<%BANNER%>

Lankesteriana

MISSING IMAGE

Material Information

Title:
Lankesteriana la revista científica del Jardín Botánico Lankester, Universidad de Costa Rica
Physical Description:
v. : ill. (some col.) ; 25 cm.
Language:
English
Creator:
Jardín Botánico Lankester
Publisher:
Jardi´n Bota´nico Lankester, Universidad de Costa Rica
Jardín Botánico Lankester, Universidad de Costa Rica
Place of Publication:
Cartago Costa Rica
Cartago, Costa Rica
Publication Date:
Frequency:
three times a year[2002-]
irregular[ former 2001]
three times a year
regular

Subjects

Subjects / Keywords:
Botany -- Periodicals -- Costa Rica   ( lcsh )
Epiphytes -- Periodicals -- Costa Rica   ( lcsh )
Orchids -- Periodicals -- Costa Rica   ( lcsh )
Plantkunde   ( gtt )
Botanische tuinen   ( gtt )
Genre:
periodical   ( marcgt )
serial   ( sobekcm )
Spatial Coverage:
Costa Rica

Notes

Language:
In English and Spanish.
Dates or Sequential Designation:
No. 1 (mayo 2001)-
Numbering Peculiarities:
Issues for May 2001-Oct. 2003 designated no.1-8; issues for Apr. 2004- designated vol. 4, no. 1-
General Note:
Latest issue consulted: Vol. 4, no. 1 (abr. 2004).
General Note:
International journal on orchidology.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
All applicable rights reserved by the source institution and holding location.
Resource Identifier:
oclc - 48491453
lccn - 2001240973
issn - 1409-3871
System ID:
UF00098723:00027

MISSING IMAGE

Material Information

Title:
Lankesteriana la revista científica del Jardín Botánico Lankester, Universidad de Costa Rica
Physical Description:
v. : ill. (some col.) ; 25 cm.
Language:
English
Creator:
Jardín Botánico Lankester
Publisher:
Jardi´n Bota´nico Lankester, Universidad de Costa Rica
Jardín Botánico Lankester, Universidad de Costa Rica
Place of Publication:
Cartago Costa Rica
Cartago, Costa Rica
Publication Date:
Frequency:
three times a year[2002-]
irregular[ former 2001]
three times a year
regular

Subjects

Subjects / Keywords:
Botany -- Periodicals -- Costa Rica   ( lcsh )
Epiphytes -- Periodicals -- Costa Rica   ( lcsh )
Orchids -- Periodicals -- Costa Rica   ( lcsh )
Plantkunde   ( gtt )
Botanische tuinen   ( gtt )
Genre:
periodical   ( marcgt )
serial   ( sobekcm )
Spatial Coverage:
Costa Rica

Notes

Language:
In English and Spanish.
Dates or Sequential Designation:
No. 1 (mayo 2001)-
Numbering Peculiarities:
Issues for May 2001-Oct. 2003 designated no.1-8; issues for Apr. 2004- designated vol. 4, no. 1-
General Note:
Latest issue consulted: Vol. 4, no. 1 (abr. 2004).
General Note:
International journal on orchidology.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
All applicable rights reserved by the source institution and holding location.
Resource Identifier:
oclc - 48491453
lccn - 2001240973
issn - 1409-3871
System ID:
UF00098723:00027


This item is only available as the following downloads:


Full Text

PAGE 1

INTERNATIONAL JOURNAL ON ORCHIDOLOGYISSN 1409-3871VOL. 11, No. 1 APRIL 2011New species of Aa and new combinations in Myrosmodes (Orchidaceae: Cranichidinae) from Bolivia and Peru DELSY TRUJILLO and CARLOS A. VARGAS Two new species of Teagueia (Orchidaceae: Pleurothallidinae) from East-Central Ecuador LOU JOST and ANDERSON SHEPARD The root colonizing fungi of the terrestrial orchid Cypripedium irapeanum MARA VALDS, HCT OR BAUTIST A GUERRERO, LAURA MAR TNEZ and RAFAEL H. VQUEZ Population structure of Oncidium poikilostalix (Orchidaceae), in coffee plantations in Soconusco, Chiapas, Mxico ALFREDO GARCA-GONZLEZ, ANNE DAMON, LIGIA G. ESPARZA OLGUN and JA VIER VALLE-MORA Aa from lomas formations. A new Orchidaceae record from the desert coast of Peru DELSY TRUJILLO and AMALIA DELGADO RODRGUEZ RAFAEL ARV ALO, JUANA FIGUEROA & SANTIAGO MADRIN Conservation of Madagascars granite outcrop orchids: MELISSA WHITMAN, MICHAEL MEDLER, JEAN JACQUES RANDRIAMANINDRY & ELISABETH RABAKONANDRIANINA Orchid genera lectotypes s PEGGY ALRICH & WESLEY HIGGINS 1 9 15 21 33 39 55 69

PAGE 2

LANKESTERIANAINTERNATIONAL JOURNAL ON ORCHIDOLOGY Copyright 2011 Lankester Botanical Garden, University of Costa Rica Effective publication date: April 28, 2011 Layout: Jardn Botnico Lankester. Cover: Aa aurantiaca D. Trujillo. Photograph by D. Trujillo. Printer: Palabra de Dios S.A. Printed copies: 500 Printed in Costa Rica / Impreso en Costa RicaR Lankesterian a / International Journal on Orchidology No. 1 (2001)-. -San Jos, Costa Rica: Editorial Universidad de Costa Rica, 2001-v. ISSN-1409-3871 1. Botnica Publicaciones peridicas, 2. Publicaciones peridicas costarricenses

PAGE 3

The genera Aa Rchb.f. and Myrosmodes Rchb.f. consist of terrestrial orchids possessing tiny, white there are some records of Aa paleacea (Kunth) Rchb.f. in the mountains of Costa Rica (Dressler 1993), the species of Aa and Myrosmodes are mostly restricted elevations. The taxonomic status of the representatives of these genera has remained unclear for many years. The genera Aa and Myrosmodes by Reichenbach in 1854. He distinguished Aa from Altensteinia Kunth and transferred Altensteinia paleacea (Kunth) Kunth to Aa [Aa paleacea (Kunth) Rchb.f.]. However, in a subsequent work Reichenbach (1878) reassessed his criteria and placed both Aa and Myrosmodes as synonyms of Altensteinia, and described nine new species, among them Altensteinia gymnandra Rchb.f. and Altensteinia inaequalis Rchb.f.. Later, Schlechter (1912, 1920a, 1920b) distinguished Aa from Altensteinia again but considered Myrosmodes as a synonym of Aa and combined it with that genus (e.g., Aa gymnandra (Rchb.f.) Schltr., Aa inaequalis (Rchb.f.) Schltr.). Subsequent taxonomists, for instance Schweinfurth (1958), recognized only Altensteinia as a valid genus and considered the other two genera as synonyms. Garay (1978), as part of his work in Flora of Ecuador, revalidated the genera Aa and Myrosmodes and transferred some species of Aa and Altensteinia to Myrosmodes. Since then, the three genera have been widely accepted as distinct taxa. Further revision of Myrosmodes in Peru and Colombia led to the transfer of more species to this genus (Vargas 1995, Ortiz 1995, respectively). Up to the point of this publication, Myrosmodes comprised about 10 species. Morphologically, Altensteinia is distinguished from Aa and Myrosmodes pubescent column, lobulate clinandrium, small stigma and anthesis occurring after the full development of leaves (Garay 1978). Conversely, Aa and Myrosmodes and anthesis occurs before the full development of leaves. Aa has an elongate peduncle enveloped by tubular hyaline-diaphanous sheaths, with dorsal sepal and petals free from the column, lip calceolate with involute and lacerate margins, and in many species, a pilose ovary. Myrosmodes has at least 6 morphological and ecological characters that distinguish this genus from Aa and Altensteinia and the rest of Prescottiinae: (1) a short peduncle with infundibuliform, scarious 1978, Vargas 1997), (3) an accrescent peduncle (after LANKESTERIANA 11(1): 1. 2011.NEW SPECIES OF AA AND NEW COMBINATIONS IN MYROSMODES (ORCHIDACEAE: CRANICHIDINAE) FROM BOLIVIA AND PERU DELSY TRUJILLO 1,3 & CARLOS A. VARGAS 212 3 Corresponding author: delsytrujillo@gmail.com ABSTRACT. Aa from northern Peru is described: Aa aurantiaca, which has highly atypical Myrosmodes are proposed: M. inaequalis and M. gymnandra, with illustrations and diagnostic features of the new species. RESUMEN. Se describe una nueva especie de Aa Aa aurantiaca color naranja, siendo ste un color inusual para el gnero. Se proponen adems dos nuevas combinaciones de Myrosmodes: M. inaequalis y M. gymnandra; se presentan ilustraciones y se discuten rasgos diagnsticos de las nuevas especies. KEY WORDS. : Orchidaceae, Cranichideae, Peru, Bolivia, Aa, Myrosmodes

PAGE 4

LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011.2 LANKESTERIANA FIGURE 1. Aa aurantiaca and dorsal view. C Lip, lateral view. D Lip, ventral view. E Lip, split. F Dissected perianth. G Floral bract. H Column, lateral, dorsal and ventral view. Drawing by D. Trujillo based on Trujillo 212.

PAGE 5

or more its original size, evident even in herbarium with ), distinctly smaller (up to 300%) than hermaphrodite pers. obs.), and (6) growing between 3300 to almost 5000 m.a.s.l and mostly in wet puna/paramo high(worlds record by Myrosmodes pumilio (Schltr.) C. Chile, Novoa, Vargas & Cisternas, in prep.). Myrosmodes may be embedded within Aa and that the recognition of the genus Myrosmodes is tenuous (lvarez-Molina & Cameron 2009), the morphological and ecological evidence still supports its separation from Aa. Still, we are a long way from knowing all the species that constitutes the genera Aa and Myrosmodes a stereomicroscope. For example, in most of the original descriptions and illustrations of Myrosmodes (as Aa or Altensteinia) the authors did not indicate or show the features of the column, mainly the anther (Reichenbach 1854, 1878, Schlechter 1912, 1920a, 1920b, Mansfeld 1929). The knowledge of these features in the other Myrosmodes species is required in order to have a clearer delimitation of the species that compose this genus. Based on revisions of the type material from the Reichenbach Herbarium (W) as part of the Aa from northern Peru, it has become evident that the following new combinations in Myrosmodes are necessary. They were also mentioned by Vargas in his work in Cranichideae and Prescottiinae (unpublished thesis 1997). Aa aurantiaca D. Trujillo, sp. nov. TYPE: Peru. Dept. La Libertad: Prov. Santiago de Chuco, Quirovilca, Yanivilca, 3509 m, 22 May 2005, D. Trujillo 212 SEL, M) ( FIG 1, 2). Differt ab simili Aa rosea sepalis dorsaliter pilosis, petalis trinervatis ovatolanceolatis et foramine labelli angustiore. Plant small, terrestrial. Roots pubescent. Leaves slender, erect, up 30 cm long, enclosed by up to 23 diaphanous sheaths, terminated in a long, rachis of the spike sparsely pilose. Floral bracts 4-5 x Flowers non-resupinate, orange to reddish orange. Dorsal sepal oblong to ovate, obtuse, dorsally hairy, 1-nerved, x 1.3-1.5 mm. Lateral sepals shortly connate at the base, obliquely oblong-lanceolate, obtuse, dorsally hairy, somewhat carinate, 1-nerved, 3.0 x 1.5 mm. Petals obliquely ovate lanceolate, x 1.1 mm. Lip LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011. TRUJILLO & VARGAS New Species and Combinations in Aa and Myrosmodes3 FIGURE Aa aurantiaca. Photograph by D. Trujillo.

PAGE 6

LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011.4 LANKESTERIANA FIGURE 3. Single herbarium sheet at W-R bearing specimens of Myrosmodes gymnandra (Rchb.f.) C. Vargas composed Wilkes s.n. B Specimens without collector information. C Specimen Mandon s.n. (holotype).

PAGE 7

LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011. TRUJILLO & VARGAS New Species and Combinations in Aa and Myrosmodes5 (except the margins), obscurely 3-lobed, with a narrow opening, the involute margins lacerate, base with two spherical calli, 2.0 x 2.5 mm (natural position). Column short, with an emarginate transverse rostellum, dilated Anther erect, lateral margins lightly covered by the clinandrium. Stigma quadrate in young Ovary sessile, subcylindric, hairy, 2 mm long. ETYMOLOGY : From Latin aurantiacus, referring to the DISTRIBUTION : Known only from the Department of La Libertad, Peru, between 3500 and 4000 m elevation. PHENOLOGY : Flowering plants have been recorded HA B I T A T AN D E C OLOGY : Plants of this species grow on grassy hillsides. Some populations grow sympatrically with other Aa and petals have light-green tones when young turning into light-cream to cream-brown when older (but never Aa species can be distinguished from Aa aurantiaca by its wide opening Aa aurantiaca is similar to Aa rosei hairy sepals, ovate-lanceolate, 3-nerved petals, and narrower opening of the lip. Myrosmodes gymnandra (Rchb.f.) C. Vargas, comb. nov. Basionym: Altensteinia gymnandra Rchb.f., Xenia Orch. 3: 18. 1878. TYPE: Bolivia. Prov. Larecaja, Mandon s.n. (holotype: W) (Fig. 3, 4). Aa gymnandra (Rchb.f.) Schltr., Rep. Spec. Nov. Regni Veg.11: 150. 1912. Myrosmodes gymnandra belongs to the subgenus Myrosmodes, i.e. it does not have a rostrate ovary (Vargas is oblong, obtuse, 4.4 x 2.0 mm. The lateral sepals are oblong, concave, obtuse, somewhat carinate, 6.0 x 2.6 mm. The petals are linear, subacute, with upper margin erose, 4.5 x 0.6 mm. The lip is obovate, subquadrate, involute, trilobate, middle lobe subquadrate, margin apical with moniliform hairs, two calli at the base, 4.5 x 3.6 mm. The column is erect, and 3 mm long. The anther mm long. The rostellum is triangular and obtuse. The subcircular to obovate, 11.0 x 10.2 mm. In the protologue of the description of A. gymnandra, Reichenbach indicates that the specimen used to describe the species was Mandon s.n. Bolivia, locality. However, in the Reichenbach Herbarium in Vienna (W), there was no specimen of A. gymnandra bearing the characteristic printed label of G. Mandon (as most of Mandons herbarium specimens). There is well as notes from Reichenbach with the description of A. gymnandra and a mix of two specimens (Fig. 3). One specimen is mounted on the herbarium sheet, which could be Mandons specimen (holotype) and the other is in an envelope (top left of the herbarium sheet), that corresponds to Wilkes s.n., collected in Peru between Culnai and Obrajillo. The illustration showed here is of the herbarium sheet (Fig. 3B), but it is not possible to precisely identify the specimen to which it belongs. In the original description of A. gymnandra, Reichenbach (1878) did not mention two important features: the anther exceeds the apex of the stigma evident but the anther appears smaller (Fig. 3C). The for (Mansf.) Garay. Even though M. gymnandra to, they can be distinguished because slightly trilobate lip (Garay 1978). Myrosmodes inaequalis (Rchb.f.) C. Vargas, comb. nov. Basionym: Altensteinia inaequalis Rchb.f., Xenia Orch. 3: 19. 1878. TYPE: Peru. Dept. Puno: Macusani in puna brava, June 1854, Lechler 1950 Aa inaequalis (Rchb.f.) Schltr., Rep. Spec. Nov. Regni Veg. 11: 150. 1912.

PAGE 8

LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011.6 LANKESTERIANA FIGURE 4. Myrosmodes gymnandra expanded out. D Column, dorsal and ventral view. E Floral bract. Drawing by D. Trujillo based on a specimen from Reichenbach Herbarium (W). Myromodes inaequalis belongs to subgenus Myrosmodes to 7 cm long. The dorsal sepal is oblong to oblongobovate, obtuse to rounded, concave, 2.3 x 1.2 mm. The lateral sepals are oblong, obtuse, concave, carinate, 2.6 x 1.1 mm. The petals are linear-ligulate, falcate, subacute, with upper margin erose, 2.0 x 0.4 mm. The lip is cucullate, cuneate at base, obovate to elliptic when expanded, entire, margin of upper half with moniliform hairs, two calli at the base, 2.4 x 2.1

PAGE 9

FIGURE 5. Myrosmodes inaequalis Lip. E Column, dorsal and ventral view. F Floral bract. Drawing by D. Trujillo based on Lechler 1950 (W). TRUJILLO & VARGAS New Species and Combinations in Aa and Myrosmodes7mm. The column is erect, 1.6 mm long. The anther is subcircular and 0.7 mm long. The rostellum is truncate, emarginate, not triangular (as stated by Reichenbach). The ovary is elliptic, cylindrical, 3.5 mm long. The Myrosmodes inaequalis resembles Myrosmodes paludosa (Rchb.f.) P. Ortiz.; however, they can be distinguished because the latter has a shorter anther, and thicker peduncle which is twice as long as the LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011.

PAGE 10

spike (while in M. inaequalis the peduncle is up to three times longer than the spike). ACKNOWLEDGEMENTS. We thank to the curators of the W for having allowed us access to the type material in the of some of the specimens mentioned here; to the Ministerio y de Fauna Silvestre (DGFFS) for issuing the collection permits under which orchid specimens have been collected their sponsorship in visiting the W; to Dr. Gnter Gerlach for his comments on the paper and to Dr. Philomena Bodensteiner for her help with the Latin diagnosis. LITERA TURE CITED phylogenetics of Prescottiinae s.l. and their close allies (Orchidaceae, Cranichideae) inferred from plastid and 1020. Aa rosei 81. Berry, P.E. & R.N. Calvo. 1991. Pollinator limitation and Myrosmodes cochleare (Orchidaceae). Pl. Syst. Evol. 174: 93-101. Dressler, R.L. 1993. Field guide to the orchids of Costa Rica and Panama. Cornell University Press, Ithaca, New York. Orchidoideae Neottioideae. In: G. Harling & B. Sparre (eds.), Flora of Ecuador, 225(1). University of Goteborg, Stockholm, Sweden. staaten. Repert. Sp. Nov. Regni Veg. Beih 57. Ortiz, P. 1995. Orqudeas de Colombia. Corporacin Capitalina de Orquideologia, Bogota. 2da. Ed. Reichenbach, H.G. 1854. Altensteinia, Aa and Myrosmodes. Xenia Orchid. 1: 17-19. Reichenbach, H.G. 1878. Orchideae Mandonianae. Xenia Orchid. 3: 17-19. Schlechter, R. 1912. Die Orchideen Gattungen Altensteinia HBK, Aa Rchb.f. und Myrosmodes Rchb.f.. Repert Spec. Nov. Regni Veg. 11: 147-150. Schlechter, R. 1920a. Orchidaceae novae et criticae. Repert. Sp. Nov. Regni Veg. 16: 353-358. Schlechter, R. 1920b. Orchidaceae novae et criticae. Repert. Sp. Nov. Regni Veg. 16: 437-450. Schweinfurth, C. 1958. Orchids of Peru. Fieldiana Bot.. 30(1): 1-260. Vargas, C. 1995. New combinations in Myrosmodes Rchb.f. (Orchidaceae) Lindleyana 10: 5-6. Vargas, C. 1997. Phylogenetic analysis of Cranichideae and Prescottiinae (Orchidaceae) with some taxonomic changes in Prescottiinae. M.S. thesis, University of LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011.8 LANKESTERIANA

PAGE 11

Prior to the year 2000, Teagueia Luer was known from only three Colombian and three Ecuadorian species, each apparently endemic to very small areas (Luer 1991). In the year 2000, LJ discovered four new species of Teagueia in one square meter of moss at 3100m on a remote mountain in the upper Ro Pastaza watershed in the province of Tungurahua in T. alyssana Luer & L. Jost, T. sancheziae Luer & L. Jost, T. cymbisepala Luer & L. Jost, and T. jostii Luer (Luer 2000). Further investigation led to the discovery of many more new species on that same mountain and neighboring mountains, all in cloud forest or pramo (alpine grassland) above 2800m (Jost 2004). The total number of new high-elevation morphospecies now known from the upper Ro Pastaza watershed is about 28 (including the four formally described species just mentioned, and the two new ones described here). Characteristics of the new species and their relatives morphospecies are slender, long-repent plants with repent habit easily distinguishes them from all other Teagueia the previously-known Ecuadorian species of the genus. Teagueia zeus (Luer & Hirtz) Luer, T. teagueii (Luer) Luer, and T. tentaculata Luer & Hirtz all have a raised callus on the lip just below the column. In addition, the of the genus, is long and narrow, extending almost from the callus to the apex of the lip. In the 28 long-repent species, on the other hand, there is no raised callus, the lip. Both of the new species described here are easily distinguished from all other described Teagueia species. Teagueia barbeliana is most like T. cymbisepala, but lateral sepals in particular are very broad and connate for half their length, each with four veins as opposed to the three or fewer veins of other known species. The lateral lobes of the lip clasp the column just behind the LANKESTERIANA 11(1): 9. 2011.TWO NEW SPECIES OF TEAGUEIA (ORCHIDACEAE: PLEUROTHALLIDINAE) FROM EAST-CENTRAL ECUADOR LOU JOST 1,3 & ANDERSON SHEPARD 2 1 Via a Runtun, Baos, Tungurahua, Ecuador2 3 ABSTRACT. Teagueia, T. barbeliana and T. puroana, are described and illustrated. Their relationship to other Teagueia relatives are T. alyssana, T. sancheziae, T. cymbisepala and T. jostii and like them, the new species are highTeagueia barbeliana column apex winged. Teagueia puroana differs from relatives by its long-acuminate petals and sepals RESUMEN. Se describen e ilustran dos nuevas especies del gnero Teagueia, T. barbeliana y T. puroana. Se emparentadas con las nuevas son T. alyssana, T. sancheziae, T. cymbisepala, y T. jostii que al igual que las Ecuador. Teagueia barbeliana se distingue por sus spalos y ptalos redondos, sus spalos laterales unidos hasta la mitad de su longitud, y las alas en el pice de la columna. Teagueia puroana se distingue por sus ptalos y spalos con colas largas.. KEY WORDS : Teagueia puroana, Teagueia barbeliana Ecuador, orchid, new species

PAGE 12

LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011.10 LANKESTERIANAstigma. The three-veined petals and winged column tip are also unusual. Teagueia puroana is most like T. alyssana, but it is immediately distinguished by the long tails on all sepals and petals exclusive of the lip, combined with lateral sepals that are only connate for 1/5 of their length, and lateral lobes of the lip which clasp the column just behind the stigma. Evolution of the Teagueia species of the upper Ro Pastaza watershed. The similarity of the 28 upper Ro Pastaza watershed long-repent morphospecies of Teagueia strongly suggests that they form a monophyletic group. Preliminary results of molecular work on nearly all morphospecies by Mark Whitten, Kurt Neubig, and Lorena Endara (University of FloridaGainesville), and previous unpublished work this. These morphospecies thus constitute one of the earths most remarkable local plant evolutionary radiations, with more species in a much smaller area than better-known recently-evolved plant radiations such as Darwins Scalesia Galapagos Islands (Tye 2000). The only comparable orchid radiation is the Dendrochilum Blume radiation on Mount Kinabalu, Borneo (Barkman & Simpson 2001). Molecular work by Mark Whittens group at UF Gainesville may soon be able to assign a time scale on this Teagueia radiation, which appears to be (Hughes & Eastwood 2006, Scherson et al. 2008). Distribution patterns of the Teagueia species in the upper Ro Pastaza watershed 28 Teagueia morphospecies appear to be restricted to a 30km x 20km block of forest bisected by the steep valley of the Ro Pastaza, an important tributary of and high cloud forests along the Quito-Baeza road and the pramos of Pisayambo (Parque Nacional Los Llanganates) north of the Ro Pastaza failed to turn up any of these species. South of the Ro Pastaza, we have found only two species on the GuamoteMacas road (70-90 km south of the Ro Pastaza) and no species farther south. There are however many unexplored high mountains in the Llanganates range and between the Ro Pastaza and the Guamote-Macas road, where additional as-yet-unknown species may be found. The distributions of the 28 morphospecies show strong geographic structure within the upper Ro Pastaza watershed. The morphospecies found north of the Ro Pastaza are not found south of it, and viceversa, with one possible exception. These patterns are probably not sampling artifacts, as we have intensively examined each of the mountains where these longrepent Teagueia are known to occur. Such strong local distribution patterns are remarkable in light of the dispersal characteristics of orchid seeds. Other orchid genera in the same area show north-south distribution bands which cross the Ro Pastaza (LJ pers. obs.) The previously-described members of this group of 28 morphospecies, T. alyssana, T. sancheziae, T. cymbisepala, and T. jostii, were all from a mountain north of the Ro Pastaza. The two species described in south of the Ro Pastaza. They are among the most distinctive of the southern species. Habitat and conservation status. Both species described here were discovered at very high elevations on Cerro Candelaria, Tungurahua province, Ecuador. Fourteen other morphospecies of Teagueia were also found on Cerro Candelaria. The two species described here are among the rarest of the Cerro Candelaria Teagueia species; only a few plants of each were Teagueia puroana grows as an epiphyte on low branches and trunks of isolated stunted treelets in the pramo. Teagueia barbeliana grows in moss in open pramo at 3400-3800m. Both species experience hard freezes on most nights. Teagueia barbeliana was later found on a second mountaintop about 18 km west of Cerro Candelaria. Teagueia puroana remains known only from Cerro of this unique evolutionary radiation makes these mountains a global conservation priority. Shortly in Ecuador and abroad started a conservation foundation, Fundacin EcoMinga, to protect the endemic plants and animals of the upper Ro Pastaza watershed. In partnership with the World Land Trust, Fundacin EcoMinga has now purchased much of

PAGE 13

JOST & SHEPARDTwo new species of Teagueia 11LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011.Cerro Candelaria, including habitat for T. puroana and T. barbeliana and the fourteen other Teagueia morphospecies which grow there. These purchases were made possible by donations to the World PricewaterhouseCoopers. SPECIES DESCRIPTIONS Teagueia barbeliana sp. nov. Teagueiae cymbisepalae Luer et Jost similis, sed sepalis petalisque rotundioribus, sepalis lateralibus connatis per 1/2 marginem suas, lobis lateralibus labelli circum columnam. TYPE: Ecuador. Tungurahua: Cerro Candelaria, 128S, 78W, 3400 m, Nov. 2002, L. Jost 5132 Plant medium in size for the genus, lithophytic or terrestrial, long-repent, the rhizome exceeding 20 cm in length, producing a ramicaul and leaf at every third joint, 7-8 mm between joints; one coarse root emerging at each ramicaul-bearing joint. Ramicauls ascending, stout, 3 mm long, enclosed by 1 or 2 imbricating sheaths. Leaf erect, thickly coriaceous, reticulate-veined, petiolate, elliptical, obtuse, 10-15 mm long, 8-9 mm wide, the base cuneate into the petiole. which is 15-20 mm long. from near the apex of the ramicaul; an erect, successive, oblique, acute, thin, 4 mm long; pedicels 4.4 mm long; ovary 1.8 mm long. Flowers golden yellow suffused orange, with red on veins, the lip with a red stripe down its center; dorsal sepal ovate, 6.4 mm long, 4.2 mm wide, 3-veined; lateral sepals broadly ovate, acuminate, 5.3 mm long, 3.9 mm wide, 3-veined, rudimentary fourth vein, connate for 2.3 mm. Petals ovate, acuminate, 4.1 mm long, 2.8 mm wide, 3-veined. Lip ovate, 3.1 mm long, 2.3 mm wide, the apex truncate, the disc above the middle, the base with angles embracing the column, curving outward to match the plane of the Column terete, recurved at anther, 1.8 mm long, 1 mm wide at stigma, laterally winged at anther, wings ETYMOLOGY: habitat; this species is named in honor of his mother Barbel, at his request. PARA TYPES : Ecuador. Tungurahua: Cerro Candelaria, 1S, 78W, Nov. 2003, L. Jost, A. Shepard, S. Grossman, A. Araujo 6197 6219 6225 6227 1S, 78W, 3500 m, Dec. 2003, L. Jost et al. 6580 DISTRIBUTION: Rare and local from 3400-3800 m on two mountaintops just south of the Ro Pastaza near the town of Baos, Tungurahua, Ecuador. Teagueia puroana sp. nov. Teagueiae alyssanae Luer et Jost similis, sed sepalis petalisque longi-acuminatis, sepalis lateralibus connatis per 1/5 marginem suas, lobis lateralibus labelli circum columnam. Type: Ecuador. Tungurahua: Cerro Candelaria, 1S, 78W, 3400 m, Nov. 2002, L. Jost 5149 Plant small-medium in size for the genus, epiphytic, long-repent, the rhizome exceeding 13 cm long, producing a ramicaul and leaf at every third joint, 0.81.4 cm between joints; one coarse root emerging at each ramicaul-bearing joint. Ramicauls ascending, stout, 4 mm long, enclosed by 1 or 2 imbricating sheaths. Leaf erect, thickly coriaceous, reticulate-veined, petiolate, elliptical, obtuse, 15-20 mm long, 8-9 mm wide, the base cuneate into the petiole 15 mm long. from near the apex of the ramicaul; an open at once; oblique, acute, thin, 4 mm long; pedicels 3.8-4.5 mm long; ovary 1.5 mm long. Flowers dark orange suffused dark reddish apically on all parts; dorsal sepal elliptical-ovate, longacuminate, 7.1 mm long, 3.4 mm wide, 3-veined; lateral sepals obovate, long-acuminate, 7.6 mm long, 2.6 mm wide, 3-veined, connate for 1.4 mm;

PAGE 14

LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011.12 LANKESTERIANA FIGURE 1. Teagueia barbeliana ILLUSTRA TION VOUCHER : L. Jost 5132

PAGE 15

JOST & SHEPARDTwo new species of Teagueia 13LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011. FIGURE 2. Teagueia puroana ILLUSTRA TION VOUCHER : L. Jost 5149

PAGE 16

LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011.14 LANKESTERIANApetals ovate, long-acuminate, 5.1 mm long, 2 mm wide, 1-veined; lip oblong-ovate, 2.4 mm long, 1.4 mm wide, the apex rounded, the disc longitudinally the base with rounded microscopically ciliate angles embracing the column, the angles nearly or actually in contact with each other above the column, the base Column terete, recurved at anther, 1.4 mm long, 0.8 mm wide at stigma; stigma entire. ETYMOLOGY : Named in honor of Puro Coffee, UK, this species. PARA TYPES: Ecuador. Tungurahua: Cerro Candelaria, 3600 m, 128S, 7817W, Nov. 2002, L. Jost 5140 5141 5209 5210 L. Jost, A. Shepard, S. Grossman, A. Araujo 6213 6218 6223 DISTRIBUTION: K nown only from 3600 m on Cerro Candelaria, just south of the Ro Pastaza, near the town of Baos, Tungurahua, Ecuador. ACKNOWLEDGEMENTS. Kurt Neubig, Lorena Endara, Mark Whitten, and two anonymous reviewers gave advice that Ecuador gave permission for this research; permit 12-07 ICLITERA TURE CITED Barkman, T.J., & B.B. Simpson. 2001. Origin of HighElevation Dendrochilum Species (Orchidaceae) Endemic to Mount Kinabalu, Sabah, Malaysia. Syst. Bot. 26: 658-669. Hughes, C., & Eastwood, R. 2006. Island Radiation on a continental scale: Exceptional rates of plant 103:10334-10339. Jost, L. 2004. Explosive Local Radiation of the Genus Teagueia (Orchidaceae) in the Upper Pastaza Watershed of Ecuador. Lyonia 7: 41-47. Systematics of Lepanthopsis, Restrepiella Restrepiopsis, Salpistele & Teagueia Monogr. Syst. Bot. Missouri Bot. Gard. 64: 105-114. Systematics of Jostia, Andinia Barbosella, Barbodria, and Pleurothallis Effusia, Subgenus Restrepioidia (Orchidaceae). Monogr. Syst. Bot. Missouri Bot. Gard. 79:105-114. Scherson, R., Vidal, R., & Sanderson, M. 2008. Phylogeny, Astragalus (Leguminosae) with an emphasis on South Galapagos. Pages 24-28 in Valencia, R., Pitman, N., Leon-Yanez, S., Jorgensen, P. (Eds.) Libro Rojo de las Plantas endemicas del Ecuador 2000. Herbarium of the

PAGE 17

Introduction. Symbiosis are particularly important plants obtain the majority of their nutrients, including those limiting their growth. In general for the terrestial orchids the mycorrhizal association is fundamental for the plant during germination and throughout all its life (Smith & Read 1997). Of all orchids that have been studied, few have been terrestrial orchids just 3% of the orchids have been studied (Ortega-Larrocea & Rangel-Villafranco 2007). Many species of terrestrial orchids are threatened or in danger due to the habitat loss by anthropogenic (Dearnaley 2007). Cypripedium irapeanum (Fig. 1) grows mainly in the remaining oak forests of the Mexican highlands. The oak forests in Mexico are LANKESTERIANA 11(1): 15. 2011.THE ROOT COLONIZING FUNGI OF THE TERRESTRIAL ORCHID CYPRIPEDIUM IRAPEANUM MARA VALDS 1,2 HCT OR BAUTIST A GUERRERO 1 LAURA MAR TNEZ 1 & RAFAEL H. VQUEZ 1 1 Colonia Santo Toms, 11340 Mxico D.F. 2 ABSTRACT. of the terrestrial orchid Cypripedium irapeanu internal transcribed spacer sequencing. The orchid is endemic of differents regions in Mexico, Guatemala and Honduras; usually at 1400-2250 m. It grows mainly in the remaining oak forests of the highlands and it is in the Mexican red list of plants in danger. The oak forests in Mexico are threatened constantly. The microscopic examination of stained root segments of the orchid revealed the presence of fungal structures of both orchidioid fungi (pelotons and coyled hyphae) and dark septate endophytes (DSE) (mielinized hyphae and microsclerotia). Sistotrema sp., Rhizoctonia solani, and Epulorhiza Phomopsis sp XJ-05, and another one 99% to the fungal endophyte MUT 885 which are both reported as dark septate endophytes. The putative dark septate endophyte Phomopsis sp XJ-05 was isolated not only from the roots but also from the germinated seeds of C. irapeanum. RESUMEN. orqudea terrestre Cypripedium irapeanum Mxico, Guatemala y Honduras localizndose entre los 1400 y 2250 m de altitud. Crece principalmente en los remanentes de los bosques de encino del altiplano y est en la lista roja de Mxico de las plantas amenazadas. Los bosques de encino en este pas estn constantemente amenazados. El examen al microscopio de los (hifas mielinizadas y microesclerosios). El anlisis de la secuenciacin de la regin ITS1-5.6-ITS2 sugiere que el tejido micorrizado est dominado por Tulasneaceae: Sistotrema sp., Rhizoctonia solani, and Epulorhiza sp. Entre los DSE, uno de los 10 aislados mostr 100% de similaridad con Phomopsis sp XJ-05, y otro 99% con el Phomopsis sp XJ-05 fue aislado tanto de las races como de las semillas que germinaron de C. irapeanum KEY WORDS : terrestrial orchid, orchidoide mycorrhiza, dark septate endophytes, microsclerotia

PAGE 18

LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011.16 LANKESTERIANAthreatened constantely by the urban activities and by the development of recreational sites. The change of soil use of the oak forests has conducted to the degradation by soil erosion and loss of these forests and have allow not only to the soil loss, and cosequently to the loss of the symbiotic fungi, but also to the decrease of the number of pollinators and to the increase of pathogens, specially the attack of the capsules by screw warms; other problems that this plant has to face in the degraded habitat are cattle, and weed invasion (Valds et al. 2005). Cypripedium irapeanum was orginally described based on a collection from the mountains of Irapeo near the present city of Morelia in Michoacan, Mexico known as pichohuastle, a native name for the plant. The orchid is endemic of differents regions in Mexico (Chiapas, Durango, Guerrero, Jalisco, Michoacn, Morelos, Nayarit, Oaxaca, Sinaloa, Quertaro, Puebla, Veracruz), Guatemala and Honduras; usually at 14002250 m of altitud. The orchid is in the red list of plants in danger of the Mexican Department of Natural Resources ( SEMARNA T 1995). In relation to the temperate ladys slipper orchids, Cypripedium, there are few studies on its associated et al. (2005), the genus Cypripedium mycorrhizal association, then the lack of these fungi may limit their establishment and distribution. Upon infection of this orchid by a compatible mycorrhizal fungus the seed (dust seed) germinates into a seedling that consumes the fungal sugars, processus known as myco-heterotrophy. The plants may retain the myco-heterotrophy into adulthood (Gill 1989). The internal transcribed spacer (ITS) regions have been used extensively used for environmental sampling as a target because several taxonomic group& Bruns 1993). The ITS has been the region of choice for molecular analysis of fungal communities of this region has been useful since Gardes & Bruns (1996) used its restriction digests (RFLP) to differenciate species of mycorrhizal fungi colonizing individual and ITS2 are highly variable being a good marker to identify fungi to the genera and/or species level (Gardes & Bruns 1993, Gardes & Bruns 1996, Henrion et al. 1992, Smith et al. 2007). Objective of this paper was the isolation and as well as mycorrhyzal fungi of C. irapeanum by restriction fragment length polymorphisms and by endophyte refers to those fungi that can be detected at a particular moment within the tissues of apparentky healthy plant hosts (Schultz & Boyle 2005). Materials and methods. Collected C. irapeanum is surviving in a remaining patch of an oak forest which is located out of Puebla city in the State of Puebla, at 1840 m. We collected C. irapeanum growing close to an oak tree. Due to the scarcity of the orchids we obtained a collect autorization (No. D00.02-3478) from SEMARNA T Cypripedium irapeanum plants were collected including the rhizome and the surrounded soill to ensure that the root system was kept intact. We also sampled seeds. The soil core with the alive whole plants were maintened in the greenhouse before to be processed. In order to observe the root fungal colonization in situ the roots were hydrolyzed and stain by the Philips and Hayman procedures (1970) resulting in 20 to 30 root samples per plant. Inter and intracellular FIGURE 1. Cypripedium irapeanum State, Mexico.

PAGE 19

LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011. VALDS et al. Root colonizing fungi of Cypripedium irapeanum17melanized hyphae with microslclerotia were recorded as Dark Septate Endophytes (DSE). The isolation of the seed and root endophytes of C. irapeanum was done after a surface sterilization with a 5% sodium hipochlorite solution for 10 min, followed by a 0.1 % mercuric chloride solution for 2 min, and several washings with sterile distilled water. This drastic sterilization was done to prevent growth of root external microorganisms. Seeds were sowed and the root fragments (1 cm long) in Petri plates containing Melin-Norkrans (Molina & Palmer, 1982) were eliminated and those with no contaminants were incubated at 24oC for 3 months. Pure fungal isolates were propagated in Melin-Norkrans agar medium. Colonial and microscopic morphology was photographically documented (data not shown). Genetic characterization of C. irapeanum genome region useful in determining fungal identity (ITS1-5.8S-ITS2), 3) restriction and RFLP analysis of was evaluated with a GeneQuant spectrophotometer. according to Gardes & Bruns (1993) using the carried out in a Biometra-T personal termocycler under 94oC for 85 s for the denaturation followed by at 95oC for 35s, 55oC for 55s and 72oC for 45s. This was followed by an incubation at 72oC for 10 more minutes. Obtained bands were visualized in an EtBr stained agarose gel. Gibco) and restricted with enzymes Hinf1 (at 37oC for 5 hours), Alul (at 37oC for 1 hour), and Taq 1 (at 65oC for 3 hours). Fragments were analiysed with the Kodak ID 3.6.1 program. The amplicons were cloned and ligated using the TOPO XL PCR cloning ( QIAGEN ) according to the manufacturers instructions. The recombinant vector was used for transforming cells of E. coli Screening for recombinant cells was carried out by blue/white selection. Sequencing reactions were done in a Li-Cor 4202 G sequencer. Before sequencing, with the Pure Link Quick Gel Extraction kit (Invitrogen) following the manufacturers instructions. to determine their homology with other sequences available in the Gene Bank for the ITS1-5.8S-ITS2 et al. 1994) was used to align the sequences with the Results and discussion. The microscopic examination of stained root segments of the orchid revealed the presence of fungal structures of both orchidioid fungi, pelotons and coyled hyphae (Fig. 2) and DSE, mielinized hyphae and microsclerotia (Fig. 3). In 40% of the cortical cells pelotons were seen, and 30% of the cortical cells revealed the presence of microsclerotia inside the cells. We found partially digested pelotons in all C. irapeanum plants, suggesting that C. irapeanum may have mycoheterotrophic stages. Table 1 shows the list of the endophytic fungi recovered from roots and germinated seeds of orchid Cypripedium irapeanum. Dark Septate Endophytes were also observed in the germinated seeds. Two distinct types of microsclerotia were seen in the roots, one was of round shape and the other had irregular shapes (Fig. 3 different fungi were isolated, one from a germinated seed and 9 from the roots. Isolates 7, 9 and 10 were isolate 10 from the seeds. To our knowledge, this is Cypripedium irapeanum in C. irapeanum. region resulted in a 650 bp product. Negative controls

PAGE 20

LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011.18 LANKESTERIANAin PCRs (sterile milliporized water) consistently yielded no PCR product. The ITS 1F-ITS 4 combination yielded most of the PCR products except the ITS 1-ITS 4B combination. Restriction of the region yielded RFLPs different for all the analyzed fungi, except fot the isolates 9 and 10 that were identical. Nine RFLP patterns were yielded with AluI and TaqI restriction enzymes and 7 patterns with HindI (Fig. 4), suggesting the diversity of the endophytes. suggested that mycorrhizal tissue was dominated JF313323) revealed 98% identity to Sistotrema sp., Rhizoctonia solani No. JF313322) 97% to Epulorhiza sp., Shefferson et al. (2005) and Shimura et al. (2009) results for the genus Cypripedium. Diverse Tulasnaceae form mycorrhiza also with epiphytic orchids (Surez et al. 2006). Figure 5 shows a phylogenetic tree indicating the placement of the mycorrhizal fungi recovered from the roots of C. irapeanum. FIGURE 2. Squash preparation of a C. irapeanum stained root showing infection of cells, coiled hyphae and development of pelotons. Isolate Type of root colonizing fungus C1 Fusarium Fungal endophyte (Bayman & Otero, 2006) C2 Sistotrema Mycorrhizal (Currah et al, 1990) C3 Rhizoctonia solani Mycorrhizal (Warcup, 1971) C4 Fusarium Fungal endophyte (Bayman & Otero, 2006) C5 Cylindrocarpon Fungal endophyte (Fisher & Petrini, 1989) C6 Epulorhiza Mycorrhizal (Shan et al, 2002) C7 MUT 885 Dark Septate Endophyte (Girlanda et al, 2002) C8 Gliocladium catenulatum Biological control fungus (Paavanen-Huhtala et al, 2004) C9 Phomopsis Dark Septate Endophyte (from plant) (Jumpponen, 2001) C10 Phomopsis Dark Septate Endophyte (from germinated seeds) TABLE 1. Endophytic fungi recovered from roots and germinated seeds of orchid Cypripedium irapeanum

PAGE 21

LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011. VALDS et al. Root colonizing fungi of Cypripedium irapeanum19 Isolates 9 and 10 revealed 100% identity to Phomopsis sp XJ-05, and isolate 7 revealed 99% identity to the fungal endophyte MUT 885 (a DSE fungus according to Girlanda et al., 2002), corroborating the results of the RFLP analysis. Phomopsis sp XJ-05 was isolated not only from the roots of C. irapeanum plants but also from the germinated seeds, indicating a possible role of stimulation of germination. Other endophytic fungi belonging to the Deuteromycetes were also isolated: isolate 1, Fusarium sp 440 (99% identity); isolate Fusarium sp (97% identity); isolate 5 as Cylindrocarpon sp 4/97.1 (100% identity); and isolate 8 as Gliocladium catenulatum (99% identity). The genus Sistotrema et al. (1990) as a mycorrhizal fungi of boreal species. Moncalvo et al., (2006) states that this fungus as a highly phylogenetic. However, analysis of ITS1-5.8ITS2 region sequences of our isolate C2 showed a high identity to this fungus. Rhizoctonia is known for its association with most other orchids (Rasmussen, 1995). This fungus is a genus based on asexual stages, is a polyphyletic fungus which includes fungi from the families Tulasnellaceae, Sebacinaceae and Ceratobasidiaceae. Rhizoctonia solani is a known anamorph of Thanatephorus cucumeris, has been isolated from mycorrhizal endophytes because are able to stimulate the seed germination and development of the plant in vitro assays (Warcup, 1971). The Epulorrhiza species are known as anamorphs of the genus Rhizoctonia. Shan et al., 2002 mention that certain species of this genus have been continually isolated of terrestrial orchids; by means of the RFLP Rhizoctonia they were able to classify the genus and its anamorps in 4 groups. Group II formed by Epulorrhiza showed a high ability to stimulate the germination and growth of several orchids. authors (Sharma et al. 2003) found that in advanced development of the plant the number of species of Epulorrhiza is low suggesting that the occurrence of the fungus may be less critical in this growth stage. DSE have been reported for nearly 600 plants host FIGURE 3. Two distinct microsclerotia (arrowheads) within the roots of C. irapeanum, round shape and irregular shape. FIGURE 4. Restriction fragmen tlength polymorphisms obtained by endonucleases of the internal transcribed spacer (ITS1-5.8S-ITS2) region of the different fungi isolated from C. irapeanum. Digestions were performed marker.

PAGE 22

LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011.20 LANKESTERIANAspecies, including plants known to bear different types of mycorrhizae occurring in highly diverse habitats. Their widespread occurrence and high abundance the different ecosystems (Jumpponen & Trappe, 1988; Jumpponen, 1999). Jumpponen (2001) regards the DSE as nonconventional mycorrhizal symbiosis because some of them have found to enhance host mineral nutrition and growth (Fernando & Currah, 1996). The presence of DSE in the germinated seeds of C. irapeanum and their lack in the ungerminated seeds suggests its possible role for the germination of the orchid seed. In relation of the occurrence of Fusarium as an endophyte of Cypripedium, Bayman & Otero (2006) interesting group of the orchids endophytes due to its hability to stimulate the seed germination of C. reginae. Other found endophytes in C. irapeanum were Cylindrocarpum and Gliocladium. Cylindrocarpon sp. 4/97.1 was reported as an endophyte of roots of terrestrial orchids and mycoheterotrophic orchids (Bayman & Otero, 2006). Gliocladium catenulatum is well known as a biological control agent (PaavanenHuhtala et al., 2004) and parasite of other fungi (Tu & Vaartaja, 1980) suggesting an important role against pathogens in the orchid root. ACKNOWLEDGEMENTS This research was partially funded with a grant of the Instituto Plotcnico Nacional. RHV scholarship. We are grateful to Ms Raquel Escobedo for providing information on the ubication of the orchids. English corrections. LITERA TURE CITED Bayman, P. & J. Tupac Otero. 2006. In: Microbial Root Endophytes. B. Shultz, C. Boyle and T. Sieber, Eds. Springer, Heildeberg, New York. Pp 153-173. Cypripedium (Mex.) 13:205-214. Dearnaley, J. D. W. 2007. Further advances in orchid mycorrhizal research. Mycorrhiza 17: 475-486. Mycorrhizae and mycorrhizal fungi of boreal species of Plantanthera and Coeloglossum (Orchidaceae). Canad. J. Bot. 68: 1171-1181. of the effects of the root endophytes Leptodontidium orchidicola and Phaliocephala fortinii (Fungi Imperfecti) on the growth of some subalpine plants in culture. Canad. J. Bot. 74: 1071-1078. Gardes, M. & T. D. Bruns. 1993. ITS primers with Ecol. 2:113-118. Gardes, M. & T. D. Bruns. 1996. Community structure of ectomycorrhizal fungi in Pinus muricata forest: aboveand below-ground views. Canad. J. Bot. 74: 1572-1573. speciation in orchids. In Sunderland, Massachusetts. Pp. 458-481. of sterile root-associated fungi of two mediterranean plants. New Phytol. 155: 481-498. orchid mycorrhiza. New Phytol. 69: 1015-1023. Henrion, B. F., F. Le-Tacon & F. Martin. 1992. Rapid Phytol. 122: 289-298. phenotypes of a root endophytic fungus, Phialocephala fortinii, at a primary successional site on a glacier forefront. New Phytol. 141: 333-344. FIGURE 5. Neighbor-joining tree obtained from the internal transcribed spacer (ITS1-5.8SITS2) sequence alignment of isolates C2, C3 and C6 with sequences of Tulasnaceae. The Kimura two-parameter model was used for pairwise distance measurement. Bootstrap values above 50% are indicated (1000 replicates). Black ar rows indicate the mycorrhizal fungal isolates recovered from the orchid C. irapeanum

PAGE 23

LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011. VALDS et al. Root colonizing fungi of Cypripedium irapeanum21 mycorrhizal? Mycorrhiza 11: 207-211. colonizing fungi. New Phytol. 140: 295-310. 217. Molina, R. & J. G. Palmer. 1982. Isolation, maintenance and pure culture manipulation of ectomycorrhizal fungi. In: Schenck N.C. (ed.), Methods and principles of Minnesota. Pp. 115-129. Moncalvo, J-M., R. H. Nilsson, B. Koster, S. M. Dunham, T. Bernauer, P. B. Matheny, T. M. Torner, S. Margaritescu, M. Wei, E. Danell, G. Langer, E. Langer & K-H. Larsson. 2006. The cantharelloid clade: dealing with incongruent gene trees and phylogenetic reconstruction methods. Mycologia 98:937-948. Ortega-Larrocea, M. P. & M. Rangel-Villafranco. 2007. Fungus assisted reintroduction and longtem survival of two Mexican terrestrial orchids in the natural hbitat. Lankesteriana 7: 317-321. Gliocadium catenulatum used in biological control. Eur. J. Pl. Pathol. 105: 187-198. Phillips, J. M. & D. S. Hayman. 1970. Improvement procedures for clearing and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Brit. Mycol. Soc. 55: 158-161. Rasmussen, H. N. 1995. Terrestrial Orchids: From Seed to Mycotrophic Plant. Cambridge University Press, Cambridge, UK. SEMARNA T 1995. Gaceta Ecolgica 7: 1-72. Hodgkiss. 2002. Characterization and taxonomic placement of Rhizoctonia -like endophytes from orchid roots. Mycol. 94:230-239. Sharma, J., L. W. Zettler & J. W. van Sambeek. 2003. Platanthera praeclara (Orchidaceae). Symbiosis 34: 145-155. Shefferson, R. P., M. Wei, T.I.I.U. Kull & D. Lee mycorrhizal association in rare ladys slipper orchids, genus Cypripedium. Molecul. Ecol. 14: 613-626. Shimura, H., M. Sadamoto, M. Matsuura, T. Kawahara, S. Naito & Y. Koda. 2009. Characterization of mycorrhizal fungi isolated from the threatened Cypripedium macranthos in a northen island of Japan: two phylogenetically distinct fungi associated with the orchid. Mycorrhiza 19:525-534. Smith, S. E. & D. J. Read. 1997. Mycorrhizal Symbiosis. Smith, M. E., G. W. Douhan & D. M. Rizzo. 2007. of sporocarps and pooled ectomycorrhizal roots from Quercus woodland. Mycorrhiza 18:15-22. & I. Kottke. 2006. Diverse tullasnelloid fungi form forest. Mycol. Res. 110: 1257-1270. Schulz, B. & C. Boyle. 2005. The endophytic continuum. Mycol. Res. 109:661-687. Thompson, J. D., D. G. Higgins & T. J. Gibson. 1994. multiple sequence alignment through sequence Tu, J. C. & O. Vaartaja. 1980. The effect of the hyperparasite Gliocadium virens on a Rhizoctonia root rot of white beans. Canad. J. Bot. 59: 22-27. Pichohuastle : orqudea nativa mexicana en peligro de extincin. Conversus (Instituto Politcnico Nacional) 38: 30-33. 41-46.

PAGE 24

LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011.LANKESTERIANA

PAGE 25

Introduction. Mexico, with its diversity of ecosystems, is an orchid rich country with 1150 species currently registered (Espejo et al. 2004), expected to rise to 1300 1400 species (Hgsater et al. 2005). Many orchid climatic parameters, their reproduction is notoriously slow and scarce (vila & Oyama 2002; Hgsater et al. 2005), and very little is known about most species. LANKESTERIANA 11(1): 23. 2011.POPULATION STRUCTURE OF ONCIDIUM POIKILOSTALIX (ORCHIDACEAE), IN COFFEE PLANTATIONS IN SOCONUSCO, CHIAPAS, MXICO ALFREDO GARCA-GONZLEZ 1,4 ANNE DAMON 2 LIGIA G. ESPARZA OLGUN 3 & JA VIER VALLE-MORA 21 Pinar del Ro, Cuba.2 Tapachula, Chiapas, Mxico.3 El Colegio de la Frontera Sur (ECOSUR). Calle 10 X 61 No. 264, Colonia Centro, Campeche, Mxico.4 alfredmx22@gmail.com ABSTRACT We studied the population structure of Oncidium poikilostalix (Kraenzl.) M.W. Chase & N.H. Williams (Orchidaceae) newly reported for Mxico in 2008 in the region of Soconusco (Chiapas state) in southeast Mexico, growing in shaded coffee plantations in two rural communities, Fraccin Montecristo (FM) and Benito Jurez El Plan (BJ). In 2008-2009, we determined the characteristics of these coffee plantations, and the distribution of the various life stages (seedling, juvenile, adult) on the two phorophytes: coffee bushes (Coffea arabica L.) and shade trees (Inga micheliana to compare all the variables evaluated. There were 1123 individuals (82.63%) in FM and 236 (17.37%) in BJ. Of those, in FM 1060 individuals (94.4%) were epiphytic upon coffee bushes and 214 (91.06%) in BJ, the rest were epiphytic upon the shade trees (I. micheliana ). Despite displaying the characteristics of a twig epiphyte, the preferred microsites of O. poikilostalix were the branches of the coffee bushes, with 703 individuals (55.18%) and the trunk of the shade trees, with 78 individuals (91.76%). More than a third of the population was juvenile stage (37.09%; 504 individuals). Oncidium poikilostalix probably entered Mxico from Guatemala and appears to be a vigorous plant that is successfully adapting to its new sites of occupancy RESU M EN Oncidium poikilostalix (Kraenzl.) M.W. Chase & N.H. Williams (Orchidaceae), nuevo reporte para Mxico en 2008, en la regin del Soconusco, Estado de Chiapas, al sureste del pas. Crece en plantaciones de caf de sombra en dos comunidades rurales, Fraccin Montecristo (FM) y Benito Jurez El Plan (BJ). En 2008-2009, se determinaron las caractersticas de estas plantaciones de caf, y la distribucin de los distintos estados de vida (plntulas, juveniles, adultos) de Coffea arabica L.) y rboles de sombra (Inga micheliana todas las variables evaluadas. Hubo 1.123 individuos (82,63%) de O. poikilostalix en FM y 236 (17,37%) en BJ. De ellos, creciendo sobre cafetos, 1.060 individuos (94,4%) en FM y 214 (91,06%) en BJ, el resto ocupando rboles de sombra (I. micheliana de ejemplares de O. poikilostalix se contabiliz en los cafetos, en el micrositio ramas, con 703 individuos (55,18%) y en el tronco, en los rboles de sombra, con 78 individuos (91,76%). Ms de un tercio de la poblacin fueron individuos juveniles (504 individuos, 37,09%). Oncidium poikilostalix probablemente entr a Mxico desde Guatemala y parece ser una planta vigorosa, que se est adaptando con xito a sus nuevos sitios de ocupacin. KEYWORDS / PALABRAS CLA VE : Oncidium poikilostalix rbol de sombra, cafeto.

PAGE 26

LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011.24 LANKESTERIANA The Soconusco region in the state of Chiapas, in south-east Mexico bordering with Guatemala, covers an area of 5475 km which includes coastal plains and part of the Sierra Madre mountain range with tropical and temperate forest ecosystems (Snchez & Jarqun 2004). Within that scenario a relatively high number of more than 280 orchid species have been reported for the region (Damon, 2011), including various endemic species. and severe tropical storms have contributed to the destruction and fragmentation of natural forests and combined with the unsustainable and illegal exploitation of orchids have led to the rapid decline of orchid numbers and biodiversity, and the near extinction of the most vulnerable species, as has happened in many other parts of the world. In Soconusco, most of the cloud forest, which is the most orchid rich ecosystem on the planet (60% of et al. 2005), has been planted under the shade of original forest trees heavily populated by epiphytes, thus maintaining a high proportion of the original biodiversity (Hgsater et al. 2005). Today, many of those traditional plantations have been converted to improved varieties of coffee can be found growing within coffee plantations (Espejo et al. 2004). Oncidium poikilostalix (Kraenzl.) M.W. Chase & N.H. Williams was reported in 2008 as a new species for Mexico, with small populations in coffee plantations in two localities in Soconusco, Fraccin Montecristo (FM) (latitude 15 5 31.5; longitude 92 9 57.9) and Benito Jurez El Plan (BJ) (latitude 15 5 15.4; longitude 92 8 54.7), both within the municipality of Cacahoatn (Solano et al. in press), having been previously reported in Guatemala and Costa Rica as Sigmatostalix costaricensis Rolfe (Behar & Tinschert 1998) and as Sigmatostalix picta Lindl. de Retana 1999). The colonization of new areas by O. poikilostalix demonstrates the importance of the Biological Corridor Boquern-Tacan, which connects both nations and forms part of the Mesoamerican In this study we describe the population structure of O. poikilostalix, comment upon its reproductive behaviour as observed in 2008-9, and analyse the relationship with the phorophytes and microsites available in two shaded coffee plantations in Soconusco, Chiapas, as an exceptional opportunity to study the characteristics of an orchid extending its distribution in these times of climate change and biodiversity loss. Materials and Methods Characterization of the sites We studied the coffee plantations where O. poikilostalix grows to describe the density of the coffee bushes, diversity and density of the shade trees and the management regimes applied to the coffee. Sampling unit Having analysed the distribution of O. poikilostalix in FM and BJ we set up three plots, or sampling units, measuring 625 m (25 x 25 m; 0.0625 ha) in each coffee plantation, FM (plots 1, 2 and 3) and BJ (plots 4, 5 and 6). These plots are highly representative of the populations as a whole and contained the majority of individuals of the orchid present in these sites at the time of the study. Determination and characterization of the phorophytes, Density, Height Above Ground (HAG) and Diameter at Breast Height (DBH) In this study, the term phorophyte is only used for coffee bushes and shade trees that had one or more individuals of O. poikilostalix growing on them at the time of the study. We determined which species were used as phorophytes by O. poikilostalix within the study sites, counted the numbers of individuals and determined the density of each phorophyte. shade trees) was measured with a 4m straight ruler graduated with 50cm intervals and the DBH was determined using a metric tape. Microsites Guided by the vertical zonation proposed by Johansson (1974), we developed a trees in this study, to describe the different microsites, or ecological units, available for colonization by epiphytes, as follows:

PAGE 27

LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011. GARCA-GONZLEZ et al. Population structure of Oncidium poikilostalix25Microsites for coffee bushes (Fig. 1): Zone 1 Trunk (Tr): From the base of the bush to Zone 2 Fork (F): Intersection between branches at various heights. Zone 3 Branches (B): Thick branches with diameter > 3 cm. Zona 4 Twigs (Tw): Thinner, outer branches, with a diameter < 3 cm. Microsites for shade trees (Fig. 2): Zone 1 Trunk (Tr): From the base of the tree to Zone 2 Fork (F): Intersection between branches at various heights. Zone 3 Branches (B): Thick branches with diameter > 3 cm. Due to pruning there was no zone 4 for trees. For each coffee bush and tree the length of Zone 1 and total length of Zone 3 were measured and numbers of Zone 2 were counted. It was not possible to quantify Zone 4 for the coffee bushes. Life stages of O. poikilostalix The plants of O. poikilostalix categories: Seedling (S): Earliest stage after the protocorm differentiated structures (2 mm to 2 cm). Juvenile (J): Sexually immature but well developed plant (> 2 cm). Sampling We counted all the individuals of each life stage on each of the microsites of every phorophyte within the study sites. Statistical Analysis (Version 5.1.2600) and Minitab (Version 15.1.30.0) to of Fit of Chi-squared test. Combining all the variables stage, number of microsites available) we carried out Mahalanobis test, to derive the population structure and preferences of the orchid O. poikilostalix. Results Characterization of the sites The coffee plantations FM and BJ consist of arabica coffee bushes (Coffea arabica FIGURE 1. Microsites and vertical zonation of the coffee plants: 1) Trunk, 2) Fork, 3) Branches, 4) Twigs. FIGURE 2. Microsites and vertical zonation of the shade trees (Inga micheliana ): 1) Trunk, 2) Fork, 3) Branches.

PAGE 28

LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011.26 LANKESTERIANA(Chalum; Inga micheliana Harms.: Mimosaceae) as well as occasional species of native, fruit or timber trees which also serve to shade the coffee bushes, such as Cedrela mexicana Roem. (Meliaceae), Citrus sp. (Rutaceae) and Nectandra sp. (Lauraceae) in FM and Inga lauriana (Sw.) Willd. (Fabaceae), Citrus sp., Trema micrantha (L.) Blume (Ulmaceae) and Vernonia deppeana plantations can be considered as simple polycultures (sensu Williams-Linera & Lpez-Gmez, 2008, for coffee plantations in the Mexican state of Veracruz). The plantations of FM and BJ are approximately 15 and 20 years old and are situated at an average altitude of 1410 m and 1440 m, respectively. In both FM and BJ no agrochemicals are applied, and management is limited to manually eliminating weeds with a machete twice a year, and the pruning of shade trees and coffee bushes once a year. Most importantly, unlike in most plantations in the region, these farmers do not eliminate the moss, and with it the epiphytes, that grow on the branches and trunks of the coffee bushes. Determination of the phorophytes Most of the trees were I. micheliana and this was the only tree species that acted as a phorophyte. The coffee bushes themselves were also phorophytes. and shade trees were colonized by O. poikilostalix. between the colonization of the two phorophytes, with an apparent preference for coffee bushes in 2008 ( 123.662; was maintained in 2009 ( 127.954; 1.14875e-29). In 2009, 23 O. poikilostalix were lost due to maintenance activities, thus reducing also the number of trees determined as phorophytes. Chalum (I. micheliana) was the only tree species to act as a phorophyte (58 individuals, 79.45% of all trees. 27 FM; 31 BJ) and population sizes of O. poikilostalix were notably different between sites and phorophytes (Table 7). Density of coffee bushes and shade trees Within the experimental plots, in FM there were 459 coffee bushes and 35 shade trees, whereas in BJ there were 410 coffee bushes and 38 shade trees. The density of coffee bushes was 2448 and 2187 coffee bushes/ha in FM and BJ, respectively, whereas shade tree density was more variable, at 187 and 203 trees/ha for FM and BJ, respectively. Height Above Ground (HAG) and Diameter at Breast Height (DBH )of the phorophytes There were between coffee bushes ( included due to measuring less than 1.30 m in height. TABLE 1. Colonization of phorophytes, coffee, and shade trees (Inga micheliana ) per year of study, in Fraccin Montecristo (FM) and Benito Jurez (BJ). TABLE Breast Height (DBH) (cm) averages for the phorophytes, coffee bushes and shade trees, in Fraccin Montecristo (FM) and Benito Jurez (BJ).

PAGE 29

LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011. GARCA-GONZLEZ et al. Population structure of Oncidium poikilostalix27Availability of Microsites length of the branches (Zone 2) of the coffee bushes and the length of the trunks (Zone 1) of the trees were greater than the other microsites of these phorophytes (Table 3). The forks between branches could be found at different heights above the ground. Number of orchids per microsite The majority of individuals of O. poikilostalix occupied Zone 3, the branches, in the case of the coffee bushes (703 individuals) and Zone 1, the trunk, of the shade trees (78 individuals). Plot 1 (FM) had the greatest population (762 individuals), with the highest numbers of individuals in each microsite [Zone 1, 148; Zone 2 (coffee bushes only), 2; Zone 3, 383; Zone 4 difference between Plot 1 as compared to Plots 2 and 3 ( the number of orchid individuals on the coffee plants Shade trees were less favoured as phorophytes than coffee bushes, and no orchids were found growing in Zone 2, the forks of the trees. However, one specimen of I. micheliana had 52 individuals, 46 on Zone 1, and 6 on Zone 3. Principal Component Analysis Comparing all the variables for both types of phorophyte (plot, height above ground, DBH, number of orchid individuals on each microsite, number available of each microsite) we determined whether there were differences between the experimental plots. difference between Plot 1 and Plots 2 and 3, (Table 3) corroborated by the Mahalanobis test (Table 4). In BJ, In the case of the shade trees in FM, Plot 2 corroborated by the Mahalanobis test (Table 6). In TABLE 3. General average dimensions (m) of the trunk microsites (Zone 1) and branches (Zone 3) and average number of forks (Zone 2) for the phorophytes, coffee bushes and shade trees, in Fraccin Montecristo (FM) and Benito Jurez (BJ). FIGURE 3. Scatter Plot produced by Principal Component orchid individuals on each microsite, number available of each microsite. FIGURE 4. Scatter Plot produced by Principal Component at Breast Height (DBH), number of orchid individuals on each microsite, number available of each microsite.

PAGE 30

LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011.28 LANKESTERIANAand Plots 1 and 2 was shown to be non-existent by the application of Pillais Trace test (Fig. 6). Number of individuals of life stages For the shade trees, in FM, the distribution of the three life stages were found growing on Zone 3 (703 individuals) and very few were found on Zone 2 (4). Plot 1 had the most individuals and the greatest number of all life stages growing on all the microsites. Discussion Height, DBH y density of present and potential The density and architecture of present and potential and coffee bushes, create variations in the conditions of temperature and humidity which in turn affect the germination and establishment of epiphytes (Benzing 1990). In the case of the forks between branches, the levels of humidity and amount of humus accumulated, which are favourable for the establishment of many epiphytes, depend upon the size and position of the fork in relation to sources of organic matter and moisture. The combination of these aspects can have a substantial effect upon the penetration of light, air TABLE shade tree phorophytes in Fraccin Montecristo. TABLE coffee plant phorophytes in Benito Jurez. FIGURE 5. Scatter Plot produced by Principal Component Diameter at Breast Height (DBH), number of orchid individuals on each microsite, number available of each microsite. TABLE shade tree phorophytes, Fraccin Montecristo. FIGURE for shade trees in Benito Jurez El Plan (BJ). Variables Breast Height (DBH), number of orchid individuals on each microsite, number available of each microsite.

PAGE 31

LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011. GARCA-GONZLEZ et al. Population structure of Oncidium poikilostalix29circulation and the surface available for establishment of epiphytes. Those same variables will also affect the abundance and diversity of bacteria and mycorrhizal fungi, the availability of pollinators and the abundance of herbivores and their natural enemies. The density of coffee bushes was 2448 and 2187 coffee bushes/ha in FM and BJ, respectively, which compares to a density of approximately 2000 bushes/ ha in traditional coffee plantations in Colombia, contrasting with intensive plantations in that country which may have up to 10,000 bushes/ha of dwarf, high yielding varieties (Gallego 2005). Shade tree density was more variable, at 187 and 203 trees/ha for FM and BJ, respectively. These densities are similar to the density of shade trees in coffee plantations in Veracruz, which range from 193 220 trees/ha, but which are taller than the trees in our study, possibly due to less aggressive pruning. However, the density of trees in the original cloud forest is approximately 638 trees/ha, with a maximum height of approximately 22m (WilliamsLinera & Lpez-Gmez 2008), and O. poikilostalix may be better adapted to the environmental conditions, and for attracting pollinators and dispersing seeds within this denser vegetation of the original cloud forest. Number of orchids per type of phorophyte and per microsite Vascular epiphytes tend to display patterns their range of tolerance for light and humidity and other ecophysiological adaptions (Johansson 1974; Krmer et al. that forks represent an extremely important microsite for many epiphytic species of plants, whereas other species clearly favour vertical substrates (HernndezRosas 2000). In forks, retention of both humidity and organic matter are greater than for vertical substrates, as water drains away very quickly on vertical substrates, carrying with it organic matter and dissolved nutrients. In this study, the percentage colonization of both phorophytes was similar, 13.79% of shade trees and 16.8% of coffee bushes, and the higher numbers of O. poikilostalix on coffee bushes could simply be due to the presence of more than 10 times more coffee bushes (869) than shade trees (73) in the experimental plots. Oncidium poikilostalix has a relatively high pollination rate and each capsule contains thousands of seeds (Garca-Gonzlez 2009, unpublished data) which are carried by multidirectional breeze and thermal currents, the similarity of the percent colonization, despite the great difference in the quantities of potential phorophytes in the experimental plots, suggest that only this small, and constant fraction of phorophyte populations have the necessary microorganisms and /or environmental conditions to permit the establishment of colonies of O. poikilostalix and that it is a minority case. TABLE 7. Oncidium poikilostalix : number of individuals per microsite, life stage and type of phorophyte in 2008, for Fraccin Montecristo (FM) and Benito Jurez (BJ).

PAGE 32

From a numerical point of view 1273 out of a total of 1358 (93.74%) individuals of O. poikilostalix were found growing on coffee bushes indicating that they offer adequate conditions for germination and development, and conditions that are probably similar to the original substrate preferences of this orchid. This is interesting as Coffea arabica is an introduced species, with just over one century in the Soconusco region (Baxter 1997; ICO 2009) and has effectively creating a new habitat or opportunity. In tropical forests the canopy is closed, there is little growing on the outer extremes of the branches are not exposed to full sun or extreme dryness. In coffee plantations the canopy is more open, shade trees are widely spaced and light penetrates down to the coffee bushes. We have no information concerning the type of phorophytes and microsites colonized by O. poikilostalix in natural habitats, but obviously the branches of coffee bushes, followed by the trunks of coffee bushes and shade trees are the conditions the natural habit of O. poikilostalix In the case of shade trees, the trunk is maybe too thick, too dark, and maybe even too constantly damp, whereas the pruned branches are maybe too exposed in this more open type of vegetation cover. The trees are regularly pruned, to increase the light reaching the coffee plants, and the profusion of thinner branches is eliminated and with it any orchids attached to them. thin branches and the size of O. poikilostalix indicate to prefer thicker branches and to be able to establish on trunks, but this may be an artefact of management practices carried out within coffee plantations wherein thinner branch growth is annually pruned out, both in shade trees and coffee bushes. The branches represent an intermediate microsite, in terms of light intensity, air currents, bark texture, available surface area, thickness, and in the absence of stable twig microsites, may offer the next best option and fall within the natural range of tolerance of this orchid. Twig epiphytes tend to mature relatively rapidly but have shorter lifecycles than most orchid species habitat (Gravendeel et al. 2004; Hgsater et al. 2005; Mondragn et al. 2007). Various species of small twig epiphytes colonize the thinnest branches of coffee bushes in Soconusco region, especially Erycina crista galli (Rchb.f.) N.H.Williams & M.W.Chase, Leochilus labiatus (Sw.) Kuntze, L. oncidioides Knowles & Westc., L. scriptus (Sw.) Rchb.f., Notylia barkeri Lindl., and Ornithocephalus tripterus Schltr. (Damon 2009, unpublished data), and all are even smaller than O. pokilostalix which may explain why this orchid appears to fall outside of the twig epiphyte category. Differences between Plots and number of individuals of life stages between the coffee bushes and the shade trees, affecting all the variables monitored, but mainly due to the great difference in the number of plants of O. poikilostalix were found on the trunk of the shade trees (Table 7). In FM, with the largest and most established population of O. poikilostalix our data for the number of seedlings and numbers of adult plants indicate low survival rates on Zone 1, the trunk (Table 7). The trunks of the trees will receive orchid seeds falling from above and the high humidity possible favours the presence of mycorrhizal fungi which facilitate the germination of the seeds. However, later on, development of the young plant may be hindered by low light levels, reduced air circulation and, during the rainy season, humidity may reach intolerable levels complicated by mud splashed from the ground. In BJ the behaviour of the orchid appeared to be different, with far greater levels of survival on the trunks, but the population is still too small to draw conclusions. On the branch microsite, in both FM and BJ, where a greater number of individuals were found from all three life stages, recruitment of seedlings was relatively lower, although survival rates were the next most occupied microsite was the twigs, Zone 4 (Table 7), although in Plots 3 and 5 no individual were observed on this microsite. Plot 3 had a slightly greater density of coffee bushes implying less light reaching the coffee twigs, but Plot 5 was no different, LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011.30 LANKESTERIANA

PAGE 33

relative abundance on this microsite agrees with the size and physical characteristics of O. poikilostalix but levels of survival were not high, as few adult plants were observed in comparison with the numbers of seedlings and juveniles, although this could simply be due to the rough handling and breakage of twigs during the harvest, and partial removal of twigs during annual pruning. In the case of shade trees the low numbers of individuals of O. poikilostalix (Table 7) prevented an adequate analysis of the distribution of individuals of the three life stages. Oncidium poikilostalix is an orchid that appears to be well adapted to the conditions in the coffee agroecosytems of southeast Mexico, colonizing most of the available microsites on both shade trees and coffee bushes, although we have no means of comparing our data with populations inhabiting the original, natural habitat of this plant. Despite our observation that a small proportion of individuals of O. poikilostalix were lost due to management practices in 2009, the majority of the coffee plantations in Soconusco region are administered by small producers, which for cultural and economic reasons carry out the bare minimum of maintenance procedures, which favours stability and the persistence of epiphytes. Under these conditions, O. poikilostalix is slowly expanding its distribution and may threaten the smaller populations of the similar Sigmatostalix guatemalensis within Oncidium. Rodolfo Solano-Gmez, personal communication), which is a protected plant in Mexico and established in small numbers within the coffee plantations FM and BJ. ACKNOWLEDGEMENTS. This study formed part of the Project: Diversity and conservation of the orchids of the Biological Corridor Tacana-Boqueron, and we are grateful to the National Council for Science and Technology 206) for funding. We thank the coffee producers of the communities Fraccin Montecristo and Benito Jurez El Plan, for permitting us access to their plantations to carry LITERA TURE CITED # 39 Orchidaceae: Tribe Maxillarieae: subtribes Maxillariinae and Oncidiinae. Fieldiana, Bot. 40 (1-4): 1-82. vila, I. & K. Oyama. 2002. Manejo sustentable de Laelia speciosa (Orchidaceae). Biodiversitas (Boletn Bimestral de la Comisin Nacional para el Conocimiento y Uso de la Biodiversidad) 7 (43): 9-12. Baxter, J. 1997. El libro del caf. Susaeta Ediciones, Madrid. Behar, M. & O. Tinschert. 1998. Guatemala y sus orqudeas. Bancaf, Guatemala. Benzing, D.H. 1990. Vascular Epiphytes. Cambridge University Press, New York. Mesoamericano, Mxico. Proyecto Para la Consolidacin del Corredor Biolgico Mesoamericano. Serie Tcnica 05. [Internet page] [cited on 20 december www.ccad.ws/pccbm/ docs/cbmmexico.pdf para la Migracin y el Desarrollo Internacional). 2000. Plan de conservacin de suelos y agua para la costa de Chiapas, Mxico. orqudeas del corredor biolgico Tacan-Boquern. CHIS-2006-C06-45802. 2007-2010. 2004. Las orqudeas de los cafetales en Mxico: una opcin para el uso sostenible de ecosistemas tropicales. Rev. Biol. Trop. 53 (1-2): 73-84. Gallego, M.C. 2005. Intensidad de manejo del agroecositema del caf (Coffea arabica L.) (monocultivo y policultivo) y riqueza de especies de hormigas generalistas. Boletn del Museo de Entomologa de la Universidad del Valle 6 (2): 16-29. 2004. Epiphytism and pollinator specialization: drivers for orchid diversity?. Phil. Trans. R. Soc. Lond. B. 359: 1523-1535. Hgsater, E.; M. Soto; G. Salazar; R. Jimnez; M. Lpez & R. Dressler. 2005. Las Orqudeas de Mxico. Productos Hernndez-Rosas, J.I. 2000. Patrones de distribucin de las (3): 43-60. ICO (International Coffee Organization). 2009. Historical data. [Internet page] [cited on 22 october 2009]. LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011. GARCA-GONZLEZ et al. Population structure of Oncidium poikilostalix31

PAGE 34

INEGI (Instituto Nacional de Estadstica, Geografa e Informtica). 1999. El crecimiento de la poblacin y sus repercusiones sobre el medio ambiente de Mxico. Johansson, D. 1974. Ecology of vascular epiphytes in West Krmer, T.; M. Kessler & S.R. Gradstein. 2007. Vertical of the understory. Plant Ecol. 189: 261-278. 2007. Life history and demography of a twig epiphyte: a case study of Erycina crista-galli (Orchidaceae). Selbyana 28 (2): 137-144. Snchez, J.E. & R. Jarqun (ed.). 2004. La Frontera Sur. problemas ambientales, poblacionales y productivos. CD. ECOSUR. Two new records and one rediscovery for Orchidaceae Tovilla, C. 2004. La dimensin de la crisis ambiental en la costa de Chiapas y la necesidad de un programa de ordenamiento de las actividades. In: Snchez, J.E. & R. el Soconusco, Chiapas, y sus problemas ambientales, poblacionales y productivos. CD. ECOSUR. y diversidad de la vegetacin leosa. In: Manson, R.H.; V. Hernndez-Ortiz; S. Gallina & K. Mehltreter biodiversidad, manejo y conservacin Instituto de LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011.32 LANKESTERIANA

PAGE 35

Peru and Chile (5-30S latitude) is occupied by a continuous belt of desert of 3500 km long and a surface area of about 2900 km2. Its aridity is mainly due to the (Rundell et al on the coast during winter (June-September) allows the formation of thick fog masses in the ocean. Fog comes into the continent and is intercepted by foothills near the sea, creating ample water for vegetation to is called lomas formations and is unique in its plant community (Weberbauer 1945, Oka & Ogawa 1984, Ferreyra 1993, Dillon et al. 2003). Lomas formations occur in the desert as fog oases or islands of vegetation in disconnected localities along the coast of Peru and Chile, at elevations that generally do not over 70 localities ranging from Trujillo (8 S latitude) to Tacna (18 S latitude). These localities are composed of a variable mixture of annuals, short-lived perennials and in some cases even woody vegetation (Dillon et al. 2003). Some years are affected by ENSO (El Nio Southern Oscillation) events, where the occurrence of unusual precipitations during summer (DecemberMarch) alters the normal cycle of vegetation, allowing for the development of vegetation during this period. The genus Aa Rchb.f. includes terrestrial orchids authors have claimed the distribution of Aa in South (i.e. above 3100 m.a.s.l.; Wood 2003, lvarez-Molina & Cameron 2009), there are some populations of Aa at lower elevations. For instance, Aa achalensis Schltr. (Cucucci 1964). The revision of the orchid collection at USM and reveal the presence of populations of Aa at elevations between 300 to 1000 m in four lomas formations from 11 S to 15 46S latitude: Lomas de Lachay National Reserve, Department of Lima; a locality at south of Nazca, Department of Ica (the exact locality was not recorded by the collector); and Los Cerrillos LANKESTERIANA 11(1): 33. 2011.AA FROM LOMAS FORMATIONS. A NEW ORCHIDACEAE RECORD FROM THE DESER T COAST OF PERU DELSY TRUJILLO 1,3 and AMALIA DELGADO RODRGUEZ 21 2 Laboratorio de Dicotiledneas. Museo de Historia Natural, Universidad Nacional Mayor de San Marcos. 3 Corresponding author: delsytrujillo@gmail.com ABSTRACT Orchid species of the genus Aa have been described as mostly restricted to high elevations zones in Aa weddelliana at lower elevations in lomas formations from the desert coast of Peru; this is the fourth species of Orchidaceae registered in Peruvian lomas Aa weddelliana RESUMEN Las especies del gnero Aa han sido descritas como orqudeas restringidas generalmente a zonas altas Aa weddelliana a elevaciones Aa weddelliana KEYWORDS / PALABRAS CLA VE : Orchidaceae, Peru, Lomas formations, Desert, Aa

PAGE 36

1,2). Except for the diffe specimens all the specimens studied correspond to Aa weddelliana (Rchb.f.) Schltr. (Fig 3,4). Previously, this species has only been recorded at elevations (Schweinfurth 1958, Tropicos.org 2010). To the best of our knowledge, there are no previous records of Orchidaceae from the Departments of Ica A. weddelliana record from these departments. Nevertheless, it is not the only orchid recorded from the Peruvian lomas plants of Chloraea pavonii Lindl. in Lomas de Malaxis andicola (Ridl.) O. Ktze. in Cerro Cabras (Schweinfurth 1958, 1959, Correa 1969, Garay & Romero-Gonzlez 1998). The revision of herbaria collections also shows the presence of Pelexia matucanensis (Kraenzl.) Schltr. in Cerro Campana, Cerro Cabras and Casma (A.Lopez 710, HUT; N. Angulo 765, HUT and Ferreyra 8049, MOL respectively). Like A. weddelliana, most of the records of C. pavonii, M. andicola and P. matucanensis came from the localities of middle to high elevation of Schweinfurth 1958). The origin of vascular plant species within lomas formations have been grouped into 4 categories: (1) pan-tropical or weedy species, (2) long-distance disjunctions from the Northern Hemisphere desert, (3) and (4) plants restricted to the coastal desert (Dillon et al. 2003, 2009). The origin of orchid species in lomas formations likely belongs to the third category. lvarez-Molina and Cameron (2009) point out several morphological traits found in plants of Aa as Myrosmodes Rchb.f. (Aas closely related genus and also considered a high elevation specialist of freezing, and windy environments of the paramos and the arid conditions of the puna. Probably, equivalent traits will also allow A. weddelliana to develop in the between arid and humid conditions and strong winds that come from the sea. LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011.34 LANKESTERIANA FIGURE 1. Map including Peruvian lomas formations localities where Orchidaceae species have been recorded. Aa weddelliana (triangle), Chloraea pavonii (circle), Malaxis andicola (asterisk), Pelexia matucanensis (square). FIGURE 2. Aa weddelliana Aa weddelliana C. Habitat of Aa weddelliana Aa weddelliana Photographs by

PAGE 37

LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011. TRUJILLO & DELGADO Aa from lomas formations35 FIGURE 3. Aa weddelliana F. Column, three views. Drawing by D. Trujillo based on K. Rahn 198, USM.

PAGE 38

FIGURE Aa weddelliana G. Mandon 1167, W). B. Flower of a plant from Lomas de Lachay (A. Cano 710R. Ferreyra 14034, USM). a Flower. b Floral bract. c Dissected perianth. d Column, ventral and dorsal view. Drawing by D. Trujillo.LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011.36 LANKESTERIANA

PAGE 39

of Aa material from the herbarium collection are necessary in order to document the real distribution of A. weddelliana, its ecology, morphological diversity and adaptations to different environments. The following description of A. weddelliana was based on the type material and specimens from the lomas formations studied in the present work. Aa weddelliana (Rchb.f.) Schltr., Repert. Spec. Nov. Regni Veg. 11: 150. 1912. Altensteinia weddelliana Rchb. f.. Xenia Orchidacea 3: 19. 1878. TYPE: Bolivia, Vicinity Soratta. Paracollo, in Scritosis. 3400 m. December 1856-January 1857. Mandon 1167 (holotype: W; isotype: G,K). Fig. Plant small, terrestrial herb. Roots fasciculate, Leaves basal rosette, narrowly oblong, acute to acuminate, up to 11.0 x 1.7 cm. slender, erect, up 50 cm long, enclosed by 10 to 13 diaphanous sheaths, spike of 4-12 cm long, rachis of the spike sparsely pilose. Floral bracts ovate, acute to acuminate, margins x 2.53.0 mm, somewhat Flowers non-resupinate, white with pink-brown tones. Dorsal sepal oblong-ovate, acute, 1-nerved, 1.5-2.5 x 0.8-1.0 mm. Lateral sepals shortly connate at the base, obliquely oblong, obtuse, dorsally hairy at the base, apex slightly erose, 1-nerved, 2.5-3.0 x 0.7-1.0 mm. Petals falcate-ligulate, obtuse to acute, margin variable erose (mostly the distal half), 1-nerved, 1.6-2.7 x 0.7-1.0 mm. Lip calceolate, the opening slightly projected toward, transverse, entire to obscurely 3-lobed, margins lacerate, base with two calli, 4 mm wide when expand. Column short, retuse Stigma quadrate in young Ovary subcylindric, hairy, 2.0-2.5 mm long. MA TERIAL STUDIED : PERU. Arequipa: Caravel, arcilloso, creciendo bajo el refugio de Cytharexylum A. Delgado 4021. Caravel, lomas de Los Cerrillos, entre Nazca y Chala, 700 m, habitat rocoso, spalos y ptalos rosadoparduzcos, labelo blanquecino, 23 setiembre 1958, R. Ferreyra 13455 1959, R. Ferreyra 14034, USM (illustration voucher, Fig. 4C). Ica: Nazca, km 52.4 al sur de Nazca, entre rocas, 18 octubre 1957, K. Rahn 198, USM (illustration voucher, Fig. 3). Lima: Huaura, Lomas de Lachay, suelo arenoso, con zonas pedregoso-rocoso, 300-700 1996, A. Cano et al. 7101, USM-166101. Chancay, Lomas de Lachay, Km 105 carretera Panamericana Norte, suelos arenosos, arenoso-arcillosos, con partes escasa, solo frutos secos, 24 febrero 1996, A. Cano et al. 7101, USM-161164 (illustration voucher, Fig. 4B). OTHER RECORDS : PERU. Ica: Ica, Santiago, Lomas humedad de neblina y vientos fuertes, 834 m, suelo arenoso semidescubierto con parches dispersos, 7 diciembre 2007, A. Orellana & O. Whaley 353 (digital photo). DISTRIBUTION : Central and southern coast of Peru, m of elevation. HABIT A T AND ECOLOGY : In sandy, sandy-clay, stony and rocky soils of lomas formations, paramos and puna. Occasionally plants of A. weddelliana can grow on decaying tree trunks in the lomas formations and is recorded as epiphyte (personal communication with the collector of A. Cano 7101). Flowering from September to February. In the original description of A. weddelliana, natural position are expanded and measured, they are the appearance of lobes must be a deformation created during the preparation of the herbarium material or features were also noticed during the present study that were neither mentioned in the original description of Reichenbach, nor in the work of Schweinfurth (1958): petals with erose margin and ovary hairy.LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011. TRUJILLO & DELGADO Aa from lomas formations37

PAGE 40

ACKNOWLEDGEMENTS. We want to thank to the curators of W and USM for having allowed us access to study the herbarium material and to rehydrate some of the specimens mentioned here. To Jose Roque for his help in the map elaboration. To William R. Morrison III for his suggestions LITERA TURE CITED phylogenetics of Prescottiinae s.l. and their close allies (Orchidaceae, Cranichideae) inferred from plastid and 1020. Chloraea pavoni Lindl. Icones Orchid. Peruv. pl. 425. Aa achalensis Schlechter (Orchidaceae) Phytomorphology 14: 588597. Correa, M.N. 1969. Chloraea gnero sudamericano de Orchidaceae. Darwiniana 15:374-500. Dillon, M.O., M. Nakazawa & S. Leiva. 2003. The lomas formations of coastal Peru: composition and biogeographic history. Pp. 1-9 in: J. Haas & M.O. Dillon (eds.), El Nio in Peru: biology and culture over 10,000 years. Fieldiana Bot. 43. Dillon, M.O., T. Tu, L. Xie, V. Quipuscoa & J. Wen. 2009. Nolana (Solanaceae), Syst. Evol. 47: 457. Ferreyra, R. 1993. Registros de la vegetacin en la costa peruana en relacin con el Fenmeno El Nio. Bull. Inst. fr. etudes andines. 22: 259-266. Orchidum. Harvard Pap. Bot. 3: 53-62. Oka, S. & H. Ogawa. 1984. The distribution of lomas vegetation and its climatic environments along the 19:113-125. Reichenbach, H.G. 1878. Orchideae Mandonianae. Xenia Orchid. 3: 17-19. Gulmon & J.R. Erlenberg. 1991. The phytogeography Schlechter, R. 1912. Die Orchideen Gattungen Altensteinia HBK, Aa Rchb.f. und Myrosmodes Rchb.f.. Repert Spec. Nov. Regni Veg. 11: 147-150. Schweinfurth, C. 1958. Orchids of Peru. Fieldiana Bot. 30: 1-260. Schweinfurth, C. 1959. Orchids of Peru. Fieldiana Bot. 30: 261-531. Tropicos.org. 2010. Missouri Botanical Garden. http:// 2010. Wood, J. 2003. Aa. Pp. 24-26 in Cribb, N.W. Chase & F.N. Rasmussen (eds.), Genera Orchidacearum, 3: Orchidoideae part 2, Vanilloideae. Oxford University Press, Oxford.LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011.38 LANKESTERIANA

PAGE 41

Introduccin. La familia Orchidaceae es considerada una de las familias ms grandes de plantas vasculares con ms de 25,000 especies distribuidas por todo el planeta (Dressler 1981, 2005). Con el 70% de sus vasculares, siendo el grupo ms diverso de este tipo de humus, que crecen solamente donde exista una capa ramita, plantas diminutas que se encuentran en los ejes ms pequeos y expuestos de sus hospederos. Estas incluyen: la anatoma particular de sus races (presencia de exodermis y velamen); los pseudobulbos LANKESTERIANA 11(1): 39. 2011.ANATOMA FOLIAR DE OCHO ESPECIES DE ORQUDEAS EPFITAS RAFAEL ARV ALO 1,2,3 JUANA FIGUEROA 2 & SANTIAGO MADRIN 21 23 RESUMEN. se desarroll un estudio de las variaciones anatmicas foliares que pueden presentarse en diferentes (Oncidium abortivum (Epidendrum excisum Lindl.) (Rodriguezia lehmannii Rchb.f. e Hirtzia escobarii Dodson) , y cuatro especies Elleanthus oliganthus (Poepp. & Endl.) Rchb.f., Elleanthus purpureus (Rchb.f.) Rchb.f., Pleurothallis cordifolia Rchb.f. & H.Wagener, y Stelis sp. Distintas combinaciones de caracteres xerofticos propios de plantas adaptadas a crecer en ambientes con baja disponibilidad de recursos hdricos se evidenciaron en todas las especies: mayor desarrollo de clulas de la epidermis adaxial, engrosamientos de las paredes periclinales de la epidermis, tricomas glandulares, estomas con poro protegido, ocurrencia de hipodermis, haces de clulas esclerenquimticas, presencia de ramita, restringidas a los ejes ms pequeos y expuestos de sus hospederos, presentaron varios de estos caracteres. ABSTRACT. Leafs of representative epiphytic orchids were examined for anatomical detail. Four species representing the different epiphyte categories were selected for the study: Oncidium abortivum Rchb.f. (humus epiphyte), Epidendrum excisum Lindl. (branch epiphyte), Rodriguezia lehmannii Rchb.f., and Hirtzia escobarii terrestrial plants and as epiphytes were also examined: Elleanthus oliganthus (Poepp. & Endl.) Rchb.f., Elleanthus purpureus (Rchb.f.) Rchb.f. Pleurothallis cordifolia Rchb.f. & H.Wagener, and Stelis sp. Various xerophytic characters, that could be considered leaf adaptations to water shortage in the epiphytic habit, were common for most species: greater development of adaxial epidermal cells, stomata with sclerenchyma present adjacent to the xylem and phloem. Twig epiphytes, restricted to the outermost axes PALABRAS CLA VE / KEY WORDS:

PAGE 42

LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011.40 LANKESTERIANAo engrosamientos en el tallo; la disposicin, morfologa y anatoma de las hojas; los patrones de crecimiento; y la ruta metablica fotosinttica conocida como sus siglas en ingls (Dressler 1981, Benzing & Ott 1981, Benzing et al Benzing 1989, Benzing 1990, Sinclair 1990, Silvera et al. 2009). La interaccin de estos caracteres y mecanismos, en combinacin con las caractersticas gran cantidad de semillas diminutas adaptadas a la dispersin por viento (microspermia), la relacin simbitica con micorrizas para la germinacin columna y polinaria), han otorgado a las orqudeas grandes oportunidades evolutivas que han facilitado su expansin y la colonizacin del dosel en los bosques Goh & Kluge 1989). Se ha argumentado que la limitante abitica ms relevante para el crecimiento y funcionamiento agua (Zotz & Hietz 2001). La toma efectiva de agua, el almacenamiento dentro de la planta y el control de la prdida de sta, son factores determinantes en 1990). Johansson (1975) sostuvo que el patrn de ser el resultado de la interaccin entre la necesidad por captar altas intensidades lumnicas y la capacidad de tolerar la fuerza de evaporacin del aire. Puesto que las hojas son el lugar principal en donde se lleva a cabo la fotosntesis, estas deben mantener un intercambio de gases adecuado con el aire circundante, lo que conlleva una prdida de agua inevitable. Cualquier planta sujeta de la planta a los recursos que se encuentran a su disposicin (Sinclair 1990, Garnier & Laurent 1994, Reich et al. 1999). La reduccin de la transpiracin y el almacenamiento de agua, hacen parte de las estrategias que poseen las hojas para tolerar sequas. En las orqudeas, dentro los caracteres de las hojas que permiten reducir la prdida de agua se encuentran: el grosor de la cutcula, la densidad y distribucin de los estomas, la presencia (Sinclair 1990). Para el almacenamiento de agua, las hojas de algunas orqudeas poseen una hipodermis que funciona como tejido de acumulacin de agua que en algunos gneros puede llegar a ocupar hasta el 80% del volumen de la hoja (Pridgeon 1986). Dentro del tejido hipodrmico tambin se pueden encontrar idioblastos con paredes engrosadas que acumulan agua y evitan el colapso del tejido durante los periodos de desecacin (Olatunji et al. 1980). En otros casos, las funcin de almacenamiento mientras retienen algunos cloroplastos (Sinclair 1990). Con el presente trabajo se ampla el conocimiento sobre los caracteres foliares asociados con el hbito que representan formas de crecimiento variado. cuatro especies que representan a los distintos tipos y cuatro especies que se encontraron creciendo como Materiales y mtodos. Se escogieron cuatro especies de orqudeas que representaran a cada una de ramitay cuatro especies de orqudeas que crecan como plantas terrestres, enraizadas y expuestas en (Tabla 1). Las especies estudiadas fueron colectadas en su hbitat natural: Elleanthus oliganthus, E. purpureus, Pleurothaillis cordifolia, Stelis sp. y Rodriguezia lehmannii, en la vereda Monte Bello municipio de Pueblo Rico, departamento de Risaralda (05 N, 76 W); Oncidium abortivum y Epidendrum excisum vereda Cedeo municipio Tmesis, departamento Hirtzia escobarii en cultivos de guayaba en la vereda Toriba Bajo Municipio San Francisco, departamento de Cundinamarca (04 N, 74 W). Los individuos muestreados fueron plantas adultas,

PAGE 43

LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011. ARV ALO et al.41de ataques por parte de patgenos o herbvoros. Hojas maduras y completamente expandidas (1 hoja por planta, 5 plantas por especie) fueron para ser llevadas al laboratorio donde se efectuaron los transversales a mano alzada y a nivel de la parte media. Se tomaron medidas del grosor de la hoja y de las cutculas (5 medidas por hoja, 25 por especie) usando un microscopio Nikon Eclipse 4000 equipado con un micrmetro ocular. Los resultados fueron registrados a travs de microfotografas. La presencia de azul de toluidina 0 (Herr 1993). Se describe la anatoma foliar de las distintas especies teniendo en los siguientes caracteres: cutcula, clulas epidrmicas, vasculares. Resultados EPFIT A DE HUMUS Oncidium abortivum: hojas coriceas, duras, conduplicadas, lanceoladas, 332.4 64.9 m de grosor. Cutcula adaxial 2.7 0.3 m de grosor; abaxial 1.5 0.2 m de grosor. Clulas epidrmicas oblongas; las clulas adaxiales ms grandes que las abaxiales. Estomas al mismo nivel de las clulas epidrmicas; cmara subestomtica ms grande que clulas del abaxiales en dos uniseriada, interrumpida por idioblastos angulares con redondas a oblongas, con paredes delgadas. Haces vasculares de diferentes tamaos, intercalados; xilema los polos. EPFIT A DE COR TEZA Epidendrum excisum: hojas coriceas, carnosas, conduplicadas, ovadas, 1014.0 161.62 m de grosor. Cutcula 12.7 1.68 m de grosor; 8.7 0.82 m de grosor. Clulas epidrmicas rectangulares a cuadradas, paredes celulares periclinales engrosadas Estomas ligeramente hundidos en relacin a las clulas epidrmicas; cmara subestomtica ms proyecciones cuticulares (Fig. 2B). ausentes. Hipodermis adaxial 3 clulas de grosor, presencia de idioblastos con leves engrosamientos homogneo, 13 clulas de grosor, clulas con gran tamao (Fig. 2D). Haces vasculares de diferentes vaina vascular ms gruesa hacia el polo del xilema en los haces ms grandes (Fig. 2C). EPIFIT AS DE RAMIT A Hirtzia escobarii: hojas coriceas, carnosas, fuertemente conduplicadas, elpiticas, angostas, 2315.4 196.9 m de grosor. Cutcula adaxial 5.6 0.2 m Especie Colector y No. Herbario Oncidium abortivum Rchb.f. J. Figueroa 36 ANDES Epidendrum excisum J. Figueroa 14 ANDES Hirtzia escobarii J. Figueroa 7 ANDES Rodriguezia lehmannii Rchb.f. R. Arvalo 684 ANDES Elleanthus oliganthus R. Arvalo 456 ANDES Elleanthus purpureus R. Arvalo 679 ANDES Pleurothallis cordifolia R. Arvalo 482 ANDES Stelis R. Arvalo 504 ANDES TABLA 1. Lista de especies de orqudeas estudiadas.

PAGE 44

FIGURA 1 Oncidium abortivum: A. B m.de grosor; abaxial 3.8 0.82 m de grosor. Clulas epidrmicas oblongas. Estomas al mismo nivel de las dems clulas epidrmicas; cmara subestomtica proyecciones cuticulares externas presentes. Haces compuestos por varias clulas con paredes uniseriada, clulas dipuestas anticlinalmente, de tamao abaxial uniseriada, clulas isodiamtricas a oblongas, 20 clulas de grosor, clulas isodiamtricas hacia la parte media, alargadas anticlinalmente hacia ambas gran parte del volumen celular; idioblastos globosos con leves engrosamientos transversales en bandas irregulares (Fig. 3C). Haces vasculares de diferentes vaina vascular cuyas clulas esclerenquimticas presentan paredes ms gruesas hacia los polos (Fig. 3D). Rodriguezia lehmannii: hojas coriceas, carnosas, conduplicadas y elpticas, 1570.4 265.07 m de grosor. Cutcula adaxial lisa, 12.3 2.67 m de grosor; abaxial ligeramente bulada, 6.0 1.01 m de grosor. Clulas epidrmicas oblongas, dispuestas Estomas al mismo nivel de las dems clulas epidrmicas; cmara subestomtica de proyecciones cuticulares externas pronunciadas formando una cmara supraestomtica (Fig. 4B). compuestos por grupos de clulas esclerenquimticas, en una serie y al mismo nivel adaxial uniseriada interrumpida por idioblastos elipsoidales a cilndricos y con engrosamientos parietales helicoidales (Fig. 4D); la abaxial grosor, las adaxiales con ms cloroplastos y todas con vacuolas grandes que ocupan gran parte del volumen celular (Fig. 4D). Haces vasculares hacia por vaina vascular cuyas clulas esclerenquimticas presentan paredes celulares ms gruesas hacia el polo LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011.42 LANKESTERIANA

PAGE 45

FIGURA 2 Epidendrum cf. excisum. A. Idioblasto (i) con engrosamiento parietal secundario en forma de bandas irregulares, paredes periclinales de la epidermis gruesas (ep). B. Estoma (e) con clulas guardia de lumen triangular y cmara C. gran parte del volumen celular. D.m. EPFIT AS Y TERRESTRES Elleanthus oliganthus: hojas plicadas, ovadas, 217.0 15.8 20.2 m de grosor en terrestres. Cutcula adaxial levemente bulada, 4.6 0.8 y 4.2 1.0 en terrestres; abaxial de textura algo verrugosacon pequeas proyecciones granulares 0.2 m de grosor en terrestres. Clulas epidrmicas oblongas a isodiamtricas, las adaxiales ms grandes e isodiamtricas; tricomas glandulares situados en Estomas al mismo nivel de las dems clulas epidrmicas; cmara subestomtica leves proyecciones cuticulares externas e internas (Fig. ausentes. Hipodermis ausente. relativamente homogneo, 5 clulas de LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011. ARV ALO et al.43

PAGE 46

LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011.44 LANKESTERIANA presentes (Fig. 5C). Haces vasculares de diferentes tamaos, haces grandes se alternan con dos tipos de haces mas pequeos; los haces grandes con el xilema los polos (Fig. 5D). Elleanthus purpureus: hojas plicadas, ovadas, 175.4 9.4 m de grosor. Cutcula adaxial lisa a ligeramente bulada a lo largo del contorno de las clulas epidrmicas, 4.5 0.4 m a lo largo del contorno de las clulas epidrmicas, 1.9 0.3 m de Clulas epidrmicas isodiamtricas a oblongas; tricomas glandulares situados en depresiones epidrmicas presentes en FIGURA 3. Hirtzia escobarii: A. B. Hipodermis C. Idioblasto globoso con engrosamiento parietal secundario en forma de bandas irregulares (i). D. Disposicin radiada m.

PAGE 47

LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011. ARV ALO et al.45 Estomas al mismo nivel de las dems clulas epidrmicas; cmara subestomtica de igual o mayor tamao que clulas ausentes. Hipodermis ausente. heterogneo, 7 clulas de grosor, las clulas abaxiales, dispuestas periclinalmente, oblongas a isodiamtricas, con espacios intercelulares conspicuos (parnquima esponjoso); las adaxiales en dos series de clulas isiodiamtricas (parnquima empalizada) (Fig. 6C); presentes. Haces vasculares de diferentes tamaos, haces grandes se alternan con dos tipos de haces FIGURA 4. Rodriguezia lehmannii: A. la epidermis abaxial, hipodermis adaxial (h) constituida por idioblastos (i) con engrosamientos parietales helicoidales, pequeos. B. Estoma (e) con proyecciones cuticulares (pc) pronunciadas y cmara supraestomtica (csp) alargada. C. D. Idioblasto (i) elipsoidal con engrosamiento parietal secundario helicoidal. E. Haz vascular (x y f) rodeado por vaina vascular (vv), cuyas clulas esclerenquimticas m.

PAGE 48

LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011.46 LANKESTERIANA vascular ms gruesa haca los polos. Pleurothallis cordifolia: hojas coriceas, algo carnosas, fuertemente cordadas, 838.7 75.6 m m de grosor en terrestres. Cutcula adaxial lisa, 7.9 0.7 m de grosor m de grosor en terrestres; abaxial lisa, 2.1 0.2 0.4 m de grosor en terrestres. Clulas epidrmicas oblongas a rectangulares; tricomas glandulares situados en depresiones epidrmicas presentes en ambas Estomas al mismo nivel de las dems clulas epidrmicas; cmara subestomtica de mayor o igual tamao que clulas adyacentes ausentes. FIGURA 5. Elleanthus oliganthus. A. Estoma (e) con clulas guardia de lumen triangular y cmara subestomtica. (csb) de B. Tricoma glandular de la C. C. m.

PAGE 49

LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011. ARV ALO et al.47Hipodermis adaxial compuesta por dos series, clulas con engrosamientos parietales helicoidales; abaxial uniseriada, clulas con engrosamientos parietales helicoidales. heterogneo, 8 clulas de grosor; el parnquima esponjoso compuesto por clulas oblongas a isodiamtricas; grandes idioblastos ovoides, con engrosamientos helicoidales e idioblastos con rafdios (Fig. 7C y D); el parnquima empalizada compuesto por dos series, una serie de clulas columnares, y otra de clulas oblongas a isodiamtricas pequeas gotas amarillas de aceite. Haces vasculares de diferentes tamaos, distribuidos en una serie ubicada Stelis sp.: hojas coriceas, carnosas, ovadas, 661.3 60.5 m de grosor en terrestres. Cutcula adaxial lisa, 4.6 0.4 m de grosor en terrestres; abaxial lisa 2.0 0.1 m de grosor en m de grosor en terrestres. Clulas epidrmicas dispuestas periclinalmente y oblongas a rectangulares, las adaxiales ms grandes; tricomas glandulares en depresiones epidrmicas presentes en FIGURA 6. Elleanthus purpureus. A. Cutcula abaxial cuticulares curvas y cmara subestomtica (csb) de menor tamao que clulas del adyacentes. B. Tricoma glandular (tg). C. adaxial lisa a ligeramente abollada (cad), clulas del (m) oblongas a isodiamtricas con espacios m.

PAGE 50

FIGURA 7. Pleurothallis cordifolia. A. Tricoma glandular (tg). B. Estoma (e) con clulas guardia de lumen triangular y cmara subestomtica (csb) de igual tamao que clulas del adyacentes. C. Idioblastos (i) ovoides con engrosamiento parietal secundario helicoidal. D. E. de la epidermis adaxial (ead) de mayor tamao que las de la epidermis abaxial, parnquima empalizada (pem) de clulas columnares y dispuestas anticlinalmente, parnquima esponjoso (pes) de clulas oblongas a m; m.LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011.48 LANKESTERIANA

PAGE 51

FIGURA 8. Stelis sp. A. Cutcula abaxial lisa (cab), estoma (e) con clulas guardia de lumen triangular y cmara subestomtica (csb) de mayor tamao que clulas adyacentes del B. de la epidermis adaxial (ead) de mayor tamao que las de la epidermis abaxial, parnquima empalizada (pem) de clulas columnares dispuestas anticlinalmente, parnquima esponjoso (pes) de clulas oblongas a isodiamtricas, hipodermis adaxial (had) de 2 a 3 capas de clulas, hipodermis abaxial (hab) uniseriada. C. Haz vascular con serie de clulas esclerenquimticas (ce) m, m. (no se muestran). Estomas al mismo nivel de las dems clulas epidrmicas; cmara subestomtica de mayor ausentes. Hipodermis adaxial 2 clulas de grosor, isodiamtricas; abaxial uniseriada. heterogneo, 12 clulas de grosor; el parnquima esponjoso ms grueso, compuesto por clulas oblongas a isiodiamrtricas y dispuestas periclinalmente, espacios intercelulares conspicuos; el parnquima empalizada compuesto por 1 series adaxiales de clulas columnares y otra serie abaxial de clulas oblongas a isodimtricas (Fig. 8B); presencia de idioblastos elongados con engrosamientos parietales helicoidales (no mostrados). Haces vasculares de varios tamaos, distribuidos en una serie; los ms los ms pequeos abaxiales; esclernquima ocurre en forma de vainas vasculares conspicuas y completas; una serie de clulas esclerenquimticas separa el Resumen. En las especies estudiadas se presentaron los dos tipos de hojas que se pueden encontrar en las orqudeas (sensu Withner et al. 1974), plicadas y LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011. ARV ALO et al.49

PAGE 52

LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011.50 LANKESTERIANAcoriceas. Todas las especies se diferenciaron en cuanto al grosor de sus hojas y las ms delgadas fueron las hojas plicadas de las dos especies de Elleanthus. Entre las ( Hirtzia escobarii y Rodriguezia lehmannii) presentaron ( Oncidium abortivum) present las hojas ms delgadas. En cuanto al grosor de la cutcula, en todas las especies se encontr que la cutcula adaxial era ms gruesa que Khasim 1987, Stern et al. 1993, Kurzweil et al. 1995), las hojas de O. abortivum, E. purpureus, R. lehmannii, Pleurothallis cordifolia y Stelis sp., presentaron una epidermis adaxial con clulas ms grandes que las de la epidermis abaxial (Tabla 2). Tricomas glandulares fueron evidenciados tanto en las hojas coriceas de las especies de Pleurothallis, como en las hojas plicadas de ambas especies de Elleanthus, aunque en E. oliganthus (Tabla 2). Todas las especies estudiadas presentaron hojas hipoestomticas y con los estomas al mismo nivel de las dems clulas epidrmicas (o ligeramente hundidos como Epidendrum excisum). En algunas especies estudiadas se observaron pequeas proyecciones cuticulares curvas sobre las clulas guardia, similares a las que ya han sido descritas en otras especies de orqudeas (Ferreira 1992, R. lehmannii, present proyecciones cuticulares externas pronunciadas, formando una cmara externa bastante alargada (Fig. 4B). La hipodermis, considerada una de las caractersticas ms comunes en plantas de crecimiento coriceas, pero de manera distinta (Tabla 2). Constituida por clulas de mayor tamao que las de la epidermis, se present adaxial y abaxialmente, exceptuando a la Oncidium abortivum), donde solo como Epidendrum excisum y Stelis sp. se observ una hipodermis adaxial de varias series, con algunas clulas de paredes gruesas en E. excisum En Hirtzia escobarii y Rodriguezia lehmannii), adems de presentar hipodermis abaxial se ve interrumpida, en intervalos mas o menos O. abortivum ( Pleurothallis cordifolia, Stelis sp. y Elleanthus purpureus parnquima de empalizada y parnquima esponjoso. homogneo (E oliganthus y Rodriguezia lehmannii), se observan variaciones en el tamao y forma de las clulas, as como en la cantidad de cloroplastos, sin embargo no existe una clara diferenciacin en dos tipos Epidendrum excisum Hirtzia escobarii y Rodriguezia lehmannii, predominan clulas con vacuolas bastante grandes que ocupan la mayor especies presentan espacios intercelulares reducidos, donde las cmaras subestomticas son de menor tamao Se encontraron diferentes tipos de idioblastos globosos en Hirtzia escobarii elipsoidales a cilndricos en Rodriguezia lehmannii, angulares en Oncidium abortivum, elongados en Stelis sp. y ovoides en Pleutothallis cordifolia, con distintos tipos de engrosamiento parietalirregulares en Epidendrum excisum e H. escobarii y helicoidales en R. lehmannii, P. cordifolia y Stelis sp. E. excisum Elleanthus oliganthus, E. purpureus y P. cordifolia oxalato de calcio (Fig. 2D, 5B, y 7D), corroborando descripciones anteriores sobre otros representantes de la familia (Metcalfe 1963; Wattendorff 1976; Franceschi & Horner; Kauschik 1982; Pridgeon 1982; Campos Leite & Oliveira 1987; Ferreira 1992; Widholzer 1993; Leiria 1997; Godoy & Costa 2003). En todas las especies los haces vasculares son colaterales y presentan clulas esclerenquimticas que los envuelven parcial o totalmente. De acuerdo a la especie, estas clulas esclerenquimticas que conforman la vaina vascular pueden estar ms concentradas hacia los polos y/o variar en el grosor de sus paredes. En las dos especies de Elleanthus, en Oncidium abortivum y en Epidendrum excisum, la vaina vascular es mucho ms gruesa hacia los polos

PAGE 53

LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011. ARV ALO et al.51 Hirtzia escobarii y Rodriguezia lehmannii, las clulas esclerenquimticas se encuentran mas concentradas hacia el polo del xilema y las clulas presentan paredes ms gruesas (Fig 3D y 4E). Cabe resaltar, que dentro de las especies estudiadas que no presentaron pseudobulbos se pueden evidenciar dos tendencias. En las especies de Pleurothallis cordifolia, Stelis sp. y Epidendrum excisum, la ausencia de engrosamientos a nivel del tallo se ve contrarrestada por el desarrollo de hojas suculentas con hipodermis adaxial y abaxial, adems de la presencia de clulas con engrosamiento parietal secundario (Tabla 2). Por su parte, en las especies de Elleanthus la ausencia de pseudobulbos se ve acompaada por hojas delgadas que no presentan tejido de almacenamiento de agua, ni clulas esclerenquimticas (Tabla 2). Discusin. En este estudio se pudo evidenciar como especies ms expuestas a los rayos solares presentan hojas y cutculas ms gruesas, como el caso de la Rodriguezia lehmannii y Hirtzia escobarii). De la misma manera, individuos terrestres de las especies de Elleanthus purpureus, Pleurothallis cordifoila y Stelis sp., que se encontraban expuestos en los taludes de la carretera, presentaron hojas y et al. (1995), las clulas epidrmicas de mayor tamao pueden estar relacionadas con la funcin de reserva de agua (Oliveira & Sajo 1999), especialmente en aquellas hojas que no poseen tejidos de almacenamiento, como es el caso de E. purpureus. Se ha demostrado que los tricomas glandulares en especies de Pleurothallis no estn involucrados en procesos de toma de agua y nutrientes por parte de la hoja (Benzing & Pridgeon 1983). Sin embargo, la funcin de estas estructuras podra consistir en la secrecin de muclago, que actuara reduciendo la transpiracin (Pridgeon 1982), o contribuyendo con la absorcin de agua (Raciborski 1898), y de cierta manera compensando la ausencia de tallos engrosados/pseudobulbos. TABLA 2. ausente. Especie Pseudobulbos Caracteres foliares relacionados con almacenamiento de agua y resistencia a desecacin Elleanthus oliganthus + Elleanthus purpureus + Epidendrum excisum Hirtzia escobarii + Oncidium abortivum + Pleurothallis cordifolia + Stelis + Rodriguezia lehmannii +

PAGE 54

LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011.52 LANKESTERIANAPuesto que en Orchidaceae los estomas raramente ocurren hundidos (Rasmussen 1987), estos suelen estomas se encuentran rodeados por proyecciones cuticulares externas que forman una cmara supraestomtica que protege contra la prdida excesiva de agua y gases (Eames & MacDaniels 1925, Metcalfe 1963, Machado & Barros 1995). Estas cmaras supraestomticas mantienen un compartimiento de temperaturas y poca disponibilidad de agua (Rosso ramita Rodriguezia lehmannii. Los grupos de clulas esclerenquimticas, o haces en casos de deshidratacin y suelen presentarse en las hojas de orqudeas especializadas a sobrevivir en hbitats xerofticos (Withner et al. 1974). Por consiguiente, era de esperarse la presencia de estos Oncidium abortivum (Tabla 2). vacuolas bastante grandes que ocupan la mayor Epidendrum excisum y en las de ramita (Rodriguezia lehmannii y Hirtzia escobarii), se presenta junto con espacios intercelulares reducidos, donde las cmaras subestomticas son de menor tamao que las clulas suelen estar asociadas a plantas con metabolismo et al. 2005). La presencia de idioblastos de agua y/o el soporte mecnico, evitando el colapso celular durante la desecacin (Pridgeon 1982). (excepto Stelis sp.), pueden estar relacionados con el balance inico y osmoregulacin de la planta (Bonates 1993). El engrosamiento en las paredes de las clulas esclerenquimticas que conforman la vaina vascular podra conferirle mayor resistencia mecnica a las hojas en casos de deshidratacin. La presencia de estos engrosamientos estara relacionada entonces con la menor disponibilidad de agua que existe en un hbito ms pequeos y expuestos de los rboles hospederos las ramitas. El anlisis de las hojas estudiadas indica la presencia de caracteres que pueden ser interpretados como adaptaciones a la economa de agua. En cada una de las plantas estudiadas se presenta una particular combinacin de estos, aunque no se evidencia una clara diferenciacin en la anatoma pertenecen. Sin embargo, las epifitas de ramita se diferencian de las dems al presentar una hipodermis lignificada y varios de los caracteres propios de plantas adaptadas a crecer en ambientes con baja disponibilidad de recursos hdricos: (1) hojas y cutculas bastante gruesas; (2) estomas con cmaras supraestomticas (en el caso de Rodriguezia lehmannii); (3) haces fibrosos; (4) hipodermis abaxial y adaxial; (5) clulas con grandes vacuolas; (6) vainas vasculares gruesas; y (7) teniendo en cuenta las caractersticas celulares del mesfilo, caractersticas deben facilitarles la colonizacin de la zona ms expuesta a alta luminosidad y con mayor fluctuacin en la disponibilidad de agua que puede encontrarse en un rbol hospedero las ramitas. Los resultados encontrados apoyan la idea que estas plantas constituyen un ejemplo de extrema modificacin morfolgica y fisiolgica al epifitsimo. AGRADECIMIENT OS Nacionales Naturales), a su director H. Ballesteros y a todos sus funcionarios, por el apoyo logstico prestado. de especies; y a L. Nieto por su asesora en la edicin de por la Fundacin para la Promocin de la Investigacin 2053), y el programa Proyectos Semilla del Comit de Investigaciones y Posgrados de la Facultad de Ciencias de la lectura crtica del manuscrito y sus sugerencias para esta

PAGE 55

LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011. ARV ALO et al.53 LITERA TURA CIT ADA systematic distribution of epiphytic orchids. Selbyana 9: 171. of Palumbina and Odontoglossum, subgenus Osmoglossum. of Pleurothallidinae (Orchidaceae): Functional Benzing, D.H. & D.W. Ott. 1981. Vegetative reduction in epiphytic Bromeliaceae and Orchidaceae: Its Origin habitats and current status in forest canopies. Syst. Bot. 9: 155. Benzing, D.H. 1986. The genesis of orchid diversity: Lindleyana 1(2): 73. Benzing, D.H. 1989. The evolution of epiphytism. Vol. 76, Pp. 15 en: U. Lttge (ed.), Vascular plants as epiphytes: evolution and ecophysiology. SpringerVerlag, Berlin. Benzing, D.H. 1990. Vascular epiphytes. Cambridge University Press, Cambridge. 1983. Shootlessness, velamentous roots, and the preeminence of Orchidaceae in the epiphytic biotope. 23(4): 315. Campos Leite, V.M. & P.L. Oliveira. 1987. Morfoanaomia foliar de Cattleya intermedia (Orchidaceae). Napaea 2: 1. Dressler, R.L. 1981. The orchids: Natural History and Dressler, R.L. 2005. How many orchid species? Selbyana 26(1): 155. to plant anatomy. McGraw-Hill Book Company Inc, Nueva York. subtribo Pleurohallidinae (Orchidaceae). Tesis de Maestra. Universidade Federal do Rio Grande do Sul, Franceschi, V.R. & H.T. Horner Jr. 1980. Calcium oxalate crystals in plants. Bot. Rev. 46: 361. and water content in congeneric annual and perennial grass species. New Phytol. 128: 725. Godoy, R. & espcies do gnero Cattleya Lindl. (Orchidaceae) do 17(1): 10118. Goh C.J. & M. Kluge 1989. Gas exchange and water relations in epiphytic orchids. Cap. 6, Pp. 139 en: L. Ulrich (ed), Vascular Plants as epiphytes, Evolution and ecophysiology Springer-Verlag, Berlin. Herr, J.M. 1993. Clearing techniques for the study of vascular plant tissues in whole structures and thick Heiden (eds), Tested studies for laboratory teaching. Proceedings of the 5th Workshop/Conference of the 125. Aerides (Orchidaceae) and its ecological and taxonomical bearing. Phytomorphology 40: 157. Kress, W.J. 1986. The systematic distribution of vascular epiphytes: an update. Selbyana 9: 2. 1995. Comparative vegetative anatomy and Soc. 117: 171. gnero Oncidium Sw., Seo Synsepala (Orchidaceae) Maestra. Universidade Federal do Rio Grande do Sul, Machado, R.D. & C.F. Barros. 1995. Epidermis and epicuticular waxes of Syagrus coronata J. Bot. 73: 1947. species of Bulbophyllum (Orchidaceae) with comments on their ecological adaptability and taxonomy. Proc. anatomy of plants with crassulacean acid metabolism. Funct. Plant Biol. 32: 409. distribution of tracheoidal elements in the Orchidaceae. Bot. J. Linn. Soc. 80: 357. 22(3): 365.

PAGE 56

LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011.54 LANKESTERIANA 64. 69(6): 921-938. Orchidaceae. Lindleyana 1: 90. Raciborski, M. 1898. Biologische Mittheilungen aus Java. Flora 85: 325. Rasmussen, H. 1987. Orchid stomata structure, differentiation, funtion, and phylogeny. Vol. IV, Pp. and perspectives. Cornell Universiy Press, Nueva York, Reich P.B., D.S. Ellsworth, M.B. Walters, J.M. Vose, C. Gresham, J.C. Volin & W.D. Bowman. 1999. Generality of leaf trait relationships: a test across six biomes. Ecology 80(6): 1955. Rosso, S.W. 1966. The vegetative anatomy of the Cypripedioideae (Orchidaceae). Bot. J. Linn. Soc. 59: 309 Sinclair, R. 1990. Water relations in orchids. Vol. V, Pp. 63 perspectives. Timber Press, Portland, Oregon. R.L. Dressler. 1993. Comparative vegetative anatomy and systematics of Spiranthoideae (Orchidaceae). Bot. J. Linn. Soc. 113: 161. plant kingdom: Six-sided raphides with laminated sheaths in Agave americana L. Planta 130: 3031. Widholzer, C.F. 1993. Morfo-anatomia foliar de espcies do gnero Sophronites Ldl. (Orchidaceae) ocorrentes o Rio Grande do Sul, Brasil. Dissertao de Mestrado. Universidade Federal do Rio Grande do Sul, Porto Withner, C.L., P.K. Nelson, & P.J. Wejksnora. 1974. The anatomy of orchids. Pp. 267-334 en: C.L. Withner (ed), York, Zotz G, V. Thomas & W. Hartung. 2001. Ecophysiological consequences of differences in plant size: abscisic acid relationships in the epiphytic orchid Dimerandra emarginata. Oecologia 129:179.

PAGE 57

LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011. LANKESTERIANA 11(1): 55. 2011.CONSERV ATION OF MADAGASCARS GRANITE OUTCROP ORCHIDS: THE INFLUENCE OF FIRE AND MOISTURE MELISSA WHITMAN 1,5 MICHAEL MEDLER 2 JEAN JACQUES RANDRIAMANINDRY 3 & ELISABETH RABAKONANDRIANINA 41 2 Huxley College of the Environment, Western Washington University, 516 High Street, Bellingham, 34 Dpartement de Biologie et Ecologie Vgetale. Facult des Sciences, 5 Corresponding author: islandevolution@gmail.com ABSTRACT Is there a difference in response to disturbance, or resource limitation, by similar taxa based on compared orchid density in an area with a complex mosaic of burned and non-burned vegetation patches (three moisture availability, and had a uniform distribution pattern associated with vegetation mat size. In contrast, water seepage, and had a clumped distribution pattern. The results suggest varying ecological niches between orchid subtribes, and among species, occurring on shared substrate. Within the larger area, we also compared highest occurrence of species restricted to a single site. For land management purposes it is inappropriate to future conservation efforts. RESUM Quelle est la rponse aux perturbations, et la limitation de lhumidit, par des taxons similaires bass sur lhtrognit des micro-site de lhabitat? Pour cette tude nous avons examin comment la disponibilit de de granit (inselbergs). Trois ans aprs le passage du feu, nous avons compare les modes de distribution et labondance dorchides dans un habitat dune mosaque complexe de brlures, en tenant compte de la densit par rapport lintensit des dgts dincendie et de la disponibilit de lhumidit. Les espces du sousespces de la sous-tribu Habenariae taient tolrants de feu, mais limite aux pentes rocheuses humides par des inexact de penser que les orchides voisins sur un substrat de granite aurait la mme rponse des facteurs lavenir. KEY WORDS / MOTS-CLS Habenariinae

PAGE 58

LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011.56 LANKESTERIANAIntroduction. Madagascar is considered to be an international conservation priority area because of the high concentration of endemism and biodiversity threatened with extinction (Bosser et al. 1996, Barthlott & Porembski 1998, Du Puy & Moat 1998, Myers et al. 2000). The majority of conservation efforts to date have focused on evergreen humid forests, or deciduous, seasonally dry forests (Bosser et al. 1996, Du Puy & Moat 1998), rather than granite outcrops that includes orchids, succulents, carnivorous, and desiccant tolerant species (Bosser et al. 1996, Barthlott & Porembski 1998, Fischer & Theisen 2000, Porembski & Barthlott 2000).The lack of inselberg protection is in habitat at the landscape scale (based on vegetation type and subtle habitat characteristics) using satellite imagery (Du Puy & Moat 1998). There is also less social incentive to protect inselbergs because of the absence of charismatic species (such as lemurs) that appeal to ecotourism and environmental organizations (Leader-Williams & Dublin 2000), however recent multi-taxa analyses recognize the conservation importance of sites that were previously neglected such as habitat with sparse forest cover (ie central plateau massifs) or smaller sized forest remnants (Bosser et al. 1996, Kremen et al. managing, and maintaining, inselberg biodiversity is due to the limited number of ecological studies available (Barthlott & Porembski 1998, Fischer & Theisen 2000, Porembski & Barthlott 2000), especially those that investigate the role of disturbance on plant et al. 1996, Porembski et al. 2000, Yates et al. 2003). Fire is one of the most common forms of habitat disturbance within Madagascar and is primarily associated with human activities rather than lightning agriculture, cattle grazing, deforestation, and even as form of political protest (Bloesch 1999, Kull 2000, Kull 2002, Klein 2004). Restriction of human based except in instances where the local belief systems (ie taboos against burning holy sites) either directly or Malagasy landscape for many generations, there is still approach for the future (Bloesch 1999, Kull 2000, Kull 2002, Klien 2004, Raxworthy & Nussbaum 2006). accounts for the rapid loss of 40% to 80% of Madagascars original forest cover (Du Puy & Moat 1998, Harper et al. 2007), while other studies indicate that habitat destruction has been grossly overestimated (Kull 2000, Kull 2002, Klein 2004). The historic landscape of the highlands of Madagascar was most likely a non-continuous mix of schlerophyllous forest, shrubland, and montane (Raxworthy & Nussbaum 1996, Bloesch 2002, Burney et al. extinction of megafauna, and the spread of livestock intensity and frequency increased and resulted in the emergence of homogenous prairie grasslands as the dominant vegetation type (Bosser et al. 1996, Raxworthy & Nussbaum 1996, Du Puy & Moat 1998, Bloesch 1999, Fischer & Theisen 2000, Bloesch 2002, Burney et al. 2003). The conversion of mountain forest to grassland is considered to be nearly irreversible (Bloesch 1999). Within Madagascar, inselbergs have the bare rock around their base that acts a barrier to (Nilsson & Rabakonandrianina 1988). The assessment prone landscape is consistent with observations of rock This observation does not exclude potential lightning et al. 2003). However high elevation areas, or other habitat with sparse or stunted vegetation (ie inselbergs), have a reduced fuel capacity that tends to result in lower 2002). We addressed this ecological knowledge gap Madagascar. Orchids were used as indicator species of this habitat type because of the complexity of their

PAGE 59

LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011. WHITMAN et. al Madagascars inselberg orchids57ecological relationships and high levels of endemism (Nilsson & Rabakonandrianina 1988, Nilsson et al. 1992, Pettersson & Nilsson 1993, Jacquemyn et al. 2005, Linder et al. 2005). We also recognized the lack of ecological research on Malagasy orchids, aside from those related to evolution or pollination biology (Bosser et al. included a general examination of orchid biodiversity a comparison of species occurrence and turnover within, and between, three inselbergs. We then performed a more in-depth analysis of orchid abundance on the inselberg that was most recently burned. Overall we determined that some endemic orchid species were highly sensitive by moisture availability, in an area with high micro-site habitat heterogeneity. Methods Site Description Our primary (in-depth) study (18 S, 47 E). The site is managed by Direction Gnrale des Eaux et Forts. Over & Rabakonandrianina 1988, Nilsson et al. 1992, Pettersson & Nilsson 1993, Kluge et al. 1998, Kluge & Brulfert 2000), in part because of the presence of high orchid diversity with 101 species and 22 genera is 695 ha in size, of which inselbergs with rupicolous shrubland vegetation comprise 110 ha, plantations of non-native pine and eucalyptus comprise 435 ha, and a mix of moist sub-montane forest and schlerophyllous forests occur in the remaining area (estimate of 1949 aerial photograph, Ceplitis & Brostrm 1998). The precipitation ranges from 1,500mm to 2,000mm, occurring 180 days of the year (Ceplitis & Brostrm 1998), with fog as the primary source of moisture (Kluge & Brulfert 2000). The inselbergs of Madagascar have granite substrate, high levels of UV radiation and wind, (Barthlott & Porembski 1998, Fischer & Theisen 2000, Porembski & Barthlott 2000, Porembski et al. 2000). Inselbergs are often describe as biological islands because their habitat characteristics and vegetation is exceptionally distinct from the surrounding landscape matrix (Porembski et al. 2000). The vegetation is dominated by species such as Helichrysum spp. and Senecio Kalanchoe synsepala Baker (Crassulaceae); Coleochloa setifera (Ridl.) Gilly (Cyperaceae); Aloe capitata Baker (Liliaceae); Angraecum sororium Schltr. (Orchidaceae); Nematostylis anthophylla (Rubiaceae); Xerophyta dasyliriodes Baker (Velloziaceae); and various specis of moss, lichen, cyanobacteria, carnivorous plants, and ferns (Barthlott & Porembski 1998, Fischer & Theisen 2000, Kluge & Brulfert 2000) (Fig. 1). Fire History Our study took place in 2004, three to assess signs of species recovery or colonization historical site descriptions and photographs (Nilsson & Rabakonandrianina 1988, Nilsson et al. 1992, Pettersson & Nilsson 1993), and by interviewing local residents and elders of the neighbouring villages believed to be human caused because it occurred during a period of political instability. Villagers may have used arson as a form of protest, or as an attempt of pyrophytic Eucalyptus robusta Sm., Pinus patula Schltdl. and Cham., and Pinus khasya Royle ex Hook. f.. with a higher fuel load accumulation (dry needles, fallen leaves, and bark) than the neighboring sections

PAGE 60

LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011.58 LANKESTERIANAFigure 1. A. The orchid Angraecum sororium on an unburned vegetation mat in the foreground. Severely burned vegetation mats are neighboring in the background. Whitman, 2003. B. The orchid on a wet slope amongst charred vegetation remains. Randriamanindry, 2003. B A

PAGE 61

LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011.59in an uphill burn pattern of higher intensity (Bloesch the highest point) that tend to have a downhill burn pattern of reduced destructive potential. Prior to the A. sororium (Nilsson & Rabakonandrianina 1988). the early 1990s (also believed to be human caused). Prior reports noted that the area once had similar vegetation composition as the unburned regions of the in near complete removal of larger shrubs from the mid because of the steepness of the slope (Bloesch 1999) and from observations of the site shortly after the event (Randriamanindry, pers. comm. 2004). regime history. Local villagers described social fady, a taboo based belief system, that discouraged people of royal tombs (featuring pre and post Christianity pers. comm. 2004). The oldest tomb was associated Merina king of the Central Highlands estimated to be from the 14th century (Randriamanindry, pers. comm. 2004). Commoners were socially prohibited from because it was considered to be property of royalty even after death (Randriamanindry, pers. comm. 2004). 1800s during the reign of Queen Ranavalona I when and religious prosecution (Randriamanindry, pers. comm. 2004). This social belief system created small protected areas of native vegetation where lightning, but General Orchid Survey We conducted a rapid biodiversity assessment of orchid occurrence (presence from the site or harmed due to the endangered status of many endemic orchids. Species lists and images were then compared to botanical inventories conducted by University, Sweden (Ceplitis & Brostrm1998); the Missouri Botanical Gardens W3TROPICOS database; and species descriptions by Perrier (1939 & 1941), Du Puy et al. (1999), Hermans et al. (2007), and Cribb & Hermans (2010). Patterns of Orchid Diversity. For the larger-scale portion of this study we compared the species present on all the the general orchid survey. We were especially interested in the beta-diversity measures of species turnover geological history, and that shared a regional species to gain a preliminary understanding of how gradients of historical habitat disturbance, rather than elevation (Jacquemyn et al patterns of orchids. The inselbergs (going east to west) and separated by a minimum of 2 km from each other. We used three equations (Jaccard distance, Srensen the applied recommendations for presence/absence et al. emphasized distance or dissimilarity between sites (value of 0 meaning identical species composition). The beta-diversity was calculated as follows: Jaccard distance dJ [1 a /(a b c )]; Srensen distance dS [1 2a /(2a b c dSM a e ) / (a b c e ); where a is a species presence at both sites (11), b (10) or c (01) is a species present at only one of the two sites, and e (00) is a species missing from both sites but found within the et al. 2011). In-depth Survey of Orchid Abundance. For the site with burn patterns that could be clearly evaluated in WHITMAN et. al Madagascars inselberg orchids

PAGE 62

2m line transects located between 1460m to 1645m in elevation. We drew the transect lines across all accessible regions using a 50m survey tape, compass, and GPS (Garmin Geko 301). The line transects were a minimum distance of 75m apart and ran horizontally from south to north on the central ridge or eastern slope (the western side was inaccessible). Within 1m on either side of the transect line per vegetation mat we counted the number of orchids present based on distinct above ground growth, rather than the number vegetation mat in a generalized manner that included monocotyledonous mats dominated by C. setifera or X. dasyliriodes cushions, or charred humus or vegetation remains (Barthlott & Porembski 1998, Fischer & Theisen 2000, Kluge & Brulfert 2000, Porembski & Barthlott 2000, Porembski et al. 2000). lines and categorized all orchids as lithophytic (epilithic) or terrestrial. Lithophytic orchids are found primarily on granite (or occasionally as epiphytes), and are slow growing with drought tolerant waxy leaves and aerial roots. Many lithophytic species in Madagascar are as Angraecum sororium or Jumellea rigida Schltr.) or from the subtribe with species such as Aerangis ellisii (B.S. Williams) Schltr.. Terrestrial orchids are also found on inselbergs and occasionally grasslands, with tuberous roots and periods of underground dormancy during the dry season. Many terrestrial orchids are from the subtribe Habenariinae (such as Lindl.) or Brownleeinae (such as Brownleea coerulea Harv. ex Lindl.). Environmental Factors We surveyed environmental in the micro-site distribution patterns of orchids. The Non-burned Minor to moderate: areas with a mosaic of heat vegetation, upper branches of plants may have had Severe effects at ground level. moisture availability (separate from water acquired directly from precipitation, fog, or dew accumulation Wet: areas with continuous water seepage, dark granite slick from moisture saturation and cyanobacteria, with thick layers of moss or 1998; Porembski et al. 2000; Fischer & Theisen, 2000). Dry: areas with no sign of water seepage, dry soil, and granite above and below the vegetation mat light in color. Statistical Analyses We analyzed the evenness severity and moisture availability) using a two by three contingency table. The relationship between orchid moderate, and severe) was analyzed using a nonparametric Kruskal-Wallis test; moisture availability (with or without presence of seasonal water seepage) was analyzed using a two-sample Wilcoxon test. We analyzed the number of orchids in relation to the size of non-burned vegetation mats with linear regression, analyzed the interspecies interaction for orchids in all areas using linear correlation. Lastly, we described the spatial distribution (random, even, or clumped) using the Index of Dispersion and Index of Clumping. R software version 2.3.1 (www.r-project.org). Results General Orchid Survey species from seven genera and six subtribes (plus two unusual white morphs) were found on one or more of LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011.60 LANKESTERIANA

PAGE 63

LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011.the inselbergs surveyed (Table 1 & 2). The orchids present were estimated to represent 17% of the overall Orchidaceae diversity across all habitats of the greater species found in Madagascar (Fischer & Theisen 2000). The most common orchids encountered at all three inselbergs included Cynorkis fastigiata Thouars, and Angraecum sororium. Some species were found at two locations, such Aerangis ellisii, Cynorkis gibbosa Ridl., and Jumellea rigida. However, a total of eleven orchids (65%) were restricted to a single site (Table 1 & 2). Cynorkis angustipetala Ridl., Cynorkis lilacina Cynorkis sp. Thouars.. Cynorkis baronii Rolfe, or Cynorkis coccinelloides Schltr., and was unique in that it was also the site of the largest colony of noted. We also observed a seedlings) from the entire upper region of the inselberg that had been burned; the exception being a J. rigida the highest diversity of orchids unique to a single site, including Brownleea coerulea Bulbophyllum sp. Thouars, Cynorkis perrieri Cynorkis sp. Thouars, Jumellea maxillarioides (Ridl.) Schltr., Polystachya rosea Ridl. and unusual white morphs of Cynorkis gibbosa Ridl. and Lindl.. as the location with the most massive A. sororium surveyed with individual canes >4m in length (max. height of 1.5m noted elsewhere) and with >250 nodes present that typically mark annual growth (one pair of leaves per year). We estimated the largest A. sororium years old. Patterns of Orchid Diversity The transition distance (dJ), Srensen distance (dS), and Simple dSM) was estimated for paired site combinations. Each individual inselberg was (L) burned 2001 burned 1990s The TABLE Aerangis ellisii X X Angraecum sororium X X X Jumellea maxillarioides X Jumellea rigida X X Brownlea coerulea X Bulbophyllum Cynorkis angustipetala X Cynorkis baronii X Cynorkis coccinelloides X Cynorkis fastigiata X X X Cynorkis gibbosa X X Cynorkis gibbosa* X Cynorkis lilacina X Cynorkis perrieri X X X X X Cynorkis Cynorkis Polystachya rosea X 61 WHITMAN et. al Madagascars inselberg orchids

PAGE 64

LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011.results are summarized as: L & M (dJ dS 0.47, dSMdJ dS dSM 0.59), and M & G (dJ dS dSM indices revealed a similar trend; paired burned sites (L turnover and greater similarity of species present) than pairing of inselbergs with burned and nonspecies absence greatest dissimilarity between inselberg combinations dSM max dSM mindJ max dJ min dS max dS min that emphasized joint species presence. Joint absences also revealed that the combined species diversity for was missing six out of the seventeen possible inselberg orchids surveyed from the larger area (30% of the In-depth Survey of Orchid Abundance vegetation mats totaling 450.7 m. The vegetation mats varied greatly in shape, size (5.35mSE0.83) and distance (2.65mSE0.74) from each other edge to edge. We counted a total of 45 lithophytic orchids A. sororium and nine Jumellea rigida) and 310 terrestrial orchids from the subtribe Habenariinae (one Cynorkis angustipetala Ridl., 52 C. fastigiata Thou., and 257 ). C. fastigiata, a species indigenous to Madagascar, Comoros, the Mascarenes, and Seychelles (Perrier 1939 & 1941). Both subtribes were present at an equal mats), but the distribution by individual species was unpredictable. Some orchids were relatively abundant, but restricted to a limited number of locations (such as with 257 individuals at eight sites). We then found it necessary to group the orchids together by subtribe for a more even comparison of the taxa. Environmental Factors We categorized 15 of the Non-burned and severely burned vegetation mats were observed directly neighboring each other. The moisture ranged from being damp to having continuous water extremely dry. The 2x3 contingency table analysis Unique occurrence count Total Diversity of Inselbergs Surveyed SUBTRIBE GENUS SPECIES Diversity per Inselberg Fire History SUBTRIBE GENUS SPECIEST Orchid Distribution, Patterns of Overlap or Isolation Description Distribution Code SUBTRIBE GENUS SPECIES TABLE 2. Patterns of orchid diversity on inselbergs.LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011.62 LANKESTERIANA

PAGE 65

was no clear pattern to predict which areas would be common combination). However, other factors might steepness of slope, or distance to the plantation tree line. Vegetation mats that were the least impacted by from wind; or were isolated from each other. Orchid Response to Environmental Factors For the <0.001; A. sororium, Kruskal-Wallace chi-squared moisture availability by subgroup or by species. The orchids had the highest density (0.32 per m, equal to 84% of those surveyed) in unburned areas, followed by (0.06 per m, equal to 16% of those surveyed) in minor to moderately burned areas, and no individuals the terrestrial Habenariinae were opposite from that of 0.005; was C. fastigata, which was not sensitive to moisture Habenariinae orchids had the highest density average (1.1 per m, equal to 99% of those surveyed) in wet least common of the orchids surveyed, C. angustipetala (Habenariinae) and J. rigida Orchid Distribution relationship between the number of orchids and the not be made for Habenariinae) based on the linear 0.562). We estimated that 67% of the lithophytic including results from a post-hoc analysis of positive environmental factors (non-burned sites, wet sites, and non-burned wet sites). There was a positive association between A. sororium and C. fastigata <0.001) and to a lesser extent between A sororium and J. rigida burned areas. Habenariinae had a clumped pattern of Discussion General Orchid Survey The diversity of endemic orchids on inselbergs, and the vulnerability of some species to anthropogenic disturbance, reinforces the conservation importance of this unique habitat type. The most compelling observation from the general orchid the site with the highest number of species (six) and genera (three) restricted to a single site. One concern to be regarded as an important cultural site, or if the traditional knowledge of restricted burning near tombs generations or the immigration of individuals from different regions who are unaware of this social fady. inselberg, ideally in partnership with neighboring villagers, environmental organizations, and regional land managers, is highly recommended. Spatial Patterns of Orchid Diversity We found composition more similar to each other than LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011.63 WHITMAN et. al Madagascars inselberg orchids

PAGE 66

spatial orientation; a pattern most noticeable when factoring in joint-absences of species (Matching was more similar to the average value (0.5) noted on a range of plant formations (Parmentier et al. 2005), than the beta-diversity of orchids (0.25) observed across elevational gradients on the neighboring island of Runion (Jacquemyn et al. 2005), suggesting that diversity, especially in relation to gradients of habitat disturbance, is recommended for the future. Orchid Response to Environmental Factors and were interpreted to rely on other adaptations to successfully tolerate temperature and moisture inselberg vegetation such as X. dasyliriodes or A. capitata environmental stress tolerance (Kluge et al. 1998, Kluge & Brulfert 2000), year round photosynthesis, and the ability to grow taller than neighboring shrubs or forbs to compete for resources. Inter and distribution pattern noted. so sensitive to heat damage given that Porembski & Barthlott (2000) noted that some drought tolerant growth of leaves and roots covering the pseudostem. However we did observe that A. sororium had more Aloe capitata) regeneration by A. sororium damage was only noted at the center of exceptionally aerial roots, and tolerance for the driest slopes. They also tend to acquire a thick cushion of moss, leaves, and organic material around their base (Kluge & Brulfert 2000) that helps to hold moisture, but may also increases the available fuel biomass (intensity of Populations may be resilient against disturbance events by the longevity of reproductively successful individuals, but only if the habitat conditions remain suitable for their offspring and enough unique individuals remain to prevent a genetic bottleneck. The A. sororium) was interpreted to be very long lived (multi-decade, consistent with other inselberg species (Porembski & were found repopulating burned mats three years or availability of seed sources from multiple individuals within the area (unpubl. data). Inhibited establishment other non mat-forming inselberg species (Porembski studies it would be useful to gain a more expansive and long-term (multi-generational) understanding of especially compared to Habenariinae, to establish a stronger estimate of recovery time post-disturbance. The terrestrial Habenariinae orchids of our study were limited primarily by their micro-habitat studies of also noted the highest orchid abundance in locations with continuous or ephemeral water seepage (Nilsson et al. 1992, Fischer & Theisen 2000). The smaller size (10-30cm), lack of water their moisture dependency. Future studies that include to native forest (Parmentier 2003), might explain why Habenariinae orchids displayed such clumped patterns of distribution and abundance independent from vegetation mat size or co-occurrence of The enigmatic orchid of this study was C. fastigiata, with habitat preferences similar to A. sororium. One possible explanation is that both orchids share similar mycorrhizal fungi preferences LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011.64 LANKESTERIANA

PAGE 67

for germination; or that C. fastigiata habitat or successional niche than or C. angustipetala. This result raises the debate as to whether species should be grouped together based on phylogenetic similarity or by habitat needs. Within Madagascar, it has been noted that Habenariinae orchids (genus Cynorkis and Habenaria) and similar terrestrial orchids of various other subtribes (genus Liparis, Eulophia, Benthamia, Lissochilus, Disa, Satyrium meadows with reduced interspecies competition (Rabetaliana et al. 1999, Bloesch et al. 2002). This trend has also been described globally for terrestrial et al. et al. 2005), with some pyrogenic orchids (such as Cyanicula ashbyae ) et al. 2003). Fire may be less of a threat to Habenariinae orchids because of their tuberous roots, underground dormancy during the dry season, and tolerance of thinner topsoil that can occur after burning and erosion. why did the two orchid subtribes have different survival strategies, or ecological niches, within a shared habitat if their distribution was independent occurs, it creates an irregular mosaic-like pattern of succession per vegetation mat with reduced inselbergs might support both equilibrium and nonequilibrium based plant communities within a small spatial scale and that the differences between orchid part of an equilibrium (or late-successional) based round; whereas Habenariinae might be within a nondisturbances (Porembski et al. 2000). Conclusion. From this study it can be concluded that it is inappropriate to assume that all species of inselberg Orchidaceae have the same response to limited moisture availability, and had a uniform pattern of distribution. In contrast, terrestrial limited to slopes with high water seepage and had a clumped pattern of distribution. Lithophytic negatively affect sustainable population sizes. Further is strongly recommended. AC KNO W LE D GE M EN T S Special thanks to David Mason the Northwest Orchid Society; Seacology; University of John McLaughlin of Western Washington University; Zachary Rogers and the Missouri Botanical Gardens; Ingrid Parmentier, and Nathan G. Swenson for feedback. anonymous feedback received at the 18th World Orchid Conference (Dijon, France) and the Sigma Xi Conference In Memoriam of Joyce Stewart (1936 LITERA TURE CITED M.J., T.O. Crist, J.M. Chase, M. Vellend, B.D. Comita, K.F. Davies, S.P. Harrison, N.J.B. Kraft, J.C. Stegen & N.G. Swenson. 2011. Navigating the multiple meanings of beta diversity: a roadmap for the practicing ecologist. Ecol. Lett. 14: 19-28. Barthlott, W. & S. Porembski. 1998. Diversity and in: C.R. Huxley, J.M. Lock & D.F. Cutler (eds.), Chorology, Madagascar. Kew, Kew Publishing. Bloesch 1999. Fire as a tool in the management of a Sci. 2: 117-124. & F. Kltzli. 2002. Biodiversity of the subalpine LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011.65 WHITMAN et. al Madagascars inselberg orchids

PAGE 68

Madagascar. Pp. 165-175 in: C. Krner & E.M. Spehn (eds.), Mountain biodiversitya global assessment. London, Parthenon Publishing. Bosser, J.M., Du Puy, D.J. & P. Phillipson. 1996. Madagascar and surrounding islands. Pp. 103-107 in: IUCN/SSC Orchid Specialist Group; Status Survey and and UK. Sporomiella and the late Holocene extinctions in Committee for Tropical Ecology Uppsalla University. J. Biogeogr. 29: 677-684. Cribb, P.J. & J. Hermans. 2010. Field guide to the orchids of Madagascar. Kew, Kew Publishing. De La Bathie, H.P. 1939, 1941. Flora of Madagascar, 49th Family Orchids. Paris, France. Translated by S. Beckman. 1981. Volume I and II combined. Lodi, California. Du Puy, D. & J.F. Moat. 1998. Vegetation mapping and and recommendations for the conservation of biodiversity. Pp 97 -117 in: C.R. Huxley, J.M. Lock, & D.F. Culter (eds.), Chronology, taxonomy and ecology Publishing. Du Puy, D., P.J. Cribb, J. Bosser, J. Hermans & C. Hermans. 1999. The Orchids of Madagascar. First edition. Kew, Royal Botanical Gardens. Fischer, E. & I. Theisen. 2000. Vegetation of Malagasy inselbergs. Pp. 259-276 in: S. Porembski & W. Barthlott (eds.), Inselbergs biotic diversity of isolated rock outcrops in tropical and temperate Regions. Berlin, Springer-Verlag. Jacquemyn, H., C. Micheneau, D.L. Roberts & T. Pailler. 2005. Elevation gradients of species diversity, breeding Island. J. Biogeogr. 32: 1751-1761. Klein, J. 2004. Fiddling while Madagascar burns. Deforestation discourses and highland history. Norw. J. Geog. 58: 11-22. Kluge, M., B.Vinson & H. Ziegler. 1998. Ecophysiological studies on orchids of Madagascar: incidence and plasticity of crassulacean acid metabolism in species Kluge, M & J. Brulfert. 2000. Modes of photosynthesis Madagascar). Pp. 161-174 in: S. Porembski and W. Barthlott (eds.), Inselbergs biotic diversity of isolated rock outcrops in tropical and temperate regions. Berlin, Springer-Verlag. degradation myths in the environmental history of Madagascar. Environ. Hist. 6: 423-450. peasant protest, resistance, or a resource management tool? Pol. Geogr. 21: 927-953. Glaw, T.C. Good, G.J. Harper, R.J. Hijams, D.C. conservation priorities across taxa in Madagscar with High-Resolution Planning Tools. Science 320: 222-226. Harper, G.J., M.K. Steininger, C.J. Tucker, D. Juhn & F. Hawkins. 2007. Fifty years of deforestation and forest fragmentation in Madagascar. Environmental Conservation 34: 325-333. Hopper, S.D. 2000. Creation of conservation reserves and Hermans, J., C. Hermans, D. du Puy, P.J. Cribb & J. Bosser. 2007. Orchids of Madagascar. Second edition. Kew, Kew Publishing. Leader-Williams, N & H.T. Dublin. 2000. Charismatic in: Entwistle & N. Dunstone (eds.), Priorities for the Conservation of Mammalian Diversity: Has the Panda Had its Day? Cambridge, Cambridge University Press. Linder, H.P., H. Kurzweil & S.D. Johnson. 2005. The endemism. J. Biogeogr. 32: 29-47. for conservation priorities. Nature. 403: 853 858. scale analysis and pollination specialization in the epilithic Malagasy endemic Aerangis ellisii (Reichenb. LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011.66 LANKESTERIANA

PAGE 69

J.J. Randriamanindry. 1992. Long pollinia on eyes: hawk-moth pollination of Lindley (Orchidaceae) in Madagascar. Bot. J. Linn. Soc.109: 145-160. Parmentier, I. 2003. Study of the vegetation composition in three inselbergs from continental equatorial Guinea position relative to forest fringe. Belg. J. Bot. 136: 6372. deceit pollination in Polystachya rosea (Orchidaceae) on an inselberg in Madagascar. Opera Bot. 121: 237245. Porembski, S. & W. Barthlott. 2000. Granitic and gneissic outcrops (Inselbergs) as centers of diversity for desiccation-tolerant vascular plants. Plant Ecol. 151: 19-28. Porembski, S., R. Seine & W. Barthlott. 2000. Factors controlling species richness of Inselbergs. Pp. 451-481 in: S. Porembski and W. Barthlott (eds.), Inselbergs biotic diversity of isolated rock outcrops in tropical and temperate regions. Berlin, Springer-Verlag. Rabetaliana, H., M. Randriambololona & P. Schachenmann. Unasylva 50: 25-30. amphibian and reptile communities in Madagascar. Conserv. Biol. 10: 750-756. 14: 185-193.LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011.67 WHITMAN et. al Madagascars inselberg orchids

PAGE 70

LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011.LANKESTERIANA

PAGE 71

Introduction. When an orchid genus is described it in When that species is described the name is based on Code of Botanic Nomenclature (ICBN) states: The application of names of taxa of the rank of family or below is determined by means of nomenclatural types (types of names of taxa). The application of names of taxa in the higher ranks is also determined by means of types when the names are ultimately based type (typus) is that element to which the name of a taxon is permanently attached, whether as the correct name or as a synonym. The nomenclatural type is not necessarily the most typical or representative element ICBN. Loosely used the term type can have many nomenclatural type. The element to which the 7.2). holotype. The one specimen or illustration used by the author or designated by the author as the isotype. syntype. when there is no holotype, or any of two or more specimens simultaneously designated as types isosyntype. paratype. is neither the holotype nor an isotype, nor one of the syntypes if two or more specimens were neotype. serve as nomenclatural type if no original material lectotype. from the original material as the nomenclatural type if no holotype was indicated at the time of publication, or if it is missing, or if it is found to epitype. serve as an interpretative type when the holotype, lectotype, or previously designated neotype, or all original material associated with a validly purpose of precise application of the name of a Why is this important? Many genera were described before a type designation was required and a type species was not designated. Publication on or after 1 January 1958 of the name of a new taxon of the rank of genus or below is valid only when the type 37.1). However the ICBN does provide that if the name of a new genus reference to one species name only, or the citation of the holotype or lectotype of one previously or simultaneously published species name only, even if that element is not explicitly designated as type, is leaves many genera without type species. LANKESTERIANA 11(1): 69. 2011.ORCHID GENERA LECTOTYPES PEGGY ALRICH 1 & WESLEY HIGGINS 2,31 2 3 ABSTRACT Orchidaceae is provided. KEY WORDS

PAGE 72

LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011.70 LANKESTERIANA Recognizing that all taxa do not have a type the ICBN provides that one can be selected: the holotype has been lost or destroyed, or when the material designated as type is found to belong to more than one taxon, a lectotype or, if permissible a 9.9). as denoting a type, in a sense other than that in which (for example, the use of the term lectotype to denote what is in fact a neotype). availability of original material: lectotype is a specimen or illustration designated from the original material as the nomenclatural type, if no holotype was indicated at the time of publication, or if it is missing, or if it is found to neotype is a specimen or illustration selected to serve as nomenclatural type if no original material is extant, or as long as it is missing (see 6 ). Further guidance is given by the ICBN for the selection of a new type chosen if such exists, or otherwise a syntype if such exists. If no isotype, syntype or isosyntype (duplicate of syntype) is extant, the lectotype must be chosen from among the paratypes if such exist. If no cited specimens exist, the lectotype must be chosen from among the uncited specimens and cited and uncited illustrations which comprise 9.10). If no original material is extant or as long as it is 9.11), except when the holotype or a previously designated lectotype has been lost or destroyed and it can be shown that all the other original material differs taxonomically from the destroyed type, a neotype may be selected to preserve the Some authors in the past have listed a type species for a genus even when the original author did not designate a type. This had the inadvertent effect of ICBN how requires that the designation of a new type use of the term lectotypus or neotypus and location of the type. illustration is not effected unless the herbarium or institution in which the type is conserved is by use of the term lectotypus or neotypus, its abbreviation, or its equivalent in a modern Currently typification is not adequately tracked in the online taxonomic databases, such as, Index Nominum Genericorum (ING), International Plant Names Index (IPNI), Tropicos, World Checklist of Selected Plant Families. The authors encourage the database owners to add this valuable information example of a database is the Linnaean Plant Name Typification Project, based at The Natural History Museum (London), that has been collating and cataloguing information on published type designations for Linnaean plant names and, where none exists, has been collaborating with specialists in designating appropriate types. For each species, the database provides the place of publication, stated provenance, the type specimen (or illustration) and a reference to where the type choice was published, and an indication of the current name of the taxon within which Linnaeus original binomial is now placed.

PAGE 73

LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011. ALRICH & HIGGINS 71Aa Rchb.f., Xenia Orchid., 1: 18 (1854). TYPE SPECIES : A. paleacea (Kunth) Schltr. (Ophrys paleacea Kunth) selected by Schlechter, Repert. Spec. Nov. Regni Veg., 11: 147 (1912); Baillon, Dict. Bot., 4: 309 (1892); and Pfeiffer, Nomencl. Bot. (Pfeiffer), 1(1): 1 (1871). Acampe TYPE SPECIES : (Lindl.) Lindl. (Vanda Lindl.) selected by Pfeiffer, Nomencl. Bot. (Pfeiffer), 1(1): 9 (1871). LECT OTYPE : A. rigida (Buch.-Ham. ex Sm.) P.F.Hunt (Aerides rigida Buch.-Ham. ex Sm.) designated by Leningrad), 76(6): 890 (1991). Aceras R.Br., Hortus Kew., ed. 2, 5: 191 (1813). LECT OTYPE : A. anthropophorum (L.) R.Br. (Ophrys anthropophora L.) designated by H. Baumann et al., 437 (1989). Achroanthes Raf., Med. Repos., ser. 2, 5: 352 (1808) TYPE SPECIES : A. unifolia (Michx.) Raf. (Malaxis unifolia Michx.) selected by Pfeiffer, Nomencl. Bot. (Pfeiffer), 1(1): 22 (1871). Achroanthes 2: 268 (1818) and 4: 195 (1819). TYPE SPECIES : Malaxis ophioglossoides Muhl. ex Willd. (Arethusa ophioglossoides Muhl.) selected by Garay & Acianthera 292 (1842). NEOTYPE SPECIES : A. punctata Scheidw. designated by Luer, Monogr. Syst. Bot. Missouri Bot. Gard., 20: 12 (1986). Acineta Lindl., Edwardss Bot. Reg., 29(Misc.): 67 (1843). TYPE SPECIES : A. superba (Kunth) Rchb.f. (Anguloa superba Kunth) selected by G. Gerlach, Gen. Orch., 5: 399 (2009). Acianthus R.Br., Prodr. Fl. Nov. Holland., 321 (1810). TYPE SPECIES : A. exsertus R.Br. selected by N. Hall, Fl. Nouvelle Caledonie & Depend., 8: 418 (1977). TYPE SPECIES : A. fornicatus Acostaea Schltr., Repert Spec. Nov. Regni Veg. Beih, 19: 22, 283 (1923). LECT OTYPE : A. costaricensis Schltr. designated by Summerhayes, Index Nom. Gen. (Pl.), 1: 16 (1967) card #64/24402 (1967); and Pupulin, Bot. J. Linn. Soc., 163: 116 (2010). Aerides Lour., Fl. Cochinch., 2: 516 & 525 (1790). LECT OTYPE : A. maculosa (Wight) Lindl. (Saccolabium speciosum Wight) designated by Christenson, Kew Bulletin, 41(4): 837 (1986). Aeridium Salisb., Trans. Hort. Soc. London, 1: 295 (1812). TYPE SPECIES : A. odorum Salisb. selected by Pfeiffer, Nomencl. Bot. (Pfeiffer), 1(1): 67 (1871). Aerobion Kaempf. ex Spreng. Syst Veg. 3: 679 (1826). LECT OTYPE : A. superbum (Thouars) Spreng. (Angraecum superbum Thouars) designated by Garay, Kew Bull., 28(3): 496 (1973). Altensteinia Kunth, Nov. Gen. Sp. Pl., 1: 332 (1816). TYPE SPECIES : Kunth selected by Reichenbach f., Xenia Orchid., 1: 18 (1854). Amalia Rchb.f., Herb. Nomen., 52 (1841). LECT OTYPE : La Llave designated by Amparoa Schltr., Repert. Spec. Nov. Regni Veg. Beih., 19: 64 (1923). LECT OTYPE : A. costaricensis Schltr. designated by Pupulin, Bot. J. Linn. Soc., 163: 119 (2010). Amphigena Rolfe, Fl. Cap. (Harvey), 5(3): 197 (1913). TYPE SPECIES : A. leptostachya (Sond.) Rolfe (Disa leptostachys Sond.) selected by E.P. Phillips, Gen. S. Amphorkis Thouars, Nouv. Bull. Sci. Soc. Philom. Paris, 1(19): 316 (1809). LECT OTYPE : A. inermis Richard, Mem. Soc. Hist. Nat., Paris, 4: 30 (1828).

PAGE 74

LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011.72 LANKESTERIANAAnacamptis Rich., De Orchid. Eur., 19, 25 (1817), and Mm. Mus. Hist. Nat., 4: 47, 55 (1818). LECT OTYPE : A. pyramidalis (L.) Rich. (Orchis pyramidalis L.) designated by H. Baumann et al., Mitt. (1989). Anathallis Barb.Rodr., Gen. Sp. Orchid, 1: 23, t. 470 (1877). LECT OTYPE : A. fasiculata Barb.Rodr. designated by Garay, Orquideologa, 9: 122 (1974). Ancistrorhynchus Finet, Bull. Soc. Bot. France, 54(9): 44 (1907). TYPE SPECIES : A. recurvus Finet selected by Anguloa Ruiz & Pavn, Fl. Peruv. Prodr., 118, t. 26 (1794). TYPE SPE C IES : Ruiz & Pavn selected by Ruiz & Pavn, Syst. Veg. Fl. Peruv. Chil., 1: 228 (1798) and Oakeley, Orchid Digest, 63(4 Suppl.): 3 (1999). Ania Lindl., Gen. Sp. Orchid. Pl., 129 (1831). TYPE SPECIES : A. angustifolia Lindl. selected by Senghas, Orchideen (Schlechter), ed. 3, 1: 863 (1984). LECT OTYPE : A. angustifolia Lindl. designated by H. Turner, Orch. Monog., 6: 49 (1992) and P.J. Cribb, Gen. Orch., 4: 159 (2005). Anochilus Schltr. ex Rolfe, Fl. Cap. (Harvey), 5:(3): 280 (1913). TYPE SPECIES : A. inversus (Thunberg) Rolfe (Ophrys inversa Thunberg) selected by E.P. Phillips, Gen. S. Appendicula Blume, Bijdr. Fl. Ned. Ind., 7: 297, t. 40 (1825). TYPE SPECIES : A. alba Blume selected by N. Hall, Fl. Nouvelle Caledonie & Depend., 8: 345 (1977). LECT OTYPE : A. alba Bot. Zhurn. (Moscow & Leningrad), 76(1): 123 (1991). Appendiculopsis Szlach., Fragm. Florist. Geobot., 3(Suppl.): 119 (1995). LECT OTYPE : A. stipulataAppendicula stipulata Florist. Geobot., 3(Suppl.): 119 (1995). Arachnis Blume, Bijdr. Fl. Ned. Ind., 8: 365, t. 26 (1825). LECT OTYPE : (L.) Rchb.f. (Epidendrum L.) designated by J.J. Wood, Taxon, 48: 47 (1999). Arethusa L., Sp. Pl. (Linnaeus), ed. 1, 2: 950 (1753). TYPE SPECIES : A. bulbosa L. selected by Britton & Brown, Ill. Fl. N.U.S., ed 2, 1: 562 (1913). Arundina Blume, Bijdr. Fl. Ned. Ind., 8: 401, t. 73 (1825). LECT OTYPE : A. speciosa Blume designated by Garay & H.R. Sweet, Orchids S. Ryukyu Islands, 52 (1974). Ascocentrum Schltr., Repert. Spec. Nov. Regni Veg. Beih., 1: 975 (1913). LECT OTYPE : A. miniatum (Lindl.) Schltr. (Saccolabium minitum Lindl.) designated by Summerhayes, Index Nom. Gen. (Pl.), 1: 139 (1967) card #64/24468. LECT OTYPE : A. ampullaceum (Roxburgh) Schltr. (Aerides ampullacea Roxburgh) designated by Christenson, Kew Bulletin, 41(4): 836 (1986). Ascochilus Ridl., J. Linn. Soc., Bot., 32: 374 (1896). LECT OTYPE : A. siamensis Ridl. designated by Garay, Auliza Salisb., Trans. Hort. Soc. London, 1: 294 (1812). TYPE SPECIES : A. ciliaris (L.) Salisb. (Epidendrum ciliaris L.) selected by Pfeiffer, Nomencl. Bot. (Pfeiffer), 1(1): 321 (1871). TYPE SPECIES : A. nocturna (Jacq.) Small selected by Small, Fl. Miami, 56 (1913) and Garay & H.R. Sweet, LECT OTYPE : A. nocturna (Jacq.) Small (Epidendrum nocturnum Jacq.) invalidly designated by Hgsater & Barbosella Schltr., Repert. Spec. Nov. Regni. Veg., 15: 259 (1918). LECT OTYPE : B. miersii (Lindl.) Schltr. (Pleurothallis miersii Paulo, 6: 1282 (1973). TYPE SPECIES : B. gardneri (Lindl.) Schltr. (Pleurothallis gardneri Lindl.) selected by Luer, Selbyana, 5: 386 (1981). Bartholina, R.Br., Hortus Kew., ed. 2, 5: 194 (1813) TYPE SPECIES : B. pectinata (Thunberg) R.Br. nom. illeg. (Orchis pectinata Thunberg nom. illeg.). This type

PAGE 75

LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011. ALRICH & HIGGINS 73name is now considered a synonym of Bartholina burmanniana (L.) Ker-Gawler (Orchis burmanniana L.) which was lectotyped by H.P. Linder, Taxon, 48: 48 (1999). Beloglottis Schltr., Beih. Bot. Centralbl., 37(2): 364 (1920). TYPE B. costaricensis (Rchb.f.) Schltr. selected by Garay, Fl. Ecuador, 9: 253 (1978). LECT OTYPE : B. boliviensis Schltr. designated 1131 (1982). LECT OTYPE : B. costaricensis (Rchb.f.) Schltr. (Spiranthes costaricensis Rchb.f.) designated by Rutkowski et al., Phylogeny & Taxonomy Subtribes Spiranthin, 132 (2008). Benthamia (1828). LECT OTYPE : B. latifolia Cribb, Gen. Orch., 2: 261 (2001). Bifrenaria Lindl., Gen. Sp. Orchid. Pl., 152 (1832). TYPE SPECIES : B. atropurpurea (Loddiges) Lindl. (Maxillaria atropurpurea Loddiges) selected by S. Koehler, Brittonia, 56(4): 318 (2004). Bipinnula Comm. ex Juss., Gen. Pl., 65 (1789). LECT OTYPE : B. biplumata (L.f.) Rchb.f. (Arethusa biplumata L.f.) designated by M.N. Correa, Gen. Orch., 3: 5 (2003). Blephariglotis Raf., Fl. Tellur., 2: 38 (1837). TYPE SPECIES : (Michx.) Raf. (Orchis cilaris var. alba Michx.) selected by Britton & Brown, Ill. Fl. N.U.S., ed. 2, 1: 556 (1913). Bletia Ruiz & Pav., Fl. Peruv. Prodr., 119, t. 26 (1794). TYPE SPECIES : B. catenulata Ruiz & Pav. selected by Britton & Millspaugh, Bahama Fl., 96 (1920). Bletilla Rchb.f., Fl. Serres Jard. Eur., ser. 1, 8: 246 (1853). TYPE SPECIES : B. gebina (Lindl.) Rchb.f. (Bletia gebina Lindl.) typ. cons. TYPE SPE C IES : B. florida (Salisb.) Rchb.f. ( Limodorum floridum Salisb.) this name is currently considered a species of the genus Bletia, invalidly selected by Pfeiffer, Nomencl. Bot. (Pfeiffer), 1(1): 423 (1871). Bolusiella Schltr., Beih. Bot. Centralbl., 36(2): 105 (1918). LECT OTYPE : B. maudae (Bolus) Schltr. (Angraecum maudae Bolus) designated by Butzin, Taxon, 32(4): 630 (1983). Bontiana Petiver, Gaz., 1: 70, t. 44 (1704). LECT OTYPE : B. luzonica Petiver designated by P.J. Cribb, Taxon, 48: 47 (1999). Brachionidium Lindl., Fol. Orchid., 8: Brachionidium 8 (1859). T TYPE SPECIES : B. parvifolium (Lindl.) Lindl. (Restrepia parvifolia Lindl.) selected by Garay, Canad. J. Bot., 34(4): 729 (1956). Brachystele Schltr., Beih. Bot. Centralbl., 37(2): 370 (1920). LECT OTYPE : B. unilateralis (Poiret) Schltr. (Ophrys unilateralis Poiret) designated by M.N. Corra, Fl. Patagnica, 8(2): 208 (1969) and Darwiniana, 11(1): LECT OTYPE : B. guayanensis (Lindl.) Schltr. (Goodyera guayanensis Brasiliorchis R.B. Singer, S. Koehler & Carnevali, Novon, 17(1): 94 (2007). LECT OTYPE : B. picta (Hook.) R.B. Singer, S. Koehler & Carnevali (Maxillaria picta Hook.) designated by R.B. Singer, Novon, 17: 97 (2007). Brenesia Schltr., Repert. Spec. Nov. Regni Veg. Beih., 19: 200 (1923). LECT OTYPE : B. costaricensis Schltr. designated by K. Barringer, Fieldiana, Bot., 17: 4 (1986). Brownleea Harvey ex Lindl., J. Bot. (Hooker), 1: 16 (1842). TYPE SPECIES : Harvey ex Lindl. selected Buchtienia Schltr., Repert. Spec. Nov. Regni Veg. Beih., 27: 33 (1929). LECT OTYPE : B. boliviensis Schltr. designated by Rutkowski et al., Phylogeny & Taxonomy Subtribes Spiranthin, 153 (2008). Bulbophyllum Thouars, Hist. Orchid., Table 3, sub 3u, tt. 93-110 (1822).

PAGE 76

LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011.74 LANKESTERIANA LECT OTYPE : B. nutans Thouars designated by M.L. Green, Prop. Brit. Bot., 100 (1929); and Greuter et al., Regnum Veg., 118: 186 (1983). Caladenia R.Br., Prodr. Fl. Nov. Holland., 323 (1810). TYPE SPECIES : C. carnea Caladenia 104. (1889); not Caladenia catenata (Sm.) Druce selected by (N. Hall 1977). Caleana R.Br., Prodr. Fl. Nov. Holland., 329 (1810). TYPE SPECIES : C. major R.Br., selected by Blaxell, Contr. New South Wales Natl. Herb., 4: 279 (1972). Calochilus R.Br., Prodr. Fl. Nov. Holland., 320 (1810). TYPE SPECIES : C. paludosus Calopogon R.Br., Hortus Kew, ed. 2, 5: 204 (1813). TYPE SPECIES : C. tuberosus (L.) Britton, Sterns & Poggenb. (Limodorum tuberosum L.) selected by Mackenzie, Rhodora, 27: 195 (1925). LECT OTYPE : C. pulchellus (Salisb.) R.Br. nom. illeg. (Limodorum pulchellum Salisb. nom. illeg.), designated by M.L. Green, Prop. Brit. Bot., 100 (1929). Calypso Salisb., Parad. Lond., 2: t. 89 (1807). LECT OTYPE : C. bulbosa (L.) Oakes (Cypripedium bulbosum L.) designated by H. Baumann et al., Mitt. (1989). Calymmanthera Schltr., Repert. Spec. Nov. Regni Veg. Beih., 1: 955 (1913). LECT OTYPE : C. tenuis Schltr., designated by Kores, Capanemia Barb.Rodr., Gen. Sp. Orchid., 1: 137, t. 354 (1877). TYPE SPECIES : C. uliginosa Barb.Rodr. selected by M.W. Chase, Gen. Orchid., 5: 237 (2009). Caularthron Raf., Fl. Tellur., 2: 40 (1837). LECT OTYPE : C. bicornutum (Hook.f.) Raf. (Epidendrum bicornutum Hook.f.) designated by van den Berg, Gen. Orch., 4: 218 (2005). Centranthera 293 (1842). NEOTYPE SPECIES : C. punctata Scheidw. designated by Luer, Monogr. Syst. Bot. Missouri Bot. Gard., 20: 12 (1986). Centrogenium Schltr., Beih. Bot. Centralbl., 37(2): 451 (1920). LECT OTYPE : C. calcaratum (Sw.) Schltr. (Neottia calcarata Sw.) designated by M.N. Correa, Darwiniana, 1277 (1973). Centroglossa Barb.Rodr., Gen. Sp. Orchid., 2: 234 (1882). LECT OTYPE : C. tripollinica (Barb.Rodr.) Barb.Rodr. (Ornithocephalus tripollinica Barb.Rodr.) designated by Summerhayes, Index Nom. Gen. (Pl.) 1: 312 (1962), card #64/15478 ; and Toscano, Lindleyana, 16(3): 189 (2001). Centrostigma Schltr., Bot. Jahrb. Syst., 53: 522 (1915). TYPE SPECIES : C. occultans (Welw. ex Rchb.f.) Schltr. (Habenaria occultans Welw. ex Rchb.f.) selected by Summerhayes, Kew Bull., 11(2): 219 (1956). TYPE SPECIES : C. schlechteri (Kraenzl.) Schltr. (Habenaria schlechteri Kraenzl.) selected by E.P. Cephalanthera Rich., De Orchid. Eur., 21, 29, 38 (1817). TYPE SPECIES : C. damasonium (Mill.) Druce (Serapias damasonium Hist., 60: 225 (1906). Ceratandra & Lindl.), t. 16 (1837). TYPE SPECIES : C. atrata (L.) T. Durand & Schinz (Ophrys atrata L.) selected by T. Durand & Schinz, TYPE SPE C IES : C. chloroleuca LECT OTYPE : C. chloroleuca designated by H.P. Linder, Taxon, 48: 48 (1999). Ceratandropsis Rolfe, Fl. Cap. (Harvey), 5(3): 266 (1913). TYPE SPECIES : (Lindl.) Rolfe (Ceratandra Lindl.) selected by E.P. Phillips, Gen. S. Ceratostylis Blume, Bijdr. Fl. Ned. Ind., 7: 304, t. 56 (1825).

PAGE 77

LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011. ALRICH & HIGGINS 75 LECT OTYPE : C. subulata Blume designated by Butzin, Taxon, 32(4): 630 (1983); and Royen, Orchid. High Mts. New Guinea, 455 (1979). LECT OTYPE : C. graminea Blume designated by 126 (1991); and P.J. Cribb, Gen. Orch., 4: 546 (2005). Cestichis 56, 101 (1887). TYPE SPECIES : C. caespitosaEpidendrum caespitosum Clements, Orchidian, 15(1): 37 (2005). Chaetocephala Barb.Rodr., Gen. Sp. Orchid., 2: 37, t. 802 (1881). LECT OTYPE : C. punctata Barb.Rodr. designated by Summerhayes, Index Nom. Gen. (Pl.), 1 : 327 (1967) card #64/15508. Chamaeangis Schltr., Beih. Bot. Centralbl., 36(2): 107 (1918). LECT OTYPE : C. gracilis (Thouars) Schltr. (Angraecum gracile Thouars) designated by Garay, Bot. Mus. 630 (1983). Chamorchis Rich., De Orchid. Eur., 20, 27, 35 (1817), and Mm. Mus. Hist. Nat., 4: 49 (1818). LECT OTYPE : C. alpina (L.) Rich. (Ophrys alpina L.) Heim. Orch. Baden-Wrtt., 21(3): 445 (1989). Cheirorchis Carrire, Gard. Bull. Straits Settlem., 7: 40 (1932). TYPE SPECIES : C. breviscapa Carrire indirectly selected by Holttum, Kew Bull., 14: 272 (1960). Chelonanthera Blume, Bijdr. Fl. Ned. Ind., 8: 382, t. 51 (1825). TYPE SPECIES : C. gibbosa Blume NOTE: ING lists the (Heft 32): 141 (1907) but there is nothing listed in the article as a type. Chitonanthera Schltr., Nachtr. Fl. Schutzgeb. Sdsee, 193 (1905). TYPE SPECIES : C. angustifolia Schltr. selected by Schuiteman & de Vogel, Blumea, 48: 511 (2003). Chloidia Lindl., Gen. Sp. Orchid. Pl., 484 (1840). TYPE SPECIES : C. polystachya (Sw.) Rchb.f. (Serapias polystachya Sw.) indirectly selected by Cogniaux, Fl. Bras. (Martius), 3(4): 276 (1895). Chloraea (1827). LECT OTYPE : C. virescens (Willd.) Lindl. (Cymbidium virescens Willd.) designated by M.N. Correa, Fl. Patagonica, 7(2): 200 (1970) and Gen. Orch., 3: 7 (2003). Christensonella Szlach., Mytnik, Grniak & Smiszek Polish Bot. J., 51(1): 57 (2006). TYPE SPECIES : C. paulistana (Hoehne) Szlach., Mytnik, Grniak & Smiszek (Maxillaria subulata Hoehne) selected by M.W. Chase, Gen. Orchid., 5: 135 (2009). Chrysoglossum Blume, Bijdr. Fl. Ned. Ind., 7: 337, t. 7 (1825). TYPE SPECIES : C. ornatum Blume selected by J.J. Smith, Bull. Jard. Bot. Buitenzorg, ser. 2, 8: 3 (1912). Chytroglossa Rchb.f., Hamburger GartenBlumenzeitung, 19: 546 (1863). LECT OTYPE : C. aurata LECT OTYPE : C. marileoniae Rchb.f. designated by Toscano, Lindleyana, 16(3): 189 (2001). Cirrhaea Lindl., Edwardss Bot. Reg., 18: t. 1538 (1832). TYPE SPECIES : Cirrhaea dependens (Loddiges) Loudon (Cymbidium dependens Loddiges) selected by G. Gerlach, Gen. Orch., 5: 404 (2009). Cirrhopetalum Lindl., Gen. Sp. Orchid. Pl., 58 (1830), and Bot. Reg., 10: sub 832 (1824) LECT OTYPE : Thouars designated by Garay et al., Nord. J. Bot., 14(6): 614 (1994). Cladobium Schltr., Beih. Bot. Centralbl., 37(2): 431 (1920). LECT OTYPE : C. ceracifolium (Barb.Rodr.) Schltr. (Spiranthes ceracifolia Barb.Rodr.) designated by TYPE SPECIES : C. ceracifolium (Barb.Rodr.) Schltr. (1982). Cleisostoma Blume, Bijdr. Fl. Ned. Ind., 8: 362, t. 27 (1825).

PAGE 78

LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011.76 LANKESTERIANA TYPE SPECIES : C. sagittatum Blume selected by Garay, Kew Bulletin, 41(4): 835 (1986). LECT OTYPE : C. sagittatum Blume designated by 76(6): 893 (1991). Cleistes Rich. ex Lindl., Gen. Sp. Orchid. Pl., 409 (1840). TYPE SPECIES : ( Nomencl. Bot. (Pfeiffer), 1(1): 781 (1871). Cnemidia Lindl., Edwardss Bot. Reg., 19: sub 1618 (1833). TYPE SPECIES : Cnemidia angulosa Lindl. selected by Hooker f., Fl. Brit. Ind., 6: 92 (1890). Coccineorchis Schltr., Beih. Bot. Centralbl., 37(2): 434 (1920). LECT OTYPE : C. corymbose Kraenzl. designated by LECT OTYPE : C. cernua (Lindl.) Garay (Stenorrhynchos cernuum Lindl.) designated by Rutkowski et al., Phylogeny & Taxonomy Subtribes Spiranthin, 158 (2008). Codonorchis Lindl., Gen. Sp. Orch. Pl., 410 (1840). LECT OTYPE : C. lessonii (dUrville) Lindl. (Epipactis lessonii dUrville) designated by M.N. Correa, Fl. Patagnica, 8(2): 191 (1969). Coelia Lindl., Gen. Sp. Orchid. Pl., 36 (1830). TYPE SPECIES : C. bauerana Lindl., nom. illeg. TYPE SPECIES : C. triptera (Sm.) G. Don ex Steudel, (Epidendrum tripterum Sm.) selected by Steudel, Nomencl. Bot., 1: 394 (1841). Coeloglossum Hartman, Handb. Skand. Fl., 323, 329 (1820). TYPE SPECIES : C. viride (L.) Hartman (Satyrium viride L.) selected by Britton & Brown, Ill. Fl. N.U.S., ed. 2, 1: 552 (1913). LECT OTYPE : C. viride (L.) Hartman designated by Baden-Wrtt., 21(3): 447 (1989). Coelogyne Lindl., Collect. Bot., sub t. 33 (1821). TYPE SPECIES : C. cristata Lindl. selected by C.H. Curtis, Orchids (Curtis), 82 (1950). LECT OTYPE : C. cristata Lindl., designated by Butzin, (Moscow & Leningrad), 75(12): 1767 (1990); Cogniauxiocharis So Paulo, n.s., 1(6): 132 (1944). LECT OTYPE : C. glazioviana (Cogn.) Hoehne (Pelexia glazioviana Cogn.) designated by Rutkowski et al., Phylogeny & Taxonomy Subtribes Spiranthin, 167 (2008). Coilostylis Raf., Fl. Tellur., 4: 37 (1838). LECT OTYPE : C. emarginata (L.) Raf. (Epidendrum ciliare L.) designated by Christenson, Richardiana, 3: 114 (2003). Colax Lindl., Edwardss Bot. Reg., 29(Misc): 50 (1843). TYPE SPECIES : C. viridis (Lindl.) Lindl. (Maxillaria viridis Lindl.) selected by Pupulin, Gen. Orchid., 5(2): 517 (2009). Comparettia Poepp. & Endl., Nova Gen. Sp., 1: 42, t. 73 (1836). TYPE SPECIES : C. falcata Poepp. & Endl. indirectly (1863). TYPE SPECIES : C. saccata Poepp. & Endl. selected by Britton & Wilson, Sci, Surv. Porto Rico, 5(2): 211 (1924). LECT OTYPE : C. falcata Poepp. & Endl. designated by Comperia K. Koch, Linnaea, 22: 287 (1849). TYPE SPECIES: C. comperiana (Orchis comperiana & Graebner, Syn. Mitteleur. Fl., 3: 620 (1907); and Pfeiffer, Nomencl. Bot. (Pfeiffer), 1(2): 837 (1872) indirectly selected type species. Corallorhiza (1755). TYPE SPECIES : C. innata R.Br. indirectly selected by McVaugh, Fl. Novo-Galiciana, 16: 57 (1983). LECT OTYPE : (L.) Chtelain (Ophrys corallorrhiza L.) designated by H. Baumann et al., 449 (1989). Corybas Salisb., Parad. Lond., 2: t. 83 (1807).

PAGE 79

LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011. ALRICH & HIGGINS 77 TYPE SPECIES : Corysanthes bicalcarata R.Br. This name is considered a synonym of Salisb. selected by Pfeiffer, Nomencl. Bot. (Pfeiffer), 1(2): 883 (1872). Corycium 2, 21: 220, t. 3g (1800). TYPE SPECIES : C. crispum (Thunberg) Sw. (Arethusa crispa Thunberg) selected by Pfeiffer, Nomencl. Bot. (Pfeiffer), 1(2): 883 (1872). TYPE SPECIES : C. orobanchoides (L.f.) Sw. (Satyrium orobanchoides L.f.) selected by H. Kurzweil, Gen. Orch., 2: 23 (2001). Corysanthes R.Br., Prodr. Fl. Nov. Holland., 328 (1810). TYPE SPECIES : R.Br. selected by Endlicher, Gen. Pl. (Endlicher), 218 (1837). Costaricaea Schltr., Repert. Spec. Nov. Regni Veg. Beih., 19: 30 (1923). LECT OTYPE : C. amparoana Schltr. designated by Pupulin, Bot. J. Linn. Soc., 163: 122 (2010). Cranichis Sw., Nov. Gen. Spec, Pl. Prodr., 8: 120 (1788). TYPE SPECIES : C. muscosa Descr. Orquid. Cuba, 60: 48 (1939). Cremastra Lindl., Gen. Sp. Orchid. Pl., 172 (1833). TYPE SPECIES : Cremastra wallichiana Lindl. nom. illeg. This type name is now considered a synonym of C. appendiculata (D. Don) Makino (Cymbidium appendiculatum D. Don) selected by Pfeiffer, Nomencl. Bot. (Pfeiffer), 1(2): 908 (1872). Crepidium Blume, Bijdr. Fl. Ned. Ind., 8: 387, t. 63 (1825). LECT OTYPE : C. reedii Blume designated by Seidenfaden, TYPE SPECIES : C. reedii Blume selected by Szlachetko, Fragm. Florist. Geobot. Suppl., 3: 123 (1995). Cryptophoranthus Barb.Rodr., Gen. Sp. Orchid. Nov., 2: 79, t. 476 (1881). TYPE SPECIES : C. fenestratus (Barb.Rodr.) Barb.Rodr. (Pleurothallis fenestrataa, Cat. Descr. Cuba, 60: 115 (1939). LECT OTYPE : C. fenestratus (Barb.Rodr.) Barb.Rodr. designated by Butzin, Taxon, 32(4): 631 (1983); and Cryptostylis R.Br., Prodr. Fl. Nov. Holland., 317 (1810). TYPE SPECIES : C. erecta R.Br. selected by N. Hall, Fl. Nouvelle Caledonie & Depend., 8: 481 (1977). LECT OTYPE : C. longifolia R.Br., designated by 1021 (1990). Cybelion Spreng., Veg. (Sprengel), ed. 16, 3: 679, 721 (1826). TYPE SPECIES : C. pulchellum (Kunth) Spreng. (Ionopsis pulchella Kunth) selected by Garay & H.R. Sweet, J. Cymbidiella Rolfe, Orchid Rev., 26: 58 (1918). LECT OTYPE : (Thouars) Rolfe (Cymbidium Higgins, Ill. Dict. Orchid Gen., 108 (2008). TYPE SPECIES : (Thouars) Rolfe selected by M.W. Chase, Gen. Orchid., 5: 98 (2009). Cymbidium ser. 2, 6: 70 (1799). LECT OTYPE : C. aloifolium (L.) Sw. (Epidendrum aloifolium L.) designated by P.F. Hunt, Kew Bull., & Leningrad), 76(6): 884 (1991). Cymbiglossum Halbinger, Orquidea (Mexico City), n.s., 9(1): 1-2 (1983). TYPE SPECIES : C. cervantesii (Lex.) Halbinger (Odontoglossum cervantesii Lex.) selected by M.W. Chase, Gen. Orchid., 5: 341 (2009). Cynorkis Thouars, Nouv. Bull. Sci. Soc. Philom Paris, 1: 317 (1809). TYPE SPECIES : C. fastigiata Thouars selected by P.J. Cribb, Man. Cult. Orch. Sp., 108 (1981). Cypripedium L., Sp. Pl. (Linnaeus), ed. 1, 2: 951 (1753). LECT OTYPE : C. calceolus L. designated by H. Baumann 21(3): 452 (1989). Cyperorchis Blume, Rumphia, 4: 47 (1849), and Mus. Bot., 1: 48 (1849). LECT OTYPE : Cyperorchis elegans (Lindl.) Blume

PAGE 80

LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011.78 LANKESTERIANA(Cymbidium elegans Lindl.) designated by P.F. Hunt, Kew Bull., 24(1): 94 (1970). Cyrtidiorchis Rauschert, Taxon, 31(3): 560 (1982). TYPE SPECIES : C. rhomboglossum (F. Lehmann & Kraenzl.) Schltr. (Chrysocycnis rhomboglossa F. Lehmann & Kraenzl.) selected by P. Ortiz, Orquid. Colombia, ed. 2, 70 (1995). Cyrtidium Schltr., Repert. Spec. Nov. Regni Veg. Beih., 27: 178 (1924). TYPE SPECIES : C. rhomboglossum (F. Lehmann & Kraenzl.) Schltr. (Chrysocycnis rhomboglossa F. Lehmann & Kraenzl.) selected by Garay, Orquideologia, 4: 8 (1969). Cyrtochilum Kunth, Nov. Gen. Pl., 1: 349, t. 84 (1816). LECT OTYPE : C. undulatum Kunth designated by Garay, Bradea, 1(40): 398 (1974). Cyrtopera Lindl., Gen. Sp. Orchid. Pl., 189 (1833). TYPE SPECIES : C. woodfordii (Sims) Lindl. (Cyrtopodium woodfordii Richard, Dict. Univ. Hist. Nat., 4: 561 (1844). Cyrtorchis Schltr., Orchideen (Schlechter), ed. 1, 595 (1914). LECT OTYPE arcuatum Lindl.) designated by Summerhayes, Kew Bull., 3: 278 (1948). Cyrtosia Blume, Bijdr. Fl. Ned. Ind., 8: 396, t. 6 (1825). TYPE SPECIES : C. javanica Blume selected by Blume, Rumphia, 1: 199 (1837). LECT OTYPE : C. javanica Blume designated by 75(12): 1760 (1990). Cystorchis Blume, Coll. Orch., 1: 87 (1855). TYPE SPECIES : C. variegata Blume selected by Ridley, J. Linn. Soc. (Bot.), 32: 399 (1896). Cytherea Salisb., Parad. Lond., 2(1): errata (1807), and Trans. Hort. Soc. London, 1: 301 (1812). TYPE SPECIES : C. bulbosa (L.) Oakes (Cypripedium bulbosum L.) selected by Pfeiffer, Nomencl. Bot. (Pfeiffer), 1(2): 994 (1872). Dactylorhiza Necker ex Nevski, Trudy Bot. Inst. 332 (1937). TYPE SPECIES : D. umbrosa (Karelin & Kirilov) Nevski (Orchis umbrosus Karelin & Kirilov) selected by So, Jahresber. Naturwiss. Vereins Wuppertal, 21-22: 13 (1968). Deiregyne Schltr., Beih. Bot. Centralbl., 37(2): 425 (1920). LECT OTYPE : D. chloreaeformis & Galeotti) Schltr. (Spiranthes chloreaeformis 312 (1980). NOTE : The choice of D. chloreaeformis is against the protologue, see Szlachetko, Fragm. Florist. Geobot., 40: 794 (1995) LECT OTYPE : D. hemichrea (Lindl.) Schltr. (Spiranthes hemichrea J. Bot., 69: 1131 (1982). Dendrobium ser. 2, 6: 82 (1799). TYPE SPECIES : D. moniliforme (L.) Sw. (Epidendrum moniliforme L.) selected by Pfeiffer, Nomencl. Bot. LECT OTYPE : D. moniliforme (L.) Sw. designated by R.K. Zhurn. (Moscow & Leningrad), 76(1): 125 (1991). Dendrochilum Blume, Bijdr. Fl. Ned. Ind., 8: 398, t. 52 (1825). TYPE SPECIES : D. aurantiacum Blume selected by Bechtel et al., Man. Cult. Orchid Sp., ed 1, 127 (1981). Dendrocolla Blume, Bijdr. Fl. Ned. Ind., 7: 286, t. 67 (1825). TYPE SPECIES : D. hystrix Blume designated by J.J. Smith, Bull. Jard. Bot. Buitenzorg, ser. 3, 3: 303 (1921). Dendrolirium Blume, Bijdr. Fl. Ned. Ind., 7: 343, t. 69 (1825). TYPE SPECIES : D. ornatum Blume selected by Breiger, Orchideen (Schlechter), ed. 3, 11/12: 717 (1981). Desmotrichum Blume, Bijdr. Fl. Ned. Ind., 329 (1825). LECT OTYPE : D. angulatum Blume designated by P.F. Hunt & Summerhayes, Taxon, 10: 102 (1961). Diaphananthe Schltr., Orchideen (Schlechter), ed. 1, 593 (1914). LECT OTYPE : D. pellucida (Lindl.) Schltr. (Angraecum

PAGE 81

LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011. ALRICH & HIGGINS 79pellucidum Lindl.) designated by Schlechter, Beih. Bot. Centralbl., 36(2): 97 (1918). Dichaea Lindl., Gen. Sp. Orchid. Pl., 208 (1833). TYPE SPECIES : D. echinocarpa (Sw.) Lindl. (Epidendrum echinocarpon Sw.) selected by Lindley, Bot. Reg., 18: sub 1530 (1832); and Britton & Wilson, Sci. Surv. Porto Rico, 5(2): 214 (1924). Dichaeopsis (1887). LECT OTYPE : D. graminoides (Sw.) Schltr. (Epidendrum graminoides Sw.) designated by Garay & H.R. Sweet, Dicrypta Lindl., Gen. Sp. Orchid. Pl., 44, 152 (1830). TYPE SPECIES : D. crassifolia (Lindl.) Lindl. (Heterotaxis crassifolia Lindl.) selected by I. Ojeda, Gen. Orchid., 5(2): 147 (2009). Didactyle Lindl., Fol. Orchid., 1: Didactyle, 1 (1852). TYPE SPECIES : Bulbophyllum gladiatum Lindl. invalidly selected by Pfeiffer, Nomencl. Bot. (Pfeiffer), 1(2): 1070 (1872). Dikylikostigma Kraenzl., Notizbl. Bot. Gart. BerlinDahlem., 7: 321 (1919). LECT OTYPE : D. preussii Kraenzl. designated by Rutkowski et al., Phylogeny & Taxonomy Subtribes Spiranthin, 153 (2008). Dimerandra Schltr., Repert. Spec. Nov. Regni Veg. Beih., 17: 43 (1922). TYPE SPECIES : D. rimbachii (Schltr.) Schltr. (Epidendrum rimbachii Schltr.) designated by Dinema Lindl., Orchid. Scelet., 16 (1826). TYPE SPECIES : D. polybulbon (Sw.) Lindl. (Epidendrum polybulbon Sw.) selected by Lindley, Coll. Bot., Diphryllum Raf., Med. Repos., ser. 2, 5: 357 (1808). TYPE SPECIES : Diphryllum bifolium Raf. designated by TYPE SPECIES : Listera convallarioides (Sw.) Nuttall (Epipactis convallarioides Sw.) selected by Pfeiffer, Nomencl. Bot. (Pfeiffer), 1(2): 1091 (1872). Diplorrhiza Ehrhart, Beitr. Naturk. (Ehrhart), 4: 147 (1789). TYPE SPECIES : Satyrium viride L. selected by Pfeiffer, Nomencl. Bot. (Pfeiffer), 1(2): 1099 (1871). Discyphus Schltr., Repert. Spec. Nov. Regni Veg. Beih., 15: 417 (1919). LECT OTYPE : D. scopulariae (Rchb.f.) Schltr. (Spiranthes scopulariae Rchb.f.) designated by Rutkowski et al., Phylogeny & Taxonomy Subtribes Spiranthin, 153 (2008). Disperis 218, t. 3f (1800). TYPE SPECIES : (L.) T. Durand & Schinz ( L.) selected by E.P. Phillips, Gen. LECT OTYPE : (L.) T. Durand & Schinz designated by J.C. Manning, Taxon, 48: 48 (1999). LECT OTYPE : D. capensis (L.) Sw. (Arethusa capensis L.) designated by J.C. Manning, Taxon, 48: 46 (1999). Diuris Sm., Trans. Linn. Soc. London, Bot., 4: 222 (1798). TYPE SPECIES : D. aurea Sm., selected by Smith, Exot. Bot., 1: 15 (1805). Domingoa TYPE SPECIES : D. haematochila (Rchb.f.) Carabia (Epidendrum haematochilum Rchb.f.) selected by Carabia, Mem. Soc. Cub. Hist. Nat., 17(2): 143 (1943) Dorycheile Rchb., Deut. Bot. Herb.-Buch, 56 (1841). TYPE SPECIES : D. rubra (L.) Fuss (Serapias rubra L.) selected by Fuss, Fl. Transsilv., 628 (1866) and Pfeiffer, Nomencl. Bot. (Pfeiffer), 1(2): 1128 (1872). Drakaea (1840). TYPE SPECIES : D. elastica Lindley designated by Pfeiffer, Nomencl. Bot. (Pfeiffer), 1(2): 1134 (1872) Dryadorchis Schltr., Repert. Spec. Nov. Regni Veg. Beih., 1: 976 (1913). TYPE SPECIES : D. barbellata Schltr. selected by Senghas, Orchideen (Schlechter), ed. 3, 1(19-20): 1201 (1988). Dryopeia Thouars, Hist. Orchid., tt. 1-3 (1822). LECT OTYPE : D. oppositifolia Thouars designated by

PAGE 82

LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011.80 LANKESTERIANA (2005). Dryorkis Thouars, Nouv. Bull. Sci. Soc. Philom. Paris, 1: 316 (1809). LECT OTYPE : D. tripetaloides Thouars designated by (2005). Elleanthus C. Presl, Rel. Haenk., 1: 97 (1827). TYPE SPECIES : E. lancifolius C. Presl. selected by Britton & Wilson, Sci. Surv. Porto Rico, 5(2): 203 (1924). Eltroplectris Raf., Fl. Tellur., 2: 51 (1836). TYPE SPECIES : E. calcarata (Sw.) Garay & H.R. Sweet (Neottia calcarata Sw.) selected by Britton & Wilson, Sci. Surv. Porto Rico, 5(2): 186 (1924) and Garay, Fl. Ecuador, 9: 239 (1978). Ephemerantha P.F.Hunt & Summerhayes, Taxon, 10(4): 102 (1961). LECT OTYPE : E. angulata (Blume) P.F. Hunt & Summerhayes (Desmotrichum angulatum Blume) designated by P.F. Hunt & Summerhayes, Taxon, 10(4): 102 (1961). Epiblastus Schltr., Nachtr. Fl. Deutsch. Schutzgeb. Sdsee, 136 (1905). TYPE SPECIES : E. ornithidioides Schltr. selected by van Epidendrum L., Sp. Pl. (Linnaeus), ed. 1, 2: 952 (1753) (nom. rej.). TYPE SPECIES : E. nodosum L. selected by Britton & Wilson, Sci. Surv. Puerto Rico, 5(2): 203 (1924). Epidendrum L., Sp. Pl. (Linnaeus), ed. 2, 2: 1347 (1763) (nom. cons.). LECT OTYPE : E. nocturnum Jacq. designated by Sprague, Prop. Brit. Bot., 53 (1929) and Voss et al., Regnum Veg 111: 335 (1983). Epilyna Schltr., Beih. Bot. Centralbl., 36(2): 374 (1918). LECT OTYPE : E. jimenezii Schltr. designated by Pupulin, Bot. J. Linn. Soc., 163: 132 (2010). Epipactis Zinn, Cat. Pl. Hort. Gott., 85 (1757). LECT OTYPE : E. helleborine (L.) Crantz (Serapias helleborine L.) designated by H. Baumann et al., Mitt. (1989), P.J. Cribb & J.J. Wood, Taxon, 48: 49 (1999) and Voss et al., Regnum Veg 111: 333 (1983). Epipogium J.G. Gmelin ex Borkhausen, Tent. Disp. Pl. German., 139 (1792). LECT OTYPE : E. aphyllum Sw. (Satyrium epipogium L.) Heim. Orch. Baden-Wrtt., 21(3): 477 (1989). Eriochilus R.Br., Prodr. Fl. Nov. Holland., 323 (1810). TYPE SPECIES: E. cucullatus (Labillardire) Rchb.f. (Epipactis cucullata Labillardire) selected by Pfeiffer, Nomencl. Bot. (Pfeiffer), 1(2): 1240 (1872). TYPE SPECIES : E. autumnalis R.Br. (nom. illeg.) selected (2006). Erporkis Thouars, Nouv. Bull. Sci. Soc. Phil., Paris, 1: 317 (1809). LECT OTYPE : Goodyera occulta Thouars designated by Ormerod, Gen. Orch., 3: 136 (2003). Eulophia R.Br. ex Lindl.. Bot. Reg., 7: sub 578 [573], as Eulophus (1821), and Bot. Reg., 8: t. 686 (1822). LECT OTYPE : Eulophia guineensis Lindl. designated by W. Greuter et al., Regnum Veg., 118: 186 (1988). Eurycentrum Schltr., Nachtr. Fl. Deutsch Schutzgeb. Sdsee, 89 (1905). LECT OTYPE : E. obscurum (Blume) Schltr. (Cystorchis obscura Blume) designated by Ormerod, Gen. Orch., 3: 90 (2003). Eurystyles Wawra, sterr. Bot. Zeitschr., 13: 223 (1863). LECT OTYPE : E. cotyledon Wawra designated by Rutkowski et al., Phylogeny & Taxonomy Subtribes Spiranthin, 149 (2008). Evelyna Poepp. & Endl., Nova Gen. Sp., 1: 32 (1836). TYPE SPECIES : E. capitata Poepp. & Endl. selected by Dressler, Gen. Orch., 4: 598 (2005) and Pfeiffer, Nomencl. Bot. (Pfeiffer), 1(2): 1321 (1874). Evota Rolfe, Fl. Cap. (Harvey), 5(3): 268 (1913). TYPE SPECIES : E. harveyana (Lindl.) Rolfe (Ceratandra harveyana Lindl.) selected by E.P. Phillips, Gen. S. Fernandezia Ruiz & Pavn, Fl. Peruv. Prodr., 123, t. 27 (1794). LECT OTYPE : Ruiz & Pavn designated

PAGE 83

LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011. ALRICH & HIGGINS 81by Dunsterville & Garay, Venez. Orchids Ill., 5: 124 (1972). Flickingeria (1961). LECT OTYPE : F. angulata (Desmotrichum angulatum Blume) designated by 76(1): 125 (1991). Fractiunguis Sec. Bot. 1(4): 56 (1922). TYPE SPECIES : (Rchb.f.) Schltr. (Hexisea Cuba, 60: 89. (1938). LECT OTYPE : (Rchb.f.) Schltr. designated by Dressler, Gen. Orch., 4: 310 (2005). Funkiella Schltr., Beih. Bot. Centralbl., 37(2): 430 (1920). LECT OTYPE : F. hyemalis (Spiranthes hyemalis by Rutkowski et al., Phylogeny & Taxonomy Subtribes Bot., 69: 1131 (1982). Galearis Raf., Herb. Raf., 71 (1833). LECT OTYPE : G. spectabilis (L.) Raf. (Orchis spectabilis L.) designated by Sheviak, Taxon, 48: 49 (1999). Galeoglossum Bot., sr. 3, 3: 31 (1845). TYPE SPECIES : G. prescottioides selected by Pfeiffer, Nomencl. Bot. (Pfeiffer), 1(2): 1401 (1872). LECT OTYPE : G. prescottioides designated by Salazar, Proc. Second Sci. Conf. Galeottiella Schltr., Beih. Bot. Centralbl., 37(2): 360 (1920). LECT OTYPE : G. sarcoglossa Schltr. (Spiranthes sarcoglossa 1131 (1982) and Rutkowski et al., Phylogeny & Taxonomy Subtribes Spiranthin, 146 (2008). Gastrochilus D. Don, Prodr. Fl. Nepal., 32 (1825). LECT OTYPE : G. calceolaris (Buch.-Ham. ex Sm.) D. Don (Aerides calceolare Buch.-Ham. ex Sm.) designated by Christenson, Kew Bulletin, 41(4): 836 (1986). Gavilea Poepp., Frag. Syn. Pl. Chil., 188 (1833). LECT OTYPE : G. leucantha Poepp. designated by M.N. Corra, Fl. Patagnica, 8(2): 191 (1969) and Gen. Orch., 3: 10 (2003). Gennaria Parlatore, Fl. Ital. (Parlatore), 3: 404 (1860). TYPE SPECIES : G. diphylla (Link) Parlatore (Satyrium diphyllum Link) selected by Schlechter, Repert. Spec. Nov. Regni Veg., 15: 296 (1918). Gigliolia Barb.Rodr., Gen. Sp. Orch. Nov., 1: 25 (1877). LECT OTYPE : G. geraensis Barb.Rodr. indirectly designated by Garay, Orquideologia, 9: 117 (1974). Glossochilopsis Szlach., Fragm. Florist. Geobot., 3(Suppl.): 122 (1995). LECT OTYPE : G. chamaeorchis (Schltr.) Szlach. (Microstylis chamaeorchis Schltr.) designated by Margonska, Richardiana, 8(2): 75 (2008). Glossodia R.Br., Prodr. Fl. Nov. Holland., 325 (1810). TYPE SPECIES : G. major Gonogona (1822). TYPE SPECIES : Goodyera repens (L.) R.Br. (Satyrium repens L.) selected by Pfeiffer, Nomencl. Bot. (Pfeiffer), 1(2): 1481 (1872). Goodyera R.Br., Hortus Kew, ed. 2, 5: 197 (1813). TYPE SPECIES : G. repens (L.) R.Br. (Satyrium repens L.) selected by Pfeiffer, Nomencl. Bot. (Pfeiffer), 1(2): 1485 (1872), Britton & Brown, Ill. Fl. N.U.S., ed. 2, 1: 569 (1913) and Sprague, J. Bot., 64: 113 (1926). LECT OTYPE : G. repens (L.) R.Br. designated by H. Baden-Wrtt., 21(3): 479 (1989). Grastidium Blume, Bijdr. Fl. Ned. Ind., 7: 333, 433 (1825). TYPE SPECIES : G. salaccense Blume selected by Breiger, Orchideen (Schlechter), ed. 3, 11/12: 653 (1981). Gymnadenia R.Br., Hortus Kew., ed. 2, 5: 191 (1813). LECT OTYPE : G. conopsea (L.) R.Br. (Orchis conopsea

PAGE 84

LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011.82 LANKESTERIANAHeim. Orch. Baden-Wrtt., 21(3): 482 (1989). Gymnadeniopsis Rydb., Man. Fl. N. States (Britton), 293 (1901). TYPE SPECIES : G. nivea (Nuttall) Rydb. (Orchis nivea Nuttall) selected by Britton & Brown, Ill. Fl. N.U.S., ed. 2, 1: 552 (1913). Gyrostachys Pers. ex Blume, Coll. Orch., 127 (1859). TYPE SPECIES : G. spiralis (L.) Pers. ex Blume (Ophrys spiralis L.) selected by Kuntze, Rev. Gen. Pl., 2: 663 (1891). LECT OTYPE : G. spiralis (L.) Pers. ex Blume designated Habenaria Willd., Sp. Pl., ed. 4, 44 (1805). TYPE SPECIES : H. macroceratitis Willd. (Orchis habenaria L.) selected by Kraenzlin, Bot. Jahrb. Syst., 16: 58 (1892). TYPE SPECIES : H. monorrhiza (Sw.) Rchb.f. (Orchis monorrhiza Sw.) invalidly selected by Lindley, Bot. Reg., 18: sub 1499 (1832). The above type name is now considered a synonym of the species Habenaria quinqueseta var. macroceratitis (Willd.) Luer (Habenaria macroceratitis Willd.) which was lectotyped by P.J. Cribb, Taxon, 48: 48 (1999). Hammarbya Kuntze, Revis. Gen. Pl., 2: 665 (1891). LECT OTYPE : H. paludosa (L.) Kuntze (Ophrys paludosa Heim. Orch. Baden-Wrtt., 21(3): 487 (1989). Hapalorchis Schltr., Beih. Bot. Centralbl., 37(2): 362 (1920). TYPE SPECIES : H. candidus (Kraenzl.) Schltr. (Sauroglossum candidum Kraenzl.) selected by Britton & Wilson, Sci. Surv. Porto Rico, 5(2): 186 (1924). LECT OTYPE : H. cheirostyloides Schltr. designated by Rutkowski et al., Phylogeny & Taxonomy Subtribes Spiranthin, 134 (2008). Haraella LECT OTYPE : H. retrocallaSaccolabium retrocallum Hayata) designated by Butzin, Taxon, 32(4): 631 (1983). Herminium L., Opera Var., 251 (1758), and Fl. Lapp. (Linnaeus), 247 (1737). LECT OTYPE : H. monorchis (L.) R.Br. (Orchis monorchis Heim. Orch. Baden-Wrtt., 21(3): 489 (1989); and 75(7): 1027 (1990). Hetaeria Blume, Bijdr. Fl. Ned. Ind., 8: 409, t. 14 (1930). LECT OTYPE : H. oblongifolia Blume designated by L.G. Himantoglossum Spreng., Syst. Veg. (Sprengel), ed. 16, 3: 675, 694 (1826). LECT OTYPE : H. hircinum (L.) Spreng. (Satyrium hircinum L.) designated by H. Baumann et al., Mitt. (1989). Holothrix Rich. ex Lindl., Gen. Sp. Orchid. Pl., 257, 283 (1835). TYPE SPECIES : H. hispidula (L.f.) T. Durand & Schinz (Orchis hispidula L.f.) selected by Pfeiffer, Nomencl. Bot. (Pfeiffer), 1(2): 1658 (1872). Humboldtia Ruiz & Pavn, Fl. Peruv. Chil. Prodr., 121, t. 27 (1794). LECT OTYPE : H. purpurea Ruiz & Pavn designated (1972). Huntleya Bateman ex Lindl., Edwardss Bot. Reg., 23: sub 1991 (1837). TYPE SPECIES : Bateman ex Lindl. selected by Pfeiffer, Nomencl. Bot. (Pfeiffer), 1(2): 1680 (1872). Ibidium Salisb., Trans. Hort. Soc. London, 1: 291 (1812). TYPE SPECIES : I. spirale (L.) Salisb. (Ophyrs spiralis L.) selected by House, Bull. Torr. Club, 32: 380 (1905). Ionopsis Kunth, Nov. Gen. Sp., 1: 348, t. 83 (1815). TYPE SPECIES : I. utricularioides (Sw.) Lindl. (Epidendrum utricularioides Sw.) selected by M.W. Chase, Gen. Orchid., 5: 281 (2009). Isochilus R.Br., Hortus Kew, ed. 2, 5: 209 (1813). LECT OTYPE : I. linearis (Jacq.) R.Br. (Epidendrum lineare Paulo, 6: 1303 (1973) and Summerhayes, Index Nom. Gen. (Pl.), 2: 880 (1979) card #64/23515. TYPE SPECIES : I. linearis (Jacq.) R.Br. selected by

PAGE 85

LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011. ALRICH & HIGGINS 83Pfeiffer, Nomencl. Bot. (Pfeiffer), 1(2): 1767 (1872); and type indirectly selected by Reichenbach f., Bonplandia (Hannover), 2: 22 (1854). Jacquiniella Schltr., Repert. Spec. Nov. Regni Veg. Beih., 7: 123 (1920). TYPE SPECIES : J. globosa (Jacq.) Schltr. (Epidendrum globosum Jacq.) selected by Britton & Wilson, Sci. Surv. Porto Rico, 5(2): 197 (1924). Jensoa Raf., Fl. Tellur., 4: 38 (1836)[1837] LECT OTYPE : J. ensata (Thunberg) Raf. nom. illeg. (Limodorum ensatum Thunberg) designated by P.F. Hunt, Kew Bull., 24(1): 94 (1970). Jimensia Raf., Fl. Tellur., 4: 38 (1836)[1837]. TYPE SPECIES : J. nervosa Raf., nom. illeg., Bletilla striata (Thunberg) Rchb.f. (Limodorum striatum Thunberg), indirectly selected by Garay & R.E. Jumellea Schltr., Orchideen (Schlechter), ed. 1, 609 (1914). LECT OTYPE : J. recurva (Thouars) Schltr. (Angraecum recurum Thouars) designated by Garay, Bot. Mus. Kefersteinia Rchb.f., Bot. Zeitung (Berlin), 10: 633 (1852). TYPE SPECIES : K. graminea (Lindl.) Rchb.f. (Zygopetalon gramineum Lindl.) designated by Garay, Orquideologia, 4: 150 (1969). Kingidium P.F. Hunt, Kew Bull., 24(1): 97 (1970). LECT OTYPE : K. taeniale (Lindl.) P.F.Hunt (Aerides taenialis (Moscow & Leningrad), 76(6): 891 (1991). Kingiella Rolfe, Orchid Rev., 25(297): 196 (1917). LECT OTYPE : K. taenialis (Lindl.) Rolfe (Aerides taenialis Soc. Bull., 40(12): 1094 (1971). Kraenzlinorchis Szlach., Orchidee (Hamburg), 55(1): 57 (2004). LECT OTYPE : K. mandersii (Collett & Hemsl.) Szlach. (Habenaria mandersii Collett & Hemsl.) designated by H. Kurzweil, Thai For. Bull. (Bot.), 77 (2009). Kuhlhasseltia J.J. Sm., Icon. Bogor., 4: 1, t. 301 (1910). LECT OTYPE : K. javanica J.J.Sm. designated by Ormerod, Gen. Orch., 3: 110 (2003). Laelia Lindl., Gen. Sp. Orch. Pl., 115 (1831). TYPE SPECIES : (Lex.) Lindl. (Bletia Lex.) indirectly selected by Dandy, Kew Bull., 86. (1935). Lanium Lindl. ex Benth., Hookers Icon. Pl., 14: 24, t. 1334 (1881). TYPE SPECIES : L. avicula (Lindl.) Benth. (Epidendrum avicula Paulo, 6: 1294 (1973). Lecanorchis Blume, Mus. Bot., 2: 188 (1856). LECT OTYPE : L. javanica Blume designated by Garay & H.R. Sweet, Orchids S. Ryukyu Islands, 49 (1974). Leochilus Knowles & Westc., Fl. Cab., 2: 143 (1838). TYPE SPECIES : L. oncidioides Knowles & Westc. designated by Knowles & Westcott. TYPE SPECIES : Oncidium macrantherum Hook. invalidly selected by Pfeiffer, Nomencl. Bot. (Pfeiffer), 2(1): 64 (1874). Lepanthes 85 (1799). TYPE SPECIES : L. concinna Sw. selected by Britton & Wilson, Sci. Surv. Porto Rico, 5(2): 206 (1924). Lepanthopsis TYPE SPECIES : ( Rchb.f.) selected by Garay, Orquideologia, 9: 116 (1974). Leptoceras (R.Br.) Lindl., Sketch Veg. Swan River Colony, 53 (1840). TYPE SPECIES : L. menziesii (R.Br.) Lindl. (Caladenia menziesii 183 (1971). Leucostachys Hoffmannsegg, Verz. Orchid., 26 (1842). TYPE SPECIES : L. procera (Ker Gawler) Hoffmannsegg (Neottia procera Ker Gawler) selected by Pfeiffer, Nomencl. Bot. (Pfeiffer), 2(1): 102 (1874). Limnorchis Rydb., Mem. New York Bot. Gard., 1: 104 (1900). TYPE SPECIES : L. hyperborea (L.) Rydb. (Orchis hyperborea L.) selected by Britton & Brown, Ill. Fl. N.U.S., ed. 2, 1: 554 (1913).

PAGE 86

LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011.84 LANKESTERIANALimodorum Generum Plantarum: 358 (1760). LECT OTYPE : L. abortivum (L.) Sw. (Orchis abortiva L.) designated by Greuter et al., Regnum Veg. 118: 183 Heim. Orch. Baden-Wrtt., (3): 493 (1989). Limodorum L., Sp. Pl., ed. 1, 2: 950 (1753). TYPE SPECIES : L. tuberosum L. selected by & Brown, Ill. Fl. N.U.S., ed. 2, 1: 562 (1913). Liparis Rich., De Orchid. Eur., 21, 30 & 38, f. 10 (1817). LECT OTYPE : L. loeselii (L.) Rich. (Ophrys loeselii L.) Heim. Orch. Baden-Wrtt., 21(3): 495 (1989). Lissochilus R.Br. ex Lindl., Bot. Reg., 7: t. 573, sub 578 (1821), and Coll. Bot. (Lindley), t. 31 (1822). TYPE SPECIES : L. speciosus R.Br. ex Lindl. selected by Pfeiffer, Nomencl. Bot. (Pfeiffer), 2(1): 135 (1874). Listera R.Br., Hortus Kew., ed. 2, 5: 201 (1813). LECT OTYPE : L. ovata (L.) R.Br. (Ophrys ovata L.) Heim. Orch. Baden-Wrtt., 21(3): 499 (1989). Listrostachys Rchb.f., Bot. Zeitung (Berlin), 10: 930 (1852). TYPE SPECIES : L. jenischiana Rchb.f. designated by H.G. Reichenbach. TYPE SPECIES : L. pertusa (Lindl.) Rchb.f. (Angraecum pertusum Lindl.) selected by Pfeiffer, Nomencl. Bot. (Pfeiffer), 2(1): 136 (1874). Ludisia LECT OTYPE : L. discolor (Goodyera discolor Ker Gawler) designated by Ormerod, Lindleyana, 17(4): 211 (2002). Luisia Gaudichaud-Beaupr, Voy. Uranie, Bot., 426, t. 37 (1826)[1829]. TYPE SPECIES : L. tenuifolia Blume not validly selected by Pfeiffer, Nomencl. Bot. (Pfeiffer), 2(1): 168 (1874). L ycaste Lindl., Edwardss Bot. Reg., 29(Misc): 14 (1843). TYPE SPECIES : L. macrophylla (Poepp.) Lindl. (Maxillaria macrophylla Cat. Descr. Orquid. Cuba, 60: 165 (1938). LECT OTYPE : L. macrophylla (Poepp.) Lindl. designated by Bullock, Kew Bull., 13: 254 (1958). LECT OTYPE : L. plana Lindl. designated by Oakeley, Novo-Galiciana, 16: 188 (1985). L yperanthus R.Br., Prodr. Rl. Nov. Holland., 325 (1810). TYPE SPECIES : L. suaveolens L yroglossa Schltr., Beih. Bot. Centralbl., 37(2): 448 (1920). LECT OTYPE : L. bradei Schltr. ex Mansf. designated by TYPE SPECIES : L. grisebachii (Cogn.) Schltr. (Spiranthes grisebachii So Paulo, 6: 1277 (1973). Macdonaldia Gunn ex Lindl., Sketch Veg. Swan Riv., 50, t. 9 (1840). TYPE SPECIES : M. smithiana LECT OTYPE : M. antennifera Lindl. designated by Szlachetko, Fragm. Florist. Geobot., 3(Suppl.): 112 (1995). Malaxis Sw., Prodr. (Swartz), 8: 119 (1788). TYPE SPECIES : M. rheedii Sw. invalidly selected by TYPE SPECIES : M. spicata Sw. selected by Britton & Brown, Ill. Fl. N.U.S., ed. 2, 1: 570 (1913). Malleola Schltr., Repert. Spec. Nov. Regni Veg. Beih., 1: 119 (1913). LECT OTYPE : M. sphingoides J.J.Sm. designated by 76(6): 894 (1991). TYPE SPECIES : M. undulata J.J.Sm. & Schltr. selected by Christenson, Kew Bulletin, 41(4): 837 (1986). Maxillaria Ruiz & Pavn, Fl. Peruv. Prodr., 116, t. 25 (1794). TYPE SPECIES : M. longipetala Ruiz & Pavn invalidly (1938). LECT OTYPE : M. ramosa Ruiz & Pavn designated by (1972). TYPE SPECIES : M. platypetala Ruiz & Pavn selected

PAGE 87

LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011. ALRICH & HIGGINS 85Brieger & P.F. Hunt, Taxon, 18: 602 (1969). LECT OTYPE : M. platypetala Ruiz & Pavn designated by Garay, Harvard Pap. Bot., 2: 52 (1997). Megastylis (Schltr.) Schltr., Bot. Jahrb. Syst., 45: 379, 384 (1911). TYPE SPECIES : M. gigas (Rchb.f.) Schltr. (Caladenia gigas Rchb.f.) selected by N. Hall, Fl. Nouvelle Caledonie & Depend., 8: 487 (1977). Menadenium Raf. ex Cogn., Fl. Bras. (Martius), 3(5): 581 (1902). TYPE SPECIES : M. kegelii (Rchb.f.) Cogn. (Zygopetalum kegelii Rchb.f.) selected by Pupulin, Gen. Orchid., 5: 544 (2009). Mesadenella 12: 205 (1952). TYPE SPECIES : M. esmeraldae (Linden & Rchb.f.) Pabst & Garay (Spiranthes esmeraldae Linden & Rchb.f.) selected by M.N. Correa, Darwiniana, 11: 68 (1955). LECT OTYPE : M. esmeraldae (Linden & Rchb.f.) Pabst 69: 1132 (1982). Mesadenus Schltr., Beih. Bot. Centralbl., 37(2): 367 (1920). TYPE SPECIES : M. galeottianus (Spiranthes galeottiana & Wilson, Sci. Surv. Porto Rico, 5(2): 186 (1924). Microchilus C. Presl, Rel. Haenk., 1: 94 (1827). LECT OTYPE : M. minor C. Presl designated by Ormerod, Gen. Orch., 3: 121 (2003). Microtatorchis Schltr., Nachtr. Fl. Deutsch. Schutzgeb. Sdsee, 234 (1905). LECT OTYPE : M. perpusilla Schltr. designated by Bullock, Index Nom. Gen. (Pl.), 2: 1093 (1976) card #30/05211 (1958). Microtis R.Br., Prodr. Fl. Nov. Holland., 320 (1810). LECT OTYPE : M. rara R.Br. designated by Garay & H.R. Sweet, Orchids S. Ryukyu Islands, 42 (1974). Mischobulbum Schltr., Repert. Spec. Nov. Regni Veg. Beih., 1: 98 (1911). TYPE SPECIES : M. scapigerum (Hook.f.) Schltr. (Nephelaphyllum scapigerum Hook.f.) selected by Senghas, Orchideen (Schlechter), ed. 3, 1: 851 (1984). LECT OTYPE : M. scapigerum (Hook.f.) Schltr. designated 75(12): 1765 (1990). Monadenia Lindl., Gen. Sp. Orchid. Pl., 356 (1838). LECT OTYPE : M. brevicornis Lindl. designated by H.P. Linder, Bothalia, 13(3-4): 342 (1981). Monanthochilus R. Rice, Oasis (Dora Creek), 3(Suppl.): 2 (2004). LECT OTYPE : M. chrysanthus (Schltr.) R. Rice (Sarcochilus chrysanthus Schltr.) designated by R. Rice, Oasis (Dora Creek), 3(Suppl.): 2 (2004). Monixus Finet, Bull. Soc. Bot. France Mm., 54(9): 15 (1907). LECT OTYPE : M. striatus (Thouars) Finet (Angraecum striatum Thouars) designated by Garay, Kew Bull., 28: 496 (1973). Mycaranthes Blume, Bijdr. Fl. Ned. Ind., 7: 352, t. 57 (1825). TYPE SPECIES : M. lobata Blume selected by P.J. Cribb, Gen. Orch., 4: 564 (2005). Myrobroma Salisb., Parad. Lond., 2: t. 82 (1807). TYPE SPECIES : M. fragrans Salisb. nom. illeg. This species is now considered a synonym of Vanilla planifolia. TYPE SPECIES : Vanilla planifolia validly selected by Pfeiffer, Nomencl. Bot. (Pfeiffer), 2(1): 395 (1874). LECT OTYPE : Vanilla planifolia 44 (1974). Mystacidium Lindl., Compan. Bot. Mag., 2(19): 205 (1837). TYPE SPECIES : Limodorum longicornu Sw. This name is now accepted as a synonym of Mystacidium capense (L.f.) Schltr. (Epidendrum capense L.f.) invalidly selected by Pfeiffer, Nomencl. Bot. (Pfeiffer), 2(1): 401 (1874). Nematoceras Hook.f., Fl. Nov.-Zel., 1(4): 249, t. 57 (1853). TYPE SPECIES : N. oblonga Hook.f. invalidly selected by Pfeiffer, Nomencl. Bot. (Pfeiffer), 2(1): 426 (1874). TYPE SPECIES : N. macranthum Hook.f. selected by (2002).

PAGE 88

LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011.86 LANKESTERIANANeokoehleria Schltr. Repert. Spec. Nov. Regni Veg., 10: 390 (1912). TYPE SPECIES : N. equitans Schltr. selected by M.W. Chase, Gen. Orchid., 5: 248 (2009). Neotinea Rchb.f., De Pollin. Orchid., 9, 18 & 29 (1852). TYPE SPECIES : Aceras intactum (Link) Rchb.f. (Orchis intacta Link) invalidly selected by Pfeiffer, Nomencl. Bot. (Pfeiffer), 2(1): 428 (1874). Neottia Mm. Math. Phys. (Paris), 4: 374 (1754). LECT OTYPE : N. nidus-avis (L.) Rich. (Ophrys nidusavis L.) designated by H. Baumann et al., Mitt. Bl. (1989) and Greuter et al., Regnum Vegetabile 118: 184 (1988). Neottianthe Rchb., Icon. Bot. Pl. Crit., 6: 26 (1828). LECT OTYPE : N. cucullata (L.) Schltr. (Orchis cucullata Heim. Orch. Baden-Wrtt., 21(3): 506 (1989). Nephelaphyllum Blume, Bijdr. Fl. Ned. Ind., 8: 372, t. 22 (1825). LECT OTYPE : N. pulchrum Blume designated by 75(12): 1765 (1990). Nigritella Rich., De Orchid. Eur., 19, 26, 34 (1817). LECT OTYPE : N. nigra (L.) Rchb.f. (Satyrium nigrum L.) Heim. Orch. Baden-Wrtt., 21(3): 507 (1989). Notylia Lindl., Bot. Reg., 11: sub 930 (1825). LECT OTYPE : N. punctata (Ker-Gawler) Lindl. (Pleurothallis punctata Ker-Gawler) designated by Butzin, Taxon, 32(4): 631 (1983). Odontochilus Blume, Coll. Orchid., 79 (1859). LECT OTYPE : (Blume) Blume ( Blume) designated by Oeceoclades Lindl., Edwardss Bot. Reg., 18: sub 1522 (1832). TYPE SPECIES : O. maculata (Lindl.) Lindl. selected by Lindley, J. Proc. Linn. Soc., Bot., 3: 36 (1859). LECT OTYPE : O. maculata (Lindl.) Lindl. (Angraecum maculatum Lindl.) designated by Garay & P. Taylor, Oeoniella Schltr., Beih. Bot. Centralbl., 33(2): 439 (1915). TYPE SPECIES : O. polystachys (Thouars) Schltr. (Epidendrum polystachys Thouars) selected by Senghas, Orchidee (Hamburg), 14: 215 (1963). Oncidium (1800). TYPE SPECIES : O. altissimum (Jacq.) Sw. (Epidendrum alissimum Jacq.) selected by Pfeiffer, Nomencl. Bot. (Pfeiffer), 2(1): 497 (1874) and M.W. Chase, Gen. Orch., 5: 308 (2009). LECT OTYPE : O. variegatum Sw. designated by Garay, Bradea, 1(40): 398 (1974). TYPE SPECIES : O. carthagenense (Jacq.) Sw. (Epidendrum carthagenense Jacq.) invalidly selected by Britton & Wilson, Bahama Fl., 97 (1920). Ophrys L., Sp. Pl. (Linnaeus), ed. 1, 2: 945 (1753). LECT OTYPE : O. insectifera L. designated by M.L. Green, Prop. Brit. Bot., 185 (1929) and H. Baumann 21(3): 512 (1989). Orchis L., Sp. Pl. (Linnaeus), ed. 1, 2: 939 (1753). TYPE SPECIES : O. militaris L. selected by Britton & Brown, Ill. Fl. N.U.S., ed. 2, 1: 551 (1913). LECT OTYPE : O. militaris L. designated by H. Baumann 21(3): 521 (1989). Oreorchis Lindl., J. Proc. Linn. Soc., Bot., 3: 26 (1858). LECT OTYPE : O. patens (Lindl.) Lindl. (Corallorhiza patens Lindl.) designated by Pearce & P.J. Cribb, Edinb. J. Bot., 54: 292 (1997). Orthoceras R.Br., Prodr. Fl. Nov. Holland., 316 (1810). TYPE SPECIES : O. strictum Orthopenthea Rolfe, Fl. Cap. (Harvey), 5(3): 179 (1912). TYPE SPECIES : O. bivalvata (L.f.) Rolfe (Ophrys bivalvata Fl. Pl., ed. 2, 235 (1951). Otochilus Lindl., Gen. Sp. Orchid. Pl., 53 (1830). LECT OTYPE : O. porrectus Lindl. designated by Butzin,

PAGE 89

LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011. ALRICH & HIGGINS 87Taxon, 32(4): 631 (1983). LECT OTYPE : O. fuscus Bot. Zhurn. (Moscow & Leningrad), 75(12): 1767 (1990). Otostylis Lindl., Gen. Sp. Orchid. Pl., 53 (1830). TYPE SPECIES : O. brachystalix (Rchb.f.) Schltr. (Zygopetalum brachystalix Rchb.f.) selected by Pupulin, Gen. Orch., 5: 515 (2009). Oxystophyllum Blume, Bijdr. Fl. Ned. Ind., 7: 335, t. 38 (1825). TYPE SPECIES : O. rigidum Blume selected by Breiger, Orchideen (Schlechter), ed. 3, 11/12: 676 (1981). Pachygenium Szlach., Tamayo & Rutk., Polish Bot. J., 46(1): 3 (2001). LECT OTYPE : P. albicans Cogn. designated by BurnsLECT OTYPE : P. oestriferum (Rchb.f. & Warm.) Szlach., Tamayo & Rutk. (Spiranthes oestriferum Rchb.f. & Warm.) designated by Szlachetko, Tamayo & Rutkowski, Polish Bot. J., 46(1): 3 (2001). Pachyplectron Schltr., Bot. Jahrb. Syst., 39: 51 (1906). TYPE SPECIES : P. arifolium Schltr. selected by N. Hall, Fl. Nouvelle Caledonie & Depend., 8: 506 (1977) and P.J. Cribb, Gen. Orch., 3: 131 (1999). Pachystelis Rauschert, Feddes Repert., 94: 456 (1983). LECT OTYPE : P. jimenezii (Schltr.) Rauschert (Scaphyglottis jimenezii Schltr.) designated by Rauschert, Feddes Repert., 94: 456 (1983). Palmorchis Barb.Rodr., Gen. Sp. Orch. Nov., 1: 169 (1877). TYPE SPECIES : P. pubescens Barb.Rodr. selected by Schlechter, Repert. Spec. Nov. Regni Veg., 16: 442 (1920). Pecteilis Raf., Fl. Tellur., 2: 37 (1837). TYPE SPECIES : P. susannae (L.) Raf. selected by Schlechter, Repert. Spec. Nov. Regni Veg., 4: 120 (1919). LECT OTYPE : P. susannae (L.) Raf. (Orchis susannae L.) designated by Butzin, Taxon, 32(4): 631 (1983), P.J. Cribb, Taxon, 48: 49 (1999). TYPE SPECIES : P. gigantea (Sm.) Raf. (Orchis gigantea Sm.) invalidly selected by S. Misra, Orchids Orissa, 139 (2004). Pelatantheria Ridl., J. Linn. Soc., Bot., 32: 371 (1896). LECT OTYPE : P. ctenoglossum Ridl. designated by Zhurn. (Moscow & Leningrad), 76(6): 893 (1991). Pelexia Poiteau ex Lindl., Bot. Reg., 12: sub 985 (1826). TYPE SPECIES : P. spiranthoides Lindl. This name is now considered a synonym of P. adnata (Sw.) Poiter ex Rich. (Satyrium adnatum Orchid., 68 (1974). Pennilabium J.J.Sm., Bull. Jard. Bot. Buitenzorg, ser. 2, 13: 47 (1914). LECT OTYPE : P. angraecum (Ridl.) J.J.Sm. (Saccolabium angraecum Ridl.) designated by Garay, Bot. Mus. (Moscow & Leningrad), 76(6): 892 (1991). Penthea Lindl., Gen. Sp. Orchid. Pl., 360 (1838) and Intr. Nat. Syst. Bot., ed. 2, 446 (1836). TYPE SPECIES : P. patens (L.f.) Lindl. (Ophrys patens 2, 236 (1951). TYPE SPECIES : P. melaleuca (Thunberg) Lindl. (Serapias melaleuca Thunberg) invalidly selected by Pfeiffer, Nomencl. Bot. (Pfeiffer), 2(1): 627 (1874). Pentisea (Lindl.) Szlach., Polish Bot. J., 46(1): 19 (2001). LECT OTYPE : P. gemmata (Lindl.) Szlach. (Calaenia gemmata Lindl.) designated by Szlachetko, Polish Bot. J., 46(1): 19 (2001). Peristylus Blume, Bijdr. Fl. Ned. Ind., 8: 404 (1825). gemmata: P. grandis Blume designated by Greuter et al., Regnum Veg., 118: 183 (1988) and Seidenfaden, Petalochilus R.S.Rogers, J. Bot., 62: 65 (1924). TYPE SPECIES : P. calyciformis R.S. Rogers selected by (2001). Phloeophila 1(3): 199 (1926). LECT OTYPE : P. paulensis Hoehne & Schltr. designated by Garay, Orquideologia, 9: 117 (1974). Pholidota Lindl. ex Hook., Exot. Fl., 2: t. 138 (1825).

PAGE 90

LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011.88 LANKESTERIANA TYPE SPECIES : P. imbricata selection was not needed as Hooker originally had just one species.) Phragmipedium (1896). TYPE SPECIES : P. caudatum (Lindl.) Rolfe (Cypripedium caudatum Lindl.) selected by Sprague & Summerhayes, Kew Bulletin, 309 (1927). Phymatidium Lindl., Gen. Sp. Orchid. Pl., 209 (1833). LECT OTYPE : P. delicatum Lindleyana, 16(3): 209 (2001). Physoceras Schltr., Repert. Spec. Nov. Regni Veg. Beih., 33: 78 (1924). LECT OTYPE : P. bellum Schltr. designated by Summerhayes, Index Nom. Gen. (Pl.), 3: 1335 (1979) card #64/24066 and J. & C. Hermans et al., Orchids Madagascar, 249 (2007). Physosiphon Lindl., Edwardss Bot. Reg., 21: sub 1797 (1835). TYPE SPECIES : P. loddigesii Lindl., nom. illeg. TYPE SPECIES : P. tubatus (Loddiges) Rchb.f. (Stelis tubata Loddiges) selected by Pfeiffer, Nomencl. Bot. (Pfeiffer), 2(1): 705 (1873). LECT OTYPE : Pseudostelis spiralis (Lindl.) Schltr. (Physosiphon spiralis Lindl.) designated by Garay, Orquideologia, 9: 118 (1974). Physurus Rich. ex Lindl., Gen. Sp. Orchid. Pl., 501 (1840). TYPE SPECIES : P. plantagineus (L.) Lindl. (Satyrium plantagineum L.) selected by Britton & Millspaugh, Bahama Fl., 87 (1920). Pilophyllum Schltr., Orchideen (Schlechter), ed. 1, 131 (1914). LECT OTYPE : P. villosum (Blume) Schltr. (Chrysoglossum villosum Blume) designated by van der Burgh & de Vogel, Orchid Monog., 8: 172 (1997). Pilumna Lindl., Edwardss Bot. Reg., 30(Misc.): 73 (1844). TYPE SPECIES : P. laxa Lindl. selected by M.W. Chase, Gen. Orch., 5: 380 (2009). Piperia Rydb., Bull. Torrey Bot. Club, 28: 269, 632 (1901). TYPE SPECIES : P. elegans (Lindl.) Rydb. (Platanthera elegans Lindl.) selected by Britton & Brown, Ill. Fl. N. U.S., ed. 2, 1: 555 (1913). Pityphyllum Schltr., Repert. Spec. Nov. Regni Veg. Beih., 7: 162 (1920). LECT OTYPE : P. antioquiense Schltr. designated by H.R. Sweet, Orquideologia, 7: 205 (1973). Platanthera Rich., De Orchid. Eur., 20, 26, 35 (1817). LECT OTYPE : P. bifolia (L.) Rich. (Orchis bifolia L.) Heim. Orch. Baden-Wrtt., 21(3):539 (1989). Platyclinis Benth., J. Linn. Soc., Bot., 18: 295 (1881). LECT OTYPE : P. abbreviata (Blume) Benth. ex Hemsl. (Dendrochilum abbreviatum Blume) designated by 130: 29 (1997). Pleione D. Don, Prodr. Fl. Nepal., 36 (1825). LECT OTYPE : P. praecox (J.E. Sm.) D. Don (Epidendrum praecox J.E. Sm.) designated by Zhu and S. Chen, Novon, 8: 461 (1998). Pleuranthium Benth., J. Linn. Soc., Bot., 18: 312 (1881). TYPE SPECIES : P. dendrobii (Rchb.f.) Benth. (Epidendrum dendrobii Pogonia Juss., Gen. Pl. (Jussieu), 65 (1789). TYPE SPECIES : P. ophioglossoides (L.) Ker-Gawler (Arethusa ophioglossoides L.) selected by Britton & Brown, Ill. Fl. N. U.S., ed. 2, 1: 559 (1913). Polycyncis Rchb.f., Bonplandia, 3(15-16): 218 (1855). TYPE SPECIES : P. muscifera (Lindl. & Paxton) Rchb.f. (Cycnoches musciferum Lindl. & Paxton) selected by G. Gerlach, Gen. Orchid., 5: 434 (2009). Ponera Lindl., Gen. Sp. Orchid. Pl., 113 (1831). TYPE SPECIES : P. juncifolia Lindl. designated by Lindley. TYPE SPECIES : P. graminifolia (Knowles & Westc.) Lindl. (Nemaconia graminifolia Knowles & Westc.) invalidly selected by Pfeiffer, Nomencl. Bot. (Pfeiffer), 2(2): 812 (1874). Prasophyllum R.Br., Prodr. Fl. Nov. Holland., 317 (1810). TYPE SPECIES : P. australe

PAGE 91

LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011. ALRICH & HIGGINS 89 Pristiglottis Universali, ser. 2, 1: 4 (1934). TYPE SPECIES : (Blume) Cretz. & J.J.Sm. ( Blume) selected by Weatherby, Bull. Misc. Inform., 1935: 421 (1935). Promenaea Lindl., Edwardss Bot. Reg., 29(Misc): 13 (1843). LECT OTYPE : P. lentiginosa (Lindl.) Lindl. (Maxillaria lentiginosa Lindl.) designated by Butzin, Taxon, 32(4): 632 (1983). Pseuderiopsis Rchb.f., Linnaea, 22: 852 (1850). LECT OTYPE : P. schomburgkii Rchb.f. designated by Romero, Harvard Pap. Bot., 10(2): 245 (2005). Pseudoeurystyles 129 (1943). LECT OTYPE : P. lorenzii (Cogn.) Hoehne (Stenoptera lorenzii Paulo, 6: 1273 (1973). Pseudogoodyera Schltr., Beih. Bot. Centralbl., 37(2): 369 (1920). LECT OTYPE : P. wrightii (Rchb.f.) Schltr. (Goodyera wrightii Rchb.f.) designated by Swart, Index Nom. Gen. (Pl.), 3 : 1434 (1979) card #10/23843; Rutkowski et al., Phylogeny & Taxonomy Subtribes Bot., 69(7): 1131 (1982). Pseudorchis Sg., Pl. Veron., 3: 254 (1754). LECT OTYPE : P. albidus (L.) Lve & D. Lve (Satyrium albidum L.) designated by H. Baumann et 21(3): 544 (1989). Pseudostelis 36 (1922). TYPE SPECIES : P. spiralis (Lindl.) Schltr. (Physosiphon spiralis Lindl.) selected by Garay, Orquideologia, 9: 118 (1974). LECT OTYPE : Stelis deregularis Barb.Rodr., designated Gard., 20: 36 (1986). Pteroglossa Schltr., Beih. Bot. Centralbl., 37(2): 450 (1920). LECT OTYPE : P. macrantha (Rchb.f.) Schltr. (Spiranthes macrantha So Paulo, 6: 1277 (1973), Rutkowski et al., Phylogeny & Taxonomy Subtribes Spiranthin, 168 (2008) and Pterostylis R.Br., Prodr. Fl. Nov. Holland., 326 (1810). TYPE SPECIES : P. obtusa R.Br. selected by Pfeiffer, Nomencl. Bot. (Pfeiffer), 2(2): 875 (1874). LECT OTYPE : P. curta R.Br. designated by Greuter et al., Regnum Veg., 118: 183 (1988). Pterygodium ser. 2, 21: 217, t. 3e (1800). TYPE SPECIES : P. alatum (Thunberg) Sw. (Ophrys alata Thunberg) selected by Pfeiffer, Nomencl. Bot. (Pfeiffer), 2(2): 876 (1874). TYPE SPECIES: P. catholicum (Thunberg) Sw. (Ophrys alata Fl. Pl., ed. 2, 237 (1951). LECT OTYPE : P. catholicum (Thunberg) Sw. designated by K.E. Steiner, Taxon, 48: 48 (1999). Rhipidoglossum Schltr., Beih. Bot. Centralbl., 36(2): 80 (1918). LECT OTYPE : R. xanthopollinium (Rchb.f.) Schltr. (Aeranthus xanthopollinius Rchb.f.) designated by Summerhayes, Blumea, Suppl., 1: 80 (1937). Rhynchopera Klotzsch, Icon. Pl. Rar. (Link), 2: 103, t. 41 (1844). TYPE SPECIES : R. pedunculata Klotzsch designated by Klotzsch. TYPE SPECIES : R. punctata H. Karsten not validly selected by Pfeiffer, Nomencl. Bot. (Pfeiffer), 2(2): 962 (1874). Rhynchophreatia Schltr., Bot. Jahrb. Syst., 56: 488 (1921) LECT OTYPE : Rhynchophreatia wariana Schltr. designated by Fosberg & Sachet, Micronesica, 20: 151 (1987). Rhynchostylis Blume, Bijdr. Fl. Ned. Ind., 7: 285, t. 49 (1825) LECT OTYPE : R. retusa (L.) Blume (Epidendrum retusum L.) designated by Christenson, Kew Bulletin, 41(4): 836 (1986). Robiquetia Gaudichaud-Beaupr, Freycinets Voy. Uranie, Bot., 426, t. 34 (1826)[1829]

PAGE 92

LECT OTYPE : R. brevifolia (Lindl.) Garay (Saccolabium brevifolium Lindl.) designated by Christenson, Kew Bulletin, 41(4): 835 (1986). Rodriguezia Ruiz & Pavn, Fl. Peruv. Prodr., 115, t. 25 (1794). LECT OTYPE : R. lanceolata Ruiz & Pavn designated by Rodrigueziopsis Schltr., Repert. Spec. Nov. Regni Veg., 16: 427. (1920). LECT OTYPE : R. eleutherosepala (Barb.Rodr.) Schltr. (Rodriguezia eleutherosepala Barb.Rodr.) designated by TYPE SPECIES : Rodrigueziopsis microphyton (Barb. Rodr.) Schltr. (Rodriguezia microphyta Barb.Rodr.) selected by M.W. Chase, Gen. Orchid., 5: 271 (2009). Roeperocharis Rchb.f., Otia Bot. Hamburg., 104 (1881). LECT OTYPE : R. bennettiana Rchb.f. designated by P.J. Cribb, Gen. Orch., 2: 359 (2001). Roezliella Schltr., Repert. Spec. Nov. Regni Veg., 15: 146 (1918) TYPE SPECIES : R. dilatata (Rchb.f.) Schltr. (Sigmatostalix dilatata Rchb.f.) selected by M.W. Chase, Gen. Orchid., 5: 308 (2009). Saccolabium Blume, Bijdr., 292, t. 50 (1825). LECT OTYPE : S. pusillum Blume designated by Christenson, Kew Bull., 41(4): 835 (1986). Sanderella Kuntze, Revis. Gen. Pl., 2: 649 (1891). TYPE SPECIES : S. discolor (Barb.Rodr.) Cogn. (Parlatorea discolor Barb.Rodr.) selected by Cogniaux, Fl. Bras., 3(6): 239 (1905). Sarcopodium Lindl. & Paxton, Paxtons Fl. Gard., 1: 155 (1850). TYPE SPECIES : S. lobbii (Lindl.) Lindl. & Paxton (Bulbophyllum lobbii Lindl.) selected by Pfeiffer, Nomencl. Bot. (Pfeiffer), 2(2): 1051 (1874). TYPE SPECIES : S. amplum (Lindl.) Lindl. (Dendrobium amplum Lindl.) invalidly selected by Kraenzlin, Satyrium L., Sp. Pl. (Linnaeus), ed. 1, 2: 944 (1753). LECT OTYPE : S. viride L. designated by M.L. Green, Prop. Brit. Bot., 185 (1929). Sauroglossum Lindl., Edwardss Bot. Reg., 19: t. 1618 (1833). LECT OTYPE : S. elatum Lindl. designated by Rutkowski et al., Phylogeny & Taxonomy Subtribes Spiranthin, 144 (2008). Scaphosepalum (1888). LECT OTYPE : S. ochthodes (Masdevallia ochthodes Rchb.f.) designated by Garay, Orquideologia, 9: 124 (1974). Scaphyglottis Poepp. & Endl., Nov. Gen. Sp. Pl., 1: 58 (1836). TYPE SPECIES : Poepp. & Endl. invalidly selected by Pfeiffer, Nomencl. Bot. (Pfeiffer), 2(2): 1068 (1874). The accepted name for is Camaridium vestitum (Sw.) Lindl. LECT OTYPE : S. graminifolia (Ruiz & Pavn) Poepp. & Endl. (Fernandezia graminifolia Ruiz & Pavn) designated by Dressler, Taxon, 9: 214 (1960) and Schiedeella Schltr., Beih. Bot. Centralbl., 37(2): 379 (1920). LECT OTYPE : S. saltensisSpiranthes saltensis Bot., 69(7): 1131 (1982). TYPE SPECIES : S. transversalis Schltr. (Spiranthes transversalis : 357 (1982). LECT OTYPE : S. llaveana (Lindl.) Schltr. (Spiranthes llaveana Lindl.) designated by Rutkowski et al., Phylogeny & Taxonomy Subtribes Spiranthin, 173 (2008). Schoenorchis Blume, Bijdr. Fl. Ned. Ind., 8: 361 (1825). TYPE SPECIES : S. juncifolia Blume selected by Garay, LECT OTYPE : Schoenorchis gemmata (Lindl.) J.J.Sm. (Saccolabium gemmatum Lindl.) designated by Christenson, Kew Bulletin, 41(4): 836 (1986). LECT OTYPE : S. juncifolia Blume designated by 76(6): 894 (1991). Selenipedium Rchb.f., Xenia Orch., 1: 3, t. 2 (1854). TYPE SPECIES : S. chica Rchb.f. selected by Sprague & LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011.90 LANKESTERIANA

PAGE 93

Summerhayes, Bull. Misc. Inform., 308 (1927). Sepalosaccus Schltr., Repert. Spec. Nov. Regni Veg. Beih., 19: 245 (1923). LECT OTYPE : S. humilis Schltr. designated by K. Barringer, Fieldiana, Bot., 17: 18 (1986). Serapias L., Sp. Pl. (Linnaeus), ed. 1, 2: 949 (1753). TYPE SPECIES : S. lingua L. selected by Sw., Kongl. LECT OTYPE : S. lingua L. designated by H. Baumann 21(3): 558 (1989). Smithsonia C.J.Saldanha, J. Bombay Nat. Hist. Soc., 71(1): 73 (1974). LECT OTYPE : (Dalzell) C.J. Saldanha ( Dalzell) designated by Christenson, Kew Bulletin, 41(4): 836 (1986). Schltr., Repert. Spec. Nov. Regni Veg. Beih., 33: 361 (1925). LE CT O T YPE : S. robusta (Schltr.) Schltr. (Oeonia robusta Schltr.) designated by Butzin, Taxon, 32(4): 632 (1983). Sobralia Ruiz & Pavn, Fl. Peruv. Prodr. 120, t. 26 (1794). LECT OTYPE : S. dichotoma Ruiz & Pavn designated by Specklinia Lindl., Gen. Sp. Orchid. Pl., 8 (1830). LECT OTYPE : S. lanceola (Sw.) Lindl. (Epidendrum lanceola Sw.) designated by Garay & H.R. Sweet, J. Spiranthes Rich., De Orchid. Eur., 20, 28 & 36 (1817). LECT OTYPE : S. spiralis (L.) Chevallier (Ophrys spiralis L.) designated by M.L. Green, Prop. Brit. Bot., 100 Heim. Orch. Baden-Wrtt., 21(3): 562 (1989). TYPE SPECIES : S. aestivalis (Poiret) Rich. (Ophrys aestivalis Poiret) invalidly selected by Correll, Fl. Texas, 3(3): 169 (1944). Stauropsis Rchb.f., Hamburger GartenBlumenzeitung, 16: 117 (1860). TYPE SPECIES : S. philippinensis (Lindl.) Rchb.f. (Trichoglottis philippinensis Lindl.) selected by Stelis Sw., J. Bot. (Schrader), 2: 239 (1799). LECT OTYPE : S. ophioglossoides (Jacq.) Sw. (Epidendrum ophioglossoides Jacq.) designated by M.L. Green, Prop. Brit. Bot., 100 (1929) and Pridgeon, Gen. Orch., 4: 405 (2005). LECT OTYPE : S. purpurea (Ruiz & Pav.) Willd. (Humboldtia purpurea Ruiz & Pavn) designated by Stenorrhynchos Rich. ex Spreng., Syst. Veg. (Sprengel), ed. 16, 3: 677 (1826). TYPE SPECIES : S. speciosum (Jacq.) Spreng. (Neottia speciosa Jacq.) selected by Britton & Millspaugh, Bahama Fl., 86 (1920). LECT OTYPE : S. speciosum (Jacq.) Spreng. designated by LECT OTYPE : S. orchioides (Sw.) Rich. (Satyrium orchioides Sw.) invalidly designated by M.N. Corra, Darwiniana, 11: 70 (1955). Stichorkis Thouars, Nouv. Bull. Soc. Philom., 19: 318 (1809). LECT OTYPE : S. distichaMalaxis disticha Thouars) designated by Rasmussen, Bot. Not., 132: 390 (1979). Sullivania F.Muell., J. Proc. Roy. Soc. New South Wales, 15: 229 (1882). TYPE SPECIES : Caleya sullivanii F.Muell. selected by (2005). Synassa Lindl., Bot. Reg., 19: sub 1618 (1833). LECT OTYPE : S. corymbosa Lindl. designated by Rutkowski et al., Phylogeny & Taxonomy Subtribes Spiranthin, 145 (2008). Synoplectris Raf., Fl. Tellur., 2: 87 (1837). LECT OTYPE : (Hook.) Klotzsch (Neottia Hook.) designated by Garay, Bot. Mus. Systeloglossum Schltr., Repert. Spec. Nov. Regni Veg. Beih., 19: 252 (1923). LECT OTYPE : S. costaricense Schltr. designated by Barringer, Fieldiana, Bot., 17: 21 (1986). Taeniophyllum Blume, Bijdr. Fl. Ned. Ind., 8: 355, t. 70 (1825). LE CT O T YPE : T. obtusum Blume designated by Garay, LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011. ALRICH & HIGGINS 91

PAGE 94

Bot. Zhurn. (Moscow & Leningrad), 76(6): 892 (1991). Telipogon Kunth, Nov. Gen. Sp., 1: 335, t. 75 (1815). TYPE SPECIES : T. nervosus (L.) Druce (Tradescantia nervosa L.) selected by M.W. Chase, Gen. Orch., 5: 362 (2009). Tetragamestus Rchb.f., Bonplandia, 2: 21 (1854). TYPE SPECIES : Scaphyglottis arundinacea Regel invalidly selected by Pfeiffer, Nomencl. Bot. (Pfeiffer), 2(2): 1373 (1874). TYPE SPECIES : T. aureus Rchb.f. indirectly selected by Reichenbach f., Linnaea, 41: 85 (1876). Thelasis Blume, Bijdr. Fl. Ned. Ind., 8: 385, t. 75 (1825). TYPE SPECIES : T. carinata LECT OTYPE : T. obtusa Bot. Zhurn. (Moscow & Leningrad), 76(1): 124 (1991). TYPE SPECIES : T. obtusa Blume selected by J.J. Wood, Gen. Orch., 4: 593 (2005). Thelychiton Endl., Prodr. Fl. Norfolk., 32 (1833). TYPE SPECIES : T. macropus Tomotris Raf., Fl. Tellur., 2: 89 (1837). LECT OTYPE : (Sw.) Rchb.f. ( Sw.) designated by Rasmussen, Bot. Tidssk., 71: 168 (1977). Trachelosiphon Schltr., Beih. Bot. Centralbl., 37(2): 423 (1920). LECT OTYPE : Eurystyles actinosophylla (Barb.Rodr.) Schltr. (Spiranthes actinosophila Barb.Rodr.) 43 (1938). LECT OTYPE : T. ananassocomos Rchb.f. designated by Trachyrhizum (Schltr.) Brieger, Schlechter Orchideen (ed. 3), 1(11-12): 687 (1981). TYPE SPECIES : T. schlechteri (Schltr.) Rauschert (Dendrobium trachyrhizum Schltr.) selected by Rauschert, Feddes Repert., 94(7-8): 469 (1983). TYPE SPECIES : Dendrobium chalmersii F.Muell. 280 (2003). Traunsteinera Rchb., Fl. Saxon., 87 (1842), and Deut. Bot. Herb.-Buch, 50 (1841). LECT OTYPE : T. globosa (L.) Rchb. (Orchis globosa L.) Heim. Orch. Baden-Wrtt., 21(3): 564 (1989). Trichoceros Kunth, Nov. Gen. Sp., 1: 337, t. 76 (1815). TYPE SPECIES : T. antennifer (Humb. & Bonpl.) Kunth (Epidendrum antenniferum Humb. & Bonpl.) selected by M.W. Chase, Gen. Orch., 5: 378 (2009). Trichoglottis Blume, Bijdr. Fl. Ned. Ind., 8: 359, t. 8 (1825). TYPE SPECIES : T. retusa Blume selected by Garay, Bot. LECT OTYPE : T. miserum (Ridl.) Holttum (Saccolabium miserum Ridl.) designated by Christenson, Kew Bulletin, 41(4): 836 (1986). Trichotosia Blume, Bijdr. Fl. Ned. Ind., 7: 342 (1825). LECT OTYPE : Blume designated by 76(1): 126 (1991). TYPE SPECIES : Blume selected by P.J. Cribb, Gen. Orch., 4: 583 (2005). Tridactyle Schltr., Orchideen (Schlechter), ed. 1, 602 (1914). LECT OTYPE : T. bicaudata (Lindl.) Schltr. (Angraecum bicaudatum Lindl.) designated by Summerhayes, Kew Bull., 282 (1948). Trigonanthe (Schltr.) Brieger, Schlechters Orchideen, ed. 3, 7: 448 (1975). TYPE SPECIES : Masdevallia simula Rchb.f. selected by Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 15: 26 (1986). Triphora TYPE SPECIES : T. pendula Nuttall, nom. illeg. (Arethusa pendula Willd., nom. illeg). This type name is now considered a synonym of T. trianthophora (Sw.) Rydb. (Arethusa trianthophoros Sw.) selected by Pfeiffer, Nomencl. Bot. (Pfeiffer), 2(2): 1484 (1874). Triphorhiza Ehrhart, Beitr. Naturk. (Ehrhart), 4: 149 (1789). TYPE SPECIES : Satyrium albidum L. selected by Pfeiffer, Nomencl. Bot. (Pfeiffer), 2(2): 1486 (1874).LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011.92 LANKESTERIANA

PAGE 95

Tylostigma Schltr., Beih. Bot. Centralbl., 4: 298 (1916). LECT OTYPE : T. madagascariensis Schltr. designated by P.J. Cribb, Gen. Orch., 2: 379 (2001). Uncifera Lindl., J. Proc. Linn. Soc., Bot., 3: 39 (1859) LECT OTYPE : U. obtusifolia Lindl. designated by Christenson, Kew Bulletin, 41(4): 837 (1986) and 76(6): 893 (1991). Vanilla Plum. ex Mil., Gard. Dict., abridged ed. 4, 3: without page number (1754). TYPE SPECIES : V. mexicana Mil. designated by Mansfeld, (Moscow & Leningrad), 75(12): 1760 (1990). TYPE SPECIES : V. mexicana Mil. selected by Britton & Wilson, Bahama Fl., 83 (1920). LECT OTYPE : V. planifolia Jacks. designated by Garay & Vrydagzynea Blume, Coll. Orchid., 71, tt. 17 (1858). LECT OTYPE : V. albida (Blume) Blume (Hetaeria albida (Moscow & Leningrad), 75(7): 1023 (1990). Warczewiczella Rchb.f., Bot. Zeitung (Berlin), 10: 635 (1852). TYPE SPECIES : W. discolor (Lindl.) Rchb.f. (Warrea discolor Lindl.) selected by Britton & Wilson, Sci. Surv. Porto Rico, 5(2): 214 (1924). Zeuxine TYPE SPECIES : Z. stratematica (L.) Schltr. (Orchis stratematica L.) designated by P.J. Cribb, Taxon, 48: 49 (1999). Zygosepalum (1859). TYPE SPECIES : Z. kegelii (Rchb.f.) Rchb.f. (Zygopetalum kegelii Rchb.f.) selected by Pupulin, Gen. Orch., 5: 544 (2009). Zygostates Lindl., Edwardss Bot. Reg., 23: 1927 (1837) LECT OTYPE : Z. lunata LECT OTYPE : Z. cornuta Lindl. designated by Toscano, Lindleyana, 16(3): 193 (2001). Commentary. When using various sources for basic lectotype research we have come across some listings There are many names currently listed in Index Nominum Genericorum Many of the names are correctly listed, but there are also many names that are not true lectotypes but just various authors listing a name as a type species for a given genus (selected). There are others listed as having lectotypes but upon reading the literature cited names1. Genus names listed in ING that are just listings of type species for a genus and have NOT been Aa, Amphigena, Ancistrorhynchus, Anochilus, Arethusa, Blephariglotis, Bletia, Brownleea, Centrostigma, Cephalanthera, Ceratandropsis, Chrysoglossum, Cladobium, Cleisostoma, Comparettia, Corysanthes, Crepidium, Cyrtopera, Cyrtosia, Cystorchis, Dryadorchis, Epiblastus, Evota, Gennaria, Gymnadeniopsis, Habenaria, Kefersteinia, Limnorchis, Malaxis, Oeceoclades, Orthopenthea, Palmorchis, Penthea, Physosiphon, Physurus, Piperia, Pleione, Pogonia, Pterygodium, Satyrium, Schoenorchis, Stauropsis, Stenorrhynchos, Trichoglottis, Triphora. which at the time they were not, but have since been Ania, Barbosella, Coelogyne, Cypripedium, Cyrtochilum, Disperis, Goodyera, Ophrys, Orchis, Pecteilis, Schiedeella. they are NOT: Capanemia, Chelonanthera, Dendrochilum, Diaphananthe. (Selbyana 29(2) 2008) as published by Pfeiffer, are just that a list of type names for various genera and are NOT true lectotypes.LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011. ALRICH & HIGGINS 931 These lists are only current as of March 1 2010.

PAGE 96

ACKNOWLEDGEMENTS We thank Eileen Downing of the Lee County (Florida) Public Library System for assistance in obtaining copies of original literature. We also acknowledge Google Books, Botanicus Digital Library, Biodiversity Heritage Library, Kew Library, Gallica Bibliothque and Real Jardn Botnico Digital Library as sources for the botanical literature researched and cited. LITERA TURE CITED Farr, E. R. & G. Zijlstra (eds.). Index Nominum Genericorum botany.si.edu/ing/ (accessed 1 March 2010). (Brazil, 2005), D. Holland Baptista (Brazil, 2005), H. Tigges (Germany, 2005), J.Shaw (RHS, 2005), P. Europe), J. Wood (K, 2003, Europe). 2010. World Checklist of Orchidaceae. The Board of Trustees of the Royal Botanic Gardens, Kew. Published on the Internet; http://www.kew.org/wcsp/ (accessed 1 March 2010). McNeill, J., F. R. Barrie, H. M. Burdet, V. Demoulin, D. L. Hawksworth, K. Marhold, D. H. Nicolson, J. Prado, P. C. Silva, J. E. Skog, J. H. Wiersema & N. J. Turland. 2006. International Code of Botanical Nomenclature Gantner Verlag KG. The International Plant Names Index., 2008. Published on the Internet; http://www.ipni.org (accessed 1 March 2010). Tropicos, botanical information system at the Missouri Botanical Garden. Published on the Internet; http:// www.tropicos.org (accessed 1 March 2010).LANKESTERIANA 11(1), April 2011. Universidad de Costa Rica, 2011.94 LANKESTERIANA