.55



1.50



1.45
o



< 1.40
o
.2

S1.35

-- B4C AL203 TOTAL

1- L-CARBORANE TOTAL
1.30
J-CARBORANE TOTAL


1.25
0 100 200 300 Days 400 500 600 700

Figure 5-13. Power peaking vs. depletion time (average of assemblies by type). Multiple
MONTEBURNS models for 1/8th core without the presence of chemical
shim.


Once the models for power peaking were established and the suspect high power


assemblies were identified, the detailed comparison of the power peaking throughout the


cycle could be performed for the three BPRA materials. The first modeling case used a


continuous burnup calculation in MONTEBURNS without chemical shim. The peak-to-


average power was calculated by taking a weighted average of the batches for the various


types of burnable absorbers (Figure 5-13). This model is a rough estimate because it


assigns an average for each batch and takes a ratio between the batch averages to the core


average. The results show an advantage for the J-Carborane at BOC on out until a











burnup of about 500 days. Thereafter, the J-Carborane yields a higher power peaking

factor than the B4C/A1203 BPRA.

The more detailed models of the individual results for Assemblies 4 and 12 are

shown in Figures 5-14 and 5-15. These results are more precise. From BOC out until

about 420 days, the power peaking advantage goes to the J-Carborane (Figure 5-14).

Thereafter, the J-Carborane has the highest power peaking factor. The J-Carborane has

the lowest power peaking factor throughout the cycle for Assembly 12 (Figure 5-15).

These results, however, do not include the effects of chemical shim within the core and

the overall power peaking response may be different in the presence of borated water.

1.50



1.45



1.40



1.35

S -- VALUE= CYCLE 12
Lu RELOAD REPORT
Q, AT BOC
i 1.30

--MB B4C

1.25 --MB L-CARB

--MB J-CARB

1.20
0 100 200 300 400 500 600 700
DAYS

Figure 5-14. Power peaking for various BPRAs in Assembly 4 with no chemical shim.
Multiple 1/8th core MONTEBURNS results indicate that the J-Carborane has
a lower peak-to-average power ratio up to approximately 420 days. The
MONTEBURNS result for the boron carbide matched the result from the
reload report.









































0 100 200 300 400 500 600 700
DAYS

Figure 5-15. Power peaking for various BPRAs in Assembly 12 with no chemical shim.


0 100 200 300 400 500 600
Days

Figure 5-16. Chemical shim vs. time for core models.











The final core peaking evaluation in this study continued the refinement process by

evaluating the power peaking results for the core with chemical shim. For this case the

chemical shim model as described in Chapter 3 was applied to keep the reactor at k = 1

throughout the life of the cycle. The chemical shim was added using the feed file

described in Chapter 3. The boron carbide and L-carborane had nearly identical

reactivity vs. time responses and used the same chemical shim let-down. The

J-Carborane shim was adjusted for the differences in reactivity over time (Figure 5-16).

The model used an initial loading of boron in the water so the let-down is not linear as it

approaches zero time.

1.50




1.45




m 1.40

Ju


S1.35


o
-MB B4C CHEM SHIM
1.30
-MB L-CARB CHEM SHIM

-MB J-CARB CHEM SHIM

1.25
0 100 200 300 400 500 600 700
DAYS
Figure 5-17. Power peaking for various BPRAs in Assembly 4 with chemical shim.

The results for this model are shown in Figures 5-17 and 5-18. Again, the J-

Carborane had superior power peaking results for Assemblies 4 and 12 out to about 420

days and a higher power peaking than the B4C/A1203 BPRAs thereafter. The J-Carborane











advantage in the power peaking factor extends out to about 480 days for assembly 12 and

thereafter is higher than the B4C/A1203 BPRAs (Figure 5-18). It is evident that the

overall power peaking results vary from the case with no chemical shim in the water.

The most significant difference is an increase in the power peaking factor for the

J-Carborane case in Assembly 12 above the boron carbide BPRA case in the chemical

shim model after about 420 days that is not seen in the model without chemical shim.

Additionally, there is a sinusoidal decrease and subsequent increase in the power peaking

factors for the J-Carborane case at about 400 days in the chemical shim model.


1.55

-MB B4C CHEM SHIM

1.50 --MB L-CARB CHEM SHIM

-MB J-CARB CHEM SHIM
1.45
I-- ,

S1.40


1.35



I 1.30


1.25


1.20
0 100 200 300 DAYS 400 500 600 700

Figure 5-18. Power peaking for various BPRAs in Assembly 12 with chemical shim.

Other Polymer Materials

It should be noted that the relative comparison for the different materials within the

model parameters should allow for easy investigation of other polymer materials to

eventually develop the advanced burnable poison absorber desired. Because of the












benchmarks set in Chapter 2 and 4 for hydrogen composition and thermal and radioactive


stability requirements, numerous materials can either be eliminated or sent forward for


simulation calculations.


One such proposal is a combination of high density polyethylene and boron carbide


(B4C/CH2). The initial single assembly results with equal amounts of boron for this


material are shown in Figure 5-19. From these results it can be predicted that the overall


1/8th core distribution would be slightly better than the L-Carborane model. From the


carborane comparisons, it would be likely that the 1/8th core distribution would benefit


from a higher boron concentration to more closely match that of J-Carborane.


1 45
1 065
14 06
1 055
1 05
1 045
1 35
1 04
1 035

1 03
1 02
1 015
1 25 1 01
035 36 37 38 39 40

12


1 15


1 1 -NO BPRAs
B4C / AL203 BPRAs
1 05 L-CARBORANE BPRAs

B4C-CH2

0 5 10 15 20 25 30 35 40
Burn Up (MWD/kg)

Figure 5-19. Single assembly comparison of various absorbers to include polyethylene.
The polyethylene is doped with boron carbide to act as an absorber.


Because of the benchmarking, the process of material selection and combinations


thereof can become systematic. The material is first selected based on its nuclear






78


properties and modeled within the simulations and then physically tested to determine if

it can withstand the radiation and thermal environment and then the core model is

modified and the core is analyzed again.














CHAPTER 6
CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

Conclusions

The purpose of this research was to examine the use of high hydrogen content

boron carrying polymers for use as burnable poison rods in pressurized water reactors.

The premise of the use of a hydrogen based polymer is that it would eliminate the water

displacement penalty at end of cycle created by the current boron carbide alumina

BPRAs and extend the lifetime of the reactor core. One characteristic polymer,

Polyacetyleniccarboranosiloxane (PACS), was described as thermally stable up to 1000

C and able to be tailored to optimize the boron and hydrogen content within the

polymer. The effects of variations in the PACS structure on core performance were

determined using various two-dimensional and three-dimensional transport nodal and

Monte Carlo codes and compared to results obtained when using boron carbide alumina

burnable poison rods and wet annular burnable poison rods. Performance criteria for

each material was based on its ability to control reactivity at beginning of cycle and the

combination of its burnup, its reduction in moderator displacement at end of cycle, and its

power peaking response throughout the cycle.

The study made specific calculations for the minimum required hydrogen content

within the PACS polymer structure and developed an empirical equation that related the

moderator effectiveness of a substance to its weight percent hydrogen. This formula

works well for the PACS structure and appears to work for other hydrogen based

materials. The benchmark from the PACS study places a minimum requirement of 4.5









weight percent of hydrogen within the polymer in order to get a moderator displacement

penalty that is less than the WABA and a higher reactivity at EOC. This 4.5 weight

percent must be present at end of cycle to be effective. This means that if the polymer

losses a significant amount of hydrogen due to radiation cross-linking during the fuel

cycle it will have to start the cycle with a significantly higher amount of hydrogen

present.

In addition to the hydrogen content calculations, benchmarks were set for the

maximum centerline temperature and the maximum coefficient of thermal expansion for

the polymer. The centerline temperature was shown to depend almost entirely on the

thermal conductivity of the material. Using an estimate of volumetric heat rate from an

MCNP simulation and a thermal conductivity from a similar polymer, the maximum

centerline temperature was calculated to be between 571 633 C. Using 2/3 of 571 C

and the known thermal expansion for the cladding, the maximum coefficient for thermal

expansion was calculated to be 5.544 x 10-5. Because most polymers have thermal

expansion coefficients higher than this and that the actual coefficient will depend on the

cross-linking of the polymer, it was concluded that expansion of the PACS polymer

should be measured to determine if it is a concern for this research. The centerline

temperature may prove to be a problem or material performance because the ceiling

temperatures for many polymers are around 500 C and the polymer must remain intact

throughout the core cycle.

The radiation dose delivered to the BPRA throughout the life of the core was also

calculated from the estimate of the volumetric heat rate. The value of 90.39 Trad is a

tremendous amount of radiation and it is not known how a polymer will react over time









to this amount of dose. The primary concern with respect to radiation is the cross-linking

and loss of hydrogen both from a loss of moderation perspective but also for the

hydrating of the zircalloy cladding which could lead to failures within the BPRA

elements.

Notwithstanding the materials concerns, the simulations of the single assembly and

multiple assembly models of various polymeric BPRAs showed promise that the core

cycles could be extended. The single assembly calculations suggested that a 1 1.5%

increase in reactivity over time could be obtained with the use of a polymeric BPRA with

boron equivalent to the boron carbide alumina BPRA. The multi-assembly models

continued to show an advantage to the polymeric BPRA but the amount of the advantage

was reduced due to the lower reactivity effects of the other depleted fuel elements.

The 1/8th core models used a slightly different approach by taking an actual PWR

reload report and simulating the exchange of a standard BPRA for a polymeric BPRA

with no other adjustments to the core. The results for the polymer with an equivalent

boron content as the B4C/A1203 BPRA were uninspiring. The differences between the

two over the life of the core were negligible at best. However, because the polymer

depletes boron faster than boron carbide and because the boron content can be tailored in

the polymer, another simulation was run with a polymer with more boron. This

simulation not only extended the life of the core by about one percent but also resulted in

a lower reactivity at BOC, which leads to the proposal of a higher enrichment at BOC for

an even longer cycle length.

The primary concern with the higher boron based polymer was its effect on power

peaking within the core. The critical assemblies in the core model were determined using









a diffusion theory code and the reload report for the reactor. The critical assemblies were

then analyzed in detail to determine their peak-to-average power distributions with the

various burnable absorber BPRAs. This is important for reactor control and safety and

adds validity to the premise that a polymeric burnable poison rod is a viable option for a

PWR.

The final set of simulations used a feed of boron-10 to the water to model the

presence of chemical shim. The addition of the chemical shim caused the power peaking

models to vary from the models without chemical shim. However, as this study is

focused on the relative differences between the materials, this rise was unilateral and did

not change the conclusion that the advanced BPRA did not negatively effect power

peaking.

The advanced polymeric burnable absorber concept is a method of increasing core

burnups without having to increase enrichments beyond the five weight percent

enrichment maximum currently allowed. Increased burnups will save money and reduce

waste production because of longer fuel cycles. The increase in burnup will have to be

analyzed as an effect on the reactor system as a whole. In particular, longer cycle

burnups will lead to longer overall burnups for assemblies in a core. The extra days per

cycle could result in extra weeks on a single assembly. The material sustainability for

longer burnups is an important part of this research. The keys to the development of a

viable polymer will be its ability to transfer heat, withstand radiation, and not create

structural damage to the cladding. In general, the materials of the reactor constitute the

biggest challenge for higher burnups for all currently designed light water reactors. This

research has established a basis from which any material could be quickly checked for the









proper moderation, absorption, and thermal mechanical properties. If the material passes

the initial scrutiny, this research creates a framework by which any material can be

analyzed in detail to determine if it will be the next generation of burnable poison

assembly material.

Recommendations for Future Work

The future of this research lies in the testing and analysis of many more materials.

The example of polyethylene given in the end of Chapter 5 is just one of hundreds of

possible candidates that can be examined. Once a selection of a few polymers is decided,

then the measured values of density, material composition, thermal conductivity, thermal

and radiation stability and ceiling temperature should be used to determine if the material

can be expected to survive the environment of the reactor. These values will have to be

introduced into the model to ensure that the results will not significantly change under

realistic conditions. In addition to material design, alternative mechanical designs may

have to be employed. For instance, other methods of heat transfer may have to be

investigated (such as lateral plates or pipes within the polymer) in order to ensure that the

polymer does not surpass its ceiling temperature. These methods of heat transfer will

increase manufacturing costs and may ultimately make the design unfeasible.

The radiation environment within the reactor poses its own problems with the

hydrogen generation process. All of the research in this study assumes no loss of

hydrogen within the polymer during the cycle. A detailed prediction of hydrogen loss for

any polymer used in a reactor will have to be calculated and backed by measurement.

The loss of hydrogen will cause adjustments to be made to the reactor models and most

likely will eliminate many polymers as unsuitable alternatives. There may also be

coupled effects of a change in thermal conductivity or thermal expansion coefficient









associated with additional cross-linking. These changes in material properties may be

significant in the final determination of an advanced polymeric material.

Once a good candidate for a polymeric burnable poison is determined, the core

should be modeled in a three-dimensional nodal code such as SIMULATE. This

modeling would confirm the MONTEBURNS predictions of the cycle lifetime and also

provide detailed power peaking results that would be more reliable. The SIMULATE

model could give a time dependent power peaking map for all of the assemblies and

ensure that the safety limits were not exceeded. Finally, the SIMULATE model could be

optimized to use only advanced polymeric BPRAs and eliminate the Gd203/UO2 fuel

elements and compare the results with various combinations of 8, 12, and 16 BPRA

assemblies. Ideally, an advanced polymeric burnable poison rod could eliminate the need

for the Gd203/UO2 fuel while still providing enough negative reactivity at BOC and no

water displacement penalty at EOC.

After successful modeling within a core analysis code, such as SIMULATE, the

advanced burnable poison material should be tested within a reactor that will produce

power and heat similar to a commercial PWR. The material will have to be tested to

ensure that the code predictions for burnup and absorption are correct. Additionally, a

final measurement of the hydrogen displaced during the irradiation period will have to be

made in order to accurately predict the moderation effectiveness of the material at EOC.

The final analysis for the advanced burnable poison material will involve cost. The

PACS carborane material could be cost prohibitive to produce because of its processing

steps and number of constituent elements. Any polymeric material that would increase

the core burnups would have to cost less to produce than the money saved by increasing






85


the cycle length. It is not clear whether market demands will lower production costs for

complex materials such as PACS. The best alternative material may be a simple readily

produced polymer that has high hydrogen content and can be easily adapted to carry

boron or some other burnable absorbing material.