<%BANNER%>
HIDE
 Front Cover
 Table of Contents
 Abstract and introduction
 Background
 Data and Results
 Discussion
 Conclusions
 Acknowledgements and reference...
 Appendix I: Granulometry of samples...
 Appendix II: List of moment and...
 Appendix III: List of moment and...
 Appendix IV: List of moment and...
 Back Cover


FGS









State of Florida
Department of Environmental Protection
David B. Struhs, Secretary




Division of Resource Assessment and Management
Edwin J. Conklin, Director




Florida Geological Survey
Walter Schmidt, State Geologist and Chief






Open File Report No. 84


Moment Versus Graphic Measures in Granulometry

by

James H. BalsUllie, Adel A. Dabous, and Cindy T. Fischler


Florida Geological Survey
Tallahassee, Florida
2002


ISSN 1058-1391










CONTENTS


ABSTRACT .............. ...........

INTRODUCTION ......... .. .........................

Moment Measures ..................... ............ .
Graphic Measures ....................................

BACKGROUND ..... ........ ........... ......

DATA AND RESULTS ....... ..............

Moment Mean Versus Graphic Mean .............. ......
Moment Standard Deviation Versus Graphic Standard Deviations
Moment Skewness Versus Graphic Skewnesses ............
Moment Kurtosis Versus Graphic Kurtosis ........ .......
F-Test Assessments. ..................................

DISCUSSION .......... ........... .............

CONCLUSIONS ........ .........

ACKNOWLEDGEMENTS ..... ........ ....................

REFERENCES ........................... .......... .. .


Page





...1
, 3


........... 3






1...... 0
........... 10
... . . . .. 8



. . . . . 1 1
. . . . . . 1 1
.........11

... ........ 13

. . . 14
... ....... .14
.... ...I.... 14


FIGURES


Figure 1. Illustration of different means and standard deviations (sorting
coefficients) for two Gaussian distributions. .......... ............

Figure 2. Illustration of the effect of skewness ............. .... .......

Figure 3. Illustration of the effects of kurtosis. ...... .. ... .............. ..

Figure 4. Moment measure mean versus graphic measure mean. ..........,....

Figure 5. Moment measure standard deviation (sorting coefficient) versus
graphic and inclusive graphic standard deviations......................

Figure 6. Moment measure skewness versus graphic and inclusive graphic
skewness............... ...... .......... .......... .. .. ..... .

Figure 7. Moment measure kurtosis versus graphic kurtosis ..............

i


4


5

8


10

11









TABLES

Table 1. Number of data points per sediment sample sieved at 1/4-p intervals ....... 4

Table 2. General characteristics of the 333 sediment samples addressed in this
study. ....................... ........... .......... .. .7

Table 3. Descriptive assessment of the reciprocal absolute relative dispersion. ....... 7

Table 4. Average graphic/moment measure ratios, and r2 values between
graphic and moment measure data sets.. ......... ...... . . . 8

Table 5. F-test results for two-sample variances to assess regression outcomes
(a = 0.05 for all one-tailed tests). .......... .... ........ . ..... 12

Table 6. Average number of data points in sample distribution tails not
considered by graphic measures that are considered in moment
measures. ................ ....................... ........ 13

APPENDICES

Appendix I: Granulometry of samples used in the study. ........ ....... ....... .17

Appendix It: List of moment and graphic measures for sand + silt + clay samples. .... 75

Appendix III: List of moment and graphic measures for sand + silt samples .......... 79

Appendix IV: List of moment and graphic measures for sand only samples. ........ 83










MOMENT VERSUS GRAPHIC MEASURES IN GRANULOMETRY


by

James H. Balsillie P. G. No. 167, Adel A. Dabous, and Cindy T. Fischler

Florida Geological Survey, 903 W. Tennessee St., Tallahassee, FL 32304-7700

ABSTRACT

Statistical measures such as the mean, standard deviation, skewness, and kurtosis are precisely calculated
using the method of moments. However, this method requires considerable computational resources that were not
available during the majority of the preceding century. There resulted, therefore, the invention of abbreviated, surrogate
predictive equations that could be expediently evaluated to provide approximations (called graphic measures) of
respective moment measures. By the mid-1980's computers had become common in the work place, and by the mid-
1990's to the public-at-large. Most researchers have taken advantage of the available computing power and now
employ the method of moments. There are others, however, who continue to endorse the use of graphic measures.

This work compares the two methods using 333 marine sediment samples. It was found that the means show
approximate agreement, with graphic means underestimating the moment means by a maximum of 0.6p. All higher
graphic measures, however, are not successful in replicating moment measures, the degree of disagreement
progressively increasing with the order of the moment measure. Standard deviation measures had a correlation of r2
= 0.6486, for the skewness r2 = 0.0865, and for the kurtosis r2 = 0.0098. Average ratios between moment measures
and graphic measures become increasingly worse as the degree of the moment measure increases. We conclude,
therefore, that graphic measures are not good approximations of moment measures, and their use should be
discontinued.


INTRODUCTION

There are two popular approaches
used in assessing environmental aspects of
sediment samples. One approach is to plot
grain size data. Two types of plotted
representations are commonly used: 1) the
frequency plot, and 2) the cumulative
frequency plot using arithmetic probability
paper. Such plots allow the researcher to
visually assess the entire sediment distribution
and to identify certain useful environmental
characteristics about the sample.

The other approach is to calculate
statistical measures that provide more
abbreviated representations of the character of
the sample. Such measures include the
mean, standard deviation, skewness, and
kurtosis. There are two types of statistical
measures that have been used moment
measures and graphical measures.
Graphically derived statistical measures


constitute only an estimate of true statistical
representations afforded by the method of
moments. We address the subject by
addressing the history behind graphic
measures, the degree of discrepancy between
moment and graphic measures and, finally,
the reasons as to why discrepancy occurs.

Moment Measures

Statistically, the Gaussian distribution
is defined in terms of moments, calculated
using the method of moments. The term
moment was introduced into statistics by
analogy. In mechanics, the moment of a force
about a point of rotation, e.g., about a fulcrum,
is determined by multiplying the magnitude of
the force by the distance to the point of
rotation (see Friedman and Sanders, 1978 [p.
78-79] for a more detailed description).

Moments and moment measures are
not identical quantities. Moment, in statistical









context, refers to the sum of deviations from
the mean relative to the sample size (Fogiel,
1985). The mean, p, for grouped or classified
data is calculated by:

k
M- 1 (1)
p = MM -
n

in which x, is the class midpoint, and f, is the
frequency of the class. The first moment, m,,
for classified data is given by:

k
Sf (xi )P (2a)
m =
n
where p = 1.0. While we do not, here, present
the proof, it has been demonstrated (e.g.,
Fogiel, 1985) that following from equation (2a):

k
i= xi (2b)
m, = p
n

and that by substitution of equation (1) into
equation (2b), the first moment, m,, will
always have a value of zero.

In granulometry as in many data sets,
the "fulcrum" will seldom have a value of zero
and, instead, the mean, p, is used and
specified as the first moment measure, MM,.
All higher moments and moment measures
apply equally well about the first moment or
first moment measure when consistently
applied.

Grain size and mean grain size are
normally expressed in millimeters or
dimensionless phi (9p) units. The latter units
were defined by Krumbein (1934) and adopted
by the Society of Economic Paleontologists
and Mineralogists (S.E.P.M.) Inter-Society
Grain Size Study Committee in 1963 (Tanner,
1969). They were determined specifically for
the Wentworth (1922) size scale, subsequently


clarified by McManus (1963) and Krumbein
(1964). Progressively higher moments are
determined according to:


Sf4 (x, -4P
m = 1 (3)
P n-

in which p is an integer, and mp is the pth
moment about the mean. The sole difference
between equations (2a) and (3) is the
specified degrees of freedom. For n > 30, n
degrees of freedom is considered appropriate
and the equations are identical. For n 30, n
- 1 degrees of freedom is the normally applied
convention, designed to yield more
conservative numerical outcomes. In sieving
granulometric work, the number of classified
size classes which is optimal at 1/4-phi
intervals, commonly ranges from 12 n < 26
and n 1 degrees of freedom is appropriate to
apply.

The second moment, m2, is the
variance, a2, and the standard deviation (or
sorting coefficient), a, or second moment
measure, MM2, becomes:


a = MM2 = (m- )2


which has units of millimeters, or phi-units
whose specification was clarified by McManus
(1963).

Higher moment measures are
determined according to:

mp mp
MMp (5)
m m2p2 (

which all have truly dimensionless units. The
third moment measure, MM3 (p = 3) is the
skewness, Sk, where:


m.
Sk = MM3 p
M21.5
mn2









and the fourth moment measure, MM4 (p = 4)
is the kurtosis, K, or:


m
K = MM4
m22


ag 2


and,


In this work we shall utilize only the first
four moment measures. There are higher
moment measures that can be calculated
provided that there are sufficient data to do so
(Tanner, 1991; Balsillie, 1995; Balsillie and
Tanner, 1999). Moment measures higher than
order four have not been assigned names.
Also, in this work moment measures are
evaluated for grouped (or classified) data
since particle sizes are collected for 1/4-phi
sieve intervals. Ungrouped (or unclassified)
data would require that one know the size of
each and every grain. Statistical ramifications
of grouped and ungrouped data in
granulometric pursuits are discussed in detail
by Swan and others (1978, 1979).

Graphic Measures

Over the years various investigators
(e.g., Krumbein and Pettijohn, 1938; Trask,
1932; Inman, 1952: Folk and Ward, 1957, and
Folk, 1974) have suggested formulae to
calculate statistical measures that are
extracted from the cumulative probability plot.
Here we evaluate those graphic measures as
given by Folk and Ward (1957). These are
assessed in cp units where, for instance, p5 is
the phi value corresponding to a cumulative
frequency of 5%, (pj, is the phi value
corresponding to a cumulative frequency of
16%, etc.

The graphic mean, p. is given by:


Pg, = 1 3 (8)

We assess, here, two types of graphic
standard deviations, the graphic standard
deviation, a,, and the inclusive graphic
standard deviation, oi, which are given by:


a 84 9 16
': 4


P95 95
6.6


(10)


Two types of graphic skewnesses are
also assessed. They are the graphic
skewness, Sklg, and the inclusive graphic
skewness, Sk,,, given by:


(884 + c ) -- 2(8s0
Sk (84 +
9P4 PS1


(11)


and,


- (984 +* is) 2pso
2(9p q96)


(12)


S(q5 + 9ss) 29so
2(s5 Pps)


The last graphic measure, the graphic
kurtosis, Kg, is given by:


K = (P95 Ts
2.44(9p75 92s)


(13)


BACKGROUND


When analyzing sediment samples to
produce the above descriptive statistical
measures, it is most desirable to obtain an
optimal number of data points in terms of size
class intervals. Collecting data at 1/4-phi class
intervals has been found to be successful in
producing robust statistics. Sedimentologic
studies of depositional environments, including
littoral, marine, estuarine, lacustrine, and
fluvial environments normally encompass a
minimum of a dozen, or so, 1/4-phi class sizes
across a nominal maximum domain ranging
from -2(p to 12(p. This range includes granule-,









Table 1. Number of data points per sediment sample
sieved at 114-qp intervals.

Number of cumulative
Number of
Descriptive Phi Grain Data Points Number of
Size Size Range (i.e., Class Data Points
Intervals) (i.e., Class
Intervals)

Granule -2p to -19 4 4
Sand -1.0 to 4p 20 24
Silt 4( to 89 16 40
Clay 8( to 12p 16 56


30
- Mean = 2.0 phi; Std Dev = 1.0 phi
25 Mean = 1.0 phi; Std Dev = 0.5 phi

2 20


=1
p 10




-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Phi Grain Size
Figure 1. Illustration of different means and standard deviations
(sorting coefficients) for two Gaussian distributions. The dashed
distribution is more poorly sorted than the other distribution.


sand-, silt-, and clay-sized particulate matter.
Table 1 lists the maximum number of data
points in terms of 1/4-phi class intervals.

What do the mean, standard deviation,
skewness, and kurtosis statistical measures
tell us? The mean is a measure of the central
tendency of the distribution (Figure 1). The
standard deviation (or sorting coefficient) is a
measure of the degree of spread of the
distribution about the mean (Figure 1). The
larger the standard deviation, the larger the
spread. The skewness is a measure of
asymmetry of the distribution (Figure 2),
wherein it may be skewed to the right or left of
the mean, or skewed to the fine or coarse end


of the distribution. Kurtosis is a measure of
the peakedness of the curve (Figure 3),
termed platykurtic if flat and leptokurtic if
peaked. These four measures constitute, at a
minimum, the measures required to define
the basic characteristics of granulometric
distributions.

The most accurate way of calculating
statistical measures describing granulometric
distributions is using the method of moments.
This is because all data for the distribution are
included in determining final statistical results.
However, the method of moments requires
formidable computing power that was not
available during the bulk of the last century. It












20
C
S
r,
U
E
a.

, 15
>1

U
| 10

LL
5


0


-1 0 1 2 3
Phi Grain Size


Figure 2. Illustration of the effect of skewness.


35

30 --Platykurtic (Flat) Distribution
3- Gaussian Distribution
- Leptokurtic (Peaked) Distribution
a 25
9L ...
20

0 15


(0I. . .. . . .
110 --^---_-

C-

-2 -1 0 1 2 3 4
Phi Grain Size

Figure 3. Illustration of the effects of kurtosis.


was not until about the late 1960's to early
1970's that mainframe computing power
became available, and then but to elite
academic and U. S. government programs. It
was not until the mid- to late-1980's that
the personal computer (PC) would be
commonly found in the workplace, and the
mid-1990's available to the public-at-large.

Prior to the 1980's, without computer
resources and knowledge of programming
language capabilities, evaluation of equations
(1) through (7), would have been from
cumbersome to overwhelming for the
researcher, even for a relatively small number
of sediment samples. Necessity being the
"mother of invention" therefore resulted in


researchers inventing abbreviated surrogate
approximating equations that could be more
expediently evaluated. Hence, predictive
methods such as equations (8) through (13),
providing for graphic measures, were devised.

Many sedimentologists of the time
were apparently convinced that the graphic
measures provided accurate results. Folk
(1974) stated, for instance, that ... the method
of moments, is far more complicated and
probably of not greater value ... than the
graphic method. We demonstrate, here, just
how much this assertion was in error. In
addition, we conducted a cursory check of
recent texts on sedimentology published within
the last 15 years, a period within which









computing power from PCs has been
abundantly available. Selley (1988), Herve
(1990), and Prothero and Schwab (1996)
discuss graphic measures, and do not even
mention moment measures. Friedman and
others (1992) discuss both, but state that the
graphic approach is but an approximation to
the more rigorous method of moments to
calculate statistical properties of frequency
distributions. Lewis and McConchie (1994)
discuss both, but promote graphic measures.
Sengupta (1994) discusses both moment and
graphic measures, and promotes moment
measures because ... they take care of every
part of the frequency distribution. Boggs
(1995) discusses both moment measures and
graphic measures, but does not promote one
method over the other, and states ... it had not
been definitely proven that moment statistics
are of greater value than graphical statistics.
And so, even in more recent years, mixed
messages have been proffered, even though
several are quite correct regarding the use of
moment measures.

None of the above sources, however,
acknowledges the work and results of Cadigan
(1954), and Swan and others (1978, 1979).
Cadigan (1954) using 20 samples found that
use of the graphic method for obtaining the
standard deviation from equation (9) yielded
results significantly disagreeing with those
obtained from the method of moments, and
cautioned the reader about the veracity of
graphic measures. Swan and others (1978,
1979) digitally generated 100 artificial
sediment samples, each representing a
different hypothetical grain size distribution in
order to assess ungrouped moment versus
graphic measures (Swan and others, 1978),
and ungrouped versus grouped moment
measures (Swan and others, 1979). They
found that .. grouped moment measures yield
far more reliable results than the graphic
approximations, particularly for skewness and
kurtosis. They did not, however, directly
compare graphic and moment measures. We
do, in this work, conduct a direct comparison
between moment and graphic measures. In


addition, we consider a significantly large
number of natural sediment samples to which
we now turn.

DATA AND RESULTS

One-hundred eleven cored marine
sediment samples were analyzed using
standard 1/4-phi sieving techniques.
Granulometric results for these samples are
listed in Appendix i. Additionally, the fine
fraction (i.e., silts and clays) was treated
further. Pipette analyses identified silt (4(p to
8(p), and the pan fraction was assigned the
designation of clay-sized particulate matter (8(p
to 12(p). These samples were subdivided into
three data sets: 1) the entire sample
(sand+silt+clay) which encompasses 56 1/4-
phi size class intervals, 2) pan excluded (sand
plus silt) which encompasses 40 1/4-phi size
class intervals, and 3) sand only (assigned
here as the interval from -2(p to 4qp and. hence,
additionally includes smaller granule-sized
particles) which encompasses 24 1/4-phi size
class intervals.

The question arises as to whether
samples from a particular depositional
environment will adequately address the issue
at hand? We have dealt here with cored
marine sediments. Could samples from fluvial,
littoral, estuarine, eolian, lacustrine, etc. yield
different outcomes? The concern can be
addressed from two perspectives. The first is
that because the samples utilized in this work
are from cores, they could represent diverse
depositional environments including non-
marine sediments. Second, the variability of
data sets in terms of obtaining a relatively
large range in resulting moment measures is a
more important concern, which becomes more
likely as the sample size becomes large.

Therefore, 333 samples were produced
for the purposes of this study, for which
moment and graphic measures were
assessed. The range of measures for these
samples is listed in Table 2, providing some
idea as to the variability of the data set. The










Table 2. General characteristics of the
addressed in this study.


333 sediment samples


Number of Percent
Type of Statistic Range of Values Successful Not
Measure
MeasurMeasures Successful
p -0.9525 to 5.4270 333 0
a 0.3887 to 3.4427 333 0
Moment Sk -4.5726 to 5.2538 333 0
K 1.7541 to 36.6811 333 0

pg -0.8072 to 5.0822 298 10.5
a 0.2220to 30051 298 10.5
aG 0.2497 to 3.2040 226 32.1
Srapkc g -0.6918 to 0.7764 298 10.5
Sk9 -0.6423 to 0.7671 226 32.1
K,, 0.6341 to 4.7773 226 32.1


degree of variability is important, since we
would like it to be considerable so that our
results cover as many sample characteristics
as is possible. The degree of variability can be
statistically assessed using the relative
dispersion (also termed the coefficient of
variation). This parameter can be used to
compare variabilities between data sets even
if there are large differences in magnitudes of
both the means and standard deviations
(Rees, 1995). The relative dispersion is simply
the standard deviation divided by the mean,
and, therefore, tells us how many means are
contained in the standard deviation. The
relative dispersion is not new, but there are
two considerations about the relative
dispersion that must be accounted for when
using the phi scale. The first, is that means
can have a negative value. The second is that
the mean can have a value of zero, while the
standard deviation for naturally encountered
sediments will always be greater than zero.
Hence, a value of infinity is possible. In fact,
for phi mean values less than 1.0 and greater
than -1.0, relative dispersion outcomes can be
greatly distorted. One might think that the most
straightforward way in which to eliminate the
problem is to transform phi means and phi
standard deviations to their millimeter
counterparts. One must understand, however,
that there is no millimeter equivalent to the phi
standard deviation as detailed by McManus


(1963). Hence, the only way in which it can be
determined is to calculate means and standard
deviations in millimeters using original
retaining sieve sizes and midpoint values. A
relative dispersion of 0.5 or less is considered
to be a "tight" distribution or to have "excellent
homogeneity". The full scale is listed in Table
3, as is a breakdown of our 333 samples, and
we have assurance that our samples, indeed,
have a considerable amount of variability.
Table 3. Descriptive assessment of the
relative dispersion.

Per Cent of
Numerical Samples of Our
Range Homogeneity 333-Sample
R e Data Set
Complying
< 0.5 Excellent 25
0.5 to 1.0 Good 24
1.0 to 1.33 Fair 11
> 1.33 Poor 40

Table 2 has also been compiled to
illustrate that while all moment measures can
be assessed, there can be graphic measures
which cannot. This occurred for our data
because in certain instances phi values for the
5 (i.e., (Ps), 16 (i.e., (p,), and 25 (i.e., p25)
cumulative percentiles were not present,
because our coarsest sieve was -2.0(p. For
instance, suppose that for a sample the









coarsest percentile on the cumulative
probability plot is 8%. For this case the
phi size at 5% cannot be pulled from the
plot, and graphic measures for equations
(9), (11), and (12) cannot be evaluated.
Such problems can also occur forthe fine
tail. It should, therefore, be expected to
be a possibility occurring for any data set.

Moment and graphic measures for
the sand+silt+clay samples are listed in
Appendix II, those for the sand+silt
samples in Appendix III, and those for the
sand only samples in Appendix IV.

Moment Mean Versus Graphic
Mean


5


4


3


2
|C


0
0


Moment means are plotted versus .-
graphic means in Figure 4. (Note: it was
necessary, to assure clarity, to have
multiple plots on the same illustration so C
that data sets were not plotted on top of
one another.) The correlation between
the two measures is good at r2 0.99 (r
is the Pearson product-moment
correlation coefficient). The correlation
coefficient, in this instance, tells us how
parallel the plotted data are to a one-to- Figu
one fit (diagonal solid line). In reality, meal
however, the graphic data slightly
underestimate the moment measure data, by
an average of 11% (i.e., 100 x (1.0 0.889);
Table 4).


-


A.
-1 0 1 2 3 4 5 6
Moment Measure Mean

re 4. Moment measure mean versus graphic
n.

Sand+silt+clay graphic means
underestimate the actual mean (i.e., moment
mean) by an average value of about 0.3p, and
a maximum of about 0.6 pq. This is determined
by measuring downward from the one-to-one


Table 4. Average graphiclmoment measure ratios, and r2 values between graphic
and moment measure data sets.
Measure Average Ratio r2 Average Ratio r2
Graphic Mean P19 = 0.8890 pl,, 0.9917
Graphic Standard Deviation a( = 0.7330 o. 0.5508 0.7332 0.
Inclusive Graphic Standard Deviation og = 0.7333 o, 0.7736 0.6486
Graphic Skewness Sk, = -0.2395 Sk,, 0.0520 Sk, = -0.2182 0.0865
Inclusive Graphic Skewness Sk = -0.1889 Sk. 0.1276 Sk,,,
Graphic Kurtosis K, = 0.1310 K, 0.0098









(1:1) line to a parallel line encompassing the
maximum deviating point or points (the dashed
line lies 0.5q( below the one-to-one line).

Sand+silt and sand only graphic means
more closely represent actual means,
underestimating the moment mean by about
0.1 or 0.29p.

Differences between moment and
graphic means depend upon the character of
individual samples comprising a suite of
samples. Hence, a maximum underestimation
of 0.6 p for the graphic mean as found for our
data might be of consequence, depending on
the accuracy required forapplication of results.




0 Sand + Silt + Clay Graphic
Sand + Silt + Clay Inclusiv
OSand + Silt Graphic Stand&
3.5 *Sand + Silt Inclusive Grapl
ASand Only Graphic Standa
ASand Only Inclusive Grapt
3.0


12.5
S2.5 y 0.27 + 1.192 x
0 r = 0.8097

S2.0 --

CL



1.0
aO

0.5


0.0


Moment Standard Deviation Versus
Graphic Standard Deviations

The moment standard deviation is
plotted against the graphic standard deviation
(which incorporates (p, and 984 values) and
inclusive graphic standard deviation (which
considers qs, 916, p984, and (p95 values) in
Figure 5. The degree of scatter between
moment and graphic measures is extensive.
In fact, r2 has a value of only 0.5508 for the
graphic standard deviation. This means that
the moment standard deviation can explain
only 55.08% of the variability of the graphic
standard deviation. Since the moment
measure is ultimately the more accurate, it
does not speak well of the accuracy of the


0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Moment Measure Standard Deviation

Figure 5. Moment measure standard deviation (sorting coefficient) versus
graphic and inclusive graphic standard deviations.








graphic standard deviation. The inclusive
graphic standard deviation fares somewhat
better with r2 = 0.7736. However, on the
average, both types of graphic measures
underestimate moment measure values by a
factor of 0.73 (Table 4).

The sand+silt+clay sample standard
deviations underestimate the moment
standard deviations by a maximum of 1.5 phi
units.

The inclusive graphic standard
deviation for the sand+silt+clay samples, and
the graphic and inclusive graphic measures for
the sand+silt samples underestimate the
actual standard deviation from close to 0.75 to
1.0 phi units.

Sand only samples resulted in the most
accurate results for the analysis of the mean.
However, the graphic standard deviation
results do not even parallel the moment
standard deviation results. A linear regression
example is illustrated in Figure 5 for the sand
only data which results in r = 0.8097.

We can conclude as did Cadigan
(1954), therefore, that graphic measures for


-6.0 -5.0 4.0 -3.0 -2.0 -1.0 0.0 1.0


determining the standard deviation are not
accurate.

Moment Skewness Versus
Graphic Skewnesses

Moment measure skewness is plotted
versus graphic skewness and inclusive graphic
skewness in Figure 6. Without question, there
is virtually no useful correlation between the
moment and graphic measures. Moment
skewness versus graphic skewness has an r2
value of 0.0520; for the moment skewness
versus inclusive graphic skewness r= 0.1276.
Moreover, the graphic skewness under-
estimates the moment measure skewness by
an average factor of -0.2395; the inclusive
graphic skewness by -0.1889 (Table 4).

Moment Kurtosis Versus
Graphic Kurtosis

Moment measure kurtosis is plotted
against the graphic kurtosis in Figure 7.
Again, there is no useful correlation between
the two measures (r' = 0.0098), and the
graphic kurtosis underestimates the moment
measure kurtosis by an average factor of
0.131 (Table 4). In fact, the degree of


2.0 3.0 4.0 5.0 6.0


Moment Measure Skewness


Figure 6. Moment measure skewness versus graphic and inclusive graphic
skewnesses.










,3 1:1 OSand + Silt + Clay
3 OSand + Silt
^ 4 & I OSand Only
c-2
0 0o. ... ...

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Moment Measure Kurtosis

Figure 7. Moment measure kurtosis versus graphic kurtosis.


correlation is an order of magnitude less than
that for skewness measures.

F-Test Assessments

The standard statistical test for
assessing regression results from two samples
is the F-test. Moment and graphic measure
regression assessments for our data groups
are listed in Table 5. Where F, computed from
the data, is larger than the theoretical FCdf
value, the regressed results are deemed to be
significantly different.

Moment and graphic means are not
significantly different for any of the data
groups.

One-third of the tested data groups for
the moment and graphic and inclusive graphic
standard deviations are significantly different.
In addition, we performed F-tests for all of the
samples to further pin-down test results; both
graphic and inclusive graphic standard
deviations are significantly different than
moment standard deviations. The conclusion
is, therefore, that graphic and inclusive
graphic standard deviations may or may not
represent moment standard deviations. From
the scientific perspective, then, we are obliged
to choose the more conservative outcome, and
accept that the graphic measures can not
consistently replicate the standard deviation
moment measure.

For all the higher measures for the
skewness and kurtosis, the graphic measures
resoundingly do not represent the respective


moment measures.

DISCUSSION

There is a property of probability
distributions that is not generally known or
appreciated. It is a property that is the key to
understanding how probability distributions
work. The casual observer immediately
assumes that a probability distribution is
defined by its central characteristics. To do
otherwise is counter-intuitive. This, however,
is not the case. It is, in fact, the content of the
tails of a distribution that determines the
character of the central portion of the
distribution. This has been discussed by
various workers (Doeglas, 1946; W. R. James,
1973, personal communications; Tanner,
1991; Balsillie, 1995; Balsillie and Tanner,
1999). Balsillie and Tanner (1999) note that
each successively higher moment measure
"reaches deeper" (i.e., gives progressively
greater numerical weight) into the tails of the
distribution. Moreover, except for the mean,
odd moment measures deal with differences
between the tails; hence, the third moment
measure identifies to which tail the distribution
is skewed. Even moment measures treat the
tails as if they are combined; hence, the
peakedness of the central part of the curve is
forthcoming from the kurtosis.

Graphic measures are dependent
solely upon the values of cp, (p1,, (p25, T50p, 75,
9p84, and (p9a which are, depending on the
equation (i.e., equations (8) through (13)),
assessed in combinations of from two to five of
the above values. Hence, on the average,









Table 5 F-Test results for two-sample variances to assess re ression outcomes (a = 0.05 for all one-tailed tests).
Inclusive Inclusiv
Moment Graphic Moment Graphic Moment Graphic Moment Graphic Moment Moment
Mean Mean Standard Standard Standard Standard Skewness Skewness Skewness Skewness
Deviation Deviation Deviation Deviation
Mean 1.8438 1.5416 1.7015 1.0064 1.6496 1.0342 2.6394 -0.0263 2.7993 0.0515
Variance 2.1701 2.0381 0.2465 0.2775 0.3104 0.3923 1.1876 0.0775 1.3860 0.0812
T Observations 99 99 99 99 75 75 99 99 75 75
df 98 98 98 98 74 74 98 98 74 74
4 F 1.0648 1.1259 1.2639 15.3258 17.0656
SP 0.3784 0.2792 0.1580 2.4246E-33 3.7319E-27
Fcdf 1.3964 1.3964 1.4695 1.3964 1.4695
Mean 1.5317 1.3902 1.0257 0.8406 0.9241 0.7444 -0.0985 -0.1390 -0.1039 -0.1171
Variance 1.5491 1.4940 0.0984 0.1418 0.0794 0.0569 0.6059 0.0247 0.7301 0.0225
Observations 99 99 99 99 74 74 99 99 74 74
Sdf 98 98 98 98 73 73 98 98 73 73
m F 1.0369 1.4409 1.3947 24.5785 32.4391
SP 0.4291 0.0360 0.0788 2.0193E-42 3.5677E-38
Fcdf 1.3964 1.3964 1.4734 1.3964 1.4734
Mean 1.4383 1.3474 0.9129 0.8213 0.7928 0.6925 -1.1064 -0.1782 -1.3361 -0.1460
Variance 1.2667 1.3596 0.0811 0.1423 0.0439 0.0480 1.3961 0.0305 1.5967 0.0283
E Observations 99 99 99 99 74 74 99 99 74 74
0 df 98 98 98 98 73 73 98 98 73 73
SF 1.0734 1.7550 1.0919 45.7349 56.3426
uo P 0.3633 0.0029 0.3537 7.0961E-55 1.5655E-44
Fcdf 1.3965 1.3965 1.4734 1.3964 1.4734
Mean 1.6046 1.4264 1.1245 0.7352 1.1245 0.8247 0.4637 -0.0677 0.4637 -0.0876
Variance 1.6809 1.6265 0.2872 0.1511 0.2872 0.1881 4.2572 0.0484 4.2572 0.0573
E Observations 297 297 223 223 223 223 223 223 223 223
df 296 296 222 222 222 222 222 222 222 222
SF 1.0334 1.9011 1.5274 88.0290 74.2869
< P 0.3888 1.0662E-06 8.4343E-04 2.1046E-152 2.0279E-144
Fcdf 1.2111 1.2477 1.2477 1.2477 1.2477









Table 6. Average number of data points in sample distribution tails
not considered by graphic measures that are considered in moment
measures.
(1) (2) (3) (4) (5)
Doan Data Average Number S d Tails Combined:
Domain Standard
of Points of Data Points Deviation Average % of
of Deviation
Per Less or Greater Sample Not
Percentile er Less or Greater of Data of Sample Not
sesse Sample Than qp Percentile Included in the
Assessed C nof Column (1) oln Graphic Method
Sand + Silt + Clay (n = 111)
< p5 6 6 points 4
> 995 22 to 27 7 4 points 40.8
< p16 8 6 points
> (p84 9 4 points 40.8
Sand+ Silt (n = 111)
< (p5 6 + 6 points 42.6
> 995 21 to 26 7 4 points
< p16 8 6 points
> p84 8 4 points 42.6
Sand Only (n = 111)

< (p5 6 6 points 40.0
> (p95 20 to 25 7 3 points
< q16 8 6 points
> (p84 7 + 4 points 44.4
*Number of data points is the number of classified sieve intervals assessed.
**n = number of sediment samples assessed.


graphic measures do not consider from 78% to
92% of the data available per sample.

More importantly, however, it is the tails
of the granulometric distributions that are
essential in determining sample statistics.
Here, we have identified the number of data
points less than (p and cp,, and greater than
Tp4 and cpg9 for each sample. Average results
are listed in Table 6. By analyzing our data in
sub-suites of sand+silt+clay, sand+silt, and
sand only, higher moment measures become
exacerbated as the fine fraction mass
increases and as size becomes finer (Figures
5, 6, and 7). As it turns out, however, such
influence is not central to our needs if we look
at average data for each sub-suite. What is
important is that for the <9(,1 and >p84 tails


combined, 40.8% to 44.4% of sample data
points are not considered by graphic
measures. For the tails 9,, from
40.0% to 42.5% of the sample data are not
considered. That the tails are not considered
in graphic measures is precisely why the
degree of discrepancy between moment
measures and graphic measures advances so
quickly as the order of the moment measure
increases.

CONCLUSIONS

Two methods for assessing statistical
measures describing granulometric
distributions are recognized in the literature -
moment measures and graphic measures. In
this work, we have compared graphic









measures to the ultimately more accurate
moment measures. Graphic measures
assessed were the graphic mean, graphic and
inclusive graphic standard deviations, graphic
and inclusive graphic skewnesses, and
graphic kurtosis. We found that except for the
mean grain size, for which there can be close
approximation (although graphic means can
underestimate moment measure means by up
to about 0.6 (p), graphic measures do not
result in accurate outcomes forthcoming from
moment measure determinations.

Moreover, what we need to understand
is that during the last century computing power
did not become available in the work place or
to the public-at-large until the 1980's and
1990's, respectively, and that the assessment
of moment measures require significant
computing power. Hence, during the early and
middle part of the century, simplified graphic
measures were devised so that statistics
could be approximated. Today, however,
moment measures can be calculated with
ease, and the use of graphic measures should
be discontinued.

ACKNOWLEDGMENTS

We thank Kenneth Campbell, Thomas
M. Scott, Jon Arthur, Guy H. Means, Carol
Armstrong, and Jacqueline M. Lloyd of the
Florida Geological Survey for review of the
manuscript and useful editorial comments.
We also thank Joseph F. Donoghue, Florida
State University, Department of Geological
Sciences, and Alan Wm. Niedoroda, URS,
Tallahassee, FL for their review comments.

REFERENCES

Balsillie, J. H., 1995, Willian F. Tanner on
environmental plastic granulometry:
Florida Geological Survey, Special
Publication No. 40, 144 p.


Balsillie, J. H., and Tanner, W. F., 1999, Suite
versus composite statistics:
Sedimentary Geology, v. 125, p. 225-
234.

_, 2000, Red flags on the beach ,
part II: Journal of Coastal Research, v.
16, p. iii-x.

Boggs, S., 1995, Principles of sedimentology
and stratigraphy: Englewood Cliffs,
NJ: Prentice Hall, 774 p.

Cadigan, R. A., 1954, Testing graphical
methods of grain-size analysis of
sandstones and siltstones: Journal of
Sedimentary Petrology, v. 24, p. 123 -
127.

Doeglas, D. J., 1946, Intepretation of the
results of mechanical analyses:
Joumal of Sedimentary Petrology, v.
16, p. 19-40.

Fogiel, M., 1985, The statistics problem solver:
New York: Research and Education
Association, 1044 p.

Folk, R. L., 1974, Petrology of sedimentary
rocks: Austin, TX: Hemphill, 182 p.

Folk, R. L., and Ward, W., 1957, Grazos River
bar: a study in the significance of grain
size parameters: Journal of
Sedimentary Petrology, v. 27, p. 3-26.

Friedman, G. M., and Sanders, J. E., 1978,
Principles of sedimentology: New
York: John Wiley and Sons, 792 p.

Friedman, G. M., Sanders, J. E., and
Kopaska-Merkel, D. C., 1992,
Principles of sedimentary deposits:
New York: Macmillan Publishing
Company, 717 p.

Herve, C., 1990, Sedimentology: Berlin:
Springer-Verlag, 285 p.









Inman, D. L., 1952, Measures for describing
the size distribution of sediments:
Journal of Sedimentary Petrology, v.
22, p. 125-145.

Krumbein, W. C., 1934, Size frequency
distributions of sediments: Journal of
Sedimentary Petrology, v. 4, p. 65-77.

1964, Some remarks on the phi
notation: Journal of Sedimentary
Petrology, v. 34, p. 195-197.

Krumbein, W. C., and Pettijohn, F. J., 1938,
Manual of sedimentary petrology: New
York: Appleton-Century Company, Inc.,
549 p.

Lewis, D. W., and McConchie, D., 1994,
Analytical sedimentology: New York:
Chapman and Hall, 197 p.

McManus, D. A., 1963, A criticism of certain
usage of the phi-notation: Journal of
Sedimentary Petrology, v. 33, p. 670-
674.

Prothero, D. R., and Schwab, F., 1996,
Sedimentary geology, an introduction
to sedimentary rocks and stratigraphy:
New York: W. H. Freeman and
Company, 575 p.

Rees, D. G., 1995, Essential statistics:
London: Chapman and Hill, Inc., 256
p.

Selley, R. C., 1988, Applied sedimentology:
London: Academic Press, 446 p.

Sengupta, S., 1994, Introduction to
sedimentology: Rotterdam:
Brookfield, VT, 314 p.

Swan, D., Clague, J. J., and Luternauer, J. L.,
1978, Grain-size statistics i: Evaluation
of the Folk and Ward graphic
measures: Journal of Sedimentary
Petrology, v. 48, p. 863-878.


,1979, Grain-size statistics II:
Evaluation of grouped moment
measures: Journal of Sedimentary
Petrology, v. 49, p. 487-500.

Tanner, W. F., 1969, The particle size scale:
Journal of Sedimentary Petrology, v.
39, p. 809-811.

S 1991, Suite statistics: the
hydrodynamic evolution of the
sediment pool: In (J.P.M. Syvitski, ed.),
Methods and Applications of Particle
Size Analysis, Cambridge: Cambridge
University Press, p. 225-236.

Trask, P. D., 1932, Origin and environment of
source sediments of petroleum:
Houston, TX: Gulf Pub. Co., 323 p.

Wentworth, C. K., 1922, A scale of grade and
class terms for plastic sediments:
Journal of Geology, v. 30, p. 377-392.





































































16













APPENDIX I

GRANULOMETRY OF SAMPLES USED IN THE STUDY







































































18









SIAIGS10A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001

ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (q) (g) Percent Percent
--- mumm ==== mee= =---= ==== ----------m~ -a = =- =--- =


-2 .00
-1.75
-1.50
-1 .25
-1.00
-0.75
-0.50
-0.25
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00
3.25
D 3 3.50
3,75
4.00
8.00
PAN


-2.125
-1.875
-1.625
-1.375
-1.125
-0.875
-0.625
-0.375
-0.125
0.125
0. 375
0.625
0.875
1.125
1.375
1.625
1 .875
2.125
2.375
2.625
2.875
3.125
3.375
3.625
3.875
6.000


0.116
0.038
0.080
0.111
0.153
0.204
0.357
0.720
0.907
1 .624
2.236
3.416
6.394
12.896
12.240
14.371
8.904
5 .599
1 852
0.414
0.162
0.074
0.070
0.091
0.083
0.150
1. 50


0.116
0.154
0.234
0.345
0 .498
0.702
1.059
1.779
2.686
4.310
6.546
9.962
16.356
29.252
41.492
55.863
64 .767
70.366
72.218
72.632
72.794
72.868
72.938
73.029
73.112
73.262
74.912


0.1548
0.0507
0.1068
0.1482
0.2042
0.2723
0.4766
0.9611
1 .2108
2.1679
2.9848
4.5600
8.5353
17.2149
16.3392
19.1838
11.8859
7.4741
2.4722
0.5526
0.2163
0.0988
0.0934
0.1215
0.1108
0.2002
2.2026


0.1548
0.2056
0.3124
0.4605
0.6648
0.9371
1.4137
2.3748
3.5855
5.7534
8.7383
13.2983
21.8336
39.0485
55.3877
74.5715
86.4574
93.9315
96.4038
96.9564
97.1727
97.2715
97.3649
97.4864
97.5972
97.7974
100.0000


THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase In value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phl intervals, and moment measures recalculated.

MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi

Mean: 1.344 1.513 1.524 1.535 1.557
Std Dev: 0.685 1.318 1.380 1.445 1.577
Rel Dis: 0.510 0.872 STATISTICAL MEASURES
Skewness: -0.211 3.956 CALCULATED USING
Kurtosis: 9.539 23.936 METHOD OF MOMENTS
5th MM: 17.170 132.027 Std Dev = standard deviation
6th MM: 272.891 753.593 Rel Dis = relative dispersion
7th MM: 1147.178 4258.418 = std dev/mean
8th MM: 10722.384 24189.419 MM = moment measure
Median: 1.276 1.293


SIA1GS11A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001

ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent
====-==-=--===-= ---------==------=-----==-==- ..=--- =
-2.00 -2.125 0.981 0.981 1.4113 1.4113
-1.75 -1.875 0.078 1.059 0.1122 1.5236
-1.50 -1.625 0.023 1.082 0.0331 1.5567
-1.25 -1.375 0.049 1.131 0.0705 1.6272
-1.00 -1.125 0.075 1.206 0.1079 1.7351
-0.75 -0.875 0.083 1.289 0.1194 1.8545
-0.50 -0.625 0.121 1.410 0.1741 2.0285
-0.25 -0.375 0.133 1.543 0.1913 2.2199
0.00 -0.125 0.118 1.661 0.1698 2.3897
0.25 0.125 0.150 1.811 0.2158 2.6055
0.50 0.375 0.162 1.973 0.2331 2.8385
0.75 0.625 0.239 2.212 0.3438 3.1824
1.00 0.875 0.447 2.659 0.6431 3.8255
1.25 1.125 0.892 3.551 1.2833 5.1088
1.50 1.375 1.085 4.636 1.5610 6.6697
1.75 1.625 3.439 8.075 4.9476 11.6174
2.00 1.875 6.247 14.322 8.9875 20.6048
2.25 2.125 9.346 23.668 13.4459 34.0508
2.50 2.375 7.968 31.636 11.4634 45.5142
2.75 2.625 4.140 35.776 5.9561 51.4703
3.00 2.875 3.760 39.536 5.4094 56.8798
3.25 3.125 3.433 42.969 4.9390 61.8188
3.50 3.375 3.836 46.805 5.5188 67.3376
3.75 3.625 5.698 52.503 8.1976 75.5352
4.00 3.875 4.505 57,008 6.4813 82.0165
8.00 6.000 4.200 61.208 6.0425 88.0589
PAN 8.300 69.508 11.9411 100.0000

THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample is set at 10.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phl intervals, and moment measures recalculated.
3== ==-nn~---n= === === ==-----------
MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 10.00 Phi 10.50 Phi 11.00 Phi 12.00 Phi


Mean:
Std Dev:
Rel Dis:
Skewness:
Kurtosis:
5th MM:
6th MM:
7th MM:
8th MM:
Median:


2.700
1.360
0.504
-0.018
5.826
-5 .115
51.848
-95.255
535.728
2.343


3.571
2.704
0.757
1.381
4.349
8.448
23.441
48.934
129.992
2.563


3.631 3.691 3.810
2.843 2.989 3.287
STATISTICAL MEASURES
CALCULATED USING
METHOD OF MOMENTS
Std Dev standard deviation
Rel Dis relative dispersion
= std dev/mean
MM = moment measure








S1A1GS12A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001

ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phl) (Phi) (g) (g) Percent Percent

-2.00 -2.125 0.309 0.309 0.4402 0.4402
-1.75 -1.875 0.098 0,407 0.1396 0.5798
-1.50 -1.625 0.066 0.473 0.0940 0.6739
-1.25 -1.375 0.085 0.558 0.1211 0.7950
-1.00 -1.125 0.260 0.818 0.3704 1.1654
-0.75 -0.875 0.339 1.157 0.4830 1.6483
-0.50 -0.625 0.502 1.659 0.7152 2.3635
-0.25 -0.375 0.745 2.404 1.0614 3.4248
0.00 -0.125 0.863 3.267 1.2295 4.6543
0.25 0.125 1.346 4.613 1.9176 6.5719
0.50 0.375 1.599 6.212 2.2780 8.8499
0.75 0.625 2.385 8.597 3.3978 12.2477
1.00 0.875 4.657 13.254 6.6346 18.8822
1.25 1.125 11.621 24.875 16.5558 35.4380
1.50 1.375 12.027 36.902 17.1342 52.5722
1.75 1.625 16.334 53.236 23.2701 75.8423
2.00 1.875 9.399 62.635 13.3902 89.2325
2.25 2.125 4.478 67.113 6.3795 95.6121
2.50 2.375 1.084 68.197 1.5443 97.1564
2.75 2.625 0.141 68.338 0.2009 97.3573
3.00 2.875 0.050 68.388 0.0712 97.4285
N) 3.25 3.125 0.030 68.418 0.0427 97.4713
0 3.50 3.375 0.024 68.442 0.0342 97.5054
3,75 3.625 0.018 68.460 0.0256 97.5311
4.00 3.875 0.033 68.493 0.0470 97.5781
8.00 6.000 0.100 68.593 0.1425 97.7206
PAN 1.600 70.193 2.2794 100.0000

THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase In value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phl intervals, and moment measures recalculated.


MOMENT MEASURES
Stat. Pan Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi


Mean:
Std Dev:
Rel Dis:
Skewness:
Kurtosis:
5th MM:
6th MM:
7th MM:
8th MM:
Median:


1.331
0.692
0.520
-1.114
10.255
-5.402
258.953
420.173
8836.710


1.506
1.340
0.890
3.787
23.409
125.623
711.316
3947.686
22115.276


1.321 1.337


Pan at
10.00 Phi


Pan at
11.00 Phi


1.518 1.529 1.552
1.403 1.468 1.603
STATISTICAL MEASURES
CALCULATED USING
METHOD OF MOMENTS
Std Dev = standard deviation
Rel Dis = relative dispersion
std dev/mean
MM moment measure


SIA1GS13A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001
----------- -------------==--=== ---~-----P----
ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency cumulative
size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent
------------- ----------
-2.00 -2.125 0.000 0.000 0.0000 0.0000
-1.75 -1.875 0.065 0.065 0.0854 0.0854
-1.50 -1.625 0.109 0.174 0.1431 0.2285
-1.25 -1.375 0.162 0.336 0.2128 0.4413
-1.00 -1.125 0.202 0.538 0.2653 0.7065
-0.75 -0.875 0.325 0.863 0.4268 1.1334
-0.50 -0.625 0.617 1.480 0.8103 1.9437
-0.25 -0.375 0.815 2.295 1.0703 3.0140
0.00 -0.125 1.171 3.466 1.5379 4.5518
0.25 0.125 1.864 5.330 2.4480 6.9998
0.50 0.375 2.229 7.559 2.9273 9.9271
0.75 0.625 3.334 10.893 4.3785 14.3056
1.00 0.875 5.597 16.490 7.3504 21.6561
1.25 1.125 9.434 25.924 12.3895 34.0456
1.50 1.375 8.765 34.689 11.5109 45.5565
1.75 1.625 15.887 50.576 20.8641 66.4206
2.00 1.875 13.927 64.503 18.2901 84.7107
2.25 2.125 7.870 72.373 10.3355 95.0463
2.50 2.375 1.670 74,043 2.1932 97.2395
2.75 2.625 0.169 74.212 0.2219 97.4614
3.00 2.875 0.051 74.263 0.0670 97.5284
3.25 3.125 0.025 74.288 0.0328 97.5612
3.50 3.375 0.018 74.306 0.0236 97.5849
3.75 3.625 0.016 74.322 0.0210 97.6059
4.00 3.875 0.023 74.345 0.0302 97.6361
8.00 6.000 0.050 74.395 0.0657 97.7018
PAN 1.750 76.145 2.2982 100.0000


THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phi intervals, and moment measures recalculated.

MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi

Mean: 1.380 1.555 1.566 1.578 1.601
Std Dev: 0.689 1.336 1.399 1.465 1.600
Rel Dis: 0.499 0.859 STATISTICAL MEASURES
Skewness: -1.003 3.794 CALCULATED USING
Kurtosis: 6.313 23.008 METHOD OF MOMENTS
5th MM: -4.619 124.789 Std Dev = standard deviation
6th MM: 116.191 700.576 Rel Dis = relative dispersion
7th MM: 224.829 3891.596 = std dev/mean
8th MM: 3594.532 21706.334 MM = moment measure


Median:


1.414


1.428









S1A1GSIA ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001

ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent

-2.00 -2.125 0.808 0.808 1.2752 1.2752
-1.75 -1.875 0.030 0.838 0.0473 1.3225
-1.50 -1.625 0.138 0.976 0.2178 1.5403
-1.25 -1.375 0.182 1.158 0.2872 1.8275
-1.00 -1.125 0.284 1.442 0.4482 2.2757
-0.75 -0.875 0.328 1.770 0.5176 2.7933
-0.50 -0.625 0.661 2.431 1.0432 3.8365
-0.25 -0.375 0.910 3.341 1.4361 5.2726
0.00 -0.125 1.252 4.593 1.9759 7.2485
0.25 0.125 2.134 6.727 3.3678 10.6163
0.50 0.375 2.964 9.691 4,6777 15.2939
0.75 0.625 5.221 14.912 8.2396 23.5335
1.00 0.875 10.524 25.436 16.6085 40.1420
1.25 1.125 17.022 42.458 26.8634 67.0054
1.50 1.375 10.102 52.560 15.9426 82.9480
1.75 1,625 7.143 59.703 11.2728 94.2208
2.00 1.875 1.616 61.319 2.5503 96.7711
2.25 2.125 0.386 61.705 0.6092 97.3803
2.50 2.375 0.242 61.947 0.3819 97.7622
2.75 2.625 0.081 62.028 0.1278 97.8900
3.00 2.875 0.040 62.068 0.0631 97.9531
K 3.25 3.125 0.018 62.086 0.0284 97.9815
S 3.50 3.375 0.013 62.099 0.0205 98.0021
3.75 3.625 0.011 62.110 0.0174 98.0194
4.00 3.875 0.005 62.115 0.0079 98.0273
8.00 6.000 0.000 62.115 0.0000 98.0273
PAN 1.250 63.365 1.9727 100.0000

THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phi intervals, and moment measures recalculated.

MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi


Mean:
Std Dev:
Rel Dis:
Skewness:
Kurtosis:
5th MM:
6th MM:
7th MM:
8th MM:
Median:


0.950
0.683
0.711
-1.820
8.552
-30.971
138.591
-574.595
2592.551
0.958


1.119
1.314
1.174
3.977
26.691
154.002
936.648
5587.489
33582.764
0.967


1.129 1.139 1.158
1.371 1.432 1.557
STATISTICAL MEASURES
CALCULATED USING
METHOD OF MOMENTS
Std Dev = standard deviation
Rel DIs = relative dispersion
std dev/mean
MM = moment measure


SIA1GS2A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001

ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent


-2.00
-1.75
-1.50
-1.25
-1.00
-0.75
-0.50
-0.25
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00
3.25
3.50
3.75
4.00
8.00
PAN


-2.125
-1.875
-1.625
-1.375
-1.125
-0.875
-0.625
-0.375
-0.125
0.125
0.375
0.625
0.875
1 .125
1.375
1.625
1 .75
2.125
2.375
2.625
2.875
3.125
3.375
3.625
3.875
6.000


0.000
0.000
0.000
0.011
0.006
0.029
0.050
0.041
0.063
0.116
0.197
0.301
0.737
2.072
2.914
9.046
14.595
18.097
9.161
1.739
0.893
0.755
0.710
0.716
0.274
0.200
1.400


0.000
0.000
0.000
0.011
0.017
0.046
0.096
0.137
0.200
0.316
0.513
0.814
1.551
3.623
6.537
15.583
30.178
48.275
57.436
59.175
60.068
60.823
61.533
62.249
62.523
62.723
64.123


0.0000
0.0000
0.0000
0.0172
0.0094
0.0452
0.0780
0.0639
0.0982
0.1809
0.3072
0.4694
1.1494
3.2313
4.5444
14.1073
22.7609
28.2223
14.2866
2.7120
1.3926
1.1774
1.1072
1.1166
0.4273
0.3119
2.1833


0.0000
0.0000
0.0000
0.0172
0.0265
0.0717
0.1497
0.2137
0.3119
0.4928
0.8000
1.2694
2.4188
S.6501
10.1945
24.3017
47.0627
75.2850
89.5716
92.2836
93.6762
94.8536
95.9609
97.0775
97.5048
97.8167
100.0000


=------------ ----- ----- == ====m - -- -- -- -- - -
THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction Is treated. The pan mid-point for this
sample is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phi intervals, and moment measures recalculated.
-----P------------------=~trrr
MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi

Mean: 2.012 2.164 2.175 2.186 2.208
Std Dev: 0.558 1.168 1.230 1.296 1.430
Rel Dis: 0.277 0.540 STATISTICAL MEASURES
Skewness: 1.125 4.478 CALCULATED USING
Kurtosis: 13.301 26.670 METHOD OF MOMENTS
5th MM: 55.911 153.304 Std Dev standard deviation
6th MM: 493.396 896.688 Rel Dis relative dispersion
7th MM: 2925.815 5231.590 std dev/mean
8th MM: 23275.951 30601.826 MM moment measure


Median:


1.891


1.901


enm=mm==-tm===m-====,,3Fman =--- ----- ---- -









S1A1GS3A ENTIRE SAMPLE A

ANALYTICAL GRAN
Sieve Mid- Frequency
Size Point Weight
(Phi) (Phi) (g)

-2.00 -2.125 0.000
-1.75 -1.875 0.000
-1.50 -1.625 0.000
-1.25 -1.375 0.000
-1.00 -1.125 0.015
-0.75 -0.875 0.012
-0.50 -0.625 0.036
-0.25 -0.375 0.067
0.00 -0.125 0.101
0.25 0.125 0.193
0.50 0.375 0.336
0.75 0.625 0.618
1.00 0.875 1.429
1.25 1.125 4.153
1.50 1.375 6.591
1.75 1.625 21.285
2.00 1.875 22.369
2.25 2.125 10.312
2.50 2.375 2.178
2.75 2.625 0.332
3.00 2.875 0.106
)a 3.25 3.125 0.051
3 3.50 3.375 0.041
3.75 3.625 0.057
4.00 3.875 0.028
8.00 6.000 0.050
PAN 1.600


ANALYSIS MO-DA-YR: 2-7-2001

IULOMETRIC RESULTS
Cumulative Frequency Cumulative
Weight Weight Weight
(g) Percent Percent


0.000
0.000
0.000
0.000
0.015
0.027
0.063
0.130
0.231
0.424
0.760
1.378
2 .07
6.960
13.551
34.836
57.205
67.517
69.695
70,027
70.133
70.184
70.225
70.282
70.310
70.360
71.960


0.0000
0.0000
0.0000
0.0000
0.0208
0.0167
0.0500
0.0931
0.1404
0.2682
0.4669
0.8588
1.9858
5.7713
9.1593
29.5789
31.0853
14.3302
3.0267
0.4614
0.1473
0.0709
0.0570
0.0792
0.0389
0.0695
2.2235


0.0000
0.0000
0.0000
0 0000
0.0208
0.0375
0.0875
0.1807
0.3210
0.5892
1.0561
1.9150
3.9008
9.6720
18.8313
48.4102
79.4956
93.8257
96.8524
97.3138
97.4611
97.5320
97.5889
97.6681
97.7071
97.7765
100.0000


S1A1GS4A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001

ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent


-2.00
-1.75
-1.50
-1 .25
-1 .00
-0.75
-0.50
-0.25
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1 .75
2 .00
2.25
2.50
2.75
3.00
3.25
3.50
3.75
4.00
8 00
PAN


-2.125
-1.875
-1.625
-1.375
-1.125
-0.875
-0.625
-0.375
-0.125
0.125
0.375
0.625
0.875
1.125
1.375
1.625
1.875
2.125
2.375
2.625
2.875
3.125
3.375
3.625
3.875
6.000


0.074
0.030
0.053
0.089
0,132
0.083
0.027
0.015
0.018
0.023
0.039
0.061
0.081
0. 104
0.111
0.292
0.563
0.924
1.127
1.305
2.392
3.883
7.465
12.979
7.637
4 750
8.850


0.074
0.104
0.157
0.246
0.378
0.461
0.488
0.503
0.521
0.544
0.583
0.644
0.725
0.829
0.940
1.232
1.795
2.719
3.846
5.151
7.543
11.426
18.891
31.870
39.507
44.257
53.107


0.1393
0.0565
0.0998
0.1676
0.2486
0.1563
0.0508
0.0282
0.0339
0.0433
0.0734
0.1149
0.1525
0.1958
0.2090
0.5496
1.0601
1.7399
2.1221
2.4573
4.5041
7.3117
14.0565
24.4393
14.3804
8.9442
16.6645


0.1393
0.1958
0.2956
0.4632
0.7118
0.8681
0.9189
0.9471
0.9810
1.0243
1.0978
1.2126
1.3652
1.5610
1.7700
2.3198
3.3800
5.1199
7.2420
9.6993
14.2034
21.5151
35.5716
60.0109
74.3913
83.3355
100.0000


THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phi intervals, and moment measures recalculated.

MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi


Mean: 1.722
Std Dev: 0.405
Rel Dis: 0.235
Skewness: -0.012
Kurtosls: 15.726
5th MM: 77.691
6th MM: 1135.003
7th MM: 10052.952
8th MM: 115369.231
Median: 1.629


1.884
1.153
0.612
5.254
33.024
202.606
1251.347
7719.893
47658.625
1.638


1.895 1.906 1.928
1.220 1.290 1.432
STATISTICAL MEASURES
CALCULATED USING
METHOD OF MOMENTS
SLd Dev = standard deviation
Rel Dis = relative dispersion
= std dev/mean
MM = moment measure


THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample is set at 10.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phi intervals, and moment measures recalculated.

MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 10.00 Phi 10.50 Phi 11.00 Phi 12.00 Phi

Mean: 3.585 4.654 4.738 4.821 4.988
Std Dev: 1.115 2.618 2.780 2.955 3.310
Rel Dis: 0.311 0.563 STATISTICAL MEASURES
Skewness: -0.259 1.187 CALCULATED USING
Kurtosis: 7.689 3.362 METHOD OF MOMENTS
5th MM: -17.235 5.256 Std Dev = standard deviation
6th MM: 111.644 13.956 Rel Dis = relative dispersion
7th MM: -434.065 21.364 = std dev/mean
8th MM: 2181.911 59.987 MM = moment measure
Median: 3.437 3.523









S1A1GS5A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001

ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent

-2.00 -2.125 0.000 0.000 0.0000 0.0000
-1.75 -1.875 0.000 0.000 0.0000 0.0000
-1.50 -1.625 0.016 0.016 0.0214 0.0214
-1.25 -1.375 0.028 0.044 0.0374 0.0588
-1.00 -1.125 0.051 0.095 0.0681 0.1269
-0.75 -0.875 0.216 0.311 0.2885 0.4154
-0.50 -0.625 0.482 0.793 0.6437 1.0591
-0.25 -0.375 0.616 1.409 0.8227 1.8818
0.00 -0.125 0.968 2.377 1.2928 3.1746
0.25 0.125 1.576 3.953 2.1048 5.2794
0.50 0.375 2.254 6.207 3.0103 8.2897
0.75 0.625 3.509 9.716 4.6864 12.9761
1.00 0.875 6.793 16.509 9.0723 22,0485
1,25 1.125 12.296 28.805 16.4218 38.4703
1.50 1.375 10.606 39.411 14.1648 52.6350
1.75 1.625 15.328 54.739 20.4712 73.1062
2.00 1.875 11.057 65.796 14.7671 87.8733
2.25 2.125 5.562 71.358 7.4283 95.3016
2.0S 2.375 1.386 72.744 1.8511 97.1526
2.75 2.625 0.254 72.998 0.3392 97.4919
3.00 2.875 0.094 73.092 0.1255 97.6174
N 3.25 3.125 0.030 73.122 0.0401 97.6575
S3.50 3.375 0.020 73.142 0.0267 97.6842
3.75 3.625 0.024 73.166 0.0321 97.7162
4.00 3.875 0.010 73.176 0.0134 97.7296
8.00 6.000 0.150 73.326 0.2003 97.9299
PAN 1.550 74,876 2.0701 100.0000

THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction Is treated. The pan mid-point for this
sample is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point Is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phl intervals, and moment measures recalculated.

MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi


Mean: 1.357 1.515
Std Dev: 0.637 1.264
Rel Dis: 0.469 0.834
Skewness: 0.042 4.270
Kurtosis: 9.411 26.436
5th MM: 35.566 153.694
6th MM: 341.276 910.607
7th MM: 2199.593 5378.621
8th MM: 16948.736 31832.077
Median: 1.310 1.328


1.526 1.536 1.557
1.324 1,387 1.516
STATISTICAL MEASURES
CALCULATED USING
METHOD OF MOMENTS
Std Dev standard deviation
Rel DIs = relative dispersion
= std dev/mean
MM = moment measure


S1A1GS6A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001
== mmm-----------=-----m-I----------=-==m----mm-m--=-m-
ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent
---========== ====== ---------------------
-2.00 -2.125 0.076 0.076 0.1039 0.1039
-1.75 -1.875 0.041 0.117 0.0560 0.1599
-1.50 -1,625 0.033 0.150 0.0451 0.2050
-1.25 -1.375 0.043 0.193 0.0588 0.2637
-1.00 -1.125 0.092 0.285 0.1257 0.3895
-0.75 -0.875 0.212 0.497 0.2897 0.6791
-0.50 -0.625 0.303 0.800 0.4140 1.0932
-0.25 -0.375 0.435 1.235 0.5944 1.6876
0.00 -0.125 0.608 1.843 0.8308 2.5184
0.25 0.125 0.951 2.794 1.2995 3.8180
0.50 0.375 1.508 4.302 2.0607 5.8787
0.75 0.625 2.554 6.856 3.4900 9.3687
1.00 0.875 5.785 12.641 7.9052 17.2738
1.25 1.125 11.971 24.612 16.3583 33.6321
1.50 1.375 12.269 36.881 16.7655 50.3976
1.75 1.625 19.038 55.919 26.0153 76.4130
2.00 1.875 11.233 67.152 15.3498 91.7628
2.25 2.125 3.564 70.716 4.8702 96.6330
2.50 2.375 0.664 71.380 0.9074 97.5403
2.75 2.625 0.151 71.531 0.2063 97.7467
3.00 2.875 0.057 71.588 0.0779 97.8245
3.25 3.125 0.022 71.610 0.0301 97.8546
3.50 3.375 0.015 71.625 0.0205 97.8751
3.75 3.625 0.016 71.641 0.0219 97.8970
4.00 3.875 0.039 71.680 0.0533 97.9503
8.00 6.000 0.100 71.780 0.1366 98.0869
PAN 1.400 73.180 1.9131 100.0000

THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point Is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g.. settling
tube) at 1/4-phi intervals, and moment measures recalculated.

MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi

Mean: 1.383 1.528 A.538 1.548 1.567
Std Dev: 0.580 1.197 1.256 1.318 1.443


Rel Dis:
Skewness
Kurtosis
5th MM:
6th MM:
7th MM:
8th MM:
Median:


0.419
-0.561
12.354
21.300
489.358
2262,710
26341.417
1.355


0.783
4.566
30.133
183.706
1151.483
7157.495
44678.884
1 .369


STATISTICAL MEASURES
CALCULATED USING
METHOD OF MOMENTS
Std Dev standard deviation
Rel Dis relative dispersion
std dev/mean
MM moment measure








S1A1GS9A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001

ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent


-2.00
-1.75
-1.50
-1.25
-1.00
-0.75
-0.50
-0.25
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2 .00
2.25
2.50
2.75
3.00
3.25
4 3.50
3.75
4 .00
S.00
PAN


-2.125
-1.875
-1.625
-1.375
-1.125
-0.875
-0.625
-0.375
-0.125
0.125
0.375
0.625
0.875
1.125
1.375
1.625
1.875
2.125
2.375
2.625
2,875
3.125
3.375
3.625
3.875
6.000


1.125
0.119
0.063
0.097
0.061
0.055
0.102
0.076
0.072
0.064
0.067
0.060
0.102
0.140
0.137
0.173
0.218
0.441
0.913
1.060
1.778
3.064
7.332
14.982
8.966
6.050
10.050


1.125
1.244
1.307
1.404
1.465
1.520
1.622
1.698
1.770
1.834
1.901
1.961
2.063
2.203
2.340
2.513
2.731
3.172
4.085
5.145
6.923
9.987
17.319
32.301
41.267
47.317
57.367


1.9611
0.2074
0.1098
0.1691
0.1063
0.0959
0 .1778
0.1325
0.1255
0.1116
0.1168
0.1046
0.1778
0.2440
0.2388
0.3016
0.3800
0.7687
1.5915
1.8478
3.0993
5.3410
12.7809
26.1161
15.6292
10.5461
17.5188


THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample is set at 10.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phl intervals, and moment measures recalculated.

MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 10.00 Phi 10.50 Phi 11.00 Phi 12.00 Phi


3.567
1.451
0.407
-1.454
8.573
-26.552
110.446
-407.208
1594.947
3.481


4 .694
2.795
0.595
0.729
3.332
2.115
13.650
3.243
60.012
3.565


4.782 4.870 5.045
2.955 3.127 3.478
STATISTICAL MEASURES
CALCULATED USING
METHOD OF MOMENTS
Std Dev = standard deviation
Rel Dis = relative dispersion
= std dev/mean
MM = moment measure


1.9611
2.1685
2.2783
2.4474
2.5537
2.6496
2.8274
2.9599
3.0854
3.1970
3.3138
3.4183
3.5961
3.8402
4.0790
4.3806
4.7606
5.5293
7.1208
8.9686
12.0679
17.4090
30.1898
56.3059
71.9351
82.4812
100.0000


S1A2GS10A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001
---- ------ ------P--- -----I-fl--------- -- - - - - -- -
ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent
------------- -------- -----------P-P
-2.00 -2.125 0.072 0.072 0.1214 0.1214
-1.75 -1.875 0.063 0.135 0.1062 0.2276
-1.50 -1.625 0.062 0.197 0.1045 0.3321
-1.25 -1.375 0.198 0.395 0.3338 0.6659
-1.00 -1.125 0.119 0.514 0.2006 0.8665
-0.75 -0.875 0.214 0.728 0.3608 1.2273
-0.50 -0.625 0.258 0.986 0.4349 1.6622
-0.25 -0.375 0.275 1.261 0.4636 2.1258
0.00 -0.125 0.203 1.464 0.3422 2.4681
0.25 0.125 0.250 1.714 0.4215 2.8895
0.50 0.375 0.265 1.979 0.4467 3.3363
0.75 0.625 0.367 2.346 0.6187 3.9550
1.00 0.875 0.716 3.062 1.2071 5.1620
1.25 1.125 1.524 4.586 2.5692 7.7312
1.50 1.375 1.669 6.255 2.8136 10.5449
1.75 1.625 3.326 9.581 5.6071 16.1519
2.00 1.875 3.245 12.826 5.4705 21.6224
2.25 2.125 2.681 15.507 4.5197 26.1421
2.50 2.375 1.727 17.234 2.9114 29.0536
2.75 2.625 0.910 18.144 1.5341 30.5877
3.00 2.875 0.886 19.030 1.4936 32.0813
3.25 3.125 1.566 20.596 2.6400 34.7213
3.50 3.375 4.507 25.103 7.5980 42.3194
3.75 3.625 8.540 33.643 14.3970 56.7163
4.00 3.875 9.175 42.818 15.4675 72.1838
8.00 6.000 9.400 52.218 15.8468 88.0306
PAN 7.100 59.318 11.9694 100.0000

THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample is set at 10.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase In value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phi intervals, and moment measures recalculated.
====--E-----------------=,rl=--a
MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 10.00 Phi 10.50 Phi 11.00 Phi 12.00 Phi
F==f --F3-------P----------- ........~
Mean: 3.313 4.113 4.173 4.233 4.352
Std Dev: 1.682 2.698 2.823 2.959 3.241
Rel Dls: 0.508 0.656 STATISTICAL MEASURES
Skewness: -0.083 0.920 CALCULATED USING
Kurtosis: 2.879 3.350 METHOD OF MOMENTS
5th MM: -1.954 5.186 Std Dev standard deviation
6th MM: 12.714 14.638 Rel DIs = relative dispersion
7th MM: -20.671 25.969 std dev/mean
8th MM: 77.709 67.768 MM = moment measure
Median: 3.404 3.508


Mean:
Std Dev:
Rel Dis:
Skewness:
Kurtosis:
5th MM:
6th MM:
7th MM:
8th MM:
Median:









S1A2GS11A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001

ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency cumulative


Size Point Weight
(Phi) (Phi) (g)

-2.00 -2.125 0.000
-1.75 -1.875 0.000
-1.50 -1.625 0.000
-1.25 -1,375 0.000
-1.00 -1,125 0.023
-0.75 -0.875 0.029
-0.50 -0.625 0.071
-0.25 -0.375 0.129
0.00 -0.125 0.151
0.25 0.125 0.311
0.50 0.375 0.675
0.75 0.625 1.420
1.00 0.875 3.443
1.25 1.125 7.537
1.50 1.375 7.455
1.75 1.625 13.266
2.00 1.875 12.819
2.25 2.125 10.552
2.50 2.375 4.384
2.75 2.625 0.665
3.00 2.875 0.149
p 3.25 3.125 0.097
Ut 3.50 3.375 0.137
3.75 3.625 0.165
4.00 3.875 0.127
8.00 6.000 0.550
PAN 1.500


Weight Weight Weight
(g) Percent Percent
----------- == == == = :: ==


0.000
0.000
0.000
0.000
0.023
0.052
0.123
0.252
0.403
0.714
1.389
2.809
6 .252
13.789
21.244
34.510
47.329
57.881
62.265
62.930
63,079
63.176
63.313
63.478
63.605
64.155
65.655


0.0000
0.0000
0.0000
0.0000
0.0350
0.0442
0.1081
0.1965
0.2300
0.4737
1,0281
2.1628
5.2441
11.4797
11.3548
20.2056
19.5248
16.0719
6.6773
1.0129
0.2269
0.1477
0.2087
0.2513
0.1934
0.8377
2.2847


0.0000
0.0000
0.0000
0.0000
0.0350
0.0792
0.1873
0.3838
0.6138
1.0875
2.1156
4.2784
9.5225
21.0022
32.3570
52.5626
72.0874
88.1593
94.8366
95.8495
96.0765
96.2242
96.4329
96.6842
96.8776
97.7153
100.0000


THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample Is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point Is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phl Intervals, and moment measures recalculated.

MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi

Mean: 1.691 1.858 1.870 1.881 1.904
Std Dev: 0.668 1.283 1.345 1.411 1.545
Rel Dis: 0.395 0.690 STATISTICAL MEASURES
Skewness: 2.060 4.179 CALCULATED USING
Kurtosis: 17.164 23.378 METHOD OF MOMENTS
5th MM: 95.840 126.766 Std DeV = standard deviation
6th MM: 644.914 699.959 Rel Dis relative dispersion
7th MM: 4045.052 3870.937 = std dev/mean
Rth MM: 26388.701 21477.511 MM = moment measure


Median:


1.579


1.593


S1A2GS12A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001
-1 11---------- ------ ----- --- --- -- -- ---- --------e
ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent

-2.00 -2.125 0.056 0.056 0.1094 0.1094
-1.75 -1.875 0.104 0.160 0.2032 0.3126
-1.50 -1.625 0.086 0.246 0.1680 0.4806
-1.25 -1.375 0.051 0.297 0.0996 0.5802
-1.00 -1.125 0.033 0.330 0.0645 0.6446
-0.75 -0.875 0.064 0.394 0.1250 0.7697
-0.50 -0.625 0.075 0.469 0.1465 0.9162
-0.25 -0.375 0.079 0.548 0.1543 1.0705
0.00 -0.125 0.067 0.615 0.1309 1.2014
0.25 0.125 0.072 0.687 0.1406 1.3420
0.50 0.375 0.100 0.787 0.1953 1.5374
0.75 0.625 0.164 0.951 0.3204 1.8577
1.00 0.875 0.275 1.226 0.5372 2.3950
1.25 1.125 0.370 1.596 0.7228 3.1177
1.50 1.375 0.350 1.946 0.6837 3.8014
1.75 1.625 0.684 2.630 1.3362 5.1376
2.00 1.875 1.075 3.705 2.1000 7.2376
2.25 2.125 1.366 5.071 2.6684 9.9060
2.50 2.375 0.969 6.040 1.8929 11.7989
2.75 2.625 0.561 6.601 1.0959 12.8948
3.00 2.875 0.808 7.409 1.5784 14.4732
3.25 3.125 1.957 9.366 3.8229 18.2962
3.50 3.375 5.888 15.254 11.5020 29.7982
3.75 3.625 10.031 25.285 19.5952 49.3934
4.00 3.875 9.606 34.891 18.7650 68.1585
8.00 6.000 9.100 43.991 17.7766 85.9350
PAN 7.200 51.191 14.0650 100.0000

THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample is set at 10.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase In value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phl intervals, and moment measures recalculated.

MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 10.00 Phi 10.50 Phi 11.00 Phi 12.00 Phi
--------------- ==-=----- == -- --- --- --- ---
Mean: 3.794 4.667 4.737 4.807 4.948
Std Dev: 1.422 2.546 2.685 2.838 3.153
Rel Dls: 0.375 0.546 STATISTICAL MEASURES
Skewness: -0.308 0.963 CALCULATED USING
Kurtosis: 4.321 3.387 METHOD OF MOMENTS
5th MM: -8.085 4.627 Std Dev standard deviation
6th MM: 37.738 14.615 Rel Dis relative dispersion
7th MM: -122.192 19.773 std dev/mean
8th MM: 481.648 66.475 MM moment measure
Median: 3.543 3.633









S1A2GS13A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001

ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent
---------m = --- ----------m ----------------------- = --mm = =
-2.00 -2.125 0.000 0.000 0.0000 0.0000
-1.75 -1.875 0.018 0.018 0.0379 0.0379
-1.50 -1.625 0.030 0.048 0.0632 0.1011
-1.25 -1.375 0.049 0.097 0.1032 0.2043
-1.00 -1.125 0.005 0.102 0.0105 0.2148
-0.75 -0.875 0.010 0.112 0.0211 0.2359
-0.50 -0.625 0.042 0.154 0.0885 0.3244
-0.25 -0.375 0.031 0.185 0.0653 0.3897
0.00 -0.125 0.023 0.208 0.0484 0.4381
0.25 0.125 0.039 0.247 0.0821 0.5203
0.50 0.375 0.036 0.283 0.0758 0.5961
0.75 0.625 0.042 0.325 0.0885 0.6846
1.00 0.875 0.063 0.388 0.1327 0.8173
1.25 1.125 0.095 0.483 0.2001 1.0174
1.50 1.375 0,100 0.583 0.2106 1.2280
1.75 1.625 0.191 0.774 0.4023 1.6303
2.00 1.875 0.217 0.991 0.4571 2.0874
2.25 2.125 0.240 1.231 0.5055 2.5929
2.50 2.375 0.316 1.547 0.6656 3.2585
2.75 2.625 0.460 2.007 0.9689 4.2274
3.00 2.875 1.170 3.177 2.4644 6.6918
N) 3.25 3.125 2.870 6.047 6.0452 12.7370
0* 3.50 3.375 7.270 13.317 15.3130 28,0500
3.75 3.625 9.454 22.771 19.9132 47.9632
4.00 3.875 7.455 30.226 15.7027 63.6659
8.00 6.000 7.200 37,426 15.1656 78.8314
PAN 10,050 47.476 21.1686 100.0000

THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample Is set at 10.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point Is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phi Intervals, and moment measures recalculated.

MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 10.00 Phi 10.50 Phi 11.00 Phi 12.00 Phi


Mean:
Std Dev:
Rel Dis:
Skewness:
Kurtosis:
Sth MM:
sth MM:
7th MM:
8th MM:
Median:


3.916
1.171
0.299
0.294
4,631
-6.568
47.835
-167.317
806.819
3.518


5.204
2.718
0.522
0.915
2.425
3.197
7.495
9.502
24.914
3 657


5.310 5,415 5.627
2.893 3.066 3.476
STATISTICAL MEASURES
CALCULATED USING
METHOD OF MOMENTS
Std Dev standard deviation
Rel DIs relative dispersion
std dev/mean
MM = moment measure


S1A2GS14A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001
rII---P--------------------------- --------------
ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent
..... ==.== P~--------------------= ..........= .......


-2.00
-1.75
-1.50
-1.25
-1.00
-0.75
-0.50
-0.25
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00
3.25
3.50
3.75
4.00
8.00
PAN


-2.125
-1.875
-1.625
-1.375
-1.125
-0.875
-0.625
-0.375
-0.125
0.125
0.375
0.625
0.875
1 .125
1.375
1.625
1.875
2.125
2.375
2.625
2.875
3.125
3.375
3.625
3.875
6.000


0.243
0.038
0.161
0.059
0.091
0.090
0.147
0.140
0.097
0.096
0.089
0.090
0.145
0.274
0.290
0.583
0.657
0.744
0.856
1.073
2.311
4.427
8.284
9.734
8 .123
7.000
6.950


0.243
0.281
0.442
0.501
0.592
0.682
0.829
0.969
1.066
1.162
1.251
1.341
1.486
1.760
2.050
2.633
3.290
4.034
4.890
5.963
8.274
12.701
20.985
30.719
38.842
45.842
52.792


0.4603
0.0720
0.3050
0.1118
0.1724
0.1705
0.2785
0.2552
0.1837
0.1818
0.1686
0.1705
0.2747
0.5190
0.5493
1.1043
1.2445
1.4093
1 .6215
2.0325
4.3776
8.3857
15.6918
18.4384
15.3868
13.2596
13.1649


0.4603
0.5323
0.8372
0.9490
1.1214
1.2919
1.5703
1.8355
2.0192
2.2011
2.3697
2.5402
2.8148
3.3338
3.8832
4.9875
6.2320
7.6413
9.2628
11.2953
15.6728
24.0586
39.7503
58.1887
73.5755
86.8351
100.0000


THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample Is set at 10.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point Is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phi intervals, and moment measures recalculated.

MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 10.00 Phi 10.50 Phi 11.00 Phi 12.00 Phi
P= =-----I------ = ------======
Mean: 3.610 4.451 4.517 4.583 4.714
Std Dev: 1.367 2.525 2.662 2.812 3.120
Rel DIs: 0.379 0.567 STATISTICAL MEASURES
Skewness: -0.560 1.061 CALCULATED USING
Kurtosis: 6.045 3.861 METHOD OF MOMENTS
5th MM: -13.836 5.390 Std Dev standard deviation
6th MM: 65.660 18.511 Rel Dis relative dispersion
7th MM: -226.655 25.276 std dev/mean
8th MM: 927.570 92.051 MM = moment measure


Median:


3.425


3.514









S1A2GS13A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001

ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent


-2 .00
-1 .75
-1.50
-1.25
-1.00
-0.75
-0.50
-0.25
0.00
0.25
0.50
0.75
1.00
1 .25
1.50
1.75
2.00
2.25
2.50
2.75
3.00
N) 3.25
4 3.50
3.75
4 .00
8.00
PAN


-2.125
-1.875
-1.625
-1.375
-1.125
-0.875
-0.625
-0.375
-0.125
0.125
0.375
0.625
0.875
1.125
1.375
1.625
1.875
2.125
2.375
2.625
2.875
3.125
3.375
3.625
3.875
6.000


0.000
0.018
0.030
0.049
0.005
0.010
0.042
0.031
0.023
0.039
0.036
0.042
0.063
0.095
0.100
0.191
0.217
0.240
0.316
0.460
1.170
2.870
7.270
9.454
7.455
7.200
10.050


0.000
0.018
0.048
0.097
0.102
0.112
0.154
0.185
0.208
0.247
0.283
0.325
0.388
0.483
0.583
0.774
0.991
1 .231
1.547
2.007
3.177
6.047
13.317
22.771
30.226
37.426
47.476


0.0000
0.0379
0.0632
0.1032
0.0105
0.0211
0.0885
0.0653
0.0484
0.0821
0.0758
0.0885
0.1327
0.2001
0.2106
0.4023
0.4571
0.5055
0.6656
0.9689
2.4644
6.0452
15.3130
19.9132
15.7027
15.1656
21.1686


0.0000
0.0379
0.1011
0.2043
0.2148
0.2359
0.3244
0.3897
0.4381
0.5203
0.5961
0.6846
0.8173
1.0174
1.2280
1.6303
2.0874
2.5929
3.2585
4.2274
6.6918
12.7370
28.0500
47.9632
63.6659
78.8314
100.0000


THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample Is set at 10.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly Increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phl intervals, and moment measures recalculated.

MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 10.00 Phi 10.50 Phi 11.00 Phi 12.00 Phi

Mean: 3.916 5.204 5.310 5.415 5.627
Std Dev: 1.171 2.718 2.893 3.086 3.476
Rel Dis: 0.299 0.522 STATISTICAL MEASURES
Skewness: 0.294 0.915 CALCULATED USING
Kurtosis: 4.631 2.425 METHOD OF MOMENTS
5th MM: -6.568 3.197 Std Dev = standard deviation
6th MM: 47.835 7.495 Rel Dis = relative dispersion
7th MM: -167.317 9.502 = std dev/mean
8th MM: 806.819 24.914 MM = moment measure


Median:


3.518


3.657


S1A2GS14A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001
---=F~- === -lP P---------------- - -- -- -- ----
ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent
----P-P===t==r~f--f~-------------- -
-2.00 -2.125 0.243 0.243 0.4603 0.4603
-1.75 -1.875 0.038 0.281 0.0720 0.5323
-1.50 -1.625 0.161 0.442 0.3050 0.8372
-1.25 -1.375 0.059 0.501 0.1118 0.9490
-1.00 -1.125 0.091 0.592 0.1724 1.1214
-0.75 -0.875 0.090 0.682 0.1705 1.2919
-0.50 -0.625 0.147 0.829 0.2780 1.5703
-0.25 -0.375 0.140 0.969 0.2652 1.8355
0.00 -0.125 0.097 1.066 0.1837 2.0192
0.25 0.125 0.096 1.162 0.1818 2.2011
0.50 0.375 0.089 1.251 0.1686 2.3697
0.75 0.625 0.090 1.341 0.1705 2.5402
1.00 0.875 0.145 1.486 0.2747 2.8148
1.25 1.125 0.274 1.760 0.5190 3.3338
1.50 1.375 0.290 2.050 0.5493 3.8832
1.75 1.625 0.583 2.633 1.1043 4.9875
2.00 1,875 0.657 3.290 1.2445 6.2320
2.25 2.125 0.744 4.034 1.4093 7.6413
2.50 2.375 0.856 4.890 1.6215 9.2628
2.75 2.625 1.073 5.963 2.0325 11.2953
3.00 2.875 2.311 8.274 4.3776 15.6728
3.25 3.125 4.427 12.701 8.3857 24.0586
3.50 3.375 8.284 20.985 15.6918 39.7503
3.75 3.625 9.734 30.719 18.4384 58.1887
4.00 3.875 8.123 38.842 15.3868 73.5755
8.00 6.000 7.000 45.842 13.2596 86.8351
PAN 6.950 52.792 13.1649 100.0000
--c----------------- == = = E= ---- --= ==-- ---
THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction Is treated. The pan mid-point for this
sample is set at 10.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase In value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phl Intervals, and moment measures recalculated.

MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 10.00 Phi 10.50 Phi 11.00 Phi 12.00 Phi

Mean: 3.610 4.451 4.517 4.583 4.714
Std Dev: 1.367 2.525 2.662 2.812 3.120


Rel Dls:
Skewness:
Kurtosis:
5th MM:
6th MM:
7th MM:
8th MM:
Median:


0.379
-0.560
6.045
-13.836
65.660
-226.655
927.570
3.425


0.567
1.061
3.861
5.390
18.511
25.276
92.051
3.514


STATISTICAL MEASURES
CALCULATED USING
METHOD OF MOMENTS
Std Dev = standard deviation
Rel Dis = relative dispersion
std dev/mean
MM moment measure


n-n------------ = -------- --=====









S1A2GS1SA ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001
m--- --- --- ------ m m = = m mm m e m = = = -- m n m m a m -----m
ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent


-2.00
-1.75
-1.50
-1.25
-1.00
-0.75
-0.50
-0.25
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1 .75
2 .00
2 .25
2.50
2.75
3.00
N 3.25
o0 3.50
3.75
4.00
8.00
PAN


-2.125
-1.875
-1.625
-1.375
-1.125
-0.875
-0.625
-0.375
-0.125
0 .125
0.375
0.625
0.875
1.125
1.375
1.625
1.875
2.125
2.375
2.625
2.875
3.125
3.375
3.625
3.875
6.000


0.159
0.022
0.036
0.031
0.085
0.101
0.175
0.094
0.082
0.069
0.061
0.075
0.158
0.315
0.461
1.203
1.207
1.041
0.985
1 .427
2 .986
4.457
7.205
10.643
11.625
6.700
6.200


0.159
0.181
0.217
0.248
0.333
0.434
0.609
0.703
0.785
0.854
0.915
0.990
1.148
1.463
1.924
3.127
4.334
5.375
6.360
7.787
10.773
15.230
22.435
33.078
44.703
51.403
57.603


0.2760
0.0382
0.0625
0.0538
0 .1476
0.1753
0.3038
0.1632
0.1424
0.1198
0.1059
0.1302
0.2743
0.5468
0.8003
2.0884
2.0954
1.8072
1.7100
2.4773
5.1838
7.7374
12.5080
18.4765
20.1812
11.6313
10.7633


THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction Is treated. The pan mid-point for this
sample is set at 10.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point Is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g.. settling
tube) at 1/4-phi intervals, and moment measures recalculated.

MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 10.00 Phi 10.50 Phi 11.00 Phi 12.00 Phi


3.571
1.264
0.354
-0.270
5.637
-10.253
59.616
199.660
900.282
3.452


4.263
2 .337
0.548
1 .327
4.594
8 .596
26.646
52.432
159.982
3 .525


4.317 4.371 4.478
2.464 2.601 2.882
STATISTICAL MEASURES
CALCULATED USING
METHOD OF MOMENTS
Std Dev = standard deviation
Rel Dis = relative dispersion
= std dev/mean
MM = moment measure


0.2760
0.3142
0.3767
0.4305
0.5781
0.7534
1.0572
1.2204
1.3628
1.4826
1.5885
1.7187
1.9930
2.5398
3.3401
5.4285
7.5239
9.3311
11.0411
13.5184
18.7022
26.4396
38.9476
57.4241
77.6053
89.2367
100.0000


S1A2GS1A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001
--P---------- ... ="= --P----- II----- -- - - - - --
ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent

-2.00 -2.125 0.000 0.000 0.0000 0.0000
-1.75 -1.875 0.000 0.000 0.0000 0.0000
-1.50 -1.625 0.000 0.000 0.0000 0.0000
-1.25 -1.375 0.018 0.018 0.0261 0.0261
-1.00 -1.125 0.013 0.031 0.0189 0.0450
-0.75 -0.875 0.000 0.031 0.0000 0.0450
-0.50 -0.625 0.022 0.053 0.0320 0.0770
-0.25 -0.375 0.041 0.094 0.0595 0.1365
0.00 -0.125 0.033 0.127 0.0479 0.1845
0.25 0.125 0.058 0.185 0.0842 0.2687
0.50 0.375 0.172 0.357 0.2498 0.5185
0.75 0.625 0.452 0.809 0.6565 1.1750
1.00 0.875 1.376 2.185 1.9985 3.1735
1.25 1.125 4.197 6.382 6.0957 9.2692
1.50 1.375 5.455 11.837 7.9228 17.1919
1.75 1,625 11.668 23.505 16.9465 34.1384
2.00 1.875 13.009 36.514 18.8941 53.0326
2.25 2.125 12.034 48.548 17.4781 70.5107
2.50 2.375 5.915 54.463 8.5909 79.1016
2.75 2.625 1.699 56.162 2.4676 81.5692
3.00 2.875 1.273 57.435 1.8489 83.4181
3.25 3.125 2.022 59.457 2.9367 86.3548
3.50 3.375 3.052 62.509 4.4327 90.7875
3.75 3.625 2.532 65.041 3.6775 94.4649
4.00 3.875 1.311 66.352 1.9041 96.3690
8.00 6.000 0.900 67.252 1.3072 97.6762
PAN 1.600 68.852 2.3238 100.0000
------------ -- --------
THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phi intervals, and moment measures recalculated.
-- - - - - - - ---------------- = -----------------1-
MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi

Mean: 2.098 2.258 2.270 2.281 2.305
Std Dev: 0.845 1.340 1.397 1.458 1.585
Rel Dis: 0.403 0.593 STATISTICAL MEASURES
Skewness: 1.604 3.256 CALCULATED USING
Kurtosis: 7.908 16.187 METHOD OF MOMENTS
5th MM: 29.124 78.235 Std Dev standard deviation
6th MM: 138.845 389.564 Rel Dis relative dispersion
7th MM: 601.677 1943.244 std dev/mean
ath MM: 2855.519 9743.549 MM = moment measure
Median: 1.819 1.835


Mean:
Std Dev:
Rel Dis:
Skewness:
Kurtosis:
5th MM:
6th MM:
7th MM:
8th MM:
Median:









S1A2GS2A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001

ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent

-2.00 -2.125 0.000 0.000 0.0000 0.0000
-1.75 -1.875 0.000 0.000 0.0000 0.0000
-1.50 -1.625 0.019 0.019 0.0286 0.0286
-1.25 -1.375 0.041 0.060 0.0618 0.0904
-1.00 -1.125 0.021 0.081 0.0316 0.1221
-0.75 -0,875 0.021 0.102 0.0316 0.1537
-0.50 -0.625 0.030 0.132 0.0452 0.1989
-0.25 -0.375 0.024 0.156 0,0362 0.2351
0.00 -0.125 0.035 0.191 0.0527 0.2878
0.25 0.125 0.096 0.287 0.1447 0.4325
0.50 0.375 0.220 0.507 0.3315 0.7640
0.75 0.625 0.619 1.126 0.9327 1.6967
1.00 0.875 1.949 3.075 2.9368 4,6335
1.25 1.125 5.517 8.592 8.3132 12.9468
1.50 1.375 6.136 14.728 9.2460 22.1928
1.75 1.625 11.685 26.413 17.6074 39.8002
2.00 1.875 11.793 38.206 17.7702 57.5704
2.25 2.125 11.847 50.053 17.8515 75.4219
2.50 2.375 8.825 58 8.78 13.2979 88.7198
2.75 2.625 3.531 62.409 5.3207 94.0404
3.00 2.875 1.000 63.409 1.5068 95.5473
N 3.25 3.125 0.388 63.797 0.5847 96.1319
0 3.50 3.375 0.361 64.158 0.5440 96.6759
3.75 3.625 0.270 64.428 0.4068 97.0828
4.00 3.875 0.186 64.614 0.2803 97.3630
8.00 6.000 0.350 64.964 0.5274 97.8904
PAN 1.400 66.364 2.1096 100.0000

THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction Is treated. The pan mid-point for this
sample Is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phi intervals, and moment measures recalculated.

MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi

Mean: 1.882 2.032 2.043 2.053 2.075
Std Dev: 0.630 1.205 1,264 1.327 1.456
Rel Dis: 0.335 0.593 STATISTICAL MEASURES
Skewness: 1.297 4.225 CALCULATED USING
Kurtosis: 13.082 24.872 METHOD OF MOMENTS
5th MM: 60.103 140.428 Std Dev = standard deviation
6th MM: 465.247 810.102 Rel Dis = relative dispersion
7th MM: 2639.349 4660.865 std dev/mean
8th MM: 19003.366 26923.501 MM = moment measure


Median:


1.754


1 .768


S1A2GS3A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001
--P-L I-=---------- -------15 ====
ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent

-2.00 -2.125 0.000 0.000 0.0000 0.0000
-1.75 -1.875 0.026 0.026 0.0374 0.0374
-1.50 -1.625 0.017 0.043 0.0244 0.0618
-1.25 -1.375 0.000 0.043 0.0000 0.0618
-1.00 -1.125 0.042 0.085 0.0603 0.1221
-0.75 -0.875 0.034 0.119 0.0489 0.1710
-0.50 -0.625 0.034 0.153 0.0489 0.2198
-0.25 -0.375 0.044 0.197 0.0632 0.2831
0.00 -0.125 0.054 0.251 0.0776 0.3606
0.25 0.125 0.125 0.376 0.1796 0.5403
0.50 0.375 0.225 0.601 0.3233 0.8635
0.75 0.625 0.430 1.031 0.6178 1.4814
1.00 0.875 1.029 2.060 1.4785 2.9599
1.25 1.125 2.315 4.375 3.3263 6.2862
1.50 1.375 2.616 6.991 3.7588 10.0450
1.75 1.625 7.081 14.072 10.1743 20.2193
2.00 1.875 11.261 25.333 16.1803 36.3996
2.25 2.125 17.399 42.732 24.9996 61.3992
2.50 2.375 13.224 55.956 19.0008 80.4000
2.75 2.625 3.641 59.597 5.2315 85.6316
3.00 2.875 1.139 60.736 1.6366 87.2681
3.25 3.125 1.224 61.960 1.7587 89.0268
3.50 3.375 2.044 64.004 2.9369 91.9637
3.75 3,625 1.869 65.873 2.6855 94.6492
4.00 3.875 1.074 66.947 1.5432 96.1924
8.00 6.000 0.850 67.797 1.2213 97.4137
PAN 1.800 69.597 2.5863 100.0000

THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample Is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phl intervals, and moment measures recalculated.
--------------- --- ------ -
MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi

Mean: 2.181 2.357 2.370 2.383 2.409
Std Dev: 0.765 1.326 1.389 1.457 1.596
Rel Dis: 0.351 0.562 STATISTICAL MEASURES
Skewness: 1.480 3.444 CALCULATED USING
Kurtosis: 10.601 17.557 METHOD OF MOMENTS
5th MM: 35.477 84.279 Std Dev = standard deviation
6th MM: 224.787 421.350 Rel Dis = relative dispersion
7th MM: 886.201 2089.325 std dev/mean
8th MM: 5424.847 10457.776 MM moment measure


Median:


1.998


2.011









S1A2GS4A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001

ANALYTICAL GRANULOMETRIC RESULTS


Sieve Mid- Frequency
size Point Weight
(Phi) (Phi) (g)

-2.00 -2.125 1.789
-1,75 -1.875 0.000
-1.50 -1.625 0.033
-1.25 -1.375 0.086
-1.00 -1.125 0.040
-0.75 -0.875 0.106
-0.50 -0.625 0.106
-0.25 -0.375 0.103
0.00 -0.125 0.067
0.25 0.125 0.095
0.50 0.375 0.083
0.75 0.625 0.129
1.00 0.875 0.268
1.25 1.125 0.419
1.50 1.375 0,419
1.75 1.625 0.703
2.00 1.875 0.733
2.25 2.125 0.810
2.50 2.375 0.729
2.75 2.625 0.437
3.00 2.875 0.543
S 3.25 3.125 1.178
C 3.50 3.375 3.650
3.75 3.625 6.215
4.00 3.875 5.670
8.00 6.000 8.050
PAN 13.450


Cumulative Frequency Cumulative
Weight Weight Weight
(g) Percent Percent

1.789 3.8967 3.8967
1.789 0.0000 3.8967
1.822 0.0719 3.9685
1.908 0.1873 4.1559
1.948 0.0871 4.2430
2.054 0.2309 4.4739
2.160 0.2309 4.7048
2.263 0.2243 4.9291
2.330 0.1459 5.0750
2.425 0.2069 5.2820
2.508 0.1808 5.4627
2.637 0.2810 5.7437
2.905 0.5837 6.3275
3.324 0.9126 7.2401
3.743 0.9126 8.1527
4.446 1.5312 9.6840
5.179 1.5966 11.2805
5.989 1.7643 13.0448
6.718 1.5879 14.6327
7.155 0.9518 15.5845
7.698 1.1827 16.7672
8.876 2.5658 19.3331
12.526 7.9502 27.2832
18.741 13.5371 40.8203
24.411 12.3500 53.1703
32.461 17.5339 70.7042
45.911 29.2958 100.0000


S1A2GSSA ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001
----------P -- -- ---------------~-I-
ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent


-2.00
-1.75
-1.50
-1.25
-1.00
-0.75
-0.50
-0.25
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3 .00
3 .25
3.50
3.75
4.00
8 .00
PAN


-2.125
-1.875
-1.625
-1.375
-1.125
-0.875
-0.625
-0.375
-0.125
0.125
0.375
0.625
0.875
1.125
1.375
1.625
1.875
2.125
2.375
2.525
2.875
3.125
3.375
3.625
3.875
6.000


0.000
0.000
0.000
0.010
0.021
0.022
0.014
0.028
0.019
0.050
0.082
0.140
0.330
0.845
1.119
2.947
4.126
4.694
2.801
0.746
0.469
0.953
2.839
5.353
5.768
9.400
11.950


0.000
0.000
0.000
0.010
0.031
0.053
0.067
0.095
0.114
0.164
0.246
0.386
0.716
1.561
2.680
5.627
9.753
14.447
17.248
17.994
18.463
19.416
22.255
27.608
33.376
42.776
54.726


0.0000
0.0000
0.0000
0.0183
0.0384
0.0402
0.0256
0.0512
0.0347
0.0914
0.1498
0.2558
0.6030
1.5441
2.0447
5.3850
7.5394
8.5773
5.1182
1.3632
0.8570
1.7414
5.1877
9.7815
10.5398
17.1765
21.8361


0.0000
0.0000
0.0000
0.0183
0.0566
0.0968
0.1224
0.1736
0.2083
0.2997
0.4495
0.7053
1.3083
2.8524
4.8971
10.2821
17.8215
26.3988
31.5170
32.8802
33.7372
35.4786
40.6662
50.4477
60.9875
78.1639
100.0000


THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample is set at 10,00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point Is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phi intervals, and moment measures recalculated.

MOMENT MEASURES


Stat. Pan Pan at
Measure Excluded 10.00 Phi


3.532
2.068
0.585
-1.022
4.204
-9.040
26.496
-68.401
188.356
3.524


5 .427
3.443
0.634
0.009
2.183
-1 .238
6 .776
-8.681
26.188
3.811


Pan at Pan at Pan at
10.50 Pht 11.00 Phi 12,00 Phi

5.573 5,720 6.013
3.622 3.825 4.238
STATISTICAL MEASURES
CALCULATED USING
METHOD OF MOMENTS
Std Dev = standard deviation
Rel Dis = relative dispersion
= std dev/mean
MM moment measure


THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample is set at 10.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point Is large and the
means significantly increase In value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phi intervals, and moment measures recalculated.

MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 10.00 Phi 10.50 Phi 11.00 Phi 12.00 Phi


Mean:
Std Dev:
Rel Dis:
Skewness:
Kurtosis:
5th MM:
6th MM:
7th MM:
8th MM:
Median:


3.413
1.627
0.477
0.432
2.059
1.352
5.291
2.430
16.759
3.299


4.851
3.099
0.639
0.691
2.041
2.450
5.104
7.261
13.606
3.614


4.961 5.070 5.288
3.271 3.459 3.841
STATISTICAL MEASURES
CALCULATED USING
METHOD OF MOMENTS
Std Dev = standard deviation
Rel Dis = relative dispersion
std dev/mean
MM = moment measure


Mean:
Std Dev:
Rel Dis:
Skewness:
Kurtosis:
5th MM:
6th MM:
7th MM:
8th MM:
Median:









S1A2GS6A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001

ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative


Size Point Weight Weight Weight
(Phi) (Phi) (g) {g) Percent

-2.00 -2.125 0.000 0.000 0.0000
-1.75 -1.875 0.000 0.000 0.0000
-1.50 -1.625 0.009 0.009 0.0152
-1.25 -1.375 0.016 0.025 0.0270
-1.00 -1.125 0.021 0.046 0.0354
-0.75 -0.875 0.055 0.101 0.0928
-0.50 -0.625 0.040 0.141 0.0675
-0.25 -0.375 0.019 0.160 0.0321
0.00 -0.125 0.020 0.180 0.0337
0.25 0.125 0.023 0.203 0.0388
0.50 0.375 0.015 0.218 0.0253
0.75 0.625 0.019 0.237 0.0321
1.00 0.875 0.036 0.273 0.0607
1.25 1,125 0.089 0.362 0.1502
1.50 1.375 0.157 0.519 0.2649
1.75 1.625 0.431 0.950 0.7273
2.00 1.875 0.628 1.578 1.0597
2.25 2.125 0.894 2.472 1.5085
2.50 2.375 0.875 3.347 1.4765
2.75 2.625 0.643 3.990 1.0850
3.00 2.875 1.291 5.281 2.1784
S 3.25 3.125 3.432 8.713 5.7911
3.50 3.375 9.344 18.057 15.7670
3.75 3.625 13.330 31.387 22.4930
4.00 3.875 10.526 41.913 17.7615
8.00 6.000 10,400 52.313 17.5489
PAN 6.950 59.263 11.7274


Weight
Percent

0.0000
0.0000
0.0152
0.0422
0.0776
0.1704
0.2379
0.2700
0.3037
0.3425
0.3679
0.3999
0.4607
0.6108
0.8758
1.6030
2.6627
4.1712
5.6477
6.7327
8.9111
14.7023
30.4693
52.9622
70.7237
88.2726
100.0000


THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample is set at 10.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis le.g., settling
tube) at 1/4-phl intervals, and moment measures recalculated.

MOMENT MEASURES


Stat. Pan Pan at
Measure Excluded 10.00 Phi


3.924
1.170
0.298
0.487
3.679
-1.822
26.009
-65.802
333.036
3.527


Mean:
Std Dev:
Rel Dis:
Skewness:
Kurtosis:
5th MM:
6th MM:
7th MM:
8th MM:
Median:


4 .636
2.257
0.487
1 .408
4.114
8.595
22.399
49.127
125.893
3.592


Pan at Pan at Pan at
10.50 Phi 11.00 Phi 12.00 Phi

4.695 4.753 4.871
2.392 2.537 2.832
STATISTICAL MEASURES
CALCULATED USING
METHOD OF MOMENTS
Std Dev standard deviation
Rel Dis = relative dispersion
= std dev/mean
MM moment measure


S1A2GS7A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001

ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent

-2.00 -2.125 0.000 0.000 0.0000 0.0000
-1.75 -1.875 0.028 0.028 0.0478 0.0478
-1.50 -1.625 0.062 0.090 0.1057 0.1535
-1.25 -1.375 0.044 0.134 0.0750 0.2286
-1.00 -1.125 0.045 0.179 0.0768 0.3053
-0.75 -0.875 0.032 0.211 0.0546 0.3599
-0.50 -0.625 0.053 0.264 0.0904 0.4503
-0.25 -0.375 0.075 0.339 0.1279 0.5782
0.00 -0.125 0.058 0.397 0.0989 0.6771
0.25 0.125 0.054 0.451 0.0921 0.7692
0.50 0.375 0.056 0.507 0.0955 0.8648
0.75 0.625 0.075 0.582 0.1279 0.9927
1.00 0.875 0.096 0.678 0.1637 1.1564
1.25 1.125 0.143 0.821 0.2439 1.4003
1.50 1.375 0.194 1.015 0.3309 1.7312
1.75 1.625 0.452 1.467 0.7709 2.5022
2.00 1.875 0.543 2.010 0.9262 3.4283
2.25 2.125 0.640 2.650 1.0916 4.5199
2.50 2.375 0.701 3.351 1.1957 5.7156
2.75 2.625 0.629 3.980 1.0728 6.7884
3.00 2.875 1.317 5.297 2.2463 9.0348
3.25 3.125 3.427 8.724 5.8452 14.8800
3.50 3.375 9.723 18.447 16.5839 31.4640
3.75 3.625 13.006 31.453 22.1836 53.6475
4.00 3.875 10.676 42.129 18.2094 71.8569
8.00 6.000 8.500 50.629 14.4979 86.3549
PAN 8.000 58.629 13.6451 100.0000
--- r= = 3--- ---------- ------------~n
THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction Is treated. The pan mid-point for this
sample is set at 10.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g.. settling
tube) at 1/4-phl intervals, and moment measures recalculated.

MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 10.00 Phi 10.50 Phi 11.00 Phi 12.00 Phi
..... =---- -- -- ---- ---- ---- ---- ---- -- = == ----
Mean: 3.822 4.665 4.733 4.801 4.938
Std Dev: 1.173 2.400 2.547 2.704 3.023
Rel Dis: 0.307 0.515 STATISTICAL MEASURES
Skewness: 0.125 1.282 CALCULATED USING
Kurtosls: 5.167 3.791 METHOD OF MOMENTS
5th MM: -7.882 6.818 Std Dev = standard deviation
6th MM: 53.818 18.281 Rel Dis relative dispersion
7th MM: -183.013 33.717 std dev/mean
8th MM: 867.623 91.028 MM = moment measure


Median:


3.507


3 .584









S1A2GS8A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001

ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent

-2,00 -2.125 0.150 0.150 0.1960 0.1960
-1.75 -1.875 0.000 0.150 0.0000 0.1960
-1.50 -1.625 0.000 0.150 0.0000 0.1960
-1.25 -1,375 0.017 0.167 0.0222 0.2182
-1.00 -1,125 0.029 0.196 0.0379 0.2561
-0.75 -0.875 0.031 0.227 0.0405 0.2966
-0.50 -0.625 0.074 0.301 0.0967 0.3933
-0.25 -0.375 0.068 0.369 0.0889 0.4822
0.00 -0.125 0.097 0.466 0.1267 0.6089
0.25 0.125 0.142 0.608 0.1855 0.7944
0.50 0.375 0.247 0.855 0.3227 1.1172
0.75 0.625 0.505 1.360 0.6599 1.7771
1.00 0.875 1.187 2.547 1.5510 3.3281
1.25 1.125 2.893 5.440 3.7802 7.1082
1.50 1.375 3.389 8.829 4.4283 11.5365
1.75 1.625 7.678 16.507 10.0325 21.5690
2.00 1.875 10.895 27.402 14.2361 35.8051
2.25 2.125 17.047 44.449 22.2746 58.0797
2.50 2.375 16.045 60.494 20.9654 79.0451
2.75 2.625 5.470 65.964 7.1474 86.1925
3.00 2.875 1.524 67.488 1.9913 88.1839
ca 3.25 3.125 1.165 68.653 1.5223 89.7061
NJ 3.50 3.375 1.793 70.446 2.3428 92.0490
3.75 3.625 1.824 72.270 2.3833 94.4323
4.00 3.875 0.961 73.231 1.2557 95.6880
8.00 6.000 0.950 74.181 1.2413 96.9293
PAN 2.350 76.531 3.0707 100.0000

THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phi intervals, and moment measures recalculated.

MOMENT MEASURES


Stat. Pan
Measure Excluded

Mean: 2.165
Std Dev: 0.785
Rel Dis: 0.363
Skewness: 1.066
Kurtosls: 11.291
5th MM: 24.073
6th MM: 245.673
7th MM: 529.344
8th MM: 6013.991
Median: 2.017


Pan at Pan at Pan at Pan at
9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi

2.375 2.390 2.406 2.436
1.416 1.487 1.562 1.715
0.596 STATISTICAL MEASURES
3.225 CALCULATED USING
15.867 METHOD OF MOMENTS
70.183 Std Dev = standard deviation
332.193 Rel Dis = relative dispersion
1526.784 = std dev/mean
7181.235 MM = moment measure
2.034


S1A2GS9A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001
------------- ----==lf PPP ------- - -- -- -- -
ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent
---------------
-2.00 -2.125 0.000 0.000 0.0000 0.0000
-1.75 -1.875 0.005 0.005 0.0067 0.0067
-1.50 -1.625 0.000 0.005 0.0000 0.0067
-1.25 -1.375 0.051 0.056 0.0680 0.0746
-1.00 -1.125 0.037 0.093 0.0493 0.1239
-0.75 -0.875 0.055 0.148 0.0733 0.1972
-0.50 -0.625 0.094 0.242 0.1253 0.3225
-0.25 -0.375 0.093 0.335 0.1239 0.4465
0.00 -0.125 0.124 0.459 0.1653 0.6117
0.25 0.125 0.216 0.675 0.2879 0.8996
0.50 0.375 0.513 1.188 0.6837 1.5833
0.75 0.625 1.085 2.273 1.4460 3.0293
1.00 0.875 2.300 4.573 3.0653 6.0947
1.25 1.125 4.435 9.008 5.9107 12.0054
1.50 1.375 4.775 13.783 6.3639 18.3693
1.75 1.625 8.751 22.534 11.6629 30.0321
2.00 1.875 9.910 32.444 13.2075 43.2396
2.25 2.125 12.970 45.414 17.2857 60.5254
2.50 2.375 13.408 58.822 17.8695 78.3948
2.75 2.625 6.061 64.883 8.0778 86.4726
3.00 2.875 2.074 66.957 2.7641 89.2367
3.25 3.125 1.425 68.382 1.8992 91.1359
3.50 3.375 1.796 70.178 2.3936 93.5295
3.75 3.625 1.396 71.574 1.8605 95.3900
4.00 3.875 0.709 72.283 0.9449 96.3349
8.00 6.000 0.650 72.933 0.8663 97.2012
PAN 2.100 75.033 2.7988 100.0000
---------- ----E--- --- == ---------
THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase In value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phl intervals, and moment measures recalculated.

MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi

Mean: 2.063 2.258 2.272 2.286 2.314
Std Dev: 0.786 1.388 1.455 1.526 1.671
Rel Dis: 0.381 0.615 STATISTICAL MEASURES
Skewness: 0.885 3.273 CALCULATED USING
Kurtosls: 8.349 16.569 METHOD OF MOMENTS
5th MM: 25.057 77.523 Std Dev standard deviation
6th MM: 162.863 376.632 Rel Dis relative dispersion
7th MM: 658.059 1815.887 = std dev/mean
8th MM: 3828.364 8812.657 MM moment measure


Median:


1.953


1.973


= r=4 = = = 3 =-------- ---- -- -=Fm= --- = =_ = -










SIA2R2GSA ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001

ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent

-2.00 -2.125 0.044 0.044 0.0905 0.0905
-1.75 -1.875 0.052 0.096 0.1070 0.1975
-1.50 -1.625 0.008 0.104 0.0165 0.2139
-1.25 -1.375 0.069 0.173 0.1419 0.3559
-1.00 -1.125 0.046 0.219 0.0946 0.4505
-0.75 -0.875 0.012 0.231 0.0247 0.4752
-0.50 -0.625 0.033 0.264 0.0679 0.5431
-0.25 -0.375 0.021 0.285 0.0432 0.5863
0.00 -0.125 0.024 0.309 0.0494 0.6356
0.25 0.125 0.043 0.352 0.0885 0.7241
0.50 0.375 0.052 0.404 0.1070 0.8310
0.75 0.625 0.044 0.448 0.0905 0.9215
1.00 0.875 0.080 0.528 0.1646 1.0861
1.25 1.125 0.149 0.677 0.3065 1,3926
1.50 1.375 0.195 0.872 0.4011 1.7937
1.75 1.625 0.438 1.310 0.9010 2.6947
2.00 1.675 0.688 1.998 1.4152 4.1099
2.25 2.125 1,003 3.001 2.0632 6.1731
2.50 2.375 1.215 4.216 2.4993 8.6724
2.75 2.625 1,128 5.344 2.3203 10.9927
3.00 2.875 1.719 7.063 3.5360 14.5287
c 3.25 3.125 3.819 10.882 7.8558 22.3845
' 3.50 3.375 8.559 19.441 17.6060 39.9905
3.75 3.625 8.709 28.150 17.9146 57.9051
4.00 3.875 4.464 32.614 9.1825 67.0877
8.00 6.000 6.000 38.614 12.3421 79.4298
PAN 10.000 48.614 20.5702 100.0000

THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction Is treated. The pan mid-point for this
sample is set at 10.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phi intervals, and moment measures recalculated.

MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 10.00 Phi 10.50 Phi 11.00 Phi 12.00 Phi


Mean:
Std Dev:
Rel Dis:
Skewness:
Kurtosis:
5th MM:
6th MM:
7th MM:
8th MM:
Median:


3.646
1.233
0.338
0.177
5.037
-6.753
50.954
165.615
797.357
3 .371


4.953
2 817
0.569
0.927
2 .521
3.307
8 .027
10.161
27. 319
3.515


5.056 5.159 5.364
2.990 3.180 3.565
STATISTICAL MEASURES
CALCULATED USING
METHOD OF MOMENTS
Std Dev standard deviation
Rel Dis = relative dispersion
= std dev/mean
MM = moment measure


S1A3GSIA ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001
====l=~=== =------------------------------
ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent

-2.00 -2.125 3.982 3.982 5.9360 5.9360
-1.75 -1.875 0.970 4.952 1.4460 7.3820
-1.50 -1.625 1.180 6.132 1.7590 9.1411
-1.25 -1.375 1.353 7.485 2.0169 11.1580
-1.00 -1.125 1.686 9.171 2.5133 13.6713
-0.75 -0.875 2.224 11.395 3.3153 16.9867
-0.50 -0.625 2.854 14.249 4.2545 21.2412
-0.25 -0.375 3.201 17.450 4.7718 26.0129
0.00 -0.125 2.719 20.169 4.0532 30.0662
0.25 0.125 2.987 23.156 4.4528 34.5189
0.50 0.375 2.324 25.480 3.4644 37.9834
0.75 0.625 2.291 27.771 3.4152 41.3986
1.00 0.875 3.978 31.749 5.9301 47.3286
1.25 1.125 8.004 39.753 11.9317 59.2603
1.50 1.375 6.881 46.634 10.2576 69.5179
1.75 1.625 8.890 55.524 13.2524 82.7703
2.00 1.875 4.401 59.925 6.5606 89.3310
2.25 2.125 2.470 62.395 3.6821 93.0130
2.50 2.375 1.622 64.017 2.4179 95.4310
2.75 2.625 0.681 64.698 1.0152 96.4461
3.00 2.875 0.234 64.932 0.3488 96.7950
3.25 3.125 0.135 65.067 0.2012 96.9962
3.50 3.375 0.201 65.268 0.2996 97.2958
3.75 3.625 0.183 65.451 0.2728 97.5686
4.00 3.875 0.081 65.532 0.1207 97.6894
8.00 6.000 0.200 65.732 0.2981 97.9875
PAN 1.350 67.082 2.0125 100.0000

THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phi intervals, and moment measures recalculated.

MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi

Mean: 0.623 0.791 0.801 0.811 0.832
Std Dev: 1.332 1.772 1.816 1.865 1.968
Rel Dis: 2.138 2.240 STATISTICAL MEASURES
Skewness: -0.371 1.717 CALCULATED USING
Kurtosis: 3.095 10.452 METHOD OF MOMENTS
5th MM: 0.879 43.249 Std Dev = standard deviation
6th MM: 21.166 205.297 Rel Dls = relative dispersion
7th MM: 44.535 936.842 = std dev/mean
8th MM: 248.845 4344.015 MM = moment measure


Median:


0.910


0.931









S1A3GS2A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001
=-====---------------- --=== = m== ====-- --- --- -- ----a me
ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative


Size Point Weight Weight
(Phi) (Phi) (g) (g)

-2.00 -2.125 0.408 0.408
-1.75 -1.675 0.166 0.574
-1.50 -1.625 0.159 0.733
-1.25 -1.375 0.232 0.965
-1.00 -1.125 0.273 1.238
-0.75 -0.875 0.381 1.619
-0.50 -0.625 0.590 2.209
-0.25 -0.375 0.696 2.905
0.00 -0.125 0.627 3.532
0.25 0.125 0.743 4.275
0.50 0.375 0.688 4.963
0.75 0.625 0.686 5.649
1.00 0.875 0.811 6.460
1.25 1.125 1.405 7.865
1.50 1.375 1.908 9.773
1.75 1.625 5.545 15.318
2.00 1.875 7.359 22.677
2.25 2.125 10.786 33.463
2.50 2.375 13.908 47.371
2.75 2.625 7.792 55.163
3.00 2.875 2.177 57.340
W 3.25 3.125 0.676 58.016
S 3.50 3.375 0.554 58.570
3.75 3.625 0.292 58.862
4.00 3.875 0.067 58.929
8.00 6.000 0.250 59.179
PAN 1.050 60.229


Weight Weight
Percent Percent


0.6774
0.2756
0.2640
0.3852
0.4533
0.6326
0 .9796
1.1556
1.0410
1.2336
1.1423
1.1390
1.3465
2.3328
3.1679
9.2065
12.2184
17.9083
23.0919
12.9373
3.6145
1.1224
0.9198
0.4848
0.1112
0.4151
1.7433


0.6774
0.9530
1.2170
1.6022
2.0555
2.6881
3.6677
4.8233
5.8643
7.0979
8.2402
9.3792
10.7257
13.0585
16.2264
25.4329
37.6513
55.5596
78.6515
91.5888
95.2033
96.3257
97.2455
97.7303
97.8416
98.2567
100.0000


THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample Is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point Is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phi intervals, and moment measures recalculated.

MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi

Mean: 1.941 2.064 2.073 2.081 2.099
Std Dev: 0.962 1.333 1.375 1.423 1.524
Rel Dis: 0.495 0.646 STATISTICAL MEASURES
Skewness: -1.487 1.807 CALCULATED USING
Kurtosis: 8.046 15.372 METHOD OF MOMENTS
5th MM: -16.419 63.458 Std Dev = standard deviation
6th MM: 106.701 368.877 Rel Dis = relative dispersion
7th MM: -206.770 1801.175 = std dev/mean
8th MM: 1634.810 9670.644 MM = moment measure


Median:


2.035 2.047


S1A3GS3A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001
--- ------- ----== == ------- --- - ---------------
ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent
--- ---------------------- ======
-2.00 -2.125 0.173 0.173 0.2755 0.2755
-1.75 -1.875 0.070 0.243 0.1115 0.3869
-1.50 -1.625 0.099 0.342 0.1576 0.5446
-1.25 -1.375 0.245 0.587 0.3901 0.9347
-1.00 -1.125 0.316 0.903 0.5032 1.4379
-0.75 -0.875 0.335 1.238 0.5334 1.9713
-0.50 -0.625 0.452 1.690 0.7197 2.6910
-0.25 -0.375 0.507 2.197 0.8073 3.4984
0.00 -0.125 0.455 2.652 0.7245 4.2229
0.25 0.125 0.534 3.186 0.8503 5.0732
0.50 0.375 0.443 3.629 0.7054 5.7786
0.75 0.625 0.429 4.058 0.6831 6.4617
1.00 0.875 0.487 4.545 0.7755 7.2371
1.25 1.125 0.817 5.362 1.3009 8.5381
1.50 1.375 1.088 6.450 1.7325 10.2705
1.75 1.625 3.262 9.712 5.1942 15.4647
2.00 1.875 4.573 14.285 7.2817 22.7465
2.25 2.125 7.446 21.731 11.8565 34.6030
2.50 2.375 12.414 34.145 19.7672 54.3702
2.75 2.625 11.662 45.807 18.5698 72.9399
3.00 2.875 6.882 52.689 10.9584 83.8983
3.25 3.125 3.032 55.721 4.8279 88.7263
3.50 3.375 2.768 58.489 4.4076 93.1339
3.75 3.625 2.056 60.545 3.2738 96.4077
4.00 3.875 0.406 60.951 0.6465 97.0542
8.00 6.000 0.300 61.251 0.4777 97.5319
PAN 1.550 62.801 2.4681 100.0000

THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction Is treated. The pan mid-point for this
sample Is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point Is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phi intervals, and moment measures recalculated.

MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi

Mean: 2.292 2.458 2.470 2.482 2.507
Std Dev: 0.957 1.412 1.467 1.527 1.653
Rel Dis: 0.418 0.575 STATISTICAL MEASURES
Skewness: -1.420 1.904 CALCULATED USING
Kurtosis: 7.971 13.436 METHOD OF MOMENTS
Sth MM: -18.733 49.892 Std Dev = standard deviation
6th MM: 105.547 260.210 Rel Dis = relative dispersion
7th MM: -278.422 1122.215 = std dev/mean
8th MM: 1636.230 5415.872 MM moment measure


Median:


2.304


2.320









SIB1GS10A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001
m---------=-== =-==--s-- -------------------- -
ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (q) (g) Percent Percent

-2.00 -2.125 0.455 0.455 0.6926 0.6926
-1.75 -1.875 0.135 0.590 0.2055 0.8981
-1.50 -1.625 0.273 0.863 0.4156 1.3137
-1.25 -1.375 0.213 1.076 0.3242 1.6379
-1.00 -1.125 0.455 1.531 0.6926 2.3306
-0.75 -0.875 0.717 2.248 1.0915 3.4220
-0.50 -0.625 1.254 3.502 1.9089 5.3309
-0.25 -0.375 2.209 5.711 3.3627 8.6936
0.00 -0.125 2.931 8.642 4.4617 13.1553
0.25 0.125 4.043 12.685 6.1545 19.3098
0.50 0.375 4.324 17.009 6.5822 25.8920
0.75 0.625 5.298 22.307 8.0649 33.9570
1.00 0.875 6.383 28.690 9.7166 43.6735
1.25 1.125 7.373 36.063 11.2236 54.8971
1.50 1.375 4,990 41.053 7.5961 62.4931
1.75 1.625 8.503 49.556 12.9437 75.4369
2.00 1.875 7.310 56.866 11.1277 86.5646
2.25 2.125 4.376 61.242 6.6614 93.2260
2.50 2.375 1.574 62.816 2.3960 95.6220
2.75 2.625 0.475 63.291 0.7231 96.3451
3.00 2.875 0.1BO 63.471 0.2740 96.6191
S 3.25 3.125 0.066 63.537 0.1005 96.7195
1 3.50 3.375 0.079 63.616 0.1203 96.8398
3.75 3.625 0.107 63.723 0.1629 97.0027
4.00 3.875 0.069 63.792 0.1050 97.1077
8.00 6.000 0.200 63.992 0.3045 97.4122
PAN 1.700 65.692 2.5878 100.0000
---------- --==E ----n-- = ---
THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point Is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phi intervals, and moment measures recalculated.

MOMENT MEASURES


Stat. Pan
Measure Excluded

Mean: 1.028
Std Dev: 0.953
Rel Dis: 0.927
Skewness: -0.129
Kurtosis: 5.355
5th MM: 7.496
6th MM: 83.638
7th MM: 291.382
8th MM: 1914.708
Median: 0.987


Pan at Pan at Pan at Pan at
9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi

1.234 1.247 1.260 1.286
1.585 1.645 1.711 1.847
1.284 STATISTICAL MEASURES
2.927 CALCULATED USING
15.893 METHOD OF MOMENTS
74.423 Std Dev = standard deviation
367.750 Rel DIs = relative dispersion
1789.521 std dev/mean
8772.615 MM = moment measure
1.016


S1B1GS11A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001
mmm--------=----==-== ....m.m....mm ...mmmmmmsmm.mm..s----
ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent

-2.00 -2.125 10.334 10.334 12.9065 12.9065
-1.75 -1.875 1.820 12.154 2.2731 15.1796
-1.50 -1.625 1.572 13.726 1.9633 17.1429
-1.25 -1.375 1.835 15.561 2.2918 19.4347
-1.00 -1.125 1.928 17.489 2.4080 21.8427
-0.75 -0.875 2.396 19.885 2.9925 24.8351
-0.50 -0.625 2.687 22.572 3.3559 28.1910
-0.25 -0.375 2.655 25.227 3.3159 31.5070
0.00 -0.125 2.574 27.801 3.2148 34.7217
0.25 0.125 3.353 31.154 4.1877 38.9094
0.50 0.375 3.658 34.812 4.5686 43.4780
0.75 0.625 4.507 39.319 5.6290 49.1070
1.00 0.875 5.969 45.288 7.4549 56.5619
1.25 1.125 8.148 53.436 10.1764 66.7383
1.50 1.375 5.993 59.429 7.4849 74.2232
1.75 1.625 8.539 67.968 10.6647 84.8878
2.00 1.875 5.053 73.021 6.3109 91.1987
2.25 2.125 2.682 75.703 3.3497 94.5484
2.50 2.375 1.151 76.854 1.4375 95.9859
2.75 2.625 0.427 77.281 0.5333 96.5192
3.00 2.875 0.185 77.466 0.2311 96.7503
3.25 3.125 0.062 77.528 0.0774 96.8277
3.50 3.375 0.050 77.578 0.0624 96.8901
3.75 3.625 0.056 77.634 0.0699 96.9601
4.00 3.875 0.034 77.668 0.0425 97.0025
8.00 6.000 0.350 78.018 0.4371 97.4397
PAN 2.050 80.068 2.5603 100.0000
--------------------------- -------- --=
THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction Is treated. The pan mid-point for this
sample is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phi intervals, and moment measures recalculated.

MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi

Mean: 0.330 0.552 0.565 0.578 0.603
Std Dev: 1.463 1.996 2.049 2.106 2.225
Rel Dis: 4.431 3.615 STATISTICAL MEASURES
Skewness: -0.225 1.704 CALCULATED USING
Kurtosis: 2.796 9.183 METHOD OF MOMENTS
5th MM: 2.382 35.247 Std Dev = standard deviation
6th MM: 19.690 151.822 Rel DIs relative dispersion
7th MM: 55.256 634.624 std dev/mean
8th MM: 242.860 2684.764 MM moment measure
Median: 0.608 0.655









SIB1GS12A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001

ANALYTICAL GRANULOMETRIC RESULTS
sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent

-2.00 -2.125 0.023 0.023 0.0318 0.0318
-1.75 -1.675 0.046 0.069 0.0637 0.0955
-1.50 -1.625 0.043 0.112 0.0595 0.1551
-1.25 -1.375 0.095 0.207 0.1315 0.2866
-1.00 -1.125 0.068 0.275 0.0942 0.3808
-0.75 -0.875 0.094 0.369 0.1301 0.5109
-0.50 -0.625 0.159 0.528 0.2201 0.7310
-0.25 -0.375 0.604 1.132 0.8363 1.5673
0.00 -0.125 1.311 2.443 1.8152 3.3825
0.25 0.125 3.146 5.589 4.3558 7.7383
0.50 0.375 4.925 10.514 6.8190 14.5573
0.75 0.625 6.840 17.354 9.4704 24.0277
1.00 0.875 6.520 25.874 11.7965 35.8242
1.25 1.125 11.773 37.647 16.3004 52.1246
1.50 1.375 9.101 46.746 12.6009 64.7255
1.75 1,625 12.073 58.821 16.7158 81.4413
2.00 1.875 6.439 65.260 8.9152 90.3565
2.25 2.125 2.917 68.177 4.0386 94.3953
2.50 2.375 1.215 69.392 1.6822 96.0775
2.75 2.625 0.426 69.518 0.5898 96.6674
3.00 2.875 0.155 69.973 0.2146 96.8820
3.25 3.125 0.071 70.044 0.0983 96.9803
3.50 3.375 0.090 70.134 0.1246 97.1049
3.75 3.625 0.106 70.240 0.1468 97.2516
4.00 3.875 0.085 70.325 0.1177 97.3693
8.00 6.000 0.250 70.575 0.3461 97.7155
PAN 1.650 72.225 2.2845 100.0000

THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction Is treated. The pan mid-point for this
sample is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point Is large and the
means significantly Increase in value for Increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phl intervals, and moment measures recalculated.

MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi

Mean: 1.188 1.366 1.378 1.389 1.412
Std Dev: 0.714 1.371 1.433 1.499 1.633
Rel Dis: 0.602 1.004 STATISTICAL MEASURES
Skewness: 0.852 4.009 CALCULATED USING
Kurtosis: 10.388 22.968 METHOD OF MOMENTS
5th MM: 47.528 125.203 Std Dev standard deviation
6th MM: 361.741 695.603 Rel Dis relative dispersion
7th MM: 2223.917 3856.717 std dev/mean
8th MM: 15565.089 21439.927 MM moment measure


Median:


1.075


1.092


S1BIGS13A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001
-----------------==-= =- =--------------------
ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent
-3-= = = ==== P P- --- --- = -- -- -- -- -- -- -- ==
-2.00 -2.125 4.736 4.736 6.1104 6.1104
-1.75 -1.875 1.436 6.172 1.8527 7.9632
-1.50 -1.625 1.477 7.649 1.9056 9.8688
-1.25 -1.375 1.539 9.188 1.9856 11.5544
-1.00 -1.125 1.947 11.135 2.5120 14.3664
-0.75 -0.875 2.412 13.547 3.1120 17.4784
-0.50 -0.625 2.548 16.095 3.2874 20.7659
-0.25 -0.375 3.080 19.175 3.9738 24.7397
0.00 -0.125 3.179 22.354 4.1016 28.8413
0.25 0.125 4.104 26.458 5.2950 34.1363
0.50 0.375 4.381 30.839 5.6524 39.7887
0.75 0.625 5.261 36.100 6.7878 46.5764
1.00 0.875 6.886 42.986 8.8844 55.4608
1.25 1.125 8.809 51.795 11.3654 66.8262
1.50 1.375 6.260 58.055 8.0767 74.9029
1.75 1.625 8.360 66.415 10.7861 85.6890
2.00 1.875 5.382 71.797 6.9439 92.6329
2.25 2.125 2.688 74.485 3.4681 96.1010
2.50 2.375 0.856 75.341 1.1044 97.2054
2.75 2.625 0.192 75.533 0.2477 97.4531
3.00 2.875 0.073 75.606 0.0942 97.5473
3.25 3.125 0.038 75.644 0.0490 97.5963
3.50 3.375 0.041 75.685 0.0529 97.6492
3.75 3.625 0.048 75.733 0.0619 97.7112
4.00 3.875 0.024 75.757 0.0310 97.7421
6.00 6.000 0.250 76.007 0.3226 98.0647
PAN 1.500 77.507 1.9353 100.0000

THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phl Intervals, and moment measures recalculated.

MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi
----- -PP----------- ------------=~=
Mean: 0.519 0.683 0.693 0.702 0.722
Std Dev: 1.266 1.719 1.765 1.814 1.917
Rel Dls: 2.441 2.517 STATISTICAL MEASURES
Skewness: -0.388 1.915 CALCULATED USING
Kurtosls: 3.457 11.827 METHOD OF MOMENTS
5th MM: 2.065 51.914 Std Dev standard deviation
6th MM: 29.797 255.993 Rel Dis = relative dispersion
7th MM: 82.480 1222.920 std dev/mean
8th MM: 441.663 5916.822 MM moment measure


Median:


0.694 0.721









S1B1GS14A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001

ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent
----------- --------------------a----mm m m m m m m m m m = -
-2.00 -2.125 17.077 17.077 21.5168 21.5168
-1.75 -1.875 4.404 21.481 5.5490 27.0657
-1.50 -1.625 4.215 25.696 5.3108 32.3766
-1.25 -1.375 4.195 29.891 5.2856 37.6622
-1.00 -1.125 4.347 34.238 5.4772 43.1394
-0.75 -0.875 4.229 38.467 5.3285 48.4679
-0.50 -0.625 4.476 42.943 5.6397 54.1076
-0.25 -0.375 4.509 47.452 5.6813 59.7888
0.00 -0.125 3.991 51.443 5.0286 64.8174
0.25 0.125 4.576 56.019 5.7657 70.5831
0.50 0,375 3.953 59.972 4.9807 75.5638
0.75 0.625 3.742 63.714 4.7149 80.2787
1.00 0,875 3.427 67.141 4.3180 84.5967
1.25 1.125 3.390 70.531 4.2714 88.8680
1.50 1.375 1.623 72.154 2.0450 90.9130
1.75 1.625 1.935 74.089 2.4381 93.3511
2.00 1.875 1.077 75.166 1.3570 94.7081
2.25 2.125 0.571 75.737 0.7195 95.4275
2.50 2.375 0.265 76.002 0.3339 95.7614
2.75 2.625 0.095 76,097 0.1197 95.8811
3.00 2.875 0.051 76.148 0.0643 95.9454
w 3.25 3.125 0.041 76.189 0.0517 95.9970
4 3.50 3.375 0.079 76.268 0.0995 96.0966
3.75 3.625 0.130 76.398 0.1638 96.2604
4.00 3.875 0.068 76.466 0.0857 96.3460
8.00 6.000 0.650 77.116 0.8190 97.1650
PAN 2.250 79.366 2.8350 100.0000
---- ------m a mm m u a---- m ~ m == a= -- -------mm ===
THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction Is treated. The pan mid-point for this
sample Is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phl intervals, and moment measures recalculated.

MOMENT MEASURES


Stat. Pan
Measure Excluded

Mean: -0.582
Std Dev: 1.405
Rel Dis: -2.415
Skewness: 1.136
Kurtosis: 5.611
Sth MM: 21.068
6th MM: 95.672
7th MM: 434.542
8th MM: 2012.928
Median: -0.870


Pan at Pan at Pan at Pan at
9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi

-0.310 -0.296 -0.282 -0.254
2.116 2.177 2.242 2.376
-6.822 STATISTICAL MEASURES
2.600 CALCULATED USING
11.689 METHOD OF MOMENTS
49.310 Std Dev standard deviation
214.281 Rel Dis relative dispersion
933.178 std dev/mean
4079.952 MM = moment measure


-0.807


S1B1GS15A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001
------===----= === -------------------------=
ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent
-------=---------- ==--=-===------------ --.. -=....
-2.00 -2.125 14.833 14.833 18.8411 18.8411
-1.75 -1.875 6.634 21.467 8.4266 27.2676
-1.50 -1.625 6.771 28.238 0.6006 35.8683
-1.25 -1.375 7.548 35.786 9.5876 45.4558
-1.00 -1.125 7.033 42.819 8.9334 54.3892
-0.75 -0.875 6.265 49.084 7.9579 62.3471
-0.50 -0.625 5.004 54.088 6.3561 68.7032
-0.25 -0.375 3.850 57.938 4.8903 73.5936
0.00 -0.125 2.861 60.799 3.6341 77.2276
0.25 0.125 3.057 63.856 3.8830 81.1107
0.50 0.375 2.302 66.158 2.9240 84.0347
0.75 0.625 2.136 68.294 2.7132 86.7479
1.00 0.875 2.054 70.348 2.6090 89.3569
1.25 1.125 1.725 72.073 2.1911 91.5480
1.50 1.375 0.836 72.909 1.0619 92.6099
1.75 1.625 0.949 73.858 1.2054 93.8153
2.00 1.875 0.461 74.319 0.5856 94.4009
2.25 2.125 0.251 74.570 0.3188 94.7197
2.50 2.375 0.147 74.717 0.1867 94.9064
2.75 2.625 0.081 74.798 0.1029 95.0093
3.00 2.875 0.057 74.855 0.0724 95.0817
3.25 3.125 0.040 74.895 0.0508 95.1325
3.50 3.375 0.062 74.957 0.0788 95.2113
3.75 3.625 0.100 75.057 0.1270 95.3383
4.00 3.875 0.070 75.127 0.0889 95.4272
8.00 6.000 0.500 75.627 0.6351 96.0623
PAN 3.100 78.727 3.9377 100.0000
-------- --- = ===-===------- .. ..-.m
THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase In value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phl intervals, and moment measures recalculated.
----------- =- ---P=t 9 =5 P-------- - -- - -- - -
MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi

Mean: -0.907 -0.516 -0.497 -0.477 -0.438
Std Dev: 1.223 2.280 2.360 2.445 2.617
Rel Dis: -1,349 -4.414 STATISTICAL MEASURES
Skewness: 1.838 3.028 CALCULATED USING
Kurtosis: 9.058 12.697 METHOD OF MOMENTS
Sth MM: 43.413 51.872 Std Dev standard deviation
6th MM: 232.406 214.823 Rel Dis relative dispersion
7th MM: 1273.236 891.596 std dev/mean
8th MM: 7080.883 3708.279 MM moment measure
Median: -1.303 -1.248
--r---------m---==m-====m------------- -=_- ------------


EPC--P-==E==========='=======r==========









SIBIGS16A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001

ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent


-2.00 -2.125
-1.75 -1.875
-1.50 -1.625
-1.25 -1.375
-1.00 -1.125
-0.75 -0.875
-0.50 -0.625
-0.25 -0.375
0.00 -0.125
0.25 0.125
0.50 0.375
0.75 0.625
1.00 0.875
1.25 1.125
1.50 1.375
1.75 1.625
2 00 1.875
2.25 2.125
2,50 2.375
2.75 2.625
3.00 2.875
o 3.25 3.125
co 3.50 3.375
3.75 3.625
4.00 3.875
8.00 6.000
PAN


4.792
1.617
1.456
1.609
1.593
1.811
2.152
2.153
2.163
3.046
3.454
4.509
6.393
9.014
7.266
10.387
7.693
5.323
2.391
0.507
0.134
0 .068
0.092
0 .132
0.060
0.350
2.250


4.792
6.409
7.865
9.474
11.067
12.878
15.030
17.183
19.346
22.392
25.846
30.355
36.748
45.762
53.026
63.415
71.108
76.431
78.822
79.329
79.463
79.531
79.623
79.755
79.815
80.165
82.415


5.8145
1.9620
1.7667
1.9523
1.9329
2.1974
2.6112
2.6124
2.6245
3.6959
4.1910
5.4711
7.7571
10.9373
8.8164
12.6033
9.3345
6.4568
2.9012
0.6152
0.1626
0.0825
0.1116
0.1602
0.0728
0.4247
2.7301


5,8145
7.7765
9.5432
11.4955
13.4284
15.6258
18.2370
20.8494
23.4739
27.1698
31.3608
36.8319
44.5890
55.5263
64.3427
76.9459
86.2804
92.7392
95.6404
96.2555
96.4181
96.5006
96.6123
96.7724
96.8452
97.2699
100.0000


THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample Is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phi intervals, and moment measures recalculated.

MOMENT MEASURES


Stat. Pan Pan at
Measure Excluded 9.00 Phi


0.748
1.329
1.776
-0.535
3.561
0.467
26.156
50.083
302.229
0.967


Mean:
Std Dev:
Rel Dis:
Skewness:
Kurtosis:
5th MM:
6th MM:
7th MM:
8th MM:
Median:


0.973
1.884
1.935
1 780
10.101
38.374
168.783
706.910
3020.974
0.999


Pan at Pan at Pan at
9.50 Phi 10.00 Phi 11.00 Phi

0.987 1.001 1.028
1.941 2.002 2.129
STATISTICAL MEASURES
CALCULATED USING
METHOD OF MOMENTS
Std Dev = standard deviation
Rel Dis = relative dispersion
= std dev/mean
MM moment measure


S1BIGS17A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001

ANALYTICAL GRANULOMETRIC RESULTS
sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent

-2.00 -2.125 12.487 12.487 14.0661 14.0661
-1.75 -1.875 5.663 18.150 6.3791 20.4452
-1.50 -1.625 5.505 23.655 6.2011 26.6463
-1.25 -1.375 5.884 29.539 6.6281 33.2744
-1.00 -1.125 5.906 35.445 6.6528 39.9272
-0.75 -0.875 5.664 41.109 6.3802 46.3075
-0.50 -0.625 7.617 48.726 8.5802 54.8877
-0.25 -0.375 7.323 56.049 8.2490 63.1367
0.00 -0.125 5.179 61.228 5.8339 68.9706
0.25 0.125 5.077 66.305 5.7190 74.6897
0.50 0.375 3.845 70.150 4.3312 79.0209
0.75 0.625 3.621 73.771 4.0789 83.0998
1.00 0.875 3.349 77.120 3.7725 86.8723
1.25 1.125 3,108 80.228 3.5010 90.3733
1.50 1.375 1.389 81.617 1.5646 91.9380
1.75 1.625 1.551 83.168 1.7471 93.6851
2.00 1.875 0.799 83.967 0.9000 94.5851
2.25 2.125 0.506 84.473 0.5700 95.1551
2.50 2.375 0.284 84.757 0.3199 95.4750
2.75 2.625 0.136 84.893 0.1532 95.6282
3.00 2.875 0.072 84.965 0.0811 95.7093
3.25 3.125 0.046 85.011 0.0518 95.7611
3.50 3.375 0.063 85.074 0.0710 95.8321
3.75 3.625 0.111 85.185 0.1250 95.9571
4.00 3.875 0.089 85.274 0.1003 96.0574
8.00 6.000 0.450 85.724 0.5069 96.5643
PAN 3.050 88.774 3.4357 100.0000

THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample Is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phl intervals, and moment measures recalculated.

MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi


Mean:
Std Dev:
Rel Dis:
Skewness:
Kurtosis:
5th MM:
6th MM:
7th MM:
8th MM:
Median:


-0.596
1.243
-2.085
1.165
6.217
25.409
128.473
654.413
3415.035
-0.817


-0.267
2.141
-8.025
2.885
12.796
53.956
232.146
999.481
4312.910
-0.767


-0.250 -0.232 -0.198
2.215 2.292 2.449
STATISTICAL MEASURES
CALCULATED USING
METHOD OF MOMENTS
Std Dev = standard deviation
Rel Dis = relative dispersion
= std dev/mean
MM moment measure










SIBIGS18A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001

ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent
-----ls -- -------3----------- ~ = ==
-2.00 -2.125 16.178 16.178 18.4868 18.4868
-1.75 -1.875 3.025 19.203 3.4567 21.9435
-1.50 -1.625 2.745 21.948 3.1367 25.0803
-1.25 -1.375 3.004 24.952 3.4327 28.5130
-1.00 -1.125 3.343 28.295 3.8201 32.3331
-0.75 -0.875 3.682 31.977 4.2075 36.5405
-0.50 -0.625 4.076 36.053 4.6577 41.1982
-0.25 -0.375 4.146 40.199 4.7377 45.9359
0.00 -0.125 4.078 44.277 4.6600 50.5959
0.25 0.125 5.084 49,361 5.8096 56.4055
0.50 0.375 4,791 54.152 5.4747 61.8802
0.75 0.625 5.117 59.269 5.8473 67.7275
1.00 0.875 5.483 64.752 6.2655 73.9930
1.25 1.125 5.909 70.661 6,7523 80.7453
1.50 1.375 3,766 74.427 4.3035 85.0487
1.75 1.625 4,671 79.098 5.3376 90.3864
2.00 1.875 2.735 81.833 3.1253 93.5117
2.25 2.125 1.445 83.278 1.6512 95.1629
2.50 2.375 0.669 83.947 0.7645 95.9274
2.75 2.625 0.239 84.186 0.2731 96.2005
3.00 2.875 0.108 84.294 0.1234 96.3239
G3 3.25 3.125 0.062 84.356 0.0708 96.3947
S 3.50 3.375 0.078 84.434 0.0891 96.4839
3.75 3.625 0.174 84.608 0.1988 96.6827
4.00 3,875 0.103 84.711 0.1177 96.8004
8.00 6.000 0.350 85.061 0.3999 97.2004
PAN 2.450 87.511 2.7996 100.0000

THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample Is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phl Intervals, and moment measures recalculated.

MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi


Mean:
Std Dev:
Rel Dis:
Skewness:
Kurtosis:
5th MM:
6th MM:
7th MM:
Bth MM:


-0.189
1.452
-7.679
0 .326
2.991
6.456
29.195
111.400
471.363


0.068
2.091
30.646
2.139
10.096
40.887
174 .660
741.040
3157.780


Median: -0.232 -0.157


0.082 0.096 0.124
2.151 2.213 2.342
STATISTICAL MEASURES
CALCULATED USING
METHOD OF MOMENTS
Std Dev standard deviation
Rel Dis = relative dispersion
= std dev/mean
MM = moment measure


S1B1GS19A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001
-----------=-------- -------------- -------
ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent
----------------== -==-=----- ----- -==-- ----------


-2.00
-1.75
-1.50
-1.25
-1.00
-0.75
-0.50
-0.25
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00
3.25
3.50
3.75
4.00
8.00
PAN


-2.125
-1.875
-1.625
-1.375
-1.125
-0.875
-0.625
-0.375
-0.125
0.125
0.375
0.625
0.875
1.125
1.375
1.625
1.875
2.125
2.375
2.625
2.875
3.125
3.375
3.625
3.875
6.000


14.760
5.315
5.192
6.250
5.597
6.148
6.122
S.296
4.018
3.948
3.256
2.892
2.720
2.468
1.397
1.458
0.743
0.445
0.224
0.071
0.044
0.035
0.058
0 .104
0.066
0.550
2.850


14.760
20.075
25.267
31.517
37.114
43.262
49.384
54.680
58.698
62.646
65.902
68.794
71.514
73.982
75.379
76.837
77.580
78.025
78.249
78.320
78.364
78.399
78.457
78.561
78.627
79.177
82.027


17.9941
6.4796
6.3296
7.6194
6.8234
7.4951
7.4634
6.4564
4.8984
4.8130
3.9694
3.5257
3.3160
3.0088
1.7031
1.7775
0.9058
0.5425
0.2731
0.0866
0.0536
0.0427
0.0707
0.1268
0.0805
0.6705
3.4745


17.9941
24.4736
30.8033
38.4227
45.2461
52.7412
60.2046
66.6610
71.5594
76.3724
80.3418
83.8675
87.1835
90.1923
91.8954
93.6728
94.5786
95.1211
95.3942
95.4808
95.5344
95.5771
95.6478
95.7746
95.8550
96.5255
100.0000


-----==--=-------------- -----
THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phl intervals, and moment measures recalculated.

MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi
=r== = =E~---------------- _-= -- = -= ---
Mean: -0.707 -0.370 -0.352 -0.335 -0.300
Std Dev: 1.287 2.190 2.264 2.341 2.498
Rel Dis: -1.821 -5.927 STATISTICAL MEASURES
Skewness: 1.410 2.872 CALCULATED USING
Kurtosls: 7.010 12.461 METHOD OF MOMENTS
5th MM: 29.982 51.835 Std Dev = standard deviation
6th MM: 149.585 219.827 Rel Dis relative dispersion
7th MM: 756.373 933.928 std dev/mean
8th MM: 3890.681 3978.116 MM moment measure


Median:


-1.024


-0.966










SIB1GS1A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001

ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent
= r -- --------- ----- -- .... ---- ---- ---- ---- ===
-2.00 -2.125 5.503 5.503 11.4334 11.4334
-1.75 -1.875 1.147 6.650 2.3831 13.8165
-1.50 -1.625 1.281 7.931 2.6615 16.4779
-1.25 -1,375 1.665 9.596 3,4593 19.9373
-1.00 -1.125 1.732 11.328 3.5985 23.5358
-0.75 -0.875 1.950 13.278 4.0514 27.5872
-0.50 -0.625 2.262 15.540 4.6997 32.2869
-0.25 -0.375 2.428 17.968 5.0446 37.3314
0.00 -0.125 2.471 20.439 5.1339 42.4654
0.25 0,125 3.169 23.608 6.5841 49.0495
0.50 0.375 3.344 26.952 6.9477 55.9972
0.75 0.625 3.653 30.605 7.5897 63.5869
1.00 0.875 4.303 34.908 8.9402 72.5271
1.25 1.125 4.577 39.485 9.5095 82.0365
1.50 1.375 2.278 41.763 4.7329 86.7694
1.75 1.625 2.542 44.305 5.2814 92.0509
2.00 1.875 1.068 45.373 2.2189 94.2698
2.25 2.125 0.523 45.896 1.0866 95.3564
2.50 2.375 0.237 46.133 0.4924 95.8488
2.75 2.625 0.086 46.219 0.1787 96.0275
3.00 2.875 0.037 46.256 0.0769 96.1044
. 3.25 3.125 0.029 46.285 0.0603 96.1646
0 3.50 3.375 0.035 46.320 0.0727 96.2374
3.75 3.625 0.037 46.357 0.0769 96.3142
4.00 3.875 0.024 46.381 0.0499 96.3641
8.00 6.000 0.200 46.581 0.4155 96.7796
PAN 1.550 48.131 3.2204 100.0000


THIS NOTE APPLIES ONLY


IF A PAN FRACTION IS PRESENT


Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phl intervals, and moment measures recalculated.


Stat. Pan
Measure Excluded

Mean: 0.027
Std Dev: 1.320
Rel Dis: 49.128
Skewness: 0.119
Kurtosis: 3.585
5th MM: 7.646
6th MM: 42.238
7th MM: 170.084
8th MM: 786.113
Median: 0.100


MOMENT MEASURES
Pan at Pan at Pan at Pan at
9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi


0.316
2.061
6.526
2.320
10.976
44.039
186.248
779.674
3279.530
0.159


0.332 0.348 0.380
2.120 2.191 2.336
STATISTICAL MEASURES
CALCULATED USING
METHOD OF MOMENTS
Std Dev = standard deviation
Rel Dis = relative dispersion
= std dev/mean
MM moment measure


S1B1GS20A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001

ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent
f=---------P-P PI---C--------- -- ...= -
-2.00 -2.125 8.850 8.850 10.7520 10.7520
-1.75 -1.875 2.862 11.712 3.4771 14.2291
-1.50 -1.625 3.061 14.773 3.7189 17.9480
-1.25 -1.375 4.271 19.044 5.1889 23.1369
-1.00 -1.125 4.670 23.714 5.6737 28.8106
-0.75 -0.875 4.982 28.696 6.0527 34.8633
-0.50 -0.625 5.845 34.541 7.1012 41.9645
-0.25 -0.375 6.231 40.772 7.5702 49.5347
0.00 -0.125 5.727 46.499 6.9578 56.4925
0.25 0.125 6.731 53.230 8.1776 64.6701
O.50 0.375 5.673 58.903 6.8922 71.5624
0.75 0.625 5.386 64.289 6.5436 78.1059
1.00 0.875 5.099 69.388 6.1949 84.3008
1.25 1.125 4.603 73.991 5.5923 89.8931
1.50 1.375 2.166 76.157 2.6315 92.5246
1.75 1.625 2.118 78.275 2.5732 95.0978
2.00 1.875 0.917 79.192 1.1141 96.2119
2.25 2.125 0.384 79.576 0.4665 96.6784
2.50 2.375 0.160 79.736 0.1944 96.8728
2.75 2.625 0.060 79.796 0.0729 96.9457
3.00 2.875 0.032 79.828 0.0389 96.9846
3.25 3.125 0.018 79.846 0.0219 97.0064
3.50 3.375 0.021 79.867 0.0255 97.0320
3.75 3.625 0.026 79.893 0.0316 97.0635
4.00 3.875 0.017 79.910 0.0207 97.0842
8.00 6.000 0.050 79.960 0.0607 97.1449
PAN 2.350 82.310 2.8551 100.0000

THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction Is treated. The pan mid-point for this
sample is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phi intervals, and moment measures recalculated.
33==3-r=------------------P--=-------
MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi


Mean:
Std Dev:
Rel Dis:
Skewness:
Kurtosis:
5th MM:
6th MM:
7th MM:
8th MM:
Median:


-0.315
1.142
-3.625
0.123
2.685
3.998
24.865
108.057
588.780
-0.407


-0.049
1.924
-39.198
2.886
14.483
66.523
313.468
1471.600
691 .207
-0.358


-0.035 -0.021 0.008
1.991 2.060 2.202
STATISTICAL MEASURES
CALCULATED USING
METHOD OF MOMENTS
Std Dev = standard deviation
Rel Dis = relative dispersion
= std dev/mean
MM = moment measure


=----m-- =------==-===-=--------------m m









S1BlGS21A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001

ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent
== = - --ma m m m- = = = - -- -m --------------mm mmm -==


-2.00
-1.75
-1 .50
-1.25
-1 .00
-0.75
-0.50
-0.25
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2 .25
2.50
2.75
3.00
P 3.25
3.50
3.75
4 .00
8 .00
PAN


-2.125
-1.875
-1.625
-1.375
-1,125
-0.875
-0.625
-0.375
-0.125
0.125
0.375
0.625
0.875
1.125
1.375
1.625
1.875
2.125
2.375
2.625
2.875
3.125
3.375
3.625
3.875
6.000


10.219
1.794
1.504
2.092
2.101
2.880
3.415
3.974
4.334
5.552
5.510
6.052
7.131
8.676
5.812
7 .087
3.875
1.883
0.750
0.217
0.085
0.047
0.069
0.120
0.058
0.400
2.100


10.219
12.013
13.617
15.709
17.810
20.690
24.105
28.079
32.413
37.965
43.475
49.527
56.658
65.334
71.146
78.233
82.108
83.991
84.741
84.958
85.043
85.090
85.159
85.279
85.337
85.737
87.837


11.6340
2.0424
1.8261
2.3817
2.3919
3.2788
3.8879
4.5243
4.9341
6.3208
6.2730
6.8900
8.1184
9.8774
6.6168
8.0684
4.4116
2.1437
0.8539
0.2470
0.0968
0.0535
0.0786
0.1366
0.0660
0.4554
2.3908


11.6340
13.6765
15.5026
17.8843
20.2762
23.5550
27.4429
31,9672
36.9013
43.2221
49.4951
56.3851
64.5036
74.3810
80.9978
89.0661
93.4777
95.6214
96.4753
96.7223
96.8191
96.8726
96.9512
97.0878
97.1538
97.6092
100.0000


= ---m --m- m m m--- =-=-- -a -a ------m -- - -m m mm
THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction Is treated. The pan mid-point for this
sample is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point Is large and the
means significantly Increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phi intervals, and moment measures recalculated.
~ ~ ~ ~ ~ - -- - - - m m - -- mm n = m = mm m = m = = = -- -----m ==
MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi
a- ----------------= =--- ----------------- w m m am m m m ===m=ma
Mean: 0.230 0.440 0.452 0.464 0.486
Std Dev: 1.370 1.909 1.963 2.019 2.136
Rel Dis: 5.945 4.340 STATISTICAL MEASURES
Skewness: -0.071 1.987 CALCULATED USING
Kurtosis: 3,353 10.683 METHOD OF MOMENTS
5th MM: 4.900 44.220 Std Dev = standard deviation
6th MM: 31.422 200.085 Rel Dis = relative dispersion
7th MM: 107.900 887.533 = std dev/mean


5th MM: 484.574 3971.847


Median: 0.347 0.393


MM = moment measure


51B1GS22A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001
--P===-=- -- ~lL------------- ----- -----
ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent
=- = -------- === ----- =- -= --E--------- .=-- ----
-2.00 -2.125 9.351 9.351 10.9926 10.9926
-1.75 -1.875 2.655 12.006 3.1211 14.1137
-1.50 -1.625 4.169 16.175 4.9009 19.0146
-1.25 -1.375 4.696 20.871 5.5204 24.5351
-1.00 -1.125 4.890 25.761 5.7485 30.2835
-0.75 -0.875 5.805 31.566 6.8241 37.1077
-0.50 -0.625 7.604 39.170 8.9389 46.0466
-0.25 -0.375 9.035 48.205 10.6212 56.6678
0.00 -0.125 8.168 56.373 9.6020 66.2697
0.25 0.125 7.817 64.190 9.1893 75.4591
0.50 0.375 5.123 69.313 6.0224 81.4814
0.75 0.625 4.069 73.382 4.7833 86.2648
1.00 0.875 3.214 76.596 3.7782 90.0430
1.25 1.125 2.619 79.215 3.0788 93.1218
1.50 1.375 1.226 80.441 1.4412 94.5630
1.75 1.625 1.217 81.658 1.4307 95.9937
2.00 1.875 0.528 82.186 0.6207 96.6144
2.25 2.125 0.242 82.428 0.2845 96.8989
2.50 2.375 0.132 82.560 0.1552 97.0541
2.75 2.625 0.061 82.621 0.0717 97.1258
3.00 2.875 0.040 82.661 0.0470 97.1728
3.25 3.125 0.030 82.691 0.0353 97.2081
3.50 3.375 0.036 82.727 0.0423 97.2504
3.75 3.625 0.052 82.779 0.0611 97.3115
4.00 3.875 0.037 82.816 0.0435 97.3550
8.00 6.000 0.400 83.216 0.4702 97.8252
PAN 1.850 85.066 2.1748 100.0000
----------------======- -----------
THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction Is treated. The pan mid-point for this
sample is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase in value for Increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phi intervals, and moment measures recalculated.
-- -n----- m-- - --------- = --------------
MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi
------------------=--- --m==------a--
Mean: -0.456 -0.250 -0.239 -0.228 -0.207
Std Dev: 1.123 1.777 1.833 1.892 2.013
Rel Dis: -2.465 -7.108 STATISTICAL MEASURES
Skewness: 1.010 3.215 CALCULATED USING
Kurtosis: 7.247 17.198 METHOD OF MOMENTS
5th MM: 32.271 86.623 Std Dev = standard deviation
6th MM: 184.271 447.062 Rel Dis = relative dispersion
7th MM: 1028.530 2309.566 std dev/mean
8th MM: 5872.073 11967.127 MM = moment measure
Median: -0.558 -0.532
.-r, -------.------ --- --- ---------.









S1B1GS23A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001

ANALYTICAL GRANULOMETRIC RESULTS
Steve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent
--- ----- --------- -r----- -===
-2.00 -2.125 5.908 5.908 7.2421 7.2421
-1.75 -1.875 1.439 7.347 1.7639 9.0060
-1.50 -1.625 1.784 9.131 2.1868 11.1928
-1.25 -1.375 2.090 11.221 2.5619 13.7548
-1.00 -1.125 2.122 13.343 2.6012 16.3559
-0.75 -0.875 2,459 15.802 3.0143 19.3702
-0.50 -0.625 3.104 18.906 3.8049 23.1751
-0.25 -0.375 3.215 22.121 3.9410 27.1160
0.00 -0.125 3.308 25.429 4.0550 31.1710
0.25 0.125 4.500 29.929 5.5161 36.6871
0.50 0.375 4.754 34.683 5.8275 42.5146
0.75 0.625 5.837 40.520 7.1550 49.6696
1.00 0.875 7.434 47.954 9.1126 58.7823
1.25 1.125 9.237 57.191 11.3228 70.1051
1.50 1.375 6.190 63.381 7.5877 77.6928
1.75 1.625 6.881 70.262 8.4348 86.1276
2.00 1.875 4.152 74.414 5.0895 91.2171
2.25 2.125 2.846 77.260 3.4886 94.7057
2.50 2.375 1.369 78.629 1.6781 96.3839
2.75 2.625 0.314 78.943 0.3849 96.7688
3.00 2.875 0.088 79.031 0.1079 96.8766
P 3.25 3.125 0.042 79.073 0.0515 96.9281
K) 3.50 3.375 0.045 79.118 0.0552 96.9833
3.75 3.625 0.069 79.187 0.0846 97.0679
4.00 3,875 0.042 79.229 0.0515 97.1194
8.00 6.000 0.200 79.429 0.2452 97.3645
PAN 2.150 81.579 2.6355 100.0000

THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly Increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phi intervals, and moment measures recalculated.

MOMENT MEASURES


Stat.
Measure

Mean:
Std Dev:
Rel DIs:
Skewness:
Kurtosis:
5th MM:
6th MM:
7th MM:
8th MM:
Median:


Pan Pan at Pan at Pan at Pan at
Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi

0.422 0.648 0.661 0.674 0.701
1,290 1.879 1.937 1.999 2.125
3.057 2.900 STATISTICAL MEASURES
-0.344 2.067 CALCULATED USING
3.101 11.172 METHOD OF MOMENTS
1,546 46.066 Std Dev standard deviation
23.655 208.005 Rel Dis = relative dispersion
63.550 916.238 = std dev/mean
336.927 4074.053 MM moment measure
0.591 0.634


S1B1GS24A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001
----f- ---------------- -== L---- ---- -- --- - -----
ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent
- = -------- ---P--- --- ====== P -- -- = = =- -- -- -
-2.00 -2.125 1.406 1.406 1.6040 1.6040
-1.75 -1.875 0.634 2.040 0.7233 2.3273
-1.50 -1.625 0.702 2.742 0.8009 3.1282
-1.25 -1.375 0.932 3.674 1.0633 4.1914
-1.00 -1.125 1.064 4.738 1.2138 5.4053
-0.75 -0.875 1.569 6.307 1.7900 7.1953
-0.50 -0.625 2.270 8.577 2.5897 9.7850
-0.25 -0.375 5.575 14.152 6.3602 16.1451
0.00 -0.125 10.367 24.519 11.8270 27.9722
0.25 0.125 13.157 37.676 15.0100 42.9821
0.50 0.375 9.560 47.236 10.9064 53.8885
0.75 0.625 8.398 55.634 9.5807 63.4693
1.00 0.675 7.743 63.377 8.8335 72.3028
1.25 1.125 7.353 70.730 8.3886 80.6913
1.50 1.375 4.086 74.816 4.6615 85.3528
1.75 1.625 4.450 79.266 5.0767 90.4295
2.00 1.875 2.391 81.657 2.7277 93.1573
2.25 2.125 1.342 82.999 1.5310 94.6883
2.50 2.375 0.724 83.723 0.8260 95.5142
2.75 2.625 0.345 84.068 0.3936 95.9078
3.00 2.875 0.169 84.237 0.1928 96.1006
3.25 3.125 0.085 84.322 0.0970 96.1976
3.50 3.375 0.132 84.454 0.1506 96.3482
3.75 3.625 0.245 84.699 0.2795 96.6277
4.00 3.875 0.156 84.855 0.1780 96.8057
8.00 6.000 0.350 85.205 0.3993 97.2050
PAN 2.450 87.655 2.7950 100.0000
------------------- -
THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point Is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phi intervals, and moment measures recalculated.
-- -- -- -- -- -- =--E----------r----------=1F3= F=
MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi

Mean: 0.459 0.698 0.712 0.726 0.754
Std Dev: 0.980 1.714 1.782 1.852 1.995
Rel Dis: 2.134 2.455 STATISTICAL MEASURES
Skewness: 0.683 3.200 CALCULATED USING
Kurtosis: 7.319 16.280 METHOD OF MOMENTS
5th MM: 24.030 76.223 Std Dev standard deviation
6th MM: 154.329 368.972 Rel Dis = relative dispersion
7th MM: 774.559 1776.624 = std dev/mean
8th MM: 4471.010 8588.731 MM = moment measure


Median:


0.254


0.286









S1B1GS25A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001
mmmm ---= -am a-ma a-- n--- mmmm mms =-== === - ---m m me m-----
ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent
-- --m m-=------- -------------mm m m m m m m m---=== --
-2.00 -2.125 0.285 0.285 0.3618 0.3618
-1.75 -1.875 0.109 0.394 0.1384 0.5001
-1.50 -1.625 0.325 0.719 0.4125 0.9127
-1.25 -1.375 0.365 1,084 0.4633 1.3760
-1.00 -1.125 0.919 2.003 1.1666 2.5426
-0.75 -0.875 2.551 4.554 3.2382 5.7807
-0.50 -0.625 6.448 11.002 8.1849 13.9657
-0.25 -0.375 10.795 21.797 13.7029 27.6685
0.00 -0.125 12.117 33.914 15.3810 43.0495
0.25 0.125 13.676 47.590 17.3600 60.4095
0.50 0.375 9.481 57.071 12.0349 72.4444
0.75 0.625 7.170 64.241 9.1014 81.5458
1.00 0.875 5.066 69.307 6.4306 87.9765
1.25 1.125 3.510 72.817 4.4555 92.4320
1.50 1.375 1.384 74.201 1.7568 94.1888
1.75 1.625 1.496 75.697 1.8990 96.0878
2.00 1.875 0.655 78.352 0.8314 96.9192
2.25 2.125 0.273 76.625 0.3465 97.2658
2.50 2.375 0.119 76.744 0.1511 97.4168
2.75 2.625 0.052 76.796 0.0560 97.4828
3.00 2.875 0.035 76.831 0.0444 97.5273
S 3.25 3.125 0.023 76.854 0.0292 97.5565
C 3 3.50 3.375 0.024 76.878 0.0305 97.5869
3.75 3.625 0.029 76.907 0.0368 97.6237
4.00 3.875 0.022 76.929 0.0279 97.6517
8.00 6,000 0.150 77.079 0.1904 97.8421
PAN 1.700 78.779 2.1579 100.0000
------------am n ------m
THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample Is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phl intervals, and moment measures recalculated.

MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi
-== -a- --m -- - ----mm= = = = - --- = m- =-- = m= = -- ----m


Mean: 0.147
Std Dev: 0.721
Rel Dls: 4.906
Skewness: 1.365
Kurtosis: 11.643
5th MM: 73.380
6th MM: 592.387
7th MM: 4638.975
8th MM: 37475.425


Median:


0.338
1.478
4 .372
4.460
26.369
152.582
891.256
5208.228
30471.623


0.349 0.360 0.381
1.541 1.606 1.738
STATISTICAL MEASURES
CALCULATED USING
METHOD OF MOMENTS
Std Dev standard deviation
Rel Dis = relative dispersion
std dev/mean
MM = moment measure


0.040 -0.025


S1B1GS26A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001
-=-------=----= --------=.=----------3mm am-----
ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent
e-==== ---nam m m --n=a m mm m m m m = m w mm m m m m m a m m


-2.00
-1.75
-1.50
-1.25
-1.00
-0.75
-0.50
-0.25
0.00
0.25
0.50
0.75
1.00
1.25
1 .50
1.75
2.00
2.25
2.50
2.75
3.00
3.25
3.50
3.75
4 .00
8 .00
PAN


-2.125
-1.875
-1,625
-1.375
-1.125
-0.875
-0.625
-0.375
-0.125
0.125
0.375
0.625
0.875
1.125
1.375
1.625
1.875
2.125
2.375
2.625
2.875
3.125
3.375
3.625
3.875
6.000


2.754
0.131
0.253
0.391
0.231
0.639
1.675
6.231
10.297
10.754
7.229
6.335
6.608
8.700
7.043
8 .767
4.354
1.862
0.866
0.322
0.116
0.044
0.040
0.055
0.029
0.200
1.600


2.754
2.885
3.138
3.529
3.760
4.399
6.074
12.305
22.602
33.356
40.585
46.920
53.528
62.228
69.271
78.038
82.392
84.254
85.120
85.442
85.558
85.602
85.642
85.697
85.726
85.926
87.526


3.1465
0.1497
0.2891
0.4467
0.2639
0.7301
1.9137
7.1190
11.7645
12.2866
8.2593
7.2378
7.5498
9.9399
8.0468
10.0165
4.9745
2.1274
0.9894
0.3679
0.1325
0.0503
0.0457
0.0628
0.0331
0.2285
1.8280


3.1465
3.2962
3.5852
4.0319
4.2959
5.0259
6.9397
14.0587
25.8232
38.1098
46.3691
53.6069
61.1567
71.0966
79.1433
89.1598
94.1343
96.2617
97.2511
97.6190
97.7515
97.8018
97.8475
97.9103
97.9435
98.1720
100.0000


--=- --------- = --------- --------
THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction Is treated. The pan mid-point for this
sample is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point Is large and the
means significantly increase In value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phl intervals, and moment measures recalculated.
------- ==== ------ - -----------
MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi
------- -------m--=----===------------m ==
Mean: 0.607 0.760 0.769 0.778 0.797
Std Dev: 0.985 1.494 1.544 1.597 1.706
Rel Dis: 1.624 1.965 STATISTICAL MEASURES
Skewness: -0.101 2.944 CALCULATED USING
Kurtosis: 5.265 18.143 METHOD OF MOMENTS
5th MM: 6.913 94.821 Std Dev = standard deviation
6th MM: 82.578 527.536 Rel Dis = relative dispersion
7th MM: 310.617 2887.393 std dev/mean
8th MM: 2041.913 15923.223 MM moment measure


Median :


0.469


0.500


"======================='=='========="'









S1B1GS27A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001

ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent
---n-- m--==-= --- ---------=- -=- ------m ===
-2.00 -2.125 12.493 12.493 16.3542 16.3542
-1.75 -1.675 5.150 17.643 6.7417 23.0960
-1.50 -1.625 6.391 24.034 8.3663 31.4622
-1.25 -1.375 6.148 30.182 8.0482 39.5104
-1.00 -1.125 5.988 36.170 7.8387 47.3491
-0.75 -0.875 5.621 41.791 7.3583 54.7074
-0.50 -0.625 5.412 47.203 7.0847 61.7921
-0.25 -0.375 5.058 52.261 6.6213 68,4134
0.00 -0.125 4.163 56.424 5.4497 73.8631
0.25 0.125 3.981 60.405 5.2114 79.0745
0.50 0.375 2.677 63.282 3.7662 82.8407
0.75 0.625 2.302 65.584 3.0135 85.8542
1.00 0.875 1.818 67.402 2.3799 88.2341
1.25 1.125 1.248 68.650 1.6337 89.8678
1.50 1.375 0.574 69.224 0.7514 90.6192
1.75 1.625 0.767 69.991 1.0041 91.6232
2.00 1.875 0.925 70.916 1.2109 92.8341
2.25 2.125 0.733 71.649 0.9595 93.7937
2.50 2.375 0.229 71.878 0.2998 94.0935
2.75 2.625 0.068 71.946 0.0890 94.1825
3.00 2.875 0.062 72.006 0.0812 94.2636
3r 3.25 3.125 0.051 72.059 0.0668 94.3304
3.50 3.375 0.055 72.114 0.0720 94.4024
3.75 3.625 0.068 72.182 0.0890 94.4914
4.00 3.875 0.058 72.240 0.0759 94.5674
8.00 6.000 0.750 72.990 0.9818 95.5492
PAN 3.400 76,390 4.4508 100.0000

THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction Is treated. The pan mid-point for this
sample is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase In value for Increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phi intervals, and moment measures recalculated.

MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi


Mean:
Std Dev:
Rel Dis:
Skewness:
Kurtosis:
5th MM:
6th MM:
7th MM:
8th MM:
Median:


-0.753
1.305
-1.734
1.854
9.158
41.653
208 .607
1057.452
5421.408
-1.111


-0.319
2.393
-7.509
2.791
10.999
41.706
160.893
621.975
2411.007
-1.035


-0.296 -0.274 -0.230
2.477 2.567 2.749
STATISTICAL MEASURES
CALCULATED USING
METHOD OF MOMENTS
Std Dev = standard deviation
Rel Dis = relative dispersion
std dev/mean
MM = moment measure


SIBIGS28A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001
-------IC-- -= ----------- I=I-- ------ ---------
ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent
--===-=======------------==--m-------mm -=


-2.00 -2.125
-1,75 -1.875
-1.50 -1.625
-1.25 -1.375
-1.00 -1.125
-0.75 -0.875
-0.50 -0.625
-0.25 -0.375
0.00 -0.125
0.25 0.125
0.50 0.375
0.75 0.625
1.00 0.875
1.25 1.125
1 50 1.375
1.75 1.625
2.00 1.875
2.25 2.125
2.50 2.375
2.75 2.625
3.00 2.875
3.25 3.125
3.50 3.375
3.75 3.625
4.00 3.875
8.00 6.000
PAN


0.441
0.289
0.467
0.313
0.420
0.683
1.816
4.870
8.375
9.231
6.508
5.770
5 808
7.132
5.349
6.640
3.135
1 .303
0.583
0.199
0.068
0.025
0.026
0.022
0.016
0.000
1.300


0.441
0.730
1.197
1.510
1.930
2.613
4.429
9.299
17.674
26.905
33.413
39.183
44.991
52.123
57.472
64.112
67.247
68.550
69.133
69.332
69.400
69.425
69.451
69.473
69.489
69.489
70.789


0.6230 0.6230
0.4083 1.0312
0.6597 1.6909
0.4422 2.1331
0.5933 2.7264
0.9648 3.6913
2.5654 6.2566
6.8796 13.1362
11.8309 24.9672
13.0402 38.0073
9.1935 47.2008
8.1510 55.3518
8.2047 63.5565
10.0750 73.6315
7.5563 81.1878
9.3800 90.5677
4.4287 94.9964
1.8407 96.8371
0.8236 97.6607
0.2811 97.9418
0.0961 98.0378
0.0353 98.0731
0.0367 98.1099
0.0311 98.1410
0.0226 98.1636
0.0000 98.1636
1,8364 100.0000


THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase in value for Increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phl intervals, and moment measures recalculated.

MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi

Mean: 0.601 0.755 0.764 0.774 0.792
Std Dev: 0.854 1.416 1.468 1.524 1.638
Rel Dis: 1.421 1.875 STATISTICAL MEASURES
Skewness: -0.181 3.519 CALCULATED USING
Kurtosis: 3.075 21.841 METHOD OF MOMENTS
5th MM: -2.594 124.154 Std Dev = standard deviation
6th MM: 18.361 726.374 Rel Dis relative dispersion
7th MM: -24.999 4221.159 = std dev/mean
8th MM: 149.598 24586.804 MM = moment measure
Median: 0.433 0.461









S1B1GSZA ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001

ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (q) Percent Percent


-2.00
-1.75
-1.50
-1.25
-1.00
-0.75
-0.50
-0.25
0.00
0.25
0.50
0.75
1 .00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00
4. 3.25
Ln 3.50
3.75
4.00
8.00
PAN


-2.125
-1.875
-1.625
-1.375
-1.125
-0.875
-0.625
-0.375
-0.125
0.125
0.375
0.625
0.875
1.125
1.375
1.625
1.875
2.125
2.375
2.625
2.875
3.125
3.375
3.625
3.875
6.000


16.434
4.925
4.537
5.070
4.771
4.671
4.068
3.931
3.463
3.911
3.392
3.400
3.530
3.498
1.700
1.975
1.065
0.546
0.252
0.094
0.050
0.032
0.036
0.048
0.034
0.250
2.500


16.434
21.359
25.896
30.966
35.737
40.408
44.476
48.407
51.870
55.781
59.173
62.573
66.103
69.601
71.301
73.276
74.341
74.887
75.139
75.233
75.283
75.315
75.351
75.399
75.433
75.683
78.183


21.0199
6.2993
5.8031
6.4848
6.1023
5.9744
5.2032
5.0279
4.4294
5.0024
4.3385
4.3488
4.5150
4.4741
2.1744
2.5261
1.3622
0.6984
0.3223
0.1202
0.0640
0.0409
0.0460
0.0614
0.0435
0.3198
3.1976


21.0199
27.3192
33.1223
39.6071
45.7094
51.6839
56.8870
61.9150
66.3443
71.3467
75.6853
80.0340
84.5491
89.0232
91.1976
93.7237
95.0859
95.7842
96.1066
96.2268
96.2908
96.3317
96.3777
96.4391
*96.4826
96.8024
100.0000


THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction Is treated. The pan mid-point for this
sample is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phi intervals, and moment measures recalculated.

MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi


S1B1GS3A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001

ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent

-2.00 -2.125 13.676 13.676 20.1663 20.1663
-1.75 -1.875 3.132 16.808 4.6184 24.7847
-1.50 -1.625 4.391 21.199 6.4749 31.2596
-1.25 -1.375 4.049 25.248 5.9706 37.2302
-1.00 -1.125 3.384 28.632 4.9900 42.2201
-0.75 -0.875 3.378 32.010 4.9811 47.2013
-0.50 -0.625 3.433 35.443 5.0622 52.2635
-0.25 -0.375 3.256 38.699 4.8012 57.0647
0.00 -0.125 2.701 41.400 3.9828 61.0475
0.25 0.125 2.937 44.337 4.3308 65.3784
0.50 0.375 2.384 46.721 3.5154 68.8938
0.75 0.625 2.367 49.088 3.4903 72.3841
1.00 0.875 2.556 51.644 3.7690 76.1531
1.25 1.125 2.736 54.380 4.0344 80.1876
1.50 1.375 1.640 56.020 2.4183 82.6059
1.75 1.625 2.668 58.688 3.9342 86.5400
2.00 1.875 2.307 60.995 3.4019 89.9419
2.25 2.125 1.784 62.779 2.6306 92.5725
2.50 2.375 1.094 63.873 1.6132 94.1857
2.75 2.625 0.401 64.274 0.5913 94.7770
3.00 2.875 0.147 64.421 0.2168 94.9938
3.25 3.125 0.067 64.488 0.0988 95.0926
3.50 3.375 0.095 64.583 0.1401 95.2327
3.75 3.625 0.122 64.705 0.1799 95.4126
4.00 3.875 0.061 64.766 0.0899 95.5025
8.00 6.000 0.300 65.066 0.4424 95.9449
PAN 2.750 67.816 4.0551 100.0000

THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phl intervals, and moment measures recalculated.

MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi


-0.658
1.315
-2.000
0.841
4.026
13.480
62.967
299.651
1484.196


-0.349
2.144
-6.147
2.712
12.193
51.796
224 .929
976.742
4249.231


-1.012 -0.945


-0,333 -0.317 -0.285
2.212 2.285 2.433
STATISTICAL MEASURES
CALCULATED USING
METHOD OF MOMENTS
Std Dev = standard deviation
Rel DIs = relative dispersion
std dev/mean
MM = moment measure


Mean:
Std Dev:
Rel Dis:
Skewness:
Kurtosis:
5th MM:
6th MM:
7th MM:
8th MM:
Median:


-0.434
1.513
-3.484
0.751
3.257
8.460
32.820
126.924
522.557
-0.837


-0.052
2.390
-46.176
2.231
8.918
32.553
123.002
463.625
1752.436
-0.737


-0.031 -0.011 0.029
2.462 2.542 2.706
STATISTICAL MEASURES
CALCULATED USING
METHOD OF MOMENTS
Std Dev = standard deviation
Rel Dis relative dispersion
std dev/mean
MM = moment measure


Mean:
Std Dev:
Rel Dis:
Skewness:
Kurtosis:
5th MM:
6th MM:
7th MM:
0th MM:
Median:









S1B1GS4A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001

ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent


-2.00
-1.75
-1.50
-1.25
-1.00
-0.75
-0.50
-0.25
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2 .25
2.50
2.75
3.00
4 3.25
0 3.50
3.75
4.00
8 .00
PAN


-2.125
-1.875
-1.625
-1.375
-1.125
-0.875
-0.625
-0.375
-0.125
0.125
0.375
0.625
0.875
1.125
1.375
1 .625
1.875
2.125
2.375
2.625
2.875
3.125
3.375
3.625
3.875
6.000


14.154
2.340
3.371
4 .346
3.753
4 .226
4 451
3.999
3.517
3 .778
3.069
2,876
2,755
2.312
1 .225
1 .348
0.871
0.636
0.451
0.213
0.101
0.055
0.077
0.141
0.082
0.450
1.850


14.154
16.494
19.865
24.211
27.964
32.190
36,641
40.640
44,157
47.935
51.004
53.880
56,635
58.947
60.172
61.520
62.391
63.027
63.478
63.691
63.792
63.847
63.924
64.065
64.147
64.597
66.447


21.3012
3.5216
5.0732
6.5406
5.6481
6.3600
6.6986
6.0183
5.2929
5.6857
4.6187
4.3283
4.1462
3.4795
1.8436
2.0287
1.3108
0.9572
0.6787
0.3206
0.1520
0.0828
0.1159
0.2122
0.1234
0.6772
2.7842


THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phl intervals, and moment measures recalculated.

MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi 10,00 Phi 11.00 Phi


-0.579
1.385
-2.393
1.126
5.429
19.777
89.175
404.799
1887.307
-0.869


-0.312
2.094
-6.710
2.638
11.944
50.989
224 .232
988.189
4370.988
-0.817


-0.298 -0.284 -0.256
2.152 2.217 2.349
STATISTICAL MEASURES
CALCULATED USING
METHOD OF MOMENTS
Std Dev = standard deviation
Rel Dis = relative dispersion
std dev/mean
MM = moment measure


21.3012
24.8228
29.8960
36.4366
42.0847
48.4446
55.1432
61.1615
66.4545
72.1402
76,7589
81.0872
85.2333
88.7128
90.5564
92.5851
93.8959
94.8530
95.5318
95.8523
96.0043
96.0871
96.2030
96.4152
96.5386
97.2158
100.0000


Median:


0.019


0.049


S1BGS5A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001
--==S S~r f P-----E--------- = --- -- -- -- -- -- -- --
ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent

-2.00 -2.125 4.212 4.212 5.5011 5.5011
-1.75 -1.875 1.710 5.922 2.2334 7.7345
-1.50 -1.625 2.283 8.205 2.9817 10.7162
-1.25 -1.375 2.612 10.817 3.4114 14.1277
-1.00 -1.125 3.267 14.084 4.2669 18.3946
-0.75 -0.875 3.699 17.783 4.8311 23.2257
-0.50 -0.625 4.524 22.307 5.9086 29.1343
-0.25 -0.375 5.279 27.586 6.8947 36.0290
0.00 -0.125 5.776 33.362 7.5438 43.5729
0.25 0.125 7.064 40.426 9.2260 52.7989
0.50 0.375 6.253 46.679 8.1668 60.9657
0.75 0.625 5.700 52.379 7.4446 68.4103
1.00 0.875 5.502 57.881 7.1860 75.5962
1.25 1.125 5.567 63.448 7.2709 82.8671
1.50 1.375 3.206 66.654 4.1872 87.0543
1.75 1.625 4.279 70.933 5.5886 92.6429
2.00 1.875 2.228 73.161 2.9099 95.5529
2.25 2.125 0.967 74.128 1.2630 96.8158
2.50 2.375 0.303 74.431 0.3957 97.2116
2.75 2.625 0.109 74.540 0.1424 97.3539
3.00 2.875 0.062 74.602 0.0810 97.4349
3.25 3.125 0.063 74.665 0.0823 97.5172
3.50 3.375 0.003 74.668 0.0039 97.5211
3.75 3.625 0.033 74.701 0.0431 97.5642
4.00 3.875 0.065 74.766 0.0849 97.6491
8.00 6.000 0.100 74.866 0.1306 97.7797
PAN 1.700 76.566 2.2203 100.0000

THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample Is set at 9,00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phi intervals, and moment measures recalculated.

MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi

Mean: 0.079 0.277 0.288 0.299 0.322
Std Dev: 1.150 1.745 1.799 1.857 1.976
Rel Dis: 14.537 6.294 STATISTICAL MEASURES
Skewness: 0.004 2.666 CALCULATED USING
Kurtosis: 3.198 14.676 METHOD OF MOMENTS
5th MM: 4.445 70.454 Std Dev = standard deviation
6th MM: 32.855 353.608 Rel Dis relative dispersion
7th MM: 131.501 1760.851 std dev/mean
8th MM: 703.652 8797.286 MM moment measure


Mean:
Std Dev:
Rel Dis:
Skewness:
Kurtosis:
5th MM:
6th MM:
7th MM:
8th MM:
Median:









SlBIGSGA ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001

ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent

-2.00 -2.125 11.373 11.373 16.0624 16.0624
-1.75 -1.875 4.041 15.414 5.7072 21.7696
-1.50 -1.625 5.376 20.790 7.5927 29.3623
-1.25 -1.375 5.588 26.378 7.8921 37.2544
-1.00 -1.125 5.622 32.000 7.9401 45.1945
-0.75 -0.875 5.567 37.567 7.8624 53.0570
-0.50 -0.625 5.495 43,062 7.7608 60.8177
-0.25 -0.375 4.471 47.533 6.3145 67.1323
0.00 -0.125 3.644 51.177 5.1465 72.2788
0.25 0.125 3.495 54.672 4.9361 77.2149
0.50 0.375 2.662 57.334 3.7596 80.9745
0.75 0.625 2.429 59.763 3.4305 84.4051
1.00 0.875 2.288 62.051 3.2314 87.6365
1.25 1.125 1.824 63.875 2.5761 90.2126
1.50 1.375 0.818 64.693 1.1553 91.3678
1.75 1.625 1.029 65.722 1.4533 92.8211
2.00 1.875 0.660 66.382 0.9321 93.7533
2.25 2.125 0.473 66.855 0.6680 94.4213
2.50 2.375 0.365 67.220 0.5155 94.9368
2.75 2.625 0.176 67.396 0.2486 95.1854
3.00 2.875 0.110 67.506 0.1554 95.3407
S3.25 3.125 0.069 67.575 0.0975 95.4382
3.50 3.375 0.094 67.669 0.1328 95.5709
3.75 3.625 0.154 67.823 0.2175 95.7884
4.00 3.875 0.082 67.905 0.1158 95.9042
8.00 6.000 0.500 68.405 0.7062 96.6104
PAN 2.400 70.805 3.3896 100.0000

THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample Is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phi intervals, and moment measures recalculated.

MOMENT MEASURES


Stat.
Measure

Mean:
Std Dev:
Rel Dis:
Skewness:
Kurtosis:
5th MM:
6th MM:
7th MM:
8th MM:
Median:


Pan Pan at Pan at Pan at Pan at
Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi

-0.685 -0.356 -0,339 -0.322 -0.288
1.299 2.178 2,248 2.324 2.478
-1.898 -6.115 STATISTICAL MEASURES
1.527 2.878 CALCULATED USING
7.325 12.452 METHOD OF MOMENTS
30.800 51.871 Std Dev = standard deviation
149.709 220.540 Rel Dis = relative dispersion
740.842 940.027 std dev/mean
3740.365 4018.496 MM = moment measure
-1.026 -0.972


SIB1GS7A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001
I= E ---=== -=- -=3E--------- -=------------
ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent
---- --- = -- --- -== = ==P-------- --- - - -----
-2.00 -2.125 6.893 6.893 9.9387 9.9387
-1.75 -1.875 1.749 8.642 2.5218 12.4605
-1.50 -1.625 1.813 10.4SS 2.6141 15.0746
-1.25 -1.375 1.773 12.228 2.5564 17.6310
-1.00 -1.125 1.860 14.088 2.6819 20.3129
-0.75 -0.875 2.049 16.137 2.9544 23.2672
-0.50 -0.625 2.466 18.603 3.5556 26.8229
-0.25 -0.375 2.719 21.322 3.9204 30.7433
0.00 -0.125 2.821 24.143 4.0675 34.8108
0.25 0.125 3.537 27.680 5.0998 39.9106
0.50 0.375 3.592 31.272 5.1792 45.0898
0.75 0.625 4.381 35.653 6.3168 51.4065
1.00 0.875 5.730 41.383 8.2618 59.6684
1.25 1.125 7.286 48.669 10.5054 70.1737
1.50 1.375 5.198 53.867 7.4948 77.6685
1.75 1.625 5.142 59.009 7.4140 85.0825
2.00 1.875 4.373 63.382 6.3052 91.3878
2.25 2.125 2.511 65.893 3.6205 95.0083
2.50 2.375 1.201 67.094 1.7317 96.7400
2.75 2.625 0.301 67.395 0.4340 97.1740
3.00 2.875 0.091 67.486 0.1312 97.3052
3.25 3.125 0.047 67.533 0.0678 97.3729
3.50 3.375 0.054 67.587 0.0779 97.4508
3.75 3.625 0.108 67.695 0.1557 97.6065
4.00 3.875 0.060 67.755 0.0865 97.6930
8.00 6.000 0.150 67.905 0.2163 97.9093
PAN 1.450 69.355 2.0907 100.0000
------a-------=n+-t==~-nE===
THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phi intervals, and moment measures recalculated.

MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi


Mean:
Std Dev:
Rel Dis:
Skewness:
Kurtosis:
5th MM:
6th MM:
7th MM:
8th MM:
Median:


0.330
1.382
4.184
-0.292
2.632
1.063
16.160
39.644
197.682
0.528


0.511
1.852
3.621
1 .763
10.240
42.754
199.439
904.916
4148.815
0.569


0.522 0.532 0.553
1.897 1.948 2.053
STATISTICAL MEASURES
CALCULATED USING
METHOD OF MOMENTS
Std Dev = standard deviation
Rel Dis = relative dispersion
std dev/mean
MM = moment measure









S1B1GS8A ENTIRE SAMPLE ANA
=-- = am- ---m ma--------- -----
ANALYTICAL GRANUL
Sieve Mid- Frequency Cu
Size Point Weight
(Phi) (Phi) (g)

-2.00 -2.125 4.939
-1.75 -1.875 2.591
-1.50 -1.625 2.860
-1.25 -1.375 3.340
-1.00 -1.125 3.781
-0.75 -0.875 4.568
-0.50 -0.625 5.327
-0.25 -0.375 5.748
0.00 -0.125 5.020
0.25 0.125 5.422
0.50 0.375 4.668
0.75 0.625 4.243
1.00 0.875 4.175
1.25 1.125 4.015
1.50 1.375 2.198
1.75 1.625 2.351
2.00 1.875 0.886
2.25 2.125 0.365
2.50 2.375 0.155
2.75 2.625 0.074
3.00 2.875 0.054
4 3.25 3.125 0.035
00 3.50 3.375 0.047
3.75 3.625 0.090
4.00 3.875 0.063
8.00 6.000 0.250
PAN 2.300


ILYSIS MO-DA-YR: 2-7-2001

OMETRIC RESULTS
mulatlve Frequency Cumulative
Weight Weight Weight
(g) Percent Percent


4.939
7.530
10.390
13.730
17.511
22.079
27.406
33.154
38.174
43.596
48.264
52.507
56.682
60.697
62.895
65.246
66.132
66.497
66.652
66.726
66.780
66.815
66.862
66.952
67.015
67.265
69.565


7.0998
3.7246
4.1113
4 8013
5.4352
6.5665
7.6576
8.2628
7.2163
7.7941
6.7103
6.0993
6.0016
5 .7716
3.1596
3.3796
1.2736
0.5247
0.2228
0.1064
0.0776
0.0503
0.0676
0.1294
0.0906
0.3594
3.3063


7,0998
10.8244
14.9357
19.7369
25.1721
31.7387
39.3962
47.6590
54.8753
62.6694
69.3797
75.4790
81.4806
87.2522
90.4118
93.7914
95.0650
95.5897
95.8125
95.9189
95.9965
96.0469
96.1144
96.2438
96.3344
96.6937
100.0000


THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly Increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phl intervals, and moment measures recalculated.

MOMENT MEASURES


Stat. Pan Pan at
Measure Excluded 9.00 Phi


-0.199
1.188
-5.976
0.588
4.786
15.809
84.035
411.076
2126.779
-0.351


Mean:
Std Dev:
Rel Dis:
Skewness:
Kurtosis:
5th MM:
6th MM:
7th MM:
8th MM:
Median:


0.105
2.027
19.239
2.796
12.961
55.246
242.049
1057.529
4631.704
-0.294


Pan at Pan at Pan at
9.50 Phi 10.00 Phi 11.00 Phi

0.122 0.138 0.171
2.097 2.172 2.325
STATISTICAL MEASURES
CALCULATED USING
METHOD OF MOMENTS
Std Dev standard deviation
Rel Dis = relative dispersion
= std dev/mean
MM = moment measure


S1B1GS9A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001
-== ==-----------=----------m -- -===
ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent
-== 3===---- = ---- =-== --E ---- -- -- -- = -
-2.00 -2.125 5.550 5.550 8.6940 8.6940
-1.75 -1.875 1.384 6.934 2.1680 10.8620
-1.50 -1.625 1.814 8.748 2.8416 13.7037
-1.25 -1.375 1.952 10.700 3.0578 16.7614
-1.00 -1.125 2.058 12.758 3.2238 19.9853
-0.75 -0.875 2.174 14.932 3.4055 23.3908
-0.50 -0.625 2.618 17.550 4.1011 27.4919
-0.25 -0.375 2.746 20.296 4.3016 31.7935
0.00 -0.125 2.775 23.071 4.3470 36.1405
0.25 0.125 3.608 26.679 5.6519 41.7924
0.50 0.375 3.711 30.390 5.8132 47.6056
0.75 0.625 4.194 34.584 6.5699 54.1755
1.00 0.875 4.923 39.507 7.7118 61.8873
1.25 1.125 5.648 45.155 8.8475 70.7348
1.50 1.375 3.481 48.636 5.4530 76.1878
1.75 1.625 4.539 53.175 7.1103 83.2981
2.00 1.875 3.565 56.740 5.5845 88.8826
2.25 2.125 2.838 59.578 4.4457 93.3283
2.50 2.375 1.422 61.000 2.2275 95.5559
2.75 2.625 0.367 61.367 0.5749 96.1308
3.00 2.875 0.119 61.486 0.1864 96.3172
3.25 3.125 0.060 61.546 0.0940 96.4112
3.50 3.375 0.078 61.624 0.1222 96.5334
3.75 3.625 0.111 61.735 0.1739 96.7072
4.00 3.875 0.052 61.787 0.0815 96.7887
8,00 6.000 0.350 62.137 0.5483 97.3370
PAN 1.700 63.837 2.6630 100.0000

THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phi intervals, and moment measures recalculated.

MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi

Mean: 0.331 0.562 0.576 0.589 0.615
Std Dev: 1.414 1.981 2.033 2.093 2.217
Rel Dis: 4.267 3.523 STATISTICAL MEASURES
Skewness: 0.029 1.926 CALCULATED USING
Kurtosis: 3.263 9.768 METHOD OF MOMENTS
Sth MM: 4.848 38.333 Std Dev = standard deviation
6th MM: 28.397 164.849 Rel Dis = relative dispersion
7th MM: 92.651 694.272 std dev/mean
8th MM: 396.429 2952.392 MM moment measure


Median:


0.415


0.466


="""'" """'=' ===== ==-------------==









S1B2GS1A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001

ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent


-2.00
-1.75
-1.50
-1.25
-1.00
-0.75
-0.50
-0.25
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1 .75
2 .00
2.25
2.50
2.75
3.00
h 3.25
S 3.50
3.75
4.00
8 .00
PAN


-2.125
-1.875
-1.625
-1.375
-1.125
-0.875
-0.625
-0.375
-0.125
0 .125
0.375
0.625
0.875
1.125
1.375
1.625
1.875
2.125
2.375
2.625
2.875
3.125
3.375
3.625
3.875
6.000


0.297
0.092
0.083
0.142
0.322
0.328
0.673
1.041
1.467
2.711
3.705
5.285
8.201
12.902
11.383
12.084
4.783
1.893
0.821
0.292
0.124
0.053
0.037
0.037
0.019
0.100
1.400


0.297
0.389
0.472
0.614
0.936
1.264
1 .937
2.978
4.445
7.156
10.861
16.146
24.347
37.249
48.632
60.716
65.499
67.392
68.213
68.505
68.629
68.682
68.719
68.756
68.775
68.875
70.275


0.4226
0.1309
0.1181
0.2021
0.4582
0.4667
0.9577
1 4813
2.0875
3.8577
5.2721
7.5205
11.6699
18.3593
16.1978
17.1953
6 .8061
2.6937
1.1683
0.4155
0.1764
0.0754
0.0527
0.0527
0.0270
0.1423
1.9922


0.4226
0.5535
0.6716
0.8737
1.3319
1.7986
2.7563
4.2376
6.3252
10.1829
15.4550
22.9755
34.6453
53.0046
69.2024
86.3977
93.2038
95.8975
97.0658
97.4813
97.6578
97.7332
97.7858
97.8385
97.8655
98.0078
100.0000


THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly Increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phi intervals, and moment measures recalculated.

MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi

Mean: 1.109 1.266 1.276 1.286 1.306
Std Dev: 0.723 1.321 1.378 1.439 1.562
Rel Dis: 0.652 1.043 STATISTICAL MEASURES
Skewness: -0.546 3.858 CALCULATED USING
Kurtosis: 8.207 24.504 METHOD OF MOMENTS
5th MM: 7.054 138.693 Std Dev = standard deviation
6th MM: 203.595 817.663 Rel Dis = relative dispersion
7th MM: 728.055 4760.836 = std dev/mean
ath MM: 7448.519 27879.776 MM = moment measure


Median:


1.071 1.084


S1B2GS2A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001
-=-------------=--------------------
ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent
-~---------====== ---------- - -- -- -- -- -- -- -- -- -- --
-2.00 -2.125 14.926 14.926 20.1907 20.1907
-1.75 -1.875 0.882 15.808 1.1931 21.3838
-1.50 -1.625 1.291 17.099 1.7464 23.1302
-1.25 -1.375 1.601 18.700 2.1657 25.2959
-1.00 -1.125 1.470 20.170 1.9885 27.2844
-0.75 -0.875 1.417 21.587 1.9168 29.2012
-0.50 -0.625 1.956 23.543 2.6459 31.8471
-0.25 -0.375 2.276 25.819 3.0788 34.9259
0.00 -0.125 2.719 28.538 3.6781 38.6040
0.25 0.125 3.731 32.269 5.0470 43.6510
0.50 0.375 3.894 36.163 5.2675 48.9185
0.75 0.525 4.522 40.685 6.1170 55.0355
1.00 0.875 5.782 46.467 7.8214 62.8569
1.25 1.125 6.753 53.220 9.1349 71.9919
1.50 1.375 4.496 57.716 6.0818 78.0737
1.75 1.625 6.007 63.723 8.1258 86.1995
2.00 1.875 4.305 68.028 5.8235 92.0230
2.25 2.125 2.714 70.742 3.6713 95.6943
2.50 2.375 1.275 72.017 1.7247 97.4190
2.75 2.625 0.312 72.329 0.4220 97.8411
3.00 2.875 0.079 72.408 0.1069 97.9479
3.25 3.125 0.022 72.430 0.0298 97.9777
3.50 3.375 0.017 72.447 0.0230 98.0007
3.75 3.625 0.019 72.466 0.0257 98.0264
4.00 3.875 0.009 72.475 0.0122 98.0386
8.00 6.000 0.100 72.575 0.1353 98.1738
PAN 1.350 73.925 1.8262 100.0000

THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point Is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phi intervals, and moment measures recalculated.

MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi
3== = E3----------------=3=E=
Mean: 0.126 0.288 0.297 0.306 0.324
Std Dev: 1.501 1.909 1.948 1.993 2.085
Rel Dis: 11.954 6.636 STATISTICAL MEASURES
Skewness: -0.279 1.471 CALCULATED USING
Kurtosis: 2.017 8.862 METHOD OF MOMENTS
5th MM: 0.254 36.403 Std Dev standard deviation
6th MM: 8.451 169.343 Rel Dis relative dispersion
7th MM: 17.252 765.704 std dev/mean
8th MM: 84.391 3496.088 MM moment measure
Median: 0.382 0.419










S1B2GS3A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001

ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent
----------------------------- ---- ---------- :: m


-2.00
-1.75
-1.50
-1.25
-1.00
-0.75
-0.50
-0.25
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00
Ua 3.25
0 3.50
3.75
4 .00
8 00
PAN


-2.125
-1.875
-1.625
-1,375
-1.125
-0.875
-0.625
-0.375
-0.125
0.125
0.375
0.625
0.875
1.125
1.375
1,625
1.875
2.125
2.375
2.625
2.875
3.125
3.375
3.625
3.875
6.000


THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction Is treated. The pan mid-point for this
sample is set at 9.00 phi, Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phi Intervals, and moment measures recalculated.

MOMENT MEASURES


Stat. Pan Pan at
Measure Excluded 9.00 Phi


0.531
1.719
3 .238
2 .109
12.525
57.520
287.692
1408.428
6946.061


0.399 0.433


Pan at Pan at Pan at
9.50 Phi 10.00 Phi 11.00 Phi

0.541 0.550 0.570
1.766 1.817 1.923
STATISTICAL MEASURES
CALCULATED USING
METHOD OF MOMENTS
Std Dev = standard deviation
Rel Dis relative dispersion
std dev/mean
MM = moment measure


S1B2GS4A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001
----- -------------------== === e=
ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent
------E=------------ ------P~IP--------


4 .647
1.519
1.589
1.537
2.260
2.891
3.761
3.917
4.064
5.470
5.120
5.516
6.152
6.614
4.363
6.361
4.547
2.677
1.078
0.270
0.082
0.035
0.034
0.043
0.030
0.050
1.500


4.647
6 .166
7.755
9 .292
11.552
14.443
18 204
22.121
26.185
31.655
36.775
42.291
48.443
55.057
59.420
65.781
70.328
73.005
74.083
74.353
74.435
74.470
74.504
74.547
74.577
74.627
76.127


6.1043 6.1043
1.9953 8.0996
2.0873 10.1869
2.0190 12.2059
2.9687 15.1746
3.7976 18.9722
4.9404 23.9127
5.1453 29.0580
5.3384 34.3965
7.1854 41.5818
6.7256 48.3074
7.2458 55.5532
8.0812 63.6345
8.6881 72.3226
5.7312 78.0538
8.3558 86.4096
5.9729 92.3825
3.5165 95.8990
1.4161 97.3150
0.3547 97.6697
0.1077 97.7774
0.0460 97.8234
0.0447 97.8680
0.0565 97.9245
0.0394 97.9639
0.0657 98.0296
1.9704 100.0000


-2.00
-1.75
-1.50
-1.25
-1.00
-0.75
-0.50
-0.25
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00
3.25
3.50
3.75
4.00
8.00
PAN


-2.125
-1.875
-1.625
-1.375
-1.125
-0.875
-0.625
-0.375
-0.125
0.125
0.375
0.625
0.875
1.125
1.375
1.625
1.875
2.125
2.375
2.625
2.875
3.125
3.375
3.625
3.875
6.000


THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction Is treated. The pan mid-point for this
sample is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point Is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phi intervals, and moment measures recalculated.

MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi

Mean: 0.372 0.532 0.541 0.551 0.569
Std Dev: 1.468 1.868 1.910 1.955 2.048
Rel Dis: 3.951 3.510 STATISTICAL MEASURES
Skewness: -0.642 1.289 CALCULATED USING
Kurtosis: 2.140 8.878 METHOD OF MOMENTS
5th MM: -1.902 35.091 Std Dev = standard deviation
6th MM: 6.884 165.307 Rel Dis = relative dispersion
7th MM: -0.391 739.454 std dev/mean
8th MM: 39.764 3364.105 MM moment measure
Median: 0.772 0.803


16.194
1.513
1 .061
0.952
1.259
1.448
1.918
2.429
2.522
3.654
3.966
5.103
7.084
9.932
8.483
12.640
7.171
3.277
1.161
0.332
0.114
0.036
0.024
0.022
0.016
0.050
1.750


16.194
17.707
18.768
19.720
20.979
22.427
24.345
26.774
29.296
32.950
36.916
42.019
49.103
59.035
67.518
80.158
87.329
90.606
91.767
92.099
92.213
92.249
92.273
92.295
92.311
92.361
94.111


17.2073 17.2073
1.6077 18.8150
1.1274 19.9424
1.0116 20.9540
1.3378 22.2918
1.5386 23.8304
2.0380 25.8684
2.5810 28.4494
2.6798 31.1292
3.8826 35.0118
4.2142 39.2260
5.4223 44.6483
7.5273 52.1756
10.5535 62.7291
9.0138 71.7429
13.4309 85.1739
7.6197 92.7936
3.4821 96.2757
1.2336 97.5093
0.3528 97.8621
0.1211 97.9832
0.0383 98.0215
0.0255 98.0470
0.0234 98.0704
0.0170 98,0874
0.0531 98.1405
1.8595 100.0000


Mean:
Std Dev:
Rel Dis:
Skewness:
Kurtosis:
5th MM:
6th MM:
7th MM:
8th MM:
Median:


0.361
1.234
3.424
-0.353
2.591
-0,604
13.502
20.629
156.343


""'=== ===== ====== =-------------='









SIB2GSSA ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001

ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent
m mm=a -----=-=-------------
-2.00 -2.125 0.952 0.952 1.0554 1.0554
-1.75 -1.875 0.262 1.214 0.2905 1.3458
-1.50 -1.625 0.303 1.517 0.3359 1.6817
-1.25 -1.375 0.585 2.102 0.6485 2.3303
-1.00 -1.125 0.676 2.778 0.7494 3.0797
-0.75 -0.875 0.973 3.751 1.0787 4.1584
-0.50 -0.625 1.561 5.312 1.7305 5.8889
-0.25 -0.375 2.238 7.550 2.4810 8.3699
0.00 -0.125 2.907 10.457 3.2227 11.5926
0.25 0.125 4.934 15.391 5.4698 17.0624
0.50 0.375 5.506 20.897 6.1039 23.1664
0.75 0.625 6.991 27.888 7.7502 30.9166
1.00 0.875 9.435 37.323 10.4596 41.3762
1.25 1.125 13.569 50.892 15.0426 56.4188
1.50 1.375 11.559 62.451 12.8143 69.2331
1.75 1.625 14.590 77.041 16.1744 85.4075
2.00 1.875 6.865 83.906 7.6105 93.0180
2.25 2.125 2.753 86.659 3.0520 96.0700
2.50 2.375 1.050 87.709 1.1640 97.2340
2.75 2.625 0.378 88.087 0.4191 97.6531
3.00 2.875 0.155 88.242 0.1718 97.8249
c 3.25 3.125 0.073 88.315 0.0809 97.9059
3.50 3.375 0.072 88.387 0.0798 97.9857
3.75 3.625 0.084 88.471 0.0931 98,0788
4.00 3.875 0.033 88.504 0.0366 98.1154
8.00 6.000 0.100 88.604 0.1109 98.2262
PAN 1.600 90.204 1.7738 100.0000
mmmmmm- ---=-= -------------mm m m m m m-- --a--- m m m- =---
THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phl intervals, and moment measures recalculated.

MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9,50 Phi 10.00 Phi 11.00 Phi


Mean:
Std Dev:
Rel Dis:
Skewness:
Kurtosis:
5th MM:
6th MM:
7th MM:
8th MM:
Median:


0.979
0.870
0.889
-0.771
5.640
-2.635
80.110
135.959
1812.710
1.004


1.121
1.370
1.222
3.095
20.637
112.151
654.903
3737.073
21528.838
1.018


1.130 1.139 1.157
1.421 1.475 1.584
STATISTICAL MEASURES
CALCULATED USING
METHOD OF MOMENTS
Std Dev = standard deviation
Rel Dls = relative dispersion
= std dev/mean
MM moment measure


S1B2GS6A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001
----------------- -=- P I ---------S== IIP--- ---m ----
ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent
-------===------ -m------=-===----------- ---------
-2.00 -2.125 6.158 6.158 7.1358 7.1358
-1.75 -1.875 1.205 7.363 1.3963 8.5322
-1.50 -1.625 1.814 9.177 2.1020 10.6342
-1.25 -1.375 2.151 11.328 2.4926 13.1268
-1.00 -1.125 2.692 14.020 3.1195 16.2462
-0.75 -0.875 2.866 16.886 3.3211 19.5673
-0.50 -0.625 3.317 20.203 3.8437 23.4110
-0.25 -0.375 4.055 24.258 4.6989 28.1099
0.00 -0.125 3.908 28.166 4.5285 32.6384
0.25 0.125 4.996 33.162 5.7893 38.4278
0.50 0.375 5.098 38.260 5.9075 44.3353
0.75 0.625 6.076 44.336 7.0408 51.3761
1.00 0.875 7.606 51.942 8.8137 60.1898
1.25 1.125 9.480 61.422 10.9853 71.1751
1.50 1.375 6.390 67.812 7.4047 78.5798
1.75 1.625 8.128 75.940 9.4186 87.9984
2.00 1.875 4.731 80.671 5.4822 93.4807
2.25 2.125 2.303 82.974 2.6687 96.1493
2.50 2.375 0.935 83.909 1.0835 97.2328
2.75 2.625 0.241 84.150 0.2793 97.5121
3.00 2.875 0.066 84.216 0.0765 97.5886
3.25 3.125 0.023 84.239 0.0267 97.6152
3.50 3.375 0.021 84.260 0.0243 97.6395
3.75 3.625 0.022 84.282 0.0255 97.6650
4.00 3.875 0.015 84.297 0.0174 97.6824
8.00 6.000 0.050 84.347 0.0579 97.7404
PAN 1.950 86.297 2.2596 100.0000
-- -----m a mm u- --->- --- --- ==mm -------- -- a mmmn=-= m-m
THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction Is treated. The pan mid-point for this
sample Is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase in value for Increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phi Intervals, and moment measures recalculated.
-===------- ==----- --------= =------
MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi

Mean: 0.381 0.576 0.587 0.599 0.621
Std Dev: 1.239 1.778 1.831 1.887 2.003
Rel Dis: 3.249 3.086 STATISTICAL MEASURES
Skewness: -0.508 2.107 CALCULATED USING
Kurtosls: 2.569 12.227 METHOD OF MOMENTS
5th MM: -1.437 54.039 Std Dev standard deviation
6th MM: 12.676 260.512 Rel Dis = relative dispersion
7th MM: 13.242 1226.342 = std dev/mean
8th MM: 134.847 5818.775 MM = moment measure


Median:


0.536 0.576









S1B2GS7A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001

ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent

-2.00 -2-125 3.435 3.435 3.9314 3.9314
-1.75 -1.875 0.445 3.880 0.5093 4.4407
-1.50 -1.625 1.189 5.069 1.3608 5.8016
-1.25 -1.375 1.278 6.347 1.4627 7.2643
-1.00 -1.125 1.184 7.531 1.3551 8.6194
-0.75 -0.875 1.895 9.426 2.1689 10.7882
-0.50 -0.625 2.321 11.747 2.6564 13.4447
-0.25 -0.375 2.723 14.470 3.1165 16.5612
0.00 -0.125 3.075 17.545 3.5194 20.0806
0.25 0.125 4.277 21.822 4.8951 24.9757
0.50 0.375 4.455 26.277 5.0988 30.0745
0.75 0.625 5.628 31.905 6.4413 36.5159
1.00 0.875 7.533 39.438 8.6217 45.1375
1.25 1.125 10.106 49.544 11.5665 56.7040
1.50 1.375 8.750 58.294 10.0145 66.7186
1.75 1.625 13.238 71.532 15.1511 81.8697
2.00 1.875 8.544 80.076 9.7788 91.6484
2.25 2.125 3.921 83.997 4.4877 96.1361
2.50 2.375 1.135 85.132 1.2990 97.4351
2.75 2.625 0.248 85.380 0.2838 97.7190
3.00 2.875 0.074 85.454 0.0847 97.8037
Un 3.25 3.125 0.024 85.478 0.0275 97.8311
K) 3.50 3.375 0.017 85.495 0.0195 97.8506
3.75 3.625 0.017 85.512 0.0195 97.8701
4.00 3.875 0.011 85.523 0.0126 97.8826
8.00 6.000 0.100 85.623 0.1145 97.9971
PAN 1.750 87.373 2.0029 100.0000

THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for, this
sample is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phi intervals, and moment measures recalculated.

MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi

Mean: 0.798 0.962 0.972 0.982 1.002
Std Dev: 1.121 1.602 1.652 1.705 1.814
Rel Dis: 1.405 1.665 STATISTICAL MEASURES
Skewness: -0.885 2.115 CALCULATED USING
Kurtosls: 3.827 13.894 METHOD OF MOMENTS
5th MM: -3.937 63.308 Std Dev standard deviation
6th MM: 29.183 327.302 Rel Dis = relative dispersion
7th MM: 14.389 1621.360 = std dev/mean
8th MM: 360.754 8163.198 MM = moment measure


Median:


0 .958


0.980


S1C1GS10A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001
--- -- -- -- -- -- -- -- -- -- -- --------P-----------P glPI
ANALYTICAL GRANULOMETRIC RESULTS
sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent

-2.00 -2.125 1.067 1.067 1.3688 1.3688
-1.75 -1.875 0.180 1.247 0.2309 1.5998
-1.50 -1.625 0.625 1.872 0.8018 2.4016
-1.25 -1.375 0.899 2.771 1.1533 3.5549
-1.00 -1.125 1.012 3.783 1.2983 4.8532
-0.75 -0.875 1.607 5.390 2.0616 6.9148
-0.50 -0.625 2.661 8.051 3.4138 10.3285
-0.25 -0.375 3.516 11.567 4.5106 14.8392
0.00 -0.125 4.002 15.569 5.1341 19.9733
0.25 0.125 5.347 20.916 6.8596 26.8329
0.50 0.375 5.525 26.441 7.0880 33.9209
0.75 0.625 6.583 33.024 8.4453 42.3662
1.00 0.875 8.120 41.144 10.4171 52.7832
1.25 1.125 9.695 50.839 12.4376 65.2208
1.50 1.375 5.924 56.763 7.5998 72.8207
1.75 1.625 6.733 63.496 8.6377 81.4584
2.00 1.875 4.003 67.499 5.1354 86.5938
2.25 2.125 2.621 70.120 3.3625 89.9563
2.50 2.375 1.954 72.074 2.5068 92.4630
2.75 2.625 1.542 73.616 1.9782 94.4412
3.00 2.875 1.340 74.956 1.7191 96.1603
3.25 3.125 0.621 75.577 0.7967 96.9570
3.50 3.375 0.292 75.869 0.3746 97.3316
3.75 3.625 0.235 76.104 0.3015 97.6331
4.00 3.875 0.095 76.199 0.1219 97.7549
8.00 6.000 0.050 76.249 0.0641 97.8191
PAN 1.700 77.949 2.1809 100.0000

THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction Is treated. The pan mid-point for this
sample is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phl intervals, and moment measures recalculated.

MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi

Mean: 0.828 1.006 1.017 1.028 1.050
Std Dev: 1.068 1.600 1.653 1.710 1.828
Rel Dis: 1.290 1.590 STATISTICAL MEASURES
Skewness: -0.172 2.559 CALCULATED USING
Kurtosis: 3.481 14.506 METHOD OF MOMENTS
5th MM: -0.162 68.418 Std Dev standard deviation
6th MM: 23.830 346.140 Rel Dis = relative dispersion
7th MM: 26.790 1718.506 = std dev/mean
8th MM: 291.958 8598.400 MM = moment measure


Median:


0.782


0.808









SIC1GS11A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001

ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent
------------ ======= ------------=-
-2.00 -2.125 0.334 0.334 0.4796 0.4796
-1.75 -1.875 0.233 0.567 0.3346 0.8142
-1.50 -1,625 0.160 0.727 0.2297 1.0439
-1.25 -1.375 0.337 1.064 0.4839 1.5278
-1.00 -1.125 0.511 1.575 0.7338 2.2616
-0.75 -0.875 0.635 2.210 0.9118 3.1734
-0.50 -0.625 1.330 3.540 1.9098 5.0832
-0.25 -0.375 1.725 5.265 2.4770 7.5602
0.00 -0.125 2.171 7.436 3.1174 10.6776
0.25 0.125 3.484 10.920 5.0028 15.6804
0.50 0.375 4.193 15.113 6.0209 21.7013
0.75 0.625 5.699 20.812 8.1834 29.8847
1.00 0.875 7.649 28.461 10.9835 40.8682
1.25 1.125 9.329 37.790 13.3958 54.2640
1.50 1.375 6.487 44.277 9.3149 63.5789
1.75 1,625 8.748 53.025 12.5616 76.1405
2.00 1.875 6.408 59.433 9.2015 85.3420
2.25 2.125 4.497 63.930 6.4574 91.7994
2.50 2.375 2.566 66.496 3.6846 95.4840
2.75 2.625 1.099 67.595 1.5781 97.0621
3.00 2.875 0.411 68.006 0.5902 97.6522
Ui 3.25 3.125 0.113 68.119 0.1623 97.8145
S 3.50 3.375 0.037 68.156 0.0531 97.8676
3.75 3,625 0.021 68.177 0.0302 97.8978
4.00 3.875 0.014 68.191 0.0201 97.9179
8.00 6.000 0.100 68.291 0.1436 98.0615
PAN 1.350 69.641 1.9385 100.0000

THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction Is treated. The pan mid-point for this
sample is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point Is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phi intervals, and moment measures recalculated.


Stat. Pan
Measure Excluded


Mean:
Std Dev:
Rel Dis:
Skewness:
Kurtosis:
5th MM:
6th MM:
7th MM:


1.085
0.902
0.831
-0.427
4 .787
0.646
63.468
146 .198


8th MM: 1389.826 16040.783


Median:


MOMENT MEASURES
Pan at Pan at Pan at Pan at
9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi

1.238 1.248 1.258 1.277
1.416 1.468 1.523 1.638
1.144 STATISTICAL MEASURES
2.999 CALCULATED USING
18.590 METHOD OF MOMENTS
96.875 Std Dev = standard deviation
537.197 Rel Dis relative dispersion
2923.776 std dev/mean


1.027 1.045


MM moment measure


S1C1GS12A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001
-------------- ---------ltP------- -- -- . .. ......
ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phl) (Phi) (g) (g) Percent Percent
- --- --- - -------=: == -----------------------------
-2.00 -2.125 0.546 0.546 0.6602 0.6602
-1.75 -1,875 0.122 0.668 0.1475 0.8077
-1.50 -1.625 0.098 0.766 0.1185 0.9262
-1.25 -1.375 0.286 1.052 0.3458 1.2720
-1.00 -1.125 0.415 1.467 0.5018 1.7737
-0.75 -0.875 0.552 2.019 0.6674 2.4411
-0.50 -0.625 0.888 2.907 1.0737 3.5148
-0.25 -0.375 1.306 4.213 1.5791 5.0939
0.00 -0.125 1.790 6.003 2.1643 7.2582
0.25 0.125 3.230 9.233 3.9054 11.1635
0.50 0.375 4.230 13.463 5.1144 16.2779
0.75 0.625 6.212 19.675 7.5109 23.7888
1.00 0.875 9.487 29.162 11.4706 35.2594
1.25 1.125 12.730 41.892 15.3917 50.6511
1.50 1.375 9.634 51.526 11.6483 62.2994
1.75 1.625 11.975 63.501 14.4788 76.7783
2.00 1.875 7.356 70.857 8.8940 85.6723
2.25 2.125 4.744 75.601 5.7359 91.4082
2.50 2.375 2.858 78.459 3.4556 94.8638
2.75 2.625 1.371 79.830 1.6577 96.5215
3.00 2.875 0.637 80.467 0.7702 97.2916
3.25 3.125 0.238 80.705 0.2878 97.5794
3.50 3.375 0.123 80.828 0.1487 97.7281
3.75 3.625 0.058 80.886 0.0701 97.7983
4.00 3.875 0.021 80.907 0.0254 97.8236
8.00 6.000 0.100 81.007 0.1209 97.9446
PAN 1.700 82.707 2.0554 100.0000
==-.+-= -=E---1----n--- -------- ----
THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phi intervals, and moment measures recalculated.
s== =P ---3---------- --IP--- -----------
MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi


Mean:
Std Dev:
Rel Dis:
Skewness:
Kurtosis:
5th MM:
6th MM:
7th MM:
8th MM:
Median:


1.175
0.838
0.713
-0.539
5.840
-2.073
88.343
128.186
2051.237
1.098


1.336
1.391
1.041
3.239
20.005
105.000
586.288
3206.088
17695.823
1.114


1.346 1.356 1.377
1.448 1.507 1.628
STATISTICAL MEASURES
CALCULATED USING
METHOD OF MOMENTS
Std Dev standard deviation
Rel Dis = relative dispersion
= std dev/mean
MM moment measure









S1C1GS13A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001

ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent

-2.00 -2.125 0.158 0.158 0.2834 0.2834
-1.75 -1.875 0.101 0.259 0.1811 0.4645
-1.50 -1.625 0.090 0.349 0.1614 0.6259
-1.25 -1.375 0.143 0.492 0.2565 0.8624
-1.00 -1.125 0.187 0.679 0.3354 1.2178
-0.75 -0.875 0.155 0.834 0.2780 1.4957
-0.50 -0.625 0.226 1.060 0.4053 1.9011
-0.25 -0.375 0.242 1.302 0.4340 2.3351
0.00 -0.125 0.229 1.531 0.4107 2.7458
0.25 0.125 0.271 1.802 0.4860 3.2318
0.50 0.375 0.278 2.080 0.4986 3,7304
0.75 0.625 0.271 2.351 0.4860 4.2164
1.00 0.875 0.319 2.670 0.5721 4.7886
1.25 1.125 0.338 3.008 0.6062 5.3947
1.50 1.375 0.254 3.262 0.4555 5.8503
1.75 1.625 0.357 3.619 0.6403 6.4905
2.00 1.875 0.398 4.017 0.7138 7.2043
2.25 2.125 0.524 4.541 0.9398 8.1441
2.50 2.375 0.906 5.447 1.6249 9.7690
2.75 2.625 1.579 7.026 2.8319 12.6009
3.00 2.875 2.679 9.705 4.8047 17.4056
V1 3.25 3.125 3.546 13.251 6.3596 23.7652
3.50 3.375 6.601 19.852 11.8387 35.6039
3.75 3.625 12.826 32.678 23.0030 58.6068
4.00 3.875 9.880 42.558 17.7194 76.3263
8.00 6.000 9.100 51.658 16.3205 92.6468
PAN 4.100 55.758 7.3532 100.0000

THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample is set at 10.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g.. settling
tube) at 1/4-phi intervals, and moment measures recalculated.

MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 10.00 Phi 10.50 Phi 11.00 Phi 12.00 Phi


Mean:
Std Dev:
Rel Dis:
Skewness:
Kurtosis:
5th MM:
6th MM:
7th MM:
8th MM:
Median:


3.659
1.466
0.401
-0.632
5.186
-10.865
45.155
139.477
512.594


4.125
2.186
0.530
1 ,002
5.144
7.979
34.483
60.641
242.478


3.492 3.531


4.162 4.199 4.272
2.279 2.383 2.600
STATISTICAL MEASURES
CALCULATED USING
METHOD OF MOMENTS
Std Dev = standard deviation
Rel Dis relative dispersion
std dev/mean
MM moment measure


SIC1GS14A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001
=- ..... =.. ..=.. ..=. .= I- --i- - w -------------t
ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent

-2.00 -2.125 1.029 1.029 1.3836 1.3836
-1.75 -1.675 0.307 1.336 0.4128 1.7964
-1.50 -1.625 0.582 1.918 0.7826 2.5790
-1.25 -1.375 1.127 3.045 1.5154 4.0944
-1.00 -1.125 1.405 4.450 1.8892 5.9837
-0.75 -0.875 2.553 7.003 3.4329 9.4166
-0.50 -0.625 3.579 10.582 4.8125 14.2290
-0.25 -0.375 4.705 15.287 6.3266 20.5556
0.00 -0.125 4.701 19.988 6.3212 26.8768
0.25 0.125 5.842 25.830 7.8554 34.7322
0.50 0.375 5.862 31.692 7.8823 42.6145
0.75 0.625 7.066 38.758 9.5013 52.1158
1.00 0.875 7.711 46.469 10.3686 62.4844
1.25 1.125 8.491 54.960 11.4174 73.9018
1.50 1.375 4.975 59.935 6.6896 80.5914
1.75 1.625 5.881 65.816 7.9079 88.4992
2.00 1.875 3.396 69.212 4.5664 93.0657
2.25 2.125 1.737 70.949 2.3357 95.4013
2.50 2.375 0.818 71.767 1.0999 96.5012
2.75 2.625 0.328 72.095 0.4410 96.9423
3.00 2.875 0.178 72.273 0.2393 97.1816
3.25 3.125 0.077 72.350 0.1035 97.2852
3.50 3.375 0.049 72.399 0.0659 97.3510
3.75 3.625 0.052 72.451 0.0699 97.4210
4.00 3.875 0.068 72.519 0.0914 97.5124
8.00 6.000 0.200 72.719 0.2689 97.7813
PAN 1.650 74.369 2.2187 100.0000

THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g.. settling
tube) at 1/4-phl intervals, and moment measures recalculated.

MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi

Mean: 0.575 0.762 0.773 0.784 0.806
Std Dev: 1.021 1.606 1.662 1.721 1.843
Rel Dls: 1.776 2.108 STATISTICAL MEASURES
Skewness: 0.084 2.915 CALCULATED USING
Kurtosis: 4.772 16.338 METHOD OF MOMENTS
5th MM: 9.872 80.313 Std Dev standard deviation
6th MM: 74.497 413.273 Rel Dis = relative dispersion
7th MM: 322.340 2107.005 = std dev/mean
8th MM: 1838.220 10793.410 MM = moment measure


Median:


0.540 0.569









S1CIGS15A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001

ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (q) Percent Percent

-2.00 -2.125 0.110 0.110 0.1684 0.1684
-1.75 -1.875 0.045 0.155 0.0689 0.2373
-1.50 -1.625 0.006 0.161 0.0092 0.2465
-1.25 -1.375 0.072 0.233 0.1102 0.3568
-1.00 -1.125 0.133 0.366 0.2036 0.5604
-0.75 -0.875 0.155 0.521 0.2373 0.7977
-0.50 -0.625 0.233 0.754 0.3568 1.1545
-0.25 -0.375 0.392 1.146 0.6002 1.7547
0.00 -0.125 0.549 1.695 0.8406 2.5953
0.25 0.125 1.065 2.760 1.6307 4.2259
0.50 0.375 1.521 4.281 2.3289 6.5548
0.75 0.625 2.393 6.674 3.6640 10.2188
1.00 0.875 4.108 10.782 6.2899 16.5087
1.25 1.125 6.433 17.215 9.8498 26.3585
1.50 1.375 5.839 23.054 8.9403 35.2988
1.75 1.625 10.639 33.693 16.2898 51.5886
2.00 1.875 10.249 43.942 15.6926 67.2812
2.25 2.125 9.251 53.193 14.1645 81.4457
2.50 2.375 6.203 59.396 9.4976 90.9433
2.75 2.625 2.157 61.553 3.3027 94.2460
3.00 2.875 0.641 62.194 0.9815 95.2275
01 3.25 3.125 0.291 62.485 0.4456 95.6730
3.50 3.375 0.225 62.710 0.3445 96.0175
3.75 3.625 0.262 62.972 0.4012 96.4187
4.00 3.875 0.189 63.161 0.2894 96.7081
8.00 6.000 0.650 63.811 0.9952 97.7033
PAN 1.500 65.311 2.2967 100.0000

THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point Is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phl intervals, and moment measures recalculated.

MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi 10,00 Phi 11.00 Phi


Mean:
Std Dev:
Rel Dis:
Skewness:
Kurtosis:
5th MM:
6th MM:
7th MM:
8th MM:
Median:


1.655
0.856
0.517
0.727
9.875
28.095
206 .709
800.994
4988.303
1.583


1.824
1.394
0.764
3.207
17.678
85.753
442.513
2246.268
11548 .502
1.601


1.836 1.847 1.870
1.451 1.513 1.640
STATISTICAL MEASURES
CALCULATED USING
METHOD OF MOMENTS
Std Dev standard deviation
Rel Dis = relative dispersion
= std dev/mean
MM = moment measure


S1C1GS16A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001
-------------- -------tP IP ~I-------------------......
ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) ) ( (g) Percent Percent


-2.00
-1.75
-1.50
-1.25
-1.00
-0.75
-0.50
-0 .25
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2 .00
2.25
2.50
2.75
3.00
3.25
3.50
3.75
4 .00
8 .00
PAN


-2.125
-1.875
-1.625
-1.375
-1.125
-0.875
-0.625
-0.375
-0.125
0.125
0.375
0.625
0.875
1.125
1.375
1.625
1.875
2.125
2.375
2.625
2.875
3.125
3.375
3.625
3.875
6.000


11.802
1.131
1.292
2.151
2.614
3.525
4.564
4.360
4.121
4.972
4.598
5.009
5.835
7.310
4.408
5.066
2.313
0.958
0.437
0.169
0.106
0.051
0.036
0.036
0.027
0.250
1.950


11.802
12.933
14.225
16.376
18.990
22.515
27.079
31.439
35.560
40.532
45.130
50.139
55.974
63.284
67.692
72.758
75.071
76.029
76.466
76.635
76.741
76.792
76.828
76.864
76.891
77.141
79.091


14.9221
1.4300
1.6336
2.7197
3.3051
4.4569
5.7706
5.5126
5.2105
6 .2864
5.8136
6.3332
7.3776
9.2425
5.5733
6.4053
2.9245
1.2113
0.5525
0.2137
0.1340
0.0645
0.0455
0.0455
0.0341
0.3161
2.4655


14.9221
16.3521
17.9856
20.7053
24.0103
28.4672
34.2378
39.7504
44.9609
51.2473
57.0609
63.3941
70.7716
80.0142
85.5875
91.9928
94.9172
96.1285
96.6810
96.8947
97.0287
97.0932
97.1387
97.1843
97.2184
97.5345
100.0000


THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase In value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phl intervals, and moment measures recalculated.

MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi

Mean: 0.000 0.222 0.234 0.246 0.271
Std Dev: 1.352 1.937 1.992 2.051 2.171
Rel Dis: -9586.804 8.737 STATISTICAL MEASURES
Skewness: 0.031 2.168 CALCULATED USING
Kurtosis: 3.025 11.254 METHOD OF MOMENTS
5th MM: 5.003 48.075 Std Dev standard deviation
6th MM: 29.404 218.895 Rel Dls relative dispersion
7th MM: 110.984 984.915 = std dev/mean
8th MM: 508.612 4455.172 MM = moment measure


Median:


0.026


0.075








S1C1GS17A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001

ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent
-- -su m-= === =-= me- --- -- m =---- ------= = am m----


-2.00
-1.75
-1.50
-1.25
-1.00
-0.75
-0.50
-0.25
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1 .75
2 .00
2.25
2.50
2.75
3.00
mn 3.25
O' 3.50
3.75
4.00
8.00
PAN


-2.125
-1.875
-1.625
-1.375
-1.125
-0.875
-0 .625
-0.375
-0.125
0 .125
0.375
0.625
0.875
1.125
1.375
1.625
1.875
2 125
2.375
2.625
2.875
3.125
3.375
3.625
3. 75
6.000


0,217
0.076
0.218
0.351
0 592
0.621
1.038
1.423
1.761
2.877
3.460
4.865
6.897
8.847
6 .329
9.533
7.149
4 .798
2.829
1 .531
0.835
0.265
0.122
0.100
0.073
0.350
1.750


0.217
0.293
0.511
0.862
1.454
2.075
3.113
4.536
6 .297
9.174
12.634
17.499
24.396
33.243
39.572
49.105
56.254
61.052
63.881
65.412
66.247
66.512
66.634
66.734
66.807
67.157
68.907


0.3149
0.1103
0.3164
0.5094
0.8591
0.9012
1.5064
2.0651
2.5556
4.1752
5.0213
7.0602
10.0091
12.8390
9.1848
13.8346
10.3749
6.9630
4.1055
2.2218
1.2118
0.3846
0.1771
0.1451
0.1059
0.5079
2.5397


0.3149
0.4252
0.7416
1.2510
2.1101
3.0113
4.5177
6.5828
9.1384
13.3136
18.3349
25.3951
35.4042
48.2433
57.4281
71.2627
81.6376
88.6006
92.7061
94.9279
96.1397
96.5243
96.7014
96.8465
96.9524
97.4603
100.0000


---- -m----- -- -------------- m a m mu u u m m n -
THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample Is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phi Intervals, and moment measures recalculated.

MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi

Mean: 1.214 1.412 1.425 1.437 1.463
Std Dev: 0.957 1.554 1.614 1.679 1.812
Rel Dis: 0.788 1.100 STATISTICAL MEASURES
Skewness: 0.087 2.870 CALCULATED USING
Kurtosis: 6.238 15.557 METHOD OF MOMENTS
5th MM: 11.862 72.042 Std Dev = standard deviation
6th MM: 101.104 354.360 Rel Dis = relative dispersion
7th MM: 372.278 1714.756 std dev/mean
ath MM: 2225.446 8371.308 MM moment measure


Median:


1 138


1 .173


S1C1GS18A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001
--PI----------- =-= -f-------5----------- -- -- --------
ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent

-2.00 -2.125 5.380 5.380 9.9032 9.9032
-1.75 -1.875 0.405 5.785 0.7455 10.6487
-1.50 -1.625 0.785 6.570 1.4450 12.0937
-1.25 -1.375 1.130 7.700 2.0800 14.1737
-1.00 -1.125 1.370 9.070 2.5218 16.6955
-0.75 -0.875 1.840 10.910 3.3870 20.0825
-0.50 -0.625 2.426 13.336 4.4656 24.5481
-0.25 -0.375 2.657 15.993 4.8908 29.4389
0.00 -0.125 2.637 18.630 4.8540 34.2930
0.25 0.125 3.661 22.291 6.7389 41.0319
0.50 0.375 3.512 25.803 6.4647 47.4966
0.75 0.625 4.052 29.855 7.4587 54.9553
1.00 0.875 5.428 35.283 9.9915 64.9468
1.25 1.125 6.876 42.159 12.6569 77.6037
1.50 1.375 3.919 46.078 7.2139 84.8176
1.75 1.625 3.967 50.045 7.3022 92.1198
2.00 1.875 1.543 51.588 2.8403 94.9601
2.25 2.125 0.496 52.084 0.9130 95.8731
2.50 2.375 0.182 52.266 0.3350 96.2081
2.75 2.625 0.124 52.390 0.2283 96.4363
3.00 2.875 0.114 52.504 0.2098 96.6462
3.25 3.125 0.061 52.565 0.1123 96.7585
3.50 3.375 0.044 52.609 0.0810 96.8395
3.75 3.625 0.039 52.648 0.0718 96.9112
4.00 3.875 0.028 52.676 0.0515 96.9628
8.00 6.000 0.150 52.826 0.2761 97.2389
PAN 1.500 54.326 2.7611 100.0000
------------ --------------- --n ------ -------
THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase In value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phl intervals, and moment measures recalculated.
---------m mmm------ e- -- -------- = == a mm mm m m ~ -m -
MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi
==---~=== 3==+ = == E --=-------- -=--
Mean: 0.268 0.509 0.522 0.536 0.564
Std Dev: 1.254 1.901 1.956 2.021 2.154
Rel Dis: 4.685 3.737 STATISTICAL MEASURES
Skewness: -0.268 2.270 CALCULATED USING
Kurtosis: 3.485 11.922 METHOD OF MOMENTS
5th MM: 3.664 50.060 Std Dev = standard deviation
6th MM: 33.759 226.074 Rel Dis relative dispersion
7th MM: 114.294 1002.397 std dev/mean
8th MM: 581.455 4476.537 MM = moment measure


Median:


0.413


0.459









SIC1GS19A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001

ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent
num- -== ===- -mm mmum --- mmma amm ==== === === -- -----------==


-2.00
-1.75
-1.50
-1.25
-1.00
-0.75
-0.50
-0.25
0.00
0.25
0.50
0.75
1.00
1 ,25
1.50
1.75
2.00
2.25
2.50
2.75
3.00
"1 3.25
3.50
3.75
4.00
8.00
PAN


-2.125
-1.875
-1.625
-1 .375
-1.125
-0.875
-0.625
-0.375
-0.125
0 .125
0.375
0.625
0.875
1 .125
1.375
1.625
1.875
2.125
2.375
2.625
2.875
3.125
3.375
3.625
3.875
6 .000


0.756
0.060
0.196
0.121
0.310
0.464
0.837
1.422
1.823
3 .124
3.946
5.566
8 .028
10.345
6.884
7 .937
4.583
2.934
1.565
0.587
0.239
0.079
0.050
0.032
0.018
0.100
1 .350


0.756
0.816
1.012
1.133
1.443
1.907
2.744
4.166
5.989
9 113
13.059
18.625
26.653
36.998
43.882
51.819
56.402
59.336
60.901
61.488
61.727
61.806
61.856
61.888
61.906
62.006
63.356


1.1933
0.0947
0.3094
0.1910
0.4893
0.7324
1.3211
2.2445
2,8774
4.9309
6.2283
8.7853
12.6713
16.3284
10.8656
12.5276
7.2337
4.6310
2.4702
0.9265
0.3772
0.1247
0.0789
0.0505
0.0284
0.1578
2.1308


--=-----------------------===-====-========--m-m==-----=---=----
THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction Is treated. The pan mid-point for this
sample Is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly Increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phi intervals, and moment measures recalculated.

MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phl 9.50 Phi 10.00 Phi 11.00 Phi


1.034 1.204


0.861
0.833
-0.536
6.267
0.123
102.102
219.783
2497.245
0.980


1.439
1.195
3.207
19.538
100.689
552.959
2972.780
16134.493
0.996


1.214


1.225


1.246


1.494 1.554 1.677
STATISTICAL MEASURES
CALCULATED USING
METHOD OF MOMENTS
Std Dev = standard deviation
Rel Dis relative dispersion
std dev/mean
MM moment measure


1.1933
1.2880
1.5973
1.7883
2.2776
3.0100
4.3311
6.5755
9.4529
14.3838
20.6121
29.3974
42.0686
58.3970
69.2626
81.7902
89.0239
93.6549
96.1251
97.0516
97.4288
97.5535
97.6324
97.6829
97.7113
97.8692
100.0000


Median:


0.799


0.826


S1C1GS1A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001
== ----------=======-===--- -==------------ -
ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent
= -- ----------------------= ===ma m
-2.00 -2.125 0.545 0.545 0.6929 0.6929
-1.75 -1.875 0.194 0.739 0.2466 0.9395
-1.50 -1.625 0.392 1.131 0.4984 1.4379
-1.25 -1.375 0.435 1.566 0.5530 1.9909
-1.00 -1.125 1.025 2.591 1.3031 3.2940
-0.75 -0.875 1.664 4.275 2.1409 5.4349
-0.50 -0.625 2.872 7.147 3.6512 9.0862
-0.25 -0.375 3.914 11.061 4.9760 14.0621
0.00 -0.125 4.225 15.286 5.3714 19.4335
0.25 0.125 5.611 20.897 7.1334 26.5669
0.50 0.375 5,760 26.657 7.3228 33.8898
0.75 0.625 6.644 33.301 8.4467 42.3364
1.00 0.875 7.496 40.797 9.5299 51.8663
1.25 1.125 8.751 49.548 11.1254 62.9917
1.50 1.375 5.474 55.022 6.9592 69.9509
1.75 1.625 7.744 62.766 9.8452 79.7961
2.00 1.875 5.667 68.433 7.2046 87.0007
2.25 2.125 3.912 72.345 4.9734 91.9741
2.50 2.375 2.296 74.641 2.9190 94.8931
2.75 2.625 1.090 75.731 1.3857 96.2788
3.00 2.875 0.541 76.272 0.6878 96.9666
3.25 3.125 0.207 76.479 0.2632 97.2298
3.50 3.375 0.121 76.600 0.1538 97.3836
3.75 3.625 0.148 76.748 0.1882 97.5718
4.00 3.875 0.060 76.808 0.0763 97.6480
8.00 6.000 0.200 77.008 0.2543 97.9023
PAN 1.650 78.658 2.0977 100.0000
-=- =------- =--a-===-=,,wwmmmmmma=n=,=-=
THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phi intervals, and moment measures recalculated.
====== ===~EE-lrn--===-----------,=
MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi

Mean: 0.859 1.030 1.041 1.051 1.072
Std Dev: 1.023 1.550 1.603 1.660 1.776
Rel Dis: 1.190 1.504 STATISTICAL MEASURES
Skewness: 0.038 2.757 CALCULATED USING
Kurtosis: 4.260 15.670 METHOD OF MOMENTS
5th MM: 6.374 76.713 Std Dev = standard deviation
6th MM: 54.610 396.743 Rel Dis relative dispersion
7th MM: 198.203 2026.578 = std dev/mean
8th MM: 1147.735 10415.396 MM = moment measure


Mean:
Std Dev:
Rel Dls:
Skewness:
Kurtosis:
5th MM:
6th MM:
7th MM:
5th MM:
Median:









S1C1GS20A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001

ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent

-2.00 -2.125 2.359 2.359 3.2007 3.2007
-1.75 -1.875 1.147 3.506 1.5563 4.7570
-1.50 -1.625 1.207 4.713 1.6377 6.3947
-1.25 -1.375 1.940 6.653 2.6322 9.0269
-1.00 -1.125 2.313 8.966 3.1383 12.1652
-0.75 -0.675 3.090 12.056 4.1926 16.3578
-0.50 -0.625 3.743 15.799 5.0786 21.4363
-0.25 -0.375 4.493 20.292 6.0962 27.5325
0.00 -0.125 4.823 25.115 6.5439 34.0764
0.25 0.125 6.297 31.412 8.5439 42.6203
0.50 0.375 6.038 37.450 8.1925 50.8127
0.75 0.625 6.419 43.869 8.7094 59.5221
1.00 0.875 7.136 51.005 9.6822 69.2044
1.25 1.125 7.220 58.225 9.7962 79.0006
1.50 1.375 4.008 62.233 5.4381 84.4387
1.75 1.625 4.574 66.807 6.2061 90.6448
2.00 1.875 2.540 69.347 3.4463 94.0911
2.25 2.125 1.437 70.784 1.9497 96.0408
2.50 2.375 0.748 71.532 1.0149 97.0557
2.75 2.625 0.316 71.848 0.4288 97.4845
3.00 2.875 0.155 72.003 0.2103 97.6948
Vn 3.25 3.125 0.042 72.045 0.0570 97.7518
0 3.50 3.375 0.027 72.072 0.0366 97.7884
3.75 3.625 0.017 72.089 0.0231 97.8115
4.00 3.875 0.013 72.102 0.0176 97.8291
8.00 6.000 0.100 72.202 0.1357 97.9648
PAN 1.500 73.702 2.0352 100.0000

THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample Is set at 9.00 phl. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase in value for Increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phi intervals, and moment measures recalculated.

MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi

Mean: 0.339 0.515 0.525 0.535 0.556
Std Dev: 1.101 1.644 1.695 1.750 1.863
Rel Dis: 3.250 3.193 STATISTICAL MEASURES
Skewness: -0.157 2.648 CALCULATED USING
Kurtosis: 3.443 15.367 METHOD OF MOMENTS
Sth MM: 3.269 75.610 Std Dev standard deviation
6th MM: 35.097 392.874 Rel Dis = relative dispersion
7th MM: 125.812 2017.680 = std dev/mean
8th MM: 728.389 10410.091 MM = moment measure
Median: 0.319 0.350


S1C1GS21A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001
----------- -----P IIPI-------------------- ----- ------
ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent
--= -~r-------------------P----- -- -=- --- -- -- -- -
-2.00 -2.125 0.287 0.287 0.4314 0.4314
-1.75 -1.875 0.061 0.348 0.0917 0.5230
-1.50 -1.625 0.085 0.433 0.1278 0.6508
-1.25 -1.375 0.195 0.628 0.2931 0.9439
-1.00 -1.125 0.205 0.833 0.3081 1.2520
-0.75 -0.875 0.303 1.136 0.4554 1.7074
-0.50 -0.625 0.513 1.649 0.7710 2.4785
-0.25 -0.375 1.081 2.730 1.6248 4.1032
0.00 -0.125 1.399 4.129 2.1027 6.2059
0.25 0.125 2.843 6.972 4.2731 10.4790
0.50 0.375 4.130 11.102 6.2074 16.6865
0.75 0.625 6.371 17.473 9.5757 26.2622
1.00 0,875 9.988 27.461 15.0121 41.2743
1.25 1.125 13.450 40.911 20.2155 61.4898
1.50 1.375 9.410 50.321 14.1434 75.6331
1.75 1.625 9.257 59.578 13.9134 89.5465
2,00 1.875 3.434 63.012 5.1613 94.7079
2.25 2.125 1.139 64.151 1.7119 96.4198
2.50 2.375 0.599 64.750 0.9003 97.3201
2.75 2.625 0.236 64.986 0.3547 97.6748
3.00 2.875 0.135 65.121 0.2029 97.8777
3.25 3.125 0.047 65.168 0.0706 97.9484
3.50 3.375 0.031 65.199 0.0466 97.9950
3.75 3.625 0.022 65.221 0.0331 98.0280
4.00 3.875 0.012 65.233 0.0180 98.0461
8.00 6.000 0.200 65.433 0.3006 98.3467
PAN 1.100 66.533 1.6533 100.0000

THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase in value for Increasing pan mid-
points the pan fraction needs further analysis (e.g.. settling
tube) at 1/4-phl intervals, and moment measures recalculated.
-== == =E-----E------ II----- -- -- - = --- -- -- -- -
MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi
-nl--------------- =_ - ----------r-
Mean: 1.040 1.172 1.180 1.189 1.205
Std Dev: 0.726 1.251 1.300 1.354 1.465


Rel Dis:
Skewness:
Kurtosls:
5th MM:
6th MM:
7th MM:
8th MM:
Median:


0.698
0.162
11.193
34.826
367.360
1972.382
15507.191
0.973


1.067
4.041
27.016
162.804
1021.547
6348.064
39686.597
0.983


STATISTICAL MEASURES
CALCULATED USING
METHOD OF MOMENTS
Std Dev standard deviation
Rel Dis relative dispersion
std dev/mean
MM moment measure


------a------- -----E----------------- --------------









SIC1GS22A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001

ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent

-2.00 -2.125 3.736 3.736 5.4109 5.4109
-1.75 -1.875 0.519 4.255 0.7517 6.1626
-1.50 -1.625 0.453 4.708 0.6561 6.8186
-1.25 -1.375 0.663 5.371 0.9602 7.7789
-1.00 -1.125 0.827 6.198 1.1978 8.9766
-0.75 -0.875 1.208 7.406 1.7496 10.7262
-0.50 -0.625 1.902 9.308 2.7547 13.4809
-0.25 -0.375 2.286 11.594 3.3108 16.7917
0.00 -0.125 2.553 14.147 3.6975 20.4892
0.25 0.125 4.077 18.224 5.9048 26.3940
0.50 0.375 4.683 22.907 6.7824 33.1764
0.75 0.625 6.098 29.005 8.8318 42.0082
1.00 0.875 7.887 36.892 11.4228 53.4310
1.25 1.125 8,846 45,738 12.8117 66.2428
1.50 1.375 5.527 51.265 8.0048 74.2476
1.75 1.625 6.211 57.476 8.9955 83.2431
2.00 1.875 3.860 61.336 5.5905 88.8335
2.25 2.125 2.724 64.060 3.9452 92.7787
2.50 2.375 1.854 65.914 2.6852 95.4639
2.75 2.625 0.904 66.818 1.3093 96.7732
3.00 2.875 0.386 67.204 0.5590 97.3322
U' 3.25 3.125 0.119 67.323 0.1723 97.5046
3.50 3.375 0.060 67.383 0.0869 97.5915
3.75 3.625 0.041 67.424 0.0594 97.6508
4.00 3.875 0.022 67.446 0.0319 97.6827
8.00 6.000 0.350 67.796 0.5069 98.1896
PAN 1.250 69.046 1,8104 100.0000

THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample Is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g.. settling
tube) at 1/4-phi intervals, and moment measures recalculated.

MOMENT MEASURES


Stat.
Measure

Mean:
Std Dev:
Rel DIs:
Skewness:
Kurtosis:
5th MM:
6th MM:
7th MM:
8th MM:
Median:


Pan Pan at Pan at Pan at Pan at
Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi

0.731 0.880 0.889 0.898 0.916
1.201 1.627 1.670 1.718 1.817
1.643 1.849 STATISTICAL MEASURES
-0.308 2.012 CALCULATED USING
4.799 12.851 METHOD OF MOMENTS
3.991 56.996 Std Dev = standard deviation
50.602 291.092 Rel DIs relative dispersion
138.871 1425.028 std dev/mean
789.546 7112.149 MM = moment measure


0.780


0.800


S1C1GS23A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001
---r=I- --- ---- - ..... = ~PP ---- - - -- - - - - -
ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent
----------------------------- ----------
-2.00 -2.125 4.704 4.704 6.0643 6.0643
-1.75 -1.875 1.214 5.918 1.5651 7.6293
-1.50 -1.625 1.537 7.455 1.9815 9.6108
-1.25 -1.375 1.689 9.144 2.1774 11.7882
-1.00 -1.125 2.501 11.645 3.2242 15.0124
-0.75 -0.875 3.433 15.078 4.4257 19.4382
-0.50 -0.625 4.295 19.373 5.5370 24.9752
-0.25 -0.375 5.514 24.887 7.1085 32.0837
0.00 -0.125 5.934 30.821 7.6500 39.7337
0.25 0.125 8.417 39.238 10.8510 50.5846
0.50 0.375 8.510 47.748 10.9709 61.5555
0.75 0.625 9.144 56.892 11.7882 73.3437
1.00 0.875 7,871 64.763 10.1471 83.4908
1.25 1.125 5.543 70.306 7.1459 90.6367
1.50 1.375 1.810 72.116 2.3334 92.9701
1.75 1.625 1.206 73.322 1.5547 94.5249
2.00 1.875 0.478 73.800 0.6162 95.1411
2.25 2.125 0.275 74.075 0.3545 95.4956
2.50 2.375 0.210 74.285 0.2707 95.7663
2.75 2.625 0.164 74.449 0.2114 95.9778
3.00 2.875 0.142 74.591 0.1831 96.1608
3.25 3.125 0.109 74.700 0.1405 96.3014
3.50 3.375 0.126 74.826 0.1624 96.4630
3.75 3.625 0.149 74.975 0.1921 96.6559
4.00 3.875 0.094 75.069 0.1212 96.7771
8.00 6.000 0.550 75.619 0.7090 97.4861
PAN 1.950 77.569 2.5139 100.0000
-----I---- =n=r===--- == ---- - --= -- -
THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phi intervals, and moment measures recalculated.
-------------- =--=r====- ----------
MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi
----- ==._ --------------- ------- = ---..
Mean: 0.091 0.315 0.328 0.341 0.366
Std Dev: 1.141 1.800 1.859 1.922 2.052
Rel Dls: 12.475 5.706 STATISTICAL MEASURES
Skewness: 0.742 2.899 CALCULATED USING
Kurtosis: 7.532 14.944 METHOD OF MOMENTS
5th MM: 27.459 68.687 Std Dev = standard deviation
6th MM: 152.750 329.604 Rel Dis = relative dispersion
7th MM: 747.092 1574.957 std dev/mean
8th MM: 3886.121 7565.685 MM moment measure


Median:


0.083


0.112








S1C1GS24A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001

ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent

-2.00 -2.125 0.037 0.037 0.0508 0.0508
-1.75 -1.875 0.071 0.108 0.0975 0.1483
-1.50 -1.625 0.091 0.199 0.1250 0.2733
-1.25 -1.375 0.180 0.379 0.2472 0.5206
-1.00 -1.125 0.352 0.731 0.4835 1.0041
-0.75 -0.875 0.584 1.315 0,8021 1.8062
-0.50 -0.625 1.013 2.328 1,3914 3.1976
-0.25 -0.375 1.818 4.146 2.4971 5.6947
0.00 -0.125 2.669 6.815 3.6660 9.3606
0.25 0.125 4.811 11.626 6.6081 15.9687
0.50 0.375 5.988 17.614 8.2247 24.1934
0.75 0.625 7.927 25.541 10.8880 35.0814
1.00 0.875 10.942 36.483 15.0292 50.1106
1.25 1.125 13.377 49.860 18.3737 68.4843
1.50 1.375 8.489 58.349 11.6599 80.1442
1.75 1.625 8.382 66.731 11.5129 91.6572
2.00 1.875 3.239 69.970 4.4489 96.1060
2.25 2.125 0.963 70.933 1.3227 97.4287
2.50 2.375 0.237 71.170 0.3255 97.7543
2.75 2.625 0.076 71.246 0.1044 97.8587
3.00 2.875 0.049 71.295 0.0673 97.9260
0) 3.25 3.125 0.025 71.320 0.0343 97.9603
0 3.50 3.375 0.016 71.336 0.0220 97.9823
3.75 3.625 0.011 71.347 0.0151 97.9974
4.00 3.875 0.008 71.355 0.0110 98.0084
8.00 6.000 0.050 71.405 0.0687 98.0771
PAN 1.400 72.805 1.9229 100.0000

THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction Is treated. The pan mid-point for this
sample is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point Is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phi Intervals, and moment measures recalculated.


Stat. Pan
Measure Excluded
-a- ----------------
Mean: 0.897
Std Dev: 0.685
Rel Dis: 0.764
Skewness: -0.328
Kurtosis: 5.769
5th MM: 10.236
6th MM: 149.315
7th MM: 832.682 S
8th MM: 7034.129 35
Median: 0.857


Pai
9.(
=-=




4
26
16
974
901
794
(


MOMENT MEASURES
n at Pan at Pan at Pan at
)0 Phi 9.50 Phi 10.00 Phi 11,00 Phi

1.053 1.063 1.072 1.092
1.310 1.367 1.427 1.550
1.244 STATISTICAL MEASURES
1.209 CALCULATED USING
.875 METHOD OF MOMENTS
1.321 Std Dev = standard deviation
.597 Rel Dis = relative dispersion
1.596 std dev/mean
.575 MM = moment measure
0.873


S1C1GS2A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001
-=-------- ----------------------
ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent
m---= = = ---- ----mme --- ---------mmmm me-- ==


-2.00 -2.125
-1.75 -1.875
-1.50 -1,625
-1.25 -1.375
-1.00 -1.125
-0.75 -0.875
-0.50 -0.625
-0.25 -0.375
0.00 -0.125
0.25 0.125
0.50 0.375
0.75 0.625
1.00 0.875
1.25 1.125
1.50 1.375
1.75 1.625
2.00 1.875
2.25 2.125
2.50 2.375
2.75 2.625
3.00 2.875
3.25 3.125
3.50 3.375
3.75 3.625
4.00 3.875
8.00 6.000
PAN


0.612
0.116
0.329
0.487
0.774
1.458
2.222
3.172
3.570
5 .096
5.452
6 .298
8.173
9.557
6.022
7 .577
5.178
3.875
3.046
2.404
2.124
1.103
0.616
0.625
0.306
0.550
1.800


0.612
0.728
1.057
1.544
2.318
3.776
5.998
9.170
12.740
17.836
23.288
29.586
37.759
47.316
53.338
60.915
66.093
69.968
73.014
75.418
77.542
78.645
79.261
79.886
80.192
80.742
82.542


0.7414
0.1405
0.3986
0.5900
0.9377
1.7664
2.6920
3.8429
4.3251
6.1738
6.6051
7.6301
9.9016
11.5783
7.2957
9.1796
6.2732
4.6946
3.6902
2.9125
2.5732
1.3363
0.7463
0.7572
0.3707
0.6663
2.1807


0.7414
0.8820
1.2806
1.8706
2.8083
4.5746
7.2666
11.1095
15.4346
21.6084
28.2135
35.8436
45.7452
57.3235
64.6192
73.7988
80.0720
84.7665
88.4568
91.3692
93.9425
95.2788
96.0251
96.7822
97.1530
97.8193
100.0000


---m=c=r-E-l-=--=--=-t= ------~+=


THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction Is treated. The pan mid-point for this
sample is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point Is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phi intervals, and moment measures recalculated.
---------------
MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi
--m-------------.=- -----n-m ------------------------
Mean: 1.079 1.251 1.262 1.273 1.295
Std Dev: 1.147 1.625 1.677 1.732 1.845
Rel Dis: 1.064 1.299 STATISTICAL MEASURES
Skewness: 0.381 2.366 CALCULATED USING
Kurtosis: 4.708 12.522 METHOD OF MOMENTS
5th MM: 8.795 55.263 Std Dev = standard deviation
6th MM: 53.211 264.789 Rel DIs = relative dispersion
7th MM: 174.666 1245.753 std dev/mean
8th MM: 847.481 5929.447 MM = moment measure


Median:


0.943


0.967









S1C1GS3A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001
-r~=E-3--------s---------- --------------
ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent

-2,00 -2.125 0.347 0.347 0.4799 0.4799
-1.75 -1.875 0.237 0.584 0.3278 0.8076
-1.50 -1.625 0.224 0.808 0.3098 1.1174
-1.25 -1.375 0.364 1.172 0.5034 1.6208
-1.00 -1.125 0.615 1.787 0.8505 2.4713
-0.75 -0.875 1.090 2.877 1.5074 3.9788
-0.50 -0.625 1.576 4.453 2.1795 6.1583
-0.25 -0.375 2.518 6.971 3.4823 9.6406
0.00 -0.125 3.062 10.033 4.2346 13.8752
0.25 0.125 4.775 14.808 6.6036 20.4788
0.50 0.375 5.186 19.994 7.1720 27.6508
0.75 0.625 6.657 26.651 9.2063 36.8571
1.00 0.875 9.448 36.099 13.0661 49.9232
1.25 1.125 11.030 47.129 15.2540 65.1772
1.50 1.375 7.193 54.322 9.9476 75.1248
1.75 1.625 7.632 61.954 10.5547 85.6795
2.00 1.875 4.324 66.278 5.9799 91.6594
2.25 2.125 2.305 68.583 3.1877 94.8471
2.50 2.375 1,192 69.775 1.6485 96.4956
2.75 2.625 0.462 70.237 0.6389 97.1345
3.00 2.875 0.221 70.458 0.3056 97.4402
0) 3.25 3.125 0.085 70.543 0.1176 97.5577
3.50 3.375 0.050 70.593 0.0691 97.6269
3.75 3.625 0.044 70.637 0.0608 97.6877
4.00 3.675 0.022 70.659 0.0304 97.7181
8.00 6.000 0.000 70.659 0.0000 97.7181
PAN 1.650 72.309 2.2819 100.0000

THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction Is treated. The pan mid-point for this
sample is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly Increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phi intervals, and moment measures recalculated.
==== ==== ====---------------===== ==---------= = -=-=


MOMENT
Stat. Pan Pan at
Measure Excluded 9.00 Phi
- - -- - -- --- - - - = = = = = =


Mean:
Std Dev:
Rel Dis:
Skewness:
Kurtosis:
5th MM:
6th MM:
7th MM:
8th MM:
Median:


0.878
0.846
0.964
-0.582
3.764
-5.592
26.483
-56.903
248.372
0.855


1.063
1.480
1.392
3.340
19.606
101.979
551.315
2947.539
15820.626
0.876


MEASURES
Pan at Pan at Pan at
9.50 Phi 10.00 Phi 11.00 Phi

1.075 1.086 1.109
1.540 1.603 1.733
STATISTICAL MEASURES
CALCULATED USING
METHOD OF MOMENTS
Std Dev = standard deviation
Rel Dis relative dispersion
= std dev/mean
MM moment measure


SIC1GS4A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001
----------E-----------P-------P---- -= -- -- -- ------
ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent

-2.00 -2.125 0.928 0.928 0.9441 0.9441
-1.75 -1.875 0.010 0.938 0.0102 0.9542
-1.50 -1.625 0.287 1.225 0.2920 1.2462
-1.25 -1.375 0.357 1.582 0.3632 1.6094
-1.00 -1.125 0.573 2.155 0.5829 2.1923
-0.75 -0.875 0.645 2.800 0.6562 2.8485
-0.50 -0.625 1.311 4.111 1.3337 4.1822
-0.25 -0.375 2.025 6.136 2.0601 6.2422
0.00 -0.125 2.593 8.729 2.6379 8.8801
0.25 0.125 4.092 12.821 4.1629 13.0430
0.50 0.375 4.991 17.812 5.0774 18.1204
0.75 0.625 6.799 24.611 6.9167 25.0371
1.00 0.875 10.321 34.932 10.4997 35.5368
1.25 1.125 14.058 48.990 14.3014 49.8382
1.50 1.375 9.393 58.383 9.5556 59.3939
1.75 1.625 11.674 70.057 11.8761 71.2700
2.00 1.875 8.146 78.203 8.2870 79.5571
2.25 2.125 6.065 84.268 6.1700 85.7271
2.50 2.375 4.459 88.727 4.5362 90.2633
2.75 2.625 3.263 91.990 3.3195 93.5828
3.00 2.875 2.368 94.358 2.4090 95.9918
3.25 3.125 0.929 95.287 0.9451 96.9369
3.50 3.375 0.432 95.719 0.4395 97.3763
3.75 3.625 0.303 96.022 0.3082 97.6846
4.00 3.875 0.126 96.148 0.1282 97.8128
8.00 6.000 0.050 96.198 0.0509 97.8636
PAN 2.100 98.298 2.1364 100.0000
--- --- --- --- --- --- ---L IP-------r==f=
THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phi intervals, and moment measures recalculated.
--=== =-= ------------ -----==----- . -- - -- -
MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi

Mean: 1.223 1.389 1.400 1.411 1.432
Std Dev: 0.952 1.471 1.528 1.586 1.705
Rel Dis: 0.779 1.059 STATISTICAL MEASURES
Skewness: -0.462 2.724 CALCULATED USING
Kurtosis: 4.300 16.273 METHOD OF MOMENTS
5th MM: -4.801 78.927 Std Dev = standard deviation
6th MM: 38.149 416.520 Rel Dis relative dispersion
7th MM: -33.260 2133.648 std dev/mean


8th MM:
Median:


504.855


11073.761


1.109 1.129


MM moment measure









S1C1GS5A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001

ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent

-2.00 -2.125 0.049 0.049 0.0649 0.0649
-1.75 -1.875 0.007 0.056 0.0093 0.0742
-1.50 -1.625 0.038 0.094 0.0503 0.1245
-1.25 -1.375 0.057 0.151 0.0755 0.2000
-1.00 -1.125 0.067 0.218 0.0887 0.2887
-0.75 -0.875 0.088 0.306 0.1165 0.4052
-0.50 -0.625 0.118 0.424 0.1563 0.5615
-0.25 -0.375 0.161 0.585 0.2132 0.7747
0.00 -0.125 0.201 0.786 0.2662 1.0409
0.25 0.125 0.290 1.076 0.3841 1.4250
0.50 0.375 0.345 1.421 0.4569 1.8819
0.75 0.625 0.512 1.933 0.6781 2.5600
1.00 0.875 0.848 2.781 1.1230 3.6830
1.25 1.125 1.285 4.066 1.7018 5.3848
1.50 1.375 1.012 5.078 1.3402 6.7250
1.75 1.625 2.017 7.095 2.6712 9.3962
2.00 1.875 2.565 9.660 3.3969 12.7932
2.25 2.125 4.140 13.800 5.4828 18.2760
2.50 2.375 7.181 20.981 9.5101 27.7861
2.75 2.625 11.165 32.146 14.7863 42.5724
3.00 2.875 14.707 46.853 19.4771 62.0496
3.25 3.125 9.771 56.624 12.9402 74.9897
3.50 3.375 5.712 62.336 7.5647 82.5544
3.75 3.625 4.307 66.643 5.7040 88.2584
4.00 3.875 2.166 68.809 2.8685 91.1269
8.00 6.000 3.650 72.459 4.8339 95.9607
PAN 3.050 75.509 4.0393 100.0000

THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase in value for Increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phl intervals, and moment measures recalculated.

MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi

Mean: 2.826 3.075 3.095 3.115 3.156
Std Dev: 1.056 1.602 1.676 1.755 1.919
Rel Dis: 0.374 0.521 STATISTICAL MEASURES
Skewness: 0.532 2.019 CALCULATED USING
Kurtosls: 6.737 8.849 METHOD OF MOMENTS
5th MM: 4.705 27.965 Std Dev = standard deviation
6th MM: 65.449 109.845 Rel Dis = relative dispersion
7th MM: 10.004 382.639 = std dev/mean
8th MM: 749.581 1461.905 MM = moment measure


Median:


2.694 2.720


S1C1GS6A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001

ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent

-2.00 -2.125 0.694 0.694 0.9047 0.9047
-1.75 -1.875 0.481 1.175 0.6271 1.5318
-1.50 -1.625 0.488 1.663 0.6362 2.1680
-1.25 -1.375 0.900 2.563 1.1733 3.3412
-1.00 -1.125 1.448 4.011 1.8877 5.2289
-0.75 -0.875 2.157 6.168 2.8120 8.0409
-0.50 -0.625 3.300 9.468 4.3020 12.3429
-0.25 -0.375 4.870 14.338 6.3488 18.6917
0.00 -0.125 4.860 19.198 6.3357 25.0274
0.25 0.125 6.680 25.878 8.7083 33.7357
0.50 0.375 6.581 32.459 8.5793 42.3150
0.75 0.625 7.726 40.185 10.0720 52.3870
1.00 0.875 8.541 48.726 11.1344 63.5214
1.25 1.125 7.629 56.355 9.9455 73.4669
1.50 1.375 4.144 60.499 5.4023 75.8692
1.75 1.625 5.303 65.802 6.9132 85.7824
2.00 1,875 3.830 69.632 4.9930 90.7754
2.25 2.125 2.549 72.181 3.3230 94.0984
2.50 2.375 1.516 73.697 1.9763 96.0747
2.75 2.625 0.730 74.427 0.9517 97.0264
3.00 2.875 0.374 74.801 0.4876 97.5139
3.25 3.125 0.130 74.931 0.1695 97.6834
3.50 3.375 0.063 74.994 0.0821 97.7656
3.75 3.625 0.032 75.026 0.0417 97.8073
4.00 3.875 0.032 75.058 0.0417 97.8490
8.00 6.000 0.050 75.108 0.0652 97.9142
PAN 1.600 76.708 2.0858 100.0000
-r=== ------- El---P-------- ----- -----
THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly Increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phl intervals, and moment measures recalculated.
----- ----------------- -----------,,,
MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi

Mean: 0.618 0.793 0.803 0.814 0.835
Std Dev: 0.993 1.555 1.609 1.667 1.785
Rel Dis: 1.606 1.961 STATISTICAL MEASURES
Skewness: -0.097 2.945 CALCULATED USING
Kurtosis: 3.416 16.984 METHOD OF MOMENTS
5th MM: 1.573 86.316 Std Dev standard deviation
6th MM: 30.162 458.313 Rel Dis = relative dispersion
7th MM: 81.809 2409.857 = std dev/mean
8th MM: 579.641 12719,846 MM = moment measure


Median:


0.540


0.566


--- --==-------------- m-- ---------------









S1CIGS7A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001

ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent

-2.00 -2.125 0.000 0.000 0.0000 0.0000
-1.75 -1.875 0.025 0.025 0.0347 0.0347
-1.50 -1.625 0.028 0.053 0.0389 0.0736
-1.25 -1.375 0.057 0.110 0.0792 0.1527
-1.00 -1.125 0.074 0.184 0.1028 0.2555
-0.75 -0.875 0.133 0.317 0.1847 0.4402
-0.50 -0.625 0.203 0.520 0.2819 0.7221
-0.25 -0.375 0.265 0.785 0.3680 1.0901
0.00 -0.125 0.376 1.161 0.5221 1.6122
0.25 0.125 0.574 1.735 0.7971 2.4093
0.5.0 0.375 0.758 2.493 1.0526 3.4618
0.75 0.625 1.054 3.547 1.4636 4.9254
1.00 0.875 1.816 5.363 2.5217 7.4472
1.25 1.125 3.063 8.426 4.2533 11.7005
1.50 1.375 2.983 11.409 4.1423 15.8428
1.75 1.625 7.719 19.128 10.7187 26.5615
2.00 1.875 12.187 31.315 16.9231 43.4846
2.25 2.125 17.213 48.528 23.9023 67.3869
2.50 2.375 13.840 62.368 19.2185 86.6054
2.75 2.625 5.478 67.846 7.6069 94.2122
3.00 2.875 1.669 69.515 2.3176 96.5298
0 3.25 3.125 0.431 69.946 0.5985 97.1283
3.50 3.375 0.201 70.147 0.2791 97.4074
3.75 3.625 0.113 70.260 0.1569 97.5644
4.00 3.875 0.054 70.314 0.0750 97.6393
8.00 6.000 0.050 70.364 0.0694 97.7088
PAN 1.650 72.014 2.2912 100.0000

THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample Is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase In value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phi intervals, and moment measures recalculated.

MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi

Mean: 1.940 2.101 2.113 2.124 2.147
Std Dev: 0.641 1.238 1.301 1.367 1.502
Rel Dis: 0.330 0.589 STATISTICAL MEASURES
Skewness: -1.272 3.742 CALCULATED USING
Kurtosis: 7.923 23.068 METHOD OF MOMENTS
5th MM: -16.058 123.804 Std Dev = standard deviation
6th MM: 153.925 698.794 Rel Dis = relative dispersion
7th MM: -183.520 3869.434 a std dev/mean
6th MM: 4217.983 21610.844 MM = moment measure
Median: 1.931 1.943


S1CIGSBA ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001

ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent
51 I= I IP-----------l --- ---- - - = --- -- --
-2.00 -2.125 1.510 1.510 1.8810 1.8810
-1.75 -1.875 0.568 2.078 0.7075 2.5885
-1.50 -1.625 0.727 2.805 0.9056 3.4941
-1.25 -1.375 1.123 3.928 1.3989 4.8930
-1.00 -1.125 1.827 5.755 2.2758 7.1688
-0.75 -0.875 2.393 8.148 2.9809 10.1497
-0.50 -0.625 3.253 11.401 4.0522 14.2019
-0.25 -0.375 4.051 15.452 5.0462 19.2481
0.00 -0.125 4.603 20.055 5.7338 24.9819
0.25 0.125 6.482 26.537 8.0744 33.0564
0.50 0.375 6.960 33.497 8.6699 41.7263
0.75 0.625 8.917 42.414 11.1077 52.8339
1.00 0.875 11.158 53.572 13.8992 66.7331
1.25 1.125 9.769 63.341 12.1690 78.9021
1.50 1.375 4.674 68.015 5.8223 84.7243
1.75 1.625 4.042 72.057 5.0350 89.7593
2.00 1.875 2.308 74.365 2.8750 92.6343
2.2S 2.125 1.701 76.066 2.1189 94.7532
2.50 2.375 1.238 77.304 1.5421 96.2954
2.75 2.625 0.743 78.047 0.9255 97.2209
3.00 2.875 0.396 78.443 0.4933 97.7142
3.25 3.125 0.150 78.593 0.1869 97.9010
3.50 3.375 0.071 78.664 0.0884 97.9895
3.75 3.625 0.041 78.705 0.0511 98.0406
4.00 3.875 0.023 78.728 0.0287 98.0692
8.00 6.000 0.100 78.828 0.1246 98.1938
PAN 1.450 80.278 1.8062 100.0000

THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase In value for Increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phl Intervals, and moment measures recalculated.

MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi

Mean: 0.545 0.698 0.707 0.716 0.734
Std Dev: 1.004 1.508 1.557 1.609 1.716
Rel Dis: 1.841 2.160 STATISTICAL MEASURES
Skewness: -0.177 2.870 CALCULATED USING
Kurtosis: 4.233 17.687 METHOD OF MOMENTS
5th MM: 3.602 92.689 Std Dev standard deviation
6th MM: 48.581 514.234 Rel Dis relative dispersion
7th MM: 164.221 2816.409 = std dev/mean
8th MM: 1071.334 15508.904 MM moment measure


Median:


0.541


0.561









SIC1GS9A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001
= P P --= ------------- =---------- .....
ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent

-2.00 -2.125 1.962 1.962 2.8061 2.8061
-1.75 -1.875 0.152 2.114 0.2174 3.0235
-1.50 -1.625 0.523 2.637 0.7480 3.7715
-1.25 -1,375 0.473 3.110 0.6765 4.4480
-1.00 -1.125 1.093 4.203 1.5632 6.0112
-0.75 -0.875 1.644 5.847 2.3513 8.3625
-0.50 -0.625 2.729 8.576 3.9031 12.2656
-0.25 -0.375 3.995 12.571 5.7138 17.9794
0.00 -0.125 4.743 17.314 6.7836 24.7629
0.25 0.125 6.718 24.032 9.6083 34.3712
0.50 0.375 6.981 31.013 9.9844 44.3556
0.75 0.625 7.830 38.843 11.1987 55.5543
1.00 0.875 8.122 46.965 11.6163 67.1706
1.25 1.125 7.465 54.430 10.6766 77.8472
1.50 1.375 3.284 57.714 4.6969 82.5441
1.75 1.625 3.269 60.983 4.6754 87.2195
2.00 1.875 2.007 62.990 2.8705 90.0900
2.25 2.125 1.407 64.397 2.0123 92.1023
2.50 2.375 1.200 65.597 1.7163 93.8186
2.75 2.625 0.884 66.481 1.2643 95.0829
3.00 2.875 0.585 67.065 0.8367 95.9196
0 3.25 3.125 0.237 67.303 0.3390 96.2585
3.50 3.375 0.113 67.416 0.1616 96.4201
3.75 3.625 0.096 67.512 0.1373 96.5574
4.00 3.875 0.057 67.569 0.0815 96.6390
8.00 6.000 0.450 68.019 0.6436 97.2826
PAN 1.900 69.919 2.7174 100.0000

THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample Is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phi intervals, and moment measures recalculated.

MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi

Mean: 0.577 0.806 0.820 0.833 0.860
Std Dev: 1.100 1.755 1.816 1.882 2.018


Rel Dis:
Skewness:
Kurtosis:
5th MM:
6th MM:
7th MM:
8th MM:
Median:


1 .905
0.562
6.548
1 .066
108.704
467.547
2416.758


2.177
2.791
14.065
62.317
291.345
1347.721
6279.042


0.471 0.501


STATISTICAL MEASURES
CALCULATED USING
METHOD OF MOMENTS
Std Dev = standard deviation
Rel Dis = relative dispersion
= std dev/mean
MM = moment measure


S1C2GSIA ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001
---------P---as----------------II-----3b-----mam-----i--n--ama-s
ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent
------- =.= ----------- ------ -=- ------ -- - - - - - -
-2.00 -2.125 0.344 0.344 0.4491 0.4491
-1.75 -1.875 0.133 0.477 0.1736 0.6227
-1.50 -1.625 0.338 0.815 0.4413 1.0640
-1.25 -1.375 0.660 1.475 0.8616 1.9256
-1.00 -1.125 1.016 2.491 1.3264 3.2520
-0.75 -0.875 1.507 3.998 1.9674 5.2195
-0.50 -0.625 2.226 6.224 2.9061 8.1255
-0.25 -0.375 2.879 9.103 3.7586 11.8841
0.00 -0.125 3.187 12.290 4.1607 16.0448
0.25 0.125 4.206 16.496 5.4910 21.5358
0.50 0.375 4.052 20.548 5.2900 26.8258
0.75 0.625 4.556 25.104 5.9479 32.7737
1.00 0.875 6.178 31.282 8.0655 40.8392
1.25 1.125 8.560 39.842 11.1752 52.0144
1.50 1.375 6.863 46.705 8.9598 60.9742
1.75 1.625 10.479 57.184 13.6805 74.6547
2.00 1.875 7.645 64.829 9.9807 84.6354
2.25 2.125 4.863 69.692 6.3487 90.9841
2.50 2.375 2.069 71.761 2.7011 93.6852
2.75 2.625 0.456 72.217 0.5953 94.2805
3.00 2.875 0.248 72.465 0.3238 94.6043
3.25 3.125 0.139 72.604 0.1815 94.7858
3.50 3.375 0.504 73.108 0.6580 95.4437
3.75 3.625 1.075 74.183 1.4034 96.8472
4.00 3.875 0.315 74.498 0.4112 97.2584
8.00 6.000 0.200 74.698 0.2611 97.5195
PAN 1.900 76.598 2.4805 100.0000

THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phl intervals, and moment measures recalculated.

MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi
---l==-=sr=E=-~--------------------------
Mean: 1.052 1.249 1.261 1.274 1.299
Std Dev: 1.060 1.626 1.684 1.746 1.873
Rel DIS: 1.007 1.302 STATISTICAL MEASURES
Skewness: -0.032 2.562 CALCULATED USING
Kurtosis: 4.258 13.776 METHOD OF MOMENTS
5th MM: 4.568 61.970 Std Dev standard deviation
6th MM: 43.134 298.171 Rel Dis relative dispersion
7th MM: 122.027 1410.539 = std dev/mean
8th MM: 705.955 6727.022 MM = moment measure


Median:


1.052


1.080










S1C2GS2A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001

ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent


-2.00
-1.75
-1.50
-1.25
-1.00
-0.75
-0.50
-0.25
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2 .25
2.50
2.75
3.00
0a 3.25
"' 3.50
3.75
4.00
8 .00
PAN


-2.125
-1.875
-1 .625
-1.375
-1 125
-0.875
-0.625
-0.375
-0.125
0.125
0.375
0.625
0.875
1.125
1.375
1.625
1.875
2.125
2.375
2.625
2.875
3.125
3.375
3.625
3.875
6.000


0.000
0.000
0.000
0.012
0.016
0.013
0.015
0.050
0.040
0.045
0.042
0.053
0.075
0.095
0.091
0.159
0. 1 9
0.211
0.275
0.493
1.696
5.028
22.786
23.971
7.837
2.400
2.150


THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly Increase in value for Increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phi Intervals, and moment measures recalculated.

MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi

Mean: 3.544 3.717 3.733 3.749 3.780
Std Dev: 0.628 1.145 1.217 1.294 1.451
Rel Dis: 0.177 0.308 STATISTICAL MEASURES
Skewness: 0.815 3.161 CALCULATED USING
Kurtosis: 15.879 15.967 METHOD OF MOMENTS
Sth MM: -7.279 66,047 Std Dev standard deviation
6th MM: 386.450 322.198 Rel Dis = relative dispersion
7th MM: -1113.627 1408.843 = std dev/mean
8th MM: 12685.829 6756.479 MM moment measure


3.390 3.401


S1C2GS3A ENTIRE SAMPLE ANALYSIS MO-DA-YR: 2-7-2001
-----f-E---------------P---P------ '=.....
ANALYTICAL GRANULOMETRIC RESULTS
Sieve Mid- Frequency Cumulative Frequency Cumulative
Size Point Weight Weight Weight Weight
(Phi) (Phi) (g) (g) Percent Percent


0.000
0.000
0.000
0.012
0.028
0.041
0.056
0.106
0.146
0 .191
0.233
0.286
0.361
0.456
0 .547
0.706
0.895
1.106
1 .381
1.874
3.570
8.598
31.384
55.355
63.192
65.592
7 .742


0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0177 0.0177
0.0236 0.0413
0.0192 0.0605
0.0221 0.0827
0.0738 0.1565
0.0590 0.2155
0.0664 0.2820
0.0620 0.3440
0.0782 0.4222
0.1107 0.5329
0.1402 0.6731
0.1343 0.8075
0.2347 1.0422
0.2790 1.3212
0.3115 1.6327
0.4060 2.0386
0.7278 2.7664
2.5036 5.2700
7.4223 12.6923
33.6364 46.3287
35.3857 81.7144
11.5689 93.2833
3.5429 96.8262
3.1738 100.0000


-2.00
-1.75
-1.50
-1.25
-1.00
-0.75
-0.50
-0.25
0.00
0.25
0.50
0.75
1 .00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00
3.25
3.50
3.75
4 .00
8.00
PAN


-2.125
-1.875
-1.625
-1.375
-1.125
-0.875
-0.625
-0.375
-0.125
0.125
0.375
0.625
0.875
1.125
1.375
1.625
1.875
2.125
2.375
2.625
2.875
3.125
3.375
3.625
3,875
6.000


1.484
0.559
0.468
0.857
1.124
1.890
2.509
3.020
3.003
4.001
3.730
4.350
6.742
10.430
6.917
8.057
2.754
0.737
0.296
0.147
0.156
0.155
0.254
0.652
0.371
0.450
1.550


1.484
2.043
2.511
3.368
4.492
6.382
8.891
11.911
14.914
18.915
22.645
26.995
33.737
44.167
51.084
59.141
61.895
62.632
62.928
63.075
63.231
63.386
63.640
64.292
64.663
65.113
66.663


THIS NOTE APPLIES ONLY IF A PAN FRACTION IS PRESENT
Statistical results can vary greatly depending on how (IF PRES-
ENT) the pan fraction is treated. The pan mid-point for this
sample is set at 9.00 phi. Results for various pan mid-points
are listed below. If the pan fraction mid-point is large and the
means significantly increase in value for increasing pan mid-
points the pan fraction needs further analysis (e.g., settling
tube) at 1/4-phl intervals, and moment measures recalculated.

MOMENT MEASURES
Stat. Pan Pan at Pan at Pan at Pan at
Measure Excluded 9.00 Phi 9.50 Phi 10.00 Phi 11.00 Phi
===C-==--=------E--P--------P-------------
Mean: 0.750 0.942 0.953 0.965 0.988
Std Dev: 1.158 1.697 1.749 1.807 1.927
Rel DIs: 1.544 1.802 STATISTICAL MEASURES
Skewness: 0.266 2.456 CALCULATED USING
Kurtosis: 5.749 13.230 METHOD OF MOMENTS
5th MM: 12.015 58.116 Std Dev standard deviation
6th MM: 74.959 277.487 Rel Dis relative dispersion
7th MM: 271.284 1300.177 std dev/mean
8th MM: 1334.101 6161.922 MM = moment measure


Median:


0.831


0.860


2.2261
0.8385
0.7020
1.2856
1.6861
2.8352
3.7637
4.5302
4.5047
6.0018
5.5953
6.5254
10.1136
15.6459
10.3761
12.0862
4 .1312
1.1056
0.4440
0.2205
0.2340
0.2325
0.3810
0.9781
0.5565
0.6750
2.3251


2.2261
3.0647
3.7667
5.0523
6.7384
9.5735
13.3372
17.8675
22.3722
28.3741
33.9694
40.4947
50.6083
66.2541
76.6302
88.7164
92.8476
Moment versus graphic measures in granulometry
CITATION SEARCH THUMBNAILS DOWNLOADS PDF VIEWER PAGE IMAGE ZOOMABLE
Full Citation
STANDARD VIEW MARC VIEW
Permanent Link: http://ufdc.ufl.edu/UF00099448/00001
 Material Information
Title: Moment versus graphic measures in granulometry
Series Title: Open-file report ;
Physical Description: ii, 86 p. : ill. ; 28 cm.
Language: English
Creator: Balsillie, James H
Dabous, Adel A
Fischler, Cindy T
Florida Geological Survey
Publisher: Florida Geological Survey
Place of Publication: Tallahassee, Fla.
 Subjects
Subjects / Keywords: Marine sediments -- Sampling   ( lcsh )
Statistical measurement -- Methodology   ( lcsh )
Genre: bibliography   ( marcgt )
technical report   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
non-fiction   ( marcgt )
 Notes
Abstract: Statistical measures such as the mean, standard deviation, skewness, and kurtosis are precisely calculated using the method of moments. However, this method requires considerable computational resources that were not available during the majority of the preceding century. There resulted, therefore, the invention of abbreviated, surrogate predictive equations that could be expediently evaluated to provide approximations (called graphic measures) of respective moment measures. By the mid-1980's computers had become common in the work place, and by the mid-1990's to the public-at-large. Most researchers have taken advantage of the available computing power and now employ the method of moments. There are others, however, who continue to endorse the use of graphic measures. This work compares the two methods using 333 marine sediment samples. It was found that the means show approximate agreement, with graphic means underestimating the moment means by a maximum of 0.6cp. All higher graphic measures, however, are not successful in replicating moment measures, the degree of disagreement progressively increasing with the order of the moment measure. Standard deviation measures had a correlation of r2 = 0.6486, for the skewness r2 = 0.0865, and for the kurtosis r2 = 0.0098. Average ratios between moment measures and graphic measures become increasingly worse as the degree of the moment measure increases. We conclude, therefore, that graphic measures are not good approximations of moment measures, and their use should be discontinued.
Statement of Responsibility: by James H. Balsillie, Adel A. Dabous and Cindy T. Fischler.
Bibliography: Includes bibliographical references (p. 14-15).
 Record Information
Source Institution: University of Florida
Holding Location: University of Florida
Rights Management:
The author dedicated the work to the public domain by waiving all of his or her rights to the work worldwide under copyright law and all related or neighboring legal rights he or she had in the work, to the extent allowable by law.
Resource Identifier: oclc - 50787517
System ID: UF00099448:00001

Downloads

This item has the following downloads:

( PDF )

( INSTR )


Table of Contents
    Front Cover
        Front Cover 1
        Front Cover 2
    Table of Contents
        Page i
        Page ii
    Abstract and introduction
        Page 1
        Page 2
    Background
        Page 3
        Page 4
        Page 5
    Data and Results
        Page 6
        Page 7
        Page 8
        Page 9
        Page 10
    Discussion
        Page 11
        Page 12
    Conclusions
        Page 13
    Acknowledgements and references
        Page 14
        Page 15
        Page 16
    Appendix I: Granulometry of samples used in the study
        Page 17
        Page 18
        Page 19
        Page 20
        Page 21
        Page 22
        Page 23
        Page 24
        Page 25
        Page 26
        Page 27
        Page 28
        Page 29
        Page 30
        Page 31
        Page 32
        Page 33
        Page 34
        Page 35
        Page 36
        Page 37
        Page 38
        Page 39
        Page 40
        Page 41
        Page 42
        Page 43
        Page 44
        Page 45
        Page 46
        Page 47
        Page 48
        Page 49
        Page 50
        Page 51
        Page 52
        Page 53
        Page 54
        Page 55
        Page 56
        Page 57
        Page 58
        Page 59
        Page 60
        Page 61
        Page 62
        Page 63
        Page 64
        Page 65
        Page 66
        Page 67
        Page 68
        Page 69
        Page 70
        Page 71
        Page 72
        Page 73
        Page 74
    Appendix II: List of moment and graphic measures for sand + silt + clay samples
        Page 75
        Page 76
        Page 77
        Page 78
    Appendix III: List of moment and graphic measures for sand + silt samples
        Page 79
        Page 80
        Page 81
        Page 82
    Appendix IV: List of moment and graphic measures for sand only samples
        Page 83
        Page 84
        Page 85
        Page 86
        Page 87
        Page 88
    Back Cover
        Page 89
        Page 90
Full Text








CONTENTS


ABSTRACT Page
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

INTRODUCTION . . . . .
IN TR O D U C TIO N ............................................................ 1

Moment Measures ..............................................
Graphic Measures ..................... ......................... 3

BACKGROUND ................................................ .......... 3

DATA AND RESULTS ................... ....................... ... 6

Moment Mean Versus Graphic Mean ................................... 8
Moment Standard Deviation Versus Graphic Standard Deviations ............. 9
Moment Skewness Versus Graphic Skewnesses .......................... 10
Moment Kurtosis Versus Graphic Kurtosis ............................. 10
F-Test Assessments....................... ................... ... 11

DISCUSSION ......... ............................. ....................... 11

CONCLUSIONS .................................. ..................... 13

ACKNOWLEDGEMENTS ................... ............................ 14

REFERENCES ............................................... 14


FIGURES

Figure 1. Illustration of different means and standard deviations (sorting
coefficients) for two Gaussian distributions. .............................. 4

Figure 2. Illustration of the effect of skewness................................... 5

Figure 3. Illustration of the effects of kurtosis ................................ 5

Figure 4. Moment measure mean versus graphic measure mean ................... 8

Figure 5. Moment measure standard deviation (sorting coefficient) versus
graphic and inclusive graphic standard deviations. .......................... 9

Figure 6. Moment measure skewness versus graphic and inclusive graphic
skewness...................................... ......... ......... 10

Figure 7. Moment measure kurtosis versus graphic kurtosis. ................. ... 11










TABLES

Table 1. Number of data points per sediment sample sieved at 1/4-(p intervals ........ 4

Table 2. General characteristics of the 333 sediment samples addressed in this
study. ........................................................... 7

Table 3. Descriptive assessment of the reciprocal absolute relative dispersion ....... 7

Table 4. Average graphic/moment measure ratios, and r2 values between
graphic and moment measure data sets ... ..... ........ .... .... . 8

Table 5. F-test results for two-sample variances to assess regression outcomes
(a = 0.05 for all one-tailed tests). ..................................... 12

Table 6. Average number of data points in sample distribution tails not
considered by graphic measures that are considered in moment
measures................ .... .. ................... ........ ..... . 13

APPENDICES

Appendix I: Granulometry of samples used in the study. ......................... 17

Appendix II: List of moment and graphic measures for sand + silt + clay samples. .... 75

Appendix III: List of moment and graphic measures for sand + silt samples........... 79

Appendix IV: List of moment and graphic measures for sand only samples. ......... 83





















ii
Se"











MOMENT VERSUS GRAPHIC MEASURES IN GRANULOMETRY


by

James H. Balsillie P. G. No. 167, Adel A. Dabous, and Cindy T. Fischler

Florida Geological Survey, 903 W. Tennessee St., Tallahassee, FL 32304-7700

ABSTRACT

Statistical measures such as the mean, standard deviation, skewness, and kurtosis are precisely calculated
using the method of moments. However, this method requires considerable computational resources that were not
available during the majority of the preceding century. There resulted, therefore, the invention of abbreviated, surrogate
predictive equations that could be expediently evaluated to provide approximations (called graphic measures) of
respective moment measures. By the mid-1980's computers had become common in the work place, and by the mid-
1990's to the public-at-large. Most researchers have taken advantage of the available computing power and now
employ the method of moments. There are others, however, who continue to endorse the use of graphic measures.

This work compares the two methods using 333 marine sediment samples. It was found that the means show
approximate agreement, with graphic means underestimating the moment means by a maximum of 0.6cp. All higher
graphic measures, however, are not successful in replicating moment measures, the degree of disagreement
progressively increasing with the order of the moment measure. Standard deviation measures had a correlation of r2
= 0.6486, for the skewness r2 = 0.0865, and for the kurtosis r2 = 0.0098. Average ratios between moment measures
and graphic measures become increasingly worse as the degree of the moment measure increases. We conclude,
therefore, that graphic measures are not good approximations of moment measures, and their use should be
discontinued.


INTRODUCTION

There are two popular approaches
used in assessing environmental aspects of
sediment samples. One approach is to plot
grain size data. Two types of plotted
representations are commonly used: 1) the
frequency plot, and 2) the cumulative
frequency plot using arithmetic probability
paper. Such plots allow the researcher to
visually assess the entire sediment distribution
and to identify certain useful environmental
characteristics about the sample.

The other approach is to calculate
statistical measures that provide more
abbreviated representations of the character of
the sample. Such measures include the
mean, standard deviation, skewness, and
kurtosis. There are two types of statistical
measures that have been used moment
measures and graphical measures.
Graphically derived statistical measures


constitute only an estimate of true statistical
representations afforded by the method of
moments. We address the subject by
addressing the history behind graphic
measures, the degree of discrepancy between
moment and graphic measures and, finally,
the reasons as to why discrepancy occurs.

Moment Measures

Statistically, the Gaussian distribution
is defined in terms of moments, calculated
using the method of moments. The term
moment was introduced into statistics by
analogy. In mechanics, the moment of a force
about a point of rotation, e.g., about a fulcrum,
is determined by multiplying the magnitude of
the force by the distance to the point of
rotation (see Friedman and Sanders, 1978 [p.
78-79] for a more detailed description).

Moments and moment measures are
not identical quantities. Moment, in statistical











context, refers to the sum of deviations from
the mean relative to the sample size (Fogiel,
1985). The mean, p, for grouped or classified
data is calculated by:

k
f-1 (1)
S= MM, =-
n

in which xi is the class midpoint, and fi is the
frequency of the class. The first moment, m,,
for classified data is given by:

k
Sfi (xi p)P (2a)
m =
n
where p = 1.0. While we do not, here, present
the proof, it has been demonstrated (e.g.,
Fogiel, 1985) that following from equation (2a):

k
m Ef xi (2b)
m = -p
n

and that by substitution of equation (1) into
equation (2b), the first moment, m1, will
always have a value of zero.

In granulometry as in many data sets,
the "fulcrum" will seldom have a value of zero
and, instead, the mean, p, is used and
specified as the first moment measure, MM1.
All higher moments and moment measures
apply equally well about the first moment or
first moment measure when consistently
applied.

Grain size and mean grain size are
normally expressed in millimeters or
dimensionless phi (cp) units. The latter units
were defined by Krumbein (1934) and adopted
by the Society of Economic Paleontologists
and Mineralogists (S.E.P.M.) Inter-Society
Grain Size Study Committee in 1963 (Tanner,
1969). They were determined specifically for
the Wentworth (1922) size scale, subsequently


clarified by McManus (1963) and Krumbein
(1964). Progressively higher moments are
determined according to:


k
Sf, (x, P
i= 1
S n-1


in which p is an integer, and mp is the pth
moment about the mean. The sole difference
between equations (2a) and (3) is the
specified degrees of freedom. For n > 30, n
degrees of freedom is considered appropriate
and the equations are identical. For n < 30, n
- 1 degrees of freedom is the normally applied
convention, designed to yield more
conservative numerical outcomes. In sieving
granulometric work, the number of classified
size classes which is optimal at 1/4-phi
intervals, commonly ranges from 12 n n 26
and n 1 degrees of freedom is appropriate to
apply.

The second moment, m2, is the
variance, 2a, and the standard deviation (or
sorting coefficient), a, or second moment
measure, MM2, becomes:


r = MM2 = (m,)1/2


which has units of millimeters, or phi-units
whose specification was clarified by McManus
(1963).


Higher moment
determined according to:


MMp -
P P
M2


measures


- mp
M2p/2


which all have truly dimensionless units. The
third moment measure, MM3 (p = 3) is the
skewness, Sk, where:


m
Sk = MM, -mp
m21.5










and the fourth moment measure, MM4 (p = 4)
is the kurtosis, K, or:


K= MM mp
m2


a 984 qP16
ag 2


and,


In this work we shall utilize only the first
four moment measures. There are higher
moment measures that can be calculated
provided that there are sufficient data to do so
(Tanner, 1991; Balsillie, 1995; Balsillie and
Tanner, 1999). Moment measures higher than
order four have not been assigned names.
Also, in this work moment measures are
evaluated for grouped (or classified) data
since particle sizes are collected for 1/4-phi
sieve intervals. Ungrouped (or unclassified)
data would require that one know the size of
each and every grain. Statistical ramifications
of grouped and ungrouped data in
granulometric pursuits are discussed in detail
by Swan and others (1978, 1979).

Graphic Measures

Over the years various investigators
(e.g., Krumbein and Pettijohn, 1938; Trask,
1932; Inman, 1952; Folk and Ward, 1957, and
Folk, 1974) have suggested formulae to
calculate statistical measures that are
extracted from the cumulative probability plot.
Here we evaluate those graphic measures as
given by Folk and Ward (1957). These are
assessed in (p units where, for instance, (~5 is
the phi value corresponding to a cumulative
frequency of 5%, 16I is the phi value
corresponding to a cumulative frequency of
16%, etc.

The graphic mean, p,, is given by:

P,9g P16 + P50 + 84 (8)
3
We assess, here, two types of graphic
standard deviations, the graphic standard
deviation, a)g, and the inclusive graphic
standard deviation, o~p, which are given by:


S984 1P6 + 95 P
S 4 6.6


(10)


Two types of graphic skewnesses are
also assessed. They are the graphic
skewness, SkIg, and the inclusive graphic
skewness, Skq,, given by:


Sg (984 + 9P16) 2qPso
Sk8g =-


(11)


and,


S (Ps4 + P16) 2q(50
2()84 -p)


(12)


S(P5 + qP95) 2qP5o
2(+ )
2(q)ms q)5)


The last graphic measure, the graphic
kurtosis, Kg, is given by:


qP95 95
g 2.44((q)p q25)


BACKGROUND


When analyzing sediment samples to
produce the above descriptive statistical
measures, it is most desirable to obtain an
optimal number of data points in terms of size
class intervals. Collecting data at 1/4-phi class
intervals has been found to be successful in
producing robust statistics. Sedimentologic
studies of depositional environments, including
littoral, marine, estuarine, lacustrine, and
fluvial environments normally encompass a
minimum of a dozen, or so, 1/4-phi class sizes
across a nominal maximum domain ranging
from -2(p to 12(p. This range includes granule-,


(13)











Table 1. Number of data points per sediment sample
sieved at 1/4-q4 intervals.

Number of Cumulative
Descriptive Phi Grain Data Points Numer of
Size Size Range (i.e., Class Data Points
Intervals) (i.e., Class
Intervals)

Granule -2p to -1p 4 4
Sand -1.0p to 4( 20 24
Silt 4(p to 8(p 16 40
Clay 8p8 to 12(p 16 56


-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Phi Grain Size

Figure 1. Illustration of different means and standard deviations
(sorting coefficients) for two Gaussian distributions. The dashed
distribution is more poorly sorted than the other distribution.


sand-, silt-, and clay-sized particulate matter.
Table 1 lists the maximum number of data
points in terms of 1/4-phi class intervals.

What do the mean, standard deviation,
skewness, and kurtosis statistical measures
tell us? The mean is a measure of the central
tendency of the distribution (Figure 1). The
standard deviation (or sorting coefficient) is a
measure of the degree of spread of the
distribution about the mean (Figure 1). The
larger the standard deviation, the larger the
spread. The skewness is a measure of
asymmetry of the distribution (Figure 2),
wherein it may be skewed to the right or left of
the mean, or skewed to the fine or coarse end


of the distribution. Kurtosis is a measure of
the peakedness of the curve (Figure 3),
termed platykurtic if flat and leptokurtic if
peaked. These four measures constitute, at a
minimum, the measures required to define
the basic characteristics of granulometric
distributions.

The most accurate way of calculating
statistical measures describing granulometric
distributions is using the method of moments.
This is because all data for the distribution are
included in determining final statistical results.
However, the method of moments requires
formidable computing power that was not
available during the bulk of the last century. It


30

25

2 20
20
0.
o 15
a
1 10
LL
5

0


- - Mean =2.0 phi; StdDev = 1.0phi
- Mean = 1.0 phi; Std Dev = 0.5 phi














20
c

S15


U.

5


0


-1 0 1 2 3
Phi Grain Size


Figure 2. Illustration of the effect of skewness.

35
-Platykurtic (Flat) Distribution
3: Gaussian Distribution
S25 - Leptokurtic (Peaked) Distribution
1 25
1 20





o -- *. ,. -".-*="r
5- 15 ------------- *-------
4 10 --
U-



-2 -1 0 1 2 3
Phi Grain Size

Figure 3. Illustration of the effects of kurtosis.


was not until about the late 1960's to early
1970's that mainframe computing power
became available, and then but to elite
academic and U. S. government programs. It
was not until the mid- to late-1980's that
the personal computer (PC) would be
commonly found in the workplace, and the
mid-1990's available to the public-at-large.

Prior to the 1980's, without computer
resources and knowledge of programming
language capabilities, evaluation of equations
(1) through (7), would have been from
cumbersome to overwhelming for the
researcher, even for a relatively small number
of sediment samples. Necessity being the
"mother of invention" therefore resulted in


researchers inventing abbreviated surrogate
approximating equations that could be more
expediently evaluated. Hence, predictive
methods such as equations (8) through (13),
providing for graphic measures, were devised.

Many sedimentologists of the time
were apparently convinced that the graphic
measures provided accurate results. Folk
(1974) stated, for instance, that ... the method
of moments, is far more complicated and
probably of not greater value ... than the
graphic method. We demonstrate, here, just
how much this assertion was in error. In
addition, we conducted a cursory check of
recent texts on sedimentology published within
the last 15 years, a period within which











computing power from PCs has been
abundantly available. Selley (1988), Herve
(1990), and Prothero and Schwab (1996)
discuss graphic measures, and do not even
mention moment measures. Friedman and
others (1992) discuss both, but state that the
graphic approach is but an approximation to
the more rigorous method of moments to
calculate statistical properties of frequency
distributions. Lewis and McConchie (1994)
discuss both, but promote graphic measures.
Sengupta (1994) discusses both moment and
graphic measures, and promotes moment
measures because ... they take care of every
part of the frequency distribution. Boggs
(1995) discusses both moment measures and
graphic measures, but does not promote one
method over the other, and states ... it had not
been definitely proven that moment statistics
are of greater value than graphical statistics.
And so, even in more recent years, mixed
messages have been proffered, even though
several are quite correct regarding the use of
moment measures.

None of the above sources, however,
acknowledges the work and results of Cadigan
(1954), and Swan and others (1978, 1979).
Cadigan (1954) using 20 samples found that
use of the graphic method for obtaining the
standard deviation from equation (9) yielded
results significantly disagreeing with those
obtained from the method of moments, and
cautioned the reader about the veracity of
graphic measures. Swan and others (1978,
1979) digitally generated 100 artificial
sediment samples, each representing a
different hypothetical grain size distribution in
order to assess ungrouped moment versus
graphic measures (Swan and others, 1978),
and ungrouped versus grouped moment
measures (Swan and others, 1979). They
found that ... grouped moment measures yield
far more reliable results than the graphic
approximations, particularly for skewness and
kurtosis. They did not, however, directly
compare graphic and moment measures. We
do, in this work, conduct a direct comparison
between moment and graphic measures. In


addition, we consider a significantly large
number of natural sediment samples to which
we now turn.

DATA AND RESULTS

One-hundred eleven cored marine
sediment samples were analyzed using
standard 1/4-phi sieving techniques.
Granulometric results for these samples are
listed in Appendix I. Additionally, the fine
fraction (i.e., silts and clays) was treated
further. Pipette analyses identified silt (4(p to
8(p), and the pan fraction was assigned the
designation of clay-sized particulate matter (8(p
to 12(p). These samples were subdivided into
three data sets: 1) the entire sample
(sand+silt+clay) which encompasses 56 1/4-
phi size class intervals, 2) pan excluded (sand
plus silt) which encompasses 40 1/4-phi size
class intervals, and 3) sand only (assigned
here as the interval from -2(p to 4(p and, hence,
additionally includes smaller granule-sized
particles) which encompasses 24 1/4-phi size
class intervals.

The question arises as to whether
samples from a particular depositional
environment will adequately address the issue
at hand? We have dealt here with cored
marine sediments. Could samples from fluvial,
littoral, estuarine, eolian, lacustrine, etc. yield
different outcomes? The concern can be
addressed from two perspectives. The first is
that because the samples utilized in this work
are from cores, they could represent diverse
depositional environments including non-
marine sediments. Second, the variability of
data sets in terms of obtaining a relatively
large range in resulting moment measures is a
more important concern, which becomes more
likely as the sample size becomes large.

Therefore, 333 samples were produced
for the purposes of this study, for which
moment and graphic measures were
assessed. The range of measures for these
samples is listed in Table 2, providing some
idea as to the variability of the data set. The











Table 2. General characteristics of the 333 sediment samples
addressed in this study.

Type of Number of Percent
Measure Statistic Range of Values Successful Not
Measures Successful
p -0.9525 to 5.4270 333 0
aMo t 0.3887 to 3.4427 333 0
Sk -4.5726 to 5.2538 333 0
K 1.7541 to 36.6811 333 0

p,,g -0.8072 to 5.0822 298 10.5
Og 0.2220 to 3.0051 298 10.5
Graphic oa 0.2497 to 3.2040 226 32.1
Skg -0.6918 to 0.7764 298 10.5
Sk,, -0.6423 to 0.7671 226 32.1
K~g 0.6341 to 4.7773 226 32.1


degree of variability is important, since we
would like it to be considerable so that our
results cover as many sample characteristics
as is possible. The degree of variability can be
statistically assessed using the relative
dispersion (also termed the coefficient of
variation). This parameter can be used to
compare variabilities between data sets even
if there are large differences in magnitudes of
both the means and standard deviations
(Rees, 1995). The relative dispersion is simply
the standard deviation divided by the mean,
and, therefore, tells us how many means are
contained in the standard deviation. The
relative dispersion is not new, but there are
two considerations about the relative
dispersion that must be accounted for when
using the phi scale. The first, is that means
can have a negative value. The second is that
the mean can have a value of zero, while the
standard deviation for naturally encountered
sediments will always be greater than zero.
Hence, a value of infinity is possible. In fact,
for phi mean values less than 1.0 and greater
than -1.0, relative dispersion outcomes can be
greatly distorted. One might think that the most
straightforward way in which to eliminate the
problem is to transform phi means and phi
standard deviations to their millimeter
counterparts. One must understand, however,
that there is no millimeter equivalent to the phi
standard deviation as detailed by McManus


(1963). Hence, the only way in which it can be
determined is to calculate means and standard
deviations in millimeters using original
retaining sieve sizes and midpoint values. A
relative dispersion of 0.5 or less is considered
to be a "tight" distribution or to have "excellent
homogeneity". The full scale is listed in Table
3, as is a breakdown of our 333 samples, and
we have assurance that our samples, indeed,
have a considerable amount of variability.
Table 3. Descriptive assessment of the
relative dispersion.
Per Cent of
Numerical Samples of Our
Range r Homogeneity 333-Sample
R e Data Set
Complying
< 0.5 Excellent 25
0.5 to 1.0 Good 24
1.0 to 1.33 Fair 11
> 1.33 Poor 40

Table 2 has also been compiled to
illustrate that while all moment measures can
be assessed, there can be graphic measures
which cannot. This occurred for our data
because in certain instances phi values for the
5 (i.e., qp5), 16 (i.e., (16), and 25 (i.e., (25)
cumulative percentiles were not present,
because our coarsest sieve was -2.0(p. For
instance, suppose that for a sample the











coarsest percentile on the cumulative 6
probability plot is 8%. For this case the
phi size at 5% cannot be pulled from the
plot, and graphic measures for equations
(9), (11), and (12) cannot be evaluated.
Such problems can also occur forthe fine 4
tail. It should, therefore, be expected to
be a possibility occurring for any data set.
3
Moment and graphic measures for
the sand+silt+clay samples are listed in ,
Appendix II, those for the sand+silt 2
samples in Appendix III, and those for the
sand only samples in Appendix IV. 1

Moment Mean Versus Graphic
Mean 0

Moment means are plotted versus _1
graphic means in Figure 4. (Note: it was
necessary, to assure clarity, to have
multiple plots on the same illustration so 0
that data sets were not plotted on top of
one another.) The correlation between
the two measures is good at r2 2 0.99 (r
-1
is the Pearson product-moment
correlation coefficient). The correlation
coefficient, in this instance, tells us how
parallel the plotted data are to a one-to- Figure 4.
one fit (diagonal solid line). In reality, mean.
however, the graphic data slightly
underestimate the moment measure data, by
an average of 11% (i.e., 100 x (1.0 0.889); L
Table 4).
a
b


0 1 2 3 4 5 6
Moment Measure Mean

Moment measure mean versus graphic


Sand+silt+clay


graphic means


underestimate the actual mean (i.e., moment
nean) by an average value of about 0.3q(, and
maximum of about 0.6 (p. This is determined
>y measuring downward from the one-to-one


Table 4. Average graphic/moment measure ratios, and r2 values between graphic
and moment measure data sets.
Measure Average Ratio r2 Average Ratio r2
Graphic Mean pg = 0.8890 pmm 0.9917
Graphic Standard Deviation Og = 0.7330 oa, 0.5508 a = 07332 0.6486
Inclusive Graphic Standard Deviation ag = 0.7333 rmm 0.7736 = 0.72 am
Graphic Skewness Sk, = -0.2395 Skm 0.0520 Skg = -0.2182 0.0865
Inclusive Graphic Skewness Skg = -0.1889 Sk,,m 0.1276 Sk~,
Graphic Kurtosis Kg = 0.1310 K, 0.0098











(1:1) line to a parallel line encompassing the
maximum deviating point or points (the dashed
line lies 0.5(p below the one-to-one line).

Sand+silt and sand only graphic means
more closely represent actual means,
underestimating the moment mean by about
0.1 or 0.2(p.

Differences between moment and
graphic means depend upon the character of
individual samples comprising a suite of
samples. Hence, a maximum underestimation
of 0.6 (p for the graphic mean as found for our
data might be of consequence, depending on
the accuracy required for application of results.



4.0
OSand + Silt + Clay Graphic
Sand + Silt + Clay Inclusiv
OSand + Silt Graphic Stand;
3.5 *Sand + Silt Inclusive Grapl
A Sand Only Graphic Standa
ASand Only Inclusive Graph
3.0
U,


2.5 y = 0.27 + 1.192 x
r r = 0.8097
7E
2.0

12.5




1.0 -
00





0.5


0.0
0.0 0.5 1.0 1.5
Moment Measi


Moment Standard Deviation Versus
Graphic Standard Deviations

The moment standard deviation is
plotted against the graphic standard deviation
(which incorporates (p16 and (p84 values) and
inclusive graphic standard deviation (which
considers (p5, (p16, (p84, and (p95 values) in
Figure 5. The degree of scatter between
moment and graphic measures is extensive.
In fact, r2 has a value of only 0.5508 for the
graphic standard deviation. This means that
the moment standard deviation can explain
only 55.08% of the variability of the graphic
standard deviation. Since the moment
measure is ultimately the more accurate, it
does not speak well of the accuracy of the


2.0 2.5 3.0
ire Standard Deviation


3.5 4.0


Figure 5. Moment measure standard deviation (sorting coefficient) versus
graphic and inclusive graphic standard deviations.











graphic standard deviation. The inclusive
graphic standard deviation fares somewhat
better with r2 = 0.7736. However, on the
average, both types of graphic measures
underestimate moment measure values by a
factor of 0.73 (Table 4).

The sand+silt+clay sample standard
deviations underestimate the moment
standard deviations by a maximum of 1.5 phi
units.

The inclusive graphic standard
deviation for the sand+silt+clay samples, and
the graphic and inclusive graphic measures for
the sand+silt samples underestimate the
actual standard deviation from close to 0.75 to
1.0 phi units.

Sand only samples resulted in the most
accurate results for the analysis of the mean.
However, the graphic standard deviation
results do not even parallel the moment
standard deviation results. A linear regression
example is illustrated in Figure 5 for the sand
only data which results in r = 0.8097.

We can conclude as did Cadigan
(1954), therefore, that graphic measures for


-1.0


determining the standard deviation are not
accurate.

Moment Skewness Versus
Graphic Skewnesses

Moment measure skewness is plotted
versus graphic skewness and inclusive graphic
skewness in Figure 6. Without question, there
is virtually no useful correlation between the
moment and graphic measures. Moment
skewness versus graphic skewness has an r2
value of 0.0520; for the moment skewness
versus inclusive graphic skewness r2 = 0.1276.
Moreover, the graphic skewness under-
estimates the moment measure skewness by
an average factor of -0.2395; the inclusive
graphic skewness by -0.1889 (Table 4).

Moment Kurtosis Versus
Graphic Kurtosis

Moment measure kurtosis is plotted
against the graphic kurtosis in Figure 7.
Again, there is no useful correlation between
the two measures (r2 = 0.0098), and the
graphic kurtosis underestimates the moment
measure kurtosis by an average factor of
0.131 (Table 4). In fact, the degree of


-6.0 -5.0 -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0
Moment Measure Skewness

Figure 6. Moment measure skewness versus graphic and inclusive graphic
skewnesses.


0 Sand + Silt + Clay Graphic Skewness
* Sand + Silt + Clay Inclusive Graphic Skewness
0 Sand + Silt Graphic Skewness __
*Sand + Silt Inclusive Graphic Skewness
SA Sand Only Graphic Skewness
A Sand Only Inclusive Graphic Skewness__
A--*












6o 6 1 0 Sand + Silt + Clay
3i 0 OSand + Silt
"0
S4 :-. ASand Only


00
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Moment Measure Kurtosis
Figure 7. Moment measure kurtosis versus graphic kurtosis.


correlation is an order of magnitude less than
that for skewness measures.

F-Test Assessments

The standard statistical test for
assessing regression results from two samples
is the F-test. Moment and graphic measure
regression assessments for our data groups
are listed in Table 5. Where F, computed from
the data, is larger than the theoretical Fcdf
value, the regressed results are deemed to be
significantly different.

Moment and graphic means are not
significantly different for any of the data
groups.

One-third of the tested data groups for
the moment and graphic and inclusive graphic
standard deviations are significantly different.
In addition, we performed F-tests for all of the
samples to further pin-down test results; both
graphic and inclusive graphic standard
deviations are significantly different than
moment standard deviations. The conclusion
is, therefore, that graphic and inclusive
graphic standard deviations may or may not
represent moment standard deviations. From
the scientific perspective, then, we are obliged
to choose the more conservative outcome, and
accept that the graphic measures can not
consistently replicate the standard deviation
moment measure.

For all the higher measures for the
skewness and kurtosis, the graphic measures
resoundingly do not represent the respective


moment measures.

DISCUSSION

There is a property of probability
distributions that is not generally known or
appreciated. It is a property that is the key to
understanding how probability distributions
work. The casual observer immediately
assumes that a probability distribution is
defined by its central characteristics. To do
otherwise is counter-intuitive. This, however,
is not the case. It is, in fact, the content of the
tails of a distribution that determines the
character of the central portion of the
distribution. This has been discussed by
various workers (Doeglas, 1946; W. R. James,
1973, personal communications; Tanner,
1991; Balsillie, 1995; Balsillie and Tanner,
1999). Balsillie and Tanner (1999) note that
each successively higher moment measure
"reaches deeper" (i.e., gives progressively
greater numerical weight) into the tails of the
distribution. Moreover, except for the mean,
odd moment measures deal with differences
between the tails; hence, the third moment
measure identifies to which tail the distribution
is skewed. Even moment measures treat the
tails as if they are combined; hence, the
peakedness of the central part of the curve is
forthcoming from the kurtosis.

Graphic measures are dependent
solely upon the values of qp5, (p16, T25, (P50, (75,
(P84, and p95 which are, depending on the
equation (i.e., equations (8) through (13)),
assessed in combinations of from two to five of
the above values. Hence, on the average,

















GO LO "d,
0 r-- I'-
6 |


C )
cf)
.r-: C'


LO
N
ai




6C
CVM I^ co)


CO)

0


U)

CD q* CO
o r f



LO

T-:


CW*) &-
LO to
U)*U)


(D CVO



t CO CV
oo Un N~ rCi le
C) CN' CV w
oG q

1tN
C*4C,
t0-C1 C


c o U) C-)-) Q-- N LO

- .1 t -o m o o o) C -4 (n C 14
o0 Co r- C> co S
-u L. V -- C)JOU C-4004
. 0 O 00 Lf |0 oo Lb ;
coo o Lb co -e tj
4u) CD 0)) r m ) O CM
CV0)


"1 0) V-r W C)I -
ch U) 0) co





It Co i _omo oo Oo


4Y- 0 u 00 -e 4 0 0D- C c0 t
m oo o) O0)U C0) 0 0) 0) 00 C) U)- t0-


C; 0 0 % C i 0o me a) MCy 0
C14 ~ ~ C") c C)i-U'



U) 0U c~





) 1" 1 0 o I o o C -
04 v co 06 0) c 66 00


^ 0 t|:Ss ?gs s g ^
EI C Q 'a cu mo O LO vO LO G It m- J r-
0 N m f l-o oC o o O NC
ton o6 me r-- co v- 6 ci 6
0 6 CD a 0 )






o oE c o m o -r-
o o-O o D S D Ln I- C4 M o '
0) m C)U Nt CM O to mt CM

a o6-6 C) co LO
(0 cc____ -.;--(D m 0 _D_04__VP__4
LO v_ v________tV__ ___04_00_C_4_C_4


C)
M a) 01
CN



0) 0O
CM


U)
0




0 0 LL a-


0
) 0) 01
,01 0)0



0)
..qt)M0)


c)
0







>Os+puBs


Uo
CO 0) 00
) 0) 0)




CM
N0')0)


0

>O-
C: -U)

2 > 0 -0 LL a-


LO
co r- co
O.CM C-4



0)
0 CD C
C)r-U)
0o 0m
N CM


C
0

cu

> 0


S 0
^ U- DLL-


AluO pueg


AelO+4l!S+pues


saldues IIV











Table 6. Average number of data points in sample distribution tails
not considered by graphic measures that are considered in moment
measures.
(1) (2) (3) (4) (5)

Domain Data Average Number standard Tails Combined:
Domain Standard
of Points of Data Points Deviation Average % of
Percentile Per Less or Greater of Data of Sample Not
Assessed Sample Than p Percentile Column Included in the
of Column (1) Graphic Method
Sand + Silt+ Clay (n = 111)
< p5 6 + 6 points }
> (p95 22 to 27 7 + 4 points 40.8
<(p16 8 + 6 points
> p84 9 + 4 points 40.8
Sand + Silt (n = 111)
< (p5 6 + 6 points 42.6
> (p95 to 26 7 + 4 points
< (p16 8 + 6 points
> (p84 8 + 4 points 42.6
Sand Only (n = 111)
< p5 6 + 6 points 40.0
>p95 20 to 25 7 3 points
< p16 8 6 points 1
> (p84 7 4 points 44.4
*Number of data points is the number of classified sieve intervals assessed.
**n = number of sediment samples assessed.


graphic measures do not consider from 78% to
92% of the data available per sample.

More importantly, however, it is the tails
of the granulometric distributions that are
essential in determining sample statistics.
Here, we have identified the number of data
points less than p5 and P16, and greater than
Tp84 and (p95 for each sample. Average results
are listed in Table 6. By analyzing our data in
sub-suites of sand+silt+clay, sand+silt, and
sand only, higher moment measures become
exacerbated as the fine fraction mass
increases and as size becomes finer (Figures
5, 6, and 7). As it turns out, however, such
influence is not central to our needs if we look
at average data for each sub-suite. What is
important is that for the <(16 and >(p84 tails


combined, 40.8% to 44.4% of sample data
points are not considered by graphic
measures. For the tails (p95 from
40.0% to 42.5% of the sample data are not
considered. That the tails are not considered
in graphic measures is precisely why the
degree of discrepancy between moment
measures and graphic measures advances so
quickly as the order of the moment measure
increases.

CONCLUSIONS

Two methods for assessing statistical
measures describing granulometric
distributions are recognized in the literature -
moment measures and graphic measures. In
this work, we have compared graphic










measures to the ultimately more accurate
moment measures. Graphic measures
assessed were the graphic mean, graphic and
inclusive graphic standard deviations, graphic
and inclusive graphic skewnesses, and
graphic kurtosis. We found that except for the
mean grain size, for which there can be close
approximation (although graphic means can
underestimate moment measure means by up
to about 0.6 (p), graphic measures do not
result in accurate outcomes forthcoming from
moment measure determinations.

Moreover, what we need to understand
is that during the last century computing power
did not become available in the work place or
to the public-at-large until the 1980's and
1990's, respectively, and that the assessment
of moment measures require significant
computing power. Hence, during the early and
middle part of the century, simplified graphic
measures were devised so that statistics
could be approximated. Today, however,
moment measures can be calculated with
ease, and the use of graphic measures should
be discontinued.

ACKNOWLEDGMENTS

We thank Kenneth Campbell, Thomas
M. Scott, Jon Arthur, Guy H. Means, Carol
Armstrong, and Jacqueline M. Lloyd of the
Florida Geological Survey for review of the
manuscript and useful editorial comments.
We also thank Joseph F. Donoghue, Florida
State University, Department of Geological
Sciences, and Alan Wm. Niedoroda, URS,
Tallahassee, FL for their review comments.

REFERENCES

Balsillie, J. H., 1995, Willian F. Tanner on
environmental clastic granulometry:
Florida Geological Survey, Special
Publication No. 40, 144 p.


Balsillie, J. H., and Tanner, W. F., 1999, Suite
versus composite statistics:
Sedimentary Geology, v. 125, p. 225-
234.

2000, Red flags on the beach ,
part II: Journal of Coastal Research, v.
16, p. iii-x.

Boggs, S., 1995, Principles of sedimentology
and stratigraphy: Englewood Cliffs,
NJ: Prentice Hall, 774 p.

Cadigan, R. A., 1954, Testing graphical
methods of grain-size analysis of
sandstones and siltstones: Journal of
Sedimentary Petrology, v. 24, p. 123 -
127.

Doeglas, D. J., 1946, Intepretation of the
results of mechanical analyses:
Journal of Sedimentary Petrology, v.
16, p. 19-40.

Fogiel, M., 1985, The statistics problem solver:
New York: Research and Education
Association, 1044 p.

Folk, R. L., 1974, Petrology of sedimentary
rocks: Austin, TX: Hemphill, 182 p.

Folk, R. L., and Ward, W., 1957, Grazos River
bar: a study in the significance of grain
size parameters: Journal of
Sedimentary Petrology, v. 27, p. 3-26.

Friedman, G. M., and Sanders, J. E., 1978,
Principles of sedimentology: New
York: John Wiley and Sons, 792 p.

Friedman, G. M., Sanders, J. E., and
Kopaska-Merkel, D. C., 1992,
Principles of sedimentary deposits:
New York: Macmillan Publishing
Company, 717 p.

Herve, C., 1990, Sedimentology: Berlin:
Springer-Verlag, 285 p.











Inman, D. L., 1952, Measures for describing
the size distribution of sediments:
Journal of Sedimentary Petrology, v.
22, p. 125-145.

Krumbein, W. C., 1934, Size frequency
distributions of sediments: Journal of
Sedimentary Petrology, v. 4, p. 65-77.

1964, Some remarks on the phi
notation: Journal of Sedimentary
Petrology, v. 34, p. 195-197.

Krumbein, W. C., and Pettijohn, F. J., 1938,
Manual of sedimentary petrology: New
York: Appleton-Century Company, Inc.,
549 p.

Lewis, D. W., and McConchie, D., 1994,
Analytical sedimentology: New York:
Chapman and Hall, 197 p.

McManus, D. A., 1963, A criticism of certain
usage of the phi-notation: Journal of
Sedimentary Petrology, v. 33, p. 670-
674.

Prothero, D. R., and Schwab, F., 1996,
Sedimentary geology, an introduction
to sedimentary rocks and stratigraphy:
New York: W. H. Freeman and
Company, 575 p.

Rees, D. G., 1995, Essential statistics:
London: Chapman and Hill, Inc., 256
p.

Selley, R. C., 1988, Applied sedimentology:
London: Academic Press, 446 p.

Sengupta, S., 1994, Introduction to
sedimentology: Rotterdam:
Brookfield, VT, 314 p.

Swan, D., Clague, J. J., and Luternauer, J. L.,
1978, Grain-size statistics I: Evaluation
of the Folk and Ward graphic
measures: Journal of Sedimentary
Petrology, v. 48, p. 863-878.


1979, Grain-size statistics II:
Evaluation of grouped moment
measures: Journal of Sedimentary
Petrology, v. 49, p. 487-500.

Tanner, W. F., 1969, The particle size scale:
Journal of Sedimentary Petrology, v.
39, p. 809-811.

1991, Suite statistics: the
hydrodynamic evolution of the
sediment pool: In (J.P.M. Syvitski, ed.),
Methods and Applications of Particle
Size Analysis, Cambridge: Cambridge
University Press, p. 225-236.

Trask, P. D., 1932, Origin and environment of
source sediments of petroleum:
Houston, TX: Gulf Pub. Co., 323 p.

Wentworth, C. K., 1922, A scale of grade and
class terms for clastic sediments:
Journal of Geology, v. 30, p. 377-392.












APPENDIX I

GRANULOMETRY OF SAMPLES USED IN THE STUDY















II I s) ul (L I I-T It


ID O]! N N N M i I i I .~ n~ H -1.in in I
E M N ZNo m m o w nm H .4 O t Q C H '
w c -oIIrj c 1lI

I II n LO r o Lo 'D D o w 0 0 3 5


4) S. II 1.0 1 0 *EUl
3:0 i pC \ cn C; wH^t <~o M N'' l'*l '" t-o*^~ 'Mo z H 1.4 .0 a n (aIs
0. 1 N en wi wn Lo LO r .0 0oo CD 11 -4 a) 1 If

II OU II MONII 6
II II 0C O H 0 II0
seen~~i oo ov^eom oc i c0 m I
Q r1 m w) i m w m m m m r r- Ln m w mO mN wi nr0 C-4 1 HI 0 V FA -1 $.
r- Q 1 r^^ i ^ '-f mnnnn- MW W 0 ruf DCT'o M or M CO :1i -4 0 $4l M- l
E-'lHI..........................................lZ 5 0- -- oU -A
-1 dS) oooooooooooo w m0 T-4 C1
w 2c (l it' C; C; E;C;C; C; C; Bn On o o o 1 --1 -4>1
$M I 1 < C I O C -4 I
S0 IIr. ('
I 44 M 0 1)
p-~~~ d) c:a 3' E
da II I i 0 4
U> Q)It.0 d O H a)
II MI i N 0 0 rMUIO CID i i M LN W M f nM W 0011 -0 E" i4 -

-0 COm' Q0 0 0 N CD c al %I o wn 0 D .o r- im a, w 4 1n 0 D U 0 I V C (
4. . . . . . . . 11 > 0.0 U >C e2
0 (D l b1; 1*cir r 1 j 0



0 3 i CISoo oo o o me v mm er lM rCO- =1E
1 0 il :3 -4 4 >-4


FM ll 11 UG 1- Onl


Ii I II ZH *Ud -II
L) II 0 'U -. 0 ::
0 l 11 >Ii > I*. C1.) < it

u 0111.....................w 0 n11(1 z m O0ua II .1
I r. lw-Il 0 w m 0 w m .(". 0 m LO w M M . D 0 to En C r0 11
d) Orl^ l a, 0 (D CD 0 0 w 0 Nio t- tf n n ~ m^ m w w wO > -1 4 1 I
M IUS I 4 t3, 11 En 0)^ L) ca

Hd ll II H 00 -I II

i C ilDU -' OH O UH W


2 0ItII II M n C s



II. .. II H li
II N..I-.4 0 0 0 0 --,.4 N N M M D II 'U M l 4 II
II IIH'U # '00 i 1I
II II|| rfl010 I H
> I l ll Wo no LnO O n omO L O o II 0 I
l II II -*( II
4 -4 > Ii N r- r-i n Oi E-i Wi 44 Wl 0i n n OE U r0- C
co LO en* r4* Go*w*m m*w*w** * m*w*m*w*w* (D*-O(1 4 1
I-4iI......................mer4fl -'~0. 0011
II I 1 1 1l ll -^ d 0- l l
I11 II j M 0 E j. II
11 cn (11.4 in o 5 .-, it


II ii

II w N r- M M r- -m M N N 1-0
w wn r0 H mD mI M co mi o 0 rM c L- ino M% 0 Io I0
mi w- 1 N M o ID 0' Mi r- r- N w D (Mn a, a N Mn t. n 1- 0 1 o

c a, o 11
w 00000 a N M i wn Mm moC in Lo wM (n I o0 c
o oII w w m mlw nr- 0'O,'a O' o i




I -* II
II II
II II
04 N M I r- w m m m N 0' m N ID M i n' NI

SII







II in in 0 0 CM H ID -4 ID ID M .D CM w r in 0' N 00 I m n en
n nII
I III
II II












wm o o t (M O3 n i mD pcaoon 11





II c;t O c; c; r-I CM n t ^ IMT n JM^ O^ll r-j C1 M m* cn M L* I
ooo-ooo l e c>ooooom








II ~ ~ ~ ~ c . . . . . . * * *I
II c c; 4 4 nm m oC.
II II
II
IIII








!0 "
II .i4 ion M 0' 0 in H- in~ WID in inn 0 ID ID ID -4 M" 0"" ID M" N -D
II -4] r- NMr tM H 0~ (M ID II 0 0 0 0 i o -i .o o -4 N ID 0' I 0'0 '-4 in 0 N N N1 N0 N' M M' M0 q
II
II II
III




II II
Ii Ii





II H Mn Hin 0 in N 0N w M ,-I' 0 H-00' in ID - i i


I g- 0'INMoNo-5 ii 0 0 0 0 0 0 0 0 0 -4 N M ID N N cM< CnM-4 0 0 0 0 0 0 0. 4 IIl

II I I I I I I I i
II II
II II


II lIl i


-4 II
-, g0 II






CD 1
0 II

0 II
'U .







con

r H U
0. II
4 II
-"011











o on
con


cu 11












ow u 11
( n
d10 i n




'U .0
a).




o onl
4* 11
(12 0 in I

hU 11




0 II


2 II

oii
'U .
X- II

1 0 II
0 II
1 0 II
0 0 II
'U-I II

1.O II






II
HO II
C, 3 II
'U 021 II





II
EII


o r-
.0 C H
CO 04 gz0
M -4 0



C O .JH-.
2 ((n -I dl H




M 00 tI H
U) j ll E I

w U< cma W )



0' 0 H.>
*EE- -400 H



tM } U ( 0)U dl He
H..40'U.O-04.O0 H





WH' 4 11111 im
0O E
om o > >





MN'^ b i0-< Hi-
1- 0 H
r(n CM a 1 )

E- D 0 0 01 N M







E- 0 in 1 W M 0'I It
int -M M B n 00 in E
MN 0 E n
(n" E- > V, E
ta -4a












0 W 0.. N W n I
r M in 0 -I









.ItI
- r0 ai in .4 ci in N iI
r- 0 t m LO~


I M I M M a
omoveowmumvaf



Ioa Mn
0202 H
CM4 O-l "
n





'H
0 w 1D N wN



..oHdl mN0 II
r-1 m mo1 ci Ww






> ) ) ** ** **
a--4 w nSS
c s -i n
a r. 0



a > j 3 a)
S rM II


I c 0 1 I i II
d UC "1 II I --. II Ir-
II O..Ir.r 0
1X 1 II inin C 0
S. A a I-' I O w . O
H"0O 0."dII 00iI.* O
E- .O I E ,l II II 10 1
Z ~ ~ ~ Q >-< ::- *O &(110I n i tl h U o
ZH44 0.' 0.II 1. a n
W -I -411 11 U D E- -4 .
n -l E y 3 II II zZ > 1C
1.4 C *O Uti II E MH Wwl -4 o
w 0- C4 r0- C II < SEt30 1a
(12. 0 m fl'-1 I 'U 1 011 M 0 E
M ~ ~ ~ ~ 1 m 1I-a ~ L l" > >
H a 0 II 0-4 ) 1 i E o a)O
0 3 0 0 11 U 11 E- 0 V E0 0 *1
0 0' j C rA ) 0 ll r. o
H O" H -4-4 > II O.O II E- :D0-'j -'
E---40'0 O II -4110 COU02H 2T
E -40 f 0 =) ll 1 nU $
U 0 > '0 IIa II H E-
0 C Q. I 0C 0 II II E-p < II III
a 0 1 0 II Ia EH- .w0 I1 0- 4
0) v 4. 'E i l11 < L) X
a a) i 0a E II Z C II E- > M
H 'E- 3 II 4 I i
it, 1-1 Zn >1 CT 0 a r.C a) It I In r It
-4 > *^ o n E <(


to a) :3 U 0 r II0EM '

W-I0 H -1 .04II
11 2 ) 0 0 1 114 'i 11 Nz ll
>- $ v (a j co N ED 11


. U0 .000 :1 C Z mc11
0Z(0 0-4 0. II I I n V
> -4= $ -4 r- co 11; 11; onmr 1o
H'3 1 a) U II m tO MIa 1 C,4 en.
C r- 0 > ll CL,






1H 4H -C ( _-411 II m.
E-U in%.4 03II 0 r- 9 0u ; 0; 0'
0 $ 4Z.II XII U.4 -4* *

EU 0 -4 l40 l II9 1)
E- Q 41- I U dli > 1 1
c.-. to 'l W -4 (D (n10ilc
n J- a) -4 V) :: :3 1| ^r Q 0 0- r P



-.40 C i II C 3 1l v3i n 0
lz M4i, it -O o X | u l| mt O) O4 a) $.

01 .( Ql II X 110 II =1
Z 1 Zi to <> ) 0u O 3 1 VI Mr U)l$ ID r-1

-- W ) Xo C011 n 11 ..
E UE- (I.Odl'U"I-1.I (10 I dl -'l > w -' ** **
(110 2J 'UE.-l IIo 1 QCO


0 II
II


It
II
dl II
l II
d II







c0 I

a) II
x I I





N II





0' .l II
- M II

O II
N II
o II
M 11
N 11
r- II


0 II

- II



II



S II


0)
-J 010tt
V1 -I U




U >






0 5 3.
U

>
Ua-' N
dl 0'Wl

E-I 0)d H"a
0. b

01.

U >
H -I .-*

E- 'U1 0'--

E i l-



3 U-


U U d-i
H- dl Z"
1-H")





-4 -I4X
so0.-

0L -~


dl N.
-4-0) .
(12(N2















01
> 4.
-4' C
4 001
DE





0 uj



E- IL,1
0 0)
E a.



>O
C.C C
( ) 0 U

o 4 a.


0)
U>
H -4 .



0 3



OU
C '


H 0) 3







E--ia


II It I w in 0 II
II o C 4 0 0 -- 0 r I I
SII0 n n r oa .r-enw.N a cao i w lr. C -- I
lD o 'Ot eDm efn a-r- On tIin3oootm 4o.nwo II \ -4 3'-' II
n o N wo en w aO o 0 en eon N- e n m D cN to o m o 0 lI A. 0 a -' V
0I N" r- m m a mo m w a' ento a r0r- N 4 Ln o 0 0 II
II . . . . . . . . . . . . . IIE-1 0 1 RT 11O
I o-0 0 0 0 0 .- n .I nw o W W o W Sr-O r- r- r- N r- r- ( 0ll ZH -4 U f Q l 1
H caOa voCCJ [CM 1 ( 0 OO liO < E M I
11 1.toC i14 3 r-41 U ii
II w 0 -A 0r- ra Il
II I i 0 0 0
Ii i ca -~CL 0-



ii ii a.) 0 a It-- *dll
iii 0.0 a a 0) 01E
mII 04 enaen'oe a -ISca' oNr- II 0 CI I) 0 E -0) II
1 oia Nain mNconooa r- wa'0q'-otm nfnn oitea'm IIE- O --I a) w 11






II . . . . . . . . . . . . . 11 -1 9 r> ul a)
II oa ac o o o .-Men Nl r-e -i o 'D nC' eQ o o o' IIo -H- 1 4 1
II 00o4NN a ooin i'enmeninmace,4OOoOOON 1l 2' r U -I II
II '110* *-.** **ll fl
11 0oo0oooo4.-NNer-4C'oniooo0o0Noii HC 4a- 4>' i
Ii .-.-N.-,- IIE-ldCe O '-Hull
II 11 0 a> 0. 1. 1 I Ii
II VaCQ. I OC 10
II Il M 0) W -4 l I
II a) C 0 E II
11 II M cW O D ii(
II Oinwoa'nontoa'enmovtennenmenamtoNininin li Z'E-'5 1 II
ii wor-omemnwnw'lNwenina,'oiincV Nr-eonr- nLo coio.N oN w 4 r. C )11
0 DrI o o mNwrlw m w m no o sv m m e 1M W )A ClCl nMf tC,>, in 0 titC d) i
II II 4 1 > UE 1I
ii HHcooeninrtoNNNNNNNNNNwwwII It0)r-C 2lII
II II 0).- rn t--I'..4 II
4 i0 *).4 an II
ii II 14 0)V'tll
H wII > C(I 0 II
Io A a m r- r- 0ra i>r- n or- Nal o W r en o l O 1 w a II(a'a)
0 Wo 0 t 0 .W 4 r- N N e M e W O N N N t CV N .1 N in in I -i 0 I 00) C. vn II
II Co.- m- w n o w o Iaani oD o o o OO O o r- 11 >-IC cs I- II
I..................................................11(0 0.0)UCftiI


Si .1 0 o I 1>.U
ii II a' H -I I
i 11 u u nH --i wa
II II Z4 U I II
II II -H C II (




oiieeieiieiiniornionoominOnOniniinoninomoinio II 1: *J 14.4 It 13
II to a' os no otoena'toenH.- ontoa'.-Ietoa'r-IentL o a'.4enatoa'o 1100) '-4-04 It 01
04 (^ r- c o r- m f r- r -s r r- r- N r- 0 IJ r- c\i r- 04 r- (D I1 E ) 4 .. t 0 U I


. . . . . . . . . . . . . II -H O C 4 llt


0\ 0- 0- 0- CDi o o o Co 04 04 ( NC N Mn rn n M Ma LO C 1 a) (O --I < -^ 1
II II 1 1 l v O H It
II II (n0)-4. Q II
ii~~ II-'-4) -~ n4 IZ 1
I11I E- Q) --I -
II II ..C in to I
II Oouoiono monne noene iOenoinOinOinOnOcO II (n-0 (n 11
II O Dn c N r m OLr o o m a N mON SO wON D m D c31a a) -1 (n 11
II *. ........................................:* I 11 4 .CC0 I
liIN.4.4-4.o000000oI.-e.eHNNeehiitmnenenaa II ItHE- )etHdQII
III111 Ii I I II t sZ a)0 0 =0
1 w ( : (atE a._j 11


lO R
.4C II
I a II
o II
C 0 II

a II
1E1
H II
0 II I

o II
0
C 0

II *
S0 II





o iI


-14
0.
Ox I a. i
So il
(01 C in i
U. at. a'ni





If -
Z 0 CL
S o
C II
1- 0 i
o II


AUII
S IIl
0 II
V II


V1 i
C 3 II



1 0 1 II
at. U II



X II
Id II
SII
IIi


0) i)


S i


-' II 0) II
SII >I- II
0 n II I.G C II
CM1 II < 0>01 II
I II 10 U II


Nil H0)41
- 11 C) II
I II ii3 5 I
CM II E 0. II



-4 u 11
** II It
l It II
n- >. II
I 11 M 4 I |
*<' C'C C II
Qil 0 0 0)lI
I (0 -4 U II
0 E 030) 1 II





11 D U n
11(01. II
II to II






1:31 i
W 0) ii
S11 0 II
II U > II
IIH M -J II
( II C IIi
H11 II E- 0' II
m II t H
> II S 3 0) II


1 II 0 0 I
0 II 0' b II
Z II 9 U+ II

.4II .4 H
aH CC II
0 > ) 01 0 'II



2 I n iH ) II







o 11
E I n II
ZI 2 II'C

I O C ^ II

'CII
N< II
'-. IIII
(01 0) ~ II
OH > 0)-4flI
.-1i 0)N'CH I
'Cu -I -1O. II
'-'0 (0(0M-lII
(00I
UII


II
II
c aemnm i m imn a' . a. NN a n a 0 wII
c mN a to o N i N o coc i a n Nr 'M e ii N N 0 en N II
wr r- m w tar w w m rcl II
van to N H- to en a r to in Oa N a' 'onaN o '-N en 'a w in o on i -n N0 II
...........................II
000 .C N en('a' to a' N a' i N a' iAN r N r N r g N r N 0 ii
m H enn o a' a' a' a' a' a' a' a' a'a 0 it






e a N N a H to N N H LN a' en r~i N a a C' 0 0 0 0 N 0 C N It
-1 ~ ~ ~ 1 - M 1I




II
II
w4 1; 0D H; en a' N 0; N; a' N nt1nHNe n nN 0 0 0 HN
0O00OO004t HtH N ento omltNl en noOD0000000 N II
HHNH 11
CII



a' N en a' a'w aW N- en N N wa n oi en N- a' a' a' N\ 0 en en enm
0D0 N in H i in 0 H H a -' 0 e e m a' et a' a' an




Ii
II
II
en w 'a n o. N to N~ in N a' a' N to H f n en 'aW '' a n H
0r-000n0.4.4Nnrtoa'er oenNtoar'a'a'a'a'a'a'a ii







c. c; . c; j ; ID 1; Lo 1; . lo D * w, co c; I
q N en in to to to to to to to to to t N ii








coi/i an mu o mwmouoiornoiooi-sammOanouO II
ao' a' in o 'an in al r- to a' eon 0 m M o m o 0 II
0D a, to a' to en 0 O to .o a) a' *N cn a' N ca we en m H en 0 oiI
en 000 cN en e N o a' en in en Lo to m en e n o 0 H 00 0 H toD
if





c tc mao c; c;o rD ; r-w jme oom m rn o Im o
000000000oD-NW N ctom o' .40000000o H ,









I, I m I mI iI
Din La inOis osn Di n Di n Din Diant tn Di O inO in Din Dino OD U I
0s Nr n 0 N-c in N 0- Nt


ON omo.o4.4.4oo.4mo00-..44 Nannenen oa a. i

I I I I I I III


1 1 :1 0 I r lt


1 Z ,44 Ji
X4 a C I = -j a)
a. On r I- H
4 0 1C r 0) II
Z H 44 0 Q. I I II(
(M D' I0

z C E 10 -1 1II
Q.0. )01 U II1
. C I 0 ,0 ~- 0 II.


0 C C II
E- O U-(-1 M II


(-. > a .0 -4 El
O 0) 04Ma11
3 V C 0. I C C 14 II
C E 0 4 3 0 II

SD. - 0 ) E a =

- -'4 > II E
t (1) 1% O II
w 0) 3 U C 3 2 II
H 1 z 1 0 ') 0 II
z Q .I- (w 11
> 0 0Z 'O(C 11I
0 cu 0 II
O t (n Q.0 C 1 II


o fO C; II
)0 0 d 0 II
a 4) > U t II
(tn I rd C II
U a' H II -

En + -4 0 IO r.
0 0 Q) -4 I0l 11
E t 0)- a -4 I

1 0 E- r= 0) -1 II

n' (n i


-' Z 1m 0 0 0 II
(0 wd v ro E ".-' 0:


.i 11 Z U EM 1 II
HII > CO 11
I inO C OC II
C o II *0 011
S to IIo a
E0 II T -0 P -
It 'ii (0 4 1 o


0.H04 1- a (0t0- 0
13 C; It E-D0 -J o0 i-J
HO MD M 14
C II I 0 0 > In
HOi r-ac 20o i ) \ E

refII
a ll in 4 EIdl 'O* ri l I
odal.H * 0'*
En o II -I c
It *ii H AOt.4V I0
0, 0 11 /E1O O H
.411 (003(n14nE HI
II H 1 ii
0 E- II 11 II II
-I II S ,C I E-' > m 0\
Zo B I 0 o0 D
B: II tn QC Q
Cin n- C II
'Ce '0 .41 0)<
t ~ao (Z II
Id c e II Eni II

I i II
Z ii ii
> -H- It
d 4i.'C Ilto 0 0 N r-0 e M to to N r-I
S It a ll o a a ,' Ci aE N E i
0 llI nmena-'rometm eni
S o II . II
C o n en in N in- m i
I0 t II a) CM :3 ii
a E w II H L r- -4 c
II n \ I
S II I
73 II 1 < m o I
0) II H- NM O W in N en en 0 H ll
V ii en C0 NI o i in N- HN 11
C l rI n to in NWi a' H- m e i
(0 4- .1 .* II
a. U *i 0 0.40oin a0o il



II ** I O I < M II
(0 II

ii l o r o S S ii
ii ..Q oS SS o
10)n11 c> 3 1 i

Itii It VO' '-40 14 '- C 'C 'C 'C VO II
(0 0) Ii 0) <)Q -' 0) iC ^.. . 0) 11
S IIS ~~in i-iS II


II
00 C ||

-4 In
od t 0 Co 1



E- O C II
** OH II



( 0 E a) 1i
0 -I 5 S 3t0) ) E II
r-- D Q fci> > 1
-q j




E- 0 V
EE-- 0 D 0 II
DZZ>(nCZ i
W u Ns <0)-1 II
St' ( 0SV 0)I t Ii




Nt O 1E-> II



E- a U I I I I
< u )1
L0 o e- > 0 iI



6 O Q II







in co r f 0 I, m n
H.)0ItH-4E ii
S-H O -'0 II
(0030114(n II
H 0 E- II







(D' M 0 1- 11
~cli C)11a, CD







ri r co r~ I
to (n < i il






CM II
*te 0II














03(r a, M M- ai M CM *l I
1D c a, n 11


T- i C" n I
It I
a- i i iiis s
.4 3 V-' Ii
.U* l ( J40l4) iJ Q
(0 i


in o a'e a a'to to.o a'i

Snmen r0Nin in n II




.II
H H enen 0 to.-'II

memoH H N rnaII
o 'a'e o en a'. (0N W II
en o to W e to -.a'in ni
.400 4 to to n Hi
.-Nn II
** ** ren II


09-4 0)(n555C II
**00 C 0333 It"
C 34' 11I
Idt V -4 0) 4 C 'C 'C 'C V II
0)- 0)= M 0 II
S (0 X (0 in to N- a' II
















0) U
> -I j II

d-4 U0 0
.a 0' I)


20



2>..
II)






a) r. ) IIH
D -. 0a 11

M IIt



S II
E. w
U > II
H- Il II
t Il II






0 II
U 0 II


C. II
0 II

> 0 II






O C-Il

t> M II






-I -4 II
1mm1-


a)
-4C C0










2 0>








-j
U
0.00

















Cd
0)H a :

E- c a
xs 0 0.





> D -J























0) N.0

(11 .
> /2 12


It I M In ) I II
o 0 mo rw >n w 4 r- r- 0 o w m w W r- o to o
INoooI CDmMoo mo. i gwI 4 II
oooooowC'vWLAC'0W.LAe omo8 II C 2 .1

ooooooooooomw or cMnwmp w M 1 aRi
D o rW co r- Ln to o o 1i 11 01


N (n O 10 M Nw-J
D 0IQ 0 10 .I m 11
cm r, ao'aCoa.a, aa,, Il 14 -404) -1 1a

o 1112 wO u 1

o o o o w o m m m e w o ~ e w o N il 1- 0 0' U I


oo ooooooorwnew-cimw> N re~~~~-i-fivnr ll G E5a o (f
* * * ***O *~m n a
oocoooocoooof-tfww'roevw ifir-Mtoocij MC fc<^ > > I
H-NCWIl0 0O) 0) II
II 0.>0. 1/20)01
Ht




b C. r. E 11
11 ji Co E a) 1
a a Q m N m N m rM n a, M LO D M II M 1 I O n -0)11
o 0 m w m 0 0 r- .mm 1 r- 0 N w N N r- .- m It H 00 V) -4 w wJ
oo 0 a 1 0 -W r LO al o 0 LD en1' 0 WD N1 o ONI C -. 0 v-I N o 1~ -4 n w- n I











ooooooooooooi-mt&Dmocor o~o dNNNjric 04 n H Oli -^41
SII 4 0 0 0 0 0n r i n
OOOOO 00000 1~WN W~r4.~.4.. I00NII H 4 1,4- >I. II
IIl 00 : I ) a 0)11





11 E. o4 t o 0 lI
II > > aw 0 1 II
110 0M IItv 1







ooooooooOTC'M nAmoN oinooWN1 NNII > 0- 4R I
. . . 0 . . . . LA N . . . . . >> 0 ) E 0
O 0 0 0 0 0 CD 0 0 CD 0 0D .- I) LD 0 co r- m 0 0 v-i N N N w .4. 0 11



m000000000000*O*O*(*O**0*4II 0 U :CO>E11
*III..0'M0) %4 I

IIm w 0 0 1 II


I tI 4 4|>. U Il
II 0 0 H- n C OI
0 0 LN L 0 n r- a D e n a L 0 0 11 0 f0 cn -4 0 ) 0 n 1 i

1 ; II M 0- Q. C aII
I I I I I I III..0UO0 -'0 11
9-, In- 40)01II


11 0 0 o
-1 a u 4 >n U -J
II 01 H r4 to r.





II .- 0t I a




omomomoLAoL ALomoLAomomoLAAoLnoALLA o II Z U-' 30) ~ 4 M
o LmAO mNOmrmommn m^ OLMm mo m oo2 w j 2 (a -li
. . . . . . . . . . . . . Z3 4- %4~ C
NM NttN tNt-N o oo oo oI--N1-i -N r-c~siNr-r--nn~r- cCiI l-.In%-.0)000.0 II
. . . . . . * * 11 00) v-II 0 I 1
N1 14 1 o4mnm 11 1NNNNn 1w l a) 0 -4 i
II l0) (a a) -i

Sw 0 L I n I a m m 0 0 n (D0 II

II C 0 04 NI -m II
It -'.0 In 0)Z11
S I] v) -') In i tE a it


Il II I M 1
m II m w a, c II
IN amm LAAm0w0"ow w Nmo LA n> m 14m.0 0> II
r- M r N r n r- nMn o r-ONo N '-MO W o 0 o04 2- C IIl
II rw NC w woCo a, 04 II m 0 w0 C II
ii-i- NtL~ i ~ N N A CN i io Coo cnOOO II 1/l .40.E 0 -' 0)13
I E a to 0) -411
0M4cM w a (om aooo m m m m m n a, Ia
I 11130 1:3 -UIl1


r- I r r- e w r- m wP -r II w m r-- t- o- II
r- oo m wr0..0 lM o L C r D w 0 Q. N > UC 1 II

ON 0 a m . W c 0 w W m o o c) o *I a, 0 0 0 C u n i m
ci oooo t rm.o~~ NrCooooooooor lM _*- l>i!
II ~II 0 0. w l
c; NC C' Ib0 C II
LLANN II H; c; M w II
I11 H. IV 0 1 II
>11 a c 0 mII


c> m r- S rr- m i r m ''- m w w o o- "' w00 w ^ m '-' w 1 C ) r. c i
wI w OOm 0- 4i nWWLnrm oooor O a, -I >1 H m 0- >.aa It
II ii. 0U 0) In- ii


11 _j, >M 0 10 E 11
II Il1. 1&.4U E lI





C En 0) II
II ~~~ lII VI'- I s.'
W1 C0I oN 0 LC N4 M LA 0 W 4 11

11 if tod o f
oI m C S S r-ic') LA 1 IC C' ~ LA ') C'. 1 '0 10 0 0 >. In 0 4J .- 0) U
II.. .. .. .. .. I ---->-11





o o o o ^ Cno orooooooooo sgdeemC^^
III IIII.).-'n0)-QI II
II II 0U 0 4-1 >. In
II II> Us 0)V0) II
II .-4 C 0 n ) II
i n In o n iN Wn v4 LA In Wn iNi iN N" 0 v-I "' '" - -40 0" LA" I 0 0) In 4 0. 0) 0 In II'
II.. ... .... ... ....11112> nD n o j O 0.0)0g00)1

I I I II 1' II H0l IS 'O 0- Us*lII




II10 1->U-I
II I0 In .-^a'C^'J H -40)011

mI mI 0) m0- IImw m w w D(
11 NNN N N N C N N C O 1N E-i 1 I d I E0.0 U 1

ll C' a 0) 0).4 a I
II 1;1;c ( c m m 10) 0) V')-4 1
En 1 4 CL En0-. C I

11 lE- 0H ) In-1 -'.-En
aI cI n-. In Ln0W0L 3 D) 1 Ao oc n,4 1


II N-;- 1y o ooO .O . cNNc 'I4 m nmm mn II ;)- 20)at0m-4 Q~
I I11 11 I .~Z m s.0) 0 :II
I I11 En14I0) (a5 a-lit


-< 11 II
0)D..fU O3 00 ||
(a a. n o nc
II CM w C 0
D - 0-I -4
n0 N..4 u n Ua
0)-I 1/2 U s II -
II WZZ>In0 a N

1 i2 O E) II

110 WaS E
oH**M OO Eo 41I

0011 w0 c i II> >
0 H* E- 0 Z


II < E II II i II
*^ I < E I
,A C 1I lio E > I n

II U1CQ Q
w 0I I II
SOil--a


c t 11
34 C4 U W II

II II
E-* i
Z I U
.w ,> .w II tc0 m 0 I

0 li C C4 IL~ WnLO ~
Q 11

ItJ C ooo Mo M,0t0* l
0 11 Lntamc ou
O o . . . .
Co0.0'IoI D-4N iI
(0 *I LAOmS II

w I tin o
V II II
V II v-I A N 0 v-C' v LAC'I

O pII N-- * m * II
Cj a3 0
li r- Cox
II NM I
II ** **
II ** ** mI II
0 II > I n -1 0 1.40.00. ** II


1120 (n 0)1 c ) 3 --'' 0)
3: Q II 3: 1/2 Uo 1/ 3 LA IC< r-< - 3:
II SMC IS


-4 II II
00 C .IIL t II
) c II L II
oil .- E' 0-
)4 ,-4IN

II -, m/ -- ) II

EII 0 0 I -1 0 II
i II1 2 O E i II
m III m 0 II





IL it I- VDII II I W
00IIv M Id 0) = V 0 I) II



S E- I II
40 .. 1I. .






II II
> II- l oo
II E N II
/ O II "I E-I Id. II II I I II













) -iQ 0 E ) II
n l c V II
II II
II * II
S. II II






S II Ain I
















E: SIIi o 3:S / L
HII















0 II
> A

0-IC) >










0 0 14 Hn
0 0 I
n U 11





0- Ol 11
ACL
U4U

















CH (1) C)
5- O'04-H
>4
>1 03 01
> 0142 0.1
(06.




63 < II

0 II
0 II


i h
U> II
H-.- II
U H


H AH <


H -d C II
3 B 0-B


02)3 Ii
a u







>- 01 0.~ iI
H>0 II
S0 0-
HOt II
>'1. II








B< ~:
-Z H .C
3 0.II


K> 0 -U
> on *
UI ^1L,






0M B
0 II
100- B


M CD
E l 0 t o N r OH al 4 n0 to (n 000 M E w H to 0 n D'




M M' w' E H M r- H A M- a N a H 0 w nU HU



-4
En^ 0 to - t^J^o H o 0 N 0 H -- to ^ to N H 0 H W 00t H N H0 Enl 0

0000000000H0H0H 00H*H4N n U' N H U' 0W En03
WHw a I- r- E




En 0 to o En0 E n 0 0 0 H w H n H M a r- n





0 o 0 N 0 to 0 En E n En Nr U' 0 0 N N H to 0 o
wooooooooooo ooowmme awLomm-ooi-i^^'




En U' 0 to fl C; C; N En NEn 0 W WM
00 0 0 00 0 0 0 H H, N N t- N M M 0 to -r-aI
HNH H














w N to 0 H 0 E n H M En w M' 00 N w en t to Ho 0 N cN


N 0 U o0 w 0 w ND N W En 0 H 0 U' W N 0 N 0 U' C 0
owmam ommmmHe H En Eo n W U







0 0 N 0 ooooooooooooooo H r-n j M r-0 0















Cofn momO m; mm* wma moi/i i4mm 1,.
0000 ooHo00000000ooH H N U'0HEnE m0t N
00000000 00000000 H H N E N





NNNNNNNNNNNN N N N N N N N N N N N N N 0




HM 0- to En H- 0 to En H H En to 0- H- Eni to 0 H En to 0 H En to 00 pL
1 I I I I I I I I



0oU 0 'o0U'0 Uo0 o'0 o 0 o' U'0 o' 0 o' o 0
0o U 0N 'No 0 N U ON U'No NU' 0N 00m
------------------------**C
NH HH H0 00o00 00 HH HH NN N N EnEnEnEnW 0.
I I I I I I I I


I, 0 0 0 -I 0
0 0r a)
E- .0 I 0 1 -'


w 3 C 0 CT U
a 0 9 Mr -
13. 10 I-
M = I B- a) 0


UH 0>0 40 W
-4 0 M, U

0.C 01 a
C H 0 C

U 0 > $4
0>C 1 1 00C
-4 0 H 0) $ -4 E
w U] 0 a)-
'0E- 0 E-




-4 4- 4 O n
00 U UMM C
>H 4 Ho

H 0 C0 a H H
> O-a -4


-4 U. 00 C-
C. -4
HM 10 -4
E- H- 0 H u a a
1 0 0
M 44 1c

MaOI 10d
a0V 00





SU 0 0a


II II
HII 0) BI

(B -4CCB 1


I' B 130B
0II 20 )




iIt D C4 It
0 II V) II






I) It 10 -4 U II7
it II r= (1) _I 1
II II
II U II
** II II
B: II II
>- II >. II
Q II 0) B)I
I BI M C l
'CI CACB







z 11 L) e l
DluO0'OB







01> @11 z

;: B 3 O -4 U B
0 II E- 0' 0 B.
2 II >- 0 B 0I










IIx ll 1-4 L

UN B
II 0 II
II HIdI

H 0 0
II 63 > II

IIH ~0 Il

20IIW B-tW I
Mt EI 10 0'~
M I U II C


IIBst' II
u (-1 3
I. CC U1
S < 0) D0 B
lIOUS Bl
U) U 0" ) ~ II
M 1) .2 II

BE-- < IIB
2 112 II
63d I a- B |
WildiH II

U 0 B
II II
II II
CO 0)' I
UH > 0-
HI WN C
'C B I CL0. II

M H B
II II


0 0 N 0 H (D r- r- t M U' 0D NH n N EnM N 0 N to w 0 o
0 Eoo oo0 Co H 0on oN En -O wN M Wto n 0to r- 0








ooo a o o LDm o 0 D ow m lo o w r-o C r-a, wo ao,
000 0 oooooo a, 00to o w 0r-0 E mo U L oo en 0

ooooooooooo~tiumcnret<^m oooooo o< iI


0- D -- i 0Itn0 0 o II
(,II
II
00 0 000 H n 0D 000 En to ND N N ND N N- N- 0n 0C>DC
II
II








ooooooooo ow o mea 0000 N 0 H lw N 00 En En w En N N, c En 00 N1 co U' w'I
0000 to 0 En 0 to 0 U'j -40 U' 0% to H N 0 Nl 000 En ma


N 0 11o





11
II
-------II



0 0 n N En 0 m w 00 m N 0 H t Um w N U' N E o U N 0 0 c









0 0o H N t o En n cD N to N 0o m' En 0 -0 N En 0 N 0 H to o II
0 0Eno 00 E H w 0 N 0N t H Ho N 0






0 0 0 0 0 0 H ,-4 En to Hv U'j Nj En En H En m40 0 to
----------------II













c0 0 00000000 o o o to o N 03 ND 0 0 0 H I
cDe m e r- r r- ol






II
oH~Ot nHOt/OunHOi tomOHin itoOH~nouOHuntO>o B
I I I I I I III



I I I I I III


I (n i a)n I I O
Mn -4 C; s. r. c :
01 0 v1 11
toH.C'CfC Bi-I-

Z O. OH -B

C 0 > M E~ --l
rAC 0) U
0H O00 a il
-. 04 C C 0 II
- I 0 0 iI
2Hh- uW0T 0.10011




0d UD -4 0) = V I
Id C ^ O 0 I
- HO H _ II
- O- 0 -C 0H 11
C;. U]0U r
tC~i 100-OB .10I
HOa ao 11
M 14 0 10 11
2 EOaC)HIIB


00 0 0.- 04 II
't"CCO I OCOBII
M^ w hn ll3
g0 fl0 %-.4
2 -. u 14 ii



C OC U0
0 C 1 0 1 II
z 01 (a 0) II
H> -OHaEU
0M (a -* 0 a E II



> afl 1411
O 0 0 C 0


-. 14 O B4 W


.4 CU 0 B D _
,4 0 0 B



E. ) to o 0 a Co.
10 0) 3 C U C




0 0 0 -4 4 II
co> oC M in c



O-3CO0 awll
0. >H ci 01 i



0 U a 0 0 C II
'aUM *aU II
Nu 4-Ha40 HII
E 10 h 0 UC II


In ~ ~ I -Ic ni
H ( Q 1w
Id C 3 ,C0 II




EH O 4 j M IIV
0 4 IIC
HL Hn 0i Hn a 1 ao a ii







E-- a C I
a 2 0 14 C 04 II
o 10 0i 0a B C I


ai C Ii
100 CL
0 II
C 0II
10 I
0L. H II
H II

H II
a. II
00. II
II


0 II
C 0 II
10 II
0L.0 II
II

-4 11
upa.0 i
B 01I
to C U'II
C 10 II
II
E- II

a II
0 0'.C II
Z 0 &II

C 0 II
0f II
0.0II

T II
0 II
T0 II
C 3 II
10'- 11










0L. U I
P C lII
634 II














0 II
-4* II
a- 3
0 U]II
a o
i0 n












M 0 II
S II
OII


ON II


HH II1

[d e 0 0 > 0) II
to U E- a II
D3 z > II0
tl H w 0 4 0 I
4 00 X 0 0 B
too3 E00N \ B
00 0 14>> BI
Z). 0 E B



E- C 0 0 B
E- 0 -i 0> *! 0
HQ 4 II
HE- C 1 I I II II
CU E B
0i o E- > E n
U0 v >10 IB
Oi to Ol T 3 B^ I
ON DO B

B- II
SII
II

E N o N II
0 Ha to No o E c0 Lo to
c;i~ i m* m, CM O cn MC
-** - * * II
H- H- 0 U' n N H' 00I Hn IIr
mNo LN Ba II
HNN B 1
N rH r- II


S0fn N 0 0 nN IIm
N f c r- 0 N t c0 4 Lo
-~II

-4 o o Ln U-N II
I Ln Bo
Noma cti ro to mN I


-o ro Bn
om

** ** E 1-1
** ** fn n r It
> un un -^ **
( i1010 II
**QQCO SS1l
c -'B
iOaga o> a a a a oa
3 to X to 6 to N 0 II


II -411 i I

B B Om CO Hi
ii on I 0-4 to
u (0 L n to *-i
N 14 en M a) a)
11 o lu * O N H
n C -n-n C a I 1
II *- 0 c 1B
II .NE 3 2000 0 In
II -- II- 4 r IIE
II B 022>UCQ B

II 1 II gH M 0 > >
II oII o 4 w i M 00 a
I oB Ho E E a0 -j C
B O0B IIN. 0 Q.>> E

D c L o 4 0 to a)
B Bon 3.M C3.O IB



ll 11 11 11 it
B Cr. 'DO 0 N

11 WH 00n M< u
I 0- H -) a) It


11 CI II 1A 1 Q
IB 0x 4 o wOl w B





II 0 w wn II m9 c"I a, r-
11B B Hn *E ] B n
B B Ell -Ca BBBB II
BK HI > 'CU B
B6300.Bloa OH 3


B B- aan w 0
B1 E- 1 B









B'CO -B j
B E- 11 B
B2 B1 B em<
B1 63] a- C- 11 w" 0o ( r- NM to to r c^- En Bl


11 C o ll M cs II 3 1 0 0 II ||H t oU'U o 0 N I


II i- II II
II II W H n
II 0 II
II OB II U o'UmHw'.r-B I
II V II BoHHU eMWto HM
II C31Ul *-4n Nto< o00wB
U 10 -l *I*. *. *. *. . .
II OUHB--- oo--- ---- ----------m-
BI X II I HH en B
II BI I IN1 B
II II I II
III ** II
II I *- **- 0 II
Bt OB >10 W**
B -4I O H 0 10 IC
B a mu- -n0 CI OB
B 10 C in c-?41
B -'B0 (O fo Hi a 4 C .C oB
M la B ESE oMto6Ua tr-ES
II II II















II II

-4 II ) II


r- 1'U I
1i H -I U ) I- '
M II QM@H
N 11 ac 11
IIl 0 Ufl



EII 0 II
* II II









I M
S II II
>'II >. II





I U > II
Q II U)0'U II




o i H% 7-i .1 II



U iE- iOt3 I
I II U U II




fl-H- 0 ES 1I
I.I ) II




) 0 II


11 s 11
Ll 1:14 11


Id I II
II U U -
n IIH-.C. II


H 0) II
H0 I D- 1 II
SII E- -II



E II O II
< II 4 11
O II U III
MI MI to 11


II II
II S U+ft II






II II
< II II
W II I
(/11 U) # --I
0 II E-) II





II > (a) -II
H II21 II



W II N fi I1
II O CH II
rI M M II
I( E A I


II I > w I0' w It -<

0 C4 m C to m o w P D m o r-wo .C Ir- NW 0 (- co 00 0 0 0
* II H 0 .-E-'[4 U + H E 0 o to C O
C; C; C; ( c; C; 0' 1 9 C; Lo _; * * z E z -.o a, tr n a ( 910 En to 4)1
oooooo-4- iNCmI r r.I o tww-itor-r--r rIr r~ o l ZWH...'C 0.U II C.. MI 01 i 0 )
amn e e em m o00 -Id *III v-II OC.E--4 0.
H 2 *JE-' -UI II --1>
UM xE c 2 $ II II En H t 4 to
zI 0 U-4.- 9 'l t) rI :O <2n
c1 O .0 C UitII II d i -4 U. ) I 'U *i co H2DUco s \
0ON 0 Q o r- r-o 0 eCoWr-oC4m nnmw N wo mowmy (P c I MU )- H co 11 wI O U> >)
m Lo wL a'm -wo0m o o 0 mwwom oC> or wpr-co3 m wm 11 en II O1O (Uma )
0 w m m n a to i01r-o r-mN1M U 1 N m II o I* *H E-*O E-0
^looortC a Nowo'm r-onmoeCM~oooooi- II 2 .O*JUN CoI 0< n Ii
* * * L w* *N* m* * * C o ll aB a L H r. Q _; -14 =
W0000r-000 0*NW-r4tNot>omWOOOOOOOOr, I HC .I >i ll HII E-IIO I


V II) 11 U) 11 O < U
~~ ~II Ut >. U). 0 'UIIH / IuI H 1-E-
.....II -I 4IO -'-4>.'II 'U -* 1WH I UI
0000 0O- -4NW N~W~r.~.I. I 11 II # U I- OH I 0.') 11 12
II [kr D. r -H E v) co I l o E- > in
II .COE a ) M i; w m in a) 14



wr o m ne os o w so ~ a ~ e o ~ oo wo o II)- I0-. U~sfl 'U)h.' II an -mWMWMU
N nNLOGr- o o o moow om tw o t II C.wD 1 E 3w C II D o I C *I

o o o oo o o .wt- N esonsaer or-o flm r^ - - -i a t I st's>ON*r-J L.i O II U4 II (GllM t
mww ww i tc r- r- r- r- r- r- c r- r- r- or 3-)C 3 E ll V A
II i_. ( *J n r -i I 11 11-
aII wM v''U E-0 II
II C7< )0( C) IIZ OI IIl
It > a) U4 U) C Z .. I Co r- en Lo Lo 'U L
ll i > SJ C a I ) U A II f^ co Wo 9
0000000000-44m 0o =l (s *901 cIi a, co 0. --or fn0Ctr
rt 1 cn n o N eon n o 4 omor m onmo o II 0t0 m. r d m CM II a o IZ . . 1 0
ooooocsinvemanmor-c^MO(ni/no-socooo mei^ Il >-HC 0 u 11 co ll i--ow0on-r
a * C. CD m w .* **I|to Qm rBU Cm N II w D >II wa co 11 r 1(
Sr l-- C11 I II w-u r-- w
Ii 0,)J' (D Ui ~ IC0'-~~
II UU-0o *I- II w I
II 0 WU U 0 II = O Ia
~ I10W .-H-4'U II Xli o I oc
'I io *mr'U w c )l II toe o a o1 1
N-i 4 0 (D C C; C04 II C 3\ 11 ( m m m mI nm -4
n r- N rw ~ir- r]r- N C r-Nc)r- Nir- Mr- CMr- ( r- ~- N r- o IIE-*r 10 0tin 0 C II (l m

e m m mmHe m e1 1C o D l tII O f r U ) 11 II CO
.R c 'O M Q I II Id IINC
N -.- -i t-io o co o o o o ^rH.- TtMCMCMC' N tm imm t 11 4f lQA' v II II 0
1 1 1 1 1 1 1 M '-I0 0 C II I
II U M r U )0 ( II II ** ** U)
II E- CD CD m *CD 0 + CID 0w 11 > i n r 0
II .- i a 11 I lt) (D )S-
o0o-ou ot0 omoU n omoo o O o oO oioo oionoo NZII -I 0 1I U 0 II **QQIC OI
a r- (\O-4I 0 0 r- 0N 0 r 00i r- CDo4 j r- 0 I u rE o c, r-i (C t -

I III I I In 0 E 0.w II II
ta Uhu) toE a -'I I


I I 1 t ) I 0' II
II -)4 -j ,.C IIr

. . . . . . . . . . . . . .O II 0.0 O ', 11
o o -Go D A c oal (' N ,co o m M r- r- oo E II
o o m M o r- r- co r- r-m 0 r- m O II 0 .' II



II C; 0 0 II
II 3 0 'U II
a, OI I CO a, a0a 1 1
IIt W 0 0 U I
wLr o r ( r n II w M w C = 1 11
a I Hs3o p OLO U)- ) H- )

S.n ... o r.... C... 1 0 r- M 0 -" 4 I





S0 0 0 0 0 U II










lII 0 Il I I I l 0 '
0 o i- r. r. O il




II ZL) -0 1 U 0 II


.. . . ....... .... "1 p i c
S* l l ICO a.1 m &l
11 4 >-J c n a nI





H40 I I- 'U 0.11
I IH fiO'JL II







H-. -I U) -4 -J U) -J .- II
C o o ^ C r r II. 5:Z S!) %4



l ~~~~ ~I t12 llli l fl.ld M'O E0.-')ll


4 II II
.-'C II r- II
M B.II U -I C II
II U C O II
o II -) II
0 II ,- . -... II
0 1, U 2 II,'U U) II
-4 I1 U E- --I4 Hi II


D 0
II m > 0C II

; -(1I M ,,0 ) 0
C I or S *U = S II







-4 EU) II
I0n 0 f E .>> II
M oL4 U C > ) II



o II H II



II j r II



L m-n m Q II
1 II -'U II









II II


H- 0
Z -n It II



C o II 0-4-40- M 0 o N II




U) II I- 1 0' NM v-I W O (- 0 II


U II
&4 It


to

15 i:
10 II
m n
ID II
E II
S II

U) II
O II
0 II
2 II

II I)
E 11

co l
E II







II w
II



II
i II
II

II




II
** -* II




-^ 11
C O II
o'm n
o S ll


) U 11-





o -' -- II


) 0' U) II











OE 3:
,II











0 "
S II
> II
























-1 I
(d H*^ C
S )















0)

-10 C

3 0)1



se &
>9

E U t)


MW U













E- 4>
.-4 U 0)
C b.








0)



u>
H -1Z
E- 0) O'--









0 E
-I-
0 3


CU U.4




caC-



0 r ) -
> w-4
0)N.

C ca-^


II 1 0 ) I 0 I


.N..... .N..e..e.w A .w .. .. .o 0 0 c, .f II

"0W0 NNN"Wm eN O ,-4n0ONWNNro I Ha to 0.- 110
. . . . . .. . . . . . . ... E- 9 0 0 10 4" )<



0 $ 0 C 0) C "- 411
A. z 0 .-I -0 I
SmL i m w Nw -II C C Io o II
m e o wemN- wrnmN0'e ao0'-W nOCN i W r II Ha1H n0 0) 1 .0



N0 D 0 en 0 io e) i o N Q 0 Q n o N 0 N 4 en 0' c 0' in w in ) 4 -1I
OOOO- OOO OOOI ,-4ifl-f,-4r0r --. 1
-4IIII 11 0O .E1C 0 E 0
LU)l0 0 > 0) M ll II
I< 1 0. I 0 C I
1 0 44(d )110
In 0w --i< E 11
0 04 i N N O N 0o 0 011



C,1 04 OM W W ) mW 3 U o E I
II ) o (0 H- 4 II
> 10 0) T3 II0

N4 in- -4-4 N 0 LA in in M N> in N 1 N r- n N 0 II 0 0) en W 0 C en a .
-0. w N n N r N N W ND &D Mo N co 04 L L A 03 r- o 1 0 (a oI .-- pi C II
CD D 0 N C oooo,1 n WMinOfi r i~roo~o 0 00 W W > C C O > 11

IIH 0) C .. 1 II


i* c0o C;0 )C II
1 1 1 .3 4 3 j 0 ) -4
N r- r- r N r r- r- r NNr r- N r- NN o E- MO UC .


m11 IoI I 10-1 a 0 0 C II

II= 0) -c 0i C
I j0 E n 0 )
onomono oioionoinO mOinoinOLAo oo II 0 1.04 01 II
oNLANoNLANNLAN ONLAN ON NNo c-o O H a.-f --
N-4 N -4 oooo -oo o W- r- NNNNWnom enoo I M M- 0M m E )H.
1 1 1 1 1 1 1 1 II Z ( 0 )U 0 1II1
II w ( n fo 1 : ll


II II II
- ) II 0 II
o 4- ^c I co co r- eni a, r- a, r- r n co tD cD a, o cD a,^ o m r- on m w/ / o

r~ r< d h I . . . . . . . . . . . .
0) > 4) C4 -4~ n Nin M0' MCMn4M i inen in :'c; ',-AN0


(N O. I - 0) j o -I.C W C~n'0 LO ec L mo m00w 'c N0'0'mLALAm.N4
I H ON30 0 -4NNN oNmNN-em ene nm enDwoLAN CNa coW c o
3I II -o1
II U II I** * * * * * *

II q II a o II
I E II
> H >1 0 II
** 11 II r;
II II 11 n
> I j a r o C m N> cNNa3 0co O o mc m.n om i Ni o l

13 3 w Um m 0) w ) 4 0 0 c0 0 0 m oom i in in 0 II
On p .o .- N .- I'II
H b. 0 II
ON0 E I
f 1 0 II1
II O0 II II
fl U II II


IIH II.4w oN w-o NiN II
H 0u 0- 0nN r- 0' 04 0 Nen LA N- -40 -0 M C \ en e N ee

-'II O E1 ) II -4 4 4 4 4 4 4 4 4 4- - - - 0 N .H N s I
w 0 w en w in!)


D o- o l H IID o C\ o ma o



to 11C U t a)-^ 11 t- c; c; c>, c; o ooc; c; cimr; rn o DO
M It E-
.-40 C U


H M > HII
CI C 0 N nAONiNiininOwnoNm4w-inmineninLALoA
.4) '- 0 -440 0 0-4 0 00 --44-HN 0 0N en 0' 0




Ca it 0 (DI 40 0 0 0 0 0 0 0 0 0 0 c in o0 I C one n I




C o & . W r. o* 11
01-10)3 0 ooo







N C II
XH)1: 0I II
HII > 0I II
H II' I0 II





211 .4-AL 11 in in LAL ni ni ALAL AL AL nini Ai AL A
No I I II


O C N NNNNN NNNN NNNN NNNN NNNNO
at II II I I I I I I I I III
S II III
'C 0IO I II


0') I II


I 0I E 0 1) I 0
Ca-O ICv II
%.d O n c
1. 0. C C II
E- -. 0 I 0 0) 0) a 1 I

S0 .t4 0 100 t)
0H 00 0I 0


0 C E00)0 )
Q. 01 C U a)


-4 CO 0 11

,o > DO O o IIn
2 0 > 0 c c ll
0 C I C C 10 0)
- 0) 04 0 1 0 II
'Q. I EOC0

= Cr-4 a) C
p. 0 m). a)01
j -4 > 0j )


0) 0) C ) 0 C C II
-> 0 C 0 II )
2 .4 0 C0 0
0 0) e C 0 4 II

.0 1 0 >


p. *4 >. U -4
pC 1. H -4 0) 11
-) 0 4 0j

- IC '-. 0 0 U C C II

S.-I. 0) C 11


)0) W 0] II


0 0- 0 0 0 -IQ II
.J 2 0) 1. 0) 0 Z 1
Ca N 10 0o E a. 11


as o i II it -
MARY 0 l
0ow CO
o0 .0 -4
CO)L~en -41

C E- --I 0 1 I
n) N w0 0 0) m m

.n C. Or MI 4 e> >
)D C L) -0. E0
D 00 2 0 C II
o S O 22 > B II
n r 1 m O E <1 1
O.C I o 2 0 \ E 1I
W 1C4 (0 II>> II
o ili** O tO t II
Co ll mn C0 ) II
to l MI H Q i lB't O E II
)4 LO 1 E 01 0 II

0- rn UN o H) II
II L A E- 0 II
II E- < Id II II li II
*III &/ .C II n E > 0) S II
0) n o 4 C II
II 0 I










914p ,)
W C .. . I
< ( E E I E r
II I
E- II
2 II
.4 .C II 3 LA LA 0'N LA i 0e o N LA I
0 p.C II 0' 0T' 0'm NM me ,H LA II
0 II in N- LAN en o in MO iI
2; o || . *. . *.*. .
Co IIxcoom~amnomi
(a I n 0 I
CLol II
*-C II II
II II
#O 11 r w ~ o > II
0) II N .H N en N in Ce N e II
S II n o ri t0 LA 0 C3 II
C 3 I LA VN LA LA N 0' I
p. U II en-40 .1 C n N en
XO I NM -I 00 0


II I
II -11 I

-1 0 || Q CII
010)i IC 3.4 I
Ca 0) II 0) .4' 0) at 3 0)' II^J f^
Z II Z Ca X C N L in C II
II II


I t II
I CVMw C 0
n CMN CO II
Oil 0-I
Co aH ) -4 W 1
c I Ca (a 11
p. I 1 M 0 II
M 0 r= a) If
It Xn W E-0 1 >
II 2 2 > 1CD 3
II WHzS>1 0C: I
II CaH : 0)1 -V ) (D


C' 14 0 'OV *OJ '0 rD
II E- W Q 1 11> |
CAIMcnm ig- l9 t n
If .4 00z II
0r *I O E- O U C II
Co -.NUM Cr- 0) II
0-*I H 0.- 4 l 0 II
p. iI E-.O ..JW.m II
S HC IIE
EI b IdW II II II II
II 4-J ,C I C nnE- > 0 G
(d lr-NC () W 11




r. if co QI
o II
x 1C 00 II





.1 O l . . .
II I

Z (Q 11 H m a m o
0F l M - CD a* 0 r- 0
S o II . . . . .
Co lII *(oodmarmr II
1 *-i II IIo
ll II

3 0 III
C II N o n f II


0U)- L) oo M.No
X II I I I(M r
H I I
II II
0) IIe N **n a 4 0 II



II ** ** N 0 II
)- >ill *.. .
I I IN 0c
1:4 I} | D 4J( ;3 - J ( II

S II SII



II II
















o >.- j j






0 0l




I I o -i
NM 2 a.




H O







>H >











II )C )
I II
o 11 K- 01a1 11

















< II

II
H U >
121E- 11 o<













M n 11 i -11
*o c >-1
Hf l C


II
II
0 00 N En C C to tW t 0 to En to to to N 0M N I tofn 0 D
0o o0o 00 m m m o- N N N N N 0 t to m Nw to- r0
0000 En D m C -w C -w N o N 0 toto Cm mtwo En N En Co N- CD
000000 D ECDDCD n toD 0D -14 N D 0n toD 0 o C 0 N L to C N 0I
; ; C C C; C a,* _; N En N C0 0 0 0 0 0 0 0 0 .I
4 n .0 a a, u "ll
011
-4II
11
11

0 N t 0 N .w C .CD N C C 0 En 00 N N En N 11

00 0 t W Ct E 0W1 to .-4 N o 4 n N II
II
00 00 CD CD N 0 -4 N~ En N toC- 0 tO 0 N4 -1 N CN .4 C NII
- - - - II
0000000 00 .-4N to -4-40 t o to-4 00 0 wN


cooo omw eow ~ amm ONM N~c II
-i N II

II

0 0 E C a In m En N En 0 N 0 W 00 tO 00 to En C to to to II
0 0 N to N tof 04r 0D t CM r 4 C C0 to En N N mw N 0 to to II
000000 .4 N W N En C N N N to En C N 00 .4 E w to w t ID
II
II
II
II


coo o m or 4 o En o -i-im xN w mo A o o to t o o II-m

oo oo000n0 -to0EmnotO0ONo0NotoN0 II


ooooo00-4-; Entc;tr;NCtoCnto-44 0- 4-4-4C; II
-II



00 0 0 0 0 4 n N n N En NA 0A 0 0 0 0 .4it
m II

II
II



II
-` 00 I7 I! I I I I C
II









otootoinoitoitoitot ootoitotootooo II
oN to N ON O N to M C~N ON(tonr-oN to No C, 4-i C;i 0- OO OO O -ir -1 4- C C-4M C-4 I' Mn Mn cI M iDO

IN -44-- 0 0 0 A 0 -- - - N N ND N En En En En 0 C a. a
(D I N I r I N m r1
C~ ~ ~ ~ ~~~~~I 1 ;C ;; 1 iC4enm 0


" Qo to N to o N t0 0 r- w to to 0 0 C NMN N W to 0 0
0 -1 0 to 0o o 4 Ni IN I^ a, N c n m to w w En to n Go to 0 11
0 W4 CA LO W to D4 m 0 C E n to 0-40 n a) 0 0, 0,0,0, to En 0D If
En ~ ~ ~ ~ eq to toN0 nt rn-C- n r 00 it
OC ;ooOC; io o .- ii 4 4 N En Enato;N0-N C00CSto 0o
--ooooB -wmNoo w 0




oooocooOooooooon ni 11
or o w in aIn m w In w o wc o m O 11
o oiD 0~ (M w wr> L> -0

-4 3 0 -4 -1m w r- m t w w Q w rIn I 1 r- II

SII



L O o o A o En Doo 0o tE G N C N N 0 LI 0 a 0 N 0
0 En C 0 w to to m 00 to 0 N N En to A C N to C N Ni to (t to to I
0 to w to N w 0 NI EN C- En 0 to 0 N N 00 to N toW II


CD 4-- 0CD.-CD 0 .-4 En toIn ten .D toe C, 0 to C toto


II
OOOO 0O00 000o ,NN ~ ,0C~ II






II




II
to 0 ; to N r0W C; to N ; N ; 4; to to to 01 to- 04 -4 it



t o I 0 En w0 to w CI^ to N 0 w En 0N00oo C 0 0 0n mo K
OOOOOOOOOOOO-4-i. N En ototo N 0tmo toW n




-i N
to to . En to N N 0 to 00 to to 0 C N C to 00 .
to4 0 C1 to En to N N to 0 to N3 N1 to C N to tow oC n0 0
III


to toi toi to itot to o to t to t too toi ito to i to to to to to to to to o I
NN N N NN NNN N NN NN NN NN NN NO II






ommO oOLnnommesmoOmtoiootnooo
* I I I I I I II a


j0 -4 -i4~
0 v 10 -K
w 914 c jnO If
a. on r. o rn
EL r. 0 I 10 1
11M 0M .4 1 II
ZH o j U.In 00
0 0- 01 C r-_ a



ZH c; W m --4 4
a -' 0' M
13 110' *O K


0wC 0 ( 010



a)O4 0 E a)
HOE-4Zw 11K
C' 110 II
S < 20.4-io 2 E O -U ailm
HOM-O c -11H>.1 i




(n 0 (a lZ O C 11
E j q C w0 0 -
O N > 0. 0 4 i
0 0.I 10)01






0n 91 a) z< V It
..C0 04 E
U 11.4 11
n >C n 0 4-41 0 I4
-4 U-. -I>a2K 0
44 10n

H ILID n a 4 -
0'01X'B. -. 00c
>-' 0 001 m ,I
511 -0001 II
2 10 i0 l
O WOMH OHa c /



S0 4 m. 0 u II
U C C CC 0


> )0 0 tI 0K
t 0. 1 a 1 1
M. -> U Ia




U En0 -
r- ( C llll



E- a)I- In O UC
0.4 -
0 0 H D 0 1 11
-40 l-I 0. K
(0 11 .0 E

tE a- I0. I N
HO no- C01-4
10 00E l)1-40 -
-'. 0 411K



0- 2 0 14 0 3=. 11
Ea d 0 1o E 01 l l1


I V 0 01 t 0'
to -4 a r. 0 0

a. o no -ai



w 0 3 ,,






0 o U -4 In nc
0c m c n ,.a



H c &o >, $1
-- E o 0 O'-P 0
r0 O 1 1- c- (a





a) C l0 (1
< c ,. i o
0. >0 a 0 t0 C
HonO w 11U

S0. 0 o
r01 n. w .>

4 CO $10
O> W0- U4 C SM


M> 1.4- > 2



.u 0a 0001

51 -1 -' 00-j





>) 11 -4

a M 1 0 H W 0 0






W 1 o a m E -I


to
Co


-4
0























4
*-4
-. C





















m a












0
M 0



-4





40-







0-1


-I II
IIno. CO
olr- 0
4 II 0 It 0 -4
C O If -4 (0
10 u) )O t4
0 3 2 .411
K cO4-0.1
KI DZZ>m0D
K1 taHS 10400
II 402 sn 01
0it UO E-
.K 10 20 1 o a o
-l it D 0 a>>
c 113!C. x -401.E

0-K H40 0.-n
oi** PO C CSS-<\
9oL. 1H Q > >

cOn -l d IO oll -


K H .4>
>4 =~KK


-'K 40
o .0Kto> >0 m
C10.Nt 01-'.i < ClO 0
KC E-n0-j D- 0
i e If EO-) I E I
; 11 11 ll
If 4 uS

O o E- > V
Stal 1. r- ta 0) .-4




> 4 II
3 0


0 0 ( I 01 WEn to 01 0
2 -H N N
fl,-*J lo a o r ItD r*r
0 II
niiCo cor fo

01 II C t 0 0 e W
4 *II c r
n C 0M t o 0> r r -
CLj L D os^




a 0 II
IN r.

gumLo ov n
-IImLm o N I
HO o DO litlo on




II ---* *
S** ** C C


en
En
0



0/
N-


0)II > U) w -I ** ** ** **
01K C 30-

11 -401`3CC.0
.> 10 K 0O n- ....0.0.0.0.S'

3 II 32p oi


0
0 -4
W in c0 I
02 .41 C O
13 t 00 01
-4i



0 $< > >



c d c o 1 ac ) ai
0ZW>4^-I 0. 11
















D5Zows N ii
C2 2n> n2 cK

















**0 *o*a a1
E C 0 > v

















N DJ 0 0J 01 a"
= MMU 14 0)

Er- 3 o o 0 u,<)
>nOco 4 a B E

N to4 > 3, n















2 co 10 QJ -i g
En* ta (M 3- I
Nto n0
r I D Ki I n



WN^'w f flc~-4 r Kr*





Nto fto n No N to En Cto E n




0 N I m N C 0
N- En En En 0D N- to o

-Ii
En .. 0 C




> W w --I .. .. .. .. ..
000r.MESSSI
>0 I
0 3 .j j
on 0-1 4D. .0.n
01.4(D^ 0150 .4.44. 01K -*(
Slta C02O^Cto to C 3S


1)

>.4



040
-j10 -
z3 1
E a.






UN
0.


















U U 1
DC-
PS






E>411















01)H
6.- ~ II
-, 0 1 II
Cu-I OJ
7 11
2B o.u

1 H
U


IIt


(D M a) 11

>u
>.
U HJ*
0.0 Ul
H0 0' 0)
M 3 II
E- 0' 01 I- II
.-) 01 S 01 II






M I II
aL 0 11
0 II







61
01 II
0 > 11
I- --I. 11
W M
E- Cu0 '-- U
6] H H 0' 11

O E 01- II
..1 0 II
3 U II
c II
4C~ II




S3 II
U 0' 01- -I
H01 II

1-1 i II
E-* H




S-I H
S 0 0-. I
0.-II

0 II
(L ~






M 01 -
0 N .0 II
C O II


II
II


vi:
004 H ')a,04~ C- C, I C' ~0 ',~ 4a, 0 a, 00 N 04 a
o0 r- o H DB0 ,0I w o aCD r- N a r m- m o 0
0 C', 00 M H M') N w N4 04 a, H, 04 U N 0 w II n 0I






ooooooooooooooooo ~ooocu~i>(rmi ou-
H NM w I C 0 II

IIt
0 ~ ~ ~ ~ ~ V C'- C4 ,U ,a 0 NI Ua W C) r') NM, a, I









ooQooooocoooo o ooD-""n~n ~ r--l
0; C) In 0; H N c, In ; o, o' a, w') 0a, ,0I nIn~ H H 0I n


00 H o O O O O N w m U, In 04 m. 0- r- r- r- Lo HD

N f- m- II
II


11
o w Dm 0 m c m e ~ o w m n r o o oo o D l








0 a, a, o N N o U, a, o- o a, o) ) H 4 H w 4 o In n
oooooooooooooo.merM(mer.-o(me wallj




So oooooooooooooooooo r- N r- a
-------II




















0 00 0 0 0 OH M W W M CO fn (H N In C', O N 0 1
oc;Nw m mc mm;a c;cl c c ( m
H- ~ II























0 r- 00C U, 0- o H I N 0 H C 0 In 0 0r 0 c U, 0 II
0M H-l C) C 0 H C') N C; C ; O In 0 0 H H In C" Ci m U, 0 U, II
- - - - -II
HII


~ II


* * **I*I* * * * * **I* II


0U,0 ,0U 0U, U,0 ,0U, U,0 ,0U OU, UO II
-------II
I I I I I I III


M c' M w 0 C M N r- N a4 NU 0 C',aC I )o- 0 0
0 W M' 04 N H 0 M, W4 do 0 M W. M' N W W ,Na 0 a, WU 0
In C') C; q N 04 C"C)H I C') M, a,)' In* 0: C- U, o, a 4L, C')
n Ua 04 do w nU l O 0N )', U, a, r- a 0 e N M NAN In 0 rC- Go UL al0

)-4 H- N co U, ,- a% 0
I-





Lo r-00 a,- C r LOU Nco 4D r- 0 C) cM rn co c r mo to
oooo ~ooooo oooooo -*-iri(M aorecmenw
w0 n U, H N 0 a, 14C)Ha w 00 L O M i 4
InC'-0 C; -C C; I ; C;aI C; 1-H0 C') C' 4C' en, 4






M 4 (%1 1-4 HNj C- ON N H H H H N O U H N r o 0 C' In l LO CN HW M
oooo ooooooo oooowwwwtiiicCM ^'rn ooMOm fman

00 H HD H' Ho N4 L Lo Lo co 4D n a, U, C, Lo r' C)
C') H N< H N N 0 04 04 0n N < H M H S In 00 )', 0 0 MC') _' M U, 0 N N
N N0 U ,N 0 0 a, 04N C; a w 0
n M





M' w, H M H 0 C'- 0 C'- In 04M 0 w ' CD In C) H M M CD) 00
w M' In U a'0 cm 9% co0 a P r4~ 0n a, U, r U, M' N C') 0 U,
N 0D 4 000 HD HD 0 00 HD ND ND UI C '4 t a, (D N C14 H 004
0000000000000000000; H N '< a 04 a, Ln









Oi/i~nO~O~nOn ~ w nO w wO O on OO
N Nl C- N C- N C-N C'- N N c'- N C,4 N N r- N N CD 0
Hoo I n w LO M In Lo Ho Cn LO Ho Cn a, H M' In o 0

N; H H4 H H4 0000 0 H C) C') C) In




0 U,0U 0 U, 0 U, 0 U, 0U 0 U, 0 D U, a U, 0 U, 0U 0 U, D0
0 I": U, N 0 r' U, N 0 N Uj C0 N U, -0 N -: C 0 N r, C'.O O
N4 H H D H H 00 0 0 H HD H H 1 N l N \ N l en M' en, en) C CO C .
I I I I I I I Im e w e m o


I i in (I I 0 II


0. 0 f -' 011
S %I c: r. a)it
CE- 1. 0 0 01 II
Z 44l .i 91 I.n 10 if
6) H01 HD1I)
o -i 0' II
M QC ? i r u 1


P 0o-1 Z vo C c7"i
E 0-40 0 H II
H O0 M- -l11l
C 0 l () 11

0 E0 < 1 u l
ZO 20-)-C/1II


0 4' 4 c 1 c111
HO C/.I-46.I-.lIl
E- --I C 0 -< II
0 Cu I-0 C (U II
aw 3I 0 cz m
0 I r.L I 0 E l

0 (.011.. a) 11
01 %a V) II
2 '05E- ii-4 3 i
0 r>. C a00) ii
H -a ( >a lE
0 01 U C. w 2 II
1.4 a) r.- l II
S U 0 1. 1 O IIl

Z). -4u II
0 .CuO/E- .1 / II








CO j --10 l 1 1
M0 U, 1
H C %, M O 1-. II



0 4) -4 -i M a ID i


.- 00 w j( .-4 111I
In CL I r.





H Hm


O oi .ii c i
I j a) E -4 11
--1 4 H C 0 II
I C 0C 0 a II





S 0 i 0 4 A11
S0 0 U4 0W II
E 0 1 4. 1 II
Q.tJU U C |^ II


S1 CO lu IIl

(/1.4014 C-/It II
-d 0 i 4 ? II

40 0 c 01 U 11
10 a) -1 C I -r 1
VI U-l 0." C s II



CuH 2 01 Cu-. II

-J C 0 II
Ci ( C 0 I n
H 1 r- r- 0) *J

10 E- E il )^ .
-i z I0 L4a
03 id M 1 .-


I 'A a ) 1 I '
MH -iC O
Sj = E *4
0-. 010 .-
H 0. C C .-' I-






.. -1 ( O 0 10
., 1 E 10 -1 ..

Z %0.4 'a I ,-
-- 0 S-.- *- 1
C m m mi ,0 ,
Ho )o LII 0.0101

zO 0 U III

E-0 0 0 0

v. > 0 Mu

1 =- 0 E 01
H0 E- %4 :3 1-4
1 a> 0 (a r. (I.)
1- -1 _-4 > -J E
j 'o -4 CIO
0 Q.) r 0
H 14 M 0



C lO 6r ul au ) C

cd C 0 C 0 >
M (0 C -4


S U 11
U) 44 M 0 C






C E0 4 ) H 0 0
E- a 0E j
j1 0 s. w o M


-41
.-I. II
Cu 0. II
0 II
00 II
HC II





4114
.40 II



(D
Cu 0 CD II


oil
0 II
S II
C II
0.. H, II



















-41
CO0.4.0 II
II





O il
0 II




1. 10. 1 I
Z II
E- II
C .0 II
O 0 II


(Lu ,-1



H II
'011


01 iI
0 oII
O H II
Cu -411C
0. <0 (iI


XII
3 II
0 1 II
C II
E C II








4 Cu II
O II
S onl



*O I
0) II
#o

C 3l
M0 ^
U
IId

ID
10 I
*- i0 II
S I

II


II
r- 0 II
CM C II
H CO II
*U O, H II
Cm -'-. II
00 -0 II
wd t o0 a) (D I
W 0 E- -0. a i II
M Z > wC II
COH6I0CuLI II
0 HM 0 11
DW Z0 1E w I
H 0O 1O E I
646.CuH01.4 II
CO Q > 1
- O (a o II
UC'U< Cu 01 II
H.40CuH'E II
E- 0 O O II

COUZCICI.C/ II
H .-E- II
E- 3 0 a) 11 I 0 II
ME- E-

H4CO 01 II
oma E- > II
co e 0 Q.-1 S I
* II



inCD cl 0 C\I a,11
UN 'H I1
.401 II
C0. B; II


HII


N C" 04 ; HN aU, 04In*
II







InH 4 a, U, r- 04 co
HC 040 C rIn CW N- r- H
S.H N N n U oa a II.
C') H- 00 cn C'. C- I n C' I
--****a,-II
I II
IM
01.4 01 .cI . a r-J 01 II

cn o cM C o ra o r-n c II
m -o o ^'if r^ ~- il
I to CD
I w


** ** ti i
> n rn -4 ** II
(a (D i 0 11


(D E- 0) be Z <) j- J -i j w
Ea C tO 4 LO r co II


1 -I II II
II .C II w e II
1 ( i t CD it
II l .IIHN C II
II UCH 00 II
i O il * O I II
II 00 1 .L)
0 u rM .J. 0
N *0 V 0 I
-Il c: E- -I0 1-. II
C (n Z n C It
H tw/D R [I- -CD 9-1m V) 11


11 E- 0 v 0 v
E- 0ZZ> a) 0

II C II ItH01 E
II II .0 Z0 '001lu I n



II o O H dIE-0.'0 -'0 II
Co WalleU< E nl (U
10 MA IO H 9>> Q O.-'
II I o C*< OU W I..II II
Ol Co l U E- 0 0 ^a --

n II H i E- II
II i E- tU 11 I II

II I N Q 0- II
II t II t 4* |> w
IIt w aC. 10 to II 1 |

11 (a 11 t 1
lIS .-)1 II 1
lIIE- II I
II Z -11
II~~~ 0. .OOiI ^r Dt oc -i w -,m*
11l0 0 1 1.1


II Cu OIl iO OI
II 0 II D C I

II II I
II 1-I Ia
II 0u00
II '01I*On ,C-~
II (U O tn II II I r- ) nw D IID


II C 11 3 lCfn ino 0i4i i I
II 0 1 I . . . . .
II CII 0 0 i

II II -



JII :3 11 CI.
II .-JII o--0000memoE lul





II 0 nI c1wn. s r. NH
cII CaO-' se m 3 -'- J-'0 a
II ZIICO)uInr-aZII





I1 II *


0) II
> .-j -J II
*J 0' 11 II
u -H U II
H 01 1.4 II
u 01 II
E 0.11
C II
U II

0. II
0.0 0 II
>, II

C C CII








SU-4 -j

a) 3H '
1. II1
acm "














> 0' 0--I
41 N X;
- 3 II



II


H Il







t 0 11
E- Li II
O I I0 II



CCO II
















) II









>O-'II
0 ) II
0-400 6-
0 3: 41 11





I







(2 H



C CC II
a r .
-40) %m a) If
LI IL11











Cab II
1: II
=3 S. o)














IE M
= 0) II
U>
U j I1







E- 0S 0 II
:51 0)- S








0 0 It.













>1
a)N r.
SM II
Cau-' II










CCII
6 0) 01-
0'U

U 0U 0)- II




S- 00.D'



> 0) -41



Ca Ca I


o0 N -4 N N Ir a' A w Nw o N C N N Co r-N o m w o



v-I CM CD LN 0
F-1




o0 n m 0 a co L OMo C 0 rN L w Co V LA em en N L C
o en LA 0( CO LA C D 0CN e 0LA LAW I-1OLALA








0 -I V a' 04 In C 0 V C ND C C C N a n Vw N w w w m D r- N rN
o CD - (D -1 m-w r- c" N aN LCD -4 eD on r- N V
ooooooooooooooooo00 0 0 -NenLenNONN
(N en n V







oooooooooooooooooooo(N mo
0 M w en V 0 V en N en en (n LA a' 0 a' 4V vI LA r- Nr- N D WA L







IA LA LA A A w LA A L LA LA LA LA LA w LA w LACLALA LA


N -4 -1-14a---------D-I-1- 4 N N N en en e we




oanw owwomc wiwomoL Dw3o m Q Co, D
0oor L r- 0 n 0 Co r- o0 n r M 0 4 m0 r- o Mi LA r-0
CI l l a l l ; I I I
IoII oo oooIIII~m o


If
en N0 Wa'(m LAN .- N N CN LA 0 en Go Mn o wD en N n 0
0 N N or.- r-I I a' .-i a5 0W en en M N M N W A N C. 0 C w t- o
q.LA C a' i- N LA W 0 N M LA M en CMa N LA N N LA 0 N W- L 0 0



In
en 0 L L C14 LA 04 N en en LA e ,n LA LA L N .p e n LA a 0











Q e oH o wm o w 1A Hn
LA ooooN 0 CO LA M1M wM a m w mr- N r w o m I
Q 0 1 ..4 N N N LA C C LA N -I 4 0 -W 0 N en N Co a' en C LA LAo
cz 0(n -1I 1N N .-1 .-1 -14 N" LA vIn N V LA 0D en1 en LA en Nj -1






....................II
en N N N a' a' LA ND LA 0 0 en 0 0 0 en 4 LA a' N N No 1AGUn n


m -
N N w LA LA LA C a' v-1 N en N 0 LO N% 0 Co a' N" N a' N- Co C0 N
0oo0CD0 Q0 0 0 0 N -1 -4-4~Co N en W LA .0C4 N D 00 CO LA N
II




en C .-4 a' -4 0D N- 0 N- LA a' 0 w 0 en N V LAD en 14 Nr w ( n 00 Q I1
n e LA cL a' a' o MV V o a a'm C A N r4 N C o en N" 0 L I
N 1 !C 0 -4 0 vI v 0 00 C!I N N W! IfA N: C> 0 en NN -40 a' 01
II
II
000000000000000000 0C N w C a' C rN La1





II
LA LA LAJA LO LA LA LA LA LA LA LA LA 1A LA LA LA LA LA LA LA LA L A0

N N r- CI r- Ncl( r- C4 cM r- N r- Ij r- N M r~ ci r II
cow LD M o to n 1 M o o m- ID co m W co n cm oo I If







Nwww oooo oo~a HNNN ammm c if
oLioLioLoliAoLoLOLAoLoLoLoLoLoo II

I I I I I I I


I V 1 0) I II
Ca -444flVC IO
Id C C44-l--4 II

0. O0 U 4 i
E- i 0 0 0 4 11
Z H- -40) .-41
0 -lEO 0 11
M4 : r. t, c u *
Po 0-f C c D'-II
ILI o It O
HC 0m0 U44 0 I
0.0 16. w 11
CCI 00--I l
HOVS-I LIII

E0 --i r. n
H 14 LIU II
HC M 04->Ill
L)< >I CL 4 0 M 113
S C00 r o c 11
r o> 0I 0 E
S01 f 0 E 0

I CC0 I 0 ) C II
a - j o > -i S 11
W w On EII
W 0J MI -4 E11
0) IXE04)
Z 0 C & 3 II
b0. -> (0OII

0> 0 0 C II
Z Ii0) fl fl N- II
HLIOWLI n

> LI WoI0II
a u c LI 11
Ca .0)COI
Id C C 0 > II


H 0 C ..4.. LI
H0. -4 N-4>I0wI
H 0. 4 H-4 0 II
- 4 U 0 0 0 II
LI44 >, U -411

0l-. 0 N-' 0 0- 0l CC II
00 -4-4o0.0
< I- u>- *-j 1. -4 1

ZId 3 )N-.l3 I II
E-. t M 0l U 9 C 11
0 o> *- c la 91
En r- l0 itI
0W fl II
HO n0'0)-III
= u0 o0a) -4 1
E- -4 a) .j 0. .j i
044X;0)- 0 II
in .- a) -4 n 11
-I -- -0. CC0)J-^II
CO 2 0) 0 -.0 II
C d l 0 m w 0.-' I


I in in a) i ty
IM 0 0 10



c;^ E '-
S.4 U1 r
W -4 5-4
0. O E 0 -'


w 0. c c -, )
E-1.O 00o 0 ) 4 1:2- -40 a> -4
Cl .4>00E -:

Z 0 -4 C 0 C '.--4
3O. C 0 cc -1 -4

In to -H a) k
H 0 4
S-4 c a

0 <

001 C U0
HC fLI>0-4>0-

E--E-%400 -:




WV 0> 0 OH
ICC0. si 0E



i C 0 E 0)

0Z 0. 2a








Hfto no nj -$
U- 0 o n a )I-
CM A- 44 >1 uc *
C C *1 0) C





.- > tZ 114 d
0> Ci c00 0i







M j x (a c I
M C CC 0 U=
00):OUC:5
HL00)0. 4



0 i 0
0 0 00) -C
>o -I LI -







E- ca
0 0 .0)0Cm
H 0- C 0 .' 114 i-i L.I




I.400 .00



0 m ) C c
Z L 0) F- 0.
HO- n ) O^ %CJ 4C I S4 0)
f-. -4 ( 0 <) -4 4 44
in E-'0 ) Cl ,

ME- 20 m l .-4.


,-
l C

fl 0o












.4.
00.o
0
C o
-4 *
CM


A t
& C

0
CO
0 -
Ca *Ca




S -
U-




2 4
5 0




Co
0

O C





0
S o



C o







*S
c?


II' Co

0*



II -
II 00
O 0
Il f


II Co
II 0.

II -4
II C

II Ca 4.

IIE 1: 0
II X
fl 0
O C/) Ca

II fl 0


01:20.0
III o4
II 0


II


0% 0
O} Coi






II 0
II 0.0o

IZ -I





II V
C 0
l V



II 0-
II 0
II *K




II 0)
II *LI

II *-J3
II 0


II 4 0 ...... ....
II **QQCO 5-s

II 4
II 0 V 0 L -C .C C 0 C no
it () 0- ) 4 2 1`4 JZ ) r. r. v
II Sl Ca 12r Ca LA LA N C jS


e II
NN C 0
LAW CO II
*0* -4
0An -40 II

Ca E- -' II
=:2 2 0) II
1ZZ>0C:- 11
CO10 2WId0)-ll100 II
14< 10 0) II
LALA En0)N2
-I 00 L > II
m n 2U S4 r- (a a) E I
E- Zo-0 0 -J II
a- -I 0 l-.0n- ) C II
*** menU< CO II
m w Q f IO II
L -O 4 O II







1 c i IIaa -
t < Mr -I II II a l
011 11
on E- > 0 II
-aI L) o
no Q Q II
* II
LAN n-1I


V/ CM N 0 LAL L II
-ia ) 11



.II


an NM 0 N en N a' en II
M II
II


-I nNa'aen ae-4 IlI
a' v-IN LALAC e C lA
.*II

ammemII

eni v-I 0n -f LA No cN LA en* II


I w o II
- o




> o
C Z0

0)44 ma 0) .2E 0) I
ECOI2COrIGLALANCZ


II

II C








II h <. I
II EZZ C
II H2 > >C

11 cr oi
E- 0
II 0 L I> >














II
- * 0 0





il C







II .






u W a(n 11 11 1
II N N
II -4 Q L


II N 0 e C


0)
> J

oi e c
0-40
3:5 0)
E &







1:4
) >
U U











0444
C.C C















00 3 11
Ca -4
Id








U-0') LI
E:2
01
U >

E-. 0 0'--





C0U



W0' ^0)
H 0 0)5-





nO C -4






0) -~
> 0)-4
0) NZA
-440d.
Ca1(/ a
















-H 0 H
oH > --' H

I H t -4 I

NH E Or11




I U-

U) 0 01 U1
I H l) -4 UN

O V a) 11
nM II

M C)> H

a a

1 -1H 3


S 5 U II

z I CIt II
S 11 01 ~ 11
H [3 -I I
S11 1 0 II










,- I II

il a) O 11

C/IN II
H II


n ii
H II w II
0 II II
onI -4.C



IN I 2 It

1M 11 W m--I ILI (u
0 11 10 11
1- 1 E- (a II

ui 0u 11


0 3 II
o N U H-0 Hi1.i
On L l

HR Ull1
011 w

II~ ii H
II u i



H n c- d
II K I I B
o I ) oiU di


o E ty<> -
IIO II









IflHH- Il


Itg r




ni.. I0-I


a > w -4 n
II H W DII
>II -'-4.1
II O .-EIl











It i
E U1 -I











N U d N
HI II
co a. 1 c
1M 0 E un "


Id C: > II
J 11 U 2 II
S II d) De I

HM a) 2
a H >* b. 11
E I < II

Z II 2 II
OIM I


4In II
an II

u 5 > a)'


S11


000 CD4 0 00 UA U, I 0 UN a' w w, t- w N 4 0 m, a' 0 ND
0o 0 CDw ao m m n a-i N 0 m a' w r- Wam' O 0

0(En n mn r- r co co Go n ON O C0


ooo00 m0 o0 0 0 o4 En mac m M co o ma -wEn m r- -0



0 N ooo-o 0 mn uw w "m m N w r- a' w n n r- 00 cI
oooooooooooem-itrwaiorcm .-iM ^'onit -i





ooow-fmo mtnMBN ocoopnmm i^ajminin 'mNm



ooo ao orsj i-i m ~ e c a m ~ b ccCir t rt mffnM CilO
Q000CD000a0 000 N LD M' 0 al a' Go w U, W do al W LID ON En En



o 0o0000000 c 0M 0 0 m r- a r- -GO n N-4Nm rw 0 n.-0i N


00 nooooooooo E No C o 0 fn oE o w t o U 0 U
C>Q0D0 0000C)0- E n 00 H En c U, U, U, w wU, 0 En Nj c
000000000000 N U, U, c* L* co, Lo a' r ON* U, L* C- 4





(D ap0 co pM Cs N En Go (N M LO rU- U U, w U, C4 N 0 Co
ooooo^^oooooooorde tromriMmNmmnnt
o M000 E0 N en N Nr- m D N acD am n r-N N" -400
C>00 0 00 00000 E -. En LO U 0 0 a' LO Nl 00 U, En a' w











N r- LN a- N N 0- N N N C N w N "- N r- N w- N N a-





Nooo -40000--; -ENNNNE nE nn o
o Io oI Im Io m Ia m o o


II
0NN wU w f,-4 Eon Om Cll
In w'U 0 w En r- 0 N N m ( n a 0 w En Go m N '- U, w, CD
- .- E U U N .m a' E w N N E m. .m N 0 E m 0 I
N En En W U, 0 N En U, a' U, En U, En 0 U, a, t 0 11
0 0H 4 NEni UC' C; E;n ; 1D co M- M, a' 0 I)
o04 o .-o N n mU r- co 0

Q wco L fn o C~ co a m --m C4 CD m co 0 m e m I
Hi




S NcEnc14 m r- U,(En En N a' UCD L 0 m0rC 0C-E mC- c LOn en
r- En LOU, r- 0 w C. Dmr- E 0 w a' 0 c- m E r- c o m CDn D
N CD - -- 4 4 - CD CD m4 w- U, 0 wE UO C-
OOOOOOOOOOOOOOONNl(M-t-l ; c 1. C4- .4.-4. -. .. .N .1



II

c' c. 1-- En c; a' En rWU n~ -~ U En 0 U, En En En 1
II







c-4 U, U, II
mc~~~~~m1 mm ~ m w o m o 0 e mlD











a'NU r-4 U, U, r- N a' .E U -4 EN r- r- U, r- U, U, En U,00a
II







E0000oo.-E -400000 .4 n ~ N N 0 wa'^' N U, Up- N
OOOOOOOOOO OOO0000H-4 -40 0N*- 0-4UUO ii~l
<- ^





II
II









S I I I I II




0D r- U, N 0 r- U, N rNU C> N U, C>- 0N w, r 0 N UI- 0 0 li
omooo ooomo omouto momm inouoOamo II













I; C; i CV CI I M cn MI W, II
I II


I EM D )i o0
Id C J - -4


-. 0 0-' C


. -' E 0' 3
0" I 1 0 to w
z H C.0 l tn to0



W 0 -4 a 0 -4
0w 0



. C0 0 0




11 C f -I O i 0
0- 4 C 0 r l,
I -. ca 0 0E
9 c z H. 10 .

U) O iUO)



H 1 0 0 i- A a
> -I > -j E




O1 4j Ed 000.0
Z *J V CO> 4
00 m g U C4-Ed.
Ez d w 0 14 a

r.'-4 c 0 >


H 4 U 14

0 C C a E


O o' I VI
Ci) 0 Ed C E .

m w I 4 0 1-




10 E- E O10 f


I st m l a I ON
t.Ja Ec -i

0.o 0 -0 d 1
E- H 0 I E E 0 i

M ) -'0 ~ H"
Z H 0 Ci (a
d 9 c MD U I
O .C O 0 1 < 1-1 11

H 00 m II


HC IIO>I |11
S C 0 o-j ud II
0O 0. > II


aC U) 0 ( II
m.>, E o a 1 EE o
r-0 I 0 I E
13 ( -4 0 11
E H 4 :3 1. -J


r10 O ) r.
'-4 > ri1



M *C. .C C -I
j (O C -4 0 I II0
Ed M 0 o 4 0 E







t. ., "d i >. 'oIl
- a) C
Z E C ( ) II

0 10 OH E r II
t rC 4 9 0 >


H m0 r. CD 0 Ed -4
4 u E 0U 0. 0 D
-di -4 -j 11


in -) 0 H 0 (.


W U Ed 0 -I II
H- 4 -' E -' 1
0 E-d i ai 1



C Id 10E E Q.- I


ii I -X"
Ii K
11 CO 0

0
C 00

i a




10 c
II --

0
CI 0
11 ILI
11
II o I
II dC
II .0
H -


II 3












-4
u) 0

II E


II H-
lIIZ -4
II U 1-4.0
II 0 ,L
iz 0
Hs o
11 10 *



II E d

II
II '0
II Ed.-

II 0.0U
II X
Hi di







II -':
II Ed
*O i








II 3
ii 0
II a)


oilc
-10 Li


C 0i
1 *0
CL. CM
Ed-1 II
pNII


0 11
II

W CO114
II
0 II
0 O0 II
AII
o II






it II
Ed
Z-4 i
On *lII







0 01
H- II

II
C .011
WCO A- 11

oil
3) 0 UI

< *11
( *- I
I
E- II
Z 4II
Id .C11
Z ED O. II

S oII
con
0 0 II
CL. 0 II

GII
-4 II
(U II
C 3II
di i

*0 i
10 *- II
OL. u) II
X II
Id iI



d II

II

10 in


II m II


ll0 W 0 Ii
I 0 c|

Ml r. 0
II C l |

wI 0 U E- -4 0. $.iI
II nZZ>EC II
1 n M-d W4Ede( II
I iO 1 0 diEd II

it X 0 ,>E I
IINn I 4 > > H
CM .-4 14 w At -4 4D II
i* E 00 OC Ia
SNCU< ClO ED II
I l- .l Od r O II
E 4 0 r. 0 .0 w
II H .- E- In

II 0 41 to 0) 0
H H ) = N U) 16 In It


II (Mm QQ Q
101H- >E d


II (r -a'I di- rI
It* <
lIN n to a)

M i II
ii U)0 In

II t
II II
II co Dm I r- Il
U in .o' n, co En U r a n ||
II N 1 n 04 N -4 iN U, N U, II
u
II.. ......... ... I..A.. |
II NM .-4 En U, u a' M n En .- 11





10 Go
II w r- w Il
II Ena .- II
II II
II II
II fl W n m ^' co r- o'a'p II
II ar o 0 0 N cM<' r- ..-4 t IIl
II 0o o oa U, U3 i II

II N 0 C o I
II N OU 1 I

II ** N II
II II
II >Ed ti a c
II..00 OO Z EdH
110 -'-11
Ii (D -4 (D .^ 3 .-' -J .J di
iiz O Cl) Cd U' W r- coz i
110 QI


0 II
00 II
* 0 -4 II


MHV -40 :l
CO 00 1 # II
Id O 10 0) II
3ZZ>-lC II
C) H H 0 0 II
< COS; 0 0 < II
4D E d II
m C ES $0 \ E II
E-o 0 >> ll
-* l) 00 diC ii


wNUKCC GIt
n f P d xlO # OI- II
M 0 Q 0 IEI
E--1 3 [0-*1 II -
WO U = MT 4 M
E-> 1 I II II II II
f-4n co L iO II
C-O 0 2 a, II
*w Qm IQ
E-4.C 2- O Ii
H 1 II


. L Co w f co II






(N m C4 iLo' cl 'D 'D CN I I
II
II





U, EN n NM a' a'J lD En NM






N E n UE U,
a) I -4 a N ra
or- evw N-U, II






S II



4I
E 0n Z En w N I I
U, NEnN UN UUN < II



* i /)** * *.. * I
I S co 'iI 5



C ** 3 ct) l
S t] I **a II




Ed '0 d)i .e.0 .0 .c0 I
d) .-' di> .^ 3 d-i <
Z OC/Ip l dU ,CO~no Z
















IIo
o II




N 22
I
H-










I 2




II i





- I


t- II 0

II



II H



o o
UH 2




II M


0 11


0- 11 0 C C W E C N W 0
I C H 0 r-C Q N 0 E0 0 0 En -4 0 t 0 0 0D 0 i C t n N En 0


.-' enEo tm mic oC0 En to N t m m 0
W 4 Q 22 0 0 00 CM r- N 4 < ( N E UA, C- C UN 0 N En E ( to N4




| 3 II ooooooooo 0 0moo0 N to 0 o N 0 U 0r- q to
c; c;< c;) c; cjo a c c; a3 U II 4




SoII






>1 f
> a
M C1 4D en eM! r-L





1X4
0c a N 0 0 En 0 0 N to -o n m UD r- Ca r-en En to en to 0r- a, oE
Ca .C C 22C oN Q 0 0 C C E o 0 n c % to eC 0 0 % 0 -W to C tco Er- to
01* ^W 0' , 0 En N 0 to to N N N U, N 0 0 En En U, En N
:1 -1 I0 0 0 0 009iE too oo o o wrEntNl- c-i00N to N 0 to U, N U






3 II







E H3: clo ooo oowDID WID
U II









II
o Q II M a M0o O m
;>C l2 O c; C Co(MTnlntojNmo rcn r m m CNWOO











"m--II ooo ooooooortr(M-- -iwrnro iMe w eo
S l l 0 00- -4 N to L 0 n 0 0 C 0
cE. O O- r- N *~ r, 04 *~ N 04 N r- c" r- N N r- c, r o
0- -- 22 1 0 0 0 -0 0 C W o o o N N to W t M N 0 i W r' to N

U II
>1 II
II O o 0 w w t t 0 t t ~ ~ 4 w o~
01 0'--1 II0 0001 0 i-/oii in m i N 0 no 0 EnN o ri N C C

10 01 ^- II 00000 00i 0- 000.io ooo -i N N i -i NM En EM(jmn i-i N i- -40 i


II II II



N- II 0W II || *0 O a U
I II !: C C co oo o0 0 w4-i N w r- oo r- 0 Lo w w Co U n

2 :1 3 C W0 MMcoM0M0ocMMC0r- ("NN o oC- DCom CNCO o




31 U ) 1 C C C 0 C C 0 C f a f D r 3 c j
0 I E2 1`4111





01
II ) II >II






H q C- 0- ON 0 CNJ c DN tLO r- r- LO m^ c4 coM O LO C m ca* al al r- ca co ^ D
W^ C C 0 0 W3r4.-- 0 / 0 C m M m W CM N D r mf N C r-l C' O a% N' LO LOCT
II 0 II II
II Ud II
II I. II

'11 C CU 0Oo-i-ow -N toEno O IotIwwtooNOi




OIl 0 c m OO Na 0 r- LEow fn rO m OO C LONO C








X;I II 0- NB D'- o Ot lIlUto1- U IlooOoooo0O cn00Ene NC wNanmtot WNto-I





C II 01 01 00 0 0 0 0 0 N 0 N II
EH IIS. 2 @u' oocooo oooooommri aric toM nmxoooo~ro ll
II 04 2I IIU
1 6II I II





II U II
II 01 II II
SII C.> II II






ftI U( H- D. U- 0000-4NO O NO O U,-lNC~-l-n-tO fnCOONC O wwIIl
(Ot -'0 IootoCONLOCONNON-4OUN000U Nrtot iU






to ll N SHoU N-- -- - --- -
>4 I 3:01-ftl0000 00000 ,-4Enw toCONo nm nflwwetoU






d II '!-* II




a 110 uD mce 11
Lf II ( II II







N 0 N II C r, 0 N r- C N r a N r o
4 Z II II

22< UII
4II ) II Mi











o UiII C -i 00 N to 01 1 t o N CM CM o 0 En En N v- En w 22
6 1122-L 22n 11



CO II U II Io I I I I I I I
II -4 II lI
IIU' U- II
1 3 U I II

Ug nC- UIINNN N N NN N N NN N N

Z II Z II 4 2 I I I I I I 2II


II II Il

toU1 0 -Uil 22mm n mo o o o om m o
N 1N.0 f ONUNoNUNONUONUONtorONm toN0
-42 ot N0 g I9e.o~oo000-o9-- NNNN ammm~wc04 U
II II I2


1 i ) 1 0%
to -'-._ 0- oc
.- E 2-
04. on 4o *f
S0.CC 0
E- 1-0 o 102 o) -0
2H~f 09 M*O LI10
6d)- -401 *-4
to 20' v

S0oI 4 c a '-1
III a 0 ms '- -4 10
W.00-I-- m I -
Hon I-M10 Li0
H 0 4o0 -
00 -ICLI0


C E -i -i n
OM1 C Ij DH* >


E0 D< C 4 r. V) 0)
HT lz >4 >. 1 K1
E -cCOO c m 0
n 0 0L 10 LI
1C I C01
0 0 01
2 GO E- IM 3 <
OO 4 _ame



C I 0 1 C

0 40 1 > > -j E
4 ---'-4>-' 2
0>001UC2


>k4 Lp*- i 01 C01
Si- 00 0
>-i i 0





H 0 C (0.4-4-4Li
0 to 4 ii


ad c co c
0 ci 0 >
): U 0 0 1 -4
CL. -- % O4 U



- 44io 000 0
0 U) 1-1-00
3H Lil C-' 01.- 092 O
S 10 1C 1
Id 3 M 10 t



to 0 LI 0


-4 4L4
2 U M C <> IIM0 I




02 -2 0 1 0

to) L 0 2 .4 -
-' z0 Mt a o


I 01010a)12 U' It

U2-i 2- f
0. 00 11
0. C C C 01 22
E- 11 S. 0i a j 0 -4
0 1 0 22 to 4)
to to E1
6) 3 C LI '- 0r 22u

a,
r 0 IC C 1 I




CCCI L0-011
-:1 i I
o E 0-I C U -I 01 I
0 Hc0 -4 9 r. v a i2
00 c H& --4 i -1 LI W
E-^ to 0 1-1 0 1
L) to > a I.h ton CTit
< C I0C II
<; 11 13 0M r. 0)
X01 0c o .1012
SCriD 44 C22







010001 II



ZVH-..-i 1Li4II
1.
4-4 M 01C J 11

> -j EO^
W 00



>4 0 WIOU
0 01 3) 0 C 3E Ir


>4 i 4 Itfl0122


WL 0010-2
0 I -I 0901 C LI2
m>-i. Li H 11 Ilr
E- ) C 4 C C 0 E 21
H 0 I C, 044.i- LiI




0 4 -4 "1- a0-'
LI t 0 01U C II




z j 44 Li-11
M (:1) -40 -42
-I 0 0 C C. II
3iC (J 010 <-, i 01II



001.-4 V) it
*mi R. rc i 11
to-4M09IO OUCC XII
HO '0U fl 01f I
30 LI1Q,01-C \ 11





01 H- 2 01 0 -0 II
w 0 Li w E 0102
22126)L 01 2 094022


-4






Z C
-o
0













0
04 *


1-4



.0
0 -
CO0
to *f


























M
6)0 o



>4
3 -4


0 ,.
CO

0 -
0 4


01
0 4
IC


H n
-l3II

C CD II
S 2

3 II


CU Cz U
ow CO U
0-I
toi .4L
NW 1' n
6) tom 01 U
I% U>-L- C 1 W U1


:M DO 0 .
n0 > -E >

ONHU)6.0C01. U
N W 1U0a CO 0)

H.U00-IE UI
H 0 -*0 1


>4<6)22 II II U iI
E.' 0 11
ta U in 0 E 11


Ew>4 Hu L 11
ON 00 U
C W IIW




N-i l- U C
10 I II0
N E U, C N II
< u s








LO tLO en 0>^
En 0 N N 0to to II

0 N U N

M -40 0 0 En
IU

Q M 0 (
yCO o U:
moC n Cr-0woio U, II








C t-O NEnEnNII
CmMewT omell











*1 r -4 = v
)Ad-- -_j -W It

>0101 1 f
n w L.if H
>a m o w a inu <. .. .*



** ** ISIl



01. -0 1 Zt *t o 6)t o N HI
ScOCCtV ^ini*rII


--1 II
re 0ftotno 22
t 2 wt C O,



a c
C0n N *4

l- w to 4 )i
04ft 61 wd O w10 01 f
f E- -I a
22 (H W 0-40L 22M
3n2 01N2 223


C N V 0v CO 01 2
S0 I
22 O ot0lI2 > >





ft H
v *r '0 d










r. ~ ~ N o t U4 -I


II fl.:2 22 22 s 22
U ':03 $ c













to4.0 022 H-LI3 H
II ** *E 0 0
CO C 0, E- Cl> E l

D 02 22^ .-'












*II > cou M ** *
i l II I
to 112 U Q Q1
< a 11 tjI


E- 22 u
43 0 04 44 to N to w t o Nj U, N N -io

0 UnfntowoN~ncnN02
3 o *- - - - ..
Co CM! C en r- -" *- aP,^
C 0 22 N vi 0M En N N 2
W42 04 w 22
CMi 0 I


U) u- 22
01 In 0-i o to p- 0 N N C' f
10 I C to> U, C o o4 It
C I i-i N n W toW NNC 0 ftI
0L M -lU- - - -T -2
0 4 0 . 0 ) 0 1 CU t o V IM
2d (M o 22I



22 IL
01II > LI-I.......b
*'12 - .- 1 II0 n -40 Li S . n- -i
to 01 II 01. 01 .5t 44 4 4 01 22 ^ J*ll
S II IICt~ii t r o
















C)

.-' 01C)







S0 X










9 -4CL
2 C
20-.
E) 0'C



1.)
U 1 1
ace


H -3 -I U




E- c) 0'L
o- 0')-20



WH C)
4-4-.
Ida-
0)



C)
M 3
[s U










C C
C 'i) N.
E- L



#N ~


II 1I nw I u II
II MU )- -'. II
0oomwmwenr Uee n m w.-...U, NNwNr-voon 24 r). ~.J 4 H
o WI w -4 j c 0 r. 11
00 m co 0 N N 4D0" r- W n ao 1 w 4. r. ) -1 II
0 0 0o o oonm Barm^r iDmro'rio ll LL C I 4
. . . . .IwNmwm E0 N0 I o Cce H
co o o ooaQ wmN 0m o o mco ("Go en r-mo o o coH 11 CL.1 0 ,

N-I eM enM n w D r- H M W- -4 C) -4
l- w 0 -4C C 0- II
iI 0.0. In 0) U
m w or ^(N wo i^ w' wo oo r-ir o r n 04 N^ o 1wr- t^n aoi 11 r r-a I i (d ia-' a)
Q a o co coo m ai Ir- o G r o' mn r-- LDf r^ t- o^ *ci if E .CO IB O -CI* I




Q a o c; c c; c ; c ( c ;_; W a:3 c; OH o. -. $-4i
0II H 0 I U 11C

Co mw e ~ ve o >wN o 91 1II0C 0 M 11



If< r. 91. 1 0 r. (d1
1o Im) 4-4 (d 0) II
SI P. D E........1
ooooooooooooo0. t 4


II a) 9 > 0 4- I II 1
IIL.0.C)4-.- OC l
II C) OC) 4 II
~~ ~II Z'0H.-4 < 4-.-'
00ooo00.-4,-4 enr-w ~ r-N'~wo mr-Im mI .>0 142 C) C I



M" Ml w S 11 u ) :s U O
. .io o I .- -' > c M a II


0000000000000-4NU,0. .1-.r. ..N. .. .. II. 42u] o4.- 4.. uc il
*4 NnII c)o 4 M C Ci11






If in *j r- "na
oM o^ a o- NM w- mM r N o- r'i aC r- cLJ w- CM on en al (M co (M p o Z- wQi- t O a)CJ
Q 0 Q 4 N W M 04 01 0 LD fn .D CD 0 ca w a) r iC.' (n 11
a ooaoo oo oo o o omw m w w 17C m w ml r-Q c olq


1-1mi meao o1c r c ill
H u o a -<4 1
IE H 4 C4 11
L) 0 o'4 I jII




.> CC; 0 II
00ooo-Nve0oN oom,0I- w~.- wonencoolU ZI *C)C)) -I









0 0 0 .- N N .- N .- . en .- N 0 0 . en U, (0 0 U 24 0 C)I Q. C) C I II
000000000oo00 Wa0'ewMmm fl > 4 4- .-4I1
. . . ..** ** ** ** * 1/) 0.C)UC)II
00oo00o00 0000-4N N000ooNUU 0' -4iI IC C O> II








(M ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 4- H- C)i T- 0 oJ o-4 MC M n( n^ oO, t ^E tl -^.-II II
1 ~ ~ ~ ~ ~ ~ ~ N H~ 1M 1 1 l OL lOg
II M i E00 -'C II
11 0 H ( a IIr
II .-4C) M II
~~ 110I C) .--4C 0.11
II M 9 II4


N . . 0 0 0 0 0 0 . . N N N N . . U C) C) IE O U 1 IIf
O I I o o 3m I I -m4o w 0 I .0 -4 11
IIHIC '00'C- 11
NHM ~ o oo co www NNIfmm v) A # 0 l
I I I I I I I I1I 0. I C)4 \ ll
II HE -- ) --4 I II
0U, U,0 ,0U 0U, U,0 ,0U O~t OL4 O~n Um 54 a) C-4 in I
OrO 04 r--O NU -w 0 4 4 o us-j II
c 0 0 e e II; C)4-c C) .- II
I1II Cj z (a w 0 :II
II v W inCi E a. I


--411


C II
M0 l


t
oii
t N II
IB *

II
:1 II
C 11 n
(a E4 II
o n
c o
4 .0 I

-4II
4 II

Id 10
I .0 I

1- C) w




H II
S o I
4Z --41




~ C o- ll
ino *
It I
0 II



*O0 II
-4 II

O II
ca n

X II
'0 II
0C)
0- U II




ii

) II
-.%II
C)enII
M a
) II
*)C II


II
o- t mf 0 0 w0 CD C- r- r- U or- 0 w N n o e 0
m0 m~ w m, en en w 04 Uo Nn No en I'0N*0rNw n en 0v 0 C> 0
w co 0 % ( 1- 0 NN 1 (r l 0 ^ r M N O U D eL m r ( cN r-o 00 I




fnooooooooooo oo vor-i--f- Ot-m r-ocsj o
n en 4 Nn M, I, 00 No* l- en N* 0 e 1n 0






en e o o' r- eD U, wn a' m L r- 04 en 0 0 m








.-42
r- 00 In.-400 en 0 f 0 0 10 .-00 N m n en 0D co co Lo N m- 0 G
a$ em ol 14Goco MC> rl m L a a o co Lo ol









H11
It
r0- 4 r co 00 cl U, LO m1 en Nl N r(~ NO U, 0 n ,I
II























oM m- L





. . . . N 00 U, U U U e
I. II
om i/^O mnomo oom m~i mioinomo oomo
mo N UMO ineNNoci 0 e mn 0 N ocmsi U, r- Np-oo0 I
. .m m om (mmNII
* * * * * * *- 4 4 --* II






-4II


~ II

. II
N. N4.I4-40000004m4-4NNm eenenenW
I I I I I I III



I I 2 I I I III


I n im I 0 I -1

E a E, I a -
a. 10 l

Z ut I 0 11

w 14 E T 0 L
0: 0 C UH 0" I
..CO C0 M -4 cu -I

HO Us I)
H n 4 0
O : 3 Ll4 M 0
0' -40C M Cl r -
E- -f C to 0 --43
U 'O C > Q.4 C) II
< c Q. I 0 C 11

. 0 i a 0 II
E- a M 4 II 0 $4
a .COC X o IIn r




$4C) IOIIZ -
Z w C ( )3 11 0


0 C) C)i a) n V I 1 o
0 I 0 4 I 00
UM L 0 CD L ) !


> ) j lO I0I HC
0 0n II 0a s





C) q 42 c
t4U0o w 11 I



OC) 'n 4-- 4C)0l |
r- C ) c I i

Ud 4.In n 0 :S


-0 I nII -.
142.-' In 42 *



to2. Id n 1O E.a -i


II n
I en C
0 CM CO
lION 00
0II -

ll U E- -i an S
II 3 0 a w
II H dU-4 10
II M DO E > 0
2 oms 2 a) ,\ E
II U)HI)C)Q L I> >
II r .O U) d b 0 i 0 )C)-

INN 0 >>
II n L)I. C)4 C
l Hmu< a'0 0)
II O v E
E- Z) 0 _j w1 -j 0
w = am miLi E
II H E-
E- < d III I II 11
InNE- >0)
11 in 4 L o
II 1N -* -4



II 1
IImm Q





II M m co m r- do
II C, o 0 (N r- (0-4
II en 0 N Of LD
II I IN



II -



II I IN W c
II r.-'

II -- *
II -I~


*-1

m





N

en


ll > in --4
II "Q-COSSS


II U, Q) ( M 3 j (D
11 2: WP ( 4 ID fr- Wo
II


ao n
co r. 0
0 -4
en -4 I0


d0 E) w i





9, U 7C C1 ) II
.E- 010 1 C i
= 0 1 im E


EOOO d








a, e q w 0 10- O ID






co 0 0O LO CD 0 l LD LOI
1; C ; C C Mn 01
M( Q r 04 I U 0 I







0O 0 0 .-4 N (01





If
enu 00 NNU en I


E1 m. 0 0 0 1
Hn 0 N r- N II
e- > 0-1 E~ >










** I
en.i00N-U N Q M Q
.-. H
M 0;













*-< r* n .- r^ o w -i > C II
o o11









C) .- ) 4.. .~ .~ .~' .
C). ) o cMC --in m n ll
< U- i
II



fn o m a imI C a n f 'I


n f- O O CM il inCM t flII




* * - * * **
(Bwoon mSSS

**QC OSIIl


ia30 11 Lii11ii'
ai j D StOO;Mgmiin p-i


SII
0) II



_j
)-i c II
-&4 C I f
) C) II
E f ll
0 04I4
U

~ ~~ II





u-4 -j
E- M
S3 I UI
E 0' C) i
.-1 C1) 3 C) I
3 1.. 0-.1


0) II













Wif
D H C '-I
u >

003 II
H2)3 II
-. -II
e U












C) >
C) N .^ia
-4-4. II
C) a
1-1 a 2
000 ii
>-i H.
00 0






II ~





g -I I
M@ tO















SII



-1
I I













I U








II
.M
0U














011 H
H I
II







24



H 1
11 f








(


II d


41 II

-o4 J u I







3 4

S IIt













. .- II
>i








C 4
1 0'4
W II




















I 6
41 Il









C f II


11 I 1I m 1e 0 I
o M W M II











SS^^ S^^ ^^^^^^^ ^^^ oo~ntn mm I525 I!
l s =S N~ s ws ^ o N! ,s w ,So %i .J-i r=,-4

o- pa in r^ It o 2d 0) j ||
&04 0. I
................. ...... ...... U. 0.e oo 0
ICf-1.. I 0 a 0 aC N t n

'-o t 21 1 4 P1 It

1 0C 0 4 II

wi 0 M M to U (a C n
II O C 0 CD r4 N W II











a m m mm m m omis m m m m m mimmo



Noooooooooooooo oo rNNtN wu;Nnmm II 55
IIl I I U 0 ~ 4l
II 0C 0. I0 1C 0 I
N II B 0E. 0 I 1

44 00 1 aI

II ,4 0. I 0Q II
o o o o t.-(M M~n~ w m~i ioo oatn~c~r ^'rrioW Ml > 10 n ro = 0)
1 (D.0.41M4M- -1 El4
11 14 1lO 4 S.
O O OO0OOOOOOOOO-I3-N vI In -00 0- 3- 0' I O 0 < -IT5 441 .<5 |




_- IV M W r- W M W r- 0, aM w 0om 3 3g0 0 1 0 a>0 m 0 4 D 11


(I > HI> to r. CD 11


W m m. W W W Wl W- n W W w w n W W ) m W n w W w m c$4 3c (n0 ) -1
0 N 30 N In 3- IN n -. 0' 0' "n 0 N .- N r- N 0 3-0 o E- 0 4 In0 041 U C 1n 1

ooooooooo0M0oo o o o o*MocDl03 MdC c It 0 >4 1.4 -411


11 04 I 0 Z -1 Q 4

|| C; C C; CM ., 0 N M M M4)
I I1 n 4 i
Inininm uIninnnnnnnin ui Iniowmmnuininuiinini~unulO 11d. 3 44.-i S 4 -41




l-I 44 '3 41 '., 1-i l
33 V j a) -4 1 II
II3- 4H a -I. Ijn .3i .3
II .3c In 41
Otr- C14O r- LMC3o N W r-oQcliMir-oC N M ro (MuWr-oo 0 r-I r-4 LO *j^
* C; C; 1* *v *l (n Cd ;: R r.- -= .. .a i 0C C
I I z t l .l Z g14 4D 0 =
MW tn u in4se20.i1


II II
II II


II o o ooooooooooo0 r-NN 3N en M!rN- 1 CD
II 0 In N 3- 0 0 M N 0 00 I N .M" N N 0 N en N o 1
00 a 3wr- 3- 3n 3- CD w0 0% w0 0 w 3- -40 wen 0 3 N 3-0 II
II0 0 0 C> CD N- Nl 3M en 3 en 3 en 3 (n w 0 4D 30 4D k 0 3- 0 3- al 0 N" 0D It

eII W r- o I 1 I
II -411

II II
Il II
II II
CD 00 N 0 < n w go O- -M r- N4 0' 3t 3- In W 0D w D o- 0 WI 0a ,
II 00 I 3- I N 3- N. .M I N D 00 .- a) c M . .
Qi 00 "M ON 3o 0 M M ( ,4 N W W In 30 N In 0- co 3- 0' 30 a% 30 Nli
II 00000000 0 ooooooooooooooo00 -o w m 0 3- -r r i
II. . . . . . . II

II .i N -4-4-411
II II
II II
II It

0 ooM W w CDo m M r M M w om me ma


!! 8

11oooooooo ooo oi-NNicoomemj^nfnnw om m II
IIoooooooooooooooooomoommenoanDll
|I II




11 H
II II




g ~II
cII 000'InW-400 ,M a, 3- 32 N 0' 0 f N 3- M M 4 ( 0 3- 3-i 3,3 33 o i







II cW (noo oi ai aM MM n en 0 Wl
I 00 N D 0 w 0 0 n 3-30 0 Ln3-w3 Lo0'~4 ( n W w I0,





II II
II II
II 33




IIII
II oII
II 000' r -O r- r4 N0 r- o 30j0' or In 04 N- r- 0o 00


I i oo oo oo r- -tmD M C" LD aM 0 w M w o
WI 000 vI N In -4-- (' 0 In M, N 0' 3,3 W N 0 InI
I 0 0 0 0 0 0004 C; 30 C; 30 N 3,3 3,3 In4 en 0' M
II II
II II
II II


II I


I 1I w In I 01
cn -4 c 'a a


04 0' -'0
z0 In M
Wd--- -4 1 -4


1w 0 -4 E r-I 1
r. 0 -0 t 41 0-
S0(0 U





0H 0in -- 3a n10
Id ~ 1 -l 0 *


gHO'0n-41 4.



-4 : $44m
z E 0 E --I )


0 1 D0 -41c.1.4 In
> *U





1 0 0 4 1 o
o1 .0 a n4




a)1 4 0
041 3n01-41


E- UC3-4 >.-1E
4> 'A 0 0 'o a


:. c B. 41o c 1
21. -414141 -
2 GO UE- IM 3^





04 C I 4 In


(4n o10, a 0





H 4 a 0 0-4
C 00 --4 1






04 .-i<4>,U
- Ih U40 0 C







H 11 V O I
=4 )i ) nIn c

E- >-A O n -4- mD
. X G0 0
0 A MOO- ~)C M








> 00 4-






.0 In41-4.-
M 4 1 H I








-io 4 40 0
t n > 41 a E .
rtI (0 ro *C i-
E-nM *o o x



0 U C- 0Q
2M IiC D DI
10 M a i



a is c o En 10


-4


0

C o




,-4
















E'-
10
0
C 0
4 1



r-4


3 0


E -4
E-*
Z I
S410 4
E o
Co
41 *


0


II 33
lI.-N II
jM-3O II
1100 40 C
co co 0-I 3
110 II

d (42 ) (D I.
Z E- A--I. 44 i
II DZZ>In00 II
Dn M id a> -i M ii

2d aX o o E
rII 1 20d 1- 41 II
*11 3E -00 NO II

II -'N(MU < 4 41 O I
II 1H. 0 Q -B '0'E II
II E- 0 0 a) 0
II M - II
II E- u K 1 ItI I II
II < U S II
II a, En in a t S II
II H m 0 II
II n E-. l In 3 II
II 4 41 3 II
11303' 00 II
II W Q II
11N '0.- II

II II
Ina

11 II
II I
II 303- 3^- co In0' 3 3,3N M
II 3,3 in oa 0 .40' 0' NM 0' 0'
I N t W M co W
II .0 N . In ., .4 In.
n**........II
II ^' N .4 N 0 In 3,3 I
NN II
It -44 N 1
U CM IIC
II
II I
3 In 0 r.- 0', N 0 N 3 r- I.
D N r-0 N r- Oom Ni
II It-IN W 0 0 n
II. .. .. . .I.
II 1N3 3, II iit m ^c
II l (M I
II I I
II I

II ** ** **
11 **. c o **3S 3 4II
II O 4 .f3 II
33 410'0-I4144 ^..C C.'0
11I 41 .3i 41 .s; .33 .3.3j 41 i
I SMCO l;ntt A?

II II


- CII


CI






11

(a C








S0 II
S -IA














11

. II
1d 41043










H i

II 0
041 .4i
(.1a4033










i ^


A- II
2 -4I
Id 410 II
0 oI
3 CAo
in 0
41. o n

II


41 -11

x u


41II
1. II
.3~II
41 I II
.3 41 II
(42 41 I
io in


o o-1II

0-4 II







o C w> I
. .o 24 14 u w





























* I I
00 0.
a3 L) 2 c
H M M 0 -. 10 I



















E-i
(n 0 ) d (N 4 -43 Q -






* 0 03 c O al do CN Io


C W (In N 3 co N 3- 0 Wn I

r- 0w -I 3l 0 It



N (In 3- 1N 1 Ln W


- 0n I M M M
I M Go o A






3-l -1 U, I.,


U3 (42 E( n Lo3- w


a)


10 u




. 0) M a)
03 41







M :s --I u
&. a- a) s..

Id

aI)
>





Hc -4 .
0 E 3
4-1 3'4









C: C








> a) -1
C








42 3 -40
U O' 0to4
H ^
>< h



-O C-
.I 4134






Z 0 04
L> b











0 2
O 3





SN
2 <-<&
W M -
















W II
> .4.4-1
-4.c a
U 0 W II
U-i 01
1-40 1. I
SWil

23 0)1





.3 ) X DI
tpH










>4
.4 0 11






u
0.00
EU J II

0 t-l 1i










Hn ( 1 u
E- 0$W L I
W U II



^ 1) 041
0 1.II
COEU

> II
U I
DM AR <-








M 1 0' Ii
U- 3 II
I-Li II





-C -I. II
> 0 04
04-n







>< 3 -I 0I
Wd N 0I





-U OI 04 ~
1t1o-n
E" L II


DO II -

ft. II

aUi ~



E- W II


SI 1 rI in t 1 C IID
,'oll 4 0 c I

a ooow w omo m m n!aM N rmommoN ID I 0 CD >-

.*.II 0 1.O M W : II
Qo "m1ooo oom w "m Nwo meen mmr cji olounI n ON m c a 0-0 Vl)



1I 11 E 4 I
I n 0 -4E 0 II
IIp: C 0 *- 11
I..I ..1 0 1.4 C I
11 C 4 L o 0 u. i
aow Q w ammwmw omw m LA a, r aw I in -

omo om 4Do o ov o f o i rM M o g o r- 1Z E o .0 u L In


SU ', > 0 i 'n
II C Q. I C II
c II ID -lW i o B
I W.C 0i-i I
. . . . . . . ..r- .o w. m w r- r w m m ) C ; Ic



)II U 0 II
II .-4 .O IIM
*4 1u r. U 11






. . . . . .. C C ; _;4 .-. o 0. II
*II % 4 II





w......oooooooo o .r ..Lm n n w 1,A -4 1

L -I o 11 a W -1 II
II HU 0 0 C I)

-II 4 W -4 in II
II i In ol
Q w I C Iwn w CD InBo *- V II





! rW- i ( Q i-W r -N N Nj r mC !M r E-. O CE E c
-1 D0 1 1 1 1 11 (a ED- 4o ( \i > 11

ll -I z )o 4 0 M =1 1





II V)WM i O E a. II1


,i ci
I0 I
S0 I
C oD







in j
m. -i
S-1












z
wu 1
II



-
S II


ft1 04I
o ii

E] 10ft II
11 II
,04 II
M C II




02.4 .* II
Oil
11 II








Z -1
0 II






S o
C 0

10 II
W II











ft U
Ca)
S kl










S112 II
W II
II
.4 0II
. 4 'U II


12 W II


II -I VI Mn 0 I El II -: II
II 01 2 C C II m 114 0 0

- mn w - r- m w'. co -t 11 III CO -I
* C;*o o* II _4 O fl O e II O ilI : 0 )

o 0 0 00 'ro 4 400o o o o o o o o o o ,-m 1 o n W - -t ) a)
(fn w co co co a, 11lI - W -1 a| 11 t 0 D E- .-- Li
-4112 -i 0' II v :ZZ > 0
.14.. . . . . . . . .HII1 O1 r.- W 1 4* I 1
z 0 0 1 r. ar- .II
II ,-4 1 O -q - II d D 0 E )
0Q.0Q. 0* 0 r 7- .l I 2 2S0 w \ E
oo o ( r o a o a o r o a o M uf wI o m In M en m -o 11 I V) rI l w h > >


............................................... 0W .
I oooooooI CI C O L -1 CN M CD 1 0 VZ O ) M l Col l U ( C ( J
ooo oo ooooo oo*40m3 w oe Mo ln M r- to >wII OoN coO r q S O
D-i a- DN DIE- D C 1 0m-4 ll -41 w D m0n Li m E
UO H U> O.L| l II H B] H
lII C I 00 C 1 E1 -a. U II II I II
II1 .0W I- O <1 E r. I I0
II IW. 0 -2 12 t, U- ri Ei-E1 > WI E
)II O E 1 1 I0( W m E l -4 i
CCD W MWW 0 n r- a COM CD -1 '0.> E- I4 1 CD C7 7 on
w w m C, Lo o CD o Lo w Co-4 CD Ci o l co w (n w en c
... .. ................ .4 4>.El II <4W S>
00 00*000000N 40 1-^< 0 t-^M14 0_ II j > II >.t* II EO
SN w 4 wo w r4 r- r-o r-Il I 3 C z E II
1 i-., W 11 z ( to-i D II
II 0 < w 0 w IIZ I
I> Li ( II l I 0I/I 0 -C4('4 .u
I > J W 1 1 0 iOC II a ttr'
oDo 000 00- u r0r aC m 0 a0 0 3 0 o 0 m N w0 Li m w a< 11 0 11 un S M 1 i O100**'0
. . . . . . .11 o.W U II r- N
o0 0 0o 0 0o o 0 0q --I ooN II. 0> 11 0 I
II H EU *J 0M II II 4 r-1
1.. 4 .UOC .WII II
II .2. 'H,- IUO II j IIa) :

.j jo Cw CI 3 :i w www o m r- r-o 0
II 4lU MC U I IIuit r-Cm'o N o404w0'

SO f N nr-I 0. XII m D w m mN
Sw IZ L CI ._ I Hitl .( f .


II M W 0 0 0 .0 X II II W ** I
0 IIE- W- u W1 > 04 W
UII W I I I I 91l ) r
oLo moIoioWomo'oiomomtoi o I II 1 W QQa O

Mrt ari 4Cooooooo lOECEaiiO,1 ll fn I l w(aa 1 ).43*
1II Z M1.O (LW) 0 l3 1S IC/3 l O r- o
) w WU')(a E "-


o





t
r-


N







-4


II

cn LD r
0- CO II
* *if OH II
S 0 l


W U E- --i a s.
D Z Z > n
1. 1-1 2 1 1W (0 II


U S'0W0 II
0 E 4) it
wN 0 M Q >> >
** O Lo w n o- j 1
E- 0 C
(M O <'U W II

HW 20IUW4E II
SIn 11 10-. 1 v E

H E- II
E- < i II I
4 u
04Mi E- > in E


In n


.o am c r- r II


cn -1 (. o N m r- c II

. . . . . n
444 t .4 14- 4n lo P U4 4- II
N r- N 4 4. 0' II
N -O CN II




('44 o 4.40 o w '0 ID (' ID
0 ~ ~ ~ C-CO~ '0~ 40 II

(4 II
fc>r cnonno co I m a,
clo o Cco "olo ofn

CMOOOC L coa~-
n






0 N --411 I I
U) M M Dr--
'U 0 I W L .. .. .. .. 0 I
04W .I D.4.4.4. I

S 1m12 2i444 w II
M II


II
a) :
> J *J

'U -I U)I
CUl
*-4 W Li]I
3 W I)
: 0D 11
S II.



>4 II
0.0 II
W 'WII
S II



to= i u 11
1. II
U> II
H-i. II
(1) > I0





E- 01 UN i
0 5 S :






3 L W II
0Eb- II


U 0 II
a. 11











0 I 11
0.0 II

O > II



-M -4 0I

0 D0- II
E 4S II

21 2 II
3 U II



C- II


> b II



S 0 ft


ft ~

a)




II















II II
o If > II 4 m t-1 C0 4 N) N 0 1 0 40 M4 a, m 0 0 0 ,-1 0 ("1 -3 LDri 0 o
oA a r Ir wN 0 w 1 ww ea m~ e w w ar- 4 Mo LO c Nr
c-I N j D ll f1 ( co 1A r1 co w D 1-1 co (r m LO i--1 r 4 (n 14 (n (n ONaltol aD do o
II a -H- VU e II0 4 4 m00 C) 0 1A 0 m 14 C 0 (. 0 N 1A C al 0

0 H E 3 1 fL 5 4-44 0-I.0 4 '0wo 4m .a4co1444 04. 04. '4. .o. 0
4 S H 1
LI I H II
n aH II
M RII II
C' 4 4 n( my g e w w ~ m a m m meno bN M w ILO0 o0 ,,ana,,0
mI >wII II

I ) c/3 tj- 1 a^' r-- oi en 04 r^- 0 0% c" oi r cNI ~ toD 0 en N 0i N -1t cm


CI [x II 1H
M II 11
XII II II
0 0 11 II


OII > I II



S! y e a a m v~ >- I m i n iDi o iD o ~ v ciio D io
a 3: (D 111 ;1;c, A ;1 ,1;C ;C *
3 4 4 1 0 14444vIv- N N N 4 w Ln m 144 m 4 w A 0 01 m 4 m 0 w 4 N, w- 0 0- 0 0-4 N







i_4 14 Un C -1 mil y li M 4 II ****** II

I l W I II II
fD 4 II II


II I II II
R 01 II II



lU> It II
4 I-.-.. ft NNLA-444040'4.0.40Moe.L1o1c--m4-..-comu

CII H 0 II 0L4~-44404~-~-4 N o.oc~w ,r4 4
it






II II
f< II II
HII II


I. =) -4 t3
n 01 4)- N I 0 ; o o "'4 1 oc1i4 4i No u N 4- 14 N L. 0i 0- N14 II



IH I II I
11 I II II
0 14>'t. II Hmm m m m mm m m m m m
HI .- O II *II
III II
44 w AU 14141U 4 4 4 Ln 4 LA 441 1A 441 1A wA 44 4444 4 144 A 0 I




S II II I I I I I I I I III
H l II II
SII II aI
'-1 IIo N-D C4mmm II




Il 11 1 411 1 141 1 1
II II II


0)
>
..
40 -I U






O j 0
a S o
E 0.



>1









UN>
0 3w
01040


ZI .-I 0n
H ('1) 4-
E- $.a>>
_]. 0.


01
LI>
aH -4.-a

H 0 0E "

02U

W'LI

U U0-4
C 0.
,- ) '
LI 040- i
H 013'
4-4.
E4..

4-4-.
'00-

300C .






01 N a
S-I-10.
M M -414


S0 It 0 0 1 II
04 a o r a)0
1- *- r.4 CO o 0
E-, .. 0 i f 0),- o o 0o
Z M io0 10 i CL1 .-4I . (B < 0 GJ 0 1 1

r.I (-a4 aI II O O >



0 .0 5.404) Ol 1 11 i- 0 .o () 0 II
3 Ill 0., 1 E-0 D0 -')Z -' 0
Z E 0 14 I -4 In Co. oI u t .n a) n,
0 I0N C C = : 0-4-, 0-0 E I
0 =C 4 4 4 >1i I O 1 -oII a-041 -iE 0
E. ca 0 = m m S . . . . .
'0 4 a > I. O.m n I-E-I n
4. .a> i4-I- E aI -' al^IwE- > V ,

0-I a)-wra'II 40. t o -..
S) U.0I 0.o'II U2C 0 E
- E-0 U %--II .I 0- . .


4. 0I > 0-I II II I I aI I I
I-I O *. 4 n 01 4-. '0 II i fI
> 0 I ED II E 11 II
4 -110 oi -* H




04 00 OIc42U mZ Oft -n
l :s1 1 0 0 I I
S En (0 4 4 II II11
(a UO 0 -011 II I

1- II 4 H 0 r-i c1 D r- 0e (1 N o
z4 t* ( D 11 1 .0 It. .m

0 Q U-C-lZ 1a II I a)rom.
x;C C rC O > A.1I NM I
H 4 CO -i I II II
H 0 0 0 (1)I 4
S -M >U l- 0, w




0 U 0) 4-I I Q II I *X- I M


H ( a o 01u * ****
-I C-OUCfI 400 oI4o.o4 o 4n


-'---0. II j011 0
-J 4 in M V)

M -' 1 I 4 M i3 C oCIIL w- IIj

.U Z M 4 0 0 i 1 S S
E- l M1 D E II I m II


ii 1a, M- M 1 II C -1
0 I 0.I 0 0 0 II N


SPf 0 ww mi ,m N w m m a ,. Co r r- a, 0 c ro o \ 0 -I 0. 1 0 o 0., j 1 .o




oooooooooooo o,,-,mL c ',ow p o -4ML"'o ,~Eli, M 0-', 54 o a r
.11 0. O o 0 a
II a 0 4 *1 U II )


0 4 0. -40 1 11 c 0
r.) 0 I' U>II C Ca
m --oo- --o- -m ON M ocoo Hn II C-I -' II (0



o 3 o o (I I 0o co u O M1 0 o
o a oo oo o (a









. . . .4. . . 0. o. .
110.. 4-I, 0. 01 0D 1 Cm OC4I C



-1., -.4 0 1 > 0 0
II 1 0. 0 C 0 II 0
w a11) 10 (a4.l 4
11 oE a X 0 o 11 .
m 0 m- c^ o o m o M al al a) C> m z w to to w 0








w1. 4- ) L C (0 --'I 11
ll C; C; C; M wC II l



I 1 II .C
l (a -4 II U 4









LALALALLALALALALALALALALALALaL AmL Ill.]CT<'^ 0 11 E-2 4 40 0 UC; It 1 0.
o It l0 1) 1-1a 0C aI 1 o
A1101 II Z
II 4. IM >, IU II 4o
111411111 IICI Uv-I 0. II O



Sw0 C0 1- II C l



II z A1.- C w 01

||-- - -- ---0 0. to a 0 l -' 0

1 1 1 1Iooooooo II 4Z1m- .l S
1 1 II 0] I 14 0E .- II


II ~ L
II - 0-
( n C 0
0 -1
11 n n -4 1U
w C to a)
I 0 E- -4I 0.
SII > n C
11 c Im & a> >0
II < w I'0'001
II .3 10 E
llA E 0 0>>
II 9 4
Il*A11OI 0.0
II H. d.. 0v-4'
II ** II .n Im U CO (0
S E- 0 II0 I -

II = I-
E 14 It ro. -





uII LA. 0N N 0 .
0'n 04 LA LA 1 1
> En E










II 00 N 140 0
a II -4







II O m r-- 14 A
II m r1 m1 w L




IDo r- w

I(
rII 141 ,-40 LA- 4.0 0~ LA

II LAWi o M n o
II -
III
II
II --- 10


m o




r--4



4.-


|| > in m -- .. .. .. .
II 01- 01043g 3gc
11 j w h4 ::II
to '-I 01 4. .:4 -C .C '0
II I I ~L 0

<1 0 U^ i*>'(


II



II
II

Il

















I















0) U
> -J. HJ
-4 II
> 01
0 -4 U Ii



u II
2 II
o II

>. ILI
U 4 J II
C.1 0 ID
0 0 II
004u U


J 0 Z 01I
3 -. &


0 II
0 C, II
U > II
'M- II


t- 0- Ii




0 II
DU 0.0 I
H0 II
1C II
C -.0 II
U3 V) it









u o" < -ii
0.. I1





0 -II





> 0 -.1 i
0 N .0 II
E-4-4. II






O CO -1 O
] II -


Am w^T r- m- m- oo -W m w f-i 14 co 0T "~ m mr am m r N' m- D
M w r r- O m N 4 r-M w 0 wr m0 0 w or m r-N o-o
- o w mmr-ON al Nr- 4,Dm m o W 0 r- m N 0 N04 0 a m


N rjm orr rr o o co cp (r* oN m o
LN Lo,4 r- 0 n m w4 a, Nn 04,4 r N N co 4, a%0 ('o0 co 4, r-
--4-- U, 4' w o 00 0 0




U,) U, 0- cn mO r- 4,4 U, 44 w 4U 0 V N O r- al N o r V (n L0 r Go
r- m- U 01 0Q -40 N1 U, 0 co 4 0 4,4 a 0 U, LO U, N 0 r, 4,- 4O
mn -4- --- 4,.- 4, n 404,aM 4, N e- 4,.U, 0 torN-4 ~
" 0- 0mr- o 000 0 r- 0comr -i O rm 4 r- aor- r-4LDr- w

C; 4,; C; C C;,4 N 0* C; o 0 4,. N* 40 UN 0 N U,
m MC14r- n o 0 o iLOalo r om en c~orwo s Cr-M a
ocoooooooooooi-i-mar-t-iefo^'rfmoocs





r- w co 0 (n al 4, m co cU j O No U, w 4 U, co ri co N V) L U




OOOrOmor-OOOOOOeor-n^'^-Ir-mtemaNOar-
CY M U, C4 N L to 40 .4 o 0 U, 4- N Or- c 4o r, r U, 0 (N c




M ~ ~ ~ ~ ~ N> M, LO U, U, U, m0 40 4,wNmL c Ow0 40


0000000000000 .mm 44o w N LI 4co o n N 0 a.-
0 U,0 U, 0 U, 0 U, 0 U0 0 U, 0 U, 0 o U, 0 U, 00


Cm or- 14 C r-(14r- CN C\ r- S Vr-e mos ~ t t o (4r %r-C -C4r- 4r-D
t -4 t-





Go o LD an an o ID mn moL LD Ino L(n LO an o cn Lo OD cn CD ano CD







0 r- W U N r- M N 0 N U, 4 N U, 0 C r- c CNU- r- N 04 M r-o 0
I I I I I I I I I


i I V) a) 0 I t
Ii 4 IW rI iC
II COCC II I
i i EO *- 'l
II 0V0 -J 3i
II U-s.O .O04-JII
1- 0 0 0 -a II
z 1 1 r- co ') a) 10
E 1. 0 1 ed (a 1 I'
I- S -4 II0

cH 0 -4 c t c 0"- II
ip. 0 0 -4--1 M*il
II a p. 1 o UII
if H 0 -0 U n 1 a 1
II -O r0 *l 'n 1I
U 0, 3, >ri II II

11 OZ E o-04 r u. -<~ V)1
RH $ -- --1^ > 14
11 E- r. c 0-0 11
II HO'0(12-4 U-II
II 4 1O U-. l II


II U 04 > a 4 0 II
II < C Q. I 0 10 I

II 0 0 1-4 0 0 )
11 i. Q. o eM i II


(a 0 co ri a) 1i
II 4 > VO 0 0 I
II g [-J* *J0 0 IIi
II itI > CH 3 E ll
1 0 > 0 ( -4 0- O i 4 II
l1-1 H *nl0 k< > *o ll
II o' 0) M U. 11
0) ) .0 CO c 4 n
fV d) i- 1 o
II 44 U C 11 1 r-r |1



It >1 (001) 1
II H 0 01 C0 4 II

>iP -4 c w qU.-11
II 'd 0 r .0 II
II u 0 0 U 01 II
II -.41 > 4 U <-1 II
n I &i tn H- o 1-i m^ ioc
1100 44 u .11
II 10-1 *0 C 4U II
II 0em0.0-I uwi


l a) -I 0 II
IIHO M 004 0 I
II 0--1 r -o H II
II 0 -c II 1
U -4W.t -*
11 m i -n c f
II 10 -0 00 01

II Et E0 *4 I
II .- MO 1-.0
I 4O O U) ,C II
-IO *-<1 -1 En J

to E E ) 0) 0 -1H I
U 0 z 0) 0 Z II
11 dn 14 m( E a -^ 11


II II
- l 0) II
o II >.Je IJ
oCDi -> -C, Cr- II
-11 0.o-o 11
oi II '.- #II
I 1 -i U 11
r- I e o k II
I 3 0- II
CII E d 11
Ni 11
II 3 II
** C. II
SII II
W I II
>-II >. II
I II u II















021 -0-0401
4 II C -CC II
Q11 0t 00 II
I II 0 -I U II
0 II U- 0 0) II
S II ..D 0 S 0 II
II 1U 1 II
II t II
II ~ II0
II O II
11 > II
II H-I.- II
ColIlge.-'. II
H I E- ra DJ c 1
H II U- 0 0~ II

>-1 II OS II )
Ci II 0 ES
Zl II II
1 II II
Id C > 11
II U U s it 1
A I C C lII
S II e. 0 0'~ II
C5 U 3 O' 0 II
I U-1. ) II
II E- 00 II
II > b .- II
M II II
- II II



Zli II
WO C *J II
II 'O C II
Z 4 0 II


- 11 COC~II
S II II
(M)n 9 n


(/ II > # II


II
II
00 N UN r- m m m N N m- U D 0 o m r- U, 0
,- U, 40 U, 40 Nw w m r- N U, N m U, U, U, 0 N 4,4 U, 0 II



II

II
WD (NM W^ CD W W W C D' N- M r^ Dt W W C fni n\ T-I CMC O C J CDftC ^o ^I
c; 14 . r; 14 W, r: W M . C; .it


II
II
II







-4-4N-4II
r 4,4, U 00 U, Nl a, m 0 m (nU 4 4,. 4,4 4, 0 CD 0 N 00 II













0 nf ~< 4,. 4,4 40i (' 40 4,4 4- 4 i o0 o0 C- r -44, 4 C- 4 -44- 40 Nn 4,. u N II
ro-ooooroooooomomti-iromt-CMO.-oef-i II
to l a e w ev .i m ei i -i e -e y a II
0 N w N w U, N m 0 C- m m ,4 fn .0 U, 4 N 11





m-4 NN m U U U U U, U, a f II





II
II
II
II
0 40 U, 4,4 C- 0 00 N -4 0a, 00l N m U,04 U; ,
it













OenoinnommocmomOmoniomenrommoioninooil
oor--m- M- 4O sUrm wr- en m roc m a N 011
Sr -m w m CD mo oo w w w r- OM to rnmo LnD e C4 c "




000000m0N0w 00m00-4 mw-4wUCm0w,44m .N0 0w0m-4 Ni
U, U, U, U U, U, U, U, U ,* U U U, U, U, U , Ii





NcoDw m N w NNmw w w a c- N C)a-,r-N- C a% II
L s w n Ln CDs os o ot
4 0 4, -4 4 -4 4, 4 0 O II

I I I I I I III



0C e- U, N o r- U, N 0 N r- NUr 0 N U,4,r-.r0 N r-00






oN -4 -4 -4D a -- - o4 -- -C4 CD w. II
I I II
c ooooooooow coo0 w tr omr- 0oorC>o II
cli ; C C; ; C C; ; C CC n* c* 4 c* g. i


I 1t (1t ) I 04 II
c. l COC II
U ,,- -,i- i
K. 0 0 ) II
$4 Or. -O 11
E- h. 0 I 0 W C0 II
Z.. .-40 II
c: -' E 0 3 I
0 -4 1z .04 -. il
'0 C 0 ( ll
O 0- 0 10 0 0-I II
0.0. ( 0 o II


Z E 0 U i I
0 0m -4 r. r. E 0
HO C m I >.U ..
E- C fo 0 -1 O3
U 0 t0 > 0.1 .0 oI) II
h 0. I 0 0 EI

0) C 0 0 E I)


H0 U-4 > E 11
A -. J O O II


- E- 0 44 *) II
U ( 01 C II1
00 *0O1 0 0 1 II
.4 >1 i C 0 II
0 0 -. C I
> -1 1 4 o 11
CO P0. L C 0 II
H (0 C.o *U H -4 II
.- U 0 0 o > 0) II
114 -4 -4. I. > U I
0t 0 _j a H r-4 I C r
S*J ) *j II
U- 0 C t .4 1 -
-d ' 10 Oil
0 4 H-P0.11


0 U- r l -4 0 II
.Z ZC 0 0. 0 I


O I-)o1 0 Q I



Mn M 10 (a E a -j I


,-4









,1 0 CL.


E-,.
0
C 0
0m

















AM
r-



0 .L
o
C 0
10 *
-4




U-(

2 -4
0







** '0 '
00
'0
Z 0 *






z -4
C0



'0 *





OW
-JO
0)
C 3
(0 2



(U



10 0
*J 1


II II
II Cn v II
lIIN c II
II n C0O II
II 0 II
II N.4 -4W i
Ii CO -4 II
II (d CO] 1 OO 0 II
I < U E-- 4 Q. U- II
II Z > C3 II
II 3U 1-1 [d 0> (0 0) 11
II M 20 C 20 0 10 II
I 0 0 10 II
iiN 0 -.> II
II o w ll N d 00 0 O ) II
I M .-l U at < C 0) II
II H..Q004-i' E II
II E- O 3 i 0 II
II V.I OU st Ol M lE II
II H .U E- II
II U- i -42.02 aE
II 4,CC U 2 II
II 0n in E- > 0 E II
II r- r- rt D -^ S II
II o rn QQ II
II - II
r-,- '12 a it




II ae II
IiII
II II
tII
II II
fn tif r- cM os r- w r r- II
II 0 n W r. U r- r- W W II
II 04,44 4 r 0 (n
II r * o*-** i o II
II N -40o 4 U, m4 -o4 N II
II t 0 o r- II
II a O u II
II 4,440 II
II II





>- In (n r 4 .. .. ..i .. o ..I
0 N U, 4- o40 0 -40 U1




ii-W40 W -4 0 C- 9 I
II -40 o4 o0 4 4 WN II

II I 1-1 II
II II


Wi -s 0 j
II W o) 0 II
II > 0 ** ** *W* *
II **-- 0 0S to
II c 3 -41 II
II 0 .- l 0 t C .'J -0 II
II **n i II


O0 1N
-Il Cn o .-O- Ii
to In E n ca CS
II * 0 --1 I
Co (M N l to

fiII CO] H10-0u
w0 ( M CD
II w0 E- --I 0
II 4 2 > CI II
.II H u] U- >> II


00IN.-4 S "0 0 0 10
0 II a)0O E II
MI Ia 00 > >
-4 W COC WQW> IM
II * E-* 0 T II
CO IIt u U I IIa


-411 H.4 ..) ea W II
Co.-.l Er--D >W o II
0 I E- n 0 0 II





II H .. E II
Ii E- I II
It < V ItS ti
-411 o IE-I
t 9 ,C II o n r- E W N 0 II
U l Li Ii O S
S II *r .0



0 l0I
mO C in CM 4) O -



E-


0 11 -4IN. I
p *.0 I No
I d A II L- U 4 -Uom (lo rslo


0 01
SO II N 4. r- o0 4, C N 0v II

Io 0 N 4, * N* 0 II
g it n C m N II.


10 *11-------------------I
Q) M r o3 - m r- C )O ll
ws 11w C
C D io r l

U N0 I .-1 .. . .. .. .
I I .N o r- n II
[x] ~ 4,J I II i |
II I .* II
C :3 im im r. 0 (av02i It
) 3% ) * *
II w r II
II I II
II -- 4141
II ** ** Il
V) ** ** C) ) h in
W II > -0 m Lo G
II O **^ Oi (1 S C HI
S03 11 *Q0 C OZ' -I
IB10a 11 C s5+ HiRi1
.-' 0 II 0 'O O .C.C .C .C. '0 U
C O II 0) <- 0 .l Q 3 <-4 > J .-' 0 ll
Z II 2 CO n2 C l r~ ooS II
II II
















>
> II
-.4 .0 C II
) a) 1
H -4U








-4 0 14 Il
U


S II

> I II
U 444411

01.00

0 0' II

03 0 II

N II
0: II
0 II
U> II


O-44 II
Z 0) 0 II
0U -II
02 II
S'- II

Ow II

0.0 II
1) 3 0- -I

-0 IIU
c 11

1- 1 II

H II
E 3 -I
3 004 II
E II
> & II
II !





0,


> 0 11-
0 N .0 II
-44 II


0 0 I-I


II

Mo WOcMol o 0 0 0 O Coo ONN ni on0 II
to N WN U N-4ON C r C N C n sONr0N 0 NON 0 II
0 m N ON 0 N 0 N 0 mo N N w ON q, C ii D N 5 ON to0m 0 I

ONl r.4 .4 W CMM Cr4 Ul fN ON ^' .4 uN NO N^ Cr U ON^ UN' Nr C C ONt 0r OW 0

r-l
t- -4 n Wo o (rn < aC oJ r- tD < w < en (jo m i-i 4 NNt CL, ON O ON ON ON ON ON O O ON 0 II


-4 II
S11






fn (nt Co QO aOfOrM O ll co r- LO 0 01 w D m M O l0 l flr DC (n a, (n 1




UN .. N C 0 N ON ON C N to 0 O ON N ON N U N .4 ON UN .- N .1
to fN In 4 C 4N UN UN VN CON C1 tO WV 0 ON N- N v-4 N- NV ON N N D 0
0 or toIO 0 i-OC a% cN N 4 C o L aN r- o Cto en N n N r- to to N o L i
ONNONNVON NN toVvI to NN a N oN 0 00 VU II


II
N) N al Ni NON eN en N` r LO UN N 0 n N 0 to N 0 0 00 N II

S-4 -4 II




N wN N to C C w -- 1-- --- --- Nw N to L4 to w II w
N .4 N UN C W N C4 C N N4V ON 0 N- CO N W UN tO to 0 0
II
0 U N NN vt-i al me ON N ON N NU o Nm N N N N C II
C; r 11 or; 1: m; l v o N a a t c o 11 r1; *9 9 1
SN% CVr- N Nar M n M rN N r- r- r- r- r- Nr- No





W C> N C O N tL o rtO M U r- UN Co O Ur 0 tM r- W N-400 N r-- 0 o
.......II


-M --- NO NO N N N NO 4 UN C UN C UNN-4O 0 0 0 0 0n N
-4 II


NNNNNNNNNNNNNNNNNNNNO II



IIf
Lnwom nl~m w wa a m maarm otro








01. N- UN. N- 0l N UN cl N 0 N UN N 1 0 N l UN N l 0 N UN N l 0 N fNNO ZD

N -4-4-4-4--------4-4-4-C 4---- V4 C' 04 1;1;I;
I I I II I I I II
n.m.n.D. w CD*m* m* w** A* * 0 CD 0 *11



I III


1 in in Dlo' 1 N
I .C C- a II
14 C= ) 4 4 H:
CL 0V qO I
14 p. c c 440d)
E bI. 0 I 'C 'C 0) II
N- 14 0 11
z -- in to r 1
02 4420' -3~
N3C 1 U' U
r. 0 C C 0'-II
0 .CO'C 1 .*ll
.0 a V L) 1
In r. I in) ca aD)
42C1 42 i-n 1
2 E 0 lU H
0E 04 -4UC 11
0 1z $ nII
E- -4 C. ( 0 1-1l
S0 C > 0.4 II
<00 I OC II
(V 1 -, 8
a
0 C 0 'C II
E-I 44 3 J H
0>. o10 u 00 11
-1 * 1. > *j S ||
'C 0 0 U C 0 II
(a 0 L) r. :4 E II1
140 0 4 4.d
-4 0 W :%4 .0~
(> 14 4 Ofl) C

Z 1 *('C C0 II
0 (a 0a 90 C 4 IIt
>.C aI 41
02 0.000CUII
NC .r 0 > 11
H Co -4 II
4 L 0 0 4j 011
0 U2 tI ON CBi
C -M 0q U C 1I
U 44144-41
N 0 14 4 -4 II
E- 0 4 U O4 ( C IIC
O i Ha c i
0 a) r-i -4 0.
00 C () J-4 .ll
Z14C ,0h.0. II
'CHQ.fl- C VII
H to C II
3U enO-i ,C II
i. -4 44 4

m .-4eM--II
Q-. CO01l?
a E 2 'C -4 II
.4 c 14 0 0 s II
N e n E Q. *- II


0) n M ." ac, 0 I


SII I el C 0 l II
> 01 II 0 C-D C C II



I- O H 0o..4'..NNUNCNonU N NN toto to NNNO I ZHtSV en 'CII


0 II 1 0 -0 -0 11I
I) I I CII l0 I H 'C v r 1O II
"r 0 ti r .- a
U 44 II t Utfo to Un r-i- to N NNO t oNNO- O U r NNviO N mOU nCIIn 02C I e n -0 II
C. CI NUNUnv om CNVOONUnVN II H 0V .-4 0 141 01


......oooo. .........................MOO oooo.. .0' C. O,-
I 1 II 0 I'C > C .. i I II
S1< C 0 I 0 C C II
0 nI 1101 3 M0 0 1C 11l
0n I llI. t.0 4- E I
0 III 0 p00O 0 II
w4 LNONto r- Cr 4NaNtron rr4N mNNNN II i 11 o I
N. ii nnNt w r "V w mOoUwm tor- w NNm MD oN "I C r 0'0 -I Q 4
- 1:3 0 m || alpCO U M 0 O C o O o o NC a, V to\to 1 04 en C C, 0L 'C O l 5
W m --I E 11 LO 4N (n W 0i NNofn IIi r~ 04 M ON L O M 1N 40 1 1 0 u En


E t) II ) H .44 it 1n1 II

II 0- 0 : 4 1 lI
II U> CL $4 M Ul
1 II 11 "LUl 1 e II

E II IX 14 a, go U II
3II N UCN o II 0' i40 C II

I II 1 en 44 ON H Nm 'C II




II If r. -C
0- Io N rn ImOmrm mNm -N vi '- -0f I- 0I




II! l-?"0 - N" 10 M 0 nC nC q C u o I- 0 a) en 4444o11

0 II 01II 44.0 en U1 C 'CI I1
020-Il ii a 2 u 0 Q -'.
It 11 1111 || 44 14 0 %4 I





II I m I2 n'CE 0.4411


r4 II
4.0 00 II
'C04 II CV C H
I NC CO II
o I * 0-4 II
C oII re f II

04il N 0200 # 0 II
SOll E- ---4 14 II
SII O 3>0CO II
W H Wjo -4 10 0e 1
S II o V2 O t0 II
S II 0 E d 0 0 II
o CL to 0- Q >> II
o EB- 04 -C I
C0 I-4-40< Cr9 0 II
'0 -II H4 40-.O-4fl II
0401 E-.00440440 II
n41 02~n4n H
,- QU =C $4LltE I
.II H E-. II
II E- < II 11 11 11
--iI <0 u I1
0 cII r-N E- > en 11
4 0 9 L V vI 0-< II
W CaIto Q0Q
0 Oil l II
02CIS I i -i 1 II


<' -II40j
N o 04ON1 020: II
0 II m A o
S II II

',11 V n UN w N 0- 11U t
'C011 N C CN ONNUNN H I~I

0 IN N O N U l


C0 ( -- r- N o cNo N r- II
rI w (\ r) w (Dl

: C a a, 0n ND mo a,
fl 11
S11 N N II
II II









S . . .. .
0U II C N N O N UN to C N C N II
0 II N UN N N U O C- r II

4U 0 0 UN N N


.. enenO U II
O1l >en" _.
441' 00 0iia oSSSSci
'jC11 C V 14 W-411
wO w c 1 3 1 1_ -1
44i 'C1 II 'C 0 0D ..0. ..0.d; II
023 0) 11 0 44J a0 .N 0 444444440-' II
3 II 300 02c N UN~ to N- C 3 II
II II


-41 *
CO 0

CL.0II II 11
'C2021100 C -




I I Hm N C I
I M -4 II0)
0-11 N 02C 0j V .

-1 O 1M < to a II

.4 im ca -q V S
i0 j a)i^ 0gi'
Co1 IIO Uag CT Li gTE I
=o U) U,3
0 1E- 00 m ri a
I H 0 E-E >
II (a HNLOw ) )-4' e
II E023VV0 I I I li II




11 4. ulit EV OE
t'C0 ,4 11 0 E-0 > > II

f i oI Q Q |
f Co I ON U< C 0 I
4 0 *r w0 0 a 0 1
U 411 CL03IT1U) n II
II II
E- II II
4 ; ii n
0 4.IC IO I n >e 3 i
N '0 I o0 ir- 0-i ot3r-

.j IIM In II
II II







(a On jnlL DClOt ol
.j (-la 0.0 -1 1' C 4 9 4
II II



a 11 AII
m 4 II No o N NNN U
.. 1 ..n l m o to on 11
D3 'C0 It U O C N o N a to iI
0 I I U NO* *H N II
3 11 o oo l.. .a. .ca .c.oIn
'C II NUN~i~ Nio -Co II
II -tow II
II N
II II
IIl II
0 II 0 **U to N o 1
V II N to iN N ONCONU *t II
04* II 0 .4 V 0 N CNU N I0 I

4 II IIW 1
m e II II*+> e 1
II II















II H
-4K 0 H
oK >.J-Jl
OH -47Cll
N H --4 V It
ii n

IN 0-Ion
* It z 3: 11


S11 iE Ac I
r- K -4 0 1. I
N l 2 2
* II 0 H
H m IIt

>IK > II
I u I-'.
u c a
4H C.0CI
0 It 4) 1 )Ir
IH 00 .K
I If U)0-4 uHI
E v" 4 4 11
4 > CD a) a) 11
o M n
U 11
0 II


1~. 4 :J
H a/2.. 1
II c II
II 0 II
IHt -' I 1






1W n1 E- $4 '~ 1
c/Ug 4. II
H1 K Id -' 0^ O. II






I% ll >.






>d) N-
o2 II -4 II
a< e 3 11



E J111 1
11 00 .
1/2 I U 0.0 0) C II


1I-U 01 s
U EH 0 i
HJ I II
S1-1 > I
HII III
Z

  • N. I 1 - II
    II C II

    H 1l-ll
    II II
    0 II II
    r' II II
    -4lI II

    1/ I 0 II
    -411 0NC

    II II


    ND 0 q



    m-4
    m m En Lo 00 w m En 0 mC- 0 .oo m m m





    0r- m UN r- N N w r- ow m mN N Ln
    10 C, 0 n CI a, 4 i LO r- 00U 0 0 nC- 0 N an0 0 0' CD En In N
    S 0o U 4 N 0 N En o n0* C;- C W4 N ooooom ;;
    a) -4 -4 .( N Ifn In In WT inm ioU En o 0f 00 oo on -40000000





    LO cl N Go 0 U, w- U, U % 00 LO UU U U, e. n LO ( n r- r- 1-
    (n r- 0 In W a, r- U, Un 0 w a ("4 0o m ) W~ CDn0 n ,0
    r- 14--LO 4 0 r4n ao a, 40 0 r C- W n m, Ln to En C- r- 0 ,
    SEn C C 4 U, U, U, U, U, E ,





    n En a- 0' C- N Lo 00 .4 M. En 0 N 0 M LA N Mn M LO
    In I C.- In o oo oo 0 0 Eo 0 0 En En 0 0 U, 0 1- I n N








    N C.- N r. N C.- NN 1- NN nr- N rm N r- L N r- N r- NC r- N- p- CN r- 0
    SmEo In m o m mo 0 om o I n OinE oN 0



    r- U, U, 0 > U, 0N U, 0O U, 0n U, 0 U, 0 U, 0 ,0U 0 U, 0 1 W,0



    0 N, N 0 U, N 0N U, N- 0r- N o 0N U N 0 N r-o Z


    t w maW OMfm iWiM-iCDMo oooooW ( D
    N C r-- -4 - - 4 4 4 wN N N N- In r- a. N. r-0 0 0.
    I ; I I I m


    I 0 n 0 I 0i
    w i.-- c'o c

    r. 0 '-
    A. 10 a Q a

    W -4 a -
    w- -C 1. 0 *U
    So --1 c. i( c 0-4
    .c O -i *
    0.C / 0 u

    H 3 o 00
    Z E -0 U
    0 t), -4 c g n)
    H- = W-1 -4 >

    E- -< C r 0 'A
    l. > 1 S4 2 W

    10 1 0 r fu

    2 40 W -.. E -I '
    S C H- C
    > )0 to C D
    -1 0 4 E


    o. oi r- E-n

    z (a m 4)
    > .-4 $ -<
    0U a 0.0 u c m
    H C CC0 >
    .- 0 00 0
    0. -4 14 >1 U
    d.2 - 9 C 4 4
    E- U1 -4 0 0 U C
    0 ---4 0 .

    HO 0) --

    . -4044
    3 '.U En0 0 C

    nfl.-'0 o
    q4 .-14 0-

    0 E- E 0) ( -
    .-'Z ( 14 ) 00
    w w m E Q. -


    II II
    II .-'.CIINC.- 11
    II 0 IIB n -4 C ||
    II I 1- T C O II
    II 0 E 0-I n
    II CH ) --4 COI 11
    11 .10 O1200 n
    II C -4 lo1 Nd 4-. I0



    I W 2K2>0 04 C3
    II .-.0lN*R-0 "2 I



    1: 00ll.- (a -> W
    E M -.01 .I C 0
    H I M.1 0 E to
    11 0.1 K-ZZ>'0-' I



    II .:) 0 C US 0) -j 0 1
    II II WH .d-lK O II


    II II 4E T 11 11 11
    II O 11 0 U O II


    11K1n -'.IPC ,-. >En Q B iT s iI
    IIN. I nC/ 0L 0 1 E O
    lI M lloC. 0 0 I I
    II 0 II IU O
    II o n *4 0 II

    II E *I E- > 01 S
    I I n 0 c Q Q
    II II
    II II HII




    IlK- II I
    UZ -U III I




    II N. C i m 0a r- r- en 0 N
    lil Mj ae m
    11 0 0. I N 0 N N




    110 M lIwE -w I
    lIZ onl...............I



    l ~ a ow co w Dc





    13. 0 .11 4 ,,- 4
    x 0 11 1 o 1





    $4m o a) Cnr.JU
    :3 II 0 .I
    II II I I
    II 1 II
    II 0 > 0II E 0 C> B' on ll


    II M IImna 0En'0EnNll
    IIOI II tm in l i-I MEnl


    nI oil....................I
    SX I I *I < m n M II
    11 1.2 IIo M
    II II II n
    II II II
    II 0 II I
    110il f # 10 <@ mor nr o n it
    II I0 II u Iwo mI II
    II COI mCMEmn -or4w-- lI
    II a -1 I I 0 * . .



    II .-OLi 0 *.OO CM Z Z O nCM(' M l-
    II 0E nII C 11wo
    II .-0l I <-.C.C 0. XT
    II I1II 0'r II
    II ZII/2II
    II II H
    II II ** **
    II II ** ** 0) 01
    II 0) I > 0 0 I **** **H*
    n 11 ll 000O IS S CH
    II DI311"QQ COS 2 lB1
    II BM IlI C 3 -1 *H
    II 00 0) I0> <- >^ 3 -^ <1-J 0 1)
    II S II~m a m S CMrit ~ oS
    II II


    II
    II


    m mU, m En C 0m0 U, m CD I N0 aU, I Um 0 I CD
    . C U U E 0 N 0 . U 4 E U C. N 0 U 0 II

    * * * * * * * * * II
    m w U, w m a, a, aIn, N N" N, Na aU
    0 w m m m m U, Nm o em n E oE a, 4

    II
    II
    N 0 o i m ---o w 0 0l r U, 0 N N cn "n r C- U, II
    o., c -




    In c; U, In 0 InN n.- c; 9. 000 9 -4 In w 0 0* 11; 0 N .4 1 0; 1 II
    00000000 .4 w En 0 .4 En N En 0 10000000 N II




    *-1 m- m- t lo w11 r -r r -
    II






    II
    wmw m N U o a m En r-000000 0 N o
    m m mm e w e o Nmo so e ole e oww








    co U o0 0 C En U, 0 I % o m Lo co-40 oUM,0 II' mo .
    N 0- 0 En U, 0 .- N N C. 0C.-In-4-4NUC.-0 0 U, U, I.|

    0 0 0 CO En ;in 40 0 U, C-1 C -4 C W 0 N -4 40 E II
    ...........................II









    0 0 -4 wI n D E a L N Ewomn N 0 0 II
    II
    II
    II
    II










    NCM C CMs r CM"o w N C3 N cM r N w N r- M C r- cM cM -N w r 0 o
    E n n n;n-nrncn 04, 0M IIt
    NM 0- 0- 0- 0- 0 0 0 0 N N N N ('1 iI -fMC C n In In En Uf
    I I I I o I I I II



    or,0 ,0U, U,0U0,uOMm ~ Cur0of, mr~OUOUO00 II
    I I I I I I III
    m. m r v m o m m .e o . . o o ll* * * ,I
    CM^i<- ti -io o o o o o O r- w o -

    I 0 m ao 0I U 1
    0t -l -) c .0 C
    jc- -' i
    c;- 2E II
    a. 0 v -j aII
    k 0. CC C -' 0)
    E- N. 01 00 0. ID oi
    z llH 0 0.a 0 t

    X 0 -4 O C 0- I
    0.0 0-I-- 'OUI


    aa r w u 1
    wn c -I m IB w c


    0 0 -o 0C -I 01 31
    U H 4 > j 01MM1
    .-1 C 3 I 4 O II
    HO E u-4 FAI
    E- -1 C0m 0 li
    CO > a. B rd
    . Q. 0 0 0 E II

    -I *-4O>.-'II
    0C 0 E C)


    L.0-EnO-114 II
    2E- % C3 4 I
    5 ; c, 0) oa
    >-> 000 it
    r- *- ^ > 4-i

    0B 0 3 0. C i t
    r 1- ) r. :1 11
    _.0 j 0 11
    am I

    12 000001
    1 C 0a 0 11
    Z B V a0) 1*
    O fO o-HQ-IC ll
    H 0 C V a) r. I II

    E -. 0 CII
    u 0 CD II
    *- U II o 0
    r --1 .u >i 1 u
    r .i a, H co r.-

    Id :j S 3 : (a -1 110
    E- En -4 O U0 C .C II
    00 0 -l-40 (.
    2 -,C-'^0)1.. i>- .I
    1/-0.n C N11
    H %0 0.0-11
    ~U W n0-4.C II
    0) t .o)

    E- -4- 0 l
    n0 En 11 I

    MB E- n 0 B 0Q II
    j 2 Q) 0 z
    ) w o E Po I a


    -l4.


    0
    C





    c'
    w j
    < <
    r-



    .


    0
    Co
    IB *
    r-

    04
    *-4


    g 0
    032 CUn



    K-
    S o
    C 00
    is *



    0
    Z
    CO


    0*
    0.0



    *0
    0
    '
    0-4

    x
    Id


    NM n
    -444 C
    En CO
    0 0-
    *-4 -4 -li n

    I .000 0
    B: E- --40. H-
    U1 H 4 0
    '1:1/ ZrO OU00
    (r* z S S \ E
    00
    C0 Q > >
    * E- 0 0 3 9

    E- 0 w- 1- 0
    .4.04; CO 0

    H 4 E-O
    K-00-40E

    S II II II II
    0n E- > n
    r-r m w m m S




    m mo QD Q r
    i-4 -4 'O -4
    CO CH
    '0




    En i-. 0, o ( n C.- a' N

    fIn *In 000 N' E^i n 1-' 00*-
    -4--4 N UU n 0i -4
    N D 0W0 N
    CM
    N

    co N N w w Cr- m
    S n in Uo r w o r-
    r- woo omr- m- Coa
    -40000 r. -4 U,
    En N En
    N ,4
    Hoooonm u-
    awwl


    II .. c n 0
    II ** ** oi-M ** * *
    # Il >Ern 0
    UlI 0- 4 C
    011 "QQCO S S'
    IB 0IC 9 -4 -4
    -4 0 II 0B0T '-4 0 11. C; .0.0.0 '0
    1/n 0 II 0) -4 a) W :3 e 0a
    x i II S 2 o3 c / 3 U, En C.- 0 E
    II


    II II




    II Z C II
    II o -I 11
    II 0 II
    II E II
    II II
    II II

    II C CII
    II E 0 U II
    II 2 U -4 II






    IID AN
    II 0 1) II
    II 0 0 II
    II 1. 3 0.1U1I
    II t21- 0 >i II
    II i 2 II
    II 0 b II
    II II





    II ) II
    110> II
    II U > II
    II K-' 0I 0.- II
    II B-I -0




    II E- 1`40"
    I E I1

    U 0 I 11










    tag it
    II 0 IIt
    D I II3




    11>1. 1I
    KI II
    II C >. II
    00 U Il





    II ZO0II
    II 0)0-I
    113 -< 0





    II H II
    II E II
    II U I
    II 0 II





    K >0-4I1
    II 0OClI
    K 1j21/-I
    II O I
    11 H


    H H* (# il
    01 01 I
    IIII
















    0
    > <- J

    m) -i u



    4) 01 (1
    -.4 Cs I-
    2



    >4






    U-Z -Q)
    Cl O4Ci l

    -0 -4 U


    0
    >..4
    u >

    a- IC 0--

    o Es




    C, U.-d
    U




    C .C-
    >') ID 0
    *< o ^







    CO Ca-


    c4 w m L 0' r 0 o r- 0 o r- m Q 0' Lo 0
    ~. .A .A . 0. .4 ~. A . 0 o4 0! .. 40 c
    co N 0 do fn LA N D a,0 O- m IA *A I Ln 0' 00 -0












    -------
    m 'w Lo L o Lo N c co co co cA 0 a% N a, a, a, LA a, a, Ln Lo













    NAa, cocoaomoaoa
    q No o o 0o L- LA L n r (o n o o W CO 0oal o0M o 0


    .4 ~ ~ ~ ~ ~ ~ C LA Co oA0 ,'.I0.40 40 0L -0 W N 00'-4IM
    .c04 0 CO M Ln MA ON M co N o 00' Ln w- 'D 04 c4 LAI-N

















    a~~C ommo om'Dom m am
    c m w m w 0' 0 fn 1 o'-n L -0N 0r- a, O 000 f 0 L0
    o -w cM f r-^ io tf o ^ o a co floiq~~ m p o cn (ro m oi m~~ So w
    ^ 0 ^ L W ^0 N N .- .40 000 000000 0










    o c r 0eo w r D o o o 0sj0 o o O c L
    0n m r- o .- f 00' LA LA fn o 0 L w N-n .-I 0' co 4D r- LA N N
    o. N r- wo 000 o o c N 0 00 m 0 LA -o- a%0' 0 o-0o 0





    LD* ID, 9 LA N o w, 1; C- 00 LA N* C4 C-4, o0 .0* o 0* .0 LA LA LA c;1


    '' w- moi oi n ^' r^ on a w3 CM (M ^- ^ w w w r w n w r o f
    "- N N 0 W r- LA N A LA AuL r- r- I- r- I I- r~ r- 4- r- r4 C- 04 r 0 -






    0 o D m-4 cMO LA BOO (n O C N3 4 .c o LA LA 0' w o m Lo aO 0 N 0 0




    , 01 r; .0 0; LA 0; LA L4 LA 0 0lj LA N, 04 m* LAL L A0 0


    cD 0A o- LA 0 N 0 c m 0 0 ~ ~ w .- -0 '. 4 0 0 0LA.
    - - - --o-ioo ooooo oooo








    IIIL IIIL LA N No N o -I 000000000000 0





    r- Nv a r- mc N m N N r- o cj r No N r- o N n- o
    * c; * c; c; * * * "* *n 1; 14 14 1; .
    --4^ -4-4-4-------4--4-4~ N N N sj~iN p 000 ooLA


    II
    a) II
    > -J j || LA N LA r w m g -4 w r- 0 o .- L- .0 .-I .0 0 LA 0 0 0
    1 4 C; w i LA LA LA N '- C- r m m w LA w m w4 r-- LA LA 0D LAL 0
    IItwl -wr wmw o va co0w oo w
    tO- U II L -I co- LA cL N coA a, n rI 0' a%0'o c0 m o-4
    .- ) 1 I . . . . . . . . . . . . . .
    r CC I. N~ r- 0 co a, o0 0 LA 0 o 0 m 0L A AL LA La LA LAr- 0
    3 IImm m e e m e e a am so m

    U II -4
    0 II w


    > II
    UC.CJ .CJ II 0 LA N a, r- LA- 0 0. L 0' C- M w- LA mC 0 0

    aO3"l UD 0t0i / rM m oiD r^ L T' co r mM m L'f .fii O m a, L- o i co (
    E- LA 11 . . 0. L 0 . L . 0 0' .. . 0 L LA
    0 0 OL. II
    Cal.. II
    iId II

    L> >
    H-4 .-mJ wI rA- N 0N A -N"C- w mw w w
    a- j 4 i 0 LAm Nm w 0 0'C- LA-40 wm CD 00 m w N -40w
    E tv o w we -W m ro Ln r o D . n
    M CI 0 C L 0 N A w A A LA LA LA LA L A : 0








    w 3 a, II . . . w. 0 a, 00 e 4 -4 0 0 0* 0 0 0 0 0 N
    L) H mm m mm m CwlwIIrNN^~^wr~n n t~~^ 'ooooooooofM
    C; C;N









    0 2 II
    t < II
    >- II







    i II




    c 11 w M C C CD N w N r -N C- N C- NM r- 0
    -m -l, IIoi v etlm -iaoim ^ ^om amf o cOctni a ^t aoo^ N iD c










    fc-4 I (M C; C; C C; o ; C r CM m nm -4 .n I
    0. II N --4--4--------4--4------
    II I I I I I I I I




    > a 0 LA 0 LA 0 LA 0 LA 0 LA 0 LA 0 LA 0 LA 0 LA 0 LA 0 LA 0 LA 0 0
    a, N 10C L N -- LA^^ NON ooo oo o N 0'i -f O-rlN LA C- Nm L c-oO
    OU II I I I I mIo Imm wo mo


    cI inB M 0 II -a q

    S-. 0 )-,a 11 o
    -4o -'r h 0 ol

    E-,- o 0 0 D j-U -

    o IC-j *I f 11 U11
    W 9O ; l`4 )-o u n




    -. -4 ( -4c o i m
    m n n u
    Z EM 0 u 11 w










    0 U I v
    S- O -I II I Io



    S C a I a) C 10 II

    4 a j -4 > lE Cm


    . .0 11 0 II

    m w o I m n II
    a. *'(->1 n > e < 1


    >1 al i X II
    Z- > &il II







    M IB CCi (a||14



    o i a)-i 0 -Hi








    En Wd ) fu E a j' II


    II uI t 0 I o II
    II M- JC C -- i
    u E 4
    II "0. 0' O -''0Ii
    II I 0 C C .- II
    I .-. 0 I n I 0 -- i
    ii 0- IC a in 10
    II 0 1 0 Q).
    IIZ 4i EV '40
    II M C O U;3
    ll O i 0 O





    il .0 I, A ) $ fl
    11 a 0 n u



    1 t a, O r )
    Ci -4 (0 >-'

    I c i 1 0 C i



    11 > 0 e


    Sli ,. I I

    Ol m 0 3 Ua C
    EI 0 I I 0 a,



    S1 n) n 0 11-


    11. -I I44II
    IIO 0 C -r0
    Id C 4 m 0 I r
    II lB C -. II




    0] uD -411
    to CL I



    MI E- Eo U 0 II4
    IoU o 0 -i I
    II 4_ c 0 U 0



    II -'a t E C II
    II r-' -i in Ii


    IZ 40 O0 3 1


    oil

    4*H
    AwI C
    -- w II
    0II
    S0II
    0 I
    -4 II
    111 --1I



    0 II
    0 II
    Col0
    C II
    0. II
    vII
    -4 II

    Ca -g CI
    Id 10 0
    S il
    4 0 *II
    E II
    Z I -I
    M I.' IC

    I C .II
    0 Ii
    S ol
    C o
    10 *H
    C 0II
    40 II

    0 II
    C0 II


    0 U II

    0
    II i

    a, i
    II



    Z H


    aO r~
    S 0-4












    o (M a
    04C -IE
















    to j $4
    d a Z0 10
    E U 0C- -4IQf
    D Z Z >MC
    0H 0 -. 0




    EnU 0n v 4 -a


    -o- >












    ** ** r T i*
    o c0 00
    I 11 jQ ,







    S0 0 0Z LAj 0

    H N 0 E-4
    * r-o E. > En S
    I I(n Q) Q-4






    o CM N0 C-
    co a:







    Q N 0 w 00. N o 0
    04 co r-
    (n

    m ol co aao m iDtLan(n
    N es n wn t- o (nt m o

    o *-< tIn cn m7 cM 1! o 7
    I l ^'en .^ 3 1
    CM C-4 0



    > M n .. .. .. .. ..

    a,-00au 0E EE IC
    -4
    o,.-' oi~ (nS2SS' Cl
    Ec s jA -1
    wOI- 01 fc c a o


    LA
    S 0- -
    ON C
    I Ca -I 4
    c0a0 0( 0a
    cL uE- --4 CL .
    D Z Z > in C

    $a~,4 >
    [.0 2ad 1-i1
    b01o 01
    DEZ L)

    E- D30-1 E 01
    NNE E'0CIN
    CMM 0 O>>



    a, -
    0 NUE 4) a4
    *EDO

    a- <' C-I II II II II
    < u 0








    O N 10 0-am-n4
    ~en r- I0 0 -




    N LA N 3 00 1O4 N co C-
    o 0 ID LA



    0 L 0 N D Cc
    0 N A N . 0 0.
    iI







    N ('
    I I N0'0. 4 n -i






    VM ixm W) -i O(M M coo
    0. 0
    .. .. n in












    iC'0'-< a, IiCC*
    0) 41 0)^ t j -i0


    S tea--Si inu r~ No
    a,-' ao m a
    E- 0C~L L rC















    II i1

    o -I aC II

    . a t -4 u 1n

    N E (1)

    II i
    >4 >4 n

    II 0 r

    o t cr 0) 11i
    ..0u
    D N U II


    II 0 II
    li II

    I > II
    I II
    . 1 3. II.


    . il > II






    U u o' a) -

    SNHII
    N. I-I II


    2 II 2 II


    UAS 0 UI

    9 nI< I
    n IZ I


    IIII
    C 11 a1 ii
    ol > .44Ii

    1 0 u 11
    OH -Iell

    1=i '-i 014ii
    1 0 (D $- 11
    eqn E ft, II
    III M 0II
    Nl 2 011
    II U II
    11 U 1

    11 11
    A II II
    S E- 11II
    II >4 II






    I u -:4 -W- II
    .4if o -'E I
    < C .C M 11








    Q1 0 u cr CL.11 r. c;- l
    I II ) UN II
    0 ii 0 0= 1-4 II









    S t H1 a) 2 I
    Z Ii ..J 0 Z 0 II
    H L 0 11
    IN.) II
    II 0 11
    I > II
    U] C.-I .C II
    uH ii
    H N- 0 0.- II
    U) II N.J-4- 0.1
    > I I 0 1 ii

    -JH02O II
    < II 3 II
    2 4 II

    Id Pii>. II
    UnO u u

    o i o- 0" Hj'-- I
    M -1 311
    MiIH0G II
    1U E- 1 II
    s 1 > Ib. 1
    Hi ^
    Z lIIZ Ii
    IN H I 1. i


    ii
    11 I
    'i 0- li

    (i 0 -H O

    LWH >0-Il


    II II


    CwwMM0Mw~m ~ (D 0wM Mow worr-wM a,0M
    mmew mo-4-4-40me N 0 -4 wo

    C40 r4 (n0 fn w LO ID- 00' 00 N C,1 a, 0, 0, 0, (n M. N, a,. a, aa 0


    40 C4 1. N \' 1 0 0' CD 0 00 L 0' 10 .4 0 C10 C4, 4, 0 0' 0 CnU1 0
    CW 0, G. \1 0' 0 Mo p a, 0' .0 n a , oU n u\ o0 1 o







    LD. N- N 41 4, CO CO M tP r r- 0' W' 0' r- r-0 04 C1 0 D M
    M MD^Da iNl~oi/mo '^rmoFmi-oooooooooomn
    -4D oM-- --- -- -4 0on M-4 0 D 0 oorm
    Lo 4,N1.0 1.0 4D*L* o U, N ) 1 4 1 00'-4000-4UC CCC;C;C;1










    r-4
    4,- 0 U,0' a, LO .. n 0' w 0 .-bD0 r 4, r- M, r- M, w, w4 w w,
    Uo M w, M 0 N N w 0. 0 U, r- N4 N 0 to r0 U, a% Lo r- r. N- 4-
    S w w U, r-44,. 0 N 4,-4, -4 N D-4a% r 0 00 N







    omnomommu-oimomo a oinmwomooino
    O ; ; o u" 1; o C; _; 0 n* M, o M* M,
    04N en10 U, w4 1..1.004,- 0- 4,4, co co ., U, U, U,' o oc o




    M, LO U, M. a% 4,1 M' al- U, ("0 0' CD40 LO N W0 M1-4N 0 0
    1.o 0D(D 0 LO C4 N 4,- CN 0 U, w0O 0 411 (n 1 0 w U, U,
    N D U, U, U, D U, U, 1= Go. U, U, M1 w' r,- 0 0 0 0 0 0 0 0 04,






    NI 4,. N r- N4 r- N04. N- N- 4,. N- r- NI NI r,- N N r- N 4 r-N 0
    CLO P o L M M o coc M c (" w w
    N -4 4-4 -- -- --o4- NN 4,1 4,1e 4, 4,.














    0U 0U,0 U, 0D U, 0 D U, 0 ,0U,0U 0 U, 0 ,0 ,0 ,0
    04,- NOD r-w U, N U, 4,-O 0 N U 4-ON U, 4O 00
    N --4-4-4-0-0-0 -4-4-4- N N N* ,1 4, n,1 4,1 110.
    *


    a Cmm w wM CD M r- Mow M s MC
    Un UN U, 0 0O ^ 0^c ot' 0 1' 4,. 0' N' U, .'i -4 1.0 41 NM 0 0
    D- 0' N N 4,1 M, 1.0 -. D N M,1 U, -4 M 44- M. 0 N




    4, U, 1. N ..$ w, U, U, w10 N 4- N U, CD4.






    m C^t- r t-i csi w s cst L9 ir m^ L9 a:r' wf 'Ois c! o 7 o
    m r- c; w N m w














    r- w m m mo m o w o enm L n r mco N m o mDM
    U, 4, 0' .-4 a,1 U, 0 D 4, 10 U, 1.1. N U," o.0en0Lo1.a,.m.0 D =w
    -4 4- -4- Lo4, U, co o w D04, m Lo m 0' o 0' C' 0' "


    omo o O omo0NU 4U N mmN>o, o c; c; oo

















    o. rN t10 N- N1= r- N Oj U, t 0 4,. r- o,1 f- r" U, N N- rN c 0
    ( m w LNoooo Moo H-it f nvf! monn c c
    CN 0'U, ; 0 410 N ) N. N U N 0' 41 c1 U, U, U,*U


    0' 0 D Q. w= 1. 3 4, 0 0' U, .10 N -40 M, N N D w. 4,1 N U, 410
    c4w,- 0 0- w 4 4,41j o ,1 r- o 0 o0 ,.4 w0 4,1 .0 Uj 1.04, 3




    0' U, 00' U U 1.0 U, 0 1.0 0' N" 0' 0 4, .0 0' m M ,U
    Ne -44-- 0 00 0 0- -4 4 4N NN 1 41 411eoo o o 1.
    I I I I I I



    0 U, 0 U o0U, U 0U, U 0U, U 0U, U 0U, U 0
    0 o UN 01 ,N0NU n w m sN U,4, 0 N U, = 0N U,=0
    N -4 o4 4-4--- ----4- -4-4-- ------ 0
    * I


    S I I n il 1 O II
    If H a 0 C IIL
    n M C 4 cII
    n -. E *- II


    Ii 0 0 0 z -' -'I I
    N 4 O4 C C=DII
    II E- 0 I 0 n ) I 11
    II H 0 0. II
    N.J 0 H=

    II 0 0 3 II
    .II N C C U IIl
    Scii 0 i inm)Ii
    ilHO 4 -4 h ,11
    ilZ 0OI LU-II
    1 0E i V W 01 II
    Iu 0 > 1 4 0 I


    11 I ) 4 M 0 11
    1 1. a Q) $4 E ii
    u (- 4 0i)
    z 1.4 a)1 3W *l

    I r > E 11
    l.4.J >. In0 I
    l1 < -I w0 0
    m 0 n 9 = E
    II 00 l U C I
    II 4 II
    11 W .l >< j r. Eo 4)
    110 t) o U) c1 a 1


    0 -4I 0 n Hl

    II - 0 I n .4 1
    II 0I H II
    II O -1 >- 4 -1 II
    EII On. M 0 u II


    II -U I N ,C II
    E-* 4) II V,

    a) M - II
    iI (a $. 0 z 11

    CA w (a) a II


    I In In a) I 0p

    0. ,0 ,. -
    16. 0 ..4 a)
    1., 0 to 1

    z r a i to a
    E- O0 1.00 0 4

    0. r. 0M a (

    v, ME a

    N 0.,- 0 -) -4
    ,)CI In0-0

    z e 0 2 0 w'
    00. a. n a) u
    Z C 0 -

    B0 0> 0 0 I. n
    - 0 tl I ,- E
    4 0 -.4
    () #- 0 E 4 l
    0. > 0 t C(a
    ) A- > -J E
    1-0 r001 $3 0
    $.4 000


    z14 -4
    H 0 M ) 04 1.



    -4 > I 1U
    v) ) a, H c mnC
    .j U j $4 -q

    SC00 C C
    0 a) M as



    -4i v
    ON- 00 -4.0



    0 N) I 0 0.
    10 a Q

    V (4 M (a E


    M^ 11. nr
    rz
    11 0 -1
    4 ll w C II I|
    r. C, 11 n Cw cO e
    IIll *T OR II
    iIo-oN 40 ii
    to II E n 0
    c w I oo n s -< n
    At. 14 11 (JO $i ) a) 11
    M i E- -I na
    II Z z > E n u n
    II M WM t U (1 < HBin I
    f H ) 4 ii
    0 IllN 415 o
    0*.-;Il N.) U S O0 a) N

    ii tImcn 0 i>>
    II N LM) < 0 0 f a p 1
    CO IIO* S -I H Q (0i-1'O0 V
    :O E 0 0 I I
    I H E-
    S E-* < II II f II
    En j~c o E- > in S
    M 0 U 0 I in

    ) C n 0 La 0 C14 |
    < 0 it I a- )
    Ston we
    E II H -I



    II
    ii .4UZ)
    U).4 rii0U1N- >Intiti ii
    0b INN 0



    a 9 1 co cm io i
    0 C i o rI a, Io i
    N- II II a r

    S o 0*. . N . . .
    0 N*II I -4 0 m'm.=I
    0il0 N N 0 N
    00II N04, I
    II n. I
    .0II II
    S11 N 40 N W 0 0
    )0 II I c wo N t-4I li




    II . . .
    Iii In ,4 1
    IIIt

    OH I I> In) n*- I
    *5 14 0-4 1 lz z 0I(
    M 4 001 r. OIl
    0 11 0 1-4 -411
    .4 0 i 0 -40 .4 .C. .'O I
    4) a) bdi .. ..

    i w i 0 e w 0 II
    1 iI c U) oI i
    ii< '- i ii^ j f ii


    II 0 -


    II .0
    II 0

    II -4

    H o
    II 00.



    II 0
    II 0
    II 0
    ii-4

    II -4

    II U) o4-
    II ,n C 0n
    II M fAe
    II E
    II 2 -
    II M *
    II S 0 t
    II 0







    II 0
    II C 0
    HZ .0






    II 10 -

    II
    II 0
    II m O
    II 0.0
    II N.
    II 00
    10 ^




    II .40

    II U)
    IIO
    0 1

    II 3

    1I0 n
    I CM 1
    s1 W


    II n
    II CM C
    CD r-- 0.-
    ll. *N 0 -4
    II W).1
    w Ndn to 0 a0
    II %C U E- --I a. JL

    II U) 01 0- v O
    it H .4)0 'M1 00v
    11 i 2 M0 0 \ E
    II00 0 1 >>
    I Noo .)N. 0o-40.
    II N- 0 t0 '0 O
    II HE 0 -4OE
    ll m0000 M
    II N-O0.40.4
    11 H E
    II E- <4 1 II III II
    II < 0 S
    Ilw r- M* > 00





    II c; C; W,3 fl) LD C
    II e O Q 4

    II .4 0




    II M U 0 0
    II i 0)
    ii 4,1:


    II 0 ;' 1. U o' c1 0'





    ii~~~ N CD4.0~ U
    II 0oo r- N c 0 r-M
    II O ^rltI NU,0O D
    II -o

    11 coc omi 0c f nc
    II < Mt-n t OL oC
    II r- m r- to La wOcM
    II .o ~ f o ~ c
    II I CM no
    II f

    II ** ** n n


    0'
    0'
    0'
    o




    r-
    0'

    0


    ll >in In -i. .* ****
    ll 0 vi u
    II 0Q O us 14 'O


    II 0.40 -t ~ .4..4.4 0
    iiZU)QCO U)4U 10















    II





    I A
    r-A







    I A















    o11



    11

    H u
    E Il
    fl




    o0 i
    1U
    l-I





    I l
    A, II




    M U
    H .
    U II





    II







    U) I
    CDI
    -4 I


    0 II









    - .J JI
    Ur II
    UB -E II







    U








    00 II












    II
    .0 4, II
    3 A





    0 0. I
    A- 0.A
    0.0 Il


    l -II l 0n



    w II 40 -'E -
    r. wlw a, 0, O-



    4 1 U ) -Z H A V 1

    r-u~a~r~u>^ r u;; ; ncnr~n01 ao o o orn a, S g CM 0 , !
    El 1 0 -I m B 0 y- l 1




    SII 0. I0 Cnu
    cww a> ro wM M Ln V
    II 4 01 I E A
    to LOWO c; 1; 1 C..O r. -4 -4 L,













    AZ 20.-' U- It
    SE AoooM--4 ro oo -- 0 -


    1 II Oz Ii 11 I
    i l- C 0 a) lI
    0 w m w w w m r- m m 0A E 0 N U n( !C 1 0 ru C a)


    M co No 0o co~ co No 1.a cc C, 1.0 CSJ 04 j -0 -1 M '1 U .1. UE 0 11I
    .0 4 CV M n M' LO 4. to r U' a' 1'. 1.0 a' r-~~ r- r- r-1 U' 0- r-0 r- co (a 0 ) EU In- 0 In It
    ....a) 2. iU) to U

    oo or- co N w w w w N 0 0r- Gom nwt inw uo S a( z s^ to to a) I

    IlH EU 0 0.) -4 r 4 a) E
    Lo LO (r O (n Mn C\ 04 Nr Ci Cr n (rD CM C; 0r 0/ ( Q tMI p w 1z an 0 >O 11 nuOl '^Qa


    HA1 u 0 -i a
    itI'.' --I -l-- l
    01 -1 EU z4.. I l

    11 E-111 U 4 (0 0 U II C NA
    C14-4 CD (cntia D tn CDi 0- 0n tn O D CO-4 cm C14 mO m- n MO a 1o '-l-4 f



    E- E 0 E .-E I n 4 l II
    I .-1 0 In to l U
    0 'OUC. 0 w (D CD 0 w 01. n Q w CD '0 0U E I l 0-) oI n II

    11 -; c(. r 1 1
    NmoinoO0ioiomo---E.inNNNMmMinoi0o II n A-.- 20 EU-I II

    11111111 Z l w) 0 = 11
    11 in (a E 91.-j '


    II II
    0 II A







    > .. ft II 0 'M 0 .IU a 'U '0 M '-U 'r-a ''0 I
    w0 0 n A m. fn M(' 0 U' U' w' 0 r- m' w' 0o w. C4 Nr- 0 m en em N > 0 0 0D
    -' 0.0 cI 0w co 0 (nM A a' m a' 0 0o CN a' Go' w E N 0 N1 a' 0o o 0D 00 CD
    to -I U 11 qw a' 0D U' ON U' v-I a' U'r0..a 0 n ON v- M a' N LO0 No 04 CD
    I,.,a m m m m m o e 4) wr 1
    .-0g I...............................................* *II
    2 0 A v-NNNMMy 'U'm r-0 a'a''a'aa'a''a'aa'o
    E0 II II
    cm mi (ni Dr ocia a ,m o ,( ,o
    S II II




    U

    $4 III
    II II





    > II II





    U -- II V 0 mN m3 m cr N' t m N r- 0o o. o- B UO N U' 11 'r t 1- o p a' 1. Il
    0.0 0l U II 1.01. o 0 r-oN 0 ^ r- r- 0 ~ a' ^ 1. NT M~ 1. U' v-I (M 0- a' 0 l-^ a'^ a' I





    a; 1- -4 cr II . . . . . . . . . . * I
    U D IIco C wa% l c m m m
    0 0 3: II 0 4U M M n N 0D U' 1.0 0 W c0Mo Nor c. co 0 c0 ca a' It

    FL 0.11l- *El
    U)A l A II
    II II
    nl Ul





    > II lIt
    I a)NH- II El




    A EU mI "- N a' a' N a' 0N v-I N 10'l a' v- o N co 'A 1.0 t- o '
    SN o --o r-I-c cm-o o w O m ow cw r-o- -II









    c/ 2/ 'A' ll (yE 40 0 0 0A a' 0 0 'A' a'i v -i cM (M 'A' 'A' 'A 'A 'A 'A U' o E
    02e ElNNNMM'oA~mU'U'1o000000w0 oiI
    t,% 11 A *





    L o N rnU U AA 0 U U ~ N E 0 a 1 ; 0 4 U U a a 0 N 0 c ; 0 0
    200 II mar 0oa'00Wo Mw .m O1.0I1. U'U'







    S0 0-,q II -4 r- 0 r .- C 0 I~- v-I NA a' c\. '' N yE 04 r-EN r-I 0
    O -4 C wt(n coLDm 14 1 m e Lo o m o mLoco m me nLoca
    H0 11- II



    0U 'L 11
    A-. II II
    >A -. A II


    *00- II evw I Iwmwmmeom






    cIN, c; m00c; 1 I c v-c NNNCM MMMWo II
    El I I I I I II
    II II



    III
    IIt
    0 if E
    1 -41 0U'0 '0U' U'0U' U'0U' U'0U 0U'0U 0U'O II




    0N II0 N N 1N y 0 N U' 0 N W 0 Nro U'M- lo
    t lN c4- a -o- N4 N N m n (n 0. A
    II II


    I in 0v I 0.
    tn0 0.-1 '- c C-

    0r. C -
    E- 91 0 1 n m 0 -j
    W 0
    0 .CO 0'0 '
    xI 000



    o4 a M a
    Z.-1' 0 I M t
    = I O
    2 E 0 -0U -4 M

    1 00 3

    OOE --) >14
    S 0. CI C a


    E-
    W0 0 E00



    > so

    H O Oo- aI -o>

    00 r O0E
    -4 -00

    -4 X4 C 0 >
    H 0. In U _-I4. .
    H.Uo 0 11

    U -j w -I
    Z1 0 C EM
    U) 0 uOEU
    0 EU to- 10-
    21-cOa -'0
    0) -1) 00.
    10 E-0 it C 0


    j. I m n E0




    v) Ad I n E 2 0-'


    -4
    .0

    0
    S0
    E U
    *-4

    C
    -


    0
    MA *

    C 0
    t-4
    .H


    0


    A-
    Z
    Z On
    0 o
    < 10 *


    2 l



    EU-
    W ,C C


    0-a'
    O o


    S0
    C o



    0

    '

    (0.U
    x
    Id)



    0)
    -
    -'E
    AU)

    (0 C


    'AN II


    ON -l n
    C; CM -I in u
    it a). 4 U
    A-) (0)E0U 0) A
    P --EQ. I- II
    n 2 2 > c n
    toH A- da) 00 10 A1
    < to g -aOa40M n
    d 0 E 2 II
    1.nmZ S '0 0N\ II
    a'-1 0 Q .>> > II
    -C^ d lA-00-'' i II
    SE- 0 0-'
    1H i3QP 101- *
    (0 U W i n El

    S4) E-
    S 0 II II II II
    M0 > II







    D0 vi .0 L- 0 0 I
    00 .r vC 0 0




    a'N Ca I





    0n






    0n w' r- N 'U o10M
    II

    0. 0 N 1. a' .-. .0 II
    I n rI Nv E I AI
    < -II
    II





    0 '* --'* -E-E II
    (o m U)A.c U'nr- 0 A
    ** **II



    (ll CDM SSSS C I
    * *Q * * * *O I
    IOO 1) hf^C II


    Q) 4t W) C!34 J* JQ II
    StQcir oS
    n


    -4 n














    0 II












    O l
    0 A














    11





    iJ : I
    E0 II
    E -
    .11



























    &- EU
    U) I


    CDC a,
    M 0 i
    0 A-
    oC; -4
















    O N 4n II
    I 16 -' A
    A.d U)U 10 ID
    0 U A--0. 1... .
    Z Z > C


    < >0

    M A-0o0.E El
    -B 4 W j
    * .E- 00 0j a
    NOCMU f
    I H..)0QUn) '0g E
    1-1> E





    H lo A N





    o o r^Mf w ^ Bw
    rN 00 ADo
    N w A m w m
    . . 0 A . .
    10 I- *- U'. rn w II


    a 10 M N, vn lo 1





    (n r
    to a'% M 0 a' .-D r a o A
    o N- U'< N- N^ v-I' cr t 0 0 El
    I I cij 'Mfn l A
    Na'a A^c


    1 1- 0 NU M M -

    C- N 0 ^ 'U .

    a)~~ ~ ~ A- -i-- *i
    S~~~ AOC OS;i >r oSI
















    0 II
    > II
    Q- I II
    ma-4 il
    -4 0 c 11
    0 11

    II N
    rnu
    x I i
    U II


    U I -I


    - 0 )11

    12 A II
    0a a) "


    i I) >
    u> II
    H -4 II
    n; -iDc l

    OS 3 I ai~
    0 E II
    0-4
    0) II


    ( II


    U 7 a) l
    DC-j
    C' 0- II




    4-40 i
    H 0 gI II






    So" a I1
    1 01 II
    >" b. II
    0 -II



    S 0 -4 II
    ---. II
    UU II
    OCII

    II
    d) ^ II

    en t 11
    II
    ONn


    N 0 0 b 1')~w N 0 N D m~ 0 r- -Cw N 1A w "b Nm.
    f. N w' w4 m w' wA w mb wA w4 C. L N Wb 0 a, M 0000 CD 0
    0; 9 C- _') 0 ; -C *' Lb ,4 'N Lo, Lb Lb bC C -C-.
    - q 4 en -W L b c- 10 al a' a, c0 0 0 I O a, a, a, 0' a, 0




    0 r-o a, 0' C.- r.- N N No w b w a, ) en IN LA 'W U V% 0 A LD r-. r- -1
    CNm r- o 0o m N o r-4 c m C.M r4 N en w C N o LA 0-4 LAo
    LA r- G ao L- 0 C LA i -a r- 0 a' al CI al n r- LD CLb 0 Cn cNj e rn c!N tD L
    r- w C- Lb 0 'o al co LA 4-1 LA Lb LA -1 iD o. o D 0 0 0 o
    0C.) Cn) W, LA Lb C. :C Lb* 0a Lb* Lb w, LA* N N -4 00 00 0 N;c ;c ; c









    on~ownmoflaiemoime mo ouioGomooo
    0 N~ m. w Lb c. al 0 Cen a) 0D -1 C.- LAN Lb LbD Lb o Lb C- C. 000
    o r- r- a% m 0 Go LoAM r-o al r O- m) N w oo a% Lo

    . a m lo a ID (n 0 0 L a; 0' a, a' a' a% a N
    Lo m w m w e m aNem m o









    -4 f- N n N C'o w r LAL bL C.- r C- C- C- r- C- C- r, C- C- o




    0-- -4 --4 C- 0 r-( m Lb a' I'n Lo Go C- c 00 N 0o -1 Lb C- 00
    LA L Lb -C-0 C.)N'0Lb40Lb bC.)-4NN4LA o












    o o ND N Lo Lb LA Lb LA LAW LA aN N oo 000 0 000 N






    LA LLAAL A LA LA LwA L L o
    N C C NC NN -N C- N C- N C-NC N C-N 03



    0 o Lo 0 LA Lo 0 LA0 en0L L A 0o LA 0D co 0 LA 0o MA LA 00
    c3 c> c c) o m e o o no ) c)L owc moaoo













    0D C- LA N 0D C- aA N ~ 0 N q LAC NL 0 N A 0 N LA C- 00 Z
    N -4 4 c- ----- 4 4- N; N; N N cC. Cc C.) C.) C
    * * * * * * * * *


    II I MV M I I 11
    II c i I

    ll CL 0 0 *- II
    II Z1.. GIil
    E11.- t 40 411
    V 3 C II
    Zi > 0 -4 0, I-
    114 X; 0 (0 m --
    11 H 0 1n a) 11
    flUCI (1)0il

    z 0 j # 11
    i2 M- 11O (U2 II
    liZ 20--'--(1ll
    10' 0 u In 11
    II U 0 > .- 00 ) 0 ]

    II 4C0. I OC 10II
    ii <0 ie o ii




    E-0 (d 4 0 II
    u1 W CL .1 44 (d ) 11






    II o > 0 0 0 II
    ii -4 a M D'u-ii
    Ei 00 0 C 4li
    II H C 0 > i11
    II E- M C C IB O -

    II 0' %-4 > -i )a=



    iZi-VW -:3 0-.il3Or
    II 014 0 0 C 1
    U 0 W COII
    ii 1. .C Co 0- > ni


    11 r V a) e < I
    IIC ZCOO t--
    11 z c4 I'd a) I;





    0 H >0 C-1 0 -4 1- 1-. i 11

    IIr H11 >


    II i U C 0

    1100 -4. ii
    E-9 In (00U C; I r

    II xa .B-4 l HM
    II 1- 0-) aC II


    II1U C1 ) 0-C II

    ii H.- 0 -1m (2-'II
    11 1 ( - 3 C I 1

    iI -H W 1).-n-jii
    r. I'- c n (aC)



    Il Z ( 4 a) 0 ) 11
    1I u W v al Q 1I
    i-i OE-EoO'-4l1
    ii u .-1Z 0 )~l
    Iti *jU)1.3200.-C


    ii II
    o >I C .JII
    M 11 1 11
    Nil .-'0aOll

    l :3 3: w 1
    l =i CL 0 11



    0 H 11E v (
    Ni 2, 11
    CM E to

    II 0 I
    Ii U i i
    Q aH > II


    I I 0 a.





    z 11 uee
    I If
    .UUC.0CII
    0il 00'0
    Z .I 0 I

    I a) 11
    IlI. II
    II 0 II
    0 > I

    It --I I
    U)3 ;-l .C II
    H II H- 0 0' II
    >I S 3 0- II
    HO0E S ll
    l Q. 3 II
    Z ii U II
    SI 11
    Id Bi >0 II
    .-) Ul U 90 II
    i1 C.C II
    SI -1 0 II
    U) ii U 0 0- I
    lH01 S
    l i 0 II
    II >< b II
    H 11 II
    E II II
    2 II2 II
    - O14n II



    U Si 0 ft-II
    1I U)U) II
    U I a uII
    II II
    1/ a 1


    (0 I 0 H I
    U3 II II^


    II II


    II
    m LA 1'C)0N0 AN0 A 0' D 0o LA Lb NC-4 Lb 0 D
    m. Lb C- C- w C- Lb LA 0' C- Lb C-L 0 0 Lb 0 \ C- o (n C-1 4D r C' 0 If
    w. m.4 C- C m.o C.) r-00 o cLn co C -1 -1 C m (Ln r-N
    N* 04 LW LAN 0' 0C N C wwww0NoC c
    c"! cm en m w a m m e a, ao ca,,
    m m mw m L m m. Co mN C- Lo LA Lbo Lb Lb Lb l L0

    - i






    m. bL L Ao w' oC') m 1- C.) 0 -400'C- o C- b C o 04 NI
    .) Lb LA 0 b 0 LA 0' LA 0' LA C- N N 0 '. 0 0 0 . N
    - - - --* II
    -4 II


    II
    II



    II

    mc.)-L rbw w NowL wa N AC or'cmm C wm m w L oC- -4- II


    LAL 0: ') Lb 0 LA LA Lb Lb Lb L
    -Nm w NC)C)C)aome w w '




    m C- -1L Nr o0 03' N') m mmC- 0 N o n r- LMoooo o- O' A n C


    LA -4-4 -4-4-4 N NN C.) m C. N N -4 0 000000 o Ii

    NNN II
    II
    II













    NO O OO O 4.44- N N C4. c, m- M c. Lo
    I I I I I I III
















    0C- LM N 0 C- LA a 0 L Cc M0 N LA C- 0 C N LA r- c0 N o0 II
    -ico c;) c ; c; 1n .- n i Ot- co "I m 4* co' m* m, po t



    N ----4-4-4-4 C C C') C P 0 12. II
    i I II i I II
    o mm iM p-mM O o~n or~'OCwo emetn (^ cif Ci ~o 2 I
    CM~m mm w w w ww w w l i, t ooooo ooi M M M Mmf np r opi1
    1~~~~I 1 1 1 1 1 1;


    En -I r. 'a c II
    W )C --4C I
    1I 3 0' I -' 11
    0. C C 0 II
    CE- ma m 1 1
    S0 0 1 II



    d 0 C 0i 0' II

    SO. a 011
    0 c I I II


    0 0C C C r. 0 Ua
    E- 14 M 0 r-. =
    U'0 -.0 II

    14c a "0 E a

    U: IO I0 C11
    . .. a -I > 0 E l
    O z --o Eall
    E -' -O 10 11

    S- 0 w 0- C I
    0 > 1 o1 9 nI a
    >O '-I C; ] II




    ) CL a) U C 3 E li
    Z I- O 0 0 IIl


    w0 0 1 0. 0 > II


    4 U 0 411
    a) 0 0 II
    0 w 4 1 II
    t- >0o C 0 il



    E- --I "(.4J (1) -
    > *2 1 C -11

    0 ) Q.U(1) C )
    W0C 0 4J0. i
    .-' U 0 0 11 Ol
    , M n > U I







    0-. ( 0 II

    V-C Z 0 I 0 0 j II
    E-* ) 0 0 i


    -4
    -JC
    )0.
    o
    C0
    0-




    (-


    0
    c o



    e *
    0 o


    E-4


    d 0





    Z o
    0-)C'.n




    Zoo
    0



    O 0
    20
    0-



    '0.


    C 0
    10



    0.0
    1U
    M1


    O Lo
    co m
    OC. C
    mm CO
    0 -1

    (4U00 0

    n z > mQ
    OE 2 2 >10 C 3
    U)C. 03s 0( o)12
    M 0 E
    o -1E xT 11a)\ E
    a en Q > >

    oNUM CO 0
    0-0 0 0


    H 0 H-
    o tU < 10 E
    E- = 0 j a) E 0


    03 Uo Q 0hM E



    oN '0-
    E-< 11 d II I II II





    U<
    CMj o E- > In
    m *- Q Q
    ro CM 0
    *J n


    II

    II 1 Lb
    II C 0
    II 0


    ii C-

    r- o
    0om
    0l


    Lb 0 wb m w 0w0C'
    N IN r- Co) CnL

    Lb N 0 ^' Lb 0't0' 0
    N C; C-
    '-r C- N
    C.)
    m

    oomtoseo^noo
    cM t- o aNO n o -1
    00' LAi Lb3 s 0 C.) 0-
    N -4 NC 0

    -4- --r- -
    C-0 r


    II ** **
    II ** ** 10
    a) ii > Mo CA --i **
    O1 > 01

    -'0 IO 0l( '0 -40 1- .0 .C .C -0'
    03)C0 II 0) -' 0U 3 -J -'-'-' -' 0
    S ll Sv)aUWQ LnbCr-0ZO


    11 Ci
    to P N II
    0f fl, 0 0 C II
    o CN CO II
    CoHe 0 -4 l
    C 0 0 CM -4 En
    wi to z>(11C a)
    II 2 2 > Me C I
    II 1H1 U) a> 1
    I 0 2- --
    ,- C II woS S' a \ E II
    MA zN z >>



    co Ho w m w i
    IS I I Hl-Ig r Or-i
    fton E-BO- ai o I



    m -AC I Lmo -i- > I
    WM 1m t iDCM m(P 0)


    C 0 ll 0 IQ
    ymm a.
    E- II I
    A. E-1 z 11








    0 EH0 E- 11 0 1Nc
    S oiil. .. .. . .I.
    C0 l l 0 '.4 n a N a ) fl 0o
    to 11r f, n bC I II
    0 11 j 0 II

    O O II IImom
    fi ) H m (Mw .- s i ~i ^ ll
    0 0i .CL n



    I I I M o 10 I I
    n II
    *0 0 II
    Iil .N N 0 0, L 1Ao 0
    C M II L) o a0' 0 C) I 7
    (0-411.... .. ...........



    ai > i n **** **
    i3 I I No-1 ill



    (a n C 3: j- -4I
    iin )- a) .1m j a ii
    S it x En1 an4 L -c
    S II S ( 3!;nt ~o S II
    II~ --0**0 COZ Z Oi
    .O II 0~ 4 > -. .0. *C '0
    U) 0 II 0 -0 -#~ -.- '- 0 II


    II II


    II
    II
    II


    II

    II
    II
    II





    II
    II
    lI

    II













    II
    a > jI
    11 -4 C
    II t
    I) < u

    a E



    I *.



    H C-C
    II NOo










    i0 0
    1 3
    N NI
    U U -



    0M 2 S








    N 0
    II -















    a )

    II -I-4.
    N CC-
    n


    II I n 0n I 1 0' I
    CD w iK oc 1

    0 r14 0 (4 N 0 a' N (44 w m w 0 0o mL r- (- cm r4 w.4 4 .0 N l f N 0 o I C. I-
    q4.Or ^NtM4.r0UB'nNUUM N 'N('M0 1 II ulr -'-. E -3I
    . .II 0 1 .O C II


    r. mc o n) E I a
    W4.0UsNUo0'0 oN MU, N M0'~.~' .ool 14 O.C C N

    ,4 4- -NN Nmomme'U'0(o 'C''0''0 il.)o- NI 04 I
    lil.3 C N04 U1
    0 C C H II

    o i r-- W~ N~ w ~ ~ oa r- Ii 0 m D co r- NIOOUn m w cI w w H 1

    w CDr wM mOt'r OC Mr a -.ii m 0 m m N- wn 1i z r= 0 *-j u In
    1 l1d C I 1Tn M 100 0-N Il
    14 H E- n.-C 0 I U R
    tfl liZ~oioM~i.ioio B2O o.-o m E O--i Tn II
    *11004 -.4nNollI u
    S XnmU 0 w NOOooooo. HC T

    0 (M ol C n m wu)~ B c r.N m n m <0,w Em- m 'n *-04
    II 0: C 0. I 0 C 0 m-
    _1 c o >
    1 Co. c.N I w 1 1
    ii 14 0 0 E II
    II NI.COENI II




    t ol Q)mm Zl 4-4 m~ r.

    11 >44 1
    ' (4D- 40o o 4', U, 414 t- o 4.0 ('.4 o n -1 r~ O 0 r- II N-. 00 0 I-. 1 IW



    C, a m CDO r-( o m~ w mar- wMnr rno w w iw~r" w-n w CD S" 0 0 "-IC DJ )i




    ro 0 CD cO>I>
    q: "I L0 -! 4.0M D C!0'(0 O 4 ( II 0.> TOnN 11a ur
    _._j_,_ _i rci rM* m Lo 'o.i i r- < co M, ,l (n CD co0 BO c 0f (U 3D CD C4 It rE= r
    U'oII -4 .'
    ~ II0:'0.-~ -. I


    IIII I I I I I 2 I
    I H -IN t 4 11
    0' W, TnCM



    114)'- CCNI I
    ... .. ICI 0-N COI
    ll ii I <
    -4 ii HO m 0- w m w w w O m o
    rc- oN co r, ~ r- N r DPC coN r N t CD 11 U4 CO 0f U r.a 4 11



    a, ,>
    I I I11 lo o J N) i
    110. -1 *; C>. u c-'-I
    II Tn .J 0' H .- 0 C II


    II U) CL U V) ^ ^ I
    in a) C II




    C, r-- C4 r 0 r- CM [- N iN ~ r- (M C ~ ii C- C;Cl S i0

    l U ,UU ,UU'U4O .1 Z ( 30 0. (1 01
    II LN U r= 0. 11
    II N- -I NI -I.-' Tn -'.^-'i

    g ~ o ~ oii .-'.C CO Oil
    0 r ~ o o o ^ -- -fM ~ M m n n f ; 41 1 0 440 U,0 440 41 1 0 440 44 1S 440 440 i T N 4 T
    0N N N NU ( O 4.4-Ol -4 I.-COlllMW t .-"N


    . Imrm C 0
    Ow CO H


    S-- II

    0-'i o E- -- a
    II O C N II
    4 II D M II

    lwo .. ... II
    -41 * O 4 E/IoC.I:n II


    i EH E-.
    II < 11 11 1111
    - .IlC I :m E- > US II
    O I ir QNQ




    E- II
    w j. I o or-mommr-n t(
    x m a. o lO w N w en a,

    0 -'I Wm


    S ii I;




    4 3 00 0 in r4 0 -
    II (4o II


    '011 m

    to 0 11.. C.. . .. 'V.I
    .-4l 0 i
    .- 0 i0'-4N .CCCC0 i


    II

    H
    H
    H

    e
    II
    II
    II


    H
    n
    g
    g
    H
    11
    II
    11
    8
    II
    II
    H
    H
    II
    H
    n
    a
    5
    8
    II
    II
    II
    H
    g
    II
    II
    II
    II
    0
    11
    II
    0
    8
    i
    H
    u
    n
    U
    II
    II
    II
    II
    0
    u
    ll
    II
    II
    M
    0


    II I c (n I 1 i -4 11
    m 1w Cm rC w r m wm mo m o w.C 1 .L r- 0
    > u r i Dm oo r >imc( y1in C n o i CO

    0. 00E '*O C H II 0 .-I t a
    m c r m Q- t-< w3 wr Lnair w3 wD c -wi w f iN G N w r o iLm r-4 mfM o 'L 0 10 '" 0 -4<

    c a;' o' D** E-N'.O 4 0 0 w 4 11 *H I C/ 1' r


    II O1"-.'0 0D Oil 11 II 0 .4 fu NI
    AII 0. O C 1B 4 II 0 a OB
    Nm4C 0 OB.-I 0 l II o 0* 4)O0 '0o
    .o G ..a.n o*0* e o w 0 .O0 M 1 I 11 0 W 0 1 -1)E
    OO I a (1-4 00 m c1 o (c1rM 0 N-.N->-
    l al o o^ cII HD o C- NI I. N- oI -wM La N- I .> o o o o ^ 11 Z ii ( 4-
    o0'0'Um ( co r--o --om <,oN.-.4oooooow *IHl 20.I-' I NI Col o*-u0O C 0 NI
    1100 a)IN 0t 11 1 H.4 -m
    * 4 ; Lo 4 0 0 - 0 0 0 0 0 0 0 0 0 0a t ; H C N I I I it H 0. N u- i 0 .Z) 0 ) 0
    l E0- 4 r O C r-41 3 11 II HU) U I -
    II C I o c o i II E- < W 1 11 It 11
    1o .0 N-4 E i 4 cI II (mE- > (n
    0)II CO E 0) 11 w to A c (a) I-
    ,-IWW0 o moUmscmM0-e ~'4'4-r-' WeW liZt '0--. ML. IIK Ii Nm 00
    14 LD V 1 oo nmo en oma a m ~ m Wa li coQ I Looil **mLoL o v -4 01
    Qow awNr mowr r--Q '-4m w'e'rN oAw 0 w N rwm>- -w r. 0-1 NIwCII o ON
    M1 0 -4 Co r- f1 t ( n4 O M4 o 4 414 N 4. 4 a 414 4D CM 4.0 (C r C- CI 0 N) 0 m Cr- 4. 1 1 0 0l C N
    *I a)-I n I* > 0 iI 11
    0'C om0 .40'4.WO'e'4 'o.N NNNNNNN NC'mmud N :-0-I' I.on 1.0.0 N /I
    semammemM em m m mo c o in Ul) EH IIIIE
    II 0 mU C 2 II II
    N c.N.- 1 -- C II Z II
    II> H 0 0N 0 0 llo vN o N
    II 4) W 4 I Ec411 = Z

    i0,om- '0 W --.N4olZ 1 a, IC N I t O IIN r- N- wo w -
    414 W1 M. W'0 0 0M W4 40 .-4 M 40 1 M- W' '.4 W 1- 4 .0 CD W4 "4 r-4(4 0 41 Zi 0 4 0 u1 ..I0 I Cl CO Nl Lo o m
    ICI 0NUOI -l
    c w (Do o*i o N w cD CD C.oooo o ow >
    S . . -. . .C .- 0 . U C II ii I I o 4r o I
    1s; 3wr r e a* M rNj c IoooooooooO UwC r. C O > (nO rna,
    II ...)UOo -'NIl NII
    H- (a r CO-J -4 $4 Cr4
    jI c4 (J a) w II m IIr. o
    11 U $. -11 Ir m r
    II -H1 II C>M >.U .oNNNU
    I r-) (a c0 -4 C 0 1 N o I 0 N ollo o
    N r^lr- NM r. CM r- CN r- c-j r- cs) r--N r-. r-m Nr-N N 4 0 C r- o o O cm 4 c' NN 0
    o 110 N I -4- x e I % r-.Nl I
    *0 *4' II fONI.0 pQ ll I o
    11111111 oo1 NNN am me IIC/I.-0.C C il NIM
    1 1 1 I I I I 1 II W u a M c \ II It
    II M iNO .-' II N ** *
    HI C Cm I-. II II 4)- (0.
    n E- -4 ai v) ,'C -' J n m .. ... .
    S II 4-JNI --4 41 (O il4.0 *Ci I I O ZEZ 0lS

    N. ... .. ..NNNM . 4(41'q N- 2 N 11 II _i Il N I-' -I I C uN
    1 1 1 1 1 i ^z ca t. a) 0 :5 u) S nE ca L ' o ~BS
    Il IIIwI II aZ n 0 l E Q.Z 1 nE
    II C/)I.4Tn020..-'l


    > J JII
    - .C CII
    .-' ID N ) I
    (B --I U I1

    2 ) 11


    W 3 S- u 1

    04II


    >,
    C .C C II
    NI0' NI (DII
    C/I 3 -40 II


    -j

    O- IE NI i
    E- Ma 11




    0 ii
    M> L)



    f II
    01 II
    U v II
    -' 0 0' 11
    4 0' II
    S 3 N) II







    toE S II




    - NI -411-
    NI Nl S II
    'I -10 II

    CII^ CI II















    II H
    -4 II II





    l n) II
    o -A CI
    I0 4H 0U)




    II II

    N U I
    4! C.CC
    I I W 4UI

    N l4 0.




    -1 0-
    I a II
























    un S 0n
    MU> n





    502 1




    SII U II

    H V1 2-

    H a.- n

    Id II S II

    4 00&




    C1 W -H

    0 I III
    II II
    HI 0 H


    I1 II
    01 0 I
    0u > II
    OH -I C CI
    I H C-I U I
    I- I o3I W)fI
    1I 2 (a.I
    C. E ft 1
    I H


    11 to 0 11
    II 11
    - II II
    a:o
    >0 > II
    I U U-' I
    40 CCCI
    I 0W 0 -4 UH
    0 E- 0 W 14 II
    IS t W 3 II
    I014 0.0

    0IWO. II
    H Id II
    0 a>7 11

    II 0 II
    IIU> II
    I 44 II







    14 1 E- 100 1 I
    Ig II-

    ZI 0 E II
    < -1 3 II






    94 11 j 5
    CO11 N -- It
    >40 3 IIW

    Id 1 H"
    -, U II
    0ig 0' H
    CO II U 0'W II
    IH W 3 H;D ~1
    NII 3 t II



    Nd II E4 I .- II
    (II V-k C II
    11 n 1 a1 Il



    11 0.-H





    I II
    It
    I n




    N >
    W I a W -0 1
    00 >W-40


    I -i 0 .
    0111 11
    II s o o 1





    CO H I
    II II

    a n


    o c ( r o r .o .- .O .B. O. . . . . . . .o o o
    0 nN m In In 0. iI N r 4 en In C In CA U In In N C in in N to ND 00
    0 N ND 0 00' Cgo N, C, Cn in 00' n Na aC 0 q, N 0


    -




    omimn ooIn Noo- f-WC iniw rr-oo4cionimoMno
    4 N ON 00 4 N N C Cn C0 0' 0 0 0' 0' 0J ON 0 ON 0' 01


    O Inom 0 n wN 0W om w inm Nr- w amn Co 0 m
    o ; cM D- cm, )C~ LD* a,* o* (n 3i C; csi n (M( r r m r ^t*
    AD In0 In I c 0 0-' 04 N O i n 0 In C D in N e In No N 0 CM 0'l 0, U)






    0 N r0 n C inr- N -40 C In C- in N NIn ND M 04 0' MC U W N 0'p
    in N C o 0 NN LA n C 00' U' M C O In in 0 1 N C> In040 N .-CO4 In






    0, I I N In L rn rN r aI o G o a0 N o iI co aD co A .0 co




    O N m In w in CD WrN rN UD n m OOW I N I O W W N W W w N
    7~~~ ~ N C C In U'In N N! N C! C C C C! C! C! C C C7


    n W ooN N W M0' o r- rN n ND 0 U 0 N in oooooooM






    wmo mOe wn m e wO Lno inOLnon c
    0 In 0 In in P in N N in aA in0 C j U m 0W N m W n C) In m Lo 'U


    W in N 0' 0 CD N C' Inr nNI 0 0 In InN n -40 ) LN Q- In>



    LA U' LA U' U' U' A LA U' CD U' U' LA -' LA U LA LA U LA LA U'L
    ornim-4mCin'n-4-4Inn MmCo-4inrrIMninCoo








    Cr^i o O 0 O o0 0 l;-lr CD f4 C"Cemnnmnar cc
    I I I I I I I I
    0 N U' N 0 'N 0N U'N 0N LAN 0N UN 0 N U' oO
    - - -'--'4see me em oo
    N -4 4 4 4 ---- 4 -NNNNI nI nWC0
    I I oI I Io I I Ia m m e


    II
    II
    4CD C 0' N% -00 w wn in In 4 C in N Go C O in 4 n WLA0
    N in NW 0 LA in 4 N- 0' N A N N U In C in C In N m 0 I
    00' r- rL r- N C- CD 00 N .-I0 CDlo in rN C4 io L i t0o o

    N 0' I In in 0' In N 4 in N rC 0 O cNin r4 cW I co oi in in i n in 0
    NM Ni In In LA r-N N Co 0'0' a' a, 0' 0' 0'a, a 0' 0 H









    -4II
    Cn 0'o N0 no0' 00 in C N C3 i 0' U' N in- L N O o ll
    SIfn io -4 4-O in N o A N aNN 0 c o w u .l.... Io
    Wn Co i 0 -4 Q L 4 N U' WI N co mIn co C N Co o cA o m C LA I














    Ns N* (N N^ In In' Inj U'' LA C* N 0'* 4s ^M r ^ N C^ LA In' -4 00 00 N o
    r L ( co al fD c- ot - o e -tn oD wl oi en c) f o cn i o N


    -4 II
    C0 M w0 W C 0W N W N N in mW C N 0' II


    0 I C 0' N o 0 0 In In I al C L dC W in 1 1 1I



    0' w' N 0 w- w w- N In wA Nn Cm N m- Cn L-4 CanI 0 0



    NN r N4 N- NN N N NN NN N N N N N NNN NNO II-


    I I I I II



    O N a ) N o 0NA N 0 N LA NoN N>N
    c c; oc c clm e c o m mn*a 4- l,

    II
    I I I I I I III


    I V) V2 0 I 0)

    E- w 0 n 1 c (a l ) -1
    C a 'O C
    IN .c -C to-r -4

    24 0t -(
    H 00 m C4 0a


    1-4 03 c w i
    SE 0 I 10 10 --



    0 1:7 i-1 c o9 w w
    N -4W 0- >-
    CO -1 E 0' 0 3
    S0C C C 0
    a.OC --4 *-C
    p. 0) U



    0z c) '0 %4 o
    -CI 03C-W

    HOw C 0 IS
    0 0 E- c
    2 20.4U40,
    HC 14-4>.1
    E> 0 to X;0 3
    UT > 0.4>-i 0





    44 in14- r.
    4 C I C 4)

    a> 0 2OCflW


    0- ca a) V3i

    A> .OI
    2 -It -.--I4>.c-IE

    X e.4 01 0
    WODUCOE



    j <-] o w- -i t
    E. 0)-' 0 Z0 -4
    H 4 10





    >4 (a4 r WV4
    04 0 0 U M1C4
    -.1>'.4 C T02W

    > 1 -
    CO 0) 04
    NC AC0>
    H C0 o- H 14
    A ~ 1- >. U <-
    .AUO (0<' a. -. *0-4>IU.
    < U a )
    -4C *-C o-
    Od 3 i ->S 0 -
    N014.4% -4
    0 0) r- 0 Q\
    1- 0 1 O H C
    OW'HO '-l-Jfi4-i4C0.
    CO-400 C 1 n)

    Mdrd
    / j c)^ i
    ^1~ C C 0)
    to E- E 0) to fl
    H -4 -4.42.


    SZ 0 0 0
    MWH E C-I


    I 0m C 1 ) I II
    11. 0 aC 0 01
    1A r. j e ) 11
    (L- 0 o (d 4 -'o n
    Z M 4IO 0 II
    wd- 0C 0 -
    01 4 -' 0 I II
    to0. OtIo .4VI
    0 0 C C4 W II
    H .0 0 4. 2100

    - o M> 111 4
    a 0 C C H

    a) vc- -4 -CI
    0.0. 02WUII




    < C C. I 02C 0 I
    OS 0) T3 r| 0 II)
    W OV0-4W 141
    at, )h il
    S 0oe a)
    Z 10 E-I
    04 > to 0 o cwI
    U-V > 01 E 0
    4 -4 O il
    ao.> 0 CW II
    SOl G ull C II
    > W 0 0 20 II
    a)14CW14 e0
    0'W:'-00C0
    .-I >.. CM02W II
    21 *'1C00W-II
    O3 a Ik UC 10lI
    0d C 0 C 0 II
    C 0.WUC l w
    NC C CO>0II
    H U C 0.-4-41 II
    .- O fa W)
    o. -4 -%-I>'U. tI
    > It 0 --I C; C, I
    4 .* > U -I
    0 0H fU H
    O I .' C O I
    d JU IJ t<-
    J- $4 '- C 11-
    014 ZC 4
    Id 3 4 0 <- 0 U 1
    0 ) -100 4 Ua C
    z c W-, a)01 C I

    10U.0-I.0II
    HC V0'W'I'
    U 0) W I





    C H 2 40I
    2 0 14 W0 0 II
    CO N 0in 2 .c I
    .-1 -4 0 -1 1) j
    -i q- V- 0.) _j
    m0E E o) 0 -
    .J Z n) 4 0 o 3
    t/3 wd Vn 1 E il -ji


    II -I

    o Ca
    II 0
    I CO
    0 40-
    H a.-
    I -
    0 -
    II 0
    l *


    II CO


    O C'
    O 0
    II 0
    II CO




    II NCa
    II COCU
    0410'*
    a O. ao

    II H
    11
    11W4



    01 -i
    IK




    HZ Ca.

    HIZ 0
    a o
    II C
    II2 0
    S 10 CL

    II W
    C 0





    1 Co
    110 *1
    II Ca4



    II
    II


    IIW
    I0 '1



    0I 01
    II ^





    H 1002
    II COW
    II 2
    II


    -4
    Ca
    0
    C o
    o .
    & 1
    1-i


    -4
    .0 C
    Ca.








    to ll
    0
    C
    10 .


    -4
    03O.4>.C

    *3 o

    N 10 *
    wa:
    D 0


    E-
    Z 0 I


    O 0
    'Z o
    Co
    *-

    mo
    0.a
    V
    0
    CO
    10 -
    fc U
    2<
    Nd


    II II
    ILl O' C ll

    II C C41O i
    II O N ul l
    II N C 10W W 1
    I; U E- -4 S -4 I
    It 2 Z > IZ = 3 it
    01 M M (dO H M I
    H 002 a>2, I

    H i Z oVo) H
    E 0 -) W r II
    -1 g o 0i 4) 11
    II NM 0 j>> II
    lNl *- a3 -I di
    11--* IIO.-UW CC W H
    H H.4DC-4'g I
    H H 0. W O Ht
    II H- .4H- Q 00I0 E I
    II E- 01 0 II

    I t 2 E II
    II0 NE- >l Z

    Or-N 00 H
    II N n

    H N E w Vo c II
    II II
    II I Q


    II II
    II 0' '-4 L 0 C 1 N|| I


    IIO in N N N 0 Dr- NH
    II@ '.'.''-'' I
    0l .4 o I tm os i cinC o0
    H wo- i1
    HI 4 H
    n n




    II I H
    II I
    11 0 0
    a '4 I L II
    it W -4inIn 0 n LA0 II
    II..o...o.om.......o. n

    II N 0 o II
    II NL r- n
    II I. H
    II -j c
    II co II
    II "0202 II
    II >II
    II W-4 0022222 CO
    H--DO CO 255CO
    IlC -40
    II W4 C. . C C . .
    II <# M inr^r n1



    II 0.4 W .w n W il
    II II


    ON C

    0
    0 0
    F'4 Ca oa) (
    I% u- E- --O L
    D z 0 ->
    0(N -4 02



    C00 0 E
    a: UEH-40l. 14i


    Z2>0 CO

    N a M 1>

    o-U< CO 0
    H .4 QM-4'0 E2
    E- Z)' 0- -) WK i -1 01 -
    W U W 1W4 0W
    H AH
    01UaM n ME
    H E-
    E-H 4' N II II II II
    < U
    i r-E- P > tn
    EI n C ) -4
    Ina<' QDQ
    01

    0 0a-


    II


    II Nm
    II tO

    0 0


    II N

    II No 0
    II W
    II 0
    0M


    o r- N wo m o m
    c r- tDom mIn n
    0T' 0 f-40 N 0 M inD
    (N (N -I in Co tO* 0


    140 N r
    T- a -o *--ir-
    (N 0'* 0



    LA OW LA LA N 0'
    0 Inn Ln 0'w
    In 0 Ifn-4 In In io
    I MNinD
    n


    ll ** ** In

    m H 0 C 02 C
    -- C 11 M V 1- Q 14 C .C .C C *
    01 0) ]1 0) --1 0) b.! m '- '
    W II W.4 W3 n 0.4 w. to r 0 'o
    2 II2COaCO N
















    CD > J wII I O N0 I 0C II

    0 (n cooN o n am % o^^ LO to mom0oll W 0, r- 5 m 0
    oil WH ON C fn In NMw WQw( em L
    oN I II S Ca UC'rC C.I 0 00 *0 II0
    I H 0 -IU llI 1..o. r0.^(u rt rrrt MM~o^B I II ^ Gill MM UCa' U,' Ca C'C' 'a'C-C--C-.C' -C--C-C--O I bZ B in i) 011

    Sto ( 11 MI a o (n LO U '-41 C 'o0 *- co (

    U 0 II II1% C C C ..0 M0 II
    r- 01 1 0 < t- II
    II .^ ll0..^01-4- -1OU
    04- o V m emmw f m M -W w Wo .2 m c W I (.
    < c 1 C14 ll r n omMm H OO0 II
    Hl l 0 -, rl f 01 11

    11 1, H 4 n a.)2 II
    o II a)- U II 0 f-n 0 LoC r '. r- 0 m 4D o o r-NNNn Uir oNJ o w C-4oM co co ll 0 m O- lU a) I)
    4 -W .m 01 > Gill r-C-I00OOjvw al 0 a % ON (oeoooooo oIn ti H c U..-4- >.l.. li
    II W 11 *- 0 4 0E- m r .
    0 b u 0 1 ItL V I > CL^ n to nlI
    IC II r P 6 C 0 II
    1.4 COa o n i a) 11
    > II 'c..0) o -F s II
    11U> E- (0 O -E M IIWWr Wk54
    nH-I.-J ^m aI000 Zl0C-l.Iiri a~~- ...OC.t U II-4 1 . . .II -4 > -J E
    HI U' 1 1M I liC~a momeam UC'U, omN-I!UCam Ws-.'UIC.>. 0 01 Gll
    lZ ( 01-I gNNIm ; 41 -0 NNMoemC NC'NUH IOIl
    SC\O1ES Im mW w WW r. 0 co co o co co BOBcoeo lo 0 W u Cr E
    l H.. W I 1 I 0-4 IIU

    I 0 II H I 0010 I4
    V IQ) > 44 II C rG I
    11 0 I3Uww m Momo wh in iUooll i 0

    N < 0 o W N C 0 0 II 0 ) -4 C) II

    CH U WI~ ooo?. . . . ..r. ..rla 0. oo C C>0>II
    CE L- II 0 a 0 C 00r-W C C I On0 II 1 4 r. r 0> 11
    1H W 3: 1i H t r. 0 < -4 -I 04

    I-II4 II II AM.-JC @H.-11 I
    a1 E 1 U L) 0 -i
    2 l 4 II 2 104 *C II
    C.)1I I 4 I ,,,,,,,,,,,,,,,,,,,,,,,,, ImI m.)m mm 1..m..-) mo 101 > -411
    1 O C- II Nj N NC--NC NN-N Np N- -NC- -N -N r-N r-o liE-. 01O U C II
    II S 1.-4m O I U 11001 .-I 01 01am ill
    II ZO .II..................................................IlZ1 .40'.-.0. I
    II 0.-I CM0 00 0 iToooooooot i NNNN.i MMC a IC 0 0-I il
    II II I 1 1 I H 0 I I 1 i Q n C \ II
    z ll II l M .- a. i
    10n n (nai 0 < u X


    ZI II 1iO C-4 1-C Ua) % a4 11
    n 1 II II 0 D) 0 I 11
    tDII > 0O)O II1 a. U I
    0 l > (U illoinoinOm omOmouoi oomoul L~ nomroimoo II M<- fl m M I
    -S 01 N. llo Ii 0 n U o C- mU NMON mU 0 N r o N U I- oNMU -0 oo U o2 --I -X II

    4 II I II I I I I III 01 0 II
    II C II N N m m mC0 0 E- E ) > II
    W It I 0I Z C 164 aa.2 ) 0120 :


    - II




    OII
    0

    C 0


    -4
    4 II




    OH
    aO I
    01-I



    -II
    S a a

    0)
    0C 0
    10 *H
    ~0.. 0 II





    H UH
    0 IIa
    Z> o i


    9 0II
    < re *



    0 Q- II
    S on1
    40 II
    . UII
    II
    II
    IO II





    01) U
    C 3


    Z u



    *I i
    II 3

    Z II
    lII


    r 10



    CC 0
    - -4
    0W- to () 0)

    F- -4 0a 1. iI



    * O o II

    o -4 04 4 )
    E- 01 TS II
    C U E I Li II
    H .4Z >01(a II


    E M 0 4) II


    O40~ ~0 01 H
    H.4001.-o I 0sE 11
    L) =n In $4 > I


    .* E-

    E-H 0U) > 0


    Q a

    Enn
    w a, ID Nr a -

    Cr- U, m 00wm
    c>4 Ii c II II M o
    < u s



    tfl cN o cm ^
    c q II
    Ca C'C C)C II







    c' C Lo' m ~ 1,M N I
    .II
    O .4N n n-n-~fn o

    > v) Nn I-
    a II

    .~II






    00 16, Ca N. 040o
    I n w-4w IIa

    O~t~lrlo MO 0
    O O~ o weMN II



    =1 a) II
    I 01 o
    me o


    1. 1 .. ) 0II
    0 0 ) C ** U, Ca C- ** II
    **QQC OS g ) ll

    ia #Mo #- t cxc c 11
    SM~rKl~~i~tli~coSII


    II
    II
    w w o w W CD W com (N co GO U m U C'I r- II
    C> NC N 0) U, W C' C' W w W N W C C'a, w a N Wa Wa m- 0
    W o0 r- W C C 0 r MO W c C Wo NU w C
    C-)U C C) U, C- C' Ca 0 1 U, I'- 4 'N U U, Ca Ca C; 0 it
    -------II
    0 0 NU, C-) C- C' r 0 N m- N 1 a% Ca, C-C- a, a, a, a, C a, aaa 0 It


    co- N Ca Lo C~ al q' C' 0a Ow Co CD C' C' CD C' I C' Co C' C' a,0


    00 C4 I Ca N c' C'00 C C a>, 0 w U, -40 NO U, m CD f, C' I

    S- - j r- m N -40 -4 U, r- Co coC .-I C C 0 C 0 C- II
    Ca Ca-i 0 C- U, C* o C- U Ca C N C 11

    It
    C' -4 rwn N r- n tr r-" w wOrO M ') It
    -------II


    0l 0 r 0 0 w- C'D rjC ,C- O Nw C) CaW 04 0 M 0 0 I" 0 0 0 0 0n N U
    -4-4-4-4II



    II

    SII





    U, C' U, U, C' W U, C- Ca- 0 Ca 0 Ca U, C-) C' N U C' C' N 0 I
    Co 0 Ca D U, C' r- ao r- Ca W-4 aC' UM r- -4 U M CN N4 C N C U, II
    - - - - II


    mnninCnmCnnCm-n nC-NC-N-N- NCO II



    I\ r- cM I- tM r- r- v r- r rI I o IN





    II
    aoe rn La L o n c n L C
    come o n ;0o 0 04 C' nI















    0 ~ ~ N-i~M C' r~ jNm r. o<0 ro(n >w p- 0 '4 wr- 0 n
    C Co ao C Coo4N C Mm m CooL, t


    I E)a 01) I II

    11 .010 -0 HI
    d.4C 4 I II
    c;<- E H*
    U-. 0O 1 4 0-J I

    H a 0 10 10 (0 1

    W -1 E 3
    C.Ca 40 ( 1 to
    Id SCO Li U 11
    ) Q 0^ Ur 11
    M.cI = 4 -011



    0 tPa -1 Cm 4)
    1- r IW 1 .


    SE U 0 ) II
    'd E Z0 o'--W1 11
    r- -I (D r. 11

    0, tI 0 t U. 01 U II


    2 *OE -i > ) I-It

    j Ho r.-1. -i 4 0 II




    re Co 3 O~ u
    fu, a) :I 0 r. 01 r= 1
    0 0- M0 a 44
    - I ) M ; W M 0W
    > 4) C4 a) 4
    -j C. c WII

    01 01U U II
    > i t -.- U
    - -a a) u r. I
    01 U) XC = 0 >




    Ca 0.1O~0II
    H 0 o 0 .4-4I a-





    .4000 .4111
    0.4 U 4n-_ 11
    -01 '114 0 '
    (L, "I IM fu r."
    ,< j u '- W
    r-l 0 C t-.4 I

    E- U) '-. 01 0 U C9I
    000 C II


    au Wi a) .1Za
    -I j U) 1 10
    01 -I0.U) t oT l
    'j W t-10-4 II
    H -4 1-1 14 -i U) ..

    .' U) r c01)
    01 H ) 2 0 0 -4. II 1
    .4 Z S1 C- ) 01 0 3 11
    CaO Ci Ce 0 a- 0I


    - II II
    .o II 0 II
    IIu m C O II
    0 II * 0 -4
    HC O I II- t

    W I E- -- i
    II 3Z2 > in C
    II 0 . II
    W 1 to -- 4 W -


    11 l 0 F -. 0>> IIr
    0.0II) M OO II
    r-O. l c S) O r- o ,

    II --IH .4H IIr -

    o l < H 0 O 11 II C II
    r -II 14 II E D-U 0 E II


    IlI E II
    3.o ItIt






    II
    11 -




    01a U ) N .. N U, IO
    C C" C- CaraW UN N N






    o 11 .m t- Q
    0 o / II.
    r 0 11 .1 C -

    II > I
    SII I
    W It I
    01 re C-- 4 C U, C' 0 C-- U, U 0


    >


    (-I U
    -4 011 .


    U3 )
    20..
    >1









    uu *-i -
    c- .14c
    E0 01 0




    HOW.
    . 01 S 01

    C .)














    (d
    01
    U>














    W M
    H 01 01--
    C0 0 X





    0 E S1
    iH3 3
    H).U






    C>01
    01 N -
    -C-40
    Ca a o-















    II

    0 II




    U II
    o a






    0)1 3W U
    > II




    .0) 4 w011
    023 IU







    0 S II
    HW II







    L ) II



    S> 0






    U3 U
    II' b
    II


    0 .0' .. .. .' N .~ . U, U, . . .4 0 . 0
    Oa cMO N n U O enU co -0 4 U 4 l- wm m D- r 4 lw co o0 w mo
    N m~ w' LD N- 0' U, 1)U ,M 0'l1 alU, a) al cl, 0 U,, 0
    --4- ---- N m wo wm Uw Q ro a W UD r- w 0



    w- N ON U, co a- 0 0' en 0' 0' 04' 0 0' 0' 0 0' 0' 0


    .0 0' N 11 U, 0' 00 ID, M U,* U, 0 ; C; 0; C; N0

    mm0m0 Nm .- CD 0m N 0 w- 00000ww








    -40 l4 00 1I 0' 0' rU a; a; N. . 0' M' N 0 U '
    1 1 0 m -
    C; *1 U, 0' U, W N U, 0' 4 N;








    N ---4 -4-4- 0' 1- UJ I 0' w N 1 r N 0' 0' N0 0' 0' 0' 0'
    wo w m c 10m m Da mm L o M LO o om LOc o









    .1 N; 11 C; U, U, U m U, i U, U, , U,* U, U, U, UL-




    a-0 Q CD 0 CDl CD 0 w, a 0 w ND w 0 U, 01 I 0' U, ND U, 0 0




    N ir- N c3 Nr- N oi N Ni wt- N o- N r- No1 N L- N a- Ns I N c 0





    N - 4 0 - N N N14 N4 Pm (n ; Pm ; w
    I I I I I I


    II ITU CIe U I
    i (a -4 c 'o If
    i w c r. 4- -4 it
    i j -4 = -I
    PL4 0 0 .4' 0I
    E. 0 W m a)
    EI 1-. 0 I IS 10 U) .-'
    Itl ~ H %I *t 11
    II ZH.O4' W.o II


    14 3: 1L.O1 U L)
    1I 0 -0 c a) c 01-4
    1n SO 0 to u
    11 0 0 m -4 Ia 11
    zIIH 0 ) I Ll
    II -4M 1-Lto I
    1 2 eo u-to11
    11001 -4E c I
    II H C Li >*I. i
    II U' IO > l. Ui a) t
    II B. o *O --4 * II k W 0 U E II
    E- MO 0- :3 3 11J|
    L) M >a- a4 I IIn
    I H 0 rd 011





    n.-)>.-' ^ta > IIE
    lIZ( 1 Id'dW -II
    I( 0) -4 11
    lZ H n 0 a) f l




    110 -4 II- l C UII
    E -4a Ll'-> II
    11cl 1 v)0 ( CM 0 )1 i







    II o 4 Id 4 U C 1 II
    11 C C 164 0




    II H C O Q) It o v a) IU






    l>U tOWU i II
    l c ) -4t -1
    II .-'. to d li
    II uo. 0 C t II
    II -4 t o -'4II
    II IdE-EIO-.0I
    11 w 3 1. jl I It -1 II
    E- in rO 0 U r C
    0 4) *-i m 10 (
    Z L-'c (D '.4a
    to a) ) a I-I
    II > M 1
    II a u U> + II




    II E- -4 a) -4 I
    IIIn U *ji -jc
    II H ^i *- n II ~
    II M l OUE-I Ed O f
    110 - Ma 0 |ao




    II ta v M = CL Q 11


    II II
    r% II H II
    Oil >.-.-l
    Oil -4ACII

    SII C II
    CMn DE S I "
    i~ 11 1-1 a) Li It
    It I 3 : 2 II

    II 3 II
    ** II II
    mI 11I
    >- > II
    I II U J*
    Ill U 1
    QIl 0)011
    011 uye


    01bt a)
    I IM 3 A U
    0 11 E- V a) 1
    II .4 a) 3: w ii



    II 0) II
    110O> II
    M
    Uf w

    1n > -i c
    H E- to 0t)'
    In If W -4 -- 0o'
    1 0E3 11
    -l 0 E S
    SI .-U II
    II Zl II
    I5
    I- 1 U 1U II

    II C II
    II I ~ II
    II .) 3 0. II

    H II II


    0~g a.
    ii M ID s 11
    n E- i H

    C;II .- Ir II
    11II ZO0 II
    H II
    z~~ "5 i

    n n


    S- I II




    En W N. II
    U H ~ H

    IH II

    u g > a> il

    * 10 0) HI
    ia -< ^ L


    II
    N 0 Nq. .4U, r- N W CN NI I U, U, U4 NCDI
    M W N 0 01 N r- P1 .r M W a oo M0' C" 0 1 N W 1 0M CN U 1 LD 0 0



    II
    Nm D N Io o w w wr N U CD' o r- en




    U, m m, w1 U NO r w co co1 wm m U 0 a, M0' a, r- a, U a, C,
    m m P m r m UN w CD 4 co CD 0D UN 0D N co 11 0 N N 0










    .......II
    -ooII
    CD CO N O 0 O .- 1 UN NO 0 a% M U, 0' ON 0' N 0 00 W C







    N D l 0 W, COj N U, 0 P U, 0' 0 L r MW 0 W O N NO C N N r N N r U CO
    m 1 0 m 01 N CV l- N m U, 0 0 N a, I UJ 00 0IDIDCDa








    M- MO CJ Mn M- CNJ CD L -^l a' U, 0' N U1 U, U, C4 CD W W D U, N4 N U, U, U, U, U, UU 01I
    W- W 1 0' U, Cs V DC 01 0' W1 NO U, 0- 0' a%- N 00 0 0 1
    ...........................II









    N : U, U, C, U, U, UJ U, (N N 4 4- - -- ID
    oumenom u">o ion OLOOi/tOi/>OL wuwo o l









    In LDn( oD rLuD IDOf- r r_ ONi r- oci r_

    l l l l l l O II
    N O 0 0 0 0 0 0 N N N M 1 M U II














    S 0 M In DM II
    CD CD 0 C vn a 0 0 N .. m Inlw



    -D * *w*r-*c * * tr** * w **0
    N CD r C; aC; C;a .o Voo Mon mmo ooP.


    0. 0' v *'0V11
    - I -. 0 0 I 0 I
    U) *J -2 0E I

    P 0 0- II
    2 ; 0 to UII
    c01 0 E )II

    Sc 1 01 a) II


    l- I OO" lIl
    W 1 3 Li W II
    0 0) U4 a a 2 II





    1-1 .W-'t'd4 I. 4 -1>1
    HH~a)WH '011
    . a to M II
    w ) 0 wa ll
    H> >M oE(


    Z a E- %il
    I. C < 0 II
    H I 0 -4 II
    < j tJ r -l H O4
    . .UOO I J II
    Q) W. 1 4 In L I
    w' (D V; l toC I

    z Li (a1 1 a) -11
    0 C aO II
    > -U H 1II
    i C C 0 II
    M 1 C H O o " I




    Ht U 0 U 4 II
    ft < u- II
    CL NO -lt 'l C II


    OW .-4-4 a' I
    .j o u _





    ; < W' U .I II
    r-I m0 C %4

    U En3 3 II



    0 0 w a 0 II
    S c *m .) 0 II




    U) m t E C -
    E- 4 *l C II- 10 -
    -l I 10 1


    H l <- tt) -I II
    E U M- r- 0 <- ,C II
    10 EC E 01' ^ 11
    *^ 2 OLil 0 II 1

    ul U toi E O' II


    4


    0

    -4

    C 0




    10




    1-4
    o
    C 0












    Z
    0

    S0
    0 .0

    an






    0 U


    o e
    (Mr- C O
    * o -
    NI-
    0 M -4
    I U) .*IL]
    U 03 0 ) 0)
    C; Ua) E )
    ta ~ tc
    4WH-0. H,


    r-U, 0 m,>>
    SNUn 0 E


    I H.-)Id.4'0
    wr~ SO 0I E
    >H >
    E- 0
    oD C4 u < Cv i )
    1 H a Q I I-I vI E
    IE-* = 0 r 0

    M U a L4 E




    ON 0-4
    H jE
    E- < y 11 11 11 1
    < u v




    r- E- > n0 0
    a, r In L) o1





    ON N 4 00
    I -I Qj N





    N
    emmmmon C .




    Un 0n Un U, 0 D U0
    r n. r- a, r-01 -





    -4 -4-c-4-4
    I I 0 NLM I



    co n r- 0 Go
    S n- c c- o
    r- m- r-< co Lo^ L- o r-w -
    I I a ^* 0 I
    CMj 0


    II r. 0
    03 11 > to 0-l* **
    *'0i-- O ZZZ a
    U) L II an r .4 a) g~ c 4 40
    3II U UQQ C OU, Ur

    10 j _j
    - i t1 i l o .it i. c c '


    -11 II
    1 CI N II
    SIl a, cn0c II
    I 10 C O ||
    o n * O N 5l I
    C I I- 0 II

    0- I rt U ( I 0) II
    Oi OS E II
    Dl 1 W II
    II 4 Z>tCo (a
    II UHN Wa) to
    .j r a) -, r=Wa
    4O 0 0
    <+> ,c 8 vw Es soa\ E 11
    l0 &l r-N t 1i> > II
    II l-UHI.Imd~dW fl
    O il OE- 0-0-'O II
    COllOrU< Clf 0 n
    Id *II H.Q0Id-4'0 I
    Ion E- O0 0 -o 0
    II H b .n-I
    = M S43 WE
    E-II < 11 U II II
    --411 oE- > I n
    I.~dPIlU) W-4 &II u I
    Il-w 00 -1
    x 11 a QQ II
    D 0

    c II I

    E-
    i- I; II
    Z -L11 11
    1 WC II U, U, )0'. II
    Z Id Oi i U, i .4 *-4 <3' iU r- U, 0 w I
    0 p-A w n E E E E B0 11
    f 0 11Im- M r. 0 M 11








    (a 14 11 r. :c in 1
    IO I II
    O Oil e an II









    .j (d -4-(-) 4- 0' X;r r.I
    'n > (1) 4) r-tsd m jrr jf aa p'i
    11 X E i ) o r- c o

    0. U oo 0-40o1N(M~o 'o 0il

    II II
    II II
    S II -- - IIm
    II -l w e eooldm II
    a d Hl *in* n-^* *** ** ** .
    A- 3ll *oQ COmSSson"




    -1 10 II a) '0 --4 a) Hi .I .C .r '0 II
    M a) II I) .P ^ -' .' -' GI II
    S II SMU) M U) i~ UU, II II















    IIH


    -44 ZZ11
    St a II
    > .1 -I II
    -H .C C II



    0 11

    (I)im a ) 0<
    3 :5 --1 U



    U U
    o OL 11
    W ( H
    H- 0


    0 21 II
    111- II
    1- II
    ) > II
    M W -{ i







    0) '- II
    Ogg a so



    S-4 1 71




    DU 0 II) i
    IdII









    <> WHII
    IX%

    Q)












    N N 11








    -4 H
    E1(12- H
    0 6I
    a L)
    o; II
    u u

    c a
    i- o '

    >< b
    Il


    CII 0.0'N ~ ~ .. 4 .0 I 0 -ii
    > IIi 1 ON< oJ L) n
    c n aa c\- n r LO m oo ll m O w 3
    1 2-H^l 0 co o 4 4o m- 0 Mj 9) "r- Go N N4 a)n r- H. od .C C0-' W 0 II
    .H0 ..II .......................00l l E O l
    CD mW( ( 4 I4o. m4 0o r- LOn c.Un en Dr




    I- ai 0. 0 I n W U IIo r- c --i rn *Cl o ,-i m r-ii io o o . S ,- l ,, i
    E PL< (M (M m f <3 O ID r- f- co Go co UrN-. r- r-- r- r- rn r"' r '- r- O "C, a.l cn < a, m m
    U.3 '. II n ( C I U II
    L) 11o ,1,- 0 .: O 1
    - Zr1 0 -I a (0 rC D- 1
    I W. a 0IH C a H II
    ( Ii o 5o '1 In i_
    Z1-2i
    : u 01 CD C4 co al cq 0 U 0 fn m m m 0 U 0 U0 CD m 11 U E 0 4 0 11



    I| . . . . I 0 t, .4 1 .U QI l
    U) >- L v g> Q a w I U



    3 W Il oIV a al ) o I 011



    II Hii
    H 1 M W W r- W W r- 0 4 M M M-' II
    F- w m5>^ 'rco or-o ct co 0 ( X






    IIII1 0 ) r I a I I
    u W Z1-WIlM M > VII
    m5w nm w m mo om r- LD ON A m m
    W I w 1 a-) C> -1 c 0 ii
    H 3 l2-H ||I H (12 0.1 -H- H. II

    it A, In j q' H -I (12 C II

    15_ .cH412 -. -1

    1n C1 ii 1 ii -.In 11 to _C4C 11
    0 a 11 c 11 a -j c) .1
    11C 11 -4 C NCl 0 0 0 0 C4 Cj 11

    1- E -4 a).-W In 10 I1




    l 1 1 1 1 1 1l mO 14 in ft E a -Jll


    -I II
    .I .C II 4.
    (1 II a
    II 4
    0 II


    In Q
    co n e



    < II


    II








    0 II
    C 0 11
    m0 II



    *4 I



    x iI
    1/21 (.C II




    E II
    (2 C U II
    '0:C II
    C. 0' II

    (0 .. II
    (12 0.' II
    0 III
    SO Il
    C 0 IIi
    (12 ^- II
    ft. a' II
    n II
    Wd II
    nII
    C 0 II
    O.U II


    WII
    111 II
    .10 II
    (12 In II
    .1 (12 i
    (12W I


    II
    on C H
    NW CO II
    M0. CON II
    ON 0 II
    I C-I 0 II


    I O EO 4
    u)m it 11 I
    0d ( EW a) II



    c; L E- 0 i a -1 a n
    z a m a) II
    S 0 QW I
    E nVL) = In II












    fn 0- H.>> II
    - cM, Ii.. 2-H I1
    * 3E- 0*. on *OC II
    ONO Urt C i0 W II














    a c,4 o (n LD O 11
    I H-20(1-HnE ^ II

    II
    E12L)M I I IIIr I II









    w wM oE D 14 S I
    ..0 II
    12 Cl- H ; i
    I CD ) II





    ) -H, r- .M r- 0' Cp N V0 II

    D NM 40 NM NM ^r 40' 0 II
    CM I' .- U, ( II
    N O' II


    .~II


    O .-H N' 0 0' f M N 0' .-4 II
    CM .4 00 II
    *-4 II




    ..1 .. 11 10 4 r II


    H 1 in in ai 01 11
    II / 2-4 j- r- I] j *C II C o iO
    em m o r-v wOM Nr m t- w- w- o 41 a,1- c w r- Lo O c 1 1 l o
    w a W O 0 c r- w mm r w a N r- 1 N N 4 o J 5*-4 r- 0
    0 4 n n 0 on 0 - 0
    f- NN N Q C m wm..... w a C, w r- 'en C C' 0 11 4..a a. r.J Gil C)u lON 0 -l Mf
    . . . . . . . . . . . . E- l. 0 I 1Bt (0 a) i 12 *1l (En &14.
    o r 04 r C CO N W C 0 LM W W D Z V i n o o11 aB 4i V 2(0) W

    9- t7 zI E 3 Z > 10 c3
    11 0 --i 9 to r.13 o1-1 1 0 o Tl 0 (0
    11 4 AM *0 41 (a H C O.S'- E- -
    I-.1 '-00 *00i Hi N Z >1f \g

    oo 06 0. EC a) 0 II o 1 O r2
    ilO.*C1(12-H-H -1121 -Iii HO0 DEW
    M W Mo W 0O m-4 WM (D Mo 0 U1 C c n oo 7ooN 11 Q tr I i -)0 it -t-o I > >nO
    W OI11l CWQn COONIM H O4 a -W 11 (11 11 m 0 w O
    O r- r ca w c co Hn cm Lo en r-4 on c m f-i a, a, w r) co -w w is 3 0 In 11 0)0
    19) D C, a, o a Go a, 3II 0H w Io I n a, I w I 0Q< C O -E0-I II c I
    . . . . . . . . . . . . . . 1 0 01 -4 c l 4) 11 (a 10 1 1 H .4 a m qB .-l
    0 1W oD -W Ir M M n fn m CNM fnmcj-o o o 04 -1 0 C 0 0 1Hr. 4 *-4 -1 >1^ 164 0It E- M 0 0 t-J 0
    t liZ 00.10-.II E1 C O < 1 l U C l
    It -4CC nii 4E- *=lM 0-H1='4mE
    8 11 <.c. C -l II .0 H H E-. > O J 0
    N II --HC4 O .- 4i .i U < u-4
    0i m >Q.i.i 12I nH III H

    Pli 0. I1CO 0 = l EI 1- R If
    '0 44 (0W WI --.J 12.i2n/ W-H<
    a 1) IL o E a) W -i r. ii< ci Nc E- >i V)
    r4O) 0or= o(Lo It fcallM A. 11 (n w M a) c c
    r- li 01 fn 01 nC -I W c; =I It
    ,oDII o nr n o11 U0 C 0 ) C V) I
    seM~eowwwmmoemos> jo e rEA O C 10C n N


    11 LO <" .1; c; M j
    LII -O ** 10 *D LO LOE ll -1 III .,
    C1ll iN< ( nCe mn w &A D LD ID o D
    l I (12W GU C V) El o H4
    it i. .(1) U C II I
    II H W 0 ) C IIZ -4 11

    a)I t S4 r.(10 H- (I 0 D 0 WL


    ~~~~~ 100 In- 0 0 C 4.11 Oil
    II' -N N*M > u # II 1 .0 I
    l -( i x C1' H- i (n r-i M- 0 0 M
    a1.2 0 0n 0 1WI mIoIn
    O~amwo me v moc w w11m0o.l -4 -'...>U.-lO nilN mo e
    r c m m (1 0 en c"4 aD ri M. 4 UU*Nl N* co LO f O
    mamommwN Ommii .-Ho12o-Co. II >H R C ll m w ~ m



    ,0 4 en r0 C"M r CN r- a' C cM r r- LD ID M r C' 1] 1, C' 1- > H.q.- $. o1 i ( 12- Ii -0l f c cn C
    mC; a) i C) r. i o 0. 11 -4 M N O
    lOW -4-4i104 t II S .l
    11 0 o Oo ) 4 II 11 1
    Nl *-N B. II > t r IIC
    lii o n o nii o-II < M ui S I, w w"
    -O1 IU r-4 II C- II r-- In 3 Nin i-



    1n w w m w w m w I m mn- Z 0ll w w mIn w 0 94 :3 1. 2o
    r- r- ( r- 0e EII En M O UCJ II A-d L) cO m 0 m wllw N
    Goi -'C In en11 -MMo wl 1 2 1- WnZ C4



    IIIIIIIII l-O U r- NU r- O u~-o Z II H -4In.\ll (14.1 C
    cli 14 0 C) CD 0 H CD 0 II N ** **l (, nr a(
    II I) 0 E.E 0 IIAII


    a It En it (a "IWII jII

    IoItoZo(aoo o o II a)i 0 :3 In1 w i
    II 94 V to E a. I II


    OH
    o












    I


    f n
    o
    rH














    n
    oo
    o
    I



















    C
    a
    a
    -H


    01













    nII
    WI
    3 i














    B II
    II 0 II
    B >'J I-1
    N -B.0CB
    II 0 o II
    I1 GB3 Li a )
    11 E C. I
    * n 1 G

    II U
    n
    > II
    I u j < 11
    n a ty- 0 a
    n c .c
    n 01o>a>
    n wn 0 -4 u 11
    11 F- v w -. lB
    n >.) a) 2C ) 11
    0 E 3 l G
    II m L
    n a I






    9z>1


    It 4.*
    It 0 0.
    lB GB II


    B- G 0'-

    S>3 ( II



    It w II
    II
    II U 0B I-
    IIHGB3 II


    BE-3Li lB
    Il 1 >4. II
    lOU II
    SCA II4-l
    114' 4 11


    II VC-BB
    II -H--B.Ill
    II b B I

    114 1a c-


    IIZ II
    B B ~li

    II O C II
    II II
    11 11
    11 11
    lu 01 ^- nl
    la > u 11 II-^ OL
    II II v -
    11 I11


    II II
    0 i III J J |
    o n -i cIc
    N 0 GB B
    Cll itU
    I- II <0 11

    OB -BCC






    II E 0 II
    N B1 2 0w 11

    . I 0 E I
    ** II n
    II II

    " II >< II

    I II U II
    OB GB0'GB
    II I d G II
    OI BU II
    II ) II0

    II b. II
    II M < J |
    II GB II






    :s -B4 B1
    H II B 1- GB II
    Ca II Ba -4 -4 0' II
    i 11S 3) GB II
    S H a)0 E S n
    S11-03 n
    Z II U IIB
    < II B II
    RII < II
    "IIC H
    d >D>. BI
    Ca II U 0' GB I-
    Bt b BC



    S 11 11
    IIU it
    C:II E- It
    Ba II > B II
    B| VC|
    E-II 3
    IZ II
    II *O C 1
    II -* 1 C
    II EOA 0 t





    uD > I-B1
    la -BB B
    B- laca o-Bn
    CaB B


    - M CaN M C U 0 C N N n M N .BW V0 0
    UN r n 'M 04 o Ca In M 0 C D U N 0 N M N U a N N N N



    1: *r C^tit r o o D Cn ,t 14 o r- 1: rm cr: r-lc r-,
    4 Ni CIn Ca Ca N CO Co 0' 0' 0 0' a0 0' a, 0' 0' 0' a 0




    u-W q- N LO 'u- C CO 0 CO Ca 00' N Ca 0' 0 N- W 0 In 0' -0 Ca In
    -4- 4 -- In Ca Ca M CaL W% 0 N" CO O'I ,N (" B Nn InI In M 00C
    0 Im C u Cao Im 00' N C a CN Co Co 0 Ca a o 0 o 0 o 0 CI
    U, I N 0' 4 CO 0' CO U, N% u-I 0V uB NMIU 'NI 0 0 0 0 0 C-i










    UN NV mI m U, Ca N W C N N N rU N -40 r- 0 r0 00 r- 0o
    N NMU N V- In N Ca N Can' 0 B C r- In -" C -4 Nn U, CI (n -B Ca Ca Ca
    u -B N 0 "- C C0 CIr Ca N N N C 04U I Ca N In 0 Ca Ca 0 ca Ca-C
    N _' C 0 N In U, In V o Ca In C 4 Ca 0' C-B uB V U Ca Ca Ca N N C;U


    m U m C m n InO C na0 LnN n w w Nm m n InC
    0r-Cr-4Cl 04-4-- r- V U, U, CaCaN N N- N N I N N 4 N Nc
    N o 0o In N o N 0' m 0' Ca o fn 0 N o 0 m C N I n LO N Co I ,








    -44- Cam 0' N N Nw aU 0cw0 Ca 0 N N C a 00 Ca Ca 0 Inc Ca 0
    N, N N Ca Ca U, N N 0 N N U, U, N N N 0' In -4 0 0 0 0 u-i
    N NNN ND N N N N NN N N NN N N N N N N N N N 0
    N --44-----------4N NN I I I Inoo o C





    ON UN NU NO UN NU, NON Umwom NONe UN0




    Na -4- -4 4- -0 00- -4 4-o NN N InoInInmIn o C0
    B I B B I I I Iw o o o o H P


    II
    N CD 0 Ca NwC NU,, N 0' N InC m -0 0 cc InInm -4 N Ca Co 0a
    N 0' In C V V Ca U, V U, C In u- U C 0' U, In U 0 C r u-i n lB
    In C C m 0 V w4 m w m- N 0m ,UCCU CD 0 0 D N V D0l
    - w 0' Ca N ,uIaNC -I U, C- 0 o N o In ,UC Ca Ca Ca CaN 0 l
    N N N I Ca N N C C C. 0' . . . . ' 0' 0
    N Ca cn Ca -40 Ca In 0' N N o In N o U 1, Ca n C N Ca 0 C m m oN N
    -- II




    ---------------------II
    m-i cI U, c U, o Ca Ca U, c rV Io o N1 -4000000000 N II



    NM II
    C.V U, -B w 0 -4 N o U, 0 U, N 0 N uB N w U, N N N w
    U, 0' Ca m- Ca 0' oVU n0CI N N 0' N N 0' 0' m No Ca c 0'l V
    uB V C N 0'-4 Ca Ca wl0 0, C ; Ca 0'- U, In 0; V; Ca N C '0 U,
    ---------------------II

    -4-44-------------------II


    0 aInC -0 C 0' Ca U, N Uj c u-B ca u-B In iU 0
    U, al ND Lo U, N U, c' u-B N Ca N, U, u-aNI -40 U, N V C"U U






    V V V O O O O O O II
    I I I I Im I m I







    II
    II
    to M r- coI m a mH w me o l C 1
    m m 1o olw o o m m Co Lo c\oco c Col






















    ON U, 14 O U NON U, NON U,* NON' U,4 NON c; c OOZ
    fM r- CM p r- r- CMI CI V- C14~ r-< r C4 p rM r-*f r- 04 r C14 r o I

    (N c-4 0 0 0 ; 0 ----4 -4-4 N N N, N, In In In mn C0 II

    S I III
    II
    II
    CD r- W -4CD r- W 14 cC~in r-ocD CV r- 0oclJ Wr ofC" r o o0 1
    cl ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I c;c ;1 ;c l*cj 4 l*;49M wi


    I n n 0 G 0'
    Ca -B .4 .C; V C

    a. 0 V -J V
    Li a C C. GB
    E- b. I 1 (a ad B) -G

    Ca .420' -
    ZSC i 0C- M
    94 O4)



    DZ 0 C GB C Oi-B
    0- 0- GBB
    M 0 rm a m
    a .. r. t 10)
    H C I *UB->.
    H 0 .3 m -I 1 w
    34 3 1" U)

    B--CGB -C C -Bfl
    UZ G 0-i GB In
    < C 0 -C4
    LC ) >o 11 n) m
    aw flz o 4 )
    Z 0E- %. 3 4 -
    5 j c4 ^> E


    9 >, a) 1 j
    nZ Q U C
    Ow C 0 >

    CB. -.4--B >.42





    ,-f m 44fc *
    F- M U- C Ur.r
    E-IC1V' $40

    0 1 a> a: 0-1 n


    SGB-4 In G .
    HLGBGB ai Voi
    0'G x-i sis C
    A> OH ; C# -




    HM a 01 G C
    C f C 0 >
    L LCOl GB
    at. -1 *B>-i >1U-i
    a.i MIn.T'MB-B GB C
    < j *J h *


    .4 3 4Li--B




    '-4G -CB-
    B- COB- GB C LB C^
    Z Li Co GJBB1 0 I
    HGB V0'G)r-I
    S S. Cw 0 G
    w Ca *o cr -
    --Bu n a) -.4--
    AM-0- CCG




    GB- 2GB GB < Bfl -i<
    aC U*J 4 l) B







    BZ GB Li GB 0f z^
    Ca Ba CO G 2 0- -


    CL. 0 + I BI


    $4 0- C C. GB II
    V 0"4. = w
    E- 1.. 0 1 0 0 -iI
    Ba1- -4Gi .- l
    d 3 C li0' U I
    x 0 -B C GB C 0--l B
    0O teo r, m-i
    a aI M a)i u
    H 0-0 m B G4 B
    Z 0 -, U-I
    Z r= 0 q c n

    E-0 -C -CC 0 1 3B
    oUT 0 > 0. G II
    < C B O1 0C r




    -4 J -4 > $- II
    Ct H C II

    G0 G O C 2 i

    c' In c
    >4 L GB D G
    ZS.i GBBG 10 B II

    Ca H qua C
    H GB C O ..4.4 Li II
    S 00 .014 II
    -. .. UC M II
    EC n -I C uII
    E- -4 U 4 II-
    - I -i G 0 C l
    o a 4, < I in 1
    2 -i CO r CB o


    (a E a) m-i
    B 0 In 11 C n




    S0 IWG 0)B B 1


    II MA
    11 -


    II o
    II Co

    11 ri

    21
    II
    II -
    II 10 f





    11 M r
    B
    B Co

    11 0
    II -
    II Ca o4.









    II 150 GB a
    II 0


    II a ,C U
    II 0.0'


    IIM -
    BZ -B


    B GB -i
    B1 a.a
    II MC GB

    II
    II GB









    B -Li
    II U -> X
    II Z 10 ft
    USE o
    IB CO
    11 m


    II 0)
    II CO
    II C 3

    II X
    II 0
    II
    II
    II
    II 0)
    II >-i
    II -l
    II 10 t

    II S
    II


    GH
    10 ,t
    mA .
    o
    CO
    10 *
    GB-
    a.-







    f)t. wt
    E-
    Mi a




    0
    CO0


    r0
    r-4



    c




    Ca)
    *C rl *
    D 0
    Ca CUn




    Z -<


    S o
    Co
    G0 -





    0.0
    Ba
    CD

    ft u


    BNN C B
    B 0n' CO B
    B 0-'4
    0 -i B


    S DZZ>TC II
    B Ca B G aB II
    n 0 S 0 EII
    o' in Li>> B
    I ... .. .4 B
    I-- 0 V. 0 C B
    o H- G u B 0 n
    BI E- o G aB-- iB
    B 4 E- 0
    I1 E .< < H 11 11 n I
    II a ,- > II

    It o a% It


    II Bi l
    II n

    II r i o o II
    II j 0 m II


    II 4 U, C n C C Ca' II
    II r- 0 II
    II N D N0 II
    II II
    II II
    11 0' o r- w Co m U, U B CN0' II




    II 0 U C
    II B
    II B
    II ** ** II
    II ** ** m n
    B > (0 ** *
    IIBC co -'
    II GB B GB i CCCC V

    II II


    r. 0'
    cli C
    NMm CO
    I -


    MHW-400
    E-0 VM -1 ff0
    I C -1 w 0
    Ba CaGG GBa) 4
    E- w E-1-1 $

    S Z > I C 3

    0 CO G- GB
    MOO E OB

    VNC O 2G
    C -I 0 i>>










    to to %
    -- 0 m m-' C




    ONU C CG G B
    I H. 10 -I









    Cn
    E-r 0 GB CVr 0
    CO U 0I Li M E


    SNm- >I n









    C; _; COi _; -, S1 1
    0'oCa GB-B
    NI 0o c 0 o1








    ON VwcB
    I I .4GB




    NM Vc 0 Ca V 0' NM 0' Co N
    u-B0 In V- m CO In CO CO

    O N Ca No -40 CM 0







    I I No- U 0' 0' V N I
    I a - -


    II ** ** In
    GB > 0 m -i
    II 1 to 0 0
    B-311 Q CO SS GB
    10 GB cI GB V L
    Ca GB II GB .4 GB i ... .4.4 GB
    S ii oSCaxCa Ba U, Ca N iS
















    2 22 I 1 M 01 2) II
    >C II r 0.N)ooo(N2ooni oo 2omono2 Ac E I
    (4 0 1 w 0 4 (N r- M) 0D 0 0M w.0 w M w 04 r- w 0 ) O 0 wMMfl C o 0 2 .-4 =-- 1a

    t .) t D o Nm w a w w 0 r 1 aD, 0 C N 9 0 0 )-a 1J
    W 330)1 0 M Y) a-LO m oN00o f- c 0ro onLoi.w uc rI r3 rr e e r o wm Z-c-II I a C 1 w
    1 a . NN.m .. .c.. ..40) o 0 M 4
    S22 l -I 11 E *0 3 11
    N 11 1 O II w ID c *01 )
    N 0 I O C M C O-
    1. o -I q to H
    > II 22 0.0 m /1 U 0
    U r. j 1 I m w o N c N U r- 0 N w0m r- m) 4 u 2 ( C g I II (M a)- I

    C O)7 l) 11 )0 c4. U co L) cv LM al rO -e Lo o a0%-' o N In 2n (n w 2 L2 co al 1 2- Z w 1
    tv -' $.1 22 . 0 c4 (4 . *CCO


    mE oo ii Uo n 0o > CL 2MIn 112
    11M 1 a u a 0 o m(n I
    W 1 tca aOC)
    9 II II I < 0 II

    U II 4 O 4 II-




    SIHI II H2 l ni

    ( 0 II II H > 10 C 1 IID
    S> tt 0l) G 0
    2 -L a% 2 t N c 2 c m Gr c r D r c c o o% c-ca n o alo c o2 4 Z 2 C C 0

    E. ev ao D w a Io ('4 ii M D ao a m w iD m w m m a P, In 0 to C a) 11
    - 0 1 i Go 0 o o1 c M1 II
    0EO m m m we L w sm Lo ko tow wOo lD 11 M E- i

    21 2 41 l* II *0 U) ) I ) I
    L 22 I N 2200)W CW o O> W /122







    2 II 0 i IIa

    M H W W N M M W M W M 1 1A (D C D I M CA 1 II
    U OA II *1 LD -1 oD cD D c;(D cD II W C 0 > It


    I II H 1 O 0a *- II
    E- W 0 ) 0 O H .I0 I 2



    a H II 4 -2 > I L 1

    >
    M 2 -2IIN -i-f-ommoooo oo or2200 4 10 0)0.2 2
    nII j aZ H i -



    Il go1 D )n )0 0I ) )M ) UnU0 12 MO-I 0 -4 -4 o 1
    iI 22 (a v 01 4E0.. 10


    > -JII
    -4 .C 1C




    3 II


    U II
    CCGII




    o ii
    V) -4 II



    U II
    C II
    0) 0 2 II
    0 3 02 II
    2.1 2 (D






    0 ( ii








    a 1: Il







    H 0) 0 II
    0 II






    02 II

    U 0) ii








    I -.0 II







    Cl Cl ~ II


    I II






    it
    o


    C lo o
    W .



    E--
    *H ,





    0 c
    O II




    m o
    f 0 2H







    m 'n mo
    S 4 II

    H II
    II
    E- II



    on


    AO II


    0 II 0
    C : II 4
    C II
    (0 o II
    O II o
    IId
    SII**


    II 1 w w I tCD II =
    II 0. on II .0
    w w w o1 M M D M wM Ire o- 0c 0 c I 11 j c ,

    I3D. .. .. .. .Hnlo (n)n o 00J0I w D 4 M II 0) -



    0i2. W o C C *0


    2 0. 0. R In 0) I -u C
    eweMo r- -1 w m w m N m ID a m H l L 0 0)11 a A



    " CD 0 W W M D C O W M M Cj CO n rU) -( O^ II H 0 --1 II
    ino r'




    II 1 II a
    u )n i-f-r 4-r-r itr nnWUmri.1N-.oooo oooooom 2 H --I4 22 0.0
    ii U n to > 0.2. 0) (12 22


    c) wC MO E 2 m m II E 0a
    fnwooo~mr-Cmnr-CN~o'~~~minfColln m l- 3
    -4( r- om a 1A u) wmUoU) W W 4.0 W W W W W W W W W 22 0 0 In 50 M El n

    c-4 r s m m i n to i ic i i oD ll io aL 3 t D 3 ELD EDo D=


    II w wU VmE
    I (.)0 0) 11


    m m LD mD a% a 0 IID

    m I !> 4 w 1 1c 2 -C
    a)>. 2. C2 Mt (a M -'.C






    II u 0 Do a)
    II ftma -I a U
    SI H r C f 2a)
    || < C -'022 2 X
    2 20. C %. 4 .-1 1 r






    II I I I 'I II
    II 1) In a)
    ]I E- Ua) -- j -4 i 0)




    II Z 1 11 a) 0 -Ii


    C 0

    -40 2/

    0 UC W a) 02

    0 2 2 > M a =

    DO Es
    Q > >

    E- 0 1o: -1 V

    E- 0 02 -' 0
    uM cm nn

    D wM3r f


    .1o ems

    O-I

    wua



















    ** (N (n
    **C OC


    w II > n n < ** -

    V II C v 3 -
    CDl2O r- -o


    11sr~s s


    I II
    11 w r- C II
    II NM CO II
    II 1 % O -2 ll
    Itn n O II
    II 2M 0 I


    II w -o II
    II OE- a II
    0322 > 21 C 3
    II tN l W #O CO n> 1 ll

    1I1N(N 0 0 E > II
    llM** 2 tOO a
    II CM M Q CII> 1 ll
    II C < E C II
    I0MU CC U II
    II I ( O Q 0 ) E II
    II 0 -J -' 0 II
    II U M >= M E II
    II H 3E II

    II .OUZ II
    nn tEII m o w
    II mN QQ II
    II . II


    Ii 22


    II ( -- N II
    (I r r- U) r- ( r- r II




    II CM o 11
    II II
    II O II




    IIn II

    II II
    II
    II II
    II 4. M



    II 0) I 02II
    II II
















    0) II
    -I C C II
    S-4 U II


    S II
    0 II
    E U

    U >
    4 j II


    Sa a ii
    O HII

    cc 0 II
    -~ 0 0 II
    Z) L0.11


    U II
    0 11 II
    U >
    c) C II
    S- -4 0 11
    t 0- II
    H c II
    S01 II
    HE3 II
    3 U II





    0 .- II
    S II

    > 0 II
    t @-Ir 1I
    0 o < 11



    > b II
    II



    41 II




    IIN
    II *^A
    C II 0


    0 GN w In C 0 -1m t o In C 1 C4 Hto In 0 C N N N m 0









    NI H Q' 0 C> wI 0 N) w r N N r- wN CW w 0 C N
    m o m In o to H m wH0tono to tomt 0m pLO r- ro

    C N N In In . . t N C N . N 00 N ....






    U w' I m1 mW ar 0 N- ND 0 Cw t 0 1 I -n N W o C' N n C n omn







    o NN C C tnmU C HO H U 'CL N O 0 n C H M O
    OH HmmoH NONNNIIn.nN H 00 00





    NH HOOHH0000000 HHHN In InIno
    cmii a mmeri o o orwM NCso oono ooN



















    N H H mmH mHm 000000 HHNI


    I I I I I Im m m m m m m o


    II I In 401 N II
    I (12afl-- C II

    I a I C a II
    d c -- -iII

    II 0. O -f I

    w -1 S. c c II
    II F 1 0 I 0 0 a II
    II 0 C C 0OH II
    II .C 0 H- 'OI
    li pa a i 0 II
    I CI 00 1 0-0 II
    M 0 O 1 0) j 11
    H ca rI 2-lW (13 11


    IIHC r4I> q141
    II E- C O I
    ii U i0a > 0.1. 0O ini
    11 < 0 c r ac)
    II l< C. I OC II
    11 j o I_ 0> Eli
    II o ZOEO II
    II H a *a -> JE II



    II H 4 o E 91 II
    II 2 i c a -4 Il


    II 0'OI.- inIC
    1 aZ 3 u c I



    II a0 0l s M- -0 C II
    II > Z 1 H it


    II.200o #a o
    11). *i>U r. m
    a 0. aJ H c C0 II

    II l -a $4II
    II Hl 0 II
    I M a o u c $ i
    IlN 1 cr. 4->4



    II u s 4 0 0 U C C
    S1100 o H -O II

    II SZO 14C-Jo4 II


    S IZ 1 c II
    II F m' 0 u a
    II ) -4 a -- II







    Il a-p., CCL 1
    II 0F4 E -l U ;






    II 'Z00 .
    II in U M 0> E .
    ll in X; 0 ) oM
    II *-1 r-4 n J I_
    II 1i E a) (u -4 Q


    san
    11
    oi K
    ) aC I
    0 II

    coll
    0 II
    C 0 II
    0 II

    II
    II
    ci c

    SII


    a *II
    aI

    S II
    ron

    C II

    0 P II
    II

    C.
    3 oII




    F' II
    N C II
    4 r 5
    When


    30.II
    0 I
    3 CI



    C o II
    10 II
    E < II


    V II
    II
    V II
    C II
    ia n
    0 H II
    0. u
    x II
    O II
    401



    5. I
    0 II
    S II
    II
    3 II

    mall
    craII
    V1aII
    SII


    II II

    o 11 > J3 11
    0 II J 00) II
    H II 10 II
    r II -i0 ) l i
    I UI 3 S U
    C II E CL
    II II
    II U II
    O H I
    > II > i

    Q ) 11 0) C
    II ll 3O 1 II
    S > -) 01 3 0 II
    II 0.31I

    II 0 II
    II U UI
    (1 H- UII

    I II N U4 0 II
    n II 0 II
    U 03 U >
    II O > II

    II U II

    II U 0 0 II
    I I 0 1 S II


    I 'C I II
    II SI
    So a II





    S II II
    2 II U II







    CU > U
    01i >0-HI
    IIH U OflI




    In -I c4.
    II II

    to M M -

    < /II


    SII I Ml 0) I u l U
    II w N N w m ,Cm O H C II
    cm m m m w w -1m ww-1-1 mo o-1 mn n C C0a I
    CoD w m I N w O L' M O C4 U r 0H o alH cU' 0. -1 en w C
    ONNo 4l E II


    a;b : C n* W, UW* W, II -

    I;m 0mo O-I O 0 l c
    S0.C 0 -H- *-01
    a 0.0. i II


    Co m H o0 toH HMN r00 r -0 M Cn 4oo o Z E 0 J U II
    D* r: co, r: r: ID LjO*D* nm C-Cooooooooof) n C > n 1.4

    EII U > 0 0q us II
    II C I O C ( 1
    II CL 0) 1) II
    r. 0 E II

    lI O -, O E 4 II
    0o o toW to NNN tN Na N to 'NNU' UZ V II


    CN m I- W M C aW II

    DNU c r- HNonoo C oN Co 0 >w us 0 am 01 Z



    in m lon co w/ c e N- o e Lo M am wc r-e f a% Lo cD 0 >W i i n
    W n N N C Ct M' 11; W, tototototNN0 U Cafi a 140 U
    HA u 0 U C 0 II
    U-2> 4T coH CusO I II



    OHO CNC NCdnUWW n llO4 -000 -t r ll
    n 0II0 0 u w C u II
    t- C-4M r- MN r- CM r- CM 04 C r- CH Ir- M E o- O

    II H 0 C 0 0 0 *en II





    U1 .)u On 0D a-
    II E- -- -4 > iU a I
    c -I 0D C C
    a11 4 O4 II









    wo r- A Am r- oCD n r- a w r- 0 1 -
    tM inHOto oooo >oCIn N II OUH M Hn00 EU WII




    Ill Ill I Iam amm we .4 ZO14O0


    *H
    0,
    D0,
    o
    CO
    04 *
    0.H

    t-I




    0
    C,
    0
    0J.0



    I A
    0o
    S*



    0 O
    3 0
    (1 C i'




    2 -I
    0





    0
    CO
    S o




    0-
    0.0
    V





    0)
    eC 3





    O
    0.


    X
    N


    NN C
    Snm CO
    M 0 -I4
    (1. o414

    U E- -I0. 14
    Sz2 > us C z

    0L 0

    mn r0 > >




    E-



    .
    ONU< ECO



    E-* < N II II II II
    O 0 0
    O N E- H > l S



    .0
    '/20


    0 N n 0 to0 r N
    i on r-cr D i of n o" ^
    -t O fsj r: rr ; ~ (
    H 0M Nr N~ 0s u-N 0 U' t N
    0 N 0 NNm U' N N H
    H HU'WU'n I
    (NJ 0 tD
    H W


    0 C o C to 0 r' t r-
    o 0 C- N o Co C 0n N~ N- u'
    S I r-C 0 0 C r- Im

    S I HCHN I

    N


    i" W-WOEE'
    II -** ** M
    01 > uM s "
    -141 0- OuOSEZZ C
    10~"0 Cn 033 0 '
    *4 0 II 0 V 01 I 14C .0 .C .C V
    (12 0D II -0 O O e -.4.4..4 01
    S 120; C) N' toNC3


    N II


    C u

    a E- a U4
    n Z Z >. U
    < V ( avO ) I 11
    N 200 0 E


    E 0 0 20 U r I
    ZO 0 1>> U


    H >0 Q0- E II
    E 0 0 II
    to u =s m S m E 11
    S03 U II
    E- It 11 11 11 n
    S< u II 11

    Q II
    i~m e3 0 II
    * II
    oN fl-H U
    O o II




    oCNN t o n N 0 l to I


    O c (n In C N 0A I

    N II






    In oN 0 I.. I n
    rI II

    u* *II
    "0 C 00II


    o a on
    3 ( 'o C II
    Zag 01vc lII
    """"EH~PH















    SII I 1 U I II

    >,C C II r- 0rIIf -i o o n o n r-4 EM *- II
    14 r- 0 N 04 0 N 0 0 U 4n 0' 0' (' CM 0 .- 0' (' I- o 0 0 II o l 0 0 mm-4 i- t 4 U
    -001 O lam0us wenr0'mM r owaro II m O- mm wMI
    ..1041 U O-lOtlONJf0O(0N 04 a3< 44t~ O l0* t Wa<>y OO 1 00 CC J -'11
    4' U U . . . . . .. E- f .. 0.0 t ) II t
    w C U O HCD (ni.O' I(0C co (nco 0 o W "Ir r. r- Go ooo ii 2H4..'C4 i.n to11

    3 ^ II 4M E 2 -
    II W 1 C 0. D UOI
    IIM ORU 8 11
    w1 0 C I m CU 4. 4
    C .C H o eo m ean c e-- w w ~ a m wcu o m a men a ll OM lO- 'H I i

    C 04 CU UI 04 0 14 HD w'.- 0 -W Not (r N N N (n Nm II ) V a U co a. 11
    (0 3-4 U 44 ..4 I- E- H 04 04 O 0 o 0 N a4 0 H 0 floa. r- (0 -4 0 0 0 HO U Z 2 0 <-. 0 -4 In
    SE- OLII I 0 0 V4 4 0 r I n1
    1. CUi CdLl 0.4 N-4-NM44. 440-0 W 41IIH O OO O- 44 HO 4. -I >1.
    IIh 44 o Ca B > 0.4.104011
    U U < C Q. I 0C 404
    0: cr K 1 *0 10 ro (1)
    C U II4.0 Q. o 4. Ei I
    U > II II C .0OE II
    H.-I..J 44 w0c oor0-r4 T'14mrn o0oi Nrf 10M4 o or4.,4nunm II Z0OE-'. 0 i*J I
    41 c00'0or-Oe ('44.0W00NHNN W NOMom'4fl r-r-N U OH 0 c (I
    [-*4~i Iixe 0)ac n ia w o r or- m r o a s I > 'O0 %4CC a)


    g .....................***Il H* '--->-'II

    0E II H H H N N N m N ('1 44 .4 4. r. r- r- r- r- r- r- r- r- 44 0 CU i 0 m 2a) II
    II? 3 C II ti* a i
    .44 . . . . . . 1 U C -) -4 > ) E U

    0 E 21:r 10, (a u C 11
    .4 = 0) -j sM CO i c44
    iI O4CP 0 .) I r.
    > 4 C 11 >* VfI II


    >1O' IIwo4..4>.a-'o~wo co ~ w I OCU O>
    u.- w N CD r-4.w 00Hw N M4m(' w.4 w440'r-.0m0m00 lI11Z $4-(. a *1 4) CU 1I
    9 CU W M -M r C4 (DC II O > A 00 QG H II


    Ca 04CU II ( 0 H H N m U, ( N O 0 0 0 II U- 0 0>U 11
    4C II m t- m > MC m0- -4 LCII
    o -4 wy^ llutltt~~fi~ -r o ^r-^^ nrC n o o rin > ^ r-< m
    (D C; c') 4* 44* M I.- L0* * * C; *I 9 r 0 >
    44 110.. q '4.>U-'
    11 1 I -4 > 4u II
    i In, j- a, H 11 (a r. :i
    j 11 .1 w0 *CI-4 I

    'O Cr N ** N c- r- r- N N V- < r- N r- 0 r- 04 r- c04 r- C r- 04 r- 0 II E- V) 4.4 O( U C U C r Z

    2 0 . . . . . . . . . . . . . Z z c i 4 a I
    4ll I Ce C o DCD C> CDNC 1 4"4mm1m m w 4 4 q 4. 4 I11
    1 1 1 1 1 1 1 I II M 1 Q. U C r if
    )II n3 U I n1 to II
    wII 0 w 0 w c -0 w 0 w4 n 4 0 m 4 C D m a 0 0 C D C U V ) 5 a )
    0 ^.. II c 1 0 II
    > .- 44 omomoanoimouno0Loo00o0o0oooirnoiot4noco II 40 M w
    14 N44C 1o 1 IIO r. c- r C O' C o! r O o ON r- o o ; 00 -Ir- -

    14 1 (a w1 a) 0 4 11
    II E n IIQ C 0 Ii
    II 4 I44- C -IO 40-OI I..4
    CU 44 .4.0 In 40 211


    CU II
    0-4

    I'd -Iq U 44



    0) t3, a)
    L H u LI




    E U 1. C 4
    2 0.







    Ca II
    D


    >
    H -4 -'

    0 E
    on 3. -J 44














    . U II
    U- V~C LI It
    -4 4 a





    0 H 4 110
    ~ 0 04l CL


    Cl h










    4 II
    ) 1U II
    S II
    Zr 0f 0. I









    0. II
    V > CU II










    C C II
    ^ >D"~I


    c L O or cn rn ir cn N M o i/ m n o owm CD" co L co co 0 0 rL C a)O n



    II C CO w 0' m a II




    0 0o CM 00 W r- r- r- 0M 0 0'0 M r- 0M O LO c00O c M H 0 0 -4 w
    C-4 -mo o nm4.144.000'0'r0 'I W w m 0DCo o II 'D -1 H, N< aII


    SU0 t L En 4 II

    11 c Q. r.o cd
    II 0.... 04 -4 4-i II


    m w G- ON m w r4 mm N4 C I "I




    aII 4I I n II
    1;.~ . 4 c > 0 L 0 II 1







    H t0 9. D 0 0 (0 II
    44 X CU 'J ..4 C .
    II C U I .l 0 E O II












    >< E m 0 1 r. r
    .. cn o w mo f w 11
    M .)O O 0- 41 0



    SII H C (0 0 44 II
    Illl IO-'01"-.0.4 II



    N- -4 OO OO OO 4- N NN MM W I 0 0 0-I w


    .-.0 II.4 I
    a C
    l I0 CM 00
    en C D O


    Io to HM a M

    a m* ~ h i/i e*J L
    CU 0-i 11



    0 -t4 C U

    0..-I4 o 4) CO40C CU I

    II DZZ >. In0 g
    II E-* OZO'II1040I II
    S 0 2C II





    4 11 M0 to 0oa a4 U
    L4 > > U






    (nu


    II n 4 U 444 4
    E- l <11 II


    O II < i-](dlKiOc r ar-o < I
    -ol. * *n- O In I
    co o0.0'wtu CU 4)




    C o I 44o -a>- o i






    04 .4 -C II
    *- l tlU = oikin









    n II
    I EII II
    U r- coE- > En I

    C4 II 0 0' O N Q 4 '



    S0 II1 * * * * H
    AU 0. t 40 o 0 4

    0 w '< 11Nq
    Z 04I. c. .N .U





    II II
    II II
    44 U








    CU **w 1 0' 44 0 4N 4
    '0 II N 04.4 4 'Mm4 1 II



    0O II 0> t' 0 N 0 II-



    0. It U 0 4 0 N 0 0 E 0 II
    = ro im a r_ 0 tCo
    X o II Hi H. II



    I I 1 r II
    II U
    *O II 'I

    C I CU 10InZnfZ OU''Nn




    rdIn1 I 11 a) II
    110 '0 % C LI .0. j.0.0 w
    II 44**I


    11 II
    .- .0 II 4 N II
    C( ) o to j II
    II mm CO II
    0 I O N II

    II44-4-4 In 44
    I CO .- o i u IIa

    11HI 44 CO CU* CU Ui I
    II 9U-01 LI II
    UII E- -- a 4 II
    m Z Z > 0 c z II
    In HO- C4) 40oin 44
    II < 0 EC II



    mI CO a. II 0 E I III
    EII 0 n 0 II
    10 f II o n Q- 1 > > II
    2II in 4Q E




    l-E"-
    2. 01 E4- u 0: >- l '0 I




    0 w 1 asm rn i o M o E ll
    4 MIE II




    E II I I II
    CO 0.1444-4l f-4 > MH II









    H
    N Dr ro tn am w m rE I


    C ll C 4 nn Q II
    .4 o UCU II
    4-20 Cin cO0- II










    II ii* * *
    44B i 1 II


    E HI 4I





    0 I N I 0 0 00 4 1
    0 0l M -4-4- o 0 C 04 o .l






    (0.44 NM-440 U
    W -- II E E E






    m in 11 rzi -4i u- n o o ^ 1
    4) a || ) ) (0 .44 44 I1







    it

    II N
    '04 II
    Q) 44 0 444 N 4.0 tD r^ 4.1 i 0' '-3
    440 .1 04140' 414 Hf' r- 4

    0.. U .-4 0 0 0 l. .4 0 0.

    X I I IC



    -LII CU- W n~ ttl

    -I(0 >4 40 H CU -: LI.... 0
    U) CU4 U. C U .?~ -I -' CU4
    Z- 44 C m0'^ C'L^^^O 140440
    44 44).> <)> ^ - u i

















    > jI -I
    S)
    )0 -4 U
    = a) A.
    W Ct
    3 S Q



    E .






    >
    0) 0i C

    0 E
    U- a)



    CD 3










    0 11..
    a)
    0>


    E-0 0'












    d -4 -A D
    E )-
    >- gp






    3

    C- >.
    U a)3
    E-14

    aC -


    1 a)
    EI N






    >-4-40



    11)11
    >) ~
    >U a)
    c) N
    0@@ i
    40i n


    4' ~ W~ N~ 0 D- C D r- Mn .-4 N w, 0 LA 0 ii
    C- wN 0 w 0' m' w- wD m m, m' N iM 0'i rN M C-- 0 0 0 11

    -iI
    0 m' 0 N- a% U, c .o co 0 N rU cNl 0 1
    " or m m N N N NcNc w M M LD r r- w 0 00 0' 0 n 0




    Ntfl-iNmOmieoNt MNum/OTo'smm-oooomoII


    r- c- o .-4 C-, o m 40 c as (N 4' 4 0 0 o N r- N- r-4 c U o Co o o a n i
    m m m r- It

    II
    11
    o OmII






    Q C- m2 0 0' Cm r- o' CV O D 0M U c, o m m0 oi 'M CU4 m 1i


    . M N . a; N ., N ) 0. N N C 0 I
    . . . . . . . . . . II






    0' C, U, I U, m-- 0 w2 w C- a, m a, m4 a% N, N a, Un 11



    U0'0 -00 m o N -00000 i1

    - M*- .4 N N M a,* U, C 0 @ rN C-- ', 4 00 0 0c C 0 i|
    . . . . . . . . . . . . . .



    S I I iI II
    II
    II




















    0 m- U, 0 C- U, N 0 N UC- 0 N UC- 0 N U, m 0 N U C0 a i
    o r-4w- o-4-4- w-r----4- -4-4 w ----c4-- 0 2 0-.
    1 1 1 1 i 1 1 II
    II


    I V En 0) 1 0' i
    -I I I

    04 00 .O-' IO
    1 Q.C a a) 1
    E- b. 0 i W) e (. Ii
    4 -4 1) 0 4
    En 4 01 :3 1i
    wC = *tNU H
    W 0' -4 1 *4 I)


    H 0 4 0 )

    0I. -4 r r V'2
    HL 14 '-4 -4 >1 1'


    E-. CC lW m
    11 1 0 rzr 11

    Z > 4 M CL) IIt
    o c I a) O C 11a








    E-U 04 -J $4 .
    000 40 11


    0. > j E 1i
    j-1 w h 0 I1







    -4 *O J I IIf
    0 0C C4 C 0 1 0i

    O-^Ct rt 0 0.1






    ZU4. -ja r.~4 ita)1
    z' (o > o a)h -c 1



    < c i C r li



    U> c1o It
    S-0 0 l- U -'




    11 r1 11 t
    W E- 0 >W -4
    4J< - -I -A *J








    .-) Z) W I Ci 0 E
    M C) 13 U) 1O
    >0 0 t C II


    >0 4 m a



    1z w* c Mj n) i
    Ea -I a ) a
    u tn ) 1-1 C -
    dC rC.r 0 C
    1Hi oco 4 011
    Q U o o &A IM>,0 II

    < 4 II -'h -





    (-ia (a -- u-
    -, Z a w w) U)fue1 j 10 1
    0 0 >< II a)nio
    1/1 COU CI 0 c \



    <- c UT M*J ,) II
    E* H r- r- Ul < I -- |
    10 E- E l o 11
    *^ # 0 a 0 II i
    N Mr EQ *-I l


    0 II
    10 II

    o n
    co n
    10 1



    S0. II







    >-4 11
    0 a
    0
    C 0









    114 *
    a II
    -4 II


















    -11
    10 OK~ II
    CU 0. II
    10 II
    SUII

    'U II

    -I I
    .4 II
    Wi 0. II
    10 L II
    S0II
    00 II


    10 It
    o ii





    1-3 Ii
    can









    t Ii

    IId




    S II
    II 3
    10 In l









    Z II
    oll
    W i
    Cl) Ct


    II II

    cli l
    S U ) 11
    Oil >. u-i
    Oil H I
    Nil 0'CII
    I II E i II

    C--Ill W
    o II ^ Ca CII

    NII 0 11
    r- II <- l < II
    II 0 II
    1 l E 0 II
    * II II

    II U II
    Of II IIC
    Q-II > -
    I II D UU i*
    c 11 0 11
    -I II En W -^

    0 IE 0 0 II
    o ii I- 0 a) S ai


    II a ) II
    II C t II

    IIH- ID


    1)11 4 40'li
    00OE ii
    ZII 4 t II

    II I t
    M ^ 4'--
    M H 0' ii

    11 II > 0 0' -
    ii S 3 i) i
    1>000 E S
    n cc 3




    1.I11U- DMil
    2~ 3



    I- .4U-I
    II C 0 I1
    It 11 .]a 1o
    II M )

    Z II II
    E11II II





    2 II II
    II i II
    1 II ) II





    II II


    II
    M~~ ~ wD 0' LoC N 0 U,@ ,C 2C ,00C 0 U, 0'oC 0
    00 mw 0 C-- C- r- U w 0 U, M N U, 0 @o Lo rC- i LCoN CD II
    o-40 N m- 0' 0 m U, w Ucm 0 m w2 m CDC-w 2 0 II
    ; . ; . . . . . . . . . I






    m wr- 0' w2 0 f r- 0 U U , D CD CoD 0, 0 l
    II
    n m w mN o m w ww m me moo 0 m ofnnL






    0'o _; C4 C4 m' r: Lo N : w2 c; M U, C- 1)U 0 U CD -I
    w0' 0 Cm-- co m en C 0 M 0' U It





    CD r: N N N W, U, C- CD C- M2@ @2 U M* Lo* 00 0 00
    CCU N M m M C LD r0 r' U, M M U, 0 C- C-- r- 11




    aD 0' U, 0 N o2U, 0' U, N @2 N- 0- co U, C- 0 C- N N 11
    N II
    II



    II
    II












    C- 0' C- 0 r- .-4 .C- 00 CD N M .-4 C C-- N 0 N U, M 00 C l
    II








    co m CD 0' m o CD N m cD C L U, 0 i
    C N 0 0 a U w M w U 0 N 00 Ui
    -II
    --4-4----------- C N-0000000 4 u

    II














    U U, U, U, U, U, U, U, Ui, U, U, U, U, U, U, U, U, U , 0 a i
    N N N N N N N NNC;Nc -N C -N4 10 II
    II
    II
    II



    oU,0U,0U,0U,0U,0U,0U,0U,0U, ,OU ,oi oo II
    N -4 4 4 4 - - -4*-- -q 20 II













    ^ o I o o IO I I II


    I U al0) I II -4

    S.-i E I *
    0 0 GII o
    0. 0o0 c o 0Co



    Ci) ED' 3l
    E-- r. I* I ( Q M

    Z CO 4 H a .

    0- 0 C (0 C "- ,-"
    lCa 0 c -- 1-01 4


    Z 0. 0 -40)
    00' ljCfail =1 a
    H. E 0 i >ll c.
    E- C W0 II -4

    U 0 a > 0. (4 W 11
    w C 0I QI 0 w m I
    (W D 1 -.Wai 4i

    E- .4 :3 -' i%
    0 C 1 W C 11 I 0
    S. -4 > J E 1 < d *
    4 '0- 0 -11 OW
    m E1) :3 U :
    E W W I -j 0 0 %1 0 I4
    0'a) l-. n r- nZ -4
    r>.. ca (D ii E m o-.
    Z 0 (0 0 ) 11 0
    Q0 o U) 1 0. r.n 0
    > 14 r-, 11 0

    eO to > ,I
    .4 U 0 0 )I
    E. -_ j -1>.0ll a

    Za ) 4 l -i o it a4
    E- 10 0 Ur II C 3

    0 41 r-4 -4 0.i X
    E1 0.- II r c
    u U a) -4 X I

    E- ---1 4) --1 ta
    .4 1* WI .
    C t 4 11 Ii


    0 E- E )0 'M i 11 12 W
    -4'Z 0 U4011 S
    cow Edn (a E a., l


    II


    IC4-EN
    II 1-) C 12W C



    E- 0 W
    II .n en C aO



    II * 0 -J
    ol r- -I0 #



    I d E = 10 0E





    Ii H E- O 0

    Ii i
    3D E- > n
    E atr) -4 n
    a, 1 a, E 0











    II .o 1 0 '\
    Iior-s 0>
    It -t Q l-
    itO POH
    *i .4W- O -i*





    It C N C,
    0l r DO U 0 0)







    Ei C-3. 0 N N 0' N0C
    II U, N U, UC E
    II 0 H N E- C







    II 4 1 II, C IID
    II <
    II us E-- > n








    II CD COiNU 0' 00 N
    Ii 0 Ci0 N DM C
    In I Q Q










    It I H U


    II --()*
    11 0

    II


    II mN m -n tCCMo
    II .m m .

    II <
    II
    II flma omcoocM
    II . . .
    lo -mocnomos
    II I I T- m


    ** n i


    M
    m


    o




    0r'


    o


    il > i in -I .. .. .. 1* 11
    1. aw )- 'D E

    II D
    nI Z 3p.t 4 o --co
    11a. )- ~4444a


    m c o
    LII
    C D <0 II
    -X C- II
    ON Ui In


    WHM1.m II

    W O (a a)
    U E ->> Ha i
    n Z Z > 1
    H w V) o



    0U O to V II
    o .4 C0 m 1-
    H.)O'U,4'E II

    I-4 aj-. II
    M0 0 E w
    m -cni2ll
    U Q 0 II II e
    a E- > m

    0-4 I
    Ci2E II
    0oF > 0)





    N4 cooe co0 r- U, m
    miLco CN 0' 0 0, 00
    U Um No 0 m a
    0* M U
    C4w C4 0 c





    0M C0 II

    C- EDnU 0 o 0' CD C-
    M 0' a* D *.40' @2 M C-- It



    > i in -.. . . . .
    o ) --1 a) o c -i O cn o l
    -~II


    0 4M0 N; 04C 0'0
    II
    bdw m om o



    f* * II-
    ** n n

    (li^a niiS SSc
    C S 1 -4II







    II
    I) l i nCD C @ II















    In II a i M M 0 ) 11

    o I > C C II w N w N mCmr- 40 m r- wo m mwo w M an oo ll w o I= E *
    r II D l m n w wt-tommw - r-n ww mo mn wo m N w M IA Nr


    C I11 4 II I I i n C.' G II
    oil I0 I NC N xC 0 -i U II
    I II U Il 0 o'N 'W W InO ,.-o On-' a t"-r- ..-, L- g Cx r- II
    S- II W 0 I E- -1 O (aO 0 1 4 I


    I II m .t m w r- O r w N o
    I _I V11 nN 0 nw II 0
    II HI U iI w Ql a E m. I i4

    II V)O II [l O L> 04

    Siiii a-i o .a-1-i *

    -II >I l II CM 0 O Om e, i Oom C v p OO- 1 rr II 0- n4 0 r 11
    . H O. n r f,, w mr Go o no Lo -0o UWCjNC n'OOt ii Hon 0 4 II


    3 H I II Z w o m l QC W ,- 0
    II 4 ) III II [ 1 ,,- 0 0 II4


    S II t) II II > I
    II UCi ,-. oa i- a I

    i 0m 0 m r- o io > N a t 4 U i
    II II (y t rcn 4 0g i0 coa c 1 W > 1o 1

    E- III II U M 0 4 ii
    II II W II C 011
    II HZ I 4) iI oo ii C nI -' .i o i


    E i II Nm lni I OI S -i i


    IH 4) II M II H ooia-.oooooooo itttvtvtvtv mmm tO it < ,
    0II II 11 a 0 0 a a II
    Zn 11 N II lI -O t 11

    ID II II E- -4 ) I
    I D ai ll II m 0 D a 10 I D I
    no- > i n Nll ano N oNnNoNNomo-OtNoNoN noNoNN N oo II 10I. .. It 11
    cI .0 n I- tN o ll Q oIn toC-o i m nt- C r- 0 IntoC r- N CO I o 0 0 It- 1
    n -l *4 4 CL * . Q. C C 4 II
    -In H111 1 II Z (a -l a) 0 IIM
    U~i 4) iiii a m0 o~il


    ) ii
    > a a I
    -.0II
    c 4 u 11
    It .0 C




    W 1 -4 u 1
    s-I 4) Li 11
    SI3 4) ai





    E >













    .4







    a
    C CII
    4) 014) II
    H-. 014)l Li II












    ,- 1 11 I
    3 Li aLII
    U)It. II
    W II











    0 II
    4) 11
    u>
    H a W 1
    HEI 010- ii
    y s-I -i 0111
    SI 4f) II
    00 3 II
    3-S U




    14) 01- oi
    o o. 4) ii
    Hr-Li II



    I a U '
    -O -I0 II
    Z 0 a., II
    a. II



    4) -HI
    > 4) -I It
    4) N. II
    -4 -I a. II
    Inl U) ~- II


    II i C' O CI II
    N 0 0r- 0 aom w oM o i o o r r- cop o II w C .--- II
    Nw m t a w w a toC (n N 0 oa N CN4 0 *j IO
    amw m o e w m o mr N o c o 04 o a 0 o r- r. a-O I. 0 11
    .. .. .. woao; o .... wE o 1 t oaI
    mN wU o aaa,' a,'a,'a,'(n a, aa, ii w -44 -Al
    II I C Lic U II
    II 0 O C0 It 0 01-A II
    II a. O A- t II
    II 0 .. o U II

    m D wi mo< wo 0 N mm o m N<3 mna m w r- m w w 0 to wO wr- a, mt r- I 1 w 3 -) II
    Mo o WtrM-Qr-r-em 0 W oD Oi 4 o Qoooo *CD r- 11 Z E 0 L- 4 in
    o CIJ M ID. .11 1 -I C 4 0 ) II6
    U.'I-i n ~ t O ,U!, W N U toCaIn II E -'
    NN C 0r. IVo 0 U- ii
    L) 'a n it > 0.$ (0 ItwM
    I.oa 100 0 11
    i .0. 4L. E II


    a, rN w Nr NI o wr-o w m w NIO mp nto O n t Ia.E. w 000 II -- >

    ......m r .. .. .. co co oco 1 E
    ll~~~~~ ~ x ( Jt O *i
    IIH~i4)Li iI
    I 0 0a II V -
    II iv 0 4)- wo n
    -im Li on a m
    11 >4 Li -A lC



    o.M' o 11
    Lnu^ w wr- r- w m cD m c3 m m w m wmu L I-*l r- r- w0( m 0 (D"' 0 (a CO 140)
    r'~~~~~~~ ~ cM rn cn tOc'i ^''i r '1 "^ 0 .^ L [n-~UUCi

    v) H OOa -a to 11
    H fu H 4 0 w 1 I
    IC . 0 0 a)-II

    Ii .-Io Ci II
    IIZS





    NAAooooooo-A NNwnnn "t ii It4flA l
    tI r r1 1 -00 -0 II
    Ln in in wn m >n in wn wn wII H w 4 LA a w a a : s m
    NMn a0r. N10 riMrl E w 4 S0



    a- 00)I
    N I I- .- N N N N I n In L C a n r n- 0 44 t i
    1n ar t Li 4) S
    E-. -4 0> -4 (J 0 *-* I-

    it j a 111 0 11^^s~

    4 c c; cd OOOO C r-jN CM(N f;f;m 1 ll. (a 2S '
    I llw En m I- ao Q*1


    -A 11
    *HII
    _j







    mA. n
    on8
    Co. II




    I 0



    o in


    ) .

    -- 41
    II






    is It a. i
    0 CII
    10 OIl
    C 0




    U)0 U II
    H-.0



    S-4*11
    11
    E*0 0
    O 0 II
    I tC in
    E 10 A II


    n i
    S oII

    n II


    ItU
    XII
    10 II



    WiI
    PL II

    4 II




    *Li i

    It 0 in
    1 114
    I i


    a l NII II
    -i .i II 0 ii
    (0 A4 CO It


    II 0H000 U
    Oi r. 0
    CD 11 0 -4
    .C I0 L \ B II
    a.~~ii W nW 4
    L II Id E Oa )1 i
    in 0 E- -1 11i
    Z, 2 2 > :, C3





    II E- M 0 0 III 110I I
    U II dHW4 0 E II
    n .C II n E 0 w
    It.Ua nN 0 Li>>
    co u m I.. > >
    II ru -T>]td k O -1 0)<-
    CoUn-** E- 01 0 4)

    OL I E-B =) -j 4) ji 0
    it- V) U0= V-A$ E n

    S-E-
    aWo n it a4)ao





    Ii Hv o nor
    II < IL n n n U
    11 <03 I

    Wd (0a.UC nNQ) 0-A
    0: .ll^ 00


    S i Ii0 1 %
    nU Ii .-. nI UUt

    II II
    E-
    2 -All
    _.4 j -. imi 4 0 N -4 I In C C
    S It a. iNN N a' In U, 0 N In .-i Im
    0 11-Icn NO to -4 a' 0COil
    3 oil............. .. . ...
    0 0 II - n NC
    d, ( - usr- wn
    aAa'n >4
    nnn
    (\]

    3 II a' 0co ar- w U, 0 a' 0 II
    (0n II N N C N In U, 40** II
    O S ia' C0 C N to Lo s4a' N 0 ii
    cw u ii 0 0 ,N0 ,Nsu
    xr 1 Io o of1nC *<1
    X II I In c 1
    D --AC U
    .j a V II

    i(1) - a) -4 ni 5 f 5 t II

    10 01 C 3ow U I
    -iii 4)1 ) 4)w3^
    Z ii s3 nM >ii[ U)2 0 )2U t
    ii U


    Mo CO r0
    n II
    NO 0 Ii |



    dO Ew asv
    CC U E- -I CL lI.
    tO 00F Uc
    ON M > -A 10 U
    Wo< H 3 a w n



    E-*Z4 w oI 1 I I II
    S0 E 0) I
    01 0 E > >
    * t 0nan-' O C I
    0 1t U 0 r.



    C; r.
    E- 00 -J 4 0



    H.0t.lE II
    E-Doa4 It





    in
    CMiUZ10nLiwnE

    H V E II






    CaMII] 4)-A I
    0.-I n e II
    ao m W ) -4 I


    .ja




    tO toS- Na' N Nin to U
    w-r- 0 o IMn m- r- I






    a, aN o aN 0 In N U, II
    co m- n to N 0 o C 0
    n 4 w tocm i

    14 o o c ff r i cn* c;


    .. .. .. .. ..
    fnt Ninm NNuCM c inI




    -IA I II
    .~II


    ** ** H
    o i In 0* N rI N I 0 II

    I C C In iT
    **QQCO SSII
    C W 0 LC C C ,C I1
    S) 4M Siaa aaS II
    Zm U)0 U) )C to N- C 3 Ii



















    t 4 U
    0 0s



    UJ



    'U ..

    4 m-4 U



    f@























    o0
    U>





    01


    LU -
    I -- C.

    H 0 E




    SU
    C C


    U,~G w' 0r m, a, M. a ~4-4)N W~ N NU 'U ,~U a,) al a,-40




    .9 .4NI Go ) -1 U 0 Wn -1 co 0, NW N w, N m- lrD 0'N rID m m CD 0
    -4 4- -- U,, C4 D* I C; 0' 0' 0'' 0' 0' 0' 0




    cn 0' r ON) LO) ON (n W, al4 U, 0O Lo) .4U U- al U, 0 n a,
    4) N r .4 N 0 U, CD C1 0 n U, U, al, U, 0' 4-1 4'O 0' al0 .




    ", C-) N LO LO) t- 174 r- 0' r,- '4)U '0 U 0' 0' 0' 0'


    wm M CD (1) M 'U ,U -4 N 4) '0 N 4, D .-4 m,4 U 00 CD
    L 0 N 4 4"r CD LO,) C 0 4 U, U, 0 -01 M 0 'N C-4 at MC) C
    -4 N 4CO ~4U 0 W, LO) 0 M, LO ) al 0 N 4,) U, U, 04 CNJ (D 4
    1 ~ ~ ~ -4 U C;_ ;ciM *' a IU, U, U, _-1 C- C; C; C-C-C-1
    m Lom em &n m ~m Ln mn mm LAL













    N r- 0 ~ r- 0' j N 4- Of4 r- N C\ U, 4 4, 0 s U, cli 4,) 4,) .4 CN 0r C4 N U, U, 00



    0 ID L 0 U, U, U, 0 0, U, U, m- D 0'm 0 Ua 0' U, 4, U, N a 00C



    a 4,- &N C- Nr- N c, N m, Nr- N c- N 4,- N c4, N 4,- N C- N 4,- 03

    N -4-4-4-4-------- 4-4-4-4-------
    I 4 I I I 4 I Iw w o e b o

    0 U,0 U 0 0 0U, U,0 U, U, U,0 U,0 U 0 *0
    0 ,N 0 C-o, N 0 NU,4.0N U, 0 N U,4,.0 U,. OZ
    N -4 4-4- -------4 4-4- ------- Po


    I I I I I I I IN W m e M


    II I U i1 ) I II
    II 0- .-i 0 -
    II M., .C -- 4-4 II
    II -' 4 E *I"
    n 4 0 O r 11

    u Z % O 11



    II X 0 m 0-4 -4 U II
    n a. n uII
    n Eni I O m il



    11OMc 0 -- >
    II 41 : n II .1


    I a r. io 04 i1
    II .. a) 11 II
    '0E- 4.E
    II< C r.- O C
    fte >' od


    lWl Uh ,(UI-44 II

    -II 7> Q) a) V)
    I j En a) II
    II 0 u c c '
    II > .0 r. 0 II>


    II u 0o II
    IIZ& 0 i >0. II



    11 4 -4 -' .-( m



    II 0 in l l
    II 3U .- U, II
    11 E- 4I o u4II
    II f- 0 0W II
    II 1H a) I0 E 11
    II -' () 4 w Ca J 1II
    II 1 (C E O. 1 II


    0C 0






    1-4
    c!' I
    o il








    00,"I
    Co
    (U II
    0 II
    1 I









    0

    S10
    H II


    2 -HI


    on
    C 0(
    n *a



    0 II
    C II
    10 II

    X II

    M.,II
    II
    II


    M I 'U II
    Cc, >4-l-4l|
    co II11
    I a ) C II




    l< Ini r. Ci r.

    11 W 11
    III EU lUI


    II 3 II
    II LU II
    N II II
    O II II

    -4 II -








    ..: ( u -
    1 H a' a' I










    R E- 16. a> 1-
    II C CU
    II B U II
    H II H U II
    II 0 4
















    >4I a) -l
    -4 IIf
    )II U >
    gHM W








    f- g fl ) H II
    4-4I0E I I


    II ZOO3II
    2 11 U II

    IId (ZII
    C U 'U 11
    HO E-








    C/UN II
    C I > II

    2 2lZ 1

    &11 -II





    g- vi 0 -
    M g


    0' m N U, co U, 00 0o U, m4C C- M ,4 C 04 0- o
    4) ca U, co w 0 o 4,) U, 0 0 U, U, U, U, -1- U, m, 4, 4, r- 4,. C- 4,o0
    SII



    it1






    4) cp Co iLo U, 0 M. o 4 co to r- c o w U, c U U, 0' c II
    .-0'0 U w, w' U, w* ..4 U, 1: r C- 0' 4, 'N N


    rm wro mmU- 0 co'WnU rm-wc NMON O O o-lo II

    0' U, 4, 4,) . .4 U, U, 0 U, U, 0 4 N N 0 0 0 .4 0 II
    ....................II
    m--4- N N w wam4ww a, U, -40 Ua aI



    -4--4II


    It
    CD 0 .-4 U, rM 0D U N r- U, 0 W N N0 W U 4 M 43 M I
    en) co U, m~ 4) N 4,- N 4. 0D m, 0' c') 4- 0' 44 r 0' c"! N l N ,.I
    o 0c') U, 4,- U, N 0' c~ U, N ~ U, 00 m ,U ,4)

    .....................II


    -4-4-4-- m C n r- OfII
    II






    13 ^*ti MT- r m CM 1! In i lo t 1! r^fM i/ mp r-i C! C! o O "I
    U, . . U, .- ., U, 4, U, .' 0 . U, . i. -4 0 0. II
    4, ^ -~0 -,4)U 4 ) 4 4 4 U II









    C .- o o 0 C- 0 N U U .-4 o N U, 4 0' -4 N 4 0 n enm en o
    I. .. II
    Sr4II



    I II


    U,0Uomomoiomm000 outo0Uioi oUomoo II
    o 4, ,4, U, NM 0 N UOC i C- 0 ~N ,4.0 NU 4* 0^ Nci r Ufc C-o 00 II
    * * * * * * * * * * 11
    I I I I I 4II


    I ,iul c I' II

    S.C C -i- -4 II
    OS- E- II
    1, 00 11O
    4 0 it a 1:1 c c :
    E 04 0 'U t II
    Hd 0 1 (U '- II
    4 r.C 0' - .N
    Id ) 0' *01
    H 0 -4 0 -1 II

    0 c i r_ a)

    2 E o.0 i U-m i

    E- -40 0 -1 ll
    t '0 > 0." ( Ui
    < C 0 I oC (U

    C; 0 SE II
    ) 0 E .II
    SE- >M = I -I





    0 4 4 II
    0 rO in I 0 i c Q r
    > 0 *J 11
    1 -:4 *4 0 fl


    Ic r- 0 > If
    CD -, ,--I -- 11
    21--1 W 10 1 0 a II




    . > 0 0 II
    O to in H 0. C 0 II





    Sj U a -- 4 10 -
    4 .. > Ur II4
    0' H o 1 -411

    Ml __ II
    E-H U 4 0 U 0.C0 II
    0 a) r-4 w 11



    # U'1U-4 .0 II

    U U,) < II
    -'- 0 c V 4
    u 'H 2 '-i ( 0 1
    -)d U, (U E 0.-' r(


    -4 II


    o O 0 -4





    411 0m 01'. >0












    E--
    C II m H S- W(\ E
    10 IIr. 0 0 > >
    0: r~ f-Ud.... oS 'U -
    o E .-O' I-'-- C

    OO I O Cl c" o

















    -41 f mN LO-U,
    II H >J H
    (a E-O 1 l






    11 C; C; 4 a,






    I oil L
    H.. II
    2 -4 11
    E (U0.. II U, 0 U, 0 U, 0'
    0 II 0 N . . .
    U .lII UNNUM
    0,0'il n u, -l
    II
    'U II
    0 II 0' N m 0o r N 4,) U


    0.. U o110-4 '.404) C')0
    XII I I NM.4 U


    II ** **


    i > u --
    aII -0 ) Eng (
    -13 1 QQ COm a 1z;0
    ( I -4 C. . -.

    Z w II a) 4 C) W U, U 4,.
    II


    r. 0-
    0 -4
    1) Ci(U 'U I
    CO CO 1-



    V- a) g
    DZZ>t,0D II



    N 0 0 >> I

    4 u 0E9 r. m U 4
    H M.4 m mO -1 I
    0 W .ad x ( III
    * c a! E- o Go o Lo ca
    CJ)OU2-.UE II



    44H W, 1 Z IE
    MU w 0 M E I
    H 4- E**


    G o Id II II II II



    I 0 E- > 0 E




    00i 0 1` 0 0 0. r



    o4 L Q r- Q
    .II









    --4-4------4- II
    Iw INo II
    *-< a)^ i<










    .- .


    'U-I W(UZICMO fOCl
    a30 n. -' o ^(>t 11
    (U'0-4 'Ui I. .0 .0n .0 .0 II
    I I CM H Cd ||
    (M I
    II



    . .n -i. .. . .. . .

    ** QC SS S' 11H

    amII


    0
    0D
    0





    0'


    0
    o





















    > 0.
    a














    E0 o
    U

    >1




    L) >

    E- 0 010







    4-2 ~
    I A
    0- 001









    MM


    0 0)
    0 0.


    W )
    EH n
    H 10 01-

    0 E S






    U 010)--
    H 0 0) ~
    H< -i.




    S'0 C-






    0) N .:
    -I -10.
    MM211-


    II 1 0202) 101
    II ' ~ I
    ~~~~ II1. C- II
    w m wLo w m Io L c, 2- -I II
    m^ m' r- i- m m c r c3 w- w'fO^ cD a% "T "' fMC r- t. r o c j --I -l E'I
    r i M o o "> w r w w r w D wn wi wO %r cni c L o Q a. 0 4j
    co on c m o Dwo r co W i n r- o ll o wH C o -)
    II E- 0. 1 10 j0 11
    c; ll 11 w* E: Ol- - Ln IIz -
    SII 3 r*.U II
    |I m 0 -'4 c 10 C O3-' 11
    .O C 00 it- -I 10
    II 0.0. M 0)0 1
    11 1 020 a) u 11
    Sm r- D m ,m o c H 'mw 0 In -40) 4.
    ' mM N r OOm o-3 0n il o-l 0oK 0 o Wc 0m U) E O C- m w M m II
    -- ---- -01 C -1 0 u3M
    ooooo0NU, 00'0'Mooooo'.I H c 0.->L I
    U'0 10 > 0.4- 10 0



    11 ~ ~ 1 E zt 0




    > 91 0
    1I 0 C 1o
    lI b.0.0t)4-.-I EI
    IZ 0)~O 0 %1 (
    a) c, o SE 11
    o r- w Lo 00 m, m0MN o r. -o0 w m MO W W -- Z'Oa) Lo 1 'E-.-' 3 W



    m Iir 10 N wI 0 (a M aO 11
    I IIII 0 .1 i . II
    II 0' 10)~I- 02'M nCII
    U 0) IX. U-1 0 0) 11
    M M o Mr .- M M N C- r 0' 0' 0 N i 0 0' W -- 4 N -4 UO II 0 10 m tI 0 w 02 w4
    -------------------o~nL------C-111/o 0.oaIC
    ni ri i a n -i r -tfa m r ^ m ~ i o~ II > *.l) O > II
    c; c; c; 1; ^ '- cMj 1; w, r: cn ID, coi.^ nM o^ a o w I 0 1 C CO > 1
    O O O O O r- II H u 0 0 -I 4-1 II
    110. -I -I0-1>.U-'II
    II (0l J -'0H .-4 ( Cll
    II .1 10 *C i-i- II
    >n wn wn >n n w wnu Lnu wn in w ni w ~ i w "i w' w1 1A w w w" w^ 0 11 w 0 w _
    rIr-c4 4 r' r- i II 1. i 1-0 (0 10 -o 4
    Inl c 1100 -1;4)4 100 11
    N-4-4- C-0 0c 0; OO-4-4o-4N N M MM IIj 10j 0)l- c' Ie nL

    l u lH ) -4 c f11
    H- -i (D --4-' 0 -ll -j If
    If -j 02 101
    c3w0wowo c Dwo w( 1I 2 -'0-4 02n I

    I l 4 o l 3 0 l 3 c4 U K. cm cc O-"- it
    1- ~ O O O ---4 N N M M ~ .I 1 0H 20 mw) 10 :1 It
    111 11 vI II t (a -) 1


    I t II

    oI 0 -4M II
    0-l 1 H 0. S II


    I 0 II0
    .& Cm I E U 0 II
    ChzZ>002>> II
    *- II c2 U E tI II

    S II -i ) U 0 0 II
    ll ,C I E 20 IIa




    E-u Z 0 -1 0
    E- 1 3E- 0 11O 1 I

    I0*II 0 0) II-
    0n.0LM11 H~.')-O I












    0 C
    II H* r H- II






    II f II
    112.-Jxll 02 l
    1.10 .Ij W / 0octi ov ) II





    S0 I 00 *













    a, M r4
    Oa N II w w
    C/(l4 < II W II










    114) -km 0r ) vII
    II
    Ez II
    Z -41 II
    2 (0 0x 11 02 W- O. 0r cr* t- Wr M~ U, II
    Z 0 0. II M ^ i ~ 0' > 0' '-< 0 02 o I
    C o n-------------- M oi(----o---I
    ( 0 11 .4 < N 1n0^ II 1-4 MN II^

    *O II NW II
    0) 11 U, N~ -4 ( r- l BW 020 Wo r- II
    '0 II 02 0 M aN 32 iD Wr 0' N N11
    O H U II 0- 0 2 o C' W r n io f 1 2 0 II
    X. II l 01 0~ 0 M 1,0 II
    lIl 11 -IM II
    SI II
    II ** i flII
    *0)i11 >02i 02-4.SSS c
    -' M II --00 '
    1021 io iiivIll^c c'
    11 0) II 0).-' 0) A 3 <-- -' 0) iii
    S II Z 1120.W /2 fU, W c' 2 II
    II II


    II


    N 1 m V M) I o3 tW --4 I



    ,1 IE-"..O'4 j 4 -0 r--Il 1/) '. 1 r
    0 (n a)( co Z cn '0w Q> 1 z E I 1mm CO) 0
    WoO CM r- M Mn r- r- 0 W oNll 04 0 0 lI oi '* 0Z 0
    wO w n m cI r i o ri r- IDN r-o wN w n N r- o ll I C C 1H $ cof r. 1 -4 n
    m Q 0 r w r- ,- to 0n in CN w w Lo c r rr r r- r-




    nL .. ..t.r-. V MW-W. ..r-M M0 ioo.t 0muur.u HC4 00 1 WI U$ I I M (a- I M (a L. O Q... > >...
    arw coW l r mCm w m 0 0 0 0 a nmun -or- woo m CD H 0mO Ol 0 11 11 o m O QJ
    . . ..m. .O. . . . . .o o o llZ E O ,' U CT II [-ICo MU r C ,
    W o i -W Qo IW i- rc WO Q | -Mo E- 00 V a) V

    II 4 D n > 4D wOI 11 r 0 4 =- t
    II I I I I.C II O I - i I I--
    I1 Eo --I [i (a 0 0 z 11 E V L) = M 4 W
    )II H C o- s> > I. I *g U ItM 01 I H E


    IU'010>0.-0n00 21O II H U H-.
    I r. a 1 0 N r II If If 114I1
    -I40) U.-4M0) -1 l1 ....
    II 0) 1. (0 E V)i i r. IIt L w I
    1 > r. 0 ) 1i C(a iIf W -




    IMI 10 0) 2 liZO I
    w w wNt-m r- m m m m w0 N w -0)B-l m2 C -Z oi-4 UI
    -W >ND LD LO M3 W r CD CN 0 C M C D11 D C, In om o 3

    S. . . . . . . . . . . . . .. > ) O= 4

    oooooo... .-......' .....- ...N ir0 II- ,oooo. C ll u C tO> o I .|: -mN
    IIH 14 coJ-I- 0 I II M

    11 4 -1w I o oo i c
    am r. tn xJ (al Ifmo mm mm w =*
    w ,Uw ,UUU, c3uo N r- 0 w w LD Co r co m c0 -4 ) 11 10.-Ill coNQ
    Si -N t- M CO M r- C V -N r4 -r- O r- M r-N 1 -0 M r--N oD H- cCDi 1 0 > &4 1 1 0. 1H oi __ N* co
    mm U 1100) (u4 l to I 0
    II-j -c'0 o-. i II -il -4
    N00000000Io.o o oNoNoMoMo NN Mm II 1 0-4 W II
    I l i l lHll i 'M OIQ M C \ll n
    I 1Z0 0 O 20 < II II ** **
    HII U Hein ,C 1 0)1I ** ** > 0 -
    II E-' > 1 0 0 "0 ::
    -II -i0) 0 I II I -- 0 cL 4
    oioioioinom mom o mOnoiOnomo oo 1) 0 01 3C 01 0 ..0

    ' .o H .. .. ..M MMM CC 5z a1)-a2 'o (n II 4

    II U r. 0 E 9. II C U


    11



    0) II
    S II


    in
    10
    0) If
    2 H



    E
    0 I
    0)

    E
    o H
    S 11

    M a,


    0 II











    Ln



    0 II
    II




    If
    M 0' II
    S0 11







    -o x II
    10 II

    SzII


    > j II

    0 4 li
    0) II
    - C UnI

    l 0 ) II


    2 011


    H- C II


    H- II
    ) 2 0) II
    (V (D 11









    M 11









    a) II
    C> II
    U -I..J II











    Z I -4111
    0 C CII
    v c) 11
    E- o i^1
    ^10) 2 ID II


    H-1. II

    I .4 II
    -4 -4 II

    0 CE S I







    E 0 II
    3 0U II



    0) N II
    -40.- II
    C/ 1/C II



















    IBd-I 01
    .-i W
    EO a
    aag
    0 II
    .)II

    >.
    U-'-''
    di 'd II
    C ,CC CI


    El.. p.11
    CIII.. IH
    I. II
    di H
    0 > H
    10 & 1 U



    O:-'. H
    E- E O' H
    W .-4 'H
    ^ di I1




    .3 II
    DU >


    DL II
    . l' II




    4-.0p II



    -4 -- II
    E- 1 i
    0i U




    4 d-4II
    *C C II



    a i N II

    --4 l 4 1

    E I 11 II
    II n
    I3 l

    S0 11 I

    OL,- II

    II


    woDMove-it am ern rvettriir 'oma fcoOetDOOCme o
    N E m N to 0' r N 4,-t N 4- r 4 .. Nl .4 4-. ED q. 4 ED ED ( o






    wwi-^r vofno rmooiDO.ic omumco To'r-tor-owincy



    oooooooooooooooooo.-f\ -4-------










    00000000r 000o0o0o000n00 o toE N o Eo t r- ED

    *- *- m a
    coo ooa,-40 -rNas s r aen v o r a -to4--4-4to


    ~ 0 0'N 0 0 .4N 0-4 ~ 0'U' -E4 E U,.- rN e n o


    m ooo e

    0000


    SN a 4, N 0

    0 0c0 00 c 0 00 0; N Lo' cED N0 a


    Go ,o U, U, U, o U o oU U, U n Uo o' U, U, (U, c, U, U U U n U U, U 0







    or- U r r- N 0 N U mr- 0 N t 0 Nr- i r N r-o C0 o
    IC.III -4-I-o 4 oo o o-- t--m-4-M-nn p
    oI I oI I I Io Io o ~ o


    SII am m w m II
    iiM Jr. 0i a, w 0r oa c L 11
    11;~~ C; C C W01 0 0 d,
    swo r- o ermans Mr- i N oo w o0 I ,C C 0 -J I-4 .-
    oN m LO r- 1 E-a -il




    r ll x W 0o 0, l O
    oI a 0 -4 = (d r am II
    * HUE..004d-4--4 *EdUII
    Hno II CI 4 I c d ll

    ~~ II E -4 1 II
    en~~~~~~ ~ ~ ~ ~ cm N- (" Na N LOo l c C O O N(n c oc

    II 0 .C o U d II




    II 0 O Ed > d II
    11 ( C ) U11
    aiee (n m Ml fOOl -lOoml l .O-4 t ll E I U
    m a'W O 1Nc rOe o n O cm Unwr- a r i-on LO aw r- rao IIo rO- 4 E O M II
    eN cU, mHN~4,Eo 'Uo WmeW0' .EmcW II Ed di OII
    *-o o-a-m wri jt^ r-mfo-itr-wc~Tv ioooooootcM II C Add- >eMII



    a I M p.E-> C1O E 1d 3

    CIS 14 > Qd W* (; ; II
    II er, Q. *o 4- IB 0







    -4I 0a -4 w0

    1 0- 0 W 4)
    at en m r c c e os cle -a o m II Z4.E*4dtd -II





    a a II nf OO Ww I- 11
    . . . 1 cW mC tO s e- r- r- r- .- r- r- r- r 0 .W 3 JoC 3IE ll



    r.4 H 0J. 0 0 > 11
    II H Id 0 0 1 II



    11 0 .-' inl





    l~. -4 --1 .U) _j _
    ~o ~n o wo w o w a s oII d owC 0 0 .. II








    UUU,,U ; C;,UU,,U;,UU, ,U ,; U,U,,,,,, 4I 4. ; 0 E-~ (1 Ed -.1
    I-iBZ C O. -) U 0 wa0 0 1 II1
    U) 4 ( M E II
    -r imlrm


    . . . ..** * * * * ll M .--- U0 ll

    N-4- 000 000 4-4 4-4N NN4 ,r' 1mm~p. II EdK* W U *f II
    II M +J u H fc, C II
    1II B d U C II







    II CI I M IB
    ran- to t La t-o on L o ana o o n o o o i-o r- .-i c\ c n c n (to < s n p'i m o 1v r1 11 1- 1h 1 1a r-> (vZ -( -< -0 r v r-car sr t -o i 10 01 0t 0 3C II


    II CU (o A EC 1 <-


    .0 II
    Ed C II
    o
    00 II
    Ed II
    P. II
    SII
    S II


    00II
    d .- II


    p. 0 II
    -II


    1/ -.0 a I
    on
    Col0


    1. d *. II

    CI II
    SE II



    Z II
    II




    Z --411
    10 .J .C1
    p. II
    0d II
    a:an





    040 II
    < 10


    S-II


    p. a' Ci

    n o
    E-* II
    0 II


    p II
    ia a



    1.011
    di II
    S II
    II




    II


    10I di II
    S II


    II


    1 E04n 1 1i 0 II 1l
    II 0 i C.0n O II .-. C II 0U o
    w C .3 --1 it Cum r- 0 o
    II < -' - E II *II l4 Io C O
    14 .-'-4 E- r-I lINEDo 00
    i p O -0 II o Il 0 -
    II Q. CC -'WI Co 0ll N -
    IIKE-b..O l EO U W-'l Ed a -III to -14L
    II Z 1 MO L 10 C4 -C I w to 10 >
    II - o II X II B 0 E- I Z L
    II C0 l E 0 -3 II H 2 S > Bm C
    II d EC Ld00 UI II 'U I ( 10 W
    llw 0 -0 C; 0 Cr 4 -- II < U) S.0 1 0 W 0
    II ll ,C O fO Ml II 0.0. W I U 1 II 0 wt n 0 0 E
    II C t a )-11 o P : ilo' 0 w > >
    II H O in -4 a) II l r. n Sm d al)
    II 3 14m II 0 I * E- O00 'O
    II z E O-' U -4n Co Il wiNL< C d< 0
    II 0 0 -CaCM II 30 H r-. U. D -o H H 4 E
    II HC r. 4 >,1.ll .-il E- DO-' -'0
    IIE-* c ri O -o II M ll m- o m u a n ii E
    IIt 40 > Q. 1 40 r0 t 10 E
    II L M c a i. o c 10 I11H E- I v a0 "O fO > II <
    rl0. C 1 0 CEfa EH- 11 11 11 11
    v 44i n ~ l 0) It -4 11 4U )
    ll1...S4.-4 E tO-. CI'4-E- > 4n
    ai .co 00e lo IId 4pl toLr-to r d -4
    UZnE-4-, 3 -ll II N QQ0
    c C- a C WIID o Il *
    Up >. a 0 ) I o C a) 1 N ll .-r
    rII 4 > E l < 0 -I C 11
    N<-Jn-41^ 4.011 p.0 11 100
    II E*C dW II-W1-4
    n re .-'41 d-4 II E iI
    41 10 3 a, (n 3W il
    oII H E i n iD 11 II1
    II 0'o ) -4 C II c 11
    II >- Li a) o ii <' + i ,C I I o oe (N w e Cto n - ll 1 > c in u d l r Ill EDNo r( I- o W r n
    11 O O 1 *W r. C 01 >
    II > -- EdC d -1 || Co 1 10 O -4 mo r- w eD c n
    II0 Q.1 U C rfl II4 1 IO
    II dC C0 C H > 411 01 II Nr
    II H C % 0 ll Ed .l


    Il1'0 .000>- f11 p011 1 n
    II U 0 0 o II II
    l1 Ep -4 f'M i>.0 uoll
    II 0) d01 IIX;N II




    11 E- -4 a) -4 -1 l -) iC Il a) |i >t C V)( In u /
    It ll gn (tn O 1o'f. a, r- U,
    d -4 U 5 4 11 II 0 l i 0. a . 0 . .0
    11 n'i0 *OOUC X II CL( U CwrOw io incnCon
    II t-4d 40 Q. II X I II *
    I1EW L C d OU 4-i A ll MIl I .- 1 1o

    II EdW0-4 0 I- II I *
    i U O 0 11 II ** r
    II E d e 0) o II i II > ao Mn **n0
    *II W i -- II (a 0 W W 4 0 1 w
    II (- O. D 0 E -S ll S c 2O w r- S

    II Eo n to4 E "-i E 11


    rs 0
    o w Cu
    0 1
    0 II .-I4 .
    CD -4 L)
    W CO1ED di
    CUE-I Q. |
    n Z Z l
    (0 U4 0 -0 W
    y t o E a 4
    0 DO EW

    c; E cc C \
    (M 0 >>


    H0 4 E- n C
    E- D O-' 0 i. 0
    1II1 414. 41


    mn cj E- > ) E
    Sr- to 0 0-


    .4W




    oa a c
    N OD #*, ('1 n Oo'



    Oi-tM~t~o r-m
    U' ED .E0( o N U
    --14 [--'








    (NJ 0
    -4
    U, 4 N N U c>p000
    r- cMj r- ID r- r- a% -' NM^
    o/ O r- OD r- wo -r m "M l
    4 N^ U't o 0" < co o
    r- 0 (N



    Q--4 C N 0
    co e
    IJ





    *f-00- 0O1 Z Edxc -
    0 --av -'o -4o








    Dn-4 rD a 4-J 0 <. n
    an a e- 0rl o wmN oS


    II II
    II > e 1 *
    II i C II
    aH S- 4
    II ri d U II
    II di0 4.
    II D dill
    II E a.
    II II
    II LI II
    II II
    i II
    II > II
    II U1 0 11
    0) CC a) 11
    I1 WO'd II
    SCItI 0 II
    I1 K- 0' di4. II
    11 E 1 I4
    II DM S n <
    II -> 4. H
    II ( 3 II
    II d II



    D Bu
    II '. II)

    II u > II
    II 0 II
    11 E-* vt 1 1I
    II M di Il
    II 0E g (>
    HOES a
    II DU II

    II Z II
    II B >d II







    "IK4. I I
    II U U-1. II


    C IIt
    II 3 Z 0 II
    II 0'I -- II
    1M 4S II
    II p. II
    II b. II



    II II
    II IIU
    II Z 0 CL II






    II -u 11

    I 0 CO -II
    II II
    U II















    Ii

    RH a) I
    n -ICH





    11 0 1"





    IIE M 0, 11
    S 0 II





    )H H
    IE- aH








    n n En
    ii C- -i 0-,C

    II ,-1 01 5 II

    04011





    CH J. II
    il a) II
    II U II


    II11 1 ,.. I
    II II


    , ,-i -4 a.


    II II

    H )>4 II
    II C~ II

    I .A 0 II

    H H- II


    II I rI ( 0 1J I.
    II t13 ," -. 4 0 II


    H I .. 0 C 0 w a
    a fl (n a Cl c0 ^r 0% C14 0 l rn CM 0 al Lo o (DiE-.C 0-4.-CH
    c o, ,- CI;U. o ,J;O O; I - 4 O ZH 1.(.' 'a,-4 ( 1


    II I. C 1.4 t3 l
    H1 0 -4 C C 0, -4II
    H01.CO1 - -OH


    . . . . . . 0 I I.. -0 4 0 0 z 1



    ( d > P 1 4 V) 1
    H ,CO i 4 0 II(



    .n. . . . ..0 ..M4- N . N . . n .. .. . II H 1 .E-%4 M I. iU

    . . . . . . . . . . . . . .11 0 >U4 l
    a m lr D 1 nC o mom m en enr- coaln r- NM aemn a, Nll O m m o 4 rU
    w r 6n m^ w r- a^ a^ w c r 0 w o 0 U) 0 (a w ) 1I


    I * ; c 4 M* ID Lo W L* o I I* II 0 0 j C w II0
    I U V n 0> D. 0 J i

    H C I0 I 0 C I
    Im01o K 0II






    0 N 0 In .-w .-m m' a, n- 0w 0 a m- C- c 0 H .11 >4 44 0 0C -q





    ...................II 4 ; w> c 0
    4 N 40 N I .-a I 0 0 I ( 4 N I 0 4 4 4 4 4 4 4 0 4 .C j -4 1-. 0E










    II4 UHa )H. 0 II
    II 0 U C 11
    11 IJ (* H 1 or
    N-4m m 0- Nn In m m m CD :1 $H.4 -04u01 -4 0 II

    S. .- N . NN 0 . .n .4 40 0 (4 .' .N n Q H 0 44 a C 0 4 Hl




    C! *n.- * **mn *O* * **- * M! CO -. i! ll




    C-I H HO C; 0 -4HH.. ii
    11 0E -I 0 11 II
    NMo-N omoNr-N NNM NM N-Nr- M-Nr-C-NC-NMr--o H H- 44I... 0 0 C II





    1(1131111*1 1IC 11 -4 0* 4 C 11
    C 4 CCD o11o DD H(N4NemmH H" w Ill -t
    4JU Z 0 W- i0


    l- 0 1 -wI4 0J to i


    II C MM 4 E QO II


    m. (' 4 on w r- I (m m w w In O N (' 0 In0 In- H4 0n
    a 5- 40 00 4- W W In I Wflt O r' w ^ 4-o In(44c m r-( 0 44 0o

    40 ('4 W' In4 'I n0 I n0 WiN 4 4 0 II
    . N ( N m 0' NN 40 0 4- 0
    - - -wimmi com oC


    n
    II
    II
    000000 000*-.4 N W400400 In -4 4-.-40 In I 40400 4- ii
    -4.- 4 In t40 1- 0 0' '0' '0' '0' 0 II


    II
    N~am meas manc me m m~wN II
    m m N N 4 (m 00 m (m' o In 40- I w n N II
    w 0' 0 o 4 m 4000 o o 0' 0' 00 N o a, N~ r- 4 \ I n D 'I




    wsomo mowm omev m wmocWQoN m
    w0ooo 0'4IN 0 w (' r w a a a 0' 400 c 0 r0 Io
    m- 00 r- N w4 40r4 (44 N 0' N 40 .-4 M ('4 0' 7 ('4 1 N !


    C 44 II





    II
    II
    II
    0 n 4. 0 n0 N In ('4N ('4 I n 0 N 4











    II





    S In 40 ( 4 iN In n i^ 0 4 i4 i0 .- In 0' W 0 0' In 0' 1 0 -4 4- 0 4 iM
    (-Io-oN '4oooooo WIn In 404044No40440o I



    0 In 40 N ('D In C Aw









    o- Lnf N r0--(4I 0 0 r- I 0 In 1- 0 N CDI

    04 OOO O000-4-4N;4C I nOO0M N 0OcO4 li m MI
    I I I I 1 I I 1




    OcOn~ oono noon~oM NOnOn Om OmnO i
    0II I I I IIn In N n4 nI 4 ~ 0 N I ~


    -I m- I E C I

    1 U0 C C a) 4 01

    E- L. 0 I c 00 w41

    w -'2 t"

    S0 CO -4H 4 11


    C; 0 o ioC i
    z c 0 OT U -4 U) 0

    0 a -4 1 0a11

    E --4 0 1
    U V O0 0 > -4 0
    40 I OCOII


    V C :11 > j ll
    0 T3 '0 > -. > l ll






    O c0 o 0 o c a ii
    H 4 0 II



    U ro co a)
    > C -- 41w ,-11


    .H C -4H 0 H II


    0 4 44ii


    Z 4 3 a C4 EII
    U H ..n r. 0 H
    001 0 a 4 1 In 1i
    oH..C.Jo4 I. in c









    to w) C o EaI 04-411


    II1 II
    C II 00 II
    0 4 II 4- C II
    11040 CO II
    ol I 0 -4
    CO ID r- l -4 I II



    10 li En > L
    a c d h ->L 11
    CL 4 rH i i) H. ii d
    fn1 to 0 0 01
    1 E- -4 H. 1-
    H H IH- -4 0 m
    R 04< m (I aO iI
    -I E- 0 0E II
    S4L II .- 0 I .> >
    o il --*H-V-I'V C 4
    Ctoill -4U< CaO 01 i

    C~i O II E-' O O l -O


    04011 H-0.01'O i
    II H E- H-

    I II II II ii

    - '11 4
    in rO04( nC 01- II


    Al CD0 00 0

    O C r i0 1 I



    C 40' 0 II o

    It ** * '
    2 Ii

    H- r- r-i w '
    Hxi -' LC ii 10w r- w (' N M





    c; C;C I=; CniO P l/.-lt
    0 Uico-N404-InN~n4I
    C oi -< t-- - --n ----------i







    (0 11 r. 2 c j
    C0 11it v4 1-40 (441 nN 0 -4 ii
    CL4 'ii WN n i


    E 1 In 0 4- 4- In In 01' W (' (
    V I In In N 4- 0' 00' co
    C 3 Ii 40 n 4-' 0 0I^ 0' (' n Ii/
    O- UII i-------flcor
    04 II 0 N 0 0 0' BO00



    ii (u- Hio SS
    Ii H)(' 'ia'^ ^ ^ O l
    Ii) S i 2 -.4444'" 'r Ho


    o 0f. U t-- C
    H 1 NH CO O i
    o I -4 0-H
    0 0 0-4H



    Co o 40M a e
    0 1 4 C -4 h i
    SL.- *1 to a) 01 H
    -oH 0oCU E- -- i
    II z 0 c

    Lo o*Oa



    *< M 4 0 E l)
    win wn Q i> >
    II o /Hij.. a)-40.n H


    0 l H E- O 01 C
    0c OWn ca I>
    o E- o.0 a) j 0 11
    0U< H u E n 4 E H
    4-11 CO .mw4mE H
    1I 1 H 6 II

    W -JC 21 :1 NE- > M E n

    1u ( Q n
    0m c HN 0' 00 Ho -

    COC n H 0n

    nH
    E- II
    Z w
    S .J I0 N r- WnmIn In In
    5 0 4 IiN (' (' 0In 4-0'i 4-i 4- II
    0 HMn0'I-.-4On3CT.-40H
    S II .a 0 m N 0 N

    O 0 II0 NcO 'M wo i
    Co lloi-i a m~-eoo .Lo n
    4 II Ww m II
    if **il' N oo n
    lI II
    ia I0




    01H0N E n (' WN40)
    V HI n 0 (4 N II
    C II 0 (' ~ 0 W 0' 40


    X 11 a N4-40 II
    C iI 0' 0 o
    f Mi U o -to nti o na

    II 0 I
    II w t II


    rit
    -H II > M 0 4 ** CI.

    IS VI C S..J -Il
    0 II 0 V #- 01 H. C. C V II
    CO 1 I 01' 0 M J.... II
    2 11i0 m (Bo ifii ii so R
    II II


    a)


    o -4 u
    -4C C


    .-0114
    L






    2 0


    U
    C C


    O ft






    Id
    01 I
    U>



























    01 NC
    -< I--CL
    m c4 --















    II II
    o N >J I
    I o .-4 ) If
    ll 1 11

    II u

    I I II.


    I U JU)
    I {, ,'-0 U
    0 H- 0W E m

    In L)
    I t L) a)



    1 > II


    H En 0 II












    Sfl
    SII



    II c 0-4lI
    II 4 0 II
    II ZO0.II
    II II

    -II II
    .lI l N Cl IIl
    1 u l 11


    U II


    IIII
    c li H
    11 U) II
    01 > J II
    O0 C CII















    ta 10 U i v 0
    1H H a) i 1

    I l U II














    Nil -'01 WuI
    Ill e &411


    Nil 11
    II .) II
    B H II
    >II >' n
















    Itl


    Q ) NDC )1
    I 3n 1 U II

















    411 itC
    o0 i E-' U) U.. II
    ii .-1 B S 1U) I1
    Il11.. 0.n
    IC/i. II
    111.1 II
    ll II
    II ) II
    I > II

    1 I E- 0f 0'~ II
    C/I l ^ -4 -40 II
    ii Z 3 a) nI
    Z H0U II




    SU U)0'-I

    4; 1 1 30'
    ui0 u ua


    1.1 1-1. II
    Z Z
    HII4G-I




    I -JIll

    II 0C-Il
    II > II
    W Hll II
    -4 I II
    I 12 n N ) I
    11L1 -I





    UN >U-1

    01 -4 -4 II
    11~ In n11
    li v Oi 10~




    (0 II
    II II


    a;t C; 1 C;^ a;O C M,> W MO^ ^l Or *^ W, Wl W*- W, Wt W' 1: C
    New~~~~~ mms m m me C.~mm

    N co 0-,U LO 00wtCDPm to-.-4-4-4mIm N vi vm N m a' 0
    MIn e In I N ammn t a o w m c '0mo wo o a' -mN





    0 coC w m mT mn w~/ (r m o a -~ r** m 0 r- i r- wD
    o


    o u to 0 .4to 0 U, fN 0 ip a'i to i ao' tl ^L o co ito4, ta'a'N D
    ON0 rN o 0 W CD M CO 0 0 i r N U, o tWo w o Uo Mo CSI 0 0








    0n in ) Nr 0 to a U, i tm O, CD U, -4 m CD In No 0o .4 0 4 (NO co t
    0'- 4,- cl 0 U, wn L 't n w a' wnN N 00


    0' 0 .4 N N 4,1 -to to 4,. 0' N 4, 4,- N 000000000
    0 ~ ~ ~ c m, 00 0ton0. nU na U o0WU '~t o


    Q 04, W 4 Ina0na 0 C> w U, 4' wo a' 0 to 0 w w- N






    ; *; M* LD* 11; 1; C; C; C; C; C; C;
    0 N, U,0 0 t- r- 4 N Nm r- tV a'C4 C4 cin t N r- (Vr 4 a' CD0
    U, 00-NNName menc.-400000000



























    C; U, N 0C 0 N U C- 0NU C1- 0 N MMm m oo o0

    N * - -*---- -*-4-4 **-- -* c^ 0
    I o I I I I I Io o o o o o o


    a' N uto0 In fn wa' N, mn m m a, m m C 0 U



    U ,mo N w nws U, m w N 4 0 o m. a -4 o oN





    In C- N 0 Un In / N N to to o- w' r- Uw mC 0

    ooo oow c m ro( ~N ot

    00 i N, In mO 0' Ir- c I U, U, O n o c4 N o o N o t o 4 0



    c- 4- N m W o o N o 0o I en r- o M n c o m In
    minIno moU0UUmo- o ina'o-4emNNinNm--4



















    c0 0 .-4 N c N U, 4o, 0 I N a' I 0toN N c 0 N ; c
    C-~ IncU nt 0 o In N U, N ff N t, N 4-c-
    N ~ C N; U, C 0 C; UN. t nN ,. 04 c N. U, Mo M- M L.0
    I I






    000 .-> w I n to a' Nm n0 a t c4 In Uto oo wo t> w c- a >
    r-4 N In IL r n U, to to to o o to to totot


    .4r, CU 'N nNt C; ot '~ In a' N In4 In to N 04, U L,U


    I I
    0oU 0 U,0 U 0U, U,0 0U, U 0 0U,0 U 0
    0 4~ ~ 0C-iw N0 U 4- 0 N NU,4, 0N ,C 00


    N -4-4-4 4------ -4-4--4- ------- 0
    I I I I I I IO ~ a m ~ o m m


    Ii 1. .1-11 I-0I
    N I.. 0.-4-I--4
    1 enG n u ic
    M -4 Er *O
    13. 0 -'v

    II 1 0 i 0 0 ) u (
    2 M 'i.. '0 0.In0i
    It l- 4v 0 i-
    II 3 j S' *3
    II 04 0 -4 0 r
    II a -0 0
    i p 0. t a) u
    l c i ci 0 a
    IlHO'0I-4U I.
    0' 0 -1 ( n
    It -4 =, 1.4 r,
    l z o -0 u E-i wn
    BZ O O U-- cn i
    U H C $ -4-4 > .
    II E- 4Cr (d 0 13
    II Ut CL > 0a1 0 t
    V11 I O ) 0 )
    91. CD 0 4 -.1
    II U).COE #
    hta a) X; 0 E
    '01- a- o
    II0 E- *.-'->-'
    li >. MO, In 0 c
    II ) > 0 E
    I1,4 0HM
    WI 11) 3 InU C 4
    II to In
    ZX4 1) -I
    it >< c r.In a)
    II 0 i ) In
    Ot 'o in' Q a

    1 > -4. 1. I -
    1) 0. u c0
    r. 0 >


    H4u c0 ,
    II1-1 Q.#U0
    II H 0 4 r- 4
    110. ->. U -
    CL tn U- M r (C
    a; Oj H -4 0
    3 -40 *C t-
    II En 4 It 0 0 rc
    IOU) .-4-400
    IIO 0U)D a 9
    IIH C 0 )-. I
    1 o a-I Pt C \
    U a) n a Xc
    II S n-U )-4 I
    11 E- -- a) --I E
    II 4 .2 V .
    i E En i.-.-


    w En

    I in In a) I t'
    to -i jc .c 0 C
    it C -4 -= -i
    a;->* E *- *
    CL.J o 2*J
    CL. acc -' v
    E-I [. 0 10 0 t ) -1
    ZH...0 0.In
    Z I- Z4- a3 Q in to
    d -a) -4
    W ..-'2 E' v 3
    w S C N *0' U
    IC 0 -I c 0 r -
    11. 0 to r-l -4 i t*1
    Q0 .00 0
    c I u) to )
    H- 0 Vo in -i a) w

    z E 0 -1 u -i )n
    HO'0I-4U 1..
    40 UN c
    Z 0 C U- 0 I3


    0'0 0o> o.1. 0o In
    r. I 0 10
    L ) r O > i a w I
    0t< r. t
    U.c 0 E )
    Z OE '- L...J


    N-. U).. In o01o.c
    a. u)10..4 a)
    * -. > j E



    00 In-I 0.U wI0
    >4 $D OD V 0 4




    >~ .
    H 0 0 c a) a 0 >
    .-)U0 > -JUc)i

    -40 1 10 ai -

    0U '- 40i r.
    M 1 C o-4
    i-U0 o l N.
    O 00'U)-
    9w 4 U -4 .44 U .-'





    I.-JU)-4 In
    ( n-4 4"ini.-< o
    z 0 u 0



    0d 0 U) 0 .
    O NI 2 0. -

    o) m r.i- 1
    00 a0 ai c;


    E-- -4- a) -4 j*- M *-j -
    X in Al
    A m O<- m (D*







    -j Z M t< W 0 Z
    w d m M E 11 )


    II -4
    II 1 C
    II 0
    II 0
    II CO
    II 0 *
    II -
    II
    II
    1I



    II C
    U 00
    II -

    II o

    I] In .C ,1l
    II 1.10 0.
    ll~ 0




    II H
    11 '





    II N-
    II Z 0 I.
    II 0 ,

    II 0 o
    II C. o
    II 10

    II CLU)r
    IIM 0.-
    II 0
    II 1O


    II 1.)
    II E *
    II C 3

    II 010
    II M/lU)
    II
    II o
    II
    II

    11 aH
    II 1-

    ll w
    11

    n a


    -i
    0 c
    0
    0
    Co 0

    114 U


    -4

    0.
    o a
    00
    0
    0 0

    (-4


    0 CL
    I 0
    0 o






    S o
    10


    *O
    0.


    U


    II


    r. 0
    I 0-4 II
    ON II

    In Z.ZU> 9 z
    0
    li i CO U) II

    0 V II

    M4 0 t nT


    ID 0 10 i1 0 I





    V)l u = 111wE11
    E- W -- ^ I
    C Z > 1 C II







    InH II
    scl 1- gd -i o in







    ' 0 0 1 0 II
    -S 0 S a r- a,

















    00 O 4,. N b! ID a, en w, ||
    n a' 04, N 0E 0 en w, C
    mo CM < e n) a

















    .N CD II
    0D .3 LO N0 o N o 0 a,
    M4 a in 10
    H .-j fr























    a,-lWU,NE E E E
    N0 O. II
    Ej < I d II I II I
    NN to N ) o N

    0 0r In .In n~- 0 I
    imcr Qcno m ^



    co WH m 0 T^< nP









    4Ur II


    In < n II


    0 *0.4 U U.. ~ II
    U) -, U) M~ ~-,- ~U II
    o In rIn to II
    Ma0v aa*'f)>if^^ :o 1

    II


    mn N
    * 0
    00 0
    14d E (o10 D a) 4
    M u E- --I a
    SZZ > In 0 n
    InH-1Id) () 10 In
    MHWW-400



    *- E- 0 3 -J. C;
    r40 t0 U)
    MDO- EU
    H.)0 O-'
    E-0--' U )-W 0
    Io ua In Li. In E
    H N-

    SenO- > n
    -to 00 o
    N -0 CD N 0 II I In








    U r- QN w 0
    In CD
















    .0 S- N
    srm -o i mos o n






    m r rn




    04,N
    ^No O o
    woon oimifOr '
    (Mc r c 3 r o -


    II
    ..II .. In In
    UIl >I
    CD l > U) V) -4 0
    II**| QQCOS S l
    (a in c r -1 -4
    En 0 4 0 0 ) U) U. .0 .) .0 .M :s
    In U) II ) <-J U) .1. 3 -l'-' -l -' U)
    Z II S I co oI tO U, toi C--















    II II iI I 'ac 01 04 i



    141 0) E m
    Ill 0)-IU))4.00 ea' m.0 LA m em m sai- 0 e N~L woon I 04 0 t .- 0
    II 0)11 OOMLNa'oaWMNe a''4-mIo.0ID.r.~-m-.o n M 0)aMOH
    u A II 0 li- I r .0 II '
    oil >*D ^^o'' CTC rtn'oowmameo'.-i r-.-i.-i nu ofl oio u Ir H C 404 -


    o i nII ii = 0 ooo mr emen e o lo o- -.. (
    II C) II S 1 t U II

    W Ms M M< Q a W M nC L 1Inr ncoL o V
    11 I N j 0 B u it 0) U 0-- V


    11 E a) $*D4 11 -4 z ) a) 1
    It a) 3:- 4) 11 C; C;) C; C; 1; C 1; Ln r ao 0; Lo' 11; CM C;o C; C; C; 1 11J HO< r. -4 -4 >1 $C 1
    II O II II 0 ( V UII



    11 w II U4 it (0 ) II
    II C C lN Oil 0)040)Il ow0 Nm N LAaWo see Le a' l -1 1.4 II
    OiIE-0'0)1.il *.*io0@ MCnn0)ll

    H II to II 0Nww r- C r- m w r--"4w.w,-. w 0 w I C > . 0 Io r. 1i
    11. II II i TC I OC0 ) u
    V II II 0 > E 11



    M ~ ~ ~ ~ C hj tD, cn* C; .g N .~ .* .* Lo, ...... . ... *J > ig|
    11 O E r. 04 (n LO r. ^ r ^ nl D^ r -* r- r-* r- r- r- f- r- 1 1 (a ) n U Cr.
    It i.l = 11 a) <-i U to re -in
    < U II II 0 .CO 0 ) c iI





    II 11 Ho to al )O 1
    1 D r C to r- 0 0 10 Z wA to (f 004> 0 Oi
    al ON0 II co IINW4-. i LO a% r- LO IDnON IDIDO0L 0i -4 V l a) C Il





    . 4) 6 11 m Q LO o al LO r CD -3 t- O 10 O% C4 M cq 0U O : > -I 4 14 -4 UI
    V) i 1:7a) it C; wL Cw wCr-Mr-i-ur-uor- r-m-cr- cwa 0 > II
    H I wl H ccr- C4 -1-i4-4 i

    EH- ll E .3 *Li O j l
    ZU; ii iINI.0)0)1. 0 i U-11
    4- II R- IL II II O I- .< I C
    S11II> r 11W4)V
    n II Z m- w m w $. 0) iI




    I O C Mr Mr- CV r- t r-- IIG e I MTi- miio mo o r) C! i CM Ct m owoc o II 11 0 ) < ) 1 ( 1
    II C 1 1i I 1- 1 l 0 0)I Q I0. M C C l
    1 0 11 * m* * *- * **411- ii I 1a, 1-





    Ni to E- Ia ii
    1 0 a -11 -i1 .c 4

    *ii ( V ^ -Il OrNN- r- N4 -N --r-NrOMir -c-r-Ot-i ,r-oc -Nr-oo ii 1 42 0) UC ii i -
    ii l a 0 0I 0 II n 0 D m w 0 0 0 It 0 0) -- 4 0) IR
    N Ia 00000000 N* I rIIM r- 000 a rI
    V) 11 1 11111 I II C H- M* 1 c( II



    (0 II 1 w i (1l) 0 mO-1
    i0 *i U C ld -I II
    CON 0) -II ioo o oo iN~ a e s .-' # nfl 0)


    11I 4040--IIN,..I4 0 0 0 .... N N M M 4~ II .0)4 0) 0)-4
    COil 111l 1111111 o iion mo om o .-JZ0). M H i
    iH il * * * * * * **i ii 4 Cfl ) 0.4 II


    0)1 i
    > .I 1

    -4 U it



    U 1U
    - C C

    - -1 0 1 II
    3 0 4 ) i1









    0E M 11






















    I
    U II
    II
    U A- 11

    C C II
    0) 040 I 1



















    CO U II
    E-~ 04 0)1. II
    .-) 0) 2 0) i

    ~11. I41

    U > II

    E-' 4.0 0~II
    S4- 0) 0- II
    I-) -4 II 4


    034U II


    C. 040 i



    VC Ii


    04- i





    CO CO II


    ii CO. (a,) V, o :i
    III I 0 M 0 1 0 0N
    EII to ,C O II
    a' fl a' .4 en 4-- A cM .4 a'J 4.0 a '- 40 N LA tN Lf oN LA fM i- LA 0 Ul 0.. 0- V V 1 1
    NLA o Nmio 0InLA-in4.Om oonN4 4ot.M M o0 4o n i 1. 0. C -'0O H

    . . . . N. . . 0. . a' . . * * * ll b l (0) a -'.111
    o c a e r Nam

    ii w 0 *0 r II
    11 S4 C 0 0 U III
    11 O C 0 B CI I ll
    M MD 0 V) U-4 4 11
    m al Nm O V 4 LO- 0 1 1 1
    CD ocn r- m C cot ON r- LO m co ao r 1 LO o cm na C r 0 Z W- u -q w
    0io u E -4 U r c (n (I) i
    ; . .l ; 10 ; .J Lo C I; ; . C; 0 CD CD 1- C* - >1 o 11^c c wj(
    . . 110E-04 r- ro0 4.1z)1
    i-0C000NNlM(WtDNOCt0OCN4.1 1i
    i V 0)> 0. 1.4 m) w ii
    Q4 C0 >E 0
    Il1 G.00)-O- Eli
    II 0 I 0 C II
    LAW NM m m !c wLoa' M AM w f n co a'0 N 4.0- ao r- Lo4. w co 4.4. iiZto E- %.-I =14 ..J i1
    m 1wwwc *oDwg s0) r 11
    .....................ii >I *u-J0I(a-C ii
    b- a a> -, 7 E



    m 4wN LIDto Ow L II o Lo -o- 0 S
    ii.,)J 40-I-144
    cu *C o E
    11 me a, -i i a r






    liNUoooo 1.. Vii
    I I I I I-I I I iI
    IIu-1 Cn) l 0 O II
    11 v

    LA 4. a'm -4. M Nm N w N w m w Mn 4.0 w Mn r w M -0 LA> i 0 (a CL -I0.) r .4 V)
    0 m iC iw wC 0 : >1. 14 ii
    11 fn a) o r. m 11

    H co l C) .-' -I- 1.4 i
    1l 4 U 00 -j0i
    0-o 4 a' N c-a; n 0)
    o o oto Ha 12. i 1

    lA l lA l lA |l LOO i0 ) -ll) ll
    k 110 ) Z t11


    w n L www 1 ww m w 0 1 i O-.4 j3 C0 '.411
    II fn 44 c 0 )-I -I C II


    II =- 0) u 4 n a) I-X
    II .-'C 40 0)1I-4 I
    OLAOLAOnini^LAO A L O A L 0 A L O A L O A iii nnJ0-- rn Ii' "' 1' "1 "' "1"1 "0 "M ^ ^'" l<'

    .- ~ >n i U n ^~Elioo --I -i.- a)

    1. 1 w 1- CD "1wN N.LC> N 1 10 a CD lW

    I11E4Z1(0i 4 1 0) 0 i 1i
    1 1ii [4 iin (n E a0 )-'


    iC 0
    10 CO ic
    Cog0 -4
    o II 0 I

    Aw a a u Ea^
    0) -i) IV 4i. (1)

    II z2 > 0 Cm
    II toHM O^ IO M
    In


    I^ m ng id n E
    lO i llL ZZ li>rnC:
    ii CO NDi ie40)-jH in ) ii

    oil** EOTVT) n
    co n .<--iu O IB a
    &4o *II' HQ I-'t n
    1o l.2O EW0 II

    E- > 0 >
    0 0 j 0 11I
    iI W =2 m Iw E II

    EH < 0 II
    ) JE- nuEn > n i
    P i o o a 4 E

    o n* .e n
    3 11



    E II

    2 10 0a4 l! 0 -< < m o N
    0 lo0,1 .O-r on
    S oil. ........ .....
    9L a 11 (n O D

    w 0 ii N-- -- m A 0 N ii
    0 II 4 0N-4 I
    S11 no
    V II ii
    SIIn 0 ocoro. n 0 n
    'O ii LA Na'nntW r- -40 a' I
    IB n- 0 .4 0 N .- I. N. -4.


    0 n 0]0 4
    xi4 >a' .



    11 rU 1 1
    E11 j j

    (0)410 C -' -Il

    CO 0) II 0l) -4 ( 0) 3 :2- -4 -4 -4 0)
    S II > MCO M i CO lr- OS II
    II iI


    ,C II u

    on



    m 11








    E-4i
    II
    10 0 II

    I II
    .C II



    oin

    II
    C4 0' 11
    4 I II








    0 0 III
    E oi l




    IIi
    1.1 i







    z i


    o r- 11
    T C II
    -0 CO II
    *- 0 -4 II

    M .2 4)a) 0) n

    to M 1. 4 f II
    W iU E --i0) II

    S g 0 E li
    Su 0)N> > II
    * E-A 0 V- C II
    N1A1. u < C: 0 i>
    " 4 im fu -,o i

    E- M 0 -J Q) -J 0 I
    U)40 00= II

    S E-II
    N40).4 E i
    E- 94 i I II




    lii 4 i i
    4a'C 0)



    0 U S~a II
    T <* t- > S II

    .-I 4 V3 -1 1i
    -40) II




    0a, LA .3O a' a' 0D m~ .0
    I a'0 m w LA a' a',i
    04~ N WLA 40a' 1 a' i

    0 B- 0 n II

    eq I II
    .4Lla iilit a ^ 1



    M i- M W (D


    n L m N 0 i
    -~II
    CD 0 c M " lm
    0 60 C0 4.0 0 N 4 r- 0 i

    . . *. * II
    00
    I 0-a II

    II
    .N II


    C*Q C- OSSEUS
    0)-^ Va0 1-1.C -C r0.0 V 11
    Swmcw"r- E ii















    18

    I I II

    l.4 0





    5 il I II



    ** I H
    o0 > -I *J
    10 -0 C




    I- 1 II '- 11 5-
    NI E &.




    U II

    DIl H
    >4K >4



    I 0 -I
    f 01 D0311
    iH m uII
    0H I- 0" 0) I-
    ~ 3 Li 03



    I 0 3 II
    '0>


    H H K'' 0'-

    >4 II~ 0 II




    U1 II LI 0.0 II
    151 11






    IlH033 II
    1- o4 II



    0n>41> II
    Zn z- i
    -3 I II
    Id CZ; H






    II H # -4II
    S II .-4-40 II
    1 U II



    H HI II
    Nil II
    I 0C3 II
    -n a0 s
    M E OAH






    U -I--44 II
    E- 3 II
    II C II
    II IIf
    N III5
    WHM II


    UH 0I- I C
    MII I


    In II

    S -i l
    -0 c3 ill
    S1 0 -U
    II II
    II DE II
    II1 11
    II 0 IIL

    9t 3 u R1
    It E 4 : a)L 1
    II II
    11 I i

    11 II II

    11 >V I





    I Z 4 1
    n 0 3 I



    0 D u 1
    II I-4Ll4. CL
    II 0-b II



    IId0E mI


    0 u
    1 It

    .I CO i. II
    H U II




    II t 1

    It 0 II









    to N
    00
    I O >. II







    C NC
    II W t II







    II 03 11
    HOE 11





    HII 0 -Il
    II 03NI0





    5I n
    II oL II
    H > Nr ||

    01 0 -


    w- (in 0wi m o- o 0 W N o m w m 0 m w U w w 0
    mn LN t 0 4'- 0D0 r- w w ,- w mn (D0 N r- C m N C>
    W*i W>r r- W' CN( W 10c C4 3 -W r (rn L oo3r ON ol CD n CD
    w wo w 0 Go fl- o-4 N w w N N a, w 1o 0 in 0

    o 4 m (no o M o IV C-< (n r. O j i in en 0 r- 0 10 (n ca oo noo


    m a N ON a m r C .C r- N W L w 0 00 00 Q0 moo00 m




    w 0 i (Nfn r- tw .- N N o 0M .-0 0 -l r- e in N1 00 0 o 0 n wO
    o o o o-cra



    0 0w to (t ein 4 0 0 0 0
    C;~~~~. 14---i; C;C







    K- r!i m in w 000 Nr N oi 7-- 7 N -4 w 1 M -! I C0 Ci i i
    oinN in i N 4D0 w N 4 io N w0Nino






    o o in in m io a, 0 .- 00 4m 00 a, 'D 4. r N No 0 0o 0
    d w oa 0 0 0o o in 4- co U M (" M en iw n (N 40
    N 00 a- CN im U 0 mn co -n ON w Nl 0 .4 0 N 4 0 0 CN
    c; c C* ',C*Maa;M ; C 1








    0 0 0 AM Mn mw m-m m N w m m 0 i 00000000 Ci






    (N r- N r- N r- N r- NI NV N~ rl CN N 04 N- CV N-C r- N 4- NI r- 0
    SI ID M a IDw o


    0U0 )0 C; 0 4 0 U) 0 C) 0 40 i 01 C4 0 U' 0n tO 0LO )0


    0 4r- wm NS 0 r- wo 0 N M U 4'. 0 N 0 N w r- 0 N mC- 00 0
    C mmm m Coo CC;C C ; mcln HNn cnc
    N -4-4-4 4------- 4-4-4-4- ------ oo ~'
    N o o Io meI wI IN o o o I


    II
    II
    r- 0Q N n O 0 m n r- w-i a co r- o o -i oo0 II
    0- w N w 0o N v N 0 -0 w, m 0
    0 U, mm 0 NowUon 0 nw0W Um Ume-iN w n 0I
    N r- i 0 .4 im U, 0 w w Q w 0 o 0 00 rw e- co c 0 II
    in LD w 1 0 N 4 C- 1 N ; 000 r: 0 r: w -C -4' -4 C; 0 I
    .-LO -w m (n N, a, C, U, U, wla C, 000 00 00 I



    *4 ~ * * W, 1 * M. W. .; . .; . . .
    M W M M W W M N 0 MM Mr- r4- 00fn C14w-O II
    * * * * * * * * * * II




    0w cD N N m m w n mN a O w m o 0 w 0 o o I
    0 U, wn mn in 0 w- o N co 00 r 0 0 N N II
    II
    II









    0 wi iN m wn 00 U, D ri 4'.C- rN in r. Nl 0 N N N I
    m r. r- o m .n m m r- co c, Lo o co c co &o N r- r- m o .|
    in al U, o w r o c00 0 N P 0 N n C- o o 0000 o O O I
    II
    II




    N in w eNU,0 ,- -n.-New00.-N Ni II




    -4-4---- LD ID, U, w: w w ; c- c; c; C --C c; C-
    ommmm Ln oLn o w amm man L


    II





    r- r- r- orio t r- r- cmc'D io r aou 04 r c r- mo o I
    No T-4-4 4 m r w w w4o en mo oo o m -4000 0000-m II






    o^ Ln -D m- o o^ mr '^ co^ ^ ~^ 'M o o o o cD o o Ln (D ^~ ll
    Sc- N r- r N r N N3 C- N. o 0 o




    I
    II







    win m wmin inwom-in o in mmonO-nw o II
    N..-44-oo oooo o ~ a emooo-4444 N nnn Nw I
    I II





    I I I I I I III


    I V U) 0) I 0'
    m ^c MM c
    cd Oa j A V
    MQCC-I
    ,4 4 4 z

    E- 0o -O
    z 0.Z v 0
    E-1-j0 I 101001-4
    ZH,'O 0 O -10*
    -- -40 a -



    0 0 0 k 0
    L V M > P.


    M 0)O v "

    I T 9 1 4 ) 4--
    -->4 41}


    0 C L>. -'I -40 4
    E- -IC 0 *41

    H3Q. 1 0 E



    .0044- U
    a 4) v
    j r. 11 i -4

    0 -0 -' Q3 r. U-,
    > C -C 04
    0 QC




    F. 0 0 O'0z0
    0 I -1 -4 g 0
    o 40 3 U0C 3 E





    ,-3000 -40
    O> <1> Of IM






    E -1j L E
    400.*4 0*

    H0 '00U03-
    dC CC0)>
    z t C O4 40 0 =
    U.. w U n 0 -j
    l-I >0 U C
    OL <-4 U tJ Li -M
    H M ( C u-

    OO ) i
    Z L C -i (Ul A LI



    rO-0 40-4l f T
    10 8 Q. 0 C \
    -'Z 40$-7 030 M
    C3 U VI 0) 0. -
    FM' 1
    r- r- 0 41
    niE ea 0 -<
    -'Z 10 L O) 0
    01 Md 110 E & -


    I / I 0i ) 0 IIq
    0 -I .o c-i 1i 1

    4 M r I r. -l ) 11
    L, 0 O 0 II
    E- -. 0 I 1 0 0 -1II
    ZH U-'O 0. 4011
    (d -'00) -~l4
    03 -'0 E4D' I
    I0 C C U011





    SL.0 4 O C 0 0 II
    A 0r.0 1 (
    q03 c m -1 4) ~1a

    O 3 03 1 1
    Z 0 j U I u)
    0 1:> CO r. o 0)
    H C 1, -->1 11
    E-0 -4 r o 0 Z II
    Sc a I o-.. Ic
    % 4. I 0 1.04 0
    I, a (w-40 3-Il
    ) .C 0 E 4)
    Z 4 a) 3 I.

    - > E 11




    0 0 to II
    1 10 r 0 >
    -. CO ) 400 O U 0 II



    H40 U t 00 0i D

    Sr CO 44 11
    IdCO CO >II



    5 I .-C t u"Ll
    4.. 0 0 0 14-. II

    E- 1t 3 CO 0 0 C r II

    En a (n11
    = Q in 0 a 11
    - 4 '1 1- II

    S r r a 0 II
    *C C II
    z to w 4) 0 : 1
    co W rn (0 E Q.11 -


    II --4
    II 40'C.
    II 0

    II 4
    II 0





    II 0
    II 10 o













    11 0
    II ft
    II

















    11
    II



    II --I
    I -i C


    II (' 0 C.~
    II 13 4 4
    II 0




    II Co




    II 10 *
    II C-
    lI -I




    II E4 -
    II 0






    II 401 *
    II [d 10
    II t '0








    II < 03
    II 40On-I
    II X






    11E
    II 03









    II Z -4..
    II Id40 CO
    II -'40
    II CO20
    II 1
    11 % a

    II X C

    II Id*
    II a
    II
    II
    II 01
    II <-'
    11 -i 1
    n 01
    ll Z


    -4
    .j
    40 0

    10 CL
    0
    C 0
    10 *


    T-4
    Ar
    M a



    C0 C
    0
    C 0
    40-
    40

    *H

    -4 4

    D 0
    C/I C Un
    < 10 *

    K-

    Z -


    O 0
    C0
    40 *





    0 -U
    CL,
    x
    u-


    III
    now C II
    CIIN CrO II
    0 -I II
    Ii -i -4C i a


    D3 Z Z4003 C3 II
    oi i- M 0)-< a) o i
    II 01 1 6 o II

    -1 H'r ( s (D
    II iE- 0O '0 CO o

    II .M 0 ,04 'o e 1
    II H..040.4'0 II

    It E- Z0) CO a) 0 0
    01 H Bm t n I01 I1
    II HM E- =
    II E- u 11 n I I 11 n
    II 40 L
    looE- > 0 l
    to o 0 -I ) II
    Ilin Q0Q n
    *I II
    c 1%a 11
    II -01 I





    n nn
    II II
    II II
    II N P c r v II
    w w N cw wo 0 C- w n 0
    II-I/ -I ^ ~4 O w~ r-N ow0 I
    II Noo o m m o m I

    N aOO ,c!oinw C I
    II -iNwo I
    II io m II

    m L N CD0

    OU>a 0 n ) -4 On i 0


    -4 4 n 4 r a
    II .-iu In
    II n I
    S V** ** Ng Lm
    II CO C 0 II
    11 03-I 03 CO
    11 **Qm IISSSn
    II II
    II ~ ** ** I
    I1 03 **' 03. W J II
    II > II


    o mn

    40 0
    En CO

    1 400 03
    0 E- --1I% 0 4
    n ZZ > 01 C 3
    w H w 04 4 010
    En E

    1M- 0 >>
    0-4LI 40 03
    *H.00 0O-C


    CU U) CO E C1 En
    H .4 -
    E- 4 11 II II II II



    tow 00
    U4 O
    m mE* > u )
    c14a, v) -

    -403Q
    oC IX


    II
    II
    II
    II 0n w
    II 0r
    in 0
    * *
    0 r-


    cn r-
    II i
    I 0 o


    0 r-


    in MC4 n r o o
    0 v w r-4 o 03




    o r- mm tr N CM
    in0o
    N a0



    0 C- M N 0C

    I 4NN
    r-. -


    SII > 00 -I
    a) 0 VI
    0311 >QCOSZ0
    0 11 03- c ? -i
    4i 0 II 40 '003 N-. .
    01 03 II 03l <-40 -) s 3-4 -4 -4 -4 03
    SII S010 01i C/I 14 ~ tow '- S

















    4H 01
    0i >-'-.*
    O il c -4.00
    III 0-lU





    it E- t) )A
    0 0 m




    N a) >H

    >4 v tz4) -c
    0 s 3:








    Qu 0 u
    * U





    00












    1i 0 1%
    C,4
    >II 0
    H I >0
    I 3


    LA N e4.
    H 4-0 0'


    LA II 1- .I-0
    MU#
    B00 ,
    .2 U (DU-
    M EU IB 0.0'



    LA U CU 0'0


    II 0 E

    II >41-
    4- II .'U
    1 U U


    II

    U 0.
    M i U
    LAI 0 -
    PS >0-I
    -III ON.0

    ML
    I


    II I Mn Io' II
    II L *4 j 0 X
    m W W w m 0o woI^i O m co n to 0 n
    0 W W W No U -W N o Nm m W Nm m o m I 1 r *--I
    m r- r Om aa 04 cO r- -w n In w- 11 $4
    .N . . 4 . . (' . . N. E4bN O II 02*4 0-IU -E 4
    i jD 4 coO f N tjO m.D Ln tjD m coft m D m ^ m ^ m ^ m m m m a, oM n0 W io i

    II SO C Li 0'* II
    SII 0I 0 0 1r
    ~~ II U 0 U0*401


    0U a ) 0 II l

    w c- j r- m> c O qr- '0 s N -1 w3 c O n L n a, al "M LD a%' TL D a H 0 a v) .4d) L
    w- wn wn mD wr -1 mn c3 w mor cs (ni c, mC' asD r mif w m c -1 = it
    w .-4 m. 4. m 4 'w m r- mo0'0'0'00 U 12-- -40 11 z E 0 U-4 I
    .I W 40' 1



    S. . .* *II 1 3 0 0.. In W
    O r M*0 0 W,. wII m C o 0 c 0'- II
    o ll cOE- -i C (a 0 O





    11 U .0. II 01
    Ua 0 (a > CL I tW






    ~~~~ LAO I n
    < H I 0 C t. W
    b112 004L S -- E




    m w m~ w r~~ (i -I coI U 0 0 r r r -- r0 .- 0 S W







    o a omomon m11o omo. o 0o001I
    I I 0 00 -4 4 II
    1 Z l(0 4 *4 *OII
    r- wI 0- 0 v w11
    MWI 0> Sn 0 0a O l

    LA-bI0owNw'NbLmL" IU-4-o -U IIwN m m 02* .- 5- >O-l
    l-tn


    I Hu. 0 0 a 0
    CL>. U-. Ofl > U ll
    U-) '.4 LA L N 0 0 ULbn c-4 c 0 r. 0 S
    HA ILI 0 0 a) 11
    11 00 *11011
    I:~Sn.40'H -4OO


    r- ? ~ fr- rr~~ N -- LI .-40 0 1 -04. It
    LALALALALAALALALALAALALALALAALALALALAALALALALA 11- L-.*4 30 -41
    z r. (D 1-Sn ..O Oa I It

    c~ u; c m Is m Q--
    M- 0) -J(n- J1
    ~~ 1100 -4-401
    1111111j IIA-4 n co '11
    cD cDm nLA o In IncD o o A c c o 1lll on0-4 1I

    OLAOLAOLA; AO4AOqAc4OLfnLmL O nAmLA o II nto E- 4 E n I
    -------- Z*--w0 a 00z011
    I 11 1 In O E CL--Oi1


    II








    n

    II
    II
    II








    II
    HI
    U
    II
    n








    II
    n








    II
    II
    II
    II


    11 I (unM -l I o II


    rir a m o t Wtt,'n r D l r. io- fl

    . m. .. . . . . . 1.o.

    [IM n E ONi 3
    M -g 1" C >, .-I
    II A r. 0 t -4 t N1
    I.n0. n ) Iu
    oII H W0 I 0 11

    Dtw o r M en o in m r o f on -i n r -i o o-o o a, 0 O 1, l -. 3 4


    000 U > 0.- iB M II
    II 'C -4 I 0 C In II


    I U mI -- 0.UH 04 0 Sn 00 1
    II1 ) V O I> II
    <. r -. a 1 0 ( 11
    o r15. 0 00 11
    O ,-I- l 0 (4 0 -4 U fM 0 -- W- b 0 N m' LW LA UD 0 m m -1 0 w IA n
    W . W m w . N . . .H . 1 . o> ZI e

    Uj 1) 0 WU 03 ( a I
    b ,) ,> n E 1, U E
    II HO 4 00 0 .- 0 II
    10 In M --4> (44 I


    U a CD - II
    II 0) O *4 4U 11





    II rU. J -


    I ^ a W W 41
    N N N r- N r- r- N r- N r- cN r- N rU cNU r- N r- N r- 0 E- Sn 0 0 I 0 c. 1

    S. .- . 0 0 0 0 0 0 .a .; .4;. N N N N (n n (n W U t 0 fl lM UI
    I II I 1 I 1 i -0.n c II
    Ui au 0) -4r. 1
    II E -4 0 -_ .j Sn . II
    II : U MS 0 IIl
    owaoLnomawomOLnomom I o0omoinomoiDo a .. I- IIS
    oQ 17NO NO N- m O Ni4 r-o0NIAU rON C -ooD -A r.- -II

    1 -II I I I O1 Z 0 -O0 II
    II .M [il8 40oE


    WU > m S n q .. .. .. ..
    3 **QQCO SS'

    OII 00 # 44*4
    2 II 2 m LA 02LA eLAL r- 2


    411













    C,
    E-
    0
    O 0. II
    0 II






    -11
    0II
    II




    0 11

















    c o
    0 11
    L 0 II

    3 II









    II
    0II


    S II
    S r- II
    LA *4 C II
    v m C O II

    0 O II



    WH~~c 1- 0l 1n
    0 0 -0 a) n
    0 <> > II


    E 010 0 0 II
    C4 E 0. LE II






    0202 r C II
    00-i (a n II











    EU-- oA 0--4 cII
    < Lb 2 *0 0 f I 1
    E- D 0 E 0 l
    a, oo E In ita \ E l




    co r- -I
    m0 II

    0 II




    0 U Q ( M- 0 0 II
    E- N 4L 0' 0' Nl 0 II


    -LII
    M-4 -4- NE b. L II
    0 0E A0'MN II
    o r~to 0 4i II

    4) 0j Q 0'0 0 II
    -*II




    --4-4- '0 r- 0'0 I
    I i LA) II
    lo r^j o^ cMj (D ~Moo o l







    -1 n' (n 0 4 N WO It
    a~lo c0 cy o *-l co 1



    o-W -E E r- II
    In r-







    0 *4 r0 r **4 0 II
    2ow LA f~ 02L AL --r 2 II

    rnW In m4 I ( co I


    11
    00. II

    oil
    o U

    00 U
    on
    0. .4 II
    -4 II


    -11
    0f 0. I

    0
    C 0
    ol-l
    0 -i C

    -4II


    S0
    t0 ,C 11

    .1< A II

    Z U
    AM *H C

    C 0
    II





    2a -11
    E- 3 II





    00 II
    0 II







    Id II
    0 II
    II
    0 II
    0 IIl
    UC II


    12 II


    W HC 0
    0'~ 00








    fn o CO j
    Id .0 L- .








    E0 E
    3 2 2 > S C n


    .-N L E a)o0 -a
    U N 0 4E.>>





    O-4 m0 W0
    E-* < 0 II J II
    0 E- v 0 0- 0
    L U~ Sn 5-. Sn 0
    H .4 4 -













    ow 9 C wC
    ' E- >n .



    0 I




    iMooowoomma*-
    0.-

    LAt 0Q Lb 0O' tD U- ID U LA
    Oi Unf 0' L L ILb -
    .1LbN rU-- L
    ('4M LAL

    wa N e n 1m
    t-4f-fin M C ff o -4--

    0' ^ U r^ '4 LA LA~ 0' N oo
    0 .i ^r 4- LA r U 0 -40o

    0 *-lN r'l -4 U-- 0
    *- 0
    mmw

    ** ** *n*[


    0 11 II



    21 11
    UH

    II


    *400II
    O --4 0 II








    0 4. II



    II CC
    0 2I 0 II
    W 0.11














    II
    N Ir
    0 0 II
    u



    >4 X
    a0 0' 0)I
    LA -4 U I
    E- 40 a-. Li
    .1 0D S 0)I


    0 0
    01 II
    U > II


    1-4 -4041

    E a S
    .4 U


    02:>. II
    DU U 4 II
    C0.0 II
    < 0 II
    u 0' 0i- 11
    EH0L II



    .S i i


    0. -I



    0i -II
    > 0i -i iI
    0l N .0I
    LA 10 I















    -4 II
    o 0 I >.- H,


    r- -- 4 I H
    MI E -.I
    IIU
    II II




    4I W 3 -4 0





    nn IIn - M-
    o E- 0t0 .


    N 0
    S 0 I3
    U > II



    H I













    a > 30 -II
    H g -4 a4 II
    En a c




    II > 0 4 II~


    uII 0t 3 II




    Ii H -1 33




    I4 II-
    333 33
    33] 33


    w' N 00 w w LD 0 Ln w a' w' ", ('A 0 (D m 4.(D0N~ ,N( 0
    r.3 0 r- wD0 0 0 a 4 -.W N m- 3 r, w D Ln w = N w U .0
    3 r No U, N ww ww N m w 3 0 ('m 0 Na0 r w 0

    -4 m N (2 w r- w4w.0 a, a, Cn oC 00000000




    w A LO Q. 0 w= '0 a 00 .. 4 to4 m. (2 C= 4. N 4. N m, N\ M' m' N` r- fn4 3
    w-0 a 0 (n 4D N W CN J r- Q en 0 r-4 al rU 0 a$ 0N ('2.0 4. -W r- 0 ID 0o
    o 00 en alr2 4.0 03 'n 1-1 0 ('O 0% 3 I 00 LID CD 0 0 4n 'cn U 0r- r-


    -4




    OD C co W 40 aC 00 to.o0 L al. 0 c. Um w 0 CN,4 'a N N N
    C-4NUq 3=0 a, r. m c U, m4 ('1 04. L 4 w0 Lo 4.0 0 0, 0
    O 30 (D 3nr-= al .- co C4 N U en ( m' ('2 0000 Q 4.0 N r. 3 U,
    00 .-. 1'- ; ('2 U, 0 : N ; 3= (2 c0 3- 3- ('2 04:0 ('2 U, 3= C 00
    SN mN W LO 4.00 LO 4.0 3= r- 3o 3o 3r-o o co




    LO 4.0 0 CO C\ N \ N ) 0 4.0N W (n2 r= N~ 3 CO U, 40 LO' .0 U, (D 00
    0-4 N C4 U N r- r- M al r-U m (\ rU, r N CD N 0 .' l NC0D 0
    4.O m' (''0 "=W N.4U 0 "0 .4U 0 U, -4 0 Lo LO fn 400 'Uco
    0 0 0 0 0 ,'4 N; 3) 3' U C, U, W4.0 C 0 3 U M, 2 ('2 CNN r-4 0000 .





    N o r N\3 N- r N 3" Ni N '- N4 3r= N1 Nr- 3 N- V N r No r o N r- 0






    40 U, 0 m, 0 U, 0 U, 0 U, 0 U, 0U 0 U,0 U, 0D U, 0 U, 0 U, 00
    0 r r-Um, N i 0 D 3= U, N N C mU, 0 NU, tmo 0 N D U, 0 N 0
    C; .;--- Go*
    No -- -0000000mm -r-moNNmNN -cm~nooN
    3 I 3 3 3 so m e r-r3r- 3 n


    SI n a I OA r
    ii W 4 <-i -4 3o
    4i hi 0'c r. *

    11 E ,- C C 1) *
    - .. 0 I 1 0 0 I
    It ,O 0.-t x0
    33 0 -1 ,r M4 .1-


    q O - 4 1I
    I z 0 0) U I
    I3 I ,-i ., '- 33


    1 E H 4 r (d-0 .3 n
    lI-1 0r 1 0- =



    " Q 0 -' 0 -
    II E- 4C lO ll 3







    33340S--4 0..
    33 U>o rd > 3. i o I
    II -h -- I 4I -'E
    I3 1 03 0# E II


    II -j OM 1 |--44
    11 (a Ent o i j v 11
    II > IL4 > E
    II 33 00 3 C E I1
    II H Ui 0 o j IO


    r3 > to 3 n a 3 3



    33 H 0 4 M 0 -, r -4 -C 3
    II 0 -. -1 (- 11

    II l C C-4C >4I
    II I C- 4 I
    II -I 0 0 0 a n .1 I
    II j E > U IIn




    33003 '-14-4030.I
    II U3 II -' 3n -^ io 3
    II 0 0 Id II C


    II rd 3' l' .33
    II o rH '0 0 a II
    II 10 to a) 0 z

    11 w4 u ( 03 33
    33 -4 ID 4- I n
    || -4 0. *J C 0 13

    lI 0 H n0 10 E a3.4 1


    *I II II
    *-43 II 4 3 ||
    II N O CO
    0 I 0-I
    C 0 II f 44 3|
    H 11 c tuE--*4 ) )
    D Z 2 > 0B c 03
    E n3 HM 0 4 to t I
    II < S *o a)0
    F 1 M0 v ) a
    3.C 0m iM *0S a \ E II





    o .2II t Eo -i II
    a Io E-0 WH 033.. 33I
    3 IJ H u a 1 3E
    E < M II II II II I
    0 It 4 .0 L)
    z C II: r- E- > u )
    0 33N ID II r-N I3-q S I

    U) r. CM U Q

    0 II .0

    32.03 N N 33l ii -
    F it


    33 U3
    w 3 4 a M, II r 4




    33 3 .0 II H so m 0 0 .-. ID t 33 .
    2 Id A 3 01 c0 0 i( 3= 3 n N LD o
    O 11 c acM nci4, r-rLw l

    S o 0 . 0 . . . II
    M *II M~nto n
    a, O il m1 'D (n




    X II U, = I3
    C W it (N C-W e M eo n I

    11r- w t o t0 a' 4L co m I
    O 11 3 r- r- c to w a i

    G 33 33in -C t ~ c
    > 33 I . .. . .
    A^U I-I amw-io vr me r- o n
    I I in r.



    a, II a, m IEI
    Id 322 33

    II** ** II <
    W >3 .
    I a 03 0a5 :3 sD 11
    En3 **QQ CO2 Io
    .J 3311 0 @* D 033
    10333n c -4 -433
    03 33 03-o'0 i 03 3. .c .c~ .c .e '0 33
    3342 n 3 ll 332 32 M 33 Uo 3= r- ZE 1
    II II


    II IIli
    0 3 > .4 c cn (' n Lo3 ID j N ID Lo ID 3 o m0 I N 0 3= M' 3= 0 ('2 m' M0 0
    033 r- Q oI m m w w w w 0co 4'0 o3=Ic'0 n "ID0Nw C), 0 Q o
    I II 0 II 0 11
    o 33 c It O 0omo0r0 c o, o o ,O oiD 1-w3 = 3 0( 3cr-cr-o 3
    33 H i 0 l rMoo' a ,aocv n n a, a II .
    I 3 3 3 II oo oC o C, N m m m AO mo r-33oo (n
    3- l nO I * * * * * *

    E1 ) II 11
    III II
    11 II II
    >- I >. II II







    3 3 0 r= 3: 33 C ,0 NU 0 = =0 0 03 ' =0
    I 33 O 11 33 03= ,3=3'2 .-4 r=I C0'C03 2ONCNU W3='0NtUo .or- II
    0 3 3 11 or-0 3 U o m c co a% o r- 0 Cf r0- ON mN cn r- i 0 L D 0 C
    0 E- D ID >- II *a ~ e m m c o v -a w N v w ~ w t n * * * * * * * I
    Q -23 o0 0 0 n o 0 o o0 ('o oI o Cor r) 0 0 0 00oooooo0 II D
    Oi L l II II
    I II








    E- 11H 1
    SIIII









    I4 II II v)0 1
    l3334 32i 3 C444-- 33a o( 0 o 1
    S 0 II3 II
    SO > II II
    II Hy -i 1 11 r 0 3|

    (3233 '' |O O O3 (' 0 3= '-4N.^ U -4 r- U' tfl 23 ( 2 = 0 3 2 0 U 33~ -l*>tC^<- MI
    H 3 3.0 0 '. 3 .- 4 3 (' (' 4 Cl FiD I- M f' O L D Ur~ 3 .'.4 N- ('2' ('2 (~r'2 ('2'0' C" 33
    <: I 3s, II mo r m w w ~ o o e r w m e h o II

    2 3 3 II II


    l 11 a: c; ll
    H d' 11 II r - M r oo or Mr f p co i r oo o
    zii^ L C iZHfi ii T omo - f sc 'c'c omu ^^ Miio i



    (0 OD 0^- cooooo o meocr' ocr- fnocmeeomo ooooooow II
    M 01 0 S *II*-
    133 33 II




    W i > II II I
    33 I3 Li I03- II 0n 0 0n 0a 0 0n L4 N '0 U, 3= 0n 'n Cn o (' 20 0n 0o 0o 0 0 0o 0 0 l i




    II H 0 O A II 33



    CO II II -I
    0 l8 > fl) 11 omoan manomi/~/oiaomoinoinoinoinoLno o a

    11 II 33
    H n. IIII


    I m ., 0D I o II

    -. E *- 11

    E- 0 t d 1 )
    ,4- 0 0. U ,-
    0 3. t r -0 3
    S0 C 0 0"0 (
    3- 04 0 I W-143
    0., -. N 0 U II


    HE0- 2 -a 0 13
    a 3 0 i 11
    S-..> 0 ," n 2I




    E- C to r. 3 11
    co 0)Q. I o c II


    H C1 4 0 C)



    >. v o ,o ca a,
    .4- 4 > 0 )
    < .0 3 I 0303


    0 0 32 UC .3 E c
    u r: a a o 11



    > 0 -44. 11
    (0 -4 (D C > II 1
    32. C3 0 C 0 3 II





    - 0 0 U 113
    0 3 CO < II
    >0 U 3 0 03.-4 Q II3



    o 4 -> II
    A H OH n r C IIv





    -4 -4 *-4 j II

    d 0 03 ) 0 0 m II
    3E-* to 0 2C .-' i


    -4
    03













    C
    c


    10
    1.4



    J-4
    10

    c
    03




    10 Id 1

    M C
    < id &

    t
    2 ..
    W03
    W-4
    E03

    CL





    10
    Z


    0 II
    ,C II
    SII
    0 II



    32. it
    0 II
    * II
    a- II



    II i
    0 II3



    0 3I


    U II3
    IIi



    0n i
    o< II
    C* II






    0H i
    01 i
    CL II
    ,CII
    0 II
    Si





    0 IIi
    C II
    II
    0 II
    0 II
    II
    ,CII



    .4 11
    - 11
    03 I
    03 II
    U II
    X0 II
    Id II

    SIID


    10 II
    (D
    SI


    N 0
    mp n C
    n CO-4
    * 0 3 1

    1% 0E- -40 3%I
    ~zz >-
    c- r -




    3332 3.3 w > >3
    E 10 0 0
    BOU H Q. c
    4 3 to > v CE3

    S0 1U -1 0 0
    HM 20O 50 0


    fn = 0 E w
    CMr~ 2 EU0 I \ E


    E-61 0-0-4
    332. Lir.. 33 ..32
    * * MM 11U < C 0 1 -1 0 Qt i0 O E

    H 0E-
    3-. U 3.3 in ii M 3E
    E-* <' d II II II II
    '3LiS
    m r- W > it 1

    on Q Q

    --40

    ('2 '00U,-3=I U '


    U M 0N N 0r 0 M C
    m rC mTLO* io mt r
    -4 L--4 r C r- ra

    NM ID 3= 0 0^
    ,-1 en

    w= U, C 0 IDU N 07 C-
    10 ID (' = N (' ID W
    000a0 U, 0 N
    Sm
    nl(
    > .n 'A 'n
    a M r- m r- IZ n to BO
    oooo nO revMv o
    I- a>m o


    .. .. In CT
    > rn rn 0 ** ** **
    ai-iD nEEEE,,

    **Q coS c~o
    c 3 03 -
    **QQ C; O 1i nu 0-
















    II 0)
    II -4.00
    11 i a
    II C07Q
    U a) U..








    0 E-0'W -

    1t0 E C
    ni


    H W0
    II U














    H U- 0 0)4.
    11
    Ii W
    UU- <-4 .4

    I Ee c






    UI 3 E
    II .- B
    ii Z
    iMi -
    U 0.

    110 -<<
    II 1 0 D"

    U U-'.




    II >2

    II 41
    U Z O0

    II 0) 0





    II W.
    II -40
    II C2-
    II # -







    1 ~


    ii~~~~ W4("N M M( N 40 ( 0' O-4 4M MOM M W' WWOI I
    Lm~'I 0' mN mN mN 0 0 r, m' N- I N4
    IlwNN MONN ~ wwmrm m Memmwmwo
    iit U 4'0 '~ N4 4', 4'; 0'; 4,- (N LA 'D V:4 C
    04 00 w4 (N (Nr ,0 -40 100 4'M a, C, M a,- 4,- C.0
    11 w m m N o o e o N N o






    110


    W1 0^ W 04 W' 0l W' r M f Si CN 0 M- ro r Ct 00 r -i 0 00 Mo (%j ri MD M
    II ( N ('OcsccMs o or0t~o o 0'0'-'~ow~ o


    II o-



    4 (N 0 NoN M 0 0 0 M C4 i4 f 0 0 o0 N a, 0- 10 (N '
    M' 0 C( 4n -4' (N ID 0 (N 4,- Ir 0' W -4 10 0- 0 (D M0 r 0' Cn 0 0 r o 0 (i






    II -.4 W'I 44,I ', '0 U W-4,- 0 4 0 LO 4',
    icoSom emt Cro r or.M M io M fnocM M


    coo rr- cm 1 m MLO o





    "I 10 r' 0IS M 0 0' CV 01 a- (N L4 10 4', 0q 0 N 4' 0
    II 0 o0 r- M (N (N m L 0 W M 0 D M n om ID 0c0 0 o0



    c; C; 10i (N1 0 D '4* In' .4 (N 0 ('4 4, 4 0 0'(
    11Ln e m m wo an W o ww w w w
    ooooooIm(mo',ow0-ic tN owo(N 0 D oo) 4ooomodo,


    II














    1 0- C4 r \ C (M C, r- C0 r'- (N r- 04 r- C'- r4 04 r- 0'4 r- CV r( 0
    oII ( 0 ( 0 0 0' I0 ( (V I 0 n m


    II 0' 0 (N 4' 0 IDn' 0 10 0 0' 4- 4' 0 0'I .- 0 (N 4' 0' 4 -00
    IIN A m o O N a m m m a m n a


    II











    II r 4- (N 04 0 r- M 4j ( (N LA r- 0 (N M (- r N N A r- 0 CV (N r- 0 0s
    II
    II ( -4-4-4- --------4-4-4- ------ I






    II I


    UI I f] M I I 0P II
    II 'C 0 U


    1 4. r-0 a'
    II 0 t-I (- 4 -j II
    11 c1-- 4 to e '-4* 11
    II C 0 4o -1 *4 II



    ElH 0 a)0 )
    "1 I E 0 4 -34 U)
    i 0 C C0 'A II

    liZ E- JO au

    .II 0 c U -W io
    I U' 41 0 % 4 0 Ii)
    I L 0 0 -I O CC U 1 C)




    II W O W r. ,
    SIL I 0f C 41




    m w 0 0 u= :, E
    I W 0 441 4



    II 3 C w a C II
    11 U >. $4 v to





    11 > -- c 11
    II>' W'() 4O> II
    1II.> o CU Ic



    11 0 a 4- II
    1 21 0 a 0 a 1

    II M 0O' -.4 0 II
    II (a : 44 II

    I 1 0 0 C I[
    Oa 1- L -44 ( 10CL


    II V4 0I 4
    V In a) -4 II
    1 4 D (aI

    II ) 4 n U W II
    II U- 4 W 4 1 C n ) 11
    II < CU 44111
    I j -l a C II
    II go E- 00 ) i 11
    II Z 0 &4 IIQ
    II w U)1 ( E aW I


    11


    toH II


    -i U
    4,'


    0 o




    11
    Oil
    -Ii




    1.-. 0
    c o










    0 II
    O 0
    S o II
    n
    10 II


    O&. UII
    E o





    II
    T3 II


    0)I > 0 00 >: ** I4
    * Ll 0 .4 C
    .441 Ii in1' aI W. 1.0.E E .EE
    j 11**QQCO0 4l
    w 411 1.4 W
    10 u C 0 31 IZ C
    to w 1 a) a) beA m Ell g g m c


    II IC CW OID II
    ii 1 lin B) IV O 0 1 i
    w I| DI LA4 o(i-a,- O l O j 1 -C ii
    oM w 0 r- m r- all M^ M w cc E -4

    1I E- Ii 0 I (a It
    0'4--0.4 10 < 0 -4'4,ID 0',-,r0~-I(,0 ii l[ U -J E'-4 'UI

    0 ID IDII I C H *40 W II
    . . i-..0 C44144U;fnC1W.In4iioul(
    Cj C', n to r- a, 0, a, ,OCa, M ,haa, -.11W O -4 W 'A 11

    % 0-4 =0 C4 0 0 -411
    11 0..0 0 m41-.4-4 441





    ooooo a m-mwl- mriroii rooooooo(M M C ^*O*^><- ll
    II I 0 > .UW O 0ii
    II 0 I 44C 10)



    IIC;g1e '*- 40 1 1
    0, ~ ~ ~ ~ ~ ~ ~ I coc nL o0m ob ML L ,1 I. 0 (ai -
    II 0 E -4 11
    Mr- M' M 0t r. r CC r. w- m 0o 'i 0 w r- w m r"*0* ^ -- MW 0) Cm) COD tw C) 4 3 $4 0 1
    mr m w w a0 M a' w o M Cli 0 0 0 Z E 0 J U -4 Ln C 0C
    0.. .110 -4 = mwII
    C; c; 1 '4 4-0'r4 w 1 '1; 4. OO O O ( ii w-4 M, C U.;..1 1H ; 4 -4U-.L.. 11
    i L 441 r- (a 0 44 CU II



    Loo V (a >ooaoomIIto U
    -~~~~ ~ ~ ~ ~ ~ ~ r ^ ^ yi u t u U ~r r r r ll 1 0 1 0 r. ca E I
    it Wa. 4) -0 44 (al (I)'
    1I1 I 04 0 II
    ii W.o W a0 w
    4. co (N r-4, ('4 m4' M w' 0' (N r40- w m m~ r-0 M '0 m i 'mU'4- .1



    w< 0- ttl w3 10 IIm0M Mwrm MmL
    .0 -410 -a,40 0 M o0 Itp >, c in 0m a)-
    (',U,- 44- 44,tfl'00'ID0 r'40(o n tM0 i-(N C10UIDo DIDO O 110 >.i CU 0441.0W I
    0 Mu 0 ^ 0- C4 ^ W O MD W" W^ (r W M M 0T 0 0M 0o 0n 0* 0> 4 0^ C HD I


    m N Mn o w no ~^if-O tan n w Mo o o o o ll *n '^,llh 'i

    coooo cmiux~-r- C~ oooooor ^ cOCCO>H
    .1.1 4 a -o I-ti

    II (W4U441-I. # U1

    II :) >. U a I11
    ( w (N r- w4 m'4 4I U '(40 (N 0 M0' ID M 1 0 4( 0 10 i 0 44 U Ea-1 1. WL r. CU




    to C 0 u H rH to 11
    00006n,(N ,10ID04,-C(N' O 0 ii r. a r. 00>11
    110t. c -4 -%4 0 i1

    11 .1 u 0 0 4 j (i )i i
    ii '-4 4 '4. -. 11
    U, U U,10110 ,U,,U,0U,0101 1001001010110110 Ui fr~ ..4 44 -41
    I 4 *( C I
    ini nini nLni ni L ni i niiLn w wn wn in :3 $. o I" ^L j SCr -
    II- 0 E-U- 4. 400 0.0 I


    1 0
    1 i-4 m r~ 10 m 0M r- In r- z C; (1 441 C CI o11
    C; 0 0 (n^ c; 0 0 D^N "c ^i n u o m (n(n10ro(1 -I~ g



    ^^ oooooooo^-NM^nxa S^g;;" i
    I ii to IID,
    11 i u n aC -0 c ii
    II4-41 0 W' ,- 41



    1 0 w 0 0 1 w wo O O O 1 1l ll 4) t -i (n ioE il
    CD ~ ~ ~ ~ IZ r-W1. 0 I0i 0r4L -00u
    C;i U-04' lic 44 4m -4.CU4 i
    Zi .40 U 44101Z
    0U, U,0 00 001 01 0U, 010 10 100 0w En to4W CU ii


    -11
    a' c
    .0 II
    0

    C o
    10 0 Ii
    0L. ii1



    iC II
    .40 C II
    IIi
    .0 II

    -11

    C 0 II
    <0 II


    M MI II

    S oil
    CU 10 ii


    S II
    '41 441 1i


    O ii
    II
    2.40 ii
    0 II

    2 4 II



    lU -C I
    001





    I o
    1 1 *

    10 Ii






    0) II
    *. LiII
    .4 3 II
    410 C u
    .4441 11
    LU W) i


    0 0
    o m C

    0 -
    to $44.
    2.1 4)41 W

    ID'4 u EW-HQ. L
    Z2 z > C



    E0 0 >>T


    H .U 0441' 411
    I- Z) 0 j a) -4'02
    E 3 0 WE4 0



    o0 Q > w
    L- .IULI CU 4. CUE




    0 LQ0
    E00 -' U -CU> '










    4o 0No 0w D a, lo IDI
    L oao a- m L nE
    o1 D m o



    - -o E- f ,n 00
    -4T 0 010 < (N










    r-W ID w ID 0' 0 -



    (0 B* *
    wf wO a,' r'O- al m' WMr











    U-CU
    0; c 3o.4 ,D -
    I C\J







    13:L 1" i XC = C4 o3
    fl -1 4) j^ j j- j- a) J l
    S)McnM Lfn 'Dr- w S


    c o
    '4 00
    "4 r. 00
    0-4
    -4C



    L* .O44. C
    2. t1 LU41 01
    (DI E -4 U.
    mz U CU 0 >


    I.14 EW
    M Q 4 > >0WC

    -4- 0 4>



    L n 0 E j u
    * E- 0 JT


    4 00


    E' 4 0' 0' 4- 01 4 0'
    So E-< > u)
    o N W o) -4



    r2 110 Q -








    4 an t O ( -4



    N m I- -wm w N -
    c; ( -
    I I('r'o
    1* 1*
    **~C ** M


    0)
















    ,oi 0" 1
    (V-4.00


    E 0t.
    C-)

    >.











    0.00
    ) W 0)i
    W 31 --I U





    U >
    E- la




    02E3:








    o:-J
    S0 CL
    30L.CL



    a>..





    W -^ *
    U- 10)0-
    Wd N )01
    2-4-40)
    0 E S















    1) II
    > *J 1 r o w 0 Na mar' -'1-W m-0 a N o' r- a'o wlom o N o
    -4 CL Cw II m m .-r 0 Nt'4r-mA r- -L a NL 0 A L r-0o 0
    .4 0 ~( ll 0 ('4 ^ LA o' N N 4') -4 0 N ~iLA A0 a (4- N '- 4 0' LA 0l D ^' .-4 0
    10a* U 11 Lm .-m' 0o0'Ao 0r- c mw Nwwwr- oom r- w w 00
    S0 u IIf *
    14I (H > I . . . . . . . . . . . . . .
    3 o (! en 0 co.- N f' <0 N 0o mn 4') o en Co 1' 0- n o- (w (4- C-- (4- o4 0
    w r-1 '- N '~ L r- l-o a, m a'la, aa'a ,a'a'a, C,




    0 .4 mN 00 o 0 ow m' m 0o Am N00 r- r-r-r -N
    w A II r m LA N N 0 0 a'm N N LA a' m
    3 II 00





    UH a II r Mn r- o L o 0 0 oa L A LA G N N 0 0 0o co
    r -# II O Nj fr o r m o r- r-m o 04 w a om c ar-) N 0 (n q% O D o

    t0 0 II o meommmmi PtoO o cooo
    E LD W II >c r n
    S 11. II
    U II
    II
    a) II
    U > II
    H--4.-J Ii wLAmm-400000a'LsomLea'NN-)-4aLA00
    0^4, a'Cr--oLALDA m ar-me anLsj o0mena'No(','N Aoo

    0 '- II C D L .. o 40 . 4 O M 0 A WA 0 a en 0 0 4 o






    L a II w M o co W a' ( w r- ')0 ALA m' o 0 0 0 0 O

    U 04 a) ; Ii 0lj 0 ; LA, LA* r- 0* m~ LA c'N -4 0 0; 0; 0 0 ; 0 -
    Ha) II









    > O4 n w^ o w oo o o om (Di w^ vD n c> iror^m t*o o o oo
    0) NC -4 1 o N- N r-o N o w C- N r- N C- No r-- N C- N C- N 4- N- t o 4 o o




    S 11 r4 C. . C; C; .lj .lj .~ .n .n .n . . . .4
    '- -I.C II -40 i-r~-40O OOOW-l--4L 0 mLAOIC')LA0-C' )LA00t
    04 II
    ZII






    II I I I I I I I I






    I I>I II


    II II II
    II IIa) i II
    II w **- Co II m owwAo 0 II *-400 II LAr-N OLNo0coLv A 00Na'a'C -0 r-- womA ANcLA0 II
    II CD- Il 0 wN LAO r- m w os w m cr- r- lA r- w m "oo' IIo
    II -4a) 1 II .------------------------------------------------- -II
    II w ) II OOOO OOO4 0000mGm00 NLa' 0 (- N N a N 0 a 0O
    II E 4 0 *-4 Nl 3 LD r- o o al ar' o
    II II -4I1
    II U II II
    i II II


    If (t) 1 j- ^mf ^ / n(ic -i ou 1t C! oo oM os N C' M m n t-i a, r~- o l o If
    It l ( 4) O1 a) 11 oo o c; II II II



    II D II
    II 0U'-- II a'C-('LA- -LAC'N Nm-4a'ONNa'0-4')-4N -OL so'(' II
    II CC: II ea o0L 0L em' w mw0' -4 o4Ln0lo r- o 4')a' II


    II a0' L A->-tA- a -Nova 4 -- II
    II al D II 0 00c 0o 0 m N N A r- m L ') LoA aL -0 0 II








    E-" MOC*- o o o rI c n ^ rm o mr< r- o o o w3 wo~ m wo ) a w ~ p mllw
    II -*'a II **-- - - - - - -*- - - -.|II





    II w E II 0 0 0 0 0 0i00 0 0D r-- llAa r- N
    1 I II
    5 ) II IIU
















    Cw m o
    1 ) II I
    11 II II
    II a) II II








    1 C> II11 0coo N N II





    >1 -4*, IIcD 0 o o m o on o o m o o wn m C. o IC'
    I1 E- 11 II 0 0 0 0 0 r-- N, C L r- a' p 0 r L c A N L 0 m II
    S;E 0 II N C* LA* L II








    u) c c ', I r CM M so si r rm n
    II I I I .I I;
    II II
    11 U II II









    II at' III
    II K>. II
    II 19U- II u a'N 0 r r -oa .-40LA0 Lo A N C a- Loa0-4LAC-.- 4NC' -LAoo II
    II > II Lomo0C') noLno no.-4LAt-m-omo,-.o0LO O II

    II U 0' a) i00 o 0 0 0 0 0 0O m 0000 o 0 o4NN r(4 -O ir LrA Noo)C
    iII O )'# II oo o o c o o a e -.-4-4 Iin 0
    IIH51.0 II - II
    H > lb II II


    II '0C )- II 11 I

    II -4..4 11 LO II to n 4O A C n- 4O amo Lo o ooo Ao II an to to to Co L La n cn n on L O I
    II 0 0 0 II I e I I I- I I Irn I Ie m o o II
    II E O 4 II .II
    II II I I I I I II

    III II
    II >a- Ii oAoLAoLAOLAoLoLAOLAoLAoLAoLAoLAoLoo II

    I Cl) C/) B 0 0 0 0 0 0oo o o o 0 4 N N N N 4' ('C 4' C')n 0r m 14 I
    0 II I I I I I I I I 11
    II II II


    11 Ow 0g a
    In I 1Ca1 i = r r 1
    i Z H -' 4 II


    94 .--4 i
    II04 O r w '11
    II H-' 1.. 0 11a) a -~ i

    R 1% 0 1 r. (a 1 -4 11
    II 0 O m 0 II
    ul a 1: c 1)o
    II 0Z 0 ) H) -i II

    II -2 1 1 II
    11 Wd 4 -4 >1 i 11




    11 C- -1 r. ii
    II 0 H-' > 4 II
    ii 4 O -4 1 IIW


    1i-4 0.--4.Ei
    11 04 0, n a U ll







    iII )-Ca(0-4t.4 II
    it CL. 4 ) 0 11' i
    II O O a) 4 0 a) II










    11 i 3 a 0 1Z i
    IIH 2 O H>U < II I









    II0 0 -1 4 a, c0 I 1
    II a HC fc O 11 5





    11 En C 10 C (a1
    I1 0 > & in i















    I -4 -4 0-4
    A c 40 o c a)
    II1 1 -4 II I
    i Cj 0 0 C (
    j* j w








    hO: -4-4.i
    II 1U Caa)>C E I







    En M-4 4-4 -M 0 U










    0 w Ca-4A-4 to i
    ii 14 4)4 a-4i
    II nm in M t
    II H 5- ffl # 11 0
    11 >- -1 a) o -
    II Z *IS 10 j *-j
    II O -, a) q. Cll 1








    II >-1 -1 -1 I 0
    IIM C 1)CU Cr 10 I
    II Z C ,CC 0 > I1
    II ( n Co U ( *a I a
    II i- 0 0 0 & # 011
    II & -^ >< U *J It
    II < r*J H -110 H
    II M I0 C O ii
    ll 0 d + 3 rdi <- 0 B -
    II E- rTn III OU O0 CI
    11 # z ^ a-i oi. 1 i
    n a0 Sm e-i o. rn c \ I
    II H IB tO 0' 1' II
    II 3;U inW 1 C0 II
    it E- a) *- 4- iJ o <-' <- II
    in *J, ri > H w
    it 0- r- (/) <- ^^ |1

    Il ad-* EO a)H I)^ I l
    I id n ra E O. 11


    I Ca Cn a) 1 0%
    w) -4 K'0 4 C;
    W---4 - -
    14 0'0 '
    i Q.C C:-' a)
    E- 0 I a a0 ()-J

    Ix.~' 0 Ca
    t')- -a r--4
    Cd -'2E0' 3

    : 0 -r c 00 -
    bi a oa )-4 -a) 1
    Q0 C I CT 1 a-
    z 0 O 0- HM 4
    Cl)C:I Caa)-(0

    04 to
    Z E00 -0--C a
    1-H1C 1 >.
    E-* C r 0 d 0
    U30 a > 0.a ) Cna
    SC 0. I 0 C 10
    b- P. ) 1` -, e
    a) r_ E w

    i >i V 010a ) )
    0-1 g a
    S -4 >J 0
    10 10 0 U
    H rd W 164
    04. C1-a" 0a)C I)
    -4 Z -'-4 v) g
    W-1 10 a) 1 u

    > H1 0 Q,
    0'a)C: -a CC B
    > *H s3 t a 1
    -> 0 CUC gm
    d C rC 0 >
    o a) Ca ,C.)CO Ca

    H (0 CM 0 -'0 1 $4
    -) L 0 o '-'a
    0 U~o 4-1 O
    4 -4 >. U -4
    0 *4 Ct *a' H -4 a) C.
    W. 10 c f
    0- a) r -' 4 S0 -
    0 C. -1 00 1 )
    rd a) Q -4 -
    En -4 .a (r) r.
    H ao to 0 a-4
    1-1 10 T3 ,7 <1
    = U a ) -- C 4-
    E-a -I W-I Ca W -
    -j ul t o0
    -4 0I-4Ca.4-
    En 2 a) c ca )
    10 E-* EO a> 0 j ,
    -j Z 0 I-i a 0 Z
    En w C 0 E Q. j-.


    -4
    10 ,Q
    '004
    0
    C
    Co
    &. i




    -J ,




    mum
    10 C
    0
    Co
    10 *
    ao


    -4

    fd 10 O
    3 0
    C/) C i




    z -
    o


    Z 0
    '0 *


    a*
    0)
    '0
    0 4
    U u
    x
    Id


    II 0
    II Cd -0
    II a04


    II -

    II -4
    I Co





    II a)
    c o



    II -4
    II -4




    II ID) a)0
    II 0
    II d ,C L
    II &C a
    II
    II a
    II 'o1








    II a)-
    II d 0
    II 0






    II X


    Ii C in
    II





    Ii tlfl .
    II Ca)

    II C o
    II 10 *
    II CL| <
    II E
    II )
    II E *O
    II C 3
    II 10 ,C
    II CL UtA
    II O
    II blo

    II
    II
    II 0)
    II *0 i

    II A U 0

    II M l
    II S


    II A 4 II
    II C'to C II
    I m- C0O l
    II * 0 I l
    II o E- -I) ||
    it 14) (a a) a)
    II Ce E-0* --1 II
    II 0 Z Z > (0 CD 3 |
    II MZZ>CizaC 11
    11 a-- ( od ii


    II W 0 O Q 0 > >

    II H r H-E I \ I
    II a H aC ii i II
    II 'a: (toi4)
    II *' E- *O-' > II
    EI 0*0 -1 '0



    it < r- i
    II 0- i i a E
    11 H .-4 0 -1i aW
    II E-- 0 -a) -j 0
    ll [-* O M e c oT II
    II 1iiE-




    Ii H ii
    II E- I t 11 11 11
    11 I s E-* > in S
    oII o 0 a' E






    II o 40LA0-4 i
    i o ii





    ii ~ t ('S) i
    lo en r- ID ID
    a, c, a, mi e w w



    Ut 0D k'4 coLA4 (Ja -4 0 I
    cII r4 a 0 a m cL l Ii)
    II i 4,0r I




    a, r- II a




    II In

    it In im r 0
    II -I
    11 X Ul 1:0 w r- c
    S11(-
    II m Ct O 40 t- to lD rO s so I

    Ir-Omr-mmaceanl a'









    II o a t1 w to II

    n Q Q c o a s s 0 1 n
    II II
    II amolO ~ ~ O I CC CC it
    I1I o m a r-i -'-' -i a II
    II So to oi M Sr io r-4 to Sn II

    II II


    0 C 0

    0 0-

    $4C
    b) C 10 -) w (
    I-U Ua a) a)
    gOi U --I 0
    F 2 > 1 0 C


    m L) Q 4 o C (
    E0 n 0 1 w0



    w" S f 1O 13 1 10
    LAn 0 \ E0





    a, r-E a)o 'r-
    4An Q 01>>

    * E0 *W C

    E-* O * O '01-
    11 Ca E- C
    H < I- II II II II
    < U S
    in us E-* > 1n S

    OW 00
    --'a)
    MCd)


    Ln N s4 a' a' LA LA a' LA 0
    r- ON c A C'o 0 N
    o LAo oLA r 0 a'0La' r-
    (' .-4 0 NM 0o 4- a' N\ '-4 (N
    N 0 co LO

    Nm r-mc moer wme

    w CD mt r- -
    NA A r- N A aocoa
    0om LA r- r- we o0 LAL
    (vw-ooau toOmn(
    N -40 0 LA C LA
    (4-


    II >
    II ** ** ( 0 C0

    II 0 0 10 g 0 C C
    it **QQCOI w

    S11 a (. 3 4i *- 4- (
    II E lO O CM tLAo LA r- o0


    II
    II
    II
    II
    II
    II
    II

    II
    II
    II
    II
    II
    II





    II
    II
    II















    Sii 0 ii I In2ful0 a0c II
    I1 a 0 0 IE D 1 i n
    C > Q -.-- D40r 0 fn ,-1e'n fiN n I n 0 4.1 cII 0 m c O cC. II
    N^ *. 40I~0>? "'"O'.0 C oi4N44t' CNUMu 4N..4Cioa.q.00'0I 0.. 0 '0 -' T)
    I I 2I r 0- U n"' II 4W IIN(M(M'o ir cot~r-r- r- N~-CMMi-.0,0' Coo Ho 1.. 0.C C.- 0111
    - w il m w lo.. . . n m. m. w w m IH 000 a "' II



    I A 01SH NMoo en ~ w ~ m m ~ I 4H 0 0.4 01

    N O H 2 0.1 C-40 -II1I
    o II -u c" o 0. il
    4) w wd w w r a' r' 'D r-cI
    H : 4) a;II 1 4 ; 1 :1:;c*c* 111. Z %- '0. a~ mUI i

    -- H ii oO -I c 0n c D^II
    U III 0I 0P 0 1 .-I- -0 Ia
    0111 l II E.0 :U 4 I




    It1 111 0 -1wo m 11rom N 14C C
    4 I U I 1 II 0 m -44
    jIj ot m w^ m- ll Nu wD~ -wo m( ( r- N~ cM Om o o mn rt i tn m tr m wM ll i- w N Ino 4) )
    .l G C r. r-fln aoi t o cio,;L n w' a r- al aN N imt/ co c,4/ m o co H tBo^3 Lo ll 0- o In o^ 0 w
    t ( 3- U o ir-mm N ma oo ro w>-l a=rq goo co-kncl -io o o aoG l 0 u < 4 W*- i

    E f I II EH r 01 I.11


    {H H II 0ID I O C1 II
    1; 01 II II .H &. 4 ,1 -I E lI
    11 U IIE (a 0
    I V > 1 li CM# O





    II2 II .-I i- NU, mmoC m, oom'1 v.I W ~ 040 N o 4-Il C-I 1 CI
    H E0 0 a N 114 CM W om i. C .14 .I C C .1C( 4N 0 >. .1 0 . 01 I>
    N1 N (40 4. S II 0* *-* t* -C rC ,- r r- II U C 4 E
    iOII oII l Cl C O II



    <; G H 11ec 0 VBi4 0%i )C
    M IIHL.001H. .01
    H! I j A It^- "!UI r- o NIn -w c m1 C rI O oo : a 11
    H; 0 E- c D || a w m .- o &. . m o o m o m o w .- r- co .m .. w 0 a) 1 U C l
    1-, c; 42 ;1 ;1; ;c ,w w* l-,l IC > O s 0J 11 CT. 01.4 O






    M EH > II II II00 1 II
    . II2 H U a 1 44 w C II
    E l o wg 4 mN NmN m Cm "C w m N- co (Gom 4 o 4 N 1m0o o c 4a v11
    o% o w- w Lm w r- o wr 0 (
    (D L f^ ir C d c cD r: 1:) -" DB Dc *<(i< 3* 0 Q Q II --I w"I"i ^



    SII o .II N 4 .- N C . 04. . C . N. (. -IC C. . iO U > c .i 1.4 i -III
    8 I d-I0II.....................woo 11002 0.01UC i
    to1 0 I w o.* Io oo o oo -4 N-4.I C C C II ( C 0 > 10 1





    I1 1 1 1 1 1 1 1 1 II KI '-I Q C \ II
    I I II II E o -4 4 U I
    0 II E-N I 2 4. 0OU II u
    M a "11 -'4j a, re 1

    It -I I LOmoio o o Anomom 11womom0o w1 aDW 11
    11* e4 N o r- ,t r- oir- c4 r- cmir- o(mMr- oc4iN r-c4 cmin o r-tr oi4 o 11En 4M0 U C 1
    U 0 w C! 0 .... ... .. .. ...........- 0.1 II


    H o o o aN o c-o o C r-i II NN (Mn (r m moowzH a0 01 -I 11
    II M II **U** W M 0- Il


    mu l InI co o o u a m m ll U4 4E201-I. I
    S I 1 1 1 1 I 1 1 IIH Z 0 11
    I 01 I II ). (4 mleO ll
    > 01 aL o. II oi U,~- 1A oCN 14io n o o C 1A4-C o4-. w I oa
    r.I a12w4N aI N4-I- -ICCCCo Cm -I-I- o -IN N ~ 4 m oI mH- o 01 0 -I.0A It
    (12. 11 1 11 1 'j a rZ04 ;0 Itl
    toE 1 ; c I E- EI ta2 40) W -4


    01
    > .J .4 II
    -i a a
    .-i 04 01 I
    E
    -I 0) 1. I

    a)3 0a11I
    2 0.II

    ) > II
    >4 II
    U .-' -'> II
    C .C C II
    0 0 01 II
    1.1 3 -I U II





    u u
    > 4) 01 1 I
    :3 1-1 011

    01d I
    U> II
    u >u




    H-1 I j II

    E- 10 04^- II
    hi .-I -I 041

    SE 11










    >
    ) 0 CII
    023 II



    S0 II

    04II
    U .1-II


    H03 II
    U U -i II






    C I II
    --I-'I .C II




    E 0 0.. II
    0..- II

    n


    > 01 -I II
    01 N a I
    -I -4 0.. I
    U1 44 I


    C - N m w. N . N 1A w L, N . . C II
    C -. C N ... ^. .0 u0 N 0' i' 0n' C II
    C m i- m w N m C 4.0 N C LO 4. Q C -4 NN0.4 C3 C mo n I
    C C C I1 N i-C40 w m w' r -* m .1 (n L C40 N A U, .- 0 140i-C

    .......II
    C; C C C C C C .-I 1 N: w,2 wI 4. -. .~ -- I- C

    N 4. 0' 0'0' 0 0' C II
    -III
    omemmol mm o c o om m om o l a





    C i- 0' N lr- 0' C w4 w- 4..0 m mn r--1 m' al 0' o0 U,.s 'C It
    m m N o N N w m N N- ( 0 0-1 o M II
    II
    II
    II
    omm ow oom 1A r- ml' f am Lcoc (n flr oa IIo








    o o c -i C m C n C C 0 C C N' i-r N C C C C C N II



    c; 1 a 1 c c; ciL .3 rs^io r- Ofoy' a, o o oo I
    m o W wm rD r- 17 / io om I
    ooooooooorwoo-N- oooo II








    o U, 42 C; c; C ; U, U4 ,, II
    II
    II















    om wo womoooo mom e w LA mo
    co Cc C o o a C0N N 04 0' m CCCC(n moon


    Ca r U, a 40O OOOU,40 O -C2C (' C C
    .......II







    C 0 C C C C C Cl C C C o .- N- C C C C o


    S(IIt
    Ni lOll iI N N N'si l I


    II CI


    'd .11 U,- j S
    1o Cow Ifa

    WI 0 E -- O
    0 I -- 0 m I




    =I 0- S a
    ~CO 0.-4 -1(4 I


    M *II a-i> E a




    a il to --q o a
    H oll.o0' i 0n i
    11 C M0 10j a 0


    I En H. = m 0E
    0.el E E- 0HQ.J N
    CT 9 M g a)ai




    II -4 0 E
    II E-. > W U
    -1 0C .

    w COl. o r -. i>
    < o oi1 < 1


    w CL. m V) I

    -1i a, a





    it
    r. < )n n n
    C II H
    S0 II U









    W- r It
    Z .. .. .


    2 on*B *II *I

    V) II a)U II

    u vii
    0 Ii 4owo -i N.o .oo II
    C D II C r-i-40 mN m i- I
    04811 * * *I1
    0 II I a w r-
    Z o .
    II .M II
    II II



    II II
    II *-* 0 f 4I
    .O II *r o 02222 II
    0 II 0 -4 01 . . . .


    (1 0 II 01 .-J 01 .a g - .- 0 II
    II II


    I ( 4 01 I O4 II -Il II
    0 ,C0 C II .C IIr-N II
    aCC -'--- 11 00..Iw 0 C II
    -4- 4 .0 r- *It i I~ C O 1
    O O- 2E-I -II .- Ln C O II
    O <## CoC 0
    0.. 0 0 ..-'Il CMII 0 -I I
    S 0.C C r D II C I .-I o l4 II
    ZHO I. 0. O4421 0. 11 (O (12 001 01 II
    SI- 1., 0 o 1 10 to (D J 11 M 1 rj) ) S.

    Z %- 04 II w II 4 OZZ > C a
    1.2 C H-Ii04'U II II (42H1.201)-10442 II
    SOI C B C 0 1 C1 II < O E -1'O B1 II
    0..COI -4-I 011 -III 1. 0 20 II
    O M0.0. IaU1 -4 IIr -2l S 31NE II
    iz 0 -44240- rz r. tIIN 0- 14> >> 11
    H-IO'(42-.401 l > 1.41 H.en) 12..4-101..-4 II
    3 ( L I oil- H-0'0O .-4'0 C II
    Z EOU-1 CoIN.-4C< C 0 II
    H 0-0 w 4 w 0 11 *11 I 0 U E 11


    HC. L.II..II ,C 11 H-:4...01-0 II
    H :-Cs w G ) 1I o It F-Q 0 O10 4O H n
    0 $0 - >>u.11 I1 E-H O-2-' II
    0-1 3 U) L) = S $4 o 2
    C Q. I0C mI E--IIII I iI
    uC 11 l II
    -0442I ,CIlm-4H- > 2.4 II
    01.CO 0 ll1 llo.eII-ICU o0- 2 Qi
    l, E 00 >I
    ~ 0 s.I1C: wCII
    7, E-I 1 3 >14~ M-" Q
    0. >. M O 0n.C l412CUi rlN-I *OI I
    j C >UII EII <






    HI ..011 H. 4 lE- aIIo ~ en m II
    < O -0 4 11 w 0 -I II

    >C .4 1a,11 co
    ZC (U o .* . 11
    S1-v o 0 00 -1 ** It
    a't Cv "4 a, Z lo


    4. I 0 >II N N w La
    1. j C, H < o I 04. fn
    Z -ji m ml ru* 0 .iN t oco, r4 aD m3^*1
    -U to 4-41 C 1 II ND m a, a, 'na II
    E- M %-4 C 0 0 I II
    .-I0 B II C '-llhII0'0i2N'C'414 0 ll

    0- (D _I -I ai 11 s
    EO -I W11. . . ..O

    00 .-4I VI It j || Q> or o0 ri
    ZH.C.J U *J l0 -l II 1.21 Ir .-4fn4 IIt L MCM

    001.- -I ca m 11 Io
    (.d C3 r. r. 0 I t M 11 V a ; .C v

    HE- E 0i -,42'- l ) Q 011w >4 Q) Ad 42 -j -4
    2 -'.C (42D I Q OIl *Ml 0- 01 4 2 rf C I



    -I Z. M $42.)0..I1 to421t C \ o Iw
    vH-.2 Lm E a (211
    (12l.l r2IOE0.-l~ O II C I *















    I II
    11 to ii


    o
    0
    N
    I



    r-
    N





    IM
    r-*




















    0
    W
    -I
    CO







    H
    a..


    N






    d'4
    N








    W


    H







    'tC
    ^-q

    (n




    M
    0

    C-)




    1-
    CT
    0


    N > aJ a A- I" 0o 0 -1 Ut C C M P N o N G lN N Ut N C m N w t 0
    j O o- I' wt N o N 1At .-n N C w r-m m E w o co'0o n C C CI Io
    A _4 U II 0 0 ET n 1 C n t t oNO 0 O 0 o EO w n tLO P. w 1 0 N

    II -411
    II C II II
    II II I
    II II
    1 AU
    II >* It I
    I U aas to En O i t o 1 0- 0 0 nN o oC t P. Mo n C 0 N r i m co l
    n CO D U II ( VL C En00'P. v N0'0 'to0 E t En toVVN V II
    w .m to L oA 0 0 0 -N E Int t ID C C E0 to N 00 0N II


    H 4 04 W II






    AC I a 11 C; iinnD 0 o, (* ;
    IIN ii
    IA A II




















    A to II Io Ii i I w I
    C 0> II




















    0 a
    N C C w 0' 0' N 0 0' 0 C 0 D N 0' to to0 C 0'0



    I -4 I :i






    S (... ) 3 I II














    . to CA C . N ", NV I C.. C. p 4 0, C










    H -4-41 - c Oo a l - - - -1 - to- -. . ..i
    Z lZ t no om -1 N n tom a N C r m I n a m w n 0' m N Nj to
    II I II






























    II
    II II
    AII I I III






















    11 U I II
    > -4 0- C 1 -1 w m O 4 a............................o...............B..0..... CM
    S11 0 t- m B c0 r0 N n V to C O 0 P oo N- 0 ( 0 n 0D 0O
    II e .. 1 n -4 .-. . . . . . . . . . I.

    II H E II
    II II II















    II I I II

    A C A II O too En C to o E E on to C o En to C En to C o n to oC 0 I

















    II -H C 00 to II c LO m n CD c *n *D w* m* *Lo .1 m w w C I
    II 0 II r ocOOOOOOOidr -NNNnNmEnW II
    II A I I I I I I I I I II
















    II II II
    A II II
    II II II

    II N ,- II o0 -i NO tN on P .O N n P No rn P .O rN a i t r n La r- co










    IA 11 II

    I -CC toEn-4CNn0'NI n Vm o r. OoNCem a'Coi -aNor II
    A a 0 1 t o N P wtot @ .t .aI r nP La r- n n-cMo-4C-4 oo e nCo moo 11
    S t0-4 II A or.Vo cnN0'P.Enan soC~no COo 'NVanWNo II



    II b II Ii
    II > II I
    II >. II II
    > C C I toP.Cto in-tminm m wotmotInOeNOV tOmo-O-t- II
    I toD 0 0o P- o n r- O
    II to M to II N 0 0 0 N E I t o-- --r-r tN N -4-4-----m ( rN IIl



































    AI II I


    I I


    I M w a I ty 1 --1
    lo i citol cif
    n) -4j lZ E r. r.
    cO 0VCVC 11 C
    N.Ca-4-fI to04
    E0 o ao -n o
    Z H4 O +U) 0 0 *
    w 0.C+atoI Co
    P4L. .O tooto.4 to.
    IH l 0 I O M It a I 0.4
    :3 IL., ) 11 C,
    N- 0 E U -3 D
    Nd SC 40 -*Un
    S0 C-4 0 C 10 C 9"-
    0.E r- M ( U Z > 1 .
    SO I o > ot- a to t
    < 1 00 r m
    O (0 t U 4 H
    -4i 3 4ci o



    a) o 0i c a) 1 W d 1
    S EOU 0-4 f CI Co




    00' .-C I to to -j1 4 (
    O 4 4am e1 0 a
    HC 0 -I->l I 04






    H-I~to toIZ
    E C (O O D 1I 0
    U n t > U .) 0 -I

    C H -o u 0 0 w 0







    I D--l I^ >, U -1
    jI a o 9 z 1 i *o .

    > COto 11tOn
    2ZOE-*i- ng h f

    d C C C 11 0 0
    14 >5 w t .c (a I to tn
    ,-< *J E > I *J E 0 *








    E *- 0 1.. M0UA U
    0 4 t o C E A
    Z aw Xi c a) i 94
    t. o to n o EN a



    Ot o-i 0 c'cI 0


    E- 4 > -II C
    r .n H C II m O 4

    (2 j a 0l0) -4 n 11 0 :
    CO tU no







    (a E- 4) to-i 11 VC Oa
    _j D. m w C 1 II 00 *
    SC w C 0>II 0 4
    H Ito CO-^ ...-I II
    .-) U O o 4to(1 I
    4 0 >. --a i V ra
    04ciaa'H.-Ito n to


    E-' U .4 O OaU C II VU
    .-t -Ct.,-.
    0 0 ato 0 to
    H- 1t 0 U C A 0
    to -4-ItoQ.c1<



    +J ,G in i II fci
    UC ao I) N
    CO--l -i C- Nj~ ni
    H-4to-Iaecia to11-II
    a.C ci to -I 4 Q l tO


    at o4toon ioEOS'l


    I I0 n 0) II
    -I ,COC II
    NC a c.'-4--4 i
    w -4 E- II
    0. C C 0-J ii
    E- i, 0 I to to t) II
    W -It> oD I11
    u -E0' -E a,
    NM a c 40' -Cu 11
    X .C O C t I0 II
    S.1-. 0 1 I to
    v) O a) cj11
    MC cI cio -t oI
    HC0V (n-4t 4 11
    -41 o o" 4
    4 z s-4 11 11
    2 E O-'u--H cIuI
    0O 0> @ *^ c c i
    Z E 0i u -1 in 1-1
    0 --4CClIIl
    HC 4--->.4li
    S c t o 0 r-i 3 ii
    < C I OC to II
    1 0 3 M 0 II
    a) Ja.-4o a l
    a) a. 4 0 li 011
    Z w E-ito- 4 I
    a4 Ctt 0 C0 I


    a >. CuIto ic^ i
    r-, t oo > E
    < -0 tJ o. 0II

    H C CJ 0 II
    S 0 W &4 8



    H o oa -4 -44
    0 1 ) H -4 to I 1



    'Ca $ (a al-Ill
    0 i c >-H c"i a) r
    > --I C C III
    i/i o4 a) u r. to
    w C CC 0 >
    H ts Co *-1-4
    .4 u 0 o 'j I
    OL *4- >U E I
    (l c .J H M r-i g c
    z4C) t IIH

    toto l
    E- 0 1 Mi C U cil
    0 0) *t -4 4 II
    aC ,i t oI l
    a I-1 0. C \ C II
    vC in =u "^e 1

    M U M < 10 II


    E t 0 E o t0 -E fl II
    .1 2 t0 t) 0 3 II
    Sw O N O E Q.a A


    II 0 C
    Sto0 CO
    * 0-I
    ION -I ci
    II 10 10 0) 0)
    w N Ctto to
    E- -40. 4
    M 2 2 > M C 3
    COHNtotci
    O 14 CO 10V c
    Ui N EntoNEa a '
    EnC 0 4>>
    S 3 NO E o
    Orn CM Ct o \ E
    e(n co Q li > >
    11 o Hw .t 0o--1 i *
    II 0 ai E- a -O 10 C:
    II 0 wiUn < C l 01
    II HQ fOaO
    II U0 9 (0.0E
    II H E-
    II E-* II < U S

    II at QQ
    It 4
    R CD COEX>V
    II o I-n P r- N


    Ii 0 In P ~ 4-. 0')o- W
    II C P
    II

    II -- - r- .-- -- r - -- -- -
    II cor- r- o n m r- oD
    II 0 N N N . .' 0
    II 'VP.
    N, m cl
    II
    II
    II r- N L N co -

    H . . . . .C


    H1 ** ** H O C C O U
    ii< N f -


    II** ** M Mo
    >ci

    S > a M ** -
    II to a- 0 E E a a
    II O**Q O CO cS
    ( u^ 3 j -j j- .-j a


    aJ .C II

    SII


    -4 -i
    o .


    oII





    0 o
    C10

    to .- i
    11





    04 II

    aC 0






    C' to
    H II
    z

    0 *
    M 10 CLI
    S oIl




    (0C 0ii
    to -s I

    n iin
    toI i
    n o
    C 0 II


    0 4 U II
    tOII


    4o II
    ao a i
    C i
    &. U

    SII
    S II
    SII
    II
    0) II
    SII
    II
    #0 ( II
    II
    re 0 II


    0' en i
    ' r- C r
    NC CO n
    * 0 0l-
    O -4 m
    N) to tj 11
    w to (v o n)
    a% 0 E- -4 CLci1
    S> w C
    )H3 0 (E (0 n

    t SO IE II
    .4 va a 0 m
    P-w 0
    im- *w > >
    r~i4>-M(K io-t aii
    Hr-w .0to -4n it
    * 'E- 0o -J r I
    HwcatOadt o
    E- n 0 M- 0
    E-OD U*J B I I
    COUS24E II

    1-41 >ci S
    H E- y 1 11 1 ] II

    NW E- > 00 II

    at(om o> ^
    COX II
    CI to N N
    LD W H >
    f,4 -l *O r-



    N 0 P





    N ao En iN co-a r- In 00 R
    S II
    ^p cM o so r- r- r- tn ca ao l1








    > V) V) -I w n o
    e-4r-4-4-- CM 0 P II
    .4toa'-.tN
    CN rr- II



    En Zo n Xn to En N In I II
    000 N n -40'o II
    .~II
    CMa O r r n3 co ppn ( M1 II
    i-4 -4-4-O w WEn NM in .4 II
    I wNo II
    w- r~ II

    >cii
    **** ** Im
    > M1 *i ** ..1 1 ..
    **QQ COsS Iol
    C a -Ill
    stoV -4to4 .C C. ,C 0 i
    tio a 1 t a a a aK to II
    S CO rC CO N( nl to P. C S 2


























    -41
    II





    II 1)





    II 4 I
    1 ii ,-i u
    I I 1aou
    0 S 0a.




























    II
    II IZ








    Ii II.
    II II










    I i-,
    II IIi







    lI II
















    ll o l


    II I i E 0 1 II




    NO tO o N en o r ij co Nn3D" O Gon '- "O II 0. OB aC ,vil




    II E 01 E 3
    '0irriNNWL0wnoCM000tOOOaaOOOOO II H% .iV 0.@ II
    0 tv 0011









    IIN. a "Iw. . . 0 ( CD It
    ii H 0 ai *- 0 11 i
    Sm m r- ........... j I 0 0 11
    BII I0 0) C II


    II ID, 110 0
    SM Nm w N N w w n 11 Vz i- 0i1 ri a

    11tI W0 WW 0. o II UC 0 11
    ................. i a11




    U r 0 C I 0li
    ii i 0 -' I-4 I 6
    ii>. L 14i oi l



    *-iooo o-I*-i(N onoo w0 O^icMo ooooooo-i ix C XCO> ll



    I I U 0I 0I Z 0 II
    II -I *M >. II
    a a Li-ill





    a u 0 o :c
    It 1100 a) 0.ii


    *c1111141 Eii-ori w Ci l

    II Ul Mffl 0 0 .ai


    II 0 N en L N A LA 0 N 0fr-i LA NT N Lb W 0 en N n Nr 0o
    II o 00 0N -0 N L NI 4 fn N en N0 N M N CD Lb 0 N Cn er n Lb 0 1

    ii 000 C4WL-4A-4C W Ne 0 W Ne nL N 10N -4 C N i



    CD 00 0 00D ND N en W L A Lb Cn 0fn Lb 0 N N4 LbD e N Nn Co 00 i
    CD------------------------------------ ---------------------m
    11o C o r i- o ci
    IIw m e I

    II In
    III






    ii 0 0 N a Lb N D w- C n C O W O N 0L L b en w N V 00 C4i
    i 0 00 Ne0Nen0L N C> 00 m W 0 D Lb N en N_ Lb LA C N en mw
    II 0 N N N A L b N W e n N N 0 en C L . N
    II 0ooo 0oo o0 0 o o0o m0 n n Lr- n
    II enN m w

    II m Iw
    IIII

    IIII










    ii 000 N C .;C-i Lb; LbL CnLb.4L *b AL CJ W; LA N; N NW,
    Hoooooooooooooo oo -im-ttomooe/ini/Nr

    000 w ND w LA 0 m 0 enCLb00 CD N N 0 CD L 0 WD )

    I 0ooooooo000000o-N en LANC -4 CLAL eer n LAr' C iI





    roooooooooooooooooo omtrmm mm
    IIII
    IIci 00000000000000000-4-4-4e^M r M [~*fM ^ n C -4LAM ^ M LA ii




    IIII
    iie AL Lb Lb











    Io o m oormMr-n amNn- m tn( 0(iammofm t-ooon

    Iloocooooooooooo ooooo i'i~~i t mtnmn NNII
    1i 1 1
    i 0 0 b en LA 0 AN enL A 00 Ae L b- 00 i





    coo oo NN iime AH
    i II


    I @n @2 0) 1 O
    Co .-i a Vo c
    1.3 c C a .-i -i
    x, 0 m -a )


    1-3 -.4 V ,(
    a 1..' O .
    a 0 C ( C 0' -


    0-04 -4 'w
    z 0 0 -u
    O C. I OCB -i >




    -0. Li --i E
    S CC I 0C


    - .-4 > E
    H at 0. u r n
    < 014) CZ
    o jd r. n o )
    < I u. JI a) m > vE

    > wa @20n -i1
    0'0 '- 2 C
    >n Li L) O
    H m B 1 C $
    4 -000-44
    00 W -4 0.0 C @2
    >a Li -

    1 *C C0>


    Ei- -- 0) e-4 -J in C
    H 0 C0 -4 Li 4I





    0 -C'.- .
    Z Li C aC o u- 0. I
    0 0 .0 0
    w m- 0 A C N

    HM -I 0 -4 a
    E aO-I-*


    a 0 Li0 0
    Co13 @2 0nI E 0.a<-


    -41n
    a .C i 0 -u
    IN. CO
    0D II1 0 -1
    Soil 0-4 C
    Coflen,-i
    0i C ILi


    "I. D- x v OEiBOl 0
    0-ill CE- Q. 0I
    II D Z Z > C 3
    r II C0 M < IB 4
    0 II O 0 0.1 iE
    1 E- MZ) 0 E 0)

    t 00iliWO 0 LiS0
    o l HE 0 nEH a C




    o il **CO U) w
    Collen-4U< CO 0
    B -II H4Q0 a- E
    0.0 11 H-D 0a Qa0
    *-ii n coUZ@2iLi@20E
    II H
    II E- < b- II II II II

    0 11 0
    m o uil E- > S
    UC II n- Q


    0 o
    10.C i H n C0 b LW









    3~. Oi. .. .
    < (B II a>



    C 0 Iilfl -0eLA L CL

    0 -ii, WNL
    VC ii m cm
    O.1 L 'oi i^ ff' o wer



    0 li W- im C ~ *- N A 0 0
    W o N N N L N N








    n 0en
    Xii -iia>C. o
    II w e u
    II



    ( IIE
    C ~ ~ I a Ima oa N^ 3o



    II -
    II ** M


    >II W -
    *Li11 0i 0@2C C
    *i --00 C 0w 0
    re i C llc a -ii
    Co 0) II 0> a 0~ M -' a a a J a
    3H 3CeoL~NE
    II


    00.IICN C
    II 0ii
    C O 110 4@ 01
    0-li U C 0a-

    0 ll 1-i r- 0)C 0 I



    ,, >


    o - 0 ,J 0., 1


    E- o n 0' N a lI
    Ii m S Ez O
    C'il 0-i~S CO 0
    Z -4i R00 Q l >
















    I0 ** *R C L 0 w -r
    It.11 im CD mi
    CI OLW > Cli M






    1 1 l oi I i
    E.11 C 11


    (a En u i








    Ii M LA LA r- Lb pL Co 0 II


    0)
    > -J
    -'.C C



    E CL
    a o'
    -40 L





    >
    0a.




    PUh


    CM AC
    L)

    u -

    0 0'0
    E-O Li

    0 0.
    g (
    OU
    CB
    0






    U>
    H -i a



    0 N r
    03U





    U L) O-

    H 03
    EHLi
    >-


    VO C-I








    -4 -4 0
    Ea Ic


    0

    en




    0
    o
    n
















    v-I 4 it
    o >aau -I
    0 0'4 C
    I D 10U -I
    rNI H 4)l N
    nI I 0 1
    C g E (Li
    II 0 1

    11 U I 1

    411 CC
    I II L A U
    015- 0'4) 14







    0 E C 141
    II 4 I 1
    ( J 01 v 11

    II 4 1D
    NIo > I
    H 1-1< &


    11 H O .-lC
    H 5 E-* It f- 11I
    LA I hi H -I 0' I
    II 20 e4- II


    C.C E II
    11 0 11
    LA II C. ) II
    a II 3 I
    WII5- I





    112
    > V CI
    II -4 -4
    II 0E Dii





    II 0.- I




    II II
    S II II
    4 N N s I
    0N >4)-'f

    (H2 II
    N I1
    II & i *J a
    II NWC al
    II EO-I C
    II O U 11




    u > 04 H
    CM 1 0) N i
    II II ^
    Ht II W


    II I I ) I D i
    II LA-Ia ,COC II
    r-w NW r -womr- r- iLA o oLA OnWN F O II -CrJ. I -4
    NNr LACr M ONHW- CMCNab toN NLe A ONO o II O:a- 2-i n
    o N C .C e t .M .r -I a M co V W Lo N N .* 0 II 0 040 r 11 W N
    - alOON (HnWL LWW A- m-LNitorLNW WCoNo II go N.C CaD ) I
    Sw OOOOHN LWNWHO WCDLO Nn WCC II ZN LI0 0f. r- l

    NOIId- 3 1 4 ) 0HII
    IuLAW -*U'-II
    iic: 0 -Ic It c os-i
    II CO 0 1 CI 4 I IB
    II Q. Q. ) U 11
    r-.0r-Imn0Ltomn'rCeLatotov-ILAmowLA0nLA.aa-INIH OVa fl4 ell
    o;0NC;N -to f Wa; rN0iCroonC caO; C owo www It Z o4 $1 3 11
    InHN-i( nLA C' r>TtoOWWHoo wo00Q0LAL nNM Nr NH.-< -IN lIZ 2- 2 0a u-i U nil
    11 1 r. (I t 11
    Il. 4 -I 2 0 M --I E 0I
    * * * * * * * * * * 40 ) C024II
    HLAonwNCmweiA0CtoHHNier-wNmtoN~oooo iZ n5-Ie.. 0 4>.4 i1
    r A o NNOm m o w wNLN amo o r11 Eva lI. 1:1 e )
    r. 0- r. m mr wn wi m m r- w Mww m0 m- m- w r- r- a ll 10 v) w 4 C E I


    11 10 1:31 I o
    H en a B: I O si n I c
    II 4 m '0 fdl n II








    n U ') V I a a. ) nC
    SII r. 0 nIt
    NII M> CO v ) II




    ..-ewC COf-LAw MmeIWOC-LAOt r.InNrt0t -e o tOOO II Z' 4 *I 0 4) II
    S on oLA o C I-n A0 toI 00A 0 II 0 ) It 0 t" Il





    ll . a 0 E 4)U i ll
    nII -. v O ).4 r z
    .-i rna m, L Do re r- f- r- r- r- r- r- ll r x (a a) z u C; :3 11







    1 c1o1II 1. 1 1 H 1 1 C W ( II C
    II H t -C 'l II

    m11 wo m -I w
    11 E 1 (t fi Ir (a
    H(onH t Ii HHMtoCH ntoH*tCv-* n o 1104 H ItC;X;r 0.11
    114 C 0 n 0 II
    OMnoieAomn omoanOL rOinom moino no moo II tn4 )(U *II


    . r.-. . o O.o.O o . . .no n . n oo II O t 4f.l C
    111111ooo ooo1oimm iimcMcNoo ooa ll E E H ( C XO>II
    -1 "; Hm cu g H




    lI U (6* >-UC II
    N r- ls r- 0 r- 04 r- C\I r r\1 r- C r- I 4 r-l CD F- U) 4 CO 0 1U JZ


    'D 1l 0 1) -I a a a i

    -I ga 4)I (6
    IIH ra a) II


    NH HH11OO HH N NN nE-~WC It-1 4)I- t41.in I
    It j tC 4 i toII
    a a w 0 l5() II
    w N- an r- IN cD c4 s r- (D (\A r- cD N wo r- (D c4 t r- cDo Z -q U) u J 1


    II co 4 0 :3 Q I


    10 L
    +3 .C II

    0 II
    C 0 II
    It II
    HII
    II0


    It 0. II
    CI0 (1


    0. N
    HII
    -4,C11
    .C N
    I0 II



    CL 0
    LAoCL II
    r i





    5-II
    2
    hi .3 .C II
    SIt 0. II
    o IflCL
    2 ON




    C (0 II
    I C -n II
    0 II
    E- 4 II
    2 -I II

    O II
    C o II



    It H I
    0. U II
    1< II
    II
    4) II





    4II

    It (- II
    A ) II
    2 II
    CI 3
    II U


    *I t
    II 3
    (0 II
    ad 10 II

    II )


    LOLAI
    -4 in
    OLA C N
    w n CO O
    a 0- I)

    * ONmc 11
    m < (6 N
    bl MM 8

    w 0 000|
    O E--I Q. i
    0 0 Z > 0 C 3

    M0 0 24 0
    M D o e II
    CLAZ 2n4)NE N
    S0 0 4>
    >
    Cflw ia Mb.It-4 l)a -
    * < E- *OD **J IO
    H H E- CIt 4) 1
    H.4DadtHE II
    E-O 3 0.-i-J0 II
    u} IU c n 4(E II
    H 4 E- II
    E- < ll II II II II
    < ) ) 11
    n E- >
    r- M a H4 n


    U3 W.



    C.O -
    -M C, o 11
    oIa m 0 a II
    > a4 II
    0 N to00 t 0 N II



    N NCC oWo H L
    II
    H H 0 .I 0 N to . II



    HtoWC ~II
    M oot<0 no^ r-o m e r- i- II
    Ho II
    H ~ ~ ~ ~ ~ f H n0I A to I




    ** ** rt) cna m
    N Cto W3 C 0 LA 0 *- NM

    H 0 0 0I C I





    **QQcI CnO n
    C 3 NO II
    laTl'-l (D>iC, C, C.C *
    ai -j M tr M 'i a r- OEII
    II


    L 00 H Ho -4 cH C 0
    N 0CD C In In N N 0 LAD N C a, C. w CD 0 m N In N 0
    C 0 In 0 LA 0 N N 0 0 mNLAIn N C to NI In 0C to Co c Co 11
    0HHHN In In WLA N Co 0N H l NN 0n to In Inm LA LA Cen Co 0 H







    c aa > 11
    II

    SII









    LA t 00 H- H- .- HM In 0> ^ In W H- In0 0 LA to LA qj N f 0 In' to to- LAB II
    N Nm w 0m w 0 NLto AtH Co to H to In N
    CH








    c;c ;c c c;o c; c; c; o ~c; JM 3l/~ r c;^-ff co^ c c m, i
    c00000004 H H Ho aN In LA to o aN ) 0 > l Icon a% N II
    . . . .oII







    0II
    II







    fc r ; r Mr' N ~ c; 1N 1 ; r~; c; 1 1 M i~* cy r (n, 11; 1;f'fj ~o l
    0 0 0 0 00 N o w rl 0 LA en c o o o 0 I
    o N om mo w m Am o Inom o N wo Lo A o
    0 H HD H No o o o L o N C 0 N t H to No 0 N LA C a r o
    00000000000r-00tH H HN N n I toNoCH 0Hnd II





    H t o II










    H In C A0 NL n LA to N; N 04 0' In! tol H Cn (n In WAHNt 0


    to H N o f In LA N CD C C o In 0 InH0CNHI 0 C LA 0o
    a00 r0000000 r- w 0 "0 0 0 to LA In N w N o N






    rCL c; nH -tomHMoov c; cHMLo C Hnr-towOm
    ooHHHHOOOOOOOOrHHHHNNNNom nMMerto
    I I* II



    N .IoHHoH0 00o 0o 0 H HN NNN m rIn I InIn C I0 N
    I I I I IrI I III


    I uC ( a) I OD

    0. on -0 r. 1

    E- 0 1 t 0 a) I


    >C 4' U
    Q.H .4 (
    - 0.-4 C It C -.- n
    w. C m 10 1- II
    2C r 0 0 -n


    0 *t3 T
    MC 4-- 14
    E-O C It 0 1 3
    0 v Im > C.4 I ( II
    <0. I 0 0 rIt
    Zn 5D vo- (V 1.) 11
    I a) E II
    S C H E 4 II
    H %4 r VaE



    t w 4d In C (0 II
    H $4 (0I(D 4 $ .0 i
    >' a) tn
    0 >. ul 0 C( II
    o> *C > 4 E II



    to l H U I.
    hi C > C C 0 >I
    H IC n'O H -41 iI
    0 0. 1 U C -IIa

    . U0 C *, i ll

    O H H It II
    H I C 21 > I
    5- m I C .u II
    0C) w -U -4



    0 4) a) -4In
    I 4)O In




    IJ 5Z 2 4 ) 0 m
    LA h ut It E 0. ii


    || r
    II L O C
    nI w CO
    * OH
    i LA r=14
    II M0 E- 0 J




    hi LA r.4)o4)
    II n 0 4 ) 0
    nI w V E-0 Q.>





    EH- 11 11 11 1
    I WI > In t- W
    II 4 0 Lo 'O w a,
    aII n0 o Li m










    CCt
    II o (n C D O ( a '
    II *5 ll <"i nt a- u o d)


    II 40.2E-


    II E- < II II II
    I0 m1 E- > Ma S
    II In H 0 t ) N wN
    II cH 0 Q H





    II n .-H I
    II


    MH
    II
    II
    II to NI oCA N




    II In 00i H C> 00 In NM
    II r-ommmflMemn
    II mammain n ininco CT

    II (n *io m o m
    II o o*
    II
    II


    II -
    II moo womomC ~ r- tMC

    II I tfo r-
    II i s r-m

    II ** **


    r-
    tn
    n





    In


    m


    a I > in v 4 **

    LA 4) -i 4 4i ...a .. 4.)


    II II


    11 14 4 II
    II ) II
    II f> U4ll
    II -44)14C



    11 a) 1:3 a) I
    11 E 1 -4 u 1

    4 a) 011
    I r-D C IIl





    Ea tU 11
    II 3 2 II








    n1 E- r 1:3 ,
    II II







    11
    11 0 II 3
    11 11
    In n
    II >. II
    II U> .J *J
    II C C C
    II 4) o' a I
    II L 0I U II
    II E- 4 I N













    If CIL>. a
    N .. 4) 2 II 1
    II D 0
    II i.. N
    11 W 11
    II II
    II 40 II
    NO > 0 II
    II 3 I J IN
    H EO E II
    II -. It N
    II hi H III

    il O E i

    NO:>.
    II en > 11

    II DU II
    II 0 04 II
    II 1 II
    ll>.i.. II
    II M, II
    II E- O-

    4 Ia

    II 2
    II > Is I1 ~




    II PL -
    II II

    II LOA-N
    n H
    11 n


    II II
    n > N II


    u n
















    o II
    o II








    N II
    I II
    I II




    II








    II







    I II
    lii








    a II

    S11 E-
    II






    -1%


    < WI
    Cd II


    4) 2
    > ..I -I II
    II
    (U 02
    _1 4) 2.. II
    S a> II


    ,3 II











    2 42l






    u
    I4 2



    U











    U. .--II
    .- .1 II
    3 -40 I



    4) 22I





    -I f) II

    23 II
    U II

    >4 I
    0j-' II

    C4 4) II
    2.4 0 II




    I .J-> -
    0 -422
    S 0 CL4 I




    4) II
    > 4) -4221
    4) N .0 2I
    Wd Wl II


    0000 ~~ 00 4-4 l000 LAMN 400 II
    0 00 0 w 0' N 0- 1A- ('4 N 0 LO 0 CD U 0 0 '00 en N- 0 22
    II
    moooo w coom 0 10 Ooo amln(N~oo ll
    ao oo C n CD CD -1o N m wo om oN mw wa, o ll



    C;~ ~ ~~~~~~- (N c; a? (n (c* o; llc c n ID l*1
    0000 0000 000- NmA~ 0N~L '~Lb II
    1A N m o00 l m




    0 0oooo0 o01A N 1A m Cm- 0 D m0 n 0 m m m m 0 a 2

    0000 o 0 w o mA 0' t-4 C- 0' 0'o N r- r- (m' a,' I
    o0000 C, o o o -1 N m m' 0' 0 0' w 0' 0 N -1 N w .0 22
    . . . . . . ..** *











    0 0 o o m r- w 0 m' m w r- r C- a C- r L 0 wb LD Lb 2o




    oD o a o 0 0 N (D LA o o o O N m b w (w'4-1 1A 0 Lb (NI cL c N L Co
    ~ II
    ......II











    c; c; c; c; ; c; 1. . 1; 1; a; Lo co,
    en w L w




    0000a m' m- -'1 N m' wb N 0 LA (n4 r- en4 r- -1 mA a, a 0 00

    00 0 N0 w0 0 0 0 0 o wo N t co r N W w
    coou ooooii/ in u o onoi/oio couo utmeino
    N N II






















    N C- C N O- N w o r N r- N CN Nr- o N m r- o NC-N r, o o
    mCbtj4m~b~Lb~.-4m~b~0 I

    I III
    II

    2 I 2 I I I 2II


    M) -4. .0 * 0
    Id '- 2; -I -
    . 00 -' 0
    E- W 0 I 0 4)0

    Id l) .40 *-<
    M C0 240' -3
    Id ? MiO U



    cw OC 0 m I m
    a,0 a w1 u
    En C I U, it ~ w
    H 0-4 0 $

    Z E 0
    0 2 42
    EO 0 cff o ^i 3



    0( 0.24U2
    U3fl> $1^ $0
    1~a d 0 c;t




    0 0 2

    0-40
    n< C 0 I nC


    z;I 0It mf a4~) -'2 o E4 a'
    ZG *O E- I <





    > 24 1 '0)
    1 f 0)004)


    .. 0 CD _
    14) .000
    4 tl fC >. M U



    _ ) a0 0 -



    F- wA C %4M0ZI
    0> c n i
    C CO> c ri

    t-)0o w 4 A
    04 .4 U -'

    -44u Ill w -
    r-1 ff



    04) .C -I.H4)


    2 0H QIn 0.
    30 U M4-I.
    2- -4 -)^-4-' {2i 4-j i
    In tj 10


    4.0z 2 4 0
    W I-0n E "4


    11 II
    < ,i C II r II

    litL 0o II
    ffl Ou IInIo

    022 &. --4 22
    0 II H 0 2
    (U Z I d 0 111 0 2
    It l (UE- -0. 0 4 ri
    II 0 2<0 22 B
    o II .I CdI -I 0 ff E i
    -III 0 24 II


    ( -l H. 04C'E II
    ff2 2-0I'oO-M 0 I > >
    -422 C U*a 22E- -4O C
    -fl 'U. M 22Qff -I*


    U).' a,2l w'E- >2 n I
    < < 0 II II II I
    Ol II US
    Vl-.C II CT'coE > ) S I
    Cd)0 llA (1 '0 S II

    0 i en a, C wQ II
    3 II Ie
    l/w CC m CO
    < fl *il i aI

    II II
    II II
    Z 4 II II
    y .-*' II 2 ('4 LA 0' 0' .r r^ LA 0n II
    2 C C- 0 oIl n. f na P l
    S 0o II . *. *. . *. II



    11 n,
    0l o ow N 3 r- l
    C 0 II m 0 N l Lb W* N LA ( n II
    fl^ II . c. .

    II l o o II
    II 22




    u ** **
    ll ** ** t0 10i
    0) II > N0 0 -4 C- II
    '0 II 0** L C- 0 0 Nl
    4) i . ..C 3. .
    04 0) || (4 0- 0) 0 '3 0' Lb *J 0^ c<





    II S2


    S ?II US52









    ooooooooMoo irBOocoo;>^~ o!^h .~gS
    4I rW - -4 I
    N N LN 0D r-4 0 0 0 0 0 N0 0' 0 0 0 0 1A m D 0 0





    mw11 Z C m 11
    O W 0 ( Lo0' 00' 0 W N' N N 0r 2- 0G 04 w f














    oooooooooooootrocoooo~ooo'n~u SC C55
    IIEa UOO ( II




    SII 0 U 0 II



    -42l1 -'20' -DCII
    II U N 0 -4 r to 0.4 IIf





    1 14 4 0 (V to II
    -II a, L I E m 4) |


















    om.BonoriMomo omMooo -ii .
    o CM Co m a) o m mm m r~ 0 Ga 0 a% L n w o o(N r- 0 m r- H 0 U -L I W
    moooo n A w.i- r




    C; 0' C ; ; ; c* c* 0 1A a, rn I il H 0 II H .4 r (C 0 0 q z 11






    IU 0a > 1 tn I
    ) 11 40 '-04~~f


    11 a) r 0 1 w o 4)
    , M LD 0 Cm 0 -maII m2 22 9% m Lo L -



    0lil f flm t en 1A o- CD (n w n al m oi '- "' mT w ~ N< m 1A -1 oD o m r, U 0 ltOQ
    ~~ 21l '0-) CO*J .J fc
    I '- 0 o -1 i a)





    PLI -I l-i >.JU Il
    OD 0 0 0 0 -1( N1 -1 04 M M LO r-. W 0 ON M' c;' AU ~.44~'I- 2. 0 2

    -4.-4NM.;w~nI *J U4) -4
    224-2 4)-4I. V 2






    a) ) n-0
    rz> 2. 4)'2 2
    11 2Z 24 (a (a w) -2
    -1 N CD "- r 0 0 N (L m' C L N r (w N l No r m D w 0 co ca -4 w. 4) V ; 2

    CD 1 1 C14 04 1 fn fn M) 0.- ) C lM

    l00 0 O o oA-4 It 2 O B
    '.1 H U .0 0D .4 >4 4 2.4j2

    220 U4 -J ..>,-4
    1- 4 0 r'O- ;4(U





    W ~ ~~ u M -! cW1 !-
    CD ~ ~ ~ ~ ~ ~ Si an m0( - ;- 104CjC nmm(
    11 E -4 4) -1 22w




    omO~omom moiomO~omonoin kno V,4Q to
    0 1A ALA 1A 0 L m 0 1ALCDALn 0A m a 1A CD 1AL O a n 1A2.a4m' Co -42111
    . b ( . .4 . ( .' .b . . . .' .b . . 0 5 0 ) .- -4 4) 0. 2


    a N---4 o 0 1 o 0oo- -4-4 w r- 0 mN w f a4 C -4 1-4 f
    1 221 1 211 1 21Cl -40.22H c l 0 1



    II I' I Ic I a) 0 s11
    En22 1 wI J (n (a E a jII


    r- 0
    II II
    404II 0 -I II













    C o Ion^u c n
    02o u . . .0-4














    to
    I%) If w M (a 11
    Z- B c U E- -1 a1 fc4
    II Z2 > 0
    In < V3 4 o a
    1I II 0

    L- II (aE-. 24 II
    0 II aM IZ)













    II *l 2~).4 ~ i
    u>~ ~ ~ ~ EMi db 0^a -
    0I ** 0* 2..>> i

    0022 w.E- 04) 0 0
















    04.42 2-t0w 4-' I
    220 H#
    2 M2 d 22E- 2
    E- If 11 n
    *-42 II 4U3 S
    Cd)-.C IIr- -iE-. >2 ul S
    )4 II m w Q
    22A 00 III
    U2 OLI 0 II II


    E- II
    Z 11
    2- 4.4 .0 2 '( .4( II m < r o B O
    3 4: II 2 o0 a 0 m a Io I





    S 0 If . . . . .
    mCo 11 ^( o cMn ofm a (n

    > o ...... ..... ........
    0 0 II WE E N- 1 4
    4)o *11 .C 4.c

    w II







    11 xI
    nO 11
    4) II C.- (' 0' LA Lb .D-40 b 0D O
    'O II M .-4 co NM C- (' iLA 0' W 0'
    C 3 II pm tLbW ^' Nft ao aa N 2
    4 0t 2 .~ 0 0 .' U. N .' .'
    X II I IN ~ CM I
    Id II I I
    II I
    II .. .. I
    II ** 22 ** iI
    4)11 >2222-4^.........I

    KI 2222c 1-1 -42
    CI) 4) U ) 4 .e4-' 4)aac 22
    3 0 II 3 H oZ Cd)A 3~ LA wJ C- tJ 3
    22 IISIIi~ m ~ o


    00








    U >
    . ) u




    E CL.
    >4

    S-J


    0 E








    CE- 0
    u >





























    Md W )-















    II II
    II 0 II
    II >J i j
    II .-0 II1
    1 C- 1
    II 3: II




    II > II





    1 =164 01
    II U II



    II 00
    II (0 II
    II II


    II 3M 0 II
    II t II




    0) II4
    II > II




    EI I B -4 II
    II 1C II
    ' 0' II
    II E 20- II
    1O 143 II
    II0 U II

    IlI. II
    ft 30' 11



    II E > < II
    II II
    II j II
    II 0 II
    II I 0 I |
    II O C II
    II 0 0. II
    II IIU
    II II

    II A II


    0oCDo000 -m aw rwarn 0 w en 0 -w t w t a'r- N r- o 0 N r 0
    oo0 ooro0n a' r- n to0 N e wC m A r-O N Uo 0
    oooorlonwoo HC11rrwmDa 't/r-i^ royHt^' r'ton oe
    0 ooooooN n n w.CO.mmo4W-o.owr-mena'o
    0 C ooooooooooa -NoweCDersncomnat--wm w r-o0
    N N D t0 Ca' a,' 0




    0000 a a en m o e n co N N a' N ew n .-4 a' enma n a 01 N en en
    0Co000 N en NCr- Nc o UC 0 C en N o wto NN e w m e m
    0 N o Q ND 0CD O CD N N"I 0^ -W m (n cp oID 0 a'to r- 'A 0o
    0000000.4.4NNNowenrenNW'aiestoa'.ennOC





    0 0 0 0 0 0 0 0 0 0 0 0 0 0 .-4 to ani-i-f C~ t entr i tt N .H N
    C aooo ooooooooooooooo n - 0 N
    OOOOD 0Ne(n CO L4oeMn awOen a r-enNNO.-I.4 CD o
    00 0000 ND en wc" to Co .-4 ,N -4 enn a' 0. en N a' N LO
    N a" oN N



    04 LO r- r- r-




    0000.4 co Co a' Ceon m .-en en D en a' en e 1 co C4 C 000
    000 NCD 'D ND a'J C toN ND to 04 L -M 4 en Ns to N tO a 0 en 40
    00CD00DDCD000000m000000 0-4 M N4 C4 ( 0 N

    LM C 04N




    U, U, U, U, U, U, U, u, U, U, en U, U, en ea n U, en n an U, eo n UUU en 0
    N r- N N N N N NV N N N 04 N N N Nr- s r- N r- N N r- 0
    .CoeL-'Ctoe nm'emnwow.m4wtw.4 mewoCw-menwo C

    II I I I I I I I



    0 an 0D 0 C 0 en 0 eD n 0 e 0 en0 0 e O Dn 0U 0 U, 0 U, 00
    0 N U, N 0 N Cn N 0 N! U, 0 N U, N 0 N U, 0 N nN O

    I I I I I I I I


    II II
    0 II II
    > .1 00 0 ooo Co to wLOU r-0N o nm to e Wo C tnolo 0 w
    -I .CC ii0 00 U CNa'N Nt en'"'"0 a" CI to a' -ue sa ro s emn UC l.l 0 i
    o 0 II 0 o o oo w 0'a"ennto enN a' to w e on im0N a' o II
    to i a i4 0 0 0 0 0. e to C. N 0o a C N C NN to N to e 0 o It

    2 0 iIt N4on C C a' a' a, a' OD
    ftn .-l*II
    U II ora II
    E D o I D D Ny Lo cc o mw l m co o if
    EII II
    II II

    C C C II to oe a o m N r- mr c e oo m m o to m w Nw N II
    OD u 0 o o c0 0 Nm w m o me w a enen N en II
    r. 3 o. C II N C ma wo m o en wCT w w to rUtr l co tw
    E-* O1 U 11 II * * * ** * * *. * .* * * * ** ||
    01 (U cD oa oooooooooocoo cD w n"wmr- w w o" II
    .403 I I L II 0t 0M 0M 0 ,a nNe n.0 N II
    UM ) II II
    N II II
    0 II II
    0 II II


    H t -- ft 0 o oo0 cj 0 ofN n 0 N N Nro ( U r- aN n cr 1 m N N- ws t
    M H N B II . .I . . . . . . . . . . . . |
    S 3 II oooooooooo00 0 .4i.s4cNNn Cetancf C0en'"a"om w to II
    O0 E f n -e n n u tO to D o t ll








    0U It 11
    II II

    f t II
    ft11 II

    C o II 0 0 0 0 0o 0 0 o r- N t c 0UNN r- o a' w II
    -c V-)* II 0oo o o o o c-t- Mf sJ cI LnCN c 1;mto r Mm r II
    otg f..................................................i
    U 0 *0-- II oooooooooo0oooor-00000o000000. NN0oo II
    H 03 ft 3 I 4.4 11
    (- 0 II1
    H .C II II

    I III
    'I .4-lien eo n an an en en t en an en enn en en en en entot an en en en en en anenU 0 ii
    OQ c M 11 II ( r- eMi r- c''1 r~' chj r- N C^ r"' (M r~' N' r- c\j r~ (M r~' ( r- 0CM r. CM r'. o II
    S 0 .fII N. 4. I, 4. 00 0 00 .4 .N NNm e nenenemto f t
    II I I I I I I I I II
    II 8
    II I
    II II

    > OU- II oinoiaomoanounomoi/nomoioomoi/t notn o II
    II -oo II

    0101 II IS I- I- I- T I I I O O O O O t t t f M N r n o C C II


    Ia wg-' i E '-4-4 *l
    ft1 z o -, J i l
    11 a O 0 11
    II E- 0 .0 ( C II
    II H 1. 4 0 tO to 0 to II
    f t --I a) '-
    If M0- C 0 t- II
    II .4 C 0 t II o
    II 0.0. to~ui


    iiU)c: i ct) :om-Oil
    II Cb [.C 0 Hl1 .^ 4 10* II


    II -H :2 Q.1 4t II
    11 )i I 0 II


    H11 Z U - II

    fII a- C 0 f IIt
    It o t > 0.1 to a II
    II 0 r.o II
    II O) l 4 r=11
    II to OU C : II
    l1 1- 44 Zoto4 11 -


    II 10 ) 3 ( I 3
    II 1-1 1.#0 ii 5 0o

    II > CO E1 4II


    II 0 to 0 II

    ft >4-HZ ct .-4ft
    I 00Ct 0C II
    II H *toC a. 14II


    ll .4U0 'l
    M0 t.4 40) U C II
    II 'C


    ft C to 0 C If


    0fM>N:2 14.rY I-1f
    11 14 r 0 > 1
    II H t o 0* C. II
    41 u 0 0 C D l f
    a1 A ]t U > u -i
    ft t f-I nt4 iU
    ftU ).H.t C- (U l



    II +U toW-Z f
    C; *ju 4
    II H m C t II
    lI M 3 3 -l S II I
    1 E-0 0M U 0 0 CI

    ft O 0 1 to tft


    ftI- 4 .Hto--f
    ft r-'---. 10CO f
    ftU)Nt oU) -f
    I m ao o' (1 ) I
    I u m aD )-i r.
    II C U (u # 0- II .*'.-
    -i -1 En II
    II -I M I -
    ll" +JA. c c |
    n tE- E a> 4, H< X
    II z n w C 0 o I
    ta M n m E CL

    I toto ( I) 1 fI
    N.C C--1 ft
    g.4- 2H "ft
    0. Ofi .4flft
    14 0. C 0l 0 I
    ZH 0 I t a 411
    N- H 0 a (I
    U) -i2E ft
    w C 1-D *U 11
    1 0 -4 C C r '- 1 1
    . rO t- H-4 tft
    En| rc 10 1i n)
    0 0. 0 a) U f
    0 cI 1t ~ -a In

    0 0O -3"-1 r.1 a; V)a
    H ^f3oH OT 11f
    H OE O-I U^O II
    H I -A II w
    E ic;t 0 -4 =1t ft
    Z 0 .> Q oLt II
    Oot --4Ctomeft
    HC r->. (a
    E-I-CIO -H32ft
    u"O to > 0. 14 to io
    < C Q. I OC 11
    u ) va 0o IE a)
    0. 0 0. 0) f t
    S3 ft- I 32 4.41

    -4 -. -I > E II
    H 0 ,CO 5 # II

    114 Q) 4J II
    -H w (a a 14
    to 0 U O C 2 Ii





    0 0 1a a> r. 11
    > w< 11
    to c a rc of
    >'1 OftdftI
    J- a CtotI II


    0- t o to -4 C t ID
    >, -i 14 ft -
    U) 0U 0 >tof
    O; si uL i . 11
    H1 t 0 0 H 1 iC
    -4 O > U I .j
    (a 14 It

    Z $4 a) 4- 11H
    cc' t a' H C 0


    4 *j M I i
    -It "0134.4 ft
    io 4n to -0 U C C II



    2 1 r 00 .-I-lt0.ft



    1U rOH f t
    H 4 to I c 1
    M .0 To t I
    So v w a) f t1
    Ui W i0 10 -
    *j 40. c c a)t
    to H- 20 to -lfl II
    43 t 14 0 0 II
    U) N to to 2 0.'f


    A III
    0 I U eo C ||
    it)CL4 uio ; ||
    II en CO II
    Oftr- 0-I f
    0 U * 0 I
    C o en- -4 u ft
    to U) -n nI
    0. I't w ( n 0 0 f|
    -f Ct U E-4 1 II
    ft U)H -4t ca


    (d Zli .>> > f
    C 0f r< C0to0 0) f t
    to "ft H .C40to.-fl ft
    r.1 E. aag
    04 It E- O 0 0 f
    I t E-aS f E II
    ft H f l E-ft
    Ift E 4 > 11 f
    .40 4 u
    mn j s C,4 E >& VO)l D i |


    0 1. If t e E- > O 3 f tI
    Co llen o 0n0 (
    U)Centen. M fl ft

    II r- a I


    H II ft

    Z ftI
    N *.C II C to C- N en -aN II
    C t II '-i n to t o a_ a,

    C o i *4 0 N en
    to II .Hr-Nta--t ft
    0.1 f ca' ftn i *o





    f r o ft
    fjflu ft01B




    0 II 0 a' N wo ea' o n N N Is
    S o . . . . . |
    S II 0 II

    C D II en t r-4 N e Nl W m to a N
    0. U Iin 0 D r- en n enII

    f I i II
    N i II'*f
    Q) o E rtn a*ncji



    ) ( 3I O C 1 0 0* %e II j ll
    ill r i . . . |




    "ftIft 0-H IIZ f
    **H*Q C **II
    ..O .." CT 0333 ta

    .4 to II t "0 -H 0 3 1. CC II
    (B >H in M *^ ** ** ..J n
    U) 0 I Ui 0.4 M S E :2'.. II

    S II o U) oZ U) N eni N C3S II
    II II


    II
    i ,C II 10 r-
    SC II C C
    r II f1 CO
    0 II 0-
    to Ift ca) a) a
    C W 0 E- -4 aG -
    0.4f NI E-taO 0
    .41 II uH-40. 14
    ftDzz>toC.:$
    + II al ZE Z > 0 C 3
    ft H M M 0too


    tO II ww 0 >>
    uII .4 r- S aE
    o ll * lEf-*O T3 -T e
    Co IftN.4U< Cto 0
    0.OfII HMQO-'T.E
    no ed EEOA
    aL. ; 11 E-. = 0 -1 wi -j 0
    H II UU tO tm
    II H E-
    f E- < II II II 11
    I) < 3 S
    Ol rC II In Er, > E n
    W aO I NU r- W 0 -I
    4 fII tCN Q Q
    1 0 I| *
    oto- n l .4 0 T e-1
    W II a
    x 11
    E- II
    z II
    [ ,C II en r- a' rN C eo N Co '
    O II ft Cwwwtotora
    3 o II .......
    Co II (Mrom m al oa
    C 0 II a en a 0r- m
    to II C ,4
    II 'D



    . . . . .
    "0 II


    X II w l C L I N "o N0 .
    C :2II t o n a o 0 C C

    4cl r- I
    0.U i N 0 0.0 o ena'N
    Xf II )' 1 I)
    Nil N N


    11 A r. .oto


    "141 0-4 41 33 3
    tt li nC
    StoII to "0 -4 0 1 C C. f
    U 0 II 000 1 0
    1 II 3 **QQ c UN S t C
    10 OT c-3-1*J















    II II


    - II O) II
    II 0 0 D D 0 0 0 0 w I N n c *- (0jCD rIn 04 0 r 0



    9 U

    fl 1



    f l.............. ..............
    I C o o o ) o 0 oo0 c 0 0n c.s N- o o N r 0 -w o c0j

    S111 IT0 11 oo o m n m M m o
    H -4 ?& oo o oo-a wrmf o o n r-oN co oo nooooo



    II II




    14 0 I E-S wn N so n u-,uh s -
    H u oo
    .3 I U- I 0 Sn C N N Sn [ 00 N Sn r- l 0' MO 4 O r0
    5 n 0 w wm


    d II L! > II !

    SII 1 0 0 0 0 Q N (ooooo0 0 0 mmmN N"N 0ma 0 0oooom



    311 3 II
    E II 1ti II

    11 -4 11
    11 300 I) - -- -N -N N o o (oc- -- -- -- N - mN G- o-
    II 0 II .O O O O . . -.. . N . . 4

    < II II
    -411 II
    M0 II 0) 1
    tD >U)H 0) 1 Sno0oSn oi n oS no0n SomonSnSo n0o o 0eo
    NR (0 NX. 11 0 I SMNO 0!mSNONM0 NSn-0MN Sn OM Nn o- u N I-0o0Z
    M-Il M IUII N 0 0 0 0O0O0O 0 .4 N N N N ((M< 12n (n1142 OC0.

    II II


    0)


    )-I U


    .. a .



    u w


    U
    >.
    0) 0'N





    0)

    H -1















    < I.












    -4^ -40.
    MM0-


    II II
    II II
    Sn 0' m Sn 0 N w r- m m U w 0 n0 n
    -W Sn r- m' m2 N N N r- N N Sn Sn r- (- Sn w w1 w. 0 I
    11 N w N Nm r-4m2 w r- n 0 r0 (n r- 0c' N M r- Nc r- Sn Sn
    II m N (. .w % . 00' r- N w .0 Sn t. .( .0 0 .
    II------------------------ ---------------------------o
    II II
    II .44 (0M '00 11
    II 1
    C;C ;C;CC it
    SIIII
    II II
    II Io
    W 0 N O (.0 al al q' Sn 0 o0' N 0 (0 (.N 0 Sn al 0 W





    II N .4.4II
    II
    SII II


    . . . . II
    it ~ ~ ~ ~ ~ ~ fn nr CD iD m r D DMLD 0r l wDt
    II IIt
    II II
    cli










    II

    I~mwmmo evwomesmoII
    II r- m (2 ( (. (2 0 Sn (0 w m 0 w r- Sn N O 42 i- Sm 0 (2 en 0a 12 Sn Sn S II
    wi f i n ( 0 m w4 N S 14 0 .4 N (' W (.0 .4 Sn 0' Sn Sn 1i N N N IM




    m -4 0 0 N oo 0 ooW0 0cnoumi II
    -1 1; 1- C 1 1- 1- 1- 1- 1o- -:-- - -- - - - -- -





    m O A OOO mOOO- 4- N m coH'4m(coSnNmnm0 N D








    l~~~~l l
    mI m n4 Siw w wO w m w m M nLn m 0
    II II
    II II
    II II


    II I I II
    II II






    r- r N in C(4 r- C-4r-occm r- C,4 r -o cli r r-
    wI (2,-rn o wM O4enLo om-4 oM.LSOC('!nNMN0O
    C3 Ln l'2 m 0' 40 N Sn N 000-40 N m2 400 0' 00
    II II
    II II






    i l AC
    11 IIC ;C ; ; 0C4C4 ,1


    II I 0 1 01 I II



    IH v C "m al
    II VI .,C i -" II




    0II m.0 0.- r 011 r
    II 11-. 0 (I U 0 1) -* II
    I (' a 0' w1 It
    .JO' 0' 3
    11 H 0 C 1 ) C 0"-1

    ai 0 ar Iun


    113 EOH 3 H

    IIZ00. E 0 01U1)
    11E- C CC 0 :s II

    II 1 0 0 II0
    II .-0* 14 10 IIa

    i E O a L 0s0 E
    ji a c oE


    II 0 a 0 C IC
    II I-I 1 n 0 4 1. I




    i i >1-. -, .-a II
    llwr r*o o< u







    S-410 0) I C 3 E
    II -, 4- M 0 U 0 II
    II C 10 ) .- a m II


    lV O l W a
    DOd In ) u cn c

    11 '--. C 0 II

    II U 0 0 I I0 II
    II (0 C M II



    II 02) 3a,1000.-11


    I aM n a) 0i o
    j -4 c II

    A. o" -'0 i

    Z H U-4 O 0 M 10
    n 0 0)



    d .0 1C 1 0) II
    E- 0 4 c II -
    c. 0 10 0 II
    0..010'I-I 101
    0.0. In w UI
    0 VOH 0 ) S0l 11
    4 3 h M U II
    -40 :s a, II
    zE 0 -) u n:
    0 0' -4 0 0 r 0 II
    'a M > %1 14 >0
    S0 0. C 1 0 a0 I
    SC 0. I 00 10
    ii. Q.0a01-1 -4 Ei
    U-40)M1
    0. a, 0O 0 0) I
    ZE 0 11
    2OE- 1404
    I C0
    CL > E
    < j a 1,i 0-
    10 0) U E II
    1..0a,104'.- II
    H1100) C l-. M C
    >4 0) n 10
    31. 1000-Il
    r.O ea) i
    01 a, 0 m a)
    0 1 ( a -Ill

    U O o^ oa i M
    1. 4 U 0 0
    H CU C --, .
    .4 U 0 0 -10)
    C -I >, U -

    0 4 4 -4II
    la 4r. U 1

    Z I j ) 1-4-1



    to -4 III
    CL. tO *1-.* Mr^0 -C1

    11 a, 0 -i 0i



    - -41 0 c C II
    ,d4 1
    o10 na 0'-4il
    U aC I0)4-1 .0 II
    (o- -4-- a, -' -'I
    1-' 0 a, 1011 '-

    10 u 1 M 0) 10-4. c

    .- 3 r10 U1. ) 0I ~ II
    0j 1 L r. r.- I1
    0 E~ E 0)" -14. 11
    *J 2 l)h 0) 3 I
    En g td to r= O-1 11


    -H. II
    I




    9- n
    10 0.. I





    o II
    0


    C I
    to -I


    u v
    10 .
    01

    0 I
    10 II
    0.. 0


    4 II
    u 10 In
    0C1



    E H
    Z -11
    3 -III
    1. II

    0 1CL
    3 on
    C00
    10 I

    0II
    0
    C II
    '0 II


    XI

    1-s I



    10 a
    10
    I 0)
    II


    . II


    0 II

    1 -11






    Cou
    II

    li X

    0 II
    S0 II
    10 11
    0.. 0 I
    to m
    II

    S4 11
    2- II

    tI ,C IIn
    . 10 0 II
    O Il





    -41
    2 a -

    S II
    .011

    0 0II
    0
    10 II
    0.,0' II
    SII
    0 II
    -O II


    0)II
    *O II
    C 0 II
    10 '-41I
    0.. U II
    X II


    0) II



    10 a, I
    MJ1 II
    S II


    0II
    40M 00

    0 -4 I



    HO v a) (
    4 co UO 0 0
    d D 0 E 0)
    C-4 H I II > >



    F. => 0 00) 10
    N0 = I)s0 E

    "- E- It 1 I 1

    HN 0
    Lo a L -a, 0 11





    0 cv ao m m 0 n I
    * H
    lO r- 0 mr-

    HI

    N 1~1 CD 0w mm1 11 I

    C;C ;14O ID,
    C 00 t












    -l 41 U, ET EM E l B
    *-< n- ro f r i iI








    1'0 It
    02j 411
    En Z. U X r- o 2a
    4. -0I f r- -
    rom'O w om IM

    - o o4 0 I 0 ( 'I N 11


    -4 0 ( l Sn I f* o. 4 I
    I 11


    ** Q m ge-i II
    -- -- aa, I
    -Il

    --00 *0*3 14
    0flC -Ill
    (l C < i 3 4- 4 0ii(
    S d l 5-s.0.0.0.nS11
    3CJ2~2~Sn~r-~311


    ~40 II

    -4- 0
    CO 0 II
    i- *- C- II

    -m 4 II
    02 .4i1-1 11
    1d. O 100) 0) II
    3 U E- -i 1-. 1
    S z > I C II
    0 H wd Ill -4 10 0 :
    <02MIM()10 II
    1<. 0 O0) II
    d 3 0 E a)

    (,Un a10 ) II E



    I-4. 0104nE II
    H E-* 1 > > II
    L) 4.~ .i )-





    11- O1.I 11111 II
    om QQ U H 0a
    E- 3 0 0 II
    0-413 H-a,3
    E 0 3 i
    - > M


    *n- II
    o c4 En 0) II
    02 ( II



    - * N * 40 II
    -II
    2, -M C4 r- (2, N f0 II




    o M r r' c o o i l ) .4S n0'M4n0) II
    w M m II
    -40 II
    m- m coo i/r r


    N n .3 a, o 0 r.0



    1n m o Lo
    N 0 0 0 oN

    InS u)

    j5
    ** ***M


    e 3 -, j a)

    10 n -c4~i 0) uIr~ .00-oS-0
    11.- ).e--- )I


    302r02~S 40r-3 1














    II II
    n w
    I > aj a tn to N- C0 In C C- to 0 0> Nn In 0 C, 0 C c N4 N% 0 N' 0 UN r- 0
    I -I C C co In In m r- CIn In C % 0 0N N 0 M Nien Lo I OC n co- 0
    I 1 a eci In w w w 0 C 0 0 I n 0 w to 0 I C 0 0 In In C co 0


    II 0. aII,- 4a ,m .


    II 03 0 IIooo C> r- o (1GrnI oo
    0 ot W 1AimO wc o aCINrn enm om e W r nc




    Cn -W1 r -W CnL C ( nL n M 01r C iIL
    II 0 II
    II II
    11 >. II
    N U a a W I C N0INtoC 0 N0N C 0 to 0 C 0 C In
    11 CC C HOC? .-otoCmto r-Omoor-WC-ONCanWoo C





    I -4 U IL M oI o n n NoCo coC 0 I n In to In In In fn rC rt


    W ;J C i C o p ooLD w cn q0m0 o nn ca Ci 0l / cot^ (nO ("d m/ f% co C14 r r-
    If ..3 CU 131C 11 ONi 0 0 0 0 0 n 0 o 0 0 w- .-I .-I N o InI I nn L I rI (n 0N



    -1 .9 11 . . . . . . . . . . . . . .
    U > I

    = aC I oOtwcoOnO C, C O (n Cmww (n M ro- a o N






    J wr wD m wfM M C~ m iar ao M c,4N C4 c o wC co iin flo
    11 C CU 01' Q ON r- NOWN CO Ifn NO C rto Cjr- CWO n tor M M O N In 0
    I 3 -t7 a% 0 4 r-I I N N NeIn w In to ao Nm0 to In InN In 0 0o N








    n 4 tl 11
    11.40 I




    n ) 4) C 11rjr ^[^f ~ \ ~ C; 1 C; -rir (M f~; 1M r- CM4 ;~ 4D, 1p; 14 r co
    IIH II


    1 2 0 C. 0



    It > W a- It to N W 0n C N W W C C 0 to N N N> N C> cW W N C a
    IIH II






    II II




    -U > < oino; omo- o C;OC; 'irt moinoiN N oi o m o
    I0 VCIlI NNNNNNNNNNNNNNNNNNNNwNNNNOo




    I -I C I C t o In Co In Io Cln t Ci O ro CM In oci o t
    I 30.. ..................................................







    n I 0.. -L II N 0 0 0 0 0 0 0 0 N N N N In In In In to . .5
    ) M II I I I I I I I I
    II > II
    II II
    If II


    II Z II I


    II II I I I l i


    II0 II
    --4 II 0) II"m m m w r w m r D L o ( %c
    - II C I II
    NII a I m C 0i W-IN n -o N I
    I; I CU- 011 0004I 1Nn-In.ItNN-4OoC;nNO1O
    oi I 03 000000NntoOr n-o NNeN Os ntoNNNN mon I
    NI 04 .ll o4Ne onmwom toCa oOOOOOOOOO I





    I a 0 C w a w w 0 w N r- I 0 w 0 rI m m w r- al w1
    I M c U o 0 co Lo t L o a' co 0 n Lo LoL co n


    I I -) 0-) 01 00 w 0 in m Cjco-4 NC Wa c- 4c'- oMCTCarO-C4. -IOO tl I
    U) 11 0) 0 11 r w" M mm w oNm mes m wLa



    H II E- CU3CUM 0 0 0 -a --4-4-o W W to Cv N I I 0 0 I0 0- 0Y 0 0 0~ w Lo
    II0 0E -4il
    I3 PO I II
    ** 3 II II



    II 11 II
    > II CU II II


    d11) I II



    SI -0 0 0 0 0 f n co WW N t o In oW In 0 0N 0 0 t
    IM IED t CO- oooocmmlinoma Ne mmcoCmNomol in rOOtCM mru)





    > IC 3 cC- I c00oooooo0 CiNW ,n. o ON CC CO*;oooo C I;







    I ~ -I-I Nr In- Inn In- to- to- to to to N N NCNNi
    0 a0 I II
    II B II II








    ll 11 c" 0- 0l 0 0 C; C; C; 0- C' tOj C'j o Miitir ^ ^r / 'j ao c) fnir (n C
    II II II
    II G II II
    IIX > II II
    011 C0 noo WWC0nocNW mN~nnnnnoNOe nCO.1Inmn0





    SIIO C 0 0 0 0 0 0 NI C o 0 t I 0 0 0 0 0 I
    S IHCU31 lI II








    C4 h (I ) II 4 0 r- 4 r- 0 r 0 r- 0 N r- I 04 c rI Q 0
    XI>I h. II II
    H II ~ I II








    M II CI II







    V It 1 o 1 1 1 1 1 1 1 1l
    II Z I II
    HI C IIN NN N N N N N N N N N N II

    II II I I 1I I I II
    S II II II
    41 d ~ Ila e a e e m e m m m e m II
    N I 11 I II
    C I C -1 II n

    110 1111 11 II
    S II II II


    I V (n a i 0' II


    rC. -' 1 I c ll
    S-H 1 E-4 11
    0. eOT *-I .
    '. 4 0 C C CU II

    H 0 .. 0 c c- .- .a ii

    O 0- C 0 C '- II
    0 0.C0 0 r- C ll
    0. r t c U II
    C I 13 > -C u II
    W 4 10 2U 11
    -Z r. 0 1 II
    o a 4 CO C 12 C II
    HC .4- ->.4 l
    U Z C> 0. E C 1 II
    < C Q' I >C < IE





    0 1. U4.-4 0 11




    S o, r -) E Ii
    SC U C E Ii
    4 fCU4 frI11
    0C U- CTCII

    - a) C -II

    o 0 4 0 0 U C 1 I
    0 0) 1.0 a 11
    ) 0. U CCII
    H C C 0 a M 0 II
    - 0 00 UII
    I. -I i 1> .U II
    a H cU C II
    -d 3 Hd C II
    U- U C II



    .0 12 I n w
    n a-a, c II


    CU E 0 ) CU i
    a z CU w CU 0 n
    tj W 12 m 1 I


    I M M 0a 1 I I
    M -4 J CC I
    0.3.0Ca-i- 1
    X -4 I- I
    S0a C V ja C
    E- .. 0 I C C (v ( a W i I

    W r o l '
    1z- -IC HIl


    t a 0 M I 1
    M C I M I ~ M1C m II
    Z 0 0 wM U. M II.
    0 0 -IC CU C MO-I II


    H C OWM-M I
    E-* MIC 10 0 '-I II
    OT 10 > Q. IO M II
    SC I 0 C U I

    O.S 0 0 IC 11
    >. a M 11

    r a.C 1 0 I I
    Hdn2-CU 41



    ) 1, 14 f0 ) 11
    HC C 4-I- P 1, i C &4 4 I




    H M # IBai11o
    a) 0 a)M 1
    0 U > CU II
    C0 >. Iw C o 0) 11



    Z M *'0% ) *UII
    1z40.U4 z El



    CUCOECUCII





    HO ~ nlM f *I M IIl
    ZVU -I- o J 4 II


    4 I C M CU II
    CU CU 0 1 0 C 102 II





    AM nICOHMOCH l
    4 U ,4 |



    P^ aM M fU IIr

    < 010 -M II
    >.a C12UC I
    .4 -CUUC j .vIa




    o IC 1 CU I II
    0d ro v -i a rn 11
    M0 ' -U


    01 a -1
    0 12 a u 0 9j H
    au Ma J,.4-4




    -U n. I0
    w04 C II
    F. 1 l- CU U fl II
    04a) I- 0 II


    CUCUt.0-I M C)a W c 011C
    M ) 1CU-4l II
    4a -4 E a -1 11
    a-a CCCII. 0
    a ZCU M CU 0 03 1
    to 12 CI 10 E a I


    fal P ii ciM r.
    0 11 0-1

    w cn m 4) a
    IN CO M
    OIl O 0-I
    CollNI 41 I
    ft *- Id (/ 0 n1 0
    C -II 0 E- 4 I.
    II Z Z > MC II
    I a H C ) -1 cHa N Ci

    4 o lo -0 0 0
    II o il 2; OO T CU II
    to l. m In 1.4 > >
    oU0.I0 0 4- >> a
    C OIIN -4U4 CCU CU II
    111.4011 o I- 'OaC -'ao I
    .41 C/uai M4 BiE I
    I H H j II
    II E- ill 1 11 II
    1 4 .) II
    CLa. in,-uE- >M 0 I 11

    tM Ma .1
    S ICX L II
    M II P II

    Z I II
    W -a .C I 0 ro m Ifn n IM 0 NW II
    x CU rN r- N t4 Lo N WN o N I
    0 I-IIn- w[ n --f-MI-uIr I
    S oi . .. ............
    C O 1iN o -4--l to r to InN i l
    CU II 1InCenm I
    [0 In P^ i (r -ir m tl
    0 l

    II II

    0 it fl OMCCM mi n 11
    T o L3* a) w aT *- m o 3 col o n -i 0
    C~ I *-f c ~ a ml C4,
    X I ri 01 CM 4-

    >~l w o V) Ul
    il I m II
    o II I o C II
    C IIN
    0.UII ---4r -nN I

    II ** 11
    II ** ** ** II

    I0 A d *C I
    EII w-- V xC i
    C0 ) ll *Ja 2-l -411 CU- I 0 C1 CII
    CUIC Ia 411
    m iea CUI UV I .C.CC V I
    3 II 3 CA A)0 I to r- C 3 I
    II ji


    _j
    aM IIn W
    (alCUI a C
    (0 ~ r P0 3
    Inn CO
    0 - 0 -4

    C II H -41 M
    CU-I) CO -M4


    II 0 10 0)
    II 30ZZ>C3

    -II C 0 d >>
    IIt 0 1 M= C4 M
    0 II 0 E
    EH- I -411 < Q -

    II H4 E-C
    10 m D. Lo l m M 0) -A3
    w L r- II t 3 0 <- )-
    II < 4 II I II III
    -411 4 US2
    C01M2


    w 9L. m M IX
    to CU I .0 w ml U-



    0 0 N o M-
    4 rd 0. 1 10* MX
    S IIvo Q



    D oen
    3 II









    c
    Z 11
    a ,c 0 II on Ad z C N
    2 CU 01 In Co C Ino InN N I ,
    O IINC0o.mIo tsojn
    0 ll *<'c o m o iL ~i>t
    S o II N * *
    Co ll t-ro ria -mo r
    (C 0 114-0InI CM In N *"I

    II w< (
    II N
    -a II
    CU II IM rIn o I 0 Cmm m Ion I
    -a II N InN N N -- 4- -
    C 3 II mIn Cto N WC to o0N
    ia ^ II *. . .
    pAiUn1 roooin rwN~r
    CU-II- NJNC
    0.d II -4 00toN No r-
    II In
    II o
    II *1212
    11 ** M M
    II >12

    a C II CUn C 40..
    d C IIc I a *C a

    3 IIn 3 to a) < In to N C 3
    co H u j
















    > II
    > -'-' II



    S-4 11
    -4 0 L II
    :3 .0 II
    >




    0 U II



    H> II
    U I -' II





    C II





    0I 0> II
    W 3 I I









    U 0 0- II

    S1. II





    4 II
    M 0 -' II
    O N .cII


    II I 0 In I t) i
    insm m~sooo ( no o omn fm ^ H N mr-wr- OMl Tr-ir- r--o i o~o II 0 OT 11
    N M w on m N co 0 0 NN N0 Nl (n N LD 0 D 0 0 N1 w c '1 0 0 14 r 2
    Me o st c o o mm tr m w m a m II 0 0 Q. CU0 II

    w ZI LJri E.oi 0.- 3


    II Id 3 C' 0.U U II
    11 O 0 4O 0 I0

    S0n L cM Lr O c r M C) LIDm u 'D ^ r-or In w -1 M e ) 11 -4 a E 0 '-

    cMfe r-t o cM Nsotr o wmammeII r.nfnm E 4 l)
    i-irw onins rwf-otfteonm r ot-oo mawn i-ooo oo ll 2 GO o- 0 II t

    ot<-cC~ nnrjn ~ i~r (Nf dui( i0 oooo o< nc <- > i
    IIE 0.0 14 104
    ~ II 4/204 > ). U0 I4
    _; g g ; I g I 11 E- C- 0 0 (a i av
    -o En -4: r= U t3,





    ~~" liZ > 0.40 UB I
    It 0 0'-4 9 (a r.2 It




    II < C 0. 0-4 C 1 t
    IIH-4000 -4 : II
    Ii EU> E II
    Nr m rw r-r-Ncl -1otyr- -1 w o ma a Co En r. )




    4 o r- r -o Clm M o crI M r- oA >. O fn La r- N r W ( 0 I 1 U
    In 0 LID W W CMO 4r fln N ( l C M CO 0 LOc CI r- CD --I II 0 O I i



    S-i sa M n l r-4 M o Lm L t -mw aD r- n (o o Ln acemoo a o t Z F 0 C 3 E 11
    II 0. 0 II
    ,H =. 14 0 II



    Lc ID 0 4 I
    11 E. >-4 r-0 0 '1 l



    00 m U,0.-qOUtorC'M m oa m ro-.r--w o -roO, *I 0 i *OIt
    .4.4.-.r.miev-a-4Nm)w4,4U.fl--ooooooowm II EU, 000II 1
    * * * * * * * * 1 1% U a 1 t







    CO cM cuM C tJCM mP- Olot O O O OOOO II [x] C ,CC O > II
    1-1 ~~ll --I Moc o -i n ^
    II 0 U Il l 0 D




    II (D -* >M 1 U w -
    II o to r- r- r N C H
    II < . E II
    II 00 *C 1
    ' U, .0 N N 0 U, U, oN U, U, C' r U, C -4 U, 0o t Na a 0 ( 0 II m 0 4Go o o G3 EU 0 M IIf









    C4 r- cy r- cy 0 v 0 ~ 0 N MN r- 0s rN U, r,- U, r- ev r 4 0 r0 U, r0 U, r 0 II E- U mm -4 O0 0 C II
    UUomwesom-wmn0 mooMemN.-4O0co II O-4.0 L.144
    . . . ..** * * *1** * 4) 0 i.00 .I II





    (M0-iNNNN.mm U40 0ooocooo -.)UN000 II U
    1I H .4 0 D O II
    IIf U M III II





    II E-* U) .4 C H .4 EU II
    11 >4 1. 10
    II .- j II









    om ,ioiUomomoonoimioiiomoinoinoiUioioo II l) Li rn II-
    Sr- M O rN l O C c o on r- ON 4 r-N o r- O II co., c- o I
    -1 0 D .m I w . m N. o. Q. .o w .110 -- I. C C I U
    N(- --l 4o 0 0 0OO -4 N N NMsflN, 1' U Co CM c E ; 0; c II
    1141141 41 1 IU-40.UO)- ( 0 3 II
    H4 M 0 -4 E O II
    II -. 0 4. .'.' II
    it 04. U) r-C



    I14I11 I II .-'ZEUin O:3

    It E- --I (I) -I lj


    . II

    on i
    S0

    II *
    EU1 II


    II

    o II

    Co II

    0II
    EUII
    0.. 0 II

    Oll

    o II


    0~ EU II
    c o 0II



    H coII
    Ea 11





    Z o 11
    0 II
    O ) 11





    3 on
    (0 0 Ii




    EU II
    0..0'II
    0m II

    0II
    '0 II
    C II
    Z *H II





    EU 11
    S ii a





    X) II
    & II
    II
    II
    *O II





    E U) II
    E II

    U) 0 II
    C 3

    II


    II 0 II
    II 11 OOll00U 00 NN-40N004-~C'N 0U,4'tW~NW000 l
    II I j jj 0 a LO Mr (n Ln "c^ li] ^o clj a cl 1-* al^ N^ 0 w^ Mn Mr wD N LO D 0 / O l
    II CC cII o r- r- r- N N u O o ac o ca co e-s -o II
    II 0- 01 || OO U,-4-40-4-40,4 r 00U,0U,0NvUo U,- 0 II
    II o o o N r- .............o i
    44 3 Oh -oo00.N04, t.C'0.0 ,N0NU,4 -00000 I
    II m.2 011 a o > o o om w co o o 1A Go LID o ( D r- ol


    II 0 II 1
    II U S II
    I4 lI



    II 0 0 II 0 c Nl cr-N "N 0o oo MoWo O'N oal U II



    II 3 III

    III.) IIII
    1] IT a) 11 o m Lo D co cD D rn m m co r- o ( to so


    II 0 I I

    II 0 oI -ic r r c 0i r-N o mo C o
    II =/ o o m w Innu~r O fln m C3 or-C w^Tt~~- m m rM
    II E-, (a 0, c o c> o D m Mf rr r- r-- mM w^ wt O O o If


    II in h
    11 II Ii



    III 0
    II (D II NI





    II 0
    II a II o o a, r-I w (D- m nN r- m NII n
    II 0 E- 3 -1 U, 0 0co 0 N 0 Nii








    ii '-- II.. . . II
    II 011 30 0 ~ N ~ C C ~ , , ,I

    II II




    ItU IT Of 1 c; o c ; oo; N C o 0Co o o


    E II E- I
    1 III
    Ifs


    cv r- c4 r- r cj r- c\) r- N r 04 r- NM r- NM r-- r. r-
    I 0'11 04 U,4- O O O l -l 0 4'N O 44 o om m





    II ^ r w' 0- 00000'0 oo 0 0 0 o N r Nr0 n00 00llI
    14H 0U) W iI


    I in In (U 1 II0
    * jC 0 C II
    Id .C 0'0 II
    S. -4 E- l
    L4 0. 0 J O II
    S1-.. 0 i e a E ) 11
    2 >.*IM.0 0.U)10 1
    C4 - 4 1 11
    M .4E0' :3I
    w 0 C 1E 0 U- II
    1 C; 0- (a I C O-< to
    0 .CO O E '-4- 0 11
    Q.Q. U ai I
    a CL w Q Li iI
    ) C I in O M a)
    M- 0 .0 u) -4< (D 1
    -4:3 Lin II
    2 E -j u --I In
    00' -1 a r_ n
    " Lr. 4 -4 114 1
    E- E 0 E II
    u 0. 1 0 > 11

    w Q 0 E II
    OH 0-4oE0a> 11
    ' E.- 4 OE -0 II


    i 0 0 0 02 II

    l.0.4 > 4 iI
    e- j > > ri E it


    H.. UOo 1 I 0



    t <- *3 -> U II
    a) Li 3 0 CE ll



    1- ) >.1 4 0D 0 II
    S I c;
    24 l U1UO 0 II
    0 E l g.0 am ) I
    > ai -411
    ai ) U r M11
    Id r_ 0 >1I
    lF4 aO CD o <- -4 <^ I
    SEU 0 0 Li II
    0. U) C' H -4 (a


    m4.4 4'i41
    L A)LivE r_ 11

    00 In D C4-1 I





    II I



    -j Z fu w D 0 : 11
    Ea L. ini mO E fl ,C 1
    000.r01-4 <0IQ
    CI)-01U 0 's l
    MO U). II"
    M (0 0 U) 1D4-

    o -4 a) 4U).n 11
    .4 -0 c0c0D11
    (EU H 2 0 EU .0 11
    .4 EU i0 0 0 3 i
    [n) Lx M EU 2 0. 11


    .4.11
    414 0C II
    0 II
    0
    EU 4













    x o CL.
    0

    10
    -4 II



    -411
    0 II





    EU
    0.0 II
    II

    -4 II
    .0 II

    C 0





    L) E 0. II
    0 II







    4 E II
    0. o











    H II
    Ix).<' .0 II














    0 II


    3: il
    0 0 II
    EU o II
    M. C'> II

    < 0 II



    EU -411
    Id XiC II
    S 1xft II



    1 0 II
    Li e II
    .4 II
    E U) II
    .43E II
    U) II
    3O II


    Sr-C II
    * 0II
    -- 0 -E

    W0 C-10 to I
    SU E-.--40. i-


    SU I0 D 0 II
    a, .0 > >
    U)H.x)04EUU) II
    S t E S*O to II

    M0 0 i > II
    f ..o o.. > 0 II

    r 0 0 d II




    a% r- o 0 w' ar IIO















    14 d II II II II
    Sr-- > M M O
    >0 / 0I M

    .40 C







    n w r II






    0.4 0J .l 3<'.4.4.40Hi l)
    S3eU"^s)"4>444 nZ1


    Cy M
    r--o CO
    C;0 00
    0-4
    ON O
    d D l )0 E0)

    3z 2 2> > C:3
    r- a, 4 -4 )
    E-M 0d -j
    d 3 0 0 E E
    v) 0 20
    r--w 0 Si>

    * E- *O *O C



    0U< 0 E0
    cn 0 > t .0
    o< U) 2
    C'UoE-. >14)
    toCC 17) 1%

    w co4 0n -

    m Lo



    o l00 N U, co U 0 c cu





    M, U, 4 c) N 00" U, ,
    r- fO rw i- ncM ti -tf
    0 .-4 CN U, N 0- U 0
    f0 U, 0 U,
    -4 to -
    *0










    'A a) &o =o Z av V
    C' a4) 0e U, 0 U, C' 00
    0 In C0 .W 4 C' o 4 r- o
    I *-1 o



    .. .. 0 Cl
    > 0 -4 4 .


    Eo0-4 0 Li.0.0 0Z.0
    **D O 4- D^ 3^ J(
    0.40 .) i + 0
    EmUUIo-.0E














    II II
    - I 0 II
    o0I >.JJ II
    o a C I


    r- U I 4 ) 11n






    IN ) I-:U
    0 U4 '
    I II0~U








    If ii to,. li
    I 0 E II
    II II
    HU > II

    H u EU .- n
    DH II
    SU N 4 II



    u4
    S U 0 ) II
    U IIHU> II





    ZM 0 I






    II -l -- I
    I 4 I3

    M 0--II













    u En U) -iI
    S >0 Il
    MU U)0 II







    11 1l




    u uO H


    II I L 0 U I 0' Ii
    II S4-',C 0C iI
    o -liwN 0 l-m m oo o oioo-4oo0Ww Q) 1
    o - r w om m cD r- *I 11
    Sw w0WWNCm 'w m nCDnwNrN oo l 'D P O( 'A it
    w r o m w o o m wwoo^ "f w*0 a ao 0 o- u(on 0 CD 0 jv 11

    C p'> ; C;< -ti f*< r: r: W,^ '- ir c l f co* co* co, o zl H M W .0 inM (a II
    N li"M mom em m mm em o m m m No ,(,c )_
    II t0 *O E C U 3 I1
    II Z C l f0 l U II
    -11 O- CE C1 I l
    i r p 4 0 E m II

    LA Il H Lo0 Cfl- Lo 0 DC o o 0 0 Minfin 1 D
    II 0 0 n 0- u II

    OO M 'l/ Onr C; iDCT; -E000 aO Oit H r. $ -4 --1 >1 i II
    1- E - c--IS m-oME 0 U : 4- 11
    mwor ~ eo omme mam emem w io u o m>Ilwmm
    SI U'0 EU > 0. Li EU va
    II )0) O M II
    ~O 4 .-4 .-4 v 0f in C o in 0' .4 c in i a tN 0 1 o IE %- .- -' -' I
    II .: #EE U- II
    ...................It -4 *. 0-)-'I
    a 4 C, m w N wr wN n w w w r- C. 11 C rO En r r- oI r. U 11
    II q. E )4 > 11
    rH*- t 6r1t- ( \] c rn 10 wr r- D r r r ~ r r r- r- r- r- O Q
    II 01 ,> ) J II
    trp fnc M n T9
    Cw oamew OmNr N r-om cor- w ol e ~ l O O C01 z$ -Itca (1) 1
    Nom wom emo m ~ mwe o N ~ w II>- L U)0 0EUII



    i > U) a) Io_ a
    c *--N 04I r- *i >r: Z* C r 0 II
    1- -4-4oN M M N N N in 0 wain oo N- r- coN N NNMl N 0II 0 tE UO -I 0 U II
    N~OW0N-w -4 N -Cf W4 N4 lO 00 .- -EII <# 0 1.. ..1I
    .....................11H0 0.U) 0II


    a300 (-4...- 4NNNjcMr^ inWN^ -innNMi.oo o o oo -E II N.) ^C0> I
    II H r. 0 .-4 -4 II.
    II ) 0 0 0 U)
    -I.. -14 1 -'->.U-
    II IC l.I I -I ) II
    oi 4 EU -l* J II

    w***110 U) U C EU D C M




    C; C; (M C; (M C; fMi r^cC( ~ ^N r. Mr Mr C,4 14 (14 r~* M, r~' o il. 1 -4 vO 0 CJ_
    1 1 0001010 4141- N1N1m 41,I IC I QEUUI C II
    IEII I I I to $4 a) ||
    II 1E m ( rU) P
    IIA0 CU)4C II
    1I H--4 U) 4 t .J .J
    II .-' EUII




    oioninoinoo OinOi noiOinno oioiiOnOinoo II fl-')- QJ r ( II
    1 1 1 1 1 1 1 1 tm mZ rt) i-o (1) 0 II


    ONONONinN-ONN Nr-NinN N N M II o EOC D-:
    N-4-4oo00o0-4-o4NN NNNM(,'mmm. II EUE-E)EU-E I
    11111111II .ZEU iU)0 II
    II O.)N'EU0 ..1II


    -41

    Cu
    ou
    C 0
    EU *II
    t. II

    III
    SII

    EU II
    0.0 II


    -4 II
    -.11
    on
    Col
    tif *




    H o


    / C in II
    S-II
    ,C II




    H- II
    2 "-


    z -'ii


    D oIl
    EU4 II
    C o
    Pi0II


    0 II



    *O I
    EU '- II





    0l. UII
    O II


    U) II
    i II
    II
    II
    II
    0) II
    II
    Xi3II

    M 11) l
    SII
    II


    r. 0
    I O II
    0-4
    0 .- |
    M (v 4)
    D u E-' -4 a Ii
    n z 2 > i
    CZZ1O 1Iid0 B0

    Ow 0 > I
    2:. Em ae\ E
    0 > >




    ONO U)4 3: I
    E-N 010 '0V
    a c rf to )
    E -< D O I)
    o 'U H in 0 N 0 0 g -




    0 O L) = En 0 4 fn 0 in
    in in 0 II -4 4* -I 'I n II
    E4 > III





    o 1 C; 1 0 ] 1 i










    in w co co 1 nON 4 0 N-- 0 I
    04 (n 0 N 0 a, 000 In
    m wM 0 a, CD w









    I E a; II
    a,

    In U)








    ro 0 (a



    .-' 1 -411
    yowmwmeOt~me



















    EU l 0 -4 'U) i n r- '0
    miet m
    U U) II
    3: 0 O 0o N in iM O 3: II
    wmfemenowom eu al

    I I n- f' l
    i II
    II
    II
    ** ** I

    > m m -t* ** ** 11
    **QQC0 OSES 11I
    a> .j (i i3 j j )n
    St GM KIB Ot;iHa oSI
    e QM II


    II I IIU .4) I U II -4
    II C ) O .JC tO EC II EU
    11m- Nr N nom amM m0 aon I0 01 E -4 -II c



    M (^ n M W 0' WA rfl T M W. t O tM r-M r- Cn D co Mf a-i CDi r. oJ --1 -4 OfT '0) (
    m in- r- e- W 3 r~. No" mr-o ~o I r- wr il C0 m"mE II 0
    w o omc o mi B a o m m O" rI w CD m w w r o

    * *D, * * * **r* **ll; 1* * lr;OC;* *O *g It O IH1. II P. *UO O
    osmo ~ ~ ~ ~ ~ c mee e :1wm m m s OHH 0 Q CIA
    M II E L C i00 U I I


    lIIH-'N.O EUE>U).-'I EU -
    II C 11*Ur 0 M 0 II
    II 0.. U lU)M i i II .-



    11 9i.0 1 a V) w ll ji .
    II 01 EU0UE II 1ELP





    CD m m CD w .- w m C. 0. CD .- .O .o to m .1 .i V) .r .1 mj 0) ( jE n a ol
    m*f^ w y (D r-.i wo mc wC~y mo o o ^ II ri- w- r- "" 0- r- CD II md m w ^m1
    " Oio ao CD N C a n a o c o CDCDa l r o 41- 11
    iI O' ty 24-i r io i I
    e e -4j cidS II 0
    cO0mm0Wom-4M-m40 eminioo-40-NN' -nm Z EO.-U-4E 11 Co
    **in nn3 *n mn cntCM.- *-OOOOOOOOOON if HO w -4C >1 I 0.0

    o w e o m m o e r n e w o o o o o o o u1 0 r- n (v
    N IiE-'-4OE O .-EII -

    S00U 0> 0. i 01
    II L C Q. 41 O, EU









    ll li.0.U)'ir -4 Ei c ll 01
    II -.. r Z 11 4 r
    II U).OO U) C II Ci
    -4000 a i C -M0 r i i N Npi N r- q- 0 0 H- > o a-' II
    w m-i r^ m m o w m w m o o -40N' in n i II 0 w0 m-4 U0) ri l 0











    M ii *o o0- ai Oil 1
    omo No Noma emiio.U).adweMU-EMO i IImm











    ii 0')'- 510 liz -4
    i > -4 > O1U 113 < m .
    10* o* m*ecne C C;-; ooooo-1oo1. 0l4 0 a 1olllw m


    -4o0 ini ON- 00am in- in0 wN- mN 00 1 Z N-0 N-W~ -~~N 0N flN 400 -4 -4i -4 II > Li -41 0
    a)-- - 0 0 %1 II E


    ~~ ii NO .000>1 0.
    lI > 0 ( 0 -ii .[

    iniOnoiin on nionininn oii moii oZin oo l Vu-' 0 E -4
    It .In~ o w N N ~ o e ~ m l > A 'j r.I 4) 11 caor



    NN-mNCDN-N -N mNmNN-NN N -N N -N 0 Iiw C> w l.D m m CD C>11 Z 0.0t10"
    or m m w r- m w* O ( r m~ o *110 tUU) o- E r. o
    N-4- -4- 0000 000 4-4E 4NN NM~m '~W II EUU).Q-4 M II

    r- .~I m w m >- II
    1 1 1 1H 1 1 -4 U -'U .'-r 0U 0
    II 0 a )I L
    If CL -4 I C
    mam m m me mto r.mmm m m 1144> 11 r. :
    0 -N N Nin 0 Nin N r- -n N-N N- 00 E- 4E4 M 0 OU C I I U
    - - -----mIl .-'1 0 0 011 -' E4 U
    II E a. EU II r
    HII to V I a)





    H = u 111 0) -'Ir


    II

    Iir. 0
    II ON
    II -' C
    11 nm C O
    II 1* O0 U
    II 0 (M -'-E0
    II 0H N.J U
    wd I nX U E- -E U1 ).

    O i ) 010 VI 4 t0
    N S N. EU UO ) 1
    L4 Z 0 E a)

    t 00 ') -
    E- 0 V j v r.
    o(l U < r. (B a)
    I E- D 0 0 0
    II MHM- # E
    11 fr 11 11 t11
    E- 4
    II < U E

    II C r-i Q Q
    II * O E
    llom 0














    II 0 N inN N C


    Ii 0 ~ in in 0
    II-------#
    110**4Win0 tc
    mlNU CD 1
    II I I N-4i0








    II
    II fo t^ o 0 E'^t


    nO Cs ^ci c H]^ 3.f(












    CIi ID -
    II -US d11
    II B M r n nc
    11 r n T r m i r








    II O r
    II b M
    IIv w o e w
    ll o ** ** to i


    0
    m
    o

    I


    i
    0
    o

    1-


    II > 510 (
    lli--00 003:3:3:3: E
    "OQCOS S0
    C1 3--' -4
    I > E U U) Li .. .. .. '0
    I U) .- 4 U) f -' E E E-' U)
    Sin3: 0 r 0 i (a
    j W j


    II
    II -0
    II > 2 J




    II >.U
    II @#9 CC


    II U 0' )
    II 0 r
    II a- 0 1 U) 4

    II E U
    II 3
    11 u

    II U
    II H

    1I 0W = -H r)
    J .




    11 E- it o>
    II E- EU 0'-









    110 3:
    D L-)S
    ala
    -01
    II #)




    II U >

    II M U
    II E-' L
    II 2. N. 0







    I .-l 3
    i 30









    ii0 00-.-
    IIS U)-







    UO C -4
    II ) N
    o00-
    00 ~

    8 D ~
    II st L
    II >0 t/
















    CD > 'J I CD Lu CO -u t r C (u l C 0 C M II
    oi ClioOWHC m C0W n in Mo i w w EImIN nww C II
    ONl -ICC IIwm mo Na o es Q o i II O--- O H '
    Nil 0- D D ow M go rU No a, uo cMCwrM n O ll P O LO a II

    tI II 2 OO Ooooooooo H.-oo w ..N a nn% n .CtaO o mo Go Zt -. 'S Q- Cul
    8 E ft* fi r(r o lt Wd -- lD 0
    8 3r 01 H 1 e cr *21 3

    SII I '-H O Ca IC *I II
    a^ii Ii i II~ 0 CuLI- 'C)a)ul
    4)11 11 ii C, o.1 %blOW 3 C J(

    411 C C Ilo om ioHIam nmnODoDM OID II H On Cu II. 41
    Il II li) Cllu>oo O c o w( I c0 ooooU olooooo oo oo Oit-*t)cj in iwn ncoy -o r^ll2 E O^-' U-

    "11-3 II aQ R I1- O H uII
    IW 0 -o 4 (a Z, t el a




    I II II 0 C Q. I 0- C I
    II C II l o CWI- 0 E I r
    1 IIUQ Q CD I Wn M 0 IO
    0 U || 0) k. u )>>-
    I. itm E-om w ~ me o ~ m c Z o

    HI s oo nOo o m IDCWONCCW,. o vD I e0 C II0> > Z1
    9> CL M aa)oE1




    411 O W- II 0 0 0 0 H N ON II a) #IZ 0 I
    H^* -4 oo 0 r- 0 yCTM al 0 l O w C elcoiacttLO 0 O aN Lio cO Bo W 'E'1- Z 4-4
    H It E-' o Om^ l0 ao CD o CDriri fn f CD (D N N mr- ar rni/ r- w< C, U 0 ra^ a a) 1


    4N1W0 8 II% CuW4CZEI
    Z 1 D 5III .W'CuG-I 11
    Wl I I -1 i . . . .. r II
    110 E m II 11 (a a 3 ua C E 3 [

    II H U II I l 'C Cu C I 3
    <. C2 I 0NHn~nD~~n'I~HnCn-I~~ 1101 Cul~-i D.C C Cl
    IIW )II H> I H )1 1

    lt C D Co o1.3 CD moIoOI II 0 w 0 m I ) ul
    I 14 II lIP.*H*'** *.** *- 3..U -C III
    t/H UD4^ Ilooooooooooocoooooooooo(Min m-T-*-lluC ACO>II
    HI II lI P. Cu o H H C C II

    lII II II1 HU o -Ct- I
    z11 II >II 3 4 > HII
    E 11 < .-II N HI II Cu Wf lH II


    E*II I I IIH u VU W II
    S 11 II w H Ca u C II
    4 11 k IImlIE ICu -' Cu . I 0 1I
    11 ^ C - Cl LCu --II N II -C Cu Cull

    II aC)iu-1 O L0n 0L0 In 0 CD COfO OO flO fl 1 C C 0 w) u La 5 II
    II E O ~ * * * * * * * . . . . . . . Z fiC .^ QlliQ. tI I





    ll = Q r- II H HH Cu.0 N 11
    I a II IH H- I-T OOOOC Cul II
    -l II II O 14 6 II 0 :
    w ll I C 0 1w ( II -
    011 > (U-i l om/oi/oumoi/Omo oomo inoi/iomomoeo M^- ll) MA 0
    mu ll w II lt tc ^ lc -t(*t*i o o o oo o N N rt( Mt N n nm m m rco ~ ll fO E- d t ^ yit
    W HI II I Il I I I I III 11 4 0 I 0) 0 3 1II
    n 11 11 0 M id $ E I -J1


    C)
    >..
    -' 0'Cu1
    W0 -1 U

    E a.
    ILI

    >I
    U.
    C.C C

    E- v" a)
    Cu 0>
    C -H



    C:jQ
    u v a)
    a1. P. ,









    E- 104'
    03

    U>
    H H.-I


    1-1IH 01'





    -O C -'
    Cf-I.C

    H 03D-
    HI-i

    >41-.






    CU N.C
    H* HI P.
    Ca Ma


    II I 0 C u I O' II
    II .C O C II

    m w- w- w- wM 0o m m- "f m' mo CD m^ "- m- 0/ f oC^r 'f ^oo l ^ 0" II
    wD r_ r w 0 Ho m r-o mc w N mInni n 'o II CL. w a-,H Q II
    wnr me rn wH w r- w I N O 0 n 0 N N mnO'O N o0 I C H E H CII
    In .nH nNCN. ID.. CO InHH ...... InWnEn 0 I P. fl 01 o-' II
    11e o n f O 0 1u 0M
    In CnNM ID O I0 mw o C 'HNo i o'0 II Z C4 CulIIl
    rttcrt t i CN m w ~u r- r- co a%1 a' 0, cm E" a' C, a'II
    II E C- 0 U C II
    Hg i t0 a ) l
    II X OC C c0 C D =0 II
    ll a. Q. n ai u ll
    mD w cti^ Mr D m r r f c o Dm m' a, cD o^ a, rD^ '^ (D H 0 "0 ) --I (D ( I

    w m w w 0aa wos ~ tfm c w au 0 a w w wN 0 aom II r= 0 -) U-1 V) I
    . . . . . . . . . . I 0 O' i r. r_ () a) t
    WIn W N; nn; i IDc; NHinN 1-1oinW nC II Ca C Cu l >C- ll
    N NC0 N 11 CHo 0 C 11
    InN n~~n 0In~n DN 01I~0 W0 HCI~n n~ o' ilH How 1iu II

    H II-'HCuO ~I~Il

    II U > a. 4 C iC U)
    11 c I O c II
    I- la) 2W 0 n ul II
    II .D. Cu I E IIl
    II CunOO u II



    o w co a; 0,a ou
    II N HH 0 C WC II
    II H '.4H>- IOl


    w CD w wCuwuwtw. II
    w a, w m CD w m 0 w O r- r u D a i

    II> I-.C*n ui
    ID n H 0l N. C In 0 I In 0' In 0 0 In In In In 0 C 0 H 0' In 0 0 II 0w 'o Cu H c Cu C Cu II
    C;r; N* CN 4t M* ||' wi r.) 9l 0) >0 l




    11 13 U 0 (
    it I" -- 14 >
    I1 a, 0n -nOI (a 1C1



    IIE C $. r- o 4 II

    0 C t 0C H H 0 II







    I II I I I r- (n w r o
    ~~~. .41 HI .. .
    a 4 1 a) (a o 0 i t
    II HI IC w ut-1 U CL II
    HC D~ HC ~ n H~ID H nI CH nI C11I C ii0 HH Cu D'^ ll
    ll rl.410. c4



    II H3 Hu H. Cu .4.41
    ii E- Cu Cull' i-i'-
    oinO~n~ OnWO~ nOoOinonOnO^OtrouOnOg OgO Ij Cu-W Cu I I^
    orin^nNO in-inN Nn(OMnnNON~inrnoOOZ rI ^^^^ ooo ooo^ -^<(MCM~mm~m,lii .-"'D. oCCW
    N. IHHHOOOO0 0HHHHNNNl VI Id CP.1I EHOW .u-fl ll


    H II
    .4 .C II



    u II

    II
    II
    II
    H II
    SC II






    0 on
    C 0 it
    < a & 11

    Cu I
    o II

    H II




    Ca .4 II
    a- oC
    B: II






    Ca C n I
    3 0 II





    S II
    H II
    1. CD II
    0UII
    Cu i

    i n
    P. 0' II

    n II
    C II
    C 0 II
    C H
    P. u I



    CuII
    1.II
    .4~II
    C Cu II
    I4 C II
    Ca Cu II

    S I


    LO
    r- C O II
    0 -4
    I n Hw m I a
    Ca _I4 tn

    W 1 D E- C u4 Cu
    m 2 Z >nc
    uZZ>CCS OO

    M 3 0 OW I1
    *o'E EnO E II
    wa Q 14>> >
    * 4 nHU 4 Cu C 1_
    a ita
    HQO uHE II
    E- '3 0 J -' 0
    W U = w $ M
    H11 > E-
    E <4 II HII II II
    E- > u II
    (MJ 04 W a) -4 S


    N C W
    N 1 00 II

    II
    w w II
    W D-In N in Nc n II


    H o N D W I'!
    S en co Hon
    H ID 0 InIn






    ni~inff'r- r-ffn~

    i> vI w^ -4 itc ^ M ^
    I in C 0 to
    MNM II



    HID* II

    m m ** vi n
    In to I 0 r- r co0 I



    * ** * II
    c s m N II


    tDoj a~ *~i ]
    I II
    **u*u II
    "*0*0 0 Cul
    Cu H Cu 1. CC II


    0.4 u M .4. CuII


    S II II
    w II (w ) II
    DC. II n > C II
    II o C O II
    oil * O II
    CO0 1 0N -H u II
    C II C E II

    H II O E- H 0 01. II
    II DZZ>CuC II
    C I uaHIr. to a)
    II 4 O 2 MCu3 II
    HI? 11 U3 0 OWl II
    tC I .oS E 0 B E II
    CuP.IlIn'I 0 >> II
    o II * E- H 0 II
    Oil '*4HPO. VC II
    CoII0 Cu Cu II
    Cu II I I I0n E II
    & I E- 0 -J 4) j' 0 I
    V) 1 u I n w- tn E 1


    .0 11 E -' CutO II

    II E E- II
    II E-4-l 1111I1I1I I II
    H ui.3CuP. N C ii IIi 1
    WX I .In O 00 Q II



    O 0 II

    noH 'OH II 4
    4 10 II .4W1 II

















    III
    1. OK .C II N C 0 N II
    0- II nICDHn~ II



    C =1II 40W II





    TA 11 r. II -4 t1U U Mi 1
    ( 'll (UD I = I0
    )0 )II n a) ( N II
    II II
    VOII II
    Cu 11I 0 I 0 I I n 0 0'f ~ i f I II
    C 3 II In W In N~ H- 0 0' ID 0 In II
    P.1. U II 0 .-4 S1.1 N M Id II II !


    Q) I > -1 ' . * II
    Cu( l i Su II


    I.I Cu II Cu) Hl Cu 1.. C C- CJ .CV < I
    S ll S Cai a:; Ca C In ID In C S n
    11 II













































    C)II
    > <-^ I M .-4 W W~ i, a C' D U, r- 0 ^ w N N rw 0 w, m D ", n- T 0
    C1II
    1 C) C r- . r- m . w .- m m m w w m w w 0
    Dell~o wo Wo.Omm aa Fa, mmmmo


    w m(DU nw m m ~ e w N m w mm m r- C C


    .. Q) 4 11 C '-^ m*) lo* tD lo* C ~ 'y ^ ~c f -^^ / f D^l ^*^




    >.
    -I mII w( mee n w Nw oo r-mwm qene a




    E- My ai LO cl CD m C, en r- 0 cl cl 0 co CD al m W^ co (n Go ^ . '
    LD a, m 0 w( D ; C ;
    II L

    I >





    MO U-II oo LO fn O m o LO co LoO co M MWo m LO o oD
    U .4i .4 I m U, 0 0" W a N' m ~. N W^ '^ U, 2= 0 m 2= 0 W 01 N
    E-0)1II ..................******













    0 H
    ..2 C) C C) C; C; C- N; Nl N ('1 Ui 1; 14 1; 1; I ,2 ,D,~ 0 0
    1
    SCII
    H: >
    C) II
    U> II


    1--. II ~




    II- 0(fclN. 4 U r- 2 2 ~ a


    >U H
    E- (C 0-- Ns N^ U, N- 0' U, a' .-l 2j 2=0N N- 0M c- c (M 0^ a' ll U, t- ,H 1l U,
    S ) O 1 &( = I l . ( . . U . . . . a . U, U, U .
    II ~











    U 0 C) || U, - N 2= 'a. -. = 2= 2= U, 2= U, 2= N N 0 0 0 0 0 0 0 -
    HC) II
    E-1 II



    ~OU II. . . . . . . . . ..mmoo









    t V II NM .-4 F.-.HO 0 00 0 00 t- r- .-4 .- Ns NM NM NM 2= 2= 2= 2= Uf,
    II I1
    > C) II 0 ,0U ,0 U ,0U ,0U ,0U ,0U


    02 0 IIN N -- 000 00 N N N N 2 2= o=2 2,
    I1111111112 ee me em mo


    I V/) C) 0) 1 t)
    t -I 1 C-0 r
    ( .r .4 -H H
    P. 0 Of .4'0
    $ 0. C z a)
    - 0 m w -



    1 0 1-l C (C r
    00. 4- 00 -4
    11 a o U

    Ix .- *I -L r0)
    G *j E > .
    U3C : U U




    E-E 0 -4 V
    CL ;o i -4 --1 w

    CI I O-0
    r. (a 0 u


    M 1 o 0 Uon -4 ra CL)
    -2 E0 C) -






    H 1.0
    w z ~u 0
    0. C)' 112 (C-H i..
    LT. 4 W M 4








    o (aCI 2)-H pCL) z
    a' 00 > >< n
    < c a -4
    SU 0 o







    .2000 -C







    CL4 .a H -4 (C r

    j 1.~(a -H
    E- I E4 ( O -
    0 a)














    to 0 -1 -H E) z

    to. .4 C Im- 0)
    E J- 0 Q) <-Jl jc 0
    h 1< I n ca^ -
    H CO 0 1



    .1 0 at z
    .> aZ lU i4 a) 0













    In 1 fla=C).
    >u A 0. in uc
    Id C G C,
    U 0o *J )
    CL E ItM > U -

    =4 U .Hl 4
    r1fl C >-





    E(CE<-. 2 ) O(UC-Hf
    O Z (C I-> C) 0 I

    0 2. 0) (C \
    1- fl 0 ai ,C
    E-*- 0l I *
    *.l X M M


    W MM (B Q1


    -H II
    . II (x>0 C O
    0110
    C o ll o ( w
    re 11 m C- U
    Oil o . 0 O
    0,rt 11 O]M r ) a
    E 0II
    ll i wl c U) to W a)1-
    ( II 02 2 4 M
    II 2 M > C) C )
    II 02H 2. C-H(2
    II 502 C00 0
    S11 M 0 w ( )

    (C II H.)0(C.Hd 2
    o 1 il ; E- 0 0 V -1'0 r-
    Co llo It C -C at


    II HM -
    II E- < II 11 11 II
    H E 4 L
    (C2)IIa'a'U2 C


    ( 11 C
    i





    Gmilw w w
    (0 i &4l r>
    II m cocQ


    C4 10 II o a a. U0 U
    0 II. . .
    ig 11 J )



    d 0 II D r 4 a U



    x
    ( 4C i
    (avII j
    0 1 .H 0 .4 a. a' N . U,.
    C.oII. .n a
    )I *I 3 O B
    isn x l w I D r-









    II
    nc





    S II ..
    Q.) C)r-Hi^~ o ~ i
    .4 1I10 0 mooEmmm(
    (ClI2 3 rr r o.4 r-c
    02n ) I C) .4 . .4 .- .C.
    ( i Z O 2womO(M0 M 0 mo
    X I I N


    II ** ** M B)
    m m 0<* ** ** *
    D1 **QQCO S S"



    II












    APPENDIX II

    LIST OF MOMENT AND GRAPHIC MEASURES
    FOR
    SAND + SILT + CLAY SAMPLES













    SAND + SILT + CLAY
    Moment Measures Inclusive
    Graphic Graphic Phi Inclusive
    Sample Standard Graphic Standard Standard Quartile Graphic Graphic Graphic
    I.D. Mean Deviation Skewness Kurtosis Mean Deviation Deviation Skewness Skewness Skewness Kurtosis
    (0) (phi-units) (0) (phi-units) (phi-units)


    S1A1GS10A
    S1A1GS11A
    S1A1GS12A
    S1A1GS13A
    S1A1GS1A
    S1A1GS2A
    S1A1GS3A
    S1A1GS4A
    S1A1GS5A
    S1A1GS6A
    S1A1GS7A
    S1A1GS8A
    S1A1GS9A
    S1A2GS10A
    S1A2GS11A
    S1A2GS12A
    S1A2GS13A
    S1A2GS14A
    S1A2GS15A
    S1A2GS1A
    S1A2GS2A
    S1A2GS3A
    S1A2GS4A
    S1A2GS5A
    S1A2GS6A
    S1A2GS7A
    S1A2GS8A
    S1A2GS9A
    S1A2R2GSA
    S1A3GS1A
    S1A3GS2A
    S1A3GS3A
    S1B1GS10A
    S1B1GS11A
    S1B1GS12A
    S1B1GS13A
    S1B1GS14A
    S1B1GS15A
    S1B1GS16A
    S1B1GS17A
    S1B1GS18A
    S1B1GS19A
    S1B1GS1A
    S1B1GS20A
    S1BIGS21A
    S1B1GS22A
    S1B1GS23A
    S1B1GS24A
    S1B1GS25A
    S1B1GS26A
    S1B1GS27A
    S1B1GS28A
    S1B1GS2A
    S1B1GS3A
    S1B1GS4A
    S1B1GS5A
    S1B1GS6A
    S1B1GS7A


    3.5713
    1.5062
    1.5548
    1.1188
    2.1643
    1.8835
    4.6542
    1.5153
    1.5284
    4.0996
    1.4903
    4.6944
    4.1131
    1.8585
    4.6666
    5.2037
    4.4510
    4.2629
    2.2582
    2.0324
    2.3574
    5.4270
    4.8514
    4.6361
    4.6646
    2.3748
    2.2575
    4.9528
    0.7913
    2.0640
    2.4576
    1.2339
    0.5521
    1.3662
    0.6829
    -0.3102
    -0.5165
    0.9734
    -0.2668
    0.0682
    -0.3695
    0.3158
    -0.0491
    0.4399
    -0.2500
    0.6480
    0.6982
    0.3381
    0.7600
    -0.3187
    0.7552
    -0.3489
    -0.0518
    -0.3121
    0.2772
    -0.3563
    0.5115


    0.5596
    1.4128
    0.5055
    0.5913
    0.5010
    0.3998
    0.3279
    1.6514
    0.5506
    0.4569
    0.3939
    0.3424
    1.7306
    1.9206
    0.5221
    1.3969
    2.1434
    1.3304
    1.1493
    0.7936
    0.5394
    0.5129
    3.0051
    2.8945
    1.1685
    1.2565
    0.5310
    0.6333
    2.2056


    0.6124
    1.9767
    0.5832
    0.6295
    0.5723
    0.5156
    0.3608
    2.0518
    0.5818
    0.4971
    1.0504
    0.3710
    2.1281
    2.2713
    0.5271
    1.9512
    2.2655
    1.8915
    1.7321
    0.8127
    0.5573
    0.6585
    3.2040
    2.8482
    1.6716
    1.7761
    0.6826
    0.7389
    2.3996


    1.3 IO1
    2.7041
    1.3404
    1.3358
    1.3140
    1.1679
    1.1525
    2.6184
    1.2637
    1.1973
    1.8856
    1.2149
    2.7954
    2.6980
    1.2830
    2.5459
    2.7176
    2.5250
    2.3374
    1.3398
    1.2046
    1.3260
    3.4427
    3.0986
    2.2570
    2.4003
    1.4162
    1.3882
    2.8174
    1.7725
    1.3329
    1.4121
    1.5846
    1.9960
    1.3712
    1.7191
    2.1164
    2.2796
    1.8835
    2.1407
    2.0909
    2.1904
    2.0612
    1.9243
    1.9094
    1.7772
    1.8792
    1.7143
    1.4782
    1.4937
    2.3927
    1.4162
    2.1442
    2.3896
    2.0940
    1.7448
    2.1785
    1.8519


    2.6005 11.6889 999.9999 999.9999 999.9999
    3.0275 12.6971 999.9999 999.9999 999.9999
    1.7805 10.1015 0.6578 1.3265 999.9999
    2.8850 12.7962 -0.7107 1.3669 999.9999
    2.1388 10.0960 999.9999 999.9999 999.9999
    2.8716 12.4612 999.9999 999.9999 999.9999
    2.3201 10.9756 -0.0940 1.4493 999.9999
    2.8861 14.4831 -0.4171 1.3094 999.9999
    1.9869 10.6828 0.0962 1.5204 999.9999
    3.2153 17.1981 -0.6014 1.1427 999.9999
    2.0667 11.1723 0.3456 1.3606 999.9999
    3.1998 16.2799 0.4025 0.8416 0.9402
    4.4603 26.3694 0.0359 0.6541 0.6933
    2.9437 18.1428 0.5543 0.9150 0.8909
    2.7910 10.9987 999.9999 999.9999 999.9999
    3.5189 21.8407 0.5321 0.8822 0.8385
    2.7121 12.1935 999.9999 999.9999 999.9999
    2.2312 8.9183 999.9999 999.9999 999.9999
    2.6380 11.9438 999.9999 999.9999 999.9999
    2.6659 14.6761 -0.0078 1.2290 999.9999
    2.8779 12.4519 999.9999 999.9999 999.9999
    1.7632 10.2400 0.2078 1.5615 999.9999


    1.3809 4.3489
    3.7872 23.4091
    3.7939 23.0077
    3.9769 26.6910
    4.4778 26.6701
    5.2538 33.0240
    1.1866 3.3618
    4.2696 26.4356
    4.5655 30.1328
    2.4358 7.9005
    5.2007 32.6375
    0.7294 3.3318
    0.9198 3.3503
    4.1788 23.3775
    0.9625 3.3874
    0.9145 2.4251
    1.0611 3.8614
    1.3267 4.5941
    3.2565 16.1873
    4.2249 24.8720
    3.4439 17.5570
    0.0090 2.1825
    0.6909 2.0410
    1.4083 4.1144
    1.2823 3.7906
    3.2253 15.8669
    3.2727 16.5688
    0.9275 2.5207
    1.7166 10.4517
    1.8072 15.3716
    1.9036 13.4360
    2.9266 15.8932
    1.7035 9.1829
    4.0092 22.9679
    1.9151 11.8272


    1.2733
    2.9609
    1.2937
    1.3254
    0.9205
    1.8855
    1.6297
    4.2328
    1.2821
    1.3175
    3.4433
    1.2272
    4.3813
    3.5287
    1.5566
    4.1255
    4.7669
    3.9815
    3.7708
    2.0323
    1.7541
    2.0265
    5.0822
    4.3439
    4.0734
    4.1269
    2.0230
    1.9344
    4.5899
    0.5511
    1.9610
    2.2811
    0.9413
    0.1629
    1.0674
    0.4378


    -0.0036 999.9999 999.9999 999.9999
    0.1376 999.9999 999.9999 999.9999
    -0.2164 -0.3854 999.9999 999.9999
    -0.0068 0.0623 999.9999 999.9999
    -0.2026 999.9999 999.9999 999.9999
    0.0662 999.9999 999.9999 999.9999
    -0.2065 -0.2621 999.9999 999.9999
    -0.0350 -0.0674 999.9999 999.9999
    -0.2102 -0.2931 999.9999 999.9999
    -0.0892 -0.0911 999.9999 999.9999
    -0.2455 -0.3180 999.9999 999.9999
    0.0979 0.2080 0.1680 1.2289
    0.0357 0.1394 01930 1.1401
    0.0515 0.0883 0.0602 0.8442
    0.0907 999.9999 999.9999 999.9999
    0.0621 0.1211 0.0999 0.8303
    0.1297 999.9999 999.9999 999.9999
    0.2027 999.9999 999.9999 999.9999
    0.0237 999.9999 999.9999 999.9999
    -0.0220 -0.0696 999.9999 999.9999
    0.0943 999.9999 999.9999 999.9999
    -0.3029 -0.3473 999.9999 999.9999


    1.3106 999.9999
    0.5606 0.7642
    0.6184 0.8265
    0.9134 0.9080
    1.6874 999.9999
    0.6418 0.6614
    1.2898 999.9999


    -0.0151
    0.2194
    -0.0458
    -0.0859
    -0.0180
    -0.0234
    -0.0048
    0.0807
    -0.0400
    -0.0668
    -0.0123
    -0.0057
    0.3184
    -0.3511
    -0.0266
    0.3487
    0.7367
    0.1077
    -0.0639
    0.0380
    -0.0015
    -0.0096
    1.2807
    0.2328
    0.2485
    0.2227
    -0.0283
    -0.0505
    0.6850
    -0.4058
    -0.0730
    -0.0225
    -0.0371
    -0.3897
    -0.0053
    -0.2123


    -0.0515 -0.0973 1.2616
    0.4222 0.5370 2.0800
    -0.1298 -0.2148 1.3782
    -0.2609 -0.3147 1.1289
    -0.1385 -0.2233 1.4428
    -0.0583 0.0742 1.7432
    -0.0370 -0.0689 1.2935
    0.6451 0.6477 3.9830
    -0.1264 -0.1745 1.1248
    -0.1695 -0.2056 1.1750
    -0.0257 0.3352 4.7773
    -0.0276 -0.0568 1.0768
    0.7078 0.6605 2.8020
    0.0159 0.1997 1.6186
    -0.1056 -0.0846 1.0175
    0.5288 0.5184 2.3827
    0.7764 0.7671 1.5105
    0.5271 0.5305 3.4435
    0.3214 0.4053 4.0966
    0.3731 0.3642 1.4699
    -0.0400 0.0151 1.1047
    0.0452 0.1523 1.7973
    0.6346 0.4554 1.2868
    0.3785 0.4477 1.0752
    0.6179 0.6241 2.6628
    0.6482 0.6448 2.9344
    -0.0321 0.1029 1.7584
    -0.0909 0.0286 1.4094
    0.7312 0.6866 1.6903
    -0.4347 999.9999 999.9999
    -0.2313 -0.3609 1.8122
    -0.0936 -0.1960 1.8669
    -0.1226 -0.1268 0.9571
    -0.4374 999.9999 999.9999
    -0.0584 -0.0297 1.0429
    -0.3297 999.9999 999.9999


    I 5127 4 .n ^--- - -














    SAND + SILT + CLAY
    Moment Measures -- Inclusive
    Graphic Graphic Phi Inclusive
    Sample Standard Graphic Standard Standard Quartile Graphic Graphic Graphic
    I.D. Mean Deviation Skewness Kurtosis Mean Deviation Deviation Skewness Skewness Skewness Kurtosis
    (0) (phi-units) (0) (phi-units) (phi-units)


    2.7962 12.9613 -0.2931 1.2769 999.9999 0.0301 0.0009 999.9999 999.9999
    1.9264 9.7676 0.2284 1.5468 999.9999 -0.1943 -0.2305 999.9999 999.9999
    3.8577 24.5041 1.0224 0.5985 0.6516 -0.0203 -0.1545 -0.1654 1.2050
    1.4713 8.8623 999.9999 999.9999 999.9999 -0.4995 999.9999 999.9999 999.9999
    2.1091 12.5245 0.3052 1.3118 999.9999 -0.0986 -0.1466 999.9999 999.9999
    1.2892 8.8780 999.9999 999.9999 999.9999 -0.4507 999.9999 999.9999 999.9999


    S1B1GS8A
    S1B1GS9A
    S1B2GS1A
    S1 B2GS2A
    S1B2GS3A
    S1B2GS4A
    S1B2GS5A
    S1B2GS6A
    S1B2GS7A
    S1C1GS10A
    S1C1GS11A
    S1C1GS12A
    S1C1GS13A
    S1C1GS14A
    S1C1GS15A
    S1C1GS16A
    S1C1GS17A
    S1C1GS18A
    S1C1GS19A
    S1C1GS1A
    S1C1GS20A
    S1C1GS21A
    S1C1GS22A
    S1C1GS23A
    S1ClGS24A
    S1C1GS2A
    S1C1GS3A
    S1C1GS4A
    S1C1GS5A
    S1C1GS6A
    S1C1GS7A
    S1C1GS8A
    S1C1GS9A
    S1C2GS1A
    S1C2GS2A
    S1C2GS3A
    S1C2GS4A
    S1C2GS5A
    S1D1GS1A
    S1D1GS2A
    S1D1GS3A
    S1D1GS4A
    S1D1GS5A
    S1D2GS1A
    S1D2GS2A
    S1D2GS3A
    S1D2GS4A
    S1R1GSA
    S1R3GSA
    S1R4GSA
    S1R5A
    S1R6GSA
    S1 R7GSA


    0.1054
    0.5622
    1.2664
    0.2877
    0.5308
    0.5320
    1.1211
    0.5761
    0.9620
    1.0062
    1.2383
    1.3358
    4.1253
    0.7619
    1.8242
    0.2218
    1.4121
    0.5087
    1.2036
    1.0302
    0.5149
    1.1720
    0.8803
    0.3154
    1.0532
    1.2514
    1.0632
    1.3894
    3.0751
    0.7930
    2.1013
    0.6980
    0.8061
    1.2490
    3.7168
    0.9417
    3.6128
    1.3699
    3.5728
    4.4533
    2.8155
    3.4985
    3.0674
    1.6042
    1.4512
    2.1721
    1.7794
    0.7592
    -0.4167
    0.5932
    0.7122
    3.7138
    0.5852


    0.7634 0.8045 -0.0692 -0.2338 -0.2518 1.1105
    1.3318 999.9999 -0.2193 -0.2921 999.9999 999.9999
    1.0497 1.1058 -0.1612 -0.3338 -0.3848 1.1341
    1.0336 1.0946 -0.0601 -0.0901 -0.0473 1.1326
    0.8501 0.8763 -0.0064 -0.0671 -0.0981 1.0834
    0.7333 0.7887 0.0084 -0.0269 -0.0535 1.2107
    1.0361 1.5723 -0.0278 0.2959 0.2787 4.0436
    1.0189 1.0151 -0.0859 -0.1035 -0.0985 1.0018
    0.6687 0.7297 -0.0497 -0.1153 -0.0914 1.1613
    1.6202 999.9999 -0.1155 -0.2418 999.9999 999.9999
    0.8505 0.9111 -0.0098 -0.0747 -0.0798 1.1903
    1.2703 999.9999 -0.2231 -0.3011 999.9999 999.9999
    0.7557 0.8039 -0.0018 -0.0672 -0.0838 1.1644
    1.0278 1.0170 -0.0394 -0.0808 -0.0680 0.9495
    1.1256 1.1430 -0.0782 -0.1075 -0.1251 1.0451
    0.5890 0.6257 -0.0050 -0.0791 -0.1119 1.1609
    1.0468 999.9999 -0.0690 -0.1795 999.9999 999.9999
    0.9810 999.9999 -0.0907 -0.2036 999.9999 999.9999


    2.0269
    1.9808
    1.3213
    1.9089
    1.7189
    1.8676
    1.3698
    1.7777
    1.6019
    1.5997
    1.4162
    1.3911
    2.1858
    1.6064
    1.3944
    1.9375
    1.5538
    1.9008
    1.4387
    1.5500
    1.6440
    1.2507
    1.6274
    1.7996
    1.3100
    1.6254
    1.4801
    1.4714
    1.6019
    1.5553
    1.2381
    1.5075
    1.7545
    1.6258
    1.1448
    1.6966
    1.1906
    1.3418
    1.1751
    2.9093
    1.2071
    1.1160
    1.2629
    1.1563
    1.2895
    1.5770
    1.0969
    1.8513
    2.1128
    1.6937
    1.8981
    1.1559
    1.8490


    0.8993
    0.3168
    0.7465
    0.7462
    1.0074
    1.1013
    3.7358
    0.4990
    1.5492
    -0.1858
    1.1305
    0.2039
    0.9626
    0.7707
    0.2696
    0.9519
    0.6747
    -0.0216
    0.8193
    0.9830
    0.8056
    1.1516
    2.7266
    0.5484
    1.8876
    0.4564
    0.4974
    0.9371
    3.4083
    0.6364
    3.3562
    1.1433
    3.3140
    4.0637
    2.5699
    3.2716
    2.9337
    1.3852
    1.2281
    1.9694
    1.6088
    0.4743


    3.0948 20.6369
    2.1072 12.2274
    2.1145 13.8945
    2.5593 14.5060
    2.9990 18.5904
    3.2394 20.0046
    1.0016 5.1443
    2.9146 16.3376
    3.2074 17.6780
    2.1683 11.2539
    2.8781 15.5570
    2.2701 11.9220
    3.2070 19.5378
    2.7570 15.6699
    2.6477 15.3668
    4.0406 27.0159
    2.0119 12.8511
    2.8985 14.9438
    4.2094 26.8748
    2.3662 12.5217
    3.3396 19.6063
    2.7236 16.2732
    2.0190 8.8490
    2.9447 16.9841
    3.7423 23.0682
    2.8705 17.6875
    2.7909 14.0654
    2.5624 13.7756
    3.1609 15.9670
    2.4562 13.2296
    2.5359 15.5617
    3.0855 19.9697
    2.9592 16.0241
    0.7807 2.9026
    3.4172 19.4378
    3.0008 18.4782
    1.9769 14.8935
    4.4858 30.0372
    3.3295 21.0026
    1.6034 11.3632
    3.3611 25.5528
    1.4482 9.1234


    1.5302 999.9999 -0.4047 -0.4429 999.9999 999.9999


    2.7997 12.5646 999.9999 999.9999 999.9999 0.1082 999.9999 999.9999 999.9999
    1.4492 10.4524 0.3619 1.4091 999.9999 -0.1917 -0.3495 999.9999 999.9999
    1.4858 8.8813 0.3984 1.5733 999.9999 -0.2018 -0.3229 999.9999 999.9999
    2.8228 15.7223 3.4421 0.2578 0.3943 -0.0158 -0.0065 0.1833 2.1324
    1.7705 9.7512 0.3264 1.4580 999.9999 -0.0126 -0.0815 999.9999 999.9999


    0.6664
    1.0931
    0.8149
    0.8922
    0.7086
    1.0208
    0.4812
    0.9399
    0.9572
    0.9934
    0.2624
    1.0027
    0.2726
    0.7501
    0.3098
    1.9005
    0.3990
    0.3221
    0.4483
    0.5768
    0.7739
    0.6928
    0.6284


    0.6752 -0.0440 -0.1213 -0.1444
    1.1387 -0.0037 0.0221 0.0499
    0.8478 -0.0490 -0.1300 -0.1273
    0.9458 0.0514 0.0376 0.0170
    1.0375 -0.0068 0.0133 0.1403
    1.0247 -0.0308 -0.0254 -0.0198
    0.5554 -0.0368 -0.1730 -0.2174
    1.0045 -0.1010 -0.1673 -0.1291
    1.0688 -0.0313 -0.0056 0.0382
    1.1193 -0.1188 -0.2157 -0.0904
    0.4428 -0.0039 0.0421 0.2522
    1.1710 -0.1999 -0.3344 -0.1752
    0.4168 0.0096 -0.0020 0.0616
    0.8076 -0.0648 -0.2168 -0.2298
    0.4061 0.0028 -0.1240 -0.2306
    2.4405 0.2947 0.4845 0.4295
    0.5160 0.0068 0.0425 0.0247
    0.3527 -0.0008 -0.0953 -0.1168
    0.6160 0.0292 0.0445 -0.1689
    0.5942 -0.0586 -0.1375 -0.1425
    0.7859 -0.0717 -0.1720 -0.1845
    0.9447 -0.0933 -0.2911 -0.2798
    0.6798 -0.0490 -0.2043 -0.2615


    1.0620
    1.1284
    1.0934
    1.2134
    2.2439
    1.0523
    1.3399
    1.2367
    1.3562
    1.2522
    2.3343
    1.3405
    2.0168
    1.2795
    1.7292
    2.2086
    1.7603
    1.2306
    1.9468
    1.0524
    1.0440
    1.9581
    1.2341


    NOTE: 999.9999 denotes that graphic measures could not be evaluated because the sample did not have 05, 016, or 025 percentile data.












    APPENDIX III

    LIST OF MOMENT AND GRAPHIC MEASURES
    FOR
    SAND + SILT SAMPLES















    SAND + SILT
    Moment Measures 1- Inclusive
    Graphic Graphic Phi Inclusive
    Sample Standard Graphic Standard Standard Quartile Graphic Graphic Graphic
    I.D. Mean Deviation Skewness Kurtosis Mean Deviation Deviation Skewness Skewness Skewness Kurtosis
    (0) (phi-units) (0) (phi-units) (phi-units)


    0.6124
    1.9767
    0.5832
    0.6295
    0.5723
    0.5156
    0.3608
    2.0518
    0.5818
    0.4971
    1.0504
    0.3710
    2.1281
    2.2713
    0.5271
    1.9512
    2.2655
    1.8915
    1.7321
    0.8127
    0.5573
    0.6585
    3.2040
    2.8482
    1.6716
    1.7761
    0.6826
    0.7389
    2.3996


    S1A1GS10A
    S1A1GS11A
    S1A1GS12A
    S1A1GS13A
    S1A1GS1A
    S1A1GS2A
    S1A1GS3A
    S1A1GS4A
    S1A1GS5A
    S1A1GS6A
    S1A1GS7A
    S1A1GS8A
    S1A1GS9A
    S1A2GS10A
    S1A2GS11A
    S1A2GS12A
    S1A2GS13A
    S1A2GS14A
    S1A2GS15A
    S1A2GS1A
    S1A2GS2A
    S1A2GS3A
    S1A2GS4A
    S1A2GS5A
    S1A2GS6A
    S1A2GS7A
    S1A2GS8A
    S1A2GS9A
    S1A2R2GSA
    S1A3GS1A
    S1A3GS2A
    S1A3GS3A
    S1B1GS10A
    S1B1GS11A
    S1B1GS12A
    S1B1GS13A
    S1B1GS14A
    S1B1GS15A
    S1B1GS16A
    S1B1GS17A
    S1B1GS18A
    S1B1GS19A
    S1B1GS1A
    S1B1GS20A
    S1B1GS21A
    S1B1GS22A
    S1B1GS23A
    S1B1GS24A
    S1B1GS25A
    S1B1GS26A
    S1B1GS27A
    S1B1GS28A
    S1B1GS2A
    S1B1GS3A
    S1B1GS4A
    S1B1GS5A
    S1B1GS6A
    S1B1GS7A


    2.6995
    1.3314
    1.3797
    0.9602
    2.0117
    1.7217
    3.5852
    1.3570
    1.3827
    3.5900
    1.3237
    3.5675
    3.3127
    1.6915
    3.7936
    3.9158
    3.6097
    3.5710
    2.0978
    1.8822
    2.1810
    3.5322
    3.4131
    3.9235
    3.8215
    2.1649
    2.0634
    3.6457
    0.6228
    1.9409
    2.2921
    1.0276
    0.3302
    1.1877
    0.5187
    -0.5819
    -0.9066
    0.7481
    -0.5965
    -0.1890
    -0.7068
    0.0269
    -0.3150
    0.2302
    -0.4557
    0.4220
    0.4595
    0.1470
    0.6066
    -0.7527
    0.6010
    -0.6577
    -0.4343
    -0.5788
    0.0791
    -0.6845
    0.3302


    0.5596
    1.4128
    0.5055
    0.5913
    0.5010
    0.3998
    0.3279
    1.6514
    0.5506
    0.4569
    0.3939
    0.3424
    1.7306
    1.9206
    0.5221
    1.3969
    2.1434
    1.3304
    1.1493
    0.7936
    0.5394
    0.5129
    3.0051
    2.8945
    1.1685
    1.2565
    0.5310
    0.6333
    2.2056


    0.6850
    1.3603
    0.6920
    0.6885
    0.6827
    0.5580
    0.4052
    1.1149
    0.6365
    0.5797
    0.7364
    0.4620
    1.4507
    1.6825
    0.6675
    1.4225
    1.1712
    1.3668
    1.2643
    0.8454
    0.6303
    0.7648
    2.0676
    1.6269
    1.1703
    1.1733
    0.7849
    0.7861
    1.2334
    1.3316
    0.9617
    0.9573
    0.9528
    1.4631
    0.7145
    1.2664
    1.4051
    1.2232
    1.3289
    1.2435
    1.4516
    1.2873
    1.3203
    1.1421
    1.3695
    1.1231
    1.2901
    0.9805
    0.7214
    0.9849
    1.3050
    0.8539
    1.3150
    1.5132
    1.3848
    1.1504
    1.2994
    1.3816


    -U.210U9
    -0.0179
    -1.1144
    -1.0025
    -1.8196
    1.1252
    -0.0118
    -0.2588
    0.0422
    -0.5607
    1.6680
    1.2925
    -1.4538
    -0.0826
    2.0600
    -0.3075
    0.2941
    -0.5595
    -0.2698
    1.6036
    1.2965
    1.4798
    -1.0224
    0.4318
    0.4866
    0.1254
    1.0655
    0.8850
    0.1768
    -0.3708
    -1.4865
    -1.4204
    -0.1285
    -0.2246
    0.8515
    -0.3876
    1.1364
    1.8381
    -0.5355
    1.1645
    0.3258
    1.4097
    0.1192
    0.1231
    -0.0707
    1.0100
    -0.3439
    0.6827
    1.3648
    -0.1005
    1.8535
    -0.1807
    0.8409
    0.7512
    1.1264
    0.0041
    1.5268
    -0.2923


    9.5393
    5.8261
    10.2554
    6.3131
    8.5516
    13.3006
    15.7258
    7.6888
    9.4110
    12.3539
    8.5704
    27.6184
    8.5729
    2.8791
    17.1640
    4.3211
    4.6313
    6.0454
    5.6373
    7.9081
    13.0819
    10.6011
    4.2041
    2.0589
    3.6792
    5.1669
    11.2907
    8.3493
    5.0369
    3.0947
    8.0459
    7.9710
    5.3553
    2.7960
    10.3880
    3.4571


    1.2733
    2.9609
    1.2937
    1.3254
    0.9205
    1.8855
    1.6297
    4.2328
    1.2821
    1.3175
    3.4433
    1.2272
    4.3813
    3.5287
    1.5566
    4.1255
    4.7669
    3.9815
    3.7708
    2.0323
    1.7541
    2.0265
    5.0822
    4.3439
    4.0734
    4.1269
    2.0230
    1.9344
    4.5899
    0.5511
    1.9610
    2.2811
    0.9413
    0.1629
    1.0674
    0.4378


    -0.0151
    0.2194
    -0.0458
    -0.0859
    -0.0180
    -0.0234
    -0.0048
    0.0807
    -0.0400
    -0.0668
    -0.0123
    -0.0057
    0.3184
    -0.3511
    -0.0266
    0.3487
    0.7367
    0.1077
    -0.0639
    0.0380
    -0.0015
    -0.0096
    1.2807
    0.2328
    0.2485
    0.2227
    -0.0283
    -0.0505
    0.6850
    -0.4058
    -0.0730
    -0.0225
    -0.0371
    -0.3897
    -0.0053
    -0.2123


    -0.0515 -0.0973 1.2616
    0.4222 0.5370 2.0800
    -0.1298 -0.2148 1.3782
    -0.2609 -0.3147 1.1289
    -0.1385 -0.2233 1.4428
    -0.0583 0.0742 1.7432
    -0.0370 -0.0689 1.2935
    0.6451 0.6477 3.9830
    -0.1264 -0.1745 1.1248
    -0.1695 -0.2056 1.1750
    -0.0257 0.3352 4.7773
    -0.0276 -0.0568 1.0768
    0.7078 0.6605 2.8020
    0.0159 0.1997 1.6186
    -0.1056 -0.0846 1.0175
    0.5288 0.5184 2.3827
    0.7764 0.7671 1.5105
    0.5271 0.5305 3.4435
    0.3214 0.4053 4.0966
    0.3731 0.3642 1.4699
    -0.0400 0.0151 1.1047
    0.0452 0.1523 1.7973
    0.6346 0.4554 1.2868
    0.3785 0.4477 1.0752
    0.6179 0.6241 2.6628
    0.6482 0.6448 2.9344
    -0.0321 0.1029 1.7584
    -0.0909 0.0286 1.4094
    0.7312 0.6866 1.6903
    -0.4347 999.9999 999.9999
    -0.2313 -0.3609 1.8122
    -0.0936 -0.1960 1.8669
    -0.1226 -0.1268 0.9571
    -0.4374 999.9999 999.9999
    -0.0584 -0.0297 1.0429
    -0.3297 999.9999 999.9999


    5.6108 999.9999 999.9999 999.9999
    9.0577 999.9999 999.9999 999.9999
    3.5615 0.6578 1.3265 999.9999
    6.2165 -0.7107 1.3669 999.9999
    2.9911 999.9999 999.9999 999.9999
    7.0103 999.9999 999.9999 999.9999
    3.5847 -0.0940 1.4493 999.9999
    2.6845 -0.4171 1.3094 999.9999
    3.3526 0.0962 1.5204 999.9999
    7.2466 -0.6014 1.1427 999.9999
    3.1014 0.3456 1.3606 999.9999
    7.3193 0.4025 0.8416 0.9402
    11.8431 0.0359 0.6541 0.6933
    5.2654 0.5543 0.9150 0.8909
    9.1581 999.9999 999.9999 999.9999
    3.0753 0.5321 0.8822 0.8385
    4.0261 999.9999 999.9999 999.9999
    3.2565 999.9999 999.9999 999.9999
    5.4280 999.9999 999.9999 999.9999
    3.1977 -0.0078 1.2290 999.9999
    7.3246 999.9999 999.9999 999.9999
    2.6324 0.2078 1.5615 999.9999


    1.3106 999.9999
    0.5606 0.7642
    0.6184 0.8265
    0.9134 0.9080
    1.6874 999.9999
    0.6418 0.6614
    1.2898 999.9999


    -0.0036 999.9999 999.9999 999.9999
    0.1376 999.9999 999.9999 999.9999
    -0.2164 -0.3854 999.9999 999.9999
    -0.0068 0.0623 999.9999 999.9999
    -0.2026 999.9999 999.9999 999.9999
    0.0662 999.9999 999.9999 999.9999
    -0.2065 -0.2621 999.9999 999.9999
    -0.0350 -0.0674 999.9999 999.9999
    -0.2102 -0.2931 999.9999 999.9999
    -0.0892 -0.0911 999.9999 999.9999
    -0.2455 -0.3180 999.9999 999.9999
    0.0979 0.2080 0.1680 1.2289
    0.0357 0.1394 0.1930 1.1401
    0.0515 0.0883 0.0602 0.8442
    0.0907 999.9999 999.9999 999.9999
    0.0621 0.1211 0.0999 0.8303
    0.1297 999.9999 999.9999 999.9999
    0.2027 999.9999 999.9999 999.9999
    0.0237 999.9999 999.9999 999.9999
    -0.0220 -0.0696 999.9999 999.9999
    0.0943 999.9999 999.9999 999.9999
    -0.3029 -0.3473 999.9999 999.9999


    '""^ ^^^'^ ^^~^^ ^---- ;----













    SAND + SILT
    Moment Measures Inclusive
    Graphic Graphic Phi Inclusive
    Sample Standard Graphic Standard Standard Quartile Graphic Graphic Graphic
    I.D. Mean Deviation Skewness Kurtosis Mean Deviation Deviation Skewness Skewness Skewness Kurtosis
    (0) (phi-units) (0) (phi-units) (phi-units)
    S1B1GS68A -0.1988 1.1879 0.5877 4.7855 -0.2931 1.2769 999.9999 0.0301 0.0009 999.9999 999.9999
    S1B1GS9A 0.3314 1.4138 0.0285 3.2626 0.2284 1.5468 999.9999 -0.1943 -0.2305 999.9999 999.9999
    S1B2GS1A 1.1092 0.7234 -0.5458 8.2067 1.0224 0.5985 0.6516 -0.0203 -0.1545 -0.1654 1.2050
    S1B2GS2A 0.1256 1.5014 -0.2794 2.0171 999.9999 999.9999 999.9999 -0.4995 999.9999 999.9999 999.9999
    S1B2GS3A 0.3606 1.2345 -0.3528 2.5913 0.3052 1.3118 999.9999 -0.0986 -0.1466 999.9999 999.9999
    S1B2GS4A 0.3716 1.4680 -0.6420 2.1398 999.9999 999.9999 999.9999 -0.4507 999.9999 999.9999 999.9999
    S1B2GS5A 0.9788 0.8697 -0.7708 5.6395 0.8993 0.7634 0.8045 -0.0692 -0.2338 -0.2518 1.1105
    S1B2GS6A 0.3814 1.2392 -0.5075 2.5691 0.3168 1.3318 999.9999 -0.2193 -0.2921 999.9999 999.9999
    S1B2GS7A 0.7977 1.1206 -0.8846 3.8271 0.7465 1.0497 1.1058 -0.1612 -0.3338 -0.3848 1.1341
    S1C1GS10A 0.8280 1.0683 -0 1721 3.4812 0.7462 1.0336 1.0946 -0.0601 -0.0901 -0.0473 1.1326
    S1C1GS11A 1.0848 0.9019 -0.4268 4.7867 1.0074 0.8501 0.8763 -0.0064 -0.0671 -0.0981 1.0834
    S1C1GS12A 1.1750 0.8378 -0.5392 5.8401 1.1013 0.7333 0.7887 0.0084 -0.0269 -0.0535 1.2107
    S1C1GS13A 3.6590 1.4661 -0.6324 5.1859 3.7358 1.0361 1.5723 -0.0278 0.2959 0.2787 4.0436
    S1C1GS14A 0.5750 1.0214 0.0845 4.7721 0.4990 1.0189 1.0151 -0.0859 -0.1035 -0.0985 1.0018
    S1C1GS15A 1.6555 0.8557 0.7271 9.8751 1.5492 0.6687 0.7297 -0.0497 -0.1153 -0.0914 1.1613
    S1C1GS16A -0.0001 1.3515 0.0312 3.0255 -0.1858 1.6202 999.9999 -0.1155 -0.2418 999.9999 999.9999
    S1C1GS17A 1.2143 0.9568 0.0871 6.2376 1.1305 0.8505 0.9111 -0.0098 -0.0747 -0.0798 1.1903
    S1C1GS18A 0.2676 1.2536 -0.2677 3.4853 0.2039 1.2703 999.9999 -0.2231 -0.3011 999.9999 999.9999
    S1C1GS19A 1.0339 0.8610 -0.5361 6.2669 0.9626 0.7557 0.8039 -0.0018 -0.0672 -0.0838 1.1644
    S1C1GS1A 0.8595 1.0228 0.0379 4.2599 0.7707 1.0278 1.0170 -0.0394 -0.0808 -0.0680 0.9495
    S1C1GS20A 0.3386 1.1007 -0.1574 3.4431 0.2696 1.1256 1.1430 -0.0782 -0.1075 -0.1251 1.0451
    S1C1GS21A 1.0404 0.7262 0.1619 11.1933 0.9519 0.5890 0.6257 -0.0050 -0.0791 -0.1119 1.1609
    S1C1GS22A 0.7306 1.2006 -0.3082 4.7993 0.6747 1.0468 999.9999 -0.0690 -0.1795 999.9999 999.9999
    S1C1GS23A 0.0914 1.1407 0.7421 7.5318 -0.0216 0.9810 999.9999 -0.0907 -0.2036 999.9999 999.9999
    S1C1GS24A 0.8974 0.6854 -0.3276 5.7690 0.8193 0.6664 0.6752 -0.0440 -0.1213 -0.1444 1.0620
    S1C1GS2A 1.0786 1.1472 0.3810 4.7085 0.9830 1.0931 1.1387 -0.0037 0.0221 0.0499 1.1284
    S1C1GS3A 0.8779 0.8460 -0.5823 3.7643 0.8056 0.8149 0.8478 -0.0490 -0.1300 -0.1273 1.0934
    S1C1GS4A 1.2233 0.9525 -0.4623 4.3000 1.1516 0.8922 0.9458 0.0514 0.0376 0.0170 1.2134
    S1C1GS5A 2.8257 1.0556 0.5320 6.7372 2.7266 0.7086 1.0375 -0.0068 0.0133 0.1403 2.2439
    S1C1GS6A 0.6182 0.9929 -0.0971 3.4156 0.5484 1.0208 1.0247 -0.0308 -0.0254 -0.0198 1.0523
    S1C1GS7A 1.9395 0.6409 -1.2715 7.9226 1.8876 0.4812 0.5554 -0.0368 -0.1730 -0.2174 1.3399
    S1C1GS8A 0.5453 1.0036 -0.1766 4.2331 0.4564 0.9399 1.0045 -0.1010 -0.1673 -0.1291 1.2367
    S1C1GS9A 0.5772 1.0996 0.5618 6.5476 0.4974 0.9572 1.0688 -0.0313 -0.0056 0.0382 1.3562
    S1C2GS1A 1.0518 1.0597 -0.0324 4.2579 0.9371 0.9934 1.1193 -0.1188 -0.2157 -0.0904 1.2522
    S1C2GS2A 3.5437 0.6282 0.8155 15.8794 3.4083 0.2624 0.4428 -0.0039 0.0421 0.2522 2.3343
    S1C2GS3A 0.7499 1.1579 0.2657 5.7490 0.6364 1.0027 1.1710 -0.1999 -0.3344 -0.1752 1.3405
    S1C2GS4A 3.4397 0.6984 -1.2205 18.7905 3.3562 0.2726 0.4168 0.0096 -0.0020 0.0616 2.0168
    S1C2GS5A 1.2310 0.8605 -0.4532 5.7996 1.1433 0.7501 0.8076 -0.0648 -0.2168 -0.2298 1.2795
    S1D1GS1A 3.3936 0.6383 -0.6539 13.8719 3.3140 0.3098 0.4061 0.0028 -0.1240 -0.2306 1.7292
    S1D1GS2A 3.3368 1.6126 -0.4293 3.9754 4.0637 1.9005 2.4405 0.2947 0.4845 0.4295 2.2086
    S1D1GS3A 2.6483 0.6471 -0.3814 11.9912 2.5699 0.3990 0.5160 0.0068 0.0425 0.0247 1.7603
    S1D1GS4A 3.3397 0.6092 -1.7541 17.4056 3.2716 0.3221 0.3527 -0.0008 -0.0953 -0.1168 1.2306
    S1D1GS5A 2.9125 0.8245 -2.0131 11.3679 2.9337 0.4483 0.6160 0.0292 0.0445 -0.1689 1.9468
    S1D2GS1A 1.4723 0.5958 -0.5101 3.9870 1.3852 0.5768 0.5942 -0.0586 -0.1375 -0.1425 1.0524
    S1D2GS2A 1.3226 0.8309 0.1733 6.2065 1.2281 0.7739 0.7859 -0.0717 -0.1720 -0.1845 1.0440
    S1D2GS3A 1.9889 1.1181 -1.0888 7.4220 1.9694 0.6928 0.9447 -0.0933 -0.2911 -0.2798 1.9581
    S1D2GS4A 1.6856 0.7226 -0.8615 5.3635 1.6088 0.6284 0.6798 -0.0490 -0.2043 -0.2615 1.2341
    S1R1GSA 0.5902 1.4354 -0.3998 2.9547 0.4743 1.5302 999.9999 -0.4047 -0.4429 999.9999 999.9999
    S1R3GSA -0.7000 1.3463 1.3492 6.3636 999.9999 999.9999 999.9999 0.1082 999.9999 999.9999 999.9999
    S1R4GSA 0.4655 1.3445 -0.5383 2.9229 0.3619 1.4091 999.9999 -0.1917 -0.3495 999.9999 999.9999
    S1R5A 0.5353 1.4703 -0.2496 3.1346 0.3984 1.5733 999.9999 -0.2018 -0.3229 999.9999 999.9999
    S1R6GSA 3.5432 0.6560 -0.4786 16.8169 3.4421 0.2578 0.3943 -0.0158 -0.0065 0.1833 2.1324
    S1R7GSA 0.4119 1.4066 -0.0011 2.8401 0.3264 1.4580 999.9999 -0.0126 -0.0815 999.9999 999.9999
    NOTE: 999.9999 denotes that graphic measures could not be evaluated because the sample did not have (5, (16, or 025 percentile data.












    APPENDIX IV

    LIST OF MOMENT AND GRAPHIC MEASURES
    FOR
    SAND ONLY SAMPLES













    SAND ONLY
    4 Moment Measures Inclusive
    Graphic Graphic Phi Inclusive
    Sample Standard Graphic Standard Standard Quartile Graphic Graphic Graphic
    I.D. Mean Deviation Skewness Kurtosis Mean Deviation Deviation Skewness Skewness Skewness Kurtosis
    (0) (phi-units) (0) (phi-units) (phi-units)


    S1A1GS10A
    S1A1GS11A
    S1A1GS12A
    S1A1GS13A
    S1A1GS1A
    S1A1GS2A
    S1A1GS3A
    S1A1GS4A
    S1A1GS5A
    S1A1GS6A
    S1A1GS7A
    S1A1GS8A
    S1A1GS9A
    S1A2GS10A
    S1A2GS11A
    S1A2GS12A
    S1A2GS13A
    S1A2GS14A
    S1A2GS15A
    S1A2GS1A
    S1A2GS2A
    S1A2GS3A
    S1A2GS4A
    S1A2GS5A
    S1A2GS6A
    S1A2GS7A
    S1A2GS8A
    S1A2GS9A
    S1A2R2GSA
    S1A3GS1A
    S1A3GS2A
    S1A3GS3A
    S1B1GS10A
    S1B1GS11A
    S1B1GS12A
    S1B1GS13A
    S1B1GS14A
    S1B1GS15A
    S1B1GS16A
    S1B1GS17A
    S1B1GS18A
    S1B1GS19A
    S1B1GS1A
    S1B1GS20A
    S1B1GS21A
    S1B1GS22A
    S1B1GS23A
    S1B1GS24A
    S1BIGS25A
    S1B1GS26A
    S1B1GS27A
    S1B1GS28A
    S1B1GS2A
    S1B1GS3A
    S1B1GS4A
    S1B1GS5A
    S1B1GS6A
    S1B1GS7A


    1.3345
    2.4564
    1.3246
    1.3766
    0.9602
    1.9990
    1.7187
    3.2949
    1.3475
    1.3762
    3.4322
    1.3145
    3.2108
    2.7227
    1.6542
    3.2182
    3.4193
    3.1789
    3.2069
    2.0448
    1.8599
    2.1325
    2.7184
    2.6845
    3.4083
    3.3820
    2.1152
    2.0280
    3.2126
    0.6063
    1.9237
    2.2738
    1.0120
    0.3046
    1.1706
    0.5006
    -0.6378
    -0.9525
    0.7251
    -0.6313
    -0.2146
    -0.7537
    0.0011
    -0.3190
    0.2032
    -0.4869
    0.4079
    0.4366
    0.1356
    0.5940
    -0.8229
    0.6010
    -0.6797
    -0.4641
    -0.6249
    0.0712
    -0.7338
    0.3177


    0.6519 -0.9590
    1.0546 -1.6358
    0.6687 -1.7101
    0.6781 -1.2520
    0.6827 -1.8196
    0.5104 -0.0012
    0.3887 -0.9518
    0.7685 -3.5264
    0.6009 -0.8608
    0.5535 -1.4315
    0.4068 -2.0995
    0.4127 -1.0065
    1.1838 -3.4491
    1.2196 -1.1034
    0.5339 -0.3457
    0.9585 -2.5261
    0.6202 -3.9490
    0.9830 -3.0406
    0.8963 -2.6379
    0.7155 0.6695
    0.5528 -0.2206
    0.6342 0.0444
    1.7206 -1.8697
    0.9617 -0.2324
    0.5913 -2.9864
    0.6946 -3.4889
    0.6544 -0.5563
    0.6936 -0.2136
    0.7514 -2.9797
    1.2995 -0.5819
    0.9260 -1.9801
    0.9230 -1.8579
    0.9120 -0.6120
    1.4153 -0.4886
    0.6546 -0.2432
    1.2281 -0.6795
    1.2708 0.4847
    1.0874 1.0327
    1.2849 -0.8446
    1.1493 0.5640
    1.3983 0.0583
    1.1610 0.6906
    1.2622 -0.2688
    1.1313 0.0270
    1.3137 -0.4205
    1.0309 0.2024
    1.2605 -0.5577
    0.9147 -0.0084
    0.6735 0.4348
    0.9505 -0.5036
    1.1117 0.8599
    0.8539 -0.1807
    1.2592 0.5170
    1.4508 0.5075
    1.2731 0.5855
    1.1304 -0.1695
    1.1682 0.8433
    1.3568 -0.4456


    6.1818 1.2493 0.5440 0.5841
    8.3134 2.4554 0.8778 0.8613
    8.1849 1.2703 0.4938 0.5661
    5.2225 1.3073 0.5842 0.6195
    8.5516 0.9033 0.4893 0.5538
    6.9362 1.8672 0.3850 0.4383
    7.9647 1.6121 0.3161 0.3383
    20.0323 3.2690 0.4604 0.5160
    4.4094 1.2613 0.5394 0.5673
    7.9705 1.2996 0.4481 0.4794
    11.7731 3.3391 0.3267 0.3574
    10.6190 1.2156 0.3347 0.3542
    14.8512 3.3171 0.4305 0.6610
    3.8783 2.7594 1.1343 1.0719
    4.9293 1.5329 0.5072 0.4987
    10.6870 3.1388 0.7364 0.7619
    25.0813 3.3849 0.3466 0.3972
    13.7864 3.2213 0.5158 0.6417
    12.1660 3.2024 0.6037 0.6635
    3.6034 1.8974 0.6216 0.6872
    5.2422 1.7302 0.5242 0.5152
    5.7466 1.9642 0.4439 0.5722
    5.3948 2.8296 1.1350 999.9999
    2.0667 2.5231 1.0214 0.9128
    16.5853 3.3746 0.3685 0.4578
    19.3665 3.3743 0.3684 0.4741
    7.9559 1.9669 0.4763 0.5838
    4.3834 1.8861 0.5972 0.6613
    16.2413 3.1613 0.5031 0.5610
    2.4834 0.5137 1.2944 999.9999
    7.6585 1.9352 0.5567 0.7447
    7.8181 2.2497 0.5968 0.7927
    3.5419 0.9061 0.8955 0.8683
    1.9949 0.1039 1.6884 999.9999
    4.2330 1.0363 0.6164 0.6184
    2.5533 0.4029 1.2823 999.9999
    2.3336 999.9999 999.9999 999.9999
    3.7873 999.9999 999.9999 999.9999
    2.7917 0.6052 1.3164 999.9999
    2.8318 -0.8072 1.2756 999.9999
    1.8862 999.9999 999.9999 999.9999
    2.8816 999.9999 999.9999 999.9999
    2.0766 -0.1787 1.4104 999.9999
    2.1750 -0.4770 1.2757 999.9999
    2.1766 0.0373 1.5073 999.9999
    2.7574 -0.6576 1.0954 999.9999
    2.4058 0.2910 1.3469 999.9999
    4.0793 0.3357 0.7797 0.8455
    4.3796 0.0024 0.6192 0.6304
    3.6092 0.5258 0.8969 0.8635
    3.4347 999.9999 999.9999 999.9999
    3.0753 0.5069 0.8648 0.8162
    2.2142 999.9999 999.9999 999.9999
    2.0910 999.9999 999.9999 999.9999
    2.6504 999.9999 999.9999 999.9999
    2.4101 -0.0580 1.1917 999.9999
    3.4168 999.9999 999.9999 999.9999
    2.1349 0.1587 1.5469 999.9999


    -0.0145 -0.0686 -0.1410 1.2151
    0.2141 0.3052 0.1691 0.9235
    -0.0425 -0.1504 -0.2471 1.3528
    -0.0898 -0.2741 -0.3337 1.1246
    -0.0242 -0.1663 -0,2679 1,4233
    -0.0241 -0.0887 -0.0529 1.3847
    -0.0049 -0.0782 -0.1366 1.2109
    -0.0881 -0.3995 -0.4778 1.3891
    -0.0387 -0.1311 -0.1919 1.1227
    -0.0628 -0.1816 -0.2422 1.1297
    -0.0327 -0.2590 -0.3132 1.2762
    -0.0058 -0.0283 -0.0930 1.0295
    -0.0610 -0.3946 -0.5657 2.5861
    -0.5242 -0.5431 -0.5775 0.7306
    -0.0341 -0.1215 -0.1306 0.9638
    -0.0842 -0.5925 -0.6423 1.7598
    -0.0229 -0.1625 -0.3093 1.3596
    -0.0576 -0.3099 -0.4625 1.6529
    -0.1060 -0.4217 -0.5203 1.3274
    0.0157 0.2088 0.2549 1.4554
    -0.0015 -0.0564 -0.0478 0.9981
    -0.0167 -0.0939 0.0300 1.6271
    -0.4672 -0.6918 999.9999 999.9999
    0.3221 0.2909 0.2023 0.6341
    -0.0302 -0.2229 -0.3922 1.6302
    -0.0254 -0.2079 -0.3946 1.7161
    -0.0329 -0.1360 -0.0233 1.5035
    -0.0530 -0.1511 -0.0665 1.2396
    -0.0507 -0.3642 -0.4371 1.4614
    -0.4131 -0.4555 999.9999 999.9999
    -0.0741 -0.2618 -0.4077 1.7534
    -0.0361 -0.1291 -0.2516 1.8671
    -0.0395 -0.1300 -0.1670 0.9021
    -0.3971 -0.4391 999.9999 999.9999
    -0.0068 -0.0874 -0.0868 0.9673
    -0.2238 -0.3353 999.9999 999.9999
    -0.0112 999.9999 999.9999 999.9999
    0.0845 999.9999 999.9999 999.9999
    -0.2305 -0.4072 999.9999 999.9999
    -0.0361 0.0208 999.9999 999.9999
    -0.1951 999.9999 999.9999 999.9999
    0.0343 999.9999 999.9999 999.9999
    -0.2035 -0.2880 999.9999 999.9999
    -0.0433 -0.0814 999.9999 999.9999
    -0.2090 -0.2997 999.9999 999.9999
    -0.0996 -0.1295 999.9999 999.9999
    -0.2561 -0.3288 999.9999 999.9999
    0.0904 0.1662 0.0874 1.1320
    0.0230 0.1071 0.i273 1.0440
    0.0576 0.1018 0.0457 0.8305
    0.0679 999.9999 999.9999 999.9999
    0.0627 0.1288 0.0950 0.8247
    0.1098 999.9999 999.9999 999.9999
    0.1711 999.9999 999.9999 999.9999
    -0.0104 999.9999 9999999 999.9999
    -0.0332 -0.0948 999.9999 999.9999
    0.0651 999.9999 999.9999 999.9999
    -0.3064 -0.3539 999.9999 999.9999













    SAND ONLY
    SMoment Measures Inclusive
    Graphic Graphic Phi Inclusive
    Sample Standard Graphic Standard Standard Quartile Graphic Graphic Graphic
    I.D. Mean Deviation Skewness Kurtosis Mean Deviation Deviation Skewness Skewness Skewness Kurtosis
    ($) (phi-units) (0) (phi-units) (phi-units)


    S1B1GS9A
    S1B2GS1A
    S1B2GS2A
    S1B2GS3A
    S1B2GS4A
    S1B2GS5A
    S1B2GS6A
    S1B2GS7A
    S1C1GS10A
    S1C1GS11A
    S1C1GS12A
    S1C1GS13A
    S1C1GS14A
    S1C1GS15A
    S1C1GS16A
    S1C1GS17A
    S1C1GS18A
    S1C1GS19A
    S1C1GS1A
    S1C1GS20A
    S1C1GS21A
    S1C1GS22A
    S1C1GS23A
    S1C1GS24A
    S1C1GS2A
    S1C1GS3A
    S1C1GS4A
    S1C1GS5A
    S1C1GS6A
    S1C1GS7A
    S1C1GS8A
    S1C1GS9A
    S1C2GS1A
    S1C2GS2A
    S1C2GS3A
    S1C2GS4A
    S1C2GS5A
    S1D1GS1A
    S1D1GS2A
    S1D1GS3A
    S1D1GS4A
    S1D1GS5A
    S1D2GS1A
    S1D2GS2A
    S1D2GS3A
    S1D2GS4A
    S1R1GSA
    S1R3GSA
    S1R4GSA
    S1R5A
    S1R6GSA
    S1R7GSA


    2.4699 -0.3686 1.2259 999.9999 0.0162 -0.0137 999.9999 999.9999
    2.1190 0.1602 1.5170 999.9999 -0.2129 -0.2421 999.9999 999.9999
    5.8431 1.0051 0.5912 0.6233 -0.0231 -0.1635 -0.2133 1.1378
    1.7541 999.9999 999.9999 999.9999 -0.5179 999.9999 999.9999 999.9999
    2.3553 0.2693 1.2969 999.9999 -0.1091 -0.1492 999.9999 999.9999
    2.0477 999.9999 999.9999 999.9999 -0.4616 999.9999 999.9999 999.9999


    -U.2/ It
    0.2992
    1.1021
    0.1175
    0.3568
    0.3685
    0.9732
    0.3780
    0.7917
    0.8246
    1.0776
    1.1690
    3.1585
    0.5600
    1.6108
    -0.0196
    1.1893
    0.2512
    1.0258
    0.8461
    0.3308
    1.0252
    0.7032
    0.0482
    0.8939
    1.0449
    0.8779
    1.2208
    2.6573
    0.6146
    1.9366
    0.5383
    0.5411
    1.0386
    3.4504
    0.7134
    3.3718
    1.2217
    3.3438
    2.8419
    2.6249
    3.3109
    2.8935
    1.4723
    1.3060
    1.9474
    1.6823
    0.5654
    -0.7472
    0.4540
    0.5040
    3.4663
    0.3948


    0.7581 0.7817 -0.0720 -0.2400 -0.2859 1.0644
    1.3208 999.9999 -0.2229 -0.2942 999.9999 999.9999
    1.0406 1.0872 -0.1649 -0.3496 -0.4096 1.1061
    0.9964 1.0356 -0.0677 -0.1212 -0.0969 1.0755
    0.8333 0.8496 -0.0104 -0.0820 -0.1274 1.0538
    0.7161 0.7584 0.0061 -0.0506 -0.0944 1.1688
    0.5560 0.7935 -0.1273 -0.4606 -0.6074 2.0831
    0.9937 0.9701 -0.0944 -0.1143 -0.1361 0.9609
    0.6437 0.6635 -0.0567 -0.1519 -0.1901 1.0291
    1.6067 999.9999 -0.1079 -0.2662 999.9999 999.9999
    0.8179 0.8519 -0.0093 -0.0966 -0.1354 1.1136
    1.2502 999.9999 -0.2148 -0.3199 999.9999 999.9999
    0.7299 0.7655 -0.0095 -0.1012 -0.1340 1.1150
    1.0023 0.9758 -0.0412 -0.0950 -0.1013 0.9111
    1.0940 1.0994 -0.0770 -0.1281 -0.1597 1.0079
    0.5805 0.6053 -0.0122 -0.0956 -0.1494 1.1233
    1.0274 999.9999 -0.0817 -0.2044 999.9999 999.9999
    0.9596 999.9999 -0.1001 -0.2221 999.9999 999.9999


    ""'~'"^


    1.1271 0.1223
    1.3507 -0.3214
    0.6991 -1.0804
    1.4863 -0.3584
    1.2261 -0.4172
    1.4625 -0.6746
    0.8535 -1.0293
    1.2319 -0.5657
    1.1069 -1.0253
    1.0602 -0.2438
    0.8824 -0.6892
    0.8208 -0.8067
    1.0787 -2.6791
    0.9817 -0.3308
    0.7352 -0.8166
    1.3090 -0.2380
    0.8932 -0.6262
    1.2167 -0.5569
    0.8379 -0.8959
    0.9894 -0.2875
    1.0808 -0.3468
    0.6724 -0.9770
    1.1411 -0.8077
    1.0246 -0.2655
    0.6720 -0.6430
    1.0751 -0.1059
    0.8460 -0.5823
    0.9464 -0.5312
    0.7766 -1.6072
    0.9833 -0.1998
    0.6318 -1.5061
    0.9850 -0.3845
    1.0085 -0.2104
    1.0292 -0.2992
    0.4101 -4.5520
    1.0742 -0.3880
    0.5656 -4.4949
    0.8348 -0.8331
    0.5300 -3.1904
    1.2216 -1.8687
    0.5842 -1.7440
    0.5445 -3.6074
    0.7898 -2.6067
    0.5958 -0.5101
    0.7833 -0.4978
    1.0451 -1.8235
    0.7128 -1.0565
    1.3906 -0.6611
    1.2258 0.7489
    1.3217 -0.6964
    1.4142 -0.5510
    0.4953 -4.5726
    1.3738 -0.1730


    4.6915
    2.3662
    3.4252
    3.2102
    3.7762
    4.8305
    10.4029
    2.9789
    5.3419
    1.9793
    3.7974
    2.4777
    4.9393
    2.9381
    2.6400
    5.9654
    3.4369
    3.3905
    3.8709
    3.0777
    3.7643
    4.0670
    7.5319
    2.9441
    7.1376
    3.3470
    3.6258
    3.3284
    36.6811
    3.7222
    31.3325
    4.4152
    17.1377
    6.0255
    10.1873
    20.5192
    11.8617
    3.9870
    3.2479
    7.2427
    4.6069


    0.8814
    0.2759
    0.7147
    0.7007
    0.9804
    1.0726
    3.2321
    0.4609
    1.5102
    -0.2651
    1.0787
    0.1414
    0.9297
    0.7317
    0.2237
    0.9338
    0.6346
    -0.0677
    0.7977
    0.9241
    0.7787
    1.1142
    2.5988
    0.5132
    1.8693
    0.4208
    0.4269
    0.8989
    3.3734
    0.5979
    3.3281
    1.1183
    3.2906
    2.8168
    2.5294
    3.2538
    2.9049
    1.3669
    1.1995
    1.9258
    1.5954


    2.2599 0.4327 1.5223 999.9999 -0.4148 -0.4542 999.9999 999.9999
    3.0543 999.9999 999.9999 999.9999 0.0997 999.9999 999.9999 999.9999
    2.4646 0.3287 1.4123 999.9999 -0.2003 -0.3582 999.9999 999.9999
    2.3370 0.3370 1.5613 999.9999 -0.2158 -0.3461 999.9999 999.9999
    31.0789 3.4066 0.2220 0.2497 -0.0175 -0.1221 -0.1598 1.1665
    2.2705 0.2660 1.4309 999.9999 0.0044 -0.0844 999.9999 999.9999


    NOTE: 999.9999 denotes that graphic measures could not be evaluated because the sample did not have 05, 016, or 025 percentile data.


    84/2/0 34760


    0.6545 -0.0492 -0.1350 -0.1742
    1.0593 -0.0231 -0.0173 -0.0095
    0.8144 -0.0589 -0.1426 -0.1650
    0.9037 0.0373 0.0096 -0.0243
    0.6910 -0.0434 -0.1589 -0.2310
    0.9836 -0.0512 -0.0389 -0.0520
    0.5353 -0.0429 -0.1936 -0.2669
    0.9581 -0.1046 -0.1950 -0.1753
    0.9623 -0.0375 -0.0615 -0.0531
    0.9701 -0.1242 -0.2307 -0.2355
    0.2603 -0.0042 -0.0251 -0.0989
    0.9870 -0.2055 -0.3409 -0.3595
    0.3275 0.0078 -0.0475 -0.1928
    0.7838 -0.0663 -0.2296 -0.2628
    0.3915 0.0023 -0.1472 -0.3054
    1.0581 -0.1016 -0.5131 -0.5920
    0.4640 0.0008 -0.0645 -0.0859
    0.3345 -0.0069 -0.1143 -0.1843
    0.5936 0.0204 0.0028 -0.2272
    0.5749 -0.0626 -0.1616 -0.1776
    0.7643 -0.0666 -0.1799 -0.2029
    0.8637 -0.1038 -0.3250 -0.3992
    0.6644 -0.0524 -0.2163 -0.2888


    1.0412
    1.0636
    1.0525
    1.1773
    1.3863
    1.0352
    1.2826
    1.1696
    1.2160
    0.9732
    1.1638
    1.0019
    1.4983
    1.2380
    1.7487
    1.7497
    1.6414
    1.1761
    2.0060
    1.0254
    1.0235
    1.7488
    1.1996


    0.6541
    1.0387
    0.7991
    0.8636
    0.6100
    0.9949
    0.4768
    0.9127
    0.8937
    0.9777
    0.2298
    0.9899
    0.2645
    0.7416
    0.3014
    0.9342
    0.3538
    0.3123
    0.4322
    0.5633
    0.7572
    0.6857
    0.6205


    .........