<%BANNER%>

FGS



A Sedimentological Analysis of Sea grass Bed Substrate from Bay County, Florida
CITATION SEARCH THUMBNAILS DOWNLOADS PAGE IMAGE ZOOMABLE
Full Citation
STANDARD VIEW MARC VIEW
Permanent Link: http://ufdc.ufl.edu/UF00098811/00001
 Material Information
Title: A Sedimentological Analysis of Sea grass Bed Substrate from Bay County, Florida
Physical Description: Archival
Language: English
Creator: Phelps, D.C.
Lachance, M. M.
Sparr, J. G.
Publisher: Florida Geological Survey
Place of Publication: Tallahassee, Fla.
Publication Date: 2007
Copyright Date: 2007
 Record Information
Source Institution: University of Florida
Holding Location: University of Florida
Rights Management:
The author dedicated the work to the public domain by waiving all of his or her rights to the work worldwide under copyright law and all related or neighboring legal rights he or she had in the work, to the extent allowable by law.
Resource Identifier: oclc - 173261407
System ID: UF00098811:00001

Downloads

This item has the following downloads:

PDF ( PDF )

PDF ( DOCX )

PDF ( 1 MBs ) ( PDF )

PDF ( 1 MBs ) ( PPT )


Full Text






REPORT OF INVESTIGATION NO. 107
i:* Bk A SEDIMENTOLOGICAL ANALYSIS OF SEAGRASS BED ,.^J ,
'" i SUBSTRATE FROM BAY COUNTY, FLORIDA F" W
Daniel C. Phelps, (P.G. # 1203), Michelle M. Lachance and F
James G. Sparr



TABLE OF CONTENTS

Report
Introduction
Sediment Sample Processing
Data Analysis
References Cited
Tables
Table 1 Sieve Set Used in Grain Size Analysis
Table 2 Sample Index
Figures
Figure 1 Site Location Map
Figure 2 Frequency Plot of Samples for Tyndall Site
Figure 3 Frequency Plot of Samples for Spanish Shanty Site
Appendices
Appendix A Powerpoint Presentation





INTRODUCTION
Iln May 2007 the Florida Geological Survey's Coastal Research Program (FGS-CRP) was contacted by the
Florida Fish and Wildlife Conservation Commission (FWC) regarding the granulometric processing of
seabed sediment samples as part of a project to repair prop scarring in sea grass beds. The intent was to
characterize the nature of the seabed sediments in the affected area so that sediment matching could
be facilitated. Personnel from the FDEP's Division of Recreation and Parks (FDEP-DRP), at the request of
the FWC, collected a total of 13 seabed samples from two locations in the state waters of Bay County.
Six samples were collected from the first site and seven from the second. These two sample locations
are shown on Figure 1.

SEDIMENT SAMPLE COLLECTION
The sediment samples were collected by the FDEP-DRP on May 29, 2007 from a kayak. Location
coordinates were established using a Garmin Etrex Legend GPS receiver. Samples were collected at
high tide by scooping individual surficial sediment samples from various scars at the two locations
selected. Samples were secured in zip lock bags as they were being collected.

SEDIMENT SAMPLE PROCESSING
The sieve nest used in sample processing by the FGS-CRP is illustrated on Table 1. All granulometric
analyses were conducted using the general guidelines of the American Society for Testing and Materials
(ASTM) (2000a, 2000b) and specific procedures advanced by the FGS sedimentology laboratory (Balsillie,










1995, 2002a, 2002b, Balsillie and Tanner, 1999; Balsillie, et al. 1999; Balsillie et al. 2002a; Balsillie et al.
2002b; Balsillie and Dabous, 2003). Samples were oven dried, initially weighed, then wet sieved through
a 230 sieve (0.63 mm or 4 phi), oven dried again and reweighed with the weight loss being assigned to
the fine fraction. The sample was then dry sieved with the portion of the pan fraction obtained during
dry sieving also assigned to the fine fraction. No samples exhibited a sufficiently significant percentage
of fines to support further characterization using the methodology of Folk (1974) and Galehouse (1971).

Cumulative grain size distribution curves reflect the total grain size distribution (GSD) of each sediment
sample. The weight of the fine fraction, consisting of the weight loss from wet sieving plus weight of the
fraction passing through the sieve nest to the pan was, as noted above, assigned to the finer than 4 phi
fraction.
DATA ANALYSIS AND RESULTS
GSD curves are presented for the seabed samples both individually and collectively for the two site
locations shown on Figure 1. This data can be accessed from Table 2. Figures 2 and 3 illustrate the
collective frequency curves for site one, Tyndall, and site two, Spanish Shanty, respectively.

At site one, Tyndall, the six samples collected ranged in weight from 37.406 to 79.944 grams. For those
six samples the minimum mean grain size was 1.899 phi (0.2681 mm), and. the maximum mean grain
size was 2.055 phi (0.2407 mm). The average grain size of those samples was 1.969 phi (0.2554 mm).
Munsell colors for the samples were 5Y 7/1 and 5Y 7/2.

At site two, Spanish Shanty, the seven samples collected ranged in weight from 30.556 to 93.320 grams.
For those seven samples the minimum mean grain size was 1.912 phi (0.2658 mm) and the maximum
mean grain size was 1.939 phi (0.2607 mm). The average grain size of those samples was 1.926 phi
(0.2631 mm). Munsell colors for the samples were 5Y 7/2, 5Y 8/1 and 2Y 8/2.
A PowerPoint Presentation has been prepared that summarized these finding. It is provided as
Appendix A.

REFERENCES CITED

American Society for Testing and Materials, 2000a, Standard test method for particle-size analysis of soils:
West Conshohocken, Annual Book of ASTM Standards, American Society of Testing and Materials
International, v. 4.08, p. 10-16.
American Society for Testing and Materials, 2000b, Standard guide for statistical procedures to use in
developing and applying test methods: West Conshohocken, Annual Book of ASTM Standards, American
Society of Testing and Materials International, v.14.02, p. 583-588.
Balsillie, J. H.,1995, William F. Tanner on environmental plastic granulometry: Florida Geological Survey
Special Publication No. 40, 145 p.
Balsillie, J. H., 2002a, Analytic granulometry tools: Florida Geological Survey Web site:
http://www.dep.state.fl.us/geology/geologictopics/analytic gran tools/analytic gran.htm
Balsillie, J. H., 2002b, Red flags on the beach, part III: Journal of Coastal Research, v. 18, p. iii-vi.
Balsillie, J. H., and Dabous, A. A., 2003, A new type of sieve shaker; the Meinzer II, comparative study with
Rotap technology: Florida Geological Survey Open File Report No. 87, 93 p.
Balsillie, J. H., and Tanner, W. F., 1999, Suite versus composite statistics: Sedimentary Geology, v. 125, p. 225-
234.
Balsillie, J. H., Tanner, W. F., and Williams, H. K., 1999, Sticky grain occurrences in sieving: Florida Geological
Survey Open File Report No. 79, 15 p.










Balsillie, J. H., Dabous, A. A., and Fischler, C. T., 2002a, Moment versus graphic measures in granulometry:
Florida Geological Survey Open File Report No. 84, 85 p.
Balsillie, J. H., Donoghue, J. F., Butler, K. M., and Koch, J. L., 2002b, Plotting equation for Gaussian percentiles
and a spreadsheet program application for generating probability plots: Journal of Sedimentary
Research, v. 72, p. 929-933.
Folk, R. L., 1974, Petrology of Sedimentary Rocks: Austin, Hemphill, 182 p.
Galehouse, J. S., 1971, Sedimentation analysis: in R. E. Carver, ed., Procedures in sedimentary analysis: New
York, Wiley-lnterscience, p. 69-94.

Table 1


Table 1
Sieve Set Used in Grain Size
Analysis


-2.00


4.00


6 -1.75 3.35
7 -1.50 2.80
8 -1.25 2.36
10 -1.00 2.00
12 -0.75 1.70
14 -0.50 1.40
16 -0.25 1.18
18 0.00 1.00
20 0.25 0.85
25 .50 0.71
30 0.75 0.60
35 1.00 0.50
40 1.25 0.425
45 1.50 0.355
50 1.75 0.300
60 2.00 0.250
70 2.25 0.212
80 2.50 0.180
100 2.75 0.150
120 3.00 0.125
140 3.25 0.106
170 3.50 0.090
200 3.75 0.075
230 4.00 0.063


Sieve Nest
click photo to enlarge










Table 2 Sample Index


Tyndall (TYN) Samples:
TYN-1
TYN-2
TYN-3
TYN-4
TYN-5
TYN-6
Combined Analysis


Spanish Shanty (SS) Samples:
SS-1
SS-2
SS-3
SS-4
SS-5
SS-6
SS-7
Combined Analysis






Figure 1 Site Location Map


BAY CO.


Vicksburg


Hiland Park
*


Cedar Grove
City
City


Spanish Shanty (,


Miles
0 62.5 125 250


375 500


I
0 2.5 5 10 1
Kilometers


Explanation

r Sample Locations














Figure 2
Frequency Plot of Samples for Tyndall Site


Grain Size (Phi)


e-
0 20
I-




0 15
$.
LL








Figure 3
Frequency Plot of Samples for Spanish Shanty Site


Frequency Plot


30


25


S20

-
g 15


10


5


0
-2.


-1.5


-0.5


0.5
Grain Size (Phi)


Sa a a a a u -a---~-


5


A









I IUI(





t 9 0 7(in V'


w











Bay County Seagrass Project
65'500'W 3545'0W 85'40'0'W
I I I


BAY CO.


bk K


Atst Bay


West Bay


3090' "N-









30'15'0"N-









30*10'05N-









33 o0"N-


J


Vicksburg

Resota Beach5 _
Southport


Sr



i '- "


SUppe Grand oon


St Andrew .

Tndall T,ni

spar.h h3nr,


C


Miles
0 62.5 125 250


0 2.5 5


Hiland Park


Cedar Grove

IP


*Parker

7-
N -
'- .-i y


fti~


375 500


10 15


Kilometers


23'55'0'


31~5 055 31450W


+-


65'35'OW
I


Explanation

Sample Locations


3'o'0"N-


-2?0 N'"N


-3'15'0'N


-3*10'0"N









-3a5r0%N


-3'0'0'N


ast i


IIIK
iI i


I500W
850'50'W


I
85'45'0'W



































0C


'I









.........




.. ...... .. ynd ll TY N


s agn fo 746 o7.44gasi
























I ,Cumulative
Frequency Plot


Frequency Plot


-e--N-1
--TYN-2
--TYN-2 -
TYN-3
-x-TYN-4
-o-TYN-5
--TY N-6
-


-i-. fl i


-^K














.........
Spanish Shanty (SS


anig rm 055 o 332 rasi


inSie




















Cumulative
Frequency Plot


S20
-i-.'


.9 ORLIN i

















S. SI"C~
........

.. .. .. .





~~1907 2007 ~