• TABLE OF CONTENTS
HIDE
 Front Cover
 Front Matter
 Copyright
 Table of Contents
 Main














Title: Lankesteriana
ALL VOLUMES CITATION PDF VIEWER THUMBNAILS PAGE IMAGE ZOOMABLE
Full Citation
STANDARD VIEW MARC VIEW
Permanent Link: http://ufdc.ufl.edu/UF00098723/00019
 Material Information
Title: Lankesteriana la revista científica del Jardín Botánico Lankester, Universidad de Costa Rica
Physical Description: v. : ill. (some col.) ; 25 cm.
Language: English
Creator: Jardín Botánico Lankester
Publisher: Jardi´n Bota´nico Lankester, Universidad de Costa Rica
Jardín Botánico Lankester, Universidad de Costa Rica
Place of Publication: Cartago Costa Rica
Cartago Costa Rica
Publication Date: December 2007
Frequency: three times a year[2002-]
irregular[ former 2001]
three times a year
regular
 Subjects
Subject: Botany -- Periodicals -- Costa Rica   ( lcsh )
Epiphytes -- Periodicals -- Costa Rica   ( lcsh )
Orchids -- Periodicals -- Costa Rica   ( lcsh )
Plantkunde   ( gtt )
Botanische tuinen   ( gtt )
Genre: periodical   ( marcgt )
Spatial Coverage: Costa Rica
 Notes
Language: In English and Spanish.
Dates or Sequential Designation: No. 1 (mayo 2001)-
Numbering Peculiarities: Issues for May 2001-Oct. 2003 designated no.1-8; issues for Apr. 2004- designated vol. 4, no. 1-
General Note: Latest issue consulted: Vol. 4, no. 1 (abr. 2004).
General Note: International journal on orchidology.
 Record Information
Bibliographic ID: UF00098723
Volume ID: VID00019
Source Institution: University of Florida
Holding Location: University of Florida
Rights Management: All rights reserved by the source institution and holding location.
Resource Identifier: oclc - 48491453
lccn - 2001240973
issn - 1409-3871

Downloads

This item has the following downloads:

00012-2007 ( PDF )


Table of Contents
    Front Cover
        Front Cover
    Front Matter
        Front Matter
    Copyright
        Copyright
    Table of Contents
        Table of Contents 1
        Table of Contents 2
    Main
        Page 461
        Page 462
        Page 463
        Page 464
        Page 465
        Page 466
        Page 467
        Page 468
        Page 469
        Page 470
        Page 471
        Page 472
        Page 473
        Page 474
        Page 475
        Page 476
        Page 477
        Page 478
        Page 479
        Page 480
        Page 481
        Page 482
        Page 483
        Page 484
        Page 485
        Page 486
        Page 487
        Page 488
        Page 489
        Page 490
        Page 491
        Page 492
        Page 493
        Page 494
        Page 495
        Page 496
        Page 497
        Page 498
        Page 499
        Page 500
        Page 501
        Page 502
        Page 503
        Page 504
        Page 505
        Page 506
        Page 507
        Page 508
        Page 509
        Page 510
        Page 511
        Page 512
        Page 513
        Page 514
        Page 515
        Page 516
        Page 517
        Page 518
        Page 519
        Page 520
        Page 521
        Page 522
        Page 523
        Page 524
        Page 525
        Page 526
        Page 527
        Page 528
        Page 529
        Page 530
        Page 531
        Page 532
        Page 533
        Page 534
        Page 535
        Page 536
        Page 537
        Page 538
        Page 539
        Page 540
        Page 541
        Page 542
        Page 543
        Page 544
        Page 545
        Page 546
        Page 547
        Page 548
        Page 549
        Page 550
        Page 551
        Page 552
        Page 553
        Page 554
        Page 555
        Page 556
        Page 557
        Page 558
        Page 559
        Page 560
        Page 561
        Page 562
        Page 563
        Page 564
        Page 565
        Page 566
Full Text
LANKES]"ll "NIANA







LANKESTERIANA












LANKESTERIANA
THE INTERNATIONAL JOURNAL ON ORCHIDOLOGY





Copyright C 2007 Jardin Botanico Lankester, Universidad de Costa Rica
Fecha efectiva de publicaci6n / Effective publication date: 19 de diciembre del 2007


Diagramaci6n: Jardin Botanico Lankester
Imprenta: Litografia Ediciones Sanabria S.A.
Tiraje: 500 copias


Impreso en Costa Rica / Printed in Costa Rica


R Lankesteriana / The international journal on orchidology,
Universidad de Costa Rica. No. 1 (2001) -
San Jos6, Costa Rica: Editorial Universidad de Costa
Rica, 2001--
V.

ISSN-1409-3871

1. Botinica Publicaciones peri6dicas, 2. Publicaciones
peri6dicas costarricenses


0




ISSN 1409-3871




LANKESTERIANA

VOL. 7, No. 3 DICIEMBRE 2007




Pollination of Guarianthe skinneri, an ornamental food deception orchid in southern
Florida, by the naturalized orchid bee Euglossa viridissima
ROBERT W. PEMBERTON 461
Estructura y ecologia de la poblaci6n del endemismo cubano Broughtonia cubensis
(Orchidaceae), en Cabo San Antonio, peninsula de Guanahacabibes, provincia de Pinar
del Rio, Cuba
ELAINE GONZALEZ HERNANDEZ, JOSEP RAVENTOS, ERNESTO MUJICA BENITEZ & ANDREU BONET 469
Orquideas centroamericanas en Inglaterra del siglo XIX
LuIs D. GOMEZ P. 479
Genetic relationships of Phragmipedium species (Orchidaceae) using amplified fragment
length polymorphism (AFLP) analysis
MANUEL RODRIGUEZ SALAS, JORGE BENAVIDES RANILLA & JOSE R. ESPINOZA 493
Prasophyllum (Orchidaceae) and its associated mycorrhizal fungi
EMILY MCQUALTER, ROB CROSS, CASSANDRA B. MCLEAN & PAULINE Y. LADIGES 497
Morphological characterization of the artificial hybrid between Stanhopea costaricensis
and Stanhopea cirrhata (Orchidaceae)
WILLIAM RAMIREZ & GUSTAVO ROJAS 503
Observations on the effect of nectar-robbery on the reproductive success
of Aeranthes arachnitis (Orchidaceae)
DAVID L. ROBERTS 509
Generic realignments in Maxillariinae (Orchidaceae)
MARIO A. BLANCO, GERMAN CARNEVALI, W. MARK WHITTEN, RODRIGO B. SINGER, SAMANTHA
KOEHLER, NORRIS H. WILLIAMS, ISIDRO OJEDA, KURT M. NEUBIG & LORENA ENDARA 515
Elleanthus ligularis, a name for a relatively common "new" species of Elleanthus
Sect. ( hloidelyna (Orchidaceae)
ROBERT L. DRESSLER & DIEGO BOGARIN 539
A new Lycaste (Maxillariinae: Orchidaceae) from Costa Rica
DIEGO BOGARIN 543


THE INTERNATIONAL JOURNAL ON ORCHIDOLOGY












VOL. 7, No. 3 DICIEMBRE 2007


Una especia nueva de Lellingeria (Filicales: Polypodiaceae) para Costa Rica, Panama
y Colombia
ALEXANDER Fco. ROJAS ALVARADO 553
Novedades en Polybotrya (Filicales: Dryopteridaceae) para Costa Rica
ALEXANDER Fco. ROJAS ALVARADO 557
Erratum 563
Reviewers of the manuscripts submitted to Lankesteriana, Vol. 7 565


THE SCIENTIFIC JOURNAL OF JARDIN BOTANICO LANKESTER


VOL. 7, No. 3


DICIEMBRE 2007








LANKESTERIANA7(3): 461-468. 2007


POLLINATION OF GUARIANTHE SKINNERI, AN ORNAMENTAL FOOD
DECEPTION ORCHID IN SOUTHERN FLORIDA, BY THE NATURALIZED
ORCHID BEE EUGLOSSA VIRIDISSIMA

ROBERT W. PEMBERTON

Invasive Plant Research Laboratory
United States Department of Agriculture-Agricultural Research Service
3225 College Ave. Fort Lauderdale, Florida 33314 U.S.A.
Robert.Pemberton@ars.usda.gov

ABSTRACT. A Mesoamerican orchid bee Euglossa viridissima, recently naturalized in Florida, is pollinating
cultivated plants of Guarianthe skinneri, also native to Mesoamerica. The flowers were found to be self
compatible and nectarless. Of 25 bees observed to visit 31 G. skinneri flowers, 18 picked up pollinaria, and
17 of the bees left the plant after visiting a single flower of this food deception orchid. The bee's behavior
lends support to the idea that food deception pollination systems reduce geitonogamy and promote outcross-
ing. Cultivated G. skinneri plants growing where the orchid bee occurs in Florida are fruiting which creates
the possibility of the naturalization of this orchid. Euglossa viridissima is probably a pollinator of G. skin-
neri in Mesoamerica where they co-occur.
KEY WORDS: Orchidaceae, Euglossa, Guarianthe, food deception pollination, Florida.


Guarianthe skinneri (Bateman) Dressler & W.E.
Higgins is a commonly grown orchid in southern
Florida. It is native to southern Mexico and Central
America, south to Costa Rica (Bechtel et al. 1992)
where it is the national flower. Until recently this
bifoliate orchid was known as Cattleya skinneri, but
molecular analyses demonstrated that the C. skin-
neri complex is a natural group separate from
Cattleya (Dressler & Higgins 2003). The new genus
Guarianthe is derived from the Costa Rican word
for orchid "guaria" as in "guaria morada" (G. skin-
neri), and the Greek "anthos" for flower (Dressler
& Higgins 2003, Dressler 2005). Although this
orchid is frequently grown outdoors in the coastal
areas of southeastern Florida where frost rarely
occurs, it did not, apparently, produce fruit.
However, in 2004 multiple plants in one Fort
Lauderdale neighborhood were noted to produce
fruit. One large plant owned by the author produced
26 capsules.
The flowers of Cattleya sensu lato are of the
"gullet-type", and are thought to be melittophilous
(bee pollinated) (Dressler 1981, van der Cingel
2001), but the pollinators of G. skinneri have not
been determined with certainty, even in its native
area. A pollination study was done in Costa Rica
and a number of small bees were seen visiting the


flowers but none were observed to remove the pol-
linaria (Mora-Monge & Valerio-Gutierrez 1988). In
that study bees in the genus Euglossa were seen fly-
ing near the flowers but none were observed to visit
the flowers. A prime suspect to be the pollinator of
G. skinneri in Florida was the newly naturalized
Euglossa viridissima Friese (Skov & Wiley 2005,
Pemberton & Wheeler 2006). This bee was first
observed in southern Florida in June 2003 and had
become locally abundant although patchily distrib-
uted in Fort Lauderdale by 2004 (Pemberton &
Wheeler 2006). This bee is native to Mexico and
Central America (Roubik & Hanson 2004) and is
sympatric with G. skinneri. Orchid bees (Euglossa
species and other euglossine bees) are best known
as pollinator mutualists of perfume orchids which
are mostly species of the Neotropical orchid tribes
Catasetinae, Stanhopeinae, and Lycastinae. Male
orchid bees pollinate the flowers while gathering
their fragrance compounds to use in their courtship
(Dodson et al. 1969, Dressler 1982, Williams 1982,
Eltz et al. 2005) Both male and female euglossine
bees seeking nectar are pollinators of Cattleya
species and their relatives (van der Pijl & Dodson
1966, van der Cingel 2001). The primary purpose of
this study was to learn if E. viridissima is a pollina-
tor of G. skinneri in southern Florida.








LANKESTERIANA


Methods

BREEDING SYSTEM: To obtain insights into the breed-
ing system of G. skinneri in the absence of the orchid
bee or other pollinators, a single medium sized plant
with seven inflorescences was manipulated. To deter-
mine the possibility of autogamy, two inflorescences
each with nine flowers were enclosed in mesh bags
(constructed of bridal veil cloth with 1mm x Imm
holes) for the entire blooming period. To determine
self compatibility, nine flowers in four inflorescences
were hand pollinated with pollinaria taken from nine
different flowers in the same four inflorescences but
not their own. A single inflorescence with six flowers
was left unmanipulated except for being tagged. The
plant was kept inside a screened porch with filtered
western light to isolate it from potential pollinators.
Fruit formation, postmanipulation appearance and
longevity for all flowers were recorded. Eight flowers
from untreated inflorescences were dissected to visu-
ally determine if floral nectar was present.

TIMED EXPOSURES: Three potted G. skinneri plants
were exposed to insect visitors; one large plant
with 100 flowers, and two small plants, one with
12 total flowers in two inflorescences, and other
also with two inflorescences with ca. 12 flowers.
All three plants were placed inside an outdoor
screened swimming pool enclosure when flower
buds began to develop. Shortly after the plants
began to flower, they were moved to a Fort
Lauderdale, Florida garden where the orchid bee
is common, for timed exposures. For the large
plant, eight exposures from one to two hours long
were made during its entire flowering period from
February 26 to March 27, 2006. For the small
plants, single exposures were made on March 27
and April 10. Prior to an exposure on March 2, 10
flowers from 10 different inflorescences of the
same large plant used for the pollinator exposures,
with ca. 100 flowers, were dissected to look for
floral nectar. The date, time of day, and time
amount of individual exposures are given in Table
1. Flower visitors were noted, identified and
observed to determine their orientation to the
flowers and potential contact with the pollinaria
and stigmas.
Two other related orchids were also briefly
exposed. A single plant of Cattleya mossiae Hooker
was exposed on from 7:00-9:00 am on March 13

LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.


2006 concurrently with G. skinneri and placed ca. 3
m from it. Guairanthe patinii (Cogn.) Dressler &
W.E. Higgins, a congeneric species very similar to G.
skinneri native from Costa Rica to northern South
America and Trinidad (Dressler 2005), which flowers
in the autumn instead of spring, was exposed from
7:30 to 8:30 am on November 8 and from 11:00 am
to 12:00 pm on November 10, 2006.

Results

BREEDING SYSTEM: None of the 18 flowers in two
bagged inflorescences set fruit indicating that G. skin-
neri is probably not autogamous. All nine flowers
hand pollinated with pollinia from the same plant set
fruit indicating self compatibility.

FLOWER LONGEVITY AND NECTARIES: All flowers that
were pollinated and those from which pollinaria were
removed closed their labial flower tubes the day fol-
lowing treatment and had wilted by the fifth day after
treatment. By contrast, flowers treated only by being
enclosed in bags did not wilt until two weeks follow-
ing treatment, and the unmanipulated, newly opened
flowers lasted for three weeks. A floral nectary cham-
ber was detected deep within the pedicel but was dry
indicating that the flowers lack floral nectar in all 18
dissected flowers. The flowers however have
extrafloral nectaries at the tops of the ovaries just
behind the sepals, and at the base of the ovary, and
droplets of nectar are apparent in both. In pollinated
flowers, the secretion of nectar from extafloral nec-
taries on the ovaries behind the sepals increased
secretion, while extrafloral nectaries on flowers from
which pollinaria were removed ceased nectar produc-
tion. The average ovarial extrafloral nectar volume
from five bagged flowers was about one microliter
compared to almost 13 microliters from the same nec-
taries on developing fruit 12 days after pollination.
Undetermined species of ants were observed collect-
ing nectar from the swelling ovaries of pollinated
flowers.

TIMED EXPOSURES:
Visitors -- During the more than 13 hours of timed
exposures (which averaged 80. 5 minutes), six butter-
fly species occasionally probed the flowers with their
proboscises, each during single visits but none
removed pollinaria. These included a giant swallow-
tail [Papillo crephontes (Cramer)]: one flower; a













PEMBERTON Euglossine bee pollination of Guarianthe skinneri


c-I
o ~ C
'C
C









C
o *t cc 6

cc






.4
C
Cl In o 6
ft


ft


-: c-i
- 0}


.4
C
In I)
Cl ~5
'C
Cl


ft C











ft Cl

























- C











- ft











o o
ON ON


LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.


ft c-I











ft In


- ft












C -











C
'C


II
ft






r-- 1
C


-^ C



Qi









II
ON N











,:






cz
~
~ 0

I I -

N C 0
c-~ -~ ON0

ONl


Uu








LANKESTERIANA


monarch [Danaus plexippus (L.)]: five flowers; a
ruddy daggerwing [Marpesia petreus (Cramer)]: four
flowers; a Gulf fritillary [Agraulis vanilla (L.)]: one
flower; a monk skipper [Asbolis capucinus (Lucas)]:
two flowers; and another large unidentified skipper
(Hesperiidae): two flowers. The only other visitor to
G. skinneri flowers was the orchid bee E. viridissima,
which was seen in all ten exposures on nine different
days (Table 1).
Euglossa viridissima approached flowers of
exposed plants on 43 occasions or, on average, once
every 26 minutes. During more that half of these
appearances, the bees entered flowers. Bees entered
flowers during all nine exposure dates and entered
from 2 to 5 flowers per average 80 minute exposure
and a mean of 3.1 (s.e. 0.5) flowers. In all, 25 bees
were observed to enter 31 flowers. The bees usually
discovered the exposed plants soon after they were
taken from the screen house and placed in the gar-
den. Bees appeared and entered flowers as quickly
as within the first minute or two of exposure. In
most cases bees discovered the exposed plants but
entered them a little later. The time of the first
approach after an orchid plant was exposed ranged
from 1 to 26 minutes and averaged 9 minutes. The
time of the first flower visit ranged from 1 minute
to 51 minutes and averaged (mean) 17.8 (s.e 5.3)
minutes. Guarianthe skinneri has a narrow labellum
tube and when E. viridissima visits the flower, it
first lands on the limb of the labellum and then
crawls into the tube. When the bee exits, it backs
out depositing pollinia and/or picking up the polli-
naria in the process. Bees removed pollinaria from
18 of the 31 (58%) visited flowers. Pollinaria were
removed during seven of the nine exposure periods
and a median of 1.5 (s.d. 1.6) pollinaria were
removed per exposure period. Eleven bees appear-
ing and approaching plants during seven of the nine
watches bore G. skinneri pollinaria glued to their
faces (Figure 1). Of the 18 pollinaria that I observed
the bees remove during their visits to flowers, 11
(61%) were obtained from the first flower visited
and 6 (33.3%) on the second flower visited. Of the
25 bees that entered flowers, 17 (68%) visited only
a single flower before leaving the plant. The other
seven bees entered multiple flowers during visits: 4
bees visited two flowers, two bees visited three
flowers, and one bee visited four flowers. The lack
of a nectar reward apparently induced most bees to

LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.


FIGURE 1. Photograph of a specimen of an orchid bee
(Euglossa viridissima) which visited a Guarianthe
skinneri flower. Note part of a pollinaria from the
orchid attached to its face.

quickly leave the plant. Rapid departure might have
been due also to the placement of the pollinaria on
the bee's face. When some bees had pollinaria
applied to them, they flew from the flower and
landed nearby (within a meter or two) and tried to
remove the offending pollinaria with their feet. I
observed 4 bees try to remove pollinaria but saw
only bee that was successful. Although no deposi-
tion of pollinia was clearly observed during the
timed exposures, several flowers on the large
exposed plant set fruit. The large number of flowers
on the plants coupled with the extremely rapid
flight of E. viridissima made it difficult to observe
every flower visit. The bees sometimes approached
the plants from the side opposite the observer and
visited flowers on that side could not be seen. Many
of the orchid bees appeared to be aware of the
observer who sat ca. three meters from the plant,
and flew quickly from the plant if the observer
moved or approached the plant, behavior that made
photography difficult. Male E. viridissima can be
more readily approached while they gather fra-
grance from perfume orchids or eugenol baits. Bees
gathering nectar and pollen are also more approach-
able than those visiting the unrewarding G.
skinneri.
Although it was difficult to determine the gender
of these rapidly moving bees, many of the visiting
E. viridissima were females because they frequently








PEMBERTON Euglossine bee pollination of Guarianthe skinneri


visited and buzzed nearby flowers of Solanum pyra-
cantha Smith, S. wendlandii Hook.f., and
Lycianthes rantonnei (Carriere) Bitter, both prior to
and after visiting G. skinneri.
Two flowers of the exposed Cattleya mossiae were
visited by E. viridissima. One bee entered a flower
and exited with the pollinaria glued to the dorsal sur-
face of its thorax. The other bee first visited a G. skin-
neri flower, picked up a pollinaria and then entered a
flower of C. mossiae. The bee was captured as it left
the flower with the G. skinneri pollinaria still
attached to it. Guarianthe patnii was not visited dur-
ing the one hour exposure on November 8, but during
the one hour exposure on November 10 two E.
viridissima entered four flowers but did not remove
pollinaria.

Discussion

Although E. viridissima was not observed to
deposit pollinia in any G. skinneri flowers, the bee is
probably a pollinator of the species in Florida. Bees
were observed to visit many flowers and often
quickly after the flowers'exposure. The bees visited
flowers relatively frequently and removed many pol-
linaria, especially when one considers that the 13
plus hours of exposures and watches represented
only a little more than one day of the 14-21 day
flowering period. Further, E. viridissima was the
only bee species to visit G. skinneri, which like
other Cattleya type flowers, is considered to be bee
pollinated (Dressler 1981, van der Cingel 2001).
The only other visitors during the exposure periods
were butterflies which probed the flowers to try to
locate nectar but did not remove pollinaria. A
flower visitor that removes and bears the pollinaria
is likely to be the legitimate pollinator of the plant
(Dressler 1976, 1981).
It is shown that Guarianthe skinneri is both self
compatible and nectarless. Mora-Monge and
Valerio-Guti&rrez (1988) also confirmed the
absence of floral nectar in this orchid. About one
third of orchid species offer no nectar reward, even
though nectar rewarding orchids consistently pro-
duce higher fruit set (Neiland & Wilcock 1998,
Tremblay et al. 2005, Jershkova et al. 2006). Some
authors (Boyden 1982, Ackerman 1986) have spec-
ulated that the high cost of nectar production could
have favored the selection of nectarless mutants.


The lack of a nectar reward has been thought to
promote outcrossing (Dressler 1981, JersAkovA et
al. 2006). Guarianthe skinneri produces large quan-
tities of extrafloral nectar from glands located on
the outer surfaces of flowers (also documented by
Mora-Monge & Valerio-Gut&rrez 1988, and Damon
& P&rez-Soriano 2005). Nectar production from
these glands ceases quickly after pollinaria
removal, but increases dramatically in pollinated
flowers especially during fruit formation.
Extrafloral nectar has been shown by many studies
to be a reward for ant mutualists, which reduce
insect herbivore damage to plants with extrafloral
nectaries (Koptur 1992). Extrafloral nectaries com-
monly occur in orchid inflorescences but are little
studied. Almeida and Figueiredo (2003) concluded
that a Camponotus ant species protects the repro-
ductive structures of Epidendron denticulatum
(Jacq.) in Brazil. Damon and Perea-Soriano (2005)
reported 19 species of ants were associated with the
inflorescences of nine orchid species in Mexico.
Among the detected ants, were Crematogaster and
Camponotus spp. visiting the extrafloral nectaries
of G. skinneri. Extrafloral nectar in G. skinneri
probably functions first to protect the flowers and
then the developing fruit. The ability to produce
copious amounts of extrafloral nectar on flowers
and developing fruits suggests that the loss of floral
nectar in G. skinneri is probably not due to the high
cost for nectar production. The visitation pattern of
E. viridissima to G. skinneri flowers, however, sup-
ports the idea that the lack of a nectar reward
reduces geitonogamy and promotes outcrossing.
Sixty-eight percent (17/25) of the bees visiting
flowers left the plant after visiting just one flower.
Guarianthe skinneri's nectarless flowers employ
food deception pollination. This is indicated by the
many female bees entering the flowers and the
probing of the flowers by butterflies. The labial
tube of G. skinneri resembles in a general way the
many nectar-rewarding, gullet-type flowers which
E. viridissima routinely visits in gardens and parks
in southern Florida. These include species of
Tabebuia and Tecoma (Bignoniaceae), Allamanda,
Thevetia, Mandevilla and Stemmadenia
(Apocynaceae) and Ruellia (Acanthaceae). These
plants, like the E. viridissima and G. skinneri, are
native to tropical America. Johnson et al. (2003)
demonstrated that the pollination success in a food

LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.








LANKESTERIANA


deception orchid was enhanced when it co-occurred
with nectar rewarding plants.
It is very likely that E. viridissima is also a polli-
nator of G. skinneri in its native range including
Costa Rica both because of the nearly complete
geographical overlap of both species and the attrac-
tiveness of G. skinneri to this bee. Also as noted
above, Mora-Monge and Valerio-Guti&rrez (1988)
observed bees of the genus Euglossa flying near the
flowers. The visitations of E. viridissima to both G.
patinii and C. mossiae in only limited exposures
suggests that the bee may be a pollinator of
Guarianthe species and some Cattleya species with
narrow labial tubes. A bee's visitation of C. mossi-
ae while carrying pollinaria of G. skinneri suggests
that E. viridissima could be an agent of hybridiza-
tion between these and other related, morphologi-
cally similar, concurrently flowering orchids.
Guarianthe skinneri is known to produce hybrid
swarms with G. aurantiaca (Bateman ex Lindley)
Dressler & W.E. Higgins in areas of sympatry from
Mexico to Nicaragua (Dressler & Higgins 2003).
Although G. aurantiaca is believed to be normally
pollinated by hummingbirds, bees are the likely
agents of natural hybridization because flowers of
G. skinneri are ill adapted for hummingbird visitors
but small bees should have no problem in entering
flowers of G. aurantiaca (van der Pijl & Dodson
1966, van der Cingel 2001).
Euglossa viridissima's pollination of G. skinneri
in Florida could facilitate the orchid's naturaliza-
tion. Only a handful of orchid species are natural-
ized in Florida (Wunderlin & Hansen 2003, Brown
2002), despite their commonness as ornamental
plants. The lack of naturalization may be due to the
absence of the appropriate pollinators, or perhaps
the absence of suitable mycorhizae. Most of the nat-
uralized orchids in Florida appear to self pollinate
or otherwise be autogamous; i.e., Oeceoclades mac-
ulata (Lindley) Lindley, Phaius tankervilleae
(Aiton) Blume, Spathoglottis plicata Blume, and
Zeuxine strateumatica (L.) Schlechter. But
Ackerman (2007), discussing weedy orchids and
citing Sun (1997), indicates that weedy orchids
have the complete spectrum of breeding systems.
An interesting correlate of autogamy in some of
Florida's naturalized orchids is that many orchids
that occur naturally in Florida and also in parts of
tropical America, are represented in Florida by self

LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.


pollinating forms or autogamous forms (van der Pijl
& Dodson 1966). Selfing triandrous forms occur in
Florida for some widespread species such as
Prosthechea cochleata (L.) W.E. Higgins and
agamospermy in races of Sacoila lanceolata
(Aublet) Garay (Catling 1987).
Guarianthe skinneri tolerates dry winters of south-
ern Florida because it is adapted to resist an annual
dry season in its native range (Mario Blanco, pers.
com.). Although it survives cool periods during
southern Florida when temperatures drop below 10 C,
the greatest limitation to this plant's ability to persist
in southern Florida is the region's infrequent freezes.
The last freeze in Ft. Lauderdale, where the study was
done occurred in 1989 when the temperature dropped
to -1.1 C. at the nearby Ft. Lauderdale-Hollywood
Airport (www.weather.gov). But between 1912 and
1985 freezes with temperatures falling below -1.1 C
occurred 5 times (www.weather.gov).
Euglossa viridissima 's visitation of G. skinneri
and some Cattleya species (and potentially many
other cultivated orchids) in Florida may be undesir-
able from the perspective of commercial and ama-
teur growers because either pollination or pollinaria
removal causes the flowers to wilt one day later.
Part of the appeal and commercial value of these
orchids is the longevity of their flowers, which
could be strongly reduced by visiting E. viridissima
bees. Pollination and pollinaria removal by this bee
could also interfere with breeding work with plants
in orchid houses accessible to the bee. Visited
Cattleya species and hybrids with larger diameter
floral tubes will probably be unaffected because E.
viridissima is too small to contact their pollinaria.
This was observed when male E. viridissima bees
visited the flowers of C. quadricolor Lindley and
worked intensively collecting fragrance from the
inner walls of the labial tube but failed to contact
the column (Pemberton unpublished data).
Euglossine bees reportedly get stuck and die on the
large stigma of some large flowered Cattleya
hybrids cultivated in tropical America (van der
Cingel 2001).
The environmental consequences of the naturaliza-
tion of E. viridissima may be significant both because
of its abundance in southern Florida and its visitation
to flowers of more than a 100 species of plants
(Pemberton & Wheeler 2006, Pemberton unpublished
data). For instance, Euglossa viridissima is pollinat-









PEMBERTON Euglossine bee pollination of Guarianthe skinneri


ing the resin reward flowers of the euphorbiaceous
vine Dalechampia scandens L., a Tropical American
plant which has also recently naturalized in southern
Florida (Pemberton & Liu, in press). Because E.
viridissima is abundant and distinctive, being the only
orchid bee present in Florida, compared to many sim-
ilar green Euglossa species in most tropical American
habitats, its field behavior can be more readily and
confidently observed and understood. And as with
this study with the bee and G. skinneri, this under-
standing can extend to Tropical America.

ACKNOWLEDGEMENTS. Mario Blanco kindly provided lit-
erature, translated Mora-Monge and Valerio-Guti&rrez
(1988), and provided a helpful review of the manuscript.
Paul Skelley took the photograph of the orchid bee using
the Florida Department of Agriculture and Consumer
Service's photomontage system. This research was con-
ducted independently by the author, and was not supported
by nor conducted as part of the USDA Agricultural
Research Service mission.




LITERATURE CITED
Ackerman, J.D. 1986. Mechanisms and evolution of food-
deceptive pollination systems in orchids. Lindleyana 1:
108-113.
Ackerman. J.D. 2007. Invasive orchids: weeds we hate to
love? Lankesteriana 7: 19-21.
Almeida, A.M. & R.A. Figueiredo. 2003. Ants visit nec-
taries of Epidendron dentriculatum (Orchidaceae) in a
Brazilian rainforest: effects on herbivory and pollina-
tion. Brazil. J. Biol. 63: 551-558.
Bechtel, H., P. Cribb & E. Launert. 1992. The manual of
cultivated orchid species. 3rd Ed. The MIT Press,
Cambridge, Massachusetts, U.S.A.
Boyden, T.C.1982. The pollination biology of Calypso
bulbosa var. americana (Orchidaceae): initial deception
of bumblebee visitors. Oecologia 55: 178-184.
Brown, P.M. 2002. Wild orchids of Florida. University
Press of Florida, Gainesville.
Catling, P.M.1987. Notes on the breeding systems of
Sacoila lanceolata (Aubet) Garay (Orchidaceae). Ann.
Missouri Bot. Gard. 74: 58-68.
Damon, A. & M.A. P&rez-Soriano. 2005. Interaction
between ants and orchids in the Soconusco region,
Chiapas, Mexico. Entomotropica 20: 59-65.
Dodson, C.H., R.L. Dresser, H.C. Hills, R.M. Adams &
N.H. Williams. 1969. Biologically active compounds in
orchid fragrances. Science 164: 1243-1249.


Dresser, R.L. 1976. How to study orchid pollination with-
out any orchids. Pp. 534-537 in: Senghas, K. (ed.)
Proceedings of the eight world orchid conference.
Frankfurt, German Orchid Society.
Dresser, R.L. 1981. The Orchids: Natural History and
Classification. Harvard University Press, Cambridge.
Dresser, R.L. 1982. Biology of the orchid bees
(Euglossini). Ann. Rev. Ecol. Syst. 13: 373-394.
Dresser, R.L. 2005. Guarianthe. Pages 348-363 in: F.
Pupulin (ed.), Vanishing Beauty: Native Costa Rican
Orchids, Volume 1 (Acianthera-1. .. .i Editorial
de la Universidad de Costa Rica, San Jos&.
Dresser, R.L. & W.E. Higgins. 2003. Guarianthe, a gener-
ic name for the "Cattleya" skinneri complex.
Lankesteriana 7: 33-38.
Eltz, T.A., A Sager & K. Lunau. 2005. Juggling with
volatiles: exposures of perfumes by displaying male
orchid bees. J. Comp. Phys. A. 191: 575-581.
Janzen, D.H., P.J. DeVries, M.L. Higgins & L.S. Kimsey.
1982. Seasonal and site variation in Costa Rican euglos-
sine bees at chemical baits in lowland deciduous and
evergreen forests. Ecology 63: 66-74.
JersAkovA, J., S.D. Johnson and P. Kindlmann. 2006.
Mechanisms and evolution of deceptive pollination in
orchids. Biol. Rev. 81: 219-235.
Johnson, S.D., C.I. Peter, L.A. Nilsson, and Jon Agren.
2003. Pollination success in a deceptive orchid is
enhanced by co-occurring rewarding magnet plants.
Ecology 84: 2919-2927.
Koptur, S. 1992. Extrafloral nectary-mediated interactions
between insects and plants. In E. Bernays (ed.), Insect-
plant interactions, vol. IV, 81-129. CRC Press, Boca
Raton, Florida.
Mora-Monge, D.E. and C.E. Valerio-Guti&rrez. 1988.
Polinizaci6n y producci6n de frutos en la Guaria
Morada (Cattleya skinneri, Orchidaceae) en Costa Rica.
Orquideologia 17: 242-251.
Neiland, M.R. and C. Wilcock. 1998. Fruit set, nectar
reward, and rarity in the Orchidaceae. Amer. J. Bot. 85:
167-1671.
Pemberton, R.W. and G.S. Wheeler. 2006. Orchid bees
don't need orchids: Evidence from the naturalization of
an orchid bee in Florida. Ecology 87: 1995-2001.
Pemberton, R.W. and H. Liu. in press. Naturalization of
Dalechampia scandens in southern Florida. Carib. J.
Sc..
Roubik, D.W. & P.E. Hanson. 2004. Orchid bees of tropi-
cal America, biology and field guide. Institute Nacional
de Biodiversidad, San Jose, Costa Rica.
Sun, M. 1997. Genetic diversity in three colonizing
orchids with contrasting mating systems. Amer. J. Bot.
84: 224-232.

LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.









LANKESTERIANA


Tremblay, R.L., J.D. Ackerman, J.K. Zimmerman & R.N.
Calvo. 2005. Variation in sexual reproduction in orchids
and its evolutionary consequences: a spasmodic journey
to diversification. Biol. J. Linnean Soc.: 84: 1-54.
van der Cingel, N.A. 2001. An atlas of orchid pollination:
America, Africa, and Australia. A. A. Balkema,
Rotterdam, Netherlands.
van der Pijl, L. & C. Dodson. 1966. Orchid flowers: their
pollination and evolution. Fairchild Botanical Garden


and the University of Miami Press, Coral Cables.
Williams, N.H. 1982. The biology of orchids and euglos-
sine bees. Pages 119-171, In J. Arditti (ed.), Orchid
Biology: Reviews and Perspectives, II. Cornell
University Press, Ithaca.
Wunderlin, R.P. and B.F. Hansen. 2003. Guide to the vas-
cular plants of Florida. University Press Florida,
Gainesville.


LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.








LANKESTERIANA7(3): 469-478. 2007.


ESTRUCTURA Y ECOLOGIA DE LA POBLACION DEL ENDEMISMO
CUBANO BROUGHTONIA CUBENSIS (ORCHIDACEAE),
EN CABO SAN ANTONIO, PENINSULA DE GUANAHACABIBES,
PROVINCIA DE PINAR DEL RIO, CUBA

ELAINE GONZALEZ HERNANDEZ', JOSEP RAVENTOS2,
ERNESTO MUJICA BENITEZ'3 & ANDREU BONET2

'Jardin Botinico Orquideario Soroa, Apdo. Postal No.5. Candelaria. Pinar del Rio. Cuba.
2Departamento de Ecologia. Universidad de Alicante. Apdo. Postal No.99, 03080 Alicante. Espafia.
'Autor para correspondencia: emujica@vrect.upr.edu.cu


ABSTRACT. We analyze some structural characteristics of a population of Broughtonia cubensis, an epiphyt-
ic orchid endemic to Cuba, in Guanahacabibes peninsula, Pinar del Rio province, involving ten transects.
This species showed an aggregate distribution with a high coespecific competition. It is selectively found on
Plumeria tuberculata and Erythroxylum areolatum phorophytes. They are found predominately on individu-
als with smooth or rugose barks and in north and east orientation. The quality hypothesis of sites is dis-
cussed in relation to the possible presence of micorrhizae. Finally, inside the area included by the 10 tran-
sects, this species has a metapopulational structure with a nuclear zone located in the area between the semi-
decidous forest and the marsh vegetation.
RESUMEN: Se analizan algunas caracteristicas de la estructura poblacional de Broughtonia cubensis,
orquidea epifita end6mica de Cuba, en Cabo San Antonio, peninsula de Guanahacabibes, provincia de Pinar
del Rio, mediante el andlisis de diez transectos. Esta especie present una distribuci6n agregada con una alta
competencia intraespecifica. Ademis, muestra una elevada selectividad en la especie de forofito sobre la que
habitat, presentando una marcada preferencia por Plumeria tuberculata y Erythroxylum areolatum.
Predomina la presencia de la especie sobre corteza lisa o rugosa y en orientaci6n norte y este. Se discute la
hip6tesis de la calidad de sitios en relaci6n a la possible presencia de micorrizas. Finalmente, dentro del area
abarcada por los 10 transectos, se ha encontrado que esta especie tiene una estructura metapoblacional con
una zona nfcleo localizada entire el bosque semideciduo y la vegetaci6n de pantano.
PALABRAS CLAVES / KEY WORDS: Orchidaceae, Broughtonia cubensis, ecologia, classes de vida, competen-
cia, forofitos, Cuba.


Introducci6n
La familiar Orchidaceae contiene el nufimero mias
grande de species de cualquier familiar del reino
vegetal (ca. 25.000 species) y ha recibido una gran
atenci6n debido a su enorme valor econ6mico y
social comparado con otras species (Kindlmann et
al. 2002). Esta familiar es la mis numerosa y proba-
blemente la mis evolucionada de todas las plants,
por lo que constitute un component muy importan-
te de la biodiversidad (Mfijica et al. 2000). En rela-
ci6n a otras families de plants, hay evidencia de
que las orquideas estin sujetas a un alto peligro de
extinci6n ya sea por causes naturales o antropogeni-
cas (Hutchings 1989). En afios recientes muchas
species parecen estar en un nivel critic pues las


estrategias de conservaci6n de las mismas son com-
plicadas debido a su ciclo de vida complejo y no
pueden llevarse a cabo sin un studio poblacional.
Sin embargo, la mayor parte de los studios pobla-
cionales sobre orquideas se han limitado a species
terrestres [ver resefias de Kull 2002, Kindlmann et
al. 2002, nufimero monogrAfico de Biological
Conservation 129 (2006)] y pocos se han llevado a
cabo en species de orquideas epifitas o lit6fitas
(Zotz & Tyree 1996, Zotz 1998, 1999, 2000,
Tremblay 1997, Tremblay & Hutchings 2003).
Las orquideas estin consideradas entire las families
mejor representadas en la flora vascular cubana
(Diaz 1996), distribuidas a traves de todo el archipi&-
lago con un 30,5 % de species endemicas (Mfijica,








LANKESTERIANA


inedito). Broughtonia cubensis es una especie epifita
endemica de Cuba, y se ha considerado siempre
como emblemitica de la flora orquideol6gica cuba-
na, de ahi que siempre ha sido motivo de preocupa-
ci6n su estado de conservaci6n por parte de botani-
cos cubanos y forineos. En el present studio se ha
llevado a cabo una evaluaci6n preliminary de los
aspects de la ecologia y dinimica de las poblacio-
nes de esta especie, teniendo en cuenta su estructura
poblacional en classes de vida, en condiciones aisla-
das y en condiciones agregadas. Este studio ha de
servir de base para la planificaci6n de una estrategia
de manejo sostenible de este endemismo epifito
cubano que present una estructura metapoblacional.
Esta formado por tres subpoblaciones, una pequefia
poblaci6n en Loma La Coca, provincia de La
Habana, donde esta en peligro de extinci6n por las
alteraciones en el habitat debido a la presi6n urbanis-
tica y a la depredaci6n y dos poblaciones en areas
protegidas de la Reserva de la Biosfera Peninsula de
Guanahacabibes. El present studio se localiza en
las zonas de Playa El Frances, y en los alrededores
del Faro Roncali, en Cabo San Antonio, ocupando en
esta area el matorral xeromorfo costero.
Con el mismo nos proponemos contestar a las
siguientes preguntas:

* (Es Broughtonia cubensis (B.c.) una especie espe-
cialista o generalista en la elecci6n del forofito?
* ,Esta especie muestra alguna preferencia en el tipo
de corteza asociada al forofito?
* ,CuMl es el patr6n de distribuci6n espacial de esta
especie?
* (Hay algun tipo de zonaci6n vertical en la distribu-
ci6n de B.c. a lo largo del forofito?
* ,Es la competencia intra e interespecifica una inte-
racci6n important para esta especie?
* ,Cual es el patr6n de distribuci6n espacial para las
distintas formas de vida en B.c.?

Materiales y metodos

AREA DE ESTUDIO La Reserva de la Biosfera
Peninsula de Guanahacabibes (R.B.P.G.), se ubica en
el extremo mis occidental de la isla de Cuba, especi-
ficamente en el municipio Sandino, perteneciente a la
provincia de Pinar del Rio. Limita al N con el Golfo
de Mexico, al S con el Mar Caribe, al E con la demar-
caci6n vial desde La Fe hasta Manuel Lazo y al W
con el estrecho de Yucatan (Fig. 1). Es un territorio

LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.


FIGURA 1. Peninsula de Guanahacabibes con ambos cabos
y area de studio.


Faro Roncali


FIGURA 2. Area de trazados de transectos en Cabo San
Antonio.

alargado, estrecho y llano de unas 101500 hectareas
(Herrera et al. 1987), de las cuales 28000 compren-
den el area terrestre del parque, dos ubicadas en la
peninsula de Guanahacabibes, una de las cuales es
objeto de studio actualmente.
Para efectuar el present studio se procedi6 al
trazado de transectos. Los mismos se trazaron tanto
paralelos, como perpendiculares a la linea de la
costa para establecer los limits de dicha poblaci6n
(Fig. 2). Esta especie se localiza bNsicamente sobre
el matorral xeromorfo costero, en una estrecha fran-
ja sobre una losa de diente de perro (limestone) que
raramente supera los 20 m. de ancho. Es por ello que
se decidi6 trazar transectos de 5m de ancho x 100m
de longitud, dejando otros 5m entire uno y otro, tra-








GONZALEZ HERNANDEZ et al. Broughtonia cubensis en Cabo San Antonio, Cuba


tando de abarcar la mayor area possible de esta fran-
ja, pues en el bosque semideciduo es rara (Ferro,
com. pers.).
Se trazaron un total de 10 transectos tratando de
delimitar la poblaci6n y reunir en ellos la mayor
cantidad de individuos posibles. Los dos primeros
(T-1 y T-2) se trazaron cerca de la costa oeste, con
orientaci6n S-N, en la zona de playa El Frances,
paralelos a la misma, en el matorral xeromorfo cos-
tero, lo que por el moment es el limited N, teniendo
al E una zona pantanosa y al W un estrecho sistema
de vegetaci6n de costa arenosa, en los cuales no
habitat. Al N y S el bosque semideciduo donde es
rara su presencia. Los T-3 y T-4 fueron trazados a
1.5 km al S de los primeros en una faja de unos 20
m. de ancho entire el bosque semideciduo y la vege-
taci6n de pantano con igual orientaci6n y limits a
los anteriores. El resto, del T-5 al T-10, se trazaron a
1 km. al sureste de los anteriores, con igual orienta-
ci6n pero casi perpendiculares a la costa sur, tenien-
do como limited S la vegetaci6n de costa arenosa y en
las otras tres direcciones el bosque semideciduo en
los cuMles como hemos dicho, esta practicamente
ausente. Todo parece indicar que el T-10 se encuen-
tra ya en el limited E de la poblaci6n. Por el moment
el area ocupada se estima en 13000 m2.
En relaci6n al clima, la peninsula difiere poco del
resto del territorio de Cuba occidental, aunque su
forma alargada y estrecha hace que sea mis afectada
por el mar que la rodea y la corriente del Golfo de
Mexico. La precipitaci6n annual promedio es de 1334
mm (Lopetegui et al. 1999), la cual no es uniform
si tenemos en cuenta los promedios de su parte
meridional y septentrional que son de 1000-1200
mm y 1400-1600 mm respectivamente. La humedad
relative permanece casi invariable con un 81% de
promedio (Lopetegui et al. 1999). Los promedios
anuales de temperature minima y maxima son de
21.5C y 29.2C. La dominancia todo el afio de los
vientos del nordeste es latente. El period de sequia
se extiende desde noviembre hasta abril.

CARACTERISTICAS DE BROUGHTONIA CUBENSIS -
Broughtonia cubensis present usualmente indivi-
duos de median a pequefio tamafio con 1-2 hojas en
cada pseudobulbo. Sus flores son vistosas, con exce-
lente fragancia, pequefias, con s6palos y p6talos
blancos con labelo tambien blanco y callo amarillen-
to-purp1ireo. Florece mayormente en enero, exten-


diendose hasta marzo. Entre un 25-30% de sus flo-
res concebian frutos en areas bajo monitoreo antes
del paso del huracin Ivan en septiembre del 2004.
Sus frutos liberan las semillas en unos 40 dias
(Mufijica, inddito).
En la R.B.P.G. podemos encontrar una decena de
diferentes formaciones vegetables donde se concen-
tran 14 species endemicas de la misma. El bosque
semideciduo es el predominate en toda su exten-
si6n, principalmente sobre los suelos carsicos de la
parte central. En la peninsula se han identificado un
total de 750 species vegetables, de las cuales 500
son de amplia distribuci6n, 231 endemicos y 19
endemicos distritales (Urquiola, com. pers.). B.c. se
encuentra en el bosque semideciduo y en el mato-
rral xeromorfo costero, siendo rara su presencia en
el primero. El suelo esta compuesto por el carso des-
nudo conocido como "diente de perro", en ambien-
tes abiertos a plena exposici6n solar.
B.c. es una especie que ademis de encontrarse en
esta peninsula se le report tambien para algunos
puntos de la costa norte de la provincia Habana
donde ya esta practicamente extinguida por la depre-
daci6n y el aumento cada vez mayor del uso de los
terrenos donde se encuentra con fines urbanisticos.
En la zona donde habitat B.c., hemos encontrado
otras 8 species de orquideas que viven simpitrica-
mente. Para estudiar el efecto de la competencia se
marcaron e identificaron todos los individuos que
estuvieran a un radio menor de 10 cm de cada plant
de B.c. Se ha determinado este radio por estimarse
que a uno mayor la competencia no es significativa
de acuerdo al tamafio usualmente pequefio de los
individuos de esta especie, ademis se tuvo en cuenta
la distancia real al vecino mis cercano para estable-
cer la competencia por el habitat y la especie de ese
vecino, determinando asi, aquellas mis representati-
vas y establecer un anMlisis comparative para cono-
cer la possible incidencia de la competencia por el
habitat en el cambio annual de la estructura de las
classes poblacionales, y en el area foliar, parimetro
que se decidi6 escoger para delimitar las classes tal y
como se explica a continuaci6n.

Las classes de vida Se clasific6 la poblaci6n
segfin sus formas de vida en 4 classes: plintulas (Clase
1), juveniles (Clase 2), adulto reproductor I (Clase 3),
adulto reproductor II (Clase 4). Al no haber podido
encontrar studios publicados de poblaciones estruc-

LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.








LANKESTERIANA


turadas en orquideas epifitas tropicales se delimitaron
las classes mediante aproximaciones sucesivas.
Primero se clasific6 a los individuos en dos grandes
grupos: reproductores y no reproductores. Para poste-
riormente sub-dividirlos en classes, se utiliz6 como
parimetro el area foliar, pues existe una relaci6n posi-
tiva entire area y tamafio. Para esto se contaron en
cada individuo el total de hojas midiendose el largo
por ancho de cada una de ellas para luego calcular el
promedio por cada ejemplar.
Se consider tambien que esta especie es muy
variable en t.,.i', existiendo individuos muy
pequefios ya en capacidad reproductive y por el
contrario, otros de mayor tamafio auin en estado
juvenile. Para subdividir a los reproductores se cal-
cul6 el area foliar promedio de todos los individuos
de este grupo, llegando a ser de 12 cm2. Por tanto,
se decidi6 que todos los que estuvieran por encima
de este nuimero entrarian en la clase C-4, mientras
los que presentaron un area menor conformarian la
clase C-3. La division en classes de los no reproduc-
tores se hizo mis dificil. Para ello se tuvieron en
cuenta criterios de observaci6n, las plintulas son
minuisculas en comparaci6n con el resto de las cla-
ses. Al comparar in-situ las areas foliares y tamafios
de las plintulas surgidas el uiltimo afio, se comprob6
que estas no sobrepasaban el 1,5 cm2 de area foliar
(MiAjica, inedito), por lo cual todos los individuos
con area foliar inferior o igual a esta serian catalo-
gados como plintulas, o sea C-1, mientras los que
presentaran un area mayor conformarian la clase de
juveniles 6 C-2.
Una vez que se determinaron las classes de vida, se
dividieron los individuos en dos grupos, los que se
encuentran en condiciones aisladas y los que se
encuentran en condiciones agregadas. Con el studio
de este parimetro queremos detectar en el caso de los
individuos agregados el tipo de competencia que se
establece entire B.c. y las species de orquideas veci-
nas. Seguidamente se realize el conteo de los indivi-
duos en classes de vida en condiciones aisladas y agre-
gadas, como se describi6 anteriormente.

Anilisis estadisticos

Una aproximaci6n para ver si las species de foro-
fitos estin distribuidas al azar o agregadas es aplicar
una distribuci6n de Poisson. Esti distribuci6n tiene la
varianza igual a la media. Si este cociente entire la

LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.


varianza y la media (coeficiente de dispersi6n, CD)
esti cercano a "1" los individuos estin repartidos al
azar, si es mayor que 1, estin agregados y si es menor
que 1 estin distribuidos regularmente. El test de Chi-
cuadrado permit comparar las distribuciones espera-
das te6ricamente de las obtenidas y asi determinar el
grado de agregaci6n.
Para ver si hay una relaci6n entire las caracteristi-
cas del forofito y la presencia o no de B.c. hemos
usado el test de Chi-cuadrado para ver si habia aso-
ciaci6n entire las variables categ6ricas (Sokal &
Rohlf 1981).

Resultados

DIVERSIDAD DE FOROFITOS OCUPADOS A LO LARGO DE
LOS TRANSECTOS La figure 3 muestra un grifico
de rango-abundancia de forofitos ocupados por
B.c. en los 10 transectos realizados. Se observa que
las curvas en los transectos indican una estructura
diferente. En el T-2 se muestra una mayor equitati-
vidad en la ocupaci6n de species de forofitos por
parte de B.c. Contrariamente en T-7 y T-4 se
encontr6 una presencia muy marcada de Plumeria
tuberculata. El rango muestra asimismo una indi-
caci6n de la riqueza en cada transecto, presentando
T-2 y T-7 una mayor riqueza de species de forofi-
tos ocupados.
Se debe destacar que, en el caso de B.c., un total de
14 species de forofitos han resultado ocupadas al
menos con un individuo, sin embargo, como se apre-
ciara mis adelante, la especie en studio tiene sus
preferencias por algunos de ellos.

14
---- trans 1
12 0 trans 2
---y--- trans 3
0 - trans 4
10 \ trans5
8 \- trans6
\8 -- 0-- trans 8
\ \ ........ ........ trans 9
6 .. ------- trans 10

4 O .


0 "----------- ~ "------0

1 2 3 4 5 6 7 8 9
Rango
FIGURA 3. Diversidad de forofitos ocupados. Rango-abun-
dancia en los 10 transectos.









GONZALEZ HERNANDEZ et al. Broughtonia cubensis en Cabo San Antonio, Cuba


7
A


Pt Ec Ea Ss Gg GI Cp Pm Cf Fl Sm Cd Cn Gc
Especies de forofitos

FIGURA 4. Nfmero de forofitos ocupados de cada especie
en los 10 transectos.


DISTRIBUCl6N DE FOROFITOS OCUPADOS La figure 4
muestra que la comunidad de forofitos ocupados es
diverse, sin embargo, se observa una preferencia por
Plumeria tuberculata (Pt) y Erythroxylum areolatum
(Ea). De los 127 forofitos ocupados el 42 % corres-
ponden a Plumeria tuberculata y el 18 % a
Erythroxylum areolatum. Entre ambas representan el
60% de todos los forofitos ocupados.
Aunque el studio no perseguia el objetivo de
conocer la abundancia de todas las species de forofi-
tos, si podemos decir que son estas las dos species
de forofitos claves sobre las cuiles vive la poblaci6n
en el Area estudiada. Existe una diferencia significati-
va entire ocupar estas dos species y las demAs. Otras
species sumamente abundantes en el Area estudiada
presentaron, por el contrario, muy bajos por cientos


TABLA 1. Matriz de similitudes antre los 10 transectos.
1 2 3 4 5 6 7 8 9 10
1 68,571 0 38,71 31,579 64 35,294 28,571 54,546 19,048
2 23,077 52,381 33,333 50 44444 375 42,424 43,75
3 27,273 20 0 8 33,333 0 560
4 23,077 37,5 53,659 35,714 41,379 42,857
6_ 30 27,586 37A 23,529 37,5
6__ 57,143 45,455 60,87 27,273
7' 38,71 60 32,258
8___________ 31,579 44,444
9 52,632


TABLA 2. Distribuci6n de species ocupadas por transectos.

Especies Vrianza Media Chl-sq g.. Probabilldad Agregacion
PIumena tubecuata 13,7889 53 23,4151 9 0,0054 Agregado
Eythroxylum confusum 0,1 0a 1 19 0 4375 al azar
Eyhrxylum aeolatum 5,7889 2,3 22,6522 9 00071 Agregado
Stigmatophyfltr sagvmeanum (lianas) 2,8444 08 32 9 0,0002 Agregado
Gerascanthus gerascanthoes 0,1 0 1 9 9 0,4375 al azar
Gymnantes ucida 0,9 0,7 11,5714 9 0,2378 1al azar
Catalpa ptbescens 0,9444 05 17 9 00484 al azar
Pichmdendmm ro accarpum 0,9333 04 21 9 00127 Agregado
Qthraxyfu mfitcsumw 0,4556 0,3 13,66671 9 1 0,1339 al azar
Fcus laenigata 0,1778 0,2 8 9 ,5351 al azar
Secos o mertos 0,4889 0 6 7,3333 9 0,5036 al azar
Conocada dentata 1,1556 06 17,3333 9 0,0435 al azar
Chascoteca neopeltandra 1,3444 0,7 17,2857 9 0,0442 al azar
Getharda calyptrata 0,1 0,1 9 9 0,4375 al azar


Pt Ec Ea Ss Gg GI Cp Pm Cf Fl Sm Cd Cn Gc
Especies de forofitos

FIGURA 5. Nfimero de individuos de B. cubensis en las
diferentes species de forofitos ocupados.


de ocupaci6n, como por ejemplo: Gymnanthes lucida
(Gl) con 5,5%, Chascoteca neopeltandra (Cn) 5,5%,
Catalpa pubescens (Cp) 3,9%, Citharexylum frutico-
sum (Cf) 2,3% y Gerascanthus gerascanthoides (Gg)
0,7%. Otros como ;i r. -... ,/*i .....i sagraeanum (Ss),
Conocladia dentata, Picrodendron macrocarpum,
Citharexylum fruticosum (Cf), Ficus laevigata (Fl),
Secos o muertos (Sm), presentaron valores medios y
Guettarda calyptrata (Gc) con un solo forofito ocu-
pado aunque no es una especie abundante.
Las similitudes o diferencias entire transectos, de
acuerdo a las species de forofitos ocupados, pueden
claramente observarse en la matriz de similitudes
entire ellos (tabla 1), a partir del indice de Bray-
Curtis. Los valores indican similitud en la composi-
ci6n de los forofitos ocupados en los transectos. A
mayor valor, mayor similitud. Se observa elevada
similitud entire los transectos T-1 con T-2 y T-6, asi
como T-6 con T-9, mientras el T-3 es el que present
menor similitud global, pues no se relaciona con los
T-1, T-6 y T-9.
La Tabla muestra que la mayor parte de los forofi-
tos ocupados por B.c. se encuentran distribuidos al
azar (10/14) afin en algunos casos indican agregaci6n
de species, como en Plumeria tuberculata,
Erythroxylum areolatum, ii /1,, .....' sagraea-
num (Lianas) y Picrodendron macrocarpum.
Del total de individuos de B.c. localizados y mar-
cados (365 ind.), el 33,9% se encontr6 sobre
Plumeria tuberculata (124 ind.), mientras que sobre
Erythroxylum areolatum el 26,3%, (96 ind.) para un
60,27% del total general (220 ind.) entire ambos. Otro
forofito important en cuanto a ocupaci6n lo es
Getharda calyptrata con el 10,4% (38 ind.), afin
cuando solo se encontr6 un solo individuo de esta
especie de forofito ocupada figurea 5).

LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.


I
0
c10

6
z


A


1000
6

100
0

\\ "o
S10

\ d
\ z


'IIkI--""--


' /









LANKESTERIANA


Broughtonia cubensis
100
90

S80
O 70
; 60
s50
40
o 30
20


T dS o
Usa Semirrugosa
Tipo de Corteza del Foroft

FIGURA 6. Tipo de corteza preferida por B. cub


N S E W NE NW S

FIGURA 7. Orientaci6n de B. cubensis.


TIPO DE CORTEZA DE LOS FOROFITOS OCU
figure 6 muestra el porcentaje de individ
ci6n al tipo de corteza del forofitos. El and
cuadrado nos permit rechazar la hip6te
que B.c. prefiere cualquier tipo de corte
(p<0.0001). De hecho podemos decir qu
corte lisa o rugosa pero no la semirrugos
determinado por ser Plumeria tubercul
Erythroxylum areolatum (rugosa) las espe
das mis comunes.

ORIENTACION ESPACIAL La figure 7 nos
orientaci6n espacial de los individuos en
sectos estudiados, existiendo una tendenci
ubicarse hacia el note y hacia el este, si


en el noreste, no todas las direcciones son igualmente
probables (X2= 47.775, p=0.0001).


10transectos


ANALYSIS DE LA COMUNIDAD DE EPIFITAS Un total de
9 species de orquideas pueden ser encontradas en el
Area monitoreada, incluyendo a B. cubensis (Bc).
Esta especie junto a Encyclia sp. (Esp) son las mis
abundantes (existen tres species del genero
Encyclia en el Area de Cabo San Antonio, Encyclia
bocourtii y Encyclia plicata en la zona de los T-1 al
T-4 y Encyclia fucata y Encyclia plicata en la zona
de los T-5 al T-10, (Mfijica, inedito), mientras que
Dendrophylax lindenii (DI) y Pleurothallis cayma-
nense (Pca) presentan los valores mis bajos con solo
Rugosa
un individuo localizado. Las species mas comunes
son B. cubensis y Encyclia sp., que aparecen en
'ensis. todos los transectos, asi como Prosthechea boothia-
na (Pb) que aparece en 6 de ellos; el resto,
Broughtonia ortgiesiana (Bo), Tolumnia guibertiana
(Tg), Tolumnia sp. (Tsp) y Polystachya concrete
10transectos (Pco), es poco comufn, apareciendo de forma inter-

mitente en los mismos.
Se debe destacar que como resultado de este estu-
dio se hace el report de Broughtonia ortgiesiana por
primera vez para Cabo San Antonio. Solo se detect
un individuo en flor por lo que no hay dudas de que
se encuentra tambien en esta zona. Se le reportaba
solo para la zona de La Bajada, en la confluencia de
Cabo San Antonio y Cabo Corrientes a unos 50 km.
de este lugar. Hasta el moment se pensaba que B.
cubensis y B. ortgiesiana no eran simpitricas.
E SW- Aunque B.c. es la especie mis comfin con el
55,45% del total de individuos, esta no se distribuye
por igual. Existen diferencias significativas en cuanto
a su distribuci6n en los transectos (?2=275,606,
TADOS La p=0.0001. Mientras que en el T-4 encontramos 124
uos en rela- individuos, en el T-3 solo se localizaron 7 de ellos
ilisis de chi- (Tabla 3). Este aspect reafirma el patron de fuerte
esis nula de agregaci6n que muestra esta especie.
za por igual
e prefiere la TABLA 3. Individuos de cada especie de orquidea presents
a. Esto esti en cada transecto.
ata (lisa) y No de individuos de todas las species de orquideas por transecto
Transectos Be Eb DI Esp Tg Tsp Pb Pca Pco
cies ocupa- 1 18 5 0 18 22 2 0 0 0
2 61 0 0 7 2 28 0 0 0
3 7 1 0 4 0 0 2 1 0
4 124 0 0 5 0 0 0 0 0
muestra la 5 11 0 0 44 2 0 5 0 0
6 29 0 1 20 0 0 4 0 0
los 10 tran- 67 5 0 0 23 0 0 4 0 0
a marcada a 8 33 00 38 0 0 0 0 0
9 19 0 0 24 0 0 3 0 0
endo menor 10 34 0 0 35 0 0 6 0 4


LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.








GONZALEZ HERNANDEZ et al. Broughtonia cubensis en Cabo San Antonio, Cuba


ANALYSIS DE RIQUEZA-ABUNDANCIA EN LOS 10 TRAN-
SECTOS La riqueza de species de orquideas no sufre
cambios dristicos de un transecto a otro por lo que no
existen diferencias significativas en la misma
(X'=2.889, p=0.969). Un total de 6 transectos mues-
tran una gran similitud en cuanto al nfimero de espe-
cies encontradas en ellos.
Sin embargo, cuando analizamos la abundancia de las
diferentes species en los transectos encontramos dife-
rencias significativas (X2=119.71, p=0.0001). El mis
abundante result el T-4, por la dominancia de B.c.,
mientras que el menos abundante result el T-3, con
solo 15 individuos. Este filtimo es, sin embargo, uno de
los transectos que muestra mayor equitatividad pues los
15 individuos pertenecen a 5 species diferentes.
Por su parte, el T-4, siendo el de mayor abundan-
cia, es uno de los dos transectos menos equitativo
pues solo estin presents dos species, todo debido,
como hemos indicado antes, a la dominancia marcada
de B.c.

STUDIO DEL PATRON DE AGREGACION DE LA ESPECIE -
Para poder estudiar el patron de agregaci6n de la
especie se ha comparado el porcentaje de individuos
de B.c. creciendo solo o agregado en un radio de 10
cm. de cada ejemplar. Se hace un studio de este
patron para poder construir una matriz con individuos
creciendo en solitario y otra con individuos creciendo
agregados y asi estudiar el possible efecto de la com-
petencia sobre otras variables en el future. La figure
8 muestra el porcentaje de individuos creciendo solos
y agregados. Se encontraron diferencias significativas
seguin las formas de crecimiento (2 =4.167, p=0.041).
Es mis frecuente estar agregado, o sea con otros indi-
viduos en el radio de 10 cm. de distancia.

COMPETENCIA Despues de conocer que es mis fre-
cuente crecer agregado a otros individuos que solo
quisimos conocer cual o cuales eran las species mias
comunes de estos individuos en competencia con B.c.
en el radio antes ,'l.,iJd.,J Se puede comprobar en la
figure 9, que la especie vecina mis frecuente es ella
misma (2 =711.31, p=0.0001). Lo cual parece indicar
una fuerte competencia intraespecifica.

ANALYSIS ESPACIAL DE LAS CASES DE VIDA DE LA
POBLACION DE BROUGHTONIA CUBENSIS (LINDL.) COGN.
- Se ha analizado la estructura en classes de vida de la
poblaci6n monitoreada. Como se ha apuntado ante-


10 transectos


FIGURA 8. Por ciento de individos aislados y agregados.


10 transectos


B.c. E.b. E. sp. T.g. T. sp.
FIGURA 9. Competencia en B. cubensis.

riormente, en la misma se han censado y debidamente
marcado un total de 365 individuos de B.c. tanto en
condiciones aisladas como agregadas.
En la estructura actual en classes de vida figurea
10) para condiciones agregadas y en condiciones
solitarias, se observa claramente que en la C-1, no
existen diferencias marcadas (X'=0.333, p=0.564).
entire el nfimero de individuos en solitario (40) y los
que se encuentran agregados (35), la especie en ese
primer estadio no tiene preferencias por estar en
solitario o en condiciones agregadas. Igualmente se
puede distinguir, que en las C-2 (X'=0.514,
p=0.473) y C-3 (2 =2.809, p=0.094) las diferencias
no son significativas. Sin embargo, en la C-4 se
observa que la especie prefiere estar agregada. (X2
=4.129, p=0.042).

LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.








LANKESTERIANA


100,00 -


0 Solrtries
* Agregad


000 -- -- I
C-1 C-2 C-3 C-4
Clases de vida
FIGURA 10. Nfimero de individuos en cada clase de vida en
condiciones solitarias o agregadas.



Discusi6n

La Reserva de la Biosfera de la Peninsula de
Guanahacabibes es un conjunto de frigiles ecosiste-
mas en los cuiles conviven un sinnumero de species
tanto vegetables como animals. La familiar
Orchidaceae esta ampliamente representada en la
misma. Los uiltimos studios realizados y publicados
indicaban la presencia de 28 species de esta familiar
(Ferro et al. 1995). De acuerdo a los studios que
actualmente se realizan en esta peninsula por los
investigadores del Orquideario Soroa, el niumero ya
llega a 34 species diferentes, contindose con 6 espe-
cies endemicas de esta zona, de ellas 2 endemicos
locales. Aunque en algunos moments se han hecho
studios sobre el habitat de algunas de estas species
(Ferro, inedito) estos no se han realizado con el objeti-
vo de conocer sobre la compleja dinimica de las dife-
rentes classes de vida que componen las poblaciones
que alli existen y que se asientan, en muchos casos, en
diferentes ecosistemas.
Broughtonia cubensis ocupa la porci6n mis oeste
del Cabo San Antonio, extendiendose a lo largo de
una larga franja costera ocupando lo mismo el lindero
del bosque semideciduo que el matorral xeromorfo
costero. Prefiere los ambientes abiertos, recibiendo la
mayoria de las plants una fuerte dosis de insolaci6n
a baja y median altura (Mfijica, inedito), prefiriendo

LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.


el matorral xeromorfo costero al bosque semideciduo.
La comunidad de forofitos ocupados es diverse, sin
embargo, se observa una preferencia por Plumeria
tuberculata y Erythroxylum areolatum. Entre ambas
representan el 60% de todos los forofitos ocupados.
Otras species sumamente abundantes en el area estu-
diada presentaron sin embargo bajos porcentajes de
ocupaci6n.
Al analizar las similitudes o diferencias entire tran-
sectos, de acuerdo a las species de forofitos ocupa-
dos, se observ6 que Guettarda calyptrata, es la espe-
cie de forofito que obtuvo el 10,4% del total de indivi-
duos de la poblaci6n monitoreada concentrado en un
solo individuo, encontrindose otros forofitos de la
misma especie sin ninguin individuo de B.c., lo cual
vuelve a incidir en el caricter agregado de esta orqui-
dea no s6lo a nivel de species de forofitos sino del
individuo dentro de una especie de forofito dada. Este
resultado va en el mismo sentido al apuntado por
Steege and Cornelissen (1989), Brown (1990) y
Waechter (1998) que encuentran que las epifitas,
usualmente se distribuyen de forma irregular a lo largo
de los forofitos, presentando una variaci6n vertical,
tanto en nfimero de individuos como de species.
En la estructura espacial se demuestra que existen
diferencias significativas en cuanto a crecer aislado o
en agregaci6n, prefiriendo esta uiltima. Refiriendonos
a las classes de vida en particular se constata que solo
la clase 4 o adults reproductores de mayor tamafio
tiene una preferencia por vivir en forma agregada,
marcando la diferencia a nivel de especie. Esta estruc-
tura de agregaci6n de los individuos mayores puede
ser el resultado de la competencia entire plantulas
durante el desarrollo de la poblaci6n.
La especie en studio prefiere la orientaci6n hacia
el norte y el este, posiblemente debido a que en la
mayor parte del afio los vientos tienen un component
que va del norte al este. Existe una competencia intra-
especifica fuerte pues existen diferencias significati-
vas en cuanto a los competidores, es raro encontrar
individuos de otras species en competencia con B.c.,
el principal competitor por el espacio es ella misma.
La corteza ha sido uno de los temas de discusi6n
respect a su utilizaci6n como indicador en los estu-
dios del epifitismo. Los debates se han centrado en
las causes de su important papel, pudiendose extraer
que hay dos elements bWsicos: su estructura fisica
(tipo de corteza) como sustrato de fijaci6n, y su com-
posici6n, como suministrador de los elements qui-








GONZALEZ HERNANDEZ et al. Broughtonia cubensis en Cabo San Antonio, Cuba


micos necesarios. Hilitzer (1925) citado por Barkman
(1959) deneg6 la influencia de los factors quimicos,
y consider las diferencias que produce el relieve de
la corteza. Cuello (1998) sefiala que para las epifitas,
como para cualquier otro organismo s6sil, las caracte-
risticas del sustrato, especialmente durante su estable-
cimiento, son particularmente importantes y resalta
dentro de &stas el tipo de superficie de la corteza de
los forofitos.
Algunos de los factors que pueden influenciar los
patrons de distribuci6n y abundancia de epifitas vas-
culares en los bosques tropicales, se relacionan, entire
otras, con la arquitectura, porte y caracteristicas de la
corteza de los forofitos (Liittge 1989, Steege &
Cornelissen 1989).
B.c. se encuentra preferentemente sobre corteza
lisa o rugosa, debido al tipo de especie escogida
como huesped, Plumeria tuberculata (lisa) y
Erythroxylum areolatum (rugosa). El hecho de pre-
ferir los extremos (lisa o rugosa) y no el t&rmino
medio (semirugosa) pone en duda las consideracio-
nes de los autores antes mencionados. Nuestra hip6-
tesis se basa en que la especie no elige un tipo de
corteza determinado, sino que coloniza aquellos
espacios con presencia de micorrizas, sin las cuales
es impossible el surgimiento y establecimiento de
nuevos individuos. Reafirma esta hip6tesis el hecho
de que en un Area pequefia podemos encontrar foro-
fitos de la misma especie con un sinnfimero de indi-
viduos habitando sobre si, mientras que otros de
igual especie a 1-2 metros de distancia no resultan
ocupados. Este fen6meno estA siendo objeto de estu-
dio actualmente (Mfijica, inedito).
Hay en general una dominancia de B.c. con rela-
ci6n a las otras species a lo largo de todos los tran-
sectos. Esta dominancia implica una agregaci6n de
individuos de esta especie que hace probable que la
competencia intraespecifica sea una de las fuerzas
que condicionan la estructura y dinimica de esta
poblaci6n. En la literature se cita frecuentemente
que las species de orquideas epifitas se suelen
encontrar de forma agregada (Ackerman 1995). El
analisis de las formas de vida para B.c. nos ha per-
mitido analizar esto con detalle. Las semillas de esta
especie de orquidea son muy pequefias y se disemi-
nan en el espacio con igual probabilidad en todas las
direcciones. Esto hace que la distribuci6n mis pro-
bable sea una distribuci6n al azar y no agregada de
las plAntulas. Sin embargo, no todos los sitios tienen


la misma calidad. Esta calidad estA asociada proba-
blemente a la presencia de micorrizas, hip6tesis con
las que estamos actualmente trabajando, esto a su
vez implica una competencia por los mejores sitios
que se manifiesta en que los individuos mis gran-
des, adults reproductivos C-4, puedan controlar los
sitios de "mayor calidad".
Nuestros resultados parecen indicar que puede
existir una zona nucleo de dispersion para esta espe-
cie localizada en el Area comprendida en el transecto
T-4 entire el bosque semideciduo y la vegetaci6n de
pantano. Este resultado debido, a la estructura
metapoblacional de esta especie, deberia tener
importantes implicaciones para el planteamiento y
manejo de las estrategias de conservaci6n dentro de
la region Caribefia que es un 'biodiversity hotspot'
(Myers et al. 2000). Un excelente studio de bases
propiamente metapoblacionales se encuentra en
Tremblay et al. (2006), donde los autores analizan la
idoneidad del modelo metapoblacional de Levins
para las species de un orquidea tropical epifita del
g6nero Lepanthes.


AGRADECIMIENTOS. Los autores de este trabajo desean
expresar su agradecimiento a todas las personas que de una
forma u otra apoyaron su realizaci6n. De modo muy espe-
cial al Dr. Jorge Ferro Diaz, Director de ECOVIDA en la
provincia de Pinar del Rio, por el apoyo incondicional, sin
el cual hubiera sido impossible la realizaci6n del mismo. A
los compafieros de la Estaci6n Meteorol6gica del Cabo
San Antonio, de la Estaci6n Ecol6gica de la Peninsula de
Guanahacabibes, a los trabajadores de ALMEST Ena y
Santiago, a Sonia Mafia Alvarenga que vino desde
Alicante, Espafia, a soportar los rigores de nuestro clima y
colaborar en los monitoreos. A los torreros del Faro
Roncali, Felicia, Felino, Luis y Pipo, por la asistencia y
apoyo en todo moment. A todos los colegas del Jardin
Botanico Orquideario Soroa, por ayudarnos desinteresada-
mente en los monitoreos.


LITERATURE CITADA
Ackerman, J.D. 1995. An Orchid Flora of Puerto Rico and
The Virgen Islands. The New York Botanical Garden.
U.S.A.
Barkman, J. J. 1959. Phytosociology and ecology of cryp-
togamic epiphytes. Van Gorcum & Co., Assen,
Netherlands.
Begofia, B.A. 2000. Biologia de la Conservaci6n de plan-
tas amenazadas. Organismo Aut6nomo Parques
Nacionales. Madrid. Espafia.

LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.









LANKESTERIANA


Brown, D.A. 1990. El epifitismo en las selvas montanas
del Parque Nacional "El Rey" Argentina: Composicidn
floristica y patron de distribuci6n. Rev. Biol.Trop. 38:
155-166.
Cuello, A. 1998. A review of sampling procedures for the
study of vascular epiphytic species diversity in neotropi-
cal montane forest. Herbario Universitario PORT,
Program de Recursos Naturales Renovables, UNE-
LLEZ-Guanare, Venezuela.
Diaz, M.A. 1996. Las orquideas de Cuba. Editorial
Cientifico Tecnica. La Habana, Cuba.
Delgado, F.F. 2000. Funcionamiento de bosques semideci-
duos y caracterizaci6n de otros ecosistemas terrestres en
la Reserva de la Biosfera Peninsula de Guanahacabibes,
Cuba. Informe Final Proyecto 01307029 PNCT "Los
Cambios Globales y la Evoluci6n del Medio Ambiente
en Cuba". Agencia de Ciencia y tecnologia. CITMA.
Pinar del Rio.
Ferro Diaz. J. et al. 1995. Mapa de Vegetaci6n actual de la
Reserva de la Biosfera Peninsula de Guanahacabibes,
Pinar del Rio, Cuba. 1:100000. Memorias del II


Simposio Internacional HUMEDALES'94. Cienaga de
Zapata, Septiembre de 1994. Editorial Academia.
Herrera, M. et al. 1987. Las Reservas de la Biosfera en
Cuba. Institute de Ecologia y Sistematica, Academia de
Ciencias de Cuba.
Hutchings, M. J. 1989. Conservation and the British orchid
flora. Plants Today 2: 50-58.
Kindlmann, P., J.H. Willems & D.F. Whigham. 2002.
Trends and Fluctuations and Underlying Mechanisms in
Terrestrial Orchid Populations. Backhuys Publishers,
Leiden.
Kull, T. 2002. Population dynamics of north temperate
orchids. In: T. Kull & J. Arditti (eds.), Orchid Biology:
Review and Perspectives, vol. VIII. Kluwer Academic
Publishers, Dordrecht, The Netherlands.
Leyva Pagan, G. 2002. Guanahacabibes, donde se guard
el sol de Cuba. Editorial Academia, La Habana.
Lopetegui, C.M. et al. 1999. Caracterizaci6n climatica y
bioclimatica de la Peninsula de Guanahacabibes.
Memorias del Taller Internacional TROPICO'99.
Institute de Meteorologia. C 1989.


LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.








LANKESTERIANA7(3): 479-492. 2007.


ORQUIDEAS CENTROAMERICANAS EN INGLATERRA
DEL SIGLO XIX

Luis D. GOMEZ P.

Organizaci6n para Estudios Tropicales, Ciudad Cientifica de UCR y Academia Nacional de Ciencias
Apartado 676-2050, San Pedro, Costa Rica. gomezp@ots.ac.cr


ABSTRACT. The study of two major works on orchids of the 19' century in England the Hortus Veitchii of
1906 and The Orchid Grower's Manual of 1894, show that Central America, here treated to include from
Guatemala to western Panama, was an important source of plant materials. Veitch's list is very selective
and based, on his opinion, of which plants were outstanding introductions to the trade by his commercial
establishment. Williams', on the other hand, is an all-inclusive list, following his wish of "orchids for the
million". During the second half of the 19th Cent., English orchidophiles, both trained scientists and ama-
teurs, were growing no fewer than 170 species of Central American provenance. I excluded vague localities
such as "Tropical America", and the like even if the species are now known to exist in the area. Of those
170, Costa Rica alone contributed 46 taxa (27.05%) to English orchidomania, a mass phenomenon triggered
by 1- the opening of royal institutions such as royal museums and gardens to the general public, and 2- the
discovery and popularization of the Wardian case. Soon to be emulated by continental Europe, the Wardian
case was short -lived and gave way to more modem, faster, transoceanic travel. Thus commenced the preda-
tion for orchid specimens and possibly the decline of plant populations may have contributed to the rarity or
disappearance of many species.

RESUMEN. Durante la segunda mitad del siglo XIX, Inglaterra experiment dos events significativos en el
desarrollo del gusto por las orquideas y otras plants: 1- la apertura de instituciones reales o restringidas a
estratos superiores de la sociedad inglesa, como museos y jardines botinicos y permiti6 a las masas partici-
par, vicariamente, de las riquezas del Imperio Britinico y 2- el descubrimiento y popularidad de las cajas
Wardianas que hicieron possible el transport de plants vivas desde confines imperiales y cultivarlas en el
viciado aire londinense de la Revoluci6n Industrial. Del studio de dos obras importantes, el Hortus Veitchii
de 1904 y el Orchid Grower's Manual de 1894, la primera orientada a una clientele pudiente y la otra a lo
que su autor anhelaba, "orquideas para todos", se desprende que no menos de 170 species de orquideas
centroamericanas eran cultivadas en Inglaterra. De esas, 46 (27.05%) provenian de Costa Rica. La orquide-
omania inglesa, pronto emulada por la Europa continental, y la caja de Ward, pronto sustituida por transpor-
tes transoceanicos mis ripidos, tambi6n precipitaron el despoje de plants y puede haber contribuido a la
rareza o extinci6n de algunas species.

PALABRAS CLAVE/ KEY WORDS: Orchids, Central America, Horticulture, England, Nineteenth Century.

Hace algunos meses y motivado por simple curio- pais, fue parte del territorio costarricense hasta 1903,
sidad, inici& una lectura cuidadosa del Hortus Veitchii afio en que se separ6 PanamA de la Gran Colombia y
(Veitch 1906) para establecer cuintas plants costa- se intent fijar los limits actuales entire los dos pai-
rricenses habian sido introducidas a la horticulture ses, empresa no libre de conflicts. Ademas, la region
europea por ese establecimiento commercial. Esas de Chiriqui y las tierras limitrofes de la Costa Rica de
introducciones fueron varias pero, relativamente, fue- hoy, conforman una unidad biogeogrifica indiscutible
ron las orquideas el grupo mis important. Decidi asi y esas zonas fueron important scenario de acci6n de
dedicar el primer analisis a esa familiar de plants los coleccionistas de plants y botanicos de la epoca.
ampliando la cobertura al Area centroamericana que Iniciado el recuento, fue evidence que debia recurrir
para estas notas se extiende desde Guatemala hasta a otras fuentes y escogi para ello el summum de ese
PanamA inclusive, en virtud de que en la epoca que period de la historic, la obra The Orchid-Grower's
interest, gran parte de la Provincia de Chiriqui de ese Manual de Williams & Williams (1894). Como obras








LANKESTERIANA


de consult, Allen (1949), Ames (1937), Ames &
Correll (1952, 1953), Dressler (1980,1993, 2003),
Hamer (1974a, 1974b, 1981, 1982, 1983, 1984a,
1984b, 1985, 1988, 1990, 2001), Hawkes (1965),
Pupulin ',2"iC), Williams (1946,1951, 1956) y otras
citadas en el texto.
Aunque las orquideas en Europa se han conocido
desde la antigiledad, Teofrasto ( 370-285 AC),
menciona species de Orchis y les atribuye algunas
propiedades medicinales, su cultivo como omamenta-
les no parece haber tenido mayor importancia y hasta
finales del siglo XVIII no pasaron de ser interesantes
para algunos cientificos y naturalistas. Situaci6n
impensable para un siglo importantisimo para la boti-
nica porque se puede decir que de 1809 a 1851 se
lleg6 a una teoria unitaria sobre la estructura y los
ciclos de vida de las plants y de 1851 a 1912 se esta-
blecieron las bases de la Botinica como ciencia
modema (Bemal 1983, Coleman 1977, Morton 1981,
Nordenski61ld 1928, Singer 1950) en las elitistas y
ebirneas torres de los cientificos. Pero, jY el resto de
la poblaci6n? Dos events habrian de cambiar esa
situaci6n.
El primero de ellos fue la apertura a las masas de
museos y jardines botinicos, hasta entonces dominio
exclusive de la aristocracia y estratos superiores de
la sociedad inglesa, lo que permiti6 al gran public
incorporarse, vicariamente, al apogeo del Imperio
Britinico en tiempos de la reina Victoria, observando,
conociendo y aprendiendo sobre los productss ex6ti-
cos" de los confines imperiales. Debo recalcar aqui
que el interns de los administradores del Imperio no
eran cientificos sino utilitarios, v.g. algod6n, amapo-
las (opio), t&, hule, azuicar, medicinales (quinina, que
abriria el Raj de la India y el Africa a la colonizaci6n
inglesa), etc. (Musgrave & Musgrave 2000) hasta
incluso bloquear cualquier conocimiento sobre anti-
conceptivos que mermaran una creciente y adquisiti-
va poblaci6n (Schiebinger 2004). El primer museo en
abrir fue el Hancock, de Newcastle, que a partir de
1835 organize horas de visit vespertinas. Pero el
Hancock en Newcastle no era el coraz6n del Imperio,
Londres y su British Museum con su renacentista
concept de artes y ciencias, lo eran. Alli, el ambien-
te para admitir a la clase trabajadora era negative.
Te6ricamente abierto "para toda persona de buena
apariencia", solo abria tres dias por semana de 10 am

LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.


-._I *.




-- .., ... -. '; .







FIGURA 1. "A Dream of the Future-Sunday Opening" del
Anuario Judy, 1885. A la derecha la "canalla inglesa"
que sale ilustrada despues de la visit. Una Musa alada
expulsa a la hipocresia, el fariseismo y a la intempe-
rancia, (col. del author .
a 4 pm, horario que excluia a la abrumadora mayoria
de la poblaci6n londinense, fuerza motor de la
Revoluci6n Industrial, y que de variadas forms exi-
gia acceder a la cultural (fig. 1). Cuando, en 1835 una
comis6n present la posibilidad de abrir a un mayor y
divers piblico en ciertas fechas del anfo, e.g. la
semana de Pascua, Sir Henry Ellis, Bibliotecario
Principal del Museo Britinico, dijo entire otras cosas
(el subrayado es mio): "The most mischievous portion
of the population is abroad and about at such a
time... the more vulgar class would crowd into the
Museum ...sailors from the dock yards and girls
whom they might bring with them... The more impor-
tant part of the population...would be discontented"
(Fig. 2). Richard Owen, opositor encarnizado de
Darwin, hizo eco a esas palabras y esnobismo cuando
en 1840 visit los Museos de Nottingihan y Leicester
en un ensayo de apertura a las masas escribi6 a su
esposa (el subrayado es mio): "Never saw a better
experiment of the amount of danger to be apprehen-
ded for indiscriminate admission of English








GOMEZ P. Orquideas centroamericanas en Inglaterra del siglo XIX


FIGURA 2- "Holiday Time at the British Museum" por F.
Smith (1873). A la derecha, un marinero con su
"chica", vision temida por Owen (col. del autor).

canaille..." (Barber 1980). No fue sino hasta 1879
que el Museo Britinico abri6 regularmente todos los
dias en horario exclusive y hasta 1896, cuando el
Departamento de Historia Natural se traslad6 a South
Kensington (separaci6n de las Ciencias Naturales del
arte, antropologia, etc.), que permiti6 el ingreso "a
personas de buena apariencia", los domingos. Ese
cambio de actitud, eliminando o atenuando el elitismo
a favor de la educaci6n de la multitud, constituy6 el
fundamento del naturalismo ingl6s que eventualmente
rindi6 abundantes frutos a las Ciencias Biol6gicas.
Iguales ritos de pasaje sufri6 el Real Jardin Botinico
de Kew, mis o menos simultineamente.
Establecido en 1759 en terrenos de S.A.R. Augusta,
Viuda Princesa de Gales, madre de Jorge III, Kew se
mantuvo cerrado al public por 82 afios hasta 1841 en
que pas6 a manos de gobierno ingl6s con William J.
Hooker como su primer Director. En la lista de plan-
tas cultivadas alli, compilada por Aiton en 1789 y
conocida como Hortus Kewensis (Aiton 1789), se
enumeran quince species de orquideas, entire ellas
dos neotropicales posiblemente provenientes de
Jamaica, Epidendrum fragrans y Epidendrum cochle-
atum, que pasaron a ser Encyclia, y hoy species de
Prosthechea. Para 1813 el nfimero de orquideas habia
aumentado a cuarenta y seis. Como indiqu6 al inicio
de esta introducci6n, hasta 1800 el cultivo de orqui-
deaceas en Europa no era de importancia. En
Inglaterra, la Sociedad Londinense de Horticultura se
interest en las orquideas a partir de 1809 y, en relati-
vo corto tiempo ese grupo de plants habria de alcan-
zar una enorme relevancia, a diferencia de otras
naciones pujantes como los Estados Unidos de


Am6rica donde las primeras orquideas fueron cultiva-
das hasta ca. 1830 por John Wright Boott, en Boston.
En Inglaterra, fue la floraci6n de Cattleya labiata
Lindley, recogida en 1818 en la Sierra de los Orga-
nos, Brasil, en el orquidario de William Cattley a
quien John Lindley dedic6 el g6nero, aunque un con-
g6nere, entonces llamado Epidendrum violaceum,
procedente de S. Paulo, Brasil, recibido en 1810 por
el Jardin BotAnico de Liverpool, floreci6 el afio
siguiente pero no fue descrita como Cattleya loddige-
sii sino hasta 1819 cuando Lindley estableci6 el gene-
ro. La C. labiata por d6cadas considerada la mas
exquisite de las orquideas, marc6 el inicio de la orqui-
deologia y, en buena media, fue el arrobo del Sexto
Duque de Devonshire, William Spencer Cavendish,
con una plant de Oncidium papilio (Psychopsis
papilio), hizo del pasatiempo de los "orchidists" una
actividad de moda, pero limitada a la aristocracia y
las classes pudientes ya que los precious de las plants
procedentes de las regions remotas alcanzaban pre-
cios altisimos (Reinikka 1995). Las orquideas pronto
fueron sin6nimos de exoticidad en el Nueva Mundo,
incluso apareciendo en pinturas neoclAsicas del perio-
do (Fig. 3 ). Pronto se establecieron casas comerciales
dedicadas a la buisqueda, cultivo y venta de orquideas
y otras plants ex6ticas que enviaron un ej6rcito de
recolectores de todos los rincones del globo. Pero
estos amagos de comercializaci6n se toparon con un
enorme y oneroso problema: muy pocas plants llega-
ban a Inglaterra en buen estado, la mayoria no sopor-
taban el largo viaje marino.
Es aqui donde entra en escena el segundo event
mis important en el desarrollo de la orquideologia
como pasatiempo de muchos y fuente de nuevas espe-
cies para los tax6nomos. Me refiero al descubrimien-
to en 1829, por lo demAs fortuito, del Dr. Nathaniel
Bagshaw Ward, connotado naturalista de quien se
dice era poseedor de una colecci6n de unas 25.000
plants y que, ademAs, era aficionado a los lepid6pte-
ros, que criaba desde sus fases mas tempranas. En
cierta ocasi6n, coloc6 una crisilida dentro de una
botella para protegerla del viciado aire londinense.
Cuando transcurri6 el tiempo de extraer el insecto
emergido, con sorpresa descubri6 que habian germi-
nado dos plants, una graminea y un helecho, que
mantuvo en la botella por muchos afios e hicieron su
ddbut puiblico en la Gran Exhibici6n de 1851. Ward

LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.








LANKESTERIANA


FIGURA 3. Orquideas y colibries (detalle), 1875-1885. De Martin Johnson Heade. Oleo sobre tela (141/2 x 221/4 ").
Museo de Bellas Artes, Boston, Mass., E.E.U.U.


experiment con muchas botellas y muchas plants y
lleg6 a cultivar exitosamente unas decenas de ellas
que no habrian crecido expuestas al ambiente exte-
rior. Comunic6 su pequefio experiment a George
Loddiges, propietario de la famosa Loddiges Nursery
en Hackney, quien de inmediato se percat6 del poten-
cial commercial del descubrimiento de Ward y constru-
y6 recipients similares para enviar de Londres a
Australia un pedido de plants. En noviembre de
1834 su corresponsal en las antipodas le comunic6
que el envio habia llegado a destino con las plants
vivas y pr6speras. Asi hizo su spectacular entrada en
escena la caja wardiana. Ward public un libro en
1842, On the growth of Plants in Closely Glazed
Cases, pero nunca he tenido oportunidad de leerlo. El
hijo de William Hooker, de Kew, Joseph Dalton
Hooker, us6 cajas wardianas para enviar a Inglaterra
plants de Nueva Zelandia, durante el pionero viaje
del HMS Erebus en la circumnavegaci6n de
Antirtica. Rapidamente, las cajas wardianas se con-
virtieron de simples y practices cajas de vidrio en
mobiliario comfin en las casas de los aficionados y
cientificos (Fig. 4). iMe llama la atenci6n que exis-

LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.


tiendo ya los acuarios, nadie pensara en terrarios
antes de la observaci6n del Dr. Ward!
Pero con la caja wardiana tambien lleg6 un aspect
negative y es que con el problema del trinsito marino
resuelto, los recolectores a sueldo sobreexplotaron el
recurso orquidea casi hasta la extinci6n de las espe-
cies mis cotizadas. Por ejemplo, en la frenetica bius-
queda de Miltonia vexillaria [Miltoniopsis vexillaria
(Reichb.f.) God.-Leb.], los habitats naturales de la
especie parecian el resultado de incendios forestales.
iEn Colombia, por ejemplo, la "caceria" de 10.000
especimenes de Odontoglossum crispum [0. crispum
Lindl.] result en la tala de 4.000 arboles! Transcribo
un parrafo de una carta de Carl Johannsen desde
Medellin a su patrocinador: "I shall dispatch tomo-
rrow 30 boxes, 12 of which contain the finest of all
the Aureas, (Cattleya aurea Lindl.) the Monte
Coromes form, and 18 cases containing the great
Sanderiana [C. sanderiana hort, C. gigas Lind. &
Andre] type all collected ... They are now extinguis-
hed in this spot...I have finished all along the Rio
Dagua where there are no plants left... (fide
Reinikka, 1995). Con la caja wardiana, florecieron los








G6MEZ P. Orquideas centroamericanas en Inglaterra del siglo XIX


FIGURA.4- Cajas wardianas para el hogar. Tornado de The
New Practical Window Gardener, catilogo para 1877,
de J.R. Mollison (col. del autor).

m

-a* Le AL


FIGURA 5 "Gathering Ferns", de Illustrated London
News, 1877. La pteridomania en su zenit (col. del
autor).

viveros comerciales y tambien se suscitaron dos his-
terias colectivas: la orquideomania y la pteridomania.
Sobre la pteridomania (Fig.5) una simpitica obra, The
Victorian Fern Craze, de Allen (1969).


De los establecimientos comerciales de mayor
impact escogi la casa de James Veitch en Chelsea y
la de B.S. & H. Williams, Victoria and Paradise
Nurseries, Upper Holloway, ambas en Londres, y que
produjeron la primera un catilogo Hortus Veitchii y
la segunda un vadem&cum para los orquide6manos, el
famoso The Orchid-Grower's Manual.
El Hortus (Fig. 6) es una edici6n para circulaci6n
privada y de pocos ejemplares elegantemente empas-
tada y que utiliz6 un papel para acuarela de gran peso.
La edici6n esti obviamente hecha para una select y
adinerada lista de clients. La obra, con un total de
541 piginas con 50 ilustraciones de fotograbado (Fig.
7), menciona un total de 1971 taxa de los cuales 1572
correspondent a otros grupos de plants, y esta dividi-
da en cinco secciones o capitulos. La primera es una
historic de la familiar Veitch y la creaci6n de la
empresa y su evoluci6n. Fundada por John Veitch
(1752-1839) fue adquirida por James Veitch y su hijo
hom6nimo en 1853 lo que dio origen a John Veitch &
Son. John Veitch hijo estuvo a cargo de la operaci6n
en Chelsea.
La segunda parte esti destinada a cortas biografias,
con aportes interesantes, de los recolectores viajeros
patrocinados por Veitch & Son que suman 22 entire
1840 y 1905. De ellos cuatro recorrieron el area cen-
troamericana: Carl Kramer en 1867 que estuvo en
Guatemala y Costa Rica pero result "..unsuitable for
the work" (sic, pig.55) y a el se debe el descubri-
miento de Ticoglossum krameri (Rchb.f.) Halbinger
(Odontoglossum krameri hort.) y de Psychodes kra-
merianum (Rchb.f.) Halbinger(Oncidium krameria-
num hort.).
Gottlieb Zahn entire 1869 y 1870 recorri6 parte de
Centroam&rica en busca de helechos y orquideas. Su
meta era el Oncidium warsczewiczii Rchb.f. pero no
tuvo &xito, el triunfo correspondi6 a Endres y la espe-
cie le fue dedicada como Miltonia endresii Nichols.
Luego de recolectar en Chiriqui trat6 de viajar a San
Jose pero muri6 ahogado en el intent. Se le conme-
mora en una bromelia, Guzmania zahnii (Hook.f.)
Mez.
George Downton, al servicio de Veitch entire 1870 y
1873, recorri6 America del Sur, y las Islas de Juan
Fernindez. En 1870 lleg6 a Costa Rica para colaborar
con Endres pero s61lo permaneci6 unos meses.
A. R. Endres, recomendado a Veitch por Bateman,

LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.








LANKESTERIANA


HORTUS VEITCHII


A HISTORY


RISE AND PROGRESS OF THE NURSERIES OF MESSRS. JAMES
VEITCH AND SONS, TOLETIIER WITH AN ACCOUNT
OF THE BOTANICAL COLLECTORS AND
HIYBRIDISTS EMPI)OYED BY THEM
AND A LIST OF THE MOST
REMARKABLE OF THEIR
INTRODU'J1ON S


JAMES H. VEITCH


3lutrateb wvoitb fiftV Vbototravure plates




onSllon
JAMES VEITCH & SONS LIMITED, CHIIELSEA
1906


FIGURA 6. Portada del Hortus Veitchii, edici6n principle,
1906 (col. del autor).



colabor6 con George Ure-Skinner en Guatemala y al
deceso de Zahn le ordenaron trasladarse a Costa Rica
en 1871 en busca del Odontoglossum warsczewiczii
(v. supra), Cattleya dowiana y Anthurium scherzeria-
num, en gran demand y permaneci6 en Costa Rica
hasta entrado 1873. Se le han dedicado varias espe-
cies de orquideas y fue un extraordinario recolector
de helechos. George Downton fue el encargado de
acompafiar sus colecciones a Inglaterra. Atwood
(1999,fide Ossenbach 2003) dice que muri6 asesina-
do en Riohacha, Colombia.
La tercera secci6n esta dedicada a datos biogrificos
de los principles horticultores, la mayoria de ellos
dedicados a la hibridizaci6n de orquideas. No se dis-
cuten en estas notas.
La cuarta secci6n nos interest. Se intitula Orchid
Species. A list of the principal orchid species introdu-
ced by Messrs. Veitch. En la lista se enumeran 219
species con su autor, procedencia, a veces datos
curiosos y una muy somera descripci6n. De esas

LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.


FIGURA 7. Masdevallia veitchiana, descubierta en los
Andes peruanos por Pearce en 1866 y descrita por
Reichenbach en 1868. Fotograbado (frente p6g. 140)
del Hortus Veitchii.

species 23 (10.5%) son centroamericanas y de ellas
17 ( 73.9 %) procedian de Costa Rica. Cito verbatim
el texto correspondiente (Pag. 116-117) a una de
nuestras species como ejemplo del contenido:
"Cattleya dowiana, Batem. Syns. C. lawreanceana,
Warsc. ; C. labiat, var. Dowiana, Veitch Gard.
Chron. 1866, p. 922; Bot. Mag. T. 5618; Fl. Des
Serres, tt. 1709-1710; L'Illus. Hort. T. 525; The
Garden, 1877, vol. XII. T. 99; Veitch's Man. Orch.
Pl. pt. Ii. P. 16 This superb orchid flowered for the
first time in this country at Chelsea in the autumn of
1865. The plants were obtained through Mr. G. Ure-
i, ........ whose collector Mr. Arce, a zealous natura-
list, had obtained them in Costa Rica. Plants had pre-
viously been sent to this country in 1850, but arriving
in a bad condition, had all died without flowering. It
was the wish of Warszcewicz, the original discoverer,
that his plant should bear the name Lawrenceana, in
compliment to Mrs. Lawrence of Ealing, a generous
patroness of Horticulture, but as his specimens mis-


oe
OW








G6MEZ P. Orquideas centroamericanas en Inglaterra del siglo XIX


Cuadro 1. Orquideas Centroamericanas en Hortus Veitchii.


Nombre del Hortus Veitchii


Pag. Nombre actual


Cattleya bowringiana Veitch
C. dowiana Bat. *
C. skinneri Bat. v. alba Rchb.f. *
E. lindleyanum (Bat.)Rchb.f. *
E. pseudepidendrum Rchb.f. *
Laelia anceps Lindl.
Lycaste skinneri Lindl.
Masdevallia attenuata Rchb.f. *
M. lata Rchb.f.
M. reichenbachiana Endres *
M. triaristella Rchb.f. *
Maxillaria. ctenostachya Rchb.f *
Miltonia endresii Nicholson *
Mormodesfractiflexum Rchb.f. *
M. skinneri Rchb.f.
Notylia albida Klotzch
Odontoglossum krameri Rchb.f. *
0. oerstedii Rchb.f. *
0. uro-skinnerii Lindl.
Oncidium bryolophotum Rchb.f.
0. warscewiczii Rchb.f. *
Polycynis gratiosa Endres & Rchb.f. (sic) *
Rodriguezia leochilina Rchb.f *
Trichopilia marginata Henfr. v. lepida Veitch *
Zygopetalum burtii Benth. *

* Especies recogidas en Costa Rica


carried, this fact was not made known until after
Bateman had named it in compliment to Captain J.
M. Dow of the American Packet Service, to whose
kindness orchidists and men of science owe so much.
It has proved potent as a parent by i. :_,.. many
fine i .,'. now in cultivation being due its influen-
ce". Las species e hibridos de orquideas suman 521
(6.4 % del total, incluidos los sin6nimos). En el
Cuadro 1, la lista de species centroamericanas del
Hortus Veitchii y su sinonimia.
La quinta secci6n trata de 302 hibridos de orquide-
as introducidos por Veitch a la horticulture britinica
pero no me adentro en ninguin anilisis toda vez que
no se indica la procedencia de los progenitores,
algunos obviamente centroamericanos, y es un labe-
rinto de nombres, muchos de fantasia, otros hortico-


Guarianthe bowringiana (Veitch) Dressler & Higgins
C. dowiana Bat
Guarianthe skinneri (Bat.) Dressler & Higgins
Barkeria lindleyana Bat. ex Lindl.
E. pseudepidendrum Rchb.f
Laelia anceps Lindl.
Lycaste skinneri Lindl.
Masdevallia attenuata Rchb.f
M. lata Rchb.f.
M. reichenbachiana Endres
Trisetella triglochin (Rchb.f) Luer
Maxillaria ctenostachya Rchb.f
Miltoniopsis warsczewiczii ( Nicholson)Garay & Dunst.
Mormodesfractiflexa Rchb.f.
M. skinneri Rchb.f.
Notylia barkeri Lindl.
Ticoglossum kramerii (Rchb.f.)Halbinger
T. oerstedii (Rchb. f.) Halbinger
Rhynchostele uro-skinneri (Lindl.) Lindl.
Oncidium bryolophotum Rchb.f.
0. warscewiczii Rchb.f.
Polycycnis gratiosa Endres & Rchb.f
Hybochilus lochilinus (Rchb.f.) M.W. Chase
Trichopilia marginata Henfr. v. lepida Veitch
Huntleya burtii Rchb.f.



las y sin validaci6n botinica, de un grupo de plants
que a su voluptuosa y concupiscente apariencia
suman una venalidad y libertinaje genetico, prover-
biales. La sexta parte se dedica a otros grupos de
plants y tratar& las entidades costarricenses en otra
oportunidad y lugar.
Debido a que la lista de orquideas del Hortus
Veitchii es parcial, como indica el subtitulo de la sec-
ci6n, lista de las orquideas principles (segiun
Veitch), recurri a la obra Orchid-Grower's Manual,
de Benjamin Samuel Williams y su hijo Henry
William Williams, publicada en 1894 en su s6ptima
y uiltima edici6n (Fig. 8). El Manual para
Orquide6logos, basado en las plants cultivadas en el
establecimiento commercial de los Williams, Victoria
& Paradise Nurseries, tiene 796 piginas, 310 ilustra-

LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.








LANKESTERIANA


THE
ORCHID-GROWER'S MANUAL,

DESCRIPTIONS OF THE BEST SPECIES AND VARIETIES
OF ORCHIDACEOUS PLANTS IN CULTIVATION;






BENJAMIN SAMUEL WILLIAMS, F.L.S, F.R.H.S.,
Aj cr n 4 1i 4

SEVENTH EDITION, E'LABNED AND REVISED TO THE PRESENT TIME.

HENRY WILLIAMS, F.L.S., F.R.I.S,,

VWTIS 3UT-T lIKE0 TS 2LLTJST:-A.ToITS.

LONDON:
PUTBLISHED AT VICTORIA AND FARADIB NURSERIES,
UPPER HOLLOWAY, LONDON, X.






FIGURA 8. Portada de Orchid Grower's Manual de
Williams & Williams, 7a. edici6n de 1894 (col. del
autor).


ciones de linea. Las primeras 73 piginas dedicadas a
generalidades del cultivo y a partir de una breve dis-
cusi6n sobre el precio de las plants inicia una enu-
meraci6n alfabetica de generos y species con un
total de 3359 taxa de los cuales los autores del
Manual consideran 2650 como vilidas y el rest,
709, como sin6nimos. De las species vilidas, 163
(6.15%) correspondent a species centroamericanas y
de ellas 39 (23.9%) son costarricenses porque asi lo
indican. Por imprecisas, omito aquellas para cuya
procedencia se dice "Tropical America", "Central
America", a sabiendas de que se encuentran en nues-
tro pais. Del gran total de 3359 taxa, 702 (20.8%)
son species de A?rides (606 spp.), Vanda (677
spp.), Disa (702 spp.), Dendrobium y Cypripedium s.
latissimus (para incluir Calypso, Paphiopedilum,
Phragmidium, Selenipedium, etc.) (542 spp.) que
representan el 20.8% de los taxa, muestra indiscuti-
ble de la ominipresencia del Imperio desde sus cua-

LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.


tro puntos cardinals. En el Cuadro 2, la lista de
species centroamericanas y su sinonimia. Los
Williams fueron grandes promotores de la orquideo-
mania inglesa, en particular Benjamin quien inici6 en
1851 a sugerencia de John Lindley una series divulga-
tiva titulada Orchids for the Millions en el Garden
Chronicle. Un derivado de esa series fue su famoso
Orchid Album (Warner & Moore 1882-1897) una
publicaci6n seriada mensual de cromolitografias
basadas en dibujos de John Fitch, y de la cual repro-
duzco cuatro liminas (Fig. 9).
Debido a la naturaleza de la selecci6n, en Veitch
con miras a una clientele select y de plants en su
opinion principles, y de una actitud populista, de
orquideas para los millones, de los Williams, seria
inuitil cualquier anilisis o comparacion num&rica. Si
es digno de comparar los criterios taxon6micos de
ambos establecimientos. Veitch, por ejemplo, cita a
Cattleya skinneri y una forma alba. Los Williams
asignan a esa especie de Guarianthe various nombres
varietales. En algunos taxa, como Lycaste skinneri,
hasta 15 formas varietales!. Ambas obras tienen un
sinnuimero de species y variedades del genero
Co,, i., que en opinion de los estudiosos del gene-
ro, son solamente unos pocos taxa vilidos, desde
unas decenas (Hawkes 1965), hasta poco mis de
veinte (Withner 1988). Williams & Williams
(pig.407) hacen un interesante comentario sobre las
species de Gongora, en particular G. maculata, y lo
que llaman "complejo de G. quinquinervis de
Reichenbach", grupo auin confuso. Auin haciendo
caso omiso de los incipientes concepts gen&ricos de
la &poca, ambas son importantes para vislumbrar el
impact de la apertura popular de las instituciones
reales y la importancia de la caja wardiana en el
desarrollo de la orquideomania en la Inglaterra deci-
mon6nica y de la riqueza, tanto en diversidad como
en atractivo, de la flora centroamericana. Las plants
costarricenses jugaron un papel muy important en el
desarrollo temprano de la orquideologia amateur y
professional. Flinm.niaJ., las duplicaciones en ambas
listas, 46 species costarricenses eran cultivadas en
Inglaterra hacia el cambio de siglos. La orquideoma-
nia inglesa, emulada en corto tiempo por europeos
continentales y la caja wardiana, contribuyeron, posi-
blemente, a la extinci6n o actual rareza de muchas
species.







GOMEZ P. Orquideas centroamericanas en Inglaterra del siglo XIX


uwEW
FIGURA 9 Arriba, izquierda, Laelia grandis tenebrosa (Rolfe) [Sophronitis tenebrosa (Rolfe) Berg. & Chase]; arriba,
derecha, Zygopetalum mackayi Hooker; abajo, izquierda, Palumbina candida Rchb.f.; abajo, derercha, Eriopsis rutido-
bulbon Hooker. Laminas 467, 427, 490, 377, del Orchid Album de B.S. Williams, sin fecha (Col. del autor).


LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.


i! -









LANKESTERIANA


Cuadro 2. Orquideas Centroamericanas en The Orchid-Grower's Manual.


Nombre en Grower's Manual


Nombre actual


Acineta densa Lindl.
Acropera armeniaca Lindl.
Anoectochilus eldorado hort.
Barkeria lindleyana Batem.*
Barkeria lindleyana Bat. v. centerae Endres & Rchb.f. *
Barkeria melanocaulon Rich. & Gal. *
Barkeria skinneri Batem. *
Barkeria skinneri v. superba hort
Barkeria spectabilis Batem.
Batemania burtii Endres & Rchb.f.*
Batemania wallisii Rchb.f *
Batemania wallisii v. major Rchb.f *
Brassavola acaulis Lindl.
B. dygbiana Lindl.
B. glauca Lindl.
B. lineata Hk.
B. venosa Lindl.
Brassia gireoudiana Rchb.f. & Warsc. *
B. guttata Lindl.
B. lawrenceana Lindl. v. longissima Rchb.f
B. verrucosa Lindl.
B. verrucosa Lindl. v.. ...... .... Wms.
Catasetum scurra Rchb.f.
Cattleya aurea sine auct in opus (Linden?)


C. bowringiana Veitch
C. dowiana Batem. *
C. granulosa Lindl.
C. guatemalensis Moore
C. guatemalensis v. wischusseniana Rchb.f *
C. skinneri Batem. *
C. skinneri Batem. v. alba Rchb.f. *
Chysis ...... -.. Rchb.f
Coelia bella Rchb.f. (sic)
Cycnoches aureum Lindl.
C. barbatum Lindl. *
C. ventricosum Batem.
Cypripedium caudatum Lindl.
C. caudatum f Louxenbourg hort.
C. caudatum Lindl. v. roseum hort.
C. warscewiczii hort.
C. -... '.- ....Warscz. & Rchb.f
C. irapeanum LLlav. & Lex.
Epidendrum aromaticum Batem.

LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.


Acineta densa Lindl. & Paxt.
Gongora armeniaca (Lindl. & Paxt.) Rchb.f
Goodyera sp.
Barkeria lindleyana Batem.
Barkeria lindleyana Batem.
Barkeria lindleyana Batem. ?
Barkeria lindleyana Batem. ?
Barkeria lindleyana Batem. ?
Barkeria lindleyana Batem. ?
Huntleya burtii (Endres & Rchb.f.) Pfitzer
Huntleya burtii (Endres & Rchb.f) Pfitzer
Huntleya burtii (Endres & Rchb.f) Pfitzer
Brassavola acaulis Lindl. ex Pax.
Rhyncholaelia digbyana (Lindl.) Schlechter
R. glauca (Lindl.) Schlechter
Brassavola acaulis Lindl. ex Paxt.
Brassavola nodosa (L.) Lindl.
Brassia gireoudiana Rchb.f. & Warsc.
B. maculata R. Br. in Aiton
B. caudata (L.) Lindl.
B. verrucosa Lindl.
B. verrucosa Lindl.
Clowesia warscewitzii (Lindl.ex Pax.) Dodson
Cattleya dowiana Bat. v. aurea Wms. & Moore,
non Linden fide Williams
C. bowringiana Veitch
C. dowiana Batem.
C. granulosa Lindl.
C. patinii Cogn.
Guarianthe patinii (Cogn.) Dressler & Higgins
Guarianthe skinneri (Bat.) Dressler & Higgins
Guarianthe skinneri v. alba Rchbf
Chysis bractescens Lindley
Coelia bella (Lem.) Rchb.f.
Cycnoches egertonianum Batem.
Mormodes hookeri Lem.
C. ventricosum Baemt.
Cypripedium caudatum Lindl.
Cypripedium caudatum Lindl.
C. caudatum Lindl. v. roseum hort ex Delch.
C. caudatum Lindl. v. roseum hort ex Delch.
P .... ... - .- . .. .. ... (W arscz. & Rchb.f) Rolfe
C. irapeanum LLlav. & Lex.
Encyclia aromatica ( Batem.) Schlechter









GOMEZ P. Orquideas centroamericanas en Inglaterra del siglo XIX


Cuadro 2. Continfia.


Nombre en Grower's Manual


Pag. Nombre actual


E. atropurpureum Willd.
E. atropurpureum Willd. v. roseum Rchb.f.
E. aurantiacum Batem.
E. brassavolae Rchb.f.
E. ciliare L.
E. cnemidophorum Lindl.
E. diotum Lindl.
E. eburneum Rchb.f.
E. endresii Rchb.f. *
E. fragrans Sw.
E. fragrans Sw. v. megalanthum Lindl.
E. mooreanum Rolfe *
E. myrianthum Lindl.
E. myrianthum Lindl. v. album Rchb.f.
E. prismatocarpum Rchb.f
E. pseudepidendrum Rchb.f.
E. radicans Pav. ex Lindl.
E. stamfordianum Bat.
E. verrucosum Sw.
E. vitellinum Lindl.
Galeandra baueri Lindl.
G. dives Rchb.f.
G. harveyana Rchb.f.
G. nivalis hort.
Gongora maculata Lindl.
Ionopsis utricularioides Lindl.
Laelia acuminata Lindl.
Laelia acuminata Lindl. v. rosea hort.
Lycaste cruenta Lindl.
L. deppei (Lodd.). Lindl. v. punctatissima Rchb.f.
L. gigantea Lindl.
L. lasioglossa Rchb.f.
L. schilleriana Rchb.f
L. skinneri (Batem. ex Lindl) Lindl.
L. skinneri (Batem. ex Lindl) Lindl. v. alba hort (sic)
L. skinneri (Batem. ex Lindl) Lindl. f. amabilis Wms.
L. skinneri (Batem. ex Lindl) Lindl. f. armeniaca Sander
L. skinneri (Batem. ex Lindl) Lindl.
L. skinneri (Batem. ex Lindl) Lindl. f. delicatissima Warner
L. skinneri (Batem. ex Lindl) Lindl.
L. skinneri (Batem. ex Lindl) Lindl. f. gloriosa Wms.
L. skinneri (Batem. ex Lindl) Lindl. f. nigro-rubra hort.
L. skinneri (Batem. ex Lindl) Lindl. f. picturata Warner
L. skinneri (Batem. ex Lindl) Lindl. f. picturata Warner


378 E. cordigera (Kunth in H.B.K) Dressler
378 E. cordigera (Kunth in H.B.K) Dressler
378 Guarianthe aurantiaca (Bat.) Dressler & Higgins
379 Prosthechea brassavolae (Rchb.f.) Higgins
380 E. ciliare L.
381 E. cnemidophorum Lindl.
382 Encyclia diota (Lindl.) Schlechter
382 E. eburneum Rchb.f.
383 E. endresii Rchb.f
385 Prosthechea fagrans (Sw.)Higgins
385 P. baculus (Rchb.f.)Higgins
387 Encyclia mooreana (Rolfe) Schlechter
387 E. myrianthum Lindl.
387 E. myrianthum Lindl.
389 Prosthechea prismatocarpa (Rchb.f.) Higgins
389 E. pseudepidendrum Rchb.f.
390 E. radicans Pav. ex Lindl.
392 E. stamfordianum Bat.
E. verrucosum Sw.
394 Prosthechea vitellina (Lindl.) Higgins
403 Galeandra batemanii Rolfe
404 G. batemanii Rolfe
405 G. harveyana Rchb.f.
405 G. nivalis Mast.
407 G. leucochila Lem.?
424 lonopsis utricularioides Lindl.
426 Laelia rubescens Lindl.
426 Laelia rubescens Lindl.
473 Maxillaria cruenta (Lindl.) Lindl.
474 L. deppei (Lodd.). Lindl.
474 Ida gigantea (Lindl.) Ryan & Oakely
475 L. lasioglossa Rchb.f.
476 Ida gigantea (Lindl.) Ryan & Oakely ?
477 L. skinneri (Batem. ex Lindl.) Lindl.
477 L. skinneri (Bat. ex Lindl.) Lindl. v. alba Dombrain
477 L. skinneri (Batem. ex Lindl.) Lindl.
478 L. skinneri (Batem. ex Lindl.) Lindl.
478 L. skinneri (Batem. ex Lindl.) Lindl.
478 L. skinneri (Batem. ex Lindl.) Lindl.
478 L. skinneri (Batem. ex Lindl.) Lindl.
478 L. skinneri (Batem. ex Lindl.) Lindl.
478 L. skinneri (Batem. ex Lindl.) Lindl.
478 L. skinneri (Batem. ex Lindl.) Lindl.
478 L. skinneri (Batem. ex Lindl.) Lindl.

LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.









LANKESTERIANA


Cuadro 2. Continfia.


Nombre en Grower's Manual


Pag. Nombre actual


L. skinneri (Batem. ex Lindl) Lindl. f. purpurea hort.
L. skinneri (Batem. ex Lindl) Lindl. f. reginae Wms.
L. skinneri (Batem. ex Lindl) Lindl. f. rosea Wms.
L. skinneri (Batem. ex Lindl) Lindl. f. roseo-purpurea Wms.
L. skinneri (Batem. ex Lindl) Lindl. f. superba Moore
L. skinneri (Batem. ex Lindl) Lindl. f. vestalis Wms.
L smeeana Rchb.f.
Masdevallia astuta Rchb.f. *
M. attenuata Rchb.f. *
M. costaricensis Rolfe *
M. reichenbachiana Endr&s ex Rchb. *
M triaristella Rchb.f. *
Maxillaria endresii Rchb.f. *
Miltonia endresii Nicholson *
Moorea irrorata Rolfe
Mormodes colossus Rchb.f.
M. igneum Lindl. & Paxt. in Paxt. *
Notylia albida Klotzsch
N. bicolor Lindl.
Odontoglossum bictoniense Lindl.
0. cariniferum Rchb.f
O. cordatum Lindl.
0. krameri Rchb.f. *
0. maculatum LLlav. .
0. oerstedii Rchb.f. *


0. oerstedii Rchb.f. v. majus Wms. *


0. rossii Lindl. v. rubescens Lindl.
0. schlieperianum Rchb.f *


O. uro-skinneri Lindl.
0. williamsianum Rchb.f. *


Oncidium ampliatum Lindl.*
Oncidium ampliatum Lindl v. majus hort. *
0. bicallosum Lindl.


0. carthaginense (Jacq.)Sw. (sic)


0. cavendishianum Batem.


0. cheirophorum Rchb.f.
0. haematochilon Lindl.


LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.


479 L. skinneri (Batem. ex Lindl.) Lindl.
479 L. skinneri (Batem. ex Lindl.) Lindl.
479 L. skinneri (Batem. ex Lindl.) Lindl.
479 L. skinneri (Batem. ex Lindl.) Lindl.
479 L. skinneri (Batem. ex Lindl.) Lindl.
479 L. skinneri (Batem. ex Lindl.) Lindl.
479 L. skinneri X L. deppeifide Ames & Correll
482 Dracula astuta (Rchb.f.) Luer
482 M. attenuata Rchb.f.
486 M. reichenbachiana Endr&s ex Rchb. ?
500 M. reichenbachiana Endr&s ex Rchb.
505 Trisetella triaristella (Rchb.) Luer
509 Maxillaria endresii Rchb.f
519 Miltoniopsis warszewicsii (Nichols.) Garay & Dunst.
528 Neomoorea irrorata Rolfe
531 Mormodes colossus Rchb.f
531 M. igneum Lindl. & Paxt. in Paxt.
536 Notylia barkeri Lindl.
536 Macroclinium bicolor (Lindl.) Dodson
541 Rhynchostele bictoniensis (Lindl.) Soto A. & Salazar
543 Oncidium cariniferum (Rchb.f.) Beer
548 Rhynchostele cordata (Lindl.) Soto Arenas & Salazar
571 Ticoglossum krameri (Rchb.f.) Halbinger
577 Rhynchostele maculata (Lex.) Soto Arenas & Salazar
581 Ticoglossum oerstedii (Rchb.f.)Rodriguez ex
Halbinger (Lucas Rodriguez in errore!)
581 Ticoglossum oerstedii (Rchb.f.)Rodriguez ex
Halbinger
590 Rhynchostele rossii (Lindl.) Soto Arenas & Salazar
591 P. ... .. . .. . ........ (Rchb.) Garay &
Kennedy
593 Rhynchostele uro-skinneri (Lindl.)Lindl.
597 Rossioglossum williamsianum (Rchb.) Garay &
Kennedy
599 Oncidium ampliatum Lindl.
599 Oncidium ampliatum Lindl.
601 Trichocentrum bicallosum (Lindl.) Chase &
Williams
603 Trichocentrum carthagenense (Jacq.) Chase &
Williams
602 Trichocentrum cavendishianum (Batem.) Chase &
Williams
603 0. cheirophorum Rchb.f.
612 Trichocentrum sp. aff. carthagenense (Jacq.) Chase
& Williams ?









GOMEZ P. Orquideas centroamericanas en Inglaterra del siglo XIX


Cuadro 2. Continuia.


Nombre en Grower's Manual


Pag. Nombre actual


0. kramerianurm Rchb.f.
0. kramnerianurm Rchb. v. resplendens Rchb.f.
0. leucochilumn Batem.
0. luridum Lindl.
0. ornithorhynchum Kunth
0. ornithorhynchum Kunth v. albiflorum Rchb.f.
0. roseum Loddiges


0. roseum Loddiges v. superbum hort.


0. sphacelatum Lindl.
0. splendidum A. Rich. (sic)


0. tigrinum La Llave & Lex.
0. warsczewicsii Rchb.f. *
0 wentworthianum Batem.
Palumbina candida Rchb.f
Peristeria cerina Lindl.
P. elata Hooker
Pescatorea cerina Rchb.f
Pleurothallis lamprophyllum Rchb.f sic
P. leucopyramis Rchb.f.
Polycycnis gratiosa Endres & Rchb.f.*
Schomburgkia tibicinis Batem.
Sobralia leucoxantha Rchb.f. *
S. lucasiana hort.
S. macrantha Lindl.
S. sanderae Rolfe
S. wilsoniana Rolfe
Stanhopea ecornuta Lemaire
S. graveolens Lindl.
S. saccata Batem.
S. wardii Loddiges
Trichocentrum pfavii Rchb.f.
Trichopilia crispa Lindl.
Trichopilia crispa Lindl. v. marginata Warner
Trichopilia marginata v. lepida Veitch *
Trichopilia suavis Lindl. *
Trichopilia suavis Lindl. v.alba hort.*
Trichopilia suavis Lindl. v. ..,.. '* ..... hort.*
Warsczewiczella aromatica Rchb.f *
W wendlandii Rchb.f *


615 Psychopsis krameriana (Rchb.) Jones
615 Psychopsis krameriana (Rchb.) Jones
618 0. leucochilum Bat. ex Lindl.
620 Trichocentrum luridum (Lindl.) Chase & Williams
625 0. ornithorhynchum Kunth
0. ornithorhynchum Kunth v. albiflorum Rchb.f
629 Trichocentrum sp. aff. carthagenense (Jacq.) Chase
& Williams
629 Trichocentrum sp. aff. carthagenense (Jacq.) Chase
& Williams.
630 0. sphacelatum Lindl.
631 0. tigrinum LLlav. & Lex. v. splendidum (Rich. ex
Duch.) Hooker f
633 0. tigrinum La Llave & Lex.
636 0. warsczewicsii Rchb.f.
636 0 wentworthianum Batem. ex Lindl.
640 P. candida (Lindl.) Rchb.f
643 Peristeria cerina Lindl.
644 P. elata Hooker
646 Pescatorea cerina (Lindl. & Paxt.) Rchb.f.
687 Pleurothallis dolichopus Schlechter
687 Specklinia leucopyramis (Rchb.f.) Luer
689 Polycycnis gratiosa Endres & Rchb.f.
708 Schomburgkia tibicinis (Bat.) Batem.
712 Sobralia leucoxantha Rchb.f.
712 S. xantholeuca hort ex B.S.Wms. ?
713 S. macrantha Lindl.
714 S. wilsoniana Rolfe
714 S. wilsoniana Rolfe
721 Stanhopea ecornuta Lemaire
721 S. graveolens Lindl.
723 S. saccata Batem.
725 S. wardii Lodd. ex Lindl.
731 Trichocentrum pfavii Rchb.f.
733 Trichopilia x crispa Lindl.
734 Trichopilia marginata Henfr.
736 Trichopilia marginata Henfr.
736 Trichopilia suavis Lindl.
736 Trichopilia suavis Lindl.
736 Trichopilia suavis Lindl.
756 Cochleanthes aromatica (Rchb.f.)Schultes & Garay
757 Cochleanthes aromatica (Rchb.f.)Schultes & Garay


* Especies recogidas en Costa Rica


LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.









LANKESTERIANA


LITERATURE CITADA

Aiton, W. 1789. Hortus Kewensis. George Nicol, Londres,
3 vols. 547 p.
Allen, D.E. 1969. The Victorian Fern Craze. A history of
Pteridomania. Hutchinson. 83 p.
Allen, P.H. 1949. Orchidaceae in R. Woodson & R.
Schery (eds) Flora of Panama, Ann. Missouri Bot. Gard.
36(1): 1-132, 36(2): 133-245.
Ames, 0. 1937. Orchidaceae in P. Standley (ed.) Flora of
Costa Rica. I. Field Mus. Nat Hist. Bot. Ser. 391, pp.
197-306.
Ames, 0. & D.S. Correll. 1952. Orchids of Guatemala.
Fieldiana, Bot. 26(1).
Ames, 0. & D.S. Correll. 1953. Orchids of Guatemala.
Fieldiana, Bot. 26(2).
Barber, L. 1980. The Heyday of Natural History.
Doubleday & Co., New York. 320 p.
Bernal, J. D. 1983. Science in History. 2. The Scientific
and Industrial Revolutions. M.I.T. Press, 6a. Ed., pp.
509-679.
Coleman, W. 1977. Biology in the Ninthteenth Century.
Cambridge. 187 p.
Dresser, R. L. 1980. Checklist of the Orchids of Panama.
Monogr. Syst. Bot. Missouri Bot. Gard. 4: I-XXVI.
Dresser, R. L. 1993. Field Guide to the Orchids of Costa
Rica and Panama. Comstock Publ. Assoc. 374 p.
Dresser, R. L. 2003. Orchidaceae in B. Hammel et al.
(eds.) Manual de Plantas de Costa Rica. Missouri Bot.
Gard.. 3: 1-595.
Hamer, F. 1974a. Orquideas de El Salvador. I. Min. Educ.
Publica San Salvador. 374 p.
Hamer, F. 1974b. Orquideas de El Salvador. II. Min. Educ.
Publica San Salvador. 426 p.
Hamer, F. 1981. Orquideas de El Salvador. III. Min. Educ.
Publica San Salvador. 320 p.
Hamer, F. 1982. Orchids of Nicaragua. 1-2. Icon. Pl. Trop.
7-8, lams. 601-800.
Hamer, F. 1983. Orchids of Nicaragua. 3. Icon. Pl. Trop. 9,
lams. 801-900.


Hamer, F. 1984a. Orchids of Nicaragua. 4. Icon. Pl. Trop.
11, lams. 1001-1100.
Hamer, F. 1984b. Orchids of Nicaragua. 5. Icon. Pl. Trop.
12, lams. 1201-1300.
Hamer, F. 1985. Orchids of Nicaragua. 6. Icon. Pl. Trop.
13, lams. 1301-1400.
Hamer, F. 1988. Orchids of Central America. Selbyana 10
(Supl.). 430 p.
Hamer, F. 1990. Orchids of Central America. Selbyana 11
(Supl.) 423-860.
Hamer, F. 2001. Orchidaceae in W.D. Stevens et al. (eds.)
Flora de Nicaragua. Mon. Syst. Bot. Missouri Bot. Gard.
85: 1612-1860.
Hawkes, A.D. 1965. Encyclopaedia of Cultivated Orchids.
Faber, Londres. 602 p.
Morton, A.G. 1981. History of Botanical Science.
Academic Press, Londres. 474 p.
Musgrave, T. & Musgrave, W. 2000. An Empire of Plants.
Cassell & Co., Londres. 191 p.
Nordenski6ld, E. 1928. The History of Biology. Tudor
Publ., New York. 629 p.
Ossenbach, C. 2003. Breve historic de la orquideologia en
Costa Rica. Editorial de la universidad de Costa Rica,
San Jose. 97 p.
Pupulin, F. 2002. Catalogo revisado y anotado de las
Orchidaceae de Costa Rica. Lankesteriana 4: 1-88.
Schiebinger, L. 2004. Plants and Empire. Harvard, 306 p.
Reinikka, M.A. 1995. A History of the Orchid. Timber
Press, Portland. 324 p.
Singer, Ch. 1950. A History of Biology. Schuman, New
York. 579 p.
Veitch, J. 1906. Hortus Veitchii. Edici6n privada. Londres.
542 p.
Warner, R. & Moore, Thomas (eds). 1882-1897. B.S.
Williams' Orchid Album. Londres, 11 vols.
Williams, B.S. & Williams, H. 1894. The Orchid Grower's
Manual. 7a edici6n. Londres. 796 p.
Williams, L.O. 1946. Orchidaceae in R. Woodson & R.
Schery (eds.) Flora of Panama. Ann. Missouri Bot.
Gard. 33(1): 1-140, 33(4): 315- 404.


LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.








LANKESTERIANA 7(3): 493-496. 2007.


GENETIC RELATIONSHIPS OF PHRAGMIPEDIUM SPECIES
(ORCHIDACEAE) USING AMPLIFIED FRAGMENT LENGTH
POLYMORPHISM (AFLP) ANALYSIS


MANUEL RODRIGUEZ SALAS12, JORGE BENAVIDES RANILLA' & JOSE R. ESPINOZA'

'Molecular Biotechnology Unit, Laboratories for Research & Development (LID)
Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430 Lima 31, Peril
2Author for correspondence: manuel rodsa@hotmail.com


ABSTRACT. The objective of this study is to evaluate the genetic relationships of eight Peruvian species of
the genus Phragmipedium using amplified fragment length polymorphisms and a phenetic analysis
(UPGMA). The analysis showed that the species are phenetically grouped in four large clusters. The first
cluster includes species from the Himantopetalum (P. pearcei and P. richteri) and Lorifolia (P. boissieri-
anum) sections. The second cluster comprised the species of the Micropetalum section (P. besseae and P.
schlimii). The third one included P. kovachii in the Schluckebieria section. The fourth cluster contains
species of the Phragmipedium (P. caudatum and P. wallisii) section. The results show that AFLP analysis is
a powerful genetic tool for the analysis of the taxonomy of orchids from the diverse and complex
Phragrnipedium genus.

RESUMEN. El present studio tiene como objetivo evaluar la diversidad y distancia genetica de 8 species
del g6nero Phragmipedium usando la t6cnica de amplified fragment length polymorphisms (AFLP) y el
m6todo de analisis fen6tico (UPGMA). Las species son agrupadas feneticamente en cuatro clusters mayo-
res. El primer cluster comprende species de las secciones Himantopetalum (P. pearcei y P. richteri) y
Lorifolia (P. boissierianum). El segundo cluster incluye las species de la secci6n Micropetalum (P. besseae
y P. schlimii). El tercer cluster contiene a la especie de la secci6n Schluckebieria (P. kovachii). El cuarto
cluster contiene a las species de la secci6n Phragmipedium (P. caudatum y P. wallisii). Los resultados
muestran que AFLP es una herramienta genetica poderosa para el analisis taxon6mico del divers y com-
plejo g6nero Phragmipedium..
KEY WORDS: Orchidaceae, DNA markers, Phragmipedium, Phragmipedium kovachii, AFLP,
Fingerprinting.


Introduction
The orchid genus Phragmipedium Rolfe comprises
species distributed in six sections including;
Phragmipedium, Himantopetalum, Platypetalum,
Lorifolia, Micropetalum, and Schluckebieria.(Gruss
2003; Braem 2004).
Concerns about the taxonomic placement of some
species in this genus have frequently been raised in
this genus, since some accessions show morphologi-
cal characteristics that are intermediate between dif-
ferent species. Improvements in the understanding of
taxonomic relationships are likely to occur with the
extensive analysis of molecular markers that unravel
the genetic relationships and allow us to produce a
phylogeny of the new species, thus aiding the identi-
fication of varieties.


Analysis of the genetic diversity of endangered plant
species is one of the key elements in the estimation of
the viability of its populations, and in the establish-
ment of efficient in situ as well as ex situ preservation.
The AFLP (amplified fragment length polymor-
phism) method (Vos et al. 1995) is a valuable DNA-
based technique that informs about multiple polymor-
phic anonymous loci, generally in the nuclear genome
of a species and can be used to determine genetic
diversity in many plant species, particularly when
there are few characterized molecular genetic markers
(Mackil et al.1996; Segovia-Lerma et al. 2003;
Nguyen et al. 2004)
The objective of this study was to evaluate genetic
distance among 8 species of genus Phragmipedium
by using AFLP analysis








LANKESTERIANA


Materials and Methods

PLANT MATERIAL. Plants were maintained under
greenhouse conditions in the orchid collection at
Peruanino Nursery (Vivero Peruanino) located in San
Ramon, Region Junin. The plants were labeled by
assigning an individual code in order to keep them
identified. For this work, permission was granted to
collect simples from registered plants by the Peruvian
authority of Natural Resources (INRENA). We col-
lected young leaves from the plants and kept them at -
70C in the lab until use.
Our study comprises eight species corresponding to
five of the six sections of Phragmipedium genus: P.
pearcei, P. besseae, P. boissierianum, P. caudatum,
P. wallisii, P. richteri, P. schlimii and P. kovachii.

DNA ISOLATION. DNA was isolated from 4-5 grams
of plant material. DNA extraction was performed as
described by Doyle and Doyle (1990) and Ghislain et
al. (1997).

AFLP ANALYSIS. AFLP analysis and the bands on gel
were visualized by silver staining method. (Vos et al.
1995; Ghislain et al. 1997). AFLP analysis was con-
ducted as follow: 0.5 mg of genomic DNA was
digested simultaneously by two restriction enzymes
EcoRI and Msel( for 3 h and 15 min at 37 oC).
Following heat inactivation of the restriction enzymes
(70 oC), the DNA digested was ligated with EcoRI
and Msel adapters for 3 h at 20 oC to generate tem-
plate DNA for amplification. 20 ng of the template
DNA generated were first pre-amplified by PCR: 1
cycle (72 oC for 1 min), 26 cycles (94 oC for 30 sec,
56 oC for 1 min, 72 oC for 1 min), 1 cycle (72 oC for
5 min) and 4 oC using EcoRI and Msel primers with
one selective nucleotide. The selective amplification
AFLP reactions were performed using two primers
Msel and EcoRI with three selective nucleotides by
PCR: 1 cycle (94 oC for 2 min, 65 oC for 20 sec, and
72 oC for 2 min), 12 cycle (94 oC for 30 sec, 65 C
for 30 sec, and 72 oC for 2 min), 20 cycle (94 oC for
30 sec, 56 oC for 30 sec, and 72 oC for 1 mmin) and 4
oC, the selective amplification reactions were per-
formed with 18 primer combinations acquired from
InvitrogenTM. (EcoRI 36/Msel 48, EcoRI 36/Msel 55,
EcoRI 38/MseI 60, EcoRI 36/Msel 60, EcoRI
38/Msel 50, EcoRI 36/Msel 50, EcoRI 35/Msel 55,
EcoRI 35/Msel 60, EcoRI 38/MseI 55, EcoRI

LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.


FIGURE 1. The AFLP fragments in denaturing polyacry-
lamide gel of orchids species from genus
Phragmipedium: 1. P. pearcei; 2. P. richteri; 3. P.
boissierianum; 4,8. P. besseae; 5. P. wallisii; 6. P. cau-
datum; 7. P. kovachii; 9. P. schlimii.

35/Msel 50, EcoRI 38/Msel 48, EcoRI 42/Msel 50,
EcoRI 35/Msel 48, EcoRI 42/Msel 55, EcoRI
40/MseI 50, EcoRI 31/Msel 60, EcoRI 45/MseI 60,
EcoRI 45/Msel 45) (Fig. 1).

DATA ANALYSIS. AFLP products were scored as the
presence (1) or absence (0) of bands in each species
to form a binary matrix. Only AFLP fragments that








RODRIGUEZ et al. Genetic relationships of Phragmipedium


SECTION


pearcei ]

richteri

boissierianum

besseae

schlimii

kovachii

caudatum

wallisii


Himantopetalum



Lorifolia


Micropetalum



Schluckebieria


Phragmipedium


Coefficient


FIGURE 2. UPGMA dendogram of genetic relationships among 8 species in 5 sections of Phragmipedium based on genet-
ic distance coefficients using AFLP markers.


could be scored unambiguously were included in the
analysis. The genetic distance matrix was obtained
using the genetic distance described by Jaccard
(Sokal 1963), and used to construct a UPGMA tree.
The analyses were performed using the NTSYS pro-
gram software.

Results
The AFLP analysis of the orchid species were per-
formed by using 18 primer combinations that ampli-
fied a total of 732 bands (220 bands for P. pearcei,
259 P. besseae, 169 P. boissierianum, 303 P. cauda-
turn, 283 P. wallisii, 229 P. richteri, 250 P. schlimii
and 311 P. kovachii). The genetic distance among the
species determined by UPGMA analysis is shown in
Figure 2. The species included in 5 sections were
grouped into four major clusters. The first cluster
comprised species of the sections Himantopetalum
(P. pearcei and P. richteri) and Lorifolia (P.
boissierianum), the second one comprised the species
analyzed of the sections Micropetalum (P. besseae
and P. schlimii), the third group contained P. kovachii
of the section Schluckebieria, and the fourth group
comprised P. caudatum and P. wallisii both of the
section Phragmipedium.


Discussion
The results suggest that AFLP is a very useful tech-
nique for a rapid analysis of the genetic distance of
the Phragmipedium species, in which there are no
well characterized molecular genetic markers, such as
microsatellites and SNPs. The sections Micropetalum
and Schluckebieria were separated on the basis of the
differences (among others) of the size of the flowers
between P. kovachii and other of the species from
section Micropetalum (Braem 2004), but this taxo-
nomical classification was not supported by ITS
sequence analysis (Damian et al. 2005). Despite
using a single accession from each species, the group-
ing based on multiple anonymous genetic markers
produced by AFLP supported the tentative inclusion
of P. kovachii within section Schluckebieria which is
in agreement with the previous taxonomical analysis
based on phenotype (Braem 2004). However, this
classification still requires further analysis with more
accessions for each species before well-supported
inferences may be made and with that in mind we are
currently developing a semi-automated AFLP analy-
sis of orchids using a capillary DNA sequencer.
Phragmipedium kovachii is a recently discovered
species endemic to Peru, where it is apparently

LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.









LANKESTERIANA


restricted to the Region of San Martin (Atwood et al.
2002; Christenson et al. 2002). This species is in dan-
ger of extinction, and classified as vulnerable by
CITES, due to the indiscriminate extraction. AFLP
analysis is a potential tool to aid in studies aimed at
conservation of vulnerable orchid species such as P.
kovachii, since DNA markers are valuable in provid-
ing information on genetic diversity of populations
and to implement traceability of collected species.

ACKNOWLEDGMENTS. This project was supported by a
grant from Fondo Concursable, Vicerrectorado de
Investigaci6n, Universidad Peruana Cayetano Heredia. We
are grateful to Dr. Marc Ghislain of the International
Center of Potato.


LITERATURE CITED
Atwood, J.T., S. Dalstrom & R. Fernandez. 2002.
Phragmipedium kovachii, A new species from Peru.
Selbyana 23 (Supplement): 1-4.
Braem, G. 2004. Phragmipedium kovachii, Schluckebieria
nouvelle section du genre Phragmipedium et reflex-
ions sur les pratiques taxinomiques. Richardiana 4: 89-
102.
Christenson, E. 2002. Phragmipedium peruvianum.
Orchids 6: 620-622.


Damian, M., N. Williams & M. Whitten. 2005.
Phragmipedium kovachii Molecular systematics of a
New World orchid. Orchids 2: 132-137.
Doyle, J.J. & J.L. Doyle. 1990. Isolation of plant DNA
from fresh tissue. Focus 12(1): 13-15.
Ghislain, M., D. Zhang & R. Herrera. 1997. Protocolos de
Biologia Molecular Tipificaci6n Gen&tica. Centro
International de la Papa (CIP). Departamento de
Recursos Gendticos. Manual De Capacitaci6n. Periu.
Gruss, 0. 2003. Cheklish of the genus Phragmipedium.
Orchid Digest 67(4):213-241.
Mackil, D., Z. Zhang., E. Redona & P. Colowit. 1996.
Level of polymorphism and genetic mapping of AFLP
markers in rice. Genome 39:969-977.
Nguyen, T.T., P. Taylor., W.J. Redden & R. Ford. 2004.
Genetic diversity estimates in Cicer using AFLP analy-
sis. Pl. Breeding 123: 173-179
Segovia-Lerma, A., R.G. Cantrell., J.M. Conway & I.M.
Ray. 2003. AFLP-based assessment of genetic diversity
among nine alfalfa germplasms using bulk DNA tem-
plates. Genome 46(1):51-58(8).
Sokal, R & P. Sneath. 1963. Principles of Numerical
Taxonomy. W.H. Freeman & Company. San Francisco.
USA.
Vos, P., R. Hogers., M. Blleker., M. Reijans., T. Van der
Lee., M. Homes., A. Frijters., J. Pot., J. Peleman., M.
Kuiper & M. Zabeau. 1995. AFLP: A new technique for
DNA fingerprinting. Nucleic Acids Res. 23: 4407-4414.


LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.








LANKESTERIANA7(3) : 497-501. 2007.


PRASOPHYLLUM AND ITS ASSOCIATED MYCORRHIZAL FUNGI


EMILY MCQUALTER1'2'3'4, ROB CROSS2, CASSANDRA B. MCLEAN' & PAULINE Y. LADIGES3

'School of Resource Management, Burnley Campus, The University of Melbourne,
500 Yarra Boulevard Richmond, Victoria, Australia, 3121
2Royal Botanic Gardens Melbourne, Birdwood Avenue, South Yarra, Victoria, Australia, 3141
3School of Botany, The University of Melbourne, Parkville, Victoria, Australia, 3052.
4Author for correspondence: e.mcqualter@pgrad.unimelb.edu.au


KEY WORDS: mycorrhizal fungi, isolation, P'. -...; -.i ... protocorm development, Ceratobasidium


In Victoria, there are over 330 taxa of orchid and
at least half of those are threatened. The potential
extinction of many of these orchids is largely due to
habitat destruction caused by degradation from agri-
culture, industrial development and urbanisation.
Effective conservation ultimately depends on the rein-
troduction to field sites to reinforce depleted popula-
tions. For terrestrial orchids, seed germination is the
preferred method of propagation as it allows genetic
variability to be maintained (Batty et al. 2006).

The Genus Prasophyllum

The genus Prasophyllum currently consists of
approximately 80 recognized species in Australia and 4
species in New Zealand (Jones, 1998). Within Australia,
there are two centres of diversity for the genus, south-
western Australia with 25 species (23 endemic) and
southeastern Australia with 50 species. Within south-
eastern Australia, 30 species occur in Victoria. Most
Prasophyllum species are threatened and restricted in
distribution and overall, it is one of the most poorly
known native orchid genera. (Bishop 1996).
Prasophyllum species are obligate mycotrophic
plants and current conservation protocols for terrestri-
al orchids in Australia require propagation with sym-
biotic mycorrhizal fungi. Unfortunately, there is a
paucity of knowledge regarding the mycosymbionts
in this genus, hampering conservation and re-intro-
duction efforts. Therefore, before recovery plans can
be implemented for Prasophyllum, basic biological
information is required about the nature of the mycor-
rhizal relationship.
This study used two threatened Prasophyllum
species endemic to Victoria: Prasophyllum sp. aff.


validum (Figure 1. A) and Prasophyllum diversiflo-
rum (Gorae Leek-orchid) (Figure 2. A & B), both
from southwestern Victoria. P. sp. aff. validum
grows in a low open grassy heathland and P. diversi-
florum grows in open areas along watercourses and
around swamp margins in heavy black loams that are
inundated seasonally (Backhouse & Jeanes 1995).
First discovered in 1941 at Gorae West near Portland,
the type location was lost to agriculture in 1948,
destroying all known plants. The species was redis-
covered in the summer of 1983/84 (Backhouse &
Jeanes 1995) at a roadside-river crossing, and in the
adjacent paddock, where several hundred plants were
identified. It is known from six isolated populations
in southwest Victoria, four of the six populations con-
tain up to 200 plants while the other sites contain
fewer than 20 plants.

Removal of plants

Due to the vulnerable and endangered status of P.
sp. aff. validum and P. c ,..,a .i..... respectively,
collections were restricted to 16 plants of each
species, four from each growth period.
A 50 meter north-south transect was set out at the
Deep Lead cemetery where P. sp. aff validum had
been observed during the previous flowering season.
Sixty-nine plants of P. sp. aff. validum were tagged
with metal pins each securing one or more swivel
tags engraved with an identity mark 10cm east of the
growing plants. Plants were only included if they still
had the previous years flowering stalks attached, so
as to confirm the species identification. The numbers
and location of plants were recorded for future moni-
toring. As the Hotspurs population has been moni-








LANKESTERIANA


FIGURE 1. Prasophyllum sp. aff. validum. A. Habit. Photo: DSE. B. Peletons visible in the root section of P. sp. aff
validum. Photo: E. McQualter. C. Early protocorm development. Photo: E. McQualter. D. Developing seedling.
Photo: E. McQualter.

tored for a number of years by the Department of was indented with a hand shovel around each plant
Sustainability and Environment (DSE), tagging was and dug to a depth of 10-15cm. The entire plug con-
not required of P. diversiflorum. training above and below ground regions was carefully
Each plant was removed as follows: a 10cm circle lifted and placed into a zip-lock bag with surrounding


LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.








McQUALTER et al. Prasophyllum and its associated mycorrhyzal fungi


FIGURE 2. Prasophyllum diversiflorum. A. Habit. Photo: DSE. B. Habit with pollinating insect. Photo: DSE. C. Healthy
(lower left) and digested (upper right) peletons in a root section of P. diversiflorum. Photo: E. McQualter. D. Seed
swelling with rhizoid formation. Photo: E. McQualter.

soil and transported to the laboratory within 24hrs. in deionised water for ten minutes. Two of the plants
Plants were removed from zip-lock bags and the were cut transversely into 8 regions (Root tips, Root,
underground sections cleaned in running tap water Root connection, Tuber, Stem, Bottom leaf, Mid Leaf
until all soil was removed, the plant was then rinsed and Top leaf), then cut into sections each 2mm thick.


LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.








LANKESTERIANA


Each section was further cut into 1 mm thick longitu-
dinal and transverse sections for light and scanning
electron microscopy. The remaining plants were cut
into 8 regions as before and prepared for fungal isola-
tion. The soils plugs that remained were kept in the
refrigerator at 4C for ex situ seed baiting trials.

Preparation for Microscopy

Cut sections were prepared for scanning electron
microscopy (SEM) and Light Microscopy (LM) by
fixing and rinsing with 2.5% glutaraldehyde and 0. 1
M Phosphate buffer at pH 7.4 for two hours (modi-
fied from Beyrle et al. 1995). Sections were then
washed in 0.2 M Phosphate buffer at pH 7.4 for 10
minutes repeated three times. Sections were then
postfixed with 2% osmium tetroxide (OsO4) and 0.2
M Phosphate buffer at pH 7.4 for 2 hours and rinsed
in 0.2 M Phosphate Buffer three times for 20 minutes
each time. The samples were then dehydrated in an
ethanol series (10, 20,30, 50, 70, 90, 100%) for 15
minute, at each concentration with three additional
changes in dry ethanol.

Scanning Electron Microscopy

Underground plant parts were collected for myc-
orrhizal isolation and SEM studies. Mycorrhizal fungi
were to be isolated from adult plants at four times
during 2006: soon after leaves appear following sum-
mer, during the period of flower bud growth (winter),
while flowering (summer) and as the fruit developed
(summer). Due to the current severe drought condi-
tions in Australia, the plants at both populations
failed to produce flowers and thus fruit in 2006.
Collection were therefore made at three stages, i)
soon after leaves appeared, ii) the period of flower
bud growth and iii) dormancy (summer). SEM has
been used to determine the location, type and amount
of mycorrhizal colonisation.
The SEM study has shown that the area of fungal
colonisation in both species occurs in the roots as in
Ramsay et al. 1986, in particularly the mid to upper
root sections, not in the growth tip. The colonisation
primarily occurs in the cortical and velamen cells
(Figure 1. B), as the fungi enter the orchid through
the epidermis and form balls of hyphae known as
peletons inside the cells (Figure 2. C).

LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.


Fungal Isolations

Under aseptic conditions, sectioned field material
was sterilised for four minutes with 0.5% NaC1 were
examined with x40 magnification using a black back-
ground in sterile water. The sections were then cut
longitudinally into 5-6 slices. Using the back of a
scalpel blade, the slices were rubbed to release the
peletons and transferred i R.,,c.,,,i et al. 1990) to
individual FIM medium (Clements & Ellyard 1979)
with a small amount of water, using a separate glass
pipette for each section i R.im.,. et al. 1986). Plates
were then sealed and placed in a biological control
cabinet. The plates were examined after one week for
hyphal growth.
Fungal isolates from all plants were tested for
their ability to germinate seed on oats media with dif-
fering sucrose levels (0 grams, 2 grams, 4 grams and
10 grams). One fungal isolate from P. diversiflorum
isolated at leaf emergence germinated a low number
of p. sp. validum seed. Fungi isolated from plants dur-
ing flower budding have successfully germinated
seed from both species' corresponding seed. Within
two months of the seed germination trials the proto-
corms developed green leaves (Figure 1. C & D,
Figure 2. D).

Fungal Morphology

The morphology of the fungi is similar in both
species. According to Warcup (1981), the fungi asso-
ciated with Prasophyllum have been found to be
basidiomycetes belonging to the genus
Ceratobasidum, species cornigerum. Genetic
sequencing of all fungal isolates from plants of P. sp.
validum and P. diversiflorum identified at least two
symbionts, Rhizoctonia sp. and Ceratobasidium
cornigerum along with other soil fungi. Further
research will use molecular techniques to determine
further fungal identity.



ACKNOWLEDGMENTS. We would like to acknowledge the
generous funding of the Australian Orchid Foundation, the
Australian Biological Resources Study, The School of
Botany and the Holsworth Wildlife Research Endowment.
We also acknowledge the Department of Sustainability
and Environment.









McQUALTER et al Prasophyllum and its associated mycorrhyzal fungi


LITERATURE CITED
Batty, A.L., M.C. Brundrett, K.D. Dixon & K.
Sivasithamparam. 2006. New Methods to Improve
Symbiotic Propagation of Temperate Terrestrial
Orchid Seedlings from Axenic Culture Soil. Austral. J.
Bot. 53: 367-374.
Clements, M. & R. Ellyard. 1979. The symbiotic germina-
tion of Australian terrestrial orchids. Amer. Orchid
Soc. Bull. 48: 810-815.
Jones, D.L. 1998. Contributions to Tasmanian
Orchidaceae- 6: a Taxonomic Review of Prasophyllum
R.Br. in Tasmania. Austral. Orchid Res. 3: 94-134.
Ramsay, M.M., Dixon, K.W. & Siasithamparam, k.
(1986). Patterns of infection and endophytes associat-
ed with Western Australian orchids, Lindleyana 1:
203-214.


Rasmussen, H.N., T.F. Andersen & B. Johansen. 1990.
Temperature sensitivity of in vitro germination and
seedling development of Dactylorhiza majalise
(Orchidaceae) with and without a mycorrhizal fungus.
P1. Cell Environm. 13: 171-177.
Rasmussen, H. 1986. Cell differentiation and mycorrhizal
infection in Dactylorhiza majalis (Rchb. F.) Hunt &
Summerh. (Orchidaceae) during germination in vitro.
New Phytologist, 116: 137-147.
Warcup, J.H. 1981. The Mycorrhizal Relationships of
Australian Orchids. New Phytologist 87: 371-381.
Backhouse, G.N. & J. Jeanes. 1995. Orchids of Victoria.
Bishop, T. 1996. Field guide to the Orchids of New South
Wales and Victoria, 2nd edn. University of New South
Wales, Sydney.


LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.








LANKESTERIANA








LANKESTERIANA 7(3) : 503-507. 2007.


MORPHOLOGICAL CHARACTERIZATION
OF THE ARTIFICIAL HYBRID BETWEEN STANHOPEA COSTARICENSIS
AND STANHOPEA CIRRHATA (ORCHIDACEAE)

WILLIAM RAMIREZ' & GUSTAVO ROJAS2'3

'Emeritus Professor, Facultad de Ciencias Agroalimentarias, Universidad de Costa Rica
2Jardin Botanico Lankester, Universidad de Costa Rica
'Escuela de Biologia, Universidad de Costa Rica

ABSTRACT: We report the production of a hybrid between Stanhopea costaricensis and S. cirrhata by artifi-
cial pollination. The hybrid plant and flowers are described. The flowers were normal and inherited mor-
phological characteristics of both parent species. It is postulated that species of plants, like in the genus
Stanhopea, that have very specific pollinators, have not evolved genetic mechanisms of isolation.

RESUMEN: Se informa sobre la producci6n de plants hibridas entire Stanhopea costaricensis y S. cirrhata,
por medio de polinizaci6n manual. Se describe el hibrido obtenido. Las flores del hibrido eran normales y
heredaron caracteristicas de ambas species madre. Se postula que species de plants que dependent de
polinizadores muy especificos, como en el g6nero Stanhopea, no han evolucionado mecanismos gen&ticos
de aislamiento.

KEY WORDS / PALABRAS CLAVE: Orchidaceae, Stanhopea costaricensis, Stanhopea cirrhata, hybridization,
artificial pollination.


Stanhopea costaricensis Rchb. f. has large and
conspicuous flowers with purple ring spots, born on
pendulous, several-flowered inflorescences. Its geo-
graphical distribution spans from El Salvador to
Panama (Jenny 1993). This species is related to S.
cirrhata Lindl., which ranges from Nicaragua to
Panama (Jenny 1993). Stanhopea cirrhata has
geminate, lateral inflorescences. Both species
belong to morphologically separated Stanhopea
groups which differ especially in the morphology
and size of the labellum. The lip of S. costaricensis
has long horns, while S. cirrhata lacks them. Both
species are geographically isolated by mountain
ranges in Costa Rica and Panama; S. costaricensis
is found in the Atlantic watreshed, at mid and low
altitudes, while S. cirrhata is found in the lowlands
and altitude range of the Pacific side (Jenny 1993).
Both species are pollinated by euglossine male bees
(Dressler 1967).
Flowers of S. costaricensis were manually polli-
nated with pollinia of S. cirrhata, in September
2000. The parent plants were cultivated in the gre-
enhouse of one of the authors (WR) in Santo
Domingo de Heredia (9058'46.23"N, 84o41.52'


14"W). Capsules matured at the start of year 2001.
Seeds from one capsule were cultivated in vitro in
the laboratory of Ing. Yolanda Chaverri Jimenez.
Several seedlings were planted in individual pots
containing arborescent fern roots as a substratum, in
the greenhouse mentioned before, and two plants
bloomed in October 2005. The floral characteristics
of the hybrid flower, as well as those of the parent
species, are illustrated (Fig. 1-3). The morphology
of a hybrid plant and the flower are described
herein:

Stanhopea costaricensis x cirrhata

Plant epiphytic with creeping rhizome and clus-
tered growths. Pseudobulbs oval, always unifoliate.
Leaves coarse and leathery, petiolate, lanceolate,
plicate and acute, 30-35 cm long, 10-15 cm wide,
petiole 10-15 cm long, round in cross section with
one side notched. Inflorescence directed downwards
from the base of the bulb, up to 10 cm long and
two-flowered; entire inflorescense covered by large,
spread out broadly triangular and acute bracts.
Flowers 5-7 cm large, sepals and petals beige with
dispersed red spots, standing closer towards the








LANKESTERIANA


tIGURE 1. Manhopea costaricensis x Mannopea cirrlzata: A Mlower. 1i -Lip (tront view). (L Lip (dorsal vew). 1) Lip
dissected. E Column. F Anther cap, two views. G Pollinarium. Scanned by Gustavo Rojas.


base; lip gold yellow with fine red dots and a small
eyespots; column white with fine red spots. Dorsal
sepal oval, concave, acute, 5-6 cm long, 4 cm wide.
Lateral sepals asymmetric, ovate, acute with same
sizes than dorsal one. Petals narrowly lanceolate,
acute, undulate, 5 cm long, 2 cm wide. Lip 4.5 cm
long, 2.5 cm wide, saccate, flat at the bottom, with-
out a knee, opening ovate, bridge broad and short,
towards front and back lightly triangularly widened;
hypochile ovate without edge at the transition to

LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.


mesochil; epichile broadly ovate fused to the front
part of rudimentary horns of 1.5 cm. Column slen-
der at the base, lightly curved and winged, with
small horns protruding at the apex, 4.5-4.8 cm long,
1.3 cm wide. Pollinarium 6 mm long; pollinia 2,
elongate on narrow stipes, and a cordate viscidium.

Discussion
Stanhopea flowers are exclusively pollinated by
euglossine male bees (Dressler 1968), which are








RAMIREZ & ROJAS An artificial hybrid of Stanhopea


FIGURE 2. Stanhopea costaricensis. A Flower. B Lip (front view). C Lip (lateral view). D Lip and column.
E Column. F Pollinarium, three views. Scanned by Gustavo Rojas.


attracted by floral odors. These bees store the
orchid odors in the inflated hind tibia and are sup-
posed to be use as attractants or in the courtship
with the female partners (Dodson et al. 1969). The
symbiotic relationship Stanhopea euglossine bees
are quite specific (Dressler 1968) and, although


some species are visited by several bee species,
they are usually pollinated by one or few species.
Natural hybridization of S. costaricensis by S.
cirrhata is not easy to occur because they do not
share the same pollinators. Stanhopea costaricensis
is visited by medium size to large euglossine males

LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.








LANKESTERIANA


FIGURE 3. Stanhopea cirrhata. A Flower. B Lip and column. C Lip, two views. D Lip dissected. E Column. F
Anther cap, two views. G Pollinarium, two views. Scanned by Gustavo Rojas.


of the genera Eufresia and Eulaema, while S. cirr-
hata is visited by small Euglossa males. The diffe-
rence in the pollination syndrome between orchid
species may be due to the production of different
attractants and a different floral morphology and
colors, specially the conformation of the column
and labellum (Fig. 2-3) which is probably funda-
mental in the pollination mechanism.
The flowers of the Stanhopea hybrid obtained had
the general morphology of the genus and did not pre-
sent visual abnormalities. They had characteristics
found in both the parent species, however the S. cos-
taricensis phenotype predominated, e.g. the hybrid
has the labellum divided into three parts and a distinct
epichile, a long, curved and slender column, with the
wings restricted to the two apical thirds (Fig. IE),
while in S. cirrhata the labellum is divided into two

LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.


parts, the epichile is rudimentary, and the short, erect,
massive column is winged from the base. The most
striking characters of the hybrid flower are the gene-
ral white cream color with solid purple spots and the
presence of rudimentary horns, which are long in S.
costaricensis and absent in S. cirrhata. There are few
published records about natural hybrids in the genus
Stanhopea. Natural hybrids are reported by Dressler
(1993) between S. ecornuta Lem. and species with
large horns, e.g. S. ecornuta x S. costaricensis (see
also Jenny 1993). According to Dressler (1968) the
paucity of interspecific hybrids in Stanhopea suggest
that mechanical or other barriers are partially effecti-
ve in this case.
It is postulated that plant species that possess
very specific pollinators have not evolved genetic
isolating mechanisms, and this could explain the









RAMIREZ & ROJAS An artificial hybrid of Stanhopea


easiness why artificial commercial hybrids are Dressier, R.L. 1993. Phylogeny and classification of the
obtained, orchid family. 314 p. Portland: Dioscorides Press.
Dodson, C.H., R.L. Dresser, H.G. Hills, R.M. Adams &
N.H. Williams. 1969. Biologically active compounds in
LITERATURE CITED orchid fragrances. Science 164: 1243-1249.
Dresser, R.L. 1968. Pollination by euglossine bees. Jenny, R. 1993. Stanhopea in Costa Rica & Panama.
Evolution 22(1):202-210. Schlechteriana 4: 66-92.


LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.








LANKESTERIANA








LANKESTERIANA7(3): 509-514. 2007.


OBSERVATIONS ON THE EFFECT OF NECTAR-ROBBERY
ON THE REPRODUCTIVE SUCCESS OF AERANTHES ARACHNITIS
(ORCHIDACEAE)

DAVID L. ROBERTS

Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK.
d.roberts@kew.org


ABSTRACT. While the presence of nectar is the most common floral reward offered by orchids, approximate-
ly one-third of orchid species have evolved mechanisms of Jcir, c l .ici, drl, pollinator receives no reward.
Lack of reward has been shown to have a significant negative effect on reproductive success in the
Orchidaceae, however the phenomenon of nectar-robbery has been poorly studied. Here we investigate the
effect of nectar-robbery induced deceit by invasive ants in the nectariferous orchid Aeranthes arachnitis.
Fruiting success was found to be below 5% at three sites, including two conservation areas, compared with
48.5% at a site next to plantations. All the populations showed loss of floral nectar, ranging from 64.3% to
100% of flowers observed. Loss of nectar to robbers that do not facilitate pollination not only represents a
cost to fruiting success but also a loss of a resource to the orchid through reabsorption of any excess. Using
Bell's Theory of nectar concealment it is possible to determine the critical point, below which nectar-rob-
bery negatively affects fruiting success. Based on related angraecoid orchids the proportion of nectar bear-
ing flowers would, -iicL..- ill:. need to be 70%. The higher levels of reproductive success surrounded by
plantations may due to the presence of the non-native Callistemon citrinus acting as nectar source, thus
maintaining an increased local abundance of the pollinator. This has important implications for the conser-
vation and management of Aeranthes arachnitis and other species, which rely on nectariferous pollinators,
particularly when a nectar bearing species becomes essentially deceptive. The result suggests that manage-
ment of this nectar-robbery induced deceptive species should involve the manipulation of rewarding species
within the surrounding area.
KEY WORDS: Orchidaceae, Aeranthes arachnitis, ants, Bell's Theory, nectar-robbery, Orchidaceae, repro-
ductive success.


Introduction

Pollinators visit flowers for potential rewards,
these including oils, floral fragrances, pollen or flo-
ral nectar, with nectar being by far the most common
reward in the Orchidaceae (van der Pijl & Dodson
1966, Arditti 1992, Dressler 1993). In return, the
orchids benefit from the movement of pollinia
between flowers, however, the efficiency of this
strategy varies since orchids are often pollinator-lim-
ited (Nilsson, 1992). Although the reward is the tan-
gible benefit pollinators receive, they are usually
attracted to the flower in the first place through
advertisement (Proctor et al. 1996). Approximately
one-third of orchids have, however, evolved mecha-
nisms of deceit whereby the pollinator receives no
reward (van der Pijl & Dodson 1966, Ackerman


1984). Deception in orchid pollination is largely
through either food foraging behaviour or sexual
attraction, although occasionally territorial defence
or habitat-choosing behaviour is used. This enigmat-
ic loss of pollinator reward results in reduced attrac-
tion and visitation (Nilsson 1992).
The presence of a reward, such as nectar, has been
shown, on average, to double the probability of fruit
set in both temperate and tropical orchids, and reduce
rarity in British orchids (Neiland & Wilcock 1998).
Production of such a reward is costly (Southwick
1984, Pyke 1991) and it may be reabsorbed in the
Orchidaceae (Koopowitz & Marchant 1998,
Stpiczyriska 2003). Loss of nectar to visitors that do
not facilitate pollination, therefore, represents a cost
to fruiting success and drains resources from the
orchid. Nectar robbery in orchids is known








LANKESTERIANA


(Koopowitz & Marchant 1998, Dressler 1990), with
robbery by ants recorded in Comparettia falcata
(Rodriguez-Robles et al. 1992) and Aerangis
verdickii (Koopowitz & Marchant 1998). This phe-
nomenon has, however, been poorly studied in the
Orchidaceae (Koopowitz & Marchant 1998) and its
effects on the individual are unknown. In some cases,
robbery may occur due to habitat alteration resulting
in a faunal imbalance (Nilsson et al. 1992).
The most common and obvious nectary is the flo-
ral spur, which is an extension of one of the perianth
segments, most often the labellum as in the genus
Angraecum (Dressler 1993, Neiland & Wilcock
1995). Nectaries, however, can be shallow and exter-
nal, as seen in genera such as Listera and many
Pleurothallid species (Dressler 1993). Even with the
vast array of reward systems seen in the Orchidaceae,
the phenomenon of nectar concealment described by
Bell (1986) is as yet unknown. Bell (1986) suggested
that plants should produce a proportion of their flow-
ers that do not contain any nectar. He predicted that
the proportion of 'cheating' flowers would equal the
discrimination time divided by the handling time of
the insect visitor. It may, therefore, be possible to
determine the critical point below which nectar-rob-
bery negatively affects fruiting success.
During two years of field work in Mauritius,
Aeranthes arachnitis (Thouars) Lindl. was observed to
lack nectar until ants where observed foraging on
newly opened flowers. The aim of the study is to deter-
mine the possible cause and effect of observed nectar
loss in A, arachnitis by applying Bell's hypothesis.

Material and methods

Study species and sites Aeranthes arachnitis is a
relatively common, nectar-bearing, epiphytic/litho-
phytic species of orchid that is endemic to the
Mascarene Islands in the western Indian Ocean (La
Reunion, Mauritius and Rodrigues). In Mauritius, A.
arachnitis is found at all altitudinal levels with the
exception of the mossy forest of Mt. Cocotte,
although it is most common in the lower dry forest
such as that found at Bel Ombre. The species was
studied at the following sites:

1. Mont Chat Remnant dry coast forest on
exposed ridge, highly invaded vegetation.

LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.


Located in the Bambous Mountain range on
the east coast.
2. Bel Ombre Fixon CMA (Conservation
Management Area), weeded and fenced plot
containing dry lowland forest.
3. Combo Recently weeded plot containing dry
lowland forest.
4. Brise Fer CMA, weeded and fenced plot con-
taining upland climax forest.
5. Gouly Fils Forestry station near Grand Bassin,
bordered on three sides by Pinus elliotii planta-
tion and on the fourth by a tea plantation.
Aeranthes arachnitis was found growing as an
epiphyte on planted Calistemon citrata.
6. Mont Cimetiere, Rodrigues Highly degraded
dry evergreen forest, with areas of exposed
rock face (Aeranthes arachnitis var. balfouri S.
Moore ex J. G. Baker).

Fruiting success Measurements were taken after
flowering, in some cases flowers that would have
developed into fruits were recognized by the signifi-
cant swelling of the ovary and unpollinated flowers
had wilted or had been abscised, leaving an easily
recognisable scar. Fruiting success for each species
was calculated as the percentage of the number of
fruits formed from the total number of flowers pro-
duced for each species.

Nectar analysis Presence of nectar was determined
in the field by back-lighting of the floral spur.
Nectar was removed and quantified using a clean
microcapillary tube, and then sugar content calculat-
ed using a hand-held refractometer.

Bell's Hypothesis Bell (1986) predicted that the
proportion of 'cheating' flowers would equal the
discrimination time divided by the handling time of
the insect visitor. Very little information is available
regarding the discrimination and handling time of
insect visitors to the Orchidaceae because of the
general rarity of such visits, particularly for angrae-
coid orchids such as Aeranthes (Dressler 1990).
Wasserthal (1997) studied the pollination of three
species of long-spurred Angraecum under controlled
conditions. These observations were used to calcu-
late the theoretical optimum proportion robbery
Aeranthes arachnitis can sustain.








ROBERTS Nectar-robbery in Aeranthes


TABLE 1. Fruiting success and
Aeranthes arachnitis at different sit

Sites Fruiting
Success (%)

Mont Chat


Bel Ombre


4.0 (+ 1.8)


Combo


Brise Fer

Gouly Fils

Mont Cimetiere


5.0 (+ 9.6)

48.5 (+ 9.7)

3.3 (+ 2.3)



Results


nectar presence in McGlynn 2004). No damage to the floral spurs was
es. observed, unlike the observation of Aerangis
verdickii by Koopowitz and Marchant (1998). Four
Nectar-Bearing (%) species of ants were found in the floral spurs of
Aeranthes arachnitis at the Fixon CMA, Bel
0.0 Ombre (Pheidole megacephala Forel,
35.7 25.1) Technomyrmex albipes Mann, Tetramorium
insolens Smith and Solenopsis mameti Donisthorpe
20.0 (+ 35.1) (prov. det.)) of which only one was found to be

5.0 (+ 9.6) native (Roberts & McGlynn 2004). Around 44
0.0 species of ants have been recorded from Mauritius
(Fisher 1997, Roberts & McGlynn 2004). Of these,
9.1 ( 17.0) approximately 24 are thought to be non-native,
based on Fisher (1997) and McGlynn (1999),
although this figure is likely to increase as we gain
more knowledge of their distribution.


Fruiting success was found to be below 5% at
three sites, of which two are CMAs, compared with
48.5% at Gouly Fils. All the populations showed
loss of floral nectar, ranging from 64.3% to 100% of
flowers observed (Table 1). Due to the difficulty in
locating nectar-bearing flowers, since most had their
nectar removed, floral spurs were found to contain
10 Bt1 with an average nectar sugar content of 14.5%
based on four flowers from four separate plants.
Based on times recorded by Wasserthal (1997) for
three species of long-spurred Angraecum under con-
trolled conditions, the proportion of nectar bearing
flowers would, theoretically, need to be over 70%
(Table 2).
On 4' February 2000, ant activity was observed
on the flowers of Aeranthes arachnitis at the Fixon
CMA, Bel Ombre, particularly in the floral spurs.
Within three days all floral nectar had been
removed and ant activity had ceased (Roberts &


Discussion

Loss of nectar to visitors that do not facilitate
pollination not only represents a cost to fruiting suc-
cess but also a loss of a resource to the orchid.
Nectar-robbery by ants has been record in
Comparettia fJalcata in only five cases (Rodriguez-
Robles et al. 1992), but in Aerangis verdickii 62%
of flowers had been robbed of their nectar
(Koopowitz & Marchant 1998). However, the full
significance of resource loss does not seem to have
been considered. Ants can also have an indirect
negative effect on orchids through their well-known
tendering behaviour. This has been shown to occur
in Schomburgkia tibicinis where the ant-mealybug
interaction decreased reproductive fitness (Rico-
Gray & Thien 1989). Such behaviour was observed
on Mauritius and Rodrigues with aphids, mealybugs
and scale insects, particularly in degraded habitats,


TABLE 2. Theoretical proportion of nectar bearing flowers in two species of Angraecum based on visitation times record-
ed by Wasserthal (1997).


Discrimination
Time' (sec.)


1.7 -2.3


Handling Time
(sec.)


% nectar bearing2


70.9 -78.5


Discrimination time based on visitation and unsuccessful pollinaria removal times.
2 Calculated as for Bell (1986).


LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.


Species


A. sesquipedale


A. sororium








LANKESTERIANA


but this requires further investigation (pers. obs.).
However, the results presented here are based on
observations, further work is required using ant
exclusion experiments.
Both Angraecum sesquipedale and A. sororium,
two of the three angrecoid species studies by
Wasserthal (1997), are extremely long-spurred
species with a labellum that acts as a landing plat-
form. Aeranthes arachnitis has in contrast a short,
wide spur and the orientation of the labellum prob-
ably prevents a hawkmoth from landing and there-
fore probably pollinated by hawkmoths in flight. It
is difficult to determine whether 30% represents a
threshold of nectarless flowers due to the differ-
ences in floral morphology. Even so, the 70-100%
nectar loss represents a considerable loss to the
orchid, not only in potential reproductive success
but also in lost resource since it has been shown
that nectar is reabsorbed in other orchid species
(Koopowitz & Marchant 1998). A considerable dif-
ference is seen in observed fruiting success com-
pared with that predicted by Neiland and Wilcock
(1998) for nectariferous species, and the possible
threshold of nectarless flowers calculated using
Bell's hypothesis of Ihic.iring" flowers (Table 2).
This suggests that the causal mechanisms that pre-
dispose orchids to an evolutionary trend of decep-
tion (Nilsson 1992), in this case, may not be pre-
sent.
Hawkmoths are not completely dependent on
sphingophilous flowers although there is a selective
advantage of sphingid proboscis length in feeding
(Wasserthal 1997). It has been suggested that in
Madagascar the baobabs, Adansonia rubrostipa
and A. za, [with their brush-like anthers] which are
pollinated by Coelonia solani, may offer an impor-
tant nectar source for long-tongued hawkmoths
since most of their nectar is not withheld (Baum
1995). However, sphingophilous flowers probably
provide a more reliable nectar source than less spe-
cialised flowers, which can be exploited by other
animals. This reliability may become more critical
in seasons of general flower scarcity (Grant 1983,
Wasserthal 1997). It is therefore possible that, at
Gouly Fils, Callistemon citrinus acts a nectar
source, thus maintaining an increased local abun-
dance of the pollinator (the magnet species effect)

LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.


(Johnson et al. 2003) and resulting in a consider-
ably higher level of fruiting success in Aeranthes
arachnitis compared with other locations.
Callistemon citrinus has been shown to be an
important nectar source for the nectariferous birds
since the brush-like flowers exclude some visitors,
in particular the introduced honey bee which is a
serious competitor on Mauritius (Hansen et al.
2002).


Conclusions

Invasive species may soon surpass habitat loss as
the main cause of ecological disintegration globally
and are probably already the main cause of extinc-
tions in island ecosystems (Vitousek et al. 1997,
Chapin et al. 2000, Clout & Veitch 2002). Thus
invasive species pose a major challenge to conser-
vationists, their impact can extend to all trophic
levels and have both direct and indirect effects.
While habitat conversion and fragmentation are
often recognized as the most significant threat to
the protection of biological diversity, the ability of
invaders to penetrate into undisturbed environ-
ments is particularly insidious because it is difficult
to prevent (IUCN 2000).
Ferdy et al. (1999) developed a model of pollina-
tor-induced density dependence in orchids that use
deceit has suggested that survival of such species is
not only dependant on population size but also on
competition within and between patches. In this
case, the two types of competition are the relative
abundance of the rewarding species, since species
such as bumblebees have been shown to choose the
most common (Ferdy et al. 1999) or most conspic-
uous species (Larson & Larson 1990), and compe-
tition between patches. The results suggest that
management of deceptive species should involve
control of rewarding species within a good patch
(i.e. patches with high abundance of nectar reward-
ing species), with good patches distantly separated
by lower quality patches. Situations where "compe-
tition between patches is not too strong but also
when the resource levels are high enough to ensure
the survival of pollinators at high dcnir: would
favour deceptive species (Ferdy et al. 1999). This
has important implications for the conservation and









ROBERTS Nectar-robbery in Aeranthes


management of Aeranthes arachnitis and other
species, which rely on nectariferous pollinators,
particularly when a nectar bearing species becomes
essentially deceptive.

ACKNOWLEDGEMENTS. This work was funded as part of a
project on the "Reproductive biology and conservation of
the orchids of Mauritius" by the Guy Harvais Studentship
for Orchid Research at the University of Aberdeen. I
would also like to thank the National Parks &
Conservation Service and Mauritian Wildlife Foundation
for logistical support, and the comments of an anonymous
reviewer.


LITERATURE CITED
Ackerman, J.D. 1984. Pollination of tropical and temperate
orchids. Pp. 98-101 in: K.W. Tan (ed.), Proceedings of
the 11th World Orchid Conference. American Orchid
Society, Miami, Florida.
Arditti, J. 1992. Fundamentals of orchid biology. John
Wiley and Sons, New York.
Baum, D.A. 1995. The comparative pollination and floral
biology of baobabs (Adansonia- Bombacaceae). Ann.
Missouri Bot. Gard. 82 : 322-348.
Bell, G. 1986. The evolution of empty flower. J. Theor.
Biol. 118 : 253-258.
Chapin, F.S., E.S. Zavaleta, V.T. Viner, R.L. Naylor, P.M.
Vitousek, O.E. Sala, H.L. Reynolds, D.U. Hooper, M.
Mack, S.E. Diaz, S.E. Hobbie & S. Lavorel. 2000.
Consequences of changing biodiversity. Nature 405 :
234-242.
Clout, M.N. & C.R. Veitch. 2002. Turning the tide of bio-
logical invasion: the potential for eradicating invasive
species. Pp. 1-3 in: C.R. Veitch & M.N. Clout (eds.),
Turning the tide: the eradication of invasive species.
IUCN, Gland, Switzerland.
Dresser, R.L. 1990. The Orchids: natural history and clas-
sification. Harvard University Press, Cambridge.
Dresser, R.L. 1993. Phylogeny and classification of the
orchid family. Cambridge University Press, Cambridge,
Mass.
Grant, V. 1983. The systematic and geographical distribu-
tion of hawk-moth flowers in the temperate north
American flora. Bot. Gaz. 144 : 439-449.
Ferdy, J.-B., F. Austerlitz, J. Morat, P.-H. Gouyon & B.
Godelle. 1999. Pollinator-induced density dependence in
deceptive species. Oikos 87 : 549-560.
Fisher, B.L. 1997. Biogeography and ecology of the ant
fauna of Madagascar (Hymenoptera: Formicidae). J.
Nat. Hist. 31 : 269-302.
Hansen, D.M., J.M. Olesen & C.G. Jones. 2002. Trees,


birds and bees in Mauritius: exploitative competition
between introduced honey bees and endemic nectarivo-
rous birds? J. Biogeogr. 29 : 721-734.
IUCN 2000. Guidelines for the prevention of biodiversity
loss due to biological invasion. IUCN, Gland,
Switzerland.
Johnson, S.D., C.I. Peter, L.A. Nilsson & J. Agren. 2003.
Pollination success in a deceptive orchid is enhanced by
co-occurring rewarding magnet plants. Ecology 84 :
2919-2927.
Koopowitz, H. & T.A. Marchant. 1998. Postpollination
nectar reabsorption in the African epiphyte Aerangis
verdickii (Orchidaceae). Amer. J. Bot. 85 : 508-512.
Larson, K.S. & R.J. Larson. 1990. Lure of the locks:
Showiest Ladies-tresses Orchids, Spriranthes romanzof-
fiana, affect bumblebee, Bombus spp., foraging behav-
ior. Canad. Field Natur. 104 : 519-525.
McGlynn, T.P. 1999. The worldwide transfer of ants: geo-
graphical distribution and ecological invasion. J.
Biogeogr. 26 : 535-548.
Neiland, M.R.M. & C.C. Wilcock 1995. Maximisation of
reproductive success by European Orchidaceae under
conditions of infrequent pollination. Protoplasma 187:
39-48.
Neiland, M.R.M. & C.C. Wilcock 1998. Fruit set, nectar
reward, and rarity in the Orchidaceae. Amer. J. Bot. 85 :
1657-1671.
Nilsson, L.A. 1992. Orchid pollination biology. Trends
Ecol. Evol. 7 : 255-259.
Nilsson, L.A., E. Rabakonandrianina, R. Razananaivo &
J.-J. Randriamanindry. 1992. Long pollinia on eyes:
hawk-moth pollination of Cynorkis uniflora Lindley
(Orchidaceae) in Madagascar. Bot. J. Linn. Soc. 109 :
145-160.
van der Pijl, L. & C.H. Dodson. 1966. Orchid flowers:
their pollination and evolution. University of Miami
Press, Coral Gables, Florida.
Proctor, M., P. Yeo & A. Lark. 1996. The natural history
of pollination. Harper Collins Publishers.
Pyke, G.H. 1991. What does it cost a plant to produce flo-
ral nectar? Nature 350 : 58-59.
Rico-Gray, V. & L.B. Thien. 1989. Ant-mealybug interac-
tion decreases reproductive fitness of Schombugkia
tibicinis (Orchidaceae) in Mexico. J. Trop.Ecol. 5 : 109-
112.
Roberts. D.L. & T.P. McGlynn. 2004. Tetramorium
insolens Smith (Hymenoptera: Formicidae): a new
record for Mauritius, Indian Ocean. Afr. Entom. 12 :
265-267.
Rodriguez-Robles, J.A., J. Melendez & J.D. Ackerman.
1992. Effects of display size, flowering phenology, and
nectar availability on effective visitation frequency in

LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.









LANKESTERIANA


Comparettia falcata (Orchidaceae). Amer. J. Bot. 79 :
1009-1017.
Southwick, E.E. 1984. Photosynthate allocation to floral
nectar: a neglected energy investment. Ecology 65 :
1775-1779.
Stpiczyriska. M. 2003. Nectar resorption in the spur of
Platanthera chlorantha Custer (Rchb.) Orchidaceae -
structural and microautoradiographic study. Pl. Syst.
Evol. 238: 119-126.


Vitousek, P.M., C.M. D'Antonio, L.L. Loope, M.
Rejmanek & R. Westbrooks. 1997. Introduced species: a
significant component of human-caused global change.
New Zeal. J. Ecol. 21 : 1-16.
Wasserthal, L.T. 1997. The pollinators of the Malagasy
Star Orchids Angraecum sesquipedale, A. sororium and
A. compactum and the evolution of extremely long spurs
by pollinator shift. Bot. Acta 110 : 343-359.


LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.








LANKESTERIANA7(3): 515-537. 2007.


GENERIC REALIGNMENTS IN MAXILLARIINAE (ORCHIDACEAE)

MARIO A. BLANCO1'2, GERMAN CARNEVALI3, W. MARK WRITTEN4, RODRIGO B. SINGER5,
SAMANTHA KOEHLER6, NORRIS H. WILLIAMS4, ISIDRO OJEDA7, KURT M. NEUBIG'
& LORENA ENDARA'

'Department of Botany, University of Florida, 220 Bartram Hall, Gainesville, FL 32611-8526, USA.
(mablanco@ufl.edu, 1 "cii.--,,.-,, fl ci, lendara@flmnh.ufl.edu)
2 Jardin Botanico Lankester, Universidad de Costa Rica, Apdo. 1031-7050, Cartago, Costa Rica
'Herbario CICY, Centro de Investigaci6n Cientifica de Yucatan (CICY), calle 43 No. 130,
Col. Chuburna de Hidalgo, 97200 Merida, Yucatan, Mexico. (cameval@cicy.mx)
'Florida Museum of Natural History, University of Florida, P.O. Box 117800, Gainesville, FL 32611-7800, USA
(whitten@flmnh.ufl.edu, orchid@flmnh.ufl.edu)
5Departamento de Botinica, Instituto de Biociencias, Universidade Federal de Rio Grande do Sul,
CEP 91501-970, Porto Alegre, RS, Brazil. (rbsingerl@yahoo.com)
6 Departamento de Gen6tica, Escola Superior de Agricultura "Luiz de Queir6z", Universidade de SAo Paulo,
C.P. 83, Piracicaba, SP, Brazil 13400-970. (samantha.koehler@gmail.com)
7Center for Plant Research, University of British Columbia, #302-Macmillan Building, 2357 Main Mall,
Vancouver, B.C., Canada V6T 1Z4. (isidro@interchange.ubc.ca)

ABSTRACT. A recent phylogenetic analysis of four DNA regions for ca. 354 species of core Maxillariinae
strongly indicate that the genus Maxillaria, as traditionally circumscribed, is grossly polyphyletic. We pre-
sent a new phylogenetic classification for core Maxillariinae that recognizes 17 genera. Necessary realign-
ments include: 1) resurrection of the genera Camaridium, Heterotaxis, and Ornithidium; 2) recognition of
the recent segregates Brasiliorchis (=Maxillaria sect. Repentes), Christensonella (=Maxillaria sect.
Urceolatae), Nitidobulbon (in press), and a recircumscribed Sauvetrea (=Maxillaria sect. Trigonae); 3)
adoption of the new genera Inti (=Maxillaria sect. P. i, /., i Mapinguari, Maxillariella (=Maxillaria
sections Ebulbes and Erectae), and Rhetinantha; 4) transfers from Maxillaria sect. Reflexae to Ornithidium,
and Maxillaria sect. Rufescens to Mormolyca; and 5) synonymizing of the genera Adamanthus,
Pseudomaxillaria, Psittacoglossum, and Sepalosaccus (under Camaridium), Anthosiphon (under
Cryptocentrum), Chrysocycnis (under Mormolyca), Dicrypta, Marsupiaria, and Pentulops (under
Heterotaxis), and Laricorchis, Neo-urbania, and Siagonanthus (under Ornithidium). Some new synonyms at
the specific level are also presented.

RESUMEN. Un reciente analisis filogendtico de cuatro regions de ADN para ca. 354 species de la subtribu
Maxillariinae indican fuertemente que el g6nero Maxillaria, en su circunscripci6n traditional, es altamente
polifiltico. Presentamos una nueva clasificaci6n filogen6tica para Maxillariinae que reconoce 17 g6neros.
Los cambios necesarios incluyen: 1) la resurrecci6n de los g6neros Camaridium, Heterotaxis, y
Ornithidium; 2) el reconocimiento de los recientes segregados genericos Brasiliorchis (=Maxillaria secci6n
Repentes), Christensonella (=Maxillaria secci6n Urceolatae), Nitidobulbon (en prensa), y una Sauvetrea
recircunscrita (=Maxillaria secci6n Trigonae); 3) la adopci6n de los nuevos g6neros Inti (=Maxillaria sec-
cion P. .. i Mapinguari, Maxillariella (=Maxillaria secciones Ebulbes y Erectae), y Rhetinantha; 4)
transferencias de Maxillaria secci6n Reflexae a Ornithidium, y Maxillaria secci6n Rufescens a Mormolyca;
y 5) puesta en sinonimia de los g6neros Adamanthus, Pseudomaxillaria, Psittacoglossum y Sepalosaccus
(bajo Camaridium), Anthosiphon (bajo Cryptocentrum), Chrysocycnis (bajo Mormolyca), Dicrypta,
Marsupiaria y Pentulops (bajo Heterotaxis), y Laricorchis, Neo-Urbania, y Siagonanthus (bajo
Ornithidium). Algunos sin6nimos nuevos al nivel de especie tambi6n son presentados.

KEY WORDS: Cymbidieae, generic recircumscription, Inti, Mapinguari, Maxillariella, Maxillariinae,
Orchidaceae, Rhetinantha.








LANKESTERIANA


Subtribe Maxillariinae (sensu Chase et al. 2003)
includes a number of genera endemic to the
Neotropics. The circumscription of genera in the
core Maxillariinae (sensu Whitten et al. 2007, equal
to Maxillariinae sensu Dressler, 1993) has been
problematic since the creation of the genus
Maxillaria by Ruiz and Pav6n (1794, 1798). This
large genus (ca. 580 species as traditionally defined;
e.g., Govaerts et al. 2005) has for a long time been
considered an assemblage of morphologically dis-
parate taxa (Christenson 2002a, 2002b; Whitten et
al. 2007 and references therein), and thus probably
non-monophyletic. The complicated species-level
taxonomy of Maxillaria has hampered attempts of
providing a subgeneric classification (Christenson
2002a, 2002b'), a situation mirrored in other large
plant genera (Pfeil & Crisp 2005, Monro 2006,
Parnell et al. 2007).
The recent molecular phylogenetic analysis of
Dathe & Dietrich (2006) provided the first concrete
evidence for the grossly polyphyletic nature of
Maxillaria. However, the limited taxon sampling (30
species, one individual each) and low number of
DNA regions used in their study (nrITS only) pre-
cluded any sound taxonomic decisions based on their
results. More recently, Whitten et al. (2007) present-
ed a vastly more detailed phylogenetic analysis of
core Maxillariinae (619 individuals representing ca.
354 species; four DNA regions used) that corroborat-
ed Dathe and Dietrich's preliminary results and
revealed a worst-case scenario: all the currently
accepted minor genera of core Maxillariinae


'Christenson (2002a) presented a partial subgeneric classi-
fication of Maxillaria with 19 sections, 13 of them newly
proposed. A French translation of the same article
(Christenson 2002b) was meant to appear much later, but
the publication of the Proceedings of the 16th World
Orchid Conference (here abbreviated "Proc. 16th World
Orchid Conf.") was delayed substantially. The two publi-
cations appeared in 2006, and the exact date of printing is
not indicated in either one. The Proceedings were pub-
lished ca. six weeks before the translation in Richardiana,
and thus constitute the place of valid publication of most
of Christenson's sections. The only exception is section
Ornithidium, which missed the basionym citation in the
Proceedings, and was validated in Richardiana (E. A.
Christenson, personal communication 2007).

LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.


(Anthosiphon, Cryptocentrum, ( ,, i .. i...
Cyrtidiorchis, Mormolyca, Pityphyllum, and
Trigonidium, Govaerts et al. 2005), are firmly nested
in Maxillaria sensu lato. Thus, the current generic
classification in core Maxillariinae is untenable on
phylogenetic grounds.
Backlund & Bremer (1998) presented guidelines on
how to modify existing classifications in order to
comply with phylogenetic requirements. Their prima-
ry principle is to designate only monophyletic groups
as ranked taxa. Secondary principles (in no particular
order of importance) are: a) to designate only highly
supported clades as ranked taxa; b) to minimize
nomenclatural disruption; c) to designate easily rec-
ognizable clades as ranked taxa; and d) to minimize
taxonomic redundancy by lumping monotypic taxa
with their sister group, if feasible. Entwisle & Weston
(2005) independently advanced similar guidelines,
although they also recommended to minimize taxo-
nomic change in "charismatic" or economically
and/or horticulturally important groups, and to avoid
the use of epithets already in existence in potential
congeners (when creating new names or describing
new species). Entwisle & Weston (2005) concluded
that ease of recognition of genera is not always
achievable, and that certain "biological criteria" (e.g.,
hybridization, special morphological characters)
should not be emphasized when designating genera.
In the new classification presented here, we attempt
to follow these guidelines.
We favor the recognition of 17 genera in core
Maxillariinae (clades A through Q in Whitten et al.
2007) that correspond to well supported clades (fig.
1). This inevitably requires the resurrection of some
generic names previously placed in synonymy with
Maxillaria, and the creation of several new genera.
These new generic realignments are presented here.
The alternative, to lump the minor genera in
Maxillaria, would be less nomenclaturally disruptive,
but would substantially add to the already baffling
morphological diversity of that genus and make it
even less morphologically diagnosable. Further argu-
ments in support of our new classification and mor-
phological characters for each genus are presented in
Whitten et al. (2007). Keys and detailed descriptions
to all the genera in subtribe Maxillariinae will be pub-
lished elsewhere.








BLANCO et al. Generic realignments in Maxillariinae


99 Maxillaria 200-250
Camaridium 80
62 90 Trigonidium 7

00 Maxillariella 50


80 0 Mormolyca 25

100
10 Sauvetrea 15

63 100 Christensonella 12
100 Mapinguari 4
100
99 84 Cryptocentrum 18
Inti 2
100 Brasiliorchis 13
100 98 Pityphyllum 7
77 Ornithidium 60
100 74 Heterotaxis 13
79 Nitidobulbon 3
Outgroups
FIGURE 1. Summary of generic relationships within the
core Maxillariinae, simplified from figure 8 of Whitten et
al. (2007). Based on a maximum parsimony analysis of
combined nrITS, matK+trnK, atpB-rbcL spacer, and
rpoCl DNA sequence data. Values above branches are
bootstrap percentages. Numbers next to generic names
indicate their known or estimated number of species.

The realization that many large and/or charismatic
genera are polyphyletic or need to be lumped with
others based on phylogenetic principles has recently
spurred support from part of the botanical communi-
ty for the acceptance of paraphyletic taxa (most of
the debate has taken place in recent issues of
Taxon). However, we are convinced that the desig-
nation of monophyletic genera is a far better, less
subjective option. Discussion of our arguments for
this lies outside of the realm of the present contribu-
tion; we refer readers to Pfeil & Crisp (2005), who
provide a lucid argument in favor of phylogenetic
classifications and against the use of paraphyletic
supraspecific taxa.
We also effect the nomenclatural transfers
required by our new classification. Following Cribb


et al.'s (1985) recommendation, we only transfer
species for which we are confident of their systemat-
ic position either because we have sampled them for
our molecular phylogeny (Whitten et al. 2007) or
because of their clear morphological affinity with
species included in our analyses.
We refrain from transferring names that might be
synonyms (even if not yet currently regarded as
such), and treat taxonomically complicated groups
with caution. We do not transfer a few names that
appear in our phylogenies (Whitten et al. 2007)
because now we consider them as synonyms. Many
species of Camaridium and Ornithidium already
have combinations in those genera, although in
some cases their epithets are different than those in
Maxillaria. For each species transferred, homotypic
synonyms with a different epithet are listed after the
basionym when these have been in recent use. Some
heterotypic synonyms are given after the abbrevia-
tion "syn.".
To further clarify the circumscription of
Camaridium, Maxillaria sensu strict and
Ornithidium, we list the names of their constituent
species. These lists mostly follow Govaerts et al.
(2005) (synonyms not listed) except for cases in
which we disagree on synonymization. We have not
been able to locate extant type material for many
names of Schlechter and other authors published
without illustrations; these are not included here,
awaiting further research. It is possible that many of
these will prove to be synonyms with other better
known species.
Most species for which adequate descriptions or
type material is available are easy to assign to each
genus. However, we prefer to await molecular data
to confirm the systematic position of a few species
with unusual morphology (e.g., Maxillaria groby-
oides Garay & Dunst., M. muscoides J. T. Atwood,
M. poifolia Schltr.).

BRASILIORCHIS

Brasiliorchis R. Singer, S. Koehler & Carnevali,
Novon 17: 94. 2007.

Type species: Maxillaria picta Hook., = Brasiliorchis
picta (Hook.) R. Singer, S. Koehler & Carnevali.
Maxillaria sect. Aggregatae Pfitz. in Engl. &

LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.








LANKESTERIANA


Prantl, Nat. Pflanzenfam. 2(6): 187. 1889, pro parte
(excl. type).
Maxillaria sect. Repentes Pfitz. in Engl. & Prantl,
Nat. Pflanzenfam. 2(6): 187. 1889.

Plants of Brasiliorchis have aggregated or distant,
sulcate, bifoliate pseudobulbs subtended by non-folia-
ceous sheaths. Several inflorescences are produced
simultaneously from the base of the most recent
pseudobulb, and the floral bract is almost always
shorter than the pedicel and ovary. The campanulate
flowers are food deceptive and do not produce any
rewards. The column foot can be short or long. The
sepals lack fibers, and in most species they have dark
spots, usually more intense on the external surface.
The labellum is always markedly three-lobed. The
capsules have apical dehiscence2.
This well supported clade has been informally
known as the "Maxillaria picta alliance"; most species
are restricted to Brazil. It was recently described in
detail and given generic status by Singer et al. (2007).
Three names need to be commented upon:

Brasiliorchis picta (Hook.) R. Singer, S. Koehler &
Camevali, Novon 17: 97. 2007.
Maxillaria acutipetala Hook., Bot. Mag. 69: t.
3966. 1842, syn. nov.

Maxillaria acutipetala was described from a plant
cultivated at Kew, supposedly collected in Central
America by Barclay during the HMS Sulphur expedi-
tion. The type specimen and the published painting
clearly correspond to the variable Brasiliorchis picta,
a taxon reliably documented only from Brazil and
northeastern Argentina. The information associated
with the plant cultivated at Kew must have been erro-
neous or confused, and it was most likely not collect-
ed by Barclay (the Sulphur explored only the Pacific
side of the New World); it was probably collected in
Brazil by someone else.

Brasiliorchis barbosae (Loefgr.) R. Singer, S.
Koehler & Carnevali, Novon 17: 96. 2007.


2 Fruits of Maxillariinae always dehisce through six longi-
tudinal seams, but the resulting valves can either remain
united both at the base and the tip, or they can separate
apically. These two modes of dehiscence are termed "lat-
eral" vs. "apical" (Blanco et al. 2006, Whitten et al. 2007).

LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.


Basionym: Maxillaria barbosae Loefgr., Arch.
Jard. Bot. Rio de Janeiro 2: 60. 1918; 'barbozae'.

L6fgren dedicated the species to JoAo Barbosa
Rodrigues but spelled the epithet as "barbozae", which
is clearly a typographical error and not an intentional
latinization of the Brazilian orchidologist's last name.
Both spellings have been used over time, and Singer et
al. (2007) used "barbozae" during the generic transfer
to Brasiliorchis. However, the epithet should be cor-
rected to "barbosae" under article 60 of the Code
(McNeill et al. 2006; also see article 45.2).

Brasiliorchis schunkiana (Campacci & Kautsky) R.
Singer, S. Koehler & Carnevali, Novon 17: 97. 2007.
Basionym: Maxillaria schunkiana Campacci &
Kautsky, Orquidario 7: 136. 1993; 'schunkeana'.

The adjectival epithet honors Vital Schunk; thus, it
must be spelled "schunkiana", not "schunkeana"
(Rec. 60C.1, McNeill et al. 2006). Singer et al.
(2007) and other authors have used the latter spelling,
which is an incorrect orthographical variant.

Species of Brasiliorchis include B. barbosae
(Loefgr.) R. Singer, S. Koehler & Carnevali, B.
chrysantha (Barb. Rodr.) R. Singer, S. Koehler &
Carnevali, B. consanguinea (Klotzsch) R. Singer, S.
Koehler & Carnevali, B. gracilis (G. Lodd.) R.
Singer, S. Koehler & Carnevali, B. heismanniana
(Barb. Rodr.) R. Singer, S. Koehler & Carnevali, B.
kautskyi (Pabst) R. Singer, S. Koehler & Carnevali,
B. marginata (Lindl.) R. Singer, S. Koehler &
Carnevali, B. phoenicanthera (Barb. Rodr.) R. Singer,
S. Koehler & Carnevali, B. picta (Hook.) R. Singer,
S. Koehler & Carnevali, B. polyantha (Barb. Rodr.)
R. Singer, S. Koehler & Carnevali, B. porphyrostele
(Rchb.f.) R. Singer, S. Koehler & Carnevali, B.
schunkiana (Campacci & Kautsky) R. Singer, S.
Koehler & Carnevali, and B. ubatubana (Hoehne) R.
Singer, S. Koehler & Carnevali (Singer et al. 2007).

CAMARIDIUM

Camaridium Lindl., Bot. Reg. 10: sub t. 844. 1824.
Type species: Camaridium ochroleucum Lindl.
Adamanthus Szlach., Richardiana 7: 30. 2007, pro
parte (incl. type).
Maxillaria sect. Camaridium (Lindl.) Christenson,
Proc. 16th World Orchid Conf. 282. 2002.








BLANCO et al. Generic realignments in Maxillariinae


Maxillaria sect. Cucullatae Christenson, Proc. 16'
World Orchid Conf. 283. 2002.
Maxillaria sect. Pseudomaxillaria (Hoehne)
Christenson, Proc. 16th World Orchid Conf. 285.
2002.
Pseudomaxillaria Hoehne, Arq. Bot. Estado Sao
Paulo n.s., f.m. 2: 71. 1947.
Psittacoglossum LaLlave & Lex., Nov. Veg. Desc.
fasc. 2. (Orch. Opusc.): 29. 1825.
Sauvetrea Szlach., Richardiana 7: 28. 2007, pro
parte (excl. type).
Sepalosaccus Schltr., Repert. Spec. Nov. Regni
Veg. Beih. 19: 244. 1923.

Species of Camaridium are variable in growth
habit; most have pseudobulbs separated by rhizome
segments of variable length. Some species are cespi-
tose, and others lack pseudobulbs completely and
have monopodial shoots. A few species have dimor-
phic growth (juvenile sympodial shoots with tightly
spaced pseudobulbs, and monopodial mature shoots
without pseudobulbs). In almost all species, the floral
bract is longer than the pedicel and ovary, and over-
laps with the base of the dorsal sepal (this feature is
useful in separating Camaridium from Maxillariella
and Ornithidium). The column foot can be short or
long. The sepals and petals lack fiber bundles and
have a sparkling appearance. Most species appear to
have deceptive flowers, but some produce nectar. The
pendent fruits have apical dehiscence.
As circumscribed here, Camaridium has ca. 80
species distributed throughout the Neotropics, with
the highest diversity in Central America. The
"Maxillaria neglecta complex" (= Pseudomaxillaria)
is nested within Camaridium; the Mesoamerican
species were revised by Atwood (1993). The
"Maxillaria cucullata complex", which is sister to the
rest of Camaridium, is a taxonomically difficult
group in dire need of revision.

Camaridium alfaroi (Ames & C. Schweinf.) M. A.
Blanco, comb. nov.
Basionym: Maxillaria alfaroi Ames & C.
Schweinf, Sched. Orch. 10: 83-84. 1930.

Camaridium allenii (L. 0. Williams) M. A. Blanco,
comb. nov.
Basionym: Maxillaria allenii L. 0. Williams, Ann.
Missouri Bot. Gard. 27: 282-283, t. 35. 1940.


Camaridium amabile (J. T. Atwood) M. A. Blanco,
comb. nov.
Basionym: Maxillaria amabilis J. T. Atwood,
Lindleyana 9: 239-241. 1994.

Camaridium ampliflorum (C. Schweinf.) M. A.
Blanco, comb. nov.
Basionym: Maxillaria ampliflora C. Schweinf.,
Bot. Mus. Leafl. 8: 188. 1940. Camaridium grandi-
florum Ames, Proc. Biol. Soc. Wash. 34: 149-150.
1921, nom. illeg. [non (Lindl.) Schltr., Repert.
Spec. Nov. Regni Veg. Beih. 9: 165. 1921].

Camaridium anceps (Rchb.f.) M. A. Blanco, comb.
nov.
Basionym: Ornithidium anceps Rchb.f, Beitr. Orch.-
K. Centr. Amer. 75-76. 1866. Maxillaria pseudone-
glecta J. T. Atwood, Lindleyana 8: 30-31. 1993.

Camaridium atratum (Lex.) M. A. Blanco, comb.
nov.
Basionym: Psittacoglossum atratum Lex., Nov.
Veg. Descr. 2: 30. 1825. Maxillaria lexarzana Soto
Arenas & F. Chiang, Orquidea (Max.) n.s., 12: 238-
239. 1992.

Camaridium aurantiacum (Schltr.) M. A. Blanco,
comb. nov.
Basionym: Ornithidium aurantiacum Schltr.,
Repert. Spec. Nov. Regni Veg. Beih. 19: 241. 1923.
Syn.: Maxillaria lankesteri Ames, Sched. Orch. 7:
11-12. 1924. Maxillaria jugata Garay,
Orquideologia 4: 159. 1969, syn. nov.

Camaridium bomboizense (Dodson) M. A. Blanco,
comb. nov.
Basionym: Maxillaria bomboizensis Dodson,
Orquideologia 19: 59. 1994.

Camaridium brevilabium (Ames & Correll) M. A.
Blanco, comb. nov.
Basionym: Maxillaria brevilabia Ames & Correll,
Bot. Mus. Leafl. 11: 15, fig. 1. 1943. Ornithidium
alfaroi Ames & C. Schweinf., Sched. Orch. 10: 98.
1930. Non Camaridium alfaroi (Ames & C.
Schweinf.) M. A. Blanco.

Camaridium burgeri (J. T. Atwood) M. A. Blanco,
comb. nov.
Basionym: Maxillaria burgeri J. T. Atwood,
Lindleyana 9: 233-236. 1994.

LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.








LANKESTERIANA


Camaridium campanulatum (C. Schweinf.) M. A.
Blanco, comb. nov.
Basionym: Maxillaria campanulata C. Schweinf.,
Bot. Mus. Leafl. 5: 94-95. 1938.

Camaridium cedralense (J. T. Atwood & Mora-Ret.)
M. A. Blanco, comb. nov.
Basionym: Maxillaria cedralensis J. T. Atwood &
Mora-Ret., Selbyana 18: 31-32. 1997.

Camaridium cucullatum (Lindl.) M. A. Blanco,
comb. nov.
Basionym: Maxillaria cucullata Lindl., Edwards's
Bot. Reg. 26: t. 12. 1840.

Camaridium densum (Lindl.) M. A. Blanco, comb.
nov.
Basionym: Maxillaria densa Lindl., Edwards's Bot.
Reg. 21: t. 1804. 1835.

Camaridium falcatum (Ames & Correll) M. A.
Blanco, comb. nov.
Basionym: Maxillariafalcata Ames & Correll, Bot.
Mus. Leafl. 11: 15. 1943. Ornithidium costaricense
Schltr., Repert. Spec. Nov. Regni Veg. 8: 456.
1910. Non Camaridium costaricense Schltr.
(Repert. Spec. Nov. Regni Veg. 3: 249. 1907).

Camaridium fragrans (J. T. Atwood) M. A. Blanco,
comb. nov.
Basionym: Maxillaria fragrans J. T. Atwood,
Selbyana 22: 131. 2001.

Camaridium gomezianum (J. T. Atwood) M. A.
Blanco, comb. nov.
Basionym: Maxillaria gomeziana J. T. Atwood,
Lindleyana 11: 202-204. 1996.

Camaridium grisebachianum (Nir & Dod) M. A.
Blanco, comb. nov.
Basionym: Maxillaria grisebachiana Nir & Dod,
Orchid. Antill.: 243. 2000.

Camaridium haberi (J. T. Atwood) M. A. Blanco,
comb. nov.
Basionym: Maxillaria haberi J. T. Atwood,
Selbyana 16: 245. 1995.

Camaridium hagsaterianum (Soto Arenas) M. A.
Blanco, comb. nov.
Basionym: Maxillaria hagsateriana Soto Arenas,


LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.


Orquidea (Mexico) n.s., 12: 252. 1992.

Camaridium horichii (Senghas) M. A. Blanco, comb.
nov.
Basionym: Maxillaria horichii Senghas, Orchidee
(Hamburg) 28: 13. 1977.

Camaridium inauditum (Rchb.f.) M. A. Blanco,
comb. nov.
Basionym: Maxillaria inaudita Rchb.f., Beitr.
Orch.-K. Centr. Am. 76. 1866.

Camaridium insolitum (Dressier) M. A. Blanco,
comb. nov.
Basionym: Maxillaria insolita Dressier,
Orquideologia 14: 204. 1981.

Camaridium lankesteri (Ames) M. A. Blanco, comb. nov.
Basionym: Ornithidium lankesteri Ames, Sched.
Orch. 4: 52-53. 1923. Maxillaria quadrata Ames &
Correll, Bot. Mus. Leafl. 6:16. 1943.

Camaridium longicolumna (J. T. Atwood) M. A.
Blanco, comb. nov.
Basionym: Maxillaria longicolumna J. T. Atwood,
Selbyana 22: 132. 2001.

The epithet longicolumna is a noun in apposition,
and therefore retains its feminine gender.

Camaridium lutheri (J. T. Atwood) M. A. Blanco,
comb. nov.
Basionym: Maxillaria lutheri J. T. Atwood,
Selbyana 19: 257. 1998.

Camaridium meleagris (Lindl.) M. A. Blanco, comb. nov.
Basionym: Maxillaria meleagris Lindl., Edwards's
Bot. Reg. 30: misc. 3. 1844.

Camaridium micranthum M. A. Blanco, nom. nov.
,, .,,. 7'. .in- parviflora Poepp. & Endl., Nov. Gen.
ac Sp. 1: 58, t. 97. 1835. Maxillaria parviflora
(Poepp. & Endl.) Garay, Bot. Mus. Leafl. 21: 258.
1967. Non Camaridium parviflorum Fawc. (Symb.
Antill. 1: 472. 1910).

Camaridium microphyton (Schltr.) M. A. Blanco,
comb. nov.
Basionym: Maxillaria microphyton Schltr., Repert.
Spec. Nov. Regni Veg. 8: 457. 1910.

Camaridium mombachoense (A. H. Heller ex J. T.
Atwood) M. A. Blanco, comb. nov.








BLANCO et al. Generic realignments in Maxillariinae


Basionym: Maxillaria mombachoensis A. H. Heller
ex J. T. Atwood, Selbyana 5: 302. 1981.

Camaridium monteverdense (J. T. Atwood & G.
Barboza) M. A. Blanco, comb. nov.
Basionym: Maxillaria monteverdensis J. T. Atwood
& G. Barboza, Lindleyana 9: 241-242. 1994.

Camaridium neglectum (Schltr.) M. A. Blanco,
comb. nov.
Basionym: Ornithidium neglectum Schltr., Repert.
Spec. Nov. Regni Veg. Beih. 19: 242. 1923.

Camaridium obscurum (Linden & Rchb.f.) M. A.
Blanco, comb. nov.
Basionym: Maxillaria obscura Linden & Rchb.f.,
Beitr. Orch.-K. Centr. Amer. 31-32, t. 6. 1866.

Camaridium oestlundianum (L. 0. Williams) M. A.
Blanco, comb. nov.
Basionym: Maxillaria oestlundiana L. 0. Williams,
Amer. Orchid Soc. Bull. 11: 133. 1942.

Camaridium paleatum (Rchb.f.) M. A. Blanco,
comb. nov.
Basionym: Ornithidium paleatum Rchb.f., Linnaea
41: 36. 1877.

Camaridium praestans (Rchb.f.) M. A. Blanco,
comb. nov.
Basionym: Maxillaria praestans Rchb.f., Gard.
Chron., n.s. 23: 566. 1885.

Camaridium pygmaeum M. A. Blanco, nom. nov.
Ornithidium wercklei Schltr., Repert. Spec. Nov.
Regni Veg. Beih. 19: 60. 1923. Maxillaria wercklei
(Schltr.) L. 0. Williams, Ann. Missouri Bot. Gard.
27: 284. 1923. Non Camaridium wercklei Schltr.
(Repert. Spec. Nov. Regni Veg. Beih. 19: 58-59.
1923).

Camaridium ramonense (Schltr.) M. A. Blanco,
comb. nov.
Basionym: Ornithidium ramonense Schltr., Repert.
Spec. Nov. Regni Veg. Beih. 19: 243-244. 1923.
Maxillaria flava Ames, Hubbard & C. Schweinf.,
Bot. Mus. Leafl. 3: 41. 1934.

Camaridium rhombeum (Lindl.) M. A. Blanco,
comb. nov.
Basionym: Maxillaria rhombea Lindl., Edwards's
Bot. Reg. 26: t. 12. 1840.


Camaridium scalariforme (J. T. Atwood) M. A.
Blanco, comb. nov.
Basionym: Maxillaria scalariformis J. T. Atwood,
Selbyana 19: 257. 1998.

Camaridium sigmoideum (C. Schweinf.) M. A.
Blanco, comb. nov.
Basionym: Ornithidium sigmoideum C. Schweinf.,
Bot. Mus. Leafl. 4: 121-122. 1937.

Camaridium soconuscanum (Breedlove & D. Mally)
M. A. Blanco, comb. nov.
Basionym: Maxillaria soconuscana Breedlove &
D. Mally, Amer. Orchid Soc. Bull. 58: 1234.
1989.

Camaridium standleyi M. A. Blanco, nom. nov.
Maxillaria parvilabia Ames & C. Schweinf.,
Sched. Orch. 8: 62-64. 1925, nom. illeg. (non
Rolfe, Orchid Rev. 26: 232. 1918).

Camaridium stenophyllum (Schltr.) M. A. Blanco,
comb. nov.
Basionym: Ornithidium stenophyllum Schltr.,
Repert. Spec. Nov. Regni Veg. Beih. 19: 59.
1923. Maxillaria concavilabia Ames &
Correll, Bot. Mus. Leafl. 11: 15, fig. 2. 1953.
Non Maxillaria stenophylla Rchb.f. (Bonplandia
2: 17. 1854), nec Maxillaria stenophylla F.
Lehm. & Kraenzl. (Bot. Jahrb. Syst. 26: 481.
1899).

Camaridium strumatum (Endres & Rchb.f.) M. A.
Blanco, comb. nov.
Basionym: Ornithidium strumatum Endres &
Rchb.f., Gard. Chron. 2: 772. 1874.

Camaridium suaveolens (Barringer) M. A. Blanco,
comb. nov.
Basionym: Maxillaria suaveolens Barringer,
Brittonia 37: 44-46. 1985.

Camaridium synsepalum (J. T. Atwood) M. A.
Blanco, comb. nov.
Basionym: Maxillaria synsepala J. T. Atwood,
Selbyana 19: 260. 1998.

Camaridium tigrinum (C. Schweinf.) M. A. Blanco,
comb. nov.
Basionym: Maxillaria tigrina C. Schweinf., Amer.
Orchid Soc. Bull. 37: 409-410. 1968.

LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.








LANKESTERIANA


Camaridium tricarinatum (J. T. Atwood) M. A.
Blanco, comb. nov.
Basionym: Maxillaria tricarinata J. T. Atwood,
Selbyana 19: 260. 1998.

Camaridium tuberculare (J. T. Atwood) M. A.
Blanco, comb. nov.
Basionym: Maxillaria tubercularis J. T. Atwood,
Lindleyana 9: 229-231. 1994.

Camaridium tutae (J. T. Atwood) M. A. Blanco,
comb. nov.
Basionym: Maxillaria tutae J. T. Atwood, Selbyana
19: 262. 1998.

Camaridium vaginale (Rchb.f.) M. A. Blanco, comb.
nov.
Basionym: Maxillaria vaginalis Rchb.f., Beitr.
Orch.-K. Centr. Amer. 77. 1866.

Camaridium valerioi (Ames & C. Schweinf.) M. A.
Blanco, comb. nov.
Basionym: Maxillaria valerioi Ames & C.
Schweinf., Sched. Orch. 10: 96-97. 1930.

Camaridium vintm ifiilium (L. 0. Williams) M. A.
Blanco, comb. nov.
Basionym: Maxillaria vittariifolia L. 0. Williams,
Ceiba 4: 38. 1953.

Other members of Camaridium include C. adolphi
Schltr., C. amparoanum Schltr. (Maxillaria serrula-
ta Ames & Correll), C. biolleyi (Schltr.) Schltr., C.
bracteatum (Schltr.) Schltr., C. bradeorum Schltr.,
C. brenesii Schltr. (M. trilobata Ames & C.
Schweinf.), C. costaricense Schltr. (M. tonduzii
(Schltr.) Ames & Correll), C. ctenostachys (Rchb.f.)
Schltr., C. dendrobioides Schltr., C. dichotomum
Schltr., C. hoehnei Pabst (M. imbricata Barb.
Rodr.), C. imbricatum Schltr. (M. schlechteriana J.
T. Atwood), C. latifolium Schltr. (M. planicola C.
Schweinf.), C. minus Schltr. [M. minor (Schltr.) L.
0. Williams], C. nutantiflorum Schltr. (M.
umbratilis L. 0. N\ C. ochroleucum Lindl.
(M. camaridii Rchb.f.), and C. pulchrum Schltr.

CHRISTENSONELLA

Christensonella Szlach., Mytnik, G6rmniak & Smiszek,
Polish Bot. J. 51: 57. 2006.
Type species: Maxillaria paulistana Hoehne, =

LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.


Christensonella subulata (Lindl.) Szlach., Mytnik,
G6rniak & Smiszek [= Maxillaria subulata Lindl.],
syn. nov.
Maxillaria sect. Urceolatae Christenson, Proc. 16'
World Orchid Conf. 286-287. 2002.

Species of Christensonella are either epiphytes or
lithophytes. Plants of this genus are often very
small, compared to other members of Maxillariinae.
In most species, the roots show characteristic con-
strictions. Epiphytic species tend to grow pendent
and have distant pseudobulbs, while the lithophytes
are erect and more cespitose. The pseudobulbs are
often ridged. Each pseudobulb bears from one to
four apical leaves, and has several non-foliaceous
subtending sheaths. The leaves can be flat and
conduplicate to subulate or hemiterete. The flowers
are usually yellow to dark red and have a shiny, dry
callus; perianth fibers are present. Christensonella
uncata and C. squamata have prominent stelidia
projecting downward from the apex of the clinandri-
um, which support a long, tegular stipe. The
fusiform fruits have apical dehiscence. In C. nar-
doides, the endocarpic trichomes are extruded as a
sausage-like mass which carries the seeds outside of
the fruit (Blanco et al. 2006).
This distinctive group of mostly South American
species has been informally known as the "Maxillaria
madida alliance" (Pabst & Dungs 1977). A detailed
revision of Christensonella is in progress (S. Koehler,
unpublished manuscript). Szlachetko et al. (2006)
transferred most members of Maxillaria section
Urceolatae to ( .. i; ...... ',, and here we transfer a
few more. Whitten et al. (2007) wrongfully cited M.
nardoides Kraenzl. as the type of ( ., i,, ..'.. ".,, but
that species is the type of Maxillaria section
Urceolatae.

(IniveIoniItIi elli tpuhi (Rchb.f.) S. Koehler, comb. nov.
Basionym: Maxillaria cepula Rchb.f, Bonplandia
3: 216. 1855.

(htliitenioneillt neowiedii (Rchb.f.) S. Koehler,
comb. nov.
Basionym: Maxillaria neowiedii Rchb. f, Linnaea
41: 29. 1877.

(hI iiitenorIn'lt pacholskii (Christenson) S. Koehler,
comb. nov.








BLANCO et al. Generic realignments in Maxillariinae


Basionym: Maxillaria pacholskii Christenson,
Orchid Rev. 111: 288. 2003.

(hliitienIrinlla squamata (Barb. Rodr.) Carnevali,
comb. nov.
Basionym: Maxillaria squamata Barb. Rodr., Gen.
Sp. Orchid. 1: 118. 1877.

Other members of Christensonella which should be
recognized as discrete species (S. Koehler, unpub-
lished manuscript) include: C. acicularis (Herb. ex
Lindl.) Szlach., Mytnik, G6rniak & Smiszek, C.
echinophyta (Barb. Rodr.) Szlach., Mytnik, G6rniak
& Smiszek, C. ferdinandiana (Barb. Rodr.) Szlach.,
Mytnik, G6rmniak & Smiszek, C. nardoides (Kraenzl.)
Szlach., Mytnik, G6rniak & Smiszek, C. pumila
(Hook.) Szlach., Mytnik, G6rmniak & Smiszek, C. sub-
ulata (Lindl.) Szlach., Mytnik, G6rmniak & Smiszek,
C. uncata (Lindl.) Szlach., Mytnik, G6rniak &
Smiszek, and C. vernicosa (Barb. Rodr.) Szlach.,
Mytnik, G6rmniak & Smiszek. Other names transferred
by Szlachetko et al. (2006) are regarded as synonyms
(S. Koehler, unpublished manuscript).

CRYPTOCENTRUM

Cryptocentrum Benth., J. Linn. Soc. Bot. 18: 325.
1880.
Type species: Cryptocentrum jamesonii Benth., = C.
lehmannii (Rchb.f.) Garay [= Aeranthes lehmanii
Rchb.f.].
Anthosiphon Schltr., Repert. Spec. Nov. Regni
Veg. Beih. 7: 182. 1920.
Cryptocentrum sect. Anthosiphon (Schltr.) Hawkes,
Orchid J. 2: 379. 1953.
Cryptocentrum subgen. Caulescentes Senghas, in
Schlechter Orchideen, ed. 3, I/B(29): 1798. 1994.
Cryptocentrum subgen. Pseudobulbosa Carnevali,
Harvard Pap. Bot. 5: 470. 2001.
Cryptocentrum subgen. Cryptocentrum Benth.
sensu Carnevali, Harvard Pap. Bot. 5: 468. 2001.
Pittierella Schltr., Repert. Spec. Nov. Regni Veg.
3(31-32): 80. 1906.

Cryptocentrum is unusual among core
Maxillariinae because most species have monopodi-
al (often congested) shoots, long, wiry inflores-
cences, and greenish, star shaped flowers with a
nectariferous spur formed by the bases of the sepals


and the labellum. Species in subgenus Caulescentes
are even more aberrant, and have dwarf shoots with
polystichous phyllotaxis. The capsules have apical
dehiscence.
Because of its unusual morphology,
Cryptocentrum has been consistently recognized as
a separate, well defined genus. Carnevali (2001)
provided a synopsis. It is significant that the three
subgenera (Caulescentes, Cryptocentrum and
Pseudobulbosa; Carnevali, 2001) form strongly
supported monophyletic groups (Whitten et al.
2007). Because we now consider Anthosiphon as
part of Cryptocentrum, the erection of a new sub-
genus is necessary:

Cryptocentrum Benth. subgenus Anthosiphon
(Schltr.) Carnevali, comb. et stat. nov.
Anthosiphon Schltr., Repert. Spec. Nov. Regni Veg.
Beih. 7: 182. 1920.
Cryptocentrum sect. Anthosiphon (Schltr.) Hawkes,
Orchid J. 2: 379. 1953.
TYPE: Cryptocentrum roseans (Schltr.) A. D.
Hawkes (= Anthosiphon roseans Schltr.)

CYRTIDIORCHIS

Cyrtidiorchis Rauschert, Taxon 31: 560. 1982.
Type species (designated by Ortiz, Orquideas de
Colombia ed. 2: 70, 1995): Chrysocycnis rhom-
boglossa F. Lehm. & Kraenzl., = Cyrtidiorchis
rhomboglossa (F. Lehm. & Kraenzl.) Rauschert.
Cyrtidium Schltr., Repert. Spec. Nov. Regni Veg.
Beih. 27: 178. 1924, nom. illeg. (non Vainio, Acta
Soc. Fauna Flora Fenn. 49: 227, 262 1921).

Plants of Cyrtidiorchis have dimorphic growth
with sympodial, pseudobulb bearing juvenile shoots,
and monopodial, branched adult shoots.
Inflorescences are supra-axillary and are only pro-
duced by the adult shoots. The flowers have spread-
ing perianth segments that lack fibers, a tomentose,
insectiform labellum, and a strongly arched column;
they are probably sexually deceptive. The capsules
have lateral dehiscence.
Garay (1969) presented a taxonomic revision of
Cyrtidiorchis (as Cyrtidium). This small Andean
genus (five species) is well characterized and no new
combinations are necessary.

LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.








LANKESTERIANA


HETEROTAXIS

Heterotaxis Lindl., Bot. Reg. 12: t. 1028. 1826.
Type species: Heterotaxis crassifolia Lindl., = H.
sessilis (Sw.) F. Barros Barros [=Epidendrum ses-
sile Sw.].
Dicrypta Lindl., Gen. Sp. Orchid. Pl. 44. 1830.
Marsupiaria Hoehne, Arq. Bot. Estado Sao Paulo
n.s., f.m. 2: 69. 1947.
Maxillaria subgen. Heterotaxis (Lindl.) Brieger,
An. Soc. Bot. Brasil 1972: 94. 1972.
Maxillaria sect. Heterotaxis (Lindl.) Brieger, Trab.
Congr. Nac. Bot. (Rio de Janeiro) 26: 242-244,
1977.
Maxillaria sect. Iridifolieae Pfitz., Nat.
Pflanzenfam. 2(6): 187. 1889.
Pentulops Raf, Fl. Tellur. 4: 42. 1836.

Most species of Heterotaxis have sympodial growth
with laterally compressed, oblong, unifoliate
pseudobulbs subtended by several foliaceous sheaths.
Two species (H. equitans and H. valenzuelana) have
ensiform leaves and pseudo-monopodial shoots that
lack pseudobulbs. In all cases, the shoots are aggre-
gate. The fleshy, yellowish, campanulate flowers
have perianth fibers and a very short column foot.
The labellum produces a pad of very short, glandular
trichomes that likely constitute a reward for pollina-
tors. The capsules have lateral dehiscence.
Ojeda et al. (2005) provided the most recent
detailed account of Heterotaxis. They described H.
fritzii Ojeda & Carnevali but accidentally provided
erroneous information for the type, which is amended
here (corrections underlined):

Heterotaxis fritzii Ojeda & Carnevali, Novon 15:
574-577. 2005.
TYPE: Purchased from Orquideas del Valle. Cali
[Colombia]. Flowered in cultivation in Gainesville,
Florida, U.S.A., 25 Jan 2004, M. W. Whitten 2672
holotypee: FLAS).

Species that belong in Heterotaxis are: H. brasiliensis
(Brieger & Illg) F. Barros, H. discolor (Lodd. ex Lindl.)
Ojeda & Carnevali, H. equitans (Schltr.) Ojeda &
Carnevali, H. fritzii Ojeda & Carnevali, H. maleolens
(Schltr.) Ojeda & Carnevali, H. microiridifolia (D. E.
Benn. & Christenson) Ojeda & Carnevali, H. santanae
(Camevali & I. Ramirez) Ojeda & Carnevali, H. schul-

LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.


tesii Ojeda & G. A. Romero, H. sessilis (Sw.) F. Barros
(Maxillaria crassifolia Lindl.), H. superflua (Rchb.f.) F.
Barros, H. valenzuelana (A. Rich.) Ojeda & Carnevali,
H. villosa (Barb. Rodr.) F. Barros, and H. violaceop-
unctata (Rchb.f.) F. Barros (Ojeda et al. 2005).

INTI

Inti M. A. Blanco, gen. nov.
Type species: Maxillaria chartacifolia Ames & C.
Schweinf., = Inti chartacifolia (Ames & C.
Schweinf.) M. A. Blanco.
Maxillaria sect. Polyphyllae Christenson, Proc. 16'
World Orchid Conf. 284-285. 2002.

Plantae cespitosae, epiphyticae, epseudobulbosae,
surculis congestis flabellatis. Folia disticha plurima
longa angusta. Inflorescentiae axillares in foliis
infimis. Flores foetidi, perianthio fibrarum destitute.
Fructus capsulares long dehiscentiis lateralibus.

Plants of Inti are easily recognized by their aggre-
gate, congested shoots devoid of pseudobulbs, with
many (>10) distichous, long leaves arranged like a fan.
The yellow or maroon flowers lack perianth fibers and
have a fetid odor. The column foot is virtually non
existent, and the labellum has a pad of glandular tri-
chomes similar to those of Heterotaxis. The capsules
are long and narrow, and have lateral dehiscence.

ETYMOLOGY: Named after Inti, the sun god of the Inca
culture. The long and narrow leaves radiating from a con-
gested shoot are reminiscent of the rays of a rising sun.
Having no botanical tradition, we give this generic name a
feminine gender (article 62.3, McNeill et al. 2006).

This small group was treated as the "Maxillaria
bicallosa clade" in Whitten et al. (2007).

Inti bicallosa (Rchb.f.) M. A. Blanco, comb. nov.
Basionym: Zygopetalum bicallosum Rchb.f., Otia
Bot. Hamb. 1: 9. 1878. Syn.: Ornithidium
dolichophyllum Schltr., Repert. Spec. Nov. Regni
Veg. Beih. 9: 106. 1921 (= Maxillaria caespitosa C.
Schweinf.), syn. nov.

Inti chartacifolia (Ames & C. Schweinf.) M. A.
Blanco, comb. nov.
Basionym: Maxillaria chartacifolia Ames & C.
Schweinf., Sched. Orch. 10: 92. 1930. Syn.:








BLANCO et al. Generic realignments in Maxillariinae


Trigonidium equitans Garay, Svensk Bot. Tidskr.
47: 288, fig. 15. 1953, syn. nov.


MAPINGUARI

Mapinguari Carnevali & R. Singer, gen. nov.
Type species: Maxillaria longipetiolata Ames & C.
Schweinf, = Mapinguari longipetiolatus (Ames &
C. Schweinf.) Carnevali & R. Singer.

Plantae plerumque sylvicolae, epiphyticae vel
rupicolae, pseudobulbis laevis, semper unifoliatis,
... Radices laeves, ferrugineae, brunneae vel
albae. Flores erecti, fragrantes, rigidi et sine secre-
tiones; pedicello brevissimo rigidoque. Pollinarium
cum tegula et viscidio semilunare.

Mapinguari is a small (four species), primarily
Guayanan and Amazonian genus. Mapinguari
desvauxianus reaches the Brazilian states of Sio Paulo
and Rio de Janeiro. Two of the species are primarily
terrestrial in sandy soils or lithophytic on sandstone.
The pseudobulbs are aggregate, unifoliate and smooth
to slightly sulcate. The conduplicate leaves normally
display a well developed petiole. The very short inflo-
rescences are produced from the base of the most
recent pseudobulb. The flowers are erect (i.e., the
labellum is held in a vertical or near-vertical position),
brown or maroon in coloration, have a very short col-
umn foot, lack any secretions or trichomes, and have
tough perianth fibers. We have not been able to deter-
mine the mode of dehiscence of the capsules.

ETYMOLOGY: Named after the Mapinguari, a legendary
and elusive creature of Brazilian-Amazonian mytholo-
gy, in allusion to the brownish, cryptic flowers. Having
no botanical tradition, we treat this generic name as
masculine (article 62.3, McNeill et al. 2007).

This small but distinctive group was first recognized
by Carnevali & Ramirez (1989; as the "Maxillaria
auyantepuiensis complex") and was treated as the
"Maxillaria desvauxiana clade" in Whitten et al.
(2007). Full synonymy for each species can be found
in Camevali & Ramirez-Morillo (2003).

Mapinguari auyantepuiensis (Foldats) Carnevali &
R. Singer, comb. nov.
Basionym: Maxillaria auyantepuiensis Foldats,
Bol. Soc. Venez. Ci. Nat. 22: 269. 1961.


Mapinguari desvauxianus (Rchb.f.) Carnevali & R.
Singer, comb. nov.
Basionym: Maxillaria desvauxiana Rchb.f.,
Bonplandia (Hannover) 3: 67. 1854.

Mapinguari foldatsianus (Carnevali & I. Ramirez)
Carnevali & R. Singer, comb. nov.
Basionym: Maxillaria foldatsiana Carnevali & I.
Ramirez, Ann. Missouri Bot. Gard. 76: 376. 1989.

Mapinguari longipetiolatus (Ames & C. Schweinf.)
Carnevali & R. Singer, comb. nov.
Basionym: Maxillaria longipetiolata Ames & C.
Schweinf., Sched. Orch. 8: 61-62. 1925.

MAXILLARIA

Maxillaria Ruiz & Pay., Fl. Peruv. Prodr. 116, t. 25.
1794.
Type species (designated by Brieger & Hunt, Taxon
18: 601-603. 1969; and by Garay, Harvard Pap.
Bot. 11: 51-52. 1997): Maxillaria platypetala Ruiz
& Pay.
Adamanthus Szlach., Richardiana 7: 30. 2007, pro
parte (excl. type).
Dendrobium sect. Maxillaria (Ruiz & Pay.) Pers.,
Syn. Pl. (Persoon) 2: 523. 1807.
Maxillaria sect. Aggregatae Pfitz., Nat.
Pflanzenfam. 2(6): 187. 1889,proparte (incl. type).
Maxillaria sect. Amazonicae Christenson, Proc. 16th
World Orchid Conf. 282. 2002.
Maxillaria sect. Arachnites Christenson, Proc. 16th
World Orchid Conf. 282. 2002.
Maxillaria sect. Axilliflorae Lindl., Gen. Sp.
Orchid. Pl. 142. 1833, pro parte.
Maxillaria sect. Maxillaria Ruiz & Pay. sensu
Christenson, Proc. 16th World Orchid Conf. 284.
2002.
Maxillaria sect. Multiflorae Christenson, Proc. 16th
World Orchid Conf. 284. 2002.
Maxillaria subgen. Aggregatae (Pfitz.) Brieger,
Trab. Congr. Nac. Bot. (Rio de Janeiro) 26: 244.
1977.
Menadena Raf, Fl. Tellur. 2: 98. 1836.
Sauvetrea Szlach., Richardiana 7: 28. 2007, pro
parte (excl. type).

Plants of this group almost always have pseudob-
ulbs (with the exception of some species in the M.

LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.








LANKESTERIANA


exaltata alliance) and are often cespitose. The
pseudobulbs almost invariably are unifoliate, smooth
and laterally compressed, with subtending sheaths
that are either foliaceous or not. The abscission layer
of the apical leaf is often projected above the
pseudobulb in a persistent stalk (phyllopodium). The
inflorescences always emerge from the base of the
youngest pseudobulbs (from the leaf axils near the
top of the stem in the M. exaltata alliance). The floral
bract can be shorter or longer than the pedicel and
ovary. The flowers have a prominent column foot,
and abundant perianth fibers. None of the species
produce nectar, but many produce pseudopollen in
the form of moniliform, pluricellular trichomes on the
labellum surface (a character not seen in any other
genera). The capsules have lateral dehiscence.
Almost half of the species traditionally treated in
Maxillaria sensu lato will remain in Maxillaria sensu
strict, as here circumscribed. Maxillaria sections
Amazonicae, Maxillaria, and Multiflorae form well
supported clades (Whitten et al. 2007), but the other
sections are polyphyletic. Increased sampling of taxa
and gene regions within Maxillaria sensu strict is
needed to support a revised infrageneric classifica-
tion. Two names included in the analyses of Whitten
et al. (2007) need to be commented upon:

Maxillaria candida Lodd. ex Lindl., Edwards's Bot.
Reg. 27 (Misc.): 28. 1841.
Syn.: Maxillaria modest Brade, Orquidea (Rio de
Janeiro) 6: 18. 1943, nom. illeg. (non Schltr.,
Repert. Spec. Nov. Regni Veg. Beih. 28: 93. 1924),
Maxillaria modestiflora Pabst, Bradea 2: 319. 1979.
syn. nov.

Whitten et al. (2007) reported a specimen of
Maxillaria candida Lodd. ex Lindl. (Koehler 0335,
ESA) nested in the Mormolyca clade. Upon examina-
tion of the type of M. candida at Kew, we realized that
Koehler 0335 is Mormolyca cf. acutifolia (Lindl.) M.
A. Blanco. Whitten et al. (2007) also reported a speci-
men of Maxillaria modest Schltr. nested in Maxillaria
sensu strict (Koehler 0351, UEC). This specimen is,
however, the true Maxillaria candida, which was origi-
nally identified simply as "M. modesta. The illegiti-
mate name Maxillaria modest Brade (non Schltr.) and
its later legitimate name M. modestiflora Pabst are pre-
viously undetected synonyms of M. candida.

LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.


Even in this exclusive circumscription, Maxillaria
remains by far the largest genus in subtribe
Maxillariinae. Species that belong in Maxillaria sensu
strict include: M. acostae Schltr., M. aequiloba
Schltr., M. albata Lindl., M. albiflora Ames & C.
Schweinf., M. amazonica Schltr., M. anatomorum
Rchb.f, M. angustisegmenta Ames & C. Schweinf, M.
angustissima Ames, T. Hubb. & C. Schweinf., M.
arachnites Rchb.f., M. arachnitiflora Ames & C.
Schweinf, M. argyrophylla Poepp. & Endl., M. attenu-
ata Ames & C. Schweinf, M. atwoodiana Pupulin, M.
augustae-victoriae F. Lehm. & Kraenzl., M. aurorae
D. E. Benn. & Christenson, M. azulensis D. E. Benn.
& Christenson, M. batemanii Poepp. & Endl., M. ben-
nettii Christenson, M. bocazensis D. E. Benn. &
Christenson, M. bolivarensis C. Schweinf, M. brachy-
bulbon Schltr., M. bradei Schltr. ex Hoehne, M. bre-
viscapa Poepp. & Endl., M. buchtienii Schltr., M. bur-
tonii D. E. Benn. & Christenson, M. calantha Schltr.,
M. candida Lodd. ex Lindl., M. carolii Christenson, M.
chionantha J. T. Atwood, M. chlorantha Lindl., M.
christensonii D. E. Benn., M. colemanii Camevali &
Fritz, M. colorata Rchb.f, M. confusa Ames & C.
Schweinf, M. connellii Rolfe, M. crocea Poepp. &
Endl., M. cryptobulbon Carnevali & J. T. Atwood, M.
curvicolumna M. A. Blanco & Neubig, M. cuzcoensis
C. Schweinf, M. dalessandroi Dodson, M. dichroma
Rolfe, M. dillonii D. E. Benn. & Christenson, M. x
dunstervillei Carnevali & I. Ramirez, M. eburnea
Lindl., M. ecuadorensis Schltr., M. edwardsii D. E.
Benn. & Christenson, M. elegantula Rolfe, M. embreei
Dodson, M. endresii Rchb.f, M. exaltata (Kraenzl.) C.
Schweinf, M. fletcheriana Rolfe, M. floribunda Lindl.,
M. formosa Carnevali & G. A. Romero, M. fractiflexa
Rchb.f, M. frechettei D. E. Benn. & Christenson, M.
fucata Rchb.f, M. fuerstenbergiana Schltr., M. galan-
tha J. T. Atwood & Camevali, M. gentryi Dodson, M.
gorbatschowii R. Vasquez, Dodson & Ibisch, M. gran-
diflora (Kunth) Lindl., M. grandimentum C. Schweinf,
M. grandis Rchb.f, M. granditenuis D. E. Benn. &
Christenson, M. grayi Dodson, M. guadalupensis
Cogn., M. hastulata Lindl., M. hennisiana Schltr., M.
hillsii Dodson, M. hirsutilabia D. E. Benn. &
Christenson, M. huanucoensis D. E. Benn. &
Christenson, M. huebschii Rchb.f, M. irrorata Rchb.f,
M. jostii Dodson, M. jucunda F. Lehm. & Kraenzl., M.
!,'., Rchb.f, M. klugii C. Schweinf, M. langlassei








BLANCO et al. Generic realignments in Maxillariinae


Schltr., M. leforii D. E. Benn. & Christenson, M.
lehmannii Rchb.f., M. lepidota Lindl., M. leucaimata
Barb. Rodr., M. lilliputiana D. E. Benn. & Christenson,
M. lindleyana Schltr. (M. crocea Lindl.), M. linearis
Ames & C. Schweinf, M. litensis Dodson, M. longilo-
ba (Ames & C. Schweinf.) J. T. Atwood, M. longipes
Lindl., M. longissima Lindl., M. loretoensis C.
Schweinf., M. lueri Dodson, M. luteoalba Lindl., M.
macrura Rchb.f, M. margretiae R. Vasquez, M. mar-
moliana Dodson, M. mejiae Carnevali & G. A.
Romero, M. melina Lindl., M. merana Dodson, M.
meridensis Lindl., M. microtricha Schltr., M. milenae
V. P. Castro & Chiron, M. molitor Rchb.f, M. monan-
tha Barb. Rodr., M. multiflora Barb. Rodr., M.
mungoschraderi R. Vasquez & Ibisch, M. nanegalen-
sis Rchb.f., M. neophylla Rchb.f., M. niesseniae
Christenson, M. nigrescens Lindl., M. nuriensis
Carnevali & I. Ramirez, M. nutans Lindl., M.
ochroleuca Lodd. ex Lindl., M. pachyneura F. Lehm.
& Kraenzl., M. pannieri Foldats, M. parkeri Hook., M.
parvibulbosa C. Schweinf, M. patens Schltr., M. pau-
ciflora Barb. Rodr., M. pentura Lindl., M. perryae
Dodson, M. platyloba Schltr., M. platypetala Ruiz &
Pay., M. plicata Schltr., M. porrecta Lindl., M. por-
tillae Christenson, M. powellii Schltr., M. pseudore-
ichenheimiana Dodson, M. pterocarpa Barb. Rodr., M.
pulla Linden & Rchb.f., M. pyhalae D. E. Benn. &
Christenson, M. quelchii Rolfe, M. ramonensis Schltr.,
M. reichenheimiana Endres & Rchb.f., M. ringens
Rchb.f., M. rodriguesii Cogn., M. rodrigueziana J. T.
Atwood & Mora-Ret., M. rotundilabia C. Schweinf.,
M. rubioi Dodson, M. sanderiana Rchb.f. ex Sander,
M. setigera Lindl., M. silvana Campacci, M. sima-
coana Schltr., M. simplicilabia C. Schweinf, M. spe-
ciosa Rchb.f., M. spiritu-sanctensis Pabst, M. splen-
dens Poepp. & Endl., M. striata Rolfe, M. tenuis C.
Schweinf., M. thurstoniorum Dodson, M. tiaraensis
Camevali & G. A. Romero, M. tonsbergii Christenson,
M. trilobulata D. E. Benn. & Christenson, M. triloris
E. Morren, M. tristis Schltr., M tuerosii D. E. Benn. &
Christenson, M. turkeliae Christenson, M. valleculata
D. E. Benn. & Christenson, M. venusta Linden &
Rchb.f., M. whittenii Dodson, M. williamsii Dodson,
M. winaywaynaensis D. E. Benn. & Dodson, M. wojii
Christenson, M. woytkowskii C. Schweinf., M. xylobi-
iflora Schltr., M. yanganensis Dodson, and M.
yauaperyensis Barb. Rodr.


MAXILLARIELLA

Maxillariella M. A. Blanco & Carnevali, gen. nov.
Type species: Maxillaria diuturna Ames & C.
Schweinf., = Maxillariella diuturna (Ames & C.
Schweinf) M. A. Blanco & Carnevali.
Adamanthus Szlach., Richardiana 7: 30. 2007, pro
parte (excl. type).
Maxillaria sect. Ebulbes Pfitz., Nat. Pflanzenfam.
2(6): 187. 1889.
Maxillaria sect. Erectae Pfitz., Nat. Pflanzenfam.
2(6): 187. 1889.

Plantae epiphyticae, pro parte maxima rhizomati-
bus longis, pseudobulbosae vel epseudoblbosae;
pseudobulbi 1-2 foliis apicalibus. Flores solitarii in
axillis foliorum vel bractearum. Flores plerumque
parvi campanulati. Labella parviloba vel elobulata,
calls nitidis. Fructus capsulares dehiscentiis lateral-
ibus.

Species of Maxillariella are variable in terms of
growth habit; a few species are subcespitose, but
most have pseudobulbs separated by medium to long
rhizome segments. The ovoid pseudobulbs are either
uni- or bifoliate. Several species with long rhizomes
have foliaceous bracts covering the segments between
pseudobulbs. Others have pseudobulbs reduced or
even absent, and these species show a clear gradient
from sympodial to monopodial growth. The most
derived members of this genus are the species former-
ly treated as Maxillaria section Ebulbes (the
"Maxillaria graminifolia suballiance", Atwood
2003), which have thin, wiry, monopodial stems com-
pletely devoid of pseudobulbs, and narrow, acute
leaves. Invariably, only one flower is produced from
each leaf or bract axil (e.g., the inflorescences are not
fasciculate nor produced sequentially), and the floral
bract is shorter than the pedicel and ovary. The col-
umn foot is very short, and the labellum is simple or
obscurely three-lobed and has a glossy callus. The
flowers seem to be food deceptive in most cases. The
capsules have lateral dehiscence.

This group was treated as the "Maxillaria variabilis
clade" by Whitten et al. (2007). Maxillaria sect.
Ebulbes (the "Maxillaria graminifolia suballiance")
was revised by Atwood (2003). Camaridium dendro-
bioides, the type of Adamanthus, is morphologically

LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.








LANKESTERIANA


convergent with members of that suballiance, but it is
firmly nested in Camaridium (Whitten et al. 2007).
The floral bract in C. dendrobioides is longer than the
pedicel and ovary.

ETYMOLOGY: The name Maxillariella is a diminutive
of Maxillaria, in reference to the often much smaller
flowers of Maxillariella.

Maxillariella acervata (Rchb.f.) M. A. Blanco &
Camevali, comb. nov.
Basionym: Maxillaria acervata Rchb.f., Bonplandia
(Hannover) 3: 217. 1855.

Maxillariella alba (Hook.f.) M. A. Blanco &
Camevali, comb. nov.
Basionym: Dendrobium album Hook.f., Exot. Fl. t.
142. 1825.

Maxillariella anceps (Ames & C. Schweinf.) M. A.
Blanco & Camevali, comb. nov.
Basionym: Maxillaria anceps Ames & C.
Schweinf., Sched. Orch. 10: 84. 1930.

Maxillariella appendiculoides (C. Schweinf.) M. A.
Blanco & Camevali, comb. nov.
Basionym: Maxillaria appendiculoides C.
Schweinf., Bot. Mus. Leafl. 4: 119-121. 1937.

Maxillariella arbuscula (Lindl.) M. A. Blanco &
Camevali, comb. nov.
Basionym: Camaridium arbuscula Lindl., P1.
Hartw. 153. 1845.

Maxillariella brevifolia (Lindl.) M. A. Blanco &
Camevali, comb. nov.
Basionym: Camaridium brevifolium Lindl., Benth.
P1. Hartw. 154. 1845.
Maxillariella caespitifica (Rchb.f.) M. A. Blanco &
Camevali, comb. nov.
Basionym: Maxillaria caespitifica Rchb.f., Linnaea
41: 73. 1877.
Maxillariella cassapensis (Rchb.f.) M. A. Blanco &
Camevali, comb. nov.
Basionym: Maxillaria cassapensis Rchb.f., Ann.
Bot. Syst. 6: 539. 1863.

Maxillariella caucana (Schltr.) M. A. Blanco &
Camevali, comb. nov.
Basionym: Maxillaria caucana Schltr., Repert.
Spec. Nov. Regni Veg. Beih. 7: 167. 1920.

LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.


Maxillariella cobanensis (Schltr.) M. A. Blanco &
Camevali, comb. nov.
Basionym: Maxillaria cobanensis Schltr., Repert.
Spec. Nov. Regni Veg. 10: 295. 1912.

Maxillariella costaricensis (Schltr.) M. A. Blanco &
Camevali, comb. nov.
Basionym: Maxillaria costaricensis Schltr., Rep.
Spec. Nov. Regni Veg. Beih. 19: 232-233. 1923.

Maxillariella curtipes (Hook.) M. A. Blanco &
Camevali, comb. nov.
Basionym: Maxillaria curtipes Hook., Icon. Pl. 4: t.
384. 1841

Maxillariella densifolia (Poepp. & Endl.) M. A.
Blanco & Camevali, comb. nov.
Basionym: Dicrypta densifolia Poepp. & Endl.,
Nov. Gen. Sp. Pl. 1: 39. 1836.

Maxillariella diuturna (Ames & C. Schweinf) M. A.
Blanco & Camevali, comb. nov.
Basionym: Maxillaria diuturna Ames & C.
Schweinf, Sched. Orch. 8: 58. 1925.

Maxillariella elatior (Rchb.f.) M. A. Blanco &
Camevali, comb. nov.
Basionym: Dicrypta elatior Rchb.f., Linnaea 18:
403. 1844.

Maxillariella estradae (Dodson) M. A. Blanco &
Camevali, comb. nov.
Basionym: Maxillaria estradae Dodson, Icon. P1.
Trop. 1: t. 152. 1980.

Maxillariellafunicaulis (C. Schweinf.) M. A. Blanco
& Camevali, comb. nov.
Basionym: Maxillaria funicaulis C. Schweinf., Bot.
Mus. Leafl. 11: 273. 1945.

Maxillariella graminifolia (Kunth) M. A. Blanco &
Camevali, comb. nov.
Basionym: Isochilus graminifolius Kunth, Nov.
Gen. Sp. 1: 340, t. 78. 1816.

Maxillariella guareimensis (Rchb.f) M. A. Blanco &
Camevali, comb. nov.
Basionym: Maxillaria guareimensis Rchb.f.,
Bonplandia (Hannover) 2: 16. 1854.

Maxillariella houtteana (Rchb.f.) M. A. Blanco &
Camevali, comb. nov.








BLANCO et al. Generic realignments in Maxillariinae


Basionym: Maxillaria houtteana Rchb.f., Hamb.
Gartenz. 14: 212. 1858.

Maxillariella infausta (Rchb.f.) M. A. Blanco &
Camevali, comb. nov.
Basionym: Maxillaria infausta Rchb.f., Bonplandia
(Hannover) 3: 216. 1855.

Maxillariella lawrenceana (Rolfe) M. A. Blanco &
Camevali, comb. nov.
Basionym: Camaridium lawrenceanum Rolfe,
Bull. Misc. Inform. Kew 1894: 185. 1894.

Maxillariella linearifolia (Ames & C. Schweinf.) M.
A. Blanco & Camevali, comb. nov.
Basionym: Maxillaria linearifolia Ames & C.
Schweinf, Sched. Orch. 10: 95-96. 1930.

Maxillariella longibracteata (Lindl.) M. A. Blanco &
Camevali, comb. nov.
Basionym: Camaridium longibracteatum Lindl.,
Benth. Pl. Hartw. 154. 1845.

Maxillariella luteorubra (F. Lehm. & Kraenzl.) M.
A. Blanco & Camevali, comb. nov.
Basionym: Ornithidium luteorubrum F. Lehm. &
Kraenzl., Bot. Jahrb. Syst. 26: 486. 1899.
Maxillaria cuencana Garay, Cand. J. Bot. 34: 257.
1956. Non Camaridium luteo-rubrum Lindl.
(Orchid. Linden. 22. 1846).

Maxillariella mexicana (J. T. Atwood) M. A. Blanco
& Camevali, comb. nov.
Basionym: Maxillaria mexicana J. T. Atwood,
Selbyana 24: 35-36. 2003.

Maxillariella microdendron (Schltr.) M. A. Blanco
& Camevali, comb. nov.
Basionym: Maxillaria microdendron Schltr.,
Repert. Spec. Nov. Regni Veg. Beih. 8: 94. 1921.

Maxillariella nitidula (Rchb.f.) M. A. Blanco &
Camevali, comb. nov.
Basionym: Maxillaria nitidula Rchb.f, Linnaea 41:
29. 1876.

In Whitten et al. (2007) we stated that this species
probably belongs in Camaridium. Upon re-examina-
tion of herbarium material, we are now convinced it
belongs in Maxillariella.

Maxillariella oreocharis (Schltr.) M. A. Blanco &


Camevali, comb. nov.
Basionym: Maxillaria oreocharis Schltr., Repert.
Spec. Nov. Regni Veg. Beih. 17: 69. 1922.

Maxillariella pardalina (Garay) M. A. Blanco &
Carnevali, comb. nov.
Basionym: Maxillaria pardalina Garay, Bot. Mus.
Leafl. 26: 28. 1978. Maxillaria pantherina Rchb.f.
1855, Bonplandia (Hannover) 3: 239. 1855, nom.
illeg. (non Hoffmanns., Verz. Orchid. ed. 3: 71. 1844).

Maxillariella pastensis (Rchb.f.) M. A. Blanco &
Camevali, comb. nov.
Basionym: Maxillaria pastensis Rchb.f.,
Bonplandia (Hannover) 3: 239. 1855.

Maxillariella ponerantha (Rchb.f.) M. A. Blanco &
Camevali, comb. nov.
Basionym: Maxillaria ponerantha Rchb.f.,
Bonplandia (Hannover) 2: 17. 1854.

Maxillariella procurrens (Lindl.) M. A. Blanco &
Camevali, comb. nov.
Basionym: Maxillaria procurrens Lindl., Ann.
Mag. Nat. Hist. 15: 383. 1845.

Maxillariella prolifera (Sw.) M. A. Blanco &
Camevali, comb. nov.
Basionym: Epidendrum proliferum Sw., Prodr.:
124. 1788. Maxillaria swartziana C. D. Adams,
Amer. Orchid Soc. Bull. 35: 998. 1966.

Maxillariella purpurata (Lindl.) M. A. Blanco &
Camevali, comb. nov.
Basionym: Camaridium purpuratum Lindl.,
Orchid. Linden.: 22. 1846.

Maxillariella robusta (Barb. Rodr.) M. A. Blanco &
Camevali, comb. nov.
Basionym: Camaridium robustum Barb. Rodr.,
Gen. Spec. Orchid. 2: 210. 1881. Maxillariajohan-
nis Pabst, Sellowia 10: 165. 1959.

Maxillariella sanguine (Rolfe) M. A. Blanco &
Camevali, comb. nov.
Basionym: Maxillaria sanguine Rolfe, Bull. Misc.
Inform. Kew 1895: 8.

Maxillariella spilotantha (Rchb.f.) M. A. Blanco &
Camevali, comb. nov.
Basionym: Maxillaria spilotantha Rchb.f.,
Bonplandia (Hannover) 2: 17. 1854.

LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.








LANKESTERIANA


Maxillariella stenophylla (Rchb.f. ) M. A. Blanco &
Camevali, comb. nov.
Basionym: Maxillaria stenophylla Rchb.f.,
Bonplandia (Hannover) 2: 17. 1854. Non F. C.
Lehm. ex Kraenzl. (Bot. Jahrb. Syst. 26: 481. 1899).

Maxillariella stictantha (Schltr.) M. A. Blanco &
Camevali, comb. nov.
Basionym: Maxillaria stictantha Schltr., Repert.
Spec. Nov. Regni Veg. Beih. 8: 97. 1921.

Maxillariella tenuifolia (Lindl.) M. A. Blanco &
Camevali, comb. nov.
Basionym: Maxillaria tenuifolia Lindl., Edwards's
Bot. Reg. 23: sub. t. 1986. 1837.

Maxillariella tuerckheimii (Schltr.) M. A. Blanco &
Camevali, comb. nov.
Basionym: Camaridium tuerckheimii Schltr.,
Repert. Spec. Nov. Regni Veg. 10: 296. 1912.
Maxillaria nagelii L. 0. Williams ex Correll,
Lloydia 10: 212. 1947. Non Maxillaria tuerck-
heimii Schltr. (Repert. Spec. Nov. Regni Veg. 10:
295. 1912).

Maxillariella variabilis (Bateman ex Lindl.) M. A.
Blanco & Carnevali, comb. nov.
Basionym: Maxillaria variabilis Bateman ex Lindl.,
Edwards's Bot. Reg. 23: sub. t. 1986. 1837.

Maxillariella vinosa (Rolfe) M. A. Blanco &
Camevali, comb. nov.
Basionym: Camaridium vinosum Rolfe, Bull. Misc.
Inform. Kew 1922: 25-26. 1922. Non Camaridium
vinosum Schltr. (Repert. Spec. Nov. Regni Veg.
Beih. 19: 240. 1923), nec Maxillaria vinosa
Senghas (Schlechter Orchideen, ed. 3, I/B(28):
1751. 1993, nom. illeg.).

Maxillariella vulcanica (F. Lehm. & Kraenzl.) M. A.
Blanco & Carnevali, comb. nov.
Basionym: Maxillaria vulcanica F. Lehm. &
Kraenzl., Bot. Jahrb. Syst. 26: 484. 1899.

Maxillariella xanthorhoda (Schltr.) M. A. Blanco &
Camevali, comb. nov.
Basionym: Maxillaria xanthorhoda Schltr., Notizbl.
Bot. Gart. Berlin-Dahlem 7: 279. 1918.

Maxillariella x yucatanensis (Carnevali & R.
Jimenez) M. A. Blanco & Carnevali, comb. nov.

LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.


Basionym: Maxillaria x yucatanensis Carnevali &
R. Jimenez, Harvard Pap. Bot. 5: 428. 2001.

MORMOLYCA
Mormolyca Fenzl, Denkschr. Kaiserl. Akad. Wiss.,
Wien. Math.-Naturwiss. Kl. 1: 253. 1850.
Type species: Mormolyca lineolata Fenzl, = M. rin-
gens (Lindl.) Gentil [=Trigonidium ringens Lindl.].
Chrysocycnis Linden & Rchb.f., Bonplandia
(Hannover) 2: 280. 1854.
Cyrtoglottis Schltr., Repert. Spec. Nov. Regni Veg.
Beih. 7: 181. 1920.
Maxillaria sect. Rufescens Christenson, Proc. 16th
World Orchid Conf. 285-286. 2002.

In this expanded circumscription, Mormolyca can
be distinguished by its unifoliate pseudobulbs hav-
ing a minutely verrucose texture and subtended by
non-foliaceous sheaths, the inflorescences arising
from the axils of rhizome bracts well behind the
most recent pseudobulb, perianth segments that lack
fibers and open widely, and a conspicuously clavate,
arcuate column. Mormolyca polyphylla (which is
sister to the rest of the genus) is atypical because its
long, narrow pseudobulbs have up to three apical
leaves and two subtending foliaceous sheaths, and
the inflorescences are produced from the base of the
most recent pseudobulb. The rhizome segments and
the floral peduncles can be short or long, depending
on the species. The column foot is always very
short. The labellum of most species (those formerly
treated in Maxillaria section Rufescens) have a pad
of short, glandular trichomes on the callus, but the
labellum of the other species is tomentose and insec-
tiform. The capsules have apical dehiscence.
Chrysocycnis and Maxillaria section Rufescens
are firmly nested within Mormolyca, and thus their
constituent species need to be transferred.
Mormolyca sensu strict was revised by Garay &
Wirth (1959), and Chrysocycnis was revised by
Sweet (1971). Species of Maxillaria section
Rufescens, informally known as the "Maxillaria
rufescens complex", constitute a taxonomically dif-
ficult group; the Mesoamerican species were
revised by Carnevali et al. (2001), but many more
are found in South America. There probably are a
number of cryptic species, difficult to tell apart as








BLANCO et al. Generic realignments in Maxillariinae


herbarium specimens, but distinguishable in life
especially by their floral fragrances (Christenson
2002a, 2002b, and personal observation of the
authors).

Mormolyca acutifolia (Lindl.) M. A. Blanco, comb. nov.
Basionym: Maxillaria acutifolia Lindl., Edwards's
Bot. Reg. 25: misc. 92. 1839.

Mormolyca aureoglobula (Christenson) M. A.
Blanco, comb. nov.
Basionym: Maxillaria aureoglobula Christenson,
Orchids 71: 125-126. 2002.

Mormolyca chacoensis (Dodson) M. A. Blanco,
comb. nov.
Basionym: Maxillaria chacoensis Dodson, Icon. P1.
Trop., II, 6: t. 531. 1989.

Mormolyca cleistogama (Brieger & Illg) M. A.
Blanco, comb. nov.
Basionym: Maxillaria cleistogama Brieger & Illg,
Trab. Congr. Nac. Bot. 26: 247. 1977.

Mormolyca dressleriana (Carnevali & J. T. Atwood)
M. A. Blanco, comb. nov.
Basionym: Maxillaria dressleriana Carnevali & J.
T. Atwood, Lindleyana 11: 29-31. 1996.

Mormolyca hedwigiae (Hamer & Dodson) M. A.
Blanco, comb. nov.
Basionym: Maxillaria hedwigiae Hamer &
Dodson, Icon. Pl. Trop. 8: t. 800. 1982.

Mormolyca lehmanii (Rolfe) M. A. Blanco, comb. nov.
Basionym: Chrysocycnis lehmanii Rolfe, Bull.
Misc. Inform. Kew 1918: 235.

Mormolyca moralesii (Carnevali & J. T. Atwood) M.
A. Blanco, comb. nov.
Basionym: Maxillaria moralesii Carnevali & J. T.
Atwood, Lindleyana 11: 31-32. 1996.

Mormolyca pudica (Carnevali & Tapia-Mufioz) M.
A. Blanco, comb. nov.
Basionym: Maxillaria pudica Carnevali & Tapia-
Mufioz, Brittonia 53: 463-465. 2001. Maxillaria
rufescens var. minor Fawcett & Rendle, J. Bot. 48:
108. 1910.

Mormolyca richii (Dodson) M. A. Blanco, comb. nov.
Basionym: Maxillaria richii Dodson,
Orquideologia 19: 81. 1994.


Mormolyca rufescens (Lindl.) M. A. Blanco, comb. nov.
Basionym: Maxillaria rufescens Lindl., Edwards's
Bot. Reg. 22: t. 1848. 1836.

Mormolyca sanantonioensis (Christenson) M. A.
Blanco, comb. nov.
Basionym: Maxillaria sanantonioensis
Christenson, Orchids 71: 128. 2002.

Mormolyca schlimii (Linden & Rchb.f.) M. A.
Blanco, comb. nov.
Basionym: Chrysocycnis schlimii Linden &
Rchb.f., Bonplandia (Hannover) 2: 280. 1854.

Mormolyca sotoana (Carnevali & G6mez-Juirez) M.
A. Blanco, comb. nov.
Basionym: Maxillaria sotoana Carnevali &
G6mez-Juirez, Brittonia 53: 461-463.

Mormolyca suarezorum (Dodson) M. A. Blanco,
comb. nov.
Basionym: Maxillaria suarezorum Dodson, Icon.
P1. Trop., II, 6: t. 547. 1989.

Mormolyca tenuibulba (Christenson) M. A. Blanco,
comb. nov.
Basionym: Maxillaria tenuibulba Christenson,
Orchid Rev. 109: 41. 2001.

The other members of the genus constitute the para-
phyletic Mormolyca sensu strict: M. aurorae D. E.
Benn. & Christenson, M. gracilipes (Schltr.) Garay &
M. Wirth, M. peruviana C. Schweinf., M. polyphylla
Garay & M. Wirth, M. ringens (Lindl.) Gentil, and M.
schweinfurthiana Garay & M. Wirth. The obscure
name M. galeata (Scheidw.) Garay & M. Wirth is not
a true Mormolyca, but probably represents a species
in the Camaridium cucullatum alliance.

NITIDOBULBON

Nitidobulbon Ojeda, Carnevali & G. A. Romero,
ined.

Species of this group have oblong, shiny, smooth
pseudobulbs with several (4-6) subtending foliaceous
sheaths, and one or two apical leaves. The flowers are
campanulate and the rigid perianth segments have
abundant fibers. The column foot is very short, and
the labellum is frequently reflexed at the tip. The
labellar callus is ligulate and secretes an abundant,

LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.








LANKESTERIANA


resinous substance, but lacks glandular trichomes.
The capsules have lateral dehiscence.

This small group was referred to as the "Maxillaria
nasuta clade" in Whitten et al. (2007), and will be
elevated to generic rank by Ojeda et al. (in press). It
comprises the following three species currently in
Maxillaria: M. cymbidioides Dodson, J. T. Atwood &
Carnevali, M. nasuta Rchb.f., and M. proboscidea
Rchb.f.

ORNITHIDIUM

Ornithidium Salisb. ex R. Br., Hort. Kew. ed. 2, 5:
210. 1813.
Type species: Epidendrum coccineum Jacq., =
Ornithidium coccineum (Jacq.) Salisb. ex R. Br.
Adamanthus Szlach., Richardiana 7: 30. 2007, pro
parte (excl. type).
Laricorchis Szlach., Richardiana 7: 27. 2007.
Maxillaria sect. Ornithidium (Salisb. ex R. Br.)
Christenson, Richardiana 2: 52. 2002.
Maxillaria sect. Reflexae Christenson, Proc. 16't
World Orchid Conf. 285. 2002.
Maxillaria sect. Siagonanthus (Poepp. & Endl.)
Christenson, Proc. 16th World Orchid Conf. 286.
2002.
Neo-urbania Fawc. & Rendle, J. Bot. 47: 125.
1909.
Siagonanthus Poepp. & Endl., Nov. Gen. Sp. P1.
(Poeppig & Endlicher) 1: 40. 1836.

Species of Ornithidium can be either sympodial
cespitosee to long-rhizomatous) or monopodial; a few
species have dimorphic growth (sympodial juvenile
shoots and monopodial adult shoots). The stems and
leaves of most species have an olive green coloration,
which is persistent upon drying. When present, the
ovoid pseudobulbs have a shiny, minutely cracked
texture reminiscent of old varnish. The thick roots
have a characteristic orangish coloration.
Inflorescences are usually fascicled, and the pedicel
and ovary invariably are much longer than the floral
bract. The flowers are usually small, fleshy, campan-
ulate or more often subglobose, and often produce
nectar, and the perianth lacks fibers. Many species
have yellow, orange, or red flowers. Capsules have
apical dehiscence.

LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.


Ornithidium adendrobium (Rchb.f.) M. A. Blanco &
Ojeda, comb. nov.
Basionym: Ponera adendrobium Rchb.f, Flora 48:
278. 1964.

Ornithidium affine (Poepp. & Endl.) M. A. Blanco &
Ojeda, comb. nov.
Basionym: .. ,.-,i. -.iii- affinis Poepp. & Endl.,
Nov. Gen. Sp. Pl. 1: 59, t. 99A. 1836.

Ornithidium cachacoense (J. T. Atwood) M. A.
Blanco & Ojeda, comb. nov.
Basionym: Maxillaria cachacoensis J. T. Atwood,
Selbyana 24: 30-31. 2003.

Ornithidium canarense (J. T. Atwood) M. A. Blanco
& Ojeda, comb. nov.
Basionym: Maxillaria canarensis J. T. Atwood,
Selbyana 24: 31-32. 2003.

Ornithidium condorense (J. T. Atwood) M. A.
Blanco & Ojeda, comb. nov.
Basionym: Maxillaria condorensis J. T. Atwood,
Selbyana 24: 32-33. 2003.

Ornithidium fimbriatilobum (Carnevali & G. A.
Romero) M. A. Blanco & Ojeda, comb. nov.
Basionym: Maxillariafimbriatiloba Carnevali & G.
A. Romero, Orchids Venezuela, ed. 2, 3: 1138-
1139. 2000.

Ornithidium gualaquizense (Dodson) M. A. Blanco
& Ojeda, comb. nov.
Basionym: Maxillaria gualaquizensis Dodson,
Orquideologia 19: 69. 1994.

Ornithidium haemathodes (Ruiz & Pav.) M. A.
Blanco & Ojeda, comb. nov.
Basionym: Fernandezia haemathodes Ruiz & Pav.,
Syst. Veg. Fl. Peruv. Chil. 1: 240. 1798.

Ornithidium lasallei (Foldats) M. A. Blanco &
Ojeda, comb. nov.
Basionym: Maxillaria lasallei Foldats, Contr. Ocas.
Mus. Hist. Nat. Colegio de la Salle 3: 2. 1961.

Ornithidium machinazense (D. E. Benn. &
Christenson) M. A. Blanco, comb. nov.
Basionym: Maxillaria machinazensis D. E. Benn.
& Christenson, Lindleyana 13: 71. 1998.

Ornithidium maldonadoense (J. T. Atwood) M. A.
Blanco & Ojeda, comb. nov.








BLANCO et al. Generic realignments in Maxillariinae


Basionym: Maxillaria maldonadoensis J. T.
Atwood, Selbyana 24: 33-35. 2003.

Ornithidium minutiflorum (D. E. Benn. &
Christenson) M. A. Blanco & Ojeda, comb. nov.
Basionym: Maxillaria minutiflora D. E. Benn. &
Christenson, Icon. Orchid. Peruv.: t. 700. 2001.

Ornithidium nicaraguense (Hamer & Garay) M. A.
Blanco & Ojeda, comb. nov.
Basionym: Neo-urbania nicaraguensis Hamer &
Garay, Icon. Pl. Trop. 13: t. 1238. 1985.

Ornithidium oxapampense (J. T. Atwood) M. A.
Blanco & Ojeda, comb. nov.
Basionym: Maxillaria oxapampensis J. T. Atwood,
Selbyana 24: 36-37. 2003.

Ornithidium patellum (J. T. Atwood) M. A. Blanco
& Ojeda, comb. nov.
Basionym: Maxillaria patella J. T. Atwood,
Selbyana 24: 37-39. 2003.

Ornithidium patulum (C. Schweinf.) M. A. Blanco
& Ojeda, comb. nov.
Basionym: Maxillaria patula C. Schweinf.,
Fieldiana, Bot. 28: 197. 1951.

Ornithidium pseudonubigenum (J. T. Atwood) M.
A. Blanco & Ojeda, comb. nov.
Basionym: Maxillaria pseudonubigena J. T.
Atwood, Selbyana 24: 39-41. 2003.

Ornithidium pustulosum (J. T. Atwood) M. A.
Blanco & Ojeda, comb. nov.
Basionym: Maxillaria pustulosa J. T. Atwood,
Selbyana 24: 41-43. 2003.

Ornithidium rauhii (D. E. Benn. & Christenson) M.
A. Blanco & Ojeda, comb. nov.
Basionym: Maxillaria rauhii D. E. Benn. &
Christenson, J. Orchideenfr. 12: 34. 2005.

Ornithidium repens (L. 0. Williams) M. A. Blanco
& Ojeda, comb. nov.
Basionym: Maxillaria repens L. 0. Williams,
Amer. Orchid Soc. Bull. 10: 273. 1942.

Ornithidium rigidum (Barb. Rodr.) M. A. Blanco &
Ojeda, comb. nov.
Basionym: Maxillaria rigida Barb. Rodr., Gen.
Spec. Orchid. 2: 206. 1881.


Ornithidium scandens (D. E. Benn. & Christenson)
M. A. Blanco & Ojeda, comb. nov.
Basionym: Maxillaria scandens D. E. Benn. &
Christenson, Icon. Orchid. Peruv.: t. 707. 2001.

Ornithidium scullianum (J. T. Atwood) M. A.
Blanco & Ojeda, comb. nov.
Basionym: Maxillaria sculliana J. T. Atwood,
Selbyana 24: 1-3. 2003.

Ornithidium sillarense (Dodson & Vasquez) M. A.
Blanco & Ojeda, comb. nov.
Basionym: Maxillaria sillarensis Dodson &
Vasquez, Icon. Pl. Trop., II, 3: pl. 261. 1989.

Ornithidium simplex (J. T. Atwood) M. A. Blanco &
Ojeda, comb. nov.
Basionym: Maxillaria simplex J. T. Atwood,
Selbyana 24: 43. 2003.

Other members of Ornithidium include 0. aggre-
gatum Rchb.f., 0. aureum Poepp. & Endl., 0. breve
Schltr. (Maxillaria palmensis Dodson), 0. chrysocy-
cnoides Schltr., 0. coccineum (Jacq.) Salisb. ex R.
Br., 0. conduplicatum Ames & C. Schweinf., 0.
croceorubens Rchb.f., 0. distichum Lindl., 0. ful-
gens Rchb.f., 0. giganteum Lindl., 0. hystrionicum
Rchb.f., 0. jamesonii Rchb.f., 0. mapiriense
Kraenzl., 0. miniatum Lindl., 0. multicaule (Poepp.
& Endl.) Rchb.f., 0. niveum Lindl., 0. nubigenum
Rchb.f., 0. pendens (Pabst) Senghas, 0. pendulum
(Poepp. & Endl.) Cogn., 0. pittieri Ames, 0. pur-
pureolabium (D. E. Benn. & Christenson) Senghas,
0. quitense Rchb.f., 0. ruberrimum (Lindl.) Rchb.f.,
0. sanaense (D. E. Benn. & Christenson) Senghas,
0. semiscabrum Lindl., O. serrulatum Lindl. (M.
alticola C. Schweinf.), 0. sophronitis Rchb.f., 0.
squarrosum Schltr., and 0. tonsoniae (Soto Arenas)
Senghas.

PITYPHYLLUM

Pityphyllum Schltr., Repert. Spec. Nov. Regni Veg.
Beih. 7: 162. 1920.
Type species (designated by Sweet, 1972: 205):
Pityphyllum antioquiense Schltr.

Plants of Pityphyllum are minute, pendulous epiphytes,
with long rhizome segments between the tiny pseudob-
ulbs. The pseudobulbs are completely covered and fused

LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.








LANKESTERIANA


to a subtending sheath (tunica), and can have from one to
20 apical leaves, depending on the species. There is a
pair of ligular projections at the apex of each leaf sheath,
next to the abscission layer of the blade. The diminutive
flowers are borne from the axils of rhizome bracts
between the pseudobulbs. The column foot is virtually
non existent, and the capsules have apical dehiscence.
This small and distinctive Andean genus was
revised by Sweet (1972) and recently expanded by
Whitten et al. (2006) to accommodate P. huancabam-
bae (Kraenzl.) Whitten and P. saragurense (Dodson)
Whitten, previously placed in Maxillaria. The other
species are P. amesianum Schltr., P. antioquiense
Schltr., P. hirtzii Dodson, P. laricinum (Kraenzl.)
Schltr., and P. pinoides Sweet.

RHETINANTHA

Rhetinantha M. A. Blanco, gen. nov.
Type species: Maxillaria acuminata Lindl., =
Rhetinantha acuminata (Lindl.) M. A. Blanco.
Sauvetrea Szlach., Richardiana 7: 28. 2007, pro
parte (excl. type).

Plantae epiphyticae, rhizomatibus longis et
pseudobulbis 1-4 foliis apicalibus vel plantae pendu-
laefoliis equitantibus. Flores plerumque virides, nun-
quam late expansi, partibus perianthii rigidis acumi-
natis. Labella elobulata, secretionibus resinosis vel
ceraceis. Fructus capsulares dehiscentiis lateralibus.

Plants of Rhetinantha are sub-cespitose to long rhi-
zomatous; the pseudobulbs are often ridged, and have
two to four apical leaves, and usually one or two sub-
tending foliaceous sheaths. The inflorescences often
arise from rhizome bracts a few shoots behind the
most recent pseudobulb. The flowers are campanu-
late, with rigid, acuminate perianth parts with strong
fibers, and a very short column foot. The labellum
secretes a sticky, resinous substance in most species.
The margins of the clinandrium are conspicuously
ciliate, and the pollinarium stipe is long with involute
margins. A few species have a pair of stelidia project-
ed downward from the apex of the clinandrium. The
capsules have lateral dehiscence. Rhetinantha witse-
nioides is highly modified and has pendent, monopo-
dial shoots with ensiform, glaucous leaves.

ETYMOLOGY: From the Greek words "rhetinos"

LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.


(resin) and "anthos" (flower), in reference to the
flowers of most species, which secrete resin on the
labellum and occasionally on the petals.

This well defined group was treated as the
"Maxillaria acuminata clade" by Whitten et al.
(2007).

Rhei'tiamtiiti &ta inti Reil I' i M. A. Blanco, comb. nov.
Basionym: Maxillaria aciantha Rchb.f., Bot.
Zeitung (Berlin) 10: 858. 1852.

Rhetinantha acuminata (Lindl.) M. A. Blanco,
comb. nov.
Basionym: Maxillaria acuminata Lindl., Pl. Hartw.
155. 1845. Sauvetrea acuminata (Lindl.) Szlach.,
Richardiana 7: 29. 2006.

Rhetinantha cerifera (Barb. Rodr.) M. A. Blanco,
comb. nov.
Basionym: Maxillaria cerifera Barb. Rodr. Gen.
Spec. Orchid. 1: 118. 1877.

Rhetinantha divaricata (Barb. Rodr.) M. A. Blanco,
comb. nov.
Basionym: Ornithidium divaricatum Barb. Rodr.,
Gen. Spec. Orchid. 2: 209. 1881.

Rhetinantha encyclioides (J. T. Atwood & Dodson)
M. A. Blanco, comb. nov.
Basionym: Maxillaria encyclioides J. T. Atwood &
Dodson, Orquideologia 20: 268. 1997.

Rhetinantha friedrichsthalii (Rchb.f) M. A. Blanco,
comb. nov.
Basionym: Maxillaria friedrichsthalii Rchb.f., Bot.
Zeitung (Berlin) 10: 858. 1852.

Rhetinantha mariaisabeliae (J. T. Atwood) M. A.
Blanco, comb. nov.
Basionym: Maxillaria mariaisabeliae J. T.
Atwood, Selbyana 7: 250. 1984.

Rhetinantha monacensis (Kraenzl.) M. A. Blanco,
comb. nov.
Basionym: Maxillaria monacensis Kraenzl.,
Repert. Spec. Nov. Regni Veg. 24: 49. 1927.

Rhetinantha neilii (Dodson) M. A. Blanco, comb.
nov.
Basionym: Maxillaria neilii Dodson, Orquideologia
19: 79. 1994.








BLANCO et al. Generic realignments in Maxillariinae


Rhetinantha notylioglossa (Rchb.f.) M. A. Blanco,
comb. nov.
Basionym: Maxillaria notylioglossa Rchb.f.,
Bonplandia (Hannover) 2: 16. 1854.

Rhetinantha ophiodens (J. T. Atwood) M. A.
Blanco, comb. nov.
Basionym: Maxillaria ophiodens J. T. Atwood,
Selbyana 7: 248. 1984.

Rhetinantha pastorellii (D. E. Benn. & Christenson)
M. A. Blanco, comb. nov.
Basionym: Maxillaria pastorellii D. E. Benn. &
Christenson, Lindleyana 13: 74. 1998. Maxillaria
unguiculata D. E. Benn. & Christenson, Brittonia
47: 197. 1995, nom. illeg. (non Schltr., Repert.
Spec. Nov. Regni Veg. Beih. 7: 173. 1920).

Rhetinantha schistostele (Schltr.) M. A. Blanco,
comb. nov.
Basionym: Maxillaria schistostele Schltr., Repert.
Spec. Nov. Regni Veg. Beih. 19: 303-304. 1923.

Rhetinantha scorpioidea (Kraenzl.) M. A. Blanco,
comb. nov.
Basionym: Maxillaria scorpioidea Kraenzl.,
Svensk. Vet. Akad. Handl. 46: 71. 1911.

Rhetinantha witsenioides (Schltr.) M. A. Blanco,
comb. nov.
Basionym: Maxillaria witsenioides Schltr., Repert.
Spec. Nov. Regni Veg. Beih. 7: 175. 1920.


SAUVETREA

Sauvetrea Szlach., Richardiana 7: 28. 2007.
Type species: Maxillaria alpestris Lindl., = Sauvetrea
alpestris (Lindl.) Szlach.
Maxillaria sect. Trigonae Christenson, Proc. 16th
World Orchid Conf. 286. 2002.

Plants of Sauvetrea are cespitose to moderately long-
rhizomatous. The unifoliate pseudobulbs are frequently
ancipitous and are subtendend by a pair of non-folia-
ceous bracts. The inflorescences arise from the base of
the newly emerging pseudobulbs and have strongly
ancipitous bracts. The column foot is short. The flow-
ers have spreading perianth segments without strong
fibers. Both the ovaries and the mature fruits are
strongly trigonous. The labellum has a ligulate, sulcate


callus, and the midlobe is much longer than the lateral
lobes. There are no secretions produced by the flowers.
The capsules have lateral dehiscence.
Sauvetrea was polyphyletic as originally circum-
scribed by Szlachetko & Smiszek (2007). We already
indicated the species that do not belong in this clade
(Whitten et al. 2007), and here we transfer some that do.

Sauvetrea bomboizensis (Dodson) M. A. Blanco,
comb. nov.
Basionym: Maxillaria bomboizensis Dodson,
Orquideologia 19(3): 59-61. 1994.

Sauvetrea chicana (Dodson) M. A. Blanco, comb.
nov.
Basionym: Maxillaria chicana Dodson,
Orquideologia 19(3): 61. 1994.

Sauvetrea cornuta (C. Schweinf.) M. A. Blanco,
comb. nov.
Basionym: Maxillaria cornuta C. Schweinf., Bot.
Mus. Leafl. 11: 265. 1945.

Sauvetrea laevilabris (Lindl.) M. A. Blanco, comb.
nov.
Basionym: Maxillaria laevilabris Lindl., P1.
Hartw.: 155. 1845. Syn.: Maxillaria piestopus
Schltr., Repert. Spec. Nov. Regni Veg. Beih. 19:
302. 1923, syn. nov.; Maxillaria koehleri Schltr.,
Repert. Spec. Nov. Regni Veg. Beih. 9: 103. 1921,
syn. nov.

Sauvetrea machupicchuensis (Christenson) M. A.
Blanco, comb. nov.
Basionym: Maxillaria machupicchuensis
Christenson, Orchids 71: 718-719. 2002.

Sauvetrea napoensis (Dodson) M. A. Blanco, comb. nov.
Basionym: Maxillaria napoensis Dodson, Icon. P1.
Trop., II, 6: t. 540. 1989.

Sauvetrea sessilis (Lindl.) M. A. Blanco, comb. nov.
Basionym: Maxillaria sessilis Lindl., Pl. Hartw.
155. 1843.

Sauvetrea trigona subsp. amaroensis (D. E. Benn. &
Christenson) M. A. Blanco, comb. nov.
Basionym: Maxillaria trigona subsp. amaroensis
D. E. Benn. & Christenson, Icon. Orchid. Peruv.: t.
708. 2001.

Other species in the genus include S. alpestris

LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.








LANKESTERIANA


(Lindl.) Szlach., S. peruviana (C. Schweinf.) Szlach.,
S. trigona (C. Schweinf.) Szlach., S. unicarinata (C.
Schweinf.) Szlach., and S. xantholeuca (Schltr.)
Szlach. However, Sauvetrea needs a thorough taxo-
nomic revision. The strange Maxillaria grobyoides
Garay & Dunst. may belong in Sauvetrea, but we pre-
fer to wait until we have molecular data to confirm or
reject this hypothesis.


TRIGONIDIUM

Trigonidium Lindl., Bot. Reg. 23: t. 1923. 1837.
Type species: Trigonidium obtusum Lindl.

Plants of Trigonidium are either cespitose or long-
rhizomatous. The ridged pseudobulbs have one to
four apical leaves and are subtended by non-folia-
ceous bracts. The inflorescences are erect, often long
and wiry, and emerge from the most recent pseudob-
ulbs. The flowers are erect and campanulate and lack
a column foot. The sepals form a cup around the
smaller petals and lip and are reflexed at the middle.
The petals have characteristic shiny thickenings at the
apex. The capsules have lateral dehiscence.
Trigonidium has been consistently recognized as a
genus since its creation. No nomenclatural transfers
are needed. A synoptical treatment of the genus is in
progress (M. A. Blanco, unpublished manuscript).

ACKNOWLEDGEMENTS. Eric A. Christenson (BRIT) pro-
vided general discussions on taxonomy and data about the
publication of his sections of Maxillaria. Gustavo Romero
(AMES), Cassio van den Berg (HUEFS) and two anon-
mous reviewers provided suggestions for improving the
manuscript. Funding was provided by the U.S. National
Science Foundation (grant No. DEB-0234064) to N.H.W.
and W.M.W., a FAPESP postdoctoral grant (01/08958-1)
to R.B.S., a M.Sc. grant from CONACYT to 1.0., KLARF
fellowships from the Royal Botanic Garden, Kew, to
M.A.B. (to study type material in European herbaria) and
S.K. (a Prance Fellowship to study systematics of
Christensonella), and a Furniss Foundation Ph.D.
Fellowship from the American Orchid Society to M.A.B.


LITERATURE CITED

Atwood, J. T. 1993. A revision of the Maxillaria neglecta
complex (Orchidaceae) in Mesoamerica. Lindleyana 8:
25-31.
Atwood, J. T. 2003. Review of the Maxillaria ..... -. .,
(Kunth) Rchb.f. (Orchidaceae) suballiance. Selbyana 24:

LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.


144-164.
Backlund, A., & K. Bremer. 1998. To be or not to be -
principles of classification and monotypic plant families.
Taxon 47: 391-400.
Blanco, M. A., W. M. Whitten, N. H. Williams, & S.
Koehler. 2006. Capillitial extrusion from fruits of
Maxillaria nardoides (Orchidaceae: Maxillariinae).
Orchids 75: 677-683.
Carnevali, G. 2001. A synoptical view of the classification
of Cryptocentrum (Orchidaceae), new taxa, and a key to
the genus. Harvard Pap. Bot. 5: 467-486.
Carnevali, G., & I. Ramirez. 1989. New or noteworthy
orchids for the Venezuelan flora. VII. Additions in
Maxillaria from the Venezuelan Guayana. Ann.
Missouri Bot. Gard. 76: 374-380.
Carnevali, G., & I. M. Ramirez-Morillo. 2003. Maxillaria.
In: G. Carnevali, I.M. Ramirez-Morillo & G. A.
Romero-GonzAlez (eds.). Orchidaceae. Fl. Venez.
Guayana 7: 426.454.
Camevali, G., J. L. T. Mufioz, & M. G6mez-Juarez. 2001.
A synopsis of the Maxillaria rufescens complex in
Mexico, Central America, and the Greater Antilles.
Brittonia 53: 454-465.
Chase, M. W., J. V. Freudenstein, K. M. Cameron, & R. L.
Barrett. 2003. DNA data and Orchidaceae systematics: a
new phylogenetic classification. In: K. W. Dixon, S. P.
Kell, R. L. Barrett, & P. J. Cribb (eds.). Orchid
Conservation. Natural History Publications, Kota
Kinabalu, Sabah, Malaysia, 69-89.
Christenson, E. A. 2002a. Maxillaria, an overview. In: J.
Clark, W. Elliott, G. Tingley, & J. Biro (eds.).
Proceedings of the 16th World Orchid Conference,
Vancouver, 1999. Vancouver Orchid Society,
Vancouver, British Columbia, Canada. 279-290.
Christenson, E. A. 2002b. Vue d'ensemble du genre
Maxillaria. Richardiana 2: 41-65.
Cribb, P. J., R. Holttum, J. Stewart, G. Seidenfaden, & E.
A. Schelpe. 1985. A note on automatic transfers. Taxon
34: 122-135.
Dathe, S., & H. Dietrich. 2006. Comparative molecular
and morphological studies in selected Maxillariinae
orchids. Willdenowia 36: 89-102.
Dresser, R. L. 1993. Phylogeny and classification of the
orchid family. Dioscorides Press, Portland, Oregon,
USA.
Entwisle, T. J., & P. H. Weston. 2005. Majority rules,
when systematists disagree. Austral. Syst. Bot. 18: 1-6.
Garay, L. A. 1969. Sinopsis del genero Cyrtidium Schltr.
Orquideologia 4: 3-13.
Garay, L. A., & M. Wirth. 1959. On the genera
Mormolyca Fenzl and Cyrtoglottis Schltr. Canad. J. Bot.
37: 479-490.
Govaerts, R., M. A. Campacci, D. Holland Baptista, P.









BLANCO et al. Generic realignments in Maxillariinae


Cribb, A. George, K. Kreuz, & J. Wood. 2005. World
Checklist of Orchidaceae. The Board of Trustees of the
Royal Botanic Gardens, Kew.
http://www.kew.org/wcsp/monocots/, accessed 10
January 2007.
McNeill, J., F. R. Barrie, H. M. Burdet, V. Demoulin, D.
L. Hawksworth, K. Marhold, D. H. Nicholson, J. Prado,
P. C. Silva, J. E. Skog, W. J. Wiersema, & N. J. Turland.
2006. International Code of Botanical Nomenclature
(Vienna Code). Reg. Veg. 146.
Monro, A. K. 2006. Revision of species-rich genera: A
phylogenetic framework for the strategic revision of
Pilea (Urticaceae) based on cpDNA, nrDNA, and morp-
hology. Amer. J. Bot. 93: 426-441.
Ojeda, I., G. Carnevali, & G. A. Romero. 2005. New
species and combinations in Heterotaxis Lindley
(Orchidaceae: Maxillariinae). Novon 15: 572-582.
Ojeda, I., G. Carnevali Fernandez-Concha, & G. A.
Romero. In press. Nitidobulbon, a new genus of
Maxillariinae (Orchidaceae). Novon.
Pabst, G. F. J., & F. Dungs. 1977. Orchidaceae brasiliens-
es. Band 2. Briicke-Verlag Kurt Schmersow,
Hildesheim, Germany.
Pamell, J. A. N., L. A. Craven, & E. Biffm. 2007. Matters
of scale: dealing with one of the largest genera of
angiosperms. In: T. R. Hodkinson & J. A. N. Pamell
(eds.), Reconstructing the tree of life Taxonomy and
systematics of species rich taxa. CRC Press, Boca Raton,
Florida, USA. 251-273.
Pfeil, B. E., & M. D. Crisp. 2005. What to do with


Hibiscus? A proposed nomenclatural resolution for a
large and well known genus of Malvaceae and com-
ments onparaphyly. Austral. Syst. Bot. 18: 49-60.
Ruiz, H., & J. Pav6n. 1794. Prodromus Flora Peruvianae et
Chilensis 116. t. 25.
Ruiz, H., & J. Pav6n. 1798. Maxillaria, Systema
Vegetabilium Florae Peruvianae et Chilensis 1: 219-226.
Gabrielis de Sancha, Madrid, Spain.
Singer, R. B., S. Koehler, & G. Carnevali. 2007.
Brasiliorchis: a new genus for the Maxillaria picta
alliance (Orchidaceae: Maxillariinae). Novon 17: 91-99.
Sweet, H. R. 1971. Orquideas Andinas poco conocidas V.
Chrysocycnis Linden & Rchb.f. Orquideologia 6: 3-10.
Sweet, H. R. 1972. Orquideas Andinas poco conocidas VI.
Pityphyllum. Orquideologia 7: 203-214.
Szlachetko, D. L., & M. Smiszek. 2007. Noveaux genres
dans le complex Maxillaria (Orchidaceae). Richardiana
7: 26-32.
Szlachetko, D. L., J. Mytnik-Ejsmont, M. Gmrniak, & M.
Smiszek. 2006. Genera et species orchidalium. 15.
Maxillarieae. Polish Bot. J. 51: 57-59.
Whitten, M. W., M. A. Blanco, & N. H. Williams. 2006.
Recircumscription of Pityphyllum (Orchidaceae:
Maxillariinae). Orchids 75: 452-456.
Whitten, W. M., M. A. Blanco, N. H. Williams, S.
Koehler, G. Carnevali, R. B. Singer, L. Endara, & K. M.
Neubig. 2007. Molecular phylogenetics of Maxillaria
and related genera (Orchidaceae: Cymbidieae) based on
combined molecular data sets. Amer. J. Bot. 94: 1860-
1889.


LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.








LANKESTERIANA








LANKESTERIANA7(3): 539-542. 2007.


ELLEANTHUS LIGULARIS, A NAME FOR A RELATIVELY COMMON
"NEW" SPECIES OF ELLEANTHUS SECT. CHLOIDELYNA


ROBERT L. DRESSLER' & DIEGO BOGARIN

Jardin Botinico Lankester, Universidad de Costa Rica. P.O. Box 1031-7050 Cartago, Costa Rica, A.C.;
Centro de Investigaci6n en Orquideas de los Andes "Angel Andreetta", Universidad Alfredo Perez Guerrero,
Extensi6n Gualaceo, Ecuador.
'Author for correspondence: rdressl@cariari.ucr.ac.cr


ABSTRACT: Elleanthus ligularis is described and illustrated. The flowers of this species are ,pp ,c-,r:. self-
pollinating. Fruiting material has been collected in Colombia, Costa Rica, Cuba and Panama, but the
species remained nameless in the absence of flowers, and is here described as Elleanthus ligularis. Costa
Rican plants in cultivation have flowered in late December, January, February and April. The species is
similar to E....:. .... but the plants are more robust, with wider leaves and the blade of the lip is sub-
quadrate, rather than obtriangular, with a very short base.

RESUMEN: Se ilustra y describe Elleanthus ligularis. Las flores de esta especie evidentemente se autopolin-
izan. Material con cipsulas se ha recolectado en Colombia, Costa Rica, Cuba y Panama, pero se ha queda-
do an6nimo, por falta de flores. Aqui se describe como Elleanthus ligularis. Plantas costarricenses en culti-
vo han florecido a fines de diciembre, en enero, febrero y abril. La especie se parece a E.. .,
pero las plants son mis robustas, con hojas mis anchas y la limina del labelo es subcuadrada, en vez de
obtriangular, con la base muy corta.

KEY WORDS: Elleanthus, Elleanthus ligularis, new species, Costa Rica, Epiendroideae, Sobraliinae,
Orchidaceae.


Barringer (1985) added two additional
Mesoamerican species to Elleanthus Section
( ,...,i-I .1 and the South American species have
been treated by Lojtnant (1977), who transferred
Adenoleu-therophora graminifolia Barb. Rodr. to
Elleanthus and described E. isochiloides Lojtnant
from Ecuador. At the same time, he mentioned two
unnamed species allied to E. graminifolius (Barb.
Rodr.) Lojtnant whose flowers had not been seen,
both of which remained unnamed because no flow-
ering material was available. He reported the species
treated here as being known from Colombia, Costa
Rica, Cuba and Panama. This species is one of the
largest of Section (..... and fruiting speci-
mens have been in herbaria for years. It was called
"species A" in Manual de las Plantas de Costa Rica
(Dressler, 2003), where it was suggested that the
species might flower in December or January. Two
plants of this species flowered in late December and
January in the Lankester Botanical Gardens, and
others flowered in February or April. This is a rela-


tively robust and wide-leaved member of Section
( '... ..... and has been collected several times,
but it is apparently self-pollinating, and, as far as we
know, the plants that had been collected in the wild
were all fruiting.

Elleanthus ligularis Dressler & Bogarin, sp. nov.

TYPE: Costa Rica, Cartago: Jim6nez, Pejivalle, La
Marta, shores of Rio Gato, 947'27.2"N
8341'37.2"W, 750 m, premontane wet forest, on
trees along pastures edges and overhanging the river,
3 November 2006, collected by F. Pupulin 6360, R.L.
Dressier, R. G6mez, A. Karremans & G. Rojas.
Cultivated in Lankester Botanical Garden, accession
JBL-14915, flowered and pressed from cultivation,
14 Feb. 2006, R.L Dressler 6836B holotypee: CR, iso-
type: JBL-spirit).

Elleantho graminifolio (Barb. Rodr.) Lojtnant affi-
nis, a qua habitu major, foliis latioribus, base labelli
latiore imprimis differ.








LANKESTERIANA


it,, a ." .'.:=;, .
_, ,, a---

,, .... /...~-t


5 mm


1 cm


D


~-
~ir-~N
L',


.7


5 mm


E \


F A



V:


i .. ,


^i


5mm 3mm ,10 cm
FIGURE 1. Elleanthus ligularis Dressler & Bogarin. A Habit. B Inflorescence. C Flower, in normal position. D Lip,
with sepals and petals removed. E Perianth parts, flattened. F Column, lateral and ventral views. Drawn from the
holotype by Diego Bogarin.


LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.








DRESSLER & BOGARIN Elleanthus ligularis


Plant epiphitic, cespitose. Roots 0.6-2 mm in
diameter; stems 20-33 cm, x 0.7 mm basally.
Leaves up to 8 per stem, 4.8-9 cm x 4-5.5 mm,
ligulate, apices tridenticulate, apically keeled
beneath. Inflorescences subovate, 15-20 x 9-17 mm
(without including the variable outermost bract,
13-25 mm long), other bracts 8-10.5 x 5-6.5 mm,
carinate, narrowly obtuse when flattened. Ovary 3
mm dorsally, 2 mm ventrally. Dorsal sepal 4.2-4.5
x 1.3-1.5 mm, broadly lanceolate. Lateral sepals 4-
4.5 x 1.3-2 mm, asymmetrically ovate-lanceolate.
Petals 4.5-5 x 1.5-1.6 mm, spathulate-oblanceolate.
Lip 4-5 x 5-6 mm, broadly obtriangular-sub-
quadrate, the corners markedly fimbriate, 2 basal
calli ca. 1 x 0.7 mm, short-stalked. Column 2.5 mm
with anther (ca. 1 mm).

PARATYPES: Costa Rica. Alajuela: Upala, Bijagua,
Zapote, desvio a la izquierda ca. 1 km. despues del
puente sobre Rio Zapote; 1045'21.0" N
8504'56.9" W, 650-700 m. Cultivated in
Lankester Botanical Garden, accession JBL-
13885, pressed from cultivation, 6 Jan. 2007, R.
Dressler 6836B (USJ). Upala, Bijagua, Zapote,
desvio a la izquierda ca. 1 km despues del puente
sobre Rio Zapote en sentido Bijagua-Pueblo
Nuevo, Finca La Escondida, 1045'21.0"N
8504'56.9"W, 650-700 m, bosque muy hiumedo
tropical, transici6n a premontano, epifitas en bor-
des de potreros, 3 Febrero 2006, D. Bogarin 2467,
J. Barrantes, R.L. Dresser, R. G6mez & A. Rojas


(CR). Lim6n: Pococi, Guipiles, 5 km al sur de la
carretera, cerca de la Finca Tintoreras y el Rio
Blanco, 1002'16.2" N, 8353'02.1" W, bosque
muy humedo tropical, R.L. Dressler 6761, D.
Bogarin, J. G6mez-Laurito & F. Pupulin (JBL-
spirit, CR). Pococi, Guipiles, San Jos&-Lim6n
highway, km 47, ca. 500 m after the entrance of
Rain Forest Aerial Tram, Quebrada Molinete,
1010'43"N 8354'57"W, 470-500 m, tropical wet,
transition to premontane wet forest, epiphytic in
primary forest along the river banks, 9 July 2004,
F. Pupulin 5260 & D. Bogarin (CR).

Other specimens of E. ligularis previously seen or
reported: COSTA RICA: Jimenez & Lankester 2076
(AAU, AMES, Lojtnant, 1976); Lim6n: 700 900 m,
0927'00"N 08259'24"W, 24 Sep 1994, G. Gallardo
& E. Lepiz 302 (MO); PANAMA: Veraguas: Rio Dos
Bocas, 450 550 m, 0833'03"N 08110'17"W, 31
Aug 1974, T. Croat 27756 (MO).

ETYMOLOGY: The epithet ligularis or "'.lpl.pcdJ"
refers to the characteristic form of the leaves long and
narrow with the sides nearly parallel.

Elleanthus ligularis most closely resembles E.
graminifolius, but the plants are much larger and the
leaves are markedly wider; further, the lip is much
wider near the base. We offer a key to the known
Mesoamerican species of Section ( ,... 1,.. as
well as E. muscicola, apparently the only other
Mesoamerican species with conduplicate leaves.


KEY TO THE SPECIES OF ELLEANTHUS SECTION CHLOIDELYNA

Leaves conduplicate, linear to oblong-ovate; obtuse or tridentate; bracts always distichous ..................................................
.......................................................................................................................................................................... E llea n th u s S ectio n C h lo id ely n a
1. Leaves narrowly ovate or oblong, obtuse or retuse .................................................................................................. E. muscicola
1. L eaves linear to narrow ly ligulate, acute to tridenticulate ............................................................................................................. 2
2. Floral bracts w ell separated, not overlapping ............................ .............. ................ .............................. 3
3. Leaves 1-2 cm long; inflorescence of 3-4 bracts on filiform rachis; plant sprawling, upper stems rooting
an d b ra n ch in g ................................................................................................................................................................... E s to lo n if e r
3. Leaves 3-5 cm long; inflorescence of 8-10 bracts; stems rooting only basally ......................................................... 4
4. Leaves 1-2 mm wide; inflorescence surpassing upper leaves; bracts 10-15 mm long ............ E.fractiflexus
4. Leaves less than 1 mm wide; upper leaves subequal to inflorescence; bracts 5-8 mm long .... E. poiformis
2 Floral bracts den sely clustered, overlappin g ................................................................................................................................... 5
5. Leaves mostly less than 1 mm wide; bracts sharply acuminate .......................................................... E. tillandsioides
5. Leaves mostly more than 1.5 mm wide; bracts obtuse or subobtuse ................................. ..................................... 6
6. L eaves 0.8-2 m m w ide; lip obtriangular ................................................................................................. E . .
6. L eaves 4-5.5 m m w ide; lip subquadrate ............................................................................................................ E ligularis


LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.









LANKESTERIANA


ACKNOWLEDGEMENTS. We thank Prof. Franco Pupulin
for his continued support and collaboration. The scientific
services of Costa Rican Ministry of Environment and
Energy (MINAE) and its National System of Conservation
Areas (SINAC) for issuing the collecting permits under
which wild species treated in this paper were collected.
The UK Darwin Initiative for the Survival of Species
sponsored field work activities under the project
"Conservation and Monitoring of Meso-American
Orchids" (Ref. 14001).


LITERATURE CITED
Barringer, K. 1985. Three new species of Elleanthus
(Orchidaceae) from Central America. Brittonia 37(3):
286-290.
Dresser, R. L. 2003. Elleanthus. Pp. 90-97 in: B.E.
Hammel, M. H. Grayum, C. Herrera & N. Zamora (eds.).
Manual de las Plantas de Costa Rica Vol III.
Orchidaceae-Zingiberaceae. Monogr. Syst. Bot. Missouri
Bot. Gard. 93.
Garay, L. 1978. Studies in American Orchidaceae X. Bot.
Mus. Leafl. Harvard Univ. 26(1): 1-38.
Lojtnant, B. 1976. Observations on the Elleanthus lini-
folius alliance (Orchidaceae) in S America. Botaniska
Notiser 129: 445-454.


LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.








LANKESTERIANA 7(3) : 543-549. 2007.


A NEW LYCASTE (ORCHIDACEAE: MAXILLARIINAE) FROM COSTA RICA


DIEGO BOGARIN

Jardin Botinico Lankester, Universidad de Costa Rica. P.O. Box 1031-7050 Cartago, Costa Rica, A.C.;
Centro de Investigaci6n en Orquideas de los Andes "Angel Andreetta", Universidad Alfredo P&rez Guerrero,
Extensi6n Gualaceo, Ecuador.
dbogarin@cariari.ucr.ac.cr


ABSTRACT: Lycaste bruncana from Costa Rica is described and illustrated. This species is sister to L. tricol-
or, its closest relative, from which is easily distinguished by the lip shape, with a narrow isthmus and
spathulate midlobe, the lanate to lanulose infrastigmatic surface, the pollinarium with a longer stipe, the
subrectangular pollinia and the tomentose anther cap. However, among Costa Rican species of Lycaste, the
most remarkable character of L. bruncana is the twisted column, which may be indicative of a reproductive
barrier. Information related to biogeography, distribution, morphology, molecular data and pollination is
provided and discussed.

RESUMEN: Se describe e ilustra Lycaste bruncana de Costa Rica. Esta especie es hermana de L. tricolor, su
pariente mis cercana, de la cual se distingue ficilmente por la forma del labelo, con un istmo estrecho y el
16bulo medio espatulado, la superficie infraestigmitica lanada a lanulosa, el polinario con un estipite mis
largo, los polinios subrectangulares y la capa de la antera tomentosa. Sin embargo, entire las species
costarricenses de Lycaste, el caricter mis notable de L. bruncana es la column torcida, la cual puede ser
indicative de una barrera reproductive. Se proporciona y discute informaci6n relacionada con biogeografia,
distribuci6n, morfologia, datos moleculares y polinizaci6n.

KEY WORDS: Orchidaceae, Lycaste, Lycaste bruncana, new species, Costa Rica, DNA barcoding, orchid
pollination.


After its introduction to Europe by the Spanish
expedition to Peru and Chile by H. Ruiz and J.
Pav6n in the eigthteeth century, and the description
of the first specimens referable to the genus Lycaste
Lindl., by E. Poeppig & L. Endlicher in Nova
Genera and Species Plantarum (1833-1835), plants
of this genus became one of the most famous and
popular orchids in cultivation (Oakeley 1993). The
genus was created by J. Lindley in 1843 based on
morphologic characters, separating this group of
orchids from the genus Maxillaria Ruiz & Pav.
Molecular studies used to assess the phylogenetic
relationships between the species of Lycaste and
Anguloa Ruiz & Pav. showed that the mainly South
American group of Lycaste section Fimbriatae
Fowlie, deserves a generic status (Ryan et al. 2000).
Ryan & Oakeley (2003) proposed the genus Ida A.
Ryan & Oakeley to include the former group, reduc-
ing Lycaste to species mainly Mesoamerican in distri-
bution.


In spite of this generic separation, both genera have
been recognized for their beauty and horticultural
value. Species pertaining to groups of orchids popular
in cultivation are often well known taxonomically,
and it is not surprising that in his Essential Guide of
Lycaste species, Oakeley (1993) opened his introduc-
tion saying "if it is not in here it has not been
described". However, when a good taxonomic system
is developed in countries rich in plants species, sup-
ported by an efficient system of information, taxo-
nomic novelties often appear also in previously
monographed and botanically well-sampled genera
(Pupulin & Bogarin 2005, Dressler & Pupulin 2006,
Pupulin 2007).
Hereafter, Lycaste bruncana is presented as a new
species to the science.

Lycaste bruncana Bogarin, sp. nov.

TYPE: COSTA RICA. Puntarenas: Golfito, Golfito,
Esquinas, La Gamba, Bosque de Los Austriacos,








LANKESTERIANA


Tropenstation La Gamba, 8 42'40"N 83 13'00"W,
100-400 m, 3-4 Julio 2004, M. Blanco 2610 & E.
Serrano, floreci6 en cultivo en el Jardin Botinico
Lankester, 19 Julio 2007, D. Bogarin 3987 holotypee:
CR; isotype: JBL-spirit). FIG. 1.

Lycaste tricolori (Klotzsch.) Rchb.f. affinis, a qua
lobulo medio labelli spathulato, isthmo angustiore
longioreque, anthera tomentosa, superficie infrastig-
matica lanato-lanulosa, stipite pollinarii longiore et
apice columnae leviter torto imprimis differ.
Plant epiphytic, cespitose, up to 60 cm tall. Roots
slender, up to 3 mm in diameter, covered by absorp-
tive hairs. Pseudobulbs 5-7 x 3-4.5 cm, ovoid, sulcate,
ancipitous, with inconspicuous spines when deciduous
and subtended by scarious sheats. Leaves two (rarely
three) apical leaves and 2-3 lateral leaves adpressed to
each young pseudobulb, articulate, persistent during
the blooming period, deciduous with age. Leaf blade
petiolate, 5.5 x 51 cm, plicate, obovate, acute to
acuminate, with 5 conspicuous veins. Inflorescence,
one to six, pedunculate, to 9 cm long, 1-flowered, con-
cealed by 2-3 persistent, imbricate, ovate, acute,
bracts, flowering usually with a new growth. Floral
bract 2.5-3 x 2-2.5 cm, ovate, acute, enclosing the
ovary. Ovary cylindrical, sulcate, smooth, 1.7 cm
long, 3.5 mm in diameter. Flowers showy, from 1 to
several open at the same time, sepals pale green to
pinkish, petals white, spotted with pink, lip white with
purple dots around the callus and pink dots in the mid-
lobe. Sepals equal, rectangular-obovate, acute, 4.5 x
1.7 cm, basally tomentulose, margin entire, straight in
natural position. Petals ovate, acute, slightly crenate at
apex, 3.5-4.2 x 1.5-1.7 cm, recurved in natural posi-
tion. Lip three-lobed, 2.7 x 1.2 cm, attached to the col-
umn foot, with a rectangular thick, emarginate callus
up to 1.3 cm long, lateral lobes rectangular, obtuse,
thick, perpendicular to the callus, 1.2 x 0.5 cm, mid-
lobe spathulate, thin, the isthmus narrow, emarginate,
erose at apex, 1.5-1.7 x 0.3 cm. Column with a purple-
spotted foot, twisted to the left, basally tomentulose,
silky at apex, infrastigmatic surface lanulose, the stig-
ma ventral; anther apical, up to 2.5 long. Pollinarium
6 mm long, with four pollinia, two rectangular-ovoid
and two subequal, smaller; stipe 3.5 mm long. Anther
cap cucullate, tomentose. Capsule not seen.

PARATYPES: San Jos& PNrez Zeled6n, Pejibaye, Fila

LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.


C.-iL'i., Zapote de Pejivalle, 907'37.3"N
8333'22.7"W, 740-810 m, along the margins of a
small river, remnants of primary forest and secondary
forest, 10 December 2000, F. Pupulin 2654, D.
Castelfranco & J. Cambronero (JBL-Spirit). PNrez
Zeled6n, San Isidro de El General, carretera a
Dominical, Fila Tinamastes, La Alfombra,
919'19.0" N 8345'58.1" W, 1000 m, bosque hfime-
do premontano, bosque secundario alterado y Arboles
a orillas de la carretera, 23 Octubre 2005, A.
Karremans 1076, J. Cambronero, R.L. Dresser, R.
Gdmez, D. Bogarin, F. Pupulin, A. & S. Rambelli
(JBL-Spirit). Puntarenas: Aguirre, Naranjillo, road
between Quepos and San Marcos de Tarrazi, 750 m,
933'01"N 8405'01"W, wet premontane transition
to lower montane forest remnants of primary and sec-
ondary mature vegetation, 1 January 2001, F. Pupulin
2780, D. Castelfranco & E. Salas (JBL-Spirit).
Golfito, Golfito, Esquinas, La Gamba, Bosque de Los
Austriacos, Tropenstation La Gamba, 842'40"N
8313'00"W, 100-400 m, 3-4 Julio 2004, M. Blanco
2610 & E. Serrano (JBL-Spirit).

DISTRIBUTION: known only from the southern Pacific
watershed of Cordillera de Talamanca and Cordillera
(. .-'., Costa Rica, between 700 and 1000 m of ele-
vation. Southernmost collections suggest that this
species may occur around the Chiriqui river valley in
Panama, which represents the southernmost extension
of the Cordillera Costefia. Plants of L. tricolor have
similar elevation range but are restricted to the
Atlantic slopes of Costa Rica and Panama.

ETYMOLOGY: From the emblematic name "-Ri .[i',
which comes from the indigenous people who live in
the southern Pacific lands of Cordillera de
Talamanca. Brunca also names the Regi6n Brunca,
one of the socioeconomic regions of Costa Rica that
occupies most of the distribution range of this
species.

HABITAT: Plants of this species grew epiphytically in
primary and secondary vegetation in premontane rain
forest, tropical wet forest-premontane belt transition,
tropical moist forest-premontane belt transition and
tropical wet forest. All these life zones strictly corre-
spond to the southern Pacific watershed of Cordillera
de Talamanca and Fila (Cordillera) Costefia.






BOGARIN A NEW Lycaste


V.

,\ ~jj~-~A


5 cm


F '








C cM
1 cm


1cm


A \:


.. "', .
-f" l[-.- -
"" "" i 't 1'


5 cm 1 cm
FIGURE 1. A-G. Lycaste bruncana Bogarin. A. Habit. B. Flower in natural position. C. Dissected perianth. D. Lip. E.
Column and lip, lateral view. F. Column. lateral and frontal view. G. Pollinarium (front view, dorsal view and lateral
view) and anther cap. Drawn from the holotype by Diego Bogarin.


LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.


G


.~' /








LANKESTERIANA


CONSERVATION STATUS: The species has been record-
ed in protected areas. The type collection comes from
The Field Station La Gamba, situated in the south of
Puntarenas province, in Golfito. It constitutes the first
record for this research center, where no Lycaste
species were previously recorded (Weissenhofer et al.
2001). Biogeographical similitudes and proximity
between this area, Piedras Blancas National Park and
Corcovado National Park, also suggest that L. brun-
cana may well occur in those protected areas. An
unvouchered specimen in cultivation (J. Clarke 314)
from Boracayin Wildlife Refuge around Fila Alivio
in the upper Rio Barucito basin, Cordillera (,Ci ii.,
is also recorded from a protected area. Apparently,
this species is not rare and some specimens were col-
lected in disturbed areas. This species should not be
regarded as endangered.

PHENOLOGY: Plants in cultivation flower from May to
July. Some plants can extend the flowering season up
to October.

This species is closely related to L. tricolor, a wide-
spread species from the Atlantic lands of Costa Rica
and Panama. In a survey of Lycaste species in Costa
Rica, Horich (1977) cited several specimens of L. tri-
color from the Atlantic side of both Tilarin and
Central Volcanic chains. Also, he stated that L. tricolor
has no close affinities or intermediate relatives in the
genus. It seems that he never had access to material
from the Pacifc watershed of Cordillera de Talamanca
(Horich1966). Oakeley (199 1, 1993) discussed L. tri-
color as a tiny pink to white flower species with the lip
provided with a marked isthmus, and a projecting dis-
coid callus. All geographic data and pictures presented
in his work are correctly attributed to L. tricolor.
The only record that may eventually correspond to
a first collection of L. bruncana is the "small dwarf
race" (Fowlie 1970: 7) of L. tricolor that was appar-
ently collected in San Vito de Java, a region that is
included in the current distribution area of L. brun-
cana. However, no herbarium specimens or vouchers
of this species were apparently prepared by the author
(Fowlie 1970). Recent treatments of Costa Rican and
Mesoamerican orchidaceae do not mention any col-
lections of Lycaste tricolor from the Pacific water-
shed of Cordillera de Talamanca (Dressler 2003,
Ossenbach et al. 2007).

LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.


According to Fowlie (1970) and following his clas-
sification of the genus, both species should be placed
in the section Deciduosae subsection Paradeciduosae
Fowlie. Although the similarities between the two
species (i.e., the three-lobed lip, the deciduous
pseudobulbs without conspicuous spines, the similar
size of the plant, and the gross flower morphology)
could have confused taxonomists in the past, Lycaste
borucana may be easily distinguished on the basis of
a consistent set of morphological features.
Lycaste bruncana is distinguished from L. tricolor
by the lip shape with a narrow isthmus and spathulate
midlobe (vs. ovate), the lanate to lanulose infrastig-
matic surface (vs. smooth), the pollinarium with a
longer stipe (up to 3.5 mm long), the subrectangular
pollinia (vs. ovoid) and the tomentose anther cap (vs.
smooth) (Figs. 2-5). However, the most remarkable
character to recognize L. bruncana is the twisted col-
umn, which may be indicative of a reproductive barri-
er with respect of its relative (Fig. 5). Among the
species of Costa Rican Lycaste, this is the only
species that presents a twisted column (Dressler
2003).
All the former characters are diagnostic and show
no variation among individuals. The length of lip is
variable, ranging from 1.5 to 2.7 cm, however the
midlobe is spathulate in all collections studied (Fig.
2). Small plants cultivated at Lankester Botanical
Garden produced smaller flowers than the robust
plants. The number of flowers produced by a plant
varies from one to six in each growth and it depends


PIGURE 2. Variation in the lip length among individuals ot
L. bruncana. A. from A. Karremans 1076. B. from F.
Pupulin 2654. C. from F. Pupulin 2780. D. from D.
Bogarin 3987. All vouchers in JBL-spirit collection.
Scale bar 1 cm.








BOGARIN A NEW Lycaste


FIGURE 3. Comparison of the pollinarium shape between
L. bruncana and L. tricolor. A-C, L. bruncana. A. from
D. Bogarin 3987. B. from F. Pupulin 2780. C. from A.
Karremans 1076. A'-C' L. tricolor. A'. from JBL-
02995. B'. from D. Bogarin 733. C'. from JBL-06408.
All vouchers in JBL-pollinaria collection. Scale bar 5
mm.













FIGURE 4. Comparison between anther cap shape in L.
bruncana and L. tricolor. A-C. L. bruncana. A. from D.
Bogarin 3987. B. from F. Pupulin 2780. C. from A.
Karremans 1076. A'-B' L. tricolor. A'. from D.
Bogarin 733. B'. from JBL-06408. All vouchers in JBL-
spirit collection. Scale bar 5 mm.


on both the robustness of the plant and the number of
pseudobulbs present. Flower coloration is rather con-
stant, with concolor sepals and petals with pink spots,
however, slightly paler flowers have been observed
among the different collections. The distinctive col-
umn, twisted to the left, showed no variation among
individuals and the individual flowers of the same
plant. All the studied flowers showed twisted
columns.


FIGURE 5. Comparison of the column shape in L. bruncana
and L. tricolor. A-A'. L. bruncana. A. Upper view,
showing the twisted column. A'. Frontal view, showing
the twistened column and the lanulose infraestigmatic
surface. From A. Karremans 1076 (JBL-spirit). B-B'.
Lycaste tricolor. B. Upper view, showing the straight
column. B'. Frontal view, showing the straight column
and smooth infraestigmatic surface. From D. Bogarin
733 (JBL-spirit). Scale bar 1 cm.


MAP 1. Distribution of L. bruncana and L. tricolor.


After the submission of this paper, an anonymous
reviewer suggested commenting on two names not
validly published that supposedly have been used
for this species. Although the International Code of
Botanical Nomenclature (McNeill et al. 2006)
expressly recommends (Recomm. 34A) that authors
should avoid mentioning previously unpublished
names, I found two citations of the name Lycaste
crystallina, both of them nomina nuda, with differ-

LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.








LANKESTERIANA


ent authorship. Lycaste crystallina M.A. Dix, nom.
nud., (Missouri Botanical Garden 2007) is ostensi-
bly based on Blanco 2610, designated here as a
paratype of L. bruncana. The other citation, as
Lycaste crystallina Wubben ex H.F. Oakeley, nom.
nud., was found at BIBLIORCHIDEA (Swiss Orchid
Fundation 2007) and refers to a recent article by
Oakeley (2007) where the author anticipated the
publication of L. crystallina as a new species, how-
ever it does not constitute a valid name (see Code,
art. 34.1). No information at all was retreived about
the other unpublished name suggested by the anony-
mous reviewer.

BIOGEOGRAPHY According to the locality data avail-
able for both species, they are geographically separat-
ed (Map 1). All the collections of L. tricolor corre-
spond to the Atlantic watershed of the Cordillera de
Tilarin, the Central Volcanic chain and the
Talamanca range. On the other side, all collections of
L. bruncana come from the Pacific watershed of the
Cordillera de Talamanca and the Cordillera Costefia.
Analogous examples of sister orchid species in the
Atlantic and Pacific regions of Talamanca range have
been documented in the genus Kefersteinia (Pupulin
2001). These examples support the role of the
Cordillera de Talamanca as a geographic isolation
barrier, where these sister species have evolved sepa-
rately.
Though the Cordillera Costefia and nearby areas
have been explored botanically since several years
ago, new species have been recently revealed from
the region (G6mez-Laurito 2006). A well defined
floristic pattern is present in Cordillera Costefia and
its neighboring areas. Its geographic position, geolog-
ic history and the inherent climatological characteris-
tics given by the rain patterns and humid winds that
come from the Pacific, make this area rich in
endemisms.

MOLECULAR DATA Sequences using matK chloro-
plast region obtained to assess the candidate barcode
for flowering plants support the clustering of the
accessions of L. tricolor. This species is placed sepa-
rately from the accessions of L. bruncana. The plant
of L. bruncana from which the type specimen was
prepared (Gene Bank accession EU214496) was used

LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.


to obtain the matK sequence analysed for barcoding
purposes (Lahaye et al. in prep). In the former work,
authors concluded that L. borucana (cited there as
Lycaste cf. tricolor) is a cryptic species supported by
DNA barcoding. Lycaste bruncana does not cluster
with the three accessions of L. tricolor assessed in the
study. In conclusion, molecular evidence supports the
identity of L. bruncana, as a species distinct from its
relative, L. tricolor.

POLLINATION ECOLOGY Lycaste is a typical bee-pol-
linated flower (Roubik & Hanson 2004). The dis-
tinctive twisted column present in L. bruncana
might also be indicative of a reproductive barrier
whereby L. bruncana would deposit the pollinarium
on the shoulder of the pollinating bees and L. tricol-
or, with its straight column, would deposit the polli-
narium on the scutellum. Pollination studies in
orchids around Golfito area did not reveal any
potential bee pollinator of Lycaste species (Lobo &
Bolafios 2005). More observations and comparisons
between pollination biology of both species may
confirm the reproductive isolation barrier inferred
by flower morphology. This acquires special interest
since the two species overlap their flowering season
so, differences in both, flower morphology and the
way in which these species use the pollinator to
carry the pollinarium, ensure a reproductive isola-
tion. This isolation barrier supports the distinction
between L. bruncana and L. tricolor.

ACKNOWLEDGEMENTS. I want to thank Franco Pupulin
and Robert L. Dresser for their invaluable support and
their useful comments on the paper. To my colleagues Jose
Daniel Zufliga and Mario Blanco who kindly provided use-
ful information. The scientific services of Costa Rican
Minister of Environment and Energy (MINAE) and its
National System of Conservation Areas (SINAC) for issu-
ing the collecting permits under which wild species treated
in this study were collected. The staff of Tropenstation La
Gamba for granting access to the installations and for the
research facilities. The staff of Jodrell Laboratory of Royal
Botanic Gardens, Kew, specially Guillaume Gigot, Martyn
Powell and Vincent Savolainen, for their help with the
DNA barcoding work and to Renaud Lahaye who analysed
the molecular data. The UK Darwin Initiative for the
Survival of Species sponsored field work activities under
the project "Conservation and Monitoring of Meso-
American Orchids" (Ref.14001).









BOGARIN A NEW Lycaste


LITERATURE CITED
Dressier, R. L. 2003. Lycaste. Pp. 262-264 in: B.E.
Hammel, M. H. Grayum, C. Herrera & N. Zamora
(eds.). Manual de las Plantas de Costa Rica Vol III.
Orchidaceae-Zingiberaceae. Monogr. Syst. Bot.
Missouri Bot. Gard. 93.
Dresser, R. L & F. Pupulin. 2006. The carmine
Trichopilias of Central America: few but badly con-
fused. Orchids 75(3): 212-219.
Fowlie, J.A. 1970. The genus Lycaste. Azul Quinta Press.
90 p.
G6mez-Laurito, J. 2006. Una nueva especie de Justicia
(Acanthaceae) del sur de Costa Rica. Lankesteriana 6
(3) : 155-156.
Horich, C.K. 1966. Lycaste brevispatha und Lycaste tri-
color. Die Orchidee 2: 74-77.
Horich, C. K. 1977. The Costa Rican Lycaste Species.
Orchid Digest. 41(4): 125-130.
Lobo, J & F. Bolafios. 2005. Historial natural de Golfito.
Editorial INBio, Santo Domingo de Heredia, Costa
Rica. 264 pp.
McNeill, J., F.R. Barrie, H.M. Burdet, V. Demoulin, D.L.
Hawksworth, K. Marhold, D.H. Nicolson. J. Prado,
P.C. Silva, J.E. Skog, J.H. Wiersema & N.J. Turland.
2006. International Code of Botanical Nomenclature
(Vienna Code). Regnum Veg. 146. A.R.G. Gantner
Verlag KG.
Missouri Botanical Garden. 2007. TROPICOS Database.
http://mobot.mobot.org/cgi-bin/search_vast
Oakeley, H. 1993. Lycaste Species. The essential guide.
Vigo Press. 34 p.
Oakeley, H. 1991. A survey of Lycastes 4: Lycaste brevis-
patha to Lye. xytriophora. Amer. Orchid Soc. Bull. 60:
634-644.
Oakeley, H. 2007. A new infrageneric clsssification of


Lycaste (Lindl.) and a checklist of species for the genus
Lycaste. Orchid Digest 71: 196-208.
Ossenbach, C., F. Pupulin & R.L. Dresser. 2007. Orchids
of the Central American Isthmus. Checklist and
Conservation Status. Editorial 25 de Mayo, San Jose,
Costa Rica. 243 p.
Pupulin, F. 2001. Contributions to a reassessment of Costa
Rican Zygopetalinae (Orchidaceae). The genus
Kefersteinia Rchb.f. Ann. Naturhist. Mus. Wien. Serie
B 3: 525-555.
Pupulin, F. 2007. Epidendra, the botanical databases of
Jardin Botanico Lankester at the University of Costa
Rica. Lankesteriana 7(1-2): 178-180.
Pupulin, F. & D. Bogarin. 2005. The genus Brassia in
Costa Rica: A survey of four species and a new species.
Orchids 74 : 202-207.
Roubik, D.W & P.E. Hanson. 2004. Abejas de orquideas de
la America tropical: Biologia y guia de campo. Orchid
bees of tropical America: Biology and field guide.
Editorial INBio, Santo Domingo de Heredia, C.R. 370 p.
Ryan, A., W. M. Whitten, M. A. Johnson & M. W. Chase.
2000. A phylogenetic assessment of Lycaste and Anguloa
(Orchidaceae: Maxillarieae). Lindleyana 15:33-45.
Ryan, A. & H. Oakeley. 2003. Ida A. Ryan and Oakeley,
a new genus, based on Lycaste section Fimbriatae
Fowlie (Orchidaceae, tribe Cymbideae, subtribe
Lycastinae). Orchid Dig. 67(1): 8-10.
Swiss Orchid Foundation. 2007. BIBLIORCHIDEA.
http://www.orchid.unibas.ch/bibliorchidea.index.php
Weissenhofer, A., H. Werner, A. Weber, G. Zimmermann
& N. Zamora. 2001. An introductory Field Guide to the
flowering plants of the Corcovado and Piedras Blancas
National Park (Regenwald der Osterreicher). 00
Landesmuseum Linz, Biologiezentrum, Johann-
Wilhelm KleinstraBe. 464 p.


LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.








LANKESTERIANA






ISSN 1409-3871

LANKESTERIANA
LA REVISTA CIENTIFICA DEL JARDIN BOTANICO LANKESTER








LANKESTERIANA








LANKESTERIANA 7(3) : 553-556. 2007.


UNA ESPECIE NUEVA DE LELLINGERIA (FILICALES: POLYPODIACEAE)
PARA COSTA RICA, PANAMA Y COLOMBIA


ALEXANDER Fco. ROJAS ALVARADO

Jardin Botanico Lankester. Universidad de Costa Rica.
Apdo. 1031-7050, Cartago, Costa Rica. alfoi jasaiii ahoo.com


ABSTRACT: In this paper a new species of Lellingeria is described: L. brenesii. This species is characterized
by small size, long segment with crenate margin and superficial sori, and is known from Costa Rica,
Panama and Colombia.

RESUMEN: En este trabajo una especie nueva de Lellingeria se describe: L. brenesii. Esta especie se carac-
teriza por ser pequefia, los segments largos con margen crenado y el soro superficial, se encuentra en
Costa Rica, Panama y Colombia.

KEY WORDS: Lellingeria, new species, Polypodiaceae, Colombia, Costa Rica, Panama.


El g6nero Lellingeria fue descrito por Smith, Moran
& Bishop (1991) y diferenciado de otros g6neros de
Polypodiaceae (grupo Grammitidae) por tener el rizo-
ma radialmente simetrico, los pelos desigualmente
furcados y las escamas del rizoma clatradas. Tambien
muchas de las species del g6nero presentan escamas
del rizoma con el margen setoso y el soro foveado;
caracteres que fueron confirmados por Moran &
Smith (1995).

En las filtimas tres d6cadas son pocas las species
nuevas descritas y las que han sido combinadas,
entire ellas: Grammitis barbensis Lellinger [=L. bar-
bensis (Lellinger) A.R. Sm. & R.C. Moran], G.
micula Lellinger [=L. melanotrichia (Baker) A.R.
Sm. & R.C. Moran] y G. pseudomichellae Lellinger
[=L. pseudomichellae (Lellinger) A.R. Sm. & R.C.
Moran] (Lellinger 1985); G. hellwigii Mickel &
Beitel [=L. hellwigii (Mickel & Beitel) A.R. Sm. &
R.C. Moran], y G. prionodes Mickel & Beitel [=L.
prionodes (Mickel et Beitel) A.R. Sm. & R.C.
Moran] (Mickel & Beitel 1988); G. sinuosa A.R.
Sm. [=L. sinuosa (A.R. Sm.) A.R. Sm. & R.C.
Moran] (Smith 1990); con las correspondientes
combinaciones (Smith Moran & Bishop 1991); y L.
cilolepis (C. Chr.) A.R. Sm., L. dissimulans
(Maxon) A.R. Sm. y L. hombersleyi (Maxon) A.R.
Sm. (Smith 1995); L. brasiliensis (Rosenst.) Labiak
y L. pumila Labiak (Labiak 2000). En este articulo
una especie nueva mis es descrita.


Lellingeria brenesii A. Rojas, sp. nov.

TIPO: COSTA RICA. Alajuela: Cant6n de San
Ram6n, Reserva Biol6gica Alberto Manuel Brenes,
Sendero Terciopelo, 1012'45"N, 8436'25"W, 1000-
1200 m, 2 jul 2006, A. Rojas & E. Serrano 7193
holotypee: CR; isotypes: MO, NY, USJ). FIG. 1.

A Lellingeria suprasculpta (H. Christ) A.R. Sm. et
R.C. Moran frondibus brevioribus, segments angus-
tioribus et crenatis (adversus pinnatifida) et soro
superficial (adversus foveatum) differt.

Rizoma 1 mm de diimetro aproximadamente, com-
pacto, con escamas 1.0-1.5 x ca. 0.5 mm, ovadas a lan-
ceoladas, pardo-grisiceas, concolores, clatradas, mar-
gen y superficie ciliados; frondas 2-12 (-20) cm de
largo; estipite ausente o menor de 0.5 cm de largo, con
pelos 0.1-0.3 mm de largo, hialinos a amarillentos,
varias veces desigualmente furcados; limina de 0.7-1.7
cm de ancho, pinnatisecta a 1-pinnada, linear-eliptica,
base cuneada a atenuada, apice agudo; raquis recto (no
flexuoso), pardo-grisiceo a negro, medianamente
pubescente en ambas superficies (a veces el haz gla-
brescente), los tricomas 0.1-0.3 mm de largo, hialinos a
amarillentos, varias veces desigualmente furcados,
margen peloso, estos de 0.1-0.3 mm de largo, simples,
hialinos, disperses a medianamente densos (a veces
solo presents en las incisiones); pinnas de 3-8 x 1-3
mm, lanceoladas a linear-lanceoladas, base s6sil, apice
agudo a acuminado, onduladas a crenadas, inclinadas








LANKESTERIANA


1 cm


FIGURA 1. 1. .'. .. brenesii (A. Rojas & E. Serrano
7193, CR). a- Habito.

45-750 con respect a la costa, con 1-3 pares de 16bulos
por pinna, a veces el 16bulo basal acrosc6pico mas
desarrollado; costas rectas, de color pajizo (a veces
negruzcas en la base), pelosas a glabrescentes en el
enves, los pelos como en el raquis; hidatodos visible,
4-7 por pinna f6rtil, negros, resaltados en las pinnas
f6rtiles; nervaduras f6rtiles no visible; soros redondea-
dos, superficiales; capsulas esporangiales glabras.

LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.


DISTRIBUCION: Se encuentra en la cordillera de
Tilarin en Costa Rica, serranias del Darien en
Panama y Alto del Buey en Colombia a 800-1400 m.

PARATIPOS: COSTA RICA. Alajuela: San Ram6n,
Reserva Biol6gica Alberto Manuel Brenes, sendero a
Bajo Jamaical, fila antes de bajar al rio Jamaical,
1014'15"N, 8435'50"W, 800-1000 m, 5 sept 2006,
A. Rojas & J. Cervantes 7352 (CR, F, INB, K, MO,
NY, SEL, US, USJ). PANAMA. Darien: ridge top
areas N of cerro Pirre, between cerro Pirre top and
rancho Plastico, 1200-1400 m, 14 nov 1977, J.
Folsom et al. 6313 (CR). COLOMBIA. Choc6: NW
side of Alto del Buey trail, along ridge from de con-
fluence of the fork of the rio MutatO above ten rio
Dos Bocas to the top of Alto del Buey, 7 febr 1971,
D. Lellinger & E. de la Sota 306 (CR).

ETIMOLOGiA: esta especie es dedicada a Alberto
Manuel Brenes, quien hizo importantes aportes al
conocimiento botinico de la cordillera de Tilarin, en
particular en las cercanias de San Ram6n.

La nueva especie se parece a Lellingeria suprasculp-
ta (H. Christ) A.R. Sm. & R.C. Moran por las pinnas
incisas y por un 16bulo acrosc6pico mis desarrollado,
pero difiere por las escamas del rizoma setosas (vs.
glabras), 1imina crenada (vs. pinnatifida), raquis
pubescente (vs. glabro), pinnas mis pequefias (3-8 x 1-
3 mm vs. 10-25 x 3-4 mm) y por los soros superficiales
(vs. foveados). En Mesoamerica es similar a L. mela-
notrichia (Baker) A. R. Sm. & R. C. Moran por las
escamas del rizoma setulosas y las pinnas incisas, pero
difiere por caracteristicas similares a L. suprasculpta y
por los pelos del raquis que son varias veces desigual-
mente furcados (vs. simples). Tambien es similar a L.
sinuosa (A.R. Sm.) A.R. Sm. & R.C. Moran por el
raquis negro y por la forma e incisi6n de las pinnas,
pero se le reconoce por las escamas del rizoma con
margen ciliado (vs. entero), estipite y raquis densamen-
te cubierto de pelos desigualmente furcados (vs. estipi-
te glabro y raquis glabrescente con pelos simples), pin-
nas mis cortas (3-8 mm de largo vs. 7-12 mm) y con el
margen setuloso (vs. glabro) y costas setulosas (vs. gla-
bras). Probablemente es mis parecida a L. randallii
(Maxon) A.R. Sm. & R.C. Moran por los segments
lobulados y los soros superficiales, pero difiere por
tener el raquis recto (vs. flexuoso) y los segments lan-
ceolados a linear lanceolados (vs. ovados) (Figs. 1 y 2).








ROJAS ALVARADO Una nueva Lellingeria


S"




.9.... a 2 C-

*-i" :, '^8s .....::
-- b









.. ._ *^ '
., s,-' ,'
V. 4 a .^


. -..T, .


FIGURA 2. Comparaci6n de las pinnas de: a -1. .. brenesii (A. Rojas & E. Serrano 7193, CR). b L. melanotrichia
(A. Rojas & A. Soto 4251, CR). c L. randallii (H. I .I & C. Hardeveld 6949, MO). d L. sinuosa (R. Maguire 24556,
NY). e L. suprasculpta (A. Rojas et al. 4071, CR).


LANKESTERIANA 7(3), diciembre 2007. Universidad de Costa Rica, 2007.




University of Florida Home Page
© 2004 - 2010 University of Florida George A. Smathers Libraries.
All rights reserved.

Acceptable Use, Copyright, and Disclaimer Statement
Last updated October 10, 2010 - - mvs