<%BANNER%>
HIDE
 Title Page
 Table of Contents
 Main
 Appendix I: Sample pair granul...
 Appendix II: Additional sample...
 Appendix III: Phi scale and moment...


FGS



A new type of sieve shaker
CITATION SEARCH THUMBNAILS DOWNLOADS PDF VIEWER PAGE IMAGE ZOOMABLE
Full Citation
STANDARD VIEW MARC VIEW
Permanent Link: http://ufdc.ufl.edu/UF00099449/00001
 Material Information
Title: A new type of sieve shaker the Meinzer II®, a comparative study with Rotap® technology
Series Title: Open file report
Physical Description: ii, 93 p. : ill. ; 28 cm.
Language: English
Creator: Balsillie, James H
Dabous, Adel A
Florida Geological Survey
Publisher: Florida Geological Survey
Place of Publication: Tallahassee Fla
Tallahassee, Fla
Publication Date: 2003
 Subjects
Subjects / Keywords: Sieves -- Testing   ( lcsh )
Genre: bibliography   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
non-fiction   ( marcgt )
 Notes
Bibliography: Includes bibliographical references.
General Note: Cover title.
General Note: Chiefly tables.
Statement of Responsibility: by James H. Balsillie and Adel A. Dabous.
 Record Information
Source Institution: University of Florida
Holding Location: University of Florida
Rights Management:
The author dedicated the work to the public domain by waiving all of his or her rights to the work worldwide under copyright law and all related or neighboring legal rights he or she had in the work, to the extent allowable by law.
Resource Identifier: oclc - 52611820
issn - 1058-1391 ;
System ID: UF00099449:00001

Downloads

This item has the following downloads:

PDF ( 4 MBs ) ( PDF )

( INSTR )


Table of Contents
    Title Page
        Title Page
    Table of Contents
        Page i
        Page ii
    Main
        Page 1
        Page 2
        Page 3
        Page 4
        Page 5
        Page 6
        Page 7
        Page 8
        Page 9
        Page 10
        Page 11
        Page 12
        Page 13
        Page 14
        Page 15
        Page 16
        Page 17
        Page 18
        Page 19
        Page 20
    Appendix I: Sample pair granulometries
        Page 21
        Page 22
        Page 23
        Page 24
        Page 25
        Page 26
        Page 27
        Page 28
        Page 29
        Page 30
        Page 31
        Page 32
        Page 33
        Page 34
        Page 35
        Page 36
        Page 37
        Page 38
        Page 39
        Page 40
        Page 41
        Page 42
        Page 43
        Page 44
        Page 45
        Page 46
        Page 47
        Page 48
        Page 49
        Page 50
        Page 51
        Page 52
        Page 53
        Page 54
        Page 55
        Page 56
        Page 57
        Page 58
        Page 59
        Page 60
        Page 61
        Page 62
    Appendix II: Additional sample statistics
        Page 63
        Page 64
        Page 65
        Page 66
        Page 67
        Page 68
        Page 69
        Page 70
        Page 71
        Page 72
        Page 73
        Page 74
        Page 75
        Page 76
        Page 77
        Page 78
        Page 79
        Page 80
        Page 81
        Page 82
        Page 83
        Page 84
    Appendix III: Phi scale and moment measures in granulometry
        Page 85
        Page 86
        Page 87
        Page 88
        Page 89
        Page 90
        Page 91
        Page 92
        Page 93
        Page 94
Full Text




State of Florida
Department of Environmental Protection
David B. Struhs, Secretary




Division of Resource Assessment and Management
Edwin J. Conklin, Director




Florida Geological Survey
Walter Schmidt, State Geologist and Chief








Open File Report No. 87

A New Type of Sieve Shaker: The Meinzer II, a
Comparative Study with Rotap Technology

by

James H. Balsillie and Adel A. Dabous


Florida Geological Survey
Tallahassee, Florida
2003


ISSN 1058-1391









CONTENTS

Page
A B S T R A C T ....................................................... ... ................................. 1

INTRODUCTION .................................................................. 1

R otap S ieve S hake rs ..................... .. .. .. .. .. .. .. .. ................ ... ............. 1
M einzer Sieve Shakers ................................ .. .. .. .. ............... .......... ...... 2

LA BO RA TO RY PRO C EDURES ........... ................. ........................................... ................. 3

R E S U L T S ......... .. ........ .............. ............................................. .......... ....... 4

Distribution Analyses ............... .... .... ............. .. .... .. .. ....... ............ 5
Statistical Analysis ...................... .............. ............................ 12

S IE V IN G T IM E ........................................................................................................ ................. 1 6

CONCLUSIONS ....... .. ............................................. 17

D IS C LA IM E R .. ..........................................................17

REFERENCES ..................................................................... 18


FIGURES

Figure 1. Two Rotap shakers in sound-reducing cabinet at the FGS
Sedim entology Laboratory ............................................................................................. 2

Figure 2. Two Meinzer II shakers in the FGS Sedimentology Laboratory.................. ..........2

Figure 3. FGS garage bay part of Sedimentology Laboratory with Meinzer II
sieve shakers in the right foreground, Rotap cabinet in the center
background .. ..................................................... 3

Figure 4. Sample loss between successive sieving episodes for paired sample
tests of this study. ......... ...... ................................. .............. 5

Figure 5. Tested sample pairs on arithmetic probability paper (after a
programmed application of Balsillie and others, 2002; Balsillie, 2002). ........... 6

Figure 6. Cross-plots of statistical measures .................................... 14

Figure 7. Cross-plot of all statistical measures for Rotap and Meinzer data
illustrating the degree of agreement ................................... .......... 15

TABLES

Table 1. Sieving tests performed....................................... ......... 4










Table 2. Description of samples used in this study. ................... ......................... ........ 4

Table 3. Sample I.D., sieving sequence, total percent sediment loss between
sievings, and sample content for 20 sieved sample pairs................................... 5

Table 4. Visual assessment of cumulative probability plots of Figure 5 where
discrepancy is apparent between Rotap and Mienzer II results............................. 11

Table 5. Statistical measures for tested samples. ......................................... ............ 13

Table 6. F-test results for analysis of variance and assessment of regression
outcome es for all sam ples. .................................................. ............................... 16

Table 7. F-test results for analysis of variance and assessment of regression
outcomes for all samples, excluding sample 10a................ ................................ 16

Table 8. t-test results for all samples (two-sample t-test assuming equal
po pulatio n variances, a = 0.05)................................... .................. ... .................... 16

Table 9. t-test results for all samples, excluding sample 10a (two-sample t-test
assuming equal population variances, a = 0.05)........................... ... .......... .... 16

APPENDICES

Appendix I: Sample Pair Granulometries. ............................... ......................21

A appendix II: A additional Sam ple Statistics. ................................................. ......................63

Appendix III: Moment Measures and Phi Scale in Granulometry........................ ........ 85










A NEW TYPE OF SIEVE SHAKER: THE MEINZER II1, A

COMPARATIVE STUDY WITH ROTAP TECHNOLOGY

by

James H. Balsillie, P. G. 167, and Adel A. Dabous
Florida Geological Survey, 903 W. Tennessee St., Tallahassee, FL 32304-7700

ABSTRACT

A new type of sieve shaker, the British-designed Meinzer II , is compared to the long-used
"industry standard" Rotap shaker. Twenty sand-sized sediment sample pair tests were conducted
using four different sieving protocols to determine if Meinzer II shakers duplicate results from Rotap
shakers. It was found, based on qualitative visual assessments of sample pair cumulative probability
distributions, and on quantitative statistical analysis, that Rotap and Meinzer II shakers result in
essentially identical outcomes. Furthermore, this conclusion is reached for samples tested with soft or
friable sand-sized particles, wherein the Meinzer II was found to be gentler than the Rotap machines.


INTRODUCTION

The sedimentology laboratory at the
Florida Geological Survey (FGS) has for
years used Rotap-type sieve shakers to
conduct granulometric analyses. These
machines, because of their widespread
application, longevity of use, and
standardized design characteristics, are
considered as the standard in grain-size
analytical results. Recently, however, the
FGS procured two Meinzer II s sieve shakers
recently developed by a British firm. It is the
purpose of this work to present a comparative
study of the two types of technology.

In geological sedimentologic pursuits,
the principal final products required from
granulomentric analyses are: (1) frequency
and cumulative frequency probability plots
and (2) moment measures (mean, standard
deviation, skewness, kurtosis, etc.) and other
statistical measures (the relative dispersion
and median). Here, both are considered with
statistical measures providing the definitive
comparative assessment tool. Variabilities
occurring due to the difference in sieve
shaker technologies and those inherent in the
standard analytic procedures are also
discussed.


Rotap Sieve Shakers

The FGS has historically used two
single-stack Rotap shakers (Figure 1).
Each shaker is configured to hold V2-nest of 8-
inch diameter half-height sieves. A full nest of
sieves covers the grain-size range from -2.0 0
to 4.0 0 at 14-phi intervals. Rotap shakers
are designed to horizontally rotate sieves with
a 2" (0.05 m) orbital throw 2.5 to 3.0 cycles
per second, while an arm periodically strikes
(2.5 to 3.0 times per second) the top of the
sieve stack (maximum height of about 1 inch
(0.025 m) above the sieves) to create a
vertical moment (Figure 1). They are large
machines weighing over 180 Ibs (82 kg), and
generate a highly distracting amount of noise.
They are, therefore, housed in a specially
designed cabinet 6 ft long by 2.5 ft wide by 4
ft 4 in high (1.8 m Lx 0.8 mW x 1.3 m H)
which is lined with sound-deadening material.
The shakers are also bolted to two 6 by 6 inch
(0.15 x 0.15 m) ties which are in turn bolted
into the concrete floor. They are located in a
garage bay on the ground floor of the FGS
building just outside of the sedimentology
laboratory. The bay is not air-conditioned,
and the motors within the Rotap @ cabinet
generate significant heat. Hence, depending
on ambient relative































figure i. iwo rioap snaKers in souna-reaucing
cabinet at the FGS Sedimentology Laboratory
(photo by T. M. Scott).


Figure 2. Two Meinzer II shakers in the FGS
Sedimentology Laboratory (photo by T. M. Scott).


humidity, there are times when
sticky grain problems have
precluded sieving until conditions
changed (see Balsillie and others,
1997, 1999). Rotap machines
can be stressful to sieves and can
over time damage them, which
occasionally requires their
replacement or repair.

Meinzer II Sieve Shakers

The two recently acquired
Meinzer II single stack sieve
shakers are configured to hold
half-height sieves in the same
manner as for the Rotap
shakers (Figure 2). Other than
that there is little resemblance
between the two. Meinzer II
shakers are fixed amplitude
machines with perhaps 0.0066
inches (2.0 mm) of horizontal
orbital throw, and 0.01 inches (3.0
mm) of vertical throw. Vibrations
are generated at 60 cylces per
second. They weigh 36 Ibs (16 kg)
and have a 10-inch square (0.254-
m square) footprint, and
comfortably occupy a space 3 ft
long by 2 ft wide by 2.5 ft high (0.9
m Lx 0.6 m W x 0.8 m H). Hence,
they occupy a footprint area 60%
smaller than that required for the
Rotap machines. Their most
endearing characteristic is that
they are silent. They also result in
much less wear on the sieves.
Since they are so light weight they
can be easily moved into an air-
conditioned environment to control
effects of humidity and sticky grain
problems, and can be used in the
mobile FGS Geolab or on any of
the FGS marine research vessels.


... "'g












4%.


Figure 3. FGS garage bay part of Se
sieve shakers in the right foreground,
(photo by T. M. Scott).


LABORATORY PROCEDURES

Laboratory sieving procedures used in
this work are those specified in detail by W. F.
Tanner (see Balsillie, 1995). Only basic
procedures are mentioned in this work.
Standard sieving time for samples was 30
minutes, although we also sieved one sample
at various time intervals. The sieve nest
ranged from -2.0 0 (4.0 mm) to 4.0 4 (0.0625
mm) at % /4 intervals, totaling 21 sieves and a
pan for collecting any sediment finer than 4.0
4(. A top-loading Mettler-Toledo PG803
balance with accuracy to the nearest 0.001
gram was used for 1-/4 sieve interval mass
measurements. The balance is housed in a
specially designed case which has enhanced
ease and accuracy of tare measurements.
Sieves and their contents can be placed on
the scale to obtain retained mass, or sieve
contents can be transferred to a container
(e.g., a 9-inch (0.23-m) diameter pie pan) to
obtain tare measurements. In the former
case empty sieve weights must be known; in


edimentology Laboratory with Meinzer II
Rotap cabinet in the center background.


the latter the mass of the container can be
"zeroed-out" by the Mettler-Toledo PG803
balance. The latter method was used in this
work.

Since the standard for sieving has
been the Rotap shaker, it should be used
first, then the sample should be sieved using
the Meinzer II shaker. In reality, however,
the sequence of sieving a sample, that is
whether a sample is processed using the
Meinzer II shaker first then the Rotap
shaker, or the Rotap shaker first then the
Meinzer II shaker second, should not make
a difference with one exception. This
exception centers about the relative energy
input levels of the two shaker types and the
hardness and friability of the constituent
mineralogy of sedimentary particles being
sieved. We, in fact, sieved using four
protocols as identified in Table 1. Sieving
protocols for Rotap-Meinzer and
Meinzer-Rotap are straightforward.
Speculating that sieving energetic and grain










Table 1. Sieving tests performed.
No. of
Sieving Sequence Sampl
Samples
Rotap Meinzer 7
Meinzer Rotap 13
Meinzer -. Rotap Meinzer 4
Sieving time series 1


friability may play a role, we processed
several samples using first the Meinzer II
shaker. Then the sample was sieved using
the Rotap shaker to assess its effects on
friable grains, followed, once again, by the
Meinzer II shaker. Hence, the difference
between the two Meinzer II sieving
episodes quantifies the effect of Rotap
sieving. Finally, the effect of sieving time for
one sample at 10-, 15-, 20-, and 30-minutes
was evaluated.

RESULTS

Thirteen sand-sized sediment samples
(Table 2) were sieved using both Rotap
and Meinzer II sieve shakers, in order to


determine how well the Meinzer II shakers
duplicate Rotap results. These 13
sediment samples were processed using
several sieving protocols to result in 20 sets
of statistics. Hence, in reality, 20 sample
pairs were investigated. Details of
granulometric results and frequency plots for
sample pairs are provided in Appendix I.
These results are from a standardized
granulometric analysis using a programmed
spreadsheet application developed by
Balsillie and others (2002) and Balsillie
(2002). Additional statistics for sample pairs
are tabulated in Appendix II

At the outset it should be clearly noted
that for any single sieving episode, some
sediment will invariably be lost. Loss, in all
probability, does not occur during sieving, but
during the sieve interval mass determination
process when sieve contents are transferred
to a separate container for weighing. The
percent of sediment loss between successive
sievings for each sample is plotted in Figure
4. Average sediment loss per sample was
close to 1/3 of a percentage point (i.e.,
0.32%), attaining maxima of 1% and 2% for
samples 4 and 9, respectively. Even the


Table 2. Description of samples used in this study.
Sample De
Number Description
1 A quartz and carbonate (shell material) sample from an offshore locale along
Florida's east coast (Brevard Co.)
2 Same as sample 10a and 10b; sampled at a different location.
3 Quartz and carbonate (shell material) sand sample from an offshore locale
along Florida's east coast (Brevard Co.).
4 All quartz sand sample from a NW Florida Panhandle Gulf Coast beach
(Escambia Co.).
A predominantly quartz sand sample from a vibracore taken at the shoreline
5 along North Key off of Cedar Key, Florida Big Bend coast (Levy Co.); depth of
sample: 3 feet below mean sea level (MSL).
6 Same core as sample 5; depth of sample 9 feet below MSL.
7 All quartz sand sample from the NW Florida Panhandle Gulf Coast beach.
8 Predominantly quartz sand sample from an Alligator Spit beach south of
Tallahassee, Florida (Franklin Co.).
9 Sample comprised of glass beads.
10a and 10b Unwashed, mostly quartz sand sample (80 to 85%) with 15 to 20% clay from
Porter Hole sink, Lake Jackson, Tallahassee, Florida (Leon Co.).
1 la and 11b La Pesca Beach, Mexico, all carbonate shell hash.
12a and 12b Beach at the mouth of Broad River, Lower Gulf Coast of Florida (Monroe Co.),
all carbonate shell hash.


13a, 13b, 13c,
13d, and 13e


Quartz, feldspar, and carbonate material from a beach in Mazatlan, Mexico














E o1.5
E .0
*e


V in .o M a I a i
a. . ,


0 .0
0.0 A. .. I

- r r- \ rl / r

Sample Number
Figure 4. Sample loss between successive
sieving episodes for paired sample tests of
this study.

maxima, however, were trivial and did not
adversely affect comparative analytical
outcomes.

The four types of sieving protocols
were run for samples tested in this work as
outlined in Table 1, explanations of which


follow in appropriate sections. These four
protocols were conducted for both sieving
behavior of 1/-phi sieve size fractions to
quantify detailed outcomes of sample
distributions, and for statistical measures
describing the total sample. The former
analysis is considered to be necessarily
informative; the latter analysis is deemed
to be the definitive comparative result.
For reference purposes sample ID,
sieving sequence, percent sediment loss
and sample contents are listed in Table 3.

Distribution Analyses

We first compared Rotap and
Meinzer II sieved sample pair outcomes
by inspecting results plotted on arithmetic
probability paper (APP). Each tested sample
pair is plotted in Figure 5 according to the
sieved protocol schedule of Table 3. APP is
used because it possesses certain distinct
advantages as discussed by Balsillie (1995),


Table 3. Sample I.D., sieving sequence, total percent sediment loss between
sievings, and sample content for 20 sieved sample pairs.
Sample % % Sieving Content
No. #1 #2 Loss #2 #3 Loss Time
1 R M 0.24 --- --- 30 min Quartz and Carbonate
2 R M 0.03 --- --- --- 30 min Quartz
3 R M 0.98 -- --- --- 30 min Quartz and carbonate
4 M R 0.24 --- --- 30 min Quartz
5 M R 0.65 --- --- 30 min Quartz
6 M R 1.92 --- --- 30 min Quartz
7 M R 0.20 --- --- 30 min Quartz
8 M R 0.37 --- --- 30 min Quartz
9 M R 0.11 30 min Glass beads
10a M R 0.22 --- --- 30 min Quartz and clay
10b --- --- --- R M 0.25 30 min Quartz and clay
11a M R 0.08 --- --- 30 min Carbonate (shell)
11b --- --- --- R M 0.04 30 min Carbonate (shell)
12a M R 0.52 --- --- --- 30 min Carbonate (shell)
12b --- --- --- R M 0.08 30 min Carbonate (shell)
13a M R 0.05 --- --- 10 min Quartz, feldspar, carbonate
13b M R 0.09 --- --- 15 min Quartz, feldspar, carbonate
13c M R 0.09 --- --- 20 min Quartz, feldspar, carbonate
13d M R 0.10 --- --- 30 min Quartz, feldspar, carbonate
13e --- --- --- R M 0.14 30 min Quartz, feldspar, carbonate
M = Meinzer II , R = Rotap











Sample 1
9001 1111 Il l iI I!
9 Arithmetic Probability Paper


., _ _ __-_ _ _ _
ROTAP Circles
--- MEINZER: Triangles














30 -




















Sample 3







SROTAP: Circles _
II

0 -2 -10 .0 1r0 r2 0 &Q C 0














































Grain Size (Phi)
0-- ----















-to t- ___ ___ 1.fl -p 00 to o-





-7- 2irthmetic Probability Paper















-tos--- - -- - -to -i-o to io to --o to to
( __ ROTAP: Circles
ME|NZER: Triangles































., 1 OD 00 1,0 2,0 30 4.0) 5,


Sample 2
W .9 I I i Ii I -- T 7 I I
eo7 Arithmetic Probability Paper




ROTAP: Circles
S-- -- MEINZER: Triangles -

97.5 -- 1 1 --- -
t .r






























o*0 -2t -to 40 to to 30 4.0 o
Grain Size (Phi)

Sample 4

Arithmetc Probability Paper
_| -----











































1-
wI
a-,
t1 --



















- - - __ _ _ _
2 _ _ __ _ _

s --T -h-


-a -2j


0.0 1.0 2,0 30 40 5.0
Grain Size (Phi)


Figure 5. Tested sample pairs on arithmetic probability paper (after a programmed application

of Balsillie and others, 2002, and Balsillie, 2002).











Sample 5


-3.0 2.0 -0 00 1.0 2.0
Grain Size (Phi)

Sample 7


3.0 4.0 50 -0 -20 -1.0 0.0 1,0 2.0 30 4,0

Grain Size (Phi)

Sample 8


3.0 40 0.


o _v Arithmetic Probability Paper



9.7 I 1 1 1 1 1 1
ROTAP: Circles
S__ MEINZER: Triangles

















20
i"-------- j-













16










-3.0 -20 -1.-0 0 1.0 2. 3.0 40 5.
Grain Size (Phi)
16-3.0 - -- -i-- <(- .- --]_ _._1. .^ 40 5
ic~ ~ ~ ~~~~ri Size __ _ __ hi) __ i_


99.97


5.0


-,3, .2,0 *.1- 00 1.0 2.0

Grain Size(Phi)

Figure 5. (cont.)


Sample 6











Sample 9


sor-- Arithmetic Probability Paper

3.: --- -


ROTAP: Circles
S-- -- MEINZER: Triangles







304-
















0






0-1
0.03

0.01
95--------------------- -----------


S------------------I -------------





























-3 --4 -. --- 1.0 -2.0 3 4-

Grain Size (Phi)

Sample l0b
0 i-------h-e--- -P------b-----b-






a.&----- --------- -,- -__-- ^-- -- - -- -



Ti -----.--_ -----------------.-----


0,1--------- ----- ---- -- --------- -- -













_"2 I I ] i i I I I I I I T

W97 -- Arithmetic Probability Paper f



"* ----+T--- ---------- -- -

S OTAP: Circles
MEINZER: Triangles
_r.s ________ __ __




o .- -I--
go _- _I---_ -- _-- --_-- _-














Go----- ------------ ---
15












0.03 '
001-1- ---


-3.0 -.0 -1.0


0.0 10 2.0

Grain Size (Phi)


Sample 10a
gf gg i | [ | I i i I i I I I , I -
.T Arithet ic Probability Paper

97 9-- - ------ -



ROTAP: Circles
-- MEINZER: Triangles

97 5 I -

95

o------t- -- -----"----




T-- ----- -t
__- --- - L- ---- _-




0 ------ --------
01
















al-------------- - -_ _ _



-0 -.0 -1.0 0 1.0 .0 3.0 C0 5.0-


Sample ,ti
1 0




















00F7
eZs
















975




ROTAP: Circles
MEINZER: Triangles
























00,3
o.01
MENZ R Triangles__ __ __ __ __ _

70 ::^ :::::::T::

:::^ :::::::::::
50 - ^ ^ _ _ _ _ _ -
4o ^" "" "















0 - I - I -l I I II-- - Ij - -I
a , .- -*_ _i ii i ~ i _ ^ _J _


3.0 4, 0 -30 ..0 10 00 1,0 ( 0

Grain Size (Phi)


Figure 5. (cont.)











Sample 11b


-L -a -1.0 O0 A 20 o LO to 4.0 4.0 40A 00 I' o
Grain Sie (Phi) Grain Siz (Phi)

Sample 12b Sample 13a


x 40 LA


iI I i Ii i I,
Artth bat Probbility Paper




ROTAP: Circles
MEINZER: Triangles


,___-.-___-___ ___





: -T4o---- _- ----
so-.-- ---/---------




so-- -.--- .-----


10




--





Ls J - - - ^ - - -i


--a -o -1 0 I-0 2t
Grain Sie (Phi)


3-0 &5 D 0


4 -4 a 1 1, to 1 0 1
Grain Sie (Phl)

Figure 5. (cont)


Sample 12a











Sample 13b


-30 -L0 -10 0C 14 Lo 3 410 5
Grain Size (Phi)

Sample 13d

t I i, l i j
m Arithmetic Probability Paper


MT- -- ---- --- --

ROTAP: Circles
S----MEINZER: Tringles


















71
R3----



so----- ---------j--------------

















0,1

Ba-- -r--- ---- ----- .-
0_ _- _


40 -ZA -1J A 1G 0 L
Grain Sie (Pt


o 3 At oA


Sample 13c


** Arithmetc Probability Paper
-., =-(. ..1 -

"7 OTAP: Circles

S! MEIN2UEA: Triang es













sor



















-A -40 -1 -- 1--- -O t -- 51





hmt Probability Paper
ROTAPGrain CWCIO
MEINZER Triangle
An






II




to





tlo



S--












La,.-
so _- _----------A-----_----



" -- -^-- ---------------


t -I4 -2.0 *1 0 14 4AD L
Grain Size (Pti


4J L0


Figure 5. (cont)









Balsillie and Tanner (1999), and Balsillie and
others (2002).

Setting aside for the moment, sieving
protocol, the APP plots of Figure 5 can be
visually assessed by identifying those
samples or those sample segments of sample
pair distributions for which there are apparent
discrepancies. Results are listed in Table 4.
Of the 20 sample pairs, 11 samples resulted
in no or insignificant discrepancies (samples
3, 5, 7, 9 11a, 11b, 12a, 12b, 13a, 13d, 13e).
Five samples (1, 2, 4, 13b, and 13c)
exhibited discrepancy for one /4-phi T;
interval. Two samples (8, and 10b) pi
had discrepancies in two 1/4-phi di
intervals, and one sample (6) had M
discrepancies in five -phi intervals.
Only one sample (10a) had
discrepancies in every -phi interval (to
be discussed later), which we can use
as a sort of "standard". Sample 10a
had discrepancies from 0.0 to 2.1% of
the total sample mass for /4-phi
intervals, averaging 0.66%. In this
study a total of 391 -phi intervals exist
for the 20 sample pairs; 368 1-phi
intervals if sample 10a is excluded.
With one exception, all discrepancies
were significantly less than the mean
discrepancy of 0.66%. The one
exception was for the 3.25 to 3.50 phi
interval of sample 6 with a discrepancy
of 2.6%. While this one value is large, it
constitutes only 0.27% of all %-phi
intervals measured excluding sample
10a. S

Where there is a discrepancy, it s;
commonly occurs between the 2 p and
4 ) sieves. While we cannot be s<
absolutely certain, we speculate that S
the discrepancy occurs not during S
sieving, but during the weighing Sl
process because of the potential loss of s
fine-grained material when they are S;
transferred from the sieves to the s
weighing container. As shall be s
demonstrated, however, these s.
discrepancies are not significant.


Rotap->Meinzer and Meinzer -Rotap
protocols yielded straight-forward sieving
outcomes as discussed relative to Table 4. In
the one instance of time series, weighing of a
sample (13a through 13d) at 10-, 15-, 20-,
and 30-minute intervals, there was no
difference between Rotap and Meinzer II
results.

As previously discussed, Rotap
shakers appear to be significantly more
energetic, while the Meinzer II shakers are


able 4.
robability
iscrepanc


Visual assessment of cumulative
plots of Figure 5 where
y is apparent between Rotap and


einzer II results.

Sample Interval Discrepancy Discr panc
I.D. (phi) (grams) sample)
sample)
Sample 1 3.50 to 3.75 0.0372 0.0642
Sample 2 3.75 to 4.00 0.0039 0.0102
Sample 3 None None None
Sample 4 3.75 to 4.00 0.0001 0.0002
Sample 5 None None None
-1.25 to -1.50 0.0091 0.0219
2.75 to 3.00 0.0495 0.1195
Sample 6 3.00 to 3.25 0.06 0.1448
3.25 to 3.50 1.0691 2.5792
3.50 to 3.75 0.0082 0.0198
Sample 7 None None None
S 3.00 to 3.25 0.0155 0.0266
Sample 8
3.25 to 3.50 0.0687 0.1174
Sample 9 None None None
Entire 0 to 0.776 0 to 2.099
ample 10a
Sample (0.2427*) (0.6569*)
ample 10b 3.50 to 3.75 0.1038 0.281
3.75 to 4.00 0.1268 0.3432
ample 11a None None None
ample 11b None None None
ample 12a None None None
ample 12b None None None
ample 13a None None None
ample 13b 3.00 to 3.25 0.0071 0.0001
ample 13c 3.50 to 3.75 0.01 0.0001
ample 13d None None None
ample 13e None None None
*Averages for total sample.









gentler. Four samples (10, 11, 12, and 13)
were therefore processed with the
nzerMeinzerRotapMeinzer protocol
sequence. Sample 13 was partially
comprised of carbonate material; samples 11
and 12 were exclusively carbonate shell
material. Relative to quartz (6.0 on Moh's
hardness scale), one would expect carbonate
material (calcite has a hardness of 3.0) to
abrade or otherwise break-up. Carbonate
sediments are of particular concern because
of their prolific presence along Florida's
Atlantic and lower Gulf coasts, and we have
speculated that they may very well abrade or
break-up during Rotap sieving. However, it
was discovered that none of samples 11, 12,
or 13, however, resulted in any significant
difference between Rotap and Meinzer II
sieving histories (Figure 5).

We located one field sample (10a) in
which no pre-sieving sample preparation had
been done. Inspection of the sample under a
binocular microscope revealed that in addition
to quartz sand, the sample contained from 15
to 20% sand-sized clumps of clay. It was
found that these clumps could be easily
compressed or sliced using a small probe.
We reasoned that such soft particles would
be ideal to test Rotap versus Meinzer II
shaker sieving energy levels. The sample
was first sieved using the Meinzer II
shakers, then sieved using the Rotap
shakers. The results confirms that the Rotap
shakers are more energetic since it
produced finer particles than the first Meinzer
II sieving episode (see sample 10a of
Figure 5). Immediately following this first test,
the sample was again sieved using the
Meinzer II shakers to complete the
Meinzer->Rotap--Meinzer protocol, and
sample 10b of Figure 5 resulted in close
similarity for both shaker types. In reality, one
would remove any silt or clay from a sample
and use pipette or other analytical procedures
to determine its granulometry. For our
purposes, however, it provided an excellent
opportunity to assess and confirm that the
Meinzer II shakers are gentler than the
Rotap shakers.


Statistical Analysis

Preceding distribution analyses were
largely based on a visual, qualitative
assess,emt. While results are convincing,
one can numerically quantify comparative
results using statistical measures. Six
statistical measures have been assessed in
this study. Each measure quantifies some
characteristic about the total sample
distribution. The first four statistical measures
are the mean, standard deviation, skewness,
and kurtosis. The mean is a measure of the
central tendency of the distribution. The
standard deviation (or sorting coefficient) is a
measure of the degree of spread of the
distribution about the mean. The larger the
standard deviation, the larger the spread.
The skewness is a measure of asymmetry of
the distribution, wherein it may be skewed to
the right or left of the mean, or skewed to the
fine or coarse end of the distribution. Kurtosis
is a measure of the peakedness of the curve,
termed platykurtic if flat and leptokurtic if
peaked. These four measures constitute, at a
minimum, the measures required to define the
basic characteristics of a distribution. These
measures are termed moment measures
because they are calculated using the method
of moments as defined in Appendix III. The
fifth statistical measure is the relative
dispersion. It is simply the mean divided by
the standard deviation and is a measure of
sample variability. The value of the relative
dispersion is that it can be used to compare
variability between samples even if there are
large differences in magnitudes of both the
means and standard deviations (Rees, 1995).
The final statistical measure is the median
which is not a moment measure. It is the
grain size corresponding to the 50'h percentile
of the cumulative distribution.

Statistical measures for samples
processed using Rotap and Meinzer II
shakers are listed in Table 5. Comparative
results for tested sample pairs are plotted in
Figure 6 for each of the statistical measures.
All correlation coefficients (r) assessing the
degree of correlation between Rotap and




















Table 5. Statistical measures for tested samples.


n Standard Deviation Skewness Ki
(phi-units)
Meinzer Rotap Meinzer Rotap Meinzer Rotap
1.0457 0.8872 0.8661 -0.5865 -0.6227 4.2094
2.3121 0.6508 0.6210 -0.2343 -0.2956 4.8538
0.9337 0.8980 0.8906 -0.7123 -0.6986 3.1933
1.8224 0.3774 0.3705 -0.5075 -0.4832 3.2189
1.9126 0.8618 0.8411 0.2427 0.2560 2.4061
1.9661 0.7765 0.7223 -0.1638 -0.2385 3.0334
2.0187 0.2901 0.3033 -0.1290 -0.2173 3.7395
1.9029 0.4540 0.4404 0.0156 -0.0720 3.3963
0.4969 1.0241 1.0240 0.3399 0.3401 1.6019
2.0261 0.7194 0.7319 -0.5449 -0.8297 4.5844
2.1105 0.7194 0.6951 -0.5449 -0.6666 4.5844
-0.8480 0.5586 0.5661 -0.1392 -0.1785 3.0026
-0.8470 0.5586 0.5673 -0.1392 -0.1319 3.0026
0.3705 1.1197 1.1250 -0.0324 -0.0524 2.4779
0.3912 1.1197 1.1185 -0.0524 -0.0377 2.4779
1.2538 0.6962 0.6917 -0.5130 -0.4972 3.6727
1.2596 0.6923 0.6908 -0.5405 -0.4918 3.6169
1.2646 0.6981 0.6912 -0.5186 -0.5243 3.5941
1.2653 0.6949 0.6888 -0.5320 -0.5506 3.6050
1.2688 0.6949 0.6922 -0.5320 -0.5017 3.6050


urto


sis Relative Dispersion M

Meinzer Rotap Meinzer Rotap
4.3431 0.8892 0.8797 0.9728
5.0153 0.5516 0.5301 2.2209
3.1879 0.8189 0.8096 0.9993
3.2189 0.2850 0.2785 1.7440
2.4312 0.5783 0.5636 1.7218
3.2388 0.6238 0.5960 1.9507
3.5425 0.2079 0.2192 1.8733
3.3941 0.3262 0.3203 1.7924
1.6019 0.5915 0.5915 0.2385
4.8052 0.6830 0.7375 2.0260
4.6979 0.6830 0.6715 2.0260
2.9685 0.4098 0.4187 -0.9664
3.0217 0.4098 0.4166 -0.9664
2.4385 0.8352 0.8413 0.2686
2.4686 0.8352 0.8360 0.2687
3.6620 0.5973 0.5900 1.1814
3.6537 0.5949 0.5881 1.1854
3.6547 0.5972 0.5929 1.1958
3.6719 0.5961 0.5933 1.1976
3.6557 0.5961 0.5908 1.1976


Mea

Rotap


Sample 1
Sample 2
Sample 3
Sample 4
Sample 5
Sample 6
Sample 7
S Sample 8
Sample 9
Sample 10a
Sample 10b
Sample 1la
Sample 11b
Sample 12a
Sample 12b
Sample 13a
Sample 13b
Sample 13c
Sample 13d
Sample 13e


1.0352
2.3266
0.9404
1.8378
1.9055
2.0139
1.9985
1.9204
0.4964
2.1516
2.1516
-0.8832
-0.8832
0.3804
0.3804
1.2454
1.2477
1.2560
1.2583
1.2583


edian
(4)


Meinzer
0.9784
2.2045
0.9776
1.7297
1.7229
1.9067
1.9047
1.7794
0.2383
1.9233
1.9867
-0.9292
-0.9284
0.2552
0.2778
1.1904
1.1982
1.2074
1.2068
1.2062









2.5 I I I I

2.0 All data: r = 0.9995
Excluding 10a: r= 0.9998
1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5 -
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.

Rotap Mean (phi)
0


1.1

1.0

1 0.9
.0

* 0.8

- 0.7

0 0.6

S 0.5

" 0.4

0.3

0.2


5

S


ample


0.4 I
All data: r= 0.9714
0.2 Excluding 10a: r=0.9888

0.0 -

-0.2

-0.4

-0.68
0
-0.8

-1.0
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4

Rotap Skewness


0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
Rotap Standard Deviation
10a (phi-units)

5.0
All data: r= 0.9951
4.5 Excluding 10a: r= 0.9949

4.0

3.5

3.0

2.5

2.0

1.5--
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Rotap Kurtosis


0.9 .2I 1 2.5
SAll data: r 0.9996
0.8 EAlu data : r = 0 .991 8 2.0 Excluding 10a: r= 0.9997
Excluding 10a: r = 0.9984
0.7 1.5

0.6 C 1.0

0.5 0.5

0.4 0.0

0.3 -0.5

0.2 -1.0

0.1 -- -1.5
0.1 0.2 0.3 0.4 0.5 0.6 0-7 0.8 0.9 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5
Rotap Relative Dispersion Rotap Median (phi)

Figure 6. Cross-plots of statistical measures.









Meinzer 1I statistical measures appear to be
significantly strong in the statistical sense,
ranging from r = 0.9714 to r = 0.9998. Note
that sample 10a (the anonymously introduced
clay-bearing test sample pair) is separately
addressed in the comparative cross-plots of
Figure 6.

Of the moment measures, it is
interesting that the lowest correlation occurs
for the skewness or third moment measure.
We can, in fact, explain why this might be so.
Higher moment measures increasingly reach
deeper into the tails of a probability
distribution, and omit more and more of the
central segment. It is critical to understand
that it is the tails (not the mode or central part)
of the probability distribution that determine
the shape of the distribution (Doeglas, 1946;
Balsillie and Tanner, 1999). Odd moment
measures (e.g., 1st, 3d, 5th) deal with
differences between the tails. Hence, for any
slight difference in the distribution tails, the


effect is exacerbated and greater
variability in skewness values
between sample pairs is to be
expected. In comparison, even
moment measures (e.g., 2nd, 4th, 6th)
treat the tails as if they were
combined. Hence, for the fourth
moment measure or kurtosis, the
effect of combining the tails
moderates the result and
correlations between sample pairs
improves. (Balsillie and Tanner,
1999.)

Even with some variability in
the skewness, we can present all
statistical measures in perspective
by plotting them on a single graph.
Figure 7 illustrates that the overall
variability is slight. The Pearson
product-moment correlation coeff-
icient for all 120 data points is
0.9992, establishing nearly perfect
correlation.

Finally, regression results
between data pairs can be
statistically assessed using the F-


test. Specifically, this special case of analysis
of variance assesses whether the data sets
are or are not different. F-test results are
presented in Table 6 for all data, and in Table
7 for all data excluding sample 10a. Fm, is
the ratio of the larger variance to the smaller
variance. F, is the statistically critical value.
If the ratio of F,, is smaller than Fo, then the
conclusion is quantitatively reached that there
is no difference between the regression data
sets. Hence, from results of both Tables 6
and 7, it is concluded for the data tested in
this work that there is, unanimously, no
difference between Rotap and Meinzer II
sieved variances of statistical measures. The
regression outcomes can also be assessed.
Since the value of F,. is smaller than Fo, we
can conclude that the correlation between the
data and 1:1 fit is significant and not a
random event.

Having established that Rotap and
Meinzer II variances of statistical measure


-a
-2 -1 0 1 2 3 4 5 6
Rotap Statistical Measures

Figure 7. Cross-plot of all statistical measures for
Rotap and Meinzer data illustrating the degree of
agreement.


O Mean, r = 0.9998
A Standard Deviation, r = 0.9972
* Skewness, r = 0.9888
A Kurtosis, r = 0.9949
- O Relative Dispersion, r = 0.9984 -
* Median, r = 0.9997
[ Correlations exclude
sample 10a]


Overall
correlation
r = 0.9992
n=120


Sample 10a skewness













Table 6. F-test results for analysis of variance and assessment of regression outcomes for
all samples.
Mean Standard Deviation Skewness Kurtosis Relative Dispersion Median
Rotap Meinter Rotap Mein er Rotap Meinzer Rotap Meinzer Rotap Melnzer Rotap Meinzer
Mean 1 2019 11963 0.7246 0.7169 -0.2912 -0.3247 33938 34336 05855 0.5833 .1064 1.1018
Varianae 09401 0.8978 00538 0.0532 0.0887 0,1019 0.5805 0.6377 0.0308 0.0312 0.9369 0.8991
No. Observations 20 20 20 20 20 20 20 20 20 20 20 20
r 0.9995 0.9973 0,9714 0,9951 09961 09996
Degrees of freedom 19 19 19 19 19 1 19 19 19 19 19 19
Fs 1.0472 1 0113 1 1488 10983 1.0130 1.0420
Fri (lr 0.05. dt = 19.d ,= 19 2.1682 21682 2.1682 2.1682 2.1682 2.1682
F(t = 0.05, d, = 1. d = 19) 4 3808 43808 4 3808 4.3808 4.3808 4.3808
F,, one-tailed test: Fr two-tailed test

Table 7. F-test results for analysis of variance and assessment of regression outcomes for
all samples, excluding sample 10a.
Mean Standard Deviation Skewness Kurtosis Relative Dispersion Median
Rotap Meinzer Rotap Meinzer Rotap Meinzer Rotap Meinzer Rotap Meinzer Rotap Meinzer
Mean 1.1527 1.1510 0.7253 07156 -0.2784 -02967 4.0379 3.3590 0.5807 0.5747 1.0588 1.0569
Variance 0.8613 0.8310 0.0513 0.0512 0.0910 0.0905 0.6052 0.6617 0.0357 0.0352 0,85T7 08289
No. Observations 19 19 19 19 19 19 19 19 19 t1 19 t9
r 0.9998 0.9972 09888 0.9949 0,9984 0,9997
Degrees of treedor 1 18 1 18 18 18 18 18 16 18 18 1T 1T
F1, 1,0365 1.0020 1.0055 1.0934 1.0142 1.0347
Fr,i (a =0 05. df, = 18 di,= 18 2.2172 2.2172 22172 22172 2.2172 22172
Fe~at R 0.05. dfi 1, cli 4 18) 4.4 4139 4.4139 4.4139 4.4139 4.4139
F,,r- one-tailed test: Fo,- two-tailed test.

Table 8. t-test results for all samples (two-sample t-test assuming equal population variances, a =
c = 0.05).
Mean Standard Deviation Skewness Kurtosis Relative Dispersion Median
Rotap Menzer Mene Rotap Me r Rot Meiner Rotap Meinzer Rotap Meinzer Rotap Meinzer
Mean 1.2019 1.1963 0.7246 0.7169 -0.2912 -0.3247 3.3938 3.4336 0.5855 0.5833 1.1064 1.1018
Variance 0.8648 0.8279 0.0488 0.0482 0.0901 0.0991 06515 07310 00345 00344 0.8582 0.8250
Observations 20 20 20 20 20 20 20 20 20 20 20 20
r 0.9995 0.9973 0.9714 0.9951 0.9961 0.9996
Pooled Variance 0.8463 0.0485 0.0946 0.6913 0.0345 0.8416
Hypothesized Mean Difference 0 0 0 0 0 0
Degrees of Freedom 38 38 38 38 38 38
Measured t Stat 0.0192 0.1104 0.3444 -0.1514 0.0382 0.0158
P(T< t Critical two-tall -2.0244 and 2.0244 024 244 anan0244 244a 244 -2.0244 and 2.0244 -2 0244 and 2.0244 -2.0244 and 2.0244 -2.0244 and 2.0244

Table 9. t-test results for all samples, excluding sample 10a (two-sample t-test assuming
equal population variances, a = 0.05).
Mean Standard Deviation Skewness Kurtosis Relative Drspersion Median
Roap Menzer Rotap Meinzer Roeap Meinzer Rotap Meinzer Rotap Meinzer Rotap Meinzer
Mean 1.1527 1.1510 0,7253 0,7156 -0.2784 -0.2967 3.3217 33569 05807 05747 1 0588 10589
Variance 0.8613 0.8310 0.0512 0.0512 0.0910 0.0905 0.6052 06617 0.0357 0.0352 0.8577 0.8289
Observations 19 19 19 19 19 19 19 19 19 19 19 19
r 0.998 0.9972 0.9888 09949 0.9984 09997
Pooled Variance n08462 0.0512 00907 0.6335 0.0355 0.8433
Hypothesized Mean Difference 0 0 0 0 0 0
Degrees of Freedom 36 36 36 36 36 36
Measured t Stat 0.0059 0.1330 0.1870 -0.1362 0.0988 0.0062
P(T-=I} two-tall 0.9954 0.8950 0.8527 08924 0.9218 0.9951
t Crilcal Iwo-tail -2.0281 and2.0281 -Z0281 and2 0281 .-0281 and 2.0281 -20281 and 2.0281 -2.0281 and 2.0281 -2.0281 and 2.0281


are not different, we tested means of the
statistical measures using a two-sample t-test
assuming equal population variances (as
established by the F-test). Results are listed
in Table 8 for all samples, and in Table 9 for
all samples excluding sample 10a. Results
show that there is, unanimously, no difference
between statistical measures characterizing
samples considered in this study.


SIEVING TIME


Sieving time has been a subject of
concern through the last half of the last
century (Heer, 1939; Shergold, 1946;
Swineford and Swineford, 1946; Berthois and
Aubert, 1950; Berthois, 1951; Lauer, 1963;
Mizutani, 1963; Muller, 1967, etc. The FGS
uses a sieving time of 30 minutes. Since two









sieve nests are required to analyze a single
sand-sized sample, one-hour of sieving time
is required per sample. This does not include
weighing time between the two-part sieving
history for a sample. If efficiently
accomplished, weighing can be accomplished
in about 15 minutes for each sieve nest. This
results in a total sieving analysis time of 1.5
hours (does not include initial pre-sieiving
sample preparation, sample washing, or fines
pipette analysis, etc.).

The matter of sieving time, while
fraught with sensitive and conundrum-like
vicissitudes, is one that needs to be
approached with pragmatic understanding of
logistical realities. If the weighing process
efficiently requires 15 minutes per nest, one
should not be interested in any less than 15
minutes of sieving time. Otherwise sieving
time weighing time lengths are logistically
out-of-phase.

Rotap machines have horizontal
and vertical throws of about 2.5 to 3.0 cycles
per second while Meinzer II throws are 60
cycles per second. Hence, one might
speculate that Meinzer II machines are
about 20 times more efficient than Rotap
shakers, and that less sieving time would be
required for the former. The problem is that
we are not privy to precisely what is
happening in each sieve interval during
sieving. In the one instance of time series
weighing of a sample (13a through 13d) at
10-, 15-, 20-, and 30-minute intervals we saw
little difference between 10 minutes and 30
minutes of sieving. However, results from
one sample does not adequately assess the
matter. The purpose of this paper was to
determine whether Meinzer II shakers
duplicate Rotap outcomes. The issue of
sieving time requirements remains, therefore,
a subject of further research.

CONCLUSIONS

This work has compared a newly
developed sieve shaker design the British
designed Meinzer II sieve shaker to the


"industry standard" Rotap @ sieve shaker.
Twenty sets of tests were conducted using
various sequences or protocols of sieving to
assess resulting agreement and the effect of
differential sieve shaker energy input on
softer mineral components being sieved. As
to the latter it was, surprisingly, found that
carbonate shell material sieved through both
shaker types resulted in essentially identical
outcomes, suggesting that grain abrasion or
break-down did not occur. However, the
Rotap did cause the abrasion of soft,
friable, sand-sized clay particles comprising a
quartzose-clay lacustrine sample. Hence, to
some extent the Meinzer II shakers are
gentler than the Rotap machines. Even so,
the extent of discrepancy was not significant
within the framework of the samples
statistically tested in this work.

Both qualitative visual assessments of
individual Rotap- and Meinzer-produced
outcomes were performed. Qualitative
assessments showed little difference between
shaker types with the exception of the one
anomalously introduced clay-bearing sample.
The bottom line, however, is the quantitative
statistical analysis of four moment measures,
the relative dispersion, and the median from
which it can be concluded that Rotap and
Meinzer II shakers result in insignificantly
different outcomes. That is, for all practical
purposes, they produce the same results.

DISCLAIMER

The citation of trade names in this
document does not constitute official Florida
Department of Environmental Protection,
Florida Geological Survey endorsement of
said products. Rather, citation serves only to
identify said products at the Florida
Geological Survey.









REFERENCES

Balsillie, J. H., 1995, Williiam F. Tanner on
Environmental Clastic Granulometry:
Florida Geological Survey Special
Publication No. 40, 144 p.

1999, Volumetric beach and
coast erosion due to storm and
hurricane impact: Florida Geological
Survey Open File Report Number 78,
37 p.

2002, Analytic granulometry
tools: Florida Geological Survey Web
site, posted August 9, 2002 on
http://www.dep.state, fl.us/geology/
geologictopics/analytic_gran_tools/
analytic_gran.htm

Balsillie, J. H., Donoghue, J. F., Butler, K. M.,
and Koch, J. L., 2002, Plotting
equation for Gaussian percentiles and
a spreadsheet program for generating
probability plots: Journal of
Sedimentary Research, v. 72, p. 929-
933.

Balsillie, J. H., Tanner, W. F., and Williams, H.
K., 1997, Sticky grain occurrences in
sieving: Geological Society of
America, Abstracts with Programs, v.
29, p. 3.

1999, Sticky grain occurrences
in sieving: Florida Geological Survey,
Open File Report No. 79,16 p.

Balsillie, J. H., and Tanner, W. F., 1999, Suite
versus composite statistics:
Sedimentary Geology, v. 125, p. 225-
234.

Berthois, L., 1951, L'effet de broyage sur des
sables a elements organogenes
calcaires au course des tamisages
mecaniques: Soc. Geol. Nord. Ann.,
v. 71, p. 172-186.


Berthois, L., and Aubert, M., 1950, Etude de
I'effet de groyage au course des
tamisages mecaniques: Soc. Geol.
France, C. Rno, v. 3-4, p. 51-54.

Doeglas, D. J., 1946, Intepretation of the
results of mechanical analyses:
Journal of Sedimentary Petrology, v.
16, p. 19-40.

Fogiel, M., 1985, The statistics problem
solver: New York: Research and
Education Association, 1044 p.

Folk, R. L., 1966, A review of grain-size
parameters: Sedimentology, v. 6, p.
73-94.

Friedman, G. M., and Sanders, J. E., 1978,
Principles of sedimentology: New
York: John Wiley and Sons, 792 p.

Hazen, A., 1914, Storage to be provided in
impounding reservoirs for municipal
water supply: American Society of
Civil Engineers, v. 77, p. 1529-1669.

Heer, A., 1939, Beschickungsmenge und
schuettelzeit bei de siebanalyse:
Geol. Meere u. Binnengew. Bd., v. 3,
p. 579-583.

Hobson, R. D., 1977, Review of design
elements for beach-fill evaluation: U.
S. Army, Coastal Engineering
Research Center Technical Paper 77-
6, 51 p.

James, W. R., 1975, Techniques in evaluating
suitability of borrow material for beach
nourishment: U. S. Army, Coastal
Engineering Research Center
Technical Memorandum No. 60, 81 p.

Krumbein, W. C., 1934, Size frequency
distributions of sediments: Journal of
Sedimentary Petrology, v. 4, p. 65-77.









1936, Application of logarithmic
moments to size frequency
distributions of sediments: Journal of
Sedimentary Petrology, v. 6, p. 35-47.

,1957, A method for specification
of sand for beach fills: U. S. Army
Beach Erosion Board Technical
Memorandum 102, 82 p.

,1964, Some remarks on the phi
notation: Journal of Sedimentary
Petrology, v. 34, p. 195-197.

Lauer, 0., 1963, Feinheitsmessungen an
technischen stauben: Ed. Alpine Co.,
Ausburg, Germany, 112 p.

McManus, D. A., 1963, A criticism of certain
usage of the phi-notation: Journal of
Sedimentary Petrology, v. 33, p. 670-
674.

Mizutani, S., 1963, A theoretical and
experimental consideration on the
accuracy of sieving analysis: Journal
of Earth Sciences: Nagoya University,
Japan, v. 11, p. 1-27.

Muller, G., 1967, Methods in Sedimentary
Petrology, Part I Methods in
Sedimentary Petrology, Hafner
Publishing Company, New York, 283
P.

Rees, D. G., 1995, Essential statistics:
London: Chapman and Hill, Inc., 256
P.

Rogers, J. J. W., 1965, Reproducibility and
significance of measurements of
sedimentary size distributions:
Journal of Sedimentary Research, v.
35, p. 722-732.

Shergold, F. A., 1946, The effect of sieve
loading on the results of sieve analysis
of natural sand: Trans., Soc.
Chemical Industry, v. 65, p. 245-249.


Swan, D., Clague, J. J., and Luternauer, J. L.,
1978, Grain-size statistics I:
Evaluation of the Folk and Ward
graphic measures: Journal of
Sedimentary Petrology, v. 48, p. 863-
878.
1979, Grain-size statistics II:
Evaluation of grouped moment
measures: Journal of Sedimentary
Petrology, v. 49, p. 487-500.

Swineford, A., and Swineford, F., 1946, A
comparison of three sieve shakers:
Journal of Sedimentary Pertrology, v.
16, p. 3-13.

Truesdell, P. E., and Varnes, D. J., 1950,
Chart correlating various grain-size
definitions of sedimentary materials:
U. S. Geological Survey; 1 sheet.

Tanner, W. F., 1969, The particle size scale:
Journal of Sedimentary Petrology, v.
39, p. 809-811.

S_1991, Suite statistics: the
hydrodynamic evolution of the
sediment pool: In (J.P.M. Syvitski,
ed.), Methods and Applications of
Particle Size Analysis, Cambridge:
Cambridge University Press, p. 225-
236.

U. S. Army, 1984, Shore Protection Manual,
Washington, D. C.: U. S. Army,
Coastal Engineering Research Center,
2 vols., 1272 p.

Wentworth, C. K., 1922, A scale of grade and
class terms for plastic sediments:
Journal of Geology, v. 30, p. 377-392.







































































20

























APPENDIX I


Sample Pair Granulometries

Numerals associated with the samples are those listed in Tables 2 and 3 of the
text. Sample pairs are on facing pages to facilitate ease of comparison.
Arithmetic probability plots are after Balsillie and others (2002) and Balsillie
(2002). See Table 3 of the text for sieving protocols.












Sample I.D.: ROTAP1

Sample I.D.: ROTAP1 Sampled by: Start Sieve Size (phi): -2
Sample Date: Analyzed by: J. H. Balsillie End Sieve Size (phi): 4
Total Sample: X ISiliclastic Fraction: Carbonate Fraction: I Pan Sieve Size (phi): 4
Longitude: Latitude: Datum: Sieve Interval (phi): 0.25
Surface Elev: Datum: Accuracy: # Splits: I 0
Sample Depth in Core: Compaction Corrected? 1% Comp.: Total Mass: 57.872 grams
Comments: Carbonate + Silica FL offshore east coast


Sieve Sieve Weight Freq Cumulative
Size Midpoint Weight Weight
(phi) (phi) (grams) % %
-2.00 -2.125 0.355 0.6134 0.6134
-1.75 -1.875 0.135 0.2333 0.8467
-1.50 -1.625 0.369 0.6376 1.4843
-1.25 -1.375 0.297 0.5132 1.9975
-1.00 -1.125 0.374 0.6463 2.6438
-0.75 -0.875 0.642 1.1093 3.7531
-0.50 -0.625 0.947 1.6364 5.3895
-0.25 -0.375 1.264 2.1841 7.5736
0.00 -0.125 1.866 3.2244 10.7980
0.25 0.125 2.71 4.6827 15.4807
0.50 0.375 3.925 6.7822 22.2629
0.75 0.625 4.957 8.5655 30.8284
1.00 0.875 8.179 14.1329 44.9613
1.25 1.125 7.455 12.8819 57.8432
1.50 1.375 7.871 13.6007 71.4439
1.75 1.625 5.904 10.2018 81.6457
2.00 1.875 4.565 7.8881 89.5338
2.25 2.125 2.385 4.1212 93.6550
2.50 2.375 1.546 2.6714 96.3264
2.75 2.625 1.187 2.0511 98.3775
3.00 2.875 0.514 0.8882 99.2656
3.25 3.125 0.194 0.3352 99.6008
3.50 3.375 0.092 0.1590 99.7598
3.75 3.625 0.036 0.0622 99.8220
4.00 3.875 0.103 0.1780 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000


16



14



12



S10

g,
8
a

L 6



4



2



0


00P


0-no


Tweak ACUMPLOT X-axis here
X-axis minimum -3
X-axis maximum 5


-3.00 -2.00 -1.00 0.00 1.00 2.00 3.00 4.00 5.00
Grain Size (Phi)

Relative Disperison Scale
< 0.5 Excellent homogeneity (e.g. beaches)
0.5 to 1.0 Good homogeneity
1.0 to 1.33 Fair homogeneity
> 1.33 Poor homogeneity


Statistical Results
Measure Original Data Transformed Original Data
in 4 Units Data in Millimeters
Mean: 1.0352 4 0.4879 mm 0.6052 mm
Standard Deviation: 0.8872 phi-units MV --- 0.5382 mm
Skewness: -0.5865 NU MV --- 3.8325 NU
Kurtosis: 4.2094 NU MV --- 22.3071 NU
Median: 0.9728 4 0.5095 mm 0.5113 mm
Relative Dispersion: MV --- --- --- 0.8892 NU
Mean, std dev, skewness and kurtosis calculated using method of moments.
MV = meaningless value; NU = no units (ie., dimensionless)
Transformed data calculated using mm = 2.o


t













Sample I.D.: MEINZER1

Sample I.D.: MEINZER1 Sampled by: Start Sieve Size (phi): -2
Sample Date: Analyzed by: J. H. Balsillie End Sieve Size (phi): 4
Total Sample: X ISiliclastic Fraction: Carbonate Fraction: I Pan Sieve Size (phi): 4
Longitude: Latitude: Datum: Sieve Interval (phi): 0.25
Surface Elev: Datum: Accuracy: # Splits: I 0
Sample Depth in Core: Compaction Corrected? 1% Comp.: Total Mass: 57.728 grams
Comments: Carbonate + Silica, FL offshore east coast


Sieve Sieve Weight Freq Cumulative
Size Midpoint Weight Weight
(phi) (phi) (grams) % %
-2.00 -2.125 0.355 0.6150 0.6150
-1.75 -1.875 0.101 0.1750 0.7899
-1.50 -1.625 0.343 0.5942 1.3841
-1.25 -1.375 0.26 0.4504 1.8345
-1.00 -1.125 0.383 0.6635 2.4979
-0.75 -0.875 0.541 0.9372 3.4351
-0.50 -0.625 0.883 1.5296 4.9647
-0.25 -0.375 1.225 2.1220 7.0867
0.00 -0.125 1.82 3.1527 10.2394
0.25 0.125 2.651 4.5922 14.8316
0.50 0.375 3.496 6.0560 20.8876
0.75 0.625 5.058 8.7618 29.6494
1.00 0.875 8.113 14.0538 43.7032
1.25 1.125 8.787 15.2214 58.9246
1.50 1.375 7.389 12.7997 71.7243
1.75 1.625 5.851 10.1355 81.8598
2.00 1.875 4.533 7.8523 89.7121
2.25 2.125 2.352 4.0743 93.7864
2.50 2.375 1.591 2.7560 96.5424
2.75 2.625 1.13 1.9575 98.4999
3.00 2.875 0.497 0.8609 99.3608
3.25 3.125 0.179 0.3101 99.6709
3.50 3.375 0.075 0.1299 99.8008
3.75 3.625 0.073 0.1265 99.9272
4.00 3.875 0.042 0.0728 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000


Tweak ACUMPLOT X-axis here
X-axis minimum -2
X-axis maximum 5


16



14



12



- 10

2

8,

ag

u- 6




4



2


0 0
-3.00


Relative Disperison Scale
< 0.5 Excellent homogeneity (e.g. beaches)
0.5 to 1.0 Good homogeneity
1.0 to 1.33 Fair homogeneity
> 1.33 Poor homogeneity


Statistical Results
Measure Original Data Transformed Original Data
in 4 Units Data in Millimeters
Mean: 1.0457 4 0.4844 mm 0.5957 mm
Standard Deviation: 0.8661 phi-units MV --- 0.5240 mm
Skewness: -0.6227 NU MV --- 3.9866 NU
Kurtosis: 4.3431 NU MV --- 24.0427 NU
Median: 0.9784 4 0.5075 mm 0.5094 mm
Relative Dispersion: MV --- --- --- 0.8797 NU
Mean, std dev, skewness and kurtosis calculated using method of moments.
MV = meaningless value; NU = no units (ie., dimensionless)
Transformed data calculated using mm = 2.o


-2.00 -1.00 0.00 1.00 2.00 3.00 4.00 5.00
Grain Size (Phi)













Sample I.D.: ROTAP2

Sample I.D.: ROTAP2 Sampled by: Start Sieve Size (phi): -0.25
Sample Date: 6/28/2001 Analyzed by: J. H. Balsillie End Sieve Size (phi): 4
Total Sample: X ISiliclastic Fraction: Carbonate Fraction: I Pan Sieve Size (phi): 5
Longitude: Latitude: Datum: Sieve Interval (phi): 0.25
Surface Elev: Datum: Accuracy: # Splits: I 0
Sample Depth in Core: Compaction Corrected? 1% Comp.: Total Mass: 38.82 grams
Comments: Lake Jackson, Porter Hole Sample, LJ6A


Sieve Sieve Weight Freq Cumulative
Size Midpoint Weight Weight
(phi) (phi) (grams) % %
-0.25 -0.375 0.001 0.0026 0.0026
0.00 -0.125 0.054 0.1391 0.1417
0.25 0.125 0.192 0.4946 0.6363
0.50 0.375 0.273 0.7032 1.3395
0.75 0.625 0.396 1.0201 2.3596
1.00 0.875 0.622 1.6023 3.9619
1.25 1.125 0.533 1.3730 5.3349
1.50 1.375 0.714 1.8393 7.1741
1.75 1.625 2.417 6.2262 13.4003
2.00 1.875 4.264 10.9840 24.3843
2.25 2.125 6.474 16.6770 41.0613
2.50 2.375 9.049 23.3101 64.3715
2.75 2.625 6.077 15.6543 80.0258
3.00 2.875 3.354 8.6399 88.6656
3.25 3.125 1.860 4.7913 93.4570
3.50 3.375 1.336 3.4415 96.8985
3.75 3.625 0.625 1.6100 98.5085
4.00 3.875 0.212 0.5461 99.0546
5.00 4.5 0.367 0.9454 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000


Tweak ACUMPLOT X-axis here
X-axis minimum -3
X-axis maximum 5


Statistical Results
Measure Original Data Transformed Original Data
in t Units Data in Millimeters
Mean: 2.3266 0.1994 mm 0.2216 mm
Standard Deviation: 0.6508 phi-units MV -- 0.1222 mm
Skewness: -0.2343 NU MV --- 2.8780 NU
Kurtosis: 4.8538 NU MV --- 14.9141 NU
Median: 2.2209 0.2145 mm 0.2153 mm
Relative Dispersion: MV --- --- --- 0.5516 NU
Mean, std dev, skewness and kurtosis calculated using method of moments.
MV = meaningless value; NU = no units (ie., dimensionless)
Transformed data calculated using mm = 2.

25






20 -- -





























Grain Size (Phi)
0.5 to 1.0
2

U


S10






S10 L--6 -6--------
U- 1














-1.00 0.00 1.00 2.00 3.00 4.00 5.0
Grain Size (Phi)


Relative Disperison Scale
< 0.5 Excellent homogeneity (e.g. beaches)
0.5 to 1.0 Good homogeneity
1.0 to 1.33 Fair homogeneity
> 1.33 Poor homogeneity













Sample I.D.: MEINZER2

Sample I.D.: MEINZER2 Sampled by: Start Sieve Size (phi): -0.25
Sample Date: 6/28/2001 Analyzed by: J. H. Balsillie End Sieve Size (phi): 4
Total Sample: X ISiliclastic Fraction: Carbonate Fraction: I Pan Sieve Size (phi): 5
Longitude: Latitude: Datum: Sieve Interval (phi): 0.25
Surface Elev: Datum: Accuracy: # Splits: I 0
Sample Depth in Core: Compaction Corrected? 1% Comp.: Total Mass: 38.809 grams
Comments: Lake Jackson, Porter Hole sample LJ6A


Sieve Sieve Weight Freq Cumulative
Size Midpoint Weight Weight
(phi) (phi) (grams) % %
-0.25 -0.375 0.001 0.0026 0.0026
0.00 -0.125 0.038 0.0979 0.1005
0.25 0.125 0.185 0.4767 0.5772
0.50 0.375 0.244 0.6287 1.2059
0.75 0.625 0.427 1.1003 2.3062
1.00 0.875 0.623 1.6053 3.9115
1.25 1.125 0.323 0.8323 4.7437
1.50 1.375 0.668 1.7213 6.4650
1.75 1.625 2.296 5.9162 12.3811
2.00 1.875 4.643 11.9637 24.3449
2.25 2.125 6.874 17.7124 42.0573
2.50 2.375 9.692 24.9736 67.0308
2.75 2.625 5.642 14.5379 81.5687
3.00 2.875 3.100 7.9878 89.5565
3.25 3.125 1.790 4.6123 94.1689
3.50 3.375 1.280 3.2982 97.4671
3.75 3.625 0.532 1.3708 98.8379
4.00 3.875 0.208 0.5360 99.3739
5.00 4.5 0.243 0.6261 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000


Tweak ACUMPLOT X-axis here
X-axis minimum -2
X-axis maximum 5


Statistical Results
Measure Original Data Transformed Original Data
in t Units Data in Millimeters
Mean: 2.3121 0.2014 mm 0.2219 mm
Standard Deviation: 0.6210 phi-units MV --- 0.1176 mm
Skewness: -0.2956 NU MV --- 2.9504 NU
Kurtosis: 5.0153 NU MV --- 15.5462 NU
Median: 2.2045 0.217 mm 0.2177 mm
Relative Dispersion: MV --- --- --- 0.5301 NU
Mean, std dev, skewness and kurtosis calculated using method of moments.
MV = meaningless value; NU = no units (ie., dimensionless)
Transformed data calculated using mm = 2.

25






20






5 15
2


U









S0 -- . .








-1.00 0.00 1.00 2.00 3.00 4.00 5.0
Grain Size (Phi)


Relative Disperison Scale
< 0.5 Excellent homogeneity (e.g. beaches)
0.5 to 1.0 Good homogeneity
1.0 to 1.33 Fair homogeneity
> 1.33 Poor homogeneity













Sample I.D.: ROTAP3

Sample I.D.: ROTAP3 Sampled by: Start Sieve Size (phi): -2
Sample Date: 6/28/2001 Analyzed by: J. H. Balsillie End Sieve Size (phi): 3.25
Total Sample: X ISiliclastic Fraction: Carbonate Fraction: I Pan Sieve Size (phi): 3.25
Longitude: Latitude: Datum: Sieve Interval (phi): 0.25
Surface Elev: Datum: Accuracy: # Splits: I 0
Sample Depth in Core: Compaction Corrected? 1% Comp.: Total Mass: 46.146 grams
Comments: Carbonate + Silica Sample


Sieve Sieve Weight Freq Cumulative
Size Midpoint Weight Weight
(phi) (phi) (grams) % %
-2.00 -2.125 0.107 0.2319 0.2319
-1.75 -1.875 0.063 0.1365 0.3684
-1.50 -1.625 0.112 0.2427 0.6111
-1.25 -1.375 0.500 1.0835 1.6946
-1.00 -1.125 0.724 1.5689 3.2636
-0.75 -0.875 0.888 1.9243 5.1879
-0.50 -0.625 1.600 3.4673 8.6551
-0.25 -0.375 1.784 3.8660 12.5211
0.00 -0.125 1.921 4.1629 16.6840
0.25 0.125 2.000 4.3341 21.0181
0.50 0.375 2.345 5.0817 26.0998
0.75 0.625 2.933 6.3559 32.4557
1.00 0.875 5.050 10.9435 43.3992
1.25 1.125 6.124 13.2709 56.6701
1.50 1.375 7.098 15.3816 72.0517
1.75 1.625 5.753 12.4670 84.5187
2.00 1.875 4.352 9.4309 93.9496
2.25 2.125 1.514 3.2809 97.2305
2.50 2.375 0.548 1.1875 98.4181
2.75 2.625 0.322 0.6978 99.1158
3.00 2.875 0.262 0.5678 99.6836
3.25 3.125 0.146 0.3164 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000


Tweak ACUMPLOT X-axis here
X-axis minimum -3
X-axis maximum 5


Statistical Results
Measure Original Data Transformed Original Data
in 4 Units Data in Millimeters
Mean: 0.9404 4 0.5211 mm 0.6474 mm
Standard Deviation: 0.8980 phi-units MV -- 0.5302 mm
Skewness: -0.7123 NU MV --- 2.6185 NU
Kurtosis: 3.1933 NU MV --- 12.4049 NU
Median: 0.9993 4 0.5002 mm 0.5021 mm
Relative Dispersion: MV --- --- --- 0.8189 NU
Mean, std dev, skewness and kurtosis calculated using method of moments.
MV = meaningless value; NU = no units (ie., dimensionless)
Transformed data calculated using mm = 2.

16



14



12



10


g



i)
a-



L




4



2



0
0 . .. .. .


-3.00 -2.00 -1.00 0.00 1.00 2.00 3.00 4.0
Grain Size (Phi)


Relative Disperison Scale
< 0.5 Excellent homogeneity (e.g. beaches)
0.5 to 1.0 Good homogeneity
1.0 to 1.33 Fair homogeneity
> 1.33 Poor homogeneity













Sample I.D.: MEINZER3

Sample I.D.: MEINZER3 Sampled by: Start Sieve Size (phi): -2
Sample Date: 6/28/2001 Analyzed by: J. H. Balsillie End Sieve Size (phi): 3.25
Total Sample: X ISiliclastic Fraction: Carbonate Fraction: I Pan Sieve Size (phi): 3.25
Longitude: Latitude: Datum: Sieve Interval (phi): 0.25
Surface Elev: Datum: Accuracy: # Splits: I 0
Sample Depth in Core: Compaction Corrected? 1% Comp.: Total Mass: 45.698 grams
Comments: Carbonate + Silica Sample


Sieve Sieve Weight Freq Cumulative
Size Midpoint Weight Weight
(phi) (phi) (grams) % %
-2.00 -2.125 0.094 0.2057 0.2057
-1.75 -1.875 0.053 0.1160 0.3217
-1.50 -1.625 0.192 0.4201 0.7418
-1.25 -1.375 0.399 0.8731 1.6150
-1.00 -1.125 0.706 1.5449 3.1599
-0.75 -0.875 0.830 1.8163 4.9761
-0.50 -0.625 1.572 3.4400 8.4161
-0.25 -0.375 1.740 3.8076 12.2237
0.00 -0.125 1.910 4.1796 16.4033
0.25 0.125 2.111 4.6195 21.0228
0.50 0.375 2.474 5.4138 26.4366
0.75 0.625 2.961 6.4795 32.9161
1.00 0.875 5.555 12.1559 45.0720
1.25 1.125 5.489 12.0115 57.0835
1.50 1.375 6.856 15.0028 72.0863
1.75 1.625 5.908 12.9284 85.0147
2.00 1.875 4.111 8.9960 94.0107
2.25 2.125 1.522 3.3306 97.3412
2.50 2.375 0.544 1.1904 98.5317
2.75 2.625 0.300 0.6565 99.1881
3.00 2.875 0.251 0.5493 99.7374
3.25 3.125 0.120 0.2626 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000


Tweak ACUMPLOT X-axis here
X-axis minimum -2
X-axis maximum 5


Statistical Results
Measure Original Data Transformed Original Data
in t Units Data in Millimeters
Mean: 0.9337 0.5235 mm 0.6476 mm
Standard Deviation: 0.8906 phi-units MV -- 0.5243 mm
Skewness: -0.6986 NU MV --- 2.6245 NU
Kurtosis: 3.1879 NU MV --- 12.4463 NU
Median: 0.9776 0.5078 mm 0.5097 mm
Relative Dispersion: MV --- --- --- 0.8096 NU
Mean, std dev, skewness and kurtosis calculated using method of moments.
MV = meaningless value; NU = no units (ie., dimensionless)
Transformed data calculated using mm = 2.

16



14



1 2 c---------c--- -
12



10



< 8
g


















3.00 -2.00 -1.00 0.00 1.00 2.00 3.00 4.0







>1.33 Poor
4 -------r----------









-3.00 -2.00 -1.00 0.00 1.00 2.00 3.00 4.0
Grain Size (Phi)


Relative Disperison Scale
< 0.5 Excellent homogeneity (e.g. beaches)
0.5 to 1.0 Good homogeneity
1.0 to 1.33 Fair homogeneity
> 1.33 Poor homogeneity













Sample I.D.: ROTAP4

Sample I.D.: ROTAP4 Sampled by: Start Sieve Size (phi): 0.25
Sample Date: Analyzed by: A. A. Dabous End Sieve Size (phi): 3.25
Total Sample: X ISiliclastic Fraction: Carbonate Fraction: I Pan Sieve Size (phi): 3.25
Longitude: Latitude: Datum: Sieve Interval (phi): 0.25
Surface Elev: Datum: Accuracy: # Splits: I 0
Sample Depth in Core: Compaction Corrected? 1% Comp.: Total Mass: 45.534 grams
Comments: All quartz sample NW FL panhandle coast


Sieve Sieve Weight Freq Cumulative
Size Midpoint Weight Weight
(phi) (phi) (grams) % %
0.25 0.125 0.015 0.0329 0.0329
0.50 0.375 0.038 0.0835 0.1164
0.75 0.625 0.144 0.3162 0.4326
1.00 0.875 0.762 1.6735 2.1061
1.25 1.125 2.629 5.7737 7.8798
1.50 1.375 3.816 8.3806 16.2604
1.75 1.625 9.675 21.2479 37.5082
2.00 1.875 11.949 26.2419 63.7502
2.25 2.125 11.131 24.4455 88.1956
2.50 2.375 4.812 10.5679 98.7636
2.75 2.625 0.503 1.1047 99.8682
3.00 2.875 0.043 0.0944 99.9627
3.25 3.125 0.017 0.0373 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000


Tweak ACUMPLOT X-axis here
X-axis minimum -3
X-axis maximum 5


Statistical Results
Measure Original Data Transformed Original Data
in t Units Data in Millimeters
Mean: 1.8378 0.2797 mm 0.2897 mm
Standard Deviation: 0.3774 phi-units MV -- 0.0826 mm
Skewness: -0.5075 NU MV --- 1.4167 NU
Kurtosis: 3.2189 NU MV --- 6.3854 NU
Median: 1.7440 0.2985 mm 0.2997 mm
Relative Dispersion: MV --- --- --- 0.2850 NU
Mean, std dev, skewness and kurtosis calculated using method of moments.
MV = meaningless value; NU = no units (ie., dimensionless)
Transformed data calculated using mm = 2.

30





25





20





a-
S15





10




5
10 --------_ _-------





5 ---------_ \--------





0 -0L-0
0.00 1.00 2.00 3.00 4.00
Grain Size (Phi)


Relative Disperison Scale
< 0.5 Excellent homogeneity (e.g. beaches)
0.5 to 1.0 Good homogeneity
1.0 to 1.33 Fair homogeneity
> 1.33 Poor homogeneity













Sample I.D.: MEINZER4

Sample I.D.: MEINZER4 Sampled by: Start Sieve Size (phi): 0.25
Sample Date: Analyzed by: A. A. Dabous End Sieve Size (phi): 3.25
Total Sample: X ISiliclastic Fraction: Carbonate Fraction: I Pan Sieve Size (phi): 3.25
Longitude: Latitude: Datum: Sieve Interval (phi): 0.25
Surface Elev: Datum: Accuracy: # Splits: 1 0
Sample Depth in Core: Compaction Corrected? 1% Comp.: Total Mass: 45.642 grams
Comments: All quartz sample NW FL panhandle coast


Sieve Sieve Weight Freq Cumulative
Size Midpoint Weight Weight
(phi) (phi) (grams) % %
0.25 0.125 0.015 0.0329 0.0329
0.50 0.375 0.038 0.0833 0.1161
0.75 0.625 0.148 0.3243 0.4404
1.00 0.875 0.73 1.5994 2.0398
1.25 1.125 2.469 5.4095 7.4493
1.50 1.375 4.705 10.3085 17.7578
1.75 1.625 9.349 20.4833 38.2411
2.00 1.875 12.818 28.0838 66.3249
2.25 2.125 10.748 23.5485 89.8734
2.50 2.375 4.111 9.0071 98.8804
2.75 2.625 0.461 1.0100 99.8905
3.00 2.875 0.043 0.0942 99.9847
3.25 3.125 0.007 0.0153 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000


Tweak ACUMPLOT X-axis here
X-axis minimum -2
X-axis maximum 5


Statistical Results
Measure Original Data Transformed Original Data
in t Units Data in Millimeters
Mean: 1.8224 0.2827 mm 0.2924 mm
Standard Deviation: 0.3705 phi-units MV -- 0.0815 mm
Skewness: -0.4832 NU MV --- 1.3934 NU
Kurtosis: 3.2189 NU MV --- 6.4250 NU
Median: 1.7297 0.3015 mm 0.3026 mm
Relative Dispersion: MV --- --- --- 0.2785 NU
Mean, std dev, skewness and kurtosis calculated using method of moments.
MV = meaningless value; NU = no units (ie., dimensionless)
Transformed data calculated using mm = 2.

30





25





20

2

a)



















0.00 1.00 2.00 3.00 4.(
Grain Size (Phi)


Relative Disperison Scale
< 0.5 Excellent homogeneity (e.g. beaches)
0.5 to 1.0 Good homogeneity
1.0 to 1.33 Fair homogeneity
> 1.33 Poor homogeneity
C




10 --------_ _--------





5 --------__\--------















___ 1.33 __ Poor homogeneity_________













Sample I.D.: ROTAP5

Sample I.D.: ROTAP5 Sampled by: Start Sieve Size (phi): -1.25
Sample Date: Analyzed by: J. H. Balsillie End Sieve Size (phi): 4
Total Sample: X ISiliclastic Fraction: Carbonate Fraction: I Pan Sieve Size (phi): 5
Longitude: Latitude: Datum: Sieve Interval (phi): 0.25
Surface Elev: Datum: Accuracy: # Splits: I 0
Sample Depth in Core: Compaction Corrected? 1% Comp.: Total Mass: 43.981 grams
Comments: NKC1P3


Sieve Sieve Weight Freq Cumulative
Size Midpoint Weight Weight
(phi) (phi) (grams) % %
-1.25 -1.375 0 .000 0.0000
-1.00 -1.125 0.015 0.0341 0.0341
-0.75 -0.875 0.012 0.0273 0.0614
-0.50 -0.625 0.015 0.0341 0.0955
-0.25 -0.375 0.027 0.0614 0.1569
0.00 -0.125 0.079 0.1796 0.3365
0.25 0.125 0.196 0.4456 0.7822
0.50 0.375 0.633 1.4393 2.2214
0.75 0.625 1.538 3.4970 5.7184
1.00 0.875 4.351 9.8929 15.6113
1.25 1.125 4.855 11.0389 26.6501
1.50 1.375 4.975 11.3117 37.9618
1.75 1.625 3.75 8.5264 46.4883
2.00 1.875 3.99 9.0721 55.5604
2.25 2.125 3.81 8.6628 64.2232
2.50 2.375 3.95 8.9812 73.2043
2.75 2.625 3.83 8.7083 81.9126
3.00 2.875 2.83 6.4346 88.3472
3.25 3.125 2.31 5.2523 93.5995
3.50 3.375 1.425 3.2400 96.8395
3.75 3.625 0.93 2.1145 98.9541
4.00 3.875 0.29 0.6594 99.6135
5.00 4.5 0.17 0.3865 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000


n


-2.00 -1.00 0.00


Tweak ACUMPLOT X-axis here
X-axis minimum -3
X-axis maximum 5


1.00 2.00 3.00 4.00 5.00
Grain Size (Phi)


Relative Disperison Scale
< 0.5 Excellent homogeneity (e.g. beaches)
0.5 to 1.0 Good homogeneity
1.0 to 1.33 Fair homogeneity
> 1.33 Poor homogeneity


Statistical Results
Measure Original Data Transformed Original Data
in t Units Data in Millimeters
Mean: 1.9055 0.2669 mm 0.3145 mm
Standard Deviation: 0.8618 phi-units MV --- 0.1819 mm
Skewness: 0.2427 NU MV --- 1.4240 NU
Kurtosis: 2.4061 NU MV --- 9.3306 NU
Median: 1.7218 0.3032 mm 0.3042 mm
Relative Dispersion: MV --- --- --- 0.5783 NU
Mean, std dev, skewness and kurtosis calculated using method of moments.
MV = meaningless value; NU = no units (ie., dimensionless)
Transformed data calculated using mm = 2.o













Sample I.D.: MEINZER5

Sample I.D.: MEINZER5 Sampled by: Start Sieve Size (phi): -1.25
Sample Date: Analyzed by: J. H. Balsillie End Sieve Size (phi): 4
Total Sample: X ISiliclastic Fraction: Carbonate Fraction: I Pan Sieve Size (phi): 5
Longitude: Latitude: Datum: Sieve Interval (phi): 0.25
Surface Elev: Datum: Accuracy: # Splits: I 0
Sample Depth in Core: Compaction Corrected? 1% Comp.: Total Mass: 44.266 grams
Comments: Cedar Key sample NKC1P3


Sieve Sieve Weight Freq Cumulative
Size Midpoint Weight Weight
(phi) (phi) (grams) % %
-1.25 -1.375 0 .000 0.0000
-1.00 -1.125 0.013 0.0294 0.0294
-0.75 -0.875 0.009 0.0203 0.0497
-0.50 -0.625 0.012 0.0271 0.0768
-0.25 -0.375 0.026 0.0587 0.1355
0.00 -0.125 0.075 0.1694 0.3050
0.25 0.125 0.181 0.4089 0.7139
0.50 0.375 0.531 1.1996 1.9134
0.75 0.625 1.142 2.5799 4.4933
1.00 0.875 4.25 9.6010 14.0943
1.25 1.125 5.146 11.6252 25.7195
1.50 1.375 5.059 11.4286 37.1481
1.75 1.625 4.093 9.2464 46.3945
2.00 1.875 4.076 9.2080 55.6025
2.25 2.125 3.863 8.7268 64.3293
2.50 2.375 4.126 9.3209 73.6502
2.75 2.625 3.803 8.5912 82.2414
3.00 2.875 2.956 6.6778 88.9193
3.25 3.125 2.205 4.9812 93.9005
3.50 3.375 1.403 3.1695 97.0700
3.75 3.625 0.843 1.9044 98.9744
4.00 3.875 0.31 0.7003 99.6747
5.00 4.5 0.144 0.3253 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000


Tweak ACUMPLOT X-axis here
X-axis minimum -2
X-axis maximum 5


12





10









g,
8



a-
C
0*



4





2


0 -2.
-2.00


-1.00 0.00 1.00 2.00 3.00
Grain Size (Phi)


Relative Disperison Scale
< 0.5 Excellent homogeneity (e.g. beaches)
0.5 to 1.0 Good homogeneity
1.0 to 1.33 Fair homogeneity
> 1.33 Poor homogeneity


Statistical Results
Measure Original Data Transformed Original Data
in t Units Data in Millimeters
Mean: 1.9126 0.2656 mm 0.3105 mm
Standard Deviation: 0.8411 phi-units MV --- 0.1750 mm
Skewness: 0.2560 NU MV --- 1.4029 NU
Kurtosis: 2.4312 NU MV --- 9.4211 NU
Median: 1.7229 0.3029 mm 0.3040 mm
Relative Dispersion: MV --- --- --- 0.5636 NU
Mean, std dev, skewness and kurtosis calculated using method of moments.
MV = meaningless value; NU = no units (ie., dimensionless)
Transformed data calculated using mm = 2.o


4.00 5.00













Sample I.D.: ROTAP6

Sample I.D.: ROTAP6 Sampled by: Start Sieve Size (phi): -1.5
Sample Date: 6/28/2001 Analyzed by: J. H. Balsillie End Sieve Size (phi): 4
Total Sample: X ISiliclastic Fraction: Carbonate Fraction: I Pan Sieve Size (phi): 5
Longitude: Latitude: Datum: Sieve Interval (phi): 0.25
Surface Elev: Datum: Accuracy: # Splits: I 0
Sample Depth in Core: Compaction Corrected? 1% Comp.: Total Mass: 41.451 grams
Comments: NKC1P9


Sieve Sieve Weight Freq Cumulative
Size Midpoint Weight Weight
(phi) (phi) (grams) % %
-1.50 -1.625 0.014 0.0338 0.0338
-1.25 -1.375 0 0.0000 0.0338
-1.00 -1.125 0.01 0.0241 0.0579
-0.75 -0.875 0.025 0.0603 0.1182
-0.50 -0.625 0.031 0.0748 0.1930
-0.25 -0.375 0.037 0.0893 0.2823
0.00 -0.125 0.088 0.2123 0.4946
0.25 0.125 0.178 0.4294 0.9240
0.50 0.375 0.445 1.0736 1.9975
0.75 0.625 1.035 2.4969 4.4945
1.00 0.875 2.575 6.2122 10.7066
1.25 1.125 3.1 7.4787 18.1853
1.50 1.375 3.213 7.7513 25.9366
1.75 1.625 3.494 8.4292 34.3659
2.00 1.875 4.699 11.3363 45.7022
2.25 2.125 5.88 14.1854 59.8876
2.50 2.375 5.88 14.1854 74.0730
2.75 2.625 4.501 10.8586 84.9316
3.00 2.875 2.41 5.8141 90.7457
3.25 3.125 1.439 3.4716 94.2173
3.50 3.375 1.7 4.1012 98.3185
3.75 3.625 0.321 0.7744 99.0929
4.00 3.875 0.319 0.7696 99.8625
5.00 4.5 0.057 0.1375 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000


Tweak ACUMPLOT X-axis here
X-axis minimum -3
X-axis maximum 5


Statistical Results
Measure Original Data Transformed Original Data
in t Units Data in Millimeters
Mean: 2.0139 0.2476 mm 0.2865 mm
Standard Deviation: 0.7765 phi-units MV -- 0.1787 mm
Skewness: -0.1638 NU MV --- 3.3416 NU
Kurtosis: 3.0034 NU MV --- 33.3148 NU
Median: 1.9507 ( 0.2587 mm 0.2595 mm
Relative Dispersion: MV --- --- --- 0.6238 NU
Mean, std dev, skewness and kurtosis calculated using method of moments.
MV = meaningless value; NU = no units (ie., dimensionless)
Transformed data calculated using mm = 2.

16



14 -_0



12



S10


S8


0
_ 6
















-2.00 -1.00 0.00 1.00 2.00 3.00 4.00 5.C
Grain Size (Phi)


Relative Disperison Scale
< 0.5 Excellent homogeneity (e.g. beaches)
0.5 to 1.0 Good homogeneity
1.0 to 1.33 Fair homogeneity
> 1.33 Poor homogeneity













Sample I.D.: MEINZER6

Sample I.D.: MEINZER6 Sampled by: Start Sieve Size (phi): -1.5
Sample Date: 6/28/2001 Analyzed by: J. H. Balsillie End Sieve Size (phi): 4
Total Sample: X ISiliclastic Fraction: Carbonate Fraction: I Pan Sieve Size (phi): 5
Longitude: Latitude: Datum: Sieve Interval (phi): 0.25
Surface Elev: Datum: Accuracy: # Splits: I 0
Sample Depth in Core: Compaction Corrected? 1% Comp.: Total Mass: 40.67 grams
Comments: NKC1P9


Sieve Sieve Weight Freq Cumulative
Size Midpoint Weight Weight
(phi) (phi) (grams) % %
-1.50 -1.625 0.014 0.0344 0.0344
-1.25 -1.375 0.009 0.0221 0.0566
-1.00 -1.125 0.009 0.0221 0.0787
-0.75 -0.875 0.012 0.0295 0.1082
-0.50 -0.625 0.033 0.0811 0.1893
-0.25 -0.375 0.035 0.0861 0.2754
0.00 -0.125 0.066 0.1623 0.4377
0.25 0.125 0.164 0.4032 0.8409
0.50 0.375 0.375 0.9221 1.7630
0.75 0.625 0.836 2.0556 3.8185
1.00 0.875 2.619 6.4396 10.2582
1.25 1.125 3.161 7.7723 18.0305
1.50 1.375 3.264 8.0256 26.0561
1.75 1.625 3.648 8.9698 35.0258
2.00 1.875 5.319 13.0784 48.1043
2.25 2.125 6.082 14.9545 63.0588
2.50 2.375 5.921 14.5586 77.6174
2.75 2.625 4.35 10.6958 88.3133
3.00 2.875 2.316 5.6946 94.0079
3.25 3.125 1.353 3.3268 97.3346
3.50 3.375 0.619 1.5220 98.8567
3.75 3.625 0.323 0.7942 99.6508
4.00 3.875 0.085 0.2090 99.8598
5.00 4.5 0.057 0.1402 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000


16



14



12



- 10

2

08


g
a-


-2.00 -1.00 0.00


1.00 2.00
Grain Size (Phi)


3.00 4.00 5.00


Tweak ACUMPLOT X-axis here
X-axis minimum -2
X-axis maximum 5


Relative Disperison Scale
< 0.5 Excellent homogeneity (e.g. beaches)
0.5 to 1.0 Good homogeneity
1.0 to 1.33 Fair homogeneity
> 1.33 Poor homogeneity


Statistical Results
Measure Original Data Transformed Original Data
in t Units Data in Millimeters
Mean: 1.9661 0.2559 mm 0.2909 mm
Standard Deviation: 0.7223 phi-units MV --- 0.1734 mm
Skewness: -0.2385 NU MV --- 3.8338 NU
Kurtosis: 3.2388 NU MV --- 42.1246 NU
Median: 1.9067 0.2667 mm 0.2671 mm
Relative Dispersion: MV --- --- --- 0.5960 NU
Mean, std dev, skewness and kurtosis calculated using method of moments.
MV = meaningless value; NU = no units (ie., dimensionless)
Transformed data calculated using mm = 2.o













Sample I.D.: ROTAP7

Sample I.D.: ROTAP7 Sampled by: Start Sieve Size (phi): 0.75
Sample Date: 6/28/2001 Analyzed by: J. H. Balsillie End Sieve Size (phi): 3.25
Total Sample: X ISiliclastic Fraction: Carbonate Fraction: I Pan Sieve Size (phi): 3.25
Longitude: Latitude: Datum: Sieve Interval (phi): 0.25
Surface Elev: Datum: Accuracy: # Splits: I 0
Sample Depth in Core: Compaction Corrected? 1% Comp.: Total Mass: 33.144 grams
Comments: All quartz, NW FL panhandle


Sieve Sieve Weight Freq Cumulative
Size Midpoint Weight Weight
(phi) (phi) (grams) % %
0.75 0.625 0.003 0.0091 0.0091
1.00 0.875 0.063 0.1901 0.1991
1.25 1.125 0.235 0.7090 0.9082
1.50 1.375 1.035 3.1227 4.0309
1.75 1.625 3.917 11.8181 15.8490
2.00 1.875 11.397 34.3863 50.2353
2.25 2.125 11.001 33.1915 83.4269
2.50 2.375 4.349 13.1215 96.5484
2.75 2.625 0.978 2.9508 99.4992
3.00 2.875 0.137 0.4133 99.9125
3.25 3.125 0.029 0.0875 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000


Tweak ACUMPLOT X-axis here
X-axis minimum -3
X-axis maximum 5


Statistical Results
Measure Original Data Transformed Original Data
in t Units Data in Millimeters
Mean: 1.9985 0.2503 mm 0.2553 mm
Standard Deviation: 0.2901 phi-units MV -- 0.0531 mm
Skewness: -0.1290 NU MV --- 1.0331 NU
Kurtosis: 3.7395 NU MV --- 5.8428 NU
Median: 1.8733 0.273 mm 0.2730 mm
Relative Dispersion: MV --- --- --- 0.2079 NU
Mean, std dev, skewness and kurtosis calculated using method of moments.
MV = meaningless value; NU = no units (ie., dimensionless)
Transformed data calculated using mm = 2.

40



35



30



25

S2
a-
> 20 _________
C







10



5



0
u: 15 ------- I -- 1 ------



10 --------_\-------



5 ---------_--------





0.00 1.00 2.00 3.00 4.00
Grain Size (Phi)


Relative Disperison Scale
< 0.5 Excellent homogeneity (e.g. beaches)
0.5 to 1.0 Good homogeneity
1.0 to 1.33 Fair homogeneity
> 1.33 Poor homogeneity













Sample I.D.: MEINZER7

Sample I.D.: MEINZER7 Sampled by: Start Sieve Size (phi): 0.75
Sample Date: 6/28/2001 Analyzed by: J. H. Balsillie End Sieve Size (phi): 3.25
Total Sample: X ISiliclastic Fraction: Carbonate Fraction: I Pan Sieve Size (phi): 3.25
Longitude: Latitude: Datum: Sieve Interval (phi): 0.25
Surface Elev: Datum: Accuracy: # Splits: I 0
Sample Depth in Core: Compaction Corrected? 1% Comp.: Total Mass: 33.077 grams
Comments: All quartz, NW FL panhandle


Sieve Sieve Weight Freq Cumulative
Size Midpoint Weight Weight
(phi) (phi) (grams) % %
0.75 0.625 0.002 0.0060 0.0060
1.00 0.875 0.073 0.2207 0.2267
1.25 1.125 0.269 0.8133 1.0400
1.50 1.375 1.024 3.0958 4.1358
1.75 1.625 3.991 12.0658 16.2016
2.00 1.875 9.859 29.8062 46.0078
2.25 2.125 11.11 33.5883 79.5961
2.50 2.375 5.408 16.3497 95.9458
2.75 2.625 1.169 3.5342 99.4800
3.00 2.875 0.128 0.3870 99.8670
3.25 3.125 0.044 0.1330 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000
3.25 3.25 0.0000 100.0000


Tweak ACUMPLOT X-axis here
X-axis minimum -2
X-axis maximum 5


Statistical Results
Measure Original Data Transformed Original Data
in t Units Data in Millimeters
Mean: 2.0187 0.2468 mm 0.2522 mm
Standard Deviation: 0.3033 phi-units MV -- 0.0553 mm
Skewness: -0.2173 NU MV --- 1.0856 NU
Kurtosis: 3.5425 NU MV --- 5.6529 NU
Median: 1.9047 0.2671 mm 0.2675 mm
Relative Dispersion: MV --- --- --- 0.2192 NU
Mean, std dev, skewness and kurtosis calculated using method of moments.
MV = meaningless value; NU = no units (ie., dimensionless)
Transformed data calculated using mm = 2.

40



35



30



25

S2

a-
> 20 _________



C 15




10



50 ----
5 ---------_--------



0
0.00 1.00 2.00 3.00 4.00
Grain Size (Phi)


Relative Disperison Scale
< 0.5 Excellent homogeneity (e.g. beaches)
0.5 to 1.0 Good homogeneity
1.0 to 1.33 Fair homogeneity
> 1.33 Poor homogeneity













Sample I.D.: ROTAP8

Sample I.D.: ROTAP8 Sampled by: Start Sieve Size (phi): 0
Sample Date: 6/28/2001 Analyzed by: J. H. Balsillie End Sieve Size (phi): 3.75
Total Sample: X ISiliclastic Fraction: Carbonate Fraction: Pan Sieve Size (phi): 3.75
Longitude: Latitude: Datum: Sieve Interval (phi): 0.25
Surface Elev: Datum: Accuracy: # Splits: I 0
Sample Depth in Core: Compaction Corrected? 1% Comp.: Total Mass: 58.23 grams
Comments: ASCE1-1


Sieve Sieve Weight Freq Cumulative
Size Midpoint Weight Weight
(phi) (phi) (grams) % %
0.00 -0.125 0.015 0.0258 0.0258
0.25 0.125 0.022 0.0378 0.0635
0.50 0.375 0.048 0.0824 0.1460
0.75 0.625 0.190 0.3263 0.4723
1.00 0.875 0.927 1.5920 2.0642
1.25 1.125 2.852 4.8978 6.9620
1.50 1.375 4.809 8.2586 15.2207
1.75 1.625 11.703 20.0979 35.3186
2.00 1.875 12.769 21.9286 57.2471
2.25 2.125 11.897 20.4310 77.6782
2.50 2.375 7.975 13.6957 91.3739
2.75 2.625 3.116 5.3512 96.7251
3.00 2.875 1.320 2.2669 98.9919
3.25 3.125 0.372 0.6388 99.6308
3.50 3.375 0.158 0.2713 99.9021
3.75 3.625 0.057 0.0979 100.0000
3.75 3.75 0.0000 100.0000
3.75 3.75 0.0000 100.0000
3.75 3.75 0.0000 100.0000
3.75 3.75 0.0000 100.0000
3.75 3.75 0.0000 100.0000
3.75 3.75 0.0000 100.0000
3.75 3.75 0.0000 100.0000
3.75 3.75 0.0000 100.0000
3.75 3.75 0.0000 100.0000
3.75 3.75 0.0000 100.0000
3.75 3.75 0.0000 100.0000
3.75 3.75 0.0000 100.0000
3.75 3.75 0.0000 100.0000
3.75 3.75 0.0000 100.0000
3.75 3.75 0.0000 100.0000
3.75 3.75 0.0000 100.0000
3.75 3.75 0.0000 100.0000
3.75 3.75 0.0000 100.0000
3.75 3.75 0.0000 100.0000
3.75 3.75 0.0000 100.0000
3.75 3.75 0.0000 100.0000
3.75 3.75 0.0000 100.0000
3.75 3.75 0.0000 100.0000
3.75 3.75 0.0000 100.0000
3.75 3.75 0.0000 100.0000


25






20






| 15
2
a-
U


10
u.


-1.00


Tweak ACUMPLOT X-axis here
X-axis minimum -3
X-axis maximum 5


0.00 1.00 2.00 3.00
Grain Size (Phi)


4.00


Relative Disperison Scale
< 0.5 Excellent homogeneity (e.g. beaches)
0.5 to 1.0 Good homogeneity
1.0 to 1.33 Fair homogeneity
> 1.33 Poor homogeneity


Statistical Results
Measure Original Data Transformed Original Data
in t Units Data in Millimeters
Mean: 1.9204 0.2642 mm 0.2774 mm
Standard Deviation: 0.4540 phi-units MV --- 0.0905 mm
Skewness: 0.0156 NU MV --- 1.2676 NU
Kurtosis: 3.3963 NU MV --- 7.1173 NU
Median: 1.7924 0.2887 mm 0.2897 mm
Relative Dispersion: MV --- --- --- 0.3262 NU
Mean, std dev, skewness and kurtosis calculated using method of moments.
MV = meaningless value; NU = no units (ie., dimensionless)
Transformed data calculated using mm = 2.o













Sample I.D.: MEINZER8

Sample I.D.: MEINZER8 Sampled by: Start Sieve Size (phi): 0
Sample Date: 6/28/2001 Analyzed by: J. H. Balsillie End Sieve Size (phi): 3.75
Total Sample: X ISiliclastic Fraction: Carbonate Fraction: Pan Sieve Size (phi): 3.75
Longitude: Latitude: Datum: Sieve Interval (phi): 0.25
Surface Elev: Datum: Accuracy: # Splits: 1 0
Sample Depth in Core: Compaction Corrected? 1% Comp.: Total Mass: 58.472 grams
Comments: ASE1-1


Sieve Sieve Weight Freq Cumulative
Size Midpoint Weight Weight
(phi) (phi) (grams) % %
0.00 -0.125 0.015 0.0257 0.0257
0.25 0.125 0.023 0.0393 0.0650
0.50 0.375 0.064 0.1095 0.1744
0.75 0.625 0.226 0.3865 0.5610
1.00 0.875 0.983 1.6811 2.2421
1.25 1.125 2.583 4.4175 6.6596
1.50 1.375 5.361 9.1685 15.8281
1.75 1.625 11.608 19.8522 35.6803
2.00 1.875 13.559 23.1889 58.8692
2.25 2.125 12.073 20.6475 79.5167
2.50 2.375 7.818 13.3705 92.8872
2.75 2.625 2.567 4.3901 97.2773
3.00 2.875 1.142 1.9531 99.2304
3.25 3.125 0.358 0.6123 99.8427
3.50 3.375 0.090 0.1539 99.9966
3.75 3.625 0.002 0.0034 100.0000
3.75 3.75 0.0000 100.0000
3.75 3.75 0.0000 100.0000
3.75 3.75 0.0000 100.0000
3.75 3.75 0.0000 100.0000
3.75 3.75 0.0000 100.0000
3.75 3.75 0.0000 100.0000
3.75 3.75 0.0000 100.0000
3.75 3.75 0.0000 100.0000
3.75 3.75 0.0000 100.0000
3.75 3.75 0.0000 100.0000
3.75 3.75 0.0000 100.0000
3.75 3.75 0.0000 100.0000
3.75 3.75 0.0000 100.0000
3.75 3.75 0.0000 100.0000
3.75 3.75 0.0000 100.0000
3.75 3.75 0.0000 100.0000
3.75 3.75 0.0000 100.0000
3.75 3.75 0.0000 100.0000
3.75 3.75 0.0000 100.0000
3.75 3.75 0.0000 100.0000
3.75 3.75 0.0000 100.0000
3.75 3.75 0.0000 100.0000
3.75 3.75 0.0000 100.0000
3.75 3.75 0.0000 100.0000
3.75 3.75 0.0000 100.0000


Tweak ACUMPLOT X-axis here
X-axis minimum -2
X-axis maximum 5


Statistical Results
Measure Original Data Transformed Original Data
in t Units Data in Millimeters
Mean: 1.9029 0.2674 mm 0.2801 mm
Standard Deviation: 0.4404 phi-units MV -- 0.0897 mm
Skewness: -0.0720 NU MV --- 1.3607 NU
Kurtosis: 3.3941 NU MV --- 7.5757 NU
Median: 1.7794 0.2913 mm 0.2924 mm
Relative Dispersion: MV --- --- --- 0.3203 NU
Mean, std dev, skewness and kurtosis calculated using method of moments.
MV = meaningless value; NU = no units (ie., dimensionless)
Transformed data calculated using mm = 2.

25






20






0 15
2
a,
U
C

10






5

0
1 0 ---------------- ---- --- ---------









0 -'---'---'-----O_ ---




-1.00 0.00 1.00 2.00 3.00 4.00
Grain Size (Phi)


Relative Disperison Scale
< 0.5 Excellent homogeneity (e.g. beaches)
0.5 to 1.0 Good homogeneity
1.0 to 1.33 Fair homogeneity
> 1.33 Poor homogeneity










Sample I.D.: ROTAP9
Sample I.D.: ROTAP9 Sampled by: Start Sieve Size (phi): -0.75
Sample Date: 6/28/2001 Analyzed by: J. H. Balsillie End Sieve Size (phi): 2.25
Total Sample: X ISiliclastic Fraction: Carbonate Fraction: I Pan Sieve Size (phi): 2.25
Longitude: Latitude: Datum: Sieve Interval (phi): 0.25
Surface Elev: Datum: Accuracy: # Splits: I 0
Sample Depth in Core: Compaction Corrected? 1% Comp.: Total Mass: 67.79 grams
Comments: Carbonate + Silica Sample


Sieve Sieve Weight Freq Cumulative
Size Midpoint Weight Weight
(phi) (phi) (grams) % %
-0.75 -0.875 0.040 0.0590 0.0590
-0.50 -0.625 23.117 34.1009 34.1599
-0.25 -0.375 0.037 0.0546 34.2145
0.00 -0.125 0.010 0.0148 34.2292
0.25 0.125 0.022 0.0325 34.2617
0.50 0.375 23.507 34.6762 68.9379
0.75 0.625 0.493 0.7272 69.6651
1.00 0.875 0.000 0.0000 69.6651
1.25 1.125 0.000 0.0000 69.6651
1.50 1.375 0.000 0.0000 69.6651
1.75 1.625 0.199 0.2936 69.9587
2.00 1.875 18.300 26.9951 96.9538
2.25 2.125 2.065 3.0462 100.0000
2.25 2.25 0.0000 100.0000
2.25 2.25 0.0000 100.0000
2.25 2.25 0.0000 100.0000
2.25 2.25 0.0000 100.0000
2.25 2.25 0.0000 100.0000
2.25 2.25 0.0000 100.0000
2.25 2.25 0.0000 100.0000
2.25 2.25 0.0000 100.0000
2.25 2.25 0.0000 100.0000
2.25 2.25 0.0000 100.0000
2.25 2.25 0.0000 100.0000
2.25 2.25 0.0000 100.0000
2.25 2.25 0.0000 100.0000
2.25 2.25 0.0000 100.0000
2.25 2.25 0.0000 100.0000
2.25 2.25 0.0000 100.0000
2.25 2.25 0.0000 100.0000
2.25 2.25 0.0000 100.0000
2.25 2.25 0.0000 100.0000
2.25 2.25 0.0000 100.0000
2.25 2.25 0.0000 100.0000
2.25 2.25 0.0000 100.0000
2.25 2.25 0.0000 100.0000
2.25 2.25 0.0000 100.0000
2.25 2.25 0.0000 100.0000
2.25 2.25 0.0000 100.0000
2.25 2.25 0.0000 100.0000
2.25 2.25 0.0000 100.0000


Tweak ACUMPLOT X-axis here
X-axis minimum -3
X-axis maximum 5


40


35


30


25
2

c
a-
u 20

0*
u- 15


10


5


-2.00 -1.00 0.00 1.00 2.00 3.00
Grain Size (Phi)


Relative Disperison Scale
< 0.5 Excellent homogeneity (e.g. beaches)
0.5 to 1.0 Good homogeneity
1.0 to 1.33 Fair homogeneity
> 1.33 Poor homogeneity


Statistical Results
Measure Original Data Transformed Original Data
in t Units Data in Millimeters
Mean: 0.4964 0.7089 mm 0.8818 mm
Standard Deviation: 1.0241 phi-units MV --- 0.5216 mm
Skewness: 0.3399 NU MV --- 0.2018 NU
Kurtosis: 1.6019 NU MV --- 1.4865 NU
Median: 0.2385 0.8476 mm 0.8508 mm
Relative Dispersion: MV --- --- --- 0.5915 NU
Mean, std dev, skewness and kurtosis calculated using method of moments.
MV = meaningless value; NU = no units (ie., dimensionless)
Transformed data calculated using mm = 2.o


11"










Sample I.D.: MEINZER9
Sample I.D.: MEINZER9 Sampled by: Start Sieve Size (phi): -0.75
Sample Date: 6/28/2001 Analyzed by: J. H. Balsillie End Sieve Size (phi): 2.25
Total Sample: X ISiliclastic Fraction: Carbonate Fraction: I Pan Sieve Size (phi): 2.25
Longitude: Latitude: Datum: Sieve Interval (phi): 0.25
Surface Elev: Datum: Accuracy: # Splits: I 0
Sample Depth in Core: Compaction Corrected? 1% Comp.: Total Mass: 67.867 grams
Comments: Carbonate + Silica Sample


Sieve Sieve Weight Freq Cumulative
Size Midpoint Weight Weight
(phi) (phi) (grams) % %
-0.75 -0.875 0.041 0.0604 0.0604
-0.50 -0.625 23.071 33.9944 34.0548
-0.25 -0.375 0.099 0.1459 34.2007
0.00 -0.125 0.001 0.0015 34.2022
0.25 0.125 0.015 0.0221 34.2243
0.50 0.375 23.621 34.8048 69.0291
0.75 0.625 0.425 0.6262 69.6554
1.00 0.875 0.000 0.0000 69.6554
1.25 1.125 0.000 0.0000 69.6554
1.50 1.375 0.000 0.0000 69.6554
1.75 1.625 0.150 0.2210 69.8764
2.00 1.875 18.390 27.0971 96.9735
2.25 2.125 2.054 3.0265 100.0000
2.25 2.25 0.0000 100.0000
2.25 2.25 0.0000 100.0000
2.25 2.25 0.0000 100.0000
2.25 2.25 0.0000 100.0000
2.25 2.25 0.0000 100.0000
2.25 2.25 0.0000 100.0000
2.25 2.25 0.0000 100.0000
2.25 2.25 0.0000 100.0000
2.25 2.25 0.0000 100.0000
2.25 2.25 0.0000 100.0000
2.25 2.25 0.0000 100.0000
2.25 2.25 0.0000 100.0000
2.25 2.25 0.0000 100.0000
2.25 2.25 0.0000 100.0000
2.25 2.25 0.0000 100.0000
2.25 2.25 0.0000 100.0000
2.25 2.25 0.0000 100.0000
2.25 2.25 0.0000 100.0000
2.25 2.25 0.0000 100.0000
2.25 2.25 0.0000 100.0000
2.25 2.25 0.0000 100.0000
2.25 2.25 0.0000 100.0000
2.25 2.25 0.0000 100.0000
2.25 2.25 0.0000 100.0000
2.25 2.25 0.0000 100.0000
2.25 2.25 0.0000 100.0000
2.25 2.25 0.0000 100.0000
2.25 2.25 0.0000 100.0000


Tweak ACUMPLOT X-axis here
X-axis minimum -3
X-axis maximum 5


40


35


30


25

a-
& 20
c
0)

u- 15


10


5


-2.00 -1.00 0.00 1.00 2.00 3.00
Grain Size (Phi)


Relative Disperison Scale
< 0.5 Excellent homogeneity (e.g. beaches)
0.5 to 1.0 Good homogeneity
1.0 to 1.33 Fair homogeneity
> 1.33 Poor homogeneity


Statistical Results
Measure Original Data Transformed Original Data
in t Units Data in Millimeters
Mean: 0.4969 0.7086 mm 0.8815 mm
Standard Deviation: 1.0240 phi-units MV --- 0.5213 mm
Skewness: 0.3401 NU MV --- 0.2021 NU
Kurtosis: 1.6019 NU MV --- 1.4883 NU
Median: 0.2383 0.8477 mm 0.8509 mm
Relative Dispersion: MV --- --- --- 0.5915 NU
Mean, std dev, skewness and kurtosis calculated using method of moments.
MV = meaningless value; NU = no units (ie., dimensionless)
Transformed data calculated using mm = 2.o


11"













Sample I.D.: ROTAP1Oa

Sample I.D.: ROTAP10a Sampled by: Start Sieve Size (phi): -1.25
Sample Date: 6/28/2001 Analyzed by: J. H. Balsillie End Sieve Size (phi): 4
Total Sample: X ISiliclastic Fraction: Carbonate Fraction: I Pan Sieve Size (phi): 5
Longitude: Latitude: Datum: Sieve Interval (phi): 0.25
Surface Elev: Datum: Accuracy: # Splits: I 0
Sample Depth in Core: Compaction Corrected? 1% Comp.: Total Mass: 36.941 grams
Comments: Lake Jackson, Porter Hole sample LJ4A


Sieve Sieve Weight Freq Cumulative
Size Midpoint Weight Weight
(phi) (phi) (grams) % %
-1.25 -1.375 0.021 0.0568 0.0568
-1.00 -1.125 0.008 0.0217 0.0785
-0.75 -0.875 0.014 0.0379 0.1164
-0.50 -0.625 0.042 0.1137 0.2301
-0.25 -0.375 0.087 0.2355 0.4656
0.00 -0.125 0.170 0.4602 0.9258
0.25 0.125 0.281 0.7607 1.6865
0.50 0.375 0.449 1.2155 2.9019
0.75 0.625 0.574 1.5538 4.4558
1.00 0.875 0.743 2.0113 6.4671
1.25 1.125 0.543 1.4699 7.9370
1.50 1.375 1.346 3.6436 11.5806
1.75 1.625 4.038 10.9309 22.5116
2.00 1.875 6.908 18.7001 41.2117
2.25 2.125 5.376 14.5529 55.7646
2.50 2.375 4.561 12.3467 68.1113
2.75 2.625 4.887 13.2292 81.3405
3.00 2.875 3.619 9.7967 91.1372
3.25 3.125 1.801 4.8753 96.0126
3.50 3.375 0.883 2.3903 98.4029
3.75 3.625 0.220 0.5955 98.9984
4.00 3.875 0.218 0.5901 99.5885
5.00 4.5 0.152 0.4115 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000


20


18


16


14


12

[-
& 10


8
u-


6


4


2


-2.00 -1.00 0.00


Tweak ACUMPLOT X-axis here
X-axis minimum -3
X-axis maximum 5


1.00 2.00 3.00 4.00 5.00
Grain Size (Phi)


Relative Disperison Scale
< 0.5 Excellent homogeneity (e.g. beaches)
0.5 to 1.0 Good homogeneity
1.0 to 1.33 Fair homogeneity
> 1.33 Poor homogeneity


Statistical Results
Measure Original Data Transformed Original Data
in t Units Data in Millimeters
Mean: 2.1516 0.2251 mm 0.2580 mm
Standard Deviation: 0.7194 phi-units MV --- 0.1762 mm
Skewness: -0.5449 NU MV --- 4.2696 NU
Kurtosis: 4.5844 NU MV --- 35.3593 NU
Median: 2.0260 0.2455 mm 0.2464 mm
Relative Dispersion: MV --- --- --- 0.6830 NU
Mean, std dev, skewness and kurtosis calculated using method of moments.
MV = meaningless value; NU = no units (ie., dimensionless)
Transformed data calculated using mm = 2.o













Sample I.D.: MEINZER10a

Sample I.D.: MEINZER10a Sampled by: Start Sieve Size (phi): -1.25
Sample Date: 6/28/2001 Analyzed by: J. H. Balsillie End Sieve Size (phi): 4
Total Sample: X ISiliclastic Fraction: Carbonate Fraction: I Pan Sieve Size (phi): 5
Longitude: Latitude: Datum: Sieve Interval (phi): 0.25
Surface Elev: Datum: Accuracy: # Splits: I 0
Sample Depth in Core: Compaction Corrected? 1% Comp.: Total Mass: 36.935 grams
Comments: Lake Jackson, Porter Hole sample LJ4A


Sieve Sieve Weight Freq Cumulative
Size Midpoint Weight Weight
(phi) (phi) (grams) % %
-1.25 -1.375 0.021 0.0569 0.0569
-1.00 -1.125 0.031 0.0839 0.1408
-0.75 -0.875 0.059 0.1597 0.3005
-0.50 -0.625 0.077 0.2085 0.5090
-0.25 -0.375 0.168 0.4549 0.9639
0.00 -0.125 0.293 0.7933 1.7571
0.25 0.125 0.407 1.1019 2.8591
0.50 0.375 0.549 1.4864 4.3455
0.75 0.625 0.609 1.6488 5.9943
1.00 0.875 0.854 2.3122 8.3065
1.25 1.125 0.864 2.3392 10.6457
1.50 1.375 1.625 4.3996 15.0453
1.75 1.625 4.511 12.2133 27.2587
2.00 1.875 7.366 19.9431 47.2018
2.25 2.125 5.354 14.4957 61.6976
2.50 2.375 5.090 13.7810 75.4785
2.75 2.625 4.171 11.2928 86.7714
3.00 2.875 2.843 7.6973 94.4687
3.25 3.125 1.048 2.8374 97.3061
3.50 3.375 0.623 1.6867 98.9928
3.75 3.625 0.268 0.7256 99.7184
4.00 3.875 0.066 0.1787 99.8971
5.00 4.5 0.038 0.1029 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000


20


18


16


14


12

a-
& 10

0"
8
LL


-2.00 -1.00 0.00


Tweak ACUMPLOT X-axis here
X-axis minimum -2
X-axis maximum 5


1.00 2.00 3.00 4.00 5.00
Grain Size (Phi)


Relative Disperison Scale
< 0.5 Excellent homogeneity (e.g. beaches)
0.5 to 1.0 Good homogeneity
1.0 to 1.33 Fair homogeneity
> 1.33 Poor homogeneity


Statistical Results
Measure Original Data Transformed Original Data
in t Units Data in Millimeters
Mean: 2.0261 0.2455 mm 0.2848 mm
Standard Deviation: 0.7319 phi-units MV --- 0.2100 mm
Skewness: -0.8297 NU MV --- 4.0630 NU
Kurtosis: 4.8052 NU MV --- 27.8526 NU
Median: 1.9233 0.2637 mm 0.2643 mm
Relative Dispersion: MV --- --- --- 0.7375 NU
Mean, std dev, skewness and kurtosis calculated using method of moments.
MV = meaningless value; NU = no units (ie., dimensionless)
Transformed data calculated using mm = 2.













Sample I.D.: ROTAP10b

Sample I.D.: ROTAP10b Sampled by: Start Sieve Size (phi): -1.25
Sample Date: 6/28/2001 Analyzed by: J. H. Balsillie End Sieve Size (phi): 4
Total Sample: X ISiliclastic Fraction: Carbonate Fraction: I Pan Sieve Size (phi): 5
Longitude: Latitude: Datum: Sieve Interval (phi): 0.25
Surface Elev: Datum: Accuracy: # Splits: I 0
Sample Depth in Core: Compaction Corrected? 1% Comp.: Total Mass: 36.941 grams
Comments: Lake Jackson, Porter Hole sample LJ4A


Sieve Sieve Weight Freq Cumulative
Size Midpoint Weight Weight
(phi) (phi) (grams) % %
-1.25 -1.375 0.021 0.0568 0.0568
-1.00 -1.125 0.008 0.0217 0.0785
-0.75 -0.875 0.014 0.0379 0.1164
-0.50 -0.625 0.042 0.1137 0.2301
-0.25 -0.375 0.087 0.2355 0.4656
0.00 -0.125 0.170 0.4602 0.9258
0.25 0.125 0.281 0.7607 1.6865
0.50 0.375 0.449 1.2155 2.9019
0.75 0.625 0.574 1.5538 4.4558
1.00 0.875 0.743 2.0113 6.4671
1.25 1.125 0.543 1.4699 7.9370
1.50 1.375 1.346 3.6436 11.5806
1.75 1.625 4.038 10.9309 22.5116
2.00 1.875 6.908 18.7001 41.2117
2.25 2.125 5.376 14.5529 55.7646
2.50 2.375 4.561 12.3467 68.1113
2.75 2.625 4.887 13.2292 81.3405
3.00 2.875 3.619 9.7967 91.1372
3.25 3.125 1.801 4.8753 96.0126
3.50 3.375 0.883 2.3903 98.4029
3.75 3.625 0.220 0.5955 98.9984
4.00 3.875 0.218 0.5901 99.5885
5.00 4.5 0.152 0.4115 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000


25






20






| 15

a-
2O



10
u-


-2.00 -1.00 0.00 1.00 2.00 3.00
Grain Size (Phi)


4.00 5.00


Tweak ACUMPLOT X-axis here
X-axis minimum -3
X-axis maximum 5


Relative Disperison Scale
< 0.5 Excellent homogeneity (e.g. beaches)
0.5 to 1.0 Good homogeneity
1.0 to 1.33 Fair homogeneity
> 1.33 Poor homogeneity


Statistical Results
Measure Original Data Transformed Original Data
in t Units Data in Millimeters
Mean: 2.1516 0.2251 mm 0.2580 mm
Standard Deviation: 0.7194 phi-units MV --- 0.1762 mm
Skewness: -0.5449 NU MV --- 4.2696 NU
Kurtosis: 4.5844 NU MV --- 35.3593 NU
Median: 2.0260 0.2455 mm 0.2464 mm
Relative Dispersion: MV --- --- --- 0.6830 NU
Mean, std dev, skewness and kurtosis calculated using method of moments.
MV = meaningless value; NU = no units (ie., dimensionless)
Transformed data calculated using mm = 2.o













Sample I.D.: MEINZER10b

Sample I.D.: MEINZER10b Sampled by: Start Sieve Size (phi): -1.25
Sample Date: 6/28/2001 Analyzed by: J. H. Balsillie End Sieve Size (phi): 4
Total Sample: X ISiliclastic Fraction: Carbonate Fraction: Pan Sieve Size (phi): 5
Longitude: Latitude: Datum: Sieve Interval (phi): 0.25
Surface Elev: Datum: Accuracy: # Splits: 0
Sample Depth in Core: Compaction Corrected? 1% Comp.: Total Mass: 36.85 grams
Comments: Lake Jackson, Porter Hole sample LJ4A


Sieve Sieve Weight Freq Cumulative
Size Midpoint Weight Weight
(phi) (phi) (grams) % %
-1.25 -1.375 0.021 0.0570 0.0570
-1.00 -1.125 0.017 0.0461 0.1031
-0.75 -0.875 0.004 0.0109 0.1140
-0.50 -0.625 0.040 0.1085 0.2225
-0.25 -0.375 0.103 0.2795 0.5020
0.00 -0.125 0.170 0.4613 0.9634
0.25 0.125 0.292 0.7924 1.7558
0.50 0.375 0.453 1.2293 2.9851
0.75 0.625 0.577 1.5658 4.5509
1.00 0.875 0.738 2.0027 6.5536
1.25 1.125 0.608 1.6499 8.2035
1.50 1.375 1.393 3.7802 11.9837
1.75 1.625 4.068 11.0393 23.0231
2.00 1.875 7.584 20.5807 43.6038
2.25 2.125 5.275 14.3148 57.9186
2.50 2.375 4.978 13.5088 71.4274
2.75 2.625 4.652 12.6242 84.0516
3.00 2.875 3.356 9.1072 93.1588
3.25 3.125 1.296 3.5170 96.6757
3.50 3.375 0.755 2.0488 98.7246
3.75 3.625 0.323 0.8765 99.6011
4.00 3.875 0.091 0.2469 99.8480
5.00 4.5 0.056 0.1520 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000
5.00 4.5 0.0000 100.0000


25






20






| 15

a-
2O



10
u-


-2.00 -1.00 0.00 1.00 2.00 3.00
Grain Size (Phi)


4.00 5.00


Tweak ACUMPLOT X-axis here
X-axis minimum -2
X-axis maximum 5


Relative Disperison Scale
< 0.5 Excellent homogeneity (e.g. beaches)
0.5 to 1.0 Good homogeneity
1.0 to 1.33 Fair homogeneity
> 1.33 Poor homogeneity


Statistical Results
Measure Original Data Transformed Original Data
in t Units Data in Millimeters
Mean: 2.1105 0.2316 mm 0.2636 mm
Standard Deviation: 0.6951 phi-units MV --- 0.1770 mm
Skewness: -0.6660 NU MV --- 4.3654 NU
Kurtosis: 4.6979 NU MV --- 36.4509 NU
Median: 1.9867 0.2523 mm 0.2532 mm
Relative Dispersion: MV --- --- --- 0.6715 NU
Mean, std dev, skewness and kurtosis calculated using method of moments.
MV = meaningless value; NU = no units (ie., dimensionless)
Transformed data calculated using mm = 2.o













Sample I.D.: ROTAP11a

Sample I.D.: ROTAP11 a Sampled by: Start Sieve Size (phi): -2
Sample Date: 6/28/2001 Analyzed by: J. H. Balsillie End Sieve Size (phi): 1.25
Total Sample: X ISiliclastic Fraction: Carbonate Fraction: I Pan Sieve Size (phi): 1.25
Longitude: Latitude: Datum: Sieve Interval (phi): 0.25
Surface Elev: Datum: Accuracy: # Splits: I 0
Sample Depth in Core: Compaction Corrected? 1% Comp.: Total Mass: 46.617 grams
Comments: Carbonate + Silica Sample


Sieve Sieve Weight Freq Cumulative
Size Midpoint Weight Weight
(phi) (phi) (grams) % %
-2.00 -2.125 1.722 3.6939 3.6939
-1.75 -1.875 1.716 3.6811 7.3750
-1.50 -1.625 3.286 7.0489 14.4239
-1.25 -1.375 4.390 9.4172 23.8411
-1.00 -1.125 6.389 13.7053 37.5464
-0.75 -0.875 9.153 19.6345 57.1809
-0.50 -0.625 9.117 19.5572 76.7381
-0.25 -0.375 5.942 12.7464 89.4845
0.00 -0.125 2.828 6.0665 95.5510
0.25 0.125 1.329 2.8509 98.4019
0.50 0.375 0.476 1.0211 99.4230
0.75 0.625 0.154 0.3304 99.7533
1.00 0.875 0.045 0.0965 99.8498
1.25 1.125 0.070 0.1502 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000


Tweak ACUMPLOT X-axis here
X-axis minimum -3
X-axis maximum 5


25






20






5 15
U
a-
U
>



2 10
u-





5


0 I0
-3.00


-1.00 0.00 1.
Grain Size (Phi)


Relative Disperison Scale
< 0.5 Excellent homogeneity (e.g. beaches)
0.5 to 1.0 Good homogeneity
1.0 to 1.33 Fair homogeneity
> 1.33 Poor homogeneity


Statistical Results
Measure Original Data Transformed Original Data
in t Units Data in Millimeters
Mean: -0.8832 1.8444 mm 1.9873 mm
Standard Deviation: 0.5586 phi-units MV --- 0.8144 mm
Skewness: -0.1394 NU MV --- 1.1567 NU
Kurtosis: 3.0026 NU MV --- 4.0475 NU
Median: -0.9664 ( 1.954 mm 1.9609 mm
Relative Dispersion: MV --- --- --- 0.4098 NU
Mean, std dev, skewness and kurtosis calculated using method of moments.
MV = meaningless value; NU = no units (ie., dimensionless)
Transformed data calculated using mm = 2.o


)0 2.00













Sample I.D.: MEINZER11a

Sample I.D.: MEINZER11a Sampled by: Start Sieve Size (phi): -2
Sample Date: 6/28/2001 Analyzed by: J. H. Balsillie End Sieve Size (phi): 1.25
Total Sample: X ISiliclastic Fraction: Carbonate Fraction: I Pan Sieve Size (phi): 1.25
Longitude: Latitude: Datum: Sieve Interval (phi): 0.25
Surface Elev: Datum: Accuracy: # Splits: I 0
Sample Depth in Core: Compaction Corrected? 1% Comp.: Total Mass: 46.582 grams
Comments: Carbonate + Silica Sample


Sieve Sieve Weight Freq Cumulative
Size Midpoint Weight Weight
(phi) (phi) (grams) % %
-2.00 -2.125 1.734 3.7225 3.7225
-1.75 -1.875 1.489 3.1965 6.9190
-1.50 -1.625 2.919 6.2664 13.1854
-1.25 -1.375 4.318 9.2697 22.4550
-1.00 -1.125 6.027 12.9385 35.3935
-0.75 -0.875 8.687 18.6488 54.0423
-0.50 -0.625 9.418 20.2181 74.2604
-0.25 -0.375 6.177 13.2605 87.5209
0.00 -0.125 3.281 7.0435 94.5644
0.25 0.125 1.670 3.5851 98.1495
0.50 0.375 0.555 1.1914 99.3409
0.75 0.625 0.200 0.4294 99.7703
1.00 0.875 0.053 0.1138 99.8841
1.25 1.125 0.054 0.1159 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000


Tweak ACUMPLOT X-axis here
X-axis minimum -3
X-axis maximum 2


25






20






5 15
U
a-
U
>



2 10
u-





5


0 I0
-3.00


-1.00 0.00 1.
Grain Size (Phi)


Relative Disperison Scale
< 0.5 Excellent homogeneity (e.g. beaches)
0.5 to 1.0 Good homogeneity
1.0 to 1.33 Fair homogeneity
> 1.33 Poor homogeneity


Statistical Results
Measure Original Data Transformed Original Data
in t Units Data in Millimeters
Mean: -0.8480 1.8000 mm 1.9441 mm
Standard Deviation: 0.5661 phi-units MV --- 0.8141 mm
Skewness: -0.1785 NU MV --- 1.2171 NU
Kurtosis: 2.9685 NU MV --- 4.2536 NU
Median: -0.9292 1.9042 mm 1.9092 mm
Relative Dispersion: MV --- --- --- 0.4187 NU
Mean, std dev, skewness and kurtosis calculated using method of moments.
MV = meaningless value; NU = no units (ie., dimensionless)
Transformed data calculated using mm = 2.o


)0 2.00


/n













Sample I.D.: ROTAP11b

Sample I.D.: ROTAP11 b Sampled by: Start Sieve Size (phi): -2
Sample Date: 6/28/2001 Analyzed by: J. H. Balsillie End Sieve Size (phi): 1.25
Total Sample: X ISiliclastic Fraction: Carbonate Fraction: I Pan Sieve Size (phi): 1.25
Longitude: Latitude: Datum: Sieve Interval (phi): 0.25
Surface Elev: Datum: Accuracy: # Splits: I 0
Sample Depth in Core: Compaction Corrected? 1% Comp.: Total Mass: 46.617 grams
Comments: Carbonate + Silica Sample


Sieve Sieve Weight Freq Cumulative
Size Midpoint Weight Weight
(phi) (phi) (grams) % %
-2.00 -2.125 1.722 3.6939 3.6939
-1.75 -1.875 1.716 3.6811 7.3750
-1.50 -1.625 3.286 7.0489 14.4239
-1.25 -1.375 4.390 9.4172 23.8411
-1.00 -1.125 6.389 13.7053 37.5464
-0.75 -0.875 9.153 19.6345 57.1809
-0.50 -0.625 9.117 19.5572 76.7381
-0.25 -0.375 5.942 12.7464 89.4845
0.00 -0.125 2.828 6.0665 95.5510
0.25 0.125 1.329 2.8509 98.4019
0.50 0.375 0.476 1.0211 99.4230
0.75 0.625 0.154 0.3304 99.7533
1.00 0.875 0.045 0.0965 99.8498
1.25 1.125 0.070 0.1502 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000


Tweak ACUMPLOT X-axis here
X-axis minimum -3
X-axis maximum 5


Statistical Results
Measure Original Data Transformed Original Data
in t Units Data in Millimeters
Mean: -0.8832 1.8444 mm 1.9873 mm
Standard Deviation: 0.5586 phi-units MV -- 0.8144 mm
Skewness: -0.1394 NU MV --- 1.1567 NU
Kurtosis: 3.0026 NU MV --- 4.0475 NU
Median: -0.9664 ( 1.954 mm 1.9609 mm
Relative Dispersion: MV --- --- --- 0.4098 NU
Mean, std dev, skewness and kurtosis calculated using method of moments.
MV = meaningless value; NU = no units (ie., dimensionless)
Transformed data calculated using mm = 2.

25






20






515

a-
U
0C

g!10 -





10






0 ._ _ _ _ ._._._._.
-3.00 -2.00 -1.00 0.00 1.00 2.C
Grain Size (Phi)


Relative Disperison Scale
< 0.5 Excellent homogeneity (e.g. beaches)
0.5 to 1.0 Good homogeneity
1.0 to 1.33 Fair homogeneity
> 1.33 Poor homogeneity













Sample I.D.: MEINZER11b

Sample I.D.: MEINZER11b Sampled by: Start Sieve Size (phi): -2
Sample Date: 6/28/2001 Analyzed by: J. H. Balsillie End Sieve Size (phi): 1.25
Total Sample: X ISiliclastic Fraction: Carbonate Fraction: Pan Sieve Size (phi): 1.25
Longitude: Latitude: Datum: Sieve Interval (phi): 0.25
Surface Elev: Datum: Accuracy: # Splits: I 0
Sample Depth in Core: Compaction Corrected? 1% Comp.: Total Mass: 46.598 grams
Comments: Carbonate + Silica Sample


Sieve Sieve Weight Freq Cumulative
Size Midpoint Weight Weight
(phi) (phi) (grams) % %
-2.00 -2.125 1.550 3.3263 3.3263
-1.75 -1.875 1.708 3.6654 6.9917
-1.50 -1.625 2.904 6.2320 13.2237
-1.25 -1.375 4.505 9.6678 22.8915
-1.00 -1.125 5.674 12.1765 35.0680
-0.75 -0.875 8.847 18.9858 54.0538
-0.50 -0.625 9.431 20.2391 74.2929
-0.25 -0.375 6.250 13.4126 87.7055
0.00 -0.125 3.173 6.8093 94.5148
0.25 0.125 1.637 3.5130 98.0278
0.50 0.375 0.555 1.1910 99.2189
0.75 0.625 0.212 0.4550 99.6738
1.00 0.875 0.065 0.1395 99.8133
1.25 1.125 0.087 0.1867 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000
1.25 1.25 0.0000 100.0000


Tweak ACUMPLOT X-axis here
X-axis minimum -3
X-axis maximum 2


25






20






5 15

[,
a
>



. 10
u-


0 I0
-3.00


-2.00 -1.00 0.00 1.00
Grain Size (Phi)


Relative Disperison Scale
< 0.5 Excellent homogeneity (e.g. beaches)
0.5 to 1.0 Good homogeneity
1.0 to 1.33 Fair homogeneity
> 1.33 Poor homogeneity


Statistical Results
Measure Original Data Transformed Original Data
in t Units Data in Millimeters
Mean: -0.8470 1.7988 mm 1.9426 mm
Standard Deviation: 0.5673 phi-units MV --- 0.8092 mm
Skewness: -0.1319 NU MV --- 1.1806 NU
Kurtosis: 3.0217 NU MV --- 4.1496 NU
Median: -0.9284 1.9031 mm 1.9081 mm
Relative Dispersion: MV --- --- --- 0.4166 NU
Mean, std dev, skewness and kurtosis calculated using method of moments.
MV = meaningless value; NU = no units (ie., dimensionless)
Transformed data calculated using mm = 2.o













Sample I.D.: ROTAP12a

Sample I.D.: ROTAP12a Sampled by: Start Sieve Size (phi): -2
Sample Date: 6/28/2001 Analyzed by: J. H. Balsillie End Sieve Size (phi): 3
Total Sample: X ISiliclastic Fraction: Carbonate Fraction: I Pan Sieve Size (phi): 3
Longitude: Latitude: Datum: Sieve Interval (phi): 0.25
Surface Elev: Datum: Accuracy: # Splits: I 0
Sample Depth in Core: Compaction Corrected? 1% Comp.: Total Mass: 34.338 grams
Comments: Carbonate + Silica Sample


Sieve Sieve Weight Freq Cumulative
Size Midpoint Weight Weight
(phi) (phi) (grams) % %
-2.00 -2.125 0.587 1.7095 1.7095
-1.75 -1.875 0.540 1.5726 3.2821
-1.50 -1.625 0.591 1.7211 5.0032
-1.25 -1.375 0.907 2.6414 7.6446
-1.00 -1.125 1.289 3.7539 11.3985
-0.75 -0.875 1.622 4.7236 16.1221
-0.50 -0.625 2.204 6.4185 22.5406
-0.25 -0.375 2.583 7.5223 30.0629
0.00 -0.125 2.395 6.9748 37.0377
0.25 0.125 2.992 8.7134 45.7511
0.50 0.375 2.801 8.1571 53.9082
0.75 0.625 2.860 8.3290 62.2372
1.00 0.875 3.105 9.0425 71.2796
1.25 1.125 2.537 7.3883 78.6679
1.50 1.375 1.459 4.2489 82.9169
1.75 1.625 1.885 5.4895 88.4064
2.00 1.875 1.226 3.5704 91.9768
2.25 2.125 1.022 2.9763 94.9531
2.50 2.375 0.921 2.6822 97.6353
2.75 2.625 0.554 1.6134 99.2486
3.00 2.875 0.258 0.7514 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000


Tweak ACUMPLOT X-axis here
X-axis minimum -3
X-axis maximum 5


10


9


8


7


6
2

a-
0*
5


4


3


2


0 L-
-3.00


-2.00 -1.00 0.00 1.00 2.00
Grain Size (Phi)


Relative Disperison Scale
< 0.5 Excellent homogeneity (e.g. beaches)
0.5 to 1.0 Good homogeneity
1.0 to 1.33 Fair homogeneity
> 1.33 Poor homogeneity


Statistical Results
Measure Original Data Transformed Original Data
in t Units Data in Millimeters
Mean: 0.3705 0.7735 mm 1.0345 mm
Standard Deviation: 1.1250 phi-units MV --- 0.8640 mm
Skewness: -0.0324 NU MV --- 1.8047 NU
Kurtosis: 2.4385 NU MV --- 6.4515 NU
Median: 0.2552 0.8379 mm 0.8410 mm
Relative Dispersion: MV --- --- --- 0.8352 NU
Mean, std dev, skewness and kurtosis calculated using method of moments.
MV = meaningless value; NU = no units (ie., dimensionless)
Transformed data calculated using mm = 2.


3.00 4.00













Sample I.D.: MEINZER12a

Sample I.D.: MEINZER12a Sampled by: Start Sieve Size (phi): -2
Sample Date: 6/28/2001 Analyzed by: J. H. Balsillie End Sieve Size (phi): 3
Total Sample: X ISiliclastic Fraction: Carbonate Fraction: I Pan Sieve Size (phi): 3
Longitude: Latitude: Datum: Sieve Interval (phi): 0.25
Surface Elev: Datum: Accuracy: # Splits: I 0
Sample Depth in Core: Compaction Corrected? 1% Comp.: Total Mass: 34.366 grams
Comments: Carbonate + Silica Sample


Sieve Sieve Weight Freq Cumulative
Size Midpoint Weight Weight
(phi) (phi) (grams) % %
-2.00 -2.125 0.595 1.7314 1.7314
-1.75 -1.875 0.621 1.8070 3.5384
-1.50 -1.625 0.524 1.5248 5.0631
-1.25 -1.375 0.736 2.1417 7.2048
-1.00 -1.125 1.295 3.7683 10.9731
-0.75 -0.875 1.640 4.7722 15.7452
-0.50 -0.625 2.273 6.6141 22.3593
-0.25 -0.375 2.334 6.7916 29.1509
0.00 -0.125 2.372 6.9022 36.0531
0.25 0.125 3.082 8.9682 45.0212
0.50 0.375 2.979 8.6685 53.6897
0.75 0.625 2.911 8.4706 62.1603
1.00 0.875 3.083 8.9711 71.1314
1.25 1.125 2.541 7.3939 78.5253
1.50 1.375 1.648 4.7954 83.3207
1.75 1.625 1.732 5.0399 88.3606
2.00 1.875 1.231 3.5820 91.9426
2.25 2.125 1.014 2.9506 94.8932
2.50 2.375 0.976 2.8400 97.7332
2.75 2.625 0.518 1.5073 99.2405
3.00 2.875 0.261 0.7595 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000


0 -3.
-3.00


-2.00 -1.00 0.00 1.00
Grain Size (Phi)


2.00 3.00 4.00


Tweak ACUMPLOT X-axis here
X-axis minimum -3
X-axis maximum 3


Relative Disperison Scale
< 0.5 Excellent homogeneity (e.g. beaches)
0.5 to 1.0 Good homogeneity
1.0 to 1.33 Fair homogeneity
> 1.33 Poor homogeneity


Statistical Results
Measure Original Data Transformed Original Data
in t Units Data in Millimeters
Mean: 0.3804 0.7682 mm 1.0266 mm
Standard Deviation: 1.1197 phi-units MV --- 0.8637 mm
Skewness: -0.0524 NU MV --- 1.8588 NU
Kurtosis: 2.4779 NU MV --- 6.6692 NU
Median: 0.2686 0.8301 mm 0.8332 mm
Relative Dispersion: MV --- --- --- 0.8413 NU
Mean, std dev, skewness and kurtosis calculated using method of moments.
MV = meaningless value; NU = no units (ie., dimensionless)
Transformed data calculated using mm = 2.o













Sample I.D.: ROTAP12b

Sample I.D.: ROTAP12b Sampled by: Start Sieve Size (phi): -2
Sample Date: 6/28/2001 Analyzed by: J. H. Balsillie End Sieve Size (phi): 3
Total Sample: X ISiliclastic Fraction: Carbonate Fraction: I Pan Sieve Size (phi): 3
Longitude: Latitude: Datum: Sieve Interval (phi): 0.25
Surface Elev: Datum: Accuracy: # Splits: I 0
Sample Depth in Core: Compaction Corrected? 1% Comp.: Total Mass: 34.338 grams
Comments: Carbonate + Silica Sample


Sieve Sieve Weight Freq Cumulative
Size Midpoint Weight Weight
(phi) (phi) (grams) % %
-2.00 -2.125 0.587 1.7095 1.7095
-1.75 -1.875 0.540 1.5726 3.2821
-1.50 -1.625 0.591 1.7211 5.0032
-1.25 -1.375 0.907 2.6414 7.6446
-1.00 -1.125 1.289 3.7539 11.3985
-0.75 -0.875 1.622 4.7236 16.1221
-0.50 -0.625 2.204 6.4185 22.5406
-0.25 -0.375 2.583 7.5223 30.0629
0.00 -0.125 2.395 6.9748 37.0377
0.25 0.125 2.992 8.7134 45.7511
0.50 0.375 2.801 8.1571 53.9082
0.75 0.625 2.860 8.3290 62.2372
1.00 0.875 3.105 9.0425 71.2796
1.25 1.125 2.537 7.3883 78.6679
1.50 1.375 1.459 4.2489 82.9169
1.75 1.625 1.885 5.4895 88.4064
2.00 1.875 1.226 3.5704 91.9768
2.25 2.125 1.022 2.9763 94.9531
2.50 2.375 0.921 2.6822 97.6353
2.75 2.625 0.554 1.6134 99.2486
3.00 2.875 0.258 0.7514 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000


0 -3.
-3.00


-2.00 -1.00 0.00 1.00
Grain Size (Phi)


2.00 3.00 4.00


Tweak ACUMPLOT X-axis here
X-axis minimum -3
X-axis maximum 5


Relative Disperison Scale
< 0.5 Excellent homogeneity (e.g. beaches)
0.5 to 1.0 Good homogeneity
1.0 to 1.33 Fair homogeneity
> 1.33 Poor homogeneity


Statistical Results
Measure Original Data Transformed Original Data
in t Units Data in Millimeters
Mean: 0.3705 0.7735 mm 1.0345 mm
Standard Deviation: 1.1250 phi-units MV --- 0.8640 mm
Skewness: -0.0324 NU MV --- 1.8047 NU
Kurtosis: 2.4385 NU MV --- 6.4515 NU
Median: 0.2552 0.8379 mm 0.8410 mm
Relative Dispersion: MV --- --- --- 0.8352 NU
Mean, std dev, skewness and kurtosis calculated using method of moments.
MV = meaningless value; NU = no units (ie., dimensionless)
Transformed data calculated using mm = 2.













Sample I.D.: MEINZER12b

Sample I.D.: MEINZER12b Sampled by: Start Sieve Size (phi): -2
Sample Date: 6/28/2001 Analyzed by: J. H. Balsillie End Sieve Size (phi): 3
Total Sample: X ISiliclastic Fraction: Carbonate Fraction: Pan Sieve Size (phi): 3
Longitude: Latitude: Datum: Sieve Interval (phi): 0.25
Surface Elev: Datum: Accuracy: # Splits: I 0
Sample Depth in Core: Compaction Corrected? 1% Comp.: Total Mass: 34.515 grams
Comments: Carbonate + Silica Sample


Sieve Sieve Weight Freq Cumulative
Size Midpoint Weight Weight
(phi) (phi) (grams) % %
-2.00 -2.125 0.595 1.7239 1.7239
-1.75 -1.875 0.428 1.2400 2.9639
-1.50 -1.625 0.653 1.8919 4.8559
-1.25 -1.375 0.760 2.2019 7.0578
-1.00 -1.125 1.352 3.9171 10.9749
-0.75 -0.875 1.467 4.2503 15.2253
-0.50 -0.625 2.414 6.9941 22.2193
-0.25 -0.375 2.298 6.6580 28.8773
0.00 -0.125 2.511 7.2751 36.1524
0.25 0.125 2.992 8.6687 44.8211
0.50 0.375 2.924 8.4717 53.2928
0.75 0.625 2.943 8.5267 61.8195
1.00 0.875 3.111 9.0135 70.8330
1.25 1.125 2.561 7.4200 78.2529
1.50 1.375 1.683 4.8761 83.1291
1.75 1.625 1.694 4.9080 88.0371
2.00 1.875 1.310 3.7955 91.8325
2.25 2.125 0.990 2.8683 94.7009
2.50 2.375 0.993 2.8770 97.5779
2.75 2.625 0.550 1.5935 99.1714
3.00 2.875 0.286 0.8286 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000
3.00 3 0.0000 100.0000


0 -3.
-3.00


-2.00 -1.00 0.00 1.00
Grain Size (Phi)


2.00 3.00 4.00


Tweak ACUMPLOT X-axis here
X-axis minimum -3
X-axis maximum 3


Relative Disperison Scale
< 0.5 Excellent homogeneity (e.g. beaches)
0.5 to 1.0 Good homogeneity
1.0 to 1.33 Fair homogeneity
> 1.33 Poor homogeneity


Statistical Results
Measure Original Data Transformed Original Data
in t Units Data in Millimeters
Mean: 0.3912 0.7625 mm 1.0172 mm
Standard Deviation: 1.1185 phi-units MV --- 0.8504 mm
Skewness: -0.0377 NU MV --- 1.8552 NU
Kurtosis: 2.4686 NU MV --- 6.7546 NU
Median: 0.2778 0.8248 mm 0.8278 mm
Relative Dispersion: MV --- --- --- 0.8360 NU
Mean, std dev, skewness and kurtosis calculated using method of moments.
MV = meaningless value; NU = no units (ie., dimensionless)
Transformed data calculated using mm = 2.o













Sample I.D.: ROTAP13a

Sample I.D.: ROTAP13a Sampled by: Start Sieve Size (phi): -1.25
Sample Date: 6/28/2001 Analyzed by: A. A. Dabous End Sieve Size (phi): 4
Total Sample: X ISiliclastic Fraction: Carbonate Fraction: I Pan Sieve Size (phi): 4
Longitude: Latitude: Datum: Sieve Interval (phi): 0.25
Surface Elev: Datum: Accuracy: # Splits: I 0
Sample Depth in Core: Compaction Corrected? 1% Comp.: Total Mass: 65.809 grams
Comments: Carbonate + Silica Sample


Sieve Sieve Weight Freq Cumulative
Size Midpoint Weight Weight
(phi) (phi) (grams) % %
-1.25 -1.375 0.115 0.1747 0.1747
-1.00 -1.125 0.187 0.2842 0.4589
-0.75 -0.875 0.170 0.2583 0.7172
-0.50 -0.625 0.611 0.9284 1.6457
-0.25 -0.375 0.928 1.4101 3.0558
0.00 -0.125 1.417 2.1532 5.2090
0.25 0.125 2.241 3.4053 8.6143
0.50 0.375 3.202 4.8656 13.4799
0.75 0.625 4.336 6.5888 20.0687
1.00 0.875 7.921 12.0363 32.1050
1.25 1.125 9.421 14.3157 46.4207
1.50 1.375 10.443 15.8687 62.2894
1.75 1.625 9.202 13.9829 76.2722
2.00 1.875 8.450 12.8402 89.1124
2.25 2.125 4.282 6.5067 95.6191
2.50 2.375 1.623 2.4662 98.0854
2.75 2.625 0.711 1.0804 99.1658
3.00 2.875 0.293 0.4452 99.6110
3.25 3.125 0.148 0.2249 99.8359
3.50 3.375 0.069 0.1048 99.9407
3.75 3.625 0.024 0.0365 99.9772
4.00 3.875 0.015 0.0228 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000


18



16



14



12



10
a-


8

U-
6



4



2


-.00 1 1. 0 0.00
-2.00 -1.00 0.00


1.00 2.00 3.00 4.00 5.00
Grain Size (Phi)


Tweak ACUMPLOT X-axis here
X-axis minimum -3
X-axis maximum 5


Relative Disperison Scale
< 0.5 Excellent homogeneity (e.g. beaches)
0.5 to 1.0 Good homogeneity
1.0 to 1.33 Fair homogeneity
> 1.33 Poor homogeneity


Statistical Results
Measure Original Data Transformed Original Data
in t Units Data in Millimeters
Mean: 1.2454 0.4218 mm 0.4782 mm
Standard Deviation: 0.6962 phi-units MV --- 0.2857 mm
Skewness: -0.5130 NU MV --- 2.6686 NU
Kurtosis: 3.6727 NU MV --- 13.9535 NU
Median: 1.1814 0.4409 mm 0.4420 mm
Relative Dispersion: MV --- --- --- 0.5973 NU
Mean, std dev, skewness and kurtosis calculated using method of moments.
MV = meaningless value; NU = no units (ie., dimensionless)
Transformed data calculated using mm = 2.o













Sample I.D.: MEINZER13a

Sample I.D.: MEINZER13a Sampled by: Start Sieve Size (phi): -1.25
Sample Date: 6/28/2001 Analyzed by: A. A. Dabous End Sieve Size (phi): 4
Total Sample: X ISiliclastic Fraction: Carbonate Fraction: I Pan Sieve Size (phi): 4
Longitude: Latitude: Datum: Sieve Interval (phi): 0.25
Surface Elev: Datum: Accuracy: # Splits: I 0
Sample Depth in Core: Compaction Corrected? 1% Comp.: Total Mass: 65.779 grams
Comments: Carbonate + Silica Sample


Sieve Sieve Weight Freq Cumulative
Size Midpoint Weight Weight
(phi) (phi) (grams) % %
-1.25 -1.375 0.108 0.1642 0.1642
-1.00 -1.125 0.148 0.2250 0.3892
-0.75 -0.875 0.152 0.2311 0.6203
-0.50 -0.625 0.569 0.8650 1.4853
-0.25 -0.375 0.953 1.4488 2.9341
0.00 -0.125 1.419 2.1572 5.0913
0.25 0.125 2.198 3.3415 8.4328
0.50 0.375 3.089 4.6960 13.1288
0.75 0.625 4.471 6.7970 19.9258
1.00 0.875 7.514 11.4231 31.3489
1.25 1.125 9.665 14.6931 46.0420
1.50 1.375 9.947 15.1218 61.1639
1.75 1.625 10.154 15.4365 76.6004
2.00 1.875 8.398 12.7670 89.3674
2.25 2.125 3.977 6.0460 95.4134
2.50 2.375 1.643 2.4978 97.9112
2.75 2.625 0.782 1.1888 99.1000
3.00 2.875 0.324 0.4926 99.5926
3.25 3.125 0.158 0.2402 99.8328
3.50 3.375 0.071 0.1079 99.9407
3.75 3.625 0.029 0.0441 99.9848
4.00 3.875 0.010 0.0152 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000


Tweak ACUMPLOT X-axis here
X-axis minimum -2
X-axis maximum 5


18



16



14



12



10
[-


8

U-
6


0 -.
-2.00


-1.00 0.00 1.00 2.00 3.00
Grain Size (Phi)


Relative Disperison Scale
< 0.5 Excellent homogeneity (e.g. beaches)
0.5 to 1.0 Good homogeneity
1.0 to 1.33 Fair homogeneity
> 1.33 Poor homogeneity


Statistical Results
Measure Original Data Transformed Original Data
in t Units Data in Millimeters
Mean: 1.2538 0.4193 mm 0.4745 mm
Standard Deviation: 0.6917 phi-units MV --- 0.2799 mm
Skewness: -0.4972 NU MV --- 2.6327 NU
Kurtosis: 3.6620 NU MV --- 13.8428 NU
Median: 1.1904 0.4382 mm 0.4394 mm
Relative Dispersion: MV --- --- --- 0.5900 NU
Mean, std dev, skewness and kurtosis calculated using method of moments.
MV = meaningless value; NU = no units (ie., dimensionless)
Transformed data calculated using mm = 2.o


4.00 5.00













Sample I.D.: ROTAP13b

Sample I.D.: ROTAP13b Sampled by: Start Sieve Size (phi): -1.25
Sample Date: 6/28/2001 Analyzed by: A. A. Dabous End Sieve Size (phi): 4
Total Sample: X ISiliclastic Fraction: Carbonate Fraction: I Pan Sieve Size (phi): 4
Longitude: Latitude: Datum: Sieve Interval (phi): 0.25
Surface Elev: Datum: Accuracy: # Splits: I 0
Sample Depth in Core: Compaction Corrected? 1% Comp.: Total Mass: 65.695 grams
Comments: Carbonate + Silica Sample


Sieve Sieve Weight Freq Cumulative
Size Midpoint Weight Weight
(phi) (phi) (grams) % %
-1.25 -1.375 0.118 0.1796 0.1796
-1.00 -1.125 0.164 0.2496 0.4293
-0.75 -0.875 0.170 0.2588 0.6880
-0.50 -0.625 0.590 0.8981 1.5861
-0.25 -0.375 0.932 1.4187 3.0048
0.00 -0.125 1.397 2.1265 5.1313
0.25 0.125 2.241 3.4112 8.5425
0.50 0.375 3.227 4.9121 13.4546
0.75 0.625 4.329 6.5895 20.0441
1.00 0.875 7.797 11.8685 31.9126
1.25 1.125 9.386 14.2872 46.1999
1.50 1.375 10.340 15.7394 61.9393
1.75 1.625 9.262 14.0985 76.0378
2.00 1.875 8.543 13.0040 89.0418
2.25 2.125 4.347 6.6169 95.6587
2.50 2.375 1.688 2.5694 98.2282
2.75 2.625 0.687 1.0457 99.2739
3.00 2.875 0.293 0.4460 99.7199
3.25 3.125 0.141 0.2146 99.9345
3.50 3.375 0.006 0.0091 99.9437
3.75 3.625 0.023 0.0350 99.9787
4.00 3.875 0.014 0.0213 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000


18



16



14



12


U
i 10
10
a-


8

0L
6



4



2



0


-2.00 -1.00 0.00


Tweak ACUMPLOT X-axis here
X-axis minimum -3
X-axis maximum 5


1.00 2.00 3.00 4.00 5.00
Grain Size (Phi)


Relative Disperison Scale
< 0.5 Excellent homogeneity (e.g. beaches)
0.5 to 1.0 Good homogeneity
1.0 to 1.33 Fair homogeneity
> 1.33 Poor homogeneity


Statistical Results
Measure Original Data Transformed Original Data
in t Units Data in Millimeters
Mean: 1.2477 0.4211 mm 0.4770 mm
Standard Deviation: 0.6923 phi-units MV --- 0.2838 mm
Skewness: -0.5405 NU MV --- 2.6660 NU
Kurtosis: 3.6169 NU MV --- 14.0201 NU
Median: 1.1854 0.4397 mm 0.4409 mm
Relative Dispersion: MV --- --- --- 0.5949 NU
Mean, std dev, skewness and kurtosis calculated using method of moments.
MV = meaningless value; NU = no units (ie., dimensionless)
Transformed data calculated using mm = 2.o













Sample I.D.: MEINZER13b

Sample I.D.: MEINZER13b Sampled by: Start Sieve Size (phi): -1.25
Sample Date: 6/28/2001 Analyzed by: A. A. Dabous End Sieve Size (phi): 4
Total Sample: X ISiliclastic Fraction: Carbonate Fraction: I Pan Sieve Size (phi): 4
Longitude: Latitude: Datum: Sieve Interval (phi): 0.25
Surface Elev: Datum: Accuracy: # Splits: I 0
Sample Depth in Core: Compaction Corrected? 1% Comp.: Total Mass: 65.753 grams
Comments: Carbonate + Silica Sample


Sieve Sieve Weight Freq Cumulative
Size Midpoint Weight Weight
(phi) (phi) (grams) % %
-1.25 -1.375 0.105 0.1597 0.1597
-1.00 -1.125 0.131 0.1992 0.3589
-0.75 -0.875 0.151 0.2296 0.5886
-0.50 -0.625 0.559 0.8502 1.4387
-0.25 -0.375 0.970 1.4752 2.9139
0.00 -0.125 1.405 2.1368 5.0507
0.25 0.125 2.200 3.3459 8.3966
0.50 0.375 2.860 4.3496 12.7462
0.75 0.625 4.373 6.6506 19.3968
1.00 0.875 8.015 12.1896 31.5864
1.25 1.125 8.977 13.6526 45.2390
1.50 1.375 10.687 16.2533 61.4923
1.75 1.625 9.677 14.7172 76.2095
2.00 1.875 8.424 12.8116 89.0210
2.25 2.125 4.084 6.2111 95.2322
2.50 2.375 1.735 2.6387 97.8708
2.75 2.625 0.802 1.2197 99.0905
3.00 2.875 0.337 0.5125 99.6031
3.25 3.125 0.153 0.2327 99.8357
3.50 3.375 0.070 0.1065 99.9422
3.75 3.625 0.030 0.0456 99.9878
4.00 3.875 0.008 0.0122 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000


18



16



14



12


U
i 10
10
a-


8

0L
6



4



2



0


-2.00 -1.00 0.00


Tweak ACUMPLOT X-axis here
X-axis minimum -2
X-axis maximum 5


1.00 2.00 3.00 4.00 5.00
Grain Size (Phi)


Relative Disperison Scale
< 0.5 Excellent homogeneity (e.g. beaches)
0.5 to 1.0 Good homogeneity
1.0 to 1.33 Fair homogeneity
> 1.33 Poor homogeneity


Statistical Results
Measure Original Data Transformed Original Data
in t Units Data in Millimeters
Mean: 1.2596 0.4177 mm 0.4724 mm
Standard Deviation: 0.6908 phi-units MV --- 0.2778 mm
Skewness: -0.4918 NU MV --- 2.6227 NU
Kurtosis: 3.6537 NU MV --- 13.7941 NU
Median: 1.1982 0.4358 mm 0.4371 mm
Relative Dispersion: MV --- --- --- 0.5881 NU
Mean, std dev, skewness and kurtosis calculated using method of moments.
MV = meaningless value; NU = no units (ie., dimensionless)
Transformed data calculated using mm = 2.o













Sample I.D.: ROTAP13c

Sample I.D.: ROTAP13c Sampled by: Start Sieve Size (phi): -1.25
Sample Date: 6/28/2001 Analyzed by: A. A. Dabous End Sieve Size (phi): 4
Total Sample: X ISiliclastic Fraction: Carbonate Fraction: I Pan Sieve Size (phi): 4
Longitude: Latitude: Datum: Sieve Interval (phi): 0.25
Surface Elev: Datum: Accuracy: # Splits: I 0
Sample Depth in Core: Compaction Corrected? 1% Comp.: Total Mass: 65.632 grams
Comments: Carbonate + Silica Sample


Sieve Sieve Weight Freq Cumulative
Size Midpoint Weight Weight
(phi) (phi) (grams) % %
-1.25 -1.375 0.105 0.1600 0.1600
-1.00 -1.125 0.166 0.2529 0.4129
-0.75 -0.875 0.185 0.2819 0.6948
-0.50 -0.625 0.570 0.8685 1.5633
-0.25 -0.375 0.928 1.4139 2.9772
0.00 -0.125 1.438 2.1910 5.1682
0.25 0.125 2.274 3.4648 8.6330
0.50 0.375 3.151 4.8010 13.4340
0.75 0.625 4.279 6.5197 19.9537
1.00 0.875 7.702 11.7351 31.6888
1.25 1.125 9.096 13.8591 45.5479
1.50 1.375 10.321 15.7256 61.2735
1.75 1.625 9.333 14.2202 75.4937
2.00 1.875 8.626 13.1430 88.6366
2.25 2.125 4.410 6.7193 95.3559
2.50 2.375 1.730 2.6359 97.9918
2.75 2.625 0.777 1.1839 99.1757
3.00 2.875 0.309 0.4708 99.6465
3.25 3.125 0.145 0.2209 99.8674
3.50 3.375 0.058 0.0884 99.9558
3.75 3.625 0.014 0.0213 99.9771
4.00 3.875 0.015 0.0229 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000


18



16



14



12


U
i 10
10


U
8

0L
6


-2.00 -1.00 0.00 1.00 2.00 3.00
Grain Size (Phi)


4.00 5.00


Tweak ACUMPLOT X-axis here
X-axis minimum -3
X-axis maximum 5


Relative Disperison Scale
< 0.5 Excellent homogeneity (e.g. beaches)
0.5 to 1.0 Good homogeneity
1.0 to 1.33 Fair homogeneity
> 1.33 Poor homogeneity


Statistical Results
Measure Original Data Transformed Original Data
in t Units Data in Millimeters
Mean: 1.2560 0.4187 mm 0.4750 mm
Standard Deviation: 0.6981 phi-units MV --- 0.2837 mm
Skewness: -0.5186 NU MV --- 2.6223 NU
Kurtosis: 3.5941 NU MV --- 13.6117 NU
Median: 1.1958 0.4366 mm 0.4378 mm
Relative Dispersion: MV --- --- --- 0.5972 NU
Mean, std dev, skewness and kurtosis calculated using method of moments.
MV = meaningless value; NU = no units (ie., dimensionless)
Transformed data calculated using mm = 2.













Sample I.D.: MEINZER13c

Sample I.D.: MEINZER13c Sampled by: Start Sieve Size (phi): -1.25
Sample Date: 6/28/2001 Analyzed by: A. A. Dabous End Sieve Size (phi): 4
Total Sample: X ISiliclastic Fraction: Carbonate Fraction: I Pan Sieve Size (phi): 4
Longitude: Latitude: Datum: Sieve Interval (phi): 0.25
Surface Elev: Datum: Accuracy: # Splits: I 0
Sample Depth in Core: Compaction Corrected? 1% Comp.: Total Mass: 65.574 grams
Comments: Carbonate + Silica Sample


Sieve Sieve Weight Freq Cumulative
Size Midpoint Weight Weight
(phi) (phi) (grams) % %
-1.25 -1.375 0.106 0.1616 0.1616
-1.00 -1.125 0.159 0.2425 0.4041
-0.75 -0.875 0.153 0.2333 0.6374
-0.50 -0.625 0.521 0.7945 1.4320
-0.25 -0.375 0.957 1.4594 2.8914
0.00 -0.125 1.360 2.0740 4.9654
0.25 0.125 2.236 3.4099 8.3753
0.50 0.375 2.947 4.4942 12.8694
0.75 0.625 4.249 6.4797 19.3491
1.00 0.875 7.702 11.7455 31.0946
1.25 1.125 8.920 13.6030 44.6976
1.50 1.375 10.551 16.0902 60.7878
1.75 1.625 9.817 14.9709 75.7587
2.00 1.875 8.717 13.2934 89.0521
2.25 2.125 4.057 6.1869 95.2390
2.50 2.375 1.719 2.6215 97.8604
2.75 2.625 0.822 1.2535 99.1140
3.00 2.875 0.337 0.5139 99.6279
3.25 3.125 0.157 0.2394 99.8673
3.50 3.375 0.062 0.0945 99.9619
3.75 3.625 0.024 0.0366 99.9985
4.00 3.875 0.001 0.0015 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000


18



16



14



12


U
i 10
10
a-


8

0L
6



4



2



0


-2.00 -1.00 0.00


Tweak ACUMPLOT X-axis here
X-axis minimum -2
X-axis maximum 5


1.00 2.00 3.00 4.00 5.00
Grain Size (Phi)


Relative Disperison Scale
< 0.5 Excellent homogeneity (e.g. beaches)
0.5 to 1.0 Good homogeneity
1.0 to 1.33 Fair homogeneity
> 1.33 Poor homogeneity


Statistical Results
Measure Original Data Transformed Original Data
in t Units Data in Millimeters
Mean: 1.2646 0.4162 mm 0.4711 mm
Standard Deviation: 0.6912 phi-units MV --- 0.2793 mm
Skewness: -0.5243 NU MV --- 2.6680 NU
Kurtosis: 3.6547 NU MV --- 14.1112 NU
Median: 1.2074 ( 0.4331 mm 0.4345 mm
Relative Dispersion: MV --- --- --- 0.5929 NU
Mean, std dev, skewness and kurtosis calculated using method of moments.
MV = meaningless value; NU = no units (ie., dimensionless)
Transformed data calculated using mm = 2.o













Sample I.D.: ROTAP13d

Sample I.D.: ROTAP13d Sampled by: Start Sieve Size (phi): -1.25
Sample Date: 6/28/2001 Analyzed by: A. A. Dabous End Sieve Size (phi): 4
Total Sample: X ISiliclastic Fraction: Carbonate Fraction: I Pan Sieve Size (phi): 4
Longitude: Latitude: Datum: Sieve Interval (phi): 0.25
Surface Elev: Datum: Accuracy: # Splits: I 0
Sample Depth in Core: Compaction Corrected? 1% Comp.: Total Mass: 65.708 grams
Comments: Carbonate + Silica Sample


Sieve Sieve Weight Freq Cumulative
Size Midpoint Weight Weight
(phi) (phi) (grams) % %
-1.25 -1.375 0.101 0.1537 0.1537
-1.00 -1.125 0.176 0.2679 0.4216
-0.75 -0.875 0.172 0.2618 0.6833
-0.50 -0.625 0.592 0.9010 1.5843
-0.25 -0.375 0.890 1.3545 2.9388
0.00 -0.125 1.372 2.0880 5.0268
0.25 0.125 2.246 3.4182 8.4449
0.50 0.375 3.143 4.7833 13.2282
0.75 0.625 4.342 6.6080 19.8362
1.00 0.875 7.735 11.7718 31.6080
1.25 1.125 9.129 13.8933 45.5013
1.50 1.375 10.181 15.4943 60.9956
1.75 1.625 9.433 14.3559 75.3516
2.00 1.875 8.739 13.2998 88.6513
2.25 2.125 4.483 6.8226 95.4739
2.50 2.375 1.722 2.6207 98.0946
2.75 2.625 0.730 1.1110 99.2056
3.00 2.875 0.301 0.4581 99.6637
3.25 3.125 0.137 0.2085 99.8722
3.50 3.375 0.060 0.0913 99.9635
3.75 3.625 0.015 0.0228 99.9863
4.00 3.875 0.009 0.0137 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000


18



16



14



12



10
[-


8

U-
6



4



2


-2.00 -1.00 0.00
-2.00 -1.00 0.00


1.00 2.00 3.00 4.00 5.00
Grain Size (Phi)


Tweak ACUMPLOT X-axis here
X-axis minimum -3
X-axis maximum 5


Relative Disperison Scale
< 0.5 Excellent homogeneity (e.g. beaches)
0.5 to 1.0 Good homogeneity
1.0 to 1.33 Fair homogeneity
> 1.33 Poor homogeneity


Statistical Results
Measure Original Data Transformed Original Data
in t Units Data in Millimeters
Mean: 1.2583 0.4180 mm 0.4738 mm
Standard Deviation: 0.6949 phi-units MV --- 0.2824 mm
Skewness: -0.5320 NU MV --- 2.6448 NU
Kurtosis: 3.6050 NU MV --- 13.7890 NU
Median: 1.1976 ( 0.436 mm 0.4373 mm
Relative Dispersion: MV --- --- --- 0.5961 NU
Mean, std dev, skewness and kurtosis calculated using method of moments.
MV = meaningless value; NU = no units (ie., dimensionless)
Transformed data calculated using mm = 2.o













Sample I.D.: MEINZER13d

Sample I.D.: MEINZER13d Sampled by: Start Sieve Size (phi): -1.25
Sample Date: 6/28/2001 Analyzed by: A. A. Dabous End Sieve Size (phi): 4
Total Sample: X ISiliclastic Fraction: Carbonate Fraction: I Pan Sieve Size (phi): 4
Longitude: Latitude: Datum: Sieve Interval (phi): 0.25
Surface Elev: Datum: Accuracy: # Splits: I 0
Sample Depth in Core: Compaction Corrected? 1% Comp.: Total Mass: 65.774 grams
Comments: Carbonate + Silica Sample


Sieve Sieve Weight Freq Cumulative
Size Midpoint Weight Weight
(phi) (phi) (grams) % %
-1.25 -1.375 0.119 0.1809 0.1809
-1.00 -1.125 0.141 0.2144 0.3953
-0.75 -0.875 0.153 0.2326 0.6279
-0.50 -0.625 0.531 0.8073 1.4352
-0.25 -0.375 0.966 1.4687 2.9039
0.00 -0.125 1.387 2.1087 5.0126
0.25 0.125 2.164 3.2901 8.3027
0.50 0.375 2.881 4.3802 12.6828
0.75 0.625 4.124 6.2700 18.9528
1.00 0.875 7.953 12.0914 31.0442
1.25 1.125 9.052 13.7623 44.8065
1.50 1.375 10.440 15.8725 60.6790
1.75 1.625 9.905 15.0591 75.7381
2.00 1.875 8.685 13.2043 88.9424
2.25 2.125 4.233 6.4357 95.3781
2.50 2.375 1.759 2.6743 98.0524
2.75 2.625 0.757 1.1509 99.2033
3.00 2.875 0.313 0.4759 99.6792
3.25 3.125 0.134 0.2037 99.8829
3.50 3.375 0.060 0.0912 99.9742
3.75 3.625 0.015 0.0228 99.9970
4.00 3.875 0.002 0.0030 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000


18



16



14



12


U
i 10
10


U
8

0L
6


-2.00 -1.00 0.00 1.00 2.00 3.00
Grain Size (Phi)


4.00 5.00


Tweak ACUMPLOT X-axis here
X-axis minimum -2
X-axis maximum 5


Relative Disperison Scale
< 0.5 Excellent homogeneity (e.g. beaches)
0.5 to 1.0 Good homogeneity
1.0 to 1.33 Fair homogeneity
> 1.33 Poor homogeneity


Statistical Results
Measure Original Data Transformed Original Data
in t Units Data in Millimeters
Mean: 1.2653 0.4160 mm 0.4705 mm
Standard Deviation: 0.6880 phi-units MV --- 0.2792 mm
Skewness: -0.5506 NU MV --- 2.7051 NU
Kurtosis: 3.6719 NU MV --- 14.4376 NU
Median: 1.2068 0.4332 mm 0.4346 mm
Relative Dispersion: MV --- --- --- 0.5933 NU
Mean, std dev, skewness and kurtosis calculated using method of moments.
MV = meaningless value; NU = no units (ie., dimensionless)
Transformed data calculated using mm = 2.o













Sample I.D.: ROTAP13e

Sample I.D.: ROTAP13e Sampled by: Start Sieve Size (phi): -1.25
Sample Date: 6/28/2001 Analyzed by: A. A. Dabous End Sieve Size (phi): 4
Total Sample: X ISiliclastic Fraction: Carbonate Fraction: I Pan Sieve Size (phi): 4
Longitude: Latitude: Datum: Sieve Interval (phi): 0.25
Surface Elev: Datum: Accuracy: # Splits: I 0
Sample Depth in Core: Compaction Corrected? 1% Comp.: Total Mass: 65.708 grams
Comments: Carbonate + Silica Sample


Sieve Sieve Weight Freq Cumulative
Size Midpoint Weight Weight
(phi) (phi) (grams) % %
-1.25 -1.375 0.101 0.1537 0.1537
-1.00 -1.125 0.176 0.2679 0.4216
-0.75 -0.875 0.172 0.2618 0.6833
-0.50 -0.625 0.592 0.9010 1.5843
-0.25 -0.375 0.890 1.3545 2.9388
0.00 -0.125 1.372 2.0880 5.0268
0.25 0.125 2.246 3.4182 8.4449
0.50 0.375 3.143 4.7833 13.2282
0.75 0.625 4.342 6.6080 19.8362
1.00 0.875 7.735 11.7718 31.6080
1.25 1.125 9.129 13.8933 45.5013
1.50 1.375 10.181 15.4943 60.9956
1.75 1.625 9.433 14.3559 75.3516
2.00 1.875 8.739 13.2998 88.6513
2.25 2.125 4.483 6.8226 95.4739
2.50 2.375 1.722 2.6207 98.0946
2.75 2.625 0.730 1.1110 99.2056
3.00 2.875 0.301 0.4581 99.6637
3.25 3.125 0.137 0.2085 99.8722
3.50 3.375 0.060 0.0913 99.9635
3.75 3.625 0.015 0.0228 99.9863
4.00 3.875 0.009 0.0137 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000


18



16



14



12



10
[-


8

U-
6



4



2


-2.00 -1.00 0.00
-2.00 -1.00 0.00


1.00 2.00 3.00 4.00 5.00
Grain Size (Phi)


Tweak ACUMPLOT X-axis here
X-axis minimum -3
X-axis maximum 5


Relative Disperison Scale
< 0.5 Excellent homogeneity (e.g. beaches)
0.5 to 1.0 Good homogeneity
1.0 to 1.33 Fair homogeneity
> 1.33 Poor homogeneity


Statistical Results
Measure Original Data Transformed Original Data
in t Units Data in Millimeters
Mean: 1.2583 0.4180 mm 0.4738 mm
Standard Deviation: 0.6949 phi-units MV --- 0.2824 mm
Skewness: -0.5320 NU MV --- 2.6448 NU
Kurtosis: 3.6050 NU MV --- 13.7890 NU
Median: 1.1976 ( 0.436 mm 0.4373 mm
Relative Dispersion: MV --- --- --- 0.5961 NU
Mean, std dev, skewness and kurtosis calculated using method of moments.
MV = meaningless value; NU = no units (ie., dimensionless)
Transformed data calculated using mm = 2.o













Sample I.D.: MEINZER13e

Sample I.D.: MEINZER13e Sampled by: Start Sieve Size (phi): -1.25
Sample Date: 6/28/2001 Analyzed by: A. A. Dabous End Sieve Size (phi): 4
Total Sample: X ISiliclastic Fraction: Carbonate Fraction: I Pan Sieve Size (phi): 4
Longitude: Latitude: Datum: Sieve Interval (phi): 0.25
Surface Elev: Datum: Accuracy: # Splits: I 0
Sample Depth in Core: Compaction Corrected? 1% Comp.: Total Mass: 65.797 grams
Comments: Carbonate + Silica Sample


Sieve Sieve Weight Freq Cumulative
Size Midpoint Weight Weight
(phi) (phi) (grams) % %
-1.25 -1.375 0.102 0.1550 0.1550
-1.00 -1.125 0.120 0.1824 0.3374
-0.75 -0.875 0.201 0.3055 0.6429
-0.50 -0.625 0.498 0.7569 1.3998
-0.25 -0.375 0.965 1.4666 2.8664
0.00 -0.125 1.387 2.1080 4.9744
0.25 0.125 2.241 3.4059 8.3803
0.50 0.375 2.960 4.4987 12.8790
0.75 0.625 3.747 5.6948 18.5738
1.00 0.875 8.323 12.6495 31.2233
1.25 1.125 8.998 13.6754 44.8987
1.50 1.375 10.329 15.6983 60.5970
1.75 1.625 9.791 14.8806 75.4776
2.00 1.875 8.696 13.2164 88.6940
2.25 2.125 4.257 6.4699 95.1639
2.50 2.375 1.734 2.6354 97.7993
2.75 2.625 0.831 1.2630 99.0623
3.00 2.875 0.355 0.5395 99.6018
3.25 3.125 0.150 0.2280 99.8298
3.50 3.375 0.073 0.1109 99.9407
3.75 3.625 0.029 0.0441 99.9848
4.00 3.875 0.010 0.0152 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000
4.00 4 0.0000 100.0000


18



16



14



12


U
i 10
10
a-


8

0L
6



4



2



0


-2.00 -1.00 0.00


Tweak ACUMPLOT X-axis here
X-axis minimum -2
X-axis maximum 5


1.00 2.00 3.00 4.00 5.00
Grain Size (Phi)


Relative Disperison Scale
< 0.5 Excellent homogeneity (e.g. beaches)
0.5 to 1.0 Good homogeneity
1.0 to 1.33 Fair homogeneity
> 1.33 Poor homogeneity


Statistical Results
Measure Original Data Transformed Original Data
in t Units Data in Millimeters
Mean: 1.2688 0.4150 mm 0.4697 mm
Standard Deviation: 0.6922 phi-units MV --- 0.2775 mm
Skewness: -0.5017 NU MV --- 2.6283 NU
Kurtosis: 3.6557 NU MV --- 13.7832 NU
Median: 1.2062 0.4334 mm 0.4348 mm
Relative Dispersion: MV --- --- --- 0.5908 NU
Mean, std dev, skewness and kurtosis calculated using method of moments.
MV = meaningless value; NU = no units (ie., dimensionless)
Transformed data calculated using mm = 2.o























APPENDIX II

ADDITIONAL SAMPLE STATISTICS





























S(LO
' -(- 0

000




C) to C-
Lo N
co NT LO

666
ooo


(D000 )




*^omr
~ooT-


T N (0
0) c NT
T C0 N


(N N Lo
woh
(Z)e
man o
h]e


0 N- (N
ON N N
(N tO 0)






CN CN LO
(N 00 (0




tao 0-
LO CM =
N N tO
(N 00 (0
= = N


(0C
Moo







0 (N 00
N (0
604 Z


0 Co 00
N- CO C
0' 00





to 00

6 C6 C


N 00 C
(D (M NT
(N 00 CT) 00


0 o
(r,
mC8
S
?


' 00 3)
(D oo
0o (
000





00 CD
000
666


00 '- T
0') (N (0


00 00)


to co o

c oo




ooo






00 C
coo 0n

con O c
00O co


- 00

(0 LO (0
-co C))



00-CN
000)
N
03^


(D (N -
C) C( C(
000





N 00 (D
LO -

66000


moo
0C) 00

coo (0
0') 0) 0)



To 0)(-
o- 0o
0') 00 c)
'-00










coom
-00






000

Cw 0 N


C- (C (N
C0) : to
00-


00C
02j0
030)
oo
C) to- C
00 )C).



Co


'-'0


D0000 0

soCmeo
rZcomm
mamme


to 00 co

c, idd


0 N 0D
0) (N 00

666


S0000000000000000000000000

" 0 000000 mencme0~ r0000oo
C OOOOO~ C C) 0 ) N 0 N ) )' 0 0 o C) o oOOO 0'


000
(N D C-
S00 1-
=- = i


000
N- C) to
to N- LO


000
0 (D 00
0) O CO
O6 )C\
rr4N


000
O-


0000000000000000000000000



~ (D^gys yqqqqooooooooooNNoNo
(1) Lo- o Lo Lto to o Lo L o to LO L o L ) o L ) o Ln rt o O


0000000000 oo 00000000000000
N0 000000000000000000000000

N o- -o No N O CO C o


LO NT -

000





0Y) r-
o co o
o C) C

booo)


N 00- N

000-



C0 C)C
C) C CT)
000
000
000


I


0)





Z)





(2

z





C )



UE E
m
2


0 M)-
0030






00=






mD m
C 0 (

LO to
o66


0) C^) C)




Cin '- C
cn o6


to 0)co
00 NT NT




NT 0) CO
to (0 co






CD NT N-





000
N c) tO
666


4.


00N




ma
N- Cr )







N (0
6dd


o 0o3

d- C) C~

0) (0 -
ddT-0


00
LO tO 0")
LO CO) (
c060


000
0T) N- T-
(N4 CO (0





















































0)



z
rD



o
,


m M
a E

r


O

U


0 C) (N )
0 1-
000
000





0 (0 (0
0C 00
Sc- 6


LO C4 0
o- o o
000
000



C) CM C
(N CO 0
000
000


00 C-
000 )



oo I I


00 o o
LO C) o)
o 00


CO (D C
(D0- LO
(0- (0





LO co co
C(D r C
(0 (
666


CO C) 0






0( 00
LO (N C)
C C0) 0
000
666


I


co o (N
0 0 N-
o LO
dom



CD 0) N-

o ob




S00
c- L
0 CD O
00 -



000

000

c- d c-


LO (0D
00'-
t C)- C
(N C 6




00 C) Lo
N 00
(0- (0






ooo
N NT- (D
C) CN CN
(N r- (0



000
N N- CNM
(N NT (0
ddd


'0









NO- 0
or






000






00 (0 N
(00) NT
Co ci C)

6 N .


c) (0
0 LO LO


( 00


co I

N-N
Com




r- ( 00)
r- (0 o'
0) N C)
0 (0 '-
6 Lr6 cr


000
(N NC 0
) o o
(0 (0D-
oZ)ir)i


r-oo
(0 o ,-





C000
000
00 (0
0C) N- Co
(N Co LO




0C N 00
000co




) CO ) C)
'-00


000co

N LO (N
= .6


4.


Co N- CO O (0)
N -(0) 0)M-
oC c c) LO (D
0 '-(D0 C) C) 0
So00'- C C


CD (0


666


C4 CO
Ico CN
CO0CCM
0ocM0


0 (0'
o<
00 N
'-(0


n00 (
tO tO
r- (N (0
co C0 (0


coo


?tL CS
C^)(0(


LO LO (D



m m m
to -no



'0C (0
N- (0 LO
(1) ='
C)Om


S000000000000000000
cE T N m (0 N m) NT- m 0) N- C0 (0 tO (N -
SO M M (N CO '-=(0 N- 1;- rN- o (0 CO N=(D
NO(0O N- 13 (N 1;3 0 CO 00 COON
C 6666CN q(m(c==CC


00

00-
d o 0


000
D CT) CM
co (0 N
(N CO (D
666dd


000
ro o

dN ,


000
0) r- 'T
NT r- LO
C)00 C
6(b00


000
O NC
= d d
CcOOl


S0000000000000000000
(1) LO tO Lo Lo Lo Lo Lo Lo Lo Lo Lo Lo Lo Lo Lo Lo Lo Lo o


N NNONNNNNNCNCNNNN


00000000000 0000000000
~ 000000000000000000
>Na ononononononononoo
0(0) N ( 0N LN I N- 0D LN I N- 0D LN I C0N LN I-C C 00
S66o6OO= =m omOoNmmc6L
oRdddd NNNNAMMM40










































































0) 1;- '-(0 (0 0')
Cm= 00 CO -
Cd) (0 0) (0 00
CN CO) ((0 (D N'-4
o o00 Co o


' I- N
00 (D Lo

00 0
Co Co C


C0 C t)
C( '- LO
C- (N C(
090
ONG l


NT 0) C)


666
(Z)CC
VMO


CO to 00

000
ooo


n0 rN r- M CD L o N CO r- M Lo 0o
(0 r c= ) r- 0 )-= r (N 0 (N =-0 c0 1;
00 0 ( (00000 00000
ddddddddddddddd66666666


co -o
N C) NM

N C0




10( rT
r- 00))











000
r- 0'-)


ON 0





O( (0D C
00 CO
(0( .4
(0(0C


N co
N- 6- 0


LO 0
C) 00












C) 0' tN
.om






00 ) (N
0) 0
0') (0 LO
N Lr Lr


000
N LO )
(D LO 00
0) LO N-
SLr6 Lr


r- N N- N-
LO 0C)0-
LO 0) r- LO

N co(D (N
oNTLOr
C~ 0 C to
0~z


0 to 0)
co
(6).F


I- I- (N







00 C)
0)oo m

Co (D



co -o
C) Ct) CT)





000
O- (N
0' LON
L6 .4 =
ooon
oo -^ C


N- (0 LO
00 C)
COO
S1;- CO)



o


000

h!Ci~r


C)0
0

'-N-

to CT) F0



000
tO NT (0
(0 O (N
com











O Ot CO
Cml





000


Sb 6


-(0


Co

000
0 (0'-
(tO Co)
6 6 6


S0000000000000000000000
m 0 (0 0 N CO D CO N 0 13 CO to N 0 to mt O 1 CN (0
S to N- CO (0 N- 0D0 CO 0 0 0 C Nr- CO tOOn O CO N
'D = NNNL00 0-oD 'D000


000
to C Oo

666dd


000
q- C)
OO (N 0
r- () 0


000
C~) O -
CO LO N
C0) 0 -
C\jLr cD


0000000
CO C T C C D
LO LO '- 1 (N (N 0 1
L- C C to Cd) ( N'
rrjO6d 6


00000000000000000000





0m000000000 o o o o oo o oo o o o o
0000000000000000000000
SoNomomOmomnomoononmono n
N C 0 LtO D O D LO CD LO 0 o C0 Lo Co Lo o o C Ln o C o

S=I 1R =NCO CO


n00
C- to r-
000

CD 0 -




C) 000
0C) 00
000


1;- 0 -
C- (C 0






N- -0 )
000
000


I


r- r- C 00C) -
LO '- =- LO 0) (0
0 (N 13 '- LO r-
CN CO r- (D0'- 0)


0)
















n E
J M


o E


m

! r


o
E

U


o -
o00


0) Lo 0)

coo
0 CD C)



CD) L0
00C)
d C (
0) o 0
C)0'-
cd66


0 00




SN 00(

ddd


ooo

000
co 0


4.


0) LO N-
^- (0 (N

666


Lo m) C
C) CO '
00 (0 N
oLO 0)


00
r- C C(
0 (D -
v- 0 -











































a,



E

C)



0-






n E

0 0
u )



m E
2 !
rn


0

E
U


N- (N 0
c0 00
000
00
000



0 I-
0c 0 C
000
S00
0C) C O
666O


(CN ) LO
(D CM (D





(DO) 00

00 CO


C00) (
) (00D0
000 N





c co

666


I


M) ;3-
CN (0 0

oodd




S00 (





Lo 00 00
Scom co
LO 0

-00



000
co NT
000
co
0CD6


000
N to0



000
or




CD C- CT)
ooo
C)rnC)
rhi]rCT


'T NT LO
r- 0 0)
000
o 06



oo
0- C)
O oo



10



00

00



00

00
6O


I1


m) 'T (0
CN (0 cN







C) 00
Cm Ln C

000


o ( o
mo C5
Nm



CO

eri '
say


SE (r) O o (
10 0 cC (r0 m
odddd


000

00.- C
ood
d o


000

(00 (0
CM b m


(0 (0 N
tO C) 00
) (0 (0
'- N- 00
00 00)







(NT






LN 0


,oo
Cr)
q* ct
6d


0000000000000

SCL Cl) (D0 00 -C) (D0 0 = Cl) (D0 0



a, 0000000000000
(1) 0 000000000000
NDOOOOOOOOOOOOO

OOOO-er NNNNO
N LO C LO t D O oD oto C to C tO 0 tO
C/ 6 6 O6== = N
































00) 00




=- (D CM
0C) 00
6 66


0 M) C) N
CTo (Co

T Lo (D
eme


4- CN 0
C- O C






CON
o-o


o -


coLo



00 00 0)
CO C 0


T COD 0)(mN 0 (N
( 00 (D0 N- -

odozo6*


000



000

c) (D
C) (0

00 00


C o- (D
Co o 0
.4 .4 cy


000
Co (0 LO
C0 0LD C




000
0 LO 0
00C ) (N
ci c\N c\
orno
ama

Cihj


mC'TC N( (D0 N
Com 0 C N r- )
C(00(NC 0- 3- 0)
StLO N NcM 0Cm)Lo
SLto (0 m C 0o m
(Z)LmCC) em C
em(Z)ecme


;- CO
(N 1- (0
Lno (0
odCT o


Co (0 Cm


'-'i '- t o '- 0 Nt Lo N cm 0 CM r- 0M N rC (0 0
u cE rt - o0 ( 0 N- 1;- LO 1;- Lt 13 to 0 tO 1; (0'-'=
M M M M';- r0C CO 0DNr- = Mr- tO 13 N M M 0 IN-
So OOOO-0 tO M CO o CO CO CO M M CN-
01dddddddT-^r~~rim~mmmcNNT-dd


S00
LO N Lo
000
odd


000
(N 1- 0)
00-
6dd


000
CO LO LO
Lo t oo
to C) CO
,4,


000
000
- 0C) C0
SCOR
I'-.. o ) Cl


000
000
C) CO C)
CO O N


000
000
C) C) C-
C0) (N 'r-
d d
000C)


0000000000000000000000






OOO D^ doooooooooooooooooo
(1) tO tO tO LO LO too t Lo to o o Lo o o o o o oo o o Lo to o





1 o?? Coo o=N oCO oo


000
000





CN CO) CO)
000
C) 00
ooo


I- (N 00
NC 0 (D
0C CO
000
666



N Lo CO
=O Or (D
000
000
666


'-0) C<)

(-) C4 LO




0) C( LO
(D C) C)
0 C( LO
C000

0 (N


I


o 00 r-
000






CT) CO) C
000
00,-


0)







)
E







U
z
rnr

n E
m M
0
C )


U)
U) E
m (
2 !


Sr o00
CD) ) (0
N 'T N-
S00




I- CO -
C) 0 N-
C0 C( C(
S00





C) 00
00
) C0) C(



^- 0 '-
odd




C00

b b b


t 00
o o (C)









0000
C) C0)'





CD (D 0-
0o 00



000
ddd




. od
(N b- b


cgm







0- to
o o O


o '



t- r






r- tn N-
000







NT tO N
'- ( '
C) s C)


C0



o-) C) F_









co D N
00 (N



C) C) C)
00
000
0 0




000


CO C)-o


4.


^- ;- LO
C') (00)
0 00




N- N
C') (N C")
oNo
C) 00
odd


(D (DC) CO
m^ O N





- (0 (0
0) Ln
(0 r- NT
0' =-
d d d


C m
CO






00)

o CO 0
feS


SLO C)




t C).



LO 00
'-(0 CO
c-di6





























COO) 0
0 (N
000
c c


oroo r
O (oD 0
C) 00 LO
0000
C0000C C


LO CO LO
ON-
LO- (N
OO O


M O O0 (0 M N- 0C 0) Mc
0C)0 0 (N (N '-00 (N (N M
OOOOOOOON O O
000000000-0
Sddddddddddd


(0 rN- N m T r-
N (0 O O 0) to N-
ooooooo
C;T to 00 00 mCO N-



c o00 0 -(
0000000

0000000


SN 000N N 0000

OO C) C) (N C)
COO) C) C) C) C
C) DDD000000D





ddddddd
- 0 0 =- CO C (D
C) 000000
c)i C C C C C C


0 00) (m 0 C) (0
m m N- 0o Cm (N '
p C:) ton-0) NCT)
C) 00-' (N


mo
C00
0066


OVON
000D


0o






- (D (D







(N (N 0')
CD LD CD
Nd

CMO CO(0






co (0
6co N


LO Lo (0







CO C
co (0 (N
N- 0M -
0 (N


tno CO
C)o lo (N
000
d (6 L6~
IN-- CO"


SC~ 0')

(0oo


r- 00 0o
LO LO LO
00 (0 00
CoTo)T
omo o,


(0co
CO 'T ( 0 N0 (N 0
O ) MmII
(O (0 (D C LO r- (N
SLno Co 6


I- c(
(D 00
Co C'




000

ooN (0


Co) (00)
to (0tO
00 C) (0
M'- C~)
(N co


r- LO LO


000
'mo



-0 ( (D0



IN tO =
orm c



6) C) C)
to\


0 (0 N-
I>- 'T
o Cm) r-
Or ^r
r^ oo CT


N 0 o
'-od 0Lr:


0) (N (0
0 0) (0
Co CN 00


() C) o
000




- 00

666
ddd


CO (N (N
mooo
00 m m





d- (0
'-N-dN


ccm 0 0o 000 o0oo 000 om0000oo 0 o00 o 0 CT00
u) 0E ;3 C( CO C[- O N- 00 C ) N- O '0 0 CO M O 0 '- C= 0 CM D toM[
S 0 0 (0 =- 0 t N 1;30 (0 00 CO 1; CO CO D
C)C C)C CC =Noco -qOONIN==


0 -0
T 00
- o 0-
C00
0dd


0000
Ln r- 0o
(N CC) CC) CO

dddd


000
Ln Ln Ln
'o (n


000
'C0) C)
om


000
0-0
CO 0'-
co o -
o in ,-
in,


000
0'- 0)

-C) Cd )
'-. "


000000000000000000000000






0000000000000000000000000
w0)-00000000000000000000000
om ONmomoOnoonomonomonornoo
WN (D L O D LO (o O 0D LO 0 Lo 0D LO 0 Lo 0D LO t D o 0t L0 t o 0 0
LO IN ( [- LO INj 0 IN tO [- 0 N tO CN- 0 ( O [- N C) 0(N tO r-) C
=1 1 1 ID C: C? ) ) ) ) = = N N C C C C L


co Lo (N
" 0 (N
N- N N
OO '-





N- C, (N

000


C) h nO)
o (0 )'-
I-) (D '-
ONO




r- LO LO
r rN- 0)
LO (D0 '
-00
666


I


CN 00 (D
I- (D0
cnino
mo0n
NOOd


'- (N 'q-
0) 00 N '-
00 C 0

='-666:)C:


a)



Em











o
m


C)



a (

2 !
3


0F

3

U)


4.
















































0)
Z)







z

2|m



C )



o r
a E
2! (


0)


-5.o


C0D C 0
0 0 0
00-
S00




0 C- .
N ^


0) -
(D I- C-
d00
0N 00





oo
0 d
0C0 t


oN ;- 1-
(D00 C (D
0T) N 00 N
CO N O 0
dcd d


00 C) 0
- 0) 0
5-d0


I


0 N- 0
CD (D0
0 (N '-
0 (N 0
b b--,


S 5
(00
C10 C0
(N .
(0O
'T~


C) ) C O (N
CD 0 COL (D 0
0 0

C) ( 0 00
0000C


0 '- LO
N N m
0 0 (N
)00



cN CO )
0C (0
0 0 (N
CidO


(0CO)
00) )




000
1;- =0)
0C) 00
= cIO


d000
S00 (0
0) N ro

0) 0) 0)

















000


qr ^d


I.


o- '- (N
0) 0) 0

y00




OWN
0 0) 0

d66



=- 0
) 0 )
0 0) 0


0m C



'- CO)
g 00 N




NcO

SO
CC
MCC


1 000 00
m E I n c D ( N

OO(D <
0 ( oCO oCO~'-
01 0d CN 0 0)


000

C ( CO
000


00


'-COD


Lo00)
C0) 0)
CO C -
o MC)
* C) C-




000

N~-




000
NO-C
CO 0T)'


00000000000




000000000000

0-00000000000
>N ( COOOOOOOOOC
ST a- CNLn- 0 (N Lo N- 0 (N
a, oncso c
Or r00NNNN00




























CC)-
--00
0 -0 N
000
666
c OOc
O o


C m C) M tO ) 0
( 0 0 0 0 (0 -
00 T) N (N N N
O O 66666


00 (D
SCO (D
(D C(
0) CO 0
666


- 0 N -0 M0 () MO O

00000 00 N 0 00
0 0 000 (N O r L O '-0
cd6666666666666


I


r- o C -
LO LO N-
Ni (0 r-








000
C), m o



coo
r- Co Lo




cN oo

o o





O oo
- (C (0
C) 00
cb b


iLO c (D
C' (C0 )
o o6-





000
LO r- N
rm < o


0- (0

LO (N (D





000
SN b

(o )- t
0000 0-



C( CT) C)



000
N 00 00
N0') LO




6C C,) C
N 0'LO
6o 6


I- (0(0
SC) (0 )
6 -hT


m (N r- (N m 'T rN-

( 00 LO 00 (N N 00
l 00 T N r- C C
M LO r- m) m) ) )


NOC) LO
(N 00 -
S00
00 -( (N



000
C) ) C)


000



00C)O -
(0 LO C)
2n


(0 '- N
00 0
co' (N (0
L6 r- r
CO CO r-
Ccihli<
mSnr^


4M0L 0)Nc
co L oo 0C m c
C0 CO C)
6 = 3 0 N


*^-^m
0C) L(







men
000
(D 'T LO
CD C- CD)




- (N 00
(0 NT LO
LO CO- C
N '-d


-oT00
L- 0)- (0


0C)0)0)



r~o6
LO (D CO
CO CN (D
L6 ciC


00 C) C) co (0 00 LOCON- (N
SE t N LO CO) N) N O ONm -
NT0') 0o000 (
C) '-(N C 0) 00 0 0 M CT) -n 0 O N-O Ct
o oC)o o co Cmm O
01 6 oo6 -. r om oo. d


0000000000
LdddO D ( N 0 c0')N-
C) 00'- 0) 00 0) N 0 r- 0
d6 6 N6 q


000

D- C CD
c( '


N0000000000000000

> (N C D CD CD CD CD CD CND N CN C C CND C CD


0000000000000000
0w0000000000000000
S p 3 (N Lo I- 0 (N Lo I- 0 (N Lo r- (N LO Nr-
S==OOOO =' =' N N N N 000


0)





Z)
r-n
E








U )

o E
o

m M



U) E
m
2!


0)




-3
Z


I.




























o in o
0- (r -






S00 C
000
C00


0L 0
mo c
c-i Cr )


00
00
o .
CCO
Ni


oCa
0






0 (0
S0
LO LO






P .0
0 0
o C o


(N


0 C0
orO
^ 1


0 00 -


000




000 (D
000
000
C0 CC.
6 6


CO 0i
NT m LO
N N in
(N 0 (0






0 0 (0
60


0o
O3(.LO





00

(N
o ( ^


0 0 LO
001(
00 N
000


00 (N


000
000
0 0 0


in Ln (0
n Ln rN

(0 (0 (00
moo



000


000-
00 C

00 C(



000
000
o LtO
oooo


00-
000


000
000
00-"
ddd
CoooCo


CoC)C


r- NO in in in in
(co (0 (0 (0 (0o Ln
(N 0 (0 (0 (0 (0 0
'T 00 m m m m m
M000000~


LN (N


0 0
o~)



oi



0 o
CO
N


C)


00(0

000



00 (N
0 d
000o
00co
00-
6oo
d d m


(0 0
Co)


000 0
o00 n
00C)- 0
C: : C)


0000000000000






0000000000000
S0000 000000000
Nca o 0nono 0nono
> N LO (D LO 0i o D Lo in Lo i Dn Li o CDL
OO 1 O LO 0 ( (N
000-Id1 C C C (=== N N


I


0)













n E
m
0








C-)
U E
a(




N E
E m
r E


0)
L









<



U

E E
( (


m m


! r


I1


















0') 'T NT

q (0(00
0 ddc'J
II C II C




o co 00
o Co -
0 (0 C(

000-



000
0 (N Lo
000
000


Ce '- Cn
0') CO "-






0( C) C
000
0C- -
666
UNN


O0OONTOm000 0--
cn oo = m=m=cnm
ddddO-r- NCN


C0- CO


0T) -r =r LO CO LO [r?
) r- 0') LO C' () tO
C'-) N- 0)Tt o
(Dto to NT 0)6C
0') 0 co) 0') c')
C: =N L 0


0') )
CO C; -
tO 0) 0



00'-







000-
CO CM 0

666d
cooo


S00 L
(D tN 00









ddd


ooo
(ON N-











000
So -O
666dd

0 C'- (
666-


0N0
00 (N 0)
( CO C')




0) C- C-
0Lo(D
(D 00 00
o666

000



000
00 to(


coo o
LO (0 o






coo



LO LO
6- 6- 0)



CC) C'C)




0 0 0
000
tN T- to



0dd

tO r- LO
666


- C '-

S O 0
00 0r 0


r- 00 (0
co N-



co 0)



'- r- 0O

COm


to CT) C)







000
' (0 1;-
LO c) c)
q .- L6


00000000000000000000000



Nasmso smsmsoNNNoN No


00000000000000000000000
a) LOd ooo ooooooo LoL o O ooO
S t 0 t0 0 0 0 0 00 R 0 t 0 = No c0 c C) 0 t 0 0
.N C I O N 0 N to I- 0 N to r- 0 N tO r- 0 N to I- 00
=1= -' C-0 0 0 : C)C) : '= = N N c c )c)q L


I


C) LO 00
'- N- tO
~coN
mmhl


0) 00 LO

(000












N) c) LO
( O CT)
00ee




000

000'




000
CN C) LO

6 6 6


o
N 0


mTmCT)CTF


(0 r- 0)
aso

S00
N-'-'-


S(D
-00 0
(NN





N -r r-






CO 0





co0)C

0N0
'-C 0r
r^ O C


- "
0

C/3


a
0
U)











) E
a o
m

o



m m
a E


00


a
U)






F-g










a E
m m


*1.


( 00 (0
LO '- -
000-




(0oo r-

to (N C)





(N C0
000







000
000
ooo


0 0
oo
S00o


To) Lo-t


L t L0
LOo


(01- (0







0)0)
C s
0i) tN- to





o o LO



C) 0 N3

0 00 (
00 C) C-




ooo
00 0
o (0
00 C) -
C ( ir6


LO (N (0
0 r- N








co
C) C)



000

000




r- 0'-
CO ;D 00
S000 =(
erm T




















0 C:) C:



k cr
11111


c o N
ooo
ooC)




CO) C"-
(00-
o-



000
000 o-


N CG LO
0 (0 in
iO 0') r-












C") 0 (0N
o N-co
mCTNh













coo
C) N 0)
=- CN
66000


000


(0 N 0
S0oo) (0





o CM oo
00-0
CT) (0








c o o
00'-
C N- (




000
o0'
O o--
0'- (No
o666C


(N 00 (0 0 00 (N 0 i n 0) o

(o CN== o N=oq q mo






o00000 0 N mN N

ddddddddddd


I


0C() CL )
m (0
m (.l


00 (0
oo
Co C)O


N 'T LOi


0- 0) (N c N- 0
ON 'C0C'
(N00 C-
(De ;3


'T 00 LO
ooC) CO)
i- c o




0 00
- co D
in r- (0
d. Od Od


in "- 0-
SI O I-

S(0 0
'T NT 0)




00 o 0)

CO) C-0)
n 0 0







000
C) C) CC)


mdm





0- d
666


00 N 00



0oo
- C) 00




000
(0 00 r-
04 in L6
c-N.L


(0 (0
Ni t(N LO
(N in



0)o o 0)
o o LO





000
C0 00 (
0o C) C-




000 (
o o o
o00)CO)
0CCO'L


S00000000000000000000000

a) a) 2 D ( C CD CD) D DCD D CD (OD (- C D ( (0 (-D D C) (0 (n
9996666 dNNNNAMMMW


00000000000000000000000
S00000 o o o 00000000000000000
N'' o n o n o n o ~~ n o o
N N I L o 0 p oN o I- 0 N i n 0- (N r- p0 N I- p0o 0


"- L 0
0 C? C?
000





00)
00'-
000
oCo o
C o o :


coo
0 =- 0

0o-
0 -0)






- (000






000
,- 00





000
000
(N '-0








666


o
C ) 0
0 C






S(N C-
0N0
ooo
do do


c0c0


(00 O -







N N 0

co N



(0 (0

000 C) C





LO O 0)
r
)CCN


- "
0


C/3


LU L


rnw

n E
m M
o
0


U )

a E


00


a
U)






F-g










a E
m m


*1.


io Ln 'T
(0 0 (0
O rn--

6D 6



0 .- 00)







N C)-
ooo


000


00

000dd
6D 6
00 6


0o
0
o o
00 00o






Lni L
mo6
LO C


Ln (N (0



hi
0 "- CO
CO C)



00 C) C)
(N
r M- =

cN oo


N-
000



o- 0'-

000

00 (- 00
.O =O





















































0)
C)








M M




m E
a E

! r


0)


-5.o


LO LO (D LO 00 (D
00 13 (N I- () LO
C o 00 00 (D 0
0 13 r- r- N 0)
000000


C-0 C(
I- N- CO
LO 0) r-
666
454 ,
vbG


0 C( C(
C) C)
000


C Mc00) 0o o Lno --(0 Lto M N N 00
M0 0 Lo T r- m0) 00) to N m0 00 (0
N o o ddddddddddddd o -
oc~mo66666666666o


I


LO 0C ot 0 t
CN' ( o L0 m N CD (N CD N 0


C- O '- L)n r0 oto).


LO tO 'r O 0-
CN4 (C)(C) 0)000
C'(N (D (
[- -m CM C (D.
co

Cl) '- (N
LO 0C-
cr) 0)m




000
c) 00
N- T- (m


CN Lo Lo
Z- '- CmO
Co C) 0)
CC) 0(0C




000
- N 00
C0) 0 (0
.4 (6 0d


0O
to to LO
on






'O CO (




000
r- o r-
'- (N (0
(DmTZ)


C) C
- 00 C)
r- 0 0



0')

0o) co




6coo
(N 00





N L00O
ddd






S6 6


4.


m ) 0>') 1;3 0T)
CO Co O (0
co co ;3 -- 00 L
"^?S^Ln
()C, c -r
N co LOm


M '- 0)
C0) = 00
cm (0
cr500


l0 'L
LO '0
C) c

C2i


'- LO 0C)
00 'T
C() tno 0







coo
LO q Lo
LO r-


S0
moo

r 0
m C)




CO
000
CZ) 0 o
Cc) 0'
666O


S;N0O o momroOOO
o MrOCi NFOOOO


00
CN (D (C
r- N- C(
Nem


0) C) C)-

0 om
Cr ( CT)-


000

0) 00 C
oNl \-


000
o t o


666


C )- CL N [- N N- C -- N N



ooooooooooo
Cw- 000000000000
=. = = CCOO O COCm m- m


( I Q ) > N CD r- o L (Nj 0 N to n- 0 (N
."^ Q-oin Moi rMS
w iM888888 o ooT-s
.ige eSN RE 0a ges




























O C ( 1N- 0
C0) r- ) (C (D
CD -- =1- CO tO
m) 0 MN O
dddd- d


000
C- 00 C
0- 00C)


000
LO LO (D

000666


I- I-
000
0 0 (
00 (0




000 L
co o c

o6o66
000


I


8Cr
C'4;;C
co CD 2


o 00
N\i OLr
(N CoLO


on o
CDO C( I- (D 0)
mC o CD 0 c

C') (0(NC(


CD 1- toM

LO N- 0





LO 0 0
- -- ciN
moo



OCoo
nrC
N- T i


C00 o 0
C) O
o (0 0



000

LO (D 00
~ 6 cd


LOO '

O- NT 00



tocoC)

0C= (





toN c)

ooCo-



CM co r-
oN r
inrm

mcM t
(DmTZ)


4.


m ) 0>') 1;3 0T)
CO to (00 CD
co co ;3 -- 00 L
C cr o rn r-
N co LO


M v- OM
C0) = 00
cm (0
Nr50


O CD'


C2 C


c to o

(r- 0 m



C)00

L(r~oo


c ;N0O o mom roOO
o Mrc ii NFOOOO


000
CN (0(D
r- N- C(
Nem


000
0) C) C)-
C) C) -o


000

0) 00 C
oNl \-


WN C, (14 [- (14 (,- r-N NN r- N




ooooooooooo
Cw- 000000000000
=. = = CCOO O COCm m- m


( I LO N (9 I- LO (N 0 N Lo I- 0 (N
." ,Qo 888o 8M s |ss
. iMYYYYOOE ooooT-T
0 -9 9 90000


'T 0) tO
1 C( (0



0 00

000
000


000


3 >








o o
0)



z
rn


u '
o



m
(n E
M M
0n


0)


-5.o


00o
oo o
C ) 0
N-






LO m (0
ooo






000
(N LO N-
= (D 00
N 00



000
(N LO r-
= (N 00
N Co
b b


o 0


r 0

COC


000
ddd)


000
o to 0
'TLO C
dOd d


















0 N- N-
E in tOO
= 3 0) 0 Co


> a oM


< CO


'T inLO (0
T 00 LO
Sco in
1;- 0')
00-





0C) r- (N
T (0 N-
0C- (0
000
C 0 C)C


'- (N CO
co O 0
O I6 C-
= = CN


(000 C (0 00 (D

0(0Ln-00 in
ddddddd


0 (0 N-
in N- LO
001-
o o v


M (N -- 0 N N LO
00 N 00 00
(0- 1 m- 0) 0 (0(0
>- N- (0 N 0) 0T) (0
m q 0 (D(Docod


000
mo C
N (0 (N
'- .- (NC


000
mo
N (0 (N
= .


LOC (N (0 O (
0 0 Tm
rC C? (D c i L
Sy( Lr
0 ~h


0) (0 LO
Lco Co -
cin N -

(15 .4 (


000
N N 0
1- 00 )-




c oo
000
cC) 00)


r- t- (N

0 c C)
C) r in





r- n- co
0) 10- =-
(6 C6 C6


CN 00 00 ) 0 (D0 N
NTo0 0 r r o- 0
0 m (N Nin 0) (0
C 0c CmNN
0 OO


LO 'i T in r- ;- m 00 ;- 0 NT- m M LO i ;- CN in 00 0 in CN
c E r- 0 r- 0 CO Ln in N- co N rC N- D 0) r0 (0 13 00
00) N D CN 0 N 0) 0) 0 (00 m ( dm0 0 CN N N in in
OWN N 0NV NN0 Net
CO0 ON0GO mV0 OQO


000
[ 0 -0
O r
LC in in
000dd


0000000
) N ;3 in (N '-
00 N( 0 0) 0) 0
N ( O CO )
-'-(N(NNCN c CN


o C) in
000'
m5q

Cihj


000


T-T- d


000000000000000000000




a 000000000000000000000
CN N CN) C CN C CN C CN (N N- (N N- (N N- ( N (CN N- (N N-



WC 000000000 ( o Lo Lo Lo Lo Lo
( I0 LOOOOOOOo N o o Io N o o N o o o
S omo no mo nom noo- no N nmomo
90906onco66 'oJc0m ro0
"0 '0Y0YY0a0NNNN
I I I I I I II~~~


02) 3- ;-
'- T- (0
oN o 0)
0 N





LO (0 LO
r- 0 r-
S00
O CC
00 6


(0 r- 0')
O- in i-
"- (N LO
oo0-
66m





o 00 CN
00 iN
o o LO
000
C000 C


I


Oin 0') 00
; '- NI-
C 0 00
000
666


'- (N I-
CO = -0)
00( 0

C) C (in


i" L6
o m (0
r- in 0





" o 0o





00 0
C o C)
ooo
0) CN CN
LO (0 in





S000
LO (0 in
c-i d


ia,











N



m M


05
C )


SME
S E
a a


ci,


-5.0


C)


LO C

c o oN
LOin
C6)C( (N



'- i< Cr
0- 00




0C) C) C
000
0 in (0




CC\JC-
0000
cr NT-
0 in (0
6Nm ='


(0 N N
000






(N 00
N C)O Co





000
coo

N 00)
T-T-0


000
=- ;- (0
=.=
mom-


*1.


(00) )
0) N- (0
1- (0 -
N (0 )
,- 0 Ci


00- CO
0) ) (0
0)0)0
000Z


LOC (D0-
C) N (
r0 in N-
























m) o -
R 0 o 75


S- L00000000000
C) 0 C) N m00(0m t N 0(
m C mN C) C) 0 LON tCj N
6 6 6 6 6 6 6 6 6


000
(00 C0
' 0 '-
000666


(M '- (N

h]t i


000

0 (0N C
000
666


C1) 1 0
") t.o (N
ONY
cOwn
dcd


'-N- N- r- to 0- 0 o C) 0 M C

c odooj O oO
O ro oOOO
NON eN oGO
NO oOVO NO


000

- o (0
CC\J'-


000
=- CO
'-( 00
SLO (0
ci C\N -


(00C) 0)
0C) N- (0
1- (0 -
(N (0 0C)
.0 0 .C
I' I-0 00


N 00 00C) 0 (0 N
NTo0 0 r rN- N
om C) (N LO )
06T c CmN N
40905


LC C(D- C) C)- C0) CN
m NT T (N LO 0) 0T)
0000000




) (D C) CT) C) C) C)
N 00 N 13
to (- 0)'M 0) (N
co N N (N to 0 0
=nN N N N N
Cc)Nhl NN


r- '- (N
r- '0

co C)







0) 0 00


LO ( N (0 O (
) N 'T 00 (N 0
-CNO(0O
0- to N-r NT -
= yiLor-;: N


oooor eomr mmr o-Lnr mr
0 N ; 3- tLo 0 tO r- r- L( N- 3- to '-0 (0 N N- LO
L t t 0 N to co 0 N to L (N 00)
d O T CN0 C00 0N m T- T
0 0 0 ~~~~~


0000000

N (N O C ) 00
'-'-(N(NCcN(c N


000
co -
Cihj


000000000000000000000
CN C- CN C- CN C- CN C- C) C) N) C:) ) C) N-) CN-T CN N- CN CN



0000000000000000000oo o
SI omo nom I nom ono- o No
N0 0=0=RRRn- o- = oNN co
"I II'I I


CN Lo (0
C) 'T 0)
CN CM I-
o o -o
006




000
00 C" CM
000


LO ;; 'T


0000




C) C) C
'- Or (0




000
co LO 0
(D LO =-
0 (1
666]


I


000
00 co r-
000
000


T tO 0)
r- ( -

'- C6 CM



ro 0)
0)O(NO)
OC)CM
m~r(D


(O 0 0-'
co) m-
o00o- LO

0C)C)C0)


OD m m
CN (0 LO





O) 00
C)0 C) -
N 'T 0)
r- N 00



000
LT) o Co)
) CN LO
LO NT (0
000



00
0) (N LO
LO NT (0
c6 b


i,,












U ,
n E
m M
0
Cu)



U) E
(O (o
m
2!E


C.











0-
u E









U)








m a
m m


*1.


000
00
D- C) C)
CD CT oT
C- 0) 0)




000
0o 0 CO)

- O 6
od


00- C)

0C) 0) (0

0) 0) 03)
500c
mosZ


0L (0
M N
LO N


0) (0 LO
LO N- "-
c5 c6 (
mhr(D


000
r- 0 -
00 'T )

b o o
CO66


000
(0 CT)
tN
(N 0O
='-=-0





















































CN 0- 0 00 N
SIt O- to 00 N-
CoN c (0 LO

6C66 CM) oo = (N


00 '-
000
000





(000
r- N o
'- C) 0
ooo


00 00 0C)
-00 LO 00)


) C)C



00'0

(0 N-





0 0T LO


0) = 1

000

0o NT
0 to


0) r- 0
0) 00 LO
r- (0 00
" 0' -
o-- (' "


CM r -

000




LO (0 (N
-(D000
666
com


(0 0 (0
'-(0 CO
00L0 )




=- (0 r-
O(.0- 00

















NT00
Lno
Cn 03





T.0')
0- co
0 0
1^s
^r "C

Coi00


'- (C '-
000
000
000





N-

000
000
C0 C0 C0
C0 C0 C0


ooo
Co I- CO


Co C) C
o o o


Coo



0-00)
-00
0) 00 0)
NT 00 (N
0) 00 )














(0 o"
=ooo


000
000
000
000




000
000
000
000
C) C) C)


C") C) C..


0) C(
r- 'T LO
'-00




000
- C0) 0
000
000


000
S-0) 0
000
666


(N NT NT 00 C) mNr- (N C
00 r- 00 ( co NT I- C
(N 00-(m-mC).
rOiDCTLrod0
(DI^mOoC)vCTCT)
m a m m e e m e s
Olhlam) memecO m


LO 0 '(O 00 N cONTT oN
(D OO0 OOOVr O N
o 0 O o ) No000
-q6 ocoo =' 66666


000
(N (0 '-
C0 Co N

m co


000
( (0 '-

( ^r i


00
h o
SCr

6 C6


000
N C
0CT 0


000
Cm) CO
CM -)
(0 (N
S00


000


-dd
(01- (N
='-00


000
(0(C'-
000
666


000

D CD tD
000
ddd


0000000000000000000000
(1) o to o o o Lo LO t O O tO tO tO tO tO tO tO t OO t O t O t O t O t O t t





00000000oo00000000000000
w 0000000000000000000000

'' C3 I LO N 0 N LoN ro 0D N LON ro N LN I pN LNo I-


0-0
000
000







0 CT) '-
000
000
000


000
000
000
"- C0







0 0
o o N
000


I


CD 00 (C
c- Co (0
c000 c


'O C C)
"- 0) 0


0 -O =,
00 00 (N


000


000
00 00 (N

c-i cd c


co 'T (D
to 0o
(0 LO '-




000
0) co 0)
tO 0)m


a)





0)







z
rn
u
(n E
m M

0




U) E

! r


0.
















U


m
2
U E




m a
a E


I.


[- mo N-
- 00 r-





r- (N
'T 00




000
oodd

LO r- 0


;o d d


000
nO o

c oo


^m M
0- 00
LO LO 0)
T tLO 0



(00 (r-









(NM
0) c-'




000(NI -


000

(D ) IN
6o'-





























000
000
000
000


000
000
000
oo o
o o o


(0 to
000
000
C0o =
C) C) C)


S- (N LO N N C O o-

00000000 C0
0 N = oM -;-0 ;


r- r- 0
o 1r "--
000
000




C) C) to
0) C) C)
0 (D0-


000
000
000
666
0n 0n 0
0 0
ooo c


000
000
000
666
oo o
oo o
ooo c


0C) C) C0) N- C Co C
0000000
0000000


r- 0)r-
coo
C; 'to
,- r~i L00




N N 00
o to (
..O O
to N- co)




000


ooro
to (0 00





to 0) -
mo'-
Om NT
d b =


N 00
(0 (0 (0
T- 0') O
r- Co) tO

'"- '6- C


(0 (0 0
q LO 00
S1;C
m(0

r (0 1-


000




N Ct 0d
CCN-
000






Ci C) 0


(0 '- (0
tro CT)


(N CM)
2 .c:)
NhCC


moon



mO-



LO






0 00
-" ( 0

o oo


Ad


00 L
N- 0)' 0
00 C(0




r- r- to
00 ) (N
CO -^
(0 N LO



000
tn tn

o-00


0000000
SNo to Noo
(N CT 0 r- 00 c
- 00 N- CO C:)


Cm) CC)
0 00

(0- oo


0)0)




Lo (D (N
(0 to N
'1- 00
000








000
000


o









000
0 0


(N m) 0)
M CM 0)
00 co)Cm
(ON N'
m m m


00 CO 00 000 q
(m0^ (ZOC d


m M 1;3 oN Mo CDM m I- LO


000
C) C^) C)

dd
to 0) I-

bb'-


000
N- 0T) N-
N N 0)
(N CO N-
NNi .
NON ~


Ooo
0 C D
D (N to
00
.NG
hld


0000 )
(0 (0 N
0-00


ooo
0000
(0 (0 N
-dd


0) o '
0 Ca) (n
o 'T
000



000
(0Z m -
odd



ooo
(0 ( N'
000
000


000

000
ddd


0000000000000000000000
(1) o to o o o Lo LO t O O tO tO tO tO tO tO tO t OO t O t O t O t O t O t t





0000000000oo0000000000000
S-0000000000000000000000
N N N 0 t ooooooooooooooo o
N y3 C) I LO N 0 N LN rt 0 N to 0 (N Lto I- 0 (N Lto I-


I


r- 0C) (
m 00 00
O 00

coo



r- (N (0
0) 0) C)






M C CO
000
L.O ) LO







ci Cd to


a)



E




0)



a M









U m
rorn




a a


0

E
- .

U


I.


mo m 0
000

666



CO (0 0
0) 0) 00
r-' tLO
C- C( (
666


- 00 CO
00o 0






00 o0 (o
'--- to
dOC)


000

odd





























to C) 0)
000
000
000
C0 C0 C0


< n o
000
000
Co Co Co


LO 'TC 0
000
000
666


N 0000 00
0000 CN 00 (N
CD6D666D 666D 666C C C C


0 m n
em0


0)n t NT






CN tNT CD
6 --






00


ooo
(N o CO
M Ln CD
LO 0) C)
6 6 =


I, 0- LO
n-






CD 0) 0o






oo
0) N00






mas
C) (N C
NT NT 0
0T)C(N N
rCi N-i


N- 00
r- r- 0

(0 r- 00


(N0) 'T
00 Cco








. 0 .--
oo.m
co) r- )



00) Nr
LOh





000


C) 00) o N N
0C) N c N- 00
C m '-0) CD N- CD
(- D- ( to 0) -
D 00- C- I


Co L 00
- CN CM
dddnc


mO 0
00 CO -

dm


0 I




'-0) tO
occo





cmn

O


Lo rN- 0 0 r- LN 'T 0 i 0
Co C ( Oco t -m CO-O C)


N-D )rC e)C)t 0) N CTmmmmF
(N~ O ~)0'-(0~ ) 0)
mco N- o ) 0 0)0) ) 0


CDCM0
to0 C)
I' ,1 '
hlh e


o m ;3N0 -NI00- -O m
0D d d-N m ;3-C1m m mCC o


000
LO CD LO
0 C .00

ddd


000

Lo M
d dv


000
mN N-
050 CM
WN ^ri


0Coi0
00
oi '06


LCO0





-CO00






000
0- 0)
CD N- 0)
No N- C)
o'-00


00 0-
000



-00






000
000

ddd
6 6


0000000000000000000000

(D (D Q D(D(DM D(D(D(DmCDOO mCDCDOODD mDDCD OO (moD



-00000000000000000000
w 0000000000000000000000

*"/ (D dasm oooooooo o oosomoso
N 0t 0 t o to o o t o t o CO CO t o
=1= ?C ?C ) )C oN NC OC O'


o 1-
000
000
000




0 0 -

C) 00
6 6-


'.- LO CO
000
000
000


C C) 0



N- ) CN
000
ooo
C,, C) Co


I


0 '- N
000
000
000


000

000

000
o o C
Co Co Co


>




0)



z

n E
m M

0



U)
U) E
2 r


S- I-



N- CO
6c66


















oo
o.m
o LD LO

d d00
CO0) C


(0 '- N1
00 (0

0M) 0) 0)



-C) C C)
(D tN



to N- C)






000
br b


Tdd



C') ("N -"


0



o o
000












0-0
CD CN) C

0 0







0O (0 0
000
66000






dd d


I.


0)



E

U





























v- (N '-

S00
000






000
o 00


CC) C
000
000
000




(0.- (0
0- o C)
000
;- 0 r-


0) m cm 0 N ) r( 00 00 (N

oo00No-OO
0 03 to o-
dd C0 00


m) (0






000
0) CO
"- '- Ln




0 00
O C-- d


[o- (0 Co
-- (- (0


odd


m 00
XO (D (0
C- C( (N
666


N- 030
000




000
CD CD o=




ooo
= (0 1-
co ( 003

d d ='


C) 0000

moo
'T 00 (0
00 co 0






orno
d 1- 00
o Co O
66 ='


No
00'-
03 N-
C) (N 0
on N




000

= 1"- CO
00 CN LO




00 0
000
cmi ^


00 ( 00







co) 00
- (0
soo
ooor
1-^ (D


2 ;"- F
C) C-0
000
000
0C0


NN CO
N- C( 0
000
000


N -
000
000
000
oCo
Co Co Co
C? C). C.


N (N 0 o 0 oM m r-
to (N CD0 003 N (N 3 tO (0 CD 0 -
(DN 00 N (( LO C N C)oooo
rMornoriooooooo
N N 0 N 0 N00dd
666666666666.66


0 '-
r-co NT
(0 0)
oLrod

(0 r- 00












ino
000
000



0)n0
000
C) ) C
C) O L
C) 00
0') (0


(D0(D0 c
to'-'-
m To to




com (00
Mr O
NTco
!2. ,. 2


m r N q o N o, Lo o
u E co 00(D( Nc0 Nr

D CD D D Nc;n31-m-.mr0 0 )0 r


000
C( 0 C(
)C0) N-
Lo 0 Coo
ddo -


000
C) C( t
m ^r


0 0
c m
co c
0iCd


C (o N
N C) 0')
LOo -






000C



r Ln r


0') r- c-



oo



LO LO =


(0 (0 1-


'ooTOc
C) N (D

0) 0) 0)



r- 0 -
0- 00
(N o- to
(N '-






'00
moo


dd





'-0


0000000000000000000000
(1) to to to to to Lo tO tO tO tO tO tO tO tO tO tO tO tO tO tO tO LO





00000000oo00000000000000
w 0000000000000000000000

N'' C3 I^ LOt (N 0 N LN ro N 0 LN rt N 0 LN I- p N LNo I- 0
asmoom s m s m s m
99 6o6 -o-o 6o 60o 0 o


000
000
000
000
Co Co Co
Co Co Co
Co Co Co


I


0)
Z)






U)


n E






m E
S2E




m
S r


0

0 0 0
0C) 0() 0
00)





000
CD CM C




C.) C" 0

000
000






000
0 to (N
000
000


000
(0 C
000
666


4.


S00
0- (.0 (N
0 N- I-

ddd


'- C( CO
C) C(-
000




'00
0D to 0)
000




000
0D to 0)
000
ddd
(Do ;C
C). C)





























v- (N '-

S00
000






000
o 00


LO 0- N
"- C (0




ONm
o o





00
0- C- C




S00


ooo






cdd


r (D




oo-

000


666


co 'o o;
C*) C
000
000
000






C )- C)C
000


oo or
0) (0 NT





000






000






oo.o
LOC0 )


oo'


C) 0000

mooo
'T 00 (0






oLO 00
o) c
od O r
6-6 o


C) C- o
000
000
oo o


NN CO
N- (N 0
000
000


N -
000
000
000
oCo
Co Co Co
C? C). C.


m 0 to 'T N N 00 N- 0 (0 N CD-00
0m r LN 0) tM 0)oo (03- (0' ; (M 00 N-
(0N 0 00 N o 0 o C N 0000
N N N N ) N 0000000
ddddddddddddddd


o 003
0) Co) C)
rN (rN
00 LO CN




r- n 0

(Lr,



000
- -C) C)


oo C
00o 0)






0) r- Co
c m 06


(N (N 0
00 ( 003






0 C0 O
N- 00 (.




moo
ooor
1-^ (D 1

^r(D


0 (00
0) r- 0)


(D r- 00


co (DNo
0 0(0
( 00 (N
ooo



too
000

6 0



N '- (0
o 0)

i00


(0(0 co

(D) (D)

(0n r- 03
c 0) 00



~ Cc (N


-CD M0 C MD CD ) 0D CD 0T) t o ;3 0r 0m
co Loo vra m i-^-^


00
0- (.0 (N

cdd


000

Lt 0 CY?
dd -


000
C) C( t
co- q'
(C -


Ooo
00
Oo r^
0CT o


c oo
0) (N -
0) (00
r- 0 (0

0oo










) C) 0C)
to o
000c









N- 3 Co)
'-00


(0 (0 1-
)C 0 (0
C (N (D0

0) 0) 0)



Lo
(- 0 -


r0- co
(N '-




CC) 0 C-
CN CC) 0


N mo C
Coo,




edd


0000000000000000000000






00000ooo0000000000000
S-0000000000000000000000
N o O Om onomo nomo no omo
N y3 C) I LO N 0 N LN rN- 0 N to 0 (N Lto I- 0 (N Lto I-


000
000
000
000
000
oCo o
oCo o
oCo o

C) ) C


I


0)



a)
m-










z


nE
m M
0



U)
U) E
a (
m
2!E


)' (N

'-00



000
CD C0
000



ooo
coo


ddd


4.


000
666
odd


'-00
0D t 0)



000


000
D tO 0)
000
ddd
C)o C
6 :)..6























APPENDIX III

PHI SCALE AND MOMENT MEASURES IN GRANULOMETRY










PHI SCALE AND MOMENT MEASURES IN GRANULOMETRY


by

James H. Balsillie


From time to time it is customary
to record the history of endeavors that
have endured long enough to achieve
significant objectives. Achievements of
particular significance include those where
standards of scientific approach have
been defined. It becomes of even more
import to record the history of such
endeavors when practitioners wish to
make changes to standards with no
historical appreciation of the wisdom of
the founding fathers of the standards.
Such, in part, is the purpose of this work.

At the middle of the last century,
Truesdell and Varnes (1950) identified
that there were some 20 different grain-
size measurement scales in use. In 1963
the Society of Economic Paleontologists
and Mineralogists (S.E.P.M.) convened a
committee, called the Inter-Society Grain
Size Study Committee (ISGSSC), to
alleviate confusion by establishing
standardization for grain-size
measurement (i.e., a measure of particle
diameter) and classification. It was
comprised of accomplished professional
geologists, soils scientists, and engineers.
Concluding published reports about the
findings of the committee were
forthcoming from Rogers (1965), Folk
(1966), and Tanner (1969). It was
concluded that a method devised by one
William C. Krumbein would become
America's standard grain-size
measurement method. Krumbein (1934)
redefined grain-size using what was
termed the phi grain-size or phi scale. Phi
( ) units were numerically defined as:

d(mm) (
=--log (1)
21 .0mm


where d(mm) is the particle size in
millimeters and the dimensionless aspect
of the equation (i.e., d(mm)/1.0 mm) was
redefined by McManus (1963) and
amplified by Krumbein (1964). In
essence, the phi scale linearizes the
grain-size scale as illustrated in Figure III-
1. Conversely, it may be stated:


d(mm) = (1.0mm)2 r


The phi grain-size measurement scale
has 11 specific advantages. Tanner
(1969) listed them as follows:

(1) Evenly-spaced division points,
facilitating plotting.
(2) Geometric basis, allowing equally
close inspection of all parts of the size
spectrum.
(3) Simplicity of subdivision of classes to
any precision desired, with no awkward
numbers.
(4) Wide range of sizes, extending
automatically to any extreme.
(5) Widespread acceptance.
(6) Coincidence of major dividing points
with natural class boundaries.
(7) Ease of use in probability analysis.
(8) Ease of use in computing statistical
parameters.
(9) Amenability to more advanced
analytical methods.
(10) Close approximation to most other
scales, allowing easy adoption.
(11) Phi-size screens are available
commercially.

Tanner (1969) emphasized that of
the 20 grain-size measurement scales in
use at the time, ... no other scale is even
close to matching this list; most other
scales do not have more than three or











5-- ^- -
4
3
I2 _,


d(mm) d(mm)
= -log---------= -1.4427 In ----------
-1 1.0 mm 1.0 mm
-2
-3
0.01 0.1 1 1C
Grain Size (mm)
Figure II-1. Phi versus millimeters illustrating that tf


phi-scale linearizes the grain-size scale.


four of these advantages.

It is of critical historical importance
to note that Krumbein's methodology was
based on Wentworth's (1922) particle size
nomenclature listed in Table 1, for which
millimeter-phi equivalents have been
specified.

Sediment grain-size data are used
in many geologic and engineering
applications. The grain-size distribution of
a sediment sample provides information
on the relative energy level present in the
environment under which the sediment
was transported and deposited. It also
contributes practical information of
engineering importance. For instance, in
beach restoration projects, the mean grain
size and standard deviation using
composite statistics (see Balsillie and
Tanner 1999) of the grain-size distribution
are used in calculations to determine the
suitability of local sand deposits as borrow
material for nourishment, as well as in
predicting the maintenance renourishment
needs of a project ( e.g., Krumbein 1957;
James 1975; Hobson 1977; U. S. Army
1984).

Standard methods of quantifying
sediment textural data employ statistical
measures (mean, standard deviation,


skewness, kurtosis),
grain-size distribution
diagrams, and frequency
and cumulative frequency
probability plots. Prob-
ability considerations are
based on the underlying
concept that sediments
conform to the "Normal"
or Gaussian density
distribution function. The
Gaussian distribution
plays a central role in all
of statistics. It is, per-
e haps, the most ubiquitous
distribution utilized in all


the sciences. Results
from statistical application
of the Gaussian distribution are best
plotted using arithmetic probability paper
(APP). The usefulness of APP is, among
informed practitioners, of unequaled
practical importance when compared to
other plotting options. The graph paper
has one arithmetic axis that represents
quantifiable data (e.g., sediment grain
size) plotted against the cumulative
percent occurrence (or cumulative
probability), which is a nonlinear axis.
Typically, the arithmetic axis is the
horizontal axis representing grain size.
The nonlinear (Gaussian) axis is the
vertical axis and represents the
cumulative percent weight from the sieve
fractions. The cumulative probability
distribution of the paper has commonly
been termed the "normal" distribution. It
should not be so designated, however,
because "normal" is applied in too many
applications. Johann Carl Friedrich
Gauss (1777-1855) was its originator, and
it should properly be referred to as the
Gaussian distribution or Gaussian
probability density distribution (GPDD).
APP, constructed so that the ogive (S-
shaped curve on arithmetic paper) plots
as a straight line, was developed in 1913
by Hazen (1914), and is acknowledged as
a milestone in statistical graphic
applications (http://www.math.yorku.ca/
SCS/Gallery/milestone/ sec7.html). There










Table 1. Size conversions and particle size nomenclature.

Wentworth (1922) Milli- Phi Sieve Unified Soils
Classification meters Units # Classification


Boulder



Cobble
Cobble


Pebble Gravel






-----------


Granule

----------- -----------
Very
Coarse
Sand
-----------
Coarse
Sand
Sand
-----------
Medium
Sand
Sand
-----------
Fine


Sand
-----------
Very
Fine
Sand


Silt
Silt


Clay



Colloid
Colloid


256.00
152.22
128.00
76.11
64.00
45.25
32.00
22.63
19.027
16.000
11.314
8.000
5.657
4.757
4.000
3.364
2.828
2.378
2.000
1.682
1.414
1.189
1.000
0.841
0.707
0.595
0.500
0.420
0.354
0.297
0.250
0.210
0.177
0.149
0.125
0.1051
0.0884
0.0743
0.0625
0.0186
0.0156
0.0046
0.0039
0.00116
0.00098
0.00082
0.00024


-8.00
-7.25
-7.00
-6.25
-6.00
-5.50
-5.00
-4.50
-4.25
-4.00
-3.50
-3.00
-2.50
-2.25
-2.00
-1.75
-1.50
-1.25
-1.00
-0.75
-0.50
-0.25
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00
3.25
3.50
3.75
4.00
5.75
6.00
7.75
8.00
9.75
10.00
10.25
12.00


Cobble


Coarse
Gravel

----- Gravel


Fine
Gravel


Coarse
Sand


Medium
Sand


Sand


Fine
Sand


Clay










are three fundamental properties of the
GPPD that when plotted on APP require
understanding.

First, if the quantified data, in
general, conform to the Gaussian
Distribution, any one sample shall, if it is
precisely Gaussian, plot as a straight line
on APP. Second, are the natural data of
any one sample precisely equivalent to
the GPDD? Most are not, nor would we
wish them so, for it is the deviation from
the Gaussian that tells us something
about the sample. This is especially true
for sediment grain size distributions.
Third, natural data plotted on APP may, in
many applications, be made up of several
straight-line segments. These segments
are often attributable to some identifiable
natural cause or process. For instance,
Tanner (1991) found, based on the
analysis of over 11,000 sediment samples
from all types of environments, that the
geometry of straight-line segments for
sediment distributions can definitively
identify whether the latest transpo-
depositional history of the sediment
sample was due to eolian, littoral, fluvial,
settling processes, etc., or even


combinations of processes
1995). Balsillie (1999b) found
may be related to storm and
induced erosion.

Statistically, the
Gaussian distribution is
defined in terms of
moments. The term
moment was introduced into
statistics by analogy. In
mechanics, the moment of a
force about a point of
rotation, e.g., about a
fulcrum, is determined by
multiplying the magnitude of
the force times the distance
to the point of rotation (see
Friedman and Sanders, 1978
[p. 78-79] for a more detailed
description).


(Balsillie,
that they
hurricane


Moments and moment measures
are not identical quantities. In the method
of moments, moment in the statistical
context refers to the sum of deviations
from the mean relative to the sample size
(Fogiel, 1985). The mean, p, for grouped
or classified data is calculated by:
1 k
S= MM1 =- fixi (3)
Si 1

in which xi is the class midpoint, and fi is
the frequency of the class. The mean is a
measure of the central tendency of the
distribution (Figure 111-2).

The first moment, mi, always has
a value of zero (Fogiel, 1985), and is the
point of rotation (e.g., a fulcrum) referred
to above. In granulometry as in most data
sets, the "fulcrum" will seldom have a
value of zero and, instead, the mean is
substituted and specified as the first
moment measure, MM1. All higher
moments and moment measures apply
equally well about the first moment or
first moment measure. Outcomes for
granulometric work are normally
expressed in millimeters or dimensionless
phi (cp) units. Progressively larger
moments are determined according to:
1 k
m, = n-1 f, (xi -O) (4)
=1


- Mean = 2.0 phi; Std Dev = 1.0 phi |
25 --M- Mean = 1.0 phi; Std Dev = 0.5 phi

S 20 ___ __ ___ ___------------
20
S15
a 10
5 _

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Phi Grain Size
Figure 111-2. Illustration of different means and
standard deviations (sorting coefficients) for two
Gaussian distributions. The dashed distribution is
more poorly sorted than the other distribution.










in which p is an integer, and
m, is the pth moment about
the mean.

The second moment,
m2, is the variance, 02, and
the standard deviation (or
sorting coefficient), a, or
second moment measure,
MM2, becomes:


C = MM2 = (m2)1/2


which has units of millimeters or phi-units.
The standard deviation is a measure of
the degree of spread of the distribution
about the mean. The larger the standard
deviation, the larger the spread (Figure III-
2). For the cumulative probability
distribution on arithmetic probability
probability paper, the slope of the
Gaussian distribution is the standard
deviation.

A misuse of the phi or 4 often
occurs in the notation used for the
standard deviation. From inspection of
Table 1, it will be noted that all of the
smaller descriptive units (e.g., very fine
sand) are one-phi-unit in length for the
Wentworth scale. It is no mistake that
Krumbein (1936) selected the Wentworth
scale. Each one-unit length is, in fact,
referred to as a "Wentworth grade"
(Krumbein, 1936, p. 43; McManus, 1963,
p. 671). McManus (1963) further
elaborated that the standard deviation (o)
is the number of Wentworth grades or
one-phi-units. Hence, for ao equal to 0.5,
it is one-half a Wentworth grade or half a
one-phi-unit. Hence, McManus (1963)
specified that the standard deviation be
expressed precisely as "phi-units", with
which Krumbein (1964) agreed.
Moreover, one cannot transform a phi-unit
standard deviation to a millimeter
equivalent using equation (2). It will give
nonsensical results.

Higher moment measures are
determined according to:


20 - Skewed to the Fine

in /
W 15b-- __

S10
SLL


-2 -1 0 1 2 3 4
Phi Grain Size
Figure 111-3. Illustration of the effect of skewness.


M mp. mp
MMp =-m2? m2p/2


which all have truly dimensionless units.

The third moment measure, MM3
(p = 3) is the skewness, Sk, where:


mp
Sk=MM3 1.5
m2


The skewness is a measure of the
asymmetry of the distribution, wherein it
may be skewed to the right or to the left of
the mean,or skewed to the fine or coarse
end of the distribution (Figure 111-3). and
the fourth moment measure, MM4 (p
4) is the kurtosis, K, or:
m
K = MM4 (8)

The kurtosis is a measure of the
peakedness of the frequency curve,
termed playkurtic is flat and leptokurtic if
peaked (Figure 111-4).

In this work we shall utilize only
the first four moment measures assessed
using grain-size data expressed in phi (4)
units; measures higher than the second
moment measure are truly dimensionless.
There are higher moment measures that
can be calculated provided that there are
sufficient data to do so (Tanner, 1991;
Balsillie, 1995; Balsillie and Tanner,



















-2 -1 0 1
Phi Grain Size


i- Platykurtic (Flat) Distribution
Gaussian Distribution
- Leptokurtic (Peaked) Distribution




2 3 4


Figure 111-4. Illustration of the effects of kurtosis.


1999). Moment measures higher than
order four have not been assigned names.
Also, in this work moment measures are
evaluated for grouped (or classified) data
since particle sizes are collected for 1/4-
phi sieve intervals. Ungrouped (or
unclassified) data would require that one
know the size of each and every grain.
Statistical ramifications of grouped and
ungrouped data in granulometric pursuits
are discussed in detail by Swan and
others (1978, 1979).

Finally, a case can be identified
wherein recent deviation from the adopted
standards is being prompted. In recent
years, there has been a certain section of
practitioners who are promoting the use of
the Unified Soils Classification scale. For
this reason it has been included in Table 1
so that it can be compared to the
Wentworth Classification scale.
Preceding developments of this work has
identified that the phi scale or phi
methodology of Krumbein (1936, 1964) is
successful only because descriptive class
boundaries of the Wentworth scale occur
at one-phi intervals. The Unified Soils
Classification scale, however, does not.
For example, coarse sand occupies an
interval of 1 % phi units, medium sand an
interval of 2 % phi units, fine sand and
interval of 2 Y phi units, etc. The lesson
here is that before one proposes to make
alterations to an achievement of
historically significant proportions, he or
she needs to investigate the details of its
origins and the ramifications of any


alterations. In other words, they need to
be abundantly knowledgeable about its
history.

REFERENCES

Balsillie, J. H., 1995, Williiam F. Tanner on
Environmental Clastic
Granulometry: Florida Geological
Survey Special Publication No. 40,
144 p.

1999, Volumetric beach and
coast erosion due to storm and
hurricane impact: Florida
Geological Survey Open File
Report Number 78, 37 p.


Balsillie, J. H., and
Suite versus
Sedimentary
225-234.


Tanner, W. F., 1999,
composite statistics:
Geology, v. 125, p.


Fogiel, M., 1985, The statistics problem
solver: New York: Research and
Education Association, 1044 p.

Folk, R. L., 1966, A review of grain-size
parameters: Sedimentology, v. 6,
p. 73-94.

Hazen, A., 1914, Storage to be provided
in impounding reservoirs for
municipal water supply: American
Society of Civil Engineers, v. 77, p.
1529-1669.









Hobson, R. D., 1977, Review of design
elements for beach-fill evaluation:
U. S. Army, Coastal Engineering
Research Center Technical Paper
77-6, 51 p.

James, W. R., 1975, Techniques in
evaluating suitability of borrow
material for beach nourishment:
U. S. Army, Coastal Engineering
Research Center Technical
Memorandum No. 60, 81 p.

Krumbein, W. C., 1934, Size frequency
distributions of sediments: Journal
of Sedimentary Petrology, v. 4, p.
65-77.

S1936, Application of
logarithmic moments to size
frequency distributions of
sediments: Journal of
Sedimentary Petrology, v. 6, p. 35-
47.

1957, A method for
specification of sand for beach fills:
U. S. Army Beach Erosion Board
Technical Memorandum 102, 82 p.

1964, Some remarks on the
phi notation: Journal of
Sedimentary Petrology, v. 34, p.
195-197.

McManus, D. A., 1963, A criticism of
certain usage of the phi-notation:
Journal of Sedimentary Petrology,
v. 33, p. 670-674.

Rogers, J. J. W., 1965, Reproducibility
and significance of measurements
of sedimentary size distributions:
Journal of Sedimentary Research,
v. 35, p. 722-732.


Swan, D., Clague, J. J., and Luternauer,
J. L., 1978, Grain-size statistics I:
Evaluation of the Folk and Ward
graphic measures: Journal of
Sedimentary Petrology, v. 48, p.
863-878.

1979, Grain-size statistics II:
Evaluation of grouped moment
measures: Journal of Sedimentary
Petrology, v. 49, p. 487-500.

Tanner, W. F., 1969, The particle size
scale: Journal of Sedimentary
Petrology, v. 39, p. 809-811.

1991, Suite statistics: the
hydrodynamic evolution of the
sediment pool: In (J.P.M. Syvitski,
ed.), Methods and Applications of
Particle Size Analysis, Cambridge:
Cambridge University Press, p.
225-236.

Truesdell, P. E., and Varnes, D. J., 1950,
Chart correlating various grain-size
definitions of sedimentary
materials: U. S. Geological
Survey; 1 sheet.

U. S. Army, 1984, Shore Protection
Manual, Washington, D. C.: U. S.
Army, Coastal Engineering
Research Center, 2 vols., 1272 p.

Wentworth, C. K., 1922, A scale of grade
and class terms for plastic
sediments: Journal of Geology, v.
30, p. 377-392.