<%BANNER%>

Sputter Deposition of ZnO Thin Films


PAGE 4

btnfrn !"# $$%"#""$& "%"is $"%%"'&%$'"$$$%& $ $"&!#&"$ (&$"#%"$% r b"%$ #&$ #"%$r'$%#'#'"#)$&$"%&&&"#&$"!&$$ $%##& $%"$&#! *%"$t%"$%$ "&"&"$&$r'"%&&'"$"$%"$"$""'$"+"!$!#$&& $% !% $ &&!#%&*&$%, '$$"#"%$" r!""%-%$)#""-%& "!"# $ $%"&$%"#%$ !"$%!"r%*$

PAGE 5

&&&"'"$%". &$%"/%'#''0'',#"0'$',' $'1"'02%'02,'%''0 '!'3"'##'$' 0$-%''#+'04''%#',')'%!%'!' $%$!"#%"$&%!#& '#"%$*" 56'"""'+% #" '* $%# %#"%""&%#

PAGE 6

!"#$% &'" ""( %%) *) "!+ %&'+)%), -'(."(!(() /!)! "#$% (% !"#012 -!)! "#$% #) -%3!"$# -(% !%(&!"! )"4)2 -%(&!"! )-5 /$ !") "/2 /%3!"$#/2 /'(."()%%/ /")$ !, -6&*7!"#$% "7-'(.") "7-8#$ !+) .7-)%! ""4 '$ !+) .72 --$9) (7, --(% !%('!% !: "75 --*(()$!. )75 --"$!&" &!"92 -/ !$% $!('!% !: "2 -/&!"4(". !+2 -/6;+44!% "2 -/".%"!%%!")%"+2-//$!(% !"% !")%"+2

PAGE 7

-/6;!+&'" "(% !"% !")%"+27 -/7%"#!+"))% !". !+25 %(&!"! ),< -% !"'" ". !+,< -"$!!!)4"!.4!!#% !")%"+,< -7!. (&!"%#$!), -744% "4(.9 '&!"! )"4=>(, -7(". "4&!"! )!+'=>((.),-7")$ !$ !") ""4=>((.),/ /,5 /%3!"$#,5 /)$( )5< / !$% $!('!% !: "5< /(% !%('!% !: "55 /%('!% !: "< /-)%$))"<, /!$% $!(&!"! )<, /-(% !%(&!"! ) /-%(&!"! )< //$..!+ &&& ?*=>/ %3!"$#/ )$( ) !$% $!('!% !: &!"4(". !+ ".%4"!%.%!")%"+7 -$!(% !")% !")%"+(% !%('!% !: "-2 -)%$))"/ -$!4%"!'"("+/ -(% !%('!% !: "< /$..!+7 7&5 7%3!"$#5 7!. )$( )7 7&!"4(". !+7 7(% !%('!% !: "7 7-%"#!+"))% !". !+)$( )2 7/6;!+&'" "(% !"% !")%"+)$( ),< 76;!+44!% ")$( ),-

PAGE 8

7/b ".%bn"!%b%!")%"+b)$( ) 7-b)%$))"b"4bnb&"8!b!. 7-b"#(b"4b 'b% )b"4bf b"b)$ !b"b(% !%(b&!"! )7-b"b<2 7-b&!"4(". !+b0"b1<27-b)) +b% )b0"b<7--b*((b%!!!b%"% "b0"b7-/b*((b."9( +b0"b7-br%"#!+b"b.))b)% !". !+7-b6;!+b'" "(% !"b)% !")%"+<7-b6;!+b#!% "b0"b7-,b ".%b4"!%b.%!")%"+b0"b 7--b"b-< 7--b&!"4(". !+b0"b1-<7--b)) +b% )b0"b-7---b*((b%!!!b%"% "b0"b--7--/b*((b."9( +b0"b-/7--b6;!+b#!% "b0"b-/7--b ".%b4"!%b.%!")%"+b0"b-7 7-/b"b-7 7-/b&!"4(". !+b0"b-77-/b)) +b% )b0"b-27-/-b*((b%!!!b%"% "b0"b-27-//b*((b."9( +b0"b-57-/b6;!+b#!% "b0"b/<7-/b ".%b4"!%b.%!")%"+b0"b/ 7/br$..!+/ 2btfrtfr/2bf b"b)$ !/-2b'.)"!9#bt+/22-b&!"! +b(". bb'b=t>(b'bn(. ) /, 2/bn$ $!b"!3< rbtnbnfr-t&*br@*

PAGE 9

!"!"# $!%""""&'( ()"&'&&*" "+ &"&"('&'"!'& .. ('&/'".0 12)3+&/43"&5'6*"78 19'"&/43&:88;&"%7. 1(9'"&/43&:88;&"%7. 114,!&"& "'&!'" '""""&"'&88 1-) "",!+ 188<)" '"""8 1#9'"&"&:;&"&"""188<) '80 -"&""=&"="& %"# #"""/'&&&"&' & 0

PAGE 10

!"# $ $#! %&"' #&! ( $$ !"%&&& ) $*&# "!+ $,#"&#-# &" $/0!&""#!1 $(&#'$#" ( $)'%! &"' 2 $23%!& + $+45&& 6 $. $.7 %& $, $#!" &#&& ** $$ &##! !# !& *, $*45#" & #" """ ,* $, � 8 #&,/ $/&& ,( $(&#" ,+ $)45 &" "" /. $245 &#% & &! "" /, $+" &#& & && #!"#& &!//

PAGE 11

$$.9 :! ## #&!!"#/( $$##: &;#:"# /) $$$#!&#%" " &;<9#&! /+ $$*#"&#!&"#&9!(. *45#!!" &# !(/ *$' %&# "" != > ?(2 ** #$//! #&""2$ *,"%&#" &#% &% "2/ ,45@&& "&!&&;<9#&! +$ ,$45@&& "&!&&;<9#&! &! +* ,*45@&& "&!&&;<9#&! +, ,,45@&& "&!&&;<9#&! +/ ,/45@&& "&!&&;<9#&! !"+( ,(45 "&;<9 #&!&&&# !".* ,(45 "&;<9 #&!&&&# !"., ,(45 "&;<9 #&# !"& !"./ ,) &# 349$5% %#!# ""&#;<9&!#./ ,2 &!& "=&!.+ /;A> :?A8# &;<9#&! $)

PAGE 12

/$4598!"# &!././B!$+ /$4#598!"# &!././B!&;<9#&! *. /*459&!#2C#=;<9 !"*$ /,459&!#./C#=;<9 !"** //459&!#/$/C#=;<9 !"*, /(&# %# "" ;<9 #&!*2 /)45&;<9#&! &&&!#= ,. /2#!" &# %! &!,* /+45 #" &%A&!#= 4C5A 4C5,, /. &1 ## #!!/* /'"&# %##&! /* (' %&# "" !( ($8 #= &#;<9#&!(* (*7" &;<9(* (,7" !&&;<9(/ (/7" $/.DE...D/..DE...D (( (( %&;<9#&! () () %&;<9#&! #/..D&& *$!() (2 %&#" ;<9#&!"% #= (+ (+45'&;<9#&! ) (.45F!&;<9#&! ), (458"#"&&;<9&! $/.D)) ($458"#"&&;<9&! /..D)2 (*458"#"&&;<9&! ...D)+

PAGE 13

(,45@!" " 5"=2$ (/45@7 "&!;<9#&! $/.D2, ((45@7 "&!;<9#&! /..D2/ ()45@7 "&!;<9#&! ...D2( (2458!!@7"= ..$5"=&;<9#&! 2+ (+45 &#;<94..$5"=$ 4 5"+ ($.45DF8..$5;<9@7"=+* ($45 3&> :?&!98!"# +( ($$45> :?&#;<9#&! +2 ($*458# &#;<9#&! $.. ($, %&#;<9#&!$* ($/45'&!F! &;<9# &! $, ($(45'F!&;<9#&! $)

PAGE 14

btnfrbtfbfbttnff frbfrfbttbtrfr brfbbfrfnfbfrff !!"# #"$"%$" &#$#'( ) 'fb*f nb+,,.tbt/t&0&ff1t(t2fbtb/(tbtnnt!b bfftntbtnbtffr%"rrfbtntftt bttbnfnnbft ve rrnfrttf ttrbfbfffrbnbttnbntbfbfrb%"rtrnfrtfbbfrbfbbt fbttbf%"rtttb rbtntrfftnbnttbtbrfbbfr%"/rtrrfbt$+6&+,86-,89t:,,;.rfb<,trff bnbfrrfffbbfrtttfr+-,=> ?n"nttbnttnbtntbbbnfnbtf bfrfbnbtb ntffr%"/rftbtfnnbt@fb= *b9ntt-,,,AnBbrfftbb

PAGE 15

0 1:0>-,=> ? B-CD,A0 %"/104 44B1 0 #4##4###41#1:0>-,=>-0+-,=+ ?4 1E0+-,-7>0+-,+,=>4 E+6@?0###4-0C-,=> ?4 C-,+,=>41E+6@?0 ###-, ?4 1-0,-,-7=>41-0C+6@?0'1 # 411### 0

PAGE 16

!!"# $%!#&#& '(# )*&!+,+% "!-&#& .& !!#& .&. #& % !* %'# #& %&* "!# # !* !*%#)!#& & & # ./ #&# !. %.#& & "! &*#!**.!* 0"!1% "*!!!&$*..& #2#% .! #!% $*# .&$!.. ##&%3 $&! # !!$%!..&#&

PAGE 17

4 0 20000000 40000000 60000000 80000000 100000000 120000000 194919591969197919891999 YearBillions of BTUs Energy Consumption Renewable Energy Consumption (# )%.#& !'! .3" !&56% #!$7!2" #**!%'#& 88!!" !! #! % $09:$;1# !% .!" #* #9<:$;! ".&=#%> !"# .% !. !.! #!* ##*! *! % # 0*?1'4?'&!"!@%@A" &B546%"#!&!##

PAGE 18

< #..0 C8D!)1!.#* .&#.#.&!&*#!& !*!.&!/ 5<*,6% 3 #&!"#* #01&%! E!2 "& !.?'% ( !"!E!#B& !"!# 5D6%E ". !&?'" B&!! !%E 2!.#!/ *E '&E !"!% !"$# .! # E!%$#. !"E !*!B! %3 !* E! &. *./ $%F& "# #". #!%". # !* %" 4*".$#

PAGE 19

, !?'.!*E&* # %2!! <*!* *B !. !% !2! #"# ##!. # ,% D" 2!#"#"!"&EG !%2! H#"##" #!!.& !* !$"&!%" !$!! I% *$!&!".&! %#!&B2!% '"2! #5H)+6* ""586* )##5*46*" )&E.# 5<6%

PAGE 20

!"#!!! !! $ % % !! !&'($")*$!*!!&'($ #! !! +,-.,.$ !*#" /+$ +" % +0% !! *%" *!% 1 *# ." !2+ +0*# !! !! !*!!!+!* $! +$%$ % + *!+.! $ + +&'#"#/ $ 3* !* 3$" 4!*+ +$ 56789:*

PAGE 21

; 2+.$ *# ." $ <=>%#!#+ $$ 7" !%2% % # )$ 68: $ !+)#.! !+ $$$! 30! % #! !4+5!#% !! >?@+ >?@$ $ $ !! !$ $!*+ #+% +"!" +

PAGE 22

? <@ >@2+6=8% !*$ $ $% 0$!*$"++ ?@ $A7B $@B$>?<>< *!$ *+>@ @@@%+ +* $$ 678 C $+$ *"!* !! $ + %! % $!$ "/ $$C **" .%D %%% .,.-.+ %!1 % $! $ )$$ !! 1$ ,D %0*! !! % 2++$!*+ $ $6=8

PAGE 23

< +*%# #+ *+ +* !! 678$ * <
PAGE 24

> 2: %$ $ + $ 0$$!#,$-% !#+!#+"*0$ "% $!%*%$ % $ !# $ ,C C> <77$G$%!*C !$ !2+=$ ,G$HI$-*# *++ $ !!$ E,C7J,C"* *6?8.% #$*!#% "+ +# *+ *+ """ @ @@ 7@@ ;@@ <@@ @@@ @@ 7@@ ;@@ @=@<=<=<===< *+,I$,G$HI$-2+= !$ # *++ K $! $ +" !$

PAGE 25

@ $ 0$$!#*"$" ,22$ : $ 1*% / E ! 1 *!2+6<8%# : : "!$ $%#: $ $ 0$$!#: !#: %# !* +% : =6?8 FF VI VImm ocsc,FFVI Pocsc in,=2+ !1 %# $ 0$$!# +++6<8

PAGE 26

&'!$ "+22 $ $22 .7 "#% +" !$! *!% #$! $) $ "/$# + $#$ 2+*% 1! + % !+ +)% 1!" !#+,!F -+ + !,+-$ ""% !$" + 1,1-! "!! /! # $! +!+% "! )K"1! ,"-"1! "+ ++% $"!+ $)6?8 + L+ "2+9 + $ 1!$) % ++ 1! "! !

PAGE 27

.#!+$ */ % + !1! + !+ + "M + "0 + !+%"!#+ $"" +!+%"M$ $ *!$ 6?8 =2$. $ !$ $$ %! !!0!*" ,%+ %!$ $% $ -!!+ $) $%" :*! $ + $$! E" "*6=%78 !2+ ." $ % $!* %##" ":2 $! +*! $ + !$% +$! C !% % 0 + C !!G*%!% $ % /+#"+ +! !!C! $!!$ $" %! +$!" +$% !+ $!"$ %$! %#

PAGE 28

= $ !!0$ ""/+ *%$* $$$ !$!$ " !6=8 # $ *$ *$$$ $$ "/#$+ $ $! + + !#K!# "!" + #K!#$ +M#$ +! +$#!+ #$**"/*!*,2+-%$ *"$ $!*+$*%"+*$ !"$# +#! $ %! # ++ *% $!#"/!1 *$! 1.! $ !%"$# / "+$$ 678$! #$ !! #!#$! $$ # ,% !# .$ $ * +*$ $% "+ + "" @$1-%# + $ + $6=8 "" " $ ""+ 0!: 7#

PAGE 29

7IIex 0,7$ $+%@+% "" #$1% 0 *+ ""+$$ $+ "" .+"+ "" $% !0$ # )+ $ * *" $# # "" + !* ""+ D ..%$ + !$E !$ $+ + !+* ." 2+%" $. 0!* 1$,##-+ I$/$$"$! !+ % *" / !$ !!C + 0 $ !" ""++% /# "" A= I$/% !" #* :%#1* *", F<
PAGE 30

,93-" #%" +*6>8*&',1&'*!&'$ +! % !!0$ @ ?@@$/%!* !" !!% #"0 #! !! $ # ,-% C+2$ 1 +6 + %. "!"$ $+ !!%$ %1!%!!% $ $ !# % !! + % # /E" +1 0% #$ 2+; $" $ $* !! +678$! + "" " )+$!"#* % $$$" + !$! !$E !"#" + "" !!' #""#0!! +!. ")$ % /#+! +! $!* + $ !!6@8$ $ $! + $. D. *"!%# *!*!$E !+6@%8

PAGE 31

; 2+;'. 6@8 "C $ $! $! ,N-G +,.?<@@>?@7 D .>;>;;;< .@;7= D .=>>7= ." %$* + $ #! 0 $$ 6>8 +!+ +" "" $"$" $+!!&'% 93

PAGE 32

? $ # !! $!*% G $ +: ).$*+ *,'%.-%&.%&.% &'6>% 7 +,2"/+ )" %! *! 1!+* ""$ #% *!#$ +%# !# 0 2 ." + E +! 1!+ %$ $! !$ # $" +0,'-%#&' "" +$ ." #!$ $ $"# !$ + ,22,* + $ /&'$ !! ." '$ $ !*$ #&$! $ "+ "!+!+ %!+ "*@@J ! .*+ K!$ 6=8 +: '$"! $$! &' **#@17 H$"!! $ $! 2$&' *+ >@B $ *"

PAGE 33

< !$%#"* '%#$ ++ !!6% #2+?%" +$"# &' +68%#$! + ""0 !$ +$ + $%" &'@7 @"# .%!* %&'" $ $$! "% .M& $%22 2 22% !$ $! ,-%# 2+? +$ ." "# 68

PAGE 34

> $ :* #2+<6?8: # *! *$ 6;8 FFFFCI R V V V V IR V V S FVF SFVsc s oc m oc m sc sh m oc I m Im 0 22 2210 /,$22@ $ # /! G/" /$+ % !! "." "% + G # ,-+ $ % $!#! ## *!# !# 2+>, 1"-6<82+> 1* $ #!$ @ @@ ,$$ $! 1*%+ ,-+ K 2+>"! *!#+ *% *!#,-! 2+<:* + $ %#+!,-% / ,3-% ,-% ,-% ,-6?8

PAGE 35

@ ,"2+>, 1"K #": 1* ,"*!# 6<8

PAGE 36

!# +%! "#@ 7 ." A@ H$6% $!*$* +*' #$!*22% $ $"#&'." $ $$! %! "" + !1#" "#%! !! !! $ "! $ + +% +! !!'"# '! "! $K/,0"" # : 7 / # *&' %$ "+! "!+ "! "*+ !!$ E $ % !% # E: $,O-3!! # *++!$ !!$ $ $! = +'0 =9 /+ +0,'*"*+ >@ !! '* % + $ $!*! !!% 0 *##/ "'+ 6%%?8% &'

PAGE 37

! 6<8 + $ % +0,'$ $$1$!$ 0 !! $+* !: !%! !%$ !!%$ $! 0% 6<1 = *$ +" + !,+L=-%#!* "!*"# *+% /1 $ # 1 $ % $ '! 6=8 $ *"+ >@B,L>@B-# *, A@1=P@17 H$-$ *$0$+ ,A@@1@$P=-% $" #,IA1@$G #$" "#$"0$ % +!$ +$,2'C! "! *"!!%" 2'C2'C $$ *%*" 1!$ +#*!$ 1!'$ *! # 6=8 0" *%'%# *" 9 />@?6==8'! !! # $0 !#$$/# $0,'-%# $! ,'=(.'-,>@#B(@#B-# *! @% $ $ "!$ ! *

PAGE 38

= 6% "'+ @ !! $ +"*#+! !!*"+$ $!# !! ! !! 6=78''$ **" 0,.'-$$!#% $$ ,.'7-%# + '#$!"D6 "!$ /+ C +"$ 1" !/# .'(.""! !QCC,+-%>7?6=8 .'("! !CC ,""1'#12-%>7?6=;8 .'(2"! !' Q,D-%>6=?8 '=(."! !QCC,+-%>6=<8 '=(".!3! D. %>6=>8 .'(.""323 QR3 *,+-%>;?67@8 .'7".!3!QSE/,$ $-%>?7678 .'7".! QSE/,$ $-%>?;67 .'(2"3DD, -%>?>67=8 S"3.RE DD, -%><;6778 &'(".! .C ) -%><7678 &'(".!3!C $ ,R E # -%><767;8 &'(".!+.SO ,CD-%><<67<8 &'(D ".!3!9 ,R.-%>>@67>8 &'(2"3Q DD, -%>>6@8 &'("3Q DD, -%>>68 &'(D "3Q DD, -%>>6 &'("3Q DD, -%>>=6=8 &.'7".!3!/ ,/-%>>678 &.'=".!3!C $ ,R E # -%>>768 .'7" 3!QCCD # ,'.CTS-% >>6;8

PAGE 39

2+*!$&' '% >?@% #$ )" +<@ <@ !&'$6?%<8%" !!$ #" "*@J6>8 "# *"+ 0 !$2+@#!+ +* '$ +&'#$ "=! $! !!!&'$!"$ +!! 2$ #0 !! *" *%*** $! !+" !! $! $! "# !!% E+ !! #$ "! # + # 2+@3 +* +0 +$!* !$ $6;@8

PAGE 40

* *++ $$!*$$! $$! # +$$$! !# $$! "#*$ !." % $!*+ !! *"! $!*!* "=$! !!&'$# 3! + ,0@17, H$,0@@,$1=I ,$GH&(7;?QU+ 6;8 &(7@7>=QU+ 6;8 &'('=??7>C 6; D &'(D '=>>@C 6; &'(;;" 6;=8 &'(77@@" 6;=8 &?<7=@$ + 6;8 &'('=7?? / 6;;8 &'('=<<=>V 6;?8 &'(7<@?$ 6;<8 &'('==;;=?S / 6;>8 9&'W9;7@;;@S / 6;>8 9 &'(9;77@S / 6;>8 &?7==.U 6?@8 &'(=;@R 6?8 &?@=;C 6? &@ + 6? &7+ / 6?=8 &'('=7==7 67>8 D &'(D '=>?Q 6?78 &'(77;C $ 6?8 .&'(.'=>C $ 6?8 &'('==@O 67?8 &'('=>C $ 6?;8 9&'(9'=;7=>C $ 6?;8 D &'(D '=77
PAGE 41

; +0$ !! % !* $ !$$!! + !! +%#$* + + !! :+ !!% + *# $* 3+ $ % !$ %# "!0,.'(2-!"! !$ !!6%=78 + !! C ",-! '$! % ""$ + 6=78 ! ,23-'$ ! 3%$%! $ % + !! $ #*,1=0@17 H$+ $ ,L>@B-*"%"! !! 6=78+ #23$ /0! #') !$ !! #/&'$." *$ + !! %! + $" !*+ 9 #* + $*" *%" + $!2+?% $ "#&' .0%!$++ !!& 0" +% ++ !$ % &'0!*! &%#

PAGE 42

? #+! "+ +*$!%!* %+*1&' $ +!$ ." % "*!" +0+!+ + $"#!&'(%&'* !! ." = !' $!* !!!&'($ !$ ")*#/M% !!'$ *# $! E !$ ) !" !!'$*, -% #! *, -% $H$, H$# !!+ $ %+$ !* !! $ /$! #*#$! ,;R-6?<8++ !+ 0C 6?>8% $ / *"*C %$+ % $ + # *! $ +%" K0!!*+ "! $! $2 &'% +!+*%$!" $* % 2$+,2-"+ "* +"*C %! $ +E%

PAGE 43

< "$ E# / *#$! $ $6?<8 *$ # *!"3 % : $%# $ + E $$#$*+ *% % **, 1"0! #: ;6<@%<8 12ne m,;# ,$1=%,+% ,10 $ # $"#% $ $ 0 $@1! '6< $ $ !!% # : ?6<=8%# + m eEf,?2$# $ -"# %# *, #: <6<=8l ,<: < ;* $ *, $ *%#A@?$G6<=8$ "# $ +# $ $ $ + 0 $ +*# ,! +-

PAGE 44

> + + $! % # +$! 3 +"! $! 9 +$ $ !+ %" +"!%$!% $$+C K #: >6<8phonon impurity defect,>C *$ ""+: $$ %# $ !$ $ ": $$ *** /#++ 2$+! % $ $! $ 2$+ *: ?"$2$*, 2* $ ) + $+ $ % !: *!$ !!2 % 0 $"$ +% 0 "$ $ + 2 %$"+E #! % , -2&'% !% $ $ #0! G$!+ 0 $"$ $ 0 $X L% : $",I#$GH#" : $!: @ 1 nepenp,@-

PAGE 45

=@ # ,$1=-% ,$1=-% + %I$",$GH-% I!$",$GH-C"" "# $ +#$* $" + !"#$" $ 0 $: 6?8% e m*,#$Y*$ % X L$ 0 $2$ %X L$! % # $" $ !$ 6?8: !!0$ 0 $$ $" *$ !! : % $ $+$ !! ,%$ +%0 $, %" : % $ *$ # +$" + $ %' +*$ %#&'!"@?$@% ?B$ 6<78 &'%#!$ %# *+ @ H$ %! *&'% & G'* "*+ 6<8##*A@17 H$6<;8# *@17 H$*':!+&' "*@@$1=%#$ +$"+ @$GH

PAGE 46

= &' $0* 1! % 1! &' "!%" !*!6=8 3!+ $!" 0! $* $% 1! &' *$RV+1/ % *!+ & 'E 0+* %!* !+ #@@$1=% $" $",L@$GH-%#*@1= H$6<8 #" /!+ !" # $! 0+! + $"6>8% !+ L0@@$1=-% !+$ *!++ $1<@%0! # *!% #+$ !+ +*# 2+@.$$ $$! +!$%#"& 6;@8$$$! %"9%D % "+!$" $ $$ % % !% 10 + $ 0+ %"+" 2,2'+! % "#' $ 6<;8*% % $"70@17 H$%0@@$1=% 7@$GH *"!6@8+ $"!E$2+'" %#E21

PAGE 47

= $! +"! !$ % 6@8' %+!$% $ *"# 0"! !! +!$ 26;@8% !$ +'+ 0!+$ $ "" !+$* $$& '! $ 0@ $G$=%#! !+* @@$1=% +$ +A@B + + % *0+ ,'E ,&!$! 6<8% + G0!+ D $!0*+ !!. $"0+!"! $" 6>%?<8. $#" + +$" / $"+$$ !*% ++ + #2+6=8.$ )%#!+ % "$$ 6?<8! "$* #%+ !$ #E$+ + 6
PAGE 48

== 2+.$ + " "+ 6=8 $"0+! + $! !! &' + 6;%>8 +"#+ 0E+ $" "$ +*$ 0E+ $"%0+!% "'1%" !!+ $&' +% + E&'$ %+ "$! % + *$ $! "+ + !2+ 6>8+ .'%&'# $!# #+ .'#$"0+9# $ + % #! $ #

PAGE 49

=7 2+ $"0+$ $ + % $"0+" "+ 6>8 +*$% +0E+*$ &' !!! $! % ++ % 0! % +$$!! !!## #+ % ##*.% $! #! %#$* % $"6;8 + +'%" $ $ $" !!$ !#"0! #++ +! !!'

PAGE 50

= *+ $!$! !!$ $+ $""+ $! $+!$K* $"$ $!*$! !! #*% $" + 0 $ 6%< # #: %$" *$ % $ $"#*$ !!$ %#$YF@? !&' $"%$ $"# +*$" +. +** #* $ %#$! +$ $'+ ,I -%E$!,I-% $!,I-% + ,I+-: $$! +$ $ 1111iagK,+$ $! + #$"% $"" #* % +$ $# #$"$ +$ $ $"$$ +$ $ $ $" #"# $! +# + # *" %# $ #$ $!!$*" !$6?8# $"+$

PAGE 51

=; + $! %#! !! % +$ $ $ % $ +* $+* $" ++!,A@;$1=-+ &' !!0$ I F@$GH6<<8 $$! 2"$ $ %! +$! !%#$" +# +$! 6<@8 E$! +** + + "#$ +$"$ $$$ $ $"+!$ K+ $$ $ +$ $' $ 6;@%?<%<>8$ $% $ $!%! #* !* "! *# C "# + $ #!+ $ *!&' $ $ %$! +E6?>8 $! $ $ /$ '$ +&'# #$! ,X@R /X$-%#++$ E%! $ + $!%##""# E$! +$ $"! "#E $ + % E+: $$ $9/1 +$ +! 6>@8+

PAGE 52

=? E$!$ % # $"21+ %$"E$! + #$! : =+* !"#$" $E$! +%$! % E$!,S-6?8 i iT N 3 2,=!" C 0#19E$ "% # 2$13 "" + $ !"& + %++ $"$E $! +!$! #2$13 "+ $ 6?<8 S $! +$1E! + + 6?82 $% +$ $ $! #$! #E $ % $! $$ +$ $$ *0!% $$ *0! +!#$+ $"+!!E $ S $! + $! %" # $!6?8 + $! $"2 $ % $! "* "!+! 6<@8 # + 0 + 2$ % +"+

PAGE 53

=< !" / $!% %$ +%# $" !$$ +$" # 6?8 $" ,$! % #: 7 6?8%# d dnT 11 2,7E$$ "$+ + + 6
PAGE 54

=> $ % + !!$"!: + $ %$!+ *2 *$ + *$%$! + %# % + +% *** &'$0+! + $"%* $ $! ,=@@P7@@J-# "!6%>%> $ $$"0+ !$ $ $! $! E : "*+ %$!*$ !! =='! ! !!!&'$ $! # !! % E+ !! $! !!' $ +#% $+ $$E % $+$ 0$E**+" + "!6?8%! $ "! -6<@1<% 91C6>=8% "!" $$! 2 "1 6>78% + +6>8 #""#% +# !!&'$ 9 + "!** "! !!$ $* " $ "! !++ + !+$

PAGE 55

7@ + !&' "=$ %#! + !# # *+=<<$: # "# "" -%!+, -% + !+,+# 6?8 KhEg 1 2,$R $ % !!+ : +! + $ $ !!$ # $C !$2+=% + "A=, A7@@$-$$$" + $+$ !$ '! $ $! $ $" + % 1&'% " "$! 1$ + % $ "$ E 6<@%<8! !! $ #*"3% **+ $" # *: $ C 0#K: $$!0!$* $ + -$!$!0!$* "$ % "!% $ $ 6<@%<8 $ $ % # #C :/# $ :, !-! $ :

PAGE 56

7 %*$ % @+:, #: ;6<@1< pne m # 2 0 1 2 *,;:: $!0!$*%$!0 %# $!, $!0$!, !"#: %! $ : !% #: ? < 1 2 21 # p,?2 2 3 # p,<$ + :+% 0 $% +: : $! G XX 6<% + : X !% X@ +#*" 2+ F !% F@ $ %+ +$ + ""+ %#!$ # *+2+= 6<%## *+ # +# '"* + $* #! $ : !# *+ 2+="6<% "! !*# *+% # "! "! + + """$% /

PAGE 57

7 # "" -!! $ "" +$#/ "!! "!%# "" + *+$$, H0-% $"2+=6< "! *# *+% # + "! #$"S + "! % $*! / "! # *+%# +$" "! %"# *+ / % L !% !! % !! @%+ *%# C !! + +$ "*! +# "! ++ $ # *+ # + !$ *$ 2 &' ." %" + !.@7%#! # *+A@@$&'# *$ $YF@? 0@@$1= $ : !#! # *+@@$! !! $!# 0@@$1= "*$"$ $ $! !$ %#* +# !$+ ""++"%+ $" +! $ : +$" "! +$ "!

PAGE 58

7= ,",2+=, 1! !"# !!, %,""! % ,"! $"6<

PAGE 59

77 $" %# *%#$!$+ $ % +*&' !! $!"$!*+$"%#$ +$ 0$$ + + $ # *+" 91C + !#+! + !$ 6>=8 %2$ +$* "*" +%+$!! "$" %! $ % + !$ $ 2+7* # # $* +" "*2$+ $ !+ % 11 *$ ,$* Y#: >68 $ E h m ng cv "2 2 38 3*%,>11 *$ *$ " 11 $ 6>;82! &'%" + ++ !$ $*% + : 3 "!' /#$% "!+ !$ *% "!"$ '

PAGE 60

7 k EF 9 9 F 2+7 91C%# + ! !#": *!** $! $$#+ #" + !!# + !$ $* %#!"+ ""! $ $# 0+ $ +$%+* + !! $$$!" *! !% $! : $# + 0+! !!++ 6>?8 *" !$ "!%"! $ $ "!+* 0# $ 0 ,-!&'F6>78%# + ,F7,F@-$# /# *+

PAGE 61

7; + $! % !+# *+ +% +% $% !!$ &'($+ #/ $ 0 % # !0!: @# 0 % / 0 R nk nk 1 12 2 2 2,@2+ $ $!+# $%# $ # + $ "$!+$ % $" + $+ "! $# $ % !! #$ $ 2+D 2 "1 ! $ 6=8

PAGE 62

7? + $$ 2 % 1* +,! G7 /C+2!! %# !* $&'2 "1 $ % $!!$ ++. + $K %#! $+%$#"/ $. +$#$$$+0 %# $0 + %% *% /% 6>78$!#/ + % $$ "*%+++ $$ ++$ 4"/5$ 7.!3! 79 /+ !$ #/$!*+!!!! &'($ !$" /+/#+ !!%* !! $0! $ % !!!!$!+!# !<"D*6><8 **+ @ "!$ + %+ % *! % !! !+! +# + $ !%#E+ $G$ $ $ +-%#

PAGE 63

7< $+ #/!," -++ !! + !*% !! $# $$ +% + ,+$"! + $$$ !6>>8% #$!,. $G-" + !0** ++ $ +$ % $ :+++ +$ 0$$+ "# #+! $"$ #: 6>78 E E MM MM2 1 12 12 24 cos&,$ +! %C C $ % & +: !$ 0$$+ $++ $ $!++ + $ ++" $$ + "++,"-% $$$: +$"!!"!$ : 6>7%@@80! !"#!,.+ $: % "++,"-%/+,-% $"+ $$$"# $, S MM MM E Eb 3 4 42 12 12 2 1 %,-

PAGE 64

7> : +X@@@% $ /" !+ "+! $$ .!+ +% +# +6@8 "" +0 *+ +2 + + !0%0 *+ + +K$ 0/# !# "% #$ 2+;6@2+;% +! $ +$ %0 #+ ' !6@2!!%! @XX@6@8! !%0$!++ +% !0" % /+ $ 6>78 +$!$ %$" % +$$+0% $+$! "! "$" +" 2+;!#"%#0" + +$ 6>78

PAGE 65

@ 2 3!!% +$% #! !!#$$* $ +% 2+? ?"% !* $!+$$1 $ # $ %$## ** ## "! $ %* $ $" !! @1<1@1;% $" # $ !$ $" /##/++ !1@@$% + $ !+! $! $% $ % P $ %! $ "$**% + 3 + S S S C +, -,"2+?, 1"! !!, + ,"-$ ++

PAGE 66

* +! 0$!++ +% +" +%#* $!++ ++$ 1 $ + + + $0 ,G$H-%*#+ $ C3!# !! !#%* +% +!+ ! #!!#6@8 '"!+ *++! $ 6>7%@8#* /+$! A@@$ $ !++ $" $% #+$ +$ $ %! + $!*$!!9/+ % $$/" ++ +! $ ++ + !" + + 0 $!+ E $G$ # +% E $ +# + +$! $ !$" + ++ + $ +! $"+ %$ + % +" % + "0 0 ! % +

PAGE 67

$! $" $! $ $! $$"%!!% $ $*+ # +#!$ $*!+$ """ $! $! $! $#"$+.7 C +!+**! +$ +"!+ + +$ +0+ $"% )$*+ +! "E6>78 $ !+ +%# $E #/++ + $ $$ % ) + "$ +++E $ *# % +0,* +" ,* +-% !+ +! + + !%# +$ + %+! $0!$+#+$* $ $"% !#! + $ $6>78 $ ) !+ !! :,2-!+ .$ 3%2 "$ +" ++$ #".!!+2!# "!$ $ + +#$ 2+ ! + =;CE

PAGE 68

= $ $ +#/* @ 0 "$ +#/ % $ $! +! $ @ !$! + !! 2#$ ) +! % + !!#*% +$ "# % ++ + $!+ + $"%# 9 $"# +% + % +"! + +*$%*! + *" + *" %!*! $ "$$+ !* # !"!* E % + *" @@ @@@0 % /# " *$ $%+$ "* 1 3 + %" ++$! +" "+*$+$6>>82+<, !# #2!# !! +2+<,"% !*!+ *" +" "* +2+ 6@=8

PAGE 69

7 2+<, 1"+ *" $ +2! !#, -!# !! +0 ,"#: !*6>>8 72$ + + !!!!$% *+ + !"#!! +$!! S +#!$#"+ 6>78!** !$ $ % $ $" "/ +, *+ ! + +#!2+>#" **# $ (*% (*% (! "# 1* !%* !1$% $1 %

PAGE 70

2+>! $!+ !$+ 6>78 !*%# & +"#" + & +" !+# $!0 "$* $" /+ *+ $%+ "$* $,+ %"$" $-% $6@8$$$$ $" $ %" 1%#$$! 2!!% $!+$!1$ $ $#/++ /$ $% "$*!+$ 2!!#/+! $! $ + $$"*! $ + $! $!+$% /#

PAGE 71

; &C,.&C-2+@ + $.&C *!$! "$ E !!$ $6@78" E %%% =%#E+ + #$! & E" $ + #+ !"#+ % + # + 2$# &$ $ G $! !"#$ + $%# $+$! &%# ++ $ %!" % !! "/$ &=$!+ $! $+$! !$ + : 0+ E !C !! $ "/* 2+@ E$#+ +$$!+ $! !!$6@78

PAGE 72

? $$$!$ + !0%##+ $ + S &'#E %#" #! +0 + / %#E #0+ 6@8#2+% F=N F@?N2$%$$$0+"* "! K %#! "+!+#! 6@82!!&'$+ % +" ,@@-! 0 #! $Z1 ,Z3& 1 & 6<%;%@;1 @>8 % +,@@-&'! /%#! / "*2$%Z3 & 1 & +*$ ! % &' 0 2+0 + #E &'E!

PAGE 73

< ,@@-! +! 6@8!$ ! #+% +# $ $+ $$"*!$ 0% $ $*#+")+ #+ 20$# ! %Z3 & 1 & ## ++! / ! /# !# $!" Z3$ +"# ! !# $!%# $+ % +$ $$ %+ 0$ + $$$! K % # $ ! %+ +! /6@8 7=S+ *!+ .* 0!$!$#/++ + *!+,S-**++ *0+ !&'$' !! 6?;%1=8S! + !!!$ *+ S $ $ !!!&'$#/!S $ 2+$ $+ + ##/"$ % $! !# "#E !+ *

PAGE 74

> Side View Matching Network ZnO:Al Target (Bias) Substrate Cryopump Ar+ O Throttle Valve Uniformity Shield 2+.$ + *+ !+ !!&'($ !+6782$ !%*! $ + + *+!! "# + + # + "* E# *+! $ %$ /" $+$! # $ + $!+" %#+ +" S ++ E"$!++ %#" + $ + *# +#+ +" /+ +* + $ +% $-#+ $* $ + +# +/+ $ $"%

PAGE 75

;@ # +/+%++ * +$ ++ $" $#$ +68! $ */+ $ =@$ $" !2+=68$ $ $ #+ !% $ +"* + # +/+ $ + *0+$! $ 0+ $ "* 0!$ "$ + %+ $+ !! 6;8 S ""*+!$ $ &'# *+ "$ #"* $!#+!* + $ 678*! $! $!S 2+= !$ $ / + =@$ $"

PAGE 76

; "#E $ $ $+ *$" + "#$ +!**$## *+++ E %" + #+" + $#+ %#" $ *+ + + *$ "#E $ $# !!0$ =7%+ S# E &>7% '7;%+*+ $<6@8% 0!$ *%!+ !&'"C $ + S+ +$" +$6@8 9 &' %: *#++ S# R *+ !+9 '=% ! $$ +6?%<80 Q,)G)-+ 0,)-*! 0,)-# $%#+ +$ $ + "++2! !# +#/+!# % 0# $: #* $! +*+ *++!!S+ +" + %$K! $ &$K + $ &$ + !#!!!%++*6@8

PAGE 77

; .* $ !+$ *" $ +$+ *C $ *4" !! +5+$ $ +$!*'!! &'6?;%@>8#+$$ E0 "+ **! S +! "6@%# + +$ $"$ + 6?8 !! $#Q,)G)+" !"0 $ "*%" + *0#$ /$!*$!!% # $ "* 6?;%%!+ *1 $$/ G#! + $! +*$!C $ $ + $ + )+ *# $!+" *@17 H$# *% $! @J%#"$$ "+.% *#*6@>8$ + C $ + *"$" $ !! !$ ++ 6@>%%>8! $ $**//+! $ % !* E %"*# !!!$6% $ $ $S !! !!&'$#/

PAGE 78

!"##!$!!#%!&!% !!! !!! !!!!!'!"##!$!!(!) !! !'#)%! !!! !!*#$! !'##"*!"##+!!!&!!)!!!!#!# !! '!! !'#)##' $!)!!)!"!!! !!)!!!!, -%##)$#(,.-%!+(, -!!/ !"##!$!!)!!!0!!#) # !!'!'#)!!!&!#! '#)!(%1('' ,-%)'!) (,2-%*!!#! (,-%1( !#! (,-%!() !)!(,( # !!'!!#!'#))!(%(#!%!/!% '!) #*(%*0!4%!)#$*! # !!"!! )!!$( )!(!')'! (,215#)! 5!"/! !*(!) !!"/! !*(!),-!!#(&!!!61 #)!)!# !! (!)!!2 #!!%! #*)*! !"*!)!(*!!#()!!!

PAGE 79

7 !!%%:#5,;<"=:5"=-!2 "! #!$( !/>2*!! !*'!&!('?0" ) !!'?8 !2 !* "!)!!%* )#!%)##(##!) !!)*!"6! )##!#!"#+$#! % !+!#(!) !!)*!"6##" #*'!2!!*( +! #)*!") #!/) !!!!'@5 1A7? B58C! ) !*'!!#!!%"#!!!*+!)*(,A) !'DA7?!!# +!!(!)*#!2*!! ""*!! "!! !!!$!$#!,"! !!*!#!)'(!$!-E')(!#! !*!!!%!)$!#"!*!!!!#)'(! *!)!('!!'#/'!*!*#+!#('!* #!!$! #!%*!!!')'#)"!! #! !!+!##*!)!( !'!! (!)!" 2*!1 !!!$!$#!!#!$(##!"!!$! $#!() $#!%##"*! '')'#) '!!,7-$!, 8))!!-*#!$ !!) (!)'!$!$#!$!! *!"! *)%"##" )! !! !$#!#'!$!)## !! !!!#!%##$!*$!#"!! !%

PAGE 80

? Mo Target & Uniformity Shield Zn Target & Uniformity Shield ZnO:Al Target & Uniformity Shield Substrate Platen Chamber Walls,,$,,2*!1,1-!)*) !'!!"/! !*(!)% "!,!*)$!%,$!*!%! !#%')( !%,-#! '!*!)!(%,-"!#!$! $#!

PAGE 81

!#( *$!$!#"!!!! )(!'!) (!)! $!*!!!;) #!!#%#1#6!+)(!)!*!!!!+) !&!' !! <( ) !($#+8')( +! ) +!!*+)* ) *%! !+!#(#!+#+! $!"!!!( ) !! )$!!!! ) F!''!+! ) !!$( ''?8"!!**!")'#"##!,-!! !*#!'5*%!!A"!#* +#+!*!!!##!*)$!+!! !!*!'?8)% *!( #' !! G+!*!'88$ !)!! !)!,-%#*!')#* (*$#!! (!) !!( #$! !!'?/81HI)*** +! $(('"G(1# !0**!%"+!**!%!! !) #!**!%!JG !))!!!G(1 # !**!!!')!!)!*+),K81?-%! !!'!!!!)!!$! !!'!(!)!$! !! #'##*)!*"*'#)!!#**! !JG**!%"*+!!% !!%'%!)!!)! '! !!'!*!'81?%!!'! !!*!! !! !**!!'!!'!**!!+!!#( !!%#$!!'!! !!'!*$!*)!! #'*!!*)$!"##! # !!')# #!* !!

PAGE 82

H 55! '! !*(!) '#)'!+!#!#(!/ !)!"!!! !)!$# !* (!)%"''!!#("(##'!(!)F$!##A *!)!('!!$!#!!"*!15(!) "2" #)*!!'*! *!)!( !)'!$(EL%!*!'?)*!)!!% ! "! #(!2 #!#!2#))!#21? *!!")) !!)*!"6%#)1!) *!!")#)*!"6!!!!!'!!2 25%! !+!#(! "! #!!E16E1888%! !'!!5%! !+!#(!!+! "!*'88%?88% 888%888"%! !+!#(!$! !*!!) !! ##0*!+!>#"*!!*!#!)!%J1( !!) #!% # +!$()!*HH88)!*1!!) !!##! !!) !!#(!)!)!!#!+!!) !!'! $!*! !+)!!(' !**!!!!(!/$!##A$! #!(#!)$!I'' ) *!1>!#)!#;H( +! ) +!!*+)* ) *%! !+!#(#&*! #!(1 #!+#+!!$!"!!!(!)!'' ) (!)"'5%"!!!E*! (!)I)***'!G(1# !0**!%" !) #!**!%!JG**!

PAGE 83

< Substrate Support Bell Jar Base Plate Sputter Deposition Sources Substrate Heater Plasma Subtrate 2*!151!#+!"'! !! (!)"(4 5$!#!* 1#)!'#*#"!!$!'!! !'#)!*# $!"!! !')E!*#%"!!?/?)&! !!!)1 !')#*!!!!*#"+!((%!!'!#!* !!" +#+! (#$$*"!+!# !!'! '! !!" #!$!6! (!/!#!"#6/!!*!!0!"! ,-!*#('"!@8*)'#6/"!!!!!$!6! #!#!)*>!")%*#(#'!!!*!#" !! (!/%"'#! #( (#!!#!)" !"!! #! !$)'!!$!"!!$$!!" !)!)# #* !)!!$!"!!! ('"!%'##"!$( $$! #!!*!"#!$!$!"!!!*

PAGE 84

; ('"!% #!2#"!"! !#!!'6' !!')G#!#*!>!!#!"'##,5$!-%" *!"#!!!"5$$$#!*>!!$!"!! *#(!%!("!!$#"(+##("'#!!(5* #! *!$/ !$!"!!!$/')2#"!!*!# #!'!)!0!!+!%!$!"!!! !0!'!!/ !)!,( ##(?/?)-%!#!*$( **!$#" #!#!0 ##!!)! ##)!!)!"!!!!0!!!+(, "' )-%!( !%!!,"')1-%)$#(,." ')5MI -!)!!)!"!!6!$(!+!")!B5C% ") +!$(!#!$!)! !# !!* ")6)!"!) #!!)/))) #!0!"H/H ))%") #!$!*')#*!) #!$($!'! !!! ')!/))&!%!" /)!#(?)))!! !) #!"!!)!))!")6#!% #!!!#! $!)!+ (!)%!#!!#$!##A" ) !"@?/81H*(1 !'' ) $6!$((+! ) !*!' #! 6!'!!#!)6!#!$!)! !"!+ !'@?NM*!!!'#)6!'@88N)!!O0(#

PAGE 85

H8 )$#!+)"#*+!!##)!!)! $!! !+! !*#"!) !!)!!)!%!!'!##)!!)!"!! !')!!6 !##(!)"!)$#!')''!!#') !!##!# !*#!*!"! #()!#I125?8 #!!I !#*!'!#!#!)*!%""!<%888*'!#!* J!#!()!# #!!%"J!#!()!#;H+# *##)!!,-!)!!!!#*+#*!)!#7<< "*!"6!!! !) #!! !!#!# ) !'!+ $**!)!! !'!$(!+!")! !6/)!#HH+!!"!*!!(!)!!)!'! "!!)$(#6*'!!#!1I+!##! ##!) !%&! !!!!! !$(! (!)#!!!, -%)$#(,.-%!+(, -%!( !%## !''!,-%!#( !%!(!)'!!)!! !!'!)!!)!!(!)" *))! #(! !!!*!!!+#*!'?)I)!!)!%!!" !*!!!'!&!%!+#*! ")!! !! !!'!&! ) !!&#('')! !$(## )!!)!%!!#(*) '##!"! !'!*!!!#( !:#!!!!+!#!"#$!!'!% )!#)!!$!#!!##', -%"

PAGE 86

H *!!##()!$!' /)')(!)%$' !*! $#!(%!+#!#$!!!)!!'!)!# !*!!!#( !*!!!) ($%''!!!#!$ ', ,!--!)*!'!##+#*!!''#!) #! "#"##)$#(%!''!!!$!"!!!##+#*!"" )*!'!#"##$!)##%)6*!)!!)!'!'!#!+!## +#*!''#!&!!$!6!#(0*!)6!!! *!)!!!!##+#*!"!! !!'! )*!'!# #(*!)!(!!)!!)!! )#(! ) !) #!!#+!!!G!!!)! )!!!!'! ##(!)%!'#)!!#(!)!)!#%) $!"!!) #!!!!!() "#!!+#!'! !!##$!!$#!!!)!# )!!#$! )#)!!!##)!!)!!'!! !%!!'!"#! ) "!#!!!!'#%!()$!!/)!"#!(! 5$! !)!!)!"!!6!#!' $! $!!" *!$! '885P% $! *'8?P% $! !!'H8<8*)"!'##)!!)!!" #!$( ()!#58!!"*!' #!!$!"!!. 88)I#*!"!!)!!$(J!#!()!#<+#!#!)!!" ) !!'*!!**1)&5"!!! !!)!!!!!,' M&-!+(, Q)-% !+!#(

PAGE 87

H5 R V IS 4532 .,4.532Vt I,5G!!)!'!) #! $!!%*!)!#!' "!! #!!!)'#)6!,)-%I!+#*!)!!! #!!,7#!0 7'#)!( )!!6!'!! !'#)% '!$!" )6!" !)!)6!'!!! %!)6"!)+!" !!"$%"!''!+!#(!)+!!! !'#) %(!#*"!## !'!!! !# (# '#)!!"!)!!! '!!%!!'!!'#)6! 751('' 1('' !"!!##!!# H58 "! '')!!*J R?78?N-!!*'!1( *!!"!!I)!!( !' M5 !"!!##!!' !!%"##$!!*! % % '+!("!!% *!'8S<8S%! 0!'858S% )!'?!*!# !"!!" *!'8SS%! 0!'88S%! )!'8!!'#! #(" !')!##!!"! +! *!'5S
PAGE 88

H O'' !6'##"#')/)),2>-" !')!* !# B55C'"! 6*!! /)!#(4 '!%"'*#! !6"I*'G!*'! !6>$!(##!0!%$!!#+!$' !$!!/ ##(!!)!!!'!#(!>6!') !&!!'"! 6*! "!&'( !6!(%>% !% !6 ##)!!)!%!$6*"$!$!'! &'" !')! 7)! ( )! (,2-)* "!!6!"*# )! !) #!*#(H/H))"!!!!#) #! )"$#!6 !% #!!)*!#!!)!! )##!,!-"*!'5?.)!/1(!%?.) !!"!&!##!)*!!)* "!!6!! *)!"7 )'!$(*#)!'!)!! )*!"6!')!*$*!)6!!!)*!"!!! !!+! '!##!!* ) #!"!!6!'!)* ##! )*!"!!6!')!*')!) #!')" !!'($#! !!*!+('! $!"!!! !) #!!!) #!)*!$!*! !) #!'!+$*#!+! '!*+!*! !*)**"! !''!!#("!'!,*!!#!!! '!-

PAGE 89

H7 )#!4!/(!#!4))"!! #!!)*!$!'!(#(" !')!! #!'))% #!'"! !!%!) !!#!&! #*)##!! #()#'!/( #!%! $')!)*!'!+!#(#!+!#!)*!%$ !!$"*+!!#')'*##!!'#! )) !'))# !!%$ #!!#!'! #()###!$(#!&!!&!%"$!')!#! ))!+!#! A!#!%!!# !!" )!!)!'#*#! ( #6!')2!*)*!#!)!&!'! *!,*!-%'!!''!!!,=-%*0!! *!"##) #($!!'!!*!%")!!$(#*) !*#)!'"!!'!!''!!!#&'!$(! '"!%!$!#'!!'!) #!!#+!'# #!" !)!/()!!)*!!*0!!!)!$()!*! *$(!! %!!#*#!&!B5C! !!!%!!'!*#!)#!*%)!!# !)*!! ('!#! #(!!!! !!)!$(*#" !! #%!'#$!+ ) "'##)*!!'!'!!*#!%+!*! ##!!*0!!!)!$(+*!#!*'!#!$(!+!*! )$!'!! !!#*#!&!$!!) !

PAGE 90

H? ) #!!&/!*( #'$#6) #!'"!&!" !+!# !!+!! !+!)!%!)$!'!! $!! !'#"'!!$!"!!##6*$!%!!'! !*0!)$!!!'##('#(! 77*!#! ( *!!#! (,-)!!)!"!!6!)!# 8**! $!,-(!)#0!G!) !)!#!!"1/#(###(0!,-)!! !!!!*('*!!#!%!!!!*!$!*!'!!#!)! *!!*!)*! '!*!#($!(! !' "6%$+!!! !+!#$6B57%5?C!! '!#(!&!$!!!!!!*!!#!#(! !') "!'!+!#)#(!$!#"!) #!'!!!+! !$!"!!!#'!) #!%!!'!#$!*! !# !6!&!!(!)$!)!%"! !!) #!F'!"!#!)')!'!%!)+! '!#(!*!) #'))!! !!+!'!'#)F$#64% !')! '#!! )!!!'!$!)!! !#!* !#'I%$!)!'@;8% !' /)!#())5!!!'!!!'#!!$(!!* #!!$!)%"/))! !! !)!$!*! !*!(!)")!$! !!!!'818% ( ##( !!81<"#!!!"!

PAGE 91

H !"( !' !!!!"6!+!( !! '#!'' !!*)!## !% )($!)!!*('? 6I"!!! #!'! !)'!!#!!!*(,,-+!!!!*(,J-!))!+!!!!*(*!'?8?8!I 6!"!!*(! 0!'8!I%"!##)!'8)!!!*( !)!)!##(''!!!$(#*)')!) &(!)F'"!(!#! !)!)',,--M,-+!J !''!!! !)!!!#(!!)!!!!*('! *!!#! !6%"!!!)!!!#!)! !!! ) #!F'!!''!!#*)#)*'%" !!!!!)!!##0!"#!'!!*';'## !!!!'*!'*% !6!!*!"!! !'!!!+!$,5H5!I-' $#! '#!"6!*!"")!%"+#+! #!*$!"!! !!*!) #!##!*)##""'*! !'!! !6'!#!)!'!!*#')!*! ""!''!!!%*!)!#*)!+!( !! !61 1 !6!*'!''!!! !! #!''!#!)! !!*)!)!!!'##!*! '#!! !!!$#! 1 7?1(!#! ( 1( !#! (,-#"#! ( '!)##(,!"!!6!)!#?88 (!)1))!*J 1(!% *!

PAGE 92

HH $#!1)!!!'*!!#!! ( !! '#! #!)!/(*!9# !6!*(,!I-?88;<7?88 >"G(D",!I-7H?8;78?"G(D*,!I-?5?885?8?8 "!##)!,)-?8?8?8 )$!'"!! 888 !6 !!*(5?!I"!'## !!1(*!! !!?I88",58)-!#!#$!!')!) #! !##!!%!!%#(0!!) !##(0!!#(0! $ '#!%##"*#(!#!" #!!!*(*! !#!!!!!!*(+!!$*!!*(*!' &:BEh-KE-D,"!!G!$*!!*('!!!!!#!%#6F% '!&!('1( $!$!)%J!!!!*('! !#!% ,7H!I-!"6''!!!,!) !##(0!!! ##( !!!*"!*!$*!!*(!#"!! $ !$! !!'!(!)!!'818%( ##( !!81<'!*$!*!' !!*)#% #'!#(!&!!!#)!! !! ')!! !#!*!*"!!)+!'!)!! !'#)*!')')!*!$#($!!! !$#64'!'#)!!'!!"!!!#!* !#'I$!)!!'/H))! !)!F'!

PAGE 93

H< !"( !'6!#!+!( !)# #!/ +!( !$*!!*!')88!I%"!!6!"!!*( !#'?!I !! %"!##)!'8)% !!*('<;7?!I%6! ''*#!'?S!)!! !6"!!!#!$#!!!*! '!!#!)!!!)!!!#!)! !!!) #!'! # #!/6!!!')##!!*(*!,""!*!)!! !6'!!'+!()!! !##!!)# #!/! !!!$#!15O#+!) !'!#!)!!'!"!!!!)!')!!'!!#!)!# !6A"!+('!)# #!/"!!#!* !6!+#!!+# !+#+!* !6') # #!/""%$*!$6*'*! !6"!)! ) !L1!0'!+$#!'!!'#! !6!!*(%!*%'##"#')/)),2>-% !!*!L## !6"!!'!$()$')#)'*!&!" !!#(!!)!!!'! !6'+!**'!!)# $* $#!15)!!!##!)# #!/ #!)!/(*!$9 >"G(D*,!I-?85;58858 >">,!I-88?8588 !IM! 888 )!M! ,)-?8?8?8 !*(,!I-?H??H??H? "!! 888

PAGE 94

H; 7!( !)!( !( !)!(,-"!)!!!) '!! !'#)%" #!!!'!#!##(+! )! !"!!##!!!61#)! 88"!!&!*/(*! )($!)') #) +!!(&! )($!)!!*("!I" $!)!';! )($!)"!!+!!!/.) ?88/?88.)!%!**'?=& #!)'#!"! !(" !'*!)!!(!!! !!!*#"!(% !!%'!!(' '!*!)$!* !$(!)'#!!(!)!#0!" #0!+) #!***##!'! !"( !'##!!#!+!( !')! !'!%! '#!+!( !"!!!!!)!! !#!)! !!!'!%"!(!( #!+!!) *!+!!*!8! '#!)!!!*#')!) *!'!#!)!'!!'' !*)!! !0!*!) *!6!'!'#)#!)!' !!"!! '#!#!,5-%,5-%*,5?-%#,5H-%,5<-%,78-%#,?7,-!)$! !! !'!! # !'##"!* !! '#!%"!!/! '#,?7-%"!)!'#,5H-

PAGE 95

<8 ? # !! ? )!( # )!()!!)!"!!6!!61#)!)$ ;(!)')!EI!*!!!*!$ !#'!! !"!$!*! #)!! !)!) "!!##!!)#!!%*$#!$!)*!)!(") #* !'!!!$!)##)!!)!%!!'!!! "#!' !!*# $6* !)"!)+!$(##!*+!**!!' !') $!*#%+*)!!)!6!')!) #!$(!+!*!*# !)! #$!)0!!) #!"*#(/)!'' ***!<8)%(!#)##(!##!! *!#) +!!#*'!)!!)! ?5!')'! ( 2!')'!,21!"!!##!!*#!)!# ?8 )!!!'#!)!!)!!)!"!!)!* +$#!*#!!'#!!*!%)!!)!"!!( ##(6!8S8S "!!##!!"*#!**!!'#!!')!!)!$+! $!#"!G!"!*#!B5C%+!" !')!!) !*!!!$()!##$!)+!!$6*" !')! **#)!!)!"!!!)!$!'! $!,*#'#)-$*#!'!!!! !"!!) !*!!!$()!#!+!# !$(L!*!#)!#)6!%! !%'!) *!''!% #'!'#) $!"!!! )!!!!!!)!#G(**! )!!%!

PAGE 96

< ##! !"!!)!!)!!!%+#!'!)!#! )!!#$!!!)!')!1 !!'!) !''!+!!#(!#!)$#(%!!)$#($! !)! / !)!#!! ''!'!#*)$!! !!':# !$A!+!'!/ !)!"!!)!!!+(':# '#))!!!)!%!!)!'!*)$!!'! *'#!!!!#'!!!)!!'#)'!/ !)!"!! !("#!!?/?) !!'*#!$!! )!!!#'! '!'#)!'##": *!::#5,;<"=:5"=!! G!!!:
PAGE 97

<5 )!!)!"!!6!!'#!)!%"8S!*#!')!'! )#* !!'')!!)!"!!6!$(#* !) #!!#(!'')!!6%!#*6!*#(') !!!'!) #!G+!(*!# !"!!##!!% !*!#)!!)!"! !!'!!)+*!)*! ) #!!'')!!!! #!"!!!A*!!! !$#(' !)!!)! $!"!!6!')!!''!! %! !!!%!')!)#!%##!*!1 2'!) #!!!!&0$!'!")$!'5% ')**,5M5;8=:8=-%*%5!'') #!"! #%"!!'!!!!!!!) #!%!'!"!! ")! S *!"! !*'#!!%"! ) #!!'!%$'!!!) #!"!!! !" )## !!'!'!%!)!!!' ?)!!) #!"!!! ##!"! %#!!! 1 232*!1!?/?)$!"!!' $!"!! ##!!

PAGE 98

< !!!$##"!##!)$!'!'!>!#! /)!#(H?S%!) #!"!!!)+!')!'! #( &!!)!) !!!) #!"!!!!!0!$(!)! !!!$!'!!!!)! 5!+!# )!' !!I!(:##) !$A!+!'!/ !)!"+!*!!!+!# )!'# !#!# !!':#'#)%!#!!!6! !!!''!!!#!# !!!'#)"!!! !( #!!?/?)*#$! !)!)6! !"!! )!$!'!!' '#)!()!!)!#%!$!F'!" #!!"*5$#"A !! (!)! )!!!#!'##": *!::#5,;<"=:5"=!! G!!!:
PAGE 99

<7 '#)!($!H?NM!6!"!!)!$()# #(*!! !$(!! )!##(%!'#)"!!!0!$(' $!%##)!!)!%2% $!##)!!)! "!!!!0! % %.!H/H))) #!'##!!)! "!!#!+!')!$!!*!#!!! $! )!!)!"!!6!')!!*!#!!!%)#!'!$!% !!*!'!')!! #('2)* "!!!)!!'!) #*(' !'#)!!&!'"!#6')% +!*!'!+!*!'!) #!"+!( !"!!##!!*! )!!%") #!#'?S) #!$!)!'@?8%! $!'!!'!! '#!! '#!"##!!*""%* )!! !'! !+#(!*!')!"""!! ''!!!% !611 !6!*"!!!!+#!*!!'! ) !!)!!'!'+!!$(!'#)%) !"!!6!')! !+!( !)*! !!!)!F'"!!!"!!) !)! )!!' !:# !*#'!!)! )!!!! !'!"!!!+#!!#+!! !'! %')'#'!+!*!'!'#)"!)! !*+!! !* !! ':##) !$A!+!'!/ !)!"!!)!!#!'!*+! !*,-* !! ':#'#)%!'#!!'2 "!!)*!'!!''!!'#)'!/ !)!"!!! !

PAGE 100


PAGE 101

< !%"#!"(!#!,!!#*!#*/' !$!/)!#(5)$!!!G!'!!$! "!! #!!(!)% !")!"!#*/'!$!!! !*!"'! !)!)6!' '#)!()!!)! !!'!! "?88"%?8"%888"!?88 ") #!"! !$(!#'%"#!!?8888") #!"!!$ #! !!'!$! #!!*#!'!!?8 ") #!"! !%!! !)"!!! #!! $!'!888"! !! !"#! *$!!*'!!'888"!!# '!! !'##": G!!!:?/81H $!*!!:;) !!!:?),E#"!:5) !*:8)!?8>"! !#! $!!) !!:)!) !!,$(##!"!! "!%! )!% !$!"!!!! +$#!! !$!")!!#*!!*!!! '#)!()6%"!!'!$!!!!!*#' !+!! )!!'##"!! )!"*!! 6!! !6!'!! !'#)"!)!!$!"!!%

PAGE 102


PAGE 103

<< ! !+#(!$!%)!!)!"!!)!*! !!'!##)!!)!%"!!0!! ) '!##) #!*! !+#(!$!/(*! )($!)"!' +!%$!!!!'!#! +! !#!)!!''!0 #%!'#% !#6#)!#"!! !$!!!( !) !!%! !+!#( !2) #!"!!0!!')!'!/ !)! #!*0!%*!%'!!''!!!%'!) #*( 1( !#! ("!!0!!) !)#$*'!'!'!! !'#)+!(*! !+#()!!"!!'##!!# #!/"!!! !')!'%%*! !'!$+! !!*'! '#)*!!'/)!" !')!!)+! '!)')!)$!%"'##"!$(+!()# #!/ *!)!!! !!*

PAGE 104

!"!#"$"#%&'()&")*! +!"# )% ,+ "* #!#%+"))%$ % ". /012 3*45$" % !&*"# -"#!*)) !"+!"#" # !*+) 7!!& !# !)#!" $ &!*)) !&!* &")*!-"# $) !# &018#012 3** +#!"# )"# # 955252:;""# ##* !# ## #* #!" "*6" #!)%" ) ) !" !"!#"$"#%&'()#"&")*! +# ## #* #!#%+"))%+ &* ## *+ # #00<5&#"!& #)&! $ )!" "!*6" #!! *6"#"!& % #! ## #* #!## # *+ # #*+#"6) -"# # # *) #"*+! &'()&")*!!+#&!) ))!## !5-") #+#")"# # ,#&&6"#" $" 5# "=#"& && #! !)#" &* ## #* #!+$" !# "+# #")& +!"# &")*!#" $ 6 ## ++ #" !5 )+! &" # &" !"!#"$"#% )"*"% ,+ "* #!""# ## )"""+"#%&*"! *6" #!""&"#)% !"!#"$"#%& +!"# &")*!*#"! ,+ "* #5 )""#"!&00<& "!! 5-"#&)-"!&))! *6" #! +#!##" #)!*+) "!# ) "!# -!! # !! !!" && #! ,+ "* #) )!&# ,+ "* ##) #

PAGE 105

0 *""** !"!#"$"#%" $6) 5* "!*.!4!"" !"!#"$"#%& +!"# &")*! # *" # "!*5 && #!& )"""&& #! *6" #!#!"!# ## *+ # #"* !#" &")*++ #" !# "= %>?5&+"#+6 5!+ #+#* #%51#* # !##)5 ) #")5+#")++ #" !# "=#"-!+ &* & &# )"!"!"!# #"#"! !)#!&# # "=#" "!!!"&# "*+)"#"!&# # + # "# &))-"! #"! 2 !)#! 2@##)# "=#" #!"#"!! ## >?#&#"!+#") ,+ "* # + # "@ #"!2A5 !+ #"$ )% >1%!*+)" "! # # !*+) 7! # 5-" !+!#!"#" ))### )#"!&+!"#"!5# B,B*!*+) *#"))%"))!## " @ ) # ")) "" !&# %!#)+) !& #.+ 4'# $) !51!+"!5 )#"$ "# !"#" !&*# C?@ + # "6) 1 6) 1C?@+>? & #&D#="# ) .)41@+".E42 .<4*)"= # !"#% .0042808::0B: .00242A0882822 .042:B28A2B800 .04A2:2BAA0882 .084::2A2A2 .00480::2BA22

PAGE 106

>?!+ # + # "" !1.164#1B.1645-"#!$ % !+ #.0?!+ #*# C?@)"!# +!"#"!&+ &*6) 1 +)#& !*6" #!-!# !)#!&* 6 & &# # ## #* #"# !+ "&" !*6" #" !)#"#5 #-# +)## &## & ## #* #.6) +"4& *6" #! 5-" +)"# !+ # )) #$ )+& +)"# # ""# !* #+ "!""!" @$ %!+ #!-# *"#+ !+"#.0045.00245 .04'%!#)+) !# "=6) + &# .04+) ++ "# "#&* ) !*+) !?"&&#"+ !&*! $ )C?@)"!# %!#)+) *"!!"5"# !"#" !&* # # + !#*## )"!# *)"= "# !"#" !)!51#1$"#"!"+ "# !"#" !&# # *"#+ !5!))!$"#"!"# )#"$ "# !"#" ## # + &+#")!*+) "# !+ # + & !-"# ## #* # "+ +!"#"5"# !"#%5D ++ "# "" !)#"!$ % !+ #&))!*6" #!# !"#" !" #! &))+ !-"# ## #* #5-") #" ! !" + +!"#"! "$ !#"# # $"#"!5+ +!"#". !45"# !"#%.#!45+ 5 &))-"##)&*,"**.D" !4# G#"&" &*.004.0024 + !&* & &# ) "#"!!"# 92;!&#+ ?# #G#"&" &*# .04+ 5-""!# #"*"#+ 5 6 #"!+ !#&))-"#"# &" !)#"#?#

PAGE 107

2 0 200 400 600 800 1000 1200 1400 1600 1800 102030405060708090 2 (¡)Counts(100) (002) (101) (110) (103) (004) Before Anneal After Anneal .4 0 2000 000 A000 000 0000 2000 808288A8 0 2 .<4#! & ) & ) &# ).004 .0024 .04.64 !1.164>1%"&&#"!+ #&* & &# '()#"&")*"! ) ""# -"#.4!$ %!+ #.64" !)#"!+ #&!" # .0024+

PAGE 108

8 0 200 400 600 800 1000 1200 1400 1600 1800 102030405060708090 2 ( ¡ )Counts(100) (002) (101) (110) (103) (004) Before Anneal After Anneal .4 0 2000 000 A000 000 0000 2000 808288A80 2 .<4#! & ) & ) &# ).004 .0024 .04.64 !12.164>1%"&&#"!+ #&* & &# '()#"&")*"! ) "&*"!-"#.4!$ %!+ #.64" !)#"!+ #&!" # .0024+

PAGE 109

0 200 400 600 800 1000 1200 1400 1600 1800 102030405060708090 2 ( ¡ )Counts(100) (002) (101) (110) (103) (004) Before Anneal After Anneal .4 0 2000 000 A000 000 0000 2000 808288A80 2 .<4#! & ) & ) &# ).004 .0024 .04.64 !18.164>1%"&&#"!+ #&* & &# '()#"&")*"! ) "!##"-"#.4!$ %!+ #.64" !)#"!+ #&!" # .0024+

PAGE 110

B 0 200 400 600 800 1000 1200 1400 1600 1800 102030405060708090 2 ( ¡ )Counts(100) (002) (101) (110) (103) (004) Before Anneal After Anneal .4 0 2000 000 A000 000 0000 2000 808288A80 2 .<4#! & ) & ) &# ).004 .0024 .04.64 !1.164>1%"&&#"!+ #&* & &# '()#"&")*"! ) ",% -"#.4!$ %!+ #.64" !)#"!+ #&!" # .0024+

PAGE 111

A 0 200 400 600 800 1000 1200 1400 1600 1800 102030405060708090 2 ( ¡ )Counts(100) (002) (101) (110) (103) (004) Before Anneal After Anneal .4 0 2000 000 A000 000 0000 2000 808288A80 2 .<4#! & ) & ) &# ).004 .0024 .04.64 !1B.164>1%"&&#"!+ #&* & &# '()#"&")*! !#)!*+) .4!$ %!+ #.64" !)#"!+ #&!"# .0024+

PAGE 112

: # &*+ !-"## !6## # + &"## -"# ++,"*# H"#&#"I#"&" #&*.004.0024+ !&* & &# ## #* # + # "6) !12185 !+ #"$ )% !&) !!#BJ"))# #& &# )"! *+ ## #)!*+) 5""#"* #+ "!""!&#+)! # # #+)"# !+ ## +"# )"""# + "!"&#* #G#"&"#"&# #.004#5)) + +!"#"!!*)) ## C?@$) &::0< + +!"#"! 6) 12I#"&" >?#&*.004"&&#"+ .004 *6" # 2 +!"#" .<4 & &# # !"#% .#!4 & &# & &# D .<4 & &# "# 820B:2BA2::0B0AA *"!8B0B0A22B82A08A2 @##"822::0282A:0A0220:AA2 ,% 828B08B:ABA0::02:A #)82208::B2:000:B 1#1 H"#" 0J2J8AJAJ80JAJJ0J 6) 18I#"&" >?#&*.0024"&&#"+ .0024 *6" # 2 +!"#" .<4 & &# # !"#% .#!4 & &# & &# D .<4 & &# "# 88028B:A882:::A08A82 *"!8082B2BABA8:B0ABB0B: @##"88:880A2:80::202A: ,% 88082BAAB28AA28B::8 #)8288:8:BB0A:B 1#1 H"#" 08J0J2J0J2J:J80JJ

PAGE 113

!"#8<" -"# )"&))!*6" #!5""# *)! ## C?@$) + "# !"#%&*# .004+) "!!"!# #)%# )!#&# # *"#+ !# !"#% )#"$ #" !%0#BJ-"# )" .004+ "!!"!# #)%*) !!## .0024+ ! #JJ-"# )"5-""!!6!##"))%!*)) ## "+ "# !"#% & ## #* #5# .0024D$) !"!# #)%) #&.004$) !5-") &# ## #* #.0024D$) !"!# #)%!*)) #&# .004+ ))! !5# D !-"# ## #* ##00<&A0*"# .004D !%#J-"# ## #* #@""&"#1#1$"#""!&&*!*+) !-"#-"## ## #* #"# #&"# !"#%5+ 5D5-") )"##) $"#" #!" ,+ "* #) !& + +!"#"1#1$"#""+ "# !"#%+ "!!""&"#)%" #$"#""D # .0024+ 5# + +!"#""!)-%!)## C?@)"!# $) &22< +!"#" !&!*+) ) "&*"! !##"5# !# #!" & ,+ "* #) &"# &)-" ,% )!# !"#%&# .0024+ "!#%+"))%" !# +#&# #) !*+) &-"# .04+ "!*!#"# # !"#%" !%0J5:J5 0J58J-"# ## #* #""# 5&*"!5!##"5,% 5 !+ #"$ )% )!" !%0J5J5J5J-"# )"" "# 5&*"!5!##"5,% 5 !+ #"$ )%"!" "!* !*)) ##! &+ "# !"#% D !%J50J5 J5:J-"# )"""# 5&*"!5!##"5,% 5

PAGE 114

!+ #"$ )%))D$) !""&"#)%" ## )!#$) +# &* ,+ "* #!"+# A5-" ++,"*# )%8<1#1$"#"! ) $ !"*")$) !# & &# ## #* #&+ "# !"#% + D!-!) !!$"#"5## JJ$"#"##! &#&* & &# ## #* # !#"))!""&"#1#1$"#"" 2 + +!"#""!$ %!*))5&## &# ## #* #5$"#" #!" & ,+ "* #) 22) #")# "=#" +"#+6 * #! # !"!!! "# ,+ "* #) #!! #".8824 #$)# #*6" -"## #" !! .K0BL*4# # *" # &")*7! !"!#"$"#% !"!#"$"#%!&#"& & &# # 00< ## #* #5!*6" #5+!"#"# !6!## ++ 6) 1!!-"" +!"#"!525 !+# # 5) &#!" 5 "#!" &# B,B*!*+) 5 !+ #"$ )% # *"6) 1 & !# M*+)" N5-"!# #! "!6) #"$ # ) # #"!!# !*+) 7! !"!# "!#"5#%+"))%!& '()&")*!-"# !"!#"$"#" !/02 3*&&")*#" !! !"#"! ,+ "* # !6) !"!#"$"#" !$%%* #&"$ !&*"# 5 *+)" !)#!! !#" !"!#"$"#" + #)!! !&$"#"! &"# #") +!"#")51#15 ## #* #5 ## #* # *6" #D"#+!"#"5*,"**$"#"!& # #& !&*"# # !&*"# &## & &# )"5 !+ #"$ )% !*)) !#$"#"!-"#+!"#" ++,"*# )%&#&

PAGE 115

00 6) 1 !"!#"$"#%#&* & &# ## #* #* %&+"# +6 !&#"&+!"#"!*6" #! *6" # !"#". 3*4 & &# !"#". 3*4 & &# !"#". 3*4 & &# "# BA0AB88,01280,012 *"!0AABAB,018A8,0128,0182,012:,018 @##"02BA:,0122,012 ,% 02,0128BAA8 #). )4A,01280,0128A & & &# )"5 !+ #"$ )%)!5! +!"# !"!#"$"#" !"!# #)%" !#&+!"#"5 !+"## !*+) 7! # % !"!#"$"#" #"# +"# )"5!!-%# $) -" )%&#+!"#"&# )"5+!"#" !"!#"$"#" !# &!*+) ) "&*"!5!##"5,% 5#+!"#"!# !# !"!#"$"#%&# !*+) ) ""# 1#1$"#"!" !"!#"$"#%"#&*# & &# # # #* #*+"!& !"!#"$"#" !&*# !* +!"#"# !*+) *!# #!! !!1#1$"#"! ## ) && #+!"#"! !"!#"$"#% 1#1$"#"!" !"!#"$"#%& ) &")*! & % && #!& "&& #*6" #!! 5# & # #-")) ")"# !6! G #)%"# )"5 !"!#"$"#" &*A:#/BA0 3*5:,012#0 3*5 ,012#B 3*&## &*+!"#"!5 !+ #"$ )%?#&*! +!"# &")*!""# !## !+"# #! !"!# # +!"#" # "=#""#"!5* ## !&*"# "$"#"!& !"!#"$"#%#"!""# !##) $"#"!&))# * # +!"#"! )#"$ )%!*))$"#" #+ # * #!&*#

PAGE 116

0 #)!*+) &AJBJ&+!"#"! !+ #"$ )%5! !#* # $"#""!# !+!"6) &# ) 1#1"&& 00<5 )#%+"))% !# !*+) 7! !"!#"$"#%5## *"# &# !!-!""&"#$"#" )"#%+"))% # !"!#"$"#%5 +#&# ,% *6" #! !"!#"$"#" !" &!* +!"#"!?"&& !"# !+! & !"!#"$"#%#!*6" #! )"-")) 6 + # !6! G #)% !)#! -"#!*6" #5$"#"!" !+! ## ## #* #*!# "$ !#"# %)"#+!"#")$"#"! !*+) ) "# !* *6" #&")"## "$ !#"#"& !" !"!#"$"#%-"# ## #* #56) 1B+ #!# *"# !& !" !"!#"$"#% -"# )" O!""&" !# !"!#"$"#%$) !# & &# )" #"# ) !# !"!# &&+!"#"5-")!# !# ""#") !"!#"$"#% !" !"!#"$"#%&+!"#" !"!# #)%) # !&+!"#" !+"# !"*")""#") !"!#"$"#" !!" !"!#"$"#% &+#")!*6" #!5 )"""# ) ## ) !# -"# #"* #"" !"!#"$"#%&+!"#"+!"#"A#"* #"" !"!#"$"#%! ) !-"#" ""#")$) )!# !"!#"$"#%&80,012 3*"!#!""&"#)%)#! $ )! +!"# $) &*"!5) !" !"!#"$"#%&))+!"#"!)!5)) !)#" !"!#"$"#" !""&"#)%)#%! +!"# !"!#"$"#" !&*#"! ,+ "* # $"#"" !"!#"$"#%-"#+!"#""!# !*)) !#&&#"! ,+ "* # +!"# !"!#"$"#" !&#"!!*+) )!*# )!

PAGE 117

02 6) 1B !" !"!#"$"#%-"#00< )" *6" #!"#" !"#" !"#" "# 188,188,12A, *"!18,18,18, @##"/10,18,1, ,% /1B,PB8,PAA, #). )4O18,12, +!"# !"!#"$"#" !5+#"))%&+!"#"!##"5)"##) &+!"#" #!" & ,+ "* #) !&+!"#" ""#") !"!#"$"#%&+!"#""!" #+!"#" # & *"# !&+!"#""#"!!" ### $) "! # #B,02 3*5## *"# &# "!#-,% 5#) !# &#&B !"!#"$"#%!#!#5&#&B8:" !"!#"$"#%&+!"#"! !+ #"$ )% ""#")$) &+!"#""! *" ## ""#")$) !& "# +!"#" 28+#")# "=#" +#")!+ #+#* #%"#!*"!!"" #!&*"& !+ #!+%* #!" &) #" )) # &#"! ,+ "* #)) * #! # &*# &")*7! # 5 !+"#+!"#" !*"!!""!* $ # -$ ) # &F F2000* + # "" 1A.1 4+)##"!!+ #*&*# )!! !6!## 5# )!!!6!## # -"#! +!"# &")*!5&")*! ) # 00<& "&)-""# 5&)-"&*"!5!##"5&)-" ,% 5# ) #)!*+) "&")*+#")"# & &" 6! $ !!"))#"!"# #!*"## &#&*# !6!## +#

PAGE 118

08 0 02 0 0A 0 800B00:000000800B00:0000 D$ ) #.*4!*"!!".J4 & ) &# ) )!! # & !.4 0 02 0 0A 0 800B00:000000800B00:0000 D$ ) #.*4!*"!!".J4 & ) &# ) )!!.64 !1A.164!*"!!"!+ #&# '()# !1)"* )!! !6!## !-"##&* & &# )"&# # !*+) ".4"# *6" #5.64&*"!*6" #

PAGE 119

0 0 02 0 0A 0 800B00:000000800B00:0000 D$ ) #.*4!*"!!".J4 & ) &# ) )!!.4 0 02 0 0A 0 800B00:000000800B00:0000 D$ ) #.*4!*"!!".J4 & ) &# ) )!!.4 !1A.14!*"!!"!+ #&# '()# !1)"* )!! !6!## !-"##&* & &# )"&# # !*+) ".4!## "*6" #5.4,% *6" #

PAGE 120

0B 0 02 0 0A 0 800B00:000000800B00:0000 D$ ) #.*4!*"!!".J4 & ) &# ) )!!. 4 !1A. 4!*"!!"!+ #&# '()# !1)"* )!! !6!## !-"# )"&# # !*+) &#)!*+) 0 B 0 B 20 2B 820880808B08A08:0808000 D$ ) #.*46!+#"2" 1:)#!&# 6!+#"!G .24$ !!-$ ) ## # *" "+#")+&# '()&")*-"# )" ) )" + # & )"5# )" + #&# )"

PAGE 121

0A #!*"## # # &*# *"+"#&# !"))#"!" 1:.+ $"! + 4+ #!# !* #-"#"#!&6!+#".4! !G .245 !+ #&*))!*6" #!+ # +)# ))##6!+#".4"!# +#&# 6!6 4# &")*#" !!.,4) # !"# 6 & &# 00<5 ## #* #5 !+ #"$ )%%+)##"!+ #&# 6!+#"!G &*# )!!!6!## 5 ,#+)#"# )" +#&# 6 $ #= 6!+#"5# +&)!!"!&# Q8B H.8 *4!*"!!" #00J"!&&-$ ) #! # #B*5 -"#!+& # !D"## '()#"5#!*"## "!0J)## 6 )!!!+ #*-"## +#"& ) ) !*+) !"&*" !"!""# !# +!"# '()&")*!5 +#&&*"!!*+) !5$ K0J&B00F F2000* ) &*"!!*+) !K2J)#!*"## # )!!""#"KJ&B00F FB00*5 )" !!)-)% 6 #B00F F2000* ) &*"!!*+) "!!"*")## ) !*+) #A00F F200*5# !* )% #200F F2000*)!!")#"&")*"# & &" 6! $ $ # #!+ # "!&# '!+ # $ #!*"## "# 6$ !*# !+! ## "# & &" +! &# !"))#"!"! "&& #&!* ! #) ) "#"! # "*+##& # "! 6!+#"5-""!6! $ !# !+ "#!*"## &'&")*! 00*6!+#"# *# *#"))%#!&* #!*"## #5-"## )#"!"+ !"6 %

PAGE 122

0: G#"!2 # *"!"# !"#%&)"#-"+!! !## !*+) 5 0"!# "# !"#%&)"#"" ## !*+) 5"!# 6!+#" I I =T=e0 -A ln I I =-A0 2 @G 6!+#"#"!+)## "" 1:$ # -$ ) # F F00 *5"!! #G#"&%# +#")+ !"# +#")+-"# )"I#"&" +"&*#""!+ # "6) 1A5"!"$ "#!& H ))+! +#&# !*+) ) "&*"! !"!# #-"## 2 # H$) !#%+"))% +# "# )"# # !"&#!" -"# )" 6! $ !!"&#!&# !+)% !"+#"&# # .&# 4*+ ## ) # !.6 & 4#!*)) -$ ) #!"# +#") 6!+#"!+ #." 1:4 # !#!"#!#%!!"!# #-"## 6) # !5"!# ) #)!*+) # #"#)%+ # !"&# !*))*##!# -$ ) #!*+ #) # !5 !+# !*+) ) ""# 5!##"5,% )"*6" #! #"# +"&# # !+ #6# !# !"*")+!"&#!* -"# # *6" #! # !"&# ) *##!*)) -$ ) #! !+!## !*+) ) "&*"!5"!!"!# #-"## ) G#"&" !"&#" -"# )" !*)) & !"# #) !*+) !#!* #+ "!"

PAGE 123

0 6) 1AI#"&" +#")+.4#&* & &# )"# 00<& *6" #. H4 & H4&# @"&#. H4 "# 82082:00: *"!88B008 @##"8208200 ,% 8208200 #). )488:1002 #!&*"& !+ #!+%.14 &) # * #!$ -$ *6 !"&*00*11000*1.2B/ /2BL*45 !-"" 1& .4!+ #)!# # & &# ## #* # R&## )%5!+ #&* ) !*+) !)!##*+# *)&#"5# # %&# #")# ) !+ # +#&# !*+) ) &*"!$ %" &) #"$"#%-!6! $ !!# !+ #*&# !*+) ) "&*"!"$ 1!+ ## &*!*+) & ## #* # + # "" 1 +"*%& # !"# 1# #-+ !&" &) # .ABJBBJ4#B0280*15 !+ #"$ )% + &*!")"+ !&*# )!!!6!## +* #"&" "# 1!+ # )&& # !&*'""# !### &")*! ")%#!+ #"# *"# & "5-"## +#"&# !*+) ) "&*"! 8?"!!!" 8@##)+ #" + !"# )) # !+ #*## +!"#"!)"!# "C?@ #" !& + '!#+ !)"!# "# C?@#6! 5-" # &**)%

PAGE 124

0 0 0 20 80 0 B0 A0 :0 0000200A00200020020082008A00000 D$ *6 !.*14 &) #".J4 "# *"! @##" ,% #) @")"!" 1" #!&*"& !+ ## &) #"* #"" # ) &A0<&! +!"# '()#"&")*!!1)"* )!!!6!## &) # "!+)## $ !!-$ *6 !&# +#")"#" # +)%%!#))" !*+) 5#++ ">?#&*'#"&")*! *)"= "# !"#" !&6! $ + )!$ %"&& #&*#! )"!# "# C?@#6! "!""# !# &")*7!"!## "!#*)%" # 5#"! # ,# !"!!! "! #"2 # !#)%"&&#"%!#)" ##"! # .0045!).00245.04+) !"!"!"#!#-"#*&# )"# # 5"-"$ %!#.0024# ,# "!+ #&!6!## # *+ # "&**# *+ # #6$ <;$" #%&!6!## *# ")! )#"$ "# !"#" !&# + &"&& #!*+) !! !#"1#1 $"#""# + !! !#))"&")*# ,# &*#"&# ,# !#! ###*!$ #" &*6")"#%# !& #))-# )% +) !#+ & #"))%&*+)) )## )!!!6!## 7!!& ?*" &#

PAGE 125

0 .0024+ ">?!+ # +## "# )"# # ,+ "* #) !)#! 6 )-.+# A4! !#### .0024!)+) !# )!#& % $#"&.004.04+ !""# !* + !!"!"# & "-"#&*#" &!#!)# ,# +!!"6) "!*& !"# ,# "! #"$ !+## ,+ "* #! +# "+# A5&), !&" %,% #*!&*# !+## "! +!#)# #!#)%&& ## ++ #" !&# -"&")* #"$ "&),"!&#!#)% ) #")++ #" !& +!"# &")*! ) $"#"" ) #")++ #" !-"#+!"#"!++#!# ## #"$ !+## ""!#"$ +!"#"& #"$ !+## ""! !+!"6) & 6#" !"!#"$"#% #"&# ,# %!#)G)"#%& +!"# &")*!5# )#"!) ,"!# #" !"!#"$"#%).0024# ,# # &")*!!>? !)#! )) # &*+!"#"5 ) #") !)#!&*#"! +!"#"*!# *+ +!"# &")*!5D"!)!#"# !"#%"! !#&# &*"!!*+) 5-")!!# )!#! +!"# !"!#"$"#% "# !*+) !# )!#D! !#"# !"#%5! # )!# !"!#"$"#%))# +!"# &")*!$ #" !"!#"$"#%# 5) D$) !5)"# !"#" !! )#""!& 6 ##""!)# ,# !"!#"$"#%5!"!# #-"# #"$ !+## "!*&#"!# ,# ) ##"!"*+""# !6!## -"" ##+ $ #!# &*#"&# #%+")&")*# ,# 1#1$"#"!" )#"$ "# !"#" !&))# + !""# # +!"# &")*! $ "&& # !&# ,#

PAGE 126

"$ !#"# && #!&# 00< )!##)++ #" !&# +!"# &")*!5 !">?!+ # $)# @$ %!+ #""# ### "# !"#%& ,"!#"+ !"! % ## #* #!&))*6" #!"!""# ### ,# !# -"# ## #* #I#"&" #&*" !)#" !+ #"$ ) ""#"& !"# + !+ !!" "*+$ #"# "# !"#% #&#.004.0024+ "!"!##"6# #"*+$ #"# %!#)G)"#%5 # D"! )# # %!#))"# *"!"= #"&")*!" )5# # *"#"&"!"= &*D#"!#+!!"6) 5# )#"$ !&!"*")&")*! # )#"$ %!#)G)"#%%!#))""#%##" !#""&) D5# )!"&) + +!"#"D") D!"!# #)% !5# "! !"!# # + +!"#"5-"! !#!## D !)#!&* "*+$ %!#))""#%"!# & !")##" !#"I#"&" #&*6) 18 ""# !"# !"#%!"!# #)%" !%++,"*# )%00J&#.004 .0024&))!*6" #! !"!# #)%" !-"# )"5##* !*)) ,# ##" "# !"#% "# !"#%" !+ "* D !+ )%!##+ !! )"! !#! !""# !"#%D)*!#) # # !*))" "G#"&" + !! !#!##$)* &#"!& ##" !#%" )%!##!-#&+#"))%" # "! "!#"## ,+ &# !5-"! !#!!#-)"+ ";"!# "

PAGE 127

2 !+ #)! $ )##!*)) !" + +!"#"! !)# &*# ) .004.04+ !*$ #" $) !-") # .0024*$ # )$) !"&#!" $) !# !+" !"# 1!+" ))) !!#J )&"&*" #"&!"&#""# "# &")*"!# & )"6#"&# "&&#* # &#### + +!"#"!&# .004.04+) + #&# !))##" !+"5-") # .0024+ + ,)!"$ )%#"!+* # !#!"!#+" !"# +) !+" &&! ##)$) !""# !!"!# #" "1!+"5 -""!""#"$ & !")# !") !# !!"# #&# &")*+) #" !"!# %&# "D5" ""# !"#%5 !"+ +!"#" ""# ### !*6" #! "# ) !#$ ) "&) %!#))+" !)#"&*# )"!"!"!##!### ) "&& !# )"*6" #! !"!#"$"#%#! !#!# "!*& !" !"!#"$"#%%+ !!#-">?"!#! !"#"$ 82) #")+ #" $"#"!" !"!#"$"#% # "# #5! +# "#& # !")"$"#"!-"#+!"#"51#15 )"5 )" *6" #+!"#") !+"# )"5# &")*7! # .+!"#"4)-%! !# !# !"!#"$"#%5&# !&*"# ) #$) !&* +!"#"!.) &#"#!" 5 !+ #"$ )%5"" "!*& +!"#")$"#""!+!#)# # #"$ !+## ""! && #"!# &! &+# A5"!+!#)# # !+!"6) &" ##"!*)## !+## # #+") $ )"!"!!"!# #-"#+#")# "=#"#

PAGE 128

8 # "!!! !6! G #)%5-"""# !" ##""!)-&))!*+) 6# & &# )"5 +#&# !*+) ) "&*"!)!5# !#$"#"!" !"!#"$"#%-"#+!"#" !"*")#$"#"!##" !"!#"$"#%#+ # "+# A &")*!+!"# &*#-" "* # +)* #! *" &### #"$ !+## ""!&! # # !6!## #)%++!"# # !" = &* # +)* ## #2; )&+!"#") !"&")*++ #" !! -% !!" "!+ # "+# A5&! !# #"& #"$ "!# +!"# #)! "" ## !6!## 5# %#-"# #"$ "! ) # #"!& #"$ "!# +!"# #)! !)#"* *6* #* !"" % # !)#!&# "1!*+) "# #"!5# & %" )!* *+) !"# !)#!&*6* ## !+## +!"#" "#"!! 5# #"!# & #"$ %"!# ,+ # # #! 5*S"#%&# +!"# &),"! # "# = 5%# !" "!#"6#" !"6 "# )"# # $" -5) $ # # # -"#$" #%&"&& #) #"$ "&),"!)!+"*")% # ## = 5#"!+!#)# #$ *!*)) "!#"6#"& +# ) &*# !+## "! -"#*!#) $"+ + ")## !5 #"$ "&),++!"# # "! )#"$ )%) 5# # +!"# #)&), ) $ !# # #-"## !" "!#"6#"&) !5# #"& #"$ "!# +!"# #)!"!" #)%#-!# +!"#"++!"# # # # )"*"% ,+ "* #!&+# B&## !"!#"$"#"

PAGE 129

!6!##"))%)&&1,"!&# 5-""!+!"#"##!) "$ )"##) #"$ "&),"!"!!"!# #-"## )!"!#"$"#" !&&+!"#"! 8## !6!## 7! "!*& #"$ !+## "! && #! ) #")++ #" !"!"!!! "+# A 1#1$"#"!" !"!#"$"#% ##"6# #!*))$"#"!" !6!## +) #6$ # !+## "! "!"!!++# %# &### !"!#"$"#%# "# +!"#""!)-%!# &012 3*5-") # # "! "!"!!"!# #-"#!6!## "!)"#)%&&! #&*# 5 !)#" ""&& #*"# !& #"$ !+## "&# #-++!"# !&&! # !6!## "!)!!"!# #-"#1#1$"#"!#+!"#"5!"&& #!6!## &&! #!$ ) && #&")* !"!#"$"#% ## )! +,"*"#%&# = ## !6!## 7! # "!+,"*"#%* !# #"& #"$ "! # +!"# #)! *#"))%$ !#"!# !5!"*")#) !" !"!#"$"#%$ !*))"!# &" ,+ "* #! +# "+# A )"5))*6" #! &#"*+$ %!#))""#%& +!"# &")*!5 6#& !"!#"$"#%5 )"*6" #!#)%&& #! !)#!# ### !"!#"$"#% &# # ## #* #&))!*+) !-"## +#"&# !*+) ) ",% !"!#"$"#%-!* !6) &))&# ) &")*!5 ## !"!#"$"#%-!#)-%!),% )!5 !"!#"$"#% & +!"#"" &+!"#"! !"!#"$"#%#+!"#""!#"# 5-") !"!#"$"#" !+"# )"&2,012AA 3*& +!"#"! !+ #"$ )%D"# )"5 !"!#"$"#" #058B5 8 3*&+!"#"!5 !+ #"$ )%!)!"!#"$"#%$) !#+!"#"!

PAGE 130

B 2 5-") # $ %" !"!#"$"#%&+!"#" ! "+!"#" !"!#"$"#%"!!"!# #-"## " ##" ""# %+#")# "=#"!"!!! !6! G #)% "&& "!"& # !"!#"$"#% &+!"#"$ !!+!"#"!! !#!### ""#") !"!#"$"#%"&) !# !)#!&#"! )#"!!+ )# ###"! !)#!&* *+ #"#" #+ !! !##" ! !"!#"$"#% !"!#"$"#% !"+!"#" # ""#")!## "!* % #"$ !+## "#+!"#"!!5"*+$ ##"!-"# "*+$ %!#))""#% !)#"&* ## #* # !+"# *+ #"* "!*## ! !"!#"$"#%#"!!+ )# ##" !"!#"$"#%&+!"#"! !)# &* *"!+#"&,% !+ !&))-"# "!*#)" &!! !! "# )"# # $" -"!* "!*-")) "!!! "* #")!6! G #)% &!*+) ) "&*"! !## ",% ) !*+) !"!KB0,5 & # )"#$" %K2B00,! )" # !## !"!#"$"#%%&#&B0 )""!##"%" )!)"##) !"!#"$"#%&+!"#"! -"# !&*0#2BA 3*:,012#2,012 3*5 !+ #"$ )%# ) !# &*"# !&+!"#"5!"!#"$"#% !&* #"#* /02 3*4# 3* & 5# "!) & !## "# !"!#"$"#%# & &# # ## #* #"# )" !"!# #)%)# !"!#"$"#%-"# !&+!"#"!.6#&-" !## -"#" !"!#"$"#" !4%&#!&,,5 !+ #"$ )% !"!#"$"#%# +!"#"-!)& # )5 %A,-"# )" )&

PAGE 131

A !&+!"#"!! !#!##*+ #"#" #* "!*!& !" !" !"!#"$"#% ") !"#""!!"*")## ,% # &* #"$ !+## ""! $%5 "#"!&# &* G")"6"*"!* !")%"*+$ %# ## #* # !*+) ) "&*"!"!%&&# *!#"# !#!"# ,"6"# # )!# !"!#"$"#%& ) !*+) !# )!# !"!#"$"#" !* % &*"# )!+!"#")$"#"!" !"!#"$"#%&#"!!*+) "!# !*)) !#&%!*+) 5-"#) !!#&#&# +#"# $) !? !"!#"$"#%% )"" "*6" #"!!"!# #-"# +#!"# )"# # ? !"!#"$"#%"*+$ "&*"#%-") *"#"" )) #+#") ++ #" $ %"*+##"*+$ #!#-!+#"&) #!+ ##"###!) ))!## #""# !# !*6" # )""!"#")+* # ## !"!#"$"#%### ,# %!#))""#%& # +!"# &")* #-*!#**)%"# "!*!& !" !"!#"$"#%% % #"" "*6" # *"!6 ,% !+ !5 !"# !#""* #%%&*#"&,% $" !T=""# !#"#")! 955252:; ))&*# "!!!"&!! !!"# )"# # $" .+# ## *"!6 ,% #!! ) ##+5-" !# & ##" & !"*#& *"!6 ,% "&) ##"!#""* #" !5 "*6" #" !# ##"% ",% ) $ )!#!)"#)%) !!#!#""* #" $) !5!"&*#"&=""# !#"#")!T,% $" !5-"#!

PAGE 132

: !))-! *"!+#"+!#)# "!!++# %# )-# *+ # .00<4!##".A0*"# !4&# )5!#"!!& + !! !# G" )"&&!""!+ "!)) !#6)"! "# &'!! !A55;!"!!! "! #"82 !"#"$"#%.@4"!+"*%+ &* "# "&* !"# ) #") !+! &!)"!## !! !!#+#") !# )# !# *"# &# !"!# $6) -"#! !"#"$"#%&'# "*6" #!"!$ %"&# *+ # !!"*")##! "# )!+ &* "#"! ,+ "* # +# "!*"! !" # !& $ &# "!-"## *"!6 ,% !+ " *6" #!#""% 5"#"!&### % #!-"## *"!6 ,% !+ !5# +#!&# #"! *$ &*# &")* # ,% +#")+ !! 5# # !& $ & *"!6 !+ !5# # !"!#"$"#% "" ##" # !"# "#"!" ##""!# +!!"6) "!*&# !" !"!#"$"#% "#"!" +" && #"'"!)) !#6)"! 5-!"!!! "! #"82 ##"&=""# !#"#")!,% $" !"# *%*" G")"6"* + !# # *+ # $++ !! !&,% =" $++ !! &=""# #6 & "!!!* # = 5# & % && #!&# *6" # !)#&* !"# +#")+ !! &,% !# ,% +#") + !! "! 5# ##"!&=""# !#"#")!T,% $" !)" 5# 6%" !"# ##"&# &")* !" # !"!#"$"#%.!!*"!##*6")"#%4

PAGE 133

-# +!!"6) "!*%-" !"!#"$"#%"! -"#" !" ##" #"$#"&# ,#"!")+##*!5 #"& *+ !#" && #!#"$#"& ,#"!"+#!#"#"))%"$)$ +#!6!#"##"&# +++"# !##*'()5#"!"$)$ !6!#"##"&)'!"# !5)) )!-) ,+ # #%" )!"*") !)#! + #&# !*6" #>?""# !##!##))%))&")*! !+ &$6)%## ## #* #! !"!#"$"#%"# %# "&&#* # .+!"#"4)!"*+$ 5## *#&# # !"!#"$"#%$" !""&"#)%-"## !*6" #! "!! !#!## $ "& #"!* "!*#"$ 5"# !#*"# # !" ) #")++ #" !"*+ !#") !)#&* !"# !#""* #%&# &")*'"$" !,% "# !#"#")!$ # ++! !*+ !#" "!*!&#" ) #!5-) !"#"$ ## ,% +# #")&# !*6" #"!"!# "!*+!#)# "+# A5"!)! *+#"6) -"## #"#"! ,+ "* # #"$ !+## ,+! !# -"&")*# #"#*",% 5-""!$ % #"$ &*&,% #") "+# A5"&# %& #"$ ,% "! !&&"" #5# % "*+)# # !#)##" "# !#"#")!"# !, !!,% )##" !"# )"$ # !#""* #%#,% "5 !)#""="$%&*#"# !*+#"&#" ) #!,% "# !#"#")!$ )! +!#)# #!* #" ) #! & #&*!& !! ,% *+ !#"&#" ) #! # %)+" #"!* )"$)$ !1 G")"6"* !! ##"!&,% 5 #"

PAGE 134

"*+ !#"-) ,+ # & )"" ")-,% +#") + !! *6" #!." + "# 4"!"!!"!# #-"# !"!#"$"#% " ##"&% ) #")+#")# "=#" & # #-*!#)" )%* "!*!& !"!#"$"#%-"#" ##"&!*+) ) "&*"! !" ##" & *"!6 ,% !+ ! !"*+ !#"% !!,% &###%!#))+"* "!"-"# #"$ ,% *6* # !#!# "!$ # #00 H&" #" %5-""!!"!# #-"## #%+")# #! )&"!"!+## ""!"!* !"!# #-"#"# ,% # #&# &")*"!# & !"!& &#"!& *"!6 ,% )% # &*+ !#"" $6) % *"!6 ,% 5))#"# # *" *+ !#"&!+ ")""!+ &* !& !"# !"#%& *"!+#""!! ##0B*125#%+"))%!& !"# !"#% +"-"#"# ""!! ##AB,020*185-"!!* !00J#"$#" !!*" ,% !* ) #5# *6 & *"!6 ,% #*! G)!# G#"#%&+#-"#"# "5# "-")) &))% +) # @& !"# !"#%#"* &!+ "!! # G)#" ##"#"* $)* &!+ !)#"&"!KB0*5! +#!")"# # $" &"&# ,+ "* #!"!!"*")#"!"= !"# +!"# &")*! !))"" !"# &")*-) # )%!## -"# *"!6 ,% #" $ *+ !#") $ )!&"# &")*"! &,% *"!+#"! *!)" )% $ -"## $")6")"#%&#*",% & #-"# !)#!"+# A5"#"!+!#)# ##" !"!#"$"#% !)#!&*

PAGE 135

20 )-" ##"-" !)#!") +#&**+ !#"% # # !#""* #") $ )!&,% !",% "# !#"#")!="$" 88+#")+ #" @+ #+#* #%* #!!, )) ##!*"## !!# $"!"6) "& "!""#"### &")*! )! #!#""* #"5# $ #"$ *S & #6!+#"* "!*!#"!"&&")##"$ G#"##"$ $) &# #!*"## &# "# & !"))#"!"# !+ #5#" )# #!*"## )-# +"! # #0J6!+#"&* # )!!!6!## "!!" +#"##"!"!# &")*## !#)% 6!6""# "&# )""&*"! !#6!+#""!# !)#&& 6!+#"052;"!""# !### +)!* & G %!!"&# #" & G !.!# -$ ) #!45#!%? 7! )+ # "! #"885# ##""# &")*!" !6!##"))%"!"!!"!# #-"# #)%"*+$ !"!#"$"#" !&))+!"#"!-"# &*"! )"6!+#"#-$ ) #!&K2L*"!!"!# #-"#" ##"# &020*18) "" ##""! 6# % )#"$ )%) !"&#"+ %.08 $4&&*"! ) !*+) !))#+ # "&# +# !-"))!-##" ##"# &020*18"!#%+")& !"!#"$"#%# &018 3*+ %!"&# %K00:#0 H-"# )"""# 5,% 5 !##"!-")) "!!! "# ,#++5#"!!"&#"!!!"# -"# " ##"5-""!!"!# #-"# !" !"!#"$"#%&& # &")*7! # .+!"#"4-"# )"5-""!# #!*"!!" !+ #+#* #%#-!# &*

PAGE 136

2 !"&#"+ %"!# !)#&# !# "1!!!"&#. !"6 # )"# # $" -48;#"! ,+ "* #5# 6!+#"& $ %&")* !"&# #" !&# ) "!""# !" "" ##" # *" %*$ !" "## #"-"# " ##"5 !)#!"+#"&))!## !#" !+#!*!#$ %#+*# $) ) ##6$ # *" %5-""!6$ # #" "!+! !# +#") #" *"# &#"! &) #!# *"# &# ##" && #5# #"$# #" $# "!#-#"!)!#-"&# +!"# !*+) # )% + +"# )"#5# & "#"!#-"&# +&! +!"# &")*!! !"&# %# !# "1!! && #&# +!"# !*+) !# # )%+ 5# ##"" #")# &")*"! # )% + -"##%" )"%!# "1!!!"&#"# +#")+ & 5"#"! "*+!!"6) # # *" # *"# &" ##" &*# !# "1 !!!"&##"!) ### !"&#&# !*+) ) "&*"!"!) # #! ) "225""#"##"#!" ##""!!""&"#)%" ## # &")*! 1!+ #&*! +!"# &")*!#!-% && #!&*# #"&")*# )!!! !#"# +!"# &")*"!#!+ #!!# -$ *6 &# !+ #%# ? )5"&# ##" ++,"*# )%0*18# # &) # &# &")*-")) "# -$ *6 .00#000*14)%# !*+) ) "&*"!

PAGE 137

22 *!## !#)%" &) # 5""#"## & # # &*"# "" ##".&*F0#/020*184 # !*+) ) "# *6" #!5# !# "1!!!"&#""# !### ##"!" 5#1* #!""# ##""! !#"))) !!#++,"*# )%0*18 )-" ##"&# !*+) ) "# *6" #!"!!"!# #-"# )#"$ )%++!"#" !"!#"$"#" &))&")*! +##! ) "&*"!&))# )"+# "## # #.2-#J)28"-#J'#"$ 5# ##""# +!"# &")*-) AB,020*18!+ $"!)%"!!! 5# !"!#"$"#% 1!+ # !"!# #-"#" ##"&) !!#0*185# & #"$#"&# +##*!&*# # #"! ,# )%+"))&# +!"# &")*!5))&# ) &")*!-"## +#"&#! ) "&*"! !+ $"!)%"!!! 5 ##""!##"6# #*+ !#"& #"" # %)+"% !!,% )"5 +#"))%"&*"!#!##!+## !!,% &*# &")*5%" )" #""*+ !#"5# 6%# " ##"6! $ @**% "# + ##"& !)#!&#"! ,+ "* #-!* "&&")#%# $ 1"&*"#%"# ) #")++ #" !&# &")*!"!1"&*"#%"!!"!# # -"# $" & #"$ !+## "&#"# )"# # ,+ "* #! +# )-"+# A## !#$"#"" !"!#"$"#%5# )-& ##" !"!# #-"# #"$ !+## ")) ##"# 6! $ !# "1!!!"&#!& && #!"

PAGE 138

28 +#")## &*# &")*7! # .+!#"45-""!# "!"!# #)% &#$ # !"!# #)%-!# ) #")++ #" )""&*"!-! &#%" ) !"!#"$"#" !*)#%# *6" #"!"!!"!# #-"# )#"$ )%) !# "1!!!"&#&8 H# !# !#-$ ) #&+)!* 5#&-"""# ) !"" ##"#&# )"*6" #! !# "1!!!"&#! "!+ #+#* #%#&*)) ) !*+) !! !#!" ##"" -"#)) )"*6" #! "!"!!"!# #-"## ) #") !"!#"$"#%## #+!"#"& )) ) &")*!+#")* #!+ &* &+!"#"!! !"" ##"&# +!"#"!# $)# !"!#"$"#" !&& )""&*"!"# -) !"!# #-"# #"&*+ !#"% *$)&,% ,% )"" ! !"!#"$"#" !"+!"#"!#"!!+ )# ###"!" "!*"# % ##"5!# & ## #* # !)#"" " *6")"#%! *!"*+)!"6) "5 !!,% !#""* #% *"!6 ,% #*+ !# #" ) #!5# & !"!#"$"#%"!##"6# #*6"#"&# #-+ !! >? !)#!)!# &*# # &# &")*5)!""# !#"*+$ #!"# &")* G)"#%&)) ## #* #! # !" !"!#"$"#%-"#"&& #*6" # "#"!+!"#"!#&#"&!*6" #5-") !"# >?!+ # #5"#"!) ## !"%!#))""#% ## *"#* "!*& # !"!#"$"#%

PAGE 139

!"#$ %&!'(&)*+&!,)%*-&./& *0&#)*-)!*#+&-)*)&$&+&1!/0&#)!,-) ")" 1#$ &1&) *1/ !/& )*&-,! -/"))& $&/!-*)&$#1)%*#,*10-%&*0/! )#&!,)%*-*--"& *-0!)*+)&$'2/ !$")*!#!,)%*##& ,*10-)!$& &-&!/)*11!--3)!'&))& "#$& -)#$ )%&&1&) *1) #-/! )/ !/& )*&-3#$,! )%&/ )*"1 //1*)*!#!,'-&$-!1 &11-)!*#+&-)*)&&1&) *1) #-/! )*#)%&#& -"'-) )&*#)& ,*1 &*!#4! !/)*11!--3)%&*#)&#-*)2!,) #-0*))&$1*%)*-&./!#&#)*112$&/&#$&#)!#)%& '-! '#&4 6*)%"#*)-0750"1)*/1*&$'2$*-)#&)%&1*%)) +&1-*#)%&0&$*"04. 6*)%"#*)-!,05-/ &-&#)&$*#&)*!#88%"-)%*##& ,*10-6*)%&9"*+1&#) !/)*1/ !/& )*&-6*11'-! '1&--1*%)!0*#)*#1!6-& *&&-*-)#&,! )%&-!1 &113)%& &-*-)*+*)2!,#10"-)$& &-&6*)%$& &-*#,*10)%*#&-2/*1123-) ")" 1/ !/& )*&-!,)%*#,*10& &1)*+&12/!! *#+& 2)%*#,*10$" *#)%&& 12-)&-!,$&/!-*)*!#%&2*0/ !+&-,*10)%*#&--*# &-&-)! !#) *'")*#)!/!! 0* !-) ")" &*#1"$&-011 *#-*:&3/! !-*)23#$%*% !#&#) )*!#-!,/!*#)#$1*#&$&,&)-#+&-)*)*!#!, &1)*!#-%*/-'&)6&&#-) ")" 1 #$&1&) *1/ !/& )*&-,! +& 2)%*#,*10-*-)%& &,! &*0/! )#),! -!1 &11 //1*)*!#--&!,)%*##& 12& -)!*# &-&!/)*1) #-0*--*!# &-"1)-*#1&-!--7-&)*!#1 &+*1'1&*#)%p& ,! 1)& 1" &#)) #-/! ))!)%& *$ 0&)11*:)*!#%"--)%&12& '&!0&-)%*##& 3)%&0! &$&,&)*+&0)& *1#&

PAGE 140

)%&,*10-"'-) )&*#)& ,&'&!0&-1 & /& &#)&!,)%&" &#) 2*# !--7 -&)*!#1 &3#$/12-#*# &-*#-*#*,*#) !1&*#" &#)) #-/! )! )%&-& !,'-&$-!1 &11-3)%& &*-1-!)%&*--"&!, *& ) #-/! ) !--)%*&*!#%& /%!)!7" &#)&#& )&$*#)%&'-! '& 12& 0"-) !--)%& &1)*+&12$&,&)*+& &*!# $" *#) #-/! ))!)%&0&)11*:)*!#/)*0*:)*!#!,&1&) *1/ !/& )*&-)2/*112 &0/1!2-,!" /!*#)/ !'&#$110&-" &0&#)-!,,*10-6*)%)%*#&--"-&$,! )%& //1*)*!#%&-&$))%& &,! &% )& *:&1)& 1) #-/! ))% !"%)%&;'"1)! ?=>)%*#,*10&$&/!-*)&$3#$)%&* -) ")" 1#$&1&) *1/ !/& )*&& % )& *:&$'2)!0*,! &0* !-!/2453"& &1&) !#-/&) !-!/2453 110&-" &0&#)-3#$,!" /!*#)/ !'&" , -*-)&%#*9"&& &9"* &$)! *#+&-)*)&)%&,*10@--) ")" &'&"-&-!0&!,)%&$&/!-*)&$,*10&+& 2)%*# &-"1)) ")" 1% )& *:)*!# !,*1!0&) 2 !,*1!0&) 20&-" &0&#)-!,)%*#&-&$*,,*"1),! ,*10-1&--)%#==>3 )%& &,! &,*10)%*#&--*-!#) !11&$'2+ *)*!#!,$&/!-*)*!#)*0&6*)%#!6# $&/!-*)*!# )&&/!-*)*!# )&*-0&-" &$'2$&/!-*)*##1)%*#,*10!#1--"'-) )&6*)%0-&$ &,)& $&/!-*)*!#3)%&0-*&0!+&$31&+*#-)&/ ,&)" &3)%&%&*%)!,6%*%*-0&-" &$'2-)21"-/ !,*1!0&) 2$&/!-*)*!# )&!,A >B-*-0&-" &$,! -/"))& $&/!-*)*!#!#$*)*!#-!,==C/!6& 3.01--"'-) )&%&1$!,,7.*-, !0)%&-!" &3-"'-) )&)!) &)$*-)#&!,03# / &--" &!,0! 3#$$&/!-*)*!#)*0&!,D==-.&/),! $&/!-*)*!#)*0&311,*10-

PAGE 141

E &$&/!-*)&$"-*#)%&-0&!#$*)*!#-3#$1-!*#1"$&E==-/ &-/"))& /& ,! 0&$ 6*)%)%&$&/!-*)*!#-%"))& 1!-&$ &-/"))& *#-)'*1*:&-)%&-!" &-!)%))%& $&/!-*)*!# )&*-!#-)#),! 11$&/!-*)*!#)*0&-'1&7*$&#)*,*&-)%&-0/1&-3)%&* $&/!-*)*!#)*0&3#$1"1)&$)%*#&--0/1&*-"-&$)!$&)& 0*#&$&/!-*)*!# )&3#$)%& &,! &*)-)%*#&--*-0&-" &$! )%& &0*#$& !,)%*-%/)& 3-0/1&6*11'& &,& &$)!'2)%&* ,*10)%*#&--3-)%*-*-)%&/ *0 2&./& *0&#)1+ *'1& '1&70/1&*#$&#)*,*)*!#3$&/!-*)*!#)*0&3#$,*10)%*#&-0/1&&/!-*)*!#*0&4-5%*#&--4>5 D==?=40&-" &$5 E=? A=8E ?E== D8= =?=8 8== =A8 )!0*,! &0* !-!/2 0&-" &0&#)&)&#, !0-011A.A00-0/1&-1&+&$, !0 -"'-) )&@-&$&#& &-))%&-!" &3#$"-&$)!0&-" &)%& #&3!!) " & 45 !"%#&--3; *#-*:&<3#$-" ,&0! /%!1!2%& #&*-)%&%&*%) $*,,& &#&'&)6&&#)%&1!6&-)#$%*%&-),&)" &-!#)%&-0/1& !"%#&-&/ &-&#)-)%&-)#$ $$&+*)*!#'&)6&&#)%&%&*%)!,)!/! /%*,&)" &-#$)%& 0&#,&)" &%&*%);F *#-*:&<*-$&)& 0*#&$'2)%&-)& &!1!*1)&%#*9"&$&*'&$*#)%&%/)& 8-6--))&$/ &+*!"-123)%*-0&-" &0&#)*-#!)&./&)&$ )!*+&#)"1 *#-*:&3'")$&*'&-)%&$*0&)& !,$*-)*#)*+& #"1 -" ,& ,&)" &-36%*%02! 02#!) &,1&) *#-*:&*" &7*-/1!)!,)%& #&3

PAGE 142

A = = == = == = 8== 8= == =====8======E==A==?== %*#&--4>5#&GF *#*:&4>5= = = 8= 8 =!"%#&--4>5 HF *#*:&H !"%#&-#& *" &7 #&3; *#-*:&<3#$ !"%#&--$),! #1)%*#,*10-$& *+&$ !00&-" &0&#)-#$/1!))&$+& -"-,*10)%*#&-; *#-*:&<3#$ !"%#&--$& *+&$, !00&-" &0&#)-+& -"-)%&,*10 )%*#&-#&#$; *#-*:&<$)"-&)%&1&,)! $*#)&.*-36%*1& !"%#&-"-&-)%& *%)! $*#)&.*!"%#&--#$ #&$), !0)%&' &1--"'-) )& &/ &-&#)&$))%*#&--!,=#0 &#$-*# #&#$ !"%#&--$)6*)%,*10)%*#&--! &-/!#$+& 2 6&11%& #&#$ !"%#&-&#$?>3 &-/&)*+&123))%*#&--!, ?>3#$$& &-&)!?#$>3 &-/&)*+&12)>3)%&#-1!612#$0!#!)!#*112 *# &-&)!A#$>3 &-/&)*+&123,! )%&A8>-0/1&%& #&$), !0?> #$8E>,*10& &0 '12%*%& )%#)%&1"1)&$,*10)%*#&--F *#-*:&$) ,!11!6--*0*1 ) &#$-)! #&#$ !"%#&--3'")-))& *#)%&$)*-1 & 3 6*)%+1"&-%#*#, !01 & 488=>5)!-011& 4=>5)!1 & 48E=>5,! ,*10 )%*#&--&-!,?>3>3#$A8>3 &-/&)*+&12 *'*1*)2*#; *#-*:&<$) &-"1)-, !0$*,,*"1)2*#)*#0* /%-,! ,*10-1&--)%#=>*#)%*#&--

PAGE 143

? *,,*"1)2*#&))*#!!$0* /%-,! )%&)%*##&-),*10-*#)" #"-&-*#" *&*#$&)& 0*#*#)%&#"0'& !,*#)& -&)*!#-'&)6&&#)%&1*#&!,#!6#1&#)%#$)%& *#'!"#$ *&-%& *#'!"#$ 2*#)& &/)0&)%!$I8J"-&$)!9"#)*,2; *# -*:&<-/&*,*&-)%))%&#"0'& !,*#)& -&)*!#-6*)% *#'!"#$ *&-*-*#+& -&12 / !/! )*!#1)! *#-*:&3)%& &,! &$*,,*"1)2*#0&-" *#)%&#"0'& !,*#)& -&)*!#"-&-1 & & *# *#-*:&-,! )%*##& ,*10-#11-&-3)%&,*10&+& 2 -0!!)%6*)% !"%#&--1&--)%#=>3#$//& )!'&,*#& *#&$6*)%+& &$ *#-*:&--*#*,*#)121&--)%#==>#! $& )!// &*)&)%&%#&-)%)!" *# -" ,&0! /%!1!23*" &-747%5/ &-&#))%&0* /%-"-&$)!$& *+& 9"#)*,*&$-" ,&0! /%!1!2$) &-%!"1$'&"-&$6%&#&.0*#*#)%&0* /%-3-$*,,& &#):.*-&#-*)*+*)*&-4=)!=>B$*+*-*!#56& &"-&$*#)%&/1!)-%&-&1&)&$:.*-&#-*)*+*)*&-6& &!0/ !0*-&'&)6&&#!#-*-),! &-&!,!0/ *-!#53#$ $*,,& &#)-1&-)!&#)")&)%&0! /%!1!20 &$$*,,& &#&*#-" ,& 0! /%!1!2#'&-&&#'&)6&&#)%&' &-"'-) )&4*" &75#$-0/1&-6*)% $&/!-*)&$,*10-4*" &-74'7%55%&1---"'-) )&%-#* &"1 !11*#%*11! -" ,&0! /%!1!236%*%%#&-)!0! &$&,*#&$#$)11& %*11!-" ,& 0! /%!1!2&+*)%)%&-%! )&-)$&/!-*)*!#)*0&%&$*0&)& !,)%&%*11!,&)" &--!*)&$6*)%$&/!-*)&$,*10%#&6*)%,*10)%*#&--#$ &6%)*-$&*'&$'2 )%&; *#-*:&#$8E>)%*5)%& &//& -)!'&)6! $*,,& &#)-*:&-!,-" ,&,&)" &-3!#&-&)6*)%1 & %&*%)!,4=>#$DA>3 &-/&)*+&125 &1)*+&12)!)%&-011& %&*%)-4A=>#$=>3 &-/&)*+&125! )%&?> -0/1&3)%&)11& ,&)" &&1-!)2/*1121 & *#$*0&)& 4$K===>5)%#)%&

PAGE 144

D 45 &"'-) )& 4'5?>*10 458E>*10 4$5>*10 *" &-747$50* /%-, !0=.=L0 &,! 45)%&' &-!$71*0& 1---"'-) )&#$4'7$5*# &-*#)%*& ,*10-!,#1

PAGE 145

8= 4&5=> 4,58> 45> 4%5A8> *" &-74&7%50* /%-, !0=.=L0 &,! #1)%*#,*10-6*)% 4&7%5*# &-*#)%*#&--%! )& ,&)" &-4$K==>5! )%&8E>-0/1&3)%&)11& ,&)" &-%+&$*0&)& // !.*0)&12)6*&4K=>5)%!-&!,)%&-%! )& !#&-4K=>5+& & *#-*:&0&-" &$'2)%& *#'!"#$ 2*#)& &/)0&)%!$ &88=>#$=>,! ?>#$8E >)%*-0/1&-3 &-/&)*+&12! )%&>-0/1&3)%&-" ,&,&)" &&0! & !#-*-)&#)12)%&-0&%&*%)3'")%+&$& &-&$0 &$12*#$*0&)& )!K=>

PAGE 146

8 "#*,! 0123#$-"'-&9"&#)12*# &-&*#$*0&)& 6*)%*# &-*#,*10)%*#&--)! $*0&)& !,8E=>,! A8>,*10 8"& &1&) !#-/&) !-!/2 "& 1&) !#/&) !-!/245*-"-&$)!% )& *:&)%&-" ,& !0/!-*)*!#!,)%,*103%#&-*#!0/!-*)*!#6*)%$&/)%*#)!)%&-0/1&'2 -/"))& $&/)%/ !,*1*#3#$!0/!-*)*!#!,)%&-"'-) )& !0)%*-!0/!-*)*!#1$)3 -)!*%*!0&) 23*0/" *)*&-3#$/& &#)&!,)%&-" ,&!+& &$'2)%&,*10 & 0&-" &$// !.*0)&!0/!-*)*!#,! -!$71*0&,1!)1--*-AM-*1*3EM-!$3 DM1*0&38M0#&-*3#$M1"0*#IDJ!0/!-*)*!#!,)%) &)*D?6)M##$6)M1836%*%! &-/!#$-)!)!0*!#&#) )*!#-!,?M3 EM3#$=M,! #313#$3 &-/&)*+&12! &%-0/1&3-" +&2-/&) "0*!11&)&$, !0)%&-$&/!-*)&$-0/1&3-/"))& $&/)%/ !,*1&*-!#)*#"&$"#)*1)%&# -*#1-)'*1*:&-))%&#!*-&1&+&13#$)%&#,*#1-" +&2-/&) "0*-!11&)&$, !0)%& &./!-&$1---"'-) )&-$&/!-*)&$-" +&2-/&) 3-/"))& $&/)%/ !,*1&-3#$/!-) $&/)%/ !,*1&-" +&2-/&) !0?>4)%*#53=>4*#)& 0&$*)&53#$>4)%*& 5 -0/1&&/ &-&#)&$*#*" &-78475374753#$74753 &-/&)*+&123#$ *11"-) )&) &#$-*#)%&"& $)11-" +&2-/&) &!11&)&$!+& )%&&#& 2 #& !,=)!==&&/)%/ !,*1&&/1!)-!,/&7)!7/&%&*%)!,$*,,& &#)*)&$-*#1,! -&1&)&$&1&0&#)--,"#)*!#!, -/"))& *#)*0& &-!#-*-)&#)6*)%$+&#)*)*!"'!#4A&53%1! *#&4AD&53:*#4DD &53!.2=&531"0*#"048D8&53#$-*1*!#4EA&5 &,!"#$*#-" +&2 -/&) !,-$&/!-*)&$-0/1&-$+&#)*)*!"'!##$%1! *#&-%!6-*#*,*#) + *)*!#-*#/&7)!7/&%&*%), !0-0/1&)!-0/1&! 11-0/1&-3)%& '!# -*#1$ !/-!,,)!)%&#!*-&1&+&110!-)*00&$*)&126*)%-/"))& $&/)%/ !,*1*#

PAGE 147

8 45 4'5 45 *" &-78475$), !0)%&?>)%*#1-0/1&6*)%45-$&/!-*)&$ -" +&2-/&) "034'5-/"))& $&/)%/ !,*1&3#$45,)& / !,*1&-" +&2-/&) "0

PAGE 148

88 45 4'5 45 *" &-7475$), !0)%&=>)%*#1-0/1&6*)%45-$&/!-*)&$ -" +&2-/&) "034'5-/"))& $&/)%/ !,*1&3#$45,)& / !,*1&-" +&2-/&) "0

PAGE 149

8 45 4'5 45 *" &-7475$), !0)%&>)%*#1-0/1&6*)%45-$&/!-*)&$ -" +&2-/&) "034'5-/"))& $&/)%/ !,*1&3#$45,)& / !,*1&-" +&2-/&) "0

PAGE 150

8 -"&-)*#*)*--" ,&!#)0*##)-*#*,*#)-*1*!#/&*-,!"#$*#-$&/!-*)&$ -" +&2-/&) ,! ?>38E>3#$>-0/1&-! )%&-&-0/1&-3-*1*!#/& *#)&#-*)2$& &-&-6*)%*# &-*#,*10)%*#&--!-*1*!#-*#1*-,!"#$,! => -0/1&-3'")+& 2-011*-*#1*-,!"#$,! 8>#$>-0/1&-%&-011* /&,! 8>#$>-0/1&-*-"#&./&)&$3#$6*11'&$*-"--&$-"'-&9"&#)12 &##$/&&,!"#$*#11-$&/!-*)&$-" +&2-/&) %&#/&*!"%12%1,-*#)&#-&-)%&!.2&#/&,! )%&?>-0/1&3#$*# &-&-"#)*1*)*-*0*1 *#*#)&#-*)2)!)%&!.2&#/&,! -0/1&-=>#$ &)& *#)%*#&--%& 1/&*-&.) &0&126&,! -!0&-0/1&-3#$*#!)%& -##!)'&$*-)*#"*-%&$, !0 )%&#!*-&1&+&1 /"))& $&/)%/ !,*1&-!,33#3#$*-*#1&!11&)&$,! &%-0/1& -*#$*)&$'!+&3)%& '!#-*#1$ !/-)!)%&#!*-&1&+&16*)%*#-&!#$-!,-/"))& $&/)%/ !,*1*#!)%)%&$&/!-*)&$,*10#$-"'-) )&!#)*#!.2)%& &,! & !#) *'")*!#-)!)%*--*#1!0&, !0)%&,*10#$B! -"'-) )&#!#) -))!$&/!-*)&$-" +&2-/&) !0!0/1&)&12!1&-&$,*10-4)N=>56%& &)%&##$ /&7)!7/&%&*%)*!"%12&9"13*#*)*112#/&7)!7/&%&*%)*-#& 12)6!)*0&-*#)&#-&-*#-/"))& $&/)%/ !,*1&-%&$*,,& &#&*# &1)*+&/&)!/&%&*%) '&)6&&###$*-# )*,) &-"1)*#, !0!0'*#)*!#!,)%&$*,,& &#)*)*!# 1! *)%0#$)%&&#& 2-)&/-*:&"-&$)!!11&))%&$)#& 2-)&/-*:&-!,=& #$=& &"-&$)!!11&)-" +&2#$$&/)%/ !,*1&$)3 &-/&)*+&12#&%$&/)% / !,*1&3)%& &*&*!#6%& &)%&#-*#1*-$& &-*##$*-*#1*-*# &-*#3 6%*%! &-/!#$-)!)%&) #-*)*!#'&)6&&#)*#$), !0)%&,*10#$-"'-) )&3#$ 6*11'& &,& &$)!-"'-&9"&#)12-)%&) #-*)*!# &*!#! 8>#$>,*10-3)%&

PAGE 151

8E *!#'&0*-,!"-&$!#-011& .00 &3-!0/ &$)!8.800 &"-&$ ,! )%*##& -0/1&-& &-*#)%&-/"))& &$ &*# &-&-)%&-/"))& *# )&-"%)%) $&/)%/ !,*1&-#'&!11&)&$!+& -%! )& /& *!$!,)*0&C%&#! &)&$,! %#&*#-/"))& *# )&31!#& -/"))& $&/)%/ !,*1*#*-#&&$&$)! &%)%&) #-*)*!# &*!#*# )%*& -0/1&-! -0/1&->! 1&--*#)%*#&--36%*%%+&*#!0/1&)&-" ,& !+& &3)%&*#)&#-*)2 )*!!,#)!*-A3E3#$=D,! >38E>3#$?>,*10-3 &-/&)*+&12%*-*-!#-*-)&#)6*)%*#!0/1&)&-" ,&!+& &-"&-)&$'2)%& / &-&#&!,*/&*#)%&-$&/!-*)&$-" +&2-/&) 1-!3)%&#-*#1'&*#-)! $& &-&#$*'&*#-)!*# &-&*00&$*)&126*)%-/"))& $&/)%/ !,*1*#! 11)%& / !,*1&-3)%&$!"'1&27.*-!#)%&1&,)-*$&!,)%&/1!)-*#$*)&-)%))%&,* -))6!$) /!*#)&)&#, !0-" ,&-)%)%+&#!)'&&#-/"))& &$&/)%/ !,*1&&!#)*#"&$ "#)*1-%! ))*0&,)& )%&#-*#1-)'*1*:&-))%&#!*-&1&+&13)!&#-" &)%&-" ,&*% )& *-)*!,-"'-) )&@-'"1%*,)-*#/&*#&)*&#& 2"/)!O=&, !0 &,& &#&+1"&&,!"#$*#-!0&-/&) 3)%!"%-011& -%*,)-!,O8& &0! & )2/*111/&-,! )%&-$&/!-*)&$-" +&2!,?> &-%*,)// !.*0)&12=& %*%& *#&#& 23#$)%*-*-)) *'")&$)!#&)*+&% *#*#$"&$'2)%&&1&) !#'&0 -) !#-%*,))!1!6& *#&)*&#& *&-*-,!"#$6*)%*# &-*#-/"))& $&/)%/ !,*1*# )*0&,! )%&=>-0/1&3'")/&&#& *&-%+& &)" #&$)!)%&%#$'!!+1"&-,! )%&/!-)/ !,*1&-" +&2-/&) %*--"&-)--%*,)-)!1!6& *#&)*&#& 2 &-"1), !0 /!-*)*+&% *#!,)%&-0/1&6%*%6!"1$ &) $)%&&-/*#&1&) !#" +&2-/&) )&#,)& $&/)%/ !,*1*#&#& 112%+&+& 2,&6,&)" &-P)%& )% &&/ *0 2/&&)6!-*1*!#/&-)?&45#$E=D&4Q53#$# !.2&#/&)=&4Q5I8=J6&/&!#-*-)&#)6*)%4D&5*-,!"#$

PAGE 152

8A *#0#2-" +&2-/&) ,)& / !,*1*#3#$*-!#-*-)&#)6*)%)%&1--$$*)*+&!,1*0& +& 26&/&!#-*-)&#)6*)%4?8&5*-$*-& #'1&*#%1,!,)%&,)& / !,*1& -" +&2-/&) #$*-!#-*-)&#)6*)%0#&-*$$&$)!)%&,1!)1--! )%&=> -0/1&3-011/&)DD=&,)& / !,*1*#*-!#-*-)&#)6*)%&*)%& #3&,& &#&+1"&-,! )%&-&/&&6*)%*#8&!,&%!)%& 3#$)%&/&*-)!!6& )!&.) )-%/&*#,! 0)*!#!/&!#-*-)&#)6*)%*-,!"#$*##2!)%& -& !// !.*0)&129"#)*,2-" ,&!+& &3)%&0&)%!$/ &-&#)&$*#&)*!#8E*//1*&$%*-0&)%!$ &1*&-!#)%&-" ,&!0/!-*)*!#1-&#-*)*+*)2!,)!$&)& 0*#& )%&, )*!#!,)%&-" ,&!+& &$'2*%&0&)%!$)&-)%& )*!!,*)!0* !#&#) )*!#-'&)6&&#)%&-$&/!-*)&$,*10#$' &1---" ,&36%*%2*&1$-)%& )*!#!,-" ,& &6%*%*-1--%&, )*!#!,' &-"'-) )&*--"') )&$, !0 ==M)!*+&)%&, )*!#!,-" ,&!+& &$'2#1*" &7E/1!)-/& &#)&!, )%&-" ,&!+& &$'2)%&,*10+& -"-,*10)%*#&--" ,&!+& &*-*#*)*112E=M ,! #?>3#$ /*$12*# &-&-)!==M!+& &,! ,*10)%*#&-&)& )%#== >%*-/ !&$" &$!&-#!)!"#),! *#,! 0)*!#+!1"0&, !06%*%)%&-*#1 *-!11&)&$%&$&/)%, !06%*%"& &1&) !#-#&-/&6%*1&0*#)*#*#)%&* % )& *-)*&#& *&-*-'-&$!#)%&*#&1-)*0&#, &&/)%!,)%&&1&) !#*# 0)& *1%&*0/1*)*!#-!,)%&&-/&$&/)%!#)%&&-)*0)*!#!,-" ,&!+& &6*11 '&!#-*$& &$*#)%&$*-"--*!# 1&) *1% )& *:)*!# 11#$,!" /!*#)/ !'&0&-" &0&#)&"-&$)!&+1")&&1&) *1/ !/& )*&!,)%&$&/!-*)&$,*10-!" /!*#)/ !'& &-*-)*+*)2$)*-"-&$)!%&11 &-*-)*+*)2 $)#$*#+&-)*)&+ *)*!#-*# &-*-)*+*)26*)%/!-*)*!#!#)%&-0/1&11

PAGE 153

8? = = = E= ?= == =====8======E==A==?== %*#&--4>5!+& &4M5*" &7E& &#)&!,)%&-!$71*0&1---"'-) )&!+& &$'2)%&-/"))& $&/!-*)&$ #1)%*#,*103-$& *+&$, !0$) 0&-" &0&#)&"-&$)!% )& *:& &-*-)*+*)23 *& !#&#) )*!#3#$110!'*1*)2 ,! )%&$&/!-*)&$,*10-011A.A00-0/1&&1&+&$, !0)%&-"'-) )&@-&$& 1!-&-))!)%&-/"))& *#-!" &,! 110&-" &0&#)-0/1&-6*)%)%*#&--&'&)6&&#?>#$=> &)!! &-*-)*+&)!0&-" &6*)%&*)%& )&%#*9"&36%*%*!#-*-)&#)6*)%)%&1!,,*10!1&-&#&0&-" &$'2$)-&$!#)%& 0*#*0"0" &#)#$0.*0"0+!1)&-/&*,*)*!#-,! )%&*#-) "0&#)-3 R0*-)%& %*%&-)0&-" '1& &-*-)*+*)2,! ==>,*10%*&-*-)*+*)21*0*)$& &-&-1*#& 12 6*)%,*10)%*#&--&-*-)*+*)23 *& !#&#) )*!#3#$110!'*1*)2$), !08)! A>-0/1&-3#$)%&A>-0/1&"-&$)!$&)& 0*#&)%&$&/!-*)*!# )& &/1!))&$ -,"#)*!#!,,*10)%*#&--*#*" &-7A475

PAGE 154

8D #*" &7A3 &-*-)*+*)2-) )-%*%)8.=7 R0,! )%&8>,*103#$ $& &-&-'2#& 12#! $& !,0#*)"$&)!8.=78 R0))%*#&--!,A> %*-0*#*0"0 &-*-)*+*)2*-,)! !,1!6& )%#)%&'&-)-$&/!-*)&$ &-*-)*+*)2 &/! )&$*#%/)& %& &-*-)*+*)2,! )%&==>,*10*&)& )%# R03#$*)%& &,! &)1&-)#! $& !,0#*)"$&0! & &-*-)*+&)%#)%&8>-0/1& *& !#&#) )*!#-/1!))&$*#*" &7A'*# &-&-'2,)! !,,!" !0E.=D)! A.==078'&)6&&#,*10)%*#&--&-!,8>#$A>3 &-/&)*+&12%&1 !#&#) )*!#*#)%&) &)*-E.==0783)%& &,! &0&-" &$ *& !#&#) )*!#& '&)6&&#=#$=M!,)%&) &)@-&.) *#-*$!/*#!#&#) )*!#110!'*1*)2$) &/1!))&$*#*" &7A3#$-%!6+1"&-'&)6&&#D#$A0BR-,! )%*#&--&!,8>#$A>3 &-/&)*+&12%& &*--*#*,*#)-))& *#)%&$)3#$#!) &#$!,*# &-*#! $& &-*#110!'*1*)26*)%,*10)%*#&--#'&*$&#)*,*&$%& &,! & 110!'*1*)2*-!#-*$& &$)! &0*#&--&#)*112!#-)#)6*)%,*10)%*#&--,! )%*&./& *0&#) + *)*!#!,"/)!,)! !,,*+&*# &-*-)*+*)26*)%/!-*)*!#*-0&-" &$'2)%& ,!" /!*#)/ !'&)&%#*9"&&-*-)*+*)2*-1!6&-)))%&-"'-) )&@-&$&1!-&-))!)%& -!" &36%*%*-$* &)12'!+&)%&-!" &@-!")-*$&&$&&-*-)*+*)2*# &-&-)!6 $)%&-"'-) )&@-&$&)%)*-," )%&-), !0)%&-!" &%*-+ *)*!#*--*#*,*#)121&-)%#)%&/!-*)*!#)!/!-*)*!#+ *)*!#&/! )&$*#%/)& 11 &-*-)*+*)*&&6*)%*# )%& #&!,+1"&-0&-" &$'2,!" /!*#)/ !'&3-"&-)*# &-!#'1&/ &*-*!#*# 0&-" &0&#)-

PAGE 155

= = == == ==8 == == =====E==?=========E==?== *10%*#&--4>5&-*-)*+*)24 R0545 ==S== =S= =S= 8=S= =S= =S= E=S= A=S= =========== %*#&--4>5 *& !#&#) )*!#40785 &)!/*#&+&14'5 = E ? =========== %*#&--4>5!'*1*)240BR-545 *" &7A4751&) *1$),! #1)%*#,*10-/1!))&$-,"#)*!#!,,*10 )%*#&--*#1"$*#45 &-*-)*+*)234'5 *& !#&#) )*!#3#$45110!'*1*)2

PAGE 156

8*-"--*!# 8" ,&! /%!1!2 %& #&$), !00&-" &0&#)-,! ?#$8E>-0/1&-*-*#*,*#)121 & )%#)%&1"1)&$,*10)%*#&--! )%&?>-0/1&3)%& #&*>3// !.*0)&12,)! !,E1 & )%#)%&&-)*0)&$,*10)%*#&--! )%&8E> -0/1&3)%& #&*-DA>3// !.*0)&12)% &&)*0&-1 & )%#)%&,*10)%*#&-%*-*-&./1*#&$*#/ )6*)%%2/!)%&-*-)%))%&$&/!-*)&$,*10,! 0-'2*-1#$4!10& 7 C&''& 5#"1&)*!#IDJ%*-%2/!)%&-*-*--"//! )&$'2)%&$*-)*#)%#&*#-" ,& 0! /%!1!2'&)6&&#)%&' &1---"'-) )&#$!)&$-"'-) )&3#$)%&/ &-&#&!, -*#*,*#)*#$#/&-&+&#,! >,*10" )%& &+*$&#&,! )%*-*-)%&$*-)*#) %#&*#-" ,&0! /%!1!2*#0* /%-#$)%&/ &-&#&!,-) !##/& *#$),! &+&#)%&)%*##&-),*10-3-"&-)-#,*10*-#"1&)*##$%#*# )%&-" ,&/ !/& )*&--*#*,*#)12%&/ &-&#&!,$*-& #'1&*/&*#$*)&/! )*!#!,)%&' &-"'-) )&*-1-!&./!-&$ #*-1#$4!10& 7C&''& 5 !6)%0!$&$&*'&-,*10)%)$!&-#!) !6 -0!!)%12 !--)%&-"'-) )&@--" ,&3'")*#-)&$$&+&1!/--011*-1#$-!,$&/!-*)&$ 0)& *1)%) !6'!)%#! 01#$/ 11&1)!)%&-" ,&-1#$-,! 0'&"-& $&/!-*)&$0)& *1)&#$-)!1!0& )&*#! $& )!0*#*0*:&)%&, &&&#& 2!,)%& -"'-) )&B,*10B+/! -2-)&0 !0)%&/*11 *)2)%&! 2!,#"1&)*!#36%*%6/ &-&#)&$*#&)*!#3#"1&"-0! /%!1!2*-'-&$!#)%& &1)*+&-" ,&&#& *&'&)6&&#)%&-"'-) )&4-53,*104,53#$+/! /%-&-4+5%&'1#&!,)%&-" ,& ,! &-*--%!6#*#*" &7D3#$)%& &1)*!#-%*/'&)6&&#-" ,&)&#-*!#-)%)2*&1$*-1#$ !6)%*-*+&#*#9")*!#76%& &

PAGE 157

sv fsvf475 %&)& 0 *--" ,&)&#-*!#36*)%-"'*/)-$&*'*#6%*%*#)& ,&)%&-" ,& )&#-*!#*---!*)&$6*)%,9")*!#7*--)*-,*&$3)%&#)%&!#))#1& 3 *11"-) )&$*#*" &7D36*11'& &)& )%#:& !3#$)% &&$*0&#-*!#1! *-1#$ !6)%6*11!" &/!-*)&$,1".*0/*#&!--)%&6%!1&-"'-) )&3)%& &,! &*-1#$ !6)% &9"* &-0!+&0&#)!,$)!0-!#)%&-" ,&"#)*1)%&2(!*#6*)%!)%& $&/!-*)&$ 0)& *1)!,! 0#"1&*#$B! $&-! '-#!#71!0& )&$0)& *1 !$&)& 0*#&*,,&)" &%&*%)-0&-" &$'2 #&, !0$)*!#-*-)&#)6*)%*-1#$#"1&)*!#30!$&1*#+!1+*#) #-,! 0)*!#!,-0!!)%12& )! #*-1#$12& 6%*1&0*#)*#*#!#-)#)+!1"0&*-1"1)&$'-&$!##"1&*)%) & 0!$&1&$-%1,-/%& & &-)*#!#)%&-" ,&#*11"-) )*!#!,)%*-) #-,! 0)*!# '&)6&&#-0!!)%12& #$$*-!#)*#"!"-12& !,%&0*-/%& *1#"1&**-/ &-&#)&$*# *" &7?%&0&-" &$$&/!-*)*!# )&*-,! ,*106*)%0"%1 & )%*#&--)%# !"%#&--32*&1$*##&,,&)*+&12/1# ,*10%"-)%&$&/!-*)*!# )&"-&$)!1"1)& ,*10)%*#&----"0&-)%)/1# ,*10 &-"1)-,! 11$&/!-*)*!#)*0&-%& ) #-,! 0)*!#)&-.0 &!#)%&-"'-) )&36*)%$*,,& &#),*10)%*#&--&$&/!-*)&$!#*)*10+!1"0&4,53, !0)%&/ !$")!, &#$,*10)%*#&--3*--&) &9"1)!)%&#"0'& !,#"1&*45)*0&-#"1&"-+!1"0&6%*%*-,"#)*!#!,)%& %&0*-/%& &$*"-4 5%*&1)*!#-%*/*-&./ &--&$*#9")*!#73#$--"0&#"1&* &/& ,&)#!#7!+& 1//*#%&0*-/%& &-!,"#*,! 0-*:&6*)% $*"#$%-)%& ,! 0 VNrf 2 33475

PAGE 158

8 *" &7?%&0)* &/ &-&#))*!#!,)%&!#-)#)+!1"0&) #-,! 0)*!#'&)6&&# -0!!)%12& #$%&0*-/%& *1#"1&* $$*)*!#1123%&0*-/%& *1#"1&*6*11!+& -" ,& &!,,36%*%*-$&*'&$'2 )%& &1)*!#-%*/*#9")*!#786%& &SNrf24785 *-"-&$)!&+1")&)%&-&)6!,! 0"1-,! -& *&-!,,*10)%*#&--&-36%*% %#&-)%&,*10+!1"0&3#$,! &%,*10)%*#&--3-& *&-!,$*,,& &#)#"1&"$** &&+1")&$I8J%& &-"1)&/1!))&$-/& &#)&!,)%&0.0-" ,& !+& &$'2#"1&*+& -"-)%&#"1&* $*"-%&!1! &$1*#&&/ &-&#)!#)!" -!,&9"1 ,*10)%*#&--3#$-%!6%#&-*#!+& &$-" ,& &,! $*,,& &#)#"1&"$** *" &7D*-/1!)!,/& &#)&-" ,& &!+& &$+& -"-#"1&"$**,! ,*10'&)6&&#=#$==>3#$ $**'&)6&&##$==>*" &7D'*--*0*1 /1!)3'") !#&#) )&-!#,*10-'&)6&&#=#$E=>*#)%*#&--3#$#"1&"$**'&)6&&##$ ==>

PAGE 159

Nuclei Radius ()Surface Coverage (%)100% 80% 60% 40% 20% 0% 100 200 300 400 0t=20 t=40 t=60 t=80 t=100 IncreasingFilmThickness 45 100% 80% 60% 40% 20% 0% 04080120160200 Nuclei Radius (  )Surface Coverage (%)t=20  t=40  t=60  IncreasingFilmThickness 4'5 *" &-7D47'5&1)*!#-%*/-'&)6&&#-" ,&!+& &3,*10)%*#&--4)*#>53#$ #"1&"$*"-4>5,! !#-)#)+!1"0&) #-,! 0)*!#!+& )6!$*,,& &#) #&-

PAGE 160

%& &-"1)--"&-)-" ,&!+& &*-E=M,! #?>,*10!!*#) )%&!#)!" ,! =>,*10*#*" &7D'3E=M!+& &! &-/!#$-)!#"1&* $*"!,=>3#$ *#$*0&)& !,==>,)%& !"%#&--#$ #&1"1)*!#& &-) *)&$)!# &6%& &!#12-011& -" ,&,&)" &&/ &-&#)3)%& #&#$ !"%#&-&A=>#$A>3 &-/&)*+&123#$; *#-*:&<*-// !.*0)&12 ==>%"-/ &$*)&$,&)" &-*:&-,! #*-1#$12& &!#-*-)&#)6*)%)%&-011& ,&)" &-,!"#$,! )%*--0/1&"))%&1 & ,&)" &-6%*%%+& #&!,>#$ *#-*:&K===> &#!)!#-*-)&#)6*)%)%*-0!$&1#)& / &))*!#!,)%&1 & ,&)" &-6*11'&$*-"--&$'&1!6%& &-"1)--"&-)-" ,&!+& &,! 8E> ,*10*-A=M%&0!$&1-"&-)-#"1&"$*"-!,A=>6*11 &-"1)*#A=M!+& & ,! 8E>,*10%& #&*-DA>#$=>#$; *#-*:&<*-=>#$=>,! 1 &#$-011,&)" &-3 &-/&)*+&12%"-)%&8E>,*10*--*0*1 )!)%&?>,*10*# )%))%&-011& ,&)" &&!#-*-)&#)6*)%,&)" &-*:&-/ &$*)&$'2)%&*-1#$0!$&13 6%& &-)%&1 &,&)" &&1 & )%#/ &$*)&$%*--"&-)-)%))%&0&-" &$ #&-)%) &1 & )%#)%&,*10)%*#&--,! ?>#$8E>-0/1&&$"&)!*-1#$ ,! 0)*!#$" *#)%&*#*)*1-)&-!,,*10$&/!-*)*!#! '!)%-&-3)%&%&*%)-!, %&0*-/%& *1#"1&*#'&)6!)!)% &&)*0&-)%&%&*%)!,-0!!)%12& 6*)%)%&-0& +!1"0& ./1#)*!#!,)%&1 & -" ,&,&)" &-*-0! &%11&#*#C%*1&)%&!#-)#) +!1"0&0! /%!1!2) #-,! 0)*!#*+&&-"1)-)%) &!#-*-)&#)6*)%-011-" ,& ,&)" &-31 &-" ,&,&)" &&-)*11)!!1 &6!/!--*'1&&./1#)*!#-,! )%&1 & ,&)" &&)%))%&2 &-*0/121 &#"1&*3/!--*'12,! 0&$'2)6!! 0! &#"1&* !0*#)!&)%& 3! )%))%&-&,&)" && &112&./!-&$1---"'-) )&+*$&#&

PAGE 161

E *#-))%&1 &,&)" &-'&*#!0'*#&$#"1&**#1"$&-)%&1 &$*,,& &#&'&)6&&# 0&-" &$#$0!$&1&$,&)" &-*:&3)%&$*,,& &#&*#0! /%!1!2'&)6& &#$ -011#"1&*3#$)%&1!, &!#*:'1&&./!-&$, &&-"'-) )&-"&-)&$'2 0&-" &0&#)-%&!)%& /!--*'*1*)2*-)%&1 &,&)" && &112&./!-&$1--" ,&-%*-*-/!--*'1&*,)%&)*/&./& *&#&-1 & &/"1-*+&,! &, !0)%& &./!-&$1---" ,&)%#)%,*10%&/ &-&#&!,-))*&1&) **)2!,)%&-0& /!1 *)2!#&./!-&$1---" ,&-#$)%&)*/6!"1$"-&)%&0)! &/&1&%!)%& #$/ !$"&#*0&6*)% )*,**1121 &,&)" &-,! &! &-/!#$*#)!' &1-))*% &6!"1$'&0!'*1&*#)%&#$"&)!*)&1)*+&121!6 &-*-)*+*)23#$ )%& &,! &*)*-/!--*'1&)%))%&1---"'-) )&#$#,*10*#)& )$*,,& &#)126*)%)%& )*/ +&#*,!#12)%&-011& ,&)" &&!#-*$& &$,! ?#$8E>-0/1&-3)%&-& ,&)" &&1 &!0/ &$)!)%&0*#*0"0*# #&#$ !"%#&--)%)!" ,! )%&>-0/1&36%*% &?>#$?>3 &-/&)*+&12#$ &-"1)-, !0 >#$)%*##& -0/1&--"&-))%)+& 2& 12*#$&/!-*)*!#3 !"%#&--*# &-&$ 0)*112-)%&$&/!-*)&$,*10,! 0-8*-1#$#"1&*-$&/!-*)*!#)*0&*# &-&-3 #"1&"-$&#-*)2#$-*:&*# &-&--0! &#"1&*,! 0#$ !6"#$& )%&!#)*#"&$ ,1".%&$$*)*!#1#"1&)*!#*# &-&-!+& &!,)%&' &1---" ,&3#$ )%& &,! &%--0!!)%*#&,,&)!#)%&,*100! /%!1!2-)%&,*10// !%&!1&-&#&3)%& !"%#&--// !%&-+1"&-0&-" &$,! )%&' &1---"'-) )& *10&)& )%#>*#)%*#&---1!612*# &-&*# !"%#&--3'")&+&#)%& )%*&-),*10*--1*%)121&-!"%)%#)%&?>,*10%&,*10'&!0&-/%2-*112 !#)*#"!"-)'&)6&&#>#$=>*#)%*#&--3-*#$*)&$'2)%&1!,$&)&)&$

PAGE 162

A -*1*!#,! =>,*10-%&>#$=>-0/1&&1-!#& 12--0!!)%-)%& -"'-) )&3)%!"%-" ,&0! /%!1!2*--)*11$*-)*#)120! &-*0*1 )!#,*10-))%*)%*#&--)%&-"'-) )&-" ,&&,,&)*+&12'&!0&-#36%*%0 -!0/1&)*!#!, #"1&)*!##$3#$*-,!11!6&$'2,*10 !6)%#$$&+&1!/0&#)!,)%&,*10@--) ")" & I=J%"-)%&*#*)*1%*%'")-)&&/$& &-*# !"%#&--,! ,*10-'&)6&&#?>#$ > &-"1)-, !0#"1&)*!#3#$6*)%!1&-&#&)=>#$,! *# &-*#)%*& ,*10-30* !-) ")"1$&+&1!/0&#)*#+!1+&--1!6*# &-*# #&#$ !"%#&-%&1!6'")-1!612*# &-*# !"%#&--,! ,*10-)%*& )%#>-"&-)-)%) 6*)%!1&-&#&3," )%& ,*10 !6)%*#+!1+&--1!612*# &-*#,&)" &-*:&-%& / !&--!,&./#$*# *#-*:&*#)%*#,*10&-"1)---!0& *#!60! &9"*12 )%#!)%& -1!6& !6*# *#-&) !6$&$!")-,-)& !6*# *#-&)1 & 3 #$-) ) !6*#)!&)%& 1-!31 & *#-*0/&$&)%&$&/!-*)&$,1"., !0 &%*# -011 *#-'2-%$!6*#/ !&--,/ )*"1 2-)1,&%-1!6& &&&#& 23 )%*-/1#&)2/*112 !6-0! &9"*12%*-/ !&--*-!,)&# &-/!#-*'1&,! 2-)11! /%*)&.)" *#3#$*-$&*'&*#&)*!#*#)%&1*)& )" & &+*&6 &1*0*# 2-0/1&-/ &/ &$)!!/)*0*:&$&/!-*)*!#!#$*)*!#-,! '&-)&1&) *1 / !/& )*&--%!6&$-) !#'-14==5)&.)" &*#T-/&) 3)%& &,! &*)*-1*&12)%) -0/1&-,! )%*-&./& *0&#)$&/!-*)&$"-*#)%&-0&$&/!-*)*!#!#$*)*!#-1-!%+& -) !#'-1)&.)" &%*-0&%#*-0,! *#&+!1")*!#*-!#-*-)&#)6*)%)%&-1!612 *# &-*# #&#$ !"%#&--)%)!" -,)& ,*10!1&-&#&%&/!-)"1)&$ 0* !-) ")" 1$&+&1!/0&#)/ !&--,! #1,*10-6*11'&*#! /! )&$*#)!)%& $*-"--*!#!,&1&) *1/ !/& )*&-

PAGE 163

? #$*-"--*!#!, &-"1)-3*)*-*0/! )#))! &0&0'& )%))%*-)&%#*9"&-%+& 2$*,,& &#)-&#-*)*+*)*&-)!$*,,& &#)&1&0&#)--" +&2-/&) #$$&/)%/ !,*1&&/ &-&#)&$#$*#)& / &)&$*#)& 0-!,)%&/&)!/&%&*%),! &1&0&#)1-*#1/ &-&#)%&-&#-*)*+*)2,)! &"-&$)!)" #)%& 6/&)!/&%&*%)!,)%& $*,,& &#)*)&$"& /&*#)!#)!0*!#&#) )*!#!-)0&-" &0&#)-*#+!1+& !0/ *-!#-'&)6&&#-0/1&-3#$)%& &,! &1"1)*#)!0*!#&#) )*!#-*"##&&-23'")*)*-"-&,"1)!#!6)%&-&#-*)*+*)*&-,! *#)& / &)*#)%&$)! )%& &1&0&#)-!,*#)& &-)3)%&-&#-*)*+*)2,)! DDA&5U=D=34=&5U===3 *4E=D&5U==8?34A&5U==3#$148DE&5U==A=I8=J%& &1)*+&121!6 -&#-*)*+*)2,! -*1*!#*#%*'*)-)%&'*1*)2)!0&-" &-011!#&#) )*!#-!#)%&-" ,& -/ &+*!"-120&#)*!#&$39"#)*,*)*!#!,)!0*!#&#) )*!#-*-"-&$,! &-)*0)*!# !,-" ,&!+& &#!)%& *0/! )#)*--"&*-)%)&1&0&#)1-*#1-#&+& !0/1&)&12)!:& !,! $&/)%/ !,*1&-%*-*-# )*,)!,)%&$)!11&)*!#/ !&-"-&$'2)%&!0/")& 3#$ &-"1)-, !0#!*-&*#)%&&#& 26*#$!6%&#!#7:& !#!*-& 1&+&1*--&&#*#$&/)%/ !,*1&$)3'")$!&-#!) &/ &-&#)) "&"& /&%&*%) "& 1&) !#/&) !-!/23!0/!-*)*!#1#12-*-#$&-)*0)*!#!, -" ,&!+& & &'!)%!,*#)& &-)%&-$&/!-*)&$-" +&2-/&) "0,! )%&> -0/1&-"&-)-!#)*#"!"-12& !,#36*)%-!0& '!##$%1! *#&-" ,& !#)0*#)*!#!)%!#)0*##)&!00!#3#$0!-)121*&12 &-"1), !0 )0!-/%& **#)& )*!##$/& -/* )*!#%& '!#-*#19"*12$&2-)!)%&#!*-& 1&+&16*)%$&/)%/ !,*1*#3!#,* 0*#)%)*) &-"1)-, !0-" ,&!#)0*#)*!#3*& $+&#)*)*!"'!#%& &*-1-!#&.) &0&126&*-*#1/ &-&#),! )%&$&/!-*)&$,*10&"-&#!*/&*-/ &-&#)*#)%&=>-$&/!-*)&$-" +&2-/&) "03

PAGE 164

D )%&6&*/&, !0#$A8>-0/1&-*-!#-*$& &$)! &-"1), !01--$"-) !0)%&*'&#$1&+&/ !&$" &"-&$)!0&110&-" &0&#)#$-0/1&&/)%/ !,*1&$)*#$*)&-##$/&)!/&%&*%) &!#-)#)'&)6&&#=)!E 0*#")&-!,-/"))& $&/)%/ !,*1*#36*)%#!! *'&2!#$)%&#!*-&1&+&1!, -"&-)-)%&,*10&, &&!,!#)0*#)*!#3#$1!,**#$*)&-)%*&*!#!,)%& $&/)%/ !,*1& &/ &-&#)-)%&;'"1-0/1&3 &-"1)&+& 2-*0*1 )!)%&>-0/1&*#3)%&$&/!-*)&$-0/1&-%!6--" ,&!#)0*#)*!#'2#$1%& '!#-*#1$ !/*00&$*)&12)!)%&#!*-&1&+&16*)%$&/)%/ !,*1*#3*#$*)*#*)*--" ,&!#)0*##) #-/"))& $&/)%/ !,*1&$),! )%&=>,*103)%&##$-*#1&0*#!#-)#) '&)6&&#=#$80*#")&-!,-/"))& 3,!11!6&$'2$& &-*##-*#1#$#*# &-*#

PAGE 165

= *-*#13-*#*,2*#/&#&) )*!#!,)%&,*10-"%)%)$)!0&-, !0'!)%)%&,*10#$ 1---"'-) )&%&-$&/!-*)&$-" +&2-/&) "0, !0)%&?>-0/1&%-#333 #$1/&-3'")1-!%--*#*,*#)-*1*!#/&, !0)%&1---"'-) )&&/)% / !,*1&$), !0'&,! &)%&,* -)-/"))& *#-)&/-%!6)%&#)!/& )*!*-1!6& )%# ,! =>#$>,*10-3#$)%&*/&*-1 & 1-!3)%&#-*#1*#)&#-*)2 $ !//*#*00&$*)&12)!6 $-)%&#!*-&1&+&16*)%-/"))& *#3#$)%&1!,!#-)#) 1 &#-*#1 &'!)%!#-*-)&#)6*)%*#!0/1&)&-" ,&!+& &%"-,! 11,*10-3 !#12-" ,&!#)0*#)*!#*-/ &-&#)--"&-)&$'2-" +&2-/&) !0-$&/!-*)&$ ,*10-#$$&/)%/ !,*1&-%&*-*#1*#-$&/!-*)&$-" +&2-/&) ,! ?>38E>3#$ >,*10-*-!#-*-)&#)6*)%*#!0/1&)&-" ,&!+& & %&$& &-&*##*#)&#-*)2#$ *-&*#**#)&#-*)2)&-/1&!+& -*#*,*#) /! )*!#!,)%&)!)1$&/)%/ !,*1&)*0&,! 11,*10-&"-&)%&$&/!-*)*!#/ !&--*/& ,! 0&$)1!6)&0/& )" &-3 &)*!#-#$$*,,"-*!#'&)6&&#-"'-) )&#$,*10*-#!) #)**/)&$%& &,! &)%&' &$)%!,)%&,*10-"'-) )&*#)& ,&*#)%&$&/)%/ !,*1&$) *-)%& &-"1)!,,*10 !"%#&--!)%)%&-$&/!-*)&$ !"%#&--#$ !"%#&--*#$"&$ '2-/"))& & !-*!#6*11' !$&#)%*&*!#3,!11!6*#/ !&--&-)%) &6&11$&*'&$*# )%&1*)& )" &I3J 81&) *1% )& *:)*!# %&'&-)-$&/!-*)&$ &-*-)*+*)20&-" &$*#)%*-&./& *0&#)*-8.=78 R03 6%*%*!"%12,)! !,81!6& )%#)%&'&-)-$&/!-*)&$ &-*-)*+*)2 &/! )&$*# %/)& %*-*0/ !+&0&#)*#-$&/!-*)&$ &-*-)*+*)2*-)) *'")&$)!%!1$*#)%& -"'-) )&!,,7.*-!,)%&-!" &36%*%/ &+&#)-#&)*+&*!# &-/"))& *#!,)%&$&/!-*)&$ ,*10)6-/!-)"1)&$)%))%&!#-*-)&#)121 & &-*-)*+*)*&&/! )&$,! !-*)*!#*# %/)& &-"1)&$, !0#&)*+&*!# &-/"))& *#/)*1$)*#$*)&$)%))%&%*%

PAGE 166

&-*-)*+*)2 &-"1)&$, !0+& 21!6 *& !#&#) )*!#-4#V=D0785%&1!6&-) *& !#&#) )*!#0&-" &$,! )%*-&./& *0&#)*-E.=D07836%*%-"&-)-#&)*+&*!# &-/"))& *#*# &-&&-*-)*+*)2'2$& &-*# *& !#&#) )*!#%*&&-6*)% &-"1)&/! )&$'&1!6*#%/)& E36%*%*-0! &$&)*1&$*#+&-)*)*!#!,#&)*+& *!# &-/"))& *# 11$)-%!6-!0&*#)& &-)*##$#!#7*#)"*)*+&) &#$-6*)%,*10)%*#&--,* -)// !.*0)*!#,! / &$*)*#)%&%#&-*#&1&) *1/ !/& )*&-,! +& 2)%*# ,*10-3)%,*10#'&!#-*$& &$0&)171*&6!!,)%&1&$*#)%&! *&-) &)*# )%&&1&) *1/ !/& )*&-!,)%*#!#)*#"!"-0&)1,*10-6& &$&+&1!/&$'2"%-#$ !#$%&*0& I8838J3#$2$-#$%):&-I8J-*0/1&&./ &--*!#,! &-*-)*+*)24 5*#)%&+& 2)%*#,*10 &*0&*-*+&#*#9")*!#7I8EJ6%& & F Bl t p 1 3 8 1475 %&-"'*/)-!#)%& &-*-)*+*2*#$*)&'"145#$,*10453 &-/&)*+&12%&)& 0/ $&*'&-*#)& )*!#-'&)6&&# *& -#$)%&, &&-" ,&-3*-"#*)1&--+ *'1&3#$ %-+1"&-, !0=)!,U)%&# *& &-/&"1 12 &,1&)&$, !0)%&*#)& ,&-3 #$)%& &,! &)%&2$!#!)*#,1"&#& &-*-)*+*)2,U=3 *& -*#)& )*#6*)%, && -" ,&&$*,,"-&12-))& &$3#$)%& &,! &, &&-" ,&*#)& ,&-$& &-& *& 0&#, &&/)%#$*# &-& &-*-)*+*)2%&)& 04 B)5*-)%& )*!!,)%&,*10)%*#&--)! )%&0&#, &&/)%!,)%& *& -%*-)& 0*#$*)&-)%),! -" ,&-))& *#)!'& *0/! )#)3)%&,*10)%*#&--0"-)'&&9"1)!! )%*##& )%#)%&1&#)%!,)%& *& -))& *#0&#, &&/)%-%&0)**11"-) )*!#!,)%*-0!$&1*-/ &-&#)&$*#*" & 7=%&,* -)45 !6*#$*)&-)%&;'"1<0&#, &&/)%!,)%& *& 4 5%& -&!#$45 !6*11"-) )&*& )%)*--/&"1 12 &,1&)&$, !0)%&,*10-" ,&3#$

PAGE 167

)%& &,! &0*#)*#-)%&-0&$* &)*!##$0&#, &&/)%%&)%* $485 !6*11"-) )&$*,,"-&-))& *#&+&#)6%& &)%& *& -0&#, &&/)%*--*#*,*#)12-%! )&#&$ /1!)!,)%&)%&! &)*112/ &$*)&$) &#$-*#)%& )*!!, )! 6*)%$*,,& &#)/+1"&-*-%!6#*#*" &7I8AJ%*-/1!)-%!6--*0*1 ) &#$)!)%& &-*-)*+*)*&-0&-" & *#)%&$&/!-*)&$#1,*10--)%&,*10)%*#&--*# &-&-3)%& &-*-)*+*)2$& &-&&./!#&#)*112)!6 $-0*#*0"0+1"&4*" &7A5%*-0!$&1*0/1**)12--"0&)%) &-*-)*+*)2%#&-*#+& 2)%*#,*10&-"1), !0*# &-&$ *& -))& *# %& &,! &)%*-0!$&1/ &$*)--)%*#&--$& &-&-3-))& *##$)%& &,! & &-*-)*+*)2 *# &-&%&11$)/ &-&#)&$*#*" &7A &+&1$*&&0&#)6*)%)%&"%-#$ !#$%&*0& 0!$&1&-*-)*+*)2$!&-$& &-&*#0##& !#-*-)&#)6*)%)%*-0!$&13'") )%&0&%#*-0"-*#)%*-$& &-&*&$"&$ *& !#&#) )*!#3#!) &$"&$0&# &&/)%! 0!'*1*)24*" &-7A'#$5!) &#$-,! *# &-*#! $& &-*# 0!'*1*)26*)%,*10)%*#&--*-!'-& +&$ *& !#&#) )*!#*-!'-& +&$)!$& &-& '2,)! !,, !0A.==)!E.=D0786*)%$& &-*#,*10)%*#&--, !0A >)!8>& &-*# *& !#&#) )*!#! &1)&-6*)%*# &-*# &-*-)*+*)2,! $& &-*#)%*#&--36*)% &-*-)*+*)2*# &-*#'2,)! !,?, !08.=78)!8.=7 R0, !0A>)!8>%*--"&-)-*# &-*# &-*-)*+*)26*)%$& &-*#,*10 )%*#&--*-$!0*#)&$'2$& &-*# *& !#&#) )*!# #$* &)&+*$&#&-"&-)&-*-)*+*)2!#)*#"&-)!*# &-&6*)%$& &-*#,*10 )%*#&--%&$)-"&-)-)%))%&=>-0/1&*-!0/1&)&12!1&-&$,*10 -&$!#)%&0&-" &0&#) #&!,)%&11#$,!" /!*#)/ !'&*#-) "0&#)-3)%& 0.*0"00&-" '1& &-*-)*+*)2,! =>-0/1&*-K R0%& &,! &)%&=>

PAGE 168

8 "'-) )&%*# *10 l *" &7=11"-) )*!#!, *& ) (&)! *&-'-&$!#)%&"%-#$!#$%&*0& 0!$&1 6*)%45'"1) #-/! )345-/&"1 &,1&)*!#, !0)%&*#)& ,&3#$485 *& -))& *#))%&*#)& ,& *" &71"1)&$/1!)!,)%& &-*-)*+*)2 )*!'&)6&&#)%&)%*#,*10-6*)%*#)& ,& -))& *##$'"1,*10--,"#)*!#!,0&#, &&/)%4 53,*10)%*#&--4)53#$ *#)& ,&% )& 4/536*)%1 & #"0'& -'&*#0! &-/&"1 *# *& &,1&)*!#

PAGE 169

-0/1&@&-*-)*+*)2*--!0&+1"& &)& )%# R036%*%*-)1&-)8=)*0&-1 & )%#)%&+1"&!,8.=7 R0,!"#$,! 8>%&#$$)-"&-)> #$)%*##& ,*10&#!)!1&-&$#$ &*# &-*#*# !"%#&--6*)%$& &-*# )%*#&--%&0&%#*-0!,!#$")*!#*##!#!1&-&$,*10*-,"#$0&#)112 $*,,& &#)3'"))%&/& !1)*!#0&%#*-0*-'&2!#$)%&-!/&!,*#)& &-),! )%*&./& *0&#) #1)& #)&0&%#*-0)!&./1*#)%&*# &-&$ &-*-)#&*#)%*#,*10-*/!-)"1)&$#)%*-0&%#*-03%&0*-! '&$!.2&#-/&*&-$& &-&)%& *& !#&#) )*!#6*)%$& &-*#,*10)%*#&--*#!1&-&$,*10-C%*1&0&)1,"#$0&#)112%+&, &&0!'*1&&1&) !#-$"&)!0&)11*'!#$*#3#1$&/&#$-!# $!#! -))&-&#& )&$'2$&,&)-)!%*&+&, &&&1&) !# *& -%&1$!/*#1&+&1!, )%&) &)*-E.==07836%*%*#$*)&-)%)&+*)%==M*#! /! )*!#3)%&, && &1&) !#!#&#) )*!#!,)%&-&,*10& !"%12)6!! $& -!,0#*)"$&1!6& )%# )2/*10&)1%*-1!6& *& !#&#) )*!#1&+&-+& 2)%*#,*10-+"1#& '1&)! !0/&#-)*!#'2) //*#!,!#$")*!#'#$&1&) !#-!#%&0*-! '&$!.2&# &%#*-0-,! !.2&#%&0*-! /)*!##$*)-&,,&)!# *& !#&#) )*!#,! # & / &-&#)&$*#)%&1*)& )" & &+*&6-&)*!#$*-"--*##-)%*#,*10-&#-! ,! / )*"1 -&-4-&)*!#85!&+1")&)%&/!)&#)*1!,%&0*-! '&$!.2&#)! $& &-& *& !#&#) )*!#3-!0&-*0/1&0!$&1*#*-/& ,! 0&$! )%&8>,*103 )%& *& !#&#) )*!#*-!#12=M!,)%&1$!/#)!#&#) )*!#*#)%&) &)36%*% -"&-)-)%)&#!"%!.2�"-)'&%&0*-! '&$)! &0!+&"/)!D=M!,)%&, && *& -*#)%&,*10!," )%& -*0/1*,2)%&1"1)*!#3)%&9"#)*)2!, *& -*#)%& ,*1036%*%*-)%&/ !$")!,)%& *& !#&#) )*!#4#UE.==0785#$)%&,*10

PAGE 170

)%*#&--4)53*--&)&9"1)!)%&$&#-*)2!,+*1'1&-" ,&-*)&-454)2/*112K=075--"0*#/1# -" ,&-)" )&$6*)%%&0*-! '&$!.2,*10"/)!=> 6!"1$'&!0/1&)&12!0/&#-)&$%*-*-*# &-!#'12 &&0&#)6*)%)%&1&+&1!, $&/1&)*!#,!"#$,! )%&8>,*103#$*-!#-*-)&#)6*)%)%& /*$12$& &-*# *& !#&#) )*!#6*)%$& &-*#)%*#&--%&/ &-&#&!, *#'!"#$ *&-*#)%& /!12 2-)11*#&,*103)%&*#)& ,&6*)%)%&-"'-) )&3#$-" ,& !"%#&--/ !+*$& $$*)*!#1 &,! %&0*-! /)*!#36%*%*# &-&-)%&/!--*'1&, )*!#!,!0/&#-)*!# %&1*&1*%!!$!,-" ,&-)" )&$6*)%%&0*-! '&$!.2&#-/&*&-*--01136%*% 1!6& -/ &$*)&$!0/&#-)*!#%*-0&%#*-0*-1-!!#-*-)&#)6*)%$& &-*# *& !#&#) )*!#6*)%,*10)%*#&--,!"#$*#&./& *0&#)1$) &/! )&$*#%/)& E36%*%6*11'&$*-"--&$"-*#-*0*1 0!$&1 %*-0!$&1#1-!&./1*#+ *)*!#-*# &-*-)*+*)2,!"#$'2,!" /!*#)/ !'& $) !--)%&-" ,&%&&#)* &.0-"'-) )&*-/!-*)*!#&$!,,)%&) &)#! 01.*-!6&-) &-*-)*+*)*&&,!"#$,! &-1!-&-))!)%&-/"))& -!" &36%*% &/!-*)*!#&$'!+&)%&!")-*$&&$&!,)%&-!" &&-*-)*+*)*&-*# &-&6*)%/!-*)*!# )!6 $-)%&&$&!,)%&-"'-) )&," )%&-), !0)%&-!" &@-&#)& %&#!#7"#*,! 0,1". $*-) *'")*!#6*11 &-"1)*#$& &-*#,*10)%*#&--!#)%&-"'-) )&," )%& !0)%& -!" &@-&#)& +& 2)%*#,*10-3$& &-*#,*10)%*#&--6*)%/!-*)*!#!#)%& -"'-) )&," )%& !0)%&$&/!-*)*!#-!" & &-"1)-*#*# &-&$!0/&#-)*!##$ )%& &,! &*# &-&$ &-*-)*+*)21-!3,*10)%*#&--6-0&-" &$#& )%&-"'-) )&@&$&1!-&-))!)%&-!" &@-&#)& 3)%& &,! &)%&,*10*-)%*##& )%#0&-" &$,! &, )%& !0)%&-!" &@-&#)& &-" &$)%*#&--*-&#)& &$*#)!9")*!#836%*% *-"-&$)!1"1)& &-*-)*+*)2, !00&-" &$" &#)3+!1)&3#$,*10)%*#&--,)%&

PAGE 171

E )"1,*10)%*#&--*-1&--)%#)%&0&-" &$,*10)%*#&--3)%&#)%&$& *+&$ &-*-)*+*)2 *-%*%& )%#)%&)"1+1"&!0'*#)*!#!,'!)%&,,&)-*-!#-*$& &$ &-/!#-*'1& ,! + *)*!#-*# &-*-)*+*)2 !--)%&-"'-) )& "00 2 !)%)%&0* !-) ")" 1#$&1&) *1/ !/& )*&-!,-/"))& $&/!-*)&$#1)%*# ,*10&,!"#$)!&+!1+&-*#*,*#)126*)%*# &-*#)%*#&--%&0* !-) ")" 1 &+!1")*!#!#-*-)&$!,%#&-*#-" ,&0! /%!1!23 #&3 !"%#&--3; *# -*:&<3#$-" ,&!+& &-0&-" &$'2#$%&)%*##&-),*10-4=)!= >5 &,!"#$)!'&$*-!#)*#"!"-3#$%$ &0 '12%*% #&#$ !"%#&-!0/ &$)!)%&-"'-) )&&)" &-!,)6!$*,,& &#)-*:&-//& *#)%&0* /%-! )%&?>#$8E>,*10-3)%&-011& ,&)" &-%+&A=>#$=> #&3 &-/&)*+&123 6%*%*--)*11-*#*,*#)121 & )%#,*10)%*#&---*0/1&0!$&1)!/ &$*))%& &,,&)-!,*-1#$-!#,&)" &%&*%)-"&-)-)%))%&-011& ,&)" &&)% && $*0&#-*!#1#"1&*%&1 &,&)" &&0"%)!!1 &)!'&/ &$*)&$'2)%&*-1#$ 0!$&1%&-&,&)" &&)) *'")&$)!-))*&1&) **#)& )*!#-'&)6&&#)%&1--"'-) )&#$)%&)*/$)*#$*)&->,*10&-)*11#!)!#)*#"!"-3'") -" ,&!+& &%-*# &-&$)!// !.*0)&12?=M%& #&#$ !"%#&--1-! $& &-&$-*#*,*#)123// !%*#)%&+1"&-,! )%&1---"'-) )&*10-'&!0& !#)*#"!"-))%*#&--&-'&)6&&#=>)!==>3#$-)&$2) &#$!,*# &-*# !"%#&--3$& &-*# &-*-)*+*)23#$*# &-*# *& !#&#) )*!#*-!'-& +&$6*)% *# &-*#)%*#&--%&; *#-*:&<*-"-&$)!9"#)*,2)%&$*0&)& !,-" ,& ,&)" &-36%*%0*%)! 0*%)#!) &/ &-&#)*#$*+*$"1 *#-!,)%&/!12 2-)11*#&,*10 %&; *#-*:&<,!11!6--*0*1 ) &#$-#&#$!"%#&--31'&*)6*)%0! &

PAGE 172

A -))& *#)%&$)#$$) &!#-*-)&#)6*)%*-1#$4!10& 7C&''& 5 #"1&)*!##$ !6)%%&-1!6*# &-&*#; *#-*:&<6*)%,*10)%*#&--,! !1&-&$,*10-4)N==>5*-)) *'")&$)!$*,,& &#&-*# *# !6)% )&-$"&)! -%$!6*##$, &&&#& 2!,)%& !6)%-" ,&T-/&) !0/ &1*0*# 2 -0/1&-"-&$,! !/)*0*:)*!#!,&1&) *1/ !/& )*&-*#$*)&4==5)&.)" *#!" -*# -0/1&-$&/!-*)&$'2)%&-/"))& $&/!-*)*!#/ !&--"-&$ %&&1&) *1/ !/& )*&-1-!%#&-*#*,*#)12*#)%*-,*10)%*#&-&*0& %& &-*-)*+*)2$& &-&--% /12-)%&,*10)%*#&--*# &-&-&-" &$+1"&#& !+& #! $& !,0#*)"$&36*)%0*#*0"0 &-*-)*+*)2!,8.=78 R0,! -$&/!-*)&$ ,*10-%*-*0/ !+&$ &-*-)*+*)2-!0/ &$)!-$&/!-*)&$-0/1&-*#%/)& *)) *'")&$)!1!,#&)*+&*!# &-/"))& *#3$"&)!"-&!,)%&!,,7.*-$&/!-*)*!# &!0&) 2*10-6%*% &$*-!#)*#"!"-4?>V)V>5%+& &-*-)*+*)*&-)!!%*%)! 0&-" &%&$)-"&-))%))%&=>,*10*-!#)*#"!"-3'"))%& &-*-)*+*)2 &0*#-)!!%*%)!'&0&-" &$-,*10)%*#&--*# &-&-3)%& &-*-)*+*)2$& &-&-*# 0##& !#-*-)&#)6*)%)%&"%-#$!#$%&*0& 0!$&1,! !#$")*!#*#+& 2)%*# 0&)11*,*10-36%*%-/&*,*&-)%) &-*-)*+*)2*# &-&-6*)%$& &-*#,*10)%*#&-$"&)!*# &-&$-))& *#, !0*#)& ,&*& !#&#) )*!##$110!'*1*)2$) *#$*)&)%))%&0&%#*-0 &-/!#-*'1&*-$*,,& &#))%#)%&"%-#$!#$%&*0& 0!$&13*& !#&#) )*!#*&-/!#-*'1&,! 0(! *)2!,)%&%#&*# &-*-)*+*)2 %& *& !#&#) )*!#$& &-&-'2,)! !,, !0A.==)!E.=D0786*)% $& &-*#)%*#&--, !0A>)!8>3#$*-)%& &,! &/ *0 *12 &-/!#-*'1&,! )%& *# &-&*# &-*-)*+*)2%&/ !/!-&$0&%#*-0,! $& &-*# *& !#&#) )*!# 6*)%,*10)%*#&--*-/!-)"1)&$)!'&*# &-*#!0/&#-)*!#$"&)!%&0*-! '&$

PAGE 173

? !.2&#-/&*&-%*-0&%#*-0*--"//! )&$'2-*0/1&0!$&16%*%*#$*)&-)%),! +& 2)%*#,*10-3)%&9"#)*)2!,, && *& -'&!0&--*0*1 )!)%&#"0'& !,-*)&+*1'1&,! !.2&#%&0*-! /)*!#%& &,! &3-,*10)%*#&--$& &-&-6*)% !#!0*)#)$& &-&*#)%&)!)1#"0'& !,!#$")*!#'#$&1&) !#-3)%&9"#)*)2!, %&0*-! '&$!.2&# &0*#!"%12)%&-0&$"&)!&9"*+1&#), &&-" ,&#$ *# '!"#$ 2 &*#)%&,*10%*&-"1)-*##*# &-*#, )*!#!,)%&+*1'1&&1&) !#'&*#!#-"0&$'2%&0*-! /)*!#!,!.2&#-/&*&-3 &$"*#)%&,*10@*& !#&#) )*!#

PAGE 174

!"!#$ !%&'#($# ) '"# !*) ') !)$$ !#*#$ $#! +,) '!*!)-#*-)!.$!# /! '! '!#/*-$ #! ')! 01212324256#$! # !*)2 '!#)* !)!*!! '!#$##! # ** #")$!*!)-#'.$!$# '!#'$ !"# # -! *** # )) !)$$ !#2'/$/!*)# '!#$##2-'!#-#(8/'!' ') !)# )$$ !#* '*!)-# ** ') !"-! '** !#") (8' !9 !* ) !)$'8#!)$$ !#* '$#! *!)-#'!#! !!#*))/(8 $# !*#) #*-) !)$'8#!)' !9 !2!###!* #) #2#--8*! !)*!!# '$##* !"!#$ !%&!##!(!# !3:4* '!# /'$##!")"# !* !"!!)#$.!-! 8 #$ !#% '&2/! '!(!) /8*'#(8 #-) !*!) #$#! !"!# /# '#$ $## !".8!#%;&#$#!()*!#$ $#! !* +2) #!!*! $ !* '$ !)/'!'"!# ( /;411 <1116/! '$/#! '!## 8'#2 !"

PAGE 175

1 .8!#) #!-!)!## '=! '#$ !$##2 '*#-#$ '$#! *!)-"!#$ .$!#*'!#/2$ #! ')! 0>2235## !"!*).!#'!')8! !)2/! '!#(!) $$!))8 /8*' ?##*7##2 !"!*).!#* (-# #!#! )8$$# #!!* .$!)"!* '!#!##! '# )8$#! !##! !") !) $$ !#*$#! *!)-#!###!'$ :* '(# *!)-$$ !# ( !*#(# ##$$ **;.!#*' ?#-).!#! '#*.$!#!'$ @/! '#(# $$!)!# $))) '#$ '!#!##!# /! '#-!!--#!# !"! 8* #$#! #-$)#*-'$ -$ '$ :2#")$ #! )! /'!')#*!**;.!#$#! !8 !-$") !)$$ !# 0>25 ##$# !*) '-# ( -! !"# '!# ** # '$# ) '** !#"8$#! !$ 2 $$ !#**!)-$#! ##)#(# -#!!! !) .$!"! !#* '#!# !"! 8/! '$#! '#(# / -#2!$ #!# /! ''*2"! !#!$$ !#/! $#! !(# ") '** '!*)*$/!# '$## "!()!"# ! '!#/8 #')# ## '#.$!#!)#* '#-#$ $#! !#8# '#(# #$#! !)#')# '

PAGE 176

3.-)###(# ##!(8#!** !")8*-3.-#(# '!# #(# /#-()/ 2/! '()/ ?# 2/'!'!# *!#1-'!#8!# !)! '.$!)'## !2!# #'!))8$# !7!;.$ '!#8!# '11A #-$)2/'!'/#$#! !$)!-!8.$!'!##(# !#$#! /8*' ?# /# ?## #! --8*$)! '#-$)! '#8# -2! !## !' '#(# /# #) B43-!))8/8*' #$ .$!)'#2 '!#!*-! 8#'!)$#! !()/ '$#! #2/'!'!*)#$#! "! !#!$$ !#!(8 '$#! !$#"!* '!#.$!'$/$#! !0 cm 5 cm 10 cm Deposited Neutrals Negative O Ions 1.6 cm 9 cmZnO:Al Target Glass Substrate Position Flux7!;##;# !)"!/* '#$ $#! !82#'! $# !* ''#!$#! ) !"!*).#* !* $#! !

PAGE 177

3 3.$!#) # 3*!)8 *!)8###'/# $* !## -# '*!)'!## #"C))8#$$! #) '-!-#!* '3.-#(# # '#-### !9"! !#!*!)'!##"##$#! ) !" '#$ $#! !#!"# '!*)* $/2 '! !## $#! '#-$)#31A11A*1-! #2 111A*31-! #' '!##$#! #* !*$#! '#(# '$/#$# #!7!#;3;42 #$ !")8'* '#$) #2 /"###! /! '11A $#! !! !'#')!$# # '!))8**# (8! 43'$#! !)!. -9#!# )8 '#*)) '$/! !#6 /! '$#! !!.-!$) '!#/8/!))( #**# 2**# *43-/!))(##!# )8#-! '**# 211A $) "##$#! !/!)))/8#($) /! '#' )!'#)!)!$# # ) 2/! '$#! !)!.) !" '#(# 2 '#$ $#! !#'**# 11A !##! '*))/!#) #!###!# !#8* /! '**# /!))(* .$)!! )8#;**# '#'" !) -##! !$#! !#* '!#$$)8 '**# *#-$)# $#! 11A2 *#-$)#$#! 31A111A '!##$#! '$#! *!)-##$' *-! ( / '#*'#(# '!# -#*!)-# $$.!)811D '!'!#)!-! !#!-$#(8 ')*$ !) #

PAGE 178

4 0 2000 4000 6000 8000 02468101214 Position (cm)Thickness () 1 000 W 500 W 250 W 500 W (Offset) Region I Region IIRegion III7!;3E# '!##* '+,) '!*!)-#* !*$#! #(# $/# $#! '*!)0.0 1.0 2.0 3.0 4.0 5.0 02468101214 Position (cm)Deposition Rate (  /s) 1000 W 500 W 250 W 5 00 W (Offset) Region IRegion IIRegion III7!;46$#! *+,)#* !*$#! '#(# $/# $#! '*!)-

PAGE 179

: *! '# $* )*-#8**!)-# '! '11D '#* '#!;(8;#!#(# ## 1-* '31A111A ##243-* '11A#)8 / $! #*'31A 111A! !#2#$ !")82 *' '!#(# 2))")# !! "8 '!*!)-#'"#* '!##$#! *-'$/ !#'/#!-!) ''**# 8!* !#/! '!#!$#! ')*! # !#( / '"#*!** $/! !#*! *!)'!##$#! )# ' '!##$#! "#-$) )8#' !))8# "! !#! '31A 111A '$#! !*'-))$#! !*).2 '*).*!) !( # '*!)'!##2!#)) *'$#! '*!)-2 '#! 8*+2! # -))/!' '*).!#$# !7!;:2#!")#( / .14 .1-))#@-3F##* !* '$/# $#! *!)-2 '$#! '#(# #! '*). !) '#! '$#! (# '*).!#)) #!)!) !#'!$ '$#! !**( / '!##$#! $) #!# '" !) '"#' '!##**!)-#$#! 11A!# '*111 A2)# *31A7 '$#! 2 '!#111A211A231A *'!'# )/# 2#$ !")8#)* '-(2$#! !##)!)8 /! '$/2)))#(!C) -!!* '!#)*(82 !* $#! #* '31A11A! !# '111A! !$)

PAGE 180

0.0E+00 2.0E+14 4.0E+14 6.0E+14 8.0E+14 1.0E+15 1.2E+15 1.4E+15 1.6E+15 1.8E+15 02468101214 Position (cm)Molecular Flux (molecules/cm2 s) 1000W 5 00W 250W Region IRegion IIRegion III 7!;:6$#! -))*).*+,)$) #* !*$#! #(# $/ "##$#! !!7!;7$#! !#)## ':-2 '31A@111A '# ")*B1342/'!'!#"8)# '.$ ")*136"! !# )/ ")#( / '$#! !#*:G-2/! ')/# ")(!1:' 11A@111A # /! '")*B1> '$#! !*:-2# ")#1:*-B 1-'*!) / $! #14> 33) !)' !9 ) !)-##-#!*$! $())-##8# -'*$! $(-##-/'!) '#(# !## !))/') '$('!#(' / )8-#) !#! '#!(!# !4436 )) "81-28!)!#!#*:;G -##*-'#(# ))-## (8 '"/ '*'))#8# -#!(!# !442/'!'$ #-.!--

PAGE 181

0 0.2 0.4 0.6 0.8 02468101214 Position (cm)Ratioed to 1000W Sample 250W 5 00W 7!;6$#! !( /31A@111A11A@111A! !# "##$#! '#(# #-$)#!9*>.>--035 '))7E#-$)#/)"*-H #$!-#* #$ )) #. $#! !#*))7E#-$)# /*!)'!##'#/! '$#! !2 '!# 8! '!### !"#!# !"! 8*-)) !#!$#! !!! (8! (#2/'!)(#!##(#!! # !! '-# ")# ))#!# !"! 8 $) #-!;).#'#!# !"! 8#* !* $#! !-#(8( '*$! $())!#$# !7!;' '!)**# '# ($$)! '11A '!#$) '#)! #' #* '#-)!! *$! $()) 2#$ !")8 #!# !"! 8 *-*$! $($) !7!;>2/! '$#! !**# $$)! 11A '!#( / #!#!# !"! 8*))

PAGE 182

> 0.001 0.01 0.1 1 10 02468101214 Position (cm)Resistivity ( cm) 500W 250W 1000W 4 Point Probe Hall Measuremet 7!;#!# !"! 8*+,) '!*!)-#)) (8*$! $(%#)!& ))-##%#'&"##$#! '#(# $/ 0.001 0.01 0.1 1 10 02468101214 Position (cm)Resistivity ( cm) 500W 250W 1000W Region IRegion IIRegion III7!;>#!# !"! 8*+,) '!*!)-#/! '11A **# (843-# !*$#! '#(# $/*-*$! $(

PAGE 183

G #-$)#2 '*-!! /!))($) (8*) /! '$#! !**# $$)! #!# !"! !##$B4#*-! *))$/! !#') #*)) '$/#!! # ' '!# !#! #!# !"! 82*!#!#22!#*$#! !#)## ': -2'#! -! #!# !"! !#( / B.1;4B1; F-#!# !"! !# *31A#-$)# *-44.1;4$ >1.1;4 F-( /$#! !#*1 :-7111A#-$)#2#!# !"! !#!!#!# )8'"") 4.1;3 F-'# '111A#-$)#( /3 !-'!'!#!# !"! 8 '31A#-$)# '*!# -$! '11A#-$)!#4G-2 /'!'!# '* '!#!#!# !"! !#* '##-$)#3.1;3 .1;3 F$#! !#*4G:-2#$ !")8#!# !"! 8#'$)8## (8( /B:.G./! '!#!$#! !#*-: >-*))$/#2 -# #! !( /!# !#$#B> BG-2'# ')/# #!# !"! 82/'!'!# #!# )8 B.1;4 F-!#!$ *$/'!##!# !"! 8!# ( /* *B.31.)/ ''!'# #!# !"! !#*-! G3-$#! !2#!# !"! !#!#2#!!*! !**#( /$/ !#*2/! '")#*:.1;42B31.1;423.1;4 F-*31A2 11A2111A#-$)#2#$ !")8'!#!# #! !( /!# '*!!#*!#/' '#!# !"! 8# # !#2/'!' # '$#! !*BG-* '!** $/#' #! !( / !!# /))*!!$#! !(#!!#*!! -#*

PAGE 184

*!)'!##2 '*! #) !"8!$#! !(##$ $#! ! !# !#$# #)## '11D! '!##2'##!# !"! !# !##'$)8/! '!#!$#! !*-)/")#*B.1;4 F' '!'# #!# !"! !#-#! '!#.$!* '11 F-% '-.!--#()#!# !"! 8&7!;G!#$) *#!# !"! 8#* !**!)'!##2 #'/#)-# ")$*#!# !"! !#*#-$)# '! '11D !! !!$*-$/ /'!)!#$# *!)-# )## '11D '!2 #! !*-! "!#*-111D 3111D :111D**!)-#$#! 31A2111A211A2#$ !")8'!#!# #!# /! ')*) !!#!# !"! 8$) #* !* '!##* #! !! !#!!#*!! -#**!)0.001 0.01 0.1 1 10 01000200030004000500060007000 Film Thickness (  )Resistivity ( cm) 500W 250W 1000W 7!;G#!# !"! 8* '$#! +,) '!*!)-$) "## '!## $/# $#! '*!)-

PAGE 185

>1 '!##2! #$#! '#(# $#$#! !! !#!$#! !-$/-$)#/! '!##*11D% '(!!*!& G42132G-*31A211A2111A#-$)#2#$ !")82 ))'"#!# !"! !#.1;4 F)) # -!-I! 8! 8$2! !2 ))-(!)! 8))*!)-# ; 8$2/! '! !#$# #* !#* $#! !*!)'!##!7!#;%(&2#$ !")8! !# '*131-;4*/! '#!# !"! 81;: F-/'!) -! !! 'GJ #-! 2/'!'C!#*'!'**!!8 #)))#02G35'!#! !!#(8-I! 8*#-$)#/! '#() .$ !#$# ()/) #!! !)/")#* !/'!'!#($ )8 ''!'# -#")#!!2 ##'$)8##!'# ##!# /! #!$ #!# !"! 8 !! !#*->3.1 44.131-;42 '"# $$/'31A#-$)##!# )8'" '!'# !#*!2/! '")# #!! !*-44.131 G.131-;4( /$#! !#*1G:3! !* '111A#-$)#!##*->3.1 :.131-;4( /1G:3-'#!) -$! '11A#-$)!!'# !*G3.1-;4 $#! !*:1' !#)## '131-;4** '11A#-$) $#! !*:1-2 *111A#-$)# $#! !#*1G3:-

PAGE 186

> 111=11 311=31 :11=31 11=31 G11=31 11=3 13:G13: #! !%-&! !%-;4& 111A 11A 31A 6$!K") Region IRegion IIRegion III%& 111=11 311=31 :11=31 11=31 G11=31 11=3 111131114111:111111 7!)-'!##%D&! !%-;4& 111A 11A 31A 6$!K") %(& 7!;%;(&! !*+,) '!*!)-#*-))-## $) "##%&$#! '#(# %(&*!)'!##

PAGE 187

>3 !#!##'$)8%3 :.&* #! !( / !# $#! !#*-:-2'-.!--! !/' ))")# '131-;4731A#-$)#2! !## ##!*-:.131 3>.131-;4 $#! !#* >-'11A #-$)#.'!(! #!# ")#:1.131-;4##!*-$#! !#* > -7111A#-$)#2! !!####! *-:.131 >.131-;4 $#! !#*G>'$) *! !"##$#! !!! # !#)/!! '!K! ! #* !**!)'!##2! !#!-$ *31A111A '!#)8 -$! *-!2 '* #! /! '! '!#!)# (#!##(#$# $) #* '!##'!#!#(### !! -#*$#! !2$#! !!# )!/'$) #* !* '!##7 '31A#-$)2! !!#34.131-;4**!)'!##*411D $#! !*4-' !!#/! '!.$!)*") *'$#! !*> -*-!711A#-$)#2#*'*-! !! !#/! '!##*-.131 1.1-;4/! '*!)'!###*-41D311D2#$ !")87 '#!)111A $! !2 '! !!#.131-;4**!)'!##*11D $#! !*4-! !!#B: !-#)/ 'I ")*$#! !>-*-! '! !*11A#-$) /! '!##*311D'#! !*-! )/

PAGE 188

>4 131-;4! !))82))$#! !#/! '! !#)## '131-;4 )#-/! -#!C !*!H#) #'-!* -#/!))($# 'H#) ## !2!-$)! !#* '!# ) !/!))!###()/ A! '.$ !* -$! %111A >-&2))! !#()/ ')$! !* %.131-;4&' '!'# !#* '31A211A2111A#-$)#:.1312 ::.1312>.131-;42#$ !")8'#! !#J2>J2 J2#$ !")82* ?#. !#!$! !A'!) '# !#2 '8 ''!'# ")#-#'/# $ !" !$ #-#*-!* '31A211A2111A## 3GJ24J2J#$ !")8 '11A#-$))##'/# .$ !))8)/! !*1:.1-;4 3-!!2 /'!' #) # )## '3J !" ))-(!)! 8!#$) #* !*$#! !*!)'!##!7!# ;1%;(&''!'# -(!)! 8!#L3-3@F#2/'!'!#$$.!)8')* '")* '!'C)! 8+%MN3-3@F#&03G5'!# # ) !( / ))-(!)! 8$#! !$#! !$/'))-(!)! 8 /!))(!### "##$/!# *(8$#! !731A#-$)#2 '!#3J!# ( / '/# %:-3@F#&(# %>-3@F#&))-(!)! 8!!# %$#! !#LG-&2/'!'( '$!#!* '-#7111A#-$)#2 '!#J!#!-(!)! 8( / '/# %:>-3@F#&(# %G1 -3@F#&-(!)! 8!!#2/'!'!! # )# #-))"! !

PAGE 189

>: 1 : G 3 13:G13: #! !%-&E(!)! 8%-3@F#& 111A 11A 31A Region IRegion IIRegion III%& 1 1 111131114111:111111 7!)-'!##%D&))E(!)! 8%-3@F#& 111A 11A 31A %(& 7!#;1%;(&))-(!)! 8*+,) '!*!)-#$) "##%&$#! #(# %(&*!)'!##

PAGE 190

> (8 8* '-#' #! #*->4 :> -3@F#( /1G:3-##! '!####! ")*G:-3@F# >-'-(!)! 8*( '31A111A#-$)# ##'$)8 4-!!/! '")#*3341-3@F#2#$ !")8 '11A#-$)##'/ ')# "! !!-(!)! 8/! 'G>J# *-(# %3-3@F#& /# %-3@F#& $#! !#*>3-2 #$ !")8 /!%:1>-&2 ''!#)## ' 8* '-#7->-%'!'# -(!)! 8& 3-%)/# -(!)! 8&2 ##!))8 ''!# ' -##8# !) !( /-(!)! 8*!)'!##!#** !** $/#**!)-# '! '111D)/$$.!)811D2 -(!)! 8*))#-$)###/! '*!)8#!# #)$#!-!)-! # '!#!! #) !( / '!##-(!)! 8 !#!$ $#! !$/!! 348E##$ 8#) # '-$#! !* '$#! +,) '!*!)-#!#' !9(8#8 !-###$ 8%E&'E !#)) *'))-##-$)2 ') ##*))-##*))8"! )#*! # !)+2)2 '))!)#2/'!') $#! !" )#O '*#) #)) /! '.8$!-8(-#! !##$!*!!# !4:'$# #) #E$ '$*!)# #!8-!E '!C#'$) '! #! 8 !#*) + +#* !*#$ !-2/! '!** $#! !#!! (8 '

PAGE 191

> !** ))!#E) !$))!#* '#-)#'/$)! 2/'!'!# #*) ") '-#! ') + + 31A211A2111A $# !7!#;%;(&2;3%;(&2; 4%;(&2#$ !")8# -$#/"!)()2 '*)8C)! !" )8#!#)($*-'C)! !"-##$ ()2/'!'))/# -$!#( / *-!** $#! !# '#(# !*) +/#* (#!# )8( /1111:*)) #-$)#*-31A211A2111A$#! !$/#/' ')* # '(!!@* '$ '$*!)) '!#!! # * '!# '-.!--"! !! ') + #'#!# !# ') + )#$ !-#)!)8#) #*'$#*)-! !")*89!-$#! '*) )###(# 6 *-#-$)# $#! 31A#'/'! ') + !#* !*$#! !7 #-$)#$#! 11A111A2 ') + !!##!# )8'!'! !-$ !2!! !#!"! !"!*).' #)!' )8'!') !#))##)-# ")$! !#* /''$ '$*!)!#)) *-#-$) )#* + !*-11: 13*31A 21 1:* 11A 2114 1*111A ')##'$!## (!!##* '$ '$*!)#2#) *-! !* '*!)-?# #** ''!' !#)8! '$*!)2$#*#! ')###(# *) !-#! '$ '$*!)''$!#")#*) !"##! !"! 8 #%7& / ')*# #2))8 '7!##

PAGE 192

>> 0.001 0.01 0.1 1 10 0100200300400500600700800900 Sputtering Time (s)Al54/Zn66 Intensity Ratio Region I (0.8cm) Region I (4.2cm) Region II (5.9cm) %& 0.01 0.1 1 10 100 1000 0100200300400500600700800 Sputtering Time (s)Na23/Zn66 Intensity Ratio Region I (0.8cm) Region I (4.2cm) Region II (5.9cm) %(& 7!#;%;(&E$ '$*!) *+,)*!)-#$#! 31A* !*%&) +* '$ !%(& +* !* -$# !))!)#

PAGE 193

>G 0.001 0.01 0.1 1 0200400600800100012001400 Sputtering Time (s)Al54/Zn66 Intensity Ratio Region I (4.0cm) Region II (7.4cm) Region II (9.1cm) %& 0.01 0.1 1 10 100 0200400600800100012001400 Sputtering Time (s)Na23/Zn66 Intensity Ratio R egion I (4.0cm) R egion II (7.4cm) R egion II (9.1cm) %(& 7!#;3%;(&E$ '$*!) *+,)*!)-#$#! 11A* !*%&) +* '$ !%(& +* !* -$# !))!)#

PAGE 194

> 0.001 0.01 0.1 1 020040060080010001200 Sputtering Time (s)Al54/Zn66 Intensity Ratio Region I (0.8cm) Region I (4.2cm) Region II (5.9cm) %& 0.01 0.1 1 10 020040060080010001200 Sputtering Time (s)Na23/Zn66 Intensity Ratio Region I (0.8cm) Region I (4.2cm) Region II (5.9cm) %(& 7!#;4%;(&E$ '$*!) *+,)*!)-#$#! 111A* !*%&) +* '$ !%(& +* !* -$# !))!)#

PAGE 195

G1 *#!!!9 !$ !)*$#! !"!# *-.8$!-8 (-04G5'!!9 !$ !)*!#-$ :*+1 *)2 '*! !#!-$ )) '$# !#*-/ 2 !# !!$ E!##*-! -##! !" -$ +)E"! !!#*! + 2/''# ( /$)! $ '$*!)##* !*$/E# $)! $ $*!)#'"#!-!) + !")#2/! '.$ !* *':3#-$)$#! 31A2/' '!#* **!"( /$)! # # '")* '"( / /:3# #!##!-!) '#* '1G -3# #2/'!'## #)! )"! !! !#/! $#! !!-!))82)8#-))"! !#! + !*#* !* $#! '#(# 3:H;8' ) $ #$8#) # '#** '$#! +,) '!*!)-#' !9(8H;8 $' ) #$ #$8%H&'$# H )8*-#-$) $#! 11A*-! '#(# 2#!-!)#) #** #-$)#'#$ )) #! '! !##$!*!! '# !4: "8#$ *(!!!#*-1 11)) *-( '# $#! #$ '#*#'#$ '/#-! ##! '! #/! '! !##$!*!!# !4:' !# !$#*+22 *!#$ *'#$#! #*2/'!))8$##!# /! '+ *! '#$ '#*## '()8$$#!# $#! #$ 2! !#)!)8" !#(##* -!

PAGE 196

G E) !$).##* '+%3$4@3&2%#&2%#&$#* '#-# $#! #$ '#-$)##!I !/! ') !"##! !"! 8 # -! '# !'!8* '.$##*2 !"# '-!) (!'-(#!$ '## 'C --(# #$!*8 $ !))")*-/'!' '$' ) !#.! !'!8 *C !")8#!#$*-(8 'C!#! !-$ !#$# !(); '# !'!8!#)) *'C !*!$!I !/! ') !" ##! !"! 8* # '#*3>J! '( !/! '#$ '!!##!# /! '" !##*(*' -#$' '! # !* ( $$! '/-) !$). '%#&$'#$#! #$ '$) #$# !7!#;:;:(2#$ !")87 '#$#! #-$)2")$* )# /$#!#))8#)"()'"!#") (8(#( !*! !/! /-$ ##!;K 9! !#/'!'(#$'!))8!7!;:$!#) 41> '#*))/! ')*-.!--*/! '$! #! 8*: #2 $# #>J* '$'#$!# 434'#*))/! ')*-.!--*31/! '$! #! 8*::> #2$# #44J* (); -! !#*-H-) !$). *#$#! #$ '#-$)# )-! !%J& #6$#! -! $ '%-! #& +%3$4@3&4J:J %#&4J:GJ %#&4:J>J

PAGE 197

G3 %& %(& 7!;:%;(&H-) !$).#$ '%#&$#'/! /-$ $#*%&#$#! *!)-%(&#$ '*!)$7 '%#&#$ -)) #$ '!%7!;:(&2 '!'8433$'##'$)8#!! #! 8) !" '41 $'$ 41'#*))/! ')*-.!--*G2! #! 8* 3G21: #2 #*4J* '$'433$'#*)) /! ')*-.!--*2! #! 8*3:>G #2 #*>J* '

PAGE 198

G4 $'413$!##!# /! '()(!( /.89! ''!'8$!##!# /! ''-!#(.8'8.!2/'!' #/! '* !## $# '#$#! #*2( !#)8 /$* #$ '! 3H;86!** !#) # H;86!** !%H&!## !9# )$$ !#* '! *!)-#( !H #* !*$#! !2 '3.1-#(# # )"$$!) ')!-#!! '3.>-#-$)#H !# *' '!#(# %1 -$#! !#&(# '"8 '!*!)-# '#)!# # 8!)#!!*! !** !! #! 8"8##%1PL 3 LG1P&'!'#) !)!$*!)##%43PL3 L4GP&#'/!7!# ;%;(& ;>%;(&*'* '$/# )!$*!) / )) *'11A#-$)2##"8 $) '#-3 #)# )!$*!)#$ '9*'#$ !#**# '8;.!#(8!# '! ")#'##! !"! 8*'/*# # *#$ !## #'/(8 #$!"!#!')* '#$ '$#! !) !.*'/!#!"(8 '-(#!8" !))8 '! .!#2/! '")!! '$#! !* 'H#-$)$# / '#$ *'3-$#! !* '111A! -!##! !" (* '!##-$)'-(#!$ '## ()/ '(#!##* 'E!))!!#* '8# )$)#/'#3 ")# -(8 '" !)#')!#'-3 ")#*'Q6

PAGE 199

G: 1 3111 :111 111 G111 1111 3111 13141:111>1G1 3 %P& #%11& %113& %14& %11:& %1& #!!# **#1G:3>43-%& 0 10000 20000 30000 40000 50000 60000 32333435363738 2 ( ¡ )Counts (002) (101) Increasing distance from center of source0.8cm 4.2cm 5.9cm 7.6cm 9.3cm 2.5cm%(& 7!#;%;(&H#$ *-+,) '!*!)-#$#! 31A#* *$#! '#(# /! '%&#"8#$ -%(&'!'#) !#$ -

PAGE 200

G 1 4111 111 111 3111 111 G111 13141:111>1G1 3 %P& # %11& %113& %14& %11:& %1& #!!# *-77 '#:1>:1G3>-%& 1 4111 111 111 3111 111 G111 43444:444>4G 3 %P& #:1>:1G3>-%113& %1& #!!# *-77 *%(& 7!#;%;(&H#$ *-+,) '!*!)-#$#! 11A#* *$#! '#(# /! '%&#"8#$ -%(&'!'#) !#$ -

PAGE 201

G 1 3111 :111 111 G111 1111 13141:111>1G1 3 %P& #%11& %113& %14& %11:& %1& #!!# **#R:1G:3>4-%& 0 5000 10000 15000 20000 25000 32333435363738 2 ( ¡ )Counts Increasing distance from center of source(002) (101) 100.8cm 4.2cm 5.9cm 7.6cm 9 .3cm%(& 7!#;>%;(&H#$ *-+,) '!*!)-#$#! 111A# !*$#! '#(# /! '%&#"8#$ -%(&'!'#) #$ -

PAGE 202

G> (# 8*+)88# )$)#$"!#)8 !#$ $#! *!)-#)()2 ))* '!** !$#)!# (# ))H#$ 2 '3 $#!# /! '%113&(#)$)*A 9! +!# '# # $'!#$*'$# '!*!)-#!##'!* )/3 ")#'##!!*! !). '!'3 ")#*#-#$ *!'!#!#-# #!)8#! ')!$*!) ''#!3 $#! 7AEC !*!()/'!# !). #! '3 !##! /! ' %1&*) !')##--!$ ( !#*'(#)! '3 $#! !#* '%14&%11:&$#!#-* '#$ '-!* %113&$2)* '$#)!# 'Q6 (#!! # ))* $#! *!)-#'"# (#)$)8# ))$'! )# ' 111A *$#! !1G-/# (8!"!! '")(8:1* #"8)!$*!) 2#$ !")8'%113&$* '##-$)#!# .!)8! #2 '* '! #! 8# (#))/# ))111 AH#$ ($) /! '# ##! !"! 8 )#))/#(#" !* )##! #!** !$#* '111A#-$)# 7#! '%113&*) !2#!!*! "! !#! '3 $#! !2! #! 8 %&2( '% &#* !*$#! '#(# #! '#$ '!# !*!!#C !*!*')!$*!)#$ '31A111A #-$)#2(# '##$ ') !-#8!)!#!) !# )#C !*!*-#"8 '11A#-$)2 '* '! #! !# -$()/! '31A111A## #") $! #()/ $#! !#*-*11A111A -/! '-#'#

PAGE 203

GG $! # *-%113&$# '". !)# '!'3 ")#')# $! '11A")###-2!! # 'C !*! %113&$/#"8/'-###!# )8! '!## $# !C !*!H#) # #! 8 !#$) #* !*$#! '!##!7!#;G ;G(2#$ !")82!#!#$)8#-!;)! '-!.# !#C !*!#! #* /* #( '(C !*8 '/%113&$* '11A#-$) 1G-2! !#*! /! '$$.!!' !2(# '#!) !#!##!!*! ) !" '$! #! 8''!'# #! !#* 31A211A2111A##G1123112442111 #2#$ !")82*$#! !#*1G2>:21G-2#$ !")8 #! 8*'%113&$*31A 111A#-$)####'$)8##! ))-!!-:3$#! !/! '")#*1133112#$ !")8711A#-$)#2! #! 8!# 3: # $#! !*:1-2!# ')8 -$! *-! 7!%> BG1-&2! #! !#B 3 !-#'!') !" ')) -!!--:1-%!&2/! '")#*::11233112411 #*31A2 11A2111A#-$)#2#$ !")8! #! 8####! 41121123411 #*31A211A111A#-$)#2#$ !")8'!# )8 $! '!!*31A111A#-$)#24 !-#)/ '-.!--! #! !#*-!2/! '")#*>1411 #2#$ !")8 $! #*-!* '11A##'/ # !)88!! #! 82/! ')/# (!)-# *-! )/ ''!'# *-!/! '")*3G1 #("(#)!

PAGE 204

G 100 1000 10000 100000 024681012 Position (cm)(002) Intensity (Counts) Region IRegion IIRegion III 1000W 2 50W 500W %& 100 1000 10000 100000 010002000300040005000 Film Thickness (  )Intesity (Counts) 1 000W 250W 500W %(& 7!#;G%;(&E.!--H$! #! 8* '%113&$*+,) '! *!)-#$) "##%&$#! '#(# %(&*!)'!##

PAGE 205

1 '!#! #* '%113&$! #! 8 '!##* *!)-# '! '111D ))$/! !# '31A11A ##'$)8/! '#!-!) #( / '!# # '!# #-$)#2 /'!'#! '!##*B411D >11D'!# # $$! 111A 2( '!#)8 '11D#-$)! '!# '!##2 '* #! '!#! ( -! '3 )* '%113&!** !$!#$) #* !*$#! '!##!7!#;;(2#$ !")8$#! !!#C !*!(8 !3 $#! !#* ''!'# #! 8* #( '(2 )## '/!# ))%113&$$#! !##!!*! )8)/ 'Q6 3 ")*4::33P'Q6")!#!! /! ''!9 ))!$) # "##$#! !*!)'!##$#! !*-$/#**# *-' '))8/! '3 111AL3 31AL3 11A)#2*'$/ ')/# 3 $$#! !2/'!'!#* '# *'Q6")2!!'")) "! !* '31A !#)## '1P2/'!'!##!!*! )8)## ' "! !#* '11A111A! !#'!#!##-))#'!* 2( !#!#() '31A)!$*!)#$ #'/!7!;(')/# 3 ")*4:GP #) # 1>J!#!;#$!* ';.!#-$ 'Q6") '11A #'/#*131P2/! ')/# ")*4:P :1-2 '*!3 ")*4:P #) # 1>J!#!; #$!* ';.!#-$ 'Q6")'3 ")#!!!# 4:4P*$#! !#>>:-!2 '3 ")###)!' )8 4:41P -(*-!($ 4:44P 1G-'111A#-$))#

PAGE 206

33.7 33.9 34.1 34.3 34.5 024681012 Position (cm)(002) Peak Position ( ¡ ) 1000W 250W 5 00W JCPDS (002) Region IRegion IIRegion III%& 33.7 33.9 34.1 34.3 34.5 010002000300040005000 Film Thickness (  )(002) Peak Position ( ¡ ) JCPDS (002) 1000W 250W 500W %(& 7!#;%;(&#! !* '+,)%113&$!3 %#&$) "##%& $#! '#(# %(&*!)'!##

PAGE 207

3 '#"))"! !*13P2'##!-!) #/! '11A *$#! !# :22>-2( 111A#-$)##!# )813P)/!3 $#! !7 111A#-$)#!!23 ")#44GP44P*$#! !#:-2#$ !")82/'!'!#'1P)/ 'Q6")2$# # J!#!;#$!'!##!!*! "! !( / '-!! $! # 2>24-2/! '")#4:3P '7))A! )*E.!--%7AE&* '%113&$#* !* $#! '!##!#$# !7!#;31;31(2#$ !")8'7AE '11A#!#C !*!/! (8 '*!! '!**!3 $#! /#!#* '$ ')* '$?#! #! 8))! #! !#-# #( !* '(7 '31A111A##2#$ *' #-$)# *-C 9# !$ $2 $$.!)8#!#!#$*-'#* /## 'C 9 -$# *!# (!2 #7AE")))$/#'")) -.!--!7AE '$#! !B:-2!#!7AE!))8## !#731A#-$)#2 '7AE!##-))# 13GP* '$#! 1G-2!####! 1:4P :3-'7AE '## #-))1:P -2/'!'!# '(!!*!2!))8 !####!# '-.!--")*1P 3')811A -$! !!'#)7AE*1>P $#! *:1-' -* '!#$#! !!#2!! # ' !)* '!'3 ")#!#$# '%113&$*'!#$#! !' !) !( # ')7AE(# '-!%113&$!#/' '(! '

PAGE 208

4 0 0.3 0.6 0.9 1.2 024681012 Position (cm)(002) FWHM ( ¡ ) 1000W 250W 500W Region IRegion IIRegion III %& 0 0.3 0.6 0.9 1.2 010002000300040005000 Film Thickness (  )FWHM ( ¡ ) 1000W 250W 500W %(& 7!#;31%;(&7AE* '%113&+,)H$$) #* !*%& $#! '#(# %(&*!)'!##

PAGE 209

: !)* !#!)! '-#'7AE###'$)8 1:4P > -!!2# !)8!####!# 1P $#! !* 1G-' 1G-!#!! 'C !*!$!#"8 /2!# '**! /! '$$.!!' !-$"8 -! #!) !## 7111A#-$)#2 '7AE!###'$)8##!*-1:P 1P* '$#! !#1G:3-2#$ !")82/! '1P(! ''!'# 7AE-#* #-$) -#*111A#-$)#!! 2!! !)* !#$# !( ''7AE :3-!#-') (# '%113&$!#/2 '*7AE!#-### !) !( ##!!*! )8 7AE7 '#-$) 1G-2 '%113& $!#*#**!! #! 8 ' !)# !( #!!*! )8 7AE #!-!) 11A 2111A#-$)###'$)8!7AE( / !#2 1:P -2*))/(8# !)8!#!/! '$#! 11>P 47 '7AE* '%113&$"##*!)'!##2 '!#)* "! !! #* !*$/**!)'!## '311D '#) !( / '7AE '*!)'!##!#*! '!#! 7*!)-#)## '3111D! '!##2/'!'"#!#2 '7AE #'/#-')### 2()/11D2 '7AE# !)8!##/! #!*!)'!##*))$/# '31A11A ) !")8# ( /3111D>11D2(*!#!#'$)8 $! #* '!# *!)-# B411D'11A '!#!!#**# #)!' )8

PAGE 210

'!'!7AE")#7111A#-$)#)## '311D! '!##2111A 7AE!##)8)!)8/! '#!*!)'!## 3: -!7E!#$8#) # $$!-!*-!#$8%7E&/## !9 #*-$')8* '$#! '!*!)-#E##-')8> .>--#C#-$))"*'$"!#)8' !9H#$!-# ))*-'$ 4 '. $#! !#* ')"#-$)# /2 '* $! ###-*'#-$)?# !.#-$)# -#*'$/2 )!!' #-$)#1.1M-!#-# '#-$)))8'-#!#-*'#-$) # '-!$'#$# !"* '#*#!# )!) '!C##!(! '.$!)'#%# !4:4&2#!9#* '#* -$')!)* #! '-!$'! $ #S!#!9T#$"!#)8 !###2 'S!#!9T!#))8 '"#!9*!# !")#* #'!#'!#!))# !7!#;3%;&2/! '*!# *!%&#'/! ';!-#!)!* '#-$)?##*/! '#'#*8"8! '!' !*!'#!-%(&!# /;!-#!)$) '#!*!)8#!#)!#$! :11'!-$$##() )!*'?) ?)$#! !#7!;31(' $ )8#!#)!!#$# !7!;3#$*!)*'!' !*!*')!2!#$# '!# ')/)* '7E-!$' 'S!#!9T#* !*$#! '!##!#$# !7!# ;33;33(2#$ !")8'S!#!9T* '#-$)#!#)*! /' '*!)-!# '!# 2/! '-.!--!#!9#*::1D2G11D2>1D* '

PAGE 211

%& %(& %& 7!#;3%;&### C !*8S!#!9T*-7E-!$'#/! '%& 4;6!* '#*-$')82%(&$)"!/* '#*/! '$#! *)!##'/)!##'/! $$'8* '#*!##;# !2 %&### !* $$'8*')!#

PAGE 212

> 31A211A2111A! !#2#$ !")8!#!9##-))# !! 2/' '*!)'!##!# '!2/! '-!!--!#!9#*341D241D2431 D* '31A211A2111A! !#2#$ !")8"/! '' *-! '!*!)'!##) '#(# ?#) '2!#!9 "!#(8)## '* *) '#-) 'K##"! !/#*/! $#! !*'$/! !2/! '"! !#* / !-#*31A111 A! !#23 !-#*11A 7 '31A#-$)2!#!9*) #")*:11DU:1D* #-$)#( / '$#! !#*1G-'*!) / $! # $#! !# *>4-#'/#!!#!9 ")#)# 31D711A #-$)#2 '*!# -$! $#! !*:1-'# ')# !#!92/'!'!# G11D'")###!!*! )8 11D* '. -$! >-2 # #-))#!9#/! '#! '!##2'!-!!--*41D 3-7 '111A! !2!#!9!! !))8!##* '*!# $! #*-1 G1D*1G :3-2!!2 '!#!9 ###!!*! )8 :1D2 !# #!! ")*431 D 47 '$) *S!#!9T"##*!)'!##2 '!#) ) !#!9#/! '!#! '!##!$ *$/7*!)-#/! '!##)## '11D2 '!#!9 # #-))!#!9#* '!*!)-# '!** $/#' #* '!** $/! !#**# 2 '"!** #)$#2!! !'*!)'!##!#!*)!S!#!9T! !#

PAGE 213

G 0 200 400 600 800 1000 02468101214 Position (cm)Grain Size (  ) 1000 W 250 W 500 W %& 0 200 400 600 800 1000 0100020003000400050006000 Film Thickness (  )Grain Size (  ) 500 W 1000 W 250 W %(& 7!#;33%;(&S!#!9T* '+,) '!*!)-## !*-7E -!$'#$) "##%&$#! '#(# %(&*!)'!##

PAGE 214

'E'##!#$) #* !*$#! !*!)'!##! 7!#;34;34(2#$ !")8' #!E'##"##$#! #!-!) '#*!#!9"##$#! !'E'##"!#(8' *-! 2/! '-.!--")#*4D2:1D2>1D* '31A211 A2111A! !#2#$ !")82))*/'!'!!'-!!-")#!!2G2>2:D* '31A211A2111 A! !#2#$ !")8'E'##-#*()###(# !# 31D'E'####!))8/! '!#!$#! !## !#*))$/#'##*( '31A111A#-$)# (# !##)!' )8##!%$#! !#)## ':3-& 7 'E'##$) "## '*!)'!##2#!# #* '!** $/! !#(#"**!)-# '! '3111D)/3111 D2 'E'##!))8### '!####*)) $/! !#2( ')!#**# '#)$#!** '!#!! # !) 'E'##### '*!)-#('!2( ' #)#!*) ''##! '!# '!## 46!###!*/.$!4E)* '** #* !"#$ !) !)$ !# 6!###!* '#) #!#*!)! (8*!# $# !-)$$# .$)! ''!#-) '#$ !# !** $#! !# #(# '#!##! !222C!") '# # !9 '#) #'# $$ !#!# *'* '# !#2#) *-!**#! '#$ *).'*2 '!###!!#

PAGE 215

311 0 20 40 60 80 02468101214 Position (cm)RMS Roughness (  ) 1000 W 250 W 500 W %& 0 20 40 60 80 0100020003000400050006000 Film Thickness (  )RMS Roughness (  ) 500 W 1000 W 250 W %(& 7!#;34%;(&E'##* '+,) '!*!)-#-#(87E# !*%&$#! '#(# %(&*!)'!##

PAGE 216

31 !9(8!2/! '.$!)#) #!###! -#* '$$#-) 7 '#.$!#2$#! !*1-!#! )8()/ '#?# 2 !#!")#!! !#!!# *'!#$! '#(# !#)# $#! !#' !#$$!) '!*-! 8#'!)2##'/! '##; # !)!))# !* '$$#-)!7!;711A#-$)#2**# /!))(#!!###! -! '!##!# $#! 8 !$!##/! '! !))!*#!' ( /# #(# 2!# '*.$# !"!*).2##!# )8 ( /$#! !1:3-* '!#.$!! !))!*#!' -# '(# !#( /$#! !##(# )" !)$ !"!#) /8*' /! '$$!) I 8 (# '#)*(!#) !*!)!#$$!) ' !"!# $ ). )#! #$ '' '$)#-2 '*!-$! '#(# # )#05'' '8!-$! '#(# # )#2 '8/!)) (* # !"!# !# !!#' '! #2"!*#!/! ' )# !-$! *) '!'8 )#'*!)-?## $$ !#! '!#! # )8!*)(8) !#'!$#( / !"!*).$#! )/8 )*).0:212>5 (-(! '!*!)-$#! !/#!###! !3:4* ')! "!/!2 '' !"!# )!9(*!-$!! '#(# 2 '8/!)) (* # !"!#/!-$ -#

PAGE 217

313 #!(!!(-(*).87 !"!#2 '*).!# C!") !"! #! 8%(* '!#).&28!#! 8* '!2/'!'!# ))(8 #)*(!#%") &E) !$)! !* ") #! 8C)#$/#! 8%VFQ&'*). !"!# $#! )#!#$ !))8 ) '-! !"#$ !** 0>5# '!# !!##. #!")8! !###!2! /!))($# (8 -Q%I!@I&/! 'I!$# !S !"!T I$# !S$#! )#T2Q#! #*).*'$#! !# !###-* !#!Q%I!@I&/!))#) !!#! (-('#!!8!*)#) #*!!-$!!-$)./82# !#"! ')! "!/;#*! !#!)*) !2 !#$)2!-$) !2#$ !0152/! '-! '#$### $!! !(!* !* '!8*) !*!#!# -2# '!#/!)) ** *!)-$$ !##$ !/!))#$#! #2!# ##! /! -!!#$)! '*!)-!#$)#* !-$"*!)-$$ !#$! '$$ 8 '8*!# K/8!# !)!9!-##!# 6$#! !%6&(!# #$ !-$"#-*!)-$$ !#6!")"##!!#2 8$!))8 /! '2*# '#(# 2#! '!*). !-$"*!)-#! 8 $ !)$$ !#!##$ 8$!))8!")"# !")8(!#! '#(# #' !! '$)#'#(# 0158$!))82!!# ( /B111!-$"#-*!)-$$ !#2/'!)'!'!#

PAGE 218

314 8$!))8*!)-$$ !#!'!!#$ #) !#(#* -!!#$)* !7)$!* #015-$) !)# !*) '# !'!8* '$#! !)7.-$)!-$) !* .8)' '# !'!8*+*#.$# .8! (-(!#$$# !"!#$ !!*)# ') !)$$ !#* '!*!)-#(8 /-'!#-#*-$# !* !(!# -'!#-!##-$ !* !() #(8.8! # !)#0>G5 '.8! # !)!#!!9(8 $$! !() 2/'!' -! !#' )! 8.8! # !)# (8#(#*!".8!#!-$!! '*!)-.8! # !)#*-(8 !" .8!#(!!-$) #$ #)8-! # !! # !)82 7)$! !!")"!!.8*-) !#! # !)8 !#$# ) .8*-#7)$!#---)8 '9! **!! (!8))!#!8 #**.8(#( -#'" '#-##!!+!#( /+2# *!# $$.!!! # !) *!8#')(#!-!)2( !##-))2!# '* !!$ '" #-))! # !)*!8'!#/)')$ !( '!' !*.8! # !)##) !*-7)$!# !#$# ) ' #) !.8"8!#* !'!) -(! !/! '.8 *'/ '#*!-$) !#!-$ #!!*! !##()* ') !#*.8! # !)# -$# )8$ +,) ($# ')) #!9* ')! # !)8## #

PAGE 219

31: .8(-! !))82* '$$#-)#* !" $!* ; 8$+ #$ #!#9!! # !)#'!##$$ # '# )! # !) !!+')#!9* .8!%;3V43D;V>D&-$ '9!!%1>:D&## # #!)# !! '+!.-!' #) *-.8! # !)# '#-'!#-!#-$# !(8"! !#!# !'!8 $ !*.##.8!#-(8*!*9!"!#'!# #-# / !() #-))8#$$)!(8!!99! # !#*8!!(!'!"!**'!'.8!$ !! $#! *!)-!# !"' !".8!#'#*!)-# .$# !"!*)./! '$#*'!')8 !" -! .8 '!# #! !( /!#2/'!'#) #*-Q%I!@I& #!$$'!9## '!#'!# #! !!##!# )8( / $#! !#:3>'#(# #!# !"! !#! '!#!( / '#* !!2!-$"#!!#$$'(#Q%I!@I&!# #! !$!## !! !))!*#!' /! ' 2 '*!"# !"!*).'*(8!# '!*-! 8#'!)2 /'!'()# !"!*).*#()/! '(8( /! # '!'$#! !")#2!#*!#/'#!# !"! 8!## ')8(8* /" '!#!# !"! 8!!# .$# !"!# #'/!2( #!" )*).(#* '$/

PAGE 220

31 #!!# !( !* ')$*!)I *' 015 7!)-$$ !#! '!#!!$ *$/2( !*)(8 !)$##$#*$###(# -$ '*!)$$ !#!! '(# '!"()/! '$##! !##(# !(8 !"!(-(# '/! '*! $#$#! !! !#!)!$/$#! !-2(# !!#*!! -#* '!## #*#/' '*!)'!##!# )## '11D !" !"!*).7.-$)2!**!)'!##!# )## '11D*)) '##'/*!"!#$ !2!/'!'# '!#! )) !2 '!##-! # ') !)$$ !#6$#! !**!)-#! !$*)./'!'!# $))) #-)2!*). #) !*-$/#!!# !( !*I !)*-#$ '$/#!!# !( !#$!*!# *).### ')) !" ?#-)! !!##0:25'#2 '*). '# '#(# !# **).!"*-))(# $! # ) $#! !# '#(# 2 '!*-! 8#'!)!#!)8(# # 2 #! '*). #-$#! !2 '! *).!# )/ '*!)-!## '! -! # '*!)-?##!# !"! 8 '$##!()-'!#-#*!##!# !"! 8/! '#!*!)'!##!!'( / '#-'!#-# /!))( !###!# !#4:3 4::()/2/'!'/! '#!# !"! 82 !2))-(!)! 8!!'-!#$ !*.8#$!#

PAGE 221

31 !#$$# ( '-! -'!#-*!#+,) '!*!)-#!# !"! 8/! #!*!)'!##'-!#(.8#$!# '*#*! (!#/ !!+*!)-#)!# #### 052 '*$$# # '#!! !2/'!'!# -! #* '!##!# !"! 8!!'!#-'!#-/# $"!#)8$$# .$)! '#!! !/! '#!*!)'!##*! $# !# !43 '$##!()-'!#-* !##!# !"! 8!#(# '7'#'!--)2/'!'$$)!# "8 '!))!*!)-#04424:5'7'#'!--)/#)#$# '$ 2$# ) # # '!####2! *!)# !-8 ') !?#-*$ '2/'!'#!-(!)! 8!## #!# !"! 8#!))-(!)! 8!#(#"%7!;1&2( )8(8* B3# 2 '! !!## )8(8$ *-! !!-$ !2/'!'## *# !!# -! -'!#-*!#!#!# !"! 8 '!-'!#.$)!! #!# !"! 8 !#!# !*! *# #2/'!'!#$-! )8 !*!#!9 !)*!)'!##$$'# '!#!9 *## # #) $#2 '*#! !0G>5A' '!# #2!#!9! '" !)!-#!/!))(# !(8*!)'!### *!)-(-# '!2" !)!#!9/!))#2 '* !* *# #/!))!#2#! '! ! '$/# $#! '*!)-#2 '!#"!$!#!-$ '!#-)(8! #!*) '-! !"!

PAGE 222

31> #$ #$!-8!*)!# '#)*(!#* 2/'!'!##/! $/'!' $ !)/!))!# '8* !"!#2/'!' ** # !"!#$ !!/8#$"!#)8!###'* Q%I!@I&2/'!' (-#!"#!)82!###$)8/)8 '$/ # $#! '*!)43! !2 '-)$! # #(# !#!! )!*#!' /! ' 2 '*!"## !"!$#! )*). "# !* !"!#$ !!")"#-$!!**#( /# /'!' #$ 2!**#( /$#! !#/'Q%I!@I& '#-$!#( /!##$# !"!*). "## !"!*).-$!#-$!##/! '!!* #! !( /!##$ -$!##*'! !"! *).2/'!'** # '*). !* !"!# $#! )#%Q%I!@I&& 43*!)8%!& 6$#! %7!;4&2 '**!)'!##%7!;3&"## $#! '#(# $! $ ** #2* !"!#$ !2$/# $#! '*!)-*!' $#! ##( /$#! !#1:3-(841J4J*31A 111A 2#$ !")8'#')8#!$#! !##!# /! ** #2 '#!$#! # '* '! #$ !#!#$$'0>52/! ' ?#** !")8*!(8 !*-! 8#'!))!!()#$ *).!# *#* '

PAGE 223

31G ) !))8!*-! 8#'!)2# '#'!)! $ # '$)#-! '!#!2 (# # !"!*).*-'! '#(# ') !"** !"!#$ !"## '#$ $#! $#Q%I!@I&!"# '!*)* !"!#$ $#! 2-$!##( /# !" !"!*). -# (-6$#! ###')8/! '!#!$#! !## !#*))$/#'!### # / !!!# -! (8 !"!#$ !** ##!###!'$ 32# !"!#$ !** #) !!))8#/ #2 $##!()" '!* '#(# !* '$#! ( /31A111A#-$)#211A 111A#-$)##* !*$#! !!#$# !7!;731A 2 !!##!# )833J!!2/'!'#/! ' !*$/# %3J&( / /! !#711A 2 / $! !! #!# )8>J2/'!'!##-))(" !*$/#( / / !#%1J&'11A@111A !#.$ '"$8 #) !*/##*2 '*!# */'!'!##-))!!#! $#! !)**# $$)! '11A #-))!8!$#! !**# '"#!!*! ** ') !"$#! (#*# $#)$#* $#! "##$#! !'##*)##) #*' **# $#! !2#) #*--!#)!* '$#! !#* $! #'* )!! $) !( / $! #/#C! 11A111A $#! '#-$#! !#'###**))!#

PAGE 224

31 '-))$#! *)./#)) *-$#! $) !7!;:'-))*).##/! '!#!$#! !2/! #!-!) ')**());")#* '-))*). ($$.!)8C) '$#! )*).%I&' !* !"! $#! )*).!# !-$ ))! '-! '** !)#$$ !#2 !# '*#*) # !' !"!*).'# !!!#(# '#! '! !(#! !#/!))(#'/()/ (##! !" !2 '! !!##(8#-'#1J-$ !* !#!! !!# !( !# ##' !"! #"*-$# !# 2 ' !"!*).-# (#' B.131-;4' !"!*). )) (#B.131-;4-$# !# #!! # Q%I!@I&!# $$.!)811J')/ !"!*).!##!# /! ')*#'$ '#!$#! ( /!2#) !"!*).## #$#! #*##(I '")*-$# # $!! !".8!!##()#!! '#$ 8!)#* .8 8$!))8 '* -#$ $!! .87'!' !"!! !!#2#-!#/!))(!-$) '!-$!!! -$# !# # ''!! !*))!#!#! '$#! *!)-2/' '!-# # # !)#! 2/'9!"8!# !# '*#() '!-$) #"* -$# !#

PAGE 225

31 433#!# !"! 8** #%!& 731A#-$)#!!2" !#*/! '#!# !"! !##*44.1;4 >1.1;4 F-( /1:-2#$ !")82##!7!;> '#2 '#!# !"! 8!##)/)8!#!/! '!# *'#?# !#!#!# !"! 8#) #*-!#! !"!#$ !E #$ !#) #*-)Q%I!@I&#$#! !#$$' '!*-! 8#'!)?# %/'!'** !")8*!# '* '$#! !#&7'!'$#! !# !!2Q%I!@I&##2! '*).*$#! !)### '* !#$$'2/'!) !"!*).-!## *))# .$#(8! )!*#!' !# !"!*).-!## (#! '#/!# !( !*$ )# #-) .!#''#!*). #/! '$#! !#'!))8!))# !7!; #!# !"! !#*31A#-$)#)/8#)/ '111A#-$)#! '!#!2 *'$) *#!# !"! 8"##*!)'!##!7!;G2 '!#) ( /#!# !"! 8*!** $/#/! '*!)'!##E$/ ) #/! '!##!# !"! 8H"!!###()/## #!#! #!# !"! 8/! '$/#) #*-!**#! ?# !"(!#/'!' !##*-<411 <111/! '!#!$/*-31A 111A2 #$ !")8 !"!8!##/! (!#2/'!) !"!#$=!! !# .$ '#!!*! )8## '!#* $ !)#K/ !"!! !8/!))#) !)## #$ !-* '*!)-'#2)/#!# !"! !#*31A"##111A #-$)#!##!# /! '#! !"!! !8

PAGE 226

3 7111A#-$)#2#!# !"! 8!##!# )83.1;3 F-*$#! !# ( /1:-2##!7!;>'")*Q%I!@I&!#.$ "8 /! '$#! !! '#--#31A#-$)#')*"! !!# !( # !* '** #*-#!# !"! 82/'(8!#!Q%I!@I&'#)! ) !*)#!# !"! 8$##!()-'!#-*'!'$/#!# ' (!#!#!#28!)!)* !*!-$) .8-7)$!# *.8) !! # !)#! # !(-('!#** !")8 !"## !'!8 .8!''# !!**!! *-).8 ##/! '.##.82/'!'#*!)--$#! *!)-$#! !!#! !))8!-$ $! !#!$!-$# -'!#-# 711A#-$)#2 ')8 / $! #!!#!# !"! !# '#$! #/3.1;3.1;3 F-*4G:-2#$ !")82/! ' *-(!#-))'!' '111A#-$)#!2'#!#!# !"! 8 /! '$/ !( "! !! !"!8 #)*(!# !"!8!# .$ !*)) !)$$ !#)!)8(# 8!*)#) !"C !#*))*$!-8!;#*! !# !# #$) *11A2/'!''# (!#*B11/!))#) !)## !-$) !*2( -'/ '#* '#'$#!#!# !"! 8* #! !( /!## '#-$#! !*)) '$/#2/! '#!( /:3 >--"! !!#)$# !**#!#!# !"! 8 '! #!'!## $!#!# !"! 8 '!-!!-*.1;4 F-#) #

PAGE 227

33 *-)#!Q%I!@I& '*).##! #'/!*' !*-! 8#'!)2( /)!# !( !* !"!### '!#*). #-$!)8 '$#! )*).'!#!!#')83-! /! '2!# !# *-*' 2## !"!*).'# )!# !( !*! )## '1P**$$!) 434))! !%!& 7)) '!#2)) $# /! '1G-#(# !! 8* '$#! !/' '#-$)#)"')$-! '!# $#! !) 82))#!# !"! 8!#(' /! '*$! #!# !"! 8(8I# '*!)'!##$#! !7$! $( $*!)8 /! '!--* '-$#! !#2 '*'"'!' $#! !)8#!# !"! !#!"(8 '))#8# -##* /$# *!)'!## '#* /* )*!)-!# '! '") 2 ' )#!# !"! 8!#'!'! !!#)/ ' ")#!"(8 '-$ 2"!#"#!* )*!)'!##!# '! ' "))) !*))-(!)! 8!"(8 '"/' 035# $ '*!)'!##2 '*I# '*!)'!## # !*)))-(!)! 87!)'!##!#* !*$#! !2 '* # '*!)'!##* '))#-$)!#I# 2 '$#! !* '#-$)-# ( I# -! !#!# 8/! ' '!## $#! !) !#'!$' '!##I# #-/! '! '* '!###*!(8 '$#! !) 8'!#$!#)8*#-$)#/! ''31J"! ( / '))*$! $(#!# !"! !#'!-$") !#'!$( / ))*$! $(#!# !"! 8($$! '$) #'/!7!;3:

PAGE 228

34 '!#!#$) *#!# !"! 8#* !*$#! !2#'/# ) ('!"(8I# '*!)'!##$#! !/! '! '!/(!# 6 $! # '"'#'/! !# $) #* !*( '$#! '!##!7!#;3;3(' !###!*)) /!))((#$) #*!))#-$)#'")/! !# '!!' !*31A#-$)#"!#!!2 '"! !# #!# /! '$"!#)8#!('#!#!# !"! 8#!# !"! 8!## !##(8* #*3*31A#-$)### !2#$ !")8'!#!! #! !!##$#!()*-# !* ))* ''#!#!# !"! 8! !#!! !$# ) 0.001 0.01 0.1 1 10 02468101214 Position (cm)Resistivity ( cm) 500W 250W 1000W 4 Pt. Probe Hall Region IRegion IIRegion III7!;3:#!# !"! 8* '+,) '!*!)-/! '))#!# !"! 8%#'& /! '*$! $(#!# !"! 8%#)!&"##$#! !

PAGE 229

3: 0.00E+00 2.00E+20 4.00E+20 6.00E+20 8.00E+20 02468101214 Position (cm)Carrier Concentration (cm-3) 1000W 5 00W 250W Target Doping Level Region I Region II Region III%& 0.0E+00 2.0E+20 4.0E+20 6.0E+20 8.0E+20 0100020003000400050006000 Film Thickness (  )Carrier Concentration (cm-3) 1000W 500W 2 50W Target Doping Level%(& 7!#;3%;(& !*-))-##*+,) '!*!)-##* !*%&$#! '#(# %(&*!)'!##

PAGE 230

3 #) *-'#!Q%I!@I&#* !*$#! !2/! '"! !#!Q%I!@I&#) *'#--'!#-#$# !!###!*#!# !"! 8* '!##-$) %7!;&A! '#!-(!)! 82! !#) !"!#$ !*)##!# !"! 8(8'#!! !'!#!##!# /! ' $# ) '-) !"!#$ !##-$# !*) !#(8!#!! # !).8 !@'!' '# !'!! .8!$ !#) !!9!"!# '!#)811A -$! !!*! !2/'!' !# :1-/! '")*>.1-;4 *-C !*!H 2 '!#$! !#)()/! '!! #!!*! !) '!'3 ")#* '%113& $'11A#-$)!#B3: !-#)/!! '31A #-$)* '#-$#! !2/'!) '11A#-$)!#BG !-#'!'!#!# !"! 8 '31A#-$)'!#!##!# /! '#! !(8 !#-*!"!#$ !6 *-E-## !###()/!! # ''#!! #) *'#! ')$ !-$# !(8))!)#2/'!'!# #!# /! '$$# !"* -'!#-# 7111A#-$)#2-#)##!H /$#! !# %1G:3-&*-!#-!2 /)) '$#! !* 3-(# '#-$)/#!" )8((*H)()) !#* '#$#! !#'""8)/! !#/! ")#*>.12>4.12.131-;4*$#! !#1G232:-2 #$ !")8#! !*$#! !:-## # '!##-$)!#

PAGE 231

3 #! !( /!#2 '*!#$ !))8#'/*!"!#2/'!'##Q%I!@I&K*"! !!! !!# #!# /! ')*"! !!#!# !"! 8**111A#-$)#!! '#2*11A111A#-$)#2!'#)/! #!# )8>:.1-;4'# )/! !#)* "! !!) !)$$ !#*111A#-$)#!!#$! .$ '#!Q%I!@I&"##$/$#! !#!# /! '# !'# ** /#$# ) .$)! '# #!# !"! !#!!*111A#-$)# '##!-$)! !#* 'H !)! #) !#'!$ )/! !#/!))(!###* '()/ 7 #! !( /!#2#!# !"! 8###'$)8*-:3 >-*)) '$/#2) #/))/! '# !#!! /!2#!# !"! !##(8* #*3212 >*31A211A2111A#-$)#2#$ !")8! !# !#(8* #*3G2:2>42#$ !")82!! !'#!! !#$#!()*$$.!)811J2>J2J*#! #!# !"! 8( /!#'# #!# /! '$# ) ) !#'!$( / !"!#$ !! 43:))-(!)! 8%!& ))-(!)! 8 $) !7!#;3%;(&#* !#* $#! '!##2#$ !")8#$"!#)8#!(2! !# '$#! '!## '#/! ' !2 ))-(!)! 8")#A! '!' $/*!)! )"! !!))-(!)! 8!#*2/'!'!##!# /! #-))"! !#!#!# !"! 8! !))-(!)! 8*31A#-$)#

PAGE 232

3> 0 5 10 15 02468101214 Position (cm)Hall Mobility (cm2/V s) 500W 250W 1000W Region IRegion IIRegion III%& 0 5 10 15 0100020003000400050006000 Film Thickness (  )Hall Mobility (cm2/V s) 1000W 500W 250W %(& 7!#;3%;(& ))-(!)! 8*+,) '!*!)-##* !*%& $#! '#(# %(&*!)'!##

PAGE 233

3G !#/! '!U-3@F#* '"")>-3@F#2/'!'!#)## '.$!) 7111A#-$)#2 '"))-(!)! 8!#!!#>-3@F#2 !##!!*! "! !# #!*.$!)7#-$)#$#! 11 A ')8 -$! *-!%/! '$#! !*::-&'#-(!)! 8* -3@F#2/'!'!##(# !))8'!' '*31A111A#-$)#K/ !* '!##-$)## # !#--$# (8.8 # !)#@9!"!# '31A#-$)''!' !* $! #! '11A#-$)#')#! !!*$! # -! !!-(!)! 8'!### # '!# '/$!*)!-(!)! 8 '!# #**!! *' #! !( /!# ") #!))-(!)! 8731A11A 2'# #! .$!)( /:-%!&-%!&7111A #-$)#2 '-(!)! 8!#(8* *:*-! 2( '!#!##-)) -$ ''!#!# !"! 8! -#* '-)2 !#!# !"! 8'"'#!!*! )8( /!# '#! !"!*).'! '#(# 2/'!))! )' #!))-(!)! 8'!##$$ # '$# ) !"!#$ $!-!)8** #! !')*!*)*'$$#'# !$! !#( /!# '-(!)! 8## # # !-'!#-!#-! '-(!)! 8 !9!-$! 8# !!#* $ ')! # '-! # !-'!#-! )8$+,) '!*!)-#012G52( '$ #

PAGE 234

3 '!#)!-05 '!## 82)'#!! !( / !#2/! ') '#!-(!)! 8'!### # !!9 !-$! 8# !!# '-! # !-'!#-)!-! !-(!)! 8# $ ("!###()/2H7E "!##!!*! )8## !28 ))-(!)! 8#'/#)! )''!### # #-* # (! -#$!#)8(8H7E!*)! '-(!)! 8 #)!* # (8 '## )' !9 '!C#2( ** # !#$! #/ ("8 !-$ ) !)$$ !#0G2G2452! #-#)!)8 '8 ))! -(!)! 8)#2#/!))(#'/()/2!-*$ '!#)) (BD2 !-#!#!-!) ))#!9')) !-*$ '#-# )!# !))8#' 2( !#!/! '$ ")#0G35! # -(! !*$! # '* # !-'!#-#)8# -'!#-# -!' ($##!()! !#!! (8 '#-))! -*$ 438!-###$ 8 'E # ") '#!) !#! *!)-)-!-!# '. !#!$ 2))!)#-$# ) !#2 '*'#! !#* '#)#$ !))8 #$#!()* ''#!! *( /!# 7'$) #* ') + !2! !#) ' !*)# '* '31A#2!##)!' )8'!'!!-$ !* '11A111A##'!### # '!# ))8#-))!#! $ !!!2/'!'!#/' '! !!## !))8

PAGE 235

331 )/) !" !'#2 ''#!)$ /! ''#! '! !2/'!'## # #) !# #$#!()*)/! !!! !* +-#)8#-))'#( /!#2/! #)!' )8)/ !*!!(! 8$!)'!#")# ' !* !#)/!!-$ !# # -$# ) !#2 !!#$$#! */' /)#)/! !#!!-$ !! !))82 + !/# ( -# *-! ) ') + !)) ' ##! !"! 8*E !# !!$ (#")#*-! ) '* )2/'!'## # ' !!# )' # '$ 1J )/! !!!-$ 'E !! # ' /-# )!)8. !#!##*# !2/'!'!))##* ')$ $* !)#$ !$ !**'#;)!-)###(# 2 !! $#! *!)-#')*. !#!##* ''!! ## # !#!-'!#-!")"! !"* #!##$#!()'!#!# #!# /! '-'!#-*-$# !$$#! '-)/'!'!")"# *!*.8! # !)#@9!"!# (-((8 !" !# 43H;8$' ) #$ #$8 6 *-H-### ") -$#! -! (!* '#** '$#! +,) '!*!)-#)8+22 !# !$#** '#$#! # ## (!# ')8

PAGE 236

33 -! ($!#) #$ '!*-! #2 !! (!##* -! 2/'!'!##!# /! '" !# (*' -#$' -! !#*)# '#*#'!* #!$8 ##! /! ''-!)(!") #!'!'#) !-) !$). 'C)! !" -! $# !();!! '# $#! *!)-?##*!#4:J24J2)84J+'-''!' !*-$ +!! #.8!#$# '#* #!!*! )8!.### !'!8* #$ '!*-! #2 !*+'#!# :J2/'!) '.8( !# # :GJ>J2#$ !")8'+ !#/! '! .$!)*(!# !'!!2/'!'!! # '.##.8!#)# #** #!!*! '!$#'$( /#$#! #$ '#$ /));*!()$!#(#"! '.8-) !$). %7!;:&2/! ''!'(!!8%433&)/(!!8 %41>&$''!')/8$# *>J44J* '$ 2#$ !")8* #$ '!*#!.-! #2 '#* ''!')/ 8$#'-)82-$!#>J4J* '$2#$ !")8 '0:15$ #! ')! ## ''-!))8#'!* '!'8 %433&$!##!# /! '#*.!#$!#''-!)#'!* .$)!! )8! !*8!* '#*#$!#!#.82'8.!2-(! !*( '##) ##!# /! ''-!#(.82 '***$'8#!)

PAGE 237

333 "!/'!'#$$ # ''8$ '#!# '-!#(.8!# '#* -$# !*) !#* ')## '11D*!)-#!! 43>H;8!** !%!& W !*! !*H#) #*#$! #! 8% #&23 $ $#! !%#&2*))/! '')*-.!--%7AE&%#&6!** #! 8 !#* !* '* !*#-$)")' # !#*!# '! !* !"3 )))*!)-# '! 'H;8(-?##-$)!$ '%BM-&2 '*! #! 8!#.$ (* !*!)'!##2/! '!*!)-#8!)! )##! #! 8 '$-.!--!*)))#!#C)015'3 $$#! !# $) !;#$!#( /8# )$)#'!#!# .$ (* '!##2( !###! !" #'!* #!;#$!#) !*;*;$)# 015'7AE' !9# '!** $?#( ''( '!#!*) (8!# (!2/'!'!###(# ')#( !#(8"! !#!;#$!#2'#!-!#!9"/'!'' # !#K-!8# ))! #!9##) !)")-#*' # !2/'!'#) #!#-))7AE#-!#!9##27AE !##'#2(# '" !)-!#!9!"8 '!*!)-#(-#$ '*!)'!##2 '7AE!#.$ !## '*!)'!#### '#2( '*!)'!##8# )C)! 8-# (#!!! $ !* H015 )) C !*!*'%113&(#)$)3 $*/ 9! $'#* +K!$*!)#$ #*C !*! !*31A111A 2 #"8#$ #*C !*! !*11A 2#!###!'$ 4'

PAGE 238

334 %113&$!##!# )8 '-# #2/'!'!! # '*!)-'## (#) $) '!### # -#'"#**!! #*-(!)! 8 '8 -! ")!# # *!)! / '*)/*8%113&8# )$)# '!###$! / )!* '#(# #$$ '#!!-$!)2 !"!*).2$#! )*).'Q6 (#!! # %113&$# 4::33P3 *$+XH;8#6!###!*H /!))((/! # !#(# 8$2/!))""! !#! #! 823 $$#! !27AE2# $#! !)** #*!)'!## ** #(") E.!--$! #! 8 $) #* !#*$#! !*!)'!##!7!#;G;G(2#$ !")8 #! !#*-11A#-$)# #!# )8)/(##' !-##! 'H#"8#$ 31A111A#-$)##'/!#!! #! 8##! '* #! 8!##!!#$! '!*!)-#2## # #!*!)'!## #*)8$ '#! #! 8!! '$$#-)$# ) # Q%I!@I&!##/! '$#! !##! ** # '/)!# !( !* !"!#)"! !#$# ) #Q%I!@I&!##2# )'*!)-!#)#!#! )-/) -!#!92/'!'/)( '$ ($/!))'")/$! #! 8'!### # !#7AE #*!)'!#### '!#!( '#$#!()*#$ #! 8!31A111A#-$)###!'!#!##$$ (8!## !7AE/! '!#!$#! !##!*31A111A

PAGE 239

33: *3 $$#! !#!###2)) -##! C !*!H#) # #!!*8'!')8!# $!$#'$'!# $8!#(# $$! (8.-!! '##$ $# !7!#;(;>()# -#!!##! /! '3 $$#! !# ')8 13P)/ '!")#7$! #-!!)111A#-$)# *-1G:3-211A#-$)#*-:11G-' $! # *-!#!!*! !) '$2/'!'. # )3 ")#'11A#-$) 1G-!#-(# '$!"8/ '*-!' '"#!!*! !#)# -# #*31A '!#* ## # ' !)* !#* !*$#! $/ -#!!)###! /! '$#! !#/'! !##!!*! )8)/#!# !"! !##!!*! )8'!' ))11A111A $! #'" -#2!! '$# !) '!'3 ")#* '(#)$#* !)!#)###! /! ')%13P&!#!3 $#! !( /!#*#$ '# $! #.-!2 !)!#* ')83P'!'!3 '$ !!*! !** !*3 ")#) 'Q6")!! #( !.$#!* ';.!#! '#*-)! !' ; *;$).$#!!# !( '!'! # !) !#2!#!###! *))/!$$'$##!()-'!#-* ;*;$)) !!# -!#'( / '-).$#!**!! #* ')###(# '+ *!)-'**!! #* '-).$#!% /! '! #*X;&GG.1;2:>.1;2

PAGE 240

33 33.1;X;*#)!-*) )##2;.!#+2;.!#+2#$ !")8 '#2**!)-#(# )!* !)' !!$#! !2 #(# /!)) '*!)-28!)!!;$)-$##!"# -! !# ))")-2 ;*;$)) !.$#!-8015 '#2# !! '-!#'* '-).$#!**!! #!# #!# /! ;*;$) !$! -$##!"# !! ;*;$).!#'!#$##!")"#*!)-(-((8 !$ !)#2 /'!'#*!*'-!)(# -#)# )/ / -$ # '*!# ).2*9!-! ') !)#'##!!*! #! 8)8*11A111A#-$)#/' '3 $ $#! !!##'!* #!!*! )8)/")# '#$/#2 !".8!# '"$$.!)811111! !82#$ !")8'!### # !$!!#! #!*!(8'!'!! !!# '$##!() !( ;*;$)-$##!"# !!#;!*!# !( !*! # !)#/! '! '+!#*!(!# $) # !)#(8 !#$ !-'!#-2 '# !")-) (-! !(8.$#!! '!?# -! # !)#!() /! !! $ !#* '!/'! # !) !# $) !!#$# ) !# '!' -$ #2'!'#(# -$ #.$ /! ''!'$#! !$/#0:2215)#2! # !) !#$# ) !#/! '!#!!!# '* '# ** #/)8!)!# ;*;$).$#! !*'!'! !##! #-#$)#!() ))!#!##*!"!#/)

PAGE 241

33 #(#C )8!# (# !!(8!$!2 '$# ) *;!*! # !) !#!##!-)!)8 '3 $$#! !*31A#-$)#'##!!*! )8)##"! '11 A111A#-$)#'$$#! !*111A#-$)#!!!#' 1P)/!3 '")*$+2/'!' #) # J);#$! ;*;$)! !%! '01115! !& -#*#!)# ##2 *!)-'# #!) ;*;$)# ##7#$ !2 '!# 8$!))8#) #*-) .$#! '!' !*! # !)#015'#! # !)#! !-$) -#*) *'#27)$!#*-!-$!* '!'8*) -#;$).$#!!## !(8(! #(# 2 '*#) #!(!;.!)!;$)-$##!"# ##0:215* '!# # ##!##**!! )8)2*!)-)-! !#) ;*;$)!-#!!# # !2 '*.$# -''!'! # !) !# '3 $$#! !-"# /# '$+")! !2 '!#! # !) !## (8 ;*;$)) .$#!!#$# ) #) *!".8!#' !"!#!-$! '*!)-2!/'!'#-!-$) # !! # !)$#! !# !"!#*-7)$!#! '))!#!#/! '! '*!)-# !! '-)*!# $# ) !427)$!#/! '.8# # !)#')(--**!! (!8))!#!8 #*/! '.8 -#'11A#-$) :-)#'##!!*! )8)/3 $ $#! '$$2## !! )#'#'!' !*! # !) .8'11A111A#-$)#( '#'!* B13P)/!3 !!2

PAGE 242

33> -$ !731A#-$)#2 '$$#! !!#11P)/!! '!*!##! '"-!!-)! # !) !#2 '#-))'!3 $$#! !31A!##!# /! '!'! )##-$# !(8.8! # !)#2/'!'/# *!)) '( ') ')! # !)#! #"!)()! +-$! 'C!)!(!-#!9* '! # !)#! '#!9*#!) ()8!!9.8!#2 '.8!#:J4GJ) ' ') #! *#!)!!9()!!9.82#$ !")87 ')#! 2 '.8!!#41J:J#-))* '#!)8()8!!9.82 #$ !")8# '! # !)#! #((8.8!#! '+) !2 # $)#!")-(!*# !!$ ( / '! # !) ') '!### # .8!##-)) '! # !)#! ## #!)# !! 8# )# .$ '#!)8()8!!9.8!# ) ' ')#! #2/'!'!! # '!#*! !/) )*# !2!# '*)!)8 ( !))8*"()'**# )/3 $$#! !#*!#/!))(!####(#C )8 7 #! !( /!#2 '3 $$#! !#*)) $/#-" '!'")#2/'!')# 'Q6")*(#)$) !** !''!'3 !)!# (#"* '%113&$K/ !"! #$ !!!!##$$ (8 ') !( /) !)$$ !# $#! !''#!$$#! !)##* ''!'3 !)) /))/! ' #!#!# !"! 8( /!#

PAGE 243

33G 77AE231A111A /#C !*!(8 0335#* /*-'!)!$#211A /#C !*!#! 03G5 #* /$#!$#$ !'$ 4!2)"! !# ** '111A ')!#!7AE*#-$)#*-$#! !# 1G:3-#) #*'$"!#)8! !)'/));*!(#)$!# #**!! )8! #*'1G-#-$) ' !)!#()/')* '-.!-! #! 82 '* !( )! ) '7AE :3-2 '(#)$ !) #! !##!-!)2 '* !) !( # -')7AE '!# $#! !'!#!##!-!) 11A :1-2/'#)( ')#!)# #!!*! !( !*' !)!2 !)!#$# ) #) *-(! !*;!*-!# !( !*.8! # !)#!$! 731A 2#!!*! !)( *8#-$)!! '#2 !)!#)8##! /! ''!' (!##*-'!'$/#' 7AE#!###!*31A#-$)#'!#!7AE!# #!# /! '!*!)-#2( '#(#C #!7AE/! '!*!)-# ( /!### # '* (#!#*!)'!##!#!*)! 7AE'#!7AE*31A $# ) #) *--(! *#!*!)'!##8# ))!! 8! '*!)-#'#!$ $#! !#-))%11P&2/'!'## #'!# !!##-))'!### # )! )* '(!!31A7AE #) #*-'$#8-8 !(8# !711A111A#-$)#2$#8-8 (") '$#* !)#7AE##! /! ''!'$#! !#%!B:

PAGE 244

33 -&!!!##!# /! '8# ))!! 8#(8!#!Q%I!@I& /! ''!'$#! !# 43G -!*-!#$8%!& )8#!#* -!*-!#$8%7E&!-#!## C !*8S! #!9T#*'##)) ' '!C# C !*8!#!9!# (#! $ !*)#** ##!# !#* $)88# ))! '!*!)-"! !!!#!9 #!*.$!)!#* *31A111A#-$)#!! :-2!#!9*-'!'# )/# *11A2111A231A#-$)#2/'!') #/! '*!)'!## '#2!**#!!#!9) /! '*!)'!##2/! ')!#!9# ##! /! '!*!)-#'# '!##!*)#!#!92( ')* #!# ) !## # '* #)#!")"711A111A #-$)#2 '!##!!*! #!!#!9( /!#2/'!) #!!*! '#**31A#-$)#)#2!(-(!#$ ')! '!#!9(8'!#*-(!)! 8* -#015'!# ## # '#!!#!9!(8!(-($#! 8* '!2 '!!#* '31A#)/' (-(# !#!!*! '!!#!9 '#!!*! #!!#!9*-! *11A111A #-$)# ')*'*))-(!)! 8 ## # ))-(!)! 8!# # )8!*)(8!#!9!!#'!#!##!# /! ' # !-*$ '*BD(!-'#-)) '!#!92$ #! ')! /'!')### -(!)! 8!# -! (8!(8 # !

PAGE 245

341 7!2'#!E'##*31A111A#-$)# #!-!) .$!)2 '*/! '!'$/#! # 7-E'##"## '!##2E'##!#(#" ))8!#/! '*!)'!##2( '!# !#! $ !!'!# ## # '$!#!*)!E'##!!'-.!-E'##* '111A#-$)!#)8 / !-# '-.!--'##* 31A#-$)#-* '!#!**!# !( !**#! '!##* ( /111A31A#-$)#2( '"! !*'!## '## ) !#'!$!!## ##* !#!")")#2E'##* )) '$/####'$)8*-! !'!#') # /! ''#! !"!#$ !2/'!'## # !"!#$ !!# #* 2/'!'!##E'##* '!#!# ''!'8!# *-* '111A! !#') !( ''!''##!! ) !" 31A! !A'!) 'E'##!# .$ !*) ) !)$$ !#!!2 ''#! '!#$$ 8#$$ '-) $$#! !4 44! !!##'/*!"!#$ !(8 '!*-! 8#'!)2 '*!)'!##!# '11D 44*!)8%!& 6$#! ##(8'1J##!!2 !*-! 8#'!)#'/# '! !)*).*'$#! !# #(# '*2)) '$#! *).!-$!! '#(# #) #*#$ !) )"#/! ' /! '#-)) !" '$#! !

PAGE 246

34 #?#-).!#7).###)!##2/'!'!##!# /! ' 8!$#! /! ''!'$#! !#*!# 7!;2'#(#"! !*$#! #( /( 31A111A#-$)#211A111A#-$)#( '## !!# )/!! '!2!! !) !")8'!'$#! 111A! !-$ !'!#!##$) #) *-'#! '")* '$/#!!# !( !% !3:&0:5!' (!## '!' .$ 052/'!''# '#) */! ')!# !( !* '#$ *).0:5'#2*$#! !#I# $# '!*-! 8#'!)?#2 '#$ *). )" '#/! ') !")8 )#2 '*!"!) !")8'!'*).*''!'.$ !)$/#!!# !( !##! /! ''!' (!## 111A-$ 31A11A 443#!# !"! 8** #%!& !!"# !"!*).2( (#* '#!!# !( !* $#! )#*!)'! 'B11D('!"/! '$#! !-#*)## ''#!# !"! !#! '!#!#!# )8.1;4 F-2 !$ *$/'!#!$*#!# !"! 8*-$/$#! !!# #$! **!)'!###( /1D 4G>1D2$#! # *-1:D@# 33D@#6#$! ')!**#!*!)'!##2 'S! #!9T*-7E)8'*-B31D 11D'# '!##!# $!-8 '#!# !"! 8")!*! !# 'B11DK/$#! # 8$!))8-!*)(8 -! !* '*!)-*'#$'#2/! ''!' $#! #))/!)## !-* -! !* '/ '#*(8#!)

PAGE 247

343 #*).#015'# #!# !"! 8!!## # #$'# -! !!# !## !!#*! /' '#!# !"! 8!##*-(".1;4 F-%!")&(8) '.$!)2/'!'!# 31.1;4 F-!(!#/' '!##** #-! '#!# !"! 82/'!' #**!)-#)## '11D '! '$) *#!# !"! 8"##*!)'!##2 '#!!*! !**#( /#!# !"! !#*31A#-$)#11A 111A#-$)#'#!**# ) /! '*!)'!##**!)-#L11 D2( #-* #!#!#!# !"! 8 (" '.1;4 F-") !# $# ) 11A111A#-$)#'"'!'#!# !"! 8 '31A#-$)# '!###( /111D11D(#*!)-#/! '!# '!### #!!*! )8'!'$#! !#'#'!'$#! !# #) )$ ') '* $#! !)# '' '#-(! '-*$ '*-$ '$##*-#! '!#.$!!#B-0:56 G11D '!*!)-#'/#'!'#!# !"! 8*11A111A#-$)#%3.1;4 F-& '31A#-$)%:.1;4 F-&711A111A#-$)#2*!)'!##*G11D# $$.!)8G-2!! # ( 'C) !# #*'!*-! 8#'!)'!##!# 8!) !## # !* !##$#!()*!#!#!# !"! 8 '!'$#! !#%!BG-& G-2 '$ ') '*-# #(# !#B3-244J!#" !)#(# !# #$'## !*#$ $#! *).!# --)8()!" '$$ !#*#$ $#! *!)-#0:215' -'!#-!# '#$ $#! *).!#*-* -#/! '8 '

PAGE 248

344 '-)8%'8$ '-)&/' '8)" '#'!#. 8!#))8 ()!" !-$" '$$ !#* '$#! *!)-#K##* '!#8*-# $'## !#) #!*!)-$$ !#K/$#! #*31A #-$)##) !*!)'!##*:1D G3-2/'!'!#)8!! '# '*!)--# ( '!' #!# !"! 8!# -! (8*!)'!## ** #*#-))'#!#!# !"! 8*-#$'## (#!!*! 444))! !%!& !!#'!'# *))$/#! !#!!2/! !#)# ')$ !! #-.!--$ !" !)")#>J2GJ2G4J*31A211A2 111A#-$)#2#$ !")8'!**#( / '#")#/! '! .$!)2/'!'## # '!#! '/$*! !$/!!'!#)8 -$! !!* 31A#-$)%-&2 '* #!! (") 711A111A#-$)#2! !#/! '!1J* '" ")#*:1.1314.131-;42#$ !")8 ')/"! !*#!# !"! !#! !## # ) !) $$ !#!*-!! -#* '-)2*!)-# '!' '!### !*)) !)$$ !#!!#)#)#' !*-! 8#' )## '41J!#!$ ') '' '-(! #'#(# !)!-$"!) !)$$ !##) #*-#'/!* !"!#' #! !( /!#!##-))-$ !# ( /))#-$)#'*2 '!# "!)() -!!*! !'#"!

PAGE 249

34: 44:))-(!)! 8%!& 731A#-$)#2 '!#)8 $! !! -'") !#-3@F#2/'!'!#/! '!.$!)* '")#*-!'!# "! #!.$!)*))-(!)! 8*111A#-$)#! '!# !'11A#-$)'# ')# "! !2##(8* *4 ( />>:-'# 8#!))-(!)! 8*11A#-$)#"## ( '$#! '!#### # '#-!' () '!##') *) !( /))-(!)! 8 '!##*!** $/#!7!;3( !! # '* !#!-$ *#!-(!)! 8!! #! !*-!# '##()) !/! '$#! !'!# ) !!##!-!) ') !( /!#!#!# !"! 8$#! !* ( /!#'*#!-(!)! 8/! ''!'$#! !#! !( /!#!#)# !( #$'## !(8 #-!#!$ ') '$"!#)8#*#!# !"! 8'# **!)-C)! 8 '!'$#! !##) !*-#$'## !015)# #)/#!))-(!)! 8 44H;8!** !%!& #! 8!##( /:-*))#-$)#2/'!'#$# #! !*-!# '!###$! #!*!)'!##2/'!' ## '")-* !*+! '$(")-2 '*#') #! #! 8'!#! #! 8#$#/! '#!7AE2)# #'/()/ 7!2 '!#)## '1P"! !! '3 $$#! !/! '! '$/2( '#(# !)!**#( /!** $/

PAGE 250

34 !#)#2))3 $$#! !#)/ 'Q6")#2## # ;*;$).$#! #!)# !*'$/'-).$#! -!#'( /+)##)#8!)# ;*;$) #!)# !2/'!'#') !#/! '!#!#(# -$ #!**#! '-) .$#!**!! #*;.!#+)##2 '!#-!#'/))8#) 11:J# !$11P* -$ ''#(# -$ !## !(( /1P11P -$) !* '$#! #!)# !*11:J #$# #*B11P3 '$2/'!'!##!!*! )8#-)) '-#"! !#'!##?# !*+!#1342!! ;*;$) #!)# !/!))()## '!;$)-$##!"# !/'!' #! '#2 '-).$#!-!#'!# !!$ # !#* '-! (#" '-'!#-* !*#!)# ##!##(#* 8# ))!9 !8# ))!9 !#!#/! '! '!2 '*!# .$ #!#!9!/! '!#$" # '!#'! ")-2#) !!")$* #!)# !/! '! '! -! !! ##!9 ''#(# -$ #)/28# ))!9 !!#/ !#'! *!)-!)# -$ ##)/#-$ 7!2 '7AE!##!))8 '$) *7AE# !**!)'!##2))$/##'/!#7AE/! '#!*!)'!##*#-$)#!!'!#!##!# /! '* '7AE !##/! '#!*!)'!##"*#!)8# )*!)-#015!' 7AE*111A#-$)#-$ 31A11A#-$)##) #*!##8-!)$(!'!# 8$*(!#) #*-# !

PAGE 251

34 111A#-$)#.'!(! ) !")8)/3 $$#! !#!!!! !'!' #!)# !2/'!'!##!# /! '($ 44 -!*-!#$8%!& !#!9# !)8##/! '!#!$#! !!!6 *-)) $/# '#-/! '!.$!)2/'!'## # !#!9!# !*)(8*!)'!##!!# '#-))-! ''#! !#!9!! '!*)**!)'!##!#/!2'#!!#!9 ##!# ) /))/! ''#!) !)$$ !#2/'!' ## # !#!9# '"-! !*)) !)$$ !#'!# !##!# /! '-# $ #! ')! 2)#!#(# *! 7!2) !!E'## ##/! '!** $/#2## #( '*!)'!##$/!*)'## '## $$'# '3DE'##* '()###*#/! #) #*-'$ !! E'####/! '#!*!)'!##* !#)8#% N11D& 4:! !#*#-$)#)## '11D! '!##2/'!' #(I !"!#$ !# '!#!!#*!! -#**!)'!##2 '$#! !#/'! #$ '$#! !$# 4:*!)8%!& !$#! #"8)/2#)/)8 /#9/! '!'$#! !#!-!) !2#!$#! !##!# /! #!*)./! '!#!.! )) !" '$#! !#?#-).!#

PAGE 252

34> #) !*'$/#!!# !( !7-7!;2'#! (#"!$#! !#( /( '31A111A#-$)#211A 111A#-$)##* !*$#! !'31A 111A !!##* $#! !# 'G-%!&-$ !! '!##) #*!** $/* '#!!# !( !##! /! (!#''!'$/ ")###! /! '111A#) #!) !"'!'*).-$ 31A*#-)) **;-))# *'!')#2 ''!'$/")* '#! !# !( !%111A&8#-C!)8 '* ')/$/")%31A&'!# /)## #!-!) #')((#"* '$#! !( / 11A111A#-$)#2( '!# !# #!! !# #$) '!#"! !*'$! #) #*-!!#! #/!###! !433(" 4:3#!# !"! 8** #%!& !#!# !"! 8!#-! (8*!)'!##2/'!'!##!# )8 **!)-# '! '11D '!# '!##2#!# !"! !#!#.$ !))8 /! '#! '!###!##!7!;G)#2#!# !"! 8"##*!)'!## *!** $/#")$ '2## !#!# !"! 8!#!$ $/!!'.$ !)!#!#!# !"! 8##! /! '! # !** $#! !#$#! #*!** $/#2!! #!!*! !*)* '#$##!# !"! 8!!'!#!##!# /! '$# ) #!# !"! 8!!!#-! (8*!)'!## 4:4))! !%!& 6 #!!###!*!$# '$) !#* !**!)'!##!7!;3('# #'/#

PAGE 253

34G ) !( /! !# '!##/! '!** $/#* *!)-#)## '11D '!'!## )8## # #! !# **!)-#)## '11D '! )# $ )8#$#!()*!##!# !"! 8 ))-(!)! 8 !###()/)####!!*! )8!!*)) $/! !#2 '*)# !( !#!#!# !"! 8!! '#!! !!##!-!) '#$ *'!*!)-#! '$ 6 *-'$ )##'/#!#!#!# !"! 8*"8 '!*!)-# #) !*-# #!! !**!)-#/! '!##)## 'BG11D'' ##!-!)2 '!## /'!' '8!# !** '#'$)8#!! !!!!##!# /! -$# !**!#(8'-!#$ !*.8+#*#711A #-$)#2 '! !!#>J)/* '311D*!)' '3D*!)'!### # 'C 8*'-!#(#$!#!##!-!) 'C 8* $ #* '*!)-*$ !" !!###(# ##!# 2 '-$# !*11A#-$)#!!/) (B.131-;4!-!) ')) !$*-!'$ /! 'C !#3 42*!)!9#!)8# )*!)-2 '!C 8$#C !!# '$ *! !*!)'!##* '#! 8*#*#! # "!)()*'-!#$ !!# # 8$!)")*1 -#@-32 ' C 8*#*#! ##! ()*'-!#$ !/)C) 'C 8*!# /' '*!)'!##!#B311D'!#')) !## # !* '*!)-# #*!## /! ''-!#(.82! /)*))8$) ') !#

PAGE 254

34 !311D*!)-'!#!#!#()/! '>J$) !#(#" '311D#-$)$#! 11A! !))82'!'! !# '!"**!)-# '11D! '!###$! "8*!!#!9*! !#!9## # '$##!(!)! 8*)!(8#*"!)()# '-!#$ !#! ## 2 ')! !#(#"!! #$! )8-!))8)!#!9## '-!#$ !(!#!# #-))** '*!-$# !#) #-!)8*-'-!#(.8 '*!)-?#*#* 4::))-(!)! 8%!& ))-(!)! !#!!#!!*! )8)/ '!#2 ) !( /))-(!)! 8")#*))$/#!#(#"**!)-# )## '11D! '!##2##!7!;3('!### # *!)'!## !*)#-(!)! 82/! '-(!)! 8#!# '*!)'!####'!#!# #-/' !** ' $# !'$ 2/'!'#'/!#() !-(!)! 8/! '*!)'!##/"2 '"))-(!)! 8!'$ !# :-3@F#2))")#)/ '-3@F#'!#!#)/ '-# ))-(!)! !#2-# #!#!-(!)! 8!**!) (#"# *!)-#(#!# !" -#! '!# ##-!) #* -"! '#)!#!C !31*'$ 32 '-)")! 8*) #*1>-@#0G452-(!)! 8*1-3@F# #) # -). !-*.1;#2/'!'#/! '"))) (8 # 0G35'##!C !3>*')! "!/2 '-*$ % &!#$$.!)8.1;G-2D'!#!#!-#!!# '* '! ))2 !##!!*! )8#-)) '*!)'!##S!#!9T*!#-$)#

PAGE 255

3:1 /' '#!))-(!)! 8!#*7 '7'#'!--) $# !'$ 2!## !*'! *#(-##!!*! /' *!)'!##$$'# '!#-*$ '7 '!#.$!2 '!## !*)#-(!)! 8**!)-#)## '11D! '!##2/'!'!#-' '! /'! *!)# !!# !!$ (#!!*! !#!9#)#-') '!-*$ '2## !!(8# !!# '#* #! !'!### #!# !#*$! # '-# )!)8-'!#-*#))-(!)! 8* !*)! '*!)-!###C) !*.131-;4*' 2 ' "!# ( /) -#!#B4D'#2 '-*$ '*!#!# #!-!) '!# ( /$! #2/'!'!! # '#) ##!# /! '# !(8$! # !##$) !#$! ##) #*!##$'## !2 '* !# $"!#)8!###! '# !))-(!)! 8*'!'$#! !#!! #! !*! 4:H;8!** !%!& !2! #! 8* '%113&$$##!!*! )8*))$/# 6!** $/#(#" '"#!-!) #*#!! #! 8/! *!)'!###)## '11D!7!;G()) )/11A! #! !# #) *-#*#"8#$ $#* '! #! 8* '11A#-$)# -$# *#' !-#2) !!#**#!! #! 8 /! '#!*!)'!##'!### # *!)'!## !( # # $! #! 82 '*-#") !*'#!8# ))!! 8!**!) !

PAGE 256

3: '3 $$#! !!#'/# '#-)*"! !/! '! '$/#*!!)#2$$#! !!# '#-)/ ' Q6")#!!2 '* '#-! $ !#* ' #! !*-! )#$$)8*!'7AE !#)##!-!) 2/! '")#!#!!))8/! #!*!)'!##'#!7AE!(8*!)'!##") !#*'#!8# ))!! 8!-$##!()*! 4: -!*-!#$8%!& 7( '!#!9E'##2 '!#)8 -$! !! *( '31A111A#-$)#7( '31A111A#-$)#2! #!9E'##!! ')/# ")#-#2/'!'!# #!# /! '$"!#)8$ *#!!#!9'##/! #!*!)'!##711A#-$)#2 / $! #*( '! #!9E'##!!#-))#!!#!9#-)) !#!E'##/! '#!*!)'!##(#"2( ( ')## '.$!) :--8 -)!"! !#!) !)# )$$ !#*#$ $#! +,) '!*!)-#'#(")$'!#-)!$ #'#! !"!#$ !/! '$#! !8"8 '!*!)-** #2) # '# ) !)$$ !#*$#! *!)-#'-))#!$ # -'!#-#* '!*)* !"!#$ !*!)'!##** # ') !)$$ !#* '$#! *!)-# !"!#$ !!#$$#

PAGE 257

3:3 !#*!)-#!# !"! 8 ''-$# !* !(!# -$# !#) #*-'!' !#*.8! # !)##) !*!-$!*'!'8.8 -#@.8!'# !'!8 $! '*!*9!"!#7!)'!##** #-! #!# !"! 8 **!)-)## '11D '!'$$#-'!#-!")"## -$# !() #(8#-$ !!'-!#$ !*.8#$!# ))-(!)! 8)###**!)-#)## '11D '! !##$) )) -(!)! 8## '!'$! !#

PAGE 258

! "! #!$ %!#! &!'$! ()*&!(&+#! # "##!+ !$ ( +#',#)*&(&&$#',"! -( &.&" "&.#"& / (("$(#'(!+(&&(" &&! ( ##)*&!(&+1 !"(#)(&+.!((" & (2,"& 2+,!# ". $!"! !""& #$,( +! "',!'#&#! !""& #"+!' #"(" #+!##(&+ ##(("& && '&+( #().#!&' #' + (" && (!(&+( +,"&&,'## + &"&#!&##2#34..5! ( # ## &&" "&( #(!+ &!(("( $,+"&&,#! 6.'(&"$& #( + &" "& (#! #!'7 + +!&" "& ( +(!((82+ # 9!+&( !2 + #! 6$ ##4

PAGE 259

"+#+ & ## # "&" "&"! & ( +! 6 &#!!! /2489248 :"+0"" #( "(&2"+ #&$ ,/9248 :"+0( (!' !# "(&2&&##"#! #! + &,',#" !" "" ( +;9244"+8( $!( +24<244"+8( $! "" &&+'&, #'$#"+=>:#!$#(""! $!! #!""&! + &,# #! ,( )*&!(&+',#" "" !"+( &" +$ #"" ',( +(#(""&# 2, &#= -"""#+&(2,#= 2, "!"!+ ,#! ""! (!+"2, &( +"# ,+" + ,/?0#"#!"! !&#"" "" ("(!"" (&%& +&.$!"!"&#"+&" .$ (#'&$"" ( !&&(" "+(#',&&+ +.#&## ("(!&"%("++ "!# "" #!"( "+"" !! &, +##("+"!+1 +@8 ,#(( ".4A#" ( !/440 '&%( 944B#444B+&$+ #( $!"+ # $!!%!( #46C& &" .$!"!"$!&"2#& "" ( &2#!&"( $! &"" (

PAGE 260

9 !! $ $ "$! &( +',+&.#-" "" "$!2, "!"!+ ,#! ""! (!2,(&2!" ( !"+#(" $ %$'!&"%( 8,)#!&&$ # +#&$#&!"! ("( (## &(&2/D/E=E00( F #!%" ,(!2,$ ""&##'$" "& + &&!+(#+ #', 35&! # (44+ "&&,# #( D/E=E0( $! "" .$!&!%" ,(+ #( +! '$ '$844#G444>! '( 944B#444B# "#$ (# &+ #+!##(&+.#"#', !! + # $! ( ""&##!#$ + + &&!# ( #" !(&"(!&" "& (!(&+ $&' # & #! !2 + # $##! &" "& .#! (&"(!+'## +(!##(&+!+& $ ##9"+#+ & + # ,# #! &#+ !( # (+# ,/248H944 :"+0"" #$!! ("( !' ( ##(&+ ,(!! ( !" # # "&,#! "I .#&$

PAGE 261

6 ( !#(!##(&+$' #!"$! D/E=E0" ( #! "I #! ( $! #+#&!(&"(&+'! &.&" "&.# "& (! #)*&!(&+$!#!! +$"#"#+ (44A( (&$ ( +. 2,.#"+ #" &+&/&0 ,#" #','$J#4+( &82#/ 0 #"+'/( +0!+&&#( +!# # (+#&$ ,!+&&#! +' $!+++ ,(248 :"+" !+ ,+ + #"#!!##(&+!"&'#(>!## &&'#" #',44J>$!&2"!+&&# ( +.$!"!" #',4>!" #"&'#$!& $"$!!K 8?!(.$!"!#"!+ + ,$!& & ( +" #" "" 1 ( +( #/18" 2!'#&,&"!+#"$! !&' ( %'!'( #( &K,!L #( &" ,.!"$!&$" "" /M4<"+80! )*&(&+!2"$!+&&#( +( $!"!!! (&",$' #" !18" .#"" "" !44"+8( !+&! #$!!& K 8?!( ( !+&#+ !& " "" "" # !. &( +! &#"#!" ,',#"

PAGE 262

" "" .#! ( "$! &( +! 6 ##&&,.!+"!& + +" "" ( +&&# #"+'$"$!"+"" #2"2, !( +(2, &#-""" !+ '#, !(&"("!+ '#2,( ("# '# $ &(#'" "&(" !&" "& ()*&!(&+! $ "& &,+ !(&+!"%#" ##!7,(" '"++& !7,("!+ &'&2,!!! +,& ("!+ '#2,)#(&"&" "& ( #&# .!(("& &,&"# & ) "#" !(&"(!((" # &( +! 9# &( + ,!(&+/M944N0 # 6'!". ," #$!#" (&+!"% ,#( +! 9" #( +248248 :"+( #" (&+!"%( +99N9N. "&,.'( '"+!!+ ',!&&,+ "" !!"%$(##" ( +2446924<"+8. "&,.$!&!&&+'&,$"$! 2 +& &&+'&,$(#'"+=>:! #!" ,$!#" !"% &( +#" "" +& &!$(#'$ ,#" "" ( &( +(&+&!944N #! 6," #( +

PAGE 263

J ;9248; :"+.(&+!"%#" #( +944N94N( &&(&+ ##(!$ ##!(&+&&##"#! +E ,(!" # &#( +#" #" "" .!! #" &&+'&,( (&+&"" #+&+#&$ #&###&!# ("+!"&# &( + "!+ '#2,!( ("!+#& #"#!2,"!+ "&#(&&,#&(&+$!" "" +& !&#&&(! /69244"+80( !"%&!;44N! $!!+# <4C"++ #( 94N(&+( +! 6#;9C"+ ( 9N(&+( +! 9! ( $""&##!"!+ " ,(##(&+.#!+#(!(("##! !"%#" "" (!(&+ ,L&+!)*&!1&+ !2 +! 9$##!#&+( & ##)*&!(&+!)*&!(&+$ ##',9"+& + ".##+$" &&# (&+$!!"% ( +JN99N!"%$!(&+ "&"&#'JN!"%.! ("+ !&,' #+"1 ?" ",/1?0+" !"!#("&,( +&$ & !&&"% + !&,(!' &' .& .+ #".# & !&&"% + !&, &" ", &#"#!(&+$ ( ( "+#!!' &' 2#( (&+&!;44N !"%!( "(2#' #" #( +4C4C(&+!"%

PAGE 264

< #( +JN44N. "&,!& ? !(JN#N. #!("!4C#4C(!' $2#( JN#6N!"% (&+. "&,.#"!(&+$ "&!&#/>&+ 8B'' 0 +#1 (&+&!6N.( !!! ("$& !! "&"&#(&+!"%.#!#$#(( ( -!+&& -( $!"!!!! (4N#94N( JN#6N!"%(&+. "&,. $ (#' &"# #$!&#"&! +$!&# "&$# +#',&,+&+#&( "&+ ( +( ++!(&+$!&#+ !&,!& ( .$!"!!#!!N#
PAGE 265

94 1 B % !(("$(#! (&"!&" "&# & (##)*&(&+E(,( ! (("!(&"( ( +## '"! (&"!" & &!(! &+.#&(&"!" F !#! (&"(!" ( K.#(# (("35.# $ % ##'"% #( & +2#-# #"+'$&#'(&( (##"++"!+!&# +"!+$'##(".$!"!"&#' &,(&"#',+# +##&&,.! #"!& !&" +" "/+#(").(! #("'(2, &."&#'# !&#,(! #+#&(" "+',( ++, #"+'(! +.&" "&+ +. & "! -.#+ +"&# #+!!(&" (#("&" "& !2 +"&#&&# + +7(,! &!'$ + #! ((".#! ( ('!(#+&# ""&+ $+#" #! 6!+ ,(&"! ,(!##(&+( ( $,/HJ"+0( +!# "!((""&#'#+&,', ,!&!(! #.$!&%! + ""&&!$!"

PAGE 266

9 !' .!#"!##(&2 &! !!"+# !"#&(! (&2 &!' +& '! 1 & #+.(&+$!!"% !944N$&& "" !! !.,(&"( +#+ ,"&#' #',&! ,( "(&+!"%#(( #+ "& ()*&(&+ !"&#'(( +( +"(! "#"&" #" "&(" & "&&(("","&# #! $ #"! -! '##" "" .#"&#&'## +(&+!"% !."&"! -"&#'# #&,"! ( ##&&,.' # #( &!'$#("#"& "&#+%"&+ +(&&( #(" + # ",(!)(&++! &( +7(,#("#! &! + + # ",(!)*&$&# !&+ !(("",('#& "&& "!&" "& (&" ,&(&++&#$!# "&#+ # #(&" "& ( )(&+# #(& "!+ "# #( ?#?&,> ,!## ,( !+& #&&.$!"!"'#&"" !#-#+ ," $&&!+2++"!'&&" +'&,!&"%( '# $&#&("&("!+ '# 2,"&" "& ', ""!+ !( ("(

PAGE 267

9 !)(&+@8 ,!&" ",!'(#'! "!+ '#2,"'# &! 6#!& !(&"("!+ '#2, '# #!( ("+!#" "!7 #""!+ '#2,.$!"!$&##" &&(" "+$ "+$&#" #(("", # &!#( &#.#! ','&,+ +'&,', #" -#+ ," ("!+ '#2,& (&( &"()

PAGE 268

!"#$$%%%&'($)$$*+",-.**++'#$// 0.+1+2"34&,.%5,' 4+')&6++&6"(,&*+#+*"'.,&*&+ !7-89!2"'+ !6,)6++%:; :<7430=,, !.*"4)+*%'0. 2"0.+3),323 .+" &,+".4+')&6*'&+ %&"6"(,&**&,&++*+"&>. 9 960&.6"?'40&&0&,++ 8''44+01),,& !<-<89 !///-

PAGE 269

7 7 !'4)+*%:;<<0"&),,'A6+3),.,&'6"+&*+ 9@9 !794>,,,2E%& ,'1A('6*'&+"<" 6"(,&**&,&++*.*".2/// @& !6,)6++%:;<016&*3),.,&'6"+&*+ 7!44)&&".4,&0&+"33.'+ '644,,%6*'&+"<"6"(,&**&,&++ *.*".2/// /84"F6*++&'"*&5&'&),&' 6"(,&*.,&*&+G6"&++&>&(+&,&' 13 F4&H')*,&,"A%"0, ",*&'+>+&.*&('*)*+G6"&++&>&(+& ,&'/// ,+.''&+&'3&6*'&+"" 6"(,&*+6(&%;%'>.9 )&6)5'+%,',,,+ !-<@8!<7AA'01),,& !<-8@!///*"&'0)*;"'4*"*;,0&,+',,,+ <87!99."%'.01+*&+,*(&*+ !7<8<@!@@@A&,'1&"01),,& !<-8
PAGE 270

Cb&;b V bb'bb,;b3),bb"b.&*b&*b*&b !@-bb!Cb*&)b3bf,'+b3bAbfbA'&+b3bA(+;b'bbb1'b"& ,&'bn&,+b f b!-bb!2b1';b.,+bb6"+&*+b b@7b!/@1bAb%&+b'bbb6&b0b1),,&b b!<-b@b!///3b0b0*",b6Ib@/9b>.b!@-4b.b0*0+b6Ib/b>.b!@-@btb,b6Ibb>.b!-<3b0b0*",b6Ib@/@b>.b!-b4,,'b'bAb&'',,bC*))bbb!-7/4bnb+b'b3b2b(&+b6Ib@/b>.b!@-7.b3br&;b6Ib.b!@7-7.b3br;&;b'bAb4*;b6Ib@/b>.b!@9-7bAbA'b6Ib779@b>.b!@-77bb2)b'bbAbA'b"&b,&'bn&,+b bf b@@b!<97b0?b.b1?b'b2bb"b"&b,&'bn&,+b b bb!<779b0&&b4brb'bb;b3+b3),bb.,&'b6"+&*+b6b# +b b.b!<<71b4b"&b4b1bb3bbb'b2b4b:b"&b,&'bn&,+b bfnbf b@ @/b!//3b4)b'bbAbA'b,b,,+b t b!-b7@87/b!/-

PAGE 271

9 34)'AA'3),.,&'6"+&*+ !-<+&&*1++&) *&+*. @0&(30&'+%'3),C*))*&*' *",. !-@/8@!<<0&&4';.,&'6"+&*++ !/-98 !<0&&4"?&';"&,&'&,+ !-9@8@7 !<79/0&&01),,& !<-<877!///93K15+5;35*5 %+;&'A1K))*'&+ *", !8-/787!<90*"K,1*"'1&,6*'&+"' ,'*H"& &&6"(,&*,*< 9 ),,''2,,3),.,&'6"+&*+ !-/<@8 /!<972,)"1*"4) &'A*"=1;&4 .=,'4*"*;6*'&+"'&,* &A,++ L*;A< 92&>5)0&>+"&0&'; +"&"& ,&'&,+ 8!<-

PAGE 272

@ 992bb6;bb:b0b'b2&b"&b,&'bn&,+b t b//b!@9@.b=,bb&'b1b*"btb2,)"bb1;&b'b4bb6*'&+ b"b"bf)b6"(,&*b,bfb'*b1*,b&@ 9<2bf,,bnb2)',,bb0&)+bb*"&;b'bbn&*"b"&b,&'bn&,+ bb!9br;'brb0);&b'b.b2)&;b6*'&+bb"b"bf) 6"(,&*b,bfb*b.+'br",'+b @/b*"K,b'b4bb*"*;b6*'&+bb"b'bfffb6"(,&* *&,&++b*b)&+(&,,b2:b @b2&+"&b2br'b4b4'b'b4b+;)b3),bb+,bA%"b bb b!@ b4b0)*"b'b4bb*"*;b6*'&+bb the "bfb6"(,&*b, fb*b&+ b6),b @:b+;&b'b4b&b3),bb.,&'b6"+&*+b t b!@-bb!@7Eb3&bb4 b'bbAbAM(&+b3),bb.,&'b6"+&*+b b@8 b!<<@b0&&b4bbb'b4brb'bb;b"&b,&'bn&,+b bb /@8b!<@9b0&&b4bb4brb'bb;b3+b3),bb.,&' 6"+&*+b b!/-b@<@<7b!<@@3b1b bbnb&,,&+b'b0b1)*"b.,&'b6"+&*+b+b f b97/8 97b!<@
PAGE 273

< <3)+:)'J&01),,& !<-<89!///<30') !" !0*&,,6) ,&+"&%:;/<7:)3)+'C2'((&%*&&&*+)+ !-7989!///<1E"84&'.E)6"+&*,(&%1 !@-989!//<94(C,*; 9"' !.''&+8+,%:;/<@6&56"+&*,(&% !9-/<89!9<
PAGE 274

//6&)'6"+&*,(&% .7 2&22)'''3+3),.,&'6"+&*+ !@-@98
PAGE 275

9/ @32+'0++&3),0&,++*" !<-<8@ !<32+'0++&3),0&,++*" !<-<8@ !40&&;0)&'%"&,&'&,+ @8!/3)"F1+&*+'&M)**",G!"")+ H*)&(&.&*C*))*&///-9 3('6)%6"&,&++*"+ !-!<%# % !6"&,&+&10&+.0A;",'ACC0,,)&*,'0&,+ +*&+. @877!<71&+'06"F6*&*,)*.,+&+#*''&&G!3" &,D+'+)++H,'/-C,8.)'J8 6",**+* 3C&*;F)*.,+&+88"6&*&,*"&M)+G!3"&,D +*%:;@-7@ 936;( & *''!( 6) ,&*&+%:;@9@A"+".;1"*"")'")&'.26,3), +,A%" !87-787/!<6+*"&*;%# !///."///1&&+"A,++' !"#$$%%% &,++*);$) ,&*&+$,++$;&<",-.**++'# $// /(&+0*,'66, 'A&*" '( ")( !6"+&*, ,*&*+')+&+'6&@9%# !0"*9-

PAGE 276

9 ")*"&'644,,%3),C*))*&*'*", !-<98<9@!<2)*"+6*'&+" &'6"&,+"&*,*& //!<74'"&.'(*+&6"+&*+ !.0'+'0"5;+6"+&*,(&%1!,&'!7-<8
PAGE 277

btnbfrn frrrrrrf rrb!r"#r$"%#r&' rrnr#r(rrrnr(rr)rrnr*+(rrr,*&r* r(rr$"%#r(rr((r e *&r s )rrr$"-.rr*+( r/+ r#r(rr('(r,*rnrnr rr$""0)rrn ((rr1n!3r4+&r,*rb''r,r$""0rrr('rrrr5r r(rrr5&r,r$""6)rrbr+&r,rr(+!(r('rr'rrr'#rr*rr,r rrrr+,r'(r r(r!!&)rrnr(' r '(rr('r'(rr4+&r,r7(rrr8!*r,r5r r(r)rrn +(rr5rr5r r'(rt'rn&rr$""%) nrr! !(rr r r' r r,r!&* (r(r! rr&rr7(&r,, rrr8!*r,r5r r1n!3)rrnrrrr'**r rrrr/rr&f&rr( r(rr$"".)rrnr('r, '(rr(!r( r,r'rr,*r,rr r!! )


xml version 1.0 encoding UTF-8
METS:mets LABEL Sputter Deposition of ZnO Thin Films OBJID UFE0000349 TYPE monograph xmlns:METS http:www.loc.govMETS xmlns:daitss http:www.fcla.edudlsmddaitss xmlns:dc http:purl.orgdcelements1.1 xmlns:mods http:www.loc.govmodsv3 xmlns:palmm http:www.fcla.edudlsmdpalmm xmlns:rightsmd http:www.fcla.edudlsmdrightsmd xmlns:techmd http:www.fcla.edudlsmdtechmd xmlns:xlink http:www.w3.org1999xlink xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation ..E20051012_AAAABMlinks_20051012234823www.loc.govstandardsmetsmets_LOC.xsd ..E20051012_AAAABMlinks_20051012234823dublincore.orgschemasxmlssimpledc20021212_LOC.xsd ..E20051013_AAAAAKlinks_20051013064438www.loc.govstandardsmodsv3mods-3-0_LOC.xsd ..E20051012_AAAABMlinks_20051012234823www.fcla.edudlsmdtechmd_LOC.xsd ..E20060621_AAAELKlinks_20060621194313www.fcla.edudlsmdpalmm_LOC.xsd ..E20051012_AAAABMlinks_20051012234823www.fcla.edudlsmdrightsmd_LOC.xsd ..E20060502_AAACYYlinks_20060502001940www.fcla.edudlsmddaitssdaitss_LOC.xsd
METS:metsHdr CREATEDATE 2002-04-07T19:11:32Z ID LASTMODDATE 2006-09-14T16:31:26Z RECORDSTATUS NEW
METS:agent OTHERROLE MXF CREATOR ROLE OTHER ORGANIZATION
METS:name FCLA
METS:note directory=L:\Common 1\Data\UFE_2001_fall\UFE0000349\
makerules=etd
server=TD
formats=application/pdf
projects=ETD
OTHERTYPE SOFTWARE
MXFClient
INDIVIDUAL
emh
METS:dmdSec DMD1
METS:mdWrap MDTYPE MODS MIMETYPE textxml
METS:xmlData
mods:mods
mods:titleInfo
mods:title Sputter Deposition of ZnO Thin Films
mods:name
mods:namePart RIETH, LOREN W
mods:role
mods:roleTerm type text creator
Paul H. Holloway
contributor
mods:originInfo
mods:publisher University of Florida
mods:dateIssued 2001
20011215
mods:language
mods:languageTerm English
mods:abstract Sputter deposition and characterization of ZnO thin films for application as a transparent conducting electrode has been studied. The effects of gas ambient upon annealed film properties, evolution of structural and electrical properties of very thin ZnO films, and the influence of negative ion resputtering on the thin film properties were investigated.
For annealing sputter deposited ZnO thin films, the gas ambient in the quartz tube furnace was found to be a critical parameter for the resistivity of ZnO:Al thin films. Annealing films in forming gas (N2/H2 90%/10%) at 400�C for 60 minutes was found to reduce the resistivity of the films by up to two orders of magnitude with a minimum value of 2x10-3 W�cm. Optical measurements indicate an increase in carrier concentration is responsible for the decreased resistivity.
The nucleation of ZnO:Al films on glass substrates occurs by the island (Volmer-Webber) mechanism. Films less than 1000� thick were found to have higher resistivity due to decreased carrier concentration postulated to result from carrier depletion by chemisorbed oxygen. The minimum resistivity achieved was 4.3x10-3 W�cm at a film thickness of 1580�.
The effects of negative ion resputtering on the structural and electrical properties of deposited ZnO:Al films were evaluated. A model incorporating system geometry, deposition conditions, negative ion resputtering, and film thickness was developed to explain the structural and electrical properties of the deposited films. The model defines Regions I, II, and III, with the resistivity in Region I between 4.3x10-3 to 1.2x10-2 W�cm, a carrier concentration of between 7.2x1019 to 3.2x1020 cm-3, and mobilities of approximately 7 cm2/V�s. In Region II, the resistivity decreases to 1.5x10-3 W�cm, due to increased carrier concentrations of 5x1020 cm-3, while mobility remains near 7 cm2/V�s. For Region III resistivity increases to greater than 10 W�cm, due to carrier concentrations as low as 1.0x1019 cm-3, and mobilities as low as 1.5 cm2/V�s. Low carrier concentrations in Region I result from compensation by native defects created by negative ion resputtering, while low carrier concentrations in Region III result from chemisorbed oxygen species.
mods:subject
mods:topic sputter deposition, ZnO, zinc oxide, transparent conducting oxide, electrical properties, optical properties, structural properties, negative ion resputtering, chemisorption
mods:accessCondition useAndReproduction Public
METS:amdSec
METS:rightsMD RMD1
OTHERMDTYPE RIGHTSMD
rightsmd:versionStatement Electronic version created 2002, State University Sytem of Florida.
METS:sourceMD SMD1
PALMM
palmm:entityDesc SOURCE UF
METS:digiprovMD DPMD1
DAITSS
daitss:daitss
daitss:AGREEMENT_INFO ACCOUNT PROJECT ETD
METS:fileSec
METS:fileGrp
METS:file CHECKSUM c9f7d30e67e1ca4042ddae77b436737d CHECKSUMTYPE MD5 CREATED 2002-03-06T13:37:21Z GROUPID GID1 FID1 applicationpdf SIZE 7310498
METS:FLocat LOCTYPE OTHERLOCTYPE SYSTEM xlink:href dissertation.pdf
METS:structMap
METS:div ADMID DMDID
main
file
METS:fptr FILEID


xml version 1.0 encoding ISO-8859-1
METS:mets LABEL Sputter Deposition of ZnO Thin Films OBJID UFE0000349 TYPE monograph xmlns:METS http:www.loc.govMETS xmlns:daitss http:www.fcla.edudlsmddaitss xmlns:dc http:purl.orgdcelements1.1 xmlns:mods http:www.loc.govmodsv3 xmlns:palmm http:www.fcla.edudlsmdpalmm xmlns:rightsmd http:www.fcla.edudlsmdrightsmd xmlns:techmd http:www.fcla.edudlsmdtechmd xmlns:xlink http:www.w3.org1999xlink xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.loc.govstandardsmetsversion14mets.xsd http:dublincore.orgschemasxmlssimpledc20021212.xsd http:www.loc.govstandardsmodsv3mods-3-0.xsd http:www.fcla.edudlsmdtechmd.xsd http:www.fcla.edudlsmdpalmm.xsd http:www.fcla.edudlsmdrightsmd.xsd http:www.fcla.edudlsmddaitssdaitss.xsd
METS:metsHdr CREATEDATE 2002-04-07T19:11:32Z ID LASTMODDATE 2006-09-14T16:31:26Z RECORDSTATUS NEW
METS:agent OTHERROLE MXF CREATOR ROLE OTHER ORGANIZATION
METS:name FCLA
METS:note directory=L:\Common 1\Data\UFE_2001_fall\UFE0000349\
makerules=etd
server=TD
formats=application/pdf
projects=ETD
OTHERTYPE SOFTWARE
MXFClient
INDIVIDUAL
emh
METS:dmdSec DMD1
METS:mdWrap MDTYPE MODS MIMETYPE textxml
METS:xmlData
mods:mods
mods:titleInfo
mods:title Sputter Deposition of ZnO Thin Films
mods:name
mods:namePart RIETH, LOREN W
mods:role
mods:roleTerm type text creator
Paul H. Holloway
contributor
mods:originInfo
mods:publisher University of Florida
mods:dateIssued 2001
20011215
mods:language
mods:languageTerm English
mods:abstract Sputter deposition and characterization of ZnO thin films for application as a transparent conducting electrode has been studied. The effects of gas ambient upon annealed film properties, evolution of structural and electrical properties of very thin ZnO films, and the influence of negative ion resputtering on the thin film properties were investigated.
For annealing sputter deposited ZnO thin films, the gas ambient in the quartz tube furnace was found to be a critical parameter for the resistivity of ZnO:Al thin films. Annealing films in forming gas (N2/H2 90%/10%) at 400C for 60 minutes was found to reduce the resistivity of the films by up to two orders of magnitude with a minimum value of 2x10-3 Wcm. Optical measurements indicate an increase in carrier concentration is responsible for the decreased resistivity.
The nucleation of ZnO:Al films on glass substrates occurs by the island (Volmer-Webber) mechanism. Films less than 1000 thick were found to have higher resistivity due to decreased carrier concentration postulated to result from carrier depletion by chemisorbed oxygen. The minimum resistivity achieved was 4.3x10-3 Wcm at a film thickness of 1580.
The effects of negative ion resputtering on the structural and electrical properties of deposited ZnO:Al films were evaluated. A model incorporating system geometry, deposition conditions, negative ion resputtering, and film thickness was developed to explain the structural and electrical properties of the deposited films. The model defines Regions I, II, and III, with the resistivity in Region I between 4.3x10-3 to 1.2x10-2 Wcm, a carrier concentration of between 7.2x1019 to 3.2x1020 cm-3, and mobilities of approximately 7 cm2/Vs. In Region II, the resistivity decreases to 1.5x10-3 Wcm, due to increased carrier concentrations of 5x1020 cm-3, while mobility remains near 7 cm2/Vs. For Region III resistivity increases to greater than 10 Wcm, due to carrier concentrations as low as 1.0x1019 cm-3, and mobilities as low as 1.5 cm2/Vs. Low carrier concentrations in Region I result from compensation by native defects created by negative ion resputtering, while low carrier concentrations in Region III result from chemisorbed oxygen species.
mods:subject
mods:topic sputter deposition, ZnO, zinc oxide, transparent conducting oxide, electrical properties, optical properties, structural properties, negative ion resputtering, chemisorption
mods:accessCondition useAndReproduction Public
METS:amdSec
METS:rightsMD RMD1
OTHERMDTYPE RIGHTSMD
rightsmd:versionStatement Electronic version created 2002, State University Sytem of Florida.
METS:sourceMD SMD1
PALMM
palmm:entityDesc SOURCE UF
METS:digiprovMD DPMD1
DAITSS
daitss:daitss
daitss:AGREEMENT_INFO ACCOUNT PROJECT ETD
METS:fileSec
METS:fileGrp
METS:file CHECKSUM c9f7d30e67e1ca4042ddae77b436737d CHECKSUMTYPE MD5 CREATED 2002-03-06T13:37:21Z GROUPID GID1 FID1 applicationpdf SIZE 7310498
METS:FLocat LOCTYPE OTHERLOCTYPE SYSTEM xlink:href dissertation.pdf
METS:structMap
METS:div ADMID DMDID
main
file
METS:fptr FILEID


Permanent Link: http://ufdc.ufl.edu/UFE0000349/00001

Material Information

Title: Sputter Deposition of ZnO Thin Films
Physical Description: Mixed Material
Copyright Date: 2008

Record Information

Source Institution: University of Florida
Holding Location: University of Florida
Rights Management: All rights reserved by the source institution and holding location.
System ID: UFE0000349:00001

Permanent Link: http://ufdc.ufl.edu/UFE0000349/00001

Material Information

Title: Sputter Deposition of ZnO Thin Films
Physical Description: Mixed Material
Copyright Date: 2008

Record Information

Source Institution: University of Florida
Holding Location: University of Florida
Rights Management: All rights reserved by the source institution and holding location.
System ID: UFE0000349:00001


This item has the following downloads:


Full Text











SPUTTER DEPOSITION OF ZNO THIN FILMS


By

LOREN WELLINGTON RIETH












A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA


2001




























Copyright 2001

by

Loren Wellington Rieth



























Dedicated to my wife, Wendy; to my family, Herb Jr., Sheri, and Herb III; and the
mother of us all.














ACKNOWLEDGMENTS

Dr. Holloway has been my mentor for the last seven years. His knowledge of

science both humbles and enlightens me. His dedication to his profession and students

is reflected in numerous awards, publications, and the common occupation of his car in

the coveted parking spot directly in front of Rhines Hall. His patience and guidance have

been invaluable.

My wife Wendy has been a source of so many things to me in the process of

graduate school. Motivation, encouragement, strength, and love have all been given in

excess. Her patience and support have helped ease the writing process and kept the basic

necessities of life continuing as large portions of my time focused on completing this

work.

It would be a travesty to call Ludie Harmon a secretary. So much of smooth day

to day operation depends on her competence. More than this, she reminds us that we are

people, and there are cares in the world which should be balanced with a career.

Additionally, there is the candy jar and the weekly cookies that magically appear for

which no amount of thanks is sufficient.

There are many people to thank in the Holloway group. In particular is Billie

Abrams, whose interactions have enriched my graduate career and life. Dr. Mark

Davidson and his unique talents in coaxing dead equipment to life and knowledge of

scientific lore have been an asset to so many in our department including me. So

much of what works does so because he works hard. My seven year tenure means I can









name a lot of names of people who have all helped in their ways, and include (in no

particular order) Sushil, Craig, Heather, John, Troy, Big and Little Joe, Tracy, Brent,

Eric, Lizandra, Jae-Hyun, Joon-Bo, Heesun, Sean, Jeff, Mike, Vaidy, Maggie, Scott,

Jacque, Lisa, Nagraj, JP, Caroline, Huang, Billy, Alex, Suku, Serkan, Lei....

Of course no acknowledgement would be complete without thanking my parents.

To my mom, whose own graduate career I waylaid for 20 years, and my dad, who just

managed to finish before there was me, I of course owe everything. They not only

brought me into the world but have endeavored to help me through it.















TABLE OF CONTENTS
page

L IST O F T A B L E S ...................... .. ............. .. ........................... ...............................ix

L IST O F FIG U R E S........................................ ....................................................... x

A B S T R A C T ..................................................... ..................................................... x iv

1 INTRODUCTION AND MOTIVATION............................. .................... 1

2 LITERA TURE REVIEW .......................................................... .......... .................... 5

2 .1 Introdu action .................................................................. ............................ 5
2.2 Photovoltaic D evices ........................................................................................ 5
2 .2 .1 H history ..................................................................... ........................... 5
2.2 .2 D vice Physics.................................................................. .................... 8
2.2.3 Thin Film Solar Cells.................................................... 12
2.2.4 Transparent Conducting Electrode (TCE) ............................. .......... 17
2.3 Transparent Conducting Oxides..................................................21
2.3.1 B background .................................................................... .................... 2 1
2.3.2 Electrical Properties of TCOs................................ ......................... 27
2.3.3 Optical Properties ........................................ ........................................ 39
2.4 Sputter D position ...................................................................... .................... 47
2.4.1 B background ................................................................... ..................... 47
2.4.2 Thin Film C oalescence.................................................... ......................... 54
2.4.3 Negative Ion Resputtering.................................................. 58

3 EXPERIMENTAL METHODS......................................................... 63

3 .1 In tro du action .......................................................... .......................................... 63
3.2 Thin Film D eposition............................................................. .................... 63
3.2.1 New Oxide Sputtering System ................ ........................... .............. 63
3.2.2 Description of the Sputtering System.............................. ................. 67
3.2.3 Substrate Cleaning .............. ...... ................... .......................... 68
3.3 Electrical Characterization ........................................................... .................... 69
3.3.1 H all M easurem ents ......................................................... .................... 69
3.3.2 Four Point Probe .................................................................. .................... 71
3.4 Structural Characterization ............................................ .. .................... 72
3 .4 .1 P rofilom etry ................................... .................................... ........................ ... .72
3.4.2 X -R ay D iffraction............................................ ... ..... ......... ................. 72
3.4.3 Atomic Force Microscopy.................................................... 73
3.4.4 Auger Electron Spectroscopy..............................................................75


vi









3.4.5 X-ray Photoelectron Spectroscopy .................................................... 76
3.4.6 Secondary Ion Mass Spectrometry.................................................... 79
3 .5 O p tical P rop erties ................................................................................................ 80
3.5.1 Spectrophotom etry................................................. 80
3.5.2 Fourier Transform Infrared Spectroscopy..................... .................... 80
3.6 Experimental Procedures ........................................................... 81
3.6.1 Affect of Annealing Ambient on the Properties of ZnO:Al......................... 81
3.6.2 Development of Properties in Very Thin ZnO:Al Films ................................ 83
3.6.3 Negative Ion Resputtering in Sputter Deposition of ZnO:Al Films................ 84

4 AFFECT OF ANNEALING AMBIENT ................................................................ 89

4.1 B background ............................... .......................... ....................... .................... 89
4 .2 R e su lts................................................................................... ......................... 9 0
4.2.1 Structural Characterization........................................ 90
4.2.2 Electrical C haracterization ............................................ .......................... 99
4.2.3 Optical Characterization .......................................................................... 102
4.3 D discussion .................................................................................. .................... 108
4.3.1 Structural Properties ............................................................ 108
4 .3 .2 E electrical P roperties....................................................... ............................. 112
4 .3 .3 O ptical Properties ............................................................. .... ................ 120
4 .4 Sum m ary .......................................................... ............................................ 122

5 DEVELOPMENT OF ELECTRICAL AND MICROSTRUCTURAL PROPERTIES IN
VERY THIN ZN O:AL FILM S...................................................... ................... 124

5.1 B background ............................................................................ .................. 124
5 .2 R e su lts.................................................................................. ..... ............. 12 5
5.2.1 Structural Characterization.................................. .......... 125
5.2.1.1 Profilom etry.............................. .......... 125
5.2.1.2 A tom ic force m icroscopy ..................................................................... 126
5.2.1.3 Auger electron spectroscopy ................... ...................... 131
5.2.2 Electrical Characterization ......................................................................... 137
5.3 D iscu ssion .............................................. .......................... ................. 14 1
5.3.1 Surface M orphology ............................................................ 141
5.3.2 Electrical Characterization ......................................................................... 150
5.4 Sum m ary ............................ ............................................ 156

6 NEGATIVE ION RESPUTTERING ................................................................. 159

6.1 B background ............................................................................ .................. 159
6.2 E xperim ent R esults................................................. ..................................... 162
6 .2 .1 P ro film etry ......................................................................... ................. 162
6.2.2 Electrical Characterization ...................................................... ................. 165
6.2.3 Secondary Ion Mass Spectrometry Results............................................. 175
6.2.4 X-ray Photoelectron Spectroscopy Results............................................ 180
6.2.5 X-ray Diffraction Results....... ................ ..... ..................................... 183









6.2.4 A tom ic Force M icroscopy Results ............................................................ 195
6.3 Discussion of RF Power Experim ent ........................ ................................... 199
6.3.1 Model of the Effects of Negative Ion Resputtering on Electrical Properties. 199
6.3.2 R region I ........ .......................................................... ........................ 207
6.3.2.1 Profilometry (Region I) ....................................... 207
6.3.2.2 Resistivity effects (Region I)...................................... ............. ....... 210
6.3.2.3 Hall carrier concentration (Region I) ........................ ................... 212
6.3.2.4 H all m obility (Region I) ...................................... ........................... 216
6.3.2.5 Secondary ion mass spectrometry....................... ......................... 219
6.3.2.6 X-ray photoelectron spectroscopy ........................... ............... 220
6.3.2.7 X-ray diffraction (Region I) ........................................................... 222
6.3.2.8 Atomic force microscopy (Region I) ........................ ................... 229
6.3 .3 R region II....................................................................... ............... 230
6.3.3.1 Profilometry (Region II).................... ................... ........................... 230
6.3.3.2 Resistivity effects (Region II)...................... .. ....................231
6.3.3.3 Hall carrier concentration (Region II)......................... ................... 233
6.3.3.4 Hall mobility (Region II).............................. ............. ................ 234
6.3.3.5 X-ray diffraction (Region II) .......................................................... 234
6.3.3.6 Atomic force microscopy (Region II).......................... .................... 236
6.3 .4 R region III .......................................................... ................................... 236
6.3.4.1 Profilometry (Region III) ....................................... 236
6.3.4.2 Resistivity effects (Region III) ............................................ 237
6.3.4.3 Hall carrier concentration (Region III)...................... .................... 237
6.3.4.4 Hall mobility (Region III) ....................................... 239
6.3.4.5 X-ray diffraction (Region III)........................................ 240
6.3.4.6 Atomic force microscopy (Region III).............................................. 241
6.4 Sum m ary ...................... .. .. ......... .. ............................ ............................ 24 1

7 C O N CLU SIO N S...................... .... ......... .............................. .................... 243

7.1 Negative Ion Resputtering .......................................................... 243
7.2 Chem isorbed Oxygen ................................................................. 247
7.3 Property Development in Thin ZnO:Al Thin Films.............................................. 248
7.4 Future W ork ...................................................................... .................... 250

LIST OF REFERENCES ........................................................................... 253

BIOGRAPHICAL SKETCH ....................................................... .................... 262












viii















LIST OF TABLES


Table Page

2-1. Materials parameters for chalcopyrite ternary compositions. ................................. 16

2-2. History of processes for making transparent conductors. ........................................23

2-3. Compilation of electrical data for sputter deposited ZnO thin films with several
different dopants. ........................................................................................ 25

3-1. Parameters used for Auger electron sepectroscopy sputter depth profiles ................. 77

3-2. Parameters used to collect XPS multiplex scans. .................................................... 78

4-1. JCPDS powder XRD reference data for Wurtzite ZnO. .................... 90

4-2. Quantified XRD data from (100) diffraction peak............................ ............. 97

4-3. Quantified XRD data from (002) diffraction peak............................ ............. 97

4-4. Resistivity data from before and after heat treatment measured by four point probe
as a function of position and gas ambient used................................................ 100

4-5. Changes in resistivity with 4000C one hour annealing......................... .................... 102

4-6. Quantified optical band gap (Eg) data from before and after annealing at 4000C for
on e h our............................................................................ ............... . 10 8

5-1. Sample identification, deposition time, and film thickness...................................... 126

6-1. Atomic concentrations from XPS multiplex data for as deposited and sputter etched
sam p les .............................................................. .................... 18 1















LIST OF FIGURES


Figure Page

1-1. Total and renewable energy consumption in the United States.................................2

2-1. Schematic cross sectional view of a typical CIS based thin film solar cell structure... 6

2-2. Progress in improving efficiency of solar cells .................... ....... ............ 7

2-3. Irradiance of the solar spectrum......................... ......................... 9

2-4. Theoretical plot of the I-V characteristics for a typical Si solar cell ....................... 10

2-5. Band diagram of a typical n-p homojunction solar cell........................................ 11

2-6. One unit cell of the CuInSe2 chalcopyrite crystal structure .................................... 16

2-7. Conduction and valence band alignments of a typically CIS based solar cell ............ 18

2-8. Equivalent circuit diagram for a solar cell ................................. ..... .............. 19

2-9(a-b). Influence of a solar cell's series resistance........................................................20

2-10. Decreasing resistivity of transparent conducting oxides...........................................24

2-11. Schematic representation of the influence of grain boundaries................................. 33

2-12. Illustration of the chemisorbed oxygen mechanism for solid state gas sensors ......... 34

2-13(a-c). Theoretical plots of relationships between electrical and optical properties....... 43

2-14. Illustration of the Burstein-M oss shift ............................................... .............. 45

2-15. Generation of interference colors or Fabry-Perot oscillations................................ 46

2-16. Plot of the power cosine distribution...........................................49

2-17(a-b). Illustrations of planar sputter deposition sources............................................. 50

2-18(a-b). Illustration of the negative self bias formation during RF sputter deposition.....54

2-19. Representation of the influences of surface forces on the morphology of a
deposited film ................. ................................................. ....................55









2-20. A structural zone model showing changes in thin film morphology....................... 56

2-21. The hexagonal wurtzite crystal structure for ZnO in the zincite phase.................... 57

2-22. Schematic of the negative ion generation and acceleration process during sputter
deposition of ZnO:Al thin film s. ................................................................... 59

2-23. Theoretical plot of the mean free path of an Ar atom............................................. 60

3-1(a-d). Schematic diagram and pictures of the new oxide sputtering system ............... 65

3-2. Cross-sectional view of the sputter deposition system known as "Rusty"................. 68

3-3. Positions on the 2.5 x 5 cm substrate where four point probe data were collected...... 82

3-4. Top-view of the deposition geometry used for the investigation of negative ion
resputtering ............................ ........... .. ........................... ................ . 85

4-1(a-b) X-ray diffraction spectra from before and after a ZnO:Al thin film is annealed in
nitrogen ......... ............... ............. ................. 92

4-2(a-b) X-ray diffraction spectra from before and after a ZnO:Al thin film is annealed in
form ing gas ........... ........................................................... ................ . 93

4-3(a-b) X-ray diffraction spectra from before and after a ZnO:Al thin film is annealed in
stagnant air .......... ........ ...... ......... ......................... ....................94

4-4(a-b) X-ray diffraction spectra from before and after a ZnO:Al thin film is annealed in
oxygen ................................................................................ ....................... 95

4-5(a-b) X-ray diffraction spectra from before and after a ZnO:Al thin film used as a
control sam ple ................................................................. ....................96

4-6(a-b). Transmission spectra of uncoated and ZnO:Al coated soda-lime glass substrates
with data from before and after annealing of the coated sample...................... 103

4-6(c-d). Transmission spectra of uncoated and ZnO:Al coated soda-lime glass substrates
with data from before and after annealing of the coated sample...................... 104

4-6(e). Transmission spectra of uncoated and ZnO:Al coated soda-lime glass substrates
with no annealing of the coated sample for a control sample .......................... 105

4-7. Plots of the absorption squared (A2) versus wavelength to determine changes in
optical band gap of the ZnO:Al film with annealing ..................................... 105

4-8. Fourier transform infrared spectra taken in reflection mode....................................... 109

5-1. Z range, "grain size", and RMS roughness data for ZnO:Al thin films.................... 127









5-2(a-d). AFM micrographs from a 0.5 x 0.5 [im area ...................................... 129

5-2(e-h). AFM micrographs from a 0.5 x 0.5 [im area for ZnO:Al thin films .................... 130

5-3(a-c). AES data from the 18 A thick ZnO:Al sample.......................................... 132

5-4(a-c). AES data from the 105 A thick ZnO:Al sample........................................... 133

5-5(a-c). AES data from the 525 A thick ZnO:Al sample............................................ 134

5-6. Percentage of the soda-lime glass substrate covered by the sputter deposited ZnO:Al
thin film ............................ .................. ............................. ................ . 138

5-7(a-c). Electrical data for ZnO:Al thin films plotted as a function of film thickness....... 140

5-8. Schematic representation of the constant volume transformation............................. 143

5-9(a-b). Relationships between surface coverage, film thickness (t in A), and nucleus
radiu s (A )............................................... ......................................... ......... 144

5-10. Illustration of carrier trajectories based on the Fuchs and Sondheimer model.......... 153

5-11. Calculated plot of the resistivity ratio between the thin films............................... 153

6-1. Cross-sectional view of the sputter deposition geometry......................................... 161

6-2. M measured thickness of the ZnO:Al thin film .................................... ...................... 163

6-3. D position rate of ZnO :A l............................................................ .................... 163

6-4. Deposited molecular flux of ZnO:Al ....................................... 165

6-5. Deposition rate ratio between 250 W/1000 W and 500 W/1000 W conditions ........... 166

6-6. Resistivity of ZnO:Al thin films .......................................................... 167

6-7. Resistivity of ZnO:Al thin films with 500 W data offset by 3.2 cm............................ 167

6-8. Resistivity of the deposited ZnO:Al thin film plotted versus thickness..................... 169

6-9(a-b). Carrier concentration of ZnO:Al thin films .............................. .................... 171

6-10(a-b). Hall mobility of ZnO:Al thin films................................. .................... 174

6-1 1(a-b). SIMS depth profile data for ZnO:Al films deposited at 250 W....................... 177

6-12(a-b). SIMS depth profile data for ZnO:Al films deposited at 500 W....................... 178

6-13(a-b). SIMS depth profile data for ZnO:Al films deposited at 1000 W..................... 179









6-14(a-b). XPS multiplex spectra of the 0 (Is) peak...................................... 182

6-15(a-b). XRD spectra from ZnO:Al thin films deposited at 250 W ................................ 184

6-16(a-b). XRD spectra from ZnO:Al thin films deposited at 500 W ................................ 185

6-17(a-b). XRD spectra from ZnO:Al thin films deposited at 1000 W .............................. 186

6-18(a-b). Maximum XRD peak intensity of the (002) peak for ZnO:Al thin films .......... 189

6-19(a-b). Position of the ZnO:Al (002) peak in 20 (degrees) plotted ............................... 191

6-20(a-b). FWHM of the (002) ZnO:Al XRD peak...................................... 193

6-21(a-c). Process used to quantify "grain size" from AFM micrographs........................ 196

6-22(a-b). "Grain size" of the ZnO :Al thin film s ............................................................ 198

6-23(a-b). RMS roughness of the ZnO:Al thin films..................... ... ...................200

6-24. Resistivity of the ZnO :A l thin film ....................................................................... 213

6-25(a-b). Corrected carrier concentration from Hall measurements for ZnO:Al thin
film s .............................................. .... ........................... 2 14

6-26(a-b). Corrected Hall mobility for ZnO:Al thin films...........................................217














Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

SPUTTER DEPOSITION OF ZNO THIN FILMS

By

Loren Wellington Rieth

December 2001


Chairman: Paul H. Holloway
Major Department: Materials Science and Engineering

Sputter deposition and characterization of ZnO thin films for application as a

transparent conducting electrode have been studied. The effects of gas ambient upon

annealed film properties, evolution of structural and electrical properties of very thin ZnO

films, and the influence of negative ion resputtering on the thin film properties were

investigated.

For annealing sputter deposited ZnO thin films, the gas ambient in the quartz tube

furnace was found to be a critical parameter for the resistivity of ZnO:Al thin films.

Annealing films in forming gas (N2/H2 90%/10%) at 4000C for 60 minutes was found to

reduce the resistivity of the films by up to two orders of magnitude with a minimum

value of 2x10-3 Q-cm. Optical measurements indicate an increase in carrier concentration

is responsible for the decreased resistivity.

The nucleation of ZnO:Al films on glass substrates occurs by the island (Volmer-

Webber) mechanism. Films less than 1000 A thick were found to have higher resistivity









due to decreased carrier concentration postulated to result from carrier depletion by

chemisorbed oxygen. The minimum resistivity achieved was 4.3x10-3 Q-cm at a film

thickness of 1580 A.

The effects of negative ion resputtering on the structural and electrical properties

of deposited ZnO:Al films were evaluated. A model incorporating system geometry,

deposition conditions, negative ion resputtering, and film thickness was developed to

explain the structural and electrical properties of the deposited films. The model defines

Regions I, II, and III, with the resistivity in Region I between 4.3x10-3 to 1.2x10-2 Q~cm,

a carrier concentration of between 7.2x1019 to 3.2x1020 cm-3, and mobilities of

approximately 7 cm2/V-s. In Region II, the resistivity decreases to 1.5x10-3 Q-cm, due to

increased carrier concentrations of 5x1020 cm-3, while mobility remains near 7 cm2/V-s.

For Region III resistivity increases to greater than 10 Q-cm, due to carrier concentrations

as low as 1.0x1019 cm-3, and mobilities as low as 1.5 cm2/V-s. Low carrier concentrations

in Region I result from compensation by native defects created by negative ion

resputtering, while low carrier concentrations in Region III result from chemisorbed

oxygen species.














CHAPTER 1
INTRODUCTION AND MOTIVATION

The need for electrical power is the fundamental motivating force for the research

presented in this work. Department of Energy statistics for total energy consumption in

the US are presented in Figure 1-1, and show a steady increase with time since 1949.

The vast majority of this energy is produced by fossil fuels and nuclear power as can be

seen from the small fraction of the total energy consumption supplied by renewable

energy sources. At current consumption rates, fossil and nuclear fuel supplies will last on

the order of decades to centuries. Significant price increases will occur for energy

produced from fossil and nuclear fuels as these resources are depleted. Additionally, use

of fossil and nuclear fuels results in environmental degradation during procurement,

consumption, and waste disposal. Therefore the long-term energy security of this country

and the world at large is dependent on use of sustainable quantities of energy generated

from renewable sources. Renewable energy sources currently under development and in

use include hydroelectric, geothermal, wind, biomass, nuclear fusion, and solar

(photovoltaic and thermal).

Photovoltaic cells, more commonly known as solar cells, are based on the ability

of certain materials and structures to generate electrical power when exposed to light.

Modem solar cells are based on semiconducting materials. Two classes of solar cells are

bulk and thin cells, and are distinguished by the thickness of the material that absorbs the

light to generate electricity. Bulk solar cells rely on semiconducting wafers on the order

of half a millimeter in thickness. Thin film solar cells are fabricated by depositing layers









120000000


100000000


S80000000


o 60000000


m 40000000


20000000


0 -
1949 1959 1969 1979 1989 1999
Year

Figure 1-1. Total and renewable energy consumption in the United States of America in
billions of BTU versus time in years [1].



of semiconducting materials of a thickness on the order of 1 am onto inexpensive

substrates such as glass, plastic, or metal foils. Significantly lower production costs are

possible due to 100 times smaller volume of semiconducting material used in thin film

cells. It is the production cost per peak watt ($/kWp) that is a critical figure of merit. In

order to be competitive with current power pricing, a rough threshold of $3/kWp must be

surpassed for areas serviced by the power "grid." Current applications where solar cells

are cost effective include remote locations and developing countries, where the power

infrastructure is not established.

Thin film solar cells are based on a number of semiconducting materials,

including copper chalcogenides, cadmium telluride, and amorphous silicon. Copper

chalcogenides in the Cu(In,Ga)Se2 or CIGS system have demonstrated 18.8% conversion

efficiency for research size cells [2]. Advantages of this materials system leading to high


Energy Consumption







Renewable Energy
Consumption
----\









efficiencies include a large optical absorbance (a-105 cm-) from a direct band gap,

ability to change the band gap by control of the stoichiometry, a large minority carrier

lifetime, and compatibility with thin film deposition techniques [3,4].

Because semiconducting layer of thin film solar cells often have a high resistance,

a front transparent conducting electrode (TCE) is critical to cell efficiency. Thin films of

ZnO are almost exclusively used as the TCE for thin film solar cells based on CIGS.

Further improvement of the properties of ZnO thin films is recognized as necessary for

further improvement of large area production modules [5]. Use of ZnO as a TCE is

attractive because of its match to the electrical properties of other layers in a CIGS device

and the low price of zinc especially compared to the semiprecious metal indium. Zinc

oxide is also compatible with large area thin film deposition techniques, Zn and O are

isoelectronic with the CdS layer ZnO is deposited upon, and has optical and electrical

properties that are competitive with other TCO materials.

The focus of this research is to improve the knowledge of the relationships

between the thin film deposition process and the structure and properties of the resulting

ZnO films. This knowledge can then be used to improve the properties of ZnO thin

films, and decrease the effort needed to optimize film properties in the future. Based on

production and performance considerations, sputter deposition of ZnO thin films has

yielded the best results, and will therefore be the technique used in this work. Key issues

investigated are the influence of sputtering process variables on the properties of the

resulting films. The process variables for the sputtering process influence the

microstructure of the deposited film, which in turn dictates the electrical and optical

properties. A review of the literature is present in Chapter 2, and provides background









information on CIGS based thin film solar cells, ZnO window layers, and the sputtering

process. The experimental method is discussed in Chapter 3, and relates the methods,

conditions, and characterization tools used to determine the relationships between the

deposition process and film properties. Results and discussion from an experiment

designed to investigate the influence of annealing and the gas ambient used for annealing

is presented in Chapter 4. Results and discussion presented in Chapter 5 cover an

experiment designed to investigate the development of properties in very thin ZnO:Al

thin films. The experiment discussed in Chapter 6 is designed to investigate negative ion

resputtering and the mechanisms by which it influences the properties of deposited films,

and film thickness effects on electrical properties in very thin films. The overall

conclusions drawn from this work are communicated in Chapter 7.

As a final note, this work is primarily motivated by the application of thin film

solar cells. It is worth noting that there are many applications for zinc oxide thin films.

Several examples include gas sensors [6-9], surface acoustic wave devices [10], structural

e-glass coatings [11,12], and with the advent ofp-type ZnO wide band gap electronic

structures [13].














CHAPTER 2
LITERATURE REVIEW


2.1 Introduction

The focus of this study is the relationships between the sputter deposition process

and post deposition heat treatments to the structural, electrical, and optical properties of

deposited ZnO:Al thin films. The objective is to improve properties of the ZnO:Al films

with respect to application as a transparent conducting electrode (TCE) to CuInSe2 (CIS)

thin film solar cells. This chapter reviews background information and concepts

including the basics of solar cells, transparent conducting oxides, and sputter deposition.

The section on solar cells covers history, basic device physics, and influence of the TCE

on solar cells. A cross-sectional view of a typical CIS based solar cell structure is

presented in Figure 2-1. The transparent conducting oxide section reviews the history of

transparent conductors and the principles of their electrical and optical properties. The

topics covered in the sputter deposition section include the sputtering process in several

important geometries, thin film coalescence, and negative ion resputtering. Specific

information regarding ZnO will be worked into all of these themes.


2.2 Photovoltaic Devices

2.2.1 History

The photovoltaic or Dember Effect is defined as "providing a source of electric

current under the influence of light or similar radiation." [14] Becquerel discovered










< Grid Metalization


Cu(1nGa)~Se.-.


Figure 2-1. Schematic cross sectional view of a typical CIS based thin film solar cell
structure.



this effect in 1839, when he noticed power generation from metal plates in electrolyte

solutions. In 1876, power generation was reported from selenium, the first solid state

photovoltaic device [4]. The first modem semiconductor solar cell was developed in

1954 by Chapin, Fuller, and Pearson, and was based on ap-n junction formed in silicon

[15]. This quantum leap of technology in conjunction with the needs of the US space

program formed the impetus for early research into solar cells. Due to the expense of

these early cells, and the widespread availability of cheap "grid" power, solar cells for

terrestrial applications received little attention until the 1970s. The energy crisis in the

1970s stimulated a tremendous amount of research into solar cells for terrestrial

applications. The fruit of this effort can be seen in the rapid strides made in improving

efficiency and lowering cost, and the large body of published literature generated in the










80s and 90s. In Figure 2-2 [3], solar cell efficiency is plotted versus material system and

time, and excellent improvement in efficiency is noted for the beginning in the late 70s.

Efficiency for CIS cells increases from -4% to almost 10% from 1978 to 1981. Research

and development have continued through the 90s and into 2000, yielding the large variety

of commercial products available today [4].

Many semiconducting materials have been studied for photovoltaic applications.

The structures of these materials include single crystalline, polycrystalline, and

amorphous materials in bulk and thin film forms. Materials that have received substantial

attention include Si, GaAs, InP, CdTe, and CuInSe2 (CIS). Single crystal, poly-

crystalline, and amorphous silicon account for the vast majority of commercially

available solar cells for terrestrial applications. Cells based on III-V chemistries

(GaAs,InP) are used extensively for space applications due to their radiation hardness,


16-
GoAs
0 CU2S/CdS -
t3 A Cu2S/(Cd Zn)S SI
& CdS/Cu In Set N a
SPolycrystollin* Si -
0 a-Si ----
CdTo 2A 01
10 O CdS/CVDIUP
y V MgQ/Zi3P 0


0 A *f a t -'o

7- / o -
w/ o Z o ,- o o
-o o 0

S io I i
1975 1976 1977 1978 1979 1980 1981 1982
YEAR

Figure 2-2. Progress in improving efficiency of solar cells based on several different
materials as a function of time [3].









and high conversion efficiency, which translates to weight savings and longevity for

satellite applications [4]. Thin film solar cells based on CIS have recently achieved

18.8% efficiency for laboratory sized cells, and have exceeded 10% for complete

modules [2]. Panels based on CIS have recently entered the market as a commercial

product for terrestrial applications, and are manufactured by Siemens Solar Industries

[16]. Current applications for solar cells include power for remote locations, power

generation in developing countries without a substantial power generation and

distribution infrastructure, and the space industry.

Future research will continue to focus on improvements in conversion efficiency

and lowering production costs. The basics of photovoltaic device physics and their

relationship to efficiency will be treated in the next section, followed by a discussion of

the benefits of thin film technology in lowering production costs.

2.2.2 Device Physics

At the simplest level, a solar cell is a device that converts absorbed light to

electrical power. Most modem solar cells are based onp-n junction diode devices. In the

cells, incoming sunlight generates electron-hole (e-h) pairs that are separated by an

electrical field resulting from junction formation. The generate charge carriers must then

flow through the various regions of the cell structure (i.e., grid metalization, TCE, etc.) to

power the external load. A basic parameter used to evaluate all solar cells is the

efficiency (rl) of the conversion process, and is simply the ratio of the electrical power

(P=VI) generated by the cell to the power of the light impinging on the cell, and is

described in Equation 2.1 [17] where

V,,,
77= (2.1)
P"n









For this equation, Vm and Im are the voltage and current for maximum power (Pm), and Pin

is the power of the incident light. The power of incident light is obviously extremely

variable, and depends on the influences of the atmosphere, cloud cover, time of day, and

many other factors. Typical incident powers for air mass conditions of 1 and 1.5 (AM1

and AM1.5) are 92.5 and 84.4 mW/cm2, respectively. The AM1.5 solar spectrum is

presented in Figure 2-3 in terms of irradiance (W/m2.im) versus wavelength of light.

The air mass conditions correspond to the spectrum of the sun at sea level for the sun at

zenith (AM1) and 450 (AM1.5) above sea level [17]. Thus for CIS cells, it is essential

that the TCE conduct electricity well to limit resistive power losses, and be highly

transparent to light for wavelengths that have significant solar irradiance and that can be

absorbed by the cell.

1600

1400

1200

1000

S8 0 0 ---_ -------------------------------

600

400

200


0.3 0.8 1.3 1.8 2.3 2.8 3.3 3.8
Wavelength (nm)

Figure 2-3. Irradiance of the solar spectrum as a function of wavelength for light filtered
by the Earth's atmosphere to the air mass 1.5 global spectrum.










The maximum power delivered by the cell is determined by the fill factor (FF) for

a solar cell. The fill factor is a measure of the squareness of the illuminated I-V curve,

and like efficiency is used to characterize all types of solar cells. A plot of a typical I-V

curve is presented in Figure 2-4 [18], where the hatched square represents the area of a

square defined by the product of Vm and Im, which equals Pm. The fill factor represents

the ratio of the maximum power square to the power square defined by Voc and Isc, where

Voc is the open circuit voltage, and Isc is the short circuit current. These relationships

yield Equations 2.2 and 2.3 [17].


FF =Vmim


FF VjJ,
77P

*1n


(2.2)



(2.3)


-0,8 -0.4 0 0.4 0.8 1.2
V (VOLTS)

Figure 2-4. Theoretical plot of the I-V characteristics for a typical Si solar cell, with the
maximum power rectangle highlighted [18].










The ZnO TCE primarily affects cell efficiency by influencing the FF and Isc. The role of

the TCE and the mechanisms for its influence on FF and Isc are discussed in Section 2.2.4

below, after coverage of basic concepts is completed.

To understand device physics, start with the simplest case of ap-n homojunction

diode formed near the surface of a bulk semiconductor wafer. A typical structure and

band diagram is shown schematically in Figure 2-5. In this device, there is a n-type

region on the surface, a depletion region containing the junction, and ap-type substrate.

If a photon with energy (Eph=hv) greater than the band gap (Eg) of the semiconductor is

absorbed, a valence band electron is promoted to the conduction band yielding an

electron-hole (e-h) pair. If this absorption process takes place in or within a diffusion

distance from the space charge or depletion region, the carriers can be separated by the

junction's built-in potential (Vbi). The built-in potential is a function of the band bending

in the space charge region, and is therefore determined by the doping concentrations for a

homojunction [17].



Vbi ES

E,
Ev
hv>Eg




Figure 2-5. Band diagram of a typical n-p homojunction solar cell, illustrating generation
of an electron-hole pair by absorption of a photon.









Since the width of the depletion region is small relative to the thickness of the

cell, a significant portion of e-h pair generation occurs outside of the depletion region.

This region has no built electric field; therefore current transport only occurs due to the

diffusion field generated by the excess carriers. If these generated carriers reach the

depletion region, they contribute to power generation. If the carriers recombine before

reaching the depletion region, they do not contribute; therefore the minority carrier

lifetime and diffusion distance are critical to device performance [17].

2.2.3 Thin Film Solar Cells

Thin film solar cells are solar cells based on deposited thin films of

semiconductor materials, typically applied to inexpensive substrates (i.e., glass, polymer

films, and metal foils). The principle of using a semiconductor junction is the same, but

the structure and production of the cells are quite different. The device physics of thin

film cells are significantly more complicated than the idealized conditions described

above [3,4]. The solar cell structure presented in Figure 2-1 is a typical CIS based thin

film solar cell, and is comprised of several layers, the functions of which will be

discussed subsequently. Factors complicating the device physics arise from large defect

concentrations in the deposited films, and the necessity of using multiple layers.

Microstructural defects include point defects, dislocations, and extended defects such as

grain boundaries. Macroscopic defects include porosity/voids, pinholes, delamination,

and cracking. These defects lower the efficiency of the cell by degrading optical and

electrical properties. Multiple layers can hamper performance due to interfacial

recombination, potential barriers resulting from poor band alignment, and processing

constraints imposed by the different materials. Thus, compared to ideal cells, which are









most closely approximated by bulk single crystal devices, thin film devices are less

efficient.

Enthusiasm for thin film cells is maintained despite compromises in efficiency

because of the potential for substantially reduced production costs [3]. Costs are lowered

in source materials due to the relatively small volume of semiconductor material needed

to form thin films in contrast to bulk cells where the entire structure is semiconducting

material. This is an important advantage if a significant portion of the world's power is

to be produced by solar cells. The area of cells needed to produce a significant fraction

of the world's power demand is huge; therefore low material usage per unit area is

absolutely critical. A second advantage results from lower processing costs associated

with thin film devices versus bulk devices. As seen previously (Figure 2-2), tremendous

strides have been in made improving the efficiency of thin film devices, but high volume

production costs still need to be much lower to encourage widespread adoption of thin

film solar cells. In all cases, production costs are lower than high efficiency single

crystal devices, and compete with bulk poly-crystalline devices. Amorphous silicon

(a-Si) is still the cheapest solar cell material to produce, but continues to suffer from low

efficiency and lack of stability under long term illumination [4]. Amorphous silicon cells

are widely used in consumer electronic applications where power consumption is

minimal and low cost is critical (i.e., solar powered calculators).

The CIS material system has several advantages over other materials systems, one

being a large absorbance (c=105 cm -), which is larger than many other direct band gap

semiconductors [3]. The absorbance describes the ability of a material to absorb light as

expressed in Equation 2.4 where









I= Ie-' (2.4)

The term I is the intensity of transmitted light, Io is incident light, a is the absorbance

with units of cm1, and x is the distance traveled through the absorbing medium in units

of cm. The high absorbance of CIS results in light being absorbed near the surface of the

film, and therefore in close proximity to a shallow p-n junction region. This also means

that the overall device can be thinner than a device based on a semiconductor with a

lower a. Another benefit is the band gap of the device can be controlled by introducing

Ga for In and S for Se, to match the band gap of the cell for most efficient utilization of

the solar spectrum and to form graded gap structures. Turning to the individual layers of

the CIS based solar cell in Figure 2-1, the substrate for thin film CIS solar cells is

inexpensive soda-lime (window) glass. A 1 tm thick film of molybdenum is sputter

deposited onto the glass substrate, and acts as a reflective back electrode to the solar cell.

The primary purpose of the Mo contact is to efficiently conduct electricity generated in

the CIS layer to the external circuit. The CIS layer is the semiconductor layer responsible

for absorbing the light, and is known as the absorber layer. The CIS layer is typically -3

lm thick, and is deposited by a wide variety of techniques, of which co-evaporation has

achieved the best results (rl=18.8%) [2]. Co-evaporation involves simultaneous

evaporation of Cu, In, and Se from elemental sources, and therefore requires

sophisticated flux controls to achieve proper stoichiometry. There is still considerable

debate as to whether the semiconductor junction formed in CIS based solar cells is a

homojunction within CIS, or a heterojunction formed with the subsequent CdS layer.

From the illustration of the cell in Figure 2-1, the layer on top of CIS is a very thin (50

nm) layer of CdS known as the buffer layer that is deposited by chemical bath deposition









(CBD). The role of the buffer layer is still not well understood, but is critical to

fabrication of the highest efficiency devices [19]. Resistive intrinsic ZnO (i-ZnO) and

conductive doped ZnO form the transparent conducting electrode top contact, and are

approximately 50 and 700 nm thick, respectively. This contact is typically deposited by

sputter deposition, and will be discussed in the next section. The final two steps are the

deposition of patterned metal electrodes to lower the series resistance (Rs), and a layer of

MgF2 to form an anti-reflection coating [2].

Again, the CIS layer has been deposited by many different methods including

sputter deposition, thermal evaporation, electro-deposition, electrophoretic deposition,

and many chemical processes with a variety of precursors. In each case, the ac or

chalcopyrite phase is desired. The chalcopyrite crystal structure is tetratragonal, and is

essentially two stacked zinc blende unit cells along the c-axis, and is shown schematically

in Figure 2-6. Table 2-1 contains a list of some basic materials parameters for several

copper chalcogenides [4]. The importance of this is that the band gap of the absorber can

be tailored by adjusting compositions between the various ternaries, and that the

minimum band gap of the cell structure is important for optimization of the TCO layer.

The relationship between the band gap of the absorber and optical properties of the TCO

will be discussed below. The explicit space group for CIS has been a subject of much

interest, as knowing the space group can improve the accuracy of calculations concerning

materials properties [20]. Thermodynamic assessments of the phase diagrams for CIS

and CIGS have recently been reported, which have proven useful for optimization of

processing conditions [20,21].


























Se
SIn
0


Figure 2-6. One unit cell of the CulnSe2 chalcopyrite crystal structure [20].


Table 2-1. Materials parameters for chalcopyrite ternary compositions.
Compound a (A) c/a E, (eV)
CuInSe2 5.782 2.0097 1.04
CuGaSe2 5.596 1.966 1.68
CuInS2 5.52 2.016 1.43
CuGaS2 5.35 1.959 2.43


The CdS buffer layer is still an active area of research. Research is focused on the

role of the layer, since the most efficient devices have this layer. A large amount of

effort has addressed how to replace the CdS layer because of the toxicity of cadmium

[19]. The leading hypotheses regarding the role of the buffer layer are that it protects the

absorber layer from ion bombardment during the sputter deposition of ZnO, that the CBD









chemistry treats the surface in such a way that the interfacial electrical properties are

improved, and/or that it forms a high quality heterojunction. Some of the investigated

alternatives include In(OH,S), CdZnS, ZnS, and ZnO [19,22].

2.2.4 Transparent Conducting Electrode (TCE)

For bulk single crystal p-n junction based solar cells, the top layer of the cell

structure is typically a heavily doped n-type region. Therefore the resistivity of the

absorber material is low, and it can effectively conduct power to the metal grid, which

transfers the power to an external load. For the case of CIS based cells a fine grain size

and an inability to achieve a highly doped n-type region on the surface dictate the need

for an additional layer to efficiently conduct electricity. As this layer is on the top of the

cell, it must also transmit the useful portion of the solar spectrum. These needs are well

met by transparent conducting oxides (TCOs), of which ZnO has been found to be a

particularly good match for CIS based cells. The two primary mechanisms by which the

TCE affects the performance of the solar cell are through the fill factor (FF) and the short

circuit current (Isc).

There are several design constraints that make ZnO more attractive than other

TCOs for application to CIS based solar cells. One of the most fundamental is the

previously mentioned natural abundance and low cost of Zn. Also important is the

thermal budget available for this processing step. It is generally accepted that for the

current state of the art structures, processing above 2000C for any step after deposition of

CdS results in severe degradation of the cell's performance [23]. Thus a high quality

TCO must be deposited at or near room temperature. Transparent conductors based on

ZnO have achieved resistivities in the low 10-4 Q-cm by sputter deposition at room

temperature. Films of ZnO can also have greater than 90% transmittance in the visible










spectrum, which is one of the best values for TCOs, while maintaining good electrical

properties [24]. Also, as shown in Figure 2-7, the conduction band alignment between

ZnO and the underlayers is good [25], which is important for transport of conduction

band electrons generated in the absorber to the external load. In the presented schematic

band alignment diagram, the conduction band for ZnO is 0.4 eV and 0.1 eV below the

conduction bands of CdS and CIS, respectively. Additionally, ZnO is based on column II

and VI elements from the periodic table, as is CdS; therefore Zn and O are isoelectronic

in CdS.

As mentioned, the TCE influences the FF and Is, of the cell. For the case of FF,

the TCE can be a primary component of the series resistance (Rs), which can be seen in

CuInSeg ODC CdS ZnO
0.3 eV -0.4 eV
E, -0.02 eV

1.04 eV 1.3 eV 2.4 eV 3.3 eV
S- GCe-reference

E, -0.32 eV -0.6
-0.28 eV _
-1.4 eV

-0.8 eV
-2.7 eV




-1.3 eV





Figure 2-7. Conduction and valence band alignments of a typically CIS based solar cell
between the different layers of the structure [25].








the schematic equivalent circuit shown in Figure 2-8 [17]. Equation 2.5 was developed to

evaluate resistive effects in thin film solar cells [26].

R Vm Vm V [1-F2(V)/F2(0)
FF = FF CI, S (2.5)
cV, V s, J P2F2 (VV

The term FFo is the ideal diode fill factor and C is a parameter that is weakly dependent

on Voc/kT. The bracketed term on the right is a correction used for CdTe based solar

cells, and is therefore not applicable to CIS based solar cells. As can be seen, a high

series resistance and/or a low shunt resistance (Rsh) degrades the fill factor of the solar

cell. Shunt resistance is a term for the internal resistance of the solar cell, and therefore

controls the amount of power dissipated within the cell. A lower fill factor results in

decreased conversion efficiency. This point is well illustrated in the plots shown in

Figures 2-9(a-b) [18]. Figure 2-9a is a plot of four calculated I-V curves for an

illuminated solar cell with the permutations of Rs values of 0 and 5 Q and Rsh values of

100 and o Q. While shunt resistance (Rsh) has minimal impact on the I-V curves, higher

series resistance (Rs) strongly decreases the cell's fill factor. Figure 2-9b plots the

relative power generated versus Rs, and indicates the relative power (efficiency) drops

Rs

IL LID
T 1D' Rah RL




Figure 2-8. Equivalent circuit diagram for a solar cell, showing photocurrent (IL), dark
current (ID), series resistance (Rs), shunt resistance (Rsh), and a load (RL) [17].



















,-I. 1. 1 1 I .. k -(a)
0.8 0.4 0 0. 0.8
VOLTS-$- 20-

Rs = 0
/Rs= 100 nL
60-


i^ I;Rsh o0




1.0-









Rs (L)
shown by the squareness of the I-V curve and (b) relative power as a function of series

0.2resistance [8].
0 4 B 12 16 20
RS (M)

Figures 2-9(a-b). Influence of a solar cell's series resistance on the (a) fill factor as
shown by the squareness of the I-V curve and (b) relative power as a function of series
resistance [18].









sharply with increasing Rs, particularly between 0 and 4 Q. Series resistance for state of

the art CIS based solar cells are -0.2 Q-cm2 [2], and improvement of this value by

decreasing the resistivity of the TCO layer will improve FF, and therefore efficiency of

the cell.

The second mechanism by which ZnO influences CIS based solar cells is optical

losses. This mechanism impacts the Isc, since photons absorbed in the TCE do not

generate photo-current. As will be detailed below, the optical properties and the

electrical properties are fundamentally related by the plasma resonance and band gap

energy, and are discussed in the section concerning optical properties of TCOs below.

Optical absorption is a function of the film's thickness (x) and absorbance (a) as shown

in Equation 2.4. The series resistance is a function of thickness as well as the resistivity.

If the resistivity of ZnO is decreased, thinner films can be used resulting in less optical

absorption. The effects of light absorption in the TCE can be investigated by

spectrophotometry to characterize transmittance, and the spectral response of the cell,

which characterizes the quantum efficiency (QE). Dips in the efficiency for particular

wavelength regions of the spectrum can be correlated to spectrophotometry data from the

TCE to assess its impact on the solar cell.


2.3 Transparent Conducting Oxides

2.3.1 Background

Transparent conducting oxides (TCOs) have been investigated since the 1950s for

use in a variety of applications. Over these years, a large amount of research has been

done to improve the optical and electrical properties, and there are several excellent

reviews of the work that has been done on TCOs in general [11,12,27], and ZnO









specifically [28]. As a general class of materials, transparent conducting oxides (TCOs)

are made of binary and more recently multi-component metal oxides. They are applied

as thin films using various deposition techniques such as spray pyrolysis, sputter

deposition, chemical vapor deposition, molecular beam epitaxy, and laser ablation [28-

32]. The transparency is derived from a large band gap (Eg>3 eV), which prevents

absorption of visible wavelengths, and a lack of d-d transitions in the metal cations which

could act as color centers. The d-d transitions cannot occur if the d orbitals of the metal

cation are full, and therefore many TCOs incorporate this type of cations [13]. This

yields a transmittance in the visible often greater than 90% (T>90%). The low electrical

resistivity (p-10-3-10-4 Q.cm) of these materials is derived from extremely high carrier

concentrations (n-1020-1021 cm 3), since the carrier mobilities are low (pL-5-50 cm2/V.s).

The low mobility is a result of both the inherently low mobility of the oxide materials,

and an array of scattering defects in the deposited films. Various figures of merit (FOMs)

that incorporate optical absorption and electrical conductivity have been proposed, but no

consensus has been reached on a universal FOM. Therefore FOMs are not commonly

used in the literature. Until very recently, useful conductivities could only be achieved

for n-type materials. This has changed with development of asp-type TCO materials

over the past few years [13].

The first oxide found to be transparent and conductive, CdO, was discovered by

Badeker in 1907 [33]. The first TCO useful for practical applications was indium oxide

doped with tin commonly known as indium tin oxide (ITO), which has a composition of

(In203:SnO2) (90wt%: 10wt%). It was developed in the early 50s, and maintains some of

the best performance characteristics for optical transparency and electrical conductivity









[11,24]. It has been the TCO of choice during the last 50 years for applications

demanding the best conductivity with good optical properties in the visible regime.

Currently half of the indium produced in the world finds application in ITO for flat panel

display applications [34]. Other TCO materials that have received substantial attention

include tin oxide (SnO2) commonly doped with fluorine, and cadmium stannate

(Cd2SnO4), which is intrinsically doped. Table 2-2 is a list of historically significant

innovations in the TCO field with references compiled by Gordon [24].


Table 2-2. History of processes for making transparent conductors.
Material Process Reference
Ag by chemical-bath deposition Unknown Venetian
SnO2:Sb by spray pyrolysis J. M. Mochel (Coming), 1947 [35]
Sn02:Cl by spray pyrolysis H. A. McMaster (Libbey-Owens-Ford), 1947 [36]
Sn02:F by spray pyrolysis W. 0. Lytle and A. E. June (PPG), 1951 [37]
In203:Sn by spray pyrolysis J. M. Mochel (Coming), 1951 [38]
In203: by Sputter Deposition L. Holland and G. Siddall, 1955 [39]
SnO2:Sb by CVD H. F. Dates and J. K. Davis (Coming), 1967 [40]
Cd2SnO4 by Sputter Deposition A. J. Nozik (American Cyanamid), 1974 [41]
Cd2SnO4 by Spray Pyrolysis A. J. Nozik (American Cyanamid), 1976 [42]
SnO2:F by CVD R. G. Gordon (Harvard), 1979 [43]
TiN by CVD S. R. Kurtz and R. G. Gordon (Harvard), 1986 [44]
ZnO:In by Spray Pyrolysis S. Major et al. (Indian Ist. Tech), 1984 [45]
ZnO:Al by Sputter Deposition T. Minami et al. (Kanazawa), 1984 [46]
ZnO:In by Sputtering S. N. Qiu et al. (McGill), 1987 [47]
ZnO:B by CVD P. S. Vijayakumar et al. (Arco Solar), 1988 [48]
ZnO:Ga by Sputter Deposition B. H. Choi et al. (KAIST), 1990 [49]
ZnO:F by CVD J. Hu and R. G. Gordon (Harvard), 1991 [50]
ZnO:Al by CVD J. Hu and R. G. Gordon (Harvard), 1992 [51]
ZnO:Ga by CVD J. Hu and R. G. Gordon (Harvard), 1992 [52]
ZnO:In by CVD J. Hu and R. G. Gordon (Harvard), 1993 [53]
Zn2SnO4 by Sputter Deposition H. Enoki et al. (Tohoku), 1992 [54]
ZnSnO3 by Sputter Deposition T. Minami et al. (Kanazawa), 1994 [55]
Cd2SnO4 by Pulsed Laser Dep. J. M. McGraw et al. (CO. Sch. Mines & NREL),
1995 [56]









Focusing on development of ZnO as a TCO, research started in the late 1970s,

with major contributions starting in the 80s. Research in the early 80s focused on

intrinsically doped ZnO thin films [57,58], but the electrical properties of these films

were found to be unstable above 1500C [59]. The stability issue was resolved by using

extrinsically doped films. Figure 2-10 shows progress in decreasing the resistivity of

several TCO materials including ZnO with time. Table 2-3 presents a compiled list of

electrical properties for doped ZnO films deposited by magnetron sputter deposition.

From the table the reader can note that while excellent electrical properties have been

achieved, they involve either elevated substrate temperatures or positioning the substrate

perpendicular to the source. Recall that elevated temperatures are incompatible with

solar cell deposition process, and utilizing a substrate perpendicular to the source has

issues with uniformity and feasibility particularly with large area substrates. The low

10-2
D \,\ SnO2


I IZnO







Year
QA A A'*f --n




-1970 1980 1990 2000

Year

Figure 2-10. Decreasing resistivity of transparent conducting oxides indicating improved
performance as a function of time [60].









resistivities achieved suggest that there is room for improvement for films deposited at

room temperature with a parallel source and substrate geometry. Room temperature

deposition with a parallel substrate and source is most compatible with volume

production of CIS based solar cells, and therefore improving electrical properties

achieved by this process is critical to improved efficiency in production devices.




Table 2-3. Compilation of electrical data for sputter deposited ZnO thin films with
several different dopants.
Dopant Target p (x10-4) n (x1020) I Reference
(OQcm) (cm3) (cm2/V.s)
Al Zn:Al 4.2 2.6 57 Jager et al. [61]
Al Zn:Al 4.0 4.9 32 Jiger et al. [61]
Al ZnO:A1203 7.7 4.2 19.5 Menner et al. [62]
Ga ZnO:Ga203 5.9 5.9 20 Menner et al. [62]
Al ZnO:Al 6.5 6.5 15 Cebulla et al. [63]
Al ZnO:Al 14 4.0 10 Cebulla et al. [63]
Al ZnAl 2.7 8.4 28 Kluth et al. [64]
Al ZnO:A1203 1.9 11 30 Tominaga et al. [65]
Al ZnO:Al203 4.7 7.5 15 Park et al. [66]
Al ZnO:A1203 2.8 5.8 39 L6ffl et al. [67]
Al ZnO:Al 4.5 8.0 17 Ellmer et al. [68]
Al ZnO:A1203 3.6 5.6 37 Nakada et al. [69]
B ZnO + B2H6 4.0 2.6 60 Nakada et al. [69]
B and Al ZnO:A1B12 6.5 2.4 40 Nakada et al. [69]
Al ZnAl 2.7 4.3 53 Schaffler et al. [70]
Al ZnO:Al 5.3 5.6 20 Konishi et al. [71]
Al ZnAl 2.5 7.0 36 Mauch et al. [72]
Al ZnAl 5.0 Harding et al. [72]
In ZnIn 14 Igasaki et al. [73]
Al ZnO:A1203 1.4 13 34 Choi et al. [49]
Ga ZnO:Ga203 5.9 15 7 Jin et al. [74]
Al ZnO:Al 5.4 4.5 26 Minami et al. [75]
Si ZnO:SiO2 3.9 Minami et al. [75]
In ZnO:In203 3.0 Qiu et al. [47]
Al ZnO:A1203 1.9 15 22 Minami et al. [76]
B ZnO:B203 6.4 2.5 39 Minami et al. [76]
Ga ZnO:Ga203 5.1 4.4 28 Minami et al. [76]
In ZnO:In203 8.1 4.0 20 Minami et al. [76]
Defects ZnO (Ar+H2) 20 2.0 16 Webb et al. [77]









Transparent conducting oxide thin films are used for a variety of applications, and

depend on several different materials for optimum properties. The largest application is

for heat reflecting, low emissivity coatings for architectural glass. This application does

not require good electrical properties, only a high carrier concentration to achieve low

emissivity in the infrared. Due to the huge area of coated material, it also depends on the

use of an abundant and cheap material, which is easy to deposit. These criteria are best

satisfied by flourine doped tin oxide (SnO2:F) deposited by spray pyrolysis or chemical

vapor deposition [11,34]. Another large application is in visual displays. Modem

cathode ray tube (CRT) displays use TCO films to dissipate static, and absorb magnetic

radiation [34]. The flat panel display (FPD) industry uses TCO films as a transparent

contact for displays based on LCD, electroluminescent, plasma, and other technologies.

This application demands low resistivies (1-3x10-4 Q-cm) and high transmittance

(T>90%) in the visible, but the optical properties in the IR are not critical [34]. The high

costs associated with FPDs make the expense associated with ITO justifiable for the

performance needed.

The application of interest for this work is the use of ZnO films for CIS based

solar cells. A solar cell TCE is a very demanding application, particularly for large area

modules because current is transported over long distances. Both a low resistivity and

high transmission in the visible and near infrared are critical to the efficiency of the

device. Also, in the band diagram presented in Figure 2-7, the electron affinity match

between ZnO and CIS is excellent, promoting good interfacial electrical properties. Zinc

oxide based TCE layers are also used for all the highest efficiency cells, indicating good

performance, and ZnO is inexpensive to produce due to the abundance of Zn, which is









critical to lowering production cost and enabling large volume production, respectively.

Additionally, the highly resistive i-ZnO layer is critical to formation of high performance

CIS based solar cells, and can be effectively deposited by adding oxygen to the sputtering

gas ambient with deposition of ZnO:Al. Therefore, ZnO is very suitable for application

as a TCE to CIS based solar cells.

2.3.2 Electrical Properties of TCOs

Improved electrical properties of deposited ZnO:Al thin films is one of the

primary objectives of this work; therefore, electrical properties of TCO materials are

reviewed and important concepts used to analyze results are presented. A majority of the

published literature discusses the electrical properties of TCOs in terms of resistivity (p),

which is the reciprocal of conductivity (o), and has units of ohm-cm (Q-cm). An early

difficulty arises in whether to treat the electrical properties using a metallic free electron

theory, or using semiconductor transport theory. Evidence that supports the case of

metallic conduction include the lack of temperature dependence for the carrier

concentration data down to very low temperatures (16K) [78]. This suggests that the

doping density has exceeded the Mott critical density [79], and therefore has metallic like

behavior. Above the Mott transition, the semiconductor is considered degenerate,

meaning that the wave functions of the dopant atoms are interacting. Thus, to obey

Pauli's exclusion principle the defect level generated by the dopant splits and an impurity

band is formed. For the case of ZnO, at high doping levels, the impurity band moves into

the conduction band, and results in the Fermi energy (EF) being above the conduction

band edge. Above the Mott transition, the dopant atoms are no longer ionized, as there









are no free states to be thermally ionized into. This is consistent with the lack of carrier

freeze out behavior for low temperature Hall measurements [78].

The classical theory of conductivity in metals was developed by Drude at the turn

of the century, and is based on equations of motion for electrons, with a term for drag to

characterize the interaction of the medium with moving carriers. The conductivity, a, or

inverse of resistivity (p-1) can be expressed as shown in Equation 2.6 [80,81].

= ne (2.6)
p m

where n (cm-3) is the density of free carriers, e (C) is the charge of the electron, T (s-1) is

the relaxation time for the carrier which relates time between collisions, and m is the free

electron mass. A relaxation time on the order of 10-15 seconds is typical for a TCO [82].

The term T relates the motion of electrons to the applied electric field, as is shown in

Equation 2.7 [83], where vf is the final drift velocity for electrons and E is the electric

field strength.

myVf
Z =- (2.7)
eE

From this we can derive a mean free path (1) between carrier collisions, which is related

to the carrier velocity (v) as shown in Equation 2.8 [83].

/ = vz (2.8)

Equation 2.8 is used in Chapters 5 and 6 to evaluate the mean free path for conduction

electrons. The carrier velocity (v) used for these calculations is the thermal carrier

velocity, which is ~107 cm/s [83]. The term T describes the interaction between the

electron and the material hosting conduction. The two fundamental mechanisms

controlling the relaxation time are scattering events with the lattice (phonon scattering)









and defect scattering. Phonon scattering is a function of temperature, and tends to

decrease with decreasing temperature. Defect scattering tends to be independent of

temperature. Because the different scattering mechanisms are independent of energy and

each other, the contributions of scattering by phonons, impurities, or defects can be

summed using Mathiessen's rule as shown in Equation 2.9 [81].

P = Pphonon + P mpurt + Pdefect (2.9)

Metallic conductivity may also be described using quantum mechanics, with

similar results. The primary distinctions made by quantum mechanical description of

resistivity involves acknowledging that only electrons near the Fermi energy participate

in conduction, and that the drift velocity of the electron in an electric field is small

compared to the thermal velocity of the electrons at the Fermi energy. Therefore the

velocity in Equation 2.7 becomes the Fermi velocity (vF) instead of the drift velocity.

The vast majority of the literature treats TCOs as a degenerate semiconducting

material, and use transport equations developed for semiconductors in analysis of the

electrical properties. For this case, the relaxation time becomes a function of energy, and

relaxation by different mechanisms are no longer necessarily independent of each other.

For carrier concentration, it must be recognized that there are two types of carriers,

electrons (n) and holes (p). For ZnO, the carrier type is electrons, and is therefore similar

to metals with the exception that defects and/or impurities generate the carriers. The

relaxation time becomes a mean relaxation time , and is replaced in the conductivity

equations by a mobility (|t with units of cm2/V-s) as shown in the basic equation of

conductivity for a semiconductor presented in Equation 2.10.

1=- (ne, +pep) (2.10)
P









where n is the concentration of electron carriers (cm-3), p is the concentration of hole

carriers (cm-3), e is the charge of an electron, nL, is the mobility of electrons (cm2/V-s),

and |p is the mobility of holes (cm2/V-s). Mobility describes the interactions between

carriers and the material through which they move. Carrier concentration is the density

of mobile charge carriers available for conduction. The relationship between the mobility

and the mean relaxation time is seen in Equation 2.11 [17],


p = (2.11)
m

where m* is the effective mass, and is the mean relaxation time. For metallic

conduction, simplifies to t, and shows that the mobility can remain a useful indicator

of carrier transport for metallic conduction [17]. Equation 2.11 is used to approximate

the carrier relaxation time from the Hall mobility.

The effective mass of an electron appears in Equation 2.11, and is a concept that

relates the influence of a material on the motions of electrons resulting from applied

forces (electric field, magnetic field, etc). If the relaxation time (t) is constant, then by

Equation 2.11, a smaller effective mass will result in a larger mobility. As a general class

of materials, TCOs have large effective masses, which for ZnO is reported to be 0.27mo,

or 27% of the free electron mass [84].

Ideal ZnO, with perfect stoichiometry and no defects should be an insulator, with

resistivity greater than 105 Q-cm. In reality, point defects are electrically active in ZnO,

and in particular Zn interstitials and/or O vacancies are typically believed to generate

conduction band electrons [85] which lower the resistivity to ~10-4 Q-cm [86]. To lower

the resistivity to the 10-4 Q-cm level desired for TCOs requires doping ZnO to carrier

concentrations above 1020 cm-3, while maintaining mobilities greater than 10 cm2/V-s.









ZnO is almost exclusively n-type and this is the case treated here. As a side note, p-type

ZnO has been recently reported, but has proven difficult to reproduce [13].

Doping can be accomplished by intrinsic and extrinsic dopants. Intrinsic dopants

result from deviations in stoichiometry, and are the source for the native n-type

conductivity that ZnO can have. In terms of Kr6ger-Vink notation, the native doping

defects are Zni and Vo for zinc interstitials and oxygen vacancies, respectively. Intrinsic

doping can achieve carrier concentrations of low 1020 cm-3, and some of the best

mobilities (>50 cm2/V-s), with resistivities on the order of 10-3 Q-cm [58]. The

drawbacks of intrinsic doping are the susceptibility to decreased carrier concentration

with increased temperature and oxygen potential of the gas ambient [59], inability to

produce sufficiently high carrier concentrations (n>5x 020 cm-3), and difficulty in

precisely controlling the stoichiometry to achieve the doping goals.

In the mid-80s, the use of extrinsic dopants was developed, allowing much of the

progress in decreasing resistivity shown earlier in Figure 2-10. Some of the most

commonly used dopants are group III elements, which substitute on the Zn lattice and act

as electron donors [60]. The most commonly used dopant is Al, but B, Ga, and In have

also been used. The group III element contributes one carrier per atom to the conduction

band. Aluminum is abundant, easily incorporated, cheap, and non-toxic. A halogen atom

on the oxygen also acts as a donor, contributing one electron to the conduction band.

Fluorine (Fo) is the only halogen reported in the literature, and substitutes well for O

because of their similar ionic radii [86]. Resistivity, carrier concentration, and Hall

mobility of 4x10-4 Q-cm, 5x1020 cm-3, and 40 cm2/V-s have been reported [50]. The high

mobility is hypothesized to result from F sitting on the O sublattice, where the ionized F-









impurity scattering center introduced by the dopant primarily affects the valence band,

and therefore does not as effectively scatter carriers in the conduction band [50]. On the

other hand, group IV elements, and a variety of transition metals have been shown to

exhibit poorer electrical and optical properties than the group III elements and F [60],

presumably due to increased scattering. One difficulty in controlling carrier concentration

is that intrinsic and extrinsic doping mechanisms can both be active. Recall that intrinsic

doping results from deviations in stoichiometry in the form of Zni and Vo. Typically

atomic densities are 5x1022 atoms/cm3, while typical doping levels are 1020 cm-3,

indicating stoichiometric changes of -0.1% can yield significant changes in carrier

concentration. Additionally, the native defects of oxygen interstitials (Oi) and zinc

vacancies (Vzn) are reported to compensate conduction band electrons [85], and can

therefore decrease carrier concentrations generated by intrinsic and/or extrinsic doping.

Grain boundaries add an additional layer of complexity to the investigation of

electrical properties. Surface states and chemisorbed oxygen species both deplete carriers

from the conduction band [9,78]. Surface states are states formed within the band gap

resulting from the break in atomic bonding symmetry at the interface. Carriers enter the

deep levels, and a space charge region occurs on each side of the grain boundary as

shown in Figure 2-11 [3]. Similar to ap-n junction, the width of this depletion region is a

function of the carrier concentration, and becomes smaller as the carrier concentration

increases [78]. As the potential barrier becomes very narrow, tunneling transport

supercedes thermionic associated with the Petritz model for grain boundary scattering

[87]. The influence of grain boundaries on the electrical properties occurs through

scattering, which is considered below.









Interface States


Ec
S- 0Ef

Eg | n



-W x o W


Grain
boundary

Figure 2-11. Schematic representation of the influence of grain boundaries and interface
states on the band bending at the interface [3].


The issue of chemisorbed oxygen species at grain boundaries is important for

applications of ZnO as a solid state gas sensor [6,9]. Changes between reducing and

oxidizing ambients can be measured by changes in the resistivity of the material. In an

oxidizing ambient, oxygen species, often attributed to O-, bond to the surface by trapping

a conduction band electron from ZnO. When the surface concentration of the species is

high, and the grain size of ZnO is small, the grains can become depleted of carriers, and

result in a significant increase in the resistivity. A schematic of the chemisorption

process and its influence on band bending at the grain boundaries is presented in Figure

2-12 [9]. Though this illustration uses SnO2, ZnO follows the same process. It shows

two grains of SnO2 with chemisorbed oxygen. Below is a schematic of the potential

across the grain boundary, and illustrates how the potential barrier is smaller when

























S' '" '_In reducing

Grain boundary

Figure 2-12. Illustration of the chemisorbed oxygen mechanism for solid state gas
sensors, and the influence of chemisorbed oxygen on band bending at interfaces [9].



the sensor is in reducing environments, and higher in oxidizing environments. If a ZnO

sensor is held at an appropriate temperature, and placed in a reducing gas, the

concentration of the surface oxide species decreases, and the resistivity decreases. The

decrease in carrier concentration resulting from the chemisorption process affects the

electrical properties in two ways. The first is the lowering of the carrier concentration,

which directly lowers the conductivity. Secondly, increased chemisorption results in a

wider potential barrier, which more effectively scatters carriers, and therefore decreases

carrier mobility [6].

A high carrier concentration is critical for a good TCO, but there are certain

fundamental limits that must be addressed. The carrier concentration has a direct

influence on the optical properties of the material. This relationship will be explored in

the following section regarding the optical properties of TCOs. The end result is that a









very high carrier concentration compromises the optical properties of the material. These

limits on high carrier concentrations result in carrier mobility being an important

parameter for reducing the deposited film's resistivity. Increased mobility yields small

improvements to optical properties in the infrared. Therefore to lower the resistivity, it is

critical to increase the carrier mobility or identically lengthen the carrier relaxation time

[11,82].

As was shown in Equation 2.11, the mobility is a function of the effective mass of

the carriers, and the mean time between collisions. The effective mass is an intrinsic

property of the material, which is m*=0.27 for the case of pure ZnO. Therefore in order

to increase the mobility, the mean time between carrier scattering events must be

lengthened. Scattering involves the interaction of carriers with various aspects of the

material, with important scattering mechanisms in TCOs including the crystalline lattice

(pta), ionized impurities (1i1), neutral impurities ( n), and grain boundaries (tg). Equation

2.12 is used to sum the effects of multiple scattering mechanisms.

-+-+--+K (2.12)
P A P, P0 P

If one scattering mechanism is the culprit for a significantly lower mobility, then the

overall mobility tends to be near the lowest value, and the scattering mechanism with the

lowest mobility is considered the dominant scattering mechanism. If the carrier

mobilities from more than one scattering mechanism are similar then the overall mobility

will be lower than the individual components.

Lattice or phonon scattering occurs when charge carriers interact with lattice

vibrations, which for a material with more than one atom per primitive basis has optical

and acoustic phonon modes [17]. The only way to increase the mobility resulting from









phonon scattering is to decrease the temperature, which is not practical for TCO

applications. Therefore, this scattering mechanism is relatively fundamental, as this form

of scattering occurs even in a perfect crystal. The limiting value for mobility due to

phonon scattering in lightly doped (n-1016 cm-3) single crystalline ZnO is approximately

aa=250 cm2/V-s [88] at room temperature. For both metallic and semiconductor

conduction, phonon scattering is temperature dependent, with mobility increasing with

decreasing temperature [80].

Ionized impurity scattering involves interactions and scattering of charge carriers

by ions within the material through coulombic forces. This mechanism commonly

dominates the mobility of highly doped silicon semiconductors used in today's integrated

circuits. It is also commonly cited as the dominant scattering mechanism in TCO

materials [60,78,89]. This mechanism, it is treated by a variety of different models and

assumptions, typically with little or none of the derivation provided in accessible peer

reviewed literature. Recall that the Mott transition describes the transition between

insulating and metallic character with doping for a semiconductor. If heavily doped ZnO

has made the transition to metallic character, then impurities are no longer ionized [79].

Temperature dependent Hall measurements taken from a variety of TCO materials

including ZnO show a constant carrier concentration to low temperatures (T<20K or

kT<2 meV ), which suggest metallic character. Even if they are not ionized, dopant

atoms could still yield scattering as neutral impurities, which will be discussed below.

Ionized impurity scattering is modeled as a coulombic potential between ionized

atoms and charge carriers, and analyzed using quantum mechanic methods. The Brooks-

Herring model adds a screening potential due to other carriers [90]. Higher









concentrations of ionized impurities yield more interactions, and therefore a lower

mobility. For the non-degenerate case, the mobility due to ionized impurity scattering

increases with temperature. Equation 2.13 gives the relationship between the mobility

from ionized impurity scattering, temperature, and the ionized impurity density (Ni) [17].

3

T -(2.13)
N,

This relationship is based on use of the Maxwell-Boltzmann distribution function,

whereas the Fermi-Dirac distribution function should be used for a degenerately doped

semiconductor. In a report by Zhang et al., it is suggested that mobility from ionized

impurity scattering losses its dependence on temperature when the Fermi-Dirac

distribution function is used for the degenerate semiconductor case [78].

Neutral impurity scattering results from non-ionized point defects scattering

charge carriers [17]. For the case of semiconductors, this scattering mechanism is

typically only important at low temperatures when ionization of dopant atoms is fozen

out. In contrast, neutral impurities are a common scattering mechanism in metallic

conductivity. This is expected, as semiconductor materials tend to have exceptionally

high purity with most foreign atoms being purposely introduced to ionize and dope the

material. Neutral impurity scattering is a not a function of temperature, but is found to

vary with the density of neutral impurities [17]. Increasing concentrations of neutral

impurities decrease the mobility. For the case of metallic conduction, neutral impurities

are believed to scatter carriers by interrupting the periodicity of the lattice [80].

Two other sources of scattering are dislocations and extended defects such as

grain boundaries. For metallic conduction, these defects cause scattering by introducing









perturbations in the periodicity of the crystal structure. Like neutral impurities, as the

concentration of defects increases, more scattering occurs, which decreases the mobility.

The effect of dislocations on carrier transport in semiconductors models the dislocation as

a line charge in combination with a strain field [17]. This yields a mobility that is a

function of the density of dislocations (nd) and temperature, as shown in Equation 2.14

[17], where

d oc-1 (2.14)
ndT2

The Petritz model is the most established theory for modeling carrier scattering at

grain boundaries [87]. This model specifies that surface states at the boundary yield a

depletion region around the boundary, and a potential barrier develops that must be

surmounted for transport, and therefore relies on thermionic transport [78]. For the case

of degenerately doped ZnO, the depletion region at the interface becomes very narrow,

increasing the probability of carriers tunneling through the potential barrier, which

decreases scattering [78]. This case is more analogous to metals, where grain boundary

scattering tends to be a small effect at room temperature.

Chemisorption of oxygen species further complicates modeling electrical

properties of grain boundaries. Recall that chemisorption of oxygen species trap

conduction band electrons, and therefore can cause a depletion region at grain

boundaries. The depletion region and the grain boundary can result in a potential barrier

similar to the potential barrier generated by interface states considered above. The

magnitude of changes in resistivity caused by chemisorption of oxygen species depends

on the carrier concentration, surface area/grain boundary area to grain volume ratio, and

concentration of chemisorbed oxygen species. For larger grain sizes in a heavily doped









material, the ratio of charge trapped in chemisorbed species to the quantity of carriers in

the grain is small, therefore chemisorption does not significantly increase resistivity. For

the case of very small grains or very thin films, chemisorption can trap a significant

portion the free carriers, which decreases carrier concentration, and increase grain

boundary scattering, and therefore increases resistivity. The sensitivity of resistivity for

ZnO thin films to the oxygen potential of the annealing ambient, even at mild

temperatures (300 400 C) is widely attributed to this process [11,91,92]. It is difficult

to measure the amount of chemisorbed oxygen in as deposited films due to contamination

in the atmosphere for transfer of samples to characterization tools. If the quantity could

be investigated and controlled, improved film electrical properties could result.

2.3.3 Optical Properties

The optical properties for deposited ZnO films are of critical importance towards

application as a TCE, and are also useful for characterizing electrical properties of the

films. The optical properties of TCOs arise from the interaction of light with electrons,

and the physical structure of the film. The goal is to minimize these interactions, such

that transmission of light is maximized. Processes involving electrons include band edge

absorption [17], plasma resonance effects (absorption and reflection) [80-82], the

Burstein-Moss shift [93], and defect absorption. Processes based on the physical

structure of the film include thin film optical interference or Fabry-Perot oscillations [94],

and light scattering [95]. Each of these effects will be discussed below, along with their

influence on the optical properties of ZnO thin films.

Band edge absorption involves absorption of a photon to promote an electron

from the valence band to the conduction band of a semiconductor. This absorption only

occurs if the photon energy is greater than the band gap energy of the material. The band









gap of ZnO is direct and is about 3.2 eV for intrinsic material, which corresponds in

energy to a photon with a wavelength of 388 nm. Equation 2.15 shows the relationship

between absorbance (a), photon energy (hv), and the band gap energy (Eg) for allowed

direct transitions [17].


a = K(hv- E)2 (2.15)

The term K is a material dependent constant, and is independent of the photon energy.

This equation is useful for calculating the optical band gap of a material from

spectrophotometry data. As we can see from the AM1.5 solar spectrum in Figure 2-3, a

band gap of about -3 eV (k-400 nm) is the minimum band gap for transmitting most of

the solar spectrum.

The second optical effect that is critical for a TCO is plasma resonance effects.

The term plasma refers to mobile charge carriers, in the case of n-ZnO, electrons in the

conduction band. The carriers can be accelerated by the electric field component of

electro-magnetic radiation, and their motion can be modeled as Lorentzian Oscillators

[80,81]. The optical properties that result from these carriers were derived by Drude, and

involve using a combination of the classical wave equation for motion of the carriers and

Maxwell's equations to determine the complex permittivity that results. The real (el) and

imaginary (E2) components of the complex permittivity can be used to determine

reflection, absorption, and transmission characteristics of the electron plasma [80,81].

The results for TCOs are similar to those of metals, and show that the carriers can

resonate with the EM radiation at a particular frequency known as the plasma resonance

frequency (cp). The plasma resonance frequency cop is a function of the carrier









concentration, the effective mass of the electron, and the dc (o) and high frequency (F0)

dielectric constants as shown in Equation 2.16 [80-82].

1

op ne (2.16)


This frequency is then used in equations for the complex permittivity, or complex

dielectric constant, which has a real component (el) and a complex component (2).

Relationships between the frequency of an electric field, the plasma resonance frequency

cop, and the dielectric constant are shown in Equations 2.17 and 2.18.


=E I1- (2.17)



E, = ) (2.18)


The term o represents the angular frequency of the incident light, t is the carrier

relaxation time, and F,- is the high frequency dielectric constant. The equations are based

on the assumption that 1/ << co [82], indicating that the carriers are free. The results of

these equations are that for co
For the region near co=cop, F1=0 and 2 is smaller, yielding a transition region from

reflecting to absorbing character, which is seen in the plot of film reflectance versus

wavelength in Figure 2-13a [82], where the wavelength at which the transition occurs

changes with carrier concentration. Observe that higher carrier concentrations move the

transition associated with the plasma resonance frequency cop to shorter wavelengths. In

Figure 2-13b [82], absorptance is plotted versus wavelength, and shows the effects of

carrier concentration on free carrier absorption. The absorptance relates the percentage

of the incident light that is absorbed by the film, and care should be taken not to confuse









it with absorbance (a) the intrinsic property of a material that defines its ability to absorb

light. The other term used in this work is absorption or optical absorption, which is the

product of the absorbance and the distance light travels through the medium (c-x), and is

a unitless number. Figure 2-13c [82] also plots absorptance versus wavelength, and

shows changes in absorptance with mobility. Notice that high carrier concentrations

increase absorptance, and moves the peak in absorptance to shorter wavelengths, while

increasing mobility decreases absorptance, but does not influence the wavelength of the

peak. As co increases, co>Op, el approaches E-, and 2 approaches 0, yielding classic

dielectric behavior, which indicates EM radiation propagates through the material. This

behavior is seen in each of the above plots as the region where neither reflection nor

absorption occurs indicating light is transmitted.

The wavelength at which free carrier optical effects are significant are controlled

predominantly by the carrier concentration and carrier effective mass. For the case of

ZnO on a CIS based solar cell, the band gap of CIS is 1.04 eV, which corresponds to a

wavelength of-1200 nm. ZnO with an effective mass m*=0.27 and a carrier

concentration of 5x1020 cm-3 has a plasma resonance frequency Op which corresponds to

a wavelength of 1200 nm. Therefore the optical properties for samples with carrier

concentrations on the order of 5x1020 cm-3 and above must be measured to determine the

impact on the solar cell performance.

In contrast to carrier concentration, which if values are too large will result in the

deposited film reflecting or absorbing light needed by the cell, higher carrier mobilities

do not change the plasma resonance frequency. Recall that increasing mobility in fact

helps decrease the absorptance resulting from free carrier absorption. This indicates that







43


100 -
S- n = 5x1019 cm-3 .............................
90 ........ n = o20 cm-3 .. ...* .
0 n = 5x1020 cm-3
80 n = 1020 cm-3
o 70 ""10 /
8 60 /
Cs 50 !
S I/ (a)
S40 zI
030
20
10 ^*1.
.. ." .. ....
0.4 0.9 1.4 1.9 2.4
Wavelength (pm)

45
-n = 5x109 cm-3
45 -n = 5x10 cm-3
35 : \ -.-n = 1021 cm-3
30 \
S25 / \
20 I \ (b)
o 15
-0
< 10 /
.. ...... .......... .......


0.4 0.9 1.4 1.9 2.4
Wavelength (pm)

60
= 50 cm2 V-1 s-1
S p = 100 cm2V-1 s-1
50 -- =50soocm2V- s-1
S --. = 1000 cm2 V-1' s-
40

l30 / (c)
20

10
10

0.4 0.9 1.4 1.9 2.4
Wavelength (pm)

Figures 2-13(a-c). Theoretical plots of relationships between electrical and optical
properties for (a) reflectance versus carrier concentration, (b) absorptance versus carrier
concentration, and (c) absorptance versus carrier mobility [82].









the mobility can be increased, which decreases resistivity, without compromising infrared

transmittance. Thus, decreasing the resistivity of ZnO for solar cell applications is best

accomplished by improving the mobility, while maintaining the maximum carrier

concentration not degrading infrared transmittance for wavelengths needed by the solar

cell.

The Burstein-Moss shift is a band gap widening process that can occur in

degenerately doped material [93]. As the carrier concentration increases, the Fermi

energy moves above the conduction band edge, resulting in complete occupation of states

at the bottom of the conduction band. Therefore, optically stimulated transitions to these

states cannot occur, and the optical band gap of the material increases. This process is

illustrated schematically in Figure 2-14. The vertical area shows the allowed transition

from the valence band to an energy in the conduction band above the Fermi energy. The

amount of the shift is a function of the doping concentration, and the density-of-states

effective mass (mcv*) as shown in Equation 2.19 [11].


AEg= =h (2.19)
8m* I

The density-of-states effective mass reflects the fact that the effective mass of a

conduction band electron can be a function of conduction band density-of-states in some

situations [96]. For the particular case of ZnO, the band gap is already large enough that

the useful solar spectrum is transmitted effectively, so an increase in the band gap is not

required.

Defect absorption for TCOs can take two forms, absorption of light that promotes

an electron to a defect level, and absorption by metallic particles in the TCO. These









E

Conduction
Band EFr


E=hv

Valence k
Band


Figure 2-14. Illustration of the Burstein-Moss shift, which increases the optical band gap
due to occupancy of states in the conduction band.


processes will be discussed qualitatively. The first process involves an impurity or defect

of some form which generates a state within the band gap. A photon with the correct

energy can promote an electron from the valence band or another defect state into the

defect state, with the photon being absorbed. The second process arises because many

TCOs are intentionally or unintentionally off stoichiometry towards the oxygen deficient

side. If the material is far enough off stoichiometry, then highly reflective scattering

precipitates can form. This more often occurs in films deposited by reactive sputter

deposition, as seen by the transition from opaque to transparent films with increasing

oxygen partial pressure in the sputtering gas [97]. Poor transparency across the visible

spectrum is often attributed to defect absorption, but typically no mechanism for the

absorption is given.

The next two effects are based on the structure of the film and the fact that the

index of refraction (n) for pure ZnO is n=2.1 [94], which is different than glass (n=1.4)

and air (n=1.0). The result for films with a thickness on the order of the wavelength of









light is that multiple internal reflections can occur, and depending on the wavelength of

light, angle of incidence, and indices of refraction for the substrate and thin films,

interference affect can results. Interference effects are found in spectrophotometry data

for ZnO:Al films on glass in this work. The reflectance at an interface results from

differences in the index of refraction, and follows the relationship expressed in Equation

2.20 with n as the index of refraction, and k as the extinction coefficient.


R (k2 (2.20)
(n + 1)2 + k2

Figure 2-15 is a schematic of multiple reflections occurring within a thin film, with a

series of terms r and t when the illustrated light rays intersect a surface. The term r

describes the component of light reflected from the interface, and the term t describes the

light transmitted through the interface. The subscripts relate from which interface the

reflection or transmission has occurred, and the superscripts relate how many time the

"ttI r, r'2 r3





2 23 d
f \\-,r, / 2i rld / -

) r2 3tr r 2 t I r2





n, ti t2 \ t tlrl r2 i^t, "r|2r t2 r3tz r 3


Figure 2-15. Generation of interference colors or Fabry-Perot oscillations due the optical
paths in a thin film on a substrate in air [3].









light ray has been transmitted or reflected from the interface. For the case of solar cells,

an anti-reflective coating (typically 1/4k thick MgF2) is applied to the surface, which

prevents initial reflections from the ZnO. The Fabry-Perot oscillations result in an

oscillatory behavior in the transmittance and reflectance spectra, and can be see clearly in

most of the collected spectrophotometry data.

The final effect to consider is scattering of light. Scattering can occur at the

film's surface, which typically results from roughness, or from within the bulk of the

film. Scattering from within the film results from inhomgeneity in the index of

refraction, which can result from extended defects such as grain boundaries, inclusions,

voids, cracks, and others [94]. The films produced in this work are highly transparent to

the eye, and specular reflection from the films surface is observed, suggesting that

minimal scattering is occurring from the surface or "bulk" of the film.


2.4 Sputter Deposition

2.4.1 Background

The primary focus of this work is on improving the properties of sputter deposited

ZnO:Al thin films. It is therefore critical to present some background knowledge about

sputter deposition, influences the various process parameters exert on the plasma, and

their relationship to properties of the deposited film. The sputtering process was first

report in 1852 by Grove [98]. It has evolved significantly since then to the point that in

the last 50 years it has been used to deposit films on architectural glass, integrated

circuits, hard drive platters, and a plethora of other applications. The sputtering process

is a glow discharge or a plasma process, which uses ionized gas atoms/molecules

accelerate in an electric field to erode material from a source (target), which then









condense from the gas phase on a work piece (substrate). A strong negative field is

applied to the target to attract positive ions, hence a sputter deposition source is referred

to as the cathode. If a thin film with the same chemistry as the target is desired, a noble

gas (e.g. Ar) ambient is typically used.

The erosion of the target is a momentum transfer process [99], the efficiency of

which is termed the sputter yield (S atoms/ion). Liberating a deposited flux involves

transferring energy to surface atoms of the target material, and the atoms of the surface

acquiring enough energy to escape the target. The maximum energy transferred between

two colliding particles is determined by the difference in their mass as shown in Equation

2.21 [94].

E 4MM2
E2 =-M- cos2 0 (2.21)
E, (M + M2 )

The terms El and E2 refer to the energy of the separate particles in a binary collision, M1

and M2 are the masses of the particles, and 0 is the angle of the collision. Equation 2.21

represents the maximum energy that can be transferred from the energetic gas atom

impinging on the target to a surface atom on the target. The energy needed to liberate an

atom from the target is related to its surface binding energy (Eb), and therefore this

minimum quantity of energy must be supplied by the ions to sputter the material.

Equation 2.22 [94,100] expresses the relationship between sputter yield (S) and energy

transfer from Equation 2.21, surface binding energy (Eb), kinetic energy of the ions (Ei),

and a term describing the efficiency of transferred momentum between ions and surface

atoms (a).

S=3 4MM2 (2.22)
47I2 (M, +M2)2 Eb









Equation 2.22 is valid for ion energies Ei<1000 eV, and one mass is taken to be the

sputtering ion and the other being the sputtered atoms mass. Sputtering yield is also

influence by the incident angle of the ions, as this influences the collision cascade the ion

undergoes within the target [101]. A factor that has been found to be critical in this

research is the distribution angle of the flux leaving the target. For each point on the

target that generates a deposited flux, the flux leaving that point source is a function of

the angle relative to the target's normal axis. This is known as the cosine or power cosine

distribution, and is shown schematically in Figure 2-16 [102]. In Figure 2-16, as the

angle departs from the targets normal, the flux decreases following either a coso or cos"n

relationship [102]. For sputter deposition, n is typically 0.5
rate is a function of the sputter yield, the flux of ions impinging on the target, transport of

the deposited flux to the substrate, and sticking of that material to the substrate [94]. The

characteristics of the resulting film depend on the material, its mobility on the surface, the

geometry of the incoming flux, and the amount of energy imparted by species

bombarding the substrate.

1o* 0* 10- Zfo *
0" 10




6 0.



1.0.9 .8 .7 .6 .5 .4 .3 .2 .1 0 .1 .2 .3 .4 .5 .6 .7 .8 .91.0

Figure 2-16. Plot of the power cosine distribution, which controls the flux distribution as
a function of angle relative to the targets normal [94].








For the case of DC sputter deposition, there are several source geometries in use,

one of which is the planar sputter deposition source. Two common varieties of planar

sources are diode and magnetron, and are illustrated in Figures 2-17a and 2-17b,

respectively. The name diode sputtering comes from the I-V characteristics of the plasma

which are similar to that of a diode, i.e. more current flows with forward bias versus very

little current flow with reverse bias. To achieve a sustainable plasma, the vacuum

chamber is initially evacuated to a pressure typically on the order of 10-8-10-6 Torr, to

achieve an ambient that will not contaminate the deposited film. Then the chamber is

back filled with the working gas to a pressure on the order of 1-200 mTorr, the range

needed to sustain the plasma. The sputtering pressure is an important parameter, since it

influences the resistance of the plasma, and therefore the I-V characteristics of the

plasma. As the pressure increases, the plasma becomes effectively less resistive, the
'.---- ---'-
,Ij '
Il'' r II


"Target


Tare


Planar .............
a Planar
Diode
Magnetron

(a) (b)
Figure 2-17(a-b). Illustrations of planar sputter deposition sources in the (a) diode
configuration and (b) magnetron configuration.









voltage drops and the current increases. The current is related to the ion flux impinging

on the target, and the voltage is the bias of the target, which controls the velocity of the

impinging ions. The target geometry also influences the I-V characteristics of the

plasma. Increasing the target area yields a higher ion current for the same ion flux

(ions/cm2.s), effectively lowering the resistance of the plasma. Modem DC power

supplies can control the power, voltage, or the current of the discharge depending on

needs. The deposition rate typically scales linearly with deposition power [101].

One of the benefits of sputtering can be the relative high energy of the deposited

material [94,101] with values of 5 eV of kinetic energy compared to 100 meV for

thermal deposition sources. The higher energy increases surface mobility of adatoms,

therefore allowing more rearrangement of atoms on the surface, typically yielding

improved film properties. By the kinetic theory of gases, an atom is more likely to be

inelastically scattered at higher gas pressures. This advantage is lost if the deposited

material loses energy in gas phase collisions during transport to the substrate. Scattering

in the gas phase also influences the flux of reflected neutrals that impinge on the

substrate. Reflected neutrals are ionized atoms/molecules that are accelerated towards

the target, and then neutralized and reflected from the target with a significant portion of

their incident energy. Their impact on the substrate can affect the microstructure and

residual stress in the deposited thin films. The substrate to target distance can also affect

the degree of gas phase scattering that occurs. As the distance the sputtered atoms travel

through the process ambient gas increases, more scattering occurs. Additionally, as the

target to substrate distance increases, the angular distribution of the flux causes the flux

to spread out in space, and therefore increasing distance decreases the deposition rate.









Another important parameter is the substrate temperature. This parameter is

important to adatom mobility, desorption processes, and thermodynamic driving forces

which affects phase stability and nucleation and growth phenomena. Thus the deposition

rate and microstructure of the developing film can be influenced by substrate

temperature. The influence of substrate temperature on the microstructure of deposited

film will be discussed more thoroughly in Section 2.4.2

Magnetron sputtering involves placing magnets behind the sputtering target. The

resulting magnetic field extends into the gas ambient in front of the source, and

influences the trajectories of moving charge particles by the Lorentz force [94]. The

result of this is confinement of electrons near the sputtering target, which increases the

amount of ionization in the working gas. Ions are not confined here because the charge

to mass ratio is much smaller, and therefore ion trajectories are not as strongly influence

by the magnetic field. The higher degree of ionization in the plasma effective lowers its

resistance, increasing the ion flux (current) relative to the target bias (voltage), and

effective increases the sputtering rate and broadens the operating pressure range. This is

desirable for a high rate process, which is useful for decreasing manufacturing costs.

Also, high deposition rates limit the exposure time of the growing film to the vacuum

ambient, and therefore helps lower the incorporation of gas phase contaminants into the

films [94].

The other major class of sputtering apparatus is radio frequency (RF) sputtering.

Similar to DC, RF sources can be diode or magnetron based. The planar target geometry

will be considered. Sputter deposition using RF power can be used to deposit material

from insulating targets. Power from a RF generator typically operating at 13.56 MHz is









transmitted to a matching network via a 50 Q coaxial cable. The matching network

consists of a variable capacitor and inductor, and is needed to match the impedance of the

capacitive discharge plasma to the 50 Q output impedance of the generator. The applied

RF field would normally tend to just oscillate charged particles, and therefore not

generate any sputter deposition. However, due to the large difference in mass between

ions and electrons, oscillations of the electrons are large enough that a significant portion

impinges on the target and the chamber, whereas the ions are basically static. Because

the chamber walls are grounded, and the target is electrically floated on capacitors, the

target tends to build up a negative charge over time, i.e. develops a negative bias. As the

negative bias increases, positive ions in the plasma become more strongly attracted to the

cathode and acts to increase the positive ion current. A steady state bias is achieved

when net current transported by positive ions and electrons in each full oscillation of the

electric field is zero. At these steady state conditions, a negative bias on the order of 100

to 1000 of Volts exists on the cathode, and is known as the cathode self bias. This bias is

sensitive to many parameters, including those mentioned above for the case of the I-V

characteristics of a DC discharge. Additionally, the bias is sensitive to the ratio of

capacitance for the target structure to the surrounding system. In practice this translates

to a target bias that can be highly sensitive to the system geometry [99]. Figure 2-18(a)

depicts what occurs when the RF power is initially applied to the target. Figure 2-18(b)

is for steady state the condition, and depicts the developed negative bias or target self bias

as seen by the voltage offset of the RF signal [103].















Current

Zero Net
Current
~t-

S--- Vrf DC Shift

RF Signal RF 5.gnal
(a) Voltage (b)

Figure 2-18(a-b). Illustration of the negative self bias formation during RF sputter
deposition with (a) power initially applied and a large excess electron current and (b) at
steady state where the electron current equals the positive ion current [99].


2.4.2 Thin Film Coalescence

Processes occurring at the substrate can also have a large influence on the

structure and properties of the sputter deposited films, and are therefore critical to

investigating relationships between the deposition process and resulting film properties.

Nucleation and growth of the deposited film will be discussed using capillarity theory

[94]. The processes involved are adsorption and desorption of material from the

substrate, and motions and reactions on the surface. Capillarity theory uses a

combination of bulk and surface free energies (surface tension) to assess the driving

forces participating in the nucleation and growth process. Figure 2-19 shows the balance

of surface tension forces involved with a nucleus on a substrate. The terms ysv, Yvf, and yfs

represent surface tensions between surface-vapor, vapor-film, and film-surface,









DEPOSITION DESORPTION

VAPOR 0




y FILM o
6 ^ X NUCLEUS
sv fs
r SUBSTRATE



Figure 2-19. Representation of the influences of surface forces on the morphology of a
deposited film during nucleation based on the capillarity theory [94].


respectively, while 0 is the contact angle between the substrate and the nucleus. The

angle 0 changes to balance the surface tensions present. The degree to which the

adatoms respond to the forces exerted is related to their ability to move on the surface.

This surface mobility is related to the kinetic energy of the arriving adatom, energy

available to move the adatom (e.g. heat, ion bombardment), and the surface diffusivity of

the adatom [101]. The most common method to increase the mobility of adatoms is to

heat the substrate, but there are often constraints and trade-offs, which limit temperatures

in practice. For sputter deposition, recall that impingement of hyper-thermal atoms

(atoms with kinetic energy greater the kT) can increase motions of surface atoms, and

thereby influence the microstructure of the developing film.

For sputter deposition the working pressure and substrate temperature most

strongly influence the adatom mobility. Thomton developed a structural model relating

substrate pressure and temperature to the morphology of the film, and is known as a









Structural Zone Model (SZM). Figure 2-20 is a diagram of the SZM that Thomton

developed empirically by microstructural characterization of sputter deposited metal

films [104]. The four basic zones are 1, T, 2, and 3, with zone 1 occurring at higher

pressures and lower temperatures. Zone 1 is characterized by a columnar grain structure

with significant porosity between the grains, and large defect concentrations within the

grains. Films with a Zone T microstructure are formed as the pressure decreases and/or

the temperature of the substrate increases. The porosity between the fine columnar grains

diminishes, which increases film density. Higher temperatures are needed to achieve

Zone 2, which has a larger grain columnar structure, possibly a faceted surface, and

properties are nearly those of bulk materials. A Zone 3 morphology occurs for

temperatures near the melting temperature of the deposited material and has large

equiaxed grains due to recrystallization processes. Mechanical and electrical properties

are similar to bulk values.











Atom 4. .
Energy
2., T"TM
.2


Figure 2-20. A structural zone model showing changes in thin film morphology as a
function of pressure and substrate temperature used to sputter deposit the films [104].









Another common occurrence in the microstructure of deposited films is

crystallographic texture, which is when grains share similar crystallographic orientations.

Note that the crystal structure of ZnO is the wurtzite crystal structure, which is basically

two interpenetrating hexagonal close packed lattices, one with zinc and one with oxygen

[105]. This structure is shown in Figure 2-21, and has lattice constants of a=3.25 A and

c=5.207 A. For thin films, the most common texturing observed is for one crystal plane

to be parallel to the substrate's surface, with this plane being the preferred growth plane

[101]. For sputter deposited ZnO thin films on glass, a strong basal or (002) plane texture

is widely reported in the literature from X-ray diffraction (XRD) 0-20 data [28,65,106-

109]. In these data, a strong (002) ZnO peak is found, while no peaks for other crystal

planes are observed. For thin films, XRD 0-20 data gives information about crystal

planes parallel to the substrate surface, and therefore the ZnO data indicates the texture


Wurtzite


Figure 2-21. The hexagonal wurtzite crystal structure for ZnO in the zincite phase.









has (002) planes preferentially aligned parallel to the surface [110]. This phenomenon

occurs if a particular crystal plane has low free energy, and can therefore grow faster and

dominate the film. A sufficient degree of adatom mobility is needed for development of

texture, such that atoms can move to lower their free energy by joining a lower energy

crystal face.

For textured thin films with a crystal plane parallel to the substrates surface, XRD

0-20 data will show a single strong peak for the crystal plane parallel to the substrate

surface versus a series of peaks with different intensities that is characteristic of powder

samples. This occurs because XRD measures spacing between crystal planes parallel to

the surface. In contrast to powder samples, which have randomly oriented grains,

resulting in some diffraction from many crystal planes, grains in a textured film are

aligned so that one crystal plane is most commonly parallel to the substrate's surface.

Therefore, diffraction always occurs from the crystal plane parallel to the substrate

surface, yielding a single peak [101].

2.4.3 Negative Ion Resputtering

Several reports in the literature and experiments performed in this work suggest

negative ion resputtering (NIR) involving negative oxygen ions is a critical factor in

deposition of ZnO films for TCO applications [76,111-113]. The NIR effect is reported

to have a strong influence on electrical and structural properties of deposited films.

Investigation of the NIR effect and the mechanisms for its influence on the electrical

properties of deposited ZnO films is one of the foci of this work. The process for NIR is

illustrated schematically in Figure 2-22. The mechanism for generation of negative ions

is not well understood. In work by Cuomo et al., an empirical relationship was found

between the ionization potential and the electron affinity and presence of the negative ion














S" 'Uniformity
Shield






Throttle Valve
Cryopump

Figure 2-22. Schematic of the negative ion generation and acceleration process during
sputter deposition of ZnO:Al thin films.



resputtering effect [114]. From this relationship, they developed a model about

generation of negative ions during sputter deposition that is discussed below. The

generated negative ions are accelerated rapidly in the cathode fall towards the substrate.

It is generally believed that the ions are neutralized while traversing the plasma, mostly

likely by electron detachment through impact with an electron in the plasma. Thus it is

typically energetic neutrals that impinge on the substrate, with energies on the order of

the target bias. Note that though the negative ions are neutralized before impinging on

the substrate, they will continue to be referred to as negative ions to identify their source.

Cuomo et al. postulated that negative ions would reach the target with energies near those

of the target bias due lack of gas phase scattering. As the velocity of a gas atom changes,

its collision cross section (a in units of cm2) with other gas atoms in the vacuum also

changes. Change in collision cross section with increasing kinetic energy has been

calculated for an Ar atom in an Ar ambient, and the cross section is found to decrease










with increasing kinetic energy. Therefore, energetic negative ions have a longer mean

free path through the gas ambient that atoms with thermal energy [115]. A plot of the

mean free path versus kinetic energy of an Ar atom in a 30 mTorr Ar ambient is

presented in Figure 2-23 [115]. The mean free path of a thermal Ar atom is indicated in

the lower left comer of the graph, and the mean free path of the argon is observed to

increase significantly with increasing kinetic energy. The increase in mean free path of

negative oxygen ions compared to a thermal oxygen atom has been verified

experimentally by Tominaga et al., using a time of flight apparatus [116].

The NIR effect has been observed during deposition of many materials other than

ZnO. It was first investigated by Cuomo et al. who observed actual erosion of the

substrate instead of film deposition while trying to deposit various gold rare earth metal

alloys [114]. They developed an empirical model to predict the occurrence of NIR



7 -p= 30 mTorr

6-










THERMAL MEAN FREE PATH
500 1000 1500 2
I 4-
"lJ 3

< 2



THERMAL MEAN FREE PATH
I50 1000 1500 2000
IMPACT ENERGY (eV)

Figure 2-23. Theoretical plot of the mean free path of an Ar atom as a function of kinetic
energy in a 30 mTorr Ar ambient.









based on the difference between the ionization potential of one atom and the electron

affinity of the atom that forms the negative ion. This model is based on charge transfer

between the different elements in the target. The process involves the element with lower

electron affinity receiving energy greater than the ionization potential, liberating an

electron. The electron then lowers its energy by attaching to an atom with higher electron

affinity, followed by the atom leaving the target as a negative ion. They determined if the

difference between ionization potential of the former and electron affinity of the latter

atoms were less than approximately 3.4 eV, then significant NIR would occur. The

ionization potential of Zn is 9.4 eV, and the electron affinity of O is 1.46 eV, giving a

difference of almost 8 eV [101]. Thus, in contrast to experimental evidence, resputtering

is not predicted for ZnO by this rule. Many ionic materials generate NIR through a

process that is thought to result from liberating the constituent ions from the solid [101].

Because ZnO is an ionic solid, this qualitative rule would suggest that NIR would occur.

Kester et al. investigated resputtering for BaTiO3, and the effect of process

parameters on its magnitude [117,118]. They found the flux ratio J(ji/jn) of the negative

ion flux ji) versus the deposited neutral flux (jn) was a critical parameter, with higher

ratios causing more damage. They found the ratio to be higher for higher RF deposition

power. Increasing the working pressure was also found to increase the ratio, as the

neutral flux was more frequently scattered due to its lower velocity as compared to the

high velocity negative ions. This suggests suppression of NIR only occurs for high

pressures and long substrate to target distances. Unfortunately, film's deposited at these

conditions tend to form a Zone 1 microstructure on Thornton's diagram. Recall that

Zone 1 films are generally porous with poor properties, including high resistivities [101].









Several modifications to traditional sputtering systems have been studied in the

effort to reduce damage from negative ions. Minami et al. have tried the "substrate

perpendicular to the target" geometry and magnetic fields to improve the TCO properties

of ZnO [76,109]. The two geometric modifications utilize the difference in flux

distribution of the negative ions versus deposited neutrals. Neutral species leave the

target in the typical cosine distribution [102], whereas negative ions are accelerated into a

strongly collimated beam by the electric field normal to the target surface [117]. Thus

the perpendicular substrates receive a much lower J(ji/jn) than a facing substrate. As

predicted by the flux ratio rule mentioned above, the substrates out of the direct path of

the negative ion flux tend to show marked improvement in properties, as was confirmed

by several researchers [76,111,112]. These processes generally result in severe non-

uniformity in film thickness and/or low deposition rates and are therefore difficult to use

for large area samples and high volume production. Minami et al. also tried magnetic

fields normal to the target to influence the trajectory of the negative ions so they would

not impinge on the substrate. While resistivities on the order of 10-4 Q-cm were

achieved, a substrate temperature of 250'C, which is beyond the limits of the thermal

budget for CIS cells, is needed to achieve the low resistivities [109]. Tominaga et al. and

Minami et al. both found that negative ion bombardment affected the electrical properties

predominantly by changing the carrier concentrations [109,112,119]. The reported

mechanism involve knocking dopant atoms off lattice sites, and prevention of their

ionization, but no evidence was presented to support this model [112]. Therefore,

determination of the mechanisms for the influence of NIR on the electrical properties of

sputter deposited ZnO thin films is one of the foci of this work.














CHAPTER 3
EXPERIMENTAL METHODS


3.1 Introduction

This chapter will describe the tools, techniques, and procedures used to conduct

the research presented in this dissertation. The first sections will describe the systems

used to deposit the thin films, and the procedures used to prepare the glass substrates.

The following section will cover the techniques used to measure the electrical properties

of the deposited thin films. Hall and four point probe measurements were used to

determine the carrier concentration (n), Hall mobility ([j), and resistivity (p). The next

section will describe the methods used to characterize the structural and compositional

properties of the thin films. These techniques include profilometry, X-ray diffraction

(XRD), atomic force microscopy (AFM), Auger electron spectroscopy (AES), X-ray

photoelectron spectroscopy (XPS), and secondary ion mass spectrometry (SIMS).

Typical properties of interest include film stoichiometry, crystal structure, texture,

surface morphology, "grain size", and chemical bonding states. Optical properties were

measured by spectrophotometry and Fourier transform infrared spectroscopy (FT-IR).


3.2 Thin Film Deposition

3.2.1 New Oxide Sputtering System

The new oxide sputtering system (NOSS) is a recently acquired used Perkin-

Elmer model 4400 sputter deposition system. It has three RF planar diode sources, each

handling a 20 cm target in a sputter down geometry. Targets currently mounted in these









sources are Mo, Zn, and ZnO:A1203 (98wt%:2wt%). The RF power is supplied by a

Randex 2 kW RF generator operating at a frequency of 13.56 MHz with an output

impedance of 50 Q. The RF output passes through a power meter, through a

transmission line, and into a manually controlled impedance matching network. The

manual controls are load and tune which control a variable inductor and capacitor,

respectively. The impedance matching network allows coupling of the RF energy into

the capacitive plasma discharge which has a complex impedance on the order of -2Q-j45

[120]. The 2 Q component signifies a real resistance, while the negative imaginary (j)

component of-j45 indicates the load is capacitive. The system has a single RF generator

with switching to route the power to the appropriate source or the substrate table (when

sputter etching is used to clean or modify the substrate). Uniformity shields are

integrated into the source, and are 1.6 cm below the target. These shields modify the

geometry of the source flux to account for the higher angular velocity for increasing

radial distance on the substrate platen, and thus generate a uniform film when the platen

is rotated. The overall geometry and pictures of the deposition system are shown in

Figure 3-1.

The sources and the substrate table are cooled by chilled water. The substrate

table has rotary motion capabilities, allowing deposition of uniform films on up to

fourteen (14) substrates (up to 10 cm diameter) in a single batch process. The motion

system for the substrate table has been upgraded with a stepping motor, which allows

more sophisticated and repeatable control of the substrate motion. Full rotation at precise

speeds and accelerations, oscillations about a region below the deposition source, and









Mo Target &
Uniformity Shield


Zn Target &
Uniformity Shield


ZnO:Al Target &
Uniformity Shield


Substrate Platen Chamber Walls


(b) (c)


Figures 3-1(a-d). Schematic diagram and pictures of the new oxide sputtering system,
with the (a) sputtering chamber, (b) sputtering source, deposition shield, and uniformity
shutter, (c) close up of source geometry, and (d) water cooled substrate support table.









accurately positioning substrates below the sources are the primary uses for the motion

system. The throw or substrate to target distance is set at 9 cm.

A stainless steal, load-locked vacuum system is used to generate the vacuum

required for sputter deposition. A CTI 8 cryopump and a Leybold Trivac 60cfm rotary

vane pump provide the high vacuum and rough pumping, respectively. A throttle valve

between the cryopump and the deposition chamber reduces the pump's effective pumping

speed by up to a factor of 50 when engaged. Two mass flow controllers (MFCs) are used

to regulate introduction of Ar and 02 gas, and are used in conjunction with the throttling

valve to generate a controlled gas ambient over the pressure range of 2-150 mTorr, a

range typical for sputter deposition. Both MFCs have a range of 0-100 standard cubic

centimeters per minute (SCCM), and control gases from ultrahigh purity gas bottles. The

system operates at a typical base pressure of 1.5x10-7 Torr. Vacuum gauging is provided

by an array of two Bayard-Alpert ionization gauges, two Convectron gauges, three

thermocouple gauges, and one MKS Baratron capacitance manometer. The Bayard-

Alpert gauges are used for measurements at high vacuum conditions (<10-5 Torr), and are

therefore used to determine the base pressure of the system. The base pressure is a

critical factor in controlling contamination in the growing film. The other critical gauge

is the MKS Baratron gauge, which gives accurate, precise, fast, and direct measurement

of the pressure for the range of 10-5 to 1 Torr, and therefore spans the pressure range used

for sputter deposition. A direct gauge refers to the fact that the gauge is sensitive directly

to gas pressure, and its calibration is therefore independent of the gas being measured.

This is critical for generating ambients with controlled partial pressures of a multiple gas

species.









3.2.2 Description of the Sputtering System

Thin films for several early experiments were deposited in a home built sputtering

system, which is affectionately known as Rusty. An illustration of the system's bell jar

and geometry of the sources and substrate holder are shown in Figure 3-2. This system

has two RF and two DC planar magnetron sources configured in a sputter up geometry.

Each source is manufactured by US Guns Inc, is designed for a 5 cm target diameter, and

has a separate power supply. The RF supplies include a RF Plasma Products model RF-5

generator with an automatic impedance matching network, and a Plasma-Therm

generator with a manual matching network. These sources are referred to as RF1 and

RF2, respectively. The DC power supplies are a US MDX-lk and US DC-1000, and are

referred to as DC 1 and DC2, respectively. The sources have power ratings of 600, 500,

1000, and 1000 watts, respectively. The substrate support has integrated temperature

control utilizing resistive Watlow cartridge heating elements, a K-type thermocouple, and

control provided by an Omega 7700 Mircomega auto-tune PID temperature controller.

The temperature control system is used to maintain accurate elevated temperatures for the

substrate during deposition.

The vacuum necessary for sputtering is generated inside a Pyrex bell jar and base

plate style chamber. A Varian 6 diffusion pump and Sargent-Welch model 1397 rotary

vane pump provide the high vacuum and rough pumping, respectively. A liquid nitrogen

cooled cryo-trap and a throttle valve are between the system and the diffusion pump.

This system has two MFCs for Ar and 02, which are used to introduce UHP gas into the

system. Vacuum gauging consists of one Bayard-Alpert ionization gauge, two

thermocouple gauges, and one MKS Baratron gauge.





























Figure 3-2. Cross-sectional view of the sputter deposition system known as "Rusty".


3.2.3 Substrate Cleaning

Soda-lime float glass was used as the substrate for the deposited films. The glass

substrates were purchase from US Precision glass, and were 5 x 5 cm square pieces seam-

ripped from larger sheets. The glass was very dirty, therefore a cleaning procedure which

involved a physical scrubbing was developed. The first step of the procedure was to

clean a 2L beaker and pyrex casserole dish with Alkonox detergent and deionized water

(DI). Then roughly 2L of water and -30 grams of Alkonox were heated in the beaker

with a hot plate until steaming. When warm, roughly half the detergent solution was

poured into the pyrex dish, and two folded polypropylene clean room wipes were placed

on the bottom of the dish. The substrates were scrubbed on the wipes in a manner similar

to polishing a specimen. The substrates were rinsed in a spray of DI water, followed by a

scrub on both sides plus the edges with a clean brush. The substrates were rinsed again in









a spray of DI water, and placed in a Fluoroware wet process holder in the first tank of a

cascade rinser from Bold Technologies. When the holder was full (12 substrates), it was

run through the whole cascade rinser with N2 bubble agitation. When the substrates were

thoroughly rinsed, they were blown dry individually with a filtered dry N2 gun and place

is a storage box.

The substrates were stored in a box from Fluoroware designed to hold

photographic plates of the same size. Previous to use, the substrates were cut to the

appropriate size for the experiment (typically 2.5 x 5 cm), and then clean again by a

strong nitrogen blow.


3.3 Electrical Characterization

3.3.1 Hall Measurements

Hall measurements were used to characterize the resistivity (p with units of

.Qcm), carrier type, carrier concentration (n with units of cm-3), and mobility (ut with

units of cm2/V.s). The measurements were taken by the van der Pauw method [121],

with ohmic contacts provided by electron beam deposited Al contacts patterned using a

shadow mask in intimate contact with the sample. The maximum sample size was 7 x 7

mm, with samples being cut from larger samples by a scribe and fracture procedure. The

contacts formed a 4 x 4 mm square, and each dot was approximately 0.5 mm in diameter.

The samples were mounted in a custom made shadow mask holder, placed in the electron

beam evaporation system, and the stainless steal bell jar was pumped down to -5x10-7

Torr using a cryo-trapped diffusion pump backed by a rotary vane pump. The charge of

Al in the pocket of the Telemark electron beam deposition source was evaporated at a

rate of 15 A/s to generate a film thickness of 3300 A as measured on a Quartz Crystal









microbalance. A vacuum cowling covers the Hall measurement probe head to prevent

condensation during low temperature measurements, therefore Hall measurements were

performed in the dark.

The Hall system was assembled from off the shelf components. A Fieldial Field

Regulated Magnet Power Supply model V-FR2503 supplied current to a Varian

Associates large field electromagnet, which was set to an 8,000 gauss field strength. A

Keithley model 220 supplied a constant current, with a Keitley model 197 Microvolt

Digital Multimeter (DMM) used to measure the resulting voltages. A HP model 3488A

switching network connected the appropriate sample contacts to the appropriate electrical

components for the various probing geometries specified by the van der Pauw method. A

Tektronix model 177 curve tracer was integrated into the system to determine if the

contacts were ohmic by looking for the characteristic linear I-V curve. A PC controlled

all the components, and acquired and processed the data. The data reported by the

system included carrier concentration (n), mobility (j), resistivity (p), carrier type, Hall

coefficient (RH), and error analysis. In operation, the system first determines the

appropriate current for the measurement. The system was programmed to supply the

current need to generate a voltage of 5 mV. For this measurement, the current was

passed through the contacts on one side of the square, and the voltage drop was measured

across the contacts on the opposite side of the square.

It is important to understand the quality of information reported by Hall

measurements, and the underlying assumptions and pitfalls associated with it. For the

case of degenerately doped ZnO:Al there are several issues which should be identified,

and some limits that need to be articulated. First is the Hall factor (YH), which is









generally assumed to be 1. This is a fair approximation for many semiconductors, but for

the highest possible accuracy, the value should be determined. The fact that the material

is degenerately doped can generate impurity bands, and affect the electron distribution

function (/(e)). The magnitude of the Hall voltage is another difficult issue. For samples

with low Hall mobility, the difference between the Hall voltage with and without a

magnetic field will be small, making accurate measurement of the field derived Hall

voltage difficult. This required that care be taken in analyzing the data to make sure the

changes measured due to the Hall voltage were appropriate and consistent for the

magnetic field polarity and contact geometry. These measurements are primarily used to

compare samples relative to each other. Because the same parameters are used for the

Hall system, and the films are consistently the same material, comparisons of data

between samples has the needed accuracy. Comparison with literature values for other

research in ZnO should also be reasonable since the materials parameters should be

similar. Parameters used in Hall measurements are often not reported, therefore while

comparisons with the literature are useful, they must be examined with a critical eye.

3.3.2 Four Point Probe

The measurements were taken on an Alessi four point probe. A probe head with

tungsten carbide tips with a point radius of 0.002", a probe spacing of 0.05", and a probe

pressure of 70 to 180 grams was used for all measurements. Current was supplied by a

Crytronics model 120 current source with a range of applied currents between 1lA to

100 mA. Voltages were measured by a Keithley model 181 nanovolt electrometer with

an input impedance of greater than 1 giga-ohm. Equation 3.1 and 3.2 were used to

determine sheet resistance (Rs in units of Q/sq.) and resistivity (p in units of Q-cm),

respectively.









4.532V (
Rs- = (3.1)
I

4.532 V t
p = (3.2)
I

Based on the dimensions of the sample and probe head, no geometrical correction factors

were applied. The term t is film thickness (cm), and V is the voltage measured at the

supplied current (I).


3.4 Structural Characterization

3.4.1 Profilometry

To measure thickness of the deposited films, a portion of the substrate was

masked with a permanent marker. After the deposition, the mark was removed with

acetone and a swab, which effectively removed the deposited film on top, yielding a well

defined trench step. A Tencor Alphastep stylus profilometer was used to measure the

depth of the trench, and therefore the film thickness.

3.4.2 X-Ray Diffraction

X-ray diffraction spectra were collected on a Philips APD 3720 powder

diffractometer using Cu Ka radiation (k=1.54056 A). The standard settings for the X-ray

generator were 40 kV at 20 mA. Three types of 0/20 spectra were collected for this

research, and will be designated as survey, high resolution, and line profile. Conditions

for a survey scan were a continuous scan, a 20 range of 100 to 800, a stepsize of 0.020,

and a step time of 0.5 seconds. High resolution spectra were continuous scans with a 20

range of 300 to 400, a step size of 0.010, and a step time of 1.0 seconds. Line Profile

Analysis was performed on data collected with a step scan over a 20 range of 320 to 380,

a step size of 0.010, and a step time of 2.5 seconds.









Quantification of peak full width at half maximum (FWHM) was performed using

the Philips Line Profile Analysis [122] software package. The "Approximate Analysis"

function is used, which fits a single peak with a Voight function. Broadening of the

peaks FWHM is attributed to strain and crystallite size, but the relative contribution of

each cannot be explicitly determined. Therefore only the FWHM is taken from this

technique. The software package MacDiffwas used to quantify peak intensity, FWHM,

area, and 20 peak position. For all measurements, the background was subtracted before

quantification was performed.

3.4.3 Atomic Force Microscopy

Atomic Force Microscopy (AFM) micrographs were taken with a Digital

Instruments NanoScope III. Samples roughly 7 x 7 mm were attached to a steal sample

mount with double stick tape, and placed on the magnetic holder in the instrument. The

small scanner (Scanner E) with a range of 12.5 [im in the x-y directions, and 2.5 [im in

the z direction was used to acquire all the images. The micrographs were taken in the

tapping mode with Si3N4 tips manufactured by Digital Instruments. Often more than one

image was taken from neighboring areas to make certain the images were representative

of the local area. Height and tip amplitude data were taken for each micrograph. All the

images and data were taken from height information. The amplitude information was

used to identify trouble spots due to the high sensitivity of this data to interactions

between the tip and the sample. The contrast in the amplitude image is based on changes

in the amplitude of the vibrating cantilever tip. This often gives stronger contrast than

height imaging when tip interacts differently with the surface (greater or lesser interaction

forces).









An automatic "Plane Fit" in the x and y directions and a "Flatten" command were

applied to the images before any analysis was performed. For the plane fit command, a

third order plane fit was used. In this procedure, the computer used a least squares

algorithm to calculate a third order polynomial for the x or y plane data, and then

subtracts this from the image data. This function serves to not only level the image, but

to reduce bowing and curvature that results from drift during data collection. The flatten

command performs a similar procedure, but applies it to each scan line. A first order

polynomial is calculated by a least squares technique, and was subtracted from each line.

This command served to line up adjacent scan lines, and reduces slope associated with

measurement drift along a scan line.

Typical data taken from AFM height images includes root mean square surface

roughness (RMS roughness), surface area difference (%), and grain size. The RMS

roughness will simply be referred to as roughness, and was measured by an algorithm in

the Digital Instruments software. The surface area difference is also quantified by the

software, and describes additional surface area of the sample relative to a flat plane with

the same x and y dimensions as the image. The grain size is determined by measuring the

grain boundary intercepts, a standard stereological technique [123]. For the data

presented, a series of eight lines 400 nm in length, and at random orientation are laid on

the image. The topography of the line is displayed in cross section. Intercepts are

determined by using low points on the cross section plot, and careful observation and

comparison with full image. This is done for each of the eight lines, and an average is

calculated. The grain size is determined by dividing the length of the line by the average

number of intercepts. This stereological technique is based on the assumption that the









sample has equiaxed grains typical of bulk samples for which this technique was

developed. In addition to the caveat in the previous statement, the number of intercepts is

based on interpretation of low features between hillocks as grain boundaries, therefore

the grain size must be used carefully for analyses.

3.4.4 Auger Electron Spectroscopy

Auger electron spectroscopy (AES) measurements were taken on a PHI model

660 Scanning Auger Microprobe (SAM). This system utilizes a LaB6 thermonic

emission electron source with a co-axial Cylindrical Mirror Analyzer (CMA) to measure

the kinetic energy of Auger electrons, these energies being characteristic of the elements

generating them. A thorough description of the Auger analysis is beyond the scope of

this work, but is covered in depth in several books [124,125]. AES is considered a

surface analysis technique because the detected Auger electrons can only escape from

within the first several monolayers below the sample surface. The CMA is sensitive to

distance between itself and the sample, and is therefore calibrated using the standard

elastic peak technique. The system has an Ar ion beam source, which is used to sputter

etch the sample's surface. It was used to clean contaminants from the surface, remove

surface layers to get compositional information more representative of the film's "bulk",

and to perform depth profiles. The parameters used for the ion beam source are an

accelerating potential of 3 kV, a beam current of -90 nA, and a spot area of

approximately 1 mm2. The rate and area of the etch are influenced by the rastering

conditions applied to the beam, with a 3 x 3 mm raster pattern at the specimen being the

standard setting. The system was maintained at a base pressure on the order of 10-10 Torr,

and typically operated at 10-8 Torr while the Ar ion source was in use.









The two types of AES data presented in the work are survey spectra and depth

profiles as a function of sputter etching time. For all spectra, a primary beam energy of 5

kV was used. Ten replicates of the spectrum of counted electrons at an energy (n(E))

versus kinetic energy (KE) are summed over the energy range of 50 to 2050 eV. This

data is taken with an energy step size of 1.0 eV, and a dwell time of 30ms at each energy.

This spectrum is then numerically differentiated by an algorithm from the computer

acquisition system's software to yield the spectrum in terms of d(n(E))/d(E) versus KE.

The differentiated spectrum is then used to accurately determine kinetic energy of the

Auger electron peaks, which in turn is used to determine the elements present on the

sample's surface. The differentiation algorithm also has a smoothing function, which can

operate across a user determined cell size. It was left at the standard setting of 9 for all

data presented in this dissertation. To account for charge shifting, peak energies were

referenced to adventitious carbon (272 eV) if possible.

Depth profile data was taken using the window method, which involves

alternating between sputter etching the sample and collecting small windows of Auger

spectra focused on the peaks for elements of interest. This signal from each Auger

window is then differentiated, using the same algorithm as the survey spectra. The peak-

to-peak heights of the differentiated spectra are plotted as a function of element and

sputter etching time. Parameters used for collecting depth profiles are presented in Table

3-1.

3.4.5 X-ray Photoelectron Spectroscopy

X-ray photoelectron spectroscopy (XPS) is also known as Electron spectroscopy

for chemical analysis (ESCA). XPS spectra were taken on a PHI model 5100 ESCA

system. A non-monochromated Mg Ka X-ray source, producing characteristic radiation









Table 3-1. Parameters used for Auger electron sepectroscopy sputter depth profiles.
Element Oxygen Zinc Silicon
Peak Energy (eV) 506.0 984.5 1601.0
Window Boundary Low (eV) 475.0 946.0 1585.0
Window Boundary High (eV) 525.0 1025.0 1615.0
Dwell Time (ms) 50 50 50
Number of Sweeps 10 10 10


with a peak photon energy at 1253.6 eV was used for all spectra. The X-ray generator

was operated at 15 kV and 300 watts (20 mA). Photoelectrons liberated from the sample

are collected, retarded, and analyzed in a hemispherical analyzer. The analyzer acts as a

band pass filter, allowing only electrons with a particular kinetic energy through to the

Channeltron detector. The kinetic energy is converted into binding energy through use of

Equation 3.3:

BE = hv-KE-D (3.3)

where BE is the binding energy of the detected electron, h is Planck's constant, v is the

frequency of X-ray probe beam, KE is the kinetic energy of the photoelectron, and OD

(4.7 eV) is the work function of the detector (hemispherical analyzer). Spectra are

traditionally presented starting with the highest binding energy to the lowest on the

abscissa.

The based pressure of the system is on the order of 10-10 Torr, and typically

operates at 10-8 Torr if the Ar ion gun is being used for sputter etching. Similar to AES,

XPS is also a surface analysis techniques due to the limited escape depth of measured

photoelectrons. Argon ion etching was used to remove surface contaminants and to erode

into the thin films to gather information from a region that can reasonably be considered

the "bulk" of the thin film. The conditions used for the ion source were an accelerating

potential of 4 kV and a beam raster area of 4 x 7 mm at the specimen's surface.









The two types of XPS data taken include survey spectra and multiplex spectra.

Survey spectra had binding energies from 1100 to 0 eV, and were taken with an energy

resolution of 0.5 eV per step, a dwell time of 30ms, a pass energy of 89.45 eV, and a take

off angle of 45. The measured peaks were correlated to tabulated energies and spectra

for the elements to determine the elements present at the sample surface.

Multiplex scans take data across a series of small energy ranges (windows) in

order to gather more accurate data on peaks of interest found in survey scans. Parameters

used to collect the multiplex scans are presented in Table 3-2. Qualitative atomic

concentrations of elements on the surface were determined from the area of the elemental

peaks in conjunction with sensitivity factors. The multiplex data were also used during

peak deconvolution. The deconvolution process involves choosing a peak from a

Multiplex window, subtracting the background and fitting the peak with one or more

component Gaussian-Lorentzian functions. The variables for these functions included

peak energy, height, full width at half maximum (FWHM), and percentage Gaussian. All

peaks were fitted by a combination of manual and automatic fitting. This technique was

used to accurately determine the character of the peak for investigating of the chemical

bonding.




Table 3-2. Parameters used to collect XPS multiplex scans.
Element Oxygen Carbon Zinc
Window Boundary High (eV) 536.0 292.0 1032.0
Window Width (eV) 10.0 15.0 20.0
eV/Step 0.1 0.1 0.1
Time/Step (ms) 50 50 50
Pass Energy (eV) 35.75 35.75 35.75
Sweeps 10 10 10









3.4.6 Secondary Ion Mass Spectrometry

Secondary Ion Mass Spectrometry (SIMS) was used to measure the composition

of the deposited films, with particular interest in concentrations of electrically active

dopants and contaminants. The SIMS spectra were collected on a Perkin-Elmer PHI

6600. Data were acquired using an oxygen primary ion beam from a duoplasmatron

source and positive secondary ion acquisition. The primary beam energy was 6 keV with

a beam current of 209 nA. The primary beam was rastered over either a 400 x 400 [im or

500 x 500 [im area, and used a gating of 65%. A quadrupole mass filter was used to pass

secondary ions with a specific charge to mass ratio to the secondary ion detector. The

detected signal was intensity, or counts per second, for the secondary ions as a function

of the charge to mass ratio being passed by the mass filter. The systems neutralizer was

utilized to avoid sample charging during collection of the spectra.

The two types of SIMS data collected include survey spectra from the as

deposited surface, and depth profiles. Survey spectra were used to determine the

elements present on the surface, with secondary ion intensity plotted versus the mass to

charge ratios over the range 1 to 110. Depth profiles measure the signal from the mass to

charge ratio for elements of interest as a function of sputtering time. This is used to

characterize changes in composition through the thickness of the film. Elements of

interest that were profiled include C(12), Na(23), Mg(25), Al(27), Si(28), Ca(40), Al(54)

and Zn(66). The number in parenthesis specifies the particular isotope followed during

the depth profile, with the exception for Al(54), which is the dimer of Al(27).









3.5 Optical Properties

3.5.1 Spectrophotometry

Optical spectrophotometry measurements were taken on a Perkin-Elmer Lambda

9 system from the UV region into the Near IR region in order to obtain spectral features

associated with the band edge and plasma resonance phenomena. Transmission spectra

were collected at normal incidence, using a double beam geometry with a sampling and a

reference beam. For all measurements, the reference path was left open. The glass

background spectrum was removed by collecting and averaging a series of 4 spectra from

bare glass, and dividing measurements taken from the sample by the averaged glass

spectrum. The optical beam size on the sample was roughly 3 x 0.3 cm. The diffraction

grating is changed at 860 nm, and yields a small discontinuity in the collected spectra. A

tungsten lamp source provides the light for the measurements.

3.5.2 Fourier Transform Infrared Spectroscopy

Fourier transform infrared (FT-IR) spectra were collected using a Nicolet model

510p spectrophotometer in reflection mode. The measurements where made using a

variable angle reflectance stage, and measurements where typcially taken at 300 and 60.

Data were collected at two angles to gauge the influence of measurements above and

below the Brewster angle [126], and to have two spectra for more accurate comparison to

spectra generated by a model. Calibration to remove the background was performed

using a gold mirror standard. Measurements were then made on both sides of the

substrate (glass and film) at both angles of incidence. These spectra were compared to

spectra generated by a model developed by George Alameddin. Film thickness, carrier

concentration, infrared damping coefficient, and optical constants for the film and

substrate were the parameters entered into the model. By changing the parameters, the









calculated spectra were matched to the measured ones. Thus, values for the modeled

parameters could be determined from the FT-IR spectra. The infrared damping

coefficient is inversely related to mobility, thus carrier concentration and mobility can be

estimated.


3.6 Experimental Procedures

3.6.1 Affect of Annealing Ambient on the Properties of ZnO:Al

The objective of this experiment was to determine the sensitivity of ZnO:Al thin

films to modest heat treatments, and to determine if the gas ambient in the furnace had a

strong influence on the results of the heat treatment. The films for this experiment were

deposited in Rusty with cleaned 2.5 x 5 cm pieces of glass used as substrates. The

parameters held constant for deposition of the thin films are as follows:

* Target: ZnO:A1203 (98wt%:2wt%) hot pressed

* Base Pressure: 8x10-7 Torr

* Substrate to Target distance: 4 cm

* Process Pressure: 5 mTorr Ar (UHP)

* Ar Flow Rate: 7 seem

* RF Power: 100 watts forward, <2 watts reflected

* Substrate Temperature: Unheated

The as deposited samples were characterized by stylus profilometry,

spectrophotometry, FT-IR, XRD, and four point probe measurements. Profilometry

measurements were made by the standard procedures previously outlined.

Spectrophotometry measurements were taken on a Perkin-Elmer Lambda 9 over the

range of 300 to 2000 nm using the previously outlined standard procedures. FT-IR









measurements were taken in reflection mode, with a 600 incident angle from the surface

normal using standard procedures. XRD diffraction measurements were taken by loading

the sample directly into the diffractometers chuck, resulting in data taken roughly from

the center of the sample. Both survey and high resolution spectra were collected, and

each high resolution measurement was repeated after removing and remounting the

sample in the diffractometer. The replicate data were used to judge the repeatability of

the measurements. Four point probe data were taken from three different positions, one

near each end, and one from the middle, and is illustrated in Figure 3-3.

Four of the samples heat treated in a quartz tube furnace with ambients of N2,

forming gas (N2/H2 90%: 10%), stagnant air, and 02. The fifth sample was used as a

control, and was therefore not heat treated. To heat treat the samples, the furnaces were

warmed up to 4000C and purged with the appropriate gas for at least one hour, with the

sample in the furnace, but out of the hot zone. The samples were then pushed with a

small push rod into the hot zone of the furnace, and remained there for lhr and

15minutes. The samples where then pulled out with the push rod, cooled in the area


Figure 3-3. Positions on the 2.5 x 5 cm substrate where four point probe data were
collected.









outside the hot zone but still within the controlled ambient of the furnace. When cooled

to approximately 750C, the samples were removed from the furnace and rapidly

quenched to room temperature. The samples were then recharacterized by the same

procedures used before the heat treatment.

3.6.2 Development of Properties in Very Thin ZnO:Al Films

The objective of this experiment was to investigate the development of structural

and electrical properties of ZnO:Al thin films, and relate those characteristics to thickness

dependent effects in the electrical properties. The thin films were deposited in Rusty

onto cleaned 2.5 x 2.5 cm glass substrates. Standard permanent marker stripes were

made before each run for profilometry measurements. Also, the substrate's surface was

cleaned with a strong N2 blow just prior to introduction into the deposition system. The

deposition parameters held constant are as follows:

* Target: ZnO:A1203 (98wt%:2wt%) hot pressed

* Base Pressure: 8x10-7 Torr

* Substrate to Target distance: 5 cm

* Process Pressure: 5 mTorr Ar (UHP)

* Ar Flow Rate: 7 sccm

* RF Power: 100 watts forward, <2 watts reflected

* Substrate Temperature: 150C

* Substrate Geometry: Substrates were positioned off axis (not directly above the source)

The parameter varied during this experiment was the deposition time, which was

used to control film thickness. Deposition times of 10, 20, 30, 60, 180, 300, 420, and 900

seconds were used. The deposition rate at the conditions used was measured by









profilometry to be 1.75 A/s. The thickness was determined by multiplying the deposition

rate by the deposition time. Additionally, the films were characterized by four point

probe, Hall measurements, AFM, and AES. Four point probe and Hall measurements

were used to characterize p, n, and t. The 7 x 7 mm samples for Hall Measurements

were cleaved from the substrates edge closest to the deposition source. Four point probe

measurements were taken from the edge closest to the source, middle of the substrate,

and the edge farthest from the source.

Analysis of AFM micrographs was used to determine the surface morphology of

the thin films. The technique of AES was used to look for contaminants, and to

investigate surface coverage of the sample. Two survey spectra where collected using the

standard parameters, with a sample tilt of 450 and a sample beam current of -50 nA, one

before and one after a depth profile. The profile was collected using window scans, using

the parameters specified previously. The Auger data from the window scans were

differentiated, and peak-to-peak heights were used to evaluate changes in the surface

composition. To determine the surface fraction covered by the film, atomic

concentrations were taken from an as deposited survey spectrum using the standard

procedures in the instrument's software. These were compared to atomic concentration

measured for a pure ZnO:Al and pure glass surfaces. The atomic concentrations

measured on the as deposited surface were evaluated relative to the pure surface

standards, and from this a fractional surface coverage for the film was estimated.

3.6.3 Negative Ion Resputtering in Sputter Deposition of ZnO:Al Films

The objective of this experiment was to determine the role of negative ion

resputtering (NIR) during sputter deposition of ZnO:Al thin film, and the influence of RF

power on the magnitude of the NIR effect. The films for this experiment were deposited









in NOSS. All thin films were deposited onto soda-lime glass substrates cleaned by the

procedures given above.

The substrate consisted of 2.5 x 5 cm pieces of glass, with three pieces of glass

placed end to end to effectively make one 2.5 x 15 cm substrate. One end of the substrate

was placed under the center of the sputter deposition source, and was arranged

perpendicularly to the edge of the uniformity shield to minimize film thickness gradients

across the 2.5 cm dimension of the substrate. A side view of the system was presented in

Figure 2-22, and schematically showed the generation and acceleration of negative ions

away from the deposition source. The top view illustrates the position of the substrate

relative to the deposition source and is presented in Figure 3-4.

The sample deposited at 500 watts is an important exception to this substrate

geometry. For this sample, instead of the end of the substrate coming to the center of the

Top View

ZnO:Al Targetz



Substrate







Uniformity Shields

Figure 3-4. Top-view of the deposition geometry used for the investigation of negative
ion resputtering, with the substrate extending from the center to the edge of the source.