Group Title: 7th International Conference on Multiphase Flow - ICMF 2010 Proceedings
Title: 1.6.4 - Effects of momentum and thermal energy exchange on the Rayleigh-Bénard convection of disperse flows
ALL VOLUMES CITATION THUMBNAILS PAGE IMAGE ZOOMABLE
Full Citation
STANDARD VIEW MARC VIEW
Permanent Link: http://ufdc.ufl.edu/UF00102023/00034
 Material Information
Title: 1.6.4 - Effects of momentum and thermal energy exchange on the Rayleigh-Bénard convection of disperse flows Multiphase Flows with Heat and Mass Transfer
Series Title: 7th International Conference on Multiphase Flow - ICMF 2010 Proceedings
Physical Description: Conference Papers
Creator: Oresta, P.
Verzicco, R.
Lohse, D.
Prosperetti, A.
Publisher: International Conference on Multiphase Flow (ICMF)
Publication Date: June 4, 2010
 Subjects
Subject: bubbles
particles
natural convection
 Notes
Abstract: This paper reports some preliminary results of a computational study of the effect of suspended solid particles in a gas ow driven by natural convection. The study is conducted in the point-particle approximation including two-way coupling. It differs from other models of this type in that the particles do not only exert a force on the gas, but also exchange energy with it. Their ability to do so is measured by the ratio J of the gas heat capacity to the particle heat capacity, both per unit volume. This parameter is shown to exert a powerful in uence on the ow. When J = 0 the particles maintain their initial temperature although they heat up the surrounding uid. In spite of this, if they are not too small, they increase the natural convection as, being swept up by the cold descending currents, they increase their weight and accelerate them. As J is increased above 0 the particle-gas temperature difference decereases and a maximum heat transfer is reached when the gas can absorb all the heat carried by the particles. A simple argument suggests that this condition is reached when J equals 1/2 of the particle volume fraction.
General Note: The International Conference on Multiphase Flow (ICMF) first was held in Tsukuba, Japan in 1991 and the second ICMF took place in Kyoto, Japan in 1995. During this conference, it was decided to establish an International Governing Board which oversees the major aspects of the conference and makes decisions about future conference locations. Due to the great importance of the field, it was furthermore decided to hold the conference every three years successively in Asia including Australia, Europe including Africa, Russia and the Near East and America. Hence, ICMF 1998 was held in Lyon, France, ICMF 2001 in New Orleans, USA, ICMF 2004 in Yokohama, Japan, and ICMF 2007 in Leipzig, Germany. ICMF-2010 is devoted to all aspects of Multiphase Flow. Researchers from all over the world gathered in order to introduce their recent advances in the field and thereby promote the exchange of new ideas, results and techniques. The conference is a key event in Multiphase Flow and supports the advancement of science in this very important field. The major research topics relevant for the conference are as follows: Bio-Fluid Dynamics; Boiling; Bubbly Flows; Cavitation; Colloidal and Suspension Dynamics; Collision, Agglomeration and Breakup; Computational Techniques for Multiphase Flows; Droplet Flows; Environmental and Geophysical Flows; Experimental Methods for Multiphase Flows; Fluidized and Circulating Fluidized Beds; Fluid Structure Interactions; Granular Media; Industrial Applications; Instabilities; Interfacial Flows; Micro and Nano-Scale Multiphase Flows; Microgravity in Two-Phase Flow; Multiphase Flows with Heat and Mass Transfer; Non-Newtonian Multiphase Flows; Particle-Laden Flows; Particle, Bubble and Drop Dynamics; Reactive Multiphase Flows
 Record Information
Bibliographic ID: UF00102023
Volume ID: VID00034
Source Institution: University of Florida
Holding Location: University of Florida
Rights Management: All rights reserved by the source institution and holding location.
Resource Identifier: 164-Oresta-ICMF.pdf

University of Florida Home Page
© 2004 - 2010 University of Florida George A. Smathers Libraries.
All rights reserved.

Acceptable Use, Copyright, and Disclaimer Statement
Last updated October 10, 2010 - - mvs